snerf_fast.py 7.1 KB
Newer Older
Nianchen Deng's avatar
sync    
Nianchen Deng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import math
import torch
import torch.nn as nn
from torch.nn.modules import module
from .modules import *
from utils import sphere
from utils import color


class SnerfFast(nn.Module):

    def __init__(self, fc_params, sampler_params, n_parts: int, normalize_coord: bool,
                 c: int = color.RGB, coord_encode: int = 0, dir_encode: int = None,
                 spherical_dir: bool = False, multiple_net=True):
        """
        Initialize a multi-sphere-layer net

        :param fc_params: parameters for full-connection network
        :param sampler_params: parameters for sampler
        :param normalize_coord: whether normalize the spherical coords to [0, 2pi] before encode
        :param c: color mode
        :param encode_to_dim: encode input to number of dimensions
        """
        super().__init__()
        self.color = c
        self.normalize_coord = normalize_coord
        self.spherical_dir = spherical_dir
        self.n_samples = sampler_params['n_samples']
        self.n_parts = n_parts
        self.samples_per_part = self.n_samples // self.n_parts
        self.coord_chns = 2 if multiple_net else 3
        self.color_chns = color.chns(self.color)
        self.coord_encoder = InputEncoder.Get(coord_encode, self.coord_chns)

        if dir_encode is not None:
            self.dir_encoder = InputEncoder.Get(dir_encode, 2 if self.spherical_dir else 3)
            self.dir_chns_per_part = self.dir_encoder.out_dim * \
                (self.samples_per_part if self.spherical_dir else 1)
        else:
            self.dir_encoder = None
            self.dir_chns_per_part = 0

        if multiple_net:
            old = False
            if old:
                self.mlp = Mlp(coord_chns=self.coord_encoder.out_dim * self.samples_per_part,
                               density_chns=self.samples_per_part,
                               color_chns=self.color_chns * self.samples_per_part,
                               core_nf=fc_params['nf'],
                               core_layers=fc_params['n_layers'],
                               dir_chns=self.dir_chns_per_part,
                               dir_nf=fc_params['nf'] // 2,
                               activation=fc_params['activation'])
                self.nets = [self.mlp]
                if n_parts > 1:
                    self.nets += [
                        Mlp(coord_chns=self.coord_encoder.out_dim * self.samples_per_part,
                            density_chns=self.samples_per_part,
                            color_chns=self.color_chns * self.samples_per_part,
                            core_nf=fc_params['nf'],
                            core_layers=fc_params['n_layers'],
                            dir_chns=self.dir_chns_per_part,
                            dir_nf=fc_params['nf'] // 2,
                            activation=fc_params['activation'])
                        for _ in range(1, self.n_parts)
                    ]
                    for i in range(1, self.n_parts):
                        self.add_module(f"mlp_{i:d}", self.nets[i])
            else:
                self.nets = [
                    NewMlp(coord_chns=self.coord_encoder.out_dim * self.samples_per_part,
                           density_chns=self.samples_per_part,
                           color_chns=self.color_chns * self.samples_per_part,
                           core_nf=fc_params['nf'],
                           core_layers=fc_params['n_layers'],
                           dir_chns=self.dir_chns_per_part,
                           dir_nf=fc_params['nf'] // 2,
                           activation=fc_params['activation'])
                    for _ in range(self.n_parts)
                ]
                for i in range(self.n_parts):
                    self.add_module(f"mlp_{i:d}", self.nets[i])
        else:
            self.nets = None
            self.net = Mlp(coord_chns=self.coord_encoder.out_dim * self.samples_per_part,
                           density_chns=self.samples_per_part,
                           color_chns=self.color_chns * self.samples_per_part,
                           core_nf=fc_params['nf'],
                           core_layers=fc_params['n_layers'],
                           dir_chns=self.dir_chns_per_part,
                           dir_nf=fc_params['nf'] // 2,
                           activation=fc_params['activation'])
        self.sampler = Sampler(**sampler_params)
        self.rendering = NewRendering()

    def forward(self, rays_o: torch.Tensor, rays_d: torch.Tensor,
                ret_depth=False, debug=False) -> torch.Tensor:
        """
        rays -> colors

        :param rays_o `Tensor(B, 3)`: rays' origin
        :param rays_d `Tensor(B, 3)`: rays' direction
        :return: `Tensor(B, C)``, inferred images/pixels
        """
        coords, pts, depths = self.sampler(rays_o, rays_d)
        coords_encoded = self.coord_encoder(coords[..., -self.coord_chns:])
        dirs_encoded = self.dir_encoder(
            sphere.calc_local_dir(rays_d, coords, pts) if self.spherical_dir else rays_d) \
            if self.dir_encoder is not None else None
        densities = torch.empty(rays_o.size(0), self.n_samples, device=device.default())
        colors = torch.empty(rays_o.size(0), self.n_samples, self.color_chns,
                             device=device.default())
        if self.nets is not None:
            for i, net in enumerate(self.nets):
                s = slice(i * self.samples_per_part, (i + 1) * self.samples_per_part)
                c, d = net(coords_encoded[:, s].flatten(1, 2),
                           dirs_encoded[:, s].flatten(1, 2) if self.spherical_dir else dirs_encoded)
                colors[:, s] = c.view(-1, self.samples_per_part, self.color_chns)
                densities[:, s] = d
        else:
            for i in range(self.n_parts):
                s = slice(i * self.samples_per_part, (i + 1) * self.samples_per_part)
                c, d = self.net(coords_encoded[:, s].flatten(1, 2),
                                dirs_encoded[:, s].flatten(1, 2) if self.spherical_dir else dirs_encoded)
                colors[:, s] = c.view(-1, self.samples_per_part, self.color_chns)
                densities[:, s] = d
        densities = densities
        return self.rendering(colors.view(-1, self.n_samples, self.color_chns),
                              densities, depths, ret_depth=ret_depth, debug=debug)


class SnerfFastExport(nn.Module):

    def __init__(self, net: SnerfFast):
        super().__init__()
        self.net = net

    def forward(self, coords_encoded, z_vals):
        colors = []
        densities = []
        for i in range(self.net.n_parts):
            s = slice(i * self.net.samples_per_part, (i + 1) * self.net.samples_per_part)
            mlp = self.net.nets[i] if self.net.nets is not None else self.net.net
            c, d = mlp(coords_encoded[:, s].flatten(1, 2))
            colors.append(c.view(-1, self.net.samples_per_part, self.net.color_chns))
            densities.append(d)
        colors = torch.cat(colors, 1)
        densities = torch.cat(densities, 1)
        alphas = self.net.rendering.density2alpha(densities, z_vals)
        return torch.cat([colors, alphas[..., None]], -1)