msl_net_1.py 8.88 KB
Newer Older
BobYeah's avatar
sync    
BobYeah committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
from typing import Tuple
import torch
import torch.nn as nn
from .my import net_modules
from .my import util
from .my import device

rand_gen = torch.Generator(device=device.GetDevice())
rand_gen.manual_seed(torch.seed())


def RaySphereIntersect(p: torch.Tensor, v: torch.Tensor, r: torch.Tensor) -> torch.Tensor:
    """
    Calculate intersections of each rays and each spheres

    :param p ```Tensor(B, 3)```: positions of rays
    :param v ```Tensor(B, 3)```: directions of rays
    :param r ```Tensor(N)```: , radius of spheres
    :return ```Tensor(B, N, 3)```: points of intersection
    :return ```Tensor(B, N)```: depths of intersection along ray
    """
    # p, v: Expand to (B, 1, 3)
    p = p.unsqueeze(1)
    v = v.unsqueeze(1)
    # pp, vv, pv: (B, 1)
    pp = (p * p).sum(dim=2)
    vv = (v * v).sum(dim=2)
    pv = (p * v).sum(dim=2)
    depths = (((pv * pv - vv * (pp - r * r)).sqrt() - pv) / vv)
    return p + depths[..., None] * v, depths


class Rendering(nn.Module):

    def __init__(self, *, raw_noise_std: float = 0.0, white_bg: bool = False):
        """
        Initialize a Rendering module
        """
        super().__init__()
        self.raw_noise_std = raw_noise_std
        self.white_bg = white_bg

    def forward(self, raw, z_vals, ret_extra: bool = False):
        """Transforms model's predictions to semantically meaningful values.

        Args:
          raw: [num_rays, num_samples along ray, 4]. Prediction from model.
          z_vals: [num_rays, num_samples along ray]. Integration time.

        Returns:
          rgb_map: [num_rays, 3]. Estimated RGB color of a ray.
          disp_map: [num_rays]. Disparity map. Inverse of depth map.
          acc_map: [num_rays]. Sum of weights along each ray.
          weights: [num_rays, num_samples]. Weights assigned to each sampled color.
          depth_map: [num_rays]. Estimated distance to object.
        """
        color, alpha = self.raw2color(raw, z_vals)

        # Compute weight for RGB of each sample along each ray.  A cumprod() is
        # used to express the idea of the ray not having reflected up to this
        # sample yet.
        one_minus_alpha = util.broadcast_cat(
            torch.cumprod(1 - alpha[..., :-1] + 1e-10, dim=-1),
            1.0, append=False)
        weights = alpha * one_minus_alpha  # (N_rays, N_samples)

        # (N_rays, 1|3), computed weighted color of each sample along each ray.
        color_map = torch.sum(weights[..., None] * color, dim=-2)

        # To composite onto a white background, use the accumulated alpha map.
        if self.white_bg or ret_extra:
            # Sum of weights along each ray. This value is in [0, 1] up to numerical error.
            acc_map = torch.sum(weights, -1)
            if self.white_bg:
                color_map = color_map + (1. - acc_map[..., None])
        else:
            acc_map = None

        if not ret_extra:
            return color_map

        # Estimated depth map is expected distance.
        depth_map = torch.sum(weights * z_vals, dim=-1)

        # Disparity map is inverse depth.
        disp_map = torch.clamp_min(
            depth_map / torch.sum(weights, dim=-1), 1e-10).reciprocal()

        return color_map, disp_map, acc_map, weights, depth_map

    def raw2color(self, raw: torch.Tensor, z_vals: torch.Tensor):
        """
        Raw value inferred from model to color and alpha

        :param raw ```Tensor(N.rays, N.samples, 2|4)```: model's output
        :param z_vals ```Tensor(N.rays, N.samples)```: integration time
        :return ```Tensor(N.rays, N.samples, 1|3)```: color
        :return ```Tensor(N.rays, N.samples)```: alpha
        """

        def raw2alpha(raw, dists, act_fn=torch.relu):
            """
            Function for computing density from model prediction.
            This value is strictly between [0, 1].
            """
            return -torch.exp(-act_fn(raw) * dists) + 1.0

        # Compute 'distance' (in time) between each integration time along a ray.
        # The 'distance' from the last integration time is infinity.
        # dists: (N_rays, N_samples)
        dists = z_vals[..., 1:] - z_vals[..., :-1]
        last_dist = z_vals[..., 0:1] * 0 + 1e10
        
        dists = torch.cat([
            dists, last_dist
        ], -1)

        # Extract RGB of each sample position along each ray.
        color = torch.sigmoid(raw[..., :-1])  # (N_rays, N_samples, 1|3)

        if self.raw_noise_std > 0.:
            # Add noise to model's predictions for density. Can be used to
            # regularize network during training (prevents floater artifacts).
            noise = torch.normal(0.0, self.raw_noise_std,
                                 raw[..., 3].size(), rand_gen)
            alpha = raw2alpha(raw[..., -1] + noise, dists)
        else:
            alpha = raw2alpha(raw[..., -1], dists)

        return color, alpha


class Sampler(nn.Module):

    def __init__(self, *, depth_range: Tuple[float, float], n_samples: int,
                 perturb_sample: bool, spherical: bool, lindisp: bool, inverse_r: bool):
        """
        Initialize a Sampler module

        :param depth_range: depth range for sampler
        :param n_samples: count to sample along ray
        :param perturb_sample: perturb the sample depths
        :param lindisp: If True, sample linearly in inverse depth rather than in depth
        """
        super().__init__()
        if lindisp:
            self.r = 1 / torch.linspace(1 / depth_range[0], 1 / depth_range[1],
                                        n_samples, device=device.GetDevice())
        else:
            self.r = torch.linspace(depth_range[0], depth_range[1],
                                    n_samples, device=device.GetDevice())
        self.perturb_sample = perturb_sample
        self.spherical = spherical
        self.inverse_r = inverse_r
        if perturb_sample:
            mids = .5 * (self.r[1:] + self.r[:-1])
            self.upper = torch.cat([mids, self.r[-1:]], -1)
            self.lower = torch.cat([self.r[:1], mids], -1)

    def forward(self, rays_o, rays_d):
        """
        Sample points along rays. return Spherical or Cartesian coordinates, 
        specified by ```self.shperical```

        :param rays_o ```Tensor(B, 3)```: rays' origin
        :param rays_d ```Tensor(B, 3)```: rays' direction
        :return ```Tensor(B, N, 3)```: sampled points
        :return ```Tensor(B, N)```: corresponding depths along rays
        """
        if self.perturb_sample:
            # stratified samples in those intervals
            t_rand = torch.rand(self.r.size(),
                                generator=rand_gen,
                                device=device.GetDevice())
            r = self.lower + (self.upper - self.lower) * t_rand
        else:
            r = self.r

        if self.spherical:
            pts, depths = RaySphereIntersect(rays_o, rays_d, r)
            sphers = util.CartesianToSpherical(pts, inverse_r=self.inverse_r)
            return sphers, depths
        else:
            return rays_o[..., None, :] + rays_d[..., None, :] * r[..., None], r


class MslNet(nn.Module):

    def __init__(self, fc_params, sampler_params,
                 gray=False,
                 encode_to_dim: int = 0,
                 export_mode: bool = False):
        """
        Initialize a multi-sphere-layer net

        :param fc_params: parameters for full-connection network
        :param sampler_params: parameters for sampler
        :param gray: is grayscale mode
        :param encode_to_dim: encode input to number of dimensions
        """
        super().__init__()
        self.in_chns = 3
        self.input_encoder = net_modules.InputEncoder.Get(
            encode_to_dim, self.in_chns)
        fc_params['in_chns'] = self.input_encoder.out_dim
        fc_params['out_chns'] = 2 if gray else 4
        self.sampler = Sampler(**sampler_params)
        self.net = net_modules.FcNet(**fc_params)
        self.rendering = Rendering()
        self.export_mode = export_mode

Nianchen Deng's avatar
sync    
Nianchen Deng committed
212
213

    def forward(self, view_centers: torch.Tensor, view_rots: torch.Tensor, local_rays: torch.Tensor,
BobYeah's avatar
sync    
BobYeah committed
214
215
216
217
218
219
220
221
                ret_depth: bool = False) -> torch.Tensor:
        """
        rays -> colors

        :param rays_o ```Tensor(B, 3)```: rays' origin
        :param rays_d ```Tensor(B, 3)```: rays' direction
        :return: ```Tensor(B, C)``, inferred images/pixels
        """
Nianchen Deng's avatar
sync    
Nianchen Deng committed
222
223
224
225
        rays_o = local_rays * 0 + view_centers
        rays_d = torch.matmul(local_rays.flatten(0, -2), r).view(out_size)
        coords, depths = self.sampler(rays_o, rays_d)
        encoded = self.input_encoder(coords)
BobYeah's avatar
sync    
BobYeah committed
226
227

        if self.export_mode:
Nianchen Deng's avatar
sync    
Nianchen Deng committed
228
            colors, alphas = self.rendering.raw2color(self.net(encoded), depths)
BobYeah's avatar
sync    
BobYeah committed
229
230
231
232
233
234
235
236
            return torch.cat([colors, alphas[..., None]], -1)

        if ret_depth:
            color_map, _, _, _, depth_map = self.rendering(
                self.net(encoded), depths, ret_extra=True)
            return color_map, depth_map
        
        return self.rendering(self.net(encoded), depths)