import sys import os import argparse import torch import torch.optim from torch import onnx from typing import Mapping, List sys.path.append(os.path.abspath(sys.path[0] + '/../../')) __package__ = "deep_view_syn.tools" parser = argparse.ArgumentParser() parser.add_argument('--device', type=int, default=0, help='Which CUDA device to use.') parser.add_argument('--batch-size', type=str, help='Resolution') parser.add_argument('--outdir', type=str, default='./', help='Output directory') parser.add_argument('model', type=str, help='Path of model to export') opt = parser.parse_args() # Select device torch.cuda.set_device(opt.device) print("Set CUDA:%d as current device." % torch.cuda.current_device()) from ..nets.msl_net import * from ..my import util from ..my import netio from ..my import device from ..configs.spherical_view_syn import SphericalViewSynConfig dir_path, model_file = os.path.split(opt.model) batch_size = eval(opt.batch_size) os.chdir(dir_path) config = SphericalViewSynConfig() def load_net(path): id=os.path.splitext(os.path.basename(path))[0] config.from_id(id) config.SAMPLE_PARAMS['perturb_sample'] = False batch_size_str: str = opt.batch_size.replace('*', 'x') config.name += batch_size_str config.print() net = config.create_net().to(device.GetDevice()) netio.LoadNet(path, net) return net, id def export_net(net: torch.nn.Module, name: str, input: Mapping[str, List[int]], output_names: List[str]): outpath = os.path.join(opt.outdir, config.to_id(), name + ".onnx") input_tensors = tuple([ torch.empty(size, device=device.GetDevice()) for size in input.values() ]) onnx.export( net, input_tensors, outpath, export_params=True, # store the trained parameter weights inside the model file verbose=True, opset_version=9, # the ONNX version to export the model to do_constant_folding=True, # whether to execute constant folding input_names=input.keys(), # the model's input names output_names=output_names # the model's output names ) print('Model exported to ' + outpath) if __name__ == "__main__": with torch.no_grad(): # Load model` net, name = load_net(model_file) util.CreateDirIfNeed(os.path.join(opt.outdir, config.to_id())) # Export Sampler export_net(ExportNet(net), 'msl', { 'Encoded': [batch_size, net.n_samples, net.input_encoder.out_dim], 'Depths': [batch_size, net.n_samples] }, ['Colors'])