GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559 || std::numeric_limits<genType>::is_integer, "'min' only accept floating-point or integer inputs");
return x < y ? x : y;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> min(vecType<T, P> const & a, T b)
{
return detail::functor2_vec_sca<T, P, vecType>::call(min, a, b);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> min(vecType<T, P> const & a, vecType<T, P> const & b)
{
return detail::functor2<T, P, vecType>::call(min, a, b);
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559 || std::numeric_limits<genType>::is_integer, "'max' only accept floating-point or integer inputs");
return x > y ? x : y;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> max(vecType<T, P> const & a, T b)
{
return detail::functor2_vec_sca<T, P, vecType>::call(max, a, b);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> max(vecType<T, P> const & a, vecType<T, P> const & b)
{
return detail::functor2<T, P, vecType>::call(max, a, b);
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559 || std::numeric_limits<genType>::is_integer, "'clamp' only accept floating-point or integer inputs");
return min(max(x, minVal), maxVal);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> clamp(vecType<T, P> const & x, T minVal, T maxVal)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559 || std::numeric_limits<T>::is_integer, "'clamp' only accept floating-point or integer inputs");
return min(max(x, minVal), maxVal);
}
template <typename T, precision P, template <typename, precision> class vecType>
/// Returns 'base' raised to the power 'exponent'.
///
/// @param base Floating point value. pow function is defined for input values of 'base' defined in the range (inf-, inf+) in the limit of the type precision.
/// @param exponent Floating point value representing the 'exponent'.
/// @tparam genType Floating-point scalar or vector types.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/pow.xml">GLSL pow man page</a>
/// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm2x16: f / 65535.0
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a>
/// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm2x16: clamp(f / 32767.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm2x16.xml">GLSL unpackSnorm2x16 man page</a>
/// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm4x8: f / 255.0
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a>
/// First, unpacks a single 32-bit unsigned integer p into a pair of 16-bit unsigned integers, four 8-bit unsigned integers, or four 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two- or four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm4x8: clamp(f / 127.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a>