mat4.h 16.3 KB
Newer Older
TheNumbat's avatar
TheNumbat committed
1
2
3
4

#pragma once

#include <algorithm>
TheNumbat's avatar
TheNumbat committed
5
#include <cmath>
TheNumbat's avatar
TheNumbat committed
6
7
8
9
10
11
12
#include <ostream>

#include "log.h"
#include "vec4.h"

struct Mat4 {

TheNumbat's avatar
TheNumbat committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    /// Identity matrix
    static const Mat4 I;
    /// Zero matrix
    static const Mat4 Zero;

    /// Return transposed matrix
    static Mat4 transpose(const Mat4 &m);
    /// Return inverse matrix (will be NaN if m is not invertible)
    static Mat4 inverse(const Mat4 &m);
    /// Return transformation matrix for given translation vector
    static Mat4 translate(Vec3 t);
    /// Return transformation matrix for given angle (degrees) and axis
    static Mat4 rotate(float t, Vec3 axis);
    /// Return transformation matrix for given XYZ Euler angle rotation
    static Mat4 euler(Vec3 angles);
    /// Return transformation matrix that rotates the Y axis to dir
    static Mat4 rotate_to(Vec3 dir);
    /// Return transformation matrix that rotates the -Z axis to dir
    static Mat4 rotate_z_to(Vec3 dir);
    /// Return transformation matrix for given scale factors
    static Mat4 scale(Vec3 s);
    /// Return transformation matrix with given axes
    static Mat4 axes(Vec3 x, Vec3 y, Vec3 z);

    /// Return transformation matrix for viewing a scene from $pos looking at $at,
    /// where straight up is defined as $up
    static Mat4 look_at(Vec3 pos, Vec3 at, Vec3 up = Vec3{0.0f, 1.0f, 0.0f});
    /// Return orthogonal projection matrix with given left, right, bottom, top,
    /// near, and far planes.
    static Mat4 ortho(float l, float r, float b, float t, float n, float f);

    /// Return perspective projection matrix with given field of view, aspect ratio,
    /// and near plane. The far plane is assumed to be at infinity. This projection
    /// also outputs n/z for better precision with floating point depth buffers, so we use
    /// a depth mapping where 0 is the far plane (infinity) and 1 is the near plane, and
    /// an object is closer if is depth is greater.
    static Mat4 project(float fov, float ar, float n);

    Mat4() { *this = I; }
    explicit Mat4(Vec4 x, Vec4 y, Vec4 z, Vec4 w) {
        cols[0] = x;
        cols[1] = y;
        cols[2] = z;
        cols[3] = w;
    }

    Mat4(const Mat4 &) = default;
    Mat4 &operator=(const Mat4 &) = default;
    ~Mat4() = default;

    Vec4 &operator[](int idx) {
        assert(idx >= 0 && idx <= 3);
        return cols[idx];
    }
    Vec4 operator[](int idx) const {
        assert(idx >= 0 && idx <= 3);
        return cols[idx];
    }

    Mat4 operator+=(const Mat4 &m) {
        for (int i = 0; i < 4; i++)
            cols[i] += m.cols[i];
        return *this;
    }
    Mat4 operator-=(const Mat4 &m) {
        for (int i = 0; i < 4; i++)
            cols[i] -= m.cols[i];
        return *this;
    }

    Mat4 operator+=(float s) {
        for (int i = 0; i < 4; i++)
            cols[i] += s;
        return *this;
    }
    Mat4 operator-=(float s) {
        for (int i = 0; i < 4; i++)
            cols[i] -= s;
        return *this;
    }
    Mat4 operator*=(float s) {
        for (int i = 0; i < 4; i++)
            cols[i] *= s;
        return *this;
    }
    Mat4 operator/=(float s) {
        for (int i = 0; i < 4; i++)
            cols[i] /= s;
        return *this;
    }

    Mat4 operator+(const Mat4 &m) const {
        Mat4 r;
        for (int i = 0; i < 4; i++)
            r.cols[i] = cols[i] + m.cols[i];
        return r;
    }
    Mat4 operator-(const Mat4 &m) const {
        Mat4 r;
        for (int i = 0; i < 4; i++)
            r.cols[i] = cols[i] - m.cols[i];
        return r;
    }

    Mat4 operator+(float s) const {
        Mat4 r;
        for (int i = 0; i < 4; i++)
            r.cols[i] = cols[i] + s;
        return r;
    }
    Mat4 operator-(float s) const {
        Mat4 r;
        for (int i = 0; i < 4; i++)
            r.cols[i] = cols[i] - s;
        return r;
    }
    Mat4 operator*(float s) const {
        Mat4 r;
        for (int i = 0; i < 4; i++)
            r.cols[i] = cols[i] * s;
        return r;
    }
    Mat4 operator/(float s) const {
        Mat4 r;
        for (int i = 0; i < 4; i++)
            r.cols[i] = cols[i] / s;
        return r;
    }

    Mat4 operator*=(const Mat4 &v) {
        *this = *this * v;
        return *this;
    }
    Mat4 operator*(const Mat4 &m) const {
        Mat4 ret;
        for (int i = 0; i < 4; i++) {
            for (int j = 0; j < 4; j++) {
                ret[i][j] = 0.0f;
                for (int k = 0; k < 4; k++) {
                    ret[i][j] += m[i][k] * cols[k][j];
                }
            }
        }
        return ret;
    }

    Vec4 operator*(Vec4 v) const {
        return v[0] * cols[0] + v[1] * cols[1] + v[2] * cols[2] + v[3] * cols[3];
    }

    /// Expands v to Vec4(v, 1.0), multiplies, and projects back to 3D
    Vec3 operator*(Vec3 v) const { return operator*(Vec4(v, 1.0f)).project(); }
    /// Expands v to Vec4(v, 0.0), multiplies, and projects back to 3D
    Vec3 rotate(Vec3 v) const { return operator*(Vec4(v, 0.0f)).xyz(); }

    /// Converts rotation (orthonormal 3x3) matrix to equivalent Euler angles
    Vec3 to_euler() const {

        bool single = true;
        static const float singularity[] = {1.0f, 0.0f, 0.0f, 0.0f, 0.0f, -1.0f,
                                            0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0};
        for (int i = 0; i < 12 && single; i++) {
            single = single && std::abs(data[i] - singularity[i]) < 16.0f * FLT_EPSILON;
        }
        if (single)
            return Vec3{0.0f, 0.0f, 180.0f};

        Vec3 eul1, eul2;

        float cy = std::hypotf(cols[0][0], cols[0][1]);
        if (cy > 16.0f * FLT_EPSILON) {
            eul1[0] = std::atan2(cols[1][2], cols[2][2]);
            eul1[1] = std::atan2(-cols[0][2], cy);
            eul1[2] = std::atan2(cols[0][1], cols[0][0]);

            eul2[0] = std::atan2(-cols[1][2], -cols[2][2]);
            eul2[1] = std::atan2(-cols[0][2], -cy);
            eul2[2] = std::atan2(-cols[0][1], -cols[0][0]);
        } else {
            eul1[0] = std::atan2(-cols[2][1], cols[1][1]);
            eul1[1] = std::atan2(-cols[0][2], cy);
            eul1[2] = 0;
            eul2 = eul1;
        }
        float d1 = std::abs(eul1[0]) + std::abs(eul1[1]) + std::abs(eul1[2]);
        float d2 = std::abs(eul2[0]) + std::abs(eul2[1]) + std::abs(eul2[2]);
        if (d1 > d2)
            return Degrees(eul2);
        else
            return Degrees(eul1);
    }

    /// Returns matrix transpose
    Mat4 T() const { return transpose(*this); }
    /// Returns matrix inverse (will be NaN if m is not invertible)
    Mat4 inverse() const { return inverse(*this); }

    /// Returns determinant (brute force).
    float det() const {
        return cols[0][3] * cols[1][2] * cols[2][1] * cols[3][0] -
               cols[0][2] * cols[1][3] * cols[2][1] * cols[3][0] -
               cols[0][3] * cols[1][1] * cols[2][2] * cols[3][0] +
               cols[0][1] * cols[1][3] * cols[2][2] * cols[3][0] +
               cols[0][2] * cols[1][1] * cols[2][3] * cols[3][0] -
               cols[0][1] * cols[1][2] * cols[2][3] * cols[3][0] -
               cols[0][3] * cols[1][2] * cols[2][0] * cols[3][1] +
               cols[0][2] * cols[1][3] * cols[2][0] * cols[3][1] +
               cols[0][3] * cols[1][0] * cols[2][2] * cols[3][1] -
               cols[0][0] * cols[1][3] * cols[2][2] * cols[3][1] -
               cols[0][2] * cols[1][0] * cols[2][3] * cols[3][1] +
               cols[0][0] * cols[1][2] * cols[2][3] * cols[3][1] +
               cols[0][3] * cols[1][1] * cols[2][0] * cols[3][2] -
               cols[0][1] * cols[1][3] * cols[2][0] * cols[3][2] -
               cols[0][3] * cols[1][0] * cols[2][1] * cols[3][2] +
               cols[0][0] * cols[1][3] * cols[2][1] * cols[3][2] +
               cols[0][1] * cols[1][0] * cols[2][3] * cols[3][2] -
               cols[0][0] * cols[1][1] * cols[2][3] * cols[3][2] -
               cols[0][2] * cols[1][1] * cols[2][0] * cols[3][3] +
               cols[0][1] * cols[1][2] * cols[2][0] * cols[3][3] +
               cols[0][2] * cols[1][0] * cols[2][1] * cols[3][3] -
               cols[0][0] * cols[1][2] * cols[2][1] * cols[3][3] -
               cols[0][1] * cols[1][0] * cols[2][2] * cols[3][3] +
               cols[0][0] * cols[1][1] * cols[2][2] * cols[3][3];
    }

    union {
        Vec4 cols[4];
        float data[16] = {};
    };
TheNumbat's avatar
TheNumbat committed
242
243
};

TheNumbat's avatar
TheNumbat committed
244
245
246
247
248
inline bool operator==(const Mat4 &l, const Mat4 &r) {
    for (int i = 0; i < 16; i++)
        if (l.data[i] != r.data[i])
            return false;
    return true;
TheNumbat's avatar
TheNumbat committed
249
250
}

TheNumbat's avatar
TheNumbat committed
251
252
253
254
255
inline bool operator!=(const Mat4 &l, const Mat4 &r) {
    for (int i = 0; i < 16; i++)
        if (l.data[i] != r.data[i])
            return true;
    return false;
TheNumbat's avatar
TheNumbat committed
256
257
}

TheNumbat's avatar
TheNumbat committed
258
259
260
261
262
inline Mat4 operator+(float s, const Mat4 &m) {
    Mat4 r;
    for (int i = 0; i < 4; i++)
        r.cols[i] = m.cols[i] + s;
    return r;
TheNumbat's avatar
TheNumbat committed
263
}
TheNumbat's avatar
TheNumbat committed
264
265
266
267
268
inline Mat4 operator-(float s, const Mat4 &m) {
    Mat4 r;
    for (int i = 0; i < 4; i++)
        r.cols[i] = m.cols[i] - s;
    return r;
TheNumbat's avatar
TheNumbat committed
269
}
TheNumbat's avatar
TheNumbat committed
270
271
272
273
274
inline Mat4 operator*(float s, const Mat4 &m) {
    Mat4 r;
    for (int i = 0; i < 4; i++)
        r.cols[i] = m.cols[i] * s;
    return r;
TheNumbat's avatar
TheNumbat committed
275
}
TheNumbat's avatar
TheNumbat committed
276
277
278
279
280
inline Mat4 operator/(float s, const Mat4 &m) {
    Mat4 r;
    for (int i = 0; i < 4; i++)
        r.cols[i] = m.cols[i] / s;
    return r;
TheNumbat's avatar
TheNumbat committed
281
282
}

TheNumbat's avatar
TheNumbat committed
283
284
285
286
const inline Mat4 Mat4::I = Mat4{Vec4{1.0f, 0.0f, 0.0f, 0.0f}, Vec4{0.0f, 1.0f, 0.0f, 0.0f},
                                 Vec4{0.0f, 0.0f, 1.0f, 0.0f}, Vec4{0.0f, 0.0f, 0.0f, 1.0f}};
const inline Mat4 Mat4::Zero = Mat4{Vec4{0.0f, 0.0f, 0.0f, 0.0f}, Vec4{0.0f, 0.0f, 0.0f, 0.0f},
                                    Vec4{0.0f, 0.0f, 0.0f, 0.0f}, Vec4{0.0f, 0.0f, 0.0f, 0.0f}};
TheNumbat's avatar
TheNumbat committed
287
288

inline Mat4 outer(Vec4 u, Vec4 v) {
TheNumbat's avatar
TheNumbat committed
289
290
291
292
293
    Mat4 B;
    for (int i = 0; i < 4; i++)
        for (int j = 0; j < 4; j++)
            B[i][j] = u[i] * v[j];
    return B;
TheNumbat's avatar
TheNumbat committed
294
295
}

TheNumbat's avatar
TheNumbat committed
296
297
298
299
300
301
302
303
inline Mat4 Mat4::transpose(const Mat4 &m) {
    Mat4 r;
    for (int i = 0; i < 4; i++) {
        for (int j = 0; j < 4; j++) {
            r[i][j] = m[j][i];
        }
    }
    return r;
TheNumbat's avatar
TheNumbat committed
304
305
}

TheNumbat's avatar
TheNumbat committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
inline Mat4 Mat4::inverse(const Mat4 &m) {
    Mat4 r;
    r[0][0] = m[1][2] * m[2][3] * m[3][1] - m[1][3] * m[2][2] * m[3][1] +
              m[1][3] * m[2][1] * m[3][2] - m[1][1] * m[2][3] * m[3][2] -
              m[1][2] * m[2][1] * m[3][3] + m[1][1] * m[2][2] * m[3][3];
    r[0][1] = m[0][3] * m[2][2] * m[3][1] - m[0][2] * m[2][3] * m[3][1] -
              m[0][3] * m[2][1] * m[3][2] + m[0][1] * m[2][3] * m[3][2] +
              m[0][2] * m[2][1] * m[3][3] - m[0][1] * m[2][2] * m[3][3];
    r[0][2] = m[0][2] * m[1][3] * m[3][1] - m[0][3] * m[1][2] * m[3][1] +
              m[0][3] * m[1][1] * m[3][2] - m[0][1] * m[1][3] * m[3][2] -
              m[0][2] * m[1][1] * m[3][3] + m[0][1] * m[1][2] * m[3][3];
    r[0][3] = m[0][3] * m[1][2] * m[2][1] - m[0][2] * m[1][3] * m[2][1] -
              m[0][3] * m[1][1] * m[2][2] + m[0][1] * m[1][3] * m[2][2] +
              m[0][2] * m[1][1] * m[2][3] - m[0][1] * m[1][2] * m[2][3];
    r[1][0] = m[1][3] * m[2][2] * m[3][0] - m[1][2] * m[2][3] * m[3][0] -
              m[1][3] * m[2][0] * m[3][2] + m[1][0] * m[2][3] * m[3][2] +
              m[1][2] * m[2][0] * m[3][3] - m[1][0] * m[2][2] * m[3][3];
    r[1][1] = m[0][2] * m[2][3] * m[3][0] - m[0][3] * m[2][2] * m[3][0] +
              m[0][3] * m[2][0] * m[3][2] - m[0][0] * m[2][3] * m[3][2] -
              m[0][2] * m[2][0] * m[3][3] + m[0][0] * m[2][2] * m[3][3];
    r[1][2] = m[0][3] * m[1][2] * m[3][0] - m[0][2] * m[1][3] * m[3][0] -
              m[0][3] * m[1][0] * m[3][2] + m[0][0] * m[1][3] * m[3][2] +
              m[0][2] * m[1][0] * m[3][3] - m[0][0] * m[1][2] * m[3][3];
    r[1][3] = m[0][2] * m[1][3] * m[2][0] - m[0][3] * m[1][2] * m[2][0] +
              m[0][3] * m[1][0] * m[2][2] - m[0][0] * m[1][3] * m[2][2] -
              m[0][2] * m[1][0] * m[2][3] + m[0][0] * m[1][2] * m[2][3];
    r[2][0] = m[1][1] * m[2][3] * m[3][0] - m[1][3] * m[2][1] * m[3][0] +
              m[1][3] * m[2][0] * m[3][1] - m[1][0] * m[2][3] * m[3][1] -
              m[1][1] * m[2][0] * m[3][3] + m[1][0] * m[2][1] * m[3][3];
    r[2][1] = m[0][3] * m[2][1] * m[3][0] - m[0][1] * m[2][3] * m[3][0] -
              m[0][3] * m[2][0] * m[3][1] + m[0][0] * m[2][3] * m[3][1] +
              m[0][1] * m[2][0] * m[3][3] - m[0][0] * m[2][1] * m[3][3];
    r[2][2] = m[0][1] * m[1][3] * m[3][0] - m[0][3] * m[1][1] * m[3][0] +
              m[0][3] * m[1][0] * m[3][1] - m[0][0] * m[1][3] * m[3][1] -
              m[0][1] * m[1][0] * m[3][3] + m[0][0] * m[1][1] * m[3][3];
    r[2][3] = m[0][3] * m[1][1] * m[2][0] - m[0][1] * m[1][3] * m[2][0] -
              m[0][3] * m[1][0] * m[2][1] + m[0][0] * m[1][3] * m[2][1] +
              m[0][1] * m[1][0] * m[2][3] - m[0][0] * m[1][1] * m[2][3];
    r[3][0] = m[1][2] * m[2][1] * m[3][0] - m[1][1] * m[2][2] * m[3][0] -
              m[1][2] * m[2][0] * m[3][1] + m[1][0] * m[2][2] * m[3][1] +
              m[1][1] * m[2][0] * m[3][2] - m[1][0] * m[2][1] * m[3][2];
    r[3][1] = m[0][1] * m[2][2] * m[3][0] - m[0][2] * m[2][1] * m[3][0] +
              m[0][2] * m[2][0] * m[3][1] - m[0][0] * m[2][2] * m[3][1] -
              m[0][1] * m[2][0] * m[3][2] + m[0][0] * m[2][1] * m[3][2];
    r[3][2] = m[0][2] * m[1][1] * m[3][0] - m[0][1] * m[1][2] * m[3][0] -
              m[0][2] * m[1][0] * m[3][1] + m[0][0] * m[1][2] * m[3][1] +
              m[0][1] * m[1][0] * m[3][2] - m[0][0] * m[1][1] * m[3][2];
    r[3][3] = m[0][1] * m[1][2] * m[2][0] - m[0][2] * m[1][1] * m[2][0] +
              m[0][2] * m[1][0] * m[2][1] - m[0][0] * m[1][2] * m[2][1] -
              m[0][1] * m[1][0] * m[2][2] + m[0][0] * m[1][1] * m[2][2];
    r /= m.det();
    return r;
TheNumbat's avatar
TheNumbat committed
358
359
360
361
}

