import torch import torch.nn as nn from utils import math def init_weights_trunc_normal(m): # For PINNet, Raissi et al. 2019 # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def _no_grad_trunc_normal_(tensor, mean, std, a, b): def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor if isinstance(m, nn.Linear): fan_in = m.weight.size(1) fan_out = m.weight.size(0) std = math.sqrt(2.0 / float(fan_in + fan_out)) mean = 0. # initialize with the same behavior as tf.truncated_normal # "The generated values follow a normal distribution with specified mean and # standard deviation, except that values whose magnitude is more than 2 # standard deviations from the mean are dropped and re-picked." _no_grad_trunc_normal_(m.weight, mean, std, -2 * std, 2 * std) def init_weights_relu(m): if isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight, a=0.0, nonlinearity='relu') if m.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(m.bias, -bound, bound) def init_weights_leakyrelu(m): if isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight, a=math.sqrt(5)) if m.bias is not None: fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight) bound = 1 / math.sqrt(fan_in) nn.init.uniform_(m.bias, -bound, bound) def init_weights_selu(m): if isinstance(m, nn.Linear): num_input = m.weight.size(-1) nn.init.normal_(m.weight, std=1 / math.sqrt(num_input)) def init_weights_elu(m): if isinstance(m, nn.Linear): num_input = m.weight.size(-1) nn.init.normal_(m.weight, std=math.sqrt(1.5505188080679277) / math.sqrt(num_input)) def init_weights_xavier(m): if isinstance(m, nn.Linear): nn.init.xavier_normal_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def init_weights_sine(m): with torch.no_grad(): if hasattr(m, 'weight'): num_input = m.weight.size(-1) # See supplement Sec. 1.5 for discussion of factor 30 m.weight.uniform_(-math.sqrt(6 / num_input) / 30, math.sqrt(6 / num_input) / 30) def init_weights_sine_first_layer(m): with torch.no_grad(): if hasattr(m, 'weight'): num_input = m.weight.size(-1) # See paper sec. 3.2, final paragraph, and supplement Sec. 1.5 for discussion of factor 30 m.weight.uniform_(-1 / num_input, 1 / num_input) def init_weights_softmax(m): with torch.no_grad(): nn.init.normal_(m.weight, mean=0, std=0.01) nn.init.constant_(m.bias, val=0)