gen_image.py 6.46 KB
Newer Older
BobYeah's avatar
BobYeah committed
1
2
3
import matplotlib.pyplot as plt
import numpy as np
import torch
BobYeah's avatar
Gaze    
BobYeah committed
4
import glm
BobYeah's avatar
BobYeah committed
5

BobYeah's avatar
Gaze    
BobYeah committed
6
7
8
9
10
11
12
13
def Fov2Length(angle):
    '''

    '''
    return np.tan(angle * np.pi / 360) * 2


def RandomGenSamplesInPupil(pupil_size, n_samples):
BobYeah's avatar
BobYeah committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
    '''
    Random sample n_samples positions in pupil region
    
    Parameters
    --------
    conf      - multi-layers' parameters configuration
    n_samples - number of samples to generate
    
    Returns
    --------
    a n_samples x 2 tensor with 2D sample position in each row
    '''
    samples = torch.empty(n_samples, 2)
    i = 0
    while i < n_samples:
BobYeah's avatar
Gaze    
BobYeah committed
29
30
        s = (torch.rand(2) - 0.5) * pupil_size
        if np.linalg.norm(s) > pupil_size / 2.:
BobYeah's avatar
BobYeah committed
31
            continue
BobYeah's avatar
Gaze    
BobYeah committed
32
        samples[i, :] = [ s[0], s[1], 0 ]
BobYeah's avatar
BobYeah committed
33
34
35
        i += 1
    return samples

BobYeah's avatar
Gaze    
BobYeah committed
36
def GenSamplesInPupil(pupil_size, circles):
BobYeah's avatar
BobYeah committed
37
38
39
40
41
42
43
44
45
46
47
48
    '''
    Sample positions on circles in pupil region
    
    Parameters
    --------
    conf      - multi-layers' parameters configuration
    circles   - number of circles to sample
    
    Returns
    --------
    a n_samples x 2 tensor with 2D sample position in each row
    '''
BobYeah's avatar
Gaze    
BobYeah committed
49
    samples = torch.zeros(1, 3)
BobYeah's avatar
BobYeah committed
50
    for i in range(1, circles):
BobYeah's avatar
Gaze    
BobYeah committed
51
        r = pupil_size / 2. / (circles - 1) * i
BobYeah's avatar
BobYeah committed
52
53
54
        n = 4 * i
        for j in range(0, n):
            angle = 2 * np.pi / n * j
BobYeah's avatar
Gaze    
BobYeah committed
55
            samples = torch.cat([ samples, torch.tensor([[ r * np.cos(angle), r * np.sin(angle), 0 ]]) ], 0)
BobYeah's avatar
BobYeah committed
56
57
    return samples

BobYeah's avatar
Gaze    
BobYeah committed
58
class RetinalGen(object):
BobYeah's avatar
BobYeah committed
59
    '''
BobYeah's avatar
Gaze    
BobYeah committed
60
    Class for retinal generation process
BobYeah's avatar
BobYeah committed
61
    
BobYeah's avatar
Gaze    
BobYeah committed
62
    Properties
BobYeah's avatar
BobYeah committed
63
64
    --------
    conf - multi-layers' parameters configuration
BobYeah's avatar
Gaze    
BobYeah committed
65
66
67
68
    u    - M x 3 tensor, M sample positions in pupil
    p_r  - H_r x W_r x 3 tensor, retinal pixel grid, [H_r, W_r] is the retinal resolution
    Phi  - N x H_r x W_r x M x 2 tensor, retinal to layers mapping, N is number of layers
    mask - N x H_r x W_r x M x 2 tensor, indicates invalid (out-of-range) mapping
BobYeah's avatar
BobYeah committed
69
    
BobYeah's avatar
Gaze    
BobYeah committed
70
    Methods
BobYeah's avatar
BobYeah committed
71
72
    --------
    '''
BobYeah's avatar
Gaze    
BobYeah committed
73
74
75
    def __init__(self, conf, u):
        '''
        Initialize retinal generator instance
BobYeah's avatar
BobYeah committed
76

BobYeah's avatar
Gaze    
BobYeah committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        Parameters
        --------
        conf - multi-layers' parameters configuration
        u    - a M x 3 tensor stores M sample positions in pupil
        '''
        self.conf = conf
        # self.u = u.to(cuda_dev)
        self.u = u # M x 3 M sample positions 
        self.D_r = conf.retinal_res # retinal res 480 x 640 
        self.N = conf.GetNLayers() # 2 
        self.M = u.size()[0] # samples
        p_rx, p_ry = torch.meshgrid(torch.tensor(range(0, self.D_r[0])),
                                    torch.tensor(range(0, self.D_r[1])))
        self.p_r = torch.cat([
            ((torch.stack([p_rx, p_ry], 2) + 0.5) / self.D_r - 0.5) * conf.GetEyeViewportSize(), # 眼球视野
            torch.ones(self.D_r[0], self.D_r[1], 1)
        ], 2)
BobYeah's avatar
BobYeah committed
94

BobYeah's avatar
Gaze    
BobYeah committed
95
96
97
98
99
100
        # self.Phi = torch.empty(N, D_r[0], D_r[1], M, 2, device=cuda_dev, dtype=torch.long)
        # self.mask = torch.empty(self.N, self.D_r[0], self.D_r[1], self.M, 2, dtype=torch.float) # 2 x 480 x 640 x 41 x 2
        
    def CalculateRetinal2LayerMappings(self, df, gaze):
        '''
        Calculate the mapping matrix from retinal to layers.
BobYeah's avatar
BobYeah committed
101

BobYeah's avatar
Gaze    
BobYeah committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        Parameters
        --------
        df   - focus distance
        gaze - 2 x 1 tensor, eye rotation angle (degs) in horizontal and vertical direction

        '''
        Phi = torch.empty(self.N, self.D_r[0], self.D_r[1], self.M, 2, dtype=torch.long) # 2 x 480 x 640 x 41 x 2
        mask = torch.empty(self.N, self.D_r[0], self.D_r[1], self.M, 2, dtype=torch.float)
        D_r = self.conf.retinal_res        # D_r: Resolution of retinal 480 640
        V = self.conf.GetEyeViewportSize() # V: Viewport size of eye 
        c = (self.conf.layer_res / 2)      # c: Center of layers (pixel)
        p_f = self.p_r * df                # p_f: H x W x 3, focus positions of retinal pixels on focus plane
        rot_forward = glm.dvec3(glm.tan(glm.radians(glm.dvec2(gaze[1], -gaze[0]))), 1)
        rot_mat = torch.from_numpy(np.array(
            glm.dmat3(glm.lookAtLH(glm.dvec3(), rot_forward, glm.dvec3(0, 1, 0)))))
        rot_mat = rot_mat.float()
        u_rot = torch.mm(self.u, rot_mat)
        v_rot = torch.matmul(p_f, rot_mat).unsqueeze(2).expand(
            -1, -1, self.u.size()[0], -1) - u_rot # v_rot: H x W x M x 3, rotated rays' direction vector
        v_rot.div_(v_rot[:, :, :, 2].unsqueeze(3))             # make z = 1 for each direction vector in v_rot
        
        for i in range(0, self.conf.GetNLayers()):
            dp_i = self.conf.GetLayerSize(i)[0] / self.conf.layer_res[0] # dp_i: Pixel size of layer i
            d_i = self.conf.d_layer[i]                                        # d_i: Distance of layer i
            k = (d_i - u_rot[:, 2]).unsqueeze(1)
            pi_r = (u_rot[:, 0:2] + v_rot[:, :, :, 0:2] * k) / dp_i      # pi_r: H x W x M x 2, rays' pixel coord on layer i
            Phi[i, :, :, :, :] = torch.floor(pi_r + c)
        mask[:, :, :, :, 0] = ((Phi[:, :, :, :, 0] >= 0) & (Phi[:, :, :, :, 0] < self.conf.layer_res[0])).float()
        mask[:, :, :, :, 1] = ((Phi[:, :, :, :, 1] >= 0) & (Phi[:, :, :, :, 1] < self.conf.layer_res[1])).float()
        Phi[:, :, :, :, 0].clamp_(0, self.conf.layer_res[0] - 1)
        Phi[:, :, :, :, 1].clamp_(0, self.conf.layer_res[1] - 1)
        retinal_mask = mask.prod(0).prod(2).prod(2)
        return [ Phi, retinal_mask ]
    
    def GenRetinalFromLayers(self, layers, Phi):
        '''
        Generate retinal image from layers, using precalculated mapping matrix
        
        Parameters
        --------
        layers - 3N x H_l x W_l tensor, stacked layer images, with 3 channels in each layer
        
        Returns
        --------
        3 x H_r x W_r tensor, 3 channels retinal image
        H_r x W_r tensor, retinal image mask, indicates pixels valid or not
        
        '''
        # FOR GRAYSCALE 1 FOR RGB 3
        mapped_layers = torch.empty(self.N, 3, self.D_r[0], self.D_r[1], self.M) # 2 x 3 x 480 x 640 x 41
        # print("mapped_layers:",mapped_layers.shape)
        for i in range(0, Phi.size()[0]):
            # print("gather layers:",layers[(i * 3) : (i * 3 + 3),Phi[i, :, :, :, 0],Phi[i, :, :, :, 1]].shape)
            mapped_layers[i, :, :, :, :] = layers[(i * 3) : (i * 3 + 3),
                                                    Phi[i, :, :, :, 0],
                                                    Phi[i, :, :, :, 1]]
        # print("mapped_layers:",mapped_layers.shape)
        retinal = mapped_layers.prod(0).sum(3).div(Phi.size()[3])
        # print("retinal:",retinal.shape)
        return retinal