Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in / Register
Toggle navigation
Menu
Open sidebar
Nianchen Deng
deeplightfield
Commits
7e0ade21
Commit
7e0ade21
authored
Apr 28, 2021
by
Nianchen Deng
Browse files
sync
parent
5d1d329d
Changes
6
Show whitespace changes
Inline
Side-by-side
data/blender_gen/gen_fovea.py
0 → 100644
View file @
7e0ade21
import
bpy
import
math
import
json
import
os
import
math
import
numpy
as
np
from
itertools
import
product
scene
=
bpy
.
context
.
scene
cam_obj
=
scene
.
camera
cam
=
cam_obj
.
data
scene
.
cycles
.
device
=
'GPU'
dataset_name
=
'train'
tbox
=
[
0.6
,
0.6
,
0.6
]
rbox
=
[
320
,
40
]
dataset_desc
=
{
'view_file_pattern'
:
'%s/view_%%04d.png'
%
dataset_name
,
"gl_coord"
:
True
,
'view_res'
:
{
'x'
:
512
,
'y'
:
512
},
'cam_params'
:
{
'fov'
:
40.0
,
'cx'
:
0.5
,
'cy'
:
0.5
,
'normalized'
:
True
},
'range'
:
{
'min'
:
[
-
tbox
[
0
]
/
2
,
-
tbox
[
1
]
/
2
,
-
tbox
[
2
]
/
2
,
-
rbox
[
0
]
/
2
,
-
rbox
[
1
]
/
2
],
'max'
:
[
tbox
[
0
]
/
2
,
tbox
[
1
]
/
2
,
tbox
[
2
]
/
2
,
rbox
[
0
]
/
2
,
rbox
[
1
]
/
2
]
},
'samples'
:
[
5
,
5
,
5
,
9
,
2
],
#'samples': [2000],
'view_centers'
:
[],
'view_rots'
:
[]
}
data_desc_file
=
f
'output/
{
dataset_name
}
.json'
if
not
os
.
path
.
exists
(
'output'
):
os
.
mkdir
(
'output'
)
if
os
.
path
.
exists
(
data_desc_file
):
with
open
(
data_desc_file
,
'r'
)
as
fp
:
dataset_desc
.
update
(
json
.
load
(
fp
))
with
open
(
data_desc_file
,
'w'
)
as
fp
:
json
.
dump
(
dataset_desc
,
fp
,
indent
=
4
)
# Output resolution
scene
.
render
.
resolution_x
=
dataset_desc
[
'view_res'
][
'x'
]
scene
.
render
.
resolution_y
=
dataset_desc
[
'view_res'
][
'y'
]
# Field of view
cam
.
lens_unit
=
'FOV'
cam
.
angle
=
math
.
radians
(
dataset_desc
[
'cam_params'
][
'fov'
])
cam
.
dof
.
use_dof
=
False
def
add_sample
(
i
,
x
,
y
,
z
,
rx
,
ry
,
render_only
=
False
):
cam_obj
.
location
=
[
x
,
y
,
z
]
cam_obj
.
rotation_euler
=
[
math
.
radians
(
ry
),
math
.
radians
(
rx
),
0
]
scene
.
render
.
filepath
=
'output/'
+
dataset_desc
[
'view_file_pattern'
]
%
i
bpy
.
ops
.
render
.
render
(
write_still
=
True
)
if
not
render_only
:
dataset_desc
[
'view_centers'
].
append
(
list
(
cam_obj
.
location
))
dataset_desc
[
'view_rots'
].
append
([
rx
,
ry
])
with
open
(
data_desc_file
,
'w'
)
as
fp
:
json
.
dump
(
dataset_desc
,
fp
,
indent
=
4
)
for
i
in
range
(
len
(
dataset_desc
[
'view_centers'
])):
if
not
os
.
path
.
exists
(
'output/'
+
dataset_desc
[
'view_file_pattern'
]
%
i
):
add_sample
(
i
,
*
dataset_desc
[
'view_centers'
][
i
],
*
dataset_desc
[
'view_rots'
][
i
],
render_only
=
True
)
start_view
=
len
(
dataset_desc
[
'view_centers'
])
if
len
(
dataset_desc
[
'samples'
])
==
1
:
range_min
=
np
.
array
(
dataset_desc
[
'range'
][
'min'
])
range_max
=
np
.
array
(
dataset_desc
[
'range'
][
'max'
])
samples
=
(
range_max
-
range_min
)
*
np
.
random
.
rand
(
dataset_desc
[
'samples'
][
0
],
5
)
+
range_min
for
i
in
range
(
start_view
,
dataset_desc
[
'samples'
][
0
]):
add_sample
(
i
,
*
list
(
samples
[
i
]))
else
:
ranges
=
[
np
.
linspace
(
dataset_desc
[
'range'
][
'min'
][
i
],
dataset_desc
[
'range'
][
'max'
][
i
],
dataset_desc
[
'samples'
][
i
])
for
i
in
range
(
0
,
3
)
]
+
[
np
.
linspace
(
dataset_desc
[
'range'
][
'min'
][
i
],
dataset_desc
[
'range'
][
'max'
][
i
],
dataset_desc
[
'samples'
][
i
])
for
i
in
range
(
3
,
5
)
]
i
=
0
for
x
,
y
,
z
,
rx
,
ry
in
product
(
*
ranges
):
if
i
>=
start_view
:
add_sample
(
i
,
x
,
y
,
z
,
rx
,
ry
)
i
+=
1
data/blender_gen/gen_periph.py
0 → 100644
View file @
7e0ade21
import
bpy
import
math
import
json
import
os
import
math
import
numpy
as
np
from
itertools
import
product
scene
=
bpy
.
context
.
scene
cam_obj
=
scene
.
camera
cam
=
cam_obj
.
data
scene
.
cycles
.
device
=
'GPU'
dataset_name
=
'train'
tbox
=
[
0.7
,
0.7
,
0.7
]
rbox
=
[
300
,
120
]
dataset_desc
=
{
'view_file_pattern'
:
'%s/view_%%04d.png'
%
dataset_name
,
"gl_coord"
:
True
,
'view_res'
:
{
'x'
:
512
,
'y'
:
512
},
'cam_params'
:
{
'fov'
:
60.0
,
'cx'
:
0.5
,
'cy'
:
0.5
,
'normalized'
:
True
},
'range'
:
{
'min'
:
[
-
tbox
[
0
]
/
2
,
-
tbox
[
1
]
/
2
,
-
tbox
[
2
]
/
2
,
-
rbox
[
0
]
/
2
,
-
rbox
[
1
]
/
2
],
'max'
:
[
tbox
[
0
]
/
2
,
tbox
[
1
]
/
2
,
tbox
[
2
]
/
2
,
rbox
[
0
]
/
2
,
rbox
[
1
]
/
2
]
},
'samples'
:
[
5
,
5
,
5
,
6
,
3
],
#'samples': [2000],
'view_centers'
:
[],
'view_rots'
:
[]
}
data_desc_file
=
f
'output/
{
dataset_name
}
.json'
if
not
os
.
path
.
exists
(
'output'
):
os
.
mkdir
(
'output'
)
if
os
.
path
.
exists
(
data_desc_file
):
with
open
(
data_desc_file
,
'r'
)
as
fp
:
dataset_desc
.
update
(
json
.
load
(
fp
))
with
open
(
data_desc_file
,
'w'
)
as
fp
:
json
.
dump
(
dataset_desc
,
fp
,
indent
=
4
)
# Output resolution
scene
.
render
.
resolution_x
=
dataset_desc
[
'view_res'
][
'x'
]
scene
.
render
.
resolution_y
=
dataset_desc
[
'view_res'
][
'y'
]
# Field of view
cam
.
