recurrent.py 4.18 KB
Newer Older
BobYeah's avatar
BobYeah committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch, os, sys, cv2
import torch.nn as nn
from torch.nn import init
import functools
import torch.optim as optim

from torch.utils.data import Dataset, DataLoader
from torch.nn import functional as func
from PIL import Image

import torchvision.transforms as transforms
import numpy as np 
import torch


class RecurrentBlock(nn.Module):

	def __init__(self, input_nc, output_nc, downsampling=False, bottleneck=False, upsampling=False):
		super(RecurrentBlock, self).__init__()

		self.input_nc = input_nc
		self.output_nc = output_nc

		self.downsampling = downsampling
		self.upsampling = upsampling
		self.bottleneck = bottleneck

		self.hidden = None

		if self.downsampling:
			self.l1 = nn.Sequential(
					nn.Conv2d(input_nc, output_nc, 3, padding=1),
					nn.LeakyReLU(negative_slope=0.1)
				)
			self.l2 = nn.Sequential(
					nn.Conv2d(2 * output_nc, output_nc, 3, padding=1),
					nn.LeakyReLU(negative_slope=0.1),
					nn.Conv2d(output_nc, output_nc, 3, padding=1),
					nn.LeakyReLU(negative_slope=0.1),
				)
		elif self.upsampling:
			self.l1 = nn.Sequential(
					nn.Upsample(scale_factor=2, mode='nearest'),
					nn.Conv2d(2 * input_nc, output_nc, 3, padding=1),
					nn.LeakyReLU(negative_slope=0.1),
					nn.Conv2d(output_nc, output_nc, 3, padding=1),
					nn.LeakyReLU(negative_slope=0.1),
				)
		elif self.bottleneck:
			self.l1 = nn.Sequential(
					nn.Conv2d(input_nc, output_nc, 3, padding=1),
					nn.LeakyReLU(negative_slope=0.1)
				)
			self.l2 = nn.Sequential(
					nn.Conv2d(2 * output_nc, output_nc, 3, padding=1),
					nn.LeakyReLU(negative_slope=0.1),
					nn.Conv2d(output_nc, output_nc, 3, padding=1),
					nn.LeakyReLU(negative_slope=0.1),
				)

	def forward(self, inp):

		if self.downsampling:
			op1 = self.l1(inp)
			op2 = self.l2(torch.cat((op1, self.hidden), dim=1))

			self.hidden = op2

			return op2
		elif self.upsampling:
			op1 = self.l1(inp)

			return op1
		elif self.bottleneck:
			op1 = self.l1(inp)
			op2 = self.l2(torch.cat((op1, self.hidden), dim=1))

			self.hidden = op2

			return op2

	def reset_hidden(self, inp, dfac):
		size = list(inp.size())
		size[1] = self.output_nc
		size[2] /= dfac
		size[3] /= dfac

		self.hidden_size = size
		self.hidden = torch.zeros(*(size)).to('cuda:0')



class RecurrentAE(nn.Module):

	def __init__(self, input_nc):
		super(RecurrentAE, self).__init__()

		self.d1 = RecurrentBlock(input_nc=input_nc, output_nc=32, downsampling=True)
		self.d2 = RecurrentBlock(input_nc=32, output_nc=43, downsampling=True)
		self.d3 = RecurrentBlock(input_nc=43, output_nc=57, downsampling=True)
		self.d4 = RecurrentBlock(input_nc=57, output_nc=76, downsampling=True)
		self.d5 = RecurrentBlock(input_nc=76, output_nc=101, downsampling=True)

		self.bottleneck = RecurrentBlock(input_nc=101, output_nc=101, bottleneck=True)

		self.u5 = RecurrentBlock(input_nc=101, output_nc=76, upsampling=True)
		self.u4 = RecurrentBlock(input_nc=76, output_nc=57, upsampling=True)
		self.u3 = RecurrentBlock(input_nc=57, output_nc=43, upsampling=True)
		self.u2 = RecurrentBlock(input_nc=43, output_nc=32, upsampling=True)
		self.u1 = RecurrentBlock(input_nc=32, output_nc=3, upsampling=True)

	def set_input(self, inp):
		self.inp = inp['A']

	def forward(self):
		d1 = func.max_pool2d(input=self.d1(self.inp), kernel_size=2)
		d2 = func.max_pool2d(input=self.d2(d1), kernel_size=2)
		d3 = func.max_pool2d(input=self.d3(d2), kernel_size=2)
		d4 = func.max_pool2d(input=self.d4(d3), kernel_size=2)
		d5 = func.max_pool2d(input=self.d5(d4), kernel_size=2)

		b = self.bottleneck(d5)

		u5 = self.u5(torch.cat((b, d5), dim=1))
		u4 = self.u4(torch.cat((u5, d4), dim=1))
		u3 = self.u3(torch.cat((u4, d3), dim=1))
		u2 = self.u2(torch.cat((u3, d2), dim=1))
		u1 = self.u1(torch.cat((u2, d1), dim=1))

		return u1

	def reset_hidden(self):
		self.d1.reset_hidden(self.inp, dfac=1)
		self.d2.reset_hidden(self.inp, dfac=2)
		self.d3.reset_hidden(self.inp, dfac=4)
		self.d4.reset_hidden(self.inp, dfac=8)
		self.d5.reset_hidden(self.inp, dfac=16)

		self.bottleneck.reset_hidden(self.inp, dfac=32)

		self.u4.reset_hidden(self.inp, dfac=16)
		self.u3.reset_hidden(self.inp, dfac=8)
		self.u5.reset_hidden(self.inp, dfac=4)
		self.u2.reset_hidden(self.inp, dfac=2)
		self.u1.reset_hidden(self.inp, dfac=1)