dynamic_bar.ipynb 12.7 KB
Newer Older
Nianchen Deng's avatar
sync    
Nianchen Deng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "import plotly_express as px  # import plotly.express as px\n",
    "import plotly.graph_objects as go\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import os\n",
    "\n",
    "name = [\"NeRF\", \"PANO\", \"OURS+\", \"OURS\"]\n",
    "foveal = 8.0\n",
    "mid = 2.8\n",
    "far = 2.6\n",
    "blend = 0.1\n",
    "ours_full = 562\n",
    "pano = 1e4\n",
    "nerf = 9e4\n",
    "\n",
    "times = {\n",
    "    \"fovea_l\": 0,\n",
    "    \"mid_l\": 0,\n",
    "    \"far_l\": 0,\n",
    "    \"fovea_r\": 0,\n",
    "    \"mid_r\": 0,\n",
    "    \"far_r\": 0,\n",
    "    \"blend\": 0,\n",
    "    \"ours_full\": 0,\n",
    "    \"pano\": 0,\n",
    "    \"nerf\": 0,\n",
    "}\n",
    "clip = 0\n",
    "frame_id = 0\n",
    "\n",
    "\n",
    "def calc_total():\n",
    "    return [\n",
    "        times[\"nerf\"],\n",
    "        times[\"pano\"],\n",
    "        times[\"ours_full\"],\n",
    "        times[\"fovea_l\"] + times[\"mid_l\"] + times[\"far_l\"] +\n",
    "            times[\"fovea_r\"] + times[\"mid_r\"] + times[\"far_r\"] + times[\"blend\"]\n",
    "    ]\n",
    "\n",
    "\n",
    "def draw_frame(*, xlim=None, **kwargs):\n",
    "    global frame_id\n",
    "    for key in kwargs:\n",
    "        times[key] = kwargs[key]\n",
    "    tot = calc_total()\n",
    "    data = {\n",
    "        \"fovea_l\": [0, 0, 0, times[\"fovea_l\"]],\n",
    "        \"mid_l\": [0, 0, 0, times[\"mid_l\"]],\n",
    "        \"far_l\": [0, 0, 0, times[\"far_l\"]],\n",
    "        \"fovea_r\": [0, 0, 0, times[\"fovea_r\"]],\n",
    "        \"mid_r\": [0, 0, 0, times[\"mid_r\"]],\n",
    "        \"far_r\": [0, 0, 0, times[\"far_r\"]],\n",
    "        \"blend\": [0, 0, 0, times[\"blend\"]],\n",
    "        \"ours_full\": [0, 0, times[\"ours_full\"], 0],\n",
    "        \"pano\": [0, times[\"pano\"], 0, 0],\n",
    "        \"nerf\": [times[\"nerf\"], 0, 0, 0],\n",
    "    }\n",
    "    if xlim is None or xlim < max(tot) * 1.1:\n",
    "        xlim = max(tot) * 1.1\n",
    "    \n",
    "    fig = go.Figure()\n",
    "    times_keys = list(times.keys())\n",
    "    for key in times_keys:\n",
    "        if key == times_keys[-1]:\n",
    "            fig.add_trace(go.Bar(\n",
    "                y=name,\n",
    "                x=data[key],\n",
    "                name=key,\n",
    "                orientation='h',\n",
    "                text=[\"\" if item == 0 else f\"{item:.1f}\" if item < 1000 else f\"{item:.1e}\" for item in tot],\n",
    "                textposition=\"outside\"\n",
    "            ))\n",
    "        else:\n",
    "            fig.add_trace(go.Bar(\n",
    "                y=name,\n",
    "                x=data[key],\n",
    "                name=key,\n",
    "                orientation='h',\n",
    "            ))\n",
    "    fig.update_traces(width=0.5)\n",
    "    fig.update_layout(barmode='stack', showlegend=False,\n",
    "                      yaxis_visible=False, yaxis_showticklabels=False, xaxis_range=[0, xlim])\n",
    "    \n",
    "    # fig.show()\n",
    "    fig.write_image(f\"dynamic_bar/clip_{clip}/{frame_id:04d}.png\", width=1920 // 2, height=1080 // 2, scale=2)\n",
    "    frame_id = frame_id + 1\n",
    "\n",
    "def add_animation(*, frames, xlim=None, **kwargs):\n",
    "    if frames == 1:\n",
    "        draw_frame(**kwargs, xlim=xlim)\n",
    "        return\n",
    "    data = {\n",
    "        key: np.linspace(times[key], kwargs[key], frames)\n",
    "        for key in kwargs\n",
    "    }\n",
    "    for i in range(frames):\n",
    "        draw_frame(**{key: data[key][i] for key in data}, xlim=xlim)\n",
    "\n",
    "def new_clip():\n",
    "    global clip, frame_id\n",
    "    clip += 1\n",
    "    frame_id = 0\n",
    "    os.system(f\"mkdir dynamic_bar/clip_{clip}\")\n",
    "\n",
    "os.system('rm -f -r dynamic_bar')\n",
    "os.system('mkdir dynamic_bar')\n",
    "\n",
    "# ours mono\n",
    "new_clip()\n",
    "add_animation(fovea_l=foveal, frames=48, xlim=30)   # Step 1: grow foveal\n",
    "add_animation(mid_l=mid, frames=16, xlim=30)         # Step 2: grow mid\n",
    "add_animation(far_l=far, frames=16, xlim=30)         # Step 3: grow far\n",
    "add_animation(blend=blend, frames=1, xlim=30)     # Step 4: grow blend\n",
    "\n",
    "# ours stereo\n",
    "new_clip()\n",
    "add_animation(fovea_r=foveal, frames=24, xlim=30)   # Step 1: grow foveal\n",
    "add_animation(mid_r=mid, frames=8, xlim=30)         # Step 2: grow mid\n",
    "add_animation(far_r=far, frames=8, xlim=30)         # Step 3: grow far\n",
    "\n",
    "# ours stereo adapt\n",
    "new_clip()\n",
    "add_animation(mid_r=0, far_r=0, frames=24, xlim=30)\n",
    "\n",
    "# other series\n",
    "new_clip()\n",
    "add_animation(ours_full=ours_full, frames=48, xlim=30)\n",
    "new_clip()\n",
    "add_animation(pano=pano, frames=48, xlim=30)\n",
    "new_clip()\n",
    "add_animation(nerf=nerf, frames=48, xlim=30)\n",
    "\n",
    "#os.system(f'ffmpeg -y -r 24 -i dynamic_bar/%04d.png dynamic_bar.avi')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "fig = px.bar(\n",
    "    df1,  # 绘图数据\n",
    "    x=list(times.keys()),    # y轴\n",
    "    y=\"name\",  # x轴\n",
    "    orientation='h',   # 水平柱状图\n",
    "    #text=[[\"a\", \"tot\"], \"tot1\", \"tot2\", {\"fovea_l\": \"\", \"blend_r\": 13.5}]   # 需要显示的数据\n",
    ")\n",
    "fig.update_traces(textposition=\"outside\", showlegend=False, text=[[\"a\"]*11, [\"b\"]*11, [\"c\"]*11, [\"d\"]*11,[\"e\"]*11])\n",
    "fig.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>country</th>\n",
       "      <th>continent</th>\n",
       "      <th>year</th>\n",
       "      <th>lifeExp</th>\n",
       "      <th>pop</th>\n",
       "      <th>gdpPercap</th>\n",
       "      <th>iso_alpha</th>\n",
       "      <th>iso_num</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>Asia</td>\n",
       "      <td>1952</td>\n",
       "      <td>28.801</td>\n",
       "      <td>8425333</td>\n",
       "      <td>779.445314</td>\n",
       "      <td>AFG</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>Asia</td>\n",
       "      <td>1957</td>\n",
       "      <td>30.332</td>\n",
       "      <td>9240934</td>\n",
       "      <td>820.853030</td>\n",
       "      <td>AFG</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>Asia</td>\n",
       "      <td>1962</td>\n",
       "      <td>31.997</td>\n",
       "      <td>10267083</td>\n",
       "      <td>853.100710</td>\n",
       "      <td>AFG</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>Asia</td>\n",
       "      <td>1967</td>\n",
       "      <td>34.020</td>\n",
       "      <td>11537966</td>\n",
       "      <td>836.197138</td>\n",
       "      <td>AFG</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>Afghanistan</td>\n",
       "      <td>Asia</td>\n",
       "      <td>1972</td>\n",
       "      <td>36.088</td>\n",
       "      <td>13079460</td>\n",
       "      <td>739.981106</td>\n",
       "      <td>AFG</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1699</th>\n",
       "      <td>Zimbabwe</td>\n",
       "      <td>Africa</td>\n",
       "      <td>1987</td>\n",
       "      <td>62.351</td>\n",
       "      <td>9216418</td>\n",
       "      <td>706.157306</td>\n",
       "      <td>ZWE</td>\n",
       "      <td>716</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1700</th>\n",
       "      <td>Zimbabwe</td>\n",
       "      <td>Africa</td>\n",
       "      <td>1992</td>\n",
       "      <td>60.377</td>\n",
       "      <td>10704340</td>\n",
       "      <td>693.420786</td>\n",
       "      <td>ZWE</td>\n",
       "      <td>716</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1701</th>\n",
       "      <td>Zimbabwe</td>\n",
       "      <td>Africa</td>\n",
       "      <td>1997</td>\n",
       "      <td>46.809</td>\n",
       "      <td>11404948</td>\n",
       "      <td>792.449960</td>\n",
       "      <td>ZWE</td>\n",
       "      <td>716</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1702</th>\n",
       "      <td>Zimbabwe</td>\n",
       "      <td>Africa</td>\n",
       "      <td>2002</td>\n",
       "      <td>39.989</td>\n",
       "      <td>11926563</td>\n",
       "      <td>672.038623</td>\n",
       "      <td>ZWE</td>\n",
       "      <td>716</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1703</th>\n",
       "      <td>Zimbabwe</td>\n",
       "      <td>Africa</td>\n",
       "      <td>2007</td>\n",
       "      <td>43.487</td>\n",
       "      <td>12311143</td>\n",
       "      <td>469.709298</td>\n",
       "      <td>ZWE</td>\n",
       "      <td>716</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>1704 rows × 8 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "          country continent  year  lifeExp       pop   gdpPercap iso_alpha  \\\n",
       "0     Afghanistan      Asia  1952   28.801   8425333  779.445314       AFG   \n",
       "1     Afghanistan      Asia  1957   30.332   9240934  820.853030       AFG   \n",
       "2     Afghanistan      Asia  1962   31.997  10267083  853.100710       AFG   \n",
       "3     Afghanistan      Asia  1967   34.020  11537966  836.197138       AFG   \n",
       "4     Afghanistan      Asia  1972   36.088  13079460  739.981106       AFG   \n",
       "...           ...       ...   ...      ...       ...         ...       ...   \n",
       "1699     Zimbabwe    Africa  1987   62.351   9216418  706.157306       ZWE   \n",
       "1700     Zimbabwe    Africa  1992   60.377  10704340  693.420786       ZWE   \n",
       "1701     Zimbabwe    Africa  1997   46.809  11404948  792.449960       ZWE   \n",
       "1702     Zimbabwe    Africa  2002   39.989  11926563  672.038623       ZWE   \n",
       "1703     Zimbabwe    Africa  2007   43.487  12311143  469.709298       ZWE   \n",
       "\n",
       "      iso_num  \n",
       "0           4  \n",
       "1           4  \n",
       "2           4  \n",
       "3           4  \n",
       "4           4  \n",
       "...       ...  \n",
       "1699      716  \n",
       "1700      716  \n",
       "1701      716  \n",
       "1702      716  \n",
       "1703      716  \n",
       "\n",
       "[1704 rows x 8 columns]"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df = px.data.gapminder()\n",
    "df"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.10.0 ('dvs')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.0"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "4469b029896260c1221afa6e0e6159922aafd2738570e75b7bc15e28db242604"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}