lens_unit
=
'FOV'
cam
.
angle
=
math
.
radians
(
dataset_desc
[
'cam_params'
][
'fov'
])
cam
.
dof
.
use_dof
=
False
def
add_sample
(
i
,
x
,
y
,
z
,
rx
,
ry
,
render_only
=
False
):
cam_obj
.
location
=
[
x
,
y
,
z
]
cam_obj
.
rotation_euler
=
[
math
.
radians
(
ry
),
math
.
radians
(
rx
),
0
]
scene
.
render
.
filepath
=
'output/'
+
dataset_desc
[
'view_file_pattern'
]
%
i
bpy
.
ops
.
render
.
render
(
write_still
=
True
)
if
not
render_only
:
dataset_desc
[
'view_centers'
].
append
(
list
(
cam_obj
.
location
))
dataset_desc
[
'view_rots'
].
append
([
rx
,
ry
])
with
open
(
data_desc_file
,
'w'
)
as
fp
:
json
.
dump
(
dataset_desc
,
fp
,
indent
=
4
)
for
i
in
range
(
len
(
dataset_desc
[
'view_centers'
])):
if
not
os
.
path
.
exists
(
'output/'
+
dataset_desc
[
'view_file_pattern'
]
%
i
):
add_sample
(
i
,
*
dataset_desc
[
'view_centers'
][
i
],
*
dataset_desc
[
'view_rots'
][
i
],
render_only
=
True
)
start_view
=
len
(
dataset_desc
[
'view_centers'
])
if
len
(
dataset_desc
[
'samples'
])
==
1
:
range_min
=
np
.
array
(
dataset_desc
[
'range'
][
'min'
])
range_max
=
np
.
array
(
dataset_desc
[
'range'
][
'max'
])
samples
=
(
range_max
-
range_min
)
*
np
.
random
.
rand
(
dataset_desc
[
'samples'
][
0
],
5
)
+
range_min
for
i
in
range
(
start_view
,
dataset_desc
[
'samples'
][
0
]):
add_sample
(
i
,
*
list
(
samples
[
i
]))
else
:
ranges
=
[
np
.
linspace
(
dataset_desc
[
'range'
][
'min'
][
i
],
dataset_desc
[
'range'
][
'max'
][
i
],
dataset_desc
[
'samples'
][
i
])
for
i
in
range
(
0
,
3
)
]
+
[
np
.
linspace
(
dataset_desc
[
'range'
][
'min'
][
i
],
dataset_desc
[
'range'
][
'max'
][
i
],
dataset_desc
[
'samples'
][
i
])
for
i
in
range
(
3
,
5
)
]
i
=
0
for
x
,
y
,
z
,
rx
,
ry
in
product
(
*
ranges
):
if
i
>=
start_view
:
add_sample
(
i
,
x
,
y
,
z
,
rx
,
ry
)
i
+=
1
data/calc_range.py
0 → 100644
View file @
7e0ade21
import
json
import
sys
import
os
import
argparse
import
numpy
as
np
import
torch
sys
.
path
.
append
(
os
.
path
.
abspath
(
sys
.
path
[
0
]
+
'/../'
))
from
utils
import
misc
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'dataset'
,
type
=
str
)
args
=
parser
.
parse_args
()
data_desc_path
=
args
.
dataset
data_desc_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
data_desc_path
))[
0
]
data_dir
=
os
.
path
.
dirname
(
data_desc_path
)
+
'/'
with
open
(
data_desc_path
,
'r'
)
as
fp
:
dataset_desc
=
json
.
load
(
fp
)
centers
=
np
.
array
(
dataset_desc
[
'view_centers'
])
t_max
=
np
.
max
(
centers
,
axis
=
0
)
t_min
=
np
.
min
(
centers
,
axis
=
0
)
dataset_desc
[
'range'
]
=
{
'min'
:
[
t_min
[
0
],
t_min
[
1
],
t_min
[
2
],
0
,
0
],
'max'
:
[
t_max
[
0
],
t_max
[
1
],
t_max
[
2
],
0
,
0
]
}
with
open
(
data_desc_path
,
'w'
)
as
fp
:
json
.
dump
(
dataset_desc
,
fp
,
indent
=
4
)
\ No newline at end of file
data/gen_seq.py
0 → 100644
View file @
7e0ade21
import
json
import
sys
import
os
import
argparse
import
numpy
as
np
sys
.
path
.
append
(
os
.
path
.
abspath
(
sys
.
path
[
0
]
+
'/../'
))
from
utils
import
seqs
from
utils
import
misc
from
utils.constants
import
*
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'-r'
,
'--rot-range'
,
nargs
=
'+'
,
type
=
int
)
parser
.
add_argument
(
'-t'
,
'--trans-range'
,
nargs
=
'+'
,
type
=
float
)
parser
.
add_argument
(
'--fov'
,
type
=
float
)
parser
.
add_argument
(
'--res'
,
type
=
str
)
parser
.
add_argument
(
'--gl'
,
action
=
'store_true'
)
parser
.
add_argument
(
'-s'
,
'--seq'
,
type
=
str
,
required
=
True
)
parser
.
add_argument
(
'-n'
,
'--views'
,
type
=
int
,
required
=
True
)
parser
.
add_argument
(
'-o'
,
'--out-desc'
,
type
=
str
)
parser
.
add_argument
(
'--ref'
,
type
=
str
)
parser
.
add_argument
(
'dataset'
,
type
=
str
)
args
=
parser
.
parse_args
()
data_dir
=
args
.
dataset
misc
.
create_dir
(
data_dir
)
out_desc_path
=
os
.
path
.
join
(
data_dir
,
(
args
.
out_desc
if
args
.
out_desc
else
f
"
{
args
.
seq
}
.json"
))
if
args
.
ref
:
with
open
(
os
.
path
.
join
(
data_dir
,
args
.
ref
),
'r'
)
as
fp
:
ref_desc
=
json
.
load
(
fp
)
else
:
if
not
args
.
trans_range
or
not
args
.
rot_range
or
not
args
.
fov
or
not
args
.
res
:
print
(
'-r, -t, --fov, --res options are required if --ref is not specified'
)
exit
(
-
1
)
ref_desc
=
None
if
args
.
trans_range
:
trans_range
=
np
.
array
(
list
(
args
.
trans_range
)
*
3
if
len
(
args
.
trans_range
)
==
1
else
args
.
trans_range
)
else
:
trans_range
=
np
.
array
(
ref_desc
[
'range'
][
'max'
][
0
:
3
])
-
\
np
.
array
(
ref_desc
[
'range'
][
'min'
][
0
:
3
])
if
args
.
rot_range
:
rot_range
=
np
.
array
(
list
(
args
.
rot_range
)
*
2
if
len
(
args
.
rot_range
)
==
1
else
args
.
rot_range
)
else
:
rot_range
=
np
.
array
(
ref_desc
[
'range'
][
'max'
][
3
:
5
])
-
\
np
.
array
(
ref_desc
[
'range'
][
'min'
][
3
:
5
])
filter_range
=
np
.
concatenate
([
trans_range
,
rot_range
])
if
args
.
fov
:
cam_params
=
{
'fov'
:
args
.
fov
,
'cx'
:
0.5
,
'cy'
:
0.5
,
'normalized'
:
True
}
else
:
cam_params
=
ref_desc
[
'cam_params'
]
if
args
.
res
:
res
=
tuple
(
int
(
s
)
for
s
in
args
.
res
.
split
(
'x'
))
res
=
{
'x'
:
res
[
0
],
'y'
:
res
[
1
]}
else
:
res
=
ref_desc
[
'view_res'
]
if
args
.
seq
==
'helix'
:
centers
,
rots
=
seqs
.
helix
(
trans_range
,
4
,
args
.
views
)
elif
args
.
seq
==
'scan_around'
:
centers
,
rots
=
seqs
.
scan_around
(
trans_range
,
1
,
args
.
views
)
elif
args
.
seq
==
'look_around'
:
centers
,
rots
=
seqs
.
look_around
(
trans_range
,
args
.
views
)
rots
*=
180
/
PI
gl
=
args
.
gl
or
ref_desc
.
get
(
'gl_coord'
)
if
gl
:
centers
[:,
2
]
*=
-
1
rots
[:,
0
]
*=
-
1
dataset_desc
=
{
'gl_coord'
:
gl
,
'view_res'
:
res
,
'cam_params'
:
cam_params
,
'range'
:
{
'min'
:
(
-
0.5
*
filter_range
).
tolist
(),
'max'
:
(
0.5
*
filter_range
).
tolist
()
},
'samples'
:
[
args
.
views
],
'view_centers'
:
centers
.
tolist
(),
'view_rots'
:
rots
.
tolist
()
}
with
open
(
out_desc_path
,
'w'
)
as
fp
:
json
.
dump
(
dataset_desc
,
fp
,
indent
=
4
)
data/gen_subset.py
0 → 100644
View file @
7e0ade21
import
json
import
sys
import
os
import
argparse
import
numpy
as
np
sys
.
path
.
append
(
os
.
path
.
abspath
(
sys
.
path
[
0
]
+
'/../'
))
from
utils
import
misc
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'-r'
,
'--rot-range'
,
nargs
=
'+'
,
type
=
int
)
parser
.
add_argument
(
'-t'
,
'--trans-range'
,
nargs
=
'+'
,
type
=
float
)
parser
.
add_argument
(
'-k'
,
'--trainset-ratio'
,
type
=
float
,
default
=
0.7
)
parser
.
add_argument
(
'dataset'
,
type
=
str
)
args
=
parser
.
parse_args
()
data_desc_path
=
args
.
dataset
data_desc_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
data_desc_path
))[
0
]
data_dir
=
os
.
path
.
dirname
(
data_desc_path
)
+
'/'
with
open
(
data_desc_path
,
'r'
)
as
fp
:
dataset_desc
=
json
.
load
(
fp
)
if
args
.
trans_range
:
trans_range
=
np
.
array
(
args
.
trans_range
)
else
:
trans_range
=
np
.
array
(
dataset_desc
[
'range'
][
'max'
][
0
:
3
])
-
\
np
.
array
(
dataset_desc
[
'range'
][
'min'
][
0
:
3
])
if
args
.
rot_range
:
rot_range
=
np
.
array
(
args
.
rot_range
)
else
:
rot_range
=
np
.
array
(
dataset_desc
[
'range'
][
'max'
][
3
:
5
])
-
\
np
.
array
(
dataset_desc
[
'range'
][
'min'
][
3
:
5
])
filter_range
=
np
.
concatenate
([
trans_range
,
rot_range
])
out_data_dir
=
data_dir
+
'r%dx%d_t%.1fx%.1fx%.1f/'
%
(
int
(
rot_range
[
0
]),
int
(
rot_range
[
1
]),
trans_range
[
0
],
trans_range
[
1
],
trans_range
[
2
]
)
dataset_version
=
0
while
True
:
out_trainset_name
=
f
'train_
{
dataset_version
}
'
out_testset_name
=
f
'test_
{
dataset_version
}
'
if
not
os
.
path
.
exists
(
out_data_dir
+
out_trainset_name
):
break
dataset_version
+=
1
def
in_range
(
val
,
range
):
return
val
>=
-
range
/
2
and
val
<=
range
/
2
views
=
[]
for
i
in
range
(
len
(
dataset_desc
[
'view_centers'
])):
if
in_range
(
dataset_desc
[
'view_rots'
][
i
][
0
],
rot_range
[
0
])
and
\
in_range
(
dataset_desc
[
'view_rots'
][
i
][
1
],
rot_range
[
1
])
and
\
in_range
(
dataset_desc
[
'view_centers'
][
i
][
0
],
trans_range
[
0
])
and
\
in_range
(
dataset_desc
[
'view_centers'
][
i
][
1
],
trans_range
[
1
])
and
\
in_range
(
dataset_desc
[
'view_centers'
][
i
][
2
],
trans_range
[
2
]):
views
.
append
(
i
)
if
len
(
views
)
<
100
:
print
(
f
'Number of views in range is too small (
{
len
(
views
)
}
)'
)
exit
()
views
=
np
.
random
.
permutation
(
views
)
n_train_views
=
int
(
len
(
views
)
*
args
.
trainset_ratio
)
train_views
=
np
.
sort
(
views
[:
n_train_views
])
test_views
=
np
.
sort
(
views
[
n_train_views
:])
print
(
'Train set views: '
,
len
(
train_views
))
print
(
'Test set views: '
,
len
(
test_views
))
def
create_subset
(
views
,
out_desc_name
):
views
=
views
.
tolist
()
subset_desc
=
dataset_desc
.
copy
()
subset_desc
[
'view_file_pattern'
]
=
\
f
"
{
out_desc_name
}
/
{
dataset_desc
[
'view_file_pattern'
].
split
(
'/'
)[
-
1
]
}
"
subset_desc
[
'range'
]
=
{
'min'
:
list
(
-
filter_range
/
2
),
'max'
:
list
(
filter_range
/
2
)
}
subset_desc
[
'samples'
]
=
[
int
(
len
(
views
))]
subset_desc
[
'views'
]
=
views
subset_desc
[
'view_centers'
]
=
np
.
array
(
dataset_desc
[
'view_centers'
])[
views
].
tolist
()
subset_desc
[
'view_rots'
]
=
np
.
array
(
dataset_desc
[
'view_rots'
])[
views
].
tolist
()
with
open
(
os
.
path
.
join
(
out_data_dir
,
f
'
{
out_desc_name
}
.json'
),
'w'
)
as
fp
:
json
.
dump
(
subset_desc
,
fp
,
indent
=
4
)
misc
.
create_dir
(
os
.
path
.
join
(
out_data_dir
,
out_desc_name
))
for
i
in
range
(
len
(
views
)):
os
.
symlink
(
os
.
path
.
join
(
'../../'
,
dataset_desc
[
'view_file_pattern'
]
%
views
[
i
]),
os
.
path
.
join
(
out_data_dir
,
subset_desc
[
'view_file_pattern'
]
%
views
[
i
]))
misc
.
create_dir
(
out_data_dir
)
create_subset
(
train_views
,
out_trainset_name
)
create_subset
(
train_views
,
out_testset_name
)
data/split_dataset.py
0 → 100644
View file @
7e0ade21
import
json
import
sys
import
os
import
argparse
import
numpy
as
np
import
torch
sys
.
path
.
append
(
os
.
path
.
abspath
(
sys
.
path
[
0
]
+
'/../'
))
from
utils
import
misc
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'-o'
,
'--output'
,
type
=
str
,
default
=
'train1'
)
parser
.
add_argument
(
'dataset'
,
type
=
str
)
args
=
parser
.
parse_args
()
data_desc_path
=
args
.
dataset
data_desc_name
=
os
.
path
.
splitext
(
os
.
path
.
basename
(
data_desc_path
))[
0
]
data_dir
=
os
.
path
.
dirname
(
data_desc_path
)
+
'/'
with
open
(
data_desc_path
,
'r'
)
as
fp
:
dataset_desc
=
json
.
load
(
fp
)
indices
=
torch
.
arange
(
len
(
dataset_desc
[
'view_centers'
])).
view
(
dataset_desc
[
'samples'
])
idx
=
0
'''
for i in range(3):
for j in range(2):
out_desc_name = f'part{idx:d}'
out_desc = dataset_desc.copy()
out_desc['view_file_pattern'] = f'{out_desc_name}/view_%04d.png'
n_x = out_desc['samples'][3] // 3
n_y = out_desc['samples'][4] // 2
views = indices[..., i * n_x:(i + 1) * n_x, j * n_y:(j + 1) * n_y].flatten().tolist()
out_desc['samples'] = [len(views)]
out_desc['views'] = views
out_desc['view_centers'] = np.array(dataset_desc['view_centers'])[views].tolist()
out_desc['view_rots'] = np.array(dataset_desc['view_rots'])[views].tolist()
with open(os.path.join(data_dir, f'{out_desc_name}.json'), 'w') as fp:
json.dump(out_desc, fp, indent=4)
misc.create_dir(os.path.join(data_dir, out_desc_name))
for k in range(len(views)):
os.symlink(os.path.join('..', dataset_desc['view_file_pattern'] % views[k]),
os.path.join(data_dir, out_desc['view_file_pattern'] % views[k]))
idx += 1
'''
'''
for xi in range(0, 4, 2):
for yi in range(0, 4, 2):
for zi in range(0, 4, 2):
out_desc_name = f'part{idx:d}'
out_desc = dataset_desc.copy()
out_desc['view_file_pattern'] = f'{out_desc_name}/view_%04d.png'
views = indices[xi:xi + 2, yi:yi + 2, zi:zi + 2].flatten().tolist()
out_desc['samples'] = [len(views)]
out_desc['views'] = views
out_desc['view_centers'] = np.array(dataset_desc['view_centers'])[views].tolist()
out_desc['view_rots'] = np.array(dataset_desc['view_rots'])[views].tolist()
with open(os.path.join(data_dir, f'{out_desc_name}.json'), 'w') as fp:
json.dump(out_desc, fp, indent=4)
misc.create_dir(os.path.join(data_dir, out_desc_name))
for k in range(len(views)):
os.symlink(os.path.join('..', dataset_desc['view_file_pattern'] % views[k]),
os.path.join(data_dir, out_desc['view_file_pattern'] % views[k]))
idx += 1
'''
from
itertools
import
product
out_desc_name
=
args
.
output
out_desc
=
dataset_desc
.
copy
()
out_desc
[
'view_file_pattern'
]
=
f
"
{
out_desc_name
}
/
{
dataset_desc
[
'view_file_pattern'
].
split
(
'/'
)[
-
1
]
}
"
views
=
[]
for
idx
in
product
([
0
,
2
,
4
],
[
0
,
2
,
4
],
[
0
,
2
,
4
],
list
(
range
(
9
)),
[
1
]):
#, [0, 2, 3, 5], [1, 2, 3, 4]):
views
+=
indices
[
idx
].
flatten
().
tolist
()
out_desc
[
'samples'
]
=
[
len
(
views
)]
out_desc
[
'views'
]
=
views
out_desc
[
'view_centers'
]
=
np
.
array
(
dataset_desc
[
'view_centers'
])[
views
].
tolist
()
out_desc
[
'view_rots'
]
=
np
.
array
(
dataset_desc
[
'view_rots'
])[
views
].
tolist
()
with
open
(
os
.
path
.
join
(
data_dir
,
f
'
{
out_desc_name
}
.json'
),
'w'
)
as
fp
:
json
.
dump
(
out_desc
,
fp
,
indent
=
4
)
misc
.
create_dir
(
os
.
path
.
join
(
data_dir
,
out_desc_name
))
for
k
in
range
(
len
(
views
)):
os
.
symlink
(
os
.
path
.
join
(
'..'
,
dataset_desc
[
'view_file_pattern'
]
%
views
[
k
]),
os
.
path
.
join
(
data_dir
,
out_desc
[
'view_file_pattern'
]
%
views
[
k
]))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment