baseline.py 7.46 KB
Newer Older
BobYeah's avatar
BobYeah committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import torch
def var_or_cuda(x):
    if torch.cuda.is_available():
        # x = x.cuda(non_blocking=True)
        x = x.to('cuda:1')
    return x

class residual_block(torch.nn.Module):
    def __init__(self, OUT_CHANNELS_RB, delta_channel_dim,KERNEL_SIZE_RB,RNN=False):
        super(residual_block,self).__init__()
        self.delta_channel_dim = delta_channel_dim
        self.out_channels_rb = OUT_CHANNELS_RB
        self.hidden = None
        self.RNN = RNN
        if self.RNN:
            self.layer1 = torch.nn.Sequential(
                torch.nn.Conv2d((OUT_CHANNELS_RB+delta_channel_dim)*2,OUT_CHANNELS_RB+delta_channel_dim,KERNEL_SIZE_RB,stride=1,padding = 1),
                torch.nn.BatchNorm2d(OUT_CHANNELS_RB+delta_channel_dim),
                torch.nn.ELU()
            )
            self.layer2 = torch.nn.Sequential(
                torch.nn.Conv2d(OUT_CHANNELS_RB+delta_channel_dim,OUT_CHANNELS_RB+delta_channel_dim,KERNEL_SIZE_RB,stride=1,padding = 1),
                torch.nn.BatchNorm2d(OUT_CHANNELS_RB+delta_channel_dim),
                torch.nn.ELU()
            )
        else:
            self.layer1 = torch.nn.Sequential(
                torch.nn.Conv2d(OUT_CHANNELS_RB+delta_channel_dim,OUT_CHANNELS_RB+delta_channel_dim,KERNEL_SIZE_RB,stride=1,padding = 1),
                torch.nn.BatchNorm2d(OUT_CHANNELS_RB+delta_channel_dim),
                torch.nn.ELU()
            )
            self.layer2 = torch.nn.Sequential(
                torch.nn.Conv2d(OUT_CHANNELS_RB+delta_channel_dim,OUT_CHANNELS_RB+delta_channel_dim,KERNEL_SIZE_RB,stride=1,padding = 1),
                torch.nn.BatchNorm2d(OUT_CHANNELS_RB+delta_channel_dim),
                torch.nn.ELU()
            )
        
    def forward(self,input):
        if self.RNN:
            # print("input:",input.shape,"hidden:",self.hidden.shape)
            inp = torch.cat((input,self.hidden),dim=1)
            # print(inp.shape)
            output = self.layer1(inp)
            output = self.layer2(output)
            output = input+output
            self.hidden = output
        else:
            output = self.layer1(input)
            output = self.layer2(output)
            output = input+output
        return output

    def reset_hidden(self, inp):
        size = list(inp.size())
        size[1] = self.delta_channel_dim + self.out_channels_rb
        size[2] = size[2]//2
        size[3] = size[3]//2
        hidden = torch.zeros(*(size))
        self.hidden = var_or_cuda(hidden)

class deinterleave(torch.nn.Module):
    def __init__(self, block_size):
        super(deinterleave, self).__init__()
        self.block_size = block_size
        self.block_size_sq = block_size*block_size

    def forward(self, input):
        output = input.permute(0, 2, 3, 1)
        (batch_size, d_height, d_width, d_depth) = output.size()
        s_depth = int(d_depth / self.block_size_sq)
        s_width = int(d_width * self.block_size)
        s_height = int(d_height * self.block_size)
        t_1 = output.reshape(batch_size, d_height, d_width, self.block_size_sq, s_depth)
        spl = t_1.split(self.block_size, 3)
        stack = [t_t.reshape(batch_size, d_height, s_width, s_depth) for t_t in spl]
        output = torch.stack(stack,0).transpose(0,1).permute(0,2,1,3,4).reshape(batch_size, s_height, s_width, s_depth)
        output = output.permute(0, 3, 1, 2)
        return output

class interleave(torch.nn.Module):
    def __init__(self, block_size):
        super(interleave, self).__init__()
        self.block_size = block_size
        self.block_size_sq = block_size*block_size

    def forward(self, input):
        output = input.permute(0, 2, 3, 1)
        (batch_size, s_height, s_width, s_depth) = output.size()
        d_depth = s_depth * self.block_size_sq
        d_width = int(s_width / self.block_size)
        d_height = int(s_height / self.block_size)
        t_1 = output.split(self.block_size, 2)
        stack = [t_t.reshape(batch_size, d_height, d_depth) for t_t in t_1]
        output = torch.stack(stack, 1)
        output = output.permute(0, 2, 1, 3)
        output = output.permute(0, 3, 1, 2)
        return output

class model(torch.nn.Module):
    def __init__(self,FIRSST_LAYER_CHANNELS,LAST_LAYER_CHANNELS,OUT_CHANNELS_RB,KERNEL_SIZE,KERNEL_SIZE_RB,INTERLEAVE_RATE):
        super(model, self).__init__()
        self.interleave = interleave(INTERLEAVE_RATE)

        self.first_layer = torch.nn.Sequential(
            torch.nn.Conv2d(FIRSST_LAYER_CHANNELS,OUT_CHANNELS_RB,KERNEL_SIZE,stride=1,padding=1),
            torch.nn.BatchNorm2d(OUT_CHANNELS_RB),
            torch.nn.ELU()
        )
        
        self.residual_block1 = residual_block(OUT_CHANNELS_RB,0,KERNEL_SIZE_RB,False)
        self.residual_block2 = residual_block(OUT_CHANNELS_RB,3,KERNEL_SIZE_RB,False)
        self.residual_block3 = residual_block(OUT_CHANNELS_RB,3,KERNEL_SIZE_RB,True)
        self.residual_block4 = residual_block(OUT_CHANNELS_RB,3,KERNEL_SIZE_RB,True)
        self.residual_block5 = residual_block(OUT_CHANNELS_RB,3,KERNEL_SIZE_RB,True)

        self.output_layer = torch.nn.Sequential(
            torch.nn.Conv2d(OUT_CHANNELS_RB+3,LAST_LAYER_CHANNELS,KERNEL_SIZE,stride=1,padding=1),
            torch.nn.BatchNorm2d(LAST_LAYER_CHANNELS),
            torch.nn.Sigmoid()
        )
        self.deinterleave = deinterleave(INTERLEAVE_RATE)

    def reset_hidden(self,inp):
        self.residual_block3.reset_hidden(inp)
        self.residual_block4.reset_hidden(inp)
        self.residual_block5.reset_hidden(inp)

    def forward(self, lightfield_images, focal_length, gazeX, gazeY):
        # lightfield_images: torch.Size([batch_size, channels * D, H, W]) 
        # channels : RGB*D: 3*9, H:256, W:256
        # print("lightfield_images:",lightfield_images.shape)
        input_to_net = self.interleave(lightfield_images)
        # print("after interleave:",input_to_net.shape)
        input_to_rb = self.first_layer(input_to_net)
        
        # print("input_to_rb1:",input_to_rb.shape)
        output = self.residual_block1(input_to_rb)

        depth_layer = torch.ones((input_to_rb.shape[0],1,input_to_rb.shape[2],input_to_rb.shape[3]))
        gazeX_layer = torch.ones((input_to_rb.shape[0],1,input_to_rb.shape[2],input_to_rb.shape[3]))
        gazeY_layer = torch.ones((input_to_rb.shape[0],1,input_to_rb.shape[2],input_to_rb.shape[3]))
        # print("depth_layer:",depth_layer.shape)
        # print("focal_depth:",focal_length," gazeX:",gazeX," gazeY:",gazeY, " gazeX norm:",(gazeX[0] - (-3.333)) / (3.333*2))
        for i in range(focal_length.shape[0]):
            depth_layer[i] *= 1. / focal_length[i]
            gazeX_layer[i] *= (gazeX[i] - (-3.333)) / (3.333*2)
            gazeY_layer[i] *= (gazeY[i] - (-3.333)) / (3.333*2)
            # print(depth_layer.shape)
        depth_layer = var_or_cuda(depth_layer)
        gazeX_layer = var_or_cuda(gazeX_layer)
        gazeY_layer = var_or_cuda(gazeY_layer)

        output = torch.cat((output,depth_layer,gazeX_layer,gazeY_layer),dim=1)
        # output = torch.cat((output,depth_layer),dim=1)
        # print("output to rb2:",output.shape)

        output = self.residual_block2(output)
        # print("output to rb3:",output.shape)
        output = self.residual_block3(output)
        # print("output to rb4:",output.shape)
        output = self.residual_block4(output)
        # print("output to rb5:",output.shape)
        output = self.residual_block5(output)
        # output = output + input_to_net
        output = self.output_layer(output)
        output = self.deinterleave(output)
        return output