gen_test.ipynb 13.4 KB
Newer Older
Nianchen Deng's avatar
Nianchen Deng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Set CUDA:2 as current device.\n"
     ]
    }
   ],
   "source": [
    "import sys\n",
    "import os\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
22
    "sys.path.append(os.path.abspath(sys.path[0] + '/../'))\n",
Nianchen Deng's avatar
Nianchen Deng committed
23
24
25
26
27
    "torch.cuda.set_device(2)\n",
    "print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n",
    "\n",
    "from ..data.spherical_view_syn import *\n",
    "from ..configs.spherical_view_syn import SphericalViewSynConfig\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
28
29
30
31
32
33
    "from utils import netio\n",
    "from utils import img\n",
    "from utils import device\n",
    "from utils import view\n",
    "from components.gen_final import GenFinal\n",
    "from utils.perf import Perf\n",
Nianchen Deng's avatar
Nianchen Deng committed
34
35
36
37
38
39
40
    "\n",
    "\n",
    "def load_net(path):\n",
    "    config = SphericalViewSynConfig()\n",
    "    config.from_id(path[:-4])\n",
    "    config.SAMPLE_PARAMS['perturb_sample'] = False\n",
    "    config.print()\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
41
42
    "    net = config.create_net().to(device.default())\n",
    "    netio.load(path, net)\n",
Nianchen Deng's avatar
Nianchen Deng committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    "    return net\n",
    "\n",
    "\n",
    "def find_file(prefix):\n",
    "    for path in os.listdir():\n",
    "        if path.startswith(prefix):\n",
    "            return path\n",
    "    return None\n",
    "\n",
    "\n",
    "def load_views(data_desc_file) -> view.Trans:\n",
    "    with open(data_desc_file, 'r', encoding='utf-8') as file:\n",
    "        data_desc = json.loads(file.read())\n",
    "        view_centers = torch.tensor(\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
57
    "            data_desc['view_centers'], device=device.default()).view(-1, 3)\n",
Nianchen Deng's avatar
Nianchen Deng committed
58
    "        view_rots = torch.tensor(\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
59
    "            data_desc['view_rots'], device=device.default()).view(-1, 3, 3)\n",
Nianchen Deng's avatar
Nianchen Deng committed
60
61
62
63
64
65
    "        return view.Trans(view_centers, view_rots)\n",
    "\n",
    "\n",
    "def plot_figures(images, center):\n",
    "    plt.figure(figsize=(8, 4))\n",
    "    plt.subplot(121)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
66
    "    img.plot(images['fovea_raw'])\n",
Nianchen Deng's avatar
Nianchen Deng committed
67
    "    plt.subplot(122)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
68
    "    img.plot(images['fovea'])\n",
Nianchen Deng's avatar
Nianchen Deng committed
69
70
71
    "\n",
    "    plt.figure(figsize=(8, 4))\n",
    "    plt.subplot(121)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
72
    "    img.plot(images['mid_raw'])\n",
Nianchen Deng's avatar
Nianchen Deng committed
73
    "    plt.subplot(122)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
74
    "    img.plot(images['mid'])\n",
Nianchen Deng's avatar
Nianchen Deng committed
75
76
77
    "\n",
    "    plt.figure(figsize=(8, 4))\n",
    "    plt.subplot(121)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
78
    "    img.plot(images['periph_raw'])\n",
Nianchen Deng's avatar
Nianchen Deng committed
79
    "    plt.subplot(122)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
80
    "    img.plot(images['periph'])\n",
Nianchen Deng's avatar
Nianchen Deng committed
81
82
83
84
    "\n",
    "    # Plot Blended\n",
    "    plt.figure(figsize=(12, 6))\n",
    "    plt.subplot(121)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
85
    "    img.plot(images['blended_raw'])\n",
Nianchen Deng's avatar
Nianchen Deng committed
86
    "    plt.subplot(122)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
87
    "    img.plot(images['blended'])\n",
Nianchen Deng's avatar
Nianchen Deng committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    "    plt.plot([(res_full[1] - 1) / 2 + center[0] - 5, (res_full[1] - 1) / 2 + center[0] + 5],\n",
    "                [(res_full[0] - 1) / 2 + center[1],\n",
    "                (res_full[0] - 1) / 2 + center[1]],\n",
    "                color=[0, 1, 0])\n",
    "    plt.plot([(res_full[1] - 1) / 2 + center[0], (res_full[1] - 1) / 2 + center[0]],\n",
    "                [(res_full[0] - 1) / 2 + center[1] - 5,\n",
    "                (res_full[0] - 1) / 2 + center[1] + 5],\n",
    "                color=[0, 1, 0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Change working directory to  /home/dengnc/deep_view_syn/data/__0_user_study/us_gas_all_in_one\n",
      "==== Config fovea ====\n",
      "Net type:  nmsl\n",
      "Encode dim:  10\n",
      "Optimizer decay:  0\n",
      "Normalize:  False\n",
      "Direction as input:  False\n",
      "Full-connected network parameters: {'nf': 128, 'n_layers': 4, 'skips': []}\n",
      "Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 32, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
      "==========================\n",
      "Load net from fovea@nmsl-rgb_e10_fc128x4_d1-50_s32.pth ...\n",
      "==== Config periph ====\n",
      "Net type:  nnmsl\n",
      "Encode dim:  10\n",
      "Optimizer decay:  0\n",
      "Normalize:  False\n",
      "Direction as input:  False\n",
      "Full-connected network parameters: {'nf': 64, 'n_layers': 4, 'skips': []}\n",
      "Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 16, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
      "==========================\n",
      "Load net from periph@nnmsl-rgb_e10_fc64x4_d1-50_s16.pth ...\n",
      "Dataset loaded.\n",
      "views: [110]\n"
     ]
    }
   ],
   "source": [
    "os.chdir(sys.path[0] + '/../data/__0_user_study/us_gas_all_in_one')\n",
    "#os.chdir(sys.path[0] + '/../data/__0_user_study/us_mc_all_in_one')\n",
    "#os.chdir(sys.path[0] + '/../data/lobby_all_in_one')\n",
    "print('Change working directory to ', os.getcwd())\n",
    "torch.autograd.set_grad_enabled(False)\n",
    "\n",
    "fovea_net = load_net(find_file('fovea'))\n",
    "periph_net = load_net(find_file('periph'))\n",
    "\n",
    "# Load Dataset\n",
    "views = load_views('nerf_views.json')\n",
    "print('Dataset loaded.')\n",
    "\n",
    "print('views:', views.size())\n",
    "#print('ref views:', ref_dataset.samples)\n",
    "\n",
    "fov_list = [20, 45, 110]\n",
    "res_list = [(128, 128), (256, 256), (256, 230)]  # (192,256)]\n",
    "res_full = (1600, 1440)\n",
    "gen = GenFinal(fov_list, res_list, res_full, fovea_net, periph_net,\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
154
    "               device=device.default())\n"
Nianchen Deng's avatar
Nianchen Deng committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "GetRays: 580.4ms\n",
      "Sample: 2.1ms\n",
      "Encode: 2.2ms\n",
      "Rays: tensor([[-0.1711,  0.1711,  0.9702],\n",
      "        [-0.1685,  0.1711,  0.9707],\n",
      "        [-0.1659,  0.1713,  0.9712],\n",
      "        ...,\n",
      "        [ 0.1633, -0.1687,  0.9722],\n",
      "        [ 0.1660, -0.1687,  0.9717],\n",
      "        [ 0.1686, -0.1686,  0.9712]], device='cuda:2')\n",
      "Spherical coords: tensor([[[1.0000, 1.7454, 1.3988],\n",
      "         [0.9684, 1.7454, 1.3988],\n",
      "         [0.9368, 1.7454, 1.3988],\n",
      "         ...,\n",
      "         [0.0832, 1.7454, 1.3988],\n",
      "         [0.0516, 1.7454, 1.3988],\n",
      "         [0.0200, 1.7454, 1.3988]],\n",
      "\n",
      "        [[1.0000, 1.7426, 1.3988],\n",
      "         [0.9684, 1.7426, 1.3988],\n",
      "         [0.9368, 1.7426, 1.3988],\n",
      "         ...,\n",
      "         [0.0832, 1.7426, 1.3988],\n",
      "         [0.0516, 1.7426, 1.3988],\n",
      "         [0.0200, 1.7426, 1.3988]],\n",
      "\n",
      "        [[1.0000, 1.7400, 1.3987],\n",
      "         [0.9684, 1.7400, 1.3987],\n",
      "         [0.9368, 1.7400, 1.3987],\n",
      "         ...,\n",
      "         [0.0832, 1.7400, 1.3987],\n",
      "         [0.0516, 1.7400, 1.3987],\n",
      "         [0.0200, 1.7400, 1.3987]],\n",
      "\n",
      "        ...,\n",
      "\n",
      "        [[1.0000, 1.4043, 1.7403],\n",
      "         [0.9684, 1.4043, 1.7403],\n",
      "         [0.9368, 1.4043, 1.7403],\n",
      "         ...,\n",
      "         [0.0832, 1.4043, 1.7403],\n",
      "         [0.0516, 1.4043, 1.7403],\n",
      "         [0.0200, 1.4043, 1.7403]],\n",
      "\n",
      "        [[1.0000, 1.4016, 1.7403],\n",
      "         [0.9684, 1.4016, 1.7403],\n",
      "         [0.9368, 1.4016, 1.7403],\n",
      "         ...,\n",
      "         [0.0832, 1.4016, 1.7403],\n",
      "         [0.0516, 1.4016, 1.7403],\n",
      "         [0.0200, 1.4016, 1.7403]],\n",
      "\n",
      "        [[1.0000, 1.3989, 1.7402],\n",
      "         [0.9684, 1.3989, 1.7402],\n",
      "         [0.9368, 1.3989, 1.7402],\n",
      "         ...,\n",
      "         [0.0832, 1.3989, 1.7402],\n",
      "         [0.0516, 1.3989, 1.7402],\n",
      "         [0.0200, 1.3989, 1.7402]]], device='cuda:2')\n",
      "Depths: tensor([[ 1.0001,  1.0327,  1.0675,  ..., 12.0161, 19.3760, 50.0026],\n",
      "        [ 1.0000,  1.0327,  1.0675,  ..., 12.0159, 19.3757, 50.0017],\n",
      "        [ 1.0000,  1.0326,  1.0675,  ..., 12.0151, 19.3744, 49.9984],\n",
      "        ...,\n",
      "        [ 0.9999,  1.0325,  1.0674,  ..., 12.0140, 19.3726, 49.9938],\n",
      "        [ 0.9999,  1.0326,  1.0674,  ..., 12.0144, 19.3732, 49.9954],\n",
      "        [ 1.0000,  1.0326,  1.0675,  ..., 12.0152, 19.3745, 49.9987]],\n",
      "       device='cuda:2')\n",
      "Encoded: tensor([[[ 1.0000,  1.7454,  1.3988,  ..., -0.9968,  0.1395,  0.9952],\n",
      "         [ 0.9684,  1.7454,  1.3988,  ...,  0.8486,  0.1395,  0.9952],\n",
      "         [ 0.9368,  1.7454,  1.3988,  ..., -0.5103,  0.1395,  0.9952],\n",
      "         ...,\n",
      "         [ 0.0832,  1.7454,  1.3988,  ...,  0.1988,  0.1395,  0.9952],\n",
      "         [ 0.0516,  1.7454,  1.3988,  ...,  0.2742,  0.1395,  0.9952],\n",
      "         [ 0.0200,  1.7454,  1.3988,  ..., -0.6857,  0.1395,  0.9952]],\n",
      "\n",
      "        [[ 1.0000,  1.7426,  1.3988,  ..., -0.9968,  0.9999,  0.9953],\n",
      "         [ 0.9684,  1.7426,  1.3988,  ...,  0.8486,  0.9999,  0.9953],\n",
      "         [ 0.9368,  1.7426,  1.3988,  ..., -0.5103,  0.9999,  0.9953],\n",
      "         ...,\n",
      "         [ 0.0832,  1.7426,  1.3988,  ...,  0.1988,  0.9999,  0.9953],\n",
      "         [ 0.0516,  1.7426,  1.3988,  ...,  0.2742,  0.9999,  0.9953],\n",
      "         [ 0.0200,  1.7426,  1.3988,  ..., -0.6857,  0.9999,  0.9953]],\n",
      "\n",
      "        [[ 1.0000,  1.7400,  1.3987,  ..., -0.9968,  0.2253,  0.9881],\n",
      "         [ 0.9684,  1.7400,  1.3987,  ...,  0.8486,  0.2253,  0.9881],\n",
      "         [ 0.9368,  1.7400,  1.3987,  ..., -0.5103,  0.2253,  0.9881],\n",
      "         ...,\n",
      "         [ 0.0832,  1.7400,  1.3987,  ...,  0.1988,  0.2253,  0.9881],\n",
      "         [ 0.0516,  1.7400,  1.3987,  ...,  0.2742,  0.2253,  0.9881],\n",
      "         [ 0.0200,  1.7400,  1.3987,  ..., -0.6857,  0.2253,  0.9881]],\n",
      "\n",
      "        ...,\n",
      "\n",
      "        [[ 1.0000,  1.4043,  1.7403,  ..., -0.9968, -0.9210,  0.3760],\n",
