Commit 338ae906 authored by Nianchen Deng's avatar Nianchen Deng
Browse files

tog'21 baseline

parent f1dd9e3a
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_access
/// @file glm/gtc/matrix_access.hpp
/// @date 2005-12-27 / 2011-05-16
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtc_matrix_access GLM_GTC_matrix_access
/// @ingroup gtc
///
/// Defines functions to access rows or columns of a matrix easily.
/// <glm/gtc/matrix_access.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependency:
#include "../detail/setup.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_matrix_access extension included")
#endif
namespace glm
{
/// @addtogroup gtc_matrix_access
/// @{
/// Get a specific row of a matrix.
/// @see gtc_matrix_access
template <typename genType>
GLM_FUNC_DECL typename genType::row_type row(
genType const & m,
length_t index);
/// Set a specific row to a matrix.
/// @see gtc_matrix_access
template <typename genType>
GLM_FUNC_DECL genType row(
genType const & m,
length_t index,
typename genType::row_type const & x);
/// Get a specific column of a matrix.
/// @see gtc_matrix_access
template <typename genType>
GLM_FUNC_DECL typename genType::col_type column(
genType const & m,
length_t index);
/// Set a specific column to a matrix.
/// @see gtc_matrix_access
template <typename genType>
GLM_FUNC_DECL genType column(
genType const & m,
length_t index,
typename genType::col_type const & x);
/// @}
}//namespace glm
#include "matrix_access.inl"
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_access
/// @file glm/gtc/matrix_access.inl
/// @date 2005-12-27 / 2011-06-05
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename genType>
GLM_FUNC_QUALIFIER genType row
(
genType const & m,
length_t index,
typename genType::row_type const & x
)
{
assert(index >= 0 && static_cast<detail::component_count_t>(index) < detail::component_count(m[0]));
genType Result = m;
for(detail::component_count_t i = 0; i < detail::component_count(m); ++i)
Result[i][index] = x[i];
return Result;
}
template <typename genType>
GLM_FUNC_QUALIFIER typename genType::row_type row
(
genType const & m,
length_t index
)
{
assert(index >= 0 && static_cast<detail::component_count_t>(index) < detail::component_count(m[0]));
typename genType::row_type Result;
for(detail::component_count_t i = 0; i < detail::component_count(m); ++i)
Result[i] = m[i][index];
return Result;
}
template <typename genType>
GLM_FUNC_QUALIFIER genType column
(
genType const & m,
length_t index,
typename genType::col_type const & x
)
{
assert(index >= 0 && static_cast<detail::component_count_t>(index) < detail::component_count(m));
genType Result = m;
Result[index] = x;
return Result;
}
template <typename genType>
GLM_FUNC_QUALIFIER typename genType::col_type column
(
genType const & m,
length_t index
)
{
assert(index >= 0 && static_cast<detail::component_count_t>(index) < detail::component_count(m));
return m[index];
}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_integer
/// @file glm/gtc/matrix_integer.hpp
/// @date 2011-01-20 / 2011-06-05
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtc_matrix_integer GLM_GTC_matrix_integer
/// @ingroup gtc
///
/// Defines a number of matrices with integer types.
/// <glm/gtc/matrix_integer.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependency:
#include "../mat2x2.hpp"
#include "../mat2x3.hpp"
#include "../mat2x4.hpp"
#include "../mat3x2.hpp"
#include "../mat3x3.hpp"
#include "../mat3x4.hpp"
#include "../mat4x2.hpp"
#include "../mat4x3.hpp"
#include "../mat4x4.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_matrix_integer extension included")
#endif
namespace glm
{
/// @addtogroup gtc_matrix_integer
/// @{
/// High-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<int, highp> highp_imat2;
/// High-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<int, highp> highp_imat3;
/// High-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<int, highp> highp_imat4;
/// High-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<int, highp> highp_imat2x2;
/// High-precision signed integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef tmat2x3<int, highp> highp_imat2x3;
/// High-precision signed integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef tmat2x4<int, highp> highp_imat2x4;
/// High-precision signed integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef tmat3x2<int, highp> highp_imat3x2;
/// High-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<int, highp> highp_imat3x3;
/// High-precision signed integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef tmat3x4<int, highp> highp_imat3x4;
/// High-precision signed integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef tmat4x2<int, highp> highp_imat4x2;
/// High-precision signed integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef tmat4x3<int, highp> highp_imat4x3;
/// High-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<int, highp> highp_imat4x4;
/// Medium-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<int, mediump> mediump_imat2;
/// Medium-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<int, mediump> mediump_imat3;
/// Medium-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<int, mediump> mediump_imat4;
/// Medium-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<int, mediump> mediump_imat2x2;
/// Medium-precision signed integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef tmat2x3<int, mediump> mediump_imat2x3;
/// Medium-precision signed integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef tmat2x4<int, mediump> mediump_imat2x4;
/// Medium-precision signed integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef tmat3x2<int, mediump> mediump_imat3x2;
/// Medium-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<int, mediump> mediump_imat3x3;
/// Medium-precision signed integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef tmat3x4<int, mediump> mediump_imat3x4;
/// Medium-precision signed integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef tmat4x2<int, mediump> mediump_imat4x2;
/// Medium-precision signed integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef tmat4x3<int, mediump> mediump_imat4x3;
/// Medium-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<int, mediump> mediump_imat4x4;
/// Low-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<int, lowp> lowp_imat2;
/// Low-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<int, lowp> lowp_imat3;
/// Low-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<int, lowp> lowp_imat4;
/// Low-precision signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<int, lowp> lowp_imat2x2;
/// Low-precision signed integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef tmat2x3<int, lowp> lowp_imat2x3;
/// Low-precision signed integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef tmat2x4<int, lowp> lowp_imat2x4;
/// Low-precision signed integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef tmat3x2<int, lowp> lowp_imat3x2;
/// Low-precision signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<int, lowp> lowp_imat3x3;
/// Low-precision signed integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef tmat3x4<int, lowp> lowp_imat3x4;
/// Low-precision signed integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef tmat4x2<int, lowp> lowp_imat4x2;
/// Low-precision signed integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef tmat4x3<int, lowp> lowp_imat4x3;
/// Low-precision signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<int, lowp> lowp_imat4x4;
/// High-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<uint, highp> highp_umat2;
/// High-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<uint, highp> highp_umat3;
/// High-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<uint, highp> highp_umat4;
/// High-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<uint, highp> highp_umat2x2;
/// High-precision unsigned integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef tmat2x3<uint, highp> highp_umat2x3;
/// High-precision unsigned integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef tmat2x4<uint, highp> highp_umat2x4;
/// High-precision unsigned integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef tmat3x2<uint, highp> highp_umat3x2;
/// High-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<uint, highp> highp_umat3x3;
/// High-precision unsigned integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef tmat3x4<uint, highp> highp_umat3x4;
/// High-precision unsigned integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef tmat4x2<uint, highp> highp_umat4x2;
/// High-precision unsigned integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef tmat4x3<uint, highp> highp_umat4x3;
/// High-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<uint, highp> highp_umat4x4;
/// Medium-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<uint, mediump> mediump_umat2;
/// Medium-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<uint, mediump> mediump_umat3;
/// Medium-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<uint, mediump> mediump_umat4;
/// Medium-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<uint, mediump> mediump_umat2x2;
/// Medium-precision unsigned integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef tmat2x3<uint, mediump> mediump_umat2x3;
/// Medium-precision unsigned integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef tmat2x4<uint, mediump> mediump_umat2x4;
/// Medium-precision unsigned integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef tmat3x2<uint, mediump> mediump_umat3x2;
/// Medium-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<uint, mediump> mediump_umat3x3;
/// Medium-precision unsigned integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef tmat3x4<uint, mediump> mediump_umat3x4;
/// Medium-precision unsigned integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef tmat4x2<uint, mediump> mediump_umat4x2;
/// Medium-precision unsigned integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef tmat4x3<uint, mediump> mediump_umat4x3;
/// Medium-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<uint, mediump> mediump_umat4x4;
/// Low-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<uint, lowp> lowp_umat2;
/// Low-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<uint, lowp> lowp_umat3;
/// Low-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<uint, lowp> lowp_umat4;
/// Low-precision unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef tmat2x2<uint, lowp> lowp_umat2x2;
/// Low-precision unsigned integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef tmat2x3<uint, lowp> lowp_umat2x3;
/// Low-precision unsigned integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef tmat2x4<uint, lowp> lowp_umat2x4;
/// Low-precision unsigned integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef tmat3x2<uint, lowp> lowp_umat3x2;
/// Low-precision unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef tmat3x3<uint, lowp> lowp_umat3x3;
/// Low-precision unsigned integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef tmat3x4<uint, lowp> lowp_umat3x4;
/// Low-precision unsigned integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef tmat4x2<uint, lowp> lowp_umat4x2;
/// Low-precision unsigned integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef tmat4x3<uint, lowp> lowp_umat4x3;
/// Low-precision unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef tmat4x4<uint, lowp> lowp_umat4x4;
#if(defined(GLM_PRECISION_HIGHP_INT))
typedef highp_imat2 imat2;
typedef highp_imat3 imat3;
typedef highp_imat4 imat4;
typedef highp_imat2x2 imat2x2;
typedef highp_imat2x3 imat2x3;
typedef highp_imat2x4 imat2x4;
typedef highp_imat3x2 imat3x2;
typedef highp_imat3x3 imat3x3;
typedef highp_imat3x4 imat3x4;
typedef highp_imat4x2 imat4x2;
typedef highp_imat4x3 imat4x3;
typedef highp_imat4x4 imat4x4;
#elif(defined(GLM_PRECISION_LOWP_INT))
typedef lowp_imat2 imat2;
typedef lowp_imat3 imat3;
typedef lowp_imat4 imat4;
typedef lowp_imat2x2 imat2x2;
typedef lowp_imat2x3 imat2x3;
typedef lowp_imat2x4 imat2x4;
typedef lowp_imat3x2 imat3x2;
typedef lowp_imat3x3 imat3x3;
typedef lowp_imat3x4 imat3x4;
typedef lowp_imat4x2 imat4x2;
typedef lowp_imat4x3 imat4x3;
typedef lowp_imat4x4 imat4x4;
#else //if(defined(GLM_PRECISION_MEDIUMP_INT))
/// Signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat2 imat2;
/// Signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat3 imat3;
/// Signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat4 imat4;
/// Signed integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat2x2 imat2x2;
/// Signed integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat2x3 imat2x3;
/// Signed integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat2x4 imat2x4;
/// Signed integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat3x2 imat3x2;
/// Signed integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat3x3 imat3x3;
/// Signed integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat3x4 imat3x4;
/// Signed integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat4x2 imat4x2;
/// Signed integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat4x3 imat4x3;
/// Signed integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_imat4x4 imat4x4;
#endif//GLM_PRECISION
#if(defined(GLM_PRECISION_HIGHP_UINT))
typedef highp_umat2 umat2;
typedef highp_umat3 umat3;
typedef highp_umat4 umat4;
typedef highp_umat2x2 umat2x2;
typedef highp_umat2x3 umat2x3;
typedef highp_umat2x4 umat2x4;
typedef highp_umat3x2 umat3x2;
typedef highp_umat3x3 umat3x3;
typedef highp_umat3x4 umat3x4;
typedef highp_umat4x2 umat4x2;
typedef highp_umat4x3 umat4x3;
typedef highp_umat4x4 umat4x4;
#elif(defined(GLM_PRECISION_LOWP_UINT))
typedef lowp_umat2 umat2;
typedef lowp_umat3 umat3;
typedef lowp_umat4 umat4;
typedef lowp_umat2x2 umat2x2;
typedef lowp_umat2x3 umat2x3;
typedef lowp_umat2x4 umat2x4;
typedef lowp_umat3x2 umat3x2;
typedef lowp_umat3x3 umat3x3;
typedef lowp_umat3x4 umat3x4;
typedef lowp_umat4x2 umat4x2;
typedef lowp_umat4x3 umat4x3;
typedef lowp_umat4x4 umat4x4;
#else //if(defined(GLM_PRECISION_MEDIUMP_UINT))
/// Unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat2 umat2;
/// Unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat3 umat3;
/// Unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat4 umat4;
/// Unsigned integer 2x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat2x2 umat2x2;
/// Unsigned integer 2x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat2x3 umat2x3;
/// Unsigned integer 2x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat2x4 umat2x4;
/// Unsigned integer 3x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat3x2 umat3x2;
/// Unsigned integer 3x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat3x3 umat3x3;
/// Unsigned integer 3x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat3x4 umat3x4;
/// Unsigned integer 4x2 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat4x2 umat4x2;
/// Unsigned integer 4x3 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat4x3 umat4x3;
/// Unsigned integer 4x4 matrix.
/// @see gtc_matrix_integer
typedef mediump_umat4x4 umat4x4;
#endif//GLM_PRECISION
/// @}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_inverse
/// @file glm/gtc/matrix_inverse.hpp
/// @date 2005-12-21 / 2011-06-05
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtc_matrix_inverse GLM_GTC_matrix_inverse
/// @ingroup gtc
///
/// Defines additional matrix inverting functions.
/// <glm/gtc/matrix_inverse.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../matrix.hpp"
#include "../mat2x2.hpp"
#include "../mat3x3.hpp"
#include "../mat4x4.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_matrix_inverse extension included")
#endif
namespace glm
{
/// @addtogroup gtc_matrix_inverse
/// @{
/// Fast matrix inverse for affine matrix.
///
/// @param m Input matrix to invert.
/// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate.
/// @see gtc_matrix_inverse
template <typename genType>
GLM_FUNC_DECL genType affineInverse(genType const & m);
/// Compute the inverse transpose of a matrix.
///
/// @param m Input matrix to invert transpose.
/// @tparam genType Squared floating-point matrix: half, float or double. Inverse of matrix based of half-precision floating point value is highly innacurate.
/// @see gtc_matrix_inverse
template <typename genType>
GLM_FUNC_DECL genType inverseTranspose(genType const & m);
/// @}
}//namespace glm
#include "matrix_inverse.inl"
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_inverse
/// @file glm/gtc/matrix_inverse.inl
/// @date 2005-12-21 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat3x3<T, P> affineInverse(tmat3x3<T, P> const & m)
{
tmat3x3<T, P> Result(m);
Result[2] = tvec3<T, P>(0, 0, 1);
Result = transpose(Result);
tvec3<T, P> Translation = Result * tvec3<T, P>(-tvec2<T, P>(m[2]), m[2][2]);
Result[2] = Translation;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> affineInverse(tmat4x4<T, P> const & m)
{
tmat4x4<T, P> Result(m);
Result[3] = tvec4<T, P>(0, 0, 0, 1);
Result = transpose(Result);
tvec4<T, P> Translation = Result * tvec4<T, P>(-tvec3<T, P>(m[3]), m[3][3]);
Result[3] = Translation;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat2x2<T, P> inverseTranspose(tmat2x2<T, P> const & m)
{
T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
tmat2x2<T, P> Inverse(
+ m[1][1] / Determinant,
- m[0][1] / Determinant,
- m[1][0] / Determinant,
+ m[0][0] / Determinant);
return Inverse;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat3x3<T, P> inverseTranspose(tmat3x3<T, P> const & m)
{
T Determinant =
+ m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
- m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
+ m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
tmat3x3<T, P> Inverse(uninitialize);
Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
Inverse /= Determinant;
return Inverse;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> inverseTranspose(tmat4x4<T, P> const & m)
{
T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
T SubFactor11 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
T SubFactor12 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
T SubFactor13 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
T SubFactor14 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
T SubFactor15 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
T SubFactor16 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
T SubFactor17 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
T SubFactor18 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
tmat4x4<T, P> Inverse(uninitialize);
Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
Inverse[2][2] = + (m[0][0] * SubFactor11 - m[0][1] * SubFactor09 + m[0][3] * SubFactor12);
Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor12);
Inverse[3][0] = - (m[0][1] * SubFactor13 - m[0][2] * SubFactor14 + m[0][3] * SubFactor15);
Inverse[3][1] = + (m[0][0] * SubFactor13 - m[0][2] * SubFactor16 + m[0][3] * SubFactor17);
Inverse[3][2] = - (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][3] * SubFactor18);
Inverse[3][3] = + (m[0][0] * SubFactor15 - m[0][1] * SubFactor17 + m[0][2] * SubFactor18);
T Determinant =
+ m[0][0] * Inverse[0][0]
+ m[0][1] * Inverse[0][1]
+ m[0][2] * Inverse[0][2]
+ m[0][3] * Inverse[0][3];
Inverse /= Determinant;
return Inverse;
}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_transform
/// @file glm/gtc/matrix_transform.hpp
/// @date 2009-04-29 / 2011-05-16
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtx_transform
/// @see gtx_transform2
///
/// @defgroup gtc_matrix_transform GLM_GTC_matrix_transform
/// @ingroup gtc
///
/// @brief Defines functions that generate common transformation matrices.
///
/// The matrices generated by this extension use standard OpenGL fixed-function
/// conventions. For example, the lookAt function generates a transform from world
/// space into the specific eye space that the projective matrix functions
/// (perspective, ortho, etc) are designed to expect. The OpenGL compatibility
/// specifications defines the particular layout of this eye space.
///
/// <glm/gtc/matrix_transform.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependencies
#include "../mat4x4.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../gtc/constants.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_matrix_transform extension included")
#endif
namespace glm
{
/// @addtogroup gtc_matrix_transform
/// @{
/// Builds a translation 4 * 4 matrix created from a vector of 3 components.
///
/// @param m Input matrix multiplied by this translation matrix.
/// @param v Coordinates of a translation vector.
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @code
/// #include <glm/glm.hpp>
/// #include <glm/gtc/matrix_transform.hpp>
/// ...
/// glm::mat4 m = glm::translate(glm::mat4(1.0f), glm::vec3(1.0f));
/// // m[0][0] == 1.0f, m[0][1] == 0.0f, m[0][2] == 0.0f, m[0][3] == 0.0f
/// // m[1][0] == 0.0f, m[1][1] == 1.0f, m[1][2] == 0.0f, m[1][3] == 0.0f
/// // m[2][0] == 0.0f, m[2][1] == 0.0f, m[2][2] == 1.0f, m[2][3] == 0.0f
/// // m[3][0] == 1.0f, m[3][1] == 1.0f, m[3][2] == 1.0f, m[3][3] == 1.0f
/// @endcode
/// @see gtc_matrix_transform
/// @see - translate(tmat4x4<T, P> const & m, T x, T y, T z)
/// @see - translate(tvec3<T, P> const & v)
template <typename T, precision P>
GLM_FUNC_DECL tmat4x4<T, P> translate(
tmat4x4<T, P> const & m,
tvec3<T, P> const & v);
/// Builds a rotation 4 * 4 matrix created from an axis vector and an angle.
///
/// @param m Input matrix multiplied by this rotation matrix.
/// @param angle Rotation angle expressed in radians.
/// @param axis Rotation axis, recommanded to be normalized.
/// @tparam T Value type used to build the matrix. Supported: half, float or double.
/// @see gtc_matrix_transform
/// @see - rotate(tmat4x4<T, P> const & m, T angle, T x, T y, T z)
/// @see - rotate(T angle, tvec3<T, P> const & v)
template <typename T, precision P>
GLM_FUNC_DECL tmat4x4<T, P> rotate(
tmat4x4<T, P> const & m,
T angle,
tvec3<T, P> const & axis);
/// Builds a scale 4 * 4 matrix created from 3 scalars.
///
/// @param m Input matrix multiplied by this scale matrix.
/// @param v Ratio of scaling for each axis.
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - scale(tmat4x4<T, P> const & m, T x, T y, T z)
/// @see - scale(tvec3<T, P> const & v)
template <typename T, precision P>
GLM_FUNC_DECL tmat4x4<T, P> scale(
tmat4x4<T, P> const & m,
tvec3<T, P> const & v);
/// Creates a matrix for an orthographic parallel viewing volume.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param zNear
/// @param zFar
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top)
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> ortho(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar);
/// Creates a matrix for projecting two-dimensional coordinates onto the screen.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
/// @see - glm::ortho(T const & left, T const & right, T const & bottom, T const & top, T const & zNear, T const & zFar)
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> ortho(
T left,
T right,
T bottom,
T top);
/// Creates a frustum matrix.
///
/// @param left
/// @param right
/// @param bottom
/// @param top
/// @param near
/// @param far
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> frustum(
T left,
T right,
T bottom,
T top,
T near,
T far);
/// Creates a matrix for a symetric perspective-view frustum.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> perspective(
T fovy,
T aspect,
T near,
T far);
/// Builds a perspective projection matrix based on a field of view.
///
/// @param fov Expressed in radians.
/// @param width
/// @param height
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param far Specifies the distance from the viewer to the far clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> perspectiveFov(
T fov,
T width,
T height,
T near,
T far);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> infinitePerspective(
T fovy, T aspect, T near);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective(
T fovy, T aspect, T near);
/// Creates a matrix for a symmetric perspective-view frustum with far plane at infinite for graphics hardware that doesn't support depth clamping.
///
/// @param fovy Specifies the field of view angle, in degrees, in the y direction. Expressed in radians.
/// @param aspect Specifies the aspect ratio that determines the field of view in the x direction. The aspect ratio is the ratio of x (width) to y (height).
/// @param near Specifies the distance from the viewer to the near clipping plane (always positive).
/// @param ep
/// @tparam T Value type used to build the matrix. Currently supported: half (not recommanded), float or double.
/// @see gtc_matrix_transform
template <typename T>
GLM_FUNC_DECL tmat4x4<T, defaultp> tweakedInfinitePerspective(
T fovy, T aspect, T near, T ep);
/// Map the specified object coordinates (obj.x, obj.y, obj.z) into window coordinates.
///
/// @param obj Specify the object coordinates.
/// @param model Specifies the current modelview matrix
/// @param proj Specifies the current projection matrix
/// @param viewport Specifies the current viewport
/// @return Return the computed window coordinates.
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
template <typename T, typename U, precision P>
GLM_FUNC_DECL tvec3<T, P> project(
tvec3<T, P> const & obj,
tmat4x4<T, P> const & model,
tmat4x4<T, P> const & proj,
tvec4<U, P> const & viewport);
/// Map the specified window coordinates (win.x, win.y, win.z) into object coordinates.
///
/// @param win Specify the window coordinates to be mapped.
/// @param model Specifies the modelview matrix
/// @param proj Specifies the projection matrix
/// @param viewport Specifies the viewport
/// @return Returns the computed object coordinates.
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
template <typename T, typename U, precision P>
GLM_FUNC_DECL tvec3<T, P> unProject(
tvec3<T, P> const & win,
tmat4x4<T, P> const & model,
tmat4x4<T, P> const & proj,
tvec4<U, P> const & viewport);
/// Define a picking region
///
/// @param center
/// @param delta
/// @param viewport
/// @tparam T Native type used for the computation. Currently supported: half (not recommanded), float or double.
/// @tparam U Currently supported: Floating-point types and integer types.
/// @see gtc_matrix_transform
template <typename T, precision P, typename U>
GLM_FUNC_DECL tmat4x4<T, P> pickMatrix(
tvec2<T, P> const & center,
tvec2<T, P> const & delta,
tvec4<U, P> const & viewport);
/// Build a look at view matrix.
///
/// @param eye Position of the camera
/// @param center Position where the camera is looking at
/// @param up Normalized up vector, how the camera is oriented. Typically (0, 0, 1)
/// @see gtc_matrix_transform
/// @see - frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal) frustum(T const & left, T const & right, T const & bottom, T const & top, T const & nearVal, T const & farVal)
template <typename T, precision P>
GLM_FUNC_DECL tmat4x4<T, P> lookAt(
tvec3<T, P> const & eye,
tvec3<T, P> const & center,
tvec3<T, P> const & up);
/// @}
}//namespace glm
#include "matrix_transform.inl"
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_matrix_transform
/// @file glm/gtc/matrix_transform.inl
/// @date 2009-04-29 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "../geometric.hpp"
#include "../trigonometric.hpp"
#include "../matrix.hpp"
namespace glm
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> translate
(
tmat4x4<T, P> const & m,
tvec3<T, P> const & v
)
{
tmat4x4<T, P> Result(m);
Result[3] = m[0] * v[0] + m[1] * v[1] + m[2] * v[2] + m[3];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate
(
tmat4x4<T, P> const & m,
T angle,
tvec3<T, P> const & v
)
{
T const a = angle;
T const c = cos(a);
T const s = sin(a);
tvec3<T, P> axis(normalize(v));
tvec3<T, P> temp((T(1) - c) * axis);
tmat4x4<T, P> Rotate(uninitialize);
Rotate[0][0] = c + temp[0] * axis[0];
Rotate[0][1] = 0 + temp[0] * axis[1] + s * axis[2];
Rotate[0][2] = 0 + temp[0] * axis[2] - s * axis[1];
Rotate[1][0] = 0 + temp[1] * axis[0] - s * axis[2];
Rotate[1][1] = c + temp[1] * axis[1];
Rotate[1][2] = 0 + temp[1] * axis[2] + s * axis[0];
Rotate[2][0] = 0 + temp[2] * axis[0] + s * axis[1];
Rotate[2][1] = 0 + temp[2] * axis[1] - s * axis[0];
Rotate[2][2] = c + temp[2] * axis[2];
tmat4x4<T, P> Result(uninitialize);
Result[0] = m[0] * Rotate[0][0] + m[1] * Rotate[0][1] + m[2] * Rotate[0][2];
Result[1] = m[0] * Rotate[1][0] + m[1] * Rotate[1][1] + m[2] * Rotate[1][2];
Result[2] = m[0] * Rotate[2][0] + m[1] * Rotate[2][1] + m[2] * Rotate[2][2];
Result[3] = m[3];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> rotate_slow
(
tmat4x4<T, P> const & m,
T angle,
tvec3<T, P> const & v
)
{
T const a = angle;
T const c = cos(a);
T const s = sin(a);
tmat4x4<T, P> Result;
tvec3<T, P> axis = normalize(v);
Result[0][0] = c + (1 - c) * axis.x * axis.x;
Result[0][1] = (1 - c) * axis.x * axis.y + s * axis.z;
Result[0][2] = (1 - c) * axis.x * axis.z - s * axis.y;
Result[0][3] = 0;
Result[1][0] = (1 - c) * axis.y * axis.x - s * axis.z;
Result[1][1] = c + (1 - c) * axis.y * axis.y;
Result[1][2] = (1 - c) * axis.y * axis.z + s * axis.x;
Result[1][3] = 0;
Result[2][0] = (1 - c) * axis.z * axis.x + s * axis.y;
Result[2][1] = (1 - c) * axis.z * axis.y - s * axis.x;
Result[2][2] = c + (1 - c) * axis.z * axis.z;
Result[2][3] = 0;
Result[3] = tvec4<T, P>(0, 0, 0, 1);
return m * Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> scale
(
tmat4x4<T, P> const & m,
tvec3<T, P> const & v
)
{
tmat4x4<T, P> Result(uninitialize);
Result[0] = m[0] * v[0];
Result[1] = m[1] * v[1];
Result[2] = m[2] * v[2];
Result[3] = m[3];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> scale_slow
(
tmat4x4<T, P> const & m,
tvec3<T, P> const & v
)
{
tmat4x4<T, P> Result(T(1));
Result[0][0] = v.x;
Result[1][1] = v.y;
Result[2][2] = v.z;
return m * Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho
(
T left,
T right,
T bottom,
T top,
T zNear,
T zFar
)
{
tmat4x4<T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(2) / (zFar - zNear);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
Result[3][2] = - (zFar + zNear) / (zFar - zNear);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> ortho
(
T left,
T right,
T bottom,
T top
)
{
tmat4x4<T, defaultp> Result(1);
Result[0][0] = static_cast<T>(2) / (right - left);
Result[1][1] = static_cast<T>(2) / (top - bottom);
Result[2][2] = - static_cast<T>(1);
Result[3][0] = - (right + left) / (right - left);
Result[3][1] = - (top + bottom) / (top - bottom);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> frustum
(
T left,
T right,
T bottom,
T top,
T nearVal,
T farVal
)
{
tmat4x4<T, defaultp> Result(0);
Result[0][0] = (static_cast<T>(2) * nearVal) / (right - left);
Result[1][1] = (static_cast<T>(2) * nearVal) / (top - bottom);
Result[2][0] = (right + left) / (right - left);
Result[2][1] = (top + bottom) / (top - bottom);
Result[2][2] = -(farVal + nearVal) / (farVal - nearVal);
Result[2][3] = static_cast<T>(-1);
Result[3][2] = -(static_cast<T>(2) * farVal * nearVal) / (farVal - nearVal);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspective
(
T fovy,
T aspect,
T zNear,
T zFar
)
{
assert(abs(aspect - std::numeric_limits<T>::epsilon()) > static_cast<T>(0));
T const tanHalfFovy = tan(fovy / static_cast<T>(2));
tmat4x4<T, defaultp> Result(static_cast<T>(0));
Result[0][0] = static_cast<T>(1) / (aspect * tanHalfFovy);
Result[1][1] = static_cast<T>(1) / (tanHalfFovy);
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> perspectiveFov
(
T fov,
T width,
T height,
T zNear,
T zFar
)
{
assert(width > static_cast<T>(0));
assert(height > static_cast<T>(0));
assert(fov > static_cast<T>(0));
T const rad = fov;
T const h = glm::cos(static_cast<T>(0.5) * rad) / glm::sin(static_cast<T>(0.5) * rad);
T const w = h * height / width; ///todo max(width , Height) / min(width , Height)?
tmat4x4<T, defaultp> Result(static_cast<T>(0));
Result[0][0] = w;
Result[1][1] = h;
Result[2][2] = - (zFar + zNear) / (zFar - zNear);
Result[2][3] = - static_cast<T>(1);
Result[3][2] = - (static_cast<T>(2) * zFar * zNear) / (zFar - zNear);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> infinitePerspective
(
T fovy,
T aspect,
T zNear
)
{
T const range = tan(fovy / T(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;
tmat4x4<T, defaultp> Result(T(0));
Result[0][0] = (T(2) * zNear) / (right - left);
Result[1][1] = (T(2) * zNear) / (top - bottom);
Result[2][2] = - T(1);
Result[2][3] = - T(1);
Result[3][2] = - T(2) * zNear;
return Result;
}
// Infinite projection matrix: http://www.terathon.com/gdc07_lengyel.pdf
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective
(
T fovy,
T aspect,
T zNear,
T ep
)
{
T const range = tan(fovy / T(2)) * zNear;
T const left = -range * aspect;
T const right = range * aspect;
T const bottom = -range;
T const top = range;
tmat4x4<T, defaultp> Result(T(0));
Result[0][0] = (static_cast<T>(2) * zNear) / (right - left);
Result[1][1] = (static_cast<T>(2) * zNear) / (top - bottom);
Result[2][2] = ep - static_cast<T>(1);
Result[2][3] = static_cast<T>(-1);
Result[3][2] = (ep - static_cast<T>(2)) * zNear;
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tmat4x4<T, defaultp> tweakedInfinitePerspective
(
T fovy,
T aspect,
T zNear
)
{
return tweakedInfinitePerspective(fovy, aspect, zNear, epsilon<T>());
}
template <typename T, typename U, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> project
(
tvec3<T, P> const & obj,
tmat4x4<T, P> const & model,
tmat4x4<T, P> const & proj,
tvec4<U, P> const & viewport
)
{
tvec4<T, P> tmp = tvec4<T, P>(obj, T(1));
tmp = model * tmp;
tmp = proj * tmp;
tmp /= tmp.w;
tmp = tmp * T(0.5) + T(0.5);
tmp[0] = tmp[0] * T(viewport[2]) + T(viewport[0]);
tmp[1] = tmp[1] * T(viewport[3]) + T(viewport[1]);
return tvec3<T, P>(tmp);
}
template <typename T, typename U, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> unProject
(
tvec3<T, P> const & win,
tmat4x4<T, P> const & model,
tmat4x4<T, P> const & proj,
tvec4<U, P> const & viewport
)
{
tmat4x4<T, P> Inverse = inverse(proj * model);
tvec4<T, P> tmp = tvec4<T, P>(win, T(1));
tmp.x = (tmp.x - T(viewport[0])) / T(viewport[2]);
tmp.y = (tmp.y - T(viewport[1])) / T(viewport[3]);
tmp = tmp * T(2) - T(1);
tvec4<T, P> obj = Inverse * tmp;
obj /= obj.w;
return tvec3<T, P>(obj);
}
template <typename T, precision P, typename U>
GLM_FUNC_QUALIFIER tmat4x4<T, P> pickMatrix
(
tvec2<T, P> const & center,
tvec2<T, P> const & delta,
tvec4<U, P> const & viewport
)
{
assert(delta.x > T(0) && delta.y > T(0));
tmat4x4<T, P> Result(1.0f);
if(!(delta.x > T(0) && delta.y > T(0)))
return Result; // Error
tvec3<T, P> Temp(
(T(viewport[2]) - T(2) * (center.x - T(viewport[0]))) / delta.x,
(T(viewport[3]) - T(2) * (center.y - T(viewport[1]))) / delta.y,
T(0));
// Translate and scale the picked region to the entire window
Result = translate(Result, Temp);
return scale(Result, tvec3<T, P>(T(viewport[2]) / delta.x, T(viewport[3]) / delta.y, T(1)));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> lookAt
(
tvec3<T, P> const & eye,
tvec3<T, P> const & center,
tvec3<T, P> const & up
)
{
tvec3<T, P> const f(normalize(center - eye));
tvec3<T, P> const s(normalize(cross(f, up)));
tvec3<T, P> const u(cross(s, f));
tmat4x4<T, P> Result(1);
Result[0][0] = s.x;
Result[1][0] = s.y;
Result[2][0] = s.z;
Result[0][1] = u.x;
Result[1][1] = u.y;
Result[2][1] = u.z;
Result[0][2] =-f.x;
Result[1][2] =-f.y;
Result[2][2] =-f.z;
Result[3][0] =-dot(s, eye);
Result[3][1] =-dot(u, eye);
Result[3][2] = dot(f, eye);
return Result;
}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_noise
/// @file glm/gtc/noise.hpp
/// @date 2011-04-21 / 2011-09-27
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtc_noise GLM_GTC_noise
/// @ingroup gtc
///
/// Defines 2D, 3D and 4D procedural noise functions
/// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
/// https://github.com/ashima/webgl-noise
/// Following Stefan Gustavson's paper "Simplex noise demystified":
/// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
/// <glm/gtc/noise.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#include "../detail/_noise.hpp"
#include "../geometric.hpp"
#include "../common.hpp"
#include "../vector_relational.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_noise extension included")
#endif
namespace glm
{
/// @addtogroup gtc_noise
/// @{
/// Classic perlin noise.
/// @see gtc_noise
template <typename T, precision P, template<typename, precision> class vecType>
GLM_FUNC_DECL T perlin(
vecType<T, P> const & p);
/// Periodic perlin noise.
/// @see gtc_noise
template <typename T, precision P, template<typename, precision> class vecType>
GLM_FUNC_DECL T perlin(
vecType<T, P> const & p,
vecType<T, P> const & rep);
/// Simplex noise.
/// @see gtc_noise
template <typename T, precision P, template<typename, precision> class vecType>
GLM_FUNC_DECL T simplex(
vecType<T, P> const & p);
/// @}
}//namespace glm
#include "noise.inl"
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_noise
/// @file glm/gtc/noise.inl
/// @date 2011-04-21 / 2012-04-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
// https://github.com/ashima/webgl-noise
// Following Stefan Gustavson's paper "Simplex noise demystified":
// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
///////////////////////////////////////////////////////////////////////////////////
namespace glm{
namespace gtc
{
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> grad4(T const & j, tvec4<T, P> const & ip)
{
tvec3<T, P> pXYZ = floor(fract(tvec3<T, P>(j) * tvec3<T, P>(ip)) * T(7)) * ip[2] - T(1);
T pW = static_cast<T>(1.5) - dot(abs(pXYZ), tvec3<T, P>(1));
tvec4<T, P> s = tvec4<T, P>(lessThan(tvec4<T, P>(pXYZ, pW), tvec4<T, P>(0.0)));
pXYZ = pXYZ + (tvec3<T, P>(s) * T(2) - T(1)) * s.w;
return tvec4<T, P>(pXYZ, pW);
}
}//namespace gtc
// Classic Perlin noise
template <typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position)
{
tvec4<T, P> Pi = glm::floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
tvec4<T, P> Pf = glm::fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation
tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z);
tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w);
tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z);
tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w);
tvec4<T, P> i = detail::permute(detail::permute(ix) + iy);
tvec4<T, P> gx = static_cast<T>(2) * glm::fract(i / T(41)) - T(1);
tvec4<T, P> gy = glm::abs(gx) - T(0.5);
tvec4<T, P> tx = glm::floor(gx + T(0.5));
gx = gx - tx;
tvec2<T, P> g00(gx.x, gy.x);
tvec2<T, P> g10(gx.y, gy.y);
tvec2<T, P> g01(gx.z, gy.z);
tvec2<T, P> g11(gx.w, gy.w);
tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x));
T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y));
T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z));
T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w));
tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y));
tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x);
T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return T(2.3) * n_xy;
}
// Classic Perlin noise
template <typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position)
{
tvec3<T, P> Pi0 = floor(Position); // Integer part for indexing
tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1
Pi0 = detail::mod289(Pi0);
Pi1 = detail::mod289(Pi1);
tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation
tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
tvec4<T, P> iy = tvec4<T, P>(tvec2<T, P>(Pi0.y), tvec2<T, P>(Pi1.y));
tvec4<T, P> iz0(Pi0.z);
tvec4<T, P> iz1(Pi1.z);
tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
tvec4<T, P> gx0 = ixy0 * T(1.0 / 7.0);
tvec4<T, P> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5);
gx0 = fract(gx0);
tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0);
tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0));
gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
tvec4<T, P> gx1 = ixy1 * T(1.0 / 7.0);
tvec4<T, P> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5);
gx1 = fract(gx1);
tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1);
tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0));
gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
tvec3<T, P> g000(gx0.x, gy0.x, gz0.x);
tvec3<T, P> g100(gx0.y, gy0.y, gz0.y);
tvec3<T, P> g010(gx0.z, gy0.z, gz0.z);
tvec3<T, P> g110(gx0.w, gy0.w, gz0.w);
tvec3<T, P> g001(gx1.x, gy1.x, gz1.x);
tvec3<T, P> g101(gx1.y, gy1.y, gz1.y);
tvec3<T, P> g011(gx1.z, gy1.z, gz1.z);
tvec3<T, P> g111(gx1.w, gy1.w, gz1.w);
tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
T n000 = dot(g000, Pf0);
T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z));
T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z));
T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z));
T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z));
T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z));
T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z));
T n111 = dot(g111, Pf1);
tvec3<T, P> fade_xyz = detail::fade(Pf0);
tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z);
tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y);
T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return T(2.2) * n_xyz;
}
/*
// Classic Perlin noise
template <typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & P)
{
tvec3<T, P> Pi0 = floor(P); // Integer part for indexing
tvec3<T, P> Pi1 = Pi0 + T(1); // Integer part + 1
Pi0 = mod(Pi0, T(289));
Pi1 = mod(Pi1, T(289));
tvec3<T, P> Pf0 = fract(P); // Fractional part for interpolation
tvec3<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
tvec4<T, P> iz0(Pi0.z);
tvec4<T, P> iz1(Pi1.z);
tvec4<T, P> ixy = permute(permute(ix) + iy);
tvec4<T, P> ixy0 = permute(ixy + iz0);
tvec4<T, P> ixy1 = permute(ixy + iz1);
tvec4<T, P> gx0 = ixy0 / T(7);
tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
gx0 = fract(gx0);
tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0);
tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0.0));
gx0 -= sz0 * (step(0.0, gx0) - T(0.5));
gy0 -= sz0 * (step(0.0, gy0) - T(0.5));
tvec4<T, P> gx1 = ixy1 / T(7);
tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
gx1 = fract(gx1);
tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1);
tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(0.0));
gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
tvec3<T, P> g000(gx0.x, gy0.x, gz0.x);
tvec3<T, P> g100(gx0.y, gy0.y, gz0.y);
tvec3<T, P> g010(gx0.z, gy0.z, gz0.z);
tvec3<T, P> g110(gx0.w, gy0.w, gz0.w);
tvec3<T, P> g001(gx1.x, gy1.x, gz1.x);
tvec3<T, P> g101(gx1.y, gy1.y, gz1.y);
tvec3<T, P> g011(gx1.z, gy1.z, gz1.z);
tvec3<T, P> g111(gx1.w, gy1.w, gz1.w);
tvec4<T, P> norm0 = taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
tvec4<T, P> norm1 = taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
T n000 = dot(g000, Pf0);
T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z));
T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z));
T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z));
T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z));
T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z));
T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z));
T n111 = dot(g111, Pf1);
tvec3<T, P> fade_xyz = fade(Pf0);
tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z);
tvec2<T, P> n_yz = mix(
tvec2<T, P>(n_z.x, n_z.y),
tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y);
T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return T(2.2) * n_xyz;
}
*/
// Classic Perlin noise
template <typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position)
{
tvec4<T, P> Pi0 = floor(Position); // Integer part for indexing
tvec4<T, P> Pi1 = Pi0 + T(1); // Integer part + 1
Pi0 = mod(Pi0, tvec4<T, P>(289));
Pi1 = mod(Pi1, tvec4<T, P>(289));
tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation
tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
tvec4<T, P> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
tvec4<T, P> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
tvec4<T, P> iz0(Pi0.z);
tvec4<T, P> iz1(Pi1.z);
tvec4<T, P> iw0(Pi0.w);
tvec4<T, P> iw1(Pi1.w);
tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0);
tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1);
tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0);
tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1);
tvec4<T, P> gx00 = ixy00 / T(7);
tvec4<T, P> gy00 = floor(gx00) / T(7);
tvec4<T, P> gz00 = floor(gy00) / T(6);
gx00 = fract(gx00) - T(0.5);
gy00 = fract(gy00) - T(0.5);
gz00 = fract(gz00) - T(0.5);
tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0.0));
gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
tvec4<T, P> gx01 = ixy01 / T(7);
tvec4<T, P> gy01 = floor(gx01) / T(7);
tvec4<T, P> gz01 = floor(gy01) / T(6);
gx01 = fract(gx01) - T(0.5);
gy01 = fract(gy01) - T(0.5);
gz01 = fract(gz01) - T(0.5);
tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0));
gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
tvec4<T, P> gx10 = ixy10 / T(7);
tvec4<T, P> gy10 = floor(gx10) / T(7);
tvec4<T, P> gz10 = floor(gy10) / T(6);
gx10 = fract(gx10) - T(0.5);
gy10 = fract(gy10) - T(0.5);
gz10 = fract(gz10) - T(0.5);
tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0));
gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
tvec4<T, P> gx11 = ixy11 / T(7);
tvec4<T, P> gy11 = floor(gx11) / T(7);
tvec4<T, P> gz11 = floor(gy11) / T(6);
gx11 = fract(gx11) - T(0.5);
gy11 = fract(gy11) - T(0.5);
gz11 = fract(gz11) - T(0.5);
tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(0.0));
gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
g0000 *= norm00.x;
g0100 *= norm00.y;
g1000 *= norm00.z;
g1100 *= norm00.w;
tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
g0001 *= norm01.x;
g0101 *= norm01.y;
g1001 *= norm01.z;
g1101 *= norm01.w;
tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
g0010 *= norm10.x;
g0110 *= norm10.y;
g1010 *= norm10.z;
g1110 *= norm10.w;
tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
g0011 *= norm11.x;
g0111 *= norm11.y;
g1011 *= norm11.z;
g1111 *= norm11.w;
T n0000 = dot(g0000, Pf0);
T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
T n1111 = dot(g1111, Pf1);
tvec4<T, P> fade_xyzw = detail::fade(Pf0);
tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w);
tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w);
tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y);
T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
return T(2.2) * n_xyzw;
}
// Classic Perlin noise, periodic variant
template <typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(tvec2<T, P> const & Position, tvec2<T, P> const & rep)
{
tvec4<T, P> Pi = floor(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) + tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
tvec4<T, P> Pf = fract(tvec4<T, P>(Position.x, Position.y, Position.x, Position.y)) - tvec4<T, P>(0.0, 0.0, 1.0, 1.0);
Pi = mod(Pi, tvec4<T, P>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period
Pi = mod(Pi, tvec4<T, P>(289)); // To avoid truncation effects in permutation
tvec4<T, P> ix(Pi.x, Pi.z, Pi.x, Pi.z);
tvec4<T, P> iy(Pi.y, Pi.y, Pi.w, Pi.w);
tvec4<T, P> fx(Pf.x, Pf.z, Pf.x, Pf.z);
tvec4<T, P> fy(Pf.y, Pf.y, Pf.w, Pf.w);
tvec4<T, P> i = detail::permute(detail::permute(ix) + iy);
tvec4<T, P> gx = static_cast<T>(2) * fract(i / T(41)) - T(1);
tvec4<T, P> gy = abs(gx) - T(0.5);
tvec4<T, P> tx = floor(gx + T(0.5));
gx = gx - tx;
tvec2<T, P> g00(gx.x, gy.x);
tvec2<T, P> g10(gx.y, gy.y);
tvec2<T, P> g01(gx.z, gy.z);
tvec2<T, P> g11(gx.w, gy.w);
tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
T n00 = dot(g00, tvec2<T, P>(fx.x, fy.x));
T n10 = dot(g10, tvec2<T, P>(fx.y, fy.y));
T n01 = dot(g01, tvec2<T, P>(fx.z, fy.z));
T n11 = dot(g11, tvec2<T, P>(fx.w, fy.w));
tvec2<T, P> fade_xy = detail::fade(tvec2<T, P>(Pf.x, Pf.y));
tvec2<T, P> n_x = mix(tvec2<T, P>(n00, n01), tvec2<T, P>(n10, n11), fade_xy.x);
T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return T(2.3) * n_xy;
}
// Classic Perlin noise, periodic variant
template <typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(tvec3<T, P> const & Position, tvec3<T, P> const & rep)
{
tvec3<T, P> Pi0 = mod(floor(Position), rep); // Integer part, modulo period
tvec3<T, P> Pi1 = mod(Pi0 + tvec3<T, P>(T(1)), rep); // Integer part + 1, mod period
Pi0 = mod(Pi0, tvec3<T, P>(289));
Pi1 = mod(Pi1, tvec3<T, P>(289));
tvec3<T, P> Pf0 = fract(Position); // Fractional part for interpolation
tvec3<T, P> Pf1 = Pf0 - tvec3<T, P>(T(1)); // Fractional part - 1.0
tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
tvec4<T, P> iz0(Pi0.z);
tvec4<T, P> iz1(Pi1.z);
tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
tvec4<T, P> gx0 = ixy0 / T(7);
tvec4<T, P> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
gx0 = fract(gx0);
tvec4<T, P> gz0 = tvec4<T, P>(0.5) - abs(gx0) - abs(gy0);
tvec4<T, P> sz0 = step(gz0, tvec4<T, P>(0));
gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
tvec4<T, P> gx1 = ixy1 / T(7);
tvec4<T, P> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
gx1 = fract(gx1);
tvec4<T, P> gz1 = tvec4<T, P>(0.5) - abs(gx1) - abs(gy1);
tvec4<T, P> sz1 = step(gz1, tvec4<T, P>(T(0)));
gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
tvec3<T, P> g000 = tvec3<T, P>(gx0.x, gy0.x, gz0.x);
tvec3<T, P> g100 = tvec3<T, P>(gx0.y, gy0.y, gz0.y);
tvec3<T, P> g010 = tvec3<T, P>(gx0.z, gy0.z, gz0.z);
tvec3<T, P> g110 = tvec3<T, P>(gx0.w, gy0.w, gz0.w);
tvec3<T, P> g001 = tvec3<T, P>(gx1.x, gy1.x, gz1.x);
tvec3<T, P> g101 = tvec3<T, P>(gx1.y, gy1.y, gz1.y);
tvec3<T, P> g011 = tvec3<T, P>(gx1.z, gy1.z, gz1.z);
tvec3<T, P> g111 = tvec3<T, P>(gx1.w, gy1.w, gz1.w);
tvec4<T, P> norm0 = detail::taylorInvSqrt(tvec4<T, P>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
tvec4<T, P> norm1 = detail::taylorInvSqrt(tvec4<T, P>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
T n000 = dot(g000, Pf0);
T n100 = dot(g100, tvec3<T, P>(Pf1.x, Pf0.y, Pf0.z));
T n010 = dot(g010, tvec3<T, P>(Pf0.x, Pf1.y, Pf0.z));
T n110 = dot(g110, tvec3<T, P>(Pf1.x, Pf1.y, Pf0.z));
T n001 = dot(g001, tvec3<T, P>(Pf0.x, Pf0.y, Pf1.z));
T n101 = dot(g101, tvec3<T, P>(Pf1.x, Pf0.y, Pf1.z));
T n011 = dot(g011, tvec3<T, P>(Pf0.x, Pf1.y, Pf1.z));
T n111 = dot(g111, Pf1);
tvec3<T, P> fade_xyz = detail::fade(Pf0);
tvec4<T, P> n_z = mix(tvec4<T, P>(n000, n100, n010, n110), tvec4<T, P>(n001, n101, n011, n111), fade_xyz.z);
tvec2<T, P> n_yz = mix(tvec2<T, P>(n_z.x, n_z.y), tvec2<T, P>(n_z.z, n_z.w), fade_xyz.y);
T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return T(2.2) * n_xyz;
}
// Classic Perlin noise, periodic version
template <typename T, precision P>
GLM_FUNC_QUALIFIER T perlin(tvec4<T, P> const & Position, tvec4<T, P> const & rep)
{
tvec4<T, P> Pi0 = mod(floor(Position), rep); // Integer part modulo rep
tvec4<T, P> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep
tvec4<T, P> Pf0 = fract(Position); // Fractional part for interpolation
tvec4<T, P> Pf1 = Pf0 - T(1); // Fractional part - 1.0
tvec4<T, P> ix = tvec4<T, P>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
tvec4<T, P> iy = tvec4<T, P>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
tvec4<T, P> iz0(Pi0.z);
tvec4<T, P> iz1(Pi1.z);
tvec4<T, P> iw0(Pi0.w);
tvec4<T, P> iw1(Pi1.w);
tvec4<T, P> ixy = detail::permute(detail::permute(ix) + iy);
tvec4<T, P> ixy0 = detail::permute(ixy + iz0);
tvec4<T, P> ixy1 = detail::permute(ixy + iz1);
tvec4<T, P> ixy00 = detail::permute(ixy0 + iw0);
tvec4<T, P> ixy01 = detail::permute(ixy0 + iw1);
tvec4<T, P> ixy10 = detail::permute(ixy1 + iw0);
tvec4<T, P> ixy11 = detail::permute(ixy1 + iw1);
tvec4<T, P> gx00 = ixy00 / T(7);
tvec4<T, P> gy00 = floor(gx00) / T(7);
tvec4<T, P> gz00 = floor(gy00) / T(6);
gx00 = fract(gx00) - T(0.5);
gy00 = fract(gy00) - T(0.5);
gz00 = fract(gz00) - T(0.5);
tvec4<T, P> gw00 = tvec4<T, P>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
tvec4<T, P> sw00 = step(gw00, tvec4<T, P>(0));
gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
tvec4<T, P> gx01 = ixy01 / T(7);
tvec4<T, P> gy01 = floor(gx01) / T(7);
tvec4<T, P> gz01 = floor(gy01) / T(6);
gx01 = fract(gx01) - T(0.5);
gy01 = fract(gy01) - T(0.5);
gz01 = fract(gz01) - T(0.5);
tvec4<T, P> gw01 = tvec4<T, P>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
tvec4<T, P> sw01 = step(gw01, tvec4<T, P>(0.0));
gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
tvec4<T, P> gx10 = ixy10 / T(7);
tvec4<T, P> gy10 = floor(gx10) / T(7);
tvec4<T, P> gz10 = floor(gy10) / T(6);
gx10 = fract(gx10) - T(0.5);
gy10 = fract(gy10) - T(0.5);
gz10 = fract(gz10) - T(0.5);
tvec4<T, P> gw10 = tvec4<T, P>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
tvec4<T, P> sw10 = step(gw10, tvec4<T, P>(0.0));
gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
tvec4<T, P> gx11 = ixy11 / T(7);
tvec4<T, P> gy11 = floor(gx11) / T(7);
tvec4<T, P> gz11 = floor(gy11) / T(6);
gx11 = fract(gx11) - T(0.5);
gy11 = fract(gy11) - T(0.5);
gz11 = fract(gz11) - T(0.5);
tvec4<T, P> gw11 = tvec4<T, P>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
tvec4<T, P> sw11 = step(gw11, tvec4<T, P>(T(0)));
gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
tvec4<T, P> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
tvec4<T, P> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
tvec4<T, P> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
tvec4<T, P> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
tvec4<T, P> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
tvec4<T, P> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
tvec4<T, P> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
tvec4<T, P> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
tvec4<T, P> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
tvec4<T, P> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
tvec4<T, P> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
tvec4<T, P> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
tvec4<T, P> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
tvec4<T, P> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
tvec4<T, P> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
tvec4<T, P> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
tvec4<T, P> norm00 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
g0000 *= norm00.x;
g0100 *= norm00.y;
g1000 *= norm00.z;
g1100 *= norm00.w;
tvec4<T, P> norm01 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
g0001 *= norm01.x;
g0101 *= norm01.y;
g1001 *= norm01.z;
g1101 *= norm01.w;
tvec4<T, P> norm10 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
g0010 *= norm10.x;
g0110 *= norm10.y;
g1010 *= norm10.z;
g1110 *= norm10.w;
tvec4<T, P> norm11 = detail::taylorInvSqrt(tvec4<T, P>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
g0011 *= norm11.x;
g0111 *= norm11.y;
g1011 *= norm11.z;
g1111 *= norm11.w;
T n0000 = dot(g0000, Pf0);
T n1000 = dot(g1000, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
T n0100 = dot(g0100, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
T n1100 = dot(g1100, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
T n0010 = dot(g0010, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
T n1010 = dot(g1010, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
T n0110 = dot(g0110, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
T n1110 = dot(g1110, tvec4<T, P>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
T n0001 = dot(g0001, tvec4<T, P>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
T n1001 = dot(g1001, tvec4<T, P>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
T n0101 = dot(g0101, tvec4<T, P>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
T n1101 = dot(g1101, tvec4<T, P>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
T n0011 = dot(g0011, tvec4<T, P>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
T n1011 = dot(g1011, tvec4<T, P>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
T n0111 = dot(g0111, tvec4<T, P>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
T n1111 = dot(g1111, Pf1);
tvec4<T, P> fade_xyzw = detail::fade(Pf0);
tvec4<T, P> n_0w = mix(tvec4<T, P>(n0000, n1000, n0100, n1100), tvec4<T, P>(n0001, n1001, n0101, n1101), fade_xyzw.w);
tvec4<T, P> n_1w = mix(tvec4<T, P>(n0010, n1010, n0110, n1110), tvec4<T, P>(n0011, n1011, n0111, n1111), fade_xyzw.w);
tvec4<T, P> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
tvec2<T, P> n_yzw = mix(tvec2<T, P>(n_zw.x, n_zw.y), tvec2<T, P>(n_zw.z, n_zw.w), fade_xyzw.y);
T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
return T(2.2) * n_xyzw;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T simplex(glm::tvec2<T, P> const & v)
{
tvec4<T, P> const C = tvec4<T, P>(
T( 0.211324865405187), // (3.0 - sqrt(3.0)) / 6.0
T( 0.366025403784439), // 0.5 * (sqrt(3.0) - 1.0)
T(-0.577350269189626), // -1.0 + 2.0 * C.x
T( 0.024390243902439)); // 1.0 / 41.0
// First corner
tvec2<T, P> i = floor(v + dot(v, tvec2<T, P>(C[1])));
tvec2<T, P> x0 = v - i + dot(i, tvec2<T, P>(C[0]));
// Other corners
//i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
//i1.y = 1.0 - i1.x;
tvec2<T, P> i1 = (x0.x > x0.y) ? tvec2<T, P>(1, 0) : tvec2<T, P>(0, 1);
// x0 = x0 - 0.0 + 0.0 * C.xx ;
// x1 = x0 - i1 + 1.0 * C.xx ;
// x2 = x0 - 1.0 + 2.0 * C.xx ;
tvec4<T, P> x12 = tvec4<T, P>(x0.x, x0.y, x0.x, x0.y) + tvec4<T, P>(C.x, C.x, C.z, C.z);
x12 = tvec4<T, P>(tvec2<T, P>(x12) - i1, x12.z, x12.w);
// Permutations
i = mod(i, tvec2<T, P>(289)); // Avoid truncation effects in permutation
tvec3<T, P> p = detail::permute(
detail::permute(i.y + tvec3<T, P>(T(0), i1.y, T(1)))
+ i.x + tvec3<T, P>(T(0), i1.x, T(1)));
tvec3<T, P> m = max(tvec3<T, P>(0.5) - tvec3<T, P>(
dot(x0, x0),
dot(tvec2<T, P>(x12.x, x12.y), tvec2<T, P>(x12.x, x12.y)),
dot(tvec2<T, P>(x12.z, x12.w), tvec2<T, P>(x12.z, x12.w))), tvec3<T, P>(0));
m = m * m ;
m = m * m ;
// Gradients: 41 points uniformly over a line, mapped onto a diamond.
// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
tvec3<T, P> x = static_cast<T>(2) * fract(p * C.w) - T(1);
tvec3<T, P> h = abs(x) - T(0.5);
tvec3<T, P> ox = floor(x + T(0.5));
tvec3<T, P> a0 = x - ox;
// Normalise gradients implicitly by scaling m
// Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h );
m *= static_cast<T>(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h);
// Compute final noise value at P
tvec3<T, P> g;
g.x = a0.x * x0.x + h.x * x0.y;
//g.yz = a0.yz * x12.xz + h.yz * x12.yw;
g.y = a0.y * x12.x + h.y * x12.y;
g.z = a0.z * x12.z + h.z * x12.w;
return T(130) * dot(m, g);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T simplex(tvec3<T, P> const & v)
{
tvec2<T, P> const C(1.0 / 6.0, 1.0 / 3.0);
tvec4<T, P> const D(0.0, 0.5, 1.0, 2.0);
// First corner
tvec3<T, P> i(floor(v + dot(v, tvec3<T, P>(C.y))));
tvec3<T, P> x0(v - i + dot(i, tvec3<T, P>(C.x)));
// Other corners
tvec3<T, P> g(step(tvec3<T, P>(x0.y, x0.z, x0.x), x0));
tvec3<T, P> l(T(1) - g);
tvec3<T, P> i1(min(g, tvec3<T, P>(l.z, l.x, l.y)));
tvec3<T, P> i2(max(g, tvec3<T, P>(l.z, l.x, l.y)));
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
tvec3<T, P> x1(x0 - i1 + C.x);
tvec3<T, P> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y
tvec3<T, P> x3(x0 - D.y); // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = detail::mod289(i);
tvec4<T, P> p(detail::permute(detail::permute(detail::permute(
i.z + tvec4<T, P>(T(0), i1.z, i2.z, T(1))) +
i.y + tvec4<T, P>(T(0), i1.y, i2.y, T(1))) +
i.x + tvec4<T, P>(T(0), i1.x, i2.x, T(1))));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
T n_ = static_cast<T>(0.142857142857); // 1.0/7.0
tvec3<T, P> ns(n_ * tvec3<T, P>(D.w, D.y, D.z) - tvec3<T, P>(D.x, D.z, D.x));
tvec4<T, P> j(p - T(49) * floor(p * ns.z * ns.z)); // mod(p,7*7)
tvec4<T, P> x_(floor(j * ns.z));
tvec4<T, P> y_(floor(j - T(7) * x_)); // mod(j,N)
tvec4<T, P> x(x_ * ns.x + ns.y);
tvec4<T, P> y(y_ * ns.x + ns.y);
tvec4<T, P> h(T(1) - abs(x) - abs(y));
tvec4<T, P> b0(x.x, x.y, y.x, y.y);
tvec4<T, P> b1(x.z, x.w, y.z, y.w);
// vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
// vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
tvec4<T, P> s0(floor(b0) * T(2) + T(1));
tvec4<T, P> s1(floor(b1) * T(2) + T(1));
tvec4<T, P> sh(-step(h, tvec4<T, P>(0.0)));
tvec4<T, P> a0 = tvec4<T, P>(b0.x, b0.z, b0.y, b0.w) + tvec4<T, P>(s0.x, s0.z, s0.y, s0.w) * tvec4<T, P>(sh.x, sh.x, sh.y, sh.y);
tvec4<T, P> a1 = tvec4<T, P>(b1.x, b1.z, b1.y, b1.w) + tvec4<T, P>(s1.x, s1.z, s1.y, s1.w) * tvec4<T, P>(sh.z, sh.z, sh.w, sh.w);
tvec3<T, P> p0(a0.x, a0.y, h.x);
tvec3<T, P> p1(a0.z, a0.w, h.y);
tvec3<T, P> p2(a1.x, a1.y, h.z);
tvec3<T, P> p3(a1.z, a1.w, h.w);
// Normalise gradients
tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
tvec4<T, P> m = max(T(0.6) - tvec4<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), tvec4<T, P>(0));
m = m * m;
return T(42) * dot(m * m, tvec4<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3)));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T simplex(tvec4<T, P> const & v)
{
tvec4<T, P> const C(
0.138196601125011, // (5 - sqrt(5))/20 G4
0.276393202250021, // 2 * G4
0.414589803375032, // 3 * G4
-0.447213595499958); // -1 + 4 * G4
// (sqrt(5) - 1)/4 = F4, used once below
T const F4 = static_cast<T>(0.309016994374947451);
// First corner
tvec4<T, P> i = floor(v + dot(v, vec4(F4)));
tvec4<T, P> x0 = v - i + dot(i, vec4(C.x));
// Other corners
// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
tvec4<T, P> i0;
tvec3<T, P> isX = step(tvec3<T, P>(x0.y, x0.z, x0.w), tvec3<T, P>(x0.x));
tvec3<T, P> isYZ = step(tvec3<T, P>(x0.z, x0.w, x0.w), tvec3<T, P>(x0.y, x0.y, x0.z));
// i0.x = dot(isX, vec3(1.0));
//i0.x = isX.x + isX.y + isX.z;
//i0.yzw = static_cast<T>(1) - isX;
i0 = tvec4<T, P>(isX.x + isX.y + isX.z, T(1) - isX);
// i0.y += dot(isYZ.xy, vec2(1.0));
i0.y += isYZ.x + isYZ.y;
//i0.zw += 1.0 - tvec2<T, P>(isYZ.x, isYZ.y);
i0.z += static_cast<T>(1) - isYZ.x;
i0.w += static_cast<T>(1) - isYZ.y;
i0.z += isYZ.z;
i0.w += static_cast<T>(1) - isYZ.z;
// i0 now contains the unique values 0,1,2,3 in each channel
tvec4<T, P> i3 = clamp(i0, T(0), T(1));
tvec4<T, P> i2 = clamp(i0 - T(1), T(0), T(1));
tvec4<T, P> i1 = clamp(i0 - T(2), T(0), T(1));
// x0 = x0 - 0.0 + 0.0 * C.xxxx
// x1 = x0 - i1 + 0.0 * C.xxxx
// x2 = x0 - i2 + 0.0 * C.xxxx
// x3 = x0 - i3 + 0.0 * C.xxxx
// x4 = x0 - 1.0 + 4.0 * C.xxxx
tvec4<T, P> x1 = x0 - i1 + C.x;
tvec4<T, P> x2 = x0 - i2 + C.y;
tvec4<T, P> x3 = x0 - i3 + C.z;
tvec4<T, P> x4 = x0 + C.w;
// Permutations
i = mod(i, tvec4<T, P>(289));
T j0 = detail::permute(detail::permute(detail::permute(detail::permute(i.w) + i.z) + i.y) + i.x);
tvec4<T, P> j1 = detail::permute(detail::permute(detail::permute(detail::permute(
i.w + tvec4<T, P>(i1.w, i2.w, i3.w, T(1))) +
i.z + tvec4<T, P>(i1.z, i2.z, i3.z, T(1))) +
i.y + tvec4<T, P>(i1.y, i2.y, i3.y, T(1))) +
i.x + tvec4<T, P>(i1.x, i2.x, i3.x, T(1)));
// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
tvec4<T, P> ip = tvec4<T, P>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0));
tvec4<T, P> p0 = gtc::grad4(j0, ip);
tvec4<T, P> p1 = gtc::grad4(j1.x, ip);
tvec4<T, P> p2 = gtc::grad4(j1.y, ip);
tvec4<T, P> p3 = gtc::grad4(j1.z, ip);
tvec4<T, P> p4 = gtc::grad4(j1.w, ip);
// Normalise gradients
tvec4<T, P> norm = detail::taylorInvSqrt(tvec4<T, P>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
p4 *= detail::taylorInvSqrt(dot(p4, p4));
// Mix contributions from the five corners
tvec3<T, P> m0 = max(T(0.6) - tvec3<T, P>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), tvec3<T, P>(0));
tvec2<T, P> m1 = max(T(0.6) - tvec2<T, P>(dot(x3, x3), dot(x4, x4) ), tvec2<T, P>(0));
m0 = m0 * m0;
m1 = m1 * m1;
return T(49) *
(dot(m0 * m0, tvec3<T, P>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) +
dot(m1 * m1, tvec2<T, P>(dot(p3, x3), dot(p4, x4))));
}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_packing
/// @file glm/gtc/packing.hpp
/// @date 2013-08-08 / 2013-08-08
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtc_packing GLM_GTC_packing
/// @ingroup gtc
///
/// @brief This extension provides a set of function to convert vertors to packed
/// formats.
///
/// <glm/gtc/packing.hpp> need to be included to use these features.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependency:
#include "type_precision.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_packing extension included")
#endif
namespace glm
{
/// @addtogroup gtc_packing
/// @{
/// First, converts the normalized floating-point value v into a 8-bit integer value.
/// Then, the results are packed into the returned 8-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm1x8: round(clamp(c, 0, +1) * 255.0)
///
/// @see gtc_packing
/// @see uint16 packUnorm2x8(vec2 const & v)
/// @see uint32 packUnorm4x8(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint8 packUnorm1x8(float v);
/// Convert a single 8-bit integer to a normalized floating-point value.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm4x8: f / 255.0
///
/// @see gtc_packing
/// @see vec2 unpackUnorm2x8(uint16 p)
/// @see vec4 unpackUnorm4x8(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackUnorm1x8(uint8 p);
/// First, converts each component of the normalized floating-point value v into 8-bit integer values.
/// Then, the results are packed into the returned 16-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm2x8: round(clamp(c, 0, +1) * 255.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see gtc_packing
/// @see uint8 packUnorm1x8(float const & v)
/// @see uint32 packUnorm4x8(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packUnorm2x8(vec2 const & v);
/// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit unsigned integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm4x8: f / 255.0
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see float unpackUnorm1x8(uint8 v)
/// @see vec4 unpackUnorm4x8(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm4x8.xml">GLSL unpackUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec2 unpackUnorm2x8(uint16 p);
/// First, converts the normalized floating-point value v into 8-bit integer value.
/// Then, the results are packed into the returned 8-bit unsigned integer.
///
/// The conversion to fixed point is done as follows:
/// packSnorm1x8: round(clamp(s, -1, +1) * 127.0)
///
/// @see gtc_packing
/// @see uint16 packSnorm2x8(vec2 const & v)
/// @see uint32 packSnorm4x8(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint8 packSnorm1x8(float s);
/// First, unpacks a single 8-bit unsigned integer p into a single 8-bit signed integers.
/// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm1x8: clamp(f / 127.0, -1, +1)
///
/// @see gtc_packing
/// @see vec2 unpackSnorm2x8(uint16 p)
/// @see vec4 unpackSnorm4x8(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackSnorm1x8(uint8 p);
/// First, converts each component of the normalized floating-point value v into 8-bit integer values.
/// Then, the results are packed into the returned 16-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packSnorm2x8: round(clamp(c, -1, +1) * 127.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see gtc_packing
/// @see uint8 packSnorm1x8(float const & v)
/// @see uint32 packSnorm4x8(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packSnorm2x8(vec2 const & v);
/// First, unpacks a single 16-bit unsigned integer p into a pair of 8-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned two-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm2x8: clamp(f / 127.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see float unpackSnorm1x8(uint8 p)
/// @see vec4 unpackSnorm4x8(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm4x8.xml">GLSL unpackSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec2 unpackSnorm2x8(uint16 p);
/// First, converts the normalized floating-point value v into a 16-bit integer value.
/// Then, the results are packed into the returned 16-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm1x16: round(clamp(c, 0, +1) * 65535.0)
///
/// @see gtc_packing
/// @see uint16 packSnorm1x16(float const & v)
/// @see uint64 packSnorm4x16(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packUnorm1x16(float v);
/// First, unpacks a single 16-bit unsigned integer p into a of 16-bit unsigned integers.
/// Then, the value is converted to a normalized floating-point value to generate the returned scalar.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnorm1x16: f / 65535.0
///
/// @see gtc_packing
/// @see vec2 unpackUnorm2x16(uint32 p)
/// @see vec4 unpackUnorm4x16(uint64 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackUnorm1x16(uint16 p);
/// First, converts each component of the normalized floating-point value v into 16-bit integer values.
/// Then, the results are packed into the returned 64-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm4x16: round(clamp(c, 0, +1) * 65535.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see gtc_packing
/// @see uint16 packUnorm1x16(float const & v)
/// @see uint32 packUnorm2x16(vec2 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packUnorm4x8.xml">GLSL packUnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint64 packUnorm4x16(vec4 const & v);
/// First, unpacks a single 64-bit unsigned integer p into four 16-bit unsigned integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackUnormx4x16: f / 65535.0
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see float unpackUnorm1x16(uint16 p)
/// @see vec2 unpackUnorm2x16(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackUnorm2x16.xml">GLSL unpackUnorm2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec4 unpackUnorm4x16(uint64 p);
/// First, converts the normalized floating-point value v into 16-bit integer value.
/// Then, the results are packed into the returned 16-bit unsigned integer.
///
/// The conversion to fixed point is done as follows:
/// packSnorm1x8: round(clamp(s, -1, +1) * 32767.0)
///
/// @see gtc_packing
/// @see uint32 packSnorm2x16(vec2 const & v)
/// @see uint64 packSnorm4x16(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packSnorm1x16(float v);
/// First, unpacks a single 16-bit unsigned integer p into a single 16-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned scalar.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm1x16: clamp(f / 32767.0, -1, +1)
///
/// @see gtc_packing
/// @see vec2 unpackSnorm2x16(uint32 p)
/// @see vec4 unpackSnorm4x16(uint64 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm1x16.xml">GLSL unpackSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackSnorm1x16(uint16 p);
/// First, converts each component of the normalized floating-point value v into 16-bit integer values.
/// Then, the results are packed into the returned 64-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packSnorm2x8: round(clamp(c, -1, +1) * 32767.0)
///
/// The first component of the vector will be written to the least significant bits of the output;
/// the last component will be written to the most significant bits.
///
/// @see gtc_packing
/// @see uint16 packSnorm1x16(float const & v)
/// @see uint32 packSnorm2x16(vec2 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packSnorm4x8.xml">GLSL packSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint64 packSnorm4x16(vec4 const & v);
/// First, unpacks a single 64-bit unsigned integer p into four 16-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm4x16: clamp(f / 32767.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see float unpackSnorm1x16(uint16 p)
/// @see vec2 unpackSnorm2x16(uint32 p)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackSnorm2x16.xml">GLSL unpackSnorm4x8 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec4 unpackSnorm4x16(uint64 p);
/// Returns an unsigned integer obtained by converting the components of a floating-point scalar
/// to the 16-bit floating-point representation found in the OpenGL Specification,
/// and then packing this 16-bit value into a 16-bit unsigned integer.
///
/// @see gtc_packing
/// @see uint32 packHalf2x16(vec2 const & v)
/// @see uint64 packHalf4x16(vec4 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint16 packHalf1x16(float v);
/// Returns a floating-point scalar with components obtained by unpacking a 16-bit unsigned integer into a 16-bit value,
/// interpreted as a 16-bit floating-point number according to the OpenGL Specification,
/// and converting it to 32-bit floating-point values.
///
/// @see gtc_packing
/// @see vec2 unpackHalf2x16(uint32 const & v)
/// @see vec4 unpackHalf4x16(uint64 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL float unpackHalf1x16(uint16 v);
/// Returns an unsigned integer obtained by converting the components of a four-component floating-point vector
/// to the 16-bit floating-point representation found in the OpenGL Specification,
/// and then packing these four 16-bit values into a 64-bit unsigned integer.
/// The first vector component specifies the 16 least-significant bits of the result;
/// the forth component specifies the 16 most-significant bits.
///
/// @see gtc_packing
/// @see uint16 packHalf1x16(float const & v)
/// @see uint32 packHalf2x16(vec2 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/packHalf2x16.xml">GLSL packHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL uint64 packHalf4x16(vec4 const & v);
/// Returns a four-component floating-point vector with components obtained by unpacking a 64-bit unsigned integer into four 16-bit values,
/// interpreting those values as 16-bit floating-point numbers according to the OpenGL Specification,
/// and converting them to 32-bit floating-point values.
/// The first component of the vector is obtained from the 16 least-significant bits of v;
/// the forth component is obtained from the 16 most-significant bits of v.
///
/// @see gtc_packing
/// @see float unpackHalf1x16(uint16 const & v)
/// @see vec2 unpackHalf2x16(uint32 const & v)
/// @see <a href="http://www.opengl.org/sdk/docs/manglsl/xhtml/unpackHalf2x16.xml">GLSL unpackHalf2x16 man page</a>
/// @see <a href="http://www.opengl.org/registry/doc/GLSLangSpec.4.20.8.pdf">GLSL 4.20.8 specification, section 8.4 Floating-Point Pack and Unpack Functions</a>
GLM_FUNC_DECL vec4 unpackHalf4x16(uint64 p);
/// Returns an unsigned integer obtained by converting the components of a four-component signed integer vector
/// to the 10-10-10-2-bit signed integer representation found in the OpenGL Specification,
/// and then packing these four values into a 32-bit unsigned integer.
/// The first vector component specifies the 10 least-significant bits of the result;
/// the forth component specifies the 2 most-significant bits.
///
/// @see gtc_packing
/// @see uint32 packI3x10_1x2(uvec4 const & v)
/// @see uint32 packSnorm3x10_1x2(vec4 const & v)
/// @see uint32 packUnorm3x10_1x2(vec4 const & v)
/// @see ivec4 unpackI3x10_1x2(uint32 const & p)
GLM_FUNC_DECL uint32 packI3x10_1x2(ivec4 const & v);
/// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit signed integers.
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packU3x10_1x2(uvec4 const & v)
/// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
/// @see uvec4 unpackI3x10_1x2(uint32 const & p);
GLM_FUNC_DECL ivec4 unpackI3x10_1x2(uint32 p);
/// Returns an unsigned integer obtained by converting the components of a four-component unsigned integer vector
/// to the 10-10-10-2-bit unsigned integer representation found in the OpenGL Specification,
/// and then packing these four values into a 32-bit unsigned integer.
/// The first vector component specifies the 10 least-significant bits of the result;
/// the forth component specifies the 2 most-significant bits.
///
/// @see gtc_packing
/// @see uint32 packI3x10_1x2(ivec4 const & v)
/// @see uint32 packSnorm3x10_1x2(vec4 const & v)
/// @see uint32 packUnorm3x10_1x2(vec4 const & v)
/// @see ivec4 unpackU3x10_1x2(uint32 const & p)
GLM_FUNC_DECL uint32 packU3x10_1x2(uvec4 const & v);
/// Unpacks a single 32-bit unsigned integer p into three 10-bit and one 2-bit unsigned integers.
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packU3x10_1x2(uvec4 const & v)
/// @see vec4 unpackSnorm3x10_1x2(uint32 const & p);
/// @see uvec4 unpackI3x10_1x2(uint32 const & p);
GLM_FUNC_DECL uvec4 unpackU3x10_1x2(uint32 p);
/// First, converts the first three components of the normalized floating-point value v into 10-bit signed integer values.
/// Then, converts the forth component of the normalized floating-point value v into 2-bit signed integer values.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packSnorm3x10_1x2(xyz): round(clamp(c, -1, +1) * 511.0)
/// packSnorm3x10_1x2(w): round(clamp(c, -1, +1) * 1.0)
///
/// The first vector component specifies the 10 least-significant bits of the result;
/// the forth component specifies the 2 most-significant bits.
///
/// @see gtc_packing
/// @see vec4 unpackSnorm3x10_1x2(uint32 const & p)
/// @see uint32 packUnorm3x10_1x2(vec4 const & v)
/// @see uint32 packU3x10_1x2(uvec4 const & v)
/// @see uint32 packI3x10_1x2(ivec4 const & v)
GLM_FUNC_DECL uint32 packSnorm3x10_1x2(vec4 const & v);
/// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm3x10_1x2(xyz): clamp(f / 511.0, -1, +1)
/// unpackSnorm3x10_1x2(w): clamp(f / 511.0, -1, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packSnorm3x10_1x2(vec4 const & v)
/// @see vec4 unpackUnorm3x10_1x2(uint32 const & p))
/// @see uvec4 unpackI3x10_1x2(uint32 const & p)
/// @see uvec4 unpackU3x10_1x2(uint32 const & p)
GLM_FUNC_DECL vec4 unpackSnorm3x10_1x2(uint32 p);
/// First, converts the first three components of the normalized floating-point value v into 10-bit unsigned integer values.
/// Then, converts the forth component of the normalized floating-point value v into 2-bit signed uninteger values.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The conversion for component c of v to fixed point is done as follows:
/// packUnorm3x10_1x2(xyz): round(clamp(c, 0, +1) * 1023.0)
/// packUnorm3x10_1x2(w): round(clamp(c, 0, +1) * 3.0)
///
/// The first vector component specifies the 10 least-significant bits of the result;
/// the forth component specifies the 2 most-significant bits.
///
/// @see gtc_packing
/// @see vec4 unpackUnorm3x10_1x2(uint32 const & p)
/// @see uint32 packUnorm3x10_1x2(vec4 const & v)
/// @see uint32 packU3x10_1x2(uvec4 const & v)
/// @see uint32 packI3x10_1x2(ivec4 const & v)
GLM_FUNC_DECL uint32 packUnorm3x10_1x2(vec4 const & v);
/// First, unpacks a single 32-bit unsigned integer p into four 16-bit signed integers.
/// Then, each component is converted to a normalized floating-point value to generate the returned four-component vector.
///
/// The conversion for unpacked fixed-point value f to floating point is done as follows:
/// unpackSnorm3x10_1x2(xyz): clamp(f / 1023.0, 0, +1)
/// unpackSnorm3x10_1x2(w): clamp(f / 3.0, 0, +1)
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packSnorm3x10_1x2(vec4 const & v)
/// @see vec4 unpackInorm3x10_1x2(uint32 const & p))
/// @see uvec4 unpackI3x10_1x2(uint32 const & p)
/// @see uvec4 unpackU3x10_1x2(uint32 const & p)
GLM_FUNC_DECL vec4 unpackUnorm3x10_1x2(uint32 p);
/// First, converts the first two components of the normalized floating-point value v into 11-bit signless floating-point values.
/// Then, converts the third component of the normalized floating-point value v into a 10-bit signless floating-point value.
/// Then, the results are packed into the returned 32-bit unsigned integer.
///
/// The first vector component specifies the 11 least-significant bits of the result;
/// the last component specifies the 10 most-significant bits.
///
/// @see gtc_packing
/// @see vec3 unpackF2x11_1x10(uint32 const & p)
GLM_FUNC_DECL uint32 packF2x11_1x10(vec3 const & v);
/// First, unpacks a single 32-bit unsigned integer p into two 11-bit signless floating-point values and one 10-bit signless floating-point value .
/// Then, each component is converted to a normalized floating-point value to generate the returned three-component vector.
///
/// The first component of the returned vector will be extracted from the least significant bits of the input;
/// the last component will be extracted from the most significant bits.
