gen_crop.ipynb 2.78 KB
Newer Older
Nianchen Deng's avatar
sync    
Nianchen Deng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "import torch\n",
    "import torch.nn.functional as nn_f\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "rootdir = os.path.abspath(sys.path[0] + '/../../')\n",
    "sys.path.append(rootdir)\n",
    "\n",
    "from utils import img\n",
    "from utils.view import *\n",
    "\n",
    "datadir = f\"{rootdir}/data/__thesis/__demo/compare\"\n",
    "figs = ['fsnerf', 'gt', 'nerf']\n",
    "crops = {\n",
    "    'barbershop': [[406, 117, 100], [209, 170, 100]],\n",
    "    'gas': [[195, 69, 100], [7, 305, 100]],\n",
    "    'mc': [[395, 128, 100], [97, 391, 100]],\n",
    "    'pabellon': [[208, 115, 100], [22, 378, 100]]\n",
    "}\n",
    "colors = torch.tensor([[0, 1, 0], [1, 1, 0]], dtype=torch.float)\n",
    "border = 3\n",
    "\n",
    "for scene in crops:\n",
    "    images = img.load([f\"{datadir}/origin/{scene}_{fig}.png\" for fig in figs])\n",
    "    halfw = images.size(-1) // 2\n",
    "    halfh = images.size(-2) // 2\n",
    "    overlay = torch.zeros(1, 4, *images.shape[2:])\n",
    "    mask = torch.zeros(len(crops[scene]), *images.shape[2:], dtype=torch.bool)\n",
    "    for i, crop in enumerate(crops[scene]):\n",
    "        patches = images[..., crop[1]: crop[1] + crop[2], crop[0]: crop[0] + crop[2]].clone()\n",
    "        patches[..., :border, :] = colors[i, :, None, None]\n",
    "        patches[..., -border:, :] = colors[i, :, None, None]\n",
    "        patches[..., :, :border] = colors[i, :, None, None]\n",
    "        patches[..., :, -border:] = colors[i, :, None, None]\n",
    "        img.save(patches, [f\"{datadir}/crop/{scene}_{i}_{fig}.png\" for fig in figs])\n",
    "        mask[i,\n",
    "             crop[1] - border: crop[1] + crop[2] + border,\n",
    "             crop[0] - border: crop[0] + crop[2] + border] = True\n",
    "        mask[i,\n",
    "             crop[1]: crop[1] + crop[2],\n",
    "             crop[0]: crop[0] + crop[2]] = False\n",
    "        images[:, :, mask[i]] = colors[i, :, None]\n",
    "    img.save(images, [f\"{datadir}/overlay/{scene}_{fig}.png\" for fig in figs])\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.10.0 ('dvs')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.0"
  },
  "orig_nbformat": 2,
  "vscode": {
   "interpreter": {
    "hash": "4469b029896260c1221afa6e0e6159922aafd2738570e75b7bc15e28db242604"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}