      "         [ 0.9684,  1.4043,  1.7403,  ...,  0.8486, -0.9210,  0.3760],\n",
      "         [ 0.9368,  1.4043,  1.7403,  ..., -0.5103, -0.9210,  0.3760],\n",
      "         ...,\n",
      "         [ 0.0832,  1.4043,  1.7403,  ...,  0.1988, -0.9210,  0.3760],\n",
      "         [ 0.0516,  1.4043,  1.7403,  ...,  0.2742, -0.9210,  0.3760],\n",
      "         [ 0.0200,  1.4043,  1.7403,  ..., -0.6857, -0.9210,  0.3760]],\n",
      "\n",
      "        [[ 1.0000,  1.4016,  1.7403,  ..., -0.9968,  0.2445,  0.3786],\n",
      "         [ 0.9684,  1.4016,  1.7403,  ...,  0.8486,  0.2445,  0.3786],\n",
      "         [ 0.9368,  1.4016,  1.7403,  ..., -0.5103,  0.2445,  0.3786],\n",
      "         ...,\n",
      "         [ 0.0832,  1.4016,  1.7403,  ...,  0.1988,  0.2445,  0.3786],\n",
      "         [ 0.0516,  1.4016,  1.7403,  ...,  0.2742,  0.2445,  0.3786],\n",
      "         [ 0.0200,  1.4016,  1.7403,  ..., -0.6857,  0.2445,  0.3786]],\n",
      "\n",
      "        [[ 1.0000,  1.3989,  1.7402,  ..., -0.9968,  0.9995,  0.3247],\n",
      "         [ 0.9684,  1.3989,  1.7402,  ...,  0.8486,  0.9995,  0.3247],\n",
      "         [ 0.9368,  1.3989,  1.7402,  ..., -0.5103,  0.9995,  0.3247],\n",
      "         ...,\n",
      "         [ 0.0832,  1.3989,  1.7402,  ...,  0.1988,  0.9995,  0.3247],\n",
      "         [ 0.0516,  1.3989,  1.7402,  ...,  0.2742,  0.9995,  0.3247],\n",
      "         [ 0.0200,  1.3989,  1.7402,  ..., -0.6857,  0.9995,  0.3247]]],\n",
      "       device='cuda:2')\n"
     ]
    }
   ],
   "source": [
    "test_view = view.Trans(\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
288
289
    "    torch.tensor([[0.0, 0.0, 0.0]], device=device.default()),\n",
    "    torch.tensor([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device.default())\n",
Nianchen Deng's avatar
Nianchen Deng committed
290
    ")\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
291
    "perf = Perf(True, True)\n",
Nianchen Deng's avatar
Nianchen Deng committed
292
    "rays_o, rays_d = gen.layer_cams[0].get_global_rays(test_view, True)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
293
    "perf.checkpoint(\"GetRays\")\n",
Nianchen Deng's avatar
Nianchen Deng committed
294
295
296
    "rays_o = rays_o.view(-1, 3)\n",
    "rays_d = rays_d.view(-1, 3)\n",
    "coords, pts, depths = fovea_net.sampler(rays_o, rays_d)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
297
    "perf.checkpoint(\"Sample\")\n",
Nianchen Deng's avatar
Nianchen Deng committed
298
    "encoded = fovea_net.input_encoder(coords)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
299
    "perf.checkpoint(\"Encode\")\n",
Nianchen Deng's avatar
Nianchen Deng committed
300
301
302
303
304
305
    "print(\"Rays:\", rays_d)\n",
    "print(\"Spherical coords:\", coords)\n",
    "print(\"Depths:\", depths)\n",
    "print(\"Encoded:\", encoded)\n",
    "#plot_figures(images, center)\n",
    "\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
306
    "#misc.create_dir('output/teasers')\n",
Nianchen Deng's avatar
Nianchen Deng committed
307
    "#for key in images:\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
308
    "#    img.save(\n",
Nianchen Deng's avatar
Nianchen Deng committed
309
310
311
312
313
314
315
316
317
318
319
320
321
    "#        images[key], 'output/teasers/view%04d_%s.png' % (view_idx, key))\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
Nianchen Deng's avatar
sync    
Nianchen Deng committed
322
323
   "display_name": "Python 3.7.9 64-bit ('pytorch': conda)",
   "name": "python379jvsc74a57bd0660ca2a75467d3af74a68fcc6f40bc78ab96b99ff17d2f100b5ca821fbb183f2"
Nianchen Deng's avatar
Nianchen Deng committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.9"
  },
  "orig_nbformat": 2
 },
 "nbformat": 4,
 "nbformat_minor": 2
}