Commit 2a1d7973 authored by Nianchen Deng's avatar Nianchen Deng
Browse files

for batch infer evaluation on multiple hosts

parent 7e0ade21
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -2,23 +2,16 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Set CUDA:2 as current device.\n"
]
}
],
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../'))\n",
"rootdir = os.path.abspath(sys.path[0] + '/../')\n",
"sys.path.append(rootdir)\n",
"torch.cuda.set_device(2)\n",
"print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n",
"torch.autograd.set_grad_enabled(False)\n",
......@@ -74,24 +67,12 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Change working directory to /home/dengnc/deep_view_syn/data/__0_user_study/us_mc_all_in_one\n",
"Load net from fovea@nmsl-rgb_e10_fc128x4_d1-50_s32.pth ...\n",
"Load net from periph@nnmsl-rgb_e10_fc64x4_d1-50_s16.pth ...\n",
"Dataset loaded.\n",
"views: [110]\n"
]
}
],
"outputs": [],
"source": [
"scene = 'mc'\n",
"os.chdir(sys.path[0] + '/../data/' + scenes[scene])\n",
"os.chdir(os.path.join(rootdir, 'data/' + scenes[scene]))\n",
"print('Change working directory to ', os.getcwd())\n",
"\n",
"fovea_net = load_net(find_file('fovea'))\n",
......@@ -128,7 +109,7 @@
" # ), test_view.r), mono_trans=test_view, ret_raw=True)\n",
" #plot_figures(images, center)\n",
"\n",
" outputdir = '/home/dengnc/deep_view_syn/data/__1_eval/output_mono_periph/ref_as_right_eye/%s/' % scene\n",
" outputdir = '../__1_eval/output_mono_periph/ref_as_right_eye/%s/' % scene\n",
" misc.create_dir(outputdir)\n",
" #for key in images:\n",
" key = 'blended'\n",
......@@ -137,21 +118,9 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "gen() takes 3 positional arguments but 4 were given",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-5-245bea67ea44>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mcenter\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mtest_view\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mviews\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mimages\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgen\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcenter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtest_view\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0;31m#plot_figures(images, center)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: gen() takes 3 positional arguments but 4 were given"
]
}
],
"outputs": [],
"source": [
"import numpy as np\n",
"gaze_idx = 0\n",
......
......@@ -2,24 +2,17 @@
"cells": [
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Set CUDA:2 as current device.\n"
]
}
],
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../'))\n",
"rootdir = os.path.abspath(sys.path[0] + '/../')\n",
"sys.path.append(rootdir)\n",
"torch.cuda.set_device(2)\n",
"print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n",
"\n",
......@@ -97,43 +90,13 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Change working directory to /home/dengnc/deep_view_syn/data/lobby_all_in_one\n",
"==== Config fovea ====\n",
"Net type: nmsl\n",
"Encode dim: 10\n",
"Optimizer decay: 0\n",
"Normalize: False\n",
"Direction as input: False\n",
"Full-connected network parameters: {'nf': 128, 'n_layers': 4, 'skips': []}\n",
"Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 32, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
"==========================\n",
"Load net from fovea@nmsl-rgb_e10_fc128x4_d1.00-50.00_s32.pth ...\n",
"==== Config periph ====\n",
"Net type: nnmsl\n",
"Encode dim: 10\n",
"Optimizer decay: 0\n",
"Normalize: False\n",
"Direction as input: False\n",
"Full-connected network parameters: {'nf': 64, 'n_layers': 4, 'skips': []}\n",
"Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 16, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
"==========================\n",
"Load net from periph@nnmsl-rgb_e10_fc64x4_d1.00-50.00_s16.pth ...\n",
"Dataset loaded.\n",
"views: [13]\n"
]
}
],
"outputs": [],
"source": [
"#os.chdir(sys.path[0] + '/../data/__0_user_study/us_gas_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/__0_user_study/us_mc_all_in_one')\n",
"os.chdir(sys.path[0] + '/../data/lobby_all_in_one')\n",
"#os.chdir(os.path.join(rootdir, 'data/__0_user_study/us_gas_all_in_one'))\n",
"#os.chdir(os.path.join(rootdir, 'data/__0_user_study/us_mc_all_in_one'))\n",
"os.chdir(os.path.join(rootdir, 'data/lobby_all_in_one'))\n",
"print('Change working directory to ', os.getcwd())\n",
"torch.autograd.set_grad_enabled(False)\n",
"\n",
......
......@@ -19,7 +19,8 @@
"import torch\n",
"import matplotlib.pyplot as plt\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../'))\n",
"rootdir = os.path.abspath(sys.path[0] + '/../')\n",
"sys.path.append(rootdir)\n",
"torch.cuda.set_device(2)\n",
"print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n",
"\n",
......@@ -97,43 +98,13 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Change working directory to /home/dengnc/deep_view_syn/data/__0_user_study/us_gas_all_in_one\n",
"==== Config fovea ====\n",
"Net type: nmsl\n",
"Encode dim: 10\n",
"Optimizer decay: 0\n",
"Normalize: False\n",
"Direction as input: False\n",
"Full-connected network parameters: {'nf': 128, 'n_layers': 4, 'skips': []}\n",
"Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 32, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
"==========================\n",
"Load net from fovea@nmsl-rgb_e10_fc128x4_d1-50_s32.pth ...\n",
"==== Config periph ====\n",
"Net type: nnmsl\n",
"Encode dim: 10\n",
"Optimizer decay: 0\n",
"Normalize: False\n",
"Direction as input: False\n",
"Full-connected network parameters: {'nf': 64, 'n_layers': 4, 'skips': []}\n",
"Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 16, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
"==========================\n",
"Load net from periph@nnmsl-rgb_e10_fc64x4_d1-50_s16.pth ...\n",
"Dataset loaded.\n",
"views: [110]\n"
]
}
],
"outputs": [],
"source": [
"os.chdir(sys.path[0] + '/../data/__0_user_study/us_gas_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/__0_user_study/us_mc_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/lobby_all_in_one')\n",
"os.chdir(os.path.join(rootdir, 'data/__0_user_study/us_gas_all_in_one'))\n",
"#os.chdir(os.path.join(rootdir, 'data/__0_user_study/us_mc_all_in_one'))\n",
"#os.chdir(os.path.join(rootdir, 'data/__0_user_study/lobby_all_in_one'))\n",
"print('Change working directory to ', os.getcwd())\n",
"torch.autograd.set_grad_enabled(False)\n",
"\n",
......@@ -156,133 +127,9 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"GetRays: 580.4ms\n",
"Sample: 2.1ms\n",
"Encode: 2.2ms\n",
"Rays: tensor([[-0.1711, 0.1711, 0.9702],\n",
" [-0.1685, 0.1711, 0.9707],\n",
" [-0.1659, 0.1713, 0.9712],\n",
" ...,\n",
" [ 0.1633, -0.1687, 0.9722],\n",
" [ 0.1660, -0.1687, 0.9717],\n",
" [ 0.1686, -0.1686, 0.9712]], device='cuda:2')\n",
"Spherical coords: tensor([[[1.0000, 1.7454, 1.3988],\n",
" [0.9684, 1.7454, 1.3988],\n",
" [0.9368, 1.7454, 1.3988],\n",
" ...,\n",
" [0.0832, 1.7454, 1.3988],\n",
" [0.0516, 1.7454, 1.3988],\n",
" [0.0200, 1.7454, 1.3988]],\n",
"\n",
" [[1.0000, 1.7426, 1.3988],\n",
" [0.9684, 1.7426, 1.3988],\n",
" [0.9368, 1.7426, 1.3988],\n",
" ...,\n",
" [0.0832, 1.7426, 1.3988],\n",
" [0.0516, 1.7426, 1.3988],\n",
" [0.0200, 1.7426, 1.3988]],\n",
"\n",
" [[1.0000, 1.7400, 1.3987],\n",
" [0.9684, 1.7400, 1.3987],\n",
" [0.9368, 1.7400, 1.3987],\n",
" ...,\n",
" [0.0832, 1.7400, 1.3987],\n",
" [0.0516, 1.7400, 1.3987],\n",
" [0.0200, 1.7400, 1.3987]],\n",
"\n",
" ...,\n",
"\n",
" [[1.0000, 1.4043, 1.7403],\n",
" [0.9684, 1.4043, 1.7403],\n",
" [0.9368, 1.4043, 1.7403],\n",
" ...,\n",
" [0.0832, 1.4043, 1.7403],\n",
" [0.0516, 1.4043, 1.7403],\n",
" [0.0200, 1.4043, 1.7403]],\n",
"\n",
" [[1.0000, 1.4016, 1.7403],\n",
" [0.9684, 1.4016, 1.7403],\n",
" [0.9368, 1.4016, 1.7403],\n",
" ...,\n",
" [0.0832, 1.4016, 1.7403],\n",
" [0.0516, 1.4016, 1.7403],\n",
" [0.0200, 1.4016, 1.7403]],\n",
"\n",
" [[1.0000, 1.3989, 1.7402],\n",
" [0.9684, 1.3989, 1.7402],\n",
" [0.9368, 1.3989, 1.7402],\n",
" ...,\n",
" [0.0832, 1.3989, 1.7402],\n",
" [0.0516, 1.3989, 1.7402],\n",
" [0.0200, 1.3989, 1.7402]]], device='cuda:2')\n",
"Depths: tensor([[ 1.0001, 1.0327, 1.0675, ..., 12.0161, 19.3760, 50.0026],\n",
" [ 1.0000, 1.0327, 1.0675, ..., 12.0159, 19.3757, 50.0017],\n",
" [ 1.0000, 1.0326, 1.0675, ..., 12.0151, 19.3744, 49.9984],\n",
" ...,\n",
" [ 0.9999, 1.0325, 1.0674, ..., 12.0140, 19.3726, 49.9938],\n",
" [ 0.9999, 1.0326, 1.0674, ..., 12.0144, 19.3732, 49.9954],\n",
" [ 1.0000, 1.0326, 1.0675, ..., 12.0152, 19.3745, 49.9987]],\n",
" device='cuda:2')\n",
"Encoded: tensor([[[ 1.0000, 1.7454, 1.3988, ..., -0.9968, 0.1395, 0.9952],\n",
" [ 0.9684, 1.7454, 1.3988, ..., 0.8486, 0.1395, 0.9952],\n",
" [ 0.9368, 1.7454, 1.3988, ..., -0.5103, 0.1395, 0.9952],\n",
" ...,\n",
" [ 0.0832, 1.7454, 1.3988, ..., 0.1988, 0.1395, 0.9952],\n",
" [ 0.0516, 1.7454, 1.3988, ..., 0.2742, 0.1395, 0.9952],\n",
" [ 0.0200, 1.7454, 1.3988, ..., -0.6857, 0.1395, 0.9952]],\n",
"\n",
" [[ 1.0000, 1.7426, 1.3988, ..., -0.9968, 0.9999, 0.9953],\n",
" [ 0.9684, 1.7426, 1.3988, ..., 0.8486, 0.9999, 0.9953],\n",
" [ 0.9368, 1.7426, 1.3988, ..., -0.5103, 0.9999, 0.9953],\n",
" ...,\n",
" [ 0.0832, 1.7426, 1.3988, ..., 0.1988, 0.9999, 0.9953],\n",
" [ 0.0516, 1.7426, 1.3988, ..., 0.2742, 0.9999, 0.9953],\n",
" [ 0.0200, 1.7426, 1.3988, ..., -0.6857, 0.9999, 0.9953]],\n",
"\n",
" [[ 1.0000, 1.7400, 1.3987, ..., -0.9968, 0.2253, 0.9881],\n",
" [ 0.9684, 1.7400, 1.3987, ..., 0.8486, 0.2253, 0.9881],\n",
" [ 0.9368, 1.7400, 1.3987, ..., -0.5103, 0.2253, 0.9881],\n",
" ...,\n",
" [ 0.0832, 1.7400, 1.3987, ..., 0.1988, 0.2253, 0.9881],\n",
" [ 0.0516, 1.7400, 1.3987, ..., 0.2742, 0.2253, 0.9881],\n",
" [ 0.0200, 1.7400, 1.3987, ..., -0.6857, 0.2253, 0.9881]],\n",
"\n",
" ...,\n",
"\n",
" [[ 1.0000, 1.4043, 1.7403, ..., -0.9968, -0.9210, 0.3760],\n",
" [ 0.9684, 1.4043, 1.7403, ..., 0.8486, -0.9210, 0.3760],\n",
" [ 0.9368, 1.4043, 1.7403, ..., -0.5103, -0.9210, 0.3760],\n",
" ...,\n",
" [ 0.0832, 1.4043, 1.7403, ..., 0.1988, -0.9210, 0.3760],\n",
" [ 0.0516, 1.4043, 1.7403, ..., 0.2742, -0.9210, 0.3760],\n",
" [ 0.0200, 1.4043, 1.7403, ..., -0.6857, -0.9210, 0.3760]],\n",
"\n",
" [[ 1.0000, 1.4016, 1.7403, ..., -0.9968, 0.2445, 0.3786],\n",
" [ 0.9684, 1.4016, 1.7403, ..., 0.8486, 0.2445, 0.3786],\n",
" [ 0.9368, 1.4016, 1.7403, ..., -0.5103, 0.2445, 0.3786],\n",
" ...,\n",
" [ 0.0832, 1.4016, 1.7403, ..., 0.1988, 0.2445, 0.3786],\n",
" [ 0.0516, 1.4016, 1.7403, ..., 0.2742, 0.2445, 0.3786],\n",
" [ 0.0200, 1.4016, 1.7403, ..., -0.6857, 0.2445, 0.3786]],\n",
"\n",
" [[ 1.0000, 1.3989, 1.7402, ..., -0.9968, 0.9995, 0.3247],\n",
" [ 0.9684, 1.3989, 1.7402, ..., 0.8486, 0.9995, 0.3247],\n",
" [ 0.9368, 1.3989, 1.7402, ..., -0.5103, 0.9995, 0.3247],\n",
" ...,\n",
" [ 0.0832, 1.3989, 1.7402, ..., 0.1988, 0.9995, 0.3247],\n",
" [ 0.0516, 1.3989, 1.7402, ..., 0.2742, 0.9995, 0.3247],\n",
" [ 0.0200, 1.3989, 1.7402, ..., -0.6857, 0.9995, 0.3247]]],\n",
" device='cuda:2')\n"
]
}
],
"outputs": [],
"source": [
"test_view = view.Trans(\n",
" torch.tensor([[0.0, 0.0, 0.0]], device=device.default()),\n",
......
......@@ -2,24 +2,17 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Set CUDA:2 as current device.\n"
]
}
],
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../'))\n",
"rootdir = os.path.abspath(sys.path[0] + '/../')\n",
"sys.path.append(rootdir)\n",
"torch.cuda.set_device(2)\n",
"print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n",
"\n",
......@@ -132,43 +125,13 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Change working directory to /home/dengnc/deep_view_syn/data/__0_user_study/us_mc_all_in_one\n",
"==== Config fovea ====\n",
"Net type: nmsl\n",
"Encode dim: 10\n",
"Optimizer decay: 0\n",
"Normalize: False\n",
"Direction as input: False\n",
"Full-connected network parameters: {'nf': 128, 'n_layers': 4, 'skips': []}\n",
"Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 32, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
"==========================\n",
"Load net from fovea@nmsl-rgb_e10_fc128x4_d1-50_s32.pth ...\n",
"==== Config periph ====\n",
"Net type: nnmsl\n",
"Encode dim: 10\n",
"Optimizer decay: 0\n",
"Normalize: False\n",
"Direction as input: False\n",
"Full-connected network parameters: {'nf': 64, 'n_layers': 4, 'skips': []}\n",
"Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 16, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
"==========================\n",
"Load net from periph@nnmsl-rgb_e10_fc64x4_d1-50_s16.pth ...\n",
"Dataset loaded.\n",
"views: [5, 5, 5, 5, 5]\n"
]
}
],
"outputs": [],
"source": [
"#os.chdir(sys.path[0] + '/../data/__0_user_study/us_gas_all_in_one')\n",
"os.chdir(sys.path[0] + '/../data/__0_user_study/us_mc_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/bedroom_all_in_one')\n",
"#os.chdir(os.path.join(rootdir, 'data/__0_user_study/us_gas_all_in_one'))\n",
"os.chdir(os.path.join(rootdir, 'data/__0_user_study/us_mc_all_in_one'))\n",
"#os.chdir(os.path.join(rootdir, 'data/__0_user_study/bedroom_all_in_one'))\n",
"print('Change working directory to ', os.getcwd())\n",
"torch.autograd.set_grad_enabled(False)\n",
"\n",
......@@ -192,19 +155,9 @@
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"view_coord: [2, 2, 2, 2, 2]\n",
"shift: 3\n",
"shift: -3\n"
]
}
],
"outputs": [],
"source": [
"centers = [\n",
" # ==gas==\n",
......
......@@ -2,24 +2,17 @@
"cells": [
{
"cell_type": "code",
"execution_count": 4,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Set CUDA:2 as current device.\n"
]
}
],
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"import matplotlib.pyplot as plt\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../'))\n",
"rootdir = os.path.abspath(sys.path[0] + '/../')\n",
"sys.path.append(rootdir)\n",
"torch.cuda.set_device(2)\n",
"print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n",
"torch.autograd.set_grad_enabled(False)\n",
......@@ -83,27 +76,15 @@
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Change working directory to /home/dengnc/deep_view_syn/data/__0_user_study/us_gas_all_in_one\n",
"Load net from fovea@nmsl-rgb_e10_fc128x4_d1-50_s32.pth ...\n",
"Load net from periph_rgb@msl-rgb_e10_fc96x4_d1.00-50.00_s16.pth ...\n",
"Dataset loaded.\n",
"views: [1456]\n"
]
}
],
"outputs": [],
"source": [
"os.chdir(sys.path[0] + '/../data/__0_user_study/us_gas_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/__0_user_study/us_mc_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/bedroom_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/lobby_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/gallery_all_in_one')\n",
"os.chdir(os.path.join(rootdir, 'data/__0_user_study/us_gas_all_in_one'))\n",
"#os.chdir(os.path.join(rootdir, 'data/__0_user_study/us_mc_all_in_one'))\n",
"#os.chdir(os.path.join(rootdir, 'data/bedroom_all_in_one'))\n",
"#os.chdir(os.path.join(rootdir, 'data/lobby_all_in_one'))\n",
"#os.chdir(os.path.join(rootdir, 'data/gallery_all_in_one'))\n",
"print('Change working directory to ', os.getcwd())\n",
"\n",
"fovea_net = load_net(find_file('fovea'))\n",
......@@ -121,952 +102,9 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Frame 0 saved\n",
"Frame 1 saved\n",
"Frame 2 saved\n",
"Frame 3 saved\n",
"Frame 4 saved\n",
"Frame 5 saved\n",
"Frame 6 saved\n",
"Frame 7 saved\n",
"Frame 8 saved\n",
"Frame 9 saved\n",
"Frame 10 saved\n",
"Frame 11 saved\n",
"Frame 12 saved\n",
"Frame 13 saved\n",
"Frame 14 saved\n",
"Frame 15 saved\n",
"Frame 16 saved\n",
"Frame 17 saved\n",
"Frame 18 saved\n",
"Frame 19 saved\n",
"Frame 20 saved\n",
"Frame 21 saved\n",
"Frame 22 saved\n",
"Frame 23 saved\n",
"Frame 24 saved\n",
"Frame 25 saved\n",
"Frame 26 saved\n",
"Frame 27 saved\n",
"Frame 28 saved\n",
"Frame 29 saved\n",
"Frame 30 saved\n",
"Frame 31 saved\n",
"Frame 32 saved\n",
"Frame 33 saved\n",
"Frame 34 saved\n",
"Frame 35 saved\n",
"Frame 36 saved\n",
"Frame 37 saved\n",
"Frame 38 saved\n",
"Frame 39 saved\n",
"Frame 40 saved\n",
"Frame 41 saved\n",
"Frame 42 saved\n",
"Frame 43 saved\n",
"Frame 44 saved\n",
"Frame 45 saved\n",
"Frame 46 saved\n",
"Frame 47 saved\n",
"Frame 48 saved\n",
"Frame 49 saved\n",
"Frame 50 saved\n",
"Frame 51 saved\n",
"Frame 52 saved\n",
"Frame 53 saved\n",
"Frame 54 saved\n",
"Frame 55 saved\n",
"Frame 56 saved\n",
"Frame 57 saved\n",
"Frame 58 saved\n",
"Frame 59 saved\n",
"Frame 60 saved\n",
"Frame 61 saved\n",
"Frame 62 saved\n",
"Frame 63 saved\n",
"Frame 64 saved\n",
"Frame 65 saved\n",
"Frame 66 saved\n",
"Frame 67 saved\n",
"Frame 68 saved\n",
"Frame 69 saved\n",
"Frame 70 saved\n",
"Frame 71 saved\n",
"Frame 72 saved\n",
"Frame 73 saved\n",
"Frame 74 saved\n",
"Frame 75 saved\n",
"Frame 76 saved\n",
"Frame 77 saved\n",
"Frame 78 saved\n",
"Frame 79 saved\n",
"Frame 80 saved\n",
"Frame 81 saved\n",
"Frame 82 saved\n",
"Frame 83 saved\n",
"Frame 84 saved\n",
"Frame 85 saved\n",
"Frame 86 saved\n",
"Frame 87 saved\n",
"Frame 88 saved\n",
"Frame 89 saved\n",
"Frame 90 saved\n",
"Frame 91 saved\n",
"Frame 92 saved\n",
"Frame 93 saved\n",
"Frame 94 saved\n",
"Frame 95 saved\n",
"Frame 96 saved\n",
"Frame 97 saved\n",
"Frame 98 saved\n",
"Frame 99 saved\n",
"Frame 100 saved\n",
"Frame 101 saved\n",
"Frame 102 saved\n",
"Frame 103 saved\n",
"Frame 104 saved\n",
"Frame 105 saved\n",
"Frame 106 saved\n",
"Frame 107 saved\n",
"Frame 108 saved\n",
"Frame 109 saved\n",
"Frame 110 saved\n",
"Frame 111 saved\n",
"Frame 112 saved\n",
"Frame 113 saved\n",
"Frame 114 saved\n",
"Frame 115 saved\n",
"Frame 116 saved\n",
"Frame 117 saved\n",
"Frame 118 saved\n",
"Frame 119 saved\n",
"Frame 120 saved\n",
"Frame 121 saved\n",
"Frame 122 saved\n",
"Frame 123 saved\n",
"Frame 124 saved\n",
"Frame 125 saved\n",
"Frame 126 saved\n",
"Frame 127 saved\n",
"Frame 128 saved\n",
"Frame 129 saved\n",
"Frame 130 saved\n",
"Frame 131 saved\n",
"Frame 132 saved\n",
"Frame 133 saved\n",
"Frame 134 saved\n",
"Frame 135 saved\n",
"Frame 136 saved\n",
"Frame 137 saved\n",
"Frame 138 saved\n",
"Frame 139 saved\n",
"Frame 140 saved\n",
"Frame 141 saved\n",
"Frame 142 saved\n",
"Frame 143 saved\n",
"Frame 144 saved\n",
"Frame 145 saved\n",
"Frame 146 saved\n",
"Frame 147 saved\n",
"Frame 148 saved\n",
"Frame 149 saved\n",
"Frame 150 saved\n",
"Frame 151 saved\n",
"Frame 152 saved\n",
"Frame 153 saved\n",
"Frame 154 saved\n",
"Frame 155 saved\n",
"Frame 156 saved\n",
"Frame 157 saved\n",
"Frame 158 saved\n",
"Frame 159 saved\n",
"Frame 160 saved\n",
"Frame 161 saved\n",
"Frame 162 saved\n",
"Frame 163 saved\n",
"Frame 164 saved\n",
"Frame 165 saved\n",
"Frame 166 saved\n",
"Frame 167 saved\n",
"Frame 168 saved\n",
"Frame 169 saved\n",
"Frame 170 saved\n",
"Frame 171 saved\n",
"Frame 172 saved\n",
"Frame 173 saved\n",
"Frame 174 saved\n",
"Frame 175 saved\n",
"Frame 176 saved\n",
"Frame 177 saved\n",
"Frame 178 saved\n",
"Frame 179 saved\n",
"Frame 180 saved\n",
"Frame 181 saved\n",
"Frame 182 saved\n",
"Frame 183 saved\n",
"Frame 184 saved\n",
"Frame 185 saved\n",
"Frame 186 saved\n",
"Frame 187 saved\n",
"Frame 188 saved\n",
"Frame 189 saved\n",
"Frame 190 saved\n",
"Frame 191 saved\n",
"Frame 192 saved\n",
"Frame 193 saved\n",
"Frame 194 saved\n",
"Frame 195 saved\n",
"Frame 196 saved\n",
"Frame 197 saved\n",
"Frame 198 saved\n",
"Frame 199 saved\n",
"Frame 200 saved\n",
"Frame 201 saved\n",
"Frame 202 saved\n",
"Frame 203 saved\n",
"Frame 204 saved\n",
"Frame 205 saved\n",
"Frame 206 saved\n",
"Frame 207 saved\n",
"Frame 208 saved\n",
"Frame 209 saved\n",
"Frame 210 saved\n",
"Frame 211 saved\n",
"Frame 212 saved\n",
"Frame 213 saved\n",
"Frame 214 saved\n",
"Frame 215 saved\n",
"Frame 216 saved\n",
"Frame 217 saved\n",
"Frame 218 saved\n",
"Frame 219 saved\n",
"Frame 220 saved\n",
"Frame 221 saved\n",
"Frame 222 saved\n",
"Frame 223 saved\n",
"Frame 224 saved\n",
"Frame 225 saved\n",
"Frame 226 saved\n",
"Frame 227 saved\n",
"Frame 228 saved\n",
"Frame 229 saved\n",
"Frame 230 saved\n",
"Frame 231 saved\n",
"Frame 232 saved\n",
"Frame 233 saved\n",
"Frame 234 saved\n",
"Frame 235 saved\n",
"Frame 236 saved\n",
"Frame 237 saved\n",
"Frame 238 saved\n",
"Frame 239 saved\n",
"Frame 240 saved\n",
"Frame 241 saved\n",
"Frame 242 saved\n",
"Frame 243 saved\n",
"Frame 244 saved\n",
"Frame 245 saved\n",
"Frame 246 saved\n",
"Frame 247 saved\n",
"Frame 248 saved\n",
"Frame 249 saved\n",
"Frame 250 saved\n",
"Frame 251 saved\n",
"Frame 252 saved\n",
"Frame 253 saved\n",
"Frame 254 saved\n",
"Frame 255 saved\n",
"Frame 256 saved\n",
"Frame 257 saved\n",
"Frame 258 saved\n",
"Frame 259 saved\n",
"Frame 260 saved\n",
"Frame 261 saved\n",
"Frame 262 saved\n",
"Frame 263 saved\n",
"Frame 264 saved\n",
"Frame 265 saved\n",
"Frame 266 saved\n",
"Frame 267 saved\n",
"Frame 268 saved\n",
"Frame 269 saved\n",
"Frame 270 saved\n",
"Frame 271 saved\n",
"Frame 272 saved\n",
"Frame 273 saved\n",
"Frame 274 saved\n",
"Frame 275 saved\n",
"Frame 276 saved\n",
"Frame 277 saved\n",
"Frame 278 saved\n",
"Frame 279 saved\n",
"Frame 280 saved\n",
"Frame 281 saved\n",
"Frame 282 saved\n",
"Frame 283 saved\n",
"Frame 284 saved\n",
"Frame 285 saved\n",
"Frame 286 saved\n",
"Frame 287 saved\n",
"Frame 288 saved\n",
"Frame 289 saved\n",
"Frame 290 saved\n",
"Frame 291 saved\n",
"Frame 292 saved\n",
"Frame 293 saved\n",
"Frame 294 saved\n",
"Frame 295 saved\n",
"Frame 296 saved\n",
"Frame 297 saved\n",
"Frame 298 saved\n",
"Frame 299 saved\n",
"Frame 300 saved\n",
"Frame 301 saved\n",
"Frame 302 saved\n",
"Frame 303 saved\n",
"Frame 304 saved\n",
"Frame 305 saved\n",
"Frame 306 saved\n",
"Frame 307 saved\n",
"Frame 308 saved\n",
"Frame 309 saved\n",
"Frame 310 saved\n",
"Frame 311 saved\n",
"Frame 312 saved\n",
"Frame 313 saved\n",
"Frame 314 saved\n",
"Frame 315 saved\n",
"Frame 316 saved\n",
"Frame 317 saved\n",
"Frame 318 saved\n",
"Frame 319 saved\n",
"Frame 320 saved\n",
"Frame 321 saved\n",
"Frame 322 saved\n",
"Frame 323 saved\n",
"Frame 324 saved\n",
"Frame 325 saved\n",
"Frame 326 saved\n",
"Frame 327 saved\n",
"Frame 328 saved\n",
"Frame 329 saved\n",
"Frame 330 saved\n",
"Frame 331 saved\n",
"Frame 332 saved\n",
"Frame 333 saved\n",
"Frame 334 saved\n",
"Frame 335 saved\n",
"Frame 336 saved\n",
"Frame 337 saved\n",
"Frame 338 saved\n",
"Frame 339 saved\n",
"Frame 340 saved\n",
"Frame 341 saved\n",
"Frame 342 saved\n",
"Frame 343 saved\n",
"Frame 344 saved\n",
"Frame 345 saved\n",
"Frame 346 saved\n",
"Frame 347 saved\n",
"Frame 348 saved\n",
"Frame 349 saved\n",
"Frame 350 saved\n",
"Frame 351 saved\n",
"Frame 352 saved\n",
"Frame 353 saved\n",
"Frame 354 saved\n",
"Frame 355 saved\n",
"Frame 356 saved\n",
"Frame 357 saved\n",
"Frame 358 saved\n",
"Frame 359 saved\n",
"Frame 360 saved\n",
"Frame 361 saved\n",
"Frame 362 saved\n",
"Frame 363 saved\n",
"Frame 364 saved\n",
"Frame 365 saved\n",
"Frame 366 saved\n",
"Frame 367 saved\n",
"Frame 368 saved\n",
"Frame 369 saved\n",
"Frame 370 saved\n",
"Frame 371 saved\n",
"Frame 372 saved\n",
"Frame 373 saved\n",
"Frame 374 saved\n",
"Frame 375 saved\n",
"Frame 376 saved\n",
"Frame 377 saved\n",
"Frame 378 saved\n",
"Frame 379 saved\n",
"Frame 380 saved\n",
"Frame 381 saved\n",
"Frame 382 saved\n",
"Frame 383 saved\n",
"Frame 384 saved\n",
"Frame 385 saved\n",
"Frame 386 saved\n",
"Frame 387 saved\n",
"Frame 388 saved\n",
"Frame 389 saved\n",
"Frame 390 saved\n",
"Frame 391 saved\n",
"Frame 392 saved\n",
"Frame 393 saved\n",
"Frame 394 saved\n",
"Frame 395 saved\n",
"Frame 396 saved\n",
"Frame 397 saved\n",
"Frame 398 saved\n",
"Frame 399 saved\n",
"Frame 400 saved\n",
"Frame 401 saved\n",
"Frame 402 saved\n",
"Frame 403 saved\n",
"Frame 404 saved\n",
"Frame 405 saved\n",
"Frame 406 saved\n",
"Frame 407 saved\n",
"Frame 408 saved\n",
"Frame 409 saved\n",
"Frame 410 saved\n",
"Frame 411 saved\n",
"Frame 412 saved\n",
"Frame 413 saved\n",
"Frame 414 saved\n",
"Frame 415 saved\n",
"Frame 416 saved\n",
"Frame 417 saved\n",
"Frame 418 saved\n",
"Frame 419 saved\n",
"Frame 420 saved\n",
"Frame 421 saved\n",
"Frame 422 saved\n",
"Frame 423 saved\n",
"Frame 424 saved\n",
"Frame 425 saved\n",
"Frame 426 saved\n",
"Frame 427 saved\n",
"Frame 428 saved\n",
"Frame 429 saved\n",
"Frame 430 saved\n",
"Frame 431 saved\n",
"Frame 432 saved\n",
"Frame 433 saved\n",
"Frame 434 saved\n",
"Frame 435 saved\n",
"Frame 436 saved\n",
"Frame 437 saved\n",
"Frame 438 saved\n",
"Frame 439 saved\n",
"Frame 440 saved\n",
"Frame 441 saved\n",
"Frame 442 saved\n",
"Frame 443 saved\n",
"Frame 444 saved\n",
"Frame 445 saved\n",
"Frame 446 saved\n",
"Frame 447 saved\n",
"Frame 448 saved\n",
"Frame 449 saved\n",
"Frame 450 saved\n",
"Frame 451 saved\n",
"Frame 452 saved\n",
"Frame 453 saved\n",
"Frame 454 saved\n",
"Frame 455 saved\n",
"Frame 456 saved\n",
"Frame 457 saved\n",
"Frame 458 saved\n",
"Frame 459 saved\n",
"Frame 460 saved\n",
"Frame 461 saved\n",
"Frame 462 saved\n",
"Frame 463 saved\n",
"Frame 464 saved\n",
"Frame 465 saved\n",
"Frame 466 saved\n",
"Frame 467 saved\n",
"Frame 468 saved\n",
"Frame 469 saved\n",
"Frame 470 saved\n",
"Frame 471 saved\n",
"Frame 472 saved\n",
"Frame 473 saved\n",
"Frame 474 saved\n",
"Frame 475 saved\n",
"Frame 476 saved\n",
"Frame 477 saved\n",
"Frame 478 saved\n",
"Frame 479 saved\n",
"Frame 480 saved\n",
"Frame 481 saved\n",
"Frame 482 saved\n",
"Frame 483 saved\n",
"Frame 484 saved\n",
"Frame 485 saved\n",
"Frame 486 saved\n",
"Frame 487 saved\n",
"Frame 488 saved\n",
"Frame 489 saved\n",
"Frame 490 saved\n",
"Frame 491 saved\n",
"Frame 492 saved\n",
"Frame 493 saved\n",
"Frame 494 saved\n",
"Frame 495 saved\n",
"Frame 496 saved\n",
"Frame 497 saved\n",
"Frame 498 saved\n",
"Frame 499 saved\n",
"Frame 500 saved\n",
"Frame 501 saved\n",
"Frame 502 saved\n",
"Frame 503 saved\n",
"Frame 504 saved\n",
"Frame 505 saved\n",
"Frame 506 saved\n",
"Frame 507 saved\n",
"Frame 508 saved\n",
"Frame 509 saved\n",
"Frame 510 saved\n",
"Frame 511 saved\n",
"Frame 512 saved\n",
"Frame 513 saved\n",
"Frame 514 saved\n",
"Frame 515 saved\n",
"Frame 516 saved\n",
"Frame 517 saved\n",
"Frame 518 saved\n",
"Frame 519 saved\n",
"Frame 520 saved\n",
"Frame 521 saved\n",
"Frame 522 saved\n",
"Frame 523 saved\n",
"Frame 524 saved\n",
"Frame 525 saved\n",
"Frame 526 saved\n",
"Frame 527 saved\n",
"Frame 528 saved\n",
"Frame 529 saved\n",
"Frame 530 saved\n",
"Frame 531 saved\n",
"Frame 532 saved\n",
"Frame 533 saved\n",
"Frame 534 saved\n",
"Frame 535 saved\n",
"Frame 536 saved\n",
"Frame 537 saved\n",
"Frame 538 saved\n",
"Frame 539 saved\n",
"Frame 540 saved\n",
"Frame 541 saved\n",
"Frame 542 saved\n",
"Frame 543 saved\n",
"Frame 544 saved\n",
"Frame 545 saved\n",
"Frame 546 saved\n",
"Frame 547 saved\n",
"Frame 548 saved\n",
"Frame 549 saved\n",
"Frame 550 saved\n",
"Frame 551 saved\n",
"Frame 552 saved\n",
"Frame 553 saved\n",
"Frame 554 saved\n",
"Frame 555 saved\n",
"Frame 556 saved\n",
"Frame 557 saved\n",
"Frame 558 saved\n",
"Frame 559 saved\n",
"Frame 560 saved\n",
"Frame 561 saved\n",
"Frame 562 saved\n",
"Frame 563 saved\n",
"Frame 564 saved\n",
"Frame 565 saved\n",
"Frame 566 saved\n",
"Frame 567 saved\n",
"Frame 568 saved\n",
"Frame 569 saved\n",
"Frame 570 saved\n",
"Frame 571 saved\n",
"Frame 572 saved\n",
"Frame 573 saved\n",
"Frame 574 saved\n",
"Frame 575 saved\n",
"Frame 576 saved\n",
"Frame 577 saved\n",
"Frame 578 saved\n",
"Frame 579 saved\n",
"Frame 580 saved\n",
"Frame 581 saved\n",
"Frame 582 saved\n",
"Frame 583 saved\n",
"Frame 584 saved\n",
"Frame 585 saved\n",
"Frame 586 saved\n",
"Frame 587 saved\n",
"Frame 588 saved\n",
"Frame 589 saved\n",
"Frame 590 saved\n",
"Frame 591 saved\n",
"Frame 592 saved\n",
"Frame 593 saved\n",
"Frame 594 saved\n",
"Frame 595 saved\n",
"Frame 596 saved\n",
"Frame 597 saved\n",
"Frame 598 saved\n",
"Frame 599 saved\n",
"Frame 600 saved\n",
"Frame 601 saved\n",
"Frame 602 saved\n",
"Frame 603 saved\n",
"Frame 604 saved\n",
"Frame 605 saved\n",
"Frame 606 saved\n",
"Frame 607 saved\n",
"Frame 608 saved\n",
"Frame 609 saved\n",
"Frame 610 saved\n",
"Frame 611 saved\n",
"Frame 612 saved\n",
"Frame 613 saved\n",
"Frame 614 saved\n",
"Frame 615 saved\n",
"Frame 616 saved\n",
"Frame 617 saved\n",
"Frame 618 saved\n",
"Frame 619 saved\n",
"Frame 620 saved\n",
"Frame 621 saved\n",
"Frame 622 saved\n",
"Frame 623 saved\n",
"Frame 624 saved\n",
"Frame 625 saved\n",
"Frame 626 saved\n",
"Frame 627 saved\n",
"Frame 628 saved\n",
"Frame 629 saved\n",
"Frame 630 saved\n",
"Frame 631 saved\n",
"Frame 632 saved\n",
"Frame 633 saved\n",
"Frame 634 saved\n",
"Frame 635 saved\n",
"Frame 636 saved\n",
"Frame 637 saved\n",
"Frame 638 saved\n",
"Frame 639 saved\n",
"Frame 640 saved\n",
"Frame 641 saved\n",
"Frame 642 saved\n",
"Frame 643 saved\n",
"Frame 644 saved\n",
"Frame 645 saved\n",
"Frame 646 saved\n",
"Frame 647 saved\n",
"Frame 648 saved\n",
"Frame 649 saved\n",
"Frame 650 saved\n",
"Frame 651 saved\n",
"Frame 652 saved\n",
"Frame 653 saved\n",
"Frame 654 saved\n",
"Frame 655 saved\n",
"Frame 656 saved\n",
"Frame 657 saved\n",
"Frame 658 saved\n",
"Frame 659 saved\n",
"Frame 660 saved\n",
"Frame 661 saved\n",
"Frame 662 saved\n",
"Frame 663 saved\n",
"Frame 664 saved\n",
"Frame 665 saved\n",
"Frame 666 saved\n",
"Frame 667 saved\n",
"Frame 668 saved\n",
"Frame 669 saved\n",
"Frame 670 saved\n",
"Frame 671 saved\n",
"Frame 672 saved\n",
"Frame 673 saved\n",
"Frame 674 saved\n",
"Frame 675 saved\n",
"Frame 676 saved\n",
"Frame 677 saved\n",
"Frame 678 saved\n",
"Frame 679 saved\n",
"Frame 680 saved\n",
"Frame 681 saved\n",
"Frame 682 saved\n",
"Frame 683 saved\n",
"Frame 684 saved\n",
"Frame 685 saved\n",
"Frame 686 saved\n",
"Frame 687 saved\n",
"Frame 688 saved\n",
"Frame 689 saved\n",
"Frame 690 saved\n",
"Frame 691 saved\n",
"Frame 692 saved\n",
"Frame 693 saved\n",
"Frame 694 saved\n",
"Frame 695 saved\n",
"Frame 696 saved\n",
"Frame 697 saved\n",
"Frame 698 saved\n",
"Frame 699 saved\n",
"Frame 700 saved\n",
"Frame 701 saved\n",
"Frame 702 saved\n",
"Frame 703 saved\n",
"Frame 704 saved\n",
"Frame 705 saved\n",
"Frame 706 saved\n",
"Frame 707 saved\n",
"Frame 708 saved\n",
"Frame 709 saved\n",
"Frame 710 saved\n",
"Frame 711 saved\n",
"Frame 712 saved\n",
"Frame 713 saved\n",
"Frame 714 saved\n",
"Frame 715 saved\n",
"Frame 716 saved\n",
"Frame 717 saved\n",
"Frame 718 saved\n",
"Frame 719 saved\n",
"Frame 720 saved\n",
"Frame 721 saved\n",
"Frame 722 saved\n",
"Frame 723 saved\n",
"Frame 724 saved\n",
"Frame 725 saved\n",
"Frame 726 saved\n",
"Frame 727 saved\n",
"Frame 728 saved\n",
"Frame 729 saved\n",
"Frame 730 saved\n",
"Frame 731 saved\n",
"Frame 732 saved\n",
"Frame 733 saved\n",
"Frame 734 saved\n",
"Frame 735 saved\n",
"Frame 736 saved\n",
"Frame 737 saved\n",
"Frame 738 saved\n",
"Frame 739 saved\n",
"Frame 740 saved\n",
"Frame 741 saved\n",
"Frame 742 saved\n",
"Frame 743 saved\n",
"Frame 744 saved\n",
"Frame 745 saved\n",
"Frame 746 saved\n",
"Frame 747 saved\n",
"Frame 748 saved\n",
"Frame 749 saved\n",
"Frame 750 saved\n",
"Frame 751 saved\n",
"Frame 752 saved\n",
"Frame 753 saved\n",
"Frame 754 saved\n",
"Frame 755 saved\n",
"Frame 756 saved\n",
"Frame 757 saved\n",
"Frame 758 saved\n",
"Frame 759 saved\n",
"Frame 760 saved\n",
"Frame 761 saved\n",
"Frame 762 saved\n",
"Frame 763 saved\n",
"Frame 764 saved\n",
"Frame 765 saved\n",
"Frame 766 saved\n",
"Frame 767 saved\n",
"Frame 768 saved\n",
"Frame 769 saved\n",
"Frame 770 saved\n",
"Frame 771 saved\n",
"Frame 772 saved\n",
"Frame 773 saved\n",
"Frame 774 saved\n",
"Frame 775 saved\n",
"Frame 776 saved\n",
"Frame 777 saved\n",
"Frame 778 saved\n",
"Frame 779 saved\n",
"Frame 780 saved\n",
"Frame 781 saved\n",
"Frame 782 saved\n",
"Frame 783 saved\n",
"Frame 784 saved\n",
"Frame 785 saved\n",
"Frame 786 saved\n",
"Frame 787 saved\n",
"Frame 788 saved\n",
"Frame 789 saved\n",
"Frame 790 saved\n",
"Frame 791 saved\n",
"Frame 792 saved\n",
"Frame 793 saved\n",
"Frame 794 saved\n",
"Frame 795 saved\n",
"Frame 796 saved\n",
"Frame 797 saved\n",
"Frame 798 saved\n",
"Frame 799 saved\n",
"Frame 800 saved\n",
"Frame 801 saved\n",
"Frame 802 saved\n",
"Frame 803 saved\n",
"Frame 804 saved\n",
"Frame 805 saved\n",
"Frame 806 saved\n",
"Frame 807 saved\n",
"Frame 808 saved\n",
"Frame 809 saved\n",
"Frame 810 saved\n",
"Frame 811 saved\n",
"Frame 812 saved\n",
"Frame 813 saved\n",
"Frame 814 saved\n",
"Frame 815 saved\n",
"Frame 816 saved\n",
"Frame 817 saved\n",
"Frame 818 saved\n",
"Frame 819 saved\n",
"Frame 820 saved\n",
"Frame 821 saved\n",
"Frame 822 saved\n",
"Frame 823 saved\n",
"Frame 824 saved\n",
"Frame 825 saved\n",
"Frame 826 saved\n",
"Frame 827 saved\n",
"Frame 828 saved\n",
"Frame 829 saved\n",
"Frame 830 saved\n",
"Frame 831 saved\n",
"Frame 832 saved\n",
"Frame 833 saved\n",
"Frame 834 saved\n",
"Frame 835 saved\n",
"Frame 836 saved\n",
"Frame 837 saved\n",
"Frame 838 saved\n",
"Frame 839 saved\n",
"Frame 840 saved\n",
"Frame 841 saved\n",
"Frame 842 saved\n",
"Frame 843 saved\n",
"Frame 844 saved\n",
"Frame 845 saved\n",
"Frame 846 saved\n",
"Frame 847 saved\n",
"Frame 848 saved\n",
"Frame 849 saved\n",
"Frame 850 saved\n",
"Frame 851 saved\n",
"Frame 852 saved\n",
"Frame 853 saved\n",
"Frame 854 saved\n",
"Frame 855 saved\n",
"Frame 856 saved\n",
"Frame 857 saved\n",
"Frame 858 saved\n",
"Frame 859 saved\n",
"Frame 860 saved\n",
"Frame 861 saved\n",
"Frame 862 saved\n",
"Frame 863 saved\n",
"Frame 864 saved\n",
"Frame 865 saved\n",
"Frame 866 saved\n",
"Frame 867 saved\n",
"Frame 868 saved\n",
"Frame 869 saved\n",
"Frame 870 saved\n",
"Frame 871 saved\n",
"Frame 872 saved\n",
"Frame 873 saved\n",
"Frame 874 saved\n",
"Frame 875 saved\n",
"Frame 876 saved\n",
"Frame 877 saved\n",
"Frame 878 saved\n",
"Frame 879 saved\n",
"Frame 880 saved\n",
"Frame 881 saved\n",
"Frame 882 saved\n",
"Frame 883 saved\n",
"Frame 884 saved\n",
"Frame 885 saved\n",
"Frame 886 saved\n",
"Frame 887 saved\n",
"Frame 888 saved\n",
"Frame 889 saved\n",
"Frame 890 saved\n",
"Frame 891 saved\n",
"Frame 892 saved\n",
"Frame 893 saved\n",
"Frame 894 saved\n",
"Frame 895 saved\n",
"Frame 896 saved\n",
"Frame 897 saved\n",
"Frame 898 saved\n",
"Frame 899 saved\n",
"Frame 900 saved\n",
"Frame 901 saved\n",
"Frame 902 saved\n",
"Frame 903 saved\n",
"Frame 904 saved\n",
"Frame 905 saved\n",
"Frame 906 saved\n",
"Frame 907 saved\n",
"Frame 908 saved\n",
"Frame 909 saved\n",
"Frame 910 saved\n",
"Frame 911 saved\n",
"Frame 912 saved\n",
"Frame 913 saved\n",
"Frame 914 saved\n",
"Frame 915 saved\n",
"Frame 916 saved\n",
"Frame 917 saved\n",
"Frame 918 saved\n",
"Frame 919 saved\n",
"Frame 920 saved\n",
"Frame 921 saved\n",
"Frame 922 saved\n",
"Frame 923 saved\n",
"Frame 924 saved\n"
]
},
{
"ename": "IndexError",
"evalue": "index 1850 is out of bounds for dimension 0 with size 1850",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-3-743f8021cdc9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mview_idx\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgaze_centers\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m left_center = (gaze_centers[view_idx * 2][0].item(),\n\u001b[0m\u001b[1;32m 3\u001b[0m gaze_centers[view_idx * 2][1].item())\n\u001b[1;32m 4\u001b[0m right_center = (gaze_centers[view_idx * 2 + 1][0].item(),\n\u001b[1;32m 5\u001b[0m gaze_centers[view_idx * 2 + 1][1].item())\n",
"\u001b[0;31mIndexError\u001b[0m: index 1850 is out of bounds for dimension 0 with size 1850"
]
}
],
"outputs": [],
"source": [
"for view_idx in range(gaze_centers.size(0) / 2):\n",
" left_center = (gaze_centers[view_idx * 2][0].item(),\n",
......
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"cells": [
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Set CUDA:0 as current device.\n",
"14496(22.12%) pixels in layer 0 are masked as skipped\n",
"15980(24.38%) pixels in layer 1 are masked as skipped\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAC7CAYAAACend6FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABGuUlEQVR4nO2de7QsRXX/PzVzHveCyFMMor8EEzQRdBmD4JtrjM8kKAoKKiCgiG9N8lOURNAskBhjRBPFiwIX5RnFaBKfIQoSRUR/ykNEL2IiQiA8Lly4954z01O/P6qLU1NTr+6Zc6ZnTu21anVPTz+qqr/723vv2l0tpJRkyZIlS5bpkta4K5AlS5YsWUYvmdyzZMmSZQolk3uWLFmyTKFkcs+SJUuWKZRM7lmyZMkyhZLJPUuWLFmmUJaN3IUQLxBC3CiE2CiEOGG5rpMly0pKxnWWSRGxHHnuQog28DPgucAtwPeBw6WUPxn5xbJkWSHJuM4ySbJclvv+wEYp5S+klIvAhcCLl+laWbKslGRcZ5kYWS5y3xP4lfH7lnJbliyTLBnXWSZGZpbpvMKxrS/+I4Q4Djiu/PkHy1SPhso80C7XdwO2K9cFsNbYr07IzOz6rcY5tgB3lutdYLHGuSda7pRSPmzIc0RxDRnbGdsrK1JKFy6XjdxvAR5l/H4kcKtVofXAegAhxBRPcDOPAvhhKD2XwDOBvYBe+VsvfUWLq5uEte4rLWP5C+CK8vfVwEUoBVkYsq2Nlv8awTmiuIaM7YztZshyDajOoAaengP8GjXw9Eop5fWe/adQAQ4FdgWeAhwEzKIsmp5RbPDbioBj6RLhWNrAt5VAlwLoAF8EvoeygD5Xq8UNlx9IKfcb5gRVcV0ek7Gdsb2s4rPcl4XcAYQQLwI+grrrZ0kpTwnsOyUK8HiUN/5U4HdQlk1BP+h9CuCzcMBv4diWjV6GLBtbAczSRlk4G4HvAGcC19bqiQbK0OQO1XBd7p+xnbG9rLLi5F5FJlsBHgocDhwAvBDYCQV6DfyQAozLdQ0pgF62gXuArwJXohJD7qvWNc2SkZB7VcnYzthebsnkPnJZB+wDHA/8FktuoFnqKIBeB7+FY4tt2ej1mNsaUwBdesDNwCeB64DLEvqncZLJPVnWkbE9OZLJfSTSAp4MvAvlnu7IIOhjClCwBPQUCwfH0pRQTDIEfsES4GMKYJZ7UW7tB1Eh515SzzVAMrkHJWN7UrGdyX0omQceiwL+n6KSjLooMOulD/ymApjr0rEecl2rWDcxBTDX29Z6SAlmjGUX+BfgA8DPmYBshEzuTsnYnnRsZ3KvLQcCRwKHoG68CfqQEsQUwKUEpvsKg0qAsd2+nybgod9t9YG/igLMOJYzqGyEfwLOBS6P9OVYJZP7gGRsTwO2M7lXloeh4nDaRe0apbDWCwYVIUUBUrIKcCxNibmusWyCmALMMKgIthLMsOTSHg/8b6BfxyaZ3B+UjO1pwnYm92TZGWXJvBo1lUg3UEKuq23p1FWAYV3XOgrgKy7g2+Uq4DOofOJNgTqvuGRyz9gOlMnFdib3JHks6sY9GgW4Lso18wE/VQlimQWxuKTZPeb6KFLFUhXABr9LEWbLpUDlEx+KeuenEbLKyT1je1qxnck9KGuB01AT/O3OEuhd4PdZNyElSE0bcykCjqUpIdfVThcLpYmlDjbFrJtZY3k78M/Ae1BzgYxVVim5Z2xPO7ZXem6ZCZLdUZkCr0cBfoF0Bagy+DSMhQNu8GupmirmSxHzDTZ1rWWqJfcw4A3lcR+kifHK6ZaM7dWM7VVuuT8bOA/1Jp4GcAe3AqS4sC4lcA0+6W1VU8aw1lNc15gCDDvYZFo0tnUzaxxzL/Aq4FuDt2FlZJVZ7hnbqwXbOSzTJw9Dzf30YRT4bdDbClDFhTUVocegMthWjitlzFzHsTTF57q63FZzfdSDTbOO5az1+z7gHcClLE3RumKySsg9Y3u1YTuT+4OyE2rE+7ksgd1VqihA1dikbelUSRlzSZ1UsZjLWgX8MQWwy9dR+dWbAm0auawCct+JjO3Vh+1M7oBKBTsf9fJGFzWpf0wBYu5r6uBTLD6Z4rrGrJsqrmuKAqQMNrmAH1KAufL/b6Jc2U2ONi2LTDm5Z2yvVmyv8gFVgfqIwF8Az6If+D4lqKIAoxh88lk4WOu+9vlc17oKkDrYZLrns4522W65bt864BxU+ODbkfZl8UvGdsa2W1aB5d4GXosa0Z4hDfwhN9ZWBnvgyacEKZkFqa6rZHDASS9TU8VCCuCzavS6b5Ap5rJq68ZcdoD/C5xV9suyyRRa7hnbGdur2nJ/LfD3KGAtsgR6ezmsC+vKLnANPtVRgLquayibIOSydukHftdYNy0Z26rxtctl4egyi/r2hQQ+5WhfFr9kbGds+2XKyf2NwKksgV8D3gX+VBe2TnaBz8oJgUSvQ78SuMR2XWOWTepgkwv4ZtFKoOseUuyQUs8BHyrP94lAO7MsScZ2xnZYppTctbt6KkvuakgBbPDr313cyuCycnwubB0FsEGDYwn+VLGUHODYYJMZi9TrpkXja4sP7CE3HJQSnFpea9lDNBMsGdsZ22kyheQucLurVZUgFp/0WTl1B58kYRBBP3DM9uqly3X15QBXGWwyrRtTEVLc1VB77DbNseTGftrT3tUsGdsZ2+kyheT+DNQAkwv8tgJUcWFTFcCOTVYZfArFJVNc15S4ZGywyY5Jxiy0FDccxxLP7zng74CfAlcE2rwaJWM7Yztdpozcd0alhLkyB1zgD1k4tiKE4pMhF9ZUgh5uELkUIAVAPtc19QWP0GCT6bLabmudGGRIkW3FnUPdx+to0tSq45WM7YztajIUuQshfglspuwtKeV+QohdgItQX9b9JfByKeU9w1UzRXZCvcTxLNwgd4E/NhA1Khe2SnzSZ+GAHzx6WfUFj6qDTSGX1axrlfq7RKDesjwPeCVq7o6VlYztjO1Jx/ZQee6lAuwnpbzT2PZB4G4p5WlCiBOAnaWU74qcZ8gA1MOAs4E/pB/cC7hBH1OCVBc2xX2tM/gUswokg7nAo1CA0Nt6ppWT8qaebxkr89bvfweOYQTzdVTKc8/YztieFGyvZJ77i4F15foG4FuoeUeXUf4Q+CP8AK6qADFFcCmArQxVBp98CqDXcSzB7bpWecEjJYvA5baGLLMqA2am+JT4eagZDv8pcvyKSMZ2xjaTgu1hyV0CXy+tk09KKdcDD5dS3gYgpbxNCLH7sJUMy7NR2QOu+GKK61rFhV2kH/xV3NfQ4JMDSDM9aNVwXXsCulVf8IhlEdjx1JQYpF1fnwKYgLd/6/IR1HzZ3/KcY1kkY3ulsa1XH7RDM7aHkWHJ/elSyltLkH9DCPHT1AOFEMcBxw13+d1RscgdiA8g2SBPVYBYnLJudoGtAAUcIGHPEkDHSHhC2cxUbgf4MXB2CZxbBFwlWAK9CXy9nppFYL/Ukepya7ErHwO+qcQ7ou7zE1jB6VQztkeJ7f1LbEsJR0vYFzdsHuxE+qHQAq4BNggQAn6dsR2TochdSnlrubxDCPEF1Fd3bxdC7FFaNnsAd3iOXQ+sh7pxybUoj3gHwgD1WToxxUhxYV0KYK67sguM8psF7NaD90uFv31ROl3V8zMx9FzgeRKEVD1/HdDtwnsF3NWG/7ItmypZBFWA73sSpVgztvstUHOTvwt4LyvxWbOM7RFge9cenCzV7fs9YFcGnwEmhKA/5G4b6E8FniFhRsJdwA1ArwsnC7g7Y9uW2uQuhNgeaEkpN5frzwPeD3wJOAr14cajgC+OoqKD8gHgeJY+HRYDv8t9Dbm0oeNt8Ce6sO0CZgp4WQFPkKp3di6bozGzyCCp+4wE17iTXm8Bu6BmgBXAH0m4uwvnAj8WcEkbum0oqmQR2BZZ3Rikr9Iuy8Ysb0Ep658lnr+eZGwPge2XFrCvVDPePtQ6zV2Eyd1ludtRF9MIfxIKnpdKuK+rElCuFfCFjG2gfraMEOLRwBfKnzPA+VLKU4QQuwIXA/8H+G/gUCnl3ZFzVazEY4GvAruhALlglUXHurm012Pu7Ahc2P0LOKIHB0tlkM0zmB1WF1MphoK5XEAl+X1ewGdb8P1QFkHKjHhVMwfmHevm0l43yx3AC6jx5fnkbJmM7YrYfnIBr+7Bn0rldGiMuZ4XoyR3E3669FDG7xcFnL86sD1FH+vYGbgc+G0GgR9SgDpK4HJ5U1zYctnqwu8UcGKhkh52x+/5hRIJUmPutuUeMxZaKDxdCpzaho1t6LmA71OAOQY1LKQALuD7QO9TgHng56ic73sdHeKVCZjydwKxfUKhbsVOnqrapzEJvg65uzIXNeRsmGwCLgNOa8NN04vtKZry9xDg0cStjBhgY66rSwFClo4B/HYHHt2FtxYqjVV7gx3Cob3lttxdZVfgcOCQAs4q4KMF3FxAYbqpKZkEWmLxSFdFdWVCFTXLb6Nw8OlAp0yiTBC231TAESg4bAPuKZc2ubssd9t619i3RUPCHiP1We4mR64py0HASwr4TAH/sLqwPWHk/jAUoiT+0fuQe+kCcmp8MtGFne3C33Th1VINhGtStzFUsARqG1fLYbmHSg+lOK8HDivg3B68uwedUAzSl+ZgV9KsmPnb9eRxVdb3tuERqJD3imXPLLNMCLY/0IXDpCLOLagQyFYUsfvIXZ/WR+4plrsrJDPDoPFskvtaY/lqlAFzfg9OXB3YnjByPwN4MuGBppi141MMG9g2+BMsnGd34X2FqiIsWeo2kF3GQsh6h0GM2ZjSy1R8mRlkuh4t1HjAGyXs34G/6sFloQwCu2JmhXwWjT0IUNW60QpwAAoPhziuP4nScGyv68J7C5Wxt4AKebjI3SR4+/QmwY+C3O0oiW21b0URu67TWlSK8X4dOLkHl083tieI3A8EnkZ4cMcGfgj8LiD7rJqIEsx14IAufFaqcTAzpmgOzvvIPRaWqWK5p4Zleta6tt718gDgvAIO68H3etBJcVtdUrViPmtGl46x39NQ8cnLI3VoujQY27Mlts+S8BDUQPwWo5jkvhVFoppMdehfn05X2UyLr0LuegYB02qfpT+MvaZcaqvdfuBsh0o5PruAI3tw1fRie0LIfR6VebYj6g7FQJ9i0YQUIlaM/XfpwFlddR/WsgReV/ERe2rcHQYVwFyvEm/X5K4J3SR4fc1dgS9JuKyjLJ57qgwEuCqV4qrGrBozh3kn4EjgStT9mERpMLZ37sCnuupBL1DW+gP0k3uq9W5WZxhyj8XbfVa73cTtgYskXNmB100ntieE3B8LvAx/LDI1Nun7L2bpeBRg5w6cWcALib7T4QzP1LHeXVLVgDDJ3Vy66rMGeBGwvquUYJNrMGAUFYpZOB0GFaANHIp6hfu6QAc1WRqK7Z06cEYB64D7UaSul1voJ/mY9R6Kuw9D7nZIZo1VfGMA+vrbo2Z4+HgX3jB92J4Acm+h3t6aYdCy8QE/VTF8A0gRRWh14PBF5datYwmoJrHbJJ9C7lXi7lpS4+12KViy2m1ydz1YDgJ2KOBcCRcCvZR4ZN2BpY7nv65jfQ3wTuA1uFMumiwNxfZhi/DKnnon914UqWtiN0uK9R6Lu5u4g/7xJBsioXi7DsdoYjetdjst04x+Fah52T5TwPlSTeg8JdieAHLfD8Uspmk8rJXjsnZcMUePO3tMBz7SU71nu5k+yz0l9r4SlruZVuYKxYQSBtYBz+jB/CKc7TKzQgMAqe6qy0UNrXeBg4GPAd8PdFITpYHYProDf9tTf92HirHfT5jgtxpL23q34+4hcrchFSJ3M95uFjPWHgoN2dffH3h6ie1zpgPbE0DuJ6Aauo1BFo2Bv66C2NZNud7qLIF/hn6Q2iGZWHim6sAqjMZyTw3HuK4tUe3+cA9ER01QJl3AbzmWMdc05qKa6/ZMf2tQFvCkZc40DNuv6cApPbV5s1V8BB+y3h0vNP1uB+YLEF04ScKusoRWiTPTcBdCrd8p4P0C5AwstOGnvheXNKmvcVw75cGyA3Baie1zJh/bDSf3dajZglJB7wN/zMqJKUKJjsMX4XSL2G2CTw3P1MmagUHrRi9HQe6ha5rXXYvqh62LcIFZmbpxyBQX1bZobCWYtMyZdTQK24ctwodKYtcWu4/g7fi7TfBGaGZ2AeYX4FVd2LeAV5RJNyGjXYuQJTqkmg+vXahqXCzg2jacPwML89BxDaT6wjEucjfx/lBUP2ybfGw3nNz3YTCLwMWiVa2cmBvrUIKdO3CUh9hd1rvPck/JnPGFRVIt9xDuTFJPDce4rjuL6o+vdGBTaiwoZNnEQG8D3laCnVB4mRRybxC2d+qoGHuHJSK/z1rezyDBuyx4w3o/cAGO6sILpTKsW2VNNuMn9z7LHTdFHiGh14X3deHLC7BhBi43X1zyTYEQstqlcdGHovpjwrHdYHJ/KGpmPJ8pHAJ/SCl8Lm3Aytmlo7JiDgwc7iL41PCMXpekWdFaUsOAJv7qhmNsEahMgzMLOK4D96TEHkMDSqbL6gO9uSys9QJ4A/BZFH00WRqE7Z07KitmfwYt9vusbSGCL8l9Zivsuw3+sqs+T/DQ8kr2I6wuuc8Yy1ngEAnP68CVXThlAa5dgKIKsZti6s9TgE8U8MbJxXaDyf1w1HeIXSwZMpWrWDoJ7utcBz7dVemAdhVSrXcXwfvCMz6Ch2qWu4lDnRkTInff4G0ocQDUh+faXXiFgE6KAvhAr8Ftu6g+V9WlCHsBhwFnOirdJGkItmc7cGZXPaTvxU/sCQQ/twV+bwu8raMIt2DJEXBFRGyCt2FnQ9lEjZ00Mw88tyT5z3Xh9AX46SIsutIvQwO49kWfh0oBfuVkYrvB5H4AqtMWcZu+MYsnphQhE9xQjqd0lcVuk7qL5H2/7Wr26Ee3y4wJWe+mpIYD7XBMyENwkbt9DXPbgah++nZsYKnj2GaD3WfRuKwb28KZRZmgTSf3BmH7KfQPltpxdhfBW+Q+fz98bBu8tKfugE6Ssccx9XIU5G7O52hmRB4i4cWLiuTf1oGFFGJ3XVBf9CnA/l34z8nDdkPJfV+W3gzygb6OS5sAeLM8u6umFFhr7OYi8BRr3qXDPnIPxd2h33eF6gOpdrzddx37/K5tAvVK9wVSjZpdFrNqUiwan6vqwoP93x+j4pPXOxrSBGkIttd11ZQCgqUBUpPgTaK3wzMGwe/zALxhUc0ltlgeprMf7QRMl9pUJXfXe0yLLCXOdMrl4T1Y3AJndOEnKcRu642+2I6odzuO7sLlk4XthpL761GDCDpFLFR8SjCkpTPbhfcXaq6YjuM0qTrmqkIKuQ9rucfI3aVVrvOnXE+gJjV8XwHP7UInZtXELJoUS8ZXdkZ9vvRtCY0ZhzQE2+8tVNrKJvozYHwEb1nvYjO84AE4q6Oe7TpJxjVnmG29205sKrnreLvLatePrfnyvPPAURIOWYCje/D1HkjfhVyBfdM92AnVXy+cLGw3lNyfQhz4dRQi0cppd+C0rnrHxGd1Vzl1iOBdsffUuHss3t7GT+6xcIxLQuEfgYo2nNqFE1pQ2FaNDfaYJZMC/h7um/PUSEPGKQ3A9qldNbvjZgazXhIJ/vn3wzmFItYHWCL21EkhtTFtQt5H7qF4uz0Dga1ma4ENHTjqfvianRUTInY79vNE4JQuvHtysN1Acj8U2JvBhpppJXWUINXS6aqPERxRosBH6K5TpxK8q/gGVqta7qGB1LZ1rlg4xneN0DWPlPDJrvqq04NAD1k0Pksmtbiw8RjUfC2fDzRqHNIQbB8uFfua+ek+krdDMZvhT+5XCTYzOFPbnd+GshMz7R6oQu6uDzCFzrsGNf/Z8ffDv9knDxG7fZHDpRpgnRBsN5Dcd0X15Daqgb6OxeNQhlZXfUFpRxRifJe3dShG8L6Hgo/cXQQPYcs9NpBaJxwTs9bNaxUoF/YtBbyjq5KRa6V9VbFkXMqwBoWjpkkDsP3mQnXPJsLE7rDixWZ4QUnsa1lKabfJvc6U7ink7rLazXCMfU7zvNuh6v3aB+DrAqSJ2xnCxK7JfSfUF6j+fDKw3TBynyfdbY1ZPDaDJrq0v1OoT+NV1b0UKz5E8KGB1aqWe4zc68byUwduXwt8rICNtkWTAv7Uex67OU8FzqE5UwE3BNuvZvCtUh/JWwT//AdUKGaG/ulkzCllQh9kMq13s6YhcteOpxlvd/FuijewHbChC0c9AF9zEbvrE6n2J0+PRH2u76bmY7th5L4daiIl1+hilcb7noYJLu2JJXo7CZfw6ZOP4O19Uu5xVcvdRbZ2OCZmtbvSHUPWun3NWeA9BRxTF/CpT9UQPg4C3k5zyL0B2D6hUIeaJnci0e9TDp7O0U/qdnFZ76FvZeuWmLA0IWeSuy9aEvIEbHXZDji7A895AG7wWeu+eWt0OaGA1zUf263gv4AQ4iwhxB1CiOuMbbsIIb4hhPh5udzZ+O/dQoiNQogbhRDPj52/Xw5H9Wwd8FdVEIcSPLmA50ROXeO0D5aOte4rLlPHzClzTdEdO9Y1ouXLTws9fHx9Y+P2ucB+IdIZBtwpZQ710odfVh22n8WSiW0Xc3ZHi9zny3TH7QOHpjgCsbFaX7nfUUKzD/ummdfr26PaMx+aQiE0lfE6Go9tSCB3lP3/AmvbCcClUsq9gUvL3wghHldedZ/ymI8LIdoJ1yjlSfS/YeMDcx1rx/fULG9Ku4Ajeiqlbxhd8lnovlBNjORNwg7M1Oole5vYXe+32HV0tSe1a3Wf7Y7qz1Yd8FctLjy0UXgKyjmsFmy/qreUgWmWCEvPbYGPbVXj5PahrudELLpjEnYKqbt++whe87P9vDK5Wa+/RsLpW2HW9USwXRP76bALau6ZZmM7Tu5SysuBu63NLwY2lOsbgJcY2y+UUi5IKW8GNqJeq0oUMwfQNglHUQKdOFPAwTJ+aMrpfIRpk3yKJW8TtmuEykfsrmvESL0O1nzlYKn6dWQnDN0c1/ZwbueqwvafyqVcRZvpXCRfLn9vCxzcU/Ay0x19xB6y3lPT6X2W+2brPDGr3eZke6D3ZT3Vvqi17hoxPqjZ2Ib6MfeHSylvA5BS3iaE2L3cvifqo39abim3DYgQ4jhURn4pjwaeibsRQwA71eI5pFCzHPlOG7uU679Q/N1Fsj5cmFkzAx2JP0umx2C83Sehl6EK3PF818t6Zr13BF5WwAW+DhrV08SHkQNRc3LcHGj4gEwftl9WLL1ppNnNZGoXyW+BmXKumDkUodrPhpAFb5JraGp1s6Z2zN3OlDHHO03VcdGdDWP71aM26h2ut3bg+K3Q1bF1/QUne/DAHkTYDnhpARc2F9ujHlC1X1IHD6VIKdcD6wGEEFKl9+yFgkMVJRj2CVl29OPlUsLsEKfxEnyI5O39XE3yjRCFsmRCx7rOEcuCSekDk+DnUf16wTCWzDDHPhrlQ1cid59MLrb3keoeLljFJi+L5PddUHO16LliXIeGDH/zlK7BVRdBa/G9MOoaRPWRu2uCAPNBsQC8XMJHt8E1ZkN8BG+W7VH9OhQ+lxfbdcn9diHEHqVlswdwR7n9FuBRxn6PBG5NP63JRKlKMALr5zcL9QH6YUg8VmJWvE3wpm5XsdzNl5bqELuP3FMsdVc5GvhED341rAXjKz6s6O2VZfqw/SoG2TlE8mX5y646i/kyku/QmAWvi2tKghRyN/PabWI34W1b6748+QXjnCd24RU2qbusddv9OAJY31xspwyouuRLKDqkXH7R2H6YEGJeCLEX6nW8q9JOeQzu9+59DauqBIGyW09N2xA7TZV7VdWKd2WyuOLprpi7L88sZQB1lHh03a6dUf1bu2ND9zyGD4nCVSWZLmzv2lPhRnsAXhebqcvlgQtqPnbX2H2qFW/H3rfgznxxDZCm7OeKsYcMbl8XPFXCM11k7jtAlx1Q/dtQbEctdyHEBajkn92EELcAJwGnARcLIY4F/hv1XjVSyuuFEBcDP0FRx5uklEXsGkqeFGiEq6EjVIL3l899+zQpl/UReR0rPhae0eaJDkyCP9Zudp0pda31FCvd1Vdt4H09OKjOvRkG+Pq3P6tgVWD7ZKlq68qychHYgvo03lFd9UzY7Dg0ZMXbA5kuC14fr+Htk6K8roafjppq1fBZ7HY4x7bW9SyS2hbaEdXeKxeg4/NuXOReACf11Ihzw7ANCeQupTzc89dzPPufApwSO6/jSPorXvW3r3NiylG4p79N1asUS9dH7CkEHyJrV7zd3tdGf+iN1mGwad8Wc32GGidLBXkKPtyyKrAtSE+zLYlsfgFeIP1JWj4L3mXJ2zF4HZoJkbotphp1rZaDO75uE/uisXQ5vy+UMGeSe2qasTBr2BxsQ/2wzIhFv4MWa0zK0yy1A8uyv4THW5fykVSI1HxknmLBh2LxVV5iisXzXTH9OmEZX1e7HooSNQPhk30ninVolXvtws0sKrVhXDJmbD+O9PcoyvVXddWLmKFM3RjJ+1IlF6hG7Kb0WJrvzOUVxIxtl6ro32tR7a78zsi+jBnbfgpvCLnvguoliR/8sf9qKsKecunFJd8lXITl2p5aQiRvAsfWJB/B+5BbN7bu8hhS1123anfgESkgTrFUqmBCop7c8bf5lk/GiO1HSHV5n8HgMR72LRQxpL6OEQnfP0j0i2XthhFZnseVux6bz8bVbN2uFrCP1r8q74zsCuwxTmw/+AL1gDSE3LX4Glal4SkdaG2repkqpOcjdBfB21Z2zFzygTAljz5E8KkEHuore5/gPRgG9LECzYD5GLAtZfj9Cgdr/24HXuE5zPU8cDkBmlzN8ExnRL2opYN/0DRkbLtyDLTKHSbhMS72d+mWqadynNh2ZegqaQLqS0lpSN1O8HTkTA+OlXEij50uleBTrfhUjUoJx8SIvKqVXhePx0poxyzSYUGPZ13/HpeMCdtHyzC2HNvmu+rlnpQcgJDtsWAtR30HpONaKSEY17CWXt8BmCtwE7mv/wrgmHFi2y8NmhUyRUGHBLz9X0suxduJLKtcblhr3gcifZwW1yCqFt8LSXbWi6uOw2DQh8knoPq7SD1plY6PnWfcMiZs70uat2gUUaQ7lz5bxCZ7E7KjlB7uDBiXdR6KUpqq2Ar1ka9j9qWR2G6Q5Q5xJRhmPdBBo+jnkP6lWvM+YPl84FCcPWVw1FW3GG/UxaDE+lHnBL51AutxJVgZGQO2UzBmlZNkeHdzWyzi0yn3W07RhnYoIhkic1tNTurh1qWYB95AbDfMcg+tL5Ny2P3kWo6quKziKmGawjjetMh1XV1vq7rI3FWfYUpK/zk7096hznrqvuOUMWI7JTRolF1lNfvDJnsbsstltWsxuThE5nbdfe3bRVoH2AcHyb1Z2G4QuWvxgT/0v71vxY6JEVTKPnVIPmTN+/xhTfD6SwZ60tmUl5mqWuZV2h3rvwelCrBT1lP2bYqsMLZ93lqA9Ks+DwrH0iwrISFnNYXQbZWo1G99VNIsbDeM3EcB/tR97XXPqVIJfhTkHyN77edqctdmUVUyj9WzSpt8fYP1n/QdkHKiYfdtAtGPAds+jLke7prcPYfVhe1KSOjhU7X+0qUvoX5rMLYbRO4R0h35vtK/W+gU9raU/0L3JPQQcJkg2oLXFrsZfhkAXOD8sXr66uuSSset9H1ugjQA29Kxiw8rgd1SybLnPt2yiI+PU0rwpLF+w/qvYdhuELnHpApUKuxblbSW41wxcjWL6e+6vo3qOl+IfOvWtep/UVmm+zsRsgxtr3rv5eBhKVeqRJjLLHXq4dzXtdG3Dcd251VSZXQ9OEHk7k/WH2rf0K5VLjnMuURgH3suGG2xtx3/2eeJnXeYulb9LyrLdH8nQpah7VXvvRg8LOVKPgiOQ+rUw7mva6NvG47tzqukyuh6sEHkLjzry7Wv8O8WOoW9LeU/12VDS9ekXjr0AkvErgdUzZkdU4i+zkNgZP2z0ve5CdIAbNvkFMJKYLeUYsJxJURfs05dgyeN9RvWfw3DdoPIHcIsmLJeZV973XOqVGKuQtohrbBJ3SR3WEp9NMm9be3rOl8K6ddpk69vsP4TvgNSTjTsvk0g+zFgO8a8ju1CgJD1yNxVViJjJnT9qmonXPoS6rcGY7th5A6j6Ywq647L1CW6KtpgL0Pzp+swnN4ujeNcH4c0P0OTQvZewI6ob/ok9f4QWK+yb5NkhbEdYjsPG8bI2oaobVfYUBz1nDIuccHfVZ/QA8Dsmkr91kclzcJ2g8h91KSduF6VxIYpPqJ1kbqZAqCvb5K9sI6ZIY7kUB2GaVdKvzk70d6hrnKkHDdOGSO2XfgKMPadAloyTOa2DWHOoW7Ppd5ieVMiW9b1QqqQQvR32nqVemADsd0K/rviMmqQJzLTMMQWKjaBu5QtpD3m1wZ0mTOKud1EdwoYl5PsfTivdX9SlIbAelgBVk7GgO1UnBl4e7/w75pC5jZkdTRxuaRNvwqYqhAie5+avL/FoC6luDENxHaDyL0mgIdh3p6AHzPYV3WrESJzcz1ByZzEbhK8a7uNal/IZhxk/yNUfyefDM96HYUZt4wJ29fix4GLldsgZ8K7+4jdJFfTBpln+UimVZ7ftHfs+jiaGCR7GeojX8dcQyOx3UByH7YTQh1s/ddtwdmi+mnsfVLI3EesMYUz0Wpa7Oa675gqxB5qg6u9VfAnUP1c2Ae6Tl7lBlTByzhlTNg+R0TJ3N620FbfTY2RucvumLOKSbyjvgPCuIa+jq0WLpvHRfB6/T5gse04KNZ/54wT235pELnrQPIIgB3tWGtbKnGlkrm5nmKpx3xbG62h3ykkX4XwXe2qglG9T/AexMA/jOug3/wap4wJ20L4H/y2eVvi56ezcLHwk7nPmTShOG+UNWWZHU1HPiiz5XnnreIid1s1fKGbiwT8zG6kve56QohxYtv/0lOU3IUQZwkh7hBCXGdsO1kI8WshxI/K8iLjv3cLITYKIW4UQjw/dn4ldwHXOypfF/QuJXB1egtuEXBH5BIhcqtipfsI3mUd+EIxvmUo/h4baapD8LG+McvtwK99wK9zH6soyrXAhbhk6rH9a6Eu7yFy53jOLFzbVoOggWeA02K3iXaNUdYyGgtelOdZa53fRfA+onfxdYFqd/Qgu1PuBG4dJ7bv9vZViuV+DvACx/a/l1I+sSxfBhBCPA71wcp9ymM+LoRIGFORqElT6nRAym/fthZ8vwXXWZfy9bGLyB2nDFrp5n8B99ipTTFiD4VnQoHGYa352IPwWuDq2Il82+oQnvm7i/riplPOYdqxfQN+k9sVy5iD82fU5+t8zwBfCMZF7GuNsh3DxeBb5fHbWed1EbyL5F0Orv69DbjAblzIRdEHX8+YsT2E5S6lvJzQ46FfXgxcKKVckFLeDGwE9k87tGrjUoEfYuCydB2XSjw0iQxdVrrPWg+ZR6mWu8vSGJUVH8KpD68dKpwolcCq4MUtqwLbPeJ4shh6YR6+LPxEnkLqJrlv5yizpJN8q9x/O2B76zy2BR+y4l1t0W38NwGL9kCBa2db33q6hs3Ctq5VXXmzEOKa0rXdudy2J/ArY59bym0JcjXpoPZtq8pQZXlv2Ul1TxOKaYfCMHUCminE7iN4H7GnlLrkD3BS1SfFqJSjBfyAGjI92D5ZqPvtI3MHU3fmYcOMGmD0hV9SrXVN7tuX5SHGcjuW4vE2xPS45ppyv4cY59BlO+P8thXvInlfTP5e4NwZ1e6BRoWeEG3gfc3Fdl1y/wTw28ATgduAvyu3ux4lTr9BCHGcEOJqIcTVass51HY/hwE/Lbirrey3EepUcmw9MsA1QOIus8Mme9/Ikc+KHwWZu/pLoGK+d6V0VuikVRTB/n02FWW6sH13W7FXzPRe07/+7Xn4rkiz2G3L2WexmwTvKttX2Me23l3EHiN4Xb4j4ArXASErfg719Lu7udieCf7rESnl7XpdCHEm8K/lz1uARxm7PhK41XOO9cD68hylkiwXyCNm6X+14Fzg7YmnSvlEjT2xdWguUmGVVnlc23MO13GhJvvi+j6CT+iy5AfABuBXsRMOQV5RkqwmU4nt84HX4rZKTVKz2PnUBXh+Z4kUO+XS9d12vTQharbWjj7OWecxj/Udp20Xu+qa2H2xeJOz56x1AZwyEzggRPjn0Ghs1yJ3IcQeUsrbyp8Ho4YkAb4EnC+E+DDwCGBv4Kq0s94F/ALl6Y4S/InK8WMBC1L1SN3ThL7dlULs5vlc54JBcsfTRSmhoFFb8fa+C8A1oubJ7IbUUYybSA+pl106jdi+VkAh4wFyzZRb1fq1a+BzXThE9hO777N2NjTNWpjErr/vbj8gfOSuQzSa4G2Hww4HuWLw5rp5/MUCfmLHkkIH61IA1zUb21FyF0JcAKwDdhNC3AKcBKwTQjwRdS9+CbweQEp5vRDiYuAnqHv3JillYpLxL4ArgMNrNLZqANlhpl7Shg92YTfrtFU+KKn3r/IFg1Rytz/GISLHm82LhYNsK36Gge6pZcnfi+rXvj/r3J8UsLu2Xw7c7O/61YLtL7ThlK7bIvUR/AIUC/CRBThocYnPXMRuw9OGo4aUJvZFBj+i7SN3DV/TevcRvMuCN7fbPL0AnD4LhT1IYB7ki/NsQfVrQ7ENCeQupTzcsfnTgf1PAU6Jndcty2nFRDq/24ZLCjjeM2uS73Q+a33g47kMkrwdjimMc7vOaZ/DJHgbBy5ijqVdurpmmKyazwvVr0HXYFT31acYfllV2P5iAUdKr5XOWlQ+4EJ/uXFRWe+v7PVb7j67w7Y1TLjpcEyHfss9Ru7mw8EcZrKfUyYv+zha7zsDXNSCG+3AvW2927mWev3CZmMbaoZllk+uBl5BGnB9DFa1zABdKNrwmRa8tIBdHZevGle3v1dmIhfCFrvroVE1rOPrOpvg29bvYTJqzNtxO/DZFvSGuTfDWEAFNTNllknGjO3zW3BQ4Sd1B7GzCIuL8LYOdLbAUdJNxlpc4RRXOEYTu4vczXPZ5G4SfCw847LgzXK2gHeuhY452mum39h5luaJ7kb1Z8Ox3TByvwg4lbTAt60EFSwZG/x6/eouXFoo79kmchfJ2+QeC8lo9JvrdrV9D5CqlnusG3xEXpXgfbflG8APXCcfBtRVyiIKT02RBmD7sgIOIonUTSZe7MIZXThkQR0Wg7fL4rZOORBvj5G7eS5Per4z/u6y5u8HzpiDRTuv0k7B8T0dvsJEYLth5L4F+CJwKGkKMAKrpm99Bk4t4JBikMjtuLqP0CFsZeulK0PGR+5VM218PGHj0CZyH1ZDXqdrewf4gH2hKkqQen9DuPgnAm+mjkEagO3TCnhJ4Sd2m4ENE/snXXhND87tKH4LJW2ZtbAJ2bTadby9wP+g0Hd5xnO+WHjGtuC3Aa+ZhZ/aifchojdP0AL+ZjKw3TByXwC+h3rLu0rjhwA8Myh4lcuNXTirUMNoIWvdZaFXIWFXOMYmd1fs3me5+6x3H55cg6iu0ExosNV3S9YDv3CdtK5C+AAf2ud7KKZqijQA2zd14TMFvJp+QjeJ3RU7KVn46z046n74VFfxnRYXseua+Kx2MySTQu6+h0XIerct+AeAY2bgG9sDO9D/RlWM2PX6BuDmycB2w8gd1Ew8C6yIJTOwLKA3Ax8t4LBCASBkradY1pAejjHJvU4qZerAqt01IYKvitFNwEfbqh+DT4dQ/Md1wRQc6EZvQ+GoadIAbH+sgJcViqgi1vpAOksPvibh9ffDJ8tTuEIxJrEvoMh30XFqV8aNlpAnoM9t5r1rgrfHPTWx3w+8vm0Ru4/gfUT/APAPk4PtBpL754B3Ab/HYMOGBbwF9oFluX5zARt68CapTlHXWtfiio27wjFtlsyYWNaNOVgestx9JO8ib5cxUsWKl6i5rX+p1c93wqouQQrozcbdCFziuRnjlAZg+5cFnN+DY6UirJC1bgbEDRx+GTj2ATi3tOBdLTAt7EUGQzK+dEotIW/AZb3bBG+WbcCxpsWuy0OMdV+YRg+2zgHnCvivycF2A8kd4DvAvqQ94Uywp1gyGuwuRSiAWSh68J4eHNCBA6hnrWtxhWNsUjct9jYDyjRUuGfY8EwVK/67wIkzUITA77uo74mTcmG7fMd/P8YuDcD2iT14ckdVw2Wp+4hdi4CvCzjqATi7o7hPx8VNYrcjPd1yqWvYI53czfOb0ya5psoxrff7UTH2PmJ/KP0E/xBr3UXwPwL+crKw3VByPxM18PQQqj3pfJaMw0W1QW+/ntEp4K96cF6ZGlnVWtdSNRyTGm8PnT91YNVlEoUIPmTF3wH8VRu6roNilo7r6WKvpyrB3Sj8NFUagO1uASf34OxCkZdm3RRihwfx9bUWPOcBOH4Rjpb9xL7AEvkuei6RmlbpG6SdoX9aJfMF0hlUuuMZc+XgqW2pmwRv/uey4O8DTp48bDeU3K8DvorKCx6FJeMCvbmulcBi2Mt6cFgPviSXUgRcIZLUHPS6A6mpA6pVBlZNU8jGl89i9+FxC3CYgP/UYHdNT+lSBt+TpKo1Y5YvoybZbqo0BNuX9+DIHlwklwjeZtsAsetywwy88wGY3wov66lTmZZ7h0Fyt0MyVcjdfIDY5K4JfgH1gtI71xrpjqZ1bhK8bcXbcfgecKSA70wethtK7qB8/EMZ3pIJWTQ9BqwaG3bf68E3O/AnuNMdXWSr130hk4K0gdRhLXffwGqV8IyNRRdOvwlcZYM/xcpx7VelMvbvHnClo5OaJg3B9lU9+G4H/rB/8wDu7DEjXcrqLczAW2bhH7fAWzvwCtk/iOrKknGRO/QPJ4XI3UabngTsIgEfnVVvnnZ0vNwMtZhEblvvLoL/d+D7k4ntBpP7RcBbgL1It2RiA0oOF9Vl1Zjs2unBayWs76oXQMBtqZsZMebvlHCMvncu5apjufvi7rHwTAx3LpL/AvD6GejY4I9ZOVWLr2Lm9puAi2m+NAjbr5PwiS78EW7smeIgdn2rO3Nw7RwcvxU+tg1O7MJTJezI4ItLrnh7r7yESe6mfWI7mybC7gX+Q6jZHX+yppwrxjXPsCs84yr6/68Ab55cbDeY3O8DPgn8LemWjAa7qQg26F1WTUAB6ME9UinBDgWsI2xB6/UY0fpi7b6wDJHrxsIyqbH3GLmb2/4DOK4N95qJab7isreqgt7lRpjrnwQ2OzqpadIgbG+S8Aap8t/3ZxBzLgy7zOcyJlLMwzXb4BVb4ZkLcFQXXiiXUhJd8XZX9Edf2pUvolu/DbhEqA9tXKHfXjKLme0SCs+4yneBN002thtM7qA+vrkJdSdi1o1pydignyFu1bjgZjDsJgkbJDyjN9hrrjx2V9pjKEsmFm9PSYVMIfhQeMaFLR/Bd4BzWhXAX8WlrWLd6OU9LM3OOwnSMGyfL+FpPUVsNrHbqSs2j9lvEW0F1sK3t8GVCzC3AId3Yd8CDpfqEq54uyvmbodm7gM+K9THrC+cVZ/G67gS213We8yC12GaGeC8ycd2w8n9clTqz4uoPpBkrvvc04rMehGwZhE+3FPg0ZJCtC5SDw2kjspyDw2sVgnPmLjbAryjBRfHPgkVcmOHdWntil0BfNvRQU2VBmJ7fhFO6ymS87GrzVs2uW9jKbl8ATpl+VQZgP94B+YKaBVwUg92kWUtHNgWQl3+LqG+ZifbsNiGn5kQi325w5wUzBV/twkepgbbDSd3gA8CzyNu0aTEIO0SUgDHaGZPwtkSRAdO76lL+Kz2lHCMayDVp38uYtcSGrytOrAaC890UODfYILeVoRhAF/H0umicDJp0jBsn1Ni+0MGwQfi7E6C3YZ7+uAybeZnRrL7y3TwXZeyKn1Bd/PabZbgkTJzWOg7f64QzQwK2+dOB7YngNyvBv4F9VGcKhZNilUTY1Qcv1EJtFsW4aieyjSAcDim6kCqqzowSPCxOH+VgVU7qOki+EuBDdqqcbmspiL49olZO1WVYQb15ucPmTxpILbPEbB1UU3g/lTicXbzrSE9lXBsQjJXyowvLuMKHdrXT7HefeEZTezfQU3jO0XYngBy7wEfQOUiplg0Zpwx1ZpJDXaXIgVcCHy1A2cW8GLClnOBm9yreM51LfeUgdWU8MwXsAZP7Qxjlwtb19qp4tJ2gNNYMv0mSRqM7a904IxCORa+OLtNrKbVvo3+ScnsnMhRkLsdEqpivZsE/xWswdPpwPYEkDvAz1HTXL6SdBc1ZtnUZVMjDrNJwHEdaHfhQJZmUqoSjqlqtdsKYC9HSe5tVHz9W6h0x3t9VoxdfJaOD/wprq1v+3nARiZXGortewW8saNSgJ+Cymm0QzJ2SGQb/VMJu8i9axTXqKpdldR4vz3vgDnvr4/geyhv9M3Tie0JIfcF4Fzgj1nKLqgK9ioWTUhMJm3BPQJeIWD/rnrb72FUH0hN1cXUAdVhs2Z0uQPVtu/PlLm+vgEmnxL43NtUNzbm0m5CzcHapKl9q0rDsf1KAU/uwmck7ISf2HVIZoF+co9MI5xsubti/jb8fHP+ugZX7wOOEHD19GJ7QsgdVHbBf6KUQAM+NqgUG1iqEvsAL4N2WvCfLXhVF95XqMnGQuGYNv2grhpvNwedwE/wNrHbyuIjeYnK8/2rtue1a1fssaoiuLaluKrmfleUZdKl4dj+TguO7sJ7C3gi/WEQM9ZuD6Smzhymqw2DA6qCfnI3B1V95B6y3udQk4Cd3IbvTje2J4jcAY4HPg/8AdXdUxP0IQYNKYPNopY5fFkLntuFU7vqY8Q7sUTqmuh1VezB1JW23G0rXivQJtSg2okz5URJIYsjFJt0ba8arwxZOVcCb3R0yKRKw7F9eQte2IVTuipZfSf6wzFG+mPKl50efDZVIXfXoK7Pk7A/ybQdKsT4KaFmd1wF2I6SuxDiUSi/8TdQt2C9lPJ0IcQuqOzY3wJ+CbxcSnlPecy7gWNRt+6tUsqvDV1TQE1Sfy6wH4Pu6zADS+AGvS8dJZAO02nDCS310cm3FPBa1H0zrXWfnqZa7rbELPeUrJkO6iW4j7bVfOw927W0fWGfEtjrvt9V3VWzgMLBnYFOiUvGtrmeiO13t+CTXXhTAUexROqu9Edz5rDEueIHqmRj1TZ0Tcj5BlYFcA7wj6sH2wBCut4eMHcQYg9gDynlD4UQO6A+u/0S4DXA3VLK04QQJwA7SynfJYR4HHAB6mXmR6Cm3nmMlLIIXCPmMxqyE3AZsDeDX/a1vx3mWre/K2b7j7Yv6VvapTu4bHXh0QW8p1BzdzycemNfdkjmwY6z1utY77ejPmb9gbb6NF7Pdg9t8MdcWNuqsf1me921tNft8jPUCPa9VJAfSCn3MzdkbA+J7b0KOKGAdcAuhEMyy0XuNtxMcr8blQxwWlt9Gm9KsS2lFK7tUctdSnkbcFu5vlkIcQOwJyoBcF252wZUN76r3H6hlHIBuFkIsRGlDN9Nrm1QNqFm1PsaavSy7sBSSizSl44SSz9pA13oddU3WY/pwn4FHNGDg6XKPJh3VM9XTSpUM0TsermAws7nBXy2ZXzJPRQHrOLC+pSgqnXjKv+Duv+ViN0pGdv2siK2b+rC67rwBwW8qgcHyaVBy1i8fRhyD8XdC1T45UKh8tZXKbahYsxdCPFbwO+jvtD68FI5kFLeJoTYvdxtT/rnpryl3DZC+Rkq8foNqCakxCJHMcAUinNEEsav7sIPC/i/Bby0B4/vwdEoi0cPYpqhGTxVTbHcsaqqt92Fck+vacEXWtBtQ8/1KmpVBahi4fjc3phi6PpcgkofHK1kbA+B7R904f+VVvzBPdinB0egHJEC97SQLnKH/ph7iNxNSLZR2S9nA9e14J8ztqECuQshHoIa8Xm7lPI+IZyeAPRTjpYBtAkhjgOOS73+oJyIQohLCWIWTUxMRvQpgm9UskMf8B/0Q2egV8BiAReW5Ywe7NqD9/fUrk8AdndUNWS9+wwwgQq5XFtW6aQW3NWCXwWUdEARbBfWpwy+GGRICaoORLWB04GTHJ0wnGRsjxDbF5XjA2f2YJcenNxTp90X9UUz17SQruq7qmRy9Z2orJceauKZuzO2bUkidyHELAr850kpLyk33y6E2KO0bPZAZUWDsmYeZRz+SOBW+5xSyvXA+vL8FeKSWrai5lx4JSrOYYM+FuMIKURohDKWclK6rQ8WDSjbZCngVwX8qgcHlSh/cg8eUdbpWKnI3me121XV6z9CTY+AgF8LuDqUGjODWwlG4cLaCuDaN9XSmUG5qn+LCuyOTjK2lxnbB5fY3q/EtpTqm3yPxx2SsS13s2rXoDK5hIBbM7ZjEiV3ocyYTwM3SCk/bPz1JdR4+Wnl8ovG9vOFEB9GDTrtDVw1ykovyf+iFOB81ExHqVkDNuhjI5MpwDetGtu60eDXiqBzwCzf9PsG2v+1B62UwLulCT0BRWgE1VQAs54hF3bWsayqBD6FSLF0NqHu8/AZBKZkbK8gtq82sP1lB7Z900Ka9c7YriQplvvTURG0a4UQPyq3vQcF/IuFEMcC/40aCUBKeb0Q4mLgJ6i7/qZQNsHwchnwDlT6UIo14xJbAfTSV0wwmcDX65bL2gd+E/i+3EgJhYTCDr5DfxvsukI8/9EXP7XBbwY2fRaOuW6Dd5iBKFsh3o560WfkkrGdsc2UYjueCrkSUs91NWU34CxUvqE5TB9KBaubFuZJDXMW01115SxXfcvQJ6EBsoqDY0EXNtXK8bmhsTjlHP0pZXPA11Fp5XcF2p8kA6mQKyEZ2xnby43t2qmQkyF3ogyw84F15bZRDDCF3NUUMLmsmroKAO72hOpeVQF8g0/DuLApFo5vIOpS4EhUKsRqlYztjO16MiXkDmpQ4lWofKjnkQZ+iAPIpQw2iFwuawj8PgWQjqUNfp/rarah5VhWUQBbEUz31acAM/gHl6paOLOoXO+jWd3EriVjO2O7ukwRuYManPgw8GxUJ6ZkDsRKamzPziDwua49x3LYNLdY3e1Yqq8NscGnlPhkSpzRFZc09+0Af8eoXuaYDtlExnbGdhWZMnIH9a3Bv0Dljc5Z/9mhqWFcVnvAyeWypgw2FSwBfzldV2HUP3XwKeS+1nVhXQpg/gb4M9QsiVn6JWM7YztdppDcQbmvAB+iXwmEtZ5qzYRA08Htsvpc11AmgS+XGfrBLx1tMdvUoroyVxl8qqIAMQvHXO+gyGsDWXySsZ2xnSZTSu4F8ClU8z7AkhKEQJOiED7QdOkHT53BJlsBRuG61lWAVCWo6sKGFKCDmr7l04F2ZsnYzthOlSkldy1noMB4OioNyQX6mCVgu3sxl7XOYFNqqlgV19XlvtZVgBQXNmbphFxYgD9HpfxlSZOM7YztsEw5ucOgGzuMFWAC35X7aw42mQNOPeIK4MsmCIFfS0ixfUpgK4Ben8GtBCkWTooba7uwHRT4cyimumRsZ2z7ZRWQe4Fyh36Kink9t9zusm5i7mrMGrCVwLRyQpkELuD3ynpWtW6w2pSiAK52xaybmALYyuDKHvgaKnMgD57Wk4ztjG2/rAJyBwWcK4DrUF8UfzaDwE+xbnxAqTrY5EsTS0kVc+UC6/WQ1VZHsW3w24pgu68pVs5c+f+lqFzfe8kyjGRsZ2y7ZZWQu5ZNqEl6zgWeTz3gu1xW27pJiUfq9WFSxbT4YpM28PW6HWuNKUDMfa3qwn4VNR9XJvbRySYytjO2TZmSuWWqym4oC+cjqClVzbk06s6x4Ztno6oChFLFUl1X32BaVQWwwV/HhTVd2XuBtwHfZARzxVSVCZ1bpqpkbK82bE/53DJV5U7gn1DTqp6HUoLYoEzKSx11BptSsgmGdV1TrbjUwadUF3bW2H8TyrK83L4ZWUYqGdsZ20pWqeVuym6oHNS30G/hxKwa3+x4VV7JHjZVTEvMda0bdw0pQYqVo9dPR32M4M5AG5ZdVonlbkrG9mrAdrbcvXIn8F7UzX0J8BvErZqQdWPHJVMUIDVVLOa66qXLsvEpQdXBpxT3Va//D+p7oCcx6q/MZEmRjO3VjO1suffJ3sDngN8uf/ssHDsWGYpJVlWAFOtGMui26mVV9zVFAaq6r6A+9HsosNHZ02OQVWi5m5KxPa3Y9lnumdwHZEfgEODVwFNIc1mHUYCQZTOs65pi4dRRgJCFcyUqY+MSmpAxYMgqJ3fI2J5ObGdyryy7oV7xfhqwE2ngdw02ubIIQpbNcriuKQoQyyqIKcEmVL71GxlzbN0nmdwflIztacJ2Jvfa8kzUF1MORb2kUHWwKaQArlSxUVs3MQvHpQBVBp8WgYtRFs0Vkb4cq2RyH5CM7WnAdib3oWQOeAzwTtTAlC89LKYAepskbOGMyroJWTaCfvCHFMClBF3gn1Hfkt6IUoRGSyZ3p2RsTzq2M7mPRFrAk4ATWHJpY/HIUIqYbdm4lAD6gW+upww8paSMpSiABv49KCvmg8APyzpPhGRyD0rG9qRiuza5CyEehfJLfgPV2vVSytOFECcDr0O9LQHwHinll8tj3o36rHcBvFVK+bXINSZEAUx5FvA44A3Ao1GgCQ04hcDvUgLwK4EtNvj1ekpc0jcAZZYecBMqTns96otAEycD5J6x7ZOM7UmSYch9D2APKeUPhRA7AD9A+W8vB+6XUn7I2v9xwAXA/sAjgH8HHiOlLALXmEAF0LIDcBiquX8M7MxwCrAcrqsJ/FjamKkAdwNfBr4HXARsrtg3jRIXuWdsByVjexKk9ktMUsrbgNvK9c1CiBuAPQOHvBi4UEq5ANwshNiIQsd3K9d6ImQzcGZZ9gGOA56KimOuIawA0rEcteuakjJmKsA24EbgO2Wbrq/eJRMiGdsxydieZKn0hqoQ4reA30c97p4OvFkIcSRwNfDnUsp7UMpxpXHYLYQVZorketTkQQAvBXZFKcNBqK/lzBHOJjDXcaz7xOe6+uKS5noBLKAGkL6HmvTokmrNngLJ2I5JxvakSTK5CyEeAnweeLuU8j4hxCeAv0bdmb9GzUx/DP2PXC0Dd08IcRzKFJhS0SDaALwD5d4+CdUVB6JimSvtuurlTahJjgQqEnERsJWmZwUsl2RsV5WM7UmQJHIXQsyiwH+elPISACnl7cb/ZwL/Wv68BXiUcfgjgVvtc0op1wPry+MnOC4Zk8WyfNLYthewS7l+DEuKMQs8vtzusnBCYls2ErgWldalgX52+f/dwM0V2zGdkrE9jGRsN1lSBlQF6hF9t5Ty7cb2PcqYJUKIdwAHSCkPE0LsA5zP0qDTpcDe0zvoNEpZi7KCWuVvV7f44pJY2wuWrJYsuAdUM7ZXTDK2l0uGyZZ5Bio/6FqWEj/fAxwOPBF1R34JvN5QiBNRj+0uytX9SuQa/ws8QBPf7V0e2Y3V01ZoRnt/U0r5MHPDCmF7M2oUb7VIE+71SkkT2jqAay2NeIkJQAhx9TheMhmHrKa2wuprrymrre2rqb1Nb2srvkuWLFmyZJk0yeSeJUuWLFMoTSL39eOuwArKamorrL72mrLa2r6a2tvotjYm5p4lS5YsWUYnTbLcs2TJkiXLiGTs5C6EeIEQ4kYhxEYhxAnjrs8oRAhxlhDiDiHEdca2XYQQ3xBC/Lxc7mz89+6y/TcKIZ4/nlrXEyHEo4QQ3xRC3CCEuF4I8bZy+1S2t4pMG7YzriesvVLKsRXUjD43od5XngN+DDxunHUaUbuehXo17zpj2weBE8r1E4C/KdcfV7Z7HvV6301Ae9xtqNDWPYAnles7AD8r2zSV7a3QL1OH7YzrycL1uC33/YGNUspfSCkXgQtRM+9NtEgpL0e9B23Ki1FvQ1IuX2Jsv1BKuSClvBn16Zf9V6KeoxAp5W1Syh+W65sBPbPiVLa3gkwdtjOuJwvX4yb3PYFfGb+neZa9h8vyLcdyuXu5fWr6wJpZcerbG5HV0s6pv8+Tiutxk3vSLHtTLlPRB/bMiqFdHdsmrr0Jslra6ZOpaP8k43rc5J40y96UyO3ll3/0F4DuKLdPfB+4ZlZkitubKKulnVN7nycd1+Mm9+8Dewsh9hJCzKGmjfvSmOu0XPIl4Khy/Sjgi8b2w4QQ80KIvYC9gavGUL9aUs6s+GngBinlh42/prK9FWS1YHsq7/NU4LoBo9IvQo1E3wScOO76jKhNF6A+39ZBPdGPRX265lLg5+VyF2P/E8v23wi8cNz1r9jWZ6Dcz2uAH5XlRdPa3op9M1XYzrieLFznN1SzZMmSZQpl3GGZLFmyZMmyDJLJPUuWLFmmUDK5Z8mSJcsUSib3LFmyZJlCyeSeJUuWLFMomdyzZMmSZQolk3uWLFmyTKFkcs+SJUuWKZT/DyqdxbWVTkUQAAAAAElFTkSuQmCC\n",
"text/plain": "<Figure size 432x288 with 2 Axes>"
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import sys\n",
"import os\n",
"import torch\n",
"import torch.nn as nn\n",
"import matplotlib.pyplot as plt\n",
"\n",
"rootdir = os.path.abspath(sys.path[0] + '/../')\n",
"sys.path.append(rootdir)\n",
"torch.cuda.set_device(0)\n",
"print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n",
"torch.autograd.set_grad_enabled(False)\n",
"\n",
"from utils import img\n",
"from utils import device\n",
"from utils.view import *\n",
"from components.foveation import Foveation\n",
"\n",
"\n",
"foveation = Foveation([20, 45, 110], [(256, 256), (256, 256), (256, 230)], (1600, 1440))\n",
"layers_mask = foveation.get_layers_mask()\n",
"plt.figure()\n",
"for i, mask in enumerate(layers_mask):\n",
" colored_mask = torch.zeros(mask.size(0), mask.size(1), 3, device=mask.device)\n",
" c = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1]], device=mask.device)\n",
" for bi in range(3):\n",
" region = torch.logical_and(mask > bi, mask < bi + 1)\n",
" colored_mask[region] = c[bi] * (mask[region][..., None] - bi)\n",
" plt.subplot(1, len(layers_mask), i + 1)\n",
" img.plot(colored_mask)\n",
" n_skipped = torch.sum(mask < 0)\n",
" n_tot = len(mask.flatten())\n",
" print (f\"{n_skipped}({n_skipped / n_tot * 100:.2f}%) pixels in layer {i} are masked as skipped\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.5 64-bit ('base': conda)",
"name": "python385jvsc74a57bd082066b63b621a9e3d15e3b7c11ca76da6238eff3834294910d715044bd0561e5"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"metadata": {
"interpreter": {
"hash": "82066b63b621a9e3d15e3b7c11ca76da6238eff3834294910d715044bd0561e5"
}
},
"orig_nbformat": 2
},
"nbformat": 4,
"nbformat_minor": 2
}
\ No newline at end of file
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -2,17 +2,9 @@
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Set CUDA:2 as current device.\n"
]
}
],
"outputs": [],
"source": [
"import sys\n",
"import os\n",
......@@ -20,7 +12,8 @@
"import matplotlib.pyplot as plt\n",
"import torchvision.transforms.functional as trans_f\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../'))\n",
"rootdir = os.path.abspath(sys.path[0] + '/../')\n",
"sys.path.append(rootdir)\n",
"torch.cuda.set_device(2)\n",
"print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n",
"\n",
......@@ -82,43 +75,13 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Change working directory to /home/dengnc/deep_view_syn/data/__0_user_study/us_gas_all_in_one\n",
"==== Config fovea ====\n",
"Net type: nmsl\n",
"Encode dim: 10\n",
"Optimizer decay: 0\n",
"Normalize: False\n",
"Direction as input: False\n",
"Full-connected network parameters: {'nf': 128, 'n_layers': 4, 'skips': []}\n",
"Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 32, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
"==========================\n",
"Load net from fovea@nmsl-rgb_e10_fc128x4_d1-50_s32.pth ...\n",
"==== Config periph ====\n",
"Net type: nnmsl\n",
"Encode dim: 10\n",
"Optimizer decay: 0\n",
"Normalize: False\n",
"Direction as input: False\n",
"Full-connected network parameters: {'nf': 64, 'n_layers': 4, 'skips': []}\n",
"Sample parameters {'spherical': True, 'depth_range': (1.0, 50.0), 'n_samples': 16, 'perturb_sample': False, 'lindisp': True, 'inverse_r': True}\n",
"==========================\n",
"Load net from periph@nnmsl-rgb_e10_fc64x4_d1-50_s16.pth ...\n",
"Dataset loaded.\n",
"views: [5, 5, 5, 5, 5]\n"
]
}
],
"outputs": [],
"source": [
"os.chdir(sys.path[0] + '/../data/__0_user_study/us_gas_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/__0_user_study/us_mc_all_in_one')\n",
"#os.chdir(sys.path[0] + '/../data/bedroom_all_in_one')\n",
"os.chdir(os.path.join('data/__0_user_study/us_gas_all_in_one'))\n",
"#os.chdir(os.path.join('data/__0_user_study/us_mc_all_in_one'))\n",
"#os.chdir(os.path.join('data/bedroom_all_in_one'))\n",
"print('Change working directory to ', os.getcwd())\n",
"torch.autograd.set_grad_enabled(False)\n",
"\n",
......@@ -294,13 +257,6 @@
" img.save(\n",
" right_images[key], 'output/mono_test/set%d_%s_r.png' % (set_id, key))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
......
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
......@@ -2,65 +2,21 @@
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": "<matplotlib.image.AxesImage at 0x7f0214970810>"
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtdUlEQVR4nO2de7BlVX3nv799zrnv2zTdNE3zCI3YEhgMD1tE0YAiER8jzKQ0kmgwYQardCZYlYyCsTLlmFSoSlXGP5LKSCVGrDgxzOgIQRMHQSblIzyFFqR5v1qafj/u85yz917zxz197/19f797z6W7OX2b/ftUdfVd+6y19tpr73X2+f3W7yEpJQRB8NonO9IDCIKgN8RiD4KKEIs9CCpCLPYgqAix2IOgIsRiD4KKcEiLXUQuF5HHReQpEbn+cA0qCILDjxzsPruI1AA8AeAyAFsA3AfgqpTSzxdqU6v3pXrfwCs7D2h8IqbOUi7BXGcqdLeZ/d4bGKCxUh+tdtu0KQrdL7eRrGbaCPQ1Jb7mpeDMy5Impgs8b85ZIHTu/v4+VXamFjnNnZm3Bc6lx+YN5mAadcF75syJup0Y5q56LVIqu5zHMv/5abemUeRtt1G9a08LcwGAp1JKzwCAiHwDwBUAFlzs9b4BrDvjgtmy90WT0TBrKBevAICfk0zs09XK9cOVpsdUuX/Ifgn98hkb9HlKPZYXfrHVtBnbq/st6bwDQ8OmjdQaemxLuOElTV2tbq85lXpiCiqL99zTsZKuWZx71tenH6PTTztFlQcH7Ph3vrxNlcf37TF1anX9xZgKPZaSJwFAooWZ0fOS57lpw/DaTmK/oEs6lugelku4Z97P6rzVpDZ0bmf+6/W5Z/f5zfc7vS58vqVyEoAX55W3dI4FQbAMOZQ3u/srxFQSuRbAtQBQa7yyn/BBEBw+DmWxbwEw//fayQBe4koppZsA3AQAfYOjqWy1Zj8bHh0ynQr9BM9b07o/5zumzj9hSyv/1Wu6TkltRkZXmDYr6NjYxIQq1+in28xYtLyaFy1VTs5PTxZq+RqN3gJAo6Z/3hVev9B1hH7IeeIrdQshMcr7hq9l+jHi6a/X+02b/sFBVZ4Y22fqFN1+trvitz5ofjo7F8DnYVFAMvs88blzWkqlMzihyfVuWZno+c/12Oo1ewEyXx5bRMQ/lJ/x9wHYICKniUgfgI8AuO0Q+guC4FXkoN/sKaVcRP4TgO9h5hXylZTSo4dtZEEQHFYO5Wc8UkrfBfDdwzSWIAheRcKCLggqwiG92V8pmQj61Z6s911DSgxo5Y44m8Ni9kGtsUuWyIgDrFyzY5kY18q1OimiUuHs86bFlUq1hlVKsqKsZrRIjoKIlEg1RymZqBuhfj07HJSsrKL9ZOc8fEsadT1PmZCtBIB2c4rq2KHkOdsJ6BPxHjoAlHRPUluXG3W7Z8763RYpxVKyz0bJe/F0j7KaXVolGYSwMrpzVPeT0fU4e/5QxxbW0MWbPQgqQiz2IKgIsdiDoCL0VmavZRgZnbMNb7esLFeUbFBCMohrlKKLyfkOK3Mtf7NM1XBkrKEhLddPTmu5v2ShGEBBcibblnsyL9u1m149OY2NNtgaBjDCdEZCepHb+U9s+EFVPIehWl3PU38/3zNHn1BoG3WeJwCoN/Q9EWNU4+hMCvKBoDqe/G3kZJpbT7RmGb2dWB9i70fi5Zac+e/iqOONPs3XBSzSPt7sQVARYrEHQUWIxR4EFaGnMnsqE5pTc7KaI6ah1tCyTp2dRBw5mWUq10++T8uV7baWuSYnxk2bPOcAC3rAHKQBACZp77egYBX1uh1/raHHxo4vvhzHAS88wZIDabCDh7MXTDqTWt04uJs2GTvl0DwNDlqHIWT6WOZFuGCMjOvMJY2F7TK80xQ51eG9eMcggafBxEZxHZNIn+M5ItHzw/fD30avd6sAIN7sQVAZYrEHQUWIxR4EFSEWexBUhJ4q6ESAxvxIGw2ruGFFU0bGCXnhKIhYh9GwBg1s7JI4AkjdTsUIRdLJC4pU44y/f1C3yUgp40dnZQ1j94CTbCDjdsxTZRR9jrIzaWOXjIxQPAMTnv/+IXL2cZyXBpYQqcbGb2XllWNU0yVSLzvKADY6Livk2rljFMTvSQ5s6TynPBZjJAQnKpGJ7uvcaDdyqCXe7EFQEWKxB0FFiMUeBBWhpzI7oKOVihPUoCShkI0MkhFEAQ544YUdLSg5AEfpZGOMmbHqfuqZNqLxDHymxnWygz7KgFNzdANGkubopo5IxnK+ZyySSgo8QfOdOR1nNe7IRMAwbTh5RpMchvqH7TX3kZOLpzPhe2bO7YyfHWwMXpQMguffG1tOuoylSM3WWMp5lo1DDY3XySjkRxa2xJs9CCpCLPYgqAix2IOgIsRiD4KK0GMFXQJkzkCh5ehS2BErJTrgeCCxZxOnOQKAGkWiKY3hilVytMnwptmmaDfipJkiQ5sGGfgkJ/KtcJScvHvUE2NUwx5ugFXm8Fx63oFGgcWRVm0bVm4OUUZcx/YIwyt0aq2tW03mMBSsBDPntgouTrHE11g64+djQnPpZ9ElZZvxzjRNrEGPo1jj6LfGo9CJ+pNlzgQ7xJs9CCpCLPYgqAix2IOgIvQ2Uk0CmvNE1tqAk7KZZR+KFupFWs3IQMZzFjAyOSkHxEkrzNOTUx+eswN/f2Z1Nh6x0W2MoqJGMqRzzeyw4smimVAGmxpl16k52V3YUCVxVhbTxBiq8PzXG/aas2yajngOKqaRHoszmJLTL9PnNtsOrMeNEa3t2Dgwr4ki7GUuomfDy8jDp+JIt6XnvDRfd7SIU0y82YOgIsRiD4KKEIs9CCpCb/fZJUOtf05OrzesnJzR3nDisre3amIPWBm3b1Dv6/IeujiZQrIayZrkpNBwnGc4KAOLiO2WIyfXKQMoOazUHNkup+y2XqbU/kG9391uaTsBDugBOFu/JkOMk8WH5uWFl8dUeXDAmae6HkuDHIYAoGxrvUSb7By8eanX2UGFov1SH4AV2dkZyHOSYrOGNsv5bmCK7k44nDGIM9mWzpJVqoxFfGLizR4EFSEWexBUhFjsQVARui52EfmKiGwXkUfmHVslIneIyJOd/499dYcZBMGhshQF3VcB/AWAr807dj2AO1NKN4rI9Z3yZ7t1JJKhNt+opOZF4NTH+kjh1ZpmYwxriMAphAGg0cfRQElZldmxPPHc84v2Kw2rVGIVTF+/Hv/Z577JtPmVc85W5ZFjj1HlCy8837RZNaINkianpkyd/bt/ocptMsTZuW2XabP58RdV+elntYPK5LiOsAsAY+OTqnz8cStVub/Pao12bt2iyrvrdi4zSpU1MMrKNutJlSg1d04Kubyh7wcA1ET3k5NyLSutUo8VZybojBPFKC9IKclppgBkNXKkIkMoL80z0lw/iykBu77ZU0r/AmA3Hb4CwM2dv28GcGW3foIgOLIcrMy+NqW0FQA6/x+/UEURuVZE7heR+/N28yBPFwTBofKqK+hSSjellDamlDZ6++pBEPSGgzWq2SYi61JKW0VkHYDtS204PzXv9LR902cko0y1SBZ1jDoGKHVyMtFmgfrIsD7Q1BlIPn7Nb5k2F248R5VPOmGNKvcN2C+vskumFscNxvZBZXs1nPwXGF4xbOocf/xx1K+WRc860/Z70cW6znRbOyJ5NhvNlq7Tbur7Ok0RdwGgluk6Lz73oqlT1PS9H9+h27DcDAC7dupz/fN371DlvXvsWEoyUEp0PdNNqxvIC3IQMtFmrex8fE3rJdYXVrc0OK7vfl5qfcjIlA1+MjpPf/N111NphoN9s98G4OrO31cDuPUg+wmCoEcsZevt7wH8BMAZIrJFRK4BcCOAy0TkSQCXdcpBECxjuv6MTyldtcBHlx7msQRB8CoiXgDBV4vRY9ek8y69Yra84cyzTZ2P/Oa/U+XVJ2o5eXDQyjlDFNFw0Nlq7PYTxpN0uuU89b4puQ1Le5783Y2lnMejW54crw8eb3fXDUA4YCPpLbxnjI9494fjMHDwkLazu1PSXnZGthHTLbtnvr+tbTfqK9eqctPL4kq6o3t/tkmVv/ulvzBtfvdBbbNw1n5rszBZ6Llrlvoa93jZX+bZrvzezk14sj3u3rYwlw2CihCLPQgqQiz2IKgIsdiDoCL0VEF3zpvelP7vj348W643HHUVKXcmTZpeq3tgFwpPO8HfaqxycfKpmH66lT2WoojqpjjzzsPj9XKC8LmWoqDrpkD02nTr18u2w1FSvfm3J6Lovk6/U3Rokp6X/c5skk4MrMLzjLy5Do+/5UxUbUorAjde98emzpqfPKTKE7u0EdAOJyNMWc7d6Y/t3YSfh4IuCKpNLPYgqAix2IOgIvQ2umxKKOcFE2iWThRYijI6QpYVheO8z84n4mT9KLpI2N63Hkcv5TMv5Zuym2GL1+9SdAGM1y9LdzwWb/w8Fi5bNwyg1SVrSduTk6nsycWTdFFj1I/nVMQy+jSdWruV+GPha6w5k8vGRyYor3Oe/RTt9//8jy+aOhf+8ZdV+fR/+K4qD++2AUf2ZnMj9vQjB4g3exBUhFjsQVARYrEHQUXoqcy+b89e3P7t2+YONGyQxD7hQH5aahxZMWrarFytnWXWn3q6qTM6qgM59FHgwVSzU1GajfXu0rSQXQDLg0uRx/MlVGLzCBtewcqRvDfs7VO3aIScRdSTeVneZhne3mW73+3pAroFMWs4s8nnGqRLtG4wViZnlY9nA7CH2vD4JxzReZoUIOLc6P/5u59Q5d98+BlV3r5jq2kzsG/v7N/52BP2xB3izR4EFSEWexBUhFjsQVARYrEHQUXoqSPM2Rs3plvuu2+27EWUYQURK0cyJ7psNq3VMmXbZo2ZmNCqpb3bdNSQXzz7mGmT6LvwxHWrVXnDL7/ZtBlYoRWBbVLqeWmG+Q5M0xzkzi1iRZSneOJmY3TEUzy1aHw5jWXCGT8bkCwpOi4NzhsLKx35GodgGWOFXBfDKMAqAtmYZ9qZf6M85PM4JxrkSDv2McXLOokP1kzpjj56ou14YudcR5/88MV4/JEHwxEmCKpMLPYgqAix2IOgIvTUqKYAMD5PhvXkJ5ZFx6l8TGa/n8ohzoZis6MMHqPl7RPXnazKJ517ge2X9BksYu1wjDpaHFmVPveMUoapEocemHR1GxpXSDPGId11AaYfOuC9Hbo5kniw7O9pjvbSQR6bN5ftLo4vnm6gnw2UlqBP2E8Hs5Z+mpPjsDW1R0v62X571QUpHZ7Lyd1nzPZbTM1pN5IXffbA+Rb8JAiC1xSx2IOgIsRiD4KK0FOZPQMwME8O9vaGC5J5OUBBcwnOGx7mXHQez5GE64zxWBzxiIMXcp5Xz0Fih9nb1vQ5l7cUhxoTvGIJsij3y0lBp5wTN+kY6zY8hxabS9XCQTT30fi94BU1Gi/vkbv7+SSkF20q77RP6qYvP6DKu7/1R6pcjj1t2qRMB68onYw2x73lQ6q88spPqfKWVSOmTS3NzXjpasJmiDd7EFSEWOxBUBFisQdBRYjFHgQVoacKugSdKSNzosAOUpnVDVOOaupYKnvKq31UZtWIF02F1TKsePKcQnj8rKDzMrdwNzwWTl0M2HnxDG+6RYb1rpmvkRVyniKTEw+z44unlOR5cLIiYxfdpH42ZJmy5jsTL+nRPH+vjvSy+ct/Ytrk23W65bypT9xX57sKrN/wRlU++5JfVeUVJ/22aZPoRj74gztMnX1P3K3KzScuVeXN57zJtHnXGXMGY/X+hZd0vNmDoCLEYg+CitB1sYvIKSLyAxF5TEQeFZHrOsdXicgdIvJk53/+NR0EwTJiKTJ7DuD3U0oPisgogAdE5A4AHwdwZ0rpRhG5HsD1AD67WEcZgJF5MmDLCZxRJwmWZcgBRzblOp5cyTI6y5megQ+34UirLI8D1oligoM/OPIrf+OOk7DtRZudoEaskwDsvBinFmcs/EAIOVa4mWfoYDPXFzC1115AY0LL2/se3Wbq/PRPr1Pl3c89osrem6rR0NqAVavXqvIF519s2qxc8x5VLihTUSnWfKed66esVtejGRu3+oSSIhiffu7bTJ1Nu7eo8vAT31LlR7aeY9q857y58XnZkA7Q9c2eUtqaUnqw8/cYgMcAnATgCgA3d6rdDODKbn0FQXDkeEUyu4isB3AegHsArE0pbQVmvhAAHH/YRxcEwWFjyYtdREYAfBPAp1NK+19Bu2tF5H4RuX/Pjh0HM8YgCA4DS1rsItLAzEL/ekrpgBCxTUTWdT5fB2C71zaldFNKaWNKaeOxa9Z4VYIg6AFdFXQiIgD+BsBjKaU/n/fRbQCuBnBj5/9bu/VVpoTJedYTg07UGVZwDXAVL32uiU7iRJDhsiz+uXeM+y2cwbBCjtU0XhQXVihymmFP5cIed/2Os5OQ5owjryJ3Gk1qtaQ8sVeVt92z2TR54XtfV+XdT/1Mlfvq9gqETH6GV1op8A0btAHJ2l99vyrXB60HWEHWOe02za6TwqugULCcwguFtfipUZWyoDvraTJb+omqO2MZHFmpyiNDemw/32Hv2Z4014/n1Td7vkU+O8BFAD4G4Gci8lDn2Ocws8hvEZFrALwA4EN+8yAIlgNdF3tK6YdY2H360gWOB0GwzAgLuiCoCL2NVCOCISXs2B8M+8hZIJFcs8oxxMmTrsPyONA9S4kns3M0lWk6txedlY1b2JHEm/A+ErQKkrXzlpXExrfq0T318Aumztjd96ry9h//gz7PuI0XU5CxiJATyODIKtPm5Ndrp5Dzr9BOIPUhR7bOtElSKq02Q+guTbf02Ootx3AlZ/lbz2VZ2vdbmzIKZdRGajanTU66gSLnsTiZi0hHxY4xADCyShsB7dyqjY36dtuNsDs3rZj9e/9URKoJgsoTiz0IKkIs9iCoCD2PLjs0TwbnaK0zx/T3zy763PGpQD9nSnX6ZVeGpTjPjJGM/jKJQ14CXJaY2PFlxRbOcQNs+vJNqvzsP2rnh9S0uU8GaI+5PmDl4pHhUVV+3enaieLYk95g2jSGtPOikLdMxnvQABKlIy1Z1nbCy7ZzLSc7W87IktaklCXJyY5yhvfMueOyZUN2tNu631qm+zB9ApBMX2OWtMzu+aOYfmp2+Q0N6/s4tWerrrBZ62EA4L6huai1k+NunOSZMS34SRAErylisQdBRYjFHgQVIRZ7EFSEniroBEB9XipbL7vsCH3/TJGmY8zR5LD+Z7WpYY1d2CDGj8BCTi1k2+K1EdL8Td77vCrf9cnfMG3eeN5bVfnMc3Sk0mOO0+mlAWBw+BhVrvXZCKhFQdFUSNnWdIx1kMiRZForydjgBwCE2rB/kxc5tizIjMnRdmZkzNJq6zbiGOLAOLXQaTzL71IfE3InyVvW5Coj5ZoxsHKcvCYn9JM6OOgoGGs6RRREz0H/1v9n2jw98euzfzfLiC4bBJUnFnsQVIRY7EFQEXoqsxd5C/v2/mK2PDJ6nKmTalr23E9ijRcOZ5TKXswslus5QMQeRwBngx42h6k59gvtMS0zppd0L5df8R9Mm4FVOoJPq6k7ZrkZsA5CraaJJWtkTZbZc87HDIDNghIFZSg4GASAkuTkRPJ3o+68UygghDeWgm6SyOLnmTmm69TYeam04+depknJ0GrZueVWkuml5BkJsVHQ2Lg18MnIJas+Mqz7aFvnpXJy7h4lTxE223cQBJUgFnsQVIRY7EFQEXoqs+/auQ9f+/J3ZsuXfOzXTJ2169ar8ig5VVh3DxtkwstOyse4jRfwwm4pU2ANR+Tto0iQA2ecosqN5582baYpa2hzmhwzkvUkSRSkITnOGmbPPNff7WVu+2X5mwMp5m27t23FbT2ZqbSTW89ob97UAIpSy68cMILlcwBItL/dpDaloxtg2T+RDUDpBKLg+S4K7awkjhUGn6cmVn/QpmuuceCMupbhAWCkNqcX2un0eYB4swdBRYjFHgQVIRZ7EFSEWOxBUBF6qqBr9Ddw8uvmomc+cNeDps67r9CZQWrDWiExzak4AEyQ/seLgMOwysgzL5kgJQvbY7QcXUhBBiR1UmjJtI1U02oulscDyAvHkIUUTZ4tBRvEcKTVgrOYAGhTxFajvHLeD8bZpNCKv8JxuGlz1BlHcVaWrNAihaMzbW2jxEuLlmdOpOe3LLQRjacIBDlJ5SWf13My4ufJcbAhw6c6KRxXDDvpo7c8NNe+ZaMazX624CdBELymiMUeBBUhFnsQVISeyuwAkOpzp8xMzFfgB9//kSqf/6tvUeVTjltp2uwlCXyLc94hHocZmG1DQUbBorMXO4Gzq6KmO2klO+VFS8vxOaWldeU/1jo42UVaZKyTSDblTKozddhYhJ1PnDYk+7N9jzf+0sjSpgqKtjaF4rGxY8lMpUWL8LIQGd1FohvtjK1N8naZOEKtjXG8lPGnpN+/hTRUWeq235F9d8+dt1hYYxVv9iCoCLHYg6AixGIPgorQ24CTCajPc/Lom3SCAtS1gPTDW+9W5ff+zpWmScm+Ao6MxTuafOHibFSz6MY+IJNO6teM9l/3JW0nMJh7GUk488kSnFwokEPR7r5n26Z+2k0vdy07heT0afeAEWXB+/meboDPauXXGge94H1qx06Axytkl8FzO3OMs+bq59ILRGH372lunYAXrLvInLQxieYucR2xS3ZFY66Nl4lm9rOFPwqC4LVELPYgqAix2IOgInRd7CIyICL3isjDIvKoiHyhc3yViNwhIk92/j+2W19BEBw5lqKgawJ4V0ppXEQaAH4oIv8E4N8DuDOldKOIXA/gegCfXayjVAKt1tz3CztmAEBBaXoLiprqKYiGSSlWc5QU49SsRmVxjC04kwmf2Qm0iinycynrK/XnLUdBRGmEW9Sx54eRscWPc83s1MKpiVtNq+DibChgww/nnoGVYKQkK52MKmxEw9FyAaA1TU457GziPAt8brR58jxHGI66SwYyYpWH/LwkUkIWuX04WCHnRdRNZKklpBXORyljDIDjTphTAjccR7HZ8y/4yYGTz3DgEW50/iUAVwC4uXP8ZgBXdusrCIIjx5JkdhGpichDmAnbfkdK6R4Aa1NKWwGg8//xC7S9VkTuF5H7x8e9iO5BEPSCJS32lFKRUjoXwMkALhCRs5d6gpTSTSmljSmljSMjKw5ymEEQHCqvyKgmpbRXRO4GcDmAbSKyLqW0VUTWwU/WosjzHHu2zVUbGLYyy5RxMNAWM7uclKAjfZT51XOqoGOcdbPm+FTwoWkSw5o2OCtYVBOSRdvJysk5dcQBGLwosCz0ujEZKEqqcVhxjFIyUniUJL/WHYVI0SbjHZoE1+GDZF7P8Ib1BRxd1g05QvMrFPyBZeuZsVAgDTb4cfQJnF2nyDkYh71mfjbYeWbmmD55RtfYcvQfjcE5Ny++Xt1XF0RkjYis7Pw9CODdADYDuA3A1Z1qVwO4tVtfQRAcOZbyZl8H4GYRqWHmy+GWlNLtIvITALeIyDUAXgDwoVdxnEEQHCJdF3tKaROA85zjuwBc+moMKgiCw09Y0AVBReip11te5Ng5vnu2POQZizR0TJmdu/bpCjYnk7EnsWYHNt0y6Vf8lFGkP2H9UNNp1KYTpTGtUJleo9NBAQC2vqCKRU5pkr0opHTRVnkFZGlxhVzhKLhYIcceYY5+CCVFwGFlFcSJSMvGLY43momSYxR9tg3rp9gLrr2ElNM8NueRg4CUkKygYw0wgNIo+px7Rumepib1Q7Z730rTZs286E31+sJLOt7sQVARYrEHQUWIxR4EFaG30WVTjrw9J7PvH+83VQb6tCzUJJnl4Z8/atqsPV9vFngy1l4S7ziaTeHIomzL0prQZS8oSD9FzSkGSAYbdJJOj+1SxQTO5GK/k6db3eRZK7+2OdqsODIvyZHmGh2jjYImnB2cjHMKrDsKG/MAQJlz1NruxjpsXcRj8XQbJiKtiVxjHw7jD8TRepzQwxxR1w2BI/p5abfonk3tNU1Gj1k5+zfL/POJN3sQVIRY7EFQEWKxB0FF6KnMnhIwXwxrj+8xddoNvUueT2mZpZywstAkiUImXgGMf4SJyeDuH5PMzhKWF1RCaAO/JBl38pQ3mDaj5IUzNa0H48WLYLnSC0DbpjSzRkT0Iq1yMFPO0Jp7e/McbIMzwdqxmTZOJT7EziVe8AoOGsF2ApwVBwCE5oHleu5j5iDX4UgnS8niY2tktfqiVVqOcUdj5IS5+rWG+Xy27wU/CYLgNUUs9iCoCLHYg6AixGIPgorQUwVdq93GS1temi17UTXqjUldHtKGN5u+/4+mzUVve7Nuw1omWCcWslWAlwmpYXw19AHPEUZI/2OinuwiyxwAg6Qd5LS9bFwyU2fx6DAAkJFmzyrBvJA+5NTCZTegjK7Ddh2F43zCRjReHZ7vbk46AJC3WTnIxi6eIpCVeKwItPATxmmmWIEKWOMozwCm1qAlycF+nfu8au0xs3/XnZTOs+db8JMgCF5TxGIPgooQiz0IKkJvUzZD0JhnNNB0oqaWlBGmRdlS+pygAM/v0YLN5DH2svhbrUkHWs5MkD0P8hZlAXHk/DZfkok2a51/ykwbEpXTu6iG43zCcqVjLFKyNU7RPQKqcTYxbUwTcBCJtuegQrD8ymmrAStvp5z1B/Y8rGPwZGdzni7vPI4Q7B0T04dVbggZzCDzZPZBXaVP97N6tc2y9sG3zhlq/fcR+3zN9rXgJ0EQvKaIxR4EFSEWexBUhJ7K7GVZYnxqLiurJCuzN/q0HFNwYEWOIAGgL9fHpopjTB3eqW6RuFfzHGGozDK8J78amZ3qZEWfadOEvuacNvCTdyKSGV1nE3bwoD3ownGESezAYfagnUCK1I8JOuEMjk/tBrhIHEiDo0x4Ogc6QMEg/D1zOg/pE+rOfriwvE33o9Znw56WvDvPMjxgUhO9/rRfUuX//bW/NE1Gh+ae91oWASeDoPLEYg+CihCLPQgqQiz2IKgIvY0uixKpnEuZ0px20hfnFKmGFB/5vr2mzdYXXlblsWGroGP7C7ZBcYKBIlEq4ox1V1anZKLKcIQcYe8aANOkOANFmMk97xPGMapps6KMFX1uBBwy1iHlmpedplv6aC/ar9HZeZFW6brZkCVL9l1lDGBI2eZFBM6McQspNh3lISvthoa04nXFqH0Gz7vgTar88d+42NR5y5svUeX+fp0hyYtI9PLeuXvSdozODhBv9iCoCLHYg6AixGIPgorQY6OahOl5qVEnJyZNnTplhEkFG2xYqWvfiztUuTjTRnAt2tSOI8e2raxD9g1okLzkuXs0m4sbuxSlnfIaHWty5hbnPMYIxQl1a4xbCi574XEXLVq5H7AGPmx44xi/JNEyrufIU6/xu6hL6FtAOVoB1qCn1rDRV9m4qEhaHh/ot84lV3/4MlX+r5//DJ3HySVMCp2mM/1P7dI6kU/+7dOqvPnhrabNvuacXN9+3stHPEO82YOgIsRiD4KKsOTFLiI1EfmpiNzeKa8SkTtE5MnO/9bRNgiCZcMrkdmvA/AYgBWd8vUA7kwp3Sgi13fKn12sg7IoMLF//2zZyyJakudLi/bivewosuk+Va69+yJTp0nt2BEmOUEqWaRtUpspR+Zq0ddnOa3L0r/atJEaBVZsasceNyOokYu9jKAUBLFgpxbPkYSyoFJQUE9ml4z2v2kPOhPrSNIwWVutXEzdItE1etlt2UGlv0/XOeHU9abNf/vDT6jyOy+8QJXrdZt5N5H+YA9lKvrbn+wzbf7sr7Q9yP7xnaZOSddYZqTbcHQOqM89iF6WnAMs6c0uIicDeD+Av553+AoAN3f+vhnAlUvpKwiCI8NSf8Z/CcBnoE2L1qaUtgJA5//jvYYicq2I3C8i9+dOGNwgCHpD18UuIh8AsD2l9MDBnCCldFNKaWNKaWO93mPr3CAIZlnK6rsIwAdF5H0ABgCsEJG/A7BNRNallLaKyDoA21/NgQZBcGh0XewppRsA3AAAInIJgD9IKX1URP4MwNUAbuz8f+sS+kJrXvaTtuMhkYlWdPCvgaJpo9u8/Iw2PBhyfDWapONilVfpRaox/inkFOIo9cxvJQpMU7SsgqU85wp94Omf6M85nQ0ANjApHaOaDGzsoj9nhdfMMV2pRgqfzFMQkfFLrUt55jx0wJnLOhnIDPbryXzHB95u2nz+07+jyr+0doMqi9hHPpFH07ZxbZjyuX96xLS55ataiVrUKJNRwyr1Bl//OlU+dspGLWpN6Hfm9P5x/bmzZsrmvGvy8oh3OJR99hsBXCYiTwK4rFMOgmCZ8oqE6JTS3QDu7vy9C8Clh39IQRC8GoQFXRBUhJ6qx/OixJ49Y7PlzImumZF7Sf+ANrZoZFYmab/0rCqvdOSa3dSsxllcJ6zMyAYmGfWbOVFTp6ZJTibHmGIMhqymAxQIOfskLJyZc7aNY2BiI2noSag78netruc7I2cTLxAFG9XUa2wYYg1mTj9lrSp/8U9vMHUufOM5qtzX0P2wYQsAtCnL0KPb9qvy791iHUnu+fY2Pd6BYVXuX6uztADAqdeepcpvv3SFKq8ZsGMbpHmacnar20nrGJ7frq/nh197Ccyuf9k0+3fpOB0dIN7sQVARYrEHQUWIxR4EFaGnMnstyzA8OifbTIxPmzqNAS1HcrA/zwova+s9znyfI7f063bTJMPnTiDIYrcus5POlB0+EsUOKKfJ+cQJuNAqtMzeIF1Ao+7sh3M/zp55Vteyfh85tbCjCeBlLNXl0VXHmTaXf1gHTvzCNf9RlYdHVtnzGHnbDmaCglt+4jta3r79K5vATE/o/e10jH6ejjnV7m3/2l9rx6mzTtaBJxwzATP/bKbBsVIAq0IZc6zHXyLd0Y9u0+Nv9p1i2qx+75zsv/2RFebzA8SbPQgqQiz2IKgIsdiDoCLEYg+CitBTBV2jkeHktXPKqIkV1qhjx17tYJC3tCat7USXfSdFpnlu0ImMQgq5aVKuFTawCGf7RVP7JCD3ssiQEi9RG3Ha1Er9ndsYGNVtOBQurCKNI8oAQJbp+ZWkFYHrTrKKs89//mOqfPnFH9B9usY7usgRfh7bZzVRn3tQWxd9/6+eNXUS3STJtPJp8Lw3mza/fu1KVT7leH0TS0cryaPjWzTmRbElZRvXGHN0xLfernue3uc4L01SZJ0z9BJ925vts53S3H2+9SsLv7/jzR4EFSEWexBUhFjsQVAReiqzb9hwBr7zz3fNlsWJhJma2kDmnh/frcqbNz9m2lzzqT9Q5f88ZmWsMZ00xkSbLR2jmjrJXRxktLCitMmyWZINR0kyPABIvlKVB1afoNuMWeeNPnJieff732HqvP/yq1X5sre9XpUbdasz4ZmbJqOmbz8zAebTX9ylylO7dACGUhzrkRV6Mk+8ymbxecfbdZ11K/Xoao78zTEwONGrozIxbzyWpL1F0qDz8BUOOo3eepGWt192sgOdf5zumILjGuMdHkttEZ+peLMHQUWIxR4EFSEWexBUhFjsQVAReqqge3IKeO/Dc+XcCYS5bpU2/Lhq43tU+cPvfJ9pcw9pZf7VyVprostymibH66o1Tt5npM9ysgyjJAUJO6MlR4FSnni6Kr/tWh27879cZj3NTluto6nUBmw0Fc4QtZksPf7kLq1YA4Dvf1Mr19q5nsyszyoyh47V5z73t89U5fMu1GMFgBX9+gZMOa8dfjw4yI+bXJCGx2mRHZssoyYeYq9D5zQUkMh48ZnsVgDWHKcvcp3TL99F1jV7yZ3me9gtHFs23uxBUBlisQdBRYjFHgQVoacyeysHXtgxJ1WMORYOm7dqqeOBYV0eGbGCcjmqI4tMO/J3naxoOPPwtA5CCgBIZDQzRpFrkrb/mTlGgiU72IgVrTE1pqXC//WSNjB5x+l2om6+X5tXfOPmp0ydsQntSJKRzFg6uo2h03RK6X/7sfWqvPIMGyl2lORvNmTxotAM06G2I4zuJQH0mb260ku/sN4mLUoDPklC+6knWQn81EE94PVabYSWI4APke6FIxG3nWtmgx/Hv8bQv4TM3K2FszQr4s0eBBUhFnsQVIRY7EFQEXqcMD2hVp8TMEYG7XdNO9dDymnncJ+zUVrqhB7o67O7jTnJXdPkz1E4+oOSRUKWt6ecjJrUT0aRHDhDDGAzp6amVg5cd5MNYystrTDIGtZBJQ1rL5xE4XBPusqJFPteLbOvHNb3Y7XjfDJmssPq8k7e7Abwrzt1+dk9pgqy/fpc7UndccsJ2HHCv9HCtFBk3ufYAwrAY09rPVB7l24zfKo9zyUDup+zTuDIvfY8q0gxkZyowUIeNryfv8KR2efrAhZTA8SbPQgqQiz2IKgIsdiDoCLEYg+CitBTBV2ZCcb65hQoybHaT6TMyYYoTbITHSbRVSQvgijZ4rQp5EfuGCaUpPNixROndgKAciddFCvxOMztzNlVqa+hrV2KZA2JspYeXL1ulXglRal922+drMoXX64/B4D9Da3gouA82OHMU5vcM57ZoTWbjz5r78f2ln7PDLKVDYANr9PHzlmty2scDxW+9fuovNNRYdVO1B2N0jU+7UQefuwlXekuCiY04hhPrafrWe8o6NiIhv2mHJ2wSSu1EPFmD4KKEIs9CCpCLPYgqAiSWBB9NU8msgPA8wCOA7CzS/XlxNE03qNprMDRNd6jYaynppTWeB/0dLHPnlTk/pTSxp6f+CA5msZ7NI0VOLrGezSN1SN+xgdBRYjFHgQV4Ugt9puO0HkPlqNpvEfTWIGja7xH01gNR0RmD4Kg98TP+CCoCD1f7CJyuYg8LiJPicj1vT7/YojIV0Rku4g8Mu/YKhG5Q0Se7PzvhivvNSJyioj8QEQeE5FHReS6zvHlOt4BEblXRB7ujPcLnePLcrwAICI1EfmpiNzeKS/bsS6Fni52EakB+EsA7wVwFoCrROSsXo6hC18FcDkdux7AnSmlDQDu7JSXAzmA308pnQngQgCf6szlch1vE8C7UkrnADgXwOUiciGW73gB4DoA89MGL+exdiel1LN/AN4K4HvzyjcAuKGXY1jCGNcDeGRe+XEA6zp/rwPw+JEe4wLjvhXAZUfDeAEMAXgQwFuW63gBnIyZBf0uALcfTc/CQv96/TP+JAAvzitv6RxbzqxNKW0FgM7/xx/h8RhEZD2A8wDcg2U83s7P4ocAbAdwR0ppOY/3SwA+A51RabmOdUn0erF7IbJiO+AQEJERAN8E8OmUkhP9fvmQUipSSudi5q15gYicfYSH5CIiHwCwPaX0wJEey+Gk14t9C4BT5pVPBvBSj8fwStkmIusAoPP/9i71e4aINDCz0L+eUvpW5/CyHe8BUkp7AdyNGf3IchzvRQA+KCLPAfgGgHeJyN9heY51yfR6sd8HYIOInCYifQA+AuC2Ho/hlXIbgKs7f1+NGdn4iCMiAuBvADyWUvrzeR8t1/GuEZGVnb8HAbwbwGYsw/GmlG5IKZ2cUlqPmWf0rpTSR7EMx/qKOAKKj/cBeALA0wD+8EgrLWhsfw9gK4A2Zn6FXANgNWYUNU92/l91pMfZGevbMSMCbQLwUOff+5bxeH8FwE87430EwB91ji/L8c4b9yWYU9At67F2+xcWdEFQEcKCLggqQiz2IKgIsdiDoCLEYg+CihCLPQgqQiz2IKgIsdiDoCLEYg+CivD/AS4Zuogu2VlgAAAAAElFTkSuQmCC\n",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.142944pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.142944\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-01-12T10:16:58.863867</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 250.142944 \nL 251.565 250.142944 \nL 251.565 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 26.925 226.264819 \nL 244.365 226.264819 \nL 244.365 8.824819 \nL 26.925 8.824819 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p69aff6f30f)\">\n <image height=\"218\" id=\"image0038a58652\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAjlUlEQVR4nO2dabBlV3Xf1z7n3OlNPUs9CHUziEEIxGAJWUFItiAlDHHsEHBslwwxie3yBI6TeFIlZRvKlUoq5fJQLhw7TihTBCrBAy5hDImHiiFSAgm2sQRGaiTQ0Op+rTfed+89kz+0P3j91ire+9DZn9b/2z5v73P2Gfa7+7/+a0gn/rjr5W+h78Sgn+qDxVKv212yYyp9rBzYPk2r2/U2/r5n59Jt4Do9/r5tb6B7DJ320B44Ny2Nag27S6rdXtZ/FxEpdvXkqmpm5zI4odq3f6du33nPqhmzNShV+xj/jtsREan1a5VHL+qH/fnz9n08syhUe7Js+9xwSh+7GZM5MbBzKXCaTbT1k72CEq9kFff4yKYd88iTutNTO/rvKxM75tzz0F6y9zxCu0eXohADnsXpEggErjZioQUCGRALLRDIgPS8T9RqY9sM7NqrG73jLERvoNPY7mu7hT42HDpEotR9dndx3S07pFvodotL95ftddp13SmBx/UOf5RG9+nWL6t2sWP5V1pMdR/ZNX36eog+c9U+8+3HzZh73nhatQ8vV6p9jCRIREhV+VQuze1z+guQpfPPmi5SbOlr1VN9noXzr/vkS/WYKfj7jjOXvQuaA9d4h8tn7YXuGuvz3HhS95k7r3mhP39jWxARSfg+NtBlzbnnPfI42yUQCFxtxEILBDIgFlogkAGx0AKBDEhnP9YoNrhd2049VOy1Zd1eWXFE4tWxas+MhCdSggTPce3pM85cYIOYw97Qa3vElWPb+totxM7kCJkJJL/b1oLvL7zFPqgvXNaWmv/yny+YPtu7+gaK4/p/XeeI9EvP1arwG+89pNqHX0RJVWR1pM/bm3+p9n2s4tCGY7/awKt+FJ2efAJeCCKySHrQdK7bZ89YlfvsRE/43BLOWTrCstb1pYNoXzv3/CwOjRyDCT8P2OOMgO31iV+0QCADYqEFAhkQCy0QyIB0x//RG9mmsxvzU0d1+9uP6n34XavYHIvIX2IN/6DjOboNQbQGv+qs3iv9pp7fANv73Yt2TD3Tm+gG56WjsojI0kjvsr/pmi+p9r94gxWWn3tsWbXLsSV/fLznwf3e+z+st+wn/5smqzW8rQvHGWDpiL72Dd9yvWq/8jY9VxGRNfC6PeffMNk4meoRO0RaTG+OvzcOx+EdLdF73AFesyRyMuc62zhtZbsI6KFs00nCm0wI1oFAfsRCCwQyIBZaIJABaQcRgsnZcfZzTZ4e+NQfqfbDDz9kxrzzB/65av8QN7Yi8ifgU3Nwto4BmiJSQaah9jZfN0OkRqRhDa2q0/7CIiKyvKHvae3BH9Njtp8yY4YgjK9/0x2mz5vuebtqv+H2F6j2oLKaEp/crNUOt7993jo4v/tn9YPYW9c8r0s2cFXWVlTz5FvOmS53vFb3OXUYAb6Og7OJC8a/d2pOThehOmfVOpEh2rxD547lsYuadT7tBDG/6jgc5A8wf/qpxy9aIJABsdACgQyIhRYIZEAstEAgA9Kdd9+lLA67e9ZZ9uKGVnibhe4zGlqn1re89Y2q/eV3/Izpcx7EcxtGibmT6YhUdYo+C6qhIlLDENMxcthxpB6vf1q1Rx99F+bhXCghkttJj1QU2tiRei2Hnj4D7wARue++e1X7njvfrM+Z9k/D1EJp/sKWNQ385Gd1GrJP/sp506efacNLKtZUe/LKU2bMm7/nsGo/5xrt4NA5BhTOjmaxWbJjBujEHtuOBeV3fk+//NmmdZAvpvr5nnyRlrVvv8XJAoe5xC9aIJABsdACgQyIhRYIZEB6/k23ao7mZHcajeE03Osd9HhkXTFXV3Vw4qn/8Aemz+MYhyRSsrBTkRY8rsO+e89xRJ6Bx3U4b8dUWiIyfOxPVXvwoX+i2062pJ68wYkILCr9LEvwOIeuSDJ8RLcnR53MWW+7U7V/+p3/VLWXVywXNE64jhfubqPl2R/6A+118Hv/8c/MmNmuFrn7Q5qnHjpLqVnk1u+7UbVvvE4HEpfOTwSfvxGSnWdLf2yHusqT+Kb+9MP6o5tPLa+bDDSHj1+0QCADYqEFAhkQCy0QyIBYaIFABqSTZ1+s6GBRWsNGAV/p0VgL1IPCksGl49ep9tkPfNT0ebRGqnGQzinr+4jNbCQzpKR2skg9izTWPXJDt07do+UnPqna6YNasO79uFo9xjuWkF0LSnLheO+XFQ0mmL8zlQSrSoWsUV1hnQye95xrVftnf+4nTJ/bXnazag8H+jy9c9d1ow0DX7ykX/QPf9hGQjzw2zqDWDfWEeGja230+pm/f061X3u3FtNPOKnrJ3hOzucjNdTnx57R9/M/3/+kGbP+J9ooFL9ogUAGxEILBDIgFlogkAHpJa+4RW1Aa2fDTxG1qjSPa+fWwfbwzber9tK//0XTZwulnWoojF4WrI4R1UhjtNi1+3A6GncQJbsde8/jz/+uPvCRH1fNhnWBRYSsrHPqFBfsgy5OEjLpoMpXVGu92q7oU+7TFrGOsDY0WqQCh5+MtNh8x5tfa8bc9+5/rNrXX3uDaqdk7QI9nCIu7Gj29JMf+7IZ8+H/pD+YttQeENVAC+ciIpMX6Nq61d6G6bPY1dHpsy09l4WzZrpG31P8ogUCGRALLRDIgFhogUAGpJtv/Ttqg9knyysqZHdazDRRSg6veN4b36ra/T97t+lzCXrWgpVhnIDMllmwEMS5p2MXrxxjZmI4FSeSQxEZfeD79Jjzn9FtkkVxND6vzAiCNHvcUEcC6ZyXAaVda8dQRytK7cxMPe9KH3Ilm4GafL3HPSYnCDUV+jwDpJE6efacGfMzP/W9qv0Nt92q2lVl+RY1vGd39Tv6jf9tP45/+ytPq/bWjk2p3fXUIDUv7a30KQLn8fhFCwQyIBZaIJABsdACgQyIhRYIZEC1vKYdL6e7O6ZTUWq2x4jrzqm707/8FtVunSVtypgykNsTz5npiHzduU4L4dWQ1x2bR3yMqOv5SDu1ev+hjFHCEay7RhP0DoWQkmOAgB3DiYO2Y5iRi8+y663gXjf6PH1vHREqEwJOY8j+IvfeQs/l8S/qklgiIvfe+6Oq3fZ6buORdYp++9veoNr/+r5/qdo/8jod9S8i8iN36u9/3r3Q9Hl0XRvLvv83tBP0w5+zTtGbc/2RxS9aIJABsdACgQyIhRYIZEA1nkBYSywkKlINdAaiBvvwprb7/UPPOaHam05AYEmuBEpDMVREpEHAZY1/FY7GLeVIjyH1KAtP8GWmL80JGqb+FRFh0KYjPtdGbIZI7Ij/PZyKe+P96xQOQp8ez4mcR8Q6HqTCOvt2LZwVmJ3ZKYFb08sAonbb2OdUUHDHxzGrrS3h13/zt1T7gx+5X7XXVi1He+Wtr1btd3zbnabPa265S7X/+Mefr9pdp9siIk9v6HcSv2iBQAbEQgsEMiAWWiCQAVUqtHPmeGK1k8FQ7+eZ2HcwWjVjTl1/UrU7x/FyxvhFbOUNhxORmoGT1JgsrbC+vThvX1suOIYjdTPUJy7JO0SsdtXbyQw67ZDa1JrztIwEFZGemhf5V2cz/XY4D/W70uFSJgjVcVbuETBqSjE72qFzSP/dOwYOTGdlBh+LWI65N9U8aeHUXf74/Z/Q7Y//oelTDfV7feFzr1ft//r+XzZjTh7WNor4RQsEMiAWWiCQAbHQAoEMiIUWCGRAtTLRYvTccRCmJ28Jg0Q11A63IiKLSh+bOH6vA3B82FxkZjm+ibqewLeUxhERkQH9T8HxU+lEWCM7cxoxM679H9VCWHaFWDD2khnFHCMLo6479PHsMhR4GfHrgQaH2ok872HZ6HGPfAZXDuo+PSPGnbn0cJSmwcRzGChMJDqMeM79JDgZJC8NWanf/Zce+Ypqv/6b326GfPJjH9Rzs2cNBAJXG7HQAoEMiIUWCGRAVWP/XDoqcTXQPKJa0qQnXXPMjDl7RO+PzzuiJQ8NKJg6ZU4xFdlBbdSpw+uGdKg1+q8V6QukyioGmnP2jXVfLsEJOieDMDka+W8x8FIVk6ORFzlDzHvVf29rhz+WzJy1fzWfrtIPs3Q4DkV58jyTPUys47RxrDYjvGPgk94oPCcjwItIW+vMxPx+1p/W5YVFRH73019U7fhFCwQyIBZaIJABsdACgQyoTl93Wh2o51PbCYGf013NaV7y+r9nxjBwz6FbRtopoXeZPDAi0qEkI69j5C4RKZAMpmam4mNWB6yGmuzVM3A2R5ci1xiYzEEiLTkB79FJmiOo+FkN9NzKA3C0HpmVU2G5uOF1AydTMSgMdb/C4TgJWiGfU++Q8QQPZ1bv8XidgMdRb3QdnjFfTwfsMRf6Y4/H1qn+8oVN1Y5ftEAgA2KhBQIZEAstEMiAWGiBQAZUTNxUjY+YTuOhtlIsYJEoli2xXmIUtrOkE4Yx6dLQMYYsmCkLxhGnapApEVuA8E6+osVFEZG2RakhGCC88kQLTK5IllhT/K9Rlrj3RG46OJuT7v9wWb62c1TuEt7XnmBdL7RRpYABhWWARWw0NEtG1V6ZYhgcKhg/moXjIEz7iBHGnVJbtGw4mZaZDruea8PY0LHA1Tu6HFT8ogUCGRALLRDIgFhogUAGVNXgqDqwZBMVSzHQB0dIX3XzjS81Yy5jq+ts9+UwjhWgDQvHQZiZmhhzOrV6uyyoW870gaN7NuutrGpH6QZOxG1jOcISOCdFVhGRApGrA3j7tsbVWiT1X1us9bRbSXA8xlySKaPrONQ6GbkKQ6wLNJ0x+HduHIYddwZm8UolA2atXSDhPF3DQFxHpDeczHln9MjG/NPksBmzvbmhz2F6BAKBq45YaIFABsRCCwQyoDq+ojnaeNnusffAR05cg6ocDgEjbZiZHiKkYMwovCIWKEope2h7TsWmSspIX3l8USdbERFphtqRuocTLhO/XOkEp2KnS9eiykgBbae1Wg/1LDrLVs7zb1tqVfvrXT0UutbT2pBOujc81Mu0DIdmZDseiOWLPbgSp1I6elcJj2dWOfISH1FG8yqhdtDjJiv6+z96yH50Fy9tqHb8ogUCGRALLRDIgFhogUAGxEILBDKgOnLtNepA21qzRVloAr+xp8nhMSfa+DG0J45gTdrJszgBylLCVjAGj14wK7GIdAu2GQlthcwSpXRZarevrJpuxFovQhzCdw3CvphbY0jCkyrhrNwbb1qRAl7cAzr/Ok65NAxUA8fIwvJPyILlZZqy5Z+YRdmLloYo3H7tZyAikvDAS/Nd7l/Cl4YPkf2j04dD+y3Ue9pzIn7RAoEMiIUWCGRALLRAIAOq4VDvSadTuy8vErIuQfDl3lhEZBeHWmcbTpmvwpjklH/dYild/J2ZjEVERiu612JrQ8+DqYxFZD7UsysqZEJyHG4l6WNe9ZLBGE64OG/hBH5S/u+Z4crhRSYbMBhwO7S8lPSEorGIyHCsn0sP7tQsbNbnHvyWgjUdiK8cwz0ttO3Ai8+ks3LC+ygd0s+yxRWjj0WkQC3mfqQ92Svn+7m0uYtzBAKB/++IhRYIZEAstEAgA2KhBQIZUDVjTRAXXuQqshi99nWvUe1NZ7nykFexl8HchtI7OcETxM0Bprvi2ChmjR5zKGmimirrfT0YaFLf4Ab6wsncZARTG66+QNarAoaC8cSKnzS80Kuehg8RkR5RAB1eSFV5XuowunhVjlDCiCEXhVP2SyDw8rSll/sd8x+OGaZth9SIMmFkemVqLNtnyzLGIiIJBqpU4B05c9mq8Vxsl0AgcLURCy0QyIBYaIFABlSJkbdzu3d//T33qHa9rAW7hxzBmmc5bXpYcHe85znl4l8Dkzk5dEVGOE/V6pMMk92XLyBYl6ROxlHWZv/1slOxNFWCM0DrRFib7MAFs0h5/y8pLIO/OGI0o669COuu0nHvdO6tHerKTMQmC5ZDBsuOmZW1YO3xUnLihuV4vZJYFLkbx0Ebz7tKKBXsGCB2jt+lz2GvHAgErjZioQUCGRALLRDIgOqrj15QB+669++aTsMVvfedwSlU54u6Ahar9fpAkZFn0fb+CyyDD9bQ1cYORysaOO5CfBuNbb6tYqDPO0d247K0zrMkiJ7jMavUdD3uMtnzpkITuw48rqktrzP0qtBvoKQHt4iMoA16ftM1HKWZAXngZCquRvoeOcarbGN4XKu5bOdl22J2Yzg8m0zMznXKseXeLSKHCwTaTh2P+e3rXqHHmB6BQOCqIxZaIJABsdACgQyIhRYIZED1Xd/7JnVgvHrcdNpGGdlt/N0peiQs0Oul92aFJfa56Ai+NJjQkdcrrbuAYr34gk4BXm5tmjHjoydUu4CcXjs5zhNTd3vWBBDrAcoRNc4NlCD+fYtStYWTxauj4zGcsZ1yvEw17hkcBA611egADs4Qike8Z8eRl6++bfR1FwvnBVBYHrKkrx3Sdrxn+9ENRL+zxc4lfd6WZj2RnVaX/YpftEAgA2KhBQIZEAstEMiA6tDhM+rAusOLNnFsjvaas/elD+6ac3G6eGKLbXieiOWDlHd7JwvWZFX/P1k/rffPv/+eXzNjXvbKr9dzK7WT7qHj19nrLOtyPkOnhlSJIFqWGjJ1gEVEwHGaWt9PmWywaIUxTK7lVP0VARepODcRGTJQGAJ26qx4Tk9wcqXCKdvUdbrTZKQnPHNqYhXwMDe+yk6Gsemu5lfLE+taUS/0Vzfd0Xm4R2v6exIRKVBnOX7RAoEMiIUWCGRALLRAIAPSY0gJS41MRORxaFXr+PshR3sYYSPuFIYxKs0W2lYzE3kCG++nmV3XK0yC+e+SY37VKoEPve9XVfv8Rz+irzOnCigynmglsHKclVeWV1X78LGTqn3kzAvNmMGSZqsJ3KlwtLceQh8zFXtBqSy/6+lOBTMgQ4dKzqCWeiL6dAurQ7HKTglnZXNOseWOC5T09XIA0RG5ZCSxiGxvaMf79a/+le7w4reaMWuvep2+tr10IBC42oiFFghkQCy0QCADYqEFAhmQHmoZHmoZ4yWWDQKZPepYIOY4z45Dkml4WaCLdfUVuYz2DNd2khjJJubC7FpeZdchBN0FHlPjCMs7T2nzzYXPPW76bP/Rg6r9zKc+pNrtjjUBtTRSILPyZOWoGXPdC16m2qevf65qV0vWUNMikpslZUVEEowq9ULPrfKclRHhnhCh3PXWVFbPtIGKUc2ptGMaqPAsA2zNb7ZMFq8jIvLU+b9U7dmuNo703/RvzJi7v1E7NMQvWiCQAbHQAoEMiIUWCGRA+syiVpvSieN42aBiSHmA5cnkrVOH+5GNsByvLUxrnYgpG7eOeL6L+XPnXjscjaGIs32ZrMgcB0eeKAyut80+jRNsOdV3nb64odoXHnjYDHn84x9Q7ctf+nPVHjpZsBI4zPLha0yfsze8WrWvPXO9alcTh/uBO9U1nq6njDOjFUR5N4sy+JXJTOw5M1CwNm9e5KEHPq7aJ8/p5/LE3T9txvy77zql2vGLFghkQCy0QCADYqEFAhlQLVUI5PM6gZGYtCjOFps7XYd5mOBQJ2TQgNvsMY5451hDnxGdjJ0x/A+0gwt7FUzJMb1KqD0S+JDRFEOrD1VLOlN0Oqp1tCO3aT4gInL2h79BtRtwv+mGvYG1Xf301j9/wfT5vz/3LtX+X//9g6rt/eceIDP00WPXqvYNr7rTjDl8Qtcfajs8F1Pex+qNFarXMsOziIgM9Xmaue2zt7Oh2jtT7Qh+4wl710fAF+MXLRDIgFhogUAGxEILBDIgFlogkAEVSX7hhKHSAMEeNj7WknxP4PUMJGouBzg2w5mdYkoywcVZUsrm+bXzpY3CSbZl7sfGYNs+FMu9Z0nj0x7ekZVYrYP2EEavXtsj/gbaqfjQ2etNj1vv/i09Aprw0p41Jkyf1Oamxx58VLUffN97zZjmGS24N3P9ZoeVzTB27gbtSH32Rbq9duacGdPDaPHZBz5l5zLTb2X3hf9AtW86Zb+GeopST6ZHIBC46oiFFghkQCy0QCAD0ueQBcvf7+sNv8kw7HhrLlxWpuFxo/3mQjB4lFmURURaOvvi78yKJWK5FOcydG6Ph7wnwGdXHoCj8TwM1WUgq4h1cCbP87isl3WMQMVhk8XaysgiJR7mFGO8pMkVInhbkNn2knWt+Oz7PqPalz/yr1S7237EjOlRcrir7ZM5/hqd5erwt/yAav/o11tH6nJPP/H4RQsEMiAWWiCQAbHQAoEMiIUWCGRAegA1V5ecTiToTKB9SCz2E6NFRCg5Fsho5Yrc6EOS3zqjaMyh7cMTlpfRacdEjFuQnrvmIBykIcDL4mXOY8oeWRhh3JsLwCgGZyqysU+kufdceG0bFW/B6HQ+F2/MFg4Wi/3L/o6e1caPYsve9QbC4Gco83vfaXverY0whgQC2RELLRDIgFhogUAGVCvgPHTAFREZYCdOp9zCKaFTwBGzq01ctuzu6t36xoUnVfuJ8w+ZMT3+N5w+pcua3vDiW8yY8dpx1a5ZUsor52MEXzjyOgSGXNaLVmdS520wIY970EGYWckY2S1iy2Sxi1dGa3gAHsR3z3v0OD4zffF+PD5PwZ28jlnJRERMtd0l/a10nf1dmUyQedkmfZbtJ3T73B5mvGrvoJxrR+P4RQsEMiAWWiCQAbHQAoEMSL/6/t/Uu92BdWsdJr1bZznSlTVdLlZE5PCxE6p97uzzTZ/VVc2dhgOtrPVOmdMOe3dWtvH+czDL7X6BrF4fOiZ7IP/ynKJ5XnKc5gAO2nTi9rQrusbyOp7z8hau42lvnjPy34bnKM5rUT/1uCydrcmZPV53GWM4f895fMaqv85L272kB37Hu35MtZ+5+JQZM97cUO34RQsEMiAWWiCQAbHQAoEMiIUWCGRAenJLe1H2TsnS4VBHoVLgbZ3Suh2NFG52ra9tYfCcWnltkuKD/OfgHXrX4XkPYAsxAu9BxuwnLHtzOYjD8AJ31R3A0MH5e4YPRkczwn3oPE2W7JodwEGbc+F8aSwRscYndvFE+i1ep7Mnvu0971Pt53/oftWeXl43YzZ6PeP4RQsEMiAWWiCQAbHQAoEMSE/vaffMynhmiil9OoUA7JVGHaPtcQ+ucu7LPafW/TJNHYQXcRfu/bdhn4OI3JyvJ97yWvtdR8TnFvuN2e+8vTOKPM57/vZC+jye4L6HQ1N8LxTKRayDAEVtjz+yD+e/cB4Us1V93bveY/qc+PT/U+3ddZ0v7GJnnxQdmOMXLRDIgFhogUAGxEILBDIg3fGWd6qd6w0vucl0+kff8a2qfey0dhieTCwbWUI5VS+gdL9V7jmO7seVvCovHEO9ZT8O5OEg1/Gwn4bnnYPzPQgPTUx0xARFjvZ5EO6K4iuGk9VOpt+uRWUVlLydLaxb8RYChavDuvzNvLG8iM7uD/75n6n2/T//S2bMd39WBxvfuGULLU9BGOedvsdnHe1NKp3AJ37RAoEMiIUWCGRALLRAIANioQUCGZBecdfbFJObOWS2KHWhI5YNEicL1nikyWBZWINJNdGydjPfVO13vPM7zZjbvu5m1T5zUhtmhmMWZbIOzrQmeKWGzDnQ9gwoBxF4aUzoYExwz8vszLV2WPUMKPOF7lOjNO1sxxZpKgvd5ytf/oqdS6njpXcu6jGNY6RYv6Sv9fv3f0K1N561c+nwJBa8nz26M4s0rb522yMLlmNGOoayTec6+51OkPWq6bR5asUpJ7y6ovOBxS9aIJABsdACgQyIhRYIZEB6+ev+odrip4Fde9zZMlvVYmazEFMPrQZ279tjT103WrhMheV+k4nmYCXET48j7FzSWYrGEz3/m17xajPm5Tdr4X7liK6Zc9ttrzJjjmJfPt2zuaa2Luu0t3Wv9/uXLtggwoe/oLnSI+e1yDrdsSLr9o4Op7zm+GHVHjEtsYhceuqrqv344za7E4N1qwqOyLVNI9XjvTY12o78XyIdVQNRuOisyD1b6Hff4PNhhmcREX4ug8qy5KLU39gANgtxqtRIr8fEL1ogkAGx0AKBDIiFFghkQHrp7d+sAz+Hth5IUeh9a99Sx7F7VCNdJbv3bRZag6mxqZ4M7f+Bm176ItW+uH5ZtdedRCk7m1qnKXHatrccIVV6H14kPbeysGPano6kjr4I7bCGQ23bWI5jzoIbaElGRKREMqRDh3Q26cnYvo9xpedyEZxNRKQDB6vBtxxfZUm4A/K8trZ8yzg4455TYec/B9+qWR3Hcf5N4Id0xr7SB/wQ30/ncMyK34/pEQgErjpioQUCGRALLRDIgFhogUAGVO0ceWIdo0UB9meNIXa9lkgpTEIsIrLY03lie1y7H7HAj43WpZdu3VrBegbheLKkDRKDoePKy4zNLe/RjqmQm6lzhMz5FCWwCk2a+QxERArjiYxzmBE2o/P1J7UxZGXZulJvb2un7icX1hGB/uN90oaAtnOMOS2NIZirU56LWbpox2gdx4QGNb1odGGU+ZVO+8e40/BSVfpb4HWvDNLN+EULBDIgFlogkAGx0AKBDKhG8PWta1vbo4fjboJYS+dgEZGuJUez+1ge67G/7xsvH63uU9HJlWr0ldnoFkThprCCqRHYDxDVWVLJ9LIB9+BXjeaPrYmqFSkMtwDncVVi8F3MpfGyVZkAXqcCEEveYoz39Ck2c77u/HmMnMfhWxVE+hbvg4GgIiJdy7nYqdgKRuSCFn2vn3/8ogUCGRALLRDIgFhogUAGVIK95LCyAZodtBLujzsv6y32w57jcduCk2G36/G6ATSM0UDrQV3vOC8jmU0B/jIeekGpup2gZZFPXrk2HV9NF8Nne2ptzobf5j4yHttmDJ/tdIrMv8lqV7tbWtesDOcUSbjvLlHvcngp7xl/96rB8htLmIuXHJjfHLlUcl4IJby+td+p0Q7xcaTKapIdA1VNj0AgcNURCy0QyIBYaIFABsRCCwQyoKJDMAnllWO63UDka43DrXWE9fw5y0oz0dkc0caOEE5H0QbZkGi0EBGZrBxRbWa59aKayyFZMowhZoQ1bDgJnMUo3/QXdkVVPYbCuOewzczQo7FuM0OyiMgC0dON81zMazTGHM8pF98YH4xn2eBl8F69bGf8lhOzY3s+xQcwmFhDGL5tp7Qun3/8ogUCGRALLRDIgFhogUAGVDX4VudkJCqRZdgE8nkiJZZw7+z3KfoyA5HHEXa2tdNz3YAv1rayx3xPj2FlEifxl+FbzITE9pUxbHuKNQ/sXyiXwZUUiT2Ow0PzqX4GgxUr0jNA1rtHMzc+F0d8Jlllj4Jeu2Ize/Hb8DIKU2umeM6ATRHL67xXJhTcMV3yPK9T/KIFAhkQCy0QyIBYaIFABsRCCwQyoBpNNNGuF46XPQVr487spARHlqjeK5kDo0QPsXBpecVOGNEFZaPPMZ9bYw5TQfcQGJvGMWyIPq+JJPAUeBoPGAIgYrJ20UvdiLnOtVvaiJzn38GJoESUM5/9lUH6mI24thnRTIiCYxij4wE925MTSUCPfma9So5hg1muTFp6x1DTmkhoe881vx/cY+lZUFB2Kn7RAoEMiIUWCGRALLRAIAOqnW1dlrUajU2nVNChliKlc2buj529b4HI1BqZcWtDRkSmU0RLF+Q8liOUEDe7Zv8SQPRnNlHALv9iRmfH8XUfsdOZvpOZeB8nXRFpDXeF4Lti7zkh3NjwMRFp6HjMSGKHB5F78ya9DML8XniHXjXbDpHzHd5rcuwEPUob+07F4NHgaJ7veFVGFqxAIDtioQUCGRALLRDIgGq+QObfkRutqFCgaoqnkfUmta+TzdjwOGo7di7LK5rXbe9qjpkcB1Xuu41G42RnTpXmquQinsOtOa9LXrG/NxqfHcHKPOR+bpEUHKvhoN31losPUL2n6zdNnwTuUZJUepl+QQfTgKl/ncow5MimtK69aT66GhzNy9DF+/H9qPnO9F+r5PB1cPj4RQsEMiAWWiCQAbHQAoEMiIUWCGRAVQy1cWE6s86m5J0lGaOzXOkEWjiGgYYlehFVu7OtU1SLiGzhWAtm2rZ2/k2jHY07WAo8Yp3S13ac9qJqKbCXXkSvEZ/3N2zQVkBnX0Yfi4i0JcopgfM3TkmsOSKsPSGc4j+dcGncERHpcVN0pHZ8uk3mLD4XrwQxS1VVMCIxRbiINZC4ZafwLVSM7nZT4keEdSCQHbHQAoEMiIUWCGTAXwMipNWHrzWFjQAAAABJRU5ErkJggg==\" y=\"-8.264819\"/>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"ma3fe585292\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.0994\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0 -->\n <g transform=\"translate(25.91815 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"72.5874\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 10 -->\n <g transform=\"translate(66.2249 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_3\">\n <g id=\"line2d_3\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"116.0754\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- 20 -->\n <g transform=\"translate(109.7129 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_4\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"159.5634\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 30 -->\n <g transform=\"translate(153.2009 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-51\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_5\">\n <g id=\"line2d_5\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"203.0514\" xlink:href=\"#ma3fe585292\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 40 -->\n <g transform=\"translate(196.6889 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_6\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"mc941b95bfe\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- 0 -->\n <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_7\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"54.487219\"/>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- 10 -->\n <g transform=\"translate(7.2 58.286437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_8\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"97.975219\"/>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- 20 -->\n <g transform=\"translate(7.2 101.774437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_4\">\n <g id=\"line2d_9\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"141.463219\"/>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- 30 -->\n <g transform=\"translate(7.2 145.262437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-51\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_10\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mc941b95bfe\" y=\"184.951219\"/>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- 40 -->\n <g transform=\"translate(7.2 188.750437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 26.925 226.264819 \nL 26.925 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 244.365 226.264819 \nL 244.365 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 26.925 226.264819 \nL 244.365 226.264819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 26.925 8.824819 \nL 244.365 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"p69aff6f30f\">\n <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.824819\"/>\n </clipPath>\n </defs>\n</svg>\n",
"text/plain": "<Figure size 432x288 with 1 Axes>"
},
"metadata": {
"needs_background": "light",
"transient": {}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAABrCAYAAABuf9nTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAB8yklEQVR4nO39ebAtyX3fB35+mVVnuftb+/XrvRtNAgRAAFxEkTQlitAuStBmhanF8oQi6BgNZVnW2KY4EQrPHwrRY1GLbcXEULZmNJJsiTQlUY7QWKIlcYNIECQIEDvQaHSj19dvves5p6oyf/NHLpV17r1vua/7oTt8s+P1PadOLVlZWd/85ve3pKgqp+W0nJbTclreecV8vStwWk7LaTktp+Vk5RTAT8tpOS2n5R1aTgH8tJyW03Ja3qHlFMBPy2k5LaflHVpOAfy0nJbTclreoeUUwE/LaTktp+UdWu4LwEXkd4vIF0XkORH54TerUqcllNP2fevKadu+deW0bR9ckZP6gYuIBb4E/A7gZeDjwA+o6ufevOr9H7ectu9bV07b9q0rp237YMv9MPDfBDynqs+ragP8I+Ajb061Tgun7ftWltO2fevKads+wFLdx7GPAC8V318GvuN2B6yu1HpmYxS+SP5fLGkmIPFz/12xRVUdggdccawcc67jrnFcEZS6P0Ycio/HpXrdXZE7Xk7zfunsILzy+v41Vb3APbZvPV7V8erZoy4xbIK0yetwn2I/FRDtPx86wZFNevs2l/hIw98jrn0vRQCR/vAj7m95uwrs33rlRG0LYFdXtd46e/vrFeWoWzuut79ZRY864bCDDS9+Vyc8fMrlNxWgu3kDt78vnKBtR3aq03rzcMWFvq+kC6uGf8agtcWPDCgYp0jnoXP9Mdb05zp000vnP9Qm6eYFRHATGz4DpvWIi/WQ9NIsnUDk8LblctQ+y/cb+/rO/PXUdwflfgD8qL53qMYi8oPADwJsbYz4T/6j9xOIv6DpraYHDERBPSoebzrQFZQtkPOgDaJ7CDsgBygdiCI6QtQgSL7/vnLh4YXNPm5XlIRSGne2KCO8XMTLGEVR2UFlH6SL5/HD29Q4cEgC+dji8U0yCuIlg5aUTSZdrE96SgbB8pf+6i+9eLftW7btaOUM7/8df77/zcdqCejSPEs82IXPZxQfb8WAGkEtiAsg72vB29TZ+5qVIH8IjYpa5ib2imkUu/AY58GDOB9BXVGRI5FC4gNVkcF+ag1+ZFAr8THIoYFHrSBe8z199J/9F3fdtsvtW22d4bEf+gv9zuaIowqwVBO7cvlz6iKmB9u87Yh3XY7YpqnmS38zeKfvRofP/XYAvoRvooCX0IeW6yd9HcrDXv5v/8ZRVzruioO2nVTrfOcTfxoq24NaJhj9odI5cA4WDXpmg+bSOnuPjLALZXKjY3R9hrm5C00bjptO0PKc/cWLmmnoh+laad/U7+oKnY7Yf2qDbhIadHqtpb4xR1oX20sHxyTQx/twHyXQG+n3Oao0bXwvwjFaWTCGf/mFH33xqN3vR0J5GXis+P4o8OryTqr646r6bar6basrVWROFWAZMufwOQBr2m6AGqEijDUm7ydxP83clYzF+XAxlExX8r7pPxP+qSm2anHtVEeAHqR77he+D9+//rfwiycD9dKLKoP9D/XyO7Zv2bb1eBWJYNwPhsULTwT0vto9GEraV1ATty/vY8Jvy6w2HxvBP4P9YHv4jfR5qfMOwPuYjp3Bu2io/vqS7zNv67vK8N7vsm2X29euruZz69FVXDo4Xjf/j0Hb3U25q+vc9ck4cpA4tm5HjR7Frrep2j237chMA6MeVeioAlPAkjXhn0jsQwasRcc1bmxxtYRB3EroH8YMjy+BFUL/smbwXU1/N2oNak1/ngjG4vu+7CsBG7FENQC188NBR5c+e98PTF7D/unf4cYZbjfHt/b9MPCPA8+KyFPAK8B/APzx2x+SmGaESw2AqQmQ6WEPAZPaQRzCPLAwANUMm4JitepPX8ArJLBILD+BPkOqJoGZh5ezCucQRaUF0QjpCYyJg0ZAyrDdBvADRF24O02XKNAsUWLKF0ByvZZeixO0bw+WiX2ljgdgIqtWA25sAiim+nSgNhwrqhm0fS0ZpFEJU0f6c+emNMRZRt+sic1kENN+qiteexknPydC507HCmhk6qKgdewjRtBK8rUPST4ZtPXIgeekbVtSznTv6doZbE2/6/KxJRHrb5yjD0hMXo7Yb2nbIfa9zIvK45dnDEvX7ieTSxU6BkOOOMW9t62YIajCEUz18IBiWk99oEVfjyDpHKoKo7oH0iXQHp7IhHOUzNtIz8whvAeGfvaaztu5AM7xPEnCEa9oXfUDQNv1A4UUf63pwTrVMW1PTP44ts59ALiqdiLyQ8C/JFDVv6uqn739URIuKRqnxkeP8r20IpFFW4I23cWzBDBNIJ4g9nhuEF/8BOaiBWNPIGYAg2Yw9sU1QOPA0xcP+dd0nv7yeqgeskRqSvBKh/Ud5p7bN0/Ph4C1/FlcBLvUFA6Wm0/zTCTW3B9+Tuleeomkv5fjXnbTaQ/c6ZRew8s6GHWJaJcOFLQ4JgwiHoPJ79Ehmec25WR9N5Z4jRLfbseUtfhwT4Q6D5rF9/LvURdKgC96/HO4XSWk7IuayU56V447vnyTT9S2RgLzXmbLy9VLcoQxaGXwtcGNBNMVbLeL4O0isBoT+tcyCC4DemLHy1KIDddykTyIj/0v9fe66gcOCLzuiPcln2+5HiK9DqJ6+NhlNr5U7oeBo6r/AvgXd39E4t5lb1Bk8OId7rUBUE3QlEuUXBLnSiZP8Us+V9l2h9pYQA0q5gjwTdfsJZnD1CYNLIltJ0auS/tEps/yu3DElntt3+IlH2jU6Xxpm0Ywj5cVp/hRmIIuHzcwdt6u/YrfM/surwtIp+CO6NxekUJayXJJuavpfwvHhONUJLx41RHP9zaAfu9995jzLW3T2+x6x3MuH3QUW17efi/Xusv65KY7og8tl6N+vte2Df1O+md77I4Fm1aNdg4SrxsCcSpJdlkug/6Zru1LDhWklCjLDGZxqn1dDbGhZMjeS+1bw0wwA7gWv91VAx3fLvcF4PdePCJt/Jz05QCK6eUNbKZC8QgeZAE0BK+TJEFUGawVQcXEJ2kyX06lh1ntWeNgu4nsOT0hD1qB2DgY9Dp74tvhWwJzjdJOgYxJlsAjeW6v/TmUIbuJ17m/qKohC5Vie5oW954gmkcRUR0Cdvo9HesYyDFlCXo2vT4ooFbwlqzHo2nmESsVR2u1Ai4NehwC8Vwf5wNDy/0j/jXSyyNGekNsQrPyNBJ1yzej3I7Vlqz8NvvroQ/HfD/uwMNj/dJ+0eB7TN0GZXlguMMAtTz7eDMGD1HFNF0AulEV+obYgd1DAB3V4D3SdpiDhmo2RlyFcaE/+HGFqSziHKoCdYVWhSZ+FBBqYNMqgmQ23AOtVsFQbhy0o3i3UXMfvA/p3JUF54OKkOQRVbA2DCbLxtklg61ak6WbQ5LLEeUBA3gwYBaPBCiNgpI7SNgnIoPUKGNUPKhF1CJSR5+SBOpyxLubzhe2aiGdKP0IqBnSDaI1Ijb2yhpYxN1KdFhm1el73Ed9/3sGzsKCKP3fwNLzL/dVshY7YMIFk0peKUtII14RF3bykSkIaTqXOhFDQCiOH9w+QWsfnDvdXwT4YM2M7XCEgSaDuEQWNLhJMpMpB/0BqMQxMjxiDS/zfTbuXR2+RKoOHaP9Prktb3fikpmX+5fPePn6xLbQpf3vsv6wxLqPAvTbVPGkRWsb/ibwNop2PhqjBbU2vjaRCFmLGxu6aehvaglgOx6F5nE+tvER7P6QBq49806SXtovHt+No4FfhW5isftHjcxL7D9JHyLhnM73ennav3OD74cklDuw9AcM4DDkv5GN5dZbrmx42XXgEZJYcf97Au/jrweHeuKgYY76LAw9X44quvR3MHQMme3yvlIe9yaUCJZZepACyNIuJZiXxevQoKlLBy4dl93Ilpg7ejTJSfULWuRwh2XGfddIMHCRO4yaA8Pim1SOxMK7BcjUZv42A+HdsOQ7DRBv1j1r8aiOe6ZxgLhv8E4De3qONo7vuaMd8TeyYF9JcJks9eXCe+To6xXv6TKwl4SiPEdBhrQKsz+5jYH17m8+ItmS5HK35YEDeGYHS0LGsKmT8dAQjJhpFDVIHE2dLKLoEKSTRBF7thz/Js8VKXhzsU/Jq4O7XxuvG5hAOH+Sb/JZ0fKhDZAiDSoJ0Rg+kEPAnXoGCMcbK+5cFPFhuPMiuboCWdVJnjEDgI7bfBVcANWAmcXZwRHgOtC3s7dKD+CZQUQ9XeO0USRIPCYqaIcGkfzI7q4DH5JaysdRmCqC9lic/36K9BOHctugXsccd2x3KQ9aBuBj6rzce8rzJiPmvbLuw9vLF6a/mBafb1PFk5WBjCosvw4SPTy0sqgx+eL5Gasi+7MA4Ek+KaS3XNfI6klSIoBR1AtS6OWavKicxzaar+NrQWuLth7xfuAdd8gIWt5b0tSX3QzL4v1wILqDYffBA3g26pnCXzkG4GRgNVmWCNs1uud1ka0LwTMlALhHMVGoHXqGF0xdl5zeBwCQLm5QxuRm0SnIDmjU4wfsuTRoloy1jBAtYV6jHt7ff8/uw8ij96GCS8HAxenAt7WIlxoAsHERgJNPawr+ibckqpg2hj+V/txLzCv5dmsE8+VrBjAvvE+iASp5w2jpJbCkybP8mPI9pXNJ6FPS+4Iva5NvhoSS22SpHoMiw496xL7HzQpE+7a73fXhWGI5vIiCmPTQb3/t5Xoc/cMRn9/ECaQ4De5/dgiig1eisr3BMl7fOMW0sW+JhH2sDS58qgHoDVnnDhfrbyYxd/E+gLgM9XKNHi/dRHAxiLxZNYyvEY5x2gfyQADp0ptlGaiXAFm8Dn3EK9sbTxOYv3008AiwpWEr/4kvmZScOAJLBPF088lzXBMIRrF3iZMdunKvkoeRt4RXIWmqBbBqlG2k3ycNKqUkcmQ/jnXNtSgRTVJLpC9H+73ca+l9no9CEvomSVhpiQbI1M56+JiySNEWOtzuy5gnlq55iG0vsezSlcrL0nmWZi9poBhMgzlaGooMazAw3Ue5LXjH30rnmcGtlwPaMtM+9mLDcx/6PHxNjqzPYFA5BsgPt9sd6lJsPzQjOUFZ7kuhDtoz5XJ7IibZ9a54tdJAnoJ/EngnN7f0OfU/kaB/A4oZBosRAToHqEU44A4G8QTey6UA8IHOfRy7Lt+Rtw+Aawwvjz7X8a1K3iQ9iIe9JYXUDdhZZObxODSEoCfGXfZulQT2Eb59/3saM8J1PComBtQQpBmVJVgtGzSdIUGwofcuSdCsvSQSL6v5Yxnx2Z/6fmBcRWJUWjxl8lM1R4NXGRFpIrUsIzPzAJUeSw50SGy9vyGVvlOL6uB6OSoy9d8UKLRk6BxEww3Gn2M6cmLuMAz+KXTEZAMQr5iSuZ2gCKTYrUEdjwLFEuhzlUoAZ+nz3ZTj9k/njc/pttq/9vsc91sqR4bxM9yn7Nf3VRLbrUzsH8U2Ixm0s1QRQTo/fyUO0poBWiuTzxcOkUPPDAgugkJQSpeIgHp6PT3VRUCNFgMKQXpJ91H6hJshdmXw9sewiaP097eXEVMQrSLgGqQIlEk9QxCMH0F0I/SJkavJDy+02igzQqErQBeSBGPztMmAVqgkLTvl4OjpUjjSUbsbqNR4MXSSHkAFeFSyw2kx1YIQDZNuwYQpu4DGSFM0AXq/Ww6zLyyNcj+vggSGkFwJQ8AMg7dLTdDv0mfTBmfN0HH7l6EcB4ORKF7CB4D2VugmMji/Sf7dJaBl4A/nbzYspgPbeKoDB63vXTtjMIYKYTqdGqsk4ElvlNyk/X7xBU2AH7xuwg4pRcD9lkOTqOXfIDsbHSmJ3OZdPMSKXd+Gh2ZQRwwIuRsmgik9YzyUP+WoOulw0934gA/qf/e7Hj7WCH5kewD3ReOVz3dao50NzDj+lu/RgK8MOh0H2QSQpkOM6SXCBNbxfL4y6MggbYgMpov9Mb0LHhDFtI611zu6SZF7xxCCjzqPeJfPSZRugGFirRiarxZwrs93sszAVYPWH5l8zuVyTHngAI4GgAuzmjxvzvANgkjf80Mn6oAD0I7QVRKwBmBG11FdA8agFZ5NYIyPBsiQmEpRHEIH0mDYA20QaQiGS0/wKV9BqSPbaMNgo8mQmqhkqYf7Iesp3kQ95DitcYqd3sz0jzuOtHcqvf7bg19yxyzzhKSpZ9bCpQg3H5yvnx0kwEgAbjrFdzFdgAvfS5BxI5PzRmRgjcebTnOiLGwxZKUBQJaQw0S0joNA0r6l81BFQ5YJOnjJ1gOrWqbF91mWWfTyeXXpMssTtmOOgSEgH8q3ckT8mMKR7H9wjegxkCNvOWL/Eri1v7ZIzzJva1N+M9oV6XVfkR5wCzc8NQFwRQizNyOYxjPaMdgm9j8rAbxtiOycn5+w2LJ006BfL84Ibqr4ijAji1KutOG7ncN4W7ELpVoodu5zfMFiw+JG4YWyjeKtQVJ9KhOjPws93C3Np8v32zkGEkmSVAZtkFxt30YMPEVRKhK1MxvrVwKdib3ToOpCFdUBu0hOgjUB2jj8TkCfRLkMbIFfwfM0KpuomQANXhqcHER6NEdkj4pXMNxEdAeRObAIIx4bOLGoOLzcwnBQuFPFN0k84CIjd1k7Di+V4nMUS7xvIVPGQPpjEi0MIga9F6pzu6Jg4mWTJt2DtwzqOAh9N8N9l8HCuB6gTaPRcBTlr06xszYAsAG1hm5thBubmK9EM0syrWIWPoB46/EjS5JuJKdXIAzwcRrtRwbpYsY4kfBiuGQQjtuqyD5NGFB8lV4C+pDn+xwgU7vkwfouHlnuAkv7D8hleZ7CbTi1WS9p5Sr0s/Llc5t+W0koBgRjyUOlSM/Tz2jSzClJhF7yb2kwzudLhtL7ad50zfieaG1QEWyhJ+f4gSip+MpgWmVy04Uo4kpoVyvMrEZrS7tWceObavaecJhzC1ZX5/zA07/Oh1Ze4BG7zRtujatugxcX51loxeuLDV7aP8PnX3gYe23E+KahmlnsPBCOxdkYoOZheg3c1JDgUysBH94LaT2m8yFToTO53w0MnjAcFQuJMCfSquwdRs5Qvg5+4D5LHqIdSSAMAT7xZnUUOK50OP1eVB7Fy2XUnAmMGxsZW3jynUn+2sloEb8rwBRRsMkBN0oWyjfjtAPtYqO68E8d3jR4HM6DcA1lgVOozAFIh+AR3QV9GeEFvOwFZgpAh6FDs+thAneFUehculJDnebBHh1DSKJV31/TxpfAV2UCqp6p+QSkTgKY5n9+yKLT6Zb9wdO2shhw01jv+JtxHpmVMwHJdbELh7QOu98EjwOnyMEcvx4z0okEBhWn02bhwgwhvtQGhgOeSfek0IVEWabp2Y04zcmw7rtI34VKQXWgf7s4UBrtgS4DYji21ONLmWMwKdX+b7LBJXkkc4jynhKDT8dHOSVdM9v6VYZGtHTuZNvQo43yburRkWI3GkbjNg8i69M5VpQ3pu0RR919kc5jfIh8pIlpWr0GaSVqw92KDe3Xep7/QzVnnrrJ91x+nt+89hXW7YxVaWjUYsVjUbbMjLE4RuIxwKoR6tgoT1TbOG7RTl/MzeWB3acsu37Evo5otWLfj9n3I+Y64lq7zkIrnBo+fv0JthcTAG7tTek6izpBb41Ze8Fy7rMto1uLGGMBNCGCFOfC3zL6cjKCusJPRoc8W3RU4afH48IDBXDFgD8DrOD1KdDgsqeYAGAS9R6xsU95lGdRNsM/ndL7feeTHppDDglkoi+932jYqYp7xoitBLbigQ5Rj1FBZA2lCzN1n0L6HcickDXzG4EZ+JBExzobmXnQ2sXvgNxCRy/Qnjf4DYNbt4iJybLUI+LifVlOWjKbi1O8XuHp2XYZmGFa7ZNLuaUEU+V5D/mpxr9HacoDz5A4UCbZI106Tjn9tA6Mw3vETtFxfazuKhomT34cIvKy1JAMp51S7ywwsxY5mGcXssEU9H4ZeAZNSeNuql1MAUA0bh1xA0PSm7cN/t6plCy57OAF+y7PtzyZwhd1GFB4ennMlUcG5q0CbqxMH9nj0a1t3rP1OuM4AnkVTLzf5+vmLm/kcFEjzC5PWaxbbr4H/FjxtYaAntqDVTCKqWKIvBd+67s/xwfWX+KDk6/xdL3DRIRxlF597G+1JI8yg0OxS0+hBiZLD2bTKK3OaXUGQAu0CnO17E8q5lpj8XzD5DUO/BiAK+0mC19x4Ee8Pt/g+afP8eI3r6P7kzCgK2BBWglt7IXxTWFyXTn3mVnOrulGJrtESszaqTbYB44rD5iBW5RHQS/i9HtQXQedoIxQqYLPpZgjejt9xxXI7mzHOMMHl8Dhob1/l/YbxYR/FNuJuhiJUa8XJ0qZD9NKPSBqQFvwXczTMMWoJ4XTi38FNS/hjcdvetqLnua8x9CBOlQdpmmja+V9gEwCGIFq7rPOnPVmr33WtmFjDW6/XEAhMM5hnaQMO4Y47hVAuXz6rPPRh0XXgqvN4cEgnksKPbxsEj8yvR869Ok9vcMcNMjNHdzVa8h4HJ6Vc5jpBKoq5KK4z5KlBJYYcGK4SfcvNqd984wo/Ys7HPIQWn5ES/vD0hhRyiXFObJrZTy+zBOfB8oM3AFYbMNggDAxxfDiDDx17ga/5+Jn+P1rnwfCBLhFuOqmzLXmp83s2Ha7U/Ej4dYzFfuPeH7g+z7K+6Yvc7m+yTkzY904JhKYsyn6mB+88wYjgkVwKEYEr4q7i9HRFEzExw5Zi6FeatNw7o7kiP6+Ub/okFelRdn3ylwN9tFgRdv2NTs6Zu5rnqxvMVdLq4ZWLT9589v5V197NzfcZnZzDc8gSpSdYhY6fP5HlAfLwOVh5tWfQ7GgVZj2egi0sc9tMXC9WRZk8/bjLhL+lyIOg+tRTBpbHDYIdAmVO3z+CORlFULHNwVAOkyjxGTaiG/DNCinTb2A6DnkxnsZv+5oHrnKznf+Os0jb6DjGZgZ2OCDej9eKKZTVl9f9JpvDPcFBux6GaAPNV8JxEeRSZE+q4EmQJchI18GpUSE6P9q1K7TZ4l+vyom111tyFse9iF7APQG0nCsnrUcPHSWyY1NVj9tcVeuom1T1LdD6vvs6pGJpnYxHZldaVWsflOC83L7LUsey6WQRpIXSxlVmgHYDI/JVSwHFI3y9FIOhGS0CwblYLhLLnjiiP2anDsehdXX4PWvPsnfevZJXvvdW/zg2V/icjWmwrIiB3hgLCf303zs8hv8gz/311mVjpWi+1kR6gjOQAbo40r5m1kiFL5wWPeqGfD9UmddZulHndsv4U/6LbD5cMa5GhzCRFomtuWGm9Bg8Wpo1PJ9m5/ju977HLfevcKBH/NzN57lkx97F6uvGOo9pd5XrNXDA/xSefDJrCQCXbI2m+VeHZGhmAoqR4MNyyC0FFVQssfll2mYsCdMtwcBAQm8Y56Q0MFTghwwXQRpF9yM8jFe+yuXwEmNPTCMX9li86PfxP6HKtqL1+nOOTAO9W6YCOdeS7R856AYpXfHK8B74F3SN9ShsiydHEr1WpZlOaVkocUzGqwAZIpQe1MMqEpOnp/cHrMhdol9l2NuNxFm5yv0g4+w+pWVwMZv3greKe5uuNjtS3ruqYuG8Vr7LguH+ujAfU+Xfl9uMx1uy5yhYM3LRuZsx41APfzeDwYmMuxUB9OCdGHQt025X99fjWNAlCYLRb5k+An/7/H8bz3PHzj/SX7P6qtMRJjfhbHtdsWirEpHLVCXLJsIjhoAOT3FEkCXgbo/Z9iejjlqv6NkleXfSyafsNRpb+FqFRo1eEI0yEItDQavhrnWOASnBk8AdIA2LkBjxbNlD6il4/0br3Lzgyu8UF1mciUQxKBU3R7EH3g6WTggQGMVXmJ6VksMjU/LpUGBLaXeJ/l/vYVeOWIan3q/HjouAW5ooB6oMwgn0E7yg4+W5cj6TOfjPsQcDfES2Y1vSVcWkNZj52NG1x+F9VvMnWO2tou3DXmppfsoyXNDFcyy7pyCW2wE0mKsHKTtLF/GJHssbS8TXx2VGGiQTdDIYcBO223/11eS2z77nkvv154liHRPZvjdV+AmQrNZIbrF5NURZtGgXXd84MRJSwLwVIXi9DLoo8M6Duqf7icx9WP2W9a087Z4nLjojx+BO0edJhbtAljbJj4bC6ZJLDukSkgZI7PUwxDMETALZbTrWH8Zfunss8y/qeIDj/80E1FaJIPTSUqjlq+0ZwKgmRm2GG5r8UzEsVKA++1Ad/n3xNpLQC/B/KihPQ0QLToA6yQYBFAWWgxztcy1jtfytFpl0J5rjY8vkCumTW20XDtMPuaheps/+PCn+Ns3Nll0q4y2DdVcOc6sksoDBvB9nPl3OJWYthTC2zBFdBVhFeE8RlcQKoxYyIsCM3wplqaVuZQvE1oAdQ/MaNCZsiNBucSX95ltm+Tgr9oHDxAzkXUpzDbm700vZI4CDDmO8wDgHOLD2pgiysVfeJj9q8r16S0Uh69a/Oj+wgXNvA2GvHlhUErBANE1yU/rmOPYDGWkYiaUAfg42ViWmTXZdxcIxsX4zLSKQB2DaTQmzHJ1D9KlJCBe8FXPCge/aQ98biz5WF8RwgEiK3/1eypWX97kIQPSOmTRIU0Leydp1eKeU1CS7Wd6WrJfMicg6c4ZbBnOGPqd6VWOpXEmL4gNpBi0ANrk65uGLHsE1haiTu1Ceykk2xTCgGlazc/CdP3qPSV4Vwc+G7dN40Mf9yFf9bv+Z8MXv+tZ/vYf/m0AbNUH7Pr//cRN+7X9s/zQx/84YhRjNJtUNldnXFrd5fHVG3zf5ud5rLrBlmlYEc1g7iLYJoAumXpZWu0bt7dghdJo/70tDp2rxSG0UQ5p1dJqMGQ2agOrLjqoFU8TwXkkLn8O9QtRKF4NO35Kqzay9IqFr2nV4tTwLY+8zK/pYzTX1zCdYBeCbQ/fTyoPFsB1SjV/PzYxQE093cTsYhaVCtE5SIc3C7xsk4JlPOsY1jC6jtFR8dL0oayJ9YbFRgvgVRDn4ks1TKwkne9ZfHI/0z5sP5QAzIkuCRrcfVL0VpJh4jUlnjdfI8k7kbJVrmXt1RWqn/8Gds9uonWH2Ab4hydrWhG69TFmUgMrpZdbP7tIbloQMqztd/lYaR06tvhRhY57162SVaeXnvS5DH+velDP8oZIdl3MTZjAYsn3fOCBEhkulOciBxxpjN9Kx6WcLgFcwU2UvUeh+/AmW8+5PrnX8ydq2theUB2koCQZdou0AnxxL9ltL+2Tfk7SRgrCTfet0i93pwUoJ0mjlDq61Mfj9kxQyH1/kP9FGC7MoYp0IE35HhAJS3QDbXzxDukgpF1az9Zzjn/z09/K/GGH1p439n/lxG17YWWPP/vNP5eZt0OwKGPTMpKOFbNgRRa87jb4cjPl9W6TT+8+ysJXGPE8s3KN90xf4b2j17lge2guVap2iUm3BUufa4XXMItIIBu217k+0LPo5dlG+m7p5ZFWq0BUI8i3anGEvwtf5/O10e0RYOEr9roxm2szbr7fsHV2h6ar2FnUx8LCgwVwX2PbSwEwikVtAzC44DYYqYSKA23AHBCyEEqoro4Q3yG+6jss9NNR5weadcnATZI6SqD3DLTtIrK9B2UlGibTdQIjSew6DxiqmJi0PV8/FsEHZioeIx1Cy2jXUn91i0X3FNQeI4uTt60BN7H4kQmyQ+HZYVLwS2RiaU3JPFgR7k+xMUhCsuSRPGOyEbGUPkrNNoUYR1Du2XUB8ssgvQzmcZ8chJQT6xdMOyptfnl2kK5bgdZKN/HsbcL4ukU8+NHJmxYiWC7IzLocMFJ7l/ejVg/NYLK00Q3TEKRiunIf+gwNGgKoeq2a3HcTO9PE+KW4Vuq7kZlrDO4zbTRYRvKR3kVpfT8bbd2gbjquwgAdI2OnV1vqA8+1tsaPLLI4uYRyxhzwkbXPUEtgwCU73teKNjLV626NfT/mWrvOKwebLFyAr6ltOV/vslvdYL3whimdm1ols+nEqPtrjDJoJ/kDoD1mCppAugRmi6eBzKQdJg4KJjPt1ld4hLmvi3PZKKNY9t2Y3WbMyDoePrfNn3z8Yyx8zZV2g796TNs94EjMyFglrPgsXeiRvq4wrZB8odWOIzico5bHwsHRvazXqZs8XzWdj6G4gR2k6V4ZVt7rhkusuvzmCcelujofr+UD+EM+r3gfFzfVXkM2PZCHVKwdYgONUjSE7VuHrVvEzzDeYReKsQ1qlRDSf7KSAnhEYyBPBFTbKC5qyjnhT/IL3xjlYzVpzYllF9vTQOttAm8Oad8l+y6BaWCEKyMFC4btRjLwusjeF2YI+qXh0o/7z+HYEPHpRhE8xw47CtGeposgez/FBze7kEMm/EPBTYKbct4tSTlL6Xylo9eou367aTTkp5Eoe3SF7FH03Rzcm6l8+JxysSdNO223i36wruZ9YEwGaRdtOp4cgh4Yd+zXiya4XqYVkaY1OjK4sc3SSrXvUFvjq6JOJ2paoSW4/iVXO4ewIh01nlo8K9JxyR7A6A2+d+U5/syZX8p6dAnIN1zPmudaUcdRsI1adTIopmLw2cC4LIekUh6TtO10zv3oC+4zmAutr4JEQjBsWvEZ2L0Ke27Mwlf4+H27nXDQjThoR9w8mNI5g/eGa+06rVp2usmxbXdHABeRx4D/L3CJ8Lh/XFX/loicBf4x8CTwAvDHVPXm7U8W/2pkf5E6S2SsuWgURYSCQQegLg2MOZueS6Kg9p4Y+VzF37hLDzCRgaSBwevgs2lc3lkAcW7wAokW9THxBRGP2AZb7bNy7jNsn3mR2WSbplrENAdBmFzfe4j9qyP+7i/8LNd+uQFj+M73/97U5vfctj1QSr7PHhQlg+aA+RXNlBZ0SEw2R29W/Y66vHp8atpkcE7H0rNRX7LSgpVnEhLr4JZAIAN5uc2CrxU/Bn95zvgLU1auKJObPqwaHvfdfqpi/pBA/RrP/fRP0+3vEldPuXjS9s3tUmjzid2WUgcFC84GSnpNOhkX073ZBpgryQtkMCjFv6nPqRBSJeQ+nbxIYlBWF72inGJnQ3uKLNyQaKQZWZx5pcyZOqpw44rF2U32Hra0a4IfDWcXo22QV27w4r/9n5h9ag+M4Jo5J25bwOnQEGoJidbaAlR98Xu574GvI5AHODMRfAdMFzswjvbn7IG5BPbWV1lOSdJHYtwpgCfVY1Fcx0WPlHRtHx/ozI3Y6ca8tHeGV37tMptfhJVrDjtLgyvUrWfy5ISDh4XZE44XnzjL2HTM3PHTx7th4B3wF1X1EyKyDvyaiPwM8B8B/1pVf1REfhj4YeC/vPPpEiBLz9YSLUtgGV3xSmkiaH+uZ9YQpnMi0XtDs94bnnn/FvUvgRb+2QVbTpGIS+xaEusWQq4O50g6ttgOoUGqOW50E2c71DhEHMa2aDWjW32Bbus13GQfZ0JkJ7So2WduGvRgiz/1gd/G2rs+wq4qP/aTfxZCopcfPlnb9s04SAdLbtoe4BNbpmfvJXNMngnpe3qBjxoAeje/AnQLKaX3POmZdWJtGeiLNLhhfUPwVqkOwio+pgvH+pHgOpjvV1Sz4MecwZEgD0xuCN2qwZ8zXPzwR9icPgJ7cz75D/9vF0Xkmzhh3x2AaXLVLGYYqf694VHzPnaRwD5KHjbNivr+aRyDvOr5XPGaAZzJfVdclEM6H2SymDNGOo9Z9ACuxgS2bYDahnQONTCpcNMKX5uYPya4bbqRYX5GmF0UulUdzKrUBkOm2a944oO/H33fEzQy50v//V/mftq2LLX4rEebPDISATU0TlOAbWlUBKjpsOhAAmm1ylOfZFCEXtf2mGx0TL7aYVuVpZBgxBxq2AmsU1TqfjfmRrPC9fkqL14/Q9dZfGfQzkBjsPuGM1+ErefnVDdnQYUQgaaFazc5M3sE267RbBquzte4PN1hqz44tq3uCOCq+hrwWvy8KyKfBx4BPgJ8b9zt7wE/y12+BErKWx30NOMUX5nCSOIyKw86XcGOo/as1vRgZAIKaDY8AlE1XzYkZnAuZBbxCq7PPGaSdm4EISybZLUN0kKlaO2p6m1sfR0zeo1bl/8t8/EOTTVHpUXEYhhxyz2CdRcx7mlW51uhVmYbV32Z2fQmqxdHXJYxu7M9VsaXuLD1LNduvTw6SduWbnZJOyUCs2n7dvF1v3TaIDDG9gbCxCqDfNTPQLIMUYBzBuFS/ijOlcE5DixJgskr2VcxQCaBoQpuoriJoiPP9PMVK1c8k+ttLw9VQrtq6caKG8HO41VmsHYOa6853Khi95GzjN41wV+BtfkIYHY/fTeBmK9iP9YgpfhRPxjaBeBKF70ob8TUBcYFDxwvKQtkH76VDd3xWrbpwb1k2Sl/TXoXpHUZCCTGJGRJRBXRLqz2PqpwKxXdxOImhm5quPUuQ7ei+FERjBT7UBgUoFpIfnZuDO26Z3R5g9qvo3uKrEyQqkJdd6K2VchyQx1HYhPd9Go8o7htP7noIcFFL0onc62j0dBQS4fBY8VRx6TzQSIpvVCEeTSKJObuNPxNnialHNL7eKdrOBa+YuErdropRjxeDQtveX77PK9d3aT62oSn//FN5MoVdHsHP58jVYVZW6V771PsPjFh/v4p83OAwPg6XPzEBvUrN1idVBxcXOHVvU2eWbvGhzc+x18/pu3uSQMXkSeBDwEfAx6K4I6qviYiF+90vKbgHYVB0v2c5D8x4t4IWEoaUCb+jx4mGoNqotxiXNT1lMBIWlcYTJemUBLOExhrdPFTT2UXGHHoRKnqG3TTV9k796u0o5uocZGRg4hFqLDyKHU3pu5qhJhDhbCGZ8j3YkHniAqqFUafoLNzFqOWq+evsfn6Na4cLHj12hcgOLs9fa9tG4yxPQBkeanT6LMcGVYJ3pkxC9k7IjFMm/yz+2ukmWLy586ue6W5v59I9WBUMPNuRdHoJugmip0Lay/CeCfJV+HcvgJfWdxIaTaEZmMUt0Udfsm+FOSNkDZ0tC+sXPWYj0/YftZTHRgWX74OsMIJ+y5CTp+jhpAOR8n3kgJlUoCM6ZJRUvOAqiZkwE/Si/UBjNO7YJNxMW63B11M1zv0LxwkzwroF3/QvJCBWxvRTSsWm5a9R020DfQzoDDgh3ci1DWMxH0wWyELFX3DRvLVrSh7jwibX/XM92/g25aTtq0tgLtkx3W8sdKdr1VLg+0ljciyTUz24gnbWrUZpAH2/Sgz9Ca67iXXQCAbMRMYZ0NmZt0VN5pVZq6mU8OXr19g+8VNHvlZmL4+z9k514BnKo8fL9h+zxbdt5zBjciun+HdCzEL3kI1izPgEVx/75SLe6uYxrH6muPVK5tcObPOWXu8/+tdA7iIrAE/Bfynqrojpc58++N+EPhBgM31y/1UM/aOclUViZ0me5EU7m+lD3foXJ60SJq49IZoz54TgLvE4H1v1BQNEaCmQ6oOsXs4u4c3M7w5QKVDTMi+5qp9/PgmurYTQrKTsCzxSTBCug2MThCt4yAQ2VQURCP3DfcNSNzXG6GpPW5+g//h5/8mv/87f4R/8DN/7q6jTsq2HU+3YhtwSDbJbLdw/yvBOwNwyawja84AHtl8HiCWjY0liCeQi+eyTS8hmK43qHbTJI/0fWHgK61h0FAbl7SqeiOhlCDjyaCkPgxStlEmNzy31jpao3zhV/4+wEsn7bvVxpl+lpNmHAF3A4CT2LZmQO9z0VB4exCM4mmAbaP8lxh26XvdukxicjCSCNQWX9tsVPRphfY6DdLQTQJodytCs6lh8F1qWwDTDD1iSgDvG6L4mPY14McK+3Ne+Pm/R722RbN97URte/mRfjQe6OCiuKJDJPadDYKFH3bprjePWT2zG2A0PPolUE77eyQbGB2G/W7MTjfmlf0truysM9sf4ffrmIwqkJ16x7BxDSbXZ8FWpgpx8QgdGdzEMj8jdCvSe0CV/TX1I983b7ci+HGFWhP6yW7FjcVqrvdR5a4AXERqAnj/Q1X9J3HzFRF5OI6yDwNvHHWsqv448OMAj158v0pi0dFbP0cACqjvwU/U5+jEFGCToh+THp6niMmQmDxHkg7sYi5qUcR4jI/pa/EgLWZ0gJnuYFZfYLb6As30ddrJG4TsiAF4rV/B6hq1u0jVnkV0FIG6WN0nPZ2InhKdfFULOhrfcI03G1LmCgtv+G8/+vf4zse+iw889n38gxO27frWo/mV61c1SQ8Q0BQ4I5kN94BOXv4TyInrB4bHgoFmg16SFOzweIjGxlH4bXpVqHeUyfYwyZabhJV9mnWhXTU945ei3vmm+u/LoeL5eReufXRQzZSV9T1e/Kmf4PxT38L+r79yixO27/TSY1re9+Cd8mHgML6QTFwP3saFRQKSFGIXPj+fHEfgY0qGNDNtHVqHACwVReaxn9nwDN1KRbNRMT9jWJwR2jXopomgxHoWbW2jDFIGAS23ay5HYHA5IKfIUe8dX/rFv8eFxz7IG69+Mu16z237Td880lYNtXjSXxs7l43W3DKQJjHvBOJzX+MwOBXmOspBMr0RcmhobNViopF07mv2uzGtGjpv2e3GvLq3ydXtNfjSKme+qFx+fkb15a8iccFkAN1coz27ws6TEw4emuLGoDWDfDJl0rABqUqwoAyJiIBbqaORX6i3hWsHq+zrfRgxJQyp/yPweVUtpZh/Dvxp4Efj35++07kCaARnVGlckBSEkC4x6dfRdS9ePGjWnQseKM7l/Uzjej/syIiCtOGCHGJbZLSHGb0Bkxv49dfZXf8qzs7xtgVcThtiqDCsInqWcfs04mtEDcYn9iyYtGhe8CpFpI/3Co0ffNc1cPD4oPrwuXSexMiNn+JlwU/9b7/AI1uX+APf8B3sH3zlxG1bjB8RCIMGahZa+G73029R8NGY2EshAbjdqH9hcym07BQ84yZhwDWtsPEVpZ75yCijV0sluLHgqzCQzs71PupuRPZbXnZDKzt+isrMrFYO7yPFGCo+uiV6MAvPK//d/0r1+AXGv/V74df/15O3bwHedhZBXMBN++uaIhAnRTzaJqzsYtre59rOusiuNUpVJhvkVQBrcNOadq2iXbfMzgqLM9EbxPaRk32DRbBrQLyELlfO40o2vVyKATnfagE4h6JHCc/Bi/LGP/vHrJ25xMPf+Fu5+tInT9y2BpiIi3q2Za7BY2TFdDlkvfRGseKZ+5q51vHvKLPnPTfJxsVUnJqsWd9qV3h5f4vnXrsAV8esvmQ499mGeq/DLMJzWQfWadHRHs2ZMQeXJxx887vCwhG2b5Nkw0kGaNVhu6eEYVk+Se+e6335w4b+t3a9ojpwrFxp2H5qwpXXt/jvVn878MUj2+5uGPh3A38K+LSIfDJu+xHCA/oJEfkzwNeAf//Op5IIyjG1qesddwYjEaCJyeagHIdpAoMOskk04qiHSYefXsOPtvGja0ECEY+YBlPtQj1DpzvoZBEXcJlEjTpQCsMI0SlGp4hfQTQscBwGf+2ZH2kNT08OvlVC8FEM0NV+5+i21QcJpR/CvdW8+PIVfv2zr3Jta86P/MxfQcPj2DxZ2/ag4nMmwjBHKz1P0n4+AbQEycHXZFnA10MAN00w1tWLHgk0rosJ5Mx1vhLcqDCSmkL2sBL/koNyTFK+lsGj6C5lRy8DVZAe2Jen/0kG2rnxArs//ynqxy7x4uf/GsA3icjvPUn75joqWfYJs0XJ28uQ9VDfaLhsPdWsSHgWF7UQVdx0Qrs5olsxtNM08wmSka/DLKVdhW6tMDIW78kgmVXRHglIymjQI8sR9os8y1geKIrP8xe/yt6v/xrdmYf5jZ/5G8x3rnLStjWE1M0OsvEw3Rv00gkEjdpFD5EQIDMKoB3Z9jyGpbdq2e/G/Pr1R7hyYwNemyBdSpsrrN2Cei+s6FPFiORubZTbX63gxoZm3dCuCu16D97L6TtywJXpP2vsu1IAeG4/D8uLpUi8rhsLphHq3Y7RDjRXaz47efjYtrsbL5Rf5PjH/+E7HT8oiZhqAGDTxAx8zpNXY4m6rCRH2KSBdz7kFomBOIHNOEQ6GO/gtr5At/ZVms3P4k2gaqIjjNaIViBjjN/EuhUqt46Nzq1KYj5BDhHo9evszpHqXj45n39IS6uFN0fol08L098km/QpoAxQ8dRjF/ivf+T7uHDzEpP9c4xn5/gjP/lfbavq9Xtu29RWIhmQg9Ztiqla9J8vXAN7owo9E4gMW+Okw86hOlCmN/qVe9QGsE7n8LXQrAcdz00YdM4EwiV7gaHr4MBgVnaZjn5DmmWE5uynq9pfrMx4uHHhKZ76sb+Gv9iwtbXPp37/X/mcqv6LuOu9tS/kQcO2wdsleWlk42DRfqnNxSm29dj9ptexPdElVejWa/YvVczPCvMLRUh+BmnNx4QsgkXIPcX1pN81gXAuyxJq8WwOMWwpdkl94Yi3f/rU0zz9//gxpleE0bbypZ/6G+zdeOlEbSuE5UtbhYbgZ+0QWmmoJbgEGvHRwNm7/jXRpW/bTQca9sJX7Hdjnt89x9VPPsTZz8OFn38V2i68hysTdFKjo4putWZ+ccxiw7DYFNx0adArBsNeHuvbbmBEliEDzxGv0QZV2g/K9k/ERI3iaqGyIdfS5IbHjwwznR7bdg9+SbWAkGhtQl7e6BKFCcDiRxXSRTfCxLaJson2608a47Ar19GVV7n5zE8inMfIKiP3DLZdRXSMYYz4kN1QI6CGcyZWHCSOHMQAEdBDS2tpYcCgGsLpVNLCDuVtRekgTA/CzCA+KYEwtSWFytfhJUPwBm6u73JxPmJz7/iIq7ts1tA/ugTSoUMkn2Hb9kmkBr7ZdghCvg7ueQKc+5RGOQTmZwzdRDKrLj1UcnDKEf7RqfOmdSuJ4Ls8tZdizDzkcy39iwMFYFbgl9IKu8hIbaOc+axwbcPyR5/8JJ86cesyAGc3lkA8GqGaa86m2E2gKv29C5acIxwhrNl4ZsribM0b31Llm5UObFrBRelf+IFcUtx/Ubej/pZyWf6+zKrLUx/BLnM9BrOkOBc1sDir1HsgRy0Wcg/FKbRqmEiLl+CHnfy7R+JYkcWhJFIpgjL5YXsVZn7Ep65f5tUXz/Gev7XNI493LDYtt779YRYbEu0uvUdVtmcUfTalNCj5W5zMDmd9sW8GN90j2qokHL4/r7fDZ1LNwxc3jsQq5p2Z3OjoJjXd9Dj+/MCXVFOccWAFqUzMhOZiKLwAJroQ9tkBpYuhv13QDCWCqqVB7BxGC6w8hPFnMH6KoBitEGxg3nEYlexbGC1OQpRBfBzXYahVRwDPWwrnaAJg99Nqzew6AHnKd5ZX+Yz7prSz8dwK+IrOONR0mPtIio/XENXlDaYW1AnOhI5qXJgV9NKG9MBdDaWNrIFXCp3QRit68L/u5ZXsrULxEkDPPAu2MXBNS02dWEd47AMWMwD29MhkCDBpG1Kcv9g/6LjCaD/cx7qdn7xt06mrOGEcxVD6NrBxH205Se9MBkzbBIOlnXd9bpEo4vtR8MNWo+H5JE+W4j7KezoOpHPdjmHSh9j40jHLgJ23HYcZ6bf0XI5w6bzX0iIcRMPiRBytdDiEAz+mlg4U6iitpICbpH8fuDGdN9lweauZsjObIAvD/jNb7F8M0aTiY99Nkp4s9culvlkaI3PJ962D7bmv67A9B7YZjbKbz+Euuf8nL6w0YwPwtQ352lsNLp7HlAfMwB1q5ngmGBs6LxIAO8aig4sL3RbRkCYbMX2IiDTB2xPboBXU/mmMGyNqETrCvFvzNXurTmTWUZfWPP8ZepMkL5SIsAGU1ZNWlE3w3uuELjLqdL3+yasK/VHJQ6bLQ4NohRPFl3Ozk5SYZ8Ya8K3BW0USYMf5sKoOwDuxaM0AHliVT4E1Au3GEsAXZRk4w1X6pk5sZaBxewbsGpPagf4Exc9HvRh5m+k/D+rQ9S+PXXiku7981fmySbuvkj+95nSsweQgOVjHdMEV0Cwcsmjz9D2tNu5rg6slJLYqgKKUYPoGPaIux93O0vT/yNtO2yXQjqNAHA4/k8Fl4quTEpvdT/Me+BGvuzUu2b2Y+8TRatWnYxVysE6TUrpGI+YiBt10amm9Za8bs1gEWLv2vgo3CWTENJLz10DfN1OEb2bWkO0KCXDzrMcOj102Fg/eB4a5aVKfKIPslqObJfqSiyp+ZHo31NvAwgMFcCPb1P4z+PYp0LPRd9ViKhuBWtEUYRaT7SQW3q8OEqeblUfdOswMptsLDFtbRNowvZPUlj73ttAhY8ZDogwinpAtQItpjUEplniDwQCQq0F0d0yOwEQgTilYUUQ8vnhD4uwen2QcLMaDk4qD+uRUxo8s7eYIuwhP2zhFY4CGr4AUBJPAu1j1Ro8CjNgZc3ImYbAYwDKoJr281Avzy1J21vji26YMyipKBpf4tQCTMLAX+9H/FhohyERpP5XgkWJnhp+//ixw8pzVSfaxi3DtEEEK3dhQLTy2CVKTbUK0ZDUL0ZF24XpukKo5rTGNZ7TnMW3K6tVfB8g66ZEySLnf8owlbjtkgCx/ziAmeWZz6CKihwaJo85ZBqictLy2fYa//OWP8Mcf/zjfs/JlRngwCyZ+0nuaSHAPbGIukjYF48QLuyihdN5wbnOfm0bpttfCakSLAN4Dw2/Bmk3HgHAkhp0Av3SXHaQJht5ltBiAS1fSsJHBAhnLElsmgsTtxJgLJAeuHVce+KLGyB7GvAysgbEhoKZIzyqi5GXMSC98DMiJerWoD8ajKsghSpfnOx7fa9SDqAQfQT2hTBBhAweJgCvE/dLW/liJx4e3NwBzHgTivyCMDC1yWvwG4YZ8IdUogpqaduSYrZ18YVjRwJ67yfBplz7eyYi4bMQ8pIXb4CeTter4HDROM5fe89DJux6c+zox1BcjE+mZS4885QtQJs3K2OJ18BIOgL2cqvoyX0h4Oes94YtX7xxsecdSeM/0KQE0G6tMkzym+ilxWOi6kMacx8w7TJwi53s5BrhTORKQl8F7adAb7luSCBmARvr9EJAfOsewDqlO3QqDBT3uuVjlxu4q/+y1D/LeJ19hIm2WS1JY+/ICCil7YGLfnbcxw5/QOYt3BttKr2cnxlzO6AoGnb4PWPfSrM/EyTUUQF+8H2lbgpg+cyo5L06/b8K5/jo5x5OAiuAmJiyusfc2kVBUDUKDmGuo7oOZgATAyfqPT8EMxH9FNGZkvAYfFlNwPuyP60FcE0iXaNIbJHvATVa0ZXY8BOUsu2QIDoOMammFC9cLhlI/3B61bpWlbfFtEDF4MbQjx8HKfei0kbn6kXBIShf6HOFxv5LJBdCM8kliGUsdOzML7c+RT59ehthZB8BQdtoUWHIUi06uVgYGS8sNGE1xPunP0b+ES1NeCderd2H39bW7acXjS6pSbJtsCI6/hdwkmtulTJRGESkMIE2HuPow606XOgqob/c9brsdAB/L5OPGIweIIwaH5WPDLKf3KDpJEas0i4oX3zjLFx5+mMdG11mVsKqUU8kJpVJxpOjLwLpbH1LQNt6iKjgveG+oUzqD0u6ixd+IOWlR7SSpDGaX8W9m05RMnf6ZFkDdn18zjJiYerrfV/t94nnEKSkPP1VYMUsc1AfHDKh8HbxQRCuMeuBTqDyBVufpVieIW2BbRzVrY6Iqwg1G1hskch/8u8VhvMfF3NbGK952aAziSa0vpPb1iHRokSxIk7adwFk0b0vcm/w5GFvT0/BovwRZbtvD4K3ZtRCSNS/5kQvR19yDs8JB7Visn5yBQx88o3UPeKN9ZWEEKuimsYOmGqaXVuh18EoDA+/CIOrG0Q/cRzkltWvBvnVJAi1BIjNuLdwXM8sML06uU2Lyg5NRDOb0AFm8JHlV+3Sa5GtuhWoBa684pteEF++rdRmYStSCH8Fiy2BbpZop9c1ZSBq1DITGBBfCkEAHOodpfWZ7ScpaZsVSdrHjSFiWS7R/KEsV0MFyecChvjs8X/5t+TmU9Sqeh5toXiHppMVaj1fhr//Gh/ltT3+Z37L5JR6rrwfJpBtzo1ujNt1g1Z7kOrjwlrmraVyVQTzdg3TR/XLJ3RQoZBIdAHZm1yXY+6V94jbT9iA92CddI2ek7P9K6wtCIFlxCIvDSNgWo8hNF1aoP648WAAXoOpQdag6jHsJ6bbx7v19B4moO+g7olE+cRjtMBrm8TYuaTaTpGu7oEHH1vEA4ov+nH5zmW2n1j/MusnbFUKnKHyFfKKaSVZJ5xlYHJLOna6pcRYghC4YQByCv7aT+3scpfaWAmpCZKRkICy9RSCx7wRIitYaXDrHHmcEuWZzJ07shLDLoHMfWtw4jlvllHUZSEzSAYt9BuzniPvL56ffV1SHx6bBIqddOPzy3nvjhvYJ9ytoG0G3k2JgilHGlAs5S8pFTlqhSW1I72oXDpU+xPuQbHKUrnw3MslSAw4w/SimvXTu5c9Hzgi0Z7aHonZPUJwLKVe9MfzC157hua0L/NVnfmqwj1cT0t6Ij59DeH3jK+auZtFVgYGr4ONizyarq8d4jtC/MyVDT/2odA/M59C+P2X2rgX7LtsoBSK2vri2FvKJQtk3veSo3NS2vn6bSCiCgglRjKoKugM2uBXmCksPAMmXOa1FGVwEFaMeY3z2VEmeH5opUg+bvcGSwM7xJI0hSy06OCI/3cy+c6/32XMlSDJR6ikBnDLZRDE4SALz2BIJ+CXVxKDmPh5HBOLECtwogkYpe9C/jLmGIZdAkFBs+EcVPH3UGiSkMhx0+PTylmsv+rQsjZTsuGga4vd04SKwYdndanCt8haXNMN++/CFC3ZkzX1q+eU9acnGJB/y3HhluEKRITg0G0WMQcu89Y7+ZTUh7Wt+qY8BzqO+L0sfeeOST+CRPt3HldsNCrerU/Es76eogrrg+orC7MaUlzqDfUYz47biByvmODW0Punfhs4HCaX1YTWb3EcLt86y35QOX8aljIxDYpA+Q9LGlWKCH3/QDO4mJiJLwWR5fx9iXYbGz9AXxBUAnjzfbADx4KYp+V0+qjx4CYXe+xpxGOnCA7QSFtwVA871eqaA8R6jMUoyuu9Xfo5pXZhmaEdHh0oH6vpMhyWQZsNlCMxVyAij2U2CaIQs9PH0sMQVLB2C8TR+HLDwZCxNPuAJpUIUi8ZtGkPcw8IQHSoreFk9cbum3NIp73Q11z5YwSV2EFPASn9baZWbwMIVRp7RakNdO9rW4uuaKk5B8yCRGMjSoJCMLykj4wCcY1OUGnpveR++MKWWPfB0kcLIVBwPw0Gq1CE1zkLuN9BkuahRJDJvXwl+ZMAYpG2hBWxYOpDOM1iERINrrNJg96vEH3r7RL4hBu07ZNGat4dd+x9LLVvLcw0qzyEmPrjG7Vh6OlzoF5aG48H/rkoagAgM1AmuC37fVjwT07LrQ/4Tj2BUM/tuo/juvKFxlp3ZhK4LQB+WvgvGb9sW/bVYsDutF2o6ch6f3Ldjf0aIaX0L5hxv3DgfI8finbhAMnNJ+3c+uL0SGy+5Snc+z15DAr/Qb3ThkDNjfAXNxtsGwF1I2Yqg3qHGo36EaZvw8IwgLkYxJpAwqUEV8Q6TZBRxgSErqCZwDiHtQaXWohMGYPURmDUiQKl0J609+40PaGNCop7Nl8cOKW44txAf/sDPvKCaqvGaEuqtgmg/nT5JCcmTkv98yC/RTU0E3JItxgOk/66VQq2YkaOqXJjhiDnMXIoV0QcAnBM56YD1pxS+fSdN4CNZ606sJb04Jnm0pBKZdbnIcUpstQwcieWH88XDIy+4n6LxPCgZbFXAzjVLUClBFQCdhvVEYypjvKecKqdUyYdmGyUbLgDbL9e/fIaaanj8PoN7OQYP7haEjyTk9zM+dgL7VWCzXUjZ6ieGGy4Yng2eRQTv4HkSahCCdyTIJ65i3lZBitF+9mm64LKa1hmV1FaaZnsa4wYCGw5rE0CS4UzEHtNqfmZAAGAFfJGvvZRDIkgDRR9IsogJOOcUuhihkI5NRlERbOMBy21WVHvQAO5RFqimNfg6oEXU51kg0IM3ILHjpxSzIduBC8ZM4hJmncVVQb4QiavbD+b7GhmvL+BXit/SmxkHgoFeWtLGAsBzXSPrJjV8D+y91t0fSz5DXwvRNp6vX2vvnosWnTC+/Dm0nXzpIUNLLoaGuJ60YitHZT2VdThrgtucieH5yJAZS3oJegA/JFfk/jx8w8tIVtHIIiHrkYfurQSpYmCgyH2SrfuE/qPI4XVA76ccAbTJFNJ7pMSXUCRmavDDF5tQZ436uGnAFeuDHuVJcqwL4VGfy7oeJ40U7H5wrA6/H3G7hy+hx/x4D0U8mFlYaQkPphX8wuZAnpRatsx3Eny+Qy7vzhtab2idpeuChKKdyc++DKLJuJL8C3KO9oJdp+UEbZrNxRlcaexMA7DTMMuiPzfE/hgXl5GiT4Qb0hCZ6yLjLmZnuZ+oYucOlRHuNrDwwAEcPwMqRC2GGQYTX26JHdv0ub6FkPRKHcYnz1CHlZZKGsR2OFlQH0xw9R6ucijusCFRUmBP2K6awCP5gHf0areLHTJNSTXuV4J//3v4U3ioSD4y7BcHDcHl6XLYbmLdOio/QxCcuR9Xt57N+ZHBj6JHSgmSiSgkgI8+3z7+NbVjPO5YnyyojKe2nuubil0EMDLR5Smza0ksZyh5SLGwdE7iw/Day9sG7L0cAApwCFGPMvgsRA+IZEwa5B9TmomJEtL9ieBCj6kDV0XT/9XKIAsNL6Y10HbR1dX3rpEmpo+tK7DCaEdDfo7EspbkkSRnDLx+Cja+LDGVs47bAutRv5VJlpb2GYw/5e9vgm0BD9W+CVJeBdW+oCZEXFrx2BideaCjDN4pPezMhWCeeVvRNBVdU6GtQeaWbhoWYDat5sRjyWvJdD1Y9rNKjauCxc9xwejAwJc07NhfkxSSGygZsrUA6QTe2eVQ+37RuWFbGANdhzYNdncVmNJuHs8+HnAuFPAsQFtU6sDGBfAvInqRsFCCx3RdZlhBKnEYcVS0mKhfe7FR+6uoGotqG+WZHl4lGzaJXiRdllYKTyOCJ0h4K5O4QtovanPJ/Q80n6M/vnQXjIZM0SzLpBCfcoaRe790ONsGdqsrJ25b48A0PrRZ61Fr86o6OeLSkHNKAzmM3o8UmThs5VEVGmdDHmZn8BNFVLCLwsgjwUXvSCNlHih6Rj2QWpYYX+n9Vs680nkyWOWBKLxgvupnA6bJFD0cGgOBREOO8pDR8D5pYlHnLKUIMZUuva/xvAkvpTX9NUXC91RM/OyC+6F4yc/kjmVJFlk+6igf/Nuy96NYdzlLKwhA2iFfM5KA4nU4URENGS9NE/Lu2EU4+d9/7Tv5Lee+zNlqj1Yte25MF1n5LMomB92I3cWYztmQ37/ywbhcC2ottlHq/R5gRcHECO9wfxJX1DmqYj0zTzEF/W9JpvFLIF4Actv1xySwLmICVDV8X5qd4TzaNMisCcvXrR8fS/+AGbii0kV9OERQqhiQGaId4qsolQS5JEzRXQbxBKDh+LigmjdU8xHiTOTIyQskNab2nXI5FD6xxMTEs/xRukWkcyXPkzRy98iVPF0kX6MXjpOnSzaAxutKriOoOMQL4m8jdt2xaaMF3MRl5mJEYhdX3enXwtTsTRES+yhYjX6BIUjJecGIYI3iVxwqJuf4SAzaFO04MCCWfTHdbvru4RB4FMcs50jOx6TdzdJ2LY4ZMMT+S0pH6yZvAoAvg2e0H/QReMU/6JlXwb5yiTnuR3secabvsuUgv1TlO3qW3Cvjjtv1iH0OBfoUM87S+UVSXe+naPTHjue2TWjba7NVDvyITQ0RmJ1aFi5A1sJVzF1F44IOngixAGI0pGadxPchSSBE9ps8Sgh9RbIEsnTfRnovkTz71AGjlq6YYSW5N4G2c/3Mq+vQzhGiwDT6fHt0aWYo1oRtqkjbhfqMjp/mfB3SyTaoeEQrVJog6JsW8UUK2RisI0KQT3CYPP+P/4uoLM4w2p8iLgZQqMudUqP00QNwCdghuRMQJZzEkguqUQJ++b2QTYKWG49fklPILofpmpD+pzGLU6hRF1iuP7kGnqUF5/E2AG5g35J17uzvnda7rDUE7lTay8miwQ3LemrrGG/NUVvnYJuseSYmOqhE/Jt+j+w/6+Q+3/DwpT8GXNSSo0rDi5P1KQa5JHwaaONxaaCQcJwbxcUS7rMoDKNZbch/krVQT8+2C9AOhrECxFO/6zzjGw2mOeI1XKpuAhe9XfstM+ljTnnot4JxH7roEZ/LKA2VGBd0nyBuF6GP+BpsXEXqoKk5cCPmVZ09TlqNCzm44PudvFBUpQ/gATBhEYzkQ50WHc46dtKwu2JaqL3vWJiwR3adjZAUn7V4jgWLbuOyjd6jeT8fADzJJqpoAnf1DCzsddEX2g4E7PT4LKUPGMA7jN4kAFiFqg1plae/wXh/E8skpEuJWrdRj9Eus+MAe0EDF42LFRuHsQcgDWlJ1DINbI6GRArpowTrNKL6KHX0DsrhcZYh977/XLoaDihgSRn7zp49TrJFyuadwmxkhPeb99W6KQEOENyZvDK90bF/sUJjqvEcbVmBH3uSuCuiVJVjddxgRamtQ1Woa5df7jxd7semXlsvpqjZWKSEHBmRKQ/06QLMh0nD+qZMemXa5yiGnmY0A804M0TJht1qwX0VLT6Uk7l2HfzN+FsVX0QfG8frUDqBHthVwQX3w+WVXkrZ4kjPkGM8ao5i0vf0+yG55OgdB/V8E6yYtoWVq0Fi9FVcHUqV+cfO8YWth3h4tA1ApyZHXO53o5wD3Hmh6yxdY1EvqBfohGo35GtP4C2u924bJMgrZ0fJvS8PysVzTEBtoqtzAuSkczuHtu1hdu19lk560ihgw6AjIuGc1iJV8s0Mx3QT4cKZXb56TNs9cAkF8YXbkw+uhPUOVmdY3/RTDqXv6BLynwg+r3mZ3QjjX0OSVgqQzcwbeh07seUClEuJI7sLEkfjklH351aGAF5wkv52JTCvNJSgSTqJ1JTIKHWCM1t09fFLJ92xlBjo+03igu6dVtxJP4RUvgT6ZBVjlcp6xtYxth3WhNDm2joWKXFTCcAFme7zOhTfYz00u4EysNIP6lsCcwHA+bej8KHEjfJznHWU57VzT3WbcOQTFSEktxoRdVXN3gjJuJX6b65+klPSgFXkUundH4tbHMgYw8sf2Vx3KaHcyV3wuN+Xg1vCteVoL5l7KUrM9d8TAnHC+Ba8cbDOtc21uIp8zDiYElrFAJ7OWZwT1JkQDOTDP/H9rKcE75DUXTNByLJIkkkSKBeSiDrpDeHie6btXGDaUcvWpu09j3yyv+nAiB3+JjuIC59TxG5V5X10bYXFOfg9l77MrxzTdA8YwPO6NZENO0QMWoPVA2w3B1f1PTLhq2jQwq3D4DHiMXRB+hAXVG8NRjVn0nKm4YGUkogOADjJIT1ghyouv+h91sLDAN7fkS4fKpLIYdSCI3gnEI8hkCH3+FmcuURXPX5/rRvHE+OKdTBV6SZCNz3i1sINILWnqh2jylFbx2odvFC8Ctv1hFkdmNFo3w9lkwzYQ3AehCkn8B54naS6FeCt5bHpSz+dva2Gm8bE5FJo+scqXqn2O6rd+6Tg8VqksSZOotw4eM6YxgW3sVTiiy2JcVeW5D6Y7y0tdxfbS/tJ2fCa6T6PqNIAvG8DopktH6LZcCRiL+0bwPBw/QTCjO5+ADxhmgtgZzrQNmy7dTDlarPO1DSHDvPJ4B6jLxPzRiXk8ilYRqlzB9e99F2HRsjIspe9h9L+uU8WTJuuC4ZO59D4OWeDG9yniafoG0vigC7WBs29smAtVJbmkS1mj7b8mbP/jv/6mKZ78G6ENNGlr4oYGxJNddZjradKWrgP7oNifQZJq20Ebhf+ooCjUo+NOcTVtmQjZJRLQlH6hR7KfwUzl3C+tF1KoC+AOhkyl2ftmmSSuG6YlC4UeWWF0MG8GlRWUblAU/1F4BKG49e+u9tinA8GG0ltBtVMcVOhW9HeI6XSwL5jfpLJqGVat4xtx1q9oI6IezAZcWOsYXV4N5RBBoChR3/O+y+x6oFskqobp60aUysMVvkpvFkOXbs8lSGmdw3BF6PrB+Fc95FrfVBK1q/heq4GrUN+EzoX9E7VMB1O9+nLKUrPwlObmk5iLEO4RnmZQ9c95v6XjZzLhkggPO/BszoC0IvtiXz0A3K87zhg+FFBx09YxGleVizn/VANSwA6kw2XnQ9pY1sX/rlYx6ax+M6ExWDaOCh2Eh0DYlDbojuWdcui7RlzoW1nVq0KTZtBWV1k3N5nSSQBvZaDeHmPRhAbZBKMibKJhO+pmADe/uw6B49v8H1/5Rf5sc1P8Gh1vG3srgFcRCzwq8Arqvr9InIW+MfAk8ALwB9T1Zt3Ok92sdPwLZy7RWQP4SAuixZX3tFSOokvQPyXDG4qGo0X0Yd7EEmZaR5D75CS8mmxPxEpSqpRgnvyHSnBe7nnDjUADREywAjlLJ6zdPZRhIcQVlFZQ/0F/oe/8xE21h5KbX3PbStKiAjzoJUUbLRfuMHX9PlODCGgwAb9W0Qx8Z+NfyFMU/NtZaAYShS3rVfpepXHrwQacWYiKVdNNLgm8JalQzVdP24sSY5C1Tiq3aYHaw0+7r/8+R9nPNk8cdsObyhcS4rvKSgna6TLXifpZV2STzR5MkQD7TFj4OHrl38ZAnUJ4ofa69hzHgbvY+yXwWspR02Bes9rf+1v0l6/EW/1ZO0bsvrFETEWu1DmO2NeOdjk4ZUdGm/p1NBpCNxx3uC8oN5E2SRVUvIgE+QYP/DJDrwugnfn+ueWDI8QALnrAmj7wuUPeuA+jmlDTrMQv4Rm1eB5JNbCqEbqGqYTmsfOsH9pzK13GWaPdJj1lo2NHf7Q5ic4azquuDfHiPnngc8DG/H7DwP/WlV/VER+OH7/L293AiW4EYLv3dDQ6HGyh8g+xo8GoB3+elJ8dsClHlhDOH18YXTobggUWnfvEy55W6zVEk3sz38YjtO2IXSXy6al3QRlgrIOjEGmoE/g5DEa+0EqfRqrNdZ7Pvax/xcPnX2cZrGbTnjPbZt11xTlF/MKq5X4j7w0GpYQthzdB0sjeHoutXG4Qm/UQqJYao5h4M1yKX87CkhKiUDihZblgLJZi2unHMsafdLt3FFd28VvrOCmNW6l4mvXfpnJ2Uu0Pkso9962x9W/BFMhgAEEhlXKQCbIJZq8U9I/0zPao057W4+T5X1uh9bH+R7mYIijEX45cCXM3CAHXDlh9+d+kdGFh+iu3Ui7nqDvkvOp56r6kHvE7Ix4Y2+NrfEsMvAE3CZLJxDHyzC17w3raabc+RCyXnqLqAZAL937IGwDUB/0bBgCdvwtV905yhdIjDB8ofpslBoNoLKxjj+/Sbs2ol2vufnumt1nHB/+9k/x5x7612yZjlbhlh/xqeY8r7dbwOtHNt1dAbiIPAr8PuCvAP9Z3PwR4Hvj578H/Cx3eFAhuHxBiHwMq3GHvNoeqbcRuwt6hmykFIeYHriTt4GKxPWow8hofcxSiBIyCUXwHgTe+OJ78jNLf4ZUzks0qAym7dEVLJee5UEF8foSv6uss6i+B29+D8qTiNpgydbg1jla7LC1/znqV36GVz79k/yJb/pG/ukXnksnv+e2DTKBKUA1gnnKf5IiBmO+b2ofwbt/ub2GpL3r1ZxaHA7Der0ICftTuHdmd4F992HIS9U5AjOUKBlIWIG79FbJoD1gk+UzImdlM50yeWOBmXeI94FxuzCrcOfWmV+YcP19Nfrur7L733+Sf+8vfANf/J8/zfarJ2zbI0qvu4ec6b422WhFMkZZ0wN3NFSVqUIlLkqSGfNSW+V2McU1l0vpXxhnpyEobLmy5YmHh5eT0cg9Qmphs7RdCcvKzYXRLaF+7gZXf/VzPPK+D/Oc/3w65b3jgoI96DBNhx9VAw+Q8fUJ2+dX8GeFxgc/8IWztEXOE4iTHlGkM9GmkCSUyMBni8y6ca4H5K4L353rDYqpqdquNzo6l7NLipH+c1XkLzLSe5EAMhoNGLwZ1XDxHF/9wxf4PX/4l/mz53+eFYG6kBM/1Wzwl1/87Xzh555m60sh0CsE0P3ikW13twz8bwL/BbBebHtIVV8DUNXXROQu1qxS0vqT0cIE0Z2vne5gVnaoo3QSXAl97y4oijFhW1gQIvqL46k6ExcOUHzUuZOuLYfmgkNNO5TeRzx5iaiCF9Mz8EPuAenNMuA3cfIMTp4C+whChTBC5RLGP4TtWtb2X+Js+3lqv4Nqg/UN42abH/vVf8Z//M3vZt425bT7BG1LZB8ap48hzDwsKaa4sdCuEbxPonRiqmDwNdYzqhzjqmNiW4woY9NhRHl05RafrkI0pmmVQx4jFJ91iCe5ycONIAlYVDHN0vG5aaU/V2TX1YHDzoPfrFYmMFfn8ZOKbrVi++kRN7/Zw1qHOsFOWy6cucH1/+af8gf+83dhZns8148wJ2vb49g30KwLiy3LiomuZt4HIIjuhOI9WBuAPDdMAHMz7/KCA4cA+iiZ5FjfQo7fvnza8pWIJCUM8uUPoU6mFUbbIWdLWhHJdCGJ1wsf/2me+MD345rBSlL33r5OMU3XD2itz0bF8S2Y3woBbol1d87ivcluhN6nVLQSoSWQA281tKEHbZpe8nC+Z9HR+JhBvQBtdS6QNokufmlRY2sLCa1oc2N6nbuq0EvnuP6hLW6+B+SJferasTpp+J2XfoXfv/VJrvsx/+/tb+Effe5b8TfHyEKwc2F8Uzjzime8nXKpHN90dwRwEfl+4A1V/TUR+d47PozDx/8g8IMAmxtjAoAnFpJkDcWN93DjPQL6pBwl0R8zAbmkv4X8glJ5wbYVprPRp7r016bA6iFoHzUf1YIKDs2USaOsQMcgGyg1UCOcw/MhnLwfb95F7Tqsbxl3M8TvUbd7nNl7nofmn2DsruNkAXh++eXXOTsR3nNmlU9emS/V797adjzeGrrppX28Us+Ubi7RaElm3sZ4jNFgPDaese2oYu4JI8rEtJwb7eGnHjeq+sQ+CUOS//WdcGPZ39YHFn5oNfMI2tmgGYm9WTjs7hzpPN3mlG61YnZhBV8Jiw3h1jcpv/c7Psl7Vl/lZhdS8n7l517jKxeUd79/zFd+ZT8vw3XS9rVnzvT6cqk8iNJNhXYlbow6qoQT9KlGjQlG9tILhbSwg2IbobldFY8SpZcA+3bYng8r6r/8Y8ioGGdGbQD3wLZhtBvyiaTz33rpc9STNda2HmX7ynNHnPD2pWzbSb2BxMW4RWJG0uinPdpW6h2T3QeDK2FcxNibAN7RbTD7LsTXPqxhGmemkWlnPTvNlmLuksTIB6A9rG/v7pcMj4VcIuMRurZCd3EDN6lwY8P+wxXXvrvlj37o1/jPL/wiu1655Ue80J7nC4uH+cLsYf5/z30TG78wZfWKp9rvBjKSCuQl1o4pd8PAvxv4AyLye4EJsCEi/wC4IiIPx1H2YeCNow5W1R8HfhzgkctrKlni6OeGKh1qb4LZwLoWqx2i0b9busy0RcPnFGqXohmtdKzvbuGtY3vrCn30JeTgHREka1d9Tw68MK6Mo/GcJAua5jdWMKjUeP8Qzr2bxeiPIHIRK+vB+AaAp+4O2Lr+G2ztf5HH/S/iNGj0VivM7AxwBq06OrPgU9ee46OvvMEvv/pvaL3jICx++9RJ2nZj41H1tgjJjiUvsuvBT4J0IrVHjFLXfebBcdUxMh2VcbRqw2o5wPl6l0tPXOdKc55zn/O5U+Vzp7okzd0UzZYMekWkG/TH5xLyemEbjz3oqF+/hVYWXRmHBFFR23cbE659YIVb71F+6MP/imtt8A8+Ux1wvt6lVcvc17wy3+LjH3uJF//1TT71cx/FN45mv72ntl1u3/Fjj+mRTEjIy9HR9nqqupgmNEknyR85TwQiaFjD9FqHr2pmF5cuUBgLjxzbI2IPZJD+9FniGezrwI97b6TynkwjrLwmjG/qID2AKIx2AplyY4O3sPfGC9x8+XN84tUvoK7DtQtOigubk4dV5ovoRdbLTdK0rF5pmZ8dsdtMmHcVbWTfbVvhveDjSj646PctaSYR1oY9uGgQt8LmlzVIIplE9D77g6hI9UBw6TO27gNsErNe7stVhUwnzJ++wJVvH/On/uTP8LvWPsN7RoYKGxNweJ5rDX/x+T/Klz79GE/8iy4Ptg9Xwv5DcHDBYLYM1UypFoqd+bgQheZ38ahyRwBX1b8E/CWAyMD/r6r6J0XkvwH+NPCj8e9P3+lcqEcI061ggbeoBOXaVTO68QwdGZhH1m08VoLbYJZDYvsZbYPEIp5KGqxXrAOznA42GxCgp04GqMP39HIUskjQuivUbNDx3SiPgr0Yt03ArGHlIYyHurvOxeufYEVeY2yuh8UUZnPMwnOw9172uEQj63g7Cswdg7Yha+Lve/K38wcf32Nz9AU+s/15/slzn+FXXr36VeDf3mvbKoR0nLCU98FT73uqNRN8ZIXgcWI8k1FLbT3WBMbtY5jyRjVnxTSs2AWXqm02x3NeH3vcyAxZXiGPlOUoV7bkQORtqINpSsbRu3aJU3Rlgp9UtJsTXv0tY+aXOkZn5ozHLRuTK1yoG37++rN85uXLuJ0aaXukiqEB+N/0TZz/bY4PPfsi+7/xAl/4nz7Nyx99+URte6itl8YfN1baFUFXJtC24E3vz5u9TkwfYOR8P7DFzHghI96RmlLf0Ef8PjCCRrkgXK84RRXJTDRYp6XgbAurr/ZeSqaB0Z5SH3gm19swGTaCr+Mg4RU7Dxd498O/HXnow3TTiuv7X+Xzv/T/wTWzk+GCc7C7H8YcEajr4DcPVLst9V6dA8ucD+lju9YW7Ls/lWmS7h1mDzkDR9cN+2nSupM9whowVZBHkq0CAsM2EoBaBCZj3IVNvvqRNdxTc565dJVpteDy5Av8zpU3+P713wDgF+cr/Gef/mPsvrTB5Eq8lxmsd3Dl20fMHm+pNxZMJi0bkwVGlNYbms5yaz5mvjNm85MjVq94pm8c9oFP5X78wH8U+AkR+TPA14B//86HJFc/ItNNHdLibYe3Ldiob5PymCSPlCQG9fq4iavrCB6rio0acP+YpGAuUswxE/sPhklRwesKygpqz2G8BWq8bOH121B5AuUi42Yfq3MsBwivYboFVbvH5u4Xmeh1RuyBn+D9GNeust88yb4+SmPWcXYUNdDwAhvfUft9Kr2OsIZ0U/pIjhO0bZIkCABdGqZM47EpY5+El9gYpbaekXVY47HiqYyjNo4V07Bu56zbGet2xlq9CJZXY6K1Pz7NApyLR1zUKQ4YcTUTcQqjsGC16TQEv7SB2S0urtCtGLqJwdtV3EjoVoX2Gw544vwtHl27BcBeO2a3HfO5Vy8hL01Y2Q6ZEvOKQTYYXNt1pZl6JrZjPljO7iT99vYlXVNHNUZiyobCGHZoxkGSj4qZzBFG4H6glMH2QfH9W+RNQRCN9gwesDPJ5xQN2rZZwOS6z0nGUmpgO/dUe22+tB/ZbCA3bXDJkxjNiA/9q7jDE+ECXVzmMEUkAlQW03TYJujfWsomKnEZNpPdBonAHZZRS/nY4yWc6xunLMYEw2PSr6sqg7YYg26t022tcPDIBG8FNxZm54VnvvsF/sTlj/H9qy/zXGt5pdviucUl/pftb+Vqs87XDs4w/8wWm68L41uedlWC1LYOi3fP+NDjL/Ps+lXOVvuMTWjrha858CO+sn+Bz40fYr55jmom2MXxMH1PAK6qP0uwKqOq14EP38vxgd1WhORNNnammKjVKGod1jbB8yRFRwmIUaxpo194h6XFmLgqj/ggo3jF+iSdWPq0NKFIWvwxyx3pd0HcGt69B8d7cKM/gNgpgu33UI/4jouv/Crr3RdZrz7FRBvwFu1q5u1Z9mffwI35uzgYX+wHpzpNQ4kdKbBN6zrqZp8NeZ3z1ZexjefbJ+/jW977zfyO1370hG1LzKkR2GjKcaxG+kyCY5/9vq31OG8wVceZ8QGV8WzWc7bqAzarA9bNjFXTYFHOjfcZrbTAuI+ULPTvPnSdnuXE330tjGbBP9scNGHV9qpnP1qHGdgr31PTPTXn/Y+9yredeRGDsufGfGbnMp975RIvf+phplckG9KmiXSnhxxZpBtBs6nYp/f48+/9Bc7aPba/d5Vv+e5v569+4OUTt22humXAUwG8ZPc6HUfW7XxgfBB8fY0lud4BaGXj1NyQQrUTP1l23cvXTsC89HtadQag29QlgFeS58jml8PKNDm5U+exDdiFZ3yrxe40uLVRZu5uUvXh5y4SJw0Rp2Z/gRqDji121vKQeYQXRmfDFU/SvsYidY0uGmRlQl7BSKo8+O80Y1oXNHDnovTqBRoTgLs1mEbCak6d9Ol9U7t7D3Xds2uvmVmTWHfSuQFE8Oc2uPKdW9z8UMe/+F1/g8cqw1T6jKEeZdt7/s+f+w+59anzXP5oh517fCW4iWH9Itz4oOPZd7/C91x4jrFp8xqfjhDMlxZobtWy6yZ8bXaGX3/tEdxnNrEODh4S9i9X8M+ObroHmw9cLK3ZQmgRPwt6k3iMGjyP43kST40RRSQAtDUNQshTbaXD0mEkMHJjOoyNq/PENQiNhqWX+tKHsAfb8QTHOjP5XYh5FCMPgbGorqBMMTqlbhaMZzucff3LbI4+S223UelY6fZCwMHeRd7oPkDDBp1M8b7GuwneTsCZPrXoYO09xzn3Fca6i6WhMg2qhoPmHNv1I3i1y0rEPRVxSr3dghVcHTu4EXQk2HkwlElr0JFHamVcd2xM5tTG0anlXH3ARjVjxTasmgVb9oAte8CqNExtGwB/bLALT1oaKtl71UpYus0rdqGsfG0XrQx+FPI6SBveJr8yot0cMztfc+0DQv2NO5xZneFU+B3nv8RWfQDA3/3kd8GtmmrfIB2MFvHF9PQpXNMswAT/9vYDe1w6s8vGeM6FyR5OhZ+//iy//uUnoE3ulf/0PhqY4H5ZaM5H8LmeyZV5LXSJkYtAZdHKoMbgK5PlD0mDUgnexV9JdgYTFg+hKrwXo9Gx3hU2n/e007gGqgngXc2V+roLeePjPaXl97Q2SBeimSV5+0SDsrQOabp+4I5+7jJr8eOaHNV4wqK1xT18HrNoYWc/6NJdh1SWm+/b4Oa7hUfrFucNrSOsl7mw4EJHkNZmTx7xEhcoTt/jfa4WufZFBiwbY9DVKd2Fdb78J0Zcfvoav/nCC6xVL/D46DqP1dd5rDK86hyfazb4Wy98mJc/cZnxDcG0MNpWNhV2Hqu49Z0LNrf22VqZcalu+MBkl/PjPWpxtL4Ky6XGkdypYddN+CfPfYDZ9gQWBtOYsMD4Qx2XnrjO2IZ350vHtN0DDqVfReXbQTuQA1T2gDlIi+q7UR7FUyPakNPKFg5+kPpxb7ERFGMcVhSLYPwIbxITN6huAqtYNvCyjjLFs46aDwAPo5yjbmdM3Q1q/wbIK1TNnNFsl63ZC6zOryDS0JoxrWyg3RTfbnLQPUEjazgZF+xM+5e77NNpm0+ZzjzdaEwnExrW2ddzaM5OePIicTURi4/ekrECcVFdaQy6GmY0lfVUkrTv4I4FKTuLZySOEY4V6disZozrDl8JppXs7ZLWEPSjfjFl08TZEx5jPM2ZMfuXpiy2wvm7lcCQJ++5xbdeepmpbXn5YIvX52HauduMqV4dU28L1QF5kAAG7onLxRjFGs/IdFydr3F9tsL1W2uMXq0x3TEH3XMDA2iUP/o+mAc0Qpur6iDfRdoO5GAeTYyvMgMpaplAZxWldIowvTeIXQQQER9mPHYOo10YbTtGu2FG5usgZdmFx84dZuGCd4ORzLLVRlBO5GN5ma8iEEZXpyF4Kvrxq7+/9m02DC/97s3g8rp7jvF20OHtQrn2IZg8tcN6vWC/GYWcJ1ro3hIbTiQ9nv59i7M1FZDptE9xYAzu8jnazQnz8zXzM0K7KjRbyu/8tk/yh85+gt8y2eXFruMXZu/iX26/n5+8PuXKfJ3Xdje48aWzrL8cMh22K8LirNCtwOKs51ue/hpPrV7PGRSjKRt/KPdy8ZhVSMm3/MQj0471zRnffO5VpjbIK79wzLEPFMDDqjt/AQBXdXh5AZUrKC9Tue8F2aSV5xn7veBKFF390lTZ+ToEnkgXvXeCFmbEUYlSYzDdClI1qPFAheM9GH2KivcxN+9FZQKYsM6eeoxrWbv5Eo8f/ALnm8/iqr2o8xpkNGL/1jcway+zbZ9mUa2hEuSZbCRSGazukVkK5GTyKgLGsmMepvJnsU3L/ug83laomBCMUiLViRqX4LHhFXvQIU0XmK8qfm2C+LBUVXsueJ/U1oWZijd4UbbbCZVxbFTByNyoZa41l82Mx0fXubi2x63JGWzTvxjVfocfW9p1y+pLM0wXU4KuhOAGP7Lceqam+v5r/Miz/4ob3RpzrfFqqMXxczee5VdeeZz2SxuMbkUgUkJGmCgblMEkg7/Rf1k8mBba59d4cbrKC2PP9JUK08A4Mvbs/n+/xQfg1joCaPSblpYcdKRtC02LVlV4mjExEZ3LCa2IYKneo2LzTC2sSNODcwYkYgh76h6RrZtOmF6R4Go38yHQKRKFbtWw8socO2sDwx1bsLGOVSndFENGkVddrcnGVq2iUbZz6N4BrE5Ra9FRmF3d7/D4ngtX+Df/lx/Dq7Krnh+/8Z387OvP8tIL5/m/f+//wrdOXuJvX/1tvLq3ERYtzh7AoZPoKAwiKQFW6jd51mYFv7WO2Z+Fdq8rrvzmTbbf7fhN3/Il/uqj/5zL1ZgqkqgOxw3X8Pdvfhc/8a+/i4sfJ/hkq7JqhPGKcu0DSvPEgu969nmeWb3Kimmoi0RBRjxtb9Pq1zOAGCQXWm3FNHzrIy9x68KUvWbMt577GhsxkK5Vi5Uyav1weaAAPj7Y45lf+UUUYVGtsH92jfn6k8y33ku9XzG5vsP0xi0q3wQPEwdEhm3i6j0hvD4+sKhnqReq+ZSprnP2xrPc2Ho38/E5umoN/BqeEY2OGM0WrO2/yNbu85yVTyMsUDzSOaxzHHTr7G9/iH0u0bCOlxFKjdoKTw1tBO4qzHFTasp+dQ9iTu6kTxYhtyK0skJXTaACV9XhZeuizpipw8nK4pzw3H9YgYfq5pS1l4WVNzwrr85pN2v2H7I0FzvG05bahu5jxbNSNazVCxpfUYtnYtpsIoZgp3qsvs63nv0aP/GBRzn/64aVN7pg5BLBNJ7p1YbF+THbT1Zsv6fjA+99kco4Om/ZNI6Lkz1+fvvd/LvXnuTmK5vU2xZpo6Gpg1EEboSQriZFjhaMW+kDSaAH9iSn1DtCtSeAwTbFPsta+QnL+JbnqX8eBjc/Muw+OmJ+zjC7qIy2hbVXFPPCayEQBEBDjndJ0kkZRp/WzIzJlqrdlolXVl4bMbsouBUNi234Xq6p90JAzfRqyO8C4b5t44Nk0CorrzfZoyfZJVJeGDvvgqw1jnq8EuSSru+jfmRzD8wLIECWTZiMYDJCJ1WYZc27fjZ2G1e3O5Uvz87y+z7zJwC4vLbNU6vX+YHHP867n32VdTPn04vLfO7mJQ4Wo5A2NgXsdAbpJBpsh7YJITz/dk1YnBGuv/8MGx/wvO/8azy78gbfOPnfuVDtcMEccMVN+Ts3PsRPP/9+5Fc2w/JuLswwt1qYn4HXv8ew9ugOlzd22BjNeU89Z7VasFnNMnAnPdshtD6s1ZlKbbr8+zyGNVsJzgOPT2/w8CQ8p81qBsBCAzR7tW8fADeuY3XvOqgyNhNqnbOYrTE/6LAHnnp3Ru0WSPGmGgJ4G8LqFIYWIx3GdNj4VxGswrhTzu91NNMphhVYCCv6NYw2iDrMomU6v8568yqr/ioNKzS6RtOt4Bnh/JS5e5Q5Z+lkBW/rnIdFvFJ1DYLDuC4zGNTjGKPG4o1Fpe57UJ5Gh7dQkcC40ous8bdS8zxhqWrHQ4/cRES5eWaF7dUVZhcsBxdX6CbRsLfWUVVB2gAyeK9VDYYF50Z7rNk562bOljlgy8xoEc7ZfT64+iK/9sHHeenG47hRCGDavyy4sYaAiRrcQ3Pe8/jr/O4Ln+HLs4f4/M4lXtrZ5EvuAotFTXt1yuSapdoPLmspzB8D3QS00hyyHxgumEVgmtKBzIobTgbFNEWOqlnODrysJd8ngEvnqa/shBlWZRG/zni3ZrRjGG87pldbdL5A0ooqyf0sn6BIJWtNjCiNTNh5bOuZ3lDatVBxK9KvnK7BBa3eCzaG2vWAlaNjfTAwAuG6tenBzHlkEQZtWVgG6zgSGLlaG1cOIsgktqi7D7eDBjYejH3huYdB5v46b9tZXn1jCxSu765ydWuN19Y2OFgfceDGvLrYZGc+putMSFwFGbylDTYuk+wkUf82bSG3KUgnnFvZ5/HpDax4/uHr38F2M2XRVczaihtvbDB5ccTGq0q7BostoVsNaRLcmuPSk9d539nXeXRyk83qIK4QVNGq5Vq7xszVzFwd8rVoyFN+bnzA1AYb0iazrH3bgo07NdTGYVQz2/ZIBu3og3ds2z1YCQXPuN1F1DNhm+m1GzipaWUMbR0YiShiotugBu+TtCZmRRPB3FGZBmtbRBzeVxgcU9+wurPNfPUKk27OaLHDJf9LjPQmQkPXhHStYhTfnGPmn+SWe4ZZcwEvNV4KP6z4wiXGb13HqNmj9geMdTfYX9Uh6pnZc7h6TDcaoxKsbOoFb9PCy7GTF4ATGySvWJOmvicttXU8vXmdqW3xZ4SrF9e4NZ9yYy8YbypRxjHi0pqQbXBzNGfVNqxWCx4e3WLdBNfBS9UtLtgZ66Lc8oYLtuGx6lU+8u5/yodu/p+4/tAqbLb8J9/2b3j/5CUm0vJCewFLYPBvdBt87OqTvPrFi0xfN5gWJg4miWVrYDguLvXmamjOePx6x3RrHgzWNgw0u2+sYQ4sdi5Zyw5ucGR9kyJCPRft5Za7jDC/fVFFFk1eRXy8N2NsDRsiMJsHr5MYQh2crX02kA1KTG2rdQTM1odVqNrg7zvfGmNaod7XflBScrpVNWAPYopUF3KdqwkzQ41eLVgJi06n9VE7jzmYB1e6lMAphpNLXcPqFFbGICNCrmwNhlXSzKiQCMv7sDasP+nvU59yAts14oTmxogXrk55ob7IR6fPUNUOY7QP2kkJq9oI3i4tuB0GebsI5MB0gVSksP/pNXjuXRe5NZ9y7dYaZ35myuqVjsnMYTYqVgFxHXuXLdvfqDz87it8x4UXQkyE7XPJWzTLG2mh5Rf2znHlYI3r26uQXB2d8PDFW5yZzNgazahXXAbodL6kiyembjJpTUwkPPC3DYADdIxicFmooFGl9h2GJjA5ExZsFPVYaXpfb/V4b8H68D2ZmE3yLfd4PM62XN7+aHBLNB0qTZiVS4VKx3x+nr39x7klH6SVNZyZ0E3H2cAIYLuWqm2Y7G4zbvaw2mCrDssiaFmq7LmLwQfVKbVfMLG7WLug2lvQdiu0MmV2bov5aBNnatSH8PVEulECC3IeX9mh0fMExatwY7GCEWWlajCirI0WmHVlWgVxcL8NLlDjqmNzNGPVNkxtw8S0bHcr2EpZNQsm0mEJS1aMxOMU9lW56jr+5gf/MbvfPGWudYh6bM9wLq4a/tHdZ/noK08x+/wW9a6wPgsvT16Xk8BouiksLjrM2RDIsDZueCR6xFTG89mXHg7RdUap1lpG5w5YGbecW9nnjb01dvam6OsTJtcMNmYgWB4YEfA2AL3AILDlvktOOepzilGpqgDeEMOyC/BORkAq1PYLO2R3yugT7keG1TdcCP82MpCJ1MBo1zO+vgiAbcM+zWadXe2AkHbgoKPemSH7s3DtUZzWFDq9NmHGoM5hRjUyGjFamaLzeRiInnkEt1rjjWA6T1dNi1knYWX31kU5RYrZ5gmKgI6jr76TrPH7xtLMbWzf8JDVGWhMAOzo660VeFVsdB80LpAh00lOuWQb5dz/NgEd81AD1Sw8Nze2mEbZu1yx8yy86zte5DvWbnB5fIuL9U4GaoCb3SrXmzW+uHORK7trLBZ1CCiaW9IqQFsP71BXYTnC3fmYq7fW6BYVH519A3a9ZWV1zpNnbvKN61c4X+8Fhh07bkvQvF10K1wxDUbc2wjAk2UYAsP2Ie7axLD54LsdkCwsZByAWaRfQi27ENoWYzvE+MicQ27wTgTxC6x0OFz0NBKMr5i5S+z7R9gxT7Lwm3gZ48VGd6MA4JWfM273qLsZk2YvyCWA0xGL0Vpw+xLLwq2HZZY6xXZNL+vUkRGpMGoOqNoGLxZVQ8cEJxXe1tG6ErGmzMh3HyXl8zYSMiMaCeBto2RSWxcSVdmOlaqlMo6x6VizcyzK2LRMTMtZ0wRjjRisDyseLRRed2sB4E3LDbfGjW6NWizn2OOj28/ysdce5+Arm0xuRVYUjXtpMeVuGiz1bt0xPTdjMgoDy95szPWba2hn0E6ortdR9AY38RzUIw4q5fp4LQ5+gm51HKwYxElY/3BfsE0ITgkdbOnv/RavMal/NPQtrXE42C88jD6pVTRchjBxiYExNgfzaDBIRLkjEHhfrJMpHmwb3f2icVEjgJsusfGQBMosOsysRfZn6KIJrnJ1ha5Msvwh3RrSdphFgx7McwCLTsdhIHIOu7fAHLSkNAcQ61hHCTBmf8yL/r4ZRQneNNFds1jONuaekhAy72K0pY92ESIDd5GBtxqA3Wo2YKtAPfPBW6pNlvBgs9p+qmLvCc/GN9zkvZuvcb4OUmLwzjIsfM1rzSYv7J3j2myVazurdF1wSh5PWiYbB1RxEfAn1m9mz66ddsJ+O2LeVSzaCmtCDMYb+2vsLCaMbUdtHWfH+6xVDVtRmsld6S4679cBwMNIKnHRXFSC5p20rcjOA8vuk1kZE1bgEQnAbqoQzBM06jD58AJOTDC2C6j1eEwgX95y0DzFrj7Bbv0EZq4hjN+YwCbiCkCjZo+V9jpjt0/dNXQ6ojMT5mxwMDpLV4+CATJ2YtP64L8KYRpbG0bNAXV3wOriBnU7Q9TjZMSenKOtVmjHFRifX960wO/9TPWNKCPjMOIZGUcTVzEZVx1dzNxmRKmNY2JbxqajFsfEtGzaGRYf2XfLljGsmTG1WGDGQj0HCq93W1ywO3gMO27Crpvk6eCvXXmU/a9usvG8yVNX8SFwJPlqN1uKXJ5z6cwuF1b22VlMuHEwZXZ9yuTVmuoguMGJko9x48KS39U0m0q74Zle3ufs2gG1dezMx9x4eQvdsdRLLoO38d66t6I+ZLQTCUEnydXOSF65Bei3marflph4lFT8KPmAFx5MCcyjATctdIwnSCUHYebnppZqLyyZp1awsxgV6RW7v0DmLbJo0Fk0GJhoDFsdhyRL0xBAZxsf2PrOIjDfyuCmNfZgjMwaZPcAZrPe4GotMhqh6yv9ghkiA0P9fZXkihgjasPgkEawuI+T+I9sA5Au6PbSBTC3C41ulQyWqAuafspjHjT+5GK5842Oh991lT/y6CcBGJuWWhwHfkSrlgM/4oW9c3z52nlmuxN0bmHsGK20PLS5ywfOvsL5eo8z1T4WT6sVc63Y7nrf84lpeXF2jtdmG3zl6nneOKhRZ7CTjicu3uCh6S6rdhGed5Ss2jsYMAHkEIN4C4uIXAX2gWsP7KJ3Lud5e9XnCVW9cK8HnbbtXZUTtS2AiOwCX3yT63O/5e3UvvfTtqd9987lyPZ9oAAOICK/qqrf9kAvepvydqvP/ZS327283epzP+XteC9vxzqdtLzd7uXtVp/jyptp2jktp+W0nJbT8gDLKYCfltNyWk7LO7R8PQD8x78O17xdebvV537K2+1e3m71uZ/ydryXt2OdTlrebvfydqvPkeWBa+Cn5bScltNyWt6cciqhnJbTclpOyzu0PDAAF5HfLSJfFJHnROSHH9R1i+s/JiL/VkQ+LyKfFZE/H7f/VyLyioh8Mv77vQ+6bvdbvt5tG+tw2r5v3fVP2/atu/47um0fiIQiIpaQk/x3AC8DHwd+QFU/95ZfvK/Dw8DDqvoJEVkHfg34g8AfA/ZU9a89qLq8meXt0LaxHqft+9bV4bRt37o6vKPb9kEx8N8EPKeqz6tqA/wj4CMP6NoAqOprqvqJ+HkX+DzwyIOsw1tUvu5tC6ft+1aW07Z968o7vW0fFIA/ArxUfH+Zr2MjiciTwIeAj8VNPyQivyEif1dEzny96nXC8rZqWzht37eynLbtW1feiW37oAD8qCwfXxf3FxFZA34K+E9VdQf4fwLPAB8EXgN+7OtRr/sob5u2hdP2fSvLadu+deWd2rYPCsBfBh4rvj8KvPqArp2LiNSEh/QPVfWfAKjqFVV1quqBv0OY1r2TytuibeG0fd/Kctq2b115J7ftgwLwjwPPishTIjIC/gPgnz+gawMgYZXZ/xH4vKr+9WL7w8Vufwj4zIOs15tQvu5tC6ft+1aW07Z968o7vW0fSDpZVe1E5IeAfwlY4O+q6mcfxLWL8t3AnwI+LSKfjNt+BPgBEfkgYer2AvAfP+B63Vd5m7QtnLbvW1lO2/atK+/otj2NxDwtp+W0nJZ3aDmNxDwtp+W0nJZ3aDkF8NNyWk7LaXmHllMAPy2n5bSclndoOQXw03JaTstpeYeWUwA/LafltJyWd2g5BfDTclpOy2l5h5ZTAD8tp+W0nJZ3aDkF8NNyWk7LaXmHlv8/GV+ZOVfGZS8AAAAASUVORK5CYII=\n",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"106.932126pt\" version=\"1.1\" viewBox=\"0 0 368.925 106.932126\" width=\"368.925pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-01-12T10:16:59.051786</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M -0 106.932126 \nL 368.925 106.932126 \nL 368.925 0 \nL -0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 26.925 83.054001 \nL 99.707609 83.054001 \nL 99.707609 10.271393 \nL 26.925 10.271393 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p3e6eb83261)\">\n <image height=\"73\" id=\"image3357217229\" transform=\"scale(1 -1)translate(0 -73)\" width=\"73\" x=\"26.925\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAEkAAABJCAYAAABxcwvcAAAeqklEQVR4nHWcWa9tSXLXfxGZaw9nukPdrq6p3YMbqy13Y7eEEMayZfEA9AtC4uPwhvyOxGfgnQfEExJIBslYRkJ028YD7q4ud7nGO517hr3XWhnBQ2TmWvtUs1Xn7mFNmZER//jHkCX/8Tf/rQsO4miaMMu4K6iDKY7gnhAMZSbpRJIJTTMpTQiOSCGlie3ZNaozIoa54kAROGYn5QOkmTJMTCjqwlAynx/+Idf+Ta75JnpwPCuWFZ0KYoZ6YTe+5Hx6zrbcMowjs2+Ydcf98Ji7i6fMw4aSBxCB4uhk6HECAAUflM14xzDfcT69YJjuETeKbLiRt5jyGdP2DFcBEdwBBAQcyD4AJoDgpHiQEIIRjwcJuCtOwim4CI5ilhF3NIG5YfMASRA1zBTEEXGSj4gDDlIUjUMghbPNz/BpxI8T9/I+5lvEwHMCE8xg3F4gCtN8xs5u0DIjFHZck8cDPismiWO5xIsgs5PmEZUZ1Zk0zPgk4MK433PYXWKScFdmdhTJeBJcFAzEHEtVQg6ZBC7EwFBcwRHMEooB8R0RzEFIJBR3xwBxBzfEFSsDIIgbbho31UJ2Z9YtJhucGfURoYAW9voxUo5gMyYXTFxQfMect3XBlCmdYTIw6TlmA9vxhuQjSUY20xvUDcy5md7Gi4Y2WSGlkZSOZDsyzWdMsud+85jD5hFFB7A4LyYpYUEeknERBMCcrBSUgogBziwDJokpZZgGMEGKI8kQMdyVxIxWDUs6omIIoX3UAbslJIHiaBn46NE/4m7ziM3xmnfsj9j4S4QZG/fst684273k2eEXvLJf5VX5Ve7vv4bJgImCC0ZmHAaO+0t0mpFipGlme7xm8Du2vCGle0QLko379BaH4Yp5s2Xcn4MJboKlhJhDqdo8CuKEqaWYlCeNczyUII/5AnEDdybdcX/1iOPZBYeLK9KdMby55+oXn5HsGILBKDLgKigwsicxkRnBwixVZ0QLRuKoG15dPePF2de52z6D88S1vxfa5AU9TuwPz7m8+zsu8sfs+ZDkXzLlM4wNxfYcDh9w4CkzZ5gNseoIJWXGzQUTew7pEbjXyRmFLa4J04R5ihVVkFIhBMcDivH42n5ezqlv+e7iKbjjCMd8xu3TCw6XZxwenzPcZvabO/afvEJtJgwWLEQe93FFJDBJwh7jxjozi3DMwpcXmZvtPYftHXO+4Np+BWGD+oY0zFzIp8zzJSIjwhHhju38hlQKzIk8GcLIyCXGBvcB94zJwJw3uCqew1TEvePKMsYYVODi8jsu4XjcwKH4sDq2fJR/868/bvfA0ozJh7h8hvMLcvl9dq8e8dZPfsrF6y8Y5ntyOpJ0jicqqM9kHcl6ZEjHAEuZGYYDd/uR6/M7/uobHzHlEVMDMrP/EPVvs+H73A+/gcsu3JCEFmiZePTlz/iVu//Gs/HPKPmmQoUi04bbV7/G/fQer9N3OOYLXFLgpq8mX4UUeLtohqflmJizna/J85F0nLi9eIaljIsiZh2Lc9F/h1AQn0nzHSo3wAFkwv0O/AMGfwoqeEq4Bj2QOqKkU4BwzA9SeDTzxOzChGH5Dlery1NI/B9EPsL5X2ztEmePcclBfx/hXUhvcfPkG/zs6p/zC/sdkIk8Htjcv+HxZx9yfv4xl/IZO/1zRAZ83mPHR3xRvs8oFxTZ4spiRxIALB7GQHU4YoUr+4Qt16TNyGM+Yi47Rr/kdXo3vD2Qhf+J+IwwIR78IVZ0wPgLhAPKD3Ghu34PmO6CktW/+OIdiwsFx3RcjmOIvEB4ibmQXIAdcInYE0SfI3ydeUhc5zOct0GfMOQjW7mG/RbfzAzpNS4zZ4drVF6DPedMLslcMcseswErO8x2mAyd8/Rh1M+u4fodJXMk+cTgB2bZYCRcIA/lNcIEzBgDLgIoJorwEYqhfD/cugvmieIbks6ojhi5GT7u2smoYHipVEGmyrGkjzHEq8yiwD3OPVv+PWIxep0vmMqvU/h1yvm/YNzumbbvcPv4Xf6W36tedOb9n/8hl/wll/v/zdv+n8ASPg8cpqfc3v8ad9N3udu+jSddltMcd8E18/n2e4g7qcwM4y1X8inPhr/mkk8oohRVssuhD9mlgKcQlIAWQUqilA1qR8DC3KpWFR8QLR0Kks0gUhm4UVQo2gZnpxoHuDgicwXQWJw4Lni6RvUnCH9DKn+EWgIGTB9T/J/g8k1c3+bz9/8Bz/37JH6EMKPzkTzd8PXP/4Td5mdcPfoJ2A6zLWU653DzLW78A0a9pKQNJMFdKGR8e85re4fRB55sf4xun8PuJdn74NoEtP45WjJaBigx+DCwOO7EaiQ3qOpq9T6CoBSKCKUKdPEqvpKTL99d6nehORLhGuENbl8gLkBG/QrnCvdPgbeZN5mJHdgFRd9FBxiGA7vLayb5hK0+R2cn3x9QueV88yHOgUEusbQB38Z8tOAU1I+I3eCbG3y4QfId2eWss8wYndaQYSbNe/Jxj4zWGakXp6SMECalPnfNMAYc67yrqFBSUAaR0jW2v6+FJwZMizaJVNCIMbkoQcS+IMt/iKUoisuA2dcp5XuUzb/C9G18+xYfv/dP61OMNN/x+PmPeax/ya9s/ztb/9O6wBm9fwJk5jwz6xHXMaiIl0DfImQY8LqCQTlLHcyAlCdgTylpQMyJcMYwyQgWuCMZJ7QJHJFg5qbCm8tXXD/+AvWmgV7PWeKidt2iyVSHYBUfw1SbGS5qKDFuL6h8jKYvGezHOAMwIPYWs/yQWX/AlL/Lq2e/xc3T3+Az/xFiR4bphievf8o76U/YlueIHBmw8HpUzfZg+5mIcKsmaQ1+Q/XT8YJ0vOgr20zTxet79QzSPF5oh4tQ1CnDjOWCuCJtUiuvGDrVqAErs19rW/OlNUxAkX60OYICMgI3SIeLlyhO8pck+xtEMpY23Ok7iL9DSo+hZGRbGOwa95FkI9vxNWfHL1C5DQBxyOJbXMK7RV4hgkpxY7i/Yri7ClNb4Y6KV9D18IL1j4pZLjBnwxKggnru02pCcbxG1Q0Hm7Z85W2lgaBmMUQa1q1PTtUKHPQFyZ+T/Y+R2YGMyyUmv4vpjyibb/Fy+BYv+U6N0WBzvObx7f/lnemP2crPGWxkkJlc2FTpDyg5xmMOUvDpEV4uK8dQzBPiMUERC42SGHwILEWgLIFHJlJ92qKtQorrq6k0didSBQdBJ07AXdCGm01A9Ziv0jk0U4nwvYZQjb+NwAuG8p/x8j+ALcge7JvM8g2O+bew3Xf4YvubvHj8A4SJZJFByIqCZxDHWVYc3+B+gfs5pinSD9WjObpyUmE8C36EWYp4TXWkylwX79UjSzTYOr44j2ZiLqvva5NswjzFsSZ470boXZBdsoD4gXAQCXwDHEn+JZvyBcLXEc4peoHpb6P+iMmcnFyxmo3zRgwR8CGExBmmkZl0t2pyAcMxscULdf7tVUjURF4X0ko7esjQhLH662F5C9MfesaGob4w6S6o5f30tSKT1Tk5BeEXJD4mlz/FPONyjuvXKPptiryDpwuyyxaa2243EUUsk4uiRTFNqGo3OS0Nk6DogIihGEaueiXMopSkkZvxoa93mFJZiWvxen3yEp6zXyKrrANA0756jbT7UhrTWvSs+wirTqXy/kpzFhwWFAVucb9nO/8BRf4Zs/7LACGpgxUUPIEnZNpT5AzNOzTZ2vPW+0rka0gYirmCRDq3ZitwCWxRX7t5kKZ1HXib1tTz3OpEO0+gR6adBjQvacv1nGrlKfBzorgd06pDaJwqTioIL0j2KTp/RO7mgVRzS4gNyHRFkT2qG1SPq/FJ94CmgrrinnDRmt5tqyptjRFXXNaTbMBdJyxrLfO6CtU50KhJ84qyaGW/x+L9vmK6ffKLvBY9C1XrwUAdYxRGDqTyCp0+Ibs/q+pviGdERlT2bO7/PlquYhKlejdSz92oRNo3hJFqHGeoRF7UylkFxigeLBzIV5OsJu7dhy1YLQ3MW1aiklUMetJvrUmw5EeasJt3WZmnxD28i7ydc6JiiG8QRlRfk51qXk41F0Es4zbgGvkjl5Ykr+Pug3JSX5SqEeJ4MsbzezzNNT2a6FnAKrAwt0QkU0I/IgFQRdjO77bQtKEBcAjIuxAXc40hNsoBSySxGJk0IXbBtCC7CT7j4sx6JEespuCKMCBeEB/A9xFyqFRmLXUQAaTW1BJdPjXXrsa8G/FkNcJLTYx1GK1wIPRaUzuhi7ziUD+k/ZzlumapK47Vrj/xiC0ebNc47k0r68vb3Swch6fAVB3Jg+ValciIpyqkc9BvVuGUMLUcoIyAm6A1RTr7gFCiYOkFoVBkZt4URAbU9mGW3aNF3BdEtDkM6qBhAeTFTyllEXGAXBfk4h2hMdATwK7EVEjgjjkd3yIju0avhfmnMmDizHpHlnQGZPCEY5jvgfMwu7pKYi3YrK/UQDoSaw2TcEdKwhymswOWCMH3qS8rG6sZIUYngg2Exavw2mq3eljTkmpi3UirH2xDdCqJrVP3ZmZSzbfUhUicYKQDIlWL9rg46jdk2CEkRAT3QgtRvMZvnWdIfQiOa9SleoBLlG20BsjuCcslHkiq+NkE0CbSbD8G7GL0ILhjxMpUTgLhxtqbufjqnm3aQg+k3epY1nq2MjWazno/x6VVTo5ksataqbXQDpsQz9iwAT9EoTG1iXrPWrpUclbrWkLGmAOShRrwprastByCrZdbotYPBfFStWHxO001HAVdeaiuVKXpUBWLsWZLiyFJP2shl4166HKuWFUEAWqoJhO5kPoEFCF5CiEJUbmdLVZCa2ZSKwDOipjWh4fJzbpDhntsQ805lTrR1FdZqALGwVPVlITLvGiD+FI0bKjla6NtQhwWfKN0bQyLXbyXy1xjwSY47abYhBolrVS9e6JoJnJVt2T38G5R01ewcyhXUHyZmNM1aFmFFq9FtI/UuplqNBvUmG3JHa0xhQqmy0ovkNCeu/zJifYs+Siv2iDekn48AKb2t4Q1QRuqKXYMXLQsZBGxpmCIzWSKgmXEFLGEl2/g5RkyLe43hC/re/ZsgJNqU4qgGCUJJSvqEaq4pMhMyuI/es+AzLT8U8sFnWqA452360o09ZzuMYPHaVvFlUC956zqd9riVNuRNR3Q6rCq1pqRbCa7Gu5ztKLwm4jv0DmRb0d0DtyZ97X3p6lxqSBbO1GCp4AlBRVQMA27Fm9ksHmtFgdGwMwqlBDm1WcW9yx2gjEtcSee6/xjubAH2QJpFGABfemJuYp/K6x1Kh+svUFnU+LqbkdWucW5xO1J8CNb8CPgRCDnWgH1MMNGLjU6NRDFBFKKjgy0mRpQa3AQK7bktFfROM1TpSqE5vkaiZdlEt2EVpkCQhgLY/b+W3/OqVmsjtMpx6KVYWrDmDgLId1Q/F3MPiDZJrKSVstEyUGryy8GxWi8TjQE4rZiwhlICqIIuTJ5Q2UKvyNtXCue44tXao5Y+srX0nTPW1cs7IKYa4qnufrGe4yTYLWldGl+02rKpF7mjUZW7ygCFkLa3+zJd/YjVHfosIMRpFi04s0FTwHCnhMyG2KGbDJ6jDZA5vaYcMA+K5y9gf1zLN+jZYsw1LWcK9405mwdMAMLqqBq08TCfqnC0kr0lphMKuYtfnBlAbU/IUQcNKOFQ3hGvd2l5a2cImBaMBkxdZLPnE2FrH6FmNZqbfQp4qE9rhLvqTLe6sG8JMwcyQUtMZmI5wakbGCGSX+K8gT1PYKjnhGCXoRZKXip5meBXUIV0MosZEnJinsXaryqA8A7Ni0Y3ShDxU20nruQynifqzC15lwLLjNKDnJsiay+Rc3QUtCmLU70+2jFnaRhhlXqnsPMPCd8lqAOQGFDKjt83FL8M0wKqucIRrJzxLeobBFLnV6G623ue2EZUucZ4eISfvSDVUfw2gbUsGxhGqdUgYaNS9nqJI/OgDBVpzeT5y1iGfNMXsxfkMnQKdr5bEhQ0yQQXbEYMLVcTICpSeNCjptiN19Dbp9wNX6D6emfMl38jPHRn2FDDVN8g/oQGiVb1C5JdkYul4GJnnByBeqIBJqni6eWVZKsCaodb6YjuM609EiQ0UZctVILwlLYdzJZdMI0bv7kzSWpXPL64pwsVu1UwJNSNqGGZZt6FkPMqxnWgTXPlhXbZFopR2arZqFwfIy8+h757l301a8F6xVDdETzGxju8f01h91rSnrFlFK9NjRT2SC+D3O1C4RGemvg2jlbaQi1iuWo2lke8KTGxFfndZ2TMD2iL3R7ewXT17iTd0JIEdCBZUFSuHPbpCoch6kNo0pJIjzxlLANtDY8DdcQHm/OcPsBevcByUuwV52QdINuPofdC2z+lCMHLB0o6QCUkD/gZFRGnAlJGillV9SWqoySFryp5SmvMxdPFe8epFkoQRh72la6qJwptNcGhsM5kz/hPr1DllK6WfkmdZxoYnYBSRruHyqoC+REUUHnChxOzRxUzmLehYcRXqgMyLhnHr8Gt458aVzMc1NXyBO6u0P31+j5h9yff8hx/ynj7i+CLkpNcNgZyS8YytuIPY20sw8sHtEWFu/pBNO8pXi9solGPwRM74Pf+2PksOe4fcbrs18lu9a4xjhl1bC00Dk9MylawbuupQ0rIeVYFQGktP5oR4v1c2R2pET44Rb7DBZ6vcXGHWJXyOExvPouG70n6x1JZkQN3zgp32Lblxwe/Q3z8Lf0HLhoCIwteX4H9V0tZ3lgbuVkHdJrvCo1EnAZEYTkc3T1bs4oQ45qiXjzCrLSgm62tajR7KAKUlen1CylS6pZAkLDpA6klKVao45MJUy5Edb1yzcwOYyXsW3CIseQ5YhKwXdOHl4w7/+OY/oCNi9xLRUFrMZzIy7XFI4gkSnQGpMFwd1WLWuNHDMuB1wmtGQ2kzLl8+jsTZB1LgtwyRIhqfkSi3XVadH2AuJSCNpgHgxc45qI3WThXNIgkpp+WbBMzCItU8KzNizsgYQk5lLDpSLMXCAvP+Di4x/iSSA7Phh5eE0anqObT3j13n/lsL1mzDF5kYSyIZX3SeVt1K5I0+MYoh4o+eeY3rO/f8qzL5/xZnjGPOwQmciulSi616Da238R4J4Qj5pPGiTiMAedy0nbb+cwtgormldsZCHryowd7LQDP8ZSNboJrAlyLjgJNEXOqpTmlJjmzHx/ifAOw/W30DSz14JIQdNEyvecnf81rx9/wmH3cw5DaBhMuN6yv/8aZzdvke+fMr11gQ2FIX9JXrmDmFTrf9YeaC3fkaoczRy9et6abqgpXWhEbZXXXufIWdIukVZdukO8Cta1gX4VmAeh1R67Nb8kyzqWHPWycg6HpxFGinfqkfIteZzICGn3mpSPtSPGQB+zu/k6+e4tGK+wvIOsqI5kKR4qK7VK2jagaOrmB1RT6nOsP3rVCu98qgtvrkxdQCY7MSXW8vIH96z5pfas6L2uQnHHtlafZQRUpJWJGhTpAvaKo5G9GCjzGfOb30W/+B3OxTnDke2I5EIaJrLdk6xENW84gyFSMNkGrQk1QTR4UmgOWLLI5YiBjLiMuN5R9Dmh44LzCPVHJHuE2u60S6YRvurNxCrudE0Mc+341EzO4hqv4xBZ5ahTdS6u+KBLEVgFnUs30bXpajFouLnS6OiU2UExzGYSgqVC2QpWNqAx9+ybT6P1pvcxNkSuICwJl6EGoAnXDcgZEZSCswfZRCFTtIdGvWbvHovQBt1WvGpR4NmpkHBH5nZ9NW/a9e230Dpa/U6jZ9y1CajBgtddR3WhTpyG1vtqzX8OjJcjh/dvGJ/+FB9mJI3ksv8JBaF49Ug9Rtkjfo5wjvAM9TOEjEpC7f1VxnGlNSLrCKAjx/q31lDRocpydxzR0lN/n21h/FULIo3TylwV+dt468KQZMl/NTLtTfscHeeubdqyHtXM5zRw+94dz3/vr3BeYXnCNjMZ/8ektn3Bcky0YYE3yp8aRVzNvvGglaDaYJusvT9/EVwF6/49L9fZyiF0z3aCd74SnKNmyFRqZCDhjd2/Uo6LynMNvTa5/16E4GzuiBsvf/uvOXz7U+4/eIOle7AZrJDxszpIRUg1afgQTU8FIv6w8k6fXET6698fkkW61n3l1SsytXCg3hWmeVRhEZ6bI0NaePBs3Rtq885NwDXY8pVzEcKL2tkd47ufcfvdz5nefkXZjkSuyxBxsnj0D4aZKlqq3SNBSuWhoFYVq5PO15VQ/OFvy/eaoI2fF/7avy/yisCxH27p1yqok3Ws5mplMUsfF4wVC2/YvavXqoxP2KYwvv+K69/+c8b3P8c396AjeqwaJpC35Q8Qfwr+NsV/F/dL8B3OBvccwa+edqqdSmClBavJnB5jwStfBNRMu6OX+QMNW0mi8SPhxEMti2Z4rnltT3Bm1VyMPO0j7dtSv/Yxrn+LXfwhhx8Y09vG+Cx2q3MsuBd0nCJb4EIWXiDcgbwgcSRad3ONujNIbQr1qm1iOH8P5xEuj3DZs6Rjf4nQ2lweyDUUwL/6I20y9XPlBC4zjmEIIncRbwEqI9QcNnIAXgMvgHvESvVuCZNKyzHErkFe4fkj9LUyuKJ3qQbv0UAb2zyi6pNFjiD34M9R+XjxHLVluXXYi+f6iJniv4/LBxjvgTyp6LvU/UNrMr3K4SC07/X+TiWvLDYnM/gMzDWAqZP3EhxNSpTf+RLnSHHIegcyE82Hb4BfAB+C3NTNi2DDjMtE7MJab41whi8H/HXCzwYYvLFXfOt1DkPrble8RigiqSrBVKdTDUJGEEe8kOS/4GSUIVx4FV9Jb6qwdqh9G+c94DHYGcZ3QvN0B4yYjBS5q1pzQOSG7B+jvES4RuQAHEMT5AokNvGIvkJ5jvgYCt7acsRwKbWnoKAWdMLqGlhdpNMCqCHjhEwTfjchtblWROtyzwgz2SX29PfWOwpfRZWWgljqWcgWuMT9UFf8GH/SkvMfIv4lsAXNKD8GtjVjWIL4ebQVx8BH1G/AR4SRcChRt3duER/Cn/hU2f8xlrBH0K1xgvrZuokvxLZyz3ZJjfsay4rn1dJ6Ox42YNVxtQB2iStaQSb+bUn5KB/F7qSzOsGJpX/IQCbgBcKr8FASBRth8ephhnkRvtvJwFvfdcv7RF4o2hY98jP1mXMfb393WPeKr5NfayGtA+QIOH4JXUHIphPqrbStVRhNui2Sp+6jjfpYmGZrRmi8ykBHomsuh2dsia7u9GP3UpCA+B82qPV0QHUMda2cmq5NTPoUl03Vqvs6mcCtpjwu/qCaW9trKuY1pt9L4/Wxvnyktxf60hboCNlqt73oqquNtVRP3XLr9GgVe2lbvHrDlVdALkFOGxusI3v4jMVc1sNlSZ30FEptSTzxiN1W+v3bPZYUTTuzdQToKhpY2nha58rDW4dKtNMa2esE0RtzW65avUfo1vhL8Alr5oZUFV+3uqwnciKmRUjy/zvWTIswz3UKZyUMX+lEV5MTGdaFbNPqJHetcQvEtFek7iUmKX3ScWHnhytQW+YpUQHxttU0XHYTiDLUhqwT0a4EFeCwKnX24yu9JXDwuJrofX1v/UpLb8BpH6SsbtQaU5f7S9Oth23SbZE7dbEqpJVqcfK3HnIrExe8dr9GDNcSdYL6lra7gFZSbgHzelm9mlHkTyq2+EpDVmUtlNgyKpUulAXsObnlInw4udfSxHpqgifGIesfF812FF06y1beqXeXPRQYLKtbB7w6Z+1Kf4mveHCPX3L0Id585XMA9smEv/KSB+9r0+zQWb83DKt/a9xZvfIiEGAFtEvDbgPX2KIQlmbAhHBEaoM7UnAmpIYLy30W0fWhtVgZPwHy5o5jYZdmLpcpDFIMkQnET57Rr109qXOjpZZVD1u/Xjo1aA+tqZYHIs/uG7pmtAsad+oTqB2sHWC2IBtO92zE8Y4x3oqYtprAIro2hN4y00yOwIEG+XFFzUDWluQF0Nf7QVYCwemtPFTu1wsTLUtKv7+sxnFqQSGZHJNcAX1bibVjOxlwnUgPBVi+d9kv1z1U3qZB/b6rXQB0oF/jQiyg9MbS9auZ9ukSnJ7Rt/b0xzwcZ3vkV1Nc8YMiR1oj00kfwMPTG8vDO4BKje/aYLx370tfY/nK6qwx0Kq5rrpuT0yp4WPN7VSvs7RhGYuT8NWzlzGtZSetGNrX5KFQl7kvwlSyeKt61KbOfnTFZtvlDtb5VsLZgR+qq1y4tQNF5ugUW/c1t3V5CNAVB3yd93VZXTqDDHU8A86hrnp11XUGbQN14Fe7bzXXblKnMLLUrk6taU1yc4QZHgN5YFILKDqLIQdoO5HSWOOAtwmvyuWdJHc5WX/OArH96uX5jYuxOJD4e7hFa2ng6LNlta+k/waLli3RwUMTc9a6WIEbb0RwZtm2TtUAW526qH8EtDXqZ9VXTds7uwx2wceFfa+3wK+XZL1RrwmsCalF58hMy0R4N+pleqd8pwm6mr63ea1pgi/TlfjQNgI1Uf4/ZdzPz6SIimgAAAAASUVORK5CYII=\" y=\"-10.054001\"/>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m212c683efb\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"27.652826\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0 -->\n <g transform=\"translate(24.471576 97.652439)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"64.04413\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 25 -->\n <g transform=\"translate(57.68163 97.652439)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n <path d=\"M 10.796875 72.90625 \nL 49.515625 72.90625 \nL 49.515625 64.59375 \nL 19.828125 64.59375 \nL 19.828125 46.734375 \nQ 21.96875 47.46875 24.109375 47.828125 \nQ 26.265625 48.1875 28.421875 48.1875 \nQ 40.625 48.1875 47.75 41.5 \nQ 54.890625 34.8125 54.890625 23.390625 \nQ 54.890625 11.625 47.5625 5.09375 \nQ 40.234375 -1.421875 26.90625 -1.421875 \nQ 22.3125 -1.421875 17.546875 -0.640625 \nQ 12.796875 0.140625 7.71875 1.703125 \nL 7.71875 11.625 \nQ 12.109375 9.234375 16.796875 8.0625 \nQ 21.484375 6.890625 26.703125 6.890625 \nQ 35.15625 6.890625 40.078125 11.328125 \nQ 45.015625 15.765625 45.015625 23.390625 \nQ 45.015625 31 40.078125 35.4375 \nQ 35.15625 39.890625 26.703125 39.890625 \nQ 22.75 39.890625 18.8125 39.015625 \nQ 14.890625 38.140625 10.796875 36.28125 \nz\n\" id=\"DejaVuSans-53\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_3\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"m8663bda407\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m8663bda407\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- 0 -->\n <g transform=\"translate(13.5625 14.798438)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_4\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m8663bda407\" y=\"40.112262\"/>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 20 -->\n <g transform=\"translate(7.2 43.911481)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_5\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#m8663bda407\" y=\"69.225306\"/>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 40 -->\n <g transform=\"translate(7.2 73.024524)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 26.925 83.054001 \nL 26.925 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 99.707609 83.054001 \nL 99.707609 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 26.925 83.054001 \nL 99.707609 83.054001 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 26.925 10.271393 \nL 99.707609 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n <g id=\"axes_2\">\n <g id=\"patch_7\">\n <path d=\"M 114.26413 83.054001 \nL 187.046739 83.054001 \nL 187.046739 10.271393 \nL 114.26413 10.271393 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p00e768f8a2)\">\n <image height=\"73\" id=\"imagef1db06d1ef\" transform=\"scale(1 -1)translate(0 -73)\" width=\"73\" x=\"114.26413\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAEkAAABJCAYAAABxcwvcAAAcoklEQVR4nH2cS6wsy5WWvxURmZVVe5+zz7nn3Kdv+9UY2m5bstpIBhqaAWokmucEMWDGiEGLEVOmzJkiMUECCQkxAfWgkZBoi0amsdwGY+O2L/K17/Pce177WZUZEYtBPLP2vl3SPlWVlRkZ8ce/1vrXisgjf/MPflcNipHIzi1cLhvmaHEm4qMhqrBEy2ACOzfzcLzhlfGKM3fDa8M5lsiJOfDAXvPtzXNOzYZBLC/jDQeNvIjwR/vP86o9J2J44u/x3vyInT3wlc1H/LMf/V1evvOQ+z8zxAGMBwlKHAQ1EAfYv6rw9g2PH17w6u6K88PEs+stFx+fMn0w4K7B7kGUdI2DsKG+jIf5TFnuR6a3rnjl9JrBBs73G5699wB3bhkuBAntGonts5uDxYhixOBi++XgHdZEjGgFah8GDnFhUcs+DrwMWyxKwDCZhRcxsrBnI4brGAiABd5wL5hkIWC4bwfu2T2DeAC+9fp7fDcaLuIZ0xOTBqWC+HSxERhfCAcz8dHFwMtHW6ZxwZnI9tENhxPPwRvUC+7pAAoYCFNEBwWnyCak4yrcnE+8/+kOCQJeGK4EOyeAJAICKh1IAk5VKN+jChEhqnDjB7ZuAWAJtoJ37Qf8YDmI4zJMGJRBAvs48CyORGZmCRwUTOovb9hL3vf3uYhb9jqwM4cK0m+e/ZTBBP4bX+JmfsBwIbgbsHuFKBBguASzGPy5Yb8Y5lcOTNPC6fbA5x6+ZDABZyL/Z3oT9QaMYl1k3CzsNguPdlc8uTzl/HKLfjQxfWqw+8Q6dQ2UCpIlgVpA2rqFnZvZ2oWI8Ml+4HLe8Oxyl84RxdqIM5E5WJZgORv3acZFeXN8wc4cMBLZqyOwYFFmNZyYyCTCW8bx9//nP2D/wQmcLfyTP/9f+Mb0SyZZeCEn/Nb9n/DXH/yQJ3/uPv/63b/ABz95je1HBrOACanDxsN4DtMzSxh3qIPLAZ4+jsR7nu2DPePGY3cRYyIXT06JTyaWvXDz/DEAWwWT5h2Vxpr60nwv0uyWc9z7F2dYExFRnl/smD/eMT6zbD8BPyVbPnx5z7SdEVmIKrycJ8KQWHflX+fReJn9k7Ko44G5YWc8n4SRd5ZX+Ve//Cvw/fs8+lCBDf/yp79D2KTexAHC6wd+7fMf8Xde/wHffvXn/Hiz5+Mvn7IEy/4wsHyyZfOpxV11MxzBLjA+N+jFgP9kAMBLGuB4AOOT2RZgenAKKKJHQB0DB7hPPzhLF0Vwzx1n7wm7J5HdB3uWs4HLNx1PX3P4wTNYk01urA3M0QGwMzMX5oDNxnxmznkaTvjjqy/wzh+/zeN3I7snHne58PAnghpBnbCcOl5+ceLHV28zmoAzgdEEvvTgGa9NlxiUP9x+kef2jOGlRRYwoQ3e7UHy9372+4GKts9qGliiEE02Owu2O68H0v2Zf+MhgkTFzHtk9sgSQBV7mFCz5eKJY54GnIsoENRwtWy49iOnw4FFDfs4YIiY7OGswC+XR3zv2ed59ANhvAxEJ8xnI8PFQhwN+0cDJ7+84Y2Pbnj9u3DDa4kko+XpN7b84m99yj/9yu/z9ZP32P/qQFTDIIH/+uwr/PjJ68x/cp/xhSQQ8uCrwy3fdc0eiRmgDNRyX/FbRTeR7fsOM+dzTAY3gjM3HrUGjBB2DiYHmiCVoKgBf6JoFJYl+SQzzDXynQ17Tu2hTsAogUkWrqLhF/MjnlyesttrC68C/sShRjCLcvPGhPGKmSPT+5dg06AfvLNw9e8e888f/EMA/C6Z/vTVF3zrjff4q59/h/ceP2A0njk6LuYN73/vLYaXgrtuTrgyqHwuTMpSwXz5ki88POfh5pr51xxPb3Y8fXGK/GyH8ekip9agVsAKYTAratp9SGYxpoMaBR8MXg2iistAASkqYpjVMmO5VsdLv+WwOE69IlGrP1GbptJ4xW9NiiYYsII6Q3QGd+V58H8P6TpgOdtw83jgU33A/wiGhyc3BBW+9fg9HgzXAPzbtx7hdwPuyiAe7EEwnsSOY9+TXzEKIRrm6Hh1uuSVzRVvnpzz/esvwGKSuS1nI2pBRTBLRPKAxCtxMISNoENArKIqHBbH+X7iZJzZuZmXy5QmSJSruMEQWdRxbQ7chIEQDPYQE5NUQaRFV68MFyFNjCr7N07S7wJxFMZzj7uYMdczo48MLw/cfwcQg8oJAP/5b/8G/kt7vvErH/CPvvmHGJTLsOGH52/xo/ffgPe3bD8WTMjm0+kgewD33VNemFOejvCTM8V++ZJ//Ovf4e+99n1ehhM+Xu7jUE2OD8X4NtsSlbAxRAtyMOgYUStp0CYSVXh+2LGxnqiCV8NDd020yTNNZubp4YT5eqj0Xk2lpnsUUBCpLBYFsyhhNOjZBjkdiaNBBewhYq8XZImIKp/7zoL/3sCT6Uv8J/slwij4E+HiL13z9uMXvP3FnwNwuWy4WDb88pOH6Ls7xpeCPSSfIwp2hs0LYfnpKf/i5W/zF7/2syqLnAStdkofBQTiaAijVLWqMdFzCekCq5LTF8sSLdcxRb2AMElKcZhN7UjBqDfp+pLu/ppOViPEQRCrxGyi0QkyWsRmk79YGM4VCYq5nomTYzmb2D/e8e75yIcP77PZLNyfDpwMM1976yN+GN/i+mxAlhYGRUECxEHBKPvgcCYwSMQZn5zz2skJOMNyYvBbARdBQVWI0bCfB7yNOBuYnMdIxEjk3E8cjKtgvTxMyMFgZ58obqSG3n4y+s89m/rjJmS/aIXl3pD6m6WLnSP22mOv95jZMvrIF/7jHgkKqsTtwCfffMAHX1V+96/9Pl+7/yGLWh66ax4PFyxq+XB+wPv7ByzRsjGejfVszcypO+AATIhdh6R2QK2AAbMXgjWJUEZZFksIBm8Nh8EzO4ePnkECG+OZzMJzf8JH7z7i7KeWMMbk54rjNnJb1OXQvDI9PaJc1KQt6vfURtgYwjiynL0Gmu4TnTCcL7jzPfZ8z+MfCA9+5vgP3/ltohMO94UXX1P+xm9+n6+efMBkFn519wmDBHZmZknRBCMRh4AiyFGH1AjLVvATKYeK6V1jYpPGxCwfDYfg8M4QSFWDfRx4sewwNwY7awW73uI4Ffisl0h19qiCSSa4uj63V4FXQWK6Z9xYwr0JoqLOYJfIyS+uUWuYThww8nvum/ze6dfRINit59WHF3z7tXc5czec2j07WRKTClDl5ipCdMJyKviT3I8oaAANKdSLUVQts7ccrGPvBqIKh+gIGN67foD4HKmGRhtRrcxZyYLP8lfSsU6EOOaMXXUFcP9dTfKjfmfxO5v8KklyTHPE7D2b65lXXxx49Y9KJm7Yvzrx9Ouv8wd/2fHlh095e/eCz2+e4cwcK8XVSZsRuswYEJ9A1MWAJOUtWccbUQzKhZ/Y2oWgwsWywc5d3tRNgMTsB5EWNDKrKtlCjwCpbyJdOaNjf05Mi5s4Pu6uW1vzgxEThsSuLFzdlWf48AXbJfDm84HwvVOeuns82Rq+uzW4OJo0o93MVpaHJA+MbzkOVtAgWda3m8eMwhKTLbuMrmibZZW1nahZfV0VvY7Bu/XS9l79l8g6CGn3Oy09iVk8l1PCZJHH99Ah9d3eeIaDRwfLZmNxYWMxS8T4JCRri85UJpklOXExoFEhZEFoJEW8/BdUMLmH1sRVRxNg5cPRQO7CwEj9vchPUU1Ad8AXgCQoarNb6CTNnUq7lzwCfmtZTreYJUuJRbFXcyKJj7gi+6M1GGKNbmFM4T+MYBYhjppA8+vZ2s8DzkY2znO5bHBFaO63mINgfKK13sEMiQ2ACl5NXai+q/mto9FmCYdIo78qEjNL5DZb1zPRxiGRrMkEtUn9uyuPu8gSoNKwps7pxm6vxFGIw9030MXgnWUeUuJ7xaaq8cPiUtHMK2Fog1s5ZkmpTj1WEuuYfQ7Jd1W/eOSsV9ruWNEf/b4CJr+LZitVbWWBfJ0awZ84wmRxxHbXUh5QSTNp5lRgzyWjPLOCqiZZoBBDSnoPweKjYbABVUnVglw3rqwobVfRmGZfC3ianHFhqpKB6hiUUpncnaLpCiCdWa+u0TvY2oF13LYaQUQJkyEOgpPioFWJ1qAupQI3rzjUdQo4gJBXFNSgTtEhayVvuTqMWFE2g8eayLJYhu7aOkPZBBSQPPvNpBKz+gkjSqqGFWBW1bQ7GJLByyX0Blg1q84vxjQN5fomQ7SKab8RnPHJD0VrKLlRHFKYliA56qWBVvMWSQSsHU+dNzahsQTL4cXEGHLNJjST1jvyxOPZLcWuer7KZwJSB9V/D13f5Mgf0hx/DQ7l1Z2XqiLKGBWXGpFuloWY9YPElDNJlARYiTICBiFYstmlKGeNJpoGg7m2NT1oo6e2jZaZbLNYA14BtBw4yi170xVtZtkDWIE5uq74OCWZ1NqvdQA6Uk1qr7j5zGEPqTIYR4M66swWCSAx+acCpgSIMdE47C3BRmRSRpuWdlQFs0+iNGxSbahUAiogx9/LwKQzt6IibANOemVRfFuOaNKzr7fK2EzOzrH6qzhKFaVrlyAsW4PbK2aJuBSeE6JmiclRVAasw6j0JmEEE5QYhLhYDgfHhWxwNrCfB8aXyX+phSjpXD1mgCkpRhqI9PTX7PCPLEJLsZ/CojQyiSmSrk+mYzNtXNKcfsn3ehtWEeyS/LRawRUTUyu5tNDY09O1daj5KCIQgCAEb/EhJAUbDINvobz5lsac/nONbB27aqTJs178ziqiZYYk55zb6HEqSt+kKJrY2oFTQQGMrBhXg4mQqgApATWJitlxm0XRba7/FEfYUzhHH/GCLkK0Fj/YrOnkFguiywMIDW0tqU4GI/m/AtKaVaJSO12ZlEsqRYXHobs+S4xilsZT2XlruambLEGJpvlkIji7T3JeXao6+imxyh7y8aKWY8apG6BZBNmkKKizYWZkMYouhs2SO9OBVdSx5Ey2slPLcI78U2FFZ2LVVxXAKoikUs6ReUJiZRyEzqLy8dxOrkGVsUYnuJuYJnEs5VtJ7OmVdbX9ztzaSBvKKfLlgXhBo0GWzMBiZp2pJX0iebBr0YfJ5tHNcNkpUvslXXsV4Pz1M1MQyW22CFjbLVRTUNEc3QsGySJcBcTk8JzDfu/sSkTrO1roKAHMnHSTWknl2htJGxFicZytY1EaANA7bsiCoPmp2PSMdJlBMoeu0plROl6uLhNjKutkxZ6+3JJ8sFQckmaEsJGU4BqfgfDJ7MIgzCdpoCi4mwZWmcmaahRlK0VLpfPsIQNvGkB11rNJ9XuA6mALEBawyReVCWrBROs5pe/HvqY437pIeaSfNAeKFVAhT/qS6Hz5OcvFVwJOXaKayXtltPe2mgvwWTGrkaIQ6sAlCkTFBIiR1exWp2wAfyuaN591xIKyPlbbkbT+XxcE+i7a7rwjBa2WJBiP+nXrHioY1k5fjbDcg+0bl7gwGtxNxB4Cftf2IdUwn2ckbSo48vzlvcx0TmNqFCmbEVym/CrydAzQxhKJrGrhtUJRgoeuwVilOZ0PbWpdiKKNhdqdXu4TE2Oj1epro4PlVPnGq09wJ7+4JI4OHdPdok317ZJzFZEWs+c3ixI2mVXdbKwy6xxyY1HvWVRqm4N1AMhg1c0M3Y6zNmtJdoRN011q80R25rz6nMHSIj/K33H+qCkzsIe0ncftFTsrYRv5rUc/xelgUWcIQyoLlDBYU5KQJLt0iBifOhh96WR2+AdQl+x5OFfimMKpurQPqUTMYobHZoVpPqtWAYqOKZWDIwCbGL0NUDlvJYw7dq5emhiv2SrCxqAuYlFcmBxxTABFm8NfZoKo1miXKJ5GJQHEK8YLMdTD2Dmt3gowXCtxFqJLyaKfMliuq0/RTLlqnm7/UDVn2jmU+wF1H2PPitpwNxl9ZD6WE7L+Ld1XmU8NOOUiTDl3yydGJ9mXCHbuBJ8kk1OTBl1TiBwNipnYILkeDi/+rDBcwHCpbJ/Fus9ArRBGqWyJQ1rb8zshTOuxSu/fCnOOAC5651jhi2/fY2/m0kWxrsSikvYG2DlJi+e/rsgU+Pc//2YCiSzrTdAk/9GWLZfBZO0ATddISJXLoojjkGc/tJnxO+HatulTmxc8ST5v+yQy7UHPm98rzj66dH56p+0pKu13ZlelRfFFWb6gaXi3HLpQC3h3mWt4xSewPryP69fZjNd8I8XUtISqio/tP4HKalV1VaYQiCNpP0EekFoIU7rOLML0qWAOMWmTzObohLApVQTFLHmSDISx+aUaGI5fWcCWiez71Bf/qimXSe/eN6cHDpcbxicOF11TsxLAxFh9jKhCkJrMagEqZudd6te9CCmRpyau2c0UMerB7VOPo4WLLwhIs4c4ZIdvYfuJsHmqbJ/HbNYpiIQp5ZjzPakuIjqQbnIK2xDqNuQqKjszhgyWT6ZWhKRzEf/c8cqPtC0ppZPX9eDq/DLcEvNvZSEAVtHGdvXj6pyl1XAK08qfyU31DBAvdY81wHJf8Cc2y450P79Na4G7j5XpeZvU0n60wnKaTTUn73W/Nl3kjCRXYRLARRf6rXD1fMt0YbBzwB2LsDKwckMoUa6Em2KbDahyfRWZtPcCPpTQnvO60rn+nl3ohmyam3Sd3+WSakzmavdCfNraL2ZfGGwWwCuWElHltlYjWUPNQYMSRmH/ikEuHfYmHXNxlFtqFFKjJlfn6rE6khyvTVt4VFOihq6LdpB20lWL1JUp0jGrb6tqnOxMh8um39xlAvry88qlSq41CWFSwqToGDj7sWP3cWR6utTqpDphObH4TVp0DVMLWHaffPLF5ywXv7Fn/PnEcJGAd6vabhdGRXW1G6SwIy3oNWbEyoo+/rbvK1+gbdD1N3ofps3BGzClilh+z9FNNDHALK2sIfm7u0l6bzmBi18xXL25SSY4Jlbu31q49ycD2yfKyROfx5gyiYu3LTevK+N2YbhIu4IP9wxNdRSClHJpWQQsoHXbZFYs0SIPdBWCazCAugqxuhft3L6tWoeSdGDFrL6d0q8+woUUGEw2u7DJ5mpzQNiAOfH47UCYUooThuyoJmH/iuBPAxtJKYpoAteV/Ec0LwxmzWM8dYtM3UsU22AKE8SDLYOxjT1p9SKH9SIlTJuE1E6p6ayZBjkhprGq3Fjnxr4wCm5ZBwMMqVLRa6aQWMY1xOstcYDLt4Wrz1nUJKkTRgj3PGwCy+zY5kWFMAjOLLoGofSurLnlP8j+JkTsVe6pCDJ74nYgTgN+m569WnVQiq9pan6VGnTLRevySif0+lJHSYIl9aeyKGYx211bhbBrANL25ef2cwlmhLgT9GAJe1ufDDBG0yYu49P6UhlU61x23Hk7HRQzLIwRMHnEUSmbVCWzpJyjIW8J9Gn5alXqcE12tJJxKlu0kfRASgsfsTFGcjjPrda2EphdcHH95LXrxIMsgr0wTM+E7fOQn4gQnN0H7M2CuVmQ/dxNsaLOJhCcJW4H1BnUGvy9/rHEo5mJa0dTkmS81kGuCmq2B0yq2WkJ2XmZukY+adKhZ2zGppVnO3lRl5xkXWqJWT+VmpndCyfvCa//95fIEpCDR+a8ZzJOyVxUdqublllFNe1wK/6kSKZu90aqOTdTvbMo34m+0gxeV6wrP9R0yZRkWNpx295jBlZiqssXcy25ZgGn+D170FUfkimmc1/9X57pg2vMzz9AvUdj2vbY7U9KTjseAZEAWA+gDqS722oRcVWOaMcri7SZY/863usoAoRynd4GrZce2tWsDMjQS4yOvaYdBzAxpSPT88Du/71Anp8TrtOzKiIC1uLUmex3SH+u3biE/b5Y3u/SXankI1COX3ceP2ZcLy1oYPe74dbmKmvf51qACBuTj7fgcLwYqiYD9Cxw8r8/IHz8Cbokl2OmCaxFBofbPx4qNd1+nUimiJcdcj/II7OBtaO+C7w6EQWUCH0OmHp2B7rlmuJgVVtNvYvEohG5KfqhW6QUYbnnbrFJItibwPTBRWLPJ58imw0yODQEZNqAc4lJ0bV90n4ynWBsxfN+YdIsCbQEpK7Y1oN4y5yOlo/SwO9mHXTtFUWtEVkUM4dkhzEiS0A3w1pyWKkbM8oecDPHdd3bFUuBuBsxcoadNuiQnvWTssE+g+x6zVIqhiV0lBsX6W9CcnylpJB27XIna/SIanXW70SkyehjcyqsNAriI+ZmqZs75Hqf9noZk861pfPlesDQJE5JtPMWZTWCvzfC6Yj4bQtSNE0omh13Ubp21lrjbjdK+7jr4G0quUYHsrEtggCu0F2ou+UKgGZWTGh6TLxib5a0gcKQpMXpmAvwWYeVyVmS7jGDSQ8NjuW+p7kCkG+Si4CoEjc2Pbu3xLxwGtN/yuCKrksApmJe2nWbSjp5s0dMYMZBWqkk9hXFLj1IGzs7OhcWZk1SazMZnH5pKdqO1ptURYg27YCToBjvGgslbYtuzrUp92gVawTNVYm6hxtNIJPO7zWamfMCnjamqs2rQc50ckLqvdJJmlayS99V08b9ojuSqNJqv3XwXamzVsq0CMcjs9IOzS7cpn2ZaVNGEnxHkuI4SpZqaDa1UkFVI/mBwKPz0XVA6YuJnfxQZ5rmkm4yUtG7ZhpV5Co4uyiBtMxbZr10ss/6U22pHTchOfA43B3RjFeiSEtss6xw+zaYmFdOykBqHarTZxKU8TwkHxhiMqlixvmx+QRKM89ybWWQaXLgVoFRtQKUHn1tO+4kR19XC/CRFe36zq5Uck6G0yMGgMu0LxGti4QlTSgPJqcOdzV1zVv47ghytShfK526jpDSgF8B0w1+9VkaMwojMbKKYuVdKeAmP+VKqBcpeydbY7c6X2a4LC1nc6vh+g4VXY9ro7h0x8tGCD3WSHc1ddx+r7PyIxN33z/9UxjTr/7078235r5m/+jSf8GTD1pZda7mPWW5pdKXlDWH9l1NKlQVNZuWzGlOv6selJeU/Uc9SMdOVJu/XDnnbIotwhzN6GfhJZL/2jX97r2qpYoLEfK6Ww6FRVcco1sXAcumy1zHKSu7SI5cY9qJn8A8EpdQaVyPlb1Dd5lOF0DK87elX8eZ/5+KytHrWMP1eVz1xzmAqSbSuOpUO4e2qktTWHTHHU1naiT0pW6EpILTOni7iTYB/cH+IhILj6699TjsrfLCZ7wiVcWvfFUer95x7WoFty1K0mZau+/9gy1VZ1BLsM0cj1jUaaf0O21SulOjbQ677s7PjCoKuNa5+7pVF43q83AhriexRDtpbCr90mNyyJG5lWpiXQ/rQGpb5/KKLd2GUVnzvphjiXQ1HHfttM52wOdUTHNSzV1BoAvn5WGhHqC7Kgya/9+AVkfP18QEsOQopmXh9DMClfGa5VFvHneYRPFL9LhkR1+c7y1xZ1rUWlH4uCO9lXRg1O+QBmJvA3GXud+6R10YzQ67fyK8sLLHQLjVhqnUL2XWI1PrHWzZMwTUvd/9Te56bL4sArSBdO9dmP3T/Eh0R4PLANXB9APrtU9x/uVeVtDBpCCV+9WvOn/WyxX5XxiBXzMHio9I7/YQc+NZ3EnpndbjRWzWdOcWeOVDM1OVtkulnl8mQFL0NWpyrhZvB7Nyn5IyqSamlXboJEO3J2vF8nyvKnizqHNVYXYhv4bs0lDVMFTHV0xTocp38gpsdY66rgSs7pE7lWa6PdJVXi14pMmok0h/Tg7nwq2JqOOuz57IrTFm971O4MvEV8BID+CsRdU6bve/rzaId/JAj+y6RpjjGxacjiJmP6AegOrYo7a0pGdKD1Q3Ccdtld9q1l+io+3GrZ1pmvV1/x9ra8T2O8/USQAAAABJRU5ErkJggg==\" y=\"-10.054001\"/>\n </g>\n <g id=\"matplotlib.axis_3\">\n <g id=\"xtick_3\">\n <g id=\"line2d_6\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"114.991957\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- 0 -->\n <g transform=\"translate(111.810707 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_7\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"151.383261\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- 25 -->\n <g transform=\"translate(145.020761 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_4\">\n <g id=\"ytick_4\">\n <g id=\"line2d_8\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"114.26413\" xlink:href=\"#m8663bda407\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- 0 -->\n <g transform=\"translate(100.90163 14.798438)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_9\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"114.26413\" xlink:href=\"#m8663bda407\" y=\"40.112262\"/>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- 20 -->\n <g transform=\"translate(94.53913 43.911481)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_6\">\n <g id=\"line2d_10\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"114.26413\" xlink:href=\"#m8663bda407\" y=\"69.225306\"/>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- 40 -->\n <g transform=\"translate(94.53913 73.024524)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_8\">\n <path d=\"M 114.26413 83.054001 \nL 114.26413 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_9\">\n <path d=\"M 187.046739 83.054001 \nL 187.046739 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_10\">\n <path d=\"M 114.26413 83.054001 \nL 187.046739 83.054001 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_11\">\n <path d=\"M 114.26413 10.271393 \nL 187.046739 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n <g id=\"axes_3\">\n <g id=\"patch_12\">\n <path d=\"M 201.603261 83.054001 \nL 274.38587 83.054001 \nL 274.38587 10.271393 \nL 201.603261 10.271393 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#pd6dd7afbef)\">\n <image height=\"73\" id=\"imagec74020495e\" transform=\"scale(1 -1)translate(0 -73)\" width=\"73\" x=\"201.603261\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAEkAAABJCAYAAABxcwvcAAAWSUlEQVR4nJWbS68kO1LHf2E7s6pOn759u++LO4zQLO4ICQkhlkis2MCGQWLBns1s+HZ8ATZILBAS4iFgRsOMEDPD6M6jn6cemXawCNvpdGWd7ptS96nKdNrhvyP+8bBL/vTT7ysAIsgwoClBUnACMYLa43ovBEQEhgGGAIAGD0Ngen5Ag0OdIMneUyek0RF3QhqEOAoqIAncrIxvEqgiCuHtRBo9aXT4Y7Q+kuLfnZHThJwv6Nt3Jk8IyGFP/OwZcR+IB48K+EvCnSP+9Tm3c8TDgH+4IMcLcjyjxyPEBN6B98g4ok/v0MFzdYkQZL+HlCoYIgJeUFXwzUt50uVFu5ffcwIp4S4RVSpIKiBeSCpIEiSBRMCB5HbzncMfE+HtbF2rIlGJB4/MiouJKDvc4HHBIzGh50sVxb07I+eJ8FqQOcE0G5gPJ8S7DOYOOZ4hRvT5R+ize3BAsj7UiwEkAnNCYkS9R1RBlcBuNI2Zo006AyMxrhEtwCWF4HLvCjEhLqFecZdo4waHzAlxgqozQDxoBoeMtzqY94KbxCbvDHxJStw5WwtxkLUT53AxIWVsEeR4tsnMET0e0ctEOp3RGHHjgIwjMs/o6QTeE+93xCcD6gQ3JwNK1bRWwanCBIyCRpCUCCsgnLN/3sE4wPGEzjNcJvsuDjQZmM4Z8kNA/QKaJLXVmBI6OHCKuyTefWdgPgjDO0WSASUK4aRMTxyX+wPj25S1RxlfTRmYZcXjXeDy7Bn+dI+7RNx5xr05mjyADAM4j+xGo44nB/Rux/TsgMSEJCUFh0wJp1RTJmUlGDN9DN60MiUkKkF3A0QPo0LwXH7rKefnA8cXjt2rxOHrieEf/wuZs4mJQ31CUrbpcqkik3GYOId6yQM6jp+PXD4S5ju4fCxmcgWkozC8VcbXStwJjGaWcXSmIQnGV2ZeCjinC98FR7rbLxNLCaIiKaH5uXpftU4dpj0dhYgqiizziBESi7lNn94v74yON98eOX0iHD9Xxlee+eD45F93MM1Z29Kan7L2qMNML5sRwTQsDo7jCwMo3ilpUEhSzS7ujZv8GaYMrCj4i+JmcJOSjsYPKoKKVIBxDt2LgbXzBpBiWtOAIY28EteyV3ObovFSYgEIjLh//L09RTINoKIGBHAaBXA8/86XuP/92swuBCT4hbxjss9qmoiYiagT5qcDpxeBhy+FNGYin2XFS9O9Mj1V3n0bEBPQzcLdzxzjK2U4wpvf2RkwSQln5e6nc51U3AfwUiek6FrDwfhRDYw0GPmX75IScrqgb94hX3yCDh7dB5ii9eeFYMaZ1X8SRNSkFZYVx+xdAXHmMcgkS/DLqsSEDgGckXXRuAJQXUAWjN28PFBv7VJQjl/A+QVIcubaTzC+EfY/mri8GFHZkQaT058T4V3EzRGcGJep1IUQB8w51IjFpalp22wOSu7vTK4YkYsaWCKQyMStgBoXVID6S8TCg437QDY5NbPQTN4Ff8laIgWhJfwqpFwXxRlQcaekwYRTD2kUEOHyzDMdxLTewfBWUXFIpHpHBCQKbkqmcd6By/NzYosn1h/B2/Myj2g8pNkiAMJCyIuwugVSSmhMNsjlYp5kCJUUy+owR4t1iLh5zGy79Fm7bgCrQGJAOQWZwWUavDxT4sH+nT434FCLuZ7/u714eWrr7WbFX0y7di8n3EMi7QI6urooEpMtUnDo/Ygo5i3fnVHnzNzENFK9I7Rao60pOzX+mEHO0WIpQEJYViHHVTW+mSPqbSUYgg3irkHXZkEqZtq1cZDGLMqlaDm5fzEO9fDquyAq5RZucrgzfPQTmPc7+HJXo3t/Suy/PlUZ0ujRwVWtVtkZyUcl3g9MTwPTvSeUzrcuieAmkMtkJgSrgJOk0EXyFmkvKYmuOXQNWGOPPZDiFpNsiV5SDi2yKsZD1qpkAavM4EY4feJsgRy4C4xvlcHBfD+YIjpLkwp3qvew90gybz0fAnHviCPrYHLFIYA/C8ODIg8nNCloQqcc8ZZgMiVEZdEusNmpkoKQwsYqlJWpJne9SorkyJpqspTvxXRn60eSaXzaKRqUeYTXXy19uotw93NBnWO629XoWhTG1wlRi/CTXxa2LIybM0ib2pR5QSIwBMtnkph3a3O6DM5CmlIBPH4aOH6xeJkroG4AVM0pOxHRa06r9/ID9UbWkrMpSXkIr6RRefctePiiPBP8Sdj/EpIXXFy8bwFHSvykEFYyFu+vtpLhCMNDbuDcWoMaUFrvUJ7p4Ik7IY5UPlmAbYdspNv0GDdvr5/fog0V81jOAl71QDbNyyzMd4KLUrXGn5ThnbWVJDnBbdS3BQpgfKPsXubEV2TRoJxsmmttQGuASvtAGvIK67r7OoZca8Tm1fPAY2CVy1E1QqLYuALqjPCjV067JkZM4E/C+FIIJyU5A9fN0iW4NOoG+DO4KSezMZdFYrSZO4tWK1iawfKWt6l3VeiCUQ2VqrtfgOpjs5WGZQSuNKW9Ufgtt62xWXMbwE1rJyHJRNdBme+UuFdOn5XYz8w3rGawSLj8VdDgkWm2WEl1KVUkm6lNvCHtxErIvtttjlrL8UEadss1l5e3HAbXtyUB89KfetO2EostmrRoXvUqkiyCrjmZ9oNmoESXoDIp4uyzSibeawyucdqa6w0s3sdRq4YrbVuy/R5HNxsvlUhbvZmTBppgshVSDEE/ketC3pLaXEbQec4VTG/JZKtFpTsvlk4ErebbjtFmOCt8thxJN/c1x+WZps48CwpXAZg25pgXtvcZamGDZrJfcjdaDbIYSZ1aVNq6fO8tDMh5Tx07qdWQVDPRm60jizteXR2dlA+txmnXbusymXMY8D7zpHteIvWNTkvFwmnLSa3wyaJUFSzTLuXa4sWSGkHnmvMS15eoXNeDpTVhr7x9r8E9AE23m4n3Fth9k/dEGX0MVrRMVPBnIdQVK5TjbFLDG3ClzF0KWNn1VzVdjZTvZQ/nLgmJV5Sw+Xnl7dqrCb2s4bZiXYHZPtji9ht5mLYwF+10auYmRcCMmETBzZojVskxhy4FtjJW0rVkJfoOjvOLsSaonSRsyLKscqthj5D51o0riy599Op5Q7XacKw8SmFVT1qEk5Qb5Qpj1RDplvZq6bBo23su96660ToG3eeOa29et55L96wj3ysNlDUQq9irN9vy3UGoGpS5owCW8haQlsLjflw29OZoXJSS3YO692YbfsJ8yIliXCOxVSapQjaT7s3xqoC3dW3xawGngFU85g1w6iuRyqlhXUOi5lntX5lLWpK92ph3eqd5KZiDFbOYIdruSGpSkhqfNAGZNspZx9wAYMVlTZsrEl7NsrnfvNOHe5tdlAXLD6/jpDKHws/VUy0zUi8IbrnXeLcSgKaxkUDbjw0HWNl+++pNqb3akOX69sYXVtz0niDBnjeNQpuhS1r4KO4FealWOx68mVLexEMETcniJeeW2AjjMM17XFupTrV3McBcG0NZ+SHzRdagkir0pL41uZ6kl9c/KErvX1fInNStmCSprtjNtvtKShZQDlhCKyAiFn3nbNm8mofdaNvIvVvfmGAfHNfcqqpz53mUFT+tIuUtEHuAeo/ZASfVuxsXi5j8oeymmlezCp+L1lDKJl2rQcJSS+pNUayOpEPZ9t4GZ8uUarPWRbdIbn99/Lphlt3j65vlQbaqILOVAwooLte1w2nZTpaU0BAa7dC6BQysim5WbPPFcurE+vIEbMRFXeCnLXIbNqOubfye2d/S5N6+OichUQi2VyaUdESipSS7lwl3UdQJ0/PDQnpJkSnBJVYeqsQ9BNLgSGHZAKhespn0zTBghUCZhCzataFVq7Jr6joUXZsaG59r2/WiqUA4CcMbCDggUlXLyHvR0zQ4dMzgRLU9sbz9K95bEa6Y2phPmNwwsStl6N31lvu+4RmXbm8Dh8rjHrSMuQ7l6nr4C+xeqW0p2f57US9ytU5ycgspCP6idixmjpmXHJo3CADwLpdsTZPqoEtYRJvA9oX3lXZ1gWXLLdfVhI7cbwC1mv0GTu1VPHB4gP1vooUA6iHuIJxAZivbhnMiDrYlZMf4FBchHhzhnQETztOqc3ecSB/vuNw70rAAvrqK+bV81EywCrwluS4TuHlJ5qom5egT16vKZOkzv6uemlL5U7JSiRRNmsFFO2SVgplUCrbjscQrghsdafbobrAzSWXWYvvvflJSACeCFlB6TtBFsCuB26a3YqMtEFvt2QBya9ts9TnzktZNBMXNaltKZd/dX+wzCnGQimgK9jxhp07iKEh0uH1Azn515sddEuGYkBRsRfM2d9m2KYuyHbldT3xrYitT5doEHwVoA5gyVvmrLu9c5/AoSFzOC/mzHTZwUZn3sjrnGEd7yV8ayR3GTcWG5sTwy7cMvxLC8SPefmvg9EI4fabMoy4m0wpatVhW5nnFUc0EKybFg7aaWZo2Oan0iyELGO1VNwCA3a8tSD59EghFc9Rl7ckVufkgtVM326mzEleUOlMcHPJktBBAwZ2WE7ThzcST/xN2rx13v5AslCW9abC0Z3oC830+YjPoGsBUJi81XYIOxBsJcQWuBbsl9a4N0jTJMuxeKuGk2BHlJm1IA2iwuCQeWIJMFZiX3tUJKYAMjpkSOuQA0wFRcZeZ8deJ8aWtSInU0+CZ7gPTU8/xhS1pGqkHuFZqX2YiWR16J9Bpz1Xm354faEBpgarPu3fHt0o5zxDcbLxTgFldWSWTXzZoy/nIONoGpD9LJTk7vx3seznElRTRhCAwJ8Jxwh89+18KT/9bkax95fTr9NHI5aPA6bnj/FyY7mE+aAVLZfGaEheuK/Wf/rpF1tKBa9Zhn2WC4W1keuI4PxNC3YTLaLaFt1IRWKqU+YBBHikh6EHycRUhjVI3Kd1kbYqHkGhpjrvY6TOJKe/RtxNQ/MPMfk4M7zxPfp49bD72lzzM+TjMfGdcF3fKlgOoZ5paUDY0r+zk1KA+t50Pzsba5W3uGtDlM9MFnDKoZj6pMUSpZeT/RfJZy2DHVxBwAUqtyU+aV19xg8M/YN5xTrQHnExLEnJM+IfZjhSmxcY0OOL9yHwInJ/ZzyviSHUw9URdXtlCwpS0qyz+hqerpZ0I7iz1sIcGCG75BcKqA5ntpJk2HiQ1PlmSIM40RlIONIcSMgipnIhFjG8afvBPfV2Yqmmz4ia1c47RjkFLPi6MiGnfFJFzZFDl8D/Kx/+ilgqNgXgXmPeeuHfMB8fLrxzznR27aRNhiWJVjrnsLZZg2ra3hzeO+58q806Ie3se1C8m5uYGKLFEd3U5SFmjSjvvLOBsf3BjIGoDBAspi/FZVX/JpzfqAXjNJ+zsdKyLBmA5m+3Oc42g1bkM3IRPCXf28MpEvftFkyIJOWtwnJ7D8XNhfqJMY+OMMkDjK9i9Trz5bU/cmzMLtZDFMiFRan26aFbyjTv1bURbVtxWqJyRlFiyd1PD1S6OW1TfSLNJ6jATdcF+tFO0TKLDRV1qWc1Val7GdXZw3b86WqGw/jLBk3aBcDT7nO6zV60xkxhALxV/TMSdr0eHFu9WStZZq3Q0zalhS1jIexFu0QrbMGiA8Nqcs6YW84iLlyraeL3nJsx7agnHlYhewZ9DNhslnCIcQi3f2K8AkpVMxABSZz+/kMtMOE6EX7ziyQ98PRAfP9qTdrkGFpcf4qRxIO5s2JBGKtnaeekMks/3XYv2OiqtYGXZ3Nx6lGXF6/3SpqR7Cu6y/CCnmlwCPxXzLVyYccrnDUSFuHe2iersvj/nXeMcfpRDogVASYqELsxOilwSYc5x0eiZn3gz+dnGD/N+AaItbdSMuCnoW0C4aEG9MpjJaY2Ul/7WBzVTLQtnAIM0nLhwXbo0v0ZIReuKlyyRploYkkGSJBBABl81ArWDaFZ1Tcgl/44tNZVXVUvEBY6fDfzmdz2nLyM6JBgSYXq6EGw5k1NU+yqb3oqliqkUEP2CnxYBusWT9ucYO5aCX1w0xl26oHG2o3n+nCeWtW69iCUpX7bpLQAyAVxUwkNax2zZk+IFHRwvv/L8yV/8EwAfDw98OryxtKR6oXJIoIzbbjdtgFU+r2K5Kljzjlu/q76pFg5dv4WndouJmunIykFIceOXbJZ+CSDtNK1UD1sWMnn7pWZrLe6slfN+/JeOP/y9H/I3n/0de0lMCCf13dGbxrttlhGaidTn7ful6SOAtll4BXX1cgZStJqrpTeNyTYcFksJRnJ5oy37pIb4C/dH47RyJS+cnzlefQV/9Pv/yfc+/We+FYRJhZMqA/P1EWVLaq1zDbq462YyV/te7fN+n63ca7RLZQ1OzdjLTlRxFHmQVYRcNFSF2KT6oiATuYAo+BO1Xl/Od5fdoPaXm9NBeP1d+Ks/+3u+/+If+MLvCOz4eXqoUwluaolwsXUT3kgxhbW69EWvVVWwTKa9pAGguVe1qSXojXHa2pJo3hQp1YG8N6hY2FKp4ykZHMFfFoDBQFQP5+fKd//4J/z15//Gn9//BwA/m89MCF/HO046ENXljYCmJtwfoKiANHWcqg1bW9mdVlQwW5PbArLpuzxv36va1WhZ4eQWeG36Fs2l6O6clCSpZ49+/KsX/G38A3748Rfs8s+ikgquMbFA+aFLLpwtZ5DWP+S7Vp9G6Pb2LR67dXUcdZWpl7pQa4Jt2/ZXUL1s2sjtmqi/broKx5/e84Ovn/Cjjz5lt5vq9J8eTvjcXz3EtUS9WgdZzaUxudXRlcZEUmhebTcASmUxB6x1Eo3mlPVZcWDjHQs42nvKBqCV9tZzV7q023A0/ujgBPrmwEUPtb+TPK1tQhW49t79LTNov7ZmtmU2ecLtJKEh+XaIsiblWSXmBoD2FGKzmKtUppehBawRzMhc1hqrKwPKXLd0HGpye9Xj+p72nTS8sHkJ6xUst9N68m3bVWxFo93tpRiHysazrXloJ3tTW3pknVc3jZNS80LHMVWQog1bPfZ81MraTXSV92Xv1Ap0ZRaNg7i5dbS1WlvPukX4kEsomlTJuxN2Y9x6prRMoMjQA/WhwtzQ3P7Zh2jNJog9t8o1UALLEUBYKCB/DeXeikM2hGgfafes3nxsIlsvb2jNVb835Fl1eYuXWjPvnUGRZetdXd9eiLshr8euq2CwxiTbGF9F5FtXq53rW127jos+ZFFyxzfOSlyZ49XCUZhGN8bbUMkrZ9K36YW4NZk+FurGaJuU4HBFuh9ybQpMBbr33q0HbP4A2O7Q9qp9oDC9u74F1K13u342X/lQWT7k+hBN7IDaqBjf6JibCrAKCVa9P9LfZhzWDLJqsjWxbwLcFrHf8obdY4W6z7hGYete3/cNc9kU4H0TumUaV+02AshbK7flIG49z21aMdbmtvXCxr12nA9axJvukNuT7CbzDUOa98qzFBff37wV0V3FBk0nj3W2MoVvKOwmFz0SflRZtNmvu9XvjWfLNresv7fvbwwtlB8FtkFks9O6suGSoMq1h6vBZG/z7xO6l7HrowZ5+YtoE/RtaWdLE933Re5ukK0Yres+9AI/Gtk2wtRJ9T1+wPVNU4P3yrN13QLzkQnewAvX7nysWnZvr4DcEnTLW208exSgDflX3X5TYmwdTm8xvXyP9Pf/50cvoUKzkh0AAAAASUVORK5CYII=\" y=\"-10.054001\"/>\n </g>\n <g id=\"matplotlib.axis_5\">\n <g id=\"xtick_5\">\n <g id=\"line2d_11\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"202.331087\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_11\">\n <!-- 0 -->\n <g transform=\"translate(199.149837 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_6\">\n <g id=\"line2d_12\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"238.722391\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_12\">\n <!-- 25 -->\n <g transform=\"translate(232.359891 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_6\">\n <g id=\"ytick_7\">\n <g id=\"line2d_13\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"201.603261\" xlink:href=\"#m8663bda407\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_13\">\n <!-- 0 -->\n <g transform=\"translate(188.240761 14.798438)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_8\">\n <g id=\"line2d_14\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"201.603261\" xlink:href=\"#m8663bda407\" y=\"40.112262\"/>\n </g>\n </g>\n <g id=\"text_14\">\n <!-- 20 -->\n <g transform=\"translate(181.878261 43.911481)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_9\">\n <g id=\"line2d_15\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"201.603261\" xlink:href=\"#m8663bda407\" y=\"69.225306\"/>\n </g>\n </g>\n <g id=\"text_15\">\n <!-- 40 -->\n <g transform=\"translate(181.878261 73.024524)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_13\">\n <path d=\"M 201.603261 83.054001 \nL 201.603261 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_14\">\n <path d=\"M 274.38587 83.054001 \nL 274.38587 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_15\">\n <path d=\"M 201.603261 83.054001 \nL 274.38587 83.054001 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_16\">\n <path d=\"M 201.603261 10.271393 \nL 274.38587 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n <g id=\"axes_4\">\n <g id=\"patch_17\">\n <path d=\"M 288.942391 83.054001 \nL 361.725 83.054001 \nL 361.725 10.271393 \nL 288.942391 10.271393 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p632e2f624f)\">\n <image height=\"73\" id=\"imageba59599bff\" transform=\"scale(1 -1)translate(0 -73)\" width=\"73\" x=\"288.942391\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAAEkAAABJCAYAAABxcwvcAAAiuElEQVR4nKWcaawt2VXff2vtXVVnuNO7776xX49ux43tdnvAeACbxAZMIiIBIZESEsSnKEpEFIHyjShKlChKpAQBQoqQIkFExBDhBBQTieAEDMhhsPHQtrHd3e7pdffr9+57dzxDVe298mHvGu7tbgspJR2dc+qcU7X3f6/hv4Z95IGf/7eGCQBSC+YNlHRIfu0MgkAQpBa0FrRJz2IgDbgGqruGNiARzOVrWLpMsYi4taF1xJxgKsRCuPlRuPbobf7Gjc8BUGlDIYFFLGnMcRImfP7gBl+/s8fyeIKtHFSBctZwffeQJ3ZvsleccMGf4og05lmZ57Cd0R0TbXhueZGXl1s8fXuP9aLAguImLQ9evsuV6TH3TQ8oJKBiADiJKOm1B0ANDHAyAOTyOUbvyd8RMAXzhgFqQowQKsHUkJBAEgMi+FX6rSmYywtiCdCtr3purS7zS/V7+eiNr7FXnLDhVkykwWFErXloYx+AO/M5d47mtK0jBuXW4SafWr4J7yKFCzy4eQ8VI5pw1Ew4bUpWrWfdeJwaIsb2fMlk+5jKtRQusFudsuFrCgkUGgAIphQS+qn7/pWAqQ0S5AxifqtJHAzFnGGawIwOBIjekCCEChBBgiUwImhriEEzVWRiuBr8MiLB0GDsPNXgF56jdpcvbV7joY27XK8OuFwcoUQqbXhocodtv2R/tsFXi8vcOt5gvS5YrwqWBxOIAlFYXCspfMBMWLeO1aqgXXts6XGbDbP5iocu3OMtm7fYK05ozLEIZZITMQoJBFMC9FIUEeSB//jvTFpBgoBBrCIUhk5bfBFQNWIUYlDMhNgKHBVIk37j1qCtIC3pdQ3aQizSs7SGX8Hd716xd+GYOwcbXPhfU+a3WvwyUG+ldZIAJ9cdB281rj32Ku+79CxbfsXMrQdhxqi0YRFLFqHiJFR8/fgytxYb7B/OwYQYlRiEa5cPuDBZslMueWi236tPd71oSjBlERNIhYReeiLSS1RE8G6rIQbBDKpZw9WdI+7fuMfjmzdZhIqX1tv8ySsPsFiVhNaBCFZYEqEGWg+6BlcncTQFa9Kko4c4ERbX4NFrr/K+i88yu7/mj248xGE9ZdV6lo3n7qtbTJ4r2fqGsf1V4d6tq/yP+RVCBWEjcPWhfd6++wo3JvdQif2kNtyahzb2uTI9YrlT0EZHa0oblYvVgqmrmbqGmda4/LtoyvhwEnswOoBC/k53zl/fOyBmw31945CH5/s8UO3zWPUSm7rimfoyXz24Qt16YhRAwUcsG6+koopEQSLErLG+JfkDSbZrfzHn+dkub569yg9f/SMu+SMu6YLDWPGbN97Fb+w8zul6G7eC8hiqA9AGonfcCnucrkte2Nphq1yxXayY+zXbfslecUJRBiptknQgvZR0R6HtGenpwHESaYKjyV6m8Gcliax2cvfmfZYuYBxb5OfvfoDffeXN3Hx2j3/xlz/OeyYv8HO3/wp/+ur9HC8m1CtPrF0y6pY8nq4UXQl+Kcm7BShOwa2M8sTYfvIAPV2CGVZ4Xv6eqxw+Fvi2d3+df3PjN7nuKzxpoC2Bu2HNz+5/kF/75Ae5/CdQHYb0WxXamXLnCaV+cM0H3/wMb5rfZqb1GUOrEvuJd0cnQYWEM0B++eQaB/WUk7riPRefZ8uvKCTQmOtVVN7yz/6DSUj2ozg2qkPr3fUL3+2YPHzMoxfv8MrpJieritWyJCxdAshAVproQCO4pfQ2SRvwC2NyL7Lz6RehbTEzRJVw/SLN9oTVXsHqgtDMhXrH+M7v/Rw/sPtZPjw55rm25feXj/LVxVWO2im3Vpu8fLzF3a/tsvkNxa+MZibEEtoZrHcj7373Uzw83+daeZhsSqdC5ySoszeLWPLrX38nq4MJslbMGzJt2dhe8oHrzzJ1TdKKG588RVctum6Qo9NhMpOKvb37uLfc4vj9x0QTVCPScafAIE0dW5DhYS49i4Etl/2Kmgj6/KtUKkxUQRWbT2kvbfLbe4/z5CPXeP+lZ9nwax4o9/nY9hf54OSYl0Lgy/UVfrr6KC8216nuJqmt7hqTfZjeEj678wBP7+yxM1syL2quTI7Zq07Y9ae80ZHmY5gaulKsLjheer5QXadySTrlex/5CWO5wtY1MptCjKAKVUncmnHwLVvwI7epW0cTHHXtaRtPqBXWDiJIo2gt+CUkT5kIZXVgzF6NbH7i81AUiAioJMOlAt6Dc+m8SLpvGjnx4ha3PrDDvXe1/NbHfpr7vTKVclAfjMO44q994Uc5+Pwe1/+wxa0i0QthoiwuO+6+M/Lmx27yoUtPUWniXZ2ERVNUIg6jMcdxmPD88gKfeel+wpPJNiZeB/Kxvb9vI1iRokiD946wu8G9t26x86MvcLiesG48detYr0piK1hQaDMTbwR/okgADYKuoTyE2e3A1ie+mEA4f6j2iyJO031FQQVRxXY2aXdmLO6bEJ0QKmG5J9z468/yw9f/iO+bv8hTjeNmu8NT66schwm3602eX1zgq7//MLNXhOog0syFdio0G7B+bMkTD7zImzdvs+tPqTSp1DoWLGLJ06eX+PKdK6z++CKzV4zZ7YBHXVpVSCuaAQKIpSeU4LKaqUZUFRFDHCARi5rInA4qFsWQdszeHYTwWpBixNoWkQx4iL20GcBqjX9V2HrGp/OTinBpm6d3H+SfP3yF/3z1NlPfcGlywqOzV/mh7c8A8ErY4Mff/rc43N5icivNxS+hOAb+fMqfLR7iya1rTCYNW5M1KkYTlbp1LFYVq6OK7UOojozysMVzYQtiRELEXLIRiCB1Q7tZ0GwIISoqhlPDa8QXoSeYbTu42limkEScAJmZA+I9FiOY9eD0kgRYiMkWhoA4N6iganodAuYctC16csqbfqrjGZ5mOuGZR27w6fc+AX8XPrbxJN8xWfHZ9/4X4nuNSOSppuUnnvkhvvbF+3nwt1rkj8GkxHzF6ZWdRHwbKJfGbG24ZURDjYTEB+V7Hv/JXt2sSAOSNk1o/1v3OHgMHv/w17m3nrFqPavG0wSXmG0UVosSWztoMhVoE1+SABe/aGw+c4p7+maSpGiY2VmQQsC6z0JAVED0zGsZL57Lrj1/BiBViW3MaC9vESaeUCmn1zx3vr3hh971Gf7ppT/gOBoHseTZZo/b7SZ/vrzG/3zqrcx/d878VsSfBiSkEAoyx1PBBLxNiyxJhhWD4cSMeltotlJk7CXixFABJ4ZoUg3JnqFT2cxLkS5ua2JSYXVgSWKxDFI0TCSpm4IwqD4j7TSzQV1tMKGdnbO6htMF/s5dvHPgPdOrF5G4w3+/835+48HHKYrAfFLzwavf4Pt3Psu7p8+y8ZY1vxLew8G9Cll73Eqo7gkbN2PiZjF5Z9/OC3Qd0LrN6iYQkkFd74Ds1MmsaMRpxLtANBAT1ARVS0Fvm0MVNQxBV4kaoCBlmSaXJ5ukyaBtSYoJEgIUIwIYbQRYwDoqP3rdS1UnWd5D0wJr5PmGvedeYu/jSXqlLODyRX77B78N94ORf7j3Kf7R7qf5Jx/6v/0lPl9v8bMvfhd//nuPsPM1h18a2hq+nTqcE2LliKX2A9TWWF+MbG8vUDFKDUQnmKVHiEobZFhcy7moIIhZcp8K5hSbVkgb8hcLxAxChNZhbUA6yQr5uXsPybg7l/hM/kw6qW2bXuUICcDuvdVN8pJZ2mJdI8sVD//igi9/4jH+wcY7aDYL7j1WcPymwEff+yQ/duWT/MzDv07zEBzEklfCFq80O3gUYqHgLT0z3DNutVzeOGHqGtqoeNNeorrF7qTexFLwm8M7LHEf8wreYVmFe1S9IU4Rl8GLEXODGopoAisOEtiDliVRzkYeWcJCDyIBrANRJf326BhZrSiLgnI6oVhcYP5SxR++/AS/c9/b0M2Gra0lv/jEL/BEeYfHyzt402QPIGUKyfMLlTDZWnLf7JDKtayDp40OL5GiB0kQzeSzw1cNYspY9pJUuMSFLNugrHpWeGTd9CBJBwgkGmJZVeoG3OAJJSS2ap0B7FYrG7JeNfM5UUEkEdfueta2UNcUh0fsPAk7/9shVUnc3WTxwBb/7V+/mx/Y/ixvKRy+mWtOgEEXOJsKoRCci1SuZao1J1riNVC4lFaIJjRAWQZiVEKrWBGzBKXsQMpeCrHKOSNLkkA7qJM5h3T0IKukhJhAiZaiL+97kRXAmiZ9Zok6dJ6RNrP5sbp29wnpHslJdGZlnSiGc6ABvEPvHrNxtOAP/vH7+IW/8+38zvf+FF46CXcptRodRC80G8LObMml8phVLF5zUxWjdIG1RlQjUQ3zQMxxnA3qZV5znGfJZkQGqRJLEmGWBhxjmlAGTmLiW9LZq+wNeyeQiaqYh1r733U0o3cSHVhmfSLEzNI4QkBI9pEYoWkobh4wffEa/+nuB/GdqpkkcGIBoYT1Djw8O2bPn3Cr2cruP1GBNQML9y7gnCe4mGxQTAlw0+ztSConIWJIsqtOBvPUR8UJYKKAT9JNjEl1nKYJmGXVll7aJGSK0dusJEmWQZUY+8/sPJntXqsmwNo2DyrRm2of/s8rb8afXlOkTbwmFuDWRjsTJu/b57HNW30m0Etk4hpKDahEVqFgHVKC3ftALBMDjyGpYrtptBMhFoprQ6IXZskLZrskbRxiOjPwkvLoQrJPIa10H9/1EuJ6lTnjNb0fpCjGQfXaNtmyLGUdecViMuwhJupQDORM5nP8yrh9bxMfPdDFXEUS51DCVtkwczUTafpKQkyjJ7ouT9PFfDa46CwR/iSlMoDea4oZtJa5kSQJa3I6IktzrxZesyomYIkZSNOe7EqbQ6mYgXGawCXzrk7N2jbbu0GFx9LWA+M0nQsBCg8GYenx1uXPFGKZc9MF7E1P+9ywk4iXQE4e9unN1hwqWWEyd7RcuXArSfZFBcsmTUxQYl+FMRHUbMhHnRnxADhk29WdHNOJIIjEgfF3v2+kB4yOaoxYu5klIM8xeJGIxZg8rwG1JkmKBcQiGV4JQrNp/L1rn8ZJZBWLPukeUKIJXgJeSiLCZrWmCcq69sRWsVaRJqVMQik0c0WDJZU2I5QebQdXby5nOAcjldWKXBw1tIl9sEw+DWCqCHHwVqr9dYXBo+FdkowMkHSq157LTKgmqVPBpiUSwB87fLthRD94pnYOYTNQSEtECShNlhgsgiiVtkRTWqc4iUyKNge9QvSpbuWXDjES98o5tW5yMbFPJBpR0rNF+oScmGAu1e8kWm/PBtKdbJWIYW0H3MBsTSSFOM71nKyP85xAE5IdKuIgbd33XImUBe3mBIDiUPDtNLFf05QDikoqI0tgZUrIhiLlhhMLdgKNBjSk1EmhqYLaepeCfR9TFTcXMDt1kc7o5OquRHqnkb4viAqWk/6iSa1U7CzRDGQHYD2HNRt9LoLhknnoDHkHUmfwVaENKQfW/Xb0+zBJALu14LlQ9xVQK8FqRYvIrjvhpfYCEaXShhAUJFKIEREKS9mBiWtonKMpdFR2ygD5NBkaS+VxGHJMlqq+2hraCtqMV1Ry8i6HNi7FkknKSHVnAw2R4EZq2HlD8ndiNnbjBGAHoCTLajKMpwPTVAk5jnU1ePWR2GgamBo4w/mAwwimrGJBHNXGu2JeI66vnTuNlC6wNV1xaFNqsp1rk451dqdX/ZD5kQdzwyOBJL1adb9R0jp24U53BNUkhTHZLZxlYDOF6D7La9WD2UnUyAGkGM+lZo7CYV7QFsojw6vGPIlkJCebS67tHBGQviQTTPtSTF9B1ZAMuEa8RkpNNXjV2FdLzOX4TgwZeduY8yNiZDqRs5idCmZ2np4TyU1gZPPST6xPtBDdEPEj6TPRBNS4aisxNXlIVtfz3s00URPTJJlJktTApbBCNfKhB57mw9tfY2VnQ5GuspDvhJIaDEptiU5QjDq6xMyd9eqWejBGVpsEnkSQJqtlTyjpJUMsAZPOjeyZkT+zXkVNONsR04taB9bIgzZZpdKksgpbn7+y/MjTRBvDxyiEoDgX+fF3fJL7y33mUnM3bLCKBSrGrj8Z3VeH6qYYlQ5utNQwkEoB81lqAImDpHRSZDpkBdKAMlccAQJJPQdJ6B5CKLK778ANNrp+YvDJdnXxmyA+E86eakjmTNana5NnTX0M7VTwzXHFZGfFjd0DHqteZiJNr2ZOjJIWlZjogKVAtcGhJK/TMfGYAXJZImMXuGtWE+mAyc+RQT0ss+0MlnVgykgl5TxQyfCfAUlH0mjD66Te4+9aTzUG5RgtbkdLHDQzwbtDx+79p3z/tc+x6xZEE2oUJVJIiyP2tfGa1FzgMJyk814CIYun5oBXXSQWlsU5SYjkRMAZaYpjwOg5U6eKvbGXTCV0AJuYDGuSkgR+mlxWk076LL/uMAjd/QfQhrz8YBIkGNEJ7Qb4n/y+j3N/sc9Vd4JiHFOwiBUrKyglUOiaiTQ05qnNMdeagzAjIH1vjxMjSuJM+4dz2lenTBdCmIBVichpN+mc1u0Aitk+9SmWPmE3qA4M3u/MOaVfoE5yuuMsSIlqdNytz6AKZ9WTREXcKpHM9BvBv7N6gSIb4ibbm4AkgKSlIDCRhvEx0YbGHJW0PTVQNTb8mqpqaYG9J1tOLzuaDekzDOaTMU8DTWrQSUbXFCIRCINHG5aWQRTJYI9AMzvjG844A3PDwvRUIN/b1dn4u5SekRa0jsRSew/tr7iGlcHCHCtzNOYJpkykQYkZrJDOEymFJFnqmLk1h2GKWupT3CmXbE1XnFRz5k8fos026+0Unqy3hDAR2knONowmb9AHz+Oj505C5jzpTd/3pMn79FKU7VgnZWN1Nc2L5QYwrZMkUro6NcEZ2gTamSMUQvS5Z9IJFKRgdmUFAWEudbZJ6YoTaVIeKRa5bydRgok2qVPMBK+R9156ntMLt3jmZy5y808vsvMVuPSpl1K+RgSbTbBJgZWedl6w3i1YbynrbSFM6Q1+JzndJLom1U6NOgns1I3RhCGDl+3PwP4HCeyu0YwaZd16MOqrXU+9IzRbhm+AkH9VEnCa2mTmWcU6Ujl4vGQ8SkndZdtu2XdpdBmDSluq7ZbVOz23Htji7juu9d0mrhbKAyhOUu/S9Naa6a2cc8orbk4IlVJvKs1cWO/IwMyHVtiETduhMqhs78bbfE4GCetSx2O71t3XNblI65XVrrK4anD/Er8y6aWlkEBBauCcaUswocmWtmFgrkpEJTKRGjKrDpnJFRZSCsWt+KvXDwnXlPW3eNbRc9DMePF0h6devgS3K+YvOIoTT3HS4k/qPgEHYKXHrStc7YhOiWUGaqROlsOaThJkRCaDy5XxDFLvwXLXyxlV7OLudTLWsXLUW9Beanjivpfxi+gpJFJIZCKBYiSzrvfPkFux+xBlQkPpAmUMBFK2oKMKZ3oXEZxEZq7mQrHgxvQeH9x7hoiwigWnbUVjShsdx23FSyfb3D7cgK/NufBVY+uZJVu/9xLiU+oDwLY3aHZnHD00YXEltUZbkd37WMUKkkEZqW4KlTI+HZfK74vjFlNhcaWknRlXrh7wYzd+Bz/TtgelAyiY4MQIJn0WsvNiIVtaJ0ZtMNN1TzRLGyShC2uCKSsteilsLHGtYIqqMSkHm7ZXKZerE462K25e3OHW2za5fVoSTx/uW6IxKI6UyR249IUlF76S63aqqdpTOdqp5/AhT5vbBfsjO4C+G697nb2rWzSYU7TxNNvG3uyUudR4hw32ZvQ69L6S/rOY47W0nOBGbhYhE8wEehEHwE5jSczqWJtnHZNz6Jo/ezWWyK4/JZjy2PwWzaUE6Dp67tZzlqGgNeXr+5c4fG6bzZsl0yamDAA5LKkjTgKTe452lSo/vcrlHqowkbPktE39nbpuiZVP39ts2a1OUYn4U/O4VKM4Q/0blIKkggCn3Q6LnKB2GI7IyopekjpeVY62IETSeTdS41Ve3gSUT7bPfJYy33M1YgJ+pjUzV/fbGR6d32Z9w3P0vmkKmUxZR8czh3u8fHsb/3zFI796D7l1Fzs8Iq5WiPfoxpz2bQ9z/OCE1a6yupjA8/tw8UtL9PCU9sYup9ccV67sc6U65m7YQJ587npPwfpOeM5KUf95lq56FG4vYkVtrpeUjjac2iDnjflews5Kq/ZA1iOp6q5Xm++dQqem6ziocWfXogkqxmlbcbeesb+a89z+hbQHJefdqRV3qlx4Uth5ZoW/txxKWnUDd+4R33QfR49usP+48LYPPcX16RFTV3POoULT9zvH/nX33mULp71rgCgNhbQ02Tf3+SYbh+4MaRaG1y5LaW1Q9kw4UFjqtZ5Y0wMUTPu4sTsCcqZ/e6Y1F8sT7p8VvHP3xX5Rl6HkqK144eQCN5vrwITZnQK3zOWsCHp1OzmCa0KzE7g0OUElctDM8BFJAGCs8moGhAqjGg2gHKmLkuxfQHDaSUbdDyqdj/0EGnOJpJr2Epeuk7ILHffqF2TkTMa/CaasbNVf8zRWzLQm2hBONdGn/TCkHFfnWXeKBTcmB5x810usP+KJ2VkcNhMWbcmiKVktpsSgVFF5cHKXxhz7gJ9IYjiFgBKII2BOzdOYsjLPftjgdrvFN9aX+NO7D7AOSXL+0varvGPjRd4zeZbrfujXVlLzVySluJP9UZpMC4Z7lMlwSyaunRfMcYqTiMt2sBBw1nlgzWkdxWXetohV3mWkvZrGPP4m+gTcKMBrzHGlOkqAh4qvyBWakCpDe8Ux61jQmMN//PgJCglnepy73UCltMx0zY4ucBKZ65q94pj7Zoeso0clcr065JI/YlNrJqM25HGSsMEIGFECwQLNCKTCYp6Q9NwKRhTinP1C8msZpBFSBNCMdhol+pIdirUETdI2fD4kDzsvu1mueeVkk3uHc37R3k/dehbrAnnkl/+ViRiillr7UmaD7fmSq/NjHpjf5SPbX+F+f5cdrZkJFHKeHnT5pDcy+GM7YoxCLGob3jcjlVt16pMlr/N8Kyt6wz7eZOMk9sa/lNC/TuOzfgGO4rQnvKtMRzqb98zpHp958X785zaY7BtuDa4x5BNPv82UVMre0eUZw9ix8DEwbiQFrweKO+cZA9afC68tZr8hoA1GMEsdd6T4srODXbi0yrYu3TfmTIVk21WcsWXd0fR2N6npaaz6Bfi5L32Y9vk5m88ok4OINqlvyz/o71FKpBCYjSadS5E49AwYY6l4veP1QBmDE836650HFAaCqpm8dr/tcuXBjCCpP7uxltqa3kivzVFnO1RmDxlMiTLYQTeKkDtu92K9y6duP0rz0pzJftrco+2Qq/KHsWKmDXNamrGbFsEhZyYUSBPsgOqez0vUeYkZA9Nf/w242PhzJ0JxHuTxtaVT3yR1K4tEoDbtaUS6v1Lj8nOgwbGKJQdhxiJWfPHoOs997jobN5XixPArG4oKgHzrj/x7W14WTu+L/O2P/CFvn77I9eIeF3XJpgYmIhQjsMbgdIdmQPtV/wuCoiPzHolvqI7ja58/ohkNxmk0VqY4MQqMw1hwZBWrWPBQcZATislY/9d77+W3n3+M6hPbQ/UlpCylhpQJ0LX1MZ6fv1xTHTumrzp+bfUd/EplKYnvSD2QzlJnh8+NnFH4zse+xhObL/DOyfM8UhwxQahynqIDcAzKG07wjAlPR2ORprdLyZivzHGajbYj8nR9mUWsALjVbLOOnkUseWW1xTMHF7lzZxM79X1AjCMHyEBMDe2TfWP3K8uUv/JCKDUl6mKWojYVbWPp8H7RUhzVzKKx83Xt8wgSjVi6VM10QqhSGlabyO/9wFv5wsPXePb6Hu/feJpNt2QuNXV2qQ5jR5dUEiglmc+5JokcA9eB0Rnn4+g4jhNOraQxz2msOI0lKyu502yyzqnlP9l/kMN16vo4OJnStg4Lgh2UbDzrePBLDeXBqu8dkLpFVk3qrWzaIVdihk1KKDxxUubWwaG7zkpPnBbId33gX9q4ammFYiK4dW5wktTS17XBSIhEr8TSESYpGZbyOEZ1Z4UVjmbDs//2kpMHA3qxZj5f8Tcf+TPeNXuW+9whr4YNboctnlvvsTbPK+stXji9wFeevYa7U1LdS3vn3CqlYNe70ldVpneMjZda3DJJoXmBmNREmoi2EWnSPpG+GWI8+XWdt27k6kHX7Vb4YQNSbo/uDt9dLJVxBGkN6coP+ejET0J6KNDOPasLjmJhaBspFi26aMC1aB3Y/bIwf8nRTieEcsIvX/gIvzS1VPpuoWuMkCa9dyu4dGi4teHXMZd1UiqjPHaEMuWiXZ12Ebllm8Zj5Mna0IsUUhdbL7fnqcq4U27Usykh0m8S6ppYRfC0MXf0K13dfZza7Kqq2kZoU4eYOSWWSr2VCoRuTRpYTLu8Zd0wvdkwfVn7f5RAdSgsAtErVirSpBqXdL3d3aDbmLp0vYJWtJN0LZPUctOPpwkDOHmy6fejVr+ug6Q7xo5H5ey5roU5t1Ajgtd1g5nHun5po2/h7TfkYMiyyZ34ApXvs3lJnBOIslwnsc3VEBsVDs/k8CyVbWjjqA4mZ0AkFxFj4Ti56gmTJEn+NLFKqduzkx01y78GmGxjpGtAHUvUGCBJHSU4d6bxy1veGSRtBJ8v3HW35vIK3VaHDukwaqPrMn65K63rikVj/l8TSVKWJ31mRWPOYHUVjNFnEmOqjHQ9kL1DGU2qr3yMgDkP3AiQFPLp2c/7a9kQcJ7revPW9Ud3H8owMXR0vrtQHlwPUFeu6YANEdOYV8IN14iQcr6jgXQa1nX/n1/ZrgkrQJee0vabMP7ce3AGnDzRHpcRRvJ634XXAO0h1aj6rZ5d6WUMBiRRPiOqqdsjFiMpalPvtAA2SVu2LHYqZ8P9xy143SMybOmCvKUiIm3M/5qTflOexuxkcudtoLchdF4Lzqpb12gf7YyUmALqkpSqDcYbsML33x0CmU6ss7eQeM6QegeNIU2bV75bjWzoRbD5NPOQNDnL6ntGJbo2t+6ePUAje9FttBHFnBLKrCohV2ab0I/vzLXHknhe7br9Kt/sGKtrt/VfBJ8mnAbe/Z2PZDd6Jik0VsmQWKm2uU3mDAjx7IqeO+QNzvcrra8zUaOvj0l7rhP3/+cYty13NnhMD/LhE7/Ikyp9mmSeuOVVl3MTlxBw64hfJo4jIRl+WdewrrERoK8B5fwKjxd31NDeOwEz/NpoNPUu+VV4fYBE0qJ2NXunw5jzJp4egM5z+VGl0gyTQd36MYikjcrWDptTut1B6b5dfiKmjXld9D8raacuVUNdNq7rtH/Duo3ITYvYyHC/wTHeJMhYQrIhT81UqVlLc+OCdMmlUdvxmAJIHDhOGn9uTOobT2V49NoiwwbF7hpZwvy4/v5Nj36PWcx2ZuBJY9TTRud8LhpJLM8x3jGb71f3rFGVENOe3hj7snU3Dss2a9iUM7reeM9rfk6gnaUDf+FDBC+LddojW7hv+uNENKU3ytpEXG1nBo93SNumjXqdEQzWbw3tvxdex4C+gbGVNuIaI3oZ/hOuS3dnJwEM3llHG29e7/pjaeoWB9KeOk2Se2asTvGyrjGpXrvdHF7b8js6YqE0M6FYdu40i3P+RwjqVFdHZNjokm969kLD3lvLgWVvQPOhjSFVznZWij8Zedwow3jz34fYWOrNhnGcF4Jorx3PSFsGCpD/VEXq9rWWfbTiPaUPAVk3uHXANS4Fv+PNe+dp//ia3QBGAzrbzBnPSpQlaexa+SCTybzaqUe7a+cdqVl3z7HUwOAYvpm6nV/IaPh+B9A6r/z5G3U3yx7OQorR3HKKXxV9uzB5a5SdN/rnVinZGvda8LrnEZCiKcVBjukkpv+plBiT9/U6kMnRJLsW434uY6+Z53bGYYznfH7uwP8DyS+4eZDpzkcAAAAASUVORK5CYII=\" y=\"-10.054001\"/>\n </g>\n <g id=\"matplotlib.axis_7\">\n <g id=\"xtick_7\">\n <g id=\"line2d_16\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"289.670217\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_16\">\n <!-- 0 -->\n <g transform=\"translate(286.488967 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_8\">\n <g id=\"line2d_17\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"326.061522\" xlink:href=\"#m212c683efb\" y=\"83.054001\"/>\n </g>\n </g>\n <g id=\"text_17\">\n <!-- 25 -->\n <g transform=\"translate(319.699022 97.652439)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-53\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_8\">\n <g id=\"ytick_10\">\n <g id=\"line2d_18\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"288.942391\" xlink:href=\"#m8663bda407\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_18\">\n <!-- 0 -->\n <g transform=\"translate(275.579891 14.798438)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_11\">\n <g id=\"line2d_19\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"288.942391\" xlink:href=\"#m8663bda407\" y=\"40.112262\"/>\n </g>\n </g>\n <g id=\"text_19\">\n <!-- 20 -->\n <g transform=\"translate(269.217391 43.911481)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_12\">\n <g id=\"line2d_20\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"288.942391\" xlink:href=\"#m8663bda407\" y=\"69.225306\"/>\n </g>\n </g>\n <g id=\"text_20\">\n <!-- 40 -->\n <g transform=\"translate(269.217391 73.024524)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_18\">\n <path d=\"M 288.942391 83.054001 \nL 288.942391 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_19\">\n <path d=\"M 361.725 83.054001 \nL 361.725 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_20\">\n <path d=\"M 288.942391 83.054001 \nL 361.725 83.054001 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_21\">\n <path d=\"M 288.942391 10.271393 \nL 361.725 10.271393 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"p3e6eb83261\">\n <rect height=\"72.782609\" width=\"72.782609\" x=\"26.925\" y=\"10.271393\"/>\n </clipPath>\n <clipPath id=\"p00e768f8a2\">\n <rect height=\"72.782609\" width=\"72.782609\" x=\"114.26413\" y=\"10.271393\"/>\n </clipPath>\n <clipPath id=\"pd6dd7afbef\">\n <rect height=\"72.782609\" width=\"72.782609\" x=\"201.603261\" y=\"10.271393\"/>\n </clipPath>\n <clipPath id=\"p632e2f624f\">\n <rect height=\"72.782609\" width=\"72.782609\" x=\"288.942391\" y=\"10.271393\"/>\n </clipPath>\n </defs>\n</svg>\n",
"text/plain": "<Figure size 432x288 with 4 Axes>"
},
"metadata": {
"needs_background": "light",
"transient": {}
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD6CAYAAABnLjEDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAtbklEQVR4nO2de7BlVX3nv7+9z7nv2zT9oGke4SUyGBwetohgFEUUHyPMpHwwRknCDDMVpwarYimMVqaczEyoSlXKP5KypBIjViwNMzqBoImFIJPSOCAPbUHe8pSm34/7POfsvdf8cQ/33t/397v3XLrh9G3271PV1Xfts9baa6+919nn91u/h6SUEATBa5/scA8gCIL+EIs9CGpCLPYgqAmx2IOgJsRiD4KaEIs9CGrCIS12EblMRB4VkSdE5LpXalBBELzyyMHus4tIDuAxAJcCeB7ATwFcmVL65VJt8sZAagwMvbzzoPf4bA2xdfg6U6lbZPZ7b2hocNkTtTsd06YsSjqiG3nnERrvQd0RsdcMc29X0DNPE5/GPbU+Ojg40HNoBc1dVfK82XZm9CuZKO5jBc87Dzd5V20O8QHnGexZA0ipWv7czvAXz3+nPYuy6Hhdo+EdXCHnA3gipfSr7gm/BeByAEsu9sbAEDa//s3zZW/iMxpmjmr5CgD4OcnELqh2oR+uNDuhyoMj9kvojDNO1+ep9Fie+/U202Zin+63ovMOjYyaNpI39dh63XAAFU1d3rDXnCo9MSWVxXvu6VhF1yzOPRsY0I/RqaecqMrDQ3b8u17crsqT+/eaOnkj10Mr9VgqngQAib4hMnpeiqIwbRjzJSO5qVPxMbqH1Qrumfezumi3qA2dx5n/RmPh2X3m0fucXpc+30o5HsBzi8rPd48FQbAKOZQ3u/srxFQSuQbANQCQNwdNgyAI+sOhLPbnASz+vXYCgBe4UkrpRgA3AsDA8Hiq2u35z0bHR0ynQj/Bi/as7s/5jmnwT9jKyn+NXNepqM3Y+BrTZg0dm5iaUuWcfrrNjUXLq0XZVuXk/PQEyfF8jZ7eopnrn3el1y90HaEfcp74St1CSIzyvuHzTD9GpA5Bo2G/5AeHh1V5amK/qVP2+tnuit/6oPnp7FwAn4dFAcns88TnLmgpVZ4miSbXu2VVoue/0GNr5PYCxJXHLIfyM/6nAE4XkVNEZADAxwDcegj9BUHwKnLQb/aUUiEi/wnA9zH3CvlqSumhV2xkQRC8ohzKz3iklL4H4Huv0FiCIHgVCQu6IKgJh/Rmf7lkAgyqPVnvu4aUGNDKHU8ZIWYf1Bq7ZEkfK8HKNTuW6UmtXGsaRZSzz5uWVyrlTauUZEVZbrRIjoKIlEi5o5RM1I1Qv56xCypWVtFet3MeviXNhp6nTMhWAkCnNUN17FCKgu0E9Il4Dx0AKronqaPLzYbdM2f9bpuUYinZZ6Myti56rFlulxYbDrEyuntU95PR9Th7/lh8zL2p3b6W/CQIgtcUsdiDoCbEYg+CmtBfmT3PMTa+YBveaVtZrqzYoIRkENcoRReT8x1WFVr+Zpmq6chYwyNarp+ZJecNFophHWHYttyTedmu3fpYOHIaG22wNQxghOmM5LmysPOf2PCDqniOPHlDz9PAIN8zR59Qaht1nicAaDT1PRFjVOPoTErygaA6nvxt5GTjvGRbsIzeoWchc+5Z4uWWnPnv4ajjjT4t1gUs0z7e7EFQE2KxB0FNiMUeBDWhrzJ7qhJaMwuymiOmIW9qWafBTiKOnMwylesnP6Dlyk5Hy1zTU5OmTUG+6OwwwUEaAGCa9n7LjK6nYcefN/XY2PHFl+M44IUnWJKsnNjBw9kLJp1J3jAO7qZNxk45NE/Dw9ZhCJk+ljm6AIORcZ25pLGwXYZ3mrKgOrwX7+xdm2kw0+TdM9LneI5I9Pzw/XA9kdQyjn32IKg9sdiDoCbEYg+CmhCLPQhqQl8VdAKguTjSRtMqbljRxMYJRekoiFiH0bQGDWzskjgCSMNOxRhF0ilLilTjjH9wWLfJSCnjR2dlDWPvgJNsION2bJRIveObStLGLhkZoXgGJjz/gyPk7OM4Lw2tIFKNjdfKyivHqMYoLilyjeO8xNFxWSHXMRGDHYUoB7Z0nlMeizESghOViO6ZMTIDlogcaok3exDUhFjsQVATYrEHQU3oq8wO6Gil4gQ1qEgoZCODZARRgANeeGFHS0oOwFE62Rhjbqy6n0amjWg8A5+ZSZ3sYIAy4OSObsBI0hzd1M0CQroNz6amosATNN+Z03GWc0cmAoZpw8kzWuQwNDhqr3mAnFw8nQnfM3NuZ/zsYGPwomQQPP/e2ArSZXhPpenXGEs5rdjwifUJmaOPUrJ/OMIEQe2JxR4ENSEWexDUhFjsQVAT+qugkwTIgoFC29GlsCNWSnTA8UBizyZOcwQAOUWiqYzhilVsdMjwptWhaDfipJkiQ5smGfgkJ/KtcJScgpU0ViljjGrYww2wyhyeS8870CiwONKqbcPKzRHKiOvYHmF0jU6ttW2byRyGMrHHI5/bKrg4xRJfY+WMn48JzaWfRZf6Nd6Zpok16HGMajj6rfEodKL+ZMqDMLzegqD2xGIPgpoQiz0IakJ/I9UkoLVIZM2HnJTNLPtQtFAv0mpGBjKes4CRyUk5IE5aYZ6egvrwnB34+zNrsPGIjW5jFBU5yZDONbPDiieLZkIZbHLKrpM72V3YUCVxVhbTxBiq8Pw3mvaas2yWjngOKqaRHoszmIrTL9PnNtsOrJhrRGvHSItObaIIe5mL6NnwkrfwqTjSbeU5LyndURjVBEHticUeBDUhFnsQ1IQ+77NnyAcX5PRG08rJGe0NJy57e6sm9oCVcQeG9b4u76GLkykkz0nWJCeFpuM8w0EZWETstB05uUEZQMlhJXdku4Ky23qZUgeH9X53p63tBDigB+Bs/ZoMMU4WH5qX516cUOXhITtPgw3KkEsOQwBQdbReokN2Dt68NCi7Du+Rl9QHYEV2dgbynKRM4N4VRJd1A09wv7SPzplsK2fJriQwLxBv9iCoDbHYg6AmxGIPgprQc7GLyFdFZIeIPLjo2DoRuV1EHu/+f/SrO8wgCA6VlSjovgbgzwF8fdGx6wDckVK6QUSu65Y/16sjEUG+2Kgk9yJw6mMDpPBqz7IxhlWOcAphAGgOcDRQUlZldiyPPf3Msv1K0yqVWAUzMKjHf9Y5bzJt3nj2Wao8dvRRqnzBBeeZNuvGtEHS9MyMqXNgz69VuUOGOLu27zZtHnn0OVV+8intoDI9qSPsAsDk5LQqb9ywVpUHB6yyate251V5T8POZUapsobGWdlmPakSpeYuSCFXNPX9AIBcdD8FKdeyyir1WHFmgs44UYyKkpSSnGYKQJaTIxUZQnlpnpEW+llOCdjzzZ5S+icAe+jw5QBu6v59E4ArevUTBMHh5WBl9k0ppW0A0P3/mKUqisg1InKviNxbdFoHebogCA6VV11Bl1K6MaW0JaW0xdtXD4KgPxysUc12EdmcUtomIpsB7FhZM1GpeWdn7Zs+Ixllpk2yqGPUMUSpk5OJNgs0xkb1gZbOQHLV1R83bS7YcrYqH3/sRlUeGLJfXlWPTC2OG4ztg8r2ajj5LzC6ZtTUOeaYDdSvlkXfcKbt96J36DqzHe2I5LlZtNq6Tqel7+ssRdwFgDzTdZ57+jlTp8z1vZ/cqduw3AwAu3fpc/3j925X5X177VgqMlBKdD2zLasbKEpyEOJAG47sfEyu9RInVfZpGJnSd7+o9ByMzdjgJ2OL9DffcD2V5jjYN/utAK7q/n0VgFsOsp8gCPrESrbevgngJwDOEJHnReRqADcAuFREHgdwabccBMEqpufP+JTSlUt8dMkrPJYgCF5FxAsg+GoxfvSGdO67Lp8vn37mWabOR//tv1bl9cdpOXl42O6hj1BEw2Fnq7HXTxhP0umV89T7puQ2LO158ncvVnIej155crw+eLy9XTcA4YCNpLfwnjE+4t0fjv/AwUM6zu5ORXvZGdlGzLbtnvmBjrbdaKzdpMotL4sr6Y7u+cVWVf7el/7ctPn9B7ap8hsOWJuF6VLPXavS17jXcbDBItuVa3dtxeOdSfe2hblsENSEWOxBUBNisQdBTYjFHgQ1oa8KurPPe1P6/o9/PF9uNB11FSl3pk2aXqt7YBcKTzvB32qscnHyqZh+epU9VqKI6qU4887D43WSrphzrURB10uB6LXp1a+XbYejpHrzb09E0X2dfmfo0DQ9Lwec2SSdGFiF5xl5cx0ef9uZqHxGKwK3fPp/mDobf/IzVZ7arY2AdjoZYapq4U5/ct9W/DIUdEFQb2KxB0FNiMUeBDWhv9FlU4VqUTCBVuVEgaUoo2NkWVE6zvvsfCJO1o+yh4Ttfetx9FI+80q+KXsZtnj9rkQXwHj9snTHY/HGz2PhsnXDANo9spZ0PDmZyp5cPE0XNUH9eE5FLKPP0ql1mA1/LHyNuTO5bHxkgvI65zlA0X7/z5f/m6lzwX+/UZVPu/l7qjy6xwYc2ZctjNjTj7xEvNmDoCbEYg+CmhCLPQhqQl9l9n379uO2v7t14UDTBkkcEA7kp6XGsTXjps3a9dpZ5uSTTjN1xsd1IIcBCjyYcjsVldlY7y1NC9kFsDy4Enm8WEElNo+w4RWsHMl7w94+dZtGyFlEPZmX5W2W4e1dtvvdni6gVxCzpjObfK5hukTrBmNlclb5eDYAe6kNj3/KEZ1bpAAR50Z/8/evUeUrt/5KlXfs1M40ADC0f9/COCYesyfuEm/2IKgJsdiDoCbEYg+CmhCLPQhqQl8dYX5zy5Z08z33zJe9iDKsIGLlSOZEl81mtVqm6tisMVNTWrW0b7vOdPLrpx42bRJ9Fx63eb0qn/4v3mzaDK3RisAOKfW8NMN8B2ZpDgrnFrEiylM8cbMJOuIpnto0voLGMuWMnw1IVhQdlwbnjYWVjnyNI7BMsEKuh2EUYBWBbMwz68y/mW8+j3OiIZr/wj6meFEn8cHGGd3Rx4+zHU/vWujoDz7yDjz60APhCBMEdSYWexDUhFjsQVAT+mpUUwGYXCTDevITy6KTVD4qs99P1QhnQ7HZUYaP0vL2cZtPUOXjzznf9kv6DBaxdjpGHW2OrEqfe0Ypo1SJQw9Mu7oNjSukGeOQ3roA0w8d8N4OvRxJPFj29zRH++ggj82byw5V4ufJ0w1wktmV6BMO0MGsrZ/m5DhsDe7V2oHsgL3qkpQOTxfk7jNh+y1nFrQby+ng4s0eBDUhFnsQ1IRY7EFQE/oqs2cAhhbJFN7ecEkyLwcoaK3AecPD7ouS/Oo1ojoTPBZHPOLghZzn1XOQ2Gn2tjUDzuWtxKHGBK9YgSzK/XJS0BnnxC06xroNz6HF5lK1cBBNFnG94BU5jZf3yN39fFJelB0q77JP6tav3KfKe77zR6pcTTxp2qRMB6+onIw2G97yYVVee8WnVPnX68ZMmywtzHjl6Arm6y35SRAErylisQdBTYjFHgQ1IRZ7ENSEvhvVLM6UkTlRYIepzOqGGUc1dTSVPeXVfiqzasSLpsJqGVY8eU4hPH5W0HmZW7gbHgunLgbsvHiGN70iw3rXzNfICjlPkcmJh9nxhR1LADsPTlZk7KGbNMiGLDPWfGfqBT2aZ+7RkV4e+YrNwlLs0OmWi5Y+8UCD7ypw8ulvVOWzLn67Kq85/pOmTaIbef8Pbzd19j92lyq3HrtElR85+02mzTvPWDAYawwtvaTjzR4ENSEWexDUhJ6LXUROFJEfisjDIvKQiFzbPb5ORG4Xkce7//Ov6SAIVhErkdkLAH+YUrpfRMYB3CcitwP4XQB3pJRuEJHrAFwH4HPLdZQDGFskA7Ydo/0GSbAsQw45sinX8eRKltFZzvQMfLgNR1pleRywziVTHPzBkV/5G3eShG0v2uwUNWKdBGDnxTi1OGPhB0IqXcnNaMMBIwp9ATP77AU0p7S8vf+h7abOA39yrSrvefpBVfbeVM2m1gasW79Jlc8/7x2mzdqN71XlkjIVVWLNdzqFfsryhh7NxKTVJ1QUwfi0cy40dbbueV6VRx/7jio/uO1s0+Y95y6MTxxHsZfo+WZPKW1LKd3f/XsCwMMAjgdwOYCbutVuAnBFr76CIDh8vCyZXUROBnAugLsBbEopbQPmvhAAHPOKjy4IgleMFS92ERkD8G0An04pHXgZ7a4RkXtF5N49O3cezBiDIHgFWNFiF5Em5hb6N1JKLwkR20Vkc/fzzQB2eG1TSjemlLaklLas27jRqxIEQR/oqaATEQHwVwAeTin92aKPbgVwFYAbuv/f0quvKiVML7KeGHaUCazgGuIqXvpck5bXiSDDZVn+c+8Y91s6g2GFHKtpvCgurFBkLzKPNnuAOc5OGYVc4cirKJxG01otKY/tU+Xtdz9imjz7/W+o8p4nfqHH1rAXJGTyM7rWSoGvP10bkGx6+wdUuTFsPcBKss7pdGh2nRReJYWC5RReKK3FT05VqpLurKfJbOsnquGMZXhsrSqPjeix/XKnvWd700I/nlff/PmW+ewlLgLwCQC/EJGfdY/9F8wt8ptF5GoAzwL4sN88CILVQM/FnlL6EZZ2n75kieNBEKwywoIuCGpCfyPViGBECTv2B8N+chZIJNescwxxiqTrsDwO9M5S4snsHE1lls7tRWdl45ZZGos34QMkaJUkaxdtK4lNbtOj2/7zZ02dibvuUeUd//y3+jyTNl5MScYiQk4gw2PrTJsTXqedQs67XDuBNEYc2TrTJkmpstoMobs029Zja7Qdw5WC5W89l1Vl328dyiiUURvJbU6bgnQDZcFjcTIXkY6KHWMAYGydNgLatU0bGw3ssRthd25dM//3gZmIVBMEtScWexDUhFjsQVAT+h5ddmSRDM7RWueO6e+f3fS541OBQc6U6vTLrgwrcZ6ZIBl9O4lDXvINlpjY8WXN85zjBtj6lRtV+am/184PqWVznwzRHnNjyMrFY6PjqnzqadqJ4ujjX2/aNEe086KQt0zGe9AAEmXNrVjWdsLLdgotJztbzsiS1qRUFcnJjnKG98y546ptQ3Z0OrrfPNN9mD4BSKavMUtaZnfisth+crv8Rkb1fZzZu01XeETrYQDgpyMLUWunHQec+TEt+UkQBK8pYrEHQU2IxR4ENSEWexDUhL4q6AQJjUXpaTjCCQCM0ffPDGk6JhxNDut/1psa1tiFDWI8v4WSjHVIj+O2EdL8Td/zjCrf+QcfNW3eeO5bVfnMs3Wk0qM26PTSADA8epQq5wM2AmpZUjQVUra1HGMdJHIkmdVKMjb4AQChNuzf5EWOrUoyY3K0nRkZs7Q7uo04hjgwTi10Gs/yu9LHhNxJirY1ucpIuWYMrBwnr+kp/aQODzsKxlyniILoORjc9n9Nmyenfnv+71blxS/uDmnJT4IgeE0Riz0IakIs9iCoCX2V2cuig/37fj1fHhvfYOqkXMueB0is8cLhjFPZi5nFcj07qOx1BPA9VGZzmNyxxOlMaJkxvaDNgi67/N+ZNkPrdASfdkt3zHIzYB2E2i0TS9bImiyzF5yPGQCbBSUKylByMAgAFcnJieTvZsN5p1BACG8sJd0kkeXPM3dM18nZeamy4+deZknJ0G7bueVWkuml5BkJsVHQxKQ18MnIJasxNqr76FjnpWp64R4lTxE233cQBLUgFnsQ1IRY7EFQE/oqs+/euR9f/8p358sXf+I9ps6mzSer8jg5VVh3DxtkwstOyse4jRfwwm4pU2ANR+QdaOk6Q2ecqMrNZ540bWYpa2hrlhwzkvUkSRSkITnOGmbPvNDf7VVh+2X5mwMpFh27t23FbT2ZqbKT28hob97UAMpKy68cMILlcwBItL/dojaVoxtg2T+RDUDlBKLg+S5L7awkjhUGnycXqz/o0DXnHDijoWV4ABjLF/RCu5w+XyLe7EFQE2KxB0FNiMUeBDUhFnsQ1IS+Kuiagw2ccOpC9Mz77rzf1Hn35TozSD6qFRKznIoDwBTpf7wIOAyrjDzzkilSsrA9RtvRhZRkQNIghZbM2kg17dZyeTyAonQMWUjR5NlSsEEMR1otOYsJgA5FbDXKK+f9YJxNSq34Kx2Hmw5HnXEUZ1XFCi1SODrT1jFKvLRsee5Een6rUhvReIpAkJNUUfF5PScjfp4cBxsyfGqQwnHNqJM++vmfLbRv26hG858t+UkQBK8pYrEHQU2IxR4ENaGvMjtEkBoLp8xMzFfghz/4sSqf9/a3qPKJG9aaNvtIAn/eOfUIlXvYy8yNj0Q1Fp292Akt7ifXnbSTnfKyreX4gtLSuvIfax2c7CJtMtZJJJtyJtW5Omwsws4nThuS/dm+xxt/ZWRpUwVlR5tC8djYsWSu0rJFeFmIjO4i0Y12xtYhebtKHKHWxjheyfhT0u/fUnQwCmnYfsf237Vw3nJpjVW82YOgJsRiD4KaEIs9CGpCfwNOJqCxyMljYNoJCtDQAtKPb7lLlS/7vStMk4p9BRwZi3c0+cLF2ahm0Y19QKad1K8Z7b/uT9pOYLjwMpJw5pMVOLlQIIey03vPtkP9dFpe7lp2Cino094BI6qS9/M93QCf1cqvOQe94H1qx06Axytkl8FzO3eMs+bq59ILRGH372lunYAXrLvInLQxieYucR2xS3ZNc6GNl4lm/rOlPwqC4LVELPYgqAmx2IOgJvRc7CIyJCL3iMjPReQhEfli9/g6EbldRB7v/n90r76CIDh8rERB1wLwrpTSpIg0AfxIRP4BwL8BcEdK6QYRuQ7AdQA+t1xHqQLa7YXvF3bMAICS0vQWFDXVUxCNklIsd5QUnDo5p7I4xhacyYTP7ARaxQz5uVSNtfrztqMgojTCberY88PI2OLHuWZ2auHUxO2WVXBxNhSw4Ydzz8BKMFKSVU5GFTai4Wi5ANCeJaccdjZxngU+Nzo8eZ4jDEfdJQMZscpDfl4SKSHLwj4crJDzIuomstQS0goX45QxBsD6YxeUwA3HUWz+/Et+8tLJ53jpEW52/yUAlwO4qXv8JgBX9OorCILDx4pkdhHJReRnmAvbfntK6W4Am1JK2wCg+/8xS7S9RkTuFZF7Jye9iO5BEPSDFS32lFKZUjoHwAkAzheRs1Z6gpTSjSmlLSmlLWNjaw5ymEEQHCovy6gmpbRPRO4CcBmA7SKyOaW0TUQ2w0/WoiiKDvZuX6g2NGpllhnjYKAtZnY7KUHHBvR31qznVEHHOOtm7vhU8KFZEsNaNjgrWFQTkkU7ycrJBXXEARi8KLAs9LoxGShKqnFYcYxSMlJ4VCS/NhyFSNkh4x2aBNfhg2Rez/CG9QUcXdYNOULzKxT8gWXrubFQIA02+HH0CZxdpyw4GIe9Zn422Hlm7pg+eUbX2Hb0H83hBTcvvl7dVw9EZKOIrO3+PQzg3QAeAXArgKu61a4CcEuvvoIgOHys5M2+GcBNIpJj7svh5pTSbSLyEwA3i8jVAJ4F8OFXcZxBEBwiPRd7SmkrgHOd47sBXPJqDCoIgleesKALgprQV6+3oiyxa3IhEfKIZyzS1DFldu/eryvYnEzGnmTQOTfHdCX9ip8yivQnrB9qOY06dKI0oRUqsxt1OigAwLZnVbEsKE2yF4WULtoqr4AsLa+QKx0FFyvk2CPM0Q+hogg4rKyCOBFp2bjF8UYzUXKMos+2Yf0Ue8F1VpBymsfmPHIQkBKSFXSsAQZQGUWfc88o3dPMtH7I9uxfa9psXBS9qelEspnve8lPgiB4TRGLPQhqQiz2IKgJfZXZUypQdBZk9gOTVroeGtCyUItklp//8iHTZtN5erPAy46yj8Q7jmZTOrIo27K0p3TZCwoySCJTOUQy2LCTdHpityomcCYX+5082+4lz1r5tcPRZsWReUmONNfoGG2UJNSyg5NxToF1R2FjHgCoCo5a29tYh62LeCyebsNEpDWRa+zDYfyBOFqPE3qYI+q6IXBEPy+dNt2zmX2myfhRa+f/zvKll3S82YOgJsRiD4KaEIs9CGpCfzPCJGCxGNaZ3GuqdJraOb8zo2WWasrKQtMkCpl4BTD+ESYmg7t/TDI7S1heUAmhDfyKZNzpE19v2oyTF87MrB6MFy+C5UovAG2H0swaEdGLtMrBTDlDa+HtzXOwDc4Ea8dm2jiV+BA7l3jBKzhoBNsJcFYcABCaB5bruY+5g1yHI52sJIuPrcEyN1dpO8YdzbFjF+pnTfP5fN9LfhIEwWuKWOxBUBNisQdBTYjFHgQ1oa8Kunangxeef2G+7EXVaDSndXlEG95s/cHfmzYXXfhm3Ya1TLBOLGSrAC8TUtP4augDniOMkP7HRD3ZTZY5AIZJO8hpe9m4ZK7O8tFhACAjzZ5VgnkhfciphctuQBldJ2fDIsf5hI1ovDo8372cdACg6LBykI1dPEUgK/FYEWjhJ4zTTLECFbDGUez0AgB5k5YkB/t17vO6TUfN/91ohiNMENSeWOxBUBNisQdBTehvymYImouMBlpO1NSKMsK0KVvKgBMU4Nm9WrCZPspeFn+rtehA25kJsudB0aYsII6c3+FLMtFmrfNPlWlDomp2N9VwnE9YrnSMRSq2xil7R0A1ziamjWkCDiLR8RxUCJZfOW01YOXtVLD+wJ6HdQye7GzO0+OdxxGCvWNi+rDKDWEnlcyT2Yd1lQHdz/r1Nsvah966YKj1pTEvdEu3ryU/CYLgNUUs9iCoCbHYg6Am9FVmr6oKkzMLWVklWZm9OaDlmJIDK3IECQADhT42Ux5l6vBOdZvEvdxzhKEyy/Ce/GpkdqqTlQOmTQv6mgvawE/eiUhmdJ1N2MGD9qBLxxEmsQOH2YN2AilSPybohDM4PrUb4CJxIA2OMuHpHOgABYPw98zpPKRPaDj74cLyNt2PfMBmW614d94LNEFOUaed8huq/L+//hemyfjIwvOeOXqA+c+W/CQIgtcUsdiDoCbEYg+CmhCLPQhqQn8j1aBCqhZSprRmnfTFhVZsFKT4KPbvM222PfuiKk+MWgUd21+wDYoTDBSJUhFnrLuyOiUTVYYj5Ah71wCYJcUZKMJM4XmfMI5RTYcVZazocyPgkLEOKde87DS90kd7GVWMzs6LtErXzYYsWbLvKmMAQ8o2LyKwVWqRYtNRHrLSbmREK17XjNtn8Jzz36TKv/vRd5g6b3nzxao8OKgzJHkRiV7ct3BPOo7R2UvEmz0IakIs9iCoCbHYg6Am9NmoJmF2UWrU6alpU6dBGWESZ/IsrNS1/7mdqlyeaSO4lh1qx5FjO1bWIfsGNEle8tw9Wq3ljV3Kyk55TsdanLnFOY8xQnFC3RrjlpLLXnjcZYtW7gesgQ8b3jjGL0m0jOs58jRyfhf1CH0LKEcrwBr05E0bfZWNi8qk5fGhQetc8smPXKrK//ULn6XzWKMaVui0nOl/YrfWiXzqr59U5Ud+vs202d9akOs7z3j5iOeIN3sQ1IRY7EFQE1a82EUkF5EHROS2bnmdiNwuIo93/7eOtkEQrBpejsx+LYCHAazplq8DcEdK6QYRua5b/txyHVRliakDB+bLXhbRijxf2rQX72VHka0/VeX83ReZOi1qx44wyQlSySJti9rMODJXm74+q1ldlsH1po3kFFixpR173IygRi72MoJSEMSSnVo8RxLKgkpBQT2ZXTLa/6Y96Eysc0bTZG21cjF1i0TX6GW3ZQeVwQFd59iTTjZtvvj5/6DK77zgfFVuNGzm3UT6g72UqehrP9lv2vzpl7U9yIHJXaZORddYZaTbcHQOaCw8iMuF6ljRm11ETgDwAQB/uejw5QBu6v59E4ArVtJXEASHh5X+jP8SgM9CmxZtSiltA4Du/8d4DUXkGhG5V0TuLZyQyEEQ9Ieei11EPghgR0rpvoM5QUrpxpTSlpTSlkZj6aRzQRC8uqxEZr8IwIdE5P0AhgCsEZG/AbBdRDanlLaJyGYAO17NgQZBcGj0XOwppesBXA8AInIxgM+klH5HRP4UwFUAbuj+f8sK+kJ7UfaTwvGQyET/1M8bZCTRstFtXvyVNjwYcXw1WiRBsEBReZFqjH8KOYU4Sj3zW4kC05Rt++umOvtyfeDJn+jPOZ0NADYwqRyjmgxs7KI/Z4XX3DFdKSeVT+YpiMj4Je9RnjsPHXDmskEGMsODejLf9sG3mTZf+PTvqfJvbDpdlUXsI5/Io2n7pDZM+fw/PGja3Pw1rUQtc8pk1LRKveHXnarKR8/YqEXtKf3OnD0wqT931kzVWnRNXh7xLoeyz34DgEtF5HEAl3bLQRCsUl6WuWxK6S4Ad3X/3g3gkld+SEEQvBqEBV0Q1IS+OsIUZYl9eyfmy5kTXTMj95LBIW1s0cisTNJ54SlVXuvINXuoWc5ZXKeszMgGJhn1mzlRU2dmSU4mx5hyAoYs1wEKhJx9EpaOGDrfxjEwsZE09CQ0HPk7b+j5zsjZxAtEwUY1jZwNQ6zBzKknblLlP/6T602dC954tioPNHU/bNgCAB3KMvTQ9gOqfO3N1pHk7r/brsc7NKrKg5t0lhYAOOmaN6jy2y5Zo8obhuzYhmmeZpzd6k7SOoZnd+jr+dHXXwCz+5+2zv9dOU5HLxFv9iCoCbHYg6AmxGIPgprQV5k9z3KMji/INlOTs6ZOc0jLkRzsj/fdAUA6eo+z2O/ILYO63SzJ8IUTCLLco8vspDNjh49EsQOqWXI+cQIutEstszdJF9BsOPvh3I+zZ541tKw/QE4t7GgCeBlLdXl83QbT5r0f0YETv3j1v1fl0bF19jxG3raDmaLglv/xu1revu2rW8HMTun97XSUfp6OOsnubb/nL7Xj1Jkn6MATjpmAmX820+BYKYBVoUw6AUtfIN3Rj2/V428NnGjarH/fguy/46E15vOXiDd7ENSEWOxBUBNisQdBTYjFHgQ1oa8KumYzw/GbFpRRU2usUceufdrBoGiTY4YTXfadFJnmmWEnMgop5GZJuVbawCKc7Rct7ZMAzz0/kRIvURtx2uSV/s5tDo3rNhwKF1aRxhFlACDL9PxK0orAzcdbxdnnv/AJVb7sHR/UfbrGO7rIEX4e3m81UZ+/X1sX/eDLT5k6iW6SZFr5NHzum02b375mrSqfcIy+iZWjleTR8S2a8KLYkrKNa0w6OuJbbtM9z+53nJemKbLOGXqJXvhm+2yntHCfb/nrpd/f8WYPgpoQiz0IakIs9iCoCX2V2U8//Qx89x/vnC+LEwsztbSBzN3/fJcqP/LIw6bN1Z/6jCr/5wkrY03opDEm2mzlGNU0SO7iIKOlFaVNls2KbDgqkuEBQIq1qjy0/ljdZsI6bwyQE8slH/gtU+cDl12lypde+DpVbjphwnjmZsmo6ZZfTYH59B/vVuWZ3ToAQyWO9cgaPZnHXWmz+PzW23SdY9fq0eWO/M0xMDjRqxcFkd94LEl7i6RJ5+ErHHIavfUiLW+/6GQHOm+D7ri5gvEvtrnKl/GZijd7ENSEWOxBUBNisQdBTYjFHgQ1oa8KusdngPf/fKFcOIEwN6/Thh8f2/JeVf7IO99v2txNWpn/52StNdFlOU2T43XVniTvM9JnOVmGUZGChJ3RkqNAqY47TZUvvEbH7vzMpdbT7JT1OppKPmSjqXCGqEcmtMbxf96pFWsA8INva+Vap9CTmQ1YRebI0frc53zyTFU+9wI9VgAYH9Q3YMZ57fDjwbrNtbaJyX/EaZEdmyyjJh5hr0PnNBSQyHjxmexWADZu0Be52emXEz1P8vPjtFnsYbd0bNl4swdBbYjFHgQ1IRZ7ENSEvsrs7U7CszsXpIoJx0LgkW1a6rhvVJfHxqygXI1rSWfWkb8bZEXDmYdndRBSAEAio5kJilyTtP3P3DGKHssONmJFa8xMaKnwf72gDUx+6zQ7UV+/V8dG+dZNT5g6E1PakSQjmbFydBsjp+iU0v/qEyer8tozbKTYMZK/2ZDFi0IzSoc6jjDKfiK/2qcrvfBr623SpjTg0yS0n3S8lcBPGtYDPlmrjdB2BPAR0r1wJOLCuWY2+HH8awyDbPzltPHmziPe7EFQE2KxB0FNiMUeBDWhrzI7BMgbCwLG2LD9rukUekgF7RzudzZKK53QAwMDdrexILlrlvw5Skd/ULFIyPL2jJNRk/rJKJIDZ4gBbObU1NLKgWtvtGFspa0VBlnTOqikUe2Fkygc7vFX2v37y96nZfajRvX9WO84n0yY7LC6vJs3uwHcvUuXn9prqiA7oM/VmdYdt52AHcf+phamhSLzPs0eUAAeflLrgTq7dZvRk+x5Lh7S/Zx5rK7T5lCyANaRcJ2cqMHsYcP7+eNOk8Vy/HJqgHizB0FNiMUeBDUhFnsQ1IRY7EFQE/qqoKtEMDGwoEBJjtV+ImVONkJpkp3oMImuInkRRMkWp0P5egrHMKEinRcrnji1EwBUu+iiWInHYW7nzq5KA01t7VIma0iUtfXgGg2rxKsoSu2FHz9Bld9+mf4cAA40tYKLgvNgpzNPHXLPeGqn1mw+9JS9Hzva+j0zzFY2AE4/VR87e70ub3A8VPjW76fybkeFlR+nOxqna3zSiTz88Au60p0UTGjMMZ46ma7nZEdBx0Y07DflPHLIwqgmCILFxGIPgpoQiz0IaoIkFkRfzZOJ7ATwDIANAHb1qL6aOJLGeySNFTiyxnskjPWklNJG74O+Lvb5k4rcm1La0vcTHyRH0niPpLECR9Z4j6SxesTP+CCoCbHYg6AmHK7FfuNhOu/BciSN90gaK3BkjfdIGqvhsMjsQRD0n/gZHwQ1oe+LXUQuE5FHReQJEbmu3+dfDhH5qojsEJEHFx1bJyK3i8jj3f+PPpxjfAkROVFEfigiD4vIQyJybff4ah3vkIjcIyI/7473i93jq3K8ACAiuYg8ICK3dcurdqwroa+LXURyAH8B4H0A3gDgShF5Qz/H0IOvAbiMjl0H4I6U0ukA7uiWVwMFgD9MKZ0J4AIAn+rO5WodbwvAu1JKZwM4B8BlInIBVu94AeBaAIvTBq/msfYmpdS3fwDeCuD7i8rXA7i+n2NYwRhPBvDgovKjADZ3/94M4NHDPcYlxn0LgEuPhPECGAFwP4C3rNbxAjgBcwv6XQBuO5KehaX+9ftn/PEAnltUfr57bDWzKaW0DQC6/x9zmMdjEJGTAZwL4G6s4vF2fxb/DMAOALenlFbzeL8E4LPQGZVW61hXRL8XuxciK7YDDgERGQPwbQCfTik50e9XDymlMqV0DubemueLyFmHeUguIvJBADtSSvcd7rG8kvR7sT8P4MRF5RMAvNDnMbxctovIZgDo/r+jR/2+ISJNzC30b6SUvtM9vGrH+xIppX0A7sKcfmQ1jvciAB8SkacBfAvAu0Tkb7A6x7pi+r3YfwrgdBE5RUQGAHwMwK19HsPL5VYAV3X/vgpzsvFhR0QEwF8BeDil9GeLPlqt490oImu7fw8DeDeAR7AKx5tSuj6ldEJK6WTMPaN3ppR+B6twrC+Lw6D4eD+AxwA8CeDzh1tpQWP7JoBtADqY+xVyNYD1mFPUPN79f93hHmd3rG/DnAi0FcDPuv/ev4rH+y8BPNAd74MA/qh7fFWOd9G4L8aCgm5Vj7XXv7CgC4KaEBZ0QVATYrEHQU2IxR4ENSEWexDUhFjsQVATYrEHQU2IxR4ENSEWexDUhP8Psx+2uU19HsYAAAAASUVORK5CYII=\n",
"image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"250.142944pt\" version=\"1.1\" viewBox=\"0 0 251.565 250.142944\" width=\"251.565pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-01-12T10:16:59.273725</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.2, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 250.142944 \nL 251.565 250.142944 \nL 251.565 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"axes_1\">\n <g id=\"patch_2\">\n <path d=\"M 26.925 226.264819 \nL 244.365 226.264819 \nL 244.365 8.824819 \nL 26.925 8.824819 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g clip-path=\"url(#p4eab9fbad9)\">\n <image height=\"218\" id=\"imaged7ebbb1045\" transform=\"scale(1 -1)translate(0 -218)\" width=\"218\" x=\"26.925\" xlink:href=\"data:image/png;base64,\niVBORw0KGgoAAAANSUhEUgAAANoAAADaCAYAAADAHVzbAAAjiElEQVR4nO2dabBlV1XH1xnu9Ibulx6STnfo7hiaAAHCFAiRDBDQIDhBIaIFKDhVUUJKKMUKpYWilEWVZTmUhVo4UmhKUYEKo0pZCiQok0ICkjQJZOh0v+433HffvfdMfmg/uH5rVd4rq92f1v/bPm/vc/YZ9rv7v/5ryA5+qunkf6FrxaCb6IP5QqfbbWbHlPpY0bN96ka3q038fdvOpV3DdTr8fdPeQHs/Om2j3XNuWmrV6rdnVLs5q/8uIpJv6cmV5dTOpXdQta/7Ud2+4ZZlM2ajV6j2fv4dtyMiUrX64MnT+mF/5aR9H4/Oc9UeLdo+Jy7Vx67GZA707FxynGYd7VU7RAq8kmXc473rdsy9D+lOD4/135dGdszx70B7wd7zAO0OXfJcDHgWp0sgELjQiIUWCCRALLRAIAGy7/j4XG1s655de1Wtd5y56A10NrT72nauj/X7DpEodJ+tLVx3ww5p57rd4NLdWXudZlV3ysDjOoc/Sq37tKtnVTsfW/6VzSe6j2yZPl3VR5+Zah959QEz5paXHFbtvYulau8nCRIRUlU+ldWZfU7/qWmonDxnuki+oa9VTfR55s6/7kNX6TET8PexM5ftU5oDV3iHi8fshW4a6vM86ZDuM3de87zSY2hbEBERfB/kmMvOPW+Tx9kugUDgQiMWWiCQALHQAoEEiIUWCCRAduwOzQY3K9upg4q9Z1G3l5YckXh5qNpTI+GJFCDBM1x78qgzF9ggZrA3dNoecf7Ypr52A7Ezc4TMDCS/3dSC72+/wj6or53Vlpq//NNTps/mlr6B/ID+X9c6Iv3C5VoVfslr9qr2ypWUVEWWBvq8nfmXat/HMg6tOfardbzq+9DpoQfhhSAi80wPmsx0+9gRq3IfG+kJH1/AOQs7/77W9aWFaF8793wOhwaOLWSINt+8469h+sQvWiCQALHQAoEEiIUWCCRAdv3ntFNx3dqN+aX7dPuH9+l9+E3L2ByLyFexhn/2jOkimxBEK/Cr1uq90q3r+fWwvd86bcdUU72JrnFeOiqLiCwMNN/6nou/odpvfbEVli/fv6jaxdCSPz7ek+B+v/6P1lv2k3+jyWoFb+vccQZYuEhf+8QPHFXtZ1yr5yoisgxet+38GyYbp2v1ih0iDaY3w99rh+PwjhboPe4Ar1kycjLnOmOctrRdhG9xTCcJbzIhWAcC6RELLRBIgFhogUACZJtzvYPOnB1nN9Pk6c5Pf0q177nnbjPmDW98q2q/adNukP8ZfGoGztYyQFNESsg01N5mThRhBS/QClpVq/2FRURkcU3f0567fkGP2XzYjOmDMN780utNn5fe8jrVfvF1j1ftXmk1JT65aaOZ0d+ftA7Ot/6qfhDbq5rntZkNXJU9S6p56BXHTZfrn48+KwjwdRycjc6Ef+/wE/e6CNU5q9aJ9NHmHTp3LA+c1qzzEUcUe+YBfYx+9470LPRNjl+0QCABYqEFAgkQCy0QSIBYaIFAAmQ3vPBGZXHY2rbU7syaVnjrue4z6Fun1pe/8iWqff+P/YrpcxLEcxNGiZmT6YhUdYI+c6qhIlLBENMycthhs8PVz6j24ENvxjycC2WI5HbSI+W5NnZknfaWPXwE3gEictvbX6Pat9z4Mn3ObOc0TA2U5q9tWNPAbZ/Xacg++fsnTZ9uqg0vWb5HtUfPuNSMedlPraj2ZRdrB4fWMaBwdjSLTTM7podO7DF2LCh//2H98qf0mhaRfKKf76Ertax93TVOFjjMJX7RAoEEiIUWCCRALLRAIAGyK666RnM0J7vTYAin4U7voAcD64q5vKyDEw//4cdNnwcwDkmkZG6nIg14XIt997bjiDwFj2tx3paptESkf/+/qnbvr35Ct51sSR15A1Paikhe6mdZgMc5dEUyw0d0e7TPOjh/9w/dqNrveMNPqvbikuWCxgnX8cLdqrW8/KaPa6+DD7/3y2bMdEuL3N1ezVP3HqPULPKcn3myaj/pMh1+WTg/EXz+Rgh3ni39sTcdVfshfFP/erv+6GYTy+tGPc3h4xctEEiAWGiBQALEQgsEEiAWWiCQANmho1cqOpgX1rCRw1d6MNQCdZlbMrh44DLVPva+D5k+91VINQ7SOWHuZbGZjWSKlNROFqlzSGPdzZAVy6l7tPjgJ1U7e78WrDs/rlaP8Y5lyK4FJTl3vPeLkgYTzN+ZSgarSomsUW1unQwuf9wlqv2r7/pF0+fap16t2v2ePk/n3HVVa8PA18/oF/3m220kxJ1/pzOItUMdET64xEavH/n+46r9/Ju1mH7ASV0/wnNyPh+poD4/8Ki+n3/5s4fMmNV/1kah+EULBBIgFlogkACx0AKBBMieePWzdRYsZ8NPEbUoNY9rZ9bBduXq61R74Td/x/TZQB2dCgqjlwWrZUT1Jjjalt2H09G4hSjZMhWSiAy/8kF94ANvU82adYFFhKysdeoU5+yDLk4SMmmhypdUa73aruhT7NAWsY6wXgreEhx+NNBi8/Nf9nwz5u23/rhqH73khGpnmbULdHCKODXW7Om2j3zTjLn9T/QH0xTaA6LsaeFcRGT0eF1bt9xeM33mWzo6fbqh5zJ31kxb63uKX7RAIAFioQUCCRALLRBIgOxp11ynNphdZnlFiexO86kmSpnDK654yStVu/u5W02fM9Cz5qwM4wRkNsyChSDObR27eP4YMxPDqTgjORSRwft+Ro85+e+6TbIojsbnOBULgjQ73FBLAumclwGlbWPHUEfLC+3MTD3vfB9yJZuBmny9wz1mThBqluvz9PoIpDx23Ix5x20/rdovuPY5ql2Wlm9Rwzu3pd/Rn3zOfhzv/v1HVHtjbFNqtx01SM1LOyt9isB5PH7RAoEEiIUWCCRALLRAIAFioQUCCVAu7tGOl5OtsemUF5rtMeK6c+rudE+7RrUbZ0mbMqYM5PbEc2Y6Il93rtNAeDXkdWzziA8RdT0baKdW7z+UMUo4gnVba4LeohBS5hggYMdw4qDtGGbk4rNsOyu4VzXea2cdEUoTAk5jyM4i9/YcTrpf1yWxRERe+5q3qHbT6bkNB9Yp+rU/9GLV/uW3/7xq33qDjvoXEbn1Rv39z9onmD73rWpj2Rv/WDtB3/Ml6xS9PtMfWfyiBQIJEAstEEiAWGiBQAKUwxGEtWzBdurpDEQ19uF1Zff7ex93ULXXnYDAglwJlIZiqIhIjYDLahcldIqBHkPqUeSe4KuPkRPUTP0rIsKgTUd8rozYDJHYEf87OBV3xvvXKXyEPh2eEzmPiHU8yHLr7Ns2cFZgdmanBG5FLwOI2k1tn1NOwR0fx7SytoT3/sXfqvZffuAO1d6zbDna05/zLNX+sVfdaPo895qbVPtTb7tCtdtWt0VEHlnT7yR+0QKBBIiFFggkQCy0QCAByizXzpnDkdVOen29n2di395g2Yy59Ogh1W4dx8sp4xexlTccTkQqBk5SY7K0wvr24rxdZbngEI7UdV+fuCDvELHaVWcn02u1Q2pdac7TMBJURDpqXuRfrc302+I81O8Kh0uZIFTHWblDwKgpxexoh84h/XfvGDgwnZXL0j5bcsztieZJc6fu8sfv+IRuf+yfTJ+yr9/ricuPqvZf/9nvmTGHVrSNIn7RAoEEiIUWCCRALLRAIAFioQUCCVAujbQYPXMchOnJW8AgUfa1w62IyLzUx0aO32sPHB82F5lajm+irkfwLaVxRESkR/9TcPyscCKskZ05GzAzrv0f1UBYdoVYMHZmFGscIwujrlv08ewyFHgZ8euBBofKiTzvYNnocI98BucP6j4dI8aduXRwlKbBxHMYyE0kOox4zv1kcDLIvDRkhX739977LdV+8fe9zgz5xEfer+dmzxoIBC40YqEFAgkQCy0QSICywv65cFTisqd5RLmgSU928X4z5uhFen/8TUe05KEeBVOnzCmmImPURp04vK5Ph1qj/1qRPkeqrLynOWdXW/flApygdTIIk6OR/+Y9L1UxORp5kTPEvFf996Zy+GPBzFk7V/NpS/0wC4fjUJQnzzPZw8Q6ThvHajPCOwY+6Y3CczICvIg0lc5MzO9n9RFdXlhE5IOf+bpqxy9aIJAAsdACgQSIhRYIJEB5+LLD6kA1m9hOCPycbGlO86QXfa8Zw8A9h24ZaaeA3mXywIhIi5KMvI6Ru0QkRzKYipmK91sdsOxrsldNwdkcXYpco2cyB4k05AS8RydpjqDiZ9nTcyt2wdE6ZFbOcsvFDa/rOZmKQWGo++UOx8lYfagl/3ICb+HhzOo9Hq8T8Djqja7DM+br6YAd5kJ/7OHQOtWfPbWu2vGLFggkQCy0QCABYqEFAgkQCy0QSICSiZvK4UWm07CvrRQVLBL5oiXWC4zCdpZ0hmFMutR3jCFzZsqCccSpGmRKxOYgvKNvaXFRRKRpUGoIBgivPNEck8szS6wp/lcoS9x5IjcdnM1Jd364LF/bOip3Ae9rT7Cu5tqoksOAwjLAIjYamiWjKq9MMQwOJYwf9dxxEKZ9xAjjTqktWjacTMtMh13NtGGs71jgqrEuBxW/aIFAAsRCCwQSIBZaIJAAZdnbpw4s2ETFkvf0wQHSV1395KvMmLPY6nri8wr7gDbMHQdhZmpizOnE6u0yp2451Qf2bdust7KsHaVrOBE3teUIC+CcFFlFRHJErvbg7dsYV2uRrHtssdbTbiWD4zHmkpkyuo5DrZORKzfEOkfTGYN/58Zh2HFnYBavrGDArLULZDhPWzMQ1xHpDSdz3hk9sjH/bLRixmyur+lzmB6BQOCCIxZaIJAAsdACgQQoDyxpjjZctHvsbfCRAxejKoejt5A22NBKEVIwZhReEgsUpZRttD2nYlMlZaCvPDytk62IiNR97UjdwQmXiV/Od4JTsdOlbVBlJIe201ith3oWnWVL5/k3DbWqnfWuDgpd42ltSCfdGR7qZVqGQzOyHffE8sUOXIlTKRy9q4DHM6sceYmPKKN5lVBb6HGjJf3979trP7rTZ9ZUO37RAoEEiIUWCCRALLRAIAFioQUCCVBedMnF6kDTTE2nItcEfm1bk8P9TrTx/WgPHcGatJNncQKUpYCtYAgePWdWYhFp52wzEtoKmQVK6bLUbldaNd2ItV6EOITvCoR9PrPGkAxPqoCzcme8aUVyeHH36PzrOOXSMFD2HCMLyz8hC5aXacqWf2IWZS9aGqJw89jPQEQkwwMvzHe5cwlfGj5Edo5O7/ftt1Bta8+J+EULBBIgFlogkACx0AKBBCj7fb0nnUzsvjzP9B60hODLvbGIyBYONc42fIh2iTGZU/6V225TNdcprTtY0r3mG2uqPWIqYxGZ9bUImZfIhOQ43Eqmj3nVS3pDOOHivLkT+En5v2OGK4cXmWzAYMBN3/JS0hOKxiIi/aF+Lh24Uz23rgkd+C0FazoQnz+Ge5pr24EXn0ln5Qzvo3BIP8sWl4w+FpEctZi7gfZkL53vZ3V9C+cIBAL/74iFFggkQCy0QCABYqEFAglQ1kNNEOde5CqyGH3nDc9V7XVnufKQV7GXwdyG0jth2RnEzR6mu+TYKKa1HrM300Q1K633da+nSX2NG+hyJ3OTEUxtuPocWa9yGAqGIyt+0vBCr3oaPkREOkQBtHghZel5qcPo4lU5QgkjhlzkTtkvgcDL0xZe+D3m3x8yTNsOqRBlwsj00tRYts+WZYxFRDIYqLIc78iZy0aF52K7BAKBC41YaIFAAsRCCwQSoMwYeTuze/cX3XKLaleLWrC72xGseZbDpocFd8fbnlMu/jUwmZNDV2SA85SNPkk/s/vyOQTrgtTJOMra7L9ediqWpsrgDNA4EdYmO3DOLFLe/0sKy+AvjhjNqGsvwrotddw7nXsrh7oyE7HJguWQwaJlZmUtWHu8lJy4ZjleryQWRe7acdDG8y4zlAp2DBDjAzfpc9grBwKBC41YaIFAAsRCCwQSoPz2fafUgZte812mU39J732ncAqlc7CICIvVen2gyMg5tL3/AovggxV0taHD0fIajrsQ3wZDm28r7+nzzpDduCicvF7dzo7HrFLTdrjLzJ43yzWxa8Hj6sryOkOvcv0GCnpwi8gA2qDnN13BUZoZkHtOpuJyoO+RY7zKNobHNZrLtl62LWY3hsOzycTsXKcYWu7dIHI4R6DtxPGY37zs6XqM6REIBC44YqEFAgkQCy0QSIBYaIFAApSv/emXqgPD5QOm0ybKyG7i707RI2GBXi+9Nysssc9pR/BdM0c0qfdK686hWM+/plOAFxvrZsxw30HVziGnVzZZmGRM3e1ZE0CseyhHVDs3UID4dw1K1eZOFq+WjsdwxnbK8TLVuGdwkJzR9rtwcIZQPOA9O468fPVNra87nzsvgMJynyV97ZCm5T3bj64n+p3Nx2f0eRua9UTGjS77Fb9ogUACxEILBBIgFlogkADl3pUj6sCqw4vWcWyG9h5n70sf3D3OxeniiS224Xkilg9S3u2cLFijZf3/ZPWw3j9/9J1/ZMY89RnP03MrtJPu3gOX2ess6nI+faeGVIEgWpYaMnWARUTAcepK30+R2WDREmOYXMup+isCLlJybiLSZ6AwBOysteI5PcHJlXKnbFPb6k6jgZ7w1KmJlcPD3PgqOxnGJluaXy2OrGtFNddf3WSs83AP9ujvSUQkR53l+EULBBIgFlogkACx0AKBBMi+iRqs1MhERB6AVrWKv+91tIcBNuJOYRij0mygTSdjEZEHsfE+xey6XmESzH+LHPPbVgm8+z1/oNonP/QBfZ0ZVUCR4UgrgaXjrLy0uKzaK/sPqfZFR55gxvQWNFvNwJ1yR3vrIPQxU7EXlMryu57ulDMDMnSozBnUUE9En3ZudShW2SngrGzOKbbccY6Svl4OIDoiF4wkFpHNNe14v/rt/9IdnvhKM2bPM2/Q17aXDgQCFxqx0AKBBIiFFggkQCy0QCABsq/WTPtjGeMZlg0Cmd3nWCBmOM/YIck0vMzRxbr6ipxFe4prO0mMZB1zmTIrljOmD0F3jija2hGWxw9r882pLz1g+mx+6i7VfvTTf6XazdiagBoaKZBZebS0z4y57PFPVe3DRy9X7XLBGmoaRHKzpKyISAajSjXXcys9Z2VEuGeIUG47ayqrptpAxajmrLBjaqjwLANszW+2TBavIyLy8MmvqvZ0SxtHuu/5DTPm5hdqh4b4RQsEEiAWWiCQALHQAoEEyP5tNleb0pHjeFmjYkixi+XJ5K0Th/uRjbAcry1Ma52IKRs3jni+hflz5145HI2hiHSk9kCO2ffOC663yT61E2w50XedfX1NtU/deY8Z8sDH3qfaZ7/xH3puThasDBxmceVi0+fYiWep9iVHjqp2OXK4H7hTVeHpeso4M1pBlHezKINfmczEnjMDBWvz5kXuvvNjqn3ouH4uD978DjPm3a+9VLXjFy0QSIBYaIFAAsRCCwQSoFwoEcjndaIOxQ7OFps7XYd5mOBQJ2TQgNvsIY5459iDPgM6GTtj+B9ojAt7FUzJMb1KqC0S+DCjc963+lC5oDNFZ/u0jrZyreYDIiLH3vQC1a7B/SZr9gb2bOmnt/qVU6bPF971ZtX+7D+8X7W9/9w9ZIbet/8S1T7xzBvNmJWDuv5Q0+K5mPI+Vm8sUb2WGZ5FRKSvz1PPbJ/t8ZpqjyfaEfzJB+1dXwS+GL9ogUACxEILBBIgFlogkACx0AKBBChJ8nMnDJUGCPaw8bE267BjO3ANJGouuzg2xZmdYkoywsVpgLB5fu18aaNwkm2Z+7Ex2LYPxXLvWdL4tI13ZCVWK56PYPTqtD3if6CdivceO2p6POfmv9UjoAkvbFtjwuQhbW66/677VPuu9/yaGVM/qgX3eqbfbL+0GcaOn9CO1Meu1O09R46bMR2MFp+/89N2LlP9Vrae8HLVfsql9muoJij1ZHoEAoELjlhogUACxEILBBIg+yKyYPn7fb3hNxmGHW/NucvKNDxutNNcCAaPes6/DaYywN+ZFUvEcinOpe/cHg95T4DPrtgFR+N5WMl127nQDMfI8zwu62UdI1BxWDbQtjKySIGHOcEYL2lyiQjeBmS2OWNdKz7/nn9X7bMf+CXVbjfvNWM6lBxuK/tkDjxXZ7la+YE3qvZbnueUZt7WTzx+0QKBBIiFFggkQCy0QCABYqEFAgmQfbbVyaEXnE4k6EygvVcsdhKjRUQoOebIaOWK3OhDkt84o2jMoe3DE5YX0WlsIsYtSM9dcxAO0hDgZfEy5zFljyyMMO7NBWAUgxdUvrZDzjTvufDa/J48Ywij02kA8sZs4GA+37ns7+CcNn7ktO6IyBrC4Kco83vbYXvezbUwhgQCyRELLRBIgFhogUAClEvgPHTAFRHpyQ5RwU4JnRyOmG1l4rJla0vv6NdOPaTaD56824zp8L/h8KW6rOmJJ15jxgz3HFDtiiWlvHI+RvCFI69DYMg9vGh1JnXeBBPyuAcdhJmVjJHdIrZMFrt4ZbQML3L68N3zHj2Oz0xfvB+Pz1NwJ/ebOs/fVNtd0N9K29rfleFID6pt0mfZfFC3j29jxsv2DoqZdjSOX7RAIAFioQUCCRALLRBIgOw9f/rnerfbs26t/Uzv1lmOdGmPLhcrIrKy/6BqHz92hemzvKy5U7+nlbXOKXPaYu/Oyjbefw5mud0pkNXrQ8dkD+RfnlM0z0uOU+/CQZtO3J52RddYXsdzXt7AdTztzXNG/t/wHMV5LeqnHpelszU5s8frzmIM5+85j89Y9dd5aVtn9MBX3/o21X709MNmzHB9TbXjFy0QSIBYaIFAAsRCCwQSIBZaIJAA2YPr64rpdU7J0n5fR6FS4G2c0rotjRRudq3HtjB4Tq28Nknxbv5z8A696/C8u7CFGIF3N2N2Epa9uezGYXiOu2p3Yejg/D3DB6OjGeHed54mS3axtLFnzOFcOF8aS0Ss8YldPJF+g9dp7YmvfecfqPYVt9+h2pOzq2bMWqdnHL9ogUACxEILBBIgFlogkABl3tNBbKXxzBQRZHMdQwAWtkVkaI5Y8Ercl3ui5E5i824CTm0Wr52vsxuRm+f1xFtei+f15s/nxHN43IOlqez9OLwaYzynYnPj4Oee4L7dUWDXJ6FQLmIdBChq0+nY68P5zx1edwjZqp59q82afPAzX1TtrXM6X9gWS/iKSNGGU3EgkByx0AKBBIiFFggkQHb9y1+vdq4nnvQU0+lVP/KDqr3/sHYYHo0sG1lAOVUvoHSnVf5/4WhelReOod7icZydsJvreNhJw/POwfnuRp/LmOiICYoc7ZNHXAdt4ziN0sZOpt+2QWUVlLydzq1b8QYChcsVXf5mVlteRGf3u/7jy6p9x2/9rhnz+i9oh+Anb9hCyxMQxlmr7/Gco71JqW0f8YsWCCRALLRAIAFioQUCCRALLRBIgOzpN75SMbmpQ2bzQhc6YtZYcbJgDQeaDBa5NZiUIy1r17N11X7dG37UjLn22Ver9pFD2jDTH7Iok3VwpjXBKzVkzoG2Z0BxBV6AxoQWxgT3vMzOXGmHVc+AMpvrPhVK007HtkhTkes+3/rmt+xcCh0vPT6tx9SOkWL1jL7WR+/4hGqvnbNzafEk5ryfbbozi9SNvnbTMbLempH2o2zTsc5+DQvIelW32jy15JQTXlrS+cDiFy0QSIBYaIFAAsRCCwQSIHva9a9QW/ysZ9ced7bMVjWf2izE1EPLnuVoHfbUVa2Fyyy33G800hysgPjpcYTxGS1KDkd6/k95+rPMmKderYX7pYt0zZxrr32mGbMP+/LJts01tXFWp72tOr3fP3PKBhHe8zXNle49qTM6T8ZWZB2PdTjlwQMrqj1gWmIROfPwt1X7gQdsdifynLKEI3Jl00h1eK91hbYj/xdIR1VDFM5bK3JP5/rd1/h8GqbSEhF+Lr3SsuS80N9YDzYLcarUSKfHxC9aIJAAsdACgQSIhRYIJEB21fO+V21+y76tB5Lnet/aNdRx7B7VSFeZ3fvWc63BVNhUj/r2/8BTrrpStU+vnlXtVSdRynhd6zQFTtt0liNkpd6H55meW5HbMU1HR1JHX4R2WMGhtqktxzFnwQ00JCMiUiAZ0t69Opv0aGjfx6DUczkNziYi0oKDVeBbjq+yZLgD8rymsnzLODjjnrPczn8GvsWKP43j/JuBH9IZ+3wf8EN8P63DMUt+P6ZHIBC44IiFFggkQCy0QCABYqEFAglQNjPkiXWMFjnYnzWG2PVaIKUwCbGIyHxb54ntcO1uwAI/Ig2idemlWzVWsJ5COB4taINEr++48jJjc7Nz7qkSuX1bR8icTVACK9ekmc9ARCQ3nsg4hxlhMzo/7pA2hiwtWufZzU3t1P3Q3Doi0H+8y7QhoGkdY05DYwjm6pTnYpYu2jEaxzGhaZn5C98gLXQijvXGMYbA8FKW+luoWUtMxHh5xC9aIJAAsdACgQSIhRYIJEA5gK9vVdnaHh0cdzOItXQOFhFpG3I0u4/lsQ77+6726pnoPiWdXKlGn5+NbkEUrnMrmBqBfRdRnQWVTC8bMLLadrXmj42JqhXJDbcA53FVYvBdzKX2slWZAF6nAhBL3mKM9/QpNnO+7vx5jJzH4VsU6akst52dXdtwLnYqtoLRY2eBPn8e/fzjFy0QSIBYaIFAAsRCCwQSoBTsJfulDdBsoZVwf9x6WW9NYhSrKTUNOBl2ux6v60HDGKAaTts5zstIZpODvwz7XlCqbmfQssgnz1+bjq+mi+GzHbU2Z8Nvcx8Zj20zhs92MkHm38xqV1sbWtcsDecUyXDfbUa9y+GlvGf83asGy28sM3zLDHG+OXAp54VQwusa+50a7RAfR1ZaTbJloKrpEQgELjhioQUCCRALLRBIgFhogUAClHQIJqE8f0y3a4h8jXG4tY6wnj9nUWomOp0h2tgRwklwa2RDotFCRGS0dJFqM8utF9Vc9MmSYQwxI6xhw0ngLEb5pr+wK6rqMRTGPYdtZoYeDHWbGZJFROaInq6d52JeozHmeE65+Mb4YDzLBi+D9+plO+O3nDE7tudTbByPHQOQMYTh226d0rp5ZMEKBJIjFlogkACx0AKBBCgr8K3WyUhUIMuwCeTzREos4c7Z71P0ZQYijyOMN7XTc4VUR01lK3vMtvUYViZxEn8ZvsVMSGyfH8O2p1jzwM6FchlcSZHY4zg8NJvoZ9BbsiI9A2S9ezRz43NxxGeSVfbI6bUrNrMXvw0vozC15hpjGLApYnmd98qEgjum61WpYaf4RQsEEiAWWiCQALHQAoEEiIUWCCRAORhpol3NHS97CtbGndlJCY4sUZ1XMgdGCXpXLywu2QkjuqCo9TlmM2vMYSroDgJjzdzRItKJPq+JJPAUeBoPGAIgYrJ20UvdiLnOtRvaiJzn38KJoECUM5/9+UH6mI24thnRTIiCYxij4wE92zMnkoAe/cx6lTmGDZPlygRcO0YXEwlt77ni94N7LDwLCspOxS9aIJAAsdACgQSIhRYIJEA53tRlWcvB0HTKcjrUUqR0zmy2y85+H5GpFTLjVoaMiGxPEC2dk/NYjlBA3GzrnUsA0Z/Z7O9d/sWMzo7j6w5ipzN9JzPxDk66ItKAu85nEHyX7D1nCDc2fExEajoeM5LY4UEmstk4nHsZ0uCgzXM6DtstM3/hvbaOnaBDaWPfqRg8GhzN8x0vi8iCFQgkRyy0QCABYqEFAglQzubI/DtwoxUVclRN8TSyzqT2dbIZGx5HbcfOZWFJ87rNLc0xM8dBlftuo9E42ZmzUnNVchHP4dac1yWv2N8bjc+OYGUecj+3SAqOVXDQbjvLxXuo3tN266ZPBu5RkFR6mX5BB7MeU//ab4Nxnba0rr1pPrracDQnKJWTc/2o+c70X8vM4evg8PGLFggkQCy0QCABYqEFAgkQCy0QSIAy72vjwmRqnU3JOwsyRme50gk0dwwDNUv0Iqp2vKlTVIuIbOBYA2baNHb+da0djSlcesQ6yx7bcdqLqqXAXngRvUZ83tmwQVsBnX0ZfSwi0hToA85fOyWxZoiw9oRwiv90wqVxR0Skw03Rkdrx6TaZs/hcvBLEvMkSRiSWWxKxBhK37BS+hZLR3W5K/IiwDgSSIxZaIJAAsdACgQT4bz2g0tluom8yAAAAAElFTkSuQmCC\" y=\"-8.264819\"/>\n </g>\n <g id=\"matplotlib.axis_1\">\n <g id=\"xtick_1\">\n <g id=\"line2d_1\">\n <defs>\n <path d=\"M 0 0 \nL 0 3.5 \n\" id=\"m6506a59758\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"29.0994\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_1\">\n <!-- 0 -->\n <g transform=\"translate(25.91815 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_2\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"72.5874\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_2\">\n <!-- 10 -->\n <g transform=\"translate(66.2249 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 12.40625 8.296875 \nL 28.515625 8.296875 \nL 28.515625 63.921875 \nL 10.984375 60.40625 \nL 10.984375 69.390625 \nL 28.421875 72.90625 \nL 38.28125 72.90625 \nL 38.28125 8.296875 \nL 54.390625 8.296875 \nL 54.390625 0 \nL 12.40625 0 \nz\n\" id=\"DejaVuSans-49\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_3\">\n <g id=\"line2d_3\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"116.0754\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_3\">\n <!-- 20 -->\n <g transform=\"translate(109.7129 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_4\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"159.5634\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_4\">\n <!-- 30 -->\n <g transform=\"translate(153.2009 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 40.578125 39.3125 \nQ 47.65625 37.796875 51.625 33 \nQ 55.609375 28.21875 55.609375 21.1875 \nQ 55.609375 10.40625 48.1875 4.484375 \nQ 40.765625 -1.421875 27.09375 -1.421875 \nQ 22.515625 -1.421875 17.65625 -0.515625 \nQ 12.796875 0.390625 7.625 2.203125 \nL 7.625 11.71875 \nQ 11.71875 9.328125 16.59375 8.109375 \nQ 21.484375 6.890625 26.8125 6.890625 \nQ 36.078125 6.890625 40.9375 10.546875 \nQ 45.796875 14.203125 45.796875 21.1875 \nQ 45.796875 27.640625 41.28125 31.265625 \nQ 36.765625 34.90625 28.71875 34.90625 \nL 20.21875 34.90625 \nL 20.21875 43.015625 \nL 29.109375 43.015625 \nQ 36.375 43.015625 40.234375 45.921875 \nQ 44.09375 48.828125 44.09375 54.296875 \nQ 44.09375 59.90625 40.109375 62.90625 \nQ 36.140625 65.921875 28.71875 65.921875 \nQ 24.65625 65.921875 20.015625 65.03125 \nQ 15.375 64.15625 9.8125 62.3125 \nL 9.8125 71.09375 \nQ 15.4375 72.65625 20.34375 73.4375 \nQ 25.25 74.21875 29.59375 74.21875 \nQ 40.828125 74.21875 47.359375 69.109375 \nQ 53.90625 64.015625 53.90625 55.328125 \nQ 53.90625 49.265625 50.4375 45.09375 \nQ 46.96875 40.921875 40.578125 39.3125 \nz\n\" id=\"DejaVuSans-51\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-51\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_5\">\n <g id=\"line2d_5\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"203.0514\" xlink:href=\"#m6506a59758\" y=\"226.264819\"/>\n </g>\n </g>\n <g id=\"text_5\">\n <!-- 40 -->\n <g transform=\"translate(196.6889 240.863256)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"matplotlib.axis_2\">\n <g id=\"ytick_1\">\n <g id=\"line2d_6\">\n <defs>\n <path d=\"M 0 0 \nL -3.5 0 \n\" id=\"mb5ccbf7cb2\" style=\"stroke:#000000;stroke-width:0.8;\"/>\n </defs>\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"10.999219\"/>\n </g>\n </g>\n <g id=\"text_6\">\n <!-- 0 -->\n <g transform=\"translate(13.5625 14.798437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_2\">\n <g id=\"line2d_7\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"54.487219\"/>\n </g>\n </g>\n <g id=\"text_7\">\n <!-- 10 -->\n <g transform=\"translate(7.2 58.286437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-49\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_3\">\n <g id=\"line2d_8\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"97.975219\"/>\n </g>\n </g>\n <g id=\"text_8\">\n <!-- 20 -->\n <g transform=\"translate(7.2 101.774437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-50\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_4\">\n <g id=\"line2d_9\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"141.463219\"/>\n </g>\n </g>\n <g id=\"text_9\">\n <!-- 30 -->\n <g transform=\"translate(7.2 145.262437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-51\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"ytick_5\">\n <g id=\"line2d_10\">\n <g>\n <use style=\"stroke:#000000;stroke-width:0.8;\" x=\"26.925\" xlink:href=\"#mb5ccbf7cb2\" y=\"184.951219\"/>\n </g>\n </g>\n <g id=\"text_10\">\n <!-- 40 -->\n <g transform=\"translate(7.2 188.750437)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-52\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"patch_3\">\n <path d=\"M 26.925 226.264819 \nL 26.925 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_4\">\n <path d=\"M 244.365 226.264819 \nL 244.365 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_5\">\n <path d=\"M 26.925 226.264819 \nL 244.365 226.264819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n <g id=\"patch_6\">\n <path d=\"M 26.925 8.824819 \nL 244.365 8.824819 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-linejoin:miter;stroke-width:0.8;\"/>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"p4eab9fbad9\">\n <rect height=\"217.44\" width=\"217.44\" x=\"26.925\" y=\"8.824819\"/>\n </clipPath>\n </defs>\n</svg>\n",
"text/plain": "<Figure size 432x288 with 1 Axes>"
},
"metadata": {
"needs_background": "light",
"transient": {}
},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"import matplotlib.pyplot as plt\n",
"\n",
"sys.path.append(os.path.abspath(sys.path[0] + '/../'))\n",
"os.chdir('../')\n",
"sys.path.append(os.getcwd())\n",
"\n",
"from utils import img\n",
"from utils import color\n",
"\n",
"input_img = img.load('/home/dengnc/deep_view_syn/data/gas_fovea_2020.12.31/upsampling_test/input/out_view_0000.png')\n",
"input_img = img.load('data/gas_fovea_2020.12.31/upsampling_test/input/out_view_0000.png')\n",
"ycbcr = color.rgb2ycbcr(input_img)\n",
"rgb = color.ycbcr2rgb(ycbcr)\n",
"\n",
......
import sys
sys.path.append('/e/dengnc')
__package__ = "deep_view_syn"
import os
import torch
import torch.optim
......
import sys
import os
import json
import argparse
from typing import Mapping
sys.path.append(os.path.abspath(sys.path[0] + '/../'))
from utils import view
parser = argparse.ArgumentParser()
parser.add_argument('-o', '--output', type=str, default='')
parser.add_argument('dataset', type=str)
args = parser.parse_args()
data_desc_path = args.dataset
data_desc_name = os.path.splitext(os.path.basename(data_desc_path))[0]
data_dir = os.path.dirname(data_desc_path) + '/'
with open(data_desc_path, 'r') as fp:
dataset_desc: Mapping = json.load(fp)
dataset_desc['cam_params'] = view.CameraParam.convert_camera_params(
dataset_desc['cam_params'],
(dataset_desc['view_res']['x'], dataset_desc['view_res']['x']))
dataset_desc['view_rots'] = [
view.euler_to_matrix([rot[1], rot[0], 0])
for rot in dataset_desc['view_rots']
] if len(dataset_desc['view_rots'][0]) == 2 else dataset_desc['view_rots']
if dataset_desc.get('gl_coord'):
del dataset_desc['gl_coord']
for i in range(len(dataset_desc['view_centers'])):
dataset_desc['view_centers'][i][2] *= -1
dataset_desc['view_rots'][i][2] *= -1
dataset_desc['view_rots'][i][5] *= -1
dataset_desc['view_rots'][i][6] *= -1
dataset_desc['view_rots'][i][7] *= -1
output_name = args.output if args.output else data_desc_name + '_cvt.json'
with open(os.path.join(data_dir, output_name), 'w') as fp:
json.dump(dataset_desc, fp, indent=4)
......@@ -2,12 +2,13 @@ import sys
import os
import torch
sys.path.append(os.path.abspath(sys.path[0] + '/../'))
os.chdir('../')
sys.path.append(os.getcwd())
from utils import img
from utils import misc
data_dir = '/home/dengnc/deep_view_syn/data/__7_challenge/classroom_r360x80_t0.3'
data_dir = 'data/__7_challenge/classroom_r360x80_t0.3'
in_set = f'{data_dir}/train_depth'
out_set = f'{data_dir}/train_depth_low'
......
......@@ -8,7 +8,6 @@ import torch.nn.functional as nn_f
from tensorboardX.writer import SummaryWriter
sys.path.append(os.path.abspath(sys.path[0] + '/../'))
__package__ = "deep_view_syn"
# ===========================================================
# Training settings
......
......@@ -45,7 +45,7 @@ def torch2np(input: torch.Tensor) -> np.ndarray:
:param input `Tensor(HW|[B]CHW|[B]HWC)`: 2D, 3D or 4D torch-image(s)
:return `ndarray ([B]HWC)`: numpy-image(s) with channels transposed to the last dim
"""
img = misc.torch2np(input.squeeze())
img = misc.torch2np(input)
if len(img.shape) == 2: # 2D(HW): Single channel image
return img
batch_input = len(img.shape) == 4
......@@ -88,7 +88,9 @@ def save(input: torch.Tensor, *paths: str):
new_paths = []
for path in paths:
new_paths += [path] if isinstance(path, str) else list(path)
if (len(input.size()) != 4 and len(new_paths) != 1) or input.size(0) != len(new_paths):
if len(input.size()) < 4:
input = input[None]
if input.size(0) != len(new_paths):
raise ValueError
np_img = torch2np(input)
if np_img.dtype.kind == 'f':
......@@ -111,7 +113,10 @@ def plot(input: torch.Tensor, *, ax: plt.Axes = None):
:param input `Tensor(HW|[B]CHW|[B]HWC)`: 2D, 3D or 4D torch-image(s)
:param ax `plt.Axes`: (optional) specify the axes to plot image
"""
return plt.imshow(torch2np(input)) if ax is None else ax.imshow(torch2np(input))
im = torch2np(input)
if len(im.shape) == 4:
im = im[0]
return plt.imshow(im) if ax is None else ax.imshow(im)
def save_video(frames: torch.Tensor, path: str, fps: int,
......@@ -138,7 +143,7 @@ def save_video(frames: torch.Tensor, path: str, fps: int,
misc.create_dir(temp_out_dir)
os.chdir(temp_out_dir)
save_seq(frames, 'out_%04d.png')
os.system(f'ffmpeg -y -r {fps:d} -i out_%04d.png -c:v libx264 -vf fps={fps:d} -pix_fmt yuv420p ../{file_name}')
os.system(f'ffmpeg -y -r {fps:d} -i out_%04d.png -c:v h264 -vf fps={fps:d} -pix_fmt yuv420p ../{file_name}')
os.chdir(cwd)
shutil.rmtree(os.path.join(dir, temp_out_dir))
......
......@@ -2,6 +2,7 @@
from typing import List, Mapping, Tuple, Union
import torch
import math
import glm
from . import misc
......@@ -14,7 +15,7 @@ class CameraParam(object):
def __init__(self, params: Mapping[str, Union[float, bool]],
res: Tuple[int, int], *, device=None) -> None:
super().__init__()
params = self._convert_camera_params(params, res)
params = CameraParam.convert_camera_params(params, res)
self.res = res
self.f = torch.tensor([params['fx'], params['fy'], 1], device=device)
self.c = torch.tensor([params['cx'], params['cy']], device=device)
......@@ -32,7 +33,7 @@ class CameraParam(object):
self.c[0] = self.c[0] / self.res[1] * res[1]
self.c[1] = self.c[1] / self.res[0] * res[0]
self.res = res
def proj(self, p: torch.Tensor, normalize=False, center_as_origin=False) -> torch.Tensor:
"""
Project positions in local space to image plane
......@@ -101,8 +102,9 @@ class CameraParam(object):
rays_d = trans.trans_vector(rays)
return rays_o, rays_d
def _convert_camera_params(self, input_camera_params: Mapping[str, Union[float, bool]],
view_res: Tuple[int, int]) -> Mapping[str, Union[float, bool]]:
@staticmethod
def convert_camera_params(input_camera_params: Mapping[str, Union[float, bool]],
view_res: Tuple[int, int]) -> Mapping[str, Union[float, bool]]:
"""
Check and convert camera parameters in config file to pixel-space
......@@ -135,7 +137,7 @@ class CameraParam(object):
class Trans(object):
def __init__(self, t: torch.Tensor, r: torch.Tensor) -> None:
def __init__(self, t: torch.Tensor, r: torch.Tensor):
self.t = t
self.r = r
if len(self.t.size()) == 1:
......@@ -156,13 +158,13 @@ class Trans(object):
size_M = list(self.r.size())[:-2]
out_size = size_M + size_N + [3]
t_size = size_M + [1 for _ in range(len(size_N))] + [3]
t = self.t.view(t_size) # (M.., 1.., 3)
t = self.t.view(t_size) # (M.., 1.., 3)
if inverse:
p = (p - t).view(size_M + [-1, 3])
r = self.r
else:
p = p.view(-1, 3)
r = self.r.movedim(-1, -2) # Transpose rotation matrices
r = self.r.movedim(-1, -2) # Transpose rotation matrices
out = torch.matmul(p, r).view(out_size)
if not inverse:
out = out + t
......@@ -178,13 +180,13 @@ class Trans(object):
:return `Tensor(M.., N.., 3)`: transformed vectors
"""
out_size = list(self.r.size())[:-2] + list(v.size())[:-1] + [3]
r = self.r if inverse else self.r.movedim(-1, -2) # Transpose rotation matrices
r = self.r if inverse else self.r.movedim(-1, -2) # Transpose rotation matrices
out = torch.matmul(v.view(-1, 3), r).view(out_size)
return out
def size(self) -> List[int]:
return list(self.t.size()[:-1])
def get(self, *index):
return Trans(self.t[index], self.r[index])
......@@ -230,3 +232,8 @@ def trans_vector(v: torch.Tensor, r: torch.Tensor, inverse=False) -> torch.Tenso
out = torch.matmul(v.flatten(0, -2), r).view(out_size)
return out
def euler_to_matrix(euler: Union[Tuple[float, float, float], List[float]]) -> List[float]:
q = glm.quat(glm.radians(glm.vec3(euler[0], euler[1], euler[2])))
vec_list = glm.transpose(glm.mat3_cast(q)).to_list()
return vec_list[0] + vec_list[1] + vec_list[2]
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment