space.py 18.8 KB
Newer Older
Nianchen Deng's avatar
sync    
Nianchen Deng committed
1
import torch
Nianchen Deng's avatar
sync    
Nianchen Deng committed
2
from typing import Dict, List, Optional, Tuple, Union
Nianchen Deng's avatar
sync    
Nianchen Deng committed
3

Nianchen Deng's avatar
sync    
Nianchen Deng committed
4
5
6
from clib import *
from model.utils import load
from utils.module import Module
Nianchen Deng's avatar
sync    
Nianchen Deng committed
7
8
9
from utils.geometry import *
from utils.voxels import *
from utils.perf import perf
Nianchen Deng's avatar
sync    
Nianchen Deng committed
10
from utils.env import get_env
Nianchen Deng's avatar
sync    
Nianchen Deng committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44


class Intersections:
    min_depths: torch.Tensor
    """`Tensor(N, P)` Min ray depths of intersected voxels"""

    max_depths: torch.Tensor
    """`Tensor(N, P)` Max ray depths of intersected voxels"""

    voxel_indices: torch.Tensor
    """`Tensor(N, P)` Indices of intersected voxels"""

    hits: torch.Tensor
    """`Tensor(N)` Number of hits"""

    @property
    def size(self):
        return self.hits.size(0)

    def __init__(self, min_depths: torch.Tensor, max_depths: torch.Tensor,
                 voxel_indices: torch.Tensor, hits: torch.Tensor) -> None:
        self.min_depths = min_depths
        self.max_depths = max_depths
        self.voxel_indices = voxel_indices
        self.hits = hits

    def __getitem__(self, index):
        return Intersections(
            min_depths=self.min_depths[index],
            max_depths=self.max_depths[index],
            voxel_indices=self.voxel_indices[index],
            hits=self.hits[index])


Nianchen Deng's avatar
sync    
Nianchen Deng committed
45
46
class Space(Module):
    bbox: Optional[torch.Tensor]
Nianchen Deng's avatar
sync    
Nianchen Deng committed
47
48
    """`Tensor(2, 3)` Bounding box"""

Nianchen Deng's avatar
sync    
Nianchen Deng committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    @property
    def dims(self) -> int:
        """`int` Number of dimensions"""
        return self.bbox.shape[1] if self.bbox is not None else 3

    @staticmethod
    def create(args: dict) -> 'Space':
        if 'space' not in args:
            return Space(**args)
        if args['space'] == 'octree':
            return Octree(**args)
        if args['space'] == 'voxels':
            return Voxels(**args)
        return load(args['space']).space

    def __init__(self, clone_src: "Space" = None, *, bbox: List[float] = None, **kwargs):
Nianchen Deng's avatar
sync    
Nianchen Deng committed
65
        super().__init__()
Nianchen Deng's avatar
sync    
Nianchen Deng committed
66
67
68
        if clone_src:
            self.device = clone_src.device
            self.register_temp('bbox', clone_src.bbox)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
69
        else:
Nianchen Deng's avatar
sync    
Nianchen Deng committed
70
            self.register_temp('bbox', None if not bbox else torch.tensor(bbox).reshape(2, -1))
Nianchen Deng's avatar
sync    
Nianchen Deng committed
71
72
73
74
75

    def ray_intersect(self, rays_o: torch.Tensor, rays_d: torch.Tensor, n_max_hits: int) -> Intersections:
        raise NotImplementedError

    def get_voxel_indices(self, pts: torch.Tensor) -> torch.Tensor:
Nianchen Deng's avatar
sync    
Nianchen Deng committed
76
77
        if self.bbox is None:
            return 0
Nianchen Deng's avatar
sync    
Nianchen Deng committed
78
        voxel_indices = torch.zeros_like(pts[..., 0], dtype=torch.long)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
79
80
        out_bbox = get_out_of_bound_mask(pts, self.bbox)  # (N...)
        voxel_indices[out_bbox] = -1
Nianchen Deng's avatar
sync    
Nianchen Deng committed
81
82
83
        return voxel_indices

    @torch.no_grad()
Nianchen Deng's avatar
sync    
Nianchen Deng committed
84
    def prune(self, keeps: torch.Tensor) -> Tuple[int, int]:
Nianchen Deng's avatar
sync    
Nianchen Deng committed
85
86
87
        raise NotImplementedError()

    @torch.no_grad()
Nianchen Deng's avatar
sync    
Nianchen Deng committed
88
    def split(self) -> Tuple[int, int]:
Nianchen Deng's avatar
sync    
Nianchen Deng committed
89
90
        raise NotImplementedError()

Nianchen Deng's avatar
sync    
Nianchen Deng committed
91
92
93
94
    @torch.no_grad()
    def clone(self):
        return Space(self)

Nianchen Deng's avatar
sync    
Nianchen Deng committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

class Voxels(Space):
    steps: torch.Tensor
    """`Tensor(3)` Steps along each dimension"""

    corners: torch.Tensor
    """`Tensor(C, 3)` Corner positions"""

    voxels: torch.Tensor
    """`Tensor(M, 3)` Voxel centers"""

    corner_indices: torch.Tensor
    """`Tensor(M, 8)` Voxel corner indices"""

    voxel_indices_in_grid: torch.Tensor
Nianchen Deng's avatar
sync    
Nianchen Deng committed
110
    """`Tensor(G)` Indices in voxel list or -1 for pruned space
Nianchen Deng's avatar
sync    
Nianchen Deng committed
111

Nianchen Deng's avatar
sync    
Nianchen Deng committed
112
113
114
       Note that the first element is perserved for 'invalid voxel'(-1), so the grid 
       index should be offset by 1 before querying for corresponding voxel index.
    """
Nianchen Deng's avatar
sync    
Nianchen Deng committed
115
116
117
118
119
120
121

    @property
    def n_voxels(self) -> int:
        """`int` Number of voxels"""
        return self.voxels.size(0)

    @property
Nianchen Deng's avatar
sync    
Nianchen Deng committed
122
    def n_corners(self) -> int:
Nianchen Deng's avatar
sync    
Nianchen Deng committed
123
124
125
        """`int` Number of corners"""
        return self.corners.size(0)

Nianchen Deng's avatar
sync    
Nianchen Deng committed
126
127
128
129
130
    @property
    def n_grids(self) -> int:
        """`int` Number of grids, i.e. steps[0] * steps[1] * ... * steps[D]"""
        return self.steps.prod().item()

Nianchen Deng's avatar
sync    
Nianchen Deng committed
131
132
133
134
135
136
    @property
    def voxel_size(self) -> torch.Tensor:
        """`Tensor(3)` Voxel size"""
        return (self.bbox[1] - self.bbox[0]) / self.steps

    @property
Nianchen Deng's avatar
sync    
Nianchen Deng committed
137
138
    def corner_embeddings(self) -> Dict[str, torch.nn.Embedding]:
        return {name[4:]: emb for name, emb in self.named_modules() if name.startswith("emb_")}
Nianchen Deng's avatar
sync    
Nianchen Deng committed
139

Nianchen Deng's avatar
sync    
Nianchen Deng committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    @property
    def voxel_embeddings(self) -> Dict[str, torch.nn.Embedding]:
        return {name[5:]: emb for name, emb in self.named_modules() if name.startswith("vemb_")}

    def __init__(self, clone_src: "Voxels" = None, *, bbox: List[float] = None,
                 voxel_size: float = None, steps: Union[torch.Tensor, Tuple[int, ...]] = None,
                 **kwargs) -> None:
        super().__init__(clone_src, bbox=bbox, **kwargs)
        if clone_src:
            self.register_buffer('steps', clone_src.steps)
            self.register_buffer('voxels', clone_src.voxels)
            self.register_buffer("corners", clone_src.corners)
            self.register_buffer("corner_indices", clone_src.corner_indices)
            self.register_buffer('voxel_indices_in_grid', clone_src.voxel_indices_in_grid)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
154
        else:
Nianchen Deng's avatar
sync    
Nianchen Deng committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
            if self.bbox is None:
                raise ValueError("Missing argument 'bbox'")
            if voxel_size is not None:
                self.register_buffer('steps', get_grid_steps(self.bbox, voxel_size))
            else:
                self.register_buffer('steps', torch.tensor(steps, dtype=torch.long))
            self.register_buffer('voxels', init_voxels(self.bbox, self.steps))
            corners, corner_indices = get_corners(self.voxels, self.bbox, self.steps)
            self.register_buffer("corners", corners)
            self.register_buffer("corner_indices", corner_indices)
            self.register_buffer('voxel_indices_in_grid', torch.arange(-1, self.n_voxels))

    def clone(self):
        return Voxels(self)

    def to_vi(self, gi: torch.Tensor) -> torch.Tensor:
        return self.voxel_indices_in_grid[gi + 1]
Nianchen Deng's avatar
sync    
Nianchen Deng committed
172
173
174
175
176
177
178
179
180

    def create_embedding(self, n_dims: int, name: str = 'default') -> torch.nn.Embedding:
        """
        Create a embedding on voxel corners.

        :param name `str`: embedding name
        :param n_dims `int`: embedding dimension
        :return `Embedding(n_corners, n_dims)`: new embedding on voxel corners
        """
Nianchen Deng's avatar
sync    
Nianchen Deng committed
181
182
        if self.get_embedding(name) is not None:
            raise KeyError(f"Embedding '{name}' already existed")
Nianchen Deng's avatar
sync    
Nianchen Deng committed
183
        emb = torch.nn.Embedding(self.n_corners, n_dims).to(self.device)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
184
185
        setattr(self, f'emb_{name}', emb)
        return emb
Nianchen Deng's avatar
sync    
Nianchen Deng committed
186
187

    def get_embedding(self, name: str = 'default') -> torch.nn.Embedding:
Nianchen Deng's avatar
sync    
Nianchen Deng committed
188
189
190
        return getattr(self, f'emb_{name}', None)

    def set_embedding(self, weight: torch.Tensor, name: str = 'default'):
Nianchen Deng's avatar
sync    
Nianchen Deng committed
191
        emb = torch.nn.Embedding(*weight.shape, _weight=weight).to(self.device)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
192
        setattr(self, f'emb_{name}', emb)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
193
        return emb
Nianchen Deng's avatar
sync    
Nianchen Deng committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

    def extract_embedding(self, pts: torch.Tensor, voxel_indices: torch.Tensor,
                          name: str = 'default') -> torch.Tensor:
        """
        Extract embedding values at given points using trilinear interpolation.

        :param pts `Tensor(N, 3)`: points to extract values
        :param voxel_indices `Tensor(N)`: corresponding voxel indices
        :param name `str`: embedding name, default to 'default'
        :return `Tensor(N, X)`: extracted values
        """
        emb = self.get_embedding(name)
        if emb is None:
            raise KeyError(f"Embedding '{name}' doesn't exist")
        voxels = self.voxels[voxel_indices]  # (N, 3)
        corner_indices = self.corner_indices[voxel_indices]  # (N, 8)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
210
211
        p = (pts - voxels) / self.voxel_size + .5  # (N, 3) normed-coords in voxel
        return trilinear_interp(p, emb(corner_indices))
Nianchen Deng's avatar
sync    
Nianchen Deng committed
212

Nianchen Deng's avatar
sync    
Nianchen Deng committed
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def create_voxel_embedding(self, n_dims: int, name: str = 'default') -> torch.nn.Embedding:
        """
        Create a embedding on voxels.

        :param name `str`: embedding name
        :param n_dims `int`: embedding dimension
        :return `Embedding(n_corners, n_dims)`: new embedding on voxels
        """
        if self.get_voxel_embedding(name) is not None:
            raise KeyError(f"Embedding '{name}' already existed")
        emb = torch.nn.Embedding(self.n_voxels, n_dims).to(self.device)
        setattr(self, f'vemb_{name}', emb)
        return emb

    def get_voxel_embedding(self, name: str = 'default') -> torch.nn.Embedding:
        return getattr(self, f'vemb_{name}', None)

    def set_voxel_embedding(self, weight: torch.Tensor, name: str = 'default'):
        emb = torch.nn.Embedding(*weight.shape, _weight=weight).to(self.device)
        setattr(self, f'vemb_{name}', emb)
        return emb

    def extract_voxel_embedding(self, voxel_indices: torch.Tensor, name: str = 'default') -> torch.Tensor:
        """
        Extract embedding values at given voxels.

        :param voxel_indices `Tensor(N)`: voxel indices
        :param name `str`: embedding name, default to 'default'
        :return `Tensor(N, X)`: extracted values
        """
        emb = self.get_voxel_embedding(name)
        if emb is None:
            raise KeyError(f"Embedding '{name}' doesn't exist")
        return emb(voxel_indices)

Nianchen Deng's avatar
sync    
Nianchen Deng committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    @perf
    def ray_intersect(self, rays_o: torch.Tensor, rays_d: torch.Tensor, n_max_hits: int) -> Intersections:
        """
        Calculate intersections of rays and voxels.

        :param rays_o `Tensor(N, 3)`: rays' origin
        :param rays_d `Tensor(N, 3)`: rays' direction
        :param n_max_hits `int`: maximum number of hits (for allocating enough space)
        :return `Intersection`: intersections of rays and voxels
        """
        # Prepend a dim to meet the requirement of external call
        rays_o = rays_o[None].contiguous()
        rays_d = rays_d[None].contiguous()

        voxel_indices, min_depths, max_depths = self._ray_intersect(rays_o, rays_d, n_max_hits)
        invalid_voxel_mask = voxel_indices.eq(-1)
        hits = n_max_hits - invalid_voxel_mask.sum(-1)

        # Sort intersections according to their depths
Nianchen Deng's avatar
sync    
Nianchen Deng committed
267
268
        min_depths.masked_fill_(invalid_voxel_mask, math.huge)
        max_depths.masked_fill_(invalid_voxel_mask, math.huge)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
        min_depths, sorted_idx = min_depths.sort(dim=-1)
        max_depths = max_depths.gather(-1, sorted_idx)
        voxel_indices = voxel_indices.gather(-1, sorted_idx)

        return Intersections(
            min_depths=min_depths[0],
            max_depths=max_depths[0],
            voxel_indices=voxel_indices[0],
            hits=hits[0]
        )

    @perf
    def get_voxel_indices(self, pts: torch.Tensor) -> torch.Tensor:
        """
        Get voxel indices of points.

        If a point is not in any valid voxels, its corresponding voxel index is -1.

        :param pts `Tensor(N..., 3)`: points
        :return `Tensor(N...)`: corresponding voxel indices
        """
Nianchen Deng's avatar
sync    
Nianchen Deng committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        gi = to_grid_indices(pts, self.bbox, self.steps)
        return self.to_vi(gi)

    @perf
    def get_corners(self, vidxs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        vidxs = vidxs.unique()
        if vidxs[0] == -1:
            vidxs = vidxs[1:]
        cidxs = self.corner_indices[vidxs].unique()
        fi_cidxs = torch.full([self.n_corners], -1, dtype=torch.long, device=self.device)
        fi_cidxs[cidxs] = torch.arange(cidxs.shape[0], device=self.device)
        fi_corner_indices = fi_cidxs[self.corner_indices]
        fi_corners = self.corners[cidxs]
        return fi_corner_indices, fi_corners
Nianchen Deng's avatar
sync    
Nianchen Deng committed
304
305

    @torch.no_grad()
Nianchen Deng's avatar
sync    
Nianchen Deng committed
306
    def split(self) -> Tuple[int, int]:
Nianchen Deng's avatar
sync    
Nianchen Deng committed
307
308
309
        """
        Split voxels into smaller voxels with half size.
        """
Nianchen Deng's avatar
sync    
Nianchen Deng committed
310
        # Calculate new voxels and corners
Nianchen Deng's avatar
sync    
Nianchen Deng committed
311
312
        new_steps = self.steps * 2
        new_voxels = split_voxels(self.voxels, self.voxel_size, 2, align_border=False)\
Nianchen Deng's avatar
sync    
Nianchen Deng committed
313
            .reshape(-1, 3)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
314
315
        new_corners, new_corner_indices = get_corners(new_voxels, self.bbox, new_steps)

Nianchen Deng's avatar
sync    
Nianchen Deng committed
316
317
318
319
320
321
322
323
324
325
326
327
328
        # Split corner embeddings through interpolation
        corner_embs = self.corner_embeddings
        if len(corner_embs) > 0:
            gi_of_new_corners = to_grid_indices(new_corners, self.bbox, self.steps)
            vi_of_new_corners = self.to_vi(gi_of_new_corners)
            for name, emb in corner_embs.items():
                new_emb_weight = self.extract_embedding(new_corners, vi_of_new_corners, name=name)
                self.set_embedding(new_emb_weight, name=name)
                # Remove old embedding weight and related state from optimizer
                self._update_optimizer(emb.weight)

        # Split voxel embeddings
        self._update_voxel_embeddings(lambda val: torch.repeat_interleave(val, 8, dim=0))
Nianchen Deng's avatar
sync    
Nianchen Deng committed
329
330
331
332
333
334