///
/// @see gtc_packing
/// @see uint32 packF2x11_1x10(vec3 const & v)
GLM_FUNC_DECL vec3 unpackF2x11_1x10(uint32 p);
/// @}
}// namespace glm
#include "packing.inl"
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_packing
/// @file glm/gtc/packing.inl
/// @date 2013-08-08 / 2013-08-08
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "../common.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../detail/type_half.hpp"
#include <cstring>
namespace glm{
namespace detail
{
GLM_FUNC_QUALIFIER glm::uint16 float2half(glm::uint32 f)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x00007c00 => 00000000 00000000 01111100 00000000
// 0x000003ff => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((f >> 16) & 0x8000) | // sign
((((f & 0x7f800000) - 0x38000000) >> 13) & 0x7c00) | // exponential
((f >> 13) & 0x03ff); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint32 float2packed11(glm::uint32 f)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x000007c0 => 00000000 00000000 00000111 11000000
// 0x00007c00 => 00000000 00000000 01111100 00000000
// 0x000003ff => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((((f & 0x7f800000) - 0x38000000) >> 17) & 0x07c0) | // exponential
((f >> 17) & 0x003f); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint32 packed11ToFloat(glm::uint32 p)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x000007c0 => 00000000 00000000 00000111 11000000
// 0x00007c00 => 00000000 00000000 01111100 00000000
// 0x000003ff => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((((p & 0x07c0) << 17) + 0x38000000) & 0x7f800000) | // exponential
((p & 0x003f) << 17); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint32 float2packed10(glm::uint32 f)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x0000001F => 00000000 00000000 00000000 00011111
// 0x0000003F => 00000000 00000000 00000000 00111111
// 0x000003E0 => 00000000 00000000 00000011 11100000
// 0x000007C0 => 00000000 00000000 00000111 11000000
// 0x00007C00 => 00000000 00000000 01111100 00000000
// 0x000003FF => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((((f & 0x7f800000) - 0x38000000) >> 18) & 0x03E0) | // exponential
((f >> 18) & 0x001f); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint32 packed10ToFloat(glm::uint32 p)
{
// 10 bits => EE EEEFFFFF
// 11 bits => EEE EEFFFFFF
// Half bits => SEEEEEFF FFFFFFFF
// Float bits => SEEEEEEE EFFFFFFF FFFFFFFF FFFFFFFF
// 0x0000001F => 00000000 00000000 00000000 00011111
// 0x0000003F => 00000000 00000000 00000000 00111111
// 0x000003E0 => 00000000 00000000 00000011 11100000
// 0x000007C0 => 00000000 00000000 00000111 11000000
// 0x00007C00 => 00000000 00000000 01111100 00000000
// 0x000003FF => 00000000 00000000 00000011 11111111
// 0x38000000 => 00111000 00000000 00000000 00000000
// 0x7f800000 => 01111111 10000000 00000000 00000000
// 0x00008000 => 00000000 00000000 10000000 00000000
return
((((p & 0x03E0) << 18) + 0x38000000) & 0x7f800000) | // exponential
((p & 0x001f) << 18); // Mantissa
}
GLM_FUNC_QUALIFIER glm::uint half2float(glm::uint h)
{
return ((h & 0x8000) << 16) | ((( h & 0x7c00) + 0x1C000) << 13) | ((h & 0x03FF) << 13);
}
GLM_FUNC_QUALIFIER glm::uint floatTo11bit(float x)
{
if(x == 0.0f)
return 0u;
else if(glm::isnan(x))
return ~0u;
else if(glm::isinf(x))
return 0x1Fu << 6u;
# if(GLM_COMPILER & GLM_COMPILER_GCC || GLM_COMPILER & (GLM_COMPILER_APPLE_CLANG | GLM_COMPILER_LLVM))
uint Pack = 0u;
memcpy(&Pack, &x, sizeof(Pack));
# else
uint Pack = reinterpret_cast<uint&>(x);
# endif
return float2packed11(Pack);
}
GLM_FUNC_QUALIFIER float packed11bitToFloat(glm::uint x)
{
if(x == 0)
return 0.0f;
else if(x == ((1 << 11) - 1))
return ~0;//NaN
else if(x == (0x1f << 6))
return ~0;//Inf
uint Result = packed11ToFloat(x);
# if(GLM_COMPILER & GLM_COMPILER_GCC || GLM_COMPILER & (GLM_COMPILER_APPLE_CLANG | GLM_COMPILER_LLVM))
float Temp = 0;
memcpy(&Temp, &Result, sizeof(Temp));
return Temp;
# else
return reinterpret_cast<float&>(Result);
# endif
}
GLM_FUNC_QUALIFIER glm::uint floatTo10bit(float x)
{
if(x == 0.0f)
return 0u;
else if(glm::isnan(x))
return ~0u;
else if(glm::isinf(x))
return 0x1Fu << 5u;
# if(GLM_COMPILER & GLM_COMPILER_GCC || GLM_COMPILER & (GLM_COMPILER_APPLE_CLANG | GLM_COMPILER_LLVM))
uint Pack = 0;
memcpy(&Pack, &x, sizeof(Pack));
# else
uint Pack = reinterpret_cast<uint&>(x);
# endif
return float2packed10(Pack);
}
GLM_FUNC_QUALIFIER float packed10bitToFloat(glm::uint x)
{
if(x == 0)
return 0.0f;
else if(x == ((1 << 10) - 1))
return ~0;//NaN
else if(x == (0x1f << 5))
return ~0;//Inf
uint Result = packed10ToFloat(x);
# if(GLM_COMPILER & GLM_COMPILER_GCC || GLM_COMPILER & (GLM_COMPILER_APPLE_CLANG | GLM_COMPILER_LLVM))
float Temp = 0;
memcpy(&Temp, &Result, sizeof(Temp));
return Temp;
# else
return reinterpret_cast<float&>(Result);
# endif
}
// GLM_FUNC_QUALIFIER glm::uint f11_f11_f10(float x, float y, float z)
// {
// return ((floatTo11bit(x) & ((1 << 11) - 1)) << 0) | ((floatTo11bit(y) & ((1 << 11) - 1)) << 11) | ((floatTo10bit(z) & ((1 << 10) - 1)) << 22);
// }
union u10u10u10u2
{
struct
{
uint x : 10;
uint y : 10;
uint z : 10;
uint w : 2;
} data;
uint32 pack;
};
union i10i10i10i2
{
struct
{
int x : 10;
int y : 10;
int z : 10;
int w : 2;
} data;
uint32 pack;
};
}//namespace detail
GLM_FUNC_QUALIFIER uint8 packUnorm1x8(float v)
{
return static_cast<uint8>(round(clamp(v, 0.0f, 1.0f) * 255.0f));
}
GLM_FUNC_QUALIFIER float unpackUnorm1x8(uint8 p)
{
float const Unpack(p);
return Unpack * static_cast<float>(0.0039215686274509803921568627451); // 1 / 255
}
GLM_FUNC_QUALIFIER uint16 packUnorm2x8(vec2 const & v)
{
u8vec2 const Topack(round(clamp(v, 0.0f, 1.0f) * 255.0f));
return reinterpret_cast<uint16 const &>(Topack);
}
GLM_FUNC_QUALIFIER vec2 unpackUnorm2x8(uint16 p)
{
vec2 const Unpack(reinterpret_cast<u8vec2 const &>(p));
return Unpack * float(0.0039215686274509803921568627451); // 1 / 255
}
GLM_FUNC_QUALIFIER uint8 packSnorm1x8(float v)
{
int8 const Topack(static_cast<int8>(round(clamp(v ,-1.0f, 1.0f) * 127.0f)));
return reinterpret_cast<uint8 const &>(Topack);
}
GLM_FUNC_QUALIFIER float unpackSnorm1x8(uint8 p)
{
float const Unpack(reinterpret_cast<int8 const &>(p));
return clamp(
Unpack * 0.00787401574803149606299212598425f, // 1.0f / 127.0f
-1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint16 packSnorm2x8(vec2 const & v)
{
i8vec2 const Topack(round(clamp(v, -1.0f, 1.0f) * 127.0f));
return reinterpret_cast<uint16 const &>(Topack);
}
GLM_FUNC_QUALIFIER vec2 unpackSnorm2x8(uint16 p)
{
vec2 const Unpack(reinterpret_cast<i8vec2 const &>(p));
return clamp(
Unpack * 0.00787401574803149606299212598425f, // 1.0f / 127.0f
-1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint16 packUnorm1x16(float s)
{
return static_cast<uint16>(round(clamp(s, 0.0f, 1.0f) * 65535.0f));
}
GLM_FUNC_QUALIFIER float unpackUnorm1x16(uint16 p)
{
float const Unpack(p);
return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0
}
GLM_FUNC_QUALIFIER uint64 packUnorm4x16(vec4 const & v)
{
u16vec4 const Topack(round(clamp(v , 0.0f, 1.0f) * 65535.0f));
return reinterpret_cast<uint64 const &>(Topack);
}
GLM_FUNC_QUALIFIER vec4 unpackUnorm4x16(uint64 p)
{
vec4 const Unpack(reinterpret_cast<u16vec4 const &>(p));
return Unpack * 1.5259021896696421759365224689097e-5f; // 1.0 / 65535.0
}
GLM_FUNC_QUALIFIER uint16 packSnorm1x16(float v)
{
int16 const Topack = static_cast<int16>(round(clamp(v ,-1.0f, 1.0f) * 32767.0f));
return reinterpret_cast<uint16 const &>(Topack);
}
GLM_FUNC_QUALIFIER float unpackSnorm1x16(uint16 p)
{
float const Unpack(reinterpret_cast<int16 const &>(p));
return clamp(
Unpack * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f,
-1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint64 packSnorm4x16(vec4 const & v)
{
i16vec4 const Topack(round(clamp(v ,-1.0f, 1.0f) * 32767.0f));
return reinterpret_cast<uint64 const &>(Topack);
}
GLM_FUNC_QUALIFIER vec4 unpackSnorm4x16(uint64 p)
{
vec4 const Unpack(reinterpret_cast<i16vec4 const &>(p));
return clamp(
Unpack * 3.0518509475997192297128208258309e-5f, //1.0f / 32767.0f,
-1.0f, 1.0f);
}
GLM_FUNC_QUALIFIER uint16 packHalf1x16(float v)
{
int16 const Topack(detail::toFloat16(v));
return reinterpret_cast<uint16 const &>(Topack);
}
GLM_FUNC_QUALIFIER float unpackHalf1x16(uint16 v)
{
return detail::toFloat32(reinterpret_cast<int16 const &>(v));
}
GLM_FUNC_QUALIFIER uint64 packHalf4x16(glm::vec4 const & v)
{
i16vec4 Unpack(
detail::toFloat16(v.x),
detail::toFloat16(v.y),
detail::toFloat16(v.z),
detail::toFloat16(v.w));
return reinterpret_cast<uint64 const &>(Unpack);
}
GLM_FUNC_QUALIFIER glm::vec4 unpackHalf4x16(uint64 v)
{
i16vec4 Unpack(reinterpret_cast<i16vec4 const &>(v));
return vec4(
detail::toFloat32(Unpack.x),
detail::toFloat32(Unpack.y),
detail::toFloat32(Unpack.z),
detail::toFloat32(Unpack.w));
}
GLM_FUNC_QUALIFIER uint32 packI3x10_1x2(ivec4 const & v)
{
detail::i10i10i10i2 Result;
Result.data.x = v.x;
Result.data.y = v.y;
Result.data.z = v.z;
Result.data.w = v.w;
return Result.pack;
}
GLM_FUNC_QUALIFIER ivec4 unpackI3x10_1x2(uint32 v)
{
detail::i10i10i10i2 Unpack;
Unpack.pack = v;
return ivec4(
Unpack.data.x,
Unpack.data.y,
Unpack.data.z,
Unpack.data.w);
}
GLM_FUNC_QUALIFIER uint32 packU3x10_1x2(uvec4 const & v)
{
detail::u10u10u10u2 Result;
Result.data.x = v.x;
Result.data.y = v.y;
Result.data.z = v.z;
Result.data.w = v.w;
return Result.pack;
}
GLM_FUNC_QUALIFIER uvec4 unpackU3x10_1x2(uint32 v)
{
detail::u10u10u10u2 Unpack;
Unpack.pack = v;
return uvec4(
Unpack.data.x,
Unpack.data.y,
Unpack.data.z,
Unpack.data.w);
}
GLM_FUNC_QUALIFIER uint32 packSnorm3x10_1x2(vec4 const & v)
{
detail::i10i10i10i2 Result;
Result.data.x = int(round(clamp(v.x,-1.0f, 1.0f) * 511.f));
Result.data.y = int(round(clamp(v.y,-1.0f, 1.0f) * 511.f));
Result.data.z = int(round(clamp(v.z,-1.0f, 1.0f) * 511.f));
Result.data.w = int(round(clamp(v.w,-1.0f, 1.0f) * 1.f));
return Result.pack;
}
GLM_FUNC_QUALIFIER vec4 unpackSnorm3x10_1x2(uint32 v)
{
detail::i10i10i10i2 Unpack;
Unpack.pack = v;
vec4 Result;
Result.x = clamp(float(Unpack.data.x) / 511.f, -1.0f, 1.0f);
Result.y = clamp(float(Unpack.data.y) / 511.f, -1.0f, 1.0f);
Result.z = clamp(float(Unpack.data.z) / 511.f, -1.0f, 1.0f);
Result.w = clamp(float(Unpack.data.w) / 1.f, -1.0f, 1.0f);
return Result;
}
GLM_FUNC_QUALIFIER uint32 packUnorm3x10_1x2(vec4 const & v)
{
detail::i10i10i10i2 Result;
Result.data.x = int(round(clamp(v.x, 0.0f, 1.0f) * 1023.f));
Result.data.y = int(round(clamp(v.y, 0.0f, 1.0f) * 1023.f));
Result.data.z = int(round(clamp(v.z, 0.0f, 1.0f) * 1023.f));
Result.data.w = int(round(clamp(v.w, 0.0f, 1.0f) * 3.f));
return Result.pack;
}
GLM_FUNC_QUALIFIER vec4 unpackUnorm3x10_1x2(uint32 v)
{
detail::i10i10i10i2 Unpack;
Unpack.pack = v;
vec4 Result;
Result.x = float(Unpack.data.x) / 1023.f;
Result.y = float(Unpack.data.y) / 1023.f;
Result.z = float(Unpack.data.z) / 1023.f;
Result.w = float(Unpack.data.w) / 3.f;
return Result;
}
GLM_FUNC_QUALIFIER uint32 packF2x11_1x10(vec3 const & v)
{
return
((detail::floatTo11bit(v.x) & ((1 << 11) - 1)) << 0) |
((detail::floatTo11bit(v.y) & ((1 << 11) - 1)) << 11) |
((detail::floatTo10bit(v.z) & ((1 << 10) - 1)) << 22);
}
GLM_FUNC_QUALIFIER vec3 unpackF2x11_1x10(uint32 v)
{
return vec3(
detail::packed11bitToFloat(v >> 0),
detail::packed11bitToFloat(v >> 11),
detail::packed10bitToFloat(v >> 22));
}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_quaternion
/// @file glm/gtc/quaternion.hpp
/// @date 2009-05-21 / 2012-12-20
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
/// @see gtc_constants (dependence)
///
/// @defgroup gtc_quaternion GLM_GTC_quaternion
/// @ingroup gtc
///
/// @brief Defines a templated quaternion type and several quaternion operations.
///
/// <glm/gtc/quaternion.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependency:
#include "../mat3x3.hpp"
#include "../mat4x4.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../gtc/constants.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_quaternion extension included")
#endif
namespace glm
{
/// @addtogroup gtc_quaternion
/// @{
template <typename T, precision P>
struct tquat
{
typedef tquat<T, P> type;
typedef T value_type;
public:
T x, y, z, w;
//////////////////////////////////////
// Component accesses
# ifdef GLM_FORCE_SIZE_FUNC
typedef size_t size_type;
/// Return the count of components of a quaternion
GLM_FUNC_DECL GLM_CONSTEXPR size_type size() const;
GLM_FUNC_DECL T & operator[](size_type i);
GLM_FUNC_DECL T const & operator[](size_type i) const;
# else
typedef length_t length_type;
/// Return the count of components of a quaternion
GLM_FUNC_DECL GLM_CONSTEXPR length_type length() const;
GLM_FUNC_DECL T & operator[](length_type i);
GLM_FUNC_DECL T const & operator[](length_type i) const;
# endif//GLM_FORCE_SIZE_FUNC
//////////////////////////////////////
// Implicit basic constructors
GLM_FUNC_DECL tquat();
GLM_FUNC_DECL tquat(tquat<T, P> const & q);
template <precision Q>
GLM_FUNC_DECL tquat(tquat<T, Q> const & q);
//////////////////////////////////////
// Explicit basic constructors
GLM_FUNC_DECL explicit tquat(ctor);
GLM_FUNC_DECL explicit tquat(T const & s, tvec3<T, P> const & v);
GLM_FUNC_DECL tquat(T const & w, T const & x, T const & y, T const & z);
//////////////////////////////////////
// Convertions
# ifdef GLM_FORCE_EXPLICIT_CTOR
template <typename U, precision Q>
GLM_FUNC_DECL explicit tquat(tquat<U, Q> const & q);
# else
template <typename U, precision Q>
GLM_FUNC_DECL tquat(tquat<U, Q> const & q);
# endif
// explicit conversion operators
# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
GLM_FUNC_DECL explicit operator tmat3x3<T, P>();
GLM_FUNC_DECL explicit operator tmat4x4<T, P>();
# endif
/// Create a quaternion from two normalized axis
///
/// @param u A first normalized axis
/// @param v A second normalized axis
/// @see gtc_quaternion
/// @see http://lolengine.net/blog/2013/09/18/beautiful-maths-quaternion-from-vectors
GLM_FUNC_DECL explicit tquat(tvec3<T, P> const & u, tvec3<T, P> const & v);
/// Build a quaternion from euler angles (pitch, yaw, roll), in radians.
GLM_FUNC_DECL explicit tquat(tvec3<T, P> const & eulerAngles);
GLM_FUNC_DECL explicit tquat(tmat3x3<T, P> const & m);
GLM_FUNC_DECL explicit tquat(tmat4x4<T, P> const & m);
//////////////////////////////////////
// Operators
GLM_FUNC_DECL tquat<T, P> & operator=(tquat<T, P> const & m);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator=(tquat<U, P> const & m);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator+=(tquat<U, P> const & q);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator*=(tquat<U, P> const & q);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator*=(U s);
template <typename U>
GLM_FUNC_DECL tquat<T, P> & operator/=(U s);
};
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator-(tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p);
template <typename T, precision P>
GLM_FUNC_DECL tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v);
template <typename T, precision P>
GLM_FUNC_DECL tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v);
template <typename T, precision P>
GLM_FUNC_DECL tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator*(tquat<T, P> const & q, T const & s);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator*(T const & s, tquat<T, P> const & q);
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> operator/(tquat<T, P> const & q, T const & s);
/// Returns the length of the quaternion.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T length(tquat<T, P> const & q);
/// Returns the normalized quaternion.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> normalize(tquat<T, P> const & q);
/// Returns dot product of q1 and q2, i.e., q1[0] * q2[0] + q1[1] * q2[1] + ...
///
/// @see gtc_quaternion
template <typename T, precision P, template <typename, precision> class quatType>
GLM_FUNC_DECL T dot(quatType<T, P> const & x, quatType<T, P> const & y);
/// Spherical linear interpolation of two quaternions.
/// The interpolation is oriented and the rotation is performed at constant speed.
/// For short path spherical linear interpolation, use the slerp function.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
/// @see - slerp(tquat<T, P> const & x, tquat<T, P> const & y, T const & a)
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a);
/// Linear interpolation of two quaternions.
/// The interpolation is oriented.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined in the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a);
/// Spherical linear interpolation of two quaternions.
/// The interpolation always take the short path and the rotation is performed at constant speed.
///
/// @param x A quaternion
/// @param y A quaternion
/// @param a Interpolation factor. The interpolation is defined beyond the range [0, 1].
/// @tparam T Value type used to build the quaternion. Supported: half, float or double.
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a);
/// Returns the q conjugate.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> conjugate(tquat<T, P> const & q);
/// Returns the q inverse.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> inverse(tquat<T, P> const & q);
/// Rotates a quaternion from a vector of 3 components axis and an angle.
///
/// @param q Source orientation
/// @param angle Angle expressed in radians.
/// @param axis Axis of the rotation
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & axis);
/// Returns euler angles, yitch as x, yaw as y, roll as z.
/// The result is expressed in radians if GLM_FORCE_RADIANS is defined or degrees otherwise.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec3<T, P> eulerAngles(tquat<T, P> const & x);
/// Returns roll value of euler angles expressed in radians.
///
/// @see gtx_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T roll(tquat<T, P> const & x);
/// Returns pitch value of euler angles expressed in radians.
///
/// @see gtx_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T pitch(tquat<T, P> const & x);
/// Returns yaw value of euler angles expressed in radians.
///
/// @see gtx_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T yaw(tquat<T, P> const & x);
/// Converts a quaternion to a 3 * 3 matrix.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tmat3x3<T, P> mat3_cast(tquat<T, P> const & x);
/// Converts a quaternion to a 4 * 4 matrix.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tmat4x4<T, P> mat4_cast(tquat<T, P> const & x);
/// Converts a 3 * 3 matrix to a quaternion.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> quat_cast(tmat3x3<T, P> const & x);
/// Converts a 4 * 4 matrix to a quaternion.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> quat_cast(tmat4x4<T, P> const & x);
/// Returns the quaternion rotation angle.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL T angle(tquat<T, P> const & x);
/// Returns the q rotation axis.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec3<T, P> axis(tquat<T, P> const & x);
/// Build a quaternion from an angle and a normalized axis.
///
/// @param angle Angle expressed in radians.
/// @param axis Axis of the quaternion, must be normalized.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & axis);
/// Returns the component-wise comparison result of x < y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x <= y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x > y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x >= y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x == y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y);
/// Returns the component-wise comparison of result x != y.
///
/// @tparam quatType Floating-point quaternion types.
///
/// @see gtc_quaternion
template <typename T, precision P>
GLM_FUNC_DECL tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y);
/// @}
} //namespace glm
#include "quaternion.inl"
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_quaternion
/// @file glm/gtc/quaternion.inl
/// @date 2009-05-21 / 2011-06-15
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "../trigonometric.hpp"
#include "../geometric.hpp"
#include "../exponential.hpp"
#include <limits>
namespace glm{
namespace detail
{
template <typename T, precision P>
struct compute_dot<tquat, T, P>
{
static GLM_FUNC_QUALIFIER T call(tquat<T, P> const & x, tquat<T, P> const & y)
{
tvec4<T, P> tmp(x.x * y.x, x.y * y.y, x.z * y.z, x.w * y.w);
return (tmp.x + tmp.y) + (tmp.z + tmp.w);
}
};
}//namespace detail
//////////////////////////////////////
// Component accesses
# ifdef GLM_FORCE_SIZE_FUNC
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename tquat<T, P>::size_type tquat<T, P>::size() const
{
return 4;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::size_type i)
{
assert(i >= 0 && static_cast<detail::component_count_t>(i) < detail::component_count(*this));
return (&x)[i];
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::size_type i) const
{
assert(i >= 0 && static_cast<detail::component_count_t>(i) < detail::component_count(*this));
return (&x)[i];
}
# else
template <typename T, precision P>
GLM_FUNC_QUALIFIER GLM_CONSTEXPR typename tquat<T, P>::length_type tquat<T, P>::length() const
{
return 4;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T & tquat<T, P>::operator[](typename tquat<T, P>::length_type i)
{
assert(i >= 0 && static_cast<detail::component_count_t>(i) < detail::component_count(*this));
return (&x)[i];
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T const & tquat<T, P>::operator[](typename tquat<T, P>::length_type i) const
{
assert(i >= 0 && static_cast<detail::component_count_t>(i) < detail::component_count(*this));
return (&x)[i];
}
# endif//GLM_FORCE_SIZE_FUNC
//////////////////////////////////////
// Implicit basic constructors
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat()
# ifndef GLM_FORCE_NO_CTOR_INIT
: x(0), y(0), z(0), w(1)
# endif
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tquat<T, P> const & q)
: x(q.x), y(q.y), z(q.z), w(q.w)
{}
template <typename T, precision P>
template <precision Q>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tquat<T, Q> const & q)
: x(q.x), y(q.y), z(q.z), w(q.w)
{}
//////////////////////////////////////
// Explicit basic constructors
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(ctor)
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(T const & s, tvec3<T, P> const & v)
: x(v.x), y(v.y), z(v.z), w(s)
{}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(T const & w, T const & x, T const & y, T const & z)
: x(x), y(y), z(z), w(w)
{}
//////////////////////////////////////////////////////////////
// Conversions
template <typename T, precision P>
template <typename U, precision Q>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tquat<U, Q> const & q)
: x(static_cast<T>(q.x))
, y(static_cast<T>(q.y))
, z(static_cast<T>(q.z))
, w(static_cast<T>(q.w))
{}
//template <typename valType>
//GLM_FUNC_QUALIFIER tquat<valType>::tquat
//(
// valType const & pitch,
// valType const & yaw,
// valType const & roll
//)
//{
// tvec3<valType> eulerAngle(pitch * valType(0.5), yaw * valType(0.5), roll * valType(0.5));
// tvec3<valType> c = glm::cos(eulerAngle * valType(0.5));
// tvec3<valType> s = glm::sin(eulerAngle * valType(0.5));
//
// this->w = c.x * c.y * c.z + s.x * s.y * s.z;
// this->x = s.x * c.y * c.z - c.x * s.y * s.z;
// this->y = c.x * s.y * c.z + s.x * c.y * s.z;
// this->z = c.x * c.y * s.z - s.x * s.y * c.z;
//}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & u, tvec3<T, P> const & v)
{
tvec3<T, P> const LocalW(cross(u, v));
T Dot = detail::compute_dot<tvec3, T, P>::call(u, v);
tquat<T, P> q(T(1) + Dot, LocalW.x, LocalW.y, LocalW.z);
*this = normalize(q);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tvec3<T, P> const & eulerAngle)
{
tvec3<T, P> c = glm::cos(eulerAngle * T(0.5));
tvec3<T, P> s = glm::sin(eulerAngle * T(0.5));
this->w = c.x * c.y * c.z + s.x * s.y * s.z;
this->x = s.x * c.y * c.z - c.x * s.y * s.z;
this->y = c.x * s.y * c.z + s.x * c.y * s.z;
this->z = c.x * c.y * s.z - s.x * s.y * c.z;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat3x3<T, P> const & m)
{
*this = quat_cast(m);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::tquat(tmat4x4<T, P> const & m)
{
*this = quat_cast(m);
}
# if GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat3x3<T, P>()
{
return mat3_cast(*this);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P>::operator tmat4x4<T, P>()
{
return mat4_cast(*this);
}
# endif//GLM_HAS_EXPLICIT_CONVERSION_OPERATORS
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> conjugate(tquat<T, P> const & q)
{
return tquat<T, P>(q.w, -q.x, -q.y, -q.z);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> inverse(tquat<T, P> const & q)
{
return conjugate(q) / dot(q, q);
}
//////////////////////////////////////////////////////////////
// tquat<valType> operators
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<T, P> const & q)
{
this->w = q.w;
this->x = q.x;
this->y = q.y;
this->z = q.z;
return *this;
}
template <typename T, precision P>
template <typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator=(tquat<U, P> const & q)
{
this->w = static_cast<T>(q.w);
this->x = static_cast<T>(q.x);
this->y = static_cast<T>(q.y);
this->z = static_cast<T>(q.z);
return *this;
}
template <typename T, precision P>
template <typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator+=(tquat<U, P> const & q)
{
this->w += static_cast<T>(q.w);
this->x += static_cast<T>(q.x);
this->y += static_cast<T>(q.y);
this->z += static_cast<T>(q.z);
return *this;
}
template <typename T, precision P>
template <typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(tquat<U, P> const & r)
{
tquat<T, P> const p(*this);
tquat<T, P> const q(r);
this->w = p.w * q.w - p.x * q.x - p.y * q.y - p.z * q.z;
this->x = p.w * q.x + p.x * q.w + p.y * q.z - p.z * q.y;
this->y = p.w * q.y + p.y * q.w + p.z * q.x - p.x * q.z;
this->z = p.w * q.z + p.z * q.w + p.x * q.y - p.y * q.x;
return *this;
}
template <typename T, precision P>
template <typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator*=(U s)
{
this->w *= static_cast<U>(s);
this->x *= static_cast<U>(s);
this->y *= static_cast<U>(s);
this->z *= static_cast<U>(s);
return *this;
}
template <typename T, precision P>
template <typename U>
GLM_FUNC_QUALIFIER tquat<T, P> & tquat<T, P>::operator/=(U s)
{
this->w /= static_cast<U>(s);
this->x /= static_cast<U>(s);
this->y /= static_cast<U>(s);
this->z /= static_cast<U>(s);
return *this;
}
//////////////////////////////////////////////////////////////
// tquat<T, P> external operators
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator-(tquat<T, P> const & q)
{
return tquat<T, P>(-q.w, -q.x, -q.y, -q.z);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator+(tquat<T, P> const & q, tquat<T, P> const & p)
{
return tquat<T, P>(q) += p;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, tquat<T, P> const & p)
{
return tquat<T, P>(q) *= p;
}
// Transformation
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tquat<T, P> const & q, tvec3<T, P> const & v)
{
tvec3<T, P> const QuatVector(q.x, q.y, q.z);
tvec3<T, P> const uv(glm::cross(QuatVector, v));
tvec3<T, P> const uuv(glm::cross(QuatVector, uv));
return v + ((uv * q.w) + uuv) * static_cast<T>(2);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> operator*(tvec3<T, P> const & v, tquat<T, P> const & q)
{
return glm::inverse(q) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tquat<T, P> const & q, tvec4<T, P> const & v)
{
return tvec4<T, P>(q * tvec3<T, P>(v), v.w);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<T, P> operator*(tvec4<T, P> const & v, tquat<T, P> const & q)
{
return glm::inverse(q) * v;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator*(tquat<T, P> const & q, T const & s)
{
return tquat<T, P>(
q.w * s, q.x * s, q.y * s, q.z * s);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator*(T const & s, tquat<T, P> const & q)
{
return q * s;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> operator/(tquat<T, P> const & q, T const & s)
{
return tquat<T, P>(
q.w / s, q.x / s, q.y / s, q.z / s);
}
//////////////////////////////////////
// Boolean operators
template <typename T, precision P>
GLM_FUNC_QUALIFIER bool operator==(tquat<T, P> const & q1, tquat<T, P> const & q2)
{
return (q1.x == q2.x) && (q1.y == q2.y) && (q1.z == q2.z) && (q1.w == q2.w);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER bool operator!=(tquat<T, P> const & q1, tquat<T, P> const & q2)
{
return (q1.x != q2.x) || (q1.y != q2.y) || (q1.z != q2.z) || (q1.w != q2.w);
}
////////////////////////////////////////////////////////
template <typename T, precision P>
GLM_FUNC_QUALIFIER T length(tquat<T, P> const & q)
{
return glm::sqrt(dot(q, q));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> normalize(tquat<T, P> const & q)
{
T len = length(q);
if(len <= T(0)) // Problem
return tquat<T, P>(1, 0, 0, 0);
T oneOverLen = T(1) / len;
return tquat<T, P>(q.w * oneOverLen, q.x * oneOverLen, q.y * oneOverLen, q.z * oneOverLen);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> cross(tquat<T, P> const & q1, tquat<T, P> const & q2)
{
return tquat<T, P>(
q1.w * q2.w - q1.x * q2.x - q1.y * q2.y - q1.z * q2.z,
q1.w * q2.x + q1.x * q2.w + q1.y * q2.z - q1.z * q2.y,
q1.w * q2.y + q1.y * q2.w + q1.z * q2.x - q1.x * q2.z,
q1.w * q2.z + q1.z * q2.w + q1.x * q2.y - q1.y * q2.x);
}
/*
// (x * sin(1 - a) * angle / sin(angle)) + (y * sin(a) * angle / sin(angle))
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T const & a)
{
if(a <= T(0)) return x;
if(a >= T(1)) return y;
float fCos = dot(x, y);
tquat<T, P> y2(y); //BUG!!! tquat<T, P> y2;
if(fCos < T(0))
{
y2 = -y;
fCos = -fCos;
}
//if(fCos > 1.0f) // problem
float k0, k1;
if(fCos > T(0.9999))
{
k0 = T(1) - a;
k1 = T(0) + a; //BUG!!! 1.0f + a;
}
else
{
T fSin = sqrt(T(1) - fCos * fCos);
T fAngle = atan(fSin, fCos);
T fOneOverSin = static_cast<T>(1) / fSin;
k0 = sin((T(1) - a) * fAngle) * fOneOverSin;
k1 = sin((T(0) + a) * fAngle) * fOneOverSin;
}
return tquat<T, P>(
k0 * x.w + k1 * y2.w,
k0 * x.x + k1 * y2.x,
k0 * x.y + k1 * y2.y,
k0 * x.z + k1 * y2.z);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> mix2
(
tquat<T, P> const & x,
tquat<T, P> const & y,
T const & a
)
{
bool flip = false;
if(a <= static_cast<T>(0)) return x;
if(a >= static_cast<T>(1)) return y;
T cos_t = dot(x, y);
if(cos_t < T(0))
{
cos_t = -cos_t;
flip = true;
}
T alpha(0), beta(0);
if(T(1) - cos_t < 1e-7)
beta = static_cast<T>(1) - alpha;
else
{
T theta = acos(cos_t);
T sin_t = sin(theta);
beta = sin(theta * (T(1) - alpha)) / sin_t;
alpha = sin(alpha * theta) / sin_t;
}
if(flip)
alpha = -alpha;
return normalize(beta * x + alpha * y);
}
*/
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> mix(tquat<T, P> const & x, tquat<T, P> const & y, T a)
{
T cosTheta = dot(x, y);
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if(cosTheta > T(1) - epsilon<T>())
{
// Linear interpolation
return tquat<T, P>(
mix(x.w, y.w, a),
mix(x.x, y.x, a),
mix(x.y, y.y, a),
mix(x.z, y.z, a));
}
else
{
// Essential Mathematics, page 467
T angle = acos(cosTheta);
return (sin((T(1) - a) * angle) * x + sin(a * angle) * y) / sin(angle);
}
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> lerp(tquat<T, P> const & x, tquat<T, P> const & y, T a)
{
// Lerp is only defined in [0, 1]
assert(a >= static_cast<T>(0));
assert(a <= static_cast<T>(1));
return x * (T(1) - a) + (y * a);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> slerp(tquat<T, P> const & x, tquat<T, P> const & y, T a)
{
tquat<T, P> z = y;
T cosTheta = dot(x, y);
// If cosTheta < 0, the interpolation will take the long way around the sphere.
// To fix this, one quat must be negated.
if (cosTheta < T(0))
{
z = -y;
cosTheta = -cosTheta;
}
// Perform a linear interpolation when cosTheta is close to 1 to avoid side effect of sin(angle) becoming a zero denominator
if(cosTheta > T(1) - epsilon<T>())
{
// Linear interpolation
return tquat<T, P>(
mix(x.w, z.w, a),
mix(x.x, z.x, a),
mix(x.y, z.y, a),
mix(x.z, z.z, a));
}
else
{
// Essential Mathematics, page 467
T angle = acos(cosTheta);
return (sin((T(1) - a) * angle) * x + sin(a * angle) * z) / sin(angle);
}
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> rotate(tquat<T, P> const & q, T const & angle, tvec3<T, P> const & v)
{
tvec3<T, P> Tmp = v;
// Axis of rotation must be normalised
T len = glm::length(Tmp);
if(abs(len - T(1)) > T(0.001))
{
T oneOverLen = static_cast<T>(1) / len;
Tmp.x *= oneOverLen;
Tmp.y *= oneOverLen;
Tmp.z *= oneOverLen;
}
T const AngleRad(angle);
T const Sin = sin(AngleRad * T(0.5));
return q * tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * Sin, Tmp.y * Sin, Tmp.z * Sin);
//return gtc::quaternion::cross(q, tquat<T, P>(cos(AngleRad * T(0.5)), Tmp.x * fSin, Tmp.y * fSin, Tmp.z * fSin));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> eulerAngles(tquat<T, P> const & x)
{
return tvec3<T, P>(pitch(x), yaw(x), roll(x));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T roll(tquat<T, P> const & q)
{
return T(atan(T(2) * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T pitch(tquat<T, P> const & q)
{
return T(atan(T(2) * (q.y * q.z + q.w * q.x), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T yaw(tquat<T, P> const & q)
{
return asin(T(-2) * (q.x * q.z - q.w * q.y));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat3x3<T, P> mat3_cast(tquat<T, P> const & q)
{
tmat3x3<T, P> Result(T(1));
T qxx(q.x * q.x);
T qyy(q.y * q.y);
T qzz(q.z * q.z);
T qxz(q.x * q.z);
T qxy(q.x * q.y);
T qyz(q.y * q.z);
T qwx(q.w * q.x);
T qwy(q.w * q.y);
T qwz(q.w * q.z);
Result[0][0] = 1 - 2 * (qyy + qzz);
Result[0][1] = 2 * (qxy + qwz);
Result[0][2] = 2 * (qxz - qwy);
Result[1][0] = 2 * (qxy - qwz);
Result[1][1] = 1 - 2 * (qxx + qzz);
Result[1][2] = 2 * (qyz + qwx);
Result[2][0] = 2 * (qxz + qwy);
Result[2][1] = 2 * (qyz - qwx);
Result[2][2] = 1 - 2 * (qxx + qyy);
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tmat4x4<T, P> mat4_cast(tquat<T, P> const & q)
{
return tmat4x4<T, P>(mat3_cast(q));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat3x3<T, P> const & m)
{
T fourXSquaredMinus1 = m[0][0] - m[1][1] - m[2][2];
T fourYSquaredMinus1 = m[1][1] - m[0][0] - m[2][2];
T fourZSquaredMinus1 = m[2][2] - m[0][0] - m[1][1];
T fourWSquaredMinus1 = m[0][0] + m[1][1] + m[2][2];
int biggestIndex = 0;
T fourBiggestSquaredMinus1 = fourWSquaredMinus1;
if(fourXSquaredMinus1 > fourBiggestSquaredMinus1)
{
fourBiggestSquaredMinus1 = fourXSquaredMinus1;
biggestIndex = 1;
}
if(fourYSquaredMinus1 > fourBiggestSquaredMinus1)
{
fourBiggestSquaredMinus1 = fourYSquaredMinus1;
biggestIndex = 2;
}
if(fourZSquaredMinus1 > fourBiggestSquaredMinus1)
{
fourBiggestSquaredMinus1 = fourZSquaredMinus1;
biggestIndex = 3;
}
T biggestVal = sqrt(fourBiggestSquaredMinus1 + T(1)) * T(0.5);
T mult = static_cast<T>(0.25) / biggestVal;
tquat<T, P> Result(uninitialize);
switch(biggestIndex)
{
case 0:
Result.w = biggestVal;
Result.x = (m[1][2] - m[2][1]) * mult;
Result.y = (m[2][0] - m[0][2]) * mult;
Result.z = (m[0][1] - m[1][0]) * mult;
break;
case 1:
Result.w = (m[1][2] - m[2][1]) * mult;
Result.x = biggestVal;
Result.y = (m[0][1] + m[1][0]) * mult;
Result.z = (m[2][0] + m[0][2]) * mult;
break;
case 2:
Result.w = (m[2][0] - m[0][2]) * mult;
Result.x = (m[0][1] + m[1][0]) * mult;
Result.y = biggestVal;
Result.z = (m[1][2] + m[2][1]) * mult;
break;
case 3:
Result.w = (m[0][1] - m[1][0]) * mult;
Result.x = (m[2][0] + m[0][2]) * mult;
Result.y = (m[1][2] + m[2][1]) * mult;
Result.z = biggestVal;
break;
default: // Silence a -Wswitch-default warning in GCC. Should never actually get here. Assert is just for sanity.
assert(false);
break;
}
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> quat_cast(tmat4x4<T, P> const & m4)
{
return quat_cast(tmat3x3<T, P>(m4));
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER T angle(tquat<T, P> const & x)
{
return acos(x.w) * T(2);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec3<T, P> axis(tquat<T, P> const & x)
{
T tmp1 = static_cast<T>(1) - x.w * x.w;
if(tmp1 <= static_cast<T>(0))
return tvec3<T, P>(0, 0, 1);
T tmp2 = static_cast<T>(1) / sqrt(tmp1);
return tvec3<T, P>(x.x * tmp2, x.y * tmp2, x.z * tmp2);
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tquat<T, P> angleAxis(T const & angle, tvec3<T, P> const & v)
{
tquat<T, P> Result(uninitialize);
T const a(angle);
T const s = glm::sin(a * static_cast<T>(0.5));
Result.w = glm::cos(a * static_cast<T>(0.5));
Result.x = v.x * s;
Result.y = v.y * s;
Result.z = v.z * s;
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<bool, P> lessThan(tquat<T, P> const & x, tquat<T, P> const & y)
{
tvec4<bool, P> Result(uninitialize);
for(detail::component_count_t i = 0; i < detail::component_count(x); ++i)
Result[i] = x[i] < y[i];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<bool, P> lessThanEqual(tquat<T, P> const & x, tquat<T, P> const & y)
{
tvec4<bool, P> Result(uninitialize);
for(detail::component_count_t i = 0; i < detail::component_count(x); ++i)
Result[i] = x[i] <= y[i];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThan(tquat<T, P> const & x, tquat<T, P> const & y)
{
tvec4<bool, P> Result(uninitialize);
for(detail::component_count_t i = 0; i < detail::component_count(x); ++i)
Result[i] = x[i] > y[i];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<bool, P> greaterThanEqual(tquat<T, P> const & x, tquat<T, P> const & y)
{
tvec4<bool, P> Result(uninitialize);
for(detail::component_count_t i = 0; i < detail::component_count(x); ++i)
Result[i] = x[i] >= y[i];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<bool, P> equal(tquat<T, P> const & x, tquat<T, P> const & y)
{
tvec4<bool, P> Result(uninitialize);
for(detail::component_count_t i = 0; i < detail::component_count(x); ++i)
Result[i] = x[i] == y[i];
return Result;
}
template <typename T, precision P>
GLM_FUNC_QUALIFIER tvec4<bool, P> notEqual(tquat<T, P> const & x, tquat<T, P> const & y)
{
tvec4<bool, P> Result(uninitialize);
for(detail::component_count_t i = 0; i < detail::component_count(x); ++i)
Result[i] = x[i] != y[i];
return Result;
}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_random
/// @file glm/gtc/random.hpp
/// @date 2011-09-18 / 2011-09-18
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
/// @see gtx_random (extended)
///
/// @defgroup gtc_random GLM_GTC_random
/// @ingroup gtc
///
/// @brief Generate random number from various distribution methods.
///
/// <glm/gtc/random.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependency:
#include "../vec2.hpp"
#include "../vec3.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_random extension included")
#endif
namespace glm
{
/// @addtogroup gtc_random
/// @{
/// Generate random numbers in the interval [Min, Max], according a linear distribution
///
/// @param Min
/// @param Max
/// @tparam genType Value type. Currently supported: half (not recommanded), float or double scalars and vectors.
/// @see gtc_random
template <typename genTYpe>
GLM_FUNC_DECL genTYpe linearRand(
genTYpe Min,
genTYpe Max);
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> linearRand(
vecType<T, P> const & Min,
vecType<T, P> const & Max);
/// Generate random numbers in the interval [Min, Max], according a gaussian distribution
///
/// @param Mean
/// @param Deviation
/// @see gtc_random
template <typename genType>
GLM_FUNC_DECL genType gaussRand(
genType Mean,
genType Deviation);
/// Generate a random 2D vector which coordinates are regulary distributed on a circle of a given radius
///
/// @param Radius
/// @see gtc_random
template <typename T>
GLM_FUNC_DECL tvec2<T, defaultp> circularRand(
T Radius);
/// Generate a random 3D vector which coordinates are regulary distributed on a sphere of a given radius
///
/// @param Radius
/// @see gtc_random
template <typename T>
GLM_FUNC_DECL tvec3<T, defaultp> sphericalRand(
T Radius);
/// Generate a random 2D vector which coordinates are regulary distributed within the area of a disk of a given radius
///
/// @param Radius
/// @see gtc_random
template <typename T>
GLM_FUNC_DECL tvec2<T, defaultp> diskRand(
T Radius);
/// Generate a random 3D vector which coordinates are regulary distributed within the volume of a ball of a given radius
///
/// @param Radius
/// @see gtc_random
template <typename T>
GLM_FUNC_DECL tvec3<T, defaultp> ballRand(
T Radius);
/// @}
}//namespace glm
#include "random.inl"
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_random
/// @file glm/gtc/random.inl
/// @date 2011-09-19 / 2012-04-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "../geometric.hpp"
#include "../exponential.hpp"
#include <cstdlib>
#include <ctime>
#include <cassert>
namespace glm{
namespace detail
{
template <typename T, precision P, template <class, precision> class vecType>
struct compute_rand
{
GLM_FUNC_QUALIFIER static vecType<T, P> call();
};
template <precision P>
struct compute_rand<uint8, P, tvec1>
{
GLM_FUNC_QUALIFIER static tvec1<uint8, P> call()
{
return tvec1<uint8, P>(
std::rand()) % std::numeric_limits<uint8>::max();
}
};
template <precision P>
struct compute_rand<uint8, P, tvec2>
{
GLM_FUNC_QUALIFIER static tvec2<uint8, P> call()
{
return tvec2<uint8, P>(
std::rand(),
std::rand()) % std::numeric_limits<uint8>::max();
}
};
template <precision P>
struct compute_rand<uint8, P, tvec3>
{
GLM_FUNC_QUALIFIER static tvec3<uint8, P> call()
{
return tvec3<uint8, P>(
std::rand(),
std::rand(),
std::rand()) % std::numeric_limits<uint8>::max();
}
};
template <precision P>
struct compute_rand<uint8, P, tvec4>
{
GLM_FUNC_QUALIFIER static tvec4<uint8, P> call()
{
return tvec4<uint8, P>(
std::rand(),
std::rand(),
std::rand(),
std::rand()) % std::numeric_limits<uint8>::max();
}
};
template <precision P, template <class, precision> class vecType>
struct compute_rand<uint16, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<uint16, P> call()
{
return
(vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(8)) |
(vecType<uint16, P>(compute_rand<uint8, P, vecType>::call()) << static_cast<uint16>(0));
}
};
template <precision P, template <class, precision> class vecType>
struct compute_rand<uint32, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<uint32, P> call()
{
return
(vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(16)) |
(vecType<uint32, P>(compute_rand<uint16, P, vecType>::call()) << static_cast<uint32>(0));
}
};
template <precision P, template <class, precision> class vecType>
struct compute_rand<uint64, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<uint64, P> call()
{
return
(vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(32)) |
(vecType<uint64, P>(compute_rand<uint32, P, vecType>::call()) << static_cast<uint64>(0));
}
};
template <typename T, precision P, template <class, precision> class vecType>
struct compute_linearRand
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & Min, vecType<T, P> const & Max);
};
template <precision P, template <class, precision> class vecType>
struct compute_linearRand<int8, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<int8, P> call(vecType<int8, P> const & Min, vecType<int8, P> const & Max)
{
return (vecType<int8, P>(compute_rand<uint8, P, vecType>::call() % vecType<uint8, P>(Max + static_cast<int8>(1) - Min))) + Min;
}
};
template <precision P, template <class, precision> class vecType>
struct compute_linearRand<uint8, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<uint8, P> call(vecType<uint8, P> const & Min, vecType<uint8, P> const & Max)
{
return (compute_rand<uint8, P, vecType>::call() % (Max + static_cast<uint8>(1) - Min)) + Min;
}
};
template <precision P, template <class, precision> class vecType>
struct compute_linearRand<int16, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<int16, P> call(vecType<int16, P> const & Min, vecType<int16, P> const & Max)
{
return (vecType<int16, P>(compute_rand<uint16, P, vecType>::call() % vecType<uint16, P>(Max + static_cast<int16>(1) - Min))) + Min;
}
};
template <precision P, template <class, precision> class vecType>
struct compute_linearRand<uint16, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<uint16, P> call(vecType<uint16, P> const & Min, vecType<uint16, P> const & Max)
{
return (compute_rand<uint16, P, vecType>::call() % (Max + static_cast<uint16>(1) - Min)) + Min;
}
};
template <precision P, template <class, precision> class vecType>
struct compute_linearRand<int32, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<int32, P> call(vecType<int32, P> const & Min, vecType<int32, P> const & Max)
{
return (vecType<int32, P>(compute_rand<uint32, P, vecType>::call() % vecType<uint32, P>(Max + static_cast<int32>(1) - Min))) + Min;
}
};
template <precision P, template <class, precision> class vecType>
struct compute_linearRand<uint32, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<uint32, P> call(vecType<uint32, P> const & Min, vecType<uint32, P> const & Max)
{
return (compute_rand<uint32, P, vecType>::call() % (Max + static_cast<uint32>(1) - Min)) + Min;
}
};
template <precision P, template <class, precision> class vecType>
struct compute_linearRand<int64, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<int64, P> call(vecType<int64, P> const & Min, vecType<int64, P> const & Max)
{
return (vecType<int64, P>(compute_rand<uint64, P, vecType>::call() % vecType<uint64, P>(Max + static_cast<int64>(1) - Min))) + Min;
}
};
template <precision P, template <class, precision> class vecType>
struct compute_linearRand<uint64, P, vecType>
{
GLM_FUNC_QUALIFIER static vecType<uint64, P> call(vecType<uint64, P> const & Min, vecType<uint64, P> const & Max)
{
return (compute_rand<uint64, P, vecType>::call() % (Max + static_cast<uint64>(1) - Min)) + Min;
}
};
template <template <class, precision> class vecType>
struct compute_linearRand<float, lowp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<float, lowp> call(vecType<float, lowp> const & Min, vecType<float, lowp> const & Max)
{
return vecType<float, lowp>(compute_rand<uint8, lowp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint8>::max()) * (Max - Min) + Min;
}
};
template <template <class, precision> class vecType>
struct compute_linearRand<float, mediump, vecType>
{
GLM_FUNC_QUALIFIER static vecType<float, mediump> call(vecType<float, mediump> const & Min, vecType<float, mediump> const & Max)
{
return vecType<float, mediump>(compute_rand<uint16, mediump, vecType>::call()) / static_cast<float>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min;
}
};
template <template <class, precision> class vecType>
struct compute_linearRand<float, highp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<float, highp> call(vecType<float, highp> const & Min, vecType<float, highp> const & Max)
{
return vecType<float, highp>(compute_rand<uint32, highp, vecType>::call()) / static_cast<float>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
}
};
template <template <class, precision> class vecType>
struct compute_linearRand<double, lowp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<double, lowp> call(vecType<double, lowp> const & Min, vecType<double, lowp> const & Max)
{
return vecType<double, lowp>(compute_rand<uint16, lowp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint16>::max()) * (Max - Min) + Min;
}
};
template <template <class, precision> class vecType>
struct compute_linearRand<double, mediump, vecType>
{
GLM_FUNC_QUALIFIER static vecType<double, mediump> call(vecType<double, mediump> const & Min, vecType<double, mediump> const & Max)
{
return vecType<double, mediump>(compute_rand<uint32, mediump, vecType>::call()) / static_cast<double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
}
};
template <template <class, precision> class vecType>
struct compute_linearRand<double, highp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<double, highp> call(vecType<double, highp> const & Min, vecType<double, highp> const & Max)
{
return vecType<double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
}
};
template <template <class, precision> class vecType>
struct compute_linearRand<long double, lowp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<long double, lowp> call(vecType<long double, lowp> const & Min, vecType<long double, lowp> const & Max)
{
return vecType<long double, lowp>(compute_rand<uint32, lowp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint32>::max()) * (Max - Min) + Min;
}
};
template <template <class, precision> class vecType>
struct compute_linearRand<long double, mediump, vecType>
{
GLM_FUNC_QUALIFIER static vecType<long double, mediump> call(vecType<long double, mediump> const & Min, vecType<long double, mediump> const & Max)
{
return vecType<long double, mediump>(compute_rand<uint64, mediump, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
}
};
template <template <class, precision> class vecType>
struct compute_linearRand<long double, highp, vecType>
{
GLM_FUNC_QUALIFIER static vecType<long double, highp> call(vecType<long double, highp> const & Min, vecType<long double, highp> const & Max)
{
return vecType<long double, highp>(compute_rand<uint64, highp, vecType>::call()) / static_cast<long double>(std::numeric_limits<uint64>::max()) * (Max - Min) + Min;
}
};
}//namespace detail
template <typename genType>
GLM_FUNC_QUALIFIER genType linearRand(genType Min, genType Max)
{
return detail::compute_linearRand<genType, highp, tvec1>::call(
tvec1<genType, highp>(Min),
tvec1<genType, highp>(Max)).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> linearRand(vecType<T, P> const & Min, vecType<T, P> const & Max)
{
return detail::compute_linearRand<T, P, vecType>::call(Min, Max);
}
template <typename genType>
GLM_FUNC_QUALIFIER genType gaussRand(genType Mean, genType Deviation)
{
genType w, x1, x2;
do
{
x1 = linearRand(genType(-1), genType(1));
x2 = linearRand(genType(-1), genType(1));
w = x1 * x1 + x2 * x2;
} while(w > genType(1));
return x2 * Deviation * Deviation * sqrt((genType(-2) * log(w)) / w) + Mean;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> gaussRand(vecType<T, P> const & Mean, vecType<T, P> const & Deviation)
{
return detail::functor2<T, P, vecType>::call(gaussRand, Mean, Deviation);
}
template <typename T>
GLM_FUNC_QUALIFIER tvec2<T, defaultp> diskRand(T Radius)
{
tvec2<T, defaultp> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(
tvec2<T, defaultp>(-Radius),
tvec2<T, defaultp>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tvec3<T, defaultp> ballRand(T Radius)
{
tvec3<T, defaultp> Result(T(0));
T LenRadius(T(0));
do
{
Result = linearRand(
tvec3<T, defaultp>(-Radius),
tvec3<T, defaultp>(Radius));
LenRadius = length(Result);
}
while(LenRadius > Radius);
return Result;
}
template <typename T>
GLM_FUNC_QUALIFIER tvec2<T, defaultp> circularRand(T Radius)
{
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
return tvec2<T, defaultp>(cos(a), sin(a)) * Radius;
}
template <typename T>
GLM_FUNC_QUALIFIER tvec3<T, defaultp> sphericalRand(T Radius)
{
T z = linearRand(T(-1), T(1));
T a = linearRand(T(0), T(6.283185307179586476925286766559f));
T r = sqrt(T(1) - z * z);
T x = r * cos(a);
T y = r * sin(a);
return tvec3<T, defaultp>(x, y, z) * Radius;
}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_reciprocal
/// @file glm/gtc/reciprocal.hpp
/// @date 2008-10-09 / 2012-01-25
/// @author Christophe Riccio
///
/// @see core (dependence)
///
/// @defgroup gtc_reciprocal GLM_GTC_reciprocal
/// @ingroup gtc
///
/// @brief Define secant, cosecant and cotangent functions.
///
/// <glm/gtc/reciprocal.hpp> need to be included to use these features.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_reciprocal extension included")
#endif
namespace glm
{
/// @addtogroup gtc_reciprocal
/// @{
/// Secant function.
/// hypotenuse / adjacent or 1 / cos(x)
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType sec(genType const & angle);
/// Cosecant function.
/// hypotenuse / opposite or 1 / sin(x)
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType csc(genType const & angle);
/// Cotangent function.
/// adjacent / opposite or 1 / tan(x)
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType cot(genType const & angle);
/// Inverse secant function.
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType asec(genType const & x);
/// Inverse cosecant function.
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType acsc(genType const & x);
/// Inverse cotangent function.
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType acot(genType const & x);
/// Secant hyperbolic function.
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType sech(genType const & angle);
/// Cosecant hyperbolic function.
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType csch(genType const & angle);
/// Cotangent hyperbolic function.
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType coth(genType const & angle);
/// Inverse secant hyperbolic function.
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType asech(genType const & x);
/// Inverse cosecant hyperbolic function.
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType acsch(genType const & x);
/// Inverse cotangent hyperbolic function.
///
/// @see gtc_reciprocal
template <typename genType>
GLM_FUNC_DECL genType acoth(genType const & x);
/// @}
}//namespace glm
#include "reciprocal.inl"
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_reciprocal
/// @file glm/gtc/reciprocal.inl
/// @date 2008-10-09 / 2012-04-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
#include "../trigonometric.hpp"
#include <limits>
namespace glm
{
// sec
template <typename genType>
GLM_FUNC_QUALIFIER genType sec(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sec' only accept floating-point values");
return genType(1) / glm::cos(angle);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> sec(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sec' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(sec, x);
}
// csc
template <typename genType>
GLM_FUNC_QUALIFIER genType csc(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csc' only accept floating-point values");
return genType(1) / glm::sin(angle);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> csc(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csc' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(csc, x);
}
// cot
template <typename genType>
GLM_FUNC_QUALIFIER genType cot(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'cot' only accept floating-point values");
genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0);
return glm::tan(pi_over_2 - angle);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> cot(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'cot' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(cot, x);
}
// asec
template <typename genType>
GLM_FUNC_QUALIFIER genType asec(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asec' only accept floating-point values");
return acos(genType(1) / x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> asec(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asec' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(asec, x);
}
// acsc
template <typename genType>
GLM_FUNC_QUALIFIER genType acsc(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsc' only accept floating-point values");
return asin(genType(1) / x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> acsc(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsc' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(acsc, x);
}
// acot
template <typename genType>
GLM_FUNC_QUALIFIER genType acot(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acot' only accept floating-point values");
genType const pi_over_2 = genType(3.1415926535897932384626433832795 / 2.0);
return pi_over_2 - atan(x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> acot(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acot' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(acot, x);
}
// sech
template <typename genType>
GLM_FUNC_QUALIFIER genType sech(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'sech' only accept floating-point values");
return genType(1) / glm::cosh(angle);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> sech(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'sech' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(sech, x);
}
// csch
template <typename genType>
GLM_FUNC_QUALIFIER genType csch(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'csch' only accept floating-point values");
return genType(1) / glm::sinh(angle);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> csch(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'csch' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(csch, x);
}
// coth
template <typename genType>
GLM_FUNC_QUALIFIER genType coth(genType angle)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'coth' only accept floating-point values");
return glm::cosh(angle) / glm::sinh(angle);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> coth(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'coth' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(coth, x);
}
// asech
template <typename genType>
GLM_FUNC_QUALIFIER genType asech(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'asech' only accept floating-point values");
return acosh(genType(1) / x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> asech(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'asech' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(asech, x);
}
// acsch
template <typename genType>
GLM_FUNC_QUALIFIER genType acsch(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acsch' only accept floating-point values");
return acsch(genType(1) / x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> acsch(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acsch' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(acsch, x);
}
// acoth
template <typename genType>
GLM_FUNC_QUALIFIER genType acoth(genType x)
{
GLM_STATIC_ASSERT(std::numeric_limits<genType>::is_iec559, "'acoth' only accept floating-point values");
return atanh(genType(1) / x);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> acoth(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(std::numeric_limits<T>::is_iec559, "'acoth' only accept floating-point inputs");
return detail::functor1<T, T, P, vecType>::call(acoth, x);
}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_round
/// @file glm/gtc/round.hpp
/// @date 2014-11-03 / 2014-11-03
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_round (dependence)
///
/// @defgroup gtc_round GLM_GTC_round
/// @ingroup gtc
///
/// @brief rounding value to specific boundings
///
/// <glm/gtc/round.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependencies
#include "../detail/setup.hpp"
#include "../detail/precision.hpp"
#include "../detail/_vectorize.hpp"
#include "../vector_relational.hpp"
#include "../common.hpp"
#include <limits>
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_integer extension included")
#endif
namespace glm
{
/// @addtogroup gtc_round
/// @{
/// Return true if the value is a power of two number.
///
/// @see gtc_round
template <typename genIUType>
GLM_FUNC_DECL bool isPowerOfTwo(genIUType Value);
/// Return true if the value is a power of two number.
///
/// @see gtc_round
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> isPowerOfTwo(vecType<T, P> const & value);
/// Return the power of two number which value is just higher the input value,
/// round up to a power of two.
///
/// @see gtc_round
template <typename genIUType>
GLM_FUNC_DECL genIUType ceilPowerOfTwo(genIUType Value);
/// Return the power of two number which value is just higher the input value,
/// round up to a power of two.
///
/// @see gtc_round
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & value);
/// Return the power of two number which value is just lower the input value,
/// round down to a power of two.
///
/// @see gtc_round
template <typename genIUType>
GLM_FUNC_DECL genIUType floorPowerOfTwo(genIUType Value);
/// Return the power of two number which value is just lower the input value,
/// round down to a power of two.
///
/// @see gtc_round
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> floorPowerOfTwo(vecType<T, P> const & value);
/// Return the power of two number which value is the closet to the input value.
///
/// @see gtc_round
template <typename genIUType>
GLM_FUNC_DECL genIUType roundPowerOfTwo(genIUType Value);
/// Return the power of two number which value is the closet to the input value.
///
/// @see gtc_round
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> roundPowerOfTwo(vecType<T, P> const & value);
/// Return true if the 'Value' is a multiple of 'Multiple'.
///
/// @see gtc_round
template <typename genIUType>
GLM_FUNC_DECL bool isMultiple(genIUType Value, genIUType Multiple);
/// Return true if the 'Value' is a multiple of 'Multiple'.
///
/// @see gtc_round
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple);
/// Return true if the 'Value' is a multiple of 'Multiple'.
///
/// @see gtc_round
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple);
/// Higher multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template <typename genType>
GLM_FUNC_DECL genType ceilMultiple(genType Source, genType Multiple);
/// Higher multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple);
/// Lower multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template <typename genType>
GLM_FUNC_DECL genType floorMultiple(
genType Source,
genType Multiple);
/// Lower multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> floorMultiple(
vecType<T, P> const & Source,
vecType<T, P> const & Multiple);
/// Lower multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template <typename genType>
GLM_FUNC_DECL genType roundMultiple(
genType Source,
genType Multiple);
/// Lower multiple number of Source.
///
/// @tparam genType Floating-point or integer scalar or vector types.
/// @param Source
/// @param Multiple Must be a null or positive value
///
/// @see gtc_round
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_DECL vecType<T, P> roundMultiple(
vecType<T, P> const & Source,
vecType<T, P> const & Multiple);
/// @}
} //namespace glm
#include "round.inl"
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_round
/// @file glm/gtc/round.inl
/// @date 2014-11-03 / 2014-11-03
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////
namespace glm
{
namespace detail
{
template <typename T, precision P, template <typename, precision> class vecType, bool compute = false>
struct compute_ceilShift
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T)
{
return v;
}
};
template <typename T, precision P, template <typename, precision> class vecType>
struct compute_ceilShift<T, P, vecType, true>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & v, T Shift)
{
return v | (v >> Shift);
}
};
template <typename T, precision P, template <typename, precision> class vecType, bool isSigned = true>
struct compute_ceilPowerOfTwo
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vecType<T, P> const Sign(sign(x));
vecType<T, P> v(abs(x));
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32);
return (v + static_cast<T>(1)) * Sign;
}
};
template <typename T, precision P, template <typename, precision> class vecType>
struct compute_ceilPowerOfTwo<T, P, vecType, false>
{
GLM_FUNC_QUALIFIER static vecType<T, P> call(vecType<T, P> const & x)
{
GLM_STATIC_ASSERT(!std::numeric_limits<T>::is_iec559, "'ceilPowerOfTwo' only accept integer scalar or vector inputs");
vecType<T, P> v(x);
v = v - static_cast<T>(1);
v = v | (v >> static_cast<T>(1));
v = v | (v >> static_cast<T>(2));
v = v | (v >> static_cast<T>(4));
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 2>::call(v, 8);
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 4>::call(v, 16);
v = compute_ceilShift<T, P, vecType, sizeof(T) >= 8>::call(v, 32);
return v + static_cast<T>(1);
}
};
template <bool is_float, bool is_signed>
struct compute_ceilMultiple{};
template <>
struct compute_ceilMultiple<true, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - std::fmod(Tmp, Multiple));
}
else
return Source + std::fmod(-Source, Multiple);
}
};
template <>
struct compute_ceilMultiple<false, false>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
};
template <>
struct compute_ceilMultiple<false, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source > genType(0))
{
genType Tmp = Source - genType(1);
return Tmp + (Multiple - (Tmp % Multiple));
}
else
return Source + (-Source % Multiple);
}
};
template <bool is_float, bool is_signed>
struct compute_floorMultiple{};
template <>
struct compute_floorMultiple<true, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
{
genType Tmp = Source + genType(1);
return Tmp - std::fmod(Tmp, Multiple) - Multiple;
}
}
};
template <>
struct compute_floorMultiple<false, false>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template <>
struct compute_floorMultiple<false, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template <bool is_float, bool is_signed>
struct compute_roundMultiple{};
template <>
struct compute_roundMultiple<true, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - std::fmod(Source, Multiple);
else
{
genType Tmp = Source + genType(1);
return Tmp - std::fmod(Tmp, Multiple) - Multiple;
}
}
};
template <>
struct compute_roundMultiple<false, false>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
template <>
struct compute_roundMultiple<false, true>
{
template <typename genType>
GLM_FUNC_QUALIFIER static genType call(genType Source, genType Multiple)
{
if(Source >= genType(0))
return Source - Source % Multiple;
else
{
genType Tmp = Source + genType(1);
return Tmp - Tmp % Multiple - Multiple;
}
}
};
}//namespace detail
////////////////
// isPowerOfTwo
template <typename genType>
GLM_FUNC_QUALIFIER bool isPowerOfTwo(genType Value)
{
genType const Result = glm::abs(Value);
return !(Result & (Result - 1));
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> isPowerOfTwo(vecType<T, P> const & Value)
{
vecType<T, P> const Result(abs(Value));
return equal(Result & (Result - 1), vecType<T, P>(0));
}
//////////////////
// ceilPowerOfTwo
template <typename genType>
GLM_FUNC_QUALIFIER genType ceilPowerOfTwo(genType value)
{
return detail::compute_ceilPowerOfTwo<genType, defaultp, tvec1, std::numeric_limits<genType>::is_signed>::call(tvec1<genType, defaultp>(value)).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> ceilPowerOfTwo(vecType<T, P> const & v)
{
return detail::compute_ceilPowerOfTwo<T, P, vecType, std::numeric_limits<T>::is_signed>::call(v);
}
///////////////////
// floorPowerOfTwo
template <typename genType>
GLM_FUNC_QUALIFIER genType floorPowerOfTwo(genType value)
{
return isPowerOfTwo(value) ? value : highestBitValue(value);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> floorPowerOfTwo(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(floorPowerOfTwo, v);
}
///////////////////
// roundPowerOfTwo
template <typename genIUType>
GLM_FUNC_QUALIFIER genIUType roundPowerOfTwo(genIUType value)
{
if(isPowerOfTwo(value))
return value;
genIUType const prev = highestBitValue(value);
genIUType const next = prev << 1;
return (next - value) < (value - prev) ? next : prev;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> roundPowerOfTwo(vecType<T, P> const & v)
{
return detail::functor1<T, T, P, vecType>::call(roundPowerOfTwo, v);
}
////////////////
// isMultiple
template <typename genType>
GLM_FUNC_QUALIFIER bool isMultiple(genType Value, genType Multiple)
{
return isMultiple(tvec1<genType>(Value), tvec1<genType>(Multiple)).x;
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, T Multiple)
{
return (Value % Multiple) == vecType<T, P>(0);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<bool, P> isMultiple(vecType<T, P> const & Value, vecType<T, P> const & Multiple)
{
return (Value % Multiple) == vecType<T, P>(0);
}
//////////////////////
// ceilMultiple
template <typename genType>
GLM_FUNC_QUALIFIER genType ceilMultiple(genType Source, genType Multiple)
{
return detail::compute_ceilMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> ceilMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple)
{
return detail::functor2<T, P, vecType>::call(ceilMultiple, Source, Multiple);
}
//////////////////////
// floorMultiple
template <typename genType>
GLM_FUNC_QUALIFIER genType floorMultiple(genType Source, genType Multiple)
{
return detail::compute_floorMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> floorMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple)
{
return detail::functor2<T, P, vecType>::call(floorMultiple, Source, Multiple);
}
//////////////////////
// roundMultiple
template <typename genType>
GLM_FUNC_QUALIFIER genType roundMultiple(genType Source, genType Multiple)
{
return detail::compute_roundMultiple<std::numeric_limits<genType>::is_iec559, std::numeric_limits<genType>::is_signed>::call(Source, Multiple);
}
template <typename T, precision P, template <typename, precision> class vecType>
GLM_FUNC_QUALIFIER vecType<T, P> roundMultiple(vecType<T, P> const & Source, vecType<T, P> const & Multiple)
{
return detail::functor2<T, P, vecType>::call(roundMultiple, Source, Multiple);
}
}//namespace glm
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
///
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
///
/// Restrictions:
/// By making use of the Software for military purposes, you choose to make
/// a Bunny unhappy.
///
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtc_type_precision
/// @file glm/gtc/type_precision.hpp
/// @date 2009-06-04 / 2011-12-07
/// @author Christophe Riccio
///
/// @see core (dependence)
/// @see gtc_half_float (dependence)
/// @see gtc_quaternion (dependence)
///
/// @defgroup gtc_type_precision GLM_GTC_type_precision
/// @ingroup gtc
///
/// @brief Defines specific C++-based precision types.
///
/// @ref core_precision defines types based on GLSL's precision qualifiers. This
/// extension defines types based on explicitly-sized C++ data types.
///
/// <glm/gtc/type_precision.hpp> need to be included to use these functionalities.
///////////////////////////////////////////////////////////////////////////////////
#pragma once
// Dependency:
#include "../gtc/quaternion.hpp"
#include "../gtc/vec1.hpp"
#include "../vec2.hpp"
#include "../vec3.hpp"
#include "../vec4.hpp"
#include "../mat2x2.hpp"
#include "../mat2x3.hpp"
#include "../mat2x4.hpp"
#include "../mat3x2.hpp"
#include "../mat3x3.hpp"
#include "../mat3x4.hpp"
#include "../mat4x2.hpp"
#include "../mat4x3.hpp"
#include "../mat4x4.hpp"
#if(defined(GLM_MESSAGES) && !defined(GLM_EXT_INCLUDED))
# pragma message("GLM: GLM_GTC_type_precision extension included")
#endif
namespace glm
{
///////////////////////////
// Signed int vector types
/// @addtogroup gtc_type_precision
/// @{
/// Low precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 lowp_int8;
/// Low precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 lowp_int16;
/// Low precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 lowp_int32;
/// Low precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 lowp_int64;
/// Low precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 lowp_int8_t;
/// Low precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 lowp_int16_t;
/// Low precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 lowp_int32_t;
/// Low precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 lowp_int64_t;
/// Low precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 lowp_i8;
/// Low precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 lowp_i16;
/// Low precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 lowp_i32;
/// Low precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 lowp_i64;
/// Medium precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 mediump_int8;
/// Medium precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 mediump_int16;
/// Medium precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 mediump_int32;
/// Medium precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 mediump_int64;
/// Medium precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 mediump_int8_t;
/// Medium precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 mediump_int16_t;
/// Medium precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 mediump_int32_t;
/// Medium precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 mediump_int64_t;
/// Medium precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 mediump_i8;
/// Medium precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 mediump_i16;
/// Medium precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 mediump_i32;
/// Medium precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 mediump_i64;
/// High precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 highp_int8;
/// High precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 highp_int16;
/// High precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 highp_int32;
/// High precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 highp_int64;
/// High precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 highp_int8_t;
/// High precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 highp_int16_t;
/// 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 highp_int32_t;
/// High precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 highp_int64_t;
/// High precision 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 highp_i8;
/// High precision 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 highp_i16;
/// High precision 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 highp_i32;
/// High precision 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 highp_i64;
/// 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 int8;
/// 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 int16;
/// 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 int32;
/// 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 int64;
#if GLM_HAS_EXTENDED_INTEGER_TYPE
using std::int8_t;
using std::int16_t;
using std::int32_t;
using std::int64_t;
#else
/// 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 int8_t;
/// 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 int16_t;
/// 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 int32_t;
/// 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 int64_t;
#endif
/// 8 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int8 i8;
/// 16 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int16 i16;
/// 32 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int32 i32;
/// 64 bit signed integer type.
/// @see gtc_type_precision
typedef detail::int64 i64;
/// 8 bit signed integer scalar type.
/// @see gtc_type_precision
typedef tvec1<i8, defaultp> i8vec1;
/// 8 bit signed integer vector of 2 components type.
/// @see gtc_type_precision
typedef tvec2<i8, defaultp> i8vec2;
/// 8 bit signed integer vector of 3 components type.
/// @see gtc_type_precision
typedef tvec3<i8, defaultp> i8vec3;
/// 8 bit signed integer vector of 4 components type.
/// @see gtc_type_precision
typedef tvec4<i8, defaultp> i8vec4;
/// 16 bit signed integer scalar type.
/// @see gtc_type_precision
typedef tvec1<i16, defaultp> i16vec1;
/// 16 bit signed integer vector of 2 components type.
/// @see gtc_type_precision
typedef tvec2<i16, defaultp> i16vec2;
/// 16 bit signed integer vector of 3 components type.
/// @see gtc_type_precision
typedef tvec3<i16, defaultp> i16vec3;
/// 16 bit signed integer vector of 4 components type.
/// @see gtc_type_precision
typedef tvec4<i16, defaultp> i16vec4;
/// 32 bit signed integer scalar type.
/// @see gtc_type_precision
typedef tvec1<i32, defaultp> i32vec1;
/// 32 bit signed integer vector of 2 components type.
/// @see gtc_type_precision
typedef tvec2<i32, defaultp> i32vec2;
/// 32 bit signed integer vector of 3 components type.
/// @see gtc_type_precision
typedef tvec3<i32, defaultp> i32vec3;
/// 32 bit signed integer vector of 4 components type.
/// @see gtc_type_precision
typedef tvec4<i32, defaultp> i32vec4;
/// 64 bit signed integer scalar type.
/// @see gtc_type_precision
typedef tvec1<i64, defaultp> i64vec1;
/// 64 bit signed integer vector of 2 components type.
/// @see gtc_type_precision
typedef tvec2<i64, defaultp> i64vec2;
/// 64 bit signed integer vector of 3 components type.
/// @see gtc_type_precision
typedef tvec3<i64, defaultp> i64vec3;
/// 64 bit signed integer vector of 4 components type.
/// @see gtc_type_precision
typedef tvec4<i64, defaultp> i64vec4;
/////////////////////////////
// Unsigned int vector types
/// Low precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 lowp_uint8;
/// Low precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 lowp_uint16;
/// Low precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 lowp_uint32;
/// Low precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 lowp_uint64;
/// Low precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 lowp_uint8_t;
/// Low precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 lowp_uint16_t;
/// Low precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 lowp_uint32_t;
/// Low precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 lowp_uint64_t;
/// Low precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 lowp_u8;
/// Low precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 lowp_u16;
/// Low precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 lowp_u32;
/// Low precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 lowp_u64;
/// Medium precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 mediump_uint8;
/// Medium precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 mediump_uint16;
/// Medium precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 mediump_uint32;
/// Medium precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 mediump_uint64;
/// Medium precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 mediump_uint8_t;
/// Medium precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 mediump_uint16_t;
/// Medium precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 mediump_uint32_t;
/// Medium precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 mediump_uint64_t;
/// Medium precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 mediump_u8;
/// Medium precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 mediump_u16;
/// Medium precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 mediump_u32;
/// Medium precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 mediump_u64;
/// High precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 highp_uint8;
/// High precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 highp_uint16;
/// High precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 highp_uint32;
/// High precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 highp_uint64;
/// High precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 highp_uint8_t;
/// High precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 highp_uint16_t;
/// High precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 highp_uint32_t;
/// High precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 highp_uint64_t;
/// High precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 highp_u8;
/// High precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 highp_u16;
/// High precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 highp_u32;
/// High precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 highp_u64;
/// Default precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 uint8;
/// Default precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 uint16;
/// Default precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 uint32;
/// Default precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 uint64;
#if GLM_HAS_EXTENDED_INTEGER_TYPE
using std::uint8_t;
using std::uint16_t;
using std::uint32_t;
using std::uint64_t;
#else
/// Default precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 uint8_t;
/// Default precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 uint16_t;
/// Default precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 uint32_t;
/// Default precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 uint64_t;
#endif
/// Default precision 8 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint8 u8;
/// Default precision 16 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint16 u16;
/// Default precision 32 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint32 u32;
/// Default precision 64 bit unsigned integer type.
/// @see gtc_type_precision
typedef detail::uint64 u64;
/// Default precision 8 bit unsigned integer scalar type.
/// @see gtc_type_precision
typedef tvec1<u8, defaultp> u8vec1;
/// Default precision 8 bit unsigned integer vector of 2 components type.
/// @see gtc_type_precision
typedef tvec2<u8, defaultp> u8vec2;
/// Default precision 8 bit unsigned integer vector of 3 components type.
/// @see gtc_type_precision
typedef tvec3<u8, defaultp> u8vec3;
/// Default precision 8 bit unsigned integer vector of 4 components type.
/// @see gtc_type_precision
typedef tvec4<u8, defaultp> u8vec4;
/// Default precision 16 bit unsigned integer scalar type.
/// @see gtc_type_precision
typedef tvec1<u16, defaultp> u16vec1;
/// Default precision 16 bit unsigned integer vector of 2 components type.
/// @see gtc_type_precision
typedef tvec2<u16, defaultp> u16vec2;
/// Default precision 16 bit unsigned integer vector of 3 components type.
/// @see gtc_type_precision
typedef tvec3<u16, defaultp> u16vec3;
/// Default precision 16 bit unsigned integer vector of 4 components type.
/// @see gtc_type_precision
typedef tvec4<u16, defaultp> u16vec4;
/// Default precision 32 bit unsigned integer scalar type.
/// @see gtc_type_precision
typedef tvec1<u32, defaultp> u32vec1;
/// Default precision 32 bit unsigned integer vector of 2 components type.
/// @see gtc_type_precision
typedef tvec2<u32, defaultp> u32vec2;
/// Default precision 32 bit unsigned integer vector of 3 components type.
/// @see gtc_type_precision
typedef tvec3<u32, defaultp> u32vec3;
/// Default precision 32 bit unsigned integer vector of 4 components type.
/// @see gtc_type_precision
typedef tvec4<u32, defaultp> u32vec4;
/// Default precision 64 bit unsigned integer scalar type.
/// @see gtc_type_precision
typedef tvec1<u64, defaultp> u64vec1;
/// Default precision 64 bit unsigned integer vector of 2 components type.
/// @see gtc_type_precision
typedef tvec2<u64, defaultp> u64vec2;
/// Default precision 64 bit unsigned integer vector of 3 components type.
/// @see gtc_type_precision
typedef tvec3<u64, defaultp> u64vec3;
/// Default precision 64 bit unsigned integer vector of 4 components type.
/// @see gtc_type_precision
typedef tvec4<u64, defaultp> u64vec4;
//////////////////////
// Float vector types
/// 32 bit single-precision floating-point scalar.
/// @see gtc_type_precision
typedef detail::float32 float32;
/// 64 bit double-precision floating-point scalar.
/// @see gtc_type_precision
typedef detail::float64 float64;
/// 32 bit single-precision floating-point scalar.
/// @see gtc_type_precision
typedef detail::float32 float32_t;
/// 64 bit double-precision floating-point scalar.
/// @see gtc_type_precision
typedef detail::float64 float64_t;
/// 32 bit single-precision floating-point scalar.
/// @see gtc_type_precision
typedef float32 f32;
/// 64 bit double-precision floating-point scalar.
/// @see gtc_type_precision
typedef float64 f64;
/// Single-precision floating-point vector of 1 component.
/// @see gtc_type_precision
typedef tvec1<float, defaultp> fvec1;
/// Single-precision floating-point vector of 2 components.
/// @see gtc_type_precision
typedef tvec2<float, defaultp> fvec2;
/// Single-precision floating-point vector of 3 components.
/// @see gtc_type_precision
typedef tvec3<float, defaultp> fvec3;
/// Single-precision floating-point vector of 4 components.
/// @see gtc_type_precision
typedef tvec4<float, defaultp> fvec4;
/// Single-precision floating-point vector of 1 component.
/// @see gtc_type_precision
typedef tvec1<f32, defaultp> f32vec1;
/// Single-precision floating-point vector of 2 components.
/// @see gtc_type_precision
typedef tvec2<f32, defaultp> f32vec2;
/// Single-precision floating-point vector of 3 components.
/// @see gtc_type_precision
typedef tvec3<f32, defaultp> f32vec3;
/// Single-precision floating-point vector of 4 components.
/// @see gtc_type_precision
typedef tvec4<f32, defaultp> f32vec4;
/// Double-precision floating-point vector of 1 component.
/// @see gtc_type_precision
typedef tvec1<f64, defaultp> f64vec1;
/// Double-precision floating-point vector of 2 components.
/// @see gtc_type_precision
typedef tvec2<f64, defaultp> f64vec2;
/// Double-precision floating-point vector of 3 components.
/// @see gtc_type_precision
typedef tvec3<f64, defaultp> f64vec3;
/// Double-precision floating-point vector of 4 components.
/// @see gtc_type_precision
typedef tvec4<f64, defaultp> f64vec4;
//////////////////////
// Float matrix types
/// Single-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef detail::tmat1x1<f32> fmat1;
/// Single-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef tmat2x2<f32, defaultp> fmat2;
/// Single-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef tmat3x3<f32, defaultp> fmat3;
/// Single-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef tmat4x4<f32, defaultp> fmat4;
/// Single-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef f32 fmat1x1;
/// Single-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef tmat2x2<f32, defaultp> fmat2x2;
/// Single-precision floating-point 2x3 matrix.
/// @see gtc_type_precision
typedef tmat2x3<f32, defaultp> fmat2x3;
/// Single-precision floating-point 2x4 matrix.
/// @see gtc_type_precision
typedef tmat2x4<f32, defaultp> fmat2x4;
/// Single-precision floating-point 3x2 matrix.
/// @see gtc_type_precision
typedef tmat3x2<f32, defaultp> fmat3x2;
/// Single-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef tmat3x3<f32, defaultp> fmat3x3;
/// Single-precision floating-point 3x4 matrix.
/// @see gtc_type_precision
typedef tmat3x4<f32, defaultp> fmat3x4;
/// Single-precision floating-point 4x2 matrix.
/// @see gtc_type_precision
typedef tmat4x2<f32, defaultp> fmat4x2;
/// Single-precision floating-point 4x3 matrix.
/// @see gtc_type_precision
typedef tmat4x3<f32, defaultp> fmat4x3;
/// Single-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef tmat4x4<f32, defaultp> fmat4x4;
/// Single-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef detail::tmat1x1<f32, defaultp> f32mat1;
/// Single-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef tmat2x2<f32, defaultp> f32mat2;
/// Single-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef tmat3x3<f32, defaultp> f32mat3;
/// Single-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef tmat4x4<f32, defaultp> f32mat4;
/// Single-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef f32 f32mat1x1;
/// Single-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef tmat2x2<f32, defaultp> f32mat2x2;
/// Single-precision floating-point 2x3 matrix.
/// @see gtc_type_precision
typedef tmat2x3<f32, defaultp> f32mat2x3;
/// Single-precision floating-point 2x4 matrix.
/// @see gtc_type_precision
typedef tmat2x4<f32, defaultp> f32mat2x4;
/// Single-precision floating-point 3x2 matrix.
/// @see gtc_type_precision
typedef tmat3x2<f32, defaultp> f32mat3x2;
/// Single-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef tmat3x3<f32, defaultp> f32mat3x3;
/// Single-precision floating-point 3x4 matrix.
/// @see gtc_type_precision
typedef tmat3x4<f32, defaultp> f32mat3x4;
/// Single-precision floating-point 4x2 matrix.
/// @see gtc_type_precision
typedef tmat4x2<f32, defaultp> f32mat4x2;
/// Single-precision floating-point 4x3 matrix.
/// @see gtc_type_precision
typedef tmat4x3<f32, defaultp> f32mat4x3;
/// Single-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef tmat4x4<f32, defaultp> f32mat4x4;
/// Double-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef detail::tmat1x1<f64, defaultp> f64mat1;
/// Double-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef tmat2x2<f64, defaultp> f64mat2;
/// Double-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef tmat3x3<f64, defaultp> f64mat3;
/// Double-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef tmat4x4<f64, defaultp> f64mat4;
/// Double-precision floating-point 1x1 matrix.
/// @see gtc_type_precision
//typedef f64 f64mat1x1;
/// Double-precision floating-point 2x2 matrix.
/// @see gtc_type_precision
typedef tmat2x2<f64, defaultp> f64mat2x2;
/// Double-precision floating-point 2x3 matrix.
/// @see gtc_type_precision
typedef tmat2x3<f64, defaultp> f64mat2x3;
/// Double-precision floating-point 2x4 matrix.
/// @see gtc_type_precision
typedef tmat2x4<f64, defaultp> f64mat2x4;
/// Double-precision floating-point 3x2 matrix.
/// @see gtc_type_precision
typedef tmat3x2<f64, defaultp> f64mat3x2;
/// Double-precision floating-point 3x3 matrix.
/// @see gtc_type_precision
typedef tmat3x3<f64, defaultp> f64mat3x3;
/// Double-precision floating-point 3x4 matrix.
/// @see gtc_type_precision
typedef tmat3x4<f64, defaultp> f64mat3x4;
/// Double-precision floating-point 4x2 matrix.
/// @see gtc_type_precision
typedef tmat4x2<f64, defaultp> f64mat4x2;
/// Double-precision floating-point 4x3 matrix.
/// @see gtc_type_precision
typedef tmat4x3<f64, defaultp> f64mat4x3;
/// Double-precision floating-point 4x4 matrix.
/// @see gtc_type_precision
typedef tmat4x4<f64, defaultp> f64mat4x4;
//////////////////////////
// Quaternion types
/// Single-precision floating-point quaternion.
/// @see gtc_type_precision
typedef tquat<f32, defaultp> f32quat;
/// Double-precision floating-point quaternion.
/// @see gtc_type_precision
typedef tquat<f64, defaultp> f64quat;
/// @}
}//namespace glm
#include "type_precision.inl"
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment