Commit 3554ba52 authored by Nianchen Deng's avatar Nianchen Deng
Browse files

sync

parent f7038e26
import sys
import os
sys.path.append(os.path.abspath(sys.path[0] + '/../'))
__package__ = "deeplightfield"
__package__ = "deep_view_syn"
import argparse
from PIL import Image
......
......@@ -4,6 +4,8 @@ import torch.nn as nn
from .my import net_modules
from .my import util
from .my import device
from .my import color_mode
rand_gen = torch.Generator(device=device.GetDevice())
rand_gen.manual_seed(torch.seed())
......@@ -187,7 +189,7 @@ class Sampler(nn.Module):
class MslNet(nn.Module):
def __init__(self, fc_params, sampler_params,
gray=False,
color: int = color_mode.RGB,
encode_to_dim: int = 0,
export_mode: bool = False):
"""
......@@ -203,11 +205,24 @@ class MslNet(nn.Module):
self.input_encoder = net_modules.InputEncoder.Get(
encode_to_dim, self.in_chns)
fc_params['in_chns'] = self.input_encoder.out_dim
fc_params['out_chns'] = 2 if gray else 4
fc_params['out_chns'] = 2 if color == color_mode.GRAY else 4
self.sampler = Sampler(**sampler_params)
self.net = net_modules.FcNet(**fc_params)
self.rendering = Rendering()
self.export_mode = export_mode
if color == color_mode.YCbCr:
self.net1 = net_modules.FcNet(
in_chns=fc_params['in_chns'],
out_chns=fc_params['nf'] + 2,
nf=fc_params['nf'],
n_layers=fc_params['n_layers'] - 2)
self.net2 = net_modules.FcNet(
in_chns=fc_params['nf'],
out_chns=2,
nf=fc_params['nf'],
n_layers=1)
self.net = None
else:
self.net = net_modules.FcNet(**fc_params)
def forward(self, rays_o: torch.Tensor, rays_d: torch.Tensor,
ret_depth: bool = False) -> torch.Tensor:
......@@ -221,13 +236,23 @@ class MslNet(nn.Module):
coords, depths = self.sampler(rays_o, rays_d)
encoded = self.input_encoder(coords)
if not self.net:
mid_output = self.net1(encoded)
net2_output = self.net2(mid_output[..., :-2])
raw = torch.cat([
mid_output[..., -2:],
net2_output
], -1)
else:
raw = self.net(encoded)
if self.export_mode:
colors, alphas = self.rendering.raw2color(self.net(encoded), depths)
colors, alphas = self.rendering.raw2color(raw, depths)
return torch.cat([colors, alphas[..., None]], -1)
if ret_depth:
color_map, _, _, _, depth_map = self.rendering(
self.net(encoded), depths, ret_extra=True)
raw, depths, ret_extra=True)
return color_map, depth_map
return self.rendering(self.net(encoded), depths)
return self.rendering(raw, depths)
......@@ -209,7 +209,8 @@ class MslNet(nn.Module):
self.rendering = Rendering()
self.export_mode = export_mode
def forward(self, fc_input: torch.Tensor,
def forward(self, view_centers: torch.Tensor, view_rots: torch.Tensor, local_rays: torch.Tensor,
ret_depth: bool = False) -> torch.Tensor:
"""
rays -> colors
......@@ -218,10 +219,13 @@ class MslNet(nn.Module):
:param rays_d ```Tensor(B, 3)```: rays' direction
:return: ```Tensor(B, C)``, inferred images/pixels
"""
depths = torch.ones(4096, 16, device="cuda")
rays_o = local_rays * 0 + view_centers
rays_d = torch.matmul(local_rays.flatten(0, -2), r).view(out_size)
coords, depths = self.sampler(rays_o, rays_d)
encoded = self.input_encoder(coords)
if self.export_mode:
colors, alphas = self.rendering.raw2color(self.net(fc_input), depths)
colors, alphas = self.rendering.raw2color(self.net(encoded), depths)
return torch.cat([colors, alphas[..., None]], -1)
if ret_depth:
......
RGB = 0
GRAY = 1
YCbCr = 2
def to_str(color_mode):
return "gray" if color_mode == GRAY \
else ("ybr" if color_mode == YCbCr
else "rgb")
def from_str(color_str):
return GRAY if color_str == 'gray' \
else (YCbCr if color_str == 'ybr'
else RGB)
import torch
import torch.nn.functional as nn_f
from . import view
def get_warp(rays_o, rays_d, depthmap, tgt_o, tgt_r, tgt_cam):
print(rays_o.size(), rays_d.size(), depthmap.size())
pcloud = rays_o + rays_d * depthmap[..., None]
print(rays_o.size(), rays_d.size(), depthmap.size(), pcloud.size())
pcloud_in_tgt = view.trans_point(
pcloud, tgt_o, tgt_r, inverse=True)
print(pcloud_in_tgt.size())
pixel_positions = tgt_cam.proj(pcloud_in_tgt)
pixel_positions[..., 0] /= tgt_cam.res[1] * 0.5
pixel_positions[..., 1] /= tgt_cam.res[0] * 0.5
pixel_positions -= 1
return pixel_positions
def refine(image, depthmap, rays_o, rays_d, bounds_img, bounds_o,
bounds_r, ref_cam: view.CameraParam, net, is_lr):
if is_lr:
image = nn_f.upsample(
image[None, ...], scale_factor=2, mode='bicubic')[0]
depthmap = nn_f.upsample(
depthmap[None, None, ...], scale_factor=2, mode='bicubic')[0, 0]
bounds_rays_o, bounds_rays_d = ref_cam.get_global_rays(
bounds_o, bounds_r, flatten=True)
bounds_inferred = torch.stack([
net(bounds_rays_o[i], bounds_rays_d[i]).view(
ref_cam.res[0], ref_cam.res[1], -1).permute(2, 0, 1)
for i in range(bounds_img.size(0))
], 0)
bounds_diff = (bounds_img - bounds_inferred) / (bounds_inferred + 1e-5)
bounds_warp = get_warp(rays_o, rays_d, depthmap,
bounds_o, bounds_r, ref_cam)
warped_diff = nn_f.grid_sample(bounds_diff, bounds_warp)
print(bounds_warp.size(), warped_diff.size())
avg_diff = torch.mean(warped_diff, 0)
return image * (1 + avg_diff)
......@@ -17,12 +17,16 @@ class Foveation(object):
self._gen_layer_blendmap(i)
for i in range(self.n_layers - 1)
] # blend maps of fovea layers
self.coords = util.MeshGrid(out_res).to(device=device)
def to(self, device):
self.eye_fovea_blend = [x.to(device=device) for x in self.eye_fovea_blend]
self.eye_fovea_blend = [x.to(device=device)
for x in self.eye_fovea_blend]
self.coords = self.coords.to(device=device)
return self
def synthesis(self, layers: List[torch.Tensor]) -> torch.Tensor:
def synthesis(self, layers: List[torch.Tensor],
normalized_fovea_center: Tuple[float, float]) -> torch.Tensor:
"""
Generate foveated retinal image by blending fovea layers
**Note: current implementation only support two fovea layers**
......@@ -31,13 +35,18 @@ class Foveation(object):
:return ```Tensor(B, C, H:out, W:out)```: foveated images
"""
output: torch.Tensor = nn_f.interpolate(layers[-1], self.out_res,
mode='bilinear', align_corners=False)
mode='bilinear', align_corners=False)
c = torch.tensor([
normalized_fovea_center[0] * self.out_res[1],
normalized_fovea_center[1] * self.out_res[0]
], device=self.coords.device)
for i in range(self.n_layers - 2, -1, -1):
output_roi = output[self.get_layer_region_in_final_image(i)]
image = nn_f.interpolate(layers[i], output_roi.size()[-2:],
mode='bilinear', align_corners=False)
blend = self.eye_fovea_blend[i]
output_roi.mul_(1 - blend).add_(image * blend)
if layers[i] == None:
continue
R = self.get_layer_size_in_final_image(i) / 2
grid = ((self.coords - c) / R)[None, ...]
blend = nn_f.grid_sample(self.eye_fovea_blend[i][None, None, ...], grid) # (1, 1, H:out, W:out)
output.mul_(1 - blend).add_(nn_f.grid_sample(layers[i], grid) * blend)
return output
def get_layer_size_in_final_image(self, i: int) -> int:
......@@ -52,7 +61,8 @@ class Foveation(object):
k = length_i / length
return int(math.ceil(self.out_res[0] * k))
def get_layer_region_in_final_image(self, i: int) -> Tuple[slice, slice]:
def get_layer_region_in_final_image(self, i: int,
normalized_fovea_center: Tuple[float, float]) -> Tuple[slice, slice]:
"""
Get region of fovea layer i in final image
......@@ -60,12 +70,14 @@ class Foveation(object):
:return: tuple of slice objects stores the start and end of region in horizontal and vertical
"""
roi_size = self.get_layer_size_in_final_image(i)
roi_offset_y = (self.out_res[0] - roi_size) // 2
roi_offset_x = (self.out_res[1] - roi_size) // 2
roi_center = (int(self.out_res[1] * normalized_fovea_center[0]),
int(self.out_res[0] * normalized_fovea_center[1]))
roi_offset_y = roi_center[1] - roi_size // 2
roi_offset_x = roi_center[0] - roi_size // 2
return (...,
slice(roi_offset_y, roi_offset_y + roi_size),
slice(roi_offset_x, roi_offset_x + roi_size)
)
slice(roi_offset_y, roi_offset_y + roi_size),
slice(roi_offset_x, roi_offset_x + roi_size)
)
def _gen_layer_blendmap(self, i: int) -> torch.Tensor:
"""
......@@ -76,6 +88,7 @@ class Foveation(object):
"""
size = self.get_layer_size_in_final_image(i)
R = size / 2
p = util.MeshGrid((size, size)).to(device=self.device) # (size, size, 2)
p = util.MeshGrid((size, size)).to(
device=self.device) # (size, size, 2)
r = torch.norm(p - R, dim=2) # (size, size, 2)
return util.SmoothStep(R, R * 0.6, r)
......@@ -24,6 +24,8 @@ class SimplePerf(object):
return
self.end_event.record()
torch.cuda.synchronize()
print('%s: %.1fms' % (name, self.start_event.elapsed_time(self.end_event)))
duration = self.start_event.elapsed_time(self.end_event)
print('%s: %.1fms' % (name, duration))
if not end:
self.start_event.record()
\ No newline at end of file
self.start_event.record()
return duration
\ No newline at end of file
......@@ -307,4 +307,75 @@ def view_like(input: torch.Tensor, ref: torch.Tensor) -> torch.Tensor:
"""
out_shape = list(ref.size())
out_shape[-1] = -1
return input.view(out_shape)
\ No newline at end of file
return input.view(out_shape)
def rgb2ycbcr(input: torch.Tensor) -> torch.Tensor:
"""
Convert input tensor from RGB to YCbCr
:param input ```Tensor(..., 3) | Tensor(..., 3, H, W)```:
:return ```Tensor(..., 3) | Tensor(..., 3, H, W)```:
"""
if input.size(-1) == 3:
r = input[..., 0:1]
g = input[..., 1:2]
b = input[..., 2:3]
dim_c = -1
else:
r = input[..., 0:1, :, :]
g = input[..., 1:2, :, :]
b = input[..., 2:3, :, :]
dim_c = -3
y = r * 0.25678824 + g * 0.50412941 + b * 0.09790588 + 0.0625
cb = r * -0.14822353 + g * -0.29099216 + b * 0.43921569 + 0.5
cr = r * 0.43921569 + g * -0.36778824 + b * -0.07142745 + 0.5
return torch.cat([y, cb, cr], dim_c)
def rgb2ycbcr(input: torch.Tensor) -> torch.Tensor:
"""
Convert input tensor from RGB to YCbCr
:param input ```Tensor(..., 3) | Tensor(..., 3, H, W)```:
:return ```Tensor(..., 3) | Tensor(..., 3, H, W)```:
"""
if input.size(-1) == 3:
r = input[..., 0:1]
g = input[..., 1:2]
b = input[..., 2:3]
dim_c = -1
else:
r = input[..., 0:1, :, :]
g = input[..., 1:2, :, :]
b = input[..., 2:3, :, :]
dim_c = -3
y = r * 0.257 + g * 0.504 + b * 0.098 + 0.0625
cb = r * -0.148 + g * -0.291 + b * 0.439 + 0.5
cr = r * 0.439 + g * -0.368 + b * -0.071 + 0.5
return torch.cat([cb, cr, y], dim_c)
def ycbcr2rgb(input: torch.Tensor) -> torch.Tensor:
"""
Convert input tensor from YCbCr to RGB
:param input ```Tensor(..., 3) | Tensor(..., 3, H, W)```:
:return ```Tensor(..., 3) | Tensor(..., 3, H, W)```:
"""
if input.size(-1) == 3:
cb = input[..., 0:1]
cr = input[..., 1:2]
y = input[..., 2:3]
dim_c = -1
else:
cb = input[..., 0:1, :, :]
cr = input[..., 1:2, :, :]
y = input[..., 2:3, :, :]
dim_c = -3
y = y - 0.0625
cb = cb - 0.5
cr = cr - 0.5
r = y * 1.164 + cr * 1.596
g = y * 1.164 + cb * -0.392 + cr * -0.813
b = y * 1.164 + cb * 2.017
return torch.cat([r, g, b], dim_c)
\ No newline at end of file
......@@ -18,6 +18,13 @@ class CameraParam(object):
self.c = self.c.to(device)
return self
def resize(self, res: Tuple[int, int]):
self.f[0] = self.f[0] / self.res[1] * res[1]
self.f[1] = self.f[1] / self.res[0] * res[0]
self.c[0] = self.c[0] / self.res[1] * res[1]
self.c[1] = self.c[1] / self.res[0] * res[0]
self.res = res
def proj(self, p: torch.Tensor) -> torch.Tensor:
"""
Project positions in local space to image plane
......@@ -70,8 +77,8 @@ class CameraParam(object):
:return: [description]
"""
rays = self.get_local_rays(flatten, norm) # (M.., 3)
rays_o, _ = torch.broadcast_tensors(
t[..., None, None, :], rays) # (N.., M.., 3)
rays_o, _ = torch.broadcast_tensors(t[..., None, :], rays) if flatten \
else torch.broadcast_tensors(t[..., None, None, :], rays) # (N.., M.., 3)
rays_d = trans_vector(rays, r)
return rays_o, rays_d
......@@ -87,9 +94,12 @@ class CameraParam(object):
input_is_normalized = bool(input_camera_params.get('normalized'))
camera_params = {}
if 'fov' in input_camera_params:
camera_params['fx'] = camera_params['fy'] = \
(1 if input_is_normalized else view_res[0]) / \
util.Fov2Length(input_camera_params['fov'])
if input_is_normalized:
camera_params['fy'] = 1 / util.Fov2Length(input_camera_params['fov'])
camera_params['fx'] = camera_params['fy'] / view_res[1] * view_res[0]
else:
camera_params['fx'] = camera_params['fy'] = view_res[0] / \
util.Fov2Length(input_camera_params['fov'])
camera_params['fy'] *= -1
else:
camera_params['fx'] = input_camera_params['fx']
......@@ -114,15 +124,17 @@ def trans_point(p: torch.Tensor, t: torch.Tensor, r: torch.Tensor, inverse=False
:param inverse: whether perform inverse transform
:return ```Tensor(M.., N.., 3)```: transformed points
"""
out_size = list(r.size())[0:-2] + list(p.size())[0:-1] + [3]
t_size = list(t.size()[0:-1]) + \
[1 for _ in range(len(p.size()[0:-1]))] + [3]
size_N = list(p.size())[0:-1]
size_M = list(r.size())[0:-2]
out_size = size_M + size_N + [3]
t_size = size_M + [1 for _ in range(len(size_N))] + [3]
t = t.view(t_size)
if not inverse:
r = r.movedim(-1, -2) # Transpose rotation matrices
else:
p = p - t
out = torch.matmul(p.flatten(0, -2), r).view(out_size)
out = torch.matmul(p.view(size_M + [-1, 3]), r)
out = out.view(out_size)
if not inverse:
out = out + t
return out
......
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"import torchvision.transforms.functional as trans_f\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../../'))\n",
"__package__ = \"deep_view_syn.notebook\"\n",
"\n",
"from ..my import util\n",
"\n",
"path_patts = [\n",
" '/home/dengnc/deep_view_syn/data/gas_fovea_2020.12.31/upsampling_test/gt/view_%04d.png',\n",
" '/home/dengnc/deep_view_syn/data/gas_fovea_2020.12.31/fovea_rgb@msl-rgb_e10_fc256x4_d1-50_s16/output/model-epoch_500/train/out_view_%04d.png',\n",
" '/home/dengnc/deep_view_syn/data/gas_fovea_2020.12.31/upsampling_test/input/out_view_%04d.png',\n",
" '/home/dengnc/deep_view_syn/data/gas_fovea_2020.12.31/upsampling_test/output/view_%04d.png'\n",
"]\n",
"titles = [ 'Ground truth', 'Normal', 'Low Res', 'Upsampling']\n",
"show_range = range(5)\n",
"\n",
"#os.chdir('/home/dengnc/deep_view_syn/data/')\n",
"image_seqs = [\n",
" util.ReadImageTensor([path_patt % i for i in show_range])\n",
" for path_patt in path_patts\n",
"]\n",
"\n",
"for i in show_range:\n",
" plt.figure(facecolor='white', figsize=(12, 4))\n",
" plt.suptitle('View %d' % i)\n",
" for j in range(len(image_seqs)):\n",
" plt.subplot(1, len(image_seqs), j + 1)\n",
" plt.title(titles[j])\n",
" util.PlotImageTensor(image_seqs[j][i])\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python",
"nbconvert_exporter": "python",
"version": "3.7.9-final"
},
"orig_nbformat": 2
},
"nbformat": 4,
"nbformat_minor": 2
}
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -13,9 +13,9 @@
"import torch\n",
"from torch import nn\n",
"import matplotlib.pyplot as plt\n",
"from deeplightfield.data.lf_syn import LightFieldSynDataset\n",
"from deeplightfield.my import util\n",
"from deeplightfield.trans_unet import LatentSpaceTransformer\n",
"from deep_view_syn.data.lf_syn import LightFieldSynDataset\n",
"from deep_view_syn.my import util\n",
"from deep_view_syn.trans_unet import LatentSpaceTransformer\n",
"\n",
"device = torch.device(\"cuda:2\")\n"
]
......
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"outputs": [
{
......@@ -10,16 +10,14 @@
"output_type": "stream",
"text": [
"Set CUDA:2 as current device.\n",
"Change working directory to /e/dengnc/deeplightfield/data/sp_view_syn_2020.12.31_fovea\n"
"Change working directory to /home/dengnc/deep_view_syn/data/sp_view_syn_2020.12.31_fovea\n"
]
},
{
"data": {
"text/plain": [
"<torch.autograd.grad_mode.set_grad_enabled at 0x7fea6b9c2d50>"
]
"text/plain": "<torch.autograd.grad_mode.set_grad_enabled at 0x7f6824144910>"
},
"execution_count": 4,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
......@@ -34,16 +32,17 @@
"\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../../'))\n",
"__package__ = \"deep_view_syn.notebook\"\n",
"torch.cuda.set_device(2)\n",
"print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n",
"\n",
"from deeplightfield.data.spherical_view_syn import *\n",
"from deeplightfield.msl_net import MslNet\n",
"from deeplightfield.configs.spherical_view_syn import SphericalViewSynConfig\n",
"from deeplightfield.my import netio\n",
"from deeplightfield.my import util\n",
"from deeplightfield.my import device\n",
"from deeplightfield.my import view\n",
"from ..data.spherical_view_syn import *\n",
"from ..msl_net import MslNet\n",
"from ..configs.spherical_view_syn import SphericalViewSynConfig\n",
"from ..my import netio\n",
"from ..my import util\n",
"from ..my import device\n",
"from ..my import view\n",
"\n",
"\n",
"os.chdir(sys.path[0] + '/../data/sp_view_syn_2020.12.31_fovea')\n",
......@@ -680,4 +679,4 @@
},
"nbformat": 4,
"nbformat_minor": 2
}
}
\ No newline at end of file
......@@ -14,8 +14,8 @@
"import math\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
"from deeplightfield.my import util\n",
"from deeplightfield.msl_net import *\n",
"from deep_view_syn.my import util\n",
"from deep_view_syn.msl_net import *\n",
"\n",
"# Select device\n",
"torch.cuda.set_device(2)\n",
......@@ -121,8 +121,8 @@
"metadata": {},
"outputs": [],
"source": [
"from deeplightfield.data.spherical_view_syn import FastSphericalViewSynDataset\n",
"from deeplightfield.data.spherical_view_syn import FastDataLoader\n",
"from deep_view_syn.data.spherical_view_syn import FastSphericalViewSynDataset\n",
"from deep_view_syn.data.spherical_view_syn import FastDataLoader\n",
"\n",
"DATA_DIR = '../data/sp_view_syn_2020.12.28'\n",
"TRAIN_DATA_DESC_FILE = DATA_DIR + '/train.json'\n",
......@@ -149,7 +149,7 @@
"metadata": {},
"outputs": [],
"source": [
"from deeplightfield.data.spherical_view_syn import SphericalViewSynDataset\n",
"from deep_view_syn.data.spherical_view_syn import SphericalViewSynDataset\n",
"\n",
"DATA_DIR = '../data/sp_view_syn_2020.12.26'\n",
"TRAIN_DATA_DESC_FILE = DATA_DIR + '/train.json'\n",
......@@ -241,7 +241,7 @@
"metadata": {},
"outputs": [],
"source": [
"from deeplightfield.data.spherical_view_syn import SphericalViewSynDataset\n",
"from deep_view_syn.data.spherical_view_syn import SphericalViewSynDataset\n",
"\n",
"DATA_DIR = '../data/sp_view_syn_2020.12.29_finetrans'\n",
"TRAIN_DATA_DESC_FILE = DATA_DIR + '/train.json'\n",
......@@ -304,7 +304,7 @@
"metadata": {},
"outputs": [],
"source": [
"from deeplightfield.data.spherical_view_syn import SphericalViewSynDataset\n",
"from deep_view_syn.data.spherical_view_syn import SphericalViewSynDataset\n",
"\n",
"DATA_DIR = '../data/sp_view_syn_2020.12.26_rotonly'\n",
"TRAIN_DATA_DESC_FILE = DATA_DIR + '/train.json'\n",
......@@ -381,9 +381,9 @@
"source": [
"import ipywidgets as widgets # 控件库\n",
"from IPython.display import display # 显示控件的方法\n",
"from deeplightfield.data.spherical_view_syn import SphericalViewSynDataset\n",
"from deeplightfield.spher_net import SpherNet\n",
"from deeplightfield.my import netio\n",
"from deep_view_syn.data.spherical_view_syn import SphericalViewSynDataset\n",
"from deep_view_syn.spher_net import SpherNet\n",
"from deep_view_syn.my import netio\n",
"\n",
"DATA_DIR = '../data/sp_view_syn_2020.12.28_small'\n",
"DATA_DESC_FILE = DATA_DIR + '/train.json'\n",
......
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": "<matplotlib.image.AxesImage at 0x7f0214970810>"
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtdUlEQVR4nO2de7BlVX3nv799zrnv2zTdNE3zCI3YEhgMD1tE0YAiER8jzKQ0kmgwYQardCZYlYyCsTLlmFSoSlXGP5LKSCVGrDgxzOgIQRMHQSblIzyFFqR5v1qafj/u85yz917zxz197/19f797z6W7OX2b/ftUdfVd+6y19tpr73X2+f3W7yEpJQRB8NonO9IDCIKgN8RiD4KKEIs9CCpCLPYgqAix2IOgIsRiD4KKcEiLXUQuF5HHReQpEbn+cA0qCILDjxzsPruI1AA8AeAyAFsA3AfgqpTSzxdqU6v3pXrfwCs7D2h8IqbOUi7BXGcqdLeZ/d4bGKCxUh+tdtu0KQrdL7eRrGbaCPQ1Jb7mpeDMy5Impgs8b85ZIHTu/v4+VXamFjnNnZm3Bc6lx+YN5mAadcF75syJup0Y5q56LVIqu5zHMv/5abemUeRtt1G9a08LcwGAp1JKzwCAiHwDwBUAFlzs9b4BrDvjgtmy90WT0TBrKBevAICfk0zs09XK9cOVpsdUuX/Ifgn98hkb9HlKPZYXfrHVtBnbq/st6bwDQ8OmjdQaemxLuOElTV2tbq85lXpiCiqL99zTsZKuWZx71tenH6PTTztFlQcH7Ph3vrxNlcf37TF1anX9xZgKPZaSJwFAooWZ0fOS57lpw/DaTmK/oEs6lugelku4Z97P6rzVpDZ0bmf+6/W5Z/f5zfc7vS58vqVyEoAX55W3dI4FQbAMOZQ3u/srxFQSuRbAtQBQa7yyn/BBEBw+DmWxbwEw//fayQBe4koppZsA3AQAfYOjqWy1Zj8bHh0ynQr9BM9b07o/5zumzj9hSyv/1Wu6TkltRkZXmDYr6NjYxIQq1+in28xYtLyaFy1VTs5PTxZq+RqN3gJAo6Z/3hVev9B1hH7IeeIrdQshMcr7hq9l+jHi6a/X+02b/sFBVZ4Y22fqFN1+trvitz5ofjo7F8DnYVFAMvs88blzWkqlMzihyfVuWZno+c/12Oo1ewEyXx5bRMQ/lJ/x9wHYICKniUgfgI8AuO0Q+guC4FXkoN/sKaVcRP4TgO9h5hXylZTSo4dtZEEQHFYO5Wc8UkrfBfDdwzSWIAheRcKCLggqwiG92V8pmQj61Z6s911DSgxo5Y44m8Ni9kGtsUuWyIgDrFyzY5kY18q1OimiUuHs86bFlUq1hlVKsqKsZrRIjoKIlEg1RymZqBuhfj07HJSsrKL9ZOc8fEsadT1PmZCtBIB2c4rq2KHkOdsJ6BPxHjoAlHRPUluXG3W7Z8763RYpxVKyz0bJe/F0j7KaXVolGYSwMrpzVPeT0fU4e/5QxxbW0MWbPQgqQiz2IKgIsdiDoCL0VmavZRgZnbMNb7esLFeUbFBCMohrlKKLyfkOK3Mtf7NM1XBkrKEhLddPTmu5v2ShGEBBcibblnsyL9u1m149OY2NNtgaBjDCdEZCepHb+U9s+EFVPIehWl3PU38/3zNHn1BoG3WeJwCoN/Q9EWNU4+hMCvKBoDqe/G3kZJpbT7RmGb2dWB9i70fi5Zac+e/iqOONPs3XBSzSPt7sQVARYrEHQUWIxR4EFaGnMnsqE5pTc7KaI6ah1tCyTp2dRBw5mWUq10++T8uV7baWuSYnxk2bPOcAC3rAHKQBACZp77egYBX1uh1/raHHxo4vvhzHAS88wZIDabCDh7MXTDqTWt04uJs2GTvl0DwNDlqHIWT6WOZFuGCMjOvMJY2F7TK80xQ51eG9eMcggafBxEZxHZNIn+M5ItHzw/fD30avd6sAIN7sQVAZYrEHQUWIxR4EFSEWexBUhJ4q6ESAxvxIGw2ruGFFU0bGCXnhKIhYh9GwBg1s7JI4AkjdTsUIRdLJC4pU44y/f1C3yUgp40dnZQ1j94CTbCDjdsxTZRR9jrIzaWOXjIxQPAMTnv/+IXL2cZyXBpYQqcbGb2XllWNU0yVSLzvKADY6Livk2rljFMTvSQ5s6TynPBZjJAQnKpGJ7uvcaDdyqCXe7EFQEWKxB0FFiMUeBBWhpzI7oKOVihPUoCShkI0MkhFEAQ544YUdLSg5AEfpZGOMmbHqfuqZNqLxDHymxnWygz7KgFNzdANGkubopo5IxnK+ZyySSgo8QfOdOR1nNe7IRMAwbTh5RpMchvqH7TX3kZOLpzPhe2bO7YyfHWwMXpQMguffG1tOuoylSM3WWMp5lo1DDY3XySjkRxa2xJs9CCpCLPYgqAix2IOgIsRiD4KK0GMFXQJkzkCh5ehS2BErJTrgeCCxZxOnOQKAGkWiKY3hilVytMnwptmmaDfipJkiQ5sGGfgkJ/KtcJScvHvUE2NUwx5ugFXm8Fx63oFGgcWRVm0bVm4OUUZcx/YIwyt0aq2tW03mMBSsBDPntgouTrHE11g64+djQnPpZ9ElZZvxzjRNrEGPo1jj6LfGo9CJ+pNlzgQ7xJs9CCpCLPYgqAix2IOgIvQ2Uk0CmvNE1tqAk7KZZR+KFupFWs3IQMZzFjAyOSkHxEkrzNOTUx+eswN/f2Z1Nh6x0W2MoqJGMqRzzeyw4smimVAGmxpl16k52V3YUCVxVhbTxBiq8PzXG/aas2yajngOKqaRHoszmJLTL9PnNtsOrMeNEa3t2Dgwr4ki7GUuomfDy8jDp+JIt6XnvDRfd7SIU0y82YOgIsRiD4KKEIs9CCpCb/fZJUOtf05OrzesnJzR3nDisre3amIPWBm3b1Dv6/IeujiZQrIayZrkpNBwnGc4KAOLiO2WIyfXKQMoOazUHNkup+y2XqbU/kG9391uaTsBDugBOFu/JkOMk8WH5uWFl8dUeXDAmae6HkuDHIYAoGxrvUSb7By8eanX2UGFov1SH4AV2dkZyHOSYrOGNsv5bmCK7k44nDGIM9mWzpJVqoxFfGLizR4EFSEWexBUhFjsQVARui52EfmKiGwXkUfmHVslIneIyJOd/499dYcZBMGhshQF3VcB/AWAr807dj2AO1NKN4rI9Z3yZ7t1JJKhNt+opOZF4NTH+kjh1ZpmYwxriMAphAGg0cfRQElZldmxPPHc84v2Kw2rVGIVTF+/Hv/Z577JtPmVc85W5ZFjj1HlCy8837RZNaINkianpkyd/bt/ocptMsTZuW2XabP58RdV+elntYPK5LiOsAsAY+OTqnz8cStVub/Pao12bt2iyrvrdi4zSpU1MMrKNutJlSg1d04Kubyh7wcA1ET3k5NyLSutUo8VZybojBPFKC9IKclppgBkNXKkIkMoL80z0lw/iykBu77ZU0r/AmA3Hb4CwM2dv28GcGW3foIgOLIcrMy+NqW0FQA6/x+/UEURuVZE7heR+/N28yBPFwTBofKqK+hSSjellDamlDZ6++pBEPSGgzWq2SYi61JKW0VkHYDtS204PzXv9LR902cko0y1SBZ1jDoGKHVyMtFmgfrIsD7Q1BlIPn7Nb5k2F248R5VPOmGNKvcN2C+vskumFscNxvZBZXs1nPwXGF4xbOocf/xx1K+WRc860/Z70cW6znRbOyJ5NhvNlq7Tbur7Ok0RdwGgluk6Lz73oqlT1PS9H9+h27DcDAC7dupz/fN371DlvXvsWEoyUEp0PdNNqxvIC3IQMtFmrex8fE3rJdYXVrc0OK7vfl5qfcjIlA1+MjpPf/N111NphoN9s98G4OrO31cDuPUg+wmCoEcsZevt7wH8BMAZIrJFRK4BcCOAy0TkSQCXdcpBECxjuv6MTyldtcBHlx7msQRB8CoiXgDBV4vRY9ek8y69Yra84cyzTZ2P/Oa/U+XVJ2o5eXDQyjlDFNFw0Nlq7PYTxpN0uuU89b4puQ1Le5783Y2lnMejW54crw8eb3fXDUA4YCPpLbxnjI9494fjMHDwkLazu1PSXnZGthHTLbtnvr+tbTfqK9eqctPL4kq6o3t/tkmVv/ulvzBtfvdBbbNw1n5rszBZ6Llrlvoa93jZX+bZrvzezk14sj3u3rYwlw2CihCLPQgqQiz2IKgIsdiDoCL0VEF3zpvelP7vj348W643HHUVKXcmTZpeq3tgFwpPO8HfaqxycfKpmH66lT2WoojqpjjzzsPj9XKC8LmWoqDrpkD02nTr18u2w1FSvfm3J6Lovk6/U3Rokp6X/c5skk4MrMLzjLy5Do+/5UxUbUorAjde98emzpqfPKTKE7u0EdAOJyNMWc7d6Y/t3YSfh4IuCKpNLPYgqAix2IOgIvQ2umxKKOcFE2iWThRYijI6QpYVheO8z84n4mT9KLpI2N63Hkcv5TMv5Zuym2GL1+9SdAGM1y9LdzwWb/w8Fi5bNwyg1SVrSduTk6nsycWTdFFj1I/nVMQy+jSdWruV+GPha6w5k8vGRyYor3Oe/RTt9//8jy+aOhf+8ZdV+fR/+K4qD++2AUf2ZnMj9vQjB4g3exBUhFjsQVARYrEHQUXoqcy+b89e3P7t2+YONGyQxD7hQH5aahxZMWrarFytnWXWn3q6qTM6qgM59FHgwVSzU1GajfXu0rSQXQDLg0uRx/MlVGLzCBtewcqRvDfs7VO3aIScRdSTeVneZhne3mW73+3pAroFMWs4s8nnGqRLtG4wViZnlY9nA7CH2vD4JxzReZoUIOLc6P/5u59Q5d98+BlV3r5jq2kzsG/v7N/52BP2xB3izR4EFSEWexBUhFjsQVARYrEHQUXoqSPM2Rs3plvuu2+27EWUYQURK0cyJ7psNq3VMmXbZo2ZmNCqpb3bdNSQXzz7mGmT6LvwxHWrVXnDL7/ZtBlYoRWBbVLqeWmG+Q5M0xzkzi1iRZSneOJmY3TEUzy1aHw5jWXCGT8bkCwpOi4NzhsLKx35GodgGWOFXBfDKMAqAtmYZ9qZf6M85PM4JxrkSDv2McXLOokP1kzpjj56ou14YudcR5/88MV4/JEHwxEmCKpMLPYgqAix2IOgIvTUqKYAMD5PhvXkJ5ZFx6l8TGa/n8ohzoZis6MMHqPl7RPXnazKJ517ge2X9BksYu1wjDpaHFmVPveMUoapEocemHR1GxpXSDPGId11AaYfOuC9Hbo5kniw7O9pjvbSQR6bN5ftLo4vnm6gnw2UlqBP2E8Hs5Z+mpPjsDW1R0v62X571QUpHZ7Lyd1nzPZbTM1pN5IXffbA+Rb8JAiC1xSx2IOgIsRiD4KK0FOZPQMwME8O9vaGC5J5OUBBcwnOGx7mXHQez5GE64zxWBzxiIMXcp5Xz0Fih9nb1vQ5l7cUhxoTvGIJsij3y0lBp5wTN+kY6zY8hxabS9XCQTT30fi94BU1Gi/vkbv7+SSkF20q77RP6qYvP6DKu7/1R6pcjj1t2qRMB68onYw2x73lQ6q88spPqfKWVSOmTS3NzXjpasJmiDd7EFSEWOxBUBFisQdBRYjFHgQVoacKugSdKSNzosAOUpnVDVOOaupYKnvKq31UZtWIF02F1TKsePKcQnj8rKDzMrdwNzwWTl0M2HnxDG+6RYb1rpmvkRVyniKTEw+z44unlOR5cLIiYxfdpH42ZJmy5jsTL+nRPH+vjvSy+ct/Ytrk23W65bypT9xX57sKrN/wRlU++5JfVeUVJ/22aZPoRj74gztMnX1P3K3KzScuVeXN57zJtHnXGXMGY/X+hZd0vNmDoCLEYg+CitB1sYvIKSLyAxF5TEQeFZHrOsdXicgdIvJk53/+NR0EwTJiKTJ7DuD3U0oPisgogAdE5A4AHwdwZ0rpRhG5HsD1AD67WEcZgJF5MmDLCZxRJwmWZcgBRzblOp5cyTI6y5megQ+34UirLI8D1oligoM/OPIrf+OOk7DtRZudoEaskwDsvBinFmcs/EAIOVa4mWfoYDPXFzC1115AY0LL2/se3Wbq/PRPr1Pl3c89osrem6rR0NqAVavXqvIF519s2qxc8x5VLihTUSnWfKed66esVtejGRu3+oSSIhiffu7bTJ1Nu7eo8vAT31LlR7aeY9q857y58XnZkA7Q9c2eUtqaUnqw8/cYgMcAnATgCgA3d6rdDODKbn0FQXDkeEUyu4isB3AegHsArE0pbQVmvhAAHH/YRxcEwWFjyYtdREYAfBPAp1NK+19Bu2tF5H4RuX/Pjh0HM8YgCA4DS1rsItLAzEL/ekrpgBCxTUTWdT5fB2C71zaldFNKaWNKaeOxa9Z4VYIg6AFdFXQiIgD+BsBjKaU/n/fRbQCuBnBj5/9bu/VVpoTJedYTg07UGVZwDXAVL32uiU7iRJDhsiz+uXeM+y2cwbBCjtU0XhQXVihymmFP5cIed/2Os5OQ5owjryJ3Gk1qtaQ8sVeVt92z2TR54XtfV+XdT/1Mlfvq9gqETH6GV1op8A0btAHJ2l99vyrXB60HWEHWOe02za6TwqugULCcwguFtfipUZWyoDvraTJb+omqO2MZHFmpyiNDemw/32Hv2Z4014/n1Td7vkU+O8BFAD4G4Gci8lDn2Ocws8hvEZFrALwA4EN+8yAIlgNdF3tK6YdY2H360gWOB0GwzAgLuiCoCL2NVCOCISXs2B8M+8hZIJFcs8oxxMmTrsPyONA9S4kns3M0lWk6txedlY1b2JHEm/A+ErQKkrXzlpXExrfq0T318Aumztjd96ry9h//gz7PuI0XU5CxiJATyODIKtPm5Ndrp5Dzr9BOIPUhR7bOtElSKq02Q+guTbf02Ootx3AlZ/lbz2VZ2vdbmzIKZdRGajanTU66gSLnsTiZi0hHxY4xADCyShsB7dyqjY36dtuNsDs3rZj9e/9URKoJgsoTiz0IKkIs9iCoCD2PLjs0TwbnaK0zx/T3zy763PGpQD9nSnX6ZVeGpTjPjJGM/jKJQ14CXJaY2PFlxRbOcQNs+vJNqvzsP2rnh9S0uU8GaI+5PmDl4pHhUVV+3enaieLYk95g2jSGtPOikLdMxnvQABKlIy1Z1nbCy7ZzLSc7W87IktaklCXJyY5yhvfMueOyZUN2tNu631qm+zB9ApBMX2OWtMzu+aOYfmp2+Q0N6/s4tWerrrBZ62EA4L6huai1k+NunOSZMS34SRAErylisQdBRYjFHgQVIRZ7EFSEniroBEB9XipbL7vsCH3/TJGmY8zR5LD+Z7WpYY1d2CDGj8BCTi1k2+K1EdL8Td77vCrf9cnfMG3eeN5bVfnMc3Sk0mOO0+mlAWBw+BhVrvXZCKhFQdFUSNnWdIx1kMiRZForydjgBwCE2rB/kxc5tizIjMnRdmZkzNJq6zbiGOLAOLXQaTzL71IfE3InyVvW5Coj5ZoxsHKcvCYn9JM6OOgoGGs6RRREz0H/1v9n2jw98euzfzfLiC4bBJUnFnsQVIRY7EFQEXoqsxd5C/v2/mK2PDJ6nKmTalr23E9ijRcOZ5TKXswslus5QMQeRwBngx42h6k59gvtMS0zppd0L5df8R9Mm4FVOoJPq6k7ZrkZsA5CraaJJWtkTZbZc87HDIDNghIFZSg4GASAkuTkRPJ3o+68UygghDeWgm6SyOLnmTmm69TYeam04+depknJ0GrZueVWkuml5BkJsVHQ2Lg18MnIJas+Mqz7aFvnpXJy7h4lTxE223cQBJUgFnsQVIRY7EFQEXoqs+/auQ9f+/J3ZsuXfOzXTJ2169ar8ig5VVh3DxtkwstOyse4jRfwwm4pU2ANR+Tto0iQA2ecosqN5582baYpa2hzmhwzkvUkSRSkITnOGmbPPNff7WVu+2X5mwMp5m27t23FbT2ZqbSTW89ob97UAIpSy68cMILlcwBItL/dpDaloxtg2T+RDUDpBKLg+S4K7awkjhUGn6cmVn/QpmuuceCMupbhAWCkNqcX2un0eYB4swdBRYjFHgQVIRZ7EFSEWOxBUBF6qqBr9Ddw8uvmomc+cNeDps67r9CZQWrDWiExzak4AEyQ/seLgMOwysgzL5kgJQvbY7QcXUhBBiR1UmjJtI1U02oulscDyAvHkIUUTZ4tBRvEcKTVgrOYAGhTxFajvHLeD8bZpNCKv8JxuGlz1BlHcVaWrNAihaMzbW2jxEuLlmdOpOe3LLQRjacIBDlJ5SWf13My4ufJcbAhw6c6KRxXDDvpo7c8NNe+ZaMazX624CdBELymiMUeBBUhFnsQVISeyuwAkOpzp8xMzFfgB9//kSqf/6tvUeVTjltp2uwlCXyLc94hHocZmG1DQUbBorMXO4Gzq6KmO2klO+VFS8vxOaWldeU/1jo42UVaZKyTSDblTKozddhYhJ1PnDYk+7N9jzf+0sjSpgqKtjaF4rGxY8lMpUWL8LIQGd1FohvtjK1N8naZOEKtjXG8lPGnpN+/hTRUWeq235F9d8+dt1hYYxVv9iCoCLHYg6AixGIPgorQ24CTCajPc/Lom3SCAtS1gPTDW+9W5ff+zpWmScm+Ao6MxTuafOHibFSz6MY+IJNO6teM9l/3JW0nMJh7GUk488kSnFwokEPR7r5n26Z+2k0vdy07heT0afeAEWXB+/meboDPauXXGge94H1qx06Axytkl8FzO3OMs+bq59ILRGH372lunYAXrLvInLQxieYucR2xS3ZFY66Nl4lm9rOFPwqC4LVELPYgqAix2IOgInRd7CIyICL3isjDIvKoiHyhc3yViNwhIk92/j+2W19BEBw5lqKgawJ4V0ppXEQaAH4oIv8E4N8DuDOldKOIXA/gegCfXayjVAKt1tz3CztmAEBBaXoLiprqKYiGSSlWc5QU49SsRmVxjC04kwmf2Qm0iinycynrK/XnLUdBRGmEW9Sx54eRscWPc83s1MKpiVtNq+DibChgww/nnoGVYKQkK52MKmxEw9FyAaA1TU457GziPAt8brR58jxHGI66SwYyYpWH/LwkUkIWuX04WCHnRdRNZKklpBXORyljDIDjTphTAjccR7HZ8y/4yYGTz3DgEW50/iUAVwC4uXP8ZgBXdusrCIIjx5JkdhGpichDmAnbfkdK6R4Aa1NKWwGg8//xC7S9VkTuF5H7x8e9iO5BEPSCJS32lFKRUjoXwMkALhCRs5d6gpTSTSmljSmljSMjKw5ymEEQHCqvyKgmpbRXRO4GcDmAbSKyLqW0VUTWwU/WosjzHHu2zVUbGLYyy5RxMNAWM7uclKAjfZT51XOqoGOcdbPm+FTwoWkSw5o2OCtYVBOSRdvJysk5dcQBGLwosCz0ujEZKEqqcVhxjFIyUniUJL/WHYVI0SbjHZoE1+GDZF7P8Ib1BRxd1g05QvMrFPyBZeuZsVAgDTb4cfQJnF2nyDkYh71mfjbYeWbmmD55RtfYcvQfjcE5Ny++Xt1XF0RkjYis7Pw9CODdADYDuA3A1Z1qVwO4tVtfQRAcOZbyZl8H4GYRqWHmy+GWlNLtIvITALeIyDUAXgDwoVdxnEEQHCJdF3tKaROA85zjuwBc+moMKgiCw09Y0AVBReip11te5Ng5vnu2POQZizR0TJmdu/bpCjYnk7EnsWYHNt0y6Vf8lFGkP2H9UNNp1KYTpTGtUJleo9NBAQC2vqCKRU5pkr0opHTRVnkFZGlxhVzhKLhYIcceYY5+CCVFwGFlFcSJSMvGLY43momSYxR9tg3rp9gLrr2ElNM8NueRg4CUkKygYw0wgNIo+px7Rumepib1Q7Z730rTZs286E31+sJLOt7sQVARYrEHQUWIxR4EFaG30WVTjrw9J7PvH+83VQb6tCzUJJnl4Z8/atqsPV9vFngy1l4S7ziaTeHIomzL0prQZS8oSD9FzSkGSAYbdJJOj+1SxQTO5GK/k6db3eRZK7+2OdqsODIvyZHmGh2jjYImnB2cjHMKrDsKG/MAQJlz1NruxjpsXcRj8XQbJiKtiVxjHw7jD8TRepzQwxxR1w2BI/p5abfonk3tNU1Gj1k5+zfL/POJN3sQVIRY7EFQEWKxB0FF6KnMnhIwXwxrj+8xddoNvUueT2mZpZywstAkiUImXgGMf4SJyeDuH5PMzhKWF1RCaAO/JBl38pQ3mDaj5IUzNa0H48WLYLnSC0DbpjSzRkT0Iq1yMFPO0Jp7e/McbIMzwdqxmTZOJT7EziVe8AoOGsF2ApwVBwCE5oHleu5j5iDX4UgnS8niY2tktfqiVVqOcUdj5IS5+rWG+Xy27wU/CYLgNUUs9iCoCLHYg6AixGIPgorQUwVdq93GS1temi17UTXqjUldHtKGN5u+/4+mzUVve7Nuw1omWCcWslWAlwmpYXw19AHPEUZI/2OinuwiyxwAg6Qd5LS9bFwyU2fx6DAAkJFmzyrBvJA+5NTCZTegjK7Ddh2F43zCRjReHZ7vbk46AJC3WTnIxi6eIpCVeKwItPATxmmmWIEKWOMozwCm1qAlycF+nfu8au0xs3/XnZTOs+db8JMgCF5TxGIPgooQiz0IKkJvUzZD0JhnNNB0oqaWlBGmRdlS+pygAM/v0YLN5DH2svhbrUkHWs5MkD0P8hZlAXHk/DZfkok2a51/ykwbEpXTu6iG43zCcqVjLFKyNU7RPQKqcTYxbUwTcBCJtuegQrD8ymmrAStvp5z1B/Y8rGPwZGdzni7vPI4Q7B0T04dVbggZzCDzZPZBXaVP97N6tc2y9sG3zhlq/fcR+3zN9rXgJ0EQvKaIxR4EFSEWexBUhJ7K7GVZYnxqLiurJCuzN/q0HFNwYEWOIAGgL9fHpopjTB3eqW6RuFfzHGGozDK8J78amZ3qZEWfadOEvuacNvCTdyKSGV1nE3bwoD3ownGESezAYfagnUCK1I8JOuEMjk/tBrhIHEiDo0x4Ogc6QMEg/D1zOg/pE+rOfriwvE33o9Znw56WvDvPMjxgUhO9/rRfUuX//bW/NE1Gh+ae91oWASeDoPLEYg+CihCLPQgqQiz2IKgIvY0uixKpnEuZ0px20hfnFKmGFB/5vr2mzdYXXlblsWGroGP7C7ZBcYKBIlEq4ox1V1anZKLKcIQcYe8aANOkOANFmMk97xPGMapps6KMFX1uBBwy1iHlmpedplv6aC/ar9HZeZFW6brZkCVL9l1lDGBI2eZFBM6McQspNh3lISvthoa04nXFqH0Gz7vgTar88d+42NR5y5svUeX+fp0hyYtI9PLeuXvSdozODhBv9iCoCLHYg6AixGIPgorQY6OahOl5qVEnJyZNnTplhEkFG2xYqWvfiztUuTjTRnAt2tSOI8e2raxD9g1okLzkuXs0m4sbuxSlnfIaHWty5hbnPMYIxQl1a4xbCi574XEXLVq5H7AGPmx44xi/JNEyrufIU6/xu6hL6FtAOVoB1qCn1rDRV9m4qEhaHh/ot84lV3/4MlX+r5//DJ3HySVMCp2mM/1P7dI6kU/+7dOqvPnhrabNvuacXN9+3stHPEO82YOgIsRiD4KKsOTFLiI1EfmpiNzeKa8SkTtE5MnO/9bRNgiCZcMrkdmvA/AYgBWd8vUA7kwp3Sgi13fKn12sg7IoMLF//2zZyyJakudLi/bivewosuk+Va69+yJTp0nt2BEmOUEqWaRtUpspR+Zq0ddnOa3L0r/atJEaBVZsasceNyOokYu9jKAUBLFgpxbPkYSyoFJQUE9ml4z2v2kPOhPrSNIwWVutXEzdItE1etlt2UGlv0/XOeHU9abNf/vDT6jyOy+8QJXrdZt5N5H+YA9lKvrbn+wzbf7sr7Q9yP7xnaZOSddYZqTbcHQOqM89iF6WnAMs6c0uIicDeD+Av553+AoAN3f+vhnAlUvpKwiCI8NSf8Z/CcBnoE2L1qaUtgJA5//jvYYicq2I3C8i9+dOGNwgCHpD18UuIh8AsD2l9MDBnCCldFNKaWNKaWO93mPr3CAIZlnK6rsIwAdF5H0ABgCsEJG/A7BNRNallLaKyDoA21/NgQZBcGh0XewppRsA3AAAInIJgD9IKX1URP4MwNUAbuz8f+sS+kJrXvaTtuMhkYlWdPCvgaJpo9u8/Iw2PBhyfDWapONilVfpRaox/inkFOIo9cxvJQpMU7SsgqU85wp94Omf6M85nQ0ANjApHaOaDGzsoj9nhdfMMV2pRgqfzFMQkfFLrUt55jx0wJnLOhnIDPbryXzHB95u2nz+07+jyr+0doMqi9hHPpFH07ZxbZjyuX96xLS55ataiVrUKJNRwyr1Bl//OlU+dspGLWpN6Hfm9P5x/bmzZsrmvGvy8oh3OJR99hsBXCYiTwK4rFMOgmCZ8oqE6JTS3QDu7vy9C8Clh39IQRC8GoQFXRBUhJ6qx/OixJ49Y7PlzImumZF7Sf+ANrZoZFYmab/0rCqvdOSa3dSsxllcJ6zMyAYmGfWbOVFTp6ZJTibHmGIMhqymAxQIOfskLJyZc7aNY2BiI2noSag78netruc7I2cTLxAFG9XUa2wYYg1mTj9lrSp/8U9vMHUufOM5qtzX0P2wYQsAtCnL0KPb9qvy791iHUnu+fY2Pd6BYVXuX6uztADAqdeepcpvv3SFKq8ZsGMbpHmacnar20nrGJ7frq/nh197Ccyuf9k0+3fpOB0dIN7sQVARYrEHQUWIxR4EFaGnMnstyzA8OifbTIxPmzqNAS1HcrA/zwova+s9znyfI7f063bTJMPnTiDIYrcus5POlB0+EsUOKKfJ+cQJuNAqtMzeIF1Ao+7sh3M/zp55Vteyfh85tbCjCeBlLNXl0VXHmTaXf1gHTvzCNf9RlYdHVtnzGHnbDmaCglt+4jta3r79K5vATE/o/e10jH6ejjnV7m3/2l9rx6mzTtaBJxwzATP/bKbBsVIAq0IZc6zHXyLd0Y9u0+Nv9p1i2qx+75zsv/2RFebzA8SbPQgqQiz2IKgIsdiDoCLEYg+CitBTBV2jkeHktXPKqIkV1qhjx17tYJC3tCat7USXfSdFpnlu0ImMQgq5aVKuFTawCGf7RVP7JCD3ssiQEi9RG3Ha1Er9ndsYGNVtOBQurCKNI8oAQJbp+ZWkFYHrTrKKs89//mOqfPnFH9B9usY7usgRfh7bZzVRn3tQWxd9/6+eNXUS3STJtPJp8Lw3mza/fu1KVT7leH0TS0cryaPjWzTmRbElZRvXGHN0xLfernue3uc4L01SZJ0z9BJ925vts53S3H2+9SsLv7/jzR4EFSEWexBUhFjsQVAReiqzb9hwBr7zz3fNlsWJhJma2kDmnh/frcqbNz9m2lzzqT9Q5f88ZmWsMZ00xkSbLR2jmjrJXRxktLCitMmyWZINR0kyPABIvlKVB1afoNuMWeeNPnJieff732HqvP/yq1X5sre9XpUbdasz4ZmbJqOmbz8zAebTX9ylylO7dACGUhzrkRV6Mk+8ymbxecfbdZ11K/Xoao78zTEwONGrozIxbzyWpL1F0qDz8BUOOo3eepGWt192sgOdf5zumILjGuMdHkttEZ+peLMHQUWIxR4EFSEWexBUhFjsQVAReqqge3IKeO/Dc+XcCYS5bpU2/Lhq43tU+cPvfJ9pcw9pZf7VyVprostymibH66o1Tt5npM9ysgyjJAUJO6MlR4FSnni6Kr/tWh27879cZj3NTluto6nUBmw0Fc4QtZksPf7kLq1YA4Dvf1Mr19q5nsyszyoyh47V5z73t89U5fMu1GMFgBX9+gZMOa8dfjw4yI+bXJCGx2mRHZssoyYeYq9D5zQUkMh48ZnsVgDWHKcvcp3TL99F1jV7yZ3me9gtHFs23uxBUBlisQdBRYjFHgQVoacyeysHXtgxJ1WMORYOm7dqqeOBYV0eGbGCcjmqI4tMO/J3naxoOPPwtA5CCgBIZDQzRpFrkrb/mTlGgiU72IgVrTE1pqXC//WSNjB5x+l2om6+X5tXfOPmp0ydsQntSJKRzFg6uo2h03RK6X/7sfWqvPIMGyl2lORvNmTxotAM06G2I4zuJQH0mb260ku/sN4mLUoDPklC+6knWQn81EE94PVabYSWI4APke6FIxG3nWtmgx/Hv8bQv4TM3K2FszQr4s0eBBUhFnsQVIRY7EFQEXqcMD2hVp8TMEYG7XdNO9dDymnncJ+zUVrqhB7o67O7jTnJXdPkz1E4+oOSRUKWt6ecjJrUT0aRHDhDDGAzp6amVg5cd5MNYystrTDIGtZBJQ1rL5xE4XBPusqJFPteLbOvHNb3Y7XjfDJmssPq8k7e7Abwrzt1+dk9pgqy/fpc7UndccsJ2HHCv9HCtFBk3ufYAwrAY09rPVB7l24zfKo9zyUDup+zTuDIvfY8q0gxkZyowUIeNryfv8KR2efrAhZTA8SbPQgqQiz2IKgIsdiDoCLEYg+CitBTBV2ZCcb65hQoybHaT6TMyYYoTbITHSbRVSQvgijZ4rQp5EfuGCaUpPNixROndgKAciddFCvxOMztzNlVqa+hrV2KZA2JspYeXL1ulXglRal922+drMoXX64/B4D9Da3gouA82OHMU5vcM57ZoTWbjz5r78f2ln7PDLKVDYANr9PHzlmty2scDxW+9fuovNNRYdVO1B2N0jU+7UQefuwlXekuCiY04hhPrafrWe8o6NiIhv2mHJ2wSSu1EPFmD4KKEIs9CCpCLPYgqAiSWBB9NU8msgPA8wCOA7CzS/XlxNE03qNprMDRNd6jYaynppTWeB/0dLHPnlTk/pTSxp6f+CA5msZ7NI0VOLrGezSN1SN+xgdBRYjFHgQV4Ugt9puO0HkPlqNpvEfTWIGja7xH01gNR0RmD4Kg98TP+CCoCD1f7CJyuYg8LiJPicj1vT7/YojIV0Rku4g8Mu/YKhG5Q0Se7PzvhivvNSJyioj8QEQeE5FHReS6zvHlOt4BEblXRB7ujPcLnePLcrwAICI1EfmpiNzeKS/bsS6Fni52EakB+EsA7wVwFoCrROSsXo6hC18FcDkdux7AnSmlDQDu7JSXAzmA308pnQngQgCf6szlch1vE8C7UkrnADgXwOUiciGW73gB4DoA89MGL+exdiel1LN/AN4K4HvzyjcAuKGXY1jCGNcDeGRe+XEA6zp/rwPw+JEe4wLjvhXAZUfDeAEMAXgQwFuW63gBnIyZBf0uALcfTc/CQv96/TP+JAAvzitv6RxbzqxNKW0FgM7/xx/h8RhEZD2A8wDcg2U83s7P4ocAbAdwR0ppOY/3SwA+A51RabmOdUn0erF7IbJiO+AQEJERAN8E8OmUkhP9fvmQUipSSudi5q15gYicfYSH5CIiHwCwPaX0wJEey+Gk14t9C4BT5pVPBvBSj8fwStkmIusAoPP/9i71e4aINDCz0L+eUvpW5/CyHe8BUkp7AdyNGf3IchzvRQA+KCLPAfgGgHeJyN9heY51yfR6sd8HYIOInCYifQA+AuC2Ho/hlXIbgKs7f1+NGdn4iCMiAuBvADyWUvrzeR8t1/GuEZGVnb8HAbwbwGYsw/GmlG5IKZ2cUlqPmWf0rpTSR7EMx/qKOAKKj/cBeALA0wD+8EgrLWhsfw9gK4A2Zn6FXANgNWYUNU92/l91pMfZGevbMSMCbQLwUOff+5bxeH8FwE87430EwB91ji/L8c4b9yWYU9At67F2+xcWdEFQEcKCLggqQiz2IKgIsdiDoCLEYg+CihCLPQgqQiz2IKgIsdiDoCLEYg+CivD/AS4Zuogu2VlgAAAAAElFTkSuQmCC\n",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.142944pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.142944\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-01-12T10:16:58.863867</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 250.142944 \nL 251.565 250.142944 \nL 251.565 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 26.925 226.264819 \nL 244.365 226.264819 \nL 244.365 8.824819 \nL 26.925 8.824819 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p69aff6f30f)\">\n <image height=\"218\" id=\"image0038a58652\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAjlUlEQVR4nO2dabBlV3Xf1z7n3OlNPUs9CHUziEEIxGAJWUFItiAlDHHsEHBslwwxie3yBI6TeFIlZRvKlUoq5fJQLhw7TihTBCrBAy5hDImHiiFSAgm2sQRGaiTQ0Op+rTfed+89kz+0P3j91ire+9DZn9b/2z5v73P2Gfa7+7/+a0gn/rjr5W+h78Sgn+qDxVKv212yYyp9rBzYPk2r2/U2/r5n59Jt4Do9/r5tb6B7DJ320B44Ny2Nag27S6rdXtZ/FxEpdvXkqmpm5zI4odq3f6du33nPqhmzNShV+xj/jtsREan1a5VHL+qH/fnz9n08syhUe7Js+9xwSh+7GZM5MbBzKXCaTbT1k72CEq9kFff4yKYd88iTutNTO/rvKxM75tzz0F6y9zxCu0eXohADnsXpEggErjZioQUCGRALLRDIgPS8T9RqY9sM7NqrG73jLERvoNPY7mu7hT42HDpEotR9dndx3S07pFvodotL95ftddp13SmBx/UOf5RG9+nWL6t2sWP5V1pMdR/ZNX36eog+c9U+8+3HzZh73nhatQ8vV6p9jCRIREhV+VQuze1z+guQpfPPmi5SbOlr1VN9noXzr/vkS/WYKfj7jjOXvQuaA9d4h8tn7YXuGuvz3HhS95k7r3mhP39jWxARSfg+NtBlzbnnPfI42yUQCFxtxEILBDIgFlogkAGx0AKBDEhnP9YoNrhd2049VOy1Zd1eWXFE4tWxas+MhCdSggTPce3pM85cYIOYw97Qa3vElWPb+totxM7kCJkJJL/b1oLvL7zFPqgvXNaWmv/yny+YPtu7+gaK4/p/XeeI9EvP1arwG+89pNqHX0RJVWR1pM/bm3+p9n2s4tCGY7/awKt+FJ2efAJeCCKySHrQdK7bZ89YlfvsRE/43BLOWTrCstb1pYNoXzv3/CwOjRyDCT8P2OOMgO31iV+0QCADYqEFAhkQCy0QyIB0x//RG9mmsxvzU0d1+9uP6n34XavYHIvIX2IN/6DjOboNQbQGv+qs3iv9pp7fANv73Yt2TD3Tm+gG56WjsojI0kjvsr/pmi+p9r94gxWWn3tsWbXLsSV/fLznwf3e+z+st+wn/5smqzW8rQvHGWDpiL72Dd9yvWq/8jY9VxGRNfC6PeffMNk4meoRO0RaTG+OvzcOx+EdLdF73AFesyRyMuc62zhtZbsI6KFs00nCm0wI1oFAfsRCCwQyIBZaIJABaQcRgsnZcfZzTZ4e+NQfqfbDDz9kxrzzB/65av8QN7Yi8ifgU3Nwto4BmiJSQaah9jZfN0OkRqRhDa2q0/7CIiKyvKHvae3BH9Njtp8yY4YgjK9/0x2mz5vuebtqv+H2F6j2oLKaEp/crNUOt7993jo4v/tn9YPYW9c8r0s2cFXWVlTz5FvOmS53vFb3OXUYAb6Og7OJC8a/d2pOThehOmfVOpEh2rxD547lsYuadT7tBDG/6jgc5A8wf/qpxy9aIJABsdACgQyIhRYIZEAstEAgA9Kdd9+lLA67e9ZZ9uKGVnibhe4zGlqn1re89Y2q/eV3/Izpcx7EcxtGibmT6YhUdYo+C6qhIlLDENMxcthxpB6vf1q1Rx99F+bhXCghkttJj1QU2tiRei2Hnj4D7wARue++e1X7njvfrM+Z9k/D1EJp/sKWNQ385Gd1GrJP/sp506efacNLKtZUe/LKU2bMm7/nsGo/5xrt4NA5BhTOjmaxWbJjBujEHtuOBeV3fk+//NmmdZAvpvr5nnyRlrVvv8XJAoe5xC9aIJABsdACgQyIhRYIZEB6/k23ao7mZHcajeE03Osd9HhkXTFXV3Vw4qn/8Aemz+MYhyRSsrBTkRY8rsO+e89xRJ6Bx3U4b8dUWiIyfOxPVXvwoX+i2062pJ68wYkILCr9LEvwOIeuSDJ8RLcnR53MWW+7U7V/+p3/VLWXVywXNE64jhfubqPl2R/6A+118Hv/8c/MmNmuFrn7Q5qnHjpLqVnk1u+7UbVvvE4HEpfOTwSfvxGSnWdLf2yHusqT+Kb+9MP6o5tPLa+bDDSHj1+0QCADYqEFAhkQCy0QyIBYaIFABqSTZ1+s6GBRWsNGAV/p0VgL1IPCksGl49ep9tkPfNT0ebRGqnGQzinr+4jNbCQzpKR2skg9izTWPXJDt07do+UnPqna6YNasO79uFo9xjuWkF0LSnLheO+XFQ0mmL8zlQSrSoWsUV1hnQye95xrVftnf+4nTJ/bXnazag8H+jy9c9d1ow0DX7ykX/QPf9hGQjzw2zqDWDfWEeGja230+pm/f061X3u3FtNPOKnrJ3hOzucjNdTnx57R9/M/3/+kGbP+J9ooFL9ogUAGxEILBDIgFlogkAHpJa+4RW1Aa2fDTxG1qjSPa+fWwfbwzber9tK//0XTZwulnWoojF4WrI4R1UhjtNi1+3A6GncQJbsde8/jz/+uPvCRH1fNhnWBRYSsrHPqFBfsgy5OEjLpoMpXVGu92q7oU+7TFrGOsDY0WqQCh5+MtNh8x5tfa8bc9+5/rNrXX3uDaqdk7QI9nCIu7Gj29JMf+7IZ8+H/pD+YttQeENVAC+ciIpMX6Nq61d6G6bPY1dHpsy09l4WzZrpG31P8ogUCGRALLRDIgFhogUAGpJtv/Ttqg9knyysqZHdazDRRSg6veN4b36ra/T97t+lzCXrWgpVhnIDMllmwEMS5p2MXrxxjZmI4FSeSQxEZfeD79Jjzn9FtkkVxND6vzAiCNHvcUEcC6ZyXAaVda8dQRytK7cxMPe9KH3Ilm4GafL3HPSYnCDUV+jwDpJE6efacGfMzP/W9qv0Nt92q2lVl+RY1vGd39Tv6jf9tP45/+ytPq/bWjk2p3fXUIDUv7a30KQLn8fhFCwQyIBZaIJABsdACgQyIhRYIZEC1vKYdL6e7O6ZTUWq2x4jrzqm707/8FtVunSVtypgykNsTz5npiHzduU4L4dWQ1x2bR3yMqOv5SDu1ev+hjFHCEay7RhP0DoWQkmOAgB3DiYO2Y5iRi8+y663gXjf6PH1vHREqEwJOY8j+IvfeQs/l8S/qklgiIvfe+6Oq3fZ6buORdYp++9veoNr/+r5/qdo/8jod9S8i8iN36u9/3r3Q9Hl0XRvLvv83tBP0w5+zTtGbc/2RxS9aIJABsdACgQyIhRYIZEA1nkBYSywkKlINdAaiBvvwprb7/UPPOaHam05AYEmuBEpDMVREpEHAZY1/FY7GLeVIjyH1KAtP8GWmL80JGqb+FRFh0KYjPtdGbIZI7Ij/PZyKe+P96xQOQp8ez4mcR8Q6HqTCOvt2LZwVmJ3ZKYFb08sAonbb2OdUUHDHxzGrrS3h13/zt1T7gx+5X7XXVi1He+Wtr1btd3zbnabPa265S7X/+Mefr9pdp9siIk9v6HcSv2iBQAbEQgsEMiAWWiCQAVUqtHPmeGK1k8FQ7+eZ2HcwWjVjTl1/UrU7x/FyxvhFbOUNhxORmoGT1JgsrbC+vThvX1suOIYjdTPUJy7JO0SsdtXbyQw67ZDa1JrztIwEFZGemhf5V2cz/XY4D/W70uFSJgjVcVbuETBqSjE72qFzSP/dOwYOTGdlBh+LWI65N9U8aeHUXf74/Z/Q7Y//oelTDfV7feFzr1ft//r+XzZjTh7WNor4RQsEMiAWWiCQAbHQAoEMiIUWCGRAtTLRYvTccRCmJ28Jg0Q11A63IiKLSh+bOH6vA3B82FxkZjm+ibqewLeUxhERkQH9T8HxU+lEWCM7cxoxM679H9VCWHaFWDD2khnFHCMLo6479PHsMhR4GfHrgQaH2ok872HZ6HGPfAZXDuo+PSPGnbn0cJSmwcRzGChMJDqMeM79JDgZJC8NWanf/Zce+Ypqv/6b326GfPJjH9Rzs2cNBAJXG7HQAoEMiIUWCGRAVWP/XDoqcTXQPKJa0qQnXXPMjDl7RO+PzzuiJQ8NKJg6ZU4xFdlBbdSpw+uGdKg1+q8V6QukyioGmnP2jXVfLsEJOieDMDka+W8x8FIVk6ORFzlDzHvVf29rhz+WzJy1fzWfrtIPs3Q4DkV58jyTPUys47RxrDYjvGPgk94oPCcjwItIW+vMxPx+1p/W5YVFRH73019U7fhFCwQyIBZaIJABsdACgQyoTl93Wh2o51PbCYGf013NaV7y+r9nxjBwz6FbRtopoXeZPDAi0qEkI69j5C4RKZAMpmam4mNWB6yGmuzVM3A2R5ci1xiYzEEiLTkB79FJmiOo+FkN9NzKA3C0HpmVU2G5uOF1AydTMSgMdb/C4TgJWiGfU++Q8QQPZ1bv8XidgMdRb3QdnjFfTwfsMRf6Y4/H1qn+8oVN1Y5ftEAgA2KhBQIZEAstEMiAWGiBQAZUTNxUjY+YTuOhtlIsYJEoli2xXmIUtrOkE4Yx6dLQMYYsmCkLxhGnapApEVuA8E6+osVFEZG2RakhGCC88kQLTK5IllhT/K9Rlrj3RG46OJuT7v9wWb62c1TuEt7XnmBdL7RRpYABhWWARWw0NEtG1V6ZYhgcKhg/moXjIEz7iBHGnVJbtGw4mZaZDruea8PY0LHA1Tu6HFT8ogUCGRALLRDIgFhogUAGVNXgqDqwZBMVSzHQB0dIX3XzjS81Yy5jq+ts9+UwjhWgDQvHQZiZmhhzOrV6uyyoW870gaN7NuutrGpH6QZOxG1jOcISOCdFVhGRApGrA3j7tsbVWiT1X1us9bRbSXA8xlySKaPrONQ6GbkKQ6wLNJ0x+HduHIYddwZm8UolA2atXSDhPF3DQFxHpDeczHln9MjG/NPksBmzvbmhz2F6BAKBq45YaIFABsRCCwQyoDq+ojnaeNnusffAR05cg6ocDgEjbZiZHiKkYMwovCIWKEope2h7TsWmSspIX3l8USdbERFphtqRuocTLhO/XOkEp2KnS9eiykgBbae1Wg/1LDrLVs7zb1tqVfvrXT0UutbT2pBOujc81Mu0DIdmZDseiOWLPbgSp1I6elcJj2dWOfISH1FG8yqhdtDjJiv6+z96yH50Fy9tqHb8ogUCGRALLRDIgFhogUAGxEILBDKgOnLtNepA21qzRVloAr+xp8nhMSfa+DG0J45gTdrJszgBylLCVjAGj14wK7GIdAu2GQlthcwSpXRZarevrJpuxFovQhzCdw3CvphbY0jCkyrhrNwbb1qRAl7cAzr/Ok65NAxUA8fIwvJPyILlZZqy5Z+YRdmLloYo3H7tZyAikvDAS/Nd7l/Cl4YPkf2j04dD+y3Ue9pzIn7RAoEMiIUWCGRALLRAIAOq4VDvSadTuy8vErIuQfDl3lhEZBeHWmcbTpmvwpjklH/dYild/J2ZjEVERiu612JrQ8+DqYxFZD7UsysqZEJyHG4l6WNe9ZLBGE64OG/hBH5S/u+Z4crhRSYbMBhwO7S8lPSEorGIyHCsn0sP7tQsbNbnHvyWgjUdiK8cwz0ttO3Ai8+ks3LC+ygd0s+yxRWjj0WkQC3mfqQ92Svn+7m0uYtzBAKB/++IhRYIZEAstEAgA2KhBQIZUDVjTRAXXuQqshi99nWvUe1NZ7nykFexl8HchtI7OcETxM0Bprvi2ChmjR5zKGmimirrfT0YaFLf4Ab6wsncZARTG66+QNarAoaC8cSKnzS80Kuehg8RkR5RAB1eSFV5XuowunhVjlDCiCEXhVP2SyDw8rSll/sd8x+OGaZth9SIMmFkemVqLNtnyzLGIiIJBqpU4B05c9mq8Vxsl0AgcLURCy0QyIBYaIFABlSJkbdzu3d//T33qHa9rAW7hxzBmmc5bXpYcHe85znl4l8Dkzk5dEVGOE/V6pMMk92XLyBYl6ROxlHWZv/1slOxNFWCM0DrRFib7MAFs0h5/y8pLIO/OGI0o669COuu0nHvdO6tHerKTMQmC5ZDBsuOmZW1YO3xUnLihuV4vZJYFLkbx0Ebz7tKKBXsGCB2jt+lz2GvHAgErjZioQUCGRALLRDIgOqrj15QB+669++aTsMVvfedwSlU54u6Ahar9fpAkZFn0fb+CyyDD9bQ1cYORysaOO5CfBuNbb6tYqDPO0d247K0zrMkiJ7jMavUdD3uMtnzpkITuw48rqktrzP0qtBvoKQHt4iMoA16ftM1HKWZAXngZCquRvoeOcarbGN4XKu5bOdl22J2Yzg8m0zMznXKseXeLSKHCwTaTh2P+e3rXqHHmB6BQOCqIxZaIJABsdACgQyIhRYIZED1Xd/7JnVgvHrcdNpGGdlt/N0peiQs0Oul92aFJfa56Ai+NJjQkdcrrbuAYr34gk4BXm5tmjHjoydUu4CcXjs5zhNTd3vWBBDrAcoRNc4NlCD+fYtStYWTxauj4zGcsZ1yvEw17hkcBA611egADs4Qike8Z8eRl6++bfR1FwvnBVBYHrKkrx3Sdrxn+9ENRL+zxc4lfd6WZj2RnVaX/YpftEAgA2KhBQIZEAstEMiA6tDhM+rAusOLNnFsjvaas/elD+6ac3G6eGKLbXieiOWDlHd7JwvWZFX/P1k/rffPv/+eXzNjXvbKr9dzK7WT7qHj19nrLOtyPkOnhlSJIFqWGjJ1gEVEwHGaWt9PmWywaIUxTK7lVP0VARepODcRGTJQGAJ26qx4Tk9wcqXCKdvUdbrTZKQnPHNqYhXwMDe+yk6Gsemu5lfLE+taUS/0Vzfd0Xm4R2v6exIRKVBnOX7RAoEMiIUWCGRALLRAIAPSY0gJS41MRORxaFXr+PshR3sYYSPuFIYxKs0W2lYzE3kCG++nmV3XK0yC+e+SY37VKoEPve9XVfv8Rz+irzOnCigynmglsHKclVeWV1X78LGTqn3kzAvNmMGSZqsJ3KlwtLceQh8zFXtBqSy/6+lOBTMgQ4dKzqCWeiL6dAurQ7HKTglnZXNOseWOC5T09XIA0RG5ZCSxiGxvaMf79a/+le7w4reaMWuvep2+tr10IBC42oiFFghkQCy0QCADYqEFAhmQHmoZHmoZ4yWWDQKZPepYIOY4z45Dkml4WaCLdfUVuYz2DNd2khjJJubC7FpeZdchBN0FHlPjCMs7T2nzzYXPPW76bP/Rg6r9zKc+pNrtjjUBtTRSILPyZOWoGXPdC16m2qevf65qV0vWUNMikpslZUVEEowq9ULPrfKclRHhnhCh3PXWVFbPtIGKUc2ptGMaqPAsA2zNb7ZMFq8jIvLU+b9U7dmuNo703/RvzJi7v1E7NMQvWiCQAbHQAoEMiIUWCGRA+syiVpvSieN42aBiSHmA5cnkrVOH+5GNsByvLUxrnYgpG7eOeL6L+XPnXjscjaGIs32ZrMgcB0eeKAyut80+jRNsOdV3nb64odoXHnjYDHn84x9Q7ctf+nPVHjpZsBI4zPLha0yfsze8WrWvPXO9alcTh/uBO9U1nq6njDOjFUR5N4sy+JXJTOw5M1CwNm9e5KEHPq7aJ8/p5/LE3T9txvy77zql2vGLFghkQCy0QCADYqEFAhlQLVUI5PM6gZGYtCjOFps7XYd5mOBQJ2TQgNvsMY5451hDnxGdjJ0x/A+0gwt7FUzJMb1KqD0S+JDRFEOrD1VLOlN0Oqp1tCO3aT4gInL2h79BtRtwv+mGvYG1Xf301j9/wfT5vz/3LtX+X//9g6rt/eceIDP00WPXqvYNr7rTjDl8Qtcfajs8F1Pex+qNFarXMsOziIgM9Xmaue2zt7Oh2jtT7Qh+4wl710fAF+MXLRDIgFhogUAGxEILBDIgFlogkAEVSX7hhKHSAMEeNj7WknxP4PUMJGouBzg2w5mdYkoywcVZUsrm+bXzpY3CSbZl7sfGYNs+FMu9Z0nj0x7ekZVYrYP2EEavXtsj/gbaqfjQ2etNj1vv/i09Aprw0p41Jkyf1Oamxx58VLUffN97zZjmGS24N3P9ZoeVzTB27gbtSH32Rbq9duacGdPDaPHZBz5l5zLTb2X3hf9AtW86Zb+GeopST6ZHIBC46oiFFghkQCy0QCAD0ueQBcvf7+sNv8kw7HhrLlxWpuFxo/3mQjB4lFmURURaOvvi78yKJWK5FOcydG6Ph7wnwGdXHoCj8TwM1WUgq4h1cCbP87isl3WMQMVhk8XaysgiJR7mFGO8pMkVInhbkNn2knWt+Oz7PqPalz/yr1S7237EjOlRcrir7ZM5/hqd5erwt/yAav/o11tH6nJPP/H4RQsEMiAWWiCQAbHQAoEMiIUWCGRAegA1V5ecTiToTKB9SCz2E6NFRCg5Fsho5Yrc6EOS3zqjaMyh7cMTlpfRacdEjFuQnrvmIBykIcDL4mXOY8oeWRhh3JsLwCgGZyqysU+kufdceG0bFW/B6HQ+F2/MFg4Wi/3L/o6e1caPYsve9QbC4Gco83vfaXverY0whgQC2RELLRDIgFhogUAGVCvgPHTAFREZYCdOp9zCKaFTwBGzq01ctuzu6t36xoUnVfuJ8w+ZMT3+N5w+pcua3vDiW8yY8dpx1a5ZUsor52MEXzjyOgSGXNaLVmdS520wIY970EGYWckY2S1iy2Sxi1dGa3gAHsR3z3v0OD4zffF+PD5PwZ28jlnJRERMtd0l/a10nf1dmUyQedkmfZbtJ3T73B5mvGrvoJxrR+P4RQsEMiAWWiCQAbHQAoEMSL/6/t/Uu92BdWsdJr1bZznSlTVdLlZE5PCxE6p97uzzTZ/VVc2dhgOtrPVOmdMOe3dWtvH+czDL7X6BrF4fOiZ7IP/ynKJ5XnKc5gAO2nTi9rQrusbyOp7z8hau42lvnjPy34bnKM5rUT/1uCydrcmZPV53GWM4f895fMaqv85L272kB37Hu35MtZ+5+JQZM97cUO34RQsEMiAWWiCQAbHQAoEMiIUWCGRAenJLe1H2TsnS4VBHoVLgbZ3Suh2NFG52ra9tYfCcWnltkuKD/OfgHXrX4XkPYAsxAu9BxuwnLHtzOYjD8AJ31R3A0MH5e4YPRkczwn3oPE2W7JodwEGbc+F8aSwRscYndvFE+i1ep7Mnvu0971Pt53/oftWeXl43YzZ6PeP4RQsEMiAWWiCQAbHQAoEMSE/vaffMynhmiil9OoUA7JVGHaPtcQ+ucu7LPafW/TJNHYQXcRfu/bdhn4OI3JyvJ97yWvtdR8TnFvuN2e+8vTOKPM57/vZC+jye4L6HQ1N8LxTKRayDAEVtjz+yD+e/cB4Us1V93bveY/qc+PT/U+3ddZ0v7GJnnxQdmOMXLRDIgFhogUAGxEILBDIg3fGWd6qd6w0vucl0+kff8a2qfey0dhieTCwbWUI5VS+gdL9V7jmO7seVvCovHEO9ZT8O5OEg1/Gwn4bnnYPzPQgPTUx0xARFjvZ5EO6K4iuGk9VOpt+uRWUVlLydLaxb8RYChavDuvzNvLG8iM7uD/75n6n2/T//S2bMd39WBxvfuGULLU9BGOedvsdnHe1NKp3AJ37RAoEMiIUWCGRALLRAIANioQUCGZBecdfbFJObOWS2KHWhI5YNEicL1nikyWBZWINJNdGydjPfVO13vPM7zZjbvu5m1T5zUhtmhmMWZbIOzrQmeKWGzDnQ9gwoBxF4aUzoYExwz8vszLV2WPUMKPOF7lOjNO1sxxZpKgvd5ytf/oqdS6njpXcu6jGNY6RYv6Sv9fv3f0K1N561c+nwJBa8nz26M4s0rb522yMLlmNGOoayTec6+51OkPWq6bR5asUpJ7y6ovOBxS9aIJABsdACgQyIhRYIZEB6+ev+odrip4Fde9zZMlvVYmazEFMPrQZ279tjT103WrhMheV+k4nmYCXET48j7FzSWYrGEz3/m17xajPm5Tdr4X7liK6Zc9ttrzJjjmJfPt2zuaa2Luu0t3Wv9/uXLtggwoe/oLnSI+e1yDrdsSLr9o4Op7zm+GHVHjEtsYhceuqrqv344za7E4N1qwqOyLVNI9XjvTY12o78XyIdVQNRuOisyD1b6Hff4PNhhmcREX4ug8qy5KLU39gANgtxqtRIr8fEL1ogkAGx0AKBDIiFFghkQHrp7d+sAz+Hth5IUeh9a99Sx7F7VCNdJbv3bRZag6mxqZ4M7f+Bm176ItW+uH5ZtdedRCk7m1qnKXHatrccIVV6H14kPbeysGPano6kjr4I7bCGQ23bWI5jzoIbaElGRKREMqRDh3Q26cnYvo9xpedyEZxNRKQDB6vBtxxfZUm4A/K8trZ8yzg4455TYec/B9+qWR3Hcf5N4Id0xr7SB/wQ30/ncMyK34/pEQgErjpioQUCGRALLRDIgFhogUAGVO0ceWIdo0UB9meNIXa9lkgpTEIsIrLY03lie1y7H7HAj43WpZdu3VrBegbheLKkDRKDoePKy4zNLe/RjqmQm6lzhMz5FCWwCk2a+QxERArjiYxzmBE2o/P1J7UxZGXZulJvb2un7icX1hGB/uN90oaAtnOMOS2NIZirU56LWbpox2gdx4QGNb1odGGU+ZVO+8e40/BSVfpb4HWvDNLN+EULBDIgFlogkAGx0AKBDKhG8PWta1vbo4fjboJYS+dgEZGuJUez+1ge67G/7xsvH63uU9HJlWr0ldnoFkThprCCqRHYDxDVWVLJ9LIB9+BXjeaPrYmqFSkMtwDncVVi8F3MpfGyVZkAXqcCEEveYoz39Ck2c77u/HmMnMfhWxVE+hbvg4GgIiJdy7nYqdgKRuSCFn2vn3/8ogUCGRALLRDIgFhogUAGVIK95LCyAZodtBLujzsv6y32w57jcduCk2G36/G6ATSM0UDrQV3vOC8jmU0B/jIeekGpup2gZZFPXrk2HV9NF8Nne2ptzobf5j4yHttmDJ/tdIrMv8lqV7tbWtesDOcUSbjvLlHvcngp7xl/96rB8htLmIuXHJjfHLlUcl4IJby+td+p0Q7xcaTKapIdA1VNj0AgcNURCy0QyIBYaIFABsRCCwQyoKJDMAnllWO63UDka43DrXWE9fw5y0oz0dkc0caOEE5H0QbZkGi0EBGZrBxRbWa59aKayyFZMowhZoQ1bDgJnMUo3/QXdkVVPYbCuOewzczQo7FuM0OyiMgC0dON81zMazTGHM8pF98YH4xn2eBl8F69bGf8lhOzY3s+xQcwmFhDGL5tp7Qun3/8ogUCGRALLRDIgFhogUAGVDX4VudkJCqRZdgE8nkiJZZw7+z3KfoyA5HHEXa2tdNz3YAv1rayx3xPj2FlEifxl+FbzITE9pUxbHuKNQ/sXyiXwZUUiT2Ow0PzqX4GgxUr0jNA1rtHMzc+F0d8Jlllj4Jeu2Ize/Hb8DIKU2umeM6ATRHL67xXJhTcMV3yPK9T/KIFAhkQCy0QyIBYaIFABsRCCwQyoBpNNNGuF46XPQVr487spARHlqjeK5kDo0QPsXBpecVOGNEFZaPPMZ9bYw5TQfcQGJvGMWyIPq+JJPAUeBoPGAIgYrJ20UvdiLnOtVvaiJzn38GJoESUM5/9lUH6mI24thnRTIiCYxij4wE925MTSUCPfma9So5hg1muTFp6x1DTmkhoe881vx/cY+lZUFB2Kn7RAoEMiIUWCGRALLRAIAOqnW1dlrUajU2nVNChliKlc2buj529b4HI1BqZcWtDRkSmU0RLF+Q8liOUEDe7Zv8SQPRnNlHALv9iRmfH8XUfsdOZvpOZeB8nXRFpDXeF4Lti7zkh3NjwMRFp6HjMSGKHB5F78ya9DML8XniHXjXbDpHzHd5rcuwEPUob+07F4NHgaJ7veFVGFqxAIDtioQUCGRALLRDIgGq+QObfkRutqFCgaoqnkfUmta+TzdjwOGo7di7LK5rXbe9qjpkcB1Xuu41G42RnTpXmquQinsOtOa9LXrG/NxqfHcHKPOR+bpEUHKvhoN31losPUL2n6zdNnwTuUZJUepl+QQfTgKl/ncow5MimtK69aT66GhzNy9DF+/H9qPnO9F+r5PB1cPj4RQsEMiAWWiCQAbHQAoEMiIUWCGRAVQy1cWE6s86m5J0lGaOzXOkEWjiGgYYlehFVu7OtU1SLiGzhWAtm2rZ2/k2jHY07WAo8Yp3S13ac9qJqKbCXXkSvEZ/3N2zQVkBnX0Yfi4i0JcopgfM3TkmsOSKsPSGc4j+dcGncERHpcVN0pHZ8uk3mLD4XrwQxS1VVMCIxRbiINZC4ZafwLVSM7nZT4keEdSCQHbHQAoEMiIUWCGTAXwMipNWHrzWFjQAAAABJRU5ErkJggg==\" y=\"-8.264819\"/>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"ma3fe585292\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.0994\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0 -->\n <g transform=\"translate(25.91815 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"72.5874\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 10 -->\n <g transform=\"translate(66.2249 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_3\">\n <g id=\"line2d_3\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"116.0754\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- 20 -->\n <g transform=\"translate(109.7129 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_4\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"159.5634\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 30 -->\n <g transform=\"translate(153.2009 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-51\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_5\">\n <g id=\"line2d_5\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"203.0514\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 40 -->\n <g transform=\"translate(196.6889 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_6\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"mc941b95bfe\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- 0 -->\n <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_7\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"54.487219\"/>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- 10 -->\n <g transform=\"translate(7.2 58.286437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_8\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"97.975219\"/>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- 20 -->\n <g transform=\"translate(7.2 101.774437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_4\">\n <g id=\"line2d_9\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"141.463219\"/>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- 30 -->\n <g transform=\"translate(7.2 145.262437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-51\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_10\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"184.951219\"/>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- 40 -->\n <g transform=\"translate(7.2 188.750437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 26.925 226.264819 \nL 26.925 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 244.365 226.264819 \nL 244.365 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 26.925 226.264819 \nL 244.365 226.264819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 26.925 8.824819 \nL 244.365 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"p69aff6f30f\">\n <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.824819\"/>\n </clipPath>\n </defs>\n</svg>\n",
"text/plain": "<Figure size 432x288 with 1 Axes>"
},
"metadata": {
"needs_background": "light",
"transient": {}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAABrCAYAAABuf9nTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB8yklEQVR4nO39ebAtyX3fB35+mVVnuftb+/XrvRtNAgRAAFxEkTQlitAuStBmhanF8oQi6BgNZVnW2KY4EQrPHwrRY1GLbcXEULZmNJJsiTQlUY7QWKIlcYNIECQIEDvQaHSj19dvves5p6oyf/NHLpV17r1vua/7oTt8s+P1PadOLVlZWd/85ve3pKgqp+W0nJbTclreecV8vStwWk7LaTktp+Vk5RTAT8tpOS2n5R1aTgH8tJyW03Ja3qHlFMBPy2k5LaflHVpOAfy0nJbTclreoeUUwE/LaTktp+UdWu4LwEXkd4vIF0XkORH54TerUqcllNP2fevKadu+deW0bR9ckZP6gYuIBb4E/A7gZeDjwA+o6ufevOr9H7ectu9bV07b9q0rp237YMv9MPDfBDynqs+ragP8I+Ajb061Tgun7ftWltO2fevKads+wFLdx7GPAC8V318GvuN2B6yu1HpmYxS+SP5fLGkmIPFz/12xRVUdggdccawcc67jrnFcEZS6P0Ycio/HpXrdXZE7Xk7zfunsILzy+v41Vb3APbZvPV7V8erZoy4xbIK0yetwn2I/FRDtPx86wZFNevs2l/hIw98jrn0vRQCR/vAj7m95uwrs33rlRG0LYFdXtd46e/vrFeWoWzuut79ZRY864bCDDS9+Vyc8fMrlNxWgu3kDt78vnKBtR3aq03rzcMWFvq+kC6uGf8agtcWPDCgYp0jnoXP9Mdb05zp000vnP9Qm6eYFRHATGz4DpvWIi/WQ9NIsnUDk8LblctQ+y/cb+/rO/PXUdwflfgD8qL53qMYi8oPADwJsbYz4T/6j9xOIv6DpraYHDERBPSoebzrQFZQtkPOgDaJ7CDsgBygdiCI6QtQgSL7/vnLh4YXNPm5XlIRSGne2KCO8XMTLGEVR2UFlH6SL5/HD29Q4cEgC+dji8U0yCuIlg5aUTSZdrE96SgbB8pf+6i+9eLftW7btaOUM7/8df77/zcdqCejSPEs82IXPZxQfb8WAGkEtiAsg72vB29TZ+5qVIH8IjYpa5ib2imkUu/AY58GDOB9BXVGRI5FC4gNVkcF+ag1+ZFAr8THIoYFHrSBe8z199J/9F3fdtsvtW22d4bEf+gv9zuaIowqwVBO7cvlz6iKmB9u87Yh3XY7YpqnmS38zeKfvRofP/XYAvoRvooCX0IeW6yd9HcrDXv5v/8ZRVzruioO2nVTrfOcTfxoq24NaJhj9odI5cA4WDXpmg+bSOnuPjLALZXKjY3R9hrm5C00bjptO0PKc/cWLmmnoh+laad/U7+oKnY7Yf2qDbhIadHqtpb4xR1oX20sHxyTQx/twHyXQG+n3Oao0bXwvwjFaWTCGf/mFH33xqN3vR0J5GXis+P4o8OryTqr646r6bar6basrVWROFWAZMufwOQBr2m6AGqEijDUm7ydxP83clYzF+XAxlExX8r7pPxP+qSm2anHtVEeAHqR77he+D9+//rfwiycD9dKLKoP9D/XyO7Zv2bb1eBWJYNwPhsULTwT0vto9GEraV1ATty/vY8Jvy6w2HxvBP4P9YHv4jfR5qfMOwPuYjp3Bu2io/vqS7zNv67vK8N7vsm2X29euruZz69FVXDo4Xjf/j0Hb3U25q+vc9ck4cpA4tm5HjR7Frrep2j237chMA6MeVeioAlPAkjXhn0jsQwasRcc1bmxxtYRB3EroH8YMjy+BFUL/smbwXU1/N2oNak1/ngjG4vu+7CsBG7FENQC188NBR5c+e98PTF7D/unf4cYZbjfHt/b9MPCPA8+KyFPAK8B/APzx2x+SmGaESw2AqQmQ6WEPAZPaQRzCPLAwANUMm4JitepPX8ArJLBILD+BPkOqJoGZh5ezCucQRaUF0QjpCYyJg0ZAyrDdBvADRF24O02XKNAsUWLKF0ByvZZeixO0bw+WiX2ljgdgIqtWA25sAiim+nSgNhwrqhm0fS0ZpFEJU0f6c+emNMRZRt+sic1kENN+qiteexknPydC507HCmhk6qKgdewjRtBK8rUPST4ZtPXIgeekbVtSznTv6doZbE2/6/KxJRHrb5yjD0hMXo7Yb2nbIfa9zIvK45dnDEvX7ieTSxU6BkOOOMW9t62YIajCEUz18IBiWk99oEVfjyDpHKoKo7oH0iXQHp7IhHOUzNtIz8whvAeGfvaaztu5AM7xPEnCEa9oXfUDQNv1A4UUf63pwTrVMW1PTP44ts59ALiqdiLyQ8C/JFDVv6uqn739URIuKRqnxkeP8r20IpFFW4I23cWzBDBNIJ4g9nhuEF/8BOaiBWNPIGYAg2Yw9sU1QOPA0xcP+dd0nv7yeqgeskRqSvBKh/Ud5p7bN0/Ph4C1/FlcBLvUFA6Wm0/zTCTW3B9+Tuleeomkv5fjXnbTaQ/c6ZRew8s6GHWJaJcOFLQ4JgwiHoPJ79Ehmec25WR9N5Z4jRLfbseUtfhwT4Q6D5rF9/LvURdKgC96/HO4XSWk7IuayU56V447vnyTT9S2RgLzXmbLy9VLcoQxaGXwtcGNBNMVbLeL4O0isBoT+tcyCC4DemLHy1KIDddykTyIj/0v9fe66gcOCLzuiPcln2+5HiK9DqJ6+NhlNr5U7oeBo6r/AvgXd39E4t5lb1Bk8OId7rUBUE3QlEuUXBLnSiZP8Us+V9l2h9pYQA0q5gjwTdfsJZnD1CYNLIltJ0auS/tEps/yu3DElntt3+IlH2jU6Xxpm0Ywj5cVp/hRmIIuHzcwdt6u/YrfM/surwtIp+CO6NxekUJayXJJuavpfwvHhONUJLx41RHP9zaAfu9995jzLW3T2+x6x3MuH3QUW17efi/Xusv65KY7og8tl6N+vte2Df1O+md77I4Fm1aNdg4SrxsCcSpJdlkug/6Zru1LDhWklCjLDGZxqn1dDbGhZMjeS+1bw0wwA7gWv91VAx3fLvcF4PdePCJt/Jz05QCK6eUNbKZC8QgeZAE0BK+TJEFUGawVQcXEJ2kyX06lh1ntWeNgu4nsOT0hD1qB2DgY9Dp74tvhWwJzjdJOgYxJlsAjeW6v/TmUIbuJ17m/qKohC5Vie5oW954gmkcRUR0Cdvo9HesYyDFlCXo2vT4ooFbwlqzHo2nmESsVR2u1Ai4NehwC8Vwf5wNDy/0j/jXSyyNGekNsQrPyNBJ1yzej3I7Vlqz8NvvroQ/HfD/uwMNj/dJ+0eB7TN0GZXlguMMAtTz7eDMGD1HFNF0AulEV+obYgd1DAB3V4D3SdpiDhmo2RlyFcaE/+HGFqSziHKoCdYVWhSZ+FBBqYNMqgmQ23AOtVsFQbhy0o3i3UXMfvA/p3JUF54OKkOQRVbA2DCbLxtklg61ak6WbQ5LLEeUBA3gwYBaPBCiNgpI7SNgnIoPUKGNUPKhF1CJSR5+SBOpyxLubzhe2aiGdKP0IqBnSDaI1Ijb2yhpYxN1KdFhm1el73Ed9/3sGzsKCKP3fwNLzL/dVshY7YMIFk0peKUtII14RF3bykSkIaTqXOhFDQCiOH9w+QWsfnDvdXwT4YM2M7XCEgSaDuEQWNLhJMpMpB/0BqMQxMjxiDS/zfTbuXR2+RKoOHaP9Prktb3fikpmX+5fPePn6xLbQpf3vsv6wxLqPAvTbVPGkRWsb/ibwNop2PhqjBbU2vjaRCFmLGxu6aehvaglgOx6F5nE+tvER7P6QBq49806SXtovHt+No4FfhW5isftHjcxL7D9JHyLhnM73ennav3OD74cklDuw9AcM4DDkv5GN5dZbrmx42XXgEZJYcf97Au/jrweHeuKgYY76LAw9X44quvR3MHQMme3yvlIe9yaUCJZZepACyNIuJZiXxevQoKlLBy4dl93Ilpg7ejTJSfULWuRwh2XGfddIMHCRO4yaA8Pim1SOxMK7BcjUZv42A+HdsOQ7DRBv1j1r8aiOe6ZxgLhv8E4De3qONo7vuaMd8TeyYF9JcJks9eXCe+To6xXv6TKwl4SiPEdBhrQKsz+5jYH17m8+ItmS5HK35YEDeGYHS0LGsKmT8dAQjJhpFDVIHE2dLKLoEKSTRBF7thz/Js8VKXhzsU/Jq4O7XxuvG5hAOH+Sb/JZ0fKhDZAiDSoJ0Rg+kEPAnXoGCMcbK+5cFPFhuPMiuboCWdVJnjEDgI7bfBVcANWAmcXZwRHgOtC3s7dKD+CZQUQ9XeO0USRIPCYqaIcGkfzI7q4DH5JaysdRmCqC9lic/36K9BOHctugXsccd2x3KQ9aBuBj6rzce8rzJiPmvbLuw9vLF6a/mBafb1PFk5WBjCosvw4SPTy0sqgx+eL5Gasi+7MA4Ek+KaS3XNfI6klSIoBR1AtS6OWavKicxzaar+NrQWuLth7xfuAdd8gIWt5b0tSX3QzL4v1wILqDYffBA3g26pnCXzkG4GRgNVmWCNs1uud1ka0LwTMlALhHMVGoHXqGF0xdl5zeBwCQLm5QxuRm0SnIDmjU4wfsuTRoloy1jBAtYV6jHt7ff8/uw8ij96GCS8HAxenAt7WIlxoAsHERgJNPawr+ibckqpg2hj+V/txLzCv5dmsE8+VrBjAvvE+iASp5w2jpJbCkybP8mPI9pXNJ6FPS+4Iva5NvhoSS22SpHoMiw496xL7HzQpE+7a73fXhWGI5vIiCmPTQb3/t5Xoc/cMRn9/ECaQ4De5/dgiig1eisr3BMl7fOMW0sW+JhH2sDS58qgHoDVnnDhfrbyYxd/E+gLgM9XKNHi/dRHAxiLxZNYyvEY5x2gfyQADp0ptlGaiXAFm8Dn3EK9sbTxOYv3008AiwpWEr/4kvmZScOAJLBPF088lzXBMIRrF3iZMdunKvkoeRt4RXIWmqBbBqlG2k3ycNKqUkcmQ/jnXNtSgRTVJLpC9H+73ca+l9no9CEvomSVhpiQbI1M56+JiySNEWOtzuy5gnlq55iG0vsezSlcrL0nmWZi9poBhMgzlaGooMazAw3Ue5LXjH30rnmcGtlwPaMtM+9mLDcx/6PHxNjqzPYFA5BsgPt9sd6lJsPzQjOUFZ7kuhDtoz5XJ7IibZ9a54tdJAnoJ/EngnN7f0OfU/kaB/A4oZBosRAToHqEU44A4G8QTey6UA8IHOfRy7Lt+Rtw+Aawwvjz7X8a1K3iQ9iIe9JYXUDdhZZObxODSEoCfGXfZulQT2Eb59/3saM8J1PComBtQQpBmVJVgtGzSdIUGwofcuSdCsvSQSL6v5Yxnx2Z/6fmBcRWJUWjxl8lM1R4NXGRFpIrUsIzPzAJUeSw50SGy9vyGVvlOL6uB6OSoy9d8UKLRk6BxEww3Gn2M6cmLuMAz+KXTEZAMQr5iSuZ2gCKTYrUEdjwLFEuhzlUoAZ+nz3ZTj9k/njc/pttq/9vsc91sqR4bxM9yn7Nf3VRLbrUzsH8U2Ixm0s1QRQTo/fyUO0poBWiuTzxcOkUPPDAgugkJQSpeIgHp6PT3VRUCNFgMKQXpJ91H6hJshdmXw9sewiaP097eXEVMQrSLgGqQIlEk9QxCMH0F0I/SJkavJDy+02igzQqErQBeSBGPztMmAVqgkLTvl4OjpUjjSUbsbqNR4MXSSHkAFeFSyw2kx1YIQDZNuwYQpu4DGSFM0AXq/Ww6zLyyNcj+vggSGkFwJQ8AMg7dLTdDv0mfTBmfN0HH7l6EcB4ORKF7CB4D2VugmMji/Sf7dJaBl4A/nbzYspgPbeKoDB63vXTtjMIYKYTqdGqsk4ElvlNyk/X7xBU2AH7xuwg4pRcD9lkOTqOXfIDsbHSmJ3OZdPMSKXd+Gh2ZQRwwIuRsmgik9YzyUP+WoOulw0934gA/qf/e7Hj7WCH5kewD3ReOVz3dao50NzDj+lu/RgK8MOh0H2QSQpkOM6SXCBNbxfL4y6MggbYgMpov9Mb0LHhDFtI611zu6SZF7xxCCjzqPeJfPSZRugGFirRiarxZwrs93sszAVYPWH5l8zuVyTHngAI4GgAuzmjxvzvANgkjf80Mn6oAD0I7QVRKwBmBG11FdA8agFZ5NYIyPBsiQmEpRHEIH0mDYA20QaQiGS0/wKV9BqSPbaMNgo8mQmqhkqYf7Iesp3kQ95DitcYqd3sz0jzuOtHcqvf7bg19yxyzzhKSpZ9bCpQg3H5yvnx0kwEgAbjrFdzFdgAvfS5BxI5PzRmRgjcebTnOiLGwxZKUBQJaQw0S0joNA0r6l81BFQ5YJOnjJ1gOrWqbF91mWWfTyeXXpMssTtmOOgSEgH8q3ckT8mMKR7H9wjegxkCNvOWL/Eri1v7ZIzzJva1N+M9oV6XVfkR5wCzc8NQFwRQizNyOYxjPaMdgm9j8rAbxtiOycn5+w2LJ006BfL84Ibqr4ijAji1KutOG7ncN4W7ELpVoodu5zfMFiw+JG4YWyjeKtQVJ9KhOjPws93C3Np8v32zkGEkmSVAZtkFxt30YMPEVRKhK1MxvrVwKdib3ToOpCFdUBu0hOgjUB2jj8TkCfRLkMbIFfwfM0KpuomQANXhqcHER6NEdkj4pXMNxEdAeRObAIIx4bOLGoOLzcwnBQuFPFN0k84CIjd1k7Di+V4nMUS7xvIVPGQPpjEi0MIga9F6pzu6Jg4mWTJt2DtwzqOAh9N8N9l8HCuB6gTaPRcBTlr06xszYAsAG1hm5thBubmK9EM0syrWIWPoB46/EjS5JuJKdXIAzwcRrtRwbpYsY4kfBiuGQQjtuqyD5NGFB8lV4C+pDn+xwgU7vkwfouHlnuAkv7D8hleZ7CbTi1WS9p5Sr0s/Llc5t+W0koBgRjyUOlSM/Tz2jSzClJhF7yb2kwzudLhtL7ad50zfieaG1QEWyhJ+f4gSip+MpgWmVy04Uo4kpoVyvMrEZrS7tWceObavaecJhzC1ZX5/zA07/Oh1Ze4BG7zRtujatugxcX51loxeuLDV7aP8PnX3gYe23E+KahmlnsPBCOxdkYoOZheg3c1JDgUysBH94LaT2m8yFToTO53w0MnjAcFQuJMCfSquwdRs5Qvg5+4D5LHqIdSSAMAT7xZnUUOK50OP1eVB7Fy2XUnAmMGxsZW3jynUn+2sloEb8rwBRRsMkBN0oWyjfjtAPtYqO68E8d3jR4HM6DcA1lgVOozAFIh+AR3QV9GeEFvOwFZgpAh6FDs+thAneFUehculJDnebBHh1DSKJV31/TxpfAV2UCqp6p+QSkTgKY5n9+yKLT6Zb9wdO2shhw01jv+JtxHpmVMwHJdbELh7QOu98EjwOnyMEcvx4z0okEBhWn02bhwgwhvtQGhgOeSfek0IVEWabp2Y04zcmw7rtI34VKQXWgf7s4UBrtgS4DYji21ONLmWMwKdX+b7LBJXkkc4jynhKDT8dHOSVdM9v6VYZGtHTuZNvQo43yburRkWI3GkbjNg8i69M5VpQ3pu0RR919kc5jfIh8pIlpWr0GaSVqw92KDe3Xep7/QzVnnrrJ91x+nt+89hXW7YxVaWjUYsVjUbbMjLE4RuIxwKoR6tgoT1TbOG7RTl/MzeWB3acsu37Evo5otWLfj9n3I+Y64lq7zkIrnBo+fv0JthcTAG7tTek6izpBb41Ze8Fy7rMto1uLGGMBNCGCFOfC3zL6cjKCusJPRoc8W3RU4afH48IDBXDFgD8DrOD1KdDgsqeYAGAS9R6xsU95lGdRNsM/ndL7feeTHppDDglkoi+932jYqYp7xoitBLbigQ5Rj1FBZA2lCzN1n0L6HcickDXzG4EZ+JBExzobmXnQ2sXvgNxCRy/Qnjf4DYNbt4iJybLUI+LifVlOWjKbi1O8XuHp2XYZmGFa7ZNLuaUEU+V5D/mpxr9HacoDz5A4UCbZI106Tjn9tA6Mw3vETtFxfazuKhomT34cIvKy1JAMp51S7ywwsxY5mGcXssEU9H4ZeAZNSeNuql1MAUA0bh1xA0PSm7cN/t6plCy57OAF+y7PtzyZwhd1GFB4ennMlUcG5q0CbqxMH9nj0a1t3rP1OuM4AnkVTLzf5+vmLm/kcFEjzC5PWaxbbr4H/FjxtYaAntqDVTCKqWKIvBd+67s/xwfWX+KDk6/xdL3DRIRxlF597G+1JI8yg0OxS0+hBiZLD2bTKK3OaXUGQAu0CnO17E8q5lpj8XzD5DUO/BiAK+0mC19x4Ee8Pt/g+afP8eI3r6P7kzCgK2BBWglt7IXxTWFyXTn3mVnOrulGJrtESszaqTbYB44rD5iBW5RHQS/i9HtQXQedoIxQqYLPpZgjejt9xxXI7mzHOMMHl8Dhob1/l/YbxYR/FNuJuhiJUa8XJ0qZD9NKPSBqQFvwXczTMMWoJ4XTi38FNS/hjcdvetqLnua8x9CBOlQdpmmja+V9gEwCGIFq7rPOnPVmr33WtmFjDW6/XEAhMM5hnaQMO4Y47hVAuXz6rPPRh0XXgqvN4cEgnksKPbxsEj8yvR869Ok9vcMcNMjNHdzVa8h4HJ6Vc5jpBKoq5KK4z5KlBJYYcGK4SfcvNqd984wo/Ys7HPIQWn5ES/vD0hhRyiXFObJrZTy+zBOfB8oM3AFYbMNggDAxxfDiDDx17ga/5+Jn+P1rnwfCBLhFuOqmzLXmp83s2Ha7U/Ej4dYzFfuPeH7g+z7K+6Yvc7m+yTkzY904JhKYsyn6mB+88wYjgkVwKEYEr4q7i9HRFEzExw5Zi6FeatNw7o7kiP6+Ub/okFelRdn3ylwN9tFgRdv2NTs6Zu5rnqxvMVdLq4ZWLT9589v5V197NzfcZnZzDc8gSpSdYhY6fP5HlAfLwOVh5tWfQ7GgVZj2egi0sc9tMXC9WRZk8/bjLhL+lyIOg+tRTBpbHDYIdAmVO3z+CORlFULHNwVAOkyjxGTaiG/DNCinTb2A6DnkxnsZv+5oHrnKznf+Os0jb6DjGZgZ2OCDej9eKKZTVl9f9JpvDPcFBux6GaAPNV8JxEeRSZE+q4EmQJchI18GpUSE6P9q1K7TZ4l+vyom111tyFse9iF7APQG0nCsnrUcPHSWyY1NVj9tcVeuom1T1LdD6vvs6pGJpnYxHZldaVWsflOC83L7LUsey6WQRpIXSxlVmgHYDI/JVSwHFI3y9FIOhGS0CwblYLhLLnjiiP2anDsehdXX4PWvPsnfevZJXvvdW/zg2V/icjWmwrIiB3hgLCf303zs8hv8gz/311mVjpWi+1kR6gjOQAbo40r5m1kiFL5wWPeqGfD9UmddZulHndsv4U/6LbD5cMa5GhzCRFomtuWGm9Bg8Wpo1PJ9m5/ju977HLfevcKBH/NzN57lkx97F6uvGOo9pd5XrNXDA/xSefDJrCQCXbI2m+VeHZGhmAoqR4MNyyC0FFVQssfll2mYsCdMtwcBAQm8Y56Q0MFTghwwXQRpF9yM8jFe+yuXwEmNPTCMX9li86PfxP6HKtqL1+nOOTAO9W6YCOdeS7R856AYpXfHK8B74F3SN9ShsiydHEr1WpZlOaVkocUzGqwAZIpQe1MMqEpOnp/cHrMhdol9l2NuNxFm5yv0g4+w+pWVwMZv3greKe5uuNjtS3ruqYuG8Vr7LguH+ujAfU+Xfl9uMx1uy5yhYM3LRuZsx41APfzeDwYmMuxUB9OCdGHQt025X99fjWNAlCYLRb5k+An/7/H8bz3PHzj/SX7P6qtMRJjfhbHtdsWirEpHLVCXLJsIjhoAOT3FEkCXgbo/Z9iejjlqv6NkleXfSyafsNRpb+FqFRo1eEI0yEItDQavhrnWOASnBk8AdIA2LkBjxbNlD6il4/0br3Lzgyu8UF1mciUQxKBU3R7EH3g6WTggQGMVXmJ6VksMjU/LpUGBLaXeJ/l/vYVeOWIan3q/HjouAW5ooB6oMwgn0E7yg4+W5cj6TOfjPsQcDfES2Y1vSVcWkNZj52NG1x+F9VvMnWO2tou3DXmppfsoyXNDFcyy7pyCW2wE0mKsHKTtLF/GJHssbS8TXx2VGGiQTdDIYcBO223/11eS2z77nkvv154liHRPZvjdV+AmQrNZIbrF5NURZtGgXXd84MRJSwLwVIXi9DLoo8M6Duqf7icx9WP2W9a087Z4nLjojx+BO0edJhbtAljbJj4bC6ZJLDukSkgZI7PUwxDMETALZbTrWH8Zfunss8y/qeIDj/80E1FaJIPTSUqjlq+0ZwKgmRm2GG5r8UzEsVKA++1Ad/n3xNpLQC/B/KihPQ0QLToA6yQYBFAWWgxztcy1jtfytFpl0J5rjY8vkCumTW20XDtMPuaheps/+PCn+Ns3Nll0q4y2DdVcOc6sksoDBvB9nPl3OJWYthTC2zBFdBVhFeE8RlcQKoxYyIsCM3wplqaVuZQvE1oAdQ/MaNCZsiNBucSX95ltm+Tgr9oHDxAzkXUpzDbm700vZI4CDDmO8wDgHOLD2pgiysVfeJj9q8r16S0Uh69a/Oj+wgXNvA2GvHlhUErBANE1yU/rmOPYDGWkYiaUAfg42ViWmTXZdxcIxsX4zLSKQB2DaTQmzHJ1D9KlJCBe8FXPCge/aQ98biz5WF8RwgEiK3/1eypWX97kIQPSOmTRIU0Leydp1eKeU1CS7Wd6WrJfMicg6c4ZbBnOGPqd6VWOpXEmL4gNpBi0ANrk65uGLHsE1haiTu1Ceykk2xTCgGlazc/CdP3qPSV4Vwc+G7dN40Mf9yFf9bv+Z8MXv+tZ/vYf/m0AbNUH7Pr//cRN+7X9s/zQx/84YhRjNJtUNldnXFrd5fHVG3zf5ud5rLrBlmlYEc1g7iLYJoAumXpZWu0bt7dghdJo/70tDp2rxSG0UQ5p1dJqMGQ2agOrLjqoFU8TwXkkLn8O9QtRKF4NO35Kqzay9IqFr2nV4tTwLY+8zK/pYzTX1zCdYBeCbQ/fTyoPFsB1SjV/PzYxQE093cTsYhaVCtE5SIc3C7xsk4JlPOsY1jC6jtFR8dL0oayJ9YbFRgvgVRDn4ks1TKwkne9ZfHI/0z5sP5QAzIkuCRrcfVL0VpJh4jUlnjdfI8k7kbJVrmXt1RWqn/8Gds9uonWH2Ab4hydrWhG69TFmUgMrpZdbP7tIbloQMqztd/lYaR06tvhRhY57162SVaeXnvS5DH+velDP8oZIdl3MTZjAYsn3fOCBEhkulOciBxxpjN9Kx6WcLgFcwU2UvUeh+/AmW8+5PrnX8ydq2theUB2koCQZdou0AnxxL9ltL+2Tfk7SRgrCTfet0i93pwUoJ0mjlDq61Mfj9kxQyH1/kP9FGC7MoYp0IE35HhAJS3QDbXzxDukgpF1az9Zzjn/z09/K/GGH1p439n/lxG17YWWPP/vNP5eZt0OwKGPTMpKOFbNgRRa87jb4cjPl9W6TT+8+ysJXGPE8s3KN90xf4b2j17lge2guVap2iUm3BUufa4XXMItIIBu217k+0LPo5dlG+m7p5ZFWq0BUI8i3anGEvwtf5/O10e0RYOEr9roxm2szbr7fsHV2h6ar2FnUx8LCgwVwX2PbSwEwikVtAzC44DYYqYSKA23AHBCyEEqoro4Q3yG+6jss9NNR5weadcnATZI6SqD3DLTtIrK9B2UlGibTdQIjSew6DxiqmJi0PV8/FsEHZioeIx1Cy2jXUn91i0X3FNQeI4uTt60BN7H4kQmyQ+HZYVLwS2RiaU3JPFgR7k+xMUhCsuSRPGOyEbGUPkrNNoUYR1Du2XUB8ssgvQzmcZ8chJQT6xdMOyptfnl2kK5bgdZKN/HsbcL4ukU8+NHJmxYiWC7IzLocMFJ7l/ejVg/NYLK00Q3TEKRiunIf+gwNGgKoeq2a3HcTO9PE+KW4Vuq7kZlrDO4zbTRYRvKR3kVpfT8bbd2gbjquwgAdI2OnV1vqA8+1tsaPLLI4uYRyxhzwkbXPUEtgwCU73teKNjLV626NfT/mWrvOKwebLFyAr6ltOV/vslvdYL3whimdm1ols+nEqPtrjDJoJ/kDoD1mCppAugRmi6eBzKQdJg4KJjPt1ld4hLmvi3PZKKNY9t2Y3WbMyDoePrfNn3z8Yyx8zZV2g796TNs94EjMyFglrPgsXeiRvq4wrZB8odWOIzico5bHwsHRvazXqZs8XzWdj6G4gR2k6V4ZVt7rhkusuvzmCcelujofr+UD+EM+r3gfFzfVXkM2PZCHVKwdYgONUjSE7VuHrVvEzzDeYReKsQ1qlRDSf7KSAnhEYyBPBFTbKC5qyjnhT/IL3xjlYzVpzYllF9vTQOttAm8Oad8l+y6BaWCEKyMFC4btRjLwusjeF2YI+qXh0o/7z+HYEPHpRhE8xw47CtGeposgez/FBze7kEMm/EPBTYKbct4tSTlL6Xylo9eou367aTTkp5Eoe3SF7FH03Rzcm6l8+JxysSdNO223i36wruZ9YEwGaRdtOp4cgh4Yd+zXiya4XqYVkaY1OjK4sc3SSrXvUFvjq6JOJ2paoSW4/iVXO4ewIh01nlo8K9JxyR7A6A2+d+U5/syZX8p6dAnIN1zPmudaUcdRsI1adTIopmLw2cC4LIekUh6TtO10zv3oC+4zmAutr4JEQjBsWvEZ2L0Ke27Mwlf4+H27nXDQjThoR9w8mNI5g/eGa+06rVp2usmxbXdHABeRx4D/L3CJ8Lh/XFX/loicBf4x8CTwAvDHVPXm7U8W/2pkf5E6S2SsuWgURYSCQQegLg2MOZueS6Kg9p4Y+VzF37hLDzCRgaSBwevgs2lc3lkAcW7wAokW9THxBRGP2AZb7bNy7jNsn3mR2WSbplrENAdBmFzfe4j9qyP+7i/8LNd+uQFj+M73/97U5vfctj1QSr7PHhQlg+aA+RXNlBZ0SEw2R29W/Y66vHp8atpkcE7H0rNRX7LSgpVnEhLr4JZAIAN5uc2CrxU/Bn95zvgLU1auKJObPqwaHvfdfqpi/pBA/RrP/fRP0+3vEldPuXjS9s3tUmjzid2WUgcFC84GSnpNOhkX073ZBpgryQtkMCjFv6nPqRBSJeQ+nbxIYlBWF72inGJnQ3uKLNyQaKQZWZx5pcyZOqpw44rF2U32Hra0a4IfDWcXo22QV27w4r/9n5h9ag+M4Jo5J25bwOnQEGoJidbaAlR98Xu574GvI5AHODMRfAdMFzswjvbn7IG5BPbWV1lOSdJHYtwpgCfVY1Fcx0WPlHRtHx/ozI3Y6ca8tHeGV37tMptfhJVrDjtLgyvUrWfy5ISDh4XZE44XnzjL2HTM3PHTx7th4B3wF1X1EyKyDvyaiPwM8B8B/1pVf1REfhj4YeC/vPPpEiBLz9YSLUtgGV3xSmkiaH+uZ9YQpnMi0XtDs94bnnn/FvUvgRb+2QVbTpGIS+xaEusWQq4O50g6ttgOoUGqOW50E2c71DhEHMa2aDWjW32Bbus13GQfZ0JkJ7So2WduGvRgiz/1gd/G2rs+wq4qP/aTfxZCopcfPlnb9s04SAdLbtoe4BNbpmfvJXNMngnpe3qBjxoAeje/AnQLKaX3POmZdWJtGeiLNLhhfUPwVqkOwio+pgvH+pHgOpjvV1Sz4MecwZEgD0xuCN2qwZ8zXPzwR9icPgJ7cz75D/9vF0Xkmzhh3x2AaXLVLGYYqf694VHzPnaRwD5KHjbNivr+aRyDvOr5XPGaAZzJfVdclEM6H2SymDNGOo9Z9ACuxgS2bYDahnQONTCpcNMKX5uYPya4bbqRYX5GmF0UulUdzKrUBkOm2a944oO/H33fEzQy50v//V/mftq2LLX4rEebPDISATU0TlOAbWlUBKjpsOhAAmm1ylOfZFCEXtf2mGx0TL7aYVuVpZBgxBxq2AmsU1TqfjfmRrPC9fkqL14/Q9dZfGfQzkBjsPuGM1+ErefnVDdnQYUQgaaFazc5M3sE267RbBquzte4PN1hqz44tq3uCOCq+hrwWvy8KyKfBx4BPgJ8b9zt7wE/y12+BErKWx30NOMUX5nCSOIyKw86XcGOo/as1vRgZAIKaDY8AlE1XzYkZnAuZBbxCq7PPGaSdm4EISybZLUN0kKlaO2p6m1sfR0zeo1bl/8t8/EOTTVHpUXEYhhxyz2CdRcx7mlW51uhVmYbV32Z2fQmqxdHXJYxu7M9VsaXuLD1LNduvTw6SduWbnZJOyUCs2n7dvF1v3TaIDDG9gbCxCqDfNTPQLIMUYBzBuFS/ijOlcE5DixJgskr2VcxQCaBoQpuoriJoiPP9PMVK1c8k+ttLw9VQrtq6caKG8HO41VmsHYOa6853Khi95GzjN41wV+BtfkIYHY/fTeBmK9iP9YgpfhRPxjaBeBKF70ob8TUBcYFDxwvKQtkH76VDd3xWrbpwb1k2Sl/TXoXpHUZCCTGJGRJRBXRLqz2PqpwKxXdxOImhm5quPUuQ7ei+FERjBT7UBgUoFpIfnZuDO26Z3R5g9qvo3uKrEyQqkJdd6K2VchyQx1HYhPd9Go8o7htP7noIcFFL0onc62j0dBQS4fBY8VRx6TzQSIpvVCEeTSKJObuNPxNnialHNL7eKdrOBa+YuErdropRjxeDQtveX77PK9d3aT62oSn//FN5MoVdHsHP58jVYVZW6V771PsPjFh/v4p83OAwPg6XPzEBvUrN1idVBxcXOHVvU2eWbvGhzc+x18/pu3uSQMXkSeBDwEfAx6K4I6qviYiF+90vKbgHYVB0v2c5D8x4t4IWEoaUCb+jx4mGoNqotxiXNT1lMBIWlcYTJemUBLOExhrdPFTT2UXGHHoRKnqG3TTV9k796u0o5uocZGRg4hFqLDyKHU3pu5qhJhDhbCGZ8j3YkHniAqqFUafoLNzFqOWq+evsfn6Na4cLHj12hcgOLs9fa9tG4yxPQBkeanT6LMcGVYJ3pkxC9k7IjFMm/yz+2ukmWLy586ue6W5v59I9WBUMPNuRdHoJugmip0Lay/CeCfJV+HcvgJfWdxIaTaEZmMUt0Udfsm+FOSNkDZ0tC+sXPWYj0/YftZTHRgWX74OsMIJ+y5CTp+jhpAOR8n3kgJlUoCM6ZJRUvOAqiZkwE/Si/UBjNO7YJNxMW63B11M1zv0LxwkzwroF3/QvJCBWxvRTSsWm5a9R020DfQzoDDgh3ci1DWMxH0wWyELFX3DRvLVrSh7jwibX/XM92/g25aTtq0tgLtkx3W8sdKdr1VLg+0ljciyTUz24gnbWrUZpAH2/Sgz9Ca67iXXQCAbMRMYZ0NmZt0VN5pVZq6mU8OXr19g+8VNHvlZmL4+z9k514BnKo8fL9h+zxbdt5zBjciun+HdCzEL3kI1izPgEVx/75SLe6uYxrH6muPVK5tcObPOWXu8/+tdA7iIrAE/Bfynqrojpc58++N+EPhBgM31y/1UM/aOclUViZ0me5EU7m+lD3foXJ60SJq49IZoz54TgLvE4H1v1BQNEaCmQ6oOsXs4u4c3M7w5QKVDTMi+5qp9/PgmurYTQrKTsCzxSTBCug2MThCt4yAQ2VQURCP3DfcNSNzXG6GpPW5+g//h5/8mv/87f4R/8DN/7q6jTsq2HU+3YhtwSDbJbLdw/yvBOwNwyawja84AHtl8HiCWjY0liCeQi+eyTS8hmK43qHbTJI/0fWHgK61h0FAbl7SqeiOhlCDjyaCkPgxStlEmNzy31jpao3zhV/4+wEsn7bvVxpl+lpNmHAF3A4CT2LZmQO9z0VB4exCM4mmAbaP8lxh26XvdukxicjCSCNQWX9tsVPRphfY6DdLQTQJodytCs6lh8F1qWwDTDD1iSgDvG6L4mPY14McK+3Ne+Pm/R722RbN97URte/mRfjQe6OCiuKJDJPadDYKFH3bprjePWT2zG2A0PPolUE77eyQbGB2G/W7MTjfmlf0truysM9sf4ffrmIwqkJ16x7BxDSbXZ8FWpgpx8QgdGdzEMj8jdCvSe0CV/TX1I983b7ci+HGFWhP6yW7FjcVqrvdR5a4AXERqAnj/Q1X9J3HzFRF5OI6yDwNvHHWsqv448OMAj158v0pi0dFbP0cACqjvwU/U5+jEFGCToh+THp6niMmQmDxHkg7sYi5qUcR4jI/pa/EgLWZ0gJnuYFZfYLb6As30ddrJG4TsiAF4rV/B6hq1u0jVnkV0FIG6WN0nPZ2InhKdfFULOhrfcI03G1LmCgtv+G8/+vf4zse+iw889n38gxO27frWo/mV61c1SQ8Q0BQ4I5kN94BOXv4TyInrB4bHgoFmg16SFOzweIjGxlH4bXpVqHeUyfYwyZabhJV9mnWhXTU945ei3vmm+u/LoeL5eReufXRQzZSV9T1e/Kmf4PxT38L+r79yixO27/TSY1re9+Cd8mHgML6QTFwP3saFRQKSFGIXPj+fHEfgY0qGNDNtHVqHACwVReaxn9nwDN1KRbNRMT9jWJwR2jXopomgxHoWbW2jDFIGAS23ay5HYHA5IKfIUe8dX/rFv8eFxz7IG69+Mu16z237Td880lYNtXjSXxs7l43W3DKQJjHvBOJzX+MwOBXmOspBMr0RcmhobNViopF07mv2uzGtGjpv2e3GvLq3ydXtNfjSKme+qFx+fkb15a8iccFkAN1coz27ws6TEw4emuLGoDWDfDJl0rABqUqwoAyJiIBbqaORX6i3hWsHq+zrfRgxJQyp/yPweVUtpZh/Dvxp4Efj35++07kCaARnVGlckBSEkC4x6dfRdS9ePGjWnQseKM7l/Uzjej/syIiCtOGCHGJbZLSHGb0Bkxv49dfZXf8qzs7xtgVcThtiqDCsInqWcfs04mtEDcYn9iyYtGhe8CpFpI/3Co0ffNc1cPD4oPrwuXSexMiNn+JlwU/9b7/AI1uX+APf8B3sH3zlxG1bjB8RCIMGahZa+G73029R8NGY2EshAbjdqH9hcym07BQ84yZhwDWtsPEVpZ75yCijV0sluLHgqzCQzs71PupuRPZbXnZDKzt+isrMrFYO7yPFGCo+uiV6MAvPK//d/0r1+AXGv/V74df/15O3bwHedhZBXMBN++uaIhAnRTzaJqzsYtre59rOusiuNUpVJhvkVQBrcNOadq2iXbfMzgqLM9EbxPaRk32DRbBrQLyELlfO40o2vVyKATnfagE4h6JHCc/Bi/LGP/vHrJ25xMPf+Fu5+tInT9y2BpiIi3q2Za7BY2TFdDlkvfRGseKZ+5q51vHvKLPnPTfJxsVUnJqsWd9qV3h5f4vnXrsAV8esvmQ499mGeq/DLMJzWQfWadHRHs2ZMQeXJxx887vCwhG2b5Nkw0kGaNVhu6eEYVk+Se+e6335w4b+t3a9ojpwrFxp2H5qwpXXt/jvVn878MUj2+5uGPh3A38K+LSIfDJu+xHCA/oJEfkzwNeAf//Op5IIyjG1qesddwYjEaCJyeagHIdpAoMOskk04qiHSYefXsOPtvGja0ECEY+YBlPtQj1DpzvoZBEXcJlEjTpQCsMI0SlGp4hfQTQscBwGf+2ZH2kNT08OvlVC8FEM0NV+5+i21QcJpR/CvdW8+PIVfv2zr3Jta86P/MxfQcPj2DxZ2/ag4nMmwjBHKz1P0n4+AbQEycHXZFnA10MAN00w1tWLHgk0rosJ5Mx1vhLcqDCSmkL2sBL/koNyTFK+lsGj6C5lRy8DVZAe2Jen/0kG2rnxArs//ynqxy7x4uf/GsA3icjvPUn75joqWfYJs0XJ28uQ9VDfaLhsPdWsSHgWF7UQVdx0Qrs5olsxtNM08wmSka/DLKVdhW6tMDIW78kgmVXRHglIymjQI8sR9os8y1geKIrP8xe/yt6v/xrdmYf5jZ/5G8x3rnLStjWE1M0OsvEw3Rv00gkEjdpFD5EQIDMKoB3Z9jyGpbdq2e/G/Pr1R7hyYwNemyBdSpsrrN2Cei+s6FPFiORubZTbX63gxoZm3dCuCu16D97L6TtywJXpP2vsu1IAeG4/D8uLpUi8rhsLphHq3Y7RDjRXaz47efjYtrsbL5Rf5PjH/+E7HT8oiZhqAGDTxAx8zpNXY4m6rCRH2KSBdz7kFomBOIHNOEQ6GO/gtr5At/ZVms3P4k2gaqIjjNaIViBjjN/EuhUqt46Nzq1KYj5BDhHo9evszpHqXj45n39IS6uFN0fol08L098km/QpoAxQ8dRjF/ivf+T7uHDzEpP9c4xn5/gjP/lfbavq9Xtu29RWIhmQg9Ztiqla9J8vXAN7owo9E4gMW+Okw86hOlCmN/qVe9QGsE7n8LXQrAcdz00YdM4EwiV7gaHr4MBgVnaZjn5DmmWE5uynq9pfrMx4uHHhKZ76sb+Gv9iwtbXPp37/X/mcqv6LuOu9tS/kQcO2wdsleWlk42DRfqnNxSm29dj9ptexPdElVejWa/YvVczPCvMLRUh+BmnNx4QsgkXIPcX1pN81gXAuyxJq8WwOMWwpdkl94Yi3f/rU0zz9//gxpleE0bbypZ/6G+zdeOlEbSuE5UtbhYbgZ+0QWmmoJbgEGvHRwNm7/jXRpW/bTQca9sJX7Hdjnt89x9VPPsTZz8OFn38V2i68hysTdFKjo4putWZ+ccxiw7DYFNx0adArBsNeHuvbbmBEliEDzxGv0QZV2g/K9k/ERI3iaqGyIdfS5IbHjwwznR7bdg9+SbWAkGhtQl7e6BKFCcDiRxXSRTfCxLaJson2608a47Ar19GVV7n5zE8inMfIKiP3DLZdRXSMYYz4kN1QI6CGcyZWHCSOHMQAEdBDS2tpYcCgGsLpVNLCDuVtRekgTA/CzCA+KYEwtSWFytfhJUPwBm6u73JxPmJz7/iIq7ts1tA/ugTSoUMkn2Hb9kmkBr7ZdghCvg7ueQKc+5RGOQTmZwzdRDKrLj1UcnDKEf7RqfOmdSuJ4Ls8tZdizDzkcy39iwMFYFbgl9IKu8hIbaOc+axwbcPyR5/8JJ86cesyAGc3lkA8GqGaa86m2E2gKv29C5acIxwhrNl4ZsribM0b31Llm5UObFrBRelf+IFcUtx/Ubej/pZyWf6+zKrLUx/BLnM9BrOkOBc1sDir1HsgRy0Wcg/FKbRqmEiLl+CHnfy7R+JYkcWhJFIpgjL5YXsVZn7Ep65f5tUXz/Gev7XNI493LDYtt779YRYbEu0uvUdVtmcUfTalNCj5W5zMDmd9sW8GN90j2qokHL4/r7fDZ1LNwxc3jsQq5p2Z3OjoJjXd9Dj+/MCXVFOccWAFqUzMhOZiKLwAJroQ9tkBpYuhv13QDCWCqqVB7BxGC6w8hPFnMH6KoBitEGxg3nEYlexbGC1OQpRBfBzXYahVRwDPWwrnaAJg99Nqzew6AHnKd5ZX+Yz7prSz8dwK+IrOONR0mPtIio/XENXlDaYW1AnOhI5qXJgV9NKG9MBdDaWNrIFXCp3QRit68L/u5ZXsrULxEkDPPAu2MXBNS02dWEd47AMWMwD29MhkCDBpG1Kcv9g/6LjCaD/cx7qdn7xt06mrOGEcxVD6NrBxH205Se9MBkzbBIOlnXd9bpEo4vtR8MNWo+H5JE+W4j7KezoOpHPdjmHSh9j40jHLgJ23HYcZ6bf0XI5w6bzX0iIcRMPiRBytdDiEAz+mlg4U6iitpICbpH8fuDGdN9lweauZsjObIAvD/jNb7F8M0aTiY99Nkp4s9culvlkaI3PJ962D7bmv67A9B7YZjbKbz+Euuf8nL6w0YwPwtQ352lsNLp7HlAfMwB1q5ngmGBs6LxIAO8aig4sL3RbRkCYbMX2IiDTB2xPboBXU/mmMGyNqETrCvFvzNXurTmTWUZfWPP8ZepMkL5SIsAGU1ZNWlE3w3uuELjLqdL3+yasK/VHJQ6bLQ4NohRPFl3Ozk5SYZ8Ya8K3BW0USYMf5sKoOwDuxaM0AHliVT4E1Au3GEsAXZRk4w1X6pk5sZaBxewbsGpPagf4Exc9HvRh5m+k/D+rQ9S+PXXiku7981fmySbuvkj+95nSsweQgOVjHdMEV0Cwcsmjz9D2tNu5rg6slJLYqgKKUYPoGPaIux93O0vT/yNtO2yXQjqNAHA4/k8Fl4quTEpvdT/Me+BGvuzUu2b2Y+8TRatWnYxVysE6TUrpGI+YiBt10amm9Za8bs1gEWLv2vgo3CWTENJLz10DfN1OEb2bWkO0KCXDzrMcOj102Fg/eB4a5aVKfKIPslqObJfqSiyp+ZHo31NvAwgMFcCPb1P4z+PYp0LPRd9ViKhuBWtEUYRaT7SQW3q8OEqeblUfdOswMptsLDFtbRNowvZPUlj73ttAhY8ZDogwinpAtQItpjUEplniDwQCQq0F0d0yOwEQgTilYUUQ8vnhD4uwen2QcLMaDk4qD+uRUxo8s7eYIuwhP2zhFY4CGr4AUBJPAu1j1Ro8CjNgZc3ImYbAYwDKoJr281Avzy1J21vji26YMyipKBpf4tQCTMLAX+9H/FhohyERpP5XgkWJnhp+//ixw8pzVSfaxi3DtEEEK3dhQLTy2CVKTbUK0ZDUL0ZF24XpukKo5rTGNZ7TnMW3K6tVfB8g66ZEySLnf8owlbjtkgCx/ziAmeWZz6CKihwaJo85ZBqictLy2fYa//OWP8Mcf/zjfs/JlRngwCyZ+0nuaSHAPbGIukjYF48QLuyihdN5wbnOfm0bpttfCakSLAN4Dw2/Bmk3HgHAkhp0Av3SXHaQJht5ltBiAS1fSsJHBAhnLElsmgsTtxJgLJAeuHVce+KLGyB7GvAysgbEhoKZIzyqi5GXMSC98DMiJerWoD8ajKsghSpfnOx7fa9SDqAQfQT2hTBBhAweJgCvE/dLW/liJx4e3NwBzHgTivyCMDC1yWvwG4YZ8IdUogpqaduSYrZ18YVjRwJ67yfBplz7eyYi4bMQ8pIXb4CeTter4HDROM5fe89DJux6c+zox1BcjE+mZS4885QtQJs3K2OJ18BIOgL2cqvoyX0h4Oes94YtX7xxsecdSeM/0KQE0G6tMkzym+ilxWOi6kMacx8w7TJwi53s5BrhTORKQl8F7adAb7luSCBmARvr9EJAfOsewDqlO3QqDBT3uuVjlxu4q/+y1D/LeJ19hIm2WS1JY+/ICCil7YGLfnbcxw5/QOYt3BttKr2cnxlzO6AoGnb4PWPfSrM/EyTUUQF+8H2lbgpg+cyo5L06/b8K5/jo5x5OAiuAmJiyusfc2kVBUDUKDmGuo7oOZgATAyfqPT8EMxH9FNGZkvAYfFlNwPuyP60FcE0iXaNIbJHvATVa0ZXY8BOUsu2QIDoOMammFC9cLhlI/3B61bpWlbfFtEDF4MbQjx8HKfei0kbn6kXBIShf6HOFxv5LJBdCM8kliGUsdOzML7c+RT59ehthZB8BQdtoUWHIUi06uVgYGS8sNGE1xPunP0b+ES1NeCderd2H39bW7acXjS6pSbJtsCI6/hdwkmtulTJRGESkMIE2HuPow606XOgqob/c9brsdAB/L5OPGIweIIwaH5WPDLKf3KDpJEas0i4oX3zjLFx5+mMdG11mVsKqUU8kJpVJxpOjLwLpbH1LQNt6iKjgveG+oUzqD0u6ixd+IOWlR7SSpDGaX8W9m05RMnf6ZFkDdn18zjJiYerrfV/t94nnEKSkPP1VYMUsc1AfHDKh8HbxQRCuMeuBTqDyBVufpVieIW2BbRzVrY6Iqwg1G1hskch/8u8VhvMfF3NbGK952aAziSa0vpPb1iHRokSxIk7adwFk0b0vcm/w5GFvT0/BovwRZbtvD4K3ZtRCSNS/5kQvR19yDs8JB7Visn5yBQx88o3UPeKN9ZWEEKuimsYOmGqaXVuh18EoDA+/CIOrG0Q/cRzkltWvBvnVJAi1BIjNuLdwXM8sML06uU2Lyg5NRDOb0AFm8JHlV+3Sa5GtuhWoBa684pteEF++rdRmYStSCH8Fiy2BbpZop9c1ZSBq1DITGBBfCkEAHOodpfWZ7ScpaZsVSdrHjSFiWS7R/KEsV0MFyecChvjs8X/5t+TmU9Sqeh5toXiHppMVaj1fhr//Gh/ltT3+Z37L5JR6rrwfJpBtzo1ujNt1g1Z7kOrjwlrmraVyVQTzdg3TR/XLJ3RQoZBIdAHZm1yXY+6V94jbT9iA92CddI2ek7P9K6wtCIFlxCIvDSNgWo8hNF1aoP648WAAXoOpQdag6jHsJ6bbx7v19B4moO+g7olE+cRjtMBrm8TYuaTaTpGu7oEHH1vEA4ov+nH5zmW2n1j/MusnbFUKnKHyFfKKaSVZJ5xlYHJLOna6pcRYghC4YQByCv7aT+3scpfaWAmpCZKRkICy9RSCx7wRIitYaXDrHHmcEuWZzJ07shLDLoHMfWtw4jlvllHUZSEzSAYt9BuzniPvL56ffV1SHx6bBIqddOPzy3nvjhvYJ9ytoG0G3k2JgilHGlAs5S8pFTlqhSW1I72oXDpU+xPuQbHKUrnw3MslSAw4w/SimvXTu5c9Hzgi0Z7aHonZPUJwLKVe9MfzC157hua0L/NVnfmqwj1cT0t6Ij59DeH3jK+auZtFVgYGr4ONizyarq8d4jtC/MyVDT/2odA/M59C+P2X2rgX7LtsoBSK2vri2FvKJQtk3veSo3NS2vn6bSCiCgglRjKoKugM2uBXmCksPAMmXOa1FGVwEFaMeY3z2VEmeH5opUg+bvcGSwM7xJI0hSy06OCI/3cy+c6/32XMlSDJR6ikBnDLZRDE4SALz2BIJ+CXVxKDmPh5HBOLECtwogkYpe9C/jLmGIZdAkFBs+EcVPH3UGiSkMhx0+PTylmsv+rQsjZTsuGga4vd04SKwYdndanCt8haXNMN++/CFC3ZkzX1q+eU9acnGJB/y3HhluEKRITg0G0WMQcu89Y7+ZTUh7Wt+qY8BzqO+L0sfeeOST+CRPt3HldsNCrerU/Es76eogrrg+orC7MaUlzqDfUYz47biByvmODW0Punfhs4HCaX1YTWb3EcLt86y35QOX8aljIxDYpA+Q9LGlWKCH3/QDO4mJiJLwWR5fx9iXYbGz9AXxBUAnjzfbADx4KYp+V0+qjx4CYXe+xpxGOnCA7QSFtwVA871eqaA8R6jMUoyuu9Xfo5pXZhmaEdHh0oH6vpMhyWQZsNlCMxVyAij2U2CaIQs9PH0sMQVLB2C8TR+HLDwZCxNPuAJpUIUi8ZtGkPcw8IQHSoreFk9cbum3NIp73Q11z5YwSV2EFPASn9baZWbwMIVRp7RakNdO9rW4uuaKk5B8yCRGMjSoJCMLykj4wCcY1OUGnpveR++MKWWPfB0kcLIVBwPw0Gq1CE1zkLuN9BkuahRJDJvXwl+ZMAYpG2hBWxYOpDOM1iERINrrNJg96vEH3r7RL4hBu07ZNGat4dd+x9LLVvLcw0qzyEmPrjG7Vh6OlzoF5aG48H/rkoagAgM1AmuC37fVjwT07LrQ/4Tj2BUM/tuo/juvKFxlp3ZhK4LQB+WvgvGb9sW/bVYsDutF2o6ch6f3Ldjf0aIaX0L5hxv3DgfI8finbhAMnNJ+3c+uL0SGy+5Snc+z15DAr/Qb3ThkDNjfAXNxtsGwF1I2Yqg3qHGo36EaZvw8IwgLkYxJpAwqUEV8Q6TZBRxgSErqCZwDiHtQaXWohMGYPURmDUiQKl0J609+40PaGNCop7Nl8cOKW44txAf/sDPvKCaqvGaEuqtgmg/nT5JCcmTkv98yC/RTU0E3JItxgOk/66VQq2YkaOqXJjhiDnMXIoV0QcAnBM56YD1pxS+fSdN4CNZ606sJb04Jnm0pBKZdbnIcUpstQwcieWH88XDIy+4n6LxPCgZbFXAzjVLUClBFQCdhvVEYypjvKecKqdUyYdmGyUbLgDbL9e/fIaaanj8PoN7OQYP7haEjyTk9zM+dgL7VWCzXUjZ6ieGGy4Yng2eRQTv4HkSahCCdyTIJ65i3lZBitF+9mm64LKa1hmV1FaaZnsa4wYCGw5rE0CS4UzEHtNqfmZAAGAFfJGvvZRDIkgDRR9IsogJOOcUuhihkI5NRlERbOMBy21WVHvQAO5RFqimNfg6oEXU51kg0IM3ILHjpxSzIduBC8ZM4hJmncVVQb4QiavbD+b7GhmvL+BXit/SmxkHgoFeWtLGAsBzXSPrJjV8D+y91t0fSz5DXwvRNp6vX2vvnosWnTC+/Dm0nXzpIUNLLoaGuJ60YitHZT2VdThrgtucieH5yJAZS3oJegA/JFfk/jx8w8tIVtHIIiHrkYfurQSpYmCgyH2SrfuE/qPI4XVA76ccAbTJFNJ7pMSXUCRmavDDF5tQZ436uGnAFeuDHuVJcqwL4VGfy7oeJ40U7H5wrA6/H3G7hy+hx/x4D0U8mFlYaQkPphX8wuZAnpRatsx3Eny+Qy7vzhtab2idpeuChKKdyc++DKLJuJL8C3KO9oJdp+UEbZrNxRlcaexMA7DTMMuiPzfE/hgXl5GiT4Qb0hCZ6yLjLmZnuZ+oYucOlRHuNrDwwAEcPwMqRC2GGQYTX26JHdv0ub6FkPRKHcYnz1CHlZZKGsR2OFlQH0xw9R6ucijusCFRUmBP2K6awCP5gHf0areLHTJNSTXuV4J//3v4U3ioSD4y7BcHDcHl6XLYbmLdOio/QxCcuR9Xt57N+ZHBj6JHSgmSiSgkgI8+3z7+NbVjPO5YnyyojKe2nuubil0EMDLR5Smza0ksZyh5SLGwdE7iw/Day9sG7L0cAApwCFGPMvgsRA+IZEwa5B9TmomJEtL9ieBCj6kDV0XT/9XKIAsNL6Y10HbR1dX3rpEmpo+tK7DCaEdDfo7EspbkkSRnDLx+Cja+LDGVs47bAutRv5VJlpb2GYw/5e9vgm0BD9W+CVJeBdW+oCZEXFrx2BideaCjDN4pPezMhWCeeVvRNBVdU6GtQeaWbhoWYDat5sRjyWvJdD1Y9rNKjauCxc9xwejAwJc07NhfkxSSGygZsrUA6QTe2eVQ+37RuWFbGANdhzYNdncVmNJuHs8+HnAuFPAsQFtU6sDGBfAvInqRsFCCx3RdZlhBKnEYcVS0mKhfe7FR+6uoGotqG+WZHl4lGzaJXiRdllYKTyOCJ0h4K5O4QtovanPJ/Q80n6M/vnQXjIZM0SzLpBCfcoaRe790ONsGdqsrJ25b48A0PrRZ61Fr86o6OeLSkHNKAzmM3o8UmThs5VEVGmdDHmZn8BNFVLCLwsgjwUXvSCNlHih6Rj2QWpYYX+n9Vs680nkyWOWBKLxgvupnA6bJFD0cGgOBREOO8pDR8D5pYlHnLKUIMZUuva/xvAkvpTX9NUXC91RM/OyC+6F4yc/kjmVJFlk+6igf/Nuy96NYdzlLKwhA2iFfM5KA4nU4URENGS9NE/Lu2EU4+d9/7Tv5Lee+zNlqj1Yte25MF1n5LMomB92I3cWYztmQ37/ywbhcC2ottlHq/R5gRcHECO9wfxJX1DmqYj0zTzEF/W9JpvFLIF4Actv1xySwLmICVDV8X5qd4TzaNMisCcvXrR8fS/+AGbii0kV9OERQqhiQGaId4qsolQS5JEzRXQbxBKDh+LigmjdU8xHiTOTIyQskNab2nXI5FD6xxMTEs/xRukWkcyXPkzRy98iVPF0kX6MXjpOnSzaAxutKriOoOMQL4m8jdt2xaaMF3MRl5mJEYhdX3enXwtTsTRES+yhYjX6BIUjJecGIYI3iVxwqJuf4SAzaFO04MCCWfTHdbvru4RB4FMcs50jOx6TdzdJ2LY4ZMMT+S0pH6yZvAoAvg2e0H/QReMU/6JlXwb5yiTnuR3secabvsuUgv1TlO3qW3Cvjjtv1iH0OBfoUM87S+UVSXe+naPTHjue2TWjba7NVDvyITQ0RmJ1aFi5A1sJVzF1F44IOngixAGI0pGadxPchSSBE9ps8Sgh9RbIEsnTfRnovkTz71AGjlq6YYSW5N4G2c/3Mq+vQzhGiwDT6fHt0aWYo1oRtqkjbhfqMjp/mfB3SyTaoeEQrVJog6JsW8UUK2RisI0KQT3CYPP+P/4uoLM4w2p8iLgZQqMudUqP00QNwCdghuRMQJZzEkguqUQJ++b2QTYKWG49fklPILofpmpD+pzGLU6hRF1iuP7kGnqUF5/E2AG5g35J17uzvnda7rDUE7lTay8miwQ3LemrrGG/NUVvnYJuseSYmOqhE/Jt+j+w/6+Q+3/DwpT8GXNSSo0rDi5P1KQa5JHwaaONxaaCQcJwbxcUS7rMoDKNZbch/krVQT8+2C9AOhrECxFO/6zzjGw2mOeI1XKpuAhe9XfstM+ljTnnot4JxH7roEZ/LKA2VGBd0nyBuF6GP+BpsXEXqoKk5cCPmVZ09TlqNCzm44PudvFBUpQ/gATBhEYzkQ50WHc46dtKwu2JaqL3vWJiwR3adjZAUn7V4jgWLbuOyjd6jeT8fADzJJqpoAnf1DCzsddEX2g4E7PT4LKUPGMA7jN4kAFiFqg1plae/wXh/E8skpEuJWrdRj9Eus+MAe0EDF42LFRuHsQcgDWlJ1DINbI6GRArpowTrNKL6KHX0DsrhcZYh977/XLoaDihgSRn7zp49TrJFyuadwmxkhPeb99W6KQEOENyZvDK90bF/sUJjqvEcbVmBH3uSuCuiVJVjddxgRamtQ1Woa5df7jxd7semXlsvpqjZWKSEHBmRKQ/06QLMh0nD+qZMemXa5yiGnmY0A804M0TJht1qwX0VLT6Uk7l2HfzN+FsVX0QfG8frUDqBHthVwQX3w+WVXkrZ4kjPkGM8ao5i0vf0+yG55OgdB/V8E6yYtoWVq0Fi9FVcHUqV+cfO8YWth3h4tA1ApyZHXO53o5wD3Hmh6yxdY1EvqBfohGo35GtP4C2u924bJMgrZ0fJvS8PysVzTEBtoqtzAuSkczuHtu1hdu19lk560ihgw6AjIuGc1iJV8s0Mx3QT4cKZXb56TNs9cAkF8YXbkw+uhPUOVmdY3/RTDqXv6BLynwg+r3mZ3QjjX0OSVgqQzcwbeh07seUClEuJI7sLEkfjklH351aGAF5wkv52JTCvNJSgSTqJ1JTIKHWCM1t09fFLJ92xlBjo+03igu6dVtxJP4RUvgT6ZBVjlcp6xtYxth3WhNDm2joWKXFTCcAFme7zOhTfYz00u4EysNIP6lsCcwHA+bej8KHEjfJznHWU57VzT3WbcOQTFSEktxoRdVXN3gjJuJX6b65+klPSgFXkUundH4tbHMgYw8sf2Vx3KaHcyV3wuN+Xg1vCteVoL5l7KUrM9d8TAnHC+Ba8cbDOtc21uIp8zDiYElrFAJ7OWZwT1JkQDOTDP/H9rKcE75DUXTNByLJIkkkSKBeSiDrpDeHie6btXGDaUcvWpu09j3yyv+nAiB3+JjuIC59TxG5V5X10bYXFOfg9l77MrxzTdA8YwPO6NZENO0QMWoPVA2w3B1f1PTLhq2jQwq3D4DHiMXRB+hAXVG8NRjVn0nKm4YGUkogOADjJIT1ghyouv+h91sLDAN7fkS4fKpLIYdSCI3gnEI8hkCH3+FmcuURXPX5/rRvHE+OKdTBV6SZCNz3i1sINILWnqh2jylFbx2odvFC8Ctv1hFkdmNFo3w9lkwzYQ3AehCkn8B54naS6FeCt5bHpSz+dva2Gm8bE5FJo+scqXqn2O6rd+6Tg8VqksSZOotw4eM6YxgW3sVTiiy2JcVeW5D6Y7y0tdxfbS/tJ2fCa6T6PqNIAvG8DopktH6LZcCRiL+0bwPBw/QTCjO5+ADxhmgtgZzrQNmy7dTDlarPO1DSHDvPJ4B6jLxPzRiXk8ilYRqlzB9e99F2HRsjIspe9h9L+uU8WTJuuC4ZO59D4OWeDG9yniafoG0vigC7WBs29smAtVJbmkS1mj7b8mbP/jv/6mKZ78G6ENNGlr4oYGxJNddZjradKWrgP7oNifQZJq20Ebhf+ooCjUo+NOcTVtmQjZJRLQlH6hR7KfwUzl3C+tF1KoC+AOhkyl2ftmmSSuG6YlC4UeWWF0MG8GlRWUblAU/1F4BKG49e+u9tinA8GG0ltBtVMcVOhW9HeI6XSwL5jfpLJqGVat4xtx1q9oI6IezAZcWOsYXV4N5RBBoChR3/O+y+x6oFskqobp60aUysMVvkpvFkOXbs8lSGmdw3BF6PrB+Fc95FrfVBK1q/heq4GrUN+EzoX9E7VMB1O9+nLKUrPwlObmk5iLEO4RnmZQ9c95v6XjZzLhkggPO/BszoC0IvtiXz0A3K87zhg+FFBx09YxGleVizn/VANSwA6kw2XnQ9pY1sX/rlYx6ax+M6ExWDaOCh2Eh0DYlDbojuWdcui7RlzoW1nVq0KTZtBWV1k3N5nSSQBvZaDeHmPRhAbZBKMibKJhO+pmADe/uw6B49v8H1/5Rf5sc1P8Gh1vG3srgFcRCzwq8Arqvr9InIW+MfAk8ALwB9T1Zt3Ok92sdPwLZy7RWQP4SAuixZX3tFSOokvQPyXDG4qGo0X0Yd7EEmZaR5D75CS8mmxPxEpSqpRgnvyHSnBe7nnDjUADREywAjlLJ6zdPZRhIcQVlFZQ/0F/oe/8xE21h5KbX3PbStKiAjzoJUUbLRfuMHX9PlODCGgwAb9W0Qx8Z+NfyFMU/NtZaAYShS3rVfpepXHrwQacWYiKVdNNLgm8JalQzVdP24sSY5C1Tiq3aYHaw0+7r/8+R9nPNk8cdsObyhcS4rvKSgna6TLXifpZV2STzR5MkQD7TFj4OHrl38ZAnUJ4ofa69hzHgbvY+yXwWspR02Bes9rf+1v0l6/EW/1ZO0bsvrFETEWu1DmO2NeOdjk4ZUdGm/p1NBpCNxx3uC8oN5E2SRVUvIgE+QYP/DJDrwugnfn+ueWDI8QALnrAmj7wuUPeuA+jmlDTrMQv4Rm1eB5JNbCqEbqGqYTmsfOsH9pzK13GWaPdJj1lo2NHf7Q5ic4azquuDfHiPnngc8DG/H7DwP/WlV/VER+OH7/L293AiW4EYLv3dDQ6HGyh8g+xo8GoB3+elJ8dsClHlhDOH18YXTobggUWnfvEy55W6zVEk3sz38YjtO2IXSXy6al3QRlgrIOjEGmoE/g5DEa+0EqfRqrNdZ7Pvax/xcPnX2cZrGbTnjPbZt11xTlF/MKq5X4j7w0GpYQthzdB0sjeHoutXG4Qm/UQqJYao5h4M1yKX87CkhKiUDihZblgLJZi2unHMsafdLt3FFd28VvrOCmNW6l4mvXfpnJ2Uu0Pkso9962x9W/BFMhgAEEhlXKQCbIJZq8U9I/0zPao057W4+T5X1uh9bH+R7mYIijEX45cCXM3CAHXDlh9+d+kdGFh+iu3Ui7nqDvkvOp56r6kHvE7Ix4Y2+NrfEsMvAE3CZLJxDHyzC17w3raabc+RCyXnqLqAZAL937IGwDUB/0bBgCdvwtV905yhdIjDB8ofpslBoNoLKxjj+/Sbs2ol2vufnumt1nHB/+9k/x5x7612yZjlbhlh/xqeY8r7dbwOtHNt1dAbiIPAr8PuCvAP9Z3PwR4Hvj578H/Cx3eFAhuHxBiHwMq3GHvNoeqbcRuwt6hmykFIeYHriTt4GKxPWow8hofcxSiBIyCUXwHgTe+OJ78jNLf4ZUzks0qAym7dEVLJee5UEF8foSv6uss6i+B29+D8qTiNpgydbg1jla7LC1/znqV36GVz79k/yJb/pG/ukXnksnv+e2DTKBKUA1gnnKf5IiBmO+b2ofwbt/ub2GpL3r1ZxaHA7Der0ICftTuHdmd4F992HIS9U5AjOUKBlIWIG79FbJoD1gk+UzImdlM50yeWOBmXeI94FxuzCrcOfWmV+YcP19Nfrur7L733+Sf+8vfANf/J8/zfarJ2zbI0qvu4ec6b422WhFMkZZ0wN3NFSVqUIlLkqSGfNSW+V2McU1l0vpXxhnpyEobLmy5YmHh5eT0cg9Qmphs7RdCcvKzYXRLaF+7gZXf/VzPPK+D/Oc/3w65b3jgoI96DBNhx9VAw+Q8fUJ2+dX8GeFxgc/8IWztEXOE4iTHlGkM9GmkCSUyMBni8y6ca4H5K4L353rDYqpqdquNzo6l7NLipH+c1XkLzLSe5EAMhoNGLwZ1XDxHF/9wxf4PX/4l/mz53+eFYG6kBM/1Wzwl1/87Xzh555m60sh0CsE0P3ikW13twz8bwL/BbBebHtIVV8DUNXXROQu1qxS0vqT0cIE0Z2vne5gVnaoo3QSXAl97y4oijFhW1gQIvqL46k6ExcOUHzUuZOuLYfmgkNNO5TeRzx5iaiCF9Mz8EPuAenNMuA3cfIMTp4C+whChTBC5RLGP4TtWtb2X+Js+3lqv4Nqg/UN42abH/vVf8Z//M3vZt425bT7BG1LZB8ap48hzDwsKaa4sdCuEbxPonRiqmDwNdYzqhzjqmNiW4woY9NhRHl05RafrkI0pmmVQx4jFJ91iCe5ycONIAlYVDHN0vG5aaU/V2TX1YHDzoPfrFYmMFfn8ZOKbrVi++kRN7/Zw1qHOsFOWy6cucH1/+af8gf+83dhZns8148wJ2vb49g30KwLiy3LiomuZt4HIIjuhOI9WBuAPDdMAHMz7/KCA4cA+iiZ5FjfQo7fvnza8pWIJCUM8uUPoU6mFUbbIWdLWhHJdCGJ1wsf/2me+MD345rBSlL33r5OMU3XD2itz0bF8S2Y3woBbol1d87ivcluhN6nVLQSoSWQA281tKEHbZpe8nC+Z9HR+JhBvQBtdS6QNokufmlRY2sLCa1oc2N6nbuq0EvnuP6hLW6+B+SJferasTpp+J2XfoXfv/VJrvsx/+/tb+Effe5b8TfHyEKwc2F8Uzjzime8nXKpHN90dwRwEfl+4A1V/TUR+d47PozDx/8g8IMAmxtjAoAnFpJkDcWN93DjPQL6pBwl0R8zAbmkv4X8glJ5wbYVprPRp7r016bA6iFoHzUf1YIKDs2USaOsQMcgGyg1UCOcw/MhnLwfb95F7Tqsbxl3M8TvUbd7nNl7nofmn2DsruNkAXh++eXXOTsR3nNmlU9emS/V797adjzeGrrppX28Us+Ubi7RaElm3sZ4jNFgPDaese2oYu4JI8rEtJwb7eGnHjeq+sQ+CUOS//WdcGPZ39YHFn5oNfMI2tmgGYm9WTjs7hzpPN3mlG61YnZhBV8Jiw3h1jcpv/c7Psl7Vl/lZhdS8n7l517jKxeUd79/zFd+ZT8vw3XS9rVnzvT6cqk8iNJNhXYlbow6qoQT9KlGjQlG9tILhbSwg2IbobldFY8SpZcA+3bYng8r6r/8Y8ioGGdGbQD3wLZhtBvyiaTz33rpc9STNda2HmX7ynNHnPD2pWzbSb2BxMW4RWJG0uinPdpW6h2T3QeDK2FcxNibAN7RbTD7LsTXPqxhGmemkWlnPTvNlmLuksTIB6A9rG/v7pcMj4VcIuMRurZCd3EDN6lwY8P+wxXXvrvlj37o1/jPL/wiu1655Ue80J7nC4uH+cLsYf5/z30TG78wZfWKp9rvBjKSCuQl1o4pd8PAvxv4AyLye4EJsCEi/wC4IiIPx1H2YeCNow5W1R8HfhzgkctrKlni6OeGKh1qb4LZwLoWqx2i0b9busy0RcPnFGqXohmtdKzvbuGtY3vrCn30JeTgHREka1d9Tw68MK6Mo/GcJAua5jdWMKjUeP8Qzr2bxeiPIHIRK+vB+AaAp+4O2Lr+G2ztf5HH/S/iNGj0VivM7AxwBq06OrPgU9ee46OvvMEvv/pvaL3jICx++9RJ2nZj41H1tgjJjiUvsuvBT4J0IrVHjFLXfebBcdUxMh2VcbRqw2o5wPl6l0tPXOdKc55zn/O5U+Vzp7okzd0UzZYMekWkG/TH5xLyemEbjz3oqF+/hVYWXRmHBFFR23cbE659YIVb71F+6MP/imtt8A8+Ux1wvt6lVcvc17wy3+LjH3uJF//1TT71cx/FN45mv72ntl1u3/Fjj+mRTEjIy9HR9nqqupgmNEknyR85TwQiaFjD9FqHr2pmF5cuUBgLjxzbI2IPZJD+9FniGezrwI97b6TynkwjrLwmjG/qID2AKIx2AplyY4O3sPfGC9x8+XN84tUvoK7DtQtOigubk4dV5ovoRdbLTdK0rF5pmZ8dsdtMmHcVbWTfbVvhveDjSj646PctaSYR1oY9uGgQt8LmlzVIIplE9D77g6hI9UBw6TO27gNsErNe7stVhUwnzJ++wJVvH/On/uTP8LvWPsN7RoYKGxNweJ5rDX/x+T/Klz79GE/8iy4Ptg9Xwv5DcHDBYLYM1UypFoqd+bgQheZ38ahyRwBX1b8E/CWAyMD/r6r6J0XkvwH+NPCj8e9P3+lcqEcI061ggbeoBOXaVTO68QwdGZhH1m08VoLbYJZDYvsZbYPEIp5KGqxXrAOznA42GxCgp04GqMP39HIUskjQuivUbNDx3SiPgr0Yt03ArGHlIYyHurvOxeufYEVeY2yuh8UUZnPMwnOw9172uEQj63g7Cswdg7Yha+Lve/K38wcf32Nz9AU+s/15/slzn+FXXr36VeDf3mvbKoR0nLCU98FT73uqNRN8ZIXgcWI8k1FLbT3WBMbtY5jyRjVnxTSs2AWXqm02x3NeH3vcyAxZXiGPlOUoV7bkQORtqINpSsbRu3aJU3Rlgp9UtJsTXv0tY+aXOkZn5ozHLRuTK1yoG37++rN85uXLuJ0aaXukiqEB+N/0TZz/bY4PPfsi+7/xAl/4nz7Nyx99+URte6itl8YfN1baFUFXJtC24E3vz5u9TkwfYOR8P7DFzHghI96RmlLf0Ef8PjCCRrkgXK84RRXJTDRYp6XgbAurr/ZeSqaB0Z5SH3gm19swGTaCr+Mg4RU7Dxd498O/HXnow3TTiuv7X+Xzv/T/wTWzk+GCc7C7H8YcEajr4DcPVLst9V6dA8ucD+lju9YW7Ls/lWmS7h1mDzkDR9cN+2nSupM9whowVZBHkq0CAsM2EoBaBCZj3IVNvvqRNdxTc565dJVpteDy5Av8zpU3+P713wDgF+cr/Gef/mPsvrTB5Eq8lxmsd3Dl20fMHm+pNxZMJi0bkwVGlNYbms5yaz5mvjNm85MjVq94pm8c9oFP5X78wH8U+AkR+TPA14B//86HJFc/ItNNHdLibYe3Ldiob5PymCSPlCQG9fq4iavrCB6rio0acP+YpGAuUswxE/sPhklRwesKygpqz2G8BWq8bOH121B5AuUi42Yfq3MsBwivYboFVbvH5u4Xmeh1RuyBn+D9GNeust88yb4+SmPWcXYUNdDwAhvfUft9Kr2OsIZ0U/pIjhO0bZIkCABdGqZM47EpY5+El9gYpbaekXVY47HiqYyjNo4V07Bu56zbGet2xlq9CJZXY6K1Pz7NApyLR1zUKQ4YcTUTcQqjsGC16TQEv7SB2S0urtCtGLqJwdtV3EjoVoX2Gw544vwtHl27BcBeO2a3HfO5Vy8hL01Y2Q6ZEvOKQTYYXNt1pZl6JrZjPljO7iT99vYlXVNHNUZiyobCGHZoxkGSj4qZzBFG4H6glMH2QfH9W+RNQRCN9gwesDPJ5xQN2rZZwOS6z0nGUmpgO/dUe22+tB/ZbCA3bXDJkxjNiA/9q7jDE+ECXVzmMEUkAlQW03TYJujfWsomKnEZNpPdBonAHZZRS/nY4yWc6xunLMYEw2PSr6sqg7YYg26t022tcPDIBG8FNxZm54VnvvsF/sTlj/H9qy/zXGt5pdviucUl/pftb+Vqs87XDs4w/8wWm68L41uedlWC1LYOi3fP+NDjL/Ps+lXOVvuMTWjrha858CO+sn+Bz40fYr55jmom2MXxMH1PAK6qP0uwKqOq14EP38vxgd1WhORNNnammKjVKGod1jbB8yRFRwmIUaxpo194h6XFmLgqj/ggo3jF+iSdWPq0NKFIWvwxyx3pd0HcGt69B8d7cKM/gNgpgu33UI/4jouv/Crr3RdZrz7FRBvwFu1q5u1Z9mffwI35uzgYX+wHpzpNQ4kdKbBN6zrqZp8NeZ3z1ZexjefbJ+/jW977zfyO1370hG1LzKkR2GjKcaxG+kyCY5/9vq31OG8wVceZ8QGV8WzWc7bqAzarA9bNjFXTYFHOjfcZrbTAuI+ULPTvPnSdnuXE330tjGbBP9scNGHV9qpnP1qHGdgr31PTPTXn/Y+9yredeRGDsufGfGbnMp975RIvf+phplckG9KmiXSnhxxZpBtBs6nYp/f48+/9Bc7aPba/d5Vv+e5v569+4OUTt22humXAUwG8ZPc6HUfW7XxgfBB8fY0lud4BaGXj1NyQQrUTP1l23cvXTsC89HtadQag29QlgFeS58jml8PKNDm5U+exDdiFZ3yrxe40uLVRZu5uUvXh5y4SJw0Rp2Z/gRqDji121vKQeYQXRmfDFU/SvsYidY0uGmRlQl7BSKo8+O80Y1oXNHDnovTqBRoTgLs1mEbCak6d9Ol9U7t7D3Xds2uvmVmTWHfSuQFE8Oc2uPKdW9z8UMe/+F1/g8cqw1T6jKEeZdt7/s+f+w+59anzXP5oh517fCW4iWH9Itz4oOPZd7/C91x4jrFp8xqfjhDMlxZobtWy6yZ8bXaGX3/tEdxnNrEODh4S9i9X8M+ObroHmw9cLK3ZQmgRPwt6k3iMGjyP43kST40RRSQAtDUNQshTbaXD0mEkMHJjOoyNq/PENQiNhqWX+tKHsAfb8QTHOjP5XYh5FCMPgbGorqBMMTqlbhaMZzucff3LbI4+S223UelY6fZCwMHeRd7oPkDDBp1M8b7GuwneTsCZPrXoYO09xzn3Fca6i6WhMg2qhoPmHNv1I3i1y0rEPRVxSr3dghVcHTu4EXQk2HkwlElr0JFHamVcd2xM5tTG0anlXH3ARjVjxTasmgVb9oAte8CqNExtGwB/bLALT1oaKtl71UpYus0rdqGsfG0XrQx+FPI6SBveJr8yot0cMztfc+0DQv2NO5xZneFU+B3nv8RWfQDA3/3kd8GtmmrfIB2MFvHF9PQpXNMswAT/9vYDe1w6s8vGeM6FyR5OhZ+//iy//uUnoE3ulf/0PhqY4H5ZaM5H8LmeyZV5LXSJkYtAZdHKoMbgK5PlD0mDUgnexV9JdgYTFg+hKrwXo9Gx3hU2n/e007gGqgngXc2V+roLeePjPaXl97Q2SBeimSV5+0SDsrQOabp+4I5+7jJr8eOaHNV4wqK1xT18HrNoYWc/6NJdh1SWm+/b4Oa7hUfrFucNrSOsl7mw4EJHkNZmTx7xEhcoTt/jfa4WufZFBiwbY9DVKd2Fdb78J0Zcfvoav/nCC6xVL/D46DqP1dd5rDK86hyfazb4Wy98mJc/cZnxDcG0MNpWNhV2Hqu49Z0LNrf22VqZcalu+MBkl/PjPWpxtL4Ky6XGkdypYddN+CfPfYDZ9gQWBtOYsMD4Qx2XnrjO2IZ350vHtN0DDqVfReXbQTuQA1T2gDlIi+q7UR7FUyPakNPKFg5+kPpxb7ERFGMcVhSLYPwIbxITN6huAqtYNvCyjjLFs46aDwAPo5yjbmdM3Q1q/wbIK1TNnNFsl63ZC6zOryDS0JoxrWyg3RTfbnLQPUEjazgZF+xM+5e77NNpm0+ZzjzdaEwnExrW2ddzaM5OePIicTURi4/ekrECcVFdaQy6GmY0lfVUkrTv4I4FKTuLZySOEY4V6disZozrDl8JppXs7ZLWEPSjfjFl08TZEx5jPM2ZMfuXpiy2wvm7lcCQJ++5xbdeepmpbXn5YIvX52HauduMqV4dU28L1QF5kAAG7onLxRjFGs/IdFydr3F9tsL1W2uMXq0x3TEH3XMDA2iUP/o+mAc0Qpur6iDfRdoO5GAeTYyvMgMpaplAZxWldIowvTeIXQQQER9mPHYOo10YbTtGu2FG5usgZdmFx84dZuGCd4ORzLLVRlBO5GN5ma8iEEZXpyF4Kvrxq7+/9m02DC/97s3g8rp7jvF20OHtQrn2IZg8tcN6vWC/GYWcJ1ro3hIbTiQ9nv59i7M1FZDptE9xYAzu8jnazQnz8zXzM0K7KjRbyu/8tk/yh85+gt8y2eXFruMXZu/iX26/n5+8PuXKfJ3Xdje48aWzrL8cMh22K8LirNCtwOKs51ue/hpPrV7PGRSjKRt/KPdy8ZhVSMm3/MQj0471zRnffO5VpjbIK79wzLEPFMDDqjt/AQBXdXh5AZUrKC9Tue8F2aSV5xn7veBKFF390lTZ+ToEnkgXvXeCFmbEUYlSYzDdClI1qPFAheM9GH2KivcxN+9FZQKYsM6eeoxrWbv5Eo8f/ALnm8/iqr2o8xpkNGL/1jcway+zbZ9mUa2hEuSZbCRSGazukVkK5GTyKgLGsmMepvJnsU3L/ug83laomBCMUiLViRqX4LHhFXvQIU0XmK8qfm2C+LBUVXsueJ/U1oWZijd4UbbbCZVxbFTByNyoZa41l82Mx0fXubi2x63JGWzTvxjVfocfW9p1y+pLM0wXU4KuhOAGP7Lceqam+v5r/Miz/4ob3RpzrfFqqMXxczee5VdeeZz2SxuMbkUgUkJGmCgblMEkg7/Rf1k8mBba59d4cbrKC2PP9JUK08A4Mvbs/n+/xQfg1joCaPSblpYcdKRtC02LVlV4mjExEZ3LCa2IYKneo2LzTC2sSNODcwYkYgh76h6RrZtOmF6R4Go38yHQKRKFbtWw8socO2sDwx1bsLGOVSndFENGkVddrcnGVq2iUbZz6N4BrE5Ra9FRmF3d7/D4ngtX+Df/lx/Dq7Krnh+/8Z387OvP8tIL5/m/f+//wrdOXuJvX/1tvLq3ERYtzh7AoZPoKAwiKQFW6jd51mYFv7WO2Z+Fdq8rrvzmTbbf7fhN3/Il/uqj/5zL1ZgqkqgOxw3X8Pdvfhc/8a+/i4sfJ/hkq7JqhPGKcu0DSvPEgu969nmeWb3Kimmoi0RBRjxtb9Pq1zOAGCQXWm3FNHzrIy9x68KUvWbMt577GhsxkK5Vi5Uyav1weaAAPj7Y45lf+UUUYVGtsH92jfn6k8y33ku9XzG5vsP0xi0q3wQPEwdEhm3i6j0hvD4+sKhnqReq+ZSprnP2xrPc2Ho38/E5umoN/BqeEY2OGM0WrO2/yNbu85yVTyMsUDzSOaxzHHTr7G9/iH0u0bCOlxFKjdoKTw1tBO4qzHFTasp+dQ9iTu6kTxYhtyK0skJXTaACV9XhZeuizpipw8nK4pzw3H9YgYfq5pS1l4WVNzwrr85pN2v2H7I0FzvG05bahu5jxbNSNazVCxpfUYtnYtpsIoZgp3qsvs63nv0aP/GBRzn/64aVN7pg5BLBNJ7p1YbF+THbT1Zsv6fjA+99kco4Om/ZNI6Lkz1+fvvd/LvXnuTmK5vU2xZpo6Gpg1EEboSQriZFjhaMW+kDSaAH9iSn1DtCtSeAwTbFPsta+QnL+JbnqX8eBjc/Muw+OmJ+zjC7qIy2hbVXFPPCayEQBEBDjndJ0kkZRp/WzIzJlqrdlolXVl4bMbsouBUNi234Xq6p90JAzfRqyO8C4b5t44Nk0CorrzfZoyfZJVJeGDvvgqw1jnq8EuSSru+jfmRzD8wLIECWTZiMYDJCJ1WYZc27fjZ2G1e3O5Uvz87y+z7zJwC4vLbNU6vX+YHHP867n32VdTPn04vLfO7mJQ4Wo5A2NgXsdAbpJBpsh7YJITz/dk1YnBGuv/8MGx/wvO/8azy78gbfOPnfuVDtcMEccMVN+Ts3PsRPP/9+5Fc2w/JuLswwt1qYn4HXv8ew9ugOlzd22BjNeU89Z7VasFnNMnAnPdshtD6s1ZlKbbr8+zyGNVsJzgOPT2/w8CQ8p81qBsBCAzR7tW8fADeuY3XvOqgyNhNqnbOYrTE/6LAHnnp3Ru0WSPGmGgJ4G8LqFIYWIx3GdNj4VxGswrhTzu91NNMphhVYCCv6NYw2iDrMomU6v8568yqr/ioNKzS6RtOt4Bnh/JS5e5Q5Z+lkBW/rnIdFvFJ1DYLDuC4zGNTjGKPG4o1Fpe57UJ5Gh7dQkcC40ous8bdS8zxhqWrHQ4/cRES5eWaF7dUVZhcsBxdX6CbRsLfWUVVB2gAyeK9VDYYF50Z7rNk562bOljlgy8xoEc7ZfT64+iK/9sHHeenG47hRCGDavyy4sYaAiRrcQ3Pe8/jr/O4Ln+HLs4f4/M4lXtrZ5EvuAotFTXt1yuSapdoPLmspzB8D3QS00hyyHxgumEVgmtKBzIobTgbFNEWOqlnODrysJd8ngEvnqa/shBlWZRG/zni3ZrRjGG87pldbdL5A0ooqyf0sn6BIJWtNjCiNTNh5bOuZ3lDatVBxK9KvnK7BBa3eCzaG2vWAlaNjfTAwAuG6tenBzHlkEQZtWVgG6zgSGLlaG1cOIsgktqi7D7eDBjYejH3huYdB5v46b9tZXn1jCxSu765ydWuN19Y2OFgfceDGvLrYZGc+putMSFwFGbylDTYuk+wkUf82bSG3KUgnnFvZ5/HpDax4/uHr38F2M2XRVczaihtvbDB5ccTGq0q7BostoVsNaRLcmuPSk9d539nXeXRyk83qIK4QVNGq5Vq7xszVzFwd8rVoyFN+bnzA1AYb0iazrH3bgo07NdTGYVQz2/ZIBu3og3ds2z1YCQXPuN1F1DNhm+m1GzipaWUMbR0YiShiotugBu+TtCZmRRPB3FGZBmtbRBzeVxgcU9+wurPNfPUKk27OaLHDJf9LjPQmQkPXhHStYhTfnGPmn+SWe4ZZcwEvNV4KP6z4wiXGb13HqNmj9geMdTfYX9Uh6pnZc7h6TDcaoxKsbOoFb9PCy7GTF4ATGySvWJOmvicttXU8vXmdqW3xZ4SrF9e4NZ9yYy8YbypRxjHi0pqQbXBzNGfVNqxWCx4e3WLdBNfBS9UtLtgZ66Lc8oYLtuGx6lU+8u5/yodu/p+4/tAqbLb8J9/2b3j/5CUm0vJCewFLYPBvdBt87OqTvPrFi0xfN5gWJg4miWVrYDguLvXmamjOePx6x3RrHgzWNgw0u2+sYQ4sdi5Zyw5ucGR9kyJCPRft5Za7jDC/fVFFFk1eRXy8N2NsDRsiMJsHr5MYQh2crX02kA1KTG2rdQTM1odVqNrg7zvfGmNaod7XflBScrpVNWAPYopUF3KdqwkzQ41eLVgJi06n9VE7jzmYB1e6lMAphpNLXcPqFFbGICNCrmwNhlXSzKiQCMv7sDasP+nvU59yAts14oTmxogXrk55ob7IR6fPUNUOY7QP2kkJq9oI3i4tuB0GebsI5MB0gVSksP/pNXjuXRe5NZ9y7dYaZ35myuqVjsnMYTYqVgFxHXuXLdvfqDz87it8x4UXQkyE7XPJWzTLG2mh5Rf2znHlYI3r26uQXB2d8PDFW5yZzNgazahXXAbodL6kiyembjJpTUwkPPC3DYADdIxicFmooFGl9h2GJjA5ExZsFPVYaXpfb/V4b8H68D2ZmE3yLfd4PM62XN7+aHBLNB0qTZiVS4VKx3x+nr39x7klH6SVNZyZ0E3H2cAIYLuWqm2Y7G4zbvaw2mCrDssiaFmq7LmLwQfVKbVfMLG7WLug2lvQdiu0MmV2bov5aBNnatSH8PVEulECC3IeX9mh0fMExatwY7GCEWWlajCirI0WmHVlWgVxcL8NLlDjqmNzNGPVNkxtw8S0bHcr2EpZNQsm0mEJS1aMxOMU9lW56jr+5gf/MbvfPGWudYh6bM9wLq4a/tHdZ/noK08x+/wW9a6wPgsvT16Xk8BouiksLjrM2RDIsDZueCR6xFTG89mXHg7RdUap1lpG5w5YGbecW9nnjb01dvam6OsTJtcMNmYgWB4YEfA2AL3AILDlvktOOepzilGpqgDeEMOyC/BORkAq1PYLO2R3yugT7keG1TdcCP82MpCJ1MBo1zO+vgiAbcM+zWadXe2AkHbgoKPemSH7s3DtUZzWFDq9NmHGoM5hRjUyGjFamaLzeRiInnkEt1rjjWA6T1dNi1knYWX31kU5RYrZ5gmKgI6jr76TrPH7xtLMbWzf8JDVGWhMAOzo660VeFVsdB80LpAh00lOuWQb5dz/NgEd81AD1Sw8Nze2mEbZu1yx8yy86zte5DvWbnB5fIuL9U4GaoCb3SrXmzW+uHORK7trLBZ1CCiaW9IqQFsP71BXYTnC3fmYq7fW6BYVH519A3a9ZWV1zpNnbvKN61c4X+8Fhh07bkvQvF10K1wxDUbc2wjAk2UYAsP2Ie7axLD54LsdkCwsZByAWaRfQi27ENoWYzvE+MicQ27wTgTxC6x0OFz0NBKMr5i5S+z7R9gxT7Lwm3gZ48VGd6MA4JWfM273qLsZk2YvyCWA0xGL0Vpw+xLLwq2HZZY6xXZNL+vUkRGpMGoOqNoGLxZVQ8cEJxXe1tG6ErGmzMh3HyXl8zYSMiMaCeBto2RSWxcSVdmOlaqlMo6x6VizcyzK2LRMTMtZ0wRjjRisDyseLRRed2sB4E3LDbfGjW6NWizn2OOj28/ysdce5+Arm0xuRVYUjXtpMeVuGiz1bt0xPTdjMgoDy95szPWba2hn0E6ortdR9AY38RzUIw4q5fp4LQ5+gm51HKwYxElY/3BfsE0ITgkdbOnv/RavMal/NPQtrXE42C88jD6pVTRchjBxiYExNgfzaDBIRLkjEHhfrJMpHmwb3f2icVEjgJsusfGQBMosOsysRfZn6KIJrnJ1ha5Msvwh3RrSdphFgx7McwCLTsdhIHIOu7fAHLSkNAcQ61hHCTBmf8yL/r4ZRQneNNFds1jONuaekhAy72K0pY92ESIDd5GBtxqA3Wo2YKtAPfPBW6pNlvBgs9p+qmLvCc/GN9zkvZuvcb4OUmLwzjIsfM1rzSYv7J3j2myVazurdF1wSh5PWiYbB1RxEfAn1m9mz66ddsJ+O2LeVSzaCmtCDMYb+2vsLCaMbUdtHWfH+6xVDVtRmsld6S4679cBwMNIKnHRXFSC5p20rcjOA8vuk1kZE1bgEQnAbqoQzBM06jD58AJOTDC2C6j1eEwgX95y0DzFrj7Bbv0EZq4hjN+YwCbiCkCjZo+V9jpjt0/dNXQ6ojMT5mxwMDpLV4+CATJ2YtP64L8KYRpbG0bNAXV3wOriBnU7Q9TjZMSenKOtVmjHFRifX960wO/9TPWNKCPjMOIZGUcTVzEZVx1dzNxmRKmNY2JbxqajFsfEtGzaGRYf2XfLljGsmTG1WGDGQj0HCq93W1ywO3gMO27Crpvk6eCvXXmU/a9usvG8yVNX8SFwJPlqN1uKXJ5z6cwuF1b22VlMuHEwZXZ9yuTVmuoguMGJko9x48KS39U0m0q74Zle3ufs2gG1dezMx9x4eQvdsdRLLoO38d66t6I+ZLQTCUEnydXOSF65Bei3marflph4lFT8KPmAFx5MCcyjATctdIwnSCUHYebnppZqLyyZp1awsxgV6RW7v0DmLbJo0Fk0GJhoDFsdhyRL0xBAZxsf2PrOIjDfyuCmNfZgjMwaZPcAZrPe4GotMhqh6yv9ghkiA0P9fZXkihgjasPgkEawuI+T+I9sA5Au6PbSBTC3C41ulQyWqAuafspjHjT+5GK5842Oh991lT/y6CcBGJuWWhwHfkSrlgM/4oW9c3z52nlmuxN0bmHsGK20PLS5ywfOvsL5eo8z1T4WT6sVc63Y7nrf84lpeXF2jtdmG3zl6nneOKhRZ7CTjicu3uCh6S6rdhGed5Ss2jsYMAHkEIN4C4uIXAX2gWsP7KJ3Lud5e9XnCVW9cK8HnbbtXZUTtS2AiOwCX3yT63O/5e3UvvfTtqd9987lyPZ9oAAOICK/qqrf9kAvepvydqvP/ZS327283epzP+XteC9vxzqdtLzd7uXtVp/jyptp2jktp+W0nJbT8gDLKYCfltNyWk7LO7R8PQD8x78O17xdebvV537K2+1e3m71uZ/ydryXt2OdTlrebvfydqvPkeWBa+Cn5bScltNyWt6cciqhnJbTclpOyzu0PDAAF5HfLSJfFJHnROSHH9R1i+s/JiL/VkQ+LyKfFZE/H7f/VyLyioh8Mv77vQ+6bvdbvt5tG+tw2r5v3fVP2/atu/47um0fiIQiIpaQk/x3AC8DHwd+QFU/95ZfvK/Dw8DDqvoJEVkHfg34g8AfA/ZU9a89qLq8meXt0LaxHqft+9bV4bRt37o6vKPb9kEx8N8EPKeqz6tqA/wj4CMP6NoAqOprqvqJ+HkX+DzwyIOsw1tUvu5tC6ft+1aW07Z968o7vW0fFIA/ArxUfH+Zr2MjiciTwIeAj8VNPyQivyEif1dEzny96nXC8rZqWzht37eynLbtW1feiW37oAD8qCwfXxf3FxFZA34K+E9VdQf4fwLPAB8EXgN+7OtRr/sob5u2hdP2fSvLadu+deWd2rYPCsBfBh4rvj8KvPqArp2LiNSEh/QPVfWfAKjqFVV1quqBv0OY1r2TytuibeG0fd/Kctq2b115J7ftgwLwjwPPishTIjIC/gPgnz+gawMgYZXZ/xH4vKr+9WL7w8Vufwj4zIOs15tQvu5tC6ft+1aW07Z968o7vW0fSDpZVe1E5IeAfwlY4O+q6mcfxLWL8t3AnwI+LSKfjNt+BPgBEfkgYer2AvAfP+B63Vd5m7QtnLbvW1lO2/atK+/otj2NxDwtp+W0nJZ3aDmNxDwtp+W0nJZ3aDkF8NNyWk7LaXmHllMAPy2n5bSclndoOQXw03JaTstpeYeWUwA/LafltJyWd2g5BfDTclpOy2l5h5ZTAD8tp+W0nJZ3aDkF8NNyWk7LaXmHlv8/GV+ZOVfGZS8AAAAASUVORK5CYII=\n",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"106.932126pt\" version=\"1.1\" viewBox=\"0 0 368.925 106.932126\" width=\"368.925pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-01-12T10:16:59.051786</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M -0 106.932126 \nL 368.925 106.932126 \nL 368.925 0 \nL -0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 26.925 83.054001 \nL 99.707609 83.054001 \nL 99.707609 10.271393 \nL 26.925 10.271393 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p3e6eb83261)\">\n <image height=\"73\" id=\"image3357217229\" transform=\"scale(1 -1)translate(0 -73)\" width=\"73\" x=\"26.925\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAEkAAABJCAYAAABxcwvcAAAeqklEQVR4nHWcWa9tSXLXfxGZaw9nukPdrq6p3YMbqy13Y7eEEMayZfEA9AtC4uPwhvyOxGfgnQfEExJIBslYRkJ028YD7q4ud7nGO517hr3XWhnBQ2TmWvtUs1Xn7mFNmZER//jHkCX/8Tf/rQsO4miaMMu4K6iDKY7gnhAMZSbpRJIJTTMpTQiOSCGlie3ZNaozIoa54kAROGYn5QOkmTJMTCjqwlAynx/+Idf+Ta75JnpwPCuWFZ0KYoZ6YTe+5Hx6zrbcMowjs2+Ydcf98Ji7i6fMw4aSBxCB4uhk6HECAAUflM14xzDfcT69YJjuETeKbLiRt5jyGdP2DFcBEdwBBAQcyD4AJoDgpHiQEIIRjwcJuCtOwim4CI5ilhF3NIG5YfMASRA1zBTEEXGSj4gDDlIUjUMghbPNz/BpxI8T9/I+5lvEwHMCE8xg3F4gCtN8xs5u0DIjFHZck8cDPismiWO5xIsgs5PmEZUZ1Zk0zPgk4MK433PYXWKScFdmdhTJeBJcFAzEHEtVQg6ZBC7EwFBcwRHMEooB8R0RzEFIJBR3xwBxBzfEFSsDIIgbbho31UJ2Z9YtJhucGfURoYAW9voxUo5gMyYXTFxQfMect3XBlCmdYTIw6TlmA9vxhuQjSUY20xvUDcy5md7Gi4Y2WSGlkZSOZDsyzWdMsud+85jD5hFFB7A4LyYpYUEeknERBMCcrBSUgogBziwDJokpZZgGMEGKI8kQMdyVxIxWDUs6omIIoX3UAbslJIHiaBn46NE/4m7ziM3xmnfsj9j4S4QZG/fst684273k2eEXvLJf5VX5Ve7vv4bJgImCC0ZmHAaO+0t0mpFipGlme7xm8Du2vCGle0QLko379BaH4Yp5s2Xcn4MJboKlhJhDqdo8CuKEqaWYlCeNczyUII/5AnEDdybdcX/1iOPZBYeLK9KdMby55+oXn5HsGILBKDLgKigwsicxkRnBwixVZ0QLRuKoG15dPePF2de52z6D88S1vxfa5AU9TuwPz7m8+zsu8sfs+ZDkXzLlM4wNxfYcDh9w4CkzZ5gNseoIJWXGzQUTew7pEbjXyRmFLa4J04R5ihVVkFIhBMcDivH42n5ezqlv+e7iKbjjCMd8xu3TCw6XZxwenzPcZvabO/afvEJtJgwWLEQe93FFJDBJwh7jxjozi3DMwpcXmZvtPYftHXO+4Np+BWGD+oY0zFzIp8zzJSIjwhHhju38hlQKzIk8GcLIyCXGBvcB94zJwJw3uCqew1TEvePKMsYYVODi8jsu4XjcwKH4sDq2fJR/868/bvfA0ozJh7h8hvMLcvl9dq8e8dZPfsrF6y8Y5ntyOpJ0jicqqM9kHcl6ZEjHAEuZGYYDd/uR6/M7/uobHzHlEVMDMrP/EPVvs+H73A+/gcsu3JCEFmiZePTlz/iVu//Gs/HPKPmmQoUi04bbV7/G/fQer9N3OOYLXFLgpq8mX4UUeLtohqflmJizna/J85F0nLi9eIaljIsiZh2Lc9F/h1AQn0nzHSo3wAFkwv0O/AMGfwoqeEq4Bj2QOqKkU4BwzA9SeDTzxOzChGH5Dlery1NI/B9EPsL5X2ztEmePcclBfx/hXUhvcfPkG/zs6p/zC/sdkIk8Htjcv+HxZx9yfv4xl/IZO/1zRAZ83mPHR3xRvs8oFxTZ4spiRxIALB7GQHU4YoUr+4Qt16TNyGM+Yi47Rr/kdXo3vD2Qhf+J+IwwIR78IVZ0wPgLhAPKD3Ghu34PmO6CktW/+OIdiwsFx3RcjmOIvEB4ibmQXIAdcInYE0SfI3ydeUhc5zOct0GfMOQjW7mG/RbfzAzpNS4zZ4drVF6DPedMLslcMcseswErO8x2mAyd8/Rh1M+u4fodJXMk+cTgB2bZYCRcIA/lNcIEzBgDLgIoJorwEYqhfD/cugvmieIbks6ojhi5GT7u2smoYHipVEGmyrGkjzHEq8yiwD3OPVv+PWIxep0vmMqvU/h1yvm/YNzumbbvcPv4Xf6W36tedOb9n/8hl/wll/v/zdv+n8ASPg8cpqfc3v8ad9N3udu+jSddltMcd8E18/n2e4g7qcwM4y1X8inPhr/mkk8oohRVssuhD9mlgKcQlIAWQUqilA1qR8DC3KpWFR8QLR0Kks0gUhm4UVQo2gZnpxoHuDgicwXQWJw4Lni6RvUnCH9DKn+EWgIGTB9T/J/g8k1c3+bz9/8Bz/37JH6EMKPzkTzd8PXP/4Td5mdcPfoJ2A6zLWU653DzLW78A0a9pKQNJMFdKGR8e85re4fRB55sf4xun8PuJdn74NoEtP45WjJaBigx+DCwOO7EaiQ3qOpq9T6CoBSKCKUKdPEqvpKTL99d6nehORLhGuENbl8gLkBG/QrnCvdPgbeZN5mJHdgFRd9FBxiGA7vLayb5hK0+R2cn3x9QueV88yHOgUEusbQB38Z8tOAU1I+I3eCbG3y4QfId2eWss8wYndaQYSbNe/Jxj4zWGakXp6SMECalPnfNMAYc67yrqFBSUAaR0jW2v6+FJwZMizaJVNCIMbkoQcS+IMt/iKUoisuA2dcp5XuUzb/C9G18+xYfv/dP61OMNN/x+PmPeax/ya9s/ztb/9O6wBm9fwJk5jwz6xHXMaiIl0DfImQY8LqCQTlLHcyAlCdgTylpQMyJcMYwyQgWuCMZJ7QJHJFg5qbCm8tXXD/+AvWmgV7PWeKidt2iyVSHYBUfw1SbGS5qKDFuL6h8jKYvGezHOAMwIPYWs/yQWX/AlL/Lq2e/xc3T3+Az/xFiR4bphievf8o76U/YlueIHBmw8HpUzfZg+5mIcKsmaQ1+Q/XT8YJ0vOgr20zTxet79QzSPF5oh4tQ1CnDjOWCuCJtUiuvGDrVqAErs19rW/OlNUxAkX60OYICMgI3SIeLlyhO8pck+xtEMpY23Ok7iL9DSo+hZGRbGOwa95FkI9vxNWfHL1C5DQBxyOJbXMK7RV4hgkpxY7i/Yri7ClNb4Y6KV9D18IL1j4pZLjBnwxKggnru02pCcbxG1Q0Hm7Z85W2lgaBmMUQa1q1PTtUKHPQFyZ+T/Y+R2YGMyyUmv4vpjyibb/Fy+BYv+U6N0WBzvObx7f/lnemP2crPGWxkkJlc2FTpDyg5xmMOUvDpEV4uK8dQzBPiMUERC42SGHwILEWgLIFHJlJ92qKtQorrq6k0didSBQdBJ07AXdCGm01A9Ziv0jk0U4nwvYZQjb+NwAuG8p/x8j+ALcge7JvM8g2O+bew3Xf4YvubvHj8A4SJZJFByIqCZxDHWVYc3+B+gfs5pinSD9WjObpyUmE8C36EWYp4TXWkylwX79UjSzTYOr44j2ZiLqvva5NswjzFsSZ470boXZBdsoD4gXAQCXwDHEn+JZvyBcLXEc4peoHpb6P+iMmcnFyxmo3zRgwR8CGExBmmkZl0t2pyAcMxscULdf7tVUjURF4X0ko7esjQhLH662F5C9MfesaGob4w6S6o5f30tSKT1Tk5BeEXJD4mlz/FPONyjuvXKPptiryDpwuyyxaa2243EUUsk4uiRTFNqGo3OS0Nk6DogIihGEaueiXMopSkkZvxoa93mFJZiWvxen3yEp6zXyKrrANA0756jbT7UhrTWvSs+wirTqXy/kpzFhwWFAVucb9nO/8BRf4Zs/7LACGpgxUUPIEnZNpT5AzNOzTZ2vPW+0rka0gYirmCRDq3ZitwCWxRX7t5kKZ1HXib1tTz3OpEO0+gR6adBjQvacv1nGrlKfBzorgd06pDaJwqTioIL0j2KTp/RO7mgVRzS4gNyHRFkT2qG1SPq/FJ94CmgrrinnDRmt5tqyptjRFXXNaTbMBdJyxrLfO6CtU50KhJ84qyaGW/x+L9vmK6ffKLvBY9C1XrwUAdYxRGDqTyCp0+Ibs/q+pviGdERlT2bO7/PlquYhKlejdSz92oRNo3hJFqHGeoRF7UylkFxigeLBzIV5OsJu7dhy1YLQ3MW1aiklUMetJvrUmw5EeasJt3WZmnxD28i7ydc6JiiG8QRlRfk51qXk41F0Es4zbgGvkjl5Ykr+Pug3JSX5SqEeJ4MsbzezzNNT2a6FnAKrAwt0QkU0I/IgFQRdjO77bQtKEBcAjIuxAXc40hNsoBSySxGJk0IXbBtCC7CT7j4sx6JEespuCKMCBeEB/A9xFyqFRmLXUQAaTW1BJdPjXXrsa8G/FkNcJLTYx1GK1wIPRaUzuhi7ziUD+k/ZzlumapK47Vrj/xiC0ebNc47k0r68vb3Swch6fAVB3Jg+ValciIpyqkc9BvVuGUMLUcoIyAm6A1RTr7gFCiYOkFoVBkZt4URAbU9mGW3aNF3BdEtDkM6qBhAeTFTyllEXGAXBfk4h2hMdATwK7EVEjgjjkd3yIju0avhfmnMmDizHpHlnQGZPCEY5jvgfMwu7pKYi3YrK/UQDoSaw2TcEdKwhymswOWCMH3qS8rG6sZIUYngg2Exavw2mq3eljTkmpi3UirH2xDdCqJrVP3ZmZSzbfUhUicYKQDIlWL9rg46jdk2CEkRAT3QgtRvMZvnWdIfQiOa9SleoBLlG20BsjuCcslHkiq+NkE0CbSbD8G7GL0ILhjxMpUTgLhxtqbufjqnm3aQg+k3epY1nq2MjWazno/x6VVTo5ksataqbXQDpsQz9iwAT9EoTG1iXrPWrpUclbrWkLGmAOShRrwprastByCrZdbotYPBfFStWHxO001HAVdeaiuVKXpUBWLsWZLiyFJP2shl4166HKuWFUEAWqoJhO5kPoEFCF5CiEJUbmdLVZCa2ZSKwDOipjWh4fJzbpDhntsQ805lTrR1FdZqALGwVPVlITLvGiD+FI0bKjla6NtQhwWfKN0bQyLXbyXy1xjwSY47abYhBolrVS9e6JoJnJVt2T38G5R01ewcyhXUHyZmNM1aFmFFq9FtI/UuplqNBvUmG3JHa0xhQqmy0ovkNCeu/zJifYs+Siv2iDekn48AKb2t4Q1QRuqKXYMXLQsZBGxpmCIzWSKgmXEFLGEl2/g5RkyLe43hC/re/ZsgJNqU4qgGCUJJSvqEaq4pMhMyuI/es+AzLT8U8sFnWqA452360o09ZzuMYPHaVvFlUC956zqd9riVNuRNR3Q6rCq1pqRbCa7Gu5ztKLwm4jv0DmRb0d0DtyZ97X3p6lxqSBbO1GCp4AlBRVQMA27Fm9ksHmtFgdGwMwqlBDm1WcW9yx2gjEtcSee6/xjubAH2QJpFGABfemJuYp/K6x1Kh+svUFnU+LqbkdWucW5xO1J8CNb8CPgRCDnWgH1MMNGLjU6NRDFBFKKjgy0mRpQa3AQK7bktFfROM1TpSqE5vkaiZdlEt2EVpkCQhgLY/b+W3/OqVmsjtMpx6KVYWrDmDgLId1Q/F3MPiDZJrKSVstEyUGryy8GxWi8TjQE4rZiwhlICqIIuTJ5Q2UKvyNtXCue44tXao5Y+srX0nTPW1cs7IKYa4qnufrGe4yTYLWldGl+02rKpF7mjUZW7ygCFkLa3+zJd/YjVHfosIMRpFi04s0FTwHCnhMyG2KGbDJ6jDZA5vaYcMA+K5y9gf1zLN+jZYsw1LWcK9405mwdMAMLqqBq08TCfqnC0kr0lphMKuYtfnBlAbU/IUQcNKOFQ3hGvd2l5a2cImBaMBkxdZLPnE2FrH6FmNZqbfQp4qE9rhLvqTLe6sG8JMwcyQUtMZmI5wakbGCGSX+K8gT1PYKjnhGCXoRZKXip5meBXUIV0MosZEnJinsXaryqA8A7Ni0Y3ShDxU20nruQynifqzC15lwLLjNKDnJsiay+Rc3QUtCmLU70+2jFnaRhhlXqnsPMPCd8lqAOQGFDKjt83FL8M0wKqucIRrJzxLeobBFLnV6G623ue2EZUucZ4eISfvSDVUfw2gbUsGxhGqdUgYaNS9nqJI/OgDBVpzeT5y1iGfNMXsxfkMnQKdr5bEhQ0yQQXbEYMLVcTICpSeNCjptiN19Dbp9wNX6D6emfMl38jPHRn2FDDVN8g/oQGiVb1C5JdkYul4GJnnByBeqIBJqni6eWVZKsCaodb6YjuM609EiQ0UZctVILwlLYdzJZdMI0bv7kzSWpXPL64pwsVu1UwJNSNqGGZZt6FkPMqxnWgTXPlhXbZFopR2arZqFwfIy8+h757l301a8F6xVDdETzGxju8f01h91rSnrFlFK9NjRT2SC+D3O1C4RGemvg2jlbaQi1iuWo2lke8KTGxFfndZ2TMD2iL3R7ewXT17iTd0JIEdCBZUFSuHPbpCoch6kNo0pJIjzxlLANtDY8DdcQHm/OcPsBevcByUuwV52QdINuPofdC2z+lCMHLB0o6QCUkD/gZFRGnAlJGillV9SWqoySFryp5SmvMxdPFe8epFkoQRh72la6qJwptNcGhsM5kz/hPr1DllK6WfkmdZxoYnYBSRruHyqoC+REUUHnChxOzRxUzmLehYcRXqgMyLhnHr8Gt458aVzMc1NXyBO6u0P31+j5h9yff8hx/ynj7i+CLkpNcNgZyS8YytuIPY20sw8sHtEWFu/pBNO8pXi9solGPwRM74Pf+2PksOe4fcbrs18lu9a4xjhl1bC00Dk9MylawbuupQ0rIeVYFQGktP5oR4v1c2R2pET44Rb7DBZ6vcXGHWJXyOExvPouG70n6x1JZkQN3zgp32Lblxwe/Q3z8Lf0HLhoCIwteX4H9V0tZ3lgbuVkHdJrvCo1EnAZEYTkc3T1bs4oQ45qiXjzCrLSgm62tajR7KAKUlen1CylS6pZAkLDpA6klKVao45MJUy5Edb1yzcwOYyXsW3CIseQ5YhKwXdOHl4w7/+OY/oCNi9xLRUFrMZzIy7XFI4gkSnQGpMFwd1WLWuNHDMuB1wmtGQ2kzLl8+jsTZB1LgtwyRIhqfkSi3XVadH2AuJSCNpgHgxc45qI3WThXNIgkpp+WbBMzCItU8KzNizsgYQk5lLDpSLMXCAvP+Di4x/iSSA7Phh5eE0anqObT3j13n/lsL1mzDF5kYSyIZX3SeVt1K5I0+MYoh4o+eeY3rO/f8qzL5/xZnjGPOwQmciulSi616Da238R4J4Qj5pPGiTiMAedy0nbb+cwtgormldsZCHryowd7LQDP8ZSNboJrAlyLjgJNEXOqpTmlJjmzHx/ifAOw/W30DSz14JIQdNEyvecnf81rx9/wmH3cw5DaBhMuN6yv/8aZzdvke+fMr11gQ2FIX9JXrmDmFTrf9YeaC3fkaoczRy9et6abqgpXWhEbZXXXufIWdIukVZdukO8Cta1gX4VmAeh1R67Nb8kyzqWHPWycg6HpxFGinfqkfIteZzICGn3mpSPtSPGQB+zu/k6+e4tGK+wvIOsqI5kKR4qK7VK2jagaOrmB1RT6nOsP3rVCu98qgtvrkxdQCY7MSXW8vIH96z5pfas6L2uQnHHtlafZQRUpJWJGhTpAvaKo5G9GCjzGfOb30W/+B3OxTnDke2I5EIaJrLdk6xENW84gyFSMNkGrQk1QTR4UmgOWLLI5YiBjLiMuN5R9Dmh44LzCPVHJHuE2u60S6YRvurNxCrudE0Mc+341EzO4hqv4xBZ5ahTdS6u+KBLEVgFnUs30bXpajFouLnS6OiU2UExzGYSgqVC2QpWNqAx9+ybT6P1pvcxNkSuICwJl6EGoAnXDcgZEZSCswfZRCFTtIdGvWbvHovQBt1WvGpR4NmpkHBH5nZ9NW/a9e230Dpa/U6jZ9y1CajBgtddR3WhTpyG1vtqzX8OjJcjh/dvGJ/+FB9mJI3ksv8JBaF49Ug9Rtkjfo5wjvAM9TOEjEpC7f1VxnGlNSLrCKAjx/q31lDRocpydxzR0lN/n21h/FULIo3TylwV+dt468KQZMl/NTLtTfscHeeubdqyHtXM5zRw+94dz3/vr3BeYXnCNjMZ/8ektn3Bcky0YYE3yp8aRVzNvvGglaDaYJusvT9/EVwF6/49L9fZyiF0z3aCd74SnKNmyFRqZCDhjd2/Uo6LynMNvTa5/16E4GzuiBsvf/uvOXz7U+4/eIOle7AZrJDxszpIRUg1afgQTU8FIv6w8k6fXET6698fkkW61n3l1SsytXCg3hWmeVRhEZ6bI0NaePBs3Rtq885NwDXY8pVzEcKL2tkd47ufcfvdz5nefkXZjkSuyxBxsnj0D4aZKlqq3SNBSuWhoFYVq5PO15VQ/OFvy/eaoI2fF/7avy/yisCxH27p1yqok3Ws5mplMUsfF4wVC2/YvavXqoxP2KYwvv+K69/+c8b3P8c396AjeqwaJpC35Q8Qfwr+NsV/F/dL8B3OBvccwa+edqqdSmClBavJnB5jwStfBNRMu6OX+QMNW0mi8SPhxEMti2Z4rnltT3Bm1VyMPO0j7dtSv/Yxrn+LXfwhhx8Y09vG+Cx2q3MsuBd0nCJb4EIWXiDcgbwgcSRad3ONujNIbQr1qm1iOH8P5xEuj3DZs6Rjf4nQ2lweyDUUwL/6I20y9XPlBC4zjmEIIncRbwEqI9QcNnIAXgMvgHvESvVuCZNKyzHErkFe4fkj9LUyuKJ3qQbv0UAb2zyi6pNFjiD34M9R+XjxHLVluXXYi+f6iJniv4/LBxjvgTyp6LvU/UNrMr3K4SC07/X+TiWvLDYnM/gMzDWAqZP3EhxNSpTf+RLnSHHIegcyE82Hb4BfAB+C3NTNi2DDjMtE7MJab41whi8H/HXCzwYYvLFXfOt1DkPrble8RigiqSrBVKdTDUJGEEe8kOS/4GSUIVx4FV9Jb6qwdqh9G+c94DHYGcZ3QvN0B4yYjBS5q1pzQOSG7B+jvES4RuQAHEMT5AokNvGIvkJ5jvgYCt7acsRwKbWnoKAWdMLqGlhdpNMCqCHjhEwTfjchtblWROtyzwgz2SX29PfWOwpfRZWWgljqWcgWuMT9UFf8GH/SkvMfIv4lsAXNKD8GtjVjWIL4ebQVx8BH1G/AR4SRcChRt3duER/Cn/hU2f8xlrBH0K1xgvrZuokvxLZyz3ZJjfsay4rn1dJ6Ox42YNVxtQB2iStaQSb+bUn5KB/F7qSzOsGJpX/IQCbgBcKr8FASBRth8ephhnkRvtvJwFvfdcv7RF4o2hY98jP1mXMfb393WPeKr5NfayGtA+QIOH4JXUHIphPqrbStVRhNui2Sp+6jjfpYmGZrRmi8ykBHomsuh2dsia7u9GP3UpCA+B82qPV0QHUMda2cmq5NTPoUl03Vqvs6mcCtpjwu/qCaW9trKuY1pt9L4/Wxvnyktxf60hboCNlqt73oqquNtVRP3XLr9GgVe2lbvHrDlVdALkFOGxusI3v4jMVc1sNlSZ30FEptSTzxiN1W+v3bPZYUTTuzdQToKhpY2nha58rDW4dKtNMa2esE0RtzW65avUfo1vhL8Alr5oZUFV+3uqwnciKmRUjy/zvWTIswz3UKZyUMX+lEV5MTGdaFbNPqJHetcQvEtFek7iUmKX3ScWHnhytQW+YpUQHxttU0XHYTiDLUhqwT0a4EFeCwKnX24yu9JXDwuJrofX1v/UpLb8BpH6SsbtQaU5f7S9Oth23SbZE7dbEqpJVqcfK3HnIrExe8dr9GDNcSdYL6lra7gFZSbgHzelm9mlHkTyq2+EpDVmUtlNgyKpUulAXsObnlInw4udfSxHpqgifGIesfF812FF06y1beqXeXPRQYLKtbB7w6Z+1Kf4mveHCPX3L0Id585XMA9smEv/KSB+9r0+zQWb83DKt/a9xZvfIiEGAFtEvDbgPX2KIQlmbAhHBEaoM7UnAmpIYLy30W0fWhtVgZPwHy5o5jYZdmLpcpDFIMkQnET57Rr109qXOjpZZVD1u/Xjo1aA+tqZYHIs/uG7pmtAsad+oTqB2sHWC2IBtO92zE8Y4x3oqYtprAIro2hN4y00yOwIEG+XFFzUDWluQF0Nf7QVYCwemtPFTu1wsTLUtKv7+sxnFqQSGZHJNcAX1bibVjOxlwnUgPBVi+d9kv1z1U3qZB/b6rXQB0oF/jQiyg9MbS9auZ9ukSnJ7Rt/b0xzwcZ3vkV1Nc8YMiR1oj00kfwMPTG8vDO4BKje/aYLx370tfY/nK6qwx0Kq5rrpuT0yp4WPN7VSvs7RhGYuT8NWzlzGtZSetGNrX5KFQl7kvwlSyeKt61KbOfnTFZtvlDtb5VsLZgR+qq1y4tQNF5ugUW/c1t3V5CNAVB3yd93VZXTqDDHU8A86hrnp11XUGbQN14Fe7bzXXblKnMLLUrk6taU1yc4QZHgN5YFILKDqLIQdoO5HSWOOAtwmvyuWdJHc5WX/OArH96uX5jYuxOJD4e7hFa2ng6LNlta+k/waLli3RwUMTc9a6WIEbb0RwZtm2TtUAW526qH8EtDXqZ9VXTds7uwx2wceFfa+3wK+XZL1RrwmsCalF58hMy0R4N+pleqd8pwm6mr63ea1pgi/TlfjQNgI1Uf4/ZdzPz6SIimgAAAAASUVORK5CYII=\" y=\"-10.054001\"/>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m212c683efb\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"27.652826\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0 -->\n <g transform=\"translate(24.471576 97.652439)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"64.04413\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 25 -->\n <g transform=\"translate(57.68163 97.652439)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_3\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"m8663bda407\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m8663bda407\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- 0 -->\n <g transform=\"translate(13.5625 14.798438)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_4\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m8663bda407\" y=\"40.112262\"/>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 20 -->\n <g transform=\"translate(7.2 43.911481)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_5\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m8663bda407\" y=\"69.225306\"/>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 40 -->\n <g transform=\"translate(7.2 73.024524)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 26.925 83.054001 \nL 26.925 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 99.707609 83.054001 \nL 99.707609 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 26.925 83.054001 \nL 99.707609 83.054001 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 26.925 10.271393 \nL 99.707609 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n <g id=\"axes_2\">\n <g id=\"patch_7\">\n <path d=\"M 114.26413 83.054001 \nL 187.046739 83.054001 \nL 187.046739 10.271393 \nL 114.26413 10.271393 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p00e768f8a2)\">\n <image height=\"73\" id=\"imagef1db06d1ef\" transform=\"scale(1 -1)translate(0 -73)\" width=\"73\" x=\"114.26413\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAEkAAABJCAYAAABxcwvcAAAcoklEQVR4nH2cS6wsy5WWvxURmZVVe5+zz7nn3Kdv+9UY2m5bstpIBhqaAWokmucEMWDGiEGLEVOmzJkiMUECCQkxAfWgkZBoi0amsdwGY+O2L/K17/Pce177WZUZEYtBPLP2vl3SPlWVlRkZ8ce/1vrXisgjf/MPflcNipHIzi1cLhvmaHEm4qMhqrBEy2ACOzfzcLzhlfGKM3fDa8M5lsiJOfDAXvPtzXNOzYZBLC/jDQeNvIjwR/vP86o9J2J44u/x3vyInT3wlc1H/LMf/V1evvOQ+z8zxAGMBwlKHAQ1EAfYv6rw9g2PH17w6u6K88PEs+stFx+fMn0w4K7B7kGUdI2DsKG+jIf5TFnuR6a3rnjl9JrBBs73G5699wB3bhkuBAntGonts5uDxYhixOBi++XgHdZEjGgFah8GDnFhUcs+DrwMWyxKwDCZhRcxsrBnI4brGAiABd5wL5hkIWC4bwfu2T2DeAC+9fp7fDcaLuIZ0xOTBqWC+HSxERhfCAcz8dHFwMtHW6ZxwZnI9tENhxPPwRvUC+7pAAoYCFNEBwWnyCak4yrcnE+8/+kOCQJeGK4EOyeAJAICKh1IAk5VKN+jChEhqnDjB7ZuAWAJtoJ37Qf8YDmI4zJMGJRBAvs48CyORGZmCRwUTOovb9hL3vf3uYhb9jqwM4cK0m+e/ZTBBP4bX+JmfsBwIbgbsHuFKBBguASzGPy5Yb8Y5lcOTNPC6fbA5x6+ZDABZyL/Z3oT9QaMYl1k3CzsNguPdlc8uTzl/HKLfjQxfWqw+8Q6dQ2UCpIlgVpA2rqFnZvZ2oWI8Ml+4HLe8Oxyl84RxdqIM5E5WJZgORv3acZFeXN8wc4cMBLZqyOwYFFmNZyYyCTCW8bx9//nP2D/wQmcLfyTP/9f+Mb0SyZZeCEn/Nb9n/DXH/yQJ3/uPv/63b/ABz95je1HBrOACanDxsN4DtMzSxh3qIPLAZ4+jsR7nu2DPePGY3cRYyIXT06JTyaWvXDz/DEAWwWT5h2Vxpr60nwv0uyWc9z7F2dYExFRnl/smD/eMT6zbD8BPyVbPnx5z7SdEVmIKrycJ8KQWHflX+fReJn9k7Ko44G5YWc8n4SRd5ZX+Ve//Cvw/fs8+lCBDf/yp79D2KTexAHC6wd+7fMf8Xde/wHffvXn/Hiz5+Mvn7IEy/4wsHyyZfOpxV11MxzBLjA+N+jFgP9kAMBLGuB4AOOT2RZgenAKKKJHQB0DB7hPPzhLF0Vwzx1n7wm7J5HdB3uWs4HLNx1PX3P4wTNYk01urA3M0QGwMzMX5oDNxnxmznkaTvjjqy/wzh+/zeN3I7snHne58PAnghpBnbCcOl5+ceLHV28zmoAzgdEEvvTgGa9NlxiUP9x+kef2jOGlRRYwoQ3e7UHy9372+4GKts9qGliiEE02Owu2O68H0v2Zf+MhgkTFzHtk9sgSQBV7mFCz5eKJY54GnIsoENRwtWy49iOnw4FFDfs4YIiY7OGswC+XR3zv2ed59ANhvAxEJ8xnI8PFQhwN+0cDJ7+84Y2Pbnj9u3DDa4kko+XpN7b84m99yj/9yu/z9ZP32P/qQFTDIIH/+uwr/PjJ68x/cp/xhSQQ8uCrwy3fdc0eiRmgDNRyX/FbRTeR7fsOM+dzTAY3gjM3HrUGjBB2DiYHmiCVoKgBf6JoFJYl+SQzzDXynQ17Tu2hTsAogUkWrqLhF/MjnlyesttrC68C/sShRjCLcvPGhPGKmSPT+5dg06AfvLNw9e8e888f/EMA/C6Z/vTVF3zrjff4q59/h/ceP2A0njk6LuYN73/vLYaXgrtuTrgyqHwuTMpSwXz5ki88POfh5pr51xxPb3Y8fXGK/GyH8ekip9agVsAKYTAratp9SGYxpoMaBR8MXg2iistAASkqYpjVMmO5VsdLv+WwOE69IlGrP1GbptJ4xW9NiiYYsII6Q3QGd+V58H8P6TpgOdtw83jgU33A/wiGhyc3BBW+9fg9HgzXAPzbtx7hdwPuyiAe7EEwnsSOY9+TXzEKIRrm6Hh1uuSVzRVvnpzz/esvwGKSuS1nI2pBRTBLRPKAxCtxMISNoENArKIqHBbH+X7iZJzZuZmXy5QmSJSruMEQWdRxbQ7chIEQDPYQE5NUQaRFV68MFyFNjCr7N07S7wJxFMZzj7uYMdczo48MLw/cfwcQg8oJAP/5b/8G/kt7vvErH/CPvvmHGJTLsOGH52/xo/ffgPe3bD8WTMjm0+kgewD33VNemFOejvCTM8V++ZJ//Ovf4e+99n1ehhM+Xu7jUE2OD8X4NtsSlbAxRAtyMOgYUStp0CYSVXh+2LGxnqiCV8NDd020yTNNZubp4YT5eqj0Xk2lpnsUUBCpLBYFsyhhNOjZBjkdiaNBBewhYq8XZImIKp/7zoL/3sCT6Uv8J/slwij4E+HiL13z9uMXvP3FnwNwuWy4WDb88pOH6Ls7xpeCPSSfIwp2hs0LYfnpKf/i5W/zF7/2syqLnAStdkofBQTiaAijVLWqMdFzCekCq5LTF8sSLdcxRb2AMElKcZhN7UjBqDfp+pLu/ppOViPEQRCrxGyi0QkyWsRmk79YGM4VCYq5nomTYzmb2D/e8e75yIcP77PZLNyfDpwMM1976yN+GN/i+mxAlhYGRUECxEHBKPvgcCYwSMQZn5zz2skJOMNyYvBbARdBQVWI0bCfB7yNOBuYnMdIxEjk3E8cjKtgvTxMyMFgZ58obqSG3n4y+s89m/rjJmS/aIXl3pD6m6WLnSP22mOv95jZMvrIF/7jHgkKqsTtwCfffMAHX1V+96/9Pl+7/yGLWh66ax4PFyxq+XB+wPv7ByzRsjGejfVszcypO+AATIhdh6R2QK2AAbMXgjWJUEZZFksIBm8Nh8EzO4ePnkECG+OZzMJzf8JH7z7i7KeWMMbk54rjNnJb1OXQvDI9PaJc1KQt6vfURtgYwjiynL0Gmu4TnTCcL7jzPfZ8z+MfCA9+5vgP3/ltohMO94UXX1P+xm9+n6+efMBkFn519wmDBHZmZknRBCMRh4AiyFGH1AjLVvATKYeK6V1jYpPGxCwfDYfg8M4QSFWDfRx4sewwNwY7awW73uI4Ffisl0h19qiCSSa4uj63V4FXQWK6Z9xYwr0JoqLOYJfIyS+uUWuYThww8nvum/ze6dfRINit59WHF3z7tXc5czec2j07WRKTClDl5ipCdMJyKviT3I8oaAANKdSLUVQts7ccrGPvBqIKh+gIGN67foD4HKmGRhtRrcxZyYLP8lfSsU6EOOaMXXUFcP9dTfKjfmfxO5v8KklyTHPE7D2b65lXXxx49Y9KJm7Yvzrx9Ouv8wd/2fHlh095e/eCz2+e4cwcK8XVSZsRuswYEJ9A1MWAJOUtWccbUQzKhZ/Y2oWgwsWywc5d3tRNgMTsB5EWNDKrKtlCjwCpbyJdOaNjf05Mi5s4Pu6uW1vzgxEThsSuLFzdlWf48AXbJfDm84HwvVOeuns82Rq+uzW4OJo0o93MVpaHJA+MbzkOVtAgWda3m8eMwhKTLbuMrmibZZW1nahZfV0VvY7Bu/XS9l79l8g6CGn3Oy09iVk8l1PCZJHH99Ah9d3eeIaDRwfLZmNxYWMxS8T4JCRri85UJpklOXExoFEhZEFoJEW8/BdUMLmH1sRVRxNg5cPRQO7CwEj9vchPUU1Ad8AXgCQoarNb6CTNnUq7lzwCfmtZTreYJUuJRbFXcyKJj7gi+6M1GGKNbmFM4T+MYBYhjppA8+vZ2s8DzkY2znO5bHBFaO63mINgfKK13sEMiQ2ACl5NXai+q/mto9FmCYdIo78qEjNL5DZb1zPRxiGRrMkEtUn9uyuPu8gSoNKwps7pxm6vxFGIw9030MXgnWUeUuJ7xaaq8cPiUtHMK2Fog1s5ZkmpTj1WEuuYfQ7Jd1W/eOSsV9ruWNEf/b4CJr+LZitVbWWBfJ0awZ84wmRxxHbXUh5QSTNp5lRgzyWjPLOCqiZZoBBDSnoPweKjYbABVUnVglw3rqwobVfRmGZfC3ianHFhqpKB6hiUUpncnaLpCiCdWa+u0TvY2oF13LYaQUQJkyEOgpPioFWJ1qAupQI3rzjUdQo4gJBXFNSgTtEhayVvuTqMWFE2g8eayLJYhu7aOkPZBBSQPPvNpBKz+gkjSqqGFWBW1bQ7GJLByyX0Blg1q84vxjQN5fomQ7SKab8RnPHJD0VrKLlRHFKYliA56qWBVvMWSQSsHU+dNzahsQTL4cXEGHLNJjST1jvyxOPZLcWuer7KZwJSB9V/D13f5Mgf0hx/DQ7l1Z2XqiLKGBWXGpFuloWY9YPElDNJlARYiTICBiFYstmlKGeNJpoGg7m2NT1oo6e2jZaZbLNYA14BtBw4yi170xVtZtkDWIE5uq74OCWZ1NqvdQA6Uk1qr7j5zGEPqTIYR4M66swWCSAx+acCpgSIMdE47C3BRmRSRpuWdlQFs0+iNGxSbahUAiogx9/LwKQzt6IibANOemVRfFuOaNKzr7fK2EzOzrH6qzhKFaVrlyAsW4PbK2aJuBSeE6JmiclRVAasw6j0JmEEE5QYhLhYDgfHhWxwNrCfB8aXyX+phSjpXD1mgCkpRhqI9PTX7PCPLEJLsZ/CojQyiSmSrk+mYzNtXNKcfsn3ehtWEeyS/LRawRUTUyu5tNDY09O1daj5KCIQgCAEb/EhJAUbDINvobz5lsac/nONbB27aqTJs178ziqiZYYk55zb6HEqSt+kKJrY2oFTQQGMrBhXg4mQqgApATWJitlxm0XRba7/FEfYUzhHH/GCLkK0Fj/YrOnkFguiywMIDW0tqU4GI/m/AtKaVaJSO12ZlEsqRYXHobs+S4xilsZT2XlruambLEGJpvlkIji7T3JeXao6+imxyh7y8aKWY8apG6BZBNmkKKizYWZkMYouhs2SO9OBVdSx5Ey2slPLcI78U2FFZ2LVVxXAKoikUs6ReUJiZRyEzqLy8dxOrkGVsUYnuJuYJnEs5VtJ7OmVdbX9ztzaSBvKKfLlgXhBo0GWzMBiZp2pJX0iebBr0YfJ5tHNcNkpUvslXXsV4Pz1M1MQyW22CFjbLVRTUNEc3QsGySJcBcTk8JzDfu/sSkTrO1roKAHMnHSTWknl2htJGxFicZytY1EaANA7bsiCoPmp2PSMdJlBMoeu0plROl6uLhNjKutkxZ6+3JJ8sFQckmaEsJGU4BqfgfDJ7MIgzCdpoCi4mwZWmcmaahRlK0VLpfPsIQNvGkB11rNJ9XuA6mALEBawyReVCWrBROs5pe/HvqY437pIeaSfNAeKFVAhT/qS6Hz5OcvFVwJOXaKayXtltPe2mgvwWTGrkaIQ6sAlCkTFBIiR1exWp2wAfyuaN591xIKyPlbbkbT+XxcE+i7a7rwjBa2WJBiP+nXrHioY1k5fjbDcg+0bl7gwGtxNxB4Cftf2IdUwn2ckbSo48vzlvcx0TmNqFCmbEVym/CrydAzQxhKJrGrhtUJRgoeuwVilOZ0PbWpdiKKNhdqdXu4TE2Oj1epro4PlVPnGq09wJ7+4JI4OHdPdok317ZJzFZEWs+c3ixI2mVXdbKwy6xxyY1HvWVRqm4N1AMhg1c0M3Y6zNmtJdoRN011q80R25rz6nMHSIj/K33H+qCkzsIe0ncftFTsrYRv5rUc/xelgUWcIQyoLlDBYU5KQJLt0iBifOhh96WR2+AdQl+x5OFfimMKpurQPqUTMYobHZoVpPqtWAYqOKZWDIwCbGL0NUDlvJYw7dq5emhiv2SrCxqAuYlFcmBxxTABFm8NfZoKo1miXKJ5GJQHEK8YLMdTD2Dmt3gowXCtxFqJLyaKfMliuq0/RTLlqnm7/UDVn2jmU+wF1H2PPitpwNxl9ZD6WE7L+Ld1XmU8NOOUiTDl3yydGJ9mXCHbuBJ8kk1OTBl1TiBwNipnYILkeDi/+rDBcwHCpbJ/Fus9ArRBGqWyJQ1rb8zshTOuxSu/fCnOOAC5651jhi2/fY2/m0kWxrsSikvYG2DlJi+e/rsgU+Pc//2YCiSzrTdAk/9GWLZfBZO0ATddISJXLoojjkGc/tJnxO+HatulTmxc8ST5v+yQy7UHPm98rzj66dH56p+0pKu13ZlelRfFFWb6gaXi3HLpQC3h3mWt4xSewPryP69fZjNd8I8XUtISqio/tP4HKalV1VaYQiCNpP0EekFoIU7rOLML0qWAOMWmTzObohLApVQTFLHmSDISx+aUaGI5fWcCWiez71Bf/qimXSe/eN6cHDpcbxicOF11TsxLAxFh9jKhCkJrMagEqZudd6te9CCmRpyau2c0UMerB7VOPo4WLLwhIs4c4ZIdvYfuJsHmqbJ/HbNYpiIQp5ZjzPakuIjqQbnIK2xDqNuQqKjszhgyWT6ZWhKRzEf/c8cqPtC0ppZPX9eDq/DLcEvNvZSEAVtHGdvXj6pyl1XAK08qfyU31DBAvdY81wHJf8Cc2y450P79Na4G7j5XpeZvU0n60wnKaTTUn73W/Nl3kjCRXYRLARRf6rXD1fMt0YbBzwB2LsDKwckMoUa6Em2KbDahyfRWZtPcCPpTQnvO60rn+nl3ohmyam3Sd3+WSakzmavdCfNraL2ZfGGwWwCuWElHltlYjWUPNQYMSRmH/ikEuHfYmHXNxlFtqFFKjJlfn6rE6khyvTVt4VFOihq6LdpB20lWL1JUp0jGrb6tqnOxMh8um39xlAvry88qlSq41CWFSwqToGDj7sWP3cWR6utTqpDphObH4TVp0DVMLWHaffPLF5ywXv7Fn/PnEcJGAd6vabhdGRXW1G6SwIy3oNWbEyoo+/rbvK1+gbdD1N3ofps3BGzClilh+z9FNNDHALK2sIfm7u0l6bzmBi18xXL25SSY4Jlbu31q49ycD2yfKyROfx5gyiYu3LTevK+N2YbhIu4IP9wxNdRSClHJpWQQsoHXbZFYs0SIPdBWCazCAugqxuhft3L6tWoeSdGDFrL6d0q8+woUUGEw2u7DJ5mpzQNiAOfH47UCYUooThuyoJmH/iuBPAxtJKYpoAteV/Ec0LwxmzWM8dYtM3UsU22AKE8SDLYOxjT1p9SKH9SIlTJuE1E6p6ayZBjkhprGq3Fjnxr4wCm5ZBwMMqVLRa6aQWMY1xOstcYDLt4Wrz1nUJKkTRgj3PGwCy+zY5kWFMAjOLLoGofSurLnlP8j+JkTsVe6pCDJ74nYgTgN+m569WnVQiq9pan6VGnTLRevySif0+lJHSYIl9aeyKGYx211bhbBrANL25ef2cwlmhLgT9GAJe1ufDDBG0yYu49P6UhlU61x23Hk7HRQzLIwRMHnEUSmbVCWzpJyjIW8J9Gn5alXqcE12tJJxKlu0kfRASgsfsTFGcjjPrda2EphdcHH95LXrxIMsgr0wTM+E7fOQn4gQnN0H7M2CuVmQ/dxNsaLOJhCcJW4H1BnUGvy9/rHEo5mJa0dTkmS81kGuCmq2B0yq2WkJ2XmZukY+adKhZ2zGppVnO3lRl5xkXWqJWT+VmpndCyfvCa//95fIEpCDR+a8ZzJOyVxUdqublllFNe1wK/6kSKZu90aqOTdTvbMo34m+0gxeV6wrP9R0yZRkWNpx295jBlZiqssXcy25ZgGn+D170FUfkimmc1/9X57pg2vMzz9AvUdj2vbY7U9KTjseAZEAWA+gDqS722oRcVWOaMcri7SZY/863usoAoRynd4GrZce2tWsDMjQS4yOvaYdBzAxpSPT88Du/71Anp8TrtOzKiIC1uLUmex3SH+u3biE/b5Y3u/SXankI1COX3ceP2ZcLy1oYPe74dbmKmvf51qACBuTj7fgcLwYqiYD9Cxw8r8/IHz8Cbokl2OmCaxFBofbPx4qNd1+nUimiJcdcj/II7OBtaO+C7w6EQWUCH0OmHp2B7rlmuJgVVtNvYvEohG5KfqhW6QUYbnnbrFJItibwPTBRWLPJ58imw0yODQEZNqAc4lJ0bV90n4ynWBsxfN+YdIsCbQEpK7Y1oN4y5yOlo/SwO9mHXTtFUWtEVkUM4dkhzEiS0A3w1pyWKkbM8oecDPHdd3bFUuBuBsxcoadNuiQnvWTssE+g+x6zVIqhiV0lBsX6W9CcnylpJB27XIna/SIanXW70SkyehjcyqsNAriI+ZmqZs75Hqf9noZk861pfPlesDQJE5JtPMWZTWCvzfC6Yj4bQtSNE0omh13Ubp21lrjbjdK+7jr4G0quUYHsrEtggCu0F2ou+UKgGZWTGh6TLxib5a0gcKQpMXpmAvwWYeVyVmS7jGDSQ8NjuW+p7kCkG+Si4CoEjc2Pbu3xLxwGtN/yuCKrksApmJe2nWbSjp5s0dMYMZBWqkk9hXFLj1IGzs7OhcWZk1SazMZnH5pKdqO1ptURYg27YCToBjvGgslbYtuzrUp92gVawTNVYm6hxtNIJPO7zWamfMCnjamqs2rQc50ckLqvdJJmlayS99V08b9ojuSqNJqv3XwXamzVsq0CMcjs9IOzS7cpn2ZaVNGEnxHkuI4SpZqaDa1UkFVI/mBwKPz0XVA6YuJnfxQZ5rmkm4yUtG7ZhpV5Co4uyiBtMxbZr10ss/6U22pHTchOfA43B3RjFeiSEtss6xw+zaYmFdOykBqHarTZxKU8TwkHxhiMqlixvmx+QRKM89ybWWQaXLgVoFRtQKUHn1tO+4kR19XC/CRFe36zq5Uck6G0yMGgMu0LxGti4QlTSgPJqcOdzV1zVv47ghytShfK526jpDSgF8B0w1+9VkaMwojMbKKYuVdKeAmP+VKqBcpeydbY7c6X2a4LC1nc6vh+g4VXY9ro7h0x8tGCD3WSHc1ddx+r7PyIxN33z/9UxjTr/7078235r5m/+jSf8GTD1pZda7mPWW5pdKXlDWH9l1NKlQVNZuWzGlOv6selJeU/Uc9SMdOVJu/XDnnbIotwhzN6GfhJZL/2jX97r2qpYoLEfK6Ww6FRVcco1sXAcumy1zHKSu7SI5cY9qJn8A8EpdQaVyPlb1Dd5lOF0DK87elX8eZ/5+KytHrWMP1eVz1xzmAqSbSuOpUO4e2qktTWHTHHU1naiT0pW6EpILTOni7iTYB/cH+IhILj6699TjsrfLCZ7wiVcWvfFUer95x7WoFty1K0mZau+/9gy1VZ1BLsM0cj1jUaaf0O21SulOjbQ677s7PjCoKuNa5+7pVF43q83AhriexRDtpbCr90mNyyJG5lWpiXQ/rQGpb5/KKLd2GUVnzvphjiXQ1HHfttM52wOdUTHNSzV1BoAvn5WGhHqC7Kgya/9+AVkfP18QEsOQopmXh9DMClfGa5VFvHneYRPFL9LhkR1+c7y1xZ1rUWlH4uCO9lXRg1O+QBmJvA3GXud+6R10YzQ67fyK8sLLHQLjVhqnUL2XWI1PrHWzZMwTUvd/9Te56bL4sArSBdO9dmP3T/Eh0R4PLANXB9APrtU9x/uVeVtDBpCCV+9WvOn/WyxX5XxiBXzMHio9I7/YQc+NZ3EnpndbjRWzWdOcWeOVDM1OVtkulnl8mQFL0NWpyrhZvB7Nyn5IyqSamlXboJEO3J2vF8nyvKnizqHNVYXYhv4bs0lDVMFTHV0xTocp38gpsdY66rgSs7pE7lWa6PdJVXi14pMmok0h/Tg7nwq2JqOOuz57IrTFm971O4MvEV8BID+CsRdU6bve/rzaId/JAj+y6RpjjGxacjiJmP6AegOrYo7a0pGdKD1Q3Ccdtld9q1l+io+3GrZ1pmvV1/x9ra8T2O8/USQAAAABJRU5ErkJggg==\" y=\"-10.054001\"/>\n </g>\n <g id=\"matplotlib.axis_3\">\n <g id=\"xtick_3\">\n <g id=\"line2d_6\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"114.991957\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- 0 -->\n <g transform=\"translate(111.810707 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_7\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.383261\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- 25 -->\n <g transform=\"translate(145.020761 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_4\">\n <g id=\"ytick_4\">\n <g id=\"line2d_8\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"114.26413\" xlink:href=\"#m8663bda407\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- 0 -->\n <g transform=\"translate(100.90163 14.798438)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_9\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"114.26413\" xlink:href=\"#m8663bda407\" y=\"40.112262\"/>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- 20 -->\n <g transform=\"translate(94.53913 43.911481)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_6\">\n <g id=\"line2d_10\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"114.26413\" xlink:href=\"#m8663bda407\" y=\"69.225306\"/>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- 40 -->\n <g transform=\"translate(94.53913 73.024524)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_8\">\n <path d=\"M 114.26413 83.054001 \nL 114.26413 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_9\">\n <path d=\"M 187.046739 83.054001 \nL 187.046739 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_10\">\n <path d=\"M 114.26413 83.054001 \nL 187.046739 83.054001 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_11\">\n <path d=\"M 114.26413 10.271393 \nL 187.046739 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n <g id=\"axes_3\">\n <g id=\"patch_12\">\n <path d=\"M 201.603261 83.054001 \nL 274.38587 83.054001 \nL 274.38587 10.271393 \nL 201.603261 10.271393 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#pd6dd7afbef)\">\n <image height=\"73\" id=\"imagec74020495e\" transform=\"scale(1 -1)translate(0 -73)\" width=\"73\" x=\"201.603261\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAEkAAABJCAYAAABxcwvcAAAWSUlEQVR4nJWbS68kO1LHf2E7s6pOn759u++LO4zQLO4ICQkhlkis2MCGQWLBns1s+HZ8ATZILBAS4iFgRsOMEDPD6M6jn6cemXawCNvpdGWd7ptS96nKdNrhvyP+8bBL/vTT7ysAIsgwoClBUnACMYLa43ovBEQEhgGGAIAGD0Ngen5Ag0OdIMneUyek0RF3QhqEOAoqIAncrIxvEqgiCuHtRBo9aXT4Y7Q+kuLfnZHThJwv6Nt3Jk8IyGFP/OwZcR+IB48K+EvCnSP+9Tm3c8TDgH+4IMcLcjyjxyPEBN6B98g4ok/v0MFzdYkQZL+HlCoYIgJeUFXwzUt50uVFu5ffcwIp4S4RVSpIKiBeSCpIEiSBRMCB5HbzncMfE+HtbF2rIlGJB4/MiouJKDvc4HHBIzGh50sVxb07I+eJ8FqQOcE0G5gPJ8S7DOYOOZ4hRvT5R+ize3BAsj7UiwEkAnNCYkS9R1RBlcBuNI2Zo006AyMxrhEtwCWF4HLvCjEhLqFecZdo4waHzAlxgqozQDxoBoeMtzqY94KbxCbvDHxJStw5WwtxkLUT53AxIWVsEeR4tsnMET0e0ctEOp3RGHHjgIwjMs/o6QTeE+93xCcD6gQ3JwNK1bRWwanCBIyCRpCUCCsgnLN/3sE4wPGEzjNcJvsuDjQZmM4Z8kNA/QKaJLXVmBI6OHCKuyTefWdgPgjDO0WSASUK4aRMTxyX+wPj25S1RxlfTRmYZcXjXeDy7Bn+dI+7RNx5xr05mjyADAM4j+xGo44nB/Rux/TsgMSEJCUFh0wJp1RTJmUlGDN9DN60MiUkKkF3A0QPo0LwXH7rKefnA8cXjt2rxOHrieEf/wuZs4mJQ31CUrbpcqkik3GYOId6yQM6jp+PXD4S5ju4fCxmcgWkozC8VcbXStwJjGaWcXSmIQnGV2ZeCjinC98FR7rbLxNLCaIiKaH5uXpftU4dpj0dhYgqiizziBESi7lNn94v74yON98eOX0iHD9Xxlee+eD45F93MM1Z29Kan7L2qMNML5sRwTQsDo7jCwMo3ilpUEhSzS7ujZv8GaYMrCj4i+JmcJOSjsYPKoKKVIBxDt2LgbXzBpBiWtOAIY28EteyV3ObovFSYgEIjLh//L09RTINoKIGBHAaBXA8/86XuP/92swuBCT4hbxjss9qmoiYiagT5qcDpxeBhy+FNGYin2XFS9O9Mj1V3n0bEBPQzcLdzxzjK2U4wpvf2RkwSQln5e6nc51U3AfwUiek6FrDwfhRDYw0GPmX75IScrqgb94hX3yCDh7dB5ii9eeFYMaZ1X8SRNSkFZYVx+xdAXHmMcgkS/DLqsSEDgGckXXRuAJQXUAWjN28PFBv7VJQjl/A+QVIcubaTzC+EfY/mri8GFHZkQaT058T4V3EzRGcGJep1IUQB8w51IjFpalp22wOSu7vTK4YkYsaWCKQyMStgBoXVID6S8TCg437QDY5NbPQTN4Ff8laIgWhJfwqpFwXxRlQcaekwYRTD2kUEOHyzDMdxLTewfBWUXFIpHpHBCQKbkqmcd6By/NzYosn1h/B2/Myj2g8pNkiAMJCyIuwugVSSmhMNsjlYp5kCJUUy+owR4t1iLh5zGy79Fm7bgCrQGJAOQWZwWUavDxT4sH+nT434FCLuZ7/u714eWrr7WbFX0y7di8n3EMi7QI6urooEpMtUnDo/Ygo5i3fnVHnzNzENFK9I7Rao60pOzX+mEHO0WIpQEJYViHHVTW+mSPqbSUYgg3irkHXZkEqZtq1cZDGLMqlaDm5fzEO9fDquyAq5RZucrgzfPQTmPc7+HJXo3t/Suy/PlUZ0ujRwVWtVtkZyUcl3g9MTwPTvSeUzrcuieAmkMtkJgSrgJOk0EXyFmkvKYmuOXQNWGOPPZDiFpNsiV5SDi2yKsZD1qpkAavM4EY4feJsgRy4C4xvlcHBfD+YIjpLkwp3qvew90gybz0fAnHviCPrYHLFIYA/C8ODIg8nNCloQqcc8ZZgMiVEZdEusNmpkoKQwsYqlJWpJne9SorkyJpqspTvxXRn60eSaXzaKRqUeYTXXy19uotw93NBnWO629XoWhTG1wlRi/CTXxa2LIybM0ib2pR5QSIwBMtnkph3a3O6DM5CmlIBPH4aOH6xeJkroG4AVM0pOxHRa06r9/ID9UbWkrMpSXkIr6RRefctePiiPBP8Sdj/EpIXXFy8bwFHSvykEFYyFu+vtpLhCMNDbuDcWoMaUFrvUJ7p4Ik7IY5UPlmAbYdspNv0GDdvr5/fog0V81jOAl71QDbNyyzMd4KLUrXGn5ThnbWVJDnBbdS3BQpgfKPsXubEV2TRoJxsmmttQGuASvtAGvIK67r7OoZca8Tm1fPAY2CVy1E1QqLYuALqjPCjV067JkZM4E/C+FIIJyU5A9fN0iW4NOoG+DO4KSezMZdFYrSZO4tWK1iawfKWt6l3VeiCUQ2VqrtfgOpjs5WGZQSuNKW9Ufgtt62xWXMbwE1rJyHJRNdBme+UuFdOn5XYz8w3rGawSLj8VdDgkWm2WEl1KVUkm6lNvCHtxErIvtttjlrL8UEadss1l5e3HAbXtyUB89KfetO2EostmrRoXvUqkiyCrjmZ9oNmoESXoDIp4uyzSibeawyucdqa6w0s3sdRq4YrbVuy/R5HNxsvlUhbvZmTBppgshVSDEE/ketC3pLaXEbQec4VTG/JZKtFpTsvlk4ErebbjtFmOCt8thxJN/c1x+WZps48CwpXAZg25pgXtvcZamGDZrJfcjdaDbIYSZ1aVNq6fO8tDMh5Tx07qdWQVDPRm60jizteXR2dlA+txmnXbusymXMY8D7zpHteIvWNTkvFwmnLSa3wyaJUFSzTLuXa4sWSGkHnmvMS15eoXNeDpTVhr7x9r8E9AE23m4n3Fth9k/dEGX0MVrRMVPBnIdQVK5TjbFLDG3ClzF0KWNn1VzVdjZTvZQ/nLgmJV5Sw+Xnl7dqrCb2s4bZiXYHZPtji9ht5mLYwF+10auYmRcCMmETBzZojVskxhy4FtjJW0rVkJfoOjvOLsSaonSRsyLKscqthj5D51o0riy599Op5Q7XacKw8SmFVT1qEk5Qb5Qpj1RDplvZq6bBo23su96660ToG3eeOa29et55L96wj3ysNlDUQq9irN9vy3UGoGpS5owCW8haQlsLjflw29OZoXJSS3YO692YbfsJ8yIliXCOxVSapQjaT7s3xqoC3dW3xawGngFU85g1w6iuRyqlhXUOi5lntX5lLWpK92ph3eqd5KZiDFbOYIdruSGpSkhqfNAGZNspZx9wAYMVlTZsrEl7NsrnfvNOHe5tdlAXLD6/jpDKHws/VUy0zUi8IbrnXeLcSgKaxkUDbjw0HWNl+++pNqb3akOX69sYXVtz0niDBnjeNQpuhS1r4KO4FealWOx68mVLexEMETcniJeeW2AjjMM17XFupTrV3McBcG0NZ+SHzRdagkir0pL41uZ6kl9c/KErvX1fInNStmCSprtjNtvtKShZQDlhCKyAiFn3nbNm8mofdaNvIvVvfmGAfHNfcqqpz53mUFT+tIuUtEHuAeo/ZASfVuxsXi5j8oeymmlezCp+L1lDKJl2rQcJSS+pNUayOpEPZ9t4GZ8uUarPWRbdIbn99/Lphlt3j65vlQbaqILOVAwooLte1w2nZTpaU0BAa7dC6BQysim5WbPPFcurE+vIEbMRFXeCnLXIbNqOubfye2d/S5N6+OichUQi2VyaUdESipSS7lwl3UdQJ0/PDQnpJkSnBJVYeqsQ9BNLgSGHZAKhespn0zTBghUCZhCzataFVq7Jr6joUXZsaG59r2/WiqUA4CcMbCDggUlXLyHvR0zQ4dMzgRLU9sbz9K95bEa6Y2phPmNwwsStl6N31lvu+4RmXbm8Dh8rjHrSMuQ7l6nr4C+xeqW0p2f57US9ytU5ycgspCP6idixmjpmXHJo3CADwLpdsTZPqoEtYRJvA9oX3lXZ1gWXLLdfVhI7cbwC1mv0GTu1VPHB4gP1vooUA6iHuIJxAZivbhnMiDrYlZMf4FBchHhzhnQETztOqc3ecSB/vuNw70rAAvrqK+bV81EywCrwluS4TuHlJ5qom5egT16vKZOkzv6uemlL5U7JSiRRNmsFFO2SVgplUCrbjscQrghsdafbobrAzSWXWYvvvflJSACeCFlB6TtBFsCuB26a3YqMtEFvt2QBya9ts9TnzktZNBMXNaltKZd/dX+wzCnGQimgK9jxhp07iKEh0uH1Azn515sddEuGYkBRsRfM2d9m2KYuyHbldT3xrYitT5doEHwVoA5gyVvmrLu9c5/AoSFzOC/mzHTZwUZn3sjrnGEd7yV8ayR3GTcWG5sTwy7cMvxLC8SPefmvg9EI4fabMoy4m0wpatVhW5nnFUc0EKybFg7aaWZo2Oan0iyELGO1VNwCA3a8tSD59EghFc9Rl7ckVufkgtVM326mzEleUOlMcHPJktBBAwZ2WE7ThzcST/xN2rx13v5AslCW9abC0Z3oC830+YjPoGsBUJi81XYIOxBsJcQWuBbsl9a4N0jTJMuxeKuGk2BHlJm1IA2iwuCQeWIJMFZiX3tUJKYAMjpkSOuQA0wFRcZeZ8deJ8aWtSInU0+CZ7gPTU8/xhS1pGqkHuFZqX2YiWR16J9Bpz1Xm354faEBpgarPu3fHt0o5zxDcbLxTgFldWSWTXzZoy/nIONoGpD9LJTk7vx3seznElRTRhCAwJ8Jxwh89+18KT/9bkax95fTr9NHI5aPA6bnj/FyY7mE+aAVLZfGaEheuK/Wf/rpF1tKBa9Zhn2WC4W1keuI4PxNC3YTLaLaFt1IRWKqU+YBBHikh6EHycRUhjVI3Kd1kbYqHkGhpjrvY6TOJKe/RtxNQ/MPMfk4M7zxPfp49bD72lzzM+TjMfGdcF3fKlgOoZ5paUDY0r+zk1KA+t50Pzsba5W3uGtDlM9MFnDKoZj6pMUSpZeT/RfJZy2DHVxBwAUqtyU+aV19xg8M/YN5xTrQHnExLEnJM+IfZjhSmxcY0OOL9yHwInJ/ZzyviSHUw9URdXtlCwpS0qyz+hqerpZ0I7iz1sIcGCG75BcKqA5ntpJk2HiQ1PlmSIM40RlIONIcSMgipnIhFjG8afvBPfV2Yqmmz4ia1c47RjkFLPi6MiGnfFJFzZFDl8D/Kx/+ilgqNgXgXmPeeuHfMB8fLrxzznR27aRNhiWJVjrnsLZZg2ra3hzeO+58q806Ie3se1C8m5uYGKLFEd3U5SFmjSjvvLOBsf3BjIGoDBAspi/FZVX/JpzfqAXjNJ+zsdKyLBmA5m+3Oc42g1bkM3IRPCXf28MpEvftFkyIJOWtwnJ7D8XNhfqJMY+OMMkDjK9i9Trz5bU/cmzMLtZDFMiFRan26aFbyjTv1bURbVtxWqJyRlFiyd1PD1S6OW1TfSLNJ6jATdcF+tFO0TKLDRV1qWc1Val7GdXZw3b86WqGw/jLBk3aBcDT7nO6zV60xkxhALxV/TMSdr0eHFu9WStZZq3Q0zalhS1jIexFu0QrbMGiA8Nqcs6YW84iLlyraeL3nJsx7agnHlYhewZ9DNhslnCIcQi3f2K8AkpVMxABSZz+/kMtMOE6EX7ziyQ98PRAfP9qTdrkGFpcf4qRxIO5s2JBGKtnaeekMks/3XYv2OiqtYGXZ3Nx6lGXF6/3SpqR7Cu6y/CCnmlwCPxXzLVyYccrnDUSFuHe2iersvj/nXeMcfpRDogVASYqELsxOilwSYc5x0eiZn3gz+dnGD/N+AaItbdSMuCnoW0C4aEG9MpjJaY2Ul/7WBzVTLQtnAIM0nLhwXbo0v0ZIReuKlyyRploYkkGSJBBABl81ArWDaFZ1Tcgl/44tNZVXVUvEBY6fDfzmdz2nLyM6JBgSYXq6EGw5k1NU+yqb3oqliqkUEP2CnxYBusWT9ucYO5aCX1w0xl26oHG2o3n+nCeWtW69iCUpX7bpLQAyAVxUwkNax2zZk+IFHRwvv/L8yV/8EwAfDw98OryxtKR6oXJIoIzbbjdtgFU+r2K5Kljzjlu/q76pFg5dv4WndouJmunIykFIceOXbJZ+CSDtNK1UD1sWMnn7pWZrLe6slfN+/JeOP/y9H/I3n/0de0lMCCf13dGbxrttlhGaidTn7ful6SOAtll4BXX1cgZStJqrpTeNyTYcFksJRnJ5oy37pIb4C/dH47RyJS+cnzlefQV/9Pv/yfc+/We+FYRJhZMqA/P1EWVLaq1zDbq462YyV/te7fN+n63ca7RLZQ1OzdjLTlRxFHmQVYRcNFSF2KT6oiATuYAo+BO1Xl/Od5fdoPaXm9NBeP1d+Ks/+3u+/+If+MLvCOz4eXqoUwluaolwsXUT3kgxhbW69EWvVVWwTKa9pAGguVe1qSXojXHa2pJo3hQp1YG8N6hY2FKp4ykZHMFfFoDBQFQP5+fKd//4J/z15//Gn9//BwA/m89MCF/HO046ENXljYCmJtwfoKiANHWcqg1bW9mdVlQwW5PbArLpuzxv36va1WhZ4eQWeG36Fs2l6O6clCSpZ49+/KsX/G38A3748Rfs8s+ikgquMbFA+aFLLpwtZ5DWP+S7Vp9G6Pb2LR67dXUcdZWpl7pQa4Jt2/ZXUL1s2sjtmqi/broKx5/e84Ovn/Cjjz5lt5vq9J8eTvjcXz3EtUS9WgdZzaUxudXRlcZEUmhebTcASmUxB6x1Eo3mlPVZcWDjHQs42nvKBqCV9tZzV7q023A0/ujgBPrmwEUPtb+TPK1tQhW49t79LTNov7ZmtmU2ecLtJKEh+XaIsiblWSXmBoD2FGKzmKtUppehBawRzMhc1hqrKwPKXLd0HGpye9Xj+p72nTS8sHkJ6xUst9N68m3bVWxFo93tpRiHysazrXloJ3tTW3pknVc3jZNS80LHMVWQog1bPfZ81MraTXSV92Xv1Ap0ZRaNg7i5dbS1WlvPukX4kEsomlTJuxN2Y9x6prRMoMjQA/WhwtzQ3P7Zh2jNJog9t8o1UALLEUBYKCB/DeXeikM2hGgfafes3nxsIlsvb2jNVb835Fl1eYuXWjPvnUGRZetdXd9eiLshr8euq2CwxiTbGF9F5FtXq53rW127jos+ZFFyxzfOSlyZ49XCUZhGN8bbUMkrZ9K36YW4NZk+FurGaJuU4HBFuh9ybQpMBbr33q0HbP4A2O7Q9qp9oDC9u74F1K13u342X/lQWT7k+hBN7IDaqBjf6JibCrAKCVa9P9LfZhzWDLJqsjWxbwLcFrHf8obdY4W6z7hGYete3/cNc9kU4H0TumUaV+02AshbK7flIG49z21aMdbmtvXCxr12nA9axJvukNuT7CbzDUOa98qzFBff37wV0V3FBk0nj3W2MoVvKOwmFz0SflRZtNmvu9XvjWfLNresv7fvbwwtlB8FtkFks9O6suGSoMq1h6vBZG/z7xO6l7HrowZ5+YtoE/RtaWdLE933Re5ukK0Yres+9AI/Gtk2wtRJ9T1+wPVNU4P3yrN13QLzkQnewAvX7nysWnZvr4DcEnTLW208exSgDflX3X5TYmwdTm8xvXyP9Pf/50cvoUKzkh0AAAAASUVORK5CYII=\" y=\"-10.054001\"/>\n </g>\n <g id=\"matplotlib.axis_5\">\n <g id=\"xtick_5\">\n <g id=\"line2d_11\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"202.331087\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_11\">\n <!-- 0 -->\n <g transform=\"translate(199.149837 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_6\">\n <g id=\"line2d_12\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"238.722391\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_12\">\n <!-- 25 -->\n <g transform=\"translate(232.359891 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_6\">\n <g id=\"ytick_7\">\n <g id=\"line2d_13\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"201.603261\" xlink:href=\"#m8663bda407\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_13\">\n <!-- 0 -->\n <g transform=\"translate(188.240761 14.798438)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_8\">\n <g id=\"line2d_14\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"201.603261\" xlink:href=\"#m8663bda407\" y=\"40.112262\"/>\n </g>\n </g>\n <g id=\"text_14\">\n <!-- 20 -->\n <g transform=\"translate(181.878261 43.911481)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_9\">\n <g id=\"line2d_15\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"201.603261\" xlink:href=\"#m8663bda407\" y=\"69.225306\"/>\n </g>\n </g>\n <g id=\"text_15\">\n <!-- 40 -->\n <g transform=\"translate(181.878261 73.024524)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_13\">\n <path d=\"M 201.603261 83.054001 \nL 201.603261 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_14\">\n <path d=\"M 274.38587 83.054001 \nL 274.38587 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_15\">\n <path d=\"M 201.603261 83.054001 \nL 274.38587 83.054001 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_16\">\n <path d=\"M 201.603261 10.271393 \nL 274.38587 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n <g id=\"axes_4\">\n <g id=\"patch_17\">\n <path d=\"M 288.942391 83.054001 \nL 361.725 83.054001 \nL 361.725 10.271393 \nL 288.942391 10.271393 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p632e2f624f)\">\n <image height=\"73\" id=\"imageba59599bff\" transform=\"scale(1 -1)translate(0 -73)\" width=\"73\" x=\"288.942391\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAEkAAABJCAYAAABxcwvcAAAiuElEQVR4nKWcaawt2VXff2vtXVVnuNO7776xX49ux43tdnvAeACbxAZMIiIBIZESEsSnKEpEFIHyjShKlChKpAQBQoqQIkFExBDhBBQTieAEDMhhsPHQtrHd3e7pdffr9+57dzxDVe298mHvGu7tbgspJR2dc+qcU7X3f6/hv4Z95IGf/7eGCQBSC+YNlHRIfu0MgkAQpBa0FrRJz2IgDbgGqruGNiARzOVrWLpMsYi4taF1xJxgKsRCuPlRuPbobf7Gjc8BUGlDIYFFLGnMcRImfP7gBl+/s8fyeIKtHFSBctZwffeQJ3ZvsleccMGf4og05lmZ57Cd0R0TbXhueZGXl1s8fXuP9aLAguImLQ9evsuV6TH3TQ8oJKBiADiJKOm1B0ANDHAyAOTyOUbvyd8RMAXzhgFqQowQKsHUkJBAEgMi+FX6rSmYywtiCdCtr3purS7zS/V7+eiNr7FXnLDhVkykwWFErXloYx+AO/M5d47mtK0jBuXW4SafWr4J7yKFCzy4eQ8VI5pw1Ew4bUpWrWfdeJwaIsb2fMlk+5jKtRQusFudsuFrCgkUGgAIphQS+qn7/pWAqQ0S5AxifqtJHAzFnGGawIwOBIjekCCEChBBgiUwImhriEEzVWRiuBr8MiLB0GDsPNXgF56jdpcvbV7joY27XK8OuFwcoUQqbXhocodtv2R/tsFXi8vcOt5gvS5YrwqWBxOIAlFYXCspfMBMWLeO1aqgXXts6XGbDbP5iocu3OMtm7fYK05ozLEIZZITMQoJBFMC9FIUEeSB//jvTFpBgoBBrCIUhk5bfBFQNWIUYlDMhNgKHBVIk37j1qCtIC3pdQ3aQizSs7SGX8Hd716xd+GYOwcbXPhfU+a3WvwyUG+ldZIAJ9cdB281rj32Ku+79CxbfsXMrQdhxqi0YRFLFqHiJFR8/fgytxYb7B/OwYQYlRiEa5cPuDBZslMueWi236tPd71oSjBlERNIhYReeiLSS1RE8G6rIQbBDKpZw9WdI+7fuMfjmzdZhIqX1tv8ySsPsFiVhNaBCFZYEqEGWg+6BlcncTQFa9Kko4c4ERbX4NFrr/K+i88yu7/mj248xGE9ZdV6lo3n7qtbTJ4r2fqGsf1V4d6tq/yP+RVCBWEjcPWhfd6++wo3JvdQif2kNtyahzb2uTI9YrlT0EZHa0oblYvVgqmrmbqGmda4/LtoyvhwEnswOoBC/k53zl/fOyBmw31945CH5/s8UO3zWPUSm7rimfoyXz24Qt16YhRAwUcsG6+koopEQSLErLG+JfkDSbZrfzHn+dkub569yg9f/SMu+SMu6YLDWPGbN97Fb+w8zul6G7eC8hiqA9AGonfcCnucrkte2Nphq1yxXayY+zXbfslecUJRBiptknQgvZR0R6HtGenpwHESaYKjyV6m8Gcliax2cvfmfZYuYBxb5OfvfoDffeXN3Hx2j3/xlz/OeyYv8HO3/wp/+ur9HC8m1CtPrF0y6pY8nq4UXQl+Kcm7BShOwa2M8sTYfvIAPV2CGVZ4Xv6eqxw+Fvi2d3+df3PjN7nuKzxpoC2Bu2HNz+5/kF/75Ae5/CdQHYb0WxXamXLnCaV+cM0H3/wMb5rfZqb1GUOrEvuJd0cnQYWEM0B++eQaB/WUk7riPRefZ8uvKCTQmOtVVN7yz/6DSUj2ozg2qkPr3fUL3+2YPHzMoxfv8MrpJieritWyJCxdAshAVproQCO4pfQ2SRvwC2NyL7Lz6RehbTEzRJVw/SLN9oTVXsHqgtDMhXrH+M7v/Rw/sPtZPjw55rm25feXj/LVxVWO2im3Vpu8fLzF3a/tsvkNxa+MZibEEtoZrHcj7373Uzw83+daeZhsSqdC5ySoszeLWPLrX38nq4MJslbMGzJt2dhe8oHrzzJ1TdKKG588RVctum6Qo9NhMpOKvb37uLfc4vj9x0QTVCPScafAIE0dW5DhYS49i4Etl/2Kmgj6/KtUKkxUQRWbT2kvbfLbe4/z5CPXeP+lZ9nwax4o9/nY9hf54OSYl0Lgy/UVfrr6KC8216nuJqmt7hqTfZjeEj678wBP7+yxM1syL2quTI7Zq07Y9ae80ZHmY5gaulKsLjheer5QXadySTrlex/5CWO5wtY1MptCjKAKVUncmnHwLVvwI7epW0cTHHXtaRtPqBXWDiJIo2gt+CUkT5kIZXVgzF6NbH7i81AUiAioJMOlAt6Dc+m8SLpvGjnx4ha3PrDDvXe1/NbHfpr7vTKVclAfjMO44q994Uc5+Pwe1/+wxa0i0QthoiwuO+6+M/Lmx27yoUtPUWniXZ2ERVNUIg6jMcdxmPD88gKfeel+wpPJNiZeB/Kxvb9vI1iRokiD946wu8G9t26x86MvcLiesG48detYr0piK1hQaDMTbwR/okgADYKuoTyE2e3A1ie+mEA4f6j2iyJO031FQQVRxXY2aXdmLO6bEJ0QKmG5J9z468/yw9f/iO+bv8hTjeNmu8NT66schwm3602eX1zgq7//MLNXhOog0syFdio0G7B+bMkTD7zImzdvs+tPqTSp1DoWLGLJ06eX+PKdK6z++CKzV4zZ7YBHXVpVSCuaAQKIpSeU4LKaqUZUFRFDHCARi5rInA4qFsWQdszeHYTwWpBixNoWkQx4iL20GcBqjX9V2HrGp/OTinBpm6d3H+SfP3yF/3z1NlPfcGlywqOzV/mh7c8A8ErY4Mff/rc43N5icivNxS+hOAb+fMqfLR7iya1rTCYNW5M1KkYTlbp1LFYVq6OK7UOojozysMVzYQtiRELEXLIRiCB1Q7tZ0GwIISoqhlPDa8QXoSeYbTu42limkEScAJmZA+I9FiOY9eD0kgRYiMkWhoA4N6iganodAuYctC16csqbfqrjGZ5mOuGZR27w6fc+AX8XPrbxJN8xWfHZ9/4X4nuNSOSppuUnnvkhvvbF+3nwt1rkj8GkxHzF6ZWdRHwbKJfGbG24ZURDjYTEB+V7Hv/JXt2sSAOSNk1o/1v3OHgMHv/w17m3nrFqPavG0wSXmG0UVosSWztoMhVoE1+SABe/aGw+c4p7+maSpGiY2VmQQsC6z0JAVED0zGsZL57Lrj1/BiBViW3MaC9vESaeUCmn1zx3vr3hh971Gf7ppT/gOBoHseTZZo/b7SZ/vrzG/3zqrcx/d878VsSfBiSkEAoyx1PBBLxNiyxJhhWD4cSMeltotlJk7CXixFABJ4ZoUg3JnqFT2cxLkS5ua2JSYXVgSWKxDFI0TCSpm4IwqD4j7TSzQV1tMKGdnbO6htMF/s5dvHPgPdOrF5G4w3+/835+48HHKYrAfFLzwavf4Pt3Psu7p8+y8ZY1vxLew8G9Cll73Eqo7gkbN2PiZjF5Z9/OC3Qd0LrN6iYQkkFd74Ds1MmsaMRpxLtANBAT1ARVS0Fvm0MVNQxBV4kaoCBlmSaXJ5ukyaBtSYoJEgIUIwIYbQRYwDoqP3rdS1UnWd5D0wJr5PmGvedeYu/jSXqlLODyRX77B78N94ORf7j3Kf7R7qf5Jx/6v/0lPl9v8bMvfhd//nuPsPM1h18a2hq+nTqcE2LliKX2A9TWWF+MbG8vUDFKDUQnmKVHiEobZFhcy7moIIhZcp8K5hSbVkgb8hcLxAxChNZhbUA6yQr5uXsPybg7l/hM/kw6qW2bXuUICcDuvdVN8pJZ2mJdI8sVD//igi9/4jH+wcY7aDYL7j1WcPymwEff+yQ/duWT/MzDv07zEBzEklfCFq80O3gUYqHgLT0z3DNutVzeOGHqGtqoeNNeorrF7qTexFLwm8M7LHEf8wreYVmFe1S9IU4Rl8GLEXODGopoAisOEtiDliVRzkYeWcJCDyIBrANRJf326BhZrSiLgnI6oVhcYP5SxR++/AS/c9/b0M2Gra0lv/jEL/BEeYfHyzt402QPIGUKyfMLlTDZWnLf7JDKtayDp40OL5GiB0kQzeSzw1cNYspY9pJUuMSFLNugrHpWeGTd9CBJBwgkGmJZVeoG3OAJJSS2ap0B7FYrG7JeNfM5UUEkEdfueta2UNcUh0fsPAk7/9shVUnc3WTxwBb/7V+/mx/Y/ixvKRy+mWtOgEEXOJsKoRCci1SuZao1J1riNVC4lFaIJjRAWQZiVEKrWBGzBKXsQMpeCrHKOSNLkkA7qJM5h3T0IKukhJhAiZaiL+97kRXAmiZ9Zok6dJ6RNrP5sbp29wnpHslJdGZlnSiGc6ABvEPvHrNxtOAP/vH7+IW/8+38zvf+FF46CXcptRodRC80G8LObMml8phVLF5zUxWjdIG1RlQjUQ3zQMxxnA3qZV5znGfJZkQGqRJLEmGWBhxjmlAGTmLiW9LZq+wNeyeQiaqYh1r733U0o3cSHVhmfSLEzNI4QkBI9pEYoWkobh4wffEa/+nuB/GdqpkkcGIBoYT1Djw8O2bPn3Cr2cruP1GBNQML9y7gnCe4mGxQTAlw0+ztSConIWJIsqtOBvPUR8UJYKKAT9JNjEl1nKYJmGXVll7aJGSK0dusJEmWQZUY+8/sPJntXqsmwNo2DyrRm2of/s8rb8afXlOkTbwmFuDWRjsTJu/b57HNW30m0Etk4hpKDahEVqFgHVKC3ftALBMDjyGpYrtptBMhFoprQ6IXZskLZrskbRxiOjPwkvLoQrJPIa10H9/1EuJ6lTnjNb0fpCjGQfXaNtmyLGUdecViMuwhJupQDORM5nP8yrh9bxMfPdDFXEUS51DCVtkwczUTafpKQkyjJ7ouT9PFfDa46CwR/iSlMoDea4oZtJa5kSQJa3I6IktzrxZesyomYIkZSNOe7EqbQ6mYgXGawCXzrk7N2jbbu0GFx9LWA+M0nQsBCg8GYenx1uXPFGKZc9MF7E1P+9ywk4iXQE4e9unN1hwqWWEyd7RcuXArSfZFBcsmTUxQYl+FMRHUbMhHnRnxADhk29WdHNOJIIjEgfF3v2+kB4yOaoxYu5klIM8xeJGIxZg8rwG1JkmKBcQiGV4JQrNp/L1rn8ZJZBWLPukeUKIJXgJeSiLCZrWmCcq69sRWsVaRJqVMQik0c0WDJZU2I5QebQdXby5nOAcjldWKXBw1tIl9sEw+DWCqCHHwVqr9dYXBo+FdkowMkHSq157LTKgmqVPBpiUSwB87fLthRD94pnYOYTNQSEtECShNlhgsgiiVtkRTWqc4iUyKNge9QvSpbuWXDjES98o5tW5yMbFPJBpR0rNF+oScmGAu1e8kWm/PBtKdbJWIYW0H3MBsTSSFOM71nKyP85xAE5IdKuIgbd33XImUBe3mBIDiUPDtNLFf05QDikoqI0tgZUrIhiLlhhMLdgKNBjSk1EmhqYLaepeCfR9TFTcXMDt1kc7o5OquRHqnkb4viAqWk/6iSa1U7CzRDGQHYD2HNRt9LoLhknnoDHkHUmfwVaENKQfW/Xb0+zBJALu14LlQ9xVQK8FqRYvIrjvhpfYCEaXShhAUJFKIEREKS9mBiWtonKMpdFR2ygD5NBkaS+VxGHJMlqq+2hraCtqMV1Ry8i6HNi7FkknKSHVnAw2R4EZq2HlD8ndiNnbjBGAHoCTLajKMpwPTVAk5jnU1ePWR2GgamBo4w/mAwwimrGJBHNXGu2JeI66vnTuNlC6wNV1xaFNqsp1rk451dqdX/ZD5kQdzwyOBJL1adb9R0jp24U53BNUkhTHZLZxlYDOF6D7La9WD2UnUyAGkGM+lZo7CYV7QFsojw6vGPIlkJCebS67tHBGQviQTTPtSTF9B1ZAMuEa8RkpNNXjV2FdLzOX4TgwZeduY8yNiZDqRs5idCmZ2np4TyU1gZPPST6xPtBDdEPEj6TPRBNS4aisxNXlIVtfz3s00URPTJJlJktTApbBCNfKhB57mw9tfY2VnQ5GuspDvhJIaDEptiU5QjDq6xMyd9eqWejBGVpsEnkSQJqtlTyjpJUMsAZPOjeyZkT+zXkVNONsR04taB9bIgzZZpdKksgpbn7+y/MjTRBvDxyiEoDgX+fF3fJL7y33mUnM3bLCKBSrGrj8Z3VeH6qYYlQ5utNQwkEoB81lqAImDpHRSZDpkBdKAMlccAQJJPQdJ6B5CKLK778ANNrp+YvDJdnXxmyA+E86eakjmTNana5NnTX0M7VTwzXHFZGfFjd0DHqteZiJNr2ZOjJIWlZjogKVAtcGhJK/TMfGYAXJZImMXuGtWE+mAyc+RQT0ss+0MlnVgykgl5TxQyfCfAUlH0mjD66Te4+9aTzUG5RgtbkdLHDQzwbtDx+79p3z/tc+x6xZEE2oUJVJIiyP2tfGa1FzgMJyk814CIYun5oBXXSQWlsU5SYjkRMAZaYpjwOg5U6eKvbGXTCV0AJuYDGuSkgR+mlxWk076LL/uMAjd/QfQhrz8YBIkGNEJ7Qb4n/y+j3N/sc9Vd4JiHFOwiBUrKyglUOiaiTQ05qnNMdeagzAjIH1vjxMjSuJM+4dz2lenTBdCmIBVichpN+mc1u0Aitk+9SmWPmE3qA4M3u/MOaVfoE5yuuMsSIlqdNytz6AKZ9WTREXcKpHM9BvBv7N6gSIb4ibbm4AkgKSlIDCRhvEx0YbGHJW0PTVQNTb8mqpqaYG9J1tOLzuaDekzDOaTMU8DTWrQSUbXFCIRCINHG5aWQRTJYI9AMzvjG844A3PDwvRUIN/b1dn4u5SekRa0jsRSew/tr7iGlcHCHCtzNOYJpkykQYkZrJDOEymFJFnqmLk1h2GKWupT3CmXbE1XnFRz5k8fos026+0Unqy3hDAR2knONowmb9AHz+Oj505C5jzpTd/3pMn79FKU7VgnZWN1Nc2L5QYwrZMkUro6NcEZ2gTamSMUQvS5Z9IJFKRgdmUFAWEudbZJ6YoTaVIeKRa5bydRgok2qVPMBK+R9156ntMLt3jmZy5y808vsvMVuPSpl1K+RgSbTbBJgZWedl6w3i1YbynrbSFM6Q1+JzndJLom1U6NOgns1I3RhCGDl+3PwP4HCeyu0YwaZd16MOqrXU+9IzRbhm+AkH9VEnCa2mTmWcU6Ujl4vGQ8SkndZdtu2XdpdBmDSluq7ZbVOz23Htji7juu9d0mrhbKAyhOUu/S9Naa6a2cc8orbk4IlVJvKs1cWO/IwMyHVtiETduhMqhs78bbfE4GCetSx2O71t3XNblI65XVrrK4anD/Er8y6aWlkEBBauCcaUswocmWtmFgrkpEJTKRGjKrDpnJFRZSCsWt+KvXDwnXlPW3eNbRc9DMePF0h6devgS3K+YvOIoTT3HS4k/qPgEHYKXHrStc7YhOiWUGaqROlsOaThJkRCaDy5XxDFLvwXLXyxlV7OLudTLWsXLUW9Beanjivpfxi+gpJFJIZCKBYiSzrvfPkFux+xBlQkPpAmUMBFK2oKMKZ3oXEZxEZq7mQrHgxvQeH9x7hoiwigWnbUVjShsdx23FSyfb3D7cgK/NufBVY+uZJVu/9xLiU+oDwLY3aHZnHD00YXEltUZbkd37WMUKkkEZqW4KlTI+HZfK74vjFlNhcaWknRlXrh7wYzd+Bz/TtgelAyiY4MQIJn0WsvNiIVtaJ0ZtMNN1TzRLGyShC2uCKSsteilsLHGtYIqqMSkHm7ZXKZerE462K25e3OHW2za5fVoSTx/uW6IxKI6UyR249IUlF76S63aqqdpTOdqp5/AhT5vbBfsjO4C+G697nb2rWzSYU7TxNNvG3uyUudR4hw32ZvQ69L6S/rOY47W0nOBGbhYhE8wEehEHwE5jSczqWJtnHZNz6Jo/ezWWyK4/JZjy2PwWzaUE6Dp67tZzlqGgNeXr+5c4fG6bzZsl0yamDAA5LKkjTgKTe452lSo/vcrlHqowkbPktE39nbpuiZVP39ts2a1OUYn4U/O4VKM4Q/0blIKkggCn3Q6LnKB2GI7IyopekjpeVY62IETSeTdS41Ve3gSUT7bPfJYy33M1YgJ+pjUzV/fbGR6d32Z9w3P0vmkKmUxZR8czh3u8fHsb/3zFI796D7l1Fzs8Iq5WiPfoxpz2bQ9z/OCE1a6yupjA8/tw8UtL9PCU9sYup9ccV67sc6U65m7YQJ587npPwfpOeM5KUf95lq56FG4vYkVtrpeUjjac2iDnjflews5Kq/ZA1iOp6q5Xm++dQqem6ziocWfXogkqxmlbcbeesb+a89z+hbQHJefdqRV3qlx4Uth5ZoW/txxKWnUDd+4R33QfR49usP+48LYPPcX16RFTV3POoULT9zvH/nX33mULp71rgCgNhbQ02Tf3+SYbh+4MaRaG1y5LaW1Q9kw4UFjqtZ5Y0wMUTPu4sTsCcqZ/e6Y1F8sT7p8VvHP3xX5Rl6HkqK144eQCN5vrwITZnQK3zOWsCHp1OzmCa0KzE7g0OUElctDM8BFJAGCs8moGhAqjGg2gHKmLkuxfQHDaSUbdDyqdj/0EGnOJpJr2Epeuk7ILHffqF2TkTMa/CaasbNVf8zRWzLQm2hBONdGn/TCkHFfnWXeKBTcmB5x810usP+KJ2VkcNhMWbcmiKVktpsSgVFF5cHKXxhz7gJ9IYjiFgBKII2BOzdOYsjLPftjgdrvFN9aX+NO7D7AOSXL+0varvGPjRd4zeZbrfujXVlLzVySluJP9UZpMC4Z7lMlwSyaunRfMcYqTiMt2sBBw1nlgzWkdxWXetohV3mWkvZrGPP4m+gTcKMBrzHGlOkqAh4qvyBWakCpDe8Ux61jQmMN//PgJCglnepy73UCltMx0zY4ucBKZ65q94pj7Zoeso0clcr065JI/YlNrJqM25HGSsMEIGFECwQLNCKTCYp6Q9NwKRhTinP1C8msZpBFSBNCMdhol+pIdirUETdI2fD4kDzsvu1mueeVkk3uHc37R3k/dehbrAnnkl/+ViRiillr7UmaD7fmSq/NjHpjf5SPbX+F+f5cdrZkJFHKeHnT5pDcy+GM7YoxCLGob3jcjlVt16pMlr/N8Kyt6wz7eZOMk9sa/lNC/TuOzfgGO4rQnvKtMRzqb98zpHp958X785zaY7BtuDa4x5BNPv82UVMre0eUZw9ix8DEwbiQFrweKO+cZA9afC68tZr8hoA1GMEsdd6T4srODXbi0yrYu3TfmTIVk21WcsWXd0fR2N6npaaz6Bfi5L32Y9vk5m88ok4OINqlvyz/o71FKpBCYjSadS5E49AwYY6l4veP1QBmDE836650HFAaCqpm8dr/tcuXBjCCpP7uxltqa3kivzVFnO1RmDxlMiTLYQTeKkDtu92K9y6duP0rz0pzJftrco+2Qq/KHsWKmDXNamrGbFsEhZyYUSBPsgOqez0vUeYkZA9Nf/w242PhzJ0JxHuTxtaVT3yR1K4tEoDbtaUS6v1Lj8nOgwbGKJQdhxiJWfPHoOs997jobN5XixPArG4oKgHzrj/x7W14WTu+L/O2P/CFvn77I9eIeF3XJpgYmIhQjsMbgdIdmQPtV/wuCoiPzHolvqI7ja58/ohkNxmk0VqY4MQqMw1hwZBWrWPBQcZATislY/9d77+W3n3+M6hPbQ/UlpCylhpQJ0LX1MZ6fv1xTHTumrzp+bfUd/EplKYnvSD2QzlJnh8+NnFH4zse+xhObL/DOyfM8UhwxQahynqIDcAzKG07wjAlPR2ORprdLyZivzHGajbYj8nR9mUWsALjVbLOOnkUseWW1xTMHF7lzZxM79X1AjCMHyEBMDe2TfWP3K8uUv/JCKDUl6mKWojYVbWPp8H7RUhzVzKKx83Xt8wgSjVi6VM10QqhSGlabyO/9wFv5wsPXePb6Hu/feJpNt2QuNXV2qQ5jR5dUEiglmc+5JokcA9eB0Rnn4+g4jhNOraQxz2msOI0lKyu502yyzqnlP9l/kMN16vo4OJnStg4Lgh2UbDzrePBLDeXBqu8dkLpFVk3qrWzaIVdihk1KKDxxUubWwaG7zkpPnBbId33gX9q4ammFYiK4dW5wktTS17XBSIhEr8TSESYpGZbyOEZ1Z4UVjmbDs//2kpMHA3qxZj5f8Tcf+TPeNXuW+9whr4YNboctnlvvsTbPK+stXji9wFeevYa7U1LdS3vn3CqlYNe70ldVpneMjZda3DJJoXmBmNREmoi2EWnSPpG+GWI8+XWdt27k6kHX7Vb4YQNSbo/uDt9dLJVxBGkN6coP+ejET0J6KNDOPasLjmJhaBspFi26aMC1aB3Y/bIwf8nRTieEcsIvX/gIvzS1VPpuoWuMkCa9dyu4dGi4teHXMZd1UiqjPHaEMuWiXZ12Ebllm8Zj5Mna0IsUUhdbL7fnqcq4U27Usykh0m8S6ppYRfC0MXf0K13dfZza7Kqq2kZoU4eYOSWWSr2VCoRuTRpYTLu8Zd0wvdkwfVn7f5RAdSgsAtErVirSpBqXdL3d3aDbmLp0vYJWtJN0LZPUctOPpwkDOHmy6fejVr+ug6Q7xo5H5ey5roU5t1Ajgtd1g5nHun5po2/h7TfkYMiyyZ34ApXvs3lJnBOIslwnsc3VEBsVDs/k8CyVbWjjqA4mZ0AkFxFj4Ti56gmTJEn+NLFKqduzkx01y78GmGxjpGtAHUvUGCBJHSU4d6bxy1veGSRtBJ8v3HW35vIK3VaHDukwaqPrMn65K63rikVj/l8TSVKWJ31mRWPOYHUVjNFnEmOqjHQ9kL1DGU2qr3yMgDkP3AiQFPLp2c/7a9kQcJ7revPW9Ud3H8owMXR0vrtQHlwPUFeu6YANEdOYV8IN14iQcr6jgXQa1nX/n1/ZrgkrQJee0vabMP7ce3AGnDzRHpcRRvJ634XXAO0h1aj6rZ5d6WUMBiRRPiOqqdsjFiMpalPvtAA2SVu2LHYqZ8P9xy143SMybOmCvKUiIm3M/5qTflOexuxkcudtoLchdF4Lzqpb12gf7YyUmALqkpSqDcYbsML33x0CmU6ss7eQeM6QegeNIU2bV75bjWzoRbD5NPOQNDnL6ntGJbo2t+6ePUAje9FttBHFnBLKrCohV2ab0I/vzLXHknhe7br9Kt/sGKtrt/VfBJ8mnAbe/Z2PZDd6Jik0VsmQWKm2uU3mDAjx7IqeO+QNzvcrra8zUaOvj0l7rhP3/+cYty13NnhMD/LhE7/Ikyp9mmSeuOVVl3MTlxBw64hfJo4jIRl+WdewrrERoK8B5fwKjxd31NDeOwEz/NpoNPUu+VV4fYBE0qJ2NXunw5jzJp4egM5z+VGl0gyTQd36MYikjcrWDptTut1B6b5dfiKmjXld9D8raacuVUNdNq7rtH/Duo3ITYvYyHC/wTHeJMhYQrIhT81UqVlLc+OCdMmlUdvxmAJIHDhOGn9uTOobT2V49NoiwwbF7hpZwvy4/v5Nj36PWcx2ZuBJY9TTRud8LhpJLM8x3jGb71f3rFGVENOe3hj7snU3Dss2a9iUM7reeM9rfk6gnaUDf+FDBC+LddojW7hv+uNENKU3ytpEXG1nBo93SNumjXqdEQzWbw3tvxdex4C+gbGVNuIaI3oZ/hOuS3dnJwEM3llHG29e7/pjaeoWB9KeOk2Se2asTvGyrjGpXrvdHF7b8js6YqE0M6FYdu40i3P+RwjqVFdHZNjokm969kLD3lvLgWVvQPOhjSFVznZWij8Zedwow3jz34fYWOrNhnGcF4Jorx3PSFsGCpD/VEXq9rWWfbTiPaUPAVk3uHXANS4Fv+PNe+dp//ia3QBGAzrbzBnPSpQlaexa+SCTybzaqUe7a+cdqVl3z7HUwOAYvpm6nV/IaPh+B9A6r/z5G3U3yx7OQorR3HKKXxV9uzB5a5SdN/rnVinZGvda8LrnEZCiKcVBjukkpv+plBiT9/U6kMnRJLsW434uY6+Z53bGYYznfH7uwP8DyS+4eZDpzkcAAAAASUVORK5CYII=\" y=\"-10.054001\"/>\n </g>\n <g id=\"matplotlib.axis_7\">\n <g id=\"xtick_7\">\n <g id=\"line2d_16\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"289.670217\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_16\">\n <!-- 0 -->\n <g transform=\"translate(286.488967 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_8\">\n <g id=\"line2d_17\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"326.061522\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_17\">\n <!-- 25 -->\n <g transform=\"translate(319.699022 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_8\">\n <g id=\"ytick_10\">\n <g id=\"line2d_18\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"288.942391\" xlink:href=\"#m8663bda407\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_18\">\n <!-- 0 -->\n <g transform=\"translate(275.579891 14.798438)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_11\">\n <g id=\"line2d_19\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"288.942391\" xlink:href=\"#m8663bda407\" y=\"40.112262\"/>\n </g>\n </g>\n <g id=\"text_19\">\n <!-- 20 -->\n <g transform=\"translate(269.217391 43.911481)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_12\">\n <g id=\"line2d_20\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"288.942391\" xlink:href=\"#m8663bda407\" y=\"69.225306\"/>\n </g>\n </g>\n <g id=\"text_20\">\n <!-- 40 -->\n <g transform=\"translate(269.217391 73.024524)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_18\">\n <path d=\"M 288.942391 83.054001 \nL 288.942391 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_19\">\n <path d=\"M 361.725 83.054001 \nL 361.725 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_20\">\n <path d=\"M 288.942391 83.054001 \nL 361.725 83.054001 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_21\">\n <path d=\"M 288.942391 10.271393 \nL 361.725 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"p3e6eb83261\">\n <rect height=\"72.782609\" width=\"72.782609\" x=\"26.925\" y=\"10.271393\"/>\n </clipPath>\n <clipPath id=\"p00e768f8a2\">\n <rect height=\"72.782609\" width=\"72.782609\" x=\"114.26413\" y=\"10.271393\"/>\n </clipPath>\n <clipPath id=\"pd6dd7afbef\">\n <rect height=\"72.782609\" width=\"72.782609\" x=\"201.603261\" y=\"10.271393\"/>\n </clipPath>\n <clipPath id=\"p632e2f624f\">\n <rect height=\"72.782609\" width=\"72.782609\" x=\"288.942391\" y=\"10.271393\"/>\n </clipPath>\n </defs>\n</svg>\n",
"text/plain": "<Figure size 432x288 with 4 Axes>"
},
"metadata": {
"needs_background": "light",
"transient": {}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtbklEQVR4nO2de7BlVX3nv7+9z7nv2zT9oGke4SUyGBwetohgFEUUHyPMpHwwRknCDDMVpwarYimMVqaczEyoSlXKP5KypBIjViwNMzqBoImFIJPSOCAPbUHe8pSm34/7POfsvdf8cQ/33t/397v3XLrh9G3271PV1Xfts9baa6+919nn91u/h6SUEATBa5/scA8gCIL+EIs9CGpCLPYgqAmx2IOgJsRiD4KaEIs9CGrCIS12EblMRB4VkSdE5LpXalBBELzyyMHus4tIDuAxAJcCeB7ATwFcmVL65VJt8sZAagwMvbzzoPf4bA2xdfg6U6lbZPZ7b2hocNkTtTsd06YsSjqiG3nnERrvQd0RsdcMc29X0DNPE5/GPbU+Ojg40HNoBc1dVfK82XZm9CuZKO5jBc87Dzd5V20O8QHnGexZA0ipWv7czvAXz3+nPYuy6Hhdo+EdXCHnA3gipfSr7gm/BeByAEsu9sbAEDa//s3zZW/iMxpmjmr5CgD4OcnELqh2oR+uNDuhyoMj9kvojDNO1+ep9Fie+/U202Zin+63ovMOjYyaNpI39dh63XAAFU1d3rDXnCo9MSWVxXvu6VhF1yzOPRsY0I/RqaecqMrDQ3b8u17crsqT+/eaOnkj10Mr9VgqngQAib4hMnpeiqIwbRjzJSO5qVPxMbqH1Qrumfezumi3qA2dx5n/RmPh2X3m0fucXpc+30o5HsBzi8rPd48FQbAKOZQ3u/srxFQSuQbANQCQNwdNgyAI+sOhLPbnASz+vXYCgBe4UkrpRgA3AsDA8Hiq2u35z0bHR0ynQj/Bi/as7s/5jmnwT9jKyn+NXNepqM3Y+BrTZg0dm5iaUuWcfrrNjUXLq0XZVuXk/PQEyfF8jZ7eopnrn3el1y90HaEfcp74St1CSIzyvuHzTD9GpA5Bo2G/5AeHh1V5amK/qVP2+tnuit/6oPnp7FwAn4dFAcns88TnLmgpVZ4miSbXu2VVoue/0GNr5PYCxJXHLIfyM/6nAE4XkVNEZADAxwDcegj9BUHwKnLQb/aUUiEi/wnA9zH3CvlqSumhV2xkQRC8ohzKz3iklL4H4Huv0FiCIHgVCQu6IKgJh/Rmf7lkAgyqPVnvu4aUGNDKHU8ZIWYf1Bq7ZEkfK8HKNTuW6UmtXGsaRZSzz5uWVyrlTauUZEVZbrRIjoKIlEi5o5RM1I1Qv56xCypWVtFet3MeviXNhp6nTMhWAkCnNUN17FCKgu0E9Il4Dx0AKronqaPLzYbdM2f9bpuUYinZZ6Myti56rFlulxYbDrEyuntU95PR9Th7/lh8zL2p3b6W/CQIgtcUsdiDoCbEYg+CmtBfmT3PMTa+YBveaVtZrqzYoIRkENcoRReT8x1WFVr+Zpmq6chYwyNarp+ZJecNFophHWHYttyTedmu3fpYOHIaG22wNQxghOmM5LmysPOf2PCDqniOPHlDz9PAIN8zR59Qaht1nicAaDT1PRFjVOPoTErygaA6nvxt5GTjvGRbsIzeoWchc+5Z4uWWnPnv4ajjjT4t1gUs0z7e7EFQE2KxB0FNiMUeBDWhrzJ7qhJaMwuymiOmIW9qWafBTiKOnMwylesnP6Dlyk5Hy1zTU5OmTUG+6OwwwUEaAGCa9n7LjK6nYcefN/XY2PHFl+M44IUnWJKsnNjBw9kLJp1J3jAO7qZNxk45NE/Dw9ZhCJk+ljm6AIORcZ25pLGwXYZ3mrKgOrwX7+xdm2kw0+TdM9LneI5I9Pzw/XA9kdQyjn32IKg9sdiDoCbEYg+CmhCLPQhqQl8VdAKguTjSRtMqbljRxMYJRekoiFiH0bQGDWzskjgCSMNOxRhF0ilLilTjjH9wWLfJSCnjR2dlDWPvgJNsION2bJRIveObStLGLhkZoXgGJjz/gyPk7OM4Lw2tIFKNjdfKyivHqMYoLilyjeO8xNFxWSHXMRGDHYUoB7Z0nlMeizESghOViO6ZMTIDlogcaok3exDUhFjsQVATYrEHQU3oq8wO6Gil4gQ1qEgoZCODZARRgANeeGFHS0oOwFE62Rhjbqy6n0amjWg8A5+ZSZ3sYIAy4OSObsBI0hzd1M0CQroNz6amosATNN+Z03GWc0cmAoZpw8kzWuQwNDhqr3mAnFw8nQnfM3NuZ/zsYGPwomQQPP/e2ArSZXhPpenXGEs5rdjwifUJmaOPUrJ/OMIEQe2JxR4ENSEWexDUhFjsQVAT+qugkwTIgoFC29GlsCNWSnTA8UBizyZOcwQAOUWiqYzhilVsdMjwptWhaDfipJkiQ5smGfgkJ/KtcJScgpU0ViljjGrYww2wyhyeS8870CiwONKqbcPKzRHKiOvYHmF0jU6ttW2byRyGMrHHI5/bKrg4xRJfY+WMn48JzaWfRZf6Nd6Zpok16HGMajj6rfEodKL+ZMqDMLzegqD2xGIPgpoQiz0IakJ/I9UkoLVIZM2HnJTNLPtQtFAv0mpGBjKes4CRyUk5IE5aYZ6egvrwnB34+zNrsPGIjW5jFBU5yZDONbPDiieLZkIZbHLKrpM72V3YUCVxVhbTxBiq8Pw3mvaas2yWjngOKqaRHoszmIrTL9PnNtsOrJhrRGvHSItObaIIe5mL6NnwkrfwqTjSbeU5LyndURjVBEHticUeBDUhFnsQ1IQ+77NnyAcX5PRG08rJGe0NJy57e6sm9oCVcQeG9b4u76GLkykkz0nWJCeFpuM8w0EZWETstB05uUEZQMlhJXdku4Ky23qZUgeH9X53p63tBDigB+Bs/ZoMMU4WH5qX516cUOXhITtPgw3KkEsOQwBQdbReokN2Dt68NCi7Du+Rl9QHYEV2dgbynKRM4N4VRJd1A09wv7SPzplsK2fJriQwLxBv9iCoDbHYg6AmxGIPgprQc7GLyFdFZIeIPLjo2DoRuV1EHu/+f/SrO8wgCA6VlSjovgbgzwF8fdGx6wDckVK6QUSu65Y/16sjEUG+2Kgk9yJw6mMDpPBqz7IxhlWOcAphAGgOcDRQUlZldiyPPf3Msv1K0yqVWAUzMKjHf9Y5bzJt3nj2Wao8dvRRqnzBBeeZNuvGtEHS9MyMqXNgz69VuUOGOLu27zZtHnn0OVV+8intoDI9qSPsAsDk5LQqb9ywVpUHB6yyate251V5T8POZUapsobGWdlmPakSpeYuSCFXNPX9AIBcdD8FKdeyyir1WHFmgs44UYyKkpSSnGYKQJaTIxUZQnlpnpEW+llOCdjzzZ5S+icAe+jw5QBu6v59E4ArevUTBMHh5WBl9k0ppW0A0P3/mKUqisg1InKviNxbdFoHebogCA6VV11Bl1K6MaW0JaW0xdtXD4KgPxysUc12EdmcUtomIpsB7FhZM1GpeWdn7Zs+Ixllpk2yqGPUMUSpk5OJNgs0xkb1gZbOQHLV1R83bS7YcrYqH3/sRlUeGLJfXlWPTC2OG4ztg8r2ajj5LzC6ZtTUOeaYDdSvlkXfcKbt96J36DqzHe2I5LlZtNq6Tqel7+ssRdwFgDzTdZ57+jlTp8z1vZ/cqduw3AwAu3fpc/3j925X5X177VgqMlBKdD2zLasbKEpyEOJAG47sfEyu9RInVfZpGJnSd7+o9ByMzdjgJ2OL9DffcD2V5jjYN/utAK7q/n0VgFsOsp8gCPrESrbevgngJwDOEJHnReRqADcAuFREHgdwabccBMEqpufP+JTSlUt8dMkrPJYgCF5FxAsg+GoxfvSGdO67Lp8vn37mWabOR//tv1bl9cdpOXl42O6hj1BEw2Fnq7HXTxhP0umV89T7puQ2LO158ncvVnIej155crw+eLy9XTcA4YCNpLfwnjE+4t0fjv/AwUM6zu5ORXvZGdlGzLbtnvmBjrbdaKzdpMotL4sr6Y7u+cVWVf7el/7ctPn9B7ap8hsOWJuF6VLPXavS17jXcbDBItuVa3dtxeOdSfe2hblsENSEWOxBUBNisQdBTYjFHgQ1oa8KurPPe1P6/o9/PF9uNB11FSl3pk2aXqt7YBcKTzvB32qscnHyqZh+epU9VqKI6qU4887D43WSrphzrURB10uB6LXp1a+XbYejpHrzb09E0X2dfmfo0DQ9Lwec2SSdGFiF5xl5cx0ef9uZqHxGKwK3fPp/mDobf/IzVZ7arY2AdjoZYapq4U5/ct9W/DIUdEFQb2KxB0FNiMUeBDWhv9FlU4VqUTCBVuVEgaUoo2NkWVE6zvvsfCJO1o+yh4Ttfetx9FI+80q+KXsZtnj9rkQXwHj9snTHY/HGz2PhsnXDANo9spZ0PDmZyp5cPE0XNUH9eE5FLKPP0ql1mA1/LHyNuTO5bHxkgvI65zlA0X7/z5f/m6lzwX+/UZVPu/l7qjy6xwYc2ZctjNjTj7xEvNmDoCbEYg+CmhCLPQhqQl9l9n379uO2v7t14UDTBkkcEA7kp6XGsTXjps3a9dpZ5uSTTjN1xsd1IIcBCjyYcjsVldlY7y1NC9kFsDy4Enm8WEElNo+w4RWsHMl7w94+dZtGyFlEPZmX5W2W4e1dtvvdni6gVxCzpjObfK5hukTrBmNlclb5eDYAe6kNj3/KEZ1bpAAR50Z/8/evUeUrt/5KlXfs1M40ADC0f9/COCYesyfuEm/2IKgJsdiDoCbEYg+CmhCLPQhqQl8dYX5zy5Z08z33zJe9iDKsIGLlSOZEl81mtVqm6tisMVNTWrW0b7vOdPLrpx42bRJ9Fx63eb0qn/4v3mzaDK3RisAOKfW8NMN8B2ZpDgrnFrEiylM8cbMJOuIpnto0voLGMuWMnw1IVhQdlwbnjYWVjnyNI7BMsEKuh2EUYBWBbMwz68y/mW8+j3OiIZr/wj6meFEn8cHGGd3Rx4+zHU/vWujoDz7yDjz60APhCBMEdSYWexDUhFjsQVAT+mpUUwGYXCTDevITy6KTVD4qs99P1QhnQ7HZUYaP0vL2cZtPUOXjzznf9kv6DBaxdjpGHW2OrEqfe0Ypo1SJQw9Mu7oNjSukGeOQ3roA0w8d8N4OvRxJPFj29zRH++ggj82byw5V4ufJ0w1wktmV6BMO0MGsrZ/m5DhsDe7V2oHsgL3qkpQOTxfk7jNh+y1nFrQby+ng4s0eBDUhFnsQ1IRY7EFQE/oqs2cAhhbJFN7ecEkyLwcoaK3AecPD7ouS/Oo1ojoTPBZHPOLghZzn1XOQ2Gn2tjUDzuWtxKHGBK9YgSzK/XJS0BnnxC06xroNz6HF5lK1cBBNFnG94BU5jZf3yN39fFJelB0q77JP6tav3KfKe77zR6pcTTxp2qRMB6+onIw2G97yYVVee8WnVPnX68ZMmywtzHjl6Arm6y35SRAErylisQdBTYjFHgQ1IRZ7ENSEvhvVLM6UkTlRYIepzOqGGUc1dTSVPeXVfiqzasSLpsJqGVY8eU4hPH5W0HmZW7gbHgunLgbsvHiGN70iw3rXzNfICjlPkcmJh9nxhR1LADsPTlZk7KGbNMiGLDPWfGfqBT2aZ+7RkV4e+YrNwlLs0OmWi5Y+8UCD7ypw8ulvVOWzLn67Kq85/pOmTaIbef8Pbzd19j92lyq3HrtElR85+02mzTvPWDAYawwtvaTjzR4ENSEWexDUhJ6LXUROFJEfisjDIvKQiFzbPb5ORG4Xkce7//Ov6SAIVhErkdkLAH+YUrpfRMYB3CcitwP4XQB3pJRuEJHrAFwH4HPLdZQDGFskA7Ydo/0GSbAsQw45sinX8eRKltFZzvQMfLgNR1pleRywziVTHPzBkV/5G3eShG0v2uwUNWKdBGDnxTi1OGPhB0IqXcnNaMMBIwp9ATP77AU0p7S8vf+h7abOA39yrSrvefpBVfbeVM2m1gasW79Jlc8/7x2mzdqN71XlkjIVVWLNdzqFfsryhh7NxKTVJ1QUwfi0cy40dbbueV6VRx/7jio/uO1s0+Y95y6MTxxHsZfo+WZPKW1LKd3f/XsCwMMAjgdwOYCbutVuAnBFr76CIDh8vCyZXUROBnAugLsBbEopbQPmvhAAHPOKjy4IgleMFS92ERkD8G0An04pHXgZ7a4RkXtF5N49O3cezBiDIHgFWNFiF5Em5hb6N1JKLwkR20Vkc/fzzQB2eG1TSjemlLaklLas27jRqxIEQR/oqaATEQHwVwAeTin92aKPbgVwFYAbuv/f0quvKiVML7KeGHaUCazgGuIqXvpck5bXiSDDZVn+c+8Y91s6g2GFHKtpvCgurFBkLzKPNnuAOc5OGYVc4cirKJxG01otKY/tU+Xtdz9imjz7/W+o8p4nfqHH1rAXJGTyM7rWSoGvP10bkGx6+wdUuTFsPcBKss7pdGh2nRReJYWC5RReKK3FT05VqpLurKfJbOsnquGMZXhsrSqPjeix/XKnvWd700I/nlff/PmW+ewlLgLwCQC/EJGfdY/9F8wt8ptF5GoAzwL4sN88CILVQM/FnlL6EZZ2n75kieNBEKwywoIuCGpCfyPViGBECTv2B8N+chZIJNescwxxiqTrsDwO9M5S4snsHE1lls7tRWdl45ZZGos34QMkaJUkaxdtK4lNbtOj2/7zZ02dibvuUeUd//y3+jyTNl5MScYiQk4gw2PrTJsTXqedQs67XDuBNEYc2TrTJkmpstoMobs029Zja7Qdw5WC5W89l1Vl328dyiiUURvJbU6bgnQDZcFjcTIXkY6KHWMAYGydNgLatU0bGw3ssRthd25dM//3gZmIVBMEtScWexDUhFjsQVAT+h5ddmSRDM7RWueO6e+f3fS541OBQc6U6vTLrgwrcZ6ZIBl9O4lDXvINlpjY8WXN85zjBtj6lRtV+am/184PqWVznwzRHnNjyMrFY6PjqnzqadqJ4ujjX2/aNEe086KQt0zGe9AAEmXNrVjWdsLLdgotJztbzsiS1qRUFcnJjnKG98y546ptQ3Z0OrrfPNN9mD4BSKavMUtaZnfisth+crv8Rkb1fZzZu01XeETrYQDgpyMLUWunHQec+TEt+UkQBK8pYrEHQU2IxR4ENSEWexDUhL4q6AQJjUXpaTjCCQCM0ffPDGk6JhxNDut/1psa1tiFDWI8v4WSjHVIj+O2EdL8Td/zjCrf+QcfNW3eeO5bVfnMs3Wk0qM26PTSADA8epQq5wM2AmpZUjQVUra1HGMdJHIkmdVKMjb4AQChNuzf5EWOrUoyY3K0nRkZs7Q7uo04hjgwTi10Gs/yu9LHhNxJirY1ucpIuWYMrBwnr+kp/aQODzsKxlyniILoORjc9n9Nmyenfnv+71blxS/uDmnJT4IgeE0Riz0IakIs9iCoCX2V2cuig/37fj1fHhvfYOqkXMueB0is8cLhjFPZi5nFcj07qOx1BPA9VGZzmNyxxOlMaJkxvaDNgi67/N+ZNkPrdASfdkt3zHIzYB2E2i0TS9bImiyzF5yPGQCbBSUKylByMAgAFcnJieTvZsN5p1BACG8sJd0kkeXPM3dM18nZeamy4+deZknJ0G7bueVWkuml5BkJsVHQxKQ18MnIJasxNqr76FjnpWp64R4lTxE233cQBLUgFnsQ1IRY7EFQE/oqs+/euR9f/8p358sXf+I9ps6mzSer8jg5VVh3DxtkwstOyse4jRfwwm4pU2ANR+QdaOk6Q2ecqMrNZ540bWYpa2hrlhwzkvUkSRSkITnOGmbPvNDf7VVh+2X5mwMpFh27t23FbT2ZqbKT28hob97UAMpKy68cMILlcwBItL/dojaVoxtg2T+RDUDlBKLg+S5L7awkjhUGnycXqz/o0DXnHDijoWV4ABjLF/RCu5w+XyLe7EFQE2KxB0FNiMUeBDUhFnsQ1IS+Kuiagw2ccOpC9Mz77rzf1Hn35TozSD6qFRKznIoDwBTpf7wIOAyrjDzzkilSsrA9RtvRhZRkQNIghZbM2kg17dZyeTyAonQMWUjR5NlSsEEMR1otOYsJgA5FbDXKK+f9YJxNSq34Kx2Hmw5HnXEUZ1XFCi1SODrT1jFKvLRsee5Een6rUhvReIpAkJNUUfF5PScjfp4cBxsyfGqQwnHNqJM++vmfLbRv26hG858t+UkQBK8pYrEHQU2IxR4ENaGvMjtEkBoLp8xMzFfghz/4sSqf9/a3qPKJG9aaNvtIAn/eOfUIlXvYy8yNj0Q1Fp292Akt7ifXnbSTnfKyreX4gtLSuvIfax2c7CJtMtZJJJtyJtW5Omwsws4nThuS/dm+xxt/ZWRpUwVlR5tC8djYsWSu0rJFeFmIjO4i0Y12xtYhebtKHKHWxjheyfhT0u/fUnQwCmnYfsf237Vw3nJpjVW82YOgJsRiD4KaEIs9CGpCfwNOJqCxyMljYNoJCtDQAtKPb7lLlS/7vStMk4p9BRwZi3c0+cLF2ahm0Y19QKad1K8Z7b/uT9pOYLjwMpJw5pMVOLlQIIey03vPtkP9dFpe7lp2Cino094BI6qS9/M93QCf1cqvOQe94H1qx06Axytkl8FzO3eMs+bq59ILRGH372lunYAXrLvInLQxieYucR2xS3ZNc6GNl4lm/rOlPwqC4LVELPYgqAmx2IOgJvRc7CIyJCL3iMjPReQhEfli9/g6EbldRB7v/n90r76CIDh8rERB1wLwrpTSpIg0AfxIRP4BwL8BcEdK6QYRuQ7AdQA+t1xHqQLa7YXvF3bMAICS0vQWFDXVUxCNklIsd5QUnDo5p7I4xhacyYTP7ARaxQz5uVSNtfrztqMgojTCberY88PI2OLHuWZ2auHUxO2WVXBxNhSw4Ydzz8BKMFKSVU5GFTai4Wi5ANCeJaccdjZxngU+Nzo8eZ4jDEfdJQMZscpDfl4SKSHLwj4crJDzIuomstQS0goX45QxBsD6YxeUwA3HUWz+/Et+8tLJ53jpEW52/yUAlwO4qXv8JgBX9OorCILDx4pkdhHJReRnmAvbfntK6W4Am1JK2wCg+/8xS7S9RkTuFZF7Jye9iO5BEPSDFS32lFKZUjoHwAkAzheRs1Z6gpTSjSmlLSmlLWNjaw5ymEEQHCovy6gmpbRPRO4CcBmA7SKyOaW0TUQ2w0/WoiiKDvZuX6g2NGpllhnjYKAtZnY7KUHHBvR31qznVEHHOOtm7vhU8KFZEsNaNjgrWFQTkkU7ycrJBXXEARi8KLAs9LoxGShKqnFYcYxSMlJ4VCS/NhyFSNkh4x2aBNfhg2Rez/CG9QUcXdYNOULzKxT8gWXrubFQIA02+HH0CZxdpyw4GIe9Zn422Hlm7pg+eUbX2Hb0H83hBTcvvl7dVw9EZKOIrO3+PQzg3QAeAXArgKu61a4CcEuvvoIgOHys5M2+GcBNIpJj7svh5pTSbSLyEwA3i8jVAJ4F8OFXcZxBEBwiPRd7SmkrgHOd47sBXPJqDCoIgleesKALgprQV6+3oiyxa3IhEfKIZyzS1DFldu/eryvYnEzGnmTQOTfHdCX9ip8yivQnrB9qOY06dKI0oRUqsxt1OigAwLZnVbEsKE2yF4WULtoqr4AsLa+QKx0FFyvk2CPM0Q+hogg4rKyCOBFp2bjF8UYzUXKMos+2Yf0Ue8F1VpBymsfmPHIQkBKSFXSsAQZQGUWfc88o3dPMtH7I9uxfa9psXBS9qelEspnve8lPgiB4TRGLPQhqQiz2IKgJfZXZUypQdBZk9gOTVroeGtCyUItklp//8iHTZtN5erPAy46yj8Q7jmZTOrIo27K0p3TZCwoySCJTOUQy2LCTdHpityomcCYX+5082+4lz1r5tcPRZsWReUmONNfoGG2UJNSyg5NxToF1R2FjHgCoCo5a29tYh62LeCyebsNEpDWRa+zDYfyBOFqPE3qYI+q6IXBEPy+dNt2zmX2myfhRa+f/zvKll3S82YOgJsRiD4KaEIs9CGpCfzPCJGCxGNaZ3GuqdJraOb8zo2WWasrKQtMkCpl4BTD+ESYmg7t/TDI7S1heUAmhDfyKZNzpE19v2oyTF87MrB6MFy+C5UovAG2H0swaEdGLtMrBTDlDa+HtzXOwDc4Ea8dm2jiV+BA7l3jBKzhoBNsJcFYcABCaB5bruY+5g1yHI52sJIuPrcEyN1dpO8YdzbFjF+pnTfP5fN9LfhIEwWuKWOxBUBNisQdBTYjFHgQ1oa8Kunangxeef2G+7EXVaDSndXlEG95s/cHfmzYXXfhm3Ya1TLBOLGSrAC8TUtP4augDniOMkP7HRD3ZTZY5AIZJO8hpe9m4ZK7O8tFhACAjzZ5VgnkhfciphctuQBldJ2fDIsf5hI1ovDo8372cdACg6LBykI1dPEUgK/FYEWjhJ4zTTLECFbDGUez0AgB5k5YkB/t17vO6TUfN/91ohiNMENSeWOxBUBNisQdBTehvymYImouMBlpO1NSKMsK0KVvKgBMU4Nm9WrCZPspeFn+rtehA25kJsudB0aYsII6c3+FLMtFmrfNPlWlDomp2N9VwnE9YrnSMRSq2xil7R0A1ziamjWkCDiLR8RxUCJZfOW01YOXtVLD+wJ6HdQye7GzO0+OdxxGCvWNi+rDKDWEnlcyT2Yd1lQHdz/r1Nsvah966YKj1pTEvdEu3ryU/CYLgNUUs9iCoCbHYg6Am9FVmr6oKkzMLWVklWZm9OaDlmJIDK3IECQADhT42Ux5l6vBOdZvEvdxzhKEyy/Ce/GpkdqqTlQOmTQv6mgvawE/eiUhmdJ1N2MGD9qBLxxEmsQOH2YN2AilSPybohDM4PrUb4CJxIA2OMuHpHOgABYPw98zpPKRPaDj74cLyNt2PfMBmW614d94LNEFOUaed8huq/L+//hemyfjIwvOeOXqA+c+W/CQIgtcUsdiDoCbEYg+CmhCLPQhqQn8j1aBCqhZSprRmnfTFhVZsFKT4KPbvM222PfuiKk+MWgUd21+wDYoTDBSJUhFnrLuyOiUTVYYj5Ah71wCYJcUZKMJM4XmfMI5RTYcVZazocyPgkLEOKde87DS90kd7GVWMzs6LtErXzYYsWbLvKmMAQ8o2LyKwVWqRYtNRHrLSbmREK17XjNtn8Jzz36TKv/vRd5g6b3nzxao8OKgzJHkRiV7ct3BPOo7R2UvEmz0IakIs9iCoCbHYg6Am9NmoJmF2UWrU6alpU6dBGWESZ/IsrNS1/7mdqlyeaSO4lh1qx5FjO1bWIfsGNEle8tw9Wq3ljV3Kyk55TsdanLnFOY8xQnFC3RrjlpLLXnjcZYtW7gesgQ8b3jjGL0m0jOs58jRyfhf1CH0LKEcrwBr05E0bfZWNi8qk5fGhQetc8smPXKrK//ULn6XzWKMaVui0nOl/YrfWiXzqr59U5Ud+vs202d9akOs7z3j5iOeIN3sQ1IRY7EFQE1a82EUkF5EHROS2bnmdiNwuIo93/7eOtkEQrBpejsx+LYCHAazplq8DcEdK6QYRua5b/txyHVRliakDB+bLXhbRijxf2rQX72VHka0/VeX83ReZOi1qx44wyQlSySJti9rMODJXm74+q1ldlsH1po3kFFixpR173IygRi72MoJSEMSSnVo8RxLKgkpBQT2ZXTLa/6Y96Eysc0bTZG21cjF1i0TX6GW3ZQeVwQFd59iTTjZtvvj5/6DK77zgfFVuNGzm3UT6g72UqehrP9lv2vzpl7U9yIHJXaZORddYZaTbcHQOaCw8iMuF6ljRm11ETgDwAQB/uejw5QBu6v59E4ArVtJXEASHh5X+jP8SgM9CmxZtSiltA4Du/8d4DUXkGhG5V0TuLZyQyEEQ9Ieei11EPghgR0rpvoM5QUrpxpTSlpTSlkZj6aRzQRC8uqxEZr8IwIdE5P0AhgCsEZG/AbBdRDanlLaJyGYAO17NgQZBcGj0XOwppesBXA8AInIxgM+klH5HRP4UwFUAbuj+f8sK+kJ7UfaTwvGQyET/1M8bZCTRstFtXvyVNjwYcXw1WiRBsEBReZFqjH8KOYU4Sj3zW4kC05Rt++umOvtyfeDJn+jPOZ0NADYwqRyjmgxs7KI/Z4XX3DFdKSeVT+YpiMj4Je9RnjsPHXDmskEGMsODejLf9sG3mTZf+PTvqfJvbDpdlUXsI5/Io2n7pDZM+fw/PGja3Pw1rUQtc8pk1LRKveHXnarKR8/YqEXtKf3OnD0wqT931kzVWnRNXh7xLoeyz34DgEtF5HEAl3bLQRCsUl6WuWxK6S4Ad3X/3g3gkld+SEEQvBqEBV0Q1IS+OsIUZYl9eyfmy5kTXTMj95LBIW1s0cisTNJ54SlVXuvINXuoWc5ZXKeszMgGJhn1mzlRU2dmSU4mx5hyAoYs1wEKhJx9EpaOGDrfxjEwsZE09CQ0HPk7b+j5zsjZxAtEwUY1jZwNQ6zBzKknblLlP/6T602dC954tioPNHU/bNgCAB3KMvTQ9gOqfO3N1pHk7r/brsc7NKrKg5t0lhYAOOmaN6jy2y5Zo8obhuzYhmmeZpzd6k7SOoZnd+jr+dHXXwCz+5+2zv9dOU5HLxFv9iCoCbHYg6AmxGIPgprQV5k9z3KMji/INlOTs6ZOc0jLkRzsj/fdAUA6eo+z2O/ILYO63SzJ8IUTCLLco8vspDNjh49EsQOqWXI+cQIutEstszdJF9BsOPvh3I+zZ541tKw/QE4t7GgCeBlLdXl83QbT5r0f0YETv3j1v1fl0bF19jxG3raDmaLglv/xu1revu2rW8HMTun97XSUfp6OOsnubb/nL7Xj1Jkn6MATjpmAmX820+BYKYBVoUw6AUtfIN3Rj2/V428NnGjarH/fguy/46E15vOXiDd7ENSEWOxBUBNisQdBTYjFHgQ1oa8KumYzw/GbFpRRU2usUceufdrBoGiTY4YTXfadFJnmmWEnMgop5GZJuVbawCKc7Rct7ZMAzz0/kRIvURtx2uSV/s5tDo3rNhwKF1aRxhFlACDL9PxK0orAzcdbxdnnv/AJVb7sHR/UfbrGO7rIEX4e3m81UZ+/X1sX/eDLT5k6iW6SZFr5NHzum02b375mrSqfcIy+iZWjleTR8S2a8KLYkrKNa0w6OuJbbtM9z+53nJemKbLOGXqJXvhm+2yntHCfb/nrpd/f8WYPgpoQiz0IakIs9iCoCX2V2U8//Qx89x/vnC+LEwsztbSBzN3/fJcqP/LIw6bN1Z/6jCr/5wkrY03opDEm2mzlGNU0SO7iIKOlFaVNls2KbDgqkuEBQIq1qjy0/ljdZsI6bwyQE8slH/gtU+cDl12lypde+DpVbjphwnjmZsmo6ZZfTYH59B/vVuWZ3ToAQyWO9cgaPZnHXWmz+PzW23SdY9fq0eWO/M0xMDjRqxcFkd94LEl7i6RJ5+ErHHIavfUiLW+/6GQHOm+D7ri5gvEvtrnKl/GZijd7ENSEWOxBUBNisQdBTYjFHgQ1oa8KusdngPf/fKFcOIEwN6/Thh8f2/JeVf7IO99v2txNWpn/52StNdFlOU2T43XVniTvM9JnOVmGUZGChJ3RkqNAqY47TZUvvEbH7vzMpdbT7JT1OppKPmSjqXCGqEcmtMbxf96pFWsA8INva+Vap9CTmQ1YRebI0frc53zyTFU+9wI9VgAYH9Q3YMZ57fDjwbrNtbaJyX/EaZEdmyyjJh5hr0PnNBSQyHjxmexWADZu0Be52emXEz1P8vPjtFnsYbd0bNl4swdBbYjFHgQ1IRZ7ENSEvsrs7U7CszsXpIoJx0LgkW1a6rhvVJfHxqygXI1rSWfWkb8bZEXDmYdndRBSAEAio5kJilyTtP3P3DGKHssONmJFa8xMaKnwf72gDUx+6zQ7UV+/V8dG+dZNT5g6E1PakSQjmbFydBsjp+iU0v/qEyer8tozbKTYMZK/2ZDFi0IzSoc6jjDKfiK/2qcrvfBr623SpjTg0yS0n3S8lcBPGtYDPlmrjdB2BPAR0r1wJOLCuWY2+HH8awyDbPzltPHmziPe7EFQE2KxB0FNiMUeBDWhrzI7BMgbCwLG2LD9rukUekgF7RzudzZKK53QAwMDdrexILlrlvw5Skd/ULFIyPL2jJNRk/rJKJIDZ4gBbObU1NLKgWtvtGFspa0VBlnTOqikUe2Fkygc7vFX2v37y96nZfajRvX9WO84n0yY7LC6vJs3uwHcvUuXn9prqiA7oM/VmdYdt52AHcf+phamhSLzPs0eUAAeflLrgTq7dZvRk+x5Lh7S/Zx5rK7T5lCyANaRcJ2cqMHsYcP7+eNOk8Vy/HJqgHizB0FNiMUeBDUhFnsQ1IRY7EFQE/qqoKtEMDGwoEBJjtV+ImVONkJpkp3oMImuInkRRMkWp0P5egrHMKEinRcrnji1EwBUu+iiWInHYW7nzq5KA01t7VIma0iUtfXgGg2rxKsoSu2FHz9Bld9+mf4cAA40tYKLgvNgpzNPHXLPeGqn1mw+9JS9Hzva+j0zzFY2AE4/VR87e70ub3A8VPjW76fybkeFlR+nOxqna3zSiTz88Au60p0UTGjMMZ46ma7nZEdBx0Y07DflPHLIwqgmCILFxGIPgpoQiz0IaoIkFkRfzZOJ7ATwDIANAHb1qL6aOJLGeySNFTiyxnskjPWklNJG74O+Lvb5k4rcm1La0vcTHyRH0niPpLECR9Z4j6SxesTP+CCoCbHYg6AmHK7FfuNhOu/BciSN90gaK3BkjfdIGqvhsMjsQRD0n/gZHwQ1oe+LXUQuE5FHReQJEbmu3+dfDhH5qojsEJEHFx1bJyK3i8jj3f+PPpxjfAkROVFEfigiD4vIQyJybff4ah3vkIjcIyI/7473i93jq3K8ACAiuYg8ICK3dcurdqwroa+LXURyAH8B4H0A3gDgShF5Qz/H0IOvAbiMjl0H4I6U0ukA7uiWVwMFgD9MKZ0J4AIAn+rO5WodbwvAu1JKZwM4B8BlInIBVu94AeBaAIvTBq/msfYmpdS3fwDeCuD7i8rXA7i+n2NYwRhPBvDgovKjADZ3/94M4NHDPcYlxn0LgEuPhPECGAFwP4C3rNbxAjgBcwv6XQBuO5KehaX+9ftn/PEAnltUfr57bDWzKaW0DQC6/x9zmMdjEJGTAZwL4G6s4vF2fxb/DMAOALenlFbzeL8E4LPQGZVW61hXRL8XuxciK7YDDgERGQPwbQCfTik50e9XDymlMqV0DubemueLyFmHeUguIvJBADtSSvcd7rG8kvR7sT8P4MRF5RMAvNDnMbxctovIZgDo/r+jR/2+ISJNzC30b6SUvtM9vGrH+xIppX0A7sKcfmQ1jvciAB8SkacBfAvAu0Tkb7A6x7pi+r3YfwrgdBE5RUQGAHwMwK19HsPL5VYAV3X/vgpzsvFhR0QEwF8BeDil9GeLPlqt490oImu7fw8DeDeAR7AKx5tSuj6ldEJK6WTMPaN3ppR+B6twrC+Lw6D4eD+AxwA8CeDzh1tpQWP7JoBtADqY+xVyNYD1mFPUPN79f93hHmd3rG/DnAi0FcDPuv/ev4rH+y8BPNAd74MA/qh7fFWOd9G4L8aCgm5Vj7XXv7CgC4KaEBZ0QVATYrEHQU2IxR4ENSEWexDUhFjsQVATYrEHQU2IxR4ENSEWexDUhP8Psx+2uU19HsYAAAAASUVORK5CYII=\n",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.142944pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.142944\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-01-12T10:16:59.273725</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 250.142944 \nL 251.565 250.142944 \nL 251.565 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 26.925 226.264819 \nL 244.365 226.264819 \nL 244.365 8.824819 \nL 26.925 8.824819 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p4eab9fbad9)\">\n <image height=\"218\" id=\"imaged7ebbb1045\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAjiElEQVR4nO2dabBlV1XH1xnu9Ibulx6STnfo7hiaAAHCFAiRDBDQIDhBIaIFKDhVUUJKKMUKpYWilEWVZTmUhVo4UmhKUYEKo0pZCiQok0ICkjQJZOh0v+433HffvfdMfmg/uH5rVd4rq92f1v/bPm/vc/YZ9rv7v/5ryA5+qunkf6FrxaCb6IP5QqfbbWbHlPpY0bN96ka3q038fdvOpV3DdTr8fdPeQHs/Om2j3XNuWmrV6rdnVLs5q/8uIpJv6cmV5dTOpXdQta/7Ud2+4ZZlM2ajV6j2fv4dtyMiUrX64MnT+mF/5aR9H4/Oc9UeLdo+Jy7Vx67GZA707FxynGYd7VU7RAq8kmXc473rdsy9D+lOD4/135dGdszx70B7wd7zAO0OXfJcDHgWp0sgELjQiIUWCCRALLRAIAGy7/j4XG1s655de1Wtd5y56A10NrT72nauj/X7DpEodJ+tLVx3ww5p57rd4NLdWXudZlV3ysDjOoc/Sq37tKtnVTsfW/6VzSe6j2yZPl3VR5+Zah959QEz5paXHFbtvYulau8nCRIRUlU+ldWZfU7/qWmonDxnuki+oa9VTfR55s6/7kNX6TET8PexM5ftU5oDV3iHi8fshW4a6vM86ZDuM3de87zSY2hbEBERfB/kmMvOPW+Tx9kugUDgQiMWWiCQALHQAoEEiIUWCCRAduwOzQY3K9upg4q9Z1G3l5YckXh5qNpTI+GJFCDBM1x78qgzF9ggZrA3dNoecf7Ypr52A7Ezc4TMDCS/3dSC72+/wj6or53Vlpq//NNTps/mlr6B/ID+X9c6Iv3C5VoVfslr9qr2ypWUVEWWBvq8nfmXat/HMg6tOfardbzq+9DpoQfhhSAi80wPmsx0+9gRq3IfG+kJH1/AOQs7/77W9aWFaF8793wOhwaOLWSINt+8469h+sQvWiCQALHQAoEEiIUWCCRAdv3ntFNx3dqN+aX7dPuH9+l9+E3L2ByLyFexhn/2jOkimxBEK/Cr1uq90q3r+fWwvd86bcdUU72JrnFeOiqLiCwMNN/6nou/odpvfbEVli/fv6jaxdCSPz7ek+B+v/6P1lv2k3+jyWoFb+vccQZYuEhf+8QPHFXtZ1yr5yoisgxet+38GyYbp2v1ih0iDaY3w99rh+PwjhboPe4Ar1kycjLnOmOctrRdhG9xTCcJbzIhWAcC6RELLRBIgFhogUACZJtzvYPOnB1nN9Pk6c5Pf0q177nnbjPmDW98q2q/adNukP8ZfGoGztYyQFNESsg01N5mThRhBS/QClpVq/2FRURkcU3f0567fkGP2XzYjOmDMN780utNn5fe8jrVfvF1j1ftXmk1JT65aaOZ0d+ftA7Ot/6qfhDbq5rntZkNXJU9S6p56BXHTZfrn48+KwjwdRycjc6Ef+/wE/e6CNU5q9aJ9NHmHTp3LA+c1qzzEUcUe+YBfYx+9470LPRNjl+0QCABYqEFAgkQCy0QSIBYaIFAAmQ3vPBGZXHY2rbU7syaVnjrue4z6Fun1pe/8iWqff+P/YrpcxLEcxNGiZmT6YhUdYI+c6qhIlLBENMycthhs8PVz6j24ENvxjycC2WI5HbSI+W5NnZknfaWPXwE3gEictvbX6Pat9z4Mn3ObOc0TA2U5q9tWNPAbZ/Xacg++fsnTZ9uqg0vWb5HtUfPuNSMedlPraj2ZRdrB4fWMaBwdjSLTTM7podO7DF2LCh//2H98qf0mhaRfKKf76Ertax93TVOFjjMJX7RAoEEiIUWCCRALLRAIAGyK666RnM0J7vTYAin4U7voAcD64q5vKyDEw//4cdNnwcwDkmkZG6nIg14XIt997bjiDwFj2tx3paptESkf/+/qnbvr35Ct51sSR15A1Paikhe6mdZgMc5dEUyw0d0e7TPOjh/9w/dqNrveMNPqvbikuWCxgnX8cLdqrW8/KaPa6+DD7/3y2bMdEuL3N1ezVP3HqPULPKcn3myaj/pMh1+WTg/EXz+Rgh3ni39sTcdVfshfFP/erv+6GYTy+tGPc3h4xctEEiAWGiBQALEQgsEEiAWWiCQANmho1cqOpgX1rCRw1d6MNQCdZlbMrh44DLVPva+D5k+91VINQ7SOWHuZbGZjWSKlNROFqlzSGPdzZAVy6l7tPjgJ1U7e78WrDs/rlaP8Y5lyK4FJTl3vPeLkgYTzN+ZSgarSomsUW1unQwuf9wlqv2r7/pF0+fap16t2v2ePk/n3HVVa8PA18/oF/3m220kxJ1/pzOItUMdET64xEavH/n+46r9/Ju1mH7ASV0/wnNyPh+poD4/8Ki+n3/5s4fMmNV/1kah+EULBBIgFlogkACx0AKBBMieePWzdRYsZ8NPEbUoNY9rZ9bBduXq61R74Td/x/TZQB2dCgqjlwWrZUT1Jjjalt2H09G4hSjZMhWSiAy/8kF94ANvU82adYFFhKysdeoU5+yDLk4SMmmhypdUa73aruhT7NAWsY6wXgreEhx+NNBi8/Nf9nwz5u23/rhqH73khGpnmbULdHCKODXW7Om2j3zTjLn9T/QH0xTaA6LsaeFcRGT0eF1bt9xeM33mWzo6fbqh5zJ31kxb63uKX7RAIAFioQUCCRALLRBIgOxp11ynNphdZnlFiexO86kmSpnDK654yStVu/u5W02fM9Cz5qwM4wRkNsyChSDObR27eP4YMxPDqTgjORSRwft+Ro85+e+6TbIojsbnOBULgjQ73FBLAumclwGlbWPHUEfLC+3MTD3vfB9yJZuBmny9wz1mThBqluvz9PoIpDx23Ix5x20/rdovuPY5ql2Wlm9Rwzu3pd/Rn3zOfhzv/v1HVHtjbFNqtx01SM1LOyt9isB5PH7RAoEEiIUWCCRALLRAIAFioQUCCVAu7tGOl5OtsemUF5rtMeK6c+rudE+7RrUbZ0mbMqYM5PbEc2Y6Il93rtNAeDXkdWzziA8RdT0baKdW7z+UMUo4gnVba4LeohBS5hggYMdw4qDtGGbk4rNsOyu4VzXea2cdEUoTAk5jyM4i9/YcTrpf1yWxRERe+5q3qHbT6bkNB9Yp+rU/9GLV/uW3/7xq33qDjvoXEbn1Rv39z9onmD73rWpj2Rv/WDtB3/Ml6xS9PtMfWfyiBQIJEAstEEiAWGiBQAKUwxGEtWzBdurpDEQ19uF1Zff7ex93ULXXnYDAglwJlIZiqIhIjYDLahcldIqBHkPqUeSe4KuPkRPUTP0rIsKgTUd8rozYDJHYEf87OBV3xvvXKXyEPh2eEzmPiHU8yHLr7Ns2cFZgdmanBG5FLwOI2k1tn1NOwR0fx7SytoT3/sXfqvZffuAO1d6zbDna05/zLNX+sVfdaPo895qbVPtTb7tCtdtWt0VEHlnT7yR+0QKBBIiFFggkQCy0QCAByizXzpnDkdVOen29n2di395g2Yy59Ogh1W4dx8sp4xexlTccTkQqBk5SY7K0wvr24rxdZbngEI7UdV+fuCDvELHaVWcn02u1Q2pdac7TMBJURDpqXuRfrc302+I81O8Kh0uZIFTHWblDwKgpxexoh84h/XfvGDgwnZXL0j5bcsztieZJc6fu8sfv+IRuf+yfTJ+yr9/ricuPqvZf/9nvmTGHVrSNIn7RAoEEiIUWCCRALLRAIAFioQUCCVAujbQYPXMchOnJW8AgUfa1w62IyLzUx0aO32sPHB82F5lajm+irkfwLaVxRESkR/9TcPyscCKskZ05GzAzrv0f1UBYdoVYMHZmFGscIwujrlv08ewyFHgZ8euBBofKiTzvYNnocI98BucP6j4dI8aduXRwlKbBxHMYyE0kOox4zv1kcDLIvDRkhX739977LdV+8fe9zgz5xEfer+dmzxoIBC40YqEFAgkQCy0QSICywv65cFTisqd5RLmgSU928X4z5uhFen/8TUe05KEeBVOnzCmmImPURp04vK5Ph1qj/1qRPkeqrLynOWdXW/flApygdTIIk6OR/+Y9L1UxORp5kTPEvFf996Zy+GPBzFk7V/NpS/0wC4fjUJQnzzPZw8Q6ThvHajPCOwY+6Y3CczICvIg0lc5MzO9n9RFdXlhE5IOf+bpqxy9aIJAAsdACgQSIhRYIJEB5+LLD6kA1m9hOCPycbGlO86QXfa8Zw8A9h24ZaaeA3mXywIhIi5KMvI6Ru0QkRzKYipmK91sdsOxrsldNwdkcXYpco2cyB4k05AS8RydpjqDiZ9nTcyt2wdE6ZFbOcsvFDa/rOZmKQWGo++UOx8lYfagl/3ICb+HhzOo9Hq8T8Djqja7DM+br6YAd5kJ/7OHQOtWfPbWu2vGLFggkQCy0QCABYqEFAgkQCy0QSICSiZvK4UWm07CvrRQVLBL5oiXWC4zCdpZ0hmFMutR3jCFzZsqCccSpGmRKxOYgvKNvaXFRRKRpUGoIBgivPNEck8szS6wp/lcoS9x5IjcdnM1Jd364LF/bOip3Ae9rT7Cu5tqoksOAwjLAIjYamiWjKq9MMQwOJYwf9dxxEKZ9xAjjTqktWjacTMtMh13NtGGs71jgqrEuBxW/aIFAAsRCCwQSIBZaIJAAZdnbpw4s2ETFkvf0wQHSV1395KvMmLPY6nri8wr7gDbMHQdhZmpizOnE6u0yp2451Qf2bdust7KsHaVrOBE3teUIC+CcFFlFRHJErvbg7dsYV2uRrHtssdbTbiWD4zHmkpkyuo5DrZORKzfEOkfTGYN/58Zh2HFnYBavrGDArLULZDhPWzMQ1xHpDSdz3hk9sjH/bLRixmyur+lzmB6BQOCCIxZaIJAAsdACgQQoDyxpjjZctHvsbfCRAxejKoejt5A22NBKEVIwZhReEgsUpZRttD2nYlMlZaCvPDytk62IiNR97UjdwQmXiV/Od4JTsdOlbVBlJIe201ith3oWnWVL5/k3DbWqnfWuDgpd42ltSCfdGR7qZVqGQzOyHffE8sUOXIlTKRy9q4DHM6sceYmPKKN5lVBb6HGjJf3979trP7rTZ9ZUO37RAoEEiIUWCCRALLRAIAFioQUCCVBedMnF6kDTTE2nItcEfm1bk8P9TrTx/WgPHcGatJNncQKUpYCtYAgePWdWYhFp52wzEtoKmQVK6bLUbldaNd2ItV6EOITvCoR9PrPGkAxPqoCzcme8aUVyeHH36PzrOOXSMFD2HCMLyz8hC5aXacqWf2IWZS9aGqJw89jPQEQkwwMvzHe5cwlfGj5Edo5O7/ftt1Bta8+J+EULBBIgFlogkACx0AKBBCj7fb0nnUzsvjzP9B60hODLvbGIyBYONc42fIh2iTGZU/6V225TNdcprTtY0r3mG2uqPWIqYxGZ9bUImZfIhOQ43Eqmj3nVS3pDOOHivLkT+En5v2OGK4cXmWzAYMBN3/JS0hOKxiIi/aF+Lh24Uz23rgkd+C0FazoQnz+Ge5pr24EXn0ln5Qzvo3BIP8sWl4w+FpEctZi7gfZkL53vZ3V9C+cIBAL/74iFFggkQCy0QCABYqEFAglQ1kNNEOde5CqyGH3nDc9V7XVnufKQV7GXwdyG0jth2RnEzR6mu+TYKKa1HrM300Q1K633da+nSX2NG+hyJ3OTEUxtuPocWa9yGAqGIyt+0vBCr3oaPkREOkQBtHghZel5qcPo4lU5QgkjhlzkTtkvgcDL0xZe+D3m3x8yTNsOqRBlwsj00tRYts+WZYxFRDIYqLIc78iZy0aF52K7BAKBC41YaIFAAsRCCwQSoMwYeTuze/cX3XKLaleLWrC72xGseZbDpocFd8fbnlMu/jUwmZNDV2SA85SNPkk/s/vyOQTrgtTJOMra7L9ediqWpsrgDNA4EdYmO3DOLFLe/0sKy+AvjhjNqGsvwrotddw7nXsrh7oyE7HJguWQwaJlZmUtWHu8lJy4ZjleryQWRe7acdDG8y4zlAp2DBDjAzfpc9grBwKBC41YaIFAAsRCCwQSoPz2fafUgZte812mU39J732ncAqlc7CICIvVen2gyMg5tL3/AovggxV0taHD0fIajrsQ3wZDm28r7+nzzpDduCicvF7dzo7HrFLTdrjLzJ43yzWxa8Hj6sryOkOvcv0GCnpwi8gA2qDnN13BUZoZkHtOpuJyoO+RY7zKNobHNZrLtl62LWY3hsOzycTsXKcYWu7dIHI4R6DtxPGY37zs6XqM6REIBC44YqEFAgkQCy0QSIBYaIFAApSv/emXqgPD5QOm0ybKyG7i707RI2GBXi+9Nysssc9pR/BdM0c0qfdK686hWM+/plOAFxvrZsxw30HVziGnVzZZmGRM3e1ZE0CseyhHVDs3UID4dw1K1eZOFq+WjsdwxnbK8TLVuGdwkJzR9rtwcIZQPOA9O468fPVNra87nzsvgMJynyV97ZCm5T3bj64n+p3Nx2f0eRua9UTGjS77Fb9ogUACxEILBBIgFlogkADl3pUj6sCqw4vWcWyG9h5n70sf3D3OxeniiS224Xkilg9S3u2cLFijZf3/ZPWw3j9/9J1/ZMY89RnP03MrtJPu3gOX2ess6nI+faeGVIEgWpYaMnWARUTAcepK30+R2WDREmOYXMup+isCLlJybiLSZ6AwBOysteI5PcHJlXKnbFPb6k6jgZ7w1KmJlcPD3PgqOxnGJluaXy2OrGtFNddf3WSs83AP9ujvSUQkR53l+EULBBIgFlogkACx0AKBBMi+iRqs1MhERB6AVrWKv+91tIcBNuJOYRij0mygTSdjEZEHsfE+xey6XmESzH+LHPPbVgm8+z1/oNonP/QBfZ0ZVUCR4UgrgaXjrLy0uKzaK/sPqfZFR55gxvQWNFvNwJ1yR3vrIPQxU7EXlMryu57ulDMDMnSozBnUUE9En3ZudShW2SngrGzOKbbccY6Svl4OIDoiF4wkFpHNNe14v/rt/9IdnvhKM2bPM2/Q17aXDgQCFxqx0AKBBIiFFggkQCy0QCABsq/WTPtjGeMZlg0Cmd3nWCBmOM/YIck0vMzRxbr6ipxFe4prO0mMZB1zmTIrljOmD0F3jija2hGWxw9r882pLz1g+mx+6i7VfvTTf6XazdiagBoaKZBZebS0z4y57PFPVe3DRy9X7XLBGmoaRHKzpKyISAajSjXXcys9Z2VEuGeIUG47ayqrptpAxajmrLBjaqjwLANszW+2TBavIyLy8MmvqvZ0SxtHuu/5DTPm5hdqh4b4RQsEEiAWWiCQALHQAoEEyP5tNleb0pHjeFmjYkixi+XJ5K0Th/uRjbAcry1Ma52IKRs3jni+hflz5145HI2hiHSk9kCO2ffOC663yT61E2w50XedfX1NtU/deY8Z8sDH3qfaZ7/xH3puThasDBxmceVi0+fYiWep9iVHjqp2OXK4H7hTVeHpeso4M1pBlHezKINfmczEnjMDBWvz5kXuvvNjqn3ouH4uD978DjPm3a+9VLXjFy0QSIBYaIFAAsRCCwQSoFwoEcjndaIOxQ7OFps7XYd5mOBQJ2TQgNvsIY5459iDPgM6GTtj+B9ojAt7FUzJMb1KqC0S+DCjc963+lC5oDNFZ/u0jrZyreYDIiLH3vQC1a7B/SZr9gb2bOmnt/qVU6bPF971ZtX+7D+8X7W9/9w9ZIbet/8S1T7xzBvNmJWDuv5Q0+K5mPI+Vm8sUb2WGZ5FRKSvz1PPbJ/t8ZpqjyfaEfzJB+1dXwS+GL9ogUACxEILBBIgFlogkACx0AKBBChJ8nMnDJUGCPaw8bE267BjO3ANJGouuzg2xZmdYkoywsVpgLB5fu18aaNwkm2Z+7Ex2LYPxXLvWdL4tI13ZCVWK56PYPTqtD3if6CdivceO2p6POfmv9UjoAkvbFtjwuQhbW66/677VPuu9/yaGVM/qgX3eqbfbL+0GcaOn9CO1Meu1O09R46bMR2MFp+/89N2LlP9Vrae8HLVfsql9muoJij1ZHoEAoELjlhogUACxEILBBIg+yKyYPn7fb3hNxmGHW/NucvKNDxutNNcCAaPes6/DaYywN+ZFUvEcinOpe/cHg95T4DPrtgFR+N5WMl127nQDMfI8zwu62UdI1BxWDbQtjKySIGHOcEYL2lyiQjeBmS2OWNdKz7/nn9X7bMf+CXVbjfvNWM6lBxuK/tkDjxXZ7la+YE3qvZbnueUZt7WTzx+0QKBBIiFFggkQCy0QCABYqEFAgmQfbbVyaEXnE4k6EygvVcsdhKjRUQoOebIaOWK3OhDkt84o2jMoe3DE5YX0WlsIsYtSM9dcxAO0hDgZfEy5zFljyyMMO7NBWAUgxdUvrZDzjTvufDa/J48Ywij02kA8sZs4GA+37ns7+CcNn7ktO6IyBrC4Kco83vbYXvezbUwhgQCyRELLRBIgFhogUAClEvgPHTAFRHpyQ5RwU4JnRyOmG1l4rJla0vv6NdOPaTaD56824zp8L/h8KW6rOmJJ15jxgz3HFDtiiWlvHI+RvCFI69DYMg9vGh1JnXeBBPyuAcdhJmVjJHdIrZMFrt4ZbQML3L68N3zHj2Oz0xfvB+Pz1NwJ/ebOs/fVNtd0N9K29rfleFID6pt0mfZfFC3j29jxsv2DoqZdjSOX7RAIAFioQUCCRALLRBIgOw9f/rnerfbs26t/Uzv1lmOdGmPLhcrIrKy/6BqHz92hemzvKy5U7+nlbXOKXPaYu/Oyjbefw5mud0pkNXrQ8dkD+RfnlM0z0uOU+/CQZtO3J52RddYXsdzXt7AdTztzXNG/t/wHMV5LeqnHpelszU5s8frzmIM5+85j89Y9dd5aVtn9MBX3/o21X709MNmzHB9TbXjFy0QSIBYaIFAAsRCCwQSIBZaIJAA2YPr64rpdU7J0n5fR6FS4G2c0rotjRRudq3HtjB4Tq28Nknxbv5z8A696/C8u7CFGIF3N2N2Epa9uezGYXiOu2p3Yejg/D3DB6OjGeHed54mS3axtLFnzOFcOF8aS0Ss8YldPJF+g9dp7YmvfecfqPYVt9+h2pOzq2bMWqdnHL9ogUACxEILBBIgFlogkABl3tNBbKXxzBQRZHMdQwAWtkVkaI5Y8Ercl3ui5E5i824CTm0Wr52vsxuRm+f1xFtei+f15s/nxHN43IOlqez9OLwaYzynYnPj4Oee4L7dUWDXJ6FQLmIdBChq0+nY68P5zx1edwjZqp59q82afPAzX1TtrXM6X9gWS/iKSNGGU3EgkByx0AKBBIiFFggkQHb9y1+vdq4nnvQU0+lVP/KDqr3/sHYYHo0sG1lAOVUvoHSnVf5/4WhelReOod7icZydsJvreNhJw/POwfnuRp/LmOiICYoc7ZNHXAdt4ziN0sZOpt+2QWUVlLydzq1b8QYChcsVXf5mVlteRGf3u/7jy6p9x2/9rhnz+i9oh+Anb9hCyxMQxlmr7/Gco71JqW0f8YsWCCRALLRAIAFioQUCCRALLRBIgOzpN75SMbmpQ2bzQhc6YtZYcbJgDQeaDBa5NZiUIy1r17N11X7dG37UjLn22Ver9pFD2jDTH7Iok3VwpjXBKzVkzoG2Z0BxBV6AxoQWxgT3vMzOXGmHVc+AMpvrPhVK007HtkhTkes+3/rmt+xcCh0vPT6tx9SOkWL1jL7WR+/4hGqvnbNzafEk5ryfbbozi9SNvnbTMbLempH2o2zTsc5+DQvIelW32jy15JQTXlrS+cDiFy0QSIBYaIFAAsRCCwQSIHva9a9QW/ysZ9ced7bMVjWf2izE1EPLnuVoHfbUVa2Fyyy33G800hysgPjpcYTxGS1KDkd6/k95+rPMmKderYX7pYt0zZxrr32mGbMP+/LJts01tXFWp72tOr3fP3PKBhHe8zXNle49qTM6T8ZWZB2PdTjlwQMrqj1gWmIROfPwt1X7gQdsdifynLKEI3Jl00h1eK91hbYj/xdIR1VDFM5bK3JP5/rd1/h8GqbSEhF+Lr3SsuS80N9YDzYLcarUSKfHxC9aIJAAsdACgQSIhRYIJEB21fO+V21+y76tB5Lnet/aNdRx7B7VSFeZ3fvWc63BVNhUj/r2/8BTrrpStU+vnlXtVSdRynhd6zQFTtt0liNkpd6H55meW5HbMU1HR1JHX4R2WMGhtqktxzFnwQ00JCMiUiAZ0t69Opv0aGjfx6DUczkNziYi0oKDVeBbjq+yZLgD8rymsnzLODjjnrPczn8GvsWKP43j/JuBH9IZ+3wf8EN8P63DMUt+P6ZHIBC44IiFFggkQCy0QCABYqEFAglQNjPkiXWMFjnYnzWG2PVaIKUwCbGIyHxb54ntcO1uwAI/Ig2idemlWzVWsJ5COB4taINEr++48jJjc7Nz7qkSuX1bR8icTVACK9ekmc9ARCQ3nsg4hxlhMzo/7pA2hiwtWufZzU3t1P3Q3Doi0H+8y7QhoGkdY05DYwjm6pTnYpYu2jEaxzGhaZn5C98gLXQijvXGMYbA8FKW+luoWUtMxHh5xC9aIJAAsdACgQSIhRYIJEA5gK9vVdnaHh0cdzOItXQOFhFpG3I0u4/lsQ77+6726pnoPiWdXKlGn5+NbkEUrnMrmBqBfRdRnQWVTC8bMLLadrXmj42JqhXJDbcA53FVYvBdzKX2slWZAF6nAhBL3mKM9/QpNnO+7vx5jJzH4VsU6akst52dXdtwLnYqtoLRY2eBPn8e/fzjFy0QSIBYaIFAAsRCCwQSoBTsJfulDdBsoZVwf9x6WW9NYhSrKTUNOBl2ux6v60HDGKAaTts5zstIZpODvwz7XlCqbmfQssgnz1+bjq+mi+GzHbU2Z8Nvcx8Zj20zhs92MkHm38xqV1sbWtcsDecUyXDfbUa9y+GlvGf83asGy28sM3zLDHG+OXAp54VQwusa+50a7RAfR1ZaTbJloKrpEQgELjhioQUCCRALLRBIgFhogUAClHQIJqE8f0y3a4h8jXG4tY6wnj9nUWomOp0h2tgRwklwa2RDotFCRGS0dJFqM8utF9Vc9MmSYQwxI6xhw0ngLEb5pr+wK6rqMRTGPYdtZoYeDHWbGZJFROaInq6d52JeozHmeE65+Mb4YDzLBi+D9+plO+O3nDE7tudTbByPHQOQMYTh226d0rp5ZMEKBJIjFlogkACx0AKBBCgr8K3WyUhUIMuwCeTzREos4c7Z71P0ZQYijyOMN7XTc4VUR01lK3vMtvUYViZxEn8ZvsVMSGyfH8O2p1jzwM6FchlcSZHY4zg8NJvoZ9BbsiI9A2S9ezRz43NxxGeSVfbI6bUrNrMXvw0vozC15hpjGLApYnmd98qEgjum61WpYaf4RQsEEiAWWiCQALHQAoEEiIUWCCRAORhpol3NHS97CtbGndlJCY4sUZ1XMgdGCXpXLywu2QkjuqCo9TlmM2vMYSroDgJjzdzRItKJPq+JJPAUeBoPGAIgYrJ20UvdiLnOtRvaiJzn38KJoECUM5/9+UH6mI24thnRTIiCYxij4wE92zMnkoAe/cx6lTmGDZPlygRcO0YXEwlt77ni94N7LDwLCspOxS9aIJAAsdACgQSIhRYIJEA53tRlWcvB0HTKcjrUUqR0zmy2y85+H5GpFTLjVoaMiGxPEC2dk/NYjlBA3GzrnUsA0Z/Z7O9d/sWMzo7j6w5ipzN9JzPxDk66ItKAu85nEHyX7D1nCDc2fExEajoeM5LY4UEmstk4nHsZ0uCgzXM6DtstM3/hvbaOnaBDaWPfqRg8GhzN8x0vi8iCFQgkRyy0QCABYqEFAglQzubI/DtwoxUVclRN8TSyzqT2dbIZGx5HbcfOZWFJ87rNLc0xM8dBlftuo9E42ZmzUnNVchHP4dac1yWv2N8bjc+OYGUecj+3SAqOVXDQbjvLxXuo3tN266ZPBu5RkFR6mX5BB7MeU//ab4Nxnba0rr1pPrracDQnKJWTc/2o+c70X8vM4evg8PGLFggkQCy0QCABYqEFAgkQCy0QSIAy72vjwmRqnU3JOwsyRme50gk0dwwDNUv0Iqp2vKlTVIuIbOBYA2baNHb+da0djSlcesQ6yx7bcdqLqqXAXngRvUZ83tmwQVsBnX0ZfSwi0hToA85fOyWxZoiw9oRwiv90wqVxR0Skw03Rkdrx6TaZs/hcvBLEvMkSRiSWWxKxBhK37BS+hZLR3W5K/IiwDgSSIxZaIJAAsdACgQT4bz2g0tluom8yAAAAAElFTkSuQmCC\" y=\"-8.264819\"/>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m6506a59758\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.0994\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0 -->\n <g transform=\"translate(25.91815 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"72.5874\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 10 -->\n <g transform=\"translate(66.2249 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_3\">\n <g id=\"line2d_3\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"116.0754\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- 20 -->\n <g transform=\"translate(109.7129 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_4\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"159.5634\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 30 -->\n <g transform=\"translate(153.2009 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-51\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_5\">\n <g id=\"line2d_5\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"203.0514\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 40 -->\n <g transform=\"translate(196.6889 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_6\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"mb5ccbf7cb2\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- 0 -->\n <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_7\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"54.487219\"/>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- 10 -->\n <g transform=\"translate(7.2 58.286437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_8\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"97.975219\"/>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- 20 -->\n <g transform=\"translate(7.2 101.774437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_4\">\n <g id=\"line2d_9\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"141.463219\"/>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- 30 -->\n <g transform=\"translate(7.2 145.262437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-51\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_10\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"184.951219\"/>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- 40 -->\n <g transform=\"translate(7.2 188.750437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 26.925 226.264819 \nL 26.925 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 244.365 226.264819 \nL 244.365 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 26.925 226.264819 \nL 244.365 226.264819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 26.925 8.824819 \nL 244.365 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"p4eab9fbad9\">\n <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.824819\"/>\n </clipPath>\n </defs>\n</svg>\n",
"text/plain": "<Figure size 432x288 with 1 Axes>"
},
"metadata": {
"needs_background": "light",
"transient": {}
},
"output_type": "display_data"
}
],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"import torchvision.transforms.functional as trans_f\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../../'))\n",
"__package__ = \"deep_view_syn.notebook\"\n",
"\n",
"from ..my import util\n",
"\n",
"input_img = util.ReadImageTensor('/home/dengnc/deep_view_syn/data/gas_fovea_2020.12.31/upsampling_test/input/out_view_0000.png')\n",
"ycbcr = util.rgb2ycbcr(input_img)\n",
"rgb = util.ycbcr2rgb(ycbcr)\n",
"\n",
"plt.figure()\n",
"util.PlotImageTensor(input_img)\n",
"plt.figure()\n",
"plt.subplot(1, 4, 1)\n",
"util.PlotImageTensor(ycbcr)\n",
"plt.subplot(1, 4, 2)\n",
"util.PlotImageTensor(ycbcr[:, 0])\n",
"plt.subplot(1, 4, 3)\n",
"util.PlotImageTensor(ycbcr[:, 1])\n",
"plt.subplot(1, 4, 4)\n",
"util.PlotImageTensor(ycbcr[:, 2])\n",
"plt.figure()\n",
"util.PlotImageTensor(rgb)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.9"
},
"orig_nbformat": 2
},
"nbformat": 4,
"nbformat_minor": 2
}
\ No newline at end of file
from __future__ import print_function
import sys
import torch
import torchvision
import torch.backends.cudnn as cudnn
import torch.nn as nn
from math import log10
from my.progress_bar import progress_bar
from my import color_mode
class Net(torch.nn.Module):
def __init__(self, color, base_filter):
super(Net, self).__init__()
self.color = color
if color == color_mode.GRAY:
self.layers = torch.nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=base_filter, kernel_size=9, stride=1, padding=4, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=base_filter, out_channels=base_filter // 2, kernel_size=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=base_filter // 2, out_channels=1, kernel_size=5, stride=1, padding=2, bias=True),
#nn.PixelShuffle(upscale_factor)
)
else:
self.net_1 = torch.nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=base_filter, kernel_size=9, stride=1, padding=4, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=base_filter, out_channels=base_filter // 2, kernel_size=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=base_filter // 2, out_channels=1, kernel_size=5, stride=1, padding=2, bias=True),
#nn.PixelShuffle(upscale_factor)
)
self.net_2 = torch.nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=base_filter, kernel_size=9, stride=1, padding=4, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=base_filter, out_channels=base_filter // 2, kernel_size=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=base_filter // 2, out_channels=1, kernel_size=5, stride=1, padding=2, bias=True),
#nn.PixelShuffle(upscale_factor)
)
self.net_3 = torch.nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=base_filter, kernel_size=9, stride=1, padding=4, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=base_filter, out_channels=base_filter // 2, kernel_size=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=base_filter // 2, out_channels=1, kernel_size=5, stride=1, padding=2, bias=True),
#nn.PixelShuffle(upscale_factor)
)
def forward(self, x):
if self.color == color_mode.GRAY:
out = self.layers(x)
else:
out = torch.cat([
self.net_1(x[:, 0:1]),
self.net_2(x[:, 1:2]),
self.net_3(x[:, 2:3])
], dim=1)
return out
def weight_init(self, mean, std):
for m in self._modules:
normal_init(self._modules[m], mean, std)
def normal_init(m, mean, std):
if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d):
m.weight.data.normal_(mean, std)
m.bias.data.zero_()
class Solver(object):
def __init__(self, config, training_loader, testing_loader, writer=None):
super(Solver, self).__init__()
self.CUDA = torch.cuda.is_available()
self.device = torch.device('cuda' if self.CUDA else 'cpu')
self.model = None
self.lr = config.lr
self.nEpochs = config.nEpochs
self.criterion = None
self.optimizer = None
self.scheduler = None
self.seed = config.seed
self.upscale_factor = config.upscale_factor
self.training_loader = training_loader
self.testing_loader = testing_loader
self.writer = writer
self.color = config.color
def build_model(self):
self.model = Net(color=self.color, base_filter=64).to(self.device)
self.model.weight_init(mean=0.0, std=0.01)
self.criterion = torch.nn.MSELoss()
torch.manual_seed(self.seed)
if self.CUDA:
torch.cuda.manual_seed(self.seed)
cudnn.benchmark = True
self.criterion.cuda()
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=[50, 75, 100], gamma=0.5)
def save_model(self):
model_out_path = "model_path.pth"
torch.save(self.model, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
def train(self, epoch, iters, channels = None):
self.model.train()
train_loss = 0
for batch_num, (_, data, target) in enumerate(self.training_loader):
if channels:
data = data[..., channels, :, :]
target = target[..., channels, :, :]
data =data.to(self.device)
target = target.to(self.device)
self.optimizer.zero_grad()
out = self.model(data)
loss = self.criterion(out, target)
train_loss += loss.item()
loss.backward()
self.optimizer.step()
sys.stdout.write('Epoch %d: ' % epoch)
progress_bar(batch_num, len(self.training_loader), 'Loss: %.4f' % (train_loss / (batch_num + 1)))
if self.writer:
self.writer.add_scalar("loss", loss, iters)
if iters % 100 == 0:
output_vs_gt = torch.stack([out, target], 1) \
.flatten(0, 1).detach()
self.writer.add_image(
"Output_vs_gt",
torchvision.utils.make_grid(output_vs_gt, nrow=2).cpu().numpy(),
iters)
iters += 1
print(" Average Loss: {:.4f}".format(train_loss / len(self.training_loader)))
return iters
\ No newline at end of file
import sys
sys.path.append('/e/dengnc')
__package__ = "deeplightfield"
__package__ = "deep_view_syn"
import os
import torch
......
from __future__ import print_function
import argparse
import os
import sys
import torch
import torch.nn.functional as nn_f
from tensorboardX.writer import SummaryWriter
sys.path.append(os.path.abspath(sys.path[0] + '/../'))
__package__ = "deep_view_syn"
# ===========================================================
# Training settings
# ===========================================================
parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
# hyper-parameters
parser.add_argument('--device', type=int, default=3,
help='Which CUDA device to use.')
parser.add_argument('--batchSize', type=int, default=1,
help='training batch size')
parser.add_argument('--testBatchSize', type=int,
default=1, help='testing batch size')
parser.add_argument('--nEpochs', type=int, default=20,
help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.01,
help='Learning Rate. Default=0.01')
parser.add_argument('--seed', type=int, default=123,
help='random seed to use. Default=123')
parser.add_argument('--dataset', type=str, required=True,
help='dataset directory')
parser.add_argument('--test', type=str, help='path of model to test')
parser.add_argument('--testOutPatt', type=str, help='test output path pattern')
parser.add_argument('--color', type=str, default='rgb',
help='color')
# model configuration
parser.add_argument('--upscale_factor', '-uf', type=int,
default=2, help="super resolution upscale factor")
#parser.add_argument('--model', '-m', type=str, default='srgan', help='choose which model is going to use')
args = parser.parse_args()
# Select device
torch.cuda.set_device(args.device)
print("Set CUDA:%d as current device." % torch.cuda.current_device())
from .my import util
from .my import netio
from .my import device
from .my import color_mode
from .refine_net import *
from .data.upsampling import UpsamplingDataset
from .data.loader import FastDataLoader
os.chdir(args.dataset)
print('Change working directory to ' + os.getcwd())
run_dir = 'run/'
args.color = color_mode.from_str(args.color)
def train():
util.CreateDirIfNeed(run_dir)
train_set = UpsamplingDataset('.', 'input/out_view_%04d.png',
'gt/view_%04d.png', color=args.color)
training_data_loader = FastDataLoader(dataset=train_set,
batch_size=args.batchSize,
shuffle=True,
drop_last=False)
trainer = Solver(args, training_data_loader, training_data_loader,
SummaryWriter(run_dir))
trainer.build_model()
iters = 0
for epoch in range(1, args.nEpochs + 1):
print("\n===> Epoch {} starts:".format(epoch))
iters = trainer.train(epoch, iters,
channels=slice(2, 3) if args.color == color_mode.YCbCr
else None)
netio.SaveNet(run_dir + 'model-epoch_%d.pth' % args.nEpochs, trainer.model)
def test():
util.CreateDirIfNeed(os.path.dirname(args.testOutPatt))
train_set = UpsamplingDataset(
'.', 'input/out_view_%04d.png', None, color=args.color)
training_data_loader = FastDataLoader(dataset=train_set,
batch_size=args.testBatchSize,
shuffle=False,
drop_last=False)
trainer = Solver(args, training_data_loader, training_data_loader,
SummaryWriter(run_dir))
trainer.build_model()
netio.LoadNet(args.test, trainer.model)
for idx, input, _ in training_data_loader:
if args.color == color_mode.YCbCr:
output_y = trainer.model(input[:, -1:])
output_cbcr = input[:, 0:2]
output = util.ycbcr2rgb(torch.cat([output_cbcr, output_y], -3))
else:
output = trainer.model(input)
util.WriteImageTensor(output, args.testOutPatt % idx)
def main():
if (args.test):
test()
else:
train()
if __name__ == '__main__':
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment