test_spherical_view_syn.ipynb 138 KB
Newer Older
1
2
3
4
{
 "cells": [
  {
   "cell_type": "code",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
5
   "execution_count": 1,
6
   "metadata": {},
Nianchen Deng's avatar
Nianchen Deng committed
7
8
9
10
11
12
13
14
15
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Set CUDA:2 as current device.\n"
     ]
    }
   ],
16
17
   "source": [
    "import sys\n",
BobYeah's avatar
BobYeah committed
18
    "import os\n",
Nianchen Deng's avatar
Nianchen Deng committed
19
    "sys.path.append(os.path.abspath(sys.path[0] + '/../'))\n",
20
21
22
23
    "\n",
    "import torch\n",
    "import matplotlib.pyplot as plt\n",
    "import numpy as np\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
24
25
26
    "from utils import img\n",
    "from utils import sphere\n",
    "from utils.constants import *\n",
Nianchen Deng's avatar
Nianchen Deng committed
27
    "from nets.msl_net import *\n",
28
29
30
    "\n",
    "# Select device\n",
    "torch.cuda.set_device(2)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
31
    "print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n"
32
33
34
   ]
  },
  {
Nianchen Deng's avatar
sync    
Nianchen Deng committed
35
   "cell_type": "markdown",
36
37
38
39
40
41
42
   "metadata": {},
   "source": [
    "# Test Ray-Sphere Intersection & Cartesian-Spherical Conversion"
   ]
  },
  {
   "cell_type": "code",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
43
   "execution_count": 9,
44
   "metadata": {},
Nianchen Deng's avatar
sync    
Nianchen Deng committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "tensor([[ 0.0000, -0.3536,  0.3536]])\n",
      "tensor(0.5000)\n",
      "tensor([[ 90., 135.]])\n",
      "torch.Size([1, 3])\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAccAAAHBCAYAAAAcpXCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d5gkV3ku/p4KHSfvzO6k3Z3ZpJVWcXdnVwEhJIH4IUCA7YvlQAZb92JfuDb25Zpr44ADDjf4gsE2zjYmg2SBBApICJTj5hxndyf3hM5dVef3x6mvTlV1dU/35JHqfR49mu2ucKq66rznS+/HOOcIESJEiBAhQkgoyz2AECFChAgRYqUhJMcQIUKECBHCh5AcQ4QIESJECB9CcgwRIkSIECF8CMkxRIgQIUKE8CEkxxAhQoQIEcIHbZbvwzqPECFChAix2sHq3SG0HEOECBEiRAgfQnIMESJEiBAhfAjJMUSIECFChPAhJMcQIUKECBHCh5AcQ4QIESJECB9CcgwRIkSIECF8CMkxRIgQIUKE8CEkxxAhQoQIEcKHkBxDhAgRIkQIH0JyDBEiRIgQIXwIyTFEiBAhQoTwISTHECFChAgRwoeQHEOECBEiRAgfQnIMESJEiBAhfAjJMUSIECFChPAhJMcQIUKECBHCh5AcQ4QIESJECB9CcgwRIkSIECF8CMkxRIgQIUKE8CEkxxAhQoQIEcKHkBxDhAgRIkQIH0JyDBEiRIgQIXwIyTFEiBAhQoTwISTHECFChAgRwoeQHEOECBEiRAgfQnIMESJEiBAhfAjJMUSIECFChPAhJMcQIUKECBHCh5AcQ4QIESJECB9CcgwRIkSIECF8CMkxRIgQIUKE8CEkxxAhQoQIEcIHbbkHECLEQsKyLORyOXDOoes6NE2DoihgjC330EKECLGKwDjn1b6v+mWIECsFnHOYpolSqQTDMGCapvMdYwyapjn/hWQZIsRrDnW/8CE5hlj14JyjWCzCsiwwxmAYhvM3fW9ZlrN9SJYhQrzmEJJjiNcWLMtCsVgE5xyMMTDGUCqVPOToRxBZkgtWVdWQLEOEePUhJMcQrw1wzmEYBgzDcEiRMBs5Bh3LsiwPwRJZappWdvwQIUKsOoTkGOLVD78b1U9c9ZJj0PGJLAFAURToug5d16GqakiWIUKsPoTkGOLVDcMwUCqVAKAiSc2XHN2g98PthlUUBZqmOWSpKGFFVIgQKxwhOYZ4daKaG9WPhSTHoHEAgixN08Tg4CD6+/tDsgwRYmWj7skgrHMMseJhWZaH8JbTpUnnVlUVnHOkUin09/ejWCyiWCwCCC3LECFeDQjJMcSKhbt2EcCKIxkiSsYYVFUFIMZMMVE3WfqzYUOECLGyEZJjiBUJzjlKpRJM06zbWlQUxRMjXEr4x0pkWSgUUCgUAAirk6xKyoYNESLEykJIjiFWHIJqF+vBLHH0JUUQWVqWhXw+73xGZEmWZUiWIUIsP0JyDLFiQEk3hw8fxrZt21a8+5ExVjcRh2QZIsTqQEiOIVYE3LWL4+PjrxlCCMkyRIiViZAcQyw7KOmG3KgLgYU81lKiElnmcjlPpmxIliFCLC5CcgyxbPDXLq50N6ofc3GrzuUc7nsTkmWIEEuDkBxDLAtWUu3iakItZOnuOBKSZYgQc0NIjiGWFP7axUrEuFrdokuNILI0TROGYTjbkCBB2J4rRIjaEZJjiCVDrbWL5K5c6ZP4ShxfUMzSTZb0d0tLS0iWIUJUQUiOIZYE9dQuLkUs77UC/73OZDIYHBzEZZdd5nwfNn4OEaIcITmGWFS43ai1Jt3MlxzDyb0y6Ddwy92VSiWPmzskyxAhQnIMsYiYre9iJcyHHAuFAg4cOIBCoYDW1la0traiubnZIYPXOvz31a0LS98HkaVbRD0kyxCvBYTkGGJR4K9drGdCnSs5jo+P48iRI9iyZQsSiQSmp6cxNjaGkydPQlVVhyybmppWXdnIUqESWRaLRed3pOQe0oUNyTLEqxEhOYZYUCxE7aKiKHWRI+ccJ06cwOTkJHbt2gVd11EqldDR0YGOjg4AQLFYRCqVwtDQEI4dO4ZIJOKQZWNj42tqgq93oeIny2Kx6IioU8cRsixDsgzxakFIjiEWDAtVu1iP5ZjP57F//360trZi9+7dYIzBNM2y7SKRCNatW4d169Y5+6VSKQwODiKdTiMejztkmUgkXrUT/HwTnfztuQA4ZEmLobCXZYhXA0JyDDFv1Fq7WCtqJcfR0VEcO3YM27dvx5o1a+o6RywWQ1dXF7q6usA5Ry6XQyqVwunTp5HJZNDQ0OCQZSwWe9WS5XzgVugBvGQZNn4OsdoRkmOIecHvRl0IEpmNHC3LwvHjxzEzM4Pdu3cjGo3O+3yJRAKJRAI9PT3gnCOTySCVSuH48ePI5/NobGx0yHK+51tOLGb9aEiWIV5NCMkxxJyxWBJwjLGKzYpzuRz27duHjo4O7Nq1a1EmesYYGhoa0NDQgPXr18OyLKTTaaRSKRw+fBjFYhHNzc1obW1dtqbKqwFBZEkxSzdZunVhQ7IMsVIQkmOIujGX2sV6UMlyHBkZwfHjx3HFFVegtbV1Qc9ZDYqioKmpCU1NTdi4cSMsy8L09DRSqRTy+Tyee+45tLS0oLW11VGeWclYLhdxkHoP5xyFQqEswcedDRsixHJgZb/FIVYc5lq7WA/85GhZFo4ePYpcLoeBgQFEIpEFP2c9UBQFLS0taGlpwdjYGHbu3ImpqSmkUimcPXsWAByyXGk1litJeagWsgw7joRYLoTkGKJm1CMBNx+4yTGbzWLfvn3o7OzE9u3bV+TkqKoq2tra0NbWBgAwDAOTk5MYHx8PayzrQLXGz2NjY9A0DWvWrAnJMsSSICTHELNiqfsuUp3j0NAQTp48iSuvvBLNzc0177/cE6amaWhvb0d7ezsAkZAyOTm5Ymosl/v+1Ao3WeZyOcTjcYcsCaFlGWKxEJJjiKrgnGNsbAzpdBpdXV1LMvlwznHq1CkoioI9e/ZA1/VFP+diIhKJYO3atVi7di2A8hrLWCzmkGUymVzUe7yS3Kr1gHMORVE8C7Ow8XOIxURIjiEqwjAMlEolFAoFzMzMoLu7e9HPmU6nMTw8jO7ublx22WWvysmtUo3lmTNnkMlkkEwmHbKMx+OvyntQL4JKUGpp/BySZYi5IiTHEGUIcqMuRcnCxYsXcebMGbS3t6Ojo+M1MZFVq7E8ceIE8vl8mSDBfLAa+mQGoZZx10KW7o4jIVmGqIaQHEN4EFS7WK/Wab0wDAOHDx+GZVnYs2cPTp06tWrdf/OFv8aSc46ZmRmkUikcOXLEU2PZ0tKy7Jm7S4W5kHoQWbobPwNwBAnC9lwh/AjJMQSAcgk4d2xnMS3HmZkZ7N+/Hxs2bEBPT48zob1WydEPxljFGsvBwUGYprmqaiznioWweIOyYd1kSbqxIVmGAEJyDAHZlsg0zcASjcUgK845BgcHMTg4iKuvvhoNDQ2Ler5XC9w1lv39/TBN01NjyTmv2sfy1exWrRe1kGXY+Pm1i5AcX+OopXZxoS1HwzBw8OBBqKqKPXv2lE3g1eTjQnhRb43lasVSkHoQWVJSGn0fkuVrByE5vkZRT+3iQlpy09PTOHDgAPr6+ipmv4aW49xRqcZyeHgYx44dAwDouo7p6elV1cdyOSzeILIslUplZOkWUV8t9zPE7AjJ8TWIeiXgFsJy5Jzj3LlzuHjxIq655hokk8mK2y4EOYaTlIC/xvLixYsYGxtblhrL+WAluIODGj/7ydIvor7cYw4xd4Tk+BoDJd3UIwE332zVUqmEAwcOIBqNBrpR/Qgtx8WDrutobGxEf3//qqqxXAnk6EcQWVLjZyBYRH2lXUOIygjJ8TWC+UjAzScGODk5iYMHD2Lz5s3o7OysaZ/FLh0JIbDUNZbzwUokRz8qkeULL7yAq666qqyXZUiWKxshOb4GMN++i3Nxq3LOcebMGQwPD+O6665DIpGoed/Qclw8VCOZWmosm5qaHLJcyhrL1UCOfhBZFotFZzEaNn5ePQjJ8VUMf+3iXFeq9ZJVsVjE/v37kUwmsWfPnrpf+oXIVl2Nk+lKQ7UaywsXLsA0TY8gwWJq4K723zOo8TMQkuVKRkiOr1LMVrtYD+qxHFOpFA4dOoStW7c6SSD1YiHIcTVPpCsV1Wosz507B865R5BgIftYWpb1qiKLILIkN6ybLP0JPiGWDiE5vgqx0H0Xa9mfOmlQ8994PD6v883HrRoSY2UspAVWqcZyYmICp06dWtA+lqvdcpwNQWUj/sbPIVkuLUJyfBXB7UZdir6LhEKhgP3796OpqQkDAwPzPm8Yc1ydmK3Gcj59LF/t5OhHLWRJUneqqjrZsCEWDiE5vkpQb+3iQmF8fBxHjhzBZZdd5kyK80VIjouHpSQZf41loVBw4pUzMzN11ViuVnJcqOc4iCzDxs+Li5AcXwVYaDdqLeCc48SJE5icnMSuXbsWNM0/JMdXJ6LRKDo7O9HZ2QnOudP0+ezZs0in01VrLFczOS6GBycky8VHSI6rGPOpXZwP8vk89u3bh7a2NuzevXtRBKFDcnx1gzGGeDyOeDyO7u5ucM6RzWaRSqVw8uRJ5HI5T43laiXHpUokCsly4RGS4yrFfGsX54rR0VEcO3YM27dvx5o1axblHCE5Lh5WKskwxpBMJpFMJtHb2wvOOdLpNFKpFI4ePYp0Oo1jx44tS43lfEDv51KjElm6Gz+HZFkdITmuMixU7eJcznv06FHMzMxg9+7diEaji3auUCEnBGMMjY2NaGxsxIYNG/DMM8+gq6sLExMTS15jOR+slBIUmifcjZ/9ZOnuOBKSZUiOqwrkRt23bx82btyIxsbGJTlvLpdDNpuFruvYtWvXkrQOCskxhBuKoqC5uRnNzc1LXmM5H6wUcvQjiCzdme4AHEGC12p7rpAcVwncblRa9S0FhoeHceLECUSjUfT39y/JCxKS4+JhpbpV60W1GsvTp087ggXU9Hm5CGqxEnIWGpXIcmxsDJlMBr29vR437GuBLENyXOEIql1UVXXRydGyLBw9ehS5XA4DAwN44YUXlmxinS85joyM4OzZs87k2NjYuKgT1KuFcFYzKtVYjoyM4MSJE9A0Da2trWhra0NDQ8OSEdZKtRxnA5GlaZpO3NQ0TRiG4Xz/am/8HJLjCkal2sWF6K9YDdlsFvv27UNnZye2b9/unHuprLm5ysdZloXjx48jnU5jy5YtSKfTuHjxolNT19bWhtbWViQSiVfdixzCi4WssZwPVis5EkzTdIjPn+BjGEZZ4+dXE1mG5LhCUa12cTHJ8dKlSzh9+jR27NiB5ubmsnMuRSxnLkRM5SVr1qzBddddh1KphIaGBqemLpfLObJm2WwWjY2NDlkuZnLRSsNr1cp111gCcPpY1lJjOR8sV7bqQqHSOx9Elv7Gz34R9dV2H0JyXGGopXZxMcjRNE0cOXIEpVIJAwMDZdl/S2051nMuUumh8hL/vu6+hVQmMDMzg4mJCRw6dAiGYaC5uRltbW1oaWmBptX+WtBYV9uL/1pHPTWW8xG4WO2Wo2VZNb0P1J6LEESWfl3Ylf7OhOS4glCrBNxCk2M6ncb+/fvR09OD9evXB553sV25btRKjiR2Pj4+XpdKj7sVU19fn5P5ODExgTNnzoAx5sSn5iuYHWLlY7Yay0KhMOc+lqslIacSTNOck2cliCyLxSIKhYIztxFZki7sSiPLkBxXCPz++2oPykIS1YULF3D27FlceeWVaGpqWpJzzoZayJF6RjY0NGD37t3zmoD8mY+lUgmpVApDQ0M4duwYotGo44JdzPjUUmC1T9ZLAX+NpWVZjqeh3hrL1W45mqa5IKGUWsmS3LArgSxDclxm+N2otTwQC0FUhmHg8OHD4Jxjz549s7pOVpJbdWpqCgcOHJhXz8hq0HXdk8xB8akzZ84gk8k4Lre2traw7OQ1gPnUWK52clys8bvJ0t/4OZVK4U/+5E/w13/91wt+3noQkuMyYq4ScIqiwDTNOZ93ZmYG+/fvx4YNG9DT07NkhFwrKinkcM5x/vx5XLx4Eddddx0SicSSjMcfnyKX25EjRzAzM4Pjx49jzZo1K1qpJcTCoZ4aS1r0rlYslOVYDW45O0DMT8PDw4t6zloQkuMywC8BV+/KTFEUZ996zzs4OIjBwUFcffXVaGhoqHnf5bYcDcPAgQMHoOs6BgYGlk0Bxe9ye/7559HR0YGpqSnHiqDYVHNz84pRaiGEyUMLD3+NJbnlR0ZGMDY2BlVVYZrmktTcLjSWw/LNZDJLtvCthpAclxiUxWWa5pz96nOx4gzDwMGDB6GqKvbs2VP3pL2cMUeydPv6+tDd3b0kY6gV5HIjEXbDMJBKpTA2NoaTJ09C0zTHymhoaAiJaQ5YbW5rt1s+kUiAc45IJOLU3EajUWcBtdKfiaWwHP2g0MVyIyTHJcRC9V2klWitmJ6exoEDB+ZFLstlOV68eBFnzpyp29JdLmiaho6ODnR0dAAQxecTExM4f/48ZmZmnHq6trY2xOPxZR7t6sBqtnYty0IsFsO6devKaizPnTuHdDqNRCLhkOVKE6hYqtpmN0JyfA1hofsu1mrFcc5x7tw5XLx4Eddccw2SyeSin3MhQFJVBw8ehGEYNSUMrVREo1F0dXWhq6vLqaebmJjA8ePHkc/nPWIES9GGaTUSzWocMyHILVmpxpIEKtw1lsu9gCKFnKVEJpOZ11y1UFidM84qQq21i/WgFqIqlUo4cOAAotHonNyofsxV0m0uyOVymJmZQXd3d8W6y9mwVJNpPRa1u55u/fr1ZSUClmWtyM4Sy43VTo7Vxl6txvLYsWMoFApobGx0vA1L3cdyOcgxnU6HluOrHZR0M183qh+zkePk5CQOHjyIzZs3O66chTjnUrhVqQtILBbDhg0bFv18ywl/iYBhGI4YwalTp5ysyNWYyLGQWO3kWM/vVqnGMpVKOZ6UpexjuRx1saFb9VWMhXaj+lGJHDnnOHPmDIaHhxe81GGx3apu0fDdu3fjhRdeWLRzrRRYlgXLgv0fh2UB8XgzurqasW4dkM8XMTk5gUOHziOXS6OhIYaurjVoa2ubc2xqNRLNahwzYb7k4l5AkZrT9PR0YI1lc3Pzqg0/uJHNZp0Et+XE6r+TKwxzrV2sB0FERYoxyWQSe/bsWXBCXsyEHBINb29vx86dO1fVROi+L+m0gbExAzMzBrJZC7mchULBQi5nIp/n9t8WikULxSKHaVrgXGZjcg6IS/f+m7EkOI+hVDKQy42hWDwPzktIJmNoaUmiqSmJeFyHrjNEowwNDRqamzU0NeloaRH/RaOr10W7mslxoUshVFV14pEAHG9DKpXC6dOnHenD1tZWNDU1LUg4ZakRlnK8yuCvXVxM+SM/OU5MTODw4cOLphgTdM6Fgl80fKGwGBNqqWRhYsLAxISJ8XEDU1MG9u0z8cQTo8jlGAzDgqoyuyG1OLdpcmia+L8bisJAt1NRAO+tdY+bg3MOVVWgKDqSSR3JZJMTyx4ezuHUqUk7KzKKeDyOhgapMcsYt0sJFCSTCgqFKbS0xLB+PUdHRwxdXTGsWRNZ0S7b1dzZYrHrBDVNw5o1a5x3p1QqYXJyEqOjo54+lqvJNZ9Op9HY2LjcwwjJcSGwELWL9YCIyi28vXPnzkXNbFvomONcRcOXCtmshQsXirhwoYThYQOjoyWkUiVb9kr+vhcvKmhvtxCJiFepVOIAmCfObFmAponPxD1kYIxDUYRlyDmgaX6CBABBrKK/rNgeIGsVaGiIIh6PoKWlGZZloVAoIJvNYXJyEqrKEYtFEYnEEY1GYVkcuZyJ6WkDo6MFXLo0aZ/DBOcMbW06OjpiaG+PorMzhnXrYmhpWdrkj0pYzXqwS03suq6XlRKlUqlVVWNJGbvLjZAc54mFql2sB4qiwDAMvPDCC2hqapq38HYtWMhsVXIBNzY2LsnYZ0MmY2Bw0MDFi0SEBmZmLAAWNI2hVKKGr2KcpiksMsaE1ScsPxMAg64LC5Nco4AgP7uBOlQVMAwLjLnvpSBL2hYg96qIRQpyIOuTO2QqiFgiGo0iGo2ivR0olUzk81lkszNIpcag6xpisbg9Ts2+Fg7TVKAoCiYnDaRSMzh6dNqZ0CMRFe3tOtavT6KvL4mNG5PQ9aV3z4Zu1bmjUh/LWmosl8tiD0s5VjnIjXrixAn09fUt6QuQSqUwPT2NnTt3OpJVi425Stb5QZm0i+kCJlSaVA3DwqlTJZw8WcT58yUMD5ec7QThcagqh2UxGAbAmGrH/wQ5kRvUNDmEFgO33agcpRLAOYOmMZuIFLgfDc4FgRoGc8UYAdMU+5NL1W2kc04uWAsAg6p6CVqSq4hhmqawtBoaGpzYTalUQrGYRy6XRTqdxsxMGrFYHPF4DLpOLYMEYZJlbBgWLl7M4dKlPJ59dgyKwtDREcX69YIo+/oaliSWuZrJcaVZvfXUWOq6vixjz2QyoVt1tcJdu3jx4kX09/cvyXkty8LJkycxOTmJRCKxZMQIzD8hhwQJLl26tOii4WTBu8d74UIJJ04UceZMEUNDpmORAUAkIomRMkf9Vpnr6CBxIkVh0DSAc8smVWrgKjJPOVddliLzHKM8zuiNQxLoEixLEil9xjlz/lZVBtNU7M85FEUQpqpy23WrQtcbUCwa0PUIdF1DPp/H+Pg4TNNAPB5DIhFHLBaBoqiwLG6PSYGiMCiKSCAaGclhdDSP558fA2MMHR0xrF8fx7ZtTejra1wUElvN5LjclmM1zFZjmc/nYRgGhoaG0NraOqe+jnNBWMqxSrEcblRAZnS2tbVh9+7deOqpp5bkvIT5JOSQaHgkElmUTNogmKaFI0eKOHy4gHPnTORy3HFdAoJoVJWhVOIeQmJMWGWCEORnRHiWxR3iFZmkgIgxKgCYTbrucQCqqjhkQ8ezLLIU3ef2f8ad89FjJkjQu5+qcrjVBOk4wppVYZoWAA2KIsaiaUAiEUEiEQHnTTAMEa/M5fKYnJyEZXHEYjHEYiJeKWOszHEli/GYGB7OYWgoi2efHUNDQwTbtjXgsstasGlTw4L9ziE5Lg38NZbpdNpRcjp06NCS1ViGluMqw2LXLlbD6Ogojh07tuAZnfVgrgk5Sy0afvp0Afv25XHoUA7ZrMgelS5HYVEBgrSC5Gk5txxSLM8g5U5iDVl+pZIgJl2XVp+fwCwLznnpHIwJ12t5FqvrjAw26QLCnSvIl7YRWazMiWcSYdNn0u0q9hekzmBZKkxThaJw57jxeAzxeAyct4AxC9lsDoVCBlNT41BVFfF4HLFYDJFIxL5voh+foljgXNznYtHA/v0p7N8/iXhcxcaNSVxxRQu2bGma1/uy2slxtY4dEDHLvr6+Ja2xzOfzS2alVkNIjjVgKWoXK533+PHjmJmZwcDAwJJLR7kxl4ScCxcu4OzZs4suGj40ZOCVV/I4ciSPTEZMpIYhkl84p6QZxRUjFJB1hHBckMKio9pDyjClEg04xMC5cDXqOhCJiDilsNSYc05AWLCUsSrjlYKULCvI6pOWp6rCc88VhXssUOGydf+bu2KOYpyMCUJ3u4PdWbSKwqCqCjgXCUhkqSYScSQSIvvZMEzkcjlMTk6jUChA13U7dhVDNBqBZYnzWJZp3y8x7sOHJ3H06BQ0TcHmzY3Ys6cD3d31J1qsZnJcaTHHeuDvyLGUNZYr4Z6F5FgFtdYuLsbLm8vlsG/fPnR0dGDXrl3LPjnUYzmaponDhw/DNM1FEw3P5008/3wBBw4UMTFhwDAsh9iIeIR1xlEsui0oCXcMjzHmizOKeKIgEZGoIsoquFO4b5ochsFQLHKHIP1uVRGz4w6pCpet5WxDJC5rHsutSTFWSbBiO7fly21r1b2HO8MVDqmKciPxH+cclqU4RAqo0HWKmRpOdqymqWhqakBTU4NdtmQgn88hlZqAaZqIxyOIRESNpa6r4Nyyjy2uu1AwcORICocOpbBuXQI7d67B1Ve3QVVrmwBXMzmuZszmEl6MGsuV1J4sJMcK8LtRK72cFItbSJFo0he94oornFXacqNWyzGbzeKVV15BT0/PnEXDq+HiRQPPP5/H4cNFFAqmy/XJ7FiYiIsZBndIR7hC6TrcR+OOdUl/myZ33J7kriRIqxHQdbIKuGMt0fcUkxPH4jYhimOIRB2yauWkrygWAMX+THHG5I03CvIUxENjZraLWJKmOA9zxkMZuORmtSwiWpk8RPtSXFW4TTkMw3KScsSYGHRdg66L2JRlAcViAcViHkNDI+CcIxqNoaEhikgkAsaohlMIGQwNpfHgg1k8/vhFXHFFGwYGOtDaWt2FFpLj8qDeXo5BNZaTk5O4dOkSjh49WleN5Ur4vUNyDEA9blTqrbgQ5GhZFo4ePYpcLrfsblQ/arEcidSvvPJKNDc3L9i5DcPCgQMlvPhiHhculGBZwlVISTNU6kCxQMMQs72wGOVvJ7YVfxMBEHEJd6L4jnNJTu5CfeEu5I4VJ/5jdgxaEo2bsIkEAdhEwe04pXBnUiarqioOmbkhM1PFd4wpDhGSG1WMkdukKfcX3xOZuusoy69LXJv4zr5b4FyxV/uWndRDYxEELtzVDJom4pUtLc0olSwUCnmk03nk85PQdea4YSORCDRNgWmaSKctPPfcEF56aRQbNzbi2mtbcdllbUvmmQkxO+abTBSNRrFu3TqsW7cOAGzX/KTT2zSoxnKuMdoHH3wQH/vYx2CaJj784Q/jk5/8ZOB2jLEBAE8D+FnO+TeqHTMkRxfcbtRak24WSlYtm81i37596OzsxPbt22t6QJZy0qhmOVqWhWPHjiGbzWLPnj0LlsU2MWHg2WdzOHzYQDotavzIuvKWXEqJNsMQliK5K8X4yLUot/eO37BjihQ3JJSXVgCCjMT5YGdycpclJmslSRHHsmTphiRSkpYTBC2JSdY7uq1dsjbJ9StcpsyOlzKn7lFVhStUxlcth8go67bSdbktVTquWHQodsatYY+HObFRygCmMUajDPF4Ai0tSZimBcMwkc/nkM1mkEqN2RJ4ceh6BJFIBKWSiRMnJnH8+CRaWwdx3XXtuO66DiQScmEYkuPyYKEW/QSqsXT3NqUay5GREXzhC1/ADTfcULcAgGma+OhHP4qHHnoIvb29GBgYwF133YUrrrjCsx1jTAXwWQDfr+W4ITnamGvfRbIc54NLly7h9OnT2LFjR80W12K4c2s5nx/5fB6vvPIK1q5di8suu2xBJrHjxwt46KEYHn10CoYhywiE5UeTsZzIaeIn642sHLKSxPbS+nJbZ5om4oZuFyRtT/sIImCOdWlZDMWiIGthqSn2PaJ9RHYsWZXSXSuSd4jYKW5IRf3kIqX/EzmKBBvmcZ0KNyWDYcgMVdNkDmFqmlDpEWQq46SAOB89NvS5tFDl3+7MWEG+GhijGlG5vxuWJRJ46G9VFWIEyWQDAG4LEeSRyUxhbKyIWEyo+sRiCUxOAo8+ehHPPDOCzZsbsGdPF7q6GkJyXCYsZhmKv8bSNE0kk0ncf//9OH36NK699lrs3r0bt912G2699VZ0dXVVPNazzz6LLVu2YNOmTQCAu+++G/fee28ZOQL4VQDfBDBQyxhDcsT8ahfnYzmapokjR46gVCphYGCgLotrqckxSARgbGwMR48exeWXX462trZ5Hd+yLLzyShHPPZfHyIiFwUEd3d2SrESxPXeNQ7GJzbLJRibjkGVEiTZA+SQOUKaoN7AYPOkzz/9lfaM4hqgfJJcQCQAwp+xDkBpz9FOJ1EmU3JuUI1VyKF7qJUV5XaYJx/IkkqXvDUN4PnSdOTHUUknGRoOSfuS1URyU225Q9/OtQFUtp2zEf88oU5bcvfL6YcdqY0gkojCMRgAc2Wwe+XweY2MiXhmLxVAoxJHPl+wEnjg2bdKxYcPKCTG8VmCa5pKFdlRVxfXXX4+1a9fi3Llz+PrXv44XXngBjz76KD73uc/hD//wDyvue+HCBaxfv975d29vL5555hnPNoyxHgDvAnAbQnKcHQtRuzhXyzGdTmP//v1zTlxZ7P6K1c7HOcfJkyeRSqWwe/fuedUkFYsWnnuuiOefLyKdthwLi1yTQnVGlERQMopwMVooFgG3FUgWmHAPyiJ9962Vrkq3CLjb5ehPBuC+fZnrPBR3JG1VsrCY7d6U986twSrWM8z5fzRqwTBEkg9jXsEAIl6Kd0YiMu5J8VK6P4K4iBxhdwkhhRsTmibGJRJ7vPFGN9G5F0GG4RVJoKxWVbUCn3vpjrVcrlzmOr5wfQtL2EAiEUUiEYNltcA0pXj6xEQKisIwPh7FoUMmEgkVb3iDioGBTjQ2Ln8NXC1Y7RbvQrtVa0E6nUYymYSmadi7dy/27t076z5BuRAB9/3/APjvnHOz1t/kNUuOc3Wj+jEXcqT6vyuvvBJNTU1zOu9ykCPds3379jmC53O9b+m0iaeeKuKll0rI5007+xOgWJtMipEJNqbJwZjlkIWwJsU2wt1JLwmz9w+enMTETnWN4jPpcvXD+5kgOOFSJVeupkkrSpAOtawihRsSEGeuJBjh9nRb5IZBL7ogbTqXzKZldg9IkoRzj5/bzzJsN6u4X3J/Zmesivsm5OXcBMkDFhEM3oxe+Z2IQ1JM1Ts50QJBumjLJy9RY6nDsgy7ZEZcXyQSQzIZt61QE/l8HjMz00inM/jOd17ED36QxNVXd+HNb96MNWuWv+dfNawmdZwgLMf45yId19vbi/Pnzzv/HhwcDBIc2Q3gK/Z80A7gTsaYwTn/TqXjvibJ0TCMBeu7WA9JGYaBw4cPg3M+7/q/pSZHxhgKhQKee+45bNu2zUnXrhfj4waeeKKAAwcMJ8kEAAoFcuUJS4niaopiQlUVhww4Z644pIQgukrZtO52T4J8KIvUnbVJ8UuZFCMg4n+SPCTZkSXkXWFTIgtZTW5XqSBuy2dRiW2EK1KSKI1dPJ8MQngc9vFI7YfZROu2gGHfS+lSFuUbKkyTo1i0oKreZ0dmvdK4ZOkGuUbd74n4ToWqms69crtkJZEHr+wBcjFrsCzTEUugcSsKQySiQVWTttcgiVgshlwug2efPY2nnjqGHTva8MY3bkZv79oV1/IMWP3qOMthOc6lI8fAwACOHz+O06dPo6enB1/5ylfw5S9/2bMN57yf/maM/SOA+6sRI/AaI8daaxfrQa2WI8mobdiwAT09PfM+91KSI+ccg4ODyGQyuOmmm+bUN7JYtPDoowU891wBJGOmaaJAXFGkO9Ad9xVF9eIRddfo+UFuRTe5uXtryq4WglTc2Zhk+RCZkVs26BzyflgO8TBmeUjJbcmW7yfdvURmlPDjFhYXNY8c0noz7RW8+FsSKkDk6Z/D/I8XWXBEtGKRwALHSfeJQNawuJ+KPTZmW3dS5N1NhKQC5B6PmzzdFquIH5NrWO5L5Kqqpi1hF4WqqnbJSAmXLpXwr/96FBs2nMBllyXQ3t7q6Six3Agtx/oxF8tR0zR87nOfw5vf/GaYpokPfvCD2LFjB774xS8CAO655545jeU1Q46LJQE3G0kRsQwODi6ojNpSkaNhGNi/fz8ikQgaGhrmRIwvv1zAY48VMDMjFFlEyr/IpBQuUrKsBJGR8LcoywCElcSdcgVyCQJk8chWUaYJTE9PY2pqCiI7VHWkzmIxFaWSZROvdI9KkXFJSO7sTenqFduI7FQiOZls4iYa779pgmFgzHIIUYI5CT2cWzDNIrLZApLJKBQl4ljNJHJQboi5LVPXUcuIjznWurQqSe4Ngcega5MdQCjuLBcIuk7yc8ICFv0smf2Mmq5jyPvlhmUxl5sWHg8AJS6JEisDmibeXV3Xbdm7CIaHGWZmFFx1FYOqTuP8+fPgnDtE2dzcvOQWkLiu1U2OyxVznMsceeedd+LOO+/0fFaJFDnn76/lmK96cvRLwC30w1rNcqRuFJqmYc+ePQv6oC0FOZK129/fj3Xr1pVlgM2GS5cMPPhgARcumLbajIjPKYplu0ZlCYUXMpYmWi5RWYQkQAJNnjQxj4+PAgB6errAmPjts9k8UqkUCoUCotEo4vEYksmYi7Sco3lHwWVvQ4IgbSJMUcMoYnt+N6ocHx2LYpBkecnSFJkIxJgKxuJoaoo6cUtR2+kuT5HHlqQlx+Re+MlOH8xl+Vmue8Y8x6MSGXkPpDXoPrabpAsF8Zu63adkxYv7x2x5v+AYMN03RdFQKpVsAneTt9QnLZWkMLymqU7sNpMx8eSTYzh6NI43vGEDtm5tRSqVwtjYGE6ePAlN09DW1uZImS2Fu3M166oCq8dyXCy8qslRFIuXPC62hYaqqoFNgKempnDw4MFF60ax2OQ4ODiI8+fPO9YuTVK1IJez8MgjRRw4UEI+L/ZRVTjapMWi+4Xz/iaMcUQi3iSQoBgjHVMQoMicHBkZQkNDI5qahFKLICAFDQ06mpuTMAxRspPN5nDp0ggAjng8ikRCtGaizFh3uYT3FnPHyiRicpMEJd/4Y39SfccdfyRL2E9w9pnshCSyQgHFPo5srCwIWbpKKUGHLEwaszgeZbgK690do3Qn5gQ/UrQwoVin+zP6W7HLYiSpiRpM7hxbVRWH9IQr26tDWyxy6LoGwzB81qOwrGlfGotI1KKelcIDkErl8M1vHsNll63B29622SNlNjExgcHBQUedhcgyHo8vytwQWo71I5vNLnoT9FrxqiXHpeq76CcpzkVT34sXL+Kaa66pO7hcKxZCfCAIpmni0KFDTtIQvRy13r+XXy7hoYcKKBQEEUYi1M3Crdriht9dqKBQsOwJnP4vINpPWU5skNyamYxo2tvR0YFYLObUEh5W7sNh7T6AcWyyXod+/XVo1fqQSERhWbKPYTqdw9hYytWaKY5IRIOUp3Mntch6RNHRgtyUIv4GeOOObquOrFzhSma+791gDum5CdItNi5jpt7je61Gv3ycJHYqI6F4q/fcUqOVLEeS6QOCCZSSg9xZsP7el5ZlOfuS1qrbRe6Oo7oXTTRGKvNRFEDXVZRKhhNPJnECVVUQiWg4cmQMFy/O4O1v34JNm0Sj3q6uLo86y8TEBE6cOIF8Po/GxkaHLBeqtu/VkJCzHJbjYs2Z9eJVR44LUbtYD9wkVSqVcODAAUSj0QV3o/qxGJZjJpPBvn370Nvbi97e3rpe7GLRxH33FXHokAUqt9A0BcWiiAkCcFyrlLZPE5u7m4ZIRhETuKaRhip3WjPRMQAxaaZSKeRyWXR3d8v7rZTwQ+2PcEz5Pt5S/BNk2ATOqI/jSfWLUKGh33odNuJGbFRvRCLRjEQiDqHJaiCXy2F6OoVCoWS7YAVZahqzxyJjcCStRgTmLsKnawDgITgCKdyQNU7qPlK+zm2RumOOMr4nsnmp9RSRlyRKIkY6pijlsEA1kt6kGykJJ0jI/duTxcZ9pAnPGOm6COQepeO6H1dZsyoTeERWMkMkEoFhlGzL3euxIMu+UDDtrh7kumRgzLAl64pQFAXZbAlf/vIhDAx04fbb+6Bpin0Mqc6yfv16WJaFmZkZTExM4MKFCzBNEy0tLWhra0NLS8uc3+PVbjkupcgIYaU0OgZeZeS4ULWL9YBIanJyEgcPHsTmzZvR2dm5ZOddKAwNDeHUqVNzqr28dMnAN75RQCplQtcZSiXFLtAnYuROsgUgLCy3LByBCucjEVGLKJJnuG87IkYLY2MjUFUFXV3ddq0cMGON4dvqf4GKCN6T+w8kWCsA4HLzreCwMKGcwDn9x9ivfRMPRP4H1vAt6DNfh37zdehSrkEy2YhkstFeZBWRy+UxPj4Mw+CIxeJoaIhC1yN2EgpgWartUvR2zSBLU1w/KyNImbXJbd1SaR3SdqJ8QrpJRUauiEGSJUhELY5FhCQtN0COQSgCWc72cjt/EozXdSwShRR7TOW/v3TjekmXMeEqBdyxSilAQOMTx5BkKes95faappTdP9mGi8ZO4gSiswrnwhX74ouXcP78NN7+9i1Yt648nqUoCpqbm9Hc3Iz+/n6YponJyUlMTEzg1KlToD6GbW1tNbdeomd0NZPjcogYhDHHRQAl3Sy2G9UPRVGQSqWQSqVw3XXXIZFYmsLkhSJH6gSSz+frlrADgGefLeLhh6k8Q9YrAm5Lo7z9kxuk2iJih8x2TwZlZQqUSiWMjAyhvb0F8XjSdrkxXGQv4juRe3Cl+TO4sfjfwFwuQiKRNdZWdJS24DrrfTBQwAXlRZxRf4yHI3+AKXYeG6y96Ldehw2l16FV34AmPYqmpmZwbqJYLCCXy2BsbMJ2wcbAuWFPwopDXlLmjTtk5SZPy+LQdZJ/UxwL0K2VSveN6h4ty3Kk3KQGK7dbczEXMYr7T4QhhBIYGDMdmT0Rq5VuYICsShm3dIu0k0XqJlM3KPZJvxe5Ssn9LKxdin26CdbrwqUFgpDVUxyPjGWZkCUw8h6KmLJbEF9kvQKG83tQlvPISBb/9E/7cfPN63HDDb2VH0YIb5C7T2GxWEQqlcLFixcxMzODWCzmkCV1kwjCak/IWQ6EbtUFBOcc09OiQ3lTU9OSPozFYhHHjx+HYRi48cYbl/TcC0GO1FB57dq1NXcCIRQKFu69N4+TJzlMk9oouQW4mZ0sA8g0fwKHu7MFlRGYpv/+kfVABe/AzEwaExNTWLt2HSIR3ZmoX1b/DT/S/hT/X+lPsR13gKtSHYZk1ohAqIlvRI1iE7sB/eYNuKX0G8hgHGfVJ3FG/TGejH0BKnRs4q9Dn/k6rDduQCzahFgshvZ2YYFlMllkMiWMjY0hkYggFoshGo2Ac8220ridZUsi4QBj1E5LlEJI4XHZ+5FiphSrE3FKEcNVFKElqyhw/k+JLeTWpesV/7bsscDOFCaypE4d3JaIk5Y53W8iSkl0MhNXJuXIbfwuVjqerjMYhumxFJ1f2GeNCve0yFy1LNPzm4nfk0Nk9NIzRl1YyD3LoKoaTNNwkoWEQISJYhH44Q/P4uzZKdx111ZP549qiEQiTuslzjlyuZzTTSKbzaKxsdEhS7eU4mq3HJcjXhq6VRcIVLuYSqWQyWQWtIfgbJiYmMDhw4exfv16pFKpJX8JFEUJzJKtFaOjozh27NicGipfuFDCt79dxMQEyYDRmGR9orBqpOILfa9pkgCKRS9hEohApBUmjjkxMY5SqYTu7m7b4rJgII8faP8TF9UX8V7jm2jlm2Fx78Quj0uNd90NfyUSfA2u5G/HNfztsAyOUZzAKfZjvKx+Dffrv4kOvg391o3YaLwOXfwqJBINyOfz9kpXQTabw9TUODg3bIHtmG1dym4bgiC9sULZU5IsRXk/ZCyPiIxEziVhys4fsvyEFgbSEhS1oMJVK9yObuk5ISnnbejsJ0pKhJLjcscsqbm0P14p9VnJzSnLb8pBZEnZwjLzlxZK0lIkS1n0nbRA2cWmyZzFIyUFkXvesiycPDmBf/iHV/CWt2zGpk31CeYzxpBIJJBIJNDT0wPOOWZmZpBKpXDo0CEYhoHm5ma0tbU5re9C1I7QrTpP+GsXNU1blMzNSuc+deoUxsfHsXPnTgCiO8VSY66WI+ccJ06cwOTk5JxEw598soAf/chAPg/QqlxMrmLip0lTTNJiUtR1mZDhJURnVKBuDmSRCEIRLaFM08Dw8Aji8Tg6O9eA3I3TbBDf1H4JzdZ6vKdwH6JocKZrd1KMsJYUcC7bLbnXMpQZapqWhzTbsAVt2Iy96vtRMPO4oLyI0+qP8XDkM7YLdg/aE9dhK3sDOiObkUhEYJrNEH0ls8jnRb86xlQ0NMQQiyWgaYpDjMIikwk0NF53oos3W5U5sTYiKiJKQQh0RTJWS2RDikOAdPHKRsyys4e4X5bHfSqsNm4nJYmSDEl4dB7Z05LilUSUsjSmvMCfXKT+GkhyH0uCUxz3MR1DHs+0CVzsK86vgsTlhXuTEpgESadSeXzjG4ewZ083brmlf84kxhhDU1MTmpqasHHjRpimiampKaRSKYyMjIA0b0mMYLVYkrWWbS00QnKcB4JqF5eKHAuFAvbt24fm5mbs3r0biqKgUCgseNZoLZgLOdL4W1pa6hYNz2ZNPPxwIxgrOe7PSISsQK8VpmkcYoIWk2KpVPk8jMF2u8lYl0iuYfaY8xgZGcWaNW1IJhOOTNopPIF7tV/FHuOXscf8ZTBPMTt3XIzuWjwZCxP1cWQRidibdPmRJUUWn2kCGmLYaN2ITWwvLOPXkeYTOKs+iaPRR7Ev/o/QEUefeSP6cBP61b2IKI2IRpNoabFgWYZtVU6iWMxD0yKIx+NIJGJQVQ2MSQsw6Cchi05aa94MUBFntEA9J8la97psZXNkb0xQkqqM+UlLn6w8KtUwDMvp10gLD3Ih0zZSOs5NlOUtz6SLWxK/GAd33utisQhK6KFtKWHIb32S21VVVZuMhUVJ5E4EScczDI4nn7yAwcFpvOMdly9Itw9VVdHW1oa2tjbEYjEYhoF4PI6RkREcP34c0WjUccEmk8kVa1kuV0eRYrG4ZG2yZsOqIsdKtYuLVfPnxvj4OI4cOYLLLrsM7e3tzudLce4g1EuO5PaZi2j4uXMGvvWtIgYHI+juZk68kDJSCYwBkYhluw4Vp2t98PjlpE8KM35kMmkUiwX09nbaCyCgZADPqn+FZ7W/wdtLn0OfdZNzbhFTY3a7JlkkTxCxLMuxaPzqPG53JxEExf40TRAofZ7EGlzJ34bO1I2I5RPIJM7hjPoTvKJ9Dd9VPokOTbhg+8yb0MWuQjLZ5GiCiizYDMbGxmCaFuLxKKLRhC1EIDNP3aUg4v9SMJ1cxIbBQXJ7ZIWSu5bij974L33vzqqVv4mbqKXbFS63q5w0yW0rO4zIekpxPJlhWp6l6gUdi/6WFQTMcy/oPpDrVfwuonMLeR3ovXBP7iJBh3uOQdb44GAaf/d3z+Ntb9uOLVvWlD+IcwTnHLquY+3atU5hO8Urz54960ilkczdXKQZFwvLIQBAWCnW9aogR7cbNah2cTEJSsQoTmJychK7du0qU/9f6eTIOceZM2cwMjKCnTt31v0CPvVUCT/8oeFMlGQFFIvy3ML6I6Kj5rj+JBw5QQKwXaYAuVTdsCwT+XwGqqqhq6sbVCpRQBrf038N02wQHzD+Ay1KD6DI2JzwsssJlhZR7nOK1lve+0aZmqKEAHBbkDL7U9YiUuamExsDsBbb0GFsxYDxAZEFqz6P08qTeCjy+5hil7DR2iPilewGtOq9UNUIGhvFRJ7P551JU1UVWws2jmhUgyjbkNmYYuHhHjvFUCmmKa0sSniiTF0Zz5RWI1mW8jPqiiFl+aguUpCJUpYE5G5mDCggoXL38ykWLZatkqM4iTxBRElWrSz6ryw7J61JxS4jMj2LCRoLua6FS1iOiwQGCgXga197BXv3bsCtt25akAlaZBh7p1j6bbu7u8E5RyaTwcTEBI4dO4ZCoYDm5uYVIZ6+HDWOy2WtVsKKJ8daahcXi6Dy+Tz27duHtra2im7I5foxayFHEiWIxWIYGBio64UvFk3ce6+JI0dMSKUV1cl6JOuEOtmLWCL3JNHIsbqtRO/9orIE8TfsbgtDUJQIGhubQPqnKeUEvql/GD3WLrzT/Do0xBwLohJIVsx9myhOJ2NaMlPTXXuoaRTfAiTJC5clWWTu87hjZjqLYKN5IzaaNwKlTyCnjOEUewpntSfx49hfQee2C9a6AX3KABKJRiQScTAGlEoGcrk8JienUSwWEIkIF2xDQxSMaa7kGyIk4VKluKGmMcdaFIQu200RQbrnPLdl6bYUZZxSkqTMHBX3RNO8eqp0jyj5RtxD7ltYudWkBFlRiUpQkg49HyQFCEef1g9u11RKQQOhyEQJQNSMWoGmyTgn/balkpCue/bZ8zh/fgrvfOcVaGmZnyU3W7YqYwwNDQ1oaGjAhg0bYFkWpqenMTExsezi6cuhjgOsLIJc0eRYqwTcYpAjZXNefvnlaGurL6NtKTAbOU5PT+PAgQPYtGlT3aIEIyMmvvrVEiYnqWRAkgcldVDWpzvBhqwp+pnoXZZWYhDkZC1k3MbR2dmBTCbjTOSH+QN4UP9N3GL+JnbhFwEmFXOCQIRtGO4kFTeYU0bhtm6JFCX5eesAhYqOf+yCoCMR5mznvlbGgLi1BjvwdlzF3w4OAyP8OE6rT+Fl7Wv4nvJb6LC2oc+8AZv4jVin7UBjYwMaGxsAmCgUSsjlchgZmYFpWohGI0gkYohEohBdKbwuQxlnFOe3LGZbkERwzGVlWqD6VBJCJ3IT90PeB2FBy8WIKCmhdl0Uw/Qm20irTlq4nl+B0TsuVZGE6g3FF70SejIRp/x88ndirs9p3OTNEFZkqSSuX5wLzn0oFkXd6aVL0/jSl4Sbdfv2ufUtFfe+Pvk4RVHQ0tKClpYWe1wGJicnl0U8fTncqstFyJWwIsmxXgm4hSRHy7Jw/PhxzMzMYGBgYMUEh/2oRI7uFllz0XZ9+WUDDzxggOoT3ck0ghhNKIrmkXHzjsstUVY9EUe4+cRkPDmZQj6fw/r1XVBVBZlMGiXTwA/Zn+CA9g38J+Mf0WXuhAE48b/y44kJWGbNeiEtLmEFaxqpqVQmRbcL1Xud5PpzZ0lyz+KA9vccjzN08G3oMLZhr/leFHkeF5SXcFp9Et/X/gBTkUvYaO5Bn3Uj+szr0RLttWORQky9UMghm81hcjIFQLpgYzHdGYefICmT1U0aYhvFib0Bwa5WAv1bzJeWTSj2JXGZTSuOU554Q51MZLlH+e8jtqMejgDnopGyVODxno+Si7xj9T4bokZUdZ1XignQZCzKS5iTXMaYhWLRwDe/uR/XX78Bt9++pXywNWC+dY6apqG9vd3JcVhK8fTlqNHMZrMrRgAAWIHkOJe+iyKONP/UYyqK7+jowK5du1aMeR+EIHI0TRMHDx4EY6xubVfTtPDAAwZeeIHUW+jl4PaKXsQVqdWUH+JUVGJQzZXktSI4tzA8PAxV1bBuXRdo4i5pk3io6ZMAM/G+wgNIQiZB+S0UUe8XLG1GYxOkKS0ZGqemmU5Gqv+6KEbnP667vlB+xj3xQFlvKLfxJzEpCqCbMeFetW6AanFMmeM4qz6NM+qT+In+V9B5Ev3mDeizrkcv24VEosHRgi0WhRbs1NQUxsaK0HXdIUvOVee6xT1jzoJEZoXK63FfozvZpdzVadnxzPLvZMyy3P1JZOY+dqXkHErioTlAkKRsVSWfHeY5HsUp/a8tlZyI7YQVSUTpznAldyxjGgyjCIDh6afPo1AwcOed28vGORsWWiEnSDw9lUotinj6cliOmUxmyRTGasGKIUd/7eJSSsABwPDwME6cODGnovjlgN9aTqfT2L9/P9avX4/e3uryWH4UCib+9V8NDA7CnnSpbpE7zYYtS2im+hch7nhitfWJWzNUgKNUKuDixSG0tLQ6tU2qClzCfnyj9QPYVHgT7rB+F0rAYypdtn5Xp3sbYa24O1kQiCANQ7UnRMsZG0mVBbkBhXXIyojRbzFS7E/uy8vG6T++ZTE0oB07zLdhh/k2MMXCMD+OM+pTeEn7Kr4b+ZTtgr0e/db16I5cgUZNuGDF+1NEOp3D6OgoLMtCPC5ECCKRmG0lUtzRc1VObNLrDpaxS3J/MmY58nbS3RpUUkGxPwWA5ZTU+I9Nfwe5SN3iESK+LQmXXMlUNuI+nhC8ZygUTE9WrbschNpbUbcSEhaQZSAc0WgEhYII6bz88iUUCgbe8Y4r6iK7xbS+3OLpvb29WGjx9Nd6L0dghZCj3426lKRI2qK5XG5ebtSlDiS7LcdLly7h9OnTcxINNwwLX/6yiQsXxL+Fe0zW+gnSU5zkFrcgtJgY3aovlQiFji2TINLpNKanJ2wZuIhDdq/wr+MR/dN43dT/xLbSW6A0uh9RDuryMJtWK2MMpVJ5zJHKEtxkLkhDseszvRYgQcbj/AlF5UlBQW7YoOPJRBWRVEOZsrQtA8M6bMM6cxuut94Hg+VwDi/itPIUvh/5DGbYCDaYu9Fn3oB+63o0s260tUVhWUKIoFCQWbCMCS1YwxCWXyTiHSPJ3PkXBZTxKcizvA6Tsnjd7ll5TFnrSK5Qvztcfs5c942XZbpSchQlCXlVchT7fNKtLjJupXUr3heZVUvWrzvG6iZJQEUkoqFYNGBZFo4cGUWhsA8/8zNXQdNqI5qlJJhq4umnT5+Goih1iacvh+VIpS0rBctOjnNxoy4UMpkM9u/fj87Ozrq1Rd0gK86ftr2YUBQhzHzo0CEUCoU5iYabpoWvfMXAhQtubU4OXSepMUrEEdvKulJBKG6CIkKV/+aO9SSSIeQqfnx8DIZhoLu7B1SQXjSLeET7XZxWH8PPF7+JaLEHikoTJMUEpdpK8D0hq6a84FyMmwW6ScW+MjGFYpFyPynbxrm8D+LnVkD9HOUET8+yrEkkfVQvOdBk7XYFSpJxi3lzDmhKFH3WXvSZe4HSx5HGKM5qz+C0+jR+HPkCorwB/fx69Jt7sEHZjQa9EQ0NCSgKd7Jg0+kSxsZGoetRJJNRRCJx57mlpsviGkxHocZ9vzTNWwoBkNvSnfiDsu/FvgxUnhEEkr+LRLzeAFLxofvgj2/65eRoWxknDX6vKQ5Kz6687+K6hai7IFXTtHDqVApf+crLePe7r0EkMvu7vpz9HOcrnr4clmM6nQ5jjsDstYtzPWatD+OlS5ecFk3z1WRdjN6Ks6FQKGBmZgadnZ24/PLL634JLcvCV79q4PRp4SYkGThF4Z7OGoB0JZJQdXCiDQd1mxAlCXBS6+VkZWJ4eBiJRBwdHWsc0pnBEL4T+QjivBXvKz6AGJoxjWm7NEFap2Is5eQoM0kr34NKHSXEd7KoXPynQlWFyLdwvdL+otidjicSf0iBBbbbUVpI0p1XnqQTZGH7r6vcEvP+uwEduMp6K3YYoh3XKDuB0+rTeEH7Gu5jv4N11jb0mXvRZ12PbnU7Eok4MpkIWlpaYVkWcrkcZmZGYFkcsVgMiUQcsVgMVLwflDgjngN3Rqgcv9cNG0SS0q0bZGmK4zC7ibGUxiu/f96aTFp8yPNy53MRl6T6SsuzUKP9SYfWH0c1TQZdl6VJlmXh3Llp/Ou/voS7775mVuHylSQ8Xq94+nJYjmFCjgsL6Uat1XozTROHDx+GYRjYs2fPghTaLrUQAJWZRKNR9PX11b0/5xzf/rZhd9RgtsvMAtUUBm0vyEEJJBfGhJRcoYCKqjgkA9fRsQbJZMKOFXKcZ8/g3sgv4zrjvbjR/DiY3dmDyjGA8qJ9eV7uIqngZ4jIlOJqbgjFHFKY8YppkzVEsmPuhVeQ25RI0H9/grYVtXvl5FJ+fV6CFEkt3uxXQUgcDArW8m1Ya2zDXuO9MFgO59lLOK0+jQcjn0GajWKjNYA1DZfjcvYGrImut3V1WwCYyGazjmqPopQLERBBEeH4mxW7x0iWnfi7kiVZXjoi7o3lxG/JjVoNbpIU/+au7yznO1UFCgXuWJbuXpBSW1dammT9i0WTCeEVEDKVQ0Np/PM/v4j3v38nYrHKBLlSW1YFiaen02lMTEw44umKoqCpqQmGYSyZR2wldeQAlpEcyVpcKIHbWsiRklZ6enqwfv36BXN5kItzsUGi4VNTUxgYGMDzzz8/p+Pcd5+BAwcoe4+SRZTA1Xw0ylEsMmei8maKUi9By4n3BIwa09PTSKdn0NvbBcaEDBxTOJ5jX8KT2v/BW0v/F5ut2wHIxB2xUhdNkd0ticQELUmxsrUoGyxTnEo8a/I4/lIV8TnF1aSQtixxsECdNdzbA5UJM+ixCHrmg1+D8pIVt2gCnT/o3Dri6LeuR791A1ACZtgozirP4mjsMbwc/zdE0Yh+aw828T3oNXaioSEJy4qjpaUNhiGzYIvFImIxHdGoIMtIRHVIx7I4IhHvgomeD3J/B2e8wtnG7dYUXgnvQyQXNmqgxeo9liRJ9wLCsjgMw7R/VymfR25PRZHXBBBhKs5zKL43YRglOw5pYWIih69/fT9+4Reuq0iAK8lyrAbGGBobG9HY2OiIp1OP15dffhmMMY8YwWJd00rq5Qgss+XoTvCYL2az3i5cuICzZ8/OKWmllnMvtluVRMNbW1vnVWby3e+W8MorlKQgkjCo85W01mQ2aKkkJ246J2WoikQqBmFZlN97zjlGR0egqgxdXT3O/iVk8X31Exhmh/Ce4v1o5X12gg/3kZ04MRXzc2455RBBpEjvLMVMi0VZS+n+Xkq/BR2Du5JE/N8xFIuKfS9kogpZn0HbB7kfgx6V4NegtndDWrzeWkA3kTbyDlxp3omuiV1obWvCuHYGp9izeE79Gu6N/S7WWdvQb+3BRmMAndp2Z7LknKNQKMAw8hgdHQXnJqLRqG1Vxuwek6Rn6nVXUgG/sNgrX4vMZg1+h6gUQ/RqpEbH1e4FbLe4u5SFO/8X+ypgTPU8H25I7VWSyzPtcIEBTRMZrefOTeF73zuCt73tigpjWR3k6IeqqohEIo6AOrUFXGzx9DBbdZFQiRwNw8ChQ4cAAHv27FkUF8Fiu1Wpd6Rf9LxePPmkgRdf9FtP/vgiQEow/uxTkXhCvQAZLEu++CTTRfOMYZQwOjqEZLLZsxiZZGfwLf0DWIvteG/xfuhIuOoQ3WNxL5yIHIUF6S5HcOt8kmuzUAi2zsQ1VIqZCsKrtMah+ChBCperME0FogMEEas7/uVFJSL1t2wS4ynfLuiyRJ/EcutRxGwtO9FG9tG0TBXr1G3oMLdhr/GLKCGP88pLOKM+iwejf4Q0G8dGczf6zD3oswbQHOsCEENzczNM00Q2m0Mul0cqNQlFURCLRZFIJBCLRZzxyc4cNEaOSEQSpr9WVZZ8kO6qd1/3Nc1mkYrt5AJQjkcmmMkknuo9Jmk/XddQKhn2sYWbNRLR8PLLl7BmTQI33NAXsO/yJeTMF25i94un5/N5TExMOOLpyWTSI0YwV2QyGXR1dS3I+BcCrxpy1DQNhi+/f2ZmBvv378eGDRvqrv2rB4uVkOMWDQ8SPa8Hhw+beOwxMWGRq1FMpiTKLC0muo3kXpSlGMKFKnojymMTKdIEXShkMDo6gY6OtZ5+kaeUR3G//iu40fg17GUfAlfcNXNe+OsIhXtLgaIYTgIM4LUUKrt2aZvK7bP8dX7+7wyDslPd8GaTStIVKituEQUvYQaRYPm4gojQbSXSMen4ZO1L8pEZvlQiQpmfYlEkTqAjhk3WDdhku2Cz6ghO4TmcVp/FE5EvIsabBFGae9GvXYNEIo5EQkyChmEil8thenoao6MFxOMR6LqwLN3xfKlAY7mydkneTWYHu7tluAnSbYHJZze4zpJ+A0oSE+VEwjXqv8+ksaoogK4rKBbNMkITz5Vph08s570oFkvQdRU//OFJtLTEcfnl63y/38qMOdaCagk5sVgM3d3dCy6eHlqOLizkqsptvbkl1K6++upFv+GLYTmWSiXs378fiUSibtFwPy5dsvDd75qOqossWRBuTDF5BKuhkBtQValovvz4RI6MAZOTE8hmC3aZhhgzh4Un1f+Dl7R/xLuKf48NuB6qbqFYpVYREMkZkYhI8iGZOU1ToKqmQ6hKFYIluJNygr8Pkn2T35Hbz09WlAEbvI8/9iXuN+cqqHYQkMIC/kJ5+s79f6oHFGTttqzE7+ku/aDzClektFbdx6oUw0uYa3G1cieuLN4JDgsj7DjOqM/ief0ruF/5HazTLkOfsRt91gDWadscLVjORclAoZDHxMQ4DMNCLCZdsPQ8UG0kY5Q9SmPz93RUQC3HKo2VjhWUAUyLVim+LlyklchUuExFM2p/YplIVuOOW5dQKpnQdQ33338ELS1xdHVJL8lKEtGuF7W6hGsRTycxgtnE00NyXCQQQRmGgQMHDkDTtLol1OaKhbYcp6amcPDgwTmJhvuRTlv42tcMpNOkekMvKzWohceKALyuVcYoFilii0GxI2G9GLhwYRSapqKrq8uZhPOYxv36ryDHxvG+wg/QonbCssiCcx9Lpt9bFoeqWsjnuac1FkDuTCH7Vo3wCJS4E1QOIL4PLvoX1+WNbbm3IWtSjKm22KAkO6nH6nVDeuF3awsCtMpI0719sMtWWGdeV7Vc9FTaR3ynYB2/DOuMy7DXeA9KLIPz7GWc0Z7F97Q/RpalsMHciX5zAH3WAJqi6xCNRtDU1ATGODKZnN1lZBKqyhCJRJFIxBGP6/bv7BZA98b/yMNB5UGV4NaEFWUZckEinhFZB0masv7EH7rPojsIoOuqx0MhyNFy3N9ut7nYx8Q3v/kK3ve+ATQ2zt3Ds1Iw11KOWsTT3WIE7sXDXBJyHnzwQXzsYx+DaZr48Ic/jE9+8pOe7//t3/4Nn/3sZ7F///59ANIA/jPn/JVajv2qIseZmRmcPHkSfX196O7uXtJzL4TlOBfR8GqrU8Ow8O//bmJmhiYht6uSLEEZh6H/hBXDA2OB5fJxHIaRx4ULI2hpaUVzc8JZmY+yI/iW/n70W7fgp4wvQVcjromYBKXF38J1xZ2aRc6rEbH4XlgVlYiJOmZUnliDZN/c+1dKnnHHbMvHV9k9WynTstL4xO8alCwS/Llw63oTY8T2snOHn8cNQ4qBlx+vnDwjSAgXbPEGABxpZQSn2fM4oz6HxyN/jThvFkRp7sF66xo0NiZsF6zQSE2n00inUxgdLSIS0RCLJdDQEANjQROxcHkKK445nWAq3UcxTsURYqB9ymOx5QTnv5/UFzIS0VAqmZ6YJMWVaVFMVtbkZBFf//pLeO97B5ZUEGQxsFB1jkHi6alUyiOefvbsWfT399etkGOaJj760Y/ioYceQm9vLwYGBnDXXXfhiitkglR/fz8ef/xxtLa2Xs0YewuAvwGwt6ax13WlC4yFcjlwzjE1NYWpqSns3r17ydOBF6KUgxKHFEWp2eKll7PStt/6loXxcUEQ3sQbkTbvJ0sqYCfL0R+fo9o19z5TU2lMT6ccGTgqlzis3Isf6J/EbaVP41p2N0wnJR+Om6u8JrB6f0YxBrGNIAIG6gLi3o/cmpRUFITq5wqWwnNfd6V9g9yv4nNekdTqzdiutrlwP5Z/LltAVRpveSwUkAII8pjukzMkzbW4Rr0TVxXfAg4Lw+w4zqjP4Tn9K7hP+V10Wpehjw1gEx9AN9uGpqYEOI9D9Gk1kM9nMTIyDtM0kUhEEY3GEI3Gy1RthNUnmxe7JePKr5VKXCon7VB8XSwaRCzS7wGi7FSKWVIXD8rMFZYvWaHi/o6MZPCtb+3Hu999XeB5VwsWK9M2Go2is7MTnZ2dIPH0p59+Gl/4whdw/PhxfOYzn8E73/lO3HbbbU4CUCU8++yz2LJlCzZt2gQAuPvuu3Hvvfd6yPHGG2907/I0gJqTT1b38gayoa9hGFi/fv2y1MmoquoIps8FVH+5YcMG9PT01HXeSuT48MMmjhwRf7uJkTFA15nTHYImPlppU/JL8ORP8mlikh0eHrdl4LoBu3jfsEz8SP89HGb34xfMr6GDXwWLU3wuOGmGyiK89XtKGQmQlqvXNSjcvdRwmMizEoGICXG2JsnB5EdF+OVuWLIkqyX1VB5TvR55iu/WWhtJn5OF6CdIt2VZtpddHO8lSO/30j2roJNfhk7jMlxv/CKKyOG88jLOqM/hfu0PkWUpbFR2os/chT5rF5qiaxGNNttZsEILtljMYXJyCowBsVgCiUTMcz1SGMAvQl7ughZWYfWbS7HIahDEbLpqZb37E0FSws7x4yN4+OGjWOCKsSXFUpShkHj6Rz7yEXzkIx/BW9/6Vnzwgx/Ec889h7/5m79BOp3GAw884Ejg+XHhwgWsX7/e+Xdvby+eeeaZaqf8EIAHah3fqibHyclJHDx4EJs3bwYgfNbLAVVVkc/n57QviYZfddVVdatDkMXqzwh7+WUTTz3FoevwSMFR4o2oTROfeTVEZcalW8/Svb8gB5KBS6C9fQ1oAspiDN/RPwSV6fiQ9QPErDbAJoxKZKRpZAl6P5eZlTQ2krkLOgqzv3NnIwa7ZOl8lVCNOCkG6SYXt/ejMmFVs/Yqm4GzWYhBZEZKQEE1nJViq7RfpUUBEaBU5wl26cpWXuKzCOLYxm7A5tJeoASklRGcVZ/DSfV5PB75WyR4C/rM3egzd2I9ZBbsmjWyHdf09AxKJQMjI8OIRESXEV3X4S7kd2uruqXvxHeynrfSIoTcpLGYinzerHiPhKXoJl66drebVpD1s8+eQW+viT17go+10rEcyUS5XA633HIL7rjjDnzqU59CNputWhoS5HGpNGbG2K0Q5Pi6WsezKt2q7hKH6667DolEAqOjo2WlHEuFuSTkCKX/IygWi3Ouvww675kzJr77XW6/wO7OBlSKwcuyHYWSjLQWSUvSDVGkD2QyBiYnL6G9vR3xeNzZ9hJ7Ed+OfABX8f+EW6xPgnEGs0JsSB6vencNcgMKq7Iy6YlrsEB9JKkWs1SyoCiq51jVzlepBlGeo5o7tfLkS3V7MsYqic/dscKdsCNLaPzXrdjbUmyR+/Yl4gwaB4NUkCmHiD9WIxFWdfFABEnXSklfhCasxY7SW3C1+hYYxRKG2UmcUZ/Hs/rXcZ/yh+i0tqHf3IU+czc6tS1obBRZkMViAS0trchkMhgfH4dpyizYWCxqJ89Y9uLEct0PEg63bNKqrLAjNF2Fu5aO4f2erhF2v1PDzjWQiyJyswqhchPPPTeE179+HH19wZbPSsZyZNmWSiVPV6TZejv29vbi/Pnzzr8HBwcDc0327dsHAF8C8BbO+Xit41l1lmOxWMT+/fuRTCY9JQ6api14OUWtqDchJ5vNYt++fejq6pqTaDjBT44TEya+9jVur5b9yjckHG55CEJ8p0DTKpM7TZjpdB65XBbd3b3QdfHoMMaxT/sXPKZ+Bm+1/gKbS291HFnukgvv8cTioJpQONXl+cs0/EkqVArhLuwvFkUDZc5NqCoQjcaRTMbAWGUdzGrlHPS9n1iFZqcgHEoWcU+qVLMnLE6qLyy/z7QClhmswW5aklgD/EkpsnbVviuQOrLe+yXKYVjZ5C/OR9uXJ/W4969mIQOwS4Qqb2CagKpo6LS2odPYhuuNn7ddsK/gjPoC/iP6x0izUWwy92ILH0BE60Ek0gtN02wXrGW34xJZsMI9F0c0GkUkErUXHAZkdi63QxCk5hM8NqohFWVOrCyjVY7fckIaQgJTfE6LHLEAEcT53e8exAc+cP2sIuUh6sfAwACOHz+O06dPo6enB1/5ylfw5S9/2bPNuXPn8FM/9VMA8B7O+bF6jr+qyJGUYrZu3VoWrF1q8W836rEcSYJpx44dTrrzQpy3UDDxb//GUSyKFXw0ajnJFIIYqZZOTpayRMN/XHebIVFnODoq2kw1NDQ6xMjVAr6r/ibO42m8z/wPNBtbPcexLAXeJsIy8afS5EsgAp3ttvqtvXxeyJy1t7dD1yPg3EShkMH09AwKhTw0Tbe7T8Sdvnz+WkayvtyxRHENFrxEw+0JsrwuzovqFnTFvcp2k2Ny3xf/4orEyGWijfuY3CEMOofMVBYLzUhEtZWIJKm7x1B+XO75vdwuz8okS30ZxXEiiGOzdT16rauRUi6ggbdivXk1TqrP4/SGL+IJtgYbzZ3oN3ehF1c5wtmAECLI53OYnk6jVBpDJKLaLtg4dF21z2fa41ZmkaATLliR/EM9IMvjjPSMiMUOdSqBHXuUCXATExnce+8r+LmfGwi8DyEE5iIjqmkaPve5z+HNb34zTNPEBz/4QezYsQNf/OIXAQD33HMPfv/3fx/j4+MA8Ff2e2JwznfXdPy6R7QM4Jzj1KlTGB8fr6gUs5zkWMu5LcvCiRMnMDMzM6+mym64yfGBBzimpqSFWCxKrVSxkhf7kKoKkSbBnUlJiS2MAbmcgeHhYTQ1NUHTVORyOagqMGmdx7fU96OZ9eD9pe9Dt8rjpcINR8kK4rNaPN+aJkg+KG5GkBaj/Gx6egozM2l0dXU7WYi6rkBVG5FINEJROIrFHDKZDMbGZgBwxOMxJBIx6HrMqbWje0Agy9lNmN6xVCfGahZpNeL0W33eY1S38CrFJAFqxeTWNCWrRzxLxSJ87lXucccSGXNu2S5vq8xDIO6XMitBuhs9z7AxfDP6KXSZ2/Gm0n+FAhU7zXfg/IVBRDdmcIo9h2f0r+Fe5Q/RZW0TiT3mLqzTNjuF6Ipiolgs2i7YMViWgWg0ZgsRRJ3rVRQVmsZQLBqexYXbspTNmr0Wv7sMRP5NCTkMjCkolUyoqgbGGM6cSeGJJ07g5pu3BN6HlYaF0rueC+r1ot1555248847PZ/dc889zt9f+tKX8KUvfQkArq13LCs+5kiC283Nzdi9e3fFDKqVTI6FQgGvvPIK1qxZg507dy6YP58mn+PHTezfL+NyolkvtVuShETxraDehyLGyO3thJsync5gfHwCa9d2IBqNoVjMgjHgFP8R7ov8EvZa9+B681erWnemyRCJwMmOJQSJzlN8Uaj2VMq6LCdGzjnGxsbAOUd3d7dzbBF7VDyxPk2Lork5itZWDs5NZDJZTE1lUChMQFVVJBIJ2+LQXPfCOXPgWGZT56l2f+ajHeHv0FF+3PKkKprwSQqw0rPojqXJ/YRbnsS6qRuL+530towSySlU5B90KnIHjyon8Y3Ip7DTeCf2GO8Gc5obcyhQ0GldhrXWNtyk/jyyZhbnlX04o76A+6N/jBybQZ+5E5v4ddhgXItGrR2trS1obm6CZVnI5wvI5XKOCzYWiyORiCESiULTFCeLOhikzMSdeyfuA4kWiK2kGo/4v8jAZnZ9sYmf/OQUenpasGnT3LWRlwrLIZhuGMaSCLbUgxVtOY6NjeHo0aM1CW6vVLcquYK3b99eMSV5PufN5y18//tSroxKIujFdfMPuQ+DhLfd9Y2GAaRSE8jl8ujp6UIkosE0OUwLeDnxJRzU/wHvtL6I9aVbwFSyYIIhrEAVmmZVjUPJ7Fn3mIIzToXbS/xbZM4OIZlsQGtrs5OZyBiHSCB2d3j3loCoqop4vNEuPBZamZlMzk76MG1B7RgikfK6Ozme2VbZvMLfdI2z7D5HCDWdyi3hRAlEcE2kAC1OZFKUUJ+xPIsFshyDjk3n13XVLqoPvoen2PP4bvSP8abSr+Iy45aq4zFNhoSawGZjL7ZY1wMlYJqN4Jz2PE6w5/BI7G/RwNvQZ16HTcou9BjbkUjE7JIQIYyRz2dtN/s4IhFys0cRiUQCCVwkcnG4LWH/dqZpQdOEl4QInzGRGS6SdID77tuPD3/4ejQ0zF2ceymwHOS40tpVASuUHC3LwsmTJzE5OVmz4PZKsxw55zh9+jTGxsbmLRpeCYqi4JFHFKRSMsFC1wUB+ssu6WWu1BSYag0Nw8KlS0OIRiPo7e2CUMjhKCKNBxIfxQRO4QPG99FgbqArrXA8SmIR56OkHyJIb5lGeTJLJSuNVvKMAcUixRfXIBYTheWmye22VkFE5HafSXenuCcMmhZFS0sEbW2i+0SxmMfMTA4TE5O2VRlDLCZKCYikKXYWDH9Cjf+aqjPjfInTXzvqJ0q3rJx/XGRtC2Iod5sSgkpApPKMaZ+HyJL6f8r78rJ6P34S+Ue8q/D76DZ3QPGp9chEI3fphGxdBQCtSjuaSnfgStwBCyaGlZM4o7yIJ9WvYkQ/iS5rK/rM69BnXoe1Wr/jguUcKBZLyOdzGB+fcFywyWQcuh51CILuo7CSVXuR4L0Psh5Use+X4ZSVkJWdyVj41rf24z3vGViWbNBasVDqOPUgJEcfgh6QfD6Pffv2oa2tDbt37675IVrIxsn1wm85UkZtQ0NDVVfwfHH+vI4jR1RQmSP1MfRDkA9ZCeX3iOri8vkCRkaG0dbWglgs6UxgE+wEvqW/F53GtXjr8L+hoUMW3lbKevRnkAJEkNxZXYuxBbeQcuuP0jUQOTLGMTU1jenpaaxbtw66rruOh4oWqjvFP6g7htiG2aSpIhJJoKMjDlJKyWaFa45SzhsaYq6klXKUu1TL3cjzeWRnWwuKusby63S/Uu6YME3kRASAzL6s9m6JOFvlHouAOJ6uM5RKNmFyEz+O/j2OKj/GLxb/Es1WN8Akkbr1UN3/dx8PgL3gcpUsQUWXtQ1d1jbsLd6NkpLBeXUfzqgv4T7tz1BgaWw0r0W/eR02WteiMboG0ahuu2AByypgamoGhUIKoq9hFMlk1F4QUajCWyblvRccmqagULBAij5EmgBw7tw4nnjiBF7/+q2B+68ELBc5riTRcWAFWI7u2NPo6CiOHTuGyy+/HG1tbcs8strhthynpqZw4MABbNmyBevWrZtlz7mjVLLwox8lUSiIYn9VFZOgP01dZqQGT+JEjDMzM5ieTqGrqx2MyTZTx5UH8ID+Mdxi/ha25+/GFJ/y7O9fu1AJQaWeiaKWTrHjXVbF7QTBWtA0Yd2QLqiiAKOjYzBNEz09PfAmU1TquCCPKeNH1RddNNlLd7WOhgYdjY3CBVso5JHNZjEzk7atBhOJRByRSNR1T6oz3/ybfVdPypESavLflFlKvxOpyLjvh1fkQI6zkjRdLWMByMpkKJgFfDf6WaTZGH4x/5eIo9lO7lEcIpbSb5WL0am8plJ5BmNAFAlsMa/HZuN6aBowYQ3hjPISTqrP4dHI3zku2D7zWqzHDsT0BDo6IrAsIXZRKOSRTk8jmy0gEtERi8Xt5B4NcpHlv06KN5KClVTQARieeuo0BgY2Ih5fmeUdy+FWrVdXdSmw7OQIwE4qOY50Or1gmZxLCZo8zp07hwsXLjjCBIuJH/wASKepdksknlCKOc237lKNoMQQKsKfnBxFsWigs7MH0ahwSVow8WPtT7Bf/Xe82/xXdBoDKLFS2WTu/qeswatOPFRr5ydGdwmFUM3htguLiMrC8PAQotFYWQw6SNorCJEIL0tG8qNyb0eyZhni8RgikRgURQfnwlqYmZlGqVSEruuIx+OIx2POhEj7+6+3HgRZmuWExR1CI5k/IkJSghELDTkmsbirHDcma67a7RVxxmAJOnkcjiym8J3Yb6PB6sDPFv4MGiL2tTFnbLRtNCo6YZArVl6zTAYS23rLQoJAiVNtaieazTfjGvPNjgv2tPISnta/jnuVz6KHb8NG41r08evQGdmISCSBZDKKtjaxAEqns3ZM2nDFKqOOZUgQtZBSr5UIMhLRUSqV8JOfnMIb37i98g1dRiyX5bjYc2a9WHZypIL4jo6OBc3kXEoYhuE0fF2KNlkjIxwvvCBjRkISDqBYkZiogmsYCarKUSqZGBkZQiyWxLp1awCI1XpBGce96i/DYHl80HgYcZMs4MqWjmw2PLtFRrFIzhVEIpadJCQIkCZHiukRMRYKBYyMjKK9vQ3xeMx3THHt/qH5JbCqqdj496vwjfOXv84wmWxAMunuaZjF8PA4OBdqLslkAvF41FcSQY1/pcvXe2rLtX1wYo8s9ndnorqvQcbr6F6UJ5PQMSv/dqLsovrigyzDSgQ5wQbxjegncZlxC95gfQAcla0Tqh2V1yISYjSNo1Aob0hM53YTZNBUIuT17MxSlwv2RuNnUUAWF/QDOMlewH3RP0WBZdBvXYONxjXoM69Bg9qK1tYmtLQIIQLDECUjk5OTAGBnwcZtAX5KimL2/RMEWSyWoGkKXnjhPG68sR+JRLR8kMuM5UrICS1HH44fP45t27ahtbV1QY631JqA6XQa+/btg6ZpuPLKK5fknI8/DtsqYA7RSN1PHljc740zceTzeQwNjToycIRhHMA39F/ENutO3Gr8Dpjl7eYexBuyjnK2+84dqTphtXIUi8yOJ3rJTSjOiM/S6TQmJyfR2bnO1pH1dk6oJPtW/hxU7oxBqCaPJgUCKpdgMAZEoxEkEjqamppAgtozM6IsRlEUJBJUd6fOQtbutl1ukgwqz0DZ5/KapIuy4pmcgvdgcA7ouoJisXqgkzqh+J+T89iPe6O/g5tLH8Q15lsdMfpq5xTH4y5SN5xEK1o0yBITSoiprIBDkDWY3nsiXLB7sckaAErAjDqEU3gJp7Tn8WjkH9DI29BnXouN5jXYqF2JmBazvVytsCwT2azQgi0WC2BMgaYJMtR1DbK1lUj+Mk1R3vGmN11edazLgTDmKLDs5HjttddWDG7XC4r9LVUvtYsXL+LMmTO46qqrsH///iU55/Awx5EjwgKKRhkyGSCZlFaHyC4MLtUARNLO2Ngk0uksurq6HZUYADigfBWPav8Dd5h/giusnyqbuKldkBvCAgWqE6OIc6kqdyY397tHffhIdkyo8oiFzvj4BEqlErq7u53VrNvCqqTP6idGRaGavGpJMLyqW5Bilm5rreKRnPExR1AbYCiV8sjlchgfT8GyCohGKYYVKysXkQlEleGuT608FrENHWuui8dq8T2COLQ3/nhYfRSPRP4Sby38D/RbA8529HvM9voL9yT3eBXknCH1Yk2T+yzIyvdGqkX5PQUyDNFgtOMadgeuNt4ERbNwgR/HGeUVPK1/A/cqf4Zuaxs2Wddio3ENOpQ+NDU1oKEhCc45pqenkc1mMTY2BsMQ7bgikRhisbgd82V46aVB3HTTphVnPYaWo8Cyk+NCYqnI0TRNHDlyBKVSac6i4XPF448DAIeuc6TTMkOXVG+C3Zoi6ULTLAwOjkJRFHR3dzmTg4kSHtU+hVPKQ3gPvxetxg4wNcjS8B5bNJKtPNFS42KyWopF5hwjaH6Wwtci1lgqlZBMMnR2ehObKD41u3C5HAfNpdXEBWrpJ1mpdZMXwYka4nfToevCquTcQj6fRzabQyo1CUVREI/HEI8nEInoTvao2x1anrVZPWkFkHJns7lNZ4vbAYJoq4kHiG3sjjGWhWe1f8eL2nfws4W/QIfVX+G8we5u4R0xndIPYe25O68A/ntNsT+xGJrtWmBv6yV8UguS953BMhT0qtvRbWzDjcZ/QgFZnFcP4rTyMl6O/jmKLIeN5jXYZF2DDcbVUFUd8XgCbW2NTmJPoZDH1NSU7YZPIBaL44knTuLNb74iaHjLhuWyHBfKe7hQeFWS42LCLRq+YcMG7wu0yCuuoSGOY8e4HXdRPJOlEBoPik+JCb1UKuDixVE0NTWjqUlKvaUxhO9E3o8ob8YHzUcRZ60wILJI3bJzdI1ExiRN579ccjuKCY0yTMvLNYIKwqn7RrFYwtjYEFRVCXxhGCsfW2XwsokvCMF9Gsvhrx2stE0tBMoYbDKkAnUTuVweU1OTKBZLiEYj9vdxqKoS6NamYvNqyTIia7V6qYW9JapboeIYoti9+sFKloFHov8bF9kR/GLh82hma2Eh+MZx7tXgpdi5cEVK4heJQSoMozzmKK5TWpScA9GogmLRq4cbdM2mSQliYl+x6PPuQ25bKvSPIoGt1l5sMYULdpIN45y2H8eUZ/Fw/O+Q1NvQU9iBy5Xd6FYusxO04mhtbUWpZKBYLCCdnsH3vvcM2toK6O5ei7a2tqotmpYKy2U5unszrgQsOzkuZHxwscmxmmi4Wz5qsfDYYyKJQ1hggFAgsZyJXY5FyoepKpDNpjEyMo61a9ciGpUunEH2DO6NvB/XGO/HzfwTAFfhNjwNQ4FoBQX7fG6LjVxS4jykTCN0NqWlE0SMcj8JspLS6QwmJ1NYu7YLw8NDZUXjgJi8CoXaXJvVWjB5z1/eBDjgiDUeq7Zt/PdA01Q0NibR2Jh0kpByuSymp6cBwBEhiEYjvkSj2eslq+nUEsjVOFvW72x1jQVkcF/0d8G4gl8o/SV0nqjqdSfrWEjTCdEBWWfpPYkgstnJWYQXyAVObtdgi5cyWYXVyWGaBoIG7FW8sTz3vYWvQ3NxLa7T7kCpaOB0YR/O6QfwE+3rGNbPosfahj7zavRbV6NdW4+knrRbvqm4eNFCZ6eFY8eOoVAooLm5GW1tbWhtbV1SrxQhqEfsYiN0qy4yNE1blJ6OtZSaLLZL99IljpMnKRuR4iIMJNXlJ0eKV01MjCObLaCnpxvU25CD40X1S/iJ9id4a+kL2MLvEJ8HxLjcnTUog9RNflR0H5QUUokY6VwEcVwLY2MpFAoFO76o2qt1MWEJ8QBhUVTvgCEh6hln365y6YYXotGtf+ze7hNCgi+42TBZMJRN7FcFcmesMgbEYlHEYhpaWpphWbLmbmJCloskkwnHlViNJMUxKzfylfeismXsvW6lLP4MADNsBN+I/nf0mFfijaWPQWUa+CwxUXFeyla2ysZYnl1LXTBm/9GETKDslkGF/EEQvRqrhwrcSjjB31lQmYqOwmZ0mZuRVH8OeZ7BOfUgTiuv4NuR/4USy2OjcRX6raux0bwaJ06oeOMbr8T69ethWRampqYwMTGBs2fPQlGE96StrQ2NjY1LYtGFCjkCrypyXAzLkRR7ZhMNn0vD43rw2GNU6+f+lEFRyqWsRPcJ03ZNxtDV1QWamEvI4fv6f8Mw24f3FB/CGrZJKGjax/Cn6xP5yp6DYmKihsmV1iLC7Vk9LiX/NnDx4ggikag9Vv9+zGm7JayLasXo8h6USuUTa3m5R+XSDUEoJA/H7EUCh7tVkWz/JAYkGt1Wth7JSqLWTkHn9Fy5fSBVVZFMJpFICJk8kj0bGhoBYyZ0XbhnY7GYp1zEDV0nYiBLjXkIVZBTeeawe+wE2ZZKfnbBPIJv6L+JG4yfx4Dxs2B2WQl5FfxwN0Sm15bqAV1nDRyLVNKZnXjJKhTKTJTtqjjeFTkey1PqUQlEkJGIGrid8HSYUBSh1RrlSWw1B7DV54I9rj2HhyP/iGa048Vv3IQPveHduKH7BrS2tjrhhFKphImJCVy8eBEzMzOIx+Noa2tbVBfscrhVs9lsaDn6sZLdquPj4zhy5EhNouGL6dK9dInj9GmUTagU93MrsmgakM3mMTIygubmNa7VGMckO4Nv6+/BGn4Z3lN8CDFFfOclqvK4k5iIqEaMw99n0T9Jut2u1SBcaAVcvDiClpbWWV4ObruPBVmJlbtVZn0BlSd3/7XSWKU+qrx2eT2UDGI6MVY5IfIya232eCNZ3bVZv5497dgiYwzRaATRaATNzUJdJpfLIZfLIpVK2YLqIkNW03Tn+fBnaFZaFFDSkvfdFBmobkJxPysnladxn/b7WL/vTuy54m7P8SwLiESkKLcwSqS3wX0a8YzJ56na4kX0K61sCbr389dgkriEtJBMhxQsiweQdPk9Ik9GpUUOLaDEuyPHQi7YXZE3o1AoYFg9iXNjB/CZH/8hjkwcxp7uPbh94+24beNtuKL9Cqxbtw7r1q0D5xzZbBYTExOL6oJdDssxVMhZZCwUQdXSP3Kxzh2Exx5zJ4vIyZVzxZnkSDg8lZrBzEwKHR1dnrjBaeUR3K/fg+uNX8Nu8x4oriSHamCMag4VKIoZuFL3NlCujRgBoFDIYGhoAuvWrUUkUj2d3duTksat2OOjDFfxfZBrUE7K8t9ighYTWJDurHvSrrSGIwGC2bZbCFSOBTK7L6WwJEolwykXMU0D0WgU8XgcDQ0x+K8xCEHWo3jGXBqmtmWhqgyPZ/4VzyW/jHdbfwrWEryIFLE6lC2sgkCCA9KbEXxTyQKneLUf5fFKktOznP2Fko2wpsU1cdd4ZytbYXaGdVCWr+hgYlkWdF21XbXcs69pcqhMRZe5Desym7C3fRP2/nQvnjj/BB49+yj+9pW/Rd7I49aNt+K2jbfh1g23Ym1yLZLJZKALljHmWJXzccEuV0JOY2N5T9jlREiOPsxVNHyx3KoXL1o4dYpDEIFcaYsJgznkyDnH0NAYODfQ2dkLXRdZeBwWnlL/Ai9qf4N3FP8RG/hNTuxwNjUbYaFRHaMYAwmAVxYDqIUdOKamJpDP5zyx0Mrj8Lpv/XE6cU6RkakoVlkWrSBTt36oOEAl0fOg8daSyQrUttjwX8N84c9Y1XUNut6IpqZGWBa3E3tymJmZhGkaSKWmHCWXoGsSiVRe17W/PtSyLHBYeJj9FQ7Hfoj3FP8KHdoGvDz2Cnp7e5xnUmYuWxWfm2AIz8BsJSj2iKt6C9xwu1gBOEL4AtwOGTBburC2us6g7cS4Ffuc3LYevQQpMnHFdWqaipdfPo+bbtqCt299O96+9e0AgFOTp/DDsz/Efcfvw288+hvY0LQBt228Dbf13Ybru68vc8GmUql5u2CXw3IM3aoBWGi3aimoLUWNmJycxMGDB7F161asXbu27nMvhuX42GOUFCMnXnJbiliOhWKxhOHhESSTCbS2tjvurgKmcb/+y8iwYby/+EM08O6qGaQC1PVdZMHK8hABYUF6Yz0ivb82YrQsE6OjI9A0Fd3dXbOWRYgFQZC16i5jIYKAbU1bzqRM43PH4Ujcutafa7b6R3e8drYJmsY9F3KsRi6VskwVhTnlIorSigsXzkHTNExNTbnKReKIxeLQNHfTYvEMuOtS3YcvoYCv5H8TeW0aH478A6JKAyyLY2pqCvTsCNelYi/GFCdeO1v9IUCWfm0LU3I1e+OH1RNvxLFNj+uUSByALY5PFvPsv5c/09dbC0qt1BRH5pE+F2pR4pktlQw89dRJvOlNO5zjbmrZhE0tm/Chaz4EwzLwwtALeOTMI/jMTz6DQ2OHsLd7L27vEy7Yy9dcjrVr12Lt2rUeF+zx48eRz+drdsEKqbswIWfZyXEhoaoq8qLDbV0g0fBLly7NWTR8MSzHCxcsnDzJbXeQGKemMZeYOINhGLh0aQjt7e1oaIg7k/iwdQTfiv4c+sxb8c7SP0FjmrD9qhAjWVuWZVUlOxqPu46xFmIslUoYGbmElpYWJJON9oRT/Z4FFfqTwojQYyV3KveUnYi2S5R0QuLstMBgtou4toWZPwnKi/pKKsQEWp5EVXn72oi0ljWmsOaYp1ykWCwgm81jZmYEnHOHKKPRKDRNSsq5j5/hKXxN/Q006Gvxc+qfQbMidh2lhWuvvdq1j+Jk3orifWpdpdhu8OoXRr0ia7s2bwZr9X0qLbjcMWdxHOE5UsB5cHmHdwwyBin6OdLn4v9CCs8rYSieY6mxu3//Bbz+9dsQjZaXUmiKhr3de7G3ey9+68bfwmR+Ej86/yM8evZR/M3Lf4O8kRdW5cbbcOvGW9GR7ChzwaZSKZw7dw4AKrpgTdNccrfqcpSPzIZXHTnWW8phGAYOHDgAXdcxMDAw5xXTYliOTz4JkGtGNiMW3ykKMDExhWLRwIYN6xGLac53R5Rv4/v6x/FG6zPYYfyifTTL5doJGr9MGtB1lFmMfoh0ethuzNndWrmckNLq7GyHrpOLp/rk6HaR0mRHmY1iwnVbCtU0UWUHEKE9K48xG/GQ7Jw81vz9ofW5Fz17VvymluMROdIEzhgQjUbt2lchpp3L5ZHJpDExMQ5d1xCLRRGPJ6AoYqoYZ+fwb/hVbM3egrcmPw5uSde+aXK8/PIruPnmmytfASOR+fL4ZVDyDcX+agGp6JimiUp1nWKRxJ2FlTuuGJQFLaxfhkhEg2GYZXFY39XZyTz0LvjHwEGJTWRJSxIXf+TzJTzzzCm8/vWXzXq9LbEW3LX1Lty19S4AwgX76NlH8Z1j38GvP/rr6Gvuc4iykgv20qVLOHr0qMcFu9TkuFx9eGfDspPjQrpVNU2ri6BmZmawf/9+9PX1obu7e17nppdyoZDPc5w8KRNLvAo4lp3CryIS0RGJqDAMwIKBx7RP4yX1S9hj/FdsNO9wJmJNYwH1gVSWwF3nqU2vk7Y1TaGJSmUA5eCYnJxENpvF+vVdcD9y1QxtTZMWS5CFEZShWguE/Bm36ydl7Sadxz+pzlYKIj7jFb8LwtzJsTJmE1QX2zgjCNxWVRU0NCTQ0JAA52ICLRSymJgYA2MlDEeP4JH2v8AtpV/CdbF3wHL93pbFoGmsJgkwcpmSS9PrcZFaqdK6pESZWtz2QkwhqAZTuMfdovW19dMU4QXTjkeSBYgK45HlPTIzWH4rCFmBYYi4nvv8dE9eeOEsbrxxc93Zp+SC/fA1H0bJLAkX7NlH8Ac/+QMcHjuM63uux20bb8PtG2/H9jXbPS7YXC7nuGDT6TSOHz+ONWvWoKWlZcksupXWkWnZyXEhUY/1duHCBZw9exZXX331ggSCqbHpQuHll73WGyVECNfkEJqamtHY2ITBQeEiyWIU9+ofAMBxi/F7GFR+gr/VdqEVfdjC34RN5h3oxC4oUJ3jAX7ri+Jzs43Oa8UaBkM0ypxVtrMVtzAyMgJFUbF+fVeA1eruJiLPL45DZRqV0vTl37VoojpnZOXJPe7ehgDsekq4xuAlyaDOL7UmhPiPVR8qn2A2jVXveSsTqfBQkBKShlisEY2NDTikfh8P4X/jlpGPY232KgypQ44kmq7rduYoQ1NTU8C5y89VqXuHu8SD9lUUFZqmwjBqe79IDs5djiOekaBFFrljZ3+AhFXIbE9G8EtC52FMcX4L/2JIxB9VH0HKOH4mU8ALL5zF3r2ba7reIOiqjut7rsf1PdfjUzd+Cql8Cj86J1ywf/3SX6NoFnFb321OFmx7oh2JRAK9vb149tln0dnZiYmJCccF29raijVr1iyZEMFKwGuOHE3TxOHDh2Ga5oKKhquqikKhsCDHAoADB6QlRu7QXC6D8fFxdHSsc2TgFAW4wF/Ct6O/gB3mz+Jm47ehQMVu8x6YKGFIexrH8QM8oH4cae0S+q3bsRVvwsbS7UhApt27syirTfLkDvKvmkslEd+jmGapVMLw8DCamprQ2toQ6M4VbllpIcjrnT2L1L0OqSXBQ55zdiKlrFYhE0Zp/u57xMruUy2aqwBZqjUPt2bMprHqJiJBOOI3lAlCshTGk2wF4OH8X+Fw8kG8x/o8Olo3Aa1ikZbL5ZBKpWAYolwkFovh3Lkz2LBhg+fcQeQok3Sq1xJSOYRhcOi64mSRzmYlG4YUaxCqTtUWFjR3zE6+sraxPKOTMTi6r4ZhOQlOQddPYgOGYdqdcSiDWsRpn332DPbs2bRg1lRrrBXv2PYOvGPbO8A5d1yw3zr6LfzaI7+G/uZ+xwWrcQ0tLS2ORKbfBRuLxRwX7EI0KC4Wiysu3gi8xsgxm83ilVdeQU9PD9avX7+gZvxCJuQMDXGMjMjVPeccY2NjyOWKtrSa+Nk0jeNY8pvYF/nfeHPp/+Iy6x2e4+iKjh7jZmxQX4fbjN/FDBvEcTyEQ8p38GD0E1jDL8Nm803YzO9AN7salu1qnL2FkAXL8sdmmU0qDIVCBiMjY1i7di0SiaiHNMhCpHo3v9vUawXOVmrCnOL82lB7SQYgJzWqp5PnVTzfEcnL/bxZqf65sZ4YSz2PKLkJSXmGLHP6P3VHoexO/6LCfy4TBh5QP4sLsQP4gPklNKLD+c7dXcSyLBQKReTzObS1tePSpUuIxWJIJBL2Ii74egUpVS62l2QvBlYsUmKVzKYMWhhRZjdlOteyeKLkn1oWOFKdR2xMmbGMyQxVsdhgdrw06PzUj5UInMYhku6mprJ45ZXzuPbaDQH7zg+MMWxu3YzNrZvxkWs/gpJZwvNDz+ORM4/g9378ezg0egg3XbgJt/UJF+xlbZcFumBPnDiBfD6PpqYmJwt2LiSXyWQWhGQXGstOjkulkDM8PIwTJ07gyiuvRHNz84Kds5Zz14sXXxQrXwETFy8OIx7X0dkppdVMlseD+AROtT6GXyx9H22WN4DvVx2JRjmShR5ci/fjWvP9MFDAoPI0Tio/wH9ov4Q8JtGv3I7N5h3ot25FnDUHTuJUjO/3rIhNOaamppFOp9HT0w1dV0F99WjCdluIcj855vJ/V3YVimzdKjfSBzfx1lq/NjvEoqCWCiLGpKYqWaL+6y2HTEihydv7s7jduRTDk9/R//0uzNleuwLS+Nfix6Aigg/F/h6aVXnSk622Yjh16hQuv3wtMpkcpqenUSoVoGm644J1l4sAJDhQ2Vvhb9kliF5mpYowAJU6kfUl7oU4trckpRKE1Ufegtl/eG97NWHVumP6UqZOZKMGPcNuJR5vzFzUPj7//JlFIUc/dFXHDT034IaeG/A/b/qfeOTJRzDTPoMfnv0hvvDiF2BYhicLdk1ijeOCtSwL09PTmJiYwPnz5wHA0YJtamqqyQW7EkXHgRVAjkDtgfHZEERQliXU7jOZDPbs2bNo5vtCJeSYJsfBg8wp3h4bG0Z7extisaQzgcywQXxb/3k08B685fzXsab3srK1Kbk3SVTbNBVP5qWGKPqsW7CZ3QKz8IeYZGdwUnkIB9R/xwP6f8U6fiU2mW/CZutN6OBXgIEmA+Fq9D/zlsUxNjYKAOju7nZcrJrGUSpVVkVx14fV2p/RfY21w+9OrZ7AUov71X3smrbiMlu4VieDN4OSBYzJXUoiJtVgeCfnaklXk/wSvqr9N3SrV+Ot6m9CQwRQSjWNOZvNQVE0NDQk0dDQAEUBcrkcstkcRkdFuUgsFkc8HkM0GnPid0Hu1eDPvF4aig2Tha7rZLVxx/IUBFT9N3LrzNaWxcxAUncAR6lU8vxWgtQVx2VbiXCFm1aBZRmOvJ1hiB95eHgGxWIJkcjSuRw552jSm3D7ttvxzm3vBOccJydP4tGzj+IbR7+Bjz/8cWxu3YxbNwjVnr3dewNdsENDQzh27JjHBRuPxwMXCSE5LgHc7i5Aioa3t7fjsssuW9RsqIVKyDl8GMhmRSbtzMwUurq6oGm6/bJznGFP4D/092O38VHsNX8NF/hg2ctMMTuZhEAxMu+E6HYjtfA+7DI/gl3mR1BCDhf0J3CMPYRv6e+ByQrYbL0Jm603IqZsL5s4DMPA8PAwmpuTaGxstC0dy7WSJmINnnRIzMBPjFJLtHwfQaS1k2N50s5sMc3aji3cxPX97vU8Jv5EoLnDu28lEhhiR/EV5eO4JvMzeEPsg2DOIqK2DOZrr73GleQiPiMdWCoXyecLyGSymJgQOrCJRBzJZMwTwxPPa/CNCnLHUiYquc3JZSk8FeX6phXvEgcURQXn1VdGwhKXizpRV8sdMgZkmYYgwMoGgPie2/WOqm2JaiiVDJw7N4EtW9YF7rcY8EvHMcawpXULtrRuwS9d+0somSU8d+k5PHL2EXz6x5/GsYljuKHnBicLdlvbtrpdsHMRAHjwwQfxsY99DKZp4sMf/jA++clPer7nnONjH/sYvve97yGRSGD//v07Oecv1nOOVxU5ukGi4Zdffjna2toW/XwL5VY9cAAYGxuBYVjo7e0C57LN1PPq/8NT6v/C20p/h37rdnsPeumk60lMHkQGthvWlq4iQqwWX9ERx2brTegz3wiOP8EEO4Ez2sN4Qfl7DK5/Ft3WLmzmgiyTuQ0YGx3D2rXtSCajdi++8jiP6AEIp8bQ7+KrfOssAOWJD/4ej9URZAVWd6lW56HaiKLSWOaK2dZ21e5H0MLQr3R0sPQoHkp8Fv+f8Ulsj93q2ZZE52frCynqHF9nb1cudqCqCpLJOJLJODgXC6tsNovx8QmUSoZdVxm3dWIphlrumqP6R8YsmwDLXZpushIeCqvi+N3Pay3C43RdomONdP+K90+2x6L4Lj2z5eclUQsFnJuQWr9i2/PnU0tKjrNJx+mqjht7b8SNvTfit2/6bUzkJhwhgs+/8HlY3HLk7d6w4Q1VXbBnz57Fk08+iU2bNtUtb/fRj34UDz30EHp7ezEwMIC77roLV1xxhbPNAw88gOPHj+P48eN45plncMMNN3wBwN567sWKIMeFcqsC4gE8ceIEUqkUdu/e7Wnuu5hYiIScfD6PZ58dQiTSjPb2ZiemVmIZfFe/BynlBN5X/BGauIxDyHsnXnrRxTyYbERGJYOmyYbElUA/BwPDOnUL1pS2YBfuweDIKcy0H8LZyA/xFe1ngCSwNXkHCvwO9Fs3QUUcboFq/zGFYIBXSNwbN3Mj+Llwu19rue9BpR7VHrf6XKq1gDnZoaoq3X2A3zIMGos7A5WaSou/ZbIKd3kGgstFgoW5Jcm/qH4TP1K/hHfl/hQbtWv8W9qW2Ozuyfb2Nc6xxfZGRVJnTOjANjc3AWgCwJHN5pDL5TA9PekQSzQa88QeSSmKc6uMwMTzYHrOQR04dF2zE8HKrWip4yowW+sqIbEm6yY1zZvtKuOfDCSKH0S4lMxlGJZjXZIHTFUVXLw4GXzzFgn16qq2xdvwzm3vdFywJyZP4NEzj+Jrh7+Gjz30MWxu3YzbNt6GO/ruwA29N3hcsP39/chkMvjOd76Dffv24cKFC3jTm96EO+64A1u2bKno6Xv22WexZcsWbNq0CQBw991349577/WQ47333ov3vve9YIzh+uuvB4AWxlgX5/xSrde2IshxoVAsFpHL5WBZFnbt2rWk9TjztRwnJibwwgtHEY1ei3g8Bk3jKBaBCXYC39buRqd1Hd5nPgzGvVld7gdI14VaTeV0fnpRlVkJgDoj+EW/I2hAf/GNWJvag53WJ4COcZxSH8Gz6udxn/JLWM/3oN+8DZvZ7Wjl/YHHJpIUE4Npu8LKiTDIgiOFFfe/g2AYJlKpFKLRKJLJaFldmnu1Xz6+4BtIE5e7u7yqimQc96NG9ZlubU0pcYeaSgbk9Ukr3NsuyxmV51+VWigJ9y/dc1liwGHivvxnMRh7Ae9nX0KL1lO2L52/lrVfLOa1AOqJZHDOkEzGkUiInpSFQhETExPI5bLIZNKIRiNobIwjEok5Ig6zWXhyHMwmIIqXM899DfrJiSDL3bvMliq0PNuWP8Pcjs8rTiJa0HjpWRGWvAnRC1KFaXJcujRVw51bOMynIwdjDFtbt2Jr61b88nW/jKJZxHOXnsO/HPgXfPiBD2Pfh/ZBdTUZaGtrw3ve8x7EYjG8/vWvx913340f/OAH+I3f+A3cdddd+OAHPxh4ngsXLmD9+vXOv3t7e/HMM89U3QbAIIAeAK89ciTRcF3XsXXr1kWNLwZhrpYj5xxnzpzByMgI2tquQywWA+cWikXghPI9fE+/Bzcbv42d/IPgtgC51yUpVtC6LqzMahaRcDFx28XJAi0qN8pdryJdfWxsBA0NjVizph1AJ9aaO3C9+V9RVKZwVn0Mx9nDeCryl4jwBmy2bsdm63ast66HBm/rL0GSim1BWCiVqmevijGVxyb9KBSKGBkZQVNTE0wzj0uXJsEYczImIxHddnXJFkXynKQXy0AWk+x8AttakfEwyzJdtXfu4yzt80eolvVJFgw9pyXkcZ/225iKjOFD+AfE0Qzm9LWU+7kbXc8mdjA4OIj+/j77X9Qiqvb4rSAtC4Cw9CKRKKJRDQ0NcWSzeTuGJQhDZMjGEY/rTkLObO8gJalRr0WyxIPeg0oJOpEIUCiYZb9x0AJPEJ4BVdVc4QZpsbsFCITyjvjONE0wpqBUMjAyMoW1a5truofzxUJ25IioEQDAD07/AF948xc8xOgGJeRs2bIFW7ZswX/5L/+l6nGD62bZrNugzpjGqidHzjnOnj2LoaEh7Ny5E/v27YNpmgtW3F8r5mI5kq5rJBLBwMAAvv992+WoW3jE/CPsU/8JP138OnqxV1h6KBcOp2w9IY48+4RMBe5iImE+96aEsDTkd6oKZLMFpNNZtLa2Oq4RN+KsEZeZd2Gr9VZww8IwO4hTyiP4sfYXGGWHscG6EZut27HJvA3NWO+4R0UWp1ihU289cY3+BKLysfrfgXQ6g8nJFNatWwdNU6EoCTQ3C0syl8thamoSxWIJsVgUyaTogUgkSbVqXmWeciuV6jOBWtSEFhKz/77+OCLBf58ymMA/G/8FLYVuvDf6V9AQQbAgOrN/FwWC7ITlU4mDrrjics+/hYVX+3vBOWw5RNP2XAidVMsCYrEYYrEYWlvFJC7acKUxMVGApqlIJBKIxaJ2UX0wiIBl2Qu1qaKSiqB9pPUoQhOVSjMQuBgQpSfCGqQyHnfZCd1LUeoj9idL3zQ5zp9PLRk5LmQvx0fOPIIPP/Bh/MNb/wFv2PCGittlMhl0dHRU/N6P3t5ep2wEEAsyv/ynfxsAvQAu1nwSrBBynOsq200ue/bsgaIoDkktNTnWazlmMhns27cPGzdudH7YCxc4iuoEvmp9AEUlg/cXfoIk1oG5XKB+AhTB/Nr7KLrjk+TeDCJIOibFVSYnZzA1NY1kMhEYx/V38WBQ0MmvQqd5FW40P44cJnBaeRwn1UfwI+2zaEAHNpm3Y5NyO3qtAShcZK4RKYpekrNna7pveSqVQj5fsIUSKMFBfBeJqIhGG9Dc3ADDsFAoFFAqZXHhQgqMKY5VGY3O/tx4H9d64+ULl3Fa156uMY5Yp/D1yH/DdusOvDHyn8FnqfeULkiykC0nHigsbOZ8d/LkKaxZ4214XI/1CAjyEM8TLVjKJ2tVVdHQ0ICGhgYIrdwistksRkdHYVmWXS4SRywWhbtdmbgXUhFHEC+VhXg7exAoXijUeqqLcpf3bHQfhwiSuxYZlm9/OUYhAK5icDCFXbv6arhz88dCWY4PnHwAH/3BR/Hlu76MG3puqLptJpNBf39wCCYIAwMDOH78OE6fPo2enh585StfwZe//GXPNnfddRc+97nP4e677yaX61Q98UZghZDjXECi4f39/ejq6nI+X6y+irOhHoIfHh7GyZMnceWVVzpalKbJsX90H76m3o3Nxltxa+mPoEIQhjuORNltIn4hsgdLJVHfVQ3kTg2KSQkSlEk61FWAc1FzNTExDtM00d3djVQqhSBXpCirkHE4/2QYRxuusN6FK6x3wYKJEe0VHMcjeEz7A0ywU9hovQ6b2W3YZN6KRnTa1pvqXK9fEzXonmqahq6uTttVxu3xl8fLqMdhMhlDU1MLDMNENpvFzEwKo6NFxGIxe2KNoVJPQRm/rY+wFijvrK7juxN0huMH8Zj+p7gp80vYG/1PsEyOaqLtVM/nhrtukEiTYBhFUH9NsrZqsR7FPuL3cqsYSTdkZTDGoGkRtLRoaGpqhGlyFAo55HJZpFITUFUNiYSoraTyAVHw7685lTFC8bl8aChppxbXrSRPaaESSHZOWIfyHrkhhMkt23oEhoaWLu64EJbjt499G5949BP4+ru+jl2du2bdvt46R03T8LnPfQ5vfvObYZomPvjBD2LHjh344he/CAC45557cOedd+J73/setmzZQuo71X21Qeepd4eVgMHBQZw/fz5QNHy5yLEWcM5x/PhxzMzMYGBgwCNI8MWffAX/gt/AHcafY7vxs87nYsLwlw5waJqIUYjsVA5drz6J0PtcSRnGNBWoKq2gqW7LxOjoEKLRONrb2yHVSfxxFb8WavXJUFcVdBrXoRPX4WZ8AhmM4pTyQ5zWHsUPtc+gifdgs3Ub2iI70YTXwbIioPifWNRKojQMA6Ojl9Dc3IxkssEp8aCJttqaxRFE0FQ0NTVCVRtQKgmrUrhgp8AYs911MUQiEdfxgksVZsPik2N5mQklnDxX/DZ+3PFX+Cnrj9AXHQDgrQcMPl71LFc/duzY4ToWtYVSoGmabQnK58KtmuR2LYqFEUnfVf8NJaQFq6riNyNJMqEDm8f4eAqmKXRgBVnGEWQkiexWqa0r3PmmnYxlzeopKJWEGzqoBRYgrbNKsU4SxhDPuYnJySzy+SJisUgtN2JemK/l+OVDX8ann/g0vvPT38FVHVfVtM9c6hzvvPNO3HnnnZ7P7rnnHudvxhg+//nPu79+vq4TYIWQY61Wl2maOHToEDjnGBgYCHSdipewvp6OS4FisYh9+/ahubkZO3fudK65ZJbwP374P/CtA9/De/EA1vArPbQiBa295GdZghgtS4XssB58bk2zHJdn5feaA1CgKCWUSgoKhQJGRoaxdu0aRKMyA9H/UwU1RZ7NmvKPM4kOXGW9G9ea70bJLOICexGn1EfwVNsf4xFtBJtwCzYZt6LfugVJo92ebEWPSDHGtdD1qKu0obbCfH85BcWfSAoNgGNVTk5OOgLb8bgoWicLqR4sNjmSWIRnocQ4fqL8PV6IfRNvvPB76Osc8OzjbvLrRyVXdqVa0H379uPmm1/neChoMVUqcXBuOgsc8kwEPyvcib/ZI5z1uqViTfm4pA5sI0h5KpvNYXJyCprGEYnE7EQtufiR9YrcJmox3khEQ7FYg1agvZCsBMsyPXFFz9Vz2F07RBkMYxznz49j69auCkdbOMzHcvz7fX+PP3v6z3D/z9yPy9bM3o+SkM1mQ4Wc+YBidL29vejt7a344K1Ey3FqagoHDhzA1q1bsXbtWufzofQQfuE7v4DGaCN+q/3HGDrT4pmiRBq/P8YoCp6F5SgL4iul8PvjkcG1dNw+n4VSSUU2O41UKoXOzk7bupXalG5XkN+dKs9BBdDlJ6uWIcs5oEDDer4H6409uGL0w1Cas7iY+AmOa9/HQ+x30MY3YZN1K7pm9iA6vgGd63oQiWhQFMue0MQ53bGbanV2UjQ6+N6QVemeWEUiyCQUxYSiRJyMzlqIsl43bL1wy6ABgIkSvpH9LUxGzuKDyj9jyizvHFOJsEXySPCXlRJ/Ojs7fduR5ccdMvS3DCPXtfitJGGSx6S2BQi3iaR6pw/34kdRGIrFEgqFDKamplAsFp3FTyIRg7sRsoiDK443onpWuFhoVhu2uE4LkYga+D64761hmDh/fmJJyHGu+Rqff/Hz+MKLX8B33/1dbGrZVNe+oXzcPDA0NIRTp05hx44ds4qGrzRyJBfwdddd51Gef/rC0/iF7/wCPnDNB/BbN/0W/vL/KmVk4m6DRPEHkoMDuD3xMDsOEnx+/wvq3o4yUik7zjQ5xsfHUSqV0NXVC11ntvSWO+4kD1juTnWPPShrr3rXA39cUFWBJqUDa4y7cRXuhokiBpXncLDwPRxM/haKLdPot96Azeat2MxvRtRsASBEDgRJeFWCKtwh0L2c7bHxTqytMIwCUqkp5PN5XLx40XbXJRCNVopV8qpkHYS5WJpkReUxg2+onwCLaPiA8g+III6pgIQ9Ev8uP07lc5gmdZPw7qgo3M44Nh0XKSFI+5UsNPe/KYHGNIUVM9v9cluggtCri8q7oWkqNK0JDQ0NsCygWCwgn89iaCgFAK7yn4izCFVV1dE/rTQegNyrQWEIb/lGUO0jET0JGCxVvaNpmnULp/z5M3+Ofz34r3jg3Q9gfdP62XfwIZ1Oh+RYCZVWhpZl4ejRo8jlcmUxukpYTnKkbgGUuXro0CFQ30jy43PO8bcv/S3+4Md/gL++869x55Y7MTXFkc16J06xspTHVlXYzV6Zk5wiJaos28L0dh+oZKVRRwjZIYMBMHDhwjDi8Zi9+hcTrKaR5BZZlySvVb3nYiULtdpPQ2ohom6QBNMt0EKWWRoil/pxffTXcKf+GUwWB3FK+SEOqt/Bg8onsZZvxybzVmyx3oAO63Jwi9k1i2QBiYnKn/ErMgPrYyHhgtWcBU9ra6vtrssilZqEooi4l7sZMP229RCkd7tax8gwxS7in81fRm9+J96V+G3AqnxC4eosX8zMRjJCOk12/OCc4+LFIWzZsqVCYlBlj4L4nojS7aVAhYWGdxzeBsmV3cTubbykrIAxC4mEqKtsbm6CaVq2l2DGtiojiEREvDIW06sQJIemUU1y+Vi8uq3BjZZlbal4Bi5dmqx6PQuFetyqnHP8wZN/gP84/h944N0PoKthbpZtNptFY2PjnPZdTKwIcgxCPp/HK6+8grVr12L79u01x3aWkxxJfLxQKGDfvn3o7OzEhg0bnLHnSjn86vd/FS8Nv4TH3vMYNreKTt9nzlDDX1JfkVJv8m/pviSL0rKEXJy7PY5MbKisPSotKoFSKY+hoRG0tbUimfSu4AxDjIniljSJuMcTBHe3DXFvKkvaSUIE3KUR7how0Tx5CC0trc4qs4Wvx07zvdhpvhdczeM0fwqn1R/i2+yjKLEs+s1b0G+8Hv3WTYia9PL5CROOKHo98BfDi7ZNcUcjMqgZcENDHLoeReUef+Vwn6NWK/K8uQ/f0H8DA9Yv4IbYe+wGSLNd4GxjIhUX8TeNRZRRyK2uvHJHVbdjJXcsQCTnfabcx6YEmdkSYsTvW720yv1s0T7iGTVd2yh2d5GkvYAykMlkMDY2BsuykEhEEInEEY1GPQRObnp5XGkZugXQqVyD4oruRRvFakUJiYF8voTR0Wl0dDRVvfb5otaEHM45fuvx38KPzv8ID7z7AbQn2ud8zmw2G/ZzrBVjY2M4evTonETDVVVFqZbmeosARVEwNjaGkydP4oorrkBra6vz3ZnJM7j723dja9tW/Og9P0IyIrOzRK0qlUFIwWQJkYFHsRrvS606ySfuuGNQZ3oqPnYn+GQyaUxNjWHduk5EIsHuFMtiUBQVqmra+82eXk+1inIilBdELmJhKXiJyTufiX1yuSzGxkTz5GjUq7LjHNOMYhNej63sZtxu/g4m2GmcZI9in/Y1PKB+Ep3Wldhk3oLN5huwBlvAObNdg9T/j7niY2QJzT7JV1q0lTcDLiCfz2B8PAVVhSOurWn6LLGpyt8F4bj6OP6DfRpvyvx3XBV5c837+d3tIiFG/nb0O/o7m/hjrUeOHMFNN1Wua6vebDooM1bE3YVLnmLd0uUotik/kih1qs29KrwyZplHoXw7Fc3NzWhuFt1FDCOHTCaHyckUFEV1flOKObqvmRSX3OTrlqYTi87ymLT7GbxwYWLRybEWy9HiFn79kV/HyyMv4/7/dD9aY61Vt6/lnEtdl14LVsSI3ILCJ06cwOTk5JxFw1VVRT6fX+ghzgrOOfL5PE6fPo1du3YhFpOT+MOnH8aH7v8QPnH9J/Aru3+lbEIdGvLGFsXqUlqJ7tTuoNZLtFKlHn1B7lSpyylS3hUFGBsbR6mUR2dnL5QK0k7y+kS5B5WO1AYifNKVFJ+a5myydVRwzZBOZ1AsisJ+Va32uDJomuK4utp4P1rM92Enfx9KLItzytM4pT6Ob0Q/AoBjk3kLNlm3YIN5A3QlCiGrVj45kpXJmJc4AdnTcjZLhqzKhoYYWlosxwLxlhZQrLI8uYlIYzbL8Uf5v8dLDf+On7c+j86IVKopHx93CJCsPFo4UVsxGccmd3qlBDjFM6HPZrFVcuFW3oW6XUgiEeOTC0L6zHseoJI1TC5VeidkU+TKWq2CaN3/VqCqCUSjcftemchkMpiYSKFYLIAxhkwmi1gsDtE9hMHfBsstQE/iCqTDSmOX1wFcvDiJa6+tdJ8WBrNZjqZl4qM/+CjOTJ3BvT99L5qi8yPrhWo4sRhYEeQIeEsddu/eXXeKPGE53Kqk1GNZFq6++mqHGDnn+POn/xx/9cJf4V/e8S94/YbXB+6fTsOzanU/L0RoYjIp17UUnTuoFku8UP6JRrpymHNMUTSvo6urK5AU/BATiFgRi75z3J4UZnOtSrdp7T8LA2Ail8tCURS7efLscRBhAZR/HkECW6zbsMW6DbzEMcFO4qT6OJ7X/gn3R34dPdZ16Mfrscl8Pdp4n3ckjCZj5vtcxhCFzJnc1kuibitUfKDrmisDFsjnc44LVlWlBTJbjF1YbQBnJh5V/y+OxB7H+4x/QJvSAygmRHwaduKMJHX3mAiUyOIl4mCZNP99cBPQtm1bq24vzlVeByvil+WkROU5oudhEAky+30vV7epJOem65UFHGbrVuM7u3180YexpaUZTU1NyOfzmJqaQqFQcGplk8kY4vEoNE1zPR/u83On+N+t6OO2kpciKaea5VgyS/jIgx9BKpfCN3/qm0jq9dUmVsNyaRFXw4ogx2KxiOeeew7btm2rS2MvCJqmLSk5ptNp7Nu3D319fdA0zXngpwvT+Mh3P4Kh9BCeeO8T6G3qDdxflAe4/y0Jx21BAgyRiOjU4YVYfQoZOEFEtI03w1WgVCpieHjYbh2TnFXE232eSIQhnWZ2nEmOkVxfblBsSlW5q+lxbTCMEi5dugRFUdHU1FQTMQK1WbQMDGv4FqwxtmCP8SGUlBmcUZ7ESeVxPKt9CRpi2GS+HpvMW7DeGoCOIDcutSCi1X/lGlPPuRlAAuZkFSgKkEwKtR7GgFLJtJN6JmCaBmKxCOLxhC2DJt1uRMJF5PDv+Y/DUPP4kPYviKGpLJZWe/KPJLqg+F8Q/Nd96NBB3HTTTVX3EZaq1+VZKU4pa1Fl8pn8zr0Q5E44Qlqz9FzKZDIRbzeqWixBC+xK7llRWynJlqxxXdfR1tZqj9OywxdTyOcLiEYjjgKTWwfWrdlLYyYLlzGGkZHpuhJm5oJKlmPBKOB9330fTMvEV9/5VcS04PBGvQgtx1kQjUaxZ8+emrJRZ4NIs14aEQCSgbvqqqvQ2NiIqakpWJaFI2NH8O5vvRu3bLwF/3zXPyOqVXYPT097rS967oM7l5e7ibwyXXJ/scr2Wmuiqey4HbuLwp9WPxuk5BV3fSbGRbFSmmBpoqh3nVIsFjE2dhFtbWuQz5fX5FXCbPJylRBFEtvMO7DVeCM4OEbZUZxSH8fT+hdxn/Jx9Fq7sdm8Bf3m69HCxQJHUWTyUD0QREXSdtKl5v6/qmpobGxCY2MTLIujWMw5LlhVZS6rUkOaj+Nr2sfQpPbgXdpnHLlBcT9YXcToHod9hBr38Wag+gWgK8FNxDJLNfAMzjX4rUdB4MGlIUKZR0zy4p2Q3VOqyeWJ8wDud2123WRZ1iLCD5LAKBGNdGAZE+GXQiGP0dFRcM4dHdhoNApNE+dyh5qI4C2LY3h4Cl1d84vxVb/2cnLMlrL4+ft+Hk2RJnzpbV9yum0sBIrFIiKRxVf+mQtWBDkCWBBiBJbGrco5x7Fjx5BOpz0lJoqi4L4T9+FTT34Kn3nDZ/D+a94/67HGx72TkiifKC+u9/dVlJ8z12QhMl5F+yd3WQdHKjWJXC6Hnp5uKIoKTSPrz1v+UQnCbat4zue9J+SWsxxCpDpIt8VTDdlsBhMT41i7thOxWAT5fBG1ZnVSAlI9ItcUV6OJnTGGtXw71hrbcb3xy8hjCmfUJ3FKfRw/0T+POG9Bv3kztvKb0W3tgoLZX2rZq48maea4YN3jEOf3/ltRGKLRJBKJGACGUkkIEExOpjDGTuH7a34bW6fuwJ0Nvw7mEpMX1osss6B5fbZF+lwX8ZScxDmvORlOJKnILNFqMUd3aYc41+yLOiqrIvc/3Y/ak3QUiN6KwGyLSOFFUG2rjjnkrOsKisWSx2UoflNhOYqWahby+TwymTQmJsYRieh2D9IEIhHNzkrnTtnM4ODEopKj3zKdKc7gZ7/zs+hp7MEX3vwFaMrCUsZcpOOWCiuGHKvVP9WDxSbHYrGIV155Ba2trR4ZOMMy8JeH/hIPDj6Ie999L3Z1zS64CwBTU8Ep5X7CEt3Cg44g7xv1qjMMyynctywLo6Mjtih3lzNRy1ZU5cLSQaAkAX/zV3qP3Eoiwl0o2xrNbr1wTE5OIZvNYv36LgjBcUp4qeWZ4J7z10qoNCmTe9M/QcfQjO3mW7DdfAs4LAwpB3FK+REe1/4vxvVT2GDtxUZ+AzryV0NRZCo7xRdlJid3SJjihPU0PCYXIXWiuBh9BT9IfBo3Zf4zNhVuxcWpS1BV1VVXqXnuubtzhmjPRK5xb6G/lEkD6vEqkOeDMWB0dBTbtm2bdR/xHFLyS+XfjIiNYBhkPVYXfaem0vRsuzu81KJmRORNltxs8JbciDrHYrHkkKZ7/G5vj6oqSCYTSCYT4FyUAOXzWYyOjoExE5oWsZO5RKnDxYuTs45lPnDfm8n8JH762z+NHe078H/e+H+g1BjeqAcrVQAAWEHkuFBYTHIkGTh/bHQsO4b33Pse5HI53Pe2+7Cja0cdx5R/Cx1HoFikFaicdEgCzu9uFROdBRLkNk1S3OCwrCIuXhxBc3Ozp8hWugVrsxbcBf808ctYY/n27mMK/dfKTXI55xgdHQFjCrq7u1wLJGa7s2oZn3TfUuJSLdaw173mn6C5JzECUNDNr0SXsQM3W7+MtDWB0+pPcFx9DE+s/Us0sU5sMm/GJvNm9PBroEArm4DdTYNrhf+e7Ve/i4fVv8Dbsp/B1siNgN0dqlQykMvlMD4uOqgkk6IGL5Eglz4lUElSoUxIipOJjF8xgYvejrVJt0lLV8FVV11d87WJ+Hr1B9DdYk2MmdnEysvec1rkGIZVtuAjFSDRBiq4bKL8WGpgklDwOKW1SYsfkSxk2TFQKtmgxKHyOYoxIBLRkUi0obnZgGkayOdFg+d0egqWBbS2qshkMkgkEouWxMIYw3huHO/85jtxQ88N+OwbPrto51qp0nFASI41o5IM3AuXXsDPffvn8O4r3o0PbPwAonp95SeTk+7JhcjHK5klM1GBoFW2cGlS4otwe1JtYGdnB3RdBs/97llBXFbVCdvdNog6E1RzXUolHFmbGYkweyUvz2OaBoaGhtHY2ICmpmaItln+o9VmOUrQ5AOHDPzlEc5enGJKzMk4Fddrua67HJYFJNCGHebbsbV4B1JTKRjrLuGU+gQejXwWU+wCNpo3YJP5OvSbr0MD2uEn3nphWhw/KP4vnEg8gvfyv8Mavd/zva5r0PVGp2VTqSRilVNTE2BMsVVd4p5JTvxJ7cnE37KRMXcmcrd7vlKjX1VlKJUMHDp0CNdfv7ema+KcOY2Nq8F/Or/mq7u7RyUpPEBIxQkBdLerVewbBGHl1fNb0bNXcpLIiCi9BCl6jVYaJwngc66goaEBiUQCuq4hm81D13WcOnUKuVwOTU1NaGtrQ2tr64KFpQBgODOMu75xF96y6S349Os+vaiZpET0KxErhhwXyq0q3H4LlwFlmiYOHz4My7I8MnAA8E/7/gmf+uGn8P/e/P/wru3vwuDgYE0uGDempuSDR9l2FD+TiQhyG/+1MaZAUUyHGAGOiYkp5HJpdHd3Q9NUuDVQg55z4d4KvmfSahRi58Xi7FaZcFF6tymVFCcGpigc2WwBw8OjaG9vRzwet1fy3uOQxVkNfrUf8ZmoKZMTPrkzFagqc+I3ZAVLEqzltytPiFKgoMe6Fj3Wtbi59KtIYxSn1R/jlPojPBr5U7RY67HJuhmbzZvQae2AgtpbAjEGGLyE70V+DxdxFB8w/xkNbE3VfVSVQddFmy1FgSOWPjExgWKxiPHxCSdbsrwRsLfnp79fI+xuE2RtkvUnRBVMT31vbddX/VkiN7QbYjHjzpSu7X0XcXj5/NK+uq4Gurkpk7QWF7hYhMHxkPjLMQzDcly0wspUA61Hew/Qs0jbcy4WQO3ta3DVVVfBsixMT09jYmIC586dA2MMbW1tWLNmDRobG+dMaCOFEfzSV38JP3fFz+E39v7GopdYhJbjKkUul8Mrr7yCrq4ujwxcwSjgE498Ao+ffRwP/8LD2N6+HYAgmXrVedxcJ5II5Cqemhm7J/+gGkbxkgn36sjIqFMbSC+VZTFH7aRyB4Bg0qPYH+eWbQUyJ+5TaR0QJC0nJgzFfqlFqUJ39zpEIrqdSGPNKdu0XAmIdFnFZCSUSkQfQYpBGQag6xRzc49z9nil/7qDJo8GdOAq8124ynwXTJRwQXkZp9Un8GDk95Fh49hk3YB+4yb0mzcgjpaq58vxafxz8ZcRKzbig5F/qlBaUg6ZAWs5aj0NDY24dOkS4vG4p66Sehvqul5mlfnhLUdxf8agaRr6+jbUND5CqeSuwZwdjHFoGkOxSERXa8IWAzUy9ooWUIJPeZ0kkWK1Z50QjYp3X2QhBxE6WZDB3xOEReuNw5LVyRhDJKLYx1PscqwWbNq0CcViERMTExgcHMTMzAwaGhrQ1taGtra2msVUzkydwa/t+zX8yp5fwa/u/tWa9pkvwpjjKsT4+DiOHDlSJgN3YeYCfv7bP4/Ohk78+H0/9ihEzMWlq2mCSNwxOerJJxVKvBM4ZX+65eBKpRJGRobR2NiEpqYm+wXkPoKslJnKArVPdd0CiYA7WzpvdTCRBPV3dCOVSiGfz6Onp8e2WKVbzK0YAni1YivDPTYxWVIM1m1lM6Y6OrRiArTstHsZ46Ti8GqodyGtQscGawB92I1bSh/DNLuE09pPcER9CD+I/DHarU3YZL4Om8wbsY5vB7Nlx45PnMSRzPM4u/Gf0K/cgLdon4RSR+mI+N0t32fiHif+f/beO9yOs7r3/8zM7vv0fo6a1SWrWsUN27jbYIPBgCEQcC6QRgrJDbnXCSGNECCBCyHJL9wEQgyhY8BYNmBsbIwtd0mWXGR1S5ZO72f3mXl/f7zzTtl79j5H0pF88PV6Hj/y2Xv2zDvt/b5rre/6rpQsBwH53GSzOYaHR1zPr74+TiQSq/Aqa5muaxQKBfbvP8jWrVucz+TCRHV9qfyNCpGGq9L49y3z5ConLxegM2cmB1tPhQOqKj/ySEne9avsJuL+Sqj2cfLdkrnK8F6OKs+pnuswYXd5LYKrRMUg1TQtUBfpt1gsRldXF11dXQghmJqaYmRkhOeeew7btmlubqalpYXGxsbQOsn9I/u56Y6beMe8d5w1YITXPMcZ2VxRSBBCcPjwYYaGhiok7B46+hC3/uhWfnfz7/KnF1aGHKavh6o0JSko84qAK+8mPcGwVavHrlSqGhZ9fX20t7eRSKjGxEFtU1kHqDnlHpXlGMG/vRe+GolGvtxhodBwD1QImxMn+onFDLq7g+r9cmxqRezvl6dVPY76nRA4ZSkiMMFGIuGhYilfZjj/ej0G1SSuFIk8ke3Kc6/8rHK7yuPKfxtENxvNt7NB3IxJkZf1nRwyHmZb/C8oaJMsti4mNbaUpwb3YJ/7CNrRNaxIvhOjNUK5/Nh05s9zVbNoNEpjY9TtQlEoFMhkJslmhzGMiM+rrD1VyObbkcC9DXa98ABDkla8XGbYIlA+48LJh/vLg7wFk2IATzd3+EuJqqnmKFNesSTXeMcJS/uo91CF55XJcqzwMQXniEqloEhEQwWfyj1qGUqenjGqaRr19fXU19ezaNEiTNNkdHSUgYEB9u/fTyKRcEOwyWSS5waf463ffysfveijrDPXTbv/2bSpqanXSjnOts2Uaec30zTZs2cPiUSCLVu2uCssIQT//OQ/89nHP8uXbvwS1yy+JvT3p+I5qhRm2CpdlVzIVbM/N6mAQTAxMYFplliwYGGFeK/KW6o8pm3L/KV8yYItp9Q+vbBZODD6V7vl0mHV2ljJjhr9NDQ00NxcX9NLKBdE0HXbCaN5IK9KEQzDplQSTt5LkR3kb2u1LVJsXY/5qCa34PkrkWyZ1w0f76mkt9VvIsQ4x76Ac+wLuLL0J4xqxzhsPMIjia9ib+yDTANCK/FC5pcsb1120seZmeftmSwrSFJXF6O5Wfi8ymHXqwzPVcocb6FgUyhU6hp719R7bpRerboeCjRUeY0qNSm/vsHWVJXaruWmSFnBz2qHz/2SdGrs5eCoUg0qVFs+RhnSrzRJaPLCuf4pStM0TLPk+9srm1Lv3akIdEciEdrb212GfTabZWRkhH379vHs8LP8xQt/wV+e/5fcsvwW9u3bd9L7Px3LZrMVi+W5Yq9KcFQgdTIPkpKBW7x4ceBmZYoZfufHv8P+kf384r2/4Jymc2oe92Q9x2jU/wL7iTfq/ypJKbLkQzA8PIBtQyQSrXKuXgi2vPu6ZWkVIVDZ+UOCe7XT8C84VEjUL+FV7jUWCnkGBgZdr/ZkGiDLfKvuSOPZqMbMnjh2EMT9E021UB6Ee6LKk4lENHciV16l8lxkPsjfukl9Fn6csrOZdosmMR8bC5EooD99LXYkj9ZygoON/8X/J77GEusilsauYqG1lTjTr7bDxjW9l+UBaqVXmXek7UYDXmUiEXVyuRZTU5PTjgvUM287OUQZMiwWrZo1t+ElELWBLkxFR9W2VlvYeN8JxwtUesKqjZTX2kq+S0GQk2BaGf70e41yPwb4+jkqcpnal78uU6ZPqoPuyVgqlSKVSnFcP87Htn+Mv7/479lav5Xdu3dTLBY5evQoLS0tpNPpMx7Ry2azr4VVz6adLDj29fVx6NAhVwZO2cHRg9zy/Vs4r/M8Hvj1B0hGkzX2ovIFJ+85hjEuJejJ/7cszfXKdF2Qz5sMDfVRV5emvr6Rl19+uer+FcEibFgyzOqFhFSB8nTkmGB4SU5OfkasssnJCcbHJ+jq6vJRzTWC/e2qy77Ja2O7ZATFlJWer+2sqr3P/KZCUGFeai02s78VVblXKdV/hOvVqLKZU5k/VLjY/RuLn0c/y1HjSW4tfI2BrhxHxo+wONPM/Mdf5ujA4xxcepzH1vwzd/cM0i3WscS+mCXW62gRi1yFnOC5nPy4vBZRwfy0YejupCqE169yeHgYIUxisQTxeIwVK1bW2juqRlHTcFWcSiVVU4nrhXmh19pWq3QjzGtU5vfK/FZOylGdO1SnGFlu5H0fFrpWHmXlWKQ3qsw0LSIR3UkNVBJ11G7lfCYBOBqdOdO5lv3y2C+5ddut/N/r/68bCevq6uLw4cNEIhGOHDlCJpNxy0VaWlpmtVxE2Wth1RnYbK5QZhretG2b/fv3k8lkAjJwAD8+8GN+657f4mOXfIzfPO83ZzS+UyPkVGsEHHy5pJdmk8tJT6yjQ+YLpnNUhQgn23jfq/CU7UyKtRVzZP2WNzZFLJCKOOoaCYaHhymVSvT0dFPeDqtaBxLw2kMpD1FNRP7t1KpegqqOpikavVrJe2MLOeOa5xd+ztKrlK2HdJ9HKdz2RKZpuWSOmQhD+ztgFMlxV+zPMLU8787/JwnqaWyB5S2yGTaLNrKqcDUrnt7Bvq8/SYs9wXMrJxi58Cme6vomuhZhifU6llgXs9De7DJaT0ZsQJknnl29JErTZLF6LBalsbER25bF6v39Axw79hIrV65wNGATRKNRlLiFumZKtjBYcxlkiyoFHeWtSSZ3eOF8tRyiBK7wm62iHsHnStS4ZjblUovK+y03uU894CmGgagXKtUdcYJyhrc/FI1DyDn9efK+I/fxWz/+Lf7rhv8KdAqybcls7unpcdjuwi0XUQtwBZSyIcDpj+U1z/Es20xASsnAtbS0cN5557k32hY2f//I3/OVZ77Cd27+DhfNr964tdxOhZBjGCq3FswPyRc3mNfJZMYZGZmgq6ubZNKYUb5LFv2Hh568Ho+qq4ciLVSvOVU5mPL9eIBk0d/fTzwep6uri/DyEA8c1Mpf5prswDUoX0X7ux8o5RS5TSWg67pww89+AlKthYI6TjXzwl0SKCcnJ5mamqKrq8Ml9Uhw9vJVXt66cl9CwBSD3BH/I9rFMq4r/GNAPFz9TtOAZBIuvpAVF5yPtn8/Kx99FP5jgMX6fNIXtvLy+QWeqP8ad+l/wXx7A0usi1khLqaOruonFGpyoJUlMuGm9GJTqSStrc1YVon29kYymRxDQ0NOrlKyY+PxROiz7rsqBBde0lP3QLKSgSu3C3++a0UI1L2Zzgv06jlVONT7XXXCU1BdqRqIKlPRirBN/Dn+aNQ47abAdx+4mz/42R/wzZu+yQU9QbGGctFxTdPc5s6LFy+mVCoxMjLCiRMn2Lt3L+l02iX2nErvXXiNrXrWbTpwHBsb47nnnquQgRvNj/L+u97PRGGCR259hK66k5tYTsVzVDnHyrooD9SEgJGRQUzTYuHCbmzbcHNgtWrSQOX0FBXe+9yjn3smw6weKWKmJicszSHe9NHU1DztAy9XwTamKb3Earqx5X/btuXkYCtDqX6zbQ0lCK36GcpwntfZIZyJWz0f5dUOwujoCKVSie7ursAkqUpFVE7Uy00Fi8M1TWOQA3wv/oesN9/KReYHQkOjFWboiFUr6Vq1Evr6aXjscfY/uo+V222Wz7uM9MW/z5El/RyKbudR4yvEjLTMVVoX0W3VlnabKYHHC4F6hDIhBLFYjNbWVqLROPX1UerrvVylbAQ8gmFESKdlrrK8LMEDuUoPyrK8Thsq1+x9X8kmLW9vFWbB+uHKMKhs7B0kpimgk4ue8P37mbGKfFMtvGsYMrxcbe5QwCn3Z59WWPWOF+/gfz/wv7nj5js4r/O8kHHXbocVjUbp7Oyks7MTIYR7T59//nlM03TLRZqammYUPQEJjv5U1lyyOQOOsxlWrdXT8dixY7z88ssVMnB7Bvbwzu+/kzcsfQOfuvJTRI2Tj6+fCiFHaaJWhnPU3xYnTvRTX5+ktbUVy9KIRgWlkppka+9fEX1kONR2VsKq60fQVN7QsiAWm3mDYiE08vksAwNDdHS0E4/XKlQXrpeogLH2voX7r2naqBKMma5B/BqyYYsE1SHDq20DTQufqBQ5Z2BgkGg0SkdHZwjdXnNX354gvO3z0GWI8CXjce6K/xlXFP+ENdYbq46/5v3t6iT1ljezYSqLvXMHe59+mu7v3kOqroE3nP9G7PV/wkD8MIeM7Twc/RJD8cN06OdybuQKllgX0iDKF3/+cgQFVAIlr+cnqchtgmSUTCZDf38/ra1N7n7Kc5W2bTI1lfG1a0q47ZpkeL6SfRoMraqwq+Es/Cwf+9MPjjNjEqu8dDTqeZGKiVrtGZPlFArEq+c01b/VQNpP7KmWvzaMCJZVcok/p0rI+fpzX+dvHv4b7nzbnaxpD9d+rtbLMcw0TXPbcC1cuBDLshgdHWVoaIgDBw4Qj8dpbW2lpaWlpjzcaznHs2xhPR2VDJwQokIG7lvPfYuP3PcR/vHqf+TX1vzaKR/X//LO1KJRb4XpN9uWsl/Dw/20tbUSj3tkIJkj9ICsmvlLK6QgeWXo0m9+FqcEX0+lp9pvIhEpVzc5OcW8ed3oVVvaSGUTxbpT4bjpKPV+VqrK+51Mx4igV1EZugo7L5W/DHassJ160n63hqx8H5WkIPmBnNA0l6ixx7iTX8a+wI25T7HA2oxK1Z5yuUhdCv3SSzj3oovR9r5A7tHHePbn97Hglw/RtnYVXVveysXN/4NJa4Rnsz/n5dZn+GX030mLZulViouYb6/HMCK+sLm8zkoeLnhe6joFPaJkMklnZ6dbilG+4JWEEsl+VQxY2a4pw/DwsKPikyAeL28CHJbXs1ElIDLna7sRhXJSTS3zl42oheP0cnTB3Gh5+Fb1dlTbloungyrTMr10jh0eplWAL/OqVlURgFr2pWe+xGcf/yx3v+Nulrcsr7rd6TRSNgyDtrY22tpkdxpF1jpw4AD5fJ7GxkZXB9YfGs5ms6fsOY6MjPDOd76TI0eOcM455/Cd73wnINgC0hl63/vex4MPPvgCcuL4dyHEP81k/69acPSv/JUMXE9PDwsWLHAfyJJV4s8f+HO2HdjGPe+6h/WdtcNO09mpeL+SAyQnbq/wWDAxMcXY2JgTtisPPwUB0iN3lB/f+0xtU2ui9cu+qRoytZqWIaZKYkx//yCWJRwd1zBihHA+DzJgFUO3Vp5WkTAUMEqy0AzcgTJTXsVMZMAAJ68ZPFfTLNHX1++shJOokg7NB2xqUvWHXwNhWk3jkfj/xwvGPbyn+J80iYXYeOUo8neVAgTKs53WIjpi7Rp61p7Lwt7jjG/fztM7n2TDzqcwFy2k4cILWZq4mNc13oxZtOjV9nI48hgPGP/KaPRlFllbWMKFLLEvoI62AGloJlYoFMhms7S2tlSpPwyCVnm7pmKxSD6fY2LC8yoVWFVT6/G3AYvFohSLJ5fWEEL+zrZLFSHUaia9QhMFfOUAWU7yUV1ylMlnxWPjSoD3wvFeCQcO0UsdVy0OZ27/8vS/8H93/l/uueUeFjctrrntyXiO01kymWT+/PnMnz8f27YZHx9nZGSEl156CcMweOqpp1i3bh3ZbJZksnYVQDX71Kc+xVVXXcVtt93Gpz71KT71qU/x6U9/OrBNJBLhs5/9LJs2bVqtaVo98LSmaT8TQjw/3f7nDDieKbbq0NAQL774ImvWrKGpqcndpm+qj1+/89dJR9Ns/43tNCeaq+ztzJps6eTpnwoBY2NDFIsWPT09RKMyHFqpr6pqrrxO4X5wlOCjuf+vJqpq+Y+wAn7/Mb3+j2oMNgMDvSQSKVpbG5GkGL+6jXBzNmH5xGpKOsExGYDg+PETxONxUqkUdXWJCiLFdKaAbqaPmPRIvEkum80xNjZIR0eH27W8MmdZbUwyz2lS4MfRv2JUO8b7Sl+lXm9BOJF7JejgiXz7VXq8Oldv0vRqMf1j9q6nhj1vPum3vY2LMuNYTzzN/p07SHz7u3Q2NCEuuhD93HOZF13DvNIaLuEDZLVRDumPctB4jAdj/0qD6GKZfSGLzQvotldXiKWHkUyUwLkcayWw1lqcaBrE4zHi8RhNTfWYpkUul2dycoITJ3qJxSIkk6nQXKUyqfk7vVi93+TCzZyxp6lpErD84F/pOapxqPvkXQtJ7vEDuGpr5QFpkOEqAoSgZHL6BtvK/uGxf+Cbz3+TH7/zx8yvnz/t9lKPePYhQdd1mpubXa+uUCiwY8cOPvOZz3Ds2DE++MEPct1113HNNde4nudM7M477+TBBx8E4NZbb+Xyyy+vAMfu7m63bl0IMalp2gvAPGBacNSm6WBx8sv0UzRJiy/Oyr6OHz9OsVhECMHQ0BAbNmwIsKkeO/4Y7/nhe7h1/a38xSV/MatNPLdv387FF1884+2ffVbwgx/IVk6aZnH8+AB1dXEaGloAHA/FCweWg5imCU6cOM68ed3YtnceKi8nvY5g4+GwHEi1PJ6f0ars6NGjRCIaLS3NJBLpsu0FSgezOgkheCzVmNZvXmG0zNlIryRHoTCFphkkkwmnlc/McsNKimymnqca08TEBFNTGbq72wgr7Pafk3qVykE4r43yXePDJEUTNxT+jpiWdMJk4ROyn9QjX0HLLVcIMmCDoUsvVK1+p+6FjSiWsPfs4fj2RzmUmeTieBJt/TqMzVugoQ7VixDAxuSE/jyHI49yUH+UCW2Qc6wtLLUuZLF1PimaQgkvxWIJy7JIJhPucb1zUtdl+usvnw/Z0/Tll4/T3d1FsWiSy2XJ5XKhuUpQtcG2u/AKe3bV/VFC4CpyoWkW03mNfvAK27cCw+PHjzvawf6FqMrN2gEw9Y4vVYb8XqjKv0ajsh2Yrut86ENX09RUu8WTEIK/feRvuefgPfzo7T+iM91Z+8QcO3LkCKlUio6Ojhltf7omhOCSSy7hS1/6Evfeey/33nsvzc3N3HnnnTP6fVNTE2NjY+7fzc3NjI6OVttc0zTtHOAhYK0QYmK6/c8Zz3G27eWXX6a9vb1CBu5Lu77E3/7yb/niG77IDctveIVHCYmEnPAKhSJDQ/20traSTqfcOizp9XhEksoGuhrKiwySENRKNZhnKw+XKqvmyflLKEDmCEzTpKtrPslk1N1GeVtQGxjlmIJ/l4eh/GFUub1OIqH6ETZRLJbI5zMMDQ1jWaZTU5dywnDh7qEM0c58rScZwoqR2ukr0vbAxx9GrUbXH9OO8d3Yh1hqXcYV5h+5RI1aVknqEe5k7pWKgF+vFPwapV6Y140aRCKYa9cR6e7milKR/GOP8dSTj7PwySfoWbkCzj8f0dUlvVUizLfXs9Bcx6X2B5nUBjikP8E+45f8LPZPtNoLWWpLoOyyV7hi6UNDQ+RyOZYuXVJBMKtVc1huMhIiAUGdZzweJR5vpKmpEcuS9b5TU1MMD4+4XmV9vX+hpvR/lYcnAqAoF45emHcm0Qh/m6kwR9Mvj1f+vMnzNyu8TD/LWf2rFoSVnqkgkag9ZQshuO3B29h+fDv33HIPrcna7c38Npth1Zmaruucf/75nH/++fzFX/wFhUIh8P3VV19NX19fxe8+8YlPnNRxNE2rA+4A/mgmwAhzCBxnK6w6NTXFwYMHqaurY9WqVe7nuVKOD9/7YZ7qfYoHfv0BlrWcvFblTO1kdF1bW2FycpLh4Qk6O7tIp6NuGLIyDKW8k3Kig45p2qRSBsWil8+r5g3K/Jv38lbTRPUdASFk3iCbzRGNRkkmo+6+Zb7HdtitmrMYqT4RlodZZcmF5gidB4HRb2qBEI1GicebqK9vQAibbDZI6kilUiSTqUD4TZUCTH9f5CTa399PLBahtVWuuoWwAuBT8auQj09ou/lB/I94nfWbbDRvmea44SYnWh1d96Tt/KUiinimaXqZV1ltjzrWgoVEFyzkwtEx9B072bNzJxMvvsjrOrvQtm5BrF4NhkciqqeDDdaNbLBuxKLEMW0PhyOPcU/sU+S0CRZbW1liXUB9fAkJkXCP7/eCpiur8JtXRhE+LxiGTl1dirq6lBNxkl7liRN9aJpNPB4jlUoRj8edBaUstC8WSwHQDo5v+nGVL35qCZj7u+yEeYxQmW/3vEjccSodYbUAi8erR0psYfPH9/0xzw49y11vv4umRNP0J1V2fqdKyDkVC4taltdL3nfffVV/39nZSW9vL93d3fT29lb1eJ02gncAXxdCfH+m45sz4DgbpmTglixZwuSkp/H40vhLvOv772JZyzIeet9D1MXOXNGpeuFmAo5CCAYGDpDPJ+npmee8CB4gqj5zoHKS4Q+UYnWWSlLpRoWvqkvA+UNv0+fiLEswMjKEbcsY/vHjL6NynEpeTUbENTesqut6RR0lqJZWlccwTX9hfzXvzzt3z4sOkjpKJRl+HRjoByCZTJFOS/1PCJJEVG5IEU9sW1AqmQwMDFBfX09jY92MvU0/+QbgRf1n/DT2cd5Y/DgrtUuxykB1JpNx+DUILxVRCyfFgFTlDTWP09yEfdUVrLvsEsTuZxh+4kl2b7ubtff/nLZNmxAbN0IqjmKAahroIs5isYVzSudxRel3Gdf6OGQ8zvOR+zg6bxet5jks52KWWBfSpS0GoSb9kyPK1FqIlF+PeDxKMtlEU5NkwBaLWSYnpxgZGSIWixKPJ9zFkhL8LmeG1pKhg0pZOQAhwheBcj9yYaG0XSWZzT8vVO5PfaXG5/VZFcgm3XrVd8O0TT700w9xbOIYP3zbD6mPnTwD9Gx7jvl8/qSbY/vtzW9+M7fffju33XYbt99+OzfddFPFNkIIPvCBDwC8IIT4Pyez/zkFjmG06JmYbdvs27ePbDbL1q1byeVybiz6vsP38YFtH+B/XvA/+cOtfzirxJ8wU2Sg6VZgpVKJ3bt309DQwMqVPQwMqJILnL6DVHhzsqQiDBxVOFJ6bbpuUijUPk+Zn5EAFtacWJllmU75Qh0NDd4LJ4Glkuaviu8lbV+eT3lYt3IsihEb3mbKf0z/OMNq22KxOLFYnKamJofUkWNsbBzLyjseRZJkMoUqI/F0UmXObGBgwGnlo0K0IuAF1DLD0LBsmycjX+XJyFe5pfBFusS5YFSTGDsZC18UgdexXnmV4BdLF+79qGrxKGLzZprPO4/LDx9Be/optj/yCKnt29l87kpKm7dgd3l5K7mYkB5tk+hmY+kmzjNv4vCxg/Qn95LpPsSd8b/C1IostrayzL6AhfbGGYmly/3rKLCfyevqD48ahkF9fR3pdNIByhLZbJbBwQGEEE4IPlnBkFRM0LDnT4Viy8dSTdxeLnAFsZhBsVgKsFK9fGLYu6zSCPIvSRayHIaqVrVtWNEq8sF7PshEcYI7br6DVLR2TrKanW3PMZPJnFaN42233cYtt9zCl7/8ZRYuXMh3v/tdAE6cOMEHP/hB7rnnHh555BG+9rWvAVypadou56d/LoS4Z7r9zylwPBUrFArs3r07IANXLBYplUr846P/yL8+9a989c1f5fWLXn9WxqPAsRZRRHUAWbp0KZ2dnTz+uM3AgDfxe7Vm5SbLIso9L78OphCCQmEmoVIZ3qzVnLhQKDAwMEBbW5vDEpSqOtGoLMiv9SJJcFcC8P7Pgtv5W02pFlFhJhl75WzaShq93yIRg4aGOpqa6gCTTCZHNptleHgUXTecpr8potEI2WyOkZEROjo6icUizthODsGEZvGz6N9zTH+a9xb+mwbR7Y69YtuTQMeZrueUVylD1OohsQEzkBOtWhqh64ilSxBLl3Dh0BA89TQvPbuTg889x5bublJbL8BevhQbFbpVoC89y46WLtpFJ+niG7lK+wNG9Zc5qD/KTuMutkU/Tbe9kiXW+SyxzqdVLKyiCOTvUiH/rmWqjENGVSSRyzTl2KRXKRmw0IRlSQZsJjPF4OAQyWSCWCzmC8FXMmyr1bCqz8oBVQGgYQgKBRPD8Lx371nVCBNW9xjlnvi6/zzD1HHyZp73bXsfuqbz7Zu+TTxyajJu6nhn03Ocmpo6Lem41tZW7r///orPe3p6uOceiX2XXHKJetdOuk7vVxoclQzcypUrAxTgjJnhtp23kTWyPHzrw8xvmJ7GPFs2nb5qf38/Bw8eDHQAaWpSzDpv1Sm7IgTBR5IrKss2vHorWQaguoNIaTmtAlSC49UoF1QG+eCOjY0FOmrISVWFeqY3T1RZeYaeFya7W6jz8v6tvnoPy58GGzqDl69Sx1eArGkaiUTKITtZlEom2WyWoaFhSiXJbG5rawuszlXerFpXE78VyXBX5E8xRZFfL3yVOJUiAeU28/D7tJtUbO8ptKj6UIvR0SGSySR+9RdF/qggCrW1wfXXMf/KS+nZsQtr505+8aMfsjiZYNH5F2CvXyf1XlELF8HY2ASRSIS6unp0XaOVhbSJHrYU3kqRHEf1ZzhkPMH34n8OIIHSPp+F1kZiyH35JexqgaMklskFULFo+u5PpZemTHmVQqRobpZ1lYVCPuBVJpMx4vG4zyuvHRL2h1ZV+FixosvXjp4HGf5OquFKcpsI/E6ISum4TCnDu+98N02JJr70hi+dkqqX36QQwdkDx9P1HM+0zSlwnGlYVQjBsWPHOHHiBJs2bQqESF4cfpF33PEOViVW8aN3/+i0VlKnYtU0EoUQHDx4kLGxsYoOII2NXl2Yx3zUKrw/1TFDAoi3b5W0l0LbnqaoCgXV8iJLJRVe9a776OgI+XyBnp4edxWrQqjyWJUr7GqmgEmxLlWoD6cOslx9RzZ3DnsOwo+nQltevqYSyPyScWoBEo1GaGhowDRNdF2jri7t9iqUpJ60UypQvTuFskkGuCP+ITrtc7m29NEK8fDq3vDMXMKTzQT4c7MyD2kxMOAp+0jRARVuVazbSrF0ABJJuPACjK3n8/qD+zGfeJwXf/Eg4798iE1r16Jv2QptkhGZz+ddQoVamEQiGrpukKCOZfZFLLMvRJQEw9pRDhlP8FTk+9wV+yTz7HNZal3AYnMLLcx39qFXnLvXtUUeo1gMX3mUh9zltfAWdv66yoYGSezKZLJMTU0xNDRMLBZzGNDxmqo0weiC7Vxbb9BCeAtm9RjVascViRhObbAVAFOAtjZvwTVZnOQdP3gHixoX8a/X/iuRqspUM7eZpINm014Dx1k2y7J4/nlZv7l169bASufOF+/k937ye/zt6/+W1bnVZx0YIdxzNE2T3bt3k06n2bx5c8WL0dJSHmbTUB0lFNkGCEzwQe9Rc1ersrNGUBHGY66W0+vlJCPDmTKcNTAwSCRiBBo+exqQmvOyaw5QzuyaSO/EcoHRI5J4YWSvrZHqvh7cR7n3JYRw2Jvy92oiDA9/BcFC1fR5GqkdaBqk02mH1FMkm80yMDCBpkFdXYx4PEk0Gq/Y/6C2j+/FPsRG6xYuKP0mGqLC2ane4eTUcuzTmX+XkmDUS3Ozp3HpMVtVPs1yJu/KriJu9MLQECtWoC9fxvL+AXKPP0bh2WfZsXs3a3rm0XzhhczLHMV4/hCl8eVE11zmtlcqZ2SCRqt1Dm1iEeeb76BAhpeMHRwynuSxxLeIkmCpdT4LxSbq9B6U/m259GGtKE1Y66nqXTTkeTY0NNDYmMY0LYrFEoWCfAYAt642FotVPAOGoaPrkjWr2KZ+k7k86f3VHrN6p1XfyyCoLlsm2Zij+VFu/v7NbOzYyGev+uys1Wm/EjnHudqRA37FwDGbzbJ7927mzZvH/PnzXZCxbIu/euiv+Pbz3+aHt/yQLd1b2L59+ysyxnLPMZPJ8Mwzz7B48eIA4PitrU2BgiIhKGk1FdLTnMlBbi8neM97lGCi8klqr8rDkxOd9OCU2kaQrSp/V+L48T4aGhoDxBuZk/SAWPZ91GcMjHLfEsj8q3z/AqGcfKRpgmhUerXqbzVB+Ps9zrSgv5JIYdHb2+d4UnUV28ZiMWKxmEPqsSkWJxgdHaNUKjlKPWlSqQRHjMfYFvvfXFW6jXOtG0ALZzXWGtdMsPHkw6ryB/l8nqGhITo724lGqy0UVYPrIKlHlYrIZ9kCdKJRJxzY1Unyppsgm+XiHTvJ7dzJyw/ewaIx0G2wXxwmB7Dm0ip5NVVzaAA2MSvFSvsyVliXIBAMaoc4HHmCJ+LfYmDBIRaK9SyxNrOErTQiiUHTpS88tSF/KLP69gp8JSPUJplMEI9HaWhQdZU5JiYmKBSKxOMxJwSbxDB0IhGNQsHTSQ2rZVVRl1ohWumhViofKZGAlSu7GcoO8ZY73sIlCy7hk6//5KwSDGX06TVwVDanwLHWja4mAzeUHeLWH92KJSy2/8Z22lPtVfdxNkzl+wAGBwfZt28f69ato6GhoepvOjoglZJEmnJKuWSvVmp9KrATQnNqwkQAQMEf0hHu3+CRcNS2kngzSFdXG9GopFYrby6se4c/vDtTz8c/KUz3QluWEhy3nfyh7Ryzumh6rZoz/2+KRXmubW3NM6KRRyI68XgjqVS9Q3bKk8lkedL6Bs+0/hfXjfw9S6MXQY10z+k6h9UJWmHHkpNrLicJRp2dnSQSOtVypjL0Hgzdl5eKSJC0HaKLt52eSqFd8jpSF15I7If/jj4iy6d0G6LP7oCetdhNTVXDwh4ZS3dlFIWADnsxHaXFbCzczHD2ZcbbjnDIeIpHot8gKRpYbG1hqbWV+ZxbEcL2XbXAsz/TBYvqH+kXt5d1lWnq6mRkoVgsks1myGQmsG1BIhEnlZLknmp5ZPm5UaEcVLZV4DulyCOEoKeniXFrlDff8WZuXHYjH7v4Y7MKjK+EzeWOHDDHwDHMhBAcOnSIkZERtmzZEigS3dm3k3f94F28bdXb+NvX/+2sxN1P15TneOjQIYaHh9m6daurx1nNNE3jnHMEe/eqXJ56oVVIUziTR3lYVDVJ9etJlq/UFdnHA0jTBMOwsG3ZsHd8fJyuri6Hpan2E96yx59DnInn43VP8PIpMzFZauJ5uLLVkwwFS5JR2GIhPFep5ptsNuswUjtIJmOhueGQM3D/T9M04okET9T9Oy8aP+bXsv9FvNTO0PgQti29jbq6VEX4dTYipzPdh65rTExMMDk5RVdXt+ON2IHzUCafreoTrEdKiTgMZQvVaFoCpi/0v3oN9pHHpOeog8gUiP3HfyCWLEOcvxFrwaLAo6nCuirPXip5SjXeeAVxu47V1mWsti5DYNOnH+Cw8TQPRW9nRH+ZhdZ6llhbWWJvpl60lY1fRwgzlJxTzWwbpwRDkdSCv9M0SCbjjgiGHGMmk2FiYpJCoUA0GsWyrArmp+wUZDned+VxIxHZScjPh/GnVermC67/zvW8Z817+NML/nRG5zLX7TXP8TSsVCqxZ88eN1fnd/m/uvur/PkDf84/XfdPvG3V217BUQZN0zQOHz5MU1NTxZhr2fLl8PzzSkrK+1wRdFRuzf+dJK+ofIakj4eVZVQj0AwODiNEkXnzepyJBKJRDdMM15n0S9gpQkctj00BI3itgWpt7x0HJHnHC8GpaxEMv/onWM3JPYaPWWqkTtHV1eX0+5xZHZ1sLeTkSLUi90Q/yrh2gvcWvkHKaIFGaGxsRCr15JicnCKXG3RLBFQJTJjNfOE/MwKUEILx8TFyuTzd3V2h4b3TMX9XiKAAAeirLiEnBNqRQxjLlqLN24i1cxf6M7uIfWsvZlsbbNmMveZcLCOCYhGX3wMV0lUF70Lo7jYaOj1iJV3F5Vys/RpZxjlsPM0h4yl+EfsK9aKNJdYWllhbmGevRhfGNHnGSlO1v/5z9mThVPhVPmRq33V1ddTXp7Ftm0wmw9jYOP39nghFXV0aw4g4aRKDcuEAWcZUqYyhmOtjej9/dejP+NCW3+X3N//+jM9lrls2m2X+/LNXSXCyNqfA0R8mmJycZM+ePSxZsoSuLq8pa9Eq8pH7PsIDLz3Az97zM1a3ra66v5ORcZsNy2azHDt2jNbWVlavrj6uMFu1Cu65R3NYeH5lHC98qfKPyvxU91o1eX4SCo4yx8BAL5FIgpaWLrdcQQgp4WYYlRJvEN5VQeVGKzupe8Do73ARNiEGz8evBas5tZXVz0uCobczCURBcs/w8DCmKTVSPfFwLVBmUss0DfL6OHdE/oA0rbyr+GWiJMq20Umn06RSacCmVCqSyWQcQoftq6n0Ezpmzvqd7llWIvuRiEZnZ+eMnvuZ13Fqgd6D4PcqvRCsdu5liNWXgC5JSdalF2G/7nx47ll4egf6T36C/sAvEBs2YG/aCA0NoZqrqjREdp0xiEYNSiVV++hdhxSNrLGuZI11JTYWvfqLHDKe4v7YvzOh9XOOdR5LrE0sZhNpmqY9y7A8plfO40kQym2DtYqKxS2lDWO0t7djmhb5vBQkUblKyYCNIRsme8cNi2IYhs6gOM73Ep/mry/8Cz6w4QPTnsOvkmUymZqNkF9pm1PgqKy3t5fDhw+zfv36gNt9fPI47/7Bu+lId/Dw+x6mMdFYdR8qvHkmWrCE2fDwMHv37qWnp6dCH3AmlkzqdHdbHD+uoVihylTe0TSD5R3SU4RoVKdQMGuG3uQ+dHK5Iv39/bS0NJJKyWvrAYnleEoq5Bbch7eCDoap/N6k/Nu/8q6sUSzv+6hAMWz8HvlopmEx1b1CsgMHBnodRqrSSFXgK8kl03mPug7D4ijfi/0Oy8wruNz8n67QdphJ70JzST0tLU2USlL7U5F6Eom441HMbGJQ+6xmQgj6+vpJJhO0tDSFgF54eHCmocZygXO/Kcarim7ougQy+UwBGNhrNyDOXYNx/DjGjqcxnngc48knECuWY23eDPPmhZYzqnsl75HMS5ZK4WUQOgbz7HOZZ5/LpaX3MckQh42nORh5kvtjX6LZ7maJvZkl1ma67GUVLbgUQKl9K3F+9Wx6Um6451ZOKvNfL7WPhoZ66urqkBKLMlc5NTXu5CoT1NenECLi25e3zz5xhO/G/5H3dv3uGQdGRfo5mzY1NXXKjY7Phs0pcLRtmxdeeIF8Ps/5559fAWz/+Og/0p/p522r3sZIfmROgKMQgpdeeomBgQG2bNnC8PBwhbL8TG3pUo3jx4MsO2WGIWsR/WUZCjAkm7Wyy325TU7mGB4epL29g0Qi5nuh5TFVTlO1X/J7iopBK/+/cmJVn/knZu9dC26ryDxe14jqY9Y04SrnzGQuV7nKQkFqpDY2pkinG0Lyp8LJg+qul1uexwQ4xk7uiP8hl5gfYqP5zukHQGWNXSSiU19f5xSgQz6fI5vNMTExCuikUilXqSfMap13ZQ1j2MZhpKqZ5zHlYkMKBXglNx5IBBnSsquECnkrFrXQdKz587Hmz4fxcSI7dxLbsxv9xb3YnV1YmzcjVq0CX01hEHBkXtIvLVfLGvU21lvXch7XUrQKHNf3csh4mp/E/pWMNspi6zyWWJtZbJ1HkoYKcJCLMgL1hmqRERaq9dIHnmfrz7FLtZ6402JLUCyWKBZzjI+Pk8sVHAZsiro6WbPdbxzhe7HPcGXhvXxwy60zu1GnYWe7jANkpO21nOMMbWhoiHg8zqpVq0JXMX9/xd9z1TlXse3ANj7z2GfoSHdww/IbuHHZjWzu3hyo96lWjD+bZlkWzz33HIZhuK2xTue4q1fDQw8JBzjKj6XUZTSfJym/03WdUilYfFxuExPjTE5OBgTOlZWHS5VnKnUKbJQggRferCS+yPCql5vxW/X2PtMDejCMNbPZPJcrMTAg23+lUrGqE6kK8ZaPQU3sL2g/4SeRv+FG8+9Zal2Gbqh6ypmvsGU4LrhvVQagabJVWS6XZWhoCNu2fO234i4Zw59z9V/bUqlEf/8ALS3NNcNTYTln/3683K37C/d4qqRDtWCqdb/8PSG9fevOdxGHzGMjmpsRV11J9uKLMJ5/nsiOHUTvuRv7wQexN27E3rgR6tKofLNShVILMJUmqJZL9Jdt2DYYRFhor2WhvZbLS7cyoQ1yyHiavcbD3Bv7N9rshU6ucjNdLMbQVa/NSm+q3MP0rrH6V6ZEdHcflaZpGslklGjUIJVKI1nQ8jno65tgIH6IB7u+yjWZ/8GGxEUsWXLm+yu+Eu2qXiPknIR1dnbS0tJS9ftUNMWbVryJN614E5Zt8cSJJ7j7wN188O4PMlGY4I3L3siblr+JyxddfsbBMZfL8cwzzzBv3jwWLFjgfn46x+3o0GloEExOVs7mUlTcm2glucXGspRSv18I3L8CthkaGkYIm54eSbyJxZSyiHDZsGFWKsnJIBKxKlbxQdKQYi9qTsjUX/QdrM+UrFvVa09zJ5Nq5nUoqSbWHDTJSB2lp6cTw4gwXasktd9AmFgIHtP+k6eNr/Gu0n/QYa1WuirICdNP0PBECxR4KUUTFRKWv5P3SIGNslgsSizWSGNjI7Yt6+kmJycZGhpyST0NDbIzhpqPJagWGBwcpLOzw5E7UyDmhfXUfdE04bAgReBzZV7uttJUSLsc5MOvZfUNPBF33bneFkYyCZs3Udx4HvqRw+g7dhDZ/gjiscexVq7EWLsWrakRv7C4Ov9gH8YgWMkcpncPylnMDaKdjeb1bOR6bN3kKM9yKPI02yKfpaBl3DzlOdY6Ej6xdO/6114clfdyrPxeuB6pGl8iESeRiHMs8hy/iH6Nq8f+B+2TSyi2jbF//35aW1tpaWk5Y5Gw18Cx0rRp8g4zzdjPitm2rXpvnbTtH9nP3fvv5q79d7FncA+bmzfzltVv4W3r3kZbqm36HZyEjYyM8MILL3DuuefS3Nxc8V1/f/9JE3KU3XWXzbPPypoy/1yjQMwLaQrnc0EmUySbnaClpT2QK7Rti76+flKppFMbqsI9tjtphtUxlpsMj5Wc1ToMD0uJNZVL8XKRwRW+/K1ANWIOC6HWAmd5jsFJsVZIbXx8nEwmQ0dHJ5GIzky6u3tjcDwNTH4W/TuO6zt5e+H/0qh1BM7PK03RAt5WWGNa6UFYISFo/+TqCa/7tnByVAWy2Sy53CRCQCqVJJ1OUyyajIyM0NXVSSQSdfcvgawy3KeEE/xh7vIQeJipzisS5O2annvYsYPfC/f7atsKIWB4GP3pHRjPPotmFrE7OzDPvwBt1TJEFVCSYVy5/zDpQf+x/abKRuR7IPOLo1ofh40dHDJ28LL+PB32EpY6xJ42Ryw9zEOW+5OsaMuyaGysTPnIBa0/BREc00F9Fz+O/1/eXPh9FtqriUYNrrhiNStXtjE8PMzIyAi6rtPa2uo0RU/PWp5wamqKo0ePcu65587K/mZib3nLW/j6178eIFyeQTvpC/WqAUe/DWWH+MrDX+HRkUd5uPdh1rav5U3L38SNy29kecvyU96v0nTt7e1lw4YNoUXk4+PjHDt2jLVr157SMfbts7njDotiMaiKo0BPLu6CE5Vp5hkbG6etrdPdNpeTHTWam5tJp4OrM8OQXqNfmqqWSW/IO+bExCiRSIRksq4MGL3tlcdmOO2a/L0py60aQIZNamFtsoQQjIyMYFkW7e3t7lhiMbuq9ma5CSEoapP8KPYnCCxuKn7eabFkB8oXpOc3M4brdKAir930RIhoVJDLybDbxMQEpVLJYcamSKWSvtAlNQDKm8wV2USCnwJ5ubDxj9UPYjKMX032zJP/q2aq+H06EFWWGxvDfPJJGvfvx5gcR6tLUNy4GXP9erRUKlShSeblrYqwfljhfTSqY1lmzQWCpRc4wh4OOWBpY0mv0jqPJawjYgfff8OQLPtisRQQKlEm0yJSjL9UMt28O8A+40nujf4nbzc/Qpe52I0+/P7vX01DgxcyLxaLDA8PMzw8TCaToaGhYVa8yvHxcfr6+li5cuUp7+Nk7ZprruH+++8/W0IAJw2OcyqsOluroLZUG29d8lZu3XgrDS0NPPjSg2zbv41rv3EtDfEGblx2Izcsv4ELei7A0GcWSrBtm+effx4hBFu2bKkagjAM46TqqsptyRIJAIYhsG1JPvCbB5D+scnt1IQ8OZlldHSYjo4OYrEw5qxwGZ1+Ue5qpsg4ftGBYtEimZRlH/L4vr37ckJ+dmg18+vAlo+z3MprK4UQDAwMEI3GaG9vCTxDM81RAmSNfr4T/W267XVcb/8VhhEBbJcEpSyMxRtmM8mRKhbo9AsUSQIplUwikQhdXd2uVzk6OoZhGKRSKRoaUlSrbfSHwj1lGs0XUlWD8Boly1C95gBp9dGVs4/DTNW5zqR8JJPJMpbJ0HXlFdhXX4k4cJDoU08QffghIo89irV6NeZ5mxDtbc54vbIc7/77wuS2F2KVwhJiRovwmBZnibmJ5WzGKtmMaCc4ZOxgZ/Qn3K1/gR57OUusTSyxzqNF9KBphuOBBu+BIiZ5IV7FgpVjed54hAdiX+eW4m10iUXYjghCW1t9ABhBSht2d3fT3d2NbdtMTEwwPDzM0aNHT8urfCUIOafb7PhM25wCx9k0qUhhkogkuH7p9Vy/9Hq+IL7Ajr4dbNu/jQ//9MP0Zfp4w9I3cOPyG7nqnKtIx8JXMPl8nmeeeYauri4WLlxY86GrVrM0U4tEdBYssDlwwMsVVZZUlDNJlVdjMzExztRUju7uHkd6qvIYQYKHp+la/Zw8AXNdlyLMw8MjTE5OkkwmSaeTpFIJhFB6rup307d6ckbk5suC4wgflNqnaVr09/fR0NBQhRKuTeupaBoMGXv5TuS3Oc/8NS4wPwhoWE64rVIbtJIYU+2cZhZ4mcl2gqGhYTQNRyRdc0k9IIk5Uih9ENP0SD0qFxk83+kl/yRJSbgesr/4PyzaoOpnpzvPaFSv6n0qm5ycZGJikp6ebi93unw5xeXLYKAf4+mnMJ57jsie3VgLF2Ft2oRYupRi0XTCq5rjDQcJO3IR54VPZ2JqIWbbAg2NVjGPVnMeW803USDHschzHNSe4qn4NnQMltrn0RlbSU9xReC4/uvjiYtL2208yMPR73FL/s9oFwvRDKXBarN0aSe1TNd1mpqaXC+1UCgwMjLCkSNHyGQyNDY20traSnNz87Re5SuRcwTOOiCfjM2psKqqBZoNO3r0KJqmBcgy5XZ47DD3HLiHu/bfxdO9T3Ppgku5YfkN3LDsBrrqZBxc9YxctWoVra2t0x63UCiwZ88etmzZcspjf+IJi3vvlfJtMrlfDobqpVfSWyajo/2ArJfq7Gx3GKaV7EoZqqwsuobqdW+RiPSgVEjRq2sTZLOygXChkCcajVFfn6SuLoVt6xiGEj2f2WPkhWM15+/qOUPTLNLXN0Bra0tFV3dlKhTsD/kpir4KWR/UHuLu2P/i6tLHWCPeGJhQVb603GqHL9W5KNWi2rm6asdQJoRgeLiXSCRGY2Nj1YWZWlwoUk82m6FQKLqtl9LpuANyMxM+kM9bMN8rhCrE13yMZ3tG3qDcvlRzETY+Pk42m2PevK7QfbrPQzaL9swz6Dt2EJ2aoNTYjHXeeZhr14JbYyyIxw1f+FiSYGR/xunPXwgcMK+iQOE7L9OyGIkc44C2g/3iCYaiR5lvr2aZOI/F5gaaRKdLzpLCBlJAYEfkXh6PbOOdhT+jTZvneG/yOmuaxvvedynz51cnKNYyv1c5OjqKYRhu+DXMqxwYGCCbzXLOOeec0vFO1oQQXHbZZezcuXPWIobT2K92zhE45RrBcjt+/DilUmnGN3s0P8q9h+5l2/5t/OzQz1jRuoJLOy5lbXQtN11004yVHEqlEjt37uT8888/5bFPTlp8/vO2L4Tq1xJVJBXNncAKhSJ9fS/T3NxKQ4MkAqg8kirqlyaIRKyq6jcqp1ZuhqG6qyuSjWJeBhmPxWKBfH6KqakchgH19XHi8TpisdiM1Vg8QA+ScfyWzeYcQkrHNCti5fmoJs3KI5Lf7jK+w8PRf+ItxS8w397sgot6V+VC4tTA0dvWquk9l4OQ31QNY1tbHbFY7efPn+dVJu9JkUwmS6EwhRCQTktJu2g0WnVSKr8OnpUvqrzQKyivrPo+5WIlnIgzOjqKaZp0drZXBdDyhYYmbLS9L6I9/RT68eOIaAzWr8HevIlSQ5MvGiF8ykkzew5lBMhG06b3iv3RiYmJUUpGnuHGQxzUd3LI2EVcpFlib2SJuYH59mriRpTt2o/YFbmPdxb+nGY63HNWtZVNTWn+4A+umdFYZ2KFQsHNVeZyOTdXqbzK3t5eTNOs6UzMpilw3LVr11k5Hq+Bo2d9fX1kMhmWLl160r/Nl/J845Fv8EDvAzw2+hhRPcqNy2/khmU38LoFr6spcG7bNo8//jgXXXTR6Qyfr37V5PBhr2Gsyg2VT4KmWaC3tx9dt5k3b2FgH3JCEgihOyEigaaFgyNUA0hZAO71S1ReXXAC9ZikwhmXRT4/yeRkFtsu0dCQJBZLE4slpl0pGoY8xzDQGB+fCDBSqz+ictwqRCVLEZw8JTYPRT7Hi8ZPeXvx32kR5wSugTpuNXAEfHmj6qbrGppm1gTHakDr1TC20NSUoFisHZ9W3kj1sdiUShbZ7BTZbM5R6pE9CpPJRCBPVm1M5Z58WGmN8o7884oCjzBSj5K90zSdtraWkNC6f99Bgpa/fMXo74UnnoQX9oJtIZYslcIC55yDcBpr+6NSsqSk2rXyvEtFoqlmqmuG2l6S1XRHRlA+a4PGUQ5oOzhk7GJQP0aL3UVJK/DOwp/RqMkuQirnZ9uSFb5+/UJuuGFj1eOejoV5lZFIhHQ6zeLFi8+KJ2dZFpdffvmcBsc5l3OcrQawp1pvWCgU2P3Mbq5YdAX/4/X/A4DdA7vZtn8bt/38Nl4af4nrll7Hjctv5NrF11IfD+a6Zmv8GzdqHDsmKJVUVw6vJ6Pa/dTUFGNjsqZvYKC/Yh8SUDWnATLOBFX9mKr20CuXUCG/SkaqBG3d1WItB7JIxKC+voG6ugYn/JplcnKKQmGIRCJGKpUmHk+F5hxMUxCPgz/CLln+I9i26Yhqy7Eowoi/ts8wNFS7LU9FyNk3Be6O3sak1suvF75FimDYSoaLPbCvZjPRZT3VSSafLzA0NOgQqmL4mzVXt+nIPxCLRTCMBurr5T3J52X7rZGREQwjQjqdIp1OIYQeCvz+Z7taP0VvEaWj+hd6mr7BnfrJVM3NTdPWsQaB2QtJ27bA7OiEG2+E11+OvmsX+s6dRL/7HeyWVoytWzDXnet2zJB5U3/XGQ2ln1o+b9QCa+VdqrFFIir07OXudE2nwzqHDs7hIvOt3B+9nUPGTt6T/2vSNIKmSp283L9lCVauDO/9OhsWlqvcv38/w8PDDA0N0djYSEtLy4xyladquVxuTuuqwhwEx9myUwHH8fFxnn32WVauXElbm1cbuaFzAxs6N/DRSz7KyxMvc8+Be/ivZ/6L377nt7lo3kWuVzm/Yf6srbrWrtV44AEYHfXye6ojOsgwVD6fp6enB13XfXnISjNNiMWsQA/HauYvzlcTVbVzkko91T0WNalomkY6LfvhgSCXK5DNZpxVq1xlJxJpolKSh/IiaiEE/f0DxGIxWls7AhO3lIvTXQ9CCrd7gO63gjHKd40PUS86eVfxdiJUMnn9TNtaNpP1j6rvPBnLZLKMjY3S2dnlysnN5FjTbxNctJWTeopFWSoyPDxIqRRO6vETuaYrZ1EtrVR/yHLhAdu26e8fIJVK0tjYOKMSD0lEk9EA2T4r5OLW12Ffegn2RRehvfAC8aefxPrpT4k8+AClDeuIbNmM7crsKe1WJSiuUyyWAl6lCh2Xm1+FRwK1zE/KUwwuIpFH4v7oVzlu7OPW4seJo8qrVLs5gerfGIkYLFly9vrSxuNx0uk0nZ2dtLa2Mj4+zvDwMEeOHCESibgM2FQqNWvzWyaTmdO9HOFVDI6yLdHMwfHEiRO89NJLnHfeeTVXNPMb5vNbm36L39r0W0wUJrjv8H3ctf8u/uahv2FR4yJuWH4DC7MLuUhcdFoPkq7rrFxp8cQTEgCkwLgMK/X3DxCJROju7ka9iKoDRfgkKSiVFEXfrii9KDfpiSkPodbKGUzTdjzIoEpJ2FgUOzaZlGog0IJpmo73MohtmySTEiiTSZkTU+FFyUitVNNQYVAFjN7xgwcf0Y7wvchvsUpcw6Wl2uLhfvJO9WskQgvOK883SIgqNz8G+9tqnSxzcDpwVB5JtUcyFosRjcbQ9UYsyyaXyzI5OcHQkEfqqa+XtPuZdjNRgKfui67r6Lrt6N72U18v76kEu7AwtXBC08qjstxnbdooWcRA37ie/Nq1aC+/jP7UUxhPPAFPPEFk5XKKF10MnZ1OTl96ymq/Qthu6kEt1FTdoToPPzDatu1yAvx5TtVH0sbm3tiXGNJe5p35j5Iy0pjCXzohj2kY8josXtx+1lmcKqyr6zrNzc2uuEk+n2dkZIRDhw6Ry+UCDNjTYbfOdXUcmIPgOJth1emYZiAfin379pHL5di6detJhREa4g3cvOpmbl51M6Ztsv3l7Wzbv42/ev6v+PiBj7v1lJctvIyYUbvhcZht2WLw9NOWO4EWiyUGBk6QTDbT0NAw4/2ochAFTrJhcHijW7WKFkJzw0Rhmq1S7UaGM6UHGWxkXK08pLx8JBKJ0NjYQGNjg08+bZyRkRyRSIRSqUhzczupVJCRqqj5MyH6vKw/zQ9jf8AlpQ9znv1OxDQhyJl4j14bo1r7mlnLNElIGaNUKtLd3X3Siyq/YlI1m4k3HIl4oJ9Op0mn0wghw27ZbI7e3jGEEK5XGWy/VX68Sk9Q3i+LwUGpBxuPJ5zPve4XsgzDC5f6vUPZHmv6d1qdr2XZoIFYMB9rwXy0icvRnn4antmFcd55Lr1I1aSqyV5dT1nTKwIh2Gg04ogZyEWk/5LK38s6R3m9BTYWd8f+jSltlFsKf06MhMNYleOLxQyn04j3LK1ceVYUYwJWrZQjkUjQ09NDT08Ptm27XuXhw4eJRqMuA/ZkvcqpqanXwqqvlM0krFosFtm9ezfNzc2sXLnytDy9iB7hsoWXcdnCy7gpcRPNK5rZdmAbH//lx3lx+EWuWXINNyy7geuXXk9TomlG+2xr05k/3+LYMchk8gwN9dPR0UE6HSes4kXpr/r7QUKwJk/WIjokBkOCoKd9qsJLXuPgWEyjWBQh+wt+5pWdKKm46uclAVKGgoN5JN0Jv6aYmppiZGSEZDLNxMQwU1MG6bSUT9P1SAUoyZCbpy2r9vuCcQ/3Rf+WG4r/yBL7UgQza4EV1qEjbJvprFpYztuH7RJSVA3jyZpfaaW6Tb8gCDsfTcPV/TSMJkyzyNSUDIlXI/XIZ6dyZ8ViiaGhPlpaWkkkEs4zqMLPHhj5u3x456g7E/j0daHV3n2tqRH7isuxL3kdRKNu6LQ8/C3vgebm59X5SI/ZdM7FRnmcfq9ShvkNbFtgYXJX7J8paQXeXvjfRIm556LKSjwFIp1SySIej7JqVU/N8zsTNhMRgDCvcnh4mIMHD5LP50/Kq3zNc3wFbTpwVM2Uly1bRkfH7Krea5rG6rbVnNt+Lv/rov9F31Qf9xy8h+88/x3+4Kd/wObuza5Xubhpcc19bdyosWfPBGNj43R29hCPGxSLgmjUplSqfJhlzlAPTJZB6TbhAKRHaJD0cREARu+3OOEe4Zvoq3mFqv7NZvrJWFQFDtlBZIru7m7HkxcIUWJqKkNv7wC2bbnkkXg87noXkpErJxzLFjwe+Q92GF/nnYWv0CE8rduZiJir/E+t8KHygk810mHbFv39AyST8Zo1jNMrGNUGVBVSrWW1csfKZG7bcMKhktQjayplaU0kEnUEIVIVk2OhUGRwcJDu7g5isai7QFOKMrWuoV9Yo1bnGUUSq3Ye7mVyctug2M7TkZk04nGV/1U3Q+qyKhY5yKbNbjeOSJEfxj+HISK8tfAnRJDHVPOSYhfL0Kt3jy+9dAWx2Nmflk9FBCCRSDBv3jzmzZM1mmNjY4yMjAS8SpWrLLfXwPEUbLYSvrXAsa+vj0OHDlU0U54tUzkJ9bB11XXx/g3v5/0b3k+mmOHnR37OXfvv4tOPfprOdCc3LL+BNy1/E5u6NgXabgkhiEYPYpoJFi7sxrYNV+7NNIVTnB8OkP5uCv7QVDmZRdcFpZJ8M6NRraLMQ724ii07ndyc3yuczhS4qJW7ZKQOo2mmG15UNWqmqbtKOCr8OjY2QaFQIB6PU1eXJp1OIoSOHjG5R/srevVneG/h29RTGaaaDs+UB+4xV6ttV9sLrfadaZr09/c751SbmDD9KzEd8OmoAv5qNr0IeSV4aprm9qIE6RkWClkGBgawbUE6Lb1KIWyGh4fp6pLAaJpmwGtS0mqRiFGhjSqvr/dZrWsxfS603BO13WesurgCxOMGpZLpPtvyWACGW8ah9lEqmZTI84PYF0jZDdxQ+hCGM80qkJeLUdvNTcq5yqS1tY6tW2svls+Una58nK7rtLS0uF2VlFd54MAB8vk8TU1NtLa20tTUhGEYp0XIGRkZ4Z3vfCdHjhzhnHPO4Tvf+U5FAwhllmWxZcsWdu3atU0IceNJndMpje5XwFQy3G9CCPbt28fx48fZunXrGVu51ALmdCzNm1a8iX+/4d858vtH+Ofr/hnTMvnAtg+w9F+X8ns/+T1+cvAnTOWn2LFjB9Gozk039WDbho/k4oVDo1E1GQRfbplDUUy4cBNCljsYhpTdkk2FhZuTlNuo/Unx6Zmo3UhigjaDSV3l9zSHvdiPrut0dLS7uVEpQScc70Ll+mT4tb29nXnz5lNf30Aul+fYsV4OnzjAf9v/gwntOO81v0GT0YVheKo45cetPTbNqaWsbtP3o6yc0EulEn19fTQ3N1NfXz+DBeH0IdHTMcNQ3n51i0RU+D38YLoO6XSMpqZ6eno66e7uIBqNMjQ0zIkTfRhGlEKh6AtPBo+nQpeqJ6r8zFs41TKVI565MIMi9eAsvsJ9BMOQaQXTrK4tq9i4sViUkZFRRKzED+s/S71o5Q35D4HljUt1DQmCver0IrjmmjWviISbHNvsyscpr3L9+vVs2bKFtrY2RkZG+I//+A+uueYafvKTn5DP509p35/61Ke46qqr2L9/P1dddRWf+tSnqm77T//0T6fcIWnOiQCYpnlK9Ylhtn37di6++GJATki7d++moaGBZcuWzZqHGmZPP/00a9asOWlR3f0j+9m2fxs/evFH7O7fzaXzL+Vta9/Gtedcx7f+s5nxcZDA6DU21nU5eRw7doyengUEc4OyED5IGrAdco4XRpWfB70HuV/PK1JF/3K76c9FFYyr1XEtM02LwcE+6upkN3spOxfudanWS2GezgS9fDf2QToLazmv70Ngaw55JB0oSZAMSMDpgSlDysHnwV9wrkKA1ay6yo1AdfVQqj+FQoGhoSE6OtqJO1JntR9FFSGoDGd793D611QSoMJvnLxHtchHuhsq13ULr4elx9JUPRf95zI5OcXk5CQdHZ2YZskRH8hhWabrcUqlnspjesL1YV1Z/PODFiirqGWqdVe4wIFHxFGLNU3THY+qOvFLgqtBf/8ABT3D/d3/H132Uq4u3oqG7oK7ko3D6Yaj8pQyVA2LF7fxrnddOO05nCnbsWMHGzZsOCvg/OKLL/L5z3+e3bt3YxgGl156KW94wxu4/PLLq0pB+m3lypU8+OCDdHd309vby+WXX86LL75Ysd3LL7/Mrbfeykc/+lGuuuqqu0/Wc3zVhlX9NjU1xe7du1myZMlZ6R12qgIEy1uW875l7+N883y6ru1i++B27t5/N39y35+wrG4djRNvYBU30GYsQTUVsG3NkUZTjW2D10+GWP1NkoPAqDYv73ahSkPkvj0Sj20H693CLahlWiu/VywWGRgYpK2t1QmLqv56VfbsEIrK99mvPc8dsd9is3UrF0U+gN0tzzOTmWJiYoJiUYZfy9s82bY6J+Gcr9yfrtvOtZqewOO/Hh7weqxLSVASTE1lGBsbo6Oj02E9qnKZ2pN7tQldfuc1zJX78l8rUKzLWmP3BMa9/7x9qAWW5z2F9YwM9ouUSkbZbM4VbIhE4qTTSSzLwjRL5HLZEFJP0jm+jpL5K3+XgosDL+owU6vuXWoYhu2kLOwydm/16xeJGPT19VOMTvHTzn9hsb2O1xffg+5cDMmwldEYJZihakANQzJVYzGda65ZM+NzOBOm8p9nw1auXMnKlSu57rrruOWWW/jlL3/Jj3/8Y1pbW2cku9nf3++UsUF3dzcDAwOh2/3RH/0R//AP/8Dk5OQpjXPOgeNs28DAAAcOHGDdunVVOjfMvlVTD5nOjh49Sm9vL5s3byaRSLC0aynvXfde8maeB196kM/9+E6+NvkGEjSwNPIGlls30CO2gG1gGDq6ruq05IspJz5VagGlkh0KjMr8bamUSdC0fbk/zQUNSf2vPI/yGkdPLCA4yWQycoLs7FQaqRIYFeO0uilCkVyRH9R/wT2xP+Wa4l+zyn4jmiEXC5qm0djY4PazLBTyTpunUVcRRha6S/arR65QnrJaKOCMLQgcsi7M8yzVPrzQt/oPxscnnRrGbgwjOAmdznpQ5bGUdx68H8InkKA5YXYN1cFFgUuppMZZ2T7LJZjUMHlvPaUYpZPa1dXpnpsMZdqo9lL19XXU19chBA6pRyr1xONR4nEJlrJWWQQA0p9WmEl5Cqg8YXXvzwNY6SGXv7/yfQpnR/f29lGMZ/lxx+dZZV3EZfbbQdfd6+uJ9OO8o5IAp4TbNQ3OO28BDQ0JTNN0aw1fCTtLAuCAJOQokYmrr76aq6++OvD91VdfTV9fX8XvPvGJT8xo/9u2baOjo4PNmzfz4IMPntIYX7XgKIQMYR09epQtW7YQi518neGp2sl6jrZts3fvXkzTDO0VqdpuXfCea/m3L5Y4Lp7mBe7hp9E/JqMNsMy6jpb4hbRpbyYi6h1PMQh+pinciTwMGJV57FTb3U6BmspJKpKPEkb3mKzSysFRshKDACk9i4xb8O7PZ0rwmD7PJoTGrsg3eDjyBd5a/CLz7U3ud975CDfHlUgkSCQStLS0uG2eBgcHsW2burokiUTKkWvTKo7lz096NXjeBCo9AlDsR+V127ZgdHQE0ywyf35n2b6V54j7Gy8UHdzOnxbze+Vq4RL8Tnnu6j7Kv2U4UnO3U/fDY4tWAkB5SLycYeyvZxQCpyxFc5pOq20U+cXbh9ckG1KpJKlUEl3XyecL5HLqvng1lalUHKV8pGlGjVB20MqBzn9sT6RALYIE4Uo95ddA/tfX108xNcU9bZ9jg3UVF5pvBc1Gif1HoxEsyww8j4qopwgwDQ0JrrxyLUqj1bIsd7FjGIabY3+1WSaTqems3HfffVW/6+zspLe31w2rhlUbPPLII/zoRz/innvuUbnNKzVN+28hxK/PdIxzDhxnY/VimiZ79uwBYMOGDa4s2dmyk+npWCwWeeaZZ2htbZ1W9Le5WefCC3QefngzXdomLit+jDHtCPv1H/N843+zPXobi8QlLLPewArjOuoclqa/flESDGqTOKSnpztknWBPRs+7Eu6q2GtfJC2MBCRBVm47MDCEbVt0dXWhGi77vUpVMymPVyXXg80vIv/APuNefr34LZrsRYFj+U2p+PgnvWg0SmNjI42NUhEmn88yPj5OsVgkHo9TXy+BVEqfVbadCu/zqBYJmgNGgoGBQTRNp7Ozy7ePShCq1ejZ61RSaaVS2L1UIVYtBBj81ygIbNJrkb+x7XDijH9cksRlu6Du10n18rvh5JvyMXtF8VFiMf99yTExMcHQUIFEIk4qlaSuLjGDuk6/t+p9JvOOUn7OL4LhKUHVnn9UbrWvr59S/SR3t/4ftpo3ssW6wXd9dOLxCMViKbA/SXzywNqybC69dDnJpCdjqJivSgMWCHiUrxagPJ1Sjje/+c3cfvvt3Hbbbdx+++3cdNNNFdt88pOf5JOf/CQADz74IFdcccXPTwYYYQ6C4+laJpNh9+7dLFq0KPCAnU1TK8PpTOVCT6bW8rLLDJ59VqDC6E3WOWy1fpeFA2+lrk3jSPRBDhg/5uf6X9LGcpZyPcvM62llFbqmyjrCGgsHTYVia7UhUqeoQkUyf1fdK5WTyiDJZJSGhhaHlGCXAYMclMpjheX7SuS5O/oRMtoA7y3cQZKmMuJPJZD5y0XKzTB00uk6GhrqkC3ACuRy4wwNDYeGX8NMemK6zwuxGRzsIx6P09jYBDWaGte6D7XWisqzq7ZN+X6DC5hgaYa6fp73LnNlipTiHUOeh/JwVfi5v7+fVCpFY2ODb5+KyFNxVvjvc7USDHlfPKWeUqlINpuht3cU25YeZzKZIharXPyWe6teMEY45KZgWYeSP6zVDFnK3Jn09w9QbBxjW8vneF3pHWy0vNZSKspQLJqUA62uyxC2OmZ3dxObNy8p20Z3vpcDtm3bnceUV6m2+1X2Kk+nlOO2227jlltu4ctf/jILFy7ku9/9LiAlQD/4wQ9yzz33zMoYX1XgODg4yL59+1i3bh0NDQ309/fPGvP1ZGwmYdXBwUH2799/0rnQSETn2msj/OAHJUolBR5ykopajawxbmGN/Q6EXuCo9jAvaj/me4l3oosYy+zrWcX1dFsXYGhGgKgTburlCy/6V6ZILQCxmAo3BicGNakojVTDUPVhZUf0AZjMlwYBMsswd8R+m0bRwzuLX3PFw5XXVq0npSKthIGJIuIoFmEsFieZbKWxUVAsmoEwX11domb4VZ6rRX9/P83NdW7rIpmPrFZPV8sLqo6OtZRxFLvYf7jpFkT+Y8r6PfmX36NULZxUvs80bUcntT6gfatKFKqNTR3Hn6+sZbLcKEYsFiMSaaJQKJLJZBgZGcE0zQCpR3mrSpfVtr3ohz9j4feevVZsqiG0VXH8YrFEf38/heZR7m7+HFeU3sca6zLfVsL1VivPObgYiUR0rrtuehKO31sM8yoVkeZ0gHI25DpP1qYLq9ay1tZW7r///orPe3p6QoHx8ssv52SZqjAHwfFUwqpCCA4fPszw8DBbt25184unyho9XatFyBFCcOTIEYaGhk45F7pqlc78+XD4sHBClWqV7tNRNaMs0i9jgf16rtY+yXDkOV7kp9xnfIyxxDGWWlezzLqeZcaVRKzw8IYCL5WfquVFKisWZW2YnCikJ1koeIxUJRumOjaUa7BWarKq3KbGgHWQ78U/wGrrBi41y8XDlUdcSSpR5oWAla6rChP7mZieRwOyzVMsJrVfVZhvbGzMZVnKnFjS8bDANEv09fXT2tpKXV0iMPGH1d7K66zOvXLMtS53re9qiaKHTf7B74PeurxG0tvSdcMhYlm+RUBzmfZtdS9Z7U/di5l04ij3LOVnUpO3oaHeJfXkclnGxoaJRiMkEhIoK2sY1bNZ/diKKasWE4ahUyg4wNg2xN2N/8Q1xQ+yyvZ6tkaj0ks2TTOUcOUneOm6xurVPcybF2yXNp35vUo/OKowuLqnhmGcFFDWEkE4U/aaQs5ZMMuy2LNnD/F4nM2bNwceilcKHKsd17Ztnn32WQzDqBjrydob3xjly18ukMv520xJwoL/JZTi2Bpt5lo6jbW83voII9ZxDug/ZXfk6/xY/0PmRy5gmXk9S63raEDqOvq9DCUurkgD0y00Vc7QsgSZTIaxsRHmzetE12NO2YSX51IC5wp4q72jR8QT/DDxIS4t/gkb7XeFbqOEB2pJunlEFH8D5+A21QBWhfkaGuqcZs4FMpkMo6NjRCIGsViMXC5DR0c7sViccoCopqYzHQCe7Lzl9/rK9oa/FVmYheUIg/uW51AqWQwNDdDa2up0WPGOMZ2HKr2c6YUH1LlXjqe8fEXQ1JR2FiOigmzlb78VlAUMv7B+QI5EdAqFPP39/WTbB/hJwz/zhuKHWGZvcccYiWgUi1aNXqnecy1VhWJcffW5Nc99OlNzh9+r9IdeTyb8OtsCADOx0/Ecz5b9SoNjNpvlmWeeYcGCBcyfP7/i+1fScyzvCFIoFNi1axfd3d0sXLjwtI/R2qqzaZPB9u0lZHNVDSEsJ5+iJg75gitvUuYRbZr1HjZZ72eT9X4KTHJY/zkHIj/hoegnaRILWWZdz0qupdVcE5g+VMF3WFlGuQkhWzBJRmo3mialtiIRT5JN5Sf9wBsGBM8bP+L+6N9yY/H/sERcBlU6fqjjyvMPTtDy2DIMaZq1axfVtupalptiePr7IY6PjzM2NkYkEmFoaJhkMklDQxJd94rcawFG9VrQ6shYvTQhPHKhacrrqKY9WrtmUIVWC4UCg4NKyCCG6q/oiQNUP1EvWlD7+VEh42ohclAtwyRgF4uWu/9YTIZfm5qasCyLXE6SekqlIolElEQi6YZfq5lcxEmPsa+vl0xnH/fW/xtvKv4R59jrUd4naJRKXleR8nH674W6PpddtpJUqrKX6OmYCr9GIhE3/Or3JqUqjxZK6vFLXZ4tKxQKZ7WC4FTsVxYch4eH2bt3L2vWrHE7WpfbyfZ0nC0zDIOir23GxMQEe/bsYdWqVbS2ts7acS6/PMILL1iMjMiXM5PJEYlEiUYjgUlFhV4VK1L2p5Nhsrhdzyr7JlYVb8LWSrysP85+/Sfcob8f27BYZl/LMutaFtoXYRBzvUh/eLLSBENDw9i2TWdntzvRSear9wNdF443pYBSCxaxI3gs8m/sNL7Ouwr/TbtYJXuBhIRjA79yvQovfGrbQcanAuRqXlJ5fV25+cF1YmKCTCbD/PnzHfq9zcREhpGRMQqFgpMPS5NMSsWk8PBptVBkrfBk9Xxj+PYAp0ZQk/fdpljMMTg4RGdnp/ucqcWCLAGyqh5fLQBq4WItgo7KDatyGS+lUH3hYRgGdXV1NDY2YJoWpVLOFWPQdd1H6on5fiPHWSwW6O/vZ7LrZe6r+w/eUvwIC+xzA++S3/stD/36gVHlQLu6Gtm8+ZzqF2AWzB9+jUajLkhWKxU5mwIAYeOcqzbnwHH6DgOCl156if7+frZs2eJKcIXZTHs6zrb5J1Ulcr5x48ZZ73wdiehceaXBHXcUaWysY3Iyy+DgEJpmEoulqa+XhdTSS/MICJKkADjKHbYthQN0EWWR/ToW8zquLP01Q9qLHDR+wi+j/8CIdpDF1uUst69jiXUlCbsRUEQWb0y2LQka0Wic1tZWxxtR9ZBBgogCavDqJxUBp2AW+VnsY/Trz/Hewvepp9P9nZoIw7w/NVEq1iB4vfjKrRZAqlxkNY9ONQ4eHh6hVCo5SjDqZdepq0vT1JR2wq95p6HzMLFY1PE4U456yvQWHuIN93y9/GClRaOa02opbH/VFwrKK8pms0xMjNDV1RUYu7qnUuhed+5jcF9ejq/6+61C4uq38pmQiwYFqjJk74VG1bNX/T56da6appFIJJyQN66knSL1JJOyJVo8HqdUKjE4OMBYzyEeSH2FtxX+jB6x3FW4Ufv2zi+oQuUHeFXCoWka11+/7qzn96Yj9RQKBTdqcDYA65XIcZ6KzTltVZC1f2HjsiyL5557DsMwWL169bQ38ujRo2iaxoIF6eX0fAAAc4FJREFUC87UUENtaGiIoaEhIpEI4+PjrF+//ozUWqqH/PvfL7Bnj+2EJjU0zWZyMks2m6FYzJNIJN2ee6ARj4uKfpBKOABUM2TbEQ6Qk9IUAxw0fsZ+46cc0x+l297IMus6ltvX0aIvwDTl6lQSNOpJpfzMRaUnGSQmhJlhCLLWBHfGfw+DKDeVvkDEThM2qarwZ7k3Wq6HWQ7glccsn8zl+cuxe7nc4LFheHgIwF0ElO9TAnPQm7DtEpOTU2SzWQBXYzSRiIVeFwnwVg2wqdy+GthHInbodyrPWG2+0jSYmJhkcnKS7u5O/HWs1ULGXm2mig74GaGC8i4hKmQrVXw8dm/lWBT4lkK+Kyd3edED7zMrdLGhIi/ZbIZcLodlWQz1PM9j9d/hHcWP0q0tRqnnSNGLsPO1Qj1fpVu8fv18brppU+XBX0FTddbz5s1zO2qcaQECIQSXXXYZu3btmvV917CTRuM55zlWs3w+z65du+jp6Zlxzk5qF1a+RGfDBgYG6OjoYNOmTWdklaSAUQjB9ddHOX68xOiocFa2Og0NdaTTdWiaRTar5LmGicVi1NdLsLRt3bfq97w39beua0QiglIJ6uhgg/UeNljvoUiWI/ovOGDcy6PRz5MWHSyxr6Z5eDMrWi+hLp0IeGt+CS0VbqrmpUxwgm/H3898ewvXmH+FoUWwHcEB5RVKoNN8RCHPK1EyeUFvNriyL7dyDzJYTqJq/bxwoewgMkAymaS1tTF0vyqv6jdJ3ojS1NREU1MTpmm5GqOWVSIW8zcOnj6CEmbVFgGyu0h4iYHUsw3/nabB2NgY2Wye7u4uJ5zu5feqlflIcXuIxQyKxZLPqy6vt5RMT9klo7YObFhRv98UyCsxcJUHnc5UdCCVSmIYOvl8noH5e3gi9X2uOv572KUYQ/FhGhrqMYxwoXT1nGiaP0KiSlVkE+NXWj+13EzTZPfu3cyfP5/u7u6zJkCg8p9z3X4lwHF0dJTnn3+ec889t2rfrjAzDOOU26KcquVyOfbu3Us8HmfVqlVn5Biy1ZTpruzSabj6asEPf1ikVFJei+aqgSh5LiGgWCyQy2UYGekjEtGcyThNJOLlj6JR4YKQJK94ZByAGClW2G9ghf0G7JLFocIjvGDfzb6ej/OwnmG5fTVLxTUssl9HTE9UAKEqCyj3cvq0Z/l+9INsMd/PVvMDaGjYoprSiReakeAnexb6yzKCx/Rk8cJezNohVk8tRpYvDLh9GKsBrgLksM/V4SMRw6kPrHc8l6y7iIlGo6RSaerqkkQiYV5z2FErO2OozxUxq3wftbxqFTY2zRJdXR34mxJPJ8autpG1uBF3slV5Zi9XqQrmq5sC1lrerfxe+GTYqpUdKUBX4VYvwpDP5xkaGuL4gqfZEd/Grfbf09TZQalkksvlGBkZCwjY+0k9kpRkOyHUYA5ZCHj961fMOgnndMw0TXbt2sW8efNcEe+zJUCQzWZnPcV0JmxOgqOfin/06FFOnDjhinGfjJ1tturY2BjPPfccS5YsYXBwcNb3rxhocgLUAi//uedG2LvX5oUXbGeit508h+cJaRrE43Hi8TjNzbLAPZvNMDw8gGlCMpmkri6Frkec8hDloWoO07FSR3VyfIp0djlv7Ph7jKLBsHaAI7F7eSzyr/xI/33OsS9hmXU1S60rSRGs61JEDhAc0O7n7thHeIP5dyw3r6/YTuWeFCionCkosLHQdRmW9bxLQvaju9ev8nsPZMvBxzQFtm26NYyKXAPVgUIJNPhNXsew7YOLGKkGk6Wvrx9dt4jHk06Lp5h7X2ZyPO/zygsSiVR/PzQNR/pOo729w3e95KKrVs2rmjOlpyzHqko3lC6tei5rsWNrkXPCTBJgRNX76+zVl9v0rmEul2N4eJhjix5jd/Q+3l34OA10YkQFth1U6lEC9orU09hYRzQaIxqNOgsOuUiJRmXXjc7OBi64YOmMzuFsWBgwhll5rtL/n8obngpQno46ztm0OQmOIG/G888/j23bbN269ZSoxmcTHI8fP87Ro0fZtGkTQkg5rdm0WsCo7A1viHDkSIFcTsOyNHRdhhrl5BQEDF2XwshKX1QxLEdHxzDNvDsZ19XF3Adf7lN5a4Lh4WGEEE73BblNq1hGp7WEzeZvkzeG2S9+xoHIvdwX/Ws67NUss69muXUtLWKxe147jK+yPfoF3lb4Egv187BCUt0SCzQfQMvP5b8e6UYtAmR+yKPPO1s7TF3Nt8+gWZYM85VP2rIP4yCdnR0V+WNFzinfnz+HqMalevqpMgAF+PJ7uVDQNOEuYlpamhGixNTUFOPjYxSLJdLppFtGoshW6tkoN6UjWhni1ULfDQVkfX39bjmEX+dWgpWfOCfw2nQpibRK6TTnqK5qzXSAp57xmarnSBUcO/B32LlJzeDgPrPZLGPjIxxa9AtejGzn3fmPU08rusO+LQ8DKwF7eW1N8vksQ0PDWJZFXV3S7Sqirvsb3rB22nM4WzZTYCy3MFKPHyxVJGsmAgSvgeNpWKFQYMeOHXR2drJo0aJTjk+fDXAUQrBv3z6y2Sxbt24lEolQKBRm9bgzAUaAZFLnjW+M8t3vFh0PSE7csZigWNRq5t1knrLeURzx8pRjY0NEIjLEl04nnTIVwcjIAJFIjKam5orxKCBLiRbWi1vYaN1CoZjjJX07+42f8c34LcREPcuta5nUeunTd/Prhe/TzMKKco9yU+FRCXLhoTbP0yz3IIX7r1wcaCjpO1UvB6qDiQeQmYz0Erq6up0+jOGhS5m789ppyZytlweT4U0FpJUkn+Dfwt2vYRik0/Wk0/UIISgW80xOZhgcHCYajTmLmCSgozqaeGzbytynBOLwa6zrcOJEL6lU2qeTKtzcoCTNKA9edSfRnN/qlEpe54+KK6Sp6zRdOFafUb5QfV8pbF5ZFiO9RR3L8odwhVTVGR/hhfk/46XIM9JjNFqd81KlGpXjkHOL7ZaKpNNpIhGd8fFJcrkco6Mj6LrODTdsoKuroeL3r4SdKjCWW1j49WQECKampua8Og7MUXA8fPgwy5YtO+2awEgkckZLOUzT5JlnnqGhoYGNGze6L+tsgrKfeFMLGJWtWhVhzRqLZ5+V+Q/ZZFV6kYqAo7yNymN5qiQqxKdpLa4SzPj4uLNaLtLS0kxDQ5PDLAwdOUpj1bIgpidZzlUsLV2JKH2CXm03B4yfcUx/AlPLsz3yzyy3rmGp9ToierImo9XL59nISTA8JyfDcmF5RgmKxaJwgRYkYMjzl/0Oo1GN0dExpqYy9PR0uTm3MDkzXZfHUgsSBU6eCo8W2D5MxSe8bKR8ktdIJKR3osKvmUyW/v5+pBh3ilQqTTQadRdISkQc5I0KC1VKEBWcOHGCxkaZB1XjU/01JfDhA3d5Lb2yiupensz3CheUwyQWlbxe9Xyhdw1qkXNM0/aRwLzcogJ5OR4YH59ifGKMZxdsoy9ygHcXP05Kb3SvTTSqUSpVA0Z/A2ZFhBM0NNRj23XYtsmGDT2sWdPO7t27sW2b1tZW2tvbnRzz2SWkzBYwhtnJChBMTU295jmeqq1evXpWwOVMeo7ZbJZdu3axZMkSurq6At+darPjclPEG7XPmdoNN0Tp7y8yOCgcHUzlrdjOJKW5ajHli3iVM1ETiW1rJBIyxFcoFBgY6CeVqmNyMsP4+BR1dUnq6+vQ9Rh+kPJKQ6R5Itay5qtHbKTH3Mhl5p8yph3lgH4fT0X+k236H7PQvoBl1tWs4CoSZmWZhARkRfDQnXF6k7U/F6nyjOGsSk8WT4XaJJhIwJdCBiU6O7t83ohwCUCy5EUd20YIT8TAT7wJI/qESclVFwIImr8XYiwWIx6PYdtN2LbpNHMexjRN0ukEyaRiv+rO9rq7DwUeICewEyf6HJ3UVGBs5UDuv461mMfqexnyDJY/qOuu9Hs9dmmtM9ccwouKolTZStPchUYwtyicEh8YG5tgYmqSXQu/z6jey7vNjxMVSWxfUX9YKFo+M34Bcc0hrnmLJl0XrF7dzU03bUHTNM455xxKpRLDw8McPXqUyclJGhsbaWtro6WlJUT/dXbtTAJjuc1EgGBwcHDa6MFcsDlZ52ia5qyAWqlUYufOnZx//vmzMCrPlDrP2rVraWxsDN1m+/btXHzxxae0/5mGUWtZJmPxla+UGBmRYVXL8sKV0pvSiEZlmUa5ydCmmrQ0wGJiQpYcSGUUmXNT0lyZTAbLKpJOJ4lEUtTXJ1Aht2rnV02CrhQZY794gP36zzhsPESrWMYK+xqWmlfRKpapVr34H001TqX8U73Orzpb1avFA7AYGBhE13VaW1vdBQaoiReX/RkGcIpwEonYgX6H/sOWdwiR+Uh/OLF8QhcOcGvOvfG2Uco0/sWJZL/Kur18Pk80GqOpKUk0GvdNYBKcSqUCvb39tLe3B3RS1djKpwhNU+9mdbUbTauuJev3YlUN4ExCrV5OkZrzg7pHCmxVnle+Vxbj4xNMZad4asE3yRmTvK34Z0RFJdlPav6azjErF9qRiCzxkepPXieQ7u4Gbr31oqqgJ4RgfHycwcFBRkZGiEajtLW10dbWRiqVqnkdTtbOJjBOZ7ZtMzU1xY033shVV13Fpz/96bN5+JOeRF/V4GjbNo8//jgXXXTR9BvP0I4ePUpvby8bNmyoyZ49VXCcDWBUNjlp8V//VWJ01HZedG8CVWQVxUr1X24FjnI8kMmMkc1maGvrRNfDiVFC2ORyefL5DKVSBk2LOpJpyZpkqnKA8eccLYoc1R9jv34fByP3o4soy+2rWGZdyXx7M3pF4EMjFhMUCtNJmIXnkRR7cnCwl3g84S58hIBoNLwwXRKdgp8pNqoER3/pQzlol/+uMlwrJ3cvPFt+vcJbcHkArfZTKhUpFKaYmJhClvdI8QFdh/7+fjo7OwKTeS15QDme6bzF8JIaOT4vvCqfd7Pqcy5DrSr3p/YfDo5+Eo8Ku/u9Y8OQpSnZwiSPLfg6NiY3Ff+UKOElFjIlYbnn4x+TF6L10gdC2LS1pXnf+y6mrm7mzPpcLucKhxQKBVpaWmhra6Opqem0agvnEjCCPM9bbrmFd7/73XzgAx8424d/dYCjbIczO7nC0/Hg/GbbNnv37sU0TdasWTMte/ZUjjubwKhsYkJ6kFNTMj8XlPBSrXs0X04oqPYxPDwMWLS2trmrcFWnWM103aJQyJHNTpHL5RFCJ5VKO7mwytW0FB9QXRAEYYLfAsFQ5Fn2a/ezT7+PCe0ES6zXs8y6ksX2pcSRCX4ph+dJ0VWzsHIK07QYGOinpaWeRCLpeJu45QfVygrCAFJ2RLF851I5lvLWUdWk6vzgGMz3hYNuWBhUlrlIT9Y0LbLZLJmMvD/19XXU1dU5CxnpZYXl8zwPvRQKfH5WazXzPEovZCGvg1m2nUY1IXSlglS+rcr9yXfIYy2rMU1MjJItZXh43n8SETHeXPyfGIQrV6kcrMqhKVPRB0l+Eg4Qy/vY0JDk3e8+n46OUyfgWJbFyMgIQ0NDjI2NkU6nXa/yZIS65xow5vN53v3ud/OWt7yF3/7t3z7rOVdeA8dKmw1wVBJLra2tLF68eEY39mSPe7LEm5OxsTHpQWYyNkJ4PRoBIhHhUPN1XxmElOfq7x8kmYzT1BQMHcsJrjrzVZJ/TGdbOZlOTmbI57OYJiQSUsMyrGGwZNaGi077VWoyRi8vcj8HjPs5ru9gnr2Z5daVrORKUlanMw4CnkO5+QGyWCwxMCBrGNPpONLrqPQUq9U0loMWaEQiVgDoy4FMqdME//bn+lQO1C5juUrz6gf9x6gE8OB+5Hf5fI7h4VE6OtopFktO+LVAMhn39agMhmnlMQGC76YEzdrqNZLo5Hm0QgT3oZpNq7xibc9UNfn1vyd2xX1RsoBCCEZHRzH1LPd3/Bt1ooUbSn+ITvgCV9M053xK7v3xe8OqdEUSTWRoNR6Pcsstm1mypL3quE/WhJAt3wYHBxka8qQK29raapJ65howFgoF3vve93LNNdfwh3/4h68EMMJr4FhppwuOU1NT7N69m2XLltHR0XFGjnuqxJuTsZERi69+tcjUlO2E/Lx6QcnO1BzmpoZtmxw/3ktTUyN1dWlnXJU9AqvlpCTVvxTYXnkMxaLpeJVZ8vmSo/uaJpmMIzs7eDqsfsEBTbNDQc4wNHL2BIe0X7LfuI/DxkM0inkss65kuXU1bfZKog5pIlyrU6NQyDEwIFswRaMxR3vWCgE8nGsR7uGVb++FeD1P3Z97VOUQ1UPAipkr71llCLoSbP3hVG8bFVaUnmM2O8X4+CSdnZ2oxrzqN5KZnCWXyxKJ6CQSCerr0044Xe3YdMc/XZG+vO9B4AzTVpV5QkGtcKw8piAW051FXu16SVkTazE6OkqBDPd3/TOtYgHXlX4nFBgVkUe+H4JSycTriao6vBgOKAp3IRuJGNx44zrWrZtXfeCzYKVSyQ2/Tk1NuaSe1tZWN5I114CxVCrxG7/xG1x88cV85CMfeaWAEV4t4ChJArOjiXo64Dg4OMj+/ftZt27dSTfm3L59OxdddNG0D4OSZ5ptbzHMBgctvva1Irmc54moIm41gRYKBYaHBxxyRsIXahVVPcVyeTnJ4jSreFj+yUZQLOacmso8kUiMhoYksZjUuFQeKtQmYMhjOuxbvcBR8TT7jfvZr9+PQLDcvpLl9pUsYgtYwTCaqmHs6enE6ykZDNt5eUr/ech//a+P95kHRnLs1QGt/G8/eCpwVLnLcnAsB+Ny0C73cg3DZmxsjKmprCsHp34Xll+0LJNcTgnYl5yuFSniccPNPVdvm6W5kmqVOVEPHD1Asn3eY9j+FAFGIL3E2s+DCgH39/dTjOT4WefnmGev4qrS+9EILkCDY5WDlX1HPfD1ekcGPddo1OCNb1zLunWV/WTPpNm2zfj4OENDQy6pp6Wlhf7+fhYuXDgngNE0TT7wgQ+wceNG/vzP//yVBEZ4DRwrbaYg5TchBEeOHGFoaIgNGzacUlPOxx57rKayz5nIL87E+vtNvva1ItmsR7iREl+yk8fY2BgdHR0kElHARvVZBMst9q52PjIfIycW2UliOgaiN3lL77lILjfF1FQOTVN5yhSJhCdoMN1lisWgVJL5UoFgSDvAAeN+9hs/Z0Q7zBL7UlaIKzmndCmFcVmS09HRQSymOx6rVyrgtzCALD8H8EKYMp9rOyHrynCoB4BaCBD7yTceOPr3U/678nBqWHh1YmKIfL5Ee3sbSqwgzPMrD5PK8K1gaipDNpulVMo6whCpCsKVihCEda7wtvEIOX4RB3ktPdBTu5XF+3Zg8VULHNW5Dw0NUohO8dOOz7JUbOay4q+jBRi9laAor61MDUh1HOHUS9vuYs225fOVSER44xvPvMc4E5uamuKZZ55x78VskXpO1SzL4nd+53dYtmwZf/3Xf/1KAyO8Bo6V9vjjj7N58+YZ1xLZts2zzz7LTNtiVbMnn3yyKrC+UsCorLfX5NvfLjI+brl5rkxmnMnJLB0dQQ9KNUXG6QNZrq0aZpGI7VLcZ2L+ru+KrWqa0mvJ5TKYZolEQmpbplLxqiFSwC3lkPVwQW9oigEOGA9ywPg5R7XHaSusZrV+Hau0K6m3enz7ALkwCA/jhrePqvToFGGjPNxZ6S2WfycC/69KQqqNozxXWe5BapqMghiGoKmpxQmlq2N7+5Rj1kO9SK/8xkIIk0JBar/mcjl0XSOdTlNfn0bTqhPVFOgKYWHbleAmRclBScFFIkZoLa5sO1VOgNKdPKD0+AYGBrDrMmxr+QdWW5dxmXgndqAcpzJ3rKTthLCxLNMVUfAfShG+4vEI11+/lvXrX3lgLA+lzhap51TNsiz+4A/+gK6uLj75yU/OBWCEVws4ynBbcfoNZ2BPPfUU69atq9kUWVmhUGDXrl10d3fPuC1WNduxYwerV68mmUwGPj+TxJuTsb4+k299K8/YmGBkRGqkdna2oGm6C4D+kg5VfC2EXpEPLDdJgTcxDK8QfyYmJyc7sJI3DEmIyuVy5PMZisUiiUSKdFqWiZQ7c/4xe/v0xiCEYHBwCMsoMNn+Agej97Nfe5A60cEy6wqWW1fSo61G2NXZl2FepJ/tC8qDsgPXL3gdPNawH+iqgaN8bvy/94OhV2pQDnqaJujvHyAajdHW1ohpWk7BfTDcWS1/LPePCxLSmy24Y1dEqYkJ6VXatkUymSCVShOPJ1wg9ucdJQCqrjJKkMCr41Q1suFTk0DVSMprpAfqJIUQ9PUNYNZPcU/bp9hoXs8F5s1Ozlrdp3JPUem9qpZtlvMelHeCkf/G4wbXX79mTniM0+UYhRBMTU25uUrAVeqpq6ub9fnHtm3++I//mPr6ej7zmc+8Il5rFXsNHMtt586drFy5ctri2omJCfbs2cOqVatOW7YOYNeuXSxfvjwgk3Q2iDcnYy+/nOdznzuCEGkaG5vcguwgKPhDdWoC0pBNlT1pMb95DYc9Sr3yCGo/btI0TbEAg02L1ZhyubyTB8sRjcaor0+TSKTx0+vLTfUhPHGin1QqRWNjo8tmtIRJf2Q3+/T72a8/QFHLsMy6nGXW5SyyzyduJEK91fISjnIPTjJvw0s1goDolXQEi93DwbHyt0FVFzUEIWz6+tT5NjhlKZUecbVWXn6PPvi5ieoaXxmStclmc2QyWUyzQCwWd0TSU0Qiqn+o7YYm5W+URyk/qKUu5YFXpQcv+2z2YzZOsq35U1xo38x5pRucRahV8axKyTf/PRTEYlKpJyzHbBjyessc49wHxjArFosMDw/XJPWcqtm2zW233QbAF77whTkxx/nsNXAst927d7N48eKahJq+vj4OHTrEhg0bZk3zb8+ePSxatIiGBlnzdDaJNzOxfD7PM888Qzy+kAceSJHJ6Ni28hblNnLysAOTh+q2rjwy21Z5Gz+zVIamVM7Nb8qTqJU/9EBVQ3VuD2tDJISgVCoxNZUhl8sSjWo0NKRIJJJoWjQwqas+jE1NDTQ01PnyisF9ahqMGYfZy30c0B9kQN/HOfZFLLcuZzmXETObQtiglZJjcsL3WjQ53+LvVu/pjKoegDjjsZ1tVThTToTSe6uuJlMOjL29fTQ0NFBXl3ZYl8IRgvAIK+VevdIiDZcWFE7TZLPsuQia19VEkM/nnVxlDl03SKWSDvtVQ3UmqVXeUn5sXRdO14+gWZZFf38/peZxtjV/iktK72ET16KK8z2wExWg752XzK2XE6QiEcP5neDGG9exdu2vJjCWWxipp729nba2toqI10z29Zd/+ZdMTU3xxS9+ca4BI7xawBFkiHM27LnnnmPevHk0NTVVfCeE4ODBg4yPj7N+/fqKVkSzcdzGxsZXNL8YZhMTEzz33HOsXr2apqYmentL/Pd/Z7EsnVJJeUhynLKpsO0DzGB4T4XG/CApzQrIroWZx3It92T8oOqJXatOG0EhA89M03SK2ycA2yHzJNF1g6Ghflpb5UsvgVm4nlxlTkt6zLoOk9YIB41fcMB4kCP643TaK1khrmBx6XJaWeSOzfOica6bJwKg5N1kqFqFDT3JOnnOSr7O8z6VVyiFEbztZNcQL8xnmnYA6ISwOH68l5aWFqe7veZs43XqKM+lqetb7doGAcV0w6mGoQXuTfV2VVAsmhSLMjxeKBRJJlOkUkk3/CrHHlw0eeNS16SSjCMXPv2UWkfY1vQPXG19kDX25Y53qrmLC5lDtAOheH9YVl4Xz6NVWqoqRP7mN69/1QBjmCmlnsHBQYrFoltT2djYWBPshBB8/OMfp6+vjy9/+cun7YGeIXsNHMtt7969tLe3V4RKLctiz549JBIJVq5cOeugtXfvXtra2mhubnZo3/qcAMaBgQEOHz7M+vXrA6vDEydKfP3rOUxT1jyapj/8ZLuqM3JiDhfxlmCnRJ9lLdhMSDkq7Oppvwo8dmY4K1GCTBhQKqq/TS6XY2pqgmKxQCKRpK6ugWQy4ai8mO6ErmleHlWycwV+ZRXlSRVFjqP6E+w3HuCA8SAJGlhmXs5y+wq67XVEDY/VKAROvaTtAmJ5KFQRYKQ2p9JM9ZdySECKxWR9qP87FXKV+/D6KRYKBfr6+mlra3Xvr18+rdzjqwaK/vOWEQMNT/JNLVgEnqhE+H1W5+gJgEsPrFQyyeVkvWuhUCAejzv1rgkMQ3cBvDIEHJSuM02Lvr4+Sp1DbKv/DNcWP8RK+2JfXlg4dbceKKocaGVu2nbvgSQD2c4zYnPTTa9uYCw3ReoZHBxkfHycdDrtzqN+Uo8Qgk9/+tMcPHiQ22+//YyLqJ+GvXrAsVgsVn3hTsb2799PY2NjoIA/l8uxa9cuFixYwPz5Z6Y+ad++fTQ0NNDa2jonPEYhBEePHmVoaKiqlyw9yBy5nE08bpDP+0Ol3oo6FhOUStXzh7KPIY4X6ZUzzGCUGIYM/xWLtruSr2VBj1KxEeVYZQ3jKB0dHS77NZ/PYRhemYgqgvfGrlSD/KFN3FCyyv0JBL3acxyIPMAB/UEy2jBLrdezwr6CxeJCdCtBPC49PuURShBSHqTu8xSDoKiOqbxI2TrJ9P3G6/rhJ/CYZpH+/gE6O9uJxaIusEigM/DXnqrrprpbKLFzb9Eh8Igu5eQVFer2BMgr74vXGaMyVxsEaCGgUMiTz+fI5XJomkYymXKE7MufUwslpiCE9Bgz7b38uO5zvLH4Ryy1twIQi0lvWV5bqSksnxO/wLxnsgzJdBcr6l5rms2b3rRhTrJSz5aVk3rGxsb4+c9/zk033cT27dt55pln+MY3vjGrkbczYK+BY7kdPnyYeDxOT4+k6o+NjfHcc89x7rnn0tzcfNr7DzNFJd+/fz/pdJqOjg7a2tpesVWVbdu8+OKL2LY9bXlKb2+Jr30tR6EgnDoz6UXKCdl0J9FaYUllmmahZOa85sOVBJ7K30kPQ4HjTOoblUkvymZkZIxMJuOWpnjfQzabI5/Pks1m3YnYr/uqRABU4+Dy4/sJRnLhA+P6cfZpD7BPe4Be7XnOEVtZbl/G4tKl1GktgJpsK8Om/o4OyltR+5aarip36YVwJVh7Y5Dd6Efo6VFdUxTzUnnXcqKX19bf4V5zxxKmTiM9P8MNG8trE6xFVGHOWoAYNMsH2JVELdMsksn42a9SJD0ej7nh5EKhRF9fP5muY/y07gu8ufi/WMJ5zvPmLeT8bcWql//gXhe5jXA8f523vGUDK1Z01jiXs2NzSflmdHSUb37zm3zve99j3759vO1tb+Omm27iyiuvnPWuIrNor4FjuR09ehRN01iwYAHHjx/n6NGjbNy48aQTzjM1P/EGYHJy0tVGjMVitLe3097ePqPSktkw0zTZvXs3zc3NnHPOOTPyYCVAZikUJDjFYgbFouayO4HA/ytyTnnht5yYLIcirzom+Msrao3CCvyrfiNEbTKPFJgeolAo0dnZGRI+C4Z6TbNELpcjl8tgWbYrZxeLGWXnIoGynNXp5eKUvBhk7DEO6g9z0HiQQ/qjtNpLWGZdxioup9FciOEuTvxgqbng6G/OK/NkFqoFk8rrqjCsYehMTEw5Kj/dSNUb9Ts56Zum6TBFPUKOf5vy5sKKPQoK+IIMTwWGXkjXrll7qraVzW5xamBrRRO8Y9q2TaEg2a+lUp5IJEosFmdycoLJ7iPcl/433mb+BfOs1e7xlYcuQ6PmNONSHVdsN7ysaTrNzUne8Y6NdHaeuoj4bNlcAkaQ9/JLX/oS9957L9/5znd4+umn2bZtGz//+c/53d/93Vei48ZM7NUDjqVSqSale6Z2/PhxisUixaIsWl63bt0Z8eBmUtifzWYZGBhgcHAQgPb2djo6Os7YaiuXy7F7927OOeccOjtPbvXb32/y3e/mGB2VXgcIRzVFrfI95qoy5VGZpt/DsZA1Zup6+IFSuPk+v/wceIxVFUYrtzCwlDWMg8RiOo2NzQHmqMr7KYHqsPtjWZaTA8tRKmWJx5MkEqpZcCUg+ste5P69/o1Sc9MmV8rzsrGD/cYv2K89RIQYy+3LWGa9ngWsRxMRd3zqPOQ1tF0Cj6bZlEqW2xFCtXHSdRgbG3dUftrRND3ANPVCzrbTekm4IKXIKsF7pzvnFd7zEiSQKA9TLQo0rVbphdeM2vN2p2tHZ7tj94Ourss+iCMjwxxv2sWT7d/mjaMfYXF8vfNOi8DxpCBE+LGkl6v7thFO7tegp6eed75zM6nUmS+Yn87mIjDefvvt3Hnnndx5550VbfvkQmxO5h1fA8dyO378OIcOHaKrq4tly5adkdzfqSjeFAoFBgcHXWZYW1sb7e3tNdX2T8bGx8d5/vnnOffcc6s2ZJ7OikWbO+/M8eKLpusZRaPyX9MMepLlpgBEsj4rSzqkBT1Kj/mK+xtdn5nSjix27yeZTNLU1BA6LgmgtjtJK9IHhIV7TUfzNUuxmCcWi5FMSrD0xLq9MKKaZNVnCjS8ekCBwGYoso8XxS84EHmICa2XpfYlLLNezznWBST1tC/H6QGcksTzh3GFkECRy+Xo6Oh0QVG11pLg5eVNpSCDSanklTTouoEiTYWFUyV4eOFw6SlW6twqUfhaoVJl1epQPSCvLj5eKuXkO9PzLA8nvs5bM39BXaaDfD6HZQkSiQTptAyP+8uAgsfXXWD3xqPum8Hq1R3cdNPaOcG4nGvACPDf//3ffPvb3+auu+6ayyHUMHsNHP2WzWZ56qmnqKurY9OmTbM0sqDNhuKNaZoMDQ0xMDBAJpOhpaWF9vb2U9ZFrMZIPVV77LE8v/hFgUJBTra6rqTR5PfVbpMKM8ock+0CYJWtA0AZiajJ1aqp0wkelb+pqZF0Oo2UvBMu0KiJUIFjtbH6yyM0TbWbkkAn6ymnyOdzRCKS0JNIJIlEIs7YlC6rV4so51dFlrHdQncJPBpjdi/7jYc4YDzEcW0P8+0Njld5KfV04OUDbXcCl3lIm9HREUoli87ODpdAIkPbtgOGunNvPE9fiQl4zNlgKFV6qZoPWCtNgZs6B3/7ptqhUmmqLMXv+VeKpZeX7wimpnKMjPTTN+8ZHk98j18r/R0t9nwX/Pxefz6fJ5lMkEjESaWSLsiXk5E8j1zHtuHyy5dy6aXLap/AWbK5CIzf+c53+MpXvsLdd99NXV3dKz2ck7VXDziaplk1JDITGx4eZu/evSxcuJCpqSlWr149i6OTdiak4GzbZmRkhIGBAcbHx2loaKCjo4OWlpZpV7NCCF566SVGRkZYt27drLLHjh0rceedOcbGLLfcQebHZGjUtquDpGGoWkmPJFIeRi07EydfqZiTpht+lefpeVayD+MAra2tJJMyxFPeDNeb+KUnKyfk2ufr9VDUAh6mZUmgUoQRWU8ZdzyWGJ6GqkY0KlxvTpU0yHP3yExyvJAXkxwyHmW/9hAH9UdoEvNZYV/GUusyeoylCB/IDQwMousara1tAfKOYrEqUo/y+tQxDcNyc44qjKq+qxZKLfcgpSB3sH2Yat8UeieFZIIq03Xb571WbO2rA/W8x3w+z/j4MC91P8bT0bt4V/ETNItKwFBdPWxbUChkHfZrHk3TSafT1NUliUajmKZFLKZKYWTZxk03reHcc+cGCM1FYPzBD37AF7/4RbZt23bKkahX2F4DR5AknN7eXjZs2EChUODYsWOsXbt2VseniDdw5qTgVOhsYGCAkZERksmky3wtBz7bttm7dy8Aq1atOiNjymZtfvCDLEeOlJyQJw6rU2quqsk1DPhk6C1I7lD5tdq/Eei6YlsqsATQKBTyjIwMO101Yg4wCBcEw0zmQFV5ivefc0S8An2rKmFIeT0gn9NMZsoJvxaJx+PU19c5xffeZK1ARoVElafqHRdUbtfC5Ji2i/36L9ivP4TAZrl9CcusS0n2zyMeTTlRBc9TVeDlD6fKc9R852m54f9yU+Fg7zp56YKgDmmYMo5XE+oH5fK8bOXvg2FiyRJV4Vl5caTHOMJLCx/k2cj9vKv4CRpEWF9VgZqu4nHdrQuV96hELpdlcjKDEILGRikOYRhR2tvruPnmdXR1zY0Jfy4C4913383nPvc57r777jPG8D8L9v82OCqAME2TNWvWYBgGU1NTHDhwgI0bN87KuE4lvzhbx81kMgwMDDA0NIRhGHR0dNDe3k4kEmH37t20tLSwaNGiMz6mX/4yx0MP5VEhRwmQuOxJmStT4Tn5Gzk5l6jV9kqBpSTZePWGlXkuQS6XY2xslM7ObvyNeCXoaBiGJJx4E7Q6Ru1muspU02U1ebtHFiKkbtNjgBYKBTKZDIVCnlgsSjIZJ51OAbpvDP4fl2vZys/csg9sxqIHec58kOftnzMZ7WWpuIjl9mUsFReSICiL6A/rlodNNc1EleD4z2em3VOk9+vlQlVYVLFVaxF5lMkel8I5rgeoXr7Z89gzmQyjY6McWnQf+4xHeVfh76ijJWRcqu2aegZFINTs714iST2TFAp5Vqyo4/WvX0pnZ+eMIjNn2uYiMN5777188pOf5J577pkVzelX0P7fBcdiscgzzzxDa2srixcvdl/SfD7Pc889x+bNm097TK8UMIZZLifJCX19fUxNTdHe3s6SJUtmTRt2Ojt8uMi2bTnGx2031yXBTH4va8c0pGKO6mjvLyWY3uRcZTvX3fvd+PiE24dRlVioCRbAsjQ3LKpMeUYSHJXn5HmK4AGLZIkGfx9marKt5qWaZoHJyUmy2Sy6rjuF7Wk3T+ln0/q9J7DJ57MkEinkAqTEiRMnaGxsgro8+/WH2a//kqPaTnrEGpbbl7LCvpQG0V22L2me92ZWLA48r1NzPdHgYsADW3ltgt6/UkMKvz7+HC5O2NfrI+r3TNV3/hKoickJXlhwF8cie3hn4eOkaPTtV3fvnaxt9EqM5P31iEaRiOECaLFosnBhMzfeeC4tLSnGxsZcbdFEIuFqi56tUitlcxEYf/7zn/M3f/M33H333QERlV9Re/WAo2VZbgeL6Wxqaordu3ezbNmyiptYKpXYuXMn559//mmNZy4BozLFSF2+fDnFYpGBgQHy+Tytra10dHTQ0NBwRsdpWTYPP1xg+/a8q4ajiv6VSU9Fd8k4kYiJaVIRbqtmkq2qPEqLkZFRLKtEe3tHWZ7NT9pROUuQ4CL/TxFGqpFyIEjM8cLm1ccnQcNTXPEDnpTZk/uQ4VeZp7Qsy+lNKQvblZftXTPvOTNNk8HBEzQ1tVSQq4rkOKw9zj79lxzQH6FetLPMvpTl1qV0swqEF1JV4elgN4yTe73lfoJAqEozlJC43EaJfavIgkAxZquXVnjjmZycZHJqgj0Lvk+/cYB3lv6WlKYE/MNahXm6tbZtOvlVv2SdzHvGYjpXXLGUzZvD29FlMhm3Jtm2bZdBfiZaO/ltLgLjQw89xEc/+lHuvvtuurq6XunhzIb9vweOg4OD7N+/n3Xr1oV23rBtm8cff5yLLrrolMdyJog3p2v9/f0cOXKkgpFqWRbDw8MMDAwwOTlJU1MTHR0dNDc3n7Hc6MSExU9+kuPFF4tomhS4lgLm/q3UhCVDpSrs5SfZhNUfeuxIGB7uR9N0WlpaqrIiVchQiWyr51uJjUuA9vJyXq5TK9tP9a4T5RYsjPe8Zj84el6p/FcKpGcolUokEpLQI2vGPA+uUMgzODhAZ2cz0Wh1T0YIMG2TE/oeDhjSqyxqOZbbl7DCvpRFYgsRYoBJUCu1cj+1Hm21QJHnp/KblhMKnZ6pWu2a+jubTEyMk81neHr+NxnT+nin+ddErETFb8DvueOQw2QYvTxiEIkIVqxo57rrVlJXF76vciuVSq4IdyaToampifb2dpqbm2c1/DoXgfHRRx/lIx/5CNu2bWPevFdeNm+W7P8dcBRCcOTIEYaGhtiwYUPNDtfbt2/n4osvPqVxCDG3ejCeDCPVtm3GxsYYGBhgdHSUuro6Ojo6aG1tPSOFuocOFfnZz3IMDcmWRir/V062iUSkl2lZ0svwnV2A7CJ/J72d/v4BUqkUTU11M/R4wsOdHvvUI+Yo0AoChgrLzeSdUixYf22fOhfbdy6edqlaaNm2TT6v8pRZotEYqVQKXTdcslEyGQ2ELlVHDyUGL4HX26euwzAvsU//Jfv1hxjQDrLYPp/l1sUssS4kSW3yiQI///kpT9jf8koee2blVsrr9C8wvestFyojIyNk8xken387eW2Km4t/SUKPVxCIvHvoPWO6LmtBg+eh0dyc4JprlrNixamHBdV7NDg4yOjoKMlk0vUqa80705llWezatYuenp45A4xPPvkkH/7wh/nRj3502g3f55i9esDRtm1KpVLV75599lkMw5hWKxRODRznYhj1dBipUlZtwg0bxeNxl9BzOi942Bgff7zA9u05slnTBRePHCEfKVW7p7qVSPCovMamWWJkpJeGhibS6TpALlZmcj9q5Q1rhfg88zRDPU3ZIPHHMy986CcBybCy95kq0BdCigMoT06q3sg+pmNjY2QyU8Ricerq0jQ2pgLX0S8s4OmnBj1xP0EmI0Z4Kf4oL/ILjuhP08UKVorXsZJLaGG+y3D1e9AKbOX/e9J46pqpsLO6Dh7rtNKDFMLLN5c301Ze4+joKAUzy/Z5X0JoNm8pfpSYHiOo4+pp+fr/P0x1JxYzOO+8Hq64Ygmx2OyVNClinPIqAdra2mhrazup8OtcBMadO3fyu7/7u/zwhz9kyZIlr/RwZtte/eBYKBTYtWsX3d3dM17ZnCw4zkVgLJVK7NmzZ9YYqSq/Mjg4iKZprpTdbGnOZrMW992XZffufKCmUE2IcuUvfDkw4QKlKtUoFgsMDAzS0dFCLOaFFT1VE0nK8Jdm+E1OyF4LKXl8b9JXtZoSUDyvUf2rwoD+30L1fKlkclqOULciJ1k+cQMv92aaNoZhOOxKzc2b5nJTjI+P09nZ7dZTFotTmKZFIpGgrq7OEeBW2qpGAKRAaaXKxYYMJcsyDssSFOwcL+lPc8DYzgFjOwlRz3LrdSyzX0ePvRqN6gsur7RG6r3ONG/sv5bK/MA4MjJCUeR4qOf/I06KNxX/F7qIEo0GiTweccq7J+WLnEhEY9GiFq69djnt7We+UL1YLLrdKjKZDM3NzW74tdridS4C4549e/jN3/xNvve977FixYrT3t9PfvITPvzhD2NZFh/84Ae57bbbQrd78sknufDCC/n2t7/N29/+9tM+bg17dYPjxMQEe/bsYdWqVSdFKz4ZcJyLwHg6GqkzsUKh4Gq+lkol2tra6OjomBUiwrFjRX72swwvv1wZIpcTt2Io2qgSDk0TzqQzTFtbB7FY3J2YlUmAqe1B+vsyhn8PKhwaZuUi5cr84VE/AccDUcsZo+YDEQleqlExKAavRxSamppkfHySnp4u16uU3qBNoVCiVMozMTGFaZZcrzKZTGDbipHpFc+rxr6qT2a5YLiu66DZ9Op72a8/wj7tYXLaOEutC1lmvY5z7M1EKc/PeQICJ0vmgWATZLVAGB4eoqTneaD7CzSKTm60/icR3Qjk+b37oXo0Ki9a5UCl193SkuTKK5exatUrw6yUykWjbvg1lUq57FcVnZmLwPj888/z/ve/n29961uce+65p70/y7JYsWIFP/vZz5g/fz5bt27lm9/8ZsW+LcvimmuuIZFI8P73v/81cJypqRCTsr6+Pg4dOsSGDRtOulxh+/btXHTRRdNO9HOReDMbGqknY+VEhJaWFjo6Omhqajqt67FjR4aHH84yNSUolbxaP0XD94fsMpkMExNjdHV1E4no7gpcKrOUT7C1AXI6Yk01gJRhRK/uUH1WXSpPuEowMicoXLFvWerisSaVfJra1jBgZGSUYrFAW1u760F7ICxLEyTISXZmqVRgcjJDNpsjmYwRj6dIpZScnUdSUeeoOk/I6xguxzeqHeeAvp39xsP06/tYZJ/HCnEJS+2LaNBbHKUiL0cbcjWdaxX8V3qIpu9zeU37+wco6jnu7/4/dIglXG/+HsKWZSXliyGvY4b08GXnEvmuxuMRtm6dz6WXnuNqu77SpsKvKo0B0NLSwtDQEAsWLHBb6L3Stm/fPt73vvfx9a9/nXXr1s3KPh999FH++q//mp/+9KcAfPKTnwTgz/7szwLbff7znycajfLkk09y4403zjlwnJPy6X4TQnDw4EHGx8fZunXrKUmiyfCVVZOEMteIN+AxUs9ki61yi0ajdHd3090tw3ojIyP09vayd+9eGhsbaW9vP6WC6U2b0qxdm+DBBzPs2JEDpHi5ZclmvrINk8HIyCjZbIaODtl+ybL8RdzSE5Kd4mX4NRqNuPkmme/SfN6cBCwVdavOxjRQXpFX14dTihCOhircp0pJFNtWmRAakYiBplmUSrbjRQo3N6iOZRgwODiMEDbt7R2uF6TMEzW33dCsDNsmaGuTz0ShUCCbzTAwMIGuQzKZdkTSYyjRAtP0FgmKfOR/zE1T0Mw8tlrvYKv1DnJMcMh4jP36I9wX/VfaxCKWi4tYal1Mq1iIFjrXiNB/JalK/q082MHBQexEjnvb/oH59lquKv02wtWSDV5LlV+ULahkjta2JdhKFuoymprmlgi2pmnU1dVRV1fH4sWLyeVy7Ny5E8MweOmll5iYmJg2/Hqm7dChQ7zvfe/j9ttvnzVgBNnsYcGCBe7f8+fP5/HHH6/Y5gc/+AE///nPefLJJ2ft2LNpcxocLctiz549JBIJNm3adMqeSy1wnIthVD8jddOmTa9Yh23DMNz+k0IIl/l64MAB0um0GzKa6fhiMYNrr21g8+YkP/3pBIcOlYhENITQicWgr28I07To6ekmLKAhNVyD8mcyh+eBWLlnp2oqpzcdvyarl6dUgKJk0Txll7BSFXlMLz8WjepORwzlLXsdSjQN+vsH0TTducbKk/aOq3KJlqWhxLOlp627JS7JZIJkMu6kIiwKhSzDw8NYlkUymSSVSpFOx1Fd7lVBfzkfyX+OKbuRc81rWKNdi20VOartYJ/+CN+J/W8ixFhmXcxy+2Lm2WvQqbVQUnlYxSg16e8fwErm+HHbp1hmXchl5q1ojtpSNKq5dYrKVKhY5WdB0NSU5PrrV7J06dxXbbEsi+eff57FixfT3d0dCL/u27ePdDrtknpmkxxXy1566SXe85738OUvf5nzzjtvVvcdFo0sn1f/6I/+iE9/+tOvuCpRLZuz4GhZFk8++STz589n/vz5p7UvBY7lNheB0c9I3bhx45zxYjVNo7m5mebmZoQQTE1NMTAwwM6dO4lEIi7zdSbKIq2tUd797lb278/z059OMDJSoq9vGMPQ6ezs8JF1gkgnQ5DB5sVCqJClrHnTNMu9ZrXCoGFm2xqGYTjhUOWBKoHqYP2c2r8KpZqm971fp1QRSdS2CuSEsBkY6CcWi9PU1BS6GFCmHkuvs4fysHRHCF3lbaW3GonUk0rVo+sqRD3B8HCOeDzhAGXS9VAVSUiFS4M1gnLhoYsYS9nKUnsrwv4w/dp+9umPcr/xr0xoAyy1L2S5fTGLrS1ERdLJr6prZLv30jRlWzHRkOPulk+w1rqaS8S7sZ0wsMzJWihtVb/sm+pwkk5HuOCCBZx//vw5PbEqC8sx6rpOa2srra2t7rs0NDTEM888A+AuOtPp9BmZk44fP86v/dqv8cUvfpGtW7fO+v7nz5/PsWPH3L9ffvnlijDyU089xbve9S4AhoaGuOeee4hEIrzlLW+Z9fGcqs3ZnCPgJrVP13bv3s3ixYsDIgFzERhnm5F6tiyXy7mEHiGE623OJDdcLBb57//ew4EDdSSTdRiGImMouTerLByq+YQBtIAHp8oNlGKK8ym6bpcBlved+p1/H3JyV7quwXIQPyBWgqXwNRtWOUYVovV7mjYnTvRRV1dHfX09qiGxzLWVa61qTjcN2w0beyLdBEBEHt9w/g4WwmuaydSU7E+Zz+eIRqOkUmnS6RTRqOE7H1Vqo7kem6pRDLNJfYADxqPs1x/huPYC8+01LLMuZql1IU16m8sINk25GLAaMmxr+Ts2WW/ifPNtgX3punc8pderaTqGoZNORzj//Pls3jwv4FXOZTsV8k2xWHTzlLlczmW/nmr7unLr7e3l7W9/O5///Od5/etff9r7CzPTNFmxYgX3338/8+bNY+vWrXzjG99gzZo1odv/xm/8xms5x5O1dDp9Cqy4Siv3HOci8UYxUhcvXvwrp2OYTCZZtGgRixYtcl/uffv2USgUXOZrWBPnfD7P7t27ueGGRTQ2tvHUUzl27MgyOWmh66pUQ6rqeCQSj0Fa/myogniZk/NT/zVXxUWZl3PT3L9Vw2MZwpPNbyW5xWOnyrBmJSgqwfVyr1bXNQoFv+CAxYkTvTQ2NlJXV+eQVeRxvTF456fOWYVUXUFy5zsl9u7lJG0H3A1nkaCuGaTTSerr09i27QikZ+nt7UXXdVKplNOjMuKOXR1H1hGq6+WNzbah3m7nPPvNnMebKTDFIeMpDujbeSj6nzTTzTLzQpbYF2D1J7CbM9zV9HEuNG9hk/Wmsntnu4sSTTPcXG5ra4ILL1zAxo1dcyaKMhM7VVZqLBZj3rx5zJs3D8uyGB0dpb+/nxdffPGUUhl+6+/v5x3veAef+cxnzhgwAkQiEf7lX/6F6667DsuyeP/738+aNWv44he/CMDv/M7vnLFjz6bNac+xWCzOCjju3buX9vZ2N4wx14g3Z5uRerbMNE1Xym5qaorm5maX+ZrNZnn22WdZuXJloA2Obdvs2ZPnySczDA2VsCwlLi37ORaLygtUYdfqCxtVLqBpwm2yO71pRCJKk1TlMm3Xc/Ob8iL9nqIyGToVjuckv7OsEr29/bS0tDhNeDVfSDQoowZe3lO2BAuWlVRuq6PKYfy/VyFcf5G88jjVPk3TJJ/PkMtlKZVMJ/SaIh6Pu8f3Cw746z09Vqr6zgmJUuQl8Qz7tEd5UXsETdeIaAYXm+9mrXmtG8rF6XspdWRtty61oyPNRRfNZ/36rjmxeD0ZOxPlGir8qrxKXdddlZ6ZRGiGhoa4+eab+bu/+zuuv/76WRnTr5i9eko5YPbAcf/+/TQ2NtLa2jqnwqhQXSP11WaKhDAwMMDw8DClUomlS5cyb968qrmjw4cLPP54hkOH8i7LU3pyqsFvJamk3LwQqUV5U14VZlWqNkAFAMrvVZG9cIQFBLGY7pZn+H+nSjP83UlkWLFIX18/bW1tJBIJ16v0j6e8flCBo67LvKJ/ey+H6QdIfzjWs2gU14v05xe9Y6iWU9KzzeVyZDKyP2UyGXcIPwkHgIPmdfXwd+AQgE2pZNLX109TcyNTqQFidpoG0Y4SCVe5Zb9MZGdnmksuWciaNbNfz3s27GzVMRYKBbfkKp/P1wy/joyMcPPNN/Oxj32MN73pTVX2+Kq3Vxc4lkqlClLGqdihQ4eIxWJ0dnbOGWBU2rCjo6OsX7/+jGidzkVTi4HFixczPj7O8PAwiUTCJfSEhYuGh0s8+ugUzz6bo1iU3orsnOFN8HJyr1S58VskYlEsWqEAWMukgLhfx1S4E3ul5yfH58nNgWXlOXGin87OTuLxWNm2/pCucL0peVylxmO7oVslpu7fv2LVqlclyHiV7bckmUeJEGhufWm5+RmrpmlTLGaZnJwin887ecoUqVTKXdCE5VkNQ1AoyMVAa6vsJuIdU6kEaQ4oaiSTEVaubGPjxk4WLPjVjZy8UgX+quRqaGiIsbEx6urqOHr0KOeffz6xWIybb76ZP/3TP+Xmm28+a2Oag/YaOJabEILe3l4OHz5MT08PHR0dTveDV85s2+aFF15A13VWrlw5Z8K7Z9qOHj3K4OAg69evD4CgauI8ODjolo+E3ad83mLHjiwvvJDjxImSS96QIdNgqFzmGSvHoJrtqvBdLVOeahhzVpliZmqaoFSqLI4vFiVZqbOzk2g04vxGq/DuysOk6viyztEO6Lb6j6EWBv7PPK9Sga+J195LoLp+TPduKYEEtRDI54tu2y1d16mvT5FIpAOF97oOhUKO/v4BOjraHQUf21Hx0Z1zlYLuCxc2sH59B6tXt7vf/araXFG+EUIwOTnJZz/7We6++26mpqa4/PLL+cu//EuWLVv2io1rDthr4Og3P/GmUCgwODjIwMCAy6js7Ow866FMxUhtbW1l4cKFc8KLPdMmhGD//v0UCgXWrFlTczGQz+fd+2RZlkvoKae1j42ZPPtslhdfzNPXV3I8K0Gp5DE1JXAFwVLlKhUhRzIyVSlBsKjfb2FKO7KxrlcuokKMqmNEJjPFyMg48+a1A7q7jao3DO6rEhyVd+lXiwnfTg8FVkXGkSpCldfauwaVOVPwmL/B36iSC5NMJks2m0H2p0zR0JBG0+DEiV7a2zucsh7hLmI0DVpa4qxd28HGjV3U1Z2dmr4zbXMFGP2WyWR4xzvewc0330wymeSuu+7i+PHjXHfddXziE5/4f2LeKbNXFziaphlanzgTq8VIVY2BBwYGME0zoCV6Ju1XmZF6qmbbNs899xyJRIJly5ad1EuppOwGBgbI5XKulF1jY2NgP6OjJfbsybF3b47h4ZKTQ7Pxmgh7LakkeMlcpfQIVR7Tz4itNFU+osChWrcPkCAwMTHB1NQUnZ0dxON6YJGnOnR44VelA1t+TAWOXijYIwkF6ykVCJWLE0j2p8BfphE+ZgmUQY/adverQqeyxEIP5C6l8ECO8fFxcrkcyWSSpqYGUqkUti1IpaKsWdPGxo0ddHdX9lz9Vba5CIy5XI5bbrmF97znPbz//e93P89ms+zateuU2/f9ittr4AjygZ0p8aZ8Aq5VenA6NjY2xgsvvMCaNWtoaGiYtf3+/+2deVhTZ9rG77BE9p0gEioqoBRZXLDVqmNdSlU0oaJ1prYupdqrrdVxrlIdv07tdKbV1um0U9v6XWOnVqt+hQRFIEpdymhrxR20iNq6IDQkgbCEJSQ5Od8feI4QQECynIT3908rHJJHSXKf932f5765jF6vR0lJCYKDg/udDceEOKtUKjQ0NMDX1xcCgQABAQEdVqI1NXpcudKMsrIWKJW6dqvDjo/XXuyY10lb8wtTe3uhpO8NoRvvCWjXrwtmzrK6Wo3W1lb2jJuxTGs7Z7t/Rtl+pdm2NdrxzLFNmOh7YykdG3W6Cw023S5m/p7dfb/rvwNzA0Gx1m2MSHb9vG0rlZqaGoSEtN30eXoa4ONDISrKD7GxQx96/IDLcFEYtVotfv/73yM1NRWrVq0aiCvE7hjY4tjfwX6KolihbGxsREBAAEJCQjqtVPrKQOlIbY9Wq0VxcbFFkkTah8+q1Wp4eXmx81/tG5saGvT45ZdWlJdrUVmpQ12doYNQtglH5xVV2/gC2JGO+/OFNOvGYwojwjU1alAUheDgYPY10ya41L1VYOefNfUS7fj1tlES0+dq3wjU8Xv3Zx0BptO2o7AyTjTMjQHzdaaLlOk0bVuF8tpt0XZudHJyou91ttZh4sQYjBoVjMhIf7i6OncaP3B2dmZvPu39fcBFYWxtbcXzzz+Pp556CqtXrybC2BHHEkeKojq0eT8IczvetH3Qtc3oNTQ0wM/PDwKBoE9GwUxHal1dHeLi4gZMR2pjY2OXM4yWgGlAYEZE+Hw+69BjamWn0ehx61Yr7tzRoqJCi5oaA9rCiOl7W4Zdj3IAjJUawONR91aPbSLJrPwMBhoqlQpOTk4ICAi8VxvuXdM249jVKMT91WFXosm7d3NIwfS9zZwVdl0r47jTVm97AWzb3W2bD6Xp+ykXjINP26Xdd/S23Tjw4OHhAqHQEwEBAFCNyZPH99joptVq2ZtPvV6PwMBABAcHw8fHx64+yLkojHq9HkuXLsXkyZPxpz/9ya7+Pa3EwBRHSzveMCsVpVKJ2tpa+Pj4sFt63c3oDdSO1NraWly7dg2jR4+2+BluVzQ3N7OdrwDYEZGubAgbGw24fVuL27dbUFnZiurq1gdumwLM2SBjbcbclNFQKKrA5w+Cr69fu5+n2W3JNmu0++MXzHu1bW6Scfe5//02n1emo7RNHDvOQTLidj98+f55I81u57ZvqGFcfoD25573DRbaDAuoTqLr4uIEgcAdwcEeEAq9EBbmiZAQT9TU1LAxcr3x1G0PYxChUqmg0Wjg5+fHJr5w+b3CRWE0GAxYsWIFxo4diw0bNhBh7JqBJ47WtoKjaRr19fXsSsXT0xMhISEIDAxkV4bMWVtQUNCA6UgF2raP79y5g/j4eJuPywBgO5RVKhV0Ol2PIc46HYXyci3kci3kch0UCh3q6vT3Bvvbi9P90Q5GGD09veDr6wPG6g3AvcYZxuGn8zgIc8bZ3VuQ2ao13VZlaN+5yjwW8x64vwK8nyLyINq2VdvGNgIC3BAS4gGBwA1CoTfCwrw7jVooFAqUl5cjMTGx32eJptvkHh4eEAgEnDun5KIwUhSFVatWISoqCps2bRownzUPwcASx7403lgC5kxFoVCguroabm5u8Pf3h1wux/DhwwdMRyrQNsNYXV3NWUMDg8HAbukxIc5Mnt6DXjuNjTrI5a1QqXRQqXRQq/WoqTFAp6Og1eqgUCjh5+fLWngxQ/Gmdm/MqAlD22uWOQ/s+Pzth/zbBJJZ/bV9zfT/O5qat9G+EYfZCuXxcC9oue3c0cWFh8BAdwgEbhg82B1Dhnhh8GCPHmcO5XI5KisrkZCQYHbxommanXtlbNKYuVdbnlNyVRhXr16N0NBQvPfee0QYH4xjiWNbPp2+09e5mKgBtH1oXL9+HXw+H4MGDepTjJO9wsww6nQ6PProo5zeEmMwGo1Qq9VQKpWor6/v1Ta5KQqFBidPFsPDYwj0ejfU1Oig0RjQ0kLdEyseK3zMduf9Bpv2q8LuYX6mvS9qVzCPe9+p5/7cIp/vBC8vV/j4uMLT0xW+vq7w9R2EIUM8EBLi0ef3TmVlJaqqqpCYmGiVyCgunFNyURiNRiP++Mc/wtvbG1u3brWL952NcXxx5KowVlVVoby8nN1SZGKclEoleDweBAIBJ9x5zEl/Zhi5QvttcrVaDXd39x639BobG3H58uUujeLbVj4UNBo9NBoDGhsN0GgMaGoyQKPRo7XViKYmAwwGA9o2RWg26YOmO3etMs1CTk5tK1IXFye4uvLg6up8779OcHV1Ap/Pg6enC3x9+fDx4cPfnw9//0FsyoY5KC8vR01NDeLj422SpWh6TtndOI854aowvvnmm+DxePjXv/5FhLF3OLY4cjFqqjcdqa2traxQMm3+jOuLvcKcqwoEAoSHh9u6HLNguqXn7OzMrv6ZmxomQSUuLs5iDUdMMLDB0Nb8M2iQi83t1W7fvo36+nrExcVx4sO4q3NKpkvZXFu9XBXGv/zlL2hqasIXX3zBid+FneBY4kjTNHQ6Hfv/XBNGpiPV2dkZ0dHRvXqh6vV6qFQqKBSKXjWJcBFmhtHRnX5aWlrYhp42izRP1NXVYezYsXY/p9dbaJrGzZs30dzc3KP1n61gbmqY3xVzTtldl3Jv4KIw0jSNd999F1VVVfjyyy9tsnq3YxxTHJlYG66IItDR/SU8PPyh6mrfJNLc3IzAwEAIBAJOz30xW4oxMTHw8/OzdTlWo7KyErdu3YKHhwd0Op1d/K76C3OebDAYEBMTYzd/T+ackulS7us5JVeFccuWLfj111+xa9cuIox9x7HE0Wg0QqvVcu58sbm5GSUlJWbtSGXs0ZRKJTQaDRsM3FM3pTVRq9W4fv26zWYYbUVFRQUUCgUSEhLg4uLS6Xf1MAYRXIemaZSVlYHH42HkyJGceQ32le7OKf39/bsUGK4K4z//+U8UFxdj7969Ztk2Pnz4MNasWQOKopCeno7169d3+P6ePXuwZcsWAICXlxe++OILJCQk9Pt5bYhjiWNubi4+//xziEQizJ07F4GBgbYsB4B1PFKZYGCFQoH6+nqrNB70BNNw9DAD3/YKc57MnLV19WFqahDh7e3NWtnZ6909TdMoLS0Fn8+320arrujpnJKrwvjZZ5/h1KlTyMzMBJ/f/yQTiqIQHR2NI0eOQCgUIikpCfv27cOjjz7KXnPq1CnExMTA398fhw4dwqZNm1BUVNTv57YhjiWOzN2rRCJBXl4efHx8MH/+fMybN6+Dd6W1MO1ItQY0TbMfvmq1Gt7e3hAIBAgMDLTah++dO3fYLkUuzjBaAmZLUa/XIyYmplc3JTRNo6GhgfUSbT/OY44PNWtgNBpx5coVeHl5YdiwYQ4jjKaYnlPyeDzodDoIhUIMHTrU1uUBaKvx3//+N44ePQqpVGq2m9KffvoJmzZtQkFBAQDg/fffBwBs2LChy+tra2sxevRoVFZWmuX5bYRjiWN7aJrGr7/+CqlUipycHPD5fMyfPx8ikQiDBw+26JuYpmncunWLXUHYSiCYD1/GnYcZOwgODrZITfY4w2gOmEYrV1dXREVFPfRry/TDl/ldcbWZx2g0oqSkBH5+foiIiLB1OVaDoihcuHCBPU9+mHNKc0PTNHbu3ImDBw8iJyfHrDfjEokEhw8fxo4dOwAAu3fvRlFREbZt29bl9Vu3bkVZWRl7vZ3S51+i3SwDeDweIiMj8eabbyIjIwPl5eWQSqVYtmwZaJrGvHnzIBaLIRQKzfpiNhqNKC0thYuLCxISEmwqEDweD76+vvD19UVkZCSampqgUChw/vx58Pl8s65SmBWEu7s7YmNjHXYFYQpFUbh8+TJ8fX0RERHRr7+3p6cnPD09ERERwY7zXL16FQaDgW3o4UqXMkVRKC4uZhvMBgrMVqpQKGS3Uplzyrt377LnlIzvq7V2a/bs2YPs7Gzk5uaafZeqqwVRd6/B77//Hl9++SV++OEHs9ZgD9jNyrE7aJqGXC6HVCrF/v370dzcjJSUFIhEIgwfPrxfHzzmzCO0NO0Nt52cnDrN5/UFR5xh7A0GgwHFxcUICQmBUCi02PMwGaIqlQrNzc2slZ2fn59NhJL5e4eGhmLIkCFWf35b0ZszxvbnlLW1tXB3d2fPlC21VZ6ZmYmvvvoK+fn5Fml86+22aklJCVJTU3Ho0CFER0ebvQ4r47jbqr2BpmkolUrs378f2dnZqK2txZw5cyAWixEdHd2nDx6mI3XEiBEIDg62YNXmR6vVskJpNBpZ04HezHwNlBlGU3Q6HS5duoShQ4eaPX/yQVAUBbVaDZVKxTZfBQcHIzAw0Cq7FHq9HpcuXUJ4eDgGDx5s8efjCg/TfGOJeUpT9u/fj+3btyM/P99iDX8GgwHR0dE4duwYwsLCkJSUhL179yI2Npa9pry8HNOnT8euXbswadIki9RhZQa2OJpSU1ODAwcOIDs7G1VVVUhOTkZqamqPDRbW6Ei1FjqdjnXnMRgMHUwHTBmoM4wtLS0oLi5GVFSUTTuiTZuvPD092eYrS6RTMDcEERERA+pGyFxdqe1TX1pbWxEUFNSvc8q8vDx8/PHHyM/Pt3gOqkwmw9q1a0FRFFasWIGNGzdi+/btAICXX34Z6enpkEqlbHOSi4sLzp07Z9GaLAwRx+6oq6vDwYMHkZ2djdu3b2PWrFlITU1FfHx8B6G8ceMGamtrORO7ZE6Y7TylUomWlhZWKL29vVFbW4vr168jLi7Orm3t+sqDfFJtCZP4wljZubq6mtXIvrW1FZcuXcKIESMQFBRkhortA0uNa3Q1T9mXc8qCggJs3rwZMpmMEyNrDggRx96g0WiQn58PqVSKa9euYcaMGZg3bx6ys7NRUVGBXbt2OfzIAkVRrFDW1dXBaDQiJibGJiMytsIaPqnmgjGyV6lUoGma3c57mBsZrVaLS5cuITo6GgEBARaolptYa47RaDR2MLNn5im7O6c8fvw43nnnHeTn5w+oFbyVIeLYV5qbm3Hw4EH8+c9/hqenJ6ZMmYLU1FQ8/vjjdjvE3Rfu3LmD6upqCIVCVFdXo6GhwSEdX0ypqanBjRs3kJCQwNnRiu7Q6XRQqVRQKpUdrOy8vb17vLFhztJHjRo1oLbObTXg3/6csrq6GjweD4MGDYKTkxNiY2Nx4sQJbNy4Efn5+QPqzNcGEHHsK2q1GgsXLoRYLMZLL72EI0eOQCKR4Pz585g0aRJSU1PxxBNPONxKkqZpXL9+HXq9vsMMo6njy8NkHXIdhUKBO3fuIDEx0W6G87uD2c5TKpVobGxkbQf9/Pw63dg0NTWhpKTEIc7S+wKXnG9aW1tx+vRp/O1vf4NSqYRWq8Xnn3+OuXPnOuyNKEcg4thX0tLSsGzZMqSkpHT4uk6nw/HjxyGVSnHq1Ck89thjEIvFmDp1qt1/oDIzjB4eHhgxYkS3q432WYc1NTVsg0hQUJDd3iyY+qQ6EoztILNV3t5Nqbm5GVeuXLGLLWRzwiVhbM/Zs2exbt06rFy5EqdOncLFixcxceJEvPTSSxg/fryty3NEiDj2FYqielwRGQwG/Pe//4VEIsHJkycxZswYiMViPPnkk3bXtPOwM4xMg4hCoUB1dTXc3NzYBhFLdFKam974pDoS7d2UmO3XiIgICIVCu/h9mQOuCuPFixfxyiuv4MCBAxg2bBiAts+YU6dOwc3NDRMmTLBxhQ4JEUdLQ1EUfvzxR0gkEhw/fhyjR4+GWCzGzJkzzTbrZCnMOcPIhAKrVCq4uLiYtZPS3DBbyEz00kDavqqrq0NZWRmioqJY31dnZ2d29tXebu56C1eF8fLly3jppZcgkUgcYbDeniDiaE2MRiPOnDmDrKwsHDlyBFFRURCLxUhOTubc1pVGo8GVK1csMsPYvpMSAPvBy4VGF8b+j8/n98sn1R5hIsYSExM7iKBWq2UbeiiKYkd6PD09HeLfh6vCWFpaihUrVuDbb79FTEyMrcsZaBBxtBVGoxEXL15EVlYWCgoK8Mgjj2D+/PmYM2eOzefnmA9Ja8wwMh6izAcvI5S2mJ1s75PKbF8NFFQqFW7dutVj05Hp7CtjuO3r62uXQslVYbx27RqWLl2KPXv2IC4uztblDESIOHIBpuFFIpGws0sikQgpKSlWnyuzZQ6jXq9nVyiMg4i1zLaZs1VL+6RyEYVCgfLyciQmJvbpfJEJcVapVOxIDzPIbg9b0VwVxps3b+IPf/gDvv76a4wZM8bW5QxUiDhyjfaZlLm5ufD19YVIJMK8efMQFBRkUZHgUg6jwWBgVyiM2XZISIhFIoFs5ZPKBeRyOSorK5GQkNCvxhvTYGAvLy+289XWr6Wu4Kow3rlzB4sXL8aOHTuQlJRk63IGMkQcuQxN0/jll18glUpx8OBBDBo0iM2kDAkJMZtIdDfDyBUYs22FQgGNRvPA2by+whWfVFtQWVmJqqoqJCYmmrUbl6ZpaDQadqSHz+ez2+VcGGviqjBWVFRg0aJF+OKLLzBx4kRblzPQIeJoL9A0jTt37kAqleLAgQMAwGZShoWFPbRQUhSFn3/+uccZRq5gOpvn6+vLmg70VSi56pNqDcrLy9ldAkuPqbSPR+PxeGZPpugLXBVGuVyOtLQ0fPLJJ5g6daqtyyEQcbRPaJrGb7/9xmZSarVaNpNy2LBhvRY4ez9nM02lYLbygoKCevzAtyefVHNz69YtNDQ0IC4uzuq7BO2TKXQ6nVXPlbkqjAqFAgsWLMCHH36IGTNm2LocQhtEHO0dJpMyOzsb2dnZqK+vx5w5cyASiR6YSeloOYzMVp5CoUBNTQ3c3d1ZoTQ9S7Nnn9T+QNM0bt68iebmZsTGxtp8+7z9uXJTUxMCAgLY7XJzCyVXhbG6uhrPPPMM/va3v+Hpp5+2dTmE+xBxdDSqq6uRk5MDqVQKhUKB2bNnQywWIyYmhv3AKSkpQUNDA0aPHu2QZtKMeTOzlefq6oqQkBAEBwdDrVaznZlcOP+yFjRN48aNG6yxAde2z41GI9RqNZRKJerr683q0ctVYVSr1XjmmWfwl7/8pZMdJcHmEHF0ZJhMSqlUivLycsyaNQtDhgzBZ599BqlUisjISFuXaBWYM6+Kigro9XoMGzYMgwcPdli3F1OYDmgej4eRI0dyThhNae/Rq1arH7gL0BNcFca6ujosWLAAGRkZSE1NtXU5hM4QcRwoNDQ0YOPGjcjKyoJQKMTUqVMhEokwbtw4m2+vWRrGJ7WhoQFRUVGorq6GSqWC0Whkuyi5buX3sNA0zTr+REZGcl4YTWm/C1BdXQ0XFxe2oaenmxuuCmNDQwPS0tKwevVqPPvss2Z5zMOHD2PNmjWgKArp6elYv359h+/TNI01a9ZAJpPBw8MDO3fuxNixY83y3A4KEcf2qNVqPPvss7h9+zYiIiKQmZkJf3//Lq+lKArjx49HWFgY8vLyrFxp36BpGv/4xz9w/PhxZGZmwsnJCTKZDFKpFFeuXMG0adMgEonw2GOPOZzB9oN8Uk1zDtu789ibiHQFYy7h5eXVp0YtLtPS0sI29BiNxg5Wdu3hqjA2NjZi0aJFSE9Px5IlS8zymBRFITo6GkeOHIFQKERSUhL27duHRx99lL1GJpPh008/hUwmQ1FREdasWYOioiKzPL+D0uc3i0MvMTZv3owZM2bgxo0bmDFjBjZv3tzttZ988ond+B2eO3cOpaWlyMnJgZeXFzw8PJCWloZ9+/bh7NmzmDVrFnbt2oWJEyfij3/8I06cOAGDwWDrsvuN0WjEzz//DB6P1+X8Jp/PR1hYGMaMGYOxY8fC3d0dv/76K4qKinDjxg3U19ejh5tBzmI0GlFSUgJfX18MHz7cIYQRANzd3fHII49g3LhxrIvTjRs3cPr0afZ3ZjAYOCmMzc3NWLx4MV544QWzCSMAnDlzBpGRkRg+fDj4fD4WL16MnJycDtfk5OTghRdeAI/Hw+OPP466ujrI5XKz1UBwcHHMycnB0qVLAQBLly5l5wlNqaioQH5+PtLT061Y3cOTlJSE//znP12e17i5uWH+/PnYtWsXLly4ALFYDIlEgokTJ2L16tU4duwYdDqdDaruHxRFoaSkBF5eXg/s2mVwdXVFaGgoEhISkJSUBB8fH5SXl+P06dO4du0aamtr7UYomVVTYGAghg4dautyLAafz8eQIUOQmJiIpKQk+Pr6ory8HCdOnGC/bzQabVxlG1qtFs899xyeffZZLF++3KyPXVlZ2SFOTigUorKyss/XEPoH93ygzIhCoWDvNENDQ6FUKru8bu3atfjggw+g0WisWZ7F4fP5mD17NmbPng29Xo8TJ04gKysL69evx7hx4yASiTB9+nROxky1R6/Xo7i4GKGhoQgLC+vzzzs7OyMkJAQhISFsF6VcLkdZWRn8/PwgEAjg7+/PybNag8HA/t2HDBli63KshrOzMwIDA3H37l2MGjUKbm5uUCqVuH79Ory9vREcHNyr+VdL0Nraiueffx4pKSlYuXKl2VfxXd20mT5Hb64h9A+7F8eZM2eiqqqq09f//ve/9+rn8/LyIBAIMG7cOBQWFpq5Ou7g6uqKGTNmYMaMGaAoCj/88AMkEgnefvttxMXFsZmUXJsTbG1tRXFxsdl8Up2cnBAUFISgoCDWP7T9hy7jH8qFs1q9Xo9Lly4hPDwcgwcPtnU5VqWrM8aAgAA2xFmlUuH27dsYNGgQ29BjjVEevV6P5cuXY/r06XjttdcsIkhCoRB3795l/1xRUdHpxqg31xD6h0M35IwcORKFhYUIDQ2FXC7HtGnTcO3atQ7XbNiwAbt374aLiwu0Wi0aGhrwzDPP4JtvvrFR1dbFaDTi9OnTkEgkOHr0KKKjoyEWi/HUU0/Z3GmG8UmNjo62eJoJ86HLmA54enqy4wa2MNpmzNMjIiIcwtShL/Sl+aapqYlt6OHxeGzotiVu8gwGA1asWIGxY8diw4YNFlupGQwGREdH49ixYwgLC0NSUhL27t2L2NhY9pr8/Hxs27aNbch5/fXXcebMGYvU4yCQbtX2vPHGGwgMDMT69euxefNmqNVqfPDBB91eX1hYiK1bt3K+W9VSGI1GXLhwgc2kjIiIwPz58zF79myre5Xa0ieVpmk0Njay4wZ8Pp81HehP0kVvaW1txaVLlzBixAgEBQVZ/Pm4RH+6UpksUZVKBYPBgKCgIAQHB5vFyo6iKKxatQrR0dF4++23Lb6FKZPJsHbtWlAUhRUrVmDjxo3Yvn07AODll18GTdN47bXXcPjwYXh4eOCrr77C+PHjLVqTnUPEsT01NTVYtGgRysvL8cgjjyArKwsBAQH47bffkJ6eDplM1uH6gS6O7TEajbh8+TIkEglkMhlCQkIgEokwd+5ci6/i6urqcPXqVcTHx9skJNmU9u48zs7OEAgEEAgEFjmr1Wq1uHTpklVWy1zDnOMaTIizSqViI9IEAsFDhThTFIXVq1cjNDQU7733Hjnbs0+IOBLMD03TuHr1KiQSCfLy8uDn58eGNwcHB5v1uaqrq/HLL79w1ieVmctTKpWgaZoVSnPU2tzcjJKSEowaNcohbQAfhCXnGJmINJVKhfr6evj6+iI4OBiBgYE9NmEZjUasXbsWvr6++PDDDznZtEXoFUQcCZaFyaSUSCQ4ePAg3N3dMW/ePLNkUlZVVdmVTyqTSKFUKmEwGDqYDvSVpqYmlJSUIDY2Fj4+PhaolrswwmiNjlzT5JcHnS0bjUZkZGTAyckJ//rXv4gw2jdEHAnWg7FxYzIpnZyckJKS8lCZlHfv3oVSqURCQgInk+Z7Qq/Xs0Kp1WoRFBSEkJCQXp13aTQaXLlyZUDGbVlTGE0xPVt2dXVFXV0dIiMjIRQK8dZbb6G5uRlffPEFEUb7h4gjwTbQNI3Kyko2k1Kn07GZlBEREd0KBE3TuHXrFjQaDUaPHs2JEYr+YjAYUFNTA4VCgaamJgQGBnZ73lVfX4+rV68iLi6OE+er1sSWwtgVLS0t+Oabb7Bz5040NTXB19cX33zzDUaOHGnr0vrF9u3b2Wae+vp6RERE4Pvvv7dxVVaHiCPB9tA0DYVCwWZSNjQ0YO7cuRCJRIiKimIFgqIoXLx4Ee7u7p18Uh0F5rxLqVSioaEB/v7+bMZhQ0MDysrKOHu+akm4JowMNE1j8+bNKCsrw1NPPYWDBw9CLpdj9uzZeOWVVzhlX9dX9Ho9pk+fjoyMDMybN8/W5VgbIo4E7lFdXY0DBw5AKpVCpVJh9uzZmDNnDt59913Ex8fjrbfeGhAdgEajEbW1tVAqlaipqWHn2QYPHuyQNwbdwWVh/Oc//4mSkhLs3buX3d7XaDQoKCjApEmTOFVvX3nllVcQHByMd955x9al2AIijgRuU1tbyzrzhIeHY9q0aRCLxYiLixswAqFSqXDz5k0MHz4carUaarUaXl5ebGOII2wtdweXhfGzzz7DTz/9hG+//dYuGsL6ws6dO5GVlYXc3NwB8z4zgYijI9CbqK27d+/ihRdeQFVVFZycnLBy5UqsWbPGRhX3nvr6eqSmpmLJkiVIS0tDXl4epFIpfvnlF8yYMQNisRhjx4512DewQqFgO3IZQwGapqHRaNjGkP6EAXMZLgvjv//9bxw9ehRSqZTzXsN95fz581i6dClOnjzZbWTfAICIoyOQkZGBgIAA1tmntrYWW7Zs6XCNXC6HXC7H2LFjodFoMG7cOBw4cKBD5hvXoGkaKSkpSE9P75SW3tjYiEOHDkEikaC0tJRdUU6YMMFhVlJyuRyVlZVISEh4oOi176B0cXFhZynteTXDZWHcuXMncnNzceDAgR4Dl+2R5cuXo6CggLUhHD9+PHbs2GHjqqwOEUdHoDeesKaIRCK89tprmDVrlpWqfDiam5vh4eHxwGu0Wi0KCgogkUhw8eJFTJ48GWKxGJMmTbLLMQ+gzRiaGVXpi9g3Nzez7jyMd6hAILCrD3GuCiMA7N69G5mZmcjNze3xdUmwa4g4OgJ+fn6oq6tj/+zv74/a2tpur799+zamTp2KK1euONwAeWtrK44dOwaJRIKioiJMnDgRYrEYU6ZMsZstx/LyctTU1CA+Pr5fq2CtVsvOUlIUxQollz/UuSyM3377Lb7++mvk5+cPuDGaAQgRR3vhQVFbS5cu7bU4NjY24ne/+x02btyIZ555xlLlcgK9Xo///ve/kEgkOHnyJMaPHw+RSIQnn3ySs+dEt27dQkNDg9kbjnQ6HSuUOp2ONR3w9PTkTOcvl4UxOzsb//u//4v8/HyHu6EkdAkRR0egt9uqer0eKSkpSE5Oxrp162xQqe0wGAxsJmVhYSHi4+MhEok4k0lJ0zRu3ryJlpYWPProoxZtMGJMtpVKJVpaWljTAR8fH5sJJZeFMS8vDx9//DHy8/MHcoPKQIOIoyPQm6gtmqaxdOlSBAQE4OOPP7ZNoRyBoig2k/LYsWOIjo5GamoqnnrqKZtsl9E0jRs3bsBgMCAmJsaqAkVRFGpqaqBUKqHRaNg0Cj8/P6vVwWVhLCgowObNmyGTyRAYGGjrcgjWg4ijI9CbqK0ffvgBU6ZM6bBd995772HOnDk2rt62GI1GnD9/HllZWfjuu+8QEREBkUiE2bNnW2X7jKZplJWVgcfjYeTIkTbd4jQajaw7D5NGERISAn9/f4utZLksjMePH8c777wDmUxm9jQZAuch4kggMBiNRpSUlLCZlKGhoWwmpSW202iaRmlpKfh8PiIjIzlz9ge01ca489TW1sLb2xsCgQCBgYFmG5XhsjCeOHECGzduRH5+PgYPHmzrcgjWh4gjgdAVjHAxmZQBAQFsJmVQUFC/H99oNOLKlSvw8vLC8OHDzVCx5aBpGg0NDayNnYeHR7exTb2Fy8J46tQpvPHGG8jLy0NYWJityyHYBiKOBEJPMGeCTCalh4cH5s+fj/nz5z9UJiWzQvX398fQoUMtVLVlMI1t4vP5CAkJQVBQUK9NB7gsjGfOnMHatWtx8OBBPPLII2Z9bEd2snJAiDgSCH2BicxiMimdnZ0xb948iMViDBkypEehpCgKxcXFCA4ORnh4uJWqthxNTU2s6YCzszM7S9ndqAyXhfHChQt49dVXceDAAQwbNszsj++oTlYOChFHAuFhoWkaFRUVbCalXq/HvHnzIBKJMHTo0E5CaTAYUFxczElhMActLS3sLCVN06xQMqMyXBbGkpISrFy5ElKpFFFRURZ5Dkd2snJAiDgSCOaApmlUVVWxmZSNjY1sJmVkZCSqq6uRkZGB9957z64z/npLa2srK5QGgwGBgYGoqamBUCjknDCWlpZi+fLlyMzMRExMjMWehzhZ2RVEHAkES6BSqdhMyqqqKjQ2NuLFF1/E66+/zqmuVGug1Wpx4cIFdhwkKCgIAoEA3t7eNv+3uHbtGl544QXs3bsXcXFx/X484mTlMBBxJBAsiVwux9y5czF9+nRcu3YNFRUVSE5OhlgsxujRox02aovBdCvVYDCgpqYGCoUCTU1NrDuPr6+v1YXy119/xXPPPYddu3YhMTHR4s9HnKzsij6/GB37nUywCocPH8bIkSMRGRmJzZs3d/o+TdN4/fXXERkZifj4eFy4cMEGVfafu3fvIiUlBR9//DG2bt2K3NxcFBYWIi4uDh9++CGeeOIJvPXWWzh//jyMRqOtyzU7XZ0xuri4ICQkBPHx8ZgwYQL8/f1RWVmJ06dP4+rVq1Cr1Vb5t7hz5w6WLFmC//znP1YRRgCYP38+vv76awDA119/DZFI1Okamqbx4osvIiYmhgijnUFWjoR+QVEUoqOjceTIEQiFQiQlJWHfvn0duvFkMhk+/fRTyGQyFBUVYc2aNSgqKrJh1Q/HsWPH4OXlhccee6zL7zc2NkImk0EqlaK0tBRPPvkkxGIxkpKS7D6Tsq/NN0ajkTUdqKurg4+PD2s6YO7VdUVFBRYtWoTt27fj8ccfN+tjPwjiZGVXkG1VgnX56aefsGnTJhQUFAAA3n//fQDAhg0b2GtWrVqFadOm4fe//z2AjttRjkpLSwu+++47NpNyypQpEIvFmDhxot1lUva3K5WmadTX10OhUECtVsPLy4s1HejvTYNcLkdaWho++eQTTJ06tV+PRXBo+iyO9vUuJXCOysrKDvN9QqGw06qwq2sqKysdWhzd3d0hEokgEonQ2tqKo0eP4v/+7/+wbt06TJo0CWKxGJMnT+Z8JqU5xjV4PB78/Pzg5+cHmqah0WigVCpx69YtuLm5saYDff23UCgUWLhwIf7xj38QYSSYHSKOhH7R1c6DaSNGb65xZAYNGoS5c+di7ty50Ov1KCwshEQiQUZGBpKSkiASiTBt2jTOZVJaYo6Rx+PBx8cHPj4+iIyMZN15Ll68CBcXF3aWsid3nurqaixcuBDvv/8+pk+fbpbaCIT2EHEk9AuhUIi7d++yf66oqOj0QdqbawYKrq6umDVrFmbNmsVmUmZlZeGtt95CQkICRCIRZsyYYfNMSmsN+Ht5ebF+tC0tLVAoFCguLgaPx2OF0s3NrcPPqNVqpKWlYdOmTUhOTrZYbYSBDTlzJPQLg8GA6OhoHDt2DGFhYUhKSsLevXsRGxvLXpOfn49t27axDTmvv/46zpw5Y8OquQdFUfjpp58glUpx9OhRjBo1CmKx2CaZlFxwvtFqtazpAEVRuHjxIp544gkIhUIsWLAAGRkZSE1NtUltBLuEnDkSrIuLiwu2bduG5ORkUBSFFStWIDY2Ftu3bwcAvPzyy5gzZw5kMhkiIyPh4eGBr776ysZVcw9nZ2dMnjwZkydPhtFoxLlz5yCRSPDBBx9g+PDhEIlEePrppy3urMIFYQQANzc3hIeHIzw8HDqdDufOncPatWtx69YtTJ48GZGRkaBpekBtzxOsC1k5Eggchkn8yMrKgkwmQ1hYGJtJ6efnZ9bn4oowdkVjYyMWLlyIJUuWwNvbG1KpFL/88guSk5Px5z//mdixEXqCjHIQCI4KTdP4+eefIZFIkJ+fj4CAAIjFYsydO7ffmZRcFsbm5mYsWrQIzz//PJYvX85+nRmXmTNnDue7fgk2h4gjgTAQoGka169fh0QiQW5uLjw9PdlMSoFA0KftRi4Lo1arxeLFi7FgwQKsXLmSbKMSHhYijgTCQIOmady8eRNSqRQ5OTlwcXFhMylDQ0MfKChcFsbW1lYsWbIETz/9NF577TUijIT+QMSRQBjItM+kzM7OBkVRSElJQWpqKsLDwzsIDJfzKHU6HZYtW4YpU6Zg3bp1RBgJ/YWII4FAaMM0k7KpqYnNpBQIBBCLxdi8eTMmTJhg61I7YDAYsGLFCowbNw7r168nwkgwB0QcCQRC16hUKuzfvx+ZmZm4evUqfve73+FPf/oTRo0axRkBMhgMWLVqFUaOHIm3336bM3UR7B4SWUUg9JWeIrf27NmD+Ph4xMfHY9KkSSguLrZBlf0nODgYS5YsgZOTEzZs2IBZs2bh7bffxpQpU/Duu+/i8uXLNo3aoigKq1evxrBhw4gwEmwOWTkS+sTZs2fx4osv4syZM6AoChMmTMC3336L0aNH27q0h6I3kVunTp1CTEwM/P39cejQIWzatMkuI7daWlogEonwhz/8AcuWLWO/Xl9fj9zcXGRnZ+PmzZuYOXMmxGIxEhMTrRbebDQasXbtWvj6+uLDDz90+NBogtUh26oEy/M///M/0Gq1aGlpgVAo7BBPZW/0JnKrPbW1tRg9ejQqKyutVqO50Ol0OHHiBGbOnNntNRqNhs2kLCsr65BJaSnBMhqNyMjIgLOzMz755BMijARLQMSRYHl0Oh2SkpLg5uaGU6dO2XWQr0QiweHDh7Fjxw4AwO7du1FUVIRt27Z1ef3WrVtRVlbGXu/ItLS0oKCgABKJBJcuXcLUqVPZTEpz/c6NRiN7s/X5558TYSRYCuKtSrA8arUajY2N0Ov10Gq1VjfGNid9idP6/vvv8eWXX+KHH36wdFmcwN3dHWKxGGKxmM2k3Lt3L9atW4eJEyf2O5OSpmn89a9/RX19PXbs2EGEkcApyKuR0GdWrlyJd999F8899xzefPNNW5fTL3obp1VSUoL09HTk5OQgMDDQmiVyAiaTcufOnbh48SIWLlyInJwcTJo0Ca+++iq+++476HS6Xj8eTdN4//338dtvv2HHjh12vftAcEzItiqhT+zatQsHDhxgB8wnTZpk14GzvYncKi8vx/Tp07Fr1y5MmjTJhtVyD4PBgJMnTyIrKwsnTpxAYmIim0lpmsPIQNM0PvroI1y5cgV79uyBi4t5N7DUajWeffZZ3L59GxEREcjMzIS/v3+X11IUhfHjxyMsLAx5eXlmrYPAKciZI4HQV2QyGdauXctGbm3cuLFD5FZ6ejqkUimGDh0KoC2m69y5c7YsmZNQFIVTp05BKpXi2LFjiImJYTMpPTw8ALQJ47Zt23D69GlkZmZaxDA8IyMDAQEBWL9+PTZv3oza2lps2bKly2s/+ugjnDt3Dg0NDUQcHRsijgQCwfYYjUacPXsWEokE3333HUaMGAGRSAS5XI4ff/wREokEgwYNsshzjxw5EoWFhQgNDYVcLse0adNw7dq1TtdVVFRg6dKl2LhxIz766CMijo4NEUcCgcAtjEYjiouLsXv3bhw6dAgXL17sdsvVHPj5+aGuro79s7+/P2praztdl5aWhg0bNkCj0WDr1q1EHB0b0q1KIBC4hZOTE8aMGYMxY8bgo48+Mstjzpw5E1VVVZ2+/ve//71XP5+XlweBQIBx48ahsLDQLDURHAsijgQCwe44evRot98LCQmBXC5nt1UFAkGna3788UccPHgQMpkMWq0WDQ0NWLJkCb755htLlk2wI8i2KoFAcCjeeOMNBAYGsg05arUaH3zwQbfXFxYWkm1Vx4cYjxMIhIHN+vXrceTIEURFReHIkSNYv349AOC3337DnDlzbFwdwV4gK0cCgUAgODpk5UggEAgEQn8h4kgg2Dk95VEynD17Fs7OzpBIJFasjkCwT4g4Egh2DEVRePXVV3Ho0CGUlpZi3759KC0t7fK6N998E8nJyTaokkCwP4g4Egh2zJkzZxAZGYnhw4eDz+dj8eLFyMnJ6XTdp59+igULFnQ51kAgEDpDxJFAsGMqKysRHh7O/lkoFHYKYq6srMT+/fvx8ssvW7s8AsFuIeJIINgxvcmjXLt2LbZs2UJioQiEPkAccggEO6Y3eZTnzp3D4sWLAQDV1dWQyWRwcXGBWCy2ZqkEgl1B5hwJBDumN3mU7Vm2bBlSUlKQlpZm5UoJBJtCjMcJhIGEi4sLtm3bhuTkZDaPMjY2tkMeJYFA6Dtk5UggEAgER4c45BAIBAKB0F+IOBIIBAKBYAIRRwKBQCAQTCDiSCAQCASCCUQcCQQCgUAwgYgjgUAgEAgmEHEkEAgEAsEEIo4EAoFAIJhAxJFAIBAIBBOIOBIIBAKBYAIRRwKBQCAQTCDiSCAQCASCCT2lcvTZrJVAIBAIBHuHrBwJBAKBQDCBiCOBQCAQCCYQcSQQCAQCwQQijgQCgUAgmEDEkUAgEAgEE4g4EggEAoFgwv8DsVE5O2pOYj4AAAAASUVORK5CYII=\n",
      "text/plain": "<Figure size 576x576 with 1 Axes>"
     },
     "metadata": {
      "needs_background": "light"
     },
     "output_type": "display_data"
    }
   ],
67
68
   "source": [
    "def PlotSphere(ax, r):\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
69
    "    u, v = np.mgrid[0:2 * PI:50j, 0:PI:20j]\n",
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    "    x = np.cos(u) * np.sin(v) * r\n",
    "    y = np.sin(u) * np.sin(v) * r\n",
    "    z = np.cos(v) * r\n",
    "    ax.plot_surface(x, y, z, rstride=1, cstride=1,\n",
    "                    color='b', linewidth=0.5, alpha=0.3)\n",
    "\n",
    "\n",
    "def PlotPlane(ax, r):\n",
    "    # 二元函数定义域平面\n",
    "    x = np.linspace(-r, r, 3)\n",
    "    y = np.linspace(-r, r, 3)\n",
    "    X, Y = np.meshgrid(x, y)\n",
    "    ax.plot_wireframe(X, Y, X * 0, color='g', linewidth=1)\n",
    "\n",
    "\n",
    "p = torch.tensor([[0.0, 0.0, 0.0]])\n",
BobYeah's avatar
BobYeah committed
86
    "v = torch.tensor([[0.0, -1.0, 1.0]])\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
87
    "r = torch.tensor([[0.5]])\n",
88
    "v = v / torch.norm(v) * r * 2\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
89
    "p_on_sphere_ = sphere.ray_sphere_intersect(p, v, r)[0][0]\n",
90
91
    "print(p_on_sphere_)\n",
    "print(p_on_sphere_.norm())\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
92
    "spher_coord = sphere.cartesian2spherical(p_on_sphere_)\n",
93
    "print(spher_coord[..., 1:3].rad2deg())\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
94
    "p_on_sphere = sphere.spherical2cartesian(spher_coord)\n",
Nianchen Deng's avatar
Nianchen Deng committed
95
    "print(p_on_sphere_.size())\n",
96
    "\n",
Nianchen Deng's avatar
Nianchen Deng committed
97
    "fig = plt.figure(figsize=(8, 8))\n",
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    "ax = fig.gca(projection='3d')\n",
    "plt.xlabel('x')\n",
    "plt.ylabel('z')\n",
    "\n",
    "PlotPlane(ax, r.item())\n",
    "PlotSphere(ax, r[0, 0].item())\n",
    "\n",
    "ax.scatter([0], [0], [0], color=\"g\", s=10)  # Center\n",
    "ax.scatter([p_on_sphere[0, 0].item()],\n",
    "           [p_on_sphere[0, 2].item()],\n",
    "           [p_on_sphere[0, 1].item()],\n",
    "           color=\"r\", s=10)  # Ray position\n",
    "ax.scatter([p_on_sphere_[0, 0].item()],\n",
    "           [p_on_sphere_[0, 2].item()],\n",
    "           [p_on_sphere_[0, 1].item()],\n",
    "           color=\"y\", s=10)  # Ray position\n",
    "\n",
    "p_ = p + v\n",
    "ax.plot([p[0, 0].item(), p_[0, 0].item()],\n",
    "        [p[0, 2].item(), p_[0, 2].item()],\n",
    "        [p[0, 1].item(), p_[0, 1].item()],\n",
    "        color=\"r\")\n",
    "\n",
    "ax.plot([p_on_sphere_[0, 0].item(), p_on_sphere_[0, 0].item()],\n",
    "        [p_on_sphere_[0, 2].item(), p_on_sphere_[0, 2].item()],\n",
    "        [0, p_on_sphere_[0, 1].item()], color=\"k\", linestyle='--', linewidth=0.5)\n",
    "\n",
    "ax.plot([p_on_sphere_[0, 0].item(), 0],\n",
    "        [p_on_sphere_[0, 2].item(), 0],\n",
    "        [0, 0],\n",
    "        linewidth=0.5, linestyle=\"--\", color=\"k\")\n",
    "\n",
    "ax.plot([p_on_sphere_[0, 0].item(), 0],\n",
    "        [p_on_sphere_[0, 2].item(), 0],\n",
    "        [p_on_sphere_[0, 1], 0],\n",
    "        linewidth=0.5, linestyle=\"--\", color=\"k\")\n",
    "\n",
    "ax.set_xlim(-r.item(), r.item())\n",
    "ax.set_ylim(-r.item(), r.item())\n",
    "ax.set_zlim(-r.item(), r.item())\n",
    "\n",
    "plt.show()\n"
   ]
  },
  {
Nianchen Deng's avatar
sync    
Nianchen Deng committed
143
   "cell_type": "markdown",
144
145
   "metadata": {},
   "source": [
Nianchen Deng's avatar
sync    
Nianchen Deng committed
146
    "# Test Dataset Loader"
147
148
   ]
  },
BobYeah's avatar
BobYeah committed
149
150
  {
   "cell_type": "code",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
151
   "execution_count": 2,
BobYeah's avatar
BobYeah committed
152
   "metadata": {},
Nianchen Deng's avatar
sync    
Nianchen Deng committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Convert from OGL coordinate to DX coordinate (i. e. flip z axis)\n"
     ]
    },
    {
     "ename": "AttributeError",
     "evalue": "'SphericalViewSynDataset' object has no attribute 'patched_rays_o'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-2-0dca41d5322f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     12\u001b[0m \u001b[0mfig\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfigure\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m12\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m6.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     13\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 14\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mindices\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpatches\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrays_o\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrays_d\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdata_loader\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     15\u001b[0m     \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpatches\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrays_o\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrays_d\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     16\u001b[0m     \u001b[0;32mfor\u001b[0m \u001b[0midx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindices\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/deep_view_syn/data/loader.py\u001b[0m in \u001b[0;36m__iter__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m     33\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__iter__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     34\u001b[0m         return FastDataLoader.Iter(self.dataset, self.batch_size,\n\u001b[0;32m---> 35\u001b[0;31m                                    self.shuffle, self.drop_last)\n\u001b[0m\u001b[1;32m     36\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     37\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/deep_view_syn/data/loader.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, dataset, batch_size, shuffle, drop_last)\u001b[0m\n\u001b[1;32m     11\u001b[0m             \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     12\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindices\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandperm\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 13\u001b[0;31m                 \u001b[0;32mif\u001b[0m \u001b[0mshuffle\u001b[0m \u001b[0;32melse\u001b[0m \u001b[0mtorch\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdevice\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdevice\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdefault\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     14\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moffset\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     15\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbatch_size\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/deep_view_syn/data/spherical_view_syn.py\u001b[0m in \u001b[0;36m__len__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    168\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    169\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__len__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 170\u001b[0;31m         \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpatched_rays_o\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    171\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    172\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0midx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mAttributeError\u001b[0m: 'SphericalViewSynDataset' object has no attribute 'patched_rays_o'"
     ]
    },
    {
     "data": {
      "text/plain": "<Figure size 864x468 with 0 Axes>"
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
BobYeah's avatar
BobYeah committed
183
   "source": [
Nianchen Deng's avatar
Nianchen Deng committed
184
185
    "from data.spherical_view_syn import SphericalViewSynDataset\n",
    "from data.loader import FastDataLoader\n",
BobYeah's avatar
BobYeah committed
186
    "\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
187
188
189
190
191
192
193
    "DATA_DESC_FILE = '../data/classroom/r360x120_t0.5x0.5x0.5/train_1.json'\n",
    "\n",
    "dataset = SphericalViewSynDataset(DATA_DESC_FILE, calculate_rays=False)\n",
    "#dataset.set_patch_size((64, 64))\n",
    "data_loader = FastDataLoader(dataset, 4, shuffle=False)\n",
    "#print(len(dataset))\n",
    "#print(dataset.view_rots)\n",
BobYeah's avatar
BobYeah committed
194
    "\n",
Nianchen Deng's avatar
Nianchen Deng committed
195
    "fig = plt.figure(figsize=(12, 6.5))\n",
BobYeah's avatar
BobYeah committed
196
197
198
199
    "i = 0\n",
    "for indices, patches, rays_o, rays_d in data_loader:\n",
    "    print(i, patches.size(), rays_o.size(), rays_d.size())\n",
    "    for idx in range(len(indices)):\n",
Nianchen Deng's avatar
Nianchen Deng committed
200
    "        plt.subplot(4, 7, i + 1)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
201
    "        img.plot(patches[idx])\n",
BobYeah's avatar
BobYeah committed
202
    "        i += 1\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
203
204
205
206
207
208
209
210
211
    "    if i == 4:\n",
    "        break\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Validate Dataset"
BobYeah's avatar
BobYeah committed
212
213
   ]
  },
214
215
216
217
218
219
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
Nianchen Deng's avatar
Nianchen Deng committed
220
221
    "from data.spherical_view_syn import SphericalViewSynDataset\n",
    "from data.loader import FastDataLoader\n",
222
    "\n",
Nianchen Deng's avatar
Nianchen Deng committed
223
    "\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
224
225
226
227
228
    "DATA_DIR = '../data/pabellon_fovea_r40x40_t0.3'\n",
    "#DATA_DIR = '../data/gas_fovea_r80x60_t0.3_2021.01.26'\n",
    "#DATA_DIR = '../data/nerf_fern'\n",
    "#DATA_DIR = '../data/lobby_fovea_2021.01.18'\n",
    "TRAIN_DATA_DESC_FILE = DATA_DIR + '/train.json'\n",
229
230
    "\n",
    "\n",
Nianchen Deng's avatar
Nianchen Deng committed
231
232
    "dataset = SphericalViewSynDataset(TRAIN_DATA_DESC_FILE)\n",
    "dataset.set_patch_size(1)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
233
234
    "res = dataset.view_res\n",
    "data_loader = FastDataLoader(dataset, res[0] * res[1], shuffle=True)\n",
235
    "\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
236
    "selector = torch.arange(res[0] * res[1]).reshape(res[0], res[1])[::3, ::3].flatten()\n",
237
    "\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
238
239
    "for ri in range(0, 9):\n",
    "    r = ri * 2 + 5\n",
Nianchen Deng's avatar
Nianchen Deng committed
240
241
242
    "    p = None\n",
    "    centers = None\n",
    "    pixels = None\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
243
244
    "    idx_range = [0, 9]\n",
    "    idx = 0\n",
Nianchen Deng's avatar
Nianchen Deng committed
245
    "    for indices, patches, rays_o, rays_d in data_loader:\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    "        idx += 1\n",
    "        if idx <= idx_range[0]:\n",
    "            continue\n",
    "        patches = patches[selector]\n",
    "        rays_o = rays_o[selector]\n",
    "        rays_d = rays_d[selector]\n",
    "        r = torch.tensor([[r]], device=device.default())\n",
    "        p_ = misc.torch2np(sphere.ray_sphere_intersect(rays_o, rays_d, r)[0].view(-1, 3))\n",
    "        p = p_ if p is None else np.concatenate((p, p_), axis=0)\n",
    "        pixels_ = misc.torch2np(patches)\n",
    "        pixels = pixels_ if pixels is None else np.concatenate((pixels, pixels_), axis=0)\n",
    "        if idx >= idx_range[1]:\n",
    "            break\n",
    "\n",
    "    if ri % 2 == 0:\n",
    "        plt.figure(facecolor='white', figsize=(20, 10))\n",
    "    ax = plt.subplot(1, 2, ri % 2 + 1, projection='3d')\n",
Nianchen Deng's avatar
Nianchen Deng committed
263
264
265
266
267
    "    plt.xlabel('x')\n",
    "    plt.ylabel('z')\n",
    "    plt.title('r = %f' % r)\n",
    "    ax.scatter([0], [0], [0], color=\"k\", s=10)\n",
    "    ax.scatter(p[:, 0], p[:, 2], p[:, 1], color=pixels, s=0.5)\n",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
268
    "    ax.view_init(elev=0, azim=-90)\n"
BobYeah's avatar
BobYeah committed
269
   ]
270
271
272
273
  }
 ],
 "metadata": {
  "kernelspec": {
Nianchen Deng's avatar
Nianchen Deng committed
274
275
   "display_name": "Python 3.7.9 64-bit ('pytorch': conda)",
   "name": "python379jvsc74a57bd0660ca2a75467d3af74a68fcc6f40bc78ab96b99ff17d2f100b5ca821fbb183f2"
276
277
278
  },
  "language_info": {
   "name": "python",
Nianchen Deng's avatar
sync    
Nianchen Deng committed
279
   "version": ""
BobYeah's avatar
BobYeah committed
280
  }
281
282
283
284
 },
 "nbformat": 4,
 "nbformat_minor": 2
}