        # Apply new tensors
        self.steps = new_steps
        self.voxels = new_voxels
        self.corners = new_corners
        self.corner_indices = new_corner_indices
Nianchen Deng's avatar
sync    
Nianchen Deng committed
335
        self._update_gi2vi()
Nianchen Deng's avatar
sync    
Nianchen Deng committed
336
        return self.n_voxels // 8, self.n_voxels
Nianchen Deng's avatar
sync    
Nianchen Deng committed
337
338
339
340
341

    @torch.no_grad()
    def prune(self, keeps: torch.Tensor) -> Tuple[int, int]:
        self.voxels = self.voxels[keeps]
        self.corner_indices = self.corner_indices[keeps]
Nianchen Deng's avatar
sync    
Nianchen Deng committed
342
343
344
345
346
        self._update_gi2vi()

        # Prune voxel embeddings
        self._update_voxel_embeddings(lambda val: val[keeps])

Nianchen Deng's avatar
sync    
Nianchen Deng committed
347
348
        return keeps.size(0), keeps.sum().item()

Nianchen Deng's avatar
sync    
Nianchen Deng committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    def _update_voxel_embeddings(self, update_fn):
        for name, emb in self.voxel_embeddings.items():
            new_emb = self.set_voxel_embedding(update_fn(emb.weight), name)
            self._update_optimizer(emb.weight, new_emb.weight, update_fn)

    def _update_optimizer(self, old_param: nn.Parameter, new_param: nn.Parameter, update_fn):
        optimizer = get_env()["trainer"].optimizer
        if isinstance(optimizer, (torch.optim.Adam, torch.optim.AdamW)):
            # Update related states in optimizer
            if old_param in optimizer.state:
                if new_param is not None:
                    # Transfer state from old parameter to new parameter
                    state = optimizer.state[old_param]
                    state.update({
                        key: update_fn(state[key])
                        for key in ['exp_avg', 'exp_avg_sq', 'max_exp_avg_sq'] if key in state
                    })
                    optimizer.state[new_param] = state
                # Remove state of old parameter
                optimizer.state.pop(old_param)

            # Update parameter list in optimizer
            for group in optimizer.param_groups:
                try:
                    if new_param is not None:
                        # Replace old parameter with new one
                        idx = group['params'].index(old_param)
                        group['params'][idx] = new_param
                    else:
                        # Or just remove old parameter if new parameter is not specified
                        group['params'].remove(old_param)
                except Exception:
                    pass

Nianchen Deng's avatar
sync    
Nianchen Deng committed
383
384
    def n_voxels_along_dim(self, dim: int) -> torch.Tensor:
        sum_dims = [val for val in range(self.dims) if val != dim]
Nianchen Deng's avatar
sync    
Nianchen Deng committed
385
        return self.voxel_indices_in_grid[1:].reshape(*self.steps).ne(-1).sum(sum_dims)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
386
387
388
389
390
391
392
393

    def balance_cut(self, dim: int, n_parts: int) -> List[int]:
        n_voxels_list = self.n_voxels_along_dim(dim)
        cdf = (n_voxels_list.cumsum(0) / self.n_voxels * n_parts).tolist()
        bins = []
        part = 1
        offset = 0
        for i in range(len(cdf)):
Nianchen Deng's avatar
sync    
Nianchen Deng committed
394
395
396
            if cdf[i] > part:
                bins.append(i - offset)
                offset = i
Nianchen Deng's avatar
sync    
Nianchen Deng committed
397
                part = int(cdf[i]) + 1
Nianchen Deng's avatar
sync    
Nianchen Deng committed
398
        bins.append(len(cdf) - offset)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
399
400
        return bins

Nianchen Deng's avatar
sync    
Nianchen Deng committed
401
402
403
404
405
406
    def sample(self, S: int, perturb: bool = False, include_border: bool = True) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        For each voxel, sample `S^3` points uniformly, with small perturb if `perturb` is `True`.

        When `perturb` is `False`, `include_border` can specify whether to sample points from border to border or at centers of sub-voxels.
        When `perturb` is `True`, points are sampled at centers of sub-voxels, then applying a random offset in sub-voxels.
Nianchen Deng's avatar
sync    
Nianchen Deng committed
407

Nianchen Deng's avatar
sync    
Nianchen Deng committed
408
409
410
411
412
413
414
415
416
417
418
419
420
        :param S `int`: number of samples along each dim
        :param perturb `bool?`: whether perturb samples, defaults to `False`
        :param include_border `bool?`: whether include border, defaults to `True`
        :return `Tensor(N*S^3, 3)`: sampled points
        :return `Tensor(N*S^3)`: voxel indices of sampled points
        """
        pts = split_voxels(self.voxels, self.voxel_size, S,
                           align_border=not perturb and include_border)  # (N, X, D)
        voxel_indices = torch.arange(self.n_voxels, device=self.device)[:, None]\
            .expand(*pts.shape[:-1])  # (N) -> (N, X)
        if perturb:
            pts += (torch.rand_like(pts) - .5) * self.voxel_size / S
        return pts.reshape(-1, 3), voxel_indices.flatten()
Nianchen Deng's avatar
sync    
Nianchen Deng committed
421
422
423
424

    def _ray_intersect(self, rays_o: torch.Tensor, rays_d: torch.Tensor, n_max_hits: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        return aabb_ray_intersect(self.voxel_size, n_max_hits, self.voxels, rays_o, rays_d)

Nianchen Deng's avatar
sync    
Nianchen Deng committed
425
    def _update_gi2vi(self):
Nianchen Deng's avatar
sync    
Nianchen Deng committed
426
427
428
        """
        Update voxel indices in grid.
        """
Nianchen Deng's avatar
sync    
Nianchen Deng committed
429
430
431
432
        gi = to_grid_indices(self.voxels, self.bbox, self.steps)
        # Perserve the first element in voxel_indices_in_grid for 'invalid voxel'(-1)
        self.voxel_indices_in_grid = gi.new_full([self.n_grids + 1], -1)
        self.voxel_indices_in_grid[gi + 1] = torch.arange(self.n_voxels, device=self.device)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
433

Nianchen Deng's avatar
sync    
Nianchen Deng committed
434
    def _before_load_state_dict(self, state_dict, prefix, *args):
Nianchen Deng's avatar
sync    
Nianchen Deng committed
435
436
437
438
439
440
441
442
443
        # Handle buffers
        for name, buffer in self.named_buffers(recurse=False):
            if name in self._non_persistent_buffers_set:
                continue
            buffer.resize_as_(state_dict[prefix + name])

        # Handle embeddings
        for name, module in self.named_modules():
            if name.startswith('emb_'):
Nianchen Deng's avatar
sync    
Nianchen Deng committed
444
                setattr(self, name, torch.nn.Embedding(self.n_corners, module.embedding_dim))
Nianchen Deng's avatar
sync    
Nianchen Deng committed
445
446
447
448
449
            if name.startswith('vemb_'):
                setattr(self, name, torch.nn.Embedding(self.n_voxels, module.embedding_dim))

    def _after_load_state_dict(self):
        self._update_gi2vi()
Nianchen Deng's avatar
sync    
Nianchen Deng committed
450
451
452
453


class Octree(Voxels):

Nianchen Deng's avatar
sync    
Nianchen Deng committed
454
455
    def __init__(self, clone_src: "Octree" = None, **kwargs) -> None:
        super().__init__(clone_src, **kwargs)
Nianchen Deng's avatar
sync    
Nianchen Deng committed
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
        self.nodes_cached = None
        self.tree_cached = None

    def get(self) -> Tuple[torch.Tensor, torch.Tensor]:
        if self.nodes_cached is None:
            self.nodes_cached, self.tree_cached = build_easy_octree(
                self.voxels, 0.5 * self.voxel_size)
        return self.nodes_cached, self.tree_cached

    def clear(self):
        self.nodes_cached = None
        self.tree_cached = None

    def _ray_intersect(self, rays_o: torch.Tensor, rays_d: torch.Tensor, n_max_hits: int):
        nodes, tree = self.get()
        return octree_ray_intersect(self.voxel_size, n_max_hits, nodes, tree, rays_o, rays_d)

    @torch.no_grad()
Nianchen Deng's avatar
sync    
Nianchen Deng committed
474
475
    def split(self):
        ret = super().split()
Nianchen Deng's avatar
sync    
Nianchen Deng committed
476
477
478
479
480
481
482
483
        self.clear()
        return ret

    @torch.no_grad()
    def prune(self, keeps: torch.Tensor) -> Tuple[int, int]:
        ret = super().prune(keeps)
        self.clear()
        return ret