__general.ipynb 8.81 KB
Newer Older
Nianchen Deng's avatar
sync    
Nianchen Deng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Performance of Randperm on CPU/GPU"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Node Random perm on host: host duration 6384.1ms, device duration 6384.4ms\n",
      "Node Random perm on device: host duration 2525.0ms, device duration 2525.0ms\n"
     ]
    }
   ],
   "source": [
    "from common import *\n",
    "from utils.profile import debug_profile\n",
    "from utils.mem_profiler import MemProfiler\n",
    "\n",
    "with debug_profile(\"Random perm on host\"):\n",
    "    torch.randperm(1024 * 1024 * 100)\n",
    "\n",
    "with debug_profile(\"Random perm on device\"),\\\n",
    "        MemProfiler(\"Random perm on host\", device=\"cuda:3\"):\n",
    "    torch.randperm(1024 * 1024 * 100, device=\"cuda:3\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# \\_\\_getattribute\\_\\_ Method"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "a.a: 1\n",
      "a.b: 2\n"
     ]
    },
    {
     "ename": "AttributeError",
     "evalue": "'A' object has no attribute 'c'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-3-bdb259af4410>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     24\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"a.a:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     25\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"a.b:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 26\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"a.c:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m<ipython-input-3-bdb259af4410>\u001b[0m in \u001b[0;36m__getattribute__\u001b[0;34m(self, _A__name)\u001b[0m\n\u001b[1;32m     16\u001b[0m                 \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     17\u001b[0m             \u001b[0merr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 18\u001b[0;31m         \u001b[0;32mraise\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     19\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m<ipython-input-3-bdb259af4410>\u001b[0m in \u001b[0;36m__getattribute__\u001b[0;34m(self, _A__name)\u001b[0m\n\u001b[1;32m      9\u001b[0m     \u001b[0;32mdef\u001b[0m \u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m__name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     10\u001b[0m         \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m__name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     12\u001b[0m         \u001b[0;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     13\u001b[0m             \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mAttributeError\u001b[0m: 'A' object has no attribute 'c'"
     ]
    }
   ],
   "source": [
    "class A(object):\n",
    "\n",
    "\n",
    "    def __init__(self, a, **extra) -> None:\n",
    "        super().__init__()\n",
    "        self.a = a\n",
    "        self.extra = extra\n",
    "\n",
    "    def __getattribute__(self, __name: str):\n",
    "        try:\n",
    "            return super().__getattribute__(__name)\n",
    "        except AttributeError as e:\n",
    "            try:\n",
    "                return self.extra[__name]\n",
    "            except KeyError:\n",
    "                pass\n",
    "            err = e\n",
    "        raise err\n",
    "\n",
    "\n",
    "a = A(a=1, b=2)\n",
    "\n",
    "\n",
    "print(\"a.a:\", a.a)\n",
    "print(\"a.b:\", a.b)\n",
    "print(\"a.c:\", a.c)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Performance of Various Select/Scatter Methods"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.010159730911254883 tensor(100., device='cuda:0')\n",
      "0.011237859725952148 tensor(1400., device='cuda:0')\n",
      "0.032263755798339844 tensor(2700., device='cuda:0')\n",
      "0.02148723602294922 tensor(4.1723e-07, device='cuda:0')\n",
      "0.009927511215209961 tensor(4.1723e-07, device='cuda:0')\n",
      "Mask set 0.02173590660095215\n",
      "Inplace mask scatter 0.0041882991790771484\n",
      "Mask scatter 0.00580906867980957\n",
      "Index set 0.03358888626098633\n",
      "Index put 0.01044917106628418\n"
     ]
    }
   ],
   "source": [
    "from common import *\n",
    "from time import time\n",
    "\n",
    "a = torch.zeros(200000, device=\"cuda\")\n",
    "i = torch.randint(0, a.shape[0], [500000], device=\"cuda\")\n",
    "start = time()\n",
    "for _ in range(100):\n",
    "    a[i] += 1\n",
    "end = time()\n",
    "print(end - start, a.max())\n",
    "start = time()\n",
    "for _ in range(100):\n",
    "    a.index_add_(0, i, torch.ones_like(i, dtype=torch.float))\n",
    "end = time()\n",
    "print(end - start, a.max())\n",
    "\n",
    "start = time()\n",
    "for _ in range(100):\n",
    "    ui, n = i.unique(return_counts=True)\n",
    "    a[ui] += n\n",
    "end = time()\n",
    "print(end - start, a.max())\n",
    "\n",
    "\n",
    "a = torch.rand(2000, 2000, device=\"cuda\") - .5\n",
    "m = a > 0\n",
    "\n",
    "start = time()\n",
    "for _ in range(100):\n",
    "    b = a[m]\n",
    "end = time()\n",
    "print(end - start, b.min())\n",
    "\n",
    "start = time()\n",
    "for _1 in range(20):\n",
    "    m1 = m.nonzero(as_tuple=True)\n",
    "    for _ in range(5):\n",
    "        b = a[m1]\n",
    "end = time()\n",
    "print(end - start, b.min())\n",
    "\n",
    "\n",
    "c = torch.rand_like(b)\n",
    "\n",
    "start = time()\n",
    "for _ in range(100):\n",
    "    a[m] = c\n",
    "end = time()\n",
    "print(\"Mask set\", end - start)\n",
    "\n",
    "start = time()\n",
    "for _ in range(100):\n",
    "    a.masked_scatter_(m, c)\n",
    "end = time()\n",
    "print(\"Inplace mask scatter\", end - start)\n",
    "\n",
    "\n",
    "start = time()\n",
    "for _ in range(100):\n",
    "    a = a.masked_scatter(m, c)\n",
    "end = time()\n",
    "print(\"Mask scatter\", end - start)\n",
    "\n",
    "start = time()\n",
    "for _1 in range(20):\n",
    "    m1 = m.nonzero(as_tuple=True)\n",
    "    for _ in range(5):\n",
    "        a[m1] = b\n",
    "end = time()\n",
    "print(\"Index set\", end - start)\n",
    "\n",
    "\n",
    "start = time()\n",
    "for _1 in range(20):\n",
    "    m1 = m.nonzero(as_tuple=True)\n",
    "    for _ in range(5):\n",
    "        a.index_put_(m1, b)\n",
    "end = time()\n",
    "print(\"Index put\", end - start)"
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "65406b00395a48e1d89cf658ae895e7869e05878f5469716b06a752a3915211c"
  },
  "kernelspec": {
   "display_name": "Python 3.8.12 ('base')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.12"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}