import os import tensorflow as tf import numpy as np import imageio import json trans_t = lambda t : tf.convert_to_tensor([ [1,0,0,0], [0,1,0,0], [0,0,1,t], [0,0,0,1], ], dtype=tf.float32) rot_phi = lambda phi : tf.convert_to_tensor([ [1,0,0,0], [0,tf.cos(phi),-tf.sin(phi),0], [0,tf.sin(phi), tf.cos(phi),0], [0,0,0,1], ], dtype=tf.float32) rot_theta = lambda th : tf.convert_to_tensor([ [tf.cos(th),0,-tf.sin(th),0], [0,1,0,0], [tf.sin(th),0, tf.cos(th),0], [0,0,0,1], ], dtype=tf.float32) def pose_spherical(theta, phi, radius): c2w = trans_t(radius) c2w = rot_phi(phi/180.*np.pi) @ c2w c2w = rot_theta(theta/180.*np.pi) @ c2w c2w = np.array([[-1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]]) @ c2w return c2w def load_blender_data(basedir, half_res=False, testskip=1): splits = ['train', 'val', 'test'] metas = {} for s in splits: with open(os.path.join(basedir, 'transforms_{}.json'.format(s)), 'r') as fp: metas[s] = json.load(fp) all_imgs = [] all_poses = [] counts = [0] for s in splits: meta = metas[s] imgs = [] poses = [] if s=='train' or testskip==0: skip = 1 else: skip = testskip for frame in meta['frames'][::skip]: fname = os.path.join(basedir, frame['file_path'] + '.png') imgs.append(imageio.imread(fname)) poses.append(np.array(frame['transform_matrix'])) imgs = (np.array(imgs) / 255.).astype(np.float32) # keep all 4 channels (RGBA) poses = np.array(poses).astype(np.float32) counts.append(counts[-1] + imgs.shape[0]) all_imgs.append(imgs) all_poses.append(poses) i_split = [np.arange(counts[i], counts[i+1]) for i in range(3)] imgs = np.concatenate(all_imgs, 0) poses = np.concatenate(all_poses, 0) H, W = imgs[0].shape[:2] camera_angle_x = float(meta['camera_angle_x']) focal = .5 * W / np.tan(.5 * camera_angle_x) render_poses = tf.stack([pose_spherical(angle, -30.0, 4.0) for angle in np.linspace(-180,180,40+1)[:-1]],0) if half_res: imgs = tf.image.resize_area(imgs, [400, 400]).numpy() H = H//2 W = W//2 focal = focal/2. return imgs, poses, render_poses, [H, W, focal], i_split