Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
Menu
Open sidebar
Nianchen Deng
deeplightfield
Commits
c10f614f
Commit
c10f614f
authored
May 08, 2021
by
Nianchen Deng
Browse files
sync
parent
dcba5844
Changes
49
Show whitespace changes
Inline
Side-by-side
.clang-format
0 → 100644
View file @
c10f614f
---
Language: Cpp
# BasedOnStyle: LLVM
AccessModifierOffset: -4
AlignAfterOpenBracket: Align
AlignConsecutiveAssignments: false
AlignConsecutiveDeclarations: false
AlignEscapedNewlines: Right
AlignOperands: true
AlignTrailingComments: true
AllowAllParametersOfDeclarationOnNextLine: true
AllowShortBlocksOnASingleLine: false
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: All
AllowShortIfStatementsOnASingleLine: false
AllowShortLoopsOnASingleLine: false
AlwaysBreakAfterDefinitionReturnType: None
AlwaysBreakAfterReturnType: None
AlwaysBreakBeforeMultilineStrings: false
AlwaysBreakTemplateDeclarations: false
BinPackArguments: true
BinPackParameters: true
BraceWrapping:
AfterClass: true
AfterControlStatement: false
AfterEnum: true
AfterFunction: true
AfterNamespace: true
AfterObjCDeclaration: true
AfterStruct: true
AfterUnion: true
BeforeCatch: false
BeforeElse: false
IndentBraces: false
SplitEmptyFunction: true
SplitEmptyRecord: true
SplitEmptyNamespace: true
BreakBeforeBinaryOperators: None
BreakBeforeBraces: Attach
BreakBeforeInheritanceComma: false
BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BreakConstructorInitializers: BeforeColon
BreakAfterJavaFieldAnnotations: false
BreakStringLiterals: true
ColumnLimit: 100
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: true
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: true
DerivePointerAlignment: false
DisableFormat: false
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
ForEachMacros:
- foreach
- Q_FOREACH
- BOOST_FOREACH
IncludeCategories:
- Regex: '^"(llvm|llvm-c|clang|clang-c)/'
Priority: 2
- Regex: '^(<|"(gtest|gmock|isl|json)/)'
Priority: 3
- Regex: '.*'
Priority: 1
IncludeIsMainRegex: '(Test)?$'
IndentCaseLabels: false
IndentWidth: 4
IndentWrappedFunctionNames: false
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: true
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBlockIndentWidth: 4
ObjCSpaceAfterProperty: false
ObjCSpaceBeforeProtocolList: true
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 19
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 60
PointerAlignment: Right
ReflowComments: true
SortIncludes: false
SortUsingDeclarations: true
SpaceAfterCStyleCast: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeParens: ControlStatements
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 1
SpacesInAngles: false
SpacesInContainerLiterals: true
SpacesInCStyleCastParentheses: false
SpacesInParentheses: false
SpacesInSquareBrackets: false
Standard: Cpp11
TabWidth: 4
UseTab: Never
...
.vscode/settings.json
View file @
c10f614f
...
...
@@ -11,5 +11,4 @@
"__nullptr"
:
"cpp"
},
"python.pythonPath"
:
"/home/dengnc/miniconda3/bin/python"
,
"jupyter.jupyterServerType"
:
"local"
}
\ No newline at end of file
.vscode/tasks.json
deleted
100644 → 0
View file @
dcba5844
{
//
See
https://go.microsoft.com/fwlink/?LinkId=
733558
//
for
the
documentation
about
the
tasks.json
format
"version"
:
"2.0.0"
,
"tasks"
:
[
{
"label"
:
"echo"
,
"type"
:
"shell"
,
"command"
:
"echo Hello"
,
"problemMatcher"
:
[],
"group"
:
{
"kind"
:
"build"
,
"isDefault"
:
true
}
}
]
}
\ No newline at end of file
batch_export_net.sh
0 → 100755
View file @
c10f614f
#/usr/bin/bash
datadir
=
'data/__new/classroom_fovea_r360x80_t0.6'
onnxdir
=
"
$datadir
/eval_onnx"
trtdir
=
"
$datadir
/eval_trt"
epochs
=
50
if
[
!
-d
"
$onnxdir
"
]
;
then
echo
"make directory for ONNX"
mkdir
$onnxdir
fi
if
[
!
-d
"
$trtdir
"
]
;
then
echo
"make directory for TensorRT"
mkdir
$trtdir
mkdir
$trtdir
/time
fi
# nets: 1, 2, 4, 8
# layers: 2, 4, 8
# channels: 64 128 256 512 1024
for
n_nets
in
1 2 4 8
;
do
for
n_layers
in
2 4 8
;
do
for
nf
in
64 128 256 512 1024
;
do
configid
=
"eval@snerffast
${
n_nets
}
-rgb_e6_fc
${
nf
}
x
${
n_layers
}
_d1.00-7.00_s64_~p"
exportname
=
"eval_
${
n_nets
}
x
${
nf
}
x
${
n_layers
}
"
pth_path
=
"
$datadir
/
$configid
/model-epoch_
$epochs
.pth"
onnx_path
=
"
$onnxdir
/
$exportname
.onnx"
trt_path
=
"
$trtdir
/
$exportname
.trt"
time_perf_path
=
"
$trtdir
/time/
$exportname
.json"
if
[
-f
"
$pth_path
"
]
;
then
if
[
!
-f
"
$onnx_path
"
]
;
then
# Export ONNX model
python tools/export_snerf_fast.py
$pth_path
-b
65536
-o
$onnx_path
fi
if
[
!
-f
"
$trt_path
"
]
;
then
# Export TensorRT engine
trtexec
--onnx
=
$onnx_path
--fp16
--saveEngine
=
$trt_path
--workspace
=
4096
--exportTimes
=
$time_perf_path
--noDataTransfers
fi
fi
done
done
done
\ No newline at end of file
batch_infer.sh
View file @
c10f614f
...
...
@@ -8,7 +8,7 @@ epochs=50
# nets: 1, 2, 4, 8
# layers: 2, 4, 8
# channels: 128 256 512
# channels:
64
128 256 512
1024
n_nets_arr
=(
1 2 4 8 1 2 4 8 1 2 4 8
)
n_layers_arr
=(
2 2 2 2 4 4 4 4 8 8 8 8
)
n_nets
=
${
n_nets_arr
[
$testcase
]
}
...
...
@@ -16,9 +16,7 @@ n_layers=${n_layers_arr[$testcase]}
for
nf
in
64 128 256 512 1024
;
do
configid
=
"eval@snerffast
${
n_nets
}
-rgb_e6_fc
${
nf
}
x
${
n_layers
}
_d1.00-7.00_s64_~p"
if
[
-f
"
$datadir
/
$configid
/model-epoch_
$epochs
.pth"
]
;
then
continue
fi
if
[
!
-f
"
$datadir
/
$configid
/model-epoch_
$epochs
.pth"
]
;
then
cont_epoch
=
0
for
((
i
=
$epochs
-1
;
i>0
;
i--
))
do
if
[
-f
"
$datadir
/
$configid
/model-epoch_
$i
.pth"
]
;
then
...
...
@@ -31,6 +29,9 @@ for nf in 64 128 256 512 1024; do
else
python run_spherical_view_syn.py
$trainset
-i
$configid
-e
$epochs
fi
fi
if
!
ls
$datadir
/
$configid
/output_
$epochs
/perf_r120x80
*
>
/dev/null 2>&1
;
then
python run_spherical_view_syn.py
$trainset
-t
-m
$configid
/model-epoch_
$epochs
.pth
-o
perf
python run_spherical_view_syn.py
$testset
-t
-m
$configid
/model-epoch_
$epochs
.pth
-o
perf
fi
done
\ No newline at end of file
components/fnr.py
View file @
c10f614f
...
...
@@ -14,7 +14,6 @@ class FoveatedNeuralRenderer(object):
layers_res
:
List
[
Tuple
[
int
,
int
]],
layers_net
:
nn
.
ModuleList
,
output_res
:
Tuple
[
int
,
int
],
*
,
using_mask
=
True
,
device
:
torch
.
device
=
None
):
super
().
__init__
()
self
.
layers_net
=
layers_net
.
to
(
device
=
device
)
...
...
@@ -34,7 +33,6 @@ class FoveatedNeuralRenderer(object):
'normalized'
:
True
},
output_res
,
device
=
device
)
self
.
foveation
=
Foveation
(
layers_fov
,
layers_res
,
output_res
,
device
=
device
)
self
.
layers_mask
=
self
.
foveation
.
get_layers_mask
()
if
using_mask
else
None
self
.
device
=
device
def
to
(
self
,
device
:
torch
.
device
):
...
...
@@ -43,8 +41,6 @@ class FoveatedNeuralRenderer(object):
self
.
cam
.
to
(
device
)
for
cam
in
self
.
layers_cam
:
cam
.
to
(
device
)
if
self
.
layers_mask
is
not
None
:
self
.
layers_mask
=
self
.
layers_mask
.
to
(
device
)
self
.
device
=
device
return
self
...
...
@@ -52,32 +48,46 @@ class FoveatedNeuralRenderer(object):
return
self
.
render
(
*
args
,
**
kwds
)
def
render
(
self
,
view
:
Trans
,
gaze
,
right_gaze
=
None
,
*
,
stereo_disparity
=
0
,
ret_raw
=
False
)
->
Union
[
Mapping
[
str
,
torch
.
Tensor
],
Tuple
[
Mapping
[
str
,
torch
.
Tensor
]]]:
stereo_disparity
=
0
,
using_mask
=
True
,
ret_raw
=
False
)
->
Union
[
Mapping
[
str
,
torch
.
Tensor
],
Tuple
[
Mapping
[
str
,
torch
.
Tensor
]]]:
if
stereo_disparity
>
TINY_FLOAT
:
left_view
=
Trans
(
view
.
trans_point
(
torch
.
tensor
([
-
stereo_disparity
/
2
,
0
,
0
],
device
=
view
.
device
()
)),
view
.
trans_point
(
torch
.
tensor
([
-
stereo_disparity
/
2
,
0
,
0
],
device
=
self
.
device
)),
view
.
r
)
right_view
=
Trans
(
view
.
trans_point
(
torch
.
tensor
([
stereo_disparity
/
2
,
0
,
0
],
device
=
view
.
device
()
)),
view
.
trans_point
(
torch
.
tensor
([
stereo_disparity
/
2
,
0
,
0
],
device
=
self
.
device
)),
view
.
r
)
left_gaze
=
gaze
right_gaze
=
gaze
if
right_gaze
is
None
else
right_gaze
left_layers_mask
=
self
.
foveation
.
get_layers_mask
(
left_gaze
)
\
if
using_mask
else
[
None
]
*
3
right_layers_mask
=
self
.
foveation
.
get_layers_mask
(
right_gaze
)
\
if
using_mask
else
[
None
]
*
3
res_raw_left
=
[
self
.
_render
(
i
,
left_view
,
left_gaze
if
i
<
2
else
None
)[
'color'
]
self
.
_render
(
self
.
layers_net
[
i
],
self
.
layers_cam
[
i
],
left_view
,
left_gaze
if
i
<
2
else
None
,
layer_mask
=
left_layers_mask
[
i
])[
'color'
]
for
i
in
range
(
3
)
]
res_raw_right
=
[
self
.
_render
(
i
,
right_view
,
right_gaze
if
i
<
2
else
None
)[
'color'
]
self
.
_render
(
self
.
layers_net
[
i
],
self
.
layers_cam
[
i
],
right_view
,
right_gaze
if
i
<
2
else
None
,
layer_mask
=
right_layers_mask
[
i
])[
'color'
]
for
i
in
range
(
3
)
]
return
self
.
_gen_output
(
res_raw_left
,
left_gaze
,
ret_raw
),
\
self
.
_gen_output
(
res_raw_right
,
right_gaze
,
ret_raw
)
else
:
layers_mask
=
self
.
foveation
.
get_layers_mask
(
gaze
)
if
using_mask
else
None
res_raw
=
[
self
.
_render
(
i
,
view
,
gaze
if
i
<
2
else
None
)[
'color'
]
self
.
_render
(
self
.
layers_net
[
i
],
self
.
layers_cam
[
i
],
view
,
gaze
if
i
<
2
else
None
,
layer_mask
=
layers_mask
[
i
]
if
layers_mask
is
not
None
else
None
)[
'color'
]
for
i
in
range
(
3
)
]
return
self
.
_gen_output
(
res_raw
,
gaze
,
ret_raw
)
'''
if mono_trans != None and shift == 0: # do warp
fovea_depth[torch.isnan(fovea_depth)] = 50
...
...
@@ -105,25 +115,25 @@ class FoveatedNeuralRenderer(object):
], (gaze[0], gaze[1]), [0, shift, shift] if shift != 0 else None)
'''
def
_render
(
self
,
layer
:
int
,
view
:
Trans
,
gaze
=
None
,
ret_depth
=
False
)
->
Mapping
[
str
,
torch
.
Tensor
]:
net
=
self
.
layers_net
[
layer
]
cam
=
self
.
layers_cam
[
laye
r
]
def
_render
(
self
,
net
,
cam
:
CameraParam
,
view
:
Trans
,
gaze
=
None
,
*
,
ret_depth
=
False
,
layer_mask
=
None
)
->
Mapping
[
str
,
torch
.
Tenso
r
]
:
if
gaze
is
not
None
:
cam
=
self
.
_adjust_cam
(
cam
,
gaze
)
rays_o
,
rays_d
=
cam
.
get_global_rays
(
view
,
Tru
e
)
# (1,
N
, 3)
if
self
.
layer
s
_mask
is
not
None
and
layer
<
len
(
self
.
layers_mask
)
:
mask
=
self
.
layer
s
_mask
[
layer
]
>=
0
rays_o
=
rays_o
[:,
mask
]
rays_d
=
rays_d
[:,
mask
]
rays_o
,
rays_d
=
cam
.
get_global_rays
(
view
,
Fals
e
)
# (1,
H, W
, 3)
if
layer_mask
is
not
None
:
infer_
mask
=
layer_mask
>=
0
rays_o
=
rays_o
[:,
infer_
mask
]
rays_d
=
rays_d
[:,
infer_
mask
]
net_output
=
net
(
rays_o
.
view
(
-
1
,
3
),
rays_d
.
view
(
-
1
,
3
),
ret_depth
=
ret_depth
)
ret
=
{
'color'
:
torch
.
zeros
(
1
,
cam
.
res
[
0
],
cam
.
res
[
1
],
3
)
'color'
:
torch
.
zeros
(
1
,
cam
.
res
[
0
],
cam
.
res
[
1
],
3
,
device
=
self
.
device
)
}
ret
[
'color'
][:,
mask
]
=
net_output
[
'color'
]
ret
[
'color'
][:,
infer_
mask
]
=
net_output
[
'color'
]
ret
[
'color'
]
=
ret
[
'color'
].
permute
(
0
,
3
,
1
,
2
)
if
ret_depth
:
ret
[
'depth'
]
=
torch
.
zeros
(
1
,
cam
.
res
[
0
],
cam
.
res
[
1
])
ret
[
'depth'
][:,
mask
]
=
net_output
[
'depth'
]
ret
[
'depth'
][:,
infer_
mask
]
=
net_output
[
'depth'
]
return
ret
else
:
net_output
=
net
(
rays_o
.
view
(
-
1
,
3
),
rays_d
.
view
(
-
1
,
3
),
ret_depth
=
ret_depth
)
...
...
@@ -140,7 +150,7 @@ class FoveatedNeuralRenderer(object):
'blended'
:
blended
}
if
ret_raw
:
ret
[
'layers_raw'
]
=
layers_img
,
ret
[
'layers_raw'
]
=
layers_img
ret
[
'blended_raw'
]
=
self
.
foveation
.
synthesis
(
layers_img
,
gaze
)
return
ret
...
...
components/foveation.py
View file @
c10f614f
...
...
@@ -31,7 +31,7 @@ class Foveation(object):
def
synthesis
(
self
,
layers
:
List
[
torch
.
Tensor
],
fovea_center
:
Tuple
[
float
,
float
],
shifts
:
List
[
int
]
=
None
)
->
torch
.
Tensor
:
shifts
:
List
[
int
]
=
None
,
do_blend
=
True
)
->
torch
.
Tensor
:
"""
Generate foveated retinal image by blending fovea layers
**Note: current implementation only support two fovea layers**
...
...
@@ -55,8 +55,12 @@ class Foveation(object):
if
shifts
!=
None
:
grid
=
img
.
horizontal_shift
(
grid
,
shifts
[
i
],
-
2
)
# (1, 1, H:out, W:out)
blend
=
nn_f
.
grid_sample
(
self
.
eye_fovea_blend
[
i
][
None
,
None
,
...],
grid
)
output
.
mul_
(
1
-
blend
).
add_
(
nn_f
.
grid_sample
(
layers
[
i
],
grid
)
*
blend
)
if
do_blend
:
blend
=
nn_f
.
grid_sample
(
self
.
eye_fovea_blend
[
i
][
None
,
None
],
grid
,
align_corners
=
False
)
output
.
mul_
(
1
-
blend
).
add_
(
nn_f
.
grid_sample
(
layers
[
i
],
grid
,
align_corners
=
False
)
*
blend
)
else
:
blend
=
nn_f
.
grid_sample
(
torch
.
ones_like
(
self
.
eye_fovea_blend
[
i
][
None
,
None
]),
grid
,
align_corners
=
False
)
output
.
mul_
(
1
-
blend
).
add_
(
nn_f
.
grid_sample
(
layers
[
i
],
grid
,
align_corners
=
False
)
*
blend
)
return
output
def
get_layer_size_in_final_image
(
self
,
i
:
int
)
->
int
:
...
...
@@ -94,7 +98,7 @@ class Foveation(object):
r
=
torch
.
norm
(
p
-
R
,
dim
=
2
)
# (size, size, 2)
return
misc
.
smooth_step
(
R
,
R
*
self
.
blend
,
r
)
def
get_layers_mask
(
self
)
->
List
[
torch
.
Tensor
]:
def
get_layers_mask
(
self
,
gaze
)
->
List
[
torch
.
Tensor
]:
"""
Generate mask images for layers[:-1]
the meaning of values in mask images:
...
...
@@ -106,12 +110,23 @@ class Foveation(object):
:return: Mask images for layers except outermost
"""
layers_mask
=
[]
for
i
in
range
(
self
.
n_layers
-
1
):
for
i
in
range
(
self
.
n_layers
):
layers_mask
.
append
(
torch
.
ones
(
*
self
.
layers_res
[
i
],
device
=
self
.
device
)
*
-
1
)
r
=
torch
.
norm
(
misc
.
meshgrid
(
*
self
.
layers_res
[
i
],
normalize
=
True
).
to
(
device
=
self
.
device
)
*
2
-
1
,
dim
=-
1
)
if
i
==
self
.
n_layers
-
1
:
c
=
torch
.
tensor
([
(
gaze
[
0
]
+
0.5
*
self
.
out_res
[
1
])
/
self
.
out_res
[
0
],
(
gaze
[
1
]
+
0.5
*
self
.
out_res
[
0
])
/
self
.
out_res
[
0
]
],
device
=
self
.
device
)
else
:
c
=
torch
.
tensor
([
0.5
,
0.5
],
device
=
self
.
device
)
coord
=
misc
.
meshgrid
(
*
self
.
layers_res
[
i
]).
to
(
device
=
self
.
device
)
/
self
.
layers_res
[
i
][
0
]
r
=
2
*
torch
.
norm
(
coord
-
c
,
dim
=-
1
)
inner_radius
=
self
.
get_source_layer_cover_size_in_target_layer
(
self
.
layers_fov
[
i
-
1
],
self
.
layers_fov
[
i
],
self
.
layers_res
[
i
][
0
])
/
self
.
layers_res
[
i
][
0
]
if
i
>
0
else
0
self
.
layers_fov
[
i
-
1
],
self
.
layers_fov
[
i
],
self
.
layers_res
[
i
][
0
])
/
self
.
layers_res
[
i
][
0
]
\
if
i
>
0
else
0
if
i
==
self
.
n_layers
-
1
:
bounds
=
[
inner_radius
*
(
1
-
self
.
blend
),
inner_radius
,
100
,
100
]
else
:
bounds
=
[
inner_radius
*
(
1
-
self
.
blend
),
inner_radius
,
self
.
blend
,
1
]
for
bi
in
range
(
len
(
bounds
)
-
1
):
region
=
torch
.
logical_and
(
r
>
bounds
[
bi
],
r
<=
bounds
[
bi
+
1
])
...
...
cpp/Makefile.config
View file @
c10f614f
...
...
@@ -128,7 +128,7 @@ endif
#########################
INCPATHS
=
LIBPATHS
=
COMMON_LIBS
= -
lGLEW
-
lglfw
3
-
lGL
-
lX11
-
lpthread
-
lXrandr
-
lXinerama
-
lXcursor
-
lXi
-
ldl
COMMON_LIBS
= -
lGLEW
-
lglfw
-
lGL
-
lX11
-
lpthread
-
lXrandr
#
-lXinerama -lXcursor -lXi -ldl
# Add extra libraries if TRT_STATIC is enabled
ifeq
($(
TRT_STATIC
),
1
)
...
...
@@ -207,7 +207,7 @@ else ifeq ($(TARGET), aarch64)
endif
endif
ifeq
($(
ENABLE_MYELIN
),
1
)
COMMON_LIBS
+= $(
MYELIN_LIB
) $(
NVRTC_LIB
)
#
COMMON_LIBS += $(MYELIN_LIB) $(NVRTC_LIB)
endif
.
SUFFIXES
:
...
...
cpp/msl_infer/Common.h
deleted
100644 → 0
View file @
dcba5844
#pragma once
#include <memory>
#include <stdexcept>
#include <vector>
#include <string>
#include <sstream>
#include <GL/glew.h>
#include <cuda_gl_interop.h>
#include "../glm/glm.hpp"
#include "Logger.h"
inline
unsigned
int
getElementSize
(
nv
::
DataType
t
)
{
switch
(
t
)
{
case
nv
::
DataType
::
kINT32
:
return
4
;
case
nv
::
DataType
::
kFLOAT
:
return
4
;
case
nv
::
DataType
::
kHALF
:
return
2
;
case
nv
::
DataType
::
kBOOL
:
case
nv
::
DataType
::
kINT8
:
return
1
;
}
throw
std
::
runtime_error
(
"Invalid DataType."
);
return
0
;
}
template
<
typename
T
>
void
dumpRow
(
std
::
ostream
&
os
,
T
*
buf
,
size_t
n
)
{
os
<<
buf
[
0
];
for
(
size_t
i
=
1
;
i
<
n
;
++
i
)
{
os
<<
" "
<<
buf
[
i
];
}
os
<<
std
::
endl
;
}
template
<
typename
T
>
void
dumpHostBuffer
(
std
::
ostream
&
os
,
void
*
buf
,
size_t
bufSize
,
size_t
rowCount
,
size_t
maxDumpRows
=
0
)
{
T
*
typedBuf
=
static_cast
<
T
*>
(
buf
);
size_t
numItems
=
bufSize
/
sizeof
(
T
);
size_t
nInLastRow
=
numItems
%
rowCount
;
size_t
rows
;
if
(
nInLastRow
==
0
)
{
rows
=
numItems
/
rowCount
;
nInLastRow
=
rowCount
;
}
else
{
rows
=
numItems
/
rowCount
+
1
;
}
if
(
maxDumpRows
==
0
)
{
for
(
size_t
i
=
0
;
i
<
rows
-
1
;
++
i
)
{
dumpRow
(
os
,
typedBuf
,
rowCount
);
typedBuf
+=
rowCount
;
}
dumpRow
(
os
,
typedBuf
,
nInLastRow
);
}
else
{
for
(
size_t
i
=
0
;
i
<
maxDumpRows
/
2
;
++
i
)
dumpRow
(
os
,
typedBuf
+
i
*
rowCount
,
rowCount
);
os
<<
"..."
<<
std
::
endl
;
for
(
size_t
i
=
rows
-
maxDumpRows
+
maxDumpRows
/
2
;
i
<
rows
-
1
;
++
i
)
dumpRow
(
os
,
typedBuf
+
i
*
rowCount
,
rowCount
);
dumpRow
(
os
,
typedBuf
+
(
rows
-
1
)
*
rowCount
,
nInLastRow
);
}
}
class
CudaStream
{
public:
CudaStream
()
{
cudaStreamCreate
(
&
stream
);
}
operator
cudaStream_t
()
{
return
stream
;
}
virtual
~
CudaStream
()
{
cudaStreamDestroy
(
stream
);
}
private:
cudaStream_t
stream
;
};
class
CudaEvent
{
public:
CudaEvent
()
{
cudaEventCreate
(
&
mEvent
);
}
operator
cudaEvent_t
()
{
return
mEvent
;
}
virtual
~
CudaEvent
()
{
cudaEventDestroy
(
mEvent
);
}
private:
cudaEvent_t
mEvent
;
};
struct
CudaMapScope
{
std
::
vector
<
cudaGraphicsResource_t
>
resources_
;
cudaStream_t
stream_
;
CudaMapScope
(
const
std
::
vector
<
cudaGraphicsResource_t
>
&
resources
,
cudaStream_t
stream
=
nullptr
)
:
resources_
(
resources
),
stream_
(
stream
)
{}
~
CudaMapScope
()
{
if
(
!
resources_
.
empty
())
cudaGraphicsUnmapResources
(
resources_
.
size
(),
resources_
.
data
(),
stream_
);
}
cudaError_t
map
()
{
if
(
!
resources_
.
empty
())
return
cudaGraphicsMapResources
(
resources_
.
size
(),
resources_
.
data
(),
stream_
);
return
cudaSuccess
;
}
};
template
<
typename
T
>
struct
Destroy
{
void
operator
()(
T
*
t
)
{
if
(
t
!=
nullptr
)
t
->
destroy
();
}
};
template
<
class
T
>
using
uptr
=
std
::
unique_ptr
<
T
,
::
Destroy
<
T
>>
;
template
<
class
T
>
using
sptr
=
std
::
shared_ptr
<
T
>
;
#define INTERVAL(__start__, __end__) (((__end__) - (__start__)) / (float)CLOCKS_PER_SEC * 1000)
#include "Resource.h"
#include "Formatter.h"
\ No newline at end of file
cpp/msl_infer/Encoder.cu
View file @
c10f614f
#include "Encoder.h"
#include "
thread_index
.h"
#include "
../utils/cuda
.h"
/// idx3.z = 0: x, y, z, sin(x), sin(y), sin(z), cos(x), cos(y), cos(z)
/// idx3.z = 1: sin(2x), sin(2y), sin(2z), cos(2x), cos(2y), cos(2z)
...
...
@@ -7,12 +7,11 @@
/// idx3.z = n_freq-1: sin(2^(n_freq-1)x), sin(2^(n_freq-1)y), sin(2^(n_freq-1)z),
/// cos(2^(n_freq-1)x), cos(2^(n_freq-1)y), cos(2^(n_freq-1)z)
/// Dispatch (n_batch, n_chns, n_freqs)
__global__
void
cu_encode
(
float
*
output
,
float
*
input
,
float
*
freqs
,
uint
n
)
{
__global__
void
cu_encode
(
float
*
output
,
float
*
input
,
float
*
freqs
,
uint
n
)
{
glm
::
uvec3
idx3
=
IDX3
;
if
(
idx3
.
x
>=
n
)
return
;
uint
n
=
blockDim
.
x
,
inChns
=
blockDim
.
y
,
nFreqs
=
blockDim
.
z
;
uint
inChns
=
blockDim
.
y
,
nFreqs
=
blockDim
.
z
;
uint
i
=
idx3
.
x
,
chn
=
idx3
.
y
,
freq
=
idx3
.
z
;
uint
elem
=
i
*
inChns
+
chn
;
uint
outChns
=
inChns
*
(
nFreqs
*
2
+
1
);
...
...
@@ -26,16 +25,14 @@ __global__ void cu_encode(float *output, float *input, float *freqs, uint n)
output
[
base
+
inChns
*
(
freq
*
2
+
2
)]
=
c
;
}
void
Encoder
::
encode
(
sptr
<
CudaArray
<
float
>>
output
,
sptr
<
CudaArray
<
float
>>
input
)
{
void
Encoder
::
encode
(
sptr
<
CudaArray
<
float
>>
output
,
sptr
<
CudaArray
<
float
>>
input
)
{
dim3
blkSize
(
1024
/
_chns
/
_multires
,
_chns
,
_multires
);
dim3
grdSize
((
uint
)
ceil
(
input
->
n
()
/
(
float
)
blkSize
.
x
),
1
,
1
);
cu_encode
<<<
grdSize
,
blkSize
>>>
(
output
->
getBuffer
(),
*
input
,
*
_freqs
,
input
->
n
());
CU_INVOKE
(
cu_encode
)
(
output
->
getBuffer
<
float
>
(),
*
input
,
*
_freqs
,
input
->
n
());
CHECK_EX
(
cudaGetLastError
());
}
void
Encoder
::
_genFreqArray
()
{
void
Encoder
::
_genFreqArray
()
{
float
*
arr
=
new
float
[
_multires
];
arr
[
0
]
=
1.0
f
;
for
(
auto
i
=
1
;
i
<
_multires
;
++
i
)
...
...
cpp/msl_infer/Encoder.h
View file @
c10f614f
#pragma once
#include "
C
ommon.h"
#include "
../utils/c
ommon.h"
class
Encoder
{
public:
...
...
@@ -14,5 +14,4 @@ private:
sptr
<
CudaArray
<
float
>>
_freqs
;
void
_genFreqArray
();
};
\ No newline at end of file
cpp/msl_infer/Enhancement.cu
View file @
c10f614f
#include "Enhancement.h"
#include "
thread_index
.h"
#include "
../utils/cuda
.h"
#define max(__a__, __b__) (__a__ > __b__ ? __a__ : __b__)
#define min(__a__, __b__) (__a__ < __b__ ? __a__ : __b__)
...
...
cpp/msl_infer/Enhancement.h
View file @
c10f614f
#pragma once
#include "
C
ommon.h"
#include "
../utils/c
ommon.h"
class
Enhancement
{
...
...
cpp/msl_infer/InferPipeline.cpp
View file @
c10f614f
#include "InferPipeline.h"
#include "Nmsl2.h"
InferPipeline
::
InferPipeline
(
const
std
::
string
&
netDir
,
bool
isNmsl
,
uint
batchSize
,
uint
samples
)
:
_batchSize
(
batchSize
),
_samples
(
samples
),
_sampler
(
new
Sampler
({
1.0
f
,
50.0
f
},
samples
)),
_encoder
(
new
Encoder
(
10
,
3
)),
_renderer
(
new
Renderer
()),
_net
(
isNmsl
?
new
Nmsl2
(
batchSize
,
samples
)
:
new
Msl
(
batchSize
,
samples
))
{
uint
batchSizeForNet
=
_batchSize
*
_samples
;
_sphericalCoords
=
sptr
<
CudaArray
<
glm
::
vec3
>>
(
new
CudaArray
<
glm
::
vec3
>
(
batchSizeForNet
));
_depths
=
sptr
<
CudaArray
<
float
>>
(
new
CudaArray
<
float
>
(
batchSizeForNet
));
_encoded
=
sptr
<
CudaArray
<
float
>>
(
new
CudaArray
<
float
>
(
batchSizeForNet
*
_encoder
->
outDim
()));
_layeredColors
=
sptr
<
CudaArray
<
glm
::
vec4
>>
(
new
CudaArray
<
glm
::
vec4
>
(
batchSizeForNet
));
_net
->
load
(
netDir
);
InferPipeline
::
InferPipeline
(
sptr
<
Msl
>
net
,
uint
nRays
,
uint
nSamplesPerRay
,
glm
::
vec2
depthRange
,
int
encodeDim
,
int
coordChns
)
:
_nRays
(
nRays
),
_nSamplesPerRay
(
nSamplesPerRay
),
_net
(
net
),
_sampler
(
new
Sampler
(
depthRange
,
nSamplesPerRay
,
coordChns
==
3
)),
_encoder
(
new
Encoder
(
encodeDim
,
coordChns
)),
_renderer
(
new
Renderer
())
{
uint
nSamples
=
_nRays
*
_nSamplesPerRay
;
_coords
=
sptr
<
CudaArray
<
float
>>
(
new
CudaArray
<
float
>
(
nSamples
*
coordChns
));
_depths
=
sptr
<
CudaArray
<
float
>>
(
new
CudaArray
<
float
>
(
nSamples
));
_encoded
=
sptr
<
CudaArray
<
float
>>
(
new
CudaArray
<
float
>
(
nSamples
*
_encoder
->
outDim
()));
_layeredColors
=
sptr
<
CudaArray
<
glm
::
vec4
>>
(
new
CudaArray
<
glm
::
vec4
>
(
nSamples
));
_net
->
bindResources
(
_encoded
.
get
(),
_depths
.
get
(),
_layeredColors
.
get
());
}
void
InferPipeline
::
run
(
sptr
<
CudaArray
<
glm
::
vec4
>>
o_colors
,
sptr
<
CudaArray
<
glm
::
vec3
>>
rays
,
glm
::
vec3
rayOrigin
,
bool
showPerf
)
{
void
InferPipeline
::
run
(
sptr
<
CudaArray
<
glm
::
vec4
>>
o_colors
,
sptr
<
CudaArray
<
glm
::
vec3
>>
rays
,
glm
::
vec3
origin
,
bool
showPerf
)
{
CudaEvent
eStart
,
eSampled
,
eEncoded
,
eInferred
,
eRendered
;
cudaEventRecord
(
eStart
);
_sampler
->
sampleOnRays
(
_
sphericalC
oords
,
_depths
,
rays
,
rayO
rigin
);
_sampler
->
sampleOnRays
(
_
c
oords
,
_depths
,
rays
,
o
rigin
);
cudaEventRecord
(
eSampled
);
sptr
<
CudaArray
<
float
>>
coords
(
new
CudaArray
<
float
>
((
float
*
)
_sphericalCoords
->
getBuffer
(),
_sphericalCoords
->
n
()
*
3
));
_encoder
->
encode
(
_encoded
,
coords
);
_encoder
->
encode
(
_encoded
,
_coords
);
cudaEventRecord
(
eEncoded
);
...
...
@@ -46,8 +40,7 @@ void InferPipeline::run(sptr<CudaArray<glm::vec4>> o_colors,
cudaEventRecord
(
eRendered
);
if
(
showPerf
)
{
if
(
showPerf
)
{
CHECK_EX
(
cudaDeviceSynchronize
());
float
timeTotal
,
timeSample
,
timeEncode
,
timeInfer
,
timeRender
;
...
...
@@ -59,8 +52,8 @@ void InferPipeline::run(sptr<CudaArray<glm::vec4>> o_colors,
std
::
ostringstream
sout
;
sout
<<
"Infer pipeline: "
<<
timeTotal
<<
"ms (Sample: "
<<
timeSample
<<
"ms, Encode: "
<<
timeEncode
<<
"ms, Infer: "
<<
timeInfer
<<
"ms, Render: "
<<
timeRender
<<
"ms)"
;
<<
"ms, Encode: "
<<
timeEncode
<<
"ms, Infer: "
<<
timeInfer
<<
"ms, Render: "
<<
timeRender
<<
"ms)"
;
Logger
::
instance
.
info
(
sout
.
str
());
}
/*
...
...
cpp/msl_infer/InferPipeline.h
View file @
c10f614f
#pragma once
#include "
C
ommon.h"
#include "
../utils/c
ommon.h"
#include "../msl_infer/Sampler.h"
#include "../msl_infer/Encoder.h"
#include "../msl_infer/Renderer.h"
#include "../msl_infer/Msl.h"
class
InferPipeline
{
public:
InferPipeline
(
const
std
::
string
&
netDir
,
bool
isNmsl
,
u
int
batchSize
,
uint
sample
s
);
class
InferPipeline
{
public:
InferPipeline
(
sptr
<
Msl
>
net
,
uint
nRays
,
uint
nSamplesPerRay
,
glm
::
vec2
depthRange
,
int
encodeDim
,
int
coordChn
s
);
void
run
(
sptr
<
CudaArray
<
glm
::
vec4
>>
o_colors
,
sptr
<
CudaArray
<
glm
::
vec3
>>
rays
,
glm
::
vec3
rayOrigin
,
bool
showPerf
=
false
);
void
run
(
sptr
<
CudaArray
<
glm
::
vec4
>>
o_colors
,
sptr
<
CudaArray
<
glm
::
vec3
>>
rays
,
glm
::
vec3
origin
,
bool
showPerf
=
false
);
private:
uint
_batchSize
;
uint
_samples
;
private:
uint
_nRays
;
uint
_nSamplesPerRay
;
sptr
<
Msl
>
_net
;
sptr
<
Sampler
>
_sampler
;
sptr
<
Encoder
>
_encoder
;
sptr
<
Renderer
>
_renderer
;
sptr
<
Msl
>
_net
;
sptr
<
CudaArray
<
glm
::
vec3
>>
_sphericalCoords
;
sptr
<
CudaArray
<
float
>>
_coords
;
sptr
<
CudaArray
<
float
>>
_depths
;
sptr
<
CudaArray
<
float
>>
_encoded
;
sptr
<
CudaArray
<
glm
::
vec4
>>
_layeredColors
;
...
...
cpp/msl_infer/Msl.cpp
View file @
c10f614f
#include "Msl.h"
#include <time.h>
Msl
::
Msl
(
int
batchSize
,
int
samples
)
:
batchSize
(
batchSize
),
samples
(
samples
),
net
(
nullptr
)
{}
Msl
::
Msl
(
)
:
net
(
nullptr
)
{}
bool
Msl
::
load
(
const
std
::
string
&
netDir
)
{
bool
Msl
::
load
(
const
std
::
string
&
netPath
)
{
net
=
new
Net
();
if
(
!
net
->
load
(
netDir
+
"msl.trt"
))
return
false
;
if
(
net
->
load
(
netPath
))
return
true
;
dispose
();
return
false
;
}
void
Msl
::
bindResources
(
Resource
*
resEncoded
,
Resource
*
resDepths
,
Resource
*
resColors
)
{
void
Msl
::
bindResources
(
Resource
*
resEncoded
,
Resource
*
resDepths
,
Resource
*
resColors
)
{
net
->
bindResource
(
"Encoded"
,
resEncoded
);
net
->
bindResource
(
"Depths"
,
resDepths
);
net
->
bindResource
(
"Colors"
,
resColors
);
}
bool
Msl
::
infer
()
{
if
(
!
net
->
infer
())
return
false
;
return
true
;
}
bool
Msl
::
infer
()
{
return
net
->
infer
();
}
bool
Msl
::
dispose
()
{
if
(
net
!=
nullptr
)
{
void
Msl
::
dispose
()
{
if
(
net
!=
nullptr
)
{
net
->
dispose
();
delete
net
;
net
=
nullptr
;
}
return
true
;
}
cpp/msl_infer/Msl.h
View file @
c10f614f
#pragma once
#include "
C
ommon.h"
#include "
../utils/c
ommon.h"
#include "Net.h"
class
Msl
{
class
Msl
{
public:
int
batchSize
;
int
samples
;
Net
*
net
;
Msl
(
int
batchSize
,
int
samples
);
Msl
(
);
virtual
bool
load
(
const
std
::
string
&
netDir
);
virtual
void
bindResources
(
Resource
*
resEncoded
,
Resource
*
resDepths
,
Resource
*
resColors
);
virtual
bool
infer
();
virtual
bool
dispose
();
virtual
void
dispose
();
};
cpp/msl_infer/Net.cpp
View file @
c10f614f
#include "half.h"
#include "
../utils/
half.h"
#include "Net.h"
#include <fstream>
#include <numeric>
...
...
cpp/msl_infer/Net.h
View file @
c10f614f
#pragma once
#include "
C
ommon.h"
#include "
../utils/c
ommon.h"
class
Net
{
...
...
cpp/msl_infer/Nmsl2.cpp
View file @
c10f614f
#include "Nmsl2.h"
#include <time.h>
Nmsl2
::
Nmsl2
(
int
batchSize
,
int
samples
)
:
Msl
(
batchSize
,
samples
),
resRaw1
(
nullptr
),
resRaw2
(
nullptr
),
fcNet1
(
nullptr
),
fcNet2
(
nullptr
),
catNet
(
nullptr
)
{}
Nmsl2
::
Nmsl2
(
int
batchSize
,
int
samples
)
:
batchSize
(
batchSize
),
samples
(
samples
),
resRaw1
(
nullptr
),
resRaw2
(
nullptr
),
fcNet1
(
nullptr
),
fcNet2
(
nullptr
),
catNet
(
nullptr
)
{}
bool
Nmsl2
::
load
(
const
std
::
string
&
netDir
)
{
bool
Nmsl2
::
load
(
const
std
::
string
&
netDir
)
{
fcNet1
=
new
Net
();
fcNet2
=
new
Net
();
catNet
=
new
Net
();
...
...
@@ -18,8 +22,7 @@ bool Nmsl2::load(const std::string &netDir)
return
true
;
}
void
Nmsl2
::
bindResources
(
Resource
*
resEncoded
,
Resource
*
resDepths
,
Resource
*
resColors
)
{
void
Nmsl2
::
bindResources
(
Resource
*
resEncoded
,
Resource
*
resDepths
,
Resource
*
resColors
)
{
fcNet1
->
bindResource
(
"Encoded"
,
resEncoded
);
fcNet1
->
bindResource
(
"Raw"
,
resRaw1
.
get
());
fcNet2
->
bindResource
(
"Encoded"
,
resEncoded
);
...
...
@@ -30,9 +33,8 @@ void Nmsl2::bindResources(Resource *resEncoded, Resource *resDepths, Resource *r
catNet
->
bindResource
(
"Colors"
,
resColors
);
}
bool
Nmsl2
::
infer
()
{
//CudaStream stream1, stream2;
bool
Nmsl2
::
infer
()
{
// CudaStream stream1, stream2;
if
(
!
fcNet1
->
infer
())
return
false
;
if
(
!
fcNet2
->
infer
())
...
...
@@ -42,27 +44,22 @@ bool Nmsl2::infer()
return
true
;
}
bool
Nmsl2
::
dispose
()
{
if
(
fcNet1
!=
nullptr
)
{
void
Nmsl2
::
dispose
()
{
if
(
fcNet1
!=
nullptr
)
{
fcNet1
->
dispose
();
delete
fcNet1
;
fcNet1
=
nullptr
;
}
if
(
fcNet2
!=
nullptr
)
{
if
(
fcNet2
!=
nullptr
)
{
fcNet2
->
dispose
();
delete
fcNet2
;
fcNet2
=
nullptr
;
}
if
(
catNet
!=
nullptr
)
{
if
(
catNet
!=
nullptr
)
{
catNet
->
dispose
();
delete
catNet
;
catNet
=
nullptr
;
}
resRaw1
=
nullptr
;
resRaw2
=
nullptr
;
return
true
;
}
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment