Commit 73fc46af authored by TheNumbat's avatar TheNumbat
Browse files

fix user guide links

parent 54c5f123
......@@ -6,7 +6,7 @@ permalink: /meshedit/global/catmull/
# Catmull-Clark Subdivision
For an in-practice example, see the [User Guide](../../guide/model).
For an in-practice example, see the [User Guide](/guide/model).
The only difference between Catmull-Clark and [linear](../linear) subdivision is the choice of positions for new vertices. Whereas linear subdivision simply takes a uniform average of the old vertex positions, Catmull-Clark uses a very carefully-designed _weighted_ average to ensure that the surface converges to a nice, round surface as the number of subdivision steps increases. The original scheme is described in the paper _"Recursively generated B-spline surfaces on arbitrary topological meshes"_ by (Pixar co-founder) Ed Catmull and James Clark. Since then, the scheme has been thoroughly discussed, extended, and analyzed; more modern descriptions of the algorithm may be easier to read, including those from the [Wikipedia](https://en.wikipedia.org/wiki/Catmull-Clark_subdivision_surface) and [this webpage](http://www.rorydriscoll.com/2008/08/01/catmull-clark-subdivision-the-basics/). In short, the new vertex positions can be calculated by:
......
......@@ -6,7 +6,7 @@ permalink: /meshedit/global/linear/
# Linear Subdivision
For an in-practice example, see the [User Guide](../../guide/model).
For an in-practice example, see the [User Guide](/guide/model).
Unlike most other global remeshing operations, linear (and Catmull-Clark) subdivision will proceed by completely replacing the original halfedge mesh with a new one. The high-level procedure is:
......
......@@ -6,7 +6,7 @@ permalink: /meshedit/global/loop/
# Loop Subdivision
For an in-practice example, see the [User Guide](../../guide/model).
For an in-practice example, see the [User Guide](/guide/model).
Loop subdivision (named after [Charles Loop](http://charlesloop.com/)) is a standard approximating subdivision scheme for triangle meshes. At a high level, it consists of two basic steps:
......
......@@ -6,7 +6,7 @@ permalink: /meshedit/global/remesh/
# Isotropic Remeshing
For an in-practice example, see the [User Guide](../../guide/model).
For an in-practice example, see the [User Guide](/guide/model).
Scotty3D also supports remeshing, an operation that keeps the number of samples roughly the same while improving the shape of individual triangles. The isotropic remeshing algorithm tries to make the mesh as "uniform" as possible, i.e., triangles as close as possible to equilateral triangles of equal size, and vertex degrees as close as possible to 6 (note: this algorithm is for **triangle meshes only**). The algorithm to be implemented is based on the paper [Botsch and Kobbelt, "A Remeshing Approach to Multiresolution Modeling"](http://graphics.uni-bielefeld.de/publications/disclaimer.php?dlurl=sgp04.pdf) (Section 4), and can be summarized in just a few simple steps:
......
......@@ -8,7 +8,7 @@ permalink: /meshedit/global/simplify/
![Surface simplification via quadric error metric](quad_simplify.png)
For an in-practice example, see the [User Guide](../../guide/model).
For an in-practice example, see the [User Guide](/guide/model).
Just as with images, meshes often have far more samples than we really need. The simplification method in Scotty3D simplifies a given triangle mesh by applying _quadric error simplification_ (note that this method is for **triangle meshes only**!). This method was originally developed at CMU by Michael Garland and Paul Heckbert, in their paper [Surface Simplification Using Quadric Error Metrics](http://www.cs.cmu.edu/~./garland/quadrics/quadrics.html). (Looking at this paper -- or the many slides and presentations online that reference it -- may be very helpful in understanding and implementing this part of the assignment!)
......
......@@ -6,7 +6,7 @@ permalink: /meshedit/global/triangulate/
# Triangulation
For an in-practice example, see the [User Guide](../../guide/model).
For an in-practice example, see the [User Guide](/guide/model).
A variety of geometry processing algorithms become easier to implement (or are only well defined) when the input consists purely of triangles. The method `Halfedge_Mesh::triangulate` converts any polygon mesh into a triangle mesh by splitting each polygon into triangles.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment