Foveated Fluid Animation in Virtual Reality
Yue Wang1, Yan Zhang1, Xuanhui Yang1, Hui Wang1, Dongxu Liu1, and Xubo Yang1†
1: Shanghai Jiao Tong University
†: Corresponding author
Abstract
Large-scale fluid simulation is widely useful in various Virtual Reality (VR) applications. While physics-based fluid animation holds the promise of generating highly realistic fluid details, it often imposes significant computational demands, particularly when simulating high-resolution fluid for VR. In this paper, we propose a novel foveated fluid simulation method that enhances both the visual quality and computational efficiency of physics-based fluid simulation in VR. To leverage the natural foveation feature of human vision, we divide the visible domain of the fluid simulation into foveal, peripheral, and boundary regions. Our foveated fluid system dynamically allocates computational resources, striking a balance between simulation accuracy and computational efficiency. We implement this approach using a multi-scale method. To evaluate the effectiveness of our approach, we have conducted subjective studies. Our findings show a significant reduction in computational resource requirements, resulting in a speedup of up to 2.27 times. It is crucial to note that our method preserves the visual quality of fluid animations at a level that is perceptually identical to full-resolution outcomes. Additionally, we investigate the impact of various metrics, including particle radius and viewing distance, on the visual effects of fluid animations. Our work provides new techniques and evaluations tailored to facilitate real-time foveated fluid simulation in VR, which can enhance the efficiency and realism of fluids in VR applications.
Keywords: Foveated Graphics, Virtual Reality, Adaptive Fluid Simulation, Physics-based Animation