fnr.py 9.35 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import torch.nn.functional as nn_f
from typing import Any, List, Mapping, Tuple
from torch import nn
from utils.view import *
from utils.constants import *
from .post_process import *
from .foveation import Foveation


class FoveatedNeuralRenderer(object):

    def __init__(self, layers_fov: List[float],
                 layers_res: List[Tuple[int, int]],
                 layers_net: nn.ModuleList,
                 output_res: Tuple[int, int], *,
                 using_mask=True,
                 device: torch.device = None):
        super().__init__()
        self.layers_net = layers_net.to(device=device)
        self.layers_cam = [
            CameraParam({
                'fov': layers_fov[i],
                'cx': 0.5,
                'cy': 0.5,
                'normalized': True
            }, layers_res[i], device=device)
            for i in range(len(layers_fov))
        ]
        self.cam = CameraParam({
            'fov': layers_fov[-1],
            'cx': 0.5,
            'cy': 0.5,
            'normalized': True
        }, output_res, device=device)
        self.foveation = Foveation(layers_fov, layers_res, output_res, device=device)
        self.layers_mask = self.foveation.get_layers_mask() if using_mask else None
        self.device = device

    def to(self, device: torch.device):
        self.layers_net.to(device)
        self.foveation.to(device)
        self.cam.to(device)
        for cam in self.layers_cam:
            cam.to(device)
        if self.layers_mask is not None:
            self.layers_mask = self.layers_mask.to(device)
        self.device = device
        return self

    def __call__(self, *args: Any, **kwds: Any) -> Any:
        return self.render(*args, **kwds)

    def render(self, view: Trans, gaze, right_gaze=None, *,
               stereo_disparity=0, ret_raw=False) -> Union[Mapping[str, torch.Tensor], Tuple[Mapping[str, torch.Tensor]]]:
        if stereo_disparity > TINY_FLOAT:
            left_view = Trans(
                view.trans_point(torch.tensor([-stereo_disparity / 2, 0, 0], device=view.device())),
                view.r)
            right_view = Trans(
                view.trans_point(torch.tensor([stereo_disparity / 2, 0, 0], device=view.device())),
                view.r)
            left_gaze = gaze
            right_gaze = gaze if right_gaze is None else right_gaze
            res_raw_left = [
                self._render(i, left_view, left_gaze if i < 2 else None)['color']
                for i in range(3)
            ]
            res_raw_right = [
                self._render(i, right_view, right_gaze if i < 2 else None)['color']
                for i in range(3)
            ]
            return self._gen_output(res_raw_left, left_gaze, ret_raw), \
                self._gen_output(res_raw_right, right_gaze, ret_raw)
        else:
            res_raw = [
                self._render(i, view, gaze if i < 2 else None)['color']
                for i in range(3)
            ]
            return self._gen_output(res_raw, gaze, ret_raw)
        '''
        if mono_trans != None and shift == 0:  # do warp
            fovea_depth[torch.isnan(fovea_depth)] = 50
            mid_depth[torch.isnan(mid_depth)] = 50
            periph_depth[torch.isnan(periph_depth)] = 50

            if warp_by_depth:
                z_list = misc.depth_sample((1, 50), 4, True)
                mid_inferred = self._warp(trans, mono_trans, mid_cam,
                                          z_list, mid_inferred, mid_depth)
                periph_inferred = self._warp(trans, mono_trans, periph_cam,
                                             z_list, periph_inferred, periph_depth)
            else:
                p = torch.tensor([[0, 0, torch.mean(fovea_depth)]],
                                 device=self.device)
                p_ = trans.trans_point(mono_trans.trans_point(p), inverse=True)
                shift = self.full_cam.proj(
                    p_, center_as_origin=True)[..., 0].item()
                shift = round(shift)

        blended = self.foveation.synthesis([
            fovea_refined,
            mid_refined,
            periph_refined
        ], (gaze[0], gaze[1]), [0, shift, shift] if shift != 0 else None)
        '''

    def _render(self, layer: int, view: Trans, gaze=None, ret_depth=False) -> Mapping[str, torch.Tensor]:
        net = self.layers_net[layer]
        cam = self.layers_cam[layer]
        if gaze is not None:
            cam = self._adjust_cam(cam, gaze)
        rays_o, rays_d = cam.get_global_rays(view, True)  # (1, N, 3)
        if self.layers_mask is not None and layer < len(self.layers_mask):
            mask = self.layers_mask[layer] >= 0
            rays_o = rays_o[:, mask]
            rays_d = rays_d[:, mask]
            net_output = net(rays_o.view(-1, 3), rays_d.view(-1, 3), ret_depth=ret_depth)
            ret = {
                'color': torch.zeros(1, cam.res[0], cam.res[1], 3)
            }
            ret['color'][:, mask] = net_output['color']
            ret['color'] = ret['color'].permute(0, 3, 1, 2)
            if ret_depth:
                ret['depth'] = torch.zeros(1, cam.res[0], cam.res[1])
                ret['depth'][:, mask] = net_output['depth']
            return ret
        else:
            net_output = net(rays_o.view(-1, 3), rays_d.view(-1, 3), ret_depth=ret_depth)
            return {
                'color': net_output['color'].view(1, cam.res[0], cam.res[1], -1).permute(0, 3, 1, 2),
                'depth': net_output['depth'].view(1, cam.res[0], cam.res[1]) if ret_depth else None
            }

    def _gen_output(self, layers_img: List[torch.Tensor], gaze: Tuple[float, float], ret_raw=False) -> Mapping[str, torch.Tensor]:
        refined = self._post_process(layers_img)
        blended = self.foveation.synthesis(refined, gaze)
        ret = {
            'layers_img': refined,
            'blended': blended
        }
        if ret_raw:
            ret['layers_raw'] = layers_img,
            ret['blended_raw'] = self.foveation.synthesis(layers_img, gaze)
        return ret

    def _post_process(self, layers_img: List[torch.Tensor]) -> List[torch.Tensor]:
        return [
            #grad_aware_median(constrast_enhance(layers_img[0], 3, 0.2), 3, 3, True),
            constrast_enhance(layers_img[0], 3, 0.2),
            constrast_enhance(layers_img[1], 5, 0.2),
            constrast_enhance(layers_img[2], 5, 0.2)
        ]

    def _adjust_cam(self, layer_cam: CameraParam, gaze: Tuple[float, float]) -> CameraParam:
        fovea_offset = (
            (gaze[0]) / self.cam.f[0].item() * layer_cam.f[0].item(),
            (gaze[1]) / self.cam.f[1].item() * layer_cam.f[1].item()
        )
        return CameraParam({
            'fx': layer_cam.f[0].item(),
            'fy': layer_cam.f[1].item(),
            'cx': layer_cam.c[0].item() - fovea_offset[0],
            'cy': layer_cam.c[1].item() - fovea_offset[1]
        }, layer_cam.res, device=self.device)

    def _warp(self, trans: Trans, trans0: Trans,
              cam: CameraParam, z_list: torch.Tensor,
              image: torch.Tensor, depthmap: torch.Tensor) -> torch.Tensor:
        """
        [summary]

        :param trans: [description]
        :param trans0: [description]
        :param cam: [description]
        :param z_list: [description]
        :param image `Tensor(B, C, H, W)`:
        :param depthmap `Tensor(B, H, W)`:
        :return `Tensor(B, C, H, W)`:
        """
        B = image.size(0)
        rays_d = cam.get_global_rays(trans, norm=False)[1]  # (1, H, W, 3)
        rays_d_0 = trans0.trans_vector(rays_d, True)[0]  # (1, H, W, 3)
        t_0 = trans0.trans_point(trans.t, True)[0]  # (1, 3)
        q1_0 = torch.empty(B, cam.res[0], cam.res[1],
                           3, device=cam.device)  # near
        q2_0 = torch.empty(B, cam.res[0], cam.res[1],
                           3, device=cam.device)  # far
        determined = torch.zeros(B, cam.res[0], cam.res[1], 1,
                                 dtype=torch.bool, device=cam.device)
        for z in z_list:
            p_0 = rays_d_0 * z + t_0  # (1, H, W, 3)
            d_of_p_0 = torch.norm(p_0 - trans0.t, dim=-1,
                                  keepdim=True)  # (1, H, W, 1)
            v_of_p_0 = p_0 / d_of_p_0  # (1, H, W, 3)
            coords = cam.proj(p_0, True) * 2 - 1  # (1, H, W, 2)
            d = nn_f.grid_sample(
                depthmap[:, None, :, :],
                coords.expand(B, -1, -1, -1)).permute(0, 2, 3, 1)  # (B, H, W, 1)
            q = v_of_p_0 * d  # (B, H, W, 3)
            near_selector = d < d_of_p_0
            # Fill q2(far) when undetermined and d > d_of_p_0
            q2_selector = (~determined & ~near_selector).expand(-1, -1, -1, 3)
            q2_0[q2_selector] = q[q2_selector]
            # Fill q1(near) when undetermined and d <= d_of_p_0
            q1_selector = (~determined & near_selector).expand(-1, -1, -1, 3)
            q1_0[q1_selector] = q[q1_selector]
            # Mark as determined for d0 <= d
            determined[near_selector] = True

        # Compute intersection x of q1-q2 and rays (in trans0 space)
        k = torch.cross(q1_0 - t_0, rays_d_0, dim=-1).norm(dim=-1, keepdim=True) / \
            torch.cross(rays_d_0, q2_0 - t_0, dim=-1).norm(dim=-
                                                           1, keepdim=True)  # (B, H, W, 1)
        x_0 = (q2_0 - q1_0) * k / (k + 1) + q1_0
        coords = cam.proj(x_0, True) * 2 - 1  # (B, H, W, 2)
        return nn_f.grid_sample(image, coords)