inline Mat4 Mat4::rotate_to(Vec3 dir) {

TheNumbat's avatar
TheNumbat committed
362
363
364
365
366
367
368
369
370
371
372
373
    dir.normalize();

    if (dir.y == 1.0f)
        return Mat4::I;
    else if (dir.y == -1.0f)
        return Mat4{Vec4{1.0f, 0.0f, 0.0f, 0.0f}, Vec4{0.0f, -1.0f, 0.0f, 0.0f},
                    Vec4{0.0f, 0.0f, 1.0f, 0.0}, Vec4{0.0f, 0.0f, 0.0f, 1.0f}};
    else {
        Vec3 x = cross(dir, Vec3{0.0f, 1.0f, 0.0f}).unit();
        Vec3 z = cross(x, dir).unit();
        return Mat4{Vec4{x, 0.0f}, Vec4{dir, 0.0f}, Vec4{z, 0.0f}, Vec4{0.0f, 0.0f, 0.0f, 1.0f}};
    }
TheNumbat's avatar
TheNumbat committed
374
375
376
}

inline Mat4 Mat4::rotate_z_to(Vec3 dir) {
TheNumbat's avatar
TheNumbat committed
377
378
379
380
381
382
    Mat4 y = rotate_to(dir);
    Vec4 _y = y[1];
    Vec4 _z = y[2];
    y[1] = _z;
    y[2] = -_y;
    return y;
TheNumbat's avatar
TheNumbat committed
383
384
385
}

inline Mat4 Mat4::axes(Vec3 x, Vec3 y, Vec3 z) {
TheNumbat's avatar
TheNumbat committed
386
    return Mat4{Vec4{x, 0.0f}, Vec4{y, 0.0f}, Vec4{z, 0.0f}, Vec4{0.0f, 0.0f, 0.0f, 1.0f}};
TheNumbat's avatar
TheNumbat committed
387
388
389
}

inline Mat4 Mat4::translate(Vec3 t) {
TheNumbat's avatar
TheNumbat committed
390
391
392
    Mat4 r;
    r[3] = Vec4(t, 1.0f);
    return r;
TheNumbat's avatar
TheNumbat committed
393
394
395
}

inline Mat4 Mat4::euler(Vec3 angles) {
TheNumbat's avatar
TheNumbat committed
396
397
398
    return Mat4::rotate(angles.z, Vec3{0.0f, 0.0f, 1.0f}) *
           Mat4::rotate(angles.y, Vec3{0.0f, 1.0f, 0.0f}) *
           Mat4::rotate(angles.x, Vec3{1.0f, 0.0f, 0.0f});
TheNumbat's avatar
TheNumbat committed
399
400
401
}

inline Mat4 Mat4::rotate(float t, Vec3 axis) {
TheNumbat's avatar
TheNumbat committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    Mat4 ret;
    float c = std::cos(Radians(t));
    float s = std::sin(Radians(t));
    axis.normalize();
    Vec3 temp = axis * (1.0f - c);
    ret[0][0] = c + temp[0] * axis[0];
    ret[0][1] = temp[0] * axis[1] + s * axis[2];
    ret[0][2] = temp[0] * axis[2] - s * axis[1];
    ret[1][0] = temp[1] * axis[0] - s * axis[2];
    ret[1][1] = c + temp[1] * axis[1];
    ret[1][2] = temp[1] * axis[2] + s * axis[0];
    ret[2][0] = temp[2] * axis[0] + s * axis[1];
    ret[2][1] = temp[2] * axis[1] - s * axis[0];
    ret[2][2] = c + temp[2] * axis[2];
    return ret;
TheNumbat's avatar
TheNumbat committed
417
418
419
}

inline Mat4 Mat4::scale(Vec3 s) {
TheNumbat's avatar
TheNumbat committed
420
421
422
423
424
    Mat4 r;
    r[0][0] = s.x;
    r[1][1] = s.y;
    r[2][2] = s.z;
    return r;
TheNumbat's avatar
TheNumbat committed
425
426
427
}

inline Mat4 Mat4::ortho(float l, float r, float b, float t, float n, float f) {
TheNumbat's avatar
TheNumbat committed
428
429
430
431
432
433
434
435
    Mat4 rs;
    rs[0][0] = 2.0f / (r - l);
    rs[1][1] = 2.0f / (t - b);
    rs[2][2] = 2.0f / (n - f);
    rs[3][0] = (-l - r) / (r - l);
    rs[3][1] = (-b - t) / (t - b);
    rs[3][2] = -n / (f - n);
    return rs;
TheNumbat's avatar
TheNumbat committed
436
437
438
}

inline Mat4 Mat4::project(float fov, float ar, float n) {
TheNumbat's avatar
TheNumbat committed
439
440
441
442
443
444
445
446
447
    float f = 1.0f / std::tan(Radians(fov) / 2.0f);
    Mat4 r;
    r[0][0] = f / ar;
    r[1][1] = f;
    r[2][2] = 0.0f;
    r[3][3] = 0.0f;
    r[3][2] = n;
    r[2][3] = -1.0f;
    return r;
TheNumbat's avatar
TheNumbat committed
448
449
450
}

inline Mat4 Mat4::look_at(Vec3 pos, Vec3 at, Vec3 up) {
TheNumbat's avatar
TheNumbat committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    Mat4 r = Mat4::Zero;
    Vec3 F = (at - pos).unit();
    Vec3 S = cross(F, up).unit();
    Vec3 U = cross(S, F).unit();
    r[0][0] = S.x;
    r[0][1] = U.x;
    r[0][2] = -F.x;
    r[1][0] = S.y;
    r[1][1] = U.y;
    r[1][2] = -F.y;
    r[2][0] = S.z;
    r[2][1] = U.z;
    r[2][2] = -F.z;
    r[3][0] = -dot(S, pos);
    r[3][1] = -dot(U, pos);
    r[3][2] = dot(F, pos);
    r[3][3] = 1.0f;
    return r;
TheNumbat's avatar
TheNumbat committed
469
470
}

TheNumbat's avatar
TheNumbat committed
471
472
473
inline std::ostream &operator<<(std::ostream &out, Mat4 m) {
    out << "{" << m[0] << "," << m[1] << "," << m[2] << "," << m[3] << "}";
    return out;
TheNumbat's avatar
TheNumbat committed
474
}