From 1bc644a138fb144a18dc10c632c5b65d3a1db7ae Mon Sep 17 00:00:00 2001 From: Nianchen Deng <dengnianchen@sjtu.edu.cn> Date: Wed, 28 Sep 2022 11:20:35 +0800 Subject: [PATCH] sync --- .clang-format | 108 - .vscode/c_cpp_properties.json | 10 +- .vscode/launch.json | 61 +- .vscode/settings.json | 14 - LICENSE | 2 +- README.md | 73 +- a.drawio | 444 +++ args_test.py | 17 + batch_collect_video.sh | 6 +- batch_export_net.sh | 6 +- batch_infer.sh | 4 +- batch_test.sh | 19 +- blender/gen_utils.py | 28 +- clib/__init__.py | 173 +- clib/_ext.pyi | 32 + clib/include/cuda_utils.h | 59 +- clib/include/encode.h | 12 + clib/include/encode_debug.h | 7 + clib/include/utils.h | 41 +- clib/src/binding.cpp | 23 +- clib/src/encode.cpp | 56 + clib/src/encode_debug.cu | 132 + clib/src/encode_gpu.cu | 190 + components/fnr.py | 105 +- components/foveation.py | 18 +- components/refine.py | 2 +- components/render.py | 55 + configs/_todo/_hr_snerf_fast.json | 2 +- configs/ablation_nerf+sph+cat.ini | 22 + configs/ablation_nerf+sph.ini | 31 + configs/ablation_nerf.ini | 29 + configs/fovea.ini | 22 + configs/fsnerf.ini | 24 + configs/fsnerf2.ini | 24 + configs/fsnerf_eval.ini | 24 + configs/nerf.ini | 31 + configs/nerf_default.json | 16 - configs/nerf_iters.ini | 31 + configs/nerf_llff.ini | 31 + configs/{ => old}/_cnerf.json | 0 configs/{ => old}/_cnerf_ioc.json | 0 configs/{ => old}/_cnerfadv.json | 0 configs/{ => old}/_cnerfadv_ioc.json | 0 configs/{ => old}/_hr_snerf.json | 13 +- configs/old/_hr_snerf_mhe.json | 23 + configs/{ => old}/_hr_snerfadv.json | 0 configs/old/_hr_snerffast+ls.json | 9 + configs/old/_hr_snerffast.json | 15 + configs/old/_hr_snerffast_mhe+ls.json | 7 + configs/old/_hr_snerffast_mhe.json | 14 + configs/old/_hr_snerffast_mhe1.json | 11 + configs/{ => old}/_lr_snerf.json | 0 configs/{ => old}/_lr_snerfadv.json | 0 configs/{ => old}/_mr_snerf.json | 0 configs/{ => old}/_mr_snerfadv.json | 0 configs/old/_mr_snerffast.json | 15 + configs/old/nerf_bedroom.json | 28 + configs/old/nerf_blender.json | 44 + configs/old/nerf_default.json | 46 + configs/old/nerf_mhe.json | 17 + configs/old/nerf_mhe1.json | 11 + configs/old/nerf_simple.json | 33 + configs/{ => old}/nerf_voxels.json | 12 +- configs/old/nerf_voxels_mhe.json | 13 + configs/old/nerfadv_default.json | 24 + configs/old/nerfadv_mhe.json | 24 + configs/old/nerfadv_voxels.json | 15 + configs/old/nerfadv_voxels_mhe.json | 31 + configs/{ => old}/nsvf_default.json | 0 configs/{ => old}/nsvf_voxels.json | 0 configs/{ => old}/smnerf_voxels.json | 0 configs/{ => old}/smnerfadv_voxels.json | 0 configs/{ => old}/snerf4_voxels.json | 0 configs/old/snerf_voxels.json | 9 + configs/{ => old}/snerfadv_voxels.json | 0 configs/{ => old}/snerfadvx4_voxels.json | 0 configs/old/snerffast.json | 26 + configs/old/snerffast_periph+dr.json | 27 + configs/old/snerffast_periph+dr2.json | 27 + configs/old/snerffast_periph.json | 26 + configs/{ => old}/snerfx4_voxels.json | 0 configs/{ => old}/svnerf_voxels.json | 0 configs/periph.ini | 22 + configs/snerf_voxels.json | 25 - cpp/.clang-format | 1 + {cpp_old => cpp/__old}/Makefile.config | 0 {cpp_old => cpp/__old}/msl_infer/Encoder.cu | 0 {cpp_old => cpp/__old}/msl_infer/Encoder.h | 0 .../__old}/msl_infer/Enhancement.cu | 0 .../__old}/msl_infer/Enhancement.h | 0 {cpp_old => cpp/__old}/msl_infer/ImageGen.cpp | 0 {cpp_old => cpp/__old}/msl_infer/ImageGen.h | 0 .../__old}/msl_infer/InferPipeline.cpp | 0 .../__old}/msl_infer/InferPipeline.h | 0 cpp/{fnr_core => __old/msl_infer}/Msl.cpp | 0 cpp/{fnr_core => __old/msl_infer}/Msl.h | 0 {cpp_old => cpp/__old}/msl_infer/Net.cpp | 0 cpp/{fnr_core => __old/msl_infer}/Net.h | 0 cpp/{fnr_core => __old/msl_infer}/Nmsl2.cpp | 0 cpp/{fnr_core => __old/msl_infer}/Nmsl2.h | 0 cpp/{fnr_core => __old/msl_infer}/Renderer.cu | 0 cpp/{fnr_core => __old/msl_infer}/Renderer.h | 0 {cpp_old => cpp/__old}/msl_infer/Sampler.cu | 0 cpp/{fnr_core => __old/msl_infer}/Sampler.h | 0 .../__old}/msl_infer/SynthesisPipeline.cpp | 0 .../__old}/msl_infer/SynthesisPipeline.h | 0 {cpp_old => cpp/__old}/msl_infer/View.cu | 0 {cpp_old => cpp/__old}/msl_infer/View.h | 0 .../__old}/msl_infer_test/Makefile | 0 .../__old}/msl_infer_test/main.cpp | 0 .../__old}/nets/barbershop/fovea.trt | Bin .../__old}/nets/barbershop/periph.trt | Bin .../__old}/nets/classroom/fovea.trt | Bin .../__old}/nets/classroom/periph.trt | Bin cpp/{ => __old}/nets/fovea.mask | Bin {cpp_old => cpp/__old}/nets/lobby/fovea.trt | Bin {cpp_old => cpp/__old}/nets/lobby/periph.trt | Bin cpp/{ => __old}/nets/mid.mask | Bin cpp/{ => __old}/nets/old/fovea_mono/cat.trt | Bin cpp/{ => __old}/nets/old/fovea_mono/fc1.trt | Bin cpp/{ => __old}/nets/old/fovea_mono/fc2.trt | Bin cpp/{ => __old}/nets/old/fovea_mono/msl.trt | Bin cpp/{ => __old}/nets/old/fovea_stereo/cat.trt | Bin cpp/{ => __old}/nets/old/fovea_stereo/fc1.trt | Bin cpp/{ => __old}/nets/old/fovea_stereo/fc2.trt | Bin cpp/{ => __old}/nets/old/periph/cat.trt | Bin cpp/{ => __old}/nets/old/periph/fc1.trt | Bin cpp/{ => __old}/nets/old/periph/fc2.trt | Bin cpp/{ => __old}/nets/old/periph/msl.trt | Bin {cpp_old => cpp/__old}/nets/stones/fovea.trt | Bin {cpp_old => cpp/__old}/nets/stones/periph.trt | Bin .../__old}/old/msl_infer/Encoder.cu | 0 .../__old}/old/msl_infer/Encoder.h | 0 .../__old}/old/msl_infer/Enhancement.cu | 0 .../__old}/old/msl_infer/Enhancement.h | 0 .../__old}/old/msl_infer/ImageGen.cpp | 0 .../__old}/old/msl_infer/ImageGen.h | 0 .../__old}/old/msl_infer/InferPipeline.cpp | 0 .../__old}/old/msl_infer/InferPipeline.h | 0 {cpp_old => cpp/__old/old}/msl_infer/Msl.cpp | 0 {cpp_old => cpp/__old/old}/msl_infer/Msl.h | 0 {cpp_old => cpp/__old}/old/msl_infer/Net.cpp | 3 +- {cpp_old => cpp/__old/old}/msl_infer/Net.h | 0 .../__old/old}/msl_infer/Nmsl2.cpp | 0 {cpp_old => cpp/__old}/old/msl_infer/Nmsl2.h | 0 .../__old/old}/msl_infer/Renderer.cu | 0 .../__old/old}/msl_infer/Renderer.h | 0 .../__old}/old/msl_infer/Sampler.cu | 0 .../__old}/old/msl_infer/Sampler.h | 0 .../old/msl_infer/SynthesisPipeline.cpp | 0 .../__old}/old/msl_infer/SynthesisPipeline.h | 0 {cpp_old => cpp/__old}/old/msl_infer/View.cu | 0 {cpp_old => cpp/__old}/old/msl_infer/View.h | 0 .../__old}/old/msl_infer_test/Makefile | 0 .../__old}/old/msl_infer_test/main.cpp | 0 {cpp_old => cpp/__old}/old/utils/Formatter.h | 0 cpp/{ => __old/old}/utils/Logger.cpp | 0 {cpp_old => cpp/__old}/old/utils/Logger.h | 0 {cpp_old => cpp/__old/old}/utils/Resource.h | 92 +- {cpp_old => cpp/__old}/old/utils/common.h | 0 {cpp_old => cpp/__old}/old/utils/cuda.h | 0 {cpp_old => cpp/__old}/old/utils/half.h | 0 .../__old}/old/utils/thread_index.h | 0 {cpp_old => cpp/__old}/utils/Formatter.h | 0 {cpp_old/old => cpp/__old}/utils/Logger.cpp | 0 {cpp_old => cpp/__old}/utils/Logger.h | 6 +- {cpp_old/old => cpp/__old}/utils/Resource.h | 0 {cpp_old => cpp/__old}/utils/common.h | 0 {cpp_old => cpp/__old}/utils/cuda.h | 0 {cpp_old => cpp/__old}/utils/half.h | 0 cpp/{ => __old}/utils/thread_index.h | 0 cpp/fields/FsNeRF.cpp | 31 + cpp/fields/FsNeRF.h | 22 + cpp/{fnr_core => fields}/Net.cpp | 0 {cpp_old/old/msl_infer => cpp/fields}/Net.h | 0 cpp/fnr_core/Encoder.cu | 86 - cpp/fnr_core/Encoder.h | 21 - cpp/fnr_core/InferPipeline.cpp | 97 - cpp/fnr_core/InferPipeline.h | 31 - cpp/fnr_core/NeuralSynthesis.cpp | 193 + cpp/fnr_core/NeuralSynthesis.h | 19 + cpp/fnr_core/Sampler.cu | 46 - cpp/models/FsNeRF.cpp | 107 + cpp/models/FsNeRF.h | 48 + cpp/models/Model.h | 11 + cpp/modules/Encoder.cu | 60 + cpp/modules/Encoder.h | 27 + cpp/modules/Renderer.cu | 36 + cpp/modules/Renderer.h | 23 + cpp/modules/Sampler.cu | 118 + cpp/modules/Sampler.h | 20 + cpp/{fnr_core => modules}/Voxels.cu | 0 cpp/{fnr_core => modules}/Voxels.h | 0 .../bakes/barbershop_0/fovea.png | Bin .../bakes/barbershop_0/fovea_l.png | Bin .../bakes/barbershop_0/fovea_r.png | Bin .../bakes/barbershop_0/mid.png | Bin .../bakes/barbershop_0/mid_l.png | Bin .../bakes/barbershop_0/mid_r.png | Bin .../bakes/barbershop_0/periph.png | Bin .../bakes/barbershop_0/periph_l.png | Bin .../bakes/barbershop_0/periph_r.png | Bin .../bakes/barbershop_0_HR/fovea.png | Bin .../bakes/barbershop_0_HR/fovea_l.png | Bin .../bakes/barbershop_0_HR/fovea_r.png | Bin .../bakes/barbershop_0_HR/mid.png | Bin .../bakes/barbershop_0_HR/mid_l.png | Bin .../bakes/barbershop_0_HR/mid_r.png | Bin .../bakes/barbershop_0_HR/periph.png | Bin .../bakes/barbershop_0_HR/periph_l.png | Bin .../bakes/barbershop_0_HR/periph_r.png | Bin .../bakes/barbershop_0_noCE/fovea.png | Bin .../bakes/barbershop_0_noCE/fovea_l.png | Bin .../bakes/barbershop_0_noCE/fovea_r.png | Bin .../bakes/barbershop_0_noCE/mid.png | Bin .../bakes/barbershop_0_noCE/mid_l.png | Bin .../bakes/barbershop_0_noCE/mid_r.png | Bin .../bakes/barbershop_0_noCE/periph.png | Bin .../bakes/barbershop_0_noCE/periph_l.png | Bin .../bakes/barbershop_0_noCE/periph_r.png | Bin .../nets/barbershop/fovea.onnx | Bin cpp/{ => resources}/nets/barbershop/fovea.trt | Bin .../nets/barbershop/periph.onnx | Bin .../nets/barbershop/periph.trt | Bin cpp/{ => resources}/nets/classroom/fovea.onnx | Bin cpp/{ => resources}/nets/classroom/fovea.trt | Bin .../nets/classroom/periph.onnx | Bin cpp/{ => resources}/nets/classroom/periph.trt | Bin {cpp_old => cpp/resources}/nets/fovea.mask | Bin cpp/{ => resources}/nets/lobby/fovea.onnx | Bin cpp/{ => resources}/nets/lobby/fovea.trt | Bin cpp/{ => resources}/nets/lobby/periph.onnx | Bin cpp/{ => resources}/nets/lobby/periph.trt | Bin {cpp_old => cpp/resources}/nets/mid.mask | Bin .../resources}/nets/old/fovea_mono/cat.trt | Bin .../resources}/nets/old/fovea_mono/fc1.trt | Bin .../resources}/nets/old/fovea_mono/fc2.trt | Bin .../resources}/nets/old/fovea_mono/msl.trt | Bin .../resources}/nets/old/fovea_stereo/cat.trt | Bin .../resources}/nets/old/fovea_stereo/fc1.trt | Bin .../resources}/nets/old/fovea_stereo/fc2.trt | Bin .../resources}/nets/old/periph/cat.trt | Bin .../resources}/nets/old/periph/fc1.trt | Bin .../resources}/nets/old/periph/fc2.trt | Bin .../resources}/nets/old/periph/msl.trt | Bin cpp/{ => resources}/nets/stones/fovea.onnx | Bin cpp/{ => resources}/nets/stones/fovea.trt | Bin cpp/{ => resources}/nets/stones/periph.onnx | Bin cpp/{ => resources}/nets/stones/periph.trt | Bin cpp/utils/Eye.h | 3 - cpp/utils/Logger.h | 93 - cpp/utils/Resource.h | 144 - cpp/utils/common.h | 91 +- cpp/utils/common/fmt.h | 24 + cpp/utils/common/logger.cpp | 68 + cpp/utils/common/logger.h | 26 + cpp/utils/cuda.h | 10 +- cpp/utils/cuda/array.h | 23 + cpp/utils/cuda/error.cpp | 12 + cpp/utils/cuda/error.h | 16 + cpp/utils/cuda/event.h | 19 + cpp/utils/cuda/gl_texture.h | 33 + cpp/utils/cuda/index.h | 34 + cpp/utils/cuda/map_resources_scope.h | 25 + cpp/utils/cuda/resource.h | 70 + cpp/utils/cuda/resources.h | 18 + cpp/utils/cuda/stream.h | 21 + cpp/utils/debug.h | 9 + cpp_old/msl_infer/Nmsl2.h | 25 - cpp_old/msl_infer/Sampler.h | 15 - cpp_old/old/msl_infer/Msl.cpp | 28 - cpp_old/old/msl_infer/Msl.h | 15 - cpp_old/old/msl_infer/Nmsl2.cpp | 65 - cpp_old/old/msl_infer/Renderer.cu | 28 - cpp_old/old/msl_infer/Renderer.h | 15 - cpp_old/utils/Logger.cpp | 3 - cpp_old/utils/thread_index.h | 15 - data/__init__.py | 5 +- data/dataset.py | 296 +- data/dataset_factory.py | 23 - data/loader.py | 201 +- data/pano_dataset.py | 157 - data/utils.py | 16 - data/view_dataset.py | 156 - fntest.py | 12 - fovea_net.png | Bin 0 -> 75419 bytes fovea_params_optim.py | 62 + gt.png | Bin 0 -> 83250 bytes key_test.py | 32 - model/__common__.py | 11 +- model/__init__.py | 30 +- model/__old/__common__.py | 6 + model/__old/__init__.py | 15 + model/__old/{ => __old}/bg_net.py | 0 model/__old/{ => __old}/nerf_depth.py | 0 model/__old/{ => __old}/oracle.py | 0 model/{ => __old}/base.py | 20 +- model/{ => __old}/cnerf.py | 23 +- model/{ => __old}/mnerf.py | 2 +- model/{ => __old}/mnerf_advance.py | 4 +- model/__old/nerf.py | 212 + model/{ => __old}/snerf_fast.py | 35 +- model/{ => __old}/snerf_x.py | 9 +- model/{ => __old}/utils.py | 5 +- model/{ => __old}/vnerf.py | 2 +- model/__todo/cnerf.py | 129 + model/__todo/mnerf.py | 29 + model/__todo/mnerf_advance.py | 36 + model/__todo/snerf_x.py | 33 + model/__todo/vnerf.py | 24 + model/fs_nerf.py | 76 + model/model.py | 48 + model/nerf.py | 273 +- modules/__common__.py | 5 + modules/__init__.py | 10 +- modules/{ => __old}/core.py | 53 +- modules/__old/input_encoder.py | 417 ++ modules/__old/renderer.py | 364 ++ modules/__old/sampler.py | 112 + modules/core/__init__.py | 4 + modules/core/color_decoder.py | 41 + modules/core/density_decoder.py | 16 + modules/core/field.py | 19 + modules/core/fs_nerf.py | 58 + modules/core/nerf.py | 45 + modules/generic/__init__.py | 1 - modules/generic/linear.py | 104 - modules/input_encoder.py | 242 +- modules/renderer.py | 390 +- modules/sampler.py | 466 +-- modules/space.py | 130 +- notebook/__demo/layers/mc_0071(0).png | Bin 0 -> 134125 bytes notebook/__demo/layers/mc_0071(1).png | Bin 0 -> 225734 bytes notebook/__demo/layers/mc_0071(2).png | Bin 0 -> 192377 bytes notebook/__demo/layers/mc_0071(3).png | Bin 0 -> 236006 bytes notebook/dynamic_bar.ipynb | 393 ++ notebook/gen/gen_crop.ipynb | 83 + notebook/{ => gen}/gen_demo_mono.ipynb | 193 +- notebook/{ => gen}/gen_demo_stereo.ipynb | 164 +- notebook/{ => gen}/gen_for_eval.ipynb | 0 notebook/gen/gen_layers.ipynb | 118 + notebook/{ => gen}/gen_prebake.ipynb | 2 +- notebook/{ => gen}/gen_teaser.ipynb | 0 notebook/{ => gen}/gen_test.ipynb | 10 +- .../{ => gen}/gen_user_study_images.ipynb | 4 +- notebook/{ => gen}/gen_video.ipynb | 2 +- notebook/gen_crop.ipynb | 103 - notebook/test/__general.ipynb | 237 ++ notebook/test/common.py | 10 + .../constrast.ipynb} | 19 +- notebook/test/fisheye_undistort.ipynb | 135 + .../image_filter.ipynb} | 27 +- .../load_dataset.ipynb} | 49 +- notebook/test/sphere.ipynb | 142 + notebook/{ => test}/test_eccv.ipynb | 2 +- notebook/{ => test}/test_foveation.ipynb | 45 +- notebook/{ => test}/test_mono_gen.ipynb | 9 +- notebook/{ => test}/test_mono_view.ipynb | 4 +- notebook/{ => test}/test_refinement.ipynb | 4 +- .../{test_voxel.ipynb => test/voxel.ipynb} | 10 +- notebook/test_lf_syn.ipynb | 134 - notebook/test_sphere.ipynb | 154 - notebook/test_ycbcr.ipynb | 60 - periph_net.png | Bin 0 -> 82417 bytes requirements.txt | 19 + run_lf_syn.py | 143 - run_spherical_view_syn.py | 764 ---- setup.py | 1 - term_test.py | 15 - test.ipynb | 127 - test.py | 376 +- test.txt | 10 - test/utils.py | 1 + test1.txt | 3455 ----------------- test_perf.py | 70 + test_todo.sh | 24 + tools/convert_data_desc.py | 2 +- tools/convert_nerf_checkpoint.py | 106 + tools/convert_old_snerffast_checkpoint.py | 198 + {assets => tools/dash/assets}/dash_test.css | 0 dash_test.py => tools/dash/dash_test.py | 13 +- tools/data/blender_gen/gen_fovea.py | 6 +- tools/data/blender_gen/gen_periph.py | 6 +- tools/data/colmap2dataset.py | 178 + tools/data/extract.py | 40 +- tools/data/extract360.py | 62 + tools/data/gen_colmap.py | 73 - tools/data/gen_seq.py | 52 +- tools/data/gen_subset.py | 8 +- tools/data/merge.py | 4 +- tools/data/split.py | 96 +- tools/data/split360.py | 73 + tools/data/video2images.py | 35 + .../debug}/voxel_sampler_export3d.py | 0 tools/dump_checkpoint.py | 24 + tools/export_msl.py | 2 +- tools/export_nmsl.py | 2 +- tools/export_onnx.py | 67 +- tools/export_script_model.py | 39 + tools/export_snerf_fast.py | 4 +- tools/gen_video.py | 246 +- tools/image_scale.py | 40 +- tools/process_nerf.py | 2 +- train.py | 224 +- train/__init__.py | 34 +- train/train.py | 271 -- train/train_multi_scale.py | 16 +- train/train_with_space.py | 32 +- train/trainer.py | 294 ++ train_oracle.py | 374 -- update_cnerf.py | 29 - upsampling/FSRCNN/README.md | 5 - upsampling/FSRCNN/model.py | 61 - upsampling/FSRCNN/solver.py | 104 - upsampling/SRCNN/README.md | 10 - upsampling/SRCNN/model.py | 30 - upsampling/SRCNN/solver.py | 104 - upsampling/SRGAN/README.md | 26 - upsampling/SRGAN/model.py | 118 - upsampling/SRGAN/solver.py | 163 - upsampling/SubPixelCNN/model.py | 33 - upsampling/SubPixelCNN/solver.py | 110 - upsampling/run_upsampling.py | 112 - upsampling/upsampling_dataset.py | 68 - utils/args.py | 80 + utils/colmap_read_model.py | 2 +- utils/config.py | 30 + utils/env.py | 12 +- utils/export.py | 53 + utils/geometry.py | 3 +- utils/img.py | 49 +- utils/interact.py | 2 +- utils/logging.py | 25 + utils/loss.py | 2 +- {loss => utils/loss}/__init__.py | 5 +- {loss => utils/loss}/cauchy.py | 10 +- utils/loss/lpips.py | 22 + {loss => utils/loss}/perc_loss.py | 0 {loss => utils/loss}/ssim.py | 0 utils/math.py | 15 +- utils/mem_profiler.py | 12 +- utils/misc.py | 183 +- utils/netio.py | 32 +- __init__.py => utils/nn.py | 0 utils/nn/__init__.py | 3 + {modules/generic => utils/nn}/fn.py | 2 + utils/nn/linear.py | 118 + utils/{ => nn}/module.py | 64 +- {modules/generic => utils/nn}/weight_init.py | 3 +- utils/perf.py | 173 - utils/profile.py | 325 ++ utils/samples.py | 89 - utils/seqs.py | 2 +- utils/sphere.py | 62 +- utils/type.py | 28 - utils/types/__common__.py | 6 + utils/types/__init__.py | 24 + utils/{ => types}/color.py | 75 +- utils/types/data_pack.py | 178 + utils/types/rays.py | 24 + utils/types/samples.py | 51 + utils/view.py | 257 +- utils/voxels.py | 55 +- 463 files changed, 10425 insertions(+), 11421 deletions(-) delete mode 100644 .clang-format delete mode 100644 .vscode/settings.json create mode 100644 a.drawio create mode 100644 args_test.py create mode 100644 clib/_ext.pyi create mode 100644 clib/include/encode.h create mode 100644 clib/include/encode_debug.h create mode 100644 clib/src/encode.cpp create mode 100644 clib/src/encode_debug.cu create mode 100644 clib/src/encode_gpu.cu create mode 100644 components/render.py create mode 100644 configs/ablation_nerf+sph+cat.ini create mode 100644 configs/ablation_nerf+sph.ini create mode 100644 configs/ablation_nerf.ini create mode 100644 configs/fovea.ini create mode 100644 configs/fsnerf.ini create mode 100644 configs/fsnerf2.ini create mode 100644 configs/fsnerf_eval.ini create mode 100644 configs/nerf.ini delete mode 100644 configs/nerf_default.json create mode 100644 configs/nerf_iters.ini create mode 100644 configs/nerf_llff.ini rename configs/{ => old}/_cnerf.json (100%) rename configs/{ => old}/_cnerf_ioc.json (100%) rename configs/{ => old}/_cnerfadv.json (100%) rename configs/{ => old}/_cnerfadv_ioc.json (100%) rename configs/{ => old}/_hr_snerf.json (50%) create mode 100644 configs/old/_hr_snerf_mhe.json rename configs/{ => old}/_hr_snerfadv.json (100%) create mode 100644 configs/old/_hr_snerffast+ls.json create mode 100644 configs/old/_hr_snerffast.json create mode 100644 configs/old/_hr_snerffast_mhe+ls.json create mode 100644 configs/old/_hr_snerffast_mhe.json create mode 100644 configs/old/_hr_snerffast_mhe1.json rename configs/{ => old}/_lr_snerf.json (100%) rename configs/{ => old}/_lr_snerfadv.json (100%) rename configs/{ => old}/_mr_snerf.json (100%) rename configs/{ => old}/_mr_snerfadv.json (100%) create mode 100644 configs/old/_mr_snerffast.json create mode 100644 configs/old/nerf_bedroom.json create mode 100644 configs/old/nerf_blender.json create mode 100644 configs/old/nerf_default.json create mode 100644 configs/old/nerf_mhe.json create mode 100644 configs/old/nerf_mhe1.json create mode 100644 configs/old/nerf_simple.json rename configs/{ => old}/nerf_voxels.json (53%) create mode 100644 configs/old/nerf_voxels_mhe.json create mode 100644 configs/old/nerfadv_default.json create mode 100644 configs/old/nerfadv_mhe.json create mode 100644 configs/old/nerfadv_voxels.json create mode 100644 configs/old/nerfadv_voxels_mhe.json rename configs/{ => old}/nsvf_default.json (100%) rename configs/{ => old}/nsvf_voxels.json (100%) rename configs/{ => old}/smnerf_voxels.json (100%) rename configs/{ => old}/smnerfadv_voxels.json (100%) rename configs/{ => old}/snerf4_voxels.json (100%) create mode 100644 configs/old/snerf_voxels.json rename configs/{ => old}/snerfadv_voxels.json (100%) rename configs/{ => old}/snerfadvx4_voxels.json (100%) create mode 100644 configs/old/snerffast.json create mode 100644 configs/old/snerffast_periph+dr.json create mode 100644 configs/old/snerffast_periph+dr2.json create mode 100644 configs/old/snerffast_periph.json rename configs/{ => old}/snerfx4_voxels.json (100%) rename configs/{ => old}/svnerf_voxels.json (100%) create mode 100644 configs/periph.ini delete mode 100644 configs/snerf_voxels.json create mode 100644 cpp/.clang-format rename {cpp_old => cpp/__old}/Makefile.config (100%) rename {cpp_old => cpp/__old}/msl_infer/Encoder.cu (100%) rename {cpp_old => cpp/__old}/msl_infer/Encoder.h (100%) rename {cpp_old => cpp/__old}/msl_infer/Enhancement.cu (100%) rename {cpp_old => cpp/__old}/msl_infer/Enhancement.h (100%) rename {cpp_old => cpp/__old}/msl_infer/ImageGen.cpp (100%) rename {cpp_old => cpp/__old}/msl_infer/ImageGen.h (100%) rename {cpp_old => cpp/__old}/msl_infer/InferPipeline.cpp (100%) rename {cpp_old => cpp/__old}/msl_infer/InferPipeline.h (100%) rename cpp/{fnr_core => __old/msl_infer}/Msl.cpp (100%) mode change 100644 => 100755 rename cpp/{fnr_core => __old/msl_infer}/Msl.h (100%) mode change 100644 => 100755 rename {cpp_old => cpp/__old}/msl_infer/Net.cpp (100%) rename cpp/{fnr_core => __old/msl_infer}/Net.h (100%) mode change 100644 => 100755 rename cpp/{fnr_core => __old/msl_infer}/Nmsl2.cpp (100%) mode change 100644 => 100755 rename cpp/{fnr_core => __old/msl_infer}/Nmsl2.h (100%) mode change 100644 => 100755 rename cpp/{fnr_core => __old/msl_infer}/Renderer.cu (100%) mode change 100644 => 100755 rename cpp/{fnr_core => __old/msl_infer}/Renderer.h (100%) mode change 100644 => 100755 rename {cpp_old => cpp/__old}/msl_infer/Sampler.cu (100%) rename cpp/{fnr_core => __old/msl_infer}/Sampler.h (100%) mode change 100644 => 100755 rename {cpp_old => cpp/__old}/msl_infer/SynthesisPipeline.cpp (100%) rename {cpp_old => cpp/__old}/msl_infer/SynthesisPipeline.h (100%) rename {cpp_old => cpp/__old}/msl_infer/View.cu (100%) rename {cpp_old => cpp/__old}/msl_infer/View.h (100%) rename {cpp_old => cpp/__old}/msl_infer_test/Makefile (100%) rename {cpp_old => cpp/__old}/msl_infer_test/main.cpp (100%) rename {cpp_old => cpp/__old}/nets/barbershop/fovea.trt (100%) rename {cpp_old => cpp/__old}/nets/barbershop/periph.trt (100%) rename {cpp_old => cpp/__old}/nets/classroom/fovea.trt (100%) rename {cpp_old => cpp/__old}/nets/classroom/periph.trt (100%) rename cpp/{ => __old}/nets/fovea.mask (100%) rename {cpp_old => cpp/__old}/nets/lobby/fovea.trt (100%) rename {cpp_old => cpp/__old}/nets/lobby/periph.trt (100%) rename cpp/{ => __old}/nets/mid.mask (100%) rename cpp/{ => __old}/nets/old/fovea_mono/cat.trt (100%) rename cpp/{ => __old}/nets/old/fovea_mono/fc1.trt (100%) rename cpp/{ => __old}/nets/old/fovea_mono/fc2.trt (100%) rename cpp/{ => __old}/nets/old/fovea_mono/msl.trt (100%) rename cpp/{ => __old}/nets/old/fovea_stereo/cat.trt (100%) rename cpp/{ => __old}/nets/old/fovea_stereo/fc1.trt (100%) rename cpp/{ => __old}/nets/old/fovea_stereo/fc2.trt (100%) rename cpp/{ => __old}/nets/old/periph/cat.trt (100%) rename cpp/{ => __old}/nets/old/periph/fc1.trt (100%) rename cpp/{ => __old}/nets/old/periph/fc2.trt (100%) rename cpp/{ => __old}/nets/old/periph/msl.trt (100%) rename {cpp_old => cpp/__old}/nets/stones/fovea.trt (100%) rename {cpp_old => cpp/__old}/nets/stones/periph.trt (100%) rename {cpp_old => cpp/__old}/old/msl_infer/Encoder.cu (100%) rename {cpp_old => cpp/__old}/old/msl_infer/Encoder.h (100%) rename {cpp_old => cpp/__old}/old/msl_infer/Enhancement.cu (100%) rename {cpp_old => cpp/__old}/old/msl_infer/Enhancement.h (100%) rename {cpp_old => cpp/__old}/old/msl_infer/ImageGen.cpp (100%) rename {cpp_old => cpp/__old}/old/msl_infer/ImageGen.h (100%) rename {cpp_old => cpp/__old}/old/msl_infer/InferPipeline.cpp (100%) rename {cpp_old => cpp/__old}/old/msl_infer/InferPipeline.h (100%) rename {cpp_old => cpp/__old/old}/msl_infer/Msl.cpp (100%) mode change 100755 => 100644 rename {cpp_old => cpp/__old/old}/msl_infer/Msl.h (100%) mode change 100755 => 100644 rename {cpp_old => cpp/__old}/old/msl_infer/Net.cpp (94%) rename {cpp_old => cpp/__old/old}/msl_infer/Net.h (100%) mode change 100755 => 100644 rename {cpp_old => cpp/__old/old}/msl_infer/Nmsl2.cpp (100%) mode change 100755 => 100644 rename {cpp_old => cpp/__old}/old/msl_infer/Nmsl2.h (100%) rename {cpp_old => cpp/__old/old}/msl_infer/Renderer.cu (100%) mode change 100755 => 100644 rename {cpp_old => cpp/__old/old}/msl_infer/Renderer.h (100%) mode change 100755 => 100644 rename {cpp_old => cpp/__old}/old/msl_infer/Sampler.cu (100%) rename {cpp_old => cpp/__old}/old/msl_infer/Sampler.h (100%) rename {cpp_old => cpp/__old}/old/msl_infer/SynthesisPipeline.cpp (100%) rename {cpp_old => cpp/__old}/old/msl_infer/SynthesisPipeline.h (100%) rename {cpp_old => cpp/__old}/old/msl_infer/View.cu (100%) rename {cpp_old => cpp/__old}/old/msl_infer/View.h (100%) rename {cpp_old => cpp/__old}/old/msl_infer_test/Makefile (100%) rename {cpp_old => cpp/__old}/old/msl_infer_test/main.cpp (100%) rename {cpp_old => cpp/__old}/old/utils/Formatter.h (100%) rename cpp/{ => __old/old}/utils/Logger.cpp (100%) rename {cpp_old => cpp/__old}/old/utils/Logger.h (100%) rename {cpp_old => cpp/__old/old}/utils/Resource.h (65%) mode change 100755 => 100644 rename {cpp_old => cpp/__old}/old/utils/common.h (100%) rename {cpp_old => cpp/__old}/old/utils/cuda.h (100%) rename {cpp_old => cpp/__old}/old/utils/half.h (100%) rename {cpp_old => cpp/__old}/old/utils/thread_index.h (100%) rename {cpp_old => cpp/__old}/utils/Formatter.h (100%) rename {cpp_old/old => cpp/__old}/utils/Logger.cpp (100%) mode change 100644 => 100755 rename {cpp_old => cpp/__old}/utils/Logger.h (83%) rename {cpp_old/old => cpp/__old}/utils/Resource.h (100%) mode change 100644 => 100755 rename {cpp_old => cpp/__old}/utils/common.h (100%) rename {cpp_old => cpp/__old}/utils/cuda.h (100%) rename {cpp_old => cpp/__old}/utils/half.h (100%) rename cpp/{ => __old}/utils/thread_index.h (100%) mode change 100644 => 100755 create mode 100644 cpp/fields/FsNeRF.cpp create mode 100644 cpp/fields/FsNeRF.h rename cpp/{fnr_core => fields}/Net.cpp (100%) rename {cpp_old/old/msl_infer => cpp/fields}/Net.h (100%) delete mode 100644 cpp/fnr_core/Encoder.cu delete mode 100644 cpp/fnr_core/Encoder.h delete mode 100644 cpp/fnr_core/InferPipeline.cpp delete mode 100644 cpp/fnr_core/InferPipeline.h create mode 100644 cpp/fnr_core/NeuralSynthesis.cpp create mode 100644 cpp/fnr_core/NeuralSynthesis.h delete mode 100644 cpp/fnr_core/Sampler.cu create mode 100644 cpp/models/FsNeRF.cpp create mode 100644 cpp/models/FsNeRF.h create mode 100644 cpp/models/Model.h create mode 100644 cpp/modules/Encoder.cu create mode 100644 cpp/modules/Encoder.h create mode 100644 cpp/modules/Renderer.cu create mode 100644 cpp/modules/Renderer.h create mode 100644 cpp/modules/Sampler.cu create mode 100644 cpp/modules/Sampler.h rename cpp/{fnr_core => modules}/Voxels.cu (100%) rename cpp/{fnr_core => modules}/Voxels.h (100%) rename cpp/{ => resources}/bakes/barbershop_0/fovea.png (100%) rename cpp/{ => resources}/bakes/barbershop_0/fovea_l.png (100%) rename cpp/{ => resources}/bakes/barbershop_0/fovea_r.png (100%) rename cpp/{ => resources}/bakes/barbershop_0/mid.png (100%) rename cpp/{ => resources}/bakes/barbershop_0/mid_l.png (100%) rename cpp/{ => resources}/bakes/barbershop_0/mid_r.png (100%) rename cpp/{ => resources}/bakes/barbershop_0/periph.png (100%) rename cpp/{ => resources}/bakes/barbershop_0/periph_l.png (100%) rename cpp/{ => resources}/bakes/barbershop_0/periph_r.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_HR/fovea.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_HR/fovea_l.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_HR/fovea_r.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_HR/mid.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_HR/mid_l.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_HR/mid_r.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_HR/periph.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_HR/periph_l.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_HR/periph_r.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_noCE/fovea.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_noCE/fovea_l.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_noCE/fovea_r.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_noCE/mid.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_noCE/mid_l.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_noCE/mid_r.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_noCE/periph.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_noCE/periph_l.png (100%) rename cpp/{ => resources}/bakes/barbershop_0_noCE/periph_r.png (100%) rename cpp/{ => resources}/nets/barbershop/fovea.onnx (100%) rename cpp/{ => resources}/nets/barbershop/fovea.trt (100%) rename cpp/{ => resources}/nets/barbershop/periph.onnx (100%) rename cpp/{ => resources}/nets/barbershop/periph.trt (100%) rename cpp/{ => resources}/nets/classroom/fovea.onnx (100%) rename cpp/{ => resources}/nets/classroom/fovea.trt (100%) rename cpp/{ => resources}/nets/classroom/periph.onnx (100%) rename cpp/{ => resources}/nets/classroom/periph.trt (100%) rename {cpp_old => cpp/resources}/nets/fovea.mask (100%) rename cpp/{ => resources}/nets/lobby/fovea.onnx (100%) rename cpp/{ => resources}/nets/lobby/fovea.trt (100%) rename cpp/{ => resources}/nets/lobby/periph.onnx (100%) rename cpp/{ => resources}/nets/lobby/periph.trt (100%) rename {cpp_old => cpp/resources}/nets/mid.mask (100%) rename {cpp_old => cpp/resources}/nets/old/fovea_mono/cat.trt (100%) rename {cpp_old => cpp/resources}/nets/old/fovea_mono/fc1.trt (100%) rename {cpp_old => cpp/resources}/nets/old/fovea_mono/fc2.trt (100%) rename {cpp_old => cpp/resources}/nets/old/fovea_mono/msl.trt (100%) rename {cpp_old => cpp/resources}/nets/old/fovea_stereo/cat.trt (100%) rename {cpp_old => cpp/resources}/nets/old/fovea_stereo/fc1.trt (100%) rename {cpp_old => cpp/resources}/nets/old/fovea_stereo/fc2.trt (100%) rename {cpp_old => cpp/resources}/nets/old/periph/cat.trt (100%) rename {cpp_old => cpp/resources}/nets/old/periph/fc1.trt (100%) rename {cpp_old => cpp/resources}/nets/old/periph/fc2.trt (100%) rename {cpp_old => cpp/resources}/nets/old/periph/msl.trt (100%) rename cpp/{ => resources}/nets/stones/fovea.onnx (100%) rename cpp/{ => resources}/nets/stones/fovea.trt (100%) rename cpp/{ => resources}/nets/stones/periph.onnx (100%) rename cpp/{ => resources}/nets/stones/periph.trt (100%) delete mode 100644 cpp/utils/Logger.h delete mode 100644 cpp/utils/Resource.h create mode 100644 cpp/utils/common/fmt.h create mode 100644 cpp/utils/common/logger.cpp create mode 100644 cpp/utils/common/logger.h create mode 100644 cpp/utils/cuda/array.h create mode 100644 cpp/utils/cuda/error.cpp create mode 100644 cpp/utils/cuda/error.h create mode 100644 cpp/utils/cuda/event.h create mode 100644 cpp/utils/cuda/gl_texture.h create mode 100644 cpp/utils/cuda/index.h create mode 100644 cpp/utils/cuda/map_resources_scope.h create mode 100644 cpp/utils/cuda/resource.h create mode 100644 cpp/utils/cuda/resources.h create mode 100644 cpp/utils/cuda/stream.h create mode 100644 cpp/utils/debug.h delete mode 100755 cpp_old/msl_infer/Nmsl2.h delete mode 100755 cpp_old/msl_infer/Sampler.h delete mode 100644 cpp_old/old/msl_infer/Msl.cpp delete mode 100644 cpp_old/old/msl_infer/Msl.h delete mode 100644 cpp_old/old/msl_infer/Nmsl2.cpp delete mode 100644 cpp_old/old/msl_infer/Renderer.cu delete mode 100644 cpp_old/old/msl_infer/Renderer.h delete mode 100755 cpp_old/utils/Logger.cpp delete mode 100755 cpp_old/utils/thread_index.h delete mode 100644 data/dataset_factory.py delete mode 100644 data/pano_dataset.py delete mode 100644 data/utils.py delete mode 100644 data/view_dataset.py delete mode 100644 fntest.py create mode 100644 fovea_net.png create mode 100644 fovea_params_optim.py create mode 100644 gt.png delete mode 100644 key_test.py create mode 100644 model/__old/__common__.py create mode 100644 model/__old/__init__.py rename model/__old/{ => __old}/bg_net.py (100%) rename model/__old/{ => __old}/nerf_depth.py (100%) rename model/__old/{ => __old}/oracle.py (100%) rename model/{ => __old}/base.py (85%) rename model/{ => __old}/cnerf.py (91%) rename model/{ => __old}/mnerf.py (98%) rename model/{ => __old}/mnerf_advance.py (90%) create mode 100644 model/__old/nerf.py rename model/{ => __old}/snerf_fast.py (66%) rename model/{ => __old}/snerf_x.py (84%) rename model/{ => __old}/utils.py (86%) rename model/{ => __old}/vnerf.py (89%) create mode 100644 model/__todo/cnerf.py create mode 100644 model/__todo/mnerf.py create mode 100644 model/__todo/mnerf_advance.py create mode 100644 model/__todo/snerf_x.py create mode 100644 model/__todo/vnerf.py create mode 100644 model/fs_nerf.py create mode 100644 model/model.py create mode 100644 modules/__common__.py rename modules/{ => __old}/core.py (87%) create mode 100644 modules/__old/input_encoder.py create mode 100644 modules/__old/renderer.py create mode 100644 modules/__old/sampler.py create mode 100644 modules/core/__init__.py create mode 100644 modules/core/color_decoder.py create mode 100644 modules/core/density_decoder.py create mode 100644 modules/core/field.py create mode 100644 modules/core/fs_nerf.py create mode 100644 modules/core/nerf.py delete mode 100644 modules/generic/__init__.py delete mode 100644 modules/generic/linear.py create mode 100644 notebook/__demo/layers/mc_0071(0).png create mode 100644 notebook/__demo/layers/mc_0071(1).png create mode 100644 notebook/__demo/layers/mc_0071(2).png create mode 100644 notebook/__demo/layers/mc_0071(3).png create mode 100644 notebook/dynamic_bar.ipynb create mode 100644 notebook/gen/gen_crop.ipynb rename notebook/{ => gen}/gen_demo_mono.ipynb (57%) rename notebook/{ => gen}/gen_demo_stereo.ipynb (51%) rename notebook/{ => gen}/gen_for_eval.ipynb (100%) create mode 100644 notebook/gen/gen_layers.ipynb rename notebook/{ => gen}/gen_prebake.ipynb (99%) rename notebook/{ => gen}/gen_teaser.ipynb (100%) rename notebook/{ => gen}/gen_test.ipynb (96%) rename notebook/{ => gen}/gen_user_study_images.ipynb (98%) rename notebook/{ => gen}/gen_video.ipynb (98%) delete mode 100644 notebook/gen_crop.ipynb create mode 100644 notebook/test/__general.ipynb create mode 100644 notebook/test/common.py rename notebook/{test_constrast.ipynb => test/constrast.ipynb} (69%) create mode 100644 notebook/test/fisheye_undistort.ipynb rename notebook/{test_image_filter.ipynb => test/image_filter.ipynb} (78%) rename notebook/{test_data_loader.ipynb => test/load_dataset.ipynb} (74%) create mode 100644 notebook/test/sphere.ipynb rename notebook/{ => test}/test_eccv.ipynb (99%) rename notebook/{ => test}/test_foveation.ipynb (61%) rename notebook/{ => test}/test_mono_gen.ipynb (92%) rename notebook/{ => test}/test_mono_view.ipynb (99%) rename notebook/{ => test}/test_refinement.ipynb (99%) rename notebook/{test_voxel.ipynb => test/voxel.ipynb} (92%) delete mode 100644 notebook/test_lf_syn.ipynb delete mode 100644 notebook/test_sphere.ipynb delete mode 100644 notebook/test_ycbcr.ipynb create mode 100644 periph_net.png create mode 100644 requirements.txt delete mode 100644 run_lf_syn.py delete mode 100644 run_spherical_view_syn.py delete mode 100644 term_test.py delete mode 100644 test.ipynb delete mode 100644 test.txt create mode 100644 test/utils.py delete mode 100644 test1.txt create mode 100644 test_perf.py create mode 100644 test_todo.sh create mode 100644 tools/convert_nerf_checkpoint.py create mode 100644 tools/convert_old_snerffast_checkpoint.py rename {assets => tools/dash/assets}/dash_test.css (100%) rename dash_test.py => tools/dash/dash_test.py (96%) create mode 100644 tools/data/colmap2dataset.py create mode 100644 tools/data/extract360.py delete mode 100644 tools/data/gen_colmap.py create mode 100644 tools/data/split360.py create mode 100644 tools/data/video2images.py rename {debug => tools/debug}/voxel_sampler_export3d.py (100%) create mode 100644 tools/dump_checkpoint.py create mode 100644 tools/export_script_model.py delete mode 100644 train/train.py create mode 100644 train/trainer.py delete mode 100644 train_oracle.py delete mode 100644 update_cnerf.py delete mode 100644 upsampling/FSRCNN/README.md delete mode 100644 upsampling/FSRCNN/model.py delete mode 100644 upsampling/FSRCNN/solver.py delete mode 100644 upsampling/SRCNN/README.md delete mode 100644 upsampling/SRCNN/model.py delete mode 100644 upsampling/SRCNN/solver.py delete mode 100644 upsampling/SRGAN/README.md delete mode 100644 upsampling/SRGAN/model.py delete mode 100644 upsampling/SRGAN/solver.py delete mode 100644 upsampling/SubPixelCNN/model.py delete mode 100644 upsampling/SubPixelCNN/solver.py delete mode 100644 upsampling/run_upsampling.py delete mode 100644 upsampling/upsampling_dataset.py create mode 100644 utils/args.py create mode 100644 utils/config.py create mode 100644 utils/export.py create mode 100644 utils/logging.py rename {loss => utils/loss}/__init__.py (53%) rename {loss => utils/loss}/cauchy.py (55%) create mode 100644 utils/loss/lpips.py rename {loss => utils/loss}/perc_loss.py (100%) rename {loss => utils/loss}/ssim.py (100%) rename __init__.py => utils/nn.py (100%) create mode 100644 utils/nn/__init__.py rename {modules/generic => utils/nn}/fn.py (92%) create mode 100644 utils/nn/linear.py rename utils/{ => nn}/module.py (66%) rename {modules/generic => utils/nn}/weight_init.py (99%) delete mode 100644 utils/perf.py create mode 100644 utils/profile.py delete mode 100644 utils/samples.py delete mode 100644 utils/type.py create mode 100644 utils/types/__common__.py create mode 100644 utils/types/__init__.py rename utils/{ => types}/color.py (66%) create mode 100644 utils/types/data_pack.py create mode 100644 utils/types/rays.py create mode 100644 utils/types/samples.py diff --git a/.clang-format b/.clang-format deleted file mode 100644 index edc803a..0000000 --- a/.clang-format +++ /dev/null @@ -1,108 +0,0 @@ ---- -Language: Cpp -# BasedOnStyle: LLVM -AccessModifierOffset: -4 -AlignAfterOpenBracket: Align -AlignConsecutiveAssignments: false -AlignConsecutiveDeclarations: false -AlignEscapedNewlines: Right -AlignOperands: true -AlignTrailingComments: true -AllowAllParametersOfDeclarationOnNextLine: true -AllowShortBlocksOnASingleLine: false -AllowShortCaseLabelsOnASingleLine: false -AllowShortFunctionsOnASingleLine: All -AllowShortIfStatementsOnASingleLine: false -AllowShortLoopsOnASingleLine: false -AlwaysBreakAfterDefinitionReturnType: None -AlwaysBreakAfterReturnType: None -AlwaysBreakBeforeMultilineStrings: false -AlwaysBreakTemplateDeclarations: false -BinPackArguments: true -BinPackParameters: true -BraceWrapping: - AfterClass: true - AfterControlStatement: false - AfterEnum: true - AfterFunction: true - AfterNamespace: true - AfterObjCDeclaration: true - AfterStruct: true - AfterUnion: true - BeforeCatch: false - BeforeElse: false - IndentBraces: false - SplitEmptyFunction: true - SplitEmptyRecord: true - SplitEmptyNamespace: true -BreakBeforeBinaryOperators: None -BreakBeforeBraces: Attach -BreakBeforeInheritanceComma: false -BreakBeforeTernaryOperators: true -BreakConstructorInitializersBeforeComma: false -BreakConstructorInitializers: BeforeColon -BreakAfterJavaFieldAnnotations: false -BreakStringLiterals: true -ColumnLimit: 100 -CommentPragmas: '^ IWYU pragma:' -CompactNamespaces: false -ConstructorInitializerAllOnOneLineOrOnePerLine: true -ConstructorInitializerIndentWidth: 4 -ContinuationIndentWidth: 4 -Cpp11BracedListStyle: true -DerivePointerAlignment: false -DisableFormat: false -ExperimentalAutoDetectBinPacking: false -FixNamespaceComments: true -ForEachMacros: - - foreach - - Q_FOREACH - - BOOST_FOREACH -IncludeCategories: - - Regex: '^"(llvm|llvm-c|clang|clang-c)/' - Priority: 2 - - Regex: '^(<|"(gtest|gmock|isl|json)/)' - Priority: 3 - - Regex: '.*' - Priority: 1 -IncludeIsMainRegex: '(Test)?$' -IndentCaseLabels: false -IndentWidth: 4 -IndentWrappedFunctionNames: false -JavaScriptQuotes: Leave -JavaScriptWrapImports: true -KeepEmptyLinesAtTheStartOfBlocks: true -MacroBlockBegin: '' -MacroBlockEnd: '' -MaxEmptyLinesToKeep: 1 -NamespaceIndentation: None -ObjCBlockIndentWidth: 4 -ObjCSpaceAfterProperty: false -ObjCSpaceBeforeProtocolList: true -PenaltyBreakAssignment: 2 -PenaltyBreakBeforeFirstCallParameter: 19 -PenaltyBreakComment: 300 -PenaltyBreakFirstLessLess: 120 -PenaltyBreakString: 1000 -PenaltyExcessCharacter: 1000000 -PenaltyReturnTypeOnItsOwnLine: 60 -PointerAlignment: Right -ReflowComments: true -SortIncludes: false -SortUsingDeclarations: true -SpaceAfterCStyleCast: false -SpaceAfterTemplateKeyword: true -SpaceBeforeAssignmentOperators: true -SpaceBeforeParens: ControlStatements -SpaceInEmptyParentheses: false -SpacesBeforeTrailingComments: 1 -SpacesInAngles: false -SpacesInContainerLiterals: true -SpacesInCStyleCastParentheses: false -SpacesInParentheses: false -SpacesInSquareBrackets: false -Standard: Cpp11 -TabWidth: 4 -UseTab: Never -... - diff --git a/.vscode/c_cpp_properties.json b/.vscode/c_cpp_properties.json index ea5ac16..f18fc86 100644 --- a/.vscode/c_cpp_properties.json +++ b/.vscode/c_cpp_properties.json @@ -4,13 +4,17 @@ "name": "Linux", "includePath": [ "${workspaceFolder}/cpp/**", - "/usr/local/cuda/include" + "${workspaceFolder}/clib/include", + "/usr/local/cuda/include", + "/home/dengnc/libtorch/include", + "/home/dengnc/libtorch/include/torch/csrc/api/include", + "/home/dengnc/miniconda3/include/**" ], "defines": [], "compilerPath": "/usr/bin/gcc", "cStandard": "gnu17", - "cppStandard": "gnu++14", - "intelliSenseMode": "gcc-x64" + "cppStandard": "gnu++17", + "intelliSenseMode": "${default}" } ], "version": 4 diff --git a/.vscode/launch.json b/.vscode/launch.json index 7ed687d..5fd3f99 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -4,8 +4,17 @@ // 欲了解更多信æ¯ï¼Œè¯·è®¿é—®: https://go.microsoft.com/fwlink/?linkid=830387 "version": "0.2.0", "configurations": [ - - + { + "name": "convert_nerf_checkpoint", + "type": "python", + "request": "launch", + "program": "tools/convert_nerf_checkpoint.py", + "args": [ + "/home/dengnc/Work/ref_code/nerf-pytorch/logs/dvs_gas_nearrange/200000.tar" + ], + "console": "integratedTerminal", + "justMyCode": false + }, { "name": "Debug/Voxel Sampler Export 3D", "type": "python", @@ -24,7 +33,7 @@ "program": "train.py", "args": [ "-c", - "_lr_snerf_voxels+ls", + "nerf_llff", //"/home/dengnc/dvs/data/classroom/_nets/pano_t0.8/smnerf_voxels+ls+lbl/checkpoint_35.tar", //"--prune", //"1", @@ -34,9 +43,9 @@ //"100", //"--views", //"5", - "data/classroom/lr_view_t0.8_r360x80_train" + "/home/dengnc/Work/fov_nerf/data/__thesis/trex/train.json" ], - "justMyCode": false, + "justMyCode": true, "console": "integratedTerminal" }, { @@ -45,16 +54,48 @@ "request": "launch", "program": "test.py", "args": [ - "-m", - "/home/dengnc/dvs/data/classroom/_nets/ms_train_t0.8/_cnerf/checkpoint_50.tar", "-o", "perf", "color", - "--output-type", + "--media", "image", - "/home/dengnc/dvs/data/classroom/lr_view_t0.8_r360x80_test.json", "--views", - "1" + "3", + //"-r", + //"100x200", + "/home/dengnc/Work/fov_nerf/data/__thesis/barbershop_old/_nets/train_t0.3/eval@snerffast4-rgb_e6_fc256x8_d1.20-6.00_s64_~p/checkpoint_50.tar", + "/home/dengnc/Work/fov_nerf/data/__thesis/barbershop_old/test_t0.3.json", + //"--batch", + //"8192" + ], + "justMyCode": false, + "console": "integratedTerminal" + }, + { + "name": "Convert Colmap", + "type": "python", + "request": "launch", + "program": "tools/data/colmap2dataset.py", + "args": [ + "data/__captured/sittingroom", + "--scale-down", + "4" + ], + "console": "integratedTerminal" + }, + { + "name": "Generate Video", + "type": "python", + "request": "launch", + "program": "tools/gen_video.py", + "args": [ + "data/__captured/sittingroom", + "data/__demo/realvideo/sittingroom_1.json", + "-f", + "40", + "-s", + "-d", + "0.6" ], "console": "integratedTerminal" } diff --git a/.vscode/settings.json b/.vscode/settings.json deleted file mode 100644 index 920979e..0000000 --- a/.vscode/settings.json +++ /dev/null @@ -1,14 +0,0 @@ -{ - "files.watcherExclude": { - "**/data/**": true - }, - "files.associations": { - "string": "cpp", - "__functional_03": "cpp", - "functional": "cpp", - "vector": "cpp", - "__config": "cpp", - "__nullptr": "cpp" - }, - "python.pythonPath": "/home/dengnc/miniconda3/bin/python", -} \ No newline at end of file diff --git a/LICENSE b/LICENSE index c283369..2b32f57 100644 --- a/LICENSE +++ b/LICENSE @@ -1,6 +1,6 @@ MIT License -Copyright (c) 2020 Jiannan Ye +Copyright (c) 2022 Nianchen Deng Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal diff --git a/README.md b/README.md index 8d556ad..365f49b 100644 --- a/README.md +++ b/README.md @@ -1,51 +1,39 @@ # Configure environment ## 1. Install Conda packages: -* Pytorch 1.8.1 with CUDA - -``` -$ conda install pytorch torchvision torchaudio cudatoolkit=<your cuda version> -c pytorch -c nvidia -``` - -Or ref to https://pytorch.org/get-started/locally/ for install guide - +* Pytorch with CUDA + ```bash + $ conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch + ``` + Or ref to https://pytorch.org/get-started/locally/ for install guide * matplotlib - * tensorboard - -* plyfile - -``` -$ conda install -c conda-forge plyfile -``` - +* tqdm +* configargparse * (Optional) dash - -``` -$ conda install dash pandas -``` + ```bash + $ conda install dash pandas + ``` ## 2. Install Pip packages: * pyGlm * tensorboardX -* (optional) opencv-python +* torch_tb_profiler +* opencv-python +* ipympl +* lpips * (optional) thop * (optional) ConcurrentLogHandler -# Useful commands -## 1. Video generate: -``` -$ ffmpeg -y -r 50 -i %04d.png -c:v libx264 -vframes 600 ../classroom_hmd_mono_hint.mp4 +## 4. Build extension "clib._ext" +```bash +$ python setup.py build_ext ``` +If build successed, a _ext.\*.so will be generated under build/lib.\*/clib directory. Move this file to clib/. -## 2. Convert onnx to tensorRT -``` -$ trtexec --onnx=in.onnx --fp16 --saveEngine=out.trt --workspace=4096 -``` +## 4. (Optional) Install FFMpeg with Extra Codecs: -# Install FFMpeg with Extra Codecs: - -``` +```bash sudo apt-get update -qq && sudo apt-get -y install \ autoconf \ automake \ @@ -109,4 +97,25 @@ PATH="$HOME/bin:$PATH" PKG_CONFIG_PATH="$HOME/ffmpeg_build/lib/pkgconfig" ./conf PATH="$HOME/bin:$PATH" make && \ make install && \ hash -r +``` + +# Useful commands +## 1. Video generate: +```bash +$ ffmpeg -y -r 50 -i %04d.png -c:v libx264 -vframes 600 ../classroom_hmd_mono_hint.mp4 +``` + +## 2. Extract frames: +```bash +$ ffmpeg -i <video_path> -f image2 -q:v 2 -vf fps=<fps> <out_dir>/image%04d.png +``` + +## 3. Convert onnx to tensorRT +```bash +$ trtexec --onnx=in.onnx --fp16 --saveEngine=out.trt --workspace=4096 +``` + +## 4. Generate dataset of specific path +```bash +$ python tools/data/gen_seq.py -s helix|look_around|scan_around -n <frames> --ref <train_dataset.json> <dataset_dir> ``` \ No newline at end of file diff --git a/a.drawio b/a.drawio new file mode 100644 index 0000000..5f9187a --- /dev/null +++ b/a.drawio @@ -0,0 +1,444 @@ +<mxfile host="65bd71144e"> + <diagram id="NXNcgxQNoOwNPU3BF2O1" name="第 1 页"> + <mxGraphModel dx="729" dy="800" grid="1" gridSize="5" guides="1" tooltips="1" connect="1" arrows="1" fold="1" page="1" pageScale="1" pageWidth="827" pageHeight="1169" math="1" shadow="0"> + <root> + <mxCell id="0"/> + <mxCell id="1" parent="0"/> + <mxCell id="14" value="Field" style="swimlane;rounded=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;" parent="1" vertex="1"> + <mxGeometry x="30" y="40" width="870" height="170" as="geometry"/> + </mxCell> + <mxCell id="23" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;" parent="14" source="15" target="16" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="25" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;sketch=1;rounded=1;" parent="23" vertex="1" connectable="0"> + <mxGeometry x="-0.6587" y="2" relative="1" as="geometry"> + <mxPoint x="1" y="-8" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="15" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#d5e8d4;strokeColor=#82b366;" parent="14" vertex="1"> + <mxGeometry x="140" y="56" width="30" height="80" as="geometry"/> + </mxCell> + <mxCell id="16" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#fff2cc;strokeColor=#d6b656;" parent="14" vertex="1"> + <mxGeometry x="220" y="56" width="30" height="80" as="geometry"/> + </mxCell> + <mxCell id="17" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#fff2cc;strokeColor=#d6b656;" parent="14" vertex="1"> + <mxGeometry x="300" y="56" width="30" height="80" as="geometry"/> + </mxCell> + <mxCell id="18" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#fff2cc;strokeColor=#d6b656;" parent="14" vertex="1"> + <mxGeometry x="380" y="56" width="30" height="80" as="geometry"/> + </mxCell> + <mxCell id="19" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#fff2cc;strokeColor=#d6b656;" parent="14" vertex="1"> + <mxGeometry x="460" y="56" width="30" height="80" as="geometry"/> + </mxCell> + <mxCell id="20" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#f8cecc;strokeColor=#b85450;" parent="14" vertex="1"> + <mxGeometry x="540" y="56" width="30" height="80" as="geometry"/> + </mxCell> + <mxCell id="21" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#f8cecc;strokeColor=#b85450;" parent="14" vertex="1"> + <mxGeometry x="620" y="56" width="30" height="80" as="geometry"/> + </mxCell> + <mxCell id="44" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="14" source="22" target="43" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="45" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];rounded=1;sketch=1;" parent="44" vertex="1" connectable="0"> + <mxGeometry x="-0.6912" y="1" relative="1" as="geometry"> + <mxPoint x="2" y="-9" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="22" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#f8cecc;strokeColor=#b85450;" parent="14" vertex="1"> + <mxGeometry x="700" y="56" width="30" height="80" as="geometry"/> + </mxCell> + <mxCell id="26" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;" parent="14" source="16" target="17" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="250" y="95.83000000000001" as="sourcePoint"/> + <mxPoint x="300" y="95.83000000000001" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="27" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;sketch=1;rounded=1;" parent="26" vertex="1" connectable="0"> + <mxGeometry x="-0.6587" y="2" relative="1" as="geometry"> + <mxPoint x="1" y="-8" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="28" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;" parent="14" source="17" target="18" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="180" y="116" as="sourcePoint"/> + <mxPoint x="230" y="116" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="29" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;sketch=1;rounded=1;" parent="28" vertex="1" connectable="0"> + <mxGeometry x="-0.6587" y="2" relative="1" as="geometry"> + <mxPoint x="2" y="-8" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="30" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;" parent="14" source="18" target="19" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="190" y="126" as="sourcePoint"/> + <mxPoint x="240" y="126" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="31" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;sketch=1;rounded=1;" parent="30" vertex="1" connectable="0"> + <mxGeometry x="-0.6587" y="2" relative="1" as="geometry"> + <mxPoint x="1" y="-8" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="32" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;" parent="14" source="19" target="20" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="200" y="136" as="sourcePoint"/> + <mxPoint x="250" y="136" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="33" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;sketch=1;rounded=1;" parent="32" vertex="1" connectable="0"> + <mxGeometry x="-0.6587" y="2" relative="1" as="geometry"> + <mxPoint x="1" y="-8" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="34" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;fontFamily=Verdana;" parent="14" source="20" target="21" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="210" y="146" as="sourcePoint"/> + <mxPoint x="260" y="146" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="35" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;sketch=1;rounded=1;" parent="34" vertex="1" connectable="0"> + <mxGeometry x="-0.6587" y="2" relative="1" as="geometry"> + <mxPoint x="1" y="-8" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="36" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;" parent="14" source="21" target="22" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="220" y="156" as="sourcePoint"/> + <mxPoint x="270" y="156" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="37" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;sketch=1;rounded=1;" parent="36" vertex="1" connectable="0"> + <mxGeometry x="-0.6587" y="2" relative="1" as="geometry"> + <mxPoint x="1" y="-8" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="39" style="edgeStyle=none;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="14" source="38" target="15" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="40" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="14" source="38" target="20" edge="1"> + <mxGeometry relative="1" as="geometry"> + <Array as="points"> + <mxPoint x="120" y="96"/> + <mxPoint x="120" y="46"/> + <mxPoint x="520" y="46"/> + <mxPoint x="520" y="96"/> + </Array> + </mxGeometry> + </mxCell> + <mxCell id="42" value="\(N_\tilde{x}\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];rounded=1;sketch=1;" parent="40" vertex="1" connectable="0"> + <mxGeometry x="-0.9605" relative="1" as="geometry"> + <mxPoint x="9" y="-10" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="38" value="\(\tilde{x}\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#d5e8d4;strokeColor=#82b366;" parent="14" vertex="1"> + <mxGeometry x="10" y="81" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="43" value="\(f\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#f8cecc;strokeColor=#b85450;" parent="14" vertex="1"> + <mxGeometry x="777" y="81" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="46" value="Density Decoder" style="swimlane;rounded=1;sketch=1;" parent="1" vertex="1"> + <mxGeometry x="30" y="230" width="315" height="120" as="geometry"/> + </mxCell> + <mxCell id="50" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;" parent="46" source="47" target="49" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="51" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;rounded=1;sketch=1;" parent="50" vertex="1" connectable="0"> + <mxGeometry x="-0.2528" y="1" relative="1" as="geometry"> + <mxPoint y="-9" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="47" value="\(f\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#f8cecc;strokeColor=#b85450;" parent="46" vertex="1"> + <mxGeometry x="20" y="55" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="53" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;fontFamily=Verdana;" parent="46" source="49" target="52" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="54" value="\(N_\sigma\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;rounded=1;sketch=1;" parent="53" vertex="1" connectable="0"> + <mxGeometry x="-0.2677" relative="1" as="geometry"> + <mxPoint x="-5" y="-10" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="49" value="<font face="Verdana">_/</font>" style="whiteSpace=wrap;html=1;rounded=1;sketch=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" parent="46" vertex="1"> + <mxGeometry x="140" y="45" width="30" height="50" as="geometry"/> + </mxCell> + <mxCell id="52" value="\(\sigma\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#dae8fc;strokeColor=#6c8ebf;" parent="46" vertex="1"> + <mxGeometry x="215" y="55" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="55" value="Color Decoder (Basic)" style="swimlane;rounded=1;sketch=1;" parent="1" vertex="1"> + <mxGeometry x="365" y="230" width="315" height="120" as="geometry"/> + </mxCell> + <mxCell id="56" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;" parent="55" source="58" target="61" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="57" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;rounded=1;sketch=1;" parent="56" vertex="1" connectable="0"> + <mxGeometry x="-0.2528" y="1" relative="1" as="geometry"> + <mxPoint y="-9" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="58" value="\(f\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#f8cecc;strokeColor=#b85450;" parent="55" vertex="1"> + <mxGeometry x="20" y="55" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="59" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;fontFamily=Verdana;" parent="55" source="61" target="62" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="60" value="\(N_c\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;rounded=1;sketch=1;" parent="59" vertex="1" connectable="0"> + <mxGeometry x="-0.2677" relative="1" as="geometry"> + <mxPoint x="-5" y="-10" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="61" value="<font face="Verdana">S</font>" style="whiteSpace=wrap;html=1;rounded=1;sketch=1;fillColor=#e1d5e7;strokeColor=#9673a6;" parent="55" vertex="1"> + <mxGeometry x="140" y="45" width="30" height="50" as="geometry"/> + </mxCell> + <mxCell id="62" value="\(c\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#e1d5e7;strokeColor=#9673a6;" parent="55" vertex="1"> + <mxGeometry x="215" y="55" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="63" value="Color Decoder (NeRF)" style="swimlane;rounded=1;sketch=1;" parent="1" vertex="1"> + <mxGeometry x="30" y="380" width="435" height="170" as="geometry"/> + </mxCell> + <mxCell id="64" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;" parent="63" source="66" target="71" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="65" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;rounded=1;sketch=1;" parent="64" vertex="1" connectable="0"> + <mxGeometry x="-0.2528" y="1" relative="1" as="geometry"> + <mxPoint y="-9" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="66" value="\(f\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#f8cecc;strokeColor=#b85450;" parent="63" vertex="1"> + <mxGeometry x="20" y="55" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="67" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;fontFamily=Verdana;" parent="63" source="69" target="70" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="68" value="\(N_c\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;rounded=1;sketch=1;" parent="67" vertex="1" connectable="0"> + <mxGeometry x="-0.2677" relative="1" as="geometry"> + <mxPoint x="-5" y="-10" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="69" value="<font face="Verdana">S</font>" style="whiteSpace=wrap;html=1;rounded=1;sketch=1;fillColor=#e1d5e7;strokeColor=#9673a6;" parent="63" vertex="1"> + <mxGeometry x="285" y="45" width="30" height="50" as="geometry"/> + </mxCell> + <mxCell id="70" value="\(c\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#e1d5e7;strokeColor=#9673a6;" parent="63" vertex="1"> + <mxGeometry x="344" y="55" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="71" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#e1d5e7;strokeColor=#9673a6;" parent="63" vertex="1"> + <mxGeometry x="140" y="30" width="30" height="80" as="geometry"/> + </mxCell> + <mxCell id="73" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;startArrow=none;" parent="63" source="74" target="69" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="79" value="\(\frac{N_f}{2}\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;rounded=1;sketch=1;" parent="73" vertex="1" connectable="0"> + <mxGeometry x="-0.748" relative="1" as="geometry"> + <mxPoint x="5" y="-15" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="72" value="\(\tilde{d}\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#d5e8d4;strokeColor=#82b366;" parent="63" vertex="1"> + <mxGeometry x="20" y="115" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="74" value="_/" style="rounded=1;whiteSpace=wrap;html=1;shadow=0;glass=0;sketch=1;fillStyle=auto;fontFamily=Verdana;fillColor=#e1d5e7;strokeColor=#9673a6;" parent="63" vertex="1"> + <mxGeometry x="215" y="35" width="30" height="70" as="geometry"/> + </mxCell> + <mxCell id="75" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;fontFamily=Verdana;endArrow=classic;entryX=0;entryY=0.5;entryDx=0;entryDy=0;endFill=1;" parent="63" source="72" target="74" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="120" y="510" as="sourcePoint"/> + <mxPoint x="190" y="130" as="targetPoint"/> + <Array as="points"> + <mxPoint x="195" y="130"/> + <mxPoint x="195" y="70"/> + </Array> + </mxGeometry> + </mxCell> + <mxCell id="77" value="\(N_\tilde{d}\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;rounded=1;sketch=1;" parent="75" vertex="1" connectable="0"> + <mxGeometry x="-0.8144" y="-2" relative="1" as="geometry"> + <mxPoint y="-12" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="76" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;fontFamily=Verdana;endArrow=classic;endFill=1;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="63" source="71" target="74" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="215" y="69.66666666666674" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="78" value="\(N_f\)" style="edgeLabel;html=1;align=center;verticalAlign=middle;resizable=0;points=[];fontFamily=Verdana;labelBackgroundColor=none;rounded=1;sketch=1;" parent="76" vertex="1" connectable="0"> + <mxGeometry x="-0.7316" y="-2" relative="1" as="geometry"> + <mxPoint x="6" y="-12" as="offset"/> + </mxGeometry> + </mxCell> + <mxCell id="80" value="NeRF" style="swimlane;rounded=1;labelBackgroundColor=none;sketch=1;fontFamily=Verdana;" parent="1" vertex="1"> + <mxGeometry x="30" y="640" width="1125" height="305" as="geometry"/> + </mxCell> + <mxCell id="82" value="Rays" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#f5f5f5;strokeColor=#666666;fontColor=#333333;" parent="80" vertex="1"> + <mxGeometry x="10" y="70" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="95" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="80" source="86" target="91" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="96" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="80" source="86" target="92" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="86" value="Input Encoder" style="whiteSpace=wrap;html=1;sketch=1;rounded=1;fillColor=#f5f5f5;fontColor=#333333;strokeColor=#666666;" parent="80" vertex="1"> + <mxGeometry x="325" y="65" width="75" height="40" as="geometry"/> + </mxCell> + <mxCell id="84" value="Uniform Sampler" style="whiteSpace=wrap;html=1;sketch=1;rounded=1;fillColor=#f5f5f5;fontColor=#333333;strokeColor=#666666;" parent="80" vertex="1"> + <mxGeometry x="110" y="65" width="75" height="40" as="geometry"/> + </mxCell> + <mxCell id="85" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;endArrow=classic;endFill=1;" parent="80" source="82" target="84" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="87" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;endArrow=classic;endFill=1;startArrow=none;" parent="80" source="133" target="86" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="99" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="80" source="91" target="98" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="91" value="\(\tilde{x}\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#d5e8d4;strokeColor=#82b366;" parent="80" vertex="1"> + <mxGeometry x="430" y="45" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="103" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="80" source="92" target="102" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="92" value="\(\tilde{d}\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#d5e8d4;strokeColor=#82b366;" parent="80" vertex="1"> + <mxGeometry x="430" y="95" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="105" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="80" source="98" target="102" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="98" value="Field" style="shape=process;whiteSpace=wrap;html=1;backgroundOutline=1;fillColor=#f8cecc;strokeColor=#b85450;sketch=1;rounded=1;" parent="80" vertex="1"> + <mxGeometry x="530" y="40" width="70" height="40" as="geometry"/> + </mxCell> + <mxCell id="107" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="80" source="100" target="106" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="100" value="Density Decoder" style="shape=process;whiteSpace=wrap;html=1;backgroundOutline=1;fillColor=#dae8fc;strokeColor=#6c8ebf;sketch=1;rounded=1;" parent="80" vertex="1"> + <mxGeometry x="630" y="40" width="70" height="40" as="geometry"/> + </mxCell> + <mxCell id="101" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="80" source="98" target="100" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="102" value="Color Decoder" style="shape=process;whiteSpace=wrap;html=1;backgroundOutline=1;fillColor=#e1d5e7;strokeColor=#9673a6;sketch=1;rounded=1;" parent="80" vertex="1"> + <mxGeometry x="630" y="90" width="70" height="40" as="geometry"/> + </mxCell> + <mxCell id="159" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=0.5;exitY=1;exitDx=0;exitDy=0;entryX=1;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="80" source="106" target="111" edge="1"> + <mxGeometry relative="1" as="geometry"> + <Array as="points"> + <mxPoint x="773" y="175"/> + </Array> + </mxGeometry> + </mxCell> + <mxCell id="166" style="edgeStyle=none;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="80" source="106" target="165" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="106" value="Volumn Renderer" style="whiteSpace=wrap;html=1;sketch=1;rounded=1;fillColor=#f5f5f5;fontColor=#333333;strokeColor=#666666;" parent="80" vertex="1"> + <mxGeometry x="735" y="65" width="75" height="40" as="geometry"/> + </mxCell> + <mxCell id="108" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="80" source="102" target="106" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="725" y="125" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="155" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="80" source="133" target="139" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="133" value="Samples" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#d5e8d4;strokeColor=#82b366;" parent="80" vertex="1"> + <mxGeometry x="210" y="70" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="134" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;endArrow=classic;endFill=1;" parent="80" source="84" target="133" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="215" y="725" as="sourcePoint"/> + <mxPoint x="340" y="725" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="168" value="No Cascade" style="swimlane;rounded=1;sketch=1;dashed=1;swimlaneLine=0;fillColor=none;" parent="80" vertex="1"> + <mxGeometry x="825" y="35" width="135" height="90" as="geometry"> + <mxRectangle x="825" y="35" width="130" height="23" as="alternateBounds"/> + </mxGeometry> + </mxCell> + <mxCell id="165" value="Pixel<br>Color" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#f5f5f5;strokeColor=#666666;fontColor=#333333;" parent="168" vertex="1"> + <mxGeometry x="27.5" y="35" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="169" value="Cascade" style="swimlane;rounded=1;sketch=1;dashed=1;swimlaneLine=0;fillColor=none;" parent="80" vertex="1"> + <mxGeometry x="295" y="140" width="817.5" height="155" as="geometry"> + <mxRectangle x="295" y="140" width="130" height="23" as="alternateBounds"/> + </mxGeometry> + </mxCell> + <mxCell id="111" value="\(\omega\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#ffe6cc;strokeColor=#d79b00;" parent="169" vertex="1"> + <mxGeometry x="25" y="20" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="138" value="Input Encoder" style="whiteSpace=wrap;html=1;sketch=1;rounded=1;fillColor=#f5f5f5;fontColor=#333333;strokeColor=#666666;" parent="169" vertex="1"> + <mxGeometry x="227.5" y="85" width="75" height="40" as="geometry"/> + </mxCell> + <mxCell id="139" value="PDF<br>Sampler" style="whiteSpace=wrap;html=1;sketch=1;rounded=1;fillColor=#f5f5f5;fontColor=#333333;strokeColor=#666666;" parent="169" vertex="1"> + <mxGeometry x="27.5" y="85" width="75" height="40" as="geometry"/> + </mxCell> + <mxCell id="158" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=0.5;exitY=1;exitDx=0;exitDy=0;entryX=0.5;entryY=0;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="169" source="111" target="139" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="65" y="55" as="sourcePoint"/> + </mxGeometry> + </mxCell> + <mxCell id="140" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;endArrow=classic;endFill=1;startArrow=none;" parent="169" source="153" target="138" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="142" value="\(\tilde{x}^+\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#d5e8d4;strokeColor=#82b366;" parent="169" vertex="1"> + <mxGeometry x="332.5" y="65" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="136" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="169" source="138" target="142" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="144" value="\(\tilde{d}^+\)" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#d5e8d4;strokeColor=#82b366;" parent="169" vertex="1"> + <mxGeometry x="332.5" y="115" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="137" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="169" source="138" target="144" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="146" value="Field" style="shape=process;whiteSpace=wrap;html=1;backgroundOutline=1;fillColor=#f8cecc;strokeColor=#b85450;sketch=1;rounded=1;" parent="169" vertex="1"> + <mxGeometry x="432.5" y="60" width="70" height="40" as="geometry"/> + </mxCell> + <mxCell id="141" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="169" source="142" target="146" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="148" value="Density Decoder" style="shape=process;whiteSpace=wrap;html=1;backgroundOutline=1;fillColor=#dae8fc;strokeColor=#6c8ebf;sketch=1;rounded=1;" parent="169" vertex="1"> + <mxGeometry x="532.5" y="60" width="70" height="40" as="geometry"/> + </mxCell> + <mxCell id="149" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="169" source="146" target="148" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="150" value="Color Decoder" style="shape=process;whiteSpace=wrap;html=1;backgroundOutline=1;fillColor=#e1d5e7;strokeColor=#9673a6;sketch=1;rounded=1;" parent="169" vertex="1"> + <mxGeometry x="532.5" y="110" width="70" height="40" as="geometry"/> + </mxCell> + <mxCell id="143" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="169" source="144" target="150" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="145" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="169" source="146" target="150" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="151" value="Volumn Renderer" style="whiteSpace=wrap;html=1;sketch=1;rounded=1;fillColor=#f5f5f5;fontColor=#333333;strokeColor=#666666;" parent="169" vertex="1"> + <mxGeometry x="637.5" y="85" width="75" height="40" as="geometry"/> + </mxCell> + <mxCell id="152" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="169" source="150" target="151" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="597.5" y="-495" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="153" value="Samples<sup>+</sup>" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#d5e8d4;strokeColor=#82b366;" parent="169" vertex="1"> + <mxGeometry x="127.5" y="90" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="154" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;endArrow=classic;endFill=1;" parent="169" source="139" target="153" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="102.5" y="105" as="sourcePoint"/> + <mxPoint x="227.5" y="105" as="targetPoint"/> + </mxGeometry> + </mxCell> + <mxCell id="147" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;exitX=1;exitY=0.5;exitDx=0;exitDy=0;entryX=0;entryY=0.5;entryDx=0;entryDy=0;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;" parent="169" source="148" target="151" edge="1"> + <mxGeometry relative="1" as="geometry"/> + </mxCell> + <mxCell id="163" value="Pixel<br>Color" style="shape=parallelogram;perimeter=parallelogramPerimeter;whiteSpace=wrap;html=1;fixedSize=1;sketch=1;rounded=1;fillColor=#f5f5f5;strokeColor=#666666;fontColor=#333333;" parent="169" vertex="1"> + <mxGeometry x="732.5" y="90" width="80" height="30" as="geometry"/> + </mxCell> + <mxCell id="161" value="" style="edgeStyle=orthogonalEdgeStyle;rounded=1;sketch=1;html=1;fontFamily=Verdana;fontColor=#000000;endArrow=classic;endFill=1;entryX=0;entryY=0.5;entryDx=0;entryDy=0;" parent="169" source="151" target="163" edge="1"> + <mxGeometry relative="1" as="geometry"> + <mxPoint x="780" y="105" as="targetPoint"/> + </mxGeometry> + </mxCell> + </root> + </mxGraphModel> + </diagram> +</mxfile> \ No newline at end of file diff --git a/args_test.py b/args_test.py new file mode 100644 index 0000000..78c0caf --- /dev/null +++ b/args_test.py @@ -0,0 +1,17 @@ +from configargparse import ArgumentParser +from utils.args import BaseArgs + + +class Args(BaseArgs): + a: int | None = 20 + b: str = "hello" + c: list[int] = [4, 5] + flag: bool = False +parser = ArgumentParser() +args = Args() +args.parse(debug=True) +#args.setup_parser(parser, True) +#parser.add_argument('--data', nargs='+', type=int,default=[10]) +#parser.parse_args("--flag --data 20 30", namespace=args) +#setattr(args, "c", [4, 5]) +print(args) \ No newline at end of file diff --git a/batch_collect_video.sh b/batch_collect_video.sh index 77773a5..dfc1dee 100755 --- a/batch_collect_video.sh +++ b/batch_collect_video.sh @@ -1,4 +1,4 @@ -#/usr/bin/bash +#!/usr/bin/bash curdir=$(pwd) datadir="$curdir/data/__new/classroom_fovea_r360x80_t0.6" videodir="$datadir/eval_video" @@ -6,7 +6,7 @@ epochs=50 if [ ! -d "$videodir" ]; then echo "make directory for Video" - mkdir $videodir + mkdir "$videodir" fi # nets: 1, 2, 4, 8 @@ -22,7 +22,7 @@ for n_nets in 1 2 4 8; do dst_path="$videodir/$exportname.mp4" if [ -f "$videodir/$src_path" ]; then if [ ! -f "$dst_path" ]; then - ln -s $src_path $dst_path + ln -s $src_path "$dst_path" fi fi done diff --git a/batch_export_net.sh b/batch_export_net.sh index 43db536..5de39b7 100755 --- a/batch_export_net.sh +++ b/batch_export_net.sh @@ -1,4 +1,4 @@ -#/usr/bin/bash +#!/usr/bin/bash datadir='data/__new/classroom_fovea_r360x80_t0.6' onnxdir="$datadir/eval_onnx" @@ -23,7 +23,7 @@ for n_nets in 1 2 4 8; do for nf in 64 128 256 512 1024; do for n_samples in 8 16 32 64 128; do configid="eval@snerffast${n_nets}-rgb_e6_fc${nf}x${n_layers}_d1.00-7.00_s${n_samples}_~p" - if (( $n_samples == 64 )); then + if ((n_samples == 64)); then exportname="eval_${n_nets}x${nf}x${n_layers}" else exportname="eval_${n_nets}x${nf}x${n_layers}_${n_samples}" @@ -45,4 +45,4 @@ for n_nets in 1 2 4 8; do done done done -done \ No newline at end of file +done diff --git a/batch_infer.sh b/batch_infer.sh index 5fffb3c..b5114b0 100755 --- a/batch_infer.sh +++ b/batch_infer.sh @@ -1,4 +1,4 @@ -#/usr/bin/bash +#!/usr/bin/bash testcase=$1 datadir='data/__new/classroom_fovea_r360x80_t0.6' @@ -19,7 +19,7 @@ for nf in 64 128 256 512 1024; do configid="eval@snerffast${n_nets}-rgb_e6_fc${nf}x${n_layers}_d1.00-7.00_s64_~p" if [ ! -f "$datadir/$configid/model-epoch_$epochs.pth" ]; then cont_epoch=0 - for ((i=$epochs-1;i>0;i--)) do + for ((i=epochs-1;i>0;i--)) do if [ -f "$datadir/$configid/model-epoch_$i.pth" ]; then cont_epoch=$i break diff --git a/batch_test.sh b/batch_test.sh index 11587a9..1c697ae 100755 --- a/batch_test.sh +++ b/batch_test.sh @@ -3,11 +3,24 @@ test_dataset=$1 test_model_dir=$2 -for i in "$test_model_dir"* +for misc_path in "$test_model_dir"/*/_misc/checkpoint_30.tar do - python test.py -m "$(pwd)/$i/checkpoint_50.tar" -o perf color --output-type image "$test_dataset" + [ -f "$misc_path" ] || continue + misc_dir=$(dirname "$misc_path") + echo mv "$misc_path" "${misc_dir%/*}" + mv "$misc_path" "${misc_dir%/*}" +done + + +for model_path in "$test_model_dir"/*/checkpoint_30.tar +do + model_dir=$(dirname "$model_path") + #model_name=${model_dir#"$test_model_dir/"} + [ -d "$model_dir/output_30" ] || python test.py "$model_path" "$test_dataset" -o perf --media image done echo Test Finished -ls $test_model_dir/*/output_50/perf* | awk -F"/" '{print $6, "\t", $8}' \ No newline at end of file +cd "$test_model_dir" +ls */output_30/perf* | sed -r "s/()\/output_30\/perf.+_([0-9\.]+)ms_([0-9\.e\-]+)\.csv/\1\t\2\t\3/" + diff --git a/blender/gen_utils.py b/blender/gen_utils.py index e46215e..ff72f69 100644 --- a/blender/gen_utils.py +++ b/blender/gen_utils.py @@ -9,9 +9,9 @@ from itertools import product class Gen: def __init__(self, root_dir: str, dataset_name: str, *, - res: Tuple[int, int], + res: tuple[int, int], fov: float, - samples: List[int]) -> None: + samples: list[int]) -> None: self.res = res self.fov = fov self.samples = samples @@ -47,11 +47,11 @@ class Gen: with open(self.data_desc_file, 'w') as fp: json.dump(self.desc, fp, indent=4) - def add_sample(self, i, x: List[float], render_only=False): + def add_sample(self, i, x: list[float], render_only=False): self.cam_obj.location = x[:3] if len(x) > 3: self.cam_obj.rotation_euler = [math.radians(x[4]), math.radians(x[3]), 0] - self.scene.render.filepath = self.data_dir + self.desc['view_file_pattern'] % i + self.scene.render.filepath = self.data_dir + self.desc['color_file'] % i bpy.ops.render.render(write_still=True) if not render_only: self.desc['view_centers'].append(x[:3]) @@ -84,8 +84,8 @@ class Gen: # Render missing views in data desc for i in range(len(self.desc['view_centers'])): - if not os.path.exists(self.data_dir + self.desc['view_file_pattern'] % i): - x: List[float] = self.desc['view_centers'][i] + if not os.path.exists(self.data_dir + self.desc['color_file'] % i): + x: list[float] = self.desc['view_centers'][i] if 'view_rots' in self.desc: x += self.desc['view_rots'][i] self.add_sample(i, x, render_only=True) @@ -99,15 +99,15 @@ class Gen: class GenView(Gen): def __init__(self, root_dir: str, dataset_name: str, *, - res: Tuple[int, int], fov: float, samples: List[int], - tbox: Tuple[float, float, float], rbox: Tuple[float, float]) -> None: + res: tuple[int, int], fov: float, samples: list[int], + tbox: tuple[float, float, float], rbox: tuple[float, float]) -> None: super().__init__(root_dir, dataset_name, res=res, fov=fov, samples=samples) self.tbox = tbox self.rbox = rbox def init_desc(self): return { - 'view_file_pattern': 'view_%04d.png', + 'color_file': 'view_%04d.png', "gl_coord": True, 'view_res': { 'x': self.res[0], @@ -143,8 +143,8 @@ class GenView(Gen): class GenPano(Gen): def __init__(self, root_dir: str, dataset_name: str, *, - samples: List[int], depth_range: Tuple[float, float], - tbox: Tuple[float, float, float] = None) -> None: + samples: list[int], depth_range: tuple[float, float], + tbox: tuple[float, float, float] = None) -> None: self.depth_range = depth_range self.tbox = tbox super().__init__(root_dir, dataset_name, res=[4096, 2048], fov=-1, samples=samples) @@ -157,13 +157,15 @@ class GenPano(Gen): } } if self.tbox else {} return { - "type": "pano", - 'view_file_pattern': 'view_%04d.png', + 'color_file': 'view_%04d.png', "gl_coord": True, 'view_res': { 'x': self.res[0], 'y': self.res[1] }, + "cam_params": { + "type": "pano" + }, **range, "depth_range": { "min": self.depth_range[0], diff --git a/clib/__init__.py b/clib/__init__.py index da22125..9f945d9 100644 --- a/clib/__init__.py +++ b/clib/__init__.py @@ -2,6 +2,9 @@ # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. +# +# To install the _ext library, run the following command: +# > python setup.py build_ext --inplace ''' Modified based on: https://github.com/erikwijmans/Pointnet2_PyTorch ''' from __future__ import ( @@ -11,32 +14,16 @@ from __future__ import ( print_function, unicode_literals, ) -import os -import sys -from typing import Tuple import torch import torch.nn.functional as F -from torch.autograd import Function -import torch.nn as nn -import sys import numpy as np +from torch.autograd import Function +from torch.autograd.function import FunctionCtx, once_differentiable + +import clib._ext as _ext from utils.geometry import discretize_points from utils import math -try: - import builtins -except: - import __builtin__ as builtins - -try: - import clib._ext as _ext -except ImportError: - raise ImportError( - "Could not import _ext module.\n" - "Please see the setup instructions in the README" - ) - - class BallRayIntersect(Function): @staticmethod @@ -59,47 +46,8 @@ class BallRayIntersect(Function): ball_ray_intersect = BallRayIntersect.apply -class AABBRayIntersect(Function): - @staticmethod - def forward(ctx, voxelsize, n_max, points, ray_start, ray_dir): - # HACK: speed-up ray-voxel intersection by batching... - G = min(2048, int(2 * 10 ** 9 / points.numel())) # HACK: avoid out-of-memory - S, N = ray_start.shape[:2] - K = int(np.ceil(N / G)) - G, K = 1, N # HACK - H = K * G - if H > N: - ray_start = torch.cat([ray_start, ray_start[:, :H - N]], 1) - ray_dir = torch.cat([ray_dir, ray_dir[:, :H - N]], 1) - ray_start = ray_start.reshape(S * G, K, 3) - ray_dir = ray_dir.reshape(S * G, K, 3) - points = points[None].expand(S * G, *points.size()).contiguous() - - inds, min_depth, max_depth = _ext.aabb_intersect( - ray_start.float(), ray_dir.float(), points.float(), voxelsize, n_max) - min_depth = min_depth.type_as(ray_start) - max_depth = max_depth.type_as(ray_start) - - inds = inds.reshape(S, H, -1) - min_depth = min_depth.reshape(S, H, -1) - max_depth = max_depth.reshape(S, H, -1) - if H > N: - inds = inds[:, :N] - min_depth = min_depth[:, :N] - max_depth = max_depth[:, :N] - - ctx.mark_non_differentiable(inds) - ctx.mark_non_differentiable(min_depth) - ctx.mark_non_differentiable(max_depth) - return inds, min_depth, max_depth - - @staticmethod - def backward(ctx, a, b, c): - return None, None, None, None, None - - def aabb_ray_intersect(voxelsize: float, n_max: int, points: torch.Tensor, ray_start: torch.Tensor, - ray_dir: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + ray_dir: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ AABB-Ray intersect test @@ -112,7 +60,33 @@ def aabb_ray_intersect(voxelsize: float, n_max: int, points: torch.Tensor, ray_s :return `Tensor(S, N, n_max)`: min depths of every intersected voxels :return `Tensor(S, N, n_max)`: max depths of every intersected voxels """ - return AABBRayIntersect.apply(voxelsize, n_max, points, ray_start, ray_dir) + # HACK: speed-up ray-voxel intersection by batching... + G = min(2048, int(2e9 / points.numel())) # HACK: avoid out-of-memory + S, N = ray_start.shape[:2] + K = math.ceil(N / G) + G, K = 1, N # HACK + H = K * G + if H > N: + ray_start = torch.cat([ray_start, ray_start[:, :H - N]], 1) + ray_dir = torch.cat([ray_dir, ray_dir[:, :H - N]], 1) + ray_start = ray_start.reshape(S * G, K, 3) + ray_dir = ray_dir.reshape(S * G, K, 3) + points = points[None].expand(S * G, *points.size()).contiguous() + + inds, min_depth, max_depth = _ext.aabb_intersect( + ray_start.float(), ray_dir.float(), points.float(), voxelsize, n_max) + min_depth = min_depth.type_as(ray_start) + max_depth = max_depth.type_as(ray_start) + + inds = inds.reshape(S, H, -1) + min_depth = min_depth.reshape(S, H, -1) + max_depth = max_depth.reshape(S, H, -1) + if H > N: + inds = inds[:, :N] + min_depth = min_depth[:, :N] + max_depth = max_depth[:, :N] + + return inds, min_depth, max_depth class SparseVoxelOctreeRayIntersect(Function): @@ -122,7 +96,7 @@ class SparseVoxelOctreeRayIntersect(Function): G = min(2048, int(2 * 10 ** 9 / (points.numel() + children.numel()))) S, N = ray_start.shape[:2] K = int(np.ceil(N / G)) - G, K = 1, N # HACK + G, K = 1, N # HACK H = K * G if H > N: ray_start = torch.cat([ray_start, ray_start[:, :H - N]], 1) @@ -156,7 +130,7 @@ class SparseVoxelOctreeRayIntersect(Function): def octree_ray_intersect(voxelsize: float, n_max: int, points: torch.Tensor, children: torch.Tensor, - ray_start: torch.Tensor, ray_dir: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + ray_start: torch.Tensor, ray_dir: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Octree-Ray intersect test @@ -267,7 +241,7 @@ class UniformRaySampling(Function): def uniform_ray_sampling(pts_idx: torch.Tensor, min_depth: torch.Tensor, max_depth: torch.Tensor, - step_size: float, max_ray_length: float, deterministic: bool = False) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + step_size: float, max_ray_length: float, deterministic: bool = False) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Sample along rays uniformly @@ -357,7 +331,7 @@ class InverseCDFRaySampling(Function): def inverse_cdf_sampling(pts_idx: torch.Tensor, min_depth: torch.Tensor, max_depth: torch.Tensor, probs: torch.Tensor, steps: torch.Tensor, fixed_step_size: float = -1, - deterministic: bool = False) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + deterministic: bool = False) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Sample along rays by inverse CDF @@ -461,7 +435,7 @@ def parallel_ray_sampling(MARCH_SIZE, pts_idx, min_depth, max_depth, determinist return sampled_idx, sampled_depth, sampled_dists -def build_easy_octree(points: torch.Tensor, half_voxel: float) -> Tuple[torch.Tensor, torch.Tensor]: +def build_easy_octree(points: torch.Tensor, half_voxel: float) -> tuple[torch.Tensor, torch.Tensor]: """ Build an octree. @@ -476,4 +450,69 @@ def build_easy_octree(points: torch.Tensor, half_voxel: float) -> Tuple[torch.Te center = (coords.max(0)[0] + coords.min(0)[0]) / 2 centers, children = _ext.build_octree(center, coords, int(depths)) centers = centers.float() * half_voxel + residual # transform back to float - return centers, children \ No newline at end of file + return centers, children + + +class MultiresHashEncode(Function): + @staticmethod + def forward(ctx: FunctionCtx, levels: int, coarse_levels: int, res_list: torch.Tensor, + hash_table_offsets: torch.Tensor, x: torch.Tensor, hash_table: torch.Tensor, + grad_enabled: bool) -> torch.Tensor: + """ + [summary] + + :param ctx `FunctionCtx`: [description] + :param levels `int`: [description] + :param coarse_levels `int`: [description] + :param res_list `Tensor(L, D)`: [description] + :param hash_table_offsets `Tensor(L+1)`: [description] + :param x `Tensor(N, D)`: [description] + :param hash_table `Tensor(T, F)`: [description] + :return `Tensor(L, N, F)`: [description] + """ + + x = x.contiguous() + res_list = res_list.int().contiguous() + hash_table_offsets = hash_table_offsets.int().contiguous() + if grad_enabled and hash_table.requires_grad: + encoded, weights, indices = _ext.multires_hash_encode_with_grad( + levels, coarse_levels, x, res_list, hash_table, hash_table_offsets) + ctx.save_for_backward(weights, indices.long()) + ctx.hash_table_shape = hash_table.shape + return encoded + print(hash_table) + return _ext.multires_hash_encode(levels, coarse_levels, x, res_list, hash_table, + hash_table_offsets) + + @staticmethod + @once_differentiable + def backward(ctx: FunctionCtx, grad_output: torch.Tensor): + """ + [summary] + + :param ctx `FunctionCtx`: [description] + :param grad_output `Tensor(L, N, F)`: [description] + :return: [description] + """ + weights, indices = ctx.saved_tensors # (L, N, C) + t = grad_output[..., None, :] * weights[..., None] # (L, N, C, F) + grad_hash_table = grad_output.new_zeros(*ctx.hash_table_shape) + grad_hash_table.index_put_([indices], t, accumulate=True) + return None, None, None, None, None, grad_hash_table, None + + +def multires_hash_encode(levels: int, coarse_levels: int, res_list: torch.Tensor, + hash_table_offsets: torch.Tensor, x: torch.Tensor, hash_table: torch.Tensor) -> torch.Tensor: + """ + + + :param levels `int`: [description] + :param coarse_levels `int`: [description] + :param res_list `Tensor(L, D)`: [description] + :param hash_table_offsets `Tensor(L+1)`: [description] + :param x `Tensor(N, D)`: [description] + :param hash_table `Tensor(T, F)`: [description] + :return `Tensor(L, N, F)`: [description] + """ + return MultiresHashEncode.apply(levels, coarse_levels, res_list, hash_table_offsets, x, + hash_table, torch.is_grad_enabled()) diff --git a/clib/_ext.pyi b/clib/_ext.pyi new file mode 100644 index 0000000..624f780 --- /dev/null +++ b/clib/_ext.pyi @@ -0,0 +1,32 @@ +import torch + + +# intersect.h +def ball_intersect(ray_start: torch.Tensor, ray_dir: torch.Tensor, points: torch.Tensor, + radius: float, n_max: int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: ... + + +def aabb_intersect(ray_start: torch.Tensor, ray_dir: torch.Tensor, points: torch.Tensor, + voxelsize: float, n_max: int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: ... + + +def svo_intersect(ray_start: torch.Tensor, ray_dir: torch.Tensor, points: torch.Tensor, children: torch.Tensor, + voxelsize: float, n_max: int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: ... + + +def triangle_intersect(ray_start: torch.Tensor, ray_dir: torch.Tensor, face_points: torch.Tensor, + cagesize: float, blur: float, n_max: int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: ... + + +# octree.h +def build_octree(center: torch.Tensor, points: torch.Tensor, + depth: int) -> tuple[torch.Tensor, torch.Tensor]: ... + + +# encode.h +def multires_hash_encode(levels: int, coarse_levels: int, x: torch.Tensor, res_list: torch.Tensor, + hash_table: torch.Tensor, hash_table_offsets: torch.Tensor) -> torch.Tensor: ... + + +def multires_hash_encode_with_grad(levels: int, coarse_levels: int, x: torch.Tensor, res_list: torch.Tensor, + hash_table: torch.Tensor, hash_table_offsets: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: ... diff --git a/clib/include/cuda_utils.h b/clib/include/cuda_utils.h index d4c4bb4..1ada784 100644 --- a/clib/include/cuda_utils.h +++ b/clib/include/cuda_utils.h @@ -1,5 +1,5 @@ // Copyright (c) Facebook, Inc. and its affiliates. -// +// // This source code is licensed under the MIT license found in the // LICENSE file in the root directory of this source tree. @@ -9,38 +9,51 @@ #include <ATen/ATen.h> #include <ATen/cuda/CUDAContext.h> #include <cmath> +#include <vector> #include <cuda.h> #include <cuda_runtime.h> +#include <device_launch_parameters.h> -#include <vector> - -#define TOTAL_THREADS 512 +#define LOG2_TOTAL_THREADS 10 +#define TOTAL_THREADS (2 << LOG2_TOTAL_THREADS) -inline int opt_n_threads(int work_size) { - const int pow_2 = std::log(static_cast<double>(work_size)) / std::log(2.0); - - return max(min(1 << pow_2, TOTAL_THREADS), 1); +inline uint opt_n_threads(uint work_size) { + const uint pow_2 = std::log(work_size) / std::log(2.0); + return 1 << min(pow_2, LOG2_TOTAL_THREADS); } inline dim3 opt_block_config(int x, int y) { - const int x_threads = opt_n_threads(x); - const int y_threads = - max(min(opt_n_threads(y), TOTAL_THREADS / x_threads), 1); - dim3 block_config(x_threads, y_threads, 1); + const int x_threads = opt_n_threads(x); + const int y_threads = max(min(opt_n_threads(y), TOTAL_THREADS / x_threads), 1); + dim3 block_config(x_threads, y_threads, 1); - return block_config; + return block_config; } -#define CUDA_CHECK_ERRORS() \ - do { \ - cudaError_t err = cudaGetLastError(); \ - if (cudaSuccess != err) { \ - fprintf(stderr, "CUDA kernel failed : %s\n%s at L:%d in %s\n", \ - cudaGetErrorString(err), __PRETTY_FUNCTION__, __LINE__, \ - __FILE__); \ - exit(-1); \ - } \ - } while (0) +#define CUDA_CHECK_ERRORS() \ + do { \ + cudaError_t err = cudaGetLastError(); \ + if (cudaSuccess != err) { \ + fprintf(stderr, "CUDA kernel failed : %s\n%s at L:%d in %s\n", \ + cudaGetErrorString(err), __PRETTY_FUNCTION__, __LINE__, __FILE__); \ + exit(-1); \ + } \ + } while (0) #endif + +template <typename T, uint N_ELEMS> struct vec { + __host__ __device__ T &operator[](uint idx) { return data[idx]; } + + __host__ __device__ T operator[](uint idx) const { return data[idx]; } + + T data[N_ELEMS]; + static constexpr uint N = N_ELEMS; +}; + +template <uint N_FLOATS> using fvec = vec<float, N_FLOATS>; + +template <uint N_HALFS> using hvec = vec<__half, N_HALFS>; + +template <uint N_UINTS> using uvec = vec<uint, N_UINTS>; diff --git a/clib/include/encode.h b/clib/include/encode.h new file mode 100644 index 0000000..4189a23 --- /dev/null +++ b/clib/include/encode.h @@ -0,0 +1,12 @@ + +#pragma once +#include <torch/extension.h> + +at::Tensor multires_hash_encode(const int levels, const int coarse_levels, at::Tensor x, + at::Tensor res_list, at::Tensor hash_table, + at::Tensor hash_table_offsets); + +std::tuple<at::Tensor, at::Tensor, at::Tensor> +multires_hash_encode_with_grad(const int levels, const int coarse_levels, at::Tensor x, + at::Tensor res_list, at::Tensor hash_table, + at::Tensor hash_table_offsets); \ No newline at end of file diff --git a/clib/include/encode_debug.h b/clib/include/encode_debug.h new file mode 100644 index 0000000..199fcf6 --- /dev/null +++ b/clib/include/encode_debug.h @@ -0,0 +1,7 @@ +#pragma once +#include <torch/extension.h> + +std::tuple<at::Tensor, at::Tensor, at::Tensor> +multires_hash_encode_debug(const int levels, const int coarse_levels, at::Tensor x, + at::Tensor res_list, at::Tensor hash_table, + at::Tensor hash_table_offsets); \ No newline at end of file diff --git a/clib/include/utils.h b/clib/include/utils.h index 925f769..ac708ab 100644 --- a/clib/include/utils.h +++ b/clib/include/utils.h @@ -1,5 +1,5 @@ // Copyright (c) Facebook, Inc. and its affiliates. -// +// // This source code is licensed under the MIT license found in the // LICENSE file in the root directory of this source tree. @@ -7,24 +7,27 @@ #include <ATen/cuda/CUDAContext.h> #include <torch/extension.h> -#define CHECK_CUDA(x) \ - do { \ - TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor"); \ - } while (0) +#define CHECK_CUDA(x) \ + do { \ + TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor"); \ + } while (0) -#define CHECK_CONTIGUOUS(x) \ - do { \ - TORCH_CHECK(x.is_contiguous(), #x " must be a contiguous tensor"); \ - } while (0) +#define CHECK_CONTIGUOUS(x) \ + do { \ + TORCH_CHECK(x.is_contiguous(), #x " must be a contiguous tensor"); \ + } while (0) -#define CHECK_IS_INT(x) \ - do { \ - TORCH_CHECK(x.scalar_type() == at::ScalarType::Int, \ - #x " must be an int tensor"); \ - } while (0) +#define CHECK_IS_INT(x) \ + do { \ + TORCH_CHECK(x.scalar_type() == at::ScalarType::Int, #x " must be an int tensor"); \ + } while (0) -#define CHECK_IS_FLOAT(x) \ - do { \ - TORCH_CHECK(x.scalar_type() == at::ScalarType::Float, \ - #x " must be a float tensor"); \ - } while (0) +#define CHECK_IS_FLOAT(x) \ + do { \ + TORCH_CHECK(x.scalar_type() == at::ScalarType::Float, #x " must be a float tensor"); \ + } while (0) + +#define CHECK_CUDA_CONT_TENSOR(__TYPE__, __VAR__) \ + CHECK_CONTIGUOUS(__VAR__); \ + CHECK_IS_##__TYPE__(__VAR__); \ + CHECK_CUDA(__VAR__); diff --git a/clib/src/binding.cpp b/clib/src/binding.cpp index a7274d0..520425b 100644 --- a/clib/src/binding.cpp +++ b/clib/src/binding.cpp @@ -1,21 +1,26 @@ // Copyright (c) Facebook, Inc. and its affiliates. -// +// // This source code is licensed under the MIT license found in the // LICENSE file in the root directory of this source tree. #include "intersect.h" #include "octree.h" #include "sample.h" - +#include "encode.h" +#include "encode_debug.h" PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { - m.def("ball_intersect", &ball_intersect); - m.def("aabb_intersect", &aabb_intersect); - m.def("svo_intersect", &svo_intersect); - m.def("triangle_intersect", &triangle_intersect); + m.def("ball_intersect", &ball_intersect); + m.def("aabb_intersect", &aabb_intersect); + m.def("svo_intersect", &svo_intersect); + m.def("triangle_intersect", &triangle_intersect); + + m.def("uniform_ray_sampling", &uniform_ray_sampling); + m.def("inverse_cdf_sampling", &inverse_cdf_sampling); - m.def("uniform_ray_sampling", &uniform_ray_sampling); - m.def("inverse_cdf_sampling", &inverse_cdf_sampling); + m.def("build_octree", &build_octree); - m.def("build_octree", &build_octree); + m.def("multires_hash_encode", &multires_hash_encode); + m.def("multires_hash_encode_with_grad", &multires_hash_encode_with_grad); + m.def("multires_hash_encode_debug", &multires_hash_encode_debug); } \ No newline at end of file diff --git a/clib/src/encode.cpp b/clib/src/encode.cpp new file mode 100644 index 0000000..cf49bbc --- /dev/null +++ b/clib/src/encode.cpp @@ -0,0 +1,56 @@ +#include "utils.h" + +void multires_hash_encode_kernel_wrapper_fullp(const uint n, const uint levels, + const uint coarse_levels, const uint dims, + const uint feature_dims, const float *x, + const uint *res_list, const void *hash_table, + const uint *hash_table_offsets, void *o_encoded, + const bool requires_grad, float *o_weights, + uint *o_indices); + +at::Tensor multires_hash_encode(const int levels, const int coarse_levels, at::Tensor x, + at::Tensor res_list, at::Tensor hash_table, + at::Tensor hash_table_offsets) { + CHECK_CUDA_CONT_TENSOR(FLOAT, x); + CHECK_CUDA_CONT_TENSOR(FLOAT, hash_table); + CHECK_CUDA_CONT_TENSOR(INT, res_list); + CHECK_CUDA_CONT_TENSOR(INT, hash_table_offsets); + + const uint n = x.size(0); + const uint dims = x.size(1); + const uint feature_dims = hash_table.size(-1); + + at::Tensor encoded = + torch::empty({levels, n, feature_dims}, at::device(x.device()).dtype(hash_table.dtype())); + multires_hash_encode_kernel_wrapper_fullp( + n, (uint)levels, (uint)coarse_levels, dims, feature_dims, x.data_ptr<float>(), + (uint *)res_list.data_ptr(), hash_table.data_ptr(), (uint *)hash_table_offsets.data_ptr(), + encoded.data_ptr(), false, nullptr, nullptr); + return encoded; +} + +std::tuple<at::Tensor, at::Tensor, at::Tensor> +multires_hash_encode_with_grad(const int levels, const int coarse_levels, at::Tensor x, + at::Tensor res_list, at::Tensor hash_table, + at::Tensor hash_table_offsets) { + CHECK_CUDA_CONT_TENSOR(FLOAT, x); + CHECK_CUDA_CONT_TENSOR(FLOAT, hash_table); + CHECK_CUDA_CONT_TENSOR(INT, res_list); + CHECK_CUDA_CONT_TENSOR(INT, hash_table_offsets); + + const uint n = x.size(0); + const uint dims = x.size(1); + const uint feature_dims = hash_table.size(-1); + + at::Tensor encoded = + torch::empty({levels, n, feature_dims}, at::device(x.device()).dtype(hash_table.dtype())); + at::Tensor weights = + torch::empty({levels, n, 1 << dims}, at::device(x.device()).dtype(at::kFloat)); + at::Tensor indices = + torch::empty({levels, n, 1 << dims}, at::device(x.device()).dtype(at::kInt)); + multires_hash_encode_kernel_wrapper_fullp( + n, (uint)levels, (uint)coarse_levels, dims, feature_dims, x.data_ptr<float>(), + (uint *)res_list.data_ptr(), hash_table.data_ptr(), (uint *)hash_table_offsets.data_ptr(), + encoded.data_ptr(), true, weights.data_ptr<float>(), (uint *)indices.data_ptr()); + return std::make_tuple(encoded, weights, indices); +} \ No newline at end of file diff --git a/clib/src/encode_debug.cu b/clib/src/encode_debug.cu new file mode 100644 index 0000000..3f4b48d --- /dev/null +++ b/clib/src/encode_debug.cu @@ -0,0 +1,132 @@ +#include <math.h> +#include <stdio.h> +#include <stdlib.h> + +#include "cuda_utils.h" +#include "cutil_math.h" // required for float3 vector math +#include "utils.h" + +namespace debug { +template <uint DIMS> __device__ uint fast_hash(const uvec<DIMS> gpos, const uint hashmap_size) { + static_assert(DIMS <= 7, "fast_hash can only hash up to 7 dimensions."); + + // While 1 is technically not a good prime for hashing (or a prime at all), it helps memory + // coherence and is sufficient for our use case of obtaining a uniformly colliding index from + // high-dimensional coordinates. + constexpr uint primes[7] = {1, 2654435761, 805459861, 3674653429, + 2097192037, 1434869437, 2165219737}; + + uint result = gpos[0]; +#pragma unroll + for (uint dim = 1; dim < DIMS; ++dim) + result ^= gpos[dim] * primes[dim]; + + return result % hashmap_size; +} + +template <uint DIMS> __device__ uint gidx(const uvec<DIMS> gpos, const uvec<DIMS> res) { + uint index = gpos[0] * res[1] + gpos[1]; +#pragma unroll + for (uint dim = 2; dim < DIMS; ++dim) + index = index * res[dim] + gpos[dim]; + return index; +} + +__global__ void multires_hash_encode_kernel(const uint n, const uint coarse_levels, + const uvec<3> *res_list, const fvec<2> *hash_table, + const uint *hash_table_offsets, const fvec<3> *x, + fvec<2> *o_encoded, fvec<3> *o_local_pos, + uint *o_idx) { + const uint i = blockDim.x * blockIdx.x + threadIdx.x; + if (i >= n) + return; + + const uint level = blockIdx.y; + const uint hash_table_offset = hash_table_offsets[level]; + const uint hash_table_size = hash_table_offsets[level + 1] - hash_table_offset; + const uvec<3> res = res_list[level]; + hash_table += hash_table_offset; + + fvec<3> pos = x[i]; + uvec<3> gpos; +#pragma unroll + for (uint dim = 0; dim < 3; ++dim) { + pos[dim] *= res[dim] - 1; + gpos[dim] = (uint)floor(pos[dim]); + pos[dim] -= gpos[dim]; + } + // TODO: Debug codes + o_local_pos[n * level + i] = pos; + + auto grid_idx = [&](const uvec<3> gpos) { + uint idx; + if (level >= coarse_levels) + idx = fast_hash(gpos, hash_table_size); + else + idx = gidx(gpos, res); + return idx; + }; + + // N-linear interpolation + fvec<2> result = {}; + +#pragma unroll + for (uint corner_idx = 0; corner_idx < (1 << 3); ++corner_idx) { + float weight = 1; + uvec<3> corner_gpos; + +#pragma unroll + for (uint dim = 0; dim < 3; ++dim) { + if ((corner_idx & (1 << dim)) == 0) { + weight *= 1 - pos[dim]; + corner_gpos[dim] = gpos[dim]; + } else { + weight *= pos[dim]; + corner_gpos[dim] = min(gpos[dim] + 1, res[dim] - 1); + } + } + + auto idx = grid_idx(corner_gpos); + auto val = hash_table[idx]; + o_idx[level * n * 8 + i * 8 + corner_idx] = idx; + +#pragma unroll + for (uint feature = 0; feature < 2; ++feature) { + result[feature] += weight * val[feature]; + } + } + + o_encoded[level * n + i] = result; +} +} // namespace debug + +std::tuple<at::Tensor, at::Tensor, at::Tensor> +multires_hash_encode_debug(const int levels, const int coarse_levels, at::Tensor x, + at::Tensor res_list, at::Tensor hash_table, + at::Tensor hash_table_offsets) { + const uint n = x.size(0); + const uint dims = x.size(1); + const uint feature_dims = hash_table.size(-1); + + res_list = res_list.to(at::kInt); + hash_table_offsets = hash_table_offsets.to(at::kInt); + + at::Tensor encoded = + torch::empty({levels, n, feature_dims}, at::device(x.device()).dtype(hash_table.dtype())); + at::Tensor local_pos = + torch::empty({levels, n, dims}, at::device(x.device()).dtype(at::kFloat)); + at::Tensor idxs = torch::empty({levels, n, 8}, at::device(x.device()).dtype(at::kInt)); + + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + const uint threads = opt_n_threads(n); + const dim3 blocks = {(uint)ceil((float)n / threads), (uint)levels, 1}; + + debug::multires_hash_encode_kernel<<<blocks, threads, 0, stream>>>( + n, (uint)coarse_levels, (uvec<3> *)res_list.data_ptr(), (fvec<2> *)hash_table.data_ptr(), + (uint *)hash_table_offsets.data_ptr(), (fvec<3> *)x.data_ptr(), + (fvec<2> *)encoded.data_ptr(), (fvec<3> *)local_pos.data_ptr(), + (uint *)idxs.data_ptr()); + return std::make_tuple(encoded.transpose(0, 1).reshape({n, -1}), + local_pos.transpose(0, 1).unsqueeze(-2), + idxs.to(at::kLong).transpose(0, 1)); +} \ No newline at end of file diff --git a/clib/src/encode_gpu.cu b/clib/src/encode_gpu.cu new file mode 100644 index 0000000..c0093ee --- /dev/null +++ b/clib/src/encode_gpu.cu @@ -0,0 +1,190 @@ +#include <math.h> +#include <stdio.h> +#include <stdlib.h> + +#include "cuda_utils.h" +#include "cutil_math.h" // required for float3 vector math + +template <uint DIMS> __device__ uint fast_hash(const uvec<DIMS> gpos, const uint hashmap_size) { + static_assert(DIMS <= 7, "fast_hash can only hash up to 7 dimensions."); + + // While 1 is technically not a good prime for hashing (or a prime at all), it helps memory + // coherence and is sufficient for our use case of obtaining a uniformly colliding index from + // high-dimensional coordinates. + constexpr uint primes[7] = {1, 2654435761, 805459861, 3674653429, + 2097192037, 1434869437, 2165219737}; + + uint result = gpos[0]; +#pragma unroll + for (uint dim = 1; dim < DIMS; ++dim) + result ^= gpos[dim] * primes[dim]; + + return result % hashmap_size; +} + +template <uint DIMS> __device__ uint gidx(const uvec<DIMS> gpos, const uvec<DIMS> res) { + uint index = gpos[0] * res[1] + gpos[1]; +#pragma unroll + for (uint dim = 2; dim < DIMS; ++dim) + index = index * res[dim] + gpos[dim]; + return index; +} + +template <typename T, uint DIMS, uint FEATURE_DIMS> +__global__ void multires_hash_encode_kernel(const uint n, const uint coarse_levels, + const uvec<DIMS> *__restrict__ res_list, + const vec<T, FEATURE_DIMS> *__restrict__ hash_table, + const uint *__restrict__ hash_table_offsets, + const fvec<DIMS> *__restrict__ x, + vec<T, FEATURE_DIMS> *__restrict__ o_encoded, + const bool requires_grad, float *__restrict__ o_weights, + uint *__restrict__ o_indices) { + const uint i = blockDim.x * blockIdx.x + threadIdx.x; + if (i >= n) + return; + + const uint level = blockIdx.y; + const uint hash_table_offset = hash_table_offsets[level]; + const uint hash_table_size = hash_table_offsets[level + 1] - hash_table_offset; + const uvec<DIMS> res = res_list[level]; + hash_table += hash_table_offset; + + fvec<DIMS> pos = x[i]; + uvec<DIMS> gpos; +#pragma unroll + for (uint dim = 0; dim < DIMS; ++dim) { + pos[dim] *= res[dim] - 1; + gpos[dim] = (uint)floor(pos[dim]); + pos[dim] -= gpos[dim]; + } + + auto hash_idx = [&](const uvec<DIMS> gpos) { + uint idx; + if (level >= coarse_levels) + idx = fast_hash(gpos, hash_table_size); + else + idx = gidx(gpos, res); + return idx; + }; + + // N-linear interpolation + vec<T, FEATURE_DIMS> result = {}; + auto n_corners = (1 << DIMS); + +#pragma unroll + for (uint corner_idx = 0; corner_idx < n_corners; ++corner_idx) { + float weight = 1; + uvec<DIMS> corner_gpos; + +#pragma unroll + for (uint dim = 0; dim < DIMS; ++dim) { + if ((corner_idx & (1 << dim)) == 0) { + weight *= 1 - pos[dim]; + corner_gpos[dim] = gpos[dim]; + } else { + weight *= pos[dim]; + corner_gpos[dim] = gpos[dim] + 1; + } + } + + auto idx = hash_idx(corner_gpos); + auto val = hash_table[idx]; + +#pragma unroll + for (uint feature = 0; feature < FEATURE_DIMS; ++feature) { + result[feature] += (T)(weight * (float)val[feature]); + } + + // For backward + if (requires_grad) { + auto j = (level * n + i) * n_corners + corner_idx; + o_indices[j] = idx + hash_table_offset; + o_weights[j] = weight; + } + } + + o_encoded[level * n + i] = result; +} + +template <typename T, uint FEATURE_DIMS> +void multires_hash_encode_kernel_wrapper(const uint n, const uint levels, const uint coarse_levels, + const uint dims, const float *x, const uint *res_list, + const vec<T, FEATURE_DIMS> *hash_table, + const uint *hash_table_offsets, + vec<T, FEATURE_DIMS> *o_encoded, const bool requires_grad, + float *o_weights, uint *o_indices) { + cudaStream_t stream = at::cuda::getCurrentCUDAStream(); + const uint threads = opt_n_threads(n); + const dim3 blocks = {(uint)ceil((float)n / threads), levels, 1}; + +#define DISPATCH_KERNEL_CASE(__DIMS__) \ + case __DIMS__: \ + multires_hash_encode_kernel<<<blocks, threads, 0, stream>>>( \ + n, coarse_levels, (const uvec<__DIMS__> *)res_list, hash_table, hash_table_offsets, \ + (const fvec<__DIMS__> *)x, o_encoded, requires_grad, o_weights, o_indices); \ + break; + + switch (dims) { + DISPATCH_KERNEL_CASE(2) + DISPATCH_KERNEL_CASE(3) + default: + throw std::invalid_argument("'dims' should be 2 or 3"); + } + CUDA_CHECK_ERRORS(); + +#undef DISPATCH_KERNEL_CASE +} + +template <typename T> +void multires_hash_encode_kernel_wrapper(const uint n, const uint levels, const uint coarse_levels, + const uint dims, const uint feature_dims, const float *x, + const uint *res_list, const void *hash_table, + const uint *hash_table_offsets, void *o_encoded, + const bool requires_grad, float *o_weights, + uint *o_indices) { +#define KERNEL_WRAPPER_CASE(__FEATURE_DIMS__) \ + case __FEATURE_DIMS__: \ + multires_hash_encode_kernel_wrapper( \ + n, levels, coarse_levels, dims, x, res_list, \ + (const vec<T, __FEATURE_DIMS__> *)hash_table, hash_table_offsets, \ + (vec<T, __FEATURE_DIMS__> *)o_encoded, requires_grad, o_weights, o_indices); \ + break; + + switch (feature_dims) { + KERNEL_WRAPPER_CASE(1) + KERNEL_WRAPPER_CASE(2) + KERNEL_WRAPPER_CASE(4) + KERNEL_WRAPPER_CASE(8) + KERNEL_WRAPPER_CASE(16) + default: + throw std::invalid_argument("'feature_dims' should be 1, 2, 4, 8, 16"); + } + +#undef KERNEL_WRAPPER_CASE +} + +#if !defined(__CUDA_NO_HALF_CONVERSIONS__) +void multires_hash_encode_kernel_wrapper_halfp(const uint n, const uint levels, + const uint coarse_levels, const uint dims, + const uint feature_dims, const float *x, + const uint *res_list, const void *hash_table, + const uint *hash_table_offsets, void *o_encoded, + const bool requires_grad, float *o_weights, + uint *o_indices) { + multires_hash_encode_kernel_wrapper<__half>(n, levels, coarse_levels, dims, feature_dims, x, + res_list, hash_table, hash_table_offsets, o_encoded, + requires_grad, o_weights, o_indices); +} +#endif + +void multires_hash_encode_kernel_wrapper_fullp(const uint n, const uint levels, + const uint coarse_levels, const uint dims, + const uint feature_dims, const float *x, + const uint *res_list, const void *hash_table, + const uint *hash_table_offsets, void *o_encoded, + const bool requires_grad, float *o_weights, + uint *o_indices) { + multires_hash_encode_kernel_wrapper<float>(n, levels, coarse_levels, dims, feature_dims, x, + res_list, hash_table, hash_table_offsets, o_encoded, + requires_grad, o_weights, o_indices); +} \ No newline at end of file diff --git a/components/fnr.py b/components/fnr.py index fa56c6d..dfe0b55 100644 --- a/components/fnr.py +++ b/components/fnr.py @@ -1,6 +1,6 @@ import torch import torch.nn.functional as nn_f -from typing import Any, List, Mapping, Tuple +from typing import Any from torch import nn from utils.view import * from utils import math @@ -10,28 +10,29 @@ from .foveation import Foveation class FoveatedNeuralRenderer(object): - def __init__(self, layers_fov: List[float], - layers_res: List[Tuple[int, int]], + def __init__(self, layers_fov: list[float], + layers_res: list[tuple[int, int]], layers_net: nn.ModuleList, - output_res: Tuple[int, int], *, + output_res: tuple[int, int], *, + coord_sys: str = "gl", device: torch.device = None): super().__init__() self.layers_net = layers_net.to(device=device) self.layers_cam = [ - CameraParam({ + Camera.create({ 'fov': layers_fov[i], 'cx': 0.5, 'cy': 0.5, 'normalized': True - }, layers_res[i], device=device) + }, layers_res[i], coord_sys=coord_sys, device=device) for i in range(len(layers_fov)) ] - self.cam = CameraParam({ + self.cam = Camera.create({ 'fov': layers_fov[-1], 'cx': 0.5, 'cy': 0.5, 'normalized': True - }, output_res, device=device) + }, output_res, coord_sys=coord_sys, device=device) self.foveation = Foveation(layers_fov, layers_res, output_res, device=device) self.device = device @@ -44,14 +45,11 @@ class FoveatedNeuralRenderer(object): self.device = device return self - def __call__(self, *args: Any, **kwds: Any) -> Any: - return self.render(*args, **kwds) - - def render(self, view: Trans, gaze, right_gaze=None, *, - stereo_disparity=0, - using_mask=True, - mono_periph_mode=0, - ret_raw=False) -> Union[Mapping[str, torch.Tensor], Tuple[Mapping[str, torch.Tensor]]]: + def __call__(self, view: Trans, gaze, right_gaze=None, *, + stereo_disparity: float = 0, + using_mask: bool = True, + mono_periph_mode: int = 0, + ret_raw: bool = False) -> dict[str, torch.Tensor] | tuple[dict[str, torch.Tensor], dict[str, torch.Tensor]]: if stereo_disparity > math.tiny: left_view = Trans( view.trans_point(torch.tensor([-stereo_disparity / 2, 0, 0], device=self.device)), @@ -71,7 +69,7 @@ class FoveatedNeuralRenderer(object): layer_mask=layers_mask[0])['color'] fovea_right = self._render(self.layers_net[0], self.layers_cam[0], right_view, right_gaze, layer_mask=layers_mask[0])['color'] - if mono_periph_mode == 3: + if mono_periph_mode == 3 or mono_periph_mode == 4: mid = self._render(self.layers_net[1], self.layers_cam[1], view, ((left_gaze[0] + right_gaze[0]) // 2, left_gaze[1]), layer_mask=layers_mask[1])['color'] @@ -79,8 +77,8 @@ class FoveatedNeuralRenderer(object): raw_left = [fovea_left, mid, periph] raw_right = [fovea_right, mid, periph] shift = int(left_gaze[0] - right_gaze[0]) // 2 - left_shifts = [0, 0, shift] - right_shifts = [0, 0, -shift] + left_shifts = [0, 0, shift if mono_periph_mode == 3 else 0] + right_shifts = [0, 0, -shift if mono_periph_mode == 3 else 0] else: mid_left = self._render_mid(self.layers_net[1], self.layers_cam[1], left_view, left_gaze, layer_mask=layers_mask[1], mono_view=view, @@ -115,17 +113,22 @@ class FoveatedNeuralRenderer(object): ] return self._gen_output(res_raw, gaze, ret_raw=ret_raw) - def _render(self, net, cam: CameraParam, view: Trans, gaze=None, *, - ret_depth=False, - layer_mask=None) -> Mapping[str, torch.Tensor]: + def _render(self, net, cam: Camera, view: Trans, gaze=None, *, + ret_depth=False, layer_mask=None) -> dict[str, torch.Tensor]: + output_types = ["color"] + if ret_depth: + output_types.append("depth") if gaze is not None: cam = self._adjust_cam(cam, gaze) - rays_o, rays_d = cam.get_global_rays(view, False) # (1, H, W, 3) + rays_d = view.trans_vector(cam.local_rays.reshape(*cam.res, -1)) # (1, H, W, 3) + rays_o = view.t.broadcast_to(rays_d.shape) if layer_mask is not None: infer_mask = layer_mask >= 0 - rays_o = rays_o[:, infer_mask] - rays_d = rays_d[:, infer_mask] - net_output = net(rays_o.view(-1, 3), rays_d.view(-1, 3), ret_depth=ret_depth) + net_input = Rays({ + "rays_o": rays_o[:, infer_mask].reshape(-1, 3), + "rays_d": rays_d[:, infer_mask].reshape(-1, 3) + }) + net_output = net(net_input, *output_types) ret = { 'color': torch.zeros(1, cam.res[0], cam.res[1], 3, device=self.device) } @@ -136,17 +139,21 @@ class FoveatedNeuralRenderer(object): ret['depth'][:, infer_mask] = net_output['depth'] return ret else: - net_output = net(rays_o.view(-1, 3), rays_d.view(-1, 3), ret_depth=ret_depth) + net_input = Rays({ + "rays_o": rays_o.reshape(-1, 3), + "rays_d": rays_d.reshape(-1, 3) + }) + net_output = net(net_input, *output_types) return { 'color': net_output['color'].view(1, cam.res[0], cam.res[1], -1).permute(0, 3, 1, 2), 'depth': net_output['depth'].view(1, cam.res[0], cam.res[1]) if ret_depth else None } - def _render_mid(self, net, cam: CameraParam, view: Trans, gaze=None, *, + def _render_mid(self, net, cam: Camera, view: Trans, gaze=None, *, layer_mask: torch.Tensor, mono_view: Trans, blend_view: bool, - ret_depth=False) -> Mapping[str, torch.Tensor]: + ret_depth=False) -> dict[str, torch.Tensor]: """ [summary] @@ -159,18 +166,23 @@ class FoveatedNeuralRenderer(object): :param ret_depth: [description], defaults to False :return: [description] """ + output_types = ["color"] + if ret_depth: + output_types.append("depth") if gaze is not None: cam = self._adjust_cam(cam, gaze) k = layer_mask[None, ..., None].clamp(1 if blend_view else 2, 2) - 1 # (1, H, W, 1) rays_o = (1 - k) * view.t + k * mono_view.t # (1, H, W, 3) - rays_d = view.trans_vector(cam.get_local_rays()) # (1, H, W, 3) + rays_d = view.trans_vector(cam.local_rays.reshape(*cam.res, -1)) # (1, H, W, 3) if layer_mask is not None: infer_mask = layer_mask >= 0 - rays_o = rays_o[:, infer_mask] - rays_d = rays_d[:, infer_mask] - net_output = net(rays_o.view(-1, 3), rays_d.view(-1, 3), ret_depth=ret_depth) + net_input = Rays({ + "rays_o": rays_o[:, infer_mask].reshape(-1, 3), + "rays_d": rays_d[:, infer_mask].reshape(-1, 3) + }) + net_output = net(net_input, *output_types) ret = { 'color': torch.zeros(1, cam.res[0], cam.res[1], 3, device=self.device) } @@ -181,13 +193,18 @@ class FoveatedNeuralRenderer(object): ret['depth'][:, infer_mask] = net_output['depth'] return ret else: - net_output = net(rays_o.view(-1, 3), rays_d.view(-1, 3), ret_depth=ret_depth) + net_input = { + "rays_o": rays_o.reshape(-1, 3), + "rays_d": rays_d.reshape(-1, 3) + } + net_output = net(net_input, *output_types) return { 'color': net_output['color'].view(1, cam.res[0], cam.res[1], -1).permute(0, 3, 1, 2), 'depth': net_output['depth'].view(1, cam.res[0], cam.res[1]) if ret_depth else None } - def _gen_output(self, layers_img: List[torch.Tensor], gaze: Tuple[float, float], shifts=None, ret_raw=False) -> Mapping[str, torch.Tensor]: + def _gen_output(self, layers_img: list[torch.Tensor], gaze: tuple[float, float], shifts=None, + ret_raw=False) -> dict[str, torch.Tensor]: refined = self._post_process(layers_img) blended = self.foveation.synthesis(refined, gaze, shifts) ret = { @@ -196,10 +213,10 @@ class FoveatedNeuralRenderer(object): } if ret_raw: ret['layers_raw'] = layers_img - ret['blended_raw'] = self.foveation.synthesis(layers_img, gaze) + ret['blended_raw'] = self.foveation.synthesis(layers_img, gaze, shifts) return ret - def _post_process(self, layers_img: List[torch.Tensor]) -> List[torch.Tensor]: + def _post_process(self, layers_img: list[torch.Tensor]) -> list[torch.Tensor]: return [ #grad_aware_median(constrast_enhance(layers_img[0], 3, 0.2), 3, 3, True), constrast_enhance(layers_img[0], 3, 0.2), @@ -207,20 +224,18 @@ class FoveatedNeuralRenderer(object): constrast_enhance(layers_img[2], 5, 0.2) ] - def _adjust_cam(self, layer_cam: CameraParam, gaze: Tuple[float, float]) -> CameraParam: + def _adjust_cam(self, layer_cam: Camera, gaze: tuple[float, float]) -> Camera: fovea_offset = ( (gaze[0]) / self.cam.f[0].item() * layer_cam.f[0].item(), (gaze[1]) / self.cam.f[1].item() * layer_cam.f[1].item() ) - return CameraParam({ - 'fx': layer_cam.f[0].item(), - 'fy': layer_cam.f[1].item(), - 'cx': layer_cam.c[0].item() - fovea_offset[0], - 'cy': layer_cam.c[1].item() - fovea_offset[1] - }, layer_cam.res, device=self.device) + return Camera.create({ + 'f': [layer_cam.f[0].item(), layer_cam.f[1].item()], + 'c': [layer_cam.c[0].item() - fovea_offset[0], layer_cam.c[1].item() - fovea_offset[1]] + }, layer_cam.res, coord_sys=layer_cam.coord_sys, device=self.device) def _warp(self, trans: Trans, trans0: Trans, - cam: CameraParam, z_list: torch.Tensor, + cam: Camera, z_list: torch.Tensor, image: torch.Tensor, depthmap: torch.Tensor) -> torch.Tensor: """ [summary] diff --git a/components/foveation.py b/components/foveation.py index f7947b3..823ffd4 100644 --- a/components/foveation.py +++ b/components/foveation.py @@ -8,8 +8,8 @@ from utils import math class Foveation(object): - def __init__(self, layers_fov: List[float], layers_res: List[Tuple[float, float]], - out_res: Tuple[int, int], *, blend: float = 0.6, device: torch.device = None): + def __init__(self, layers_fov: list[float], layers_res: list[tuple[float, float]], + out_res: tuple[int, int], *, blend: float = 0.6, device: torch.device = None): self.layers_fov = layers_fov self.layers_res = layers_res self.out_res = out_res @@ -20,15 +20,15 @@ class Foveation(object): self._gen_layer_blendmap(i) for i in range(self.n_layers - 1) ] # blend maps of fovea layers - self.coords = misc.meshgrid(*out_res).to(device=device) + self.coords = misc.grid2d(*out_res, device=device) def to(self, device: torch.device): self.eye_fovea_blend = [x.to(device=device) for x in self.eye_fovea_blend] self.coords = self.coords.to(device=device) return self - def synthesis(self, layers: List[torch.Tensor], fovea_center: Tuple[float, float], - shifts: List[int] = None, + def synthesis(self, layers: list[torch.Tensor], fovea_center: tuple[float, float], + shifts: list[int] = None, do_blend: bool = True, crop_mode: bool = False) -> torch.Tensor: """ @@ -40,6 +40,7 @@ class Foveation(object): """ output: torch.Tensor = nn_f.interpolate(layers[-1], self.out_res, mode='bilinear', align_corners=False) + #output.fill_(0) # TODO: debug if shifts is not None: output = img.horizontal_shift(output, shifts[-1]) c = torch.tensor([ @@ -99,11 +100,11 @@ class Foveation(object): """ size = self.get_layer_size_in_final_image(i) R = size / 2 - p = misc.meshgrid(size, size).to(device=self.device) # (size, size, 2) + p = misc.grid2d(size, device=self.device) # (size, size, 2) r = torch.norm(p - R, dim=2) # (size, size, 2) return misc.smooth_step(R, R * self.blend, r) - def get_layers_mask(self, gaze=None) -> List[torch.Tensor]: + def get_layers_mask(self, gaze=None) -> list[torch.Tensor]: """ Generate mask images for layers[:-1] the meaning of values in mask images: @@ -127,8 +128,7 @@ class Foveation(object): else: c = torch.tensor([0.5, 0.5], device=self.device) layers_mask.append(torch.ones(*self.layers_res[i], device=self.device) * -1) - coord = misc.meshgrid( - *self.layers_res[i]).to(device=self.device) / self.layers_res[i][0] + coord = misc.grid2d(*self.layers_res[i], device=self.device) / self.layers_res[i][0] r = 2 * torch.norm(coord - c, dim=-1) inner_radius = self.get_source_layer_cover_size_in_target_layer( self.layers_fov[i - 1], self.layers_fov[i], self.layers_res[i][0]) / self.layers_res[i][0] \ diff --git a/components/refine.py b/components/refine.py index 2b29618..9a9f217 100644 --- a/components/refine.py +++ b/components/refine.py @@ -7,7 +7,7 @@ from utils import math class GuideRefinement(object): def __init__(self, guides_image, guides_view: view.Trans, - guides_cam: view.CameraParam, net) -> None: + guides_cam: view.Camera, net) -> None: rays_o, rays_d = guides_cam.get_global_rays(guides_view, flatten=True) guides_inferred = torch.stack([ net(rays_o[i], rays_d[i]).view( diff --git a/components/render.py b/components/render.py new file mode 100644 index 0000000..030451a --- /dev/null +++ b/components/render.py @@ -0,0 +1,55 @@ +from typing import SupportsFloat + +from model import Model +from utils.view import * +from utils.types import * + + +def render(model: Model, cam: Camera, view: Trans, *output_types: str, + gaze: tuple[float, float] = (0, 0), extra_input: dict = None, + layer_mask: torch.Tensor = None, batch_size: int = None) -> ReturnData: + if len(output_types) == 0: + raise ValueError("'output_types' is empty") + + local_rays = cam.local_rays + cam.local_rays.new_tensor([*gaze, 0]) # (H*W, 3) + rays_d = view.trans_vector(local_rays) # (B..., H*W, 3) + rays_o = view.t[..., None, :].expand_as(rays_d) + print(cam.local_rays) + exit() + input = Rays(rays_o=rays_o, rays_d=rays_d, **extra_input or {}) # (B..., H*W) + + if layer_mask is not None: + selector = layer_mask.flatten().ge(0).nonzero() + input = input.transform(lambda value: value.index_select(len(input.shape), selector)) + input = input.flatten() # (B..., X) -> (N) + + output = ReturnData() # will be (N) + n = input.shape[0] + batch_size = batch_size or n + for offset in range(0, n, batch_size): + batch_slice = slice(offset, min(offset + batch_size, n)) + batch_output = model(input.select(batch_slice), *output_types) + for key, value in batch_output.items(): + if key == "rays_filter": + continue + match value: + case torch.Tensor(): + if key not in output: + output[key] = value.new_full([n, *value.shape[1:]], + math.huge * (key == "depth")) + if 'rays_filter' in batch_output: + output[key][batch_slice][batch_output['rays_filter']] = batch_output[key] + else: + output[key][batch_slice] = batch_output[key] + case SupportsFloat(): + output[key] = output.get(key, 0) + value + case _: + output[key] = output.get(key, []) + [value] + + output = output.reshape(*view.shape, -1) # (N) -> (B..., X) + if layer_mask is not None: + output = output.transform(lambda value: + value.new_zeros(*view.shape, local_rays.shape[0], + *value.shape[len(view.shape) + 1:]) + .index_copy(len(view.shape), selector, value)) + return output.reshape(*view.shape, *cam.res) # (B..., H*W) -> (B..., H, W) diff --git a/configs/_todo/_hr_snerf_fast.json b/configs/_todo/_hr_snerf_fast.json index f000e8c..67e33d4 100644 --- a/configs/_todo/_hr_snerf_fast.json +++ b/configs/_todo/_hr_snerf_fast.json @@ -12,7 +12,7 @@ }, "sample_range": [1, 7], "n_samples": 64, - "multi_nets": 4 + "multi_nets": 4, "density_regularization_weight": 1e-4, "density_regularization_scale": 1e4 }, diff --git a/configs/ablation_nerf+sph+cat.ini b/configs/ablation_nerf+sph+cat.ini new file mode 100644 index 0000000..2fd3634 --- /dev/null +++ b/configs/ablation_nerf+sph+cat.ini @@ -0,0 +1,22 @@ +model=FsNeRF +; n_samples=64 +; n_fields=1 +; depth=8 +; width=256 +; skips=[4] +; act=relu +; ln=false +; xfreqs=6 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=50 +checkpoint_interval=10 +; batch_size=4096 +; loss=[Color_L2] +; lr=5e-4 +lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/ablation_nerf+sph.ini b/configs/ablation_nerf+sph.ini new file mode 100644 index 0000000..e1c66ba --- /dev/null +++ b/configs/ablation_nerf+sph.ini @@ -0,0 +1,31 @@ +model=NeRF +; color=rgb +; n_samples=64 +sample_mode=spherical_radius +perturb_sampling=true +; depth=8 +; width=256 +; skips=[4] +; act=relu +; ln=false +; color_decoder=NeRF +n_importance=128 +; fine_depth=8 +; fine_width=256 +; fine_skips=[4] +; xfreqs=10 +; dfreqs=4 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; coord: str # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=20 +checkpoint_interval=5 +; batch_size=4096 +; loss=[Color_L2, CoarseColor_L2] +; lr=5e-4 +lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/ablation_nerf.ini b/configs/ablation_nerf.ini new file mode 100644 index 0000000..84261a6 --- /dev/null +++ b/configs/ablation_nerf.ini @@ -0,0 +1,29 @@ +model=NeRF +n_samples=64 +; sample_mode=xyz +perturb_sampling=true +; depth=8 +; width=256 +; skips=[4] +; act=relu +; ln=false +; color_decoder=NeRF +; n_importance=128 +; fine_depth=8 +; fine_width=256 +; fine_skips=[4] +; xfreqs=10 +; dfreqs=4 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=10 +checkpoint_interval=5 +; batch_size=4096 +; loss=[Color_L2] +; lr=5e-4 +lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/fovea.ini b/configs/fovea.ini new file mode 100644 index 0000000..3c4fe31 --- /dev/null +++ b/configs/fovea.ini @@ -0,0 +1,22 @@ +model=FsNeRF +; n_samples=64 +n_fields=4 +; depth=8 +; width=256 +skips=[] +; act=relu +; ln=false +; xfreqs=6 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=30 +; checkpoint_interval=10000(iters) or 10(epochs) +; batch_size=4096 +; loss=[Color_L2] +; lr=5e-4 +lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/fsnerf.ini b/configs/fsnerf.ini new file mode 100644 index 0000000..2be69c8 --- /dev/null +++ b/configs/fsnerf.ini @@ -0,0 +1,24 @@ +model=FsNeRF +; color=rgb +; n_samples=64 +n_fields=4 +; depth=8 +; width=256 +; skips=[4] +; act=relu +; ln=false +; xfreqs=6 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; coord: str # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=30 +checkpoint_interval=10 +; batch_size=4096 +; loss=[Color_L2] +; lr=5e-4 +lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/fsnerf2.ini b/configs/fsnerf2.ini new file mode 100644 index 0000000..61ad373 --- /dev/null +++ b/configs/fsnerf2.ini @@ -0,0 +1,24 @@ +model=FsNeRF +; color=rgb +n_samples=256 +n_fields=2 +; depth=8 +; width=256 +; skips=[4] +; act=relu +; ln=false +; xfreqs=6 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; coord: str # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=30 +checkpoint_interval=10 +; batch_size=4096 +loss=[Color_L2] +; lr=5e-4 +; lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/fsnerf_eval.ini b/configs/fsnerf_eval.ini new file mode 100644 index 0000000..2ba322c --- /dev/null +++ b/configs/fsnerf_eval.ini @@ -0,0 +1,24 @@ +model=FsNeRF +; color=rgb +; n_samples=64 +n_fields=4 +; depth=8 +; width=256 +; skips=[4] +; act=relu +; ln=false +; xfreqs=6 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; coord: str # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=30 +checkpoint_interval=50 +; batch_size=4096 +loss=[Color_L2] +; lr=5e-4 +; lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/nerf.ini b/configs/nerf.ini new file mode 100644 index 0000000..f265b24 --- /dev/null +++ b/configs/nerf.ini @@ -0,0 +1,31 @@ +model=NeRF +; color=rgb +; n_samples=64 +; sample_mode=xyz +perturb_sampling=true +; depth=8 +; width=256 +; skips=[4] +; act=relu +; ln=false +; color_decoder=NeRF +n_importance=128 +; fine_depth=8 +; fine_width=256 +; fine_skips=[4] +; xfreqs=10 +; dfreqs=4 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; coord: str # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=20 +checkpoint_interval=5 +; batch_size=4096 +; loss=[Color_L2, CoarseColor_L2] +; lr=5e-4 +lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/nerf_default.json b/configs/nerf_default.json deleted file mode 100644 index dd4dd75..0000000 --- a/configs/nerf_default.json +++ /dev/null @@ -1,16 +0,0 @@ -{ - "model": "NeRF", - "args": { - "color": "rgb", - "encode_x": 10, - "encode_d": 4, - "core_params": { - "nf": 256, - "n_layers": 8, - "skips": [ 4 ] - }, - "n_featdim": 0, - "sample_range": [0, 10], - "n_samples": 256 - } -} \ No newline at end of file diff --git a/configs/nerf_iters.ini b/configs/nerf_iters.ini new file mode 100644 index 0000000..270efa5 --- /dev/null +++ b/configs/nerf_iters.ini @@ -0,0 +1,31 @@ +model=NeRF +; color=rgb +; n_samples=64 +; sample_mode=xyz +perturb_sampling=true +; depth=8 +; width=256 +; skips=[4] +; act=relu +; ln=false +; color_decoder=NeRF +n_importance=128 +; fine_depth=8 +; fine_width=256 +; fine_skips=[4] +; xfreqs=10 +; dfreqs=4 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; coord: str # from dataset +; trainer=Trainer +max_iters=200000 +; max_epochs=20 +; checkpoint_interval=5 +; batch_size=4096 +; loss=[Color_L2, CoarseColor_L2] +; lr=5e-4 +lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/nerf_llff.ini b/configs/nerf_llff.ini new file mode 100644 index 0000000..9a20ac3 --- /dev/null +++ b/configs/nerf_llff.ini @@ -0,0 +1,31 @@ +model=NeRF +; color=rgb +; n_samples=64 +sample_mode=xyz_disp +perturb_sampling=true +; depth=8 +; width=256 +; skips=[4] +; act=relu +; ln=false +; color_decoder=NeRF +n_importance=128 +; fine_depth=8 +; fine_width=256 +; fine_skips=[4] +; xfreqs=10 +; dfreqs=4 +; raw_noise_std=1e0 +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; coord: str # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=50 +checkpoint_interval=10 +; batch_size=4096 +; loss=[Color_L2, CoarseColor_L2] +; lr=5e-4 +lr_decay=0.9999908 +; profile_iters=0 \ No newline at end of file diff --git a/configs/_cnerf.json b/configs/old/_cnerf.json similarity index 100% rename from configs/_cnerf.json rename to configs/old/_cnerf.json diff --git a/configs/_cnerf_ioc.json b/configs/old/_cnerf_ioc.json similarity index 100% rename from configs/_cnerf_ioc.json rename to configs/old/_cnerf_ioc.json diff --git a/configs/_cnerfadv.json b/configs/old/_cnerfadv.json similarity index 100% rename from configs/_cnerfadv.json rename to configs/old/_cnerfadv.json diff --git a/configs/_cnerfadv_ioc.json b/configs/old/_cnerfadv_ioc.json similarity index 100% rename from configs/_cnerfadv_ioc.json rename to configs/old/_cnerfadv_ioc.json diff --git a/configs/_hr_snerf.json b/configs/old/_hr_snerf.json similarity index 50% rename from configs/_hr_snerf.json rename to configs/old/_hr_snerf.json index b2d8d11..45265a3 100644 --- a/configs/_hr_snerf.json +++ b/configs/old/_hr_snerf.json @@ -1,14 +1,11 @@ { - "model": "NeRF", + "parent": "snerf_voxels", "args": { - "spherical": true, - "color": "rgb", - "encode_x": 10, - "encode_d": 4, "core_params": { "nf": 256, "n_layers": 8, - "skips": [4] + "skips": [4], + "act": "leakyrelu" }, "space": "voxels", "steps": [16, 64, 32], @@ -17,8 +14,6 @@ "train": { "max_epochs": 50, "prune_epochs": [10], - "split_epochs": [10, 30], - "density_regularization_weight": 1e-4, - "density_regularization_scale": 1e4 + "split_epochs": [10, 30] } } \ No newline at end of file diff --git a/configs/old/_hr_snerf_mhe.json b/configs/old/_hr_snerf_mhe.json new file mode 100644 index 0000000..c36da22 --- /dev/null +++ b/configs/old/_hr_snerf_mhe.json @@ -0,0 +1,23 @@ +{ + "parent": "nerf_default", + "args": { + "spherical": true, + "encode_x": ["MultiresHash", { + "layers": 16, + "log2_hashsize": 19, + "features": 4, + "res0": [8, 8, 4] + }], + "core_params": { + "nf": 64, + "n_layers": 4, + "act": "leakyrelu" + }, + "space": "voxels", + "steps": [64, 256, 128], + "n_samples": 256 + }, + "train": { + "prune_epochs": [5] + } +} \ No newline at end of file diff --git a/configs/_hr_snerfadv.json b/configs/old/_hr_snerfadv.json similarity index 100% rename from configs/_hr_snerfadv.json rename to configs/old/_hr_snerfadv.json diff --git a/configs/old/_hr_snerffast+ls.json b/configs/old/_hr_snerffast+ls.json new file mode 100644 index 0000000..5c4b305 --- /dev/null +++ b/configs/old/_hr_snerffast+ls.json @@ -0,0 +1,9 @@ +{ + "parent": "_hr_snerffast", + "args": { + }, + "train": { + "density_regularization_weight": 1e-4, + "density_regularization_scale": 1e4 + } +} \ No newline at end of file diff --git a/configs/old/_hr_snerffast.json b/configs/old/_hr_snerffast.json new file mode 100644 index 0000000..5af2d17 --- /dev/null +++ b/configs/old/_hr_snerffast.json @@ -0,0 +1,15 @@ +{ + "parent": "snerffast", + "args": { + "core_params": { + "nf": 512, + "n_layers": 4, + "act": "relu" + }, + "multi_nets": 4, + "n_samples": 64 + }, + "train": { + "max_epochs": 50 + } +} \ No newline at end of file diff --git a/configs/old/_hr_snerffast_mhe+ls.json b/configs/old/_hr_snerffast_mhe+ls.json new file mode 100644 index 0000000..d236bde --- /dev/null +++ b/configs/old/_hr_snerffast_mhe+ls.json @@ -0,0 +1,7 @@ +{ + "parent": "_hr_snerffast_mhe", + "train": { + "density_regularization_weight": 1e-4, + "density_regularization_scale": 1e4 + } +} \ No newline at end of file diff --git a/configs/old/_hr_snerffast_mhe.json b/configs/old/_hr_snerffast_mhe.json new file mode 100644 index 0000000..a532c2a --- /dev/null +++ b/configs/old/_hr_snerffast_mhe.json @@ -0,0 +1,14 @@ +{ + "parent": "snerffast", + "args": { + "encode_x": ["LayeredMultiresHash", { + "layers": 16, + "log2_hashsize": 19, + "features": 4, + "res0": [16, 8] + }] + }, + "train": { + "max_epochs": 50 + } +} \ No newline at end of file diff --git a/configs/old/_hr_snerffast_mhe1.json b/configs/old/_hr_snerffast_mhe1.json new file mode 100644 index 0000000..0525a01 --- /dev/null +++ b/configs/old/_hr_snerffast_mhe1.json @@ -0,0 +1,11 @@ +{ + "parent": "_hr_snerffast_mhe", + "args": { + "encode_x": ["LayeredMultiresHash", { + "layers": 8, + "log2_hashsize": 19, + "features": 8, + "res0": [8, 4] + }] + } +} \ No newline at end of file diff --git a/configs/_lr_snerf.json b/configs/old/_lr_snerf.json similarity index 100% rename from configs/_lr_snerf.json rename to configs/old/_lr_snerf.json diff --git a/configs/_lr_snerfadv.json b/configs/old/_lr_snerfadv.json similarity index 100% rename from configs/_lr_snerfadv.json rename to configs/old/_lr_snerfadv.json diff --git a/configs/_mr_snerf.json b/configs/old/_mr_snerf.json similarity index 100% rename from configs/_mr_snerf.json rename to configs/old/_mr_snerf.json diff --git a/configs/_mr_snerfadv.json b/configs/old/_mr_snerfadv.json similarity index 100% rename from configs/_mr_snerfadv.json rename to configs/old/_mr_snerfadv.json diff --git a/configs/old/_mr_snerffast.json b/configs/old/_mr_snerffast.json new file mode 100644 index 0000000..d26a351 --- /dev/null +++ b/configs/old/_mr_snerffast.json @@ -0,0 +1,15 @@ +{ + "parent": "snerffast", + "args": { + "core_params": { + "nf": 256, + "n_layers": 4, + "act": "relu" + }, + "multi_nets": 2, + "n_samples": 32 + }, + "train": { + "max_epochs": 50 + } +} \ No newline at end of file diff --git a/configs/old/nerf_bedroom.json b/configs/old/nerf_bedroom.json new file mode 100644 index 0000000..0c6fce8 --- /dev/null +++ b/configs/old/nerf_bedroom.json @@ -0,0 +1,28 @@ +{ + "model": "NeRF", + "args": { + "color": "rgb", + "encode_x": ["Freq", { + "freqs": 10, + "cat_input": true + }], + "encode_d": ["Freq", { + "freqs": 4, + "angular": true + }], + "core_params": { + "nf": 256, + "n_layers": 8, + "skips": [ 4 ], + "act": "relu" + }, + "sample_range": [10, 60], + "n_samples": 256 + }, + "train": { + "max_epochs": 5, + "opti": ["Adam", { + "lr": 5e-4 + }] + } +} \ No newline at end of file diff --git a/configs/old/nerf_blender.json b/configs/old/nerf_blender.json new file mode 100644 index 0000000..e157d1d --- /dev/null +++ b/configs/old/nerf_blender.json @@ -0,0 +1,44 @@ +{ + "model": ["NeRF", { + "color": "rgb", + "sampler": { + "range": [2, 6], + "n_samples": 128 + }, + "encoder_x": ["Freq", { + "freqs": 10, + "cat_input": true + }], + "encoder_d": ["Freq", { + "freqs": 4, + "angular": true + }], + "field": { + "shape": [8, 256], + "skips": [4] + }, + "color_decoder": "NeRF", + "cascade": true, + "pdf_sampler": { + "n_importance": 64 + }, + "fine_field": { + "shape": [8, 256], + "skips": [4] + } + }], + "train": ["Trainer", { + "max_iters": 200000, + "checkpoint_interval": 10000, + "opti": ["Adam", { + "lr": 5e-4 + }], + "scheduler": ["ExponentialLR", { + "gamma": 0.9999954 + }], + "loss": { + "Color_L2": "mse_loss(color, gt_color)" + //"Density_Reg": ["cauchy_loss(energies)", {"weight": 1e-4, "s": 1e4}] + } + }] +} \ No newline at end of file diff --git a/configs/old/nerf_default.json b/configs/old/nerf_default.json new file mode 100644 index 0000000..fd436c2 --- /dev/null +++ b/configs/old/nerf_default.json @@ -0,0 +1,46 @@ +{ + "model": ["NeRF", { + "color": "rgb", + "sampler": { + "range": [0, 10], + "n_samples": 128 + }, + "encoder_x": ["Freq", { + "freqs": 10, + "cat_input": true + }], + "encoder_d": ["Freq", { + "freqs": 4, + "cat_input": true + }], + "field": { + "shape": [8, 256], + "skips": [4] + }, + "color_decoder": "NeRF", + "cascade": true, + "pdf_sampler": { + "n_importance": 64 + }, + "fine_field": { + "shape": [8, 256], + "skips": [4] + } + }], + "train": ["Trainer", { + "batch_size": 1024, + "max_iters": 200000, + "checkpoint_interval": 10000, + "opti": ["Adam", { + "lr": 5e-4 + }], + "scheduler": ["ExponentialLR", { + "gamma": 0.9999954 + }], + "loss": { + "Color_L2": "mse_loss(color, gt_color)", + "Coarse_Color_L2": "mse_loss(coarse_color, gt_color)", + //"Density_Reg": ["cauchy_loss(energies)", {"weight": 1e-4, "s": 1e4}] + } + }] +} \ No newline at end of file diff --git a/configs/old/nerf_mhe.json b/configs/old/nerf_mhe.json new file mode 100644 index 0000000..f2e56ba --- /dev/null +++ b/configs/old/nerf_mhe.json @@ -0,0 +1,17 @@ +{ + "parent": "nerf_default", + "args": { + "encode_x": ["MultiresHash", { + "layers": 10, + "log2_hashsize": 19, + "features": 2, + "res0": 16, + "scale_up": 1.5 + }], + "core_params": { + "nf": 64, + "n_layers": 3, + "act": "leakyrelu" + } + } +} \ No newline at end of file diff --git a/configs/old/nerf_mhe1.json b/configs/old/nerf_mhe1.json new file mode 100644 index 0000000..098e913 --- /dev/null +++ b/configs/old/nerf_mhe1.json @@ -0,0 +1,11 @@ +{ + "parent": "nerf_mhe", + "args": { + "encode_x": ["MultiresHash", { + "layers": 4, + "log2_hashsize": 19, + "features": 4, + "res0": 16 + }] + } +} \ No newline at end of file diff --git a/configs/old/nerf_simple.json b/configs/old/nerf_simple.json new file mode 100644 index 0000000..79d3bf4 --- /dev/null +++ b/configs/old/nerf_simple.json @@ -0,0 +1,33 @@ +{ + "model": ["NeRF", { + "color": "rgb", + "sampler": { + "range": [0, 10], + "n_samples": 256 + }, + "encoder_x": ["Freq", { + "freqs": 10, + "cat_input": true + }], + "encoder_d": ["Freq", { + "freqs": 4, + "angular": true + }], + "field": { + "shape": [8, 256], + "skips": [4] + }, + "color_decoder": "NeRF", + "cascade": false + }], + "train": ["Trainer", { + "max_epochs": 20, + "opti": ["Adam", { + "lr": 5e-4 + }], + "loss": { + "Color_L2": "mse_loss(color, gt_color)" + //"Density_Reg": ["cauchy_loss(energies)", {"weight": 1e-4, "s": 1e4}] + } + }] +} \ No newline at end of file diff --git a/configs/nerf_voxels.json b/configs/old/nerf_voxels.json similarity index 53% rename from configs/nerf_voxels.json rename to configs/old/nerf_voxels.json index d7f0297..33494dc 100644 --- a/configs/nerf_voxels.json +++ b/configs/old/nerf_voxels.json @@ -1,18 +1,8 @@ { - "model": "NeRF", + "parent": "nerf_default", "args": { - "color": "rgb", - "encode_x": 10, - "encode_d": 4, - "core_params": { - "nf": 256, - "n_layers": 8, - "skips": [ 4 ] - }, - "n_featdim": 0, "space": "voxels", "voxel_size": 0.5, - "sample_range": [0, 10], "n_samples": 50 }, "train": { diff --git a/configs/old/nerf_voxels_mhe.json b/configs/old/nerf_voxels_mhe.json new file mode 100644 index 0000000..a81dce4 --- /dev/null +++ b/configs/old/nerf_voxels_mhe.json @@ -0,0 +1,13 @@ +{ + "parent": "nerf_mhe", + "args": { + "space": "voxels", + "voxel_size": 0.05 + }, + "train": { + "max_epochs": 10, + "prune_epochs": [2], + "density_regularization_weight": 1e-4, + "density_regularization_scale": 1e4 + } +} \ No newline at end of file diff --git a/configs/old/nerfadv_default.json b/configs/old/nerfadv_default.json new file mode 100644 index 0000000..434378e --- /dev/null +++ b/configs/old/nerfadv_default.json @@ -0,0 +1,24 @@ +{ + "parent": "nerf_default", + "args": { + "core": "nerfadv", + "core_params": { + "density_net": { + "nf": 256, + "n_layers": 4, + "act": "leakyrelu" + }, + "color_net": { + "nf": 256, + "n_layers": 3, + "act": "leakyrelu" + }, + "specular_net": { + "nf": 128, + "n_layers": 1, + "act": "leakyrelu" + }, + "appearance": "combined" + } + } +} \ No newline at end of file diff --git a/configs/old/nerfadv_mhe.json b/configs/old/nerfadv_mhe.json new file mode 100644 index 0000000..9dcedba --- /dev/null +++ b/configs/old/nerfadv_mhe.json @@ -0,0 +1,24 @@ +{ + "parent": "nerfadv_default", + "args": { + "encode_x": ["MultiresHash", { + "layers": 16, + "log2_hashsize": 19, + "features": 2, + "res0": 16 + }], + "core_params": { + "density_net": { + "nf": 64, + "n_layers": 1, + "act": "leakyrelu" + }, + "color_net": { + "nf": 64, + "n_layers": 2, + "act": "leakyrelu" + }, + "appearance": "combined" + } + } +} \ No newline at end of file diff --git a/configs/old/nerfadv_voxels.json b/configs/old/nerfadv_voxels.json new file mode 100644 index 0000000..f64be92 --- /dev/null +++ b/configs/old/nerfadv_voxels.json @@ -0,0 +1,15 @@ +{ + "parent": "nerfadv_default", + "args": { + "space": "voxels", + "voxel_size": 0.5, + "n_samples": 32 + }, + "train": { + "max_epochs": 50, + "prune_epochs": [5], + "split_epochs": [10], + "density_regularization_weight": 1e-4, + "density_regularization_scale": 1e4 + } +} \ No newline at end of file diff --git a/configs/old/nerfadv_voxels_mhe.json b/configs/old/nerfadv_voxels_mhe.json new file mode 100644 index 0000000..199ecd9 --- /dev/null +++ b/configs/old/nerfadv_voxels_mhe.json @@ -0,0 +1,31 @@ +{ + "parent": "nerfadv_voxels", + "args": { + "encode_x": ["MultiresHash", { + "layers": 8, + "log2_hashsize": 19, + "features": 2, + "res0": 16 + }], + "core_params": { + "density_net": { + "nf": 64, + "n_layers": 1, + "act": "leakyrelu" + }, + "color_net": { + "nf": 64, + "n_layers": 2, + "act": "leakyrelu" + }, + "appearance": "combined" + }, + "steps": [16, 16, 16], + "n_samples": 64 + }, + "train": { + "max_epochs": 30, + "prune_epochs": [5], + "split_epochs": [10] + } +} \ No newline at end of file diff --git a/configs/nsvf_default.json b/configs/old/nsvf_default.json similarity index 100% rename from configs/nsvf_default.json rename to configs/old/nsvf_default.json diff --git a/configs/nsvf_voxels.json b/configs/old/nsvf_voxels.json similarity index 100% rename from configs/nsvf_voxels.json rename to configs/old/nsvf_voxels.json diff --git a/configs/smnerf_voxels.json b/configs/old/smnerf_voxels.json similarity index 100% rename from configs/smnerf_voxels.json rename to configs/old/smnerf_voxels.json diff --git a/configs/smnerfadv_voxels.json b/configs/old/smnerfadv_voxels.json similarity index 100% rename from configs/smnerfadv_voxels.json rename to configs/old/smnerfadv_voxels.json diff --git a/configs/snerf4_voxels.json b/configs/old/snerf4_voxels.json similarity index 100% rename from configs/snerf4_voxels.json rename to configs/old/snerf4_voxels.json diff --git a/configs/old/snerf_voxels.json b/configs/old/snerf_voxels.json new file mode 100644 index 0000000..29d6ee1 --- /dev/null +++ b/configs/old/snerf_voxels.json @@ -0,0 +1,9 @@ +{ + "parent": "nerf_voxels", + "args": { + "spherical": true, + "space": "voxels", + "steps": [4, 16, 8], + "n_samples": 16 + } +} \ No newline at end of file diff --git a/configs/snerfadv_voxels.json b/configs/old/snerfadv_voxels.json similarity index 100% rename from configs/snerfadv_voxels.json rename to configs/old/snerfadv_voxels.json diff --git a/configs/snerfadvx4_voxels.json b/configs/old/snerfadvx4_voxels.json similarity index 100% rename from configs/snerfadvx4_voxels.json rename to configs/old/snerfadvx4_voxels.json diff --git a/configs/old/snerffast.json b/configs/old/snerffast.json new file mode 100644 index 0000000..69b46d6 --- /dev/null +++ b/configs/old/snerffast.json @@ -0,0 +1,26 @@ +{ + "model": ["SnerfFast", { + "color": "rgb", + "sampler": { + "n_samples": 64 + }, + "encoder_x": ["Freq", { + "freqs": 6, + "cat_input": true + }], + "num_fields": 4, + "field": { + "shape": [8, 256], + "skips": [] + } + }], + "train": ["Trainer", { + "max_epochs": 20, + "opti": ["Adam", { + "lr": 5e-4 + }], + "loss": { + "Color_L2": "mse_loss(color, gt_color)" + } + }] +} \ No newline at end of file diff --git a/configs/old/snerffast_periph+dr.json b/configs/old/snerffast_periph+dr.json new file mode 100644 index 0000000..657618e --- /dev/null +++ b/configs/old/snerffast_periph+dr.json @@ -0,0 +1,27 @@ +{ + "model": ["SnerfFast", { + "color": "rgb", + "sampler": { + "n_samples": 32 + }, + "encoder_x": ["Freq", { + "freqs": 6, + "cat_input": true + }], + "num_fields": 2, + "field": { + "shape": [4, 256], + "skips": [] + } + }], + "train": ["Trainer", { + "max_epochs": 20, + "opti": ["Adam", { + "lr": 5e-4 + }], + "loss": { + "Color_L2": "mse_loss(color, gt_color)", + "Density_Reg": ["cauchy_loss(energies)", {"weight": 1e-4, "s": 1e4}] + } + }] +} \ No newline at end of file diff --git a/configs/old/snerffast_periph+dr2.json b/configs/old/snerffast_periph+dr2.json new file mode 100644 index 0000000..d9d0380 --- /dev/null +++ b/configs/old/snerffast_periph+dr2.json @@ -0,0 +1,27 @@ +{ + "model": ["SnerfFast", { + "color": "rgb", + "sampler": { + "n_samples": 32 + }, + "encoder_x": ["Freq", { + "freqs": 6, + "cat_input": true + }], + "num_fields": 2, + "field": { + "shape": [4, 256], + "skips": [] + } + }], + "train": ["Trainer", { + "max_epochs": 20, + "opti": ["Adam", { + "lr": 5e-4 + }], + "loss": { + "Color_L2": "mse_loss(color, gt_color)", + "Density_Reg": ["cauchy_loss(densities)", {"s": 4}] + } + }] +} \ No newline at end of file diff --git a/configs/old/snerffast_periph.json b/configs/old/snerffast_periph.json new file mode 100644 index 0000000..7fdd357 --- /dev/null +++ b/configs/old/snerffast_periph.json @@ -0,0 +1,26 @@ +{ + "model": ["SnerfFast", { + "color": "rgb", + "sampler": { + "n_samples": 32 + }, + "encoder_x": ["Freq", { + "freqs": 6, + "cat_input": true + }], + "num_fields": 2, + "field": { + "shape": [4, 256], + "skips": [] + } + }], + "train": ["Trainer", { + "max_epochs": 20, + "opti": ["Adam", { + "lr": 5e-4 + }], + "loss": { + "Color_L2": "mse_loss(color, gt_color)" + } + }] +} \ No newline at end of file diff --git a/configs/snerfx4_voxels.json b/configs/old/snerfx4_voxels.json similarity index 100% rename from configs/snerfx4_voxels.json rename to configs/old/snerfx4_voxels.json diff --git a/configs/svnerf_voxels.json b/configs/old/svnerf_voxels.json similarity index 100% rename from configs/svnerf_voxels.json rename to configs/old/svnerf_voxels.json diff --git a/configs/periph.ini b/configs/periph.ini new file mode 100644 index 0000000..095c9a1 --- /dev/null +++ b/configs/periph.ini @@ -0,0 +1,22 @@ +model=FsNeRF +; n_samples=64 +n_fields=2 +depth=4 +; width=256 +skips=[] +; act=relu +; ln=false +; xfreqs=6 +; raw_noise_std=0. +; near: float # from dataset +; far: float # from dataset +; white_bg: bool # from dataset +; trainer=Trainer +; max_iters=200000 +max_epochs=50 +; checkpoint_interval=10000(iters) or 10(epochs) +; batch_size=4096 +; loss=[Color_L2] +; lr=5e-4 +lr_decay=0.9999954 +; profile_iters=0 \ No newline at end of file diff --git a/configs/snerf_voxels.json b/configs/snerf_voxels.json deleted file mode 100644 index 96e2c3f..0000000 --- a/configs/snerf_voxels.json +++ /dev/null @@ -1,25 +0,0 @@ -{ - "model": "NeRF", - "args": { - "spherical": true, - "color": "rgb", - "encode_x": 10, - "encode_d": 4, - "core_params": { - "nf": 256, - "n_layers": 8, - "skips": [ 4 ] - }, - "n_featdim": 0, - "space": "voxels", - "steps": [4, 16, 8], - "n_samples": 16 - }, - "train": { - "max_epochs": 50, - "prune_epochs": [5], - "split_epochs": [10], - "density_regularization_weight": 1e-4, - "density_regularization_scale": 1e4 - } -} \ No newline at end of file diff --git a/cpp/.clang-format b/cpp/.clang-format new file mode 100644 index 0000000..0571700 --- /dev/null +++ b/cpp/.clang-format @@ -0,0 +1 @@ +{ BasedOnStyle: LLVM, UseTab: Never, IndentWidth: 4, TabWidth: 4, BreakBeforeBraces: Attach, AllowShortIfStatementsOnASingleLine: false, IndentCaseLabels: false, ColumnLimit: 0, AccessModifierOffset: -4, NamespaceIndentation: All, FixNamespaceComments: false, SortIncludes: Never, ColumnLimit: 100 } \ No newline at end of file diff --git a/cpp_old/Makefile.config b/cpp/__old/Makefile.config similarity index 100% rename from cpp_old/Makefile.config rename to cpp/__old/Makefile.config diff --git a/cpp_old/msl_infer/Encoder.cu b/cpp/__old/msl_infer/Encoder.cu similarity index 100% rename from cpp_old/msl_infer/Encoder.cu rename to cpp/__old/msl_infer/Encoder.cu diff --git a/cpp_old/msl_infer/Encoder.h b/cpp/__old/msl_infer/Encoder.h similarity index 100% rename from cpp_old/msl_infer/Encoder.h rename to cpp/__old/msl_infer/Encoder.h diff --git a/cpp_old/msl_infer/Enhancement.cu b/cpp/__old/msl_infer/Enhancement.cu similarity index 100% rename from cpp_old/msl_infer/Enhancement.cu rename to cpp/__old/msl_infer/Enhancement.cu diff --git a/cpp_old/msl_infer/Enhancement.h b/cpp/__old/msl_infer/Enhancement.h similarity index 100% rename from cpp_old/msl_infer/Enhancement.h rename to cpp/__old/msl_infer/Enhancement.h diff --git a/cpp_old/msl_infer/ImageGen.cpp b/cpp/__old/msl_infer/ImageGen.cpp similarity index 100% rename from cpp_old/msl_infer/ImageGen.cpp rename to cpp/__old/msl_infer/ImageGen.cpp diff --git a/cpp_old/msl_infer/ImageGen.h b/cpp/__old/msl_infer/ImageGen.h similarity index 100% rename from cpp_old/msl_infer/ImageGen.h rename to cpp/__old/msl_infer/ImageGen.h diff --git a/cpp_old/msl_infer/InferPipeline.cpp b/cpp/__old/msl_infer/InferPipeline.cpp similarity index 100% rename from cpp_old/msl_infer/InferPipeline.cpp rename to cpp/__old/msl_infer/InferPipeline.cpp diff --git a/cpp_old/msl_infer/InferPipeline.h b/cpp/__old/msl_infer/InferPipeline.h similarity index 100% rename from cpp_old/msl_infer/InferPipeline.h rename to cpp/__old/msl_infer/InferPipeline.h diff --git a/cpp/fnr_core/Msl.cpp b/cpp/__old/msl_infer/Msl.cpp old mode 100644 new mode 100755 similarity index 100% rename from cpp/fnr_core/Msl.cpp rename to cpp/__old/msl_infer/Msl.cpp diff --git a/cpp/fnr_core/Msl.h b/cpp/__old/msl_infer/Msl.h old mode 100644 new mode 100755 similarity index 100% rename from cpp/fnr_core/Msl.h rename to cpp/__old/msl_infer/Msl.h diff --git a/cpp_old/msl_infer/Net.cpp b/cpp/__old/msl_infer/Net.cpp similarity index 100% rename from cpp_old/msl_infer/Net.cpp rename to cpp/__old/msl_infer/Net.cpp diff --git a/cpp/fnr_core/Net.h b/cpp/__old/msl_infer/Net.h old mode 100644 new mode 100755 similarity index 100% rename from cpp/fnr_core/Net.h rename to cpp/__old/msl_infer/Net.h diff --git a/cpp/fnr_core/Nmsl2.cpp b/cpp/__old/msl_infer/Nmsl2.cpp old mode 100644 new mode 100755 similarity index 100% rename from cpp/fnr_core/Nmsl2.cpp rename to cpp/__old/msl_infer/Nmsl2.cpp diff --git a/cpp/fnr_core/Nmsl2.h b/cpp/__old/msl_infer/Nmsl2.h old mode 100644 new mode 100755 similarity index 100% rename from cpp/fnr_core/Nmsl2.h rename to cpp/__old/msl_infer/Nmsl2.h diff --git a/cpp/fnr_core/Renderer.cu b/cpp/__old/msl_infer/Renderer.cu old mode 100644 new mode 100755 similarity index 100% rename from cpp/fnr_core/Renderer.cu rename to cpp/__old/msl_infer/Renderer.cu diff --git a/cpp/fnr_core/Renderer.h b/cpp/__old/msl_infer/Renderer.h old mode 100644 new mode 100755 similarity index 100% rename from cpp/fnr_core/Renderer.h rename to cpp/__old/msl_infer/Renderer.h diff --git a/cpp_old/msl_infer/Sampler.cu b/cpp/__old/msl_infer/Sampler.cu similarity index 100% rename from cpp_old/msl_infer/Sampler.cu rename to cpp/__old/msl_infer/Sampler.cu diff --git a/cpp/fnr_core/Sampler.h b/cpp/__old/msl_infer/Sampler.h old mode 100644 new mode 100755 similarity index 100% rename from cpp/fnr_core/Sampler.h rename to cpp/__old/msl_infer/Sampler.h diff --git a/cpp_old/msl_infer/SynthesisPipeline.cpp b/cpp/__old/msl_infer/SynthesisPipeline.cpp similarity index 100% rename from cpp_old/msl_infer/SynthesisPipeline.cpp rename to cpp/__old/msl_infer/SynthesisPipeline.cpp diff --git a/cpp_old/msl_infer/SynthesisPipeline.h b/cpp/__old/msl_infer/SynthesisPipeline.h similarity index 100% rename from cpp_old/msl_infer/SynthesisPipeline.h rename to cpp/__old/msl_infer/SynthesisPipeline.h diff --git a/cpp_old/msl_infer/View.cu b/cpp/__old/msl_infer/View.cu similarity index 100% rename from cpp_old/msl_infer/View.cu rename to cpp/__old/msl_infer/View.cu diff --git a/cpp_old/msl_infer/View.h b/cpp/__old/msl_infer/View.h similarity index 100% rename from cpp_old/msl_infer/View.h rename to cpp/__old/msl_infer/View.h diff --git a/cpp_old/msl_infer_test/Makefile b/cpp/__old/msl_infer_test/Makefile similarity index 100% rename from cpp_old/msl_infer_test/Makefile rename to cpp/__old/msl_infer_test/Makefile diff --git a/cpp_old/msl_infer_test/main.cpp b/cpp/__old/msl_infer_test/main.cpp similarity index 100% rename from cpp_old/msl_infer_test/main.cpp rename to cpp/__old/msl_infer_test/main.cpp diff --git a/cpp_old/nets/barbershop/fovea.trt b/cpp/__old/nets/barbershop/fovea.trt similarity index 100% rename from cpp_old/nets/barbershop/fovea.trt rename to cpp/__old/nets/barbershop/fovea.trt diff --git a/cpp_old/nets/barbershop/periph.trt b/cpp/__old/nets/barbershop/periph.trt similarity index 100% rename from cpp_old/nets/barbershop/periph.trt rename to cpp/__old/nets/barbershop/periph.trt diff --git a/cpp_old/nets/classroom/fovea.trt b/cpp/__old/nets/classroom/fovea.trt similarity index 100% rename from cpp_old/nets/classroom/fovea.trt rename to cpp/__old/nets/classroom/fovea.trt diff --git a/cpp_old/nets/classroom/periph.trt b/cpp/__old/nets/classroom/periph.trt similarity index 100% rename from cpp_old/nets/classroom/periph.trt rename to cpp/__old/nets/classroom/periph.trt diff --git a/cpp/nets/fovea.mask b/cpp/__old/nets/fovea.mask similarity index 100% rename from cpp/nets/fovea.mask rename to cpp/__old/nets/fovea.mask diff --git a/cpp_old/nets/lobby/fovea.trt b/cpp/__old/nets/lobby/fovea.trt similarity index 100% rename from cpp_old/nets/lobby/fovea.trt rename to cpp/__old/nets/lobby/fovea.trt diff --git a/cpp_old/nets/lobby/periph.trt b/cpp/__old/nets/lobby/periph.trt similarity index 100% rename from cpp_old/nets/lobby/periph.trt rename to cpp/__old/nets/lobby/periph.trt diff --git a/cpp/nets/mid.mask b/cpp/__old/nets/mid.mask similarity index 100% rename from cpp/nets/mid.mask rename to cpp/__old/nets/mid.mask diff --git a/cpp/nets/old/fovea_mono/cat.trt b/cpp/__old/nets/old/fovea_mono/cat.trt similarity index 100% rename from cpp/nets/old/fovea_mono/cat.trt rename to cpp/__old/nets/old/fovea_mono/cat.trt diff --git a/cpp/nets/old/fovea_mono/fc1.trt b/cpp/__old/nets/old/fovea_mono/fc1.trt similarity index 100% rename from cpp/nets/old/fovea_mono/fc1.trt rename to cpp/__old/nets/old/fovea_mono/fc1.trt diff --git a/cpp/nets/old/fovea_mono/fc2.trt b/cpp/__old/nets/old/fovea_mono/fc2.trt similarity index 100% rename from cpp/nets/old/fovea_mono/fc2.trt rename to cpp/__old/nets/old/fovea_mono/fc2.trt diff --git a/cpp/nets/old/fovea_mono/msl.trt b/cpp/__old/nets/old/fovea_mono/msl.trt similarity index 100% rename from cpp/nets/old/fovea_mono/msl.trt rename to cpp/__old/nets/old/fovea_mono/msl.trt diff --git a/cpp/nets/old/fovea_stereo/cat.trt b/cpp/__old/nets/old/fovea_stereo/cat.trt similarity index 100% rename from cpp/nets/old/fovea_stereo/cat.trt rename to cpp/__old/nets/old/fovea_stereo/cat.trt diff --git a/cpp/nets/old/fovea_stereo/fc1.trt b/cpp/__old/nets/old/fovea_stereo/fc1.trt similarity index 100% rename from cpp/nets/old/fovea_stereo/fc1.trt rename to cpp/__old/nets/old/fovea_stereo/fc1.trt diff --git a/cpp/nets/old/fovea_stereo/fc2.trt b/cpp/__old/nets/old/fovea_stereo/fc2.trt similarity index 100% rename from cpp/nets/old/fovea_stereo/fc2.trt rename to cpp/__old/nets/old/fovea_stereo/fc2.trt diff --git a/cpp/nets/old/periph/cat.trt b/cpp/__old/nets/old/periph/cat.trt similarity index 100% rename from cpp/nets/old/periph/cat.trt rename to cpp/__old/nets/old/periph/cat.trt diff --git a/cpp/nets/old/periph/fc1.trt b/cpp/__old/nets/old/periph/fc1.trt similarity index 100% rename from cpp/nets/old/periph/fc1.trt rename to cpp/__old/nets/old/periph/fc1.trt diff --git a/cpp/nets/old/periph/fc2.trt b/cpp/__old/nets/old/periph/fc2.trt similarity index 100% rename from cpp/nets/old/periph/fc2.trt rename to cpp/__old/nets/old/periph/fc2.trt diff --git a/cpp/nets/old/periph/msl.trt b/cpp/__old/nets/old/periph/msl.trt similarity index 100% rename from cpp/nets/old/periph/msl.trt rename to cpp/__old/nets/old/periph/msl.trt diff --git a/cpp_old/nets/stones/fovea.trt b/cpp/__old/nets/stones/fovea.trt similarity index 100% rename from cpp_old/nets/stones/fovea.trt rename to cpp/__old/nets/stones/fovea.trt diff --git a/cpp_old/nets/stones/periph.trt b/cpp/__old/nets/stones/periph.trt similarity index 100% rename from cpp_old/nets/stones/periph.trt rename to cpp/__old/nets/stones/periph.trt diff --git a/cpp_old/old/msl_infer/Encoder.cu b/cpp/__old/old/msl_infer/Encoder.cu similarity index 100% rename from cpp_old/old/msl_infer/Encoder.cu rename to cpp/__old/old/msl_infer/Encoder.cu diff --git a/cpp_old/old/msl_infer/Encoder.h b/cpp/__old/old/msl_infer/Encoder.h similarity index 100% rename from cpp_old/old/msl_infer/Encoder.h rename to cpp/__old/old/msl_infer/Encoder.h diff --git a/cpp_old/old/msl_infer/Enhancement.cu b/cpp/__old/old/msl_infer/Enhancement.cu similarity index 100% rename from cpp_old/old/msl_infer/Enhancement.cu rename to cpp/__old/old/msl_infer/Enhancement.cu diff --git a/cpp_old/old/msl_infer/Enhancement.h b/cpp/__old/old/msl_infer/Enhancement.h similarity index 100% rename from cpp_old/old/msl_infer/Enhancement.h rename to cpp/__old/old/msl_infer/Enhancement.h diff --git a/cpp_old/old/msl_infer/ImageGen.cpp b/cpp/__old/old/msl_infer/ImageGen.cpp similarity index 100% rename from cpp_old/old/msl_infer/ImageGen.cpp rename to cpp/__old/old/msl_infer/ImageGen.cpp diff --git a/cpp_old/old/msl_infer/ImageGen.h b/cpp/__old/old/msl_infer/ImageGen.h similarity index 100% rename from cpp_old/old/msl_infer/ImageGen.h rename to cpp/__old/old/msl_infer/ImageGen.h diff --git a/cpp_old/old/msl_infer/InferPipeline.cpp b/cpp/__old/old/msl_infer/InferPipeline.cpp similarity index 100% rename from cpp_old/old/msl_infer/InferPipeline.cpp rename to cpp/__old/old/msl_infer/InferPipeline.cpp diff --git a/cpp_old/old/msl_infer/InferPipeline.h b/cpp/__old/old/msl_infer/InferPipeline.h similarity index 100% rename from cpp_old/old/msl_infer/InferPipeline.h rename to cpp/__old/old/msl_infer/InferPipeline.h diff --git a/cpp_old/msl_infer/Msl.cpp b/cpp/__old/old/msl_infer/Msl.cpp old mode 100755 new mode 100644 similarity index 100% rename from cpp_old/msl_infer/Msl.cpp rename to cpp/__old/old/msl_infer/Msl.cpp diff --git a/cpp_old/msl_infer/Msl.h b/cpp/__old/old/msl_infer/Msl.h old mode 100755 new mode 100644 similarity index 100% rename from cpp_old/msl_infer/Msl.h rename to cpp/__old/old/msl_infer/Msl.h diff --git a/cpp_old/old/msl_infer/Net.cpp b/cpp/__old/old/msl_infer/Net.cpp similarity index 94% rename from cpp_old/old/msl_infer/Net.cpp rename to cpp/__old/old/msl_infer/Net.cpp index a0f64d9..c226a29 100644 --- a/cpp_old/old/msl_infer/Net.cpp +++ b/cpp/__old/old/msl_infer/Net.cpp @@ -117,8 +117,7 @@ void Net::_deserialize(const std::string &path) std::vector<void *> Net::_getBindings() { std::vector<void *> bindings(mEngine->getNbBindings()); - for (auto it = mResources.resources.begin(); - it != mResources.resources.end(); ++it) + for (auto it = mResources.resources.begin(); it != mResources.resources.end(); ++it) { auto idx = mEngine->getBindingIndex(it->first.c_str()); if (idx < 0) diff --git a/cpp_old/msl_infer/Net.h b/cpp/__old/old/msl_infer/Net.h old mode 100755 new mode 100644 similarity index 100% rename from cpp_old/msl_infer/Net.h rename to cpp/__old/old/msl_infer/Net.h diff --git a/cpp_old/msl_infer/Nmsl2.cpp b/cpp/__old/old/msl_infer/Nmsl2.cpp old mode 100755 new mode 100644 similarity index 100% rename from cpp_old/msl_infer/Nmsl2.cpp rename to cpp/__old/old/msl_infer/Nmsl2.cpp diff --git a/cpp_old/old/msl_infer/Nmsl2.h b/cpp/__old/old/msl_infer/Nmsl2.h similarity index 100% rename from cpp_old/old/msl_infer/Nmsl2.h rename to cpp/__old/old/msl_infer/Nmsl2.h diff --git a/cpp_old/msl_infer/Renderer.cu b/cpp/__old/old/msl_infer/Renderer.cu old mode 100755 new mode 100644 similarity index 100% rename from cpp_old/msl_infer/Renderer.cu rename to cpp/__old/old/msl_infer/Renderer.cu diff --git a/cpp_old/msl_infer/Renderer.h b/cpp/__old/old/msl_infer/Renderer.h old mode 100755 new mode 100644 similarity index 100% rename from cpp_old/msl_infer/Renderer.h rename to cpp/__old/old/msl_infer/Renderer.h diff --git a/cpp_old/old/msl_infer/Sampler.cu b/cpp/__old/old/msl_infer/Sampler.cu similarity index 100% rename from cpp_old/old/msl_infer/Sampler.cu rename to cpp/__old/old/msl_infer/Sampler.cu diff --git a/cpp_old/old/msl_infer/Sampler.h b/cpp/__old/old/msl_infer/Sampler.h similarity index 100% rename from cpp_old/old/msl_infer/Sampler.h rename to cpp/__old/old/msl_infer/Sampler.h diff --git a/cpp_old/old/msl_infer/SynthesisPipeline.cpp b/cpp/__old/old/msl_infer/SynthesisPipeline.cpp similarity index 100% rename from cpp_old/old/msl_infer/SynthesisPipeline.cpp rename to cpp/__old/old/msl_infer/SynthesisPipeline.cpp diff --git a/cpp_old/old/msl_infer/SynthesisPipeline.h b/cpp/__old/old/msl_infer/SynthesisPipeline.h similarity index 100% rename from cpp_old/old/msl_infer/SynthesisPipeline.h rename to cpp/__old/old/msl_infer/SynthesisPipeline.h diff --git a/cpp_old/old/msl_infer/View.cu b/cpp/__old/old/msl_infer/View.cu similarity index 100% rename from cpp_old/old/msl_infer/View.cu rename to cpp/__old/old/msl_infer/View.cu diff --git a/cpp_old/old/msl_infer/View.h b/cpp/__old/old/msl_infer/View.h similarity index 100% rename from cpp_old/old/msl_infer/View.h rename to cpp/__old/old/msl_infer/View.h diff --git a/cpp_old/old/msl_infer_test/Makefile b/cpp/__old/old/msl_infer_test/Makefile similarity index 100% rename from cpp_old/old/msl_infer_test/Makefile rename to cpp/__old/old/msl_infer_test/Makefile diff --git a/cpp_old/old/msl_infer_test/main.cpp b/cpp/__old/old/msl_infer_test/main.cpp similarity index 100% rename from cpp_old/old/msl_infer_test/main.cpp rename to cpp/__old/old/msl_infer_test/main.cpp diff --git a/cpp_old/old/utils/Formatter.h b/cpp/__old/old/utils/Formatter.h similarity index 100% rename from cpp_old/old/utils/Formatter.h rename to cpp/__old/old/utils/Formatter.h diff --git a/cpp/utils/Logger.cpp b/cpp/__old/old/utils/Logger.cpp similarity index 100% rename from cpp/utils/Logger.cpp rename to cpp/__old/old/utils/Logger.cpp diff --git a/cpp_old/old/utils/Logger.h b/cpp/__old/old/utils/Logger.h similarity index 100% rename from cpp_old/old/utils/Logger.h rename to cpp/__old/old/utils/Logger.h diff --git a/cpp_old/utils/Resource.h b/cpp/__old/old/utils/Resource.h old mode 100755 new mode 100644 similarity index 65% rename from cpp_old/utils/Resource.h rename to cpp/__old/old/utils/Resource.h index 041ac86..274481c --- a/cpp_old/utils/Resource.h +++ b/cpp/__old/old/utils/Resource.h @@ -1,77 +1,100 @@ #pragma once #include <map> #include <vector> +#include <cuda_gl_interop.h> +#include "Logger.h" -class Resource { +class Resource +{ public: virtual ~Resource() {} - virtual void *getBuffer() const = 0; + virtual void *data() const = 0; virtual size_t size() const = 0; }; -class CudaBuffer : public Resource { +class CudaBuffer : public Resource +{ public: CudaBuffer(void *buffer = nullptr, size_t size = 0) : _buffer(buffer), _ownBuffer(false), _size(size) {} - CudaBuffer(size_t size) : _buffer(nullptr), _ownBuffer(true), _size(size) { + CudaBuffer(size_t size) : _buffer(nullptr), _ownBuffer(true), _size(size) + { CHECK_EX(cudaMalloc(&_buffer, size)); } CudaBuffer(const CudaBuffer &rhs) = delete; - virtual ~CudaBuffer() { + virtual ~CudaBuffer() + { if (!_ownBuffer || _buffer == nullptr) return; - try { + try + { CHECK_EX(cudaFree(_buffer)); - } catch (std::exception &ex) { + } + catch (std::exception &ex) + { Logger::instance.warning(std::string("Exception raised in destructor: ") + ex.what()); } _buffer = nullptr; _ownBuffer = false; } - virtual void *getBuffer() const { return _buffer; } - template <class T> T *getBuffer() const { return (T *)getBuffer(); } + virtual void *data() const { return _buffer; } virtual size_t size() const { return _size; } + template <class T1> + T1 *data() const { return (T1 *)data(); } + + template <class T1> + operator T1 *() const { return (T1 *)data(); } + private: void *_buffer; bool _ownBuffer; size_t _size; }; -template <typename T> class CudaArray : public CudaBuffer { +template <typename T> +class CudaArray : public CudaBuffer +{ public: CudaArray(size_t n) : CudaBuffer(n * sizeof(T)) {} CudaArray(T *buffer, size_t n) : CudaBuffer(buffer, n * sizeof(T)) {} - CudaArray(const std::vector<T> &hostArray) : CudaBuffer(hostArray.size() * sizeof(T)) { - cudaMemcpy(getBuffer(), hostArray.data(), size(), cudaMemcpyHostToDevice); + CudaArray(const std::vector<T> &hostArray) : CudaBuffer(hostArray.size() * sizeof(T)) + { + cudaMemcpy(data(), hostArray.data(), size(), cudaMemcpyHostToDevice); } CudaArray(const CudaArray<T> &rhs) = delete; size_t n() const { return size() / sizeof(T); } - operator T *() { return (T *)getBuffer(); } - CudaArray<T> *subArray(size_t offset, size_t n = -1) { + operator T *() { return (T *)data(); } + CudaArray<T> *subArray(size_t offset, size_t n = -1) + { if (n == -1) n = this->n() - offset; return new CudaArray<T>(*this + offset, n); } }; -class GraphicsResource : public Resource { +class GraphicsResource : public Resource +{ public: cudaGraphicsResource_t getHandler() { return _res; } - virtual ~GraphicsResource() { + virtual ~GraphicsResource() + { if (_res == nullptr) return; - try { + try + { CHECK_EX(cudaGraphicsUnregisterResource(_res)); - } catch (std::exception &ex) { + } + catch (std::exception &ex) + { Logger::instance.warning(std::string("Exception raised in destructor: ") + ex.what()); } _res = nullptr; @@ -86,9 +109,12 @@ protected: GraphicsResource() : _res(nullptr), _size(0) {} }; -template <typename T> class GlTextureResource : public GraphicsResource { +template <typename T> +class GlTextureResource : public GraphicsResource +{ public: - GlTextureResource(GLuint textureID, glm::uvec2 textureSize) { + GlTextureResource(GLuint textureID, glm::uvec2 textureSize) + { CHECK_EX(cudaGraphicsGLRegisterImage(&_res, textureID, GL_TEXTURE_2D, cudaGraphicsRegisterFlagsWriteDiscard)); _size = textureSize.x * textureSize.y * sizeof(T); @@ -97,17 +123,21 @@ public: virtual ~GlTextureResource() { cudaGraphicsUnmapResources(1, &_res, 0); } - virtual void *getBuffer() const { + virtual void *data() const + { cudaArray_t buffer; - try { + try + { CHECK_EX(cudaGraphicsSubResourceGetMappedArray(&buffer, _res, 0, 0)); - } catch (...) { + } + catch (...) + { return nullptr; } return buffer; } - operator T *() { return (T *)getBuffer(); } + operator T *() { return (T *)data(); } glm::uvec2 textureSize() { return _textureSize; } @@ -115,19 +145,22 @@ private: glm::uvec2 _textureSize; }; -class Resources { +class Resources +{ public: std::map<std::string, Resource *> resources; std::vector<cudaGraphicsResource_t> graphicsResources; - void addResource(const std::string &name, Resource *res) { + void addResource(const std::string &name, Resource *res) + { auto gres = dynamic_cast<GraphicsResource *>(res); if (gres != nullptr) graphicsResources.push_back(gres->getHandler()); resources[name] = res; } - void clear() { + void clear() + { resources.clear(); graphicsResources.clear(); } @@ -135,10 +168,11 @@ public: template <typename T, typename T2 = T> void dumpArray(std::ostream &so, CudaArray<T> &arr, size_t maxDumpRows = 0, - size_t elemsPerRow = 1) { + size_t elemsPerRow = 1) +{ int chns = sizeof(T) / sizeof(T2); T2 *hostArr = new T2[arr.n() * chns]; - cudaMemcpy(hostArr, arr.getBuffer(), arr.n() * sizeof(T), cudaMemcpyDeviceToHost); + cudaMemcpy(hostArr, arr.data(), arr.n() * sizeof(T), cudaMemcpyDeviceToHost); dumpHostBuffer<T2>(so, hostArr, arr.n() * sizeof(T), chns * elemsPerRow, maxDumpRows); delete[] hostArr; } \ No newline at end of file diff --git a/cpp_old/old/utils/common.h b/cpp/__old/old/utils/common.h similarity index 100% rename from cpp_old/old/utils/common.h rename to cpp/__old/old/utils/common.h diff --git a/cpp_old/old/utils/cuda.h b/cpp/__old/old/utils/cuda.h similarity index 100% rename from cpp_old/old/utils/cuda.h rename to cpp/__old/old/utils/cuda.h diff --git a/cpp_old/old/utils/half.h b/cpp/__old/old/utils/half.h similarity index 100% rename from cpp_old/old/utils/half.h rename to cpp/__old/old/utils/half.h diff --git a/cpp_old/old/utils/thread_index.h b/cpp/__old/old/utils/thread_index.h similarity index 100% rename from cpp_old/old/utils/thread_index.h rename to cpp/__old/old/utils/thread_index.h diff --git a/cpp_old/utils/Formatter.h b/cpp/__old/utils/Formatter.h similarity index 100% rename from cpp_old/utils/Formatter.h rename to cpp/__old/utils/Formatter.h diff --git a/cpp_old/old/utils/Logger.cpp b/cpp/__old/utils/Logger.cpp old mode 100644 new mode 100755 similarity index 100% rename from cpp_old/old/utils/Logger.cpp rename to cpp/__old/utils/Logger.cpp diff --git a/cpp_old/utils/Logger.h b/cpp/__old/utils/Logger.h similarity index 83% rename from cpp_old/utils/Logger.h rename to cpp/__old/utils/Logger.h index d89723f..66ef84d 100755 --- a/cpp_old/utils/Logger.h +++ b/cpp/__old/utils/Logger.h @@ -64,8 +64,4 @@ public: } externalLogFunc((int)severity, msg); } -}; - - -#define CHECK(__ERR_CODE__) do { if (!Logger::instance.checkErr((__ERR_CODE__), __FILE__, __LINE__)) return false; } while (0) -#define CHECK_EX(__ERR_CODE__) do { if (!Logger::instance.checkErr((__ERR_CODE__), __FILE__, __LINE__)) throw std::exception(); } while (0) +}; \ No newline at end of file diff --git a/cpp_old/old/utils/Resource.h b/cpp/__old/utils/Resource.h old mode 100644 new mode 100755 similarity index 100% rename from cpp_old/old/utils/Resource.h rename to cpp/__old/utils/Resource.h diff --git a/cpp_old/utils/common.h b/cpp/__old/utils/common.h similarity index 100% rename from cpp_old/utils/common.h rename to cpp/__old/utils/common.h diff --git a/cpp_old/utils/cuda.h b/cpp/__old/utils/cuda.h similarity index 100% rename from cpp_old/utils/cuda.h rename to cpp/__old/utils/cuda.h diff --git a/cpp_old/utils/half.h b/cpp/__old/utils/half.h similarity index 100% rename from cpp_old/utils/half.h rename to cpp/__old/utils/half.h diff --git a/cpp/utils/thread_index.h b/cpp/__old/utils/thread_index.h old mode 100644 new mode 100755 similarity index 100% rename from cpp/utils/thread_index.h rename to cpp/__old/utils/thread_index.h diff --git a/cpp/fields/FsNeRF.cpp b/cpp/fields/FsNeRF.cpp new file mode 100644 index 0000000..5aad8bc --- /dev/null +++ b/cpp/fields/FsNeRF.cpp @@ -0,0 +1,31 @@ +#include "FsNeRF.h" + +namespace fields +{ + FsNeRF::FsNeRF(const std::string &netPath) : _net(nullptr) { + _net = new Net(); + if (!_net->load(netPath)) { + dispose(); + throw std::runtime_error("Failed to load net: " + netPath); + } + } + + void FsNeRF::bindResources(Resource *resEncoded, Resource *resDepths, Resource *resColors) + { + _net->bindResource("Encoded", resEncoded); + _net->bindResource("Depths", resDepths); + _net->bindResource("Colors", resColors); + } + + bool FsNeRF::infer() { return _net->infer(); } + + void FsNeRF::dispose() + { + if (_net != nullptr) + { + _net->dispose(); + delete _net; + _net = nullptr; + } + } +} \ No newline at end of file diff --git a/cpp/fields/FsNeRF.h b/cpp/fields/FsNeRF.h new file mode 100644 index 0000000..61ec2f1 --- /dev/null +++ b/cpp/fields/FsNeRF.h @@ -0,0 +1,22 @@ +#pragma once +#include "../utils/common.h" +#include "Net.h" + +namespace fields +{ + class FsNeRF + { + public: + + FsNeRF(const std::string &netPath); + + virtual void bindResources(Resource *resEncoded, Resource *resDepths, Resource *resColors); + + virtual bool infer(); + + virtual void dispose(); + + private: + Net *_net; + }; +} \ No newline at end of file diff --git a/cpp/fnr_core/Net.cpp b/cpp/fields/Net.cpp similarity index 100% rename from cpp/fnr_core/Net.cpp rename to cpp/fields/Net.cpp diff --git a/cpp_old/old/msl_infer/Net.h b/cpp/fields/Net.h similarity index 100% rename from cpp_old/old/msl_infer/Net.h rename to cpp/fields/Net.h diff --git a/cpp/fnr_core/Encoder.cu b/cpp/fnr_core/Encoder.cu deleted file mode 100644 index bc43161..0000000 --- a/cpp/fnr_core/Encoder.cu +++ /dev/null @@ -1,86 +0,0 @@ -#include "Encoder.h" -#include "../utils/cuda.h" - -/// idx3.z = 0: x, y, z, sin(x), sin(y), sin(z), cos(x), cos(y), cos(z) -/// idx3.z = 1: sin(2x), sin(2y), sin(2z), cos(2x), cos(2y), cos(2z) -/// ... -/// idx3.z = n_freq-1: sin(2^(n_freq-1)x), sin(2^(n_freq-1)y), sin(2^(n_freq-1)z), -/// cos(2^(n_freq-1)x), cos(2^(n_freq-1)y), cos(2^(n_freq-1)z) -/// Dispatch (n, in_chns, n_freqs) -__global__ void cu_encode0(float *output, float *input, uint n, uint nFreqs) { - glm::uvec3 idx3 = IDX3; - if (idx3.x >= n) - return; - uint inChns = blockDim.y; - uint outChns = inChns * (nFreqs * 2 + 1); - uint i = idx3.x, chn = idx3.y; - output[i * outChns + chn] = input[i * inChns + chn]; -} - -__global__ void cu_encode(float *output, float *input, float *freqs, uint n, bool catInput) { - glm::uvec3 idx3 = IDX3; - if (idx3.x >= n) - return; - uint offset = (uint)catInput; - uint inChns = blockDim.y, nFreqs = blockDim.z; - uint i = idx3.x, chn = idx3.y, freq = idx3.z; - uint elem = i * inChns + chn; - uint outChns = inChns * (nFreqs * 2 + offset); - uint base = i * outChns + chn; - if (freq == 0 && catInput) - output[base] = input[elem]; - float x = freqs[freq] * input[elem]; - float s, c; - __sincosf(x, &s, &c); - output[base + inChns * (freq * 2 + offset)] = s; - output[base + inChns * (freq * 2 + offset + 1)] = c; -} - -__global__ void cu_encode2(glm::vec2 *output, glm::vec2 *input, float *freqs, uint n) { - glm::uvec3 idx3 = IDX3; - if (idx3.x >= n) - return; - uint nFreqs = blockDim.y; - uint i = idx3.x, freq = idx3.y; - uint outChns = nFreqs * 2 + 1; - uint base = i * outChns; - if (freq == 0) - output[base] = input[i]; - glm::vec2 x = freqs[freq] * input[i]; - glm::vec2 s, c; - __sincosf(x.x, &s.x, &c.x); - __sincosf(x.y, &s.y, &c.y); - output[base + (freq * 2 + 1)] = s; - output[base + (freq * 2 + 2)] = c; -} - -/** - * @brief - * - * @param output encoded data, n x out_chns - * @param input coord data, n x in_chns - */ -void Encoder::encode(sptr<CudaArray<float>> output, sptr<CudaArray<float>> input) { - std::ostringstream sout; - sout << "Encoder => input size: (" << input->n() / _chns << ", " << _chns << "), output size: (" - << output->n() / outDim() << ", " << outDim() << ")"; - //Logger::instance.info(sout.str()); - uint n = input->n() / _chns; - dim3 blkSize(1024 / _chns / _multires, _chns, _multires); - dim3 grdSize(ceilDiv(n, blkSize.x), 1, 1); - CU_INVOKE(cu_encode)(*output, *input, *_freqs, n, _catInput); - // blkSize = dim3(1024 / _chns, _chns); - // grdSize = dim3(ceilDiv(n, blkSize.x), 1, 1); - // CU_INVOKE(cu_encode0)(*output, *input, n, _multires); - CHECK_EX(cudaGetLastError()); -} - -void Encoder::_genFreqArray() { - float *arr = new float[_multires]; - arr[0] = 1.0f; - for (auto i = 1; i < _multires; ++i) - arr[i] = arr[i - 1] * 2.0f; - _freqs = sptr<CudaArray<float>>(new CudaArray<float>(_multires)); - cudaMemcpy(_freqs->getBuffer(), arr, _multires * sizeof(float), cudaMemcpyHostToDevice); - delete[] arr; -} diff --git a/cpp/fnr_core/Encoder.h b/cpp/fnr_core/Encoder.h deleted file mode 100644 index c84fce5..0000000 --- a/cpp/fnr_core/Encoder.h +++ /dev/null @@ -1,21 +0,0 @@ -#pragma once -#include "../utils/common.h" - -class Encoder { -public: - Encoder(unsigned int multires, unsigned int chns, bool catInput) - : _multires(multires), _chns(chns), _catInput(catInput) { - _genFreqArray(); - } - - unsigned int outDim() const { return _chns * ((int)_catInput + _multires * 2); } - void encode(sptr<CudaArray<float>> output, sptr<CudaArray<float>> input); - -private: - unsigned int _multires; - unsigned int _chns; - bool _catInput; - sptr<CudaArray<float>> _freqs; - - void _genFreqArray(); -}; \ No newline at end of file diff --git a/cpp/fnr_core/InferPipeline.cpp b/cpp/fnr_core/InferPipeline.cpp deleted file mode 100644 index e36112b..0000000 --- a/cpp/fnr_core/InferPipeline.cpp +++ /dev/null @@ -1,97 +0,0 @@ -#include "InferPipeline.h" -#include "Nmsl2.h" - -InferPipeline::InferPipeline(sptr<Msl> net, uint nRays, uint nSamplesPerRay, glm::vec2 depthRange, - uint encodeDim, uint coordChns) - : _nRays(nRays), - _nSamplesPerRay(nSamplesPerRay), - _coordChns(coordChns), - _net(net), - _sampler(new Sampler(depthRange, nSamplesPerRay, coordChns == 3)), - _encoder(new Encoder(encodeDim, coordChns)), - _renderer(new Renderer()) { - auto nSamples = _nRays * _nSamplesPerRay; - _coords = sptr<CudaArray<float>>(new CudaArray<float>(nSamples * coordChns)); - _depths = sptr<CudaArray<float>>(new CudaArray<float>(nSamples)); - _encoded = sptr<CudaArray<float>>(new CudaArray<float>(nSamples * _encoder->outDim())); - _layeredColors = sptr<CudaArray<glm::vec4>>(new CudaArray<glm::vec4>(nSamples)); - _net->bindResources(_encoded.get(), _depths.get(), _layeredColors.get()); -} - -void InferPipeline::run(sptr<CudaArray<glm::vec4>> o_colors, sptr<CudaArray<glm::vec3>> rays, - glm::vec3 origin, bool showPerf) { - rays = sptr<CudaArray<glm::vec3>>(rays->subArray(0, _nRays)); - o_colors = sptr<CudaArray<glm::vec4>>(o_colors->subArray(0, _nRays)); - CudaEvent eStart, eSampled, eEncoded, eInferred, eRendered; - - cudaEventRecord(eStart); - - _sampler->sampleOnRays(_coords, _depths, rays, origin); - CHECK_EX(cudaDeviceSynchronize()); - - cudaEventRecord(eSampled); - - _encoder->encode(_encoded, _coords); - CHECK_EX(cudaDeviceSynchronize()); - - cudaEventRecord(eEncoded); - - _net->infer(); - CHECK_EX(cudaDeviceSynchronize()); - - cudaEventRecord(eInferred); - - _renderer->render(o_colors, _layeredColors); - - cudaEventRecord(eRendered); - - if (showPerf) { - CHECK_EX(cudaDeviceSynchronize()); - - float timeTotal, timeSample, timeEncode, timeInfer, timeRender; - cudaEventElapsedTime(&timeTotal, eStart, eRendered); - cudaEventElapsedTime(&timeSample, eStart, eSampled); - cudaEventElapsedTime(&timeEncode, eSampled, eEncoded); - cudaEventElapsedTime(&timeInfer, eEncoded, eInferred); - cudaEventElapsedTime(&timeRender, eInferred, eRendered); - - std::ostringstream sout; - sout << "Infer pipeline: " << timeTotal << "ms (Sample: " << timeSample - << "ms, Encode: " << timeEncode << "ms, Infer: " << timeInfer - << "ms, Render: " << timeRender << "ms)"; - Logger::instance.info(sout.str().c_str()); - } - - /* - { - std::ostringstream sout; - sout << "Rays:" << std::endl; - dumpArray<glm::vec3, float>(sout, *rays, 10); - Logger::instance.info(sout.str()); - } - { - std::ostringstream sout; - sout << "Spherical coords:" << std::endl; - dumpArray(sout, *_coords, 10, _coordChns * _nSamplesPerRay); - Logger::instance.info(sout.str()); - } - { - std::ostringstream sout; - sout << "Depths:" << std::endl; - dumpArray(sout, *_depths, 10, _nSamplesPerRay); - Logger::instance.info(sout.str()); - } - { - std::ostringstream sout; - sout << "Encoded:" << std::endl; - dumpArray(sout, *_encoded, 10, _encoder->outDim() * _nSamplesPerRay); - Logger::instance.info(sout.str()); - } - { - std::ostringstream sout; - sout << "Color:" << std::endl; - dumpArray<glm::vec4, float>(sout, *o_colors, 10); - Logger::instance.info(sout.str()); - } - */ -} \ No newline at end of file diff --git a/cpp/fnr_core/InferPipeline.h b/cpp/fnr_core/InferPipeline.h deleted file mode 100644 index d384d1b..0000000 --- a/cpp/fnr_core/InferPipeline.h +++ /dev/null @@ -1,31 +0,0 @@ -#pragma once -#include "../utils/common.h" -#include "Sampler.h" -#include "Encoder.h" -#include "Renderer.h" -#include "Msl.h" - -class InferPipeline { -public: - InferPipeline(sptr<Msl> net, uint nRays, uint nSamplesPerRay, - glm::vec2 depthRange, uint encodeDim, uint coordChns); - - void run(sptr<CudaArray<glm::vec4>> o_colors, sptr<CudaArray<glm::vec3>> rays, glm::vec3 origin, - bool showPerf = false); - - uint nRays() const { return _nRays; } - -private: - uint _nRays; - uint _nSamplesPerRay; - uint _coordChns; - sptr<Msl> _net; - sptr<Sampler> _sampler; - sptr<Encoder> _encoder; - sptr<Renderer> _renderer; - sptr<CudaArray<float>> _coords; - sptr<CudaArray<float>> _depths; - sptr<CudaArray<float>> _encoded; - sptr<CudaArray<glm::vec4>> _layeredColors; - -}; \ No newline at end of file diff --git a/cpp/fnr_core/NeuralSynthesis.cpp b/cpp/fnr_core/NeuralSynthesis.cpp new file mode 100644 index 0000000..c19dfc8 --- /dev/null +++ b/cpp/fnr_core/NeuralSynthesis.cpp @@ -0,0 +1,193 @@ +#include "NeuralSynthesis.h" +#include "InferPipeline.h" +#include "Enhancement.h" +#include "ImageGen.h" + +constexpr auto NUM_LAYERS = 3u; +constexpr auto STEREO_FOVEA_R = NUM_LAYERS; +constexpr auto NUM_NETS = 2u; + +class NeuralSynthesis_Impl { +public: + NeuralSynthesis_Impl(models::Model& model, Camera& cam); + + void run(View& view); + + GLuint getGlResultTexture(uint index); + +private: + models::Model& model; + Camera& _cam; + uint _nRays; + sptr<InferPipeline> _infers[NUM_NETS]; + sptr<Enhancement> _enhancements[NUM_LAYERS]; + sptr<ImageGen> _imageGens[NUM_LAYERS + 1]; + sptr<CudaArray<glm::vec3>> _rays; + sptr<CudaArray<glm::vec4>> _clrs; + sptr<CudaArray<glm::vec4>> _imageData[NUM_LAYERS + 1]; + +}; + +NeuralSynthesis_Impl::NeuralSynthesis_Impl(const std::string& dataDir, glm::vec2 depthRange, + uint nSamples[], uint encodeDim, uint coordChns, sptr<Camera> cam, + const std::vector<sptr<Camera>>& layerCams, bool stereo) : + _fullCam(cam), _stereo(stereo) { + // Load nets + for (uint i = 0; i < NUM_NETS; ++i) + _nets[i].reset(new Msl()); + _nets[0]->load(dataDir + "/fovea.trt"); + _nets[1]->load(dataDir + "/periph.trt"); + + // Init cams + for (uint i = 0; i < NUM_LAYERS; ++i) + _cams[i] = layerCams[i]; + + uint nRays[NUM_LAYERS]; + uint nTotRays = 0; + for (uint i = 0; i < NUM_LAYERS; ++i) + nTotRays += nRays[i] = _cams[i]->nRays(); + if (_stereo) + nTotRays += nRays[0]; + + // Init infers + _infers[0].reset(new InferPipeline(_nets[0], nRays[0], nSamples[0], + depthRange, encodeDim, coordChns)); + _infers[1].reset(new InferPipeline(_nets[1], nRays[1] + nRays[2], nSamples[1], + depthRange, encodeDim, coordChns)); + + // Init image gens + for (uint i = 0; i < NUM_LAYERS; ++i) + _imageGens[i].reset(new ImageGen(_cams[i]->res())); + if (_stereo) + _imageGens[STEREO_FOVEA_R].reset(new ImageGen(_cams[0]->res())); + + // Init enhancements + glm::vec2 enhancementParams[] = { + {3.0f, 0.2f}, {5.0f, 0.2f}, {5.0f, 0.2f} + }; + for (uint i = 0; i < NUM_LAYERS; ++i) + _enhancements[i].reset(new Enhancement(_cams[i]->res(), enhancementParams[i])); + + // Create buffers + _rays.reset(new CudaArray<glm::vec3>(nTotRays)); + _clrs.reset(new CudaArray<glm::vec4>(nTotRays)); + for (uint i = 0; i < NUM_LAYERS; ++i) + _imageData[i].reset(new CudaArray<glm::vec4>(_cams[i]->nPixels())); + if (_stereo) + _imageData[STEREO_FOVEA_R].reset(new CudaArray<glm::vec4>(_cams[0]->nPixels())); +} + + +void NeuralSynthesis_Impl::run(View& view, glm::vec2 foveaPos, bool showPerf, glm::vec2 foveaPosR) { + CudaEvent eStart, eGenRays, eInferred, eGenImage, eEnhance; + uint offset; + + cudaEventRecord(eStart); + + glm::vec2 foveaOffset(foveaPos - (glm::vec2)_fullCam->res() / 2.0f); + foveaOffset /= _fullCam->f(); + glm::vec3 foveaOffset3(foveaOffset.x, foveaOffset.y, 0.0f); + + glm::vec2 foveaOffsetR(foveaPosR - (glm::vec2)_fullCam->res() / 2.0f); + foveaOffsetR /= _fullCam->f(); + glm::vec3 foveaOffset3R(foveaOffsetR.x, foveaOffsetR.y, 0.0f); + + auto viewL = view.getStereoEye(0.06f, Eye_Left); + auto viewR = view.getStereoEye(0.06f, Eye_Right); + + if (_stereo) { + offset = 0; + _cams[0]->getRays(sptr<CudaArray<glm::vec3>>(_rays->subArray(offset)), viewL, foveaOffset3); + offset += _cams[0]->nRays(); + _cams[1]->getRays(sptr<CudaArray<glm::vec3>>(_rays->subArray(offset)), view, (foveaOffset3 + foveaOffset3R) / 2.0f); + offset += _cams[1]->nRays(); + _cams[2]->getRays(sptr<CudaArray<glm::vec3>>(_rays->subArray(offset)), view, {}); + offset += _cams[2]->nRays(); + _cams[0]->getRays(sptr<CudaArray<glm::vec3>>(_rays->subArray(offset)), viewR, foveaOffset3R); + } else { + offset = 0; + for (uint i = 0; i < NUM_LAYERS; ++i) { + _cams[i]->getRays(sptr<CudaArray<glm::vec3>>(_rays->subArray(offset)), + view, i == NUM_LAYERS - 1 ? glm::vec3() : foveaOffset3); + offset += _cams[i]->nRays(); + } + } + + cudaEventRecord(eGenRays); + + if (_stereo) { + offset = 0; + _infers[0]->run(sptr<CudaArray<glm::vec4>>(_clrs->subArray(offset)), + sptr<CudaArray<glm::vec3>>(_rays->subArray(offset)), viewL.t(), showPerf); + offset += _infers[0]->nRays(); + _infers[1]->run(sptr<CudaArray<glm::vec4>>(_clrs->subArray(offset)), + sptr<CudaArray<glm::vec3>>(_rays->subArray(offset)), view.t(), showPerf); + offset += _infers[1]->nRays(); + _infers[0]->run(sptr<CudaArray<glm::vec4>>(_clrs->subArray(offset)), + sptr<CudaArray<glm::vec3>>(_rays->subArray(offset)), viewR.t(), showPerf); + } else { + offset = 0; + for (uint i = 0; i < NUM_NETS; ++i) { + _infers[i]->run(sptr<CudaArray<glm::vec4>>(_clrs->subArray(offset)), + sptr<CudaArray<glm::vec3>>(_rays->subArray(offset)), view.t(), showPerf); + offset += _infers[i]->nRays(); + } + } + + cudaEventRecord(eInferred); + + offset = 0; + for (uint i = 0; i < NUM_LAYERS; ++i) { + _cams[i]->restoreImage(_imageData[i], sptr<CudaArray<glm::vec4>>(_clrs->subArray(offset))); + offset += _cams[i]->nRays(); + } + if (_stereo) + _cams[0]->restoreImage(_imageData[STEREO_FOVEA_R], sptr<CudaArray<glm::vec4>>(_clrs->subArray(offset))); + + cudaEventRecord(eGenImage); + + for (uint i = 0; i < NUM_LAYERS; ++i) + _enhancements[i]->run(_imageData[i]); + if (_stereo) + _enhancements[0]->run(_imageData[STEREO_FOVEA_R]); + + cudaEventRecord(eEnhance); + CHECK_EX(cudaDeviceSynchronize()); + + for (uint i = 0; i < NUM_LAYERS; ++i) + _imageGens[i]->run(_imageData[i]); + if (_stereo) + _imageGens[STEREO_FOVEA_R]->run(_imageData[STEREO_FOVEA_R]); + + float timeTotal, timeGenRays, timeInfer, timeGenImage, timeEnhance; + cudaEventElapsedTime(&timeTotal, eStart, eGenImage); + cudaEventElapsedTime(&timeGenRays, eStart, eGenRays); + cudaEventElapsedTime(&timeInfer, eGenRays, eInferred); + cudaEventElapsedTime(&timeGenImage, eInferred, eGenImage); + cudaEventElapsedTime(&timeEnhance, eGenImage, eEnhance); + if (showPerf) { + std::ostringstream sout; + sout << "Synthesis => Total: " << timeTotal << "ms (Gen rays: " << timeGenRays + << "ms, Infer: " << timeInfer << "ms, Gen image: " << timeGenImage + << "ms, Enhance: " << timeEnhance << "ms)"; + Logger::instance.info(sout.str().c_str()); + } +} + +GLuint NeuralSynthesis_Impl::getGlResultTexture(uint index) { + return _imageGens[index]->getGlResultTexture(); +} + +NeuralSynthesis::NeuralSynthesis(const std::string& dataDir, glm::vec2 depthRange, + uint nSamples[], uint encodeDim, uint coordChns, sptr<Camera> cam, + const std::vector<sptr<Camera>>& layerCams, bool stereo) : + _impl(new NeuralSynthesis_Impl(dataDir, depthRange, nSamples, encodeDim, coordChns, cam, layerCams, stereo)) { +} + +void NeuralSynthesis::run(View& view, glm::vec2 foveaPos, bool showPerf, glm::vec2 foveaPosR) { + _impl->run(view, foveaPos, showPerf, foveaPosR); +} + +GLuint NeuralSynthesis::getGlResultTexture(uint index) { + return _impl->getGlResultTexture(index); +} diff --git a/cpp/fnr_core/NeuralSynthesis.h b/cpp/fnr_core/NeuralSynthesis.h new file mode 100644 index 0000000..de1b55c --- /dev/null +++ b/cpp/fnr_core/NeuralSynthesis.h @@ -0,0 +1,19 @@ +#pragma once +#include "../utils/common.h" +#include "View.h" +#include "../models/Model.h" + +class NeuralSynthesis_Impl; + +class NeuralSynthesis { +public: + NeuralSynthesis(models::Model& model, Camera& cam); + + void operator()(View& view); + + GLuint getGlResultTexture(uint index); + +private: + sptr<NeuralSynthesis_Impl> _impl; + +}; \ No newline at end of file diff --git a/cpp/fnr_core/Sampler.cu b/cpp/fnr_core/Sampler.cu deleted file mode 100644 index 348703d..0000000 --- a/cpp/fnr_core/Sampler.cu +++ /dev/null @@ -1,46 +0,0 @@ -#include "Sampler.h" -#define _USE_MATH_DEFINES -#include <math.h> -#include "../utils/cuda.h" - -__device__ glm::vec3 _raySphereIntersect(glm::vec3 p, glm::vec3 v, float r, float &o_depth) { - float pp = glm::dot(p, p); - float vv = glm::dot(v, v); - float pv = glm::dot(p, v); - o_depth = (sqrtf(pv * pv - vv * (pp - r * r)) - pv) / vv; - return p + o_depth * v; -} - -__device__ float _getAngle(float x, float y) { - return -atan(x / y) + (y < 0) * (float)M_PI + 0.5f * (float)M_PI; -} - -/** - * Dispatch with block_size=(n_samples, *), grid_size=(1, nRays/*) - * Index with (sample_idx, ray_idx) - */ -__global__ void cu_sampleOnRays(float *o_coords, float *o_depths, glm::vec3 *rays, uint nRays, - glm::vec3 origin, Range range, bool outputRadius) { - glm::uvec3 idx3 = IDX3; - uint idx = flattenIdx(idx3); - uint sampleIdx = idx3.x; - uint rayIdx = idx3.y; - if (rayIdx >= nRays) - return; - float r_reciprocal = range.get(sampleIdx); - glm::vec3 p = _raySphereIntersect(origin, rays[rayIdx], 1.0f / r_reciprocal, o_depths[idx]); - glm::vec3 sp(r_reciprocal, _getAngle(p.x, p.z), acos(p.y * r_reciprocal)); - if (outputRadius) - ((glm::vec3 *)o_coords)[idx] = sp; - else - ((glm::vec2 *)o_coords)[idx] = {sp.y, sp.z}; -} - -void Sampler::sampleOnRays(sptr<CudaArray<float>> o_coords, sptr<CudaArray<float>> o_depths, - sptr<CudaArray<glm::vec3>> rays, glm::vec3 rayCenter) { - dim3 blkSize(_dispRange.steps(), 1024 / _dispRange.steps()); - dim3 grdSize(1, (uint)ceil(rays->n() / (float)blkSize.y)); - CU_INVOKE(cu_sampleOnRays) - (*o_coords, *o_depths, *rays, rays->n(), rayCenter, _dispRange, _outputRadius); - CHECK_EX(cudaGetLastError()); -} \ No newline at end of file diff --git a/cpp/models/FsNeRF.cpp b/cpp/models/FsNeRF.cpp new file mode 100644 index 0000000..c4b0bcc --- /dev/null +++ b/cpp/models/FsNeRF.cpp @@ -0,0 +1,107 @@ +#include "FsNeRF.h" + +namespace models +{ + FsNeRF::FsNeRF(const Args &args, int nRays) + : _nRays(nRays), + _nSamples(args.nSamples), + _xChns(3 - !args.withRadius), + _field(new fields::FsNeRF(args.modelPath)), + _sampler(new modules::Sampler({args.near, args.far}, "spherical_radius", args.nSamples, args.withRadius)), + _encoder(new modules::Encoder(args.xfreqs, 3 - !args.withRadius, false)), + _renderer(new modules::Renderer(args.whiteBg)) + { + auto n = _nRays * _nSamples; + _x = darray<float>(new CudaArray<float>(n * _xChns)); + _depths = darray<float>(new CudaArray<float>(n)); + _encoded = darray<float>(new CudaArray<float>(n * _encoder->outChns())); + _rgbd = darray<glm::vec4>(new CudaArray<glm::vec4>(n)); + _field->bindResources(_encoded.get(), _depths.get(), _rgbd.get()); + } + + FsNeRF::~FsNeRF() + { + delete _sampler; + delete _encoder; + delete _renderer; + } + + void FsNeRF::operator()(darray<glm::vec4> o_colors, const darray<glm::vec3> dirs, + glm::vec3 origin, bool showPerf = false) + { + CudaEvent eStart, eSampled, eEncoded, eInferred, eRendered; + + cudaEventRecord(eStart); + + (*_sampler)(_x, _depths, origin, darray<glm::vec3>(dirs->subArray(0, _nRays))); + CHECK_EX(cudaDeviceSynchronize()); + + cudaEventRecord(eSampled); + + (*_encoder)(_encoded, _x); + CHECK_EX(cudaDeviceSynchronize()); + + cudaEventRecord(eEncoded); + + _field->infer(); + CHECK_EX(cudaDeviceSynchronize()); + + cudaEventRecord(eInferred); + + (*_renderer)(darray<glm::vec4>(o_colors->subArray(0, _nRays)), _depths, _rgbd); + CHECK_EX(cudaDeviceSynchronize()); + + cudaEventRecord(eRendered); + + if (showPerf) + { + CHECK_EX(cudaDeviceSynchronize()); + + float timeTotal, timeSample, timeEncode, timeInfer, timeRender; + cudaEventElapsedTime(&timeTotal, eStart, eRendered); + cudaEventElapsedTime(&timeSample, eStart, eSampled); + cudaEventElapsedTime(&timeEncode, eSampled, eEncoded); + cudaEventElapsedTime(&timeInfer, eEncoded, eInferred); + cudaEventElapsedTime(&timeRender, eInferred, eRendered); + + std::ostringstream sout; + sout << "Infer pipeline: " << timeTotal << "ms (Sample: " << timeSample + << "ms, Encode: " << timeEncode << "ms, Infer: " << timeInfer + << "ms, Render: " << timeRender << "ms)"; + Logger::instance.info(sout.str().c_str()); + } + + /* + { + std::ostringstream sout; + sout << "Rays:" << std::endl; + dumpArray<glm::vec3, float>(sout, *rays, 10); + Logger::instance.info(sout.str()); + } + { + std::ostringstream sout; + sout << "Spherical coords:" << std::endl; + dumpArray(sout, *_coords, 10, _xChns * _nSamples); + Logger::instance.info(sout.str()); + } + { + std::ostringstream sout; + sout << "Depths:" << std::endl; + dumpArray(sout, *_depths, 10, _nSamples); + Logger::instance.info(sout.str()); + } + { + std::ostringstream sout; + sout << "Encoded:" << std::endl; + dumpArray(sout, *_encoded, 10, _encoder->outDim() * _nSamples); + Logger::instance.info(sout.str()); + } + { + std::ostringstream sout; + sout << "Color:" << std::endl; + dumpArray<glm::vec4, float>(sout, *o_colors, 10); + Logger::instance.info(sout.str()); + } + */ + } +} \ No newline at end of file diff --git a/cpp/models/FsNeRF.h b/cpp/models/FsNeRF.h new file mode 100644 index 0000000..9ff9635 --- /dev/null +++ b/cpp/models/FsNeRF.h @@ -0,0 +1,48 @@ +#pragma once +#include "../utils/common.h" +#include "../modules/Sampler.h" +#include "../modules/Encoder.h" +#include "../modules/Renderer.h" +#include "../fields/FsNeRF.h" +#include "Model.h" + +namespace models +{ + class FsNeRF : public Model + { + public: + class Args + { + public: + std::string modelPath; + uint nSamples; + uint withRadius; + uint xfreqs; + float near; + float far; + bool whiteBg; + }; + + FsNeRF(const Args &args, int nRays); + + ~FsNeRF(); + + virtual void operator()(darray<glm::vec4> o_colors, const darray<glm::vec3> dirs, + glm::vec3 origin, bool showPerf = false); + + uint nRays() const { return _nRays; } + + private: + uint _nRays; + uint _nSamples; + uint _xChns; + fields::FsNeRF *_field; + modules::Sampler *_sampler; + modules::Encoder *_encoder; + modules::Renderer *_renderer; + darray<float> _x; + darray<float> _depths; + darray<float> _encoded; + darray<glm::vec4> _rgbd; + }; +} \ No newline at end of file diff --git a/cpp/models/Model.h b/cpp/models/Model.h new file mode 100644 index 0000000..c9e02ff --- /dev/null +++ b/cpp/models/Model.h @@ -0,0 +1,11 @@ +#pragma once +#include "../utils/common.h" + +namespace models +{ + class Model + { + virtual void operator()(darray<glm::vec4> o_colors, const darray<glm::vec3> dirs, + glm::vec3 origin, bool showPerf = false) = 0; + }; +} \ No newline at end of file diff --git a/cpp/modules/Encoder.cu b/cpp/modules/Encoder.cu new file mode 100644 index 0000000..0066fd9 --- /dev/null +++ b/cpp/modules/Encoder.cu @@ -0,0 +1,60 @@ +#include "Encoder.h" +#include "../utils/cuda.h" + +/// idx3.z = 0: x, y, z, sin(x), sin(y), sin(z), cos(x), cos(y), cos(z) +/// idx3.z = 1: sin(2x), sin(2y), sin(2z), cos(2x), cos(2y), cos(2z) +/// ... +/// idx3.z = n_freq-1: sin(2^(n_freq-1)x), sin(2^(n_freq-1)y), sin(2^(n_freq-1)z), +/// cos(2^(n_freq-1)x), cos(2^(n_freq-1)y), cos(2^(n_freq-1)z) +/// Dispatch (n, in_chns, n_freqs) + +__global__ void cu_encode(float *output, const float *input, const float *freqs, uint n, + bool includeInput) +{ + DEFINE_IDX3(i, chn, freq); + if (i >= n) + return; + uint offset = (uint)includeInput; + uint inChns = blockDim.y, nFreqs = blockDim.z; + uint elem = i * inChns + chn; + uint outChns = inChns * (nFreqs * 2 + offset); + uint base = i * outChns + chn; + if (freq == 0 && includeInput) + output[base] = input[elem]; + float x = freqs[freq] * input[elem]; + float s, c; + __sincosf(x, &s, &c); + output[base + inChns * (freq * 2 + offset)] = s; + output[base + inChns * (freq * 2 + offset + 1)] = c; +} + +namespace modules +{ + /** + * @brief + * + * @param output (n, out_chns) encoded positions + * @param input (n, in_chns) positions + */ + void Encoder::operator()(darray<float> output, const darray<float> input) + { + uint n = input->n() / _chns; + std::ostringstream sout; + sout << "Encoder => input size: (" << n << ", " << _chns << "), " + << "output size: (" << n << ", " << outChns() << ")"; + // Logger::instance.info(sout.str()); + dim3 blkSize(1024 / _chns / _multires, _chns, _multires); + dim3 grdSize(ceilDiv(n, blkSize.x), 1, 1); + CU_INVOKE(cu_encode)(*output, *input, *_freqs, n, _includeInput); + CHECK_EX(cudaGetLastError()); + } + + void Encoder::_genFreqArray() + { + std::vector<float> freqsHost(_multires); + freqsHost[0] = 1.0f; + for (auto i = 1; i < _multires; ++i) + freqsHost[i] = freqsHost[i - 1] * 2.0f; + _freqs = darray<float>(new CudaArray<float>(freqsHost)); + } +} \ No newline at end of file diff --git a/cpp/modules/Encoder.h b/cpp/modules/Encoder.h new file mode 100644 index 0000000..ad4b8c8 --- /dev/null +++ b/cpp/modules/Encoder.h @@ -0,0 +1,27 @@ +#pragma once +#include "../utils/common.h" + +namespace modules +{ + class Encoder + { + public: + Encoder(unsigned int multires, unsigned int chns, bool includeInput) + : _multires(multires), _chns(chns), _includeInput(includeInput) + { + _genFreqArray(); + } + + unsigned int outChns() const { return _chns * (_includeInput + _multires * 2); } + + void operator()(darray<float> output, const darray<float> input); + + private: + unsigned int _multires; + unsigned int _chns; + bool _includeInput; + darray<float> _freqs; + + void _genFreqArray(); + }; +} \ No newline at end of file diff --git a/cpp/modules/Renderer.cu b/cpp/modules/Renderer.cu new file mode 100644 index 0000000..2480606 --- /dev/null +++ b/cpp/modules/Renderer.cu @@ -0,0 +1,36 @@ +#include "Renderer.h" +#include "../utils/cuda.h" + +/// Dispatch (nRays) +__global__ void cu_render(glm::vec4 *o_colors, const float *depths, const glm::vec4 *rgbd, + uint nSamples, uint nRays) +{ + DEFINE_IDX(rayIdx); + if (rayIdx >= nRays) + return; + glm::vec4 outColor; + auto depth = 1e10f; + for (int si = nSamples - 1, i = (rayIdx + 1) * nSamples - 1; si >= 0; --si, --i) + { + auto depth1 = depth; + auto c = rgbd[i]; + depth = depths[i]; + c.a = 1.0f - exp(-max(c.a, 0.f) * (depth1 - depth)); + outColor = outColor * (1 - c.a) + c * c.a; + } + outColor.a = 1.0f; + o_colors[rayIdx] = outColor; +} + +namespace modules +{ + void Renderer::operator()(darray<glm::vec4> o_colors, const darray<float> depths, + const darray<glm::vec4> rgbd) + { + uint n = o_colors->n(); + dim3 blkSize(1024); + dim3 grdSize(ceilDiv(n, blkSize.x)); + CU_INVOKE(cu_render)(*o_colors, *depths, *rgbd, rgbd->n() / n, n); + CHECK_EX(cudaGetLastError()); + } +} \ No newline at end of file diff --git a/cpp/modules/Renderer.h b/cpp/modules/Renderer.h new file mode 100644 index 0000000..22cacb0 --- /dev/null +++ b/cpp/modules/Renderer.h @@ -0,0 +1,23 @@ +#pragma once +#include "../utils/common.h" + +namespace modules +{ + class Renderer + { + public: + Renderer(bool whiteBg) : _whiteBg(whiteBg) {} + + /** + * @brief + * + * @param o_colors + * @param layeredColors + */ + void operator()(darray<glm::vec4> o_colors, const darray<float> depths, + const darray<glm::vec4> rgbd); + + private: + bool _whiteBg; + }; +} \ No newline at end of file diff --git a/cpp/modules/Sampler.cu b/cpp/modules/Sampler.cu new file mode 100644 index 0000000..687f9ba --- /dev/null +++ b/cpp/modules/Sampler.cu @@ -0,0 +1,118 @@ +#include "Sampler.h" +#define _USE_MATH_DEFINES +#include <math.h> +#include "../utils/cuda.h" + +__device__ glm::vec3 _raySphereIntersect(glm::vec3 p, glm::vec3 v, float r, float &o_depth) +{ + float pp = glm::dot(p, p); + float vv = glm::dot(v, v); + float pv = glm::dot(p, v); + o_depth = (sqrtf(pv * pv - vv * (pp - r * r)) - pv) / vv; + return p + o_depth * v; +} + +__device__ float _getAngle(float x, float y) +{ + return -atan(x / y) - (y < 0) * (float)M_PI + 0.5f * (float)M_PI; +} + +/** + * Dispatch with block_size=(*, n_samples), grid_size=(nRays/*, 1) + * Index with (ray_idx, sample_idx) + */ +__global__ void cu_sampleXyz(glm::vec3 *o_coords, float *o_depths, glm::vec3 origin, + const glm::vec3 *dirs, uint nRays, uint nSamples, glm::vec2 range) +{ + DEFINE_IDX2(rayIdx, sampleIdx); + if (rayIdx >= nRays) + return; + uint idx = rayIdx * nSamples + sampleIdx; + float z = (range.y - range.x) / (nSamples - 1) * sampleIdx + range.x; + o_coords[idx] = origin + dirs[rayIdx] * z; + o_depths[idx] = z; +} + +/** + * Dispatch with block_size=(*, n_samples), grid_size=(nRays/*, 1) + * Index with (ray_idx, sample_idx) + */ +__global__ void cu_sampleXyzDisp(glm::vec3 *o_coords, float *o_depths, glm::vec3 origin, + const glm::vec3 *dirs, uint nRays, uint nSamples, glm::vec2 range) +{ + DEFINE_IDX2(rayIdx, sampleIdx); + if (rayIdx >= nRays) + return; + uint idx = rayIdx * nSamples + sampleIdx; + float z = 1.f / ((range.y - range.x) / (nSamples - 1) * sampleIdx + range.x); + o_coords[idx] = origin + dirs[rayIdx] * z; + o_depths[idx] = z; +} + +/** + * Dispatch with block_size=(*, n_samples), grid_size=(nRays/*, 1) + * Index with (ray_idx, sample_idx) + */ +__global__ void cu_sampleSpherical(glm::vec3 *o_coords, float *o_depths, glm::vec3 origin, + const glm::vec3 *dirs, uint nRays, uint nSamples, + glm::vec2 range) +{ + DEFINE_IDX2(rayIdx, sampleIdx); + if (rayIdx >= nRays) + return; + uint idx = rayIdx * nSamples + sampleIdx; + float z = 1.f / ((range.y - range.x) / (nSamples - 1) * sampleIdx + range.x); + glm::vec3 p = origin + dirs[rayIdx] * z; + float r_reci = 1. / glm::length(p); + float theta = _getAngle(p.x, p.z); + float phi = acos(p.y * r_reci); + o_coords[idx] = {r_reci, theta, phi}; + o_depths[idx] = z; +} + +/** + * Dispatch with block_size=(*, n_samples), grid_size=(nRays/*, 1) + * Index with (ray_idx, sample_idx) + */ +__global__ void cu_sampleSphere(float *o_coords, float *o_depths, glm::vec3 origin, + const glm::vec3 *dirs, uint nRays, uint nSamples, + glm::vec2 range, bool withRadius) +{ + DEFINE_IDX2(rayIdx, sampleIdx); + if (rayIdx >= nRays) + return; + uint idx = rayIdx * nSamples + sampleIdx; + float r_reci = (range.y - range.x) / (nSamples - 1) * sampleIdx + range.x; + float r = 1.f / r_reci; + glm::vec3 p = _raySphereIntersect(origin, dirs[rayIdx], r, o_depths[idx]); + float theta = _getAngle(p.x, p.z); + float phi = acos(p.y * r_reci); + if (withRadius) + ((glm::vec3 *)o_coords)[idx] = {r_reci, theta, phi}; + else + ((glm::vec2 *)o_coords)[idx] = {theta, phi}; +} + +namespace modules +{ + void Sampler::operator()(darray<float> o_coords, darray<float> o_depths, glm::vec3 origin, + const darray<glm::vec3> dirs) + { + auto n = dirs->n(); + dim3 blkSize(1024 / _nSamples, _nSamples); + dim3 grdSize((uint)ceil(n / (float)blkSize.y), 1); + if (_mode == "xyz_disp") + CU_INVOKE(cu_sampleXyzDisp)((glm::vec3 *)*o_coords, *o_depths, origin, *dirs, n, + _nSamples, 1.f / _range); + else if (_mode == "spherical") + CU_INVOKE(cu_sampleSpherical)((glm::vec3 *)*o_coords, *o_depths, origin, *dirs, n, + _nSamples, 1.f / _range); + else if (_mode == "spherical_radius") + CU_INVOKE(cu_sampleSphere)(*o_coords, *o_depths, origin, *dirs, n, _nSamples, + 1.f / _range, _withRadius); + else + CU_INVOKE(cu_sampleXyz)((glm::vec3 *)*o_coords, *o_depths, origin, *dirs, n, + _nSamples, _range); + CHECK_EX(cudaGetLastError()); + } +} \ No newline at end of file diff --git a/cpp/modules/Sampler.h b/cpp/modules/Sampler.h new file mode 100644 index 0000000..9649bd4 --- /dev/null +++ b/cpp/modules/Sampler.h @@ -0,0 +1,20 @@ +#pragma once +#include "../utils/common.h" + +namespace modules +{ + class Sampler + { + public: + Sampler(glm::vec2 range, std::string mode, uint nSamples, bool withRadius) : _range(range), _mode(mode), _nSamples(nSamples), _withRadius(withRadius) {} + + void operator()(darray<float> o_coords, darray<float> o_depths, glm::vec3 origin, + const darray<glm::vec3> dirs); + + private: + glm::vec2 _range; + std::string _mode; + uint _nSamples; + bool _withRadius; + }; +} \ No newline at end of file diff --git a/cpp/fnr_core/Voxels.cu b/cpp/modules/Voxels.cu similarity index 100% rename from cpp/fnr_core/Voxels.cu rename to cpp/modules/Voxels.cu diff --git a/cpp/fnr_core/Voxels.h b/cpp/modules/Voxels.h similarity index 100% rename from cpp/fnr_core/Voxels.h rename to cpp/modules/Voxels.h diff --git a/cpp/bakes/barbershop_0/fovea.png b/cpp/resources/bakes/barbershop_0/fovea.png similarity index 100% rename from cpp/bakes/barbershop_0/fovea.png rename to cpp/resources/bakes/barbershop_0/fovea.png diff --git a/cpp/bakes/barbershop_0/fovea_l.png b/cpp/resources/bakes/barbershop_0/fovea_l.png similarity index 100% rename from cpp/bakes/barbershop_0/fovea_l.png rename to cpp/resources/bakes/barbershop_0/fovea_l.png diff --git a/cpp/bakes/barbershop_0/fovea_r.png b/cpp/resources/bakes/barbershop_0/fovea_r.png similarity index 100% rename from cpp/bakes/barbershop_0/fovea_r.png rename to cpp/resources/bakes/barbershop_0/fovea_r.png diff --git a/cpp/bakes/barbershop_0/mid.png b/cpp/resources/bakes/barbershop_0/mid.png similarity index 100% rename from cpp/bakes/barbershop_0/mid.png rename to cpp/resources/bakes/barbershop_0/mid.png diff --git a/cpp/bakes/barbershop_0/mid_l.png b/cpp/resources/bakes/barbershop_0/mid_l.png similarity index 100% rename from cpp/bakes/barbershop_0/mid_l.png rename to cpp/resources/bakes/barbershop_0/mid_l.png diff --git a/cpp/bakes/barbershop_0/mid_r.png b/cpp/resources/bakes/barbershop_0/mid_r.png similarity index 100% rename from cpp/bakes/barbershop_0/mid_r.png rename to cpp/resources/bakes/barbershop_0/mid_r.png diff --git a/cpp/bakes/barbershop_0/periph.png b/cpp/resources/bakes/barbershop_0/periph.png similarity index 100% rename from cpp/bakes/barbershop_0/periph.png rename to cpp/resources/bakes/barbershop_0/periph.png diff --git a/cpp/bakes/barbershop_0/periph_l.png b/cpp/resources/bakes/barbershop_0/periph_l.png similarity index 100% rename from cpp/bakes/barbershop_0/periph_l.png rename to cpp/resources/bakes/barbershop_0/periph_l.png diff --git a/cpp/bakes/barbershop_0/periph_r.png b/cpp/resources/bakes/barbershop_0/periph_r.png similarity index 100% rename from cpp/bakes/barbershop_0/periph_r.png rename to cpp/resources/bakes/barbershop_0/periph_r.png diff --git a/cpp/bakes/barbershop_0_HR/fovea.png b/cpp/resources/bakes/barbershop_0_HR/fovea.png similarity index 100% rename from cpp/bakes/barbershop_0_HR/fovea.png rename to cpp/resources/bakes/barbershop_0_HR/fovea.png diff --git a/cpp/bakes/barbershop_0_HR/fovea_l.png b/cpp/resources/bakes/barbershop_0_HR/fovea_l.png similarity index 100% rename from cpp/bakes/barbershop_0_HR/fovea_l.png rename to cpp/resources/bakes/barbershop_0_HR/fovea_l.png diff --git a/cpp/bakes/barbershop_0_HR/fovea_r.png b/cpp/resources/bakes/barbershop_0_HR/fovea_r.png similarity index 100% rename from cpp/bakes/barbershop_0_HR/fovea_r.png rename to cpp/resources/bakes/barbershop_0_HR/fovea_r.png diff --git a/cpp/bakes/barbershop_0_HR/mid.png b/cpp/resources/bakes/barbershop_0_HR/mid.png similarity index 100% rename from cpp/bakes/barbershop_0_HR/mid.png rename to cpp/resources/bakes/barbershop_0_HR/mid.png diff --git a/cpp/bakes/barbershop_0_HR/mid_l.png b/cpp/resources/bakes/barbershop_0_HR/mid_l.png similarity index 100% rename from cpp/bakes/barbershop_0_HR/mid_l.png rename to cpp/resources/bakes/barbershop_0_HR/mid_l.png diff --git a/cpp/bakes/barbershop_0_HR/mid_r.png b/cpp/resources/bakes/barbershop_0_HR/mid_r.png similarity index 100% rename from cpp/bakes/barbershop_0_HR/mid_r.png rename to cpp/resources/bakes/barbershop_0_HR/mid_r.png diff --git a/cpp/bakes/barbershop_0_HR/periph.png b/cpp/resources/bakes/barbershop_0_HR/periph.png similarity index 100% rename from cpp/bakes/barbershop_0_HR/periph.png rename to cpp/resources/bakes/barbershop_0_HR/periph.png diff --git a/cpp/bakes/barbershop_0_HR/periph_l.png b/cpp/resources/bakes/barbershop_0_HR/periph_l.png similarity index 100% rename from cpp/bakes/barbershop_0_HR/periph_l.png rename to cpp/resources/bakes/barbershop_0_HR/periph_l.png diff --git a/cpp/bakes/barbershop_0_HR/periph_r.png b/cpp/resources/bakes/barbershop_0_HR/periph_r.png similarity index 100% rename from cpp/bakes/barbershop_0_HR/periph_r.png rename to cpp/resources/bakes/barbershop_0_HR/periph_r.png diff --git a/cpp/bakes/barbershop_0_noCE/fovea.png b/cpp/resources/bakes/barbershop_0_noCE/fovea.png similarity index 100% rename from cpp/bakes/barbershop_0_noCE/fovea.png rename to cpp/resources/bakes/barbershop_0_noCE/fovea.png diff --git a/cpp/bakes/barbershop_0_noCE/fovea_l.png b/cpp/resources/bakes/barbershop_0_noCE/fovea_l.png similarity index 100% rename from cpp/bakes/barbershop_0_noCE/fovea_l.png rename to cpp/resources/bakes/barbershop_0_noCE/fovea_l.png diff --git a/cpp/bakes/barbershop_0_noCE/fovea_r.png b/cpp/resources/bakes/barbershop_0_noCE/fovea_r.png similarity index 100% rename from cpp/bakes/barbershop_0_noCE/fovea_r.png rename to cpp/resources/bakes/barbershop_0_noCE/fovea_r.png diff --git a/cpp/bakes/barbershop_0_noCE/mid.png b/cpp/resources/bakes/barbershop_0_noCE/mid.png similarity index 100% rename from cpp/bakes/barbershop_0_noCE/mid.png rename to cpp/resources/bakes/barbershop_0_noCE/mid.png diff --git a/cpp/bakes/barbershop_0_noCE/mid_l.png b/cpp/resources/bakes/barbershop_0_noCE/mid_l.png similarity index 100% rename from cpp/bakes/barbershop_0_noCE/mid_l.png rename to cpp/resources/bakes/barbershop_0_noCE/mid_l.png diff --git a/cpp/bakes/barbershop_0_noCE/mid_r.png b/cpp/resources/bakes/barbershop_0_noCE/mid_r.png similarity index 100% rename from cpp/bakes/barbershop_0_noCE/mid_r.png rename to cpp/resources/bakes/barbershop_0_noCE/mid_r.png diff --git a/cpp/bakes/barbershop_0_noCE/periph.png b/cpp/resources/bakes/barbershop_0_noCE/periph.png similarity index 100% rename from cpp/bakes/barbershop_0_noCE/periph.png rename to cpp/resources/bakes/barbershop_0_noCE/periph.png diff --git a/cpp/bakes/barbershop_0_noCE/periph_l.png b/cpp/resources/bakes/barbershop_0_noCE/periph_l.png similarity index 100% rename from cpp/bakes/barbershop_0_noCE/periph_l.png rename to cpp/resources/bakes/barbershop_0_noCE/periph_l.png diff --git a/cpp/bakes/barbershop_0_noCE/periph_r.png b/cpp/resources/bakes/barbershop_0_noCE/periph_r.png similarity index 100% rename from cpp/bakes/barbershop_0_noCE/periph_r.png rename to cpp/resources/bakes/barbershop_0_noCE/periph_r.png diff --git a/cpp/nets/barbershop/fovea.onnx b/cpp/resources/nets/barbershop/fovea.onnx similarity index 100% rename from cpp/nets/barbershop/fovea.onnx rename to cpp/resources/nets/barbershop/fovea.onnx diff --git a/cpp/nets/barbershop/fovea.trt b/cpp/resources/nets/barbershop/fovea.trt similarity index 100% rename from cpp/nets/barbershop/fovea.trt rename to cpp/resources/nets/barbershop/fovea.trt diff --git a/cpp/nets/barbershop/periph.onnx b/cpp/resources/nets/barbershop/periph.onnx similarity index 100% rename from cpp/nets/barbershop/periph.onnx rename to cpp/resources/nets/barbershop/periph.onnx diff --git a/cpp/nets/barbershop/periph.trt b/cpp/resources/nets/barbershop/periph.trt similarity index 100% rename from cpp/nets/barbershop/periph.trt rename to cpp/resources/nets/barbershop/periph.trt diff --git a/cpp/nets/classroom/fovea.onnx b/cpp/resources/nets/classroom/fovea.onnx similarity index 100% rename from cpp/nets/classroom/fovea.onnx rename to cpp/resources/nets/classroom/fovea.onnx diff --git a/cpp/nets/classroom/fovea.trt b/cpp/resources/nets/classroom/fovea.trt similarity index 100% rename from cpp/nets/classroom/fovea.trt rename to cpp/resources/nets/classroom/fovea.trt diff --git a/cpp/nets/classroom/periph.onnx b/cpp/resources/nets/classroom/periph.onnx similarity index 100% rename from cpp/nets/classroom/periph.onnx rename to cpp/resources/nets/classroom/periph.onnx diff --git a/cpp/nets/classroom/periph.trt b/cpp/resources/nets/classroom/periph.trt similarity index 100% rename from cpp/nets/classroom/periph.trt rename to cpp/resources/nets/classroom/periph.trt diff --git a/cpp_old/nets/fovea.mask b/cpp/resources/nets/fovea.mask similarity index 100% rename from cpp_old/nets/fovea.mask rename to cpp/resources/nets/fovea.mask diff --git a/cpp/nets/lobby/fovea.onnx b/cpp/resources/nets/lobby/fovea.onnx similarity index 100% rename from cpp/nets/lobby/fovea.onnx rename to cpp/resources/nets/lobby/fovea.onnx diff --git a/cpp/nets/lobby/fovea.trt b/cpp/resources/nets/lobby/fovea.trt similarity index 100% rename from cpp/nets/lobby/fovea.trt rename to cpp/resources/nets/lobby/fovea.trt diff --git a/cpp/nets/lobby/periph.onnx b/cpp/resources/nets/lobby/periph.onnx similarity index 100% rename from cpp/nets/lobby/periph.onnx rename to cpp/resources/nets/lobby/periph.onnx diff --git a/cpp/nets/lobby/periph.trt b/cpp/resources/nets/lobby/periph.trt similarity index 100% rename from cpp/nets/lobby/periph.trt rename to cpp/resources/nets/lobby/periph.trt diff --git a/cpp_old/nets/mid.mask b/cpp/resources/nets/mid.mask similarity index 100% rename from cpp_old/nets/mid.mask rename to cpp/resources/nets/mid.mask diff --git a/cpp_old/nets/old/fovea_mono/cat.trt b/cpp/resources/nets/old/fovea_mono/cat.trt similarity index 100% rename from cpp_old/nets/old/fovea_mono/cat.trt rename to cpp/resources/nets/old/fovea_mono/cat.trt diff --git a/cpp_old/nets/old/fovea_mono/fc1.trt b/cpp/resources/nets/old/fovea_mono/fc1.trt similarity index 100% rename from cpp_old/nets/old/fovea_mono/fc1.trt rename to cpp/resources/nets/old/fovea_mono/fc1.trt diff --git a/cpp_old/nets/old/fovea_mono/fc2.trt b/cpp/resources/nets/old/fovea_mono/fc2.trt similarity index 100% rename from cpp_old/nets/old/fovea_mono/fc2.trt rename to cpp/resources/nets/old/fovea_mono/fc2.trt diff --git a/cpp_old/nets/old/fovea_mono/msl.trt b/cpp/resources/nets/old/fovea_mono/msl.trt similarity index 100% rename from cpp_old/nets/old/fovea_mono/msl.trt rename to cpp/resources/nets/old/fovea_mono/msl.trt diff --git a/cpp_old/nets/old/fovea_stereo/cat.trt b/cpp/resources/nets/old/fovea_stereo/cat.trt similarity index 100% rename from cpp_old/nets/old/fovea_stereo/cat.trt rename to cpp/resources/nets/old/fovea_stereo/cat.trt diff --git a/cpp_old/nets/old/fovea_stereo/fc1.trt b/cpp/resources/nets/old/fovea_stereo/fc1.trt similarity index 100% rename from cpp_old/nets/old/fovea_stereo/fc1.trt rename to cpp/resources/nets/old/fovea_stereo/fc1.trt diff --git a/cpp_old/nets/old/fovea_stereo/fc2.trt b/cpp/resources/nets/old/fovea_stereo/fc2.trt similarity index 100% rename from cpp_old/nets/old/fovea_stereo/fc2.trt rename to cpp/resources/nets/old/fovea_stereo/fc2.trt diff --git a/cpp_old/nets/old/periph/cat.trt b/cpp/resources/nets/old/periph/cat.trt similarity index 100% rename from cpp_old/nets/old/periph/cat.trt rename to cpp/resources/nets/old/periph/cat.trt diff --git a/cpp_old/nets/old/periph/fc1.trt b/cpp/resources/nets/old/periph/fc1.trt similarity index 100% rename from cpp_old/nets/old/periph/fc1.trt rename to cpp/resources/nets/old/periph/fc1.trt diff --git a/cpp_old/nets/old/periph/fc2.trt b/cpp/resources/nets/old/periph/fc2.trt similarity index 100% rename from cpp_old/nets/old/periph/fc2.trt rename to cpp/resources/nets/old/periph/fc2.trt diff --git a/cpp_old/nets/old/periph/msl.trt b/cpp/resources/nets/old/periph/msl.trt similarity index 100% rename from cpp_old/nets/old/periph/msl.trt rename to cpp/resources/nets/old/periph/msl.trt diff --git a/cpp/nets/stones/fovea.onnx b/cpp/resources/nets/stones/fovea.onnx similarity index 100% rename from cpp/nets/stones/fovea.onnx rename to cpp/resources/nets/stones/fovea.onnx diff --git a/cpp/nets/stones/fovea.trt b/cpp/resources/nets/stones/fovea.trt similarity index 100% rename from cpp/nets/stones/fovea.trt rename to cpp/resources/nets/stones/fovea.trt diff --git a/cpp/nets/stones/periph.onnx b/cpp/resources/nets/stones/periph.onnx similarity index 100% rename from cpp/nets/stones/periph.onnx rename to cpp/resources/nets/stones/periph.onnx diff --git a/cpp/nets/stones/periph.trt b/cpp/resources/nets/stones/periph.trt similarity index 100% rename from cpp/nets/stones/periph.trt rename to cpp/resources/nets/stones/periph.trt diff --git a/cpp/utils/Eye.h b/cpp/utils/Eye.h index 2969487..77e8145 100644 --- a/cpp/utils/Eye.h +++ b/cpp/utils/Eye.h @@ -1,5 +1,2 @@ #pragma once -enum Eye { - Eye_Left, Eye_Right -}; \ No newline at end of file diff --git a/cpp/utils/Logger.h b/cpp/utils/Logger.h deleted file mode 100644 index be92e92..0000000 --- a/cpp/utils/Logger.h +++ /dev/null @@ -1,93 +0,0 @@ -#pragma once -#include <stdarg.h> -#include <iostream> -#include <string> -#include <sstream> -#include <cuda_runtime_api.h> -#include <NvInfer.h> - -namespace nv = nvinfer1; - - -typedef void(*ExternalLogFuncPtr)(int severity, const char*); - - -class Logger : public nv::ILogger { -public: - ExternalLogFuncPtr externalLogFunc = nullptr; - int logLevel = 1; - static Logger instance; - - void verbose(const char* fmt, ...) { - va_list args; - va_start(args, fmt); - logf(nv::ILogger::Severity::kVERBOSE, fmt, args); - va_end(args); - } - - void info(const char* fmt, ...) { - va_list args; - va_start(args, fmt); - logf(nv::ILogger::Severity::kINFO, fmt, args); - va_end(args); - } - - void warning(const char* fmt, ...) { - va_list args; - va_start(args, fmt); - logf(nv::ILogger::Severity::kWARNING, fmt, args); - va_end(args); - } - - void error(const char* fmt, ...) { - va_list args; - va_start(args, fmt); - logf(nv::ILogger::Severity::kERROR, fmt, args); - va_end(args); - } - - bool checkErr(cudaError_t err, const char* file, int line) { - if (err == cudaSuccess) - return true; - error("Cuda error %s at %s (Line %d): %s", cudaGetErrorName(err), file, line, - cudaGetErrorString(err)); - return false; - } - - virtual void log(nv::ILogger::Severity severity, const char* msg) noexcept { - if ((int)severity > logLevel) - return; - if (externalLogFunc == nullptr) { - switch (severity) { - case nv::ILogger::Severity::kVERBOSE: - std::cout << "[VERBOSE] " << msg << std::endl; - break; - case nv::ILogger::Severity::kINFO: - std::cout << "[INFO] " << msg << std::endl; - break; - case nv::ILogger::Severity::kWARNING: - std::cerr << "[WARNING] " << msg << std::endl; - break; - case nv::ILogger::Severity::kERROR: - std::cerr << "[ERROR] " << msg << std::endl; - break; - case nv::ILogger::Severity::kINTERNAL_ERROR: - std::cerr << "[ERROR] " << msg << std::endl; - break; - } - return; - } - externalLogFunc((int)severity, msg); - } - - void logf(nv::ILogger::Severity severity, const char* fmt, va_list args) { - char buffer[4096]; - vsprintf(buffer, fmt, args); - log(severity, buffer); - } - -}; - - -#define CHECK(__ERR_CODE__) do { if (!Logger::instance.checkErr((__ERR_CODE__), __FILE__, __LINE__)) return false; } while (0) -#define CHECK_EX(__ERR_CODE__) do { if (!Logger::instance.checkErr((__ERR_CODE__), __FILE__, __LINE__)) throw std::exception(); } while (0) diff --git a/cpp/utils/Resource.h b/cpp/utils/Resource.h deleted file mode 100644 index 624a23f..0000000 --- a/cpp/utils/Resource.h +++ /dev/null @@ -1,144 +0,0 @@ -#pragma once -#include <map> -#include <vector> - -class Resource { -public: - virtual ~Resource() {} - - virtual void *getBuffer() const = 0; - - virtual size_t size() const = 0; -}; - -class CudaBuffer : public Resource { -public: - CudaBuffer(void *buffer = nullptr, size_t size = 0) - : _buffer(buffer), _ownBuffer(false), _size(size) {} - CudaBuffer(size_t size) : _buffer(nullptr), _ownBuffer(true), _size(size) { - CHECK_EX(cudaMalloc(&_buffer, size)); - } - CudaBuffer(const CudaBuffer &rhs) = delete; - - virtual ~CudaBuffer() { - if (!_ownBuffer || _buffer == nullptr) - return; - try { - CHECK_EX(cudaFree(_buffer)); - } catch (std::exception &ex) { - Logger::instance.warning("Exception raised in destructor: %s", ex.what()); - } - _buffer = nullptr; - _ownBuffer = false; - } - - virtual void *getBuffer() const { return _buffer; } - template <class T> T *getBuffer() const { return (T *)getBuffer(); } - - virtual size_t size() const { return _size; } - -private: - void *_buffer; - bool _ownBuffer; - size_t _size; -}; - -template <typename T> class CudaArray : public CudaBuffer { -public: - CudaArray(size_t n) : CudaBuffer(n * sizeof(T)) {} - CudaArray(T *buffer, size_t n) : CudaBuffer(buffer, n * sizeof(T)) {} - CudaArray(const std::vector<T> &hostArray) : CudaBuffer(hostArray.size() * sizeof(T)) { - cudaMemcpy(getBuffer(), hostArray.data(), size(), cudaMemcpyHostToDevice); - } - CudaArray(const CudaArray<T> &rhs) = delete; - - size_t n() const { return size() / sizeof(T); } - - operator T *() { return (T *)getBuffer(); } - CudaArray<T> *subArray(size_t offset, size_t n = -1) { - if (n == -1) - n = this->n() - offset; - return new CudaArray<T>(*this + offset, n); - } -}; - -class GraphicsResource : public Resource { -public: - cudaGraphicsResource_t getHandler() { return _res; } - - virtual ~GraphicsResource() { - if (_res == nullptr) - return; - try { - CHECK_EX(cudaGraphicsUnregisterResource(_res)); - } catch (std::exception &ex) { - Logger::instance.warning("Exception raised in destructor: %s", ex.what()); - } - _res = nullptr; - } - - virtual size_t size() const { return _size; } - -protected: - cudaGraphicsResource_t _res; - size_t _size; - - GraphicsResource() : _res(nullptr), _size(0) {} -}; - -template <typename T> class GlTextureResource : public GraphicsResource { -public: - GlTextureResource(GLuint textureID, glm::uvec2 textureSize) { - CHECK_EX(cudaGraphicsGLRegisterImage(&_res, textureID, GL_TEXTURE_2D, - cudaGraphicsRegisterFlagsWriteDiscard)); - _size = textureSize.x * textureSize.y * sizeof(T); - _textureSize = textureSize; - } - - virtual ~GlTextureResource() { cudaGraphicsUnmapResources(1, &_res, 0); } - - virtual void *getBuffer() const { - cudaArray_t buffer; - try { - CHECK_EX(cudaGraphicsSubResourceGetMappedArray(&buffer, _res, 0, 0)); - } catch (...) { - return nullptr; - } - return buffer; - } - - operator T *() { return (T *)getBuffer(); } - - glm::uvec2 textureSize() { return _textureSize; } - -private: - glm::uvec2 _textureSize; -}; - -class Resources { -public: - std::map<std::string, Resource *> resources; - std::vector<cudaGraphicsResource_t> graphicsResources; - - void addResource(const std::string &name, Resource *res) { - auto gres = dynamic_cast<GraphicsResource *>(res); - if (gres != nullptr) - graphicsResources.push_back(gres->getHandler()); - resources[name] = res; - } - - void clear() { - resources.clear(); - graphicsResources.clear(); - } -}; - -template <typename T, typename T2 = T> -void dumpArray(std::ostream &so, CudaArray<T> &arr, size_t maxDumpRows = 0, - size_t elemsPerRow = 1) { - int chns = sizeof(T) / sizeof(T2); - T2 *hostArr = new T2[arr.n() * chns]; - cudaMemcpy(hostArr, arr.getBuffer(), arr.n() * sizeof(T), cudaMemcpyDeviceToHost); - dumpHostBuffer<T2>(so, hostArr, arr.n() * sizeof(T), chns * elemsPerRow, maxDumpRows); - delete[] hostArr; -} \ No newline at end of file diff --git a/cpp/utils/common.h b/cpp/utils/common.h index b73624d..9080ad6 100644 --- a/cpp/utils/common.h +++ b/cpp/utils/common.h @@ -8,32 +8,34 @@ #include <string> #include <sstream> #include <GL/glew.h> -#include <cuda_gl_interop.h> -#include <glm/glm.hpp> -#include "Logger.h" -#include "Eye.h" +#include "common/logger.h" +#include "common/fmt.h" #ifdef WIN32 typedef unsigned int uint; #endif -#ifndef _countof -#define _countof(x) (sizeof(x)/sizeof((x)[0])) +#ifndef COUNTOF +#define COUNTOF(__x__) (sizeof(__x__) / sizeof((__x__)[0])) #endif +#ifndef CEILDIV +#define CEILDIV(__x__, __y__) (uint) ceil((__x__) / (float)(__y__)) +#endif +#define INTERVAL(__start__, __end__) (((__end__) - (__start__)) / (float)CLOCKS_PER_SEC * 1000) -inline unsigned int getElementSize(nv::DataType t) { +inline uint getElementSize(nv::DataType t) { switch (t) { case nv::DataType::kINT32: - case nv::DataType::kFLOAT: + case nv::DataType::kFLOAT: return 4; case nv::DataType::kHALF: return 2; case nv::DataType::kBOOL: case nv::DataType::kINT8: return 1; - default: - throw std::runtime_error("Invalid DataType."); - } + default: + throw std::runtime_error("Invalid DataType."); + } } template <typename T> void dumpRow(std::ostream &os, T *buf, size_t n) { @@ -71,50 +73,6 @@ void dumpHostBuffer(std::ostream &os, T *buf, size_t bufSize, size_t rowCount, } } -class CudaStream { -public: - CudaStream() { cudaStreamCreate(&stream); } - - operator cudaStream_t() { return stream; } - - virtual ~CudaStream() { cudaStreamDestroy(stream); } - -private: - cudaStream_t stream; -}; - -class CudaEvent { -public: - CudaEvent() { cudaEventCreate(&mEvent); } - - operator cudaEvent_t() { return mEvent; } - - virtual ~CudaEvent() { cudaEventDestroy(mEvent); } - -private: - cudaEvent_t mEvent; -}; - -struct CudaMapScope { - std::vector<cudaGraphicsResource_t> resources_; - cudaStream_t stream_; - - CudaMapScope(const std::vector<cudaGraphicsResource_t> &resources, - cudaStream_t stream = nullptr) - : resources_(resources), stream_(stream) {} - - ~CudaMapScope() { - if (!resources_.empty()) - cudaGraphicsUnmapResources((int)resources_.size(), resources_.data(), stream_); - } - - cudaError_t map() { - if (!resources_.empty()) - return cudaGraphicsMapResources((int)resources_.size(), resources_.data(), stream_); - return cudaSuccess; - } -}; - template <typename T> struct Destroy { void operator()(T *t) { if (t != nullptr) @@ -122,28 +80,9 @@ template <typename T> struct Destroy { } }; -class Range { -public: - Range(glm::vec2 bound, uint steps) : - _start(bound.x), - _step((bound.y - bound.x) / (steps - 1)), - _steps(steps) {} - - __host__ __device__ float get(uint i) { return _start + i * _step; } - __host__ __device__ float start() { return _start; } - __host__ __device__ float stop() { return _start + _step * _steps; } - __host__ __device__ uint steps() { return _steps; } - -private: - float _start; - float _step; - uint _steps; -}; +#include "Formatter.h" template <class T> using uptr = std::unique_ptr<T, ::Destroy<T>>; template <class T> using sptr = std::shared_ptr<T>; -#define INTERVAL(__start__, __end__) (((__end__) - (__start__)) / (float)CLOCKS_PER_SEC * 1000) - -#include "Resource.h" -#include "Formatter.h" \ No newline at end of file +enum Eye { Eye_Left, Eye_Right }; \ No newline at end of file diff --git a/cpp/utils/common/fmt.h b/cpp/utils/common/fmt.h new file mode 100644 index 0000000..370712d --- /dev/null +++ b/cpp/utils/common/fmt.h @@ -0,0 +1,24 @@ +#include <string> + +namespace utils::common { + template <typename... Args> static std::string fmt(const std::string &format, Args... args) { + auto size_buf = std::snprintf(nullptr, 0, format.c_str(), args...) + 1; + std::unique_ptr<char[]> buf(new (std::nothrow) char[size_buf]); + + if (!buf) + return std::string(""); + + std::snprintf(buf.get(), size_buf, format.c_str(), args...); + return std::string(buf.get(), buf.get() + size_buf - 1); + } + template <typename... Args> static std::wstring fmt(const std::wstring &format, Args... args) { + auto size_buf = std::snprintf(nullptr, 0, format.c_str(), args...) + 1; + std::unique_ptr<char[]> buf(new (std::nothrow) char[size_buf]); + + if (!buf) + return std::wstring(""); + + std::snprintf(buf.get(), size_buf, format.c_str(), args...); + return std::wstring(buf.get(), buf.get() + size_buf - 1); + } +} // namespace utils::common diff --git a/cpp/utils/common/logger.cpp b/cpp/utils/common/logger.cpp new file mode 100644 index 0000000..0f7bfd8 --- /dev/null +++ b/cpp/utils/common/logger.cpp @@ -0,0 +1,68 @@ +#include "logger.h" +#include <iostream> +#include <sstream> +#include <string> + +namespace utils::common { + Logger Logger::instance; + + void Logger::verbose(const char *fmt, ...) { + va_list args; + va_start(args, fmt); + logf(nvinfer1::ILogger::Severity::kVERBOSE, fmt, args); + va_end(args); + } + + void Logger::info(const char *fmt, ...) { + va_list args; + va_start(args, fmt); + logf(nvinfer1::ILogger::Severity::kINFO, fmt, args); + va_end(args); + } + + void Logger::warning(const char *fmt, ...) { + va_list args; + va_start(args, fmt); + logf(nvinfer1::ILogger::Severity::kWARNING, fmt, args); + va_end(args); + } + + void Logger::error(const char *fmt, ...) { + va_list args; + va_start(args, fmt); + logf(nvinfer1::ILogger::Severity::kERROR, fmt, args); + va_end(args); + } + + void Logger::log(nvinfer1::ILogger::Severity severity, const char *msg) noexcept { + if ((int)severity > logLevel) + return; + if (externalLogFunc == nullptr) { + switch (severity) { + case nvinfer1::ILogger::Severity::kVERBOSE: + std::cout << "[VERBOSE] " << msg << std::endl; + break; + case nvinfer1::ILogger::Severity::kINFO: + std::cout << "[INFO] " << msg << std::endl; + break; + case nvinfer1::ILogger::Severity::kWARNING: + std::cerr << "[WARNING] " << msg << std::endl; + break; + case nvinfer1::ILogger::Severity::kERROR: + std::cerr << "[ERROR] " << msg << std::endl; + break; + case nvinfer1::ILogger::Severity::kINTERNAL_ERROR: + std::cerr << "[ERROR] " << msg << std::endl; + break; + } + return; + } + externalLogFunc((int)severity, msg); + } + + void Logger::logf(nvinfer1::ILogger::Severity severity, const char *fmt, va_list args) { + char buffer[4096]; + vsprintf(buffer, fmt, args); + log(severity, buffer); + } +} // namespace utils::common diff --git a/cpp/utils/common/logger.h b/cpp/utils/common/logger.h new file mode 100644 index 0000000..88ea465 --- /dev/null +++ b/cpp/utils/common/logger.h @@ -0,0 +1,26 @@ +#pragma once +#include <NvInfer.h> +#include <stdarg.h> + +typedef void (*ExternalLogFuncPtr)(int severity, const char *); + +namespace utils::common { + class Logger : public nvinfer1::ILogger { + public: + ExternalLogFuncPtr externalLogFunc = nullptr; + int logLevel = 1; + static Logger instance; + + void verbose(const char *fmt, ...); + + void info(const char *fmt, ...); + + void warning(const char *fmt, ...); + + void error(const char *fmt, ...); + + virtual void log(nvinfer1::ILogger::Severity severity, const char *msg) noexcept; + + void logf(nvinfer1::ILogger::Severity severity, const char *fmt, va_list args); + }; +} // namespace utils::common diff --git a/cpp/utils/cuda.h b/cpp/utils/cuda.h index 2bd5588..d1de2ef 100644 --- a/cpp/utils/cuda.h +++ b/cpp/utils/cuda.h @@ -1,4 +1,11 @@ -#include "thread_index.h" +#include "cuda/index.h" +#include "cuda/error.h" +#include "cuda/event.h" +#include "cuda/stream.h" +#include "cuda/map_resources_scope.h" +#include "cuda/array.h" +#include "cuda/gl_texture.h" +#include "cuda/resources.h" #ifdef __INTELLISENSE__ #define CU_INVOKE(__func__) __func__ @@ -8,4 +15,3 @@ #define CU_INVOKE1(__func__, __grdSize__, __blkSize__) __func__<<<__grdSize__, __blkSize__>>> #endif -inline unsigned int ceilDiv(unsigned int a, unsigned int b) { return (unsigned int)ceil(a / (float)b); } \ No newline at end of file diff --git a/cpp/utils/cuda/array.h b/cpp/utils/cuda/array.h new file mode 100644 index 0000000..82c5640 --- /dev/null +++ b/cpp/utils/cuda/array.h @@ -0,0 +1,23 @@ +#include "resource.h" +#include <vector> + +namespace utils::cuda { + template <typename T> class Array : public BufferResource { + public: + Array(size_t n) : CudaBuffer(n * sizeof(T)) {} + Array(T *buffer, size_t n) : CudaBuffer(buffer, n * sizeof(T)) {} + Array(const std::vector<T> &hostArray) : CudaBuffer(hostArray.size() * sizeof(T)) { + cudaMemcpy(getBuffer(), hostArray.data(), size(), cudaMemcpyHostToDevice); + } + + size_t n() const { return size() / sizeof(T); } + + operator T *() { return (T *)getBuffer(); } + + Array<T> subArray(size_t offset, size_t n = -1) { + if (n == -1) + n = this->n() - offset; + return Array<T>((T *)*this + offset, n); + } + }; +} // namespace utils::cuda diff --git a/cpp/utils/cuda/error.cpp b/cpp/utils/cuda/error.cpp new file mode 100644 index 0000000..86d8299 --- /dev/null +++ b/cpp/utils/cuda/error.cpp @@ -0,0 +1,12 @@ +#include "error.h" +#include "../common/logger.h" + +namespace utils::cuda { + bool checkErr(cudaError_t err, const char *file, int line) { + if (err == cudaSuccess) + return true; + common::Logger::instance.error("Cuda error %s at %s (Line %d): %s", cudaGetErrorName(err), + file, line, cudaGetErrorString(err)); + return false; + } +} // namespace utils::cuda diff --git a/cpp/utils/cuda/error.h b/cpp/utils/cuda/error.h new file mode 100644 index 0000000..4ebf660 --- /dev/null +++ b/cpp/utils/cuda/error.h @@ -0,0 +1,16 @@ +#include <cuda_runtime.h> + +namespace utils::cuda { + bool checkErr(cudaError_t err, const char *file, int line); +} // namespace utils::cuda + +#define RET_IF_FAILED(__ERR_CODE__) \ + do { \ + if (!utils::cuda::checkErr((__ERR_CODE__), __FILE__, __LINE__)) \ + return false; \ + } while (0) +#define THROW_IF_FAILED(__ERR_CODE__) \ + do { \ + if (!utils::cuda::checkErr((__ERR_CODE__), __FILE__, __LINE__)) \ + throw std::exception(); \ + } while (0) diff --git a/cpp/utils/cuda/event.h b/cpp/utils/cuda/event.h new file mode 100644 index 0000000..41a88ac --- /dev/null +++ b/cpp/utils/cuda/event.h @@ -0,0 +1,19 @@ +#include <cuda_runtime.h> +#include <memory> + +namespace utils::cuda { + class Event { + public: + Event() : _p_event(std::make_shared<cudaEvent_t>()) { cudaEventCreate(_p_event.get()); } + + virtual ~Event() { + if (_p_event.use_count() == 1) + cudaEventDestroy(*_p_event); + } + + operator cudaEvent_t() { return *_p_event; } + + private: + std::shared_ptr<cudaEvent_t> _p_event; + }; +} // namespace utils::cuda diff --git a/cpp/utils/cuda/gl_texture.h b/cpp/utils/cuda/gl_texture.h new file mode 100644 index 0000000..4a69fa6 --- /dev/null +++ b/cpp/utils/cuda/gl_texture.h @@ -0,0 +1,33 @@ +#include <cuda_gl_interop.h> +#include "resource.h" + +namespace utils::cuda { + template <typename T> class GlTextureResource : public GraphicsResource { + public: + GlTextureResource(GLuint textureID, glm::uvec2 textureSize) { + CHECK_EX(cudaGraphicsGLRegisterImage(&_res, textureID, GL_TEXTURE_2D, + cudaGraphicsRegisterFlagsWriteDiscard)); + _size = textureSize.x * textureSize.y * sizeof(T); + _textureSize = textureSize; + } + + virtual ~GlTextureResource() { cudaGraphicsUnmapResources(1, &_res, 0); } + + virtual void *getBuffer() const { + cudaArray_t buffer; + try { + CHECK_EX(cudaGraphicsSubResourceGetMappedArray(&buffer, _res, 0, 0)); + } catch (...) { + return nullptr; + } + return buffer; + } + + operator T *() { return (T *)getBuffer(); } + + glm::uvec2 textureSize() { return _textureSize; } + + private: + glm::uvec2 _textureSize; + }; +} // namespace utils::cuda diff --git a/cpp/utils/cuda/index.h b/cpp/utils/cuda/index.h new file mode 100644 index 0000000..a044f11 --- /dev/null +++ b/cpp/utils/cuda/index.h @@ -0,0 +1,34 @@ +#include <device_launch_parameters.h> +#include <glm/glm.hpp> + +#define T_IDX threadIdx.x +#define T_IDX2 glm::uvec2(threadIdx.x, threadIdx.y) +#define T_IDX3 glm::uvec3(threadIdx.x, threadIdx.y, threadIdx.z) +#define B_IDX blockIdx.x +#define B_IDX2 glm::uvec2(blockIdx.x, blockIdx.y) +#define B_IDX3 glm::uvec3(blockIdx.x, blockIdx.y, blockIdx.z) +#define IDX blockIdx.x *blockDim.x + threadIdx.x +#define IDX2 glm::uvec2(blockIdx.x *blockDim.x + threadIdx.x, blockIdx.y * blockDim.y + threadIdx.y) +#define IDX3 \ + glm::uvec3(blockIdx.x *blockDim.x + threadIdx.x, blockIdx.y * blockDim.y + threadIdx.y, \ + blockIdx.z * blockDim.z + threadIdx.z) +#define FLAT_INDEX utils::cuda::flattenIdx(IDX3) +#define DEFINE_IDX(__var1__) uint __var1__ = blockIdx.x * blockDim.x + threadIdx.x; +#define DEFINE_IDX2(__var1__, __var2__) \ + uint __var1__ = blockIdx.x * blockDim.x + threadIdx.x; \ + uint __var2__ = blockIdx.y * blockDim.y + threadIdx.y; +#define DEFINE_IDX3(__var1__, __var2__, __var3__) \ + uint __var1__ = blockIdx.x * blockDim.x + threadIdx.x; \ + uint __var2__ = blockIdx.y * blockDim.y + threadIdx.y; \ + uint __var3__ = blockIdx.z * blockDim.z + threadIdx.z; +#define DEFINE_FLAT_INDEX(__var1__) uint __var1__ = FLAT_INDEX; + +namespace utils::cuda { + __device__ __forceinline__ uint flattenIdx(glm::uvec3 idx3) { + return idx3.x + idx3.y * blockDim.x * gridDim.x + + idx3.z * blockDim.x * gridDim.x * blockDim.y * gridDim.y; + } + __device__ __forceinline__ uint flattenIdx(glm::uvec2 idx2) { + return idx2.x + idx2.y * blockDim.x * gridDim.x; + } +} // namespace utils::cuda diff --git a/cpp/utils/cuda/map_resources_scope.h b/cpp/utils/cuda/map_resources_scope.h new file mode 100644 index 0000000..ab7bdf5 --- /dev/null +++ b/cpp/utils/cuda/map_resources_scope.h @@ -0,0 +1,25 @@ +#include <cuda_runtime.h> +#include <vector> +#include "error.h" + +namespace utils::cuda { + class MapResourcesScope { + public: + MapResourcesScope(const std::vector<cudaGraphicsResource_t> &resources, + cudaStream_t stream = nullptr) + : _resources(resources), _stream(stream) { + if (!_resources.empty()) + THROW_IF_FAILED( + cudaGraphicsMapResources((int)_resources.size(), _resources.data(), _stream)); + } + + ~MapResourcesScope() { + if (!_resources.empty()) + cudaGraphicsUnmapResources((int)_resources.size(), _resources.data(), _stream); + } + + private: + std::vector<cudaGraphicsResource_t> _resources; + cudaStream_t _stream; + }; +} // namespace utils::cuda diff --git a/cpp/utils/cuda/resource.h b/cpp/utils/cuda/resource.h new file mode 100644 index 0000000..6a07298 --- /dev/null +++ b/cpp/utils/cuda/resource.h @@ -0,0 +1,70 @@ +#pragma once +#include <cuda_runtime.h> +#include "../common.h" +#include "error.h" + +namespace utils::cuda { + class Resource { + public: + virtual ~Resource() {} + + virtual void *getBuffer() const = 0; + + virtual size_t size() const = 0; + }; + + class BufferResource : public Resource { + public: + BufferResource(void *buffer = nullptr, size_t size = 0) + : _p_buffer(buffer), _ownBuffer(false), _size(size) {} + BufferResource(size_t size) : _ownBuffer(true), _size(size) { + void *p_buffer; + THROW_IF_FAILED(cudaMalloc(&p_buffer, size)); + _p_buffer = std::shared_ptr<void>(p_buffer); + } + + virtual ~BufferResource() { + if (!_ownBuffer || _p_buffer.use_count() > 1) + return; + try { + THROW_IF_FAILED(cudaFree(_p_buffer.get())); + } catch (std::exception &ex) { + common::Logger::instance.warning("Exception raised in destructor: %s", ex.what()); + } + } + + virtual void *getBuffer() const { return _p_buffer.get(); } + + virtual size_t size() const { return _size; } + + private: + std::shared_ptr<void> _p_buffer; + bool _ownBuffer; + size_t _size; + }; + + class GraphicsResource : public Resource { + public: + cudaGraphicsResource_t getHandler() { return _res; } + + virtual ~GraphicsResource() { + if (_res == nullptr) + return; + try { + THROW_IF_FAILED(cudaGraphicsUnregisterResource(_res)); + } catch (std::exception &ex) { + common::Logger::instance.warning("Exception raised in destructor: %s", ex.what()); + } + _res = nullptr; + } + + virtual size_t size() const { return _size; } + + protected: + cudaGraphicsResource_t _res; + size_t _size; + + GraphicsResource() : _res(nullptr), _size(0) {} + }; + +} // namespace utils::cuda diff --git a/cpp/utils/cuda/resources.h b/cpp/utils/cuda/resources.h new file mode 100644 index 0000000..0131b4a --- /dev/null +++ b/cpp/utils/cuda/resources.h @@ -0,0 +1,18 @@ +#include "resource.h" +#include <map> +#include <vector> + +namespace utils::cuda { + class Resources : public std::map<std::string, Resource &> { + public: + std::vector<cudaGraphicsResource_t> getGraphicsResourceHandlers() { + std::vector<cudaGraphicsResource_t> handlers; + for (auto &&item : *this) { + auto gres = dynamic_cast<GraphicsResource *>(&item.second); + if (gres != nullptr) + handlers.push_back(gres->getHandler()); + } + return handlers; + } + }; +} // namespace utils::cuda diff --git a/cpp/utils/cuda/stream.h b/cpp/utils/cuda/stream.h new file mode 100644 index 0000000..7884dd4 --- /dev/null +++ b/cpp/utils/cuda/stream.h @@ -0,0 +1,21 @@ +#include <cuda_runtime.h> +#include <memory> + +namespace utils::cuda { + class Stream { + public: + Stream() : _p_stream(std::make_shared<cudaStream_t>()) { + cudaStreamCreate(_p_stream.get()); + } + + virtual ~Stream() { + if (_p_stream.use_count() == 1) + cudaStreamDestroy(*_p_stream); + } + + operator cudaStream_t() { return *_p_stream; } + + private: + std::shared_ptr<cudaStream_t> _p_stream; + }; +} // namespace utils::cuda diff --git a/cpp/utils/debug.h b/cpp/utils/debug.h new file mode 100644 index 0000000..6187caf --- /dev/null +++ b/cpp/utils/debug.h @@ -0,0 +1,9 @@ +template <typename T, typename T2 = T> +void dumpArray(std::ostream &so, CudaArray<T> &arr, size_t maxDumpRows = 0, + size_t elemsPerRow = 1) { + int chns = sizeof(T) / sizeof(T2); + T2 *hostArr = new T2[arr.n() * chns]; + cudaMemcpy(hostArr, arr.getBuffer(), arr.n() * sizeof(T), cudaMemcpyDeviceToHost); + dumpHostBuffer<T2>(so, hostArr, arr.n() * sizeof(T), chns * elemsPerRow, maxDumpRows); + delete[] hostArr; +} \ No newline at end of file diff --git a/cpp_old/msl_infer/Nmsl2.h b/cpp_old/msl_infer/Nmsl2.h deleted file mode 100755 index 8d73476..0000000 --- a/cpp_old/msl_infer/Nmsl2.h +++ /dev/null @@ -1,25 +0,0 @@ -#pragma once -#include "Msl.h" - -class Nmsl2 : public Msl -{ -public: - sptr<Resource> resRaw1; - sptr<Resource> resRaw2; - Net *fcNet1; - Net *fcNet2; - Net *catNet; - unsigned int batchSize; - unsigned int samples; - - Nmsl2(int batchSize, int samples); - - virtual bool load(const std::string &netDir); - - virtual void bindResources(Resource *resEncoded, Resource *resDepths, Resource *resColors); - - virtual bool infer(); - - virtual void dispose(); - -}; diff --git a/cpp_old/msl_infer/Sampler.h b/cpp_old/msl_infer/Sampler.h deleted file mode 100755 index 2457ebb..0000000 --- a/cpp_old/msl_infer/Sampler.h +++ /dev/null @@ -1,15 +0,0 @@ -#pragma once -#include "../utils/common.h" - -class Sampler { -public: - Sampler(glm::vec2 depthRange, unsigned int samples, bool outputRadius) - : _dispRange(1.0f / depthRange, samples), _outputRadius(outputRadius) {} - - void sampleOnRays(sptr<CudaArray<float>> o_coords, sptr<CudaArray<float>> o_depths, - sptr<CudaArray<glm::vec3>> rays, glm::vec3 rayCenter); - -private: - Range _dispRange; - bool _outputRadius; -}; \ No newline at end of file diff --git a/cpp_old/old/msl_infer/Msl.cpp b/cpp_old/old/msl_infer/Msl.cpp deleted file mode 100644 index e966669..0000000 --- a/cpp_old/old/msl_infer/Msl.cpp +++ /dev/null @@ -1,28 +0,0 @@ -#include "Msl.h" -#include <time.h> - -Msl::Msl() : net(nullptr) {} - -bool Msl::load(const std::string &netPath) { - net = new Net(); - if (net->load(netPath)) - return true; - dispose(); - return false; -} - -void Msl::bindResources(Resource *resEncoded, Resource *resDepths, Resource *resColors) { - net->bindResource("Encoded", resEncoded); - net->bindResource("Depths", resDepths); - net->bindResource("Colors", resColors); -} - -bool Msl::infer() { return net->infer(); } - -void Msl::dispose() { - if (net != nullptr) { - net->dispose(); - delete net; - net = nullptr; - } -} diff --git a/cpp_old/old/msl_infer/Msl.h b/cpp_old/old/msl_infer/Msl.h deleted file mode 100644 index 0a9e3e7..0000000 --- a/cpp_old/old/msl_infer/Msl.h +++ /dev/null @@ -1,15 +0,0 @@ -#pragma once -#include "../utils/common.h" -#include "Net.h" - -class Msl { -public: - Net *net; - - Msl(); - - virtual bool load(const std::string &netDir); - virtual void bindResources(Resource *resEncoded, Resource *resDepths, Resource *resColors); - virtual bool infer(); - virtual void dispose(); -}; diff --git a/cpp_old/old/msl_infer/Nmsl2.cpp b/cpp_old/old/msl_infer/Nmsl2.cpp deleted file mode 100644 index 5d41d0f..0000000 --- a/cpp_old/old/msl_infer/Nmsl2.cpp +++ /dev/null @@ -1,65 +0,0 @@ -#include "Nmsl2.h" -#include <time.h> - -Nmsl2::Nmsl2(int batchSize, int samples) - : batchSize(batchSize), - samples(samples), - resRaw1(nullptr), - resRaw2(nullptr), - fcNet1(nullptr), - fcNet2(nullptr), - catNet(nullptr) {} - -bool Nmsl2::load(const std::string &netDir) { - fcNet1 = new Net(); - fcNet2 = new Net(); - catNet = new Net(); - if (!fcNet1->load(netDir + "fc1.trt") || !fcNet2->load(netDir + "fc2.trt") || - !catNet->load(netDir + "cat.trt")) - return false; - resRaw1 = sptr<Resource>(new CudaBuffer(batchSize * samples / 2 * sizeof(float4))); - resRaw2 = sptr<Resource>(new CudaBuffer(batchSize * samples / 2 * sizeof(float4))); - return true; -} - -void Nmsl2::bindResources(Resource *resEncoded, Resource *resDepths, Resource *resColors) { - fcNet1->bindResource("Encoded", resEncoded); - fcNet1->bindResource("Raw", resRaw1.get()); - fcNet2->bindResource("Encoded", resEncoded); - fcNet2->bindResource("Raw", resRaw2.get()); - catNet->bindResource("Raw1", resRaw1.get()); - catNet->bindResource("Raw2", resRaw2.get()); - catNet->bindResource("Depths", resDepths); - catNet->bindResource("Colors", resColors); -} - -bool Nmsl2::infer() { - // CudaStream stream1, stream2; - if (!fcNet1->infer()) - return false; - if (!fcNet2->infer()) - return false; - if (!catNet->infer()) - return false; - return true; -} - -void Nmsl2::dispose() { - if (fcNet1 != nullptr) { - fcNet1->dispose(); - delete fcNet1; - fcNet1 = nullptr; - } - if (fcNet2 != nullptr) { - fcNet2->dispose(); - delete fcNet2; - fcNet2 = nullptr; - } - if (catNet != nullptr) { - catNet->dispose(); - delete catNet; - catNet = nullptr; - } - resRaw1 = nullptr; - resRaw2 = nullptr; -} diff --git a/cpp_old/old/msl_infer/Renderer.cu b/cpp_old/old/msl_infer/Renderer.cu deleted file mode 100644 index 29c35cc..0000000 --- a/cpp_old/old/msl_infer/Renderer.cu +++ /dev/null @@ -1,28 +0,0 @@ -#include "Renderer.h" -#include "../utils/cuda.h" - -/// Dispatch (n_rays, -) -__global__ void cu_render(glm::vec4 *o_colors, glm::vec4 *layeredColors, uint samples, uint nRays) { - glm::uvec3 idx3 = IDX3; - uint rayIdx = idx3.x; - if (rayIdx >= nRays) - return; - glm::vec4 outColor; - for (int si = samples - 1; si >= 0; --si) { - glm::vec4 c = layeredColors[rayIdx * samples + si]; - outColor = outColor * (1 - c.a) + c * c.a; - } - outColor.a = 1.0f; - o_colors[idx3.x] = outColor; -} - -Renderer::Renderer() {} - -void Renderer::render(sptr<CudaArray<glm::vec4>> o_colors, - sptr<CudaArray<glm::vec4>> layeredColors) { - dim3 blkSize(1024); - dim3 grdSize(ceilDiv(o_colors->n(), blkSize.x)); - CU_INVOKE(cu_render) - (*o_colors, *layeredColors, layeredColors->n() / o_colors->n(), o_colors->n()); - CHECK_EX(cudaGetLastError()); -} \ No newline at end of file diff --git a/cpp_old/old/msl_infer/Renderer.h b/cpp_old/old/msl_infer/Renderer.h deleted file mode 100644 index 4e48a0e..0000000 --- a/cpp_old/old/msl_infer/Renderer.h +++ /dev/null @@ -1,15 +0,0 @@ -#pragma once -#include "../utils/common.h" - -class Renderer { -public: - Renderer(); - - /** - * @brief - * - * @param o_colors - * @param layeredColors - */ - void render(sptr<CudaArray<glm::vec4>> o_colors, sptr<CudaArray<glm::vec4>> layeredColors); -}; \ No newline at end of file diff --git a/cpp_old/utils/Logger.cpp b/cpp_old/utils/Logger.cpp deleted file mode 100755 index 17f3d8c..0000000 --- a/cpp_old/utils/Logger.cpp +++ /dev/null @@ -1,3 +0,0 @@ -#include "Logger.h" - -Logger Logger::instance; diff --git a/cpp_old/utils/thread_index.h b/cpp_old/utils/thread_index.h deleted file mode 100755 index d8b0faa..0000000 --- a/cpp_old/utils/thread_index.h +++ /dev/null @@ -1,15 +0,0 @@ -#include <device_launch_parameters.h> -#include <glm/glm.hpp> - -#define IDX2 glm::uvec2 { blockIdx.x * blockDim.x + threadIdx.x, blockIdx.y * blockDim.y + threadIdx.y } -#define IDX3 glm::uvec3 { blockIdx.x * blockDim.x + threadIdx.x, blockIdx.y * blockDim.y + threadIdx.y, blockIdx.z * blockDim.z + threadIdx.z } - -__device__ __forceinline__ unsigned int flattenIdx(glm::uvec3 idx3) -{ - return idx3.x + idx3.y * blockDim.x * gridDim.x + idx3.z * blockDim.x * gridDim.x * blockDim.y * gridDim.y; -} - -__device__ __forceinline__ unsigned int flattenIdx() -{ - return flattenIdx(IDX3); -} \ No newline at end of file diff --git a/data/__init__.py b/data/__init__.py index 5e8ac37..a35bc07 100644 --- a/data/__init__.py +++ b/data/__init__.py @@ -1,3 +1,2 @@ -from .utils import * -from .dataset_factory import * -from .loader import * \ No newline at end of file +from .dataset import DataDesc, Dataset +from .loader import RaysLoader, MultiScaleDataLoader diff --git a/data/dataset.py b/data/dataset.py index 1fb4372..dbd9666 100644 --- a/data/dataset.py +++ b/data/dataset.py @@ -1,93 +1,267 @@ +import json import torch +import torch.utils.data +import torch.nn.functional as nn_f +from typing import Union from operator import itemgetter -from typing import Tuple, Union -from pathlib import Path -from utils import view -from .utils import get_data_path +try: + from ..utils import view, img, math + from ..utils.types import * + from ..utils.misc import calculate_autosize +except ImportError: + from utils import view, img, math + from utils.types import * + from utils.misc import calculate_autosize -class Dataset(object): - desc: dict - desc_path: Path - device: torch.device +class DataDesc(dict[str, Any]): + path: Path @property - def name(self): - return self.desc_path.stem + def name(self) -> str: + return self.path.stem @property - def root(self): - return self.desc_path.parent + def root(self) -> Path: + return self.path.parent @property - def n_views(self): - return self.centers.size(0) + def coord_sys(self) -> str: + return "gl" if self.get("gl_coord") else "dx" + + def __init__(self, path: PathLike): + path = DataDesc.get_json_path(path) + with open(path, 'r', encoding='utf-8') as file: + data = json.loads(file.read()) + super().__init__(data) + self.path = path + + @staticmethod + def get_json_path(path: PathLike) -> Path: + path = Path(path) + if path.suffix != ".json": + path = Path(f"{path}.json") + return path.absolute() + + def get(self, key: str, fn=lambda x: x, default=None) -> Any | None: + if key in self: + return fn(self[key]) + return default + + def get_as_tensor(self, key: str, fn=lambda x: x, default=None, dtype=torch.float, device=None, + shape=None) -> torch.Tensor | None: + raw_value = self.get(key, fn, default) + if raw_value is None: + return raw_value + tensor_value = torch.tensor(raw_value, dtype=dtype, device=device) + if shape is not None: + tensor_value = tensor_value.reshape(shape) + return tensor_value + + def get_path(self, name: str) -> str | None: + path_pattern = self.get(f"{name}_file") + if not path_pattern: + return None + if "/" not in path_pattern: + path_pattern = f"{self.name}/{path_pattern}" + return str(self.root / path_pattern) + + +class Dataset(torch.utils.data.Dataset): + + root: Path + """`Path` Root directory of the dataset""" + name: str + """`str` Name of the dataset""" + color_mode: Color + """`Color` Color mode of images in the dataset""" + white_bg: bool + """`bool` Images in the dataset should have white background""" + level: int + """`int` Level of this dataset""" + res: Resolution + """`Resolution` Resolution of each view as (rows, columns)""" + coord_sys: str + """`str` Coordinate system, must be 'dx' or 'gl'""" + device: torch.device + """`device` Device of tensors""" + cam: view.Camera + """`Camera?` Camera object""" + depth_range: tuple[float, float] | None + """`(float, float)?` Depth range of the scene as a guide to sampling""" + bbox: tuple[tuple[float, ...], tuple[float, ...]] | None + """`((float,...), (float,...))?` Bounding box of the scene as a guide to sampling""" + trans_range: tuple[tuple[float, ...], tuple[float, ...]] | None + """`((float,...), (float,...))?` Acceptable Translation (and optional rotation) range""" + color_path: str | None + """`str?` Path of image data""" + depth_path: str | None + """`str?` Path of depth data""" + indices: torch.Tensor + """`Tensor(N)` Indices for loading specific subset of views in the dataset""" + centers: torch.Tensor + """`Tensor(N, 3)` Center positions of views""" + rots: torch.Tensor | None + """`Tensor(N, 3, 3)?` Rotation matrices of views""" @property - def n_pixels_per_view(self): - return self.res[0] * self.res[1] + def disparity_range(self) -> tuple[float, float] | None: + return self.depth_range and (1 / self.depth_range[0], 1 / self.depth_range[1]) @property - def n_pixels(self): - return self.n_views * self.n_pixels_per_view + def pixels_per_view(self) -> int: + return self.cam.local_rays.shape[0] + + @property + def tot_pixels(self) -> int: + return len(self) * self.pixels_per_view + + @overload + def __init__(self, desc: DataDesc, *, + res: Resolution | tuple[int, int] | None = None, + views_to_load: IndexSelector | None = None, + color_mode: Color = Color.rgb, + coord_sys: str = "gl", + device: torch.device = None) -> None: + ... - def __init__(self, desc: dict, desc_path: Path, *, - res: Tuple[int, int] = None, - views_to_load: Union[range, torch.Tensor] = None, - device: torch.device = None, **kwargs) -> None: + @overload + def __init__(self, dataset: "Dataset", *, + views_to_load: IndexSelector | None = None) -> None: + ... + + def __init__(self, dataset_or_desc: Union["Dataset", DataDesc, PathLike], *, + res: tuple[int, int] = None, + views_to_load: IndexSelector = None, + color_mode: Color = Color.rgb, + coord_sys: str = "gl", + device: torch.device = None) -> None: super().__init__() - self.desc = desc - self.desc_path = desc_path.absolute() - self.device = device - self._load_desc(res, views_to_load, **kwargs) + if isinstance(dataset_or_desc, Dataset): + self._init_from_dataset(dataset_or_desc, views_to_load=views_to_load) + else: + self._init_from_desc(dataset_or_desc, res=res, views_to_load=views_to_load, + color_mode=color_mode, coord_sys=coord_sys, device=device) - def get_data(self): + def __getitem__(self, index: int | torch.Tensor | slice) -> dict[str, torch.Tensor]: + if isinstance(index, torch.Tensor) and len(index.shape) == 0: + index = index.item() + view_index = self.indices[index] data = { - 'indices': self.indices, - 'centers': self.centers + "t": self.centers[index] } if self.rots is not None: - data['rots'] = self.rots + data["r"] = self.rots[index] + for image_type in ["color", "depth"]: + image = self.load_images(image_type, view_index) + if image is not None: + data[image_type] = self.cam.get_pixels(image) + if isinstance(index, int): + data[image_type].squeeze_(0) return data - def _get_data_path(self, name: str) -> str: - path_pattern = self.desc.get(f"{name}_file_pattern", None) - return path_pattern and get_data_path(self.desc_path, path_pattern) - - def _load_desc(self, res: Tuple[int, int], views_to_load: Union[range, torch.Tensor], - **kwargs): - self.level = self.desc.get('level', 0) - self.res = res or itemgetter("y", "x")(self.desc['view_res']) - self.cam = view.CameraParam(self.desc['cam_params'], self.res, device=self.device)\ - if 'cam_params' in self.desc else None - self.depth_range = itemgetter("min", "max")(self.desc['depth_range']) \ - if 'depth_range' in self.desc else None - self.range = itemgetter("min", "max")(self.desc['range']) if 'range' in self.desc else None - self.bbox = self.desc.get('bbox') - self.samples = self.desc.get('samples') - self.centers = torch.tensor(self.desc['view_centers'], device=self.device) # (N, 3) - self.rots = torch.tensor( - [ - view.euler_to_matrix([rot[1] if self.desc.get('gl_coord') else -rot[1], rot[0], 0]) - for rot in self.desc['view_rots'] - ] - if len(self.desc['view_rots'][0]) == 2 else self.desc['view_rots'], - device=self.device).view(-1, 3, 3) if 'view_rots' in self.desc else None # (N, 3, 3) - self.indices = torch.tensor(self.desc.get('views') or [*range(self.centers.size(0))], - device=self.device) + def __len__(self): + return self.indices.shape[0] + + def load_images(self, type: str, indices: int | torch.Tensor | list[int]) -> torch.Tensor: + if not getattr(self, f"{type}_path"): + return None + if isinstance(indices, int): + raw_images = img.load(getattr(self, f"{type}_path") % indices) + elif isinstance(indices, torch.Tensor) and len(indices.shape) == 0: + raw_images = img.load(getattr(self, f"{type}_path") % indices.item()) + else: + raw_images = img.load(*[getattr(self, f"{type}_path") % i for i in indices]) + raw_images = raw_images.to(device=self.device) + if self.res != list(raw_images.shape[-2:]): + raw_images = nn_f.interpolate(raw_images, self.res) + if type == "image": + return Color.cvt(raw_images, Color.rgb, self.color_mode) + elif type == "depth": + return math.lerp(1 - raw_images, self.disparity_range).reciprocal() + return raw_images + + def split(self, *views: int) -> list["Dataset"]: + views, _ = calculate_autosize(len(self), *views) + sub_datasets: list["Dataset"] = [] + offset = 0 + for i in range(len(views)): + end = offset + views[i] + sub_datasets.append(Dataset(self, views_to_load=slice(offset, end))) + offset = end + return sub_datasets + + def _init_from_desc(self, desc_or_path: DataDesc | PathLike, res: tuple[int, int] | None, + views_to_load: IndexSelector | None, color_mode: Color, + coord_sys: str, device: torch.device) -> None: + desc = desc_or_path if isinstance(desc_or_path, DataDesc) else DataDesc(desc_or_path) + self.root = desc.root + self.name = desc.name + self.color_mode = color_mode + self.white_bg = desc.get("white_bg", default=False) + self.level = desc.get('level', default=0) + self.color_path = desc.get_path("color") + self.depth_path = desc.get_path("depth") + self.res = Resolution(*res) if res else Resolution.from_str(desc["res"]) + self.coord_sys = coord_sys + self.device = device + + self.cam = view.Camera.create(desc["cam"], self.res, coord_sys=self.coord_sys, device=device) + self.depth_range = desc.get("depth_range") + self.bbox = desc.get("bbox", lambda val: (tuple(val[:len(val) // 2]), + tuple(val[len(val) // 2:]))) + self.trs_range = desc.get("trs_range") + self.rot_range = desc.get("rot_range") + self.centers = desc.get_as_tensor("centers", device=device) + self.rots = desc.get_as_tensor("rots", lambda rots: [ + view.euler_to_matrix(rot[1] if desc.coord_sys == "gl" else -rot[1], rot[0], 0) + for rot in rots + ] if len(rots[0]) == 2 else rots, shape=(-1, 3, 3), device=device) + self.indices = desc.get_as_tensor("views", default=list(range(self.centers.shape[0])), + dtype=torch.long, device=device) if views_to_load is not None: + if isinstance(views_to_load, list): + views_to_load = torch.tensor(views_to_load, device=device) + self.indices = self.indices[views_to_load] self.centers = self.centers[views_to_load] self.rots = self.rots[views_to_load] if self.rots is not None else None - self.indices = self.indices[views_to_load] - if self.desc.get('gl_coord'): - print('Convert from OGL coordinate to DX coordinate (i.e. flip z axis)') + if desc.coord_sys != self.coord_sys: self.centers[:, 2] *= -1 - if self.cam is not None: - if not self.desc['cam_params'].get('fov'): - self.cam.f[1] *= -1 if self.rots is not None: self.rots[:, 2] *= -1 self.rots[..., 2] *= -1 + + def _init_from_dataset(self, dataset: "Dataset", views_to_load: IndexSelector | None) -> None: + """ + Clone or get subset of an existed dataset + + :param dataset `Dataset`: _description_ + :param views_to_load `IndexSelector?`: _description_, defaults to None + """ + self.root = dataset.root + self.name = dataset.name + self.color_mode = dataset.color_mode + self.level = dataset.level + self.res = dataset.res + self.coord_sys = dataset.coord_sys + self.device = dataset.device + self.cam = dataset.cam + self.depth_range = dataset.depth_range + self.bbox = dataset.bbox + self.trs_range = dataset.trs_range + self.rot_range = dataset.rot_range + self.color_path = dataset.color_path + self.depth_path = dataset.depth_path + if views_to_load is not None: + if isinstance(views_to_load, list): + views_to_load = torch.tensor(views_to_load, device=dataset.device) + self.indices = dataset.indices[views_to_load].clone() + self.centers = dataset.centers[views_to_load].clone() + self.rots = None if dataset.rots is None else dataset.rots[views_to_load].clone() + else: + self.indices = dataset.indices.clone() + self.centers = dataset.centers.clone() + self.rots = None if dataset.rots is None else dataset.rots.clone() diff --git a/data/dataset_factory.py b/data/dataset_factory.py deleted file mode 100644 index bf14cd4..0000000 --- a/data/dataset_factory.py +++ /dev/null @@ -1,23 +0,0 @@ -import json -from pathlib import Path - -import utils.device -from .utils import get_dataset_desc_path -from .pano_dataset import PanoDataset -from .view_dataset import ViewDataset - - -class DatasetFactory(object): - - @staticmethod - def load(path: Path, device=None, **kwargs): - device = device or utils.device.default() - path = get_dataset_desc_path(path) - with open(path, 'r', encoding='utf-8') as file: - data_desc: dict = json.loads(file.read()) - if data_desc.get('type') == 'pano': - dataset_class = PanoDataset - else: - dataset_class = ViewDataset - dataset = dataset_class(data_desc, path.absolute(), device=device, **kwargs) - return dataset diff --git a/data/loader.py b/data/loader.py index 1458075..b923f9a 100644 --- a/data/loader.py +++ b/data/loader.py @@ -1,125 +1,106 @@ -import threading -import torch -import math -from logging import * -from typing import Dict, List +import torch.utils.data +from tqdm import tqdm +from collections import defaultdict +from .dataset import Dataset +try: + from ..utils import math + from ..utils.types import * +except ImportError: + from utils import math + from utils.types import * -class Preloader(object): - - def __init__(self, device=None) -> None: - super().__init__() - self.stream = torch.cuda.Stream(device) - self.event_chunk_loaded = None - - def preload_chunk(self, chunk): - if self.event_chunk_loaded is not None: - self.event_chunk_loaded.wait() - if chunk.loaded: - return - # print(f'Preloader: preload chunk #{chunk.id}') - self.event_chunk_loaded = threading.Event() - threading.Thread(target=Preloader._load_chunk, args=(self, chunk)).start() - - def _load_chunk(self, chunk): - with torch.cuda.stream(self.stream): - chunk.load() - self.event_chunk_loaded.set() - # print(f'Preloader: chunk #{chunk.id} is loaded') +class RaysLoader(object): -class DataLoader(object): + class Iterator(object): - class Iter(object): - - def __init__(self, chunks, batch_size, shuffle, device: torch.device, preloader: Preloader): + def __init__(self, loader: "RaysLoader"): super().__init__() - self.batch_size = batch_size - self.chunks = chunks - self.offset = -1 - self.chunk_idx = -1 - self.current_chunk = None - self.shuffle = shuffle - self.device = device - self.preloader = preloader + self.loader = loader + self.offset = 0 - def __del__(self): - #print('DataLoader.Iter: clean chunks') - if self.preloader is not None and self.preloader.event_chunk_loaded is not None: - self.preloader.event_chunk_loaded.wait() - chunks_to_reserve = 1 if self.preloader is None else 2 - for i in range(chunks_to_reserve, len(self.chunks)): - if self.chunks[i].loaded: - self.chunks[i].release() + # Initialize ray indices + #self.ray_indices = torch.randperm(self.loader.tot_pixels, device=self.loader.device)\ + # if loader.shuffle else torch.arange(self.loader.tot_pixels, device=self.loader.device) + self.ray_indices = torch.randperm(self.loader.tot_pixels, device="cpu")\ + if loader.shuffle else torch.arange(self.loader.tot_pixels, device="cpu") - def __next__(self): - if self.offset == -1: - self._next_chunk() - stop = min(self.offset + self.batch_size, len(self.current_chunk)) - if self.indices is not None: - indices = self.indices[self.offset:stop] - else: - indices = torch.arange(self.offset, stop, device=self.device) - self.offset = stop - if self.offset >= len(self.current_chunk): - self.offset = -1 - return self.current_chunk[indices] - - def _next_chunk(self): - if self.current_chunk is not None: - chunks_to_reserve = 1 if self.preloader is None else 2 - if len(self.chunks) > chunks_to_reserve: - self.current_chunk.release() - if self.chunk_idx >= len(self.chunks) - 1: + def __next__(self) -> Rays: + if self.offset >= self.ray_indices.shape[0]: raise StopIteration() - self.chunk_idx += 1 - self.current_chunk = self.chunks[self.chunk_idx] - self.offset = 0 - self.indices = torch.randperm(len(self.current_chunk)).to(device=self.device) \ - if self.shuffle else None - if self.preloader is not None: - self.preloader.preload_chunk(self.chunks[(self.chunk_idx + 1) % len(self.chunks)]) - - def __init__(self, dataset, batch_size, *, - chunk_max_items=None, shuffle=False, enable_preload=True, **chunk_args): + stop = min(self.offset + self.loader.batch_size, self.ray_indices.shape[0]) + rays = self._get_rays(self.ray_indices[self.offset:stop]) + self.offset = stop + return rays + + def _get_rays(self, indices: torch.Tensor) -> Rays: + indices_on_device = indices.to(self.loader.device) # (B) + view_idx = torch.div(indices_on_device, self.loader.pixels_per_view, rounding_mode="trunc") + pix_idx = indices_on_device % self.loader.pixels_per_view + rays_o = self.loader.centers[view_idx] # (B, 3) + rays_d = self.loader.local_rays[pix_idx] # (B, 3) + if self.loader.rots is not None: + rays_d = (self.loader.rots[view_idx] @ rays_d[..., None])[..., 0] + rays = Rays({ + 'level': self.loader.level, + 'idx': indices_on_device, + 'rays_o': rays_o, + 'rays_d': rays_d + }) + + # "colors" and "depths" are on host memory. Move part of them to device memory + indices = indices.to("cpu") + for image_type in ["color", "depth"]: + if image_type in self.loader.data: + rays[image_type] = self.loader.data[image_type][indices].to( + self.loader.device, non_blocking=True) + return rays + + def __init__(self, dataset: Dataset, batch_size: int, *, + shuffle: bool = False, num_workers: int = 8, device: torch.device = None): super().__init__() self.dataset = dataset self.batch_size = batch_size + self.device = device self.shuffle = shuffle - self.chunk_args = chunk_args - self.preloader = Preloader(self.dataset.device) if enable_preload else None - self._init_chunks(chunk_max_items) + + self.level = dataset.level + self.n_views = len(dataset) + self.pixels_per_view = dataset.pixels_per_view + self.tot_pixels = self.n_views * self.pixels_per_view + + self.indices = dataset.indices.to(self.device) + self.centers = dataset.centers.to(self.device) + self.rots = dataset.rots.to(self.device) if dataset.rots is not None else None + self.local_rays = dataset.cam.local_rays.to(self.device) + + # Load views from dataset + self.data = defaultdict(list) + views_loader = torch.utils.data.DataLoader(dataset, num_workers=num_workers, + pin_memory=True) + for view_data in tqdm(views_loader, "Loading views", leave=False, dynamic_ncols=True): + for key, val in view_data.items(): + self.data[key].append(val) + print(f"{len(dataset)} views loaded.") + self.data = { + key: torch.cat(val).flatten(0, 1) + for key, val in self.data.items() + if key == "color" or key == "depth" + } def __iter__(self): - return DataLoader.Iter(self.chunks, self.batch_size, self.shuffle, self.dataset.device, - self.preloader) + return RaysLoader.Iterator(self) def __len__(self): - return sum(math.ceil(len(chunk) / self.batch_size) for chunk in self.chunks) - - def _init_chunks(self, chunk_max_items): - data: Dict[str, torch.Tensor] = self.dataset.get_data() - if self.shuffle: - rand_seq = torch.randperm(self.dataset.n_views).to(device=self.dataset.device) - data = {key: val[rand_seq] for key, val in data.items()} - self.chunks = [] - n_chunks = 1 if chunk_max_items is None else \ - math.ceil(self.dataset.n_pixels / chunk_max_items) - views_per_chunk = math.ceil(self.dataset.n_views / n_chunks) - for offset in range(0, self.dataset.n_views, views_per_chunk): - sel = slice(offset, offset + views_per_chunk) - chunk_data = {key: val[sel] for key, val in data.items()} - self.chunks.append(self.dataset.Chunk(len(self.chunks), self.dataset, - chunk_data=chunk_data, **self.chunk_args)) - if self.preloader is not None: - self.preloader.preload_chunk(self.chunks[0]) + return math.ceil(self.tot_pixels / self.batch_size) class MultiScaleDataLoader(object): class Iter(object): - def __init__(self, sub_loaders: List[DataLoader]): + def __init__(self, sub_loaders: list[RaysLoader]): super().__init__() self.sub_loaders = sub_loaders self.end_flags = [False] * len(sub_loaders) @@ -150,15 +131,13 @@ class MultiScaleDataLoader(object): return data_frags - def __init__(self, dataset, batch_size, *, - chunk_max_items=None, shuffle=False, enable_preload=True, **chunk_args): + def __init__(self, dataset: Dataset, batch_size, *, + views_per_chunk=8, shuffle=False, num_workers=4, device: torch.device = None): super().__init__() self.batch_size = batch_size self.sub_loaders = [ - DataLoader(sub_dataset, batch_size // len(dataset), - chunk_max_items=chunk_max_items // len(dataset) - if chunk_max_items is not None else None, - shuffle=shuffle, enable_preload=enable_preload, **chunk_args) + RaysLoader(sub_dataset, batch_size // len(dataset), views_per_chunk=views_per_chunk, + shuffle=shuffle, num_workers=num_workers, device=device) for sub_dataset in dataset ] # Sort by datasets' levels @@ -178,10 +157,12 @@ class MultiScaleDataLoader(object): if not isinstance(self.active_sub_loaders, list): self.active_sub_loaders = [self.active_sub_loaders] + def get_loader(dataset, batch_size, *, - chunk_max_items=None, shuffle=False, enable_preload=True, **chunk_args): + views_per_chunk=8, shuffle=False, num_workers=4, device: torch.device = None): if isinstance(dataset, list): - return MultiScaleDataLoader(dataset, batch_size, chunk_max_items=chunk_max_items, - shuffle=shuffle, enable_preload=enable_preload, **chunk_args) - return DataLoader(dataset, batch_size, chunk_max_items=chunk_max_items, - shuffle=shuffle, enable_preload=enable_preload, **chunk_args) + raise NotImplementedError() + return MultiScaleDataLoader(dataset, batch_size, views_per_chunk=views_per_chunk, + shuffle=shuffle, num_workers=num_workers, device=device) + return RaysLoader(dataset, batch_size, views_per_chunk=views_per_chunk, + shuffle=shuffle, num_workers=num_workers, device=device) diff --git a/data/pano_dataset.py b/data/pano_dataset.py deleted file mode 100644 index 9cd8bd7..0000000 --- a/data/pano_dataset.py +++ /dev/null @@ -1,157 +0,0 @@ -import os -import torch -import torch.nn.functional as nn_f -from typing import Dict, Tuple, Union -from operator import itemgetter -from pathlib import Path - -from utils import img -from utils import color -from utils import sphere -from utils import math -from utils.mem_profiler import * -from .dataset import Dataset - - -class PanoDataset(Dataset): - """ - Data loader for spherical view synthesis task - - Attributes - -------- - data_dir ```str```: the directory of dataset\n - view_file_pattern ```str```: the filename pattern of view images\n - cam_params ```object```: camera intrinsic parameters\n - centers ```Tensor(N, 3)```: centers of views\n - view_rots ```Tensor(N, 3, 3)```: rotation matrices of views\n - images ```Tensor(N, 3, H, W)```: images of views\n - view_depths ```Tensor(N, H, W)```: depths of views\n - """ - - class Chunk(object): - - @property - def n_views(self): - return self.indices.size(0) - - @property - def n_pixels_per_view(self): - return self.dataset.n_pixels_per_view - - def __init__(self, id: int, dataset, chunk_data: Dict[str, torch.Tensor], *, - color: int, **kwargs): - """ - [summary] - - :param dataset `PanoDataset`: dataset object - :param indices `Tensor(N)`: indices of views - :param centers `Tensor(N, 3)`: centers of views - """ - self.id = id - self.dataset = dataset - self.indices = chunk_data['indices'] - self.centers = chunk_data['centers'] - self.color = color - self.colors_cpu = None - self.colors = None - self.loaded = False - - def release(self): - self.colors = None - self.loaded = False - MemProfiler.print_memory_stats(f'Chunk #{self.id} released') - - def load(self): - if self.dataset.image_path and self.colors_cpu is None: - images = color.cvt(img.load(self.dataset.image_path % i for i in self.indices), - color.RGB, self.color) - if self.dataset.res != tuple(images.shape[-2:]): - images = nn_f.interpolate(images, self.dataset.res) - self.colors_cpu = images.permute( - 0, 2, 3, 1)[:, self.dataset.pixels[:, 0], self.dataset.pixels[:, 1]].flatten(0, 1) - if self.colors_cpu is not None: - self.colors = self.colors_cpu.to(self.dataset.device) - self.loaded = True - MemProfiler.print_memory_stats( - f'Chunk #{self.id} ({self.n_views} views, ' - f'{self.colors.numel() * self.colors.element_size() / 1024 / 1024:.2f}MB) loaded') - - def __len__(self): - return self.n_views * self.n_pixels_per_view - - def __getitem__(self, idx): - if not self.loaded: - self.load() - view_idx = idx // self.n_pixels_per_view - pix_idx = idx % self.n_pixels_per_view - global_idx = self.indices[view_idx] * self.n_pixels_per_view + pix_idx - rays_o = self.centers[view_idx] - rays_d = self.dataset.rays[pix_idx] - data = { - 'idx': global_idx, - 'rays_o': rays_o, - 'rays_d': rays_d, - 'level': self.dataset.level - } - if self.colors is not None: - data['color'] = self.colors[idx] - return data - - @property - def n_pixels_per_view(self): - return self.pixels.size(0) - - def __init__(self, desc: dict, desc_path: Path, *, - load_images: bool = True, - res: Tuple[int, int] = None, - views_to_load: Union[range, torch.Tensor] = None, - device: torch.device = None, - **kwargs): - """ - Initialize data loader for spherical view synthesis task - - The dataset description file is a JSON file with following fields: - - - view_file_pattern: string, the path pattern of view images - - view_res: { "x", "y" }, the resolution of view - - depth_range: { "min", "max" }, the depth range - - range: { "min": [...], "max": [...] }, the range of translation and rotation - - centers: [ [ x, y, z ], ... ], centers of views - - :param desc_path ```str```: path to the data description file - :param load_images ```bool```: whether load view images and return in __getitem__() - :param c ```int```: color space to convert view images to - :param calculate_rays ```bool```: whether calculate rays - """ - super().__init__(desc, desc_path, res=res, views_to_load=views_to_load, device=device, - load_images=load_images) - - def get_data(self): - return { - 'indices': self.indices, - 'centers': self.centers - } - - def _load_desc(self, res: Tuple[int, int], views_to_load: Union[range, torch.Tensor], - load_images: bool): - super()._load_desc(res, views_to_load) - self.image_path = load_images and self._get_data_path("view") - self.pixels, self.rays = self._get_pano_rays() - - def _get_pano_rays(self): - """ - Get unprojected rays of pixels on a panorama - - :return `Tensor(N, 2)`: rays' pixel coordinates in pano image - :return `Tensor(N, 3)`: rays' directions with one unit length - """ - phi = (torch.arange(self.res[0], device=self.device) + 0.5) / self.res[0] * math.pi # (H) - length = (phi.sin() * self.res[1] * 0.5).ceil() * 2 - cols = torch.arange(self.res[1], device=self.device)[None, :].expand(*self.res) # (H, W) - mask = torch.logical_and(cols >= (self.res[1] - length[:, None]) / 2, - cols < (self.res[1] + length[:, None]) / 2) # (H, W) - pixs = mask.nonzero() # (N, 2) - pixs_phi = (0.5 - (pixs[:, 0] + 0.5) / self.res[0]) * math.pi - pixs_theta = (pixs[:, 1] * 2 + 1 - self.res[1]) / length[pixs[:, 0]] * math.pi - spher_coords = torch.stack([torch.ones_like(pixs_phi), pixs_theta, pixs_phi], dim=-1) - return pixs, sphere.spherical2cartesian(spher_coords) # (N, 3) diff --git a/data/utils.py b/data/utils.py deleted file mode 100644 index 9a0d5bb..0000000 --- a/data/utils.py +++ /dev/null @@ -1,16 +0,0 @@ -from typing import Union -from pathlib import Path - - -def get_dataset_desc_path(path: Union[Path, str]) -> Path: - if isinstance(path, str): - path = Path(path) - if path.suffix != ".json": - path = Path(f"{path}.json") - return path - -def get_data_path(dataset_desc_path: Path, path_pattern: str) -> str: - root = dataset_desc_path.parent - if "/" not in path_pattern: - path_pattern = f"{dataset_desc_path.stem}/{path_pattern}" - return str(root / path_pattern) \ No newline at end of file diff --git a/data/view_dataset.py b/data/view_dataset.py deleted file mode 100644 index 3405dee..0000000 --- a/data/view_dataset.py +++ /dev/null @@ -1,156 +0,0 @@ -import torch -import torch.nn.functional as nn_f -from typing import Dict, Tuple, Union -from pathlib import Path - -from utils import img -from utils import color -from .dataset import Dataset - - -class ViewDataset(Dataset): - """ - Data loader for spherical view synthesis task - - Attributes - -------- - data_dir ```str```: the directory of dataset\n - view_file_pattern ```str```: the filename pattern of view images\n - cam ```object```: camera intrinsic parameters\n - view_centers ```Tensor(N, 3)```: centers of views\n - view_rots ```Tensor(N, 3, 3)```: rotation matrices of views\n - view_images ```Tensor(N, 3, H, W)```: images of views\n - view_depths ```Tensor(N, H, W)```: depths of views\n - """ - - class Chunk(object): - - def __init__(self, id: int, dataset, chunk_data: Dict[str, torch.Tensor], *, - color: int, **kwargs): - """ - [summary] - - :param dataset `ViewDataset`: dataset object - :param indices `Tensor(N)`: indices of views - :param centers `Tensor(N, 3)`: centers of views - """ - self.id = id - self.dataset = dataset - self.indices = chunk_data['indices'] - self.centers = chunk_data['centers'] - self.rots = chunk_data['rots'] - self.color = color - self.n_views = self.indices.size(0) - self.n_pixels_per_view = self.dataset.res[0] * self.dataset.res[1] - self.colors = self.depths = self.bins = None - self.colors_cpu = self.depths_cpu = self.bins_cpu = None - self.loaded = False - - def release(self): - self.colors = self.depths = self.bins = None - self.loaded = False - - def load(self): - #print("chunk load") - try: - if self.dataset.image_path and self.colors_cpu is None: - images = color.cvt(img.load(self.dataset.image_path % i for i in self.indices), - color.RGB, self.color) - if self.dataset.res != list(images.shape[-2:]): - images = nn_f.interpolate(images, self.dataset.res) - self.colors_cpu = images.permute(0, 2, 3, 1).flatten(0, 2) - if self.colors_cpu is not None: - self.colors = self.colors_cpu.to(self.dataset.device, non_blocking=True) - - if self.dataset.depth_path and self.depths_cpu is None: - depths = self.dataset._decode_depth_images( - img.load(self.depth_path % i for i in self.indices)) - if self.dataset.res != list(depths.shape[-2:]): - depths = nn_f.interpolate(depths, self.dataset.res) - self.depths_cpu = depths.flatten(0, 2) - if self.depths_cpu is not None: - self.depths = self.depths_cpu.to(self.dataset.device, non_blocking=True) - - if self.dataset.bins_path and self.bins_cpu is None: - bins = img.load([self.dataset.bins_path % i for i in self.indices]) - if self.dataset.res != list(bins.shape[-2:]): - bins = nn_f.interpolate(bins, self.dataset.res) - self.bins_cpu = bins.permute(0, 2, 3, 1).flatten(0, 2) - if self.bins_cpu is not None: - self.bins = self.bins_cpu.to(self.dataset.device, non_blocking=True) - - torch.cuda.current_stream(self.dataset.device).synchronize() - self.loaded = True - except Exception as ex: - print(ex) - exit(-1) - - def __len__(self): - return self.n_views * self.n_pixels_per_view - - def __getitem__(self, idx): - if not self.loaded: - self.load() - view_idx = idx // self.n_pixels_per_view - pix_idx = idx % self.n_pixels_per_view - global_idx = self.indices[view_idx] * self.n_pixels_per_view + pix_idx - rays_o = self.centers[view_idx] - rays_d = self.dataset.cam_rays[pix_idx][:, None] # (N, 1, 3) - r = self.rots[view_idx].movedim(-1, -2) # (N, 3, 3) - rays_d = torch.matmul(rays_d, r)[:, 0] # (N, 3) - data = { - 'idx': global_idx, - 'rays_o': rays_o, - 'rays_d': rays_d, - 'level': self.dataset.level - } - if self.colors is not None: - data['color'] = self.colors[idx] - if self.depths is not None: - data['depth'] = self.depths[idx] - if self.bins is not None: - data['bin'] = self.bins[idx] - #data['view_idx'] = view_idx - #data['pix_idx'] = pix_idx - return data - - def __init__(self, desc: dict, desc_path: Path, *, - load_images: bool = True, - load_depths: bool = False, - load_bins: bool = False, - res: Tuple[int, int] = None, - views_to_load: Union[range, torch.Tensor] = None, - device: torch.device = None, - **kwargs): - """ - Initialize data loader for spherical view synthesis task - - The dataset description file is a JSON file with following fields: - - - view_file_pattern: string, the path pattern of view images - - view_res: { "x", "y" }, the resolution of view images - - cam: { "fx", "fy", "cx", "cy" }, the focal and center of camera (in normalized image space) - - view_centers: [ [ x, y, z ], ... ], centers of views - - view_rots: [ [ m00, m01, ..., m22 ], ... ], rotation matrices of views - - :param dataset_desc_path ```str```: path to the data description file - :param load_images ```bool```: whether load view images and return in __getitem__() - :param load_depths ```bool```: whether load depth images and return in __getitem__() - :param c ```int```: color space to convert view images to - :param calculate_rays ```bool```: whether calculate rays - """ - super().__init__(desc, desc_path, res=res, views_to_load=views_to_load, device=device, - load_images=load_images, load_depths=load_depths, load_bins=load_bins) - - def _decode_depth_images(self, input): - disp_range = (1 / self.depth_range[0], 1 / self.depth_range[1]) - disp_val = (1 - input[..., 0, :, :]) * (disp_range[1] - disp_range[0]) + disp_range[0] - return torch.reciprocal(disp_val) - - def _load_desc(self, res: Tuple[int, int], views_to_load: Union[range, torch.Tensor], - load_images: bool, load_depths: bool, load_bins: bool): - super()._load_desc(res, views_to_load) - self.image_path = load_images and self._get_data_path("view") - self.depth_path = load_depths and self._get_data_path("depth") - self.bins_path = load_bins and self._get_data_path("bins") - self.cam_rays = self.cam.get_local_rays(flatten=True) diff --git a/fntest.py b/fntest.py deleted file mode 100644 index 5f5a879..0000000 --- a/fntest.py +++ /dev/null @@ -1,12 +0,0 @@ -from math import ceil - -cdf = [2.2, 3.5, 3.6, 3.7, 4.0] -bins = [] -part = 1 -offset = 0 -for i in range(len(cdf)): - if cdf[i] >= part: - bins.append(i + 1 - offset) - offset = i + 1 - part = int(cdf[i]) + 1 -print(bins) \ No newline at end of file diff --git a/fovea_net.png b/fovea_net.png new file mode 100644 index 0000000000000000000000000000000000000000..e1862f1a4b4cba944b6153612f26ecb67cbcad9a GIT binary patch literal 75419 zcmeFZWl)^Wwl+M-;O@>~!QI{6U4spS5AN<B+=IJYaCc8|2@ouXgy0eg@R8@)d!N1Q zJAY2qd;XoNnwopM*SdPGtFODO`<_)3tDz>3jzWS0007Vx6=bvk0GO9c7yuH&%ZG_u zl{ElBh3BVZ;Gt#V4RUdFwzhMGfINI%ARvg3-Akv>M*Um6R1;?RsONVm?4iB}7|B?B z<UYTGOly|)yLYhKN3^PXy6=|-C9M0U!?u1kKKK3<zgw!gWy@MUuIjxKOA^`tB70jX zejJD{Hqbcm6mhyHzU?i}PP2o%v-F*iCP>`Nr*LiW;qp$5_ILNwcex!xi;J4y*YSb_ zr;Xw}W;>+gPq(Cj!70Pvr-FjT&-ygucCf$B&GiKJuPtm+YQOunsqyF?*#GQi-<(Ne z^vxl$zfH*JQ|a8BYaaC0Zv(0)Yor4~Po8#GD(7V>2xhf%*;nipQ@7)5=^k&qO-d-4 z%zj-Pd#DrnirkVFzTGy{w4w?&%i5v-RdRzF{6w#PUookU(ixmZ`pm>@^xR+g6u0#f zq{7)_Qu33Zc=|wJVGsrGGm)mSxO(D15<^4NbM~b(cHi24-*@hwoLcaQYvF1$ZQsUD z7rVCY38rAuXOzax2jRQT$E&x$x!jxukL;qcEft=k$XI4wMtpa?*U>m9a7lN-TbzBj zLd`_3xKGI~Pf?_Ahn=f&?^O$Ew-d#|$fsS>bDu5p>5X@%i8>8^x~?|OZg2UY8iSuZ z7y67gu>zhAnaA<XauMn+7xf#cL3=@Kt-aUiKQB)x-MD&t=S(UfKUG}rue-*W_8Pa8 z*gs4WPLzKPK4Rf{*bbrF{}?$GAp;+PUL8Ra5Z@d*DCD)zP3)^;D2OBFN=H(fkmE)p zpaV1ajhnUC0UTS{A*lwdSv4hRTcsYB;Xaj7a#%L+L6>2oR9&87Dwo5nt7}kSj}m61 z%-XSN?@-^dV685CyXfHDcf0UC1|Ur_hJNIF#W|iQ;_+>&@70?6wt;JThQ6U^+sc}O zdzzT=Y0I%w&uMd|tg;-raP4Z{W|QwQRfd|_*X1QO@z1l$4WB$NSv$799>~3)WKKv| z#7l2(Cm$cGBAu7_QPUe7f@R-y7(aN%g9I4kh_T}ZvCb=ylIJx!FGatQ;R}wTO)IjM z;}AnMU04__WjG44X3)i(ADG>qxttPL9(TrBpWaOhM*e)JaZ@XPV0C*Y>IlYZlec(~ z{h=LM$B2}}Fd*tbWAkxcv^?+z-dHQA)M&DPyUC5%uA{~IZF!+KST)4pOTWcxubg{n z`u6Mx)`0D7)lK0nL%wuB{%f9La-c#UKCz4MfzjAc!%&IY-Z^3klO45zxXZhA{cZ=x z$5~quX5T>ZLAp8K{-mJ#5B~RRmE~Mc#+kkj$h4<!J&CGu>5dN`%A+p80x{<TDLW2# z@8BY?AhTD;3h){5UE>SN%DxHvv00=vV=Z3Ft{vL+zeeb+(#q{0^eCEJBvodY-T1<i z`Fss-gzDMh0(QtcQz#SK)x-#er?~3ZWc@0pzSpey8ML%!nr-4D%LOp+^04INVAy#l z_}qV)hkb_tJCyxPM$9J5eR%htOJTrhViuxa?>6w3?qh;<Mo$@Z-0rQ0p%)nERf|KU zJ6AK^py-fU<m4N8o}U!Pg&jA_c!6&S^l1iKckd;@_)r|)vgjo6@;ek|qq&4}>G-?A zmMH(a?l(0SZTL^`>9)-W-MmOH0W%3<gevtqHH@t|?#}L^A0lifgpJ-7zy4g3$j20D zz1p=-r4y9;Z5a^nVVJGlASj13jl9Vx!EfEwF2Dc2c~Y%NbjSGO)wiB>xsP;nMef4B zuEt^u8tUn1uJEpG5LilPx^~@31fGxEvA*{xI|<Or4W-9%n8SiL<<<CQ#Rx7-JAPKe zWQYSKUH7&N=R>dIR^FYW!kiFWE6jjZCZidwDbpB~jv@(VOM#d{3}1h)IM2b*WWBRV zpF(Q}Lr)&03pjaS<iM9%ACVp+bT};I3dn-<slxi?Ca8{6Xyic0u^VVl70h+*2ks@{ z^W2KhkqwSLv9Oa}btTP_YQd<MtQv$m*%yu9RBF3~maG#<a2M5oVz`#Jlz43gg|CT6 zlq<2rIwaE@c~>`B@J<1x9*O9txGw)R)^!ISJ|!MTXF9qgbxi%le;An|Y$oamJx~RU zr$@G6+<+bO{`BGFbd8>_uQ8?Vidq3;GjPLz_IBuECD5$PREBWBNzFcM>_d^)D3?x5 zEmhDl=>5E7k%w8iwgHy())J{k&|}EvhUvioDLueSB>q6~+m2rLp}`K+*PcS+EiLkb zP(TiOa%=}gFM_k<-37UXEnHHrs#01>Z>_*l5YxV0<z|R#;d{2CwUnq#{m$KIpeVrf z&Vf9>#^>zH(t%)vo^zOW2<8{X>?Cyo;!3$$TtBQJ;%}ruuM?9#cDX@wU=&YiWjqas zd0z7=r<aG!2(A}bgZ5>#TRbThyyyj&^J2xIEr39$jio}$#an;g191Vh2-dyZB(xLE zZz!H25>oY!wdxhJBH%5V_UE5cW$-}W`S(pJ2gnFkS$G8*H7=QPDH?|HJ;^|Y&z*9w zMJmc9Z3*^7xmnjyc#)PWB`StPw+4N3?+%8kWf}Gxo6m?HQ+9Wu_7|`|kn8@OSOe{a z&_tTSPd>vY8n6dSY~PEFq^Up$dsbhRkCvkgbGl`6&CQTujCj}%aC<j%Vja17n+%8( zG<~;$R&K`8s3CBQ1?7?No9^*E(KwdW4^L93C=WKVXr8FaLQ+3YCQDgdtypencb#Zy zNNSIyZECU2_8UEi%^_+N$awR_gmOipBe@vF59cnz)Zt-%O1uc;t2*+vsT@r@!m5Y& zFLJn<)?pKPe;2^oN2%Thb9Ps5k-!G1JG(W&kSiJ{n0jlb>alb@y`^0rAa6S&8K0c$ zoi$t0J0b)uiC74b@Ets(6UGD1QGb5bfvsgGw@Kx<i$vvX;6zKKyCPi@^_@c^mN#5D zR+wx7t#2X*N0GaT{;uVN;t>C252ahnxud$)>3C(1pVER~aZH9Vc?;YC3l4oIjpHEY z{4A>Lj8=p>gA5iRKKQcu$`??$!w8&>Ovd{)^?s}|T_TEBcD<Z9u09et;9N&;8^<Tt zU2FhoLvq2=S*N0bV@FoGv6lK^R8PS+Z^EWHB(LWBF)a^|bZ3v+>HuYy(v|jAw0jOA z(?gMWlY1MjwJHGzAxh!;t{A&6W+OycAsgj&$?+>+88Kd+@d6hC5>47o4f?ts4Q$~! z1BCL4>IbpdV38@ypB$VZ1+Jb7w%3xYYBcB~E3<?LTpJ4IDU-ur`$peI@xZGt5-5jB zjHuRgtPAX2jL0VA9IxceDcPD(!VAm_48;?UsOsK#!wR7!hSM@G$A$2%T>-vO(<v_h zf<LN3^~A<Z1E{y$Yh7>gkFf}K4r52U(zC*0bx5kHpeJ)gEb33g4oDAThgFeGj`7vx z=eT%VX~~$~zPV-54J&U)cZM|%`RQt|9AIl4Vy#GvK)F09eSp^rw6sp<CZ?sP=&#(s zPE$>AII*OTtCN^fqZ2de4lwWe6f&t$B0)i;gJ#rB>ndKw`$~*o2x!fu<^7gl80)LA z%ZAg;YB7Wpz_8zEF&O>@9|tZl#x@n70CYvm(95BjG>LtI>JHP|AY&@7E==cPSeX_I z)39$L=au!H4CMj?CJkzp3OM$BPr%_-Y!}r*n0bUJ_$qq%n<nlLW2QAxUQlWR4mMKB zF!f<{K%6Hr1CZ6Gt(zl47J}&3vd>X}+9$;$Kqo?xmTAD(U@5pjT<Uy;mN4ooIf%<S z?ec-nKW-K0eKVFTjW6NX%FHsAX#PnSoXB6YL4CyBD<3>!KltgvMD`dA3<2?%!WNFT zeUTGdExE(?7jq822CBfvg-B@*>ahF@<sIuQ_$`f-DrG=sr-fXa7%tbJh|yTC$^Iq0 zSWbzv0yfPf#SXS@LRPnEcF3Qgu)A`VHMV;yPy$esrV4)ZliPg~{!HScj;3x|NpR&< z7&WYrcTCoD$B<M3lS&CAjN^<XCiZC^NzdJoN<GFLcLA0Seqcr`S&o%W!L_<JGAC3b z=H~J-p`JCSc(wk9h<hqA2IkiwiemU;);H4<iuW0)APyh=pNhjf<yRsGWPnHBp<kc~ z^wuIOZUnJa@*9iL93d5$vXR_L?@qoc)L)g{M(J<Hf0w)~LBc-@&JDBR{hlP`bN3#& zS|S3V42!>vl*2jh+TF-^r9BIle2@SWNw7>E3^SJqmRoR4aH7LT5{wo2?G{#-hS2lQ z4&oP4ecYL7b{|wp(8MrD@=5s4J1O|t)7`D8Ww{ISMXE$^=2Nb|FhsECjoZS-Vt*HA zaL=RjMFNgif5~1)L&8>FF_8!>CF9aX`s&3hlC%1GNE(F1Ir+Zek&Y`{N`=Q4R?H$X zmV-jn^;60zJ$AO3;MZ{SqW5?DjE=LRj(D?CN}udKJ1~E|P0E?SL%liUc9|4XH{pZt zDbOE0!*z{Hjz|?nTC0vnNh&0r<n8>Nx@RCEi`_J+izBnnK#qud5Bg=5#w)qY&-T7> z(U~wE)<=${Y01Gx28(pgm#G0IJG%(Qt<YGIp%9k8oW~o^D10<rh0!flq<bFm6>@W& zMtrwnE)rJyVujMHVt51+<SFSG;>-r-Dj3myD3oz9x_s0%uJOG#3xc&)kni&A8Q?x< zLY+dU%5_?!flU-<_!X6MA_o<f1iRzBvF0e$;3SfyAzs3Rhr<2aO=oky>)j@KUPLZ+ z_GxVTk-{RKCQ7sZ@=O@2q9VgslRgY_7&P0?oHoE#0M`flCWv7p$_64cC^$#rMsBRo ztO;lJg9Md5;=-=b1A)<1KnK8valCO}6XI*t3<N=lw2XVC1QZF7fn?3Ls*luhc`p7x z`jIg-S*yC<gxGN?VH{*7*kdlFEaBU}Qs!bp``yO3l0-!%pB#{~CR4GGrs=bkJmnI; zRaaaBBQ=&~<U*`I#w$bM@CHF5U#6OB89OzEqnN|>>uc3lSLN^NXw+WU3{3v0NC1p~ z@|0#@T^-cT#9ayb_*pNc#O4hqMeECa9@o|c6C$|{#*)-gZNgid9+G%((4u3VE53SD zZkaJuIiAsJNXuN*a?@>DlWXpYGeSF~;W27a@@}^=whm@>0hg9ruc$RJS4c*Sp-eF& zGW|$g5aCKpv2iOCU@-_ftM&t8m%NjWKCH@t+{5oo411<AC%+9~ZVGRwlV1S;Rzp&j zXr{k&c{OfK%RrMlOkZp0G)O3nwJZoW&*zc0Q(PtIDgT{^7rWv51v$RL!6o0fs9oP( zIsbhMg&pome3o32D=%NHZczoBEcLtCbIH2>1>|}Wcwlt=VA0-P6Bh158#v%if};^o zIpMlyziK?<tqi_|uXfqo;8-Sn!Pl}nzOMQRE15z23=-DbVKn2mg_h{CF?=M}&TehY zw0TDqM-Y6^ePO<9>9kCdzl5{edvFa;)Ff6}Nx2XyA8K@xBm#C$h2LkqPY8*cS7=?I z@4n=?YHMJ!WaM3eHq5rZH49Ogo^)e>4XdQ{OAd;3!7eR>J3`xQsMhWrjR;G^_o2W$ z5sAJav?8otNaPp|;)mh(G;Ly;_i>i+fRVsRj`SJZOsLHic1qlz$s#q><onQDt}r(- z_4)K1)^I<pEXryyBrC3rqd_bjeFHm$S>sD5wZU}pSAdG8(Nvsdy*H!Z$Ml-vB=kag z2CEiP*+WwJ7&gEP>Zs?DWSCU$X6SEa;ZNi>W-JzAk}Gy8-Ta0Rh8k_#@MzfB1B7yE z3(^qHNOJ*KvQ^i%IJPNA6RR;)yd>kEYsGowhSJp`pDQNGhV^<yYPbOyGSL#YA&%w? z1@Y}u{-JV$siF82xf0?VCs?J=TVg9=BbhZ02$!0E_JWNus+thbIs?{*y?hDXC?SQj zbCFBqg(y?B80voIE=!6bqAMv4Oca-iw&Z>{k9#zY_^@qux@7c79%}T6M+NOpLMDqK z(yLbT7>W`T3e>h?<vdhJidOynmhfl$L`5pLDAT$sj8y&|?J3qERIz)yYEr%7Xhk>Y zqpv;}X+kvf>0T5V-sp;@)R{sH)g9_~{LN@>Z-5DnKE<u9x6<ncmUFM)63nKpG#dEP z-yGlzVzklTWlDg*a!S5~Pf`YkcZjrY^a!Z80!n44xP1#S&UCB4HGcv<^1Fy63`^b` z(;jlZIZMToRf3({+Eg8tu8JC~C|j10Jx_pWAQcui9H6%l%yhTPqSxTGlu|6!bfhwK z^2WxZQ?adlEvJQ_|7DKkyY)$5c7|&l7hd;4D=uSN#>TU)X<F9DgG)vDlRuA(@rvFT zJ=_jhqMljfjMttKDxy@`rSc16ywi2SE~12TD2qs5%p{vYB$Lv7jpSloki4rR6E9SX z$~mgN8(T>GV@cn`@+9<&d*qLEdl)KZuhsC>&c^2)dW`{Q!7|aHD_A<%k|qM9B|3f- z40TqVZDwvZTO!iTXs-i0B<yOTxX|<#^h|9X@@x5h^h$R^qP=nqT&B{hP;nSeZL9e@ ze95)1JI1$7s?nJU$-GMAUkcY7x&vKWQ8(nM8E%k}&p*t`8@t<+CAF<A+k;ppuTVT< z1s^ST6R?dmrHN$n6RVus)<@2<ImuSAhS5R-48(Yp_C9RzO4JvxARe-$0};i&Q`YFj z)!?Y8CJNMK=#U~%!zV1HZL`0HSyf6{F%N~r4DDm2b<_BtziZU35RoeH3@i5!h&wRm zQdJBT;mS#_b`On+{r(drp>&n{1|*m8Ne(tu3B;isg66D7nnWl)9y8W&LK*t#G3uzd zQl)F0Y#(!AJIh~zBpZW-3)a6D8yslKJQmdOS76e+%-Kl(y)D6vOS2b?PRueiDG)9s zu{hwZF_S$JGp+Bos|`}%B{sB!Rk3#ouP#ipG?2uLQ&TFN3<!e|g5>BZ^2&h`Ec1$v zoJfh~kwykmOc_i8JtZpIZ{h8aZB9V$w`}=W+2{<~E10j<Mg4}Wpcv5_l9`8=R`A{( zks9ijK6uP*oh8TtnefZmgX4AN@sjrUlUTbC=U1fs!_($=NnSvZAnjn+k&4QcPcK0( z-8;vmxK~K+SIIF3(eRSrSZ*M(&4w`~1n=y7q=g46Vc{M_&g?rVR7iwi>Ls3}-X}1Z z><y1Z&o;Kard`maOpTPR4WluS5z>)|&EyyuJ|A2UAr&p}UB0Y2^y3(ymmbJKy{n<L z8~d7oD@CAbVfwSuF1qEI=8lnv$l%dY+}Y;jgr*W(Ye;J&DXCR8o4EXKRU5p6a=Z?_ zD7!Fn%%p@i*f8y;D;ZX|R(O{~$?KAViw6f)r!&``zk9OIM*t~KD_YMvEdDKe_VxZ~ z)XjIs;p#rsE!Z1fk1gC(Z*U}mE0>Q|XGeHc`-db4##gD0;8KOU;`eAX%IR0j*i0$k zZ^ElE@51~{dk{jM&IPpbYtV69-#2A+vRF`;rXUUSWlq?%!Mz{eRFN+~u9G>SE&9!w z*NrW~2F!>5D1%KnY(#cO#;}Tv08RDHkJ&Be<-40O`_xcE(C&i8>p&UB_N{3ebT^0! zGE_m{fe-wMQ_J=kmKX`ExcS-Divx~YTBQL&#DQ@ysz*UhIYf<IJ<Y@p>RB9~$PY4o z_kpijEteHVr<rVBTTh%3)dmid>!+;~Ot74xjhIl5OQ%SBh#D?rF#MWkyI4{v;2z{m zbOM(`NAA6V)`5Vjo3qsZ%4yMoIkrrjn?p*u)A)>Y*H3vus^oWtQFoESb(YPm!<z<l zo>9&jFvgF!7jKqFHHFzUDETNIkCI~)!vlqq#rhtNi3+;6@LQZx$&*hj@0$a;%+60J zRwEfrdn5WPPB}|>yR*?;!ad}b8g<$hFh-Gezv47suF2*VY!JQfA;?)kyj(c$47W!N z!1uqv!+TEsQrNb4ltKX?!2r3ElTMI{9tUVvt7&N(HNy>cTCpIDRD6bIfSlO%Q4|P) z1E+}gu&_3ckQxB8qhBYZOQ9qYlCad+_eBJ|;&&h?0whWEL~2w0cf*U7uA!hIMh+iF za$j96EgmvbFMwx+r_S;8WUQqDt^$$FV3cRACVXT>s96b-I)P$6d{MzpS6QeR^a8*O zbyxy|^Cv4Y_Mr<m8nJeB%=X;qswc%e=RQ$x6=F?k+f%7}1)p_ivCq+o-||_-uxFy; zOWUgnhgt1}d-0~U!(k(t#ss2K+BqCea;#q&eN+vkb!?(E3VXZ2Qz3^PgeW_bU}(mo zx9n8UXZxGkFf#x~l+ACM3b&^yjxV-uv?Dx3Ar-dVCvtQH`#c7)6tt$}ZAQX$Xa&27 z9afzXGo<Iqb8+(;n!NrlQ*T#ICCVt^v*Pji>!u;AqH7=QTb&hZhnlwh{Ptc?>P!2X zca0IUK<Uk6EUY@&5}Y`5huVxHD3nY_vnNZYRz6Udhzskfp7k2xXKB&fc8vuF`AkkN zQXSfJ7{B)AAII@kOP$q^4G-<52pIUu=dCURP0uMo64V#qlxH*$qpZ3rnkhk~(wB`X zAD+9I5rzatr<|fivYQLORt5rTRd&G+C7xg=m-bmLCjKe?IDr4~qOJBanrQTB9n0Y- z3_eL4TT((U8Pyy$??d?E&2EGQ3A7mWAQ)pLrJhr{Yb3bIq?H;w>2XbsGfuj7&#m{R zqUe-V8xzd-aM2-bJf{j9*Gt6WMH&rYZxoV^Fv;vuiKaA=vheW+?OF~mw5q;bn)eY_ z=IHRDTDs#A%J&(pE4ATBsyZ={@^c}~X}LO|5`|VSMn~nU(#w8mr2@N|VM9Y%s1L{> zIugrldh~{>+0SDTlbS+loXE6FIH^>Q)FX<rTuTN3j7(|m3L}tCB3?!A@<{2oXTcR2 zeaB2`)P#X{WUfeOc3vaYZzELMeuif;jYjT~#Ai077*{&=S)t%MZVi2;o_j>|@?~fB z_5kmD=WNn}G|ubq5!2Wj+~JWGT(rAg?p|==&`CY+t8YBsSR}6N3O7A%Ybr3fx;btD zG#_iUW(XOBA&PYMAws1i@*+}|82vHU{kn1{QbCk`4#?E|&=HC2(teKdU|xHcNhJUC z5Bt<G`-^2OUWo@j>Q4)aCY^2esB&u8_A`jbC*M<XH3tmd-UlwzG{F6gUPtG_3EJ16 zFrcm7w9nNPw<4!THPE^=hKo8_t88uh`3iBoegpwxAB0F5rUq9mP|@AIMit|W_3p^F zDY_BB{iVuUZT_QW_5qvN2id|bgV!g&eaK;GAyXQo0Uow+3F(PAk=`U}CSuv?MN8Eo zPh|vmOJNvet$S_F+$#Qyk_EKMjsjmxNmaXA^u7oRm0+bz7WR~N?oRkKV8K%=!;bYy zhg-CNAmhIl0T@Yd{DdTuBooS1>X#FNHNsVG^eT-kl}}O<E){2gkxS|JbZn3s9-5;Q zJ6E#F?;kT1wD)<WpVWMU`IU?ziH=S_Vzh3DpsuE|2m-Y@DZ+VbWG(gxVK(KNa8(m| z41TWKsd^VELVqkBlMlCXNJc9O3oymZUR?O;PA9Y?4G##+`mmbVnvMr&$;9%oe6x{r z&{d~arzRQp8CbzYsJeipG=vWqhHL!Q)0R`;M(cDvTN)V3chDMPx-N9r+f3dGO1N5f zUAaiOW;6_Hb=pOrnXd-_>i7{wZyA9u1ON|hlv2~Mx{ABB@r7Q%tkOHvB-MD0&bx0M z)fLWtO}rgyX#CZu+Vx5;H+5LkTSNGu9A8oKSI**9Q<EyN@f$#T2-Rs!PYTt5UW0Qu zj9Nb*V+sa4#C2s!aUkqoJiNGn1f*+9l1k!#WaSz}ol$l2U09PJw9#kh@D3Dzta%zL zRfs)9P_(4Pq^jllt0?e@&G2NvS9j_MIh^~9;j3w^M$TmH1bvEI&qnT;w6;BuYw-dP zJ!o|wzpg$co}7!)BN8UA=ohc7dLBHO`0Zfc+YfVi_#(eQHy<h+TdbE*Q{=Eq?|yCI zPQ6c}cU4kWj306dd!>Vici|<H>+!=Nd)cp*zcx+Hin_l;O21BfaX|yVS-KC-lLPOm z<f$9H^bBK(KWw|fiNhCi#9zgo*lX2?m?4cXDVPiz46R$>-mb4vlkST$gR5=b#F;vW zpBOM1EBqCvtaeX@;$Y<taONQ!J3RBYVA4;-=sEI;8U-rUe4*ow;@eL9IZFZ(DXlIY zyr-5|U@?1zCsmdY`$cwqULcVchW^k~ph^{blJY~k60ts@UB3??iLQC_+7ZnyjXXwR zk_ZtHa%v$uwIxcpLMV%_TFE^08V7}+48r9DxWww6s^|6?L!d{!EoB$oCu&`5MqXta zA|>)hsUO$|isfE0cdOmfpdkqsI8f~=_9W_ZPDK)Z@`fv^(*bt4R!WLmq&rKK6cPM* zXV;4o5b9}9{t50&?WO0a9Gb4>Al;)r9Qk+a)qo;aO=dZP?Knm=2KDN>sy_B)1seEs zhs9WFtYm>pKnS+FKi<*SiV>CLO)Lu4RAH4&o2aUg?O{5(c+*u_^_;pwNvw<0jAyd? z;wu7Zi<U$-^L{_!Y&n-X#D-0XL~$tewa`LUw`6{ax#zO|xo<vEmg;9~f!+qy>zYr* zWR|EK_RETXyi$B%*aOcS_3v(7sB-$zxH<0fW6Qf9B1JWG#o$p8h`I1OJtktIzb|nv zDj-e@ux5YkskuJ66#7Paqi0N`;zv{1{Ckw3W5W%$Nm;!E-U`qA2bY&$mT%m;?QPAe z+dfU6q7WIB{r33q9Q9@cdYT=KV*>C{=zEAG)W^bt7aF^7Ar+zm(SGvje<SJB=F-%@ zEh#EOS*RS*ivGK`dJWlB>|OKjM5~O!j}mR3+OR&BM&IpHFAL`_7@h+IMsmT#3RUG{ zroM=z46`NI(4Q-`xw7y5PY{zSx4i}S9#4_T$#d@PA_}xeuq_9V_gIsc+RgNn{NdW1 z^;0GgBbeM#IKR`iRWcT#g^>y4OIW6SG>>~_W2Zx|p0s$vF=>pzNXNFXMpRa{ZGeeF zSuFCa*m&^KW#}41YwavxWyp#g_ZxBZadxJYX3r1wB810Y$Wr6Tj3=<@ct8dAi^w!p zuuH7+X4Z8A<5GNJL;+n}D2wl#VyLG<ax?`2C?^s6st-PF8N<;*Kw@6#Fj7uG$?AAg zMWWb3#le~^DP><+EsF!2qkLn2msiT>V2~WO&D}&T-&tAbN@8lXEI)Cd^H7>08Lr`Y zx;ORXJtgYv%~27W!)L-lU<vruH0*&~oWp9dY#a{sl>&Ms)`1Z(F+RsG(i=o2P`B7; z-L$tP*@~aM8xdfUW!k%+5pMT>swriCRemXxu=#K6BkWu}z<=r^M3n?F2073+9^=G@ zfXox_i?q@m7>@&SB6wC3<~@bp8!0iCj-dz5BBPXpg5-5^;YG(Gbd6ez?)gR?-5(@L zQ04ny*W|V=oxt5h5?V|>(Ye0VXGGdbOKT`fOaHSZ<7J?{z!Xu15e>XZb?tI$d_>`@ z82CCh0vTDd@;KQhjSZA~q3qr(%v>H?Mz+K-hoPauv6}GscMTW~VW2y>{ev%M2h?=i zS$IaHK6~e4A9}u@Z3l*Euye2c$Oh=V=Spp^%ARV73)P3`K%<o70C8$3RT3<n)iwGb zm37CTv7Gjc*UC@jpq<5zx~uTB?4$4Js49Q&RVTBQRiqN5r{F&b8%;9FdL8uH#KmAY zhl(aYj~)X%K9VnUGaDa0!zWjuu8QO<DsdM62jjdIw+!CXDKny3J7&g)B@!t#<ro?m zY_1xHVl-6j4PGr3+C!0}JxY(?$Zk_#m_k#)F!)u;Wa4*}zYFSf3UfWu!ZeF6$J)i^ zLI>IAt3KY`HbeQ<0MFbm<!!$+gg71){p!mjlR~zkyZhbcQ~rZrG3KAkl%u{V1Q|(* zVfGd-@IylTjf?!>=Nn&=RbooyTDJwjk&(fIfzzh9KHmBdTTdr;A5IY?)Z7|4{dbLC zYG<zPUTS0vR8@q)&QLZBD`!gxn-A3GMH~Qth`5i71=s=N0kVYH*g1((pY{w;gY2wC zsr7kPIaFPwA+~l3er^zLKQ$e&p95IXidtL@MZ`zw1po^1umJf$9i7~Td_<}L!WDYC z{?p7(4f@N(!$FkVKve@I?d%2t@v!l*aj?qz*m-eLi=lu-+^npHv}EM|0rB!pl-kzA z!$pXl-P_xn&6}Ie+0BNXQ&3Qlor8;=i;MNeg4NyE$-}~j)ybXa55(UXG7xvL+l!*@ zoSi^_FfA;dJv~IJsbBg*|BMgnqN@5YcqjLNu<*hMyN`tnJ0}|lI~2<P?;h?RvR*GB z{|M;6^>EjDDK%o(g19?-x`83GUJxe_ntz9|0{_e3#na94uXL=y><~u?^u^TuWmL}p z7*bwQRpVbCe<-lAgS!0X^+NW4SbEr5{});R5!;`hztZ{lKwjMch5H}Y|IGa_;}<Jc zRUsK?u;-uf6lFxI|BNqW<qWp768h_sk5|x&&l1eb%4f~V$I8QPZNVzQX>HBQ%O_|p z2<Eop<r1|1Hz-9XcMl6EFys%^3pktI3l4|1r2sECKQAi}2QLpRkF_Nas|CM>H7h3{ zACDkE7dM}^0N=kssJq#{sM5mm-=q2iW%UAO4dLOkum*Fna`3zW@Nn~Tvs!R+^RZf6 z@d{W9a`5o-{v#SIu#lXy8`R=uI_;nqHV}3fC!4><_(Qmmq=up>H8&f_f3;{hT6kE$ zIK12gc1~8#-tPa^rDF$$XnR=v;gj=)4Ne{&K>;p4J}xf7fAiOaxVgV*QIwjCO;C{S z?{xmmi_l9pFU(r}5$cQoKhqSFc7s@WIJ@aMJ3ER}|B2}@X@f-mo)85)_m@uJKWhJn z-nAjFe}DU1{*HEkb%8*CNmj@L{5QV4g%`x?uQ6Wy{_X<XS~%H2UheIGi0Pm0cK^*p zLHHpY9AJSLI=QSkS$QltELjD4toT{E{}BB$(E@z@f2aH}ba!WK4{r-Mh@{O+l7A-x z`kMg|!#{{*{Lgs2Z6SYH;&{2YIbM)CbT|ZsxcG#)xT)Fy_Y(y3gE{&6`1x451v$X1 zJXSnhtO7h-maH6>U;z#*u%I<3C(nO|`~N0E?w16){+XZ%`=15tpA#y={{NfuzYYFv zg?l09@3xnf^JO7s|JO?V561qe<bUz?52^hxj_?Bge}nvw`29b+{*SKz5d;4t<Ns6F z|Izh7V&H#d{D12De?}L|f1TwZPA{80@0XLBTFCz7%P9}pMZwS=0Kl~P^M<Jsue5t< zMD$Qpl|}r9NC87jfU=M*{nAA2A#30v?F{{M008{8ErnQtyzM+}L4UTT`k@$v000P} zC?l!kvysrZnM$jeNaqF6<#xY~>DAG{HR;0p$o_@!EWc2m3Ibt#$IU$RiP+7nva;p^ zXV1yH20&RvSe0XgUQ5@*RZ2Z_Qi1}+_#jyHd=mU<#`85H9Vlp1mfqwn>^7ZDi=~N$ zZE9+I_Un?FZ4Foxm+n<}90yf4f7QFi7Q+b(&>{%<bx;2M5PYY8mlS-9nVo&UcMVL} z`+Y97_dN?Wb8x+b+-wa$2|ALAlZw=y-u#mo6PuO;i&_AF)NZ(!#V62r?D&|uVU2hR z4_g|ZJ3L3iY5))d2tl$M2(OaTrK$nJBEho`*u3K41^`g1m~=KNhd?p_LR}W>WavcW zPXFf)b~6Bez;Bl^&)B;O@!*Nzhp)oh+AW3p4P(zN58jXD=)v}8G(GkYvbN$fC;n}} zyPic)cJzN57yo2lE{y)v8yJZ+d&785%;D;rxYbXPJw!H0mA=CbkTREx!CvA47qDkn zB9p;pD%^>1KEV&wGQF~7DHPlP9{hZI7CrDtGYpYSO=vwepd<}?ydZzRKi2>KYli># zCHv0VN#Gb5*Rf|eXs1c6pT^ny%VT0l#2RE6T2M^pvV+qf^qkny!C#gRN}YLl=bbOx zR31SD`*gNMAK=qPjnMvG`UXvBWm{O|XJIk*`c1+^_va^ra|3>cvR-{-?n@pELu-?7 z#GEptMA%`EfeavOEZqn!7enjW%LpvEZ;bm~>e<pV40CT|2hrfIjro>$`W|zNP<nSL z?;4-4o_F1P_SD6LhmWseOUxZYG`7jj8#7=$A0&^3iZ7(`&kLV^4ba#~su2L(J|wf; zWG(Z}^8i`akPW$YVD@7KxYI*u!&+^A_}dfaxVHnSVbckVHL$cFNZM+Lec_hb7w^pM z3>E{=#UCq0V(wW*IXVmF1L5Ls(50Q`Qo83{D9ZuqNT8^&Vk9K0{g&BXM$1?j6e)tC z0(e8NGK8!VYw_*a5=5>lf1)Rf>G+kWB8;SAM5)gCQjNn~#{B};YkJ3EuPnonl!s6m zI$Mr#=~j?rMAl5gz~dE6p;%DFI3OR1M|RW>R$$#7F5|W&yE4YEpxFFJPP1}E74*x! z$nVmNQ>^73=;PD9=uMu<E=y>!6M=-J(XdOGJX0`#tobLe-cOW1b<A!bvZ=uZL@#_7 z*r>R+s8X_WjALPi1C?MUbyB8-rWvKB0N7yZc5`kxDwTFS&DGrQTSXx<`)gu@-Nk#W z`%4!G*_li7fd&matgMkpr1Lei;BXXB2^Mx$x^@a|rtk0x-{<S=s5MOf_%kwz(3zFl zY<Ia2m|JV)hAdKX24Ak9m(!GIj+TNHABAQJ)s1sEn0}y!o;_buwne@Ua@sMl!fYr2 z1bwCqPiUtEr}VLwbuSZ13_=ah2q}?aK{(Pgw{b`<HKJgA;rueh@%zB*93+4ysMd%B zpM0Ax)baTtqzt9}$waYDl)r?N17kqcG51E81TMZNy|0WeCWECK!3VpCA5ds&cE$*M z?-yRx*Ce2x&5l}Sg(<oWLq;^3Ks#7KY$)YBE{a)mT6lDwDi;6itJgAn6UA>Gb;PL5 zAF&vr0`ZpW$j9xHGEFMjYw`JaoNCz>F<3uF8x1wl60oG^U;(2<KQvTfr-<P}Hd2`h z0COXx*`;Lc)$7B=pI$S(Kh_dDL{Ui8-gmDbSGXVR0>0i1?)QIv0_1S2W|o++qdH{) z*Nzj8Aw#{hG1`ulbtv!{+24^L`aeIOz)Za?Feh|rn@uODNJu6n>N~%su^3R5G37-w z2*nC)uOF6K@phA?5)Qe#OiF%GyTRCQv3S;JXv?q~R3RzA)3zVV)am4c2N6wKL@Qd- zqIWARuUel>@sr)&6H5?CvW4ojNbH40ZMdi2Tpkr_1~I}P6_mFR?yczsGF^>yek?4e z0LPGBV7_WXxXLnC(}!i?8s@U-W-G!P2N*AEX_|imG9n7cq;tyrzGp97q)<l{h0;_B z8w3dIt;w**-c!;1l)%@7x87<%by@>1@q~tF$WXyEr@&@uF@juFzn|CuQDQhPzmwZ- zHdVqi`m4H+k4BJk3q*{R)bf{zwX{jd0oF4*J$fZccI;W*CBAxCJb3H0kiPgBzS?Ra zG|2)|if_5(&|{6B!C)tsxfL(7v2j_%!IVfS!D56lu8$O_MlF-Po_9#MF*Yd7fBLSl zt3?fs*GNJ&d{81HIHlTnKo7mhJN)Rxa99=>CW8$lV}ML62%bS^RF3_C#zto_u=><u z#F0z^c%4Vd-z<wz1fQ_nf^;=ol0lH^WsU#kVkZr$MTyb1YOA#Ubi$%^{oZv>|3R@a zIxRf_<tMDF1~6mJ9Bbd|t@vyj5YTp}qwWe!mN{R?H&nVmS`=Xm)}zMK#^joC+s*E; zHX|o$7_fE+=V<H4Jl+mQ3|dt_Ux&>=+C5)$rszGn{4zxdhk`Rb)k2F#HK;{a@lQ`N zt)|Q^e;g+$d_8U6W4pfSs$X$STHcX1o@g?67dch?>dsuwv`Q7S9yp%0iR#n=WbXiW zY~s(jF<zsE!+}z%w5SQO8Q_IK;c2L9;46p3f|x=wyEzc_v)Wu%hq@D;%#ps`|3Isx z#~*r!8!XanI}3;&)OPr|2Uy^4kTBA2Y)PL!6vsBqXZNyHX3UpS`lN4W`MOSK1Xi2U zXDbl<W7wKoZY|DWW*|J3N{t32OY^F3YH*+c_yvc@4Jf`@k?BUAt|IfIJsAK@8-UIz z*zi?Z0}(m5Bjb=ZXY;3?49XXIgS%c2Y75A&`StlDtdc|AwI*nlSj=G~3V`1WsPep? z_a3f1hC8*fd8}lw@i0{kGKptIsMK&{x&UP&@F7OExAwY{K#ecvr}0uDTvR70Dd?O1 zG~ac?&_8?SV8&al3$f}~xItAs2FE|x=3<N`G859#oRIE6U-1Wr+Qns8gb>lkyNHFQ z<nPuX`zwLi;x*s}=_TN6!hBIW#qkV<UY$s0k(~Gfa$OY6ui&Hih$R$0NBO!vQ7-n4 z_z8+qkt`b4Kc7-`oBfc1$AG!~3Y&qp=f=e-VJSJBN=d>d7gZFX#(U4*fsTcwarCx_ z-D8-j)?<*-p}s)Y7}SK@5tOv<nYAd}>MTQ<d_1lWeE*>YeY8$r;~l1E^F!1=2`rl@ zIVZS_rE@Ej;+?Pv4Bc=p{H<zo%O^^0M1zHHoVHnPfJN19Atb$0R)U<q*n${eqHUEq zdf<afwx#2tnC^0auls&K@v(nx4nf9%x(t$x!8hbMQYZeN2I!||C~1Fy|A=RfYv1e% zuQ;NB-+YHtBs1=BDtQ_MwxAri^>*~z2e^lRs-XKjl;e;t0_<ztMf?01EUxzSA_sXr zZ6yiC%L+!zo%(|emU1999G8Ot9J!I+ocmK|3B`t+%*1@mch6_+=~6Hj=m3Vd5?mI- zN>qyqh5Jr|RoX@wZiO{!8uTlag{J`N+J<ps%6}AS-(4(*)tV9Sx_0N#fFxSzkb7{3 zuprGZ0Vh+wy!q3RvCXIs7@{SmlUK4@WHgNjC-hM&9;t!T+(M24uoIBaY4$CM`KKw~ z;6v`&qbL>X^_TWGsd`a4$3oT%mammI*}K?u<Ui9m+BK6Ls{08`V1Kv*j8)g(h1?{5 zgp!cJ`TlYP?Q+SQSjsRs(9;b)22Hd>4fq|x*<J6+1$s{3JbgR@EM7(}wnreP;<N`& z1io&ruZ7%mx|yZd957e!$RJ@ar8k!+K-u3GFjvU~xT$g3W+FtHwFr)<zO{5#dAClC z)w3S>Flb=%f8zU)R-{nBu3d|*ZWw|Af$y@OLl$&<TYtiPLM+i>hMJ(VAVfZmgnxqD zEW3CFC4rH9&QrFg)fy5aB(hRiFX*53a{i)5=0+4f5*Bt0zka#4*xjn)<XD&zF7jja z{V@8Tyd8~S2xk^3M2nhrHU^S3!3bjG-X}|vcZT^$<cvAgA@7s}uJ^AF8Q?T{8t6bP zg5xu)&80_nv4i(=RJ=x%+&9UJL2}E4y@-VU-31ubX~CrsYqZqyy2t|PNoYaB2f^l} zc2b=Py==JK+msrB<4g|qv`5Fz%tA9bNPhARyB$)E&4<`3P<cY2S+iJOxo-~r%le)Y zfGW?r80ISx^5zN~dn8emPNY3T@TMIRF+LHM)8kX~De*%)p=A`>=6ebvbm!T%D;mFA zC{@8bA(9JUXzauJ7muVWM<Nk+maV;y3nQy`<ythjlEfO8NNYh|K+P!~KxRtUt}r?J zdUa^*H6D>nYul$NLKBBa5(<0OponheKvQJV3|p!4J<$lf3o>Mq#Vx;*H8Z1)Q6!op z>Z-4AjOdZj^k7n`O{^mz2)yZ=a9a_qa7pCrY4mQ_K_Y2kG}7hiF!&Nz#LIRM$G&N` zPa&LA^i77v<8P+A_AH>K9cbnT%ixJbq1!SyIvv15Lf}pll(gbww}UpQciWm~pkA0Q zix^e@I2Sz+U%=Av{ctOJ1^w@u)(-6t>#O)lo{@2&s1V;=j>r(ZTr4^pZ|dT<BbW6= zPuy>guS1D!B8Ze7IMQ{h^U@hD0v*@e$qn6p`Ffp)c7+i7DRmyM`-@{46u?-62Tav% zDZ2<&CW4wNu;q`k!wP!vx}F#sNT*=STS9~N(3<eatvGX!6q$elxIEN&!i&*bh{fq; z`3<~qp)({Nw1_v_#ZR|#{ZinENOKnPn;%sK+kUqrVUb|Y5_T&T7`zYpd8-x#veU>^ zq+uV>RMvp5IS$HJKGB9D?5D^(l*oo-1l*h4G}U*w9Jo}R`5?2M&o_qq=S9viA1)QA zFX_su5SHI(xJgYDuf_d-Hr+0YMyo$>@3gUXq|B8~fHB0FT&oTJsSToqX=eq;HFNMB z4^>DbKu?YRYOf8y)!D0zPsDk?E@ncS#iDECYJYux{opN=5g_6I39kIfrk1cx)Z>*D z5)5a0zc|rooFdKev;t!m7pMbRmI#e5{xP_;U4Go34{{gvKq@SkoI8>f`VAp@o`E4> z9?_G8i?^?-E7nn6eTHqhc^{!RD#7OIfeg>EyID<R#>IsnY7KX6pWBf9LDu%L{$^yr z328xZC;moTjEAEh@y)y<<R|Z4T`0+Q#-}v|jaKSK6h}sjs1)!p9_J2Q%%uqY+P#Q7 zLVy3MkC{815F%|p>tm9Ph7bi7qF3PzL39Pv8xt+GE4wUEYn!PMLnOMeDmGcCO)?_O z-h8naq2e3WTB&uJrW54NcA67^nAbp+2;VpjUX;g&$51;I^8z`tNeHFOiN;Ld!RQ-R z!?WuL;r@WfsEN-O>pJGWEU46oj>f~_m;WD_OwfX%B_*KMQDdhmT@RyjVF^JJveo8y zj)}y5uQwZKYYfuTn$8{PrJgx=T-%9s4@w>oZ~SVcVSB>m*%>O1btM>5GNDrnMuI2m z##KVY3K`DHE3w~#!SRIg`YopZz12<XP32o|rKOz=WU!q?K`}jSRY+@U#^}n$ji}+n zL)pE1dCR?!FkAYdW+7Udr>ngmBL*X8sAN;*lb~7=rq!3i`0Hl}!$nMDhsVBpWaDYL z`i?N;;xmRYKrEh&kduY?oZrFq!%`?&CJ)()x=>gRg5}zMaBc}RX&dlBYeI6wohw6~ z!=2CQ{P8K|TLjS?dbkofG#uSBQJCW>yTlky^Mc{dcJjoLS@alDtgRHFk0bIx(61=* z=L=>E;Mv2~IWWstY6E9`N8iPKv<_Z~qCdCz<I(HVYa<k84ho(Ws%N8v5glWkudtSA zohAvd4jlq!Os1=s8JZ}{eB&<2DVk2xe7X`6@g{Ly&B(h3M0nbO^#vT7Gq{9@u|!H6 z?LkoVs#;mc5!>$$TF)koZ)LtFpC8}~>Aa4yjE8*_cHHs~*C#fSJY6quZc9T<Uk2)` z{4+l{FXbKH)(~tM9>Kn8P$nOf%Yc~A1{6KkQKoEj<t(LB1{I)91|*<+95@Y|C`g(9 zo?Pm0yy{3SF&TF<Sa$VQ{k!z<gVr;sR$v^#UHi8Jt`>u7lQBWj5F`bqXqI&8)F0%C z<=R}va7sq}j>mB`Wan;u)Z@0NLv{$OQ2zHrculj|+P$Fk8@GC6(s_Zpd#Sf<5F4$b z?w>yXJ)chkf!XKx7hwZ;pVeQs9-FyJ-bq+%qWp`}z__Y;iE54^Ce2WKHq6aI(0ddJ zYwvkKm2^VqmUYBrqNbi&UT9yXdg7+d7osEc4EcM9{NYjq$N@Gp`T=8^i90kv9};n+ zBB`^%xPs+%^49FN4IoUi%UcLJVFElCvsa{)z{A6CtvN#6njBPczLo?nCNa_JY8#Eg z@N`vn^?!INj$yr4_=-@LdabyJil(!eTCT{fTKDvQP-Ciyky;(wg6m3r)D|(ypTQp| zz;~zV=OR(cNiy@PFuXa2)m(qY!Rx*VxI9iPd7+r_gJoWl>4nur76G|K^RdN-@DYJJ z)RZ^qRmCtRWML4y+3@6A@l$xqUB5n%nl{)oSK)*0sCL53kv{10gxL};+j7t|hn&{0 zD1<+uO57Ng;U?&t-OKZks2R`kIq|^J788yM<e9S0*K7)Q^1q{l?;5jT;qt3|l?Eqd zTgoIjDpk%Ks)tauNG(#JKpdEK-$;xx6h)33(l|rYGG>SQ4`P1b6fb=XacCC#EFwx5 ze!$t0c0)H4aGlUF-1c=od~#mN5%i7fc-~!tMn7yhEWMy9wHsFBb(fS47p`YnHxQ#4 z#8LvMd&S7V;R^RVRtW>9@uL)h^fhZ|(Mmzah_hrVU_c7^WwvuH<jzgj<dp_mcuD;? zvtzcqi+;<^O9Ko}n2!{?R>Nd<QP#tQz(cf|cUZgdXF@1~3x-jj!m^p%^c*+!4!U)? zYT4X2m$o;<Ii;jzV#1QSEs=_d61L+_+2}OuHcdAwBWNuR<=RQnYs_1mMy^}TU+eew z^}R))SIY$IFib(h!HlI?bhK0JtK^2E1NZUb`|9GT*&&d`^+gPcH|wJ}{rlp-Kkd+{ zy<0h<!<uzRM$#S?QC*!uZ@!g&`>oRj-clxy9-gnjLrwVSEjc5^p}H(0aB~`+GSWzX zA0AzX7LC64`^vL~T)-%-@^gM%)41B(4<WUM$LgNfi~(@$A1#D|<28n`o)-xi(D%}r zPyW<$D@#z1h4gaB7vq48hT{v<8=e;WycpB_bO-U}>7t;4Hu!~H-d_NTJ}-xRAPkR< z1bhdhc|Xzp9F>4-Qs3`9{3O-08;-|_qnyVftMq+A4lTbHxk1pR9dHs;FOqO>KCPm7 zuQkqdry1H)yYmhj#Nej(0dC}qTbGy!95Oz&4TDNVfP{nOPw?{0lxULAg`hM(-s8r+ ztHU>!B=}X<DKeRnkmfsKyRX%4ezM3+gZBpK*PEp6b$54rF9*vp+j~Ka&2~9w0_+Gz z(Ddz&OJl08raUQ6Bu?~tP~@U;-gjbGl&^Exmm*+8>jyuy5T^dX;E~%~;Z&sU?bAuS zi84#O)wI<@s@V(y&Wg(`6Ih=bA`t^=RRt~P<hW7qWL2f+lR5YLN-RMw`Re$MeR_e5 z50Vm})$>++=W!ux@!W|m&tM7jIbYjF>xq=J!J<;sCCqLrUTxB*Gp{1N^uoOTn<mNF zy3Y$96h>$0Efj}586#h~!f7are1;3~PmRaBkuhq{8=}q46C)V$Zs>{ubD~(12ZL_n zO7@~Ni*1RA^NqF3hb#tb=u<Nr?(Jz}bT21y=Tl6_%|s&V3PTR%V6(D_SYi^(+ai#* z*UwD^qi+@1#A^=pOe+n8BI?;vqkAjin7_%W)3msWa=o`GF@GO74p=CMK{wAP3dQzX zW)0R5w|`>N&}L*FpZLlC_IRUfxht$#ABBS-<23nz@)0kIfA_uX>^mdOx0CCtOCsTL zU}fZirwe8UuAir;3dW=AYt=wv_M?)LJIgr(;RqzmngdL`(dgM+WZH^VeO(Pc9g`Nm zc?Wg>(?-nNWGFsg13w``wtsj%a1EbXEcY{Fk^2}_H`qmQfs@8XR`gnjA`$-^I_g0+ z5kmNK^X2g&h_IYei6e28m82X)qkUJM49jw`b=J$T`jQjSL^l+ux^9dm7L;cmM*t{M zOfx|_wOjq-aalnSagero6NG8A0ZJjq8qeegza89qxMAFDhTc8hI8_EC6`5}ke;&d^ zEV7J9D+S3Kd*czga$V*<wC`n>LzbS-TY6R*)eNRBNV1LfBSgUOtTuV!LN=<O4D<tj zJt1Jjal_%7I-#})j%<F0vE&O5|Jd!>oT|lCTXl51Vo|z5TPb={$0+Y)atXfz?^v6E zW_Y$Ve23R~(-#SAxFx?)vD-3K_fCsJx`EQfm_oYnl6WEhLxPwbwnO?Hcn#dRn@_O% zdK2Z^quvs4a6S0F98mS;-z?7Ci|vzE&quE3dj+z+-?;5bo?XiHei5eeD?(k8yg5{^ zw5iuRs*@paMJB?!ykV$8o@zclK@u3%!Mbo`P{GC{0u#PzIw3wyipXpAf7Lk$;W~3h zK}+3|u)dJsShx$o%)=19P0ZtymZt#t?P7!uw$-uT$+GeGAT`Z$n>z8sEoTxJSDRWG zN-50;h9g9chae|F3eGOh;esAcP=g*WfQ{_@TWr?F2uYRc(dN*V`AFZIXo=!CoFDUo zW0Kw3P)5)+hr6M77mvcLfzWTS+SN|P08+CJQM4yoa%hWkJfM;(Cg3XE%EELFiMFkk zd2I65vAlKIPvmL^+INkt{~rLMKwiI36kTd^N^0N}9hLoO1b{|iQ%yIR8KI=UELDr& zLA~~H2?M{|_q?>J=Bm~mgOJBoKQ+6s6HfDl+wW<(U>^();HLjG)0qb8*lyL{N{7wf zBc*l^tQI#a(5EDgz(kEIe8|e^(2Ey=KrIb*!GQ~kP6wcB-39MkZkz+?C}|B0ERius zh3q~hb<c{pD>YSrETHiMAnz!3SUb#w$c(92xm7Tnn2`!w_Bz|iyevyI$3YWFmBTO# z6dPhNM=estWuEY-KYT_c;OqA{eEa@}eK+2JC08{&vEmI-Pk(P*;{5>{Im}y}IVyGS zble{+)_sRa0UZ^X;skxM_Zanwbhe5xM!7YOv|v5dUd`96FwW{C4KkRNq&?vw0LOsD zD3aCDI8!@n(<GO4Kz#e6q?75!$pWjS^vnT)1W6MlWz+FjwHdj4AUe^F>*|rVkOh2@ z5_|Bma_4yf1l2(S+FFN7|Aqj1K)h*iTXILEW1@}ZtfT*8qX>tBZ%FYS@PD7^)QHhz z=vC?70<czRr9lK{gb+a-T%B$2`>_k|TW-wKQKB!H0^u?-rXW~%J&C{QczybN+)u}& zc?ygcQ&d7z{VC8iE?S5@fe6zw6|qk7$w=aiMeS=w#3Jj8m0vLg#Ot-S#=d>O<8gmr zUDuYvPbFYnX46hoYq9gymIALaMEhNYP=Xd2CIeFJ*~nxfMksri2QHUO10f>~RF1P$ z^XP}EuIH-GiKd$rQgO-S!X<D77AEYHv5O*P0U{UmsWw50wv-!(nvWau-CArkI>(HJ zChfu_3-MqMKoFy>?mHeSLy4NNTQ5CwW4&<|rxcNlf{Jm5G!kazlvfm<3d+vyaq7qu zCBG?)YjHcR)S=?)JR(PZpguKE#3_S#MxWLaTtgsmtv;De;8fn3mek#nAs(J}^K=+E z$o1YVg^j`b|2><sZ(sL}`<AgKaitu!&CjH`%#2F}A_x!YkVR3m+oB)TgHNI-J#Q?l zYHw?zYW&R)GZc!u6qlzMLN5t&21vjtc3>z@!GS;_VkzA;_GX{VxLz(uAF>&PZhP@i zP^^2x<FVp?XMB9UVOgfGnQ02WF=NR&pGajj>zL+%{3y@22>r4cmXbyBST_SZQ$if2 zr#;4~?~f1sYZ^>4DpV{7da6k7CtN-KGO%R<Ll9X&nL#l$9lX#PTxu58rxS^W4B+hL zM=edSRAeoSIIH6QvEu7v1y6H9Tro&EtGK2DUZGe(fvA{dq;4x-1T=$zi;k!nITXA8 zT;I>;2E<Z9ddJ19Ck=#l>u)`HDT>&$Jf(LuSYZiSMx#WK(w|=QZtl-S;K-JWMsxHv ziZ{Dfq+)O^CM&H18)GyUr{Jo-&kB5h-|_vPPUycjox9>?Vk{A`LrWXc3F@CUb#RfM z<H09}tH)V>M=@wE@Tq8A5>#W?v(S)q6?2$w1{yh-(k{fNk7(Ku4!B%q0E%smW~w6! zdTgeh$r++*<wxL?8<sjkmvylm_M?i(jLS0P!^;KxZdU)zh*qTRQAOH!<diJ1bvfk; zZ35{t=Nu0pbtHS_s~O2a;LR_n)t~}%nc?DMNr49N`Ebhv7QwDHM?|OkZbZ^YP*6&p zyJf-mb;I|^ic5&#Vt>wx#yTUf8dHF?nSc@pfC+*C(cIXLMABHsbWHinvtp7V0Km0A z>Ew~3BNK86dH(PES9Uf69ZXjT5{csz5_KEw^?@yI5GW`Z*(J^smU+SDdcm^HmMv8% zg5l`XJu|Dp!gn<V!1qVSTM_>Z^A}VN{SSoeOqe2LlTJ)BDzZ4OJq@MK57T=OC?9~= z_W9LqsMN^)wD0wJrLZ?Dwkws46JSifDFj67MxmYDRRO+;X)>IpcA`?&;<}}n=Lwf( zHozPQw=?xWhezD3w6o_a;^lV1`+dWn&Dl6_GT>de>jkebR}0cvb?luJ21{bEaqb6- zd)O7Fq=T4;oQIs-h)lgVUcJen)Jzbba6+82i@NfR&U%57gnd{GMTBI*N3o`iEoWSc zs*y_Vr;bqL==`PSTv{%~CW|dEO$Rd*J@x)NJ|N>}uNeyI!Pd?Tm8f}gTym)Z03ZNK zL_t(Dw04lACey)U?QH378(bZU2#(iJrR60>0=sW3*0dp))RV)GxF_V2vXcVyJhe2O zn;VgKagviCSJH}rv5S`UU)^_iyLcktGBcKm5lDuh)c`LVoqT-;2KrHj|Ex-)R-V-P z2w6;>*E9gkMe{;P8IY7MFv2<iFt=aqe&3w1YiU<fo=To;bn2`iT9LCL2F7JsY=8)} z3-<?a0H6<XshL;>+KF(PXMB9UK|$E|gtz;O`@`(bKfT`Y^G~1g;q_*jMkX2vAJsUr z4h1>MFLCVC`ymznA8sHBHM2@>L>fb*OE*CTDg{iDsxot_y-T-zN8n_g)$*;;fe2Dj zQyCC?;(%qj;`PG^%=0wp#<l7AWxz-(a;?p@V-%>MoL2Q{={j{CZMeyk4ZSmBcih3j z;rTEg0nTsqlsVL+RUF0EaFpT(q_tMJ(@VB49`Za8EsDgDGSZ%qVlMjl0Oi7_6dm~Q zwT;CU{~=5N?`y`oTiQE#Ae8451Msp$n0KfQct;CZ-f79L3IAO5M<GDRQrBFq)MW&| z72Shtri1L5Y9oeP8yh&vgq!tibKyn_I)OWrQ?yRyN_e^4@Oryo3eg>OW81fxmcpC7 zVBm5vGhS~C2#k~!*JUyJ@4DhoKmUY3eEx{bvXt(_<<(AvBj3amU7$`Oci>*>XytXD zq(f)>TW@mV`k;E~0#x@^?`Xr+WvMjwCi;K`hx&50!1BI=<sL(fxV^sMk3au}mzSH_ zG==VFT*swVu0+*|r!qn<7rXT4^)F7I+BRTU=~bUZ5gGf?4tG$MVg#zcBZVHH9nn$v zrUUtq*nA3^OCeU!)(`@gWdR4mno}SC(NcD`&Stw$KfFcV^cfvQHkBsZI1?r7dRr6L zBnL8A58qQDT&IA@g&|01>2Kv5cw*4;oTozvcVuoJrV1Tw;>ia-I0<_>K;RB1Kb!*x zfL01|hikdj2tB=&6#>$ov2Gif86RG6c)i_<1CcubouF%Y22Vm>-B*!q9mf#x`f^3! zfcN_ypFV!X%k7E~if`mkfA!ZxdkRitEv0=>MITKaR#Nv)g|!DnjcB8%F-_HAvDT>q zfvRZ*xVpgT07DMs2ckMbrl~!eQ;NEpx<(=2E+Q0GUrVRa>f{h?ZsAX#KVn%HO!I;% zPQ3-AeVmp}>yaX#l_sstMcC24J_H59UijrnGWL|P?|W;*h*wwEj6!s1x1L19I?7uy zus5A_)$uw+0m^+W8<+HTo@Wa<D3<4~&DkA=Mxm4^Av%VpH)CTHkyRNj6v#?=Uo*Ds z^Pt|oH0m#7i3~0Q;N;-#nT$us$7KVZTkuRqPJ`Q0@2^`2Kr^tXROrUtw<5Pp@ZekE zSc&RXg;b11P-w;KgG)IS_LT7b?G2Cn10P<l`03L}%rQ2QlLpNTo$~88-psYctLsxz zGvb-1fa`U^GSB$*;R=q?x<AEUExvyKbk<Dkc#`!6>25%~Pn@U}QwnLi^r}p&4mgrB z_Oye78BFG!AUT<Qv<zd^lz^-V02XGTu%SW-h|`QYMx&M<3>rLwsK=p-phDjbgIT6D z|91mU=7Ms^P!y5P2D%$diW}+WpGO_5cHI2UIk(JQ^ovPy$p%VBv2B|PP4*4@p85>M zmih27g{Fps`q?REY{>*z_2=j6D_E~R8S|n2+`x!&GO4N~m582a2DN8*;A<$x0X7v^ z;Np|0BG6C=e@L;7hf^)uPm7VT%mGv60d4nw{oXu=epKVr-~n?0QpuGR<KL;~pZE2F zJtc%~w+;q755R$gP*f|;Karl&r)%kJwU{)0!Jf>n>+ARL2!Zg2&mZyW!_8WWL~hv1 zsBo)9yJrSgRPd}RMx>Mm55T#YjL5-|CeC#j!81L+s(V?ZW?kF~r>X}>n`8T?F7#vw zx=N9mb}~b)t0k9cdnj&WaT<!#RMb&DnztE$zyQz;r;I~Qdka~chrd~WTVTos*wi`) zkw$k}s$!{<j085DZEu|6Ml?EaH*yr>?!lO|VBc$IU|w`J1tnL?m@{n$ubNv^SyU<6 z-%Yt^B)L3yvuMlMwjKMrLUL-9*L^n?U(4LI>jnlK$WJ>~{Lq4*3r<rh<aXNGv|o{q zb~yeP=1TsF+_(wD1S0K#=2MFFb2-q73ao|xJxZ&4$(gcX+jbBcn{S#XO!HLc0`v*W zqg_3ngOZL$FIh77WbbL)c09Hn@9#zk`qR&!@%h7RV+Nkhil|v1kKCJcXS`1NYR}K% z6dVGyWcBs>A~XGtPW3Q1&1t6thBCChC=aM~yYUVN^_04UWzt;~p-r|c?bNNUC2G@H z3UXhZi0IVtMRP|vf<eu=qohD7r6E{lWb8$<Ng;!B0GF1K9>xguOkAIwI%BQLjn-Ua zEe(S*E|-JTkB+3CA$T49@Vp_2>G*TAwazIcB`Y~{N_Oge{f2MfzJUS6$jHf_g^2u+ zS93H|?-2djcfji7&;s9{ZScpQi-zPtdt@@|?`;m4im%2gzO<~02k!_y&cyp2@3;m; zE4k`f+kMwTuBmz;M75FVq6op27)r%BBo|PR+d;ukY+=mr&rbYpvvTnM*syO8TrUg$ z@aZFN*JW%`{(#!pl8J!;*FVqj7t3b%ZEIOPp_l5a-3&I?QA0-!yYH_*vr^O_$#M^< zWGe;Q9J43F8=M(&+U`^jTFxh;p_8*Sb&I5fTZ|t3+QcmYRl&X`Y{j5~3c+JuE=CLi zyZatzwdpY<YJPg<`T~z;nx4K}Irm4d#V{%8WFBTHh;uXQR^d}O3h{paDPh}I%#o3{ z73uL__z4O=>8#J1g>jJPv-R0g<VJ#lx&Pc(K}t4y%)bC41qI+b2fQu;F=p&(T<|K+ z>yTofigRQ*>T?BT8;(*nAk;J4T2AF`8#?U?Y0rHG*Pg7t7e$=Z*o_XK$+@=<jYHzP zPvs&F2THi#AJ|fDsVXj)1%L7LPx$zHGwCnRVzJXbx;=QPlA3eZJWse?uSMpsNXbgX zK-KN4Z>jif8t&-NbTS_C)cAuHANj6e0fhQ#*8sU8YLE3MIS)F7vzn$_M~{|x$8^XI z!K}g-Jv#+;)?Yv0Qa11QdWyxVdLcxpT53(j(Wqe{b;OoKin$O(LNH&2P#lD%jdr3o zQ*MA@REGdkJ?Y5%`d5yHm$bY3q)AKZU@2D0mSvt10%Lc&3Z`dsfNS<b<DB{@#!Cb* zQyzcHo)vFvMiTGZ+u!#T7`KJ7%nU+4@lw@|t`AMB`;-Aa7&HASP>BPnMY6s3l<|11 z*!R@>?B=d(|9wvxyzOl`Xx-Q$aB~crihX!9m?^)uE#dv~02ARlFGxYa7vS@U7kn;8 zor8#Hm|WytqTKU#8X0eLOGKDLgf2_TW(1FQgKEZ=mf|hZH*svqkw0bVx!!(EQRy_F zvrVeevA<ovha0MSKx$4Sji1kHqeI_UpSXz<=;?LSph$Pg6L$tqP5-uSLnzixQV1O8 z9bf}b>gP+AW`CYb-CZMWU}`nwJkPc-b{ox97fc9!%4|oHWf=Sr+z?8tz63-g9h&Ir zX*?R68XuiPG^3XSrZN#i^I|v;rXxqd8ryDzi^!=BR{tkz`v3PwMwT!RaxWiunHblJ zF-1bobXGn$(9{R*(L?dy{D&}HyMH#KcKQRr^}2vLl!G9Z+PP4`OG(vE_MDrRWtk^T zY<`S6<c33uD)xPcir~5|U}of;F;5YnKfdC+Onu_elMMXChikF?On|F@<iLoSaDn1p z=5vT7a4@qGZ>$oZduz}S9JUYh)CSYcaZ0Vv>`4zwJJr+FlhG9NV4kCTT97pe=@Zv? z&y2#!GiD@hQ1vJ*?YJx%djTth8!{qdFS1%Jb1+0TmG4h`Y8FleAU7e2F~2A%Bq!Y8 z->`3c(-*|TnGdll(d;^;0D(2*sTl=Voj9}e?f3TV7&|s)YH@9$65Hmli`oybpaa2+ ze#omYY2I)o(NigIR>hXg0?g(IdgihPx!XioCTmS)8c%-|>1$581!JNg6vxlZMf}J# zrjb14JW?u`|0P_ZAl&b(WomVTPK*ZTrQCj1pUZ7s@wnf?Q0#kbEW(ac5pI_Yu9tEu zvtllQ=V*cVeDgn5IMUcH7&Iqkrsp)x*f#4ZZ32XKvuR$ji;E&1PZ0XIDm)$50Q__n z9Ze*lhj`LJ6e)gay=)+Q{`pOQ<lZqIP*8P?g${k<r$fYxqb-~XXBAE4a+=qcN{mJZ z;vfaV-M}FrmcQR8>=xv|Y|K~)MF!XyGHbq>W;>;-_B91`8p|n>49PZBrPuHl2tqNV zY*bJOj*`oPJv)(^5D^h5w8_TJWW`SxI*eO8_T1IGb__FX#-3cI=K^KgO;)7r=8n36 z9$0ak7?+6w$_-Wb#G*Q;OG*!MprQZRW$}qZlG_Dx(b~i5N{9#{25d>NCqc})lz|hj z%Z#Z8{e8ENO-c~eA{!R$`v#R<q{I<Y-tn?5xLy{75U_45BpFbf(q1Mgg;TbCg4B*2 zrsF&v9o^&zeGH%XHx$vKOBVSDn}0a#^$FT~=+Pc~mLhc4>uZ+>`!<u49-I#o_5Y=! z-;N|P*o6NuUcz&HtFQzVoN#7LnV|~Jg1jf}VZ%HxMG9IRU89|(oj$7#g*B7N36g3c zVa!uRs+mMeMg7PK4v}r{JVn0QFa_rYSl(o#RTB}YloaG#Y(@JJln}!pT+xG~aum4y z$dBO2$fF<f?71N0Hu%CafZi^XK3xim%N+1>37BK$X6O*@wahX|IUBFx2T7{_4sdq1 z|L9Ir%pFtkU?&I0ye!Qjd!CFV!bHGjX(gk9g*L<^xU9^)`b<eVMVpI|lC@(iIKFOn zBF8#<%$wQx%axNE)aj;);0$+luy~^%=wpb0_`6oMdL&I8ghO5g<Xl}^+wYXNclR9c zbVKUcSqB%IQE7H;3eeM%0*6*y(>FN_D=7qRpAJ^=XP%eh&|=`9soE6F6mh*Qc)#C~ ztD7x#hFW08G*6hP8BB~V=QCzYUTaX8l@L1}t1GWK!irO!RZoJk#aYnkidBe~45A06 zNvAf6#(M=Y;YprEI8J9eGH6xDKKjw8sg^4s#=a}I-Fer$Vm1We<0araGdL)6rcnS? zx)`;z8cTi}g%Af&_$102<N#&@6N*dJAnGdFArs@WL@bvDv3y^nrE|T%-r_X@QSEe< zmSFLb1kiD!k|Bg(R%5x&1~?il9(ew}E61ljN>5VUR{j;Yqk8zJlo46LWgJ<QoCbE& zX#SxGw^}{t2kxzqn}^nwfi{Sv1v8=Ei*&kz27J}7!GTOMOh9d}qU5Fy>64O$PNhpT zGLcS+?Q5AZ#mUmXV7BNX*lBLG%7_myHw0#6H$RaalPr`;$yT@SHeGg}5T^+O#Wc@Y z=Gi<7oymj`%holh*PFWqv{#_fG0f>O#;u~}Ow>ku555Tpk(C!v{oB>3p0fj2=5aX* z6^u0*1MnGlXbQlmOTaSO9Kbqp$MYI;&Zb|_Zic0z8F|n%{@T;LfCkDkQQ7={UV(OQ zNX}yN-WU-JxYx5pDx0>KVA>99YD~!L=ci(<OeqAU5DfrUvEZhK^@*n-pq}|4PvkX2 zo?HfV^g$-J&LfB78<@<*H!$LUUkzlc5lxToKk5*Dee#JqDhb=7>|?dnsRF4k$Woh% zW3}0olrHx07B=eo?Plf$K-nn%Aji_v#$Py2hEbPdlJ}~2Bnmqntah8G$ufWt%IL2E zUd#<PiBWFRu!25CMjB|9tp>ba5a$VC!pqA`bDV9`Q3uAEfP=wgo^z6oI!)-t6Hf&w zgF}-xG&rz<jh$QG5p+5nq9c+@r-Q)@VMYoHwZ>HgD@zHmCB?dHw;V%nb54QqvM^%Q zVMau24~rn}8G8u;gRloq<~(ToX;_obf<d=>r-2_*2ZQXp%`2q9NO`ujzKpf&L4fU` zX9gEGDd(D5lnK(sv!TkqZN30nwva@z?VFA3juCtiCDD@*M$W)=7@hZ|BUcGwq6#Kp zim^>T#!g_G5x1{zuBAXuF-30LsveNWCoVitCjz1(xiu-8PwfpbF%uBxVB`tLKx83j z_@LU|PkoI`4H55)tu5->+Xl?d*YVu7kOC^5H#E~qaw@Ol3CETJQ1Qm9cta?NdTb2E z`a+5bi5V0Lx7)3lJ5rgF47`4L#r1Y=_2W3!OG@f4#i5pqaD$uvzLh-Q^rI|XU)!4g z$?nfI4n^DUWUXUwUw=?Dk7@t2pfH+kl-6blHmN3e{=XktW($(BOaXy2k{rsA%F5e! z>}6&iPGhj2|M{$s)1gi6ReaTsu2O`v(ISD;zI!|#$kSAaK9xMAma(uI!PHE&;t9$D zfu(p_a_bs_2q`C<cpL(9N?5lYbKEgc5fjnizxhnP2*-S-Ve@+)L3Qdb3`bGyDn@1_ z;J$8Hw;h23BCDbvsLvRBq!{Z>sUwMT_NY53*t~e729jKuDjW#H0n#SC^m%>cTy=zi zq>3%qA(EwkIZcT3WOiP0LWsf5Hza4qsck5!W@()FYQ1zR=<G;xDh8s?)n%Y)lA8}q zJp(}@=Xh2YRIzV61Y0jRO3Baw!~!VgoRCv;f})z4^i!3O^9D*+q~5!hp9^nQM$TEM z*57qp_#rj#uaC|o|AV8BH|eY(WgQ#OArwa%9r*wC?=2JI({;i$Gl&FDY3t|QWx@K` znkz4cKK}W5q;}|>Q9>QE9)}6gVGf2AAU9e{zpfkh-7>jY9gfH-z#RHJvDpF)1lujO z;}V!{6jux-%gC*r%ghi>cx*eSsg|Bk?Cnl;2l}0{FL2C9X}H9?Ce*>bvnuZEj`wv% z9FsX3Onr{3rsig=r=j8vZ1E+gx{^YhOtZ8NGtBg@4j@%M4|sHS*S<aQwmz`t466O} zdBWv#!R>m%a#=7>5#WwMcVUJ<W&2#bP?S<kbQmtmAnH9_YHl+l#586`bml1({<Rc6 zy)^b84=}Zl^!AxLfKpAo;>0j#RJ(Un1m5dkig_=!dhm!E`^9q{wxv&}FOmEAvDIc> z2jYmw20V7-{{!3sI3m0(0YAM&OaGP5;G-IEVp~^8mU1Zk0P%l9PkxrcbVng4L@K3d zF0&9-3$-^+<{p(z#hOJR)#i)<Xa?ni*A!A$#U;2I%~~J~(I#bQ$<E`F%RInnEW~Zc zGEa>%K4x7<4!{w!rPJoG((Y-BShC>$c;Nl9;X}A$j#DuQP1Xe<4*<D&@Hl{QU6MHV zESt%Xs#_G)Z0_|yCaUGVKoA(_AS^CQyQp1<c}!)(%(`x7Sh?@u%@|wtL}en-R2ci( z??v6w=Dm5m;fQZ$(}7^qP#40<rN%!iE>1;UCCG{<wCS>C8ujfB++&17*b!m~i}S+M zF)ciGI!1u22Awu7hpjCuS&AA{8ztErnzhAq8n{WL_b<`eff>#*xHt^IKNOD*$WqFu z^5W;n_;4Y7xJCp{*fR}T6bkz<?+M$wnOEOHS~>(jSH2BSO3l99t0#Q9r^P3tt1^wI z&CL@qFhlpfU_RYJTHO>}`)w%;Lo79YC;+lCFM&FCTrr_wO&~0B!j^JTZ3>pj;~<Cm znfg035Dxs0Mo*3rxB&Bg!k2GvMJKS>3_?ZC0LEVW*-}~uXIVVa2Ar>_S|uIQlR^NJ z0^$)90*s?xrK51=hlq()0-0&2G_c1?h1!=NwfLQ=)^SAgRP}xf`b-EhruKB0*H?A; zV{OT$D=Hu=Bb`){k(!?ZIdKSdRP(hAieM)Pig}83*P&jL=?^n7pz0HH6}sDVq@n}^ zx5Xw+t*I_!Q21E~EfaC0zz-C=vSyqjvKU?79|_xzqDQEtF~KzwUM~U5#7(PFGaVD` z6q@zEA?<rR6fAY-aUjf7XCQr=8~2$iqjFVrteLAcxQ_55Vm$V(l_68f8fyt>geJli z!pU2r0?R3zH(xA(vN6C63!q@&+`ebXq6pqt*3E1L4umbI-tZlOT-MAK?fNgwxZSS! zAAkM@FY6V{G8b+F_t9W*c13!aRC#K(9Y$dfW25|w@guLDTS_0x%LA&(MH{NlMYW5F z%KzF4rOkY#O||i}tqw{(U!dr~8}MFlG=QEx4Ik(9jc(ih)V29|hSbLp?BqH)x`^bH zRC@56!*MFGbvl~e7)Hx+J+knf%)09F!3tJxsbTdD@Uso+r1^9sQ=J)#>X~}oC?VzI zssQD&0yzbc#xiowoTM&+ag8-t^>@`;m^ouxH$3iZVgGdllV;L^gCh_7V06%qJkis& z@#_T`&0>s06uFuQRHG;+jm@Wlh&rM!#Ys5Y#-FFT)brd%#pRswxIb{eKk(D%PYnP} zSsKlF+jngHj+B>T2~NX3R6BYRJq$*1Mkm#%Cp$G`@sGGJGng4~_Z7Fx1uxgdjBh;n zcbckmJR#}d>JN_wM%1QVbtw+9MRx)XwfZp3O7%&-b7m<ve?kXtwbZ<BW^ZCabjl1w z^bB^D2T3B<>cP4A^bW~>qjVoahDa*0jz()OPu6H=mj^DVp5M#hK>W-;*=H5?s>J5e zjsZkVhJZew@!&3em@eo{QSI4;!vyDg%_4%w<AHDA-mu;Yd5=&;%e1q#!=eU|1f)%n z^JcW#Jwf(_yzfZsins4?`1<vG3s!<+3NyvAb$dYd{dm-qRd{7jqIx{`4oXT1>%O=9 zjB#r7C9RthT9Dp%<Icno5R04i6emp6j4(w|BVBRnB;4`#ez!?HrCpq>y?3yFya;2@ zCN`UbNzrM@wCK?5J7fUr9HLZ*LAy+h%RJ+Dx#0d-@xDHAz0L^4h_4@BdMm1=4s{_n zo_QIN*i$7P$qOxg)kEnx2y{zo75euVg`4`}2~RkEL(9`Up!&_PqX~(>wsA(^*kVzY z(R>44M5C++H`s3VOhkhjNcBb}CjgNKJoUPc4p|3za!UPgF55bivcv_4>V|YSA)&#q zz`Hj!)|-3gZ3@zGs&|$XolPMeen8Gm+S1|o_d9<1<rhd|OgUIPRs;zKn(e~)@&LZE zKx9W2>$`7z#=a#y-rw=tuV3)>`#ZMXPD%}oX_+xq>8uW;VaCB7`uhhJ)s0ddsP~ky zZaeOe)tJ_zr3(~5fx4@XTA7z~#=cXVArPv-s+hiLVP;C+u|6Jnd$;>|xn3~G(ERw= zk*2Cb@9|izWn1Sj92)$sJ9l~|+PYh<b5v~Pt>qf<`NIp=f3^GEQ%0Br;^&_}H8aa9 zZ8gVOi?&l?u@SS4Nq#)=c)w$PtVlVXj2i2S=nqYD(_{MSY-?;HMh1FB1b#3wnht8T z4x}}d9QtJXvkM5rm~mGs&_P^6qnuU?;pb#J<g1M~M%S4{>On>MM5nHLCez}yk&ilz z(VbbHGcebHnwz-T;8yicFjUckvkLU60XUF?Xb4C&xIxvgzu)ip^S}NXvoc<xh&e;H zjI0EnBJK>li#ZhKLWACN!hKK3lCeEj{Pz6~Z}%1Jo*+!1X~J|d&wOGA<*~SL47sBf z&k-gmS&HExRwC^wW7|^mV$9Nq(JVy+V)~OlG&W}eG(i=ZCT_KNN*Q2d6YlGZbzSk; zHZTa+i>3D{<|cuAwpb60oHHJ)wT$O^YTo~<)s%O1JM}EuTw2_f)aKV~2#nX4E8gDk zxNke&?hnH%Xr94hZI&R4xuDt0<$}xghRf}O>+Oc??TVZdzJ2|QU;g|He);8BeEa$p z>*LX7n!teM){Czmadjw1E{2#<3^WNvA?VXy928DOM{|U6+D&uyIlTX-T7ANv8|KFO zXiKAJyjd#AQ7|*opvjqMz~L0WwMpJf;aFvPlMf#T>bybnb}Bk1yo8gcLDBr91}vnW z_)>GOIzFnEg9m2bP!2pfPqmFiLRQ6neIToVGw>b2s|YShKvFscZ0^ciN_Zr(d679` zO$m>baeqAUwrzN%ghW8NTrpkj^yd)F)Z)P6RQ!$*j9hx0GZF}?DE?9fL`7Q*Hm8L5 z^#OscRRjI_^ch(Mvh7U*PN3!<oO4D_dl79}xv(sAYi|;aZ5o_Y6cJ&bXQZ6*_E?cb zvCOe$JgIO*hBL4kn@G#jD=BGkaU#MTBVKP;Jbv5o_3Im6Z&$?s{Ez=+wniaho@OkU z1=s5hVZMN0KVbgw5x0*Y@bTkEgb?w0Tk-iXf5Y{k{u}<&-~R*t^_Smpf4`Snv$u)3 zIO??2zkniU!DSbDyUe)J#l#lHa=V#yxD(5tLd}Lw$03itd!TxzwYFv9fGiz&)=nvR z*!*XOfwxfer~4quDrO(S)%oa_J=zt1zNI*R?h(Yq6Xm8Wy?jV$d<Hxf%lIm?+g|Ha zREPZNwL>Sx^XThmWfg4u4v1wSQGiJaGe^uET6)1u;HV%ma!de_*Ug4k?i+BKaeaNk za+z&T;XJu1KstCOVtB?+9D&v9{B2L51gv{P%3h^dd<-4%yOj>alJlVL=g_6t<`JM+ ztIc+viiadM&xmT%b-maOhLp81H2b{C`nKm~0h1Y&tlMVH!LoN!mI69@PD^Q-7Rj`# zbQ4e>{S%1^x9ft-`-HFWcf8#ni2wIL{WEg5Xf!V~F4rqwUSF{)fN8<y!zWDFS6p5{ z;j)-<;p?Z*xV(NuxZa>4;{W(R|1Z3~-JP#|x3PvZW2i{2iXbw9!z(fr6OO%IJvQY! zcb{pTWv=Q5jdT>aPtc|x_9|&`8R9-U#}P)F?w&_;&e4I$OJr$uM;fkyo{R-5lYpA# zxI9reo^_mb@H=W5gzGG{WahwOsF{j7XQkHGJdPqmT}ICU03ZNKL_t*WeDi~o&kv^$ zmpU0x>>#W}c%gu0y5Lf%)e&XZA^?_*Bs;<uu;v85-w|{|xZQC3@QP`U00XhS3ocrU zRzDwn6wkf#4x;6<S=MbgfVL?tixxyfdG8g-wO|%R8l`t|<0+l3RLX~tk|F!k)cF7N z^@@+LH_XcfNvY^G3PC8w2GCORjfj!K!88z(Gd9T}?(IEKXoDzn66ZxpgM-vC^n?l% zaGH?w8@|82BYyez-qF-I#x#A$x9{Kac&rcwF4rsm@W($Qgot^$AcknA!SxlF+ZEF^ zLlpQA|MBne<+rb;y##dUeKkQ!;I?`sCqyQExLpP+>5=X@)B#*=u>(l*a1tF)a`MW# zff23)dBl(Z9xbD!(KRc`Lp+`>o^i@$g3O6BtX_`nY>yPD)85*dxd~42gEUv4RO~vy z9ohzQ>R@~3gG9go*5Y%6GOL;AV6Nh@jgd~Pt`aCEjOU~iA%T!Xz_MJh6w7LsIvB>* z1G04{;xr*n5s?Gt*$6AfEbQajxlUB}qq%&UbpQ$L*Xqo_Iu?x_xjqm9fshKG5<>t7 zYWkS&M#O{1g&+7)4NHvW7oerdb-B!VeYqCiN^UIF5Ue90l6$L@seIkCgH(pd<YJ5> z(!t=02jnuO$L_J;XPctz)<^ZL2qED6+Z}OPF1;N@CW3(~-rnBu=YRPhczL<u4?q8m zpMU<N*$mASh-`>qB@{3l(c$m^;lJRw-@X;M9k^b8B?T2^oU9FEDkUnkTj$VIt5DbH zY?51MK(aq;$I^q3(_ni!;d|Vp$6e1NxXo|tLrDVLsUZGzJ%VP`jX=G!uk!Q9kzH<# zn0CfrpFXQNdbP`;EO;i$93;0#9tH6rpJ|G?11nK6+D$*5!FLGQL`UxkDrk7g2n&c8 zE;E=TkTX~XK>&v7Gjai-wWuUxbrmW+0rCz=Ej#lqK;KpA?K5>I8@BkTCi9kdy_KvZ zc5rERUkZnS?l~?PU8<W2Y-pC~k_90Ea~amL7hw|>Q5*$sc5~I}vtD~321g4_AzPQk z28p^OO{LAMY@5F@700PU!z?zV2hS6J{rU~@um9$+hjWCfi%;e$V12yf+m~N(fB!4U z=T8XnYIEO-FwL{w2mz1{Ou&EsFaL;bUEA2GY5`W~>8-U)X!FV|#fRJA$L8icbalCj zbU^7zDo<@-W9RU9gVK|r<uG@uZANt9vPROteE^AX9{Bm`)f8ed`K)r^fw-fi!=v^I zN|g!cJ=OGJhM;a1pZb{%gL#4uFa0=9-SfFT?x{~prEvx$9XbM}zc--6zGn#$mt_Xc z(eAShg(1lx6;Rrcx3$oI1z_&ljbba`hGAlKgy!OO%#AB?OqZy6HV_l0A{vX+<ZQSY zqJ(X;>~$|`x&kg!=x938aY9fj72Ug+tl0C8TU-#LnQ!bVW6xs7oYgl1g>%w=c2~q& z#v5C?Rs9{v6Wz))sVvD}_wyi}^6M_ffXh5VL=peyum180$ETbgY%Zef<Bsp&zG7Yf zh}TzYWQJJV4frcSGuCy-94GwwmoLrKGD|K~YcjTd!!O^yW7Xu)aXoR+PNbe6k%9>0 zeE9k@90TlVaNNc%R}KI=A3%j5BrSs0&EGlZ)Fi)0E?(vHGxr$=b*O}DYEy<sg!0Ee z{Jm}2H#-zhy#Ok;)u-@7N5G}dzFc4$of8k-&I8uyI04THV|{o{y9Or0#Dv>4;bof2 zR0Zt=AG3mU2IUOS8OW)$p$p41mzk3oorpyhT&>mp{Dh-#;b1>U&C)A|fB^41VQs!D z>Updi)@^G{&U&i$4c=LT<QRk1gHOad30vCn`Sk^JoSGul`x8>l469K{+q~Y%Cjh|? zg2cHPt&G9AIZQid?I7ek9DacVmU%KmkdGf;53RGBT9j0X7>~yTzy11WeER$ux7!WV z6dMvc#fZ!G1)u-$Gydm)_qX`|?Hl%_4ZyH5RS7v|gf$?(y<>Ir>AihO@0pMM^zI+% zUMQdS=w6_5`ZJO92I_u!RA{^qg;L?@Kkd==fYXW;t-J>~8E`*sLtq;j1~t1|Db`=2 zAc#%L0YRku5GbfmIreq<VP4)zDON|X>k+>z*57QuvU|sL5H|hD6S&EK@nhr4hI6>D zF&Ik-xW<TyxQ%IVEraT>0CT5}1rQA77^w1S)ww53#S*GokT4yz!PF;R8P(UDWIDv( z3z>>WD-waoXuKf?>*?$0D0OsDu3(|h2&%OEGS9f(Zr1)ga73DIc%2(r%3=25SbO;r zL%>x0FS-FPHCg$Ir{VtZBp@sEFhATbh|@ef<X8&2NPtkQdAD`LZ@>P6+wK3waw$`C zh!I0glNcdP`1I)`K7RU$dHL0R(AcK(TI4iFS15DU&QezWU5CfPZxBDwgAzTR4ezr7 zZS_7{$x|}`stcx=aaM0Qa;ZK!mYn~(1p#&0NC#G`83c=Mc4d?3QdUS|o>!+N(9v_R zLrur&O=CT1*CZ^biA`3XxHhT_t_=WmCTc`yvOoO*`KKo$uxfC~Ot{2=xz@Tlm6~1# z`w@oCCWuVd5@s_x&1uKFF_wI3@51*rTe1ax0{R}Cx1K*@I)Jv(-1-OsV4g5dQv=#e zaJKg>&Us%*6@Y<3<^5H@{)g8W+-_HdI3eZa6qvpC%4NbdD*ohX;zMc9R0Kw4a<!L_ zdmj&{(AB~Ie)O}Lrijm<UJ*mFFK%9Es(_Sq)<xCzzT($^{TCwzU2ljng63ryQB2I3 zrWtdYO44{|BrV0kAS>49$NwDT?vW0von?r#L50`YdsCzKvJQv3sGharZeVAd3C~jO ztQbt%#*Hbe<4_0240%Oc1X;{rLfkM1E~cMF4FMu)bstL!1Wx@2I_vPMrJ+1nX!&Tb zZc1|?E?pQJMrAdcuxJzIkW1xTc{Q*BpU;i)BUkEn3e31o6P6fE2&AyNKV>|ZH2gu^ z6y7*bh$5ge(@-9Y{PF^x0<`-252D`sY)gAkq_9fyv=yjLP&1z9?JyY3S52)bD%jIx z<{&AVC1qJjxtOoAtHl8zP7&AJ1=Bo10qi*&rCGJLoY6+-p}9VdOjYt8p(PXGVmVI^ z%Q^ZZ>T^o8^XCXL;PvH-NNlrM4REoWwMFWgVMbo~{{0=l{P|ySyWKF)Gw^Bxja+Q1 zC7V)enddI!ENKp!5C4c-i;K#`lpx;)&~Y9fPIAz(C3beV8TqZAxYONdwX}x{kWxAp z=GrQD+LYa0TY~CNM=l7gmq4H8zI9X8@9Xv(QYIp6!Cv6J5!w)tHYF%DwHZCj2HK=$ zDGE22{gC!7h%nAe#PK?xZ1x{{fsdFom<X3C;C5YbyIv7P==N+`Ao~uiI}m{!6oD0i z1aT*Xl)<~nsMEe9?K{F0p-fQX0_xG=(CY<39t|8)cIT+uW#fF7*Qk|fs%YyW6bUeI zY^p$yg^)U@Ct#W;yu7^Na+!_%rUFT+3}cO$qfO_@;%7;qbRBx&LF1S>rJqU*K4UgJ z&dE5mElQiQ57Q+jFa<;q_ZquB3_<(4>-(mZ@%77B{L6p;XDrL5^f<4jjg#7Vr5KIm zV6?;xDad|cZtXyVo`-C<zPX+)#|D4GAB?2ZgBlo44R}1Wd~bYEmvIwjn4w~7k=?ug zj#Fm*<XGc#*9)TR(Auo6rLzg$#~XMUP^O2JZh*LHC{7Z6Fy1^`ySMp?QEk{|N)6XJ zDJtFn(TQk8CsT?iUORp9xoJUjWc>W$6@T@Ye~Hf@KNu^n3Xw!1DPvz(q;18vZMZ(} zxZEGO?Hl5^H|)QB!CNun&^jQcGT&<F4tnTJG-~6(o+LW(MRa5^Yq9Zmden02_Kpk_ zVUEUZ-4iu+Y2EY{_c8v$jLT)V=}VfSV#YRR!xmZ@TxUNt5V1*!c`RoM%|X~o26ZiC zpM9MGfbw3nO}`>PISN38b4^hP-_*3-r=P08<FVn_Uw*}9Sr7t2K70f-W8WT@vWYgU zBOA9(pn~RBI^~n)^W^+KSUWnx%#p_1^w7s(fU&hD=!6$99w9fItvLjtx~gW!qKcRh z!DeAnm}qd*j{ZN!-fc;89LW+q3V@`!$0e(3I=fp&WFL0-|Nm)6W<*v-dZ(u{GThCK z1fct%s(=EdMOC(VXI6x}xfw|Ssz=YIkMb<0yXg4yI5Lis8(q_Dwe58G27OIl3`Pu5 zTcO^nG@pFxvQ~Bu&M5>eN=da*lT~D`Rk-SzX#~-)`1U;b57B_bm@nY_y5Zk{{}=rJ zZ@=T)w=X~ls4Y}g6?OZLygza5PptPlmiry+{s6WG4`%$_ca7*``;d--6{hTjX@WI) zmb{1#V>C|yQX^aP2DDbOT7r;z1@<&9ox8i)dy2v}FqB<;4h1aD95lFAM2ugPz79FX z>C6Q!>OW9wMXo^6{9L+9Z1yc~1C8t0dRNw9km)fHL|1#>={0L*Jnm2YfB*3xSW-aE zJJxkY$p`l5E+wZLL$(%x3b=|rl3getT{VzP=Hwx+qvf@E+@H*RXfV>`3p*HA0Y_g5 zG>v7Xav^PjY`3)=-F)1cffyA)3Ie`Wi?7m==YHV+l+*3GA9(INo*E}rv=T7#$hs~% zT8+(2BnI=Ei&&D3)2db!rB<+}*0OT%b1u@K)`}1!-nJFr-ru|3wHib=f((zTO(#7f zy~+Xaaqq8E1lG9VufKiA@4x?!Z{NS+b`wi<v4NDnIcETrWK$zx0V9Kv3Ak0p*Ka$% zem?ZHs|p|rdB#dvTNGa2+@<W|J?ZfRuN3bNRqF0LOhDKhhqckNN!X+D4wNjEl6wDX z8@Qx|WlhcgT@DiNJQgFwIl~vrY82qEj2nQmH49f^DuyVQ;-vzi>NuA#Wb-`vUhtUg zQ5nff5KLv>jLLiceJ&M0KkoRC|M?%t`x9Tjyo14bKA%EX&@qbNS7NMcju;2Nwilat z>j`gA<?DO8IE$`W40Gw)MvNLY-HkB1@j{3RaakJ(Xh2>}5$k%xvZM~!HOE~Qh%``( zz{EIe!DHY1Ch&OT{&=)JIotFC1+i$35iv=i<84{7t`g)KT@VC=g=(#ca;?&)>^bAP z@3=o6*pCBm>x$*Ce?$24Re&?w9N{d`wM}TqIWuq}4`!F~@GBQMt2}CDeE;$V|Hps* zcl`F-H>|e>anWfIfTHG)HLyPTYLu$wuZ5qk+lKcq@A!Pk^~>eJS|UP<>Sj!X{Z%(h zalkRTv>yg?sn|;u4nPAqs?dxB4-8JLkSv|KRvPTTO@k1$LLg=Y5-WM8h@${UK4hb= zog&ORBkQSWj?htU!p#DHHUZ@d<m15O`9R4T>zc6d89zSmNK1yeU@Bos-Kc|&s;kL_ zYXhRa16Pu`V_*C6V6e~@p%*`ticG+dKR<Egg7=@FNGXb~QO>PjHuartAWK>h%n=1< zknxM&l3f?-(d&~Mcg~!D4Oq<{eBR~8x^sCVqF8AK!n%qyI#58)J4#l6xLQ#QkZZx` z{>1(MloMVJCiWwv)*c(qwa<L*{S}B=XG{?*FNhSe^P!8I!FADO;?m4MD_gjv#El<0 zE8jxMSBV*X93W;5pQQ2B8vwGogq*-Xx^RlRf&ujPmk{umZ(s4R|MEAyy>Ey~OiATL zHgiyWZPvxtfjn!6Bvf<7ZC$YMPr*?1^M#hUBdu0e8SLdDVB^kG@bP)aejG!a*X9<1 z8r>MqcqLeQ@9>e(Xx{2k=-WqU-%e9GZbBw%7G63*h;m@sYx!r??7fRtc&#c`+J4eQ zwP*!Os=cweclL*#<3iYbOEu>%NAy5k=)j5xz3e0{h4JKqTpxHm4`~OOapXF1;A2oG zQ&p<sMgIH=t)CfkJZ29J3*1>@c|dO%6ER*`aChTUnfJ;fYT%l-0y*z^JkZjCSshn{ z@?Z;Bd_11`__$-=_nynAqfx0sq)en-+HP#LUK?9gil{*(pQT7B#-4<?9>^XB1%gV( zk!A6>8~_j^0aPn;$vBQ3ab1)>R~sp*PSV-Qx9I|#x%Swg$uoeN@%8Ih{OzxQ!PhTu zSk`E!yOIr1d%7=S%n|ezl`-<nVK=H^rqtYgBaFWw&O2q|0OKS9E2ZM|eg{41rJ9ml z!ZO#MUKK)czL~v+3d;L$QyYhh#Lxp>tUwQg{=%8OgkA-8%eLCQ3T+c0%$g2)4pUs@ z05e;2VDRH)_F9sWXV6*z1~+FQ&oXNQ2NnGc5!AJ!XsE@0Oznc}F^%>}bnV`L%8g^- z97fC+TKLfhjL$0e(GPAaSLL*c{iHD7c@Qpl&Ik5m$GsH%;41V`2DbIqY|?DUKlTIV zC^&XuKH38nla37ofkFaNhGo%^t6<~-FZwV8To?!Uoj&UOw4L4nMhhSb8ekc<wKz(_ z$Ni4YsmSUCq!OHE*u2Om-GFZcyH;ros|*DE_U$|V^4oW8+kzD3(2%Z0%TVJ`govPR z4C#a1K1Y<((4x>%jN;8-y5li1^#tYWAC@kH>V>2%g5$`iYVp-T(+hpfy8z^4+yE*S zAr#f8wE0>yuN8;rk)DnTcQJ=x%5~h4ZQ?Q98yQJ^5G+^4M_T(5oPcaph+b7}$#Un6 z4QC}QCTG-;Gh*r`hh@Q`${e%;gO8o(^ABbo-q&oH_mA(4adx1k3+nIi&^qd5rv#6j z_@R;wV>FhHbYdht9|e!c1NX-RkNqi&KUdstH>9+pK$2ET0ne<~<i=I6wQ7Kh<;SCq zcz94d_V-^@J7JAi^~9u5)XPqzvUQ`j(PWBIz$pbd_ao!y=N+Z#dv%Nk=eles&0vyp z_6DXYB!ZfpIJT16B(&eZe#Q5%U$AWnF%pgfJok*}<B6KZBz4<XsSY?IMj(eQr(-)& zJGK&I#1h3dH|L^39T^b<%A(dm&B<5Y3A+R!_Y7WkHA1`?iB~j5cDFgAZfNRsM9%oO zEqd^!Ica~|YyUlMVbkb><qj|MS`zDGEMUjCYpN+2gkN4mqrWS$Bj_}1X4g}ZnHM-T zF~p1%Q_H<`NAYk22FKmuj&xwI(<28h>q~p501`GCF4TO}@MHiMDF9SQg9IlFhEjl! zEcVPFpLaZ-PwBDu1IMn04@Z_90&Rnc2%*Zn{m7;Dqh{6stuiPEgeWR7YMu#Qz~W24 z;y-m$y3t@GZu)U6D=p@$=(PyUpi)5l(H}&wsA~XIZ7o3^oQ+N;L7$j}fEW@&6nU>b zblV#7?b|ne`TC`0Kt7*4{`~Wf&!3-o><2)E-@d=&TX+-XyVkQTs;d2(YEdXg*&wwK zeuj*NV)w_>X+S;s!MOv)yCUOEMQ^A5;Cn#-`0!Eh3w0N1;v!24iY8dXK-F{f4mx`< z`i1K#e1jJQF3cbtWxEa3B8IAfFe<hZpR}R9%#^t9fT$NPf>CP#iYSwoY9R>GIqJTy ztA<QD*LLs(0`P@`$reK6OZ$m|HwT=V9;dtmHwK~3BxeR5&!;-L9_>UoaLvB<aNxNg zV30;ub90%sG}bv#HJBa%+Hxq#$_tmQI;mWN((~cTrN|74M9e3xzKn|chFT2)CN#Vv z464a)c2Uki46dT7Ex07c4QY8tjH_hYrGPK*3%-5(ircn;!PuV%KK{Jp#~&Z~xIgeX z4kd~OY}<l0EDhD^v~X^YLdIgWcCM6+eLuuzjg&)wB8YV(R}&ru08s(gaS?aThOAr1 z7<8XGI)N7rsz@gr*EZJ_iiT?#2<uO6f2qUdEx@yUACn$qQ2D{#M@K3HO(l(&!H;!P zngJaHJnUhnDj}Zo;6(+s<QKI~f;OZSO{IPz#u=SuTbwkb0bs-E!y7wzK70^xg_uUg z-q5RFR}VCEgW0to`clVn;14xA6*r)y3tdszBDw0%{Ru*70+CJ{VLiD<KfxG6ON5b! z!OTa(z_W)DWgJD=07>JR6Rw<-T+V@xq-fUvH!r<#0!VGf%v0#en3(4H_nMuT);HM% zmIZ4Hc>j{Ht}BRud=&ir^Nv6M_`uJPJ03^IuH(zcz9Z)YX^9QE!o>EhRbs5031%SF zBAWVW%)p{8tLZk_r7YJTsb*2&f%`<uvnt!!IJqGA#ZAt9Bn&33kph+&oD0ur4r`<4 z3sc8|!c7;%AHER7jTVTkvGp{?%=Px+Tu_hn;nbysp|h2A6W}7Fu^Qw;8$i=I@oLPG zv=41asy&E0a}<#jHOAe1F$6`uh#6^9hw%iONveY%9=vnTncy@s<_9vNPB9MTd}uGN zMy8GAQ;~z@)iI#VM*#wj-_Y<B1E|aaR%4=4l4i=1TZh@RRsbH5Y`F<=PQQ~L+)r`r z8rWtNoIO?uv5(7~Z=x|5c?O;MRTMa@byY-M7o>HSS@t65Ny!KHQt<b`f8fWTcRcpo zS|h72o7k#$m7L)nhDVibPPet;BBfRwMbeeZQLrBeO39kIR2#z$&d)%`Vm{N7Bzo=C znbI)oi>gix)W?$^6R<_U*wlhT>;H$;Wb)X+WE=O3e|$A?@_}eHeM>T$N8mIW&|rue zv+JGa2Z?mf8Y!R<sTX-xue9zw;!*u|k)6NsnMt(o)J7LPL>!IP01x9Nz7+J%aNb!7 z4CmH!omh0*0pNpC!95(aup;!10$rW`^7Hv<R^(>#dkz^DWdGQKydAjVrqNL{)+$_q z8bEOjLv0w0jm%V*ooi{EY^|lAFjMqZo51KjY?=fG>}q3DQoA>B<u|5rYP)Phj$j4z zfm$D^WkJa#?=u5jGLGkgpZ6zz{CUUyvCAT!Ze0V3)g#}}zF8%>xn$jBOB0SAxd2B- zVc^)aX5EVpr724tUA!4<(5Rkk;F?d?MYrdUA&7CUGyU+wtKhyyuUEIgX_QubPer`o zQ4U^`L)O6@-qu@)aAAZx5bEi=rLL@0V4*3pJ572T0GdE$zY23`B9>|+m?F_dF~-(E zvX^9fS*Z5xgQ=w7p(?*{n4z&u$Mr=Ub31v`QsWfHF?iv*O~Id_HimMTW&2z~d+oMJ zb#!2*Hzsd`QVWV2ONi^Nu(jG|5c?R?<f1;F)0~1!sh}WZzp9(`Z6$C@+CTSLC_lZi z(=<>LIWj`i)t^K(7(poNxxoXso>5WDj(mK|=iVQPV66Ox&-;d-Dd3MEpZNTI2*%?! z`Y-^-JREiMIZCUxB(b-&ilOQTnV&lX19?C2cnTMy$(qL)$L@_s-7?HipXL)YXyp_g zOZ1YcHa)P_bo}s1R%4kzI5vSVUuX7wc*V!)BrX?bGntpn)iL;lHX=2^O?%nOPCM<! zRTKzRooi32U<yNMq`jd_vIsB)8hVK%offy3meQ15i&F_ay74l85n1dA8)uM2#2iU_ ze|H!z%Zd~eN<MHXk%wL67HU;wpAopX0Crj$6A%zeXUVw-Pb$9xAgub3<eZz0TG4!Z z$trYOe-<x#QcNM}y(p!krXC_<qe)S$1#qa7qpgePo~|CxCsG?dF-kdr1CoC(LpdZo z@W+oE5(D?259Iwo@zs%naluwhbq9r7W|@qc6@$t-H~oZELK=NuicDUPqtUj(^AyNu z=P~$_>g0i98vPTU$&5XbVR!}8XXsX00S;ObVzgrS6K}pSR`N!(16PQC-6jxTc{yHS z2^YhIRBGv|Ck99abRYjp-JD>ejFKO;Ui2x0xWb{TJnTwd<?jl9o*zW+)?0oQ(#$t! zS0NsES2y7>7gn4+(-XFv$efQ|LnMf?t(&;I<^zw%1N)JsgvzS9&ly|_s%JX7>_J1c znJe~v$G-34IMb#rLCr#<s>@<S=WD6hkG(m^6m6?4jd<Thff<!WR++H@P9I+s+v&Y1 zrjn2+Or+T#`X1DkxHdj4IRhldF9E=v5B%rf-w-N;4tejYK~v8<aiUpL=qGd=M>1-W zO`)+JbJ1)-{ogw3s|*SBbbJVQtWg?T!>P1B<+2ebTFyxUIWQ&3U0ZU%>%?m9Ht^0l z8P2nH;(+*k$7VA(sIA8z@}W4Rr9Qu)Zqj8vk@9h1U6#(;YyRQ^tQO(fPCMr@H*?9G z9kx~t-IjRPnbSz!y|URRoI*ff7`%X9Mplg%yvb;}I^@3J*ce5}{iYu4r7(C`K7EYX zZZ~Y$u&gVNT}&fCK0k3Uk7i_PO2-Bo=@XGl#=h@}F$q;z$5U3?T2va``&d`8T&IO_ zd%J-vV?TBwA8C7X9EW`6jBMbQno3wGi+5Y13x4`IexA4-LkRIW#i=ZmV==6dmSR6L z{`Zd`hzxvRH<;xQ69a*<EeT(~tayLhwDswTeJQn-{Z%)YV;3`!QjC{E!boK_Qj{c3 zOD<{utmE-ReQ7x*sPj$m#G8p_+J!}Ex`lxl#6vAHkdB&D-OM5IZqDo-mB!4+^B9n? zu>j_&iom(02A^;pW*{B=E+q@~G*Oz$C>epI>4Q5(o9q3D)Lr<ptPXSo19h7DC@@q4 zRTFdk%oZ;ts=uz3W`BSIKrsj4C{*30tSBY-v5&@krIfIwgl*e!90%_AJB}mcet)Pm zSE>t<KkFu-;*R||@Z-;)xT~d9aEeF^Wi`nt0PMR+tk-41vP$gqx-NKod(*`)G}!z7 zj?eq2=<2OC0gy|<o{yH-K<1<ygN9e|KteKAnrCx*Lkjkrw~wXf5i_U&9?u8v%Yyfq z5Lh!Gn2}<@`}+;=UvAhoiO=dMdC#?z7N}s)8M)+Ev4N;brU9U&)VBVTvzTi#P`O;6 zcvp|klm!Vl4H_0I^-=a1gGS@uQGeDdv>kMZ3{Al`r=`wx@~rf2Yc~Tm6QT=!rrSWS zNk$_;n3#qA*1$V|x`!Z0zDGg_Ll0g2(>*=l001BWNkl<Z)5j5u?drVU9bfxo0CJ{B z&RFpkNr+Cufr}|BGkjyf?9C%-oNAauZ45Y$ZVzUPtJ}6=Tb1ClOPtfP-jULRk~=To z`>vVyT;+^hK0!~Z7J`|j#)y)Ot7K&3%*WA6?Bh5Ple7%$x?<ZlY}*a%x(X9BMtt5s z^`w;Q<+(rcpa1*sVoDJRZ`-XW`LZ{P41+Jjz?5^RN)wa(a+8(P^(Y0O&nMo~iY+9h zC_yk>#ou6AR)mz)H?g+zzW4B&)~ls|tul%Zalx_*76VoH5uC_{fokD04UnVr2{=7a z{-oxaf#ZE9h}=otO+<`9G*{c<a+Wn&u+P4f(}utvL^NV)V-nJ2<bJLW8s;#_>_=~e zlwv~F;Eu*r^8Fc2<rDV}VF*naVy?O}sm;U9!Dg7mzkut^S$6CNCdMF-<PnB@z(=1u z@@6mt6}G1U5e0C~E#leC8_je5wr#j=s|t2>a|kL_2|+#NX-wg<MN|Ps0R<hwg^0AQ zxNVy(@_e*Sq*^>!tvHSYr51!NEyPpfrnlSP+?j8;4KW6Bu00OyyL``&KYw6}vT-fT zI_mzlIy2*w(+2BSM|EG#6T&4D&&_hF6^~=b$MXSNHd!hha2$mF`9wZ$h)I0?syZYY z>CAWnS%FWnG86v7k`lIMX&XR^0($0LP>utYiW4W*b1Uqv(-^0oncaimlZL1{E`eD< z*q{}16=1bG&r0%CX7w5Xg4!hMfq9{>?EDosyrh0n`QnXxq8~9`sx`e4&d7n|#u80S z5}`${6$j_(n`(29ZDTUXxGNf}8{Pa_7kO3vaZ?vs3eXHm68$Q4+RqOzZ`$QW^i>04 z5EgmcYj%t;iE|>9z2Ny2kj@MtF}N2A=y&AY!XT$O50{AKG6XEVA*JS;{Qh>s+qN}p ztm6=NT+UgHFm)61H#?V%<1^#q^Ajm0eEs$fZ?~JYCyThzRNXjomR8`oA38$p0jFNQ zH-}8n1($wEF9u%fH0;NYobmB^v|c^Nh`IwGKR>ao2^1J{2`I;bqhxJ?dT8f<9CCe2 z1;vOp3D0EJIBf=j3JajPF387%S}H<NyYU(titLeeCeIS*2@~tyi-R}1S#7Ix5ZBty zr|PW8*^Th5r7o2a%<MEo#DL};?L$ne^Sa>4<a4OV$(!f!xOU9Z+l%M|PBG$kFH2<{ zxri8ub*yKBo}wC?cm0tiR*8^UQia<Hr`ax>WL34=!%oISk7DJwPuuK<i!{k0aXNLF zNB7-kFgl~!p7!T%uEjW;>FLME2XYp%69rN6?fZeh|NRf7lu&EM{rQk-!2Z-ewYZH^ zX})Ud)yyuUxc&V0+i!S#dvC<4k~5C9;Mf!PW0zR9+BFh{F88ef3aeK@7GC_iZL$e0 zi&PDoXk!-a)kUyj$V7A#8510NzPM+w@D$2K7aR;XD#*3sbKem`hyb>AMIgfCS#iG~ zh|7*tRpYN?zT?OWtlshY`M|y(U<ycU)GB6a!ZShH0}>)OUQnyp(^Dh_!$QoP(Kdc( zi4LP4yBR<0j_Ca_J9$X12UTOY3SFCO2gI)`+2H8JO9U3x=7gry8^d9%G8yYM>IOM8 zk*0;=m)sbm(%aa+4q`d9aq3<w(#OZ2Ac}3~f9|A5sc3b^2UQIaTf{WaAF8^3jFlP4 zBj88jeED3e%P^3?!UqOuk547t^=oh==EM{mld6=0$NerqlRBDlt=RV`j^o)*bg6K( zbXBC1f@HUu3XrJx*(TXtR6UuLnu;RMj-t~E-~!}aapc;ftL>&YQwkPO{iBT*rSh`P zN%-^Z`q0kf2n1Cc^2E}>pdxEL5b9x-EpB>#;4VhLm4Ro;h%9q|#DHztfV2VO4a|$C zMhV^bC<XWD6My{q6Muf*@p-??2sVf{*tV{cYoJaFHYSdVup)uzhV9m|n3@ZAWd|0e z4Y$#ywOQ<+7zfKWE)345DJHjee^xOjL-nXOLe;=sR_kyEBXI5EAI=qMh-jaknHV6J zEX7W+^Wr+{Dx4`)gqs5}kDFXd2$7LK{`?bZSw-~HT^0Moj_#sMF5wph<Sf0h<)Kli zE@7xn3$Mpf5z!g5dx7oq<l}z<JvD>NGt|i=C)zFkrZry{W!H7`4$TY%t!kR6#ukI| z#7#R9M$%^0c1fI)8MPEV?+-)@;I%eiyGQ|HS)Cmf0A8>xu_e?JQHz1*d^E(LwaO|6 zh`G><7-9>~9CYCAL8%y;M06c{^-@^9_aV^LdT$S*ziO2k&yo?20IWAqSg@oU_OKz8 zh{)EiWIP@je||ji<Ku}x{`|y`&j<FxNb8DaHMObtkr47t)PR%_30zatP!!z&if%I1 z3{jk_)5Joxq4v}hn_Gp7lbFpmMzRfZAPr#<16c)V{st95HSn(W?XkBcm7NP0jns0U zs)9ih=mmE2eA}}kUY9+zrql7&7X0yeAS!@mGjh*zYWC3~AjZ@UJ&8auAm_I(fi=r* z-6h-Z=K#6^=X2#dUPXhQ#4cy>pNL-$1Zf5jO-idQyp$3G0*a20mL)Yysz7ED9hxV- z-GJ&sM53bl!>E<Jf==wwiwnGDl(&L)T}4`(L@2bZOWRl|Na?&Tsi`xc`vH7@;`w}Z zyK;4&WvA6Zi;9lwZ!wZxnuON;8mkMgoW@>;6@)o#^`aG+k%0_g4-ql0h_r!fKz$Va z+^c#7GLC1){qu>RA3Og1%=phAcl`MI1c>ovTXkZBGcksG$O={Wd@)cpdfR}mQYvbe z>Zs(>G8!bciBVV-*l6B)A|dv1=tNUCqEDa>lIuv0{~>hZ;6g*MGjDuOVNVUBW+iq7 zv<B)%uYJ-*!#p4qaX*4O6-(q=$0_V`rNR}QkG8OL$!*6hI-?IDP*kTDH$KB6ndi;u zlFb37fu605B<{kG*~sHp1HFIlpE3WBF2*5Xn+B*$kHsmInK(+RzG-isV(Q~MRRrcz z`zc|fDJ4vu9uhZFVjJ%jqfLJ{tFI8F^R<^nyKNFGal37}tt&zx9M2tK#%?W(j=`X) zxFy{NxCclVNi<Q*qysjthV`DWJsgJq0CXwUx=3V-5n+1=mao{cB0noW9-n=>Pz&}$ zD8tWZ!JqevACHR9XF)*0x*cHLdKA0Qt|0fgPudOw5ZKUnIjBl3K$gw5me7nc1^VLl ze00a=Q2^9gkS?9qD!@3BzZw}Vbe_ri@{XPY-Oz(hbeEaX+T_KP_kU%t4vp=)1@guu zosM4tq@anTP#(FrV<EL%5)?Eyk&yKeAZ}xvS$1pXMkVe-3GQw~JOdp(2V^rY^SxcU z$$TOHndy?#SfrV6IAs=*R0Hd}V$lew7{r1)XbE0w1*0_2cF*NE&$uC+lG*vOb?>^u z8TBZj2O+4DiV;t$f_tSF1P<5_O;V~ApC3Q*^Wy`bcd`C%vQDeclo&I`y9_0t4@+%? z7MBJ+Tqo1elb>q9sqD@+;r@Du5V738AZ_0fmoGrrz(gpVwck|;gaZm9Dy;}hMcTe1 zJa?4GhdM7+Fybhzv3RqA^UJMLGrFz;%Q7<$2yV<Lc4D#-#L6v9v$`be**(f<DzGET zMIRaNy#TCjp2$C*e(c$_bDGic--N-B0h75&ZAE7Qg0{|NfFQT=Be~Whh?HN0BMt4W zLC1O83sdKjcjtAPwaNkrNU>+LnfXH1NrALG<pdPcmGcSX<V|N6KAgr>7uCWP({)vz z`b;^ZJ_$(6f^FNdE(@3$DMh3tfgPZrmdl5f%{uXr#Sg4Y@5j#yEJkJLDWF)wab(;- z@2Is;QaUghaJ${`_V$K#NvO5p@w^LiTQfL7)R-h7W{jy}1zlUwdF^4~YIIVTIck;D z2H<(|jwMQT$*A+nw?5rjk=F0J0lXtn?0|A`Y$=LBSb)d~u^??Xq-8~Z-f<ii`%$D# zYjNTut~2lv*z|mYxp3%JX%J(8X5l3P#@uMiL96LHM2$~MfVKgU;5#(gnLD?u;gE5s zE;&`{XzkS}6|-fAfQqA}7%sn~sVseu-#9(oHUaXRkG^<{O&;6q37yc!Ex-_T%%_w` z-R-tzX((-MBR#iM*{rjcMnM|Xd-X!o#GUHM-Y)>%ToiQH3d}$tO$)!CBCkgM_qs@) zJ99-!3zkMb6##BY3%0FxvXfin#+zuYG&Qmql!MxnHkY8ZD5Eb88<R2S)>WdQ?R6*w zyxrfiA3JImJFJ)z*2O9pManC?gdE7oQJrjy(r%k3yo&!p8D`K^SLt}MbglLpOI3>E z7PNjtOm7GwAxPXN5F)q|5UT1<V*3&?R78vmC@#o3<MDW6TNm+F1UY{^Tqrw%(-Atz zz&kKiN#gH<rU<pf=<1~9Ag2Z#EUOwu5N2%Pg3&VgZ3G&PJO+Lb_aIN;6v<9gOV&4+ ze!>q)ZR9b+YbkwdqorD>{4^S6!PG+wK>!CyGuf5}+p=^voz7X=O2`-*1=rgxo$}A9 z?`G#{<8G}ShC+7)RVF`<^N5N%kQkg<qqPCcvf%sI?*O>DAGa8%+PMou3N5^-sc#C+ zSFzTKq^WK_Q9#wC0AS~cvHO``SEp~^@&5MK#6Kp4ff8*}l*CzX{WZ6Te%)5d2@KQ) zG`gvamc9;i;<;t&AsT$CD5K%w1VT($);BEcyO@Wfd(~B=l^5;|J@ivau$hFI7L+67 zao_R&p5<_f;VhLsWx?^t17V&NtNp$SfagR*wFAoRqmwTdx1GA@BqcP1)c{|ShN&IE zaL``uVIiEWS9rH#(1kIMR5td~VR8fZc?1MfB2YC{c#7aw3u_7i9HN$kasgvXcz=J# zwr%2fN7QueY-Nngpf{|=j~GX(50BY^glQ)nXVA=WzWQef+F3J<03$nja_BzqhURa} zD&(7#)W{P(Vq247!YP*9Qe4KFt~uFs;MBq|Xh>t~-|wa=b#ys4S}&Z<R8^)W&91=? zA0Y*z;*#7rvzxH6^K-c9=wHgbryAA$SwM&@VtPYL>yQWyu=e5I>dljln(8n_gqV<X zlw8H<As9`JV+E+;o|ifjHWetkMc9-f!EQoQn@$&A9B?v|<7O^GJz;uq?io03ZOsh^ zA(H`)_l4wXqY9(XR}&r0!hByt(~0?yR^`m&h*Wbo*=_-><`|=YBO|JWw1`=T31q%~ z|Ax1>Hx0&k;(nLtCFbtAZ-}L_y@Wo?Ltq2wdOsbqz9-=MmBMKr7hP=(2FyXnf$(#4 zEx}Vt2qrwKPC+<<eJ5&?XC}H*+bqb#$haB4cML(j_PK9X=IRL`ntLyKCFl2FoqpXp zJ82IL>g>!b%cy~oI?ep-8i!#dr!7p{kd`ll>amR~r{#1GZ?|&URF91PIB=`mRgSG5 zG@b-A`hu_<?U~(Jon^BmtU0~G@RGj)N%CqwqQT<sRSUw7tt!E--5Gdr03!e2H1_O- z5rB7TSpgURm=_9QzEIT>5z_s+U%z4fz9l8x-fmcLoAj%Tl&$NsVB2nzLbLC9?oT`( zcN`M?>P}WcO)aXbHmm2(7G#X0kF!$>4=6M91uqrAOyRlQA@t>ZIu3iiJNhXdG=`c2 zyNY7+F1nc0daeX6fET_{KbpYG$T?SuNZpvl_yqwJdyZWXl92aU%nDOK&kRHk91QB6 zAJHp~H4R(>e-G?o6!FxG7;mkuVfJ8@Qq&DGH*Fow;T5t8)CwF&>F&VBX5v}%@4{C6 zZLd}E5{G#-15_IC0|gQ=u=dtu<e)h)@0tWTTsZI443-GbYQZY>LIihtu*`Agy|v+s zbd!NN=a{&zN$Gw7KOc|Y+d8$JNnqdJ-thMRj%8c0EJ=kY;%CQz2wA`?V9BtgA+heR z$VJM|BWK~M*B*{(y)s|;qtUDZm`p3}f%}y+0H4YLItjxYi%-X(MN9sWvo6Y@GyBky z==nzRc=}&fB)B-$na68?vEh-sTU{~cT$<XcS6j$OU)T!XD(YNIZ2_BJ6~?Cr@`ZT( zm*xxhxq^B}By{UHOgRQ_;Txc467S}y(c|c=`YjN>IO(jXXX=}ozQ?MeEhgL=G%cZL z=k+WF1*VPcGtc5|{OSyHd>T&&{&bsA)@XIgz3y&J1I{wIUQ_=)1G(&!aZXJ;5XjN! zm5$6)Ecn=d5Yor<c`}lWG2;8S;qCn$U*6xbC>bR{%H$;`5QRa5o{KDg+kT8<Y1GR@ zC9TC7QuL5V1w3e4{6m=GRfy;{m6#`ewO@9_h|oq{Ix{XM3qM^yQ)M%vh@!1eQHeuw zk|LY;fx}Z=Pw24$c4m}w^qE&4($#jxsu8eoN@sLgYr+29RYEKy+S|5ayS*W{5mQeA zG9{qL1l;c1n{47205>_is`2;{8i}~`GI0Y(gVWd7nJ%uxAlsm1v&uqkZaBhtnqknn zJHx%UNfJt~c-(h+R%>^dF?FOVJc}|k?f$_SnJ}!#Ny!K8npTbBjGGv)R5b2PXu%k) z;7v_noDB*%(Sa$1(SDDsn_|%rbv96a8}K%=8m%P_08(|-So62P-ER2$?F-)CZh{_j z0cS?#C<Gt?`N-<oc4(F$k6v@S_{FwL++Ch#hlPnYMrOB2gMHJC2Mnn=H1=k%2&r?q zZaqA=$Yx>6K|@MPsn~a`W*8I+sYG!JY5-p7MiI^Iq$l6n$yL}QKAbJO3$FC;FYHH( zPJ~ib8Q8)v8p)~yk|0LO;!bqG3%B6?_6GWm5Mq*4CmqpN7u;HzTKepna@xJ=Ftg%# zw8ygkLt46wQl6;!j>4rIXOislOkFLSb5>6P`FG6+N`9i`9W@`|T96Xq?QN6i&<R^a z{yO_dIPnt*sKD_!@cH8d`@SQW;&V;=G)gytZWBHw>rA*q3wCuj;3ra)%Mu8UE*!fy zK(AdbrBUa5@>0LIa^Hm8U|A6@u`4FIrYi4c#TZD5eKi-Y?n3*W2qT7(#AZq4ss?`D zZX41fHqs1tx)Do{|CEa<+4P5;DEdZxiJx<k)}WZn?J*cooWKh@C#1{;=8R4e(LX^I zW;ja1z~pL~@G_cqCMSeI+&I~#WE@o(Y=cvb)9iaXa_jv(S)?(>;4Hz6DR>Swu<KbF z&GOm=EF!#O)F2vzBOiD^pQxo`SrXP&?rUX@&>|lprBepGugt?ty=Mzdjx|<!hI7_k zQv%kCeEh`oPDtqsKntoX&A~-YKV{*|dnhPbat2Cypw=g1sQB`};_a63<?W_wKn(4p z9~xl_gKh7zGU}0$_uLFbM+9yPiSmg$7iDHg^?eynlevhN-?~8*8gnRza^F8cezP5- z$a>%34ldIfgwP30R=L=wY&PlUT66(crnlP-%epE7BRK1+6){Ek5VD?<4?OoBr7-q< zG#|X^{PL}jE!uMyjd&`h4rQ=^fQ0RI%>&>oeg|P15uU-hdEn@^(LLr_cV`d~<sH;@ zK}ck6;6OdDd_8+?S@53cz?0d=#8jlgY-D=K?Dv^pUemZ2$5!J8bS;@cTv6B5SdGTP zupYX$g`+^H`W<)^6?W>fj%#)s_tDH{ybxw-R*yRl-cjNwK&x1Su|=l|ox0Wz?Agx+ zI<T!k3JbUf#6Vcrh;5C{^>{dm2cw+H{K^D5mMN*gW4rg0i2O8@KaF4d=r_>l@rR4? z+Hh2<vk*C%cn9}RnLa%l&N*Do+tNTcc2ffHEMz+e`-vNPn8Kyo?Iw#o8o(!C=Gs~` z_@n5J!;zKK?r6P4$QZ|0U_aNcLmxb^Z2AYPva?;)7>YnIA=&d{wcr?XVW#b71|fr_ zH6ZeGJ%aSe^Pne?5-&!z7z4UxwWpY}Y4hhKAsTu3US#9kjEfqG_LIA+&Rr<kB^M=N z#opt)le1;!X?c0JPWN&uYHC6z#}65jbEn)IW;x|^MlHK6ehU5PcrvYMOg2VJj3p&G zzL{Ig76z|HKF#}k*hV)vA;U<5OYjk!CrvuS6no+;f`4Q_>qI;>!X`#180Y*njZ`sM ztj~1ntB==TiBE(&+XxIID0CsJ1x;0w)F~;rEOt8?xH68ix4AK(&Z{OLRaz}`7cmgL z^)`>~z<^B8X)q&ckA}Jqmk;MZ6P7TGhuTf|n~)=Lm?20hr6t+;o_ugGrYS(em5ydF zW;5qpE)s+3d}GF&85~Io1GfNvbG39Ly^b-a&RpaQbEK%H3e-fBuxlF#X<!Iw3L90C zQLy(yPS#2$Z*|p`j`Ze07}3m&d(K=ok1^Kreq*o)IpBqrB_@W>C@&vA0}l%>xN&Sd zGzRw_Qk$=T;@P^$4;Uslbe8fGe!&*D>gy%v!YfOCo5=$aa<<073o)EO#M1MrUh~FO zi?Jc&F;I)hDu*}9jE$u<1IRph3w6)4%2Pg>&$@2|%}Hb~mbz{973Ns4)6U6fdMd_@ zwo${~7qRj5o3e2jyJ1K_vKOlkQH?3W3hJtpgr@?e^@XbupB_qiUoiwwwH9T>1Bxc% z8Vj(uXLaD_vz9xxy0TX-%1h3wTI+rZO`*v>Nrzle?Chp|lC2K=bGMkcoM)yB@qkzN zRmHQF^Ur*y*A80(UDb&+_&xgbB3K_iQD}qd>05&E=ruJti=R%@tIB}z0^=G^;Y;o6 zc!k)#B29E=o1&4+ZJZ_bzd9>*B$;lvn*esD;JNQO4gpJ|a{Xh{hkzlmSt@@e>SZBK zq>8>n1~6*B7rJqH`|#J}WjgO`b|PJcDSNXJ_`nc1t3_?cPN3in8wdr?z4(H9Xk#cE z{vQvgS>raKO86&_j>i0gTHCD7^^Te)Ik|D1uTZK>*EKIW>7hrWihzsuegzMBJfGN) zjEzP&=bozTJAZGT?;UDJMjxAJwNY!CPo=aUdk(=IF2&ayYhI81@QU*`EPi_)=Z(IS zV;b`832aXYk96K?O#5P~4m5VgS?W3@1HE|KG5A#vaN_VHgU1!~B~{}W^q65sODRQ{ zO3Qfeg4*{UOtS5lWx?B~1{fqGBzVgto*ryt(TR~7h>Zt6+I^pBwZyN0{DJp;V#%Gl z1wDm^hpwNtJR6>B$fp5kUdc7O8BKT9mF^WXjv?y0hpr*#Ve&bhZ^NnQGX-qtZ-$Wr z{sLzx$*80oM~e<~{4bUX&d0|c$G+pXEuEZHXOfbSee1{<1#efa`UihKoQn-lL6oeV z0&<J>EcY5qRmSUZ%$JMbZ(y#y4Nb^0En)6RIY^$-di@*lk}G}ks^*LPJjHumFkk8N zxAHGm^i?9TYpdOul=!;;NRRs+03qvKmbvz91qHGIAf?oeBaD5-Q{rzkU>HkWhY^pt zLxY6x71L*;pZZbNm>LK#g$7M(J=dQFokj2aj>o5%fHEX(!Z43+n^l{;v5o6mNo{?4 zo9lL$p~fuqCX`c^;uT)hK&9aF<ehA~0fAoA&+X5PY61e)9-GDede>5Lzu)om<0neV z02ZAemxgb^OGmBEX`@VPV$kNEL*|p%t*%>=%`c>}7wQJ5+?gBuF(rr0{o)1heZbg> zPNK556fMHOVOOHxV;Xr-bCdo`gTga;4I`g}CoE##9SD~*&Cyy8Bd>oD_lz;wO(Q@~ zUVH^^rqBDM34ttkezZLzEHNP&kpytOY`giEP)m)bT^(<I=2H{GFm^fhE?$%{K?CeP zsJ+DRw3pH-f}pYA23P#?;|KoRfB)}5lriXSO<2uxs}{AYK9ui}g=_(yMnFb%F^8a~ z&8&^=Qu63TJBU0cv&VT%D4=3!LZqPoJBFy1>d*kv3RVVVQSy-4m>pR%_KuuU@_}Ur zK6N3`;J?t{n@l#mAN{17gQou|E=0~vxZP$RK|IEon;_4PjS4Z)Vol;|uX8o<Vb?hG zO#0BzYaWjt2at5%qHaJ{z5dT+Nd5&gnonXX9wWfpWMFjhxk|blh`ZAU!V@Qk{k3#L zt6*Pqt2tSY13)r%lz#}Li~kBCs4<4Hw~Jf+0ut5s$W-R(&315av>6ynV+<K{e95P8 zdVA+~YQJ-!vNjr}Ei@idfvgs(MK*x{=YRYUAPUWQTauV3Du7jsETF7afc@Gq&B+@` zY2!Wfudh7GZTl>CD3xb#Bj*)ol||bi0!>n8H?i<>Y;No)8&GXD)Uc$6rGyw-sOeNb zwR>fXPI8q`h;mO0J0lCUES$k5cm~bJldL=3&^#sK0cn{ffTxa;sc$r_*MIf_pdkye zPjiZnSr2CM?nm%K^|5?rI-AlnpJK=64Jx!bzgwK-g+uO{o~qViD&U-U{k053aL6c` zwX6@Ggdd4{2HvRyTjqMJ8^ECK0uWFo8Fq&3e7cFZaW#qMuz>uBprQ2hU=3j&hhd-w zPf3<jSJX8Dfe1^A*p>*?g8SzOVoJy{VyA%6063b4CNzdcV!q!3iWXP!@hh;0NA31? zFV`zwy4d}%Su5OnO+TUx)dV+Esz+VSrV6zCj8ca(dZ=`~RM6)`s^|ocVB?H?E>uLW zdUK-S^LOzt``&g39J{fT$TUmOOkB}Zq5OL@ppXgp`q#hVFaP?l`1bvqYy|s`V?R{A z%F{$fn4tthRDqn?!^87o%pk_1@@k*laB;p2LC32>d^XIBf*Tb)_p4G1xR%D_NK3-9 zsO-8F9M2v5{ehwas8$tewRao`4%Lh>Gg6?Dl+XY)eJJEBwo}bNrB!<eWzxEtF2==e z8EchK?lH_hyU*8M9Z4F96x~m}_d*wQ@_{xAv@v8P!uz(O@Eb@ixjNsvm!#eh#@<0B z>#ZC}MKfYNFVzd~!UX_!CX~Gfe`u-{c&4*9&wz%-x>lni){2r3>})xRju$^uv!~xd z3IvonRtuB&Xxr>~Ib)!E001BWNkl<ZK(A*kwL>*@p#b4aVjj&9s+$Y?4V9~Nx|%p4 zb_1)v@xT54JO0oA`~Sl4|MEL3S51Br$~*WhA~PH)ri7%Ub8>dw1Af%RO>(_+&KfZ$ zEnZ9_7J_PVVp4Z4bX)Vb`6xF>@(_glWuYng$k?Ad_UDeQ`Wusf*HTow^Tgx%#N#O& zTxvdkgJMYRmxA{9JrS74U0r*MQ2AtV(cDwr5Z4x{^>=;oa8E3C3y-h*qLW0pE9Fjq zN23Qm>q+=!TQ#7P)cQ+lo>c@vj595?xd}Jws$1mV&dk44nh>gAAliP6c-kNaZ%Vpk zCU!Zpes&88akKU|D=rz&2jd{LT*$WZ@#xb;KKYh=*<LYj`g3(eGoEv$^5DLBndY60 zucugal8?+x;Qn}42A5tjbPG6j!ES9p!1v$2<KO=Ecl_JG{W}2kk+|v=;I$(`t-w_- zPD65Ve=cpZCJT_=1|Z@&@zqGGy9q9QWMqGOJf<D8Faes{n`cQvvZ}7sq8=Psu^-(K zvS2~aeaGYeKw6h&N<EnfGd^*o#T9YWdczY){F`HbJ>Xy-kaqZy8FvmpU65u11s8A3 zlURsHEWy<w>`tkW5*GF27teI@O$PzVWjuKz$k4l=9z<^aE1w=nKB2x>p-4k(!`E|f z9*#pFfyRzYK;vAUCg*<5MnDz<(VlZ_jpW{ThonFO7XD7&+MTTuK+6?0{wv|t?C#3l zXl&)6lHt=`^{;zHr<<n-_FkL94->d*JbZRUF+z-D4KMQEh?EXpRAopGZh4PZx)YuF z>O5dTXp<Xn{btd04d|twAyK&^D4A1Y=xR?h(l%mDIkK@YIrpiclzved#u8CtLRvD? zvS3{oQ3LXX$j>Lu$u7!+Abg%e@{1k6DbOZllCIJ~*aL~Z5GR@*j#->Dr3am&!_{q( zOunqXee=M9-O1(nJi}u=ejmS_8=t~YJZsCj<#@iqX_L6poXl6AC(w<~Bo@?mc8HII z=>n8L00)*0tiRxcK@{!x8y?eGn)CSC2X|Xn74hWb#3z2u3uV}=*}Fdsm=ztT3$7j; zTUfIc$))+kN#RI?iZHkkQ5v}a;|b2ed>ces&4Gu5s}q%iw#ZdIDRLVhSIylRot&JU zy7E*xy5OF{gRo;1fW+9<n2^j9&vTLSl1uDPpFuu~3lqf=&h-)A)Y=Mi=NRLZ`!$S) zM`X0VPzR1pg9VNlYmrd{4alh2ZPTe@XYcX@oKuRYi^La0$eF3dJf<uUpN*$Y>{X92 zOb^a~&({oD=di?s`7;MeeOgk&QVUAuRu%`-vJa_Cp>Ga;vvTAg!r1zG<=eP>PTL%f z6%{wp5T5|omy5rpK=BZ?asD?AEsBA7rs|9#pla$<Z9WP-64+?s!MK)-nH)Cdcrbor zWJYBj6>G3-R*8M7o$cAYAZ(IUxl_zNZ0a^m!3o0P_B=|AWo@J;e4+E6+RNa+y6JQ> zPiukBO&$+qF{5S95?RO0@+IONFp87dav}h^EyZk=0-@TM&a0t<m}($oI5!=Y$q6yW zhmbD>hr@>C7l+f^^9f3!UV-tr!44dcIU)wHJmKghAeo|3ds{*PaYO{LLZW<SEKE(^ zxTK_GQ5y6B!AWWhT))BRYvjv!Z|l`(CB^mf<iOnVJ6|^wxa85BSqr^@P<%xdS`{Qf zZ?#gN`v`O}Pi>h1VK7ehniE;@z8ca$Q!-bsSq*cPqhY*}qN&q7(S2RKxtPIvK8e%* zw~epP*{`QHnyT3(%_a4~qaS-4FFf!MD|r?e|B}z!zCWpa*2F1%f#(drpD#<2jyUtE z9^@b~4$QI7SBtsCR#1wf6Az+7W0(NR%rdNOrpwcqPb0k-ADtK{qpvI2eDI^^v+!*q z$b|XlspA5ki$LHp?%IKl;^Z5#8r`^MC&&nRNlA!6iUrs{8;DRjfVhkxu+s{7?!_#_ zZNpA>>_cxA=Gqw^b``q76UN7j(X%MWkc|rlzUDMqm?|1GkS7C|zOZLulpkiEd=k7f za;?baXbZoCjl~7dly=`v+5$5zbiNJjM!LSbGMuK3l`EePtz_2GO}{q)TUS)2aSrd7 zDo^7#IK<otF;?!#@0ABCgkVcgU2Aw`OSuq_VSF^wapeE}Nofx)Ri!OQ8CwD%u2Rm1 zpot?Id}5BlO01z;HDZbfC)~~xm@0(19A}<q1LMdQ6CuQ|Z{@Qh<&rplc1CK9H}9M} zog&>9orE8t8GK@v8QPW>R7_*2wrwiaS)A1>;wSUi1J_ncci`AjiKowNf6tTajZuV8 zJdrB_42@=&ZLyR(4HanExS1It3O6K$s0q$CZ<lOLKjy@2CNnW-duz=7bXFr5qub}4 zJ2SJ<&+R#>7g*CoJMy%0s@+`oL^J1>M#Mfd!Ud70(tOhRRNC6e#C+&6`PT7lVKt2b zy$Z~@=>ldLhh2dVsxMPcyzO(Rq0)fv0(0;Ox($+{$Wa4MN)<Y35b<}ZMK=2w0pc#R zRnWz^AagPc52TL^8*pE;@+2|EfGj#v6GpSlUts~0y3iYxys{PV=ydJmncCyc*b}wd z4y>L4M9ygmXPpAjUbl~ssrCOcDeA4MOB6ccj861d8mu0fuUwwpp6oUf`=^wGqBD2T zx9~Xy%oQP$=0L`#tjyYDGbV=LBmf(LZ|aqY*9I7wM@oDT=y^W{%^TF|gdgqBf}?IQ z1D6C<TL|ya8XLIVShKEOU_#oJ5p;#C8r`?CpxF1OJdV78DY17N0Xaj%c7Z4ePo1l# z5IF#a&X~IYs)HhLM#rfk-G=s?OjU~k<$G6@eaD_Ns+M@w5hvi}%H3_%jeX3Ho7wrm zowEaY_V#CwH2P2w9)QOSRq6S&y3Nv)QDE)MX#;p+w~o=4%#UV`j@(?7JfREDiKbSO zf4fY*W>^Vo;WF#(hV{0J^OS7}AvkXbn*9AQ(uyv&0WbI=koqzx>Bia+7ZuiAl}MbN zEC#+d2P<6q9*)%=TGTn*VQ1~5g|`fZAZG_}$h>6-_{cA6z#;p`r7vV-12kDUPm>pY z=GhEk>yVBlYQTM;hTa#vvw=ND)3{{{EdWn5`u;!#XjxWk>q!OuWQ53P&9V|$q?BRD z!yjO`rhOv!e)%elqb(Q)LBc6fE1sX9VyNl*{-|!j!DSc@$o5or^QmW_PyDHm$3+A+ zpXVo-!%pns;ZaG}HfWGrKRlJC<0ei{Gk>+Hn0tKsz-<g8@ujM}kVGlQ_QrClc;<}f zk%dwBP+)PpV|%;d?d^u`?S^dwp!$TSv)~uJC&nv+^@N4`crQL_i)|~cU_?i|tsV!# zq{eHJZB^PzeX-({v>5KG&FrhVFW2h8J?>UsrtL6M8N}(?d^o)!EIV%ro+<#3;d!u< zYQ6NJ2q6dvIA7%9!SuZ^Q|nRSIrwdaLWAMQnZGR`JgSP#5{6K?B@T}O<1}UqK|s4e zjeCFYu+cACz?IHWxblpKJ8-F}IXAj*J41MW_}Gm;C*mr<<^i0TeLh|0<@cS_hlV^o z8cRLjcF>@_9IJ>I)5A%b#;06NYVmFE6Y8l#H2?vF=3d5E-2%L})Z~Kld@AFTHOpR3 zwKXk3?9yW9`NV&X{?Bg8>}=F$PRd}LMTEF6`g6S!E4o;X`b=u_P>OjnPMm*TM;#l0 zdo9IDtn9CKsIbgY+cYS)QOuLld0nuxhU3Xz-V@7Or9qRQBN0-Z!U8(rHmZtDeP*2c z(5X3Xv?nH$<01%w1`8vuRTXG*!oIJY08nK*plAfT`mP>2nm&UirfNGW3$Eu<qzoyj z`)(geI`owJ6gS3KT#45tffJk2=+EZ%(yx#AN*InSN9#RT1}Cm4UT|mN^ym&`8!orI z=R9%fXTY+tHg#VhMbQ}==AnUmEq9;+b&RS}ar?1|Uw&g93MW30H=4m9f4$-d6Xv#x z-Lpg&!Xziy(m8)tX>?KZlrkx0ZT`;wv~`Dq$fmisKbYviuH9?GI3ClWdeBU76|Odc zxf;MUo%7N4_RIw%b8%?*H~s#X@9p#sV&0=JtW)@*8#%OH1!FKm2%|~d=zp%_3zMbF zp@CaWh%BfpS|7us3eZV62XP9I*i3Lp@X0h`7;27)c?c1#;h7-FO`Oi0%M<kC5BXQ4 zz=<Ew%6-0QRhXQGGz|;k<x8LVH9X;0bYjxdY*{f+fhH8jm&Nl*I#}+jn-uBn&o)(S zIT+mR&1_z8;vFVB+k>?tlyKp9>+UX3$?y}PIk4V3qHm|EZ34%Uk@G$|FZKL}*@sfr z5Y$iL4A2$*+2XhfJ?4;y*RNB=8#|+2Tks9|o5^7VrJNhnwvs@Ml7Ueh>o5K5-+q&M zuj%ORbT<UI+rSJFUA~Mxi8XK@ZyESfDuY99Y_F9f0x?=*821oKVm?&@Z4vX#6rkZ` z9Ng3x(?c-6)fh#6l{q8KrWmKd#b4M|@joh6=`0dzn?TQra~{~|ap5J+4+FdL#M+#z zpB9GNS!!cN!6!Z!Q5#Y<aF|)_$yoIO{?v&kmTBbyPL56NiBI4YxW-N?I7F2F1CuZU zS~-0>kl?i@qrJRE+2tZZCFSU0BE=*7G)_V6za{u{TznQ2UrKcj(Kv^Ts`GU5fUsZq zZc`XAii@XWaK6^pHEf|$9T<%1ecMh5yU#!ymR^fj_R|TTSe(~qAi1K;geSEMQeW7d zS?Vhm4fu7f-A8Dct&zJO66Vp8q1&PNYo$~fRXOGzy;$kw7d-u<A^qi(I&VgFw&=!% zTo{ekKZ24&D{!ee(#_ksFw^z?Ck!H`aq?45I%$hPM8rtStCyrAiqRzx(@014*#e$n z>n-H%nW;ES(dl&wG*BnPSvn0DQsliEJW|w7SIa5XaFr%ZGT=^sS<n_D@Y!&~HjkV$ z_WkJLxo)J|C{aFyX8`$X2l|{S$hWBVLP6_6;_FJ3kpjl#<3Quh@dk%xDb(Vr+>PUx zCm&B3fFmb>k==;U=B~sSpqjNAL!bl=s;i-wQj4c>xyals7t<V{!a%w8yFBZONqoUS zKQZlS8iMeM8JybL9(#TAnezf48$E$9^Z+yef2;&(8ZFMw`?z9YD#|bS&H7~<u?lB? zU1io>YeCKxM2v-l0%;w7CvVj~d*08K&&wU`AMCB(!@-O|>B@*<bYHR@h9<++2)N4Q zWWb&gGUE@ePQ)LxqH^ffvnxDnWgNRO|NOXis8ARV&G&$wZ$E0|ruh5Sc{Mx`t1#dn zE|A7u*92qaIma8Cxad}z3y9I@kaZ{*`GV!fW0J8Vq6D!Sw~uN@Ar^%d205>@yaHqP z=`rSBX%~*2<J@RCF(F;fs+x!KPza=?C2mBH>UP|ddB;T{hTl|uG!tLW_WcNRF6F$e zw=dOkOocI2mCv2Vm@?ddo_y6o^g?dvh%OEb3Lv~~3zitM#(;a4abIe7VLcO~hY6p3 z8|g*HBe!0gN5TXBLK;bKSEg|!cVe2E7lmOJ6C2SEr0V+a_WJ_0oB`qc3*$7zFouvc z>$=)le<4WJ*$l|E1wH|J-L}2<ByWsr($SZYG%CEiQU#)BSnES?5{jH`EnX}1QhlIa zI-`lM>~kYJhicHpT%4VyHEGYws3?$7&PIADrDwahFEc-=)2U2D$;Q=h6m*`d@np2z zqkNSb+?(!F824Sp8l?_Qv>03!apIMmF(%G{<#ek1blX#+%(Q8o(q=r_%H{NR9Sxt< zZ*z~xew;X*Mq@udINcaOo*B0kur3SU))h+(cxd`_RVp#}xPUQx(5E3eo(Wx~Ke5{e zCcNLBa2IW%|K;%4gfLy?PN1S0UGM#N^&3KQ-r-Y5pV;R6YNBiPP2rckJ2IQ_j8)*n zr&#&wE8Mxom_t?!{}_OCajTB%T-3sAYDF^VnCh-2`NFXE)|3AppM83$MM^uFumdcr zF4j<m6=c*=+4QK*Q+?T9;j-l2(I!#H=+@cnvhJry7rO9p$E4RMJ<;q>k5cjD^MOA< zK06~aIGL=1Od)um0vbIP>5PDkI)Rxe#AmkeWqzW!*QP;odj+PQ3u%uvbhq6Lc~!S_ zbma~)kOE;@7u;?uwsk=y36k+6R-6b-4t<|3!d<TYOIMM}zmi|D0d42;7VhlBN~Y?; zgO$UgZD~=i?`G~fmkulsn$p`M!1cAP_umhRoCgRsuqG0XI6-lzzh{|xQ`vDEGPTHq zm7i!|EE|#BpQADg6>!N&3>te_=2H*o>8S$%G3~fK-F4YPF`%b{8dpT7wkrk&q>7@- z)J~o5*<M*hqZI^-36TIwVvTK~rlEPDvr7h|9$G@q6W-0W0|7CJ&z(K&5`Ug?6p801 zD3Tf@QqsiPK;SAmBK5^-t%lfFhZm^zuVYY$0UVuaOhj`w9bHGHIC-?6Pz<qA4m=&& zH}0Fdw=0*^qadY-xFoeHZ@$~zbmCR|QIC<r1u^;Zn(*jpgqJfBlXiQ$E926z#bYli zrbcnDC~bkmfq}&Z-4<7h+u{=?p>Sb>0fV)Q;_vyy{qYbFKGi|gwlVebVAXbfz-fH` z1z!c}`bar-7gC2IyBFphbR35&UF9?7Qjo?RwAyaYi56O?Bpp9%_a1E14e{ut4gaWA z7`e1?F=s|e90H?cQ}1b20lDBi134zFZvlt`+@zSWF7hQ8-)YweB*5ha8q!fax+|r- z(l8NF8OU~{ovT+Z1;ut!1nslDiJ7A(GYuvyvzU(pO^Uz~L%2fz{RS{n_QUDnXcY>b z+o9IQI32ltZ;zbri*`u~DFqxk<A43}0j{c`Y|b-vFnnp?FS%C62g+V>H2=xjN$b5Y ztwM>1QvMWPIe0|Nv%7Aa(1DHM<E^*U%(Gg6iV}tTbD^g{abrDZr8FC_Am=PD!$)ov zhowaO{vLxR9G|8`L%yY3_!I(Cib!c`?m|XxlY{KQz8}c>K*>F%X5SB_L&r9JU1_zx zttsPNf8K%yCK~1lV$do40}yxK5adKx)I_Yh0)b+k)NE1uD_-$#+D=^|QQd4(l>7pj z>HAH9MyA9BZi>9xjW$6oUaPXG+Lk3?TQ_xV4cN5wwVXs|IsapfSfT(tDVn_$$vSE3 zEJ8{Ww-(jWHM&TxFgVS)6GjnSTbv>AxKKS;ozaCQgjNQ2{A5h$?RMfLXf(1d36G=T zfByYX{QP*}zL!B|7PM6Z&Z)WMXp9{PkFP^vX3*~!O2`p>9bbq~v~oIcIz(8v4IzZa z{Hsb(%KBBccOO%p&+b09=n557YiUa-0aa!-1l>_$arX0*n9J!e%(9H<1HvND)Jb?* zl4M-!$Wa`CW%AHBfZRaFS}PupC(@(jlL<&e4{03pSprGhN9ke@Zu)3-d$S&0bKa}= zkc|%P$wDLxf=_}X6ZnLdPGcM>b8_i^Zb2ihovLcG%Q9kxEQFvZdp`-i@+}0y`)$GB ze*1#AZNs`Pcz;{*?aK|fZEcp&F$AnBVU0n;MT}#hb_1S=-4}j;@8m|NG&J5yR-#V1 zCKX8e4WQ4i6{OOV+@I(J9@6@49;%HV)-ffvg@BJkl5<k{e+RM_bJgUYiO_Ru@#zxn z|7TBrzUY7XGJOF~LD#F2P7WK}q?B~=sAi$4bFXRl?c_fbk7u@CZ9y!ilQ^=FfSN8q zxdkN@LFHZcModbHHY&8@OAP~Xxf<QyPo@}P)+DRF;SI6@WaNCbO2jt$TnhGmN6H~! zbloGDAx2|FlN;H34S^?N3^<eaggrx#21Q<IWSh{ox8TQz7{fw{XfOc5<jXeZ8=Pgi z^BX1A5A=;M03o*NgAsvlDd6|-H+=o_j%{7=<$c3nfBS;3?>D?{i?kpyVoM1N1tjYL zoZ^f%FtnT9OaYt?^r@%ODa-8j6g1K2$2zapmPQCHtQ&yl9hgUckvGwPEph*>(QzYe z5H2}gxc&7zaC^s^lG<utn6eCIH!c-@7q{Uwq33^UcX*8-bRf@7MQF+ln2^;{tKdD> zFXxQIJp3ot#8|tiz=;54y&s|KBI^L)k&A|mK*Mz_0t<eX)OBe|siE~z!NfKqEPX_1 z_T(jJ?E8)*Kb5{LCL`8Xi1&buX7eGNfVCQi38d}I+X>BQo%i=xXbcIXb~5(Ofd+<E z8%u@J`NjiDXL+peBkEMDje{&1wDD-rfnM5TA~%h3-aX$=)~TDTYd>YyPcZ~k0@fvB ziG-SWd>%XMu>-l_`1!<RNqEz*Jw+tyNVIW^7(gjNDcszKJae+yMmG}2w7A$a=yU@p z#!t|ByGl-r8cyU=aOmF~RV=Wi0xjB7RGrlqJ5?jvMwKhecsLN&CE&ljB}My3crNId zj|?AkATBa)r@RFs8tQlYXDENKn3ZSM^Qoovn^(8Xk_9Avvy6Yuy~>l>+9<F(vk)Uk z1#aM;l;As_&s|RC{pe0f+Ww{`A%+Fpx?tO+rHmm;(vT_yZ9+hS5KU^$K+YM@#{>7r z1JC1-XJPVwFg=F-zQ_V}8>5i8B5k+zOa(Ra26$9~Sr_F|=xN+FYXrtQ^$cuXg?hpP zku+Ie^Qcn9nD{zV?N74UG1k(FZCu$)_UCf(V+dkokqEUO`1pL{@e#3qJn>jod|481 z%Ysco$P@x1NTkNWjR}nfX|A=Cn(-vP4d|_mvei-`Bn6IgsVKXYmqxZ>W>Bq&%m_?~ z`aSu`viYbOgrh0$^om-mqATU0d59qrZYyC4goPLp)u%j~c29^~^Q!ZlbQ;0fX(IY^ zS+};qkL|`B@Jo8D2YH4(N=&6}Tl}H~JaR@YRZo9s*Tu>Lomh9R(qu!$dgb}tcie4( zKA+ka04YZKB3bNjw;SHy-mtE#*pchC^2|S<eOXHdS8+NjF3=@JY9n|5-V76qF~}5v z8CAUtm>DUhaH$;QUld;BJo*FzoW?98VTK0=7<;u_6X4L~tKa$SZPCu|F;`~>y{J3g zXr%*+eS>R~)mjCoP`n~n;Mg-tE!YYW3L!BeL8^u)2zLc@mOxk{VT}=sPAA~#ntnVQ zh#DwLE!i}*|28|W6a$tZh&yFX_0{o80~upN41yU@W#A~td%<%6kU($0FSu(Am?ilp z+pto=k^<5aKmqu89{5m3-?uG*)`%NLUElSh{2%GyGzpUiV-}_{g8UUO;GBKNaLj4- zGhVg<%)WLcjP}`mLXb;t{eCI6{o9zY%$;Rg-DKfBdsj+v<)-V;ZX+Sc_pIwG3;+Ec zZ*Ol{mPG?RNTcYr^04@^pur(JCI?A;SV*y%-yF)qG@$QtisWR<rN}5Sd95|gG>}1M zHj`^EC4d)qaWcrHvyjvC;9E+ppY3{O*hH#%WvJ1D7cV<U?abT6js~hHxw&h{E4p4i zf$%jh_}jMOx3?Q^>w*#jKFfi7t^#xt;g%BKR{;jWz>y1%A~&%rjM<`{^>hz9-lSk5 zoIT|wX+;49k!>edQ{CDaZ7~p*AenKA2=NBgqvHNJuzx=BEESmu9BtuCQ0lfutZQsS z7d{Rw33%TUkmNIGCCK!Bch2JSUIN}6a~yTf!0~WE)42F?m09@9Q;HfmNhcaKF3fDu zdVUMqD2@n}HHD{F!)S{#hJX+)*~fZzv?#I1<00gzb!|ZLwyt=8d&B$t8*bYTDaA$@ zGFvs9xLGpyx-4pziw<ZK;qlzD=YsNh;PZaR<M~9+hs@1vEUe3=s3NhHf}<397LSZH zQ&28#x!?^f`ffjyTwd|HFL2yb&ptP7uR<b+M3&+7pL3;Y{8Jh;+UL;{69y~h`P?wj zat#6R6!Dj3#c%6|@7oP&O}N*BQV1~xye$j9tO@UnEdD^U;}%mqLVVhS-)y6n<}vi> zDKZe%qQ|M(QwJ7zq)>rKRfna*&`U93(J4a!K(UC-J7?ffaCS++5)o2BS`(HnAuds{ zpJzs@6<ZRw+^QjzB{&Vi;2ELdCU|Jm{F3AgG|)~@AFgp~9ciE<{^JqBi|?XekcYTd zltcP{6PFeB6EsqgO_`#O-I81QEyCT%vq9d$x^2j%V&&RO|8-rlE(>B11JYaoDs^b9 zlM;DS(h+w`I+j+fA|JRvpZK`n@$=&oKR-Y4^YatW{V86SfD1UG&Pde!z+)FX@_gh@ z1UgB`X>?mfQ_jsj{mT#lOyl1Rb{IFp&w$VJtPJCc{`!yDb^X1zU`#kBAjUXCPbao~ zy5I;i!mVIL5Vnx;MuPaqD47C#t@!iUQHk;Ww&MG3!x}>y-5Cr`As|FxF`I2Tnze?d z#5O&FjuJcH#z5i95=cR%f+8W1*jY!i4S<^C5-C&{)`+*dATGk5T-JnjjaX8^x=1CE zQba8P-vhYlFO5N_1938h@s=1oikFCfy+{e<%w}o!BO7nd)Z2G=r<u}Aqql&UIIy<} z90h9jJ8CV+`_XtU#i8!PH8H-4EM#h<x-eF{Dzu7`ux&S~D01mRplX2XOCFn+^)Yrg zVr2ji1rd+q&^dp>^VsotJn?b=#LtfpeBSS}fhn~=M&X*2EQ?<ffuDHp2lgW)mns|C zOIF2c&GJMOrGMB0yjri9`ee|rcle7pIJ@aw0ZOMv;5_smfH%*!ib~8$p~H$P1S}*w zbOmrP8P8JjSu?)Bt@!P2!@GLS!Rhun1cXFbV(2q!c-2|2RH{}RRcHO?msrCX!A^+~ z5fE!HdByQbzc;7}O8}4v%N7xrfV4zxTS8g_Lb6jWG)5Z-LZN^{0hI(7KnzX!=I1e9 z*i`G8&f~|+bN<}Gc%<>Z4x%KwYWVr3B7pfUYi@<arTdbMPmkjOD{vMpLsEGH!Zuw5 zq4&6j3omDXMF0RG07*naR6DR{HB`Ymgr&M7Q<fIMLRO3f7CKkI+jRlC3T|T{pUn54 zIF3%_DYfG9eB$$d$LHrA_s1P27j?7>;2Kb~q#HjTPki1VvI*=vj#3a~!uN0AkzSWh zbf&QS5Yel-&M((6|B?kS;G1`-;a{^w{3dnU1o+g15d6r{r*N?YwYncbN1(Yo)j|YA zkpe0R&svd>iYE$gYs6o^-0=Rk$lo*f6TXt(7$H6}Ji&^cRkTTN8Ko_JG2jUBcGl|0 z5aq--Ru-FVS%0pWZ8R}Tl7}^du&x2iDhjcX6mL)*q~t25t5Hh-8UjL6;zt<Mb!T-R zJ9=!-WgMlwO-<+(kb@QWI6>eG`>i=1?b1Qq$-GG&i)d>3Y(J`8k&go@M9{K29=%Ft zEjv*cFJ=)F`tDM-eK-yw;^ZRp|4NLd1dvt$Da5wmr4^{^kS#y^*mv2GxVs5k`m>Ri z9?u6pKR@yL`GLptiBf9w<_sYKwc^-!d_L~@)JcQ|h@>S5k&RElDqWAz29tsFiG1Cn zF@AaO>v)CuitK%{@!%{2Cwd{D!|12y=aBZ$RUX9_t=ng6CmKh$DRIX|3Mzi)15aXX zTfkqx-SGZp6Hv!jqUxMNJU-;)04a)M-Q1FmltqXTbns@<*6Bh80!8EF16(8$+Y>06 zNjIV(I6wes2|&`GB1TZs&r}(;64HCZx&SEzgoUJ%2vJW&PgkWWn1wOgNYX&~;dvbB z$9$GM$u?@{%aGJ-IDp18V<05)^!SYIBL;-^w;!k>Vcl*mCd|xBJ<@O4h1I3=ROe-J z9EY5=_XqZUZ;@Xq2GqQvl!9$t5n^ltqgpHW<G^FzRWj_U_fuk&QyG4Ke&XZjPkj9R zz;oYGih5ecD80Xlk(4Lk9kXIe*w%G!0j~4!hA|$EV;b*3b;<;Eck3VZg?vF`__cV> z8F!j`kbXTDY8Nw@B5<l1oi|){YQ|FgCRYJuFg|O+UJBwu_}lvp-~P)Nq-7BVy(c(0 z^3+7{)xVbtCLrpliQ?IWwV7pBYV5_hCLnbnFGQ7j=7O5*5IZQ$u|DDqfe;r->7fu| z`VlZtj)M4|kq>#YL#fywyV9`7q~IpDbOwq&M}S_4OGa2OxYM6sJ{&v*qMSVv`4ZwA z^8l2ZKJOkx!jq_K3}S*GB9xM`KOXvW?+qkAO2%<yd_Dw(d)Vn}uEJRug_bix5b5;S z_cy$~y&=RfE=aYbtF?^ArS|u=HUwWb2tn}g_d7m5KXJc52A;o>*i2sUeFklBU6%## zZ*Rg{<>`dx;naMwDew!0{bi|s-K(84_4qX&fzxF%f)F*sO1gR>7q9E%t2G0(lPxB$ zNFNueJCN@5nSm#O=bo{n;$Oah!TVp|5pD}g45N%07ddj?C0T(cuI{7?4*aU}J)Eob z-qrQa|9^Au-y}DZBZ<O;%&d~s-7`BgcK6oK-uM4%XSR2{vpdr*RaG+l{lWMFAP^+8 zy4URWm_|~mDw9b@AOMHMeck)>xUGWQB5A2D!pbd>HULz+EmSy8SM7xv#V18xN)5p* z^6~vc-u|r&w>Wz^Dd43*=`_KMaq0}vIXas))j7K~@ttE9=bceZN~piYmNpM-PbIUJ z?z^nZ?hL#=WP9wq`d@$hr@Z}mlmGhXU2f~G)ZXv%_P*EO|NQk=`TqU8+JKrH(C0s1 zUhd5W>wden17*`%e@4i&&~+bMGZNjlM-dn;OwW%G`A|bXBL*`H!~#j~FQpav`nqQT zILF(j(C$^(F5djpYT?qrNbedz5yT>`0@t^03#8aUHQ|VOexFi<0Od_~;l}qZ%ggI3 z_n%*6`RPSI)+Dm1DLR3qwE{l{IWD3i?XtK1wC+Jj&F(Yr(FQE0rO7%Ur=+9{x$7d_ zm%<|`-Ge$r<=u*?sJnH#u%+`!swt?{vL(SN{Ltg6&~ot>sGQpyI&l=4y8a0x4iIBv z5CVM!{Ys1kVM^OLEjz&`SKoriyL^B9A%Fk--{t-N-GFazZ*N_|gEWJ1D7XT0NA|bI zu3Y5)`m(nHb7378-HAu}^UmGhr}^IA-sJn+n|!>#3%NB*Gvh!t*t>OnX&57i$hR+F z<)?4oR0)8|p?%QbmspAEFf>G8X_i(vi$RE}ASx3uiq}pyJTUQ429a5}uc#!^+2{6K z0LWQ>Fw43w^7Eg+%9o#B1@}d^1(Md(40)F|$^E{{{eF{|`|g8RPlP6{QfAE`+uquF zY@6iACTYupt)}eQ5qLUoMmcr4<whG`*4^g2`ZKiqRv`qq0i!aNnE*q+VRItcF@~Bt zZ=^gn_7V;LWVc<EVLDLpIJ$SBYW=DV4Vuj5m^?IM#)w-%#$iS}fabHwg3hOP5iCj8 z`)z;Ulw@O;m-iQ0Zj1c*$KFP(*S{>QEUTz#%cMrHQ&$FRY{5ld?svK0U*z@WRZ_w} z8cfPoPVo2lj~%W5{w6=(3Wo4_R{-FJ-WY7gMNMcc<<^%kU*+4EFS0JHtmAH<7HtxN zvB&xQ!H?_uJ8THr2#p!hK)P%^5qLQokw^>^2u-)XZWcWUpR)+oeb_^GR@g(be0jOa z-~RfG{LlaKi~RDZZ?eAJWVzi0OOgd5w>8PjeU+D&o7~q`)}@+XqR*(OeN=i|lE@=V z26kEL{19xLEP3D5vh>uS7zs5bh1+BA-^*G|S31JZJ{hdFGRwp#&G=1oJl2xkWtuS+ z-oj(s)tQ=ml-QCd%E||NxEtpspUET<O!xS9uhq>T%v`8(RLK2)m)rd=X<eIh@l7bV zm%A*tRfysg^dEUo?Q09KDMYQZu1m|DmXb+SQIP70y)NsnD70<6n((%_>9)s*JU-s# z{q2Xm{rJ9b{=({OX}vZ}altn7>Cm(YBP4><TAE2jRtapmDaW<Ao&4(@?*j+AFhKwU ztJ|Pm$iaVoRzqNT*f29{?)sejkrv0Oyl-HqRZ77EzJ7g`|My@2D*x+W|15v|%g^%D zPp@*n?}8)=JGj22Zm%ZArIwk6;@|DoS<tsk?5BR-Sz(EgCCRQ%L<mzE*=28GW$8BG z`9aBVAF_OXky{<VRy8pUjy7U06icL`KpCQRL64j%AC(-_bmwS?!YI?t?aef7<DQzU zHD&pYhXMu`;I8zP?N~Cz*m&tl#AVr~&9EfFk|eD=ioV`fx!qS;ZmS6QX}q@|KMHV~ ziY;1g8A6Gt7JUh@T+1#zvq_fsw~t0ldOSYl?d`pRdH?+FyZrd^qY-|Z1_2KEHG(O? zUbPb{NM477q;x*s<b4MLdyA$=3I?JqW>Y@H+llHl#8Dmc#D5qXmsb%8M>kDPqD)(N zvt$SfsnxWvFE{zq&#&??zkHLQzkQJ}FL$}$7Fm}h0A)eflG_p6egdb2-4Yv1bA=U( zk}}&}nd$)2E>==@?^Yz)+jMVkdUBar_%5=3Y`fEP(z{Vv@X*f6*3D8^q!!x9trNGS z)0CyFJc*yub0>&t4_g^<1nYnyoB#YVvf(-~yr3$M(sp^+p6>TztHVFirz2}=bi3{N zjXbi*W0QaTKmT3?H|p^1R!Ssm##uc!Su)8?ktHqi_Wn__1<K>`F7NN}^5e(%eQNOi zT^?1kONJ2&yZMXmq`+E<4=q!6vQk2l`~9WJfxSuI9vuUKdw{;xG6VN@Ki;N%d}a^N znY}^37vx19xgfg<>{E2lS|peUXdoA5Nh0gAZ_+BPu$2=(L1Zf%=JD8ycHI7&3D|`+ zQ{Jhd3B`tNm-kvqwlB4&Op7$v&0JcB$X${>vugsBx&QYcAF{kWb}%a?_w?8(7CHl{ z3QbUTG>bkWlp)1#wT!XMqMgsO%CM7%Yy83NsRE@Napr~C;x!yus0o5h-d?{%ro8?3 zn|%N6H~I4ItK9B4Nx4j2mius97Www&i~Ria&+^Y-zsuX(hy3{QCXdpyH!i(h;7k0V z3#89>?B0kE*|ztB0c>h7jZV){L?#$G2!@}-fh<+qvwNm;TNdG#<^AnVwv-AHXo$II z+p5p&=~_|CFUy73YdUmr+U7hVd{%K1Ik3UfkaQG~w0f*dS=-FMGB<^rC*Sqn9<psB z4~Re(S(?Szwllj*07!t`7B}&xK+xL#ORYACb3oQ<G_C!0)0-1{yl?XH{*ZKAL}ZnO z(Wyw$oz&;I49qML=A8<?kD&Ic1<`1~>$$gbA%c(w@fMqK4ZUQXw3c-Wsuu~B<Xavu zMDrI}Y@Xh}f0uv!{qM4@s}Orz@a49a&dpA+`uKQA!XjT^zQ~W;Z}Q`}UuAoHYv3G6 zJH;w-shT(SOqiRK5YwUtsx;YJ8TP=sBS6W-nLdZYKdDBlQ%bUsl0QD=Lqr}44g-(_ z_6?(+yq5TaA@DHD?Oc-AYi=Ae0jbN9*&>+Ee+2{)8edzn;;~-crb-5Mj9{M@d&uLl z>_8g3c7Rlk_pOfwrzI71e(9zS>O@YccI(oZHTz6=pR{Y(gkIdr45j+YJsuBPK9*+l zmWq){rRSP#hnrEj)s58Jb*wVjl|fb=lmW3DkmG&~Z$DgbhCS%X0sefw*VLaU9m6xM zk@H>x{Q95&S?2dY<mL5c#{@(Pt!`QJ$3yb_yWCQeZ!fQcoaOEPZ5W*oNa$WKx~%J6 zevZ|O9U7w<ZQJz-JgVDI6P$%17G)#2+E1M%6h0pEk@K!5><4tC8%0kNRtn5?=q|Mn zUEtsp$K*+akF#+h9+HgYbU}^vn$6a%k)`3QQzT1n3Nn=~n75r~OQWWwM><n$&vm_b zZN$<yMcHHhi@T#rS%~FVl>p<OX;ihE{MZ$MS^y|*L=<Hh=?SXpc+dd3gtF`^K;O<= z*s~k6Fi9gcF>6*~MhcKY|MYSu%4qEbhKV+%?gH*@i)G68{vqH0^B<Bw9+FBX&?wkc zew9V!gC8HV7UrI>&ly}l8d1$MDeY;kSgUTGx7<mIs5BqKWOW#7)mV?Y9k=OS1Qd-) zkX;V|4hWPh52U2xlp~i)+Th@O6Eh|VV;~VHRuUnM%wSxAqF7r}$Qy1PS_OvW#7A~k zU>4b`YHsci07=%OvU9sFZS(K*B{c(qc=3Z47)t8OQkOHcA=|sIU=erV9t3g$yYjYs zD&S)WAD1d1!ley~^r6`P8Kr=nfCVgfsG_z6cg$fcvj)J7GonvFj%P1j{pyS``aQup zo7gWJRn}=mAWavbIgR1c^M`!@uYbg~32A_FG7Ct#A)Z;`QIEdhB+VnG{H!LndEYHS z23KJ{a{<>TOz1%%0Zt0NK9^i)0dNV#k9pXaw&jrO)0rGf!0sIJz@v2Er+SCcM68tH z0Z0|_4tCPV4$|daNM2b*C0SS5MLFu`Uz$E@vwD&mwP^vZ>ONel%?<F&d1no7Y|b>E zlFPgYfyc)tvaxM?6paI5RTfzK^g)v>s|F$K0#O!-I~y`nwvSzLxVADa@Q)!64?THQ z_Lcm6gkBMZ_&A9R#L+sFf50Ul;0EKwOts+(P%6-^(T-#^xw>(e+Zi-b&l|P1tq?f) z>+Ef9xT=<NK!w({Uv)ze@dz?^A`phwN<^cDrCd7<=6Z!TwsPvi(+_|y(TmaLE18Nq zSE}up{wL?VrXzzNGwq)}HO_l=*V(<+_qqDpEy>HRNO&p0Z#P~lzVcNFrR>72bnH>Y zHoF{JZYZ-JU#^iIfTVS|gsQ3fuGL>$e6b5uRH2bNWVGet)?5uTD~mDhxP&N2S}sY5 zT%2Wc2_{Mb*%3p!P^sUX9G$v=3G6h=y0y)Rkv^i`huXB>#7Gzeplz2x4FYtT1Kl-y z0uI$00vW7AeR?P5U+RxhIFgfCcWT<!oA!dNYu!LIRAqT7^)lIc0K>^hyGyAw(PSX- zakRX?jN))e4H<%uhRb?THy-CRUbjAH1*&PUgCY%3WtHk??SdF(qt-e9BE_|&B)0{! zLSz98yKk3_7p1hkr`JmX7<Z}jrKs{?>$PVE`F1cbH9e!PF7`G)ymZ1;&XS7;K}r=w zpnPNsu(b{Hc<dBpsP}>FSjJN38s2_<$ZzjiUcT*&xW}V=5)dPRZ_HPQ-H%Q~*0f-H z`HpMB-I%XJr|Q|X0pWTT!}_b6nGutbq3@#Yp7EGG$JW0Yx*M9z#DhSkY0#o*>vVMZ z_I<jf4Ahot_P2)IUiMSMu<VS}YDdNA?7VrJ0FzE!h!IWz!n`^IbUEr`3`Y+QDMnN+ zrKzHo##=9DSBu?*TuOhniZJXOdp8%Y_4(E+;Z%6yNFqz3AhBg771Vo_KO^@|xhvCF z4}hJM|B<u2Z`{2olE@<44(^nouxVX>u*i!Q&$^=f|MA#|PPQ_WP<0FU5!ON<-m+}( zBLDIiG}BbuIz^`rD?!&$e{ocu!KKZP6V{tu4NbZ`^SY2IIqi69)u6x+ds>#lQD*5j zx+nS=w`c^GhCVA$V0AW5!yZVdd!L$_>_K3~K%@=0-Qnyt$1Gr$`t#V?RXh%WYZZh< zsnLK5j0?b$CD8iU)kj^LSco)D{u%%uk4JHP-Tf3k3h8D^%2z<TpvYF{zEf4|U5gyl z+HIsOy1adS$oBRj`BBx0m7qo)5#=5vKJr%d`}gBu*`#O*l<#XsA-PFhS3Q7@QU;Lf z5Yo=^|9E8i_}Jv*QD@q-ysV4-KY#tDximkF1-nuID5nw($Oh*H5PCP9ZhRju;FN-V zi9u@)s`MTs7eYo@v{{FC^V4Bc!<7z&dxw09F$lJ=8v;Kklscys;7L&~D~G!#I81Ie z-~buU>Q+BK&urpJ*$+7e`X~GxH_(IA{2t)J#b8(*dQP<>+<UWqF)gh&C0N^knevZc zf5^Z6-+#y>Q*JM}hSFC#D3)V7Z)`STHKpE#B3F62uX4LDvflQ<kyJUylDbyzK`Q2g zO??-;AjwD0@{Vm67boTYA;JgC=HJo!zRByzb8dlQXAr8)VxxR~WO;lP5>pxa*={1g zy>G?%lY3@DPNzL+XqUlbq|tO%hNZ`y9V6%Efivw_$*%6qY8Ni5`=UAox@{RwmXNA+ zIK{|E)~T7yVchq0n5W+yaTmL19@G<$gQKv!ZjKq*T7ev@e(oN{9o-gFx?QmO#;Loy z0dbo7a|HZwVi864z@SeF4OY@GQQHb)C%qso4JB>LHF-zD|M!3VL;mB}@AC3;leDCv z?bM=fp<gbAetEyI^5x|wU%uSr>+33CzO3^4a@%dk)?Go^U@X<7bP-8}5u(h<k`qNz zZhCP!OS1=iJc_J!leg~HVY%2_Z@D`Ox1d4FRzyW1`(&fsl6;^zC5y<*y3ajya8``8 zS8h6fo`^H+<HK++#PLeH_$E$T(qe>G*_?d41$qts)Uyzv<-ou~kUrR9R#M=YPh00c z;DQ8H3lJK#<ox`f@ds*PAT6`U3Lx9Q#A<omuH9CH0vS>=Tigka>_-RJu~6WId=yOv z&Fcb_lBr$a_2@fBRC}oz-NeE2>o+z0lN;K;%VlNx`#-<S$KP|y4t%Q%#pP#Ns;R>& zFSnb#-f!~t^+mqE-Q~yEn|%9N<;&MiUSC#uy;Y)6nXqe0GAy=RWr38Fdr#|&*kmyb z-R-S%+5F{Ku2~3#OvUIk72C4jN*WeAdhME)MeZ-lZe+r(-4AHL2;Eb(w91gz)dFU- zy;3BXM$>^!lbzl;b&3l|YZf-{MD42dAe~KSl3O`Zc`Y^wz>}GR5EdPJ(fBNf;Wd;= zZw{|V*uMjg+@`J1+<UQkGfEIpt&7n*l+2|4D78h$nLsC8dqgg_132yEhee}Yd4pj< zdXi4Um{$Onn^5cB7K3t@4HY=crLLbl({8n&o>`{zvZP0r^sxz+Z67(kC0RDgjg+lS z0ai00Xd#J89j&dyT<F8B_F>XkYD-FjRphqzBPKOL3bgUv#!RcjM+M|e%AiB{oR^g3 z>z7sDzQ4<RanH#utI7hxmR6Lp1Q_sGwxAo$euU3<G8QZ?rKiG6I(=Dun^!H9UGG2> z#)^PzNLiM+1lICqu+I-l_ynSWUEN72lY@Fr1WK+=v=FPn$!NfAZX-G8_h}hGt0T;5 zNnI2aDiRt?Cyk?+6y|`?J5KL7a3Ee8m;eG8)PQt~!(b9I0A)n`(Dj>{5{ivdJ#|z2 z%n23v+eFqyGLkIID#X5IQu7V$8>miP-EMoWe=om(dAaW?|NSPn+aj+oi+ugM%D2~5 zUhlhq;8HpYNe|96e?SNJ7*G0I&v&iA>Mpb_NtOk&u0{JFqJqHAT1@pbD9iFjOD-pM zk|ck}cX`W{M;2K&X?h7#m~q<mnCg`F!{C~$U)65xk%f7ez=1?mLrvN`9)*1crq*Vy z%qBHq-FP8XSqQ}0&;=c&t^_1q^RaeXmhvlkjYw(Tp2k!x&q<V~0-8@`>Z;eU(|~SL zplK6Sp8;QPkYXn-%NkinMxRJDgV%#VaR=5KS|$_lrtlaUUSrePbs`*n6A@wDF{wQ6 zz)s>AS~GxZU-gtI4>aQaE^e~xxUcuS{N>L-E1K_Z2lQ^$DhkDGZ%_O0_uUQV^}foN z*PFa5X|SD~BXYkbxvvEbgf+utMF#^FV-`K?>R|`cOpSFO|L*K#?A#gf)d4%=UEPc; zcJSC_%arBzA}ReUkDO#<YR|0t>Fv6TXza!PYlDegK-(QAPF$zmhks?RqE|)QNm2JN zuTlr{n-I&g8*wldo2_ciF4pX`xlf~u!#3YYbW5{p=mF*ClZtg%4FFx3wcm7lAT<R{ zK+hA<04Q8bk#@#A@W^WAR?~kh>tUs%5LP`nGzuWStiD|^n#asBg>Mp8I*k|tIxQNj zNZeGq@iS5{9irgbP_~*xQ@Cw7OLCFF?<7fBcKx@s$e(_Ck-z@+f5>0{<!AZ%>#MxJ z-sJUlZ9(9+?gpDLw?*zZ)#h_vhE!lxZ`aVAz?x_yutXLX6A(%n3~HKT(w|*L!;wWY zWK*9@m+E>bNnA`Ov4e|*<PGxML*(tTzuQe7BJv{pI7!6@lCs*`C+M_=i01#J1-xs# zQG{L;9LYQ>$^FZV{P}<WWmjTSt-vanT7NbV9Sx;cEC{<DI^Blpl9^aKW)kq&p;b#7 zT9M8@i3c+1ZDKKC5%pjR=hlou1fmyO)y^q)Q^AZR+Na{%m?nZzbwV-W9SINQg5fqe zryLH=9J2DyXeqB~1s6JIMw#~OUISem^XJ!B`SYJ&<ZpldS$_WZDqml3@_Jw8ep`B~ zz3ld3P1(B+@=%d_8nCC?TQH{?-JF1>O4bKji8!eThIT5z{I0njO^ZGkATjTqg2%=k z=h$-L2JD^)HHiP8fB&ca*Ka>WNVzXkNJXVL$v&6f^Q-;JveNp}%t<YueMJRmE?1`x zk0g>xF!o}DNRG1GaDsrob2PmgE_RzWULmd{qVRjJAp)43J}ZJqqLNFec>`1-7q`Y* z8*soeDeZ>_SrzCZ5QIEu1~q=S{jwb9L0ZW7d4VbOfQPIuJwf6;d0@v`tCEXGiyN1{ z5@{i-R^CS{n~B6@XUt_(agdtUDiKino^zLwrV(@K9D47&*CfD1X%19DkX$9h*fxD; zb(9rlF4EPIx1uq>>(6I-|De1-DBs_+{CMBwt#ATFMA8EJ@%}Eq{`OrK?yf;gJxL0u zJ!f`q{8BsxHw8LYWu(+S3|gHGrTpkcKM}b~aVROh;V0m+1lqh2Y1rK4N$1&h>B!MZ zEA9pISRcbQALs^_F}$y6?4o%;(0m4l0wwlCtN?<<qASE;uncp9lqKaHE*Lye2XYV9 za1a8P7>*d7oH9M3c?Gcj&ql5h1(4KJ8EACgs=1fB$=i=C|0%oI-`kH(USA%255F=2 zH5)MP>1Y}I6YU=B$Gvk&*Q+=EV`DLls3&!n_m559-yge={kF;5$D{n(cCt@#jw#KH zmJZf|pSsbRvsn;z0auHwx{+JP;!eH=BKHNwt8m-JOo~hLBj*M@QYc%ow5|pJu9+yk z&8f*}4A#P+^{cux2xbgaN1=6j=uc(@Z97;ywFBPSFgS!`YC^<<wy(jkab?bZ#N=s4 zyab)?1?D}Kidg@?l0lE&FpZ)yMP8y<k91+DA?VQ7E?3>_<=`IlmWqsZmB%yomoJ)j zgI0Yv<V5Sir*?tsk|gJc{Pz93FhAtw<yJQLA|DTt`%9MFTGer@n@cW%V+YSZw!9yL z<#}v{cDpH8plT^qJ>i;d6xGI50itfuM|o|XwRn{@-P-i>>X>>i(sc8>c}US1SRffY z9XWlx%aW52BI|wK13${J5>l~Kwcw_f&%)8_VU+uE5LD@eAC>1pEFS@WN~FuKnG<uI zUy3VI9P%K;bfMMt#`PGdfQNrhv<x>zgYWY?BgI~G5qcnL0U)H{(=zR7eAXvTH`qD} zCp>^2%xfCxUPof;?|cp+C|imN>HhUxkn`rV)n?)ImL+YeeJw4E{PV}V@IU^mXsNGq zE5Fudm9^CVDWRR@TP`#EH5g>>-h$<twk(Z~TSskkJG~U6aH>-vMpVW0kZEPkbjg}T zwV4!|$9t>RAj~#$oEoUba_^V&_uZrJT^@OnO+;i_Bq2+}E@ze&bhf0DVykOzDX2V# z4vj+l8Lk?~T328aEbFu#13YG;&_e8C_8AT6Af_V@-vIX<$-^Z+C0d(dpAdt93v;TY z7QFK6h_fN5$!}QCWyVON?!p3&LJW09WF+Nvoj??EuNV^ydVg41DH$*M@-$Kz2CtIN z-#;Gm{bOsE%gqHQ?QSor{#k7lQ+Y(=t4h(O^AQFGf(Bedl}vWCNaG9uO2Nhb{{R3W z07*naRAWGAK%RXz2uwPZ-f`RN=Q1cyecvL0x>H!oNOJL81Vxq-XsR}%DD4N$MuX~u zYr_e15Fx134X+-C-(bre84WWI_Ssm^$AdYTQ5~;rX~c$DoNoSLABLD1C)ijFqpk=- z9Su3cO)z0}>R~9swVPxOX(sh+s2Uum2cgI=GeAZ?6o{$)!~>3sAR@}2zP{5Y6qY)E zNjqg01+=RRHI;vF<eId*!!#CM>b`)sZ9}{14W4S-P6$}?5ItpR|K2{{P8}QKZ97SM z6izXKuX?Hx!HBeeZxm6LYGSkzvTf1<M~eL<a4f#2XJCO_$|&my=U^l<1~IfA3nmDA zoRvaDW=0f){xOd0kRvEPt>>dM`C{M09+(W00LGaz-JXiO0JJ>q(>|>J8soO0dN4G4 z*ff?>W=NrGyekj5;d}H(m&h8fuN+V}*6JL8r&l8F7TFL8G6i`PVU`6VulH4MITfA# zr3ZktkM*vp59uV6jw5_%LokFDwSZqm<N%05JUFXg2L`LDgI)d0^MPzXUaLQo05gfk zz6En`C;meg`H?A)jJ=Hrkp*34rL`cn=e^kX@w^ilsc-~SrBoDI488sMK(#wpXIds| zjw7n^6f4F`*#DW)_UBAiBql~%eN_$`je1MhMrYQN>B=E#^)-K;<{CbcZ(D?ss1I1O zibD{lb=VbkR6eVt6t&r-7AHBXjbZ>tAWh|_(pp7Ng^BF7_?GuxnXtL=zOIY>_1hQ8 zQe0wE-{?z1o8E(|bjGPNtpXE{p3<9|A(U1aJ0pm@B;I+K7M1}JWw*hJrdnx=>7uQ* zsO`t9+7at?Da45A$qt?ZOXs4uGN3clV1P#$k_}wJuJHh2aDNZ$b(-!#4>n5dX6W~0 z*m%0{&k0|FzRgWeQ+|3K0>#}BC;S0*FS2@eY|c~_Y~G5PE8E~$HGEn1MjQ0VT>h<3 z83ar`{ei(?9F%ZrXW-=r<ugb)BG9B@@}?3TAFj}pi%l<&TbBIT_9?&xg_#L?S=W82 z21?1t&8{QJgmiFg$Sg2`tA3I8&n(VyX)Lx7O~MZDP8jOi=rkQ67z|X3VID(GLh8?z zS%;zAn03uB+J;|5uvoDWikbKuGM*^U)<N}P_z0mz7|%I~^qbgH5O`2l(FZDaS7xh8 zz!A$UJ3F(;yg#<qDXMxAZ4#CJd+WirkA`oKD>4fJlN;CD2Q)+)3`mA$>ltW-Uaf~g z?Fq+vgBjnwfCa`m7f0~RP?gK($Ceu<w2fyLt@TAjP0{r*<lSr;JUj%(T=w*i<}4%( zw&HrYAr|5QK%AX^gi}YFtOMH5or96unz~n+@-0i5h{Vpn7nbR^Qcjg$NJ;u|5DmCj zPs!|$2}ZF$Hh*pHV$5+6x=MgXSxRiiBVvqLdf8#srWzQR`-W?$^0u`BE*6f72lcvu zQI?O75BYfikoWfw`S{p946D~*)wA5)sA`Ki+tx2Rwo@5&0eU2c`#_#Gg^B$$%_%{i zX?t-xDhhg_k7i*|qFQ<`7!3^vm+Yjh(r(Mu1T99|Lvxuqm`8{<tajubeUB%8_A?d= z?dYq|*PxXm0Vg_VPZ<vUfaA2ZItkU5r4#pWufJ8vvND}0#T2DJpStmHw_9nYY7fJa z-)=}j@VO^LWr%KdriYAtOOXaEpb`wxfk>z8bt*C!-bUtLHfH5RSO>G}*B*~YIlcFj z`0;q`I*jE+&w0GgVLLK6m7@s#51i7Y;(R!O>YZGNHw;&~9Zzbb!zK{8QlK1Zq^%ue zO#uc7!^}knGcO>U<|U;dTmh?;oB&1YBa};>x*K<2o*LN0kdy4O$UapjqmJCT_gz{| zTUzvqRL1v9lc)4^f<2k^du7v~_nlY^2-ZnZ-3qMj&rU?xwF}lNa}LOomNwhI_x=lj zy6(Xs)wu~%@}Lj5ICmU<zeaGCM)>1VwGH#u<{fgCInTNMS*s<r(^{X><>cOf<+2{K z5`>`}tm@a1v&|H;QeYn2cJm+{S@Rj8Pbmyb&mS3n#!fx1Gae7U-HSHSh)62hzLIoO zh+@3$o8aYyHpLm63P)WD4$;jVRP+;BNm5!Q7d$|kLr%oGnTDKkMu9>7X>u9&6C6+E zOoo!rG&Qx|oO+zMr%)W36Ob|+uX;2E)J$bg+^WyeEgC4X3YdS>{~2Qrz?@#atg`gz zdb(CFf%!%Kcbd~yGaXsA54U~uw@qt)w&)NTU&U^=;x};n*{w^WANY-!W32P^`|qUZ z)r`O{hTtw;>_ZXQI+)t|DcUWls#Y72RSA}?QEv~8%wyRrXeNYoEtzp*kB*+``z4Xw z|5yreY8r8zK}b9S;nZw1MBcY;cfT$5sF_DWcj+161z-2++S;X=v&#{~dF$b?zqHys z7{R()S63RdI5*=#PtVy(iTK5$f5w)1qr|tR;+k|;^ycAEW>hY}Mf;VZNVP$$7HHd} zJ1%cqvC?LnWYn_@db4hitq6{EqYzB8964xunbOS@r~uPlvE%Y+-V%UU_z~;#m-KL0 zZG?4Dx+wx7Xw^CeqSkR$qB0u5hB7r-yJC_KY3!^tMOyJwRs*d`$1V8&y``uQ6v|Oh zpu71fyX?__b)<N7j|i(zS4ArYyC}qil=r;J21rKg#3QwtWB*aLN$Kiq(;6@X;zOEl zd<VS>kd}h-0a``(HdntpL^|&{jGaa2B%?8#JjiQ}a$Qt23w1hi+qQPvc7>vH3YV{G z>+8Bv>FS`CCbyqsb41EfANUZruu0*fE!QXKiRV(lVN64ygqV{zK}^d#Y3+k@!0eI< zKBKY*rZQw~F3X!>P=mzX8L4nD*K|blvdcp^$$@lZ-C~jK_|%xS=9*ShQkjDBo3A&7 zfhIfL$?x>(ny}>F>d$GH*Ony-Zfje34I?m{9|Ikh`egR$aDt1zPOiyBYODC$P72f7 z;)u!2*pXCNPC<)X>#2?uvkw-vleM*)dcCa2r2FZd6@ZoPsp}AE(`5*%B;c6x>H)cd z7=hVOV`zCcl9o88JQVA(={R@;&c2B?cR{m2k+e3Sa#z-C!>93bK@weTcWhp64pU%9 zw3+rZ>+p{}=o6bMrg-7a+DXHMfwpt%nMc=)hczX29jx&~+UY<)&fE}eB*|$P`OFED z?svHfM3!}T$;q2Y^~zJVl})4Vi7P15PYFiT52mie*j}PV;alCgX>h8fv+DQO4{qR7 zb||*3Z?yuiu5<ed%b{1?CA6&#Rqtc_&WNp@t~xntb>Ya&X{>*(ojU-pXtT?)m)VVF zNrFP%PRr7C2(&vi!Yo&mHlvK2+Uj~AO98mC`lCJ1XupZXeQ`_(F&tSoGs^H9dv*o; zThmF8v#}|A&{K|wT9~t51`O+JCZl3dV%n~7Z3Y1lrd85C$?I~H+t;uCRNJyr3L2FW z{lf2?MWexN?m1M(pH0j|ox)W0Yu$XzTI3@SL0~Jjao3d_fvaZdNo$6};l4{e*M9g6 zDW^JKk(8FMm9+<>La-~SRZn6g9ac}=1S5KC0)Soz2?NH^9F1qTCZ6c#osTan{fxa} zm2-g8O~yk!c`A4joVu}aUQ{rx&pCSXcYoJxn#%TGEoc=3YaF6a4(f6i9&}cyu9jtH zQM5tYM`m+n2U4AgSp!UZGpklop<J5USN;5B+iWYz(KI{KZGG(!G(q4<=dpN%t8E*& z>$(@icmRwxy&l5hK%KSf%Bl4A>v*&QircAanWa!57=W&(o9xMKz)eNV_N1y=+`_RT z-Gu|}i9Ny@xdmqM?T8a|y7~R0;9*3bzVgb@M=z=?G!Jql1Mze!k^yB{!kK0|K5Re1 zsAdMTv4E<qDwCR`Bh<U>)uVXf)ik>HWu>)_9*<2PkB4mSdml<SZ`;i=Rc+nPLfr-? zr>aHvfC#dm=0`ZvUf@rnDBZ?*@`_5IqxyU79>9Q#5ye^mOv3JWxTv`akFFQfbF+4l zoMLf1*$)6e^7^TRD_QB)3`h=jD2_EMEK}X|@p;n!m&lhm#sPSAV}g6MiV|qBJaYyN zv{B#A-^f|4G2oCZ1$;SR`>#Dc&RZ@g>7x)laywDmsruMAX+xqFK(%f9?_)ohv_z4v zwo1bmlS$?x<i&M}_}^WppaF?$<JtbZi1*lo10|C?G0~)|Z8B^GI)Nc=7xUg?rvY7h zKj(ao!K$C=K49rFTg&D5#ut=1=@h>&Lde{j^8kpO1$#3cYejH5y{2dehEDJ{x{TvY zpuYb~W{V!vZA4{HJrYvHGMZdFN7FKM)(Emop;eum6{=iQ>6Rjw`Zuc$o_)>iHhF7T zQ9?Q`Ir6<@aQYa$!DK^2Zz2)X%Qak^#^gevH=oo7O?^7iZEU2dd*gfkGC|rnlouW? zpJgw7PG6j9<xo@%&^^rLomgQ|KdTUCQgo&?P8N-44~<V%xeQO|>!KjN1UULuo`Zri zV(9aW2y*Z8m-X%at*5kE@txhtnGL!u!(@@BMC#yS9BkSN?l*N!y*E`GXUW@E((t{{ zY%+y}U@p<01T=g+1Z&w$I67T|;nZ>)cVuZ<&HJ`lbsI2w@`eg7utu4dEF!M=uLF!D zi6D$$u>{q0Nak32-D}VJ{WoLBi6hG#0?)^SlM<;z#cN<9r8$)f;!`=qlMq=bE%s#X zVJ_c#Y%<h5h&De(Wc{~)`**{hdX!D~@hIeu+<({YsGPTAM!BEJIw(ZxN}Z%KHqDxB zf_b7$*(JG!Pr%mB+R65JgZd9nr#>Zfdi(S{CA;Y(MppZp_WDaUP#n6-A`U<UI(=nT z;$rIZ313IEymWaG$;RP`$KW<UkDC$xhcNv<hQSR3c!tZO9H#)?v$qh>eAF>RV0bO( z7lr@zuYaTFRksmEdbXP-cKCVZqq=D12h5-BILeL#^2kW`=<OaE5a;AM?BY=7A_=yX zliSlPdtlJ^Th$j%x|iF*gZ0-%m)c=|SLVq7Y<*3@B}`V=?39S=TTW6;YyZVS)fw}> zV7k1#9CQxrULK(8Gnt;~d(QSUkF%&}I1xO^0Q^3Tk(Hx8<|YY${(9#u^TAQ1=EV;> zDY1Mjq|+g7>TBxhD$J3rW`M4bmql-0_wS2h<B3k4y~dsb)^yqmgfitbBFNb?x)L<! z<j?bLk&~n5$Y`B>KDQ-BPUS3dFyqNM_*`pi&1>Yt-rlJ`0H3(yCog^QQoQgE5oLP( zNnTtdc1U>TloN3@DB(TS5w?rW=2bl;P2w<pT~GATO1ufN3>N!PNh<yPkQ@?Bt;MxH zCyn$cWSl>-i9GU%Pu7@5gKz=}9PJAuH-Gu$imkK`s_)TYLrsBlNZon9V|WOkMQO_% zET0C#&-{mj6n*TP;c@_w!!?T&7_ffE)si+M4z-w(!s>oHP9Swov=?w3`qqvMuNhmC zVBgbBOU;iDcpW!)nj%V%oxJ&Jq{n9;zf9`OPrTUSp~m_5;L6Kb|3=8~r+!(DD9mIo zgY)b{uiv4K^Ad&^ppFRi<Rl}wia(vaQ&2unOEq_0{aPV7S))gp-umt5uK^+rTj#2| z;*_eaQ|HK!8&;-vM$-X~vwI3mz#Ys_yx{%)G9(V3-R}W)g5BnXzz+42E=QJV<O}CN z3&tn(kO}g%00`*Vc9gsiki|s_&&us1>?p^W$8kGtcG^#Zz?nM7XO;?|Knm!C0OdG- zYhfG4ot5&=>tFu%r{*JHXOdIWv&6mzaJI+M#-16Z;E&i*Y6U<05EvhJ@yq-{$S-H{ zV3bw8^pXL{*f$u$w0wFC-E|_U=_zsvSq?2Uc<pnwx8uQf@FXk8pkzd($B085<>0fE zpHD{V(@h#zB>jiI5z9fD=QyJ6D_~qE`TM)RetGGvGA|Y}pSQepLg881)V%<wIxG6D zIR``hHT7A8Xouny@PwSD;-Am$&rjTm;O8(&2MN8k!lO4{xWlQ+(TT|lxY2dqc<FwS z!S&!E(NLtc;kumop_4|OC&i3gh4V^;hamSf3ppCnpL>!Iwr4SJfk6uZVVR_cftGa{ zk$<^%GV*G_@k}3dx-D?&d-zPDEVlH&6xl}WxoQ9W^Hn~E(qOi*I4OA$s3e5xG&m0R zMH_%}I^(S!ohYL=;_%}tdeX2np$t8}7e_$5_NB)_!*(0bD={CyV`1sQvHU!o-ZL!0 z*{froB64&_vLiA)0WUGSdIj0k8j(t_ro}zYggnQg{A2$c-~B=mc=D3?{6&27!$i3| zMmJ<!s6;~`+-^=pwKF-8WE^9-pDuwyu?AL>T1>gwgqKni(gwD)*o*h?opV5V__1|1 zvRj`kxiTZY7X0+AgreO*$E6L&w%rs<#H1wAngDXWnFN~BYL>&S7&z`YhFYhmDNg1s z{HYLc+dp(Oo$OIudWd4sFdiiUpN%RwEA+?FV12@1D3>NDru(os$b-Nca@#G;F!cZW zL|<cCpg0qYNaof+<|Nf!$qJ#?wsBHBUIUAeASgwjK%2BSx$-QJymhL(KcAf`DPcVz zXeLt6Vy-{ut=#@3RGqFDo`C1Wzw`J7*VzP@Ue)uoGO|*h)jZC$Gk8tYvT;Bnu58i^ zpBge+N8tdTh~*=2sir==q@hkb41losr$MaqY2P|ltm)5BBP+?YZY}Bp>BCA%s#~%G zg{#h?<RZzgyB&*+CM{J^B?oOWT9+MknYUTZAC<F|U8?*B5vEk!-<Bqeo*l?tOyp&& zvo1m-Ax<~U!%5H`jH}?%Hc$1Q@dFeK(8x48TmwgBs~8j1?!du`=w=H(l`?yiT%0H8 z4739;zvG3e&m%#bxn2yO+T711t5te@PDQ{RxC^UT3?sAVR4<ZeYf5sfrl*p2gOr+j z>r|J08WdWR5B6)^kNN$3i*m0{-;?Zi;}J65yamNdz1qprKuKyc8Ui;jtIXleJ=-_C zwp&1xiDydXhM=F~Ej!Tn-ww!`zvq2|^`nZMYVScET%GK@eYSnT0?^OIAGi$Fw!OKW zjz4R(<{+~u^Ly&$XI|u43d%VG_e|IDsgKM*3J6g0o4j^s8%oc(;;JiUO-b&{Dz|0X z)9&&<Nu>D!lyxqsc3R9LS*5*_RSKK?W><O=&CD|I=jzV2>V&eT3{mYiX0Tlb%%|X~ z!9m8opHUGPQjNttuo-zWG^?$aWF(avB`fyYb+^r-r7i7SV9>f0%)4b;kojxra_|4p zu2E!vjZDe1zZQecH3ygpCJFpHOKEYjg>&BO;nDKFj>MmB2c8}L3=5{gx_L4@$IDFK zc%TEI$R*Vz$gD>Z_rc?CaT3UFU1SC1o)&q%t@5(2vQ&#V?!uzQcd8#L&Gn`Zgk`B> z3RL6Wp`Cm^&6BhZQuj+LpkE<-_L+Efg2ST{ut=WKXAEj_Ofn}PEwS>CyEdcr-?^3F z%k2>e@~&4XNJ=%yOPxW%VGvm$vZN-cnzdTB^b#az6#%qXp+4P}JzK6)ckb&Oi!xPp zC92dn^mV8M;5zDj!$B95Rzd)D9EJsLvhhrIz$;(InN*9&k@OjLnim)AxOTNuSODSG z%*{Thf8%`ErPb#Gxi5?S^5s=tmPJ<VMyER*zU`}xc|R-4My~;&CdmMcKSYsf*Vba} zor$^$x)_W_3<l1B(K1N-GdR%{T{F|noJc^V;Q-)77}8nfrX+KEH?dX~6q<OBY(m1O z=&bw_3}B+TGR7QA6(^xcq5~bJvuwK-L{h5M`}<|G$=q$*4s<?>d|fU8XeMRT*;>h} zR!rb6$|qO+Q3e4|bctw|cye;?iK=3T6q_&MbZi+R$itz=;wARnajxZ0Iu8Bs{z?gu zuj^fYdVP_v>rL)y-=xT!2(zFpU?fV?#G|m4r{O_1)7V^1WSV7I0G>je`KHZ!d*_L} zWt;c`E`*&i^UvYXnvt&#m9!Za8PcYZ8kZr#cqndJTY8U`S65u75s5L^9ZY;?_Vj;a zPxUS7s+Tg{Q2y2f!BXYV*G1}?PGw7*WxxK95)|GaAM)||kjJ(ad+-BH{<HOL{H1g0 zBs`HE9K(8;^|UUP9i!5&O<BDcD5uIXlkFY$b2!=P^Vg`%(Ir8Cd3ljPefc6^?{`@N zNqHAA-B0o?02LTlf<v|EE+=3=U7>_n>*hxZ7+U7qLrnWgSP#Rt7y~8~RO+vHH-p&B z2-t!@XAvoUPZ1ghx`I|;5Z$W=T>_pOufd5jl{+xHwq(a1NJuW}INS5^a|uQHx;YVV z-O-DCSwa;Q`tLiIkr&84t-{+XIp14HWBubde{j=z5)Ax}<Ka#@*~pG<kKYT<xujj` zT+o>v@mWZ5T9I&0F;(?pjcW-aFUu-_`tntNd3}`?X;1ZqBG@<nUK+3?{jg+jo!+x- zcpBZu5)g9V6ob5)(FR2OeP9DRwpva9y?|TI64=aY7$k3)0*O(w2lcMro!2lKRc5BC z@q`lKLgzFf8X4DR2)jIewMC<fR%vk9MvRoHz>!-3*&1e{4e5zg?prG6H6<XVB)}pf zO9cUsPsHc9j{~xXdW=t;_|I&9w-ga&1hna*$3J)>FHpN?+SZJC!$&Bi!URTQPc&7} zw)kF_RsQtyMSgmDmHV=aR7<Y{xGm*ZKlP)H3+E(+1}xR)l}NEwYbGt0r~_}*23OZt zKn=k#r;|oQ$O=0aW<9V*u!y)0RJ0lhwk4>`tFb-S1AsWgPaB(Zu{sBx@M;oS6sBUv zA}vq5|BPb?QUjMx+_%}lvCqHk8Afe&riuYXBea|fnOsx383(mhH#4rou9Os%Q$0XT zVZbM4rp^N6k$MKAG4gYI@?MA1T4x8rpu~2$EsOl}@<smk(=YO}-ioc_-UwRK-sV{# zk`l}2ryHk&syBCbUd~yVD3U9MH;IP#5~P7(y6Z698!xv|7HLyxt{Y-WBE|p{lhS7r z77>3x2B%pW?YC8c(s+23oGmI67}p^a0Q!li&8Tzf;U{F(YV>K;SWX$zfvTI#&{YY_ z90sH;d8h>p%HA!=o2+Lizj=TDo~E6Tav`Madbz=k!5k_KX^?m#mpN7PL0sE^N=WnQ zO9!D=eS}3se!jiPzkK^izTEG-18&~kcp+I9$>sECLEZJ{4>n635~}IAm)LIKgHg3d zy9hxi@(glVF(rnOvLvn5II1~o+=0`Se`Ka&0xu8QXmL(5bM%ZmPFl7u)!)-7yPO?n znbHp4<;tH3i24|^p#!<EHWR`<lZfUC6yeCX61S|)LH~fn0bv=Q=Kq;Cp8Xz|8*tLu zJ2~nx!ynFg#Gm}A&(4WI8xP32z8pm4b-l?iuV3Wnmls)6+EafP#9wkb?Xx*iLY6|1 z$UuQ~X0k2n+Bmn{>Xe(ky}0o!RGYedpWQ?Z9CV&+`ov*j`ki*3V`y2KF><{@n^0^* z*!oQ<(~1S`+nwkO&Vtcm2SG-FNO%|hxy-tGI%BY29(xd2k1;k}=uIDF1%%9qK#U=~ zaG`T@X^7wEpdRPvgVbc>^U@|C5j`H1IE;QAy*7nV7J+<wd691~FY>Z10*Y+;Avr%p zWRsF?OD3n@dGzSmMEVLQPBNU0=qKVH07y2McTv8K##^wat+}FLES6}B5Jfu;NFLh> z*wg=b>xZpn+P2_fkZDN!XbY|*ctiHNvmi;`QtaKB@LJVOhUr?=;WP#2YM~x8nh~^A zdI0FJ^1JrNTnQE7mLJSHc)g|v5G>GOlLal}&zCP+U2xvHzoMWs6>N?MNup@Lz3un) z{vt2yt(-1<O-JsVf2Zr(L=%{7{-HhPvJXJXuUK$H*V5Wjz4G8|`tCD}8n~G&%@}HP zqXA!iPQW7MGxc?Y_J^jRy`4L+4$F#iv9Wbd&<$RydKTa|ou0=p*+b5IFeab~Rp)^! z#Hh=9u62F4E$`yh#?suQU?m8xM^cSXmjfsH`t!1wm=5t^_%{S5i=6i3pEhQ3yOftc zI!{W5lQd%T^#zbGx4XQqtK1Sqm}T1@ZS(JGfAKbiE`w~SWTt`EB0`W?T?Fc^08B^} zis8!dHE$_PfZ`-1O0~w4!0Hf<c7wKtsC0rDK4rFx9kA<e*hLthWyCZbhIX6~Za-zm zTD}3H^|g}X{QIfMi?Vc7-07CiL)`UgvXz*T?Do7$kX}Wc^b_#e<M9sw1J2R+h;$Kd zMg*xpZAT7IZ~kk+;2KuIh{Y;LGZMA;za+@(?I!nSl?8hM$oU~Gb$@AQ^>jT-nZ2)_ z_DZC$V>M95+7UOcsG-BD(D7`{|00Fno=v2}TW_64iKkPkPkF6ZiJ<=1?Mf<e6BwSO z=8mNBK!O7QR7RuRkoqRnd<fcULZ8W82mq`>g*F%UGU0yncV%vvOo>1M0_q~`GeG&J zpPE|I96|Uo<4WfimJ@PmObMS2aQ}^)pE1(YK!631m)l)#DfJYaSp->n^G5-B{*Du| zp(Sk#DjamIn-HBX=pBIIt$f>wNt3B{Jpfe}wu!{Cu<NA&2UR2h*ACH=VL)k90I@We z)v<y8I7%^l00vZGfN6cRr2o^7Hlrajs~bTPJGWATG94bH+sdIk)!sdvbOD@cA}1go zX0AU6JKKVO7q$;$#Ak?&LrmeN9m#-v!ixd!diReryzd;|HcXZMY8NDVT~}FB5|Z-B zTd9><roHyFrVg|w*hOxYdogWAwd6q2A5k{Xu3x}7n3EH85L*WNz=xzZA35m!Q#kD) zCrDsc$~fSgw4R~*E+#-M+%Mk(O(r0@qP?^lui|aMF&+iMi4BD9N(g-RgdGF8a`f?1 z8#^{F8Y1gcj?5g<4}meEoVLtPPkl^5xI-Y2pV;^_^#4lzUq^$xQKkR@6r4#!K~zMG zkjH&lS^&s-pY|dt2_qn;slPLz@em7>{e%&8!cg7DgV3%L4Y8ZCf@FQOk@P<{Y&=T{ zV%TCkKJZWQ|CSBdufwI><1mwqY)bg-0M>f}UB7*)q9cL5IA)vXP*O@xoy>Zf53?55 z&m!V~q-<Z@EF9?|6elC)0V4(vIJi=t*r$Zb;DZd;g`jze^_>S2j>})xw8+={U2e-N z5EMpNZo@uFsq|I?P+gehl_qc0QtOKsevp~|8lx4=u-jwWVeBr>eu@&I1pIM(ZUD_@ zy94&YgK^`^I%X-X0V65MShf#Q3qy%I<WgY(z|ilvoBDiy)z4%kVSsb|5%}Gwf0PF) zJcrHD^x>!GN@piQ{3C-%u3O%p+5GZ5Hh){l+^N5>_q!}5U)CZLUB9ND{9So>dM|Li zfqY91Zc$=584>gw&5IaDno+`0LOZye3XjM;4nE82+CXrsi#U-}3v_z>_@OV43E^Iq zElFF-+gGr(Ww=@&FqZ2G*pE>-u9V>Q$|~gV+}SZ5K5p5CqqM}xVACcEK!9jVFc5SB z;(wwXm^S|oNl84<<Tz>li0txS>rDWZArH1_zGnaxMC%JI9Weg}z)1mPE%P_jTQs3h zcpQT^G-#zDQ&*5~^Xrs<c5#}gZwt9SIAY-Xd)^2?>G+AjiKX}0-CO{m$^%=_kg*+{ z?$>i7NNd2vjs`ZRDQXea05(Hlx=c9=023axUc^s}h0@X%FX8CakcZnxigCrz^@;PJ zc_x}o)Mq~J>384`E3>v{`7FD>-_qvz^<Zf#ZM1p{ETAm#gE?vnayofQyC6#mppoYa z^a0|ATg*Nmv6+^!WK#n8>*xfgQW{YAH(Vf{h~L>!bPAp`VLQzp`v`Cu36`J(Q0^b2 z&Pt?xdoT`f0CaTi1z%brqR}E4j-~AO;J}rwa5nLN1uBpI+j$azF#L(LmmcdLp7s7X z?P6SZK6*A+IEkD<1ZV8&{4FhVTh@J1wM~@GrcI&+Kc$&OAUJvYkj)Wv8;rxiijrC| zPqU9`Cebv*v5RoluEN~Wp4#}546{mjz)fd>Wq=8dfCPD3mp_6TT~{DU_tk8hvEkSU zK+Kg?&>{Skkz6&_F$YN~sw7xz_sl+WAI_L9?=f(lrQN*H1hn8EXA@eXr15jiMIIsb zM<DX2QUDi~BM?`esO>~gNp8z3tLgu<u<W?k{H6Y11Z4!cAJa5S`CWU!i;>0*3@=cv z?pG@bR1vC}f}#{~qF=T@*R>98D-fog7WxQ6oxM6c^t}aeJi2({Y3g)e9O7^4eFUd^ zH?-xHbT{VzaG3#gd{rVfGSH>RB^OEmrlYQv$V|`dY=it!o8M&(S1GfIkm;vkfJ;A( zPn{cA|Gn3>D5w9rEPY@`Df?EP{we^Hk~Fs3m?qCqVmLki$#H;5*`g$~iLr~(g(`f< zhGz0`mJ67Hn;Hvf`|c44IJVY;W+6_zD4lR=eZK@5(ElSs5?qF0)+r{Mm52{^%sz|b zwqU?7`d`=SwO&%;JciGC8BOB}EuKxV@kqIMjH;n!#`B-+xK#dZ`G5SfkYNbswj^1X zMYI!VW)A=r_1|54Xk@kwTaP=C1j7h~t&@X+pP8v;D<gy6v&pO`BgaGx>GxhbhlNl7 zeGY`v>(79A^ghNaRkz1$n5hkEf6aX`ZhblhXIwr~><DD&TxCE}jM@ztOO*i+5C%jb z#`aha!ar?XJ%yqlY<{nf#-kpPS*)`gex}d={Lnd`NFH#Cvy3%HHSD;hr2v5aGd9Pb zGM%<m@(%(9VVejC&!GeXdbZ#}+^!`6dfSTbjG87lPzza4#(}!%KLAi1tt)BAor;d5 zFI`NA!DuxAV}n*z=eJ;Evl72aNlt<82<N$~f7|pRVHKQ-_#j5S07L|39C)^HJvK1K zi74|{JSPa-`F`OHw>wIq`J7L1#C#L}0TidFvjl{<PR~2smPKwUNs{qYEdCQM^`9F$ zSXvEz-RQL&c~VO8%#y7VXJ|f4!p??k8Hbzf?A1J#R67q^n6R6%a^R_*jp4ux-8Q3= zNQ>uTT8AEpXAj&oDks^h8>_Il&xx~m>M#x#F-$4JIXu>HjU;Uf5&n7hi@dOtgVl4f zFuyi#``lg}bmcMDL@_w?+_irG3g^HCL}LJTz3tCo5f<q$G_y{hzWUmbu_?UUAVaBs z`UvU4Fa7#%Sih?107oPlxW9|FG^MWnHGw8R0WDKcdlIM=J}8_$|9`ljPRNBErQ@IR z#EG$(UT%0+q4@cP!O?kQ1lxfb+qd<=%{2OlZ9WclJ^#oJgwsxyYYW-IjoCr<nIQ1r zyZP;Rt!Zf!fc@+2I{!gBYEZ;Ue@8Tm9W7`weva&RVLhKeH+_Q>)f8xea12Y{oj5xE zb>K52z?doRSa8se%)-<tIvDw-M~?SLYaKGcKNuvd=gSWxK7uh689|WYg&b87A}e`b zfYe@NNE>ZYF0yTYW`m3~0MWlam1QGNeU9)$GI$F7-DtrH=78fnQigzTDao1^8)U_b zU{uAK!K&wM1~V#3-RAcZos-s8I|itg2x;joYD9QI#H+;@`uzJ0Cqux$*W04v6O2GO z1ZJ$LZB4ig3QFl`MDd4vOMXfL!{9SujB#n?6n&g}sAL1qg8opX3II55SW&J`S4FM7 zgCgeCGKcd6+1Z!R+aWxa7oi(iVbmw$thexcO9h_PKKp`Pirki{`m&AvYL^_^d&Za; zrWPAd$ygzcmU9CWsw3S@tJid!eKtOF0fKtCS_H$Nurj#zjz!Ka^tB+NsI?-tYhZv> zS2kJ+ZgbV=**+x%4|n{No%H0cN6!No!<0cq>HLs__Gmm@xQqd|XIg1^YE#hN#u!m% zSl~xF6pl*?7>}A57ZCZJpdiGFWn8$=!55aad%#tlyt)f;__`P%4?n=8Rbz1_K52Jg zt?#cLZ<S+k)KSv1VNiLyDM!_{hDm&#f}67jp2#_M8#B<?)rv#GQE7Gd+{pC|Ml-ET zpT0u{8ra~ezt5E~(He`MtNsM(`D2Wx{wz4mvsLbSczOmb^ynTC+<+5fP>fknI2Mdg zMgv@2jV|@Br~fVO1R!k>)mUH$^&-r+*XA2CFcEoj@9An<&DHNF6zrqZ+B)2&-7rc) zR%6d+Ub^0m1Y&{t0m0w>h?EUDM$m7>x7Gj8%HRR3L2zEh|8BGnJ?`;|6f}KqLaNI< zPgP8O8ud&hpadt^h0k?x+FGQ0o)LHy^|KO*PX&RamIpfkxFlD1k_Y9D{tU3AtvU$E zbTq=^AK_3%<S4A_|6m7t)}BZqE+O?)UIoC(oR8ZC*W{l0)PvF4;J9HOQZfSR^nf3` zoYyc$EarZ=^z0A;AA=*}$2h4n*QXXPPEu9}ruAWyQm^tLT=B|2Vc3E>dYqbOUZ<x{ zKd$3iAHDYP{_kwoy1e0SStO~k=e9wNDiRx5i;19QW5<bN!<_)Z19MlL*HmOlH9da) z#9;{nOKP9*N{fv2;26Seg-1oWNZ}%g0V*jtZ8#xZonCecGbBu;bS@}*Zi;I1GM;eN z_e=|?RvB|Y0qLo6epRez5a07BpjC_s#lWvN`7y$YatKjUW)6Vngu1{i(zrQ7FZm0> z;Dr2iNg})i(%Z5W0FWJ&WB2+ayXq`jjj78Ci^NmJeu&KBR3FL$b=sXpGBf+G4KTr8 z0#tY7lw?VeREM0R%ueP31v3PRG=StF=Qd~$%Fvsm(HRI;5Y2|8Z{GxfA2bV6+nvE0 zg!b`k`-AW;tJd_1X3a+-n_(89wMt~}tM<8uhWe1dLlvCSW{M<8DQeQozS#L#@WH3J zGAMR*+FVslKFFxnrHFuf6nt_oj@l)N*T)mpA63R-PbIz5BH>uQxSG3eN`kbgpuiz$ zgLADXgw8iQ_|RY~ol6g=4nF3|+IN%~J1JxL!zwvrf;t;)2HNmIcO}L^H*y>}^;)=6 z`XmOR(`R=+X47ZSwgGTl6F*NX;_rlq{yYCW;urLiXI*xGccB8?e1mJEjOwMWhCp!H z{)quddHns6m6)Hb>E@c96of+*t<N?^tu$?PqCrSjtL*Y`S%Gza^BZCk<H5E81T>z9 zSI#)+X8;VSzK3*W0x0_b9qk8wd8>(R>^kETWCYXGE&yvP24F-#22sfQp5Rd~O_|%N zJYxZNIScrVtI=~!kMTWe7RrKNBb(MzCDn)>=d~MrV7j=6Fqbx?Zu1>{n2Y30hvS#4 zPTEL=hXFdw23<|8H-7gfRK}Pd)(V73ZCam<6$&Jnu?>t+ag;_wVksas5^d~?F#>Yk zVr`Tf1Lx~jqaG{G^p}b%J_wv_7CS$It|jN@w+Wt(8XwqWTu3Q=5I8Cz=e`5icIn8# zdTzk@T&u6HlO<`CxSXu5P3A{lN8BWG=B1Jwk1ygRQ{sWA`^k^O0f9go2Vo}V2M>r# zQ9Z9)l-31kPq!I>9XcV-*xRisX%xkExiFR=g4o9}#M!6;N&1;^u|pjggg=R>REj82 zmP?Src17#=Uh%=33z8!&1D==A_*6y0C%^HqW@mgIc=qa|VXE{0QmvCUYOJa?lioWT zuQmPT@bypMHcdl@Z%Kupc$z$?Dye<-acbxsCM4R=ds^Rx=59ZaN}l^fRsLp|?_ zl84&3UP2tMwQ1$WV$#!<@#`7KAxThb=~T%Cf$7jYr>IgSG5z1X^-ojN=Rmj<M&m`O z<J<~OLT4J34YI%)Skw*x?8dX=oCoHT@+>TZ;CmI61(|yOodGvUY0m&Apg&KZFo#X+ zMw_p?#vI%a4<?SK#OPS9rNp(7Xgt*9hM%;(IfCFiTiC$B{Ipj{(}hTMrJyl;FhM}I zQG74><OuZ_Z++BbuN9mv&d(O)eEJ_QL{pq32E6_@p3H<ol7TXUa*cK^5^3nD8VMIa zaX0C?NB#4oXa~K(5l91_Z@zen@vKZ7b;)Qb4K$SL*}WeLV>nOjoXk09o^tTd)6$+p zd<2tveN6R4lu3zTv;{X|1u`ldNzns{yxQo%6l-G?3xM#-wt)@;aK;PK`Hy*P;137# zufHZ_MAbig@*n;)_C9&iW3!@3Q5?f(8^ZCOLY!hJgM6=EIf!?S=Co@=j3Y}1&1Fam zIF<vzkr75TK_5LM?`Udlh+Su+<7T;V<VA&VGG43K3*f<C>3#!|<^c@V+b9+JzySLY z*Kqc(_0wUH=E0^fM4YdahoUiK?LB{Z!b+@|a=NJ?|G)W<VR1Xwi7E93K(%UE4LdRN zAH2hrDeKN+5p9j%PF%0H1Q|H`VzlxcDh`AI9-e`C^)8#JDj$xlx$J6i5ej6|aWu@u zd4dYpMho<U2O{?XDf^bG;6U!K1Jm8j?RZM45rJe7Q<UN~>rUj!hNB7^b3#tP(R$|l z_Z;TY<zR>qC$C|GR$vatKWewTKa!Uqi3$Lk13rL$Vum#oOOSI^1Df~fq7z1g&}I(e zL^Bc~xiIWB72M(vv?o1AU~$l87<%y67#}h{O1wNf)Fumr(Ic$K4@5P6#Osg~yn^+C ze2~Eg7(Yoi333MtyQ!i2d6Pkm!!8e}|9<r8X2S?}WC24Ymq`I|HFd@_*??Ha*dGHj z9KY{u^Yft6U4TeLddQ2Y5PtE)IAjoLJ;>z#9uiMzPfTr&nV?KE^;)>1g?#=UUctw5 z>dsfAhS{vO_gH*}BREcVsZIV30O9cp3LZ<q;6*UyHVImyjY?sp%L5%V^K;2Z=!m!P zkxx##SPUa#Jm*fW2XAKZ;U@CzB-;#Auq)(qc|M~7_RrMq8cUIbs3Y-6sl(VBN4}lt zLDZzgCnO_kO(b{;Z*r*v!5lbiKxM%x(g5huU6o=nDgbK;Zj<iH%!L?Xvmy?wrfunU z_1vF302c=)+ddC?RXo`Ex|};GWULH%tZ}I4h4oZr=v}CuQJRf^dSFlofws-(L(x;R zM&#u?p5R`DG42iwH{{9=Jz*ja8i`k4ntbA5<K$0~j_lq6Sdj+mhlmcAoGdmDR$y@A zh`wGo8{P>}j329D5DDtnPWGbrQS>xfO3QAN8%;Ku$Rws49l%*}KEa*Ly)YXHKG$}@ zTYy_IAX&9qT%9MAaq3>q^*`5xHk%m+pLLBIkVYRs|62oSF(?YHz6kCkhRRQ_0Z=rq zu_jb_i6a+C!dA&eB8qdQm!~I{?0m+#xxh1>L>{NNt@3`#M@$)30J1E7P)4)ay!)#M z1N@vvZ!;+yu!56-u<5;YzJ32EN;Zi4{`pcu`IQtIhwd0*$WW_(1^`5I4BAGsF*-x( z>r0=emIjMSAViEz%LFR0ou5#4eS8ppu!+8;;@E-f&kfdi1y=7+B-nR|0Wyy_?6TmZ z+AqN(=TIxpjX#ctAb5D3o{!qWx1^@8^m_(<p8Ppp1EQ{1xiJQilow!}{31XCyCTml z-8Uyb=4pNiL`|4$CeI^-Cqh$-q>08pE?f<ql$kDFL|@ybPv!zQ!hUDW);fG`xEzlI zP(4ty#rY^2fi#y5_{iiseHesoU|M;rKGpr8L)R(b;1}Qi?&~fWJw0a{v#Fx98P!4T zV7_8FYaCwKu<^vVoX_?@6GAZSPX<A_Y?9&r>h}Chuw`<O;7>bu>d^sy{se}bMXwk@ zRn+AH(n`deIJyPLw;C>$7d`2#+F->Uh#Z`JqtcRk9>2~B%wh(4Ii$?`gA~p!)a%}( zhA=JR+XMkKN1+T+B1UL=R%@--`#^$iKT<z%wdtw6=P+ZQs+JKh?v^tXau|6ZH;8fa zN<O=rcLf**`RC{7kEdb4bH<%XI~j$0UB2@06h)X-i3#M?8{PpTx($`->glBiSv06p zl>zM}bM!7m4eDe1HB{iyCmzL@EMm&o&Rm?xz0u+-b<Q3``Q#O&F4lKyz^-;uWtM#h ptxsK044VIe6`Vh}{CNvN{y)_cJETc3Jox|s002ovPDHLkV1krL$6EjZ literal 0 HcmV?d00001 diff --git a/fovea_params_optim.py b/fovea_params_optim.py new file mode 100644 index 0000000..c38ee4a --- /dev/null +++ b/fovea_params_optim.py @@ -0,0 +1,62 @@ +import itertools +import torch +from utils import math +from tqdm import tqdm + +mar0 = 1. / 48. +mar_slope = 0.0275 +weights = torch.tensor([1., .25, .25], device="cuda") # (L) Also define levels here + +# VR configuration +res = (1440, 1600) # (hor, ver) +fov = 110 # degrees +distance = .5 * res[1] / math.tan(.5 * math.radians(fov)) +ratio = res[0] / res[1] # hor / ver + +K = 360. / math.pi / distance +L = len(weights) + +min_sum = math.inf +x_of_min_sum = None +e_of_min_sum = None +s_of_min_sum = None +D_of_min_sum = None + +for x1 in tqdm(itertools.product(*([range(1, res[0] - 2)] * (L - 3))), + total=int(math.pow(res[0] - 1, L - 3))): + if any([x1[i] <= x1[i - 1] for i in range(1, len(x1))]): + continue + if not x1: + x2 = torch.stack(torch.meshgrid( + [torch.arange(1, res[0], device="cuda")] * 2), -1).flatten(0, 1) + x = x2[(x2[:, 1:] > x2[:, :-1]).any(-1)] + else: + x2 = torch.stack(torch.meshgrid( + [torch.arange(x1[-1] + 1, res[0], device="cuda")] * 2), -1).flatten(0, 1) + x = torch.cat([ + torch.tensor([x1], device="cuda").expand(x2.shape[0], -1), + x2[(x2[:, 1:] <= x2[:, :-1]).any(-1)] + ], -1) + tan_e = x / distance # (N, L - 1) + e = tan_e.arctan().rad2deg() # (N, L - 1) + mar = mar0 + mar_slope * e # (N, L - 1) + s = torch.cat([e.new_ones(e.shape[0], 1), mar * (1. + tan_e.pow(2.)) / K], -1) # (N, L) + D = torch.cat([x * 2. / s[:, :-1], res[1] / s[:, -1:]], -1) # (N, L) + P = D * D + P[:, -1] *= ratio + weighted_sum = (P * weights).sum(-1) + min_value, min_indice = weighted_sum.min(0) + min_value = min_value.item() + min_indice = min_indice.item() + if min_value < min_sum: + min_sum = min_value + x_of_min_sum = x[min_indice] + e_of_min_sum = e[min_indice] + s_of_min_sum = s[min_indice] + D_of_min_sum = D[min_indice] + +print(min_sum) +print("x:", x_of_min_sum) +print("e:", e_of_min_sum) +print("s:", s_of_min_sum) +print("D:", D_of_min_sum) diff --git a/gt.png b/gt.png new file mode 100644 index 0000000000000000000000000000000000000000..f746128682c14a335b3543ff2da8f8eee471bf9a GIT binary patch literal 83250 zcmeFZWmH_vwl3VbyL;mfjaz_5gS)#m?ykYz2^!qp-CY6%4+IGA5Hvvo0WR;m_c>?p z@!daXjPL&2Jw}gSt7^_?)_iJKty;C_>Sz_E_h`t($N&HUO;$!y4FG_8JA?ut!oU3( zxK>yK095Y28anQ3rd~j2S0_swdkE0o#~A{Ic-y>Hdau=H+qfEZx`w}+;~7C8!ls9E z3<+J`Jd@#mrf;=~9Bx}uR2$X5hn|?`qEWf{Gv04}@ARipD|;&3saI<@|GQgaD8;AO zKSY;ySHA<EUvT>RUhcY{eskOiUke9(m_J?V?lZ>d-x!M=R6fWcX}!IT{r$x5`{JK? zPQe$G?<7mTFl&72^?VkIE834}%tvUvSlzo?ubyeVQvcIq@9y{3iM(S!##3S-Np(BQ ztSm>~lKPR|*Wr&Zi8eHsDc7vDhWnk8qE>zBxP6WzW`7*wKfL&p6MuiDp?cK>tG)ON zpGfzM)V}y*1o{c52KMBAAjb(LQ6&~tPU!D*<oY36_Vf0&w|m1c_5HNj{-o=2y=;K; z!ShJ?#{;EHhqV5&*YN!F=kq@fG#9R6ejiaj_A~#&l(^yBZx}}8%efB-AH{TgH~&Ds z7jx3PoH9yIAco8+WR^M{FFoRE8|I3oC&l&>N859Bci(|WjIkNaY`$%|6Q19H@f7)b zw$;CRY*gxm*!Nt6w->{N7*RNJ!mN#z<lO(Wq6hBf<!M%Q2V#53#Oh`qGCVuWYKinZ zS-WpkfJ1=a7kJ9@?WGG!exw;C6e$|<fmjWR$2)dj+=PtenkeoaUB(^_Y+-5#5oDTC zGi0$S?~5NxkDYmRe#Rg(w5nQZ%O|-QodW|`4_piCNNHKx3^m)v1v&QOvQKuEt$KJ@ zX!7Z`Iy}vm8`AQu?a<tMcD3z0z9pG%?7g06wf7?M7-Zjlt}f=`*{Aszr<<n*9oklp zbV_C?t82RKTfeS23thAfMj5uBw>^>5ld7HUt1Ah6uANvJsGXN(J9XZ!IkazG<FpcJ z-s?}l#C;E>XuZPYfj%^v<|GJsAD{81&j|~bUW$X-j01tnF$RD{hR3xfKBJoK7L#?E zT*Z*AiVtUnAQgvrh-22dL+|+-^PR%QZRz=y*YSE~LLmI&mD*LQ@JW9EC2rlgsBOHM zdIx5pjB}~zQSx`~y5*+Zy-$0sdQ&{|P+Ycd2Nb=rK4n&Xi@V=Cb)G~eja!@(X?HPV z3wo@GIh*jl=XUejcnhv}gO9zcO=}we9W1l9Jfzlb*^&C2K;5+e5yM%X7`XWh$z;qN z)qHEWc1O3;m^Rn3n!HHR+DYLSPiNA5&2FuG*Rik*QxUJxltt5bHhJz@vpJX)#b}|| zoL3(lriILeno}F}DFW`ucE3;>^G(FR`=Nm>@+Ef{DMrz8Sbx&Xq3=ht(m7)SrZUH& zAh%S+`vff^+Ln0{^=4m;OjXO8&nwA@E*4_Cn|f1<)j5k=mHKhL2`a-kzYGQ)ylpM+ z*di7m;y=*E0dXkP)pTkvzOl0>_-2VX(Y6BWH~@iWWnP+^p$A_OHw@yB!j(d3=-#Q< zdto(lMiw<plxt<#<TKmDe{qVItPNPTw24;T>Q38%_Uea?MY#-4@)gMXH9-(Z+OCDq zl^oZ3*?oUdYAqDrc6glCx)vMWJQvxW=4$%LC!xRokyhZcS7?8V2iFXcC&$N3a@wvn zM3(KP<VqdUS_=zT-)%13qR({VaTlXetlEb8xORK9tKmqDmDv38biBTIfh`s9b6Rj& zC(*c#5(*Obj|DIL`y3^t+{Q=Uca!SsF3R{cEbi-U(g$M!{&^f<7uet&{J!9X79V<_ z-Ykh%bmzhj@NAbS3vjrL8!NxJuFGy3lVO<(8P|QqB{U~vme^hmSGu^$#A`M_rs4!K z1k%xZKI^1vLK6>B>fivomUZX!J&QzWYn3ZUdOAK0PiH~OLMmcRqz8`|xFR>E#UmyK zor3i%oaPzI5|B@VB&0uLvs#v1UFz+OqEUq-@%tDv@w{Vf<@NqvHnG@I?SL!H^1X7v zBiIfeF|K$Rka*6pDZGcpq%Ij%KQ>LMFheG3kLx}W8y+2rn~;Zx+}w1R9gM%;iJh&Y z@9C%9qE}#%#dQYlMEr<!C8>mjC`j1nhhA)RlfEb{$)CJgatWF$Rl=VmQos~R60^r9 z4w@FWlItpmHdB|a4wYMxK*NNCgO}7=NZYS4zxZMcMUC=H`e5AUUC@}TrrLf}*B2QU ztw!`4I*w9zKT49eV0_507?8o@qv@JfH*@@FSDtzv88q<%M}iYkMB%BZj&k_QPn#3S z&V%04gxw`L6~Rk1f-42qP+xH4-~=E%S0;}xbm68}7}=@Ng9QrU5J66F-?J-BqV_%& za}8T4*TLHX95FbC)K&xq!TyW(Hh87Pg-*}VKH!JQgt23!8-p6U;Ars<DD_l)GLWj8 z9?!<I-0A)%t+JZUwp*>nsX96=ruYOiMQkUAviMADMKc0gG_iXt%XTl}h=|09x~eKJ zgCwbyL^C+^3X<i8%%x-M9CN~@t>H@>8NdOe@AT!ZLxc{J)&Ir|7kcynV-lV{#ec<T zx1g(2MSxtS=Az-i8X~_LH7zSRp2%^HngmB>DS~vd8i(!O7))5ycBqME!HEyyyd?p@ z*)af{VXnj7JLwG0Nu~TWqVdOdiNe$p27gZQp?nCgkT-?lV<D8=JGR<&@%`00EqfdK zK?`JrrkP9!Q5nFPhTDw^-{ebDN@c(b8<wbx%bZSZO^*7Ghzx<4jgz)dsQU<>g$WK9 z8yuoGs!4=D1tslscAW5G6W5Nq?P?X$v*LIt<tn&MWAL~oTGpYSAtZ$@i{+s|FC%ij zcOF=QSvo{wh*TY9*Vz1d=z^cwAONn-QyCaQ{bU9x5IMy;Z;EVaAuH^+_@?t>K=>e2 z8DCoc+0z30jIiPZ{`Dz^LUhbIr`-}cN9$K1583!%Gjc)O!vq!z8R;woPSIG9a(9ez z14|zKDvS`~W)^QtDGOns)Cg7wIY|t31k6p=GkL{FBt$8VSj3%j#i%uYo=px~b7flu zo$z0(fp|LhSe?9|(RcoQhCYda2`l>S`+&D8w@B@Bnl>dJ9qcMxbEIubz!^fzeoS8h zM<VZ|E5LyKiv_~Cho}I#NGnyH$i`~!{`h^6&u5NHB5k1kNSB3v1c^aoADAf$WiE+Z zc!9tVXzz4X3Y>c)g1t=uVZI+>p?X?tzAM-?7%h*Y8|^$$sg%aXqZRsXOVrt}V2wl# zGP`J1u@@rZN0XZ7!_~5|K+B(~WKqZ8zsXnqk;_;`SI-UN^hZ(6X2_~k{S0`zaZ%5x zEW{~IQ1OK&CX?t&;?85XwEGwZ^Q(q8@QkwWdb=zsD7pd)EIg}ln36;5)em(?!VI5f zF&Gz3P;dsr0(ys`;t+_^GfiE=hP-rThxDbLP$4S_A<i*0j+W56q!ptob3c@S3_(_~ z3d~Q$8RY?w#{`+xuQo4|eRmhm=~4T2PpkrM0uC__H-L^F2_TE7Co*Mb?SSM@WX_+q z<hW^QqSHpVgkG_iDT_c|a6DW$aIQ43Ie-H(M7H;%<<W^ij;mYb;19l{Sh*6zSuE)E zEI}X&#MF=u!Hps&(k8?uTu2HF!jJxwgBnUI)}be|eT_?U91IGACb+Q37iUpOWJ=|2 zB(E5enImLZYEhQ}I-js$b8V49kes?w+CM=lz)YG!!+AvoP*V$aVSL9sQRA5-7lkQp zOex3A-{%8G@1HEN)Zuaiy(5)?9SA5{r9mN&&IIv(V0q^foDkMTw;+@XM8t(0RVI@F z#l|iqpXG3=-oBIEB^;fZMLUN97qD{>FxW(Ckf{Z^V^o&vTBsoUy~pTQ?@E-{7bY1o z)(02gaI6En`4ki<bX#pp8Cjse1pE?w9M2VsrHt6cfy^V#UD{a#Od#lJJz1Pjp_L)I z_QBYmqSCFJA{jFSP1q07^U;~PCV|Yvc1R&`y9*A%?3fE^s$LLfGOVjGB%TsX))88J z$mEJ63OEt7mD*_OF-?xxM|ci;D5V-8OVN3+GeAX&myq*5xerASk3~OCseB;WIiM2K zo?M@x2ivp96wkogO6EVv5>}qTvGtRiRY@*Np7ikBGh|b2=6lbejsGqpqrg%eH}^uf zvNJ*%lyE1O02Krsq3AG;*TSMSK}Os;o1Xnvc+LV~m?<QrWy0_|on!6mAQ3;T+)hM_ zmws4GTq2DKK3OvN*DUY~VSltY_6-0>gLGRP<I0%QceS4-C8tC)yF-<Mo<^rqPA^FB z?P7@-7f|ulyX0dYNyRwY_G0q~{)JjP*GGJAi)JeDostIAO(57*`y9%)iGCW(B8b?? z#4K@`tg{1rji$k6r_cxQ-YnbuF}LB{tyDZ^MKYe{^R|jy4^#uv5$kFz6wUYooto>! zF7*f&Y!~MDD_2L0!)O?acw1^Orln0G!0OkLBEY`GA-`2|vmc!p#~9Gyy>;k)rsR*? zCJjvAPYfc2(K#g%77<v7-g?Wc@>bM7e7p;ldW|NSyp^q?-0Ro?pleJ@s_y`<7L%T$ z^uD*n7s*nSFx4MPd>SXCb_#xSO0A`R(-US=ouC{6V7wnxc^y2T)1uaJKonvSE{3z} ziGn4mHsy4VQtmBIExheV2?Lh;h_+EEY@YpT^b$cW61W7yuo)H6lD<d9Yokb1NX`J< zB_aJTw`!5$F8~C)r*bSSCOmqLPeb8kNz#UZoBtsm?D>J46Dc|zjMc!WLP_G&a(yim zIPj~e2c-;OH-U{1l%kD+6NVa`BlVCxfxc1DhhiOHot-gG>+zL=Y6<%uF3~n}Pf!l8 z_t{%?fReCZ3v?rijea}s!dL@HK;<TeO}Y94Jtf6vM^gIv>W&(jfq*N4#Ih<6doV#B z&O9tQ_7u@lOO&S0{@CD9(viBv5|0jsn?+*GnA{uQZ}IAZ432A7Y!mZaELZF?909EG zD)!xvA}Za(WWt)nst=jaaXp5OjHoduFooo|_)^eFA-^h!7hVNX<9Jtgq5ZDgY;C6B z{lW<ssc>7U5>NjmcFrO~wVpmAc*e~<qU1~WlT8mAx*U}soh(q={_0T@&lf1QeXH0Z zL6X(NfD+sZeU+kxUzj4RS$3mF6@XC`>OfT1ORw>f*vz$_<v}CT(Iik)N|l5puK`wV ztOD<v26u2SMk0b*SvOxhuZN%#EJ8AS{oXQ0!CNhZ0l-RgH}WzWg9RJZ-RQa0N%=fx z$l@k3ThF#GQex#MkBiCflvHj6SPk_ZMHJ6<gMO5xmFKrZ7*KLuEwSLNL#%Ols_1fj zbcXwkbP-?HhOiV%CLxBu8&~V=^bPAo?91;i(mTMJcxz$*fLtpr{*@Z5LMj<X*$-Ww zl2@~&sjlB~YwurTLWM3ciI&lnh32xdtxc^`=1|b$y{Urf2CXx#KeNoq1<>Fx=<Sse zUeJ&rTvwbmFzBg}yFUj>XltXcW<!iTAEDw`L>5B=xW^v3t%Hr@d?EOnG4ZIOtMOh{ zL_<y~n_7aO>n{;uEawkA0ZUUi;)ZL3VZ-oq#LC|KFg5ck^x<*vG_uE;CKFWozj&cC ztyN(g;bm0KgJ7YLVR+EOV-O%51jxbDW1G6r8lKsBfy8;=)jnDjbD|qzuO<Rg+6r?l zMNT>3eks<UZZ#MsP3j~ZC*4P0KWXsZbPvuvc;Hx>oiudd_J@eod38`H#dQpRWw30C zVIgpR<Oh+*V=R+xY8O*BGx~MFsuEy-#9aG15kWB_MHFPJML>Y@se_S;fR8K09BsuM zPE8m~9~03)&e!J@Lba6W8Q6%}=e3-9GrGr)%HkU<4n_$=LvJ1^wPh>Bp5#A9|I_87 zDqe4LkU_^CXAfDW#zUb8A(Ikip~_Xn+fqWe7C@oH*GSQ|yJXP}Bt&Ot?Ph?#XV355 zVfLpsmS1tICgmO&Cdp}RcGN`B?n@VjHb8A#>Hs`2$)+m~^c82itMIg{#a__T8=*@4 zf|*8gU6M#zN$7_%mxhH>zlNWmMyg1mtjK#4Z-ySc?;V(XzxJsJub7&_oA9tSuxnff z^oy`mVys#>a48i@<s+`I>M2A5tFStfH!^Zk7&<T6zaQ;ZjpIWU5)<i9w+Tb(Ye$7( z@kd>KP84i5@NO`C%SxI`Ge{6IBe_@2&MMhyg1EzVFl;)$vO${Cnk2ei>Rl(n=mRKN z8IZ`yy#O<iOa<o9wqa<169PbrQGVJlt*Ov^!r!(yQn@g+NkqhS>tx>9<oLB7HU^Xl zcTta0%S@&s1_K<3e9}2rlmK#UWMs2I6@msWBfNBOd54PPAkENk=Y`fjvGZ7Z6An~e z9E@UOl?Ytqb9GVrsN43Z`<ahzswBi%PSJdlXrSr1NKSRx%k!YTK98kgnEexRk4~*L zPszDV*H#n~t=>fT<S2&T$fNJjO!{jguzF<Lkjn1Trxb>@aq-I|I!YrAJIv}&_cYv5 zakBtf?_JH|J=;1zy6i8>5M{85e-Sv<%CRA^660itiEUh-@mG@BE~JEU&Is&YP>2M^ zs?UGssg8;eNA#37qWv?KG70k$E1Cu4M5s+~O6F^?si{4KOcn-+*qfBNNUD58)xXk{ zA+&tKZ~e52eE^CwRz%7|p=2nvZh<$2*wLEIC7qtO=W2Pzy(D`wH4W|9qC|SGCDOB~ z`_fi2ZKZG!q(YP7Z^DhK2D9=>%oDK`MNyFFv-3TR0knP-YnAqw@5LYZM$HM}4c{LE zch4)9@p;N+opro5(%QTQ?SA>2O1>N`P2Ls2&|^=3L#$1u5x$Lj$!Rb6bFCApPl<bN zn)uUscfFUy%)qB~I0h0Kp4N$-mrMey7>cJSxR9(4E!NGev)RG$r(D~#Zrhcw22YbJ zoeoJhbwy5bcAdsn^N&&J&Q8?~ZCH&o_brmVr+2q3Iogs83DnUG^cR+RDN|kx+7QXk ztaq~T1ARqKIt<X-$|p`j6r4p9^5|rf%bQFmbiI|lNYSLuUSmNVnk;Y^p4NUN?{hn# zn!#(d7O;0$5hkZGUqYyd^!?x$vJDQ2XqDsOF2p^MT7t94=AL96AJlnaB*FZ>Xd-eb zxl=<OK>dnm(sVdIm@1w+v?v%9iAl=0b;i%aUS77Pw)A&<I3$K7gjeE<N(Ye(m{S&o zZEc+UGqg(+2ky8`a!>%0>;)pSQK-_v$&RCDEC5ZP1D~uh4{S>Y2AuSXA=xiIZ3P+p zjEJPNoaZ@dq%)Wm_NHJ?@fFs5jmvKy(qub4oHD%?5e#8-8Q|<+PQvD;li(0F7Ug>? z)|qmYu}k`0V<{_$P(h(}2BJ%yvE~nc<qPVaV}f_qtVK<A+LB2{0P@NFVDVq7epJ>6 zp!0K5m>7>?t|UEy2_n}>?mmaulq%cL)WSW)Qfq<Ie@bE$2G3LaPf<Nbr*<~)+uY_? z2^qei2gmNI@4Sz#pRdoRUTuZpg~1#9xs=D!<w~vGGnAiKPTjg$=VS6<;~9)!M8Led z;{jEgutxdOX#Jy_go(rU(>8F)I-HH{N)dBeU&cLiL~M3wUJea%s|@WdcTnO*10^7o zcTL0-yEcgGP>PDj%A3Rz9=*q8A=FYzK5$y2w%nNbyC6iUisB=zMOd4d$-2>DN|Hq$ zwE~Cv?w_waG2HKLeHfZhjrC_-hmJuOm|7^Gd1XdlcpXUM<iqU|>EC-R+9qbRwS3d^ zTTzzVf3U@I{&Wg}dQK{+G{7=Euskn<WM<(tLGSwhNi)yIzd<{QStGH1hP9=x%qCWm zWBfhRR8|8+D`RgzksxWSZuiGHg3u`PE9qD*%~dG~6&}?^>$sG3T6qMHlh3C|sk16W zdR3(;RbM=<7}*7kH|vZ+1+5@*eD+C!9?6;1Ab830t2^h!?jD7K+)4xnwAE++RlhKs zvwr5zuGCklb6?mcsoGw1T#55g5tY~~EN`#DqMeHJPtMSDL)$ar1|Vb`f&wkFJ6oEK zb*OpE%;{sm=$*!Oeek{oxq(C<dDw(6bR+dAtq&i(nB~2Cm7L>SZrHT}BD=5_)Y?s5 zk%%oJT@=rYQ^`hBSDFn(HqCOzwpx>GR`g;V2<S5u4n2K~f??~h04acpf(6-xj3B)| zOalX~N6b%Y9rKnYorwx8o{THzuoOISI>z)+A!sX^<`)1xWIw`Ps7uACgBKj_b9~CI z-U#)mcM&I#g_93*+0<Z2x&{+nSHz>-Ao^SjY&YP}wJdGGkBQ-t?N+I&lowHAk<tK< z)jVQ`-A6D4s&RlQV!_B!t(DK!@qgr*8YH<y9#W0XAoF2qJlG;k)s;(w#a+Dg9!b#D zIlF~<$+tC!s{NSL%RX=xP@gNygRtHeUoLO_D8~cEiSI*C3(*m9j~AYFfU0zk8sx?z zj9~LiID+6|qgLl__X?p{4%qOc9u!EThV0W>G`z7o>tI~YICz|67`9*E)*;w8LR7(D zzkJIJlbvf>FEs1BI$-c;d8Ye-n~z=stimKbE@r|J&>8|gWPScx+$@mRV)p%stRgEc zP}8EVzv8C!g>R0Ss3Y+>?bn=+ResE;UbJ2*5QmGIpe1w&?LY*Cag?$P@efrBS$Rc@ z@N588DZ^kw6d{h#h+f6G4N|akc-hg&3bdWNEgM9~!ZR4OW>QfJs`zYD%3=Z9#mYt< z!QtnTYI&BZn?klQcn=FbizC~iq76Iq>|hyM1jp4sv+RN%gGJ4YbiDjxxEztYTT)DL zRMlRih=YAm)Vc22Dh8w*P9zgB`yTUwl_bkDGqzxhB~H&gcS&pT;z;aQOMA?&#DZyc z@~3^Q6VoLJs8P-Ktk0{zY^9b!Fwnh<MIFXutSkUJGN9~s-yLh^#dbGVt2t)mU8M7f zj5m@nPo@qS1e>CLatfqDOtb=j335kN5)V}`0rK6-$W{)c_lCC3k&a;4rOXMIR}27{ zFe~m($JQy5g(Z3RHTE#^?{Pgi#PLveusWF@%6ff}u_RbM7nOtxBTscSKKobEp5&kf zPEO>nQHFL2=Kt9zu7W~^OJ=u22r%UO1{ZQJpRM`5{BuKLJYOgcN6KZCJ^R7FF*8{M z$+qgg*FJ!Dv`N95SP4n6m6l=XYP-vo=EDc5n}sSg6~g6<Dm{??K;jGqT-fc%C;MDC zvF54dGt%-k+~K9#TjkJ(QvewMitl&xD9bh|=i&qXs^NkbaJzvKXK8=o@M}k<_IU;) zy(~!z3C*flcCGTUDYfJ9Z{rxStz|x{n3;*Ms>c)B_VENkIvNV0i`MD0!6Zq!yd$;G zj1Wb1>Z}Qw`|XR3m12yRCr4HB^f`&Fdq!BaUPVuX(VgP?w4cX%#G}~&H5focm$YZW zLpE4UxW&lYU$(~b2aKhLs{+&>QAQvz^&k$9N>LE>R5QMZ21C_bl7QjOH0Vd5ugNT$ zW8~jQ&1<80hr8~oxCvQ)PhMG#CBoG<ksog(_MUu57H|`CPk5B2;hz6l?jI*M%yO-a z3L7i=oP*8j9BEoX5dbV2+xjer*CK<A&Ia39IC6Jq&Z(?<qZb7ICCbv@DNazMnK(?! z*%YExUAP<~iipl=U0!QoL}*ip%D7}MqdL;vzQT4G(b4DB%|!BDFttkv%b*JemMYRI zAzKEIYpO-DTzP^hx2v<Z7iS2UyDD^-`MYvuI53Fot5#6++R^rg6!~Q^BkE=NLNtpd z3o@%?!!)6rfyZ%BbYay2p1TF^KI_?e+03<SPc^@Tdfvm2YV;o=mD-BM%)tcNGlhBL zazDHppxwbz=n~hSWDcP<1@iu0xfY&N73~#V({eVN1k1!lJ6lLl{t8yCQqJ((VgU@l zF+DO>kM=M0waI3+5!8kk9Wi9l>ZCP9D(Z$s9?%x9OKJk5V5CZmjii>vk}5-qZS&Bx zM$fyx{j$z@JZL~y*3ONsWVnQ;7MquEUlY_0xSvNNuGy1HN@Cl9!9wLG%-VRb!FQ4y z1Zn+*zL^4%7mo5#iIYqy-E?u!LX4xB7);5CDN92sxYF{H6j2Dccuy}mhmI6vr1_p? z&FJ@S>&Lsa#t$;c_}A6Z!5;)zw{T5(B~g%kJT^rFQU?3yOf^2Ootw%xDYMc>)pAAn z_Q3f&NGDNpNApTmnQLrP>hb=hzo0+<PD42iXH8A?fe=$A*?C?|O1k~z9d4F>l$N&( zo$fj_OC$rzBj%#Nl`cNs3%JetRmvLieZTs&ERzJAdN*sufyk^7j$g3K^oUEY%}qqf zNX44<;_bF9ieTG!T_}z`U-1Iuxu*MdyW*w?qK;9hYppXSJ47d+b4?tW+?NC^4v9_a zA754FVnECZAmCa7@J9V;rKd}1hX*L<I!EnM|FP0GG5yyPO$a}?0jtMJT02V*x)txd z+}#=&*9;3O4_#R+;;0OlEjD%Qw-9ObwrXzy`Ia;fjur-ISOWmXpp>`sS28uW0onWX z;p(+(DnTA(^Xk`dRp>-T26MIFK7F*=r=+${`0U?3{BEhz&}Arc<={`NiU*Qe5YcR@ zj-5Y>I2PzFFk+ICNfA6qT^LOoBOHDX^iDM(S<?=>T_CTQ>=F3@MSQC+8yl)>vnK34 zzQ<U7l_$wLq0C(a^9jFwRg+Q*0YSEZl)7U+(pd)PqIy`626OXvAQL-8{S&i7FexPm zL%}Vxof5XXNC5*LQLSKZnEDDiP5?ANps9b@w!G42*v#|%Gn0=;lnx2}BQC13==Ia@ z__yi%<O?VLG#)a{&>#cS;qNwP)cdgXQ$ecPQAI0AYT7q}r2!;CT3nS@m#Ys3E*gom zk2$W%E;o(>KHE16p!s&h-FTjq84a|69FUElY<Eb9n17(9ZgG>*IH|p6AtnIHt}y0# z1X&#<=l_M{a3w>E`_x1Z$8~CBx9O9;mNnk5rAUUAD|tve_ZO594sM4q;0}QCfl%PM zS>b0-O6ETFh2ay;XBTsB>*TecDsH$N#$+G0j|hfn$DxD)=pGSu*N;Esl4F=O$CINP z(W$ZoPPG}!-lYhH2`Af4q{znD^GqE`NR7+F)$Zv}*hpS!9zp%CB;(cy2u<+hRJT(z z#B2%e<HeA^4hryKGA=I+$fQV;5-YY`T4KD`tVH)1ES{0r2d^Z_)o9<rgDk^;R-cVk zRhCZsQK9g87`0UES95(LF~AW$X(rysg0Ha`u*KiQ@jm$$uSp%fWvKxxpo)VU#yyv% zuaJaM1BsD2slw>W^g8tT6&?-aVbn_=AV*~{m724ENT`I|^2^MmSIOe5Wzgh0NL@%T zvZRL1iYTKPUUkvbZj^Mfz7~PJN<BTd04*ZY4eqQ+OUW;jh`z435fFiZ7&p4S=_}!Q zs*Zc}jU~KtISUiWa+NEaE@ZcuVZDu5CPGz|$O0mejGANVaNb0x#_N#mU&BEvk_zZi zfb6c@by~iJQx3<j+GXI#B-dc9(Trw-lbUE<A5VT39gD&J(L7S5creB4s4T&+dsL7O zu1;Q|om_SlxY20|zMA_)>&_d2AduE&(b9j)O_Td;z2is8Y=g>2LHCiI@h6RmD;C}B zcA;EKs`$_ug_bhq$jOcV_}`S;VY5!XW1&{6@s_xIoC+{yYLTfPIamTq*&W6_NKL#K zQA_-SyJ7H157?MG?|ni<h|@hj<#PujEZC(KV~^NIiidnlQ*Akjo%+;k*POhY#=?Rq zkaU@AK<xt-bcN;-gSS8DE@pLqNM+I$aN%2dwvA%#91ia!HAzu|JAZiFN8`!;JtX~1 zfAA%&x%<UY{w)o~>i?R5V&m*?{#X8quxuw*5D4{57>=4hh4M51U|~VA$*V*L^vSOr zi~FBt4k#{!`aoX=jB5myg~2L8#4cC`NZQA~%_TpZGtv?cTp<)CMa7MiJE*%r0#nsy z3;MVGmv9>i2^Cq1w?_^CNO^fPloOCFEHkWv8?LNgO2vxqiOHB!D5#5x=aR~VKPYa) z+;VDivmk1{kW|vak6Z_b5Qtxm&NkB}*nu3fjS*G+@ncbJs<*M4HP&AE_!IwS-mu?2 zlz8)`Mza;P3eS`b{jM2XKNGwW)&Qb^6p)5PUD*=9`KqSg@3f>V_L}9gPn5X?R{{P( za#x^?1pgZTdb+ICZId3oxv2y*A19H-U2OM#-4t8D3!4DT)pSF$;w(;N^r#xal;QMb zgxottQcaEcoA8_|<RjJ@+t!)2`+as){FXG-6&tCf0qhhRv9LHnrivl)IL~-o92>zz zzlTV&z!(G0P9~Fm9WWXb%{ayjLcf(AemUJni3#a(K;wC$DzE{ig}CiGz<#|JXW$jp zz=kZa7HRrJ%I2~4Jhh1lNk_+p^$odmCk(3aNeZPvN`ATu3-qPcFGU}dEBs?)x1(i| z@e`P&QeD<907B$|PIS|X@aD#faC@NN+RrB_jo+@>OdoFv-g1+0ZQgQ_bQBc?&7B<B zOf8(uAZ*?a&Tqj10K60Rb~ZJ)gSZ3DAXYYx!c>>t{Zv333t=j49z~F%vjoK2M#k3_ zqVB7tVeV^ZE?_|=DuVpZTks9Q0pe~7^med!bQAOzrurLK@a_1oVs<Lv-y-gI!c;nn zDnJP*R|t@sjhhX`D&=kC$w?)G41DKmVJWC4Dg94~w=-cXYj<~NL3Va8FE2JPE;c7u zD|QY60ReUpCp#x6>zf3tn~$TrsW+>m8}(lh|G<!hxS6}YMYN5RBk(UwQ!^(IcVQ~3 zw|d}zwa>v>QSraw9o_!P!W$p#-lop%9Bd$V2M6|l)o^o{@_YmNXM_H)8g3eIsa))8 z5H}|eS96GzC&ba6`d=X|%>P^8*~8WTZ+9%r*&+52hc{8TH>(`~X7atPqRM}3{6&G4 zjf3;wT5n|ko20vq<^PcNZ*BXl=5KfYwIOfn|Bd@^(*NcA-@<QFii(1gPUaqeHBVMj znCdV4f)-BZHWq?^AM)~B@Nf%o^0D%9@bj{A^Ye4Cnwp#Pvs#)#cq}<BAP{~|$iG0z zI=Z==I+{cNf_ejIvw6cY1#z13@|y9nT9|>}ARrbHR#R?H0ak8H2!w}=)0CIboa0|0 zlwED!qSDm<Ut9GTl*Jnqzd5HF$kLpbl>=nX!^$mS4q+AG=HOtpH0KsDg_v=1^I86* zH5TTA(oU`prf=P8<6vq9VRv@4`rF1|gbRwP$O=<&v4Q@lM8)3J-SSQ0Z4B5rS~z*R z{ZEyKjRQp8-SjU$Ie2*lIJmj_1vmuw`8l~c|3^p*;_CJmi^5c#Yytvoynk2x)h~i? z-n=nu`d6U7>Hl5+=8T|(E5y{@$yLM2$zGW1uQvT1+Q4`J=nxqjx3@~4zoPx0@vaVW z`N!Em!r$KJ?<yeh?~oNVHU9^`o2e(n;%^&odjF_0w>EXOg1n9Ge+JWkmD~JZItm2g z;^E+Y>t=one(pDREd^Kwxc=%gPLPGUsf7TDA7c6M=x$Dy?p~&@5HYJaC;#CH@E;5S z8U9Hm<G*WoSwsF}3G_C$L42%SAPta!AQ!hF4+j<dKiy^jYdrs#zwg-pKa9NlTi{<N zfH%E=l)X(XZ}SxUe@|5ZWb7{z{~vz-*%SW{ExbYh$H@PR-~Z6{AG-cm4E(Qz{}WyR zq3eIe!2e44KhgF78(ql%bE^Y!d|Lx~z1_&1Q;1Kz-2@>y%jmiR04O+reW3uKatPlF z5!_`Jr4SAg$f2mX2om=~-inCarF7gSoE-jI9|QhgwLvU^UN-L5z`s^)+QH~=H(Nk} ztfZKR_gY-<d=rhVE1BnaYAUYk)6I*MtkqFAMC=lPEM4(ui$Ac!C#q!_^V-J*zqovt zLZ@jyT1X2g;Zi~^VS}J!H?mGH{HmF_sD}(O$gzmBG@DK8H_r3czj`opQNR11nD3VJ zGXA>LzrsUjVQN9kVmI{UFBOAoh+{Mp7x=>dBJh&^de=W(e))oH{NY~z&)MsF;Lz(! z{VUn#W}P!82qy;vaV8ir!n1QP8Zi2L&Hn22r$6wPB!>-WrW}jY_&QM}@9K+9P$bo8 z7%k-ca+rYhNM^%G94(R-fEh81Gzw-2(^(+jMIhffPdcYO=!6>>2Czh+0)U^$B!N_b zTaut%ipSD}t%7HC)dmZNBL3u1ZIgIrk*&Iio$^^{K;QErb%e{%*2@LLpGb=SZDCsL z-=8H>8GyI+m|~ji+D}pz^|WBAsmM}KG30P$Ad?E#Q_XF@S+~MDTdIuMh>01d%Wnl_ zGw5a*u3$jL8iCkg!cI=4TVGGa;I#8h@MQifM-Rr;k8RT7#(-cVxwyo=C{Z7u!TMAX zm6!~sNZ)qG>o1DE;rf1rcyhZqopiXfu3gV;m)`e(ezk4$1wO&$Z(T;6#qdadPmg-? zA9sC1HmoOPG)0C{8is{)Hpcf42pnI3B1!iMk4k;gBF|?~n<0FkXzYIvb+m|h^bVj; zq0qJQ4qBtKmh5u~MAtdrs>k>;a|PCNj33o`aPTR}ln|7F^UaUn6LE8xi~0x_Pf7u) zDufc&`v^;XfE(VR4658Eh&l*(psVVm1q%wE2>upqG7GBQEx%`ec@+J_+V|u<RNwa; z_0vXDD<o(th9N&63O-n4U9YeSxzaE9HMakeq$Ks6cI1xpiwgfp>h<0V$yh(?L;c<* z;14l-zR2$E%V=Qm)}M>Z#?6Z;EExePac3APm64nu!ct%j0;=uI0gVi<0*w{h-+=*b z^5@we^>2?myE9b#f3|M@>|R;2s(tkTxo%Z~BECKg4JEe*4cqRtBDFs-k~tKFQI5sd z)iijPhOIGWhTF(&7J^;;!p~X{g=^CEDy^G@F91g6-@PF^3sAN8nLVe&j=}|oq|Oeg zfN&&nF~cjMiBzykSdv(RkTY>-{2G3m9J<DLVW@57M<Y(JzipU4yd1#HYy~7Lm!k{~ z6o9uW2lADGm)%wnZLuE(pD>H5kg10yWC|v_kERWlF=2q=OdhjMY_`%US>s3cv5h0k zk4J2A>45{16MyxMK|S9HVX|5T7^`Ra_d8QTMZ%%CaE5CrgQXoDfIT7tP|HSGtRtMh z`*XaVnPfJED&~wz03Agnske;halafq0YeL}W{?SX{p~q=?#0^PT4T7;23KiFg0*Tl z`Map<DqpmJ$6b*6Fv=%aOw##>80o-_d8W}18l6CdiA3iYzZ}s&I11%l2F@}>a|}^F zt;(OlGekhBWI)o5^$#Y}WGTAi7x!gs+%=wGB%KBZon}Smm=){xLL6T5afr`+CzwF@ zr^4r^u=ITSmfYpLE&X)xG=m?q#MOhdpeZruDMH!f&#%0W(?q(QoVdEUMQTcnQux8C z2(;<`zzmFv1B>;#UU<xK%+(03mXG8rGEaY&c)5gZSBhAtIaq!-;50hi;DcCAmI~-} zlg<KHyi`N5p{AX6uSIe(hl75=kRo)<_oe!vBp41P>RySk>okG43-$}zmez~i0Hj!? zD;0702CX&T3*|1o?`B=)9Ai&9?$>>FR-*3PnKzwQQf~PbHmPBqbTP0p5ob7}i1N-; z(KmH@CGll4gL2?T!dPN3-(?2Z#PBeRHvrZ`SWXYygVxaD)Br?b7TRLBNd?0K+I_|D z5BeLzi^MbmlSDuKqk-sqn4oaL9ZbY^h)s?&@%uk_e1V};XQD&D7wG{M+YwNtgrrdM zaUNO8t|1su8bv@30A5ROtr|I_M`YWD=q^WEEk=3^1Uq0P@Dpe*aEZ?gX=Je^s0&=$ z0y#L?0<HHe2n17wB4$PeVfB@6927JzA_qma#OG-O&5RjQnwAtH^j`SuBSGM1aMy$b z)KG{9z8`xm6htBltg*%czNMUNo4|vGAkc*)>o?HBHLk0v3gHYghz$%Olds^l$5EHY zrKZ5~;dzf=nFBED9C)!>zyQn?L`M$F7(L(#ueC5rhrOUBJdRjJsx;3ZFF#+e$99Dp z*z-1?t|+l*-NFe0Q(b})!X1f$v)^!w+=BuU_o$b(VXmd5uGH<b(vr@nV1)u3as1Jy zx{eJ33tI0>0A7vm;LOf$C>&3$#evUPyLP<oQ*xE5rAPZR!|ID><8$oYK0>-u&t8%0 zuc}1@2mXUz6vi$BXj+RH1m2?JkkQv0(O23s<yWMaKZ~NF=82c0x!3E><F4{5$U2K; z6Ie4suzW*87~OQM7f!#oC3yl4pXoMlOoeVu%8|*`eb%i0oTJI;Pg{3?I@Te4RZy5S zEQ?CfYK1GY_8_icqlkzCj#=B}*~%Uu))`q%Z96pjy$^ER;91|rg)1rfr8WtNB{YsE zSwS>>r}?U{ne<gD&45=lY!WF3&CQy*CzVDnU3fsr<FlvoH{Ek5j`fSmrNF9#mW7Mu zc0Zdz<R)kzIGW(?ZD{H^s2`JbX)mVGx=5;oc9w{Ql4=*9?~+b?E#x`LoA`@_@fR*n z(@WiNMaY_ZyVPyx+%`==Nspv%=MJA8gk(&?{Wy2`nvM{58I`VpBVc3fF{SN;Ti<%U zf-~N%Gcl9F_dY7n#Tt4KOYvjuxQ)(M%YduT^O(_7|5FS6m$rhng{=z=2fsoCM+Ksn zmB2sD)xR@c1mYil`Hm5Gl>9`slv0Z6f9{_3e%;stZ@rQ(UNQg4c>SUMaMK<bx%GPY zUb6KQeif}@Rd_@i)U>|9K#S<_R+vH+zIsRPxm-gu7~q<y)z=FJ+ox=D{LdFHqV_L_ z_;U`P%NJbp>Fyj@A#PDs6CAp=E4{{Sd^uiXk?V|7hUdEVky8{pcyc5RrMF*uHh4<U zc`K2dzV)S~!>`?GuU+BUfQ!<|b&+(D7)ey<n7VJkKd2?rfHjznXOogL8qEaEVk{km zxICPuG;Cr?9C0vZi-4mpw912k@W#V1KU~R1Vk21+cr{V~VIxFmo=}$A-u}Qfyzrv) z9S6SZ^pERG>rj<?d6)d?-T?t(Gem;|af5??@B)tCl%H(#OW(<}MP_5u*bR5N&gf*o z{ivx+v>VxaeR-dwL_QceaNG;$zcC}uMElM2gX(CRK5#Bw$t!BDZgVSyF=G~6eQf0n z?Ikhr*)G<|{&otpB9){Q;DLOD?&Ck$|3|xj@OSstw&>GQJ%8ZdHvM3eQ8Fi{G{$Gv zMfR+;HWEh@ezJs{lusVnAzg@NPn@+d2iDr-_Q@aCb=<%0tw|xQX(|LT6?B8dR6sB_ z5&GcDk`2^Z@;%T%GmL5VmYs7l{%HHGwKY5XpzW0VDUMx!R10O>eiu%{V*?yBmgH2l zQCr>lgM(OM4mR35H(CH73+mcXa`4XAAy!dd*Q`{IO-CAA3LA)$#4XM<9J;M1C%28c zEiv$M5(>~DJ=(*h#)go%k1omjRmgPR{uzEuM1DP8OZKum!$#O<@~Fs)*32hDvh-;% z&V_VvX7wYJ&0Tttoewmg=;|_h+Cpq9h=0s0Uj(c<FpWvc!m;zAf9K~L7Z@-R80_6o zH!7b_$-moYNVl<}0nU?xyNIBISnXpFmkC|6wOQ=K`VGoFCzsozpItYgJqgQ@UJqZN zpoR~OR|Dc-$@`zKQ8Wm=(XS*1x}X`Eqg*>@EsRGBkdIq@>*`)>73cT3n3ez}r*>Bt z)61edUl)hHUMMkx5}>Nah}%%<qraL=f(c1yxTzqFCq9lg{{2Y}<DB|I)mAmEz{UYJ z+sA<TTK$H%7e0@Thb4h!p0-XlW<Cj37?n*-VhzFZdN4Zes<t-<FhRLA_T_yDuD{*z z_4!nhbUEoRcd}4F-@_6^^M|1qY~<xJG}I9Nd^2;5P6FiFRz7az(r`_UELS9pTQ7#~ z)=;}udH+LOeI~*@2yvKy$Y;g&B8F1M3--KVEJaLD%v^VC8!^LX0E9|727soN9$a@A zaP8jv(7iJ}MKm1{v-KS4m9qYG9}VUhT~xRwq7r&kz&sx5tZQ4Oegdel`1X=^0hB6{ ziWDNeoCa8y6U47i6L=l?tiK&O`*15Ny!T>xqKXKU(~b%(gDnZmY0XUsII-48&h$9O z<~+ganZxjm;CM@l+)}LFx$}Q}Ei_(QNho#GTPV}zD$+qa6&_S?Q0LV@&6c8AOYdGT zyDO*&7KpL`7DWhJ&X8h_RbylfT!FH#Y%D$bK4<8#0c|#l4$Ty3d|7UCh7_$~P-wzK zrC){aP&@9+Kv>krDx(Tyq&^6m0+}G9?<2m0@34UmAH;WHE@W}QSDm&S>nTeq6WQh1 z<e*XSMCb}0#w(xC_v_i9oUbjkVva<Qlvlv|$q6Gl#^X{4iyBb`{1s{6^nqOHJEu%% z&?qV>xbW@LyJ*9S$;CYLaag%VMu2JzZ;!hb;2>IUoC3j6+4}sA!l)LN(GU@wtTx8U zu46Xxj$K9<l&6%bg!4|a2BR{Dlv+*B1o{sMh$*3wtO07+B_&;G5}!qS{T+B~rK5Sh zmx$t>vz-Y#3~@aQ%PeA5X~^Z3Q-L2qK9H6TCM`A`M=M}+sTZDEBR{dTc4$o&DZ6?6 z`2`@%8&k=QD)(wA$D50bNtvXhi)q5p@4Sjym9)mDA(W*j+we3>+tT5wh}`&?H}BhV zpyL>%dj`+|HsB-l+=kqXspwI5Le!px%OZmmBukaN&VSzaLQr(pCbK>DB!JM8ji}DZ z(sQn+K@`eYd$4zfSoRf52XY}ikZC*VI5p_C<u01G^!)p{Od^-B3yg(#J-3+K8u<qw z$m&Dx92)kP+x6?CILvgZ#ZMOR33(<sh1p2bO!D!_e8neAPZ-jBJ;6pXM7r37VJ=q> zhr`T=kTHk8VS*t{Ea4*c5r7ZoZ*k&1){2X~#W4>V#$DfTvpg$>JtPW|9)N|zat^G> zK^VBOv3Hq=iawYhs=H~m=c~l<wsUvgLwn%wmCPBO<#xRK46dTRkYi>^7{~iK4<0&P zFAQ+1udTA|HlbQUb?vO-**9pSk3#Pj;ztS%C!glFB1QJ$!p3>$(MK){aOFQv!MjIf z;-JDQrA=t4-={Ys7IfNc2<f&y8_5XiRY`9sJ?UMkDMo3KEJ)~Grcu7MY9cal6F93? zU`hP2EkOzE*<m(BDm3&8lZ!=z?72K`;2TM`ot^ZyZphgHpsm7{LxP1fVI~m57GXtE zfu4{-NBZunU2>em%w!U%vX-Z{S@@xWImxIZ*5>_-y!IaX%2wHVxGi$+IvsHJyca2; zn@a#vBQL2$RPJ)hOK`rNz`dQU2i971F7S1=5jg*dxOqf$B5bN_*^@Kl9Uw3)l*oZ9 z!$CRrO%U~oN3oWh%JNJEvmK{@_Rw}Bb0zBO-Cmz$5TP!f1R{W=t{t!a4DW-kHviFf zt}0O$p#ZInb5L_+I;XQfr=y#sLWqy<wbRR2<GsYbC-@In6J|hM97=DD@wikj*SdjB zhY$1Qt>qUx4%vZc3m)G9g1cz*38SSLzsTHix5taXw@Cn7>NR1D2uZRi?YWJ|l<$ZF zJ#fL;+!d@d4(fb8#g6tIKfqrvl2dVvnX6^s<e;mjg-@a19(OZE{IG&s(U59mDS?kY z|74*Yr+O+EQQIqBn(^h<ry;oDJGcXyA8(RT4qp-(h(yDWf;2;^0249jl&RcV58M+l zIEtfPuKThqx32dgCOBB(X<Iv3oi(W1y;jK=`Nh5iJ{8>`YGV%pnWi!Q7KAz$JrGP) zcMJ;tM3(xtDuyRd#u{Bt<zUB>#r@f1l4r%w2UsC0pAY@&Tn{k<J(w)n`Jx)388>+< zMOHh^CQpD@*)RG01G>$Ow83x*P7iIElYM<#jdfT?O}KXy)VL`UaabGz4dwuJ7p$JZ zT$g-pXGFpo9IelpZjuvl{J60y5jnmEEg7zx-j__JZH(Cvg1$zVd#^a~5IWHR+xps` zz$=H;3)jLd7R_8azv}Gt0yfVNS3&rqbWh`1YQW(9GTvOuZo9itt^2}4UUhIGJW>^G zGVzUuT$<_>Y`EoWNa)fRDj}6xS3FzKqJ!R&9t;~c$a(}nP8&YXJycstPR_Xoos)tv z!*|(an$VtBfP}M2RT6c3oWqv^2PGYK<7`#G<%DxoVj>-%DLlWX2;KlVPu78F&O+f$ zcO9s;YgF7YmJk|b?T)9kfK|C!y~LHcw((lutBybZ)X-8aE^vMbN2EibpiC_FFzR3{ z1gz0pUj4CsvK}{9`I3~wm8KAyc9?L%Tv_1~vzUjIDUuJbizLgLlmfd4KU_qVRaATW z`-dZ;Hj`nZS+$M`C9X0v;C^<c6Dv?MiY<mv^2e29&2TM0kvX*!S#ex=3#~?P=Y+cT zNm;tnYfmZM4lEZrwtETnYKkMz;f!eK<KFA}%*W9GNOCMyc@H>wJewQ8_d|s4tt(ir zJ)q=XAoEy-X-N*&a9FI+i&bT=b|TpEkcVjQ=*P9kv$}d4ZY=4+fbZSX^aem7$yC+i zG!ir<u^=nE{%AOIEOQE5I2edfaP88^coH$daIo%97AOo$6>mle)ja6l08w23B8RI% zdN6=T+TbjNTcmGDKne&<8v1CT_DAWs70SHJ1$)X(aLH%ma0P+XS!mT<A&Dk)Y;Zzw zL%yTz7NQ7KH|JPsu2Yl>Yw-B0CTC_sD*ezLDkFXcB_P!y-lMk|b9RnS8G*gy`j#YP zy<+g2tjT<Axeoj#T?+PR)3$H#-q|{yTo?vBb>Ht_Q0zxsyTlx5p*v{p5HUHVBby-* zEI%*aw@<J}xF1YVi-*r3utFH3acy(yafCQUd}AL&ND?<VC}9zfCPT5|AdQQKDSm=C z(y{40&oF69ob4Z-*bz@{J%z`9_9_LT^Bm<-RSAgz$bJswMTL;({Ma&XEWiEL(sFYO zZ*X~1g;q1a_kN)cF1GG)ODW)7&y!@a{zqfpnQ>EO?dUQiPWDTY1px1SR{E+Es$e0l zG#zh2-KW%p7Z>?GAOh=({2gq^U}!Jnno1)Y0}aYWGf+BYl5U}*;1kRs7f5gzzXM0~ zHmiUf17oxpT)~d-ck!dHukKuQuuB@HYm?_<FoN$Jg_>-sqUz^vE{Sf}4DbXkiiu^; z7*@v5r7ptzv#+>eGp1jVjO(@k{5oJZd!&8HK+pKOsuz9ErSawc_&oUQweDOjhnb;e z+~D2;_Yeko|DREMfB!6yH^TccC(#ceo^7WOKS}((1>UxB%n9Ki2K9pO&(MAbjGdj0 z0%`HUoUR5?JVBO<M0RmkeFf=eW;m9MQ2g*AFg?i73Ya@6=y_9Q2Sp*f36yOIPpFVJ zhuwUKBM+X{#(^X3F#E=ZV5ANY<yLu$`y8Klr+6(#z~^Cc^Qu;-L?O}6ys?W@05k1{ zND|lsXGx>Mu0N~2?>@oCrzV*>y~t0K&eJTncHg?Fz>&jtko*U1I}hgrKotE-9SJal zmsGV)k6fecVu+pMUen4pg3b7j8D1MBT}^yR>nH(LQ-4{*`+_X~PGwCMF2@7qkw^b+ zZ8XcA4heUQ+vfWruGuiAf$5KuB;t)a90m@nL3XV0FI3TrZlQ}JgkmU-y04ZEE4Kls z#}&}^izr+9Ki=Vdc)Wh!)7!sy;5x{it2Zujs!g49zW%++Eb^wyj1=Z&KQS=+ZI={H z5^wkzYlR5+-Ao3~5Xhu&_Uigk$p7IsfA{SVWddJU@~=;Z;R0WjKSWd1i|$;0=-6@Z z91!C5H9rs?PF1vvAw)>bSVUq&b^gJD3ZpjJF@usq!><g)2aRZ`9WOW(P<~-uxN|5_ z8f~v0z5l*V#tcr33e>GFfi79{J&)Ixb5AP2P)7Kg{}ZdAEToz^EPvzA(n`_n=Amk& zit^j$47r_jq2X_F#pkb}h&`(nqeFk|jD=)ISwG5Xrc?tI?;^5M=_lN2=%BK&WU`@S z4h5(WAQ8ZlHAht(!+<bTT`chPolhmocZDD~*vndt3PGJo&434)3;v?tvla*5Cc0YJ ziQAs}*LNSro2L2mXQh6$VujY-!(Cpsmt6=cejMbcGCA7z{+?;RAv`T$Zb)#}G>Z3| zys-|&h%Eyf9IU}ju;@NG?i7?mWhN(0d&hsJZ$rII#$U@(*Rkmcq%%;WHe$mEn;Bf+ z^6qgfN!>V^)W3qTU#{7WukZg40KGs$zrX*Czq|cCK7IQO{L$<8`0?+q`2BDG9aizC zZ+4~}Q=`Q}ouQk-dz_~U<1}F$M@&Wi^uw1gc)Q&pWXh^Y78{K+%RAh@q5s{9XrR$f zxAmX_coah(!CzY_3<70AULqt(3p`ql7kXf)uEZ|gP&&X2wDr}sb0XP+G2QpH*I^vh zYCDP=Jq0Q0fKMttZFq0xhaNNz1(DXDLqfF!SNl{J`jB~%(j%q22%`WtmLxI45HL)m z0m<b8q!?E$G2=RC+-3^^eVS7FjGh(26PUHNjCYv=>7mJ^dm8o6s6q8v@}-KD67KgI zx9fY!ij2>aa{@7ASrfj#-|*8<UqB#C(^SMjj4T50J(!HMP;mpJ-c};cjBy+QoJ!Zt zvH=uR6PZ_}tQf`<#$f`6!7}SzE1MgL+8I@}eV}3nCO>`tf-D)g^Mp^IzQH(*))HJI z)|jDKu*8fp1o-uRhD$5X4E))j{1X4^pZ*dbUp&quVe){k0;FucQ4uUjk&<q0Gbnyg zf|8+|&IgDBw`IZob~moKM(7&h93iG;obR0($X4TPFJ@^$plj{Xp3%88?&y}Ism_Xl zf*J;)F+<k830|nr8@6@>(XsV#&;g@5w)A)d?NnFP5TmjucfIrD4u87k%VIA~AKi;R z^m)WPa2cK$q8tv%9l*IK+3jD~2ka-*J8F@}dej^O{4fFRN<D0wR-l+;#QS~4yylXT z=}xuB5CmuRS+`4)7{m(43f}Rnb^Bd+l}z_c`e*n^Fk>=VZwR4mW?)?xc*kJpu`DaD z*E>Xw%{NW~;}A^R3q_18Vq77T!LP3vLfH8#hzL^5V0Ji9C*VApo+8^lNZEkc_pe{@ z`g*~6nlOzcoO3%`T;u*1!jg7g8Eaheb~UG}EE&ss2DyM~%DCO{xX%l&w;P5K0dg2G zXZZi{yLbGr|L0#A0cef*`t=454!`}~759~pa|UaIW5q~-_keV%kxE6DGc+b>oFSqZ zMKJ`sdBzdSa110BM3ItSb&_E1&U9jcWY_zn7W?*!5;~kiEu$!Z$y$UdC6pM~dh4C` zC$j3JsziINpiA|oQ?>56=KV=k>8I4k4eI{BL$qlND3xrqiCVZrpAW*8y~D%aSmh7+ zpiw89+1LNF3uu*PNrnDPbdXma%vL~v^8_ClKKRZ-s3O#aB?9+ZAVP&$TUCr(8sdoH znL(MFbrctgts~zUa9c7!yCAvoM(W=kGL3_z+<S-9>4Yqb^E4LY6e*wC#7~Y1-+Xw* z$JYx^=M#ot{dz?)5P83vO`Z$zuUq%Sdx!BfVZPn*<BvZfzg}=TkMQ0DP)y?h=K_|L z@a4<9U3;-wQ<b7D)E)3kyMsy#__t!77u=WCx)ApT^!W?CH#@U+UNM9_#xdh`I)Rzt zZ>!?}`K#ZSB#!ahzkf$e*+>dRn;u=!3=hyzBb7_9S?sm7x7|)Jt|_#GD?mlc84OpP zR6JbD1=ZB2j$TC1%hzpVZeQHj30hk>CNU)tJiAU0pZ5SGVFwQNS;@12qX*9UM!J#h z-*p?)D5PEdDzaDVTAzKUL!GxFHNj6ud8OXsh4z>T(Q}H!&#@sosC(C1EhPmJJ(pI| zuBl-`uF!X#cP+rz_s^<WV#b_uD~+05S+^X+5yOG4Y>;iyJL19uq@9;X4dy???%sES zbzeGE^`D{fh1ga&{LId3ej<E)eZl2?!f6_8ACznICF4mU;5sjOzus}0PH>(P9N}^~ z;aBc^e0_Vz+t;u7{8cQVIL5NfxLjUvc?k$%z~yoVL(N3RyVCm0ox9Ygo2NeLt1%c; zN_HTFu_nRW`whgaX*@)6n^%x?xKwXP20^l&ky(MH1m;kbSR0j8wT0<sh_UPEQ{hIl zG0EGBMcc_vF!^ar0;dG$OB;nZT{YV2+*LpHyaS*e&wU>V_6RXLze6evv^6HgoLc%< zDX3LO`e?Md{~qlKAJlk@TGDmyP<f?2Ald8O`*K9PwxT|3E4FK+y{|wO1++kR;E~fI zP|?vUZHt(4<m6NVOwYoE{=C^zIjOxj^q&fDRI@Hg8Eec~lWxzhGbte@cwz)+{(re> zFhn=gODdbck*yAZpmx0hbhPegpl|OJLu8vSrDzs!-hmurT@A%IjB6;MT5QOEa1LC^ zUL=BbF(;vE^dRRj29F`w1{YD>Z#P`$1%Tr1?H$)8<3j?*VStJtuyu@r0~~F%Wu?+) z-D{l9E07f4n?&6?UpjTp0%*>Sj(%HK_~6Y<MiicMHYB??Fp4wjM)G(hs63i^Y$s;V zHQ!WCTRNGtNnf2<dyv?fims2yl@QXW-%NWN=CM0)=o}DwF8E$WI4=vnTyI#`2ryd& zcU(+M%Y!U5*LouJu2!ek)8A@(-fse}ds6qFrH5Vs6Lvj&)lKZX-D>F+ZH0f|$=$2C zhaMo%y~si7z_RSEcBm8BRuHtqM5uEJJ~}7YY^1IQW`cKSfN7L(2Q6QZ?KS`aAOJ~3 zK~z~|$`LW;;%3xab8Yuy@(!c77ICGKt8$}V*L&ToL3TG;b>At0c48pf<2k)m9%-xT zoo9p)3af5K${AjQDQ2OV?{_c(LkP%{AVrHm1`qZOS3vLDtY^nKpHBGZ;|IGBDZzV( zFiyA@SL7iCoCc3?UQZxQMNV8mzETD@cV8`LqfJ~!n8pd0%L}IIYjH5PEZdA<lbODx z6%61!opHY`@L&Q7ZN?p?4&1qiqN}BP!2xxr9yZOm_D9-*)RIL&EVkKlA)r@DY13}& zuEusHIv>+e+Prxm+9KK;Lmb>d7fE=ZZ&+i38_c5Ik%Lp-OdPtJy}9+YUVfK}wZOyR zT@?$E=*AeWL6-X0=timSJnCwzk9y@lVb6;eg=+72SCI0f0+F^*xZ{;K@Q9iME=xw# zjLh{}Y;tVp?F1WwFD)-_Wl4{w8+c0yp5PteoVD+S95MlmtXNc#sVDGMyE5zdPa`7) zDlI=LF4eNFt#%K!1jEfY@|c|TF|h^99=Pp-Sdv^eCSx22IB)5{V~2vpA&WGzj(3c4 z7%>F10#}%41ju0;92{x09oK9s(#z?Lby@L#eaHDU;e49#`O7;#e|g8Mg3$xh7%&E3 z4x}CY2i4rlow^oVa?TFJFyM3=ahq4nc{SOwn&VT|kKFDv-mY(Wy`SKj80wB)C4Jte zgEqop-*M8aR6-wswX<g0m!gyvsqFo_0je3vMmEtsqfQ^0n{5FS{cIy}d-7c$SQR2x z0;qc9H#l!?&dwsX1GYP2jUGG$OZd_Huxi7GKmthNukX^*jwPm~&7Xe{<?GJfsKN6} z2O>}ToYE)1Pw1|yk046XZis40%_EkyVx^1(ZAwNWLKsGzrVN!4A$Y)>J1!|dt{Aep z1CA?rX?G!J#&u@gW{;db6sg&)Ri{wz71Q7l99#O2%0etu<d%^XOzN1*@46BjSDtp- z`MtE)T9n1qMKXd52;LRW3*&TROfdIfLUp|^T$mUOX(+%uhk;EQ>l`;3H<z|ER1q9w z3LcANcmmFsvw0%S3se#=r-0YXgwq&c_JjL~X6e4MZRxP?i3#Hr@Zt4>pT4|XhXH2N zlCsJEhv0F(On7}c<9wRna~-7c3@z&GUF{Y=<AGAE`q+PJMwCZNcKKc|i?%+@`oQX@ z>B%RReN{zo&6lln7^bJjf1Bi!I;I?8PP(jUDK0s;3monJcw^gP@4eVwC4`-+r1Y%4 z@&Qb!Q+W1WfMM<VY(2nppcyN*@ejSZM`?F7!w~8~L_Gqgy50W@e2H4GI>m%}U9lh` zskVSj#K=NzC<r@(Q*Nai^}?L;zRsB{)I?C0vd*ii|K_!3FWCSt6_5%72`&Mcg7N<) z8s#}x7hx%m#7sM}4Hd&r?ulGI;-`l+pc-rF2EdxRYqIz0Fe%3j9vlSRoRgRcT8E^B z0A)Kozz*zPvtZvGoE6+U3IgXC=hI}&TNmv8G$T01hszn$7>X~$QMRs~=7BnX3>8_j z!ZYJ?KH-~>uLWaK-0us%etm}m`0#qcuYd6g-+%gum-7TKz3F62`HCqfI>PnlHP8$l zD|cKE6ziWkhc|4!1%^_+D0UNYL^eYXvj;1dRkH7UGNG{upIZV^Z}@6Nr2exK!F!L_ z%VkIGpk`fN1WcV{td<XyJ7t~ffm++lv!#hNRE+<gG$9kW6J81X;-zmz(&q5OI}TV8 zN6`j`DIH8kdxHqly@Ii1YmNvZ3{X|9s|~-1DI->yF=|a;9HWwS5^r>_4x2Fr$^a5q z%LHtc;Ux;@H6lv_Q3lt|UwZ$}DP9J`<ke)*<p^!_2&9<F5IxaxTDmO{)a+gZfQBh> zN$Y9=6-me`WANOl!Ae_z%>}&Fa*7iX{4ih`Cu;>VLzy9+h>a`b&WHeDA{(MZz&K3^ zAwb0LeOy;uUM{$tO#sxUNfi<aQBQl`K-JzKqw)=yY+6;lPxCZ`6-X)K+mA2!?$bwn ze7#t^F}!?eGSn*Yg63kxp-tF8#bKsxT<SZ>+eh2%j5nZQ>z{W_6V;s-TX$u^wy3F? zQSi|$f@zD?y<sHw`u>9(z{V^rR#Pvh6aMHIzrgFu*#<s12QU|BBircJ6T1e0oO2;G zWu%mmvv$B;?^Lf_dTH`EGiU77dRqss7x#2JhH8OL)f}X-*{c>^yA--gW@Mwg)^=GR zBdddvfvdixs18{LS@LEe3hjXN!k-t~3AB3lWc4?!ARvK^;KH_s)@VVb7$CI)AGsKC z4j`NdM&M02sGH>rst-@iK>Ny$WMjqc0MgD|qNe0h16z5X)DecNrl7eoD;s&KsOt#8 z`Ft{lBb#2Cid~r0K5wyxuh`gTa!WhF*!Tl0=6MDKIGrYpW1Tistj8*Ys~P2(p{Q|1 zxRsHWv$CdyWm$2)T#R@G;1oQj;IXbNzWMNi(>OE-W&h2u{;2c~wT&NY(ooIK1r}mV zB~{r*QFUSvh_qo8HPw9>VbwXh(gB;>qOOz_(q^xbbMW3HgaILV1kXm2aJ1{{^zE;0 z$U~cZ)5Iv%X{I{<p3Wn_|Naxc{pO>wzL?>>Z>AWk++2JfoN>hhKpm~6ns?lRdXGc| zF-0uPjCo$LE{23RpFI(zl&oe`Y^uCY{@RfJqL{1v3Q|iixf@_om<UFuDy~J0?G$N_ z#g5GEvIGMWdFH0K*{$`QY^5jej)i$ywEQ9&Yb1yRB0F5yggJ>#JL2j$p{?H@*kKq5 z&gGJM9mrXo=OTJSRc{7^jdiKo-8-UPMq8PSHCd?Bf95rUUBu)}HJ57&&mPk_K_uB{ zcEu%0rSlo%9^QS(42cO02aO5qnvk;Kdc9$u7hKL4eE9H+5C$_5Y2{k&&@q%On1ZNf z8lbHs<=U*nY}rt@S%#O(giqhR8om(%hTt18?@zC<-GZ%Ymq|RUQDm#XG&k*e3l`d& zOjz(}^U$jCWp%!3LoK^GeC;GO&48>CgI5F}K&}FG4!-!zd2a(LJ#(8ixbtVH4T#c~ zK9|&7^gv&=TGe|GA3_=H<jQbNTa+eAuJ@sL&h5Nu%ipPFdreIMtIJNoFk&<jNQ?<N zZ_2iu64qtGvaE<H7M*^%Z>3XUgE*a;Q^E)~hQA3YCup*HjB83QJIR_i)}VCe9#U&r zhGSPw?H#c3h@&@8{cR)dTaR7mge&9Hz{RYL$iRIy=U}O7JawgZ&lntV8XSh8;DghH zc0LECAG`TQQ3sXo(!a-nA9NTpL*1N8le!bGbHvx{j3o(z_wBl!4`A;A0lf2=hOzYj zt=nUCMkz6%bhbK=$wuB{2av-W7p%7#Z*Ol<Reb#B6(3$-;hpb>t#mZ_;uxgeup8~x zan;QXK42WiGGLb4^BBeeqOlo;R?N=(A?(8E#s$}1;MHPu*_?e2#uZyepqmp-2_&@! zluqz*oRDjB%!IH;47qyP7Y{nea4ujRZA!5Bc6v}F5$*XbgpHffBfz3PI=*$0+vXP6 zhJn;cyr4&kPNgxU;~j`<2>{vxfGfi+8>W!0ADc@rx#AdFGKn=M<dmSrn4{WUF*|s6 z2;SUjt2dw4(jW_@1b~<$QchOOr)Xv$Qi4oOSeJy`ea1R3U=Tc0D>e8quw~zuI0%FG z+rDv0sA>V&#-pk8NW_TQ3_zh<ZLC^MR*?{V#%TZoKj-pS?*ZxsQPk6Y^ilLcbdX~o zspHxa9v#@(TA$|yYfK1(wfBZ0*i1s_;9>1QRpYcckWCBf*rT;XZX7HEax(8jVuv** z%xlEguWyL!9p8TQYN`1&9+3Usd>qY8rZ>jj0AKsx5C%-+3D^5-vpzyOI124vyBkXY zJo7Wj*}i{nKbQ^LdL}keJb1CuF+kLEK)SI<h4@l&g`CY~B*}(AZ|Rw_w1(izT()9F zN_0@H9dyH8s?^K(rGAdudK8m{0+!`SCA?JnGj^lf_C%D*9pJt{EoOegeaFHAjQ8AY zidsD;wcDb3mmxVednnf?_8z3m1)a{#W6-FkYg)^MS}QTuCE|Kt@WT&3;m7o&S$LJ_ z?`yDnqN3mN=b!nhfI6FO29s+;GhGOX3apC-CX`NwH2X6FYr+^ZPJ@G|>J_nBs8MY* z3wD-qJ4)I?v4|%FX!rl39z<1pp(Rk}M)qMQgwd6>+%}junjWs}0?CSLn(*o!9Bn@R zN4l4aAg&RgKYuM)3vj#MG2gCuJx}=d<43$+&hU;lVHysDZ}gxw;f?vKooA)@9^*LR z{k|B`Ta<^6`l(XdCK-8t=%F9X4|h7Pr@gk_f9qj{5jqrjXL6x?Cs(L~y}<d+B(vFV z!L-W;(s45!c{U*K&;cxFBQQtby3vZetc|_W)?dv?R*Q?+Y0Jj48Vdf<#!-82CJ|c& zBW)%j@8rE3a}5<3Dg>eGm~6pl<M}&wO^Z&Y4Hukm)=|ykvyK`^nE{|ZyHGKtwP?z- z9c?d!k1>KsG2d^{b%Aq+DbzZAn{2ZYpSF#NZqe;~>DqT&%412I5lA2jnCFaKCPxXG zg}SJ9N}K~u17jL&P^mFPb?@g{XJS^_@xc)Gc=+$f=h361OCiXp7A{@RNNdD0&xmV+ zI0A_cvvtlR<qYQ>&ZiT62v}wt_L*YB6g<K-Zk(0M&nWjNXTiL#c)#BeLO@P}`|XM` zFn;mfCw%+O2b{(cJKiGgGtBxdOjlP%(Ww+Kd2QV%c7$mhaJiiD_Wq6-7pOQm`0dE* zI!2!U0EwnI+N=|9e}2-gKC0*X2gKZ|TJ_+?Q?J}Xoj%xH)wsjOC!P<S|3~{LJh%dH zT6rlf!`>FUW&x(^y58;>M@z?2N_csB!OP19xs33hXaqsAt}8@LC}MyMHNuC&Quh!- zGaO^*4J?#WbC=ojeFp$gh}-7inY^}}idlNhq5>^*8+x3(;&T<Sv|*LbW@{6{t6~fR z<LD7{#AaJag_zZuZR{rLR@v<HnTtDen40Hb6oO_~%s+qxJN>daBymWZp>Q}k#yBVj zPtaV<KYE`<m_6BkDz148XwL_KX5OM(D;3>z<t$s7C<Me9@qW8unP<zSgsi47%XN*( zPVcN3h7rq}FwZMAE6%40(=@=<09th?T(u_|>l$%BjX0k#h%q8K;N|6v@4x>B(=?#Y zk)RITB-$I)*x*^?PBeBTZP}7J>DzsKnMTOEK#&pBie&}79}2l?+a>;KVTZ$DqFs&6 zPi(ez6LTEOi4B?E#vAoxz8*@6=4{gyf<5WuAu3Y${X-d3jTCk7<+rtDs1cCrCd}C! zT-n*JS=R;A>5P;W^D-mFXhDb>^E}(hz>FAIc<+iWQ!EQ5;BvmeIbQ;R;QIa!mDE5+ zVlGpI&5KcTLSkSD)<-XiDnd}WETuc*i<Vqkmb4+!+L2`H=^!mNpwi_CVL+nAhF;Y9 zaZjx@dVK{QX6hX>>r!ZEFxE^+>Y?H=N5LG;4G74a%~<(tV<3#)JOGnCk?s`^g-8eJ zDIF{jXb1XjfY#n^SPSVXW=r+!+A$z@#W;k92|33IgH63+u^{mNen%KGvTAX?Uh(zq zhV%Jkq@l8IY9^3X5eu&K;q?VW7$DPt53d(oPNUWR=q6`(H1|zwq0Lf`%79(&=+Jx2 zlS+%*;e5H^zRdXge#4u*<Kycq&gV;!FxxuuL<Ic<oBt1sD{GH`?@;rwM4CfRHvwGr zK<3yUknSkFcmQ&adhg@&KU#6sg|zEtl}O!c>TZfo7Bx;cEGr;(HZ5k2SeFIUIARzA zQUTr&JeGAu7H>1y)`*-1_xl3C;dDCN>7O#betknuv1r8sUrLSh`GR2}%*z6igwr%( z90IZkmSx2-47P_I<8nD0M<G`wSf`cf%vSsE1eoB-gPb=++nHA1vB_VL+5tU`+ooRm zM6`R>yGK9{0*9nVj4|~m5VNK3Ou2nI%5V@&gToX6M}k~OAa{x-8(p4vr#W>JFZ_(s zx$js2z2&@Ra@CQ?mvQbdrx7@frr4Y3B8xW=a2N;VBqeYdYcM4Pec#`2csq^IoXZf@ zB6WAJ)c>n($mxWf1)d3~(}dGBv>~e6407q|nY`J|>&AznN1r3(nAtrVhY?w<)p);N z5kkOtI>Qk+K-C{pbs~M(z^XqN5DuIC858g!yU@K*>&RzrrN&XMr4QzyL_hBl+Gg3; zIogGDzA^W<0MObZrQWS_VO1$9DYc=g3UggGOkg{a>SADam`-N^gwLP9;J!pmXNPf| zkWxYC*N7|(m5gabvy)<Gq%2tG#oCi0AZNkb`xVp4d=w<x>1DcgI~l3q1{;^642Q@@ zu_d5@h@r`QtCh85o7+g8<oI#SR_9Sb&t<@yp0o@VVWab=GIKK5VTU9D*|>N|ia?BM zU~B(r+DufM-d~ZEP3b|MyVpQ0>C}MKoiMudT<eWdtD@06Mh?#AJQ5dilhJ)88*A^& z+Z*DtSWSIC!})-mO;Y>*eurwbP3IWb+YKovu(J+`^B%#OrI%;max&&$jCZ7%;e*Gd z0ZN;6zOVHwvFmA8)+c;rV2T0a8w0M+5SW6;hszm(wVeE76Qs*p@khS-<_$$pkke<S z|DNU7=G|%6li#_r_9hG+;BlZL|D1Kj&u1skvxOa!O;3UZ(D~>ag3d%`gc6yFW6p?i zZQX+R>lN%w6Rrg<j_V2#;dDCTd^%wmN6hn5lynYZGzZw6GGdG%GB+4<RnW9`Jct<g zd1(Pk6mUMkd5>i=A`wq+Qx8~!*(TcNWV`|I5Tm7@gLiO40JC8Sq8V8t>O|7M9ZQF- zx$*FNSC)f3ypg*~+Ugv`2ZnQsB}ObMBNeZSoC!G_mDMwF38tL$zMS$zd)YE<$VE=k z06E&M<k8_K{lC~8kRRv%HAN;dJa_EUg5pyN65}-DBDr)(xak6h5HOAt&eH`;vPrQa zFh)-pyy^dmtW}#+g652A3^<=pb}eFnAg+LC!etskjyHRG-R$X9^`Lp69j^nrpPjMw z@U_h_5C*(6W+ni{Wi`KsVC&EK9_d7X*hUJ^hFz*Y*{la89}Yee9gUctRvFrx&F<!T zJqtxd)ERcr)8L_<uK=i5h;Na?Q2oMFXKU-ZWP0%6CY(+ahzW0RZ@ArNEbCHI@4{po zf}O<72w}iDjSUD4-eV=RO&`Vq&N1fsj&)hU<Myz<_n1y6%=3)*>lMy9#IiAlaRivK z&I@Q=LEw^g5JIq4)|xV6To8N!AV}*13=Y#YfEkda&_W#Ie%#p8EKhg9>d}r3^khB* zF`N(ZAwY?-Bpd#bG8X`Fqquq&oJPjr4dB(hnSM0SJGJ(#l%cG>$HLwRQuk`VU76ag z8`Tac;O6MuPaIlP1UbU%hgW0#wU)EB+8hYe<PqTP1a~$)J5=&mF=z2a2&W0t5X}8& zU6Hd|+2<UVC1M&zbKQPE$!<U2@R$X36yts<tTx_@U|#0pWhjRGL;;Z<R^B;yEi=#? z7Vv0=vypsuUUT~7G(DIv9-=R)c4b2EQmId4%H9;?@Uv<Euph@YZ|_;hZ*8ri=hK4; zguydDyq+;lHV7q8BZe?w97o&8Av6!UI>pt8fFX>SMibUJ=fGqJ4Yd|@g}FEk15&2K zXe6A5(EQvCEYy}6#TXG|!WvhsYs4@N2reK}#Ja||D!dP^ZK?{ZQ<GpEL$MAJ^K8_; zHFoa@up64vTe|JQ*8@X{_D{I#)V=3YA~BX#Z1$h<PBBJA2u!$44#88K7f5vgYq0{8 zY-~b>n#X=6vvgb)-SNM%w_(O6-QGsA2^d_u9^D+rvTo-x7vMAnbJr;>(yFJoUT^9B z*BKbDstC6%!;Qu+1qjO;i`tMdjst>sNXvqll8sJd-mi0gwv7t8u914m0Fn-4tB*y> zSn#;U0#tht`)Va&cH@rVWnQ0*&!U|b)}9M+aO2&1>h-+qgOyb$cRd<qK5SX-U2>?+ zq3=@^qP|U4KN;`nz<qm63k6kn(_Br$Sp$J%0{a1{i4leot^#FcaBBT|A3uI9ARC&| zD8bxeQc5N>W{30nQmB}Qy800C`ud6(7YxDX&P{{I^?GgE0%8KP8sW*gCP+##A+Hg^ zdz{7z>uM97>Y`lN#i-V0#G9mSK+rhC#AVvJ{*KMBFE40<s?F!WY?j>v>b(m0{_Wc2 z%Tz=#3h#j62w8wNDsnDeOjWR&#>A0g@{G&q5qud9&b>*jZMqz5x1-D_==k=J>vfxz z&`?b3DMJMi6$1H<J*S<ul8Ax5>K$Y>UcC*zVMy@;Am^<CN!pDI+t{EeYk?g@)Sg{R z3Bd(;4-DSOY-yP>FE(<|y8)dQMK}7aGD%D(Um3ZT1lI<<9=bCsKwKk;2-7&40V}i3 z`y~e{a~gcQ-nR#=b^gd6N7=?sbt*r4Ht6CJy43FUXvPTG(kY@RfPX*1woeBct#wz~ zfy#A0d!f}bA8P+zjm6#68&j<~@3u`)kaJQho6817nqVhy_EadNp2#(K99Lb`ip7}o z9vAPMJX4By{CD4eLQ1KywoGv1yb(=^J-`mR;11Ps`IOE@=wa7=8f<3W8dp;zs$f|c zNVaUwk+u4m&;(SjC>*sg7QOR`5BErSqMv^L9vz0a?tsC@7Erk2>CX(rl(8m3*5U#M zfMEodkrbB!1^q9?ueN4t2SzRMCFzJr)d{CpT|NxSY2q&&+yR?wQ6VffS~}Iy;6}$L z0@h`L2yi}~;L5WU5Jqn)J-I507o;f2NeW(Lu1UHkK&;g`4gu3RVwq=9%Rm_GvLH<Z zbQpHN3Of!970(Q|Y02BTY1%tQmw_s(gq#)Yn%X{Fmx!0k*`(~*rcHS;Jc;f&$5oHN zfjqsQQ4T0OI=e636j;4mkUoyvYC>7Y;iC6;TUAP%M6pUnlnf~v{xFy}z=tB>Vb|om z)#!nn*D*D_uI2|NcC$j|))&Byi;J*hXD+ecmr>2uug{gMpd0U<*zBKkP7p1#3?u_e z$XSYPIF$huCiYPPYm6X8lNF1mk_r|*KrzYe+e0EY+aTrK07i4=A<z(7Aa7}CWffBI zh*LQT#c8;nUIz?Cdt30{w!G84Z;bS<)ykz<zbD0<Eqmi)6=v~YF$KcQ6fiIw6OXu@ zsI>V2q>Qx0-Y$3>fQiGL$8NZb?o!Atr#6-1ma(<ZTwa@1k>UboHHvg89dGlDaXPis zx~}OQtvivk1r6std>FyRkeHyFFnY#m8ZZn)A?qX%dw8}$o!V&l-b8l~o>Om~uC|(8 z>9lOOOW`^{O&c9AATVMQ+~$aH$?zyy6V`PFvBK*S#OuU4&3(2-&fcBo(W+}dypy`p zfi}u5HsrR5)pjY}HmIRs1frmnk=GUP^9}d7g1pBt4mh31(vu%Bh5<fUI%(61Hwi3u z9xC<yjU4BSzd)Vs-r7XoHv`PtViOpTCF|bAv}x10DR7~=n@d>9Miu36+5%fl3=<%c zWRPYMIzx`GHDn|sL;7pX6|D?13x3p6eVbLMnhkSs3<`dq%9p@bv#bpW<OAjViJR^N z<Ad7IWcCnv+!n%ZCB#e!ogt@V#xw$#vx8$P9s}IC7*tXGoRG?F`(_<hy9CXiO@Ef2 zt~*Q6V$#vvdMdqnGrp}V*2?n$Ijnc1{EFI|u=#v<U?!w!L46tqcxFRPiVD^TkC6jL zPZ+%&ENiwd6ET^plQx!NOc~?ow*jOb!l|XJrsAMwx@Mid>1dk@jk1=L82O0U4zMf{ zAjOg+#_5D<^3Zw3y58WWF4%&Ds_w}<z2y|ww$ILZgB~rwdd6NSHP&vf+|JRVukA~! zS-J2+W>n(YL9*igdPjzho<7efT+SDq&jLLGV=otn5mB`B$vYYcap%Kd*Eg5?*d`uZ zFWtLR0*RDaa5b>y5|N!nbjD_u3D+&ajdIMg4a%q+E=w|nSxz9$1#q$&I!lL!m+8DU z%TR1&pKY!|r@~~02)7Bg*_l_LR7WE`n`uZ-C+qFlfJdPUZ6chSb>+;s-4)BCkX*27 zwv#M)#(83#1_qN9m!^(#Om&h@LW=9AL~X79y&&kJ*{6TFJ-mV1l}tm;lflSQWMD5b z++ym@`@CWt3G5wG$?D>|VsIWjF@|BI0SE6e4h|=8TnJZ!cTUBIzKlz&fN?D9Kp$-0 zfOhwT)pRVj7NpEqw8g_^?A<mtt#rAH^xS)oX)yDTX$rV6cU(?pI4UD!S>iqeXr>*l z8Nj<X+eQa{9BlhIbFKH0-v@xbVWl1c+ug(5r>2#qXT%b>Bm|!jLPiQ1&I#Dr%z<sz zyy8&W?y`+4t%V-D#oGzp<if=ctMVLD0o6zy{9v4a=eW>%Jz^59DOn24y>Ffv3R_G$ zD=CLcI-Io%bjpqH3`xw!EHqlKD=FlL(ib2~H>V_{4|5qTQY@kifY>+?HB`}~+_MU= z=%}aNIc!@<a#WR_g1M9`TlvUvoN*or=aCVd5qYZTZ|+QFV@z1)r3|`|Qnk@GX6)%n ze@LH6cj};qVePyEO6{MGqv4z@9TNlc&KHIdV_D1hh7n;b-2Ie_$jvtR5Q0q$9tJb? zq}&KnQf$|_U^GT;7EIHKlrxrPMF;_>X=>%BYR%3RxthzWnwO#qNW=h5qMb#%`DZ4a z{D2`?|9>1NTyIy*<A_ja8H^+R4tm!eq`xB{>^p@0)R=8779G@t2b1hwAlYPVgohxc z#TLAnh^We5`dZdg7L$%j^DNNE)zAuG*-Mlm1r>E=4cMrvinx34;fg_s$wO&3Zi3l{ zf0%Vx#=6=MoyGxv<ihGR=AMXdwoy5?YqG#nFoajg#<TzcAOJ~3K~y%6K}x^e*j-#q zKvK4!(*!KoT$hYAR*fMIWryzd>7=1in{%1<*et$eb5LrWBt06#Vx!=acANgOZ=G|- z5)<ZR<G+a+8475EW5H=0a2gzlGc=VhM;63vW8+dvSmy=H^#;UL$T6E5uHp%e)%b*- zetiCl4a1^`iO_bxlPLV?;ZTfdm~a|Lgkiw#wwkkUVOEaA2p&hQ>w@`y$7z}{jJDyd zC1@L8iI9|VUn1VFGhSa_K(1&x)H*}#9F{fWdY|D#u=a9i4qL6(m2FB8!&sDUd|tD& zM>Ec4a>d}rrV~wJz>oKz@b2#zgU2)(vCPwfYx9hc&=1+5g9u0;NIFl3V040;9d(#! zmzHh4>}|~0P7zqg24-~Ag!*YYy+@cn5R0gvUm#@!6>oM<)X9mp%zLjBZg%7g)ix83 zx@kiMX_nYl=l2tLq`52ieNK@C5(`2?)dG7XPZ3$?A!R`-t-U&$tvUxa%P3GW6Un9+ zgw?e<bG7Pez6T<@f7;a}p$*~a31XcKFZDi*kDDy1;vQ|WFZT>uYgq(<vdNZ%B72W{ zU6A8~Wl5M*#+no2y5RP9!}aSG_xHQi*(rgt6nv!sn}W^{g0LG9bWpNxtz$lH{%USx z+JH4>(3){N4aF&`*mx=6JY$U!w>e`nPbN&$h!6(En9Kl$E0C$B)kav7QM=!+cf_pl zegNRGrU)YvGJFV#0$lG#0sr`Nfp<meSuEC!z_v|j;_AHA2KQJNn6e@!1-Zf4rbNa! zIR%>+u-tK3N1RTB8N#&5KeZ*&gFeT@lsY$^gP><4U>rTg`}&)9&N97{Pl^lcQ6^Z^ ze=aOK$Ba}QRvRz8JECYe(PrP?;(Cr3HQJUeQXB43fxF%Wq!+$ZXD`LXZTw4hEJjJ? zw@iUMkhBg`m7RI0O4<Q^l~IQR(5af%Af?<8Y;MB<WMgkv$KP(Yf|PCtX9Xu|KYuTn zqMgl_9?P`jNG*M23f2NWX2IL_it+OgNbiC%69%d)D?>@K%pN~|VGts6T9Kkzp{*%l zNfFoUj30maj4#(4*43u&YEA$~P?<pON*AU<;dErD=)v8v!+W$&NvcCL#4?s;MH0X{ zGfnlP7)G{$nav+l3S)F#7dT%Spnd?zL6uuaDT|u-;}UVZ-?1zSA3l6U7zP_4l8X9| z8ABKmlj7~|iqBu(FgV8LJhcpGbDgq-28RO?xmb>o9TaQI2w`Y^e=6$I*Ow7Le7@tp z-tke-HpDcE9;VTCLlurNf49Fysc-1vIM1%m>goB}+GP$Ep|5H@s`d6Zlct+YQ)=1r zMQsAjUJ%r@)ID*fGnU&X3>Vj(>N9tk*<Bx^7MCJb-OU!HP8<Ym7UFv><Ns&v?Up3T zjV#Th0L;wYBQlFDve}&8o85i?$J&dLnQoGmnGx=0095Bf6@bFrvuajkW~78a&B}^! zHv{zNobPxLDp?MK#z9vTi!@$aLyQO0Gz=dGO`8~&VQmI<RTb?a?u0)345}f;ly*a% zW$5LxIOG3Z{-HdvfoQI%PV&s=%P)oT{rh)B257HX%#alfUYdpRDS{tWoprTlFlR{3 zD7oTME51Dr{PX)KzC9jbDy9KZKSNqojae#piEd9IKDj`>^6`{PF(9wC;&Ei$9|!h5 z8~R(Vz?aJvUoB^^nn7q;m(B{*n_r)ehUpeo5K1mt<>C)jamKjf{q2ghB-3k{K`XQ} zU7@JQap2?g11So&ZF8-TwyjMNCo=y&Wb?5-XB;`>VzY$y`^Nyh-!}aCNZ21cKJPoe zzAs2W_Psw4!AA~z@Sq>|w*5ZSD0jLkWlW4ikf{=H!INTrSTC<buy9VXRhUc>)#Sw< z@VjVv5+iwpHBAh(`62B&cnyaRdCt1G6Bo^c?l5M3*WL3E#eyQoE#Ei;wN_hKsRgqN z0~EUp5#$DMo?Uoi9z>HAcO1H?Rh6JOSa0E?_O8Jo8i4|uQEY@=XoceqKH_M`{efee zBF=jhwdu{rOn3MNn1TDgLuy5=6^{a}m9SP|YXdFT;o#1UY>Bo~)j0F01>YWbe7isJ z2|>KB2+K`Vciyj9uM1K#v6KBp2sp#c1_uH!O>LzrrmK{UTncKn5}GT1d_FV*hzZ-a zVcRY?j{(-S^bk>%aA*5|fWis9AIRm<gRPEgPvy~31!Goaq`24yLO;9fWyAG)fk?sq z{s0MZxdi87q0wSC#blS+136cG-ZdWl?REn#Nwu-ICcbPJyxrdM+i&0T+i%}--7ZM~ z<6pn^a+c0~H7Bw3dhk(7nY>akmsyr+7F<4WYk%7d8H47keZ5|B-83DA0=mknR|Os& z9?-=rL;5IVc;)f}=LDY~az5qDHMNjK3y!i;Y(E_}EL7Js!^%AA3*6_|L_%X_H6od6 zFzKd|jvHyYxK*AACNF+F96|&VOwJid$wF|r=@4x_Y2OF+)D&Bx1vg94_NlAooU)Al z@8GUeI%l+<4ykqkF+mMUwIWnTsK8YMevK>M(}D;cd=?0z0DI9Jxa0#hA2{-XN69#X zAl|OHetknso8|_r4WOcH&Imy=`SC1Jb^$4F8Wru(J&pq(cNOu(6tHX;grxiZx*sMg z(--{nQwc$j$3xL<%VKW4p~(*+Am@S)(Qwc;E!a{-sRH2#0ukPC8y16yHZj=kdeI0m z>!MN&c)wi$smS{SkNX|9GA_3p*09?1VcP&wUj*!8$+_ab@2IsRrHERpwbkY{6he#( zzPx|IaTGirJ0AOv^xJ*!rDtdNiJS~RO+?|DaEjLw(`mzmC~b8m#7>4S^BF9RL;+uJ z6_;hhb+cWyaKF99y9EVPjPulw&}mS0O0`8_3HngT0ahGtud%HV4AX_mg>W*(%n3(i zrTiqF_Tim=L*Xik!Poa2kd{WIf{|!{ZZOS7qYT^s1QZ%(JB+lVK11N1b>G4*39oe0 zGG%-WBD4!&4fMMvY$Df4()er&S(45g@OHgu=B)@G?ei=ZR0@uqfyV<0K&ll<1h`(Y ztyjb~A;v*4R(NZ}owW+`M2dpUa|`>IS}Pup10Np;LQL2!4o;a0%KC5kd60^9Dr+!E zh-#y~ZC7jOteTBVY`)(!_J?3wA}&kBvTj(Gi0iiE&tJY^i_zAN1rfkyS&%H7v9h)v zOH%%0juD@a9iRJ-EP}VjpQLCxN&|;dSnzSbLqza?yN;nXWMWnTz~!>xcDv!RANcX{ ziBzPCWfg=`jalc_bL3Ka$aC2(=MJJtun1m7rh8rG=*d8GtK`aJi8hT@4sl*B`N*rE z088gIAUaK}N9G&+%j(jO+Yqr$Q>mrskkdfeFz_`uQKkTLFOMEC(@3K1>r82rem!6s zO1y1JG`GF#;Tg5EsoW!*rbDFy2x7rnwifM!S#n&(XP?(JnAF*eG4=wDSRSX-`e_C$ zUQw8VK!Ui~5gG(x30SrTTUh$cWM{nyY78hr_ZEpSxRC~=)NRGKE{IF$fQueSZ!c`S zt;19ij_-m_@#n3oNlE=0M4I%(?&1qZ*Cl&7HPRlaIU^q#@pc1e>8i`4WW*RzSu+_( zOl)IR-uKG|Uv3w~5b^PN0L)q`*w3wax1!&>c|?LaA1eqYXMFqq13<ujl)k|cEBo({ z2aa-R+OS336)py6<p~$2mDGxm5`KK%k#4s)B>RB5GD^-mq&lIQCt0iQlZBM%N<qyg zDe1}~gs~bcfe~8r5Hq+is_5as2tE8mP_6fM0ME9T<2g~+A4=!meV7u%6#XnGn8k=f z7q=gFGYli}wtg$P81r_rPRurPHd?pci1vHLKzi5}^w1Sy4MS;%R-@6>Ds~{74x)v! zSmr>_v$LQ}veGt?zfCI6ke?=r6^}@>j-LG?(00t?s;dd8^(^~(@{2@9h^kkQAp%Q6 z2@xeFP-TQt5bZCj49*$3W^fd&mjyQh%94=QU@63G;U@Y`MpFO1-k6~y&0FLbIjE`M zNTrl;iwVmreUQzp6Zx0~lr5df<lrKLLzLlI3xjJ>l5tRuBS6^mfm#b95iZv&-rjDw z-LClfyknt=ZCg7EzLo<4dH_UoE4CbnKtudRL|E4aUzdc({eka4KJoeaiN~%RkyZuf zBjf)0iOWT0@iB#-LOeJ#GOe+d3%TI?_XpB{{I|bjSycYY#xE<S_ENN(&}B@$X_}6c zY1=~!ylgllQE|tTtTHg8#r?7OHX{%;;>!jj9!e3KB-HKiz5Xan2{q3Ypean@<?TI& zK`gUOltqy2h9MierDT+sT1*3ujwhGK_P4|oVFAp67fk>ZV+5E@uTPr8*RtN54U2hj z{DcvTW(Widw$iIMcL{@TD?o6%f!618OR*)7m_ko->VX^NXCpH6_*~i&O(?)KiEqv` zY*@Ek^fQp{0$OgUX+=gr<N~S{YtEWzlncVKqdxAq=Zq?Zyd+KF<zRvqOS!RsdL(TL zmOw~-26JLe5X~X9c8M*^f^~}>#}3n=?70AxG+D{MV-X#urWm09IoJ)ZxHcie+wBdH zheBbObpb%Q-*^1$pWpD8KYc|?$!2A$&}+|=P^<c!h1d^%ZT%f@iXvaP761C@chs5z zsePcnq=f6`Y79dE9r#e&al^HX?Qs;O|LZ^g-E#J9?NzD?MJ!;#vI5!JXjv=^&r^1q z#MLqcxwi-U_vl&#c<i~)Vgs4$YJ!1!?VzvXxxXykmg+(ry^Plxz$QKZ)DqYRogG?5 z?4b!Zbq_{(QMDkcMAWAJZK}`38E+_bG<X*|wZ4@b*izh#L05lll|W10?LUw8;cPE$ zn>94i(ohD9zG$qtFXhm=Sak2^lM#+eT|J|WzF^-;m3dYI7sdYC`aRQY8KnIQL`5he z;eB1OE(9tWkPMQ7K&+}Zt_Zmx=7LZQb`Xwi`j4amou-)9DnR`3wV~oI9T;;?WLMN- zyaa6sO3_k{n@MR|5kkU`j}PR12iMyB=_M`*i*8?z<G|&*fdQ1GAjYJ5dm_k3LC&>L z_O~@@;D@CvGc(q0>x_X$DTYYrOtPs!+s_{ZVOt{VwqRKU=%L%A5P)@Ev|3rxEQIzm zEpctT+0U<6lPrJv^6nH-`T?^^Gn><__o;5>CB1A8&PJ@{8SWBTwuf6E%H5dcekB+B zx{=^D#r?+@FXkJ(c)UO)VTu|Xf8nHZZ2JBw`c8(E+)o`_GO^gf2Gjd%WVC9*`-Z{> zq0!m~!7$%6$#DDpYClZE^n-Rm5=nmurkFEoE!GGpX+3wfu~0JncmF(Wi_y|>J>IPk z9z|RPxjgAV&Hzw4ms*&aoCF}S;2H>T9B^S^k&*Dxl90rzkU+pfgf$T!g~9m%i(pBB zY+=$Rc;!hGMFsNn8@ILSGokR*7Wy=)rYE>w^a$IdzBo%-w68~tc}qA-?pvG675l#9 zdc7$Zz=SyE$oSJQUv$zRA}TZPkB3UU+a+PMs>W$(gU6P#?89C|d$w$D(TqRQW@vqV z?4I$?2o*HSN8iBRt{eXH=U<SPrGXB_fk;hoW2dc>OWDokxsy-Y<aFrU)d^Nh=);v7 z0On-nEV&YMsNL{F#{WD798cF24J}h9YcEMfWcD$fnQGlzP7aJo;GogqL<}Y#{k>~3 z{H@&Vy)D6rx;jns=3vwwg>sH<OZ)s(1Ql(iGuo{F*`Ph3=>NVMe1@6FryuJ9&<9&x zw=fV`)gro^)PYZFyuI3j4+=TwJ)8tWwtghrTC4=Tg$0{LVAp4iOm18eP{0ZbHD5?d z5vwqkQb5H5W>*at;l9S8X|8cjnD*aO2N9E3deSMSdd8&16mYv<u`Me0i7{b6cI4x* z*^mxgk6e%z)zd%jcU<g7rBZQZoxgl}zu|h>5QDx8kA2s)>lnMcu@5z^T53sM!ahyA zwPOLGIB3Cg#<_{RjK?rtPINB{0b2_A^~)Pl2oW(Peduj46(k@88D<;~>Xk+d#tfR` zV-Iz(a#*Zo=q|PZM2Sd}01DWT9U&zrBR(a%$k23;`M$fEyPA(q#XjRzlC3xy@N+_3 z*96)Wd?wvWpUShT?x=@?vWUfjOHXE<MMmQCDRj%Sq@+wcIZ({p5o6SRflLY`b!}Gd zjDE7yKY@t*aB5i+l3|Fd`3Hu+-^55^3@!Ux!M5#bsW)y&>ZwmHgktPAJ!T6NjR%wW zW4J|^sJ-d3Y$yyoj*29##3dqBB4iR2BRR#Cuv9^k15^$$0bB_p3t0T{*EyENAw5s} zjEUFqMBBk>kn9t4qwVaQU@f35(SR=iM}=&xTf+6Kq~_0$PyG4URoAxVz;#>kc3rXB zfW5VTx66vn(SP)kR0wS(ObJHhpgcmFW~5zpuuY1LUf)}_T|BzH$j}gL6SqW26fEM{ zNWE-p16{cUNHlwAQNCFpG+9~PUPU$&iGDEwD$}qMS%9<<QrZy00!XkPiF&Fm%%RsG z*jCEZ3G?3c|1Z~4vxa>PwPqrr>g`AJZ`<1wDb7h_xNQJv4_x#4i_<j(w?kHjrYke; z=Pkwd9Ss&4LI+I-w=D=!U3on=T$&Et;3grMLy)EefI1VvXfUS#W@|UZB*+3run-pt zC#wb;u?N#jPcNk0<Viq;Y3p&8<F4C^%iBe{ge)K_3V{&<OGFJi3>7fK0;CeK9E6w; zAQG4hSd_A)rWoo5py0MR>{~kV2C&of@YD`U2k42Hy21smz_4mdKq(pfo>6nfUUuBB zH-*t`SA75e9bc<nh})*gKbJMy@UZ;=jKvO@V1SugiuUpiO=o?2YiUdvYe=wh8T3lv zC)WJ7SrRv&Ie$+S2#G>4UHtHlx7A3;MU&!ldIWTH;<Zo>wi!aBohWWozmGa}@9VlC z*+9)SXC2)or*I!R^L7MNK;=21qJyb?S>#-RL_;_^gluCl)^BqM2@w`lse0;G<=u}& zAr)kJr(F9*iuH_Y*KDnkp7y2Go`s-Wh}t8-6)2)>)5^ACY3tAs5h-?>j3@iFLrNTR ziL45!=5_Enh+}3#j`mcMh>@U-L6QcX9N)Wm9-vR$I>oY!03j~;^7SkJ`uD%$&tKoM z212k4fw`hEW6zAw$ASC4<H!d%Yl3mTF8EBq<HrZ8@$JZ)lDgM_PMSWGs(oG3jZQLp zWsesXVykRNP1y&ZHg{P`U6(`|kB2_L>$2caU%wy`;ksCQ)9r$<?{Dh4_qTY*$f*pQ zt03pn^9I`U>+x$H0xCd|ih!!h#|eIOqH494dbaL5^6{v=Q)p5_l0KMde^BcSS$GUq z+&(DSQ?Hzoxj&P(ez4v%7-c0zo#?XdbbWQ|!$G|0rK77Sv={v(I%FLFXJ}+^F?dW$ zhmVB1|6b{^+<gLVN1I|)kw#29cyT&-F<{_ccgWGiKdO1Jrgv8^eCefITWfh=L=ywG z13*~7wXGvVS8Qr7T^$F()4?|n5k)kFL@Y`iw)@r(iUFwzfqTy{LZ=Bo@C<x=&D)6~ z;Qe;PzyIwo`0L+(#h<>sVO;`J(3VmYk_z_B*!GO=zT<J<k&le!*ijPjDHV5{oYxAK z6;l|(Qnwjy&={d-yd3#9)3^~~LflI?%}Bdy{qIc8ge6EJB5j(@7=vQgmPoj5S6o-6 zI5RUY>kaSM3sUoY*gq*Pi(Q&J+bPUAa>bGqA_GS{qDh9|WcB(z36CvXqZ*&M$b+kR z3e%Z<F9IZW+gaSUt)0+ra#A`9DrU@A``1plQbkj+-lW<tmRl&Ll^=0Qx_W5|uYwn+ zHqAEEKM<dtqsE7JT?WjgGY0&Ofo*j(YT;;-&i3KfzRDDhk|F>_2U#HjA*tCym{Dui ze`PVq=Yhw5fLU-96>EHcej?}G<Gg|iSk|;)+cu;nxpkH1(r@c(8Se>*roQZ@5>Ha& z+L&`DBDq{Hh(yR)kV{2a7agTk=^lk<dTN`7v4uPbw~!l1&OE?2vuR$4%Vopg{`xEa z+u#0zKmYQM%eJVOA+&O~Kq#Y9#YP$!qQWvlg<!i~@%H5n?~jZh9}iW$73JboN{~R4 zc7gl9qvxO75rnxxSZpM~5Coy-r5+)whI4Cudv~cvviX3vWxDZE#M!o9bSoqQ>zXtV zfX1r1ikPV=YBDkOcgmIZyS2lOS<Lf43^0L)_^e5P4~vLv*#LcDOEasZUx00X#qNj^ zLXuh`0Z)GY(Pyc+Kmzx5Nedwy<`s8}+U*vi(rOzniI}=~+wYi#p2u_KLquQX1)O{F z@q(YA5Ez@34g-cjs3HVq)5n46Q-@YcM(7=h!P~mxcDVoqb&i?7Az44qOn?+UOhP~v z!Esc4`~IVk19HxIJRZ2;ADST-+5<$r0$7#>+qz-9D3o$p7A&iB;v$WfWC%URda;y@ z$9^E^f@N9o%P+s+dVA|r;aUo?q@E+7Qe<0K_TiEt&%3b5#ct6!1bn~j^BOgKkMPTv zcl^iS|BAo-`UP*-RT+3L)`}ru(qVCmz`9h_O`%trD?;9|t~Xq62OdR#U#=AeKp{p6 zrZ;GqFBvVJOuhh;KyAO1Vf<?CRw)G_0ZSNj3=ZZl)z4%|n)RY%YHfo)&#ArqQA1-( zF`Bc%HxLMqqTjJt#C+Zhwq*eeaFmQ(8TVad(_+*F<yfVs9WqH5aYd;J%-D~Ny)d!} z9=YISFM6m#M*ry@cNmpX=q-?sfeT1nOGgS7*3?t7@+P&^lN6QO3b(KKlSVJh2!rO^ z1wNvylNgelK8ai9oJ&eqRzIZ(KUe=UclST#){cj8JTTo_>2l^m)YDOHTEA@@Zf|eM zwcset(|_ng6qM5Y`T0YU&qOG-;`8$ppZ8C!>(U2!rF#I}wBIDvR2il$1&b)>-)^9F zS@py}cI2E*TCAYxQVMd*FEnV#^?JpZFYlv76igOs7R%=gVV;>VP-}~wo1L8GH5o53 z0qQ*fE}QO`|Lxa5Ss<paH=FHM*r`WFu*3*i7Q>cl3Q&mww<Y0yTku$v!~;XEbIlN0 z#|rJV2A$fKrbn<{`~B|3J-tsAH_+5ITMycFuEId7uSkXpQvy&sz=wo4^x0T)Y=#QX z#VUtr!Z7t1lw7bZ32TbRY@}}XX^Z!Sif9|Q`%&@ZzN7HJ@XzIkYC@g10m74Qy%Upq zOYKt!0#YsoAw+}_QMux<z)S6K!Z_K&Al)!e!CU>Ti7qI@B^|jvHch*2v2TY0O+V;! zL(h{$bqsFiA)zl7yb_AeiC{8%<Y3%<fpk89E5&sMD%kfOF-7eAfsfBm6IKx9v1{x% z3%>pM2F^$4%N@s|vCvCA>F>S4hz7kUN_SZ*1xIg{d>pu3E~r)W>q{wJpj26J{xNiH z8-UebHXcZJR}zW)izmh5_|Nd%1)Ny$@JYO_gx0_3m#<&&*I)mPFK=%qY@zvL3Tj|V zF`!5_BUyl?1X(J|8c~jbya2ZZTq00&weL4rUP851m@y&EY&OjXPADsl{8l(e`<zEk zl}utFG;2Kh4qBY*P=~T3M`DKHs!cb|`F1XzUW8`SavM<FOs#(}UG^*{{?<SHD1!T= z*muLzCD(YD!eUE;;Isl>%c4JP%7&RrX-HB_Eyx69Gx>yQ0hdcK6_XRI*wkN|Y)?+$ zPjRv&Cu$MbcTOU$7w<ou$YF?C+~CVwRYYFK3^g4%rV@xI4q&yue=%J{$)(e2zkUCX z$FA{P*XtDm;BjOu7KE9P2lBBSwuwzk&Tdjm9e%<tV}aXFo`QigbW(mC*<hmwZpXE& z$#TxtYc|slIwVBRDYkyh>iG^acAIcFcQr^V`N+4Hdh|?%q*r?xnGISXK@16h`uYog z{pA;2wpFdG7Ga)qwT*<B#M<;Dp>gtUsFnhj1pO-tmZ-0Uent$4QG27(qpC29G>)Q7 zq<P=YR%WnCZhQQ>3&R;!Z}0weDTIDy+YbQh!Yc)@44F0>5tv%o4NZ1zq0=y1<S7rJ zvvVgeydDr$#-U87L3m$(b0cA#<5I_Gkh<Z4jgBL2x@h=qA|S(LtiZA?c7u)kRU-8k zfq7Qnk$uo6FtlM|uisP;PNIXYpG^GZ?EgP=>t3B3a#9OI!5(AKd2$Q3>&ft0IT!5v zf&IuRrQ*mtj^n_#uEtvf^5cQ9>7KaBr3C~q>9C8)6ovYLC_pk#TL?v+Gf)cBq1^bz z<^fd%pN~6;2=8z22r+{99iNZ8{!Sra+b-C)6(Wqw<!T39#pmM_g&FI1(Y8j|8G(2P zzf5uodd>jwdw0K37u6}KCm&dr3;y)}1;4z%;bPB8Q^0-ycE{t;_VWGxitBZ8Yc_jP z!k`s(5tSX9ZT10SR4%AQU8u&Mj_f1CU6x^owD>lV=Blz;j!$b32y`t93fkS8ULv&A zDIz5S%ito+H#41xT7!`ZXWu57vGjDpx1r~EgsD0sALw)1229mKA2AQLQ6l?g^ts^a zrt~LMtr^FmC4Wr1@(6AL&UT12aK)L#76?|#s0cKoAc+1&NTWaqLk2l-1m-2wls+`w z`flRq02jf1!5uu(rmZfbESHK}ANYLeU&oO_A!r6))jlkjYACLXWSV~P7#fN*{OtP< zVNIFc))n{rr}E_tM$$Y44PRC(BSt%r?cpxfcJs|eXopI)kck+huF7Imt8vkn<o>ur zf-3S_F2Q&p#}t=)ER4IA27;;c0HTqXbU>Vt;)1knNNL5gM0|OF!=L~36<@zxal5Uk z9I*em<J*q||M=$*>_;}QyRK7X7*^v6qGHtu*T#hGnpxenl&Wy-!lo;biT@`jsH_mi zq`$R}=SmeWR!rz=&crkd+&(XCw@c8{{F@m703ZNKL_t)|P=6t(%!Kiz20!bP(LUpa zqH+`h;tl{YAn)*h{G?d!Rr=ruw$@{)9|?lQw)YK<qh>FC3rK91*yi>tIjhkpYHQG@ zp(!MlD-!n|zX+ZpsV9E3EoR9{cb~cdI)53OQZ&Ip9FUl3_OOrhPA2V86J^8@yOjC< z$jCpwqgIXU-uE4)GE&rRfYu_ETGiofy*?2kn?a<JX8YI24h%Xy86%LC!T?)JS5-<6 zhp23hF;c*awCS`>ppT$ZZG7H!g-Zeo%Wxeg8@xpmeYuNiY&)87z$K{AKv5$Q$PSwn z7c9#S+xCWSyXwkuN%+gJU-6f(U-5R?5Ch@kW5+-K@g4v5k8k++P_$Oa70YtRvIM-{ zmU-0Uh*X7vqbTB9%s;@)2&l+Gt-86?9<U*&mFO@#+2Iue=nPCbkDi@6)3>bSf>1qv z>!E`k+)XAP+l;_wJj0~qQR+U3MoyON=Nt|4NG!pN%TS!|h34q=Q})5+<7fv!8&0&0 zv|wb%k`FM~9*z;0Wt@h!q81(ArDegoEEc8IOebvkVtM+4=OI!UYO}U>B69uyDT&tE z1ig5O&K4C%2Ers~6}RV}qs*Br9``$b`~DqARscjWCr`FPTQ!pH<Jb|2aFh&`jH4XL zM{a=bK8;m#N$PZ&Y5^nBU?b#Y#;P*Z*+@&nX~?Mo|FB0Rgpn}BLm2Y7e_9Gm0%$cx zgB4c6k&<QT_M5%C9n|f6m<NUW7rK98#pUvjb^D5Cy<kZZ>q>aPUUA)41OSiE2mbM& zzu|xWkALF(k9$x5&6)9e*O&k8nucnZZ60ESy<7!*X6#3`OoUbuX`56-Mai0S#63xw zo#Jg=D1itI1&x_Ib;H1{aiLyb)BHSjS$OExSL`z~Hw$Q6f@VAR1gp>vjprQA@y~~I zqCN$2Oz_>l{}NAfrU{}uX=Yv=9%<<62R@icRctvQ$VFFWA!n@XrqF^g-n>$Wt+iWD z9g(H~GXtGi6R$Y)vmAIFhSWLkXR)w9B7C1U&|qWz(ba*ZP(?Oi1UHbT<+tTy2bKkK z(-Jrz%B>d>AOoMD`jeD$Xh?{?kWJ=EGQb;wRs}*3jh?pIH@l%|Y(SU=N6wwe(CEVx zn%&q0O`W)|iw+ET{dqzRHmgZ)H%`<44=&foOKInA$xzR=&=!!=Wa6>{VFgP<sX(ry z1=^2{AK$*=KmX@{;m5bn?qT4nG$?hFI*$Q2*|LgUiXF6jso1j~0NK{BF{rnskpB1j zS>;i|^cQ8Q8KVuJneZ|XvCXCcIzdoPh|}^aqs}85j3mWqYr$ag^fbNXvuA=V&@))| zcJ@?Kzldk#$_&HoH0Bo*uyFvKlAFj;pPiP503@`a$;O=%n9MPv*637mhOjDmyzC($ zMmBpR`i|4%va5PwEj2a_agTjMEI$c&d$AE1Wf)^ls`t0oX+j{+Na&{RCO0h%L|9_P zx+KfZYf@YNR|TL5q-a<q?Di!99F<lZqprBxOI2-0zt#=wy5V-cVSgOhkHge}!<<A^ zQCTa6oU@sT(A$qaXTXM&m8;HclJ?Tux}b6}AjM%KB~=p6#-N~Zjb2*vn1jpgs1s-O zX$L?lV$$5I=xhE2k*+IQ5*`QRkt^<xjBh{gxIYfmT*milGoo!>R2|s!3RL=hR7Nh) zzj9U0g=rHix6eBu7XfoYsTq6T`z3TvpCUI12u=_*X&b$K9jbpAiB{u|3a~KFAcG~@ zQ-Ii6r!}rKy6s3$CKe#Jjg~mMd~1POrmRdk|32Lxa2}I~albe5mP<bF$o6&-x^;Vk zcv~m+AjlA-MGG_9qtd41)Owv5?L%*Fw>kBv3llI%wbb{V0aYT31hBONley$4A+O!= z)59=~W<vs>8A~S`tiY`Rtvn~+PPmgarPxb95!N7*&SVeW{iv%w>JGnlD0Xm)t)EIM zNNF{sn7)jc>jjs~1rSjq46`AxMOTOzZmxaT{dKFA#pX78I2Ajn2BcMnNCI4n<pPLt z3ERM3<t76LZll1^cGh!;+*Eh9>WY%(11T1Supop5BrERs6+eFb0M&?ZzkSEPA3YqD zBK43@y+MN!d|J6)!4_KDTY*}7E@b=st3cP(N3k_+?g#e#@?#<b!E!G~2|8=!&oSsT zcqO?13`b_79@rVA1-;k{=KhRUUFe|^x_V}w(6<rSDb&{gtVB<<EpmfJq4TI<4E@C7 z>wU`|2uK4PB+d#sRwo10*>Z@)%qWZmKw_AF5P7kKAHzWEW(!YfWe4YgID8Xc=z4p8 zJ->>!nH1v9tU%<`iGBPSjr}-Df6$UC)7qi6*s!V?zPeU+uDaHH)-LKHpwp1DX$jJz zFT!ygsHGxY#|_;ol9U!}8=@x3+JN=(c;Gm8KolC$erK+%yM78-mW0E2j@`^<K_szZ zy{&|$ehhmo*pPG)$<#HH``&cbTTtu6<j)B}L@5dX`i=3QSHXT+@cI3YoSiC-gUu4E zN?}XE#tyW~%H9K48(xY5Qi}$eTDC!9Js|goilw+}D*!uOywHU_9^4O+=@rt9rtL^8 z=PBp`5F9%oxE5BN`Hby=X{*2x#!#@`)0!!%zni1b>i6JtEk&kho7~{IP4LGiSDthW zKF>p(BeMPK(dK=LnbjrM({G0Gp@TbE`{p*d5;s`tr{X++9NqxTlFD<qBzgX~(9>35 zUPyrD>_hdhztixG4<>Pw)F)Ys!$vLZf&|i=#ngD0%LOSdIQAVPpFQ?j(_gB+bZu}L zy2+**(YM$`U28?I#h{Z}jX_r0rWh3i9s<^NQDf4&VOf^mS_u~$7B(-CrrUfl<FZ|_ z@5k`xhf_|Y$z0KKW$xSRK_K+}LCe5ysS3{4PgG4jrTP#qz(0RGa7m2(_O6Bkc7hxt zq;)|E3`9b%1%;D^lFm4KvCplRigFw%Tx{?eI<D?0j9dm?xev2x4g>)`X9YezM`!U9 z%@>Z)xih6{)rbM`GR*}#L?*@H6o2X!U<X}3ff-Jl0GZHbH0Ry)v@JLR)C5G8^Ai1Z z+z}xi`;N=yijZg$P&8*81Vd<H`u;ZU^wVrPB^HLpY2juy7PkT!4^_Wy{L4&ZZz(vf z5r1Y9^kJqBsYVkfOrFZUUe+5daoaYX#M{jsqiYLf9f236;QslEd-=2y6sUE~MuH{F zaF?nwSgfRFonG(9Lrd9m03rxBVUIB>9cNjvT`oh{%~kExrfu)5%3N^J0j?EsN&OIt z6i^)jNuUx{=^kjBgfZ<ir^!k(+wgmj+5Yb>;fxvg{S)7QELcOt+j3FJ2?c<Gumrq) zReiwavLdcY2ZEv=iDHa^#*i#UhkMoH)FY{WAVlLK#0V7bF2J4x;s?nmW`w+Ok56GJ zG>t1PUaWymedeV+iCvpkg6%IaL~4C_7=Ucs)w>GRJF2`gP<*}wJqc{5?ZAl&A}@d8 znctZ9`$J#!W$EQlD}5Gwn6l~5MV|iTo|6~jf|wQys9*ysG<rz|G577koIEu5D&6Jk z1^!b$c<bpL8_=i1_+g@L0O;f&*Xk-FgrqN<MLWx?U;J?#Y6Oa*_vHX#yIinct{{xQ z{ju-L4z%D;X4d%$jUi;t8J{0_Gwzh0GtjDtV*ZQ3N?X?Xiv?&@4U2fY-LNK&7>j|h z?>l~c{Lp`Hshw@#W+WN~l|Z35nW;dCjr(sF(H@<~9lGktI(_%zZy!2oG@F1+829~w z`~8kBM69-jh%w-@E%?)y8{WU%+~HVJ%@SLxbd5#MZR^4+9Fl;LA`lWN>T|^s013#) zuFw{@zkhW@k6V)F|Lh^6r-*xD8O}iRe~#O9O=pL6<?CQAdXo@Mi?8`7X_^toxb}8l zH#wNC@G=FsJbUK-R>V0Q>~BkA`ts<26h34#xG1VFWT4^kZ#z;1LsRvaj8A$W3ls5D zOX0Tsda<0r^o5Zlop>8CPUg?P1AbB?(usd(eVL)WV+=^FL(SvJ;KCih6k@{VdckTv zd&$L^dwMHTP@TD$!Vn?!SwLmR{eH*e@j%HL<v4J=z2SP%T)6%580<MK_4W2s>+0ii zM~aF7!?q#?U`;D-*9%hA(22)GVH!s+D7E6-_wQh4Y}=-BP}facvKSzR+$xN$cO9-e zLOAu5GSPNDH__)eG->ORGd}JQY-#N#GL15?02c&}gHa8?9hxOqi$7<ZnW*0(Qqwd5 zY%NSe#F`dFN{9%!L$J3Sqh&Wbv52^nU);`|rVH)Fm^fLSUlq_qb841-?UVnf_WVHV zbAt}=qzPC*{haXLR{tIgKg*kC&Sn^?STY%-eo_k|g_ux_noeTdPZMm=HT2`nS*Apv z<Sf%+fCh+7u{Baro1;#gT8o}~^;4JDBfwwzf7{<nL(AQ7`Dat`6m2gvM)W*oXj_is z$humB##)OAmSx4dZKy>j)pFj?TDjjb=MKAFxqwSS$p-*cjzz1m7E7OLEtQC%?t6Fn zg{&r@d<4{-Q1Xg>+pw+5mcL$ZNO3{AGVb>WK0ZEizu%E_R*}}aBCX1x4>a6|XRY>- zQ`4zj8p%gaN<RQ1&eethRH?WhJ3ehVnUVr#u`|AZ|ADjwT&}CeUR5@Ub+J`z?Nt)j ziVy;}ZPD0qAqXkJmV^)y09M^b$%kq>jPA-b!OQwkv9~oc|BiIBHj4${>PyQeza68L zCMA{$D?TW`%2Z%TC7V_2)}tjFX&Vt{m*#2xO{egc&^96VT=C>-(BFytG~($i7RZxi zSdh}XnzFA#f^;fLVHaW{<FsVfRfpAlJ$$oP?ep79-*W-_Auur7W5eKYWICw@@j?jE zs6PHS$5T+1rvwd^SCbs;-_O<~wuiULY8Bg6`~OW0?3uIbAFBQPY!PZ~R9?@VlO9oJ zYe8m&6tSeMhDdA+mL=i3ZK$_`mA9U(RB|!ZVM~6Ah*2MweLryQ2Z%nfZ5!U--mtE^ zUfi}7EQI~AxN8<j)*O13&}z&nafONO-JvKhm04c9t0uYX9OTlT{PwbC&iLH#ngGoS zfpo85m_RY&D+J5BDt{o`L|ioftd?TG0|TazL}=a)%UlqEYs9iB8a+lu(X-7ICZH6} zw?AXdmB_a_;;g)OkPprf_c^*SO>4d$oI3^7VqU*dz#5b%7)?jep26V<AcyXDP!k!s zhMhZU@Z1WT2HsOBgZrBVo{~K}8WBN?DfazqdlA?hT22-m5ug_RvfAnjP5H*?$n07Q z*!Xu|<K3q2zBTwM`s;Z<V~qVd45Z(<Q+wd4E;1=983d-J6Y);_HC_Foo_<Y;)ti%< z@vq;0Lkt?}olC)S?D)Jt>>%KNE9!wa<i2D2tB9`4MO%s6?S{*`A;f6rB2D`F<WH-_ zbZ@SCiyAJ1rjs|O-jQ?vIn%PDRBZvgv{g(Hl2S_uu7Fgx-t*IO>1Ad=(1^}Fm1kg^ zYo<kjy;ca{l>|f=H6wv=RL1v@2SSXv-7GJ$l&*+m7Cdss$9>11D+Cd>vFc2kO@Sa) zbfJ*~(i*Xr1r&{3ZGkou{M3S9d)4{$c+II%)Y>9CaS)pJ#6^m=AydnQXhAZAd!Z&O zjsQglY6FzWq~DV+_f}2D-0jlPGX#Jve?vI*3ZRGh^xK-|s^>IyX!H5><J-4!ESL@( z2t##rG7@xfm<VEw*Z@l=aUXC?e-Q!KGIRjUv&~WzE;7oO^KJ9&bdo35n+>sKz#*Tu z3g<<Gj5L{GMjY+~C}qEc99Fwl?8h;=<k>2uo*dNXC;q^+10a&-0&MGw%eG=!G%SL- zcBNiRqTP439s97zlmZmZ*lgRHF`r9OAI7>NSliOzAZ@eJDlAnx>UO5ZR)NqRcr547 zw!QpqlI^6W@`B1l;-tfjns<b|z7X*eaM@P8eYqO5KnYPS%C<YIV9&tE&iL1l1K&S0 z_RK>)81ysjdv^k830ScLF<`rFDCOuxq*_OwCA*kA73_HDAa@vw3|r`=r}sVgG-#*s zxda-Kb$$Ix7CUA){Q*YJ8IKAp<E8Kar#4@t5Bpjx(*F6}1Vv)9Le%j*HdU?6;-(QS z;<j*hAXX64_uu|$p%Y;UStvN6gPl(_Zp+phC<V1nJ#aNahr%>@tl@+Q;<&FNw56CF zN>83>a<ImkY~lked<>YJKTz==0Y;#T*hnj;)T)9G)kMolY&Vk#$naWC+@ZYw+0+v# zOj+!(@Kgm!Cd;OO^qB}5)hDKei>>?i{Q(g076u_@T@pAkN>P1+?tcYrvh2mRFc3w! zMT4(W6QEGg$guwTj|3V|1@e38E~SxPd(N=NGtSX1YN{|kkB71j*A15t5SA5jS->IT zQGm=9`=j7^9Qe5J_~-Wr{_*{e&*K1y5u%wtjlk?d#S{o}iCCjn0bCayB$_a&(U@z| z7&dkh;6o5LBFcDBI=uX8SZcjIxF7J;W7C5T$U7t?%=!ZAdwX_U83TogH|~gW3F&!| zHD33w*PcRI;W82IpqLZ1-QGd;xk!)C51nosb;VcEZP>vgw&t@<ft@ThB`tw#0dq1( zmj#EKUfoYTdztQ3RZZ6VI@RTwbTUqFI$iX$)_+uJ?ZEJKc<$cz;qWptO^BwzOU|S- zC@W0|-qLrqyiYp+2;A4A4Vuzfb0F0g9EX8Z2MBaoHr#HvPV!ljCc$p&YA<Qk47y{- z{qxfvY5|}^rDz`eCWuK%<EPr5d5IAzL<3i7=qYtcs#_-+k=Em?yjI{zsMQ9zG;7a7 zAPAdXIV{*|!)IL)j(`;bAp?~&9y#N9+_B#u__*Kk&u>5QuOFWfF4$J3CfCtmpG06{ zl5`BJbs!K&gsOp~wQ>);oelvWsY2WjfbsjuL_KzukOyqIkkS5EYXO`kcu<C%?a?JM zlVD0*@=OLgA=n1H$y#X%Zq_B!grA-ZVK*Ec^N<9t+KaIun+>(;k!w3iD{C-CQdL^R zA;lPRyIpnSoR$IC1WrG2%WcDJ%rBmECa3?QOv(qhyOjxrEFw?P5U*xa6te#3fDtL( zCh!f<9c>S<0UUah7L%l^T8(>Y7D7NWU$~FZ9%r?SQ+F2W7y`C+(<CBGBZ3IFbwkMo zmu1D*FJG~)3-<ki{W#QgV|XpLGC$c2AVdpZwFvU2Kob$=*qgs0n#ZG62rM3}EzXF2 zc3{%eZ9n0JXx`a`5D?M@>G}&~`vu>5!N+$(jG73{wcv5=$d4U|(UO0B?)Z2V1QZ3% zM7!m}PgqeTQ*dh2nKaLS45aBpET|l((As`6G+f&}(VS*q@}eqe1HUHj355RQhrT{< z$o*yy7U#empqg>W$QjGhqt@XvA9Uy+CNdTvKb_o?VD`s!LlBUbZNp`|n$BHgm~{6Y zK&7Jc-Vsv5wJYo^YkyyB26KUM0okpoMhV3$OQ%m&YY7-V>s4OMv0vDohKyI}iMrBG z^K%+7x`xZG21$V#n!*ER(HW6dvD^zNXvrRvRs$5Y(m6=?)4K5(sy`AS#H8MEE3?}J z#vRYbeHFUz2V&e2Lc-DrvAI};v<hGz`vd7Sg5`?+amR1pzT>e!^bj(GQgAwr0G+T? z)bc-?E<>tVWO<k>cYipJ9lG?}t~G0l#U5+0mtu{s&!TRWk`S?6-jKE%kS=EYB2ZBx zQ!RueM-*OA!9WyH&`NSYc8C;QDkH>zt;Mwyoh3Z|p$@?&cVVbvm@Qr{2m)(fMJ4_B zY^~2&CDBjjP2}XiG&}|q$ir)7!W73&u0o)RKj7`UnAjAvS;@t+$(ibO`qwAjFHIyp za+O-!q@@rdC~5|KOi3e)Y%tV!(?Fk0Hw_`z0SjqyUn9KJKF=@=H=RXCV(v6oS~mab zq(ztR=YJvu(ri?rr$s7F-UBbNm_BrOLPrV~rm-p7%zFJ~FID>;G(%6Vwb(WUB9wL@ zkft8B*lyuQtz}ek48W?9(gebiSNj};VYh(Wbwh{&Z*Mo;ZZ|9`;>V8<6x%qoGPaR! z+IP^@aM2DSAE?-T_pKyu+cIwR1evRS^k^`0m<f3u(n50!CLmDU5Z7N2(>r3knuyE# z?poEANP-YoVAa2GDFq>J$n^n!WR%Lb>Ql=0`Q@Lt<<w_LUPlsIIUgDY0e$^8c$tLP z%P3!Z(<zb4i-6>1PG$EdIG7E+(CYc%PJrfkb7v2ptFM!9V~S`yMT2!5o=Y3HA$;l@ ze~Us6G2-*{?&7#~y%AGVyJ;O!x-n=une6tPdS=lRm?^0Iv_mCkyYARc`a#FMX!3=q zwts_Mb1u2t0WqJ<CrMXVWVLmT#-gp;f*W5)P-rwMbI=lfTM~pfOIIb+^jGAnZByu$ zV`J6zDxiJFgT$*MnWYDPE-CgKu4Ob{E>~=q4NFS6|MFFJ2*O=G2Q-1wiV&ir*v!f+ z_P<jfg9U=HBE@Ruo><c%5@g}7f_Yy|qhg~ch}Mb5)Iy;{Lfqc4Y+sP#1t~6;K*ly3 zu$P}Sn*gGREQN%S7Dz}#k0C&*{6~x8bEL%cqOW;ACc&71So?TBzh6_JEWLcW;g|`p zoW&me`s!9bue^v}>4Hwlf72c54i1O<rWaU4nqWD$9wtE&Hz;Yl^M<Kz;+$mMyq4q& zXsMf)WSMqxX5Bl%L{|&8jY7BCqQ^Cf$SWh@Gxekc7+#A6-1gd)J1)tFXVsy&eR+%l z+qzm%2prZablI@C$hP$#i=db?ksPLryJeUhZ9)df(WcumMy&v>2V@x=f*AF4UzdbG z{qhyJ>&+Z^O*|uga0#p2;PMPBYj)t}dbRJ>QiM-2Dssvf94DysT)Oad=bUE))bkf( zx?sD0!LnWvQzJ-O<T+;Y&eVy30Fzf|QSnep)PW}B&KJBAiFSMQkTA}{p&kJ7>fCS< z2O|@Jo+!cNSC}#0bRzgp>qGbZ()nk0GE1UY+Si}_caDAOs|F!Ft!sVDGDJ#15<&O4 zS7ll22OeTaOErnAm?|p}A*P7!a#5+N4Y1g)&J=IOCcr?4UuvxJNC%S14*cpECpY)A zfCL+Y$W$iHJE^`ubur<5Ru5X9VSq|ZQzUF#K#ZO#NDjm>T8q%=$<1-s)lDjrQkyS& zYoKMB4G`Us2%xTDYZ?kRz=c|}wb#F0Z@6B`0z>EY8&5*eDywRxCJY3^y2P$C@ItR4 z0N{SGdL=_2wDu-;_L=+r?V!*`q;$o)yd#BWVA;kSs`#u(ph^G-tHKlt(+)+VpzGvX z-7Y`O-!r|okb8zE^AMr2&0_S=a?gTz(Tz-Oy;s7a`A3kcIhgPJGm7n0EYPbLeJ=e0 z`u&2(hxSg408CZI`G9KM!xU5MGmtj%PRoLr2DqS^W!Cj#R@I2h^@7{m8@_ybM@$N> z*!SHAi89t8_T%U_q4xESm@P!;w9a$Efc;B&Iu%cJK>t4=Zw$f|?kL?U7aF9=B%MYF z4gtXs+QFZk7R&9GMU5caZY4G&O<VU!Td6wdUz><dKnXLANRJE?h#jb{Z7x+&>?4wW zggnYg8QCh3YKV8VK#~RkwJM+uWPz&L44pD`x`}9pX2R)1ChUfVim0<v%{tu>Q>nLZ zaBP9J1aoCFxJElHW2Y-skR1ZjHp=7vcWqrixLoS5XG7G6SZ|+?34j>n;^JrdxM23# zPm2zblam#$-}l)|^u)G+kfUe035GXe5=Nxki;7`x{pl$f<f$^EpZ_`O`^TpdeQ5+o zax;wR>3_Lgux%UGb;Yvi+G^caEXx7{kdGaY#~qLR1G&^L-bkGlpo6cP^N^e|I=9T# zU8f<S@5ek5Ri*$(4}NfGz=T=qDnTQ^QiD-e9&$@-b-DqgDFv;>_Vy}r6KOrpMx+!$ zG{IIdQ(Pq2DrlZZj6LyK(LfxjpA@D^ow`hrFkl#w2JcRoP%WrqrX-Ui|N4!|voR<D zGg#6Sa$nt9MB^n43lNsR*3xREO}J&aK&2vBNGb6ElE$besdZhj7gbA^QeAkd%xXNF zXzLuAoNx!7c--hr)m2(NMarGkkmq=f*UPH5+8d5Y>Ga?BJ$EQ4jgck0W!H<L{p47D zIdnPA2ZUZ|ea<icOMeZJ{_~&z!u6^WO*T*k5#hocF58Oh^@8i|X6WyPWwjSSDCPBj z*OZ#wP*-FFE<Xup(J&1a4b>h58AUnoAbFZI%hb`&d1`Y){Yf+2d0EX4s`#)@18&ro zF5#5UK~&UPF_F&@2?c|GcIvT{LyMelq^@|>p%<KCq^Hq!27l;Z_K-2QP>|Y{ge}<? zZNlHya;8oM0b-#gN)tAMQ&Vrc>Y!I3XH0r;)!L^Xh838Gq*RE0w?7pGFez;?T2(O+ z_%?~;0;v^Js=6dg(ez>wEHOZ~1zZ-Chwknx%dD`(x%WON0gXqXl!|gx+r(f5p$NGb zybWvVB|;lCZ;r$VPy}*@BOL~}6&M?Il^7<V`<)m0{I<IglGihfXBp=C(~+MUYh0C- zKK31ZtyUuHgS!~Ze!X1q{{96iDIGYMijaVX0!q<P47U2SG1&(M(ITC5?$XTT$f!k2 zF(m{w5vI&oPI7?6^LW+s)4dFm=3&k7evi$>$dA)LJedYSCB2Pxr$49P3u#}fw4h`y zlcKpzVaCRM4@nVOcE~BLQ(1iE=q|N^GDGYzP+jd+bN*>n#cWBohA1PD1#X%Y*4BT4 z2*<H&eDr>xvTg^qZBvdwjP`=pj@=sPr1a{jsRGYHRhrQ`ILEYkybfbT%=H`4Lr3gq zPzP#JjzKjGuvCNqP0?*@XB)UQy+il=dj=(q1f6~Z8zuSJ4?I41NNoewVf2v``$)u3 z_}nDlmH5Hbe@q0hW%8W>03ZNKL_t)F4FRrUxWTam+n{`wiTiwkF;}89f_Q?n&4WcR zHj_>r#`K+$n{kP^7Sqg27BL<G1+_rNpjhn7cEOh~U-9Mr3oe&ShfRh^SQw~1MV8dd z-2)lg7o}^kBOfZ9VMeWLXKg2a+cQfYxq>g17%~%t{3Srse&0`8PqN@<Kjucg893z_ zVlR)`;?eJqyHRwbeE|i#JWy)EvTS{zoJ+=WWYY}<EbFR97z29LQn2+EUF}3-{rjUu zjui-uLL`i@U%w#5gd-R1`vVjRrKpEMd4a2WWK^)VEh|C*J`Fl@e`rAI?Rvxe`#Y}J z4QtYzK4I>MQ#+)6a45V<h5RV2SuW-Y*7R_8ZAJ$80pSOPTNTlge7VbVYpKX3_rH#O zAm<%iGfLJ>#>}FjBSt|Ydfk4swyC|Kn)#qLec2D(zx@E)#nZ^deCq4v={ELGL7CY7 z<FWEDI68A7IQFIACWQ_e9mb(PTRDez5KVKYDM2XE>1RNX>GQdcK6U#^V_^SPT2`~Y zih9Pcmn+_GH{5Pl%be4fqSlHO)RtO`YTA!uM=1)2j4>LPS|6F(bL$JFg+1h~w*!rG zT)I@3T=1vNLzr`xOD|P%k_N*m{^jY`5=XOXYp3SeLr;@wX*&!dHgAARa3A+O?stp0 ziV@Yk`!Mmzvg{ott^?EpS<~16v=yJlt+f?gYYX&6$bII}OfW>XQ<$3hs`)k=K=W=d z|B*A&l6vl-SePaZK+%4;u8?%YFE-~IvAFC2nvrWSt5^r8tQ9%m5k3QCIk2Qf_x;c{ zqy~Rj3Uw){Md7Pl4>0fGdZ6YVwPu7wot+Sz&`jtg7$qO187y!%Accr10i=l|z4f#> zzd1{9_W#W?Jjbn+pOo3$lYl%eXe2VxX^=`jgmrpJhu7u&nfHl*c&$g6UVd_hu2+Kw zJ229=ZMbfmB7y_qdb!|sQ_uv+#Z*~>?PK4&A3j^aMTilyq)B64>;@F;sSB%Ht+v%* zFUw_?lg{^dpLBbL(-;EEgs7r(stdgOk6a9ubS<?h$B|4z+y0(fs(pdcZcpjifO-l? z#5MFm=ul3Mc&Jhfwsq;KwbmBt&l$lWEXL?hDWcSD!_|Zku6EmN7|Zo?=?_a=_caT4 zEd>`MP)Jz0A{pE?#^AIGx`imFh3^AccOZH&+X#}Rli2E{rkqFIfK=4ufk!PU`-iDS zb;T!EJys8iVFn2!q9TM0jumlX(3|>9));Wv=5SMbf$Sohr|~|vJ0eW6b0h9-&aaet zwC4WYGcq4|Lhkq>v|kH0{|C|Z&%k-*dO83EFE$SH48Zlih^NY!=;h$g{~2jpS6sIX zQq+g{vaPsWHj6Lf-rF+^>Tw_!b)c0}`o20Cy{2yvdaj*v-Ps0HwUxmgNI<CU?&leD z_GA(odsLZrs&gR3IqpHu8^W$A=nQx>$c#+3*uy45o90JBbjrC&g=G&>Fw9p<u?L3I zX_dyc8U#f(2xR$#X^9YAM&M+Oz|#EdtL?Ohuf6TDxmJ{vu&`iROP|REqv+_AU3+t} z>aDTr29#x##B)adJo%p<?xz`)^u${TgY$s{K<+b6>U84spQRCJ0z`%+fR}^|q8_RM zQu5{O{Jjn>fNNbsK;ZE-gnp2<!K)qswL>(3lc{!!=JsiOQ)LibJ9=7Y6J|X5oN@bn zfYOV9KDiM;VagLdk^N3=Ly_02p%?I$lv)qmP+&zPt(As5V3CT#t`Jl!=|+)Wm?3s! zwlY&?oYm#Gn>Vhj`Mg&UK6Cjs90dNx$FqUsjQl=PYlATq`cySgFOiz?q!dMNF<a)L zNq2Lp8cWs6a{Fw8clwE7+g2=VgR3^)ed(uouuQ*FwI2-z90jBgky^`ymYx%JSFYu= zl7PH9l1*R1(t6ObolwocfUOj5m6?cbJ{pj<hjTRPcasMPC0(9USbe^OfB)g<1~ec; zJ>!Us?ciAb^WwMJT;q&%J9X*4_CA;E!BT)JgsxufgdU6VYCOF`(2%Ep&Pi5w%II`n zewx*G=buTQOjG2c)sxlz)w1qs%TKS2^1q{0`pHJ1Rdy+t(!(Ze(eqkwvBh@aWJ<sh zsV%|NOh>kyG$RJt>do)s1(U9SUaAV7PyoL}3KPu3!8u1wo<6A&(CBdDG)TpzXu|Gs zJn(qzjx%pk84JGDS*ZZkLNWSd%a(IEAgZNS92Q%p1|369S#`v=9?}v>d+r!?wa4Z) zz>*M1cj`yh34bZYZo|+IA3d1Oq~-JF2&mANW;DC74kOtHP~)Itx6+)GYyI%+84*q| zg(uHjgz?|WlUW9{pXjuKC&$OflLi1MFG9-$*K=kJ+}P5nM~f)<W1XEN>%I)DeD!8M zU&yD1_O+|}<tt5H$cFQ#?2nIuKloqhpO?OTdB>6xj(p(z_kxd)AN^Kr0T-H7vmnKU zv@E(I?!g5zgCZMsc9QX`RFtM^zp~xgf0A9!D9=6sOcL)&DTv?s1#vPB!SI-jh$2d* z$ySz^wnKLsD>C4QaOs${h7oHAP)t!b3WmF?U41sxh*HPzQmxto8C1lSgo?2$RuKeH z4X6>eQK>jA7?d~+Fl1HjM)$?j9PLI8k#3@xqbN79W!dTX$gcf5MY2!IKWBcK#3%Ce z0pWQDbw+TDvr1qj8Dp}A(NEq~dZ~<S5SsJg4bQnSj=(FYZTin&B0rp)4zQP}0=@Js z{QeV*-*p0vs$f18=>ONDVCldi%*T1LJht|ai6P)vSFG!X%jKd2zYzKZ)l_iIE_Un0 z?Qgm39Bh^3BbDS#U^&0^Zm;k4GACoG$m_wunZ%-NqkvkprD<y@Sl=E~G#_~rc?2i6 zDK_hn4uF6ce~KD)z@o`m?pLVXLR9T#chhA(0F;y8hJ+zlC}!ZE#i)PAeAo`2JljJZ ztersrT~&(BN)$3=_&O*mGpEt5{muzWG!43B7RkJL;pwN3_dNa@5()X=Gxz=UMWWtz zyqa5dUzWU*G0e{;kspTsOpZ&>2B68FPEToL^upBqG~E1Mvm>3%(DI@cqCYqU#-EYC zegED?E5~uT-6}d5LLrMfK~BbNZ|kxy&|p4^8OSd*>=X{}(XnJ-G5k2utMC7{JU~tl zOP9FP6Pd<SLVD{j6`V8je#hs>53EbjX}u+&v|oj*4k;DCr9vHHE&qeD{mJS1iGXEU zEg{K-Qd0FmFk=f@HdNn32kL6c>Z%(eU`rXtmO%s!{b=n(jI(#3P1K?IFbQhI?hQ(1 z?785_$0xr3_<-bsZCM<vVYI|T^MGxB>EY1f&mQ&{>4JFuj?y2$;HP(J+629<I%e2L zpz|T+eEozM{{8vIe*U-Qx{k9vjh=t!(}^+hZhlf{2=JVTVZXeb1q&~A3qPrxUsf`< z1$bC8O^cRR?|2-AdQf&<O38*;I!SJQdyERR$hr2UTXA`Uy5w^FUcu=Au;G)>2o(99 z!G_BO@VRPFzo7>pnmpIC+(TdlIdK2+FZ}oa{{P{(-)`!2uu{JL%(ae^S=tWy#EPMY z)iM=jjHyFZnvJ#PBvkf*RCE}LIHGZ%qX0-LV2!D>{e_jptp0x*+5mfdb?92bGKj|Q zpIfR9YfCBE95Q^Gqr8x(&N>o$G6nrqo=UHWQ}k39$kVGN=atpzfB)ijJ1Id2xQ0Y} zfj{lu-PXx79}#@ymq&pJPJuh4{S|tei--qzh`cV&>6NSfoKH4aN3YtH4$_@cgT2LG zPM_~sFQ!^m7Awsq)^OR>LM{~s5{;n`v-!H<J5+lKS{c<>eq7C8A13Ekcj8HyJOC{6 zya%1CdiN2Fv-+O@*Wy38K`d_1MSFSn{f>Y9<G--3KakR5d-K6sYoQ-J`9)>2m7m>X zgQ$#=m(YM9fI9%}s|>+~lRS5m!#Ri^TOB&ER3<g#NOBr%hkm#SncL1*n}ja?o(;w5 zu$9nnQ;)`;;T7`YS$-v8c|8z#ZjR-3j-@j*{mdal9hNzI(U}=Vr<>gqu3=8legJfs ztW2xka|MG*<l_z&OYsnQ>4o!bQRYl65ljc5r!=263f_+3gFy(VaoV&ppDPy;C=uwa z!4J;(5-1FZoa6q7=%l1X7NSAmsviFkbn@DykK#U;ZU?4-is;f>aE_%rVZZ3fvN@u~ zUejBogGUA%Jj94~SrCM9JTg#$8m&C<1)BB$lTc7z6jpA4`Q#m^Nl@Zk3FB2`w$GPF zJiE^{U~%{|(%80=&Fdsnz{ga6lOMPCBNx$3I_L)*yXdspie+T`nT6n{_ae{tIVOVc zi&Fh}CS6Z69eOSM{rwJk)Cgc1LYzrmCtal{&}5-M|NZay_22#t%Vo3Y)vd5APw7^w z_mAD0-3@U4Gh{d8;vu(gQDz3(RYBIMOvurMWr~-x*_q`e2#<M|775&MeXe3zi-+oT zTKj6P;z;_|_aZf(pID*|0ctP_E<SrYea8{zC!o%Qr8;_QGS?B>>78@Uf#=a<KV62n zbrFw)eWKaO)0o9=m)nZaR+QVif`U35Q;0|w`5c;Ktv|=@FyKjt%x8GXM94jP$h#IC zGgiybJZK=Q#~j`zA<Ha-W)_F(LPva)FSAVxFa0*xoI_QoxwUB@<eq257?X52P51md z@54Wr__JUBe;epEDL?;UEdJB!HY@?TK~H+XFP$_5_Mew^#ozw^@A$v}-~R`1U%u#2 zmg{&~Tl%u!5JihCxA&t}$W}Y{8<|Df4BZ%4GD<OJZO5pG9tj^!nl3U{>#Vo(s92g* zy&slCRat69J~Vn>Q<uyMX@b1Q<!G6V>3Y3(a|xSKB*uaFA|tdgYg~4q(A8+|o2t;0 z%?ol`NnbHsT%O4uf*?gf4CfHgAqknok%z`#?Xcvs_@4iA&Cw(rT2jQ@?TQNvQXC<t z6vQDQ?N4Z_CE~;_hL9el7<!siiGLxOrr}v2=~i6wstD2SKEdnKT27+7)0ze7k!z>S zKKr@Zg<A*_IJ63`ju%`oqO9pvpFLWFpKZ}!IkTTtF+Uj;$j{g6uS7W~VZcCn`Bt*E zp5lLQnS3Ke0bjnn<8OcaH~i_(e+I#9#94(`^@Jp2C?ux64>1I!xY&W99L3HZkZRF; zY8=xH4Rp9m4BFDAxF~kNrEGI`83L^uHEdk1klNZ)6MNO%U+kk4<h(0<)r?n)wbuin zWHnzM`9Qi}E?SDXK1R5r)(lY47^{>lGr(h{hKlTUY5Xj)WZ@}rF+#8qYiK1VpW}d7 zoP-ndLJlSU=MlF@rtYopfh5d`A>g{MrWXkq*+<gs{Pugz^=Pj?Pf<?r10<PKcf6*7 zL}m%AW3#(Qae8k-=hf$|EK{t-X;^gDk<s(6bbu_SCmn~$V(q5hE`FK%;h>Weo;2s@ zu$E^Xy3ij>ROm%3K=fJ&HZ26ERC8T_vXC>(&;+9OPZR}JU9KTui%P;mRj>_Wz!JkG zy%nQGq0^*hBD7Wzq!@imE0U@M;$>L|3)09(-DG6zJ2DA6+&qWv#cyp%TVa=W%hx)g z=tEEyXOM)D7=e}jNu?;|Iz>nfNIluc^%NFgs<%N@F;J+CDj8D8OW$8Ok!jy4<Ofrj zwgcjAr`9e|kZHRAVxBj?^aif<JHZ|dI``{>Mu8dFEv`HhTuvG7LShg0yk?wld_3#n zT@O63$>j8K(-e{JXW^a8FQ;|_b5A&aHg*&nnzksf#${8IEH&kzvGzhj2+0nE*wc*8 zr=3S%1-$SNoWK-6(Zb*<gm^l51R^ij^FJ^BMP6*!$HD%*wi`!H2>KF7A_Q*ucVI~Y zk^L2cL3!%7-o_%3L4t1fcoySMBuo497U0m8woP)c)kf)Th{mUosu(jZ<wy3RvM6}E z0NbFp#gmcED*^%}0zm|U8Ic(wBqVWJ;?yLlj)lfmxp6J>s|i)))CNpJgn;Y&r`73X zM9?X89h!0ZgT9eY{%w)xsbRCHwy(MExJi0=q-}eK*ZO>)dsu{7k7dF|(WJV1t`^!! z?%ZT>A}AX2H#*Ck;SM=pU9`hcPGbjhTM>tdI*X-dx)OS<m&Q+P64J71I~SvE8bSnF zebzs3dA<0Pmra4-|LFgdS2FLPC~;3Q+mmRChSL#-S!-_4_Hk;qf`Ve?#9jn2hQl^g ztBlE#P85J>pP$Pn=m)X&<u#kerc`80eP%1&yU)Yq+ij)XS`s;1n5UP-Y*450ka?C9 zkeWWdua0D_se}le3&;W%Tf7y~U<RJ`*!|%%UY-0zSkeDcm?fL9=ICPsMI&Ism)I_I zaKtJLm;yo&V6j7?GBQ;58{G63Zul0aej2Bn7gNFR?iiddL4`k_UkkwmO6{dc9|}sp zIlN8vsod?Fi8!_ZLes7PyiRkPa_4~4wg^}WxTb_6j6h;3M`l)v!DTtRgNo+iznoTD zlX>e86lpKCh?v(?@;nI;;B{QFla0H8I-1sYZOz7-KAhBnNzp9gG_n%g0T6`7#a7v} z7c5YAid{>(Ymt#ajK0d`4xTykf#b-UI%Ts4zcFZP+c8hD>Oy#`kY_(cYtx^@as0d1 zs)RJX#C--ZN>%A#M>lzt`N5hbkWQ4)9ERkX=xx--0bCmqs5x_I6A1mxW9`^=KlKb* znHDT@hn9pIB1(#o!bb6JT!68%k{+An?6S6#op%iKLXztz*n~P=@#Jm}>N5|axf~^< zRmjxV$h2wrnJ&F=X50<uCksBl-Ook9gf&GFYpF>+?phCllp<0JM&<EV^O?#!IsEAP z8F@ZLpY<Lhucibt-R#pvajLR@vR62nl&D*W+kf8}4(*wfDX3#?suX8dG^MHP05zs$ zvG1!f95wd7a%+^>oVKdw%=y569LPDN)Y21;n^jyqw5H7f95#MZ0NUrlZO+u++4f$A zzS)99q_+gAq*GwW*|QQ@*A$`4T`Si~)BubD8v-E(LWrTu88vkUeFy3N=Q>krbe31? zKK}3@Usl5{jak4Pn&@S}V#sd}<3)>C!evcemOHi?=w9~LQ#J8V2Z@s3NzhO18Ln#Z zeI}738~X>{j5toz;9pi>ne+!e%+gXg(a8LFoc8fez~uS=q7-2g_0KQOs~;SAwMAYV zgp^AKB6sjB&MMETB0F{Dq!!xQO8j$i&{+XDPX<rz;!6Mq_s^FwSC|9KE|!*zDFb8( zsHD$I)GXHQ)B%@eu@KXsg10bNSk2(&|0*RT=b}@2qZPMxtS?>KfSsrQ{+!zEpSNiY zYi-HU8K@?qj@79BS*g@IKfb2%&xLKBp@Iqh1xg1|bosD|i6YW?$lHg85kk=hecT2m zO`HJryLW1j|B_A<q9G!Z^N@X#s`@zuyZt%>AyGgK026~N%$q;ddbMi!XFmX3xlHsV zsDzJYmgk@L$!sG2MS&ZLzVJ>Di}SSYo4}BBJJq!PLto+d`Td_yGU*Bc9yoHMQ>v2F z7fd&0@Y9|i4ATZuUEFmNxip7qw21N%rG8Gj{lkU-i}K&Ejl&!kOV6g$KC@|)cs5>w z4dj#%Ej=RwEneO77~9^y9aL;XW`*DiYL&is@6&tR$IE1tYo8Gi4BkSgP$@c5kL5+l zG#l}xhq`#TZrj9lGthqINiqm?yVa^iU5)xxHZ+(xAxt}$0tm!x(N8dgk7B^8O-{%N zE!nVIEI<)LF*z`GO!s`N%rCz;`1rvVO|n^k!?3@R+SZ{KU5Atc$wwD@^f+{vivZ_2 zcp78NX-PRb8%MlWzv-Cf&52Vz^sUJ>5tM0V<)S_(Bea|<0Fin0?q7bmLxoOoU-1dG zbdskEo+7A5>%zm})L<m?zi4~6B}sA|OYnfCs+oI4WZimtR%T`X|GVa8SEO6IyDB5X z-At7v_5mOXQmJMZ*|k}cQkju{HB%D6!MOmDvv?+Gu#DFzxh2RtEGz*_SR{Q){SRj< z9X_mAhx6V6qug;T3Jx{W&ARL<DiroypYtlchT6Xs_h?^&UgRt8siiPwNM|WvbFLvQ zU0a_A{)pYIXhdEyF=54t+IpJMI~e1rn6-(|Xkn?=QmuCG0K)C_vyT@p`f<IPlA2}Y zm<9t5eXPAV<{D8$AEfn285-!&Jj<#(E=e-bJu?!rppm33Dw7prAJD?O0=F5*f;_Xi zm^*Tgnquw|d>5)@+V0r4P1-UAJNxra&D$R63`@ahgdOU**j85B?=b0!PJHSKbKnDD zAV0ZrEjYpmrq?CIMkF-$BN2DD*w(`i+&eTC2U<4iLzFW1C@RE_Q_V08!DCrGR<$jE zd%McdxTr<i<e<}`^*{ROI}Co3CN`cpAHZWadrjwMfuBv+MNTp?gZE1EDf@ao*eNRM zW=D)I!vWkn;~K$cL}Mn-%8-?^neF@Sjw9uxxu!?p5^Zk8ZdKIOZECn$`YlVS5r3Im z*BiJBd&ZZ1$dgy8tQAO5-Jd#PvFU9`ESz%(s@Z>Ke9gfjYDnw45EiFl5v~bwtid5u zi7lg{?QK-a#!V`%Z(;I{JLn>vO;t`y46&%*_Nw}0PzP+~L(7SYCW~t_>$s8x8yIQK zFdRJOW|GZuZ#^>L9+GRgwE;()3Yu^jbU|SQE4%O2f>FA_6W5DZd}go@h`3|lH&rYW zQeuD-GH*y3V0e&QgisS04*n3K&6fYyG-s2r(m^4YO{pBV2?F%VB~}bx8ZFl$z^lqn zo+;^yqagN*+yK5nLBH=&GA{rq`oGlCxbH9;6SgH}=c)-|w8%6jrv%i74Y_(b71m#B zCa#>@){c*x()<067$dG%y=<*a9za-K$pq}Z&TD2K0LQK;+tfMK)zwGv4Q=$q2vtZV z0Se6@PJWrh84e_dqz+xx?QU^1D^<_+fmxOnaLIVpE{W^UU%U<Kn>koDHwK{n+==T8 zaj#(EGj+ot&E$Sda>&26mk!gDWg6ii_d>rO9GoLCD#5z0+5maP)Yne3a#__El+xh@ zVQ%a~WvDq)>&J4fM)-ZlB}T;LHAE$A>40I#6$<#-aX-Euxd_0rS)KCya`fJH_i~xn z3-=|aj9tgWsO-Cvhani57r+@UBEH?9WJEowQg_=X#sqqH2E+s$NKE>9$Td*5eLe1Y z3Z>OAX<R8v%98h9<Nbu*AO7cGelvjvGOtzd@}iC}X}^pbpVU@Ga%%=fiX9O=0fC^d zw?ljqmAPGByu}rZu{<!@r~}5xSX9>rh0KGPM`F?mQKTalw1=!PtZGhxy$BdR5Xd7Z zus6{==(SI^?R^O3nM=fI@Itl>;<%RUoL^7+19~FI<BryOpwvudyIe2Fa&U9qd*>3U z%B~=?O)sKCmaMVpjx3|{F)bJ-9K*gFY@@*k1pzUkS2H*zy-6py@3NvxiVN*A$pw&e z<>=S3P`vIGEX>H%+j0|IOYxG^kZX8sqpvq`xE*M&hPrk1DDm?ZU(nTj6@E3Z2if>| zC3bn?zv$K@z#&ma_?O>)Q=NEIt*JVu0uxSun8*!O8{eFI_zR`7&~Xh(tpXW@>JCKY zjBD^z5nOLYGVpgvND*wKyr9{DTRa3>wAO_uzEy>@;LW8{$vJGHNt*D`%$#2A!pR*@ z7R|&frAiyq)PrdR_a=Jd#%s0(XP#XMJ&;6$({6|S(-~FwToRp82v)xRPBnZp*UY@O zO>l;|b=>`1qm2=RoduN~SU@@V+Ku7mu*N1?Q<xb$K0hVtx`5Ti6)Ll#ubWP=x@S{1 zE^3VmUdL2r_vK`WJ!aQmtltGF<jVZ3<}TbW%2aTG^1L}z506GTA}ou__njE~78YSq z0Egh0PH$Jhl+1jPnEG;W6Hgz3<_O$K9=Y6bxw$YCHBWU`K0Cmb1vRSr>gumbbh)_d z_daW7<4}Sv4>KZn1dnFg(Nu+`Yc3w-zCG=d246Vz6w^bz)Py8!!zh>!)xOi%SazKq zau4k=o3%KPwu<vEfb5#Dfx+bxEsuP+vNRW0%e~X;Wm0S8^3N5~C2nD?GA2l|Aj?}| z`@5Z_^*rPg8VY!~M&-s!;D*<f>_&D<`7WR`mF|SgJ<>lkWT;zZ=kDZ;sK7ujIA&~d z$L)T{{k}IRC=>9~n7GYJtNt%@HwG0zy-2(dB&Pax<#kAenu<*96wBD_?-N><S)Vmt zQFt0m7RYkKxwk$-v$mqnA=qjHv<4YutsI7ARwmiLc{U5)JhToZ-G<YSq&n>|sJ90= z@nW+CsDiqZX89>8s7o3$Ite2+W(6+Ys6=c~PEFu7w3+5GG*;Ja>Aoid8@t%zp%G_` z4mXZK7b@9Z?)__JlZwmO$0OlNU;8BlTvl;YvdA~lG3(h8sVRwcTD4;|fwE^OyfYP| z;Q}V=On*V8u;d!kb`YDH97G?2R7kWK`4XC%mCwSXou@_GSsb1{JA`FH2)=m;=<BxK zH~jqh6L4O9Bb~2+VAjCYer)NPe(FizVj3t{Bi>GVThCDLlDcxv$WG2h=El$su2%i_ zCa`sW8JDg@U}ph{xUL-xrPuh>cdRb%nSOO{%WTF024Ny3qQ=E@y5ICBL~+PjJTMHo zW5tcucCCWsoN?bb#5|BSKplEtu@d5eA;?BWCP_51tIvZ@oz2#x2YyTtV$TDpc2hKD zB8*so;WCsRzr$c!VhugGR&wZUDb1T}UrxCoM8FyrtUl-iP2jyK)4E~2QFAPbi3nbe zRUOeW0cz~Dx{b(q_~{_E23wkTvtFlx5l{_qs6dC#Bqp=f(I|D=E`l>Sx7>n63A`>! z2hP1^K7<rROdyxFtLRsNr89Bnp|r#vV01ffg|cc`xN=Lih&6vmA$Ce;qQu@igd=Ix zqTt-my#+tl001BWNkl<ZlWd42Rvt@c*UoKDw><fdwLduAbUA^;4M78utL6-p!><pK zWb)ZdizmBqhE?0rbcrTEX-pBHw>xfo(l@2(3S8C17n6pfkEc=EXZ+f11tsLl4Ir9a zQ^P>arkfy@uaY67F#3+6=hT({)fpBU*Mn+FL~Okb>*ATfuCe~$ns~~uS6r^|l7LKw z<re2s-2ro{<|1yU)2Er_ac<>1Zeq)8otvntvmc-MBY2V&A=a#h(mB~KsUvEk&%h`Z z6`TcO*A7x>@IoqzDWmQ;nA>`MJadC_Diha8xC26FbRFY`LC)9Leeny{%N3V(txjJx z8;}Tn7OxJU*|dRG4w<?7kJ+hsG+1ap`9{P*JVj#YAXU|t%hGVQ-7YUSX{Mf-Dk!-m zG&!d=LhLJin=^@r4O>s3LT1LcM||FQndiuByXu7puU2Zr&a|ZZ-E)8cSi#T8ykmA1 zgD{|k(GkkOC!LEOc?1M_H8ZJhw+<Dn$lOLS<g6YCPUqrmViJt%k(}(Hdk!|pNeAEn z8MXBDiGgLgV7;seO8`ME;&Z~Bnp!Y{*;eM!U!8>a&<Gw?L}U-B-C|JZrbOM7s%pw? zQF+~9l=p_&{C{h$ld@gKSl1)&5y^Yy{cqT|4Y&J-&)Xew&sbNk-A`q!W@l{PO-D!l zWy97oy!*LwjXPt88u`lexnRL%z2NQb9U&}$>U{Qn$9=ma<j$NT*Ow$!ETHTj`<%d| zCY+C}qiimKHZb=Hb$9TZ?HBVHqr{5R0%7s+>w;xnuv}L8|3y=HOCpZl8W?t7o=J_z z`C1JxV-{O*CMQNv<ltNuN@&(fUQ>omd&&iDYz8X?r!2i(Hx#)#`A}sxTJ@mKD9YOA zIUnGbRWG}Y46ckZa-sq)psUL*U?c$`&b3m>HjbL#JV~YZ#@(lEhPZ%RoRMS1zU^>C zSbfl($UK}+o7&t~iaa{H9=MIK`3D?^0q%`I0prFzii?I}(2;}l#e^hljCrnqR{*fi z(p>W|3yM#!K;(@ehZM2z5ucwo{QUU9$HyJy2+O)u5U>5}tyPCz4Vs{xZ21BzZO=)= zWO7z}ekq3QdcoV<TlF7+2J`H36El%486ZDDJ`nbljo-aos~J>t>x;pm-A$GXmAf{b zhrK3spV!SMhaDdVwZ<s!(aVJ71^l{tg!O`Dy$H8_@xmwfp{*C4O>MC)X4Ct#(a>YC zFRMyf?Vht%Q-VVxU~vrZL`yCSzhvCAsCvH1QiSwlpn;>pHwfhGzCzEXU<qV1IortP zh_QIW5(vveAPOerG&j+q=G41P2++3H6`St>BCnUcT=t$b9A%IvcuxkTB?Rx_f<y4Y z9y9*_`yK!GAHRdMkbS%n3UuBGoo9pnN5&H&x9Qd9e2RXv%iViB8h<|GJ`ezQVu-?| zSrC~K6JbvT$#u=OkXcZzkLp!kOK#NOecuq{2Ja<8KIIR@n6d5`EFpC6K^-Bes8<Uf zW`Oc4vNJ!6cOLI=Z+L(If_1$}VNpIs3H#Y&Y`%c%>#^-SK0ZDWZu_nx1a9*n+quN< zBy9jES4nAe(SZqC7{&v236?gKs_hb0K+YZB<jy>UGnU1{y{&*3w6%DuIqx*y+_(9d z&{132(5#qd0ZrUp5OuDD6W;pb#WW%;xULs`y#%~n1Ku<dSUsQMi8TmRSEsH-h<SN! z9pF3!xP+KYB=TSqL&?PfM5$f^LZXz!+d_SI6yySMgbas74vZw*cXG&1%)f~V3ne&8 zvOaZy%K^kr9(=`2eBPxZ`R3_RXt2&J-@*~T|BU!Q|IhFE`#(N#+oDRedoN=fFw)Vb zsDY@q<HJMR7AA~~2~ld??AXZf8Ju8!Ry2;iwA#|rXQZTAjhgI~D}GZFp={BUkB1XG zab__AB_h1NUqQ~{@BjEN&cHF@e&67bEmOVO$g#9?)%gcpxuH(gh>Ksbgr%+kFP950 zmkWrTQk0{9pF3`!pSa!c)oLsi=iq(A=k11Y<5b)7T-jTw4l~wiwwhv6lSo$Pmm9*+ zVZbqmmS_tvt*_v%)ps6tPA0R@EwfEY_SFCfabz{Qb(JpMf;l>hEjO<Ex#*NTtHG#> z$S>CwfBo%>x3>lBy5jx%hCjbu@$LPBFK;U@mr#A;gOeoSvXyXDJma0brrrQxkTyNK zfJDNAU!1BbDWj4o$$=u*Ttb4w8svA2?65O|5urijNaT^pgV|w0grg+;cmO_make3d zM;tL++J(*L9gtm3q!s^rx!l)f!S`#%$Ipz*67ae0`W)!{#mCHs1L8-7mJ~J5aTwo? z8o@oXFb)v`eaFGfhrGzL>b7g<B2|_VGpb*IM9#bZe{P1ZI=egXtI&oygH<Z;LXi0P z7!l*94BKYs?FdLI;(ix4q4OR=i<oq*#cfF4xfLhy>dU!=AbA!(h|geoVx2=w5!)st zrrTXw{rh&q?RLYy?`^%VlH~2KuE1EYgIcU{t}EYf0Ms4z@?7qHyXtLU*n!d}m(`W4 zRAARB*R1E2p#XFH^U_v>+^~l0WqFQpbmu);3pSX5Ow@VvUL#_>T|EB!r#F22vf_GK z@qT&7pWnXVx3>$vTmvo_?G9YfwPcfX7K2DqiZmQo3n?N8PCz6=Vge_IXO;@hZB3Lo z0#RPMpnQXnsjlTjj=I4W)*66a$sjQ&IAkO+_LOnqfS`wPr;LmQ($#As8D$bjeW&yR z_YVK^FMoj#7kqhJa9sn!2Q+7Z;8+I5gEIx8c3WgLCg@TKsAEDt5dNS1d%rxXaCVZ) z-BKf5fAzC5Ss@^%g!_G$8CfO4Irn}H#q%J?XcC`tm6DUo*rOyhe}3E$V?<bPxNovi z5--XfQCs6>0h|k1yo|BVLkvI@Yb2kD?JgGqTUV|6w{6Gmu8u-cti|s4yGFl>zhKH4 zx4Q_jSV>AfS3sV@aQ${YB=C0fRqEkdGCTP3cI|@~sga8YBwn@xzDxZX#jf0mUmA6V zj7qH;hmbM3pdLLQ*js(k;VHOO#1@$a42>Ds_KeSu9s4a|3km5Gv0VZ_SC7lZV_68! z$$VWMbEzr79Dv{)f-4&h0Rb}u&U?x6h#5#xgf%3N#(QEU&Il~F)oT#-B{(7Ggk2x< zRl`j0TgELWY%GaK7h!v02jlzwj*DCI9xfn9_{<Tvw96_;u^I0OdvS?U`l-8m{Pyh| zR=>jg4DZB8kct%mq1Ry$nH42hX?aPB?hpKYAIm-2@qtVl9iGD~pwET|OkGNEzs4>U z@R&r}n_?0Ev@{?hv&~4U<8fHxPNCcGd&K>|;m6OP06D~z@p-!;Ln8B*C1CMhs`?V} z{^g4It7KD3SL+oAkRnu^wmxq+ndNiQ2{3N=JO1(e@3`OZ2+Jbr-Dq99gJeRG1;MK; zF(a&NXpvNycrYF~m{j+dWO?euQ)J!Jg!|=Tdr+uj!P6mLoKM<zn-oii!aA=N)K&bM zqsmxG7+h0;k%8@=@VRaH$#-n)hJE$8FAkU0W4$;Kc@ayIL-4AtsLbgMWZ)7!-qs5; zGrr$Hu|>wW>pR}p6^;|`+Z|qIsWByd+&4HPT-GZttHVkJ=Lvgce12@$663lq$ll@O zwqxJqvUy`dyl-%cMfpXH`11yG8E<a^e(^xeNPEI%T@k!oe4Yp#rD85F0D2J-I|HDy zj&wuwZNYd4W5(GIf5-jcGxZ10cZ775Uyq}GRRUW6?uq4Gxjk}bIkfwRoH9}>iP)?c zz!0I{%R{RnZIPvy58q?dRA(_7VFl<?N+4z|afhP|E=$1ma={v8#hjS1?Gbxafm8t@ zqXLaiEXc&9B*Hn5C9GI47ldVzIQbas$X+}yVs4h=B}X85cRq*Fzyst_gfWRMrdim- z)b@=ImqVG)X07{-7}Q-*1`(d`mSxpbtd$;RRI*u%2Jf&2V0D1YK-?1c$RM{O1YpU8 zH9Pnmu;q-~9sv-pmw=TBU&4w@2moh%+%}{w!>yv8q@8j9`GG5|Eq4fjk66@*)2a4+ z@gCnU0bf@6a|#YO2mHM4pagh-0XtyJJDhX)wk}v5<L(@=M**!$8%#pIU7P@?3p>1D z7Q8J%0ADI#m&g0EB6wi)35!4&NNAC4%{ZnBUaFz04Rq*OTxL^nnizB>bIn1()(J3` zEW<27Trt0-#`)+1MyY0@OAt;Jtv@p(B~lFlYiJJ7<=w_=TLN2~lGFvkgknlM7RbzB z$ZN8$TZEiLP8_RQ@Sl53__*D%@4Gw)K{zNb1obTNAm^)E@OryqcTrr8t(@7?n$_(n zCE)-RwPQF_RZUG6M*aJQfI$;&8qM>fFinds63R-Tv92}N6lSRJv##UhdlRFZ_hA%{ zWJ;NcRx%c!a0!5m+D<u-KVRSQxAzramw;sr;Kkwh`v#vj4TJEwIEO!7FZg!7fC2oM z`^5L3A3Fa9T-Pf;whi}q!<H7T>lNz~a0v^Ruz-p1x$RiJ!$ntd-pdwYh0KTx<Y9_w z2ZM200^Y9+R?1k2fhb^6j1h1i>|_Iwy&R6kd0bYH_lw{cd(QBi{0>VXte(WE!!dRw zq~aK5eDcXDiH7;;lK^8?2B~Dku7R{Ox_8$l_Ui5S@jQ&6h5RK9JmjPc?LJ%5__J2L zNs_Q4QjB1h&&rvR^djlZ1(n-THcn6^ehHHJBOPpRNzUq-;l0PA2mZ3IxLz;#^8SwN z^@@};etvxF`jv6p#3tN(hs$NfvNWDc0q2RF;tq1D#guT{Htcc7wr#@wNHW5toW;jL zy$Sby!|i@YP7f}Cae+FM!1m6yCoZ{UuLTB;eFD#YF8IXLW72d?j4oh+C!-_hqjro9 zYk%y1iWRsgso35F930-36@R+~{Au;L1`l?GpL;|~JKipmJnS9eJvh9-dAu!z#Ek33 z<Hu*o<6CgOuK3M;!|i^<=f1%Qhjj@;bW#(|_Gb<hB;AF*tc$#N2rLyPCcp)UWer$X z50^8->OtNigW)~HUjrfocM^*(3LdKqSgzvFCo?V~JE>;L$;QSh7ogF0UB@#gIOFrs zS~Y62yvhb`b|=Q*!*&bYD)X%PlnsSVpCSwd0VA~?925>IL4e4B_dUWdQCGmE>%ejW zv`j?j9F`^Ea=8c+KLqFIoF%<ECSB33xH_%&my3F5IE3KAIpcP_)#uGSrwr5`VF~!{ z+c$js`bAdWO6@HHBHJGE`T2?OzkkQ?KYrln&!3_=+&1K#ak*Zr;f-Jg8*aCoxEg7< z<B049a315#Cyq1J#a};gs5z0ub~==)FU2!v7@s=Cka3LdQ>FXuhTTVZ39=~GW)6!J zCt=4KYhZj`2=6{)@jwFO^S<Lp+7K4tuixIV1drQ&!@4@G7xC0b%2-zqzo>4(0~aD( zE^qi;T@8mI?*RvRPY8h!7LVl;;DQ5r2LuleT0w(AYGIKrLWoKM4Gzdf@BtO{W-J$v zYgqB^{S9xI1-oPH$Ox*20{~7A*~=CpDp#D8ER)$GCjnjEllQhomiIxOHD$><Bbz&* zZ~p1X<0~s+#$k(Y316J~q5Fw_#!^b^_LJ(@k`W-O(8g5{!)0BR67D+Jo^1Rmybrj( zy&*FrEJ@bGAz&$&EYPW4y_fagvaaf{_=#m%@OHhzIj^Cjw>qY5dlVwi?T+7n{~f=7 z|Bjy@KXKnS#F!A41@Fru4APWwzu)ou_wRZEr0Oehy<89;GB5b3qB}_K*m(HiQE1Zx z&Ig|`Jf3_yKUxb7zUc=E7*VgLGt9&CTsozS5_x0_LJHBnYX)J@4!4x?W82`?j6Z*S z$DiM&-QVLbt+MxEAA~998GZ@6GL%PcT>>utf}fv^ANL(;-|-a}uont(vC$?Uz>bg@ z;M6S9NH2?Z4Y<byc0krtA0==jt8U=(cER;>#n<;M*2M`IFhf&-ibGFE_5@Bc?&M0| zp{fUgw!oz9xqde5fns|oiMZncSR3*)O2BbLG(0>V5NO$~IAl3?-T>yGVwRvyxBKb< z1)^H1y$|&OFCoZYz8cv`2jaX#&h7UJL8^I3#;F&riwe$R2>~GppjU)u#oBAzc6|Tw z6TlB_I<re;SV;wD+_w!MpC9<~@e`k)pK^goRj=#H`~8leKY!x;kDsy<)XL{I$0K0U z8uuW_<iJ_W7@DE-V@4Y$TZB&VJF$CuJy-txq92p%SU2Ew&>`^QvTM#o*##slb?n)* z$HpEp0^j$99gKhd`i8%J`-1m%!L}!a5U?j;OTe-?Bu7Y;M7t1zI>;tC0@fvfdBsOe zxW|a7tDEfP|094M0OgE53$NdMy$nc_ghKEL(IXLXM@Du)@~Ad%Z~<!;)}mV-5JcKq zLL`g*bc(r<8o?gO9&kczs9_gn?r%$691K_vW-Qc1Q8N+{bvO0Vy}=rsOabN52ZC|( z@yBN>r-XfvaBf#|*&-Er3H5TcDO1j5B-q`$EBXq~I&ZgUP0Vf*Xi@g63-BR;l!K7& zTjdjc+-`_Tt@YzxJB&gKg0}X%8jY0pKWCO=;T(Q^|ABqm@cH?PkIzrsw|l+33Bc+X z=>SH@sg_{-AiDVw$Ur!KcMiPlS;9L{H*&*G^6&~^rYRWM+*0{G(6e(i8p6M{1Mt-r zTITN^gl*sOku%=EtoZHQS6r717AF?h7iPr!9k&#Pedh=+5Wal5V0B(nc9;+eSQn3L zxZ(>4>2niimm?(akOSeK6R=Br88aghuu?$w+QPboWmys4R@_s@2SqHz@QYL#v4&x+ zYH!V}0|)g~QjIu+B>0sHm#+&rsm9y^Zjow13|)=2f?tF!CFzMwk)T2;F1~QAn*;Qj z4x>_>4M^V^AffkWwB}@FHVxF|j@>vidM%XqJZDCV2`Pwm*7bVD``fz^dOkmpnPpA4 z2-&M_6H+ma;Vde^oUx~bZQF6X-LP$2eSQFzs()E4mDqg%`@UgQ=3a?%+heMZ+c_uY z^=CC2QeOi{xZm&i@$nPCfB%kc-}QBH`24(qoLKtT2yt$O+Yw=17kqjDA|t?aMP}0) z9~@<#`8C0cGq{U3vaYHBy}!sf!OT76I^H<<T><k@^|_(fo*4@RtCB*Jb_+l5ckIY; zmla>$ueh!Y*fA0jI0URdNc)eBTaMx}e+^jtMS@oL2=a^wkGr<h>lcr&%L0E1NZy0t zutGWoag>$ApFuzfc)KhhC)xw3F)LVjB&!D&@3A<ENDBbI=-lc_K)uzMs>YHFm@<3@ zz7zsXV&q-2?1E?b#2}7EF4oD0c{D?*cJSQWmoXi?eX?dA4Hzcob6;m3yA9)lkc*Et zj@%P77>N6}D*LpZFTM|11wB80{?vGRIq=T8DyETnTqM7rpEnf}i2!HY#8a@WUY#er zT`u_g^(%r_eh02%9p^;QR@#5>1x!v^Sbf`F5dNY>WRx-C2R?6iq?|g`q~%fMY8+ZT zKAa<5E*E_H@<ls<X-_??sPyuY<mnkDJc9iGI2hPN35<gSybTL$ZY}oDjopp~rJVzU zV>n7k`uB|^e%|l6e7WGSe}2QaKfQsj4rw8z5Rf1%n(LQ$kpL4_vC^X95iTbXU)A40 zE<qnXzVL!ekOzUcBv?TfH(h36XU3j0oMWj-s~0dZc&tt|{RI~YDllRe)te7N=HsmR zLI@2KRch;6E_!BgVr(B9e*gOpo2k$kcHCX0)r^k@QqSPl+y%XMBLqL*1kr?}HeM%8 zkCnwXNr<VcHN7WX*9GtIazWp3pZNUz#E+jpux$y;&kq6dnB~y#lJU1k;otxM{d>*& zi@Nu>MQ2?W{OPxEAObFztFZD?!tH)X+;^<&rIMp=w_9!bW7?6DTol{BYjj=G)n2MU z2U(s)=1xRpWzj^0>$>9W`#Zk8zdry0XS;QJ(ux1_UwmM3olXxYxfpXGkj`;}nX566 z#vQHg)R=df#hG!>5qAKQ62AWS72p2)hU;$^&`QXGuse@EGIj#q|8&K&h{nEztQOwA zqXj`*dZ;6<j~SlTHD-$lKEq`eNp6<bF9L{gV9IbV%L5!d{Ka9tv;-S+q&6O?0j|yq zktAk$Je+1Z5G3r=p*cA@$k+f4j)|EN6Cp-5ofz!m_z-;35^Kny`iHIaVGYz;03Pdx zikRqxa%RmkI?g}M9v|u$f{XXKURQj1d&3qb{Wr!42JmtF!2bK*d?{2~TYmg)-|>0B zW4mwa!0Qln*01CvY953kh;~1@s3|=nMEd;vKunC==MDEwh(P!IO(nh(2qH!!nn}<x zCP(8|>WX=JMZEL4UanZzRlvwcUAyf9X1@6CW5<;cPf%QbrHMZ!B%L*b^NP@MG$)_K z)5e5gwDtON&WUSm%7i@ux0t{S;rbTv<xg+8eqG_N4hV!42z!>*8U=^-%Zlsj)w596 zY)RX=ps2f3-nmZ><N?Hlc-xTU4xcg>QiUKD+j7Ds1SCkLTFer1>amEtH#AWe8)hY0 z3vOycqe6}L%1|qMa<Pt*3nnqJCnp;D>^fh?mYcxcBA{4uVdl|jaGirRm|l58tk!_k zyoCGTZ_u{Xrhmc(Arcf{P<fBc88HYJz|Q06$4yXlmH3vK+&Ot&!?NJZ`#aWk0q2ac z1YEBdco$^L5O?I1MYg-j-|~GHEUQFz{rLHT-@kts=b$Jn$$h^oj?mMl*`#WBtl1jW zLUr5Fty=+MAYNAZ5U|IDP{S#PLwjKH(Xdw?E*W}In~z_0I&D~**MklJtE#c{uA*I> zM~m~a<90>6NMeNrN=P{(ImY$tiog8z8~*g$J1!T8jEKk%U=MPHa1j%Tbyby@E)`3x zv?IvA9*}@ib+AQZa7;+s4xd>NUj`z?M%`(?9v2f!#RgIaax5N$vTDk@Tqh%$hGGB? zT%CKZD>TSvDaz_keDO0pGBPpP<r-);3NOlKK*ef|n)jMrw^Fy38!iE+(ExI)6ykvi zTAiSj_0ZdoHEf56hnO7cYBuQpKg0Wgw>O8B0k`Z}FTbnMXKQ)`)?90~iMuYL+Ou6Q z7rei}fg${kkB<-BZg;H91?#fHIWK+#Ib+`iG~Di@=)3C%AlIN2G+Hl@n-DrY)AeFC zd4gmzF`Oe|B3`ao*UAH6(5$7Jh%I_l^^eqaJXqG9Qil3V>S2oX#7q8(5nXeCrG9P| zK|kQ-&}F~i^6d@(`oI1K|Lb4B;s5&ESA2b6jWMb0atrxraZd3svmaiT>Sj#p{v!+c zh@3Y${2*KuElztxj8WZdJU~vYKNRren2~n|d*SbgAS}dO4{_szCrzv+9Z7-$fX#EI zINYi}J~Lus<izzM%+P;Nz52IPjZ*KeP}_H=gC`^(QjFN}3h2d)fB0~+R`h%<KGZ6x z_YNT}75EeNomZm}`5KqY72m#ngZEC}3+Dt7Boaz6DUe!5FCqm3BkmeJThz0kH`VK_ z*FcI1pSMqZeEgKn!M?SO%4)~ghtt}mA?p`?7_n?I)!%gqvd)fi$LHs#TmaKXdBOs$ z2BHVaAU_Zkoi+c*gHHTpP@v;i<A*Td?3S2e1<n1aJ<`o>RoHm~1}xVr-rm39%a<>B zd%NKMs=0_ze|zPF=bRDuB-LB?Hxi=ion$5I_bt@WNCdBbbb*{?&#wU#JmRNjCg>rF zoZ;AOkc9XM@SY(&CCzjs_4DTz*lK<4ipRXu2bNVeCarA?N8t>eKSigWRN0m}RfnQ- z0%@4-n<=L|Z1pQMu<HqE@;vcGBE;shwq1yLG}4e;L0u&nSHMM~$IYrcmph2CEEoLk zZ~p@!tN;W5_4ofo+%`4H<;wSm%5O{2Ot~TaM1*x&!OZyiA#25)l6FNI`?le}Nr-3E z%)#;=9Rz9ytac_(fzStzaF;rSI;t$|iVVVSi^5mws$id@(b9MZmOoEUYI9$Il0SEL z#QD{&!fd?gADHgp;Ms9kV+xHK?;s6oKuR%9aHK$<L?cN{pHT%c#ovwKYd~s@3HN;$ zSt>zOXFV=!zyc4jt45ww6k=+bMi6&i=LtS6fbzS`51LDrPI{O#0a09xL-ZQ#+;SeP ztr#(UhGyJ}c?3c90$^4b8Br9jOVFy#$dQp_Mvk(+jBz)nm?oAQ6JH6~)MmRom<oU= zJ>i55a7bBFmZ5R7Ch7xc4}28;Zz(3+K5zKEe&TXjk=9Ffq;k&Vx-Phqa3p^I_zoh6 z+wB9Nw;STV>qY8JoH}|h3w`hRZNtwWTr>S@hfQ+1vRZ%3-y?4Yy;UYO6h~)$R|r{- z44ajeH7LLM;sY*=Sc!oN+a_YE@NAAQtPFZ`2^<*Qbd>O#e4zuBz)v>?G<G(_)nHpa zo*POUJE<;ix;`n~$8@QUlP59N5J_x;<6T@|w}_jUJ-mm5yLf;ECBALD-u}{h5$hXW zs*VO$1PCqIyCfkM<aCaehoR7IV~X%9{E-Vt#W+bSKSKl`baBWe9De7ah_eGb?F7gn zWJZiTlA_&!Fy7$A*(dIs?y1E*G^T`5(CVya83_mba|{BnDi5}i2bLLVE^?mqgk4`i zCsN@8h7}iGvg=6h;<smaOo}@`zJHf^dezxq-`)_sa4fQ}+&GJG!k@l<lj$o({M_#H z`ZKpE$a-*{F(_40QEp){F!E%Vo8`AtVO5)?8ZW(DpX!Fe@$j)~2n*-b4qiSdgn&!I zj$%TN3?L$ONf{61dHlju&z2H$P;`w>s_2L~FMnN&>o5=9#@Gp<Lr|$p@1^0v<Es0v zj>k28q?ws{%2-I`rk}SBF*#fohwHK;EYe2b_FXC|Ijn2Ix&*EEBuYW=*o{6X001BW zNkl<ZS^y*(c!u1(77;V@ErPv{7Aji>obLA3{8Gat6GW`PC&&Xu46l@7z_;*MC$i!| zVjH%{h@6swohmKPxuMEc<RY(1;?!~;=+I=%(cQXt$Ds!}gqjk85BWEPyA#crpnM!L zYyuOGeuZVCjN68f-+!0aGbUWGS6!!ygKJ^u?VFghe0jTq_jiPxv29yj7mt7_nG`EY z<>^bH#Vwevc&)^$=dL#=YiiR4x|;K5Q-x&jC%hA8_<a{gBf6I|q#Xb~2JPrYK#!h+ z07EM6tDJ%dw+}t~II<VP{O1zV%P|&D3GZFTJtdYKS1b4yBZxfKC4juguAK61-$CSX zSp%-?B7%=%6RuWI%rO7XiVAbJ=R#t{w8MLcb@52vVUJ1Tshu~nX!&2t3{FBtb+K^w z87_)%peyoXeK<o9TXBZ)*0(*^<=VP<tc#e67H6OOy*O*Wfw6L<<2I-N9B%H<Hl=6A z*DtBeQ&|~JAB;YDh$<>hGlaZ!4Yr%jjC9}dGyRTq+r%wNRU^>A6xMDb#$Ccu_8p6g zqRyUuqLDE>jxN;uT9^w#rUS2~h#s<B$PgN4UJ2ECOXbaE&PI5Cs9#6(&rj;nLg`n& z>giXfbIk$`dw%9)JINg@eW+M<ZtW{dhC?Q?;`T*$nq_|8HkpqdIb5#+*EL`XzP4zj z!V@x1#zkP0is2-YSU}}m+e_!Q?dOb?i%mFMOX->hF2{(SSZ@B{#egy}0)!Qq3yY8B z>n@9^22&KYIe3R9I4p}p+_}0Mmo*zhJ})b<XIpzVCYxoXY6Kyehm`sa!sJPz6Is#I z^27b#hf9EGE>mJ68e_uG`~83ubYUZCBZpUB#^WD}&I=<^&DLyf{>V>pld<;!$#zQW zp+lHTO$UChv{To{^TX=R7Da?*-H#3Z%a;JnasFNv!jG>m!}0HarlY!~RWp5qa-o+C zVu$2B;DvI_nX%n>b&^d8!Qt|@;_V`pzrAe2;ik&K6V;fQ*GhaBlWYM<K_Oy>%L%+? zP)vF;lmR7GyDB1J3A!3gvZs&iYG>n|ZXT#zIFi=O3iz!^PQKO>yy6B7PP>3jKEP8D zku8fYdkq>LDONLbnpszs>o%7PTRK8|aM=^R+;f)A1!wL@4sIYSky(+N1fFupsf#7y z?xL_GE1|g_&$wq~M~xHh3Ndxzv_wZ3oeu#z{VQ}Fqj2ab>MK3`Ea6uU-{~!SnC1DU zdd@HQ7_-d+4Q=M>S0XyB7`q}tL-8<AuyaBON|~_1W6K^ZWJkPs!r}qStct6Quz1N~ zyDkWe<h_Z-vti;D6&YtG8>!|%t;SMLq7y(ya6kZolFVw!wY6SO3M?s^#RY=!h;>tt z8Bs3@D77~y*)o*N&Ve=fLtJi(<BcR0B|)PdAuOVYcY6Y|gQo!JxQ3h1gUU4XgFIgg z_X<<C>tUM7dD{1=(d+7eS3CjFzGpME&8-;Gkz_*FQF@Xq(NXBkM)QzrJgHMO<v3Zp zqnS!}=814}WC<q>-F9(=XT5e=v5a!f`F?%!f*)wZzq|pQ^baS0K<9(V^vdF%6W%Tb zQr@&Cz+^_^2<8aK5rHEXPJ*-th(oIvAHQ%}k;!4#JuVY~B;p?^t4qGN2!z<H2?Pl6 z4%rFt6j<r4mDMGb<YF70*;rwFu>)ghFo5n6qVA}3hQ^$uWf^LzENjRTHJ!4Me26kq ziun0s$Cfj$#Q-E}9)NB~suv&gfgajic}!yTBRa-GC)glEIyi+fW|6}@L}yv1K^M8o zc0Vw+zv_y|v2dLk)S|WA{41@xWhyd`E3e@qdZB%8oeB?KFh95eczy}AFUqg4^j`w` zUfD0aa5I3W?;|mHRuv3uNzL6#kn2^Q>#h|ENPCuiz?hI@MBaCi^FjhaR_`^J&|}*( z_Oxs6z0y*-Db8}1_S-wc;zct6c8Cdx4D8OqDGSfn36PKp*c~Aui*2-;M`UC$5!{}T zV|$NMYD6Y+qm}$SQr8*INy$81z4Bv9xNiyD-n{SA&Irll?b}!RVM=0=D*!2V&xY+_ zS<P2#a#Qz8H-k-JYA7~Ib{^Rvwg&f=IakwCstn^pvC#MBaESS&!tyy9!Oy0ZN=q?3 zm62UP9hrykz`!IA?ZG9$4;gvkVVN9>R=;xiXPv<dXZ;r$pid=6d<GJg^KY^T#;&Cz z^ie8h+#^0d@A$`$Pb_ND9fHSY$yh?HZnB~X6KCL3rJWPQPAc32M+jd2oXHDmLla*S z6L^!v9`D5kM(n^O&@*LVi;_Z<IZ2XGMCIQnHKh<rsa`^|#8e-AJ^Y#zCqxuRj2WNz z9ryc=n58vd{DS}S+ZX&#BxENSPI1E_=h{K%(F44Ov{#YU_y$->@Y5}np=#5FfCfV| zvH&9w!lT2Axa&JCb7;DJ?w_oh?tJ!qj<Y<QHlI)HE*Rin6wmR)QQKx_^j&(Gd4W#* zh(A)d&27r&%>h06WnM^w;u+va=NCzJlZEjBtPerSK<>@0N_Z(#M#_xazKLB^2>94D z*5HN2ql~V|z`hH=n^{ai7r*F;;IUo;oC8+xa9sn|AYOe!+E5^v0w^)!eM3%SE#?<B z`ZW994UD^rMoMsm4-P;U!^qD&Vk`+qEJ0ryf{{|v=7-b_bJxp95`a_8NE(%$S0NU4 z_=URL^fq3{jY^9Kr{1DnsmUc5@(d+!TN~~<ria7Dow<x)BYkKo7*pdJnhcqIpdk+{ z3o_N4W-}_!@h<b<EI*;UXo#m@^YC-hS(&91Fq{rlZODS?kNrij{3-Vh4Nvy6r?%v; zHx1LTai}Uh>KK|m)yO$4&xs`aO8V=b86R81zx~$_{QYOdzyHT~EUKq3fvTlCv+U}y zt{&HQ#j1vq>&4@;1iW1@`1-zz7eBFT$4iylwd;tQT`xCL&bh@pfe^v+cg}zYS@<k_ z<Lw^td5fa^SEM`TSe1P_HI6(3diaxa;0b;qc*w@%Z4G!^#XaawsyirQ8Pt=xMxOxg z-)M6IbWin3%SR`S(D9kzZtj*4rm_JrbZ^6t$0>$I!{MiS7t2D-0;v@p_fYiN?^Hun zjWZTaeedajml5a3CxHpQyIOH&o~#DUYZvfO_=}(5{AWPnk-PU4j(Gh-np!~*Eduvx zz-;{N%M6;;03tK6XU30@4f~G`|Mj0g5LDD7Iqw8^zQtg9!n%6AUGI2X11?LzWes?{ zUXc>j@gjJ}6|#>f(v=`5u?7zwPOEy(jF<sd%PQIbi)UX>EjlWzFJ0BS>#ojwuE604 zTQfW4EI)hjUQ=nCQO0jyJQkk-5^+=3Y`ON7_Wb^;r{JESU(<N)c-@j*PX~cBQ_oKP zr(;fu_Ab9?*$DLQ{b+01^VXRyaCUT;CJP^OD=r<glpZ|M%m&lr<5)kaaNA|T^EI~} zV_mz<h{mtgE`{=S{~H&;>#n`eMhE_He0O?8TR0#%Je{{-041WMV{l?1X<|$S@EJ31 zTT*$wYVg%y(>YP%c@T0Goqi6Y%u7kweES}8-yFPS5c#I^DoIF6K@Nf7b^H)sK#}nl z0a3u>N&h>y6=C+sZz3ly3Pk6Og$A|2R@+*8wZWE%a~+McY9W>di6ge`!Q@pkJDPb> zM+6eSLatpEalhxbbXn^ZLQhx6vl~J$nIe!f?nc!UZw4G&RtlBwz7G|lN4s_y=3?DR z7Uv>5SfzL6h{(JL{m#^Wt}|7s{+!f<s~`evL8v*5UCxC`X|Lab{y81Mqt<*jcXjvJ z1JsY6TsW4}I8l8cj(+D@Lo=vj2(c(HzYE|@fDd?kzhJpCR_CxRQdzy1aK<GBY4^QH z2!u;;SXZyfJ^|hZc;_`2&f{_ocv}}C4e5a@F1teHll(q_aNl=;2+Ojln-GK9tGWy= zmyR3yADl<<UcpMLY{B~QxYlaAk^rRf=H&v|cE;_#gWMG{@7SUP;B`gXX5r#}PxTVb zwfcALOJ+3&HKCz2+}`x!vUoUCCC?EA&=NqaU@pXb3>l}kY3Oq*act$=2X@u7IY^l` zr)5BOkz{n}Hi%r45F6u`zUueYeAEHh3xS=v9BeV8#u%+fpPh=)UaraKA47PKTAneB zOs3}$NKE7YaU9nUKTeIF;-hVJ-$dCoBOX@2b~QzMxEFvKU*9iS)<0ue1HP^cuB*ek zh=68UH1lm)1^inau8YuWL+~0M9-14idb}@Ql7zjk=)_ne!#mbsiU8-mL_@QJf-Z>7 zv$6%{VfKLI`mkqpHuAm%k+6pLw%o;1wVYa@K}kU1j7*KIPHsWWgk6n6h#6ilDdLjd zXp(r1I?dXB9i$qnXQy9ah0+sh857`Ehvn-9*G1f%yNn@IaV6!<9&BTDL-ugni^)`8 z@l<cYqXse{6Hq{gk3U{qWXS&qKy)$+biXSf1$Hyy9v^%c+v^dYk^Wv?-Qkpd^t_Sh zDa`+v_)G)3Dk#4ZS1_CW66<%=)<wCJRay&9g#n=Itq_FQ|K<tb{(Qyzmj!?Ry5djQ z3%;x?uDTBNUcBAHA~s;&tBO#osR)SF**7NKQ%25em7y1xgJibLG@HeP#L3T*f<t04 z3UQhfhZI4a1dJl?c;yV#?LdsI9)bX6)Q`<-`Q??Eo5>-wYtbEAP_uKmN8odpph>$X zm13U{D?P>|D;E3t&K#E4@g^#s2m`s@1&8(h3Ku-y^H=r3cayJSfKWDo9C5#-9D&Nt z!;q(d-7&amB*S$PRkh$*;}Sk0*4R~be+e8nBmMG%rVH}W^!~pvz4IBx@X0ph?0`@9 zlhb74gSg_jFJViT;`y5)hFNIx-)!wAdw)D826;Ke%iD@?zrEwnzg_T`w=2G07F@ix z!(OPovL7eyM&xHp#rrO|F~b+BF_IxCQB6zA)DEf~WU14f9b7%6zLHC_f?n06gro&e zT!K6@HYRYCRbFI9P8v9o#l|`@NxYS=(MVsH>^wfA$N&59-|>0hq>HH4-6rR@7q2?f zj7^&X*_;;Oel|UJZPQvmd%#NYg?9*-wN-1Phlql8H7XqdGfh~EhOEQS;qWO_zu1v= z6@J(pFb(4ho87qKE^^=EGmpvJW*c&-?$n4t^fJ8Pdj;@pU3Zf9`|O3{KhOa3>1M$o zzD(%FrQBWWY(g3>dfm(~lCb`qM=m?^ov{aCa}3G}-epkK5k%+nq`U51efA*WS-EUU z1hvKSEoPzNmPFmGhnS#|U@;@60tq!cZ&9da<g6Y8S$6nYslC$W2*K#igtUvHM`T8h z5(Spxj+mmvjzxeqKoaUTuru(PJpS?Hj*pK|ye|$hXSghYC)*5fePeRwBmOh7nI}5} z&;u7Ko^9l~@)_Fm*rLnm{0k1!WIh~>vFC1`wyF5_^DOac+)_*^hzGxWJYm0$t4Tf> z`SJsj96iAA!z^xlWa9Kr;5?!F(#fAc{+$TZ_w~Wuf1-dQ>gUkOJzttF8x2*JezTuJ zW3aZ{j{C<Q@G^IMW-MDqzA|pt1(%huC`Ug-BAu9|wRXj`&xDUU&GG{!9a|ze1KaMf zMO6qQV@nBp65|n<B!EIL0axvI5=X?8ks|BrODlN>A`2%Wa|SqRY!!nOwY9OnW-;#A zV}kI5T9kX)J}^WHnQ{i@jN}$<QA{z(lbNZTggW!V7_0`Mz*PN12S98ZW1d%<ftAW9 zp`r~&GR)2a^gV!seB_oe^FTCyfsQu{f@WL+Og07Q{j?cnN1J>)_y^)~q-y=MF!Rtj ze1Xxq^+3brmzI9#|HP+<o@iFz=_xyqaEym0owutfbua@Y*U)j&5XRd*<3Im#!^N#w zE*V>7<el*mB!+oe9K4s6S4z@CC)MPznme-c_60<XGKi}-KXcMF8NwbRQB}-{oDr21 z;8Rhzi4e%Spxr}OyQ+eLw5p%sbhtp<YUqeS9oWg$kFId{`)ZoCYauMfZ=MrUj7Sa$ zF7)lYt^SNYNY?m9R$|Zr^go)!%}r|`_l*ZktfKfGiZC3xmUPW09V*fJC_#^$vPXCQ zsp;-9*_8Qgb=g*lJQQi7=fGY0J;IpcdbB9QKx3p|%<S!b0uQ+&7KAzBgpSt7w*8x` z4$DW=&?44<cCfwxMXW<kH2&hEDwn{|Eg}8=0|6Vn_qhI8@a6i6;5^{H7<UrDByD(3 zB0@>rcJpNyy(iWX$lO3UNJwZ-B!^SU2Z<P2TtDD*hKEK~hXChd_0_lIjw`?zlg5Uy z0k?WjIoI5~n>~5;>C<$f+G1xNJ*b9GAc^=WIe;}K*Jeoe5D&NSOsD~sCA?yqF#X^p z@l%YT@95{TH9Q3dr{#qD>tYo0oc)~jf*rObhkktktgO6w^Z{tYhHN01c~Z3LKsD~M zL=zM;_ADd9$+P+TLAKxNTk&AVp%-^R$FOfyHQSU=Sf$l$XrVnIQ<MPZs;w5-+WOv8 z!tEo$sW#7lcr3x|_DITC$pvuKcKK?`3rkhaR+Q0BABcr)1K-w53jmM@Q3i2|Cva6| zNL|>4*;Ex)9HW|rSgeWI%-;2aZ0#kpSrLM3KnOY(A%jyyL<Vt|<RldySvzjFD=Hfb zt7al%Yi;)GR!&Q^%Ya_Sig;jvK8liforpG!9sIn)mW%XQ^qzOjvyb5k#&B4{TVvbt zd<`R1cr<kL>7c`B+qoXIVf1@fJQW<Czv#7f;;wSrc9rNHJZcxJQc^jaU`+j*n(n%9 zJ5rS7i%>1S#W7amo}n24@@F*^#EE@4b#raI0N7+-Hvnw>Rb5Y&)krZ{7=ks)hdL(S zn6J<XJ{`CW$L$7kmOy2O<E+n6R_{Zow6=9Lg>#e<BjC6=7~8{dwfNTGSA|yOYF^^F zZKGj`K578_E^xZzelQ~PbP#3qB4gl50?pI(`r^@FbqdzFl!gJA&X;9$@*D8kZDtQS zoi`uMEUv(_|G;N63|@%yrqRHmg+0!;3Z1_J^Wl}{*_mdXIK^`JdDXVb3cIpYGXdzR zR?KWX{sIVZOTZ;S54eZ(0Z#YUk`p32dq=YRbCuX)j56$-J#i=QFV4PQ>;NpIvLj=5 zCzpW3(Ta_`*OWR-G&;`4)WkC-Q_j^x=4wT^&|a~#B1drCfWXZClgRdWCRFDk=X~7) zbU?x^Km5^ycD8uyB(U^+7e#zBgv^XFFgd)B+-qrqcO5~&>eYe<9NUY7hqVM7>T(MY z;Z`8I*^qZz1O1O-{Gx0s>cN?no^S*Q!Zp1B6w<KeIjnv7S!TewU2qv^h>dp}_nrzB zS#Yk#Wno!B0It_ns(MNGHEb>C8tP44Xq*$;1s@S9nmxbNlTF%te5^ubH1{olg1T0R zMq@apLV7d%adZy4mTykQyz`;py{+1qjUFJg0o`coj@!B_6-EuOF9xO@P3quT`0I=t z!04^F&z>KCg2#g=5F%rUFsJE0-0J^kAR|LaRb>s$CUh0tDC+j-%ZfEs*>@g5UA1*D zJ{6n=I8OR~!tBfe6SKotW_CXIC4?hUiMwb0*@X5Q$k?@A!-K(HE8Zso)X>C2#dRL* zA~QV~zrDjldF&k7s0(|_1ohhn`(SfF&(-hZXd+&*A3q}67#M403L|%tGQw=(ZW)zy zxa^4zZD6BZo9|J&gj`ve4$e0_^it_XbkxQs3x17;ny;A1@nKny(-m1yBpP>Fy^-xa zkYrNvxc{?SKsoh3lO_$BVO*(ex{}7Q>Gmio7L{{LpDG!R;H(Ef*R4wp5iNFTxm*fK ztll_-HRvR1I#j?PIC`%VeDHvr(1jwL`L4VW7}6yY(PW2<nG=dp&Q;qg!xU7WJ{xx6 z0b^mFs0w*7M5a><w}YeIjA%LVEbIxPnOFP+(>Wd~+I-S*nVnK2+Mp7YdeV)?lvVK* zRRUGY06CAKBLWOpzz476lQWy`M~tE4v%vh|S?OL&p1crz<h8KveA%*mdjgs9-tWdD z(|T9DB%4sx+zw{VAmo;hShqz<3|o?}j#En2DM~U7^}of0tcEbD#M4zD#N2+isuDdG zsZ&QFKIb7!{+u5Id5_?NV=~GkKEl|M9P^BA5airzjys}Ct^}QS3R6x;*$~@RP0u*v zNfI#`QcNGUeu7xn*RfR;K0B>6+G!2AaEFZMj)ns+JP21ilb))RdqWJ9QP%`5=*%~= z5t@{Te@_`Pv+xysaT-?3ZRfCf5i}jZVeWs&aW%-p4A->ylV_`ABKDwJA4|^NcwlAK z{pXsRU8-%$tzxr8wUsSWN(nIvlQe1OK-R-t542Ws9)er#rBJ0RoqhSyo1fVxGoFBw zX4EVS(7+w1Voo!hGMi3g9WW&j;mHL-conf7TSPuw6x0zb+BfNp97_17%5STTJ?D<? zz?k5R=zZ!&$#=iPGKY*A)^W%Jb;og*x^}hBk91^h9%U8fduCnZIqifb3!qqG+dz+= zw?lP<F>948MnI^SNf$}w2ySuJ4!wLmW|1O?Wrg!Wgg_?`L`@uG?y5F-vvE7*+-)gJ zFs3FMaW-BF(3w~dZ*8T`KkMhFlqyjx=WJT)(x%(5o7(|a6OvSB@bZ1kJkQqmZ^p76 zNlet?ltvbO6uj`j>9HMTl^^R0HuP&le!7DPS>UcMXhvUFe&#iJ$~%10?$hAvGec;p zIn>g~Ikt$6vT{Y?PA2?eFdQK|0l<dehHVk<2Ndg$V_k`91YBv7)NEgA(|L4zcl0XA z8PMs9$`7bvm}GS5PJ>VCex8oRJ2oMltc=6Dx-4OrVC6BOGAo_#!!sD<BuXtYkfZ7u zx(!HMA=blgX5*Z*M49K-8cWsXF0Hvznau^jN{`OfM8)_f=Js<WbI8lb=Zx-ic;?<c z;xatA`W*0>qFX@cok-U7gE0AbsvDKs^>!C-VOb6UcDFsk3mAZPG3r(sX4iL^;R%nD z0c<#v$4g#ealOPCn$3oF?PYl9z!+B4wS83<e)7xDbP#=j15UTbg|^&Pt6_R?8#>pr z1k{tSt&mi^uQ~K?(2>KKQ?TmP>(Y>%-uR4$Y?$;~mBALo-dSzWFpgMeqqM6c9?Y-@ zhzHqg`FUAIN)h+_hEMO5CaqQ0a5OS3s?8mGowI4JQ$pJ1pHob&0;3#Q{jRpv=W!)A zVGa_yEyodOVFPShEraWcS16&ZR1a&3@pgwpTK>5mc$D~WbMRZI*;jdcNsJpESiXfh zN8vnL>rov(F<BoED^F<5$B36-y936<MZKMt-E)@I-7>y+GauADzEJjD1!TL{jK@Q7 znPy}GM;cs+J7~TG@OvG+Yg?DnDx;ZAl#9WsdyIF5oYWphCdn3PZ+N)?xMlIx6rWsu z0CZRuv|4lTMo_9>MZvVZsRo*+q!qbn7BU;_Yt!~ZJP=ZDvu})1t9e1aO@+;D$Xi7> zX)n}%lg=Y#&*&`22xMGw&L1pWG0P!s)a7>R9x5{0duRb^;XF|L{?)N({95hjwUyd- z2RJhmeYT=INzo05dH=-LxIM_+Tf86U^xk0ca0Ad8eXzCBGc(cgwi_LX4~zElz!C%5 zw2>?ahMhxpjO+s7SLM*NMN`a#G1`v1CLFRq8&PNdL|rMMrZ+IcBjxxZ)125z#I;&@ z5WHd*Hs?<~3nhw-w1P4x`F)YJ9ad#v)RmCg3y-_v#4`IP)h=+#HNcdUX{~cZmsx%H zVAzhG)Y^cCoEzAc2lCU{rP=ml^m-(R-krw{2WDuOdv5?^z%iT|XN6%fWT*PKhN9Sy ztCj!QYP*x_J6#RWE~NS__7(LpACLRjuRE&^Jq=@UI!_G@W;o4g2}Z|2$C(6R)F0Cs zop_M{9QM|9+I@6rFAp%O^PsRQb4@t@o&u0lWlfPA@i<psi{cZAZgog@tJ|$w$W~?h z;And%#+$OY7n?6h>p?DiWYy*;iT|#8|6JBWqV12F6z~!?Qm%(AwaBmBH2&GHuT1Nn zS=w~FM@DI>OQ2@9@H<tC_DJ~V6AA3WQD!6nO_hA;T3Q<0YLbk@QmI{8Gj<=>V;<uL z(94=9z_X=z(_l7osMNE9Oiz~QJl~3R#guVk7c?!(4;ujjLb*Ast=4#;nC2G8OfQf! zUfAs)^w$Q>@6udPNJ-|h!HIOq4u6>-$-cBmFvl7Y-qwoZqPPQfHqB1IfA07L1t6+~ zjFRK0)zoqhI-0d<G_uaB@^{wAE<Nm=<Nzzk#o8j5IXG8R2P1L203>x-GX8p6C>uZj zV`c&ymYNMyYfGYIMpnJ{JGLKnp)h2sUtf_0nk+6#lAr4O1MY?vxdf8fKSQhj{l`<c z^6HsJ^mxpqqu9pA#t@BsKr_0X9!x&sDrc2@R^^!=0_iwg{eez*YGG_am>H)YJ%>0W znji$+-(@2+a1=pUqloc)4Q<P?nVoYII%9;~p~$T5azTem0<JCv2eL*3lNe49d8!pS zDq$llfR%Ep$a1Zyg>O(-MlvhM#A4!6FAxdqkb|9!k3b6@;lYQG4zG!;h8i&IMlumQ z2M644RY`L?PHAnaIS+U9X@@uuZF9F_ptgo`{pUEESY4OTb0a!V!x<icxWRpQ<Sm>P zBR;{jXmIeG!`ue#=RPoHTJZRM1U@G>Jqq0$M&Cnz^7&uk_zPL46c2~%(OosfYuo>B zDX*QEJYy0KUr7-dsF|g`t^^*t11|JP!{lP*Zstsh5o-!gtm~wxjygF@PF}~t(!(jB zmpbqyvDGSv8m23#es5gXeZ4qIItUw1+Wg$ukax<+QGiTBKf9L0?#k|$VP;~kwYx`v zY505$)s%W<+emjUQf)1<UA6VW!RnjnSdASOAkKcR{y@+}Oy_^lHvj-207*naRBM(t zZ6$AX0vI31Tsp0%JUy{?uf?Zq#Yg3xp0HcaI^`GE^OnlfQNi)#0$}bKVK9esJj$J* zf`@;%54k<K770dAon-EfJ?hsgNN^=~w0XDCA!BZHa5=P`lWB{S9%!zNt&|#JgR27$ z*O|CuW0|#7BbStlt&;-v#2XryzkIGgA7?SD{sDHqhXY_mc19(xm_j?`Yz{qDr6SSn z?`DKjT4!fhQU<xU7sC{EHQ+4Gd+8|-e9rIZqe|_B1m2hOd`hNzg=x;iIc0ibh5Z7L zX8Ln5KT$gHOLX|h6r0CiAV>x4t&-7ko6)I_>Y>cJv(;{hZti)``Z<<-k;^_8Bf*1f zloPZ4v&P0swdFP!KoLO{ZgkE_Io2GzM*1)nz@$KMhxGG-Y00Ca$*eL<MWe|<JuGXC z+|*K*`~58r?Q^TXuFbiwZ>RgwKwI|;eo<#TO^*8SZ_{S%e!07JW{aYMiOIkCkWOIg z5ks;JNL%E21S<ybiDTEyQvk_28TD`YBaH3UZ0;8>oX$=6QHM=0UkbnSSNQzANf;#? z)sayZWd)h)p-tQ$ylfHU+%ctK7*>^8m3kUxW;Sg%>kOQ#V4?zG-33(MIIa&v6KFIP zf|$GA>Szc$d%+I`3&zl@QlHFHFMy%CYTI0*!-@k=n{BCEB{{oF?8raV{~6H%P{WWG zGp<h$)t6|BArYPPt>zsKA1n2%fAPt&df`hjpUug0V(6m^Y3KF_J=!aMLw`_TVZ!o* zgMXM3_z!bu4zIGY&JX|g@Be|MqJ@|ea@7CN!mNr#*kDviDW%HHsuW5?tt=#v%mZKD z(p0;7jMV#lqzBWy#iDVJZ8BP_wp&VjwFe0E#9Djs+@xK$0ty<zDrc+cZ2r|2ywYp? z%1pM39}Z~)uV`XZP3MnauN>~4Gd^ACwxA527i#|H5%u*C;j?-D*S^v#e*F(QZU-Iq zGu9f<k^VpUVjTPz_>Ua&=l`|-sQ>%_{#W^)w(4`^Jac7#!3ZyoZnJ$G)<2?6g*2lB zm`~zC)?-N<9kFiY29(3-y1lzQwAOvOBU7E*=ad$CY@tss33~|<I;7r~U7B&gX+i>_ zX9#X@SN*8?o|&xhqf;|8t$fu3lIe6Y%uh#vS36ujf%7M>P``Kwyu?oD*XQeJ7ZX3c z{m#1)ex)0D@pqvwZ&z-C80Ap+j{OIs!Vpqe|7=Et=su>`?W4wV8+4j_1iC*^eS7T; z3#+iSNIm+=IpI*dabMh5Y}*}-2=BoFf(ZS#n-4BY^b%bA*gpDM^GSSEOP+XVKY1u0 z1+?(wfuH^~56&q+JcD%dad?H{_Vk(OC%hE?wX=S@0_5l8#?vw2Y196~7a^Sc8SyD6 zAlS#9ted1c7LK?>qg}_MqLY;p+M38zLE%Naj&9jNEoXMb$Ceu%0^YN^DpEbR<1p!~ z=+{q&O)4K}CB~ypaG*xduKa^~@zGic2P?MOdq0iEnq?(0KP`A?!7Ps-QvS7SboSfw zNw(87$KA;l#4r4g({6)C9c$ldJev6ValiFC7VzYD;9tH)`1GnASD;~CL#JQwVu)49 zFiH{Y;e|P@u2&+_D0l!2@xu*krsK@rchD2sCQTmV$%=~Tq#6>YE+k#Z!l+wfo^OjE zb;<nvfqtcGKR(O!8h-WqcYEnj{}JqOR-azG1YQ-Zom~PCRunW|y00SbGYa~1K$Cyr z4|y^&@!9Y9q&1pB3*p<hFM?2a=yi`)pYD$b#9Ig+u0x(jho0k4KJ%*M2eyqkDF2A( zwqlIOI_+np;=vMxXuv6EUIS-q8yYef{^033X+-fVi2YANljy<0dKN9uPb>Wq59Swd zBR*|!o?ZgrCkO9Ah2{q!-ir;@)08cKJOc3_e3Zgp{`RLv0&%9Do(!bc8me=nr+#0= zv-q?JIMSn5iq3jqTb;=yr5=j>M5g>;E~n{ZZod72nfE9Rbtc{7r>)!Tr<eZV0meV= z^Jsz*9WS9rzZakXHhj3s+e=9nbezO_4dM}g1#cU@0{QV_#|Z{-Zktcfp;3O}EoR`^ zmBC|Md-4(C`o5wg!C(kxJb14^`^oq;j=2GhzdS8I1;|dn(#x?!^q{TfM}wugh^Tvm zy5HiZG2p*jwqO71v-z27=iiq8beLl3DJnnj-k<Q~m>>Kr9}gQpzD&>7qz|W?2_v?f zsQJ;yKRf)t0B3eT{PC4PSjt&(7ysG~9-Mcl7OVUK^04KP9@H@YCqCe>$C&?m(W8Gt zNhC~QdfTki;~(M~;COl&{gKy=AJ6nP7|sN`@Oj<rzt2p%$usJ%ahT${eY`cFI@Tke z9wweK`uWN5b;e5MV-nTu5_k?w(zN~PUJsgKIisL|0&70H3{R&-H3Z><wJJY<=uQq0 zPurY-&JarfKa9EK%S%sC<JYh}{=>H$jokC`<~VI72)|;yX1`2TZ}2$2S%L6;B(egd z`tEbXMG8lxMUVAFkQyDre3J5H;1@UZ8{m2-xceR0q~-9zF}GH3o9Qq^(7Vs)X~nOX z%b-xq2b}qdl((O4hW5Svp6x5YfIxGPL3LnYO$Opuh7Ov~AVjD0AphYLN-v%CA$N27 z+Wj}q;%R&K_{*LjOnTIoVg##BUJg2e5s1$*69d8=K~1iL#FjdXZev55GDO|M?ez?Y z7!PA5R=y2!yWwcyj!^x+c5~Ekqg{ob$OzNahu^g5HgqF*8Wk}*fyph*2Ok6@XgAr0 zxdqBs;T#WJAVvpB^)c&Rn@1hmNe@~<K8R8<5XH_54nG@X^>+;P3st^<%IM)Udc+?7 z;E8;d(KLKK|I%UqwJJ`>%lY`j8i$+%J%i6}&~0OU`qR)c{)=aqCH1o@tCzPuvL0y3 zM<frpLyPaOUUo)G>`dN)bwP4t7gY{;J(aohx^LM`+`&vlZ19`jjKda}&i$B-lW;wY zT!mh}G#gzuL@t4-C?+j-k{P`b^YQbjpa0ohnAX3b5AqhPI&_hBC*&);@~)QvosQ>6 zoP@?Y(bj;cF#WHOnhy@w+`em?Kk!2Jd`8RW7w3Hjrr{#L^!v@a6Q2M4k3iM#qhBG_ z*wv?*Z~5%jXE6l@L%jv%@1^(+DnTm{B;mLmO~S!c#i~Dx$`k4tNT&AH9L077JFpS9 z(v}N>tk{x<W77c??WtmW2xq7OnT`QNs!whm1th|~+P-y~4Kf`rsksaxfol$*HGfH_ z>##=WB@%8djwX4%{VsOY8CKm)JT1u6H6)+YvBR&G#$UJdJ?8iHE5yfr0d+q8|7;|j ze&uqbmlgs8!SKN)@FKCLCvo!O&Y!}!rS;BopaMAr=Mgl?*sH;)<RPHiQOiXj*5jmy z-YP+hC!shSarGud=05V0N**cKDqcngS3LyDfOAd5?`Y^Sd3@>1CBpThu)cg<dU3a# znvBXeI266fs#vj=uE)^EjWm04PD4#?TWBvwV-=@X=bbmXLGbNZQ*<}E;twj>H*U!q z09LaiGSAkbHoK6gNLqNk{r)3*<TFPydU!=V-G<W(mHCg(|Ib$I6TIcAX9Pe0B^v#h zPZwJ}0hTP|*ox7Dtaz|Gk2M6WK1h`>)r<kk8N^8|aFRbuNzs2z)lvI2%JO%yJVRzU zZTscoP)|Q<c>_!YXAZElgfJCr$txjtW}X1=#lk$*6rbZ$Va;BP=!;EI+F`9(5#FA* zUV~ipYi5RiU#^yKu`^f&SVLqzc`+XKUP4Z5po-T36oW$)n>hm{j$E|Tfs}424?rer z@Tv&|EnNrDr1fPiu{Q5?-0ShY19(Iye9qu{?MmP$0nM}H@dttg=zP`nN4kmEQxkZ; z#lhpX+vD%YllhJhWDlq9_TmU{KHz=1;B8s3IC+~>PPO`!AXLW*-~^(qM=1B{MqD09 zCrLg@O-!{C5diX}Nx!1V1V|1|xsbR&^o3#Ssiq>pgAp9C1VVzto`9HHgFRXY!De$& zfkQK6S4%h;d&F`>(sAq3Mkj})xIl{*b4Vq}fVp~OFeeZah#im!oC%2t8LlQEwQt#e zR%hPLtlvBHSSXDHG7;F73N9B94{_|d>l|eCknSuszexr%G`o;<yEypJ0nkg;bv~*- z-zJdGq88A3{qPSfpg)LBypmZoyD*+n(|N)H=YPhnGPx}}Gu86XOt?6Qw`Ikb%Ze|{ zf{XX?MBtRM$A~O8!EneRVtB_`NdDP@;Ht5pJ!0~;Gs7hFxEkb9Hv`^v3Qp(b0w8V= zKAaJFIjV=h4CJJ1#2Q@bTJ{}L5BQY>ZX?X(Q1JiP-Ip!dk>om(j7TlL%v`hk|35mF z;g|>K0(wN8B~#URY^qIGT`B3TzK{S2P#8=d$!8x<EZB+4MrqM7^^G!Xm(k+4=gtG~ z1N92Vlbhxc9f`x*ZLfZiX)}-I@_)VgMTTH7E;HYkX&er70v2i&GD8`TLy$g~f90>w zCoRBRn@r`sKc-)tCecOo@wG$XmCE9>&%V8_bw%jj`^a$h%5DZ~iPu$``G!B#<bVJA zCI9~UTYi50kljQ!@p4@b*=*ig@YQPq*=^psMpWE9qm6E<`J9^|eG*0ls`@M3R7JOK zVMhviE@PIfv%Glv0g=x!Z!4fY9ol!H)HD)Xpi9`Pq&$3apw=^Y4=<b5TNbV+D4a-! z*=$P;r?C$;bF4-Evr&m4w(BI~c{s4&#u(LtFldQHISV%lP;hv4P#fL^x(T$8#fzE9 zW`b=mYIBU&4uC%>cX@|Y|2zKT%a4ceKAz&;bL|pzz2ixEdh<g~{`K)w{_FQY<sUzO z&P{rJ%D@oC5L3v$ONLvDz+=W#_H^^5az9*#RVwEooSJiE!qdox?B?L1MgQ)GGE_Zr z?~jEy&pc-JUjw(q=qfUdDnrAWm?P`i?*SK*Lcd{$&U_|d{(0nY&CQJA&(l(o3D7o` zZQJCBnQUI=z+>kIN34Z?o<dgoW<ccd!+f|sf86qH@6Hzb$*$t?zF!1mwj#h}G*knq z^eNoU#B7t@Ol;Td1K<iQ{oA(S7ar(5q=P@e66kA3oXS&*lqUuCLBD^pZFo?SFd@c3 z<)$LPK0f4s{rWBc{QXOI-Q@V3=|U=y%_h~ig|ViohjD~2;dB-*N8|#Qj)57Uc2qN6 zC4Ov7lWkruvhO-A&&OQMLY0L@b)W?ZimBkBl0Myu9RQ?TJ9s0LUK+<OXv&uJQUhap z57Nf*dQRAOF^@0)VInr>L1nE~cIRbN*>{r<+hp^SWm@J1ZZX>lEM}%blZJWjW~=j7 zDG?jnfo@P<;NMJ{iXK0KT#m*2R2iNEy{X9lZ2#T;{-3;mzgvaqGO~hiV23ZYG>WHZ z#O>#JS@u8C7PcVbdXFZMpWBE0`{ytD*YDr*v2CJ&3>mV?A)7*eY(qYDh&c@vsJ$tt zh1AWgI??@ORIas}RYikP#&tCllqkyh`!W&e&3jOdwt%R$Lq!gM-bqQCZ~BoRzyPrv z3c^1kr%+_~TMi*S(xv*il#4PpMeTuBi{No9GUA|=eo#y|D#<Eni-1?PStW666CD|? zTkeRX6@%)DE$ha`CH#s?BXkKv0~mDCR_Y!iRSNPsMpkM2|Ert({Vl3jlA2rU?vJ!L zZ&okYjm9$z>g!n##gO0oF8}@OxBT}%{vp5iT})<r(WZx|2+z&GIq0VjOkFZCD90tp zNV{?q6PRQ^;EeCCPZ*+dIEuba)L|Cpip*4Osmd{2<hR@Bn47~?WH&Z<u@qVb4VTDz zT<Z?{%>u>ShgnK^<SIKk%Sj6#VxV|z(Vh>;rZ8sORF5j+%txd)n{3<ESi~hAhip=M zV=^p}MrFLSvB<gg>=do1#efQwQO}tadVHg3H<%|gJ4@jIf0zFc|9Px1{2NZ8uRIkV z&)7X4?U{?`Uq61yfBpKW{QJjGG0_=@;-$aYObHf@MAFSvHe;Q>Ud*GcE*d4U2Rl78 zU1b#iW!`Ei^{*31$RuDEynK2ZlWv-5c$K?VGY=|*Q(QzD4#&75vGnXjt2{3tCH=Jp z(AC9mDvF2^ZH+S(;heQa3zMJI{Jmp{Y&hf?y+UnSg1F02tnZv1`&1WDFhE6mzvj02 z@q|g=qC`)--bHM`z|}w2(CeSNXTQ)E;OqPHrTzZ;qvMLee8&Tm4f(Z(13%2<pFe-e z?;k&9w@otOC4}}0`8+-+suUny#FIPH+;7G1G^#uzgP!CBVj;{+{0TD0{J<ug1)@EZ zlrYr$)o_}2v5#BKi*1FA(ZUDMAecJHrWG9*;V$SBVUX9qvKF2~J%zx&@M5gk_HOZ2 zewpwV<2wE<e~n6LvKA=HAu{D#38U1BB_Dzfds9?J&eH<{X7*eQQ_Bwo5YcV6Su9f7 zU)ieqrET+y0p{NUEI#mL)9)NZ=jhXSUidqy$(IMK^6d}#x$pA($A^4uHsixFCAt%; z8uEF3%JKOrvQ6|iMJOohDM9fbl$6w$a!`u-Zw#99BRnCb#i2CZbe5T)n4lAEh>p5- zW8g=0_N_`mq2WUrn>v1Go~?kyB(;_J7TkL#TM-z`7{E!?%Bje8-~@el4z%TAC=jO7 z&-a$H<^A}kD#0}t&8e9IxrG3TzkNLe-(j%ppiEnxY2(-OBuh5TjLiNWmA&3@^Vj?0 zLQ<pG^!C?If%ltxeDU2re`=Liz3K7vP&mt$Oih06KjqhtA7Y!y`23V{e5OJTIOI6~ zlH>T4O}9yJ`Nrp1wa6nh>0xHU@kd!|W)lO5#p|Uc5833R<-{hZ8r9KhwC(0XAXDf3 zXB82NNtHTOy}v0T-%=TlVq{(`oCJmXnVc>C$Dqe&#DGe1Bfp$kMUXb(F5QSZ{L$sw zbI(R{vu8T9HztMN43Tz_DIEk6sh*Prj?HAYg?8XeSA<hW8~}gj#=SM<{N^V8pH>K5 zzQ7k9dY?H8;Ay3>q{I0F_|Q%M@i9w(5t%`$$ES!4SE4~Mjx3vvl7~2GRS70nnoUn1 z0Hw0IWf(4lR3t48bB|EwTT*{LFEZzAqWZw36m@aMiEtXljA)-AS{K%sRJf`|S$~rf zeEW?!qTj=2S^{j^%}1athtQ~U%$T11C`~10y$a1%En5TA`5DlQHQ}sikkZmyIb;8W z`*)j_Ra6`(>}0<yb-#1#{^wZ){0IKVfBGe!`xnLBP(Qa#{_*37Y@#v_q(s+b$i7Eu zKFRuhv!tj>5Q7BUjH)+?5Y@%bJH=lI(5KOtW*;g^{cW}!T7*#F39j1hO~xKsn>hGZ zu0`nOu$SWJfpdMho^v)e@R3II*1-sn5Jyyoj?w{eZbiIavx#lc^F+n2q%Jh;QFE*J zpt+Aj+x%|J&vgfg?&^4frZ<H;TcObgUQYu)a>qO0_OB+WwX+3(a<Aa+>Ax@SMSb-7 z;07yr;R*5j&)_}e&wZDl`-iBA92tiW5nq&MvrRCa{P;#d)X+k$m4Gr3*RFJ}MB9J> z$^4cbBg8UD5Naw6k(;G$L$x_@bP9ABgf*<yqq@%hjObS=46@RQ)?v`3V3!}W?qTi2 zO-}J*M1-_7E0D$jyzMzTYZmwe;Vuxr@BRbUfxt#&^Dq{tV^Mn6X6E0`u>hJvZIdMn zFq}mgZukQKviIvPthby0a(&{0Z+~ZTe`R9=f8aL176_c)hCahHAJ|PkNY#10UD51^ zH{Imt$A@g2O&RS0pU{JBTP@5j!$@lra^i^+&xNIN8Kkl+?%R{2XakQ!a@IW_bBtBL zuWeJ98EN9tv7ZFsP!2vSr?$XIiI?D?`Lvu<j%yDrLgJ_89h*<uMR~8vz^Jx3@&p(~ z&l!-?FACM5?wm1!h`3UZ)3b6I%G;2$GZ0!zR*ZE+=8Z0kGm#J&tJHptvBbFt2GH<r zEWw?SQ;gQ*-dG>S#l1);zOpCuc^ZQD9ek=_aw<&ap*h%7Ge5kL_JS8I+Hmu+y7~=} z4^#Q|u}{fqv#N^zTT7%ONaS3N_-1-NO-8F%wVrP#E5#-A`E2hMoO%rrk!{#|SdzUK zZ~mC=*Vqs^UBM#Ft+>alS5c!a?!6J>sN8_z5?r5RzBI^IUDr=lLi~HpH!+8i>cA*4 zuMaWhwqfTXmm-fLOGYODLJFWH*&8&=9rpZ9QB|}{Dy0N$W2{#m%C~jtgM&e@k#~I= zxO-Ak_=k);@%(x!-`>VA7%SpgWAtY?KkLE8!8;X^-KM#Rind!i27FR`@77+)&FAeF z&Gy+2J~j(7UfoM%kwq7TX66a>TN<6a$|`|%1cQt=bg8CP8559<mOrmO6iY#_JwkjF zXGGT6ZB>zDfHV@?jYY9uisi1uz}hK$;^fsp9tE6TxoQn)hcFAVAVKZF=1`Wp-m4Dg zkQ8e?cgnbHeJL0O#2eT0?asIvfRWb@fk&J5HkyRTL!Swe7CSyXh;n}x@bIPhhjpeO z*U!f>?CgkRvdONyZ2I9;Qjcdhie?XvK14d<s2dcWSs>9@NDdQYtjq%$XLgFM19{71 zp;rK<0-Qo2qd8u747TW%2a+~p(8BcWn$E9v?XfX%5kP`G&^9%hlN6G@dk@cDS{f_k z)LsGWCG1euL#Y|Zh>>3IPN>o_J-ybIPB))m1R?w!)?4|9J?BAk9QcuCmEyJp*Qe?L z?n`j{P|vp6vuQ-V{3%YQyFL&CeOV2GCpE$19li3zLWYlgFoEQ^a1hTn^@+2M<g`;= zrzuF0bGZnn?ZT+SJ?a!saB``k5-;&BCfyU6M{?TM`1<<X<Cezfk&HnM@+jE}*YJ+x z2{EfrtHCrR!=rm^p%8rr3-73DC5`>usO2}vtxN0ky{|W|KHEsRqYbe~qW>U(ZYmnh z51!Eu70~Wg8fUD{FZW_JrN_{|M??A>x8@kr-D%gSE<k$!qcvMk^#T6%;*31rlHgoy zeZ3w6Vhh;<dF7Qj0W3B@xGaWn{pW=hVImyFg0)=4`SC#d-w!kSu}^bP)pDVgF&v;H z&KK%~DVcsjtwHzIuN_b-z^*+gu*-%B%v|4J)dtIWjf^fT90Zlu7qjuBJO=XCx4tn2 z-7&XzB$jN59-cCjr@N1!@`ex|Z`Nuvs7TOtcg5;5=>s~na$1UXn4oG^Yl9X=;0U5~ zU`PfMgye{OwkD6y0QqlFOU7-F(P6LC)@*dD&}qOG1HQKIe7-C7Z<6-D{u1;lzTf)~ zT$SH#lT#lKoHi`hvK|YMdzFcIvXarukFqfgUJie3CLf#0zA5#o6ZM|{dc$3RV}YWH zQ?Bv_bio=Vfhk<49V<5n5voyE*P-(l8O=_7j>3*K$mG_AO+0;c!M*RwR}cULBB#DM z#7k)9de_|tsy47hx9I|W3vT1`D86K!(Opl?Q%js=qe^pkRpnrodf`U%P(Vx*mZDQn zab-mlS{lGcyJRUrP8DJ)0U>8OZ+kiaW73{48F*f$r>+}y31UD;+|H#I)~vYmQPcbQ zes|=#V|x0+it3~C6Libz^zz@gUABFjec=J}nx6;276u=t&2T15NFi`53O2PSyvZIq zj6nv`VoEC$RwKgvp26FQJ?>bak8|zXdR)t%J$?4a=<^B#Z6+b75&huNHF{n}Hk4UM z_Rmyt+*8dUpmV;ytWvnwURp0;xlWbn*mlP2iJVkg6=S{SiP~$&oOW%2vJ0}!5SZEe zj~o%+Z?nr(7LNE?WEa{(eyz%Xo;rNe!{NHeJ}0>1#zFUDBZpP<S}N#0_MwX~MH-G< zK$Sk`3NGJwa?v%KBAd<wV7JKt3^^J<yoJlIN}KtwyTu)05Wo|eZLZEUzTk3ZK-}Vc zGv8$9h8>;egWP{NnFY`!#~0pw1ELm8!I)0BW8^_pLrw8B_4mJp{lFZK(*DU?*n<I7 zF_a5YWds(cG3ZclN<Z!Dy#)0*VM!MU=XLyrHudGo2SJeNc?-7Ks%b{n%gJdd^%9Eo zSTLRI$ECnGn{X+W^`+q!eY3y6N=dmMP6ppB^zK14$2xBNno6<w=k<hESv3&)R`tU3 z?9B@q*B4EDKGuRb;{35~vb*_a+C52Fe-$tl0-!k|oba%i&LkTT1<3w;xVD`|PvbbI zzrb)OoK4HXVv(KJLe}O3&=1YBGYb}CKu@Q{07Q<X{Qh)Wju&?>DVoVDm8`_DU>4E7 z#bJR4CHUVZO-Wd22_1x?<5Ql8SiZo%ZqRy3#zUrGz<uQkvNCIHJX#>S)mtZ{da*~@ zPOK(3LE7&9r45YtEHm%LZ&wk^OL{AMnJ%2lipMCS_QtR2+I3N<=?#V11{L+i2|&i$ zWN~h3+3iwV^R~fx5%?ELqLxWfseFXv3`B6C21;`1M<}~b$RVf7)2Y&#ZavYDi-;Ub zqoU~kb7^CZD|)mJU*Np)<Kr1)$T&uVab`Mw_MoSGXN=19Q!~#mq*g*Yvl9|vfi%~n zu4JSZgp_ytwoQG!A2~YI52DdD7NBaZNq4g%9ch@_ceJ#5enDg>^ft78zOk14u!~ub z`159jA2s1#R3!Ga&WthS{n^I9=EZU2eShwO`Hff4jT1xG!!}n;9@Nh*V3eLWtFA!I zsR~fiiQTCO-vA=fDK9)V4JE((tDJbcE#t8^Guh2#<DNZkU-O%VHvgK-m{Q!F6dE!> zMwh0|eO6TGa|L4%<G}rD&Cym_D}elj%Lfpx6s9RVEWIyH*#!+6ctR!Zgb;=%+@zal z0^Px3J;bJ)uep(DRb2z4REUvr*yii87?4&81Jv~839+YYNCQT}HFnfNXyjP2fBmh$ zFIEJl^kff%(LbAjM*su{fQNz~Rz(TAdu1q9F8}}%s7XXYRLq?KN1JgWUfO6YP|}gs z4(L3DCvR0n&1Ny9o-bd{3lzqU&HepfUD5qTZjm<B=&xv20F(aPd}1xj!tktXXf|4# zl$!sg9OS+?%6l%~<EBnmA4BVDfzBHB&z<<}C7Nq+NlR-gp08fBrrkBK!(;IW)INDc zU>I+Lr6O?LAm-|ma`a7>Zib^?SGE>`nXp;Y@`andvUcX-HC&jfc~GAIR4%NTS>VsR zE(%@ZsI=)1)^+L!z>-J4mi!A6+J3C-z1C~!0*$*wvz4ST!3TN^q}^@td#62pnM%C< z4|da89vQcf_Ekc3F1&s713<gjNy$TxQ|`luJ~lzfd*cu=O5p`M;KNiMa}*JemC@Rx zyzV(gSJs=-<~+X{98}bnkqPCjKWpkvZNnI&dUvUuK2bekFQJuBc134cDri#95<5`B zOeoqsLQ_<I;3zcrXi{u;{7`Y_Vxb;%VG$0&iaj?m6+^cp3(<}u!Os|a66w<HRo$3- zfnv>rNtsE`Gv{$1$2e=)7I8)5pSDsC=PjgqZmTah^rQZI%{j&MgkU|%fo}N!3;i!1 zJkDJZfZ`Inf1rVQ(p!*DN*nMy7sU_r)R}CFf(1YsVbBB}3saP2kZ70-gHPkKB?47u zrWcn2y?!H64VGS%CjnVUe`tkqxE4l?z{pg$k^ewEk5Wk!{svrF#ovqh2W4#pdydjZ z8cbQ{hAZS>ghNj2;2BJ<iii#J5X`vb<yLM}nV}Ml3_xk-DIxb&TcgTRt($u;atKOd zD&pP(?C%H{0x5%KH=r6%I^}5S)wX<@xPJjw#H&)Gb1{B7eDj8n|4TQw-un>Xxn%M2 zA0S=0naI9P*ICsmqs<9HANn!(kLjYtg`Sc^#D}nwY$>z3igQ|?sk1@UX=L09Y3>Kk zA2@sd!Bh+;wuOO+;|-3&cX6_w?h5rGfV`>QaHL~I#4&~gQ2>voEqW_I7cBFljH#Ts z^};BoHQ8tw$l&T_xldFn8&Ftx)IY~u3gjs;M}e&a*2=AUw_VR<;}*|Um%y&3XX<MK z5zds@H&i;WZk9JA$p5GYQJ<%Ko~NYsjn{iKeYju*pj4fGoBe9bj1xk=!zUlhSZa&a zLV5xst)jceJY9cT8AMb?J0d9OJ`NhtNNNp()a}h1$<zco+*4n(tR6YlsHc+Flng_? z%1Bgwr6ILBh`RNbO<Th@IVXjv`zY>JEtKp<T8D)ia=7=RBzrOc#_%%yqIFebR@#ND zH%kOQ9cazzN4RA;G?Rja`h3t}6qc%I=U~N~y?=en<D&b;b-OH=5aD+=_-marZUjC0 zs*K^uALN@-@Xnd_pmexs9L!k&GZx-N?~i3v{_KLoLYvB;ud1}kXJc}#%~aJ!)CKj< z*T}a&ijSAYZai*jQ=1{1!v#jvk2e!SF3FepuavyncJ70v24H~48g-@bV-6aTD%L9! zZ390An94X;%8@qAmfpD<$H)lvrWDjpF`j^2>3Dc=i>qo(hbH<?LPt_#(OzlHY)C!l zqFu^p)}QGG61dD|-evab6L<`NrmA>0<a4|CzEVJ3osoF`5V*t(=yhxf{?tvy12MB# zEH8RxU${_;`K@a@Xg3zZ-0ZX6#+z1jf^|64H<?T$PSYj$rx*5M4z2;yD05Z-o7gsQ z^VVNyX^uA6uQ8LKPC!RvC9>DeRG~g@-7LM3#duCRH2JL(i=aNf%Po-0rX#~JW4}Xh z;2<d?=Zx9{UFd8h^O71)u20Xh<pF&)rGZ#QN({uCT4G9O>QZ1?LbVn!<+M8<%#XJY z3J(_k!@Z*!7Wu6zUT#df)|>jx&5n1t!W%=B$0dgL@-=!t-4axTTqW4BW4*Q^{c@Pm zR)&kyi>kHQ!}5xI>iJSeSF2rp(Hwsr5!pB^regF~1+r-jG8KB?ZgE-4<4fGZH@Tjr zwwcJg0?EE1f+t716p_s?DrGo<zGLbqR!xe7|1FS2z$4o@;RifCYr=*mXz!i16Zzep z{3Af@j<!RsCN{~5$gzUGh)nI3+Qp0jPW1qmlK#qLZrwq60vw_{dEq-Xz%BcCDyi^t z>wzWC?XjN`-g%`fH19vFunf)eeT0fm7x!MOu-HkqP-Q*w!Vxf$8|I=&0lHC1&M7E+ z`;m(A^8N9I6iVJpe{#@cLkfxK!&{xNThn!oX7gi!C<c~TuFJUr7_1HeRT1Y<kl5tz z)3wBRT?tz}3lS*1Cd+SgRK6-Gv#z-0G$xWp<RLPasY;;=BB~_LP>k=b@)GpM5lF9< zu8%Q%ee#pXWxC#Aaer)__!I&Cq<*;RQS@?$|AE2h1yd;inX=tIXmSkp;#;~eEa)(C z?r1<Cn%HM%*pWG9-e@DI0=r=WvkQv`fUL(ad)QWN*GC8hhu&koV`B&lUI=)UMc@Qt zDl%*Ec4`w#y#ZM#j|Y(R0%-aV#s-u=?~<>B9C)WGiWQ8iOLPwC3Oxy>wC?eCFf$M< z8E=*c-b(k9m70pMDd>AB{TVNNXIh~5CwfsNy!v|X*>$!8dfJ7&xP>ozcCC&2l|WM5 zfgo62YqjP0vHMg=K%+l3dT~R_{E~0t;>VS;<fd)7g{Qqw4F*%77w4&lTM-SK#0|_4 z6&qWEM(%-*6rmk3(wukMs&bl{cFvr*HyWMo(&$0uatH6UhLP4yLo!^=ECB131kh;0 zLE2*;Jc<@C$E+_7rDjA5wp^(crE_J@2Cg<|MTm`2236@f_R}=V8y6{_u<_4iKCFdb zS%^n?oIU~kmL<ASDbK}3cy;q%zNbG~vQP#+_3}k&kvnZn^ywV?Wn+knsKTjYK^SC& z$i;88BfR@u706zHSXh7n0LuelxcI~)$*uZbW)dRX-bs2dnUPt9wn$!sS{sP8VCDWK zM~FLh$o)(;sAdHq7GQn2^cntdYDN30M*yUfHM%tILLOc`f1q+hkx{F_o`!*$P!t&0 z#adeeU;%@wt;*}l#L`OaXpA$_;IBsE;R5`B8PvxzJ$KOxzd!}*<zewPeE^<c&)*O@ z+_^73`m88=O1WE=S{zzwzI`y~f`-*TVx7754TM`t*tp@17AZ6-N{E-Xd5B1EW@ajs zMpy?#4%GC0f4@B<to6BgK*v%KKSt|=%0n^0Lg=iNbm^OfosqR+KB_$nK&52W^B^d& zwB{|Q)`2S_Q>rE+<M0X|&WX_OJ{+HGza%TTB_qth3P!RYM>z%U9re@qoA@V(0KT$M zzVXj@y751{`JWw1uTC4P%xS+|P-_jwhX4bDn7;HX3%A^V#>qc%t4VqdQORosuyIJK z8hk;~;)@jDqbCf6#CIf+dA*q@I48{vGwsLFz4=$*cy6dc2Y?WOSGa_V$l*ywl758? zg-AjnYf8W{U!}@uGm&FtJX-QGIpD+z$CcF(A+13f;-qCLLlaZ$7=iTRo>flHp)fpy zz;$s40j~~$S9clCT9iMxvERune62;f$Kdd#Q{$~EVmxkdmg!nA|1A+@3m0C1`hB6C zgf&l?N<lo%XG=P;4f$zS0Auh*o-?fq5i@u&so(zL1L&rntfdeC`q9#CB@=D|%&dD2 zW+14#ktV6?5^1g~%v+tAmUNH^s%Sh;1~#oxSw2j;T7a_<ph3GSs##_P+{L(95#sjU z*I?f^S3LHODJ!SX2bN3wGyLS#(w+e>z38dUEUh5QGF^NcP}#5o=P0ZbI<Jo%1J|gq zZ+maQ%PYu(1^!xs*=rR-|Bove^j(n?8d6!Kz^Rmj$Yzia9b)R6F8g`3%=s#97yo0T z^M<c5C2$a{Zo-v)-1~zpt2qhSnC-I=+SE|f>KdXN`G2Jvyt3{dRNh0zoRJ{#u2Yp) zxeC$@Pa`Skiakkzln!SSTnMC?^9#UI74WSamT7&IJ)DhF5JZDVSO0X1ue=<l#kl%W zs6^M6#-JRK2}>~bAlOm<0BX(xkfjq;9{cyJG@q1*H!t-5w$!g40(UUrlO2Z3j^*X* z0?!{_9%ll|OHxF=XmibGscJfvXd1sHA}x6cx=bt2J#>M3r|-nbfMcM$*$l{F1_BfU zLJM@WIo3KbW(a9JgcfB_wk{^NZLa1+_QpK17iD&M8M3y0x((5KT)<D^j6>%37GJ;4 zSk}!xQrYP8#etb1B<dlg$g=wwWujWrfSwv$VVyz~hqGUwAt_w`cctLvq1Ik+RCzN` z0q!CcuVYRWstk8PN<)w`P(8c<=^LEjDM#<o=6Z!&{03@(Co#pZl9sp=M_d9S@>cjM zUU=PQ5&=@cNsZ7hV_|9VLHh6Ls|O9iT&3W~LIX9H>?F)aA&?G`Sq$oUSO=Ee!bF!j z_De#VY}uo#cKt#k{QN(fDL7*Q<v9qRkOS7JNWv}ZJ?Ewi+AfEs5c;2aLwiMV&^K@# zrQ9rsXC<aYF09okbHOZUDdO`geM5ncBdfSGb#`TN1N2ISgHQJKJ7bZ<n^@q9hkNx9 z_+G33#q;5d$OK-PF2Emort|48mZ&)gg3g6Y02v)r!;^Yc7;PqSY_aKvECSS}Z!a~P z)zlvW?MX$-?1hh}s3l->(W)C^0H-BG8=q=j=N)R&Q7=?%l|{H%(eZdMRS3NKlja+c zZ9~4VZVeXw`8)&<%mYA0WZy*OASIqqxW~FOlugU}P*J?beN)-CzyQ1@Sv9%CvjC~; zOAMn`f_?q&=@b*ay`Ceya1zky-v{O6OMB#de;*h6giBNoUw@((Cy~}c!J?T&h72;T z7-3v3%>^h_aWTANWeO3doJl2-qw>5}Ml0o_&xQ4@yRg@e17ssZ(m5EzW}gelmTZLM z2xfFBkQ3^H6;%G6rm<#D5Bd|wO*f<#f4%~*7y<~ixS=&1kVZzBWwe=zsBZH!3_8wD zM5k6_`16^39*6v&zYfPhHn(VpgOxMN9b-(kfU2#*l@c9NjXenfQPmGNOq~Yxwpg6I zFhKc+ju9x<jVyb(zN%Ka#HY~pNr2~d`%M+_w*-yg8|B5#WDwrn=Xh4`-<(o+bYr8t zN_93`JI(ai!t-m;d&B$FA)n(Y8V#fzTe#xcI|h1>a#z+h3~K^$yQ%CpjY)XlgY3pR zXp~K1=RCi*0aK+Of8K5t8wRKx(d%kNV|&70UEzI{m@p~cYyiY5dW!rmEJP5R2Fpvq zY?_EdRdh`G^x@UnU!Q|qT*Z9{*TJ0bs|r$DGE>7|0pSY0xs|$&(s&H4ItcAaN^1RJ zSX#h6dKGrAk5&M;i77AcWIUt4@#SOTiiN<_k{nNkM6Y@kypkdEE#ZPv+o7AB!wO79 zHmL#?7iO49)!Z!ot49xo;X2GS0YS_7=n>|D>v_%%ikYbF1axUDWm=GiKU|uCZY-|R z1UIiL&oUkHp(a+?&A8Gw2a&n~8ZIcnZwO$%#$CH$x}*yWrToymfz7`+6_nHN{PXjW zzdk>mfw4T;)M^g~>tZK078+0p%xY~6$5S?{m;&(g_cVQ={BY!!hUiJ2{tR0-VI4po z0xdj|Pt@<V_Sb(F-)R1E&Qg2xMwV|q`(we-<J<p@vq8^?WG+HE54nh}lXa5xU~=vr zEUKj4AKowL=3v{Z@mSkAZ%tc*H=U{)d`NKC{gARVBPFAflh1-`ttmW6F24o)(IKGe zg@_A~FfWnQR3E8NwGPn;8!`cXFU39_-d;s|k}V#J5Xk4}K@#nG0P|F1PLz1Nc8uY6 z?VbQVme+Sxg=_!Jg{sG5UWy>x1DI)t00=EzG}SnH?Y}_s>pg9UcOK`q68Js@fhX7U zJpq6R$C^IB_HTp&$~<`-#z{K`(m!&Rem%GcmdQC^>@#Jjc;#vNt=AN$_GZIaYfch_ zi4{~@&jc)KfJiG)lgriMwJmR3G!ad6DrN(eIJiWoGw>wk=Gq)=Q8uxVc(FN@qdnw9 zSJxy0%7(;e1li1HX&(S1k21<MZJEwZ%VPzGLyx^}+XM@><133QIeib&29>m1fnB+I zXNA|kHM&IRx3ROd5;ronJRoX?iLigU-fi7GAVD7rXgbz@ujyAgXTIO<VZGRpD);u` zczW$Ke{|P=Kt%QCOt~LlVk}H@<Al?U<(F>4IrV*x9gKKOxyWv+Eh4ME5}=!^qvO*_ zjm^1T-{36nL77-OST&t#dConsMr7t;PXANZfG*>;_5G1kfU2l%9t<)Zma9p>NbEU4 za|zz|nCf&Pat9(dLm7nD10v(-@!OoJ4D#J85f)MxAb<>2+4n_$eGECgeL796nurc9 w_hg$+NmzN}<^S@Scg-YF{P|*2r7H4&0VHK38C=aZPyhe`07*qoM6N<$f_uf`ivR!s literal 0 HcmV?d00001 diff --git a/key_test.py b/key_test.py deleted file mode 100644 index f9ee9fa..0000000 --- a/key_test.py +++ /dev/null @@ -1,32 +0,0 @@ -import sys -import tty -import termios -import select -import time - - -def readchar(): - r, w, e = select.select([sys.stdin], [], []) - if sys.stdin in r: - ch = sys.stdin.read(1) - return ch - - -fd = sys.stdin.fileno() -oldtty = termios.tcgetattr(fd) -newtty = termios.tcgetattr(fd) -try: - termios.tcsetattr(fd, termios.TCSANOW, newtty) - tty.setraw(fd) - tty.setcbreak(fd) - while True: - print('Wait') - time.sleep(0.1) - key = readchar() - print('%d' % ord(key)) - if key == 'w': - print('w') - if key == 'q': - break -finally: - termios.tcsetattr(fd, termios.TCSADRAIN, oldtty) \ No newline at end of file diff --git a/model/__common__.py b/model/__common__.py index 547233d..d92baf6 100644 --- a/model/__common__.py +++ b/model/__common__.py @@ -1,8 +1,5 @@ -import torch -from torch import Tensor -from typing import List, Dict, Union, Optional, Any - +from configargparse import ArgumentParser from modules import * -from utils.type import InputData, NetInput, NetOutput, ReturnData -from utils.perf import perf -from utils.samples import Samples +from utils import math, config, nn +from utils.types import * +from utils.profile import profile \ No newline at end of file diff --git a/model/__init__.py b/model/__init__.py index 129aea3..3b97052 100644 --- a/model/__init__.py +++ b/model/__init__.py @@ -1,15 +1,15 @@ -import importlib -import os -from .utils import * - - -# Automatically import model files this directory -package_dir = os.path.dirname(__file__) -package = os.path.basename(package_dir) -for file in os.listdir(package_dir): - path = os.path.join(package_dir, file) - if file.startswith('_') or file.startswith('.') or file == "utils.py": - continue - if file.endswith('.py') or os.path.isdir(path): - model_name = file[:-3] if file.endswith('.py') else file - importlib.import_module(f'{package}.{model_name}') +import sys +from inspect import isclass + +from .model import Model, model_classes +from .nerf import NeRF +from .fs_nerf import FsNeRF + +__all__ = ["Model", "NeRF", "FsNeRF"] + + +# Register all model classes +for item in __all__: + var = getattr(sys.modules[__name__], item) + if isclass(var) and issubclass(var, Model): + model_classes[item] = var \ No newline at end of file diff --git a/model/__old/__common__.py b/model/__old/__common__.py new file mode 100644 index 0000000..c47fa20 --- /dev/null +++ b/model/__old/__common__.py @@ -0,0 +1,6 @@ +import torch +from torch import Tensor + +from modules import * +from utils.type import * +from utils.profile import profile \ No newline at end of file diff --git a/model/__old/__init__.py b/model/__old/__init__.py new file mode 100644 index 0000000..129aea3 --- /dev/null +++ b/model/__old/__init__.py @@ -0,0 +1,15 @@ +import importlib +import os +from .utils import * + + +# Automatically import model files this directory +package_dir = os.path.dirname(__file__) +package = os.path.basename(package_dir) +for file in os.listdir(package_dir): + path = os.path.join(package_dir, file) + if file.startswith('_') or file.startswith('.') or file == "utils.py": + continue + if file.endswith('.py') or os.path.isdir(path): + model_name = file[:-3] if file.endswith('.py') else file + importlib.import_module(f'{package}.{model_name}') diff --git a/model/__old/bg_net.py b/model/__old/__old/bg_net.py similarity index 100% rename from model/__old/bg_net.py rename to model/__old/__old/bg_net.py diff --git a/model/__old/nerf_depth.py b/model/__old/__old/nerf_depth.py similarity index 100% rename from model/__old/nerf_depth.py rename to model/__old/__old/nerf_depth.py diff --git a/model/__old/oracle.py b/model/__old/__old/oracle.py similarity index 100% rename from model/__old/oracle.py rename to model/__old/__old/oracle.py diff --git a/model/base.py b/model/__old/base.py similarity index 85% rename from model/base.py rename to model/__old/base.py index cbb0464..dcff495 100644 --- a/model/base.py +++ b/model/__old/base.py @@ -1,13 +1,10 @@ import json -from typing import Optional from torch import Tensor from utils import color -from utils.misc import print_and_log -from utils.samples import Samples -from utils.module import Module -from utils.type import NetInput, NetOutput, InputData, ReturnData -from utils.perf import perf +from utils.nn import Module +from utils.types import * +from utils.profile import profile model_classes = {} @@ -39,11 +36,10 @@ class BaseModel(Module, metaclass=BaseModelMeta): self._preprocess_args() self._init_chns() - def chns(self, name: str, value: int = None) -> Optional[int]: + def chns(self, name: str, value: int = None) -> int: if value is not None: self._chns[name] = value - else: - return self._chns.get(name, 1) + return self._chns.get(name, 1) def input(self, samples: Samples, *whats: str) -> NetInput: all = ["x", "d", "f"] @@ -65,7 +61,7 @@ class BaseModel(Module, metaclass=BaseModelMeta): """ raise NotImplementedError() - @perf + @profile def forward(self, data: InputData, *outputs: str, **extra_args) -> ReturnData: """ Perform rendering for given rays. @@ -82,7 +78,7 @@ class BaseModel(Module, metaclass=BaseModelMeta): return ret def print_config(self): - print_and_log(json.dumps(self.args)) + return json.dumps(self.args) def _preprocess_args(self): pass @@ -93,7 +89,7 @@ class BaseModel(Module, metaclass=BaseModelMeta): self._chns["color"] = color.chns(self.color) self._chns.update(chns) - def _input(self, samples: Samples, what: str) -> Optional[Tensor]: + def _input(self, samples: Samples, what: str) -> Tensor | None: raise NotImplementedError() def _sample(self, data: InputData, **extra_args) -> Samples: diff --git a/model/cnerf.py b/model/__old/cnerf.py similarity index 91% rename from model/cnerf.py rename to model/__old/cnerf.py index 2560838..553ff5b 100644 --- a/model/cnerf.py +++ b/model/__old/cnerf.py @@ -4,7 +4,7 @@ from .base import BaseModel from typing import Callable from .nerf import NeRF -from utils.voxels import trilinear_interp +from utils.voxels import linear_interp class CNeRF(BaseModel): @@ -19,17 +19,17 @@ class CNeRF(BaseModel): self.corner_indices, self.corners = space.get_corners(vidxs) self.feats_on_corners = feats_fn(self.corners) - @perf + @profile def interp(self, samples: Samples) -> Tensor: - with perf("Prepare for coarse interpolation"): + with profile("Prepare for coarse interpolation"): voxels = self.space.voxels[samples.interp_vidxs] cidxs = self.corner_indices[samples.interp_vidxs] # (N, 8) feats_on_corners = self.feats_on_corners[cidxs] # (N, 8, X) # (N, 3) normed-coords in voxel p = (samples.pts - voxels) / self.space.voxel_size + .5 - with perf("Interpolate features"): - return trilinear_interp(p, feats_on_corners) + with profile("Interpolate features"): + return linear_interp(p, feats_on_corners) @property def stage(self): @@ -62,21 +62,22 @@ class CNeRF(BaseModel): self.model(stage).space = self.model(stage - 1).space.clone() self.args0["stage"] = stage - @perf + @profile def infer(self, *outputs: str, samples: Samples, inputs: NetInput = None, **kwargs) -> NetOutput: inputs = inputs or self.input(samples) return self.model(samples.level).infer(*outputs, samples=samples, inputs=inputs, **kwargs) def print_config(self): + s = f"{len(self.sub_models)} levels:\n" for i, model in enumerate(self.sub_models): - print(f"Model {i} =====>") - model.print_config() + s += f"Model {i}: {model.print_config()}\n" + return s @torch.no_grad() def split(self): return self.model(self.stage).split() - def _input(self, samples: Samples, what: str) -> Optional[Tensor]: + def _input(self, samples: Samples, what: str) -> Tensor | None: if what == "f": if samples.level == 0: return None @@ -86,7 +87,7 @@ class CNeRF(BaseModel): else: return self.model(samples.level)._input(samples, what) - @perf + @profile def _sample(self, data: InputData, **extra_args) -> Samples: samples: Samples = self.model(data["level"])._sample(data, **extra_args) samples.level = data["level"] @@ -95,7 +96,7 @@ class CNeRF(BaseModel): # samples.voxel_indices, data["rays_d"]) return samples - @perf + @profile def _render(self, samples: Samples, *outputs: str, **extra_args) -> ReturnData: self._prepare_interp(samples, on_coarse=self.args.get("interp_on_coarse")) return self.model(samples.level).renderer(self, samples, *outputs, **{ diff --git a/model/mnerf.py b/model/__old/mnerf.py similarity index 98% rename from model/mnerf.py rename to model/__old/mnerf.py index ab9e4a2..e1b964a 100644 --- a/model/mnerf.py +++ b/model/__old/mnerf.py @@ -22,7 +22,7 @@ class MNeRF(NeRF): in_chns = self.x_encoder.out_dim + core_params['nf'] return MultiNerf(nets) - @perf + @profile def _sample(self, data: InputData, **extra_args) -> Samples: samples = super()._sample(data, **extra_args) samples.level = data["level"] diff --git a/model/mnerf_advance.py b/model/__old/mnerf_advance.py similarity index 90% rename from model/mnerf_advance.py rename to model/__old/mnerf_advance.py index de55b95..c418833 100644 --- a/model/mnerf_advance.py +++ b/model/__old/mnerf_advance.py @@ -1,8 +1,6 @@ from .__common__ import * from .mnerf import MNeRF -from utils.misc import merge - class MNeRFAdvance(MNeRF): """ @@ -19,7 +17,7 @@ class MNeRFAdvance(MNeRF): return super().split() def _sample(self, data: InputData, **extra_args) -> Samples: - return super()._sample(data, **merge(extra_args, n_samples=self.n_samples(data["level"]) + 1)) + return super()._sample(data, **(extra_args | {"n_samples": self.n_samples(data["level"]) + 1})) def _render(self, samples: Samples, *outputs: str, **extra_args) -> ReturnData: L = samples.level diff --git a/model/__old/nerf.py b/model/__old/nerf.py new file mode 100644 index 0000000..68a5d3a --- /dev/null +++ b/model/__old/nerf.py @@ -0,0 +1,212 @@ +from pathlib import Path +from operator import itemgetter + +from modules.input_encoder import FreqEncoder +from .__common__ import * +from .base import BaseModel +from utils import math +from utils.misc import masked_scatter + + +class NeRF(BaseModel): + + TrainerClass = "TrainWithSpace" + SamplerClass = None + RendererClass = None + + space: Space | Voxels | Octree + + @property + def multi_nets(self) -> int: + return self.args.get("multi_nets", 1) + + def __init__(self, args0: dict, args1: dict = None): + """ + Initialize a NeRF model + + :param args0 `dict`: basic arguments + :param args1 `dict`: extra arguments, defaults to {} + """ + super().__init__(args0, args1) + + # Initialize components + + self._init_space() + self._init_encoders() + self._init_core() + self._init_sampler() + self._init_renderer() + + @profile + def infer(self, *outputs: str, samples: Samples, inputs: NetInput = None, **kwargs) -> NetOutput: + inputs = inputs or self.input(samples) + if len(self.cores) == 1: + return self.cores[0](inputs, *outputs, samples=samples, **kwargs) + return self._multi_infer(inputs, *outputs, samples=samples, **kwargs) + + @torch.no_grad() + def split(self): + ret = self.space.split() + if 'n_samples' in self.args0: + self.args0['n_samples'] *= 2 + if 'voxel_size' in self.args0: + self.args0['voxel_size'] /= 2 + if "sample_step_ratio" in self.args0: + self.args1["sample_step"] = self.args0["voxel_size"] \ + * self.args0["sample_step_ratio"] + if 'sample_step' in self.args0: + self.args0['sample_step'] /= 2 + return ret + + def export_onnx(self, path: str | Path, batch_size: int = None): + self.cores[0].get_exporter().export_onnx(path / "core_0.onnx", batch_size) + + def _preprocess_args(self): + if "sample_step_ratio" in self.args0: + self.args1["sample_step"] = self.args0["voxel_size"] * self.args0["sample_step_ratio"] + if self.args0.get("spherical"): + sample_range = [ + 1 / self.args0['depth_range'][0], + 1 / self.args0['depth_range'][1] + ] if 'depth_range' in self.args0 else [1, 0] + rot_range = [[-180, -90], [180, 90]] + self.args1['bbox'] = [ + [sample_range[0], math.radians(rot_range[0][0]), math.radians(rot_range[0][1])], + [sample_range[1], math.radians(rot_range[1][0]), math.radians(rot_range[1][1])] + ] + self.args1['sample_range'] = sample_range + if not self.args.get("multi_nets"): + if not self.args.get("net_bounds"): + self.register_temp("net_bounds", None) + self.args1["multi_nets"] = 1 + else: + self.register_temp("net_bounds", torch.tensor(self.args["net_bounds"])) + self.args1["multi_nets"] = self.net_bounds.size(0) + + def _init_chns(self, **chns): + super()._init_chns(**{ + "x": self.args.get('n_featdim') or 3, + "d": 3 if self.args.get('encode_d') else 0, + **chns + }) + + def _init_space(self): + self.space = Space.create(self.args) + if self.args.get('n_featdim'): + self.space.create_embedding(self.args['n_featdim']) + + def _init_encoders(self): + if isinstance(self.args["encode_x"], list): + self.x_encoder = InputEncoder.create(self.chns("x"), *self.args["encode_x"]) + else: + self.x_encoder = FreqEncoder(self.chns("x"), self.args['encode_x'], cat_input=True) + if self.args.get("encode_d"): + if isinstance(self.args["encode_d"], list): + self.d_encoder = InputEncoder.create(self.chns("d"), *self.args["encode_d"]) + else: + self.d_encoder = FreqEncoder(self.chns("d"), self.args['encode_d'], angular=True) + else: + self.d_encoder = None + + def _init_core(self): + self.cores = self.create_multiple(self._create_core_unit, self.args.get("multi_nets", 1)) + + def _init_sampler(self): + if self.SamplerClass is None: + SamplerClass = Sampler + else: + SamplerClass = self.SamplerClass + self.sampler = SamplerClass(**self.args) + + def _init_renderer(self): + if self.RendererClass is None: + if self.args.get("core") == "nerfadv": + RendererClass = DensityFirstVolumnRenderer + else: + RendererClass = VolumnRenderer + else: + RendererClass = self.RendererClass + self.renderer = RendererClass(**self.args) + + def _create_core_unit(self, core_params: dict = None, **args): + core_params = core_params or self.args["core_params"] + if self.args.get("core") == "nerfadv": + return NerfAdvCore(**{ + "x_chns": self.x_encoder.out_dim, + "d_chns": self.d_encoder.out_dim, + "density_chns": self.chns('density'), + "color_chns": self.chns('color'), + **core_params, + **args + }) + else: + return NerfCore(**{ + "x_chns": self.x_encoder.out_dim, + "density_chns": self.chns('density'), + "color_chns": self.chns('color'), + "d_chns": self.d_encoder.out_dim if self.d_encoder else 0, + **core_params, + **args + }) + + @profile + def _sample(self, data: InputData, **extra_args) -> Samples: + return self.sampler(*itemgetter("rays_o", "rays_d")(data), self.space, + **self.args | extra_args) + + @profile + def _render(self, samples: Samples, *outputs: str, **extra_args) -> ReturnData: + if len(samples.size) == 1: + return self.infer(*outputs, samples=samples) + return self.renderer(self, samples, *outputs, **self.args | extra_args) + + def _input(self, samples: Samples, what: str) -> torch.Tensor | None: + if what == "x": + if self.args.get('n_featdim'): + return self._encode("emb", self.space.extract_embedding( + samples.pts, samples.voxel_indices)) + else: + return self._encode("x", samples.pts) + elif what == "d": + if self.d_encoder and samples.dirs is not None: + return self._encode("d", samples.dirs) + else: + return None + elif what == "f": + return None + else: + ValueError(f"Don't know how to process input \"{what}\"") + + def _encode(self, what: str, val: torch.Tensor) -> torch.Tensor: + if what == "x": + # Normalize x according to the encoder's range requirement using space's bounding box + if self.space.bbox is not None: + val = (val - self.space.bbox[0]) / (self.space.bbox[1] - self.space.bbox[0]) + val = val * (self.x_encoder.in_range[1] - self.x_encoder.in_range[0])\ + + self.x_encoder.in_range[0] + return self.x_encoder(val) + elif what == "emb": + return self.x_encoder(val) + elif what == "d": + return self.d_encoder(val) + else: + ValueError(f"Don't know how to encode \"{what}\"") + + @profile + def _multi_infer(self, inputs: NetInput, *outputs: str, samples: Samples, **kwargs) -> NetOutput: + ret: NetOutput = {} + for i, core in enumerate(self.cores): + selector = (samples.pts >= self.net_bounds[i, 0] + and samples.pts < self.net_bounds[i, 1]).all(-1) + partial_ret: NetOutput = core(inputs[selector], *outputs, samples=samples[selector], + **kwargs) + for key, value in partial_ret.items(): + if key not in ret: + ret[key] = value.new_zeros(*inputs.shape, value.shape[-1]) + ret[key] = masked_scatter(selector, value, ret[key]) + return ret + + +class NSVF(NeRF): + + SamplerClass = VoxelSampler diff --git a/model/snerf_fast.py b/model/__old/snerf_fast.py similarity index 66% rename from model/snerf_fast.py rename to model/__old/snerf_fast.py index d343789..7293fe1 100644 --- a/model/snerf_fast.py +++ b/model/__old/snerf_fast.py @@ -1,17 +1,14 @@ from .__common__ import * from .nerf import NeRF -from utils.misc import merge - class SnerfFast(NeRF): def infer(self, *outputs: str, samples: Samples, inputs: NetInput = None, chunk_id: int, **kwargs) -> NetOutput: inputs = inputs or self.input(samples) - ret = self.cores[chunk_id](inputs, *outputs) return { - key: value.reshape(*inputs.shape, -1) - for key, value in ret.items() + key: value.reshape(*samples.size, -1) + for key, value in self.cores[chunk_id](inputs, *outputs).items() } def _preprocess_args(self): @@ -28,7 +25,7 @@ class SnerfFast(NeRF): density_chns=self.chns('density') * self.samples_per_part, color_chns=self.chns('color') * self.samples_per_part) - def _input(self, samples: Samples, what: str) -> Optional[torch.Tensor]: + def _input(self, samples: Samples, what: str) -> torch.Tensor | None: if what == "x": return self._encode("x", samples.pts[..., -self.chns("x"):]).flatten(1, 2) elif what == "d": @@ -37,17 +34,25 @@ class SnerfFast(NeRF): else: return super()._input(samples, what) + def _encode(self, what: str, val: torch.Tensor) -> torch.Tensor: + if what == "x": + # Normalize x according to the encoder's range requirement using space's bounding box + bbox = self.space.bbox[:, -self.chns("x"):] + val = (val - bbox[0]) / (bbox[1] - bbox[0]) + val = val * (self.x_encoder.in_range[1] - self.x_encoder.in_range[0])\ + + self.x_encoder.in_range[0] + return self.x_encoder(val) + return super()._encode(what, val) + def _render(self, samples: Samples, *outputs: str, **extra_args) -> ReturnData: - return self._render(samples, *outputs, - **merge(extra_args, - raymarching_chunk_size_or_sections=[self.samples_per_part])) + return super()._render(samples, *outputs, + **extra_args | + {"raymarching_chunk_size_or_sections", [self.samples_per_part]}) - def _multi_infer(self, inputs: NetInput, *outputs: str, samples: Samples, chunk_id: int, **kwargs) -> NetOutput: - ret = self.cores[chunk_id](inputs, *outputs) - return { - key: value.reshape(*samples.size, -1) - for key, value in ret.items() - } + def _sample(self, data: InputData, **extra_args) -> Samples: + samples = super()._sample(data, **extra_args) + samples.voxel_indices = 0 + return samples class SnerfFastExport(torch.nn.Module): diff --git a/model/snerf_x.py b/model/__old/snerf_x.py similarity index 84% rename from model/snerf_x.py rename to model/__old/snerf_x.py index e4f7692..9df2234 100644 --- a/model/snerf_x.py +++ b/model/__old/snerf_x.py @@ -2,7 +2,6 @@ from .__common__ import * from .nerf import NeRF from .utils import load -from utils.misc import merge class SNeRFX(NeRF): @@ -23,12 +22,12 @@ class SNeRFX(NeRF): self.args0['net_samples'] = [val * 2 for val in self.args0['net_samples']] return ret - @perf + @profile def _render(self, samples: Samples, *outputs: str, **extra_args) -> ReturnData: return super()._render(samples, *outputs, - **merge(extra_args, - raymarching_chunk_size_or_sections=self.args["net_samples"])) + **extra_args | + {"raymarching_chunk_size_or_sections": self.args["net_samples"]}) - @perf + @profile def _multi_infer(self, inputs: NetInput, *outputs: str, chunk_id: int, **kwargs) -> NetOutput: return self.cores[chunk_id](inputs, *outputs, **kwargs) diff --git a/model/utils.py b/model/__old/utils.py similarity index 86% rename from model/utils.py rename to model/__old/utils.py index 964b541..1f0a74a 100644 --- a/model/utils.py +++ b/model/__old/utils.py @@ -1,10 +1,9 @@ from pathlib import Path -from typing import Optional, Union from .base import model_classes, BaseModel from utils import netio -def get_class(model_class_name: str) -> Optional[type]: +def get_class(model_class_name: str) -> type | None: return model_classes.get(model_class_name) @@ -31,5 +30,5 @@ def serialize(model: BaseModel) -> dict: } -def load(path: Union[str, Path]) -> BaseModel: +def load(path: str | Path) -> BaseModel: return deserialize(netio.load_checkpoint(path)[0]) diff --git a/model/vnerf.py b/model/__old/vnerf.py similarity index 89% rename from model/vnerf.py rename to model/__old/vnerf.py index 8c30c84..c643683 100644 --- a/model/vnerf.py +++ b/model/__old/vnerf.py @@ -14,7 +14,7 @@ class VNeRF(NeRF): def _create_core_unit(self): return super()._create_core_unit(x_chns=self.x_encoder.out_dim + self.args['n_featdim']) - def _input(self, samples: Samples, what: str) -> Optional[torch.Tensor]: + def _input(self, samples: Samples, what: str) -> torch.Tensor | None: if what == "x": return torch.cat([ self.space.extract_voxel_embedding(samples.voxel_indices), diff --git a/model/__todo/cnerf.py b/model/__todo/cnerf.py new file mode 100644 index 0000000..553ff5b --- /dev/null +++ b/model/__todo/cnerf.py @@ -0,0 +1,129 @@ +from utils.misc import dump_tensors_to_csv +from .__common__ import * +from .base import BaseModel +from typing import Callable + +from .nerf import NeRF +from utils.voxels import linear_interp + + +class CNeRF(BaseModel): + + TrainerClass = "TrainMultiScale" + + class InterpSpace(object): + + def __init__(self, space: Voxels, vidxs: Tensor, feats_fn: Callable[[Any], Tensor]) -> None: + super().__init__() + self.space = space + self.corner_indices, self.corners = space.get_corners(vidxs) + self.feats_on_corners = feats_fn(self.corners) + + @profile + def interp(self, samples: Samples) -> Tensor: + with profile("Prepare for coarse interpolation"): + voxels = self.space.voxels[samples.interp_vidxs] + cidxs = self.corner_indices[samples.interp_vidxs] # (N, 8) + feats_on_corners = self.feats_on_corners[cidxs] # (N, 8, X) + # (N, 3) normed-coords in voxel + p = (samples.pts - voxels) / self.space.voxel_size + .5 + + with profile("Interpolate features"): + return linear_interp(p, feats_on_corners) + + @property + def stage(self): + return self.args.get("stage", 0) + + def __init__(self, args0: dict, args1: dict = None): + super().__init__(args0, args1) + self.sub_models = [] + args0_for_submodel = { + key: value for key, value in args0.items() + if key != "sub_models" and key != "interp_on_coarse" + } + for i in range(len(self.args["sub_models"])): + self.args["sub_models"][i] = { + **args0_for_submodel, + **self.args["sub_models"][i] + } + self.sub_models.append(NeRF(self.args["sub_models"][i], args1)) + self.sub_models = torch.nn.ModuleList(self.sub_models) + for i in range(self.stage): + print(f"__init__: freeze model {i}") + self.model(i).freeze() + + def model(self, level: int) -> NeRF: + return self.sub_models[level] + + def trigger_stage(self, stage: int): + print(f"trigger_stage: freeze model {stage - 1}") + self.model(stage - 1).freeze() + self.model(stage).space = self.model(stage - 1).space.clone() + self.args0["stage"] = stage + + @profile + def infer(self, *outputs: str, samples: Samples, inputs: NetInput = None, **kwargs) -> NetOutput: + inputs = inputs or self.input(samples) + return self.model(samples.level).infer(*outputs, samples=samples, inputs=inputs, **kwargs) + + def print_config(self): + s = f"{len(self.sub_models)} levels:\n" + for i, model in enumerate(self.sub_models): + s += f"Model {i}: {model.print_config()}\n" + return s + + @torch.no_grad() + def split(self): + return self.model(self.stage).split() + + def _input(self, samples: Samples, what: str) -> Tensor | None: + if what == "f": + if samples.level == 0: + return None + if samples.interp_space is None: + return self._infer_features(pts=samples.pts, level=samples.level - 1) + return samples.interp_space.interp(samples) + else: + return self.model(samples.level)._input(samples, what) + + @profile + def _sample(self, data: InputData, **extra_args) -> Samples: + samples: Samples = self.model(data["level"])._sample(data, **extra_args) + samples.level = data["level"] + # TODO remove below + #dump_tensors_to_csv(f"/home/dengnc/dvs/data/classroom/_nets/ms_train_t0.8/_cnerf_ioc/{'train' if self.training else 'test'}.csv", + # samples.voxel_indices, data["rays_d"]) + return samples + + @profile + def _render(self, samples: Samples, *outputs: str, **extra_args) -> ReturnData: + self._prepare_interp(samples, on_coarse=self.args.get("interp_on_coarse")) + return self.model(samples.level).renderer(self, samples, *outputs, **{ + **self.model(samples.level).args, **extra_args}) + + def _infer_features(self, samples: Samples = None, **sample_data) -> NetOutput: + samples = samples or Samples(**sample_data) + if self.args.get("interp_on_coarse"): + self._prepare_interp(samples, on_coarse=True) + inputs = self.input(samples, "x", "f") + return self.infer("features", samples=samples, inputs=inputs)["features"] + + def _prepare_interp(self, samples: Samples, on_coarse: bool): + if samples.level == 0: + return + if on_coarse: + interp_space = self.model(samples.level - 1).space + samples.interp_vidxs = interp_space.get_voxel_indices(samples.pts) + else: + interp_space = self.model(samples.level).space + samples.interp_vidxs = samples.voxel_indices + samples.interp_space = CNeRF.InterpSpace(interp_space, samples.interp_vidxs, + lambda corners: self._infer_features( + pts=corners, level=samples.level - 1)) + + def _after_load_state_dict(self) -> None: + a: torch.Tensor = None + return + print(list(self.model(0).named_parameters())[2]) + exit() diff --git a/model/__todo/mnerf.py b/model/__todo/mnerf.py new file mode 100644 index 0000000..e1b964a --- /dev/null +++ b/model/__todo/mnerf.py @@ -0,0 +1,29 @@ +import torch +from .__common__ import * +from .nerf import NeRF + + +class MNeRF(NeRF): + """ + Multi-scale NeRF + """ + + TrainerClass = "TrainMultiScale" + + def freeze(self, level: int): + for core in self.cores: + core.set_frozen(level, True) + + def _create_core_unit(self): + nets = [] + in_chns = self.x_encoder.out_dim + for core_params in self.args['core_params']: + nets.append(super()._create_core_unit(core_params, x_chns=in_chns)) + in_chns = self.x_encoder.out_dim + core_params['nf'] + return MultiNerf(nets) + + @profile + def _sample(self, data: InputData, **extra_args) -> Samples: + samples = super()._sample(data, **extra_args) + samples.level = data["level"] + return samples diff --git a/model/__todo/mnerf_advance.py b/model/__todo/mnerf_advance.py new file mode 100644 index 0000000..c418833 --- /dev/null +++ b/model/__todo/mnerf_advance.py @@ -0,0 +1,36 @@ +from .__common__ import * +from .mnerf import MNeRF + + +class MNeRFAdvance(MNeRF): + """ + Advanced Multi-scale NeRF + """ + + TrainerClass = "TrainMultiScale" + + def n_samples(self, level: int = -1) -> int: + return self.args["n_samples_list"][level] + + def split(self): + self.args0["n_samples_list"] = [val * 2 for val in self.args["n_samples_list"]] + return super().split() + + def _sample(self, data: InputData, **extra_args) -> Samples: + return super()._sample(data, **(extra_args | {"n_samples": self.n_samples(data["level"]) + 1})) + + def _render(self, samples: Samples, *outputs: str, **extra_args) -> ReturnData: + L = samples.level + steps = self.args["n_samples_list"][L] // self.args["n_samples_list"][0] + curr_samples = samples[:, ::steps] + curr_samples.level = 0 + curr_samples.features = None + for i in range(L): + render_out = super()._render(curr_samples, 'features', **extra_args) + next_steps = self.args["n_samples_list"][L] // self.args["n_samples_list"][i + 1] + next_samples = samples[:, ::next_steps] + features = curr_samples.interpolate(next_samples, render_out['features']) + curr_samples = next_samples + curr_samples.level = i + 1 + curr_samples.features = features + return super()._render(curr_samples, *outputs, **extra_args) diff --git a/model/__todo/snerf_x.py b/model/__todo/snerf_x.py new file mode 100644 index 0000000..9df2234 --- /dev/null +++ b/model/__todo/snerf_x.py @@ -0,0 +1,33 @@ +from .__common__ import * +from .nerf import NeRF + +from .utils import load + + +class SNeRFX(NeRF): + + def _preprocess_args(self): + self.args0["spherical"] = True + super()._preprocess_args() + if "net_samples" not in self.args: + n_nets = self.args.get("multi_nets", 1) + cut_by_space = load(self.args['cut_by']).space if "cut_by" in self.args else self.space + k = self.args["n_samples"] // cut_by_space.steps[0].item() + self.args0["net_samples"] = [val * k for val in cut_by_space.balance_cut(0, n_nets)] + self.args1["multi_nets"] = len(self.args["net_samples"]) + + @torch.no_grad() + def split(self): + ret = super().split() + self.args0['net_samples'] = [val * 2 for val in self.args0['net_samples']] + return ret + + @profile + def _render(self, samples: Samples, *outputs: str, **extra_args) -> ReturnData: + return super()._render(samples, *outputs, + **extra_args | + {"raymarching_chunk_size_or_sections": self.args["net_samples"]}) + + @profile + def _multi_infer(self, inputs: NetInput, *outputs: str, chunk_id: int, **kwargs) -> NetOutput: + return self.cores[chunk_id](inputs, *outputs, **kwargs) diff --git a/model/__todo/vnerf.py b/model/__todo/vnerf.py new file mode 100644 index 0000000..c643683 --- /dev/null +++ b/model/__todo/vnerf.py @@ -0,0 +1,24 @@ +from .__common__ import * +from .nerf import NeRF + + +class VNeRF(NeRF): + + def _init_chns(self): + super()._init_chns(x=3) + + def _init_space(self): + self.space = Space.create(self.args) + self.space.create_voxel_embedding(self.args['n_featdim']) + + def _create_core_unit(self): + return super()._create_core_unit(x_chns=self.x_encoder.out_dim + self.args['n_featdim']) + + def _input(self, samples: Samples, what: str) -> torch.Tensor | None: + if what == "x": + return torch.cat([ + self.space.extract_voxel_embedding(samples.voxel_indices), + self._encode("x", samples.pts) + ], dim=-1) + else: + return super()._input(samples, what) diff --git a/model/fs_nerf.py b/model/fs_nerf.py new file mode 100644 index 0000000..0f2dd8d --- /dev/null +++ b/model/fs_nerf.py @@ -0,0 +1,76 @@ +from .__common__ import * +from .model import Model + + +class FsNeRF(Model): + + class Args(Model.Args): + n_samples: int = 64 + perturb_sampling: bool = False + with_radius: bool = False + n_fields: int = 1 + depth: int = 8 + width: int = 256 + skips: list[int] = [4] + act: str = "relu" + ln: bool = False + xfreqs: int = 6 + raw_noise_std: float = 0. + near: float = 1. + far: float = 10. + white_bg: bool = False + + args: Args + + def __init__(self, args: Args): + """ + Initialize a FS-NeRF model + + :param args `Args`: arguments + """ + super().__init__(args) + + # Initialize components + self._init_sampler() + self._init_encoders() + self._init_core() + self._init_renderer() + + @profile + def forward(self, rays: Rays, *outputs: str, **args) -> ReturnData: + samples = self.sample(rays, **args) + x = self.encode(samples) + rgbd = self.infer(x) + return self.render(samples, rgbd, *outputs, **args) + + def sample(self, rays: Rays, **kwargs) -> Samples: + args = self.args.merge_with(kwargs) + return self.sampler(rays, None, range=(args.near, args.far), mode="spherical_radius", + n_samples=args.n_samples, + perturb=args.perturb_sampling if self.training else False) + + def encode(self, samples: Samples) -> torch.Tensor: + return self.x_encoder(samples.pts[..., -self.x_encoder.in_chns:]) + + def infer(self, x: torch.Tensor) -> torch.Tensor: + return self.core(x) + + def render(self, samples: Samples, rgbd: torch.Tensor, *outputs: str, **kwargs) -> ReturnData: + args = self.args.merge_with(kwargs) + return self.renderer(samples, rgbd, *outputs, white_bg=args.white_bg, + raw_noise_std=args.raw_noise_std if self.training else 0.) + + def _init_encoders(self): + self.x_encoder = FreqEncoder(self.sampler.out_chns["x"] - (not self.args.with_radius), + self.args.xfreqs, False) + + def _init_core(self): + self.core = core.FsNeRF(self.x_encoder.out_chns, self.color.chns, + self.args.depth, self.args.width, self.args.skips, + self.args.act, self.args.ln, self.args.n_samples, self.args.n_fields) + + def _init_sampler(self): + self.sampler = UniformSampler() + + def _init_renderer(self): + self.renderer = VolumnRenderer() diff --git a/model/model.py b/model/model.py new file mode 100644 index 0000000..5850d95 --- /dev/null +++ b/model/model.py @@ -0,0 +1,48 @@ +from operator import itemgetter +from .__common__ import * +from utils import netio +from utils.args import BaseArgs + + +model_classes: dict[str, "Model"] = {} + + +class Model(nn.Module): + class Args(BaseArgs): + color: str = "rgb" + coord: str = "gl" + args: Args + color: Color + + def __init__(self, args: Args): + super().__init__() + self.args = args + self.color = Color[self.args.color] + + # stub method + def __call__(self, rays: Rays, *outputs: str, **args) -> ReturnData: + ... + + def forward(self, rays: Rays, *outputs: str, **args) -> ReturnData: + raise NotImplementedError() + + @staticmethod + def get_class(typename: str) -> Type["Model"] | None: + return model_classes.get(typename) + + @staticmethod + def create(typename: str, args: dict|Args) -> "Model": + ModelCls = Model.get_class(typename) + if ModelCls is None: + raise ValueError(f"Model {typename} is not found") + if isinstance(args, dict): + args = ModelCls.Args(**args) + return ModelCls(args) + + @staticmethod + def load(path: PathLike) -> "Model": + ckpt = netio.load_checkpoint(Path(path))[0] + model_type, model_args = itemgetter("model", "model_args")(ckpt["args"]) + model = Model.create(model_type, model_args) + model.load_state_dict(ckpt["states"]["model"]) + return model diff --git a/model/nerf.py b/model/nerf.py index 32f2bc7..1b1d128 100644 --- a/model/nerf.py +++ b/model/nerf.py @@ -1,198 +1,113 @@ from .__common__ import * -from .base import BaseModel -from operator import itemgetter - -from utils import math -from utils.misc import masked_scatter, merge - - -class NeRF(BaseModel): - - TrainerClass = "TrainWithSpace" - SamplerClass = None - RendererClass = None - - space: Union[Space, Voxels, Octree] - - @property - def multi_nets(self) -> int: - return self.args.get("multi_nets", 1) - - def __init__(self, args0: dict, args1: dict = None): +from .model import Model + + +class NeRF(Model): + class Args(Model.Args): + n_samples: int = 64 + sample_mode: str = "xyz" + perturb_sampling: bool = False + depth: int = 8 + width: int = 256 + skips: list[int] = [4] + act: str = "relu" + ln: bool = False + color_decoder: str = "NeRF" + n_importance: int = 0 + fine_depth: int = 8 + fine_width: int = 256 + fine_skips: list[int] = [4] + xfreqs: int = 10 + dfreqs: int = 4 + raw_noise_std: float = 0. + near: float = 1. + far: float = 10. + white_bg: bool = False + + args: Args + + def __init__(self, args: Args): """ Initialize a NeRF model - :param args0 `dict`: basic arguments - :param args1 `dict`: extra arguments, defaults to {} + :param args `dict`: arguments """ - super().__init__(args0, args1) + super().__init__(args) + if args.sample_mode == "xyz" or args.sample_mode == "xyz_disp": + args.near = 0.1 # Initialize components - - self._init_space() + self._init_sampler() self._init_encoders() self._init_core() - self._init_sampler() self._init_renderer() - @perf - def infer(self, *outputs: str, samples: Samples, inputs: NetInput = None, **kwargs) -> NetOutput: - inputs = inputs or self.input(samples) - if len(self.cores) == 1: - return self.cores[0](inputs, *outputs, samples=samples, **kwargs) - return self._multi_infer(inputs, *outputs, samples=samples, **kwargs) - - @torch.no_grad() - def split(self): - ret = self.space.split() - if 'n_samples' in self.args0: - self.args0['n_samples'] *= 2 - if 'voxel_size' in self.args0: - self.args0['voxel_size'] /= 2 - if "sample_step_ratio" in self.args0: - self.args1["sample_step"] = self.args0["voxel_size"] \ - * self.args0["sample_step_ratio"] - if 'sample_step' in self.args0: - self.args0['sample_step'] /= 2 - return ret - - def _preprocess_args(self): - if "sample_step_ratio" in self.args0: - self.args1["sample_step"] = self.args0["voxel_size"] * self.args0["sample_step_ratio"] - if self.args0.get("spherical"): - sample_range = [1 / self.args0['depth_range'][0], 1 / self.args0['depth_range'][1]] \ - if self.args0.get('depth_range') else [1, 0] - rot_range = [[-180, -90], [180, 90]] - self.args1['bbox'] = [ - [sample_range[0], math.radians(rot_range[0][0]), math.radians(rot_range[0][1])], - [sample_range[1], math.radians(rot_range[1][0]), math.radians(rot_range[1][1])] - ] - self.args1['sample_range'] = sample_range - if not self.args.get("net_bounds"): - self.register_temp("net_bounds", None) - self.args1["multi_nets"] = 1 - else: - self.register_temp("net_bounds", torch.tensor(self.args["net_bounds"])) - self.args1["multi_nets"] = self.net_bounds.size(0) - - def _init_chns(self, **chns): - super()._init_chns(**{ - "x": self.args.get('n_featdim') or 3, - "d": 3 if self.args.get('encode_d') else 0, - **chns - }) - - def _init_space(self): - self.space = Space.create(self.args) - if self.args.get('n_featdim'): - self.space.create_embedding(self.args['n_featdim']) + if self.args.n_importance > 0: + self._init_cascade() + + @profile + def forward(self, rays: Rays, *outputs: str, **args) -> ReturnData: + samples = self.sample(rays, **args) + x, d = self.encode(samples) + rgbd = self.infer(x, d) + return self.render(rays, samples, rgbd, *outputs, cascade=True, **args) + + def sample(self, rays: Rays, **kwargs) -> Samples: + args = self.args.merge_with(kwargs) + return self.sampler(rays, None, range=(args.near, args.far), + mode=args.sample_mode, n_samples=args.n_samples, + perturb=args.perturb_sampling if self.training else False) + + def encode(self, samples: Samples) -> tuple[torch.Tensor, torch.Tensor]: + return self.x_encoder(samples.pts), self.d_encoder(math.normalize(samples.dirs)) + + def infer(self, x: torch.Tensor, d: torch.Tensor, *, fine: bool = False) -> torch.Tensor: + if self.args.n_importance > 0 and fine: + return self.fine_core(x, d) + return self.core(x, d) + + def render(self, rays: Rays, samples: Samples, rgbd: torch.Tensor, *outputs: str, + cascade: bool = False, **kwargs) -> ReturnData: + args = self.args.merge_with(kwargs) + if args.n_importance > 0 and cascade: + coarse_outputs = [item[7:] for item in outputs if item.startswith("coarse_")] + coarse_ret = self.renderer(samples, rgbd, "weights", *coarse_outputs, + white_bg=args.white_bg, + raw_noise_std=args.raw_noise_std if self.training else 0.) + samples = self.pdf_sampler(rays, None, samples.t_vals, coarse_ret["weights"][..., 0], + mode=args.sample_mode, + n_importance=args.n_importance, + perturb=args.perturb_sampling if self.training else False, + include_existed_samples=True) + x, d = self.encode(samples) + fine_rgbd = self.infer(x, d, fine=True) + return self.renderer(samples, fine_rgbd, *outputs, white_bg=args.white_bg, + raw_noise_std=args.raw_noise_std if self.training else 0.) | { + f"coarse_{key}": coarse_ret[key] + for key in coarse_outputs + if key in coarse_ret + } + return self.renderer(samples, rgbd, *outputs, white_bg=args.white_bg, + raw_noise_std=args.raw_noise_std if self.training else 0.) def _init_encoders(self): - self.x_encoder = InputEncoder(self.chns("x"), self.args['encode_x'], cat_input=True) - self.d_encoder = InputEncoder(self.chns("d"), self.args['encode_d'])\ - if self.chns("d") > 0 else None + self.x_encoder = FreqEncoder(self.sampler.out_chns["x"], self.args.xfreqs, True) + self.d_encoder = FreqEncoder(self.sampler.out_chns["d"], self.args.dfreqs, True) def _init_core(self): - self.cores = self.create_multiple(self._create_core_unit, self.args.get("multi_nets", 1)) + self.core = core.NeRF(self.x_encoder.out_chns, self.d_encoder.out_chns, self.color.chns, + self.args.depth, self.args.width, self.args.skips, + self.args.act, self.args.ln, self.args.color_decoder) def _init_sampler(self): - if self.SamplerClass is None: - SamplerClass = Sampler - else: - SamplerClass = self.SamplerClass - self.sampler = SamplerClass(**self.args) + self.sampler = UniformSampler() + + def _init_cascade(self): + self.pdf_sampler = PdfSampler() + self.fine_core = core.NeRF(self.x_encoder.out_chns, self.d_encoder.out_chns, self.color.chns, + self.args.fine_depth, self.args.fine_width, + self.args.fine_skips, self.args.act, self.args.ln, + self.args.color_decoder) def _init_renderer(self): - if self.RendererClass is None: - if self.args.get("core") == "nerfadv": - RendererClass = DensityFirstVolumnRenderer - else: - RendererClass = VolumnRenderer - else: - RendererClass = self.RendererClass - self.renderer = RendererClass(**self.args) - - def _create_core_unit(self, core_params: dict = None, **args): - core_params = core_params or self.args["core_params"] - if self.args.get("core") == "nerfadv": - return NerfAdvCore(**{ - "x_chns": self.x_encoder.out_dim, - "d_chns": self.d_encoder.out_dim, - "density_chns": self.chns('density'), - "color_chns": self.chns('color'), - **core_params, - **args - }) - else: - return NerfCore(**{ - "x_chns": self.x_encoder.out_dim, - "density_chns": self.chns('density'), - "color_chns": self.chns('color'), - "d_chns": self.d_encoder.out_dim if self.d_encoder else 0, - **core_params, - **args - }) - - @perf - def _sample(self, data: InputData, **extra_args) -> Samples: - return self.sampler(*itemgetter("rays_o", "rays_d")(data), self.space, - **merge(self.args, extra_args)) - - @perf - def _render(self, samples: Samples, *outputs: str, **extra_args) -> ReturnData: - if len(samples.size) == 1: - return self.infer(*outputs, samples=samples) - return self.renderer(self, samples, *outputs, **merge(self.args, extra_args)) - - def _input(self, samples: Samples, what: str) -> Optional[torch.Tensor]: - if what == "x": - if self.args.get('n_featdim'): - return self._encode("emb", self.space.extract_embedding( - samples.pts, samples.voxel_indices)) - else: - return self._encode("x", samples.pts) - elif what == "d": - if self.d_encoder and samples.dirs is not None: - return self._encode("d", samples.dirs) - else: - return None - elif what == "f": - return None - else: - ValueError(f"Don't know how to process input \"{what}\"") - - def _encode(self, what: str, val: torch.Tensor) -> torch.Tensor: - if what == "x": - if self.args.get("spherical"): - sr = self.args['sample_range'] - # scale val.r: [sr[0], sr[1]] -> [-PI/2, PI/2] - val = val.clone() - val[..., 0] = ((val[..., 0] - sr[0]) / (sr[1] - sr[0]) - .5) * math.pi - return self.x_encoder(val) - else: - return self.x_encoder(val * math.pi) - elif what == "emb": - return self.x_encoder(val * math.pi) - elif what == "d": - return self.d_encoder(val, angular=True) - else: - ValueError(f"Don't know how to encode \"{what}\"") - - @perf - def _multi_infer(self, inputs: NetInput, *outputs: str, samples: Samples, **kwargs) -> NetOutput: - ret: NetOutput = {} - for i, core in enumerate(self.cores): - selector = (samples.pts >= self.net_bounds[i, 0] - and samples.pts < self.net_bounds[i, 1]).all(-1) - partial_ret: NetOutput = core(inputs[selector], *outputs, samples=samples[selector], - **kwargs) - for key, value in partial_ret.items(): - if key not in ret: - ret[key] = value.new_zeros(*inputs.shape, value.shape[-1]) - ret[key] = masked_scatter(selector, value, ret[key]) - return ret - - -class NSVF(NeRF): - - SamplerClass = VoxelSampler + self.renderer = VolumnRenderer() diff --git a/modules/__common__.py b/modules/__common__.py new file mode 100644 index 0000000..bfaf835 --- /dev/null +++ b/modules/__common__.py @@ -0,0 +1,5 @@ +import sys +from utils import math, nn +from utils.types import * +from utils.misc import union, split +from utils.profile import profile diff --git a/modules/__init__.py b/modules/__init__.py index 898abaf..e7ab6a9 100644 --- a/modules/__init__.py +++ b/modules/__init__.py @@ -1,5 +1,5 @@ -from .sampler import Sampler, PdfSampler, VoxelSampler -from .input_encoder import InputEncoder, IntegratedPosEncoder -from .renderer import VolumnRenderer, DensityFirstVolumnRenderer -from .space import Space, Voxels, Octree -from .core import NerfCore, NerfAdvCore, MultiNerf \ No newline at end of file +from .core import * +from .sampler import * +from .input_encoder import * +from .renderer import * +from .space import * diff --git a/modules/core.py b/modules/__old/core.py similarity index 87% rename from modules/core.py rename to modules/__old/core.py index 2fb68de..299e8db 100644 --- a/modules/core.py +++ b/modules/__old/core.py @@ -1,28 +1,19 @@ -import re -import torch -from typing import Iterable, Tuple - -from .generic import * -from utils.misc import union, split -from utils.type import NetInput, NetOutput -from utils.module import Module -from utils.samples import Samples - - -class NerfCore(Module): +class NeRF(Module): def __init__(self, *, x_chns, density_chns, color_chns, nf, n_layers, d_chns=0, d_nf=0, act='relu', skips=[], with_layer_norm=False, - density_out_act='relu', color_out_act='sigmoid', f_chns=0): + density_out_act='relu', color_out_act='sigmoid', feature_layer=False): super().__init__() - self.input_f = f_chns > 0 - self.core_field = FcBlock(in_chns=x_chns + f_chns, out_chns=None, nf=nf, n_layers=n_layers, - skips=skips, act=act, with_ln=with_layer_norm) + self.x_chns = x_chns + self.d_chns = d_chns + self.field = FcBlock(in_chns=x_chns, out_chns=None, nf=nf, n_layers=n_layers, + skips=skips, act=act, with_ln=with_layer_norm) self.density_out = FcLayer(nf, density_chns, density_out_act, with_ln=False) \ if density_chns > 0 else None if color_chns == 0: self.color_out = None elif d_chns > 0: + self.feature_layer = feature_layer and FcLayer(nf, nf, with_ln=False) self.color_out = FcBlock(in_chns=nf + d_chns, out_chns=color_chns, nf=d_nf or nf // 2, n_layers=1, act=act, out_act=color_out_act, with_ln=with_layer_norm) @@ -31,20 +22,30 @@ class NerfCore(Module): self.color_out = FcLayer(nf, color_chns, color_out_act, with_ln=False) self.with_dir = False - def forward(self, inputs: NetInput, *outputs: str, features: torch.Tensor = None, **kwargs) -> NetOutput: - ret = {} - if features is None: - features = self.core_field(union(inputs.x, inputs.f) if self.input_f else inputs.x) - if 'features' in outputs: - ret['features'] = features + def forward(self, inputs: NetInput, *outputs: str, field_out: torch.Tensor = None, **kwargs) -> NetOutput: + ret = NetOutput() + if field_out is None: + field_out = self.field(inputs.x) + if 'field_out' in outputs: + ret.field_out = field_out if 'densities' in outputs and self.density_out: - ret['densities'] = self.density_out(features) + ret.densities = self.density_out(field_out) if 'colors' in outputs and self.color_out: if self.with_dir: - features = union(features, inputs.d) - ret['colors'] = self.color_out(features) + if self.feature_layer: + h = self.feature_layer(field_out) + h = union(h, inputs.d) + else: + h = field_out + ret.colors = self.color_out(h) return ret + def get_exporter(self): + return ModelExporter(self.infer, "densities", "colors", x=[self.x_chns], d=[self.d_chns]) + + def infer(self, x: torch.Tensor, d: torch.Tensor = None, f: torch.Tensor = None): + return tuple(self._forward(NetInput(x, d, f), "colors", "densities").values()) + class NerfAdvCore(Module): @@ -129,7 +130,7 @@ class NerfAdvCore(Module): if 'colors' in outputs or 'specluars' in outputs or 'diffuses' in outputs: if 'densities' in ret: valid_mask = ret['densities'][..., 0].detach() >= 1e-4 - indices: Tuple[torch.Tensor, ...] = valid_mask.nonzero(as_tuple=True) + indices: tuple[torch.Tensor, ...] = valid_mask.nonzero(as_tuple=True) inputs, features = inputs[indices], features[indices] else: indices = None diff --git a/modules/__old/input_encoder.py b/modules/__old/input_encoder.py new file mode 100644 index 0000000..652282d --- /dev/null +++ b/modules/__old/input_encoder.py @@ -0,0 +1,417 @@ +class IntegratedPosEncoder(InputEncoder): + + def __init__(self, chns, L, shape: str, cat_input=False): + super().__init__(chns) + self.shape = shape + + def _lift_gaussian(self, d: torch.Tensor, t_mean: torch.Tensor, t_var: torch.Tensor, + r_var: torch.Tensor, diag: bool): + """Lift a Gaussian defined along a ray to 3D coordinates.""" + mean = d[..., None, :] * t_mean[..., None] + d_sq = d**2 + + d_mag_sq = torch.sum(d_sq, -1, keepdim=True).clamp_min(1e-10) + + if diag: + d_outer_diag = d_sq + null_outer_diag = 1 - d_outer_diag / d_mag_sq + t_cov_diag = t_var[..., None] * d_outer_diag[..., None, :] + xy_cov_diag = r_var[..., None] * null_outer_diag[..., None, :] + cov_diag = t_cov_diag + xy_cov_diag + return mean, cov_diag + else: + d_outer = d[..., :, None] * d[..., None, :] + eye = torch.eye(d.shape[-1], device=d.device) + null_outer = eye - d[..., :, None] * (d / d_mag_sq)[..., None, :] + t_cov = t_var[..., None, None] * d_outer[..., None, :, :] + xy_cov = r_var[..., None, None] * null_outer[..., None, :, :] + cov = t_cov + xy_cov + return mean, cov + + def _conical_frustum_to_gaussian(self, d: torch.Tensor, t0: float, t1: float, base_radius: float, + diag: bool, stable: bool = True): + """Approximate a conical frustum as a Gaussian distribution (mean+cov). + + Assumes the ray is originating from the origin, and base_radius is the + radius at dist=1. Doesn't assume `d` is normalized. + + Args: + d: torch.float32 3-vector, the axis of the cone + t0: float, the starting distance of the frustum. + t1: float, the ending distance of the frustum. + base_radius: float, the scale of the radius as a function of distance. + diag: boolean, whether or the Gaussian will be diagonal or full-covariance. + stable: boolean, whether or not to use the stable computation described in + the paper (setting this to False will cause catastrophic failure). + + Returns: + a Gaussian (mean and covariance). + """ + if stable: + mu = (t0 + t1) / 2 + hw = (t1 - t0) / 2 + t_mean = mu + (2 * mu * hw**2) / (3 * mu**2 + hw**2) + t_var = (hw**2) / 3 - (4 / 15) * ((hw**4 * (12 * mu**2 - hw**2)) / + (3 * mu**2 + hw**2)**2) + r_var = base_radius**2 * ((mu**2) / 4 + (5 / 12) * hw**2 - 4 / 15 * + (hw**4) / (3 * mu**2 + hw**2)) + else: + t_mean = (3 * (t1**4 - t0**4)) / (4 * (t1**3 - t0**3)) + r_var = base_radius**2 * (3 / 20 * (t1**5 - t0**5) / (t1**3 - t0**3)) + t_mosq = 3 / 5 * (t1**5 - t0**5) / (t1**3 - t0**3) + t_var = t_mosq - t_mean**2 + return self._lift_gaussian(d, t_mean, t_var, r_var, diag) + + def _cylinder_to_gaussian(self, d: torch.Tensor, t0: float, t1: float, radius: float, diag: bool): + """Approximate a cylinder as a Gaussian distribution (mean+cov). + + Assumes the ray is originating from the origin, and radius is the + radius. Does not renormalize `d`. + + Args: + d: torch.float32 3-vector, the axis of the cylinder + t0: float, the starting distance of the cylinder. + t1: float, the ending distance of the cylinder. + radius: float, the radius of the cylinder + diag: boolean, whether or the Gaussian will be diagonal or full-covariance. + + Returns: + a Gaussian (mean and covariance). + """ + t_mean = (t0 + t1) / 2 + r_var = radius**2 / 4 + t_var = (t1 - t0)**2 / 12 + return self._lift_gaussian(d, t_mean, t_var, r_var, diag) + + def cast_rays(self, t_vals: torch.Tensor, rays_o: torch.Tensor, rays_d: torch.Tensor, + rays_r: torch.Tensor, diag: bool = True): + """Cast rays (cone- or cylinder-shaped) and featurize sections of it. + + Args: + t_vals: float array, the "fencepost" distances along the ray. + rays_o: float array, the ray origin coordinates. + rays_d: float array, the ray direction vectors. + radii: float array, the radii (base radii for cones) of the rays. + ray_shape: string, the shape of the ray, must be 'cone' or 'cylinder'. + diag: boolean, whether or not the covariance matrices should be diagonal. + + Returns: + a tuple of arrays of means and covariances. + """ + t0 = t_vals[..., :-1] + t1 = t_vals[..., 1:] + if self.shape == 'cone': + gaussian_fn = self._conical_frustum_to_gaussian + elif self.shape == 'cylinder': + gaussian_fn = self._cylinder_to_gaussian + else: + assert False + means, covs = gaussian_fn(rays_d, t0, t1, rays_r, diag) + means = means + rays_o[..., None, :] + return means, covs + + def integrated_pos_enc(x_coord: tuple[torch.Tensor, torch.Tensor], min_deg: int, max_deg: int, + diag: bool = True): + """Encode `x` with sinusoids scaled by 2^[min_deg:max_deg-1]. + + Args: + x_coord: a tuple containing: x, torch.ndarray, variables to be encoded. Should + be in [-pi, pi]. x_cov, torch.ndarray, covariance matrices for `x`. + min_deg: int, the min degree of the encoding. + max_deg: int, the max degree of the encoding. + diag: bool, if true, expects input covariances to be diagonal (full + otherwise). + + Returns: + encoded: torch.ndarray, encoded variables. + """ + if diag: + x, x_cov_diag = x_coord + scales = torch.tensor([2**i for i in range(min_deg, max_deg)], device=x.device)[:, None] + shape = list(x.shape[:-1]) + [-1] + y = torch.reshape(x[..., None, :] * scales, shape) + y_var = torch.reshape(x_cov_diag[..., None, :] * scales**2, shape) + else: + x, x_cov = x_coord + num_dims = x.shape[-1] + basis = torch.cat([ + 2**i * torch.eye(num_dims, device=x.device) + for i in range(min_deg, max_deg) + ], 1) + y = torch.matmul(x, basis) + # Get the diagonal of a covariance matrix (ie, variance). This is equivalent + # to jax.vmap(torch.diag)((basis.T @ covs) @ basis). + y_var = (torch.matmul(x_cov, basis) * basis).sum(-2) + + return math.expected_sin( + torch.cat([y, y + 0.5 * math.pi], -1), + torch.cat([y_var] * 2, -1))[0] + + +# @torch.jit.script +def intepolate_calc_weight(x, corners): + return x * corners * 2 - x - corners + 1 + + +class MultiresHashEncoder(InputEncoder): + fast_op = True + t_ind: torch.dtype + + layers: int + coarse_levels: int + layers_hashsize: list[int] + + layers_res: torch.Tensor + """Tensor(L, D)""" + local_corners: torch.Tensor + """Tensor(C, D)""" + layers_hashoffset: torch.Tensor + """Tensor(L+1)""" + hashtable: torch.nn.parameter.Parameter + """Parameter(T, F)""" + + def __init__(self, chns: int, layers: int, log2_hashsize: int, features: int, + res0: int | list[int], scale_up: float = 2.0): + super().__init__(chns, layers * features, (0., 1.)) + + res0 = torch.tensor([res0] * chns if isinstance(res0, int) else res0) + + self.layers = layers + self.features = features + self.scale_up = scale_up + self.max_hashsize = 2 ** log2_hashsize + self.t_ind = torch.int if self.fast_op else torch.long + + layers_res: list[torch.Tensor] = [] + self.layers_hashsize: list[int] = [] + self.coarse_levels = 0 + layers_hashoffset: list[int] = [0] + for i in range(layers): + layers_res.append((res0 * scale_up ** i).to(self.t_ind)) + if layers_res[-1].max() > self.max_hashsize ** (1 / 3)\ + or layers_res[-1].prod() > self.max_hashsize: + self.layers_hashsize.append(self.max_hashsize) + else: + self.layers_hashsize.append(layers_res[-1].prod().item()) + self.coarse_levels = i + 1 + layers_hashoffset.append(layers_hashoffset[-1] + self.layers_hashsize[-1]) + self.register_temp("layers_res", torch.stack(layers_res, 0)) + self.register_temp("layers_hashoffset", torch.tensor(layers_hashoffset, dtype=self.t_ind)) + self.register_temp("local_corners", split_voxels_local(1, 2, dims=chns) + .5) + + # Initialize the hash table entries using the uniform distribution U(−10^−4, 10^−4) to provide + # a small amount of randomness while encouraging initial predictions close to zero [muller2022instant] + self.hashtable = torch.nn.parameter.Parameter( + (torch.rand(layers_hashoffset[-1], features, device=self.device) - .5)) + + @profile + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Encode inputs using multi-resolution hash encoder [muller2022instant] + + :param x `Tensor(N..., D)`: D-dim inputs + :return `Tensor(N..., LF)`: encoded outputs + """ + if self.fast_op: + N_, D = x.shape[:-1], x.shape[-1] + return multires_hash_encode(self.layers, self.coarse_levels, self.layers_res, + self.layers_hashoffset, x.reshape(-1, D), self.hashtable)\ + .transpose(0, 1).reshape(*N_, -1) + + @profile("Calculate corners") + def calc_corners(x) -> tuple[torch.Tensor, torch.Tensor]: + grid_pos = x.unsqueeze(-2) * (self.layers_res - 1) # (N..., L, D) + grid_pos.unsqueeze_(-2) # (N..., L, 1, D) + grid_lo = torch.floor(grid_pos) + grid_pos.sub_(grid_lo) + corners = (grid_lo + self.local_corners).long().min(self.layers_res.unsqueeze(-2) - 1) + # (N..., L, C, D) + return grid_pos, corners + + grid_pos, corners = calc_corners(x) + # (N..., L, 1, D), (N..., L, C, D) + + @profile("Calculate encoded") + def calc_encoded(level: int) -> torch.Tensor: + if level < self.coarse_levels: + idx = to_flat_indices(corners[..., level, :, :], self.layers_res[level, None]) + else: + idx = self._fast_hash(corners[..., level, :, :]) % self.max_hashsize + idx.add_(self.layers_hashoffset[level, None]) + return self._linear_interp(grid_pos[..., level, :, :], self.hashtable[idx]) + + result = torch.stack([calc_encoded(level) for level in range(self.layers)], dim=-2) + # (N..., L, X) + + return result.flatten(-2) + + def _linear_interp(self, x: torch.Tensor, corner_values: torch.Tensor) -> torch.Tensor: + """ + [summary] + + :param x `Tensor(N..., L, 1, D)`: [description] + :param corner_values `Tensor(N..., L, C, X)`: [description] + :return `Tensor(N..., L, X): [description] + :rtype: [type] + """ + weights = (x * self.local_corners * 2 - x - self.local_corners + 1).prod(-1, keepdim=True) + # (N..., L, C, 1) + return (weights * corner_values).sum(-2) # (N..., L, X) + + def extra_repr(self) -> str: + return f"{self.in_chns} -> {self.out_chns}({self.layers}x{self.features})"\ + f", resolution={self.layers_res[0].tolist()}*{self.scale_up}^L"\ + f", max_hashsize={self.max_hashsize}" + + @profile + def _fast_hash(self, grid_pos: torch.Tensor) -> torch.Tensor: + """ + Perform fast hash according to instant-ngp + + :param grid_pos `Tensor(N..., D)`: integer grid positions + :return `Tensor(N...)`: hash values + """ + if grid_pos.shape[-1] > 7: + raise ValueError("fast_hash can only hash up to 7 dimensions.") + + # While 1 is technically not a good prime for hashing (or a prime at all), it helps memory coherence + # and is sufficient for our use case of obtaining a uniformly colliding index from high-dimensional + # coordinates. [muller2022instant] + primes = [1, 2654435761, 805459861, 3674653429, 2097192037, 1434869437, 2165219737] + result = grid_pos[..., 0] * primes[0] + for i in range(1, grid_pos.shape[-1]): + result.bitwise_xor_(grid_pos[..., i] * primes[i]) + return result + + +class LayeredMultiresHashEncoder(InputEncoder): + use_cpp = False + + layers: int + coarse_levels: int + layers_res: torch.Tensor + """Tensor(L, D)""" + local_corners: torch.Tensor + """Tensor(C, D)""" + layers_hashsize: list[int] + layers_hashoffset: list[int] + t_ind: torch.dtype + + def __init__(self, chns: int, layers: int, log2_hashsize: int, features: int, + res0: int | list[int], scale_up: float = 2.0, parts: int = 64): + super().__init__(chns, layers * features, (0., 1.)) + + res0 = torch.tensor([res0] * chns if isinstance(res0, int) else res0) + + self.layers = layers + self.features = features + self.scale_up = scale_up + self.max_hashsize = 2 ** log2_hashsize // parts + self.t_ind = torch.int if self.use_cpp else torch.long + + layers_res: list[torch.Tensor] = [] + self.layers_hashsize: list[int] = [] + self.layers_usehash: list[bool] = [] + self.coarse_levels = 0 + layers_hashoffset: list[int] = [0] + for i in range(layers): + layers_res.append(res0 if i == 0 else (layers_res[-1] * scale_up).to(self.t_ind)) + if layers_res[-1].max() > self.max_hashsize ** (1 / 3)\ + or layers_res[-1].prod() > self.max_hashsize: + self.layers_hashsize.append(self.max_hashsize) + else: + self.layers_hashsize.append(layers_res[-1].prod().item()) + self.coarse_levels = i + 1 + layers_hashoffset.append(layers_hashoffset[-1] + self.layers_hashsize[-1]) + self.register_temp("layers_res", torch.stack(layers_res, 0)) + self.register_temp("layers_hashoffset", torch.tensor(layers_hashoffset, dtype=self.t_ind)) + + # Initialize the hash table entries using the uniform distribution U(−10^−4, 10^−4) to provide + # a small amount of randomnesddaddadwss while encouraging initial predictions close to zero [muller2022instant] + self.hashtable = torch.nn.parameter.Parameter( + (torch.rand(parts, layers_hashoffset[-1], features, device=self.device) - .5)) + + self.register_temp("local_corners", split_voxels_local(1, 2, dims=chns) + .5) + + @profile + def forward(self, x: torch.Tensor) -> torch.Tensor: + """ + Encode inputs using multi-resolution hash encoder [muller2022instant] + + :param x `Tensor(N..., P, D)`: D-dim inputs + :return `Tensor(N..., P, LF)`: encoded outputs + """ + if self.use_cpp: + N_, P, D = x.shape[:-2], x.shape[-2], x.shape[-1] + return torch.stack([ + multires_hash_encode(self.layers, self.coarse_levels, self.layers_res, + self.layers_hashoffset, x[..., i, :].reshape(-1, D), + self.hashtable[i]).reshape(*N_, -1) + for i in range(P) + ], dim=-2) + + @profile("Calculate corners") + def calc_corners(x) -> tuple[torch.Tensor, torch.Tensor]: + grid_pos = x.unsqueeze(-2) * (self.layers_res - 1) # (N..., P, L, D) + grid_pos.unsqueeze_(-2) # (N..., P, L, 1, D) + grid_lo = torch.floor(grid_pos) + grid_pos.sub_(grid_lo) + corners = (grid_lo + self.local_corners).long().min(self.layers_res.unsqueeze(-2) - 1) + # (N..., L, C, D) + return grid_pos, corners + + grid_pos, corners = calc_corners(x) + # (N..., P, L, 1, D), (N..., P, L, C, D) + + @profile("Calculate encoded") + def calc_encoded(level: int) -> torch.Tensor: + if level < self.coarse_levels: + idx = to_flat_indices(corners[..., level, :, :], self.layers_res[level, None]) + else: + idx = self._fast_hash(corners[..., level, :, :]) % self.max_hashsize + idx.add_(self.layers_hashoffset[level, None]) + part_idx = torch.arange(x.shape[-2], device=x.device)[:, None].broadcast_to(idx.shape) + return self._linear_interp(grid_pos[..., level, :, :], self.hashtable[part_idx, idx]) + + result = torch.stack([calc_encoded(level) for level in range(self.layers)], dim=-2) + # (N..., L, X) + + return result.flatten(-2) + + def _linear_interp(self, x: torch.Tensor, corner_values: torch.Tensor) -> torch.Tensor: + """ + [summary] + + :param x `Tensor(N..., L, 1, D)`: [description] + :param corner_values `Tensor(N..., L, C, X)`: [description] + :return `Tensor(N..., L, X): [description] + :rtype: [type] + """ + weights = (x * self.local_corners * 2 - x - self.local_corners + 1).prod(-1, keepdim=True) + # (N..., L, C, 1) + return (weights * corner_values).sum(-2) # (N..., L, X) + + def extra_repr(self) -> str: + return f"{self.in_chns} -> {self.out_chns}({self.layers}x{self.features})"\ + f", resolution={self.layers_res[0].tolist()}*{self.scale_up}^L"\ + f", max_hashsize={self.max_hashsize}" + + @profile + def _fast_hash(self, grid_pos: torch.Tensor) -> torch.Tensor: + """ + Perform fast hash according to instant-ngp + + :param grid_pos `Tensor(N..., D)`: integer grid positions + :return `Tensor(N...)`: hash values + """ + if grid_pos.shape[-1] > 7: + raise ValueError("fast_hash can only hash up to 7 dimensions.") + + # While 1 is technically not a good prime for hashing (or a prime at all), it helps memory coherence + # and is sufficient for our use case of obtaining a uniformly colliding index from high-dimensional + # coordinates. [muller2022instant] + primes = [1, 2654435761, 805459861, 3674653429, 2097192037, 1434869437, 2165219737] + result = grid_pos[..., 0] * primes[0] + for i in range(1, grid_pos.shape[-1]): + result.bitwise_xor_(grid_pos[..., i] * primes[i]) + return result diff --git a/modules/__old/renderer.py b/modules/__old/renderer.py new file mode 100644 index 0000000..013d102 --- /dev/null +++ b/modules/__old/renderer.py @@ -0,0 +1,364 @@ +from itertools import cycle +from typing import Set + +from ..__common__ import * +from model.model import BaseModel + + +def density2energy(densities: torch.Tensor, dists: torch.Tensor, raw_noise_std: float = 0): + """ + Calculate energies from densities inferred by model. + + :param densities `Tensor(N..., 1)`: model's output densities + :param dists `Tensor(N...)`: integration times + :param raw_noise_std `float`: the noise std used to egularize network during training (prevents + floater artifacts), defaults to 0, means no noise is added + :return `Tensor(N..., 1)`: energies which block light rays + """ + if raw_noise_std > 0: + # Add noise to model's predictions for density. Can be used to + # regularize network during training (prevents floater artifacts). + densities = densities + torch.normal(0.0, raw_noise_std, densities.size()) + return densities * dists[..., None] + + +def density2alpha(densities: torch.Tensor, dists: torch.Tensor, raw_noise_std: float = 0): + """ + Calculate alphas from densities inferred by model. + + :param densities `Tensor(N..., 1)`: model's output densities + :param dists `Tensor(N...)`: integration times + :param raw_noise_std `float`: the noise std used to egularize network during training (prevents + floater artifacts), defaults to 0, means no noise is added + :return `Tensor(N..., 1)`: alphas + """ + energies = density2energy(densities, dists, raw_noise_std) + return 1.0 - torch.exp(-energies) + + +class AlphaComposition(Module): + + def __init__(self): + super().__init__() + + def forward(self, colors, alphas, bg=None): + """ + [summary] + + :param colors `Tensor(N, P, C)`: [description] + :param alphas `Tensor(N, P, 1)`: [description] + :param bg `Tensor([N, ]C)`: [description], defaults to None + :return `Tensor(N, C)`: [description] + """ + # Compute weight for RGB of each sample along each ray. A cumprod() is + # used to express the idea of the ray not having reflected up to this + # sample yet. + one_minus_alpha = torch.cumprod(1 - alphas[..., :-1, :] + math.tiny, dim=-2) + one_minus_alpha = torch.cat([ + torch.ones_like(one_minus_alpha[..., :1, :]), + one_minus_alpha + ], dim=-2) + weights = alphas * one_minus_alpha # (N, P, 1) + + # (N, C), computed weighted color of each sample along each ray. + final_color = torch.sum(weights * colors, dim=-2) + + # To composite onto a white background, use the accumulated alpha map. + if bg is not None: + # Sum of weights along each ray. This value is in [0, 1] up to numerical error. + acc_map = torch.sum(weights, -1) + final_color = final_color + bg * (1. - acc_map[..., None]) + + return { + 'color': final_color, + 'weights': weights, + } + + +class VolumnRenderer(Module): + + class States: + kernel: BaseModel + samples: Samples + early_stop_tolerance: float + outputs: Set[str] + hit_mask: torch.Tensor + N: int + P: int + device: torch.device + + colors: torch.Tensor + densities: torch.Tensor + energies: torch.Tensor + weights: torch.Tensor + cum_energies: torch.Tensor + exp_energies: torch.Tensor + + tot_evaluations: dict[str, int] + + chunk: tuple[slice, slice] + cum_chunk: tuple[slice, slice] + cum_last: tuple[slice, slice] + chunk_id: int + + @property + def start(self) -> int: + return self.chunk[1].start + + @property + def end(self) -> int: + return self.chunk[1].stop + + def __init__(self, kernel: BaseModel, samples: Samples, early_stop_tolerance: float, + outputs: Set[str]) -> None: + self.kernel = kernel + self.samples = samples + self.early_stop_tolerance = early_stop_tolerance + self.outputs = outputs + + N, P = samples.size + self.device = self.samples.device + self.hit_mask = samples.voxel_indices != -1 # (N, P) | bool + self.colors = torch.zeros(N, P, kernel.chns('color'), device=samples.device) + self.densities = torch.zeros(N, P, 1, device=samples.device) + self.energies = torch.zeros(N, P, 1, device=samples.device) + self.weights = torch.zeros(N, P, 1, device=samples.device) + self.cum_energies = torch.zeros(N, P + 1, 1, device=samples.device) + self.exp_energies = torch.ones(N, P + 1, 1, device=samples.device) + self.tot_evaluations = {} + self.N, self.P = N, P + self.chunk_id = -1 + + def n_hits(self, index: int | slice = None) -> int: + if not isinstance(self.hit_mask, torch.Tensor): + if index is not None: + return self.N * self.colors[:, index].shape[1] + return self.N * self.P + if index is None: + return self.hit_mask.count_nonzero().item() + return self.hit_mask[:, index].count_nonzero().item() + + def accumulate_tot_evaluations(self, key: str, n: int): + if key not in self.tot_evaluations: + self.tot_evaluations[key] = 0 + self.tot_evaluations[key] += n + + def next_chunk(self, *, length=None, end=None): + start = 0 if not hasattr(self, "chunk") else self.end + length = length or self.P + end = min(end or start + length, self.P) + self.chunk = slice(None), slice(start, end) + self.cum_chunk = slice(None), slice(start + 1, end + 1) + self.cum_last = slice(None), slice(start, start + 1) + self.chunk_id += 1 + return self + + def put(self, key: str, values: torch.Tensor, indices: tuple[torch.Tensor, torch.Tensor] | tuple[slice, slice]): + if not hasattr(self, key): + new_tensor = torch.zeros(self.N, self.P, values.shape[-1], device=self.device) + setattr(self, key, new_tensor) + tensor: torch.Tensor = getattr(self, key) + # if isinstance(indices[0], torch.Tensor): + # tensor.index_put_(indices, values) + # else: + tensor[indices] = values + + def __init__(self, **kwargs): + super().__init__() + + @profile + def forward(self, kernel: BaseModel, samples: Samples, *outputs: str, + raymarching_early_stop_tolerance: float = 0, + raymarching_chunk_size_or_sections: int | list[int] = None, + **kwargs) -> ReturnData: + """ + Perform volumn rendering. + + :param kernel `BaseModel`: render kernel + :param samples `Samples(N, P)`: samples + :param outputs `str...`: items should be contained in the result dict. + Optional values include 'color', 'depth', 'layers', 'states' and attribute names in class `States` (e.g. 'weights'). Defaults to [] + :param raymarching_early_stop_tolerance `float`: tolerance of raymarching early stop. + Should between 0 and 1 (0 means no early stop). Defaults to 0 + :param raymarching_chunk_size_or_sections `int|list[int]`: indicates how to split raymarching process. + Use a list of integers to specify samples of every chunk, or a positive integer to specify number of chunks. + Use a negative interger to split by number of hits in chunks, and the absolute value means maximum number of hits in a chunk. + 0 and `None` means not splitting the raymarching process. Defaults to `None` + :return `dict`: render result { 'color'[, 'depth', 'layers', 'states', ...] } + """ + if samples.size[1] == 0: + print("VolumnRenderer.forward(): # of samples is zero") + return None + + infer_outputs = set() + for key in outputs: + if key == "color": + infer_outputs.add("colors") + infer_outputs.add("densities") + elif key == "specular": + infer_outputs.add("speculars") + infer_outputs.add("densities") + elif key == "diffuse": + infer_outputs.add("diffuses") + infer_outputs.add("densities") + elif key == "depth": + infer_outputs.add("densities") + else: + infer_outputs.add(key) + + with profile("Prepare states object"): + s = VolumnRenderer.States(kernel, samples, raymarching_early_stop_tolerance, + infer_outputs) + + if not raymarching_chunk_size_or_sections: + raymarching_chunk_size_or_sections = [s.P] + elif isinstance(raymarching_chunk_size_or_sections, int) and \ + raymarching_chunk_size_or_sections > 0: + raymarching_chunk_size_or_sections = [ + math.ceil(s.P / raymarching_chunk_size_or_sections) + ] + + with profile("Run forward chunks"): + if isinstance(raymarching_chunk_size_or_sections, list): + chunk_sections = raymarching_chunk_size_or_sections + for chunk_samples in cycle(chunk_sections): + self._forward_chunk(s.next_chunk(length=chunk_samples)) + if s.end >= s.P: + break + else: + chunk_size = -raymarching_chunk_size_or_sections + chunk_hits = s.n_hits(0) + for i in range(1, s.P): + n_hits = s.n_hits(i) + if chunk_hits + n_hits > chunk_size: + self._forward_chunk(s.next_chunk(end=i)) + n_hits = s.n_hits(i) + chunk_hits = 0 + chunk_hits += n_hits + self._forward_chunk(s.next_chunk()) + + with profile("Set return data"): + ret = {} + for key in outputs: + if key == 'color': + ret['color'] = torch.sum(s.colors * s.weights, 1) + elif key == 'depth': + ret['depth'] = torch.sum(s.samples.depths[..., None] * s.weights, 1) + elif key == 'diffuse' and hasattr(s, "diffuses"): + ret['diffuse'] = torch.sum(s.diffuses * s.weights, 1) + elif key == 'specular' and hasattr(s, "speculars"): + ret['specular'] = torch.sum(s.speculars * s.weights, 1) + elif key == 'layers': + ret['layers'] = torch.cat([s.colors, 1 - torch.exp(-s.energies)], dim=-1) + elif key == 'states': + ret['states'] = s + else: + if hasattr(s, key): + ret[key] = getattr(s, key) + + return ret + + @profile + def _calc_weights(self, s: States): + """ + Calculate weights of samples in composited outputs + + :param s `States`: states + :param start `int`: chunk's start + :param end `int`: chunk's end + """ + s.energies[s.chunk] = density2energy(s.densities[s.chunk], s.samples.dists[s.chunk]) + s.cum_energies[s.cum_chunk] = torch.cumsum(s.energies[s.chunk], 1) \ + + s.cum_energies[s.cum_last] + s.exp_energies[s.cum_chunk] = (-s.cum_energies[s.cum_chunk]).exp() + s.weights[s.chunk] = s.exp_energies[s.chunk] - s.exp_energies[s.cum_chunk] + + @profile + def _apply_early_stop(self, s: States): + """ + Stop rays whose accumulated opacity are larger than a threshold + + :param s `States`: s + :param end `int`: chunk's end + """ + if s.end < s.P and s.early_stop_tolerance > 0 and isinstance(s.hit_mask, torch.Tensor): + rays_to_stop = s.exp_energies[:, s.end, 0] < s.early_stop_tolerance + s.hit_mask[rays_to_stop, s.end:] = 0 + + @profile + def _forward_chunk(self, s: States) -> int: + if isinstance(s.hit_mask, torch.Tensor): + fi_idxs: tuple[torch.Tensor, ...] = s.hit_mask[s.chunk].nonzero(as_tuple=True) + if fi_idxs[0].size(0) == 0: + s.cum_energies[s.cum_chunk] = s.cum_energies[s.cum_last] + s.exp_energies[s.cum_chunk] = s.exp_energies[s.cum_last] + return + fi_idxs[1].add_(s.start) + s.accumulate_tot_evaluations("colors", fi_idxs[0].size(0)) + else: + fi_idxs = s.chunk + fi_outputs = s.kernel.infer(*s.outputs, samples=s.samples[fi_idxs], chunk_id=s.chunk_id) + for key, value in fi_outputs.items(): + s.put(key, value, fi_idxs) + + self._calc_weights(s) + self._apply_early_stop(s) + + +class DensityFirstVolumnRenderer(VolumnRenderer): + + def __init__(self, **kwargs): + super().__init__(**kwargs) + + def _forward_chunk(self, s: VolumnRenderer.States) -> int: + fi_idxs: tuple[torch.Tensor, ...] = s.hit_mask[s.chunk].nonzero(as_tuple=True) # (N') + fi_idxs[1].add_(s.start) + + if fi_idxs[0].size(0) == 0: + s.cum_energies[s.cum_chunk] = s.cum_energies[s.cum_last] + s.exp_energies[s.cum_chunk] = s.exp_energies[s.cum_last] + return + + # fi_* means "filtered" by hit mask + fi_samples = s.samples[fi_idxs] # N -> N' + + # For all valid samples: encode X + density_inputs = s.kernel.input(fi_samples, "x", "f") # (N', Ex) + + # Infer densities (shape) + density_outputs = s.kernel.infer('densities', 'features', samples=fi_samples, + inputs=density_inputs, chunk_id=s.chunk_id) + s.put('densities', density_outputs['densities'], fi_idxs) + s.accumulate_tot_evaluations("densities", fi_idxs[0].size(0)) + + self._calc_weights(s) + self._apply_early_stop(s) + + # Remove samples whose weights are less than a threshold + s.hit_mask[s.chunk][s.weights[s.chunk][..., 0] < 0.01] = 0 + + # Update "filtered" tensors + fi_mask = s.hit_mask[fi_idxs] + fi_idxs = (fi_idxs[0][fi_mask], fi_idxs[1][fi_mask]) # N' -> N" + fi_samples = s.samples[fi_idxs] # N -> N" + fi_features = density_outputs['features'][fi_mask] + color_inputs = s.kernel.input(fi_samples, "d") # (N") + color_inputs.x = density_inputs.x[fi_mask] + + # Infer colors (appearance) + outputs = s.outputs.copy() + if 'densities' in outputs: + outputs.remove('densities') + color_outputs = s.kernel.infer(*outputs, samples=fi_samples, inputs=color_inputs, + chunk_id=s.chunk_id, features=fi_features) + # if s.chunk_id == 0: + # fi_colors[:] *= fi_colors.new_tensor([1, 0, 0]) + # elif s.chunk_id == 1: + # fi_colors[:] *= fi_colors.new_tensor([0, 1, 0]) + # elif s.chunk_id == 2: + # fi_colors[:] *= fi_colors.new_tensor([0, 0, 1]) + # else: + # fi_colors[:] *= fi_colors.new_tensor([1, 1, 0]) + for key, value in color_outputs.items(): + s.put(key, value, fi_idxs) + s.accumulate_tot_evaluations("colors", fi_idxs[0].size(0)) diff --git a/modules/__old/sampler.py b/modules/__old/sampler.py new file mode 100644 index 0000000..591c0c5 --- /dev/null +++ b/modules/__old/sampler.py @@ -0,0 +1,112 @@ +class VoxelSampler(Module): + + def __init__(self, *, sample_step: float, **kwargs): + """ + Initialize a VoxelSampler module + + :param perturb_sample: perturb the sample depths + :param step_size: step size + """ + super().__init__() + self.sample_step = sample_step + + def _forward(self, rays_o: torch.Tensor, rays_d: torch.Tensor, space_module: Space, *, + perturb_sample: bool, **kwargs) -> tuple[Samples, torch.Tensor]: + """ + [summary] + + :param rays_o `Tensor(N, 3)`: rays' origin positions + :param rays_d `Tensor(N, 3)`: rays' directions + :param step_size `float`: gap between samples along a ray + :return `Samples(N', P)`: samples along valid rays (which hit at least one voxel) + :return `Tensor(N)`: valid rays mask + """ + intersections = space_module.ray_intersect(rays_o, rays_d, 100) + valid_rays_mask = intersections.hits > 0 + rays_o = rays_o[valid_rays_mask] + rays_d = rays_d[valid_rays_mask] + intersections = intersections[valid_rays_mask] # (N) -> (N') + n_rays = rays_o.size(0) + ray_index_list = torch.arange(n_rays, device=rays_o.device, dtype=torch.long) # (N') + + hits = intersections.hits + min_depths = intersections.min_depths + max_depths = intersections.max_depths + voxel_indices = intersections.voxel_indices + + rays_near_depth = min_depths[:, :1] # (N', 1) + rays_far_depth = max_depths[ray_index_list, hits - 1][:, None] # (N', 1) + rays_length = rays_far_depth - rays_near_depth + rays_steps = (rays_length / self.sample_step).ceil().long() + rays_step_size = rays_length / rays_steps + max_steps = rays_steps.max().item() + rays_step = torch.arange(max_steps, device=rays_o.device, + dtype=torch.float)[None].repeat(n_rays, 1) # (N', P) + invalid_samples_mask = rays_step >= rays_steps + samples_min_depth = rays_near_depth + rays_step * rays_step_size + samples_depth = samples_min_depth + rays_step_size \ + * (torch.rand_like(samples_min_depth) if perturb_sample else 0.5) # (N', P) + samples_dist = rays_step_size.repeat(1, max_steps) # (N', 1) -> (N', P) + samples_voxel_index = voxel_indices[ + ray_index_list[:, None], + torch.searchsorted(max_depths, samples_depth) + ] # (N', P) + samples_depth[invalid_samples_mask] = math.huge + samples_dist[invalid_samples_mask] = 0 + samples_voxel_index[invalid_samples_mask] = -1 + + rays_o, rays_d = rays_o[:, None], rays_d[:, None] + return Samples( + pts=rays_o + rays_d * samples_depth[..., None], + dirs=rays_d.expand(-1, max_steps, -1), + depths=samples_depth, + dists=samples_dist, + voxel_indices=samples_voxel_index + ), valid_rays_mask + + @profile + def forward(self, rays_o: torch.Tensor, rays_d: torch.Tensor, + space: Space, *, perturb_sample: bool, **kwargs) -> tuple[Samples, torch.Tensor]: + """ + [summary] + + :param rays_o `Tensor(N, 3)`: [description] + :param rays_d `Tensor(N, 3)`: [description] + :param step_size `float`: [description] + :return `Samples(N, P)`: [description] + """ + with profile("Ray intersect"): + intersections = space.ray_intersect(rays_o, rays_d, 100) + valid_rays_mask = intersections.hits > 0 + rays_o = rays_o[valid_rays_mask] + rays_d = rays_d[valid_rays_mask] + intersections = intersections[valid_rays_mask] # (N) -> (N') + + if intersections.size == 0: + return None, valid_rays_mask + else: + with profile("Inverse CDF sampling"): + min_depth = intersections.min_depths + max_depth = intersections.max_depths + pts_idx = intersections.voxel_indices + dists = max_depth - min_depth + tot_dists = dists.sum(dim=-1, keepdim=True) # (N, 1) + probs = dists / tot_dists + steps = tot_dists[:, 0] / self.sample_step + + # sample points and use middle point approximation + sampled_indices, sampled_depths, sampled_dists = inverse_cdf_sampling( + pts_idx, min_depth, max_depth, probs, steps, -1, not perturb_sample) + sampled_indices = sampled_indices.long() + invalid_idx_mask = sampled_indices.eq(-1) + sampled_dists.clamp_min_(0).masked_fill_(invalid_idx_mask, 0) + sampled_depths.masked_fill_(invalid_idx_mask, math.huge) + + rays_o, rays_d = rays_o[:, None], rays_d[:, None] + return Samples( + pts=rays_o + rays_d * sampled_depths[..., None], + dirs=rays_d.expand(-1, sampled_depths.size(1), -1), + depths=sampled_depths, + dists=sampled_dists, + voxel_indices=sampled_indices + ), valid_rays_mask diff --git a/modules/core/__init__.py b/modules/core/__init__.py new file mode 100644 index 0000000..cf3da1f --- /dev/null +++ b/modules/core/__init__.py @@ -0,0 +1,4 @@ +from .nerf import NeRF +from .fs_nerf import FsNeRF + +__all__ = ["NeRF", "FsNeRF"] diff --git a/modules/core/color_decoder.py b/modules/core/color_decoder.py new file mode 100644 index 0000000..cec94fc --- /dev/null +++ b/modules/core/color_decoder.py @@ -0,0 +1,41 @@ +from ..__common__ import * + +__all__ = ["ColorDecoder", "BasicColorDecoder", "NeRFColorDecoder"] + + +class ColorDecoder(nn.Module): + def __init__(self, f_chns: int, d_chns: int, color_chns: int): + super().__init__({"f": f_chns, "d": d_chns}, {"color": color_chns}) + + # stub method for type hint + def __call__(self, f: torch.Tensor, d: torch.Tensor) -> torch.Tensor: + ... + + def forward(self, f: torch.Tensor, d: torch.Tensor) -> torch.Tensor: + raise NotImplementedError() + + @staticmethod + def create(f_chns: int, d_chns: int, color_chns: int, type: str, args: dict[str, Any]) -> "ColorDecoder": + return getattr(sys.modules[__name__], f"{type}ColorDecoder")( + f_chns=f_chns, d_chns=d_chns, color_chns=color_chns, **args) + + +class BasicColorDecoder(ColorDecoder): + def __init__(self, f_chns: int, color_chns: int, out_act: str = "sigmoid", **kwargs): + super().__init__(f_chns, 0, color_chns) + self.net = nn.FcLayer(f_chns, color_chns, out_act) + + def forward(self, f: torch.Tensor, d: torch.Tensor) -> torch.Tensor: + return self.net(f) + + +class NeRFColorDecoder(ColorDecoder): + def __init__(self, f_chns: int, d_chns: int, color_chns: int, act: str = "relu", + out_act: str = "sigmoid", with_ln: bool = False, **kwargs): + super().__init__(f_chns, d_chns, color_chns) + self.feature_layer = nn.FcLayer(f_chns, f_chns, with_ln=with_ln) + self.net = nn.FcBlock(f_chns + d_chns, color_chns, 1, + f_chns // 2, [], act, out_act, with_ln) + + def forward(self, f: torch.Tensor, d: torch.Tensor) -> torch.Tensor: + return self.net(union(self.feature_layer(f), d)) diff --git a/modules/core/density_decoder.py b/modules/core/density_decoder.py new file mode 100644 index 0000000..778cf18 --- /dev/null +++ b/modules/core/density_decoder.py @@ -0,0 +1,16 @@ +from ..__common__ import * + +__all__ = ["DensityDecoder"] + + +class DensityDecoder(nn.Module): + def __init__(self, f_chns: int, density_chns: int, **kwargs): + super().__init__({"f": f_chns}, {"density": density_chns}) + self.net = nn.FcLayer(f_chns, density_chns) + + # stub method for type hint + def __call__(self, f: torch.Tensor) -> torch.Tensor: + ... + + def forward(self, f: torch.Tensor) -> torch.Tensor: + return self.net(f) diff --git a/modules/core/field.py b/modules/core/field.py new file mode 100644 index 0000000..73b7a97 --- /dev/null +++ b/modules/core/field.py @@ -0,0 +1,19 @@ +from ..__common__ import * + +__all__ = ["Field"] + + +class Field(nn.Module): + def __init__(self, x_chns: int, shape: list[int], skips: list[int] = [], + act: str = 'relu', with_ln: bool = False): + super().__init__({"x": x_chns}, {"f": shape[1]}) + self.net = nn.FcBlock(x_chns, 0, *shape, skips, act, with_ln=with_ln) + + # stub method for type hint + def __call__(self, x: torch.Tensor) -> torch.Tensor: + ... + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.net(x) + + diff --git a/modules/core/fs_nerf.py b/modules/core/fs_nerf.py new file mode 100644 index 0000000..4a657d7 --- /dev/null +++ b/modules/core/fs_nerf.py @@ -0,0 +1,58 @@ +from ..__common__ import * +from .field import * +from .color_decoder import * +from .density_decoder import * + + +class FsNeRF(nn.Module): + + def __init__(self, x_chns: int, color_chns: int, depth: int, width: int, + skips: list[int], act: str, ln: bool, n_samples: int, n_fields: int): + """ + Initialize a FS-NeRF core module. + + :param x_chns `int`: channels of input positions (D_x) + :param d_chns `int`: channels of input directions (D_d) + :param color_chns `int`: channels of output colors (D_c) + :param depth `int`: number of layers in field network + :param width `int`: width of each layer in field network + :param skips `[int]`: skip connections from input to specific layers in field network + :param act `str`: activation function in field network and color decoder + :param ln `bool`: whether enable layer normalization in field network and color decoder + :param color_decoder_type `str`: type of color decoder + """ + super().__init__({"x": x_chns}, {"rgbd": 1 + color_chns}) + self.n_fields = n_fields + self.samples_per_field = n_samples // n_fields + self.subnets = torch.nn.ModuleList() + for _ in range(n_fields): + field = Field(x_chns * self.samples_per_field, [depth, width], skips, act, ln) + density_decoder = DensityDecoder(field.out_chns, self.samples_per_field) + color_decoder = BasicColorDecoder(field.out_chns, color_chns * self.samples_per_field) + self.subnets.append(torch.nn.ModuleDict({ + "field": field, + "density_decoder": density_decoder, + "color_decoder": color_decoder + })) + + # stub method for type hint + def __call__(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: + """ + Inference colors and densities from input samples + + :param x `Tensor(B..., P, D_x)`: input positions + :return `Tensor(B..., P, D_c + D_σ)`: output colors and densities + """ + ... + + def forward(self, x: torch.Tensor) -> torch.Tensor: + densities = [] + colors = [] + for i in range(self.n_fields): + f = self.subnets[i]["field"]( + x[..., i * self.samples_per_field:(i + 1) * self.samples_per_field, :].flatten(-2)) + densities.append(self.subnets[i]["density_decoder"](f) + .unflatten(-1, (self.samples_per_field, -1))) + colors.append(self.subnets[i]["color_decoder"](f, None) + .unflatten(-1, (self.samples_per_field, -1))) + return torch.cat([torch.cat(colors, -2), torch.cat(densities, -2)], -1) \ No newline at end of file diff --git a/modules/core/nerf.py b/modules/core/nerf.py new file mode 100644 index 0000000..503adf4 --- /dev/null +++ b/modules/core/nerf.py @@ -0,0 +1,45 @@ +from ..__common__ import * +from .field import * +from .color_decoder import * +from .density_decoder import * + + +class NeRF(nn.Module): + + def __init__(self, x_chns: int, d_chns: int, color_chns: int, depth: int, width: int, + skips: list[int], act: str, ln: bool, color_decoder_type: str): + """ + Initialize a NeRF core module. + + :param x_chns `int`: channels of input positions (D_x) + :param d_chns `int`: channels of input directions (D_d) + :param color_chns `int`: channels of output colors (D_c) + :param depth `int`: number of layers in field network + :param width `int`: width of each layer in field network + :param skips `[int]`: skip connections from input to specific layers in field network + :param act `str`: activation function in field network and color decoder + :param ln `bool`: whether enable layer normalization in field network and color decoder + :param color_decoder_type `str`: type of color decoder + """ + super().__init__({"x": x_chns, "d": d_chns}, {"density": 1, "color": color_chns}) + self.field = Field(x_chns, [depth, width], skips, act, ln) + self.density_decoder = DensityDecoder(self.field.out_chns, 1) + self.color_decoder = ColorDecoder.create(self.field.out_chns, d_chns, color_chns, + color_decoder_type, {"act": act, "with_ln": ln}) + + # stub method for type hint + def __call__(self, x: torch.Tensor, d: torch.Tensor) -> torch.Tensor: + """ + Inference colors and densities from input samples + + :param x `Tensor(B..., D_x)`: input positions + :param d `Tensor(B..., D_d)`: input directions + :return `Tensor(B..., D_c + D_σ)`: output colors and densities + """ + ... + + def forward(self, x: torch.Tensor, d: torch.Tensor) -> torch.Tensor: + f = self.field(x) + densities = self.density_decoder(f) + colors = self.color_decoder(f, d) + return torch.cat([colors, densities], -1) diff --git a/modules/generic/__init__.py b/modules/generic/__init__.py deleted file mode 100644 index 12ccca8..0000000 --- a/modules/generic/__init__.py +++ /dev/null @@ -1 +0,0 @@ -from .linear import * diff --git a/modules/generic/linear.py b/modules/generic/linear.py deleted file mode 100644 index c064cb4..0000000 --- a/modules/generic/linear.py +++ /dev/null @@ -1,104 +0,0 @@ -from typing import List -from .weight_init import * -from .fn import * - - -class BatchLinear(nn.Linear): - ''' - A linear meta-layer that can deal with batched weight matrices and biases, - as for instance output by a hypernetwork. - ''' - __doc__ = nn.Linear.__doc__ - - def forward(self, input, params=None): - # if params is None: - # params = OrderedDict(self.named_parameters()) - - bias = params.get('bias', None) - weight = params['weight'] - - output = input.matmul(weight.permute(*[i for i in range(len(weight.shape) - 2)], -1, -2)) - output += bias.unsqueeze(-2) - return output - - -class FcLayer(nn.Module): - - def __init__(self, in_chns: int, out_chns: int, act: str = 'linear', skip_chns: int = 0, - with_ln: bool = True): - super().__init__() - nls_and_inits = { - 'sine': (Sine, init_weights_sine), - 'relu': (nn.ReLU, init_weights_relu), - 'leakyrelu': (nn.LeakyReLU, init_weights_leakyrelu), - 'sigmoid': (nn.Sigmoid, init_weights_xavier), - 'tanh': (nn.Tanh, init_weights_xavier), - 'selu': (nn.SELU, init_weights_selu), - 'softplus': (nn.Softplus, init_weights_trunc_normal), - 'elu': (nn.ELU, init_weights_elu), - 'softmax': (nn.Softmax, init_weights_softmax), - 'logsoftmax': (nn.LogSoftmax, init_weights_softmax), - 'mise': (Mise, init_weights_xavier), - 'linear': (nn.Identity, init_weights_xavier) - } - nl_cls, weight_init_fn = nls_and_inits[act] - - self.net = [nn.Linear(in_chns + skip_chns, out_chns)] - if with_ln: - self.net += [nn.LayerNorm([out_chns])] - self.net += [nl_cls()] - self.net = nn.Sequential(*self.net) - self.skip = skip_chns != 0 - self.with_ln = with_ln - self.net.apply(weight_init_fn) - - def forward(self, x: torch.Tensor, x0: torch.Tensor = None) -> torch.Tensor: - return self.net(torch.cat([x0, x], -1) if self.skip else x) - - def __repr__(self) -> str: - s = f"{self.net[0].in_features} -> {self.net[0].out_features}, "\ - + ", ".join(module.__class__.__name__ for module in self.net[1:]) - return f"{self._get_name()}({s})" - - -class FcBlock(nn.Module): - - def __init__(self, *, in_chns: int, out_chns: int, nf: int, n_layers: int, - skips: List[int] = [], act: str = 'relu', out_act='linear', with_ln=True): - """ - Initialize a full-connection net - - :kwarg in_chns: channels of input - :kwarg out_chns: channels of output - :kwarg nf: number of features in each hidden layer - :kwarg n_layers: number of layers - :kwarg skips: create skip connections from input to layers in this list - """ - super().__init__() - - self.layers = nn.ModuleList([ - FcLayer(in_chns, nf, act, with_ln=with_ln)] + [ - FcLayer(nf, nf, act, skip_chns=in_chns if i in skips else 0, with_ln=with_ln) - for i in range(1, n_layers) - ]) - if out_chns: - self.layers.append(FcLayer(nf, out_chns, out_act, with_ln=False)) - - def forward(self, x: torch.Tensor) -> torch.Tensor: - x0 = x - for layer in self.layers: - x = layer(x, x0) - return x - - def __repr__(self): - lines = [] - for key, module in self.layers._modules.items(): - mod_str = repr(module) - mod_str = nn.modules.module._addindent(mod_str, 2) - lines.append('(' + key + '): ' + mod_str) - - main_str = self._get_name() + '(' - if lines: - main_str += '\n ' + '\n '.join(lines) + '\n' - main_str += ')' - return main_str diff --git a/modules/input_encoder.py b/modules/input_encoder.py index 8b7d5c5..b57ee35 100644 --- a/modules/input_encoder.py +++ b/modules/input_encoder.py @@ -1,184 +1,78 @@ -from typing import Tuple -import torch +from .__common__ import * -from .generic import * -from utils import math -from utils.module import Module +__all__ = ["InputEncoder", "LinearEncoder", "FreqEncoder"] -class InputEncoder(Module): +class InputEncoder(nn.Module): + """ + Base class for input encoder. + """ - def __init__(self, chns, L, cat_input=False): - super().__init__() - emb = torch.exp(torch.arange(L, dtype=torch.float) * math.log(2.)) + def __init__(self, in_chns: int, out_chns: int): + super().__init__({"_": in_chns}, {"_": out_chns}) - self.emb = nn.Parameter(emb, requires_grad=False) - self.in_dim = chns - self.out_dim = chns * (L * 2 + cat_input) - self.cat_input = cat_input + # stub method for type hint + def __call__(self, x: torch.Tensor) -> torch.Tensor: + """ + Encode the input tensor. - def forward(self, x: torch.Tensor, angular=False): - sizes = x.size() - x0 = x + :param x `Tensor(N..., D)`: D-dim inputs + :return `Tensor(N..., E)`: encoded outputs + """ + ... - if angular: - x = torch.acos(x.clamp(-1, 1)) - x = x[..., None] @ self.emb[None] - x = torch.cat([torch.sin(x), torch.cos(x)], -1) - x = x.flatten(-2) - if self.cat_input: - x = torch.cat([x0, x], -1) - return x + def forward(self, x: torch.Tensor) -> torch.Tensor: + raise NotImplementedError() - def extra_repr(self) -> str: - return f'in={self.in_dim}, out={self.out_dim}, cat_input={self.cat_input}' - - -class IntegratedPosEncoder(Module): - - def __init__(self, chns, L, shape: str, cat_input=False): - super.__init__() - self.shape = shape - - def _lift_gaussian(self, d: torch.Tensor, t_mean: torch.Tensor, t_var: torch.Tensor, - r_var: torch.Tensor, diag: bool): - """Lift a Gaussian defined along a ray to 3D coordinates.""" - mean = d[..., None, :] * t_mean[..., None] - d_sq = d**2 - - d_mag_sq = torch.sum(d_sq, -1, keepdim=True).clamp_min(1e-10) - - if diag: - d_outer_diag = d_sq - null_outer_diag = 1 - d_outer_diag / d_mag_sq - t_cov_diag = t_var[..., None] * d_outer_diag[..., None, :] - xy_cov_diag = r_var[..., None] * null_outer_diag[..., None, :] - cov_diag = t_cov_diag + xy_cov_diag - return mean, cov_diag - else: - d_outer = d[..., :, None] * d[..., None, :] - eye = torch.eye(d.shape[-1], device=d.device) - null_outer = eye - d[..., :, None] * (d / d_mag_sq)[..., None, :] - t_cov = t_var[..., None, None] * d_outer[..., None, :, :] - xy_cov = r_var[..., None, None] * null_outer[..., None, :, :] - cov = t_cov + xy_cov - return mean, cov - - def _conical_frustum_to_gaussian(self, d: torch.Tensor, t0: float, t1: float, base_radius: float, - diag: bool, stable: bool = True): - """Approximate a conical frustum as a Gaussian distribution (mean+cov). - - Assumes the ray is originating from the origin, and base_radius is the - radius at dist=1. Doesn't assume `d` is normalized. - - Args: - d: torch.float32 3-vector, the axis of the cone - t0: float, the starting distance of the frustum. - t1: float, the ending distance of the frustum. - base_radius: float, the scale of the radius as a function of distance. - diag: boolean, whether or the Gaussian will be diagonal or full-covariance. - stable: boolean, whether or not to use the stable computation described in - the paper (setting this to False will cause catastrophic failure). - - Returns: - a Gaussian (mean and covariance). + @staticmethod + def create(chns: int, type: str, args: dict[str, Any]) -> "InputEncoder": """ - if stable: - mu = (t0 + t1) / 2 - hw = (t1 - t0) / 2 - t_mean = mu + (2 * mu * hw**2) / (3 * mu**2 + hw**2) - t_var = (hw**2) / 3 - (4 / 15) * ((hw**4 * (12 * mu**2 - hw**2)) / - (3 * mu**2 + hw**2)**2) - r_var = base_radius**2 * ((mu**2) / 4 + (5 / 12) * hw**2 - 4 / 15 * - (hw**4) / (3 * mu**2 + hw**2)) - else: - t_mean = (3 * (t1**4 - t0**4)) / (4 * (t1**3 - t0**3)) - r_var = base_radius**2 * (3 / 20 * (t1**5 - t0**5) / (t1**3 - t0**3)) - t_mosq = 3 / 5 * (t1**5 - t0**5) / (t1**3 - t0**3) - t_var = t_mosq - t_mean**2 - return self._lift_gaussian(d, t_mean, t_var, r_var, diag) - - def _cylinder_to_gaussian(self, d: torch.Tensor, t0: float, t1: float, radius: float, diag: bool): - """Approximate a cylinder as a Gaussian distribution (mean+cov). - - Assumes the ray is originating from the origin, and radius is the - radius. Does not renormalize `d`. - - Args: - d: torch.float32 3-vector, the axis of the cylinder - t0: float, the starting distance of the cylinder. - t1: float, the ending distance of the cylinder. - radius: float, the radius of the cylinder - diag: boolean, whether or the Gaussian will be diagonal or full-covariance. - - Returns: - a Gaussian (mean and covariance). - """ - t_mean = (t0 + t1) / 2 - r_var = radius**2 / 4 - t_var = (t1 - t0)**2 / 12 - return self._lift_gaussian(d, t_mean, t_var, r_var, diag) - - def cast_rays(self, t_vals: torch.Tensor, rays_o: torch.Tensor, rays_d: torch.Tensor, - rays_r: torch.Tensor, diag: bool = True): - """Cast rays (cone- or cylinder-shaped) and featurize sections of it. - - Args: - t_vals: float array, the "fencepost" distances along the ray. - rays_o: float array, the ray origin coordinates. - rays_d: float array, the ray direction vectors. - radii: float array, the radii (base radii for cones) of the rays. - ray_shape: string, the shape of the ray, must be 'cone' or 'cylinder'. - diag: boolean, whether or not the covariance matrices should be diagonal. - - Returns: - a tuple of arrays of means and covariances. - """ - t0 = t_vals[..., :-1] - t1 = t_vals[..., 1:] - if self.shape == 'cone': - gaussian_fn = self._conical_frustum_to_gaussian - elif self.shape == 'cylinder': - gaussian_fn = self._cylinder_to_gaussian - else: - assert False - means, covs = gaussian_fn(rays_d, t0, t1, rays_r, diag) - means = means + rays_o[..., None, :] - return means, covs - - def integrated_pos_enc(x_coord: Tuple[torch.Tensor, torch.Tensor], min_deg: int, max_deg: int, - diag: bool = True): - """Encode `x` with sinusoids scaled by 2^[min_deg:max_deg-1]. - - Args: - x_coord: a tuple containing: x, torch.ndarray, variables to be encoded. Should - be in [-pi, pi]. x_cov, torch.ndarray, covariance matrices for `x`. - min_deg: int, the min degree of the encoding. - max_deg: int, the max degree of the encoding. - diag: bool, if true, expects input covariances to be diagonal (full - otherwise). - - Returns: - encoded: torch.ndarray, encoded variables. + Create an input encoder of `type` with `args`. + + :param chns `int`: input channels + :param type `str`: type of input encoder, without suffix "Encoder" + :param args `{str:Any}`: arguments for initializing the input encoder + :return `InputEncoder`: the created input encoder """ - if diag: - x, x_cov_diag = x_coord - scales = torch.tensor([2**i for i in range(min_deg, max_deg)], device=x.device)[:, None] - shape = list(x.shape[:-1]) + [-1] - y = torch.reshape(x[..., None, :] * scales, shape) - y_var = torch.reshape(x_cov_diag[..., None, :] * scales**2, shape) - else: - x, x_cov = x_coord - num_dims = x.shape[-1] - basis = torch.cat([ - 2**i * torch.eye(num_dims, device=x.device) - for i in range(min_deg, max_deg) - ], 1) - y = torch.matmul(x, basis) - # Get the diagonal of a covariance matrix (ie, variance). This is equivalent - # to jax.vmap(torch.diag)((basis.T @ covs) @ basis). - y_var = (torch.matmul(x_cov, basis) * basis).sum(-2) - - return math.expected_sin( - torch.cat([y, y + 0.5 * math.pi], -1), - torch.cat([y_var] * 2, -1))[0] + return getattr(sys.modules[__name__], f"{type}Encoder")(chns, **args) + + +class LinearEncoder(InputEncoder): + """ + The linear encoder: D -> D. + """ + + def __init__(self, chns): + super().__init__(chns, chns) + + def forward(self, x: torch.Tensor): + return x + + def extra_repr(self) -> str: + return f"{self.in_chns} -> {self.out_chns}" + + +class FreqEncoder(InputEncoder): + """ + The frequency encoder introduced in [mildenhall2020nerf]: D -> 2LD[+D]. + """ + + freq_bands: torch.Tensor + """ + `Tensor(L)` Frequency bands (1, 2, ..., 2^(L-1)) + """ + + def __init__(self, chns, freqs: int, include_input: bool): + super().__init__(chns, chns * (freqs * 2 + include_input)) + self.include_input = include_input + self.freqs = freqs + self.register_temp("freq_bands", (2. ** torch.arange(freqs))[:, None].expand(-1, chns)) + + def forward(self, x: torch.Tensor): + x_ = x.unsqueeze(-2) * self.freq_bands + result = union(torch.sin(x_), torch.cos(x_)).flatten(-2) + return union(x, result) if self.include_input else result + + def extra_repr(self) -> str: + return f"{self.in_chns} -> {self.out_chns}"\ + f"(2x{self.freqs}x{self.in_chns}{f'+{self.in_chns}' * self.include_input})" diff --git a/modules/renderer.py b/modules/renderer.py index 08f7649..e1d3668 100644 --- a/modules/renderer.py +++ b/modules/renderer.py @@ -1,373 +1,83 @@ -import torch -from itertools import cycle -from typing import Dict, Set, Tuple, Union +from .__common__ import * +import torch.nn.functional as F -from utils.type import NetInput, ReturnData +__all__ = ["density2energy", "density2alpha", "VolumnRenderer"] -from .generic import * -from model.base import BaseModel -from utils import math -from utils.module import Module -from utils.perf import checkpoint, perf -from utils.samples import Samples - -def density2energy(densities: torch.Tensor, dists: torch.Tensor, raw_noise_std: float = 0): +def density2energy(densities: torch.Tensor, dists: torch.Tensor, raw_noise_std: float = 0) -> torch.Tensor: """ Calculate energies from densities inferred by model. - :param densities `Tensor(N..., 1)`: model's output densities + :param densities `Tensor(N...)`: model's output densities :param dists `Tensor(N...)`: integration times :param raw_noise_std `float`: the noise std used to egularize network during training (prevents floater artifacts), defaults to 0, means no noise is added - :return `Tensor(N..., 1)`: energies which block light rays + :return `Tensor(N...)`: energies which block light rays """ if raw_noise_std > 0: # Add noise to model's predictions for density. Can be used to # regularize network during training (prevents floater artifacts). - densities = densities + torch.normal(0.0, raw_noise_std, densities.size()) - return densities * dists[..., None] + densities = densities + torch.normal(0.0, raw_noise_std, densities.shape, + device=densities.device) + return F.relu(densities) * dists -def density2alpha(densities: torch.Tensor, dists: torch.Tensor, raw_noise_std: float = 0): +def energy2alpha(energies: torch.Tensor) -> torch.Tensor: """ - Calculate alphas from densities inferred by model. + Convert energies to alphas. - :param densities `Tensor(N..., 1)`: model's output densities - :param dists `Tensor(N...)`: integration times - :param raw_noise_std `float`: the noise std used to egularize network during training (prevents - floater artifacts), defaults to 0, means no noise is added - :return `Tensor(N..., 1)`: alphas + :param energies `Tensor(N...)`: energies (calculated from densities) + :return `Tensor(N...)`: alphas """ - energies = density2energy(densities, dists, raw_noise_std) return 1.0 - torch.exp(-energies) -class AlphaComposition(Module): - - def __init__(self): - super().__init__() - - def forward(self, colors, alphas, bg=None): - """ - [summary] - - :param colors `Tensor(N, P, C)`: [description] - :param alphas `Tensor(N, P, 1)`: [description] - :param bg `Tensor([N, ]C)`: [description], defaults to None - :return `Tensor(N, C)`: [description] - """ - # Compute weight for RGB of each sample along each ray. A cumprod() is - # used to express the idea of the ray not having reflected up to this - # sample yet. - one_minus_alpha = torch.cumprod(1 - alphas[..., :-1, :] + math.tiny, dim=-2) - one_minus_alpha = torch.cat([ - torch.ones_like(one_minus_alpha[..., :1, :]), - one_minus_alpha - ], dim=-2) - weights = alphas * one_minus_alpha # (N, P, 1) - - # (N, C), computed weighted color of each sample along each ray. - final_color = torch.sum(weights * colors, dim=-2) - - # To composite onto a white background, use the accumulated alpha map. - if bg is not None: - # Sum of weights along each ray. This value is in [0, 1] up to numerical error. - acc_map = torch.sum(weights, -1) - final_color = final_color + bg * (1. - acc_map[..., None]) - - return { - 'color': final_color, - 'weights': weights, - } - - -class VolumnRenderer(Module): - - class States: - kernel: BaseModel - samples: Samples - early_stop_tolerance: float - outputs: Set[str] - hit_mask: torch.Tensor - N: int - P: int - device: torch.device - - colors: torch.Tensor - densities: torch.Tensor - energies: torch.Tensor - weights: torch.Tensor - cum_energies: torch.Tensor - exp_energies: torch.Tensor - - tot_evaluations: Dict[str, int] - - chunk: Tuple[slice, slice] - cum_chunk: Tuple[slice, slice] - cum_last: Tuple[slice, slice] - chunk_id: int - - @property - def start(self) -> int: - return self.chunk[1].start - - @property - def end(self) -> int: - return self.chunk[1].stop - - def __init__(self, kernel: BaseModel, samples: Samples, early_stop_tolerance: float, - outputs: Set[str]) -> None: - self.kernel = kernel - self.samples = samples - self.early_stop_tolerance = early_stop_tolerance - self.outputs = outputs - - N, P = samples.size - self.device = self.samples.device - self.hit_mask = samples.voxel_indices != -1 # (N, P) | bool - self.colors = torch.zeros(N, P, kernel.chns('color'), device=samples.device) - self.densities = torch.zeros(N, P, 1, device=samples.device) - self.energies = torch.zeros(N, P, 1, device=samples.device) - self.weights = torch.zeros(N, P, 1, device=samples.device) - self.cum_energies = torch.zeros(N, P + 1, 1, device=samples.device) - self.exp_energies = torch.ones(N, P + 1, 1, device=samples.device) - self.tot_evaluations = {} - self.N, self.P = N, P - self.chunk_id = -1 - - def n_hits(self, index: Union[int, slice] = None) -> int: - if not isinstance(self.hit_mask, torch.Tensor): - if index is not None: - return self.N * self.colors[:, index].shape[1] - return self.N * self.P - if index is None: - return self.hit_mask.count_nonzero().item() - return self.hit_mask[:, index].count_nonzero().item() +def density2alpha(densities: torch.Tensor, dists: torch.Tensor, raw_noise_std: float = 0) -> torch.Tensor: + """ + Calculate alphas from densities inferred by model. - def accumulate_tot_evaluations(self, key: str, n: int): - if key not in self.tot_evaluations: - self.tot_evaluations[key] = 0 - self.tot_evaluations[key] += n + :param densities `Tensor(N...)`: model's output densities + :param dists `Tensor(N...)`: integration times + :param raw_noise_std `float`: the noise std used to regularize network during training (prevents + floater artifacts), defaults to 0, means no noise is added + :return `Tensor(N...)`: alphas + """ + return energy2alpha(density2energy(densities, dists, raw_noise_std)) - def next_chunk(self, *, length=None, end=None): - start = 0 if not hasattr(self, "chunk") else self.end - length = length or self.P - end = min(end or start + length, self.P) - self.chunk = slice(None), slice(start, end) - self.cum_chunk = slice(None), slice(start + 1, end + 1) - self.cum_last = slice(None), slice(start, start + 1) - self.chunk_id += 1 - return self - def put(self, key: str, values: torch.Tensor, indices: Union[Tuple[torch.Tensor, torch.Tensor], Tuple[slice, slice]]): - if not hasattr(self, key): - new_tensor = torch.zeros(self.N, self.P, values.shape[-1], device=self.device) - setattr(self, key, new_tensor) - tensor: torch.Tensor = getattr(self, key) - # if isinstance(indices[0], torch.Tensor): - # tensor.index_put_(indices, values) - # else: - tensor[indices] = values +class VolumnRenderer(nn.Module): - def __init__(self, **kwargs): + def __init__(self): super().__init__() - @perf - def forward(self, kernel: BaseModel, samples: Samples, *outputs: str, - raymarching_early_stop_tolerance: float = 0, - raymarching_chunk_size_or_sections: Union[int, List[int]] = None, - **kwargs) -> ReturnData: + # stub method + def __call__(self, samples: Samples, densities: torch.Tensor, colors: torch.Tensor, *outputs: str, + white_bg: bool, raw_noise_std: float) -> ReturnData: """ Perform volumn rendering. - :param kernel `BaseModel`: render kernel - :param samples `Samples(N, P)`: samples + :param samples `Samples(B, P)`: samples + :param rgbd `Tensor(B, P, C+1)`: colors and densities :param outputs `str...`: items should be contained in the result dict. Optional values include 'color', 'depth', 'layers', 'states' and attribute names in class `States` (e.g. 'weights'). Defaults to [] - :param raymarching_early_stop_tolerance `float`: tolerance of raymarching early stop. - Should between 0 and 1 (0 means no early stop). Defaults to 0 - :param raymarching_chunk_size_or_sections `int|list[int]`: indicates how to split raymarching process. - Use a list of integers to specify samples of every chunk, or a positive integer to specify number of chunks. - Use a negative interger to split by number of hits in chunks, and the absolute value means maximum number of hits in a chunk. - 0 and `None` means not splitting the raymarching process. Defaults to `None` - :return `dict`: render result { 'color'[, 'depth', 'layers', 'states', ...] } + :return `ReturnData`: render result { 'color'[, 'depth', 'layers', 'states', ...] } """ - if samples.size[1] == 0: - print("VolumnRenderer.forward(): # of samples is zero") - return None - - infer_outputs = set() - for key in outputs: - if key == "color": - infer_outputs.add("colors") - infer_outputs.add("densities") - elif key == "specular": - infer_outputs.add("speculars") - infer_outputs.add("densities") - elif key == "diffuse": - infer_outputs.add("diffuses") - infer_outputs.add("densities") - elif key == "depth": - infer_outputs.add("densities") - else: - infer_outputs.add(key) - s = VolumnRenderer.States(kernel, samples, raymarching_early_stop_tolerance, infer_outputs) - - checkpoint("Prepare states object") - - if not raymarching_chunk_size_or_sections: - raymarching_chunk_size_or_sections = [s.P] - elif isinstance(raymarching_chunk_size_or_sections, int) and \ - raymarching_chunk_size_or_sections > 0: - raymarching_chunk_size_or_sections = [ - math.ceil(s.P / raymarching_chunk_size_or_sections) - ] - - if isinstance(raymarching_chunk_size_or_sections, list): - chunk_sections = raymarching_chunk_size_or_sections - for chunk_samples in cycle(chunk_sections): - self._forward_chunk(s.next_chunk(length=chunk_samples)) - if s.end >= s.P: - break - else: - chunk_size = -raymarching_chunk_size_or_sections - chunk_hits = s.n_hits(0) - for i in range(1, s.P): - n_hits = s.n_hits(i) - if chunk_hits + n_hits > chunk_size: - self._forward_chunk(s.next_chunk(end=i)) - n_hits = s.n_hits(i) - chunk_hits = 0 - chunk_hits += n_hits - self._forward_chunk(s.next_chunk()) - - checkpoint("Run forward chunks") - - ret = {} - for key in outputs: - if key == 'color': - ret['color'] = torch.sum(s.colors * s.weights, 1) - elif key == 'depth': - ret['depth'] = torch.sum(s.samples.depths[..., None] * s.weights, 1) - elif key == 'diffuse' and hasattr(s, "diffuses"): - ret['diffuse'] = torch.sum(s.diffuses * s.weights, 1) - elif key == 'specular' and hasattr(s, "speculars"): - ret['specular'] = torch.sum(s.speculars * s.weights, 1) - elif key == 'layers': - ret['layers'] = torch.cat([s.colors, 1 - torch.exp(-s.energies)], dim=-1) - elif key == 'states': - ret['states'] = s - else: - if hasattr(s, key): - ret[key] = getattr(s, key) - - checkpoint("Set return data") - - return ret - - @perf - def _calc_weights(self, s: States): - """ - Calculate weights of samples in composited outputs - - :param s `States`: states - :param start `int`: chunk's start - :param end `int`: chunk's end - """ - s.energies[s.chunk] = density2energy(s.densities[s.chunk], s.samples.dists[s.chunk]) - s.cum_energies[s.cum_chunk] = torch.cumsum(s.energies[s.chunk], 1) \ - + s.cum_energies[s.cum_last] - s.exp_energies[s.cum_chunk] = (-s.cum_energies[s.cum_chunk]).exp() - s.weights[s.chunk] = s.exp_energies[s.chunk] - s.exp_energies[s.cum_chunk] - - @perf - def _apply_early_stop(self, s: States): - """ - Stop rays whose accumulated opacity are larger than a threshold - - :param s `States`: s - :param end `int`: chunk's end - """ - if s.end < s.P and s.early_stop_tolerance > 0 and isinstance(s.hit_mask, torch.Tensor): - rays_to_stop = s.exp_energies[:, s.end, 0] < s.early_stop_tolerance - s.hit_mask[rays_to_stop, s.end:] = 0 - - @perf - def _forward_chunk(self, s: States) -> int: - if isinstance(s.hit_mask, torch.Tensor): - fi_idxs: Tuple[torch.Tensor, ...] = s.hit_mask[s.chunk].nonzero(as_tuple=True) - if fi_idxs[0].size(0) == 0: - s.cum_energies[s.cum_chunk] = s.cum_energies[s.cum_last] - s.exp_energies[s.cum_chunk] = s.exp_energies[s.cum_last] - return - fi_idxs[1].add_(s.start) - s.accumulate_tot_evaluations("colors", fi_idxs[0].size(0)) - else: - fi_idxs = s.chunk - - fi_outputs = s.kernel.infer(*s.outputs, samples=s.samples[fi_idxs], chunk_id=s.chunk_id) - for key, value in fi_outputs.items(): - s.put(key, value, fi_idxs) - - self._calc_weights(s) - self._apply_early_stop(s) - - -class DensityFirstVolumnRenderer(VolumnRenderer): - - def __init__(self, **kwargs): - super().__init__(**kwargs) - - def _forward_chunk(self, s: VolumnRenderer.States) -> int: - fi_idxs: Tuple[torch.Tensor, ...] = s.hit_mask[s.chunk].nonzero(as_tuple=True) # (N') - fi_idxs[1].add_(s.start) - - if fi_idxs[0].size(0) == 0: - s.cum_energies[s.cum_chunk] = s.cum_energies[s.cum_last] - s.exp_energies[s.cum_chunk] = s.exp_energies[s.cum_last] - return - - # fi_* means "filtered" by hit mask - fi_samples = s.samples[fi_idxs] # N -> N' - - # For all valid samples: encode X - density_inputs = s.kernel.input(fi_samples, "x", "f") # (N', Ex) - - # Infer densities (shape) - density_outputs = s.kernel.infer('densities', 'features', samples=fi_samples, - inputs=density_inputs, chunk_id=s.chunk_id) - s.put('densities', density_outputs['densities'], fi_idxs) - s.accumulate_tot_evaluations("densities", fi_idxs[0].size(0)) - - self._calc_weights(s) - self._apply_early_stop(s) - - # Remove samples whose weights are less than a threshold - s.hit_mask[s.chunk][s.weights[s.chunk][..., 0] < 0.01] = 0 - - # Update "filtered" tensors - fi_mask = s.hit_mask[fi_idxs] - fi_idxs = (fi_idxs[0][fi_mask], fi_idxs[1][fi_mask]) # N' -> N" - fi_samples = s.samples[fi_idxs] # N -> N" - fi_features = density_outputs['features'][fi_mask] - color_inputs = s.kernel.input(fi_samples, "d") # (N") - color_inputs.x = density_inputs.x[fi_mask] - - # Infer colors (appearance) - outputs = s.outputs.copy() - if 'densities' in outputs: - outputs.remove('densities') - color_outputs = s.kernel.infer(*outputs, samples=fi_samples, inputs=color_inputs, - chunk_id=s.chunk_id, features=fi_features) - # if s.chunk_id == 0: - # fi_colors[:] *= fi_colors.new_tensor([1, 0, 0]) - # elif s.chunk_id == 1: - # fi_colors[:] *= fi_colors.new_tensor([0, 1, 0]) - # elif s.chunk_id == 2: - # fi_colors[:] *= fi_colors.new_tensor([0, 0, 1]) - # else: - # fi_colors[:] *= fi_colors.new_tensor([1, 1, 0]) - for key, value in color_outputs.items(): - s.put(key, value, fi_idxs) - s.accumulate_tot_evaluations("colors", fi_idxs[0].size(0)) + ... + + @profile + def forward(self, samples: Samples, rgbd: torch.Tensor, *outputs: str, + white_bg: bool, raw_noise_std: float) -> ReturnData: + energies = density2energy(rgbd[..., -1], samples.dists, raw_noise_std) # (B, P) + alphas = energy2alpha(energies) # (B, P) + weights = (alphas * torch.cumprod(union(1, 1. - alphas + 1e-10), -1)[..., :-1])[..., None] + output_fn = { + "color": lambda: torch.sum(weights * rgbd[..., :-1], -2) + (1. - torch.sum(weights, -2) + if white_bg else 0.), + "depth": lambda: torch.sum(weights * samples.depths[..., None], -2), + "colors": lambda: rgbd[..., :-1], + "densities": lambda: rgbd[..., -1:], + "alphas": lambda: alphas[..., None], + "energies": lambda: energies[..., None], + "weights": lambda: weights + } + return ReturnData({key: output_fn[key]() for key in outputs if key in output_fn}) diff --git a/modules/sampler.py b/modules/sampler.py index 5f51657..6df284f 100644 --- a/modules/sampler.py +++ b/modules/sampler.py @@ -1,346 +1,224 @@ -import torch -from typing import Tuple - -from .generic import * +from .__common__ import * from .space import Space from clib import * -from utils import device from utils import sphere -from utils import misc -from utils import math -from utils.module import Module -from utils.samples import Samples -from utils.perf import perf, checkpoint - - -class Bins(object): - - @property - def up(self): - return self.bounds[1:] +from utils.misc import grid2d - @property - def lo(self): - return self.bounds[:-1] +__all__ = ["Sampler", "UniformSampler", "PdfSampler"] - def __init__(self, vals: torch.Tensor): - self.vals = vals - self.bounds = torch.cat([ - self.vals[:1], - 0.5 * (self.vals[1:] + self.vals[:-1]), - self.vals[-1:] - ]) - @staticmethod - def linspace(val_range: Tuple[float, float], N: int, device: torch.device = None): - return Bins(torch.linspace(*val_range, N, device=device)) +class Sampler(nn.Module): + _samples_indices_cached: torch.Tensor | None - def to(self, device: torch.device): - self.vals = self.vals.to(device) - self.bounds = self.bounds.to(device) - - -class Sampler(Module): - - def __init__(self, **kwargs): + def __init__(self, x_chns: int, d_chns: int): """ Initialize a Sampler module """ - super().__init__() + super().__init__({}, {"x": x_chns, "d": d_chns}) self._samples_indices_cached = None - def _sample(self, range: Tuple[float, float], n_rays: int, n_samples: int, perturb: bool, - device: torch.device) -> torch.Tensor: - """ - [summary] + # stub method for type hint + def __call__(self, rays: Rays, space: Space, **kwargs) -> Samples: + ... - :param t_range `float, float`: sampling range - :param n_rays `int`: number of rays (B) - :param n_samples `int`: number of samples per ray (P) - :param perturb `bool`: whether perturb sampling - :param device `torch.device`: the device used to create tensors - :return `Tensor(B, P+1)`: sampling bounds of t + def _get_samples_indices(self, pts: torch.Tensor) -> torch.Tensor: """ - bounds = torch.linspace(*range, n_samples + 1, device=device) # (P+1) - if perturb: - rand_bounds = torch.cat([ - bounds[:1], - 0.5 * (bounds[1:] + bounds[:-1]), - bounds[-1:] - ]) - rand_vals = torch.rand(n_rays, n_samples + 1, device=device) - bounds = rand_bounds[:-1] * (1 - rand_vals) + rand_bounds[1:] * rand_vals - else: - bounds = bounds[None].expand(n_rays, -1) - return bounds + Get 2D indices of samples. The first value is the index of ray, while the second value is + the index of sample in a ray. - def _get_samples_indices(self, pts: torch.Tensor): + :param pts `Tensor(B, P, 3)`: the sample points + :return `Tensor(B, P)`: the 2D indices of samples + """ if self._samples_indices_cached is None\ + or self._samples_indices_cached.device != pts.device\ or self._samples_indices_cached.shape[0] < pts.shape[0]\ or self._samples_indices_cached.shape[1] < pts.shape[1]: - self._samples_indices_cached = misc.meshgrid( - *pts.shape[:2], swap_dim=True, device=pts.device) + self._samples_indices_cached = grid2d(*pts.shape[:2], indexing="ij", device=pts.device) return self._samples_indices_cached[:pts.shape[0], :pts.shape[1]] - @perf - def forward(self, rays_o: torch.Tensor, rays_d: torch.Tensor, space_: Space, *, - sample_range: Tuple[float, float], n_samples: int, lindisp: bool = False, - perturb_sample: bool = True, spherical: bool = False, - **kwargs) -> Tuple[Samples, torch.Tensor]: + def _get_samples(self, rays: Rays, space: Space, t_vals: torch.Tensor, mode: str) -> Samples: """ - Sample points along rays. + Get samples along rays at sample steps specified by `t_vals`. :param rays_o `Tensor(B, 3)`: rays' origin :param rays_d `Tensor(B, 3)`: rays' direction - :param sample_range `float, float`: sampling range - :param n_samples `int`: number of samples per ray - :param lindisp `bool`: whether sample linearly in disparity space (1/depth) - :param perturb_sample `bool`: whether perturb sampling + :param t_vals `Tensor(B, P)`: sample steps + :param mode `str`: sample mode, one of "xyz", "xyz_disp", "spherical", "spherical_radius" :return `Samples(B, P)`: samples """ - if spherical: - t_bounds = self._sample(sample_range, rays_o.shape[0], n_samples, perturb_sample, - rays_o.device) - t0, t1 = t_bounds[:, :-1], t_bounds[:, 1:] # (B, P) - t = (t0 + t1) * .5 - - p, z = sphere.ray_sphere_intersect(rays_o, rays_d, t.reciprocal()) - p = sphere.cartesian2spherical(p, inverse_r=True) - vidxs = space_.get_voxel_indices(p) - return Samples( - pts=p, - dirs=rays_d[:, None].expand(-1, n_samples, -1), - depths=z, - dists=(t1 + math.tiny).reciprocal() - t0.reciprocal(), - voxel_indices=vidxs, - indices=self._get_samples_indices(p), - t=t - ) + if mode == "xyz": + z_vals = t_vals + pts = rays.get_points(z_vals) + elif mode == "xyz_disp": + z_vals = t_vals.reciprocal() + pts = rays.get_points(z_vals) + elif mode == "spherical": + z_vals = t_vals.reciprocal() + pts = sphere.cartesian2spherical(rays.get_points(z_vals), inverse_r=True) + elif mode == "spherical_radius": + z_vals = sphere.ray_sphere_intersect(rays, t_vals.reciprocal()) + pts = sphere.cartesian2spherical(rays.get_points(z_vals), inverse_r=True) else: - sample_range = (1 / sample_range[0], 1 / sample_range[1]) if lindisp else sample_range - z_bounds = self._sample(sample_range, rays_o.shape[0], n_samples, perturb_sample, - rays_o.device) - if lindisp: - z_bounds = z_bounds.reciprocal() - z0, z1 = z_bounds[:, :-1], z_bounds[:, 1:] # (B, P) - z = (z0 + z1) * .5 - p = rays_o[:, None] + rays_d[:, None] * z[..., None] - vidxs = space_.get_voxel_indices(p) - return Samples( - pts=p, - dirs=rays_d[:, None].expand(-1, n_samples, -1), - depths=z, - dists=z1 - z0, - voxel_indices=vidxs, - indices=self._get_samples_indices(p), - t=z - ) + raise ValueError(f"Unknown mode: {mode}") + rays_d = rays.rays_d.unsqueeze(1) # (B, 1, 3) + dists = union(z_vals[..., 1:] - z_vals[..., :-1], math.huge) # (B, P) + dists *= torch.norm(rays_d, dim=-1) + return Samples( + pts=pts, + dirs=rays_d.expand(*pts.shape[:2], -1), + depths=z_vals, + t_vals=t_vals, + dists=dists, + voxel_indices=space.get_voxel_indices(pts) if space else 0, + indices=self._get_samples_indices(pts) + ) -class PdfSampler(Module): - def __init__(self, *, depth_range: Tuple[float, float], n_samples: int, perturb_sample: bool, - spherical: bool, lindisp: bool, **kwargs): - """ - Initialize a Sampler module +class UniformSampler(Sampler): + """ + This module expands NeRF's code of uniform sampling to support our spherical sampling and enable + the trace of samples' indices. + """ - :param depth_range: depth range for sampler - :param n_samples: count to sample along ray - :param perturb_sample: perturb the sample depths - :param lindisp: If True, sample linearly in inverse depth rather than in depth - """ - super().__init__() - self.lindisp = lindisp - self.perturb_sample = perturb_sample - self.spherical = spherical - self.n_samples = n_samples - self.s_range = (1 / depth_range[0], 1 / depth_range[1]) if self.lindisp else depth_range + def __init__(self): + super().__init__(3, 3) - def forward(self, rays_o, rays_d, *, weights, s_vals=None, include_s_vals=False, **kwargs): + def _sample(self, range: tuple[float, float], n_rays: int, n_samples: int, perturb: bool) -> torch.Tensor: """ - Sample points along rays. return Spherical or Cartesian coordinates, - specified by `self.shperical` + Generate sample steps along rays in the specified range. - :param rays_o `Tensor(B, 3)`: rays' origin - :param rays_d `Tensor(B, 3)`: rays' direction - :param weights `Tensor(B, M)`: weights of sample bins - :param s_vals `Tensor(B, M)`: (optional) center of sample bins - :param include_s_vals `bool`: (default to `False`) include `s_vals` in the sample array - :return `Tensor(B, N, 3)`: sampled points - :return `Tensor(B, N)`: corresponding depths along rays + :param range `float, float`: sampling range + :param n_rays `int`: number of rays (B) + :param n_samples `int`: number of samples per ray (P) + :param perturb `bool`: whether perturb sampling + :return `Tensor(B, P)`: sampled "t"s along rays """ - if s_vals is None: - s_vals = torch.linspace(*self.s_range, self.n_samples, device=device.default()) - s = self.sample_pdf(Bins(s_vals).bounds, weights, self.n_samples, det=self.perturb_sample) - if include_s_vals: - s = torch.cat([s, s_vals], dim=-1) - s = torch.sort(s, descending=self.lindisp)[0] - z = torch.reciprocal(s) if self.lindisp else s - if self.spherical: - pts, depths = sphere.ray_sphere_intersect(rays_o, rays_d, z) - sphers = sphere.cartesian2spherical(pts, inverse_r=self.lindisp) - return sphers, depths, s, pts + t_vals = torch.linspace(*range, n_samples, device=self.device) # (P) + if perturb: + mids = .5 * (t_vals[..., 1:] + t_vals[..., :-1]) + upper = union(mids, t_vals[..., -1:]) + lower = union(t_vals[..., :1], mids) + # stratified samples in those intervals + t_vals = t_vals.expand(n_rays, -1) + t_vals = lower + (upper - lower) * torch.rand_like(t_vals) else: - return rays_o[..., None, :] + rays_d[..., None, :] * z[..., None], z, s - - def sample_pdf(self, bins: torch.Tensor, weights: torch.Tensor, N: int, det=True): - ''' - :param bins `Tensor(..., M+1)`: bounds of bins - :param weights `Tensor(..., M)`: weights of bins - :param N `int`: # of samples along each ray - :param det `bool`: (default to `True`) perform deterministic sampling or not - :return `Tensor(..., N)`: samples - ''' - # Get pdf - weights = weights + math.tiny # prevent nans - pdf = weights / torch.sum(weights, dim=-1, keepdim=True) # [..., M] - cdf = torch.cat([ - torch.zeros_like(pdf[..., :1]), - torch.cumsum(pdf, dim=-1) - ], dim=-1) # [..., M+1] - - # Take uniform samples - dots_sh = list(weights.shape[:-1]) - M = weights.shape[-1] + t_vals = t_vals.expand(n_rays, -1) + return t_vals - u = torch.linspace(0, 1, N, device=bins.device).expand(dots_sh + [N]) \ - if det else torch.rand(dots_sh + [N], device=bins.device) # [..., N] - - # Invert CDF - # [..., N, 1] >= [..., 1, M] ----> [..., N, M] ----> [..., N,] - above_inds = torch.sum(u[..., None] >= cdf[..., None, :-1], dim=-1).long() - - # random sample inside each bin - below_inds = torch.clamp(above_inds - 1, min=0) - inds_g = torch.stack((below_inds, above_inds), dim=-1) # [..., N, 2] - - cdf = cdf[..., None, :].expand(dots_sh + [N, M + 1]) # [..., N, M+1] - cdf_g = torch.gather(cdf, dim=-1, index=inds_g) # [..., N, 2] - - bins = bins[..., None, :].expand(dots_sh + [N, M + 1]) # [..., N, M+1] - bins_g = torch.gather(bins, dim=-1, index=inds_g) # [..., N, 2] - - # fix numeric issue - denom = cdf_g[..., 1] - cdf_g[..., 0] # [..., N] - denom = torch.where(denom < math.tiny, torch.ones_like(denom), denom) - t = (u - cdf_g[..., 0]) / denom - - samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0] + math.tiny) - - return samples - - -class VoxelSampler(Module): - - def __init__(self, *, sample_step: float, **kwargs): - """ - Initialize a VoxelSampler module - - :param perturb_sample: perturb the sample depths - :param step_size: step size + # stub method for type hint + def __call__(self, rays: Rays, space: Space, *, + range: tuple[float, float], + mode: str, + n_samples: int, + perturb: bool) -> Samples: """ - super().__init__() - self.sample_step = sample_step + Sample points along rays. - def _forward(self, rays_o: torch.Tensor, rays_d: torch.Tensor, space_module: Space, *, - perturb_sample: bool, **kwargs) -> Tuple[Samples, torch.Tensor]: + :param rays `Rays(B)`: rays + :param space `Space`: sample space + :param range `float, float`: sampling range + :param mode `str`: sample mode, one of "xyz", "xyz_disp", "spherical", "spherical_radius" + :param n_samples `int`: number of samples per ray + :param perturb `bool`: whether perturb sampling, defaults to `False` + :return `Samples(B, P)`: samples """ - [summary] + ... - :param rays_o `Tensor(N, 3)`: rays' origin positions - :param rays_d `Tensor(N, 3)`: rays' directions - :param step_size `float`: gap between samples along a ray - :return `Samples(N', P)`: samples along valid rays (which hit at least one voxel) - :return `Tensor(N)`: valid rays mask - """ - intersections = space_module.ray_intersect(rays_o, rays_d, 100) - valid_rays_mask = intersections.hits > 0 - rays_o = rays_o[valid_rays_mask] - rays_d = rays_d[valid_rays_mask] - intersections = intersections[valid_rays_mask] # (N) -> (N') - n_rays = rays_o.size(0) - ray_index_list = torch.arange(n_rays, device=rays_o.device, dtype=torch.long) # (N') + @profile + def forward(self, rays: Rays, space: Space, *, + range: tuple[float, float], + mode: str, + n_samples: int, + perturb: bool) -> Samples: + t_range = range if mode == "xyz" else (1. / range[0], 1. / range[1]) + t_vals = self._sample(t_range, rays.shape[0], n_samples, perturb) # (B, P) + return self._get_samples(rays, space, t_vals, mode) - hits = intersections.hits - min_depths = intersections.min_depths - max_depths = intersections.max_depths - voxel_indices = intersections.voxel_indices - rays_near_depth = min_depths[:, :1] # (N', 1) - rays_far_depth = max_depths[ray_index_list, hits - 1][:, None] # (N', 1) - rays_length = rays_far_depth - rays_near_depth - rays_steps = (rays_length / self.sample_step).ceil().long() - rays_step_size = rays_length / rays_steps - max_steps = rays_steps.max().item() - rays_step = torch.arange(max_steps, device=rays_o.device, - dtype=torch.float)[None].repeat(n_rays, 1) # (N', P) - invalid_samples_mask = rays_step >= rays_steps - samples_min_depth = rays_near_depth + rays_step * rays_step_size - samples_depth = samples_min_depth + rays_step_size \ - * (torch.rand_like(samples_min_depth) if perturb_sample else 0.5) # (N', P) - samples_dist = rays_step_size.repeat(1, max_steps) # (N', 1) -> (N', P) - samples_voxel_index = voxel_indices[ - ray_index_list[:, None], - torch.searchsorted(max_depths, samples_depth) - ] # (N', P) - samples_depth[invalid_samples_mask] = math.huge - samples_dist[invalid_samples_mask] = 0 - samples_voxel_index[invalid_samples_mask] = -1 +class PdfSampler(Sampler): + """ + Hierarchical sampling (section 5.2 of NeRF) + """ - rays_o, rays_d = rays_o[:, None], rays_d[:, None] - return Samples( - pts=rays_o + rays_d * samples_depth[..., None], - dirs=rays_d.expand(-1, max_steps, -1), - depths=samples_depth, - dists=samples_dist, - voxel_indices=samples_voxel_index - ), valid_rays_mask + def __init__(self): + super().__init__(3, 3) - @perf - def forward(self, rays_o: torch.Tensor, rays_d: torch.Tensor, - space: Space, *, perturb_sample: bool, **kwargs) -> Tuple[Samples, torch.Tensor]: + def _sample(self, t_vals: torch.Tensor, weights: torch.Tensor, n_importance: int, + perturb: bool, include_existed: bool, sort_descending: bool) -> torch.Tensor: """ - [summary] + Generate sample steps by PDF according to existed sample steps and their weights. - :param rays_o `Tensor(N, 3)`: [description] - :param rays_d `Tensor(N, 3)`: [description] - :param step_size `float`: [description] - :return `Samples(N, P)`: [description] + :param t_vals `Tensor(B, P)`: existed sample steps + :param weights `Tensor(B, P)`: weights of existed sample steps + :param n_importance `int`: number of samples to generate for each ray + :param perturb `bool`: whether perturb sampling + :param include_existed `bool`: whether to include existed samples in the output + :return `Tensor(B, P'[+P])`: the output sample steps """ - intersections = space.ray_intersect(rays_o, rays_d, 100) - valid_rays_mask = intersections.hits > 0 - rays_o = rays_o[valid_rays_mask] - rays_d = rays_d[valid_rays_mask] - intersections = intersections[valid_rays_mask] # (N) -> (N') + bins = .5 * (t_vals[..., 1:] + t_vals[..., :-1]) # (B, P - 1) + weights = weights[..., 1:-1] + math.tiny # (B, P - 2) - checkpoint("Ray intersect") + # Get PDF + pdf = weights / torch.sum(weights, -1, keepdim=True) + cdf = union(0., torch.cumsum(pdf, -1)) # (B, P - 1) - if intersections.size == 0: - return None, valid_rays_mask + # Take uniform samples + if perturb: + u = torch.rand(*cdf.shape[:-1], n_importance, device=self.device) else: - min_depth = intersections.min_depths - max_depth = intersections.max_depths - pts_idx = intersections.voxel_indices - dists = max_depth - min_depth - tot_dists = dists.sum(dim=-1, keepdim=True) # (N, 1) - probs = dists / tot_dists - steps = tot_dists[:, 0] / self.sample_step - - # sample points and use middle point approximation - sampled_indices, sampled_depths, sampled_dists = inverse_cdf_sampling( - pts_idx, min_depth, max_depth, probs, steps, -1, not perturb_sample) - sampled_indices = sampled_indices.long() - invalid_idx_mask = sampled_indices.eq(-1) - sampled_dists.clamp_min_(0).masked_fill_(invalid_idx_mask, 0) - sampled_depths.masked_fill_(invalid_idx_mask, math.huge) + u = torch.linspace(0., 1., steps=n_importance, device=self.device).\ + expand(*cdf.shape[:-1], -1) - checkpoint("Inverse CDF sampling") - - rays_o, rays_d = rays_o[:, None], rays_d[:, None] - return Samples( - pts=rays_o + rays_d * sampled_depths[..., None], - dirs=rays_d.expand(-1, sampled_depths.size(1), -1), - depths=sampled_depths, - dists=sampled_dists, - voxel_indices=sampled_indices - ), valid_rays_mask + # Invert CDF + u = u.contiguous() # (B, P') + inds = torch.searchsorted(cdf, u, right=True) # (B, P') + inds_g = torch.stack([ + (inds - 1).clamp_min(0), # below + inds.clamp_max(cdf.shape[-1] - 1) # above + ], -1) # (B, P', 2) + + matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]] # [B, P', P - 1] + cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g) # (B, P', 2) + bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g) # (B, P', 2) + + denom = cdf_g[..., 1] - cdf_g[..., 0] + denom = torch.where(denom < math.tiny, torch.ones_like(denom), denom) + t = (u - cdf_g[..., 0]) / denom + t_samples = (bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])).detach() + if include_existed: + return torch.sort(union(t_vals, t_samples), -1, descending=sort_descending)[0] + else: + return t_samples + + # stub method for type hint + def __call__(self, rays: Rays, space: Space, t_vals: torch.Tensor, weights: torch.Tensor, *, + mode: str, + n_importance: int, + perturb: bool, + include_existed_samples: bool) -> Samples: + """ + Sample points along rays using PDF sampling based on existed samples. + + :param rays `Rays(B)`: rays + :param space `Space`: sample space + :param t_vals `Tensor(B, P)`: existed sample steps + :param weights `Tensor(B, P)`: weights of existed sample steps + :param mode `str`: sample mode, one of "xyz", "xyz_disp", "spherical", "spherical_radius" + :param n_importance `int`: number of samples to generate using PDF sampling for each ray + :param perturb `bool`: whether perturb sampling, defaults to `False` + :param include_existed_samples `bool`: whether to include existed samples in the output, + defaults to `True` + :return `Samples(B, P'[+P])`: samples + """ + ... + + @profile + def forward(self, rays: Rays, space: Space, t_vals: torch.Tensor, weights: torch.Tensor, *, + mode: str, + n_importance: int, + perturb: bool, + include_existed_samples: bool) -> Samples: + t_vals = self._sample(t_vals, weights, n_importance, perturb, include_existed_samples, + mode != "xyz") + return self._get_samples(rays, space, t_vals, mode) diff --git a/modules/space.py b/modules/space.py index 3d46c53..821144f 100644 --- a/modules/space.py +++ b/modules/space.py @@ -1,13 +1,11 @@ -import torch -from typing import Dict, List, Optional, Tuple, Union - +from .__common__ import * from clib import * -from model.utils import load -from utils.module import Module +#from model.utils import load +from utils.nn import Parameter from utils.geometry import * from utils.voxels import * -from utils.perf import perf -from utils.env import get_env + +__all__ = ["Space", "Voxels", "Octree"] class Intersections: @@ -24,8 +22,8 @@ class Intersections: """`Tensor(N)` Number of hits""" @property - def size(self): - return self.hits.size(0) + def shape(self): + return self.hits.shape def __init__(self, min_depths: torch.Tensor, max_depths: torch.Tensor, voxel_indices: torch.Tensor, hits: torch.Tensor) -> None: @@ -42,9 +40,9 @@ class Intersections: hits=self.hits[index]) -class Space(Module): - bbox: Optional[torch.Tensor] - """`Tensor(2, 3)` Bounding box""" +class Space(nn.Module): + bbox: torch.Tensor | None + """`Tensor(2, D)` Bounding box""" @property def dims(self) -> int: @@ -52,16 +50,18 @@ class Space(Module): return self.bbox.shape[1] if self.bbox is not None else 3 @staticmethod - def create(args: dict) -> 'Space': - if 'space' not in args: - return Space(**args) - if args['space'] == 'octree': - return Octree(**args) - if args['space'] == 'voxels': - return Voxels(**args) - return load(args['space']).space - - def __init__(self, clone_src: "Space" = None, *, bbox: List[float] = None, **kwargs): + def create(type: str, args: dict[str, Any]) -> 'Space': + match type: + case "Space": + return Space(**args) + case "Octree": + return Octree(**args) + case "Voxels": + return Voxels(**args) + case _: + return load(type).space + + def __init__(self, clone_src: "Space" = None, *, bbox: list[float] = None, **kwargs): super().__init__() if clone_src: self.device = clone_src.device @@ -69,10 +69,30 @@ class Space(Module): else: self.register_temp('bbox', None if not bbox else torch.tensor(bbox).reshape(2, -1)) - def ray_intersect(self, rays_o: torch.Tensor, rays_d: torch.Tensor, n_max_hits: int) -> Intersections: - raise NotImplementedError + def ray_intersect_with_bbox(self, rays_o: torch.Tensor, rays_d: torch.Tensor) -> Intersections: + """ + [summary] - def get_voxel_indices(self, pts: torch.Tensor) -> torch.Tensor: + :param rays_o `Tensor(N..., D)`: rays' origin + :param rays_d `Tensor(N..., D)`: rays' direction + :param max_hits `int?`: max number of hits of each ray, have no effect for this method + :return `Intersect(N...)`: rays' intersection with the bounding box + """ + if self.bbox is None: + raise RuntimeError("The space has no bounding box") + inv_d = rays_d.reciprocal().unsqueeze(-2) + t = (self.bbox - rays_o.unsqueeze(-2)) * inv_d # (N..., 2, D) + t0 = t.min(dim=-2)[0].max(dim=-1, keepdim=True)[0].clamp(min=1e-4) # (N..., 1) + t1 = t.max(dim=-2)[0].min(dim=-1, keepdim=True)[0] + miss = t1 <= t0 + t0[miss], t1[miss] = -1., -1. + hit = torch.logical_not(miss).long() + return Intersections(t0, t1, hit - 1, hit.squeeze(-1)) + + def ray_intersect(self, rays_o: torch.Tensor, rays_d: torch.Tensor, max_hits: int) -> Intersections: + return self.ray_intersect_with_bbox(rays_o, rays_d) + + def get_voxel_indices(self, pts: torch.Tensor) -> int | torch.Tensor: if self.bbox is None: return 0 voxel_indices = torch.zeros_like(pts[..., 0], dtype=torch.long) @@ -81,19 +101,22 @@ class Space(Module): return voxel_indices @torch.no_grad() - def prune(self, keeps: torch.Tensor) -> Tuple[int, int]: + def prune(self, keeps: torch.Tensor) -> tuple[int, int]: raise NotImplementedError() @torch.no_grad() - def split(self) -> Tuple[int, int]: + def split(self) -> tuple[int, int]: raise NotImplementedError() @torch.no_grad() def clone(self): - return Space(self) + return self.__class__(self) class Voxels(Space): + bbox: torch.Tensor + """`Tensor(2, D)` Bounding box""" + steps: torch.Tensor """`Tensor(3)` Steps along each dimension""" @@ -131,42 +154,43 @@ class Voxels(Space): @property def voxel_size(self) -> torch.Tensor: """`Tensor(3)` Voxel size""" + if self.bbox is None: + raise RuntimeError("Cannot get property 'voxel_size' of a space which " + "doesn't have bounding box") return (self.bbox[1] - self.bbox[0]) / self.steps @property - def corner_embeddings(self) -> Dict[str, torch.nn.Embedding]: + def corner_embeddings(self) -> dict[str, torch.nn.Embedding]: return {name[4:]: emb for name, emb in self.named_modules() if name.startswith("emb_")} @property - def voxel_embeddings(self) -> Dict[str, torch.nn.Embedding]: + def voxel_embeddings(self) -> dict[str, torch.nn.Embedding]: return {name[5:]: emb for name, emb in self.named_modules() if name.startswith("vemb_")} - def __init__(self, clone_src: "Voxels" = None, *, bbox: List[float] = None, - voxel_size: float = None, steps: Union[torch.Tensor, Tuple[int, ...]] = None, + def __init__(self, clone_src: "Voxels" = None, *, bbox: list[float] = None, + voxel_size: float = None, steps: torch.Tensor | tuple[int, ...] = None, **kwargs) -> None: - super().__init__(clone_src, bbox=bbox, **kwargs) if clone_src: + super().__init__(clone_src) self.register_buffer('steps', clone_src.steps) self.register_buffer('voxels', clone_src.voxels) self.register_buffer("corners", clone_src.corners) self.register_buffer("corner_indices", clone_src.corner_indices) self.register_buffer('voxel_indices_in_grid', clone_src.voxel_indices_in_grid) else: - if self.bbox is None: + if bbox is None: raise ValueError("Missing argument 'bbox'") - if voxel_size is not None: - self.register_buffer('steps', get_grid_steps(self.bbox, voxel_size)) - else: + super().__init__(bbox=bbox) + if steps is not None: self.register_buffer('steps', torch.tensor(steps, dtype=torch.long)) + else: + self.register_buffer('steps', get_grid_steps(self.bbox, voxel_size)) self.register_buffer('voxels', init_voxels(self.bbox, self.steps)) corners, corner_indices = get_corners(self.voxels, self.bbox, self.steps) self.register_buffer("corners", corners) self.register_buffer("corner_indices", corner_indices) self.register_buffer('voxel_indices_in_grid', torch.arange(-1, self.n_voxels)) - def clone(self): - return Voxels(self) - def to_vi(self, gi: torch.Tensor) -> torch.Tensor: return self.voxel_indices_in_grid[gi + 1] @@ -208,7 +232,7 @@ class Voxels(Space): voxels = self.voxels[voxel_indices] # (N, 3) corner_indices = self.corner_indices[voxel_indices] # (N, 8) p = (pts - voxels) / self.voxel_size + .5 # (N, 3) normed-coords in voxel - return trilinear_interp(p, emb(corner_indices)) + return linear_interp(p, emb(corner_indices)) def create_voxel_embedding(self, n_dims: int, name: str = 'default') -> torch.nn.Embedding: """ @@ -245,7 +269,7 @@ class Voxels(Space): raise KeyError(f"Embedding '{name}' doesn't exist") return emb(voxel_indices) - @perf + @profile def ray_intersect(self, rays_o: torch.Tensor, rays_d: torch.Tensor, n_max_hits: int) -> Intersections: """ Calculate intersections of rays and voxels. @@ -277,7 +301,7 @@ class Voxels(Space): hits=hits[0] ) - @perf + @profile def get_voxel_indices(self, pts: torch.Tensor) -> torch.Tensor: """ Get voxel indices of points. @@ -290,8 +314,8 @@ class Voxels(Space): gi = to_grid_indices(pts, self.bbox, self.steps) return self.to_vi(gi) - @perf - def get_corners(self, vidxs: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: + @profile + def get_corners(self, vidxs: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: vidxs = vidxs.unique() if vidxs[0] == -1: vidxs = vidxs[1:] @@ -303,7 +327,7 @@ class Voxels(Space): return fi_corner_indices, fi_corners @torch.no_grad() - def split(self) -> Tuple[int, int]: + def split(self) -> tuple[int, int]: """ Split voxels into smaller voxels with half size. """ @@ -336,7 +360,7 @@ class Voxels(Space): return self.n_voxels // 8, self.n_voxels @torch.no_grad() - def prune(self, keeps: torch.Tensor) -> Tuple[int, int]: + def prune(self, keeps: torch.Tensor) -> tuple[int, int]: self.voxels = self.voxels[keeps] self.corner_indices = self.corner_indices[keeps] self._update_gi2vi() @@ -351,7 +375,7 @@ class Voxels(Space): new_emb = self.set_voxel_embedding(update_fn(emb.weight), name) self._update_optimizer(emb.weight, new_emb.weight, update_fn) - def _update_optimizer(self, old_param: nn.Parameter, new_param: nn.Parameter, update_fn): + def _update_optimizer(self, old_param: Parameter, new_param: Parameter, update_fn): optimizer = get_env()["trainer"].optimizer if isinstance(optimizer, (torch.optim.Adam, torch.optim.AdamW)): # Update related states in optimizer @@ -384,7 +408,7 @@ class Voxels(Space): sum_dims = [val for val in range(self.dims) if val != dim] return self.voxel_indices_in_grid[1:].reshape(*self.steps).ne(-1).sum(sum_dims) - def balance_cut(self, dim: int, n_parts: int) -> List[int]: + def balance_cut(self, dim: int, n_parts: int) -> list[int]: n_voxels_list = self.n_voxels_along_dim(dim) cdf = (n_voxels_list.cumsum(0) / self.n_voxels * n_parts).tolist() bins = [] @@ -398,7 +422,7 @@ class Voxels(Space): bins.append(len(cdf) - offset) return bins - def sample(self, S: int, perturb: bool = False, include_border: bool = True) -> Tuple[torch.Tensor, torch.Tensor]: + def sample(self, S: int, perturb: bool = False, include_border: bool = True) -> tuple[torch.Tensor, torch.Tensor]: """ For each voxel, sample `S^3` points uniformly, with small perturb if `perturb` is `True`. @@ -419,7 +443,7 @@ class Voxels(Space): pts += (torch.rand_like(pts) - .5) * self.voxel_size / S return pts.reshape(-1, 3), voxel_indices.flatten() - def _ray_intersect(self, rays_o: torch.Tensor, rays_d: torch.Tensor, n_max_hits: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: + def _ray_intersect(self, rays_o: torch.Tensor, rays_d: torch.Tensor, n_max_hits: int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: return aabb_ray_intersect(self.voxel_size, n_max_hits, self.voxels, rays_o, rays_d) def _update_gi2vi(self): @@ -456,7 +480,7 @@ class Octree(Voxels): self.nodes_cached = None self.tree_cached = None - def get(self) -> Tuple[torch.Tensor, torch.Tensor]: + def get(self) -> tuple[torch.Tensor, torch.Tensor]: if self.nodes_cached is None: self.nodes_cached, self.tree_cached = build_easy_octree( self.voxels, 0.5 * self.voxel_size) @@ -477,7 +501,7 @@ class Octree(Voxels): return ret @torch.no_grad() - def prune(self, keeps: torch.Tensor) -> Tuple[int, int]: + def prune(self, keeps: torch.Tensor) -> tuple[int, int]: ret = super().prune(keeps) self.clear() return ret diff --git a/notebook/__demo/layers/mc_0071(0).png b/notebook/__demo/layers/mc_0071(0).png new file mode 100644 index 0000000000000000000000000000000000000000..a07faae43cf3d44a7ab72df0900833ce03fd0fe3 GIT binary patch literal 134125 zcmeFYbx<5%5H7m7EP=%df#4e4EwD&%2oT&g1b4T^Ex5Y}cX#*T4hin=E^qU@Rrmh; zUcFbh>Q&u8wsz;t%$Yf-yT9)Kx;IooUg8}pAu0d>cqb((rUU@MLVv;nkP)F@*RHdV z&@W!cFY1opY`#0X7}%Qt<P02bEo~ev%?wGMP3#@aY^>RtIGI=(NPjpw+B)ztGh6-7 z3z%%|O_>)BF597#px8=kH~;_`2LC=VMM8yU02ly3N=#VUHU0R-W!7rg2|w)hdwKos z>*a89ZOfdLIm&3w4uncVLtdTKs0#C^1i|?_TS(9y)193`8!N%x=brVA4?o{64iNCJ zBM%^A%f@yK$Kq-gZylV@&|LHGg+Hwrl$YE|%%yW$oV;XM4?8!u-aSisbr8>&sF*E0 zk15n5gCX7eECgsl1%4g{pZ@(q^xxPC#sv8P8%_j?1E2%l`syMCF#nx1Krw*t`tJs+ zfd6yR|C=pH1da15J0Xy}7nB;Z5a^Q4Ryrb}A@+`<k;4PdVaNj1TDYL1z=egW!tK&` zO@M^t0`6WDD#E&<2ffJuLuxX};s1BUvd9JY-$-nl6LbsD;v_(;)Lmo(^kQu`8ZLj^ zMQlh~)n{o#HTWMxBKk-mfb<(7^i4|NegB`6<NbfH56%S9-REgAc6|Dzr0TkI{@v## zzEF+YxPr$7M5B2BI}XS|_)jByv3d;uAL-$L3w8it7QFbl9qA!A#0)@}_^1!nT-Q+2 z-21H2pjr@Y^ea0#bb4Jm7Fg(6_-F@PhUd`S$-OgxYxezb=o#<AfBS3;oOOC<4-d%= zBAIzZS)>B5!ii0N(iekTK^yA7DS2SGiL_O^=QtrC#uvf-1uOsrBti*09(vC00u|GJ z2D%J_B}*H!woXooc~eOkED5NaB>pWcu;Z*nt*!%VUgt{xy&4M00^(q}ai;@3YfpK8 z2bBO8)ck^y!s>tkU%BVo8P<QY`(K8b0(kd-Z1ev&@YF_5nyc1=irB04pY^&fZIqy@ zsC4sc`Jn}=q23;`6QD8kBTvEVt3r(+LG(ph4XR-b_~{O$d)qe1Fsn~$Et-hE)7}3} z-&I3V1sAGwydubzj#g+vJAwbO_`Jq9T~vkUO^DaA!=s?on1z9n0r8)jTIzQSVfKR| z`mHekp7jsYdq;zfucAb<z>$_TknVHTZf`dz+L-v?eOyI?2Z+UB^tt?V1VQ}(sBcKZ z)mg|rB!cCwvkI@M=lS=3kpJ<(+>ClsP&&o$U+nNJsL&^oOB(R}Q|L>-5ZU_=XqBWt zq4z@vssgG=!T-BmN)FOLaQ%lMohMZ@fOj(JjK^>x$YS!V9%p)?((j?WV8j3K1!ZAl zcfTHxNDD=Q{4%s`pqSwB4-;^*pJ@QMSJ3+_RsNUN2}AxF9SZ~5|6JO?YoV)zqSXI{ zWeULmx#)lE7KA(|RQ%@?b#;06*3;p5k;q{~z@z{O#>bAM$@-H|+A_U1+{j?pf=>oe zVFj(}f-tpJXu9>fn=Jw8WZ57DnDY+Nm2ps;&%-ARR}KCDJf7=2|8#!`-1Jhg)IPQ% z)*~42S%U=afH_7Kf(com|EB>#3wR-r^UWYRa#&#dIaY-ar-73buGLEJ37@jcJIvGK z48h+(Cuf*|bxe_CY!Px8U<G&EBh=gevsZFdT~B$D1zvmv{@CnX+KR<^Vi6o`C2BGh z)-3q<zS_4AM=e8p0m|Zde%fEpY85=26;u?B?sSmec#}8Mx&gHZ9Of@7??|@=dl;KA z3w)GG$l>A7zCA_2x6S`^DJ;(oJu0|Fz%v}%-FAruXMi6F7Lt33PD_W2Q0IUfl8$W4 zG#G=;2C@kk36ootMcdqALiNbCgvAhMgd8S3GNFR0u`TtH`+b-Z@pj4J?<+i}JW5(3 z1wH2U7(xoX8v&R(B_A%Xo<L1TTWfwuQ=TxMipa>4l%)4b#u~gOf_#$-kBnCp2ov1T z&b``DjoA31pl3R-7xN=g^G7R=hWs`_EOc0Lj|?831VLJ*xy(}Okp@K__6w#Mp!>^) zocRJ<wSqw}xU3)#6$U20&XpX%R1eAW67$$jqol1z0Bm9h*GXsrTPorNLsb!|Kjn~q zv{b#5PQL3lDdZ*v(eDBFrauROo*73;)ujH8IvaoMbfoMY`AeC_ZVJGp1x22=;|r%^ zSenu8&Jv}tZM@n41K29dNs$cc3#L>Kg%Xn&k63yl2zjcu>{Xwp$K%g>YZ4Y9J7%nO zPY6nCxQnEqJ2^;O&pf0GnJn%6DVHKq_L1qPfZl&4?U1A{(Gv$HSMuAYRs75Dc78hq zTZE#KmnPNgd}$6O1($3hi4c;E_Jw?%pJYY$s(#ZVC!nJVT%}%T4vT9naE$<Xwo#%D z1}H=~cR3|gPP+zeo8N2eFgD8;4jDJBx6K<0c$fYYv^pXK=uyJ#_F0E#lkeqku4z>> zJ~FA=j(%$$sal0dFeMJLm}~7iyt*w6aw@zS{5@}+o&Jn-Ne&33!0r}-0y7urJE~v| z*$p5ayD?aM&I(juV(ysV4(ywg-`-Rc5s+N&wn9S&Bk-u@l-R=y@ns*urkAdJ1(%d$ ze;~~N-0XvSS?lomkri_%6Y$W*+vNdZn!6|fDmNgSpynczso(DfhozA^Z-(Q39F5&$ zvBT1fXwrR5r1$?9@~MR6IW{Ax;rW%?czDHlB;aYc{4`?<`~k)>u8E|9S#r|g*#Ue; z+Pe%p;{h>aLLfir&IQ3z3}SW!)63rBL9_;G2<9cmhx`qi3a|SP2dd3UoDRgs5;Z{I zC;pHDc^pt|G5LrxQgoO<azKwfCd-~KAlC_j6n;;bxLf6zT<Qhyu>k|8C)2(1Cb26J z4}{B2M%Yr5{9_m7$IL*#LphT1hn=P1^3%3o^5PAW$pzR<2@}@h_0JpiHU5S}`sF`Y zi7?#q7vDYSx$r(6-=utp5hpdUh5PPufAldwx3McMh2PAhq9lGGJ&AZ8U8kSWP_xS` zx~rZ6U4vjBL5I&&IPiv3^P8S0Pz+mTV$NQhV<viR6iY1{!Eg#=8tKc~nDA4FD4Ey8 z1Le~LXWj-6paEU1oBOP|@DH*IiB6$HG(<ZpH~QHL6@A+~X9V|!6kZs`Cne5Y*I0?- zvtkq3t{=mVOG{FGy}2Uf7bc{i1qgNf{AgYzW_r=1PGn+%iYW^Z4y=K(c+XxiI5qn8 z9A53ycZa_Y6+wV0ca;O}sC?d<AWhw0b#Ij0A|X$+D7q*q+F4x##-ZeD)JEQ%rn}$a zu3;mT;!=8WvP0mCzruk+77N~0a_r=e(hjnVS!aJq{EkO|3V=A|0~MWq2J-F&;8frE zRyu4?<|cRmg)2jUx|fGWYJb9W^p32M8M;xN_=4;If$Wa%DBL{4a?5z*tGi{9&{%CC zIl#BZ#Au2kgNCtsLf7)Bn3`-<4DTNrcZ!mR=iG7*GNUSy5@P8k;SDh0%yrzls^!2< zSjatUzS!#;G1fOVBQiAM8LlQY`~X5IK-F){!hX9%U|q8(>8<$3nl2M81-@A99DPO1 z(Xg1~XQrapEpms?RJstlU`aDPwGk1Ja)$L^#%2LqZXzn%qB4x|&-S527o1?(dF&%) zm4suwN%&$?z%$J`NhW)<oW?8@Tlb#1nQ-Q<SAOS`k{>8+LqnO+7b`~&&QAbsxxSK* z&4<(o;fJ3@i19lS<6VRoq7Bux_W6IQwrhcK{_XJ92E(C+?oiaZNBAX|Deq}Qtv(F3 z9IX4=g_iE*4tD!KoQNb|9Gus?wF$#?iroxpwX}v7D!Eu2^z&R^yb}#df*R!@yl7-H z^Jo|_TU@vt*|t@1i%l4liALV<9Zl@BJDpuKWlwQ~DJShTr6#uU>F%F@pi@b%potE` z{G=z4Kb<hS==9}hRj82%pT@ZF4qm4gRxUV2=4M4pp%i#WX|X%`C@Lxq7>bm9X0UvL zp-sqI?yroSCz&?&!lRxqevQ-XQ##lD&)#u^zU?aHzB)H*CEImtO>UBZ40CdT(V(UL z+Q4=V*E3Scd@uW8xAjyuW1i)LBa7>Yfi<+7?!RYc#&BJVsFGkmhwWPwL79Ej^}5Yl zTa9c$weQJAktFO|Af?%&)NWz{R@e6vuVMNz!54Z%b}->!ov8d#M)QOVlP)oHv?9GK zWSuUn8LweDwx>HjM&4{gsFO2JuMj=OW{W%r_}QwCE@SQL%b_?Yro&&O4|MSkEKZNl z{yXn5a7@N2PD7uArjPbhL$esMUc-le{wDw1C?+Ee`%nEUL9P=ul#z-(wK&fgUT+1r zpY}MLn8n<I)*AkP+6vV_?gT|`6xBq24vWeE-m>2nB+n*qD)B$_yjJtb;^08Ccaqf< zRne?_LNO4LX4uZxyNvxCC%}|1KXt-1)?NKRo<{@=FZ3r!n@g=1jxI()5;lEoLu6Wc z0Z~N|=!|J8eWlC6rKn)H##+2NvU?vQa{tW}k>ud0J<6+sFfCy_vkBNAw^xYQ=vyOR zE@i6NsY^03wgx$FoJf4}#@~Kqh;9zg#2Sri{Y2`GMon1UAbo$;bQ?M;0_?^@_73`o z)wtmCM0|YbLJprP=dBOI(LU2o@z=lIfQ3DN%y>WCuloEE6zQTzvKe&%7JCqfdbT5e z9{ckSe-|CJQy{!OZizdj{zeW>ZK0~8BQjx*6D=6-kLw0%rq3xkg#NRCekTvXPo8r| zKsqinYJep!CJZh0fwm9WELw68Ek8hn>|VJ7&-u_h5P&lwJiV)-|FM4~GM3fE*ppgW zQK@;h6MfuH--MF6_CR(S1HQ{>V=_tQpqZyAognlS;y@lk%H&K3f0IH@bbPfS7PFQV zVY(p@rF{F$sFbMQ2>@fhYe39atISOXDSOSVt)BWOMN)iv;3xc-hp&;xdz?n8FHYa( zBX_mwYY-U^ephZ!P6RG)?(LLDmAK-mc)5UYttJ+};aHKONyW)aOz<VayU?#F{x%aL z;80)T32N2z5n8>UZ0BjH53IjoEGzpsSa#)lZPXd0mqom}TyJsS5i0;wEssvt$7l-Z zS_<+9BJZzz(TFIVkq*tHi13O?9R<tyQ4YWX(7Ox1or}e(QA%+WyN?<Y(#-GA#a*jc z{~CF<Yfjqp|M8~0iXo!HtE>{(QZeO3++wT|Q*N_rik0gUOsbd@2oLI4**VHglp8t) zeI{GF>{i7pcJl@mc!+J$7>|P22mw0q2Zp<RT+TTaG<r!=;Li3O?j#|#?uqSDMS0Yl zW}@Y5ewhC@2KJisk(@rIJJr2KzV4MbN7;NsBW;syH_%DfK=h*HT&uKSFL9=W1q73T z5Pd8Sf=Mpv31?0#mLgt`gPn1;vrHvK?$S3QcKLe;=(v{YK(6e(vrgyn#v%ii{1W~^ z|L0Ff=uJJYa)pQv_m@cm#e~akxK*TW*H=lwmI~1#0ob<u__<w7v(7`&D(A6+i%9=< zVP(;f0OXxNu8}Pg$l1~Uc=hvTPYnd$8gi@fG>`QsU*snJ`|?Yy36)hCKPv>%Yly(M zOs-+Fam(O&PN#AEYQ^p;-2TXSM{zT#iPK^{(d3bci4{-aD50z>SRbE<WU71_^B|sq zp;prle#O9K!xgjvDGF?d%Aj^J{MJ>ehJ$X5Oep!{=@r|9uzjP2oPG?mV$$#M+;qc1 z5i<TX{LjTKqE~C==VhR64GZIUETfs3h?N|g<p-mMht17q7lGesj;e?CZm+P1y`6JW zw~@893eO|fE*bA@n7ux5MOx*Sd;lS%i#o0vIr8-M4+@1wdEVzOF8vMHERPZ?v&W@n zY^Z)tuVxA;^5x%~45Yj-rG4ggAO;^C`wGk#BxW?IA&xs1vg4OnG(QxlS6EO8ufus7 z7V+yTqX`H{y{~zDe|0G}=x?i^>wtdrA&menxTu6sXC-VvO6-RzJAmvge?Otw);yt> zY?yUN&vd+wRv}88TF|Ro0N-tmqBh*yCa`VcC05ezQDA^NAN-l|#wiJ@&3NPW0n4}L zeP73E3kQat&ax0Re65NfqTcxe+zS6Vr>SBu=(QH0$K-D!t%gTLPMgr*6~nfHCv4m9 zZoyu6iydB-Y4Q7cb0GD}&!gB?Pk?Z`C-<*B>{RYjl0tFZ86=r<mr?JT%Jq!om4e6P z)LDTOAVLXJ`3%;XOO_vWy<MWY@YQ=G&GfiUA($0MpDl_*(4d9=VNL^d5isP=z7kA3 zOQ2jwbCRb^Ad*pNVEsiVZo5OEAg{*o-TGA~pu%DUU?<_4LC>AQU-@ni>U+F1&)bj% zDRXzKs@;f6ElP{h5XEo@f{_T&)Yez%zSq9@TsDZ=QRqf}@?Yx|@%j+pSk)=iIX`xY z;wA^X=rm=-B~nw<X?*$+E_9&7a6<#0{$#OPAl=e`rlGh$5em=YZ;-xqki2Wm@*t;$ zt7{EqA{gGs0#06}pH|Wy*FvSVPSldl(z!M);2*GOEtqJ2b(QzE{Z6$MY_}97l>)x8 z?Sg?PT3TdEC_pLjd{}e3J&Z2pb4F<&VUNavVLN|Wxz+kg=T*DwU85HbqSLJQFqD^m zw}<?<tlyHW|8{Ke;?vpN#Qk-lAPRYpK1=lLTutg=v0PZ8LqJK`%7!+QV|t`&p7eM3 z_gj|l*TI~`i@%QHMnn{D$)mn<1bU<(0oHNchQe%preo-7CR&O5l5b~Pe+X-6t@R9i zpM4GP#dXXWv~&+i_GXS$6VT-)y=NK=uF_XkI;%vKsnTAM-Im6RKGKd1_Z|}tv;V4h zpQO_Qnkt`s`ux#NrB3@iQC+9ocDwz>ysZhj@=!CN^NwEJ*n9US5?aORjTHgT-5Y)H zPU0jIVJ8q5%DTOvFs~29C2Lo20$k%EOH*4hEyQ5UC3=Ew!vL;a21!FbdMMVU7MCpv zSJNc+30!iuyC}EjiJA-P=asqVmD&hN_EQvny+1q`HoAjJy0ad$UWrzpTUXH}-UXHZ z*>zR@9EiRp8iik>+avVQan_CG{j#92058IB`i{v6Cc18`$f{AtJi@`2?omiDt4<?$ zJ9pR#&3Ch#*G^1j&)A;Ii!oIQcuZMFmtA4ON!`44V>u+kf~vtNFuEXoN!iB(AKYSH z)luy`V>+Sl<wYzvqyMyvF8+kuvP32lvh>z6KH4h<@5UM+L2(|~oE6v=0vhk|>0tWm zh1d0H@W&@S!IsH@)os4un)A)Ahj`>emv#IXJ5XZ{a$EBG-kNpJgMT@7R@SGB1ZZ`m zSILi)9k%8iX_9K~U}TvPQR*H}QK6}>Jc5(&p}UqPBy0S$3{KZ|Fzv_4Z&Wk93pDd| zV%UyYT;0X`?ECfFD972Ooq<6TFO4HOzg5wzS->dO&yf9<uYR2+3Ui#PEkO>7fU)oF zXsLvqXBaP-&mA^Ta6E2@93>+;6~u_|aw?3DzbrTt5X+x08bxi`JTt#xX!~sNr7jou ze@I!+reRRd@Ff5dVDzKp8km3cL1qotN6QYM9%{XJql9g<{e~BCtP6Ab(W?q8Z4+(U zL`CP*6fg5+z-yrF?qeb~weG4%(>C?tGWs}gS-H(-Wb0{PuZ=5w;n%F*)l+oAtCX)B zBME!4ZyFQ5mUBZ(FOfk%8NTL$*>>$4mBOwn;A4Gq1UDLDeqt&d&m|!VBfv8Cz{+W3 z|IK~pHHxbB(f;#@J?&i*P7S1t5&W4T*TVF1!|=UZJ&I2kGQ{8@2H)lEv#RPsRdao4 zdAZR(9|p;$-;UR+A>P*#BO#lKwj#U^ShAwC+^-tHcN7vA9Ic$+GpMV(YkI$ydFD|p z>@mUuL!>80x+i_V1J+AWomBGPa}aRADXVCUw^;w2DV$jMc?9~v=v~~pWZS<xL=1Ez z>NaA#SzP(BvG#oA6H4;vdp7ukBhoJ=ngJMJf8!1JO|L2u4Yq`SfEYfT=L<{P>=ugq zlu69(1QNy>?;>O3(U*{4uVlEx6&%CSLrTan$|_ecLfpC|<h|A(=W{g(l*S!EwbWRC zz#{F4+P(43481q&KVAz*igUQPx7M50gM$7`#za^23Y6%A@O4(Hc>+QqcneZ@^jdr( z(Y&-Bk6-R^2|44wG!U^!ZN4UHkyaq2=q-1VU`a@3?UTe+96b-FP_k{rIKba0si4W* z6@u6*ddfEu(*12r=>)$hW+`Z9{8!OY*9_rhhi_`>*122t=Ra*CPSc`c$sjU(+U0U~ zc4p0xmnJC%+6ohoV9Usud>2j`+lj^%$0O_~LRL1mMj#~&^X}1p$>D6uqyncL;cphz zh>mZKoA8b}zatNBDP|=?XC*?TLf7ZY*nDT>3HSOt>uuC^zZ+@FEo#mHXHrmXG_3T~ z&q7A$JM;@|q05Q$8KDd8A1ioH#G^&APE-L5Jg^H1^+MESLw;$<OR*wkAI0KipOy+M z9#bIzB=Rh|2eN!JWH!MiOpz}>wfa}|suWr>$o;CaBU^c##%>jC%|{t{WPSHR5jS#e zTcsU%HtySuivrFJ)Us_jwK(o;12t_D3r;^)8jf4@O+<Gk)`}_o1>f9#S!V7IPC{{L zLJ4V32d6)ZM}lEe0L5`H(>rcI-Ps*7fq3y;Yc%g>8Rt52Lh*)tM47FwFiHE$f5|pE zT1s+|PQ{2Fx%^{36ER?HRen}g91>y(U4Hkx!1uxA;^JaS8@GK4EOmXpq&l`d%eK<O zeAS4gp)fle6ilL(2!XI=9Fo?9CLhuZn0^?7UoP<(8Ll+hgi2>$YcuQB@kfmFZN`R# zeJ{paDp&|ApuGC`Jn{4UlFApt=VGBNQ@hPR6xXxr1|=ByIvs{;`+%jg{@Zb6p^H4B zfUK9{tguvNTm&CVwdygxa~q}%ixREQPO&Z;;XWx{X*F=P60)6aKU&**C1U3&ESLD+ zs5L(<(IfBGWfML;Bx|NrNKZ?}?#W2y-8tu(C;sY-M<<*X%~yREOMoMfbKAhaK8enX zU%F^ofKO6G-VW=|6`8bfGP4FtVGm|jsWan<OE=Sp7aS=n1{dsgNk7V~=g5U7-tspp z)ETAXB>WL{r6xjD89x_5R@uJIjey_Xg#b{;#_WCj_VR0_9~5n|$e1CkNCMYE-0K*x z8$yx%r)@xPy`~^jCP81COjja&X5BtZzVKZY3EP7Z&33<}M|QGGovX)$vIwzkdS+6X z10;ePeUxte9%_rkD--$~HXl_G0LM>afybw65sUPW8m33;D->~{U}3e=)A%i2&;ils zmidL#b7y5OXsIlaBB~{{g#+kAuFqy=cM@pjdFJv){JdQG$_Ih8j4#0^(21Ill#gti zC<;x)<%8ya=RfT6-N)k>6^{Ipb%b{wxZcT%yxPB0;t){4+6;>}v(iGsE@8vRj)07) zK;Xvpnjm-2uXmfrfpNAf@5uE{3WV9Uy9@R*MO83jwdl2QrBnMfn^Gmnd{i8@vSdoQ z67lm%L?(J>@pr@P47|N#>RE1JLg&Z-s;Jh~H59vF6(qmWpG6HPCTQ#O1q{0dfUc<F z|Cp1!J=?GZ{2+Ev!PVhE=qgpi{-?3<Zo+OyTAj!~mlLmU+D#{dKhY&zH*2%{X#`)% z1TK~&s(o0(c0Wtl4!itz8N}B>zJZIq>?yFT)6GWk8(+clUvxzR)8biU(wYhD<?qNa z&ceRr)@vGH7PReSV+MUHMJChdO9ABc;(Kr4Z%(`=yuHUC&+512lk0fh$F}(<#;1Zy z9fwZxc3*hj`S!Ona4)Mfw&A3JRC3eP8>Z$p@z!VVBTi)=)}gxyEhgQx=J)BE40<J8 zT8*Rl&}6CiccMZPqL@5IPcpCOJzxh13Y$0Jjwy_7Lhr~3$men5<;x%MJ-1mWS*c^N zx)uF>;<_lbJPl7)kd;x~#X(iqKN^@__Ti;k;#K}I%ZHh7Bff3dPx77gkQL5HF<SO( zDWAe-D!fcVc2TCZ&~$k+28^kW+SO;ZmyRDUuu+Q0Fh5Me`i<jzq(k3EjC^E{y3e%# zMWYCjSv;Xa_p3r-Hm`{`1I-S1*&me`|NiYCzm@w*L*dxbd$=rqS)eM7Xkw5ZSUoTO zbPE_rk1TnvuF1#R!&WeX=gRrj#ZeEMFq0tr{n<s4Sa%j{vQ*EG8QBS&eF77Khurgt z<dNbY&gYz80V626p7<~fZVRGuB%C0+M~v=_aegKAG;=>p^0LQ65TUq$dr1Es5r--U zq1bq8G$Cv4yg#e-k&2A%Yu6?0L?W62`XQk+jpRi99=%L+;F<UM&kV17F>}w$Mr{fm z6BYTk@nA@c{e5cXle_1JRwsenOg^Oqc%~0tvbLmWc^TA&y1axV#x%ZipnRy)Bp5y1 zUyf{cI<A1`f11{jJg@qbT+@#&2G^~ekunUNBqlAS-mXBI`+F%TryMKn8SBh8)Q(ZU zpoAK<Y#p@Z=(l7Eiv;x}uteKWSdS%EdS0nQ&<gPeXVlYaE6Lh(`Po1q|JmTqCvK>A z_U;a_&dT{a;4`h?@}KrCv|oK-wJ=SVrRG^&>)qIZ83?BMDUP(bw$=;X`{QFvBS%}v z#Ri!;($nI~U-1>^^VPhojOj%foba`_1{(cNW{Z@IUfM-Es)VUuS`VV_{T(#6k!S!0 z{Fy*xH`cu`>;aGw7z+!Fdk3GJ%B|6k>+<uCKVy>!ee10wIVTXAB&Lnv*NeOL1)m!= zOus=}p6KiD{$8cD5J`Dk{u1w5k37f2=fd-w+Gawa30hpS?DZu#YeMz>`PLXYsmBdN z8RO?qU}1S2Gh|w+fIFB%`K&IIhb<pA>+);J*=BX$%?P00p{b!ZJYmj>6n=7qK7?ps z3x#^i?l<y&YqI%r@vFjoO#h48h*mMR#pDnkUUfQPX;7~z)(@xeH15X%nJr}mMoM(T zeCg}`r*c7*%iPWf?(P)MIVWCG6HmnEHV+ETfMi|7I*$J3WxnzBRtPk1?;bl+yHGke zmwhXRGO*{VgFB^a=iL}yIHwd@U6x#5W;g(b4b8va>sxt2ql!T&k>zVN7`3$>y2ayk zh-2NlWo>Dd5i+cHh*%*Vu7XVG@<QOz+R8&ftnYJ1?d)Q0=;869m49Wi!;N@_+eUwH z*XbuZ`m`$FYURhbqxgxc*_KP#(z}Mc9KUFj4Mx8=cS=ZB8fQI49dB51Xa+^J1M+HK z1@T9>nY0Vjw@sIg1|UAmkpMJeF3$MzCK>)*2fRNv74$!Q^?1`0xI3;bBI;KBUD)+q z509cvpM7|!o}RNi_vN!i5Y8tr0Eh?{CbJwhY!=6Kx)zdX@2*t+6~Hs9t@kP8L;CZ< zGnf2H+-}>;RNG&k9*>R}{%SUDVHM7E!R!jiFFT$NUI6$$hvXSXxuVC`gbGn%{$1PM z;@S#~h-}X9&=g5Yw83QB(JwZ-!$Ha;hJvb}2Me~VNw4KDh3^V}f3db<2IDaZNJSKm z@X_wX9-oJNq3dRvPgmzEv|w`39GX!gZodX*$sf=MLzA72-%CIMWHc%BBx=_J56Z7p zy4BUbhgKu~7^%w4lx`auG7MZyKX|nA18Roj;nrM*?aVgbqXnt!XboOq)7W0lnw6DT z8u1Vq8aZI^*>vLDcwW&#M+)FYV8lMo3=?c!5X2o2%uESFt?1Z#t#5Ue>Gtlfy1f>E zxaXG3*~OV9ZHy)3r^#2Bg@>LR1$EqP1lf76S{ni2hdslL&E+!>KT@}EbB4daKi1zk zJ$DN|51zkUyJspZFNY!1H&Mu|(Ej<y8NHsu6*OSgMI(5N@?75e&}rys8yz5I{~}Uh z1HlVO#s}Gfx6koeU&7aT7dRU`1-3GsWEuCh6`kXqH_4-!RbUR~TG}iz^nSsu)eS@` zoW4#{(F0KdWfkb>{WeebXu+lX0+iMURs|y8)S6y<oCF*m_(F2E1~3gwOhRrV7!}Ah zJdxwz)pF~$@8cP0DH*j5Y2vq|nC`L%gzu2TO{vvNByfuNftvzMsnvE!0~m{pu}@kV zbQ|=_DjD+W+k?N(a5m;v=&s^Y(gS9ZAQHhXVP=V6GX#NZDo_}TU}chlr2qsi2zV~| z6@|$VrTsaQ&UJyIWb7}7GpZTb_JVxHG@n_*c|v+>ay~%?Y+s!^*^*)&mJHaMAbd#E z;_=?3Y=|W89T=c)XlSs#J*E>l|K$O-vY=&Nc#=E3!4o~!wAGCbGIR`@#lI_qzy<5| z-3SZlQdKP1nj&A?KNArh8?n7N;>yTAY3Zo}DJc;wX@E}3KZ~p@fA~BC<_W2M^9}yk zNAhaqgNpI_8I;;0vhpBl9kN+LM?NcdZc8Ai_1x<7bav7Hw)cj9kDegPW>?!Kj?+@p zfmAfM_L-3{)M~EsS>nm<p%)|_+huFHN`vLVNd*&(LmNVAY+t4|0ZVqX;a)<6^UDSq zg;o*<S^35YQF)l07DexA+@|NiVQ>1yilJA90G+T-aNXlI>J6^d<LLrS+V`Nb@J>}# z4eR1tdlHsvHA+XxA;;IPdG7qDxP6tEbOJ@gzyR4;)Y2eik5#+wK||4wt%>w)*P;9& zehBv(FlB!!zXsTkqH%F>7t4HgZd*hI=~^P%jiQ)u=0s-o-#R=b<Z6ucRq`w9of7n1 z7>}5;!2Qpbet&1@kc&953@TcJ1^<4lbm*WkLo^9+o>%o{;870@eOTB->q<5Z>+QvC zXtddEHqBIBHlI&-RjfE7)EbQ3TD-vKae8FnYHX<LXz(-AO5^dkr5w-V_rIxcgvRlZ z^j>`hBNHbCWbne6EeoL$+sCcPdJBRG@x`U3?%T1nCc7;}XXo3h)>i+F6XJiqOF$4B z>_(ghgQBB4<T!z>J9av1u7he`jH_2j9dP*8tq^Bu0sKUP7Z!A8W*+>jVtu2^hX)GO zZy4+N-lu!ujtCPo1G?|7r@qs_M@iQcQ8eo4G}+n_Xnkz4XoV9>0)>32SMH>9x^^Ex zBdjODxaTj{S=4cg0HrB5bkM9S{=+<`d?rt%&GWpC=(mOQzc>(yZ@jMd1nB0+);3#4 zQQoLG`n2|Zt4EU!89yp&fWkLiuu}8jLnk(gL;UhN>L=qs%p(Z-dtC;m6zwaU5=skD zY&7H7-%;9T2~t*{JXlBr&~p~eB~l!1*TR9_p;URM-~AkL4=JC6KYg0wL(V?ZgtlC% z7Cw4KKtlopIw)m=xXpsl?ZTR2y3$ZI?aKua`#@QQ_FXu<EK@u8G6D~4r(WaJ?5hh2 zY+IHASDFC_;l|}v5~zm;RYpXcls9D9fJeLgaR70CVWGPDeK|^FhLAtMb>}-REv=@L z9;?O0#gK=C83R#dGDMz88Xh7NLmwA>Zks<{<6|HGg>++SD^1=n2yM16e77!lEJR$c zqxjyK9lJVf0oc$?NgyTHeroNED5t`3Gqa>*5}{`f-+KM**~SN$^)OqA`78@>SLu;2 zsty{(&1W95*M=8CZf4hL-4@*FKn3OWRs=q$JGOqriTxD!Ys5GTfpf$Z?>6S=v{sj} zS9r6Zwggk^t%}0ms^arZp>y4IJ}*KjkZczg<@q3JSzPoDb-uklS=Y_5rgozu`l~cK z4)j>g7w9V|6j7rneAi(W^AD@Y<QA_AI6K&o&Bi)HCc9~a(+-geU(|_~g2=q5<V+Et z;+~ce37RdF+*Z_PDyfjAPbVw_2`qDIa&G6#@jBIxnD7O+lvK4e1Z~(N++-`lQ{@{= zOH@rP{Off~gcU=V!^WR>Mm)A$>r2>U4kd+y{Cb~nWKOKAIs-e!F|`*`2g36{L@4!K zqeKHAxf`~en(6H15^RsRb@Gtbf%(%m^?lS5{?0hY1z~UDBC6}?3=Rw+LPPAxZ-w&f z$0^^S^cYSgu~6hf25&I5fCh?5r^NS@;J27+ARd@O=e9mI@-jm3H=ua`q>V+Xv#@zV z!?a1`bL{2%7&@5S+4(*{{jp>3j#_0a*C89<>$Ob#S|e}gb?1vvnp-F`jyC%Fr;Hno zqXJ9R$X4`7z6g1YXlm-uqmXIky%E%%MT=^}roT8DI5w_ZY3GT|uWUS*1QF;gMaWhv zc_qZE3#ztThn&wN%x~OfWo5Y)giU<;><4g!C7bdvbNI5(A`p0oTdnulm#(f8H*E+O z2VSES>w?>8kuh0jC8aMHI~G=(N$6U$Uk#mTQ$zuq!n$Gka63!5Dk?c8uqAx21En~F zwKX-UYAR+j`V9PtN~eEoFmx@TEqLmv=Tjx){l9f;m*8iH$(Eh*zAF1qN7qGvg>_;f z$~8+R2vGh)uDAg0tHqsl^8aNviH1lg8A_=@C!~k%|0DJ!P2!=2=+Ep*L;t6i8a5o} z>Gq7XNtom@YJ!McyQ=|CfhRN=^Xi$#=8}PtL;CsoTonTg3!r~cRZEK>5Py8DulO5} z-6hU=2EYH@9NB!(yVMd`zuwPxe*!zt)m}}14t{Gp?*T3@t#&)|b>E)@T3h*>>|O{f zbld&*vOLgNxEopd1b%A3Q|Xdn6aAH^)?Sj8C9exV1&3(7fdF`2BRFF^#Sh@MmfCx( zN<pQ0*b@by`<QmJ<2gP<l1jl4rmEUJl(%?HOb%;_@S2Vl{l;r)Rc^FS<b5yUjRs&z zldG<23A^CXs2s}q@<DEe?wn&Gc;rGg)%sKdY0pqWpE^w%aJM4OO3LL!aw#BxVp#f( zZt}_34VYby=U`0Pst~rPNNyfRAZ;g=7v)ecy(gy(Ep`a@)sh^xAU2~`lwhJuEG~6i zkSBOrLA$67=(0KANuaCDZ8OK&USvpciGSy(&4Jbw#*!$2mrdgZwC;Nf-0u!sq_*`# zy7fa^DrQVMOIj#VYsy2FIT~(FFa476rfAP+QNBxtm1`1&>kHYL!7J=5gENapSR?g) zf~H<SG6}sAEia+zEc`0_p$jjr!(CK@>fa5bk<aW|a@eb?uJ*mTd6&-XfVT%t#8cR5 zY)_A&F<(V?g*hgNpjeW`9vr$jHZ=UUv#pBC$RO74xJJ`$az|OH)ae~d<F0OP4W9ZD zaN+tB$}?GVeWNzclEOmbBS*57?#$l{RY3V%%N73&rq=z!qR;AcxyY;>kFV}MJG=Ql z0fjWzjSq6((AfUY#&rfC0=j!fDgi4SnDF$CNc%%`ve&VRw@+qkhlljecjDFLkzk$W z@m-~%yr@AEhqTLLSAha)KcForKM5{UM8nMt?W}h~O!Zd`=p(g3cr7trhH9Vr^}hPE zT(_|Ec76t$oA({;3lD9zsT&H+ehX8qFGwK*9Y9`IS?NpEZ!9CI&zC`ZuV$l^HG%Z6 zH0gU_>^E0me;<Sl-K~tXOFtSv%CI2((PNE6!jQXr^b^bZCk_k4wu~z4RDw7bf^4&( zP>xyBux=L>oxBS3e?{fcX4J#)+0WAt2Yg2<$UY{+paqe&GD4+YhriAwx#wyxx#W#3 z8S=uUvI9m$$7fp)G7}~~mSNYCr@>9?3v!V)g5I0(@)>-g*fjE+J%P1NdlkT@qlRy` zF6rGLNIEcJ>}Z64n}5&&>Flwl$lAK{^laM(O#Q&%wz1yYjli$++CtFo^oCog(Cyz} zCuKT60H-ri8Jn-*WlZoBCDR%U$CNY1!w$DC;3dbhF<eS8X99uL;ofu|7Cn!Th^sFr zXMqkXSRz)J1#0SR>Jp*>P$JBm@1u0W2*K9@J0GEb?Q6zdjC3gkZCtsn?TyxCA3v~t zKuukWWF$Cp&fZ=!5m|{!8`BSd@=(-UdJW<}e404x!@B6G+lz7Np0S){1lZj2ugj~l zjGi>y(FM}_5s5k%G{@JKR(xm@`=0mE+5f|_O8ND_T7Z<Tt1ILt;#~kpL4`F`n(SE= z@3jq_=)<W#Dp~2FyG^S1D=@O=OE(1~32c|JX5Xe?CA`ZsL0dLP@F#VxwXVZuLf2Mx z*&rof7c36wpDFZ7PeWR)!!C3G808Flbmuh;QBq~nWj#?=45F7*UpPtUjhwkva@$N@ z`hxc-of)aOSQ~6syV$=9p=ewu^x>SOBadZw&sQf0m^nBAq2|<g(wH$=JVR6E^h_Y1 z^%+X32hCO<8L}179_QW)q{*?oCs`k;FJ+yy^Z1bG?{!Q<v~J7RKRzx9<sOp9zV9#N z3A(zj<ygc8Em8;xo5h9Wyy4fII|!9DcN3Ol!00_v>G>th)i;?i>zrv*Lc<?U>Nphd z-N7{)6X<$QPKcY#Nln~I)?2v}i2rJTgx`a)tui3D6V}FLJ<``R!rL4&OxS~M#b}G# z`#kg~)#byvOE}tt@I;>D8aa2rHuE<w+<n(TS+PZPG8M^rCi$E6UH6dSTWD?u?bnsN z^!tf%$HK>>etx{b^`9S~SyFy}h-U!2tXJA!gi;TXrUuNTb=wnrE^F3s-O2V99CGV< zKbBS|`fP5lI1!8I!Tl6BvpYl(U`;QD<|;9NfC){+P*=k-2B;`89yRFy^^o5#g9Z<3 z3?pk{_uPxq7p|6U1>sy2^>d`rCypIWdd1?qMv^Y1Iv~TGl=a_OEZDv*bAHJUV}kRA z#(nei^VLq4z`;o3!DY=q<4(`_c0~Lgf$XO88@H``!A~DO;Z&7M{**W)`?92nCG{Ay ziSvK%dOhWGZfLZ7d3<NN))v}31tXq^iH?qL>q_7v2Q|w&omnC;d=xk!_In;GeGZW! z-uHDS9~w2e?saUuK7cuw<4^H@6&5(TBFppa1G3)weS&*?MKKKrzh?IRAY3Q1=v90= zYe|&j=aud2hsa?*e=bieWY>ahHs$LJ+X?j_C&1_b^whvM<%YSaJMN#{7ll0Xg7S}M zZ7i$LP4kVVmdVMIjsR0Uq?X18Nl6q)S$?>sbwGV5Cq@J`YLN;*izI~qfmUS*Hl<t0 zZtW19j^!p;ato@dlX04#_zKHj7ZJKI@$cCO@hI7;3JQ{>BSP~=QZ%mX=~!Rj=*o+G zT|GlC?rm3bqY1mM14|-(cyCEly+0B0JCnx*!4Q3kbCgfyASs@><1fVjK4eIA?IDMv zlx3zkEbLqpQAYFPq%FpuX5g|%?c89qY3PcYN+&5d!!sBlD@r8fMmQLi)pdbASPi9s zZt6LqWWvVwa9q>bA01a?E5_JgCE_Y-bW4h}t}7M2jsgSSuODx3Z>!pC{r586@VIT- zApY&dL_g74GGtj(<XJPuC&xEaux1V@v5M9yhEWAI8I@i`nV+Va2X!hv+WUOrNoGD( zR#xge7y%aQ?_bZJbU9bML^0Z7NFMhKHw9!JxLirT8aXcMjbFwP6-YiTzL>O$nPINK zQteIeDDpTU4y$9RMM~5l+iCvgE!WfX@MAuWxRGTS9(MXXeA&?RtQW;s;=aE|9?Dr- zgbrhI1nv6BJF?=kfN_L&GuT#jYV!jC(A3^U_*_5B_4z9aMG1cVH3~5QIukA}uYuzB z=nJC4D}5TpRro3=nMtLLVK^hKr`s|e$feTcn_G??c3~`T0i(tG@Wce+-``(ZEl@bd zdQt<m7n~MXnnRyHx{7L^e`_WydRYU(?zEzB^<sK1<h)0pnvDR38%9w7l?c85y~K=D zx~|rba23wO&O{F{{+j;OexmvNR_pleWGkgGE4HN?ghn>xEAFHN4TPb-C9@|qj)sK@ zt*W6REMiP9o!0}8MxJP}8HjItc68R8=ChDCH9jq@pflUm>Kqh_5l<LV-Pjm@#Qdl0 z_7-X-!O-~D_GH9FyVV)N<?joh=U?vEk7X6szb-=QoPtU}Eecfo;!51dki41w9NenY zVZQBtd?a){6^wMuk{zgK<UE5vUnlzAM=6gcBaGmhm_bZS*&q|rDsEo^?~Ds#Bct;W zY8_>Z*%AOA*2d?mf4XYUe^}cTNG32=8rC4aVc$Co>xO6ze$}5uQz9mRFhAU-61b~J zf(oJlyihMyI_~Gd#KJ^|G=4ypLzC~0cbM6+?9u32`H(&whwzIb_i)(Pu#bD}Ey-f! z(Pmjzr3%}mKtHP@y#De)m~T1rXt1z&XSN4sTm{<K^DhAUK4Z3QBv%91!<*C~(^7}Q zKS0~3KhP8hCK(Jf4xIceJd2Me(f+$fO6#*appVgF_JjUh$46d%o)ELdtmb>==|4t4 z;m;WNa>~;XKYaKA%_;k!{F{>BFS&F<FGQ_DuId)PKB!FW4zCX+v6k_m{yj|&T9KV< zVE@zP{ce12Q9Y`=xEqN`$O~&Q2tBV?)bs7`rB^^gsTEN!u0cN55n6bT8&=Q69*hX+ z`|jYj`hGJ6BtZ7v>DpvnFSQarSS0#L0BL7?ggB4!vpYkMb77M<H6*@*pxyq`C^rrK z@-g;&;;JB<RQk%)LSlUWJ*-0WzW62C_jV#QwJM*gD3kwMAG)68KLvw&>%^#PO-Pw> z+J=7kGEhqk(wfMd?X&u4{yYN`DJ2+|XOJW=oVdP|SV-#Woc$jDvQPOKv#)BRGon_@ zCBDY(uMQy!mchAOM#`3^zVtt8g>q!!riF#xF^|m*>Ke3rp65$e3fyqKV-;qIth!|V zEYLr&#E$w6<tRzCj{DaXkQx7Fj!d#&Ryek?=R0SM@Kd5?r<1}<q?B|68varH$dW>2 z$o76K5Wj-*n>}H0ynoh&K0!s9fzcI#s+wAL3nBY`d3nX=cBq`T+pAldjkO_^sLlWD zb%qd7<>&K^@n(SDk(aLLV`Kye13Hpja8q`QxY(e@tgl0;`sTnoW+74W=OHJsNiYe9 zPGQ!?@M75Os|amd)I2u8?8xBI(YRBvHOiF<M@xBT4;}p@Yfvu1oCq|lD^GoFOhWK# zm^|px^>$__Ff=hiP*KS{@=P_I^W&{2`Y&huiGCaVfDOJ>yUhut2TTRs%k84Jb?vv_ zm@Y451-8v}+e?5GjaA+18b)~GHj(;ufEcL;wMEEZtd@~W=-j%mb)e0t_>KOGxcILn z6^b-uB9YKUCvPpKX7YTMLMk(FWq#)Ru>w*O7R+&A6&T|<3+<0UQ&XdAgw=Y_b47;4 zyDRG&N^ss~CmUeev$s2_&7o_eIGKn?&ZE}bET9(x5k?)E;FoUu9SDLI_gGn6Yk&Wj zaTU(&&ewtIdlqF+^VQx3?wRWcYs<6sJt*lUcJCiZ-Qo(H7oLc_T0Hq{h9YJcX+kr@ z8z07Yn~Fl;8O~NG;kL3&nyl})JB|pYeE(FNCc)lcSQQnZZ%Ak3ah?8*&>-D@c_SNh z!P;UNrb{Y(3iv7@`>pZM6x{g(u75YU;nl7U{)SOZ2L3+`Nc+9g?Sd?J!IB<esjJLa z{Ue?>5D%Ex!>5qSpYt3e*<VvNq&A)=eY1(DcR{Y+P@oQ*z?GCYeTBzZc_?p5ZQ9Sm z=xxY`Yk+O&zPK(-OhtAicF!NS?4dc_9Uy`CAZrxnKFBn_MzsVW&N<Zp9}cj+13ub- zMEYQ>&HfP-y(5Q&hrdF_a?Bv0>5uoxH&xct=%K%03MAbyZy(*Jlm5uR7S*8-y}#Di zI03EOdxb*y0Ow|vZ#Y&Tp4zOonsK0dVWowZiYWA8Bt#zSwcQ*EL5Ehgic0y+*E51K zh|w`5>?^$Lh<3^|n=yPNHxEKCj6Y`z7M~?dZvO%Btx^U6Tp?JY`Z7`~%^az`?-g;{ zme4BEFaxQ4iNL;-Ip4koU812b`(ei>&@?xpo^(<kP+{&`Y()lj>nF3h?H(Mo558hq z!@&PnCZ0J^o}S>lEINvxb{Vkvs`>5_71|kp27JA|+O%@-UXHX(z<xhAp+!_xhpaKG zG@)1YkVF+GUT_GnfMzKssWGitR#7o{rjroz_3Jn1W@1IShz=F2(=+U1!yNIU6UMSn z3NMAuAF3>23wnP@GR)!F1GE<!l3@s<2BBrT7%YblctHYcEo>faqYOWMXoKAFA0EkS z)MeCeRfKuMrLLKNBwR|^5~_54$z6i#2f>Dvu|KOWJa(IuzqUl5TlJnB3(h6HPa{5X zCw$128BY5Z()>Q12#N7Dn{s_Abu}>Fo=yWcgf?w;hV##j``#Dogl54uU>_2**kB<s zI^T4bqKebSd%e5~N`=4iBLU?4@yrTW)Iw3&Ps$DWBhS(gpB5jZPf^I$A8+uhe*S02 zzkhw3l3uP5)#*=PpBc_ky3y!W0DW?wB^}u&2VkZV%Nz-}CB)w{_m62IMc39QEYMy# zY6j#@I_Ycqp^qD#G-15BQDRgxt|DPlgRu^WUZ<Jv3HtWvQT9g>F3AtSOq$#0WQ~7c zbvv<Cbn-|3^xCl~lqraI$%KlC=d5ugYqZTjMCun9Rg%SZ5lmXxF9kMI$&orpOX~)s z|J+;`SL0QVY($?AJEvk)YZxo=mi9_6|0o<Hf(-MvCG>`6z1rm4QelKAXc*^x-FQZF zEK%zT#jXV>+X^gT5+$1m-7}{Hnwgp`wJvXY#co%dRWu}-qU+$>J*2_H2#|yErBrE8 z+GqPdN}z(Mg1!PSX$>DOdN}yH^w+U{^!cB*&E}8HXvJq+$vAXTFu#8VJD4!Q{g-EW z{-&WKBLx3Qg)z=Saf_H80=j{-;91l^F`v<)fK@BqF+!+l6{A1paMJ0vQ4M4)T;gBo z;Pr`&jNL@$)1nr(SoeJaA57*GP~zUr$W%P6fBE$N5)>PyF1vfc4gzE$@M0(a8Gj(g zN^fu)kCG|*ni4?!D>^V3i$r>z8I9D~fj4QZwJyO1?Vz~^wrG)l{eJt)_>ek^l)9AZ z*r1>ja*j-)%)D)dIDcBM{N5x|-z{3O==0v&rJjiv4c(g$cs718xLB9Yf&x%y^`Y^5 zkYhaKTcNh_G}5!+woA3vqGML3s_edCagOJ>pW3VQ-^$#b!s4{d0YC0oKYHBL0-Gyl zs;B~V%6L><V+zCs#8b(ev>`2wl<a=D@xSZo;rukZxwxnGi2tAta@Nv@8c1uLO3ehX zxlisxjyfZfQeH{zmpJq2pp&V)T~~rr_W^8H;-&XX7rvhlh_mcd+%EOSIOn*L>Pf<g zg%J3`J^<Cuw<2Ad5WefKjC8#}72kY1V$|u{(h3=(Mo1I$5pMoOCE5_{nYW4A8xM5n zvlk7##klHlpz+!BsKQ`mxG5aMV(5MXoULdtu=r#}^W0254p2uD^G8OMC;voNNq8J6 zl#M)cy?&5!Tl3-Tj-@fwSy)_Mq6=UK+*gbdw-=o<Ff2vDW-dI;ewiyTmaAq-%B;-0 ztJllil7tOBJ{%H9Kp~39hX1Db2m&b)$?JcTbdUU|MIgFtSN)@H`nU9ri44*~aZ-q) zq#e1ub20!>uowevBp6}blm8c<?|?&u73F1X=tuwlG0cz~UGDSwM9yN$t1nz4mzkeQ zF2cra7#OMgLr8KjF|Ndzs~BI<8#A&+H~cVjtQNd{Nt3EE4&uSr%U+Szj&g*c6*ymz zmnDaQ5^_8K$avNCwbH_F!}Bmo)2%VOfOayl5BXm5|Gaz-!?~1{T-*Nm8-K`U2X2!n zbRJVq-LV}GR@|)e!Pey6oGMlR*b{);_Ft9!*NhpC=Bg>a3@R;AMVUUwM+$fv@2CA~ z^Mq;siSv;74hBm7Omw>}=G3E<vY4u`D3%3cOwp3rqujV!s&v*5{{Hsg`u4<=q^X2c zSgE^u{ksZr#4X~;r%G&6W^uM+J7Ri^DK%6WRj~zc?BCA-{_DpNVDOCo?W4lAhO`~1 zXtFmm55RNY*<4I2^K!6g33~)qggG;vZu@BD8IctogyOwkb@<$Rj4y~R6wbchym}_x zUhqro^LdM(DWv_@>f-yQuAcy&{Qh?TC-ysTW&Ht{4!_=0KUrKrc4IZ1K;$$+>U#t) zqpt&|<gukKMHr*iKMP8|O}h)1iIijmOX)#R$4lm0MDkgJye_H6)(TzK<wgW@zmRi$ zB_J}(O=m5X+j%~#?4jiJy8?qQVltS+&J*6P9ExMsd1VPlcf|&VUy_efqXRx`0YhSs z`a%`<h=Ht$-6ji?_KF9htpRda#k^%kBKNTZU+L9o@P)e$M^c+eA?Y2i0ySb_#9j+L zoiubA0}>8lzvVv9tbm}zw}Q1~BfzDF*P94Mt@`&-1kTk#KW&|HVCsC0vH_6~$fyGE z7?4~#*oKhDtXi8jTijrBx#b@WlxMtb8`NS2<gkaL!xLxk7koS{R#JU1d;8L<L*+Cg zk|jFgzHs+gsn_JaTHZ@ngOGFlx1U2MAcGu1EWI*Yn)eagD*H!?pxq`xONGq;#nM>@ zwb^!EI|L^Mg45nuu;SL@6oM6ZcZ$2ayB2r%;_eOwiWJvEad&t9(&znV@*^|(mE@Xz z?sKoTj=cw#Uu1{la=d-V|8y@JBp-OS7aA*<@_mU5?l>KF=Z7@FLU(vVu;D&{py(Gq zH#m2NW7bjW1~vNw$Rq^dCeV$!NG0~*f4(|M%u5@GontJ|FEwVY!U-9u%>!)Wt9H4v z5U%$R&#+BqKEeE2`fO>VQTJ^B9J#bTyZ}lRmVT!ys)k8rQ2Qg-&}PCA&`*>XE`l5+ z$gNhtX-f@|yf62oqekWla904S|NiYI{C+Ib1K}dhkt{>XbS!c=3D_BMci^_pR>CI0 zRtW$7Phoz+TdVBzXoH>7NW(%x*VKfxsLqqo_cwI7OKm!*Zc%&$rlTTn>YaU${Rsl? z|K28+1SGMAFq{(t7<bOIX$obD*XVM3lTjlITrc}krA_64Do{QVy6C=!j~&>^02aCS z#|7H7rK3=W?STNuiO#wrnpg)T1Nm@#(k8S4YFgPz76ljE$H1mFeDgzEGS%*qXzP_? zRTK+2&&dH(1=6!q0%<TYQ$8UB{>3pU!z9#}h~VB8>Hwhl;_pU4=<;sxBDWOjs5C>^ z4R#9K&U8T?ziu1Z@b9mxAwLWLpf&d#=g==Ot1-??I_p@uLnF*w9iZ}nZE1JXP1Vm; zn8-Tjbop1fB7xS_z(+ysk`$g~><t>0J&smHp)-wsIR7u$Q)gilpvW-g_w2Dn0=}sd z+A4z-iNp!;5gPC0NY)O=gm1osS%@&E+@UUpkA77!xvTy)NV1voXSqmoY(hVFp+ErJ zLAfPmvmkj+o2(-Tu?u&JE!(%r9m`#;Y7=Yic*PsE6dsB<AFf)wGwET3Pj~bSzqvzU zDJ<BCZq*e#RuWL9?cvgOm5lJekrP<R2_CR+EFn7u&wP;Q7A5*qY5s?NR~MCJlmzIE zA<P+pJtIV_o4y7r&P3C_;BZYj_lze==otTj)ZuGO?q{bpXY8UZ5*-c!R0EE|-4FR; zi0kRxMrx9j__}e~)1;MJY-^$1yU@p2t{)T&LdIgrKMPSoA@*H*rS}DE@@Lqkj^vba z?_d-GelTjHMDOF$5+9sAEQUj-MpcIOcGM<Yr~P$RGCUR=_`G~h5YV|lX5<_XpYCx( zFx@8-68L(_MX*9pN9B(?u>ARZM9cRK^>h#T-j6Rkn&)2P-wOHL`b+MK3l|bm|9J#y z9$yTX5%NxWh=>^0SbN_6@3g%mfvKxU(Av`hVL_8rf_=#q=2?@@$(x27MDW9$lEtHx ziH5A4q0n?s!Z~wLKl#90Nn44@dH%!)-E{}ly0P!zJ5NU&Kn%bQGygT2R%POnw3Hcy zjlbLh-xG@ACnX6fu0l8PA1<Ps=%&l5d<VH#xAg{L>d4KY`_-+Mq>q<2T;y=)InbN^ zRD9<K2Ffq6{s)0rjxte^P8(|dIus*qa>O$z^Z}QL-|3X@9F>Vr<jwBq1@6zz!3}4{ zBUt4+Fo^syRl|*^W(vMZ1we3!^Xf&uz+=K~2P<EPOTj|M3lwpZU4k0yEhww8>)OE^ zc7)+(3wc+p@BeIUpv)XNJifufehMm~g(j4PhR=-BdjyA+G#>nJ&I)H=Zo0M*)x0OB zzpkt`ukSUo+73i61apt+S^mo5-7UCmrNbsfEetdiszb5k^Al4!XiKtY(#4tPf1$Jr zSC(9p{;^r=s33IBzCN89(|YDa-M<N(=A~_6tMwT@;`7yw?Plnc5dDQ{2iVW&$8_f- zpYbP=Kh59g*i67ufrZjj2NTRSDyaP-`dne*<$n}^zCURj|A?N!B2em}!3Tj&Ty*Ml zCmtk%bOm-TALohUJ-6C7wVF_1aqn&Ocm&T_emP1JJ>~18=QEj2{MkVfcb`FuQsnUU zUs;HA`hJT}Yy`r!(*L^q59ht~+xW$ph?hJ{ZP9zPaS!bcHD@m%Xu$gChObrI-3;0a zee}WIy0g)rnQ<rF!YLt)`!X{<tsit2{9_$fD2lR;1>bKn`Te=9$SVK&*r<OH`?*^j z2o6ArV&MB@5c?Nb>kmOm9?IiLy19+qgEsDuZ7->Lv#WZ*A{zFeP^P&Y%MbS++bt+V zI?okkhI?gn=67Cl6|;>5HesZl=PAYf7y4sbbm1->!V8V8ODo*0)_V>PoM1P8v+43( zm!X%*lv?aA4V0H>o)|1w@7PzSAMo}&!Ve#>s}l0Q{T|LAMSK`eTi>xUj8sK|3)}$9 zd;+`1of&-pZN%1V)RAfK_rIqA_{m$AaYU#Iv(l>O`{eF^a9tBK(e;gaFbLY(LNDci zZ<iF(2b5&qb=Pb18QO#o#<!S(Ldbw*3imSypC1c|{nz6MDTw)I9vZ-6^^SkX&(xR| zoA5!t_*DR97+|9KRS!58$8st_O%FnZwIR>S)Xos!dNUAJv%={V)hE!t2A4rbz;_+h zen%0WiGr5j`I7i}LmlSnXcK%_*V^9Kx6MpDZ(>Q|Jx**$(D*Mkxdv=vk~6;FDyF`R zFGBIBes#@vi=QWRQeSnSqEfxpBf^S_gw-`QxNgP_4s}vV_6<YHv%Ly&eezv8t|?f` z>M#C@RY+PZEdILi&lacAbAR1LfonPiZG8VaK*lc%ymp6k+?}QvN!N4H&@UiE2aUa1 zbb6Ve`ZFXBe2*qnIaMN0COlRvKxbU{Qzgzj-eI?F&o^WCQP#5?`YVmJ{WtcATF?}# z-JxLdl7?V}t^7;&+%N!zxaeML<%*bci!kh{*fM+Vj^b!9`+WqQAT+F<!OzJe+pv)+ zBjdjokB5iWN2$uNn(l5=nFWV!rf+;C@F=u8HW49bH>MJt1TH^`9s`;vQ#}fHv}Fd; z6VL%gZ(R*UGz3_3o80BS&$fXPSoF*bl)QyASQ$Uy{MR4!Bd$C7zc{>yc|U7DuXi4y zz(IBp^ePU{*I?rhre33Fmh#Zc97N5T<vG-m#Bc|!1bUl`<zR(*$BA#&Zn{UiZ(anB z)i|+r{fNp*Qnfg#^-f^84r5-6+}2gPYnyLbk8SPLI_{wVL~u+kMY{6-_|aI;&ikG! z>0Sv>c6ue2F#H|#)_PWH-k%s~W~$36+|FIKjKskD1{2~Y__b`rW^4cs7;4ozuq%W% z55}UQ7uSfnvr+|0jPb62=RIn8`TkvI*H>@ox?gx*1$Wnn5zlSoe7NHesE63>C-u%h zn5Um&P_MSY{R#<;rbE9%+H5YL9WZb=<Ay?|(&1wN_q~VyP6GYh0{-J(NZ7Nd8hM(Z z+oK_nB?Bdiu5Sx3E_8_ZF&B(JrN-QMH=6ibN+DW~yi9C<R8bkU@)PHU^TMz(Tw_Ph zF;){bPv7fcjArL`kBFF8t;E~R&7bZER0I*);>^tPN2vD;919I;w#{o@mAlhT5<DJD z>CQf3e-l`sqdJ~ztTIsgqK5-d7egu#{aemgbM9OAv$gG6Az>gFrtqFUSA>KWm%A(_ zfFDtnhh0b;NAo<ry`s>H&zg#mW#3^$_0E^MmD0G48Rfqo>Hyr$aBhafEA>h3mEZcS zfLNvZJh$omyKuhJ^%3J$IKZ|JHmoTotrMq4r_ECQg(?id)qD?VbYhy{k4bKRDY<d) z9fOm2VSCg9v>F5tKNKO|;Z4ln(a-|~VjP^h??|i{h9#^rsqDB2bE`7;`(zc>O{sA; z!i~%&`g7epCT#V7v0oo%;k$GS@J)wlVP&PDKmwP4Q9SDY`3j|GdzKjzh1f<W;9sK@ z6gZiIclLe7f@X?k^*ueGhRQII;EzwE3S+|j#$8ioKeoOloiC_nX>;aTvT+P}VWh>@ zo^QV?=z))JQ&w7H(}q_NLuanY;@-8Ai1A(R+cSsA3`Bsj(tBBma}&b}!lJo6zq!L0 zM}5<N?3DSbe1(#xZAVag$p8*{d|hu#Glp`$nXda}zf2LcIPOoBRI&$ABgbO_C2lqw z3$l?8XZ6p=qLq3^IshU4=C2F|S0qeni|tkLLeQk9N;vV*GB*gL&$sM1AIsWQ+MCZl zbA)4*(cs%6o8S2GHh&aYw+24V)=RuZQqs7CD8w+o;;@6taM61f9Q1BUG?1{q!l)da zuA`@|^~JUI_4OtBP{2Q1VY5KMkp_iVO0%g)wcHr|{c?l>2@>?Lu?W0ry@x&(Z(|K1 z{Fm-4TX<=+$Cu8Mrza$oFAb0EJCFFy%=crss?0a-2Cm{doUEu|7T1&4)!P6`Cd|=) z=bMub{a^_Ya?+><vVWAb45-M%(|GXsU?q2eQ-7iG1{aASTI#*KrMM{5OYMqVy>%re zV^NF$S8Vpa2s0j>I<`b}j}u|2m2iy8pKI-1Dq7a1FQcCL6Y*#FzF=dRsbhN^$2I;b zB25<_x+?0rkg!fketz{vWU%n(UB#_Ao2UwrBYsp-;xHPjtMHdoqfFpw#|!ZGZtrC( z@vyzEE#$xn&4JICW?|YjF7f6=`ihPtRh@ki?$U@sL5r+=6nXJLqqqMmv(^{Q?(urc zQ9b-w(1?Hg_GR4av-3FwIb70_oVDzzjmtIw%*a~5cpWyH{u};Zi`TocpUV|6tD=J4 z@BU4k+(kC5zTZTRow>@f78pFi4?1Ru^<4O*>=p2Qqw{$$0*vvZHR;P2U*kpFj!#q+ zB+P_`ou9}+E3QX__3<RF@spEI==c#~D8sB{&NkXEzm!gaXW$B>rvAhY)=tdN<&-NS zotu<s{>dr?75~-BFOW5ySM9InCKEut?8T>1Zi0fTG(e%_p<ob9*IqLi1<ubeuw*n^ z@bB91z6%q3@B8>yAd<Us=PjTX1krF0_z)b+NPW4OY4;HVI#hf$#(Vqit)r}|i6haX z)GhqtnJ*qO{YiTbyVj58{4}z&bA{s3(_J4%x}4VMBPoXFTJbp1V&oQhrG{1Ly@;Y7 zL|)U{c1|xvGboM_Wyut2QkG()<_8b1S6;XNzCew1K@{hfJTkcJBOkNPQ}C1Nxq$3@ z5#ao8>1c87f^Th6cIq`uj-N22hdJBlA0<$473t?>_PZw-L1Ba7ghbRt^!b9g1GEJ` z0JmdBynb-S^cfx;Ed%m%HsV^Q%YPrG;xyH7knaK=F=TW;!W|dJ2m@3@0=3i0qnAxT z%4I@%J%N3AVHuJO1h|dsqVwq42@W4}PMc>X1W~<Sj+dE<R!bXQ^lcOs-q2&B>(q<% z(z1&@(8?Rs$izkz<Kx+==(B8mv9x-P*)GVDF@|<{lmHm`>e|WZ|1La%Rh9|oF};fR zzUP1hi%f@zPeDk_*yMY2LLw0&xCU;rDtl~_3jpv{a{a`Yg_7CBqL9e>4elg{&SGUu zYAVRK2nU4vt00O2l|2zr8o#5+#d%tlsLn#G#IeBcW|5G#6rOT2I;!KzLExYG-T=E^ zcF_z`s3qfhNv%=uwvp`l;O5#HRwF@RrZ#BE4O!$9J=TDIB^~>&xflR)a-ueNfI2@n zr!picu^Am<a>h4-ujLaasYW2SVrnnT#=Pq(8EHa|5;>gM)lk8Y$4tAu_1%e7>@<Cg z^AAta#&j#tAyBO_DyBSnP0=S{l_ZS^af^x{DfNG+-Fa6+aCBvd%qNi@x>^8$hW%bN zw$ZqjnRInfxw%K1n+GZPtlTtGWI003qIG~?h$jzSalA4plPTw@|AV#kLB?4zrLuv5 zF^&}_TvjH(7{aVdu*L`qSM?uynW&s$Aq5axjjf9={WYW~II~^v#$f7e-UpG^L`37e zc5%@3GPCyK=EVZ_%d^HIU5aRQ*Dv^z=|A(Z>p#HpoE8g@)+<tnrnLUBP1f|2A2M;* zQNBArs!%nrYGWK?yE;bLdaNM|3S6(sx;nDA?*o%2kJDfLsq*-aZL%33)`6E{T%4!c z5#ylCF5nUnTTu@YbDTfbkwu=eA{@c4I|c(*0{_?Qh(P-_rBM#7TyDeLC<uJe+k#mn zs0O<w_iqSpf3oL>g(~$6W{A~CLgt{K3$!%ocGX5p*gd8I!up$nC3GncRBlfE$Utle zsa^)YyhIu0+?fKtBqfxwC9*-O)@py(3@!m-Ix<R1_t1H<3{x_a10`16>wYq2@kMex zB`=6E&SfAGJ5o8Ld}IgbEwO1VIVspb<DkB+YD-WiaZ7251F?}U{9r&GWl?&^$RLQ} zcfnGY%;AV#y_v~C^~2^YLD{G@HR^y^Bxr;c=&g8f(B0=}h9%*A(-q0<1@yQ0=s3;| z1D1io@S615au9u6+r9Y-b>P1U8@kB3LZduc?GJjOw9Ty6>t&<&hAv+@i)}s4$lz%_ z_Vs289(t1(2M8+rb4!_$>wZZ~gQ0L-Uxk}_b(r(8GvUh=1i{G~xs2B4=?ZGsy5g)t zu(&tP3C3xtizOP63wY#QtL{PvV~c<SS%ogja6cz@$1$Vv0AzcV?w=cP>Dj7^PscU9 z|1j{cO^Ux`+bBOma$ZTSL}&eSzPhU0R`HI<`1i0K*XT!)A7?PHR+|&gmVuEPJV>(% zP)Ha4K+ZsfM%RWN&Ooy}X=#i999&&Yqr8^zr1jqlzJ`WD+)gN)ga2@om<qe7ce)7- zYFku+DauyUz5RbT8)JB8Hd<PgB4K3&0}oN%IDB)HA?mNXUUgvY+>5I(;*oaP92LWn z+$|`|Xl4A|CF963bcpB<X~DU?@t{N?H)T?cA^DQa2bq!x_3bWHa<BY3%2m1XaQq0P z$Z?r{#H1U<L-G@CuRWs4!S|~T)#_L|J{prYL0y0mDz00+NL~>v|A(J=z-{q$ZXcy4 zMu$AE5XzTdModb%ZB=$VBS}AbW(lgZ?(C8{tdX5)O#%`17m3|Xk#|tzUlXsTPARu> zp0}f)e-QE(wM3d>hF8#jBYi-G^h`8L*l11$gBSrI37hCOGKV^2RV{$3+QM$rlgzIz zqPyDufA?Fup`S-vUFKqm(MeHj1iOQjK_DHa-=T#HSUaB!A!*bF(hM+i#%cgLIv6g` znR2Qs=}omtMW`0natF8)+Je;+n!kSpgvDK&#pC!m_sDX$+i!6T79D%j?)Oclh?91y z1VcyY$mf$|n|UJ+1h%gT+3-;VoG!HwV|}hZK~UVK<Ig*&Of|!1?Ip0r8Ak%NJpZ7A zm7IKRq^157`seM-cE8nN7kKQ)fLZCjY#@!AC_!){o53bI0x79`=y+;~++AuXK?kfv z57r2$@;8>Kw8>-|xSO`2K|?#NG^K<o@!e-y+K(scAN3I8apcFW7#dJmU81p9?i zQl)=^9xWgK6#?Z*YE>~=?DBr*tvih4dL$v9;4iux2I8(mQXTi(aI6c!Di%Wv@^#@b z&;52)d>af5VV)E}#omsZkist$|B+9JRAeh=rFbTC1|u$j!SY4l9WK5kq#Ho+PG)+! zNio%E#c}9ozhILunID>RYlqK@mNI%-WAXO#(L_cGQQ9qb5M<^|sfFEGQqvr~PB6~v zk$jIwpn)Xw2VR?!1EN<jhVv6%ZLF*|M|OUTc8jll{P{UeI)9EF)#=`E(JFbkALyzY zoxd>4#;?>gW3J*OsCNS)*E@w^JtLM1ua}j#(blDuC;ZmBcE7NCp&CwfutULJhgw(~ zTdmo(1oY|yI<xRm972B9{mWaF{<DZTTEBBEKY}}KOMX6xMPw2^EWoye>sOSwz<Ec$ z8uKow3P*-6sHIyMdz7qb(O8GI(AtG27&ZQu5^H9MCtYSrl4X}sH>m5JK!yQzaVW4% zJ=cMATiTfki^`y0MEb*a!I6;WIJM=8@PbQtA@Nt&$PeGAx8wdQ^vfApd)QcJlcNsn z=55EvTMT@<x^2%a*}H-OKs6-~Y$@Uz04GOy4o(jHlO=Y@4{XAeC0X2<7h}lRFp;_w z&6=N;Sg4u5fw~Dv`JIwiVr8CWI`UH-_BuvCQoAB2&LOtMQ8$P6^HyxAnZgt@CW?;k zd7I2PX~iFxi=R9B;!y%O(8|g}$~XD;>`C9l{ckdCWTuGgvO~mk_RmUg!qVf!q4Hy~ z#p=;1`Cfs|@-%5;S3V08T|EQjV-oKG3$>!h-U^wbx8?{kmvB}bMdqmCZmbH?Mz-^q z5HKLjB=b%^ONc{fj~k(MztQ>oaZa7qP_Ty5^D#-7<W&!f053e<IRZXEic9gW%>3oW zjd6Ey@cy3l`|`WqN%dA<Z!3$MMP*YWL)WZ)Z<pVD9a6{*oOxVw7P4~l@kz@VOT`ab z!J=B?#Y`q@IHs;nosTrXB|UN`c>T;~A0FIY;o6(ry1@BQ6{(R2>2BKg>4Ww_;~8-y z>=8|{1l$6|w<}lRK^keLmyemIIj6R*E@WdQf?Thbsmq#`pJ>J5IQf6>M8rKJuZ7+s zzlvUcKN#7lQe7h9dbKYUkmIn46E`xLGa4z#r~&~g`kZ_*#Xl|$mTa*Mre+%DXS%N- zG-t$rXruY9(Q=bNtuc&73)G>t(DeKDS7MHRRa>PI#n+)i<EHWFu@t^RPnRVciowbd zr~PPP0UdJe-Q#yp`s-{e^b8!(>=O;LK6QeKJA0luh+Yl^>K_NbHk_|`;a%r!l1Q8; zA`nl+!7h{EJWa(=&mBg?P&jRDB2_*j<XZB=9B!gp`MWuCt;aW`UYSr7?Ahv)LOwNd z$*_Zv2O@L~lAFtnAqKjj&v!Hf6W1dXb903NA+`vc<2%MX9h3AC(V*GaXB}9KKlgo) z3SJpqWE*%CvFCq<wMO2Rc2QPmZqc=}!G%269Lf74gFr#o-6P#c*R0XDwY$!Ih6ZmZ z;=Afk&4acJ@3jexnprgm=1w_{g<TE6k)H-3c58#WYROTVy49jZPd`~ZRtZfyVvQQL zZrtE11=!Sqcj;=J6;U22_jy#;6??Z5d)i!LvTogJ+hCDRb=k!mXD6ktMf7Lbt}aoO z2>*4x7aH)3?`;s9#9kejer%ZCN$`JU7X98+<0h#^1%4V&3%%+3^kU!Ghht(>mWvZB z;g-b)d>NkS_>fIkf9LdfLwGIwu|E+ErNN+OJKFmbE~k7qs?`4E^icB^$j`&WbfPY0 zTpYhZcwS^cO`qR8DcJ3eF0u@k>gq)^nUPpp$i`bW;Dk<Ni+Un$dkdmW7a=O73P<zl z6>f%^RC;Y1q{;9b_^4JPKh^EAPfYp>wq{lYL+s;I4gFr;u$`kFQiQah3ZQl(qHU_- zJQHQ=k3S(~HjC4<#nl>8#{o74xCQ?Wc^6CWUoli+x`7O-Nnef}qoUo~b8Q_Tr~)3< zG({2iEYj2<WNqJtdRjjfv!qFH$1zOCy^;v{5WxZu`8%OtmMod6hs>Pr{V~d#y&yLe zQTNx&H#F<DK39H|54fCvo-<8=jV1L?9mA1>8rPn2({Juf7o+lyaqw;`0(c>GlBj;b zVz}|EsuP~?V?e+^ZEYClQ_HvcpmDFQGJtd5!N0&SW+By7%N=Gx^oG>9KE~)W`&6wb z`I;F<@V466P?CtaKuq=5gOo{8SAzm(U~RqOA!B45>Bk4fl$8ZBv=~6fBb~tUpR2dV zZV(lgP~&hGP`<(SW6R^?CbnoStFLy^yhoiP{YXumdZu{Ol}j1P0F?hJfV$XYVz+1y z#M-RwHUzI*@h}=NI^_@v*aNpN)JHI3+&#Zcq!u-}>Lw)%dc1ZXHawbeMx2Fp98_@; z@)TEu>w7wKJ~3#32TAuS?W5=#8|wZG#<iP~5Ojb;g8JT|6Ko=9ru1k516}sjL4wSd z<UXW2sz_UcpqAwM+%>oL;-lA$33+@Z1a(|^l8oZj=7*j)`R~jWmtvPYpz8ZeW2hfT zex@~g@+V}UMQLK^?KX4=X9RF#Jk_<X7P_GKPu%mtGq!La@`?)@zc{XlAATJ+%4ruu zML+1%Mu~)U{skg%tFRUpBx%$q@oP~I6OdgqN%OAFdEz&v=Fl(O_TN#WFC$k}RQWYm z-Zc8|5uLW)-4Is2gX_nk>AW*5R=OWgsVsi3+sAyV#ok`h><i!+F=h@>Y9g$Ip1ol_ z{?u6z)1qup$zS75Q!<uHXyPhj1{K7=V<pv*G1kCsMtHn_idq<Gs%sq3XN5^8!hf4+ z!7L;;Tj|uhVB}39(WSRE>54q*Ol-BZ3XQQeFHx4Ua?=6wuZq~Y(wW}4f`QQ6-xQ*9 zM*}XWx<>K6{Q<_d5rKBZkitL{gZ_rVRXSvmUYv<)<RL8T1mOz--T@o(Z~5E*spi;| zBKdK`kEYF)TKRTSqjDxWb&-iz_>YJ^@TQD2?|W%IR)^cRs;oYA@r)a6hgssI`Y0G1 zQu3s%Q_TlKt47RyB2U9kmY0`@dLv7j+pA=d;S?@P4E{R+R(@d_rYXy=RP(|%Lg62y zW7pe7ld7b0X(%y`_liIIwHA8cSS7XJtn)%YM*9}$GiStgTRCCVA;PhPLH^zOd^`UC z+KDFXSr*~tjEVFB6a`i#x^Gw`m5wy8<dzNV6|RYAb0`&y!^kLypRB3ENa;4J8!k4n zPX-q_0}xR%L|H%T`;pB9?wLqR@}~<N6!FeF&9=p9!~QNZq(=}Je}e&FcA5|Z9HA%} zlaxhz$krj4@_*MaHzz=?l#L3M5nzDWqy~Wd{`--xlaxHOa;BhO)$$0#<e3d?3<yhM zn;H7pRd(dCRLK8LacM$z(CqMoxR3kl5?7Y2F{m_bYPPBM8?~l5l2LT=S$kE2u(JdC z53^vJD<z_-kHb8D&a-MMK>i_ilxe|I#zl*``gh3%z1<uE`D3DM1LZ?;V9%HKmBlW5 zBi{d;HUu|iQGLV0oQEU(`GtvJup!4v@}}rP4WYjyjle>V9WnihhaXeo$x$D>2gDd# z&@6h6HGFd=L}WgNuE+?SR%MBQS>Jig2t;aqv5HP+^rwvx5LjzP+b(l*a>yW+k=T;7 zuFRB*Y)=`ozgc&vrS|KLjmPJPeja&VC=J$TQbdrDLRm$Pn_&P!=!0^pu_>1vFFMQa zmg(6Acb(Ku1#B!GEMd75u2rkPXy=uc6`6T|Y<tdNxsS}ht^oN??_jaOH0jbGiO=D? zd%rVxC|^(ZD)$rO_;yOISc-g5rmbF!8>FZNnTg89_}w}J4;K`z3Q}>5D<nwt@=gxE zel+#&w?EGs+}F3Qs!sVAz?KTGvZl(=(Y2h;KZ!+*y;VW#>7#cniQjGsu1ZaUQe`fR z4D(B>`l<JQZM~F8!rj<U8`&YJj4A=YR$wuaGc3AFNt0vKUh)@O1+$vRDcQrp{O?@a z62r>zBtI}z=$b@Bh@!G_&Y>gZ=2qmw%l0o_f!H93$C_xaxStkHhIryV;nP!nX&WK; z`@!t7AGSSHwk>k(N(`f`g-pg*-PGiiTizF?#rQb9B9TdFJjw?MUwueoGFHzf{;oBU z>fDJc(9gFe3?O{z6(GGP$Xy|Qwz2QAd`nWUDS-)G(^p&<iA}2F8PncH=W4zAZG0Sb zx$mASfj<&TcL4JLYZj!7XK))-A@}BzaH9{e8d|do)8aYqeq|l{)Z%s|e?8#W-e2R@ z+1cmnsBmkP#CG902p)R5&hKxD?lYHbwCp)#qWDYWDxV6(X=rGT^t!Vq*=vh*#;C@Z zmE{=%wPA3ycabN)MEeU57?qTQBRdoTey3WSlD&ozxAhn)TaC!^NUkt)(Q{pdwvg{A zv=3Nbtcv+bd(lUNATF{qo#N>s`Jo4)3C31v880&Avh{iZC;WVLpjh;8jCWeFJ<7#; zdPh+uJQdrH()Wm}PsM8|mZOd@MKbUC=EA_?sY{|{3)FSLhVx>5krCPL+P;dB4J@5M z@A9TnKGp>oe4+X5;~r(iJ&FH4cDFp`OwrbmCrh8LiNWuGVmwTN9$CgPVq|$0mJ|nP z#s;pI<$#W9=Z)>sy=bOx$x<*F?XjKkjQPXQnF%hemW@F{O#HedPs{ZN=^B0Ha7p-g zx$_!LUbyKU$gP_A%Pln~3G_#2&}ENZ@6d764T#AfI+FL&CCYExXQG@cKcS#~Y5aT@ zc>a$$f_~~nfi_zH*-###zw_}<<J6PgqE#p69o|w=<uK8_%tpSoEK_K>((&PP=cnZK z;P@%YP*IOyPJj|EXcP<stM1rKQr4$73dwqcg)(x+m}p(#?2De9XOiLPYXZ}4(otx# z_<fj8kx%WseGIy?eWRGHWp;ix27}0gCIz)9%A7Q*?obD%MosF2S86K$_pms1!9yLm z#5vM-MPtD1xX3;9I0o}WPm%m&ukcvnUj(5R8wOX+n&EZw!6IUo=Z?F{%1!cI+nx7C z#6<b!NoBqrI%!8)<@uNb-n-sVQ4N$DEge}lk?(r@ZL;}GozqPXNE09QTJIf9&3C6Q zb7nvJBo7WxFmAIZ2S(h6A{weLiyuDfj)q`RGdwAE(lJdMMK*Ui!;+U4g(%Z<(L{WH zWo59*1zu_QDiB44^!8IqHi2%RphxBu+n{VAx70<yWD^p?d_1T?;@jR(wNV>(MA{G3 ztgf0GB82<gyQFgA#_i4J>d3Z4;O<~zCCve6`U(*fHl5H2kH#uhRUA0t-S-PZeM7+i ze>xiV^*E`<v>etVLnx$@&D7no40Al@naEtJAkEM}*YL@YcNRm%R(R?)`bkH2;=iuq z#VKk1GQGN=IWye0);31UL}Z^fW65*sss?!5s(x$YVev@dC;XR-ScS<=%v?k!A^D-E zp&}95`HLEk(z}+dvz94L2c=@p!QESzvbyw6@WZE-CrRG3cAb&70AcL-_=#;g8?jOU zxLQ&Uj(OG(Nz@0geC`{Mu!y7FTcntTr!@7Jh%*`oGAR$(jY;X$ut^$$TJj5>BdAfm zS!=AS0WpaYu2jb1gZ`oLOYVRY_gH~;woi!imz9yf5?2a??tBf1P%ZlV#yesRF=Wst zelo%T%BTxR;2B>T^<yKPvow7mO{;G`%Yx?+t%$XTSKL7p*<G2jhIcjmrCXe7lnGND zngUN2^LtTYxkxqfI$UqrxNtO(W6@LTtz9Q_VBRueY%_ldAs8UriaquKiQJag#H+*G zM$xg9bxGc&K^D6{RkcU_;wU~(j`Lpp@7r$>&Dsh*hawu*@zQv_goOOUpu%vvU7N^C zQn1E9V}ZQ%p%oow@78i_eT&yceQUDh`6q7Tn2+Z=%N~o)B)!Pe7-B`iLJw{Aep^u? z2zIid8``x&Cujxgv|@Z^u6}dcJ9biv%vCJ53vnIdKWK{T_#QXpH)^fPpTobu;Po5) zdY~a{%`CE8B}%MBWYXMgYl<{wB7_60Q$za{^Q=wH+VN2YH(`r7zB!;8jWPE{?#{!| z&`q##bKqSTgJ$HbV`q1T;2k3zY&jWIaoHTOr-;$(n1cpI<hdZXF(;e<H>jpd6hYI6 z`bp;LPGrXWG_)kV$%<S;3*q<Y3XOv!MC)+fv7Cd)E8kL}|J&{xzJ;x1&uGTf9=r3V zrHb|L6Why2=Bq2=5%Bx^OXK=3ALi!JRMqA(i+$-hegvo0E&qkJz$vo^7Qm!u%qP=v zm^&~3irA!{76!|zvSigU8W}%k0<C^_S<K1#ixa_ra%X9N5OI*L^h+$IPU1)HUalr< zBS?V0l1?zH8vjv|ghrqs?EEaw&YsgfJRF>#y!5O4gwNOTaXaheKNGnBfAUZp-Zx2+ z(;#7@hxQS^Fhx=^?;pq~_E6g}gDjRazEp=t+D*ak4jCPOCMkjQ*LC2miN5NwYOw@A zgt#mZUsr`*bw%vi=VvmLH$@^Ri9c`<Bn9`F10!IQYrP+r<ofQCB8SpY<3lz%yy4-Q zfpnq?os3LQ0#l6m!QS#YVx-T*{j$5LKuGq!CIg@3qas_48!jXAgYnCPXUvnHt6BtB zDyN34PACik(d!Ch6>(_-mhihQKMn8W6fd*VC@CSA3cugTkx*Gfgh@;e=s22cqMtgf zco|8mhc#o@{924Y3(9x<x2}oWmg{lsc{*8tY{mM+9{UbjGGo6cWD!2;yov#L*sBfG z1cm<oqU2C;g!}`-i~+29=@I1ZQAWsdnq!tit@`FcZXToqva93+OS1So6(UMbGX$o| z+kA*thdcW8O|i)G_9GUQjPetcg092+Bh+g~p}Q4fC_Fkg%!y3>G;dXw#?>y%{Ap1m z7xq(wq<=nl#De87LKh`xE0VPGK8nOWqiOm@n8?z)eHtLZ&5s=vO)K|gPkW-oK{t-# z!XC+7WtL)BNnqsH1ClL!->t->*2vMcSM}+*t_177Hm<<{T`=I@ZW{QB#%=$4NMUmK z#1{K=C>M1t{ifqUlwg|IjfD7yA{kv6e6w^8Ri3-*yDtZrNV$f#0AtAJQ;{_!0YQ{0 z2<1oZ!p%Z5+1@l0U~dynDeOXE)fM#1!u_9Kq#SGQhwJ_J4S$n^y@=SnQsXEKh$ZAb zMr$cvcV8UbY@3Y~uZ?=}>X*pF>06D{ZB+S175Y@^eg|Ye%+#i#u<V5tt^gsP0mNAA zC_3a~(kxy+6{(%@n=YR@Uhp^l6ko!Foky%%<UtclUbpq|j%mA>)66$1J}70zbSQC8 zN<(V9!py*_wJl!q#rQOdo`8p%9=14vm@enDFWM@`mH{!y^2EF@?^d5$xp3#h)E4Ib zz%0ZuEE%$sF07m|S|E?t-joaL4@3m{2q}p2a8Z(h?zBV-_lXlVV_L3Bd^#gi8|^pQ z+(@d3z4mnGxLGVNVaNBMghesJFIgcemA`l%pFX`$2~t!UhwCw^+K&#qVs_*ArO@Z& z7vZf>0I>gyHlTI<3E(P`Fi&8ZoioUp(z{Kd{t?_ZeObqTg8~GPIB|#uxeuA^?KS5o zr4#+8-ed?FiY!6O$O*rUt|7~D)D574HE(jx40qE8N5Xy-fCF4nh+uGjCcYgvdaO*h zw9TXDH(EY(e{FCSb7T9N*0?Cku!6JDxQ#lB12xnUQ(Iru&3-rbaG@Eg#0`OLM;%&4 z0ZjklZ`6B)H3=ia!t=MLcbrYiemsZdl2qukXp6!a8BtSB5eTuuDr%e4n|<EORF1?N zedAx8k8auC$7eWd5yJvV7wts*V$svdoe%11>Q*%4q=49<=9Jo$r6P%Anmy6;&Gg7_ z_&uV-vS@FR&^}K~+fOs!v!bXS?0-y*2Pib|MA~YxSrJELK(N-W_D!kEz`t6iCvgjo zP(jzIa-LggJ>e+621(EbXw;i?dS-60xh1zF5l`s;A@;5{G*g*+PVVsVI*(^)36Iu5 zFsSW4KyZg(b~{j8_n8)iHqY%$`r8{MYNH2Y{44	L+Wtxvn^mXuTT3WZ8u;CiEXi z$s6SI6Wo+rqqD>r!jz92ewgd3yD48Qo9G_$T3(eUOuVdhB&?|DRbfAjUQx?zpo{9n zEIHyqWbj}Y^Q(w*to&`iad_AMIfnktXyjstEBTp5agg`Q)=xgxNF;BJ68e~57JoyD zq^s&&S*H!m)n$;a!&O#^YO|4_i<&LZ8r#P0DXSV-YCQhe%JCqa8Ady=iFUgTxZf`p z(<#E})oUqwW-bE;s@MQxJUL16>pO-kc9N->Y;1&a91O-xm5fW(ZicuPlBN9r;?KYL zMqTvrq(zpO$(qiK30R-A62>?J!B}*Alg^)vZ+B>pOESbZ^FF&&vRY(R;iu=bJN$Kc zOUY#LqqK3yGUgKcPQM{}?4WKouV%P(wDuqr<HlfFUh0MaEQ9@3b7lwLZxbR&)mGI< z5yJ<gHHP2}#^hBIHAPz+-0iwZ%La4lMmZAdQ=yJ<M2USw4eO`|r+*!H*0+Pwna=zc ztk$6h8MLBWV3e{d%S;IO2gSwikx}+A<7gaSutw|YlPA2B^Y_KH|BoUCM`+YLPC}S` zNhP=pmPMFzjyh-<;3@*>@<}D*{A+GP53JC@qz!DsDk>$$amsB{Bde;KF3#KhAa|NE zYMmkmxXbs6+*;-q6(SdH5(p9%ThJmczLHBRG%`KUhoE4KrN*4+LjL{}i@JSs=IPBU z0HjAM%MD_z`g3olo=Q;Vn?J+2bAqchaND_?QKNif9zZShZ52V04-z=GG?ha7pYX=K zJu36Ccm-*x4az{dG$G7~Y`8w<PRg#L2D9Ep=1yas0?vPMcA}=(kgW5*?UN4NHuQlA za(aAU27CkenDwMIu3)R9wp<ht5I#fefcI6R3%^=dn(%n2y(HvSRhE4|;0RCw!F;ez zdM=L4@s}VwhO}L5Jq9%i$^&)WBJ`lGEIt)W(iGKbMAV(Ga3XL)BsckC(EA`$c){II z$R~LeGqhJ9G0-G-*Ah{UdzN;RKt7q_-#G5_8{hi^sU=071v0g~QcGz7)%VT1Y0f0z z1^sFha^i>${{G@!)_}Y&4eEt9Ud;^|8Dd$zNO)u-CY*{L`F5Qtdjc|9B-@3>JrN^u zVvngcQ-<ajAv-{(_8ym1oul8~#rb>KE}wKuXKq~t4@Dx|Qsbn2PNQ9=Yr%&8L<fE? zoCbDd5)H~B6|X+>?2FCEF6{d>w=pfUS>7bpy0T3TfI;g8TsEKfPEB+3M_~Ay$Jxbt zAm--v!3>v^Wl6{pVfLSXtEX>#55scn4|~-Exq_^fyysK+iI=J{9OFNZ%VcAHW*4{d zN_p7_6_wIIfi%yi)}tKioWgEv!?%68%VL1_cE5F?wjGK@35Z)Ng=bTVQesKWpWU~K z42<cFWkh&3Yy<DDT{pT_MVU<WkwsfW^ix=PN*UcQF5x>m*bQBsd2g42{5RS^_mJ?y zxcmY}UoW82R&e~Aw>2I=AmIW6TX}%S&Vkx<>`9r#qi$*#n95gRh4}>?e^G=kIp~@- zkL$l&2PWc*KHxF||BSl95G$}S;FfQlb`W?zPg^R1eXadb_pA2;dA4d;#kWuO{?or{ zv&)cT8xYCyJ&nSTmS)--5Os?0MZaY)EJ4CG(nw=-`hWsB2#hhbXLH)}^>yz`XBASY zBPG4wUlv4fV=6rD=?hRBLBD_Rw%__%W*CilzPcs%94-L2@Q$TK%gRPsT}LBOz!~kM zTs9D(99_vG%|%R?vNU2t2#_h+Kn_&5A%}B6#iqZ5Mtmu4$Ea_LVj@4AdWW>X1Va=k zEQbs+d>SBhTOl>a_{l3jFzhug8{6|99C)ZVg3nRt{+^3$GE$|#Rh;rZGvdAiP2_m| za2o4x91Uk6TzW4+c`n=!0L!>b|Du?6&Z;0kS<ck{`p=U<+*XCi0#)I5BlWJa{BIB( z2HRT*<LSU&Fs&k<v!|HCrXYu}6(EjkzZf{)>k45`)`#@Ax5Ndj%lUx^2EM@9Y8c#u z8p<(?`LQPeZVpHZTfZpyvL1_#R$ov`R)g#hCXqvg-bGrmgT{>IUyh7byiecQ$lvgm zZUPY1w!2FF6`Oxz7oe!&LN7%wXv?jdM=XRzVFt(v4S8m7^EXw%1E53{AFfJEx_0?9 z{CjpA6&P{S{mP`w=GIhACHU#Ao3wxfZLBc~F1<~#M0JbFFJe7VN`?Z8Ee6+EKuM@n z0mrROYeF`wa>&Cj09T7U@NfWdI3F)2M$j2m)v(UDR)e)H6cW-~e;aj1Q8$FY^8z3? z0EpA}faEqEGMa|jk;KG&nz$m*;_1hJc7U^rSe<{zPLd&#UxUn~E16K8MgN)mI1CK& zkJH|Nv6U)YEYy-r{I8TE?$I^O&>{_TC}2&hu!r<Po_DFWcP1Mdfhgnbsj|QRLCvzH z4bV0g-&yniKJZ+ONtaG1KNFFVfvs*EMX^6pJm_YYDd!0xBV%lU^k*R*pD{@Pq74Vv z)nHhKoLIgNh1j!J{y5QKkoH<SBW33kXck90-#kvThZ5`XeYBGL<g<84)6w(lUg=)G z;3Pt7&+DL<cxN0b*tCs%0i@HfYk-zS-2P^0qhPpa(3^;<KBBgPOMJPHYs%uYCrV+` ziFY~Yb3gAzhOL5qt_Y;~nOh}47c|_zwUks&2y<_LTnCFA$2eIbZZa0OvL%%Rl!Mpz znBpGZ1IRJ=h=mYK%jL{#I?pC6oh-DzG2|xbAaxoEb@m>59V8EH8MJmA?DBKm4z{_! z|D7uPet#XS4Fir9(O!%ZCUvT?=Tk9cHI=%Mz&7(>2#tdO{Lm)*jTT)1h=Y|`hh7!D zC6|!O%CQzR=N>Db-VwX7h|OUave1nYO>O8O&edO{Ca~BQ2W+~<Et2A}DHgyYiu+R# zp+MK{K^{+NeqP9LJ1%s&?}H4!=TxSq#i9m_X%rpk@%Rk6&YXR<yr70#pI(w~m1nn8 zjT?JbB5YWfL5MHSH7!+SI)1FT=o8uK@a)gyUgOK|(x_$C>4gb}0A(p-yde|(bR3a~ z^jro^A?67GnfY}701uBTmI3aPk6}Uvh}%Tt+1ycsB%T$7^k-jQ5A|Nk_n~H5F>Nj- z^g=s+N4)JV?pr(|eM#Ft0>0;^-Ux@iJ|?10SVm&z+r2v`kqpRW{2CX^-801}0Tus? z+D>lyL%X2qeCI*I=IJ*jV>|<YU2|s6{ukc4zi~zvTV`)y;9)OdoV%gkO&3U2jvsIP z%as_T7{}=Z0S323w=6GD9W$`oW*dZK(fIVwrcz;RW#H|NM=+i(_!qIE<YM&GC!%QA zP5cg+N^eo|PHl$dEwO-<4oEDng|f8)wdNK5+jNkdi)u1M3zJGlsSTY@q`eaJ#j!WZ zcf9$GtE-JaUX?g1<f<N)Y;xBd4@DZ$8cCqa1q?ZE50DI#Z~RdqqgIRViOz8><O*yK zw+CyAFPxVKTP2TMYXENC*)AtgmpbOyKsCqnG>vES%M{bD8+z{t0LJe6M`#fqiD<sv ztcwn0Hwyjm;!o2%u|@k!8}-M{O&sU5rp!O?qiM)uh<QV1iscMHU%>|IB{YEEK37Km z*F3#JH!l>mIYMyJCxlB?{`brV8+wlmSIZLCl@6DXQ;<wg%Y;FPI3+V|#?3+)=9w!% zI>3|rqTo?6V6AGC73E!d81L~JH#s<yWe6^n3WR$2A&R1<DJo#)$*8n^5;3N8#d_Is zVuj0h_g!|Y8&-RJJB&84Z>X^h?2t(i`q!0`#5!_$A0ohvGOPY;FVWS%PJ1C`WxuN5 z4y!kDa-J!x^tzee&zYPsoUT;SFv|twpU5vvF)S9s@H>2~4`%ttZ5$e)U#YUxsj?VT z<3Ct`>9gVG7_WXHT#zC)NOYzqzDkb+2N;d0dJxDb7GJ{Q>WO}nlP}d<%*-)BM2U3^ z1<&5mF#`^)BB0pfnLxJ<8mJV)>ZZ7V_YD5sGHq={$C$K)dE8pCUhZATG<L5D`7Lt! z5d+`ell-GbkVZ_+up>S@=Xl(o5F-V91*y)XTSvER3Q}+$jCA0+_N0pds9$_{;`IGT zm4X^O40C)@FYthKaLwzd9lWHHChzcNnv2zVM$=XPOjPSkBf{Y=Zdpy`nP2Zr8!<Q8 zA&rkUJn{2<n}Bi0=9vhoS-<eENT6KvyjLu?tIKgYVFu2XasNr=6dD_0Rc=-z3~X@G z%#~rlWpy6y+5zvn=Kj&=RqxG`@9p^t_8Au+A47-*3{2|86K)e$MrYusYl*Vjmx0(* zBhBS<jPRP${mOZ9a^}tn1De3~2XE7NA6K@t)(4vAw11EBJ}$VQ3>EOt%IZwz?Z^s% z(%v(pah$a`yk%kP(25370H^WGVJma$+CtWamqIf~8&&XDkY`YDU7Bj!9dSYnyq)S* z)4FF|1o{(3jo>gBi+a-eV^M+a_=%dCRij3MV{Pkff^=qd0(!Cd4y>J#<v)#&zFv0j zqU}7zki!e%s6&xx9#&k@X=;*(szSPQ6<kGwKPEQU`OR7gl+t?)6HvMW1jNi|7M%bp zm?L*|{vVF83$|>#?Q}m+RUOHz;E}j*V>Q5~5|Q*EVu~qnox;$ejpb^+wUFN8bvXh@ zQ9qiOG3UbAN3p2VJs&Arr|>mU_>pLFY_{6ez)qZ^P<iAgY1Rqz$`-HN4#~O0q^kHf zqy#y)=9Hxs@pG?|MC{=o&aAssS=0SCx9kBY9>JMel&n5Cr?BDKjjDx}&`?shFE+Z} z(ZxAF9<ulFJutkb*SWfehM>yARAY0ufa{7SVlM-X`_vn*RD1#Iz9&5w?LLayWZv24 z(8|d8v;3!r7)GR*T7CT2S)HGQLqkJbJWf9FU)?9%_ZQ^+N-F29sjm;5+6VZLJ(ASL znk(`7QJQU?!tH4<r;Btr)1O+~q{Ge6bJ#r|BaSY;|B8&vMMSL6kwI-;9eDPSf$PE% z^}0}q6<o+|E(I5BWVgP}G+dE!53n@fbPUG6l>lKf1l^FIVU0Z>{AQ>?b)Y1FL+8fV zCt=XW!BPlN%r5#*ahXC7w$^E1rD^{)_(Oa27x+X(fV>e@3qW(CpmuYR5&6W5lqe9n z<Z$ZAv8dN#Cx{StM=}^gI{0w4$7;?iO^x$eW!W4Xz<1TZRjW?W{B(h@5R`g9Tx4p( z`Od?Ud@RmL&`)@|k95|pFoKlbVcAq=?dMNQXxiPUl~H>l2to_=d|Mu3gpE#}2$|^Y zV*YA?O4i-DF~WkKS0xqhpD$`*Y>el+;{MUa_150u$Yt5_3I0BSlRuy`N~PoF#C8zG z+~N0jPx?mjKZKiGDh6G|!-vDNuPg5iTz&zh4=*g|(Exv7_V#kZMA;thY1@?J-7~L+ z_VYf0$E`nq)CcpB=ZWlgE{!|hUd{$#d`tVwZHbG{Y<_PT$c*$KX7(R&`*fL`@A4Pt z=AF-PPKl5P82mD8MTgJxz@5+gf?M0`mRq~^66oT3XSekTf<;lvWG!5IF7S&w255a` z<Np+yhy3}&!&ID#2$fy2G*$XOXb3xaq~o3QVV06H6SKdxUJIf#P03OR2PDR9WQ<o0 zy;<<MH+z~Kq2L)5%Oha>$2$HA)wpM{;slh3%`Gk=cXsyyOIubJezbymBwUe#pfXzm z8<3Uy(Ki1Wm5oCH7a#6aj*60ih*6s(K(SjS4-bC6P|_~Uu&uF?s@DsG;PsH=%YE4P zYxR^r;4YVrX=0|S@9lo)E>g5avdfbgI>Jj<&q<-B+TwM?k??-=hcPF}qw@FGe`~R) z<-mukXF}|NvOQfC)?VewUfLlML7#=6@O4GO)2V~vw_HC11sy;wNM}A1XMNUpt1)91 zcm%T5o6)>yJ=V>7Fg}-AIuh(Z;9S@L{Ok3VpGl_;H^xvFIY`BsPpk(vVEF-?#-aV% zT3|wjojPtw0rD#7nU1NlQjR2+i-8*e-{Y7Ug=gQ_)3w0z|A@wUK4aYX50VaGzMW%k zZIQllVPIm`w`LiT_`%3#%Z_(n-0n9*&y$-w5S!P0cwyCY>N7g5w}rj=_g8nEW-n~G zzMWFyVof@eoH#{Xm<7oR+#>Mb989dw<oFOx@VlaVw*M{BMl7SV%Y<^ce}(LU*EbAp zUeRcW(8#%AXv3y9q>8E?Yc*&DTa0-m1vgh%E%FxD(xP;j)Zg)G7bfPkXNPg8LPYjE z=IXBFH@V+zCbVdLBpA}cR<kC76<J~k(1GQmBpn7UNwPfKThVXMG-wD7Q63iylVgfM zjD+I6BoY9`EGd<68t2G~XIG8VjCCscWtVKfMF3%N&Q_1E<FK6^H(DE=gKiC^N3n$u zW0q<c2Xek`;7yesz&1s!VNcHVGYI?7(Sp&`r1NM&Mv2xWXJ8cc&~aL?JTDCWU7=(# zUpDtD84mD4Iw{2ve}pkK&sB$VD3Q&B=bakIIpf+j)3W>E$sa-v!goj|=}5gQ0Jw5` z`g1_nMMgJbXaef%$;2BG4CPl_*Mzi32lLY8%SvQ~(Y*^1ZlN>5x~3DowEX7`tX4#T z5uHl}l_5c?^~);gU>++H-stYPyH|{^txjJ;Vk{m~`Q9xY(noZ!J6B&$*u#++kd}FG z6mD=n2ScLY58ZO`U&di>iTPfO!HM9U)EW-jy*|TM*Vw_`EjwbKcHZg!dtWS@1=~yV zA-ya>ORsPK@xyrbm%wJ<hm^3e^HmrHe`Be!-0gZwZj%BAEYER2e*bSN#CexYsVr^U zX(vx5vqi4v`VrGP3Up~fTg4tuOG86N(?(ka9!MQZ0VB5>G;~MyO`+5;GNi>9&>$xb zN2$l!)sTS+?wP18v50l2+u1xcJ1XWiEoUvL62U3HHs2P9lYv=NENcR$*K#=rZvIX> zindPy6}YEGxy&QFW*8G9bha8eT_0P?OzP8G3jUQH*!TMWgYiebYQx+57yip$y+Ihi zD0fEc>b_=v{Qq%up7B(_ZyY~X$R3d$nOTLh9rK5fkZj5b$x1@TF|&8}%8o+z-XeSN zaqP`;taCW)|Ly;Jod;eXoG16Wulu?_*L8i~!nQs9P)D*DW8%%HoLBXA>d8_}E&5W3 zDvFkyzpoi}HZ?|x*y10U-9hyU@59F#@YkaFF(QQcAUQwKShj3<E3AX1G|si(oDK9& zbziy8Wi|xwwE0Nnl}-r!a@89<#p8EIz|rUCDSVwpkok_<fX_Gn-D6cl$sbvG!H9i7 z;=Io|ZQf+)N3q9@D*3ksd9CY`tv1~ac+8fw5leWbe|1Vc!M%$YjAwLUtc~|knjfj3 zzJ<m985BD$y1{`CfdpbO1Wzgk44bulp~)sslwehWZ+_t<Njw-UmFvAp`Y$A>9ld`2 z+HH4)X~lhj&3iqF*bUZ>07A)W*I+UqfE=?C@!oq`LGHen<Fz>^3+roLySiHE76iT} zP1LHNPFF5S9eg1rV$mD~fQ5p88i^J<+0&|nc3SP_lj{e8y$2$dA^GvWDlMD95_W56 z%zZbJ)(1-_(IFxJtn9~c#n=Z2BUF_J8`}7NI40_yFLi1?@dfnso>8VL>oXv+!NsJp zQ<c31PWi{ni`(lFck}7_k9PI$>vb4y-n;!AOw`JMJA^4<)`Jmc4fxRLGF>c$73!?2 zaueg>buB}&p8?n4$x-Jzg*Ow_kMOUrsm=sD&jmlm?`qpsU7-?I<-Rq&9y|SOTjX}{ zZ_ZAH1MR?ep=)F!;+vM<7}{K4lsAY}F>m4Sleb5K#w=1lCU<=L-3e8HDBh2!{9V() z(0HNmVxPml9{KVq!OG`rA(sxUr}r6!RbV^>J#B1a5dwSX7T3o`(6_FA&ThE+fG{tP zCT`r^#6&Z-o?-gnQZmOVkd70c&EWL>P-(2=Z~KN};Eta0B^%6I3<%AJ53vg8O#6ym z1c2ctZqo`aWr^z|a3BCd@j80JxO|QtFa(NP_a71+BNN~2;1dzO%uUQ_e7E=INtQOR z_il#$*@*b~dKz#q)dT_4v_J2n9yVbbmd}7MTu0wr0JsDp;2r=jl?)b?EG$j14%Au8 zd^@ETX4Xo$4<M->!(cW5IVN8Iid^AhA=!I#Fxq=}(*S_|gu|@qC7Yjz5+uB!JudJh z$R2)>G4ThNDN#E+d*|rr=tudoVuaqNf&&eE(Fe;9z-v(5(C}6BJoeiE=$BKp_uHN1 z`f2oN+w(}ZC2w{&nh#tKT4e2VKr1igIe+r~l0<)u|4~Sdc|__j)rtm}ZK}S#DjPDc zpkD>Q?Ud3E{oULiTpY>6e5e489D7P>D)mc$gcaFmpu1I8n)hN>XYPUFRmc0WR8WA? zalo66sz{P1-It%N>7~lEqUMquuu6XC<@izLgpr#@ojeTIAN=)FOVIAWd`+Ooo9i8v zoFGHRd-(4v25iMr4TPID<MdaEtf8KS61|*bISOGHjnJ=vi$~K^Q083{1!w<QRT(V9 z)@c|&QiTh@)_c=>eh|K?jW5-dxaurQG#PAE_`I+1dB&|nx95#3ovzR2@!asZbx+x< zh#KV`djR+&w(*w;BT34EKLKZu=#lL>7ldQLNL_bq50Ul~<r({`Z43;x2KzIP%d!eZ z9PhoO5Oxw#&se)WQe)PJ3JoxGfEJznfHcc*yO*PX9ETp)GI1wX42g}Ukh`2v@m^kD z`zqOfp!3fMDYGOoRFLmQcGthq{_kG@gaTIl)Ef>GJ%8+T{}3zO@++VKW-Zbt-bO+u z;ZuLv`C0yOrsMngzZ5W<so>$%5WkntXF7~o9GBCPc1>b^DpcU$lanK<g=kGf-f0ta zkpEhK7X#jPS*>!W;mgX<)1w<Ku|%^mD44dz#4Vy=C=<70d_bIFOts6+KA#-sJ8o;i z%>lT0m*`F6Qx}P3?<9`nk#MdbFV+GkRzQgsJMTrn`k4&~TAHk^G2aHW^HR1%yYP)4 zr6_36(_MXuyCh3$&;&o~?!8V7Tcv5$`So(j)l}nZxJWx8)Z1xZY5WoA4m`U!eRP8K zAhw-Vm?$SEQ30zN{~~2+Cb2iepww-^0`bPigQ9j(LPw3ye^`0O7hvRl)s#=Br_K{1 z__%3ZZZPlpu|#9u6WE6VK4OhNIX@0fg<|8Zqu}0Hd>DJAT}_yh89}+sT%ne2sAl+P z=;qg?Pn&2Cp*vk?K3w8wjP^~|J^EEwUU^<@)DTuDmMmmtCpzs6f)j__amq4VV2gd? z*5wVMf?mi&LvZI%tgqZm(Z?OC`_!?)%QJlVYO)Lo!De&1DYLpwn?N!m*AIM9P+R~I z$)61Q0v1CnHy6l)#*TZg{zqm&K=)cl0-{gmyUJX^6xF-8mue$XvO~$(e^0)omSG++ zH5bqG$LGNA^PMf&bMzMPiR3$%rfZib`HazUO5y8K#5=H8u;nvJ04}Y4Qh&Gs4CvO- zp$tG53L()%MeI&ZZt&CQ!8!Z4RAQ*8Y*PCwhnZ-myPumk#OD;;+D{tW3zVojV_y?W z*nVnn6Hy(Li`Nh#+GI&Skcs%IbYh%7o!hKv=%5?n12+(Nk0DmDX#Pk9aywpl0_wVA zv{VFmBS*}&2lT|rOzaT!plX}nB(dpEd}oNIMGAxEOzZ>o^Hh#^h_Fk(tnZQM(mG2; zqPo$h?s;$S$?N(^DnfxtlK07y2@vs&->J+(PWy`F=@q2=rty>BUq@3+4;PM}%qYqk z|0q9eW%s#n#&Wc<nA6iNL*~iBZKPCJz<vJbbpf?L<=00ojCTYx)d!orEV63C`iqon z7hmC%@)Yt`Z@&C9efQ{5d{|AtqX*>W6(RoN#P%1I#xuV?JM+VGWyARb<l_t=lq1^| zRr3r$+WYOfR(*_CvWS&6)CHqUFBshc>rD$-Otbcq=-t14HpkLKH?9y3!vJ@^RN+D@ zI6iT%Ew=pCtC@nS>9c4VHqNt)xssbyRzr4h^i%S7WGo+@9A;*^33)k<Jjla3y17Aj zcX?kFokSs4{3TC2f#1fdXH_z&uccDSQSPf}*z$O8Kil5;=Fc^_9mty6cDVsyXY~?; zk#Et5#0oK`xqf$-mnCiU_d;Uj_FnN7sd2a5DR7i{Ukmv1=okRIsfMxTckavpe%Xc$ zrDGnOX@RNr`3-7mV;Olb_y8-(?)^8SIgj>eW{`?k;{^e;yE<penRi~-4JXi%4$Ly_ z5I*E-R8}x14I15Rd-I6Gh=x+YmXlWV+BD+N0981FIq(Zm4TarS!g_$;wyl^_)@Pzn zYPXAi3c0K8t^FmFq+vpZpqJ*fUqqb9KnKj<o(={1zOo#1hFvA5qv;k!Ges~Pw2{$v z^y5WSQ4g4Zy^=F2;kVVA?18dGh6!^xvR3UVkmdg=)|z)aMOqXmYCaw0G{t|XD%DXR zHaq+D80K0^kcF>k_=$!4B=4_QE2wDQoT|ZPq=Mr>H>}B{w0v`}M}u(dl!FuWS2n>K z<g&KJn(&K?_6M1x>-K|;BGrvNDm!NKuaok?Vm4*;re}f|J`>(!KTD)=bO299BM&R* zhbu!vi><L%ST`882kT|?f`(+ZhLd#Lv~&9Ht8nz<Zsc*)t*xjB_~ycU(Sx^lzA@i& zK?C5&X2wK!mA;j8L|#u8<wHey2~$k(FX9#(*j!ec1ndVO`ym|koa(AT`S;H~KMb&m z{rfO}eIuNsAJ7xrfola=&uda!ug=`hm5HpnZK>)`3)nGwE9SV-%0L)@l$O_93ck3n zaF!px2_InZb$~Duc7?2~#Qf&vA}5Y@z>v5<IsUtc)k;dwR@tiQXH-@+wu<K)E~X<k ziE%%@1~5(6i0j7+tobK0pK6&(fN@=@Cn%Yqf&GDF$8&=i&vkU9&(zDQA;#E9)8(t^ zhrbnlEs-KoZ2DV&$sc&f*VjKaZ}~(zCf#;3>e@f83l@G&t5AhKh#p_>zhazl4}1h# zgM(qTlfkl=haaQoextZZA=U9bWQw^1+)DwSVD5!V5R_m;Kph?W{e(v*)lQG#(;JZi z%9nEZG$}tP3@P(4mwa#{*CwY*5?(yEf_o1@4y&M$jmPYgBXe=8XUZf$NX``KVx?UD zPo4B}nk<@2%%Co{*fq}a>F4#;zg;x>iaSz~1R8weW$%)@F50vX2Es^wkjGRGRV!A< z+r<0>stV#iQ-UA0J%3|KkeDK8S=&(!WYaCgFjO_i!0j9<YutYz{I4m!ow#CL42KUC z^*C2M$x&DoKUxCvfG$Yw2`HKnr<Yj&CGUE#R?Qx3qU0FhlQKzjMEKoV*1Y}WJ)<h~ zZgquon&xGI#glR`TgLOQ{dn#l6)O2qUsyXMz>)61-F@<%$@)-m#57)@V)HVr6>ezd z%Wj3Kw_?;(*;!wI!o;?IzOx6PjEB$`PTrrdvWi!h&S519wI1ej9OXBmNdK+D&|l;X zPaN<x{6}wsZ}A!Q6f`Nq8-5;q3jRlTEDYglRFceM7?^!Wo1mF8X49qV7ssBLOQd`y zzVN<K0(SlgYozrU-|&UJD0^33NA*_#CX4SHaFGR6(cRrj&)~HA&SrAg3v_^<GpMZM zQ*Gp#lU#lXw|0NYP@W4{v3v>Vx`YI;hm;slsYxokSThBG|H9QNWm+!EOQj@a@R4zx z&y&P3Fe>c9_mB4~E&bWqYC6F=CQPg5Wx3)}RY%<q-eb$4()fx-X}bNFisa=xH`DP< zoFy;Ke;SJt_ua4uXZJ0@EU-CFe6JHwHd@GzN3Zt1D}P#N|D2c!*|y$h!+-K0US!vB zw;t#B%26O4&q(wSjN%cTeyfBJvVF!5t#JLd;cRuggY4{papZ@DxRyTP(&nQ>k91;* z(3_nYqLC7D_|JR8Nne)dv95MltC_EibZ4SFnT);JEL<1^W9=!ef!&Rw<^$oc#Kgq^ z&)2)D0v<OmN=tZ#0Cp5xERgY5_^o6oo8S@PAT0~b#(7!{q>~a#)DHm6a1it|7S`wR zpTqKtk0dewJ(R;Pj&Dw?gTwZ6{TU=(R=R}jbS}CHEF_9AdU};U3AK_4WMw(*Pl72` z=kZ%X0Nx>JYl>|0JmGJ*tr$&O&nK~d<QaAH0e$U(#GQ9MI!_{Q_~^=2iEU~2{&YTW zR30rTqCjw4&ShUA|0snPmh%tz##h98%7HW1t1$JQUs)twBIb6@S2i2k+he13!HL>a zKG|DaA#JDQuV@!ja29e|nh`uZ99i087>}6EyyZMBH$vn2hYAVgW<L^54N{P4>GC^a zNOA%NeLTx66q>62FN@IAaI2rpsBrjsB1Bo@!0S7`2Yw)arVOp_%O!ngj@OsOxKs<V zdSWS>ayu(6=3=z@oU*d^485kJh^563A-r<kR|7|Z>U%YI0&#}7qorS@Uu{<Y{I>hB zPpbY8z&vealPe|VUe*OMxMjc(D}??~k-#PEfK^j4G8{{Sy@jG#(zVSJ5Dv2OpWEW| zZqmTvIJ8zLePeMk;RCW+2|JhR9gZu&%#`-H^PVzCAo{!2RBZ^h(1;=8vqsH?y_ed2 z1CTz+L2m8>T(_WEynIV5omOsOpLN1Bo9OYIuXk4+LJvl4qBsw~M3k3R*MB6pIs-~H zB3EDH&CP8Zzv#(sg<StzQoqfuye@IZJb;G=_?fbY&{6KFX&l8a!r1GzznR_OAC-Wb z>qeiPq;~C=2)Q`3jQ?`A7Y7t%R`$5Z88J`TIr?+%KFVUr(#vo-OMO<oki66#_)CwY zVmwvF09c{i4&MCWzvcx1#Zhh_D&oo@i0dNJJ0W-xB)V2@5yRu)Jg!bhtY(2<Dx9xb zcGkYke^DnnUuZ0Y(2@4Ls_9?Xy{^|!D^gO^QhF@c*z_zrgX2g8m!^g?Ye`No(SQtZ z9i^`uYlc^t{?4h(ZQbn@ed2u%*ZmXA^-+%Jd|PlKUTcs4tnKWj(mj1UlZ#Kp29A^b zY0P$ELU)RfRoqnw^K9^t%hc=oLW*vW0`;5o?xF~#fr$`kz;@VEr{xO;1d@O%PUp1{ zN#MHtvuBd<PHb#v5ERD-`%@Qda;40oJB8XnU`Q0MtK<17$~RjX=6G5ctXleUH_F5U z?F$~4lz5m%-0d7mG&Yd&c?BM@7l3PQCq~Gj!vLpbd{!CVvwVF12fT%3Kd1qEP44Y> zArcEYkDq7|2E?!Ea1I}Fb^wSj<#~<&_2<zK*7&O4+kSUB<X^^(4M~4Jb7PvoiTs>; z?~U_XKp9hahi`f`eY|3>v}lhy_>}qg?IJ{(Dg~0aOlUGR)x?|ZZt=(Ay{Sd-Ytu6+ znU*8JC9&D49bnio#*Aqoe6r?AW6FCxPSW%EOaHYm8Bnbl5~(##mq9s?Tl$XmM9KB_ zb;SlR_}m1r5pcES$;!&A0d}jFo)EHqsCuw$8YnFrw7Hs3{gDgpYPd@iPorg_>u~2~ z4ZhHK9i>&H*IX7%MAmY=QtVGhp&v!!7qS;RJ1!Ph7uDu({LID9(T>zr&Ukg8zkno& zco1;aiPQH>9cD=U_4a48Iw;IIoIg~v&b4A+aZW1pNSR6bFU5l?K7mJ@Q(jtM0~Oou zNwvl#95S^LG;gC2nQzDlBIZkA!1$)+v(TcQG$px5zxew=d}-Q7iZVPW+nVTwP9*6H zVx8s52NL3Nn>Ww;cZSEe^04bvn?P#tpNmKj#1dUg`D?yo+~^EJ<cn)HBRx(lSQX{M zyRj594=jUNz*yQvP$Icc&Umb@?Yx(baO^MZzbYD<m$T*HU5wGx^j%qo_JT1%5J17I z{C*^3-umTU9uhf#ht?3&?C*6xZMqPVJL?w(^mS-Z?cUfHa?rrxj-aEJM{K!^+r}x% z9o0@%P|13SBEPb5z0(KiL)~srZAF&mcJB;}u5bP+t!``;j25_JE=MI<s22D~O2z3< z(ImmrCuZ&`-|u^vKZ}lb2@4#wjRDwSgSNoPUob$+8Vns&BCE3QTG$@qpjN8WQ%Fpl z*752HgIOy=4*-}2)E}WK0*d?Knt8`!exrFWH+l8GSkgD#c>_4<=4{i$Ct$8@mEt@b zYq%3SY@`QUwtU0Inc4PKPcYYjf!|sAWnS|q&DYFa`B8bz<<CpbG|<v>HeOzgg}tP& zGwW-394lWP1WjKe&?k+NyC?c>&#x~-KL|hi!WF0sBLTGYC<;5V?$ipOXq)%;O83PE zXVYq5?kT>k4khfXWm8skQ`)s~J7~pzN&YJ5?SXgS@(%rx!O~CWw)lXz`=VMD?I$uT zp9k2G8F?s4Dc@6}ul2pa8qZ_-zEXuNO>`F(`oZUG#6#Z~rk!)#=Tr?6#O(LrxaGH` zO)0!kK7!~<ik(0F;8%7B*H?Lomer7D;`Ll#*q>$Sjc;{>4@2cp=3OVY%_?<(Z@6v` zMZ~+^oZEq<gCZ-PK>s>}tE=&V434`G(&z}Ps1VMU_oDP#^QSs(I$~cz-G;ki<7Bre zi6lXKu`M5^{7;3}Zgila7nakX@oF1XWSO>hQ-+b-h4Gt{<8qP1X;m9j9^)Hsek5Fc zrCUmbF9ht*7q7G(gVUXBae0A{M2-Y|m6oz#s<ITEZ|3^z24$Be-2uE9^8a`-ndiAl z<QJUw9-ks6w}UpZ7bPxkyO#pgdfHF5q%lG?8;7$$y${Ry?6l9bMTk@;I5-o>Z_29Q z@G8;}GxZg^4#(^KIU9LtMGdN|k%+42?jTXq6SDB^hI?G^F@AffqkSDjK)FpaR&1Ie z7|;qZhka4RQtkDrna?;b58C3R?%?f><wW1${LQG7kUjbOr{y2?sR~YpSLh_8pY2?@ zzHYa?l$~AzyHg<`gM?C4-U?1!t{E}5!+YmG0ivcJ=@L@^j`zQBV6S(zgD|a~(7bx# zwJQo}L?>z$$M}K+3Zi-I>qS*~!s3lXLF4l<X}G&v2gf9_W|)Pj&P)fP0E~2fDdJfF zp}grCqI$n$Q~avMC}^cXZOO31jNt(XK5#4|e#>51(iPm9*}6H}vLIyIiWpyx+ArJ+ z8xPJIQ+Pw6lXaMEr018sIB!1h?jtQF)s+nB(|mc}1;1T@#mdnN;eXTn!1ZsVLqH*- zFY;u81RC!d3oypCrEs`$_XX6QYAs;k=<J?V{Qb_yIo5JAU29_$e%I4^{WiLmeb?9Q zm6pv>N0OE5bZ$GU{7FLP2cjuKF4ZV+fZXJ()cW&l?;WR~f>J)`+%01^&$58uLwZe@ zXU*07XVC(0)lt4A5#3R-PA~I=5$v997cxMjvYL8EfF;|5QnJD8cWbR+&#U-Dbej&v zOTw42x9C?I!G#*{Rd&SB|Lz{`&~@m{M>CALizL(0!zFANMX%=UU4J;f@cHHKm;S)v z5bq_gcSI#VjDU9w-qXRq%ONKxoh|Q6d&H6j)a9vP!V~bF3<C(9KhN8$_LcJ<e5s5y zR7p1YJnVQb=F0i^iubMajT9Mga0dFlnEvscqAQU$1~6zjTaNRIRdHU`V}!3z5u#H7 zJ~0{OTo>oaYQ|wb_xV0socm5jDZB~*k(>ol`H?sSy;c)=;k2$$v^vhm+r1mi7zPoX z#&UIIX#EhPkI;;XSz)s!0bU~I+%K}_B3-d_uDt}Veu5El5wBj=KWvIxXI)p8a0OqC zY<WYeFmEi;`UlOXExChHZlQK|i92?#UW^>Lg@Lolct6#K?&k6yx5r(B2Bl}~S)KQ( z!00<GxGsz_`19S-HzXfJMaTm;KrHqz*2%`#qD8+DQ>(O2Rgcs%xtO;G>joUFc%M$$ znRoczGpaP#lqFuGcOJje#OL@BrKT&cg&D?|6!0>9+BGx;`cN>}HXR-a@XSi41u|uL zt=uC+U&R6L&^$=0zpqn(8Esv^O+Da5=?@*AP+d}Hnwh_*-Z(E+{zE157v4VM<v@{> z#rSPb&_%BDub#)#M09YneT`<H<{#t2@$q|fl42XX@J)vE`(dh~QmEDJ>*a?#PXn3o z8ye;S<CD1d_MA_D4WExCn@jrnUuGpI1e&Rsu{}qm%$WRoV0tue!M)YJt$xc*ML}m) z-Eg*wSC&gHm_}*2ga7YgW#G3XSd>f0Y9%*cu*Ky_MRsDma0(q8EFJ8CTUf)9+hdtN zd+-e@dSo0cq=3m7NNPxx2ya$%#fF<i^p7hoL-a=d6B7bRl{<g2d`}zGM;`q=&s)=C z)ww(L^QfeI-X9~mPS&ygQ^`STrYKD8k<2S4{oQbp_1#g%GkFLCCu~pf*IIw3?T1t# z{Yho6rRuF<tSQd!B&{mvMQIZneF5~tI{QR1J>$UZt497}>mOilz8y=^ba6Vr(R1Pj zIFZsBifb%=SCKdFzLACXpLngtmUGopOg=<X%F2c#uW;BrHz23-M#D=1gAGQ|C-<xj zj~|Z?M^nCSfs{tghRA$e-#lWp;NbLTWoHlepAY$_5t)o}gMQ>#Y4f3r_rI<c?JiG2 ziF6uZe)Zvzz4UkGkB;QEW!Sw{A7p;gXj&Vpim#7cT%o7;0zEI_+WBGAq)BRtX`Q+d zZZ*}13W~SYNzoX^23VcDJS<4R{UYT6j56z8y*_?UwkyHYHf{<ogM9Mc@_Sp5a8!X( z^a}5=YI%++k!Tid5DfvPb;jGI95H<J9CKp)@1Kq^OlcCFWFkoT{X`D1ORz*wbD))0 zaO)v%V{fM#7S?3@_yV>FkY#zd0&)nnovn_LiZ1qJ*mKyhRVMnxHD6{4eLWR=n=QM} zv(~E&fn!8@(QvMFu#<@uwzU)A>SoN9FrR?`gzm-9*kpQqybhiiDn8^O1RH<0Qmj?u z;1K(t#Ks?8^NF~&AIYZsRzeO*{OpOQvlJw7sZGX8i{5&m2fks2yGQeVOd3FbZlQ0; znow6%>mBpp2-GQrx^&zEMDboC0xwX*_m6JwN}r_vQR9D5IqQ$Pjx4`xWqXKmC`h;X zxI*||t}i=KuJ+lA-7ywCo=ro=Ec46LldR#zu>ykxfKm<0uN0K<<WY{GiYz-~o<5)- zS3t<+La_RoGi6X?F2c;LTJvy5V!DWjyHW`um(jiqefL7oqduaCx}N$x5{ObBY)?`U z_@P3Z&dJ}4KOdabN-8}dzwmtB1Bx26k;@fwDdlD4{Lb6+o*-Mw=kB<r9~T`v!^*Mg zLl;2?<K~6zDjR$K<v!={wKsP9k8u~TO$hmu#~zI9y(W5uvvDHTl&)T<4qTVhu)DJz z@DxxAd^n?-tX~UJeZoUVHFmOr&oI#VQJVpGshsZSz${r5avg`P0`i_4rVp^=drMo{ z!|tb?`=tClXx|u=$K$(gpW0p>byrl%*H|`M6QG~mBZGwi`i?8s9~u|6z-saEM+`S7 zsDmt!xTT>Nf)mBzbzTqSgoXRaLKUr$X@?X|?mhyqq6^+%a0NXJ|6Vt@c>^r%{4M00 z77(%YV`daph{fG<;Br)5fthJQc9TP{hj{PnxONjz$p?D?x^(}pjIu?L`H1!cIZ5d_ z>p<%o#>HE8Si=I3lHH-S>GKV9z?P&!3}0SLL}_l@{bcshcY5i970C%gl(`^vU~z}` zr!A4O36pgurCk(p--xxiMVQsCZfEF03<6u4es|6-TH%z&!g<Y5o*g-LuGY~xPI_0^ zKft_3aoqYBZbd))3TAcbYs0l5OIEOb?~fJC|8i1RS*}|Y+~RBxJZD)yTjhiat3lqd zC*13vh}HObY=70C+_~2g5-4$heP$V)-#4BJdJ}3kxtF)1u)*;mjCCjE)qC0vPFu$E zW0ldMuhwcC#0U){GQR?EkuW2Xe@o426!I7vz&b$|H^I>Zy;+8^%#c@uGYTpneSofX zLy(Q&cq?R>Ro90(F7?~51?0lVTV}%O`p?jZ1Vy+2cIW1>KuFmVq+F>ZU@fxsEbh-2 zbIXFL^9VNpq2Radi<64uSPoVvFrol0zGuoiSgt$!vK~1A4ufC}aO4l?3KoiR1=@}s zrx$s)I={iT7+Dt{W2r_QK7$yd<3#58^mK!O0|`<<c2kwu|7Ymp?@Yn>BB#F{0o*ta z?}zMPrp??AN0`XNpB`o^athatQrpAY2&^D`Y;K_U#1bU;b?uuzdc^1kTuPp0jQcU@ zD!{pOeNSlt`kst`4gSr3M<8NqE+hotiawMkj2Ij;>exE@z79Y3Nc#;)It@AbN8ctA z6bxt(VfpCS{t!ZM<_Dzvj2Mfv6m){m1&;M{g|xii)D17{KChCD`sFkl&Yo-i`#tER z3>5S!XTV!b;IEz41+25fq5)r7;>I{PUZ#1fW>uL-nMPu$w#~I6?Z5Ds09xv{T(qVQ zmMCwnY<w+~*df`@&>0xL49Nzt9~wdbV&h%sIbdX@+v;{08rFHqh{G?zOZQ~gSzSLb z-a9h@-y|bvt!`5O&e$!RIQkYPc(JD~aiU14!_JvKz%z^$uta>H)3U{1@`%xB#Vp^Q zE3IZ-tUw)ICE4G%6Eoi9UTEl9i|kloFSQ#1NQBrz&k~}{_`9()HV*@b#0aKUMVQbX zl49NyH0}yD9!CGk6K$~x_};TZhT#<w3Qlg=4;3UXd_wu(I8gdUBXx0DMw;MonA}%E zm26oE%Rl!U@3RecHyi=gW?buOPyg-9nxz-(XE=M<c!<#OIZEN!V{COT$;|Mz-HFru z)UdYK_;+GZ5MD%VPhf!}9<8Qy&jy5F@c4`Y-Fr8DAIwULvst7}Dq-d2%-Bd2=;G!~ z1Zn)jCk^f*e@yncOK5er{_{zOp@~Uz2jcW&98T(}9cE`pRq`O}V{S&JAFRW79Ds&< z1a!h&T{WcYBnA-JE~>LNgnw#_{*2+EZQa1wu1q|K{3iU6j=ieVeec@&^XJbR)8AH~ zPuN~a$jaKP<=F;=aR*64<%hCdA<X&j4?k*K%*#Qr*|U7Q-fl2<4*yFU1Pr=&aNAOm z@g^fZ2iRj3*zZvua41p3Ns&8Ww;f&E57fzUy1-2x%dnV~B@t#O3#S}B%wS7>u8!3S zXGR+rXej(JNT9p*2HiX^J!OY1r>nqs+n?afQYWPHZZ8>%h88@%GikkKG5Xa7Mh2GW z0?j`w$hxyYiMMbOR`q&Oy7Wq93&GJ&{Cy|VIV_d{<Tin=uLFRcXAlevBzhdv%whLR z(t%TxuDe~918#*Lfo|N!X5|`tnF(D)?5E$XQ+sE@)xn;XN8gW-%VfpyGqYb}=+7UP zvCKkK^CGL|(J*K5MU3Ur!zlLG5C75*TA>j*0tJ+PN3=fUgO5ep!X&kZJ9RwwnTJ|7 z({OOepT-U>Fl>LrN8#_4le4s^P1W*nrTw?`?B0MA9K#h^N^n~8#pBT1S0#voM~k*D zl{>PejD>xrbr|Ez0hh&{OJa&6zmf0lN_k<q_AFaRcIKhGNI0F4kVxVVk=T>BHaZqh z1X#X=5WUDbbw~G+uAwS*IUS9&j|wlOqs)`-q&*9%TeukSW^hZ$s2D~G4JYW=)YSCA zw+4I=CyghpM5LY`9?9{i^6Me4{vl?KE^u$pl=k)~p3@5%i4}V==DU3{uI?hJvAX)b z<y^MTuV<B>M^(Se-%H+cp4Hj4pH|Xnvf<Ry5~D;l#zHLyEzLGxJN*!x%Tu_LX4u>% z6ZxYnOvtCpZu6K`jQ!+h@8b>2Xn+gM3-?R8Zm#h+xpe66jmdi_g(Yzo?5D2f4^pgi zUdvEk)w_Lcq2#GgzKBTzfLP*_l!mk?3V~W_q8IVl4e)kP7@78ArjX8L`9|-NBoczP z$9bKCy$Kl%!=Kr>qq3&v;wII$IKqQIH!KY|8LC@=kDC3hQ~htF=o-^?4!MnpEm>*& zyMM0+ja94m<e^qNNB06YJzkk|*#;$$KH}PZ;S~6qe|^{r$%sC6#W3f8ZITuYm~oWb z-4)Jly=Ib8@O%c4X3v)Ob3Up5ifiIuvN9`;oU>cHTgRCgtx3uvt#Au>1UShzyYsjR z*8ogB^=9XF;JDp65Y{$^%v?RLVs*t>$#n+p3=6;A$<QnR20sl|!t>!xFu}V_m?>)E zN~6_(84G8N5Vvn}AT`>zb9axNwjVpkKz4miX-|uOA@@(^Pggnyuc*M=Ywf;r&=qS} ziT|DsZC6d_Sn!m5##?<@-TUxwnbQ^`zjRGKU5n4L_1iEBU%q;pDrqS>h~)F<fl!Mj zw>{nbdQt)l$Zel$oa!VGO05v|i#5~U{cX^ox9tG^Ts^#iDlS0D-&JA2+fe<esFm03 zfnsCaSLt5TLoOL*L~)bAi62QLz4f&jx$h!600g335_A@|!Gh5b!99?hoAKJ;zZIt? zY{l{&-*;T5RGsJHRy%udYxgRMP8yWZqkc6LsbjhpJskdLlp5AwL+P9yrbo57z2BV< zmO15on{XCB00%sxp;ICz++V4<2&LJWW7Ze&MxA&e8zF~Kg2dosPF3rfpZF6&NJr=F zGM6^o(*R5wHVB^U;{Mm0yw+5`WRaM7L|@A*FaJs_T4XFW>zxHh%Ryg*Q(NrJxX+Pv z1>r1FQUHH-NxnSO6uxvZ{T4jE)eFW|n+-YQ!*ccBs1=ql&~i#dN|+LcmK3S$$G)85 zPfQpJeNL8K{35HSmNr>>dgb*rf7nI1ruh^vr*_6N35Z+Y4c;RyV&2phkKT{p$fh2? z^GbSi@bFQi%jz};0bcJP%{o3l)m!G$<kXD!xxIeo=6?2|=<PSt2#wa`q}{q=NQHlH z%eC)pInQJZDoOyvD0dvfG@bw|)~Vsy(<Tj8r{b8BpwLWGb!wN-y-#>~@$KPoxc9kj zz3g*Pa;nKtS9bm51FzN0^r@^*HB_H9Q{2LBlzJi$zg*wO?+~og(4tpp@~Oc|b5ffc zf&Y(|vW{wcXB=2{oH$k&H-HN<n%5L4D~|#mTdNIw$hH0ADobbjjjsD@`unDMyqtme zAKo1LHcG!+<)KH_mnHm$tuLK@Kq*C=WX3;JnKey*K3HbJccX<%#wA#~M(|4dOm%Nt zdy#8rExZwsh(Cq&iDJ>X@PT;tpk!<-t0z?5{kz?lkBC3yqJA=yoW`fi(Yt*#W0bEx z%|~_p#hCs+Dr4!{t@7eC+hxdVZuOQ}f7<(9;%sS0(pc`xk`ukQ5%1iTU8RBP1W9D2 z*UkPe%J1Z-)#h>Yg%F47_Sw1Kmk_*27mdd+LdC3&?~HJh2xxL+B{{WC-*P7Z*vw}s ze4s`6<?(nKS#);5iD$t209GzmOdw6IzPFao$qyKW_H#Q?0Rm0e?rv(lF-eRHvrdwm zqc1^7RIw#z8#!C{Gf$NBm#ij;v<SH<hz-$(*QF~;z&Fdhp1-iP^dZIgw82H;t^iMT zbo4IU0q>F-v*d?WiGK2p_w*#gT}0US##CD)!FyB-or!T`il6X|qy(SElF)o{n3k07 zWCLwLA{CAZI08eip=xHv=Gzby2M&g`!iZw`cqLm5hg0kZp(tNSywy#;RpWI_!%!7U zpg>GKbCI=r`yC~*=5M>Kc*7*X0hl8#(aQ|6G)GbxP*NNcA>XdizWyRY&CK@;7h&&4 zVBW13B+O<YE`(pPC^x^qL96&4{+|o`BQzRvg=h*m@fTgJPn=TtQPwN9$|I_8@;Ud- zSIg4nPtj5hFcRU?k~k?S5kC86o44`FQR^FnPZ2G-p0T{5U$SL=Q-uVz@AZ&)OY5JO z8b2@p4;}`+F+vYR(NDAK1Qb)B$Ngg6+H|UNzd64rk}W$tH6&1^t--^s|M2O|(zaBB z*ttEmVp8%FzDDJb<m5h<9d0F-$%J<jH=J=)RPJcBVZi>tQ;DZP?&d$O*Z);n;g0I} zbXo1_U7Ge}R{)N!#HKD)epLUSW4oyMhi2dXeTpd1VsIbFntLeY(o{VWPiw2}n$UzH zqH&zU*T%>054Xd|%+R?nr24hu_YTJVSDE1|QHc8V_OWH<z=$~?`<l>p^*S&?-G{4v zT%A#?na^n!(*zz!$^lY-vOjbevIoPGgD*qCiYBS-v9Oa9cq4WWy6M%4^nJJGb?iSq zA?26*Ctj_t+uE!UHg4gpq-Z8X?p~AMxftV@n$zj)*Lh*~rr=LPfvw^yUL$OmV_5u| zFO>kHPcEDhy9$Z-0$=#^zn#IBXzD7)J~9q^|KlhMiZkl$j&*{HS@^tB<;JUrv1_%$ zqbDkAH<PW#K6)aSXLy{IkN3Xcd!Qrn<fMZQnMIVX9IZ5R%<%V=EHIQhTOJam8-R#6 zzUz!XYke>~^1B8~_nJfg%}KRp)3)=FsljX}5PHt{Hy#G;Sz##O)Dbu9B>UZ7GQG%? zAFs9%%$D=~`f%Vyf}ON7FZYy2eOajXCiEwD$yW<6Hc4jY;m0h+FHO_ANx0M;bjn%A z@}x(br%RFf9CuL;63o@j&4ab}<Hi=y^^M-}l}@kt@Obvx*7g&&ix~e73+c&Dr%v0@ zt@lbEQ*YPC8csKS!~bi7BCfB0(32dI>=&Uif$iUt07r%75+=I-{DJhuC3mOd0{{0) z7DYPg_lPg`wQ)VWyqd^nxW^`zaGQR0kRp9Q-6aR||EJ4wl_G_k)Tq*O$39@!zRB-^ zb_>2>B-aYTDL_!JIOjFoI<reMDnQ%*Sn!=EgxA^>Rp;_|{1tB_(-y?g85&^qsml27 zyv6R`X4Ue%mH=|bt9<|gxvrI<=bl^UINE{vk<}Su9<IYfeEn_^0pWvv^u>->`$fBB zzn83J4sXlo5Rm>dU(bM9cMjC$-oEMmUGlRBs!rH8AJ02d@Y-d3(a9DcQbjk|$>EV} z_3tK!4~Wm$;@?{_pwiZX)#b(}2rSO%q$M0t{Izh7q}xGmcOxWR&JP(O>VKexl@uUs z4~V}BBYKf5Gs@x`5IkJf`3Fb`_o?oTT#0{l1O;Yf{(e?GSEQeyX_Nc2d?+xeBqKw4 zE(2a8w6#!elP%>Q>^1d``^op(@<;t!Pt45B<W^TUx_i}ETHIq%h|`PhK|0|7^*RMJ znO>sP{p2}wrsUEOddQx5@adJ~y%A%7A|iMmaOzKx#O-)P*f)wt$hkw0iTp$}>EEk7 z#Xuf@L;hx3UduKkdr}p(HG@w!QR`VwjCW!Tig-_e>{IeS(I=;(1a&E);<9RG=R7GC zJE42w0m$$hFs>BG_?1jcn^{d%$1(FO6o-NCUF6~9s5s;)W70Gp6PQV^u-Em^BfUJP z&$_j+le_zOLr|Kh&=;s=Q0PIs5WdIBwY^uV!;=a|#E*L3#9$!jIx7TU@A2;%C5Uy8 zWJvUBrn^2DbQ(7N;No&lhTHE1vaeQyKKa~MMokfvIPPFe9ObZDJKR=}D@4G$KToHg zs-e`;dP*P}HoC8^iSEZyPw!6ppeQ*Vh;A_oX=~o|Vh=%Tk7Dye>7P7##+hC&(0q-Z zU;Khy!9GAMGw5}yZc#3CeN?9FXL50Mjc;$4f6W2jrRu!B2R`N2F*Y{dMmLL_H~VEs zf^R5+!7ytnRx#)}Mo#9x{YTRHYpn_+p8Qwj6B0T{UW^opc1&bsWZAN5XKS)~iV=|E z<sClH-qTZd1P6Gda9Q$Z4#-!Dsn~zlHxCy5`XFt`!n|LvpGw*)>LOBiZR7UtSBs<f z**acynrOoa==5eqylGtj`4^yp6eW+B`TEL<#ci)U)2>B0cH@^kbr$c|&UDG^S`C#? zAEU=SpW+GsruJk>hip3tQTBkSmINJ^%8?)jM#dX0$c^a5Ja)-S<()jQVQl5S<kcuB z_5`~7Z_%O4L9W_SuQbO)xzyOx=rV`#aS>C}^{)%-6#ruibj=<r8Li+UXAw{!OV~kS zhEBX+Psf&mpPH6-Gnj|g9P7kViVe2=Pr=pZJK<-qV+LB$hoWd!2)Z7uTIg)DTgIaL z(1BwijT0g}(s_l#jzDm8{`N{s2Q{A|jIpJ^PCN>1^sJfZ_pnK3ey+6*A{PG9^ObFH ziy_*2oa9>{Gw*XM3g9W%Hg}BmqP)zy=Ah%W2S}6bhv^PEa`M?CazBqUW9^SV$eHa? zbzZASKrSyH5bE=ihpWV~%l80w$<1yX`1a#DHV0>VUoZ-4%tdBU|GG+x9~L8_ISk(g zon_x}hJL4FHBH|;E~7(tc|q=ChdN<S507K{<V?)A3R}H=a3NHH#zzG#0od5v&#OP` zTM?GxTe=TH<*FCbIA(rXq9<5I*0M~W=kwI*TXspt7(d=g;m}&C7+nltvVPCG^z=Ex zo4gT2mhB?kue+yJ_pX(%*&eUTpY|H@FEO+<k^O{xj6-!|=WkZ>a2F1Vib+X7?pDxu zULSRifo}$I>6)_(ze_|)C#U;_mb@&)G!V$Vm;N|5aa_EQg^=e9&F`6tbHe%i_&NT$ znPFi>0k@@)%yB<lUNHmFgO@|JB9I0hM=pt3+j!{BsMUrSb_a}@N_xvsFk8zQPzwKh ztmm0NrlqlXiFz;py|8Q5M!e<V(`0c-Z5{n-2FB1i1&{Nl<>)P#&Y(ydR3o%EwKLB& zCJgFHNka4)sUI41DhZAPZ{i!w0bO0g)!tTzY)=ln1lEyo?Mo2;Hu#Z+y1hCb$aLCa zbZ(A!*(__N#U~j8H^b3#a*HKuWIUDx4@7PaNc-N>GXiBeu(fJzZf;v?bbn9T>F!wx zp+Ms6S(oxhybAG3v~0wtAh|L3$9df3W4RmK8RC8jgnyp<<6nZAC2#8*hquD1n*Cuk zUM|qh!gvL1XXljBQRl;!9{Q#!Ta*5^H4)9EguUi@d_^-~8rXF4A2r2g83NwbLh8vc z`={ZjBkGx?rHp4_wKr|fRX}{BKV(F$K-(5IsFs>N5N2oaNmf-n);gn^)OgknSIlVV zpf40bFk`66#p7SbfAkgMx>E8wcpmB<0zBe1_4PW=^5I$iuQXNO<g~ndf^o^h?kvyl zLs;p$27>9uK|RqQuwU+wP>UA_8gE7iMEVg#$!&S$p;+@U-C#1!xR=j1Nas$3%JUvf zeCJ(3u4kbyph&y^!bBc`8e}j9$-43+9USJq$_Td~(UIJKIgpe@qCfnLVOT-5wKWb) z>ZILx-$SZ))n;I5!iP2X8>!%cE<94#Uo^q{Y2~N_ISD;}nF`diu*nC*EW5nSw#yOU zjq$vgO#IIt`Q8}o8Z;QwzKL^(wvN9S<9sIZ;TL#o@m9P8m@&=2sv<}~jM1;DtLs|? zuGyy>u|2ESp`mIzAz_X4k|4QK{wRS~Uo#8XT<6(??xzAg8T#C&g)beF6@x50`lhC6 z(<~t&B{!UA3;pTfT=4RGe}(Ky3x<Z}NO#|!)X>mpG=u=}2}mQUPn~SrWN32}U)C&( zpT-b!NrK_=5Ge30u&?MkkY`^z(n6=dW1~NT{)ypWrO&W~)3PE#z!6Qv<w<pqqZx6c zYqyuaGllXFk6uyGrMwgz4fC*<^4*pAS41mY%zyLzGd9P2^fSKM6V;#u|LFvj`$bVl zh09HjDif>^qeE-sLNEEMk6N#vvw^HW^hN7lLR!>xxzZndhV}ozLVaQK0hj8KZw25t zGeutq$s#8r<ICL)xQeY$Hv9vCSt{wdxm;Bh|BO4fsoFHL!bv4pmsKZm3h$!ndYevL zv25@(fuQGJW3wkAa3km0JJq)GVZ;Swm?^sZnz}5@0ZF#zO-SYe-JICAQMP?Da=Ez? z?S38(zatiHO~0JQ^f?c|k>*e1Pm-CM4Xkxk{+ci5Y#}ua<|Vp-B||5tpME!jR`uE| zk5NLyQvSOVuALW@MwM;dVd4WOz%6@xKf%=Mdx@iI%>6UwKnb0~nDB02@M|caa-lO% zSBYc#Ow>jXmuveKuaT$~;RCwNlM`nu)o=RW><(Z|D1sT!SPii_R_UP-U&PX-VyjQy z9o_%5evhx{j<%Apsd}u*obCqyezrx#63fLN#8yIZT%ACpc=$_+9RyTbY>iq~oxP%% zb60pQ6|B1HcUOuaqqOG-rbKR`EA7e)cSD0&3b9dvB3mg)giYz#MI`LjvPL!8Vf12D zhh5&U3z+A-IqRkJK~B6<b;{JRW8~cV>`XR!i{f*kxyYTJAHcg?U3B^^uXdO??`u~x z*DWp7;kn@n8*lw?vTNt46*?M{2%se%iE%S0KL4gct?}|dBIhE5KMpoIR=0fM@z|sJ zLidK9uZy}2BLttuk2R*J(*pLsKML%eu#YAhyKgEas~bB>wc4?@pe1uyd4ilhWFJPE z(SFFZZ@am+-@m%eN01P|r_k@mJer$lKexTAR-qHmlV?81{(^vo6)){lKP?38zPP8! zwpN`S*m}dA{jSH~uw1F^YmHFzbvLm&YCZGH_puXr_+wn<ue1Iv*N>;iCL$IceM1{+ z3=9nWS6_1Bvaw1=;*W;|VCeX5U?um_r^Ls4{##8ynER7yIqCSd=++h_wtY@@2;QyS z6*fp^*t^;0TeHRtGLO&YnbIlW)&Kn179p%!%W{wMoXl=_h1jqS?`;7py3=S_z28Q2 z!^*PB##?kF6Qo+mxI~+4nZNHbfyGtl$oK}qfUCt%VP}}kEzsNSv%9;;G&WlM@mLB_ zCAUV(wz3uclS(Ef?uKduf_DJ8^lz-`6HV?iYHr%ha%)e|l%x47kCR)^(|}7FCnu*5 za=!nWq@E~AiCW<d+g?@7b@*jI?uZHUH{a_#t*#vKUx3E_cw7A2VO|zyQy~>_d>?XE zg*CK<U_8&8Rc4+i*(cZv)W7(_l8h$8(|0JJ6zRl9gU83Q$K(2j_eAm|;sliBa?75D zXtzb&zy#ex^Q<l{EuSa6lR6K}D;Z#-n>e5e-`2xw7>&>+e)`}G=Y5N(ne=gE$`E^q zI|pwd;mNxq!UyA*JT!j^kHRXD6;?PR1za8uY^uxVByPH!R`zt-CyvPpW1~F#Bl?-c z3D((So(UR&h|b3sUVo!a>f`eM)#VqWy|LV#L%y|*^PQjBVE@qKX1tK@K+CH6^6&{~ zk(#bB(f1V@68-21{h1xY;@I7SO5SZBrAdwnL9x4LZi8xsP2+`=5x_;9o1bs~S38{% zL%MQgy#N`+TJG7~+UMbiVcj(DG6Ov$Cl7*O|H!#`FrrK5ZSrNk%k&rn))HKoc)9Ae zkkdgx@h{Og<I<sU3H_Zf%Ofjm7V}@LoPW*Gs%#@b7Ri`6x=PQoT0c+GYQscI0vm9I z0;E1kQ^VraFC{beW?xD^Zfxsm4Uan?^M$Gyrp|b(8Kwf&P{MK}%nebv{O`{zKHY`Y z)qF>0u!!zsYqyD;*1Z1jI=|nEpJBu>qvz?l_x!0Xq*bg>sA-Dz%HKM=2aWrmdH{RU zK^thfr;q<KM@eudW<GcL8^h;OM%cpYf$DEW{;@*y4AqD=>}q8CO3Pk{e7Tu4>9U_& z%#0JiY|O8Z<heM#e|fpb6#j0->zPfYX!g)2p_n_*-+X-B_W9thdR(Pyl0ZXKGE=cf zpTq_vv&F^xY;sh<@x$%g_9(J&dbLY`Ff=rNmdg;b%qhx$PrF`Y_4A_>{2~UjC0I}i zUdnss{z4jMk|B7y>q*;q_`GWpH>u<MX`_cy0cifx@$8)wUH`9IjAOq)I>c?b?Hi)p zyYqyGClr??wmns5(^XZ=^=vhjO)ni(hvqwO@c49DcSfooUPkqxcweQsKO3ouDO8XD z2yC6KeK`_VKs1lzc_+ZpHy$p~j!~n|TSH)Jr5iBf5g49Q6>u;}UHs-md5^?wy(?c` zmNV{!jw8Ogak<w5Pl0{yT1(uT1#*p6M8<VTk-%-Dqww>=;gNasIq!qAqdUd-eBQp4 zP5mArfd9rcbBFwn3PT#D`|TyENG`bd$Vjxd?y+u?M%`D_X6|PqVZwnW+20%tA12X< zy{T*M4e{l0Kk3a{X$puXM!;(A4T5jY)b&*n9)2%Yu9MfSY`ONa{(4rzCEay|`9d^I z*S_dWU7SQ7=GflE#DsHLtco|5G@r%HBz2|TH?8wV62}XJoCRHdc;+$BoZM{PFN&(G zyacQCW!zrZ#I<{D0rplX1EUs5_lfD02l*X)yuf|A2ovM<C!B;K%|zHj+!dt94Ccox z#`%deTW4BO$?4Da+%w!F<d(zZqF)DU4`QtSTLZhX8PSvSO1*4`?x2FcUw?@yLXI7* z%6GtA#Rr(}Fc-#rEAxTDGq}C<mGeZqvAoVMKIjcSpKi{^LLw2v9iotKP~y&v4$$Zq z@iZt*;nk%3Z!4-34neW3bRuZV_5P~XG<io18(HnG>UNB!Xzd;BF@-cspIhc}>l~D7 z4olFe(>LMjp5=%CYwSVMyOK9RdEtGzPXpBZuME{pW}j_wIY20!odbPnEQdK@&(j2^ zgxY?*2yQPa7Iu5n>mPS}FoyjnghBOM&z9`gyf4_2B#N`Y{V2(oWaSci#3*c?Un(H^ zDZR#>ka=X(9gWl!$p-iCkd;b(z9eb4q~g@Rs{M~FOBZA&O+m}j@y)mjnsXw23hi`# zdZ*Fn68S_oPwwq<i9k-u1Hx<j_1dL?zzwyL4&RX{y!Q^`>M=S3JMvfvdH|CBP(7}$ zh=bAk-m=zF%R7JnoN);D0=?^sEn)eQcFXmd7OZ)HIhtK6mH)V@v<f8^Q|=38MAD7i zS3!N4ymh~Ja?&apqu>1Dyxv+nKx3SO0-h2kBj}fK+yQR43TSVH7IzxROWBK-VgbS7 z=4rqw4&$}Bx*GE1#af<5lItq}9eq^bg#Rhm5^f>6G_R-_izo?a^6x)PGI^BY7Og?y zG8WHd;+IcAVxjo<TJb&N_wLAIExNDs0(Rb>=aZ(CSZgFmNL#E^wvF5EyeUOr;I8MX zo9;#@7`N!r&v7VeeD&~PmH(VHoF)n%1P-)pOFf-~^6ymNoJoRktmQoYIv06)xi!$~ zTW)l%ZD|=QtS?<@@r?d=C+h1XsYyv9OAIu>Ju~nE_MwncUk;wee7fJs)_Xkay-w&o zVW}iIOdG0n;FD<Z;yDmiFx_2CL*#{5vm>_Kjm$LVZrXZ=bh+TH-_6xy^@z^yD$<~Y zq=NnGkH_3bA~{><VFtfg<%ixpKAZY&^R?YF=$k*Ku<*y*%L9#efgj~jz!tN@?f%2l zmFC_GGu~Wp;DpM{O{<4cJXDd(0fV6>hL{s4zr5YvS2$B91I66pHpH4QdLbTjAJ8%s zw6dl@^w|(4XWRMuX8n`6{5Hs}`t0mI#MuOymP0wwGAs}J(xhjfDcpPiGmp{zJpIWC zC`8m5JA)}6VicsuFQgIUs;vmHSA3{+B+d3)-fM#^q<e)dmuI9*4`;N}3|DBCm7UQ1 z`ahDcGAQb=3sce!N_PuLEGgX$N{4i_q;$7*cOxm_0+Q0w-QC?SNG<XH_`fsEzzj3{ z<?gxnoTtvLp9n>*D`CNzu=xH{9Ufo5s+srWM?Z45vcBBCF;JJ^`ux7M%4)qYL-%jp zF~?@8-gT26JRGP>L;nG1wbd!f|L@gH{Ct(c)<9@2t#^yX3j>jPf|JYc@AX>i%uL)N zIq^&jdht$rzVbXRTRXe2$9+hTeO1q#$VpY-MF<`52An<^HjP*cUok0@iHxi`%Gy_e z`nKh#lLf~Q|9P>nu`O#&jpebI*_^HV|2g;ByakdI>Ep;(EU)fCN97H@MQ~3Xs4z4K zvKayHA28V3-o%7jwGE5<V)?vsc2*iXy4N<O-ke63-dUqa$6V#c_G|1A+R=fUY+4Tf z#^tph<MS3%{oL{t6TzkJvmBC@Hs|2=YQ%|FM!r^`WM@kir`;{<vFwk7z~lrp3k8gf zkp*wC0g&qzauV^+rFiV5xMpl(QOFhXACsZ*?E&IAe!HC#yPvHXdwVZi;sr1224?h+ zV1dRXP(;yR2|eOI*58ho)FS`XM0$ZwmHJ#45bA6YSsXiQ)sw`aa#w8lK<DP}ZjmYx zW6>m$ZitRkfCSFl_6UF$_Xb$FlF4mPVziT`6nS(K_=Cypk37>`M8j{?>b4q6s3!28 z@g^wHn>_CEc%J^U%u&F<pMC)nqvl2KQZ0Y5ZctkETC^hIx+tTZ|6zaDp*$_7EJU-= z9ZCv6lo3&6sI~{2TdY%x+ss)~uc4{sQ~7D)w9z%**z$wloSfKR*>3ayo$^ei<q(FG z6F0a9T0vyhrRWU#1WO{h%%HjFF9gOL-HB~9)X@y4xem6D(Epz{2<!(EAKRKTPSsL& z1YWr{pKVlv@f;I-d#f|nVys{ns5V$Bq4<mEDO{Rii>wJA3-FN`6)JPD7*LbzF($Yo zPTTi7{uOa@aQLi2_W@x#<heoYvn}cc<9MLqD{$)lW>o!NA)LT4vqaGQAsp}|81G3# z46nUL*jOehMm}FdcXX5!KSl`r*uGT|BBpTOPfp?hzDV1fPc1&1?xRhda?$$df2BSc z@{QjAH>jcmj21+2zmg5Y?U`E(2n;3*WjukX5y5TJxPC$3hvZjlpwBL|;bvb92@e40 zaX8I4zwaavlDXcF_A@d!5AAqNd&V6e9)^(aeW+X%ic+ZLB#-lae&o-4dE9UEg}N0H zqu(O)vOCyj9yUZ=J$JM?kkRu*&9#t7Jxx6v)xp-<lyPi7#@(9^mmQgt@ooKh($*bC z>2iw}r_JVfPq<1m$b+Nl`i`;sEN0z{<p1dXv$9h9*zBE0^xJ>y?FL5l$myP%(84s# z&?pyVEibFBbZ+XcR(3nxg%{RuySQ_i8DHPd*|-$M%|*|B@@cHZm4^X3T)>Y>#U+dr zf0f4XxfOnS=YZc;^1&^WvpCtfq>slK%!gpH%B{u~1B<dW6?6&#-Y;ml$TNJW!=sIu ziP9U-)L$M}8M`Ult!|g34y{fR0B^y;d!RNTdTU~5p1a@bcEbgnKCEIF4Fq3f`cul= z3NYB`Uxoj`set=$|63XW3pVlg?hlTh<9uiL@SczT75SOy+y15VW$xLc+y<q*Ir5Xe zgw9;@Zu%)?zt5hI&N`DL+tA3~KJeK{Hg!KolCpD-&iA{sBhlFksyh*&?O16p*Y<Dj zOJb;atbFrEClz?%{!FG6`W&6|HhJ980%ihJPtOdNVVG{&;Tl`Jt^&r_q>=scynVLE z&<>-S7>(YsG0aAX^}UCG$15%FanRfItGi3nDvt0RtnTzuZrD9S1nXh!9AK>V`^(^; z2rOl|Ltu(U?&V*|aWfGF*q)YQw#P2Ei(NMV#aoKtfK;6>oJHU44q*c@=!L*IJFOwS zs}X$R<DJufcXFV^8hHNPy#CKPCIb|j{H4_;baTaIM#Up++MR1;>sf}EC`KA_qW*X4 zLH0{dJrg!%iTU--{q&!a&F^IvVt=B(N;N32-<GmFG#5fH2|V{GsNG5N?8{&r)0v~? zmX5xK#~V_n1Whx<C6q8Fc`0UE$WoOJp%!O4vf&6UEZKh3r+<&2e7mjjuw+G@Jg1(- zk@Q2lbNU|x03pVR+^HVb(w6A-8Ka>K-{0u9{<~q&(bdgQE5%1KQ>Cnv<J*1z&cYg1 zs&ng+RO^EQvhGN;g*TV6yJcF-Eyab5Ayk5Vt)u_p0p!-;?g5lT(&d1biQuayM!?=x zV@Vuju}mi?ZlX~jIYMu*%j{D4BQtY931@shFM$1fkSe{I=a{2k;C-mn!&9J=NM<_e z?$}{(1)P*@arvbml04I}Ec!IFf|{Axzf05hXBqz!p{V`6eH{bgk+P(IkK-dc;mbJ^ zfb{8t!ts40=|>fq?)v+e6DaN6^#JK3kD)g2+q*4-jsak{^LV`D5D*Z^742a(9H;yu zF7GAPxi5UnzvgqLWGXC|sQK${DTZVJm-{(3;EjG9s(Ku1_d@|?<yz?aaauCEEpN>! z?EH&0JM{9kj%vo>xT~#vbXzo+$&A$~Y(=&`0QPxLbj!p!A09FITxLC0#>AbSojF4H zkfx{nqwf7l0%S&vR!;LuxnOI@3%FT7fVLXZ+MDefZen@P-FWBovn9-qvkwe$e8V3c zuPjT{gEi_cb>wHcXvrX3TaWRA=N#lQc89j3OGh+r?hT)nlu~yU=}jMk0eMr{!9OJW zz)zXtnbas2+(_t&w08VV#F-NdjIi6wJLOLAXFWz?|J=;cyPvOZ#yxK+Sokxbs3Mb4 zxu%;kC<9x2q$*o4>BBH7OpN1`=%&)q*p0(<>1jQ?5?Hnex=8m`$o7%iq0@{Q^<*+S zvnMfqf&l%w7e+z)3PI&GHdm%cOXEw8QzUVUp+-Qu>)EW)y9&#E4VJyu%$xepfNigF zXC%ov7CTaLn=5bt%n?~YIm#I~R_sDlf8k#oACAy+f6_*aOcFHBC?%8un9@BSu9+wd zTE;r=AnRh3jFIGFaV%FidTDpLx5A?g!j~wBzE?i0TMPm2!r6IwmVSP@&iiA)I?Y>O zb&cMe8y=Nh!OgwVtd(}(ETFuB|B(Uju+a9LE)C1Ha&2_pT}0l-s{1-OojeWG`iRou z`F^^{pI{`cJE;H5d1C>IMLhvOL&M@d8ts%eys1b_`sHGqvj23B>9nY6Uj!7GeArgK zN6da16q6a^`@1LLB{b`T4g9xR$J%ec5w%$EeFy;)TUlXLV2PO6xz17?H#8i*^p4B@ zURD^35dG6H0;TKU;;}18*EQ5_oKI0B)#->TyPZ7cH~D$_BWT))UFx^mQF&1rSY4l_ zk1U2&1^3~JTwqx`eZi-_b7?y)TE;t-BRC%JpG%BDV<miv*Wu$9ZWtz;^T7mX_vXYM zS8;?=a5f@$d(65@Vsg*gQs}em72Lr=%Y9qm&;xOFzpbs{cA)_8{m{8TEPLiBCMEjr z&|W&gozXeVTy=RPaPH{g86lRCVP+FCnNLlnfNn;F|0Zm2pRfLFi2K@apI0`z!dgRP zv(2MkT=#Iv{KWhFju^t562?Ftrwelljo8K2wVu%SbVU=PNQ1oAd7AOBf2kX@IMZ>^ zcjLu|5^)a+17m;0y|v|L&yDu*coD`rTi@66e=?*F0dD`?6jSCe?H-vFPv0pvPBNy2 z6*8EamQ*ox-x_|#Cl&Tdk0MaA`?_EJa($>)so&D4)&BP_Fno;zH#;+PzsK#WyT{ci zFA+MTL6^I~{@{##au9aV>tJQvZix-miT2;~%sFREhK1noWpubHhf>6GJPn>fFN>ew zwOGmhc6zZ`0o`ZA^O3DbvoQ0yZ=y;$1i&JoRvY_~HJt3V+S{~WB6SSU?ahrapu<Qt z#-6-5u2<e{hvq2x&$8XGl3l^PUsB7Ndy_IPGBTi(UrH8e=}Pmb2-$tR`fYmMw^EgP z>tt$zyPA1>f6SkQI0(yndO$IQKUCu=s3y`f>0}bcm`qo<-Di(l9<TKABN7A8?XH=p zSnht2PT$H3DO!{QAiF%c4O=_pms2z442KoH&Ql$Nfy1io9{yAgi$OoH(`&|Q;q4t2 zhIMusW_Zu}a`6JiLf2QMZCeX4Wl#ZPF~L56A-sIf&n(W}usWHU{BMzz1CUPN@)Q$y zRCDz;<Pit~k$)p7WG-tqUj9qR!aW(s=t=g`d&Yt$-r#Oq=?V<l>FA$8A5HFQ5Wjol zT;-7cHnciRaUsUKAA9j&)PLv@e{#v=?fHqVGjxvC@2TU-PBgxl2<XPX_?)8WdEVl+ zUfnE{3b)RD<%;gUB7Hc&g^~(+B?AQ9njh2-$mtvcYProI4j3VBp~zIa@1M0H6!5`< z<M*TMk4nHuW?IrL!EK4Nla_@Pr0a1sQdu3H5L+)`=w1d=KFDf*Hm5=Ml`h|k<2WH8 zJ#ZnPn;m9BC)TUc0*__;$J7!S(BOQPw;`B(v*b5HEbT3@@^tX-(k8ZU5gO~M8zuJ1 zQzfS@@43)h+a0C{&0xs(?SxBSt-^-XG4L2$8)1*-)Js|>#54JZ_JjMVs#p{d+sKj0 zzM3O<t~|D0R(!6mZF^fHiKd&clHO$&p*X;4`$pW3?%|saCy+gtaSX{zyi&s!pE$<S z{#Z9MnPN)H?-e~mcTvMNyjwU?R}ZT%V?s7raOXj~SDI3wilI?IcvG)r{{<T0f1~n} z0R&*Qkq^tnem&ZG9lc!sUy{-oWUbmb^uvY~ZSii)2PUxkCW3f`3;ruzTDsHPS3uZ8 zkiIjh^uusXwBR`r`vgfmfe=`eF&Z!4^=|?v{?x>hrmHhaq6ZBzrm801T<*`Bn;j0r z$2K-7!(h!yk$~UvdrRdUqum2z#HV(Z4S0GT6@URUm-~#*I=kT^Xm9<thS9P~pvszf zifeZt@a4U}zgA~t_XIwcz|&yq#J5VnERFZ)+WTywQH1{Gc76om-RiHAJL5UuCGCS< znuy1Vk(TQ9vFw(CUuye7AR8^B^LJ%W%*8v;IanT#2j5{+sfUIqGHNplkM7?0jFkC$ zLXTjY+jDfV?1<CHEw(@nkhar)<LAl!vu1A9-ge(QiZvgUXw}+hmzcK6a0!Jd*@U|% zs=(e}x{!D)d=36ffV-^W^+f8jbi|>=Rh8S)w(2Qr*=sDR)bXzws{P0CrQ?Pbv75hU zB;c{>{tfU~$2<-pEd8)7M9!Fp@Q;XTxT4WfXok6IJ<^}EF`gEIWnlQsV)NUKLW0@I zZ_CtNG!qq1mxTd11d42fC)2+)wSJa|@QPUlroU+CC-Gr^Naqtv>1#yGNRv<%SFbg` z@ibu1HY}PaNqieBHl+EF0q?NQezZ+r(Jubv4+@&{sa0-$IYa9U#NqN8dM-mBn4D6` z4AhjMr830v<bc!pN!U8`Q!1Tju4(pL1^T22_q*d;sFmH{?EXnqKtl<1t{H$-17P@v z05MbRlL$RA1#cZEDM4UCi}hNg^w~8OdzB5AjR+ETcT@1j1e+Z%UNMKv|0wnMznMq# zw5%#+?C9Kz`E#fHf4qZ#sj&?pPWRSzrZdD}T=|NL$%R_`Z{|`LF(LP-dnN}3u&WPC zh{QK#k{)Yr%QCf_m8)2c(ziL>ry#NWpYNQfpX{%Kz}qYZwbkZer(T)UI~nhm62xyL z3Nru$8G5%wvElqxavpZ=XMU-TD+%QV=i@;w$<V>76=9roa#G^t8hO@u9*Np_ZXHx( zt60UNRVX}SH&vTK-m{UFUoEbGHq}Hr7K`X5acK4Pm-e`Kb`wbSK<5&<WX5@umlFvQ zA*2o&G#5!4X|;lvdjFefdHIoq#`!dT9vx-+k_sBEN@>NIB~*S%-m*->6J?yo1)_)F ztg+S6^Q#h(@i#hYQ{Lra{n<n1ZhUf9S5gMRe^eC}arZ(@lc_qlQ22N6_L{!_<5tcS z9NG-^+<U#Zq3DS4Mae)wMpDMl$~J3Jrd}Yib6C%zt=B`)!qPJAbtZv0_(lQ0YunmR zqiA}0q(!18Z+R#u)UHR(jl45VjO9I7e?hzjvB}V)JzvK3C^wd^DjimZCydJ`7oIi> zywR%i#0&Y|FF8xc3@8)6%166iUhREEvkWzJ*yne**Do!X_cr08IyJ`Lqoxi2DoKWx zyCe~fENon>6#SEjvfH&`yveSQt;Emr$fLy*VvrVg<{jE3&xZ|U&V+NbOg@EJO^1!8 z^}WMFD-8pW=Lqbse>N%^Qi*7BAP4~>%yg$IbzSHUY&k%hZs({}KPuv{8N9sAOdccM z+}#Fpvk+{iKK?7V?lNNMvKZ}3N8e_*W(cX9ak9q%+wT4OPuF2ga(dc8tIR~_If+Gb zMrY-T+JElcp4K3c*seD28j(vi5TqTz9nIFBP`}TOA%5Z|kbBHL%K3LK{@EzDl`!7o z&D6&`{^`Kldm_9bQ^M0dH7Y$wI2y;w+8QvICWT>9c)az`++_jqzUMBTu{@E{-r7=r z*GIm#0;7Iutlv}ZAB+dSON8<H+_C39%#{8(USfEotFONc00_3Ww$=6ZugzxR<bVuT z&l@G(h!~gU92J@K!PY1qsx#$wZ;(Fh(Cxm}G|Lz{TNb8A`fBqPS&WzAUag7)$Ri78 zJXtwMxc~2vQ_&3Iz7y;Pt7^aP5Tyy(J6xifBNq{8o+YnHW4Dw$1NH5D$fK7(A)GhP zTL@XYjAxufd^2;O&D{*woua0=pb`c3dqK?tA2EMtMj0G3Mwk4ogzt`7UUtyG2?|DA z24}HY1VXGyS_M|E(0=|Td*K3SKDFxFOnM>}a5O0{iOPBymIBl@BcojEuGyUXkAr`Q zw@485d~!*-ii{dS+zXV8{L)p7D_bC%ak_qH^GQIblFhq}iJXqraW*?L_BB+#%miN2 zlf4+^@F`-uX=l{86${aj_H4z4#U&W3!N~T13<saD5sR#)GtCER{|$aLqm~nx?T$8) zlt$<!1?ddEr#LFDv*0AEZTPr1xI}FD(8ji`#LVZq$0BkUygr&?Dw9Ei$vV-v89Ww? zeC;I!#KQo93=rAY8yque*0r`q4#W%!`aPxt(cZNU4SiSp<BMx+77h;MX_7IpfqBMk zqphuDoj=`)@HVZ8Ev{Hf1rMySZ;l0;(ZsxB#mu$7I2hu}`j3#Z!Zu>sJ6~P3LdWz- zGt;8M@dYTED0ZDW>|kZ&Q2e0gN^L#gKYLd(sS$lu9T~V5gbo+S>HJa%E+oe}H`b6g z&fe8#c%z$P&r4PdH;@oQkOAGp*`pLG@_~^e)<A2>*+<tBI<z-G^Vx~x%1E}sc%|@2 z+6KB8OLYsEW9l3j<BPMgz!Ld2_3!nAW*Z|2*g{D<BwZhgnqR13-kxH3s}$#Sh{3=h z+Xj9|6(Vj5ygP<LLq_Kthz#odW5rg>MK`Kgz@4VH3-c=Cm}+R`eX^uNS3*U;?w#rS zwV7d4Zw*^H>#|=|Cj3QPvuNJgs^e7H+!a|j_$VDG8S_xg`bR~iew+1e&LQ0>>fZtx ze|Ad~|D<F9kg2j{j?(dmW8#iT=J}Pt<jzt|^-);olcbr6gUNTU+w;}!eZL!69h+>p zB=uKa3s~#J<wLJp_7{Hnj`drkKV|p&(zQ)Z{CoTR{B9?NT2%&b6b%AvSQeL;w-2XF zUs)^x_cI_MqZ>F*ftD6q2Rjb(IK7amwiBks<qR<kn2-+_f9E$2w6pFX)^9vtl>dS$ ze)a!E<qCp_Ruv;V_JkD)(X+3uzp9}09NIgxXRfazI2=#{6LCX}rf`ejL|A=_kuD3l zJaax<YqIWsIca%oq2zVJ4i?N|(`_MzUo~#|M-d<@D6lHLtnXfjG&y)m6b0M*&AzDr z=LgHWbn|8r{mJ~{$0rb48VWnR#ETm%%yCda`Ooy|el;C_*uPxG^XC9U1a@{pU={0m z@g)o8b4r@44G?qx=dw?8(~I-$86JX=1o`yvv)o8rQRzbxy_L>#68G#-O^t}dm7<8) zVmSTwr);%rFZ{N(SBk2tq^zV9s;{?aqkahe1kc8?s8Eo1J=1Xp2W48?f$Y7RC6cVD z{dK9Ttxm@L^~?!3on|h=b>j1q6g=|qkC>}Z{EMc7OXil~U=}u8llTzYQD0dz1H#ho z0!H8~!zDLhCoNVMJ?bDxet(I=i`c)%LikDZWtmY*?S1Y~q20lx(#K~4+apzLRN5SV z_rP1>C;GJUJf6@5+pT>2Cpa~sUowEibs&M}OPklMf;0d-0`T{1^(`zI+1bSa`siP6 z^}TCWW-whhn1z$M^F}@95#6nQ=S--<S4N$!qA!>w$jg3|f8T6yo)y;rF+gCF$b;~~ zL6{<gD$>|$*h$m5D~UOoaFA*9=@_XdxR5nK2~6f1we^?jdh=BrMCZDF-ydtyn3gb8 zYrnmd^o6#?sOx5;IcOca+~86Q9narj9@8^Mb~@iePXv^9sqj~^Oepr)T6;u#A6M^* z!?P7290AfyeTAQg1yMX8i$;8AcCINUWvm0|d?S6LF&;T4^G*n3A+ci-`&6`HocsJS z0k(n0IFm(u4+G{{E+vtKZ<;^t&gDqn{S0nHNJA_BDc_gGairt?UrTOd@tr=EAEnx6 zpNMve)kwj3Nzp(h$Hvp~w_3K7a$|)0qc2Y<s;FpKPLRUK0#+)VC3XDijU>O1_1UXg z&*^Uc?8OGhC75LqqjG#Y>at>~djO7N(4peb-oMgC9o*!JOEqvc<8>u%5q_Xkrz%YQ z3G5>+A!4Zd8BI)sxzhJSn8E-GLlwR6NX;Fk5OzOF0mTva{3qxfoXfy2iblu>=`>;o zX6{(PQxWQoET%s%+`ZY?hd7=qWNK;}{EDBPuL%KB%@$d3T_SAuYMDU?kcK%WTeUpa z%ZKOY#_-C&NRs<n0+_|z%>Bw2@Oe+RdK!vG?^VIL;(p)SL*&8at4(9m_1tiOsB|MQ z-@A_QEh>3e`zakBD*YP2xb2r=6Ee;-yfyt>3w1JGVng|58T*-_;2$shOS*jzZIAx4 zSMNJYt76@D&Q+`Q-d+iMy?l%$=X}MbqY@71H+H^!kGvDw8on?P{mEW<T`Y1^$gg|@ zd2f-^G$~{Ow|r_;sW~W#dRuQTckIO&X#kFRqQ&6<E6dt$OCLl4btvAW9JTIvNA{6- zzdk|}8LxIe{LuVEbJnUpX|t`b70v#lDQ~G>#0aj<ciSxjoC&Y|EMl4g{(Y)lW>*xd zPayOL;^6n{pb{2_lQUbY9%8vf$E^|1R7^6eaa_H;Y#tcwt`Y$rNin8V5Sa~EIST*G z=*Zz8lF$O2AZe6bLH&JTQlj|lY=oB}`>G5+$-4(+W=<IfRr?^qkE{XA`oyS(vQ-?w za+q`^bXWaa;D&s7_=rU=xG@LOYkhf!0z#1q0n%nmCy?-P!)j)&PKPV)&oidno!(<w zmQu~bEzPWt*b4-@&i{t!3{yB_Z({?MZK=zKQD(<5DGWNs=H~X2@!z+aEtmvP`bEGh z8GWdQ9TtXMJ)VZGVuiOIG~Q*WHSz>R6;GZC$LK8iVa?^z;P}R(h@<ljl@~M|yK4&6 zv?{Ku^No9MTQT_N1)?A!uD~^D;u$sQk_OGgcEnmQyMrBzFS)T3BqwJlth1<v464RD zU5KN4H?+5>DjN5y=+X}U>-v<`%D?}lzkcYvGL(lE53(18cUvB`yG^}5o3lLm%^Qq4 zihK=zA{PEgQn5HPEtziz#v0vlWFq^<Q_i*hhk(Dg9yv}FbwZQVokTd*%ao)siL*NK zPa)Ku2y=gMN*I?w2|IVaj2_RrPj`-vt0a+7T-Q0uW;B3-@7L-iJWJu|C)e(yZEnA3 ziWk(E1B#bOZYtTog4;m6vCl07+gBj3{#*BVHrXBdiigF>qH^Fp1Ck<u7|h-2yk{=J zoHskGA$+$1|H>Ex9O6RF;$py$BU5asg<MYUx`+CwevZ+zS&&D@=NM^|DdAg}=~8a= zy*-a(NTUxYecFh%rnAwHO7L8s;O1m^*vu^90c}J?PK$*Id9BHT0Ro&s9jGMm3N3!V z-x~B`eVk)P#MC`cY1<6?F{j9uoc+0R^)gyaQcW`@1*xCPTG;~$P;cK5SHtwN*GW`p zS_prP7V(ffI9Nd2qasfG9=3FgCo9q4-zQ=bAno^VW$83gE|7y+4$VY&C>(j_EA|^e zUu~QfEq!n=m2GR9s7X81d?VSw903g_?bNX&sLrJ;8C}x)g};~Jz0zTf&H4{)iQTz( zfZRbPI!2|!j5lUZiy(tWy=4?pUyW7d>ir{-9Y&ao<Bnp+RSC~?ML<q`AU$vy2eotT z#u=bqW3dwp=1uvs8Q4%OTw&|P<sz!fA7O--f^EDxgYEHM3x8B(I{04suD#4bQ{@<n zth-)4e7Wu)oPcuy#QMG#-FIZa`Q@gQHysCn<XL|2o1YBr<~lV%OSszN-sFBx-gv&U z33Qm=-rmAgQCaZk{HJ@B+<8uOz8uc&mhiGKbx`(~n<ibbW-R$Ggm*pra2cCHYf=|_ z604zc2{1+E!am_qE%xvMm{)N~1%<ABrXi61Thh%pDqHxdzj)46X1G8ZXHj)1cAwY% zPT<Z6R(?4vOnM!IHWDnqe&WS&RjW1B`{**Tw=n;C9In_7U(pmJkgUw0zu!fRHe#>w zIE;E}9_lbOBbH42tlz+e`26O`O-mO^z+X|o4B>|!RJu{L^S}G+XN+x$&>yyIuHmwZ zi2E&4+eZ}T&N;F98%r#>g1MRq@335JEJN?Fdfi4<IAj)tzvc$i36kE$XfCnaR(y5P zKfKMf;#e{|I>7zXKO<rASGp;ND5k<WmZ1c$FA0TYJoi%?o>^u(oUELD;vV|9EA$8W z$O4(vth<e#SrC#g?vFfjhS0k6IK){(acvDcAV+1ZFGi12vA$PuoX^iEG>TyC>)ryc zOllgx%K>(q0o&2i^`Y(FlV2VH$vfSg=s0Lj=t9k;D=I2hI{fp1&fWR;OrM9BcX5^E zvqrHeR_<k#5%mNtdYyUphhI7Npq-(M+@IF_D~q)wqoYbfYV!yaTrpJ_+NpHB4r^v$ z@bFiTTjkO-PQ2s>;l2@*K6b-C$>p3S*Sfg6XD8i&<Ih<rV=Y=C!4$V=T`#;s?jIlK z^T=jtCv??P%oY9;h-+J*g{8)&Q;X@V#n#;TIUpMK`MBQL7MVm4xwz+@-nOGJs3X%V z!`tklu5YqrE|8_QgkF8Os-mlSs&P5`ui>7%adXqP;lTig906@)W4ogd9t<7}ALS}$ zKVJCJw`Hn2)xRKaIS8mN6>gusvki7t%BtoYH*_{{#SkJqjIE-v?G+b`YHBge!QWyg zK=sd6+ZBLiNk}ZIv{si8s-#x242-WBm<gfY^AxL^H+3?O*mN|){q|c@dMbp}(=Iem zfeZ(Pvl-iPUE$JgHRHHHCUoZG!uD9g)oq*yv}IrKADzas1v`PU7Qi8L7sKRZJl@)N ztiO^d0M&WXwhnE}ZPL_uMIr!6&cA=IuOdmHZ03bq$AAj*^)R8;4r?UAQF*cQ>nq$p ztVDwS&{{cv{JL?+0UDP>`=lEe+aidXm6avveKV4!Knjmnhj`?FEI)L%j!d5gvgFWh zthT80RkE1o35=U>R<z6GnLb;C<soxB43io;F?6ZWQRF|G-f1U<a?iKjelO;4WoUa# zn{3a}8ySWjypx)$Qa3+!t=5~L4^>R9mb@Z1MbLupww5%-o(L2^Elfb6v+rYCxOV@~ zGY8gN)=PM=o}a?=hL!qeGf`Jma*wo7oeUcrbmnMOQnzHMzqFTLxIKWWgXG)8V!|CP zD!mtCRB>$YjE2Lt=5{b%b7SBC7-~sPnG`-Lv;FSfn83K1Na)<44A`!MWT~YBQNud3 znP==<%d+6IHt!-4kilTU-r*PyFvyVw`ygU@Bp&wjF(`JkWATS>xMS~)^yqt*Vk55H zi)ZM(=gZTv--uMM^VW`&u;)EKvrOD;2ExipHd_b+;4@FmDB_Xv$}9mCG|qsY5l=e9 zoUwQT7?_@)ppTmr&s2sl54^vfZ$A{a2^}?~1`Ne$^OaOB_jqVViFS8AlIA_`Fz7Ar zkk+32xi`EtSH8C8zP@d%#eGnUyDjNd!Z61_>8#Smre_2l(S`fR8#%vwGZV@zvpsvG z^bSsUDL1yScRHkCtjhN>yJvDhmWwN)*o?)C%d7R^>eULwJ+BPQou$#TnwuA^b1${e z3ab?94gN@MIr1FNOH1kRM^2MFA~B~YivzzShJqA`MW_kB8`V|We@|EW4;`)1Ofi?l zkKxML?TzN9@V>C=k6`V<IB1>~L_{9xU@jz~rjWuunP<UqLvW82Z77oT*Sk{e%7hoZ z!pbfH(?rkC{(5LTy|BPTDV|c;IrHmm6!k16M=JPIK*3hF(Sq*ZhF<|8rZ}oGQ#twT zbH&g3O9QtyyVGc3#W9z5xV4E=NsTkBpK_!MmKDwxf*`=VBm~a#3H3KtO<ie!!fCYk z-`VftBi(ydVykp`=BhEMWM;pS64Oat6Pr+X9ywh>V4Zg4+Zjq>1_Hz*@*c|aOgJ;D zfBotN9{)Q)TYrD?;7Ts!)nmm~^KS#b(=B9md+4H5R(VNqe6iM&-|PBERmBE1HKi3> z_NhN-#+`{WpyUQrDKjr;^j$tK!jybNWMvjK-za9^h2JV&P-N`Ub5J_oMq#y$(EhEl zXzWrvtl|DvR?+3L%{=PS{nk#DW+|=T-}<~M!*n)swG9Wu_`Fw(1>K8r76DX%Y4pME z(Ybof?c-Cj-*#xzsqp*>tg`#8-^yZ$<DS~_fqREcQ7MT*mhmlH_<!w~zH_+>Rq=Sq z{**&s;@2oqoj89jD`_K>N{Q)Bhp_vWm;*0gB903o-7a#0O&xXYoVRIjVzV8SZw3RB zRdbHv*&T74)J`8dazXuxwTnNx=t(#c82S9Ii{)4fUEg-su<+8wXDxvw!u|?PUYbZT zP;~G_WU1TPWSqn5>17$PI#9#nPSKiMTW9$Bi&k0IpjqfBiw7a9`7Oc|<CJL&RI{X> zWcU3UQ(NVl@umUTz)qz3N}3SLaaDlfk4R$p?eok>FqUlss6sl8Hu5x>q%uny{HIIN zQ~<PykC~a-XAhKjNragv<lP6+YkWPjCeN#PBqY+@=XVfqEk9ptJhcRRCWqGNkK)J_ zD&$%0D<A=wPxJKON9N|<y*A-MpP^=BcDsgA#eTf5q{pR!Bb28ZrZPAHW%UiC+P>Yy z@!athhE5%15_NRQqEyErQ&ghh+8<{~-bUUjU}H8@?n^bUFRh75Q3@6?@|<wnS!3%i z2??y}=#V_|9Iq_eHl@mTj7yvjzqE-?zL{eEZaH*wexUB79++z2=xFM^6!d=|95{1G zzKFP}A<^#0!?dM$t05_O70x~no3H{(`qFEMy4uWgMjoz+1^S`M!i^U*dq&3)<2{Y| zF#wsY!A#-n9~>@~Rk);^o#lT-aw(eBu1B&oP7DSZZ03=QU%Y@_wdp7S#)>x1i6Uqw ze-x~<);Ko3xDr+*CtiA(!HUTzT3km819AkNFS^w38)L~@A*u2!qhJ_84(#}vQ+6T{ zbupKBAqVhO?*VPXf+%tkHYxwt<O(gr?N#0nUx7t@KqKv$3#}I9rTAbdmRYjnsa!R` zeX-fy`fpAzSyN48o*SqQACISxuc|y(*I6(sG1M>Z-9BJa3>qgmPo!*W*LS|h&BogR z#-rB(RuEHzQ%?zO$X8N7QyR-(3aNzuGD6HwZU?D<ar)zED;$o5bDntScUb)sv(P)C zRX_=D1r#d8S&`@Ap$rBjA81^XiSE(6d3Lr_To&zm==eVEK6dp2#wya1%y2ecv)+y^ zgJ`@t#v{p(rMWgQd4=t^qK?bU9mN?F#=zdKbLLY;m~T9?a7N$$i$*}zn@*4PdjHwa zR6xVEaVZ6yJ8wfh*fAPdn*I`{OF)mNvKNluv3c#wnCkX2J=QcF82`y$tsg-gu#|`` z1ID6M#*o@!xxg9am=oHep4bV&0PHDz!o-NhR!%A<P*K38)qEU{B)8RsH1p;o;s~gL zF3$s%^l3IhXeqCx?sJ^HIZRIZBBU?cE$`~!`}H#%ryS$gZEZfnu}KQ_nC`s#b%m@C zTAM?R9gNq?-f#K4?!m-e5U!s>I;H@av;M4QC@L?PK=Aq+{X3#tYj%0vXUicX;!s{( z%oG91PNhYW`aE%dySTV$3=kQ#a(rKRkgotV^}de;2&e>X+Q4ovpf8B7XHZdW-V?Os z%<y<y15e_rzg(nL{x8<u&Fxhf3bc|JOOXrLc!b)mxl%Gy(dcU5USwEAMhv2a`m5M6 z3ukM`>_LA$9C|8|q34YU50&yhd1=e$BWFLXghc1LLF5fLrhip7=lxyUu^SMZe(lCd zo0dyYE;L2y{KkGYPG8Cx-UpR}FlQR`<Yjolpug`Pf0g=tu`>g&*q>D99h~i{ku3Gb zkzKx|euB#<iNQrJqg|S#anex4dKD>}D}kj775%JD9YSgAQPe_AKZ{|yx_y0HG1hX> zP<X~5jM&Zwl~|}t{ouK`KKnh00cka6FQLx-VT^e}c6V;Cg4Bs~8_RSq*V;6XgT864 zOr^z=bN)R^1!)-bAZ@P(7COrcc78KQuYzum7E_%|bRR#-H_IqlpW`-92V=54{OoT< z@wry0*`9?cv0(stt%pqI*>H)#1X3jl1UTJqS7?AjK(=-yJ;dx&VPQSQ^sHoBjzg>~ zQT#!7pPmZ$H^Qhn|K?=jtNA|O|B~$@@qWc|0JtyjuLZRDoVN%8njY{xUA+TbpH^H2 zEDE^8JJVd|oEbpu=wMAWkXr?KTL@#M*LI9XC^J<0zs%Q<2g69?U0i%88V6X#M^Fz8 zyYQTWvo;2dTZ~NfA3rSc_fcev3%YEYas@k~t5q49ZL+P{ZyssZ7q(*)er+4DVbd%w zh_giA)tav9R%o4i>xpNHu21!%@?6UM*YvbWa)W1UJ=ts@ePP1V(pY7kk(LJ-1Vblb zz6rgZ`$5s{uk76`9HjDCw+b%7CbJXefGSOtd|xe{nV1Nn)fA`X|A7d|#f_PVQOZ9< zl=f;{`OV59#AC%{G3uJo4{LW>@b}Q%w>!v&Z28QIE<D-_1=ZV=slQsxD0RU}&K<>G zwRtWJ2iBQE&O680$hTExh)2jFhsE}aIy!g;sU9%_^OPGf5fMh1m`O{Va)N;vn-*e; zZns}?OTz8fYDjEaZ^XlUZpo1I?^)h3GIhR_;0%!cUZ4M&&Q+fyBN|6Q4^ZXM$tmRq zagD}XOB?JI=}32o<gcGkp6~AH>{;?OblO0yh|v(^d30g38u&xpnr<~U=t#yDa_t1S zv(_IGjj}O{@$scP|0Wc+I{kwyjUy{zM6D_wsu^ju%=*|+2?nAMfLpO}{T#&0E0b!z zHg_%>jE15(JtF|4OrP|wJ5B=Ga6$LI>s1My-ZYNNX$|b8!N8_f4~sq<bme2a;8fpe zyS!qKW%aksA^M&)WQ4kx$O(z+j7Djb7aOuU0~fu`yvFV_p)1~Fy83obU|FuLat{qJ z6a%pJ{MPB1I<3!8BU&v<$}E#o(Vd~45O&{9W<tWMTh>2wzb)%r=rCTt`+Rm)5Cf_R zxTZt}$n!2uEe*yNYa;bb3r&rcd|RG2?Jh9RgRi#daTbjqCYR((Ca{z&J2yp4Nm9Mv zhbO-$X8vFKPsIGsLm!u!k|V!Hx(fzmKj{y|Q#bV9=xwFM+U~#>$r>xt)64h=#ou*_ z$_tE2V8|T}!=g3AbjxdA*0waoJWoB4jJ7c3BAQ8_%vPKyan<tpC~3^gR@lE)E%@TD z>1?9Dh^oOeqssY#&dPY219^&zMhWx~EPQq4Ji<1TRLqpYP2nLor;zsXM?#w;9=~%W z3_{n`Bv<+O&!1+wTUuIH+Mqa7OCe#wRQqh%yDNh<_zmwQa`(+LBK!cy?mYj%)e4l1 zvDl|52!saklb37W=dS}Zu*=R9@VQ`72=4&>Kd@5g^HLGluW#F-tZ>;uKUyUoyYws- z8;L$q<+i`8xgka_6~CGfzu|s%9?5N~ZpAQrEI5x|4jkgyj_boGJ2!KbR$0bB$z_NB zTBl&o)-&?9toqkdNQmLMGhoa`9AO*0sdL^}X(ys`>04?bKk=t7K$SG_{5Es?w=1Ay zbo{&@7698!N!hO6_@G)Y#`Pbqj+(_(wuo@33Z4>_p+}i1+4!b9N#73}aN%qC(IUYm z8&1L<IrKt2Fr`L-@plELyTLlgrPIi8*>iA2mpKVKZuIet=ea;x_dk#lcESEzV#CXR zhKEl1Li*v{cW@A!<8(_N-)ZD2$*E%u*{Pn2&)b&lM~ciSN;qE>1Y7T^%rLm$Tk?t^ z#(M-%Aw($3P9?LjMTdORuu7QV;ufb{`&Cs*LX4zcC(c|LnetnY7$gpPTV7UHk=UGB z-B{bZ_s!{m*$c2J{ZUt{Bf_ZXK_s*$YP~qG!?;OCqO@1)jrxQAh3ShgQs>wi=K5V9 z@BPDk@Z$c&rnz#SaPQPsydRsnr_-9iQxgkt9c?JW^jUvZoaTDftN{yi+K*e>qiE%P z#)1H8_E$ib_#aTX);7GflnIeqr(dd7#cU*1(Nis~$Ardro(bgb(Vc1EU2xEi`Rb84 zx_SCT`wxg)2y~(BB}jGa-*2Gf8Ins+p|<|<v_!$1q=2?^sK%bd1*stU8>k;MZ1cyM zcREKJId7w%7tY<0c;!XishQDD<k-B&5F8@ApT<&wxMgT|eXI$)?LoRIcw6>AWgjzG zH>@tphzFb~iydKHvShYs!%r$Tbz%FF3;xuGjK>&h@goL|*TYgJ*P3dXw23+6J=hhk zfxOY0Do_O-ZX}O!I^C*;wAtx>zeh^nJszJ_K<zkx3HS!GSY09#qsm>5gD({~lUtEe zgDVHayQId*#`fUp-abKIB&kRN=6$OgZ;=5Dr<zz)Hi#2nWRMdR|4D-t1(8bj=vz(p zr`h_nbloEqwss;Ueh7YZnRQV<(`|f&QEOUl{r$?Vo%rL!jwe8B6s;d8n3o6#CjALL zR?}lr$O^}Q+ok}L1Q~LAX;Kv#zn|Js^!U4jQV~Z{SSYS3HEFurBR7`Q_NS><Mn{L3 zlb1A81IIkW`AzVbqCgN9%ZCp&zkd((MiJZtbGI>Ym%f%E(9XQ7$h~jRE_V*q0Ivjl zhGMI;@reX>qmc>nhNte$vEtKDyql&HXI=~InUx60)zdR7c-fAt(V^`IBb?ij?Dq=d zJ|uykl0<G80!0IiXpCOy4-z(7thLklj@JjDkK=;!EE``G+dfPl3S`C*HRf@Ps3~ou z`Sf}-@F01NhB=BWd31goGoG~fsl1qysi19YfgpwNHU2jgSXY3xZe~SQyA5$w0=g~2 zXEvrOm$N6^jgI<LhboE_L5YDk(Is!5ebr+Aj+w`*zG-o$<h9SAD!(hn7gNPfU35?P zKlv<Ze)h)-UvLN80zS=L&ZL`u5;a5`HLFoj6^EysUd}9^l~n^$SSp4aNe|&3p91+q zAG-p$nQ;HI(2S~f-%XD^(8!vZa3U7iox$-!KRLp{!obK$0;_@(Tw~%BN9d2rDwb}{ zMFT{`NRgDO1OK?_&vO5iEL2j|%U=CdkvTaQtF&Z-it#pd5*Hx<YgkG}4w5YSrK)5y zEoi&=Oo*}beQ0GK+XVxzSB7v*<qE&>h{5aj7vkL7ukUoqxZep`XLBI|J~Vy)K8Cg5 z1G8wB>3Mm1oD@BZbcm=QA|_`mw4OXQG&qQ378VvZ0DXtg6UjQT`s)}lVyJ4&wwDB# zL8cOkMd;_xx$?LeR1KF6A3H!!ZeVO!3=jTwvPjtIGXq{FJOg^WFhd9)B)*6zYp3X^ zrNJU2;RstiZ5b;u{$nCSY{P<qKuN>9t%#3q({u%R+f1msZ#Gp<;9#rYbU(7zz0sut z<tw0^C>i1Kd?l8f_9gtHy|*X)A5t=<sU-#vV*&rRO;}+0IQ8JDtZmJFZ1ZpB88G(s z)D4#H2zn8C9D<Y=kDhIUgvJ6f@)Y3(op4nX131i$)Gfv0Q>M4wFYo8X#;jR%-R|aU zt(jLzB2<QY6voEX$l-p?5L4)u*!nalN9-QNdZ0ENEPR{o-~Du&t^JL`Ogxit56GVK zoCML6TI0T?JH6>|p#414MT<d<9#*7tbh;%jpUA?%s!(oY62%xA^6A@s)}_2CJ!LVh zS%m8lh*Ers0Gx<v4UR248rol7Ut6<Ic{_HM4TwGew(bkvByoW~fu*a$h;pBDyig|Y z47hH{=%=E)QL?@r%BdGFEUuVA0spRHN1uq2qOMLU(;?QwPZqYCuV#TDhB)W55h7rj zFo0;XQesyr@U8*a8*m|y0)8~2WL04BI9qM$PiucP7jAYAlL08{mX>3(cNl)oV1OF; z=UiLY1uek}OO^^?8Q-=EpWI*?IjP>vuw5?VEJr)crZmG-{IlSrqLfohiu{7?b}J1@ z_)WIJsI*2=4LD@}F;u*xE!XV-@RcF`AGIUb(;vSPVVW|``8z6^jg^U?+EIwVZNA^= zdqwF>=IJiMu;kQE`6^IRQ(tTyq|9>tC!-(A#16W&>gSZ*&qoaIjCbugEr_PuE00b7 z6~{Npf1>kanZ?Q!?br%$DN*&OYP6U<-#dlpAs1}i>jkkM7>OR)HMu+GA@}|j#8~oP z%-Dd>KabcFW9!XTb;}sxU~n_icLdU-{k{=eXMsDFlNElQ<mwT!ic{kq3prSHi$D|y zK;7)qEHuN;fZ!u>??xvFqMB4hWSzMHB}(zk{0NHU#C6OCk*5KAyYde|vZe&oGi8#I z?U27vqv4h%h%fH<m7j*vdByl5ZWk51#Q%skl#8)}D@<3sSy)^YADW5QqPL1p6+>q9 zf=3Ld@|-L^z&gO%i{9%U%}r@7!tPPF5PlFv$TxZ<8flTUMF=bFo?s_d@%ZZ!?C=Ht znj*=9=*k&h`6uaClEasclR-RE5x;D}7!KQ+Z00~@4xj{ocZa{UdL)#WGY%)_<d6Xi z#(w)kd0q{|w}7(zzE67KlQod=l{-xz61SY)L#X#vTs3np&zH!nr8hJ1kH)I&FOA?i zHe(p5_aIt_)~fClab|PI$7vXtbc$<!-#wON70pX-m@isRTWl)ul6AKdmeZN3H`(qc z6hRSU@(!36nXsF{I^z)8uooTT>68dkWZUWKgEQq}N{P=6|A%Mr#6KzbeVd@~yr&&i z9cOHFIjx$?8GXj3-p#PR{W@8Ir=}VN9lX@`&pMOFHBSCT4^R1CfD{kDf5+1Ee9Vg& z=QEbO&GbwOmLVGDkqWpQAw`tolv@0(LlU`=KQ17|_@R%UHFU6@Ks{y(Q$&oO$vV?} z)-`v3rww)hzq%{~a!q9}Zah9bH6uIl0WHryUc8{r#N9oPmPiesX#1<U4xRdJNXf4f zEQr`LdT<1-!pLvp;xd~zu5b8CKcjI8I`Jq<Xvc)v*i6vBz|A$u9e$J7xM?FqJpIZK z*!f_oTpcH~3J)*_qJ(uOOXn%#X{Xp-&yx?=l4lFGvn>N6QQktpN|_{vUo)%_N{%uW z$n>@7NJxO6@%xKDp(&Pnop;>*nwVE}vkHLvKbA%&HG=}vhex6qUmkgz*Cfy|cmK7K z>JG!YdN{7ix^EOl0@gjhx;$QUFs|n80O}~X@Ou*FX+hkmt^Vk0bSR0iG_!C}j@_Vd z$%R8e+2Q-^2_ZV${ohr-JlwF@eB|%HsAKLu&6JPk7M`k1GJ714^4@QYJVyGvHFo6m z4R&}|SpVJh@ya~y&kVM97DbMEr@C~Z4sCmbZ8eD_@`a34V^xwLB4gP{?VLtQuQiEJ z@v4=x$&4bX8u}bHK`0|iKul0HRax{rWr0%p9p3(`-fqQ?6eo%q^wHTxN+qtlEF^}O zINbiH3CQ<-OJ|P3cZJLBqW6x-?Ym_gv~Lyr+R6a})C6YgADp`{_$^_<T;H$(s`2(I zo`Uwpdy}8~GXiacJ@l;dOn-w~2ik;$hP^4(Y@j|<55lrcwl=Flg2TQ(ZK^{ySYI=x zf7RBGS~;Z2@f%yZXSKDF(MKqe{EWF5AHt_n#idN3hcn?Sv&ux_#uR<uN?ZJ848E{e z)+}g(TbGwd|0`o`5x$-EAY8$_J6P#$4q%80kd}uJc?k9daxpCrFN}e!LyaV0bDBjU z35`DcSEWLxmx-c?xl}G1ZicQQPOF@(o?2W4DkD>WF^4BD$}NT9UT3g|-&LdE{D?KR z9PZ#H;N$xXsrbU@AG^D2UNh4QGAC2hnARTsMs*EHDggRJIh(KZ*8k;p`|&g2=+V*F z+g?JVNQaZdqWINTdrW5l(HJn=pVO;DeCi7iaBF;!Mw=19X_)Tv!>Im#+BV%R#rOU( zT-S#KakcZjmt76sO9`Q`$hKMN8!XD;ri8-p^r!rk>f5Ul20K+m@abqEPD_jz#-CPi znW~#KKr0ok662!7U1)g>7Znif#IJ5*_Z<n=j`rP6^V29YJe9)Xf3$2-)0^FN?N+fQ z$$}JV+PSlPaVmeF`MC|=M*fMt6*cmnF3(9l#Kkid292I#9*Ow`_&gik`=^++c3W6N zGMtfjPPjZ#?nV6U4b9jOc<Svzef*zLNw$Jhwu(h%-UvNjEh`2XOx<3YN^hh$q(!dy z7FR3#YCfoN*09h4Hk*;4fYvZYP_nFSZBXkxXg8#G<QvsHd{1Mr5Fw(8B9c&I9pIvl z0`dxSMGQ+Bzj{ganbj%ir&-xK|10HJy-85ACejmc;4NSQo3Z*bez(L|jUPl;+fYoD zk5Hv_GESCb9}GV%QgXsgO?Q&b(8dsx;9o4Rypf#>kr<Xye7{Ls&rex2PtM;3sV}Ki zn(ZmiWdFcG?=LwWk1Y0HEHXqo<7Z$=lPn=rE7*R7PXoT#lvKC&-X{q>FMK^^35dz+ z71Hi1-Pd>O=MCVaiS;H3V-N_ZQ8N)vX|Ms=C&5_W{$rE#<6YbfpDq|E`PaM!Ag^q1 z52E+#<~@aw(VJT*_F7^5K*kRzS_UOvKecdf<U?q%Iu_~3GgpVl66{1e^LtNdexAC= z<2kdkCPtv>X~<8yaKW^zpvcRnz9VRssFTPlk&w@Ld}k+uskI!G3Nyof$S3oOXz?-h zV5TozF1e4Mw$^2!c;9}K^zA=7J@Cq?^-otvZ^`i2R2XlmQP%6`_rX2Znz>593w%{G z7BXy556`EIu=*ohY!V)DH#yNW{gY$qL|OD58@x~HBrWmS-B$lZ*QY$Ds5W3n*EG1t zq&5gvAsZ{@4oa$+&}`B`q^hqF%LK6-2CYJ-B6~h!^&*IayJ7Iq3KF@vRRgejYSSW| zQ#IE=Ew`fSWG0xEeb)b2Ku1TPJsCiBIFle}LTHdWdAz&R3zM;n-$wP+N$P2j3uCU+ zmoHLn9;C$5(f4EHs+BT<zisW$BQIffW6R*!9O%Z4hv?M4Fz|VWnv;Z6mJV3!cR9!@ zN2DT;z^;m+gcqQnx?2>{L-%<QS56<C3<PINLvW9D3qB!d>EMvq8K;I0sxyZ686o0u zuo=&199Fz%*gHKm@{-MVqZ<bN`zx6Z$>mJL9EJLu`)!{wW{5Kuj$%-Xrlh*9&U=_3 zBGS|8xBFb&e5}cCUNnI-L2Z*ERWFykcYPH8@DpZIokPD&TQ46-vPIkzdqb(DCTZko zW4@`=B4ZR-`;5Vr(&=bx8yOo10^9ZOxEmT9`+->-OW_Nk;$G}S%+gy{FXkBTG18-q z&MR>nnK~)sv-7*~isK1?!WBHuxh@x4h#Lp%A2s+y86daxclnnor50yqUjEJ$b6~;7 zNlfaG>lN=<o&F_}FHk9jY=uI5L*3t_e;uGjKjGFI)BXHqPGx)Cgxlc5*J2c@jxPp@ zWdqcKqkoabf4ja7d<j5Cw^J9Zb^4E~wnoGtaY6m|eZ%$>C(EOKmg=sQ%o{sP5}YTn z<jut@69N}cv+x}99hN4^gzEUB((x#2pw5hvY1>H(!+<<<2yTc=M?rDr@%ty2<3)?_ z*OZ58#h+=C2=g~>Z<jz;S|1jE_)XK&v3bp;3|i(bumr($d7WvwO6h3GTGyc8AW2No z*0Oi*E~Yh91w9*ycFdPDdR;?(BmMH$93u?;jZnAoo6;hcQiNmriY8JxxtaW?$%P<; zQPFGpMx|+!=eG+am<!89LD*((o_kOUPV3xa76y8Cg%Yk9dbwx^z#G#*SAgg-GK#?> zFmwIjEBZYdMc}8+=-w6U51aS;)WixQ`p<&UwYSn@l%d}9o4qJF;lG$o%%0B^g^0F} zBGJt=B$?sm)zu~iv#LSl98And%~W!@K#CWWmyju^oFZ(odgko`DOy&a{8?Ab^iK@S zxd|)c7%i|sioO1<;BWstB=__0lV&>7Ks4dSUmWG!|B-Z7VNrfx8>YJlkW%SxhHe;Q zfT0`d97+*s=|;MQp*sYmyFt1;6hyiOX#~Ib_y11jh?BXlVeh@xv(|k}d<)0jHx#WO zEExD?gToKbT*PUW{3%mI6ao|wz?gEEC$ien%IWE;es@S#i|c>*SihY0qN%`=29WdW z>Cc@djDNXZ;<TqQp+{UaSDvgi+7n5XU8JodDFCM^@k*!TLr+c@doh6bCidf0L~<K( z^y5^Q>D@(zKXG&VM0K4jv`z^;@M5aKO&H{7!Kc5pr`m*?A0JtA1i3XfNy5|yzK3Fx zV6^^k1b+;XW|JycL?qOSLo8JIc`(!NZ#<R=Gf#L*Dr%mWJ;oLF4^uR3h=uc*`rU2r zKKWv#_d5x#_sTyC9@iq4ee5N0t$rB>u-QW1m1d2Dg`d6%9Xa$r#gZEOG=y3{&tS!p z9@cz-m~iav?Lkw*>MK8@(D6vF^2GaOG!Eg5i+A8fx?lPE*Z1389bZ4-Vah)Um2QX( zU9-mY>(5Xp->Sv>f8CVFLT_*0@}p~1SAm-Ckai)%P<_lauYB<$++$f7#zy&WJX;(p zu?PB46dXUIAliYjoOg{nWfv3%Ud4C}MFzSs_I~Sw-w7XRjE(u7<Z)um2&-e=vy`>R z>XDP`?mvR!^5@p}oZiLfkkhlH;vq!T=4$lpbCdL`NqVdYuH0ifX`x&{llu|uXfW%& z)*98uN*UqUVY2PnQcON*G9Sf6X6wIFI;g-U=XH2;J^0W0v~B(eDlm(!_#voA35{NG zFItfe&?Bs_uKoItI{U<fkW(6H6V=y`ci%e^1%5PBnSaVMkM|i-AoMO<Y^ZX^KPf?o zmGj&GhT7luJT>1Q0(@V<>zFIy(+_MF{}*ThtJk&wudS;~OBpvl>RG`3Ex$}_+-n*) zYfOcbb=rU%b$;3f<PSwp^U6;3K&NC(_575NO>n?WH6co%j*FAKIisRYOnJ51ul*5A zw$LM$+;FBw`d3Cz$J8v_c2Nk@kDvwF_5BCo7EQCqg&1ZcqU`V|M)jsrxTbN6a(Hsz zj)hEJX2bvL5U6SjS_##*OBKyL8d%?o-&6Mm8pT_|mS)s}7fVx4En4=QelxUdu`f5j zHf(XcCFy;3%e<rcb4!wojy#pJCh|p8y#0!AiCcXohkA(Xbclp&QmOVj6Imo;4jjkE zABJ(fprbyN{!{#r3KV)4)zkIDc>bI)Bg@2M=Jnm$wH%Qs#+sYxH9ca~d(fd#NiQu` z4=OZucpG{3fa>eda6uR$@7wjNt?7JUApty|6wUUFp@ffkhGMaW!5yB?mz`xVA`GF0 zr{-5u)mIj?K3*M*j=k^i|7EF72c211#3}(QH)am@dS|udv&3TbuIHfYQ!d}GV3;K5 zA(<rki_b*bI;7}ExklBcmS?-gbkO%<%D}FO4W|YFhWu)ig*t(yDWp;}Zv;wBH1m3D z{`gvXZi4%DgL*RK1%dAnv1X`Xrvr8A$}!nOnhki3fvkBZMLSh5TpNE{cqumZ3mB%y z5LS^1th;b>zqGSFOynzJj5aT`LqncG!<_pqJ#Bv4N~2lL49fis5?ac8fBN(`*)9`S z2>$Ps0JMYyhXQ3He$QZccmLuKQcS1DL;-QD*E##5z<}KTLWR!9Bb_|QU8@W==9AOY zx~{HCAnXRT4Zj8e+s5n>fUML2=7R(uAsFjz=KBQRChpOz-s&ma4&l^Eiu6@>6a0Ha z#r^u^%4N_oZwV`>FFTrFmr;;v8tw<im+GcJE(_T#eqtu?ZDL^3#T}t`i7PUA#6qvz z(}E{r;3<bfew#htJbim?Thss(4&^H3yPs0efdxIbx1!J`BWnJCR|r9rtm}A=#8k|C zcs9G#oL#5~65&F|LZi-Hh4dA0F^lX;Rd?lw3iYXuctb2C@5(ORoV~z&7yS<0CwuN# z>mm;bmG@F9Ij-f$L!|BSb2)KO<kp2olI?@=-Pd&KuWT|fU9dFt(uH_>F8ICBMipL( z9Daqz4odgb%9t9Eb_EM|WnlBGtHkStU2H8xtIRG4?%K#1sT&4fW|SqIC+$fR@Vo}J zaervUK4P)C&s8O;y(j#Y%*X&`io#&$uw`O1(&wchpq%2#Zz_h9DilFkm^!SM`E$CH zj#A~y5v5a_Fqd4DbgU$*J*MWklpLN&=jZW;RI?tX+40d&{l#+4MwCtDsXi{11f}S} z;nAEcZELSo-_l_%hwCEIB(T~#7G;;*lyI-8Oz=|5QC5-gbMHth+SEuxHs^G#&6&$R z$v(hT#3q$2CXMy<O6=Dqhd3Rrbw*aYmaC+k8K6{FWX9gEeD}7>h*KN+6LSBJDV=}| z_&57FC}Vb|Oj8~UwqbrNn@DTDM}!J50RrNV*qa;g=I7Kb;hOvFC4ftqm$iLY;hrt# z6SK^1ZgKdVBsy%+t`t1W9P@n|dNj``{w~p$QdL!zM(hJ1dYSrt)^Wb($HAO}J)I}L z|KzlMe`L@zcDmlO;@#ZmEl~(}%<>xG`@m8yhA1e)KW((6Do9%`Qeh~juiMY~OAw>h zyR`J`T7_`CjpQI=De>m9`6e7om$4aNwA!>Pc}5Y$l0=MkFh}Kg7HcQNN?R3n2G?9i zBjR>=x;S1@)3$MqV%<nh{}xg;RH`WTKkW`UxZ=3x!@$sx0Km<}+tNzhMTh6=EZgGx zV>0vf+oNFp{y6?T&#FXpkZ;N|DvFKbXsgp>C4@*B%+Z$xoqdTTiU(cMtPNM*gnf37 z-Of&p)BD=SD<h0~gNULVjNQO9@tKsj`tqagG4uN)az5)9mQ<23&)m-ZDnhy3ERqfn zJ&ZC&wxp%iaRXM;S)2B<mWAojBtxFN_G|$B5&7{cp(WGA(8_0*R4F0Pa(4x~w@<DN zl1(RL)~OpAx$F-^C&0jqz_sx~R%T9#sISaS#g7vbdg9c;XIsG0Q=fraX)EC}$a1K0 z2X|A2d`E@L=qB&!TLsJVlr2wJ%bOhSYd8g~Q9+VZcF=)^wTa2;hI{9@$vDC0W?{+% z)f6*YD@31(Bywgx*v2QXaG9m)DX17ug-~229ULM=iNoIvlXF6B1l@mA@P*6i=`%O- zkF&7=J0CUdmBode=z4nF{-X7qNFp6VjrwXs3`5(*8v3sbPiacwL*M_R;HpMuWM!2t zpX;o|Mk>aTnjM!&2=K*@q1xID{Vwla%XRv8rarlGMxe2@boa2_{VP+gXVdzA1P34i z?q2SG$`<j@ZZlI%$MTJ%hZQd)4I+Z>q)*nkV?uzW3~1)wH306yRK0I|XRiR7-Y(!$ zYW3L`0ybCoS06yAIE9Q-+`(}z-@QHB8b(pqAmKYc!7}t9*<9tZ_dAq5_NO%+6JdU0 zn6MT-D?B3p2r&f1%$Uu|rvaxj6O(<)Ku^E<k}iVBTsYFqMqjmt+4el2=+It~H~4Jx z|8Gh6O2ZOCKXH@vtq@Y?Hdv2zG0iE3Resz-?n>(=q#XjNGaqMP&QmOQq&5fTjt`vc z{kW0yYt`zTUj*TyAiq~z%A}5s>_SGyl0`6s$3(eTIpRi?e{-vU6p2S=b+x7x?7AEt z@D$AP5eQK@GbC%g%<qRj2$@!2|NYF!H4M%y)m?n$q4P*DIXASM<&*Xb3r&Wki}#IU z?akXyk@)odh!DOnUfrXUZ=Zn`pMQz+k)PYVcewzk&*0c>5inU5W5uiSRzxXzKZ>yd zVxSH4TwM={SR(5u2aR1y(Zgoy-}cVfgvb>_XOiaA)R>GGHLo6M#OhI$nYSfLw36(j zmq#p0-joRP^RWf$WKGTx*@UO!heR+^)(Ka_j}VEgGYc%re_|QO6QOdm$9&Q)klb5< z*sGj517=QD!#W@fH$v@KY1~ewKj%BR9eJPPQ_Ifb>DfH;DFoQrHfmPYg8??hl591i zc#9S}2r2_EG$G_QRL219F=-?5>o8@Q5jtjJQTbz%hg171uE^3cMYIHN2cpW<l#Ptv zrox?a`i`p6!IO$5Lq<mtHw5T7K4adVUHX~dxil{A_zYR_{=AExr;&EcPGO0Ee?R9# zj^SSqc{qyho0qJYf0T4+L?8czOOu<oJs0k-7O>(_rWPL|c_#gF;_)1SSeY#Q)ITKV zRC9rB3z{(ZMIMUY98`&#t&5RqGcp^0TRWo`eyMNElY+;UJ+0;>uVlecsv#?;WxU$h z<=Q1WpD6zIn3`zg%iNgX?-qog!K>h?yFIS<xh_}fxH44L3y=R&9sgk%4t#OSE*PfR zA;sPsE{2aGFO--0$J%Z?qxO)+YNFp4?o{}`RWXSv{CA0232AqBwf4})ng}6vzH2Nf zO%3vC=9^oit6Kc36P>bxuKH3AoJq<dRz<=C+lYqmRz(5aKg8~|+4DFlVJ_FAm)^U~ zUpF`(ueI&6f}*Uwy^_krChh^F2hEMZVeJt9I<TETa;FgL_?<27rJ0_?xqa>zLWhV? z<1~^1<Ss5Z%RSeE0jD=W>&Rrk-^oDK|Ayv;c}M?li}XMN!*CMSjiO1p@A8B&TNG&t zoh&T~6q7;i2urrJIIhEG8;QvdR+hCXu3$s&Z0H(wcw{rOOMcPz&@ac#%A^@5WQ=rd zueHnsPY1|%GOwATEz0$XN`5^Y7=Ll<1}(!hqfc&9G4|6IiU09i;7@=B!FJ%#WYSit zpV-OJa4!Dj_I+M=H{-c?FIw~WiBX?J<8Ub$J++cu*oU8fn0r5uSfbkl>)J8t{Z@&d z^#jS0_&-tc^=Tu&kDE16>Ow<Ophy9pY*xG!#<bRd3`Dr(4c|15Ew0#BNnYY3LJf1? zsH+@R+W8%u{D*`PmqNAsR5)C)YpWkmvo%pcR@3PjzdH~KGsQ5;3TBLMB({@8Va&|` zTuK^>tQtw+c67zo{n({ZfQYy#wz(b!Z3O<qSpFI~a#V!rEVXIj<rS$Ym`<M21-z!> z99ipQ3k@`j1wHhN8Wt$_=p%B=M1l1^%F{DS-m{ymd5i}rR$zFJ6dMFhs>*2Ol#j4; zTPkdk`@pk@m<xeI_gn&5gWNu2S;r2bhW8@4N(0>k|C?L`yd<eY@K2^6JWQK3r6>~K zwX9CM4R<PBt@1rbRcs3tGzU%wVsp=b7Om5YxhO7honWrYDo<s<o8~4A(DZlgc#RIF zcP4&)3PTH0x~E$rr&8+l5Vsi($BUqKus0Z-j!b!Dij|9DuGj`Ag%>}#Tgqr-A=+h& zlNn(|tQ?1`+iAJQLT3gK+x*zrN_HVgN*Q8~@_$C6OQeI@L>|8=&gW(A&qpS#O8mtj zee<~V`VXf0Gs<*swfo0iinm=)+yKbk&NYB|c3}Y)r>yNXRZF9o(SB+yYjzb2$#}8n zy`dDdP)4t=6U^NrYc~R}n?*t}PRg<@G|^YYQOYo)^TPlhrS7LlR+f&F(=$FQ4T^-} zp|Bz_JbmuicBnLG-v&NbFu;+IIe`zrxOp-Xm!wG3DhM)4D}<S#U*?u7WpCY+ZIltk zK{l=dy&Gq*6zazQ#Kq2T5Ktc{9FmC^&0<wk)mJ&d{ol0zs<k-zzOE_uBCW6pR5i32 z)KFi*J{+r*d^%}gCE2Z!Y(v^5<^JcBqK@X(#|7Y;=%XR3)@=w|pRgOFex>uNU-{S6 z3A*ue>Ml8e2>OpI@-<+Q*NY7(Ufi!nw7AVgCV@12ELxy!^g+HjF5ovpc%P@}2_%=C zM1Z57le4{$>Hc>l;VH2?x^}$FFQL`{m;jh|xVW43uWT>f%xmaoOfDM7<(z(zx^6Pk zM?*i}b@eqZ|DXgf@(-<ZMu}%dvmV;n55-!Z%~>|OHIfd0Is!B-!dR3ir=Fi@_NoU} z)4?fg>jY8pu5BhQnH{K?ZkxfmqAUad17i~)tc&9uXIQ_?eb&{3Q)o3d>ritucMVe3 zFSqqXV<PvFDLI@bWUglhfY_8>x`He9Pt>XM&O2(Tzk=OaS1UeGmJ-QkTxb;fTfGbf z%N<xL5;It%U@58D0pQ;6rss?zhj|(hP;t}6NkVkI7Ash2KF33@F$bac0ox~CfMP0T zH(YNYb7-gfby%H99ukXN`1I^}OmXK8pBMO**Q+=KfozkVgIN$5_HB|HfCxVkQk<S@ z>XG@Fy}Jh(&jC*<oUf!*-tscS+*6W8$clxE%(;C>7#TQX-L2;{X4-A=eBK7lA;9B_ za}Yh7Z=D6>#=w4;ybD+gW~yZXs(jyX(>V+rLT6LlDWe&cRf!d|h@G~iqfg(xhj}<T z=NFQnEqdRH43^Zg<Gi>o7}e29gsR8_<^d0djl3e|a9ABD<pe(E>1iUP-4E&cQt*3( zt$v3MlM?m&BmS;7QO~(<)vGzZvu6DwAVGCxUf}ai7S<cxxN%>4MVXjUEcz7u3F$DU zRf4FidvZ6Ck_%Q$`c7@i-^*zjnP~T=L!7k(MH&A7JTv{)R_LQdz+Di)zEcGQKzFuC zLY_Yr8i6kiHa>>7-M9T5m_sQ~5~xM_5V9nBDcg5H{^?EY2LL|JZ2RqODhiyI|8r~G zegdCFGv-ImOKokNv%PVLzOnk9%aY|*w^NfS#(}h7o@$Z={}#E85(ql_LgA;s9>W8@ zT%}=|TgEWRIuKAPbWVR)6U&z^Zi`+DTR!;E8{%hP{rJCl+@(dv25kv-na@6}qNYNX zdf1ht6|O_Xs;Wa`Y0-jS%cy<#4{sai*lata*l4N(X7!nA?{B4+T4e;Zr0QYD?lg<4 z9&4^=_wU&17>&iPMi`4w-w9GRAwi>ZiskeuYu|u5L~XXjzXWt?bI2A`>Z)0J0h!-r zL#lEwlv8z=e#DsQDlV388TsB{c-v3jukzuh;v+H5zRli99XeBA1XX|L#L6!U=dEbN zmQ1%XWfix|Z`u7*qjd2Pm>V0bTjM?dI&}4*dImr(2i%$TdEU2vhQ`Lsqd1pVGRb=j zu+UUdIpd}_M*!t_GfHZNn5E`UvXdN$O<C|QrpAw6QWTg43&KqKDHF<Btn>B@YFyZM zA@n*>tsUj0#4<L$lElmkpP)rKk^L%&Om5qt0aY4fIcJG5=fR61iGpANz&0+BJb2f3 z;!-U@fw$t<jJzfi|1CLd{s!xd-;(~^hgqE5L<SV^h55Hk<%v0A6p{06V0?h#IF_?l z1r}_>@_j0B<2<>hB#6X|5NgO@rVS_QcKy+M&6g%PUG0}(gM!eUZSyc{xVa<lx%tvF z@%4F3T3%2Ppzr|0!0)domwir;Y$FDcyCj-I!XPX|%Vlu21+Aj|nmA!-IungJzealL zRiylsxd^(k0JrMcdz6$i(kIdSJ_$L-;%FOtrxbbBKcr7m+g*|-3=9kNGidX%Q1}^A z*5zEQ{P(HPEJ;I$i%fyq#*q-y0MuDJZygg(-&--n&`R#67A3aju~^2YHO%e><bUD} z7eOU2wF#%4-eMT3Os?uzyW0x;VDRL~To{A`I(Z{UKY`(9j8v=O7}`9>^K(HzZk`IH zsK;?MwAWN7)Eu~#jTc(kv-=yf+Kr)5?lm91gYB_<q+a4j8&=lsxh|E={14kH(;2X1 znh;K{W;A(txa*re$a(^}S*gef3vL25lntvG%aM~bue9sI4be{8DH$x<=a~3WsHkyT z27Zd5`Rsh0_)Vv)l4>?AY42Zi_&;zmpm%(`a=aD}%FC88)6XC8KlO|b{lU+b@EsA~ zy!P*W+92fbc{dW4;AmU_vXs)p`s7v{ryf8pzTd9P+YM^YpXZ}NR|lHR<!wGD6AB7b zW_P0Fb7<96m5%)my7b9mg(EY?3vu=F<q?@>(T$^}V2`vyExd;*VqRhFU|m=;vrXm& zviHNmD>$OAp=o=+7=BdY;~L(6FG`p!?C@b*M#j0D&uJz2y;sHO1<93n|L(IWWc1Tw z75%W#poq2aX#b%A3t10Vdorsr4rS!ichj|)yUhvZ8i_;06ScIFS-!F7&6^j^#JNdK zILlT54R^QgA$$QPV}T5lpEH+q@!ULaXWxy?I();o^6fXWCi4xJa8{2C=E6FqdE;|j zIiWEs{71%oxeKY+<VG9z#f;+9%c8zJSn%Z4-|LBi=6Bzp0<QF>5=)ONyi}Tpi>Q$6 zGAH5qR-kw-{>DtOVbBf?=c42MM7&3>-`@Jny^WSWMVr><`N#hbp}H*7F=F~S@+Mxh zeLz-F$X>+Ugs>w~wa}q+z96B0Y-G}<NM|~c^FSO9-f;D%e*&g+SIp+Cw(f5-=EOWR z7uxI^)dlw*Z7}ypN9@EGN{=U&?ZWyHuW`JvNR6=}Rxek8K{0=ltWi}3BXm8Tb&5Bq zebKiXwd}*qE#1HO+b%@(+~yaqVsbMX>^Hp>2S#XQihb33m%n;JRzOrdmJqR|3|`R) zhOmU$w@FMaaK*VQOk}Ffyk&~j@p^F4h#zpRXG^%@=q21Aoj>yfyEq*kCK5mrR;|%F z-iG`6fDm&>!4-@OJu7i$Gu`C(b*D?u)}`jr%C=)D*D|%t<5VS<(^+I1;e#ioD9aX2 zWKfrcfGixxo*fq{^0SzMZ~(|>;pzD^3zb5L`tz}l5~T;%4$d?mtF)rNpbt$hD*a|= zY<Y$lhQ<ebrx`cabR6y7{Wv%%xl2&rjZ-vW^3daZb$;))x8a9q|Hltdy#C<gUOl3o zn^+*V<p5M()0!Y5))xUbvm}?9ygF<|@Ce$5-fqk7QBZDm_2sj$w9NB^v^@Zj{Pqof zF9H<^GDHHO@c^MjDRfVbF;N>Vr_Ba4S`AT0sWhI|CG&l&_G3XA3{dna0<#$Ty765D zbmd{&f^Yi{g&pp{n~@Qxy#p&bb==rAn*S|&T%?$k&6nqTAbrcY3B@C?LohU`&sQOV zJ@lFy_<d*o=V;8!k6ywA^lP7A!a{@;-jGl_pZet1iI~smlIg)E9!>pyl~TKSWPTyZ zO}rC~6N(OtF;h?OEv{OnUXHjgO41kqIpCdxV~!pT@rKD;%$Zd-D>doBn=`1p-{<Rd z*VB@Imk~Y~QckPH##&ds>Mqx8C8U6J)osjFUv`~Ix7@z8T-x)AU8QALrl+4o`l+4l zla;q0;}Y>Js(Ux0;L2_1_koG7@j{ZQrS)|eTc3VJbQ6A^HPcJx7f~4~C5du!R(n=- z<3MKmbMQi^ymV{t`nIAHJLMvyvgQDP|87TobG)Jfco<VIHZ6<6jejaep%sq{Ax(*n z7s>)-9_Ky{cMwN4Ok?4wQdy|NQAXw@8mohh9AXbI5;caij8*M|i4n}2EMc9Tuxi#Z z4OlcY)rN!wOhPZ`dMvMGwS|X62Fe|vaRGasA6BK#e)SE!IaWR<cV7NMVBL`5srn5? zjtk|^`6wn@@~xA5=%Uilp7ei>TCT+6OhJ42KRh2TO;SlvuEPLn3S-##eF+>r#M{H- zwo1ScE9t>LE7sHS$NFBu;>^cWr@+Cvf&svklJp61P5fP*CvCe}cBo31VY75sRc>6^ ziH5NC0rp8~L#!h|_U#MexEb|A&-h?u-FqV^z5C;pzg)lP)b)ZE=^+Yi#`%57u@zp6 z=<i%KEwiJY-lReicC@hrcBad@L%p)hy`eY2$ZzV8U+GI(rdS_O+AOW?kZ~+=+81E* z>C7}nuQcPmC=<Xb+B$kksoeCDGLSn?x=C6nx=Lm@5u(0cK_IpCbJ-4D&PZ6-14Jx7 z|Go4wpPqa83**`jrOOvCafo1Ptg(r;%ywnSDv0K%1NJvQ0o`i<s?>Vzjz$7o{vDr| zr$M!@3MXZlhj2A1)XJZT#$p!dvjHt0#Cufo;B9|rBSq8@5ifWnio(nn*SU3HFi3HA zY;a9~O(6bVw3-CP3_H=3VL$fZ#5D(3O8S;pY$nS%lToe!5UKePC$9_l0MF=6pu>36 zEOba1`S&N`KeWhrnv&(?Z5nR*PXFIyo{px$MlDZfQ*%jVkb=zbMrD=E8T`E-Gk|W@ zevvdqNSI;z@#^xsLuKQrY@RJjrae|tB1>&+Es_}TY;FG9F^66DtHDW!I(^nE(e+IG zwY^8uk5OQ6ORlhhY@lB-q@dJ5gkiQU2t2p<si%33z&Z0@8?Wi{45o2)sOhI+?E7Y4 z-)d{T2)`h%H+ziV5|0a}&cbdGun>{x@vKAz;z+<Ra9wt6b1(VoN0(CaHDIhAwMl5_ zpYR6`m2DP{lzmZLcglkZ#__hRHHGKjU(BzaHo{-|SaiPqgcRJ?ioPd_9|K&q>g_%r zej=VCgOjzx?k;<q`n~YYuc*i{9UX)IEOb*jfwCr%|C-qAjws3yxpZ60U{rp-<c<pd zCCw!!l@|_rbRg)g#;mQ1w8r5J#B8gj#N0yDXz6Yt(%hhPHYeGYpB<`DT&XL-UB9E3 zHjG}|86^fFgb=4-#e0a1X~q0+&*QFjt?CwRw@58t6pG^28hO~qgmf_pxxZ#&@l1X! zdWL$n<4$MAGD<&5aU4?;%!<0$mnwdRSNAyvMKDRo(dwRDYcMWFUikgq#_B<r<vU=Q z8!<es$wUXnv^!q2FTDCJ<cl1AVUrMLVlY|J^xJw_Yf4DxL;+33VYuR{H5S7vz!IAd z&HS<GYevR}WB<k<`!`(=(EnJ|p<5_E>692u$i%uW%%dQir&nTv3gMSk1vLzIQAXlZ zYD_K!fouYewXZ7W3e!rtok(I!X;rlWPg?)djZl_}i4<2Y!%>~s_spdBSxQs2qory} z#G<7re3ma$`M5A=D72RqMIf^&f&qi!BodxG@5_S1d7vp(@|B40MflJ{$I6d@vl5+5 z#;Zs9bb{BGyfpk2c);-RP*o8g(t9fLlwsNoS>0{+bxV*Sn*$hL1MK7=*=aMUxKuh$ zIM_#?=D0AY5IX?2X~cy&QAj66ZC8VW(Y8MlO*K*{C7+^7fskxf>Dviv@XCuthjZ4G z{Y?!MtYcEoNk3_-Ti28N&09%@54L$PqU9dPGAw^&`~%Dfc~(y2Cja(?%O1EcWBc{x z22_rX9UvG3manUuM%`=nmAMM0F7YnIIALs;5oQ{i(`>q2<tno5FvIxNh<nwF3MYm6 zjDFFS%ECOBp!_Q8WJqGkP^rlBbOqJ7*2beB+FDE8rf(swRZ^zJ^eAhzGQ)&UJafb- zgjjuazJB!zH+`#9;pTvYtT$+p);k(OtH<V2;u~!H9Bn(1F2br-?PvRmJPicg@F5fN z11f$x)7!aBo>(!?7hH<-b>fIu^1^lch1=IJi<O*6W~i9zjB%`~9III%q}nbx6&Vhy z=wc2?*^F!9TvCz^(@sR43&eJ?>(2&;{vYy&3C{}}t=^<LORoQH2)t2hy<4*dkk@ef zS?#&<h*Cac4t{8XdZPAfohVV6B$l$xuhSo}McyPPp?CO;;HYTDJvPw@Iv2ot>+H`k zN0qrRbS{BH*<W3uoVC5T%>Tzb+BcmZ0{8^-d-=e9-JSHc;xznxO3s`npO8HT$<K_d z{ok`S#8Z7iZa7wD>v{3r7zjcD&icrwR|9S6<m4}^_4Ac-?U{=#5#BJ^FB(&>kV<Nu z^?t}|>t7n+gn-B<RAy_cD*}Nm@Y$RmDFn8bC`FuT=>hr-*M_F+?<Yd$i)E(`zm~c) zlX*AmQkWdR!12I?#7Q*+d9yZ|UrnVGS3b_b<WB|^#2XnqA1EJRC^c}V>S0m^NjH)6 zWCqT!1r(7}Jt(O2zz%IIEZ1(JX$w~`FgZCVwDj=PaM2s<9*lD7FDINgbTxM(M4)IC z!_G%yoR^jSv&*(W@^vRK<z#t;FWOS-ExmO4S=G)whyRXOLfBwMF5c;LLLB)izc`U0 z3{-!IE-u<Ub^Lxgb30E4|EY9YT}Ma5_$tr7ETWp<BXzZ#3`lA+P67Z?GkDV3(1b)H zqX~k&J5ctKG=d-i$t8l$7}B;|ZnH1vg(aLj<I(EE>Ep%d^-t&OjWKJAvVuyOzH*MY zIkExGC?C^{%~xOoOBi}ZLv=p^N=<Wq|A>{g0~HI3)4t6<e_>`e$rEQ$pmX@~d0-CV z=0CAGZNNQ~Z0r9#_U|B2t@~Z9k0_en+P&cN*i<M^Y*`ca7dBLyYU1OznsICn4qWHz zfuke#?Te9ljA}tR;_f@e+SiWX+@W^8>XH0E<(0m2BC!=o&KOT-a7pz3t~#+TW<w#I zm8HMd_y8uIjiHRMT|<2<SNAw5pa;)zFol&LC%@;na^J3qrm9cEd<xjy;W)Tf)&^ZC zmr}yhQJ5L5bPSj$)Tu@T`T5eAvP$Iy@prukZTR_Dh0^%Sn4+=gzhogsi)|#R_}113 zL~0%1Ol~A{2}n3Obt!=k=U<LD59Fho(XZu+8UM@mH2ggyWR20(10~<3j}x1$2`55_ zWVn0D*-rq;fkwf%qnyBbW2>%mvLCvwGaT<96cnXZ4{W0+_b|EwWW`SCFoAkYF<Ey( z4_+V2q{vj6rZ^J9NXbxVgvxj5QQQ1iA{1JoDQKfj&$!d}>*SK;DYx<dLNH4lAt9*! zZ=+Zi2KGxqxGidOq}+CDjTzkGw(I|m(5&<2N~R5F?PSmYQ|po3tRFmOZ?!M3^KJNZ zPQpP1;cCN(Bvc16w1cADfH$-8WfM*srneu-`z0z^ykhh1-C@&yHg(-JQ=_eznSa}~ zuSaP()=v?cf<AHfh(C30vx3@Gdz>>%_QmoUA-><vKg%#y2V(d#_qk8GPmLRU=~a(q z>NU1(iOHR*z0$@acr6yYgb2L(B%Pr49F4vG#gV(~f*E-4+XrmbPJYQFVRY9Clv&2d zf+Da|;tiLFF6t^|f=QAW7C3(a^o_kA(5)|6I6eCGrALAy4GUB4*SU>eOCN%!9kD)G zP*pEesRq@>`z$>s1jI<U-8*q0(*(s<{j3|}^zHdk{-V&sNKf&d10trLMqurSojlfC z6(EY|9Ot5CW%UhJt`y3|0CW{VPM?T!<oN3gAN%48g}>#~TjwhUYYIm_J?FQs6gq_p z?q-I+brvwL=DCbF`_u06&xM4p^BV(~)%iciV?-NG1zz~NJ&orh6IqEBGA`kTEpM$O zBi-r1|Jm{XTiD|ievc@1?jM`}liEgatyz5KLZO?^1UzM*VShrHRUJr(eB^QsE7Vkg z8qFzFc{CZ1PE8q~DlEa>pfp#UgiUY+Et7TXwJD<pzGa2uq(kAsE#r1{siT_6^pe>( zhhLW{8NNU1N*qlP3tL&Y?oQ69=MV%wTN4+z6;G68BHhlj(BE+_sJwU6C7D#*avRgT zwP%eG10z+Qd*LN_({)xX>!ZY_Em^^IO=Vlg&Y^O>oOz2ccCAqv*@2pW<bO6TUH!}q z1Pia#5tYHBY-CQ0&nTOxg<5(mg2?O$!qOd*8cRT%J-@>o+0TQy`o7PZ`YAf7(Vqpx zrN}T;!^E*kwpMBAKVem3;QEq<mM|^p8yK0GqT?^xsBMh5e%N*S?}8UO$g<(<hxD>0 zAueYfQeGJ?mMa!fZBy&$kqNtQ;20BpefVs-VU7KR*tH|V<5N;giTtgSA6L3K%cb7o z3<Hexi6mY9*mU@OalE=8P(vsYPq&@xpbafyFw8cTCz_yg&^g&I#icT<7W$P^!9*!3 zd22K8{1BWGk}0dT%hr~bxur(=m17oEnuzwACr3|W#i0}HY>8XXmRS{s?LqzDd=72y zcMZ&}r;S-cM#;7l7-f}9Z-P<D=y)PU56o;b8XW2+k=$3Qo&u7R7t(ESwua9T1Smv+ zs`qaNcygS4B2YSO38BkO8a=MZld%AtcDy4X-!_{WRf-#(hpt%8v|=N<bhi3NMP*nH z;|X)WjS6UJREd?yxS)=#pL3SXxQN=)YMUdRG@4i_CCnHe|N5+sS2=NxHxM;ra*y5V zTdVU*4)_E{HKw8^C?sx}s$n|#PmQ=Q3hIl&)tP!M#v9v5y6i^%mFt~Jb75Vj>z3Y? z>mM;c+t{U?m>FALoyrR+{7qQ6BRxtqM8*2G7ZSt>Wp8l9u>I1}W}L{Xoxuv89W^4V zxC3U6N?aLKmA2cXH^Oih1h4zh{*6<_3ZKC)&6PJ<C&6a7yHVif8?^RF!al8K-34*L z{}pB_hb&o6nY`WLYf6mfd4|zKd+qH=`x%F3jor5&9zD59uZtNuw5QCx<Gz*Hrm(VT z5YO2)4i-}_88--10ds}(<Wr8$mFtYgEaVG6X&&h<$YxV+guMol*D@{-4h-yNut~hH z_Kf`-5krpe*Mh2;RE&e^-dHWJok`9a+igiyzYBLX?q;<VSxU8phts~NcPV!flqs1I z<N7iuFjvXxQtk}HZzj@FFiIC9-;CfiDJ>^U)tkJzDTNW)(%k-fgVbO=a=rP(WRGhR z28)Saa9dN(^APCneOnP9b+#{wp+1YasTh7qOK#R+yX3qVm{rk61iTJH$(!h*6s1F2 zJWx=EnlfjKIfV_4(UH41TqYfdKN`9KtU)he8PNk(#?8!qA|u~occXF=HkKYk2{V-6 z$yi{}K(8Zpdq}qtG?#kh3=Wm6=bfOqYMj21MmQia6iY_$1S{})%c-p&T}YFz-g>3I zi}&24d^vD4DWD=zptZ(S*QZ)BXO`?8h}@vX6tU7K6>6;Kdvz|+*x|4djx1LAHMQcN zyV^R-z~pho%4OgYb{161$7ZT9Se|YCo$Q}m^2d|J9Y$o!OgjmdzQ{f@je4VR68q7V z0=Y;CRAllnyF4So^j^yO<is_8kg%P*>+%*m62UNSljJns>dU&XR9}so{%i#~ANzYT za#_noErk)3@=9aMMTpkBC$64^5}t4F4@E9}-&|p*)Z6f{SqB6JyYKT{PEo(jugR7{ zN*NstmAX}5&wWgij>$v+YwUh3A~6M~p+y1NNv$PsI>SAe_-5~`P-{W`j?FfYF5=8_ zu5q0G>6UnF4s>dpT81@#(hg1=ynd=3O}6`NK}5Fff8neR*%H$Zh%rShCVkbVm4$f# zGC%@2vYl>}jM7t6+(w>R!j@~B_F1dE*w)rKUq=%M3zv{-N8Y}ud9fAlYZ37y4^3?A zVczqH4`Roa8Z9~~yYQAy{Cs4xNAeH}=`UfSXar-e9{+^aINBVrW$WHh(CESF7B3+5 z$|u7P512(mB=3ph4^cmiT+*c*5H!@k&-g}P!a|+wOK5spm{t)V!SC6`$d+-15$hqB zj>tG@cO9uuEv;eo6|D$U%tD+jdaFs+D2FkA#@3e8!A&L|_=_u>9^#5-i|$cGnT8)X zx3u)Ng6faCi}hvJ2z2NaR3c6-K+kN}Udy_1(if#=GL#>78O!W>#Ydv~?&o_yUB{P6 zrpslxx43v?(8oF|X(3^(L#x8-Y`tYE5N&TUyKFnr$O<3N3QUrsR!t2pX#jsJVS15{ zNRBpnFoTmu%X8bE@Q7(V>ca0@*~#OVQIm(J0Ngz1iQf(fLK26nzt!O<EVmM(tp1~d z>hWYLhzxG>4nb5{cZhXjD2;3jGb<daw$AmZ3AO0F8QyOsJ8Q!m8A%Q+W~CrSS7DR# z{&!6C%5G=%wiehDXt?%}ZV|)CtRXzCG*OI|#;7^-kub#7ZZQ9vj*aOl&wA{X6oIKS zD}H_ZJC<><%I{nJJdQ$dD@R?#?Sw9{LXFY4R-^P%GDSzUHJ5CwLp7V>Z!68aL?Joa zCcK5TeZeQhQ35_Tx2)F80(PdRu%Nh!$xVA=7#kD<ZZ?v^?htO84kv!BZ%s7w$~8Ym z$+KZ|t#ph3LXU!s{NcglqzC8Iq?q$Yh&d+J8Zo+^KNhe<@QgXLMncg)7=@dexZ-Hf z?bR|avIvw<uI1xl##lBw0tPl$bFmT{#M+u1eRbPPBK})=s*&WBc)rEZ5M6ObkOF^A zqOG;u97LVL7Yu)$WTR{=;U3O(2Tz_KN!`d-no}!h;oab-JQXUI(<BYibwCW22VpAo z^M2mRgrSA;k_47GGzuZ*&!#rny<ulg!$)^i`&-w-;3VH@6%zW$nw_(*VXf5bvd&R* zs%cc33bC{&DxSztXh)?woj-T1*6d$>4CBF?homjc3^kXb<u`IsXM0C56z8+6f?kQf z%DgCMCY@O%$3mM3YxG&~@a$zBIg)~EDHk~8!mt|Es<7$oNY_BCy=bwF`?7kCQUfo< z%hvRrNRtMN^Qxj&K^xHgl)^MxMMI?Y;<m%S^$+rBL0K)$VCP`qTQ)70Dx2VLK=502 zI}6xzKMyHTBw*xC@<DZqR*@q@=>YS4>DS1uMs|YV_wk)}ef*H&6`G$H^UId4gMUc8 z-?!4=k)n0GAg6}fo;~+3b&%2>#+|Rncc7oNZ*JcnZ<tV{v^0uVpRUa1vuT!||Lh=w zuIB#9@;Z!2ER9HGiWclB$KovXC-3Y$pu@5qe0i!{S&*&v?rLFRU72ClY77nO^(#Fh zRTS48PuY6ZL$Qamuf&G3)slHS#$UV%O!^}!+kXFn2fWjYtJ{-5Mn(F)IZh5bX#S&d z+o@bnM`TAoIvqC2Sd1;?l!=rxqb$oMqdKBH_NIqcH4bD^gdQ3&G*)MO`6h_FLPdcA z{e6A>iciF=1Y$uf7e+5GL3XXw=wdjyWNmxoB4tRtou;9oX&kb^X(#CSAE`ZUMkbk> zabrPojQcVyfcx-82tA0A@?gvv542}3WFKm$?R3K&Q?I?yMEAEwN;E*d@c!~2WHLJC zCCYh5n9exmM1EYP@Y*uXOcKm5Mp@BMm!<UeB6wu*iNe{}Sa1Z4zulCaJ(S+rRI`KP zGByj}?ld$I)K)&K<cA30fKsC^6{EQvNCaR?2f8|sm!+=UXee}o%E4D8ca85izlv4& zscbkLV%rb;7rBR)GN|kCY%1V&{^c81fgn)?Bw+nhW8Tt~OTMlGnY}z@?f-NCT;*NW zBqI`+B*f-xLd8(RP_4GUajYLR+l>8{Twi}I@U&?epo^IGyp^fTdGW&PfHKSklj!}B z`0s<v_}?ThS$E=!R)iggS8T{~uwd6XpBCm2yFtEx+_P@6B1q8hO*wzckXrmBYRIQ} z<?KoLo`w&re{>E8pb*#~T*EiLe6$R?66q)3qY60NL=mk;V67jJ8GPwgPj}1ES@0mc zu7=Ig_1I+>yKKs*8WG~Fn6z)-H*##k8aD<S(ejsb?O%2+8y=Gj_?Yu0^G156i~E0b zV(LWwvo;|Jl#k}tpAMsbhfS&o&XuF3HDkMpS!yybGUvVv8d##L5R_vBg~ll^2quRu zFwX*^0ERMj<2=dY<USg>x=Um+BYm;>?B2E%bHZY#Ai^U*@O6z4GZajkO>$pi6y+<> zZRdF_IDmm<-qm#l+lY$ACg@U9d~;?jd!@?iSU`*$wh{AaLl`G9sZsxTndJSI?}nNj z$^y~laSws^#op~kb>fvDM-3LiI$6EzZ+<W;{W---UTUU|WjZsn`t*L~@n2)+rsB6- z5?Zy79R^xrLpBMbayg6@JjtO#@hU1obAs4+_P-tFEDMp}_<#5u*}H?oTcD~<g{h#V z+gF)VjoImlAX+=ftiL&eDoIUbG$km{EM<o<eTaug7~x?lVUF2Jb=bGegQlA>C7-=4 zcSTR5(;i#M*fEJ2XtS-O8!_H$CqaX!aB%BG8ff)#w<#;)=rx<a*J5Kk^$WoL;<4dw zUe2LN<1-3iGw?z$pzPuYx^@!0&B{l38o}o7bUfh>|4vlUI%eVcb%1Um??A}Gq3iWO z=ya~?<Es!;(SS|j`NKEV)*(;EfBjCPSc#hFtXjX`S|eqTe$)H;;ZGGhMmBaZDYl1z zY*DpP@66O-ydQrq?L0V$dtb@o++aCv6W6WWEQ*p?2%47iLjmpYq+ndNu4p(B!_Pws zHwkky0W0LZT0|H(m%BCp&%th9+XRKb16{Qg6j*C(xGjyqtXNO!-Y#~q-UZe40t6>n z*VvD?ls6uX)ue@(Jf*6RWn^tk6LG$2WL~?I%eqRa*H2VVO;0Qx8vVwdDw~_}u&Pbl zv<lGQ>#LAeJUuxYM`REuALKIoS+#LVstfeN!0Y#Sr^d{cj;v99W@_B%aZZL6O?gZ` zpA=@7Sqy2$TxA<Alu^M|My4lmr)?BNq(acIL{7DwG?x9_UisFn@3)Osq4;-kap!t< zFhS?m+Slt2Vj`As4lWDqFlW#)`L3g?_)zJp;ba(Z!9VWf%pV8ZYbp+NYl{qf?9Mev z_6@FxwUt|2+Qq3&8Rlf&5@3~19zDke)aYt#tE^X)RC#kT)ptKZjD7ehghYQau@L+1 zuLqs>8VXTf@-*LrG6^ZYY+)?Mi;s+<c@LC$^cbk|?S4knerg^2BxmT2XD()K7i@`Q zvP@eq+tczTt;w;*$$P~Z#umbIV$k#qyv?IWMpfY{!Lw>^jM(CA>ciVY@j2~6$#7F) ziGa=+q7d+Z<Jj)?lY6DxqJzcVH<|3wbHYw|NR7)Plar|n2Z&l3g?ZzFS05B&+2cE- zmT{gZ2fO)SVl1C^Kh@Cx+<LzAdVwm=c?ZpoKyDxmL;bSViG)*dqq9%%m|RX;BY5Gk zjkYrVXQ_cA-ZiM7ksWEL7wAM8GjecZ9pE@S!06{j{!*Y?RlOsA1c?w?%m;!fx{bb` zJ}R>EP812}L@jAx%q!*(O!`Q0`vE%jyXBQI-sF#tOr7)^quR0vMD`ur>Y#BRBVRCb zpK7RRXt0A}<vSa!S-g5Qd62P3GsZX*e?b?=l;Z<^Y?j17>6_=O<zz+^!ohCaz3xZ> zMTok`mm>li+GKo^5Hu_lh{qRn>_oFG`U9x%?56V*Mj=~;DD+3C{9<+G#2Cd?Ba4@? ziLYTO*KHSrz$e%nMJ-Fcr2XtJ|5~@|x0Be%Qlanry-6P5PhzLqfNs8^9btEDhlRY# zFAVqB)y80OQ>fH_sv)1;!*pxsJN1;}AF9hYx7CD+;G+te4uMI8Oi?_rqZv=%s$(B> zTXr11Yf@=li^6#T>(MA)+(>6r5b}V!{e`z$-m+v5#kge;9`|r2oBym&{q-%z0;~l> zVRL+8`L$4yrBi_H`WMlCAHUW5NwZyOYVEUnXRxZ<ujBZz5@K9J>`zB?s}%hFSZPW` zNiQsuvaew6s`YS*XNsURkZo!uHvMXtTrYTGvJuooj)_)<%GbY)RaIH9BR3{fee}XI zh#ezZVNB6d%JM^eXrsn6y0GKnAFf+Lmk^@UwHt?{SQG2B6atpmo0<h;G2>9xK5%wz zS9hPI`!-1#pPBGy#z}|r*p0oclR(I;hcxYec=qp>o+o?~TUvBx-t#mS&xiiX_gP=E z*I(__zHo{|!kH?T{V+RP1w+n>K6M|GHp%>5_VK1}e~L2TJIm{~kF$;y0!kxyuOg9r zJqOEBXjLeNLHTom){Q8MF=Adq`#-``#R%`M?K&l-A56aAoTK!AWXH=^kd>=R>wJZQ zu<w|<aZBu9l_AKdlq&ih6KvVPx^Ul)E)Xp#=(zL|N+rqvVB`Ochx7~rC&fdKCXGNx zSCn7Oe(iT~E}p+no=k6eR>i)LfOwc8>kjeq5)8-G@v0AmS+cLZ#yHUcVTEazXeNkM zRTv?oRfZv$l2mLlVpP0Dw?81MhxbwFvR5M}R6y(R$aq}K+kzKR-f)nhmZ9yeZ4V5f zF0FrclX#`&_>GrX$TtW?+<Y7xAJh#(`tPUFrG8+Lym7m$TSv`KP!{8rz!320+5cD; zGOx*pS2Q@n0dm|DTcS#GAw!yt$|6Z8)vKO4U)1SRZ1}`a$>NljLow$6f*=P<tG9T; z?vnzoMNZ3d`A8GNyu~G>CP3IkFWy9&J%-##E)bEx@oC#)N*kl)!h<9bH7))9)UOkL zWcC!2dUh&CdP6+v#)PvIildiA(SN9Al#TvSYT_9GacCHBv*~^#ib~$BCaZlF?fJXl zPq`8PDE;^q0f*>#FuZLvXnPLCYFi~_Qnh5V)BUz1YWF^K#0e(+v*@P=2W?CgtLOfY zc?L+A#FqKfaUcT{ZdDsH`@~-&a_>@JxJ;9ZY}xOeQ=V{H%QIaof=W_h7A|`+<t?st zn-PfpbROJzry(=?XNV$gE=C*Em7q$s6mzaQ;fv?#SE{GXQAHfJo067YZN^AQZJz83 z^aT%Q(;7<+&c-z{Ti(uo(#liCAHGth;LrWTBSo83u0A3JAuY`*g?tpE`iYUREr~Q& z6+|qXpUID})(Y*N#{Q_I#5L&idgpc;>F0SXabvcFwnrd|BF_zvY&9Fpl~ELYOlI>7 z!)xTqH;~2pFWB0o_7s#}205jzT_~YUT2lf2mKpD;aMc+Sbre1qtbGkzbX=q{Qu%iA zuD>`LOWyidL8U7LX;bBAHiq?Jn~ITdDx6<y_|432C@^M8cCwlD^S+HgRBEhv_Ezc$ zASIC_lYD*NHmsw@jnKaMEwS}uJL;*xaj0jm{tZ`DVxW+CM)3V{fy;7Hg`rEZMP|p^ zABAt{@5%GsQ+n}#peCJ&^1szijF1Qyb?48=Y;_>;=`a`HKW}Kk(yFA0NKp}CMAw<X zuGTO9o}92^uZTJbrkz${JN8Whb&XY}X&N;lL1l`j>)h6sl=`rZCwc8J;6c!Iv~kMs zh588H=|!-pzECFh#k^qHzI-j!QByEd2Xo!p61q*yZ38l)2$2J=%(C*WMABV95)r;k zYB{T49v6SV%O&22Cl&UW2LgfrI?RifVt$O{K0kc@rwBt;ST2NqBe>c*XnbiylGP;x z1G$(ZB#ri@r<`oQ3QfA2-%O|Uu+*@HOTJLJ6`1V3#4~j+{Pqr(<u#I9j9vWe$)%rZ z{v}nY3xiVtg{T)r1j88Es>#@?R9(ga01l8j@d$sP9Dbu9&r85EsE#GFxM|pMFScKr zzrruG@K;`&K8&&Qw5nqh``GBy@uU1Cg}1jAlIUrD>C1-;`!OA9)S#XLMTffXp+rcz zg&HVSQ;<-o$TL<7)UK|EcFbL%${r^#5T{p{M+i!tNqOa|c!u@$OuwCy!|Voqx&s?+ zv_+b1T!je@%p|vIs|G5Fx5gz~Q2UT(w0*+Wt?yKrS8;^4LK6|P^#M)bdvI)~8%5A0 zVpdC`Omsn&Y`<?2vhtE5oa1IYEQ!OjEQU~nA=ivOmk@oPbnY)=M?!Up_#|8)q#*Lu zr$Js{Q%02=BUMd-qEOnXF>XCMrfLff*(?i^a>;>5XeIgQ^Y9B{wq`!KB`q1UOpu8K z=;y_;_PO668`Fo9x1*7|b5NhlFxFDK^2OqNjM(;WOudxf6{BfGw5slgp9tQ{eJb9N zXQ%SaU=(_7bV+9z7|YiNRTyRzUE}JJ^>}-xd_sJd;^u+y)T?2*zQJfHwI(OBAW4#j z-a4n)g{tHlb`62Xz`i7me==uUTJZbyvUT;|m!?`)H7v!r(e&YU2Hp~!Z+3eP>3U4W z<to*j4=AL53O69dMEA@S&wdaYb<5OvDbKOngdmYBOLQlGNdg<Q#rRbaMa71x4#{}U zB4E-OK;0npYUC%cVv3c0LQtl*O;?KeUbBL(=I3N56!+x<^XiYzkYt}m{q*0`xMhM! z)lwR^RBmD~{i`N7dy6mZsQ7r74rKr4kW24dXQRIS{Ldbs>mU6^{`}9vZ&S(ec{qu( z_b(;VU(@FNF0?Cqy~wyxk~jzbWp0oord#~60)r+6t=>NtqILqrTjQ`$<Iyka9xv&> z@F4rnlDw%Fh^Vuop!7&a6T=%4;g7IH`IE2i_wJDeHDgRdx<l4D>C6y2c2yo(U5<Bn zi!~?$z47X$rA5+BdzIU>siG*KCgt!vS~kV7@jG^O>uPUNeF-TI@9)t&<_lZX>}Qkp z&jnDIy1Hn6seh*{ZCAzSLR;3@&TI1%Vf_$gs?TarMliz&vl|tYOKA+bj*Hs&n-HJf zWk+b_iXd_FWn%@IYNlo>amQzt42Y&9+?e1cDlwcps_6lnk>xBLm$&>b9V@L`F_@E| z&HeK`=7ttrPAy8s`3B?HAQd)kkzu<}CeQ!wTUA>%aO#!Gn}40dahIk(LF-ca+toog zn%dYfZf2P#td!-V+BOHgdN|TY>C_m6fMd?iqOT0Tj28cOH@<r1%cV+-=_TWy?(Q~Z zEbrSJE|oNr-t@!>9unWD#C3CfbMw22#i1E{#Ywr;ozwbvW=M^qk=1?+>VuyJCfv>< z@5a=UZ`yJLg~bi(&Ku-cYCf|Dmp%v;GohsX9{@5z&AynN`hJBR@?|6~*W76ct$_$( z#x{8x(PJ7sXa2sE!dR9JUci#n@*vj&ECr8%rsivS=`;G+GM~>E&8`pY?11-jBtd-F zX8`bb+D!6*+teK)!-a}aU5(U9&VU}f*-#`rS@u;HJOA#e@yg0DIz6a4No+P%AQNGg zCGkutjB%_;s91F!#;Ky~3CGif=i_KJ1G1^*Ii@i%L~Msl?1+G?oD(n(gMb6OmNK^6 zEjpTzdmyb7Qb(vKk?c<+1fcMQiN&ws`B1Un6^Vi<rTweLo&P*-txB^Wp_6K|H`ZlR z#>YW21qRWy0o0<w5?m#on5Fm+Qt&Hi1cR;UiDm3VOTgm<OC>~8hueOsMUn?qGCO3& za5`c*9dX$2TtXVBaSm`;?1){zlILxu>R{J(Ez}QiNmcClldorUR7|cJAWEPtl5R@L z6Yro_5LtFVOMxu+h%aFBd0duCmU+;*2zde;$AW7;ns0>oKgf7`Wx#EXz!a)kHq(eX z>*)mfp_5;$M#D&jKcF`Ah+di~<Z`FzXeZ-lF8<jsfB6d}BE0|b-pv}NNaTtEMcE6C zwgrEHWD{BiN8P`^uXQ|)bSUHGWzr^PY}EG1Y`&pDN(oXlLm0ymgg7s{G-Gnqei+cX z2x_>E_l#lrI%BSRP#|h19PvNtL7D}y>-xqZ$(VD}`~p@(!+d;1OEV6G^35=Y<<z^N z06(ub2xg#Ynqm1{qi!N{oy~Ck?EHN}Nq{r$Nc_{lN}NYMuQN^2N84v7z`xUGcGX0X z)VT)uZLPSOmI&hP=Uh11fe#WSNx@WM&LUyg3imXYqc0MRrF0b!TLy^ro`mh1wUQoT zwN7|_*Wrt?$7!f|*^hYIPhxjx>4Rm#1EA7Z@^L^JAQ4HPdN8t9wM&VxzPiB`F;?4z z)lH8|9m?>6mzN#NsbZ`ZLn#=hieX~B9K;#01RL=*Nh;x~w7lKaPG&&BXa_NzMFP)> zmwe+hZ+}JrFhB5$yegm-fWV~dt0}jl#499MJn{=yr-#g}X^I=OpDfjH=uK6L-}*C6 zQrP5h*yD6Mq3^^7YMK8S+)9lmmSRgq>ZD690if&5{%eGA(03#dO<{e>0ftHPIZIv$ z27y)e?eznoX^<IS3DAhHC1Nqp^#%lrAA%*xvU#!;%1vWZB^1?W$;}b)xi>&sH4HLQ zLbU`gX0v7Z8Kdwh({%XxV>Q8~W@>}3EHf~<*+TBGwc>yJ&;AQA1CI|6m^3@#G+D}G z^7*~UAU@ViN)9*7b}n;EV55K6#YIbyc;4jtnU9V4&7Q^coCT3d8{_u1LzCPU@I>a{ zUK{_8z7A$q;5Gp5Q%V_KpD`Q{*lae)U7ktAr_)Jkgxn+hN5N4k7{?L2-HXsDph*J` zX6F7B9Qql*DO|uBlgL`2=nV8YBKm=KHZ=4RsU*%2#fdPT#Sg1y&e~@H@ORu81_bP2 zkjJ~a7J%WZ;wDkbf@>11hWd%1zE8+Wa^ffboFPs$l*JUlsY>jA5e6ZVC!#IrNh-~4 zRtejUsMUtC;Chqr=5B>?V(gCv$3Zji6_$)zzTcWXvM~*4tiMQ#35?bD2G^TAZ0{3t zHv)CSSoaunk9|3UYr*j}N{ZhJcsT-NVGL8jFbvooju=kEO!60E(d?Fy2}sXo?7J<- z;;c7h-#mn6Dk;!t)!MM3HBxD%X%*NdGj;4FM++bpM><Oe6yF0tH5<jf>jC)RvQ`!2 zc)~ag*zaDv%xNCSS@pX1Pk_fX4mwsDU$QmQd;+ypOrsT1G3id`G-<5?Q>T_`LZ=Q@ zmR>qSB;%qK=23F-C=<5`0yc>sb1FHbxZ#`tZjOM>VNrFxr(}*X^d#zWHH}o;57aXD z*-u|RmGEt?<C=?Vyj8LDz2)|P)=Zl+#&5p)29+zGUtVCQ4pC(%Pbn=A__(TeY141) z!^VPhNpHbOXB(W+D*T1}q}xFcv0(m7M(F2+ZEoajnO4mir2{~?w&RC@p1;p`lwFx@ zHfD@3<%G><i_`Il^?EBQ&+YstF^fsr=I{=#s4QT6nnpZ7e!w)2K28Twp>OS%!1@;# zm=BB5!q|N`ZN%H!M71v%&iv2j$oEWGi?ArIE~9FF6bODCRDSjW_)pRp8j}sl?1n_( zWCseG=tqcjPUKnK0Qd%-BSiH^XUX}@B#{QCGAa@}5=Px`5>_P7AIFMmET~0H0h2mS zi32rZv+1y2CtPnkOr_#9RNP#5T73^V93{e_5@{H_Xd6tKnNvb0M&}`nQa<=<OIUAK zpl*Z8lc=pXH|Y2X9^PU1_zqJo*o_s>yNb#Z$~X)oj;8_RAWX{CyDg-w<>|MO#|Q!d zl}r{3A!oEY!!X(!Y3kfQ7!IckC6Wj!rxd)nn^X!{WeSmWhrU1zO)49PQ_~7?@@q}{ zm-4>_!#GGC0KIP-M+aV_SpZU26+1~v-%^Th9kJV6-gHwL)>6D8nlZ&%CADhK8GXM- znMC_D<qmz{OTCGdozW*vC{(LR-l-<3eGnw_z*n&(rUp=q>AE1RbISg?{S37a03an0 ztA=WUC8CsMCV{M>kSS$ZLkeag4vw0kbTFF(pAvA%5m09Qpp*%3-n_v$PI!8Jly$CE zeE|}PqZ1(7oW$Px-nD_4?V6SshCRuFr)YoA$;H_tW-|Va5o2+4cnq5(aeIcdM>g}O z91?eVTQVdzP~P^1<wD@f0#+_fkP1X*{-Ko6uX;C0T4WP*#rEn3wM-a>5f%}|RZNP* zaKvH%>>9SHL5c8#K%#}6hw$i_TLLlzXsk6nWcp|}uTUY$kgsR;GaO*Rz@)s3`-8%7 zZKF53r8iv!0qszI1_1ww8bcEHWF<yY$DTn{Q7ZZ2l4NLsk{LqOpG0scAOcV(Zi0Db zDUl0_g(fyTG_c-etk)UCX~OAPP>V2d^P!W(LkT$v6YqNo<1_kwI8;2X2GIsoV5-6d zO9d*MRK-~J*`Kjq_u|uVwE<GXR0u;&0CnhBSGan!0<XWqZg)Z|59sR?c83>CJR;?c z)oO)toG^}3h0rqJMXWC8uu31;5`~2C+0SY_U`B)*@A1P4gsJC+ijARl&vouKIw3l} zS-Q}uK`_U~nG^_!YX4*afRS<xM}*!}-F7LqYA9e~|GcTd8GvL6%&Dn9Enj+<Gji9t zdcRB)rg6YD4X{E-<1m1Zdj$(3_2;ffzgnS|HTu;W+;u`&lS$9y<MiY{nioB`Rz<Bw z`tNgX(Fz=x$!y+isiw&Rh$TcKSfQb~Gn%88#97b3jjYDkSs6EyIP9iG8s}XcL>S|R z?-s^54!FO&!#Iw3c$9nq<0NHky;GOO$mJY4ahG{rvZdLzEa2a&_PJB!1^#W)dh@9; z4O#%ZKcG&IM}-z28b+ZwEgySGU`Ek2047K{J&EHppO4wjSI!xm%?8`;75ctMuY0;* zt-xGyeS3#;8bEYJv1o@;(ua@33B&1x&1Q>n9HbrqtNE0H=#07)C_Isnb;~)q0#w3s ziS)Z_2s41dCfG%WzPNGzx5<P-3#X4&^RPPTE+;*F@EHL7CvKI6@h6f{Ksmb=Q#Eh! z><82q*rZhoz(B4MhESDLGm!!SW0G^VR!)+Ge>hpDEG09Gjb&A>qy`P4GNG1&t96G} zFItDf5>-$t0~Hv@38&o)xDH?>Ad_eWHd~~wN5zC`V2NxXb<#n`YLn5eR=9n2gHjmB zVZd&;!*{>?9q{nplk*%;Czs4(h?)CI=$tens037*yQo2fe}EDoN+NZ8ML25b#pfLD zdZ%9uQ4uQvHoLiL9ZU|gwW=y{``R+&u-{`C2AG|^>j+56uQU61(NfN_Pxd@eD`iU1 ztb;Xy6S*m198cmg-Ssa0CQYAO%7kec{C(3jqSlJsb(*!Zlfo-yt$Ri0LlO$HR>eb; z(%ViC8w;+2Hpbj|fl1v74AEFr4I+1+33I3n41O9%K=b+M+|3*@-JFpUG=@X88#97h zHF^auT{>~M1xD3OhvNBfc@)|>WR0hB#OZi+5A_cZ0su-WK`>M8pP$BgYs@B!b|yK_ zuZ@3-*+Z^(A=4*4T+D4hni)<1xS$*ebYsDUEQPjb!fZW;O(umu8}8=FFV6;KX>QpP zXc^ciJ*Rqhr)k1^v%z}RW4&3cgKKtY&u+EG)zvjh*JFEi1!hV6`~33kiP-M%zrgXh z$LVyy@p#axfGx`)f~g1;{DO#DE--Fpy*6@oVa?~wF-`-q;WGE1!ffp>Op;D&3LsSB zv_GF0mtUId&j8>*abpO9D`d`1a*#?9=4Eo55iQeCS}l5ldZN46xZ2%{Fp7TDp2=iL zR^IGHRBiRJcSQ<7?O-Q;XVH+HzE8+i{LLyeHjqs_m5QMw><<;g>4eoPgD_#}fOWdU zR4OVLOtqju)uM@zGJD26@pnkL+HSGgY;kw@3Wwtfr_&M7PfvJ$e87kIZ}IZ-f^nQ6 z2UZirK&3>GChKW&yygVy>d9b#btgUqNoXN)7*!R=stdNvm`Th&GXhHRvcQ&C!4l^H z>Xf9+*Tktvc%$vSSUms*gryWQ;@JKmk*WoVFs8~%Xf)hznvk-n@6BeOa_4XK%4yoB zal|-`$T@4}MNPzHAylh1h#099q||{^1#^<hi6BUEgCMo5Q(u#qF#Fzq5rEvH1N<K> zvc$aaE5=b&@g<2rgxT{`(#Qo4<_3lXFVR#~ui-FfmP^T#oiJCfNNO4=TEwZ21;gop z(_x3M>%d&`{{4Gcw#u0a#0I_;?40qpePlBeeSiFV-5)b5ulv+YFVTzsVp9&(G-l*; z?z0k9+5R+cj&+SrWCs-ng2CeVR09-_8VmUuJ?E{rvV&&+3SsW5Ch@txzE&TY7M2PC z>-82nC2VeQH3OsA{%>yYBs?%Bl&RqP=@Cy)4<61uj)QBSh@d_&qQ$CHD>n`8Hz=+W zoK_oi_Ix0r?`^4!_>xzZY!7MsZMIytM=9<R-OIBZnokD#?6vPd1AtGURY-+9EjcDk zwMy##s;PWolDOrePG-jhxIq5S;_X^ZsC6v@d^6g?wV!|{71Ah!NRT2Q^DsL#N#suI z29%-zpsEDSK+f`>(@-%EM|63OsS>8u3Z;z5+3cYv0n5KG6Q-&MrV`4;e%gr$UCyBO z8r_>OaC7$xU;XTtm`cI!<r(|^3-&M1czJ%p;jow6Qb5$09|EHG(<OOzEVPT=I!`o9 z8C=<jSUj9T6aZ;f#00P<lF_SXOw6XcdL8;!l}y(n5M6|O!K_ldeb++1j24-RguTBy zX8lVv2U06Si2tZ*Qsp`mQsTd<6jVO7IRji%AX<e^!U8o9U?M_IB2Sy$vxc$wLpahr z`L0w03A(2vvy@E@sP==koNq0oyfYUNiGPEb1#<I@*UfEAqB4U^QT1tL_|~Jj>K8Vf z72srmOw{|sagX72!1Ln=tk-MQQt<Hbpx*!C`7>sX#@KCz&cyIAY@mg~c`ucD8bbnm z;v^Rwd_U>9LSO8iGk+s1@r=f#;#mS(QZ3i^Fu*A2lo`X;UHg#C>9e9aBL;9an|2u8 zNlt$nFcLkVRdL*2-(t1ipt6|3R_iq=C9KzLbbW`UzAgmDD)*qo`10#-fRs^6!S(Gu zzWK$UqSk`r;eg%CGd_HHhy8Bnxks$xXr%(?wtw1`k|!l&z{6B+P0xge1>j9qaLYEt z$FQ2d)MtVL4gh&BJaD*HKk;<Kp8>!p)0(=voz-!YJo1GpsD>;YOAf2-J9R$mDpD$# z0F^Z1L_wNSnsDIs_!*Cy@45LW1^_ZiqM<S+Ko4=&eOFnv34KOR1;^un&1NlWfJ;T0 zDv*oYxy`#>6VakeD&;7xs+w~hEcFPgGUF~M5cSA4qwn9~?*5f$#w*i=)A4}szWoiJ z9v|jvOA2ET9~(#lH+#FxfOKSLpVZ&&;Q3qyhHX-rg&=V}>_)s*wHd>mVse~Pq?)3A zZ(z=tqJ=Is8*WIIYmyw16Be`inlzJBRuCqAs+yRn*|y^xDT7dnvP=ahoK*WTp`S+7 z^%l&G)q0E7dhHTc)9M(bu=%t7XAIAzr6$R^MoTpY#%L%`dCH(pDpsNvaGlhjrl3nX ztZQ3vTQ@Q_E=o%@qb<4Gd7j9~2y5#bYf0)6r{fDw$0PRp9r}KS;dH|OaP&-j&B@XH zG&C%9E~Z^LeLvD7&oFRn8!m;t$?YZPY)4^jTjfRTPV(pL050~;9}NLxm1;=56R)#8 z`DjPbfq()TvS<P`Wi{Xd$Keqn5jLAEq}++QENDM+*TbA=iP)WQE&T5|9FcSKl*8gr zu*Iv_Z}9V9{+X_;0NimL@$~qBcW=MP?&V278wSyWk%e%RYI};z!!US>YJ|NXo0%G= z#JgP=Culy=M*n?om5$D|ByoD!LdR{kS~&S<0Pu;lxXvPJF@_1K)azk@tZEXb5wy{; zI6y*@WE7|N&{;v7$o%}Hfb4nxxzMC`@U#;k0=k|sO$1azVgnqcYCbX9<qSMM?{NR> z4$O?<G-4`@sZ1^D4UD<5`z~Zk;3N)+Tr>@_Nsh3*{Blsle8J#sYC<{i+v{uGzIu&m z6vw)k=SLj&FL-%=!Z;3aB4~$F$1Fu`3`OgdxE4kK!%-b?1T?5M^=@(}IJs~3E;Pbs zOtkAn1#kJug+U}IC<cbAIdi&mp_)I?*2g@fyRJjuuh8WVvGi!}L@Meb&WFX-ni7hL z+R~*OV~%@6*&oJnkjR9o01T9A6e+1pSgkkeV-OhVV*fEW^OJp0*|bB|LCMUYfK9@Z zRJ`3vD;uVaZnY8eR&CxH8Y43ks(b_tKr;9{C^6@<D2_&8<xk+I(l3)lWt`N8JdU!S zyWI<phoi5(0I(>1&n59$3ryW5{6$*=_T^Q+_e@kYpy4Mwu8VWmaQ~bU*>fBV&n{mA zER#EzeM$i79yTy&<L4%+I@1dMb9fy<jtB&utM~z6ng)@+4Lq`#RSj5=8uB`x20v?) zmV!2i*HR`iE0CDmR_iskSJ(LB%dc@b>~Yxdu;1@+JnS_LwBq^k0f)m*Bz^;TrJ$yd zG5?rgEUBgdDip!B1_0c-*rE$$Kg~^JzTOV(46b74uV8Eb8324Djr5<`hJk5foK6K( zA>@@fXd&i#cj6{TnG+;EE%O|nvph39l5by-{_WDg5uAl;&=04f4ubk1NI@B{kP^C~ zzzGy#K0UplvN-v5M5t3iO(QB86>?xT9f7{mq(JSwGENyj0Z5`=R}WmkBsJUeO+KqR zqwhMb*K1r|Ut^jkf7W6Dg7<H~!+yV;rDwIc@v6Xs1M`XA_4b^(9AcoNrT1luC5W38 zYUUD|))XWjQcwSaQlJ2UUH#b9jG7z>E$7dyCrT)C%A!3=1Zsr{KuL*aCxop`1><-U zFK7~<0?RsCYY86yakQGLurh#xVK^a`Ns~2+M|Dd<tdfi0-iSPdn%Wwy>ee#L7#JC* zsNA(El|~nI{Yro%EIXy)Wp&~*(^+7|Q7d43jujwTv;aG?G$}bXNlI;Pm06-E#*;d1 zRu7+idU|rR&P)?!&t2pISYiMN2!5s;ATu+->}K{8+nyHaft_>vuH9`Q60^Ib>4U-N zn(0L!+;LX5IL?#<&>^A_XK!gWLvg7vb~_V6p*@=#5TWZ=phW1q-X-Z$swTjiz`XMO z7I7VzC8^e=5j6t7B_9SL=u^EaQJlrpZbZ*X;Wg|Fyq)G9ej9v>fYcmEp4;{hL3 zOHe)6MO=W{0*AaCI_9tf2?-Td^NqEA>676!swES%|1O(@GS{$u1^}N_s|=)S#X_`D zMU`y;YJ|zmbX=F7%ne9Dfqu2rs|YDj{Yp8EQZ87Dqh2CRzY)I3{6!6A&tQL=`E;=p z3C8JkL`4FV<eCRF>Tm#;y*#hG2C#82bb^F3axLJ(tyl~j13sU(NLZuv-oo%mGlump zO|G{ay#C@V5D~`Vgoh9B@bdhG{eFj9B-`NWbikxY+!EL{hHdOh#_0}CagL49Xm&u> z&w>`%kE#I+B6x~pVL;h607dPKRRKl~YCmRnLLqaIk&@&&r(){smKQ%KElJA~x1Ul% z?s}KFyRH{dG!+FC)WByXSZKhglu0D_Y5=CVZ$Q`g>X=8fdrVUydr0P>sFc>~0@!+r zHe?#dmN8LNDfj&fo2wgPI0|?`nk_RhJP`R>HE>x~Pe8t#Z9QCCPK^Z_r~qO?nW^nO zN;(&W$HzwjQxU{)gR8z>d<&m%a97!)oh!fgBCV&{4}V7dI5KX&@Q@i@q1mNG<YuUN z{jwXzG(GJ!HUE>yj3p^r3t4NUGZO$IPL&BJ!aNC^%~sDrMM|AJAu>yv>q)gS)(nuB zGU0eQU>rvQh=77i)k<nOp`^TS8Vd`>HDwB=jMaLBFTeW6vub|x&ChW>9&kMD@$m2g zFVBw{h7-6HOl5RBVOlB>VVb0byVso{c^`2zA6OJfG(R=7m=mFyKmpy$CeS!t!e;>R z$u!yc93(1Zue#CgFgPLxDjEYIJAigjlwZ%%r-rAR;wc*eCN1*9;(M^t_p&p7rKFYy z)$`ILJbV5(L!7cIOW!AbDc2D^9Kf{zcn``ebp1Uz-2&8MH)&)<DUzf}6WCZ30+~cx zqU_|P8*{k^O~PW$w-5M%AR??cTm0fr|3dmW4j88q``runyBB<T{}#u?0ku{fj|Zu5 z06?n41qLir0!AcZ4V=uRKS0M}(xeaouEobEHt&SW(`<rkEi+<UnN>5=#$@TCnF-(| z0IJHoP!=#`4uh4eXQoSPGDw>BZx~LlQ6fsno;k3A08=wouC9s@CSE*TvGgmE&@FqQ z`>{x*N2<n9q2>>h+<2A|kq8>AE%DoB8c>Q5;xTtBy+ce7U2ec7Nu|Iga50cesq>l% zxm&e;6M$NPYJjO>iNPpMt5DhZ-*$V2S`*&BeJkdX`L4jF)@0m(!tMPoMK7-LdkwtI zwG0jSv_0bc&n}xiN+pYMGx_xdkj2F}Kyu;D=VOZ+00e)EOCTVemFOQb0|DAES-0Mu z4#keHKs9HK<A~Gg<l%u9Qmd1JGL4!QGrOcN;FVBnZFMtr4zgy>Oo=c}63GNm0Em(* zd$aAZ*<OL(e2Jg^{7(glOe5aEdyBW<e=BC9;RGURMbE+KNiu9E-><F>RU+fz*+i&e zE@nH3Fay_E(jUF@GXVI6+65kgxsw?nD!!(A_06oIQWOq65le+L1pu>i&X6QFXp9xy zEYzh!9H>lkAPCco1d(E_^qlGWzbYQHlq}hiDF5qJ0iKZ3gq|x_b-*S+;BiMdJP~$d zhbgVWv_WOLw@$^G9oeC)M$}A7i3DCGbCaNE>c4O)b9KLjuJ6(HD{MDcc=N^A`1vpY zTr%VhC%pasJ3M@NkB1NMT^-1(^7Z%GAq?-j<Uw9XMz7xK7DZG`c#hfmm|MuF9_j`j zj0Cqsu52Cv>AFt<I!syzAa^49oBzN#j_CW|C9=HUH~{F^8ypWilu2p>q%5D?TUh~B z%RZ<+3cBCS&RWWZzD(%49{pOhJ&7&!(M$tP>K@gPU^aI|n!{j_<SoY|N*TQt!~h|r z0#F!v$`a<7vl4MTUx5+&-)bhvy{nbYX75s{&bd@el+eipcvec6!jx!VU0<Ov@cZw- zhn4<~rlG}#@E;UEixPa$5Y0F?wVzG1fp{Dn|BU5mO#{Hu3GhN^f~LTLfGS;P{a<P( z;`ioPvE<$)#3$5?U`Jk2`(i)i`q?v*6#?p3zHeiWg<2+z!+@bTXTVln(|&J0DjoWs zMEKB@+!O2_*;82?a1>L6CM08os)9DSCVXtR8zj2I-Q7KY`KNy_ego44Fyry@0q?&5 z4yV%ryO&2X!vUJ4E4Q#pr*9_R1B9Z2%wj#%5z`8>ahPMa^~Yxoz^B)Oij<jArwPEi zeGSM0yX}VsvGW9|bQsS_8N@+L4nz)wfn8!Xrd|P0&M_5WomwalG^c&rXrzSFA2<8O zx`h;(AZu8oIW1On8R!zwB|-w@)rPQpI^bn@#N&R%sR~YAt#8n6U!kyhu#-P?MtJm) z2=k{<Dm4IrApMwNVh%D^5JwoBqJOP3zS(Z^^I!fs_PZAx4m%tV2RuJN;r-k1F%Bm; zx7Y+205FC)ld7m<VD?nBp2L9W^JOYO`P%?klgf=4a3It|qzh_=OGHM9hG9V0^(rOE zJWSK5DOHmbyWI6IwNK+9jKZZr8H$b7s;wE3c6&QypN`|G{Y*&Xh?<H^Qc&qj)XFk{ z;(0A9^_+x6$>*Z_A5KS!(_R4E!(k_D{OS!>t2MgS3WOCnXD9w1I_u+a9MpUZgn-I; zlCF)Fd!-~mh>|#qn#2gGRv={n6Rxi%-^Fi#_ibZ<GtS@k!W<9Kg)0`{yJuhn!+z@z zis4wq+8eDfW)d?EvI+@{cLeQHBL(xZ#j|Da@e^wMI*Rku_OM{c_&@#Iwl`t6W<)^O zNfIDR3Aq#L8A=<cNpe>VrxT`8{b(S9$fS;YwN~(Cd(s#rh4V4FKZB|Nt@A16z+80> zX`W>fkf@nL#kFjA_pe-%|KiK9@aKQ=_i#Au#bNp78BdQ7czXPR!|oZwI3nkyAUq?b zW=i9%X}C>mY(T+y#0==2Z;#Ia;FD_&&539HgvQwH3S<5z$y5!0(s*vYPS%}KCrP$5 zt77I7PLtu?gPkENW6JHN!~moa3RDuMOyFU0&<)7@p_l*WM3Azq@~E7uc&TSbM^edf z-DOZm*sc;*8CWM^qKxPL0q;J%$La9@Mb~f9Z|-pS`b(@gTXebe5FQI9oPm%i3C&>g z(x0F?e2G1skYMrgP0A%=+}_>e=JpnrvG3*i5x@WTcX)bykNtk{iHVF!vJxG$Q@R$m zvL?)_&IC`Vqf`DlVYhhd1lABMXQDbbV~A3oH*5qJM#jlPvk19Xl~%>6vet@TovElY zsInGXxx&;*cvbWW7vj<qz*r(2omqeP%z;aN84?)9G#fBmyLxC(O=}=Tw{t=!pRqgD z+0=w3#4wz&dwBwGZb6Aua+7sy8k0GY5rSXcr@+BNG&x1{n^wS7$b)H8(~W9JC}rH; zT;X`yW53@8l{Wd=wc<s7;OJ~L-q-WiBuw8U?Ejhl?&@}X;=+q>#)xOHNb|!Jy6P(F zaHE?bsL>OlMSPa=Zx(rk`RC>V4+qVQW<rbZyPP|$)*BcATdy}5#{oHa7{>ubz%)vB z&7@i{Gf(YyJG?wUdlZVP-W^awOm0>lyZN2S-fdcnK<`|`80ML6PRP%VL`(&`f(}<# z*SOkV<Np2?ey%wQ$~570I^yBO2OJK2?DsD?>~|;{v9MaLFb=@PQ=4~S4hH8$(C3!% z*#z*3H3pb;|1+kkVw!}^Sl)CB8%y|tI(DczAcXNc04P&Yug~PfPBvwgB1G&sTZubR zs=6Jy*Xev?&phq}qjmW~X&PH$84`z`uFF8_Jd0h|Rjd+W-6wP)Ooh?qB)$pEpi(8b zHxa-EhusG}KR@96@BS905^nEb;r8w|`qf$-!M0KntjifWw=lU{6NnZ$_`|%bpPs8h z&1Nj)lLSqc+EsFSiv*qtxPSEq_pjby8b=(D2RuJLV)ycl!~O+_!vTlGJ`j)Ma|vBP zQzPe;uzz`(N!HDr0-r}_Dao8t#(KSxvdctBUDgmhi9yae3u9#lPg3qFcb%-4hE1gm zEe0f#PAL<*euYvi)|(Ad>d|#8)HLay6G=Hrbyggw3xw0`?``dq5@7R5smKrjQ<R~L z&%mH{4rD>5X>_%#7t_Hx^KjEntvDSI=+vy?(%Nc;j80R^8uRCNFOxbKj$m+0{n}1u z0A#jNn&e6#udE0F*VkJd_Rn~He3JQ95NP1Z)bR`hCZRd;Hucmc*=-JDTypi^&St0m zHv$EfsO=#<yH(z6|FiWzGowXD7jAX<A2e{%ER^yxu<<psIrjae_cY-jM1;-u3Rl-R z5<*Kr*LAQO8K>P&G<mj0DS7qGr>95!`d5F0hYxR2O2Mk{vEFO})%<O?TXh_ieQ6pp z0;KeJ4Vu0S^O}&<wAZv9yxhB{#f6w0tfFKDn*C~x)q0Jan>%%mourE4IO23VV!wOA z@4x*ma5^e&frmOqC&0Eg95e!-^8kEOt;q=r07lmAW$YYv=J9EECW{M4Q?WJYK%i>s z*4ib#Mf?TC5lq!brha36x~r6uA9O+T>LA1>Ezbl^CvXheXJr&S7ZF+sTC70aAtjMA z`;O41gi<RifZR)xo16$VRg`f6#uE}Mx-KKLgnLaB<K^KU9^SnLAU*+Izryv+E$&}^ zfxB0)v06#d8zNzv45?QiJ?MQ7oyiLEZ*{~~ZRrd+EEbw9lv2iKdxiC8i!Z<a82~wq zPmd3Hc>fm1;~vjXlBqB{BC)P-RR%XFu&tRY-|)+Ny}{Mh6^=(zRb<6PQVgg}lRln- zYB>}%*-uxMNJxx+*RKEt0$ta`2(itJXpS1GAY}J}X#H&Wm{!2!=D8)+;c7O^q`y~8 z!=UMYH7u(Xw1hNm%pzSILz=O*u#U2yhm+*u?+mc<4Qj8N7E|Y=?NtD%<%FB-D;Q(9 zq%2LyX0iVVjZD(=#F8dfwMVt!)%`v8&rdiUjuC4#KnFeBA5qPM?2Y8bea>27hUX7x z@0;Jy0NVUI0G?k0ZBrva3uWwX((rLrm@}wd<HCVyqS*Y60Iq5RTmqliH)T>Bt}!!( zj6~LGz20Jbb>;Ul82xI6;dI1sI-&16{T#@gF=@K($A=I2>%aW(F$^cEz*)pcX0_hn z>gq;+USYGn!uIMK%#*9(P5U6igbE01E-<Z;&9+_7%u;Kj!Dht_jUgwZmSr?zw3Lzi zjFmgFGD?wXgYx<d{K?OMsS!5<3|@B6`2DxP#bN&<W)5>yG(e#5Wd5uH_%s{CgmnGe zNNl*kCGmKm36$8w@$6dh1DH@ck*pcjlhk;kpde|2S=<GD6Ot1*X!%uy0}nVBajYUl zUz~8Jal~f3cA}d5HF)YkX%cBaNt(>cK;b5&F^esGJRJZOth%g~4HGH@SqtBc(}ZzS zo8NH6hj$0O`~Eu#&snYT`irk{cmEpq_ph{GcvB7AVPj1OlY)nOqk@fy8e?<kOx0AF zHn1^H1yvy2-reK&?p{DsN;n-4c=z@@e0cvB``wH9Xn;{m^~5=>V91Dv(Ls}@L8Q)4 zJ?L~&Gl*0`8;1c?8YOIz%(mK05HZ{+cOANEMDC=#FF``;++nI}cp;@(>E8@^{BbSC zYbcoAG%^FI+7n?viF$Jkao8=iv1&8{sg?tzp<9kL+gbok>tG*>gvLtzgu$ND0e!7% zBMyECDuqepK|5y*XpVY`a7f&IP6Q+K+$@k1h_cssc=N?qczJrp)6=sut#b|?rGJkg z34l{O0Xz9;PYF!g_8|bzgy(Mw^To4!;CpqZ&bI&h#ni4-DOSKFJKYgx7S#5E$r$rD z@La)29D&60jFA$Lu&3-gYRsQ2W3^giz22w;X!86E!ypp!)%BH2!^p-sN9<m9Qut>$ zDi|J7OT~Wof`<?9kW$9>>I%2F_qe{k!QJaO*le~g7?{Ih9IuTrRs%H?*le#-0A?i4 zq$x{EVw-280E8eQqq!c)XBJv(MTkt>dH?D)zW(Ot{&y_}hr=G<{qEOzetN|5uy+&J zX8`btH7^0pn#bM=968S=vTSf|6PalsC(Jg3<mX{m4U2lJacQf6B7C3Qxkn>{AUoi2 z$;YH+dr!b5Z7ibq!ZZwU8!Q8<?@>?USd}!LanaJnQxWON<Eu*nYkqf536dCR?$s)D zrHOl3`kY9>$8kU6xBD0T=2w4(lrr9Y`8D2r`4z6Nt~E)GWW?+2D9ngwJB$eHU`c#j z9wE~Z*c=36mIzeH!~rl@^s5zq_VYi*&wu&nAWHb~{w<y!-s9!v8352_VI;|<0nGVA z&X&`ls6D&_=(JXZ#`7}+stR-!IwU`Nt(v2slV(L5kaNb^_wD(bfpVM%BuYq`!Ic1I zoCE@OT8lt63dzG7rK7c4GM0i^^jvBOOeoWcVH|`}gS8$)Gk4hY%sH_+JKBD;HJLLH zlM<yKgH{P-iPaa=K%Nn5>8C_`0Ij$Ua*{RBHD$6Rph;I$@~gEX<sKkSdt58ln=M{; zJ3K!>g{+Zi`^3(hE$SI}Zy>;(_al?XT+-GZ*#7G%COGTag|Tr2tJ)uKmvL|mnyLS* z`F~Kj7mXg+=iw}gmLMV!{d583B6B2LQ)i~Fr7R{eN(oex=C%;9csd=_mqZf$6iuQf z>pbA;`BBsOs#z|MQTN01<AD9kGp??#@$~oscduUK>gq~qlS=oRQoHNBStUZxfSGg9 zBDOV{Y2|f{tMytPW{vL1MV?E+);nS*5_7|BVmhE(X*jE<KHgqk;mwy{>0F32<jc#` zX8`aiH78~I3xO~U1!XMYwWwyT3f25zwO<J0P&W)sJxc(<>;S-2n1CK|lTn&k%R6K= zs)gyWUqnzaP=bVN|45l1#0%WWGJ`Y<z(T4t?sgIYAX)$^D{Ky57V=_#2c?L#Je4Yy z>1tydF2ArjIKmH2tp(qI`&<0}yWgVkdUSn{&GriSuixP2_72zAH=4CBsg%z!!X!Qc zqGpd~7^~j^HtDsg@T(=oVYtLF%hRt5{p$4_yngcqqUs)O_CW<&N>FX-R;vxJu5a+} z?eAfA$uniuMA-XPf=Z^gmW+7>pp2t93o723#z~_^M1`7ihU8BdJ7kms3Dk;G5kSbA zGIcKf*IH0?M^sWR)KpNb{45F%ER3!~-Y32ZU3)%7DNxpvLtgip2ejRw^H7SYr+GMG z8V3mt)H29kg^??25uXPl!Z=F7s!r8lw(eHZa0Wg}m<w5$7$iM%*NG-(zd!hXXxdi` z+l0E<SfZas#f6C*7!4>OsF&Nd0f3_I$9B;SS-1r6*lEV7jV|bw;mjM@I&;8`n!xbl z$k5N#{pZd7DeQShQx^Uhf>9W`>u`O0+x%+u8uQfwG^tjqQVCMQZ<!<kkmQ;OsdV+( zu3=!IKhMvPI1NYacF&>(ND2G>4&yMu!*LZjZ?@O?`kOz&?ft!`;qDz6G!vrqwaFR{ zJhl20?OI;UKOy)A#eL)FME$lHK-WN_KR2zx%(%Y2{R{v;wdN{)kUFd|$~ZX^=2}sy zw#`78dD)uwEbJ=)KrPBp{Q4ku7|nEaZ_-m^`W|iI1VJ}nlITNYPS$s0+Fgbm6z!Yj zXwO=mOQrw9n2I>!iD1#<bO{w%)gF>kSTqAuZOq>*9)@O2pU~{bj*!5f^7DE4fX9dT zp8vb=SGc;q#`fwO-~7ohwWv*xfXXEQLN%4&Tr#p^CoNP+K#+lhoGt9H5w>{1b4WZA z1R?)kBn(kYcbew7Oq2Rrh?5^tQm3UR`J`m(d+`ae8L@Q2)}~>^>3EQFmV%sn$>!Jf zk~Vm?*0QS-pKMw2Y=4FY@Ct01J4v8KNei}2pfrL9DI(Q~AURNShdN_;v!5Zvv&Q!Z zJEv&^Y!0Bwuciq!3`j{#D5ct55N_{YA*JjoqnQi(uJ`wPbb#K$y63A(km7tP`>Jw9 z?$%;ot`_;RV1nWNwGHfC&&%XG|6gth>$#}~bsmk0Hru^j-}YIMA7)xEg!2-$D^Y{d z`WS}d{fvX5+4ZJjYyjBKV`GM4DPbHr*|pwbd12SBu-RV8x|D*nUeBcFuIn_NG;7sH zJ@?ay-F}BypsCS1eSt?o$hr@w0plPE!is8nF145E2fY3LZ?N86VY9u)-TiBP`PJ9B zxxK}Dwf1z_io4WNRx_k}o(Og=ozEnZPeG$M#{5l6(>YExfXN2fvt}1GYyf-?1N`Kg z?LSf5%gOi6Sqm&}sWD<B3dYj`wV|VJGLi=h+68I0xH(aX&TY)<H&80FZ%)?mFmsG! zf7fIP)1@`I2B7N*`~A*OwwZ!cPRgJvrb!|mtgLWVMoVDiBxQgZ0%9aXphQO$WvX?7 zcAU5oLXLTLOoL+RBm`2l5OR2Gm0Iq@aKzK&2fX|K_qe&e!`-V_xVwLizF(nVtweHW zAriAPu1>uYa@P6GtutPM&a&VIre^bR#Mo?wmaxaYiEWIv;&?cq?^jr@CP|)CE9xNX ze4(Am0SW*I1C$anGICm@lui<lusJybhusT?;pFOFi$7kiH`uCE6ln&wzF&FOzu7(x z(jwRD@$}3UHD{1Y`FWJ0EtUky)1WR|b2?Lo6xN#}gHYxY3lIrGb*|=fJWWO4mmLsT zA|b2rR;nc=67{~E9pgb}KCq%iVrDxHCn2`6n2|gL3Q08zAehz=hA?A-&MsVzi&8fH z8`<2Ev9||uBl=2PT(x&LzY%Qd+Z=eXgNgWGo1YmGvcB2*3qU907{?tD(^}(l?ehqD z41^>A*H_nAsjA!jUCe(bQ9@d+oSwyhr{N?t36@UV{sn0}c+tz}6|=%>i{?I9io=G} z0jJXej}LG0+h6}B`qdiS>l@tO-s9ElFK}~ni>?z>Uf=a<N=TY#fEzQnH8pe;G+~u( zH#ML}ATO)HXaG4Oq4*rZ!%#m1fKRYhnA4UE+d!RAtqwqF?QAIGXQRc<`OBFALpJ&X zP&ZoI-pP>g!4%@KxmG02habfKc23cle<DIoqV7MP4oJp)S=8n!XK*2m6JwmJR_YQh z05c<H2?y*_LP-f@1!|ozm5OmHn2G=tvl%Z20+Z_G{|)vsk<Xz!)B(-TYHLs{hT(`0 z@1#z^YPG`E)fWAFi`8n4yZcw@SL;@6#*)N@w7e0i%lpjs9PHZ)3@9b3zFyg-3-O>< zJ2MCSpU%-{yT$$M*EsC=I3168d3nO=Bn5p)wGGX)n1BSW`o~&0C8J-7I&d70>Ws$# zDu^a8rOI5?Za?C9*x}*BTddX_4ZFO;)%7hlo2@!0+L#<owuDt^z#ydz>XZ8{c+sUm zgl7`wY);#9OEQ(FLMOD%Z3%qZd+olal9t3OB84$DI>97;g49uf)UhvB0E4I!G-S<c z7StkD-^zsN#|Hqw%kCwRW*tXrW&|sz5xX{LtfD<?iT|3U*D}p%!QKVqH(Ic4{<%KN z_M>Z}0s!E}T!DE$mNQxuk&C`9EY|#-HnbC9M0l8h4O`8{s{oP^!05;+&b^&W|4A9D z9e*>4nQwqNY+95EW@pubkAg6ceGaqP82@4vVO*7~SBiXi|2_WpZ~nbY^y~E%zWI}1 z;LR6b;pX-heJ`e7*9KH}a3z}67Dk!Sl5x4lGibhS70twzG}#!dLu*RuGXVH>n{39) zl4zt%QqLM$q$tu{++e7x$Qb<m5svyxU`DQXHm=v6RULGQq}?&A=D&i1CpQ3qSiwd^ zpQhd;%~_oi;dI*R#$;EAQc9?WFevk%N)-uT8Qr=UDcWMmODPy9`BzGvG5<MPnvZ`b zM4=I_Guv4peEN}UP(&I$91eJTdXl-KB<Q{Cu-#r^y}82e{cGI6dad!uDa=E(;~4=L z&-xS&ZOc<%pu(`*;2TJp+q<uCZqTpR*lf1i>t9GEy;?Ah6Lz~7>|P|3*l;>wDib!F zt;D;JgLrXwLR?br#FJl{-&87)ik2QV0BC@cupgfRA{-BU45tIOSJ&8XZ`_1o{|F?> zjyxAd*gi_EEbqB#K>U3R&@f}-Fy?R1k~wPcZmEFJ?9YMF$NB&gA}9>H)FR=gDjj+~ z4P)M#0dAZ|Eq+uzaf@W1OL%yBan-n;kGA`4Gn&T7HsXbSjPQ`zIN%Z|;rtw&p9=~% znzkh{FXkBtGDc=n_x#D^@1MOPNT|#}O0}K&pdOrAuV)}&t|4fWMf_g+-}k+M<I*CN zBt7q_85{G3pd~REOrtpf#<1H6ni}wNM@L_t0MMd#0*mD{4cdiutt@^Chr<j0`rrS5 z@K^uCzk|`1>)U&**IWF_&wq*gSFb#ISIT1ATdgGRaj8{OYAX#ix^0;Vh2rX13=~$N zkc_SJ=P<xet|_U5X?@C6F-{fZIH8p}HHM2BZKzH_wVAXCgiUS-$Zl+CUsUky+NM%i znU$*r<_F=7zF7E5&;n!<bu#QcuoMSEhf)}$I`o;-A2ZNrpzBnFpla!<sOrBIOnSX_ z>6|tO3C0H<v;cAL!i7zhsuY?13rXaoX@VIAgO&h291Z~9;oIN+EpBdZasT=YY_D#x z-fXeiY&}8A+}<w)uQGeCZnya{<1`E~TX$8d)1+%A_6&gQ^+t$nmSfCX3nHV#YPG@k z`UYSB?B`&vcz$}ue)lYzlWEcrsFP$GJMKl>V-*=Ysf9icBl=aZri!Ko3R8^3eve@| z;c(dF{#C(db0ubp^#)LhBLT>Xeax)mwjAb0tXg(FZl3eiOkPd0vNd5CQ)$d4YwmP$ z_Ul@jWxF=s49SpaIWanQ4&+*z^j0cTvhu0T<YsLgN3F6Z(H4~jtamwMx7%4KfpF$b zuxt|<o#YfWenf&_wwb-3jdH}zE%O<R!f=pk-QlfjW=M|r8`um?+5Wp=+BU70-O&KB zB>oX_#DD|(IQltLg=#D#=&`HJlpx?^dv&FNwWwK5F0&+9l2ph%{Gkc23Z^n)8c*8g zb1j7fk6D|Kw}F$kA8EN@{P6`OA9dTmtoOV;J>Uf&@b3HH>bnxQ+iTq3zs8qeeS=r8 z-(bDj2oTWwY+mhr*}fwHnevQJ*qHe<0QmIUQZf}LAX<Q~V{{on4w4VxhrbavdzN57 zd4_$WQVgIQL>Q6*gQ5~<A_}qNp?A#9?rr-&0$c|G@@yi)G#qE0sue))Fx9~LEt8?z zs0=)GIROKl=@<RE7`^{)+?`-lOFs`^hpx_uTf5h3hE%6h>8?3jHA3P38ARB<JY&BT z+oB}cktl<k+k4#H-Q)K5&Ou!3go1)vQ3z53nI-M5#HXwCV3$4QXuVlu)%VS=t({Jk z0m@DQj2NWU;mfbS#^z7|99%2*`xm@>_dUM*_BS|8BevJKAV|to%fp{iMn%OqjJhTv z^{MvL)W>D4I7|~xhXd|kzsAkY9crD>_iL@yF3E;mRjyiw#EeP=Qa=u73`9~E8!FAP znK9;jJ4$FCl9f&JH_z)9LKw|1wqdgZfKn!`HXHPPk8!L>ka?5>Nb0+Q<nimK88ZI~ zsDxE(#W+nMB0N7mH@^!9f7<(*=p30}+}W3YQDt<nSy@TsxQFfJ>t>wow^$FrH7zqq z);4#%O;pEor<Vw-+Ax~-D|oag1G&k;@JzvP>jFDYtg7nRwFVG#&gfSw2Z<&n+guoc zW|n=FZ3dZfI2?lN-zcQfy0|V3_j#bj=L&M>V?WPHF>gHk@v&xRg{T4B?_aRrzu@=Z z{u-;*2DkUG@aBuJ@#c%Ku)W%<LoT(9u?BimaEwJ*Z+-S>0PsmRp8YJPqD)m(@wI|H z<!E4i%T2}YF$4<9f!O1jX>kKXn6oJd%z4Q-HFL``@5Hz9AZN?|nM%6TfGGBq%0S<H z*1M?gO$2qwBF`K+7SRAqrK*pBkJ`s4{cI)!kP=Co8xB@HBT#1hya1f6(xOX#!eIfR z+0@Y-`@le{Rk9Z*iDw^%0fS~8BO-KNhugb*eD$+m;A(q~l#`ang&$IJ08+qVM201) zP0ksGN7OQbHyiY;H3;f$j|NB>3?#Utr!l}%CahL#yng)!Hk&P8y?UdCjU;D%(R9Uq z--D}|5?-F4C0Wljy8nO`%8}p6!5&YH5AWXMc-Z6m<_??9R#KU2<baJ+z!W@YI#y-_ z#QsT1obEs*ARz*^AYmG#NviUV%zsuIR^Jtgq4XgE5QoIRU!m)JQTr=UF+ed>gPUf8 zlBO*-J+qw^nVXm04pyxYy5G1gWyxiu@RNOaN096H2Z@e2JkzA)3$G!<ETpvc89x6A zV>M7N_mZ!HX|*o*9SV8?ca-G@2$F)a6r^^Sgcl&do;kxAy4IV`*7uDuK2z)4Gpxg` z|EpZ^^z<C)&J2FdMl++4vkkal{^8yQZVC^(@M(O=h3`ET_*}%nFr4u2`|t4X`|tcQ zofhx9zP`o%t2ek)bEM@A>HFT(Tbrhh=(7*NC)Wbs_TQsw9xV0V?W`JcXowyy{U$Y9 z5I2}GL7tHpk7rjM1OTm!W)gzM{kNVvgNjFm=3_7|L#-8^9a09M>154=8XTm4Em}lL zB)_qUIieH^<(i{$@*W%FO^vEJx_2g{eQb;%I9eG&t<}A8%`-kxo;j+;vc!>aSpuIk ze*&%;hXL>3y~X=?Z;?{M_01i=`sU}jzPZJEy;3O~Eq2{zQlD?kWhxVn$D`QWqZ1oT z0wf=w5v3HEq=J)_J9pgMUSH#N{Zhw7?(lcm?{R<sMpBGUBM$o)9FGSa_B)KHL8T}G zPn46-_jo$tX?%y5oUz$RI@P{kg$jUx75eG=-X(WmPc;uz6nF(cRCuBrlP;ABx!pfY zsAE=J{uw~fYls>PHit}R#(KS$y7GNREt*xXTZz42*U<L4^ik5UI+F=tb}ALaFf<0L zk~aaf^tMrQKl4=x*LVTIaL(+$c=pbaeZT=T9%HxYJF96b0^ImmqwrsSNRtU{&h<n( z!?85u%B*KV4CK#%JqHLhY5pz%UJFBNb1+t(y|T;%3Y&jBKjSdq{rh)H*J|MFHhE51 zeR_Wgt}SVwI4(Az;6Q4QVCVM+0W0N}I(U}s4dF84S)Z6Ccf~l4I2?9(`}Vup_f{|A z%ddVW&dYu8Sp+`=fKRYRr?D1ijz%O5y$29rjN0PUQ&M4_>>lXhn*&eSbMzikCd3Gi zgZA>!NTmcntWh$tYwRB>f$3TTi;Cn$Yq+pT{7LNoIg?fo6m5a1|LZK_Ps1VX1Cqo; zk&v1MZMhM`VViYzPWGBVLSQyvFqy<p{_N(+)E*kufB{#?PX!^hRy;nu$HRwr0D#qc zjlcg7|1r9*!)mqm8(GKYLxtJ;%rwvkNlaM;HJiHiUu>e;B?=-5#q3ur&^UT-38~O1 z_Va$VcBi&lE3R+uFiiu-VZiaQ$Mf?e9zT4LJpM$;IeF~Ag}?2~GmeKna@S+ET6^?B z%1wH<9PBA|I!Brpy^@MlEzg7aLNv+K0GbVdZWb`pfH5MII$K&{a~Nc<k|i)Fbm&ot zkZSdCRo624EXxaPX(hP*cZkO3csk0xEDXSb0L~lJx%GZ-Huwl5A~dahRB<7m^SBG+ zXQp-1wV&VA`WE}J0N=~YZGScm4O}%{jj%-K8u5(IO*^6&5R3LfN?HqTGAS2&UM1DF zX)qfYXJ(vEC+v66Gc|a7zk!ZGKjI87v;gxt<u)L0gOVcW>}jPVz0ywU-NO7W)ixMN zRc-oMypn;a@R`k%hdujb;dt2Nc-Z6p+us8KuC8xzb9;~5yH}q9z^B+477DmHwu>`t zM9BEF>}erJIRnK~&;~~BNPY20+m}RQ24JvcAXIGvR|Ygk|BUIjj_AfcCm<;ihGD>J z-P={D5OsGg8k<VO^t+DG_wuhY<1iGQ#-h3Y<z+6}5<z3KLSJUscm}%VXv8Dk2qiBj zdg=Snq&&FvF9fj7ze%TduM>^%cGibP)gCkBu-oC^{&)Wp*SB~0`~UDCW3^s6F^wlb z+OkWT(DTaI94bixaLG1>lD0zNWbLdJFi^a}j!A9NPMA`{Y9$F)w%aR7&#a)}_Wm`# z`0{6Xd4BS-RL}3PUe-EwWtuPmm`Xw4k65i%8fGZ(EYk$)l^Hv;XkOZ;xe%b)yqd*d z0w5G{u1yN9dR5jyxxfr<yeSb<?mV2Y?^mKN$i^6BQ6lz@(j4#LS|UwG0cK#m>Tx;^ zI316^PZPwHG2e%g0WG8Z5%#8X`Hu<a&RA?uE-#o%k&c(5=0cgy*}VZ=Ex`-<p0ihw z6Bv(#31?N49{OVyf-L$O?A41dKtY87#x-iKSoJHI6rE#O-hCX!?`&h4cWy0fdD*U2 zYZ-UuvTfV8ZQIu3R%^MI_57df>UD4a_fOw*&gWPLNZ-X<a)1pn0z2SAccI-6V2469 zC>>@I9F`iSvDi+<$7{wr4k?fNz-$p~BHM$JwLzUVJ^R<Sf!Sw|dN`1wPUEXjsRpd? z4PY&fsP>Cr$Np)7jbnSqvq~aLdJPS2k$}DL{!cOlDPYZHh@K{4sS6g6v$W$pnJTU1 z3$R4X_!+M!=_fJ6#eD@xf#1uS7OtkQqv<b2jd#-g)g943OL{lHC|)!PY`At=7)56R z@zIjv>}>8s)>e*in4_tkQk=+kl#9grO%iRLG~Qy5Foh@Gs#+Q&2T-28ZN?DWv9o}5 zKq6smoV<RD45~OmC|2gjzA~||Fe-pPP#RTH9Eie!9Z9-X16TBbrFQpp=;Vj}ROPyy z#nCYhuM60sUYSxUpbU6rIR9VYyy$C!g1dD)e1+vxA`JB91|)Pzs$6H6MB;?a>KDEY zi8H0czj#7sxz6uLIK#l;DNb=mZ)ko_oG<EM=;RDh!SEd{&ptrmlG1@{Ou)z*J<amz z*gK#Ou*Og;>ge`?Mdy3CB*~|39h7D={pI1Ht}-dsTi*2CU`ILD@62GDo#0(nqznVZ zVbw_35wTBrlO-`ht4*9C79tG07mYqSi}Y<R(<>gue7vZCR&>CWc$B{u?S_M_vu0;M znSXt8yNe;WG_-4WPglZORK+QGg4{!R?c_CPB4~+jew6R4DrF<+t<Zh5E$MC&lzY%a z{gY^ohwU*srHCts7u_f2P=1c~<pBk4HOfFj%t(hXFC8SUahA+9QcuAUP@`e9qYqbQ z3WCkG(^{klXb)Ydm%mfLPkd%FX4b$?v#9Y)3VQsJEv;v2lob+iV7V|PoT0Y!oj$O~ zSzd^pYa&hq&s-dyQ+SHx-2T|}E(vb8{H=V>P;iWeinDy+1vAP4$+l84>SMF5F(++w zWCeev$4@a|2*bl2k8fnH&z+N@{T-Eg8(w%Lheg4-6=_>IgG>smy&9ZWqQ3Sd;%993 zyf5c{^h5#4pQ&`9O4$|GE`9(HgM;HeQpM3id{Bmf+4fR1yQkz5(t%ro7kq|xXk~z* z>6@NzN{ixTcZSD~`rQ;BlFT$+1G>zBoR=V)I;M$$O5owq_^T*n4d&PTZA7pDU)-i` zD`34<EKR&qqelKKp!8}T>zKLO_>)*<*RfUVu)8byKp*|$l1@d=%4We*Ej{=COT-N4 z@iv5Q4JUehy*)isfNHSm=102wM;fO<DOeP((@hWEY(IOmzXS3=;6YSzjoVUUE!G^8 zLUdR+CmR?yPIX)sc#<xD<?!P@SjxFdf}Z4Ze5X#qPKzgxT=|2Hdv!4<zza+~bNJr} z1>mPfdF@Uw=1w~g?f>Z17a!%`Jk#dzZ#NDCa)gdJyeAJus&sLk8!t&Qx>E*InFhWU zz+Xz3O1a&?LHWLY@MV!Nkf%?k`36a;>t#W?`Eba%4i$S4^wVL86~CUNu$(K(Phy#g zFkoe7hUS{vuqFc)VN)JP1rNeKg;*j0>653nZuC8WIN~6kqN0W6+P7Bq$Csg+49yL2 zt_0<sEafnYKkzC%{Iv54-g!IJ0)*G$!@tNU)A%RL@R?`$mAA;@veYRIh6IWq9~Hp7 z6Uv#K;*h_rN+x~CxkKG6U8lhW=2T&Pnv8MXKCkelc0M7Cdw!{@=D;gy&so4t-G4SE z1_d)zZUI(pQJW1S<b5T9=_Imqk8M^K6E_kz?JrB<u7VR)af3t279M1l@0~pVTYq!| z*{mHOEDp;V>js|>W2HHjWSu*9TD{6df{sw`YY>H*vd^DI-fi9=>9r%C;T?Z)Nz+%? zMp2V|!TSJJQS4SwPBWIxA++vP1q1<`=AyRCrzV8bpN+;k4?#g2lx*Yg*wnhGJRug< z@=h?2Sp^x8={(!`LggZkj8S!JYU*Xtn4jfaf-?B5Y8rFmMJRG6D=?}gzoGd9hZWk1 zRG5-6jwVa@4o}EJRXUOpy6UH&C)5YC?jWJ{kzI<bv7AZ`k{f}tWgU@?kq5a-dj?dx z^%B(3m4{v-miVkxTy(4Kh+md;VHs<$wQCnyd`x^l*(I6Qp?AC=c2Om<-=+Bjll-y} zy?4@ltD^?%cX@G93r*f}7<ku~QQ4lK)r~?>H|j*coSuq@4ERTJkcEKBHiaqh(s~E8 z;F|(1IES2Z=d;JK`Ref+DBZ*;Sgjsnia4u>SYAEDRnG1?!;dZi%Eg5~rYCR@_vjw} zU)Fe?o&^N6quEP(tjrJS>l3^o<TBqsdJK$#2k#R68dNKTPJf%_urjb)lKS65qE9wI zcRlVi$&fVd>^(jb0@m^KrD9bfiXP}@Y1)CFlcE9rnKU<GI{mS&-Lp6*^xInKzPFue zY&c_H@>2p8pA1grMrgRdV%KXi%L{n75A4IiQT9bqBUFmIQ1x@3B?QQZt(>4KmQur4 zn^<}~NPXUkHMDwM*<0Va(i1&eY2CuOd>ipP?ccLApP8#?UW;XC5Axnq`M^9?m<|4O z?|gVH<TS#C;8$$CXo~)0MQ?8YwH=ucwC`CY(DGOpR#=I|yU4ru`_bX9J1ZIGwSJgV zXGZ^Iu^5gOlht_JspI4z{2yJKgU@vltf9Fj8NXVgUe67%tkrb~OMgv$7uY9cT6x)7 zDU+!pq7OC7GX$zDhK~)P&YqJ#zUiyK7L->J#K3fDAh1%JQy>8UGT&OhARb3;J$A6% zKSHOEiz$Pys0uql_NG*Ac+zlS(#L+e_qWTvd>E=ZJ{jvM8gkY=ftF{##)x7qLEV%E zy1uHw?wuu!hU=dxQU#X6$9%iinU(O5qwd@?tp1LfGEVX^enUv#R>RE!P9p)xDE3RM z2|cW#`twhYoLsWY%<u1bnw5Cx`rZ8}Jm2>Lhe|~JzwQf|!-Yc*>D#dc^FH<KCwnMI zKetIbE)Hc&#;<Cf@G_cHBvjptw}6qhIgNoce0<LyIG6`5dq<DKF*?oos2x8X6?LNi zz-#gRfZR#T4mI8j{;*ooVU0;piMNvQf50u$7a8DWD^a;oTMFpe=_7Q<v-7zVW9zWH z<$xhMJtQ}zXP^-f6x{zH{ER#()4+_4B}@1-Xcs+5TqxEiR^{^-mCw!UTF<^Lt&g{c zwN0Hid>iYmNO%^v$X!}!VCjnU4anRqNJjTw!p`vfU<I!cQqCt%7|OkLGnTH7j``{} zPJ#lOjKd6g4l59Ejv_DVk2)8N=?Xi^3BxdIpf0VJ`cJIyX4eKsS5{Lk$LEK;&a_|y z7Qsi~I<Aey!_$|OuTFW7fJ1Ve+gK9SFiOJ4g$*la6$YedDmU>`8ZP)4YiDKZroS{< z7R@0b({Du-nk0UpToRFlqKrg?)saklO4)af#B0oXs8mr$XSh*VyzP9OiVgL%ZkXwn zEv7W!r_a#MTM^OQA)SGx<yo#pgTgc0&ZEL-&`{uNSFUhO^O38v%VIhuyr+rC{V(9M ze)U=1K7(Rt!9P<d73!baDy?HlF7%C(&Rn4cbrYip1FiWnqF|$J3*1HTJAi<DBdffH z*V5tvp4nJt9xlNrR^tadV&vo57X|!0vLy{Xy2GETun`tmk7yr>l<SXl6UfTPS-2Mf z^PIisk5~s@z+xEy#D*+MMEFn|LudpOSo>?f^JuV2M|R1-p)WEf>BKeHs-=q<M}GNm zCL6ou0(j#8SVe`|hc9+dz?7}@K#8nIBKhG#rLaGBj0zH^2ffso>M0ENO$xq}FZc|+ z&b(|YIhkZ;Qy@5EUaH~biKJUnUgbL6=ee+onOuxWiNxe8QEH2y>A8BBddi|aI-e3{ z5iG3b4Dym;V0)0*<O@x>z7>coaEuE~g)Yvaq?zY;{ICJ>Bqm*yBF2TAZM4&Tdfzic zxWVZB2dv+qOc-m8$jt8|ref%0i`f69@%at-84NBj7^FMU8aK>%E=*uR&Cq(m{T~9% znsFE!+4JR)+$Hk=1Yy6=*;(u;WRxF_BbB6ff+^FMjb4)<FYa;fO0f>stRtcyKcR<M zajf;mkwa3W5m5K?J|Qvn%OUWTNGZyv{GHBY>U)7hf!IrahIU|QNZ*uAS6C64q(M?- z#s|MAn2{tsH`AFZ*2&Dzs-_G`NHDD`900=p4>vEjQit1wFYkxvWcRf_eILI29H-yF zx_up^s4P(xUQE?(%k}eHKX+8~r)xk~wbv|_n#8eV_{OtoRmG##Ml6-QLWf#P9kPg} z>iA>H9d*X4svT|XF#<0x?2O;)iWc5;`#J0LucWzKV&}?cR(m+UDE>`q+v~PIg0s_K zSzHH1du{?Cun%$1OvpCrWpF9)7gYJMO~QM@2v;BBl|$X-wsGt;Yy)l!bU&@5#JV=& zsO8R6^T|Ge{>68QaF%6a|DQYYp3ANDbXeDx;E~})bH0y|>H?WS3z&!_(=ZQd_w#2A z40@d|hMDCmpj$&w&1|uEEUNHd&jVi}o`dKqszLutG;O>Q28^j;?TeHRvZD|nnYImg zuN9%a9?=uq;2aAPOT{;&rt>T8b8R|TXWR&5Mka~B+UbBWS<&!ZYh<CGvf?|L=b=!4 zWi4Iy{S{ctF$b!AO;<RKkXcvCZsG9y0LHK)-1BSLYrP-8%HzV2^w+-WEzJ*&*er)p z`=Uj(#hptNb(a!_s@S9yJk0?#9!k7@au}BP+uYbLBk#nIh)oMf`X~;WFzMn!*hSQ; z8lFyW2@?iR7tWr!Z;~TfS=fPe@Tny+_@BH+#`=z(0fXVr!K&}#-rpyD!14BfM7>VG z`U^HGp}Fb!uT(tkB2It4X+qYFjV^eN4lCTIj9ff^of*s3`~RmXk-%JCdY){Yj8EbJ zFT1$Za2B6|EkH`8vjnFq)~h2oeak<tKMR0_M0@p(8`lk%<y2`(HvIJB)Ny3kX=JC* z?aFjW4#Zs)Wvu5*j>mLVJ4HwgR6hLu3Fm+Gr%TM~9m|-HLt)`7iW$QWX{t6sGl$>s zO0&1qm3Oqm$Mi&rGI3?h?Ii*oSVA9G%yWSgh^N$FfebPEFV&}9tDw5F==PO}i=O8e z)7mU9n93U;=I5r<%xDgyO1U4p{>ACm_M)$2S6`nBaz|c1ok6|%Uu@6-vkSTn0_+jf zb`Uc%$j=UyDaFt{lW>>u@4sRtn<f2D^+`?oz>S*5Bbp}cc2q;6r%qhDiZO9%Sd%Zi zD?g$sEL0nKUy^m^e;09~5y)G)YnlRTI02KQ@h~f%yvCwYLJwVf`)<HLGK7ct#<``A z1*Pi(1Qe={II7tq++wDg%hXzAKLb&f%@_FcBALXqCqjSl0yN#P8TT6aGk%P#Mo%WK zRO$LP7@1<*WG#t|yQt6#v1PDu=>b$M`SyOR@AIm5^-7!PEqtwhZ~w}|lPe*ELS2EB z29iUIb0-Cc=`HR=3pqXCSizw(_USKvx|)=h>j_fL_C;hLG1gKCdu0Q|!0H;m4EiSV zhG{yQa=AGdrhg}BfF*q;vpN$B4E^OU9LkIeu@6x(O=5Xmq0JaD_pdg&Ig2amXs{X* z9eEylkp~Z=QY__luWk5fH&KwTeeLy<*<wKd^4i^~+_E-`qG+y4?$0?;z_<GG`N!7^ zn<)>z3{Y!7g>{SW?8&YRK^W-c&n=g37<a2h&i%cg_a74eHeF@IfJsxMHIT}_52wA7 zh7#5XA<?iYTzXA!2BQhE%`}Azub7SfD*gEkj3x%ED~dE^4emtL3Ssi(1Bkv-!_GO{ zG>w1~AlPf+=B5;x;EB_iVEhiXvyKf;WV2N|Ww|MsY0A9Na`r+UO?6LNKZmTi#fkY( zY8c_dM~5)VOe0k8(9D8$|Bz;0Dm}1?U)ib7now@;8x(cKe`zdFtDwxO*No)t<&M@) zYx3WeAb9D|roWGFrZ*M(f&pM%(7^O_myC7;`h1OT_MJ)^G8Q~RVG$KXoobp-Xi>cB zDpj?}`SM5aaOXwum!12zj`m?!Ccd{-D<nR>TAs0QcUkY6r^B>0mW<Lyc^^x%))R>d z2`sRc6XlIbxHvwi9XF_pO@0fl!7(2i6dgp36t9a~q>u4-$WRm8sctf{56$v)@mWkY zpKO!fwyCV6^)AbyS_ctv9PABxf_#-0<`W*R!Aa$Rgs{H{r?=DIO{UJf+H!R2ZEXp6 z%pYD?c+<AB48B`9yu$gB2xIJUB}%eR|B*P8XO^7oA2oUm36nAqk$KarUfur05nKP% zu01@ZQwc4RK4_V-6kF6?868>wM=Y&E#Mv0Z{GQPJA?zR2u7JcvF_XLNq=d+IJ^tZw zsTKPFduj(BzOK(lRru8WspVh?g{i@mxi9xn-#2Ol=)ct&gsD*urO!G2Rx`$LmL)Ht zdi^7&=s_*ykO}b5pswf-^RVMiMjZysXdpjz2$4t`ab)9vM5zsHGmez!u@+8dOlTJW zXrzI85bans34fq`EK*PGN{^pQ!wlUQZq!Y3+Sqdp!87NvAea${f*^DnBBS5K^W&Tj z&7bVhcyluB>m}$!ZHZ)6NXj)2$bB?rIdO_hc%c6j?vT~UzNd}?JQm27Ls%gH@N6&6 z>$^J~kHp5m#+hL^zE1H4I;AilgD;v9;WLFk5gZ&~t0l5&s8wekWMl6AiibY@W4h4h zmyR^Zn_p(<Ut75OcNsT7##A~;Je$LI=MHs=-*9PRyx8L0JvwPDLtUDLG!v||EZ|ol zPx@=2xW~39#Q#&P4S3;xH0c|;-H~UZ|42!2*v;$w(Vxkq{3ZwCNgZwSOhOQP8LHN_ z2mW1-f6f{XOh9Ea2!w*tQXpcQ(Ig#*HzHf68ayWF@hK-{#Pt)0d?8MBNXx~(H&tFX z3}L6wF|m_ON3V42n;-Yhmi9tOtia3v7aCpD>IltXz7=FtoH->i=`v|Fcgih@-Lm)L z*XKFdU{%8O@tY?O>B?1xSdNmJyDofx%=}8Z5lLYKVI&5a^07f#WeLpiZ@6nZv3=lj z$f$}u@&OpmcVu8pT)P_kTIF<w`-6>0WC`&WT#FOYMi}a3{fA~}I44KTA{q%K)zo<b zXhfuW6Vk;YZpr+iBuh=xI>ALc)EnWkM4|8xof0s8#ojWmg<72-b&RKy%Qx?fwF!tb ziadm<ZDbjsP>x#Z_qe7}3@e5Qw?Ynp2qfLVSLBmu+?V$5?olAuyX<kWjv~P?r<3Dc zObAO!n;*={OzBFrQr6Vb04`5p3?S{O!Pphc!nMNE=sm-m^ah#DL4r>zi*%YJ%5m+> z$7K8h9hl8cv6i5S4D-)*neSe7GLR&jWHY{tjBciZKd;s8f4Ov7zHa8|8*EI@C>)Ay zjED^s3;nc_8izU&(_mfEa>0fWq_Svo05Np+CzulHe|h50Yg<Wk-<&1Xg8kL-18}kk zg$NLvGT@W|G^=ihYB}rTq;&j0^5s`BHZ1A6lzy(sP)#TpS<6m&yiX|iQ*SRAesDF- zUDhR0XTUcc(lw=29|YLvjH<MTam+3)a`l0WS+0mPM--H5rvcOIQJC=@EgNmZ^7gTm zp;gU@sNXmdM6c0)TJQYDQAYAJRfg&7V~tYCwv;enG)yBH1Vi2n>LdAZRw}ES#Dq9H z_WX<~t6K`i;tvo8EFt#9u`l|~w4$bx=M5ar)KpWKI}*3K%F-AFR#COstaO0tM174R zP1Pd(qAvRbT2fUBwc^}4vwp@`7U^K^wAPH@04_%F14J|9)=YG<fRU3O6$ZKhk}ST= zA8QuD&UMOZL?Q{KL7jDqt51Ty-d8q1U{+}YM<abE8uunso$M8D{O3YS5Ye^8Oj5HZ zE@NJTh`NA|s4ebj&jjlAziw`84kf%<i8xhw^AX5$r{+ld$EaoMKYDBaMk=v41?3TN z26)!oR#}RJQ4WtUi4Yh^$@0UjbuaWbO?AewW#qFL&Lh6fW9@V1pqkm%)M?Q4J=DvT ztPwdBctkiw30;Zf&@Q~azzeg+O0`}vFw5kj69zFnSHi=nkFq%E%q;S38Lw(AS)wc~ zq_nBKj@Q_f@x#L3x4M6Jr93$p?`MUKcjN|bA7XsGQWtrd*|uW?K?nvYx2BO__a2S^ zH2~pD9J_*mPh)BWw!##@(KH2(HE0NxtM#d1L<%tuy-d;PQR^FFsK&<#<2~h;17#qx zeo!#pX=I9rW(Pd*=x{C7@j-Z!H&h%VQ7Xpm)O5K3r51Pjol_<NUq%w#3>BtBPXTQh zX0chU{!S%J=65A$N9EXtAT;*^wPm#>s(^~J<i30q8NpLN`qqWs-Yd&6hS~)yGZ7Xy zKmKP)oEwzkx#O8(!2K~chK43qdl&Ael`z~<>lAXrGwYM<Tl%`d)`;I%-dv!F18HFI zgZtJicFZ5OSjK%9b?ywrDH6q{k^rNRz3)2_AnRz?uI_h9L_=wJyIytim{CRb;u6Zt zpdP|jsE~e~DyT?p!;%=pEr7zYBn@x6rV`f;NMRaS*=fc>bB9C+V5jx6raELPJHH(E z5fqY(1Hg{KK7CQRuCVy&d)4L{Yh^HV0VIvNR_fPBa&ybGffgowz5X_`*;<IMpV@mB zVwy7Ov)J^H^7NGyV~eP9CUeKlAMzrqCJCKU%Q_3fn@*?9Yt`^2%n~6FjDTU&5C7ec zZjZ_l=^)A%kRIu8-X8*~(5%Xg!r_VjQ2qQNtnjef^Kq~z2|rKJ;ZAnoNL(b>E7Hu* zu!=Vad4*}9MD|d~(1^_$O_C$2d~A;*L{=$CM?3p*C_TbpPv@7sY+C3<ZFrGKZceI> zg3*|PdRt~wkFIr-{jQ<zEAWu=lWS0Ze&^MQYK}Pa1$NH#q1?P#$7opmrp4W%A;fsJ zOhUEElp>w2V7iW6Z_Rztx3AS2HZ8c@c-XgVH(d?*B796Y=x{<7cVB!hL$^n<eYD+5 zey7D=An0UuThcK{)#{9N#C@%~T}+$p`ov*|g>)|e8$}NumK$D9<7AgK$TO>AJ`; z;43>Ux_+X_&Ks=P`|}QEaa83AF|hT1_qpXdKmYEDn1?4-kRehIoz=~>|By@)ww{xg zZfZU9Go6!b81L(baeA-LE^G&XBdbfh;CBH-8m%uYv*2+Rs)VLx3QW_c*2+a@j;Edv zaVjXtt(-0M_pl_ZVB4UPx(u~Ee~?aE^3l}r5B(v$8@t0kgMQ-mp7i1|?nCliQogBx z{$M9axcA{;XH^}3h~l5lsIxl&f2_|j*!1HshuTLXsJSh&zMIJ#XzgjKyZV(s$SG=1 zi$u-WKd-{cM=?1&&%5Y+|2%Kns1O_U`U3D3w@6t=GuO~|Rc)gKLu|ez`?PP0XWhy3 zx8n@s>V!pReu~*9PSD6!S)fp~T2)`!AQgXUqiPvtq`V@|uzBob#(wHP_5C=d%ZG;| z-?8qfAcqP9TEmS6I?;a>doWn6$!YA%?0a9Q>b-DY$*~dP@Yz^}t$h&1yqeu{Cj0&5 z@>eo$l&8RL%F~PlqDx+SRNO4_EX5eE$BmMJbMx86sk;6W4)d@!`F9&T?{Z%j@j>j_ z)>GeJ>8q9AfERI)MQa$;q6ngcVh&wjO@6^mtq)4dc3MWv*BvGUV1|h#9%SeHY~}nd zHWTpF+|c#*RchJQty{;li)0B5)t2nLz%$p!a?qleO0JGEDv1?))pw)F)-+Qs2mCe5 zM$Ez$q-G`+XR6n?>zm>wy93lugPK2%2o!s6MB)n<nt5P@yc2!|G&~U_hjTnB$xLGl zpP)mOg)-2_wjQf4Ox&51V`E6JsjhEw)$fVAi_IiHYeT&Uqj~v8!+FdPtivx)E%JLD zFzo!ApQ%~-MgDZ+ac@=!rSpTvdZe^YTwv7S0H;dlj|;I<{7>%|nf)f5T$4)XBiuaj z3Dfs~=zgMbDvy$T+Wj%!%DX9L7P4IR`v032(*I^0Bp!`ev=mFF3GG^zGDrI`h138L z85>^6;;ld8710<ll#A;T-z?mKd%twm4)dXsVbg1Z5{~?!kegehvFNUU&_W9d2#7JH z8O<?Yy$?gCC$ZxH@DH%6XN44CVWyzu*=!d;R*BNo!Mo9=42`a71KSv^voT?7{=_)t z8KIPL1zVT`pU}TKJ!Fs%9a0SKHi}U;@eVZz&9OIa2!Er~It%1F9arwg@?;8ze6zp~ zm8onQsrNl=v@i=lFx7Gy<v&69gCxHo(_RIgSXJb)mop0Uk2DJ<)=0q_lQ0T(J(B@1 z%ls1$>)M*D<yGN9v(DwYK`tQ2)6tU}l{O`vwYeQOr824tQQ?3x&_J^}<%;~^UXaH} zVO#)4hge7Pv~#4hl0X@~dIX2w&;CCJJd;|bK0>ctCi>PoVn%J1>lE@xM4*jOpC&)? z>nm1vyeX8R!z`<grT%w8TVZb>nI8fldY#6Fy{f<Qn;*Gwr~3$v^<8&8K2Mp`zVKA^ zZhAYFfTw)7c`|-d&dz?5T&>k{4u>R0;4e@7eW%Pzdhs#a-Fv;?6X+9u@5fh(fBV%q z|K4}DRG@j9RUoE7>d>VipP{6X*~u-8g%t-Axgr#>z~XudT#5=UB-_xsQ&k-V6f)Z7 z!4Eo&jN%F0cE=M{>2DcN+i!Si5)%}--af{8vINe9#aSXUUeF0beF7L>FtpG~tP?wk z?SG3e4(!!6ntHxK`IR;KvxH}G;uw+;%y!}^7V^R)*P>UrQ8?Nl5OG){Mfa`qNbV*< z^B9U0+hPP$2Z8yfSE1uEPh3hoEChPXq1?6!n`~!In1qK=p}6ro=w`fA(cAGP=gUAX z+RtWA!>5AeYM;3qM@}=`*aoLj8+}eL&0DO>oQV<Nr!Yi|#WxY6Ei0Qo5d4^5s5#&@ zYV~xDy~yI=CN6h&bMidmLR&d$mJ6LH(KIhX_6s8o)4rxw+k;7ollCl>D1$6mKral* zXQVL}2US)weGQ!Wv(#RvIg<IQXXu2-?(zwUdU-wzl96q9YDUoSz1^WNa_;e>@@B{6 z2<Ip5d+SS@q&4YsM%NYxa;Mp0ms;(vH4#PrL3cMW;4L|`6d6GI3<ouE&LI(V+rI}R zr&>;kbNz~SZ)$uce_G*zzU!`e9BWc*{^_*}sg&Md+D{|36Mvt$$zuxdlM=as$bh&X z2d8uX)jHvu<-N=Y)G#PlmY;e~DjB&7)6kgBaVn2BXGapDv%+0PS99+Fhor9Xk$Q1E z%hHeyvk0CGX^F9%%B6$3O16@ff)Oiz2t!2`tzwS({QayRS-J4mrCtIPP6(=lVN4GY zko=hg$6J>+g4JU6F?2@x*FCy@H97EcqJa_sg3`YSZAJVXBl`*R;tzdZH={R&dk&KH z{UYdWC+0j;1jXp?t_(b^zXYbf+2M~0=DnjBbX(A8Mq{8-Y&J@qP>-8{kHfJ{4)G%n z7k&?qY@3=t!CUiUO1*9`zd`k_H5sxYP<hk%Y9@+%<1Z)uGz$`_VV5;W`vnMn8Q&UI z2RLJRvlRgo^FIMt0LI{U^INN}yK~gc35b{%-nkk`zJ!5tlHw7+5RTUKsd@Y<Vzn$6 z%x#V>!uFC=J016F2x7M7*2+<t!(Om%)pEOi;!-Sy0i3V@BQge9(bve8{y2)|a&(+n zp$>*Q2vAZ6GIE8gpYWtSVw=>4OG@{DpYW@d^LyDN;e5vt24%=IXIw2|1XN_WjorI0 z4t-TXEQGnrlKAfb*c16`E|N`fw(V-R4^Q2<nt_|P-hrv*{EF<oW6UdKHdX`zfdDE? z`Ur^SgXeze2I1g)_<e9Ze;dYNE|UPh(+8w{@6kJw%uM@>QR$T`YTT90^OsZDhjAX` zzeO$jvO%0O>)Q@S0vEJf`gG2OWMW!_qC7*o6&8<#G6^X45cG<!VCO*T2QtrfTQk4# zCa-c!Y}^SdX`&6?S<h(q8XqbH0n*<;60KFmf@K(@ZIhw9P9*^YKYNk?J_j8cJH@`; zWuO6j<ZVTWTwhUzi(vy>d93*tlN$yDb4U$TUA>|I{-;YFchciWo4!Az($c8k8+iiu z47FyO*xDiW(RT@mb#C}nH?a-Muxjum#REFVWU1skoE%2@veHC+6G9lY1l;dXl$J6! z5BLp6stvbVoWhAAFI>thY5jwK0I(8BEZ<)M+06eX^Zv7+f`IcFpaUcqJx*uesS*6< zMQ2fw{cGf&8gyG9hz|pu#L-dn0}VD%kft78b|th}(|f^rup}8u%bHtP&!)D1r`Mo& z2jGevT<wWYE|DpZs5B$MwWv`|f=}qU;F+B^IhhNRA!f`$&-odk9b=D@@PAQ3%{0=q zsz%cD!ZE@5zg}~W<5QkH*nE-Yw^)A@vMh5@^~%vrQF2F-F_`{Kfn!}Nk>;b0f6$H^ zEE}Br!C}u!0vlEGJJPpk`sp&1J5#!Y)nMvw_0+@j>iTOxEb9*89=_CX@)K2qw_Gle zFA3m{-=B{wsZlC`OG8vk8GQW5zIVvTfQ3Eoxq!y5AzAzPxj?#;5vNuI9ZpNKq9d@Z zybIf4?|R|G^xjTFZkWxa`d&--()FiI^$R5##-H^8(Uuism8i-HH5nVclfbYj3?WiN z2nWnk-X!*H*fm4eGc3+-JIpZ-rVxCX4rkp6-b<L1PsnEDX*!vcZYSSJR~J<<KoQPV zBg;7KM-=8zO;PO_Pk<r}gMrKQP1l_Tzt559+{!)aSvim=u9wXqqIIrAr-`H#(dp4G zyeClTtV1L#@Rl|1ZO(tY6uCaR?@_SV+L>CH9stcf=KlxxH+Os^Pl(yDs-Eyf06La~ zr)R8Bv)D%|EgEyv%NE2cAvB6x$8x*_R_SdxXaHpD)9mQSj~>V&$!1y38G{6hTR;ZT z89vSZ9!`K{j<v`Oz<grYdIb*Li0U@G0dv!y+ZN!E3;*Q*1QI{DRIF_2!539tGJyq= zG-^C~wZ3AKl5T1mxBcj0FDstjvA%#sn?(&x^s+nVT*!J4ZZ!@eD$B-$@pJ9jcLJ9N z`PGU4wJN}<AM;y7f<Yt~^15_rvGx{59X7|(c&D6x^v&RNnd#wHlgcA}n{g`OIhm5+ zem7p*xmdm}m?iQPj?ioih{U{Gl&Od+Mk@23T;YkrW~WP#NsLh{WQR|_8>KRoZI`3R z%Lqvpc(zPZ7ey+EW@ZZ{N<gH!cJ08yw63~KlGM-+4<0K!(60OYRjmoz(KmVm!xo!@ zN(Mm>dNMo-Tro<ZX#Z^tk?L=8qwYyoJ%O>J#T~NJEM#h@h?iR3|7ccc_kuQ^kR*W3 zVTgl>Z#@gNqGR@2)l9|axy6zCSH@oNnV<S!pF0)4KC7?oL7KlmcPdtx__K|AX$xwC zqs>P=xWy`5mgz&gnK;<RI@$bc>is~&824(Yc$#<!TEoWMw31=Qki5Y>9Czrq9RN;X z;OP?G+3DH!c+GUr07{qL1Vh9W6P5<D@JcOl4T|C!#QT85l<dv}JT^&9M@p`RhNk}6 zMK*!LG6VU4yXi(iI=}*~-??B_z!`Dqv%Qb{d4mH`7j>9Q97M_s@fRQ{=Ht2SP!!X{ zph-P~mNnF3wYimkZssUx?bGgO+@RMub0QEksNk&iL1{;^pLrK`!N;<@sr$n$ES4eQ zW|fqAFZFAKAOcm&kzlhV08*6+kDe9(MqvI<K$o3cAG;&Cn!uXWH&SryO4b(O+a#QS zV*ZL^VY!|XHf5K*1Gs>N0}fT`K~W;I)Ywpih*kVzP^^l~pgb{*pepb3sDnQ3YVliN z0erCO+c&z<^2vZGq!hZHE{|mIlST+ubf6!cU|wURkok*B6%97p#a`X0Yhy}*u$t)K z8u8C61Zol#cZ~jEcj2%X7h0EDTquD+mIWBklm*!z6)2$t-G^#0!j9cPm(tWb8OVHb z)HZT)dlv*y*~&u=aVN2Poz`?&9m+HdG_Sa4GYmw#a)_}worW<cxvur@9Qf3E-^*v6 zSa_(xAIPjWC>F~^nxM#v4Iq|q;R;+^WZd6B<RoLY?EKcC{MI;fp33gdYm_u3mp<?! z#zY#CvU@e?2_Wq59~yffo&iYhjQ}#YwFm*PlN{Y-mHRv0vY7(Gs0z*!qH>ujbi9Qq zvepj|w(@l8DMCJThbQK!=|kkoWl7}KB&6Ej2coJd-z-T0vipC~kqr2Ag+^_9qO2Fp z_2ZxQ;5BaRm}n_NZxBV-9;~<NRR($cJ=<uD%O=^UGJQVyO@UxzQ=;3*x>CmkN=TY{ zg`CyDbG+kwi&v`(F86VZ{uTCeyMMLT6CScQ_Y1N)X;tIm>3<cWE)x#1JY(kk?4?9m zdDOsg_P~pIh2DzLVjCLzGH3Ju=FAyQxxJT6NI<|x_m9S(gOWy?e=S*$!H`YIFxJ1G z)uJLT&4CEHj8(PbkF3}#)RgKo&+%twCEhPDuwi==o<r9*^6Dl>e59?jM?#=*aFku^ z=H6|kr@bla0c_b9BbwvZC^f=R)p95E7Mghj=0PVS4z^8;TLMQc*Nmb)Mh!u`k!Mht zy4w}%8$sssyJJ#;o2Zw3_O>mg#jBetUei4(15V?H#%~I%0!H)|ygzR~RrJo+{+lqK zcM&;H#?!Ud+;Xu!;;(mrKapdt3UXmI#3*x>hOLEdn9zES<-r&rfH&R~KU5~X_TRub z14uQdQ%W-mn(8_vc=W!T8=Uj+-6;{?8GRE4hLHLQU$mtac7Lf6&KRSDMHBgbdUK-Y z0Cg_)=!CV~@ve<=C&95-ppeBwN7vAmNgK&}<wsKIXBSxfK41;o1IYq@0PKlKkEyIG z;N_zF9pNOi5m6W6>lSTv%eU~uV#<%{97VP`<D&Bf`wKE!ZUnQdT&$X#FC;w?=0B(P z^9&p<B?{y-O_2P$1e`v58{pf-eU_g=zb{?^@##hk^L`CM_Wkp6vMvC_ctz^KK9hk( z#Vpdd@6qva{KD4QyQ#BQ3rL~lUyW0y+)Et>Jd#zoTG}<|p}|zR)8%%Au%ed{K7&Id z@fpwqGa7$YJmb_i6Hk4nKy=V_Q1EJ&3pbp2-56=56jt&vVdkDZGzPuGyl$AK!{GEc z>7p&<5r;Bf^kw4`1(wXsZBrb%zx(N3tfN#bbhbiBm|=xO1?93ZlUG9Dm#QAqK6yRX z$I1u{cOQ0tv+6d5Q8?OuzOs}1Zrwz0W!=5}y~TFemUp^g-aE;){w=p#m|JsI(@%%o z{I55BeFoiBh$o92cMd5{E@5@#{Sr4%KdQmMAML0r*R{oY9&Q_6zM2Ze%n;*nMqmX- z!hf~=o)@e+kUdj?f9y<@&8I6?pu^Om7zyu?TxdcY#tzjn;v;DlUm!k3AZ4ijZIzO; zaxh<@@`7FV47}Bf4^WS{wzhbmHZJbmeB4KXR*qx)KA-y_9a_{ul|!ns5karHEHra^ z+#c7G0q)PPvcDMJcBD#fGY>Xea=qvlUZ|f1-(-}dzbDoelV3JW!_UZjDC+c8gfvGe z+ztGig&g|{uQUaU=NPREMLwS(tep!uf>D=7f8CJ2M9z4Ea45VQ2WPUT@3({tyDi@` zdHCONfoCkWbuwY8;XwYR_I<&IxinR_0*1UX+A6ex0VCDd*u)KlNG!g-h*!3u$+d$L zu5o3<6wKoC0>7jOyd`9l&FZIFp4wsx^jBI;^w93NVZ|g!us8!Nt9;a8Ie%dgwqILr z^y7!d>Dg^87UbU9r9|1W{9a;z{SA44$*w|9Xwn^k=UdqHTNMy}+CQm^zgS!>S}~t} zN*epxp;i}DypH=X-l^d2;1%^1&n33elR{cd(kn1&rzB9P2O4smoSn@x<I6IqCt^d3 z#^TL&NJLpW*Yj?a3mI$pP^|7`0;45=fG8W}Krm-14oY*0LW_#8k$IN$kw2hs@xpiU zsh0R+P1ueTFx?C*<KrByVR}WLHj;P*4+5XotBWapGr-T-jl?d)q%S`xq|gT7NqgtZ zOdx15`ZLUSuW#sqVeFt!C{QAB?AFJbBfgmbJfpyAn3x7%XKLFtdn6*;xbg55l<v>x zr4!Yg{5{9Y9e?^R;OvX}oeZ+<t>D(9%B)f9=ct46{txn>^RE7fxn~E%Q~8P=Ji3YF z(0dlpT=OA7P4o1NB+QjrxLy$&xr#WNAtO>4$`G3&$USq%W`xbAy^BUF0qUsmf~H2W z4@nWWCe;9?%vEl=`h8Vv7N{9JCeY+3Q}Dd0+((ou1BB`hYP2*JS`8juZhoVvM3SBZ z!y!(5=kBsR^MOq<h2J_n(085L*s7|Zj!>(kB2)>Ujr(ndEsMU~s`nIen|vNhP4o47 zp31Qc{aUP<s;r@4{wlu?Nn_&2peJo?%`UwAs`gZz2(MPmul6N_bmgujq<9FIdgv3j z0yG$*hYxAykTL@|U~sv>E)^~nUh~unzH_wo7*)6;U-^*f=7aT1qo<iVszTIvA6qBs zo>sG|euA3-wst#E=DHNvTJ0!uL^?}p*k9EPA!1`I@*7G@6TZoF#)}}pc>wnaI}P+j z8S?tm|8MS1H}Z?K!s;`>MQsv^SI16r;kdL_Z18*Vz(g$01T_swPF-?NS#JoY4d$Q< z7Dt_x3<3nTYFZ-x>=<lD_ci0*O+x_S_wxoOWN)_zhxWX~a(1NVAa?#k&h;wP;pj|& z&|+o0rowoZ*|WXv>}v3S3$-}Tg5?ZKzS6)i1sqA>v7I9wJ}+`TIEWy>_=}5Nh_*TR zzH1(1?Kqm~)7)d*^pd&3mq{@xkA8mw9d{d;md5)~>Uqt5RLZG0Fm=m^Ug6T@C_t@= z?ZATS91If&BS}038OAyGmqp1OyrvIt`ZAh*!Hdf)?JU1TEa<6%gqrulx>7N5jFj&> zGXnXB%H}2K)Dgp6MhDp&o6j+Uiw?C0r5^yzo0Yvp2Ak|FC74yO0(w_|qm`d9(IRN) z$rxg-b%QXzf#ezInlcI|(?j4B5RMTgb20lBu8<TjW7_GiX#ZWx78_bycG|Hz&pKa$ ztx#8;IHNuIC)nUq_t=YfkF~XHwLi0*##UA$!AAu<<6k!ae&v1=n6VW4GWqP~7(ju? zv>{P_t#_H9k|c@HsE5MzaWd}L2a>Q{zNhdC{fdd`#b3__OH?N~s=BjT?Vx2w(4aDK z>|I{&2?BKz%2vb6x6LK*XO}m^uPD~7n|)OY=8UkkSs_?;MO-HO`%x@3tRJ#sqyQ_` zh&P#ItKO1XXR6P=cWlo^y-qDqK3jpes196(b8^Wqum6P&8ioRl#^+SJTVmE-!tH!m z@w+V9*K>d0mH0<r%eU|;C%9#I-cqtHvx=KoSl;Rt;^|e2sK%v$<a0Qff3B%)d*%2q zx8L6|YDAwI7JBF7AL*Lfb{F(ly7v#P51EKlvyCy9O?v*N-BB&ptdY#b%)rf|o)CXG zc}U&90*ayHTPC6`6AJkFA~%GxX<6wE|0RFx0D&!K(TJtP@~o%IS;I0Anvy(%$r!Ko z{`jr^DV0&hB9Eo!-dtGv#@a-brn?p@9%M<P=lxC4PSAZ#HytwehLE}oQ{pGrX2^UM z*Zidv^-FjwV40I@GNGb9mZY6vM1sS_j9tDC`>3(M&7%>h133&?Il^eTWJ&z1@D!n1 zcKfA>LF}C0d|MIXD?a^H=*)^;OrMYGK9(DtBk^QGsl?Gi*8IsJEwxqHOA<t_a&Y&F z{rhqlf%bD)*TMHG5sA1QoCLIS!AT}96K8Gy-tg+jtP(PGPXR%p|MS535;!iTu?WA! z$Jz&<0iRi9Ex=RzDX7VWBz)>IjW8GaWfLh%6+Z1)TprixhNZY5slerYmg^HL(~$U^ z+KA<@vWOISP)@NQRxvsN+{{Y?(EdgOq-=^fA&W92|1QZ!UpYb&EfB4JHYc=oPKUP^ zAKxO)sa&@bP$f7aSmdtpkCvEN4I}SLrs7K7N&H$PEO-LC{T!aY3~;d+7v{;NzD*K& z7Y(iFa)n<!el~C&l256-`uw}mmOChQm9fy=N<?Yu>UzMi`2Qy4KwL@{E|x@baff%1 zR(FmaQcusHV%05c6E}s5m&sp`%kVKPQPwPqwz5ISlqwnHOTT>vYc#d$UrL>!-6}lv zgm{;5O#+&bjIp!JWQosgc!qBr&zppKXhXr)UN?c`d!AEIA|eS-2xfAzcP7L~?6_mg zuA(13w($`b{Qdms%ZQdvZ#j$<Ctd^v9Wrirh-YcV&a%*MrVwlQBK!1w<)I^<`&n|* z8KE&vq~W>EA7E3v3W|ts5Z8iQW~FnR#++izg09-B9JZp+!y4D?`<utx1njm_!kcEj zd#~;J7Hf*4;2r07!&aTk;XWzF0^`29Ed0NFvsDaDG+KRtD`^lo|2(>ZUaaQXdD%q7 z;w{7GzibNBpf)Mb8Kje2<Yx7##iGNm4ZrHtN%1*Wk#wtD@2OqP3c8Fw#hrN<!H$|Q zU+wgMD9egI4$rcoN}Yb!zXbYDUf<wmm104Si%D*-htH<t{|diCdh~l>0yM3TNf>wa zx?f6>lJoFB43nsp00mY^mCF;NY0WywK;-siZ<=Daidq2^X|=fpB=~fjZu5>|G`IJP z488xusdWAE8{3l+CF67lU<rG{YMo$4GGxr3B!nH=<IV5<>yTBE0dM5$BSt$;OfeK? zHe0~x>Q?s~+Cn}ky?G;#WZ}Sa$WYj*jWk|O?C(&6P0*%AfW=D@0t1%fpp2hn3U+yc zD>w?Mu9KyHYKeawpw0ap@EEEPU=KgPbjDpmt0MU<#4r{+HG$=aQ|YecBeH;=8rEb2 z=4R~;gL3YoEzXIJ&7RYVO)rj%X0sjr=yO^4ul{t6kD_g;>I2o&{?kTZgcB9)KmR_k z{T|=Z?5zW)`b2mM{dM!rt6{8)8H>S0X(!s2#w6CjxRd<wOq~Eh1Nt9F;)I_P`+~hY zNNQUbKk6Lkqc0f^c99Fv7kLec5dP1=?%59=I|J=3pgeR)->lD-`NN{{GfLGed+N88 z%f&78f8L=wga`CJ$T{JOKe<$As?veB2aj<%F9<<Z%y)sm65ToFt3nZcY(JQ)WUkM9 zJ#OF}Wz$Naiq!>#y!x)}`+$e}`S0-^QjJY>U9WKCK|7yq{HX-EaZcJ2iG)5>{l>sU z%Zvco?h1H`6_*U!*|`VfoM-co`ih28djc~VXV2@?Ez#vr;1ng@+?3b$B`NRiV7b&O zpLL%oeW1p|_g8dahK{VUCP`?(M4u(&n*D;c*=1d6RuvT?AGDph*3xYFuKQJCN?!uD zf?EINB-VZH>K`XDc)zM+=jAPfHw29fI>i1=SyA(2HYS)PHU-BkR@_!$exG7)O$ydz zR*c5N56gopHnmIie-O=l{m-a;4Gr2XwvMGvtv+1d=>_g#C(78Pp*9IkBH({w+2K<E zy+E6(KIXK1P=#;=`x~2rHGl*OC-{A)35qI#!hT1xD^-Nbp#0Ce@WJpK&ny{(qKVB+ z@C?L($ky9Y7<ORF+PE5D?jzx$PA!%Kd<M939dEjX_=uBc02oD;()|w^CK|3J2bb5B zqbM5ql@i$|6AfQoI&aB6<oUdx0kNsqbHdFtuBVzofYxZ<*4_>mwpCw!!vD+mBW0WQ zormshO9?F0eSvDNO(z3Ay(^ha14%|w_GhGYCSxe4s{v`Q@D}stzd#ew3xkN!1XHmA z2{`x)m@bcwVqh;D2;tcvO!e~(JmuOzzse4#B8e?Jo_kHDV0S=pL#s_;2H0m~m13)5 zwzGvnux>|KY45Q=Cods+vUWvDjomzRtW;$vrQ3uvs5k3mwzH{LL*Ef}%n#TRF+JK| z@?IZ-#c4hlw8zd)^Y2?qkugO0a|~SNOhuRshep1PK-n1wt1^ggqvS4{BCkx=p_SO4 zKPN7{{t)#XDZ9{gAwUe7K>p`<Ad=`d%t@I*7&xNUs=V#0JpP$<H0sV9W^IO`{aa9D zBrmIFMj|<Ks;--f*NCYjSMTau0ZNeM($6$f@kGX`dFhVzxu1DPHrOrc+8K6%v(c}q z^%Na)ySP3a0XXXI_1;mZ)AB+?dqxNQ0=X9}uN2bt7g7j3@PddGw4bcd*b%tgUH`qb zn(%xaPwbYPVk(LhbmDZ{HKBCFOGng%4aA;q_=p|EM~dzVkOCN(hnr<KI(B46Dc|6} zI!G)y_LDlcilu`S4OVY+ewCyI407(-z5V?JRRbXX1}j&;1C*7rSN$gMJVgc9n=r&o zPQ#CvVKAS+6z#bMQ6WVq@r4sA4Xmco&3e#-0_LzNX=JLFTu3!fqL=P=BLIdLFB$s7 zb!Dz02|y|Ee0jU?9R!G^m+@uud1>n5g=SN&7_&uoX0B3_n~PsXmo0hSvGY<8L~?F_ zw)O@}u-Y3b!QQE5=4R2@KjyoR1RX^Q3vEt`UdejrXVGw><Ou#1Q<~PYlF6O1Sl$o( zzveKIR<(r>vpMV4kF|bLyG}oz4haHhyNjx2k;86FtDfwKP343rO&n#&ymq1VhdppE z{{Yol<oaZHSCqY0G@>GkdL=U%r#9)cJU|PPcsB1dWH|etP+k50k@TGKX0`WdiiE}V znVO-;7)pd<^_}<T-S7-#z~FEc%JnpYHi-1mNBf!VFd$6t?CZD41w;+cBxaG!2)@DC zT&{8Qkh=jj7M1LFZIyN^4QcgI-^rLdmVOM+3+oZ*GX)W&<P1R)tZIsB!oEP6GhP@O zJ&ri$E^Jn{fYWh&!#!f|sd#`TNCu2qZx*Q)OO0VDEX<1}TBpVxrmlICWo}@?sE;7c z4sl;#A9D!Fw|fVlTX$e!0Wi@ez{9kzwFB@~G8TF(X+W<*DJZq*LcBUn_NoKkAl&&+ z$FG>aDQd*Zy3xG5H&e)O<bsHaLK8iCLTSQP9zvjJ3+MvbeAaS%9Zt<Kumq+~)MVt_ z#zZv6RBDwMB8J;Du4y%<AK^?h)L|CdSB6Ny3Y|u@&{dlBrUSqcZsjR;RJ?M1Al79! zB&@8vOB&nDIk<RzRo!v4m9OFGpf1R>B*G>!M?yBN(Cg=Bc9_j~LF=su_mZn%9Af@X z{oL0B13u@aL+w|QoI(g0ShlT=D#C`+%jExtl7+cjti!}{*9ldb6LkEA5#hGnKXRhF zfRf1}i<3}RHfRVbi9d--CgPMIhA<>4KS%{#B$4@m!2F}^iwLfy`Bd(JdN%33ocWQ| z(t9d7=R1do=@3fPgU;Wtw6^-@jE|oe17b?Uq@)(Zn(E5#RAWfmzMZHM96CZJ&D6o9 z+Zt0^t$AFrXYM_kaC%{hAbjO1`eb4s37U{8`e9mDBiO*~?NF{j5M!X&2@y1d$b6&U zI-tdch|G3Pp}{UqsJ<MvX(eXh!!0m|CNp6tR4Ih<$N5C07o2$fdzBSjr_rlD(b8F; z7YXvmWD8b02s#M8cY8nggu_PSX>D!m_6!Ed2W!@?+SRK%*3$l5!GG|}a14Vpq{Xe` zx$cAi)%%6@&t)JiWnp)}*g~8j#&Y2x*)gOHg?JSn-7Bp!Jm8AEtK{=$o;HGm9-1vl zd<tk|tO~<w44FatT(}&zpP*!zKyd;nsDP;vC~;6d2QBBUeXZL-%1e`GI-Gi7h<YvM zc&7)i>1;kVkACyfzge$$l1G~pYm^Ppz)3OloS4G)*_1DSbol1?dJF8iD$V4QMQZWl zA2eAw^vM?=bezTozB04((c9lPv+1iP>nOpJ?>Z-Bfx?lj6w88@KbIG1;w2IEr_K!{ z9dPoqDKhvw@^E}ioAoO<Q!wJ_Ih2u`3o|heh)(mhenO=5(Plba@6Tj_!e>7j{kk!# zlL*>a%>JFThhpq8c+6=G7Ln^GviXBX^)aSn-r`%~n6?8q54R)@__R*0SD5^m#&RTQ zUKKB~g4eL1%SF8AAEU3_c@#dfWjc<_Aw5me)}zl5szp|~1bg9=i|p4zrG1|YY4>23 zAAeCxdpO~tooDme<90pGGQcjZ2G|Y>7t!&miBA)p{>ct(%;gGVJ1%9#A80F!6TN?e z{LoMlcF-ZJZ$Jw9au0@#j7;<&<nr(;@zM0GeD=Q|sXE#Dv`_J4qV36I0#$`ON*Q z2;5FbAv1u?zp9*8#Ase`iCEPNuW7<Fe#>VL2O-&Z5A^h@K28EaltG3B{}*3{hGMK; z6s3qVj9*ZLHY=@wS>eCzDz#OYvgTdRtfCMxQ<;4Y*e3gG-W;I&U8+3U&{+XV+PJkv z>5aO{AY%S!gq*qgiZjOM6aOn!8AFJmokY@)f));es=b#m$Qjwth0ZfzYk0&5{}=E# z56HkD*iX^%s#dM59`0dia-R#2sYc+8(D33KhBF5clu$}6?>I4rQ$=Dy-)RKODxvEt z5_Mjl)9F96<USWpjFb}A+bh>92vDevF)U{zXe{jdpVr#3j|n@VW)GtC2gyOC3v;$` z9z<m50xB-Gr7HdGFQpr&)A3BZ-I%I~yW->(V}si}m9D@{4F;$#bQUg!JM%|)W_vEr zG%hW(p}bE)gRYBtKeRsRoJA=gGLDF~VkCw*sTN(EU<L@s0iMB*8_|n%>-$#wk`kyg zn2W3FQ_i@$zHXKL&dx{!C`ORWG>VjK$+UFrtQs>bh$Jd=QBzyFVzc>A(}b?e?u_dI zme9ZpIGF1ia0JcMR*P0`!s*>Re0cv}7=9-i317W>g)hJQ8h5YWfO01(kM+G=i<d0+ zGoguzkO)k9Mt)!?InHV1C`yBbHb`uKv~xRf)BUp9UI7HWe)A=M_VW>k!yeC157_Ts zaM<rqYsGrA#p^d;A*F=XW}{|@<n*GH0uZ^+LYF%f1qb`xi+~U!St}<*%BX!W{zq<P zW1WAze3Jo?OV_q%HItUv_%A;#e7=xaT$6U;>dye+lWrebwX=54SWI&Ksj_ObBL~90 zcy=)!MZ!o63#b@|>IrW8Earx8B`QHshB+D;^&W>orFoHTH`{H9E7ml|+7A;Bg-9*O z;-`4_*;&DlNTi77e_xot_N1U9c8=0g`(B*)@Vv99Ug&<~RQkSXgY}CV0Py<aDWML- zOoblTjDx44q<2o<s~H*L1_0XI&d0P=$<F3+fl)04%`xec5C!`rYaVEVNomz3BFh44 ziFz1t2eKM#(9;~UaF|b4re3YUjCzuT+0)Bzwp#}PWt!jz!EuU8;SBL3C`B_`a?=iQ zi?T7WK&sBRtb<7t^7K7v`e4azkSN@P;5r(#cxE%Vd=aiOu-pq;in($@87EBR3AyVq zO-CH|FG#=sE7V%C-Cp7D)oX08ZqWBD?-wPF76K!Ynx6tt6BV@fgJKN2?O8tKda^fL z^n-vonJm&hol-{ENphsFU*YQdM#>>iBgWx`>zg}lHe2cY)wKh!S_`_aYo?h}MT60a zpVRSh@R}91v{KUZT^%Lw|FJ+I0CdpD8Tzab3LJqz+s-3cjNX_pLra5x`6a9jK-OrH zadFW;1AtGqEeP%(vPo5q-=L`6`(t+-B0c*I;eKWMNxLUm0Yy@)OyHI5xe1J%3v#kl ztV)y#9y(?A?Dcws)NN2smJG#8;9eZstY@_N?QE0_W^W|*A~z1=XjG%k<b6X(A3J<M z@WGjU&F7a9AogJ;u#u)305HjA3Wu8_Lq2N+GOel&BfOk|mTSS)q%8|t``vDc#15Fv z=p~SIHYd$yY5TL8bJ|ZU2ql@`<{AKFwx$_~&uRA}Y#4K5n^0>(He0!Z3$tBw(oi`= zy9`t=GaxgZj+myYjiXjn2QYR{n&d89CTK5`XaUCI1Y<%C=;|Em!ngGo>D(mj2Ap_y z3y@R+VQOLlWb1yTWr`=f{r&GSjs>gr8r$s^uC8xzb$x^NdhHeW`o0%UV(5PaL#&`{ zz7N8JhwWqlM$UWCHfZm~k04{c*{HK$K`AS&RvQHXYjj<&W{QGSJ%EVNcRdn8>M!Js zX_7garV;Poz4gs#8XF6Vj1(iD^&hVk`0-|QVbAk53*R%^^978uGwP@biWhl=51D|F zASTP`y}dkitUN#|7t=>c!)E~S$+g8w@!2mwttkrpA*6VAd3e3qj04Z`N5#*ENu-Xk z0App0HKXeQD(c|WNsM7N)=LrxZ6<`oLddVK@37nLAvM#1PRj(_`<k5|PLvvFY>Z=m z7?zSD&ZgI|q~$Epd_t7L%Cz#u<U|)I)#fsM$ctVD+yMYsZ#M1QFrG#LWDfe(3Y*Q= z)vQE|>%)4*Vfnn+qMHQW^tui7IPnQ%x-j(kZn`+hJOfy>OTzC`sj=lsH)*#pfkGl1 z0z6HvWr{O^V8bvEcVVPS8NfUZs|-JBiea(m6M(7}4U0<f%vJmdYQ^bvY#i6}G?>@6 zgKc&Y;Mx_H)N83Oy;cWY)+b&N^~mB8ROk)z+UGSaHW5iFVUnUaQz=N5JdVDU5fAU5 z@phWD95HZnbBDWoaVmWC#T)S<(5M9~ES6HUaEp_n{S}-~5%vN#1~g;7dVcJ>8knO* z1|_7Nkh_fQ>sxHLS7I8g1-VNi@$a6o*=`lgnFf(CO(TB)?QdZkHFiciXRgK-n_taO zqm}2)!1p<$ZDzZQI>m2{wkb6w3Uh`A^6dOM048L>!ST5<GCrRhF#JgB;LiZylWH{o z^`c1iQyYJD(Zdz94I7U@5P(}30`a$B3j=i$!pWzK!i3c-A!SC&gmJ3KDL1AK;HV{m znI$YMrG%@SJFFfb)KQ7mPAMr+rBCym{Pr**z855a?f==B=3ie_)tTlss`=-#?vJ!f zjDLnp_|oP6i>Zp85a=H<#4Q0p&LSDj(y}6$4-ocI7>g2w+4iu_VB;ouIoI>ywRNB~ ziubWeae3<_*Vt^cX60j`NWFUVZ)uosE~$y*VN-?AW2=RME^{S7KNCi21$vTPt@-my zZBBENI$F$G<2bfCu${#g{jit>wtky)ZUPdk>OHyIA81U`*4Wle#t?U)feX7>wE|!d zX>`XvX3ZifS^mV^UJ3$L)<Qd7#yC!RdisEe5AWQ8Z`Jp>(vZV%{^aMly?X^9!^{p2 zQD`yVcuryaxcPtpz_Pf4X>8o*p-L&|M1-#I(RV%iu0yF4YT1YuW<25gYKv(SfI|vM zN~w5$dO*rqlM*eMf7l)KY5fnQwb5+X_NzTsGz$hIW0SRK&lG4|C&)F@MXQFGJAi?L zNvj<ev?~`hMR|wqCG*i)9@ozR;FD?#4*MU>{QuC_c7@5Okzp>SWBa_KZPu|=q?|Ae zq7D_|L&^*1L=qCHhy3yB85)(S2cB?!bB9-Nz666r4cPbSrU|>37q!{WrRMf)VE(gC zHe%{ix!^s<RxUZcg-0|AIowBl;ep<t<!AOorPq&0(bkfyy3I!3>We$EH5F_!DJK?C znltw(6$im`PVn@7M2%^JF3gSkTr|ejh{{qLnc1^_26z#w6u)b~8)GiD`1>wKcGw*{ zPbN^!_5{JxQTv1d>Kjnpe?{g<JC+D2#>99wRi(uAvvxjYTn+*p7Z|f{EZj^EDR&N{ zng%D#UWi|xZEjt=s0A~S(dHwXAS!B+Js}~c5@u?-^K%lXLFtQ{K&A<&S}_a*o*q8n z-P_-z>w5g`=fA-HtJhd>Hd^(tN7waYLa}*;X+9Ld243HCFGxg&Ek^_m65HRvmw=Uu zE+xt1z~YEG3@6cM)QZ#bi1m66FllDOXE0aM5?$CgGq7f0_k3IZv=+ekQd*L^h)&H* zM$Kr(w(zwc5z<@>DXR|&Gng|{t}|MFp0nW0;OJ}6rsH!pz)!GU-YEakn^T*{Q2g~K z-7Em|tcUZxhN&=eVRU^)DZ=o<j6@Ygj4qSfRSCcQ_IG%Ee!>0C6+j77E!b|ic=h^A zQ0}mMen!{#nkg;e>FE(wvz~cpOb~(+;TeIvtc0GAAp8vCa+6cTZwp7m89<sX6Nl-G zTz<~n*gybgm&~r4OV*L8DrkZbkDT=g2bHF&pD$^E8dF}__6-2|053tl#Wk1-ae7~r zV%r=oX8??*4Oq;D5mG6E+idF=CmthSVw;Dx1<gS{2M<*xOaob#R+n-If;t)MJcx$D z`VLr>LSyP}AH|HD?fOuMUZw7oWbL>XQFn)lZ0iHnY%Jo}ZT)SXVN7?vH@Q|+0?L#? zoiQn$L$Jr*CzZxU^)4lM-E3iR<%)3}@V9^SSNPp;evO-(8{FN$k`TR(sNs791bsi> zG1Q)KYWfm1FU$=9lrnh~kUN7`c{g%KDU&8No4gLjG>$k8C-f`H5AgK#2xi7`8qW4f z*Y)~b_!|F@rnY|e*!OPua>j5k+`PD_0TU}9ZRfz|F@cdd0qDf>k&E*G#YmXJTE02% zuLv|h1AtGm{YPT{OMOrHT!?S@zHy!z>$-URjGVWNr^28N^f~FFk~nE09-;!Z#2>%^ z?sw?YFR;D768mIISZ_ACskgx<OIWSeSgkiW?DsevB!7DBVC0{d`h3QV5f195Y1V0p z5=&&7bIj1d+MMyXw_je#(4oZz1W1b3#rvEI8o{^t;Ghv`w<wbcsvB49V=4Lg5S(jA z+v9n^?fRK);or@s`A3>a&CAi-d*t_&v!;kP063S%&z@N;DzP)11;T3AsXDgrdz2zo zEprxAmBs4US~a<hF=9=^Vku>10RmWR<_D9`2$p@W`2{3MeuJD7YRMkj24Ggvj`Z<! zn~rTWUE{zgZOtvAi~*O)eI?8f!fJn5<Um`8P61_A&5NA{QORq*j$y##;}iD#J-V(# zzgl6nT4TN0VzpW$bv;%qseZUxtwcMZ%}Yj;)J`x{NHmqi`K+}{p`tFk<1ru_ilXZ< zj)SawDX2vXH7!A+InbKwyhV{jp(3v3AJW)xnXG&OPmKcn$a7s|NxtSOcdA*@C$OZu z7N3_2f)sX3u*jS9v%!G)sib+)E~5dT0l@!1HV)1q0M4ijHKkMy(zR_K+hh^giuP5B zW70b11QY^@*wYiIoN@d57Ju*W|2h8czy8<w#h?BI^nHhZy+YR5<(r!uDNd3*@ZCM8 zX~ZxLI3A98c>fl=-7|(^a3XugNLasdzBK1%t^ac=H^{DGU=WqH&&cv1&t=>5-!3-} zbLz}q+cas_vl*D@nWQ9At9b)QAkrknD8;dkgAD|Pp|bzpO3wO>d<;bTJ<(GF^XdEe z;AiiSWp{0?RdYq85WeVk`c&sC{g1q3HW!yJ(NHo;LREaPRAx}usam|wfLB$uxH)0@ zB9SrJFh<DNR#XR8m?xRqziBHh!(M{etz#1)aSpelieG@6?N9?s<iM#=%aUhcga}$& zpw~EhmXJnh#yNJ^-IivU03xZJSZYOP$&5IhPI!KKMxun=iM@KYUgPHW9#>b_*r>_C zd?{?a!yq{lB>F(!Th-y$w!}0|k~par%|X(_`b0Z0ffD%|7PI>U!Mvi;B7q@WE{Ns4 zp0~>&a{j&U1+p`3XHo9^DX_xNBx!Lb1x~Vt49bKg3nV78z6VA~&X;0uVay#}Wg<;m zW#`|%`wRg7b8bHv)-qR3&7`GZR|GUBA12jYkgCWClKumb`jrrNJ&Xwq=7Mpo_@Dff ze}@0^pZ|0G<A3yz@c;O4{u?~+j_A4`uiw1E?cJSJPb)>j1I@vWB>(-FUww_8mSWw# zNJX}B7$i2<)Wf8pWiE`jZc`g$fWz`v;Eb+PT?(cjr2|F?7DDxWww9}K_6(O8tpk8E zqL%Aj(kmCW3;uAoW{(Hvz>gY{azLRVaH&ea(0NGKyUW^)i)3#(T(o)eG1z*Sg0TwY zicXI9khW(7@CqgZ2Uj1F>KJI*6)U4aZ2Mw<8k^(QN*v25B}`?+a5~LQ3Jj6zg<wbL zJe^mr>Te)>G*!ud88Z&rY>)y80YCv?DA8|HW&1a`{X+q{&6jG9G!tk`AS4oI*R8x1 zGN}ZeEK4Tonb)+*HubE&Ayv&Irph<1okST3P}=WyNI7G(+2Zx<FR)s#vDs{c<0UW= zX^#I4W__O4G?^yR%oI)Yo4d{h5dfZ#!Pbx=_gDnL+#wVTGZHl8<PYx?qY3Bg{pE%2 zXH4O1$)!NcXDm-Gp+)*=^nw9R%{FNrG6%_&vlMeft8-AfMbbDei*NLW{0sm-H*HQd z12MWJ(Fze!X@%zYPQNZEP}gZn(1bdPy>2QM+nam*y?^je@y$11<DdNFe}sSV_x=L^ z?|=2L@VCGD9iCqH`1ZHIL*Hd=Z*Gvf4t?%4WGZR6;0?A{*LeNrOANyayWI;OAKv5n z@d3xf9@98tQeuH1F)uiuHzTae&tP&C(JTWOffiZumO`&-Nft$J!gW8)s7Vtg&6yfl z!YwN&CuCK#pq)E1F5YQA5yn^zR|Nh4j4&+;CjsZ#7o*w3dwO|D3n~0#PM6C)XZCMn zb+UvFuo2Abzoqvz5LmQQ-48V>$D4IdG+foegY4~;HAzmV1Xi=|$*@{v0qZ_$(7BDv zs^%5VanH=ii9BWZoUw~j9@rAT*ggtth&E2H(uc~`^Tdl}-|WV$Sqc-RDxR%L&JsTl zomb99->Li8Ku7E&k(Q?*KmS#Mh2>PR^)WNVG){OPpRjv*M(#S?-@Vf6hjN{005Ue) zD^N=4yB@jku~~004g+$|;sXHH7C|Z$4yO~wNg_o|)4{c398R;8)Hc4huOhI;?5v$N zn{ONcg=_8n#i*DjNDz<=XxQforVWCxEjbu<z~yTF0QgAk`MK-C5C&c*V5%+Dbq+SP zf9#!tF@MHqAArwo(OT$ElddeB$f%tqt!O;89Wqn3c|nqt0QE3l<t_f_|I7axfBqN$ z0H<NZ%gYPC`Q{t^^V?hO_j^IJ%=p!>evM!K?XU5x-@e1k%MQ8ASgpj{xYNQPmI&nL z<`&!S6~6fLYYfAHX&kY8dB*8@z{~R!#&HNXKWW0m149YT9H1J*k^j(wi8cDZK=GHr zeV8MdD(>Rs%T<$QqqF;%!L^_QZj&}oX=4DF`2U>wr?auzOKlB3|2Q{VahW)>{oh9t zhq#OekZ#aoJ}{HyTA$^!loAT_!V}&f*7}UNjszrGD@ta=pMFqs>$=V*=H`f2{Qj%} zfGEK<^D_+%8W6U~2$?_jd6NBCKn1E=7l}M~8EH&yqXn><yAC`~sHn}0-qvz4nxKR6 zxkwk*dlpF%n7eHt3v+C5XcDP0!glU;zo7XO+4EvdKEuFjMX43zFyQ^W@3C61rMQnu z?kOkG!+Q{b&GriG^#*Ug{8~y6uU4qKCet*j17HD2!sDiCQa=j9G%<$L(Pzl!zzQuH z<6nY+k2W)xw4HXomzX8>afPIT*7MjBS81&X?T-LAz_KLzypkE`=H@=22`Y)m_as*} z73M4`fa93NdD&L+lJEn3)&P8NA895L=^y^N*YxJFxwMh0@>cz-#im#BL}jk{;+sFi z-~WgI827JU;rRfdKBMb8SN$JP1E$LOpZza>hX2)n^<RMie0cjk{^fu7Z}4ya?O$TQ z-{CYI&}k;Mln6cb$Qo9)Uavuv@cPXc7*0pLJU`><@dHk$BX%#(UWHH&VuGelam`vA zua5b$Q0)@g@)LmPJT5#g$gptjLi@7aN#Y5e%^MqNMSW^Tp_Uy_2$^PR3yj#awCR}U z&T#X-&6l?^ga+(*_I>N^oCVG9U((b_d?@^w^?@5x(n3#05Je!G@3YuE#LBs#j6bIY zqF$u$g<aiREd`Y;GO~}WdB+2l35n!8shnrp1(Bj;AL&df;}`#o1VBshg0y%LfFyu` zY6_M5+MGpD+I5{e@JW@;O2I);L6B*v{BK(WXV?u}7yz&{Y~iEA{F6pS$o`wz&4by% zL0j}+i039OG?Cts<=UhstZABXIviZOmo(4pbNcxBfa|MkblnPfukJApC!9`4^!*Ac zNgCy88qswb!#IeBP`5~_#S=s|iMk~$iUQ700svu;orh}9E@&XYHB>e!+=L+o#}yEt z3zN)U(_s7AzKc`Z5+sSXDZ7?M*4!As0q|Brn--6<&prcy&+X%FX3SLSUlaE<Z)Y?@ zP0E;a@+2qB731lIo4c>@fBHZF-|(k@_Gh@gy~or0@A2>c`@h8D<zM2T|MP#2KlzhC z!K?dwlv1$Y?=kFm0D#x8U*rGyzyIIj|M0*2uW=d%9ETCV`|d6N{a^hGfBUQ7;{E&Y zkx0xEEv}d}#pyM^{^n<>wPLq>#`EI?K74qKTB=rb6ODn~)DEmW(*$nyQ#{Zww}m|H zoL_&j10SASrb&pGdPgS^DixKcwC1_qka8f-%12DIZ;YS9yO;gHG@dzwRY}6HTRs5J z%_+>_Sv&j4h~#{KEp7Zl*i4FP<Mcbj{9W>=NX!5eQlGqnU;8>qG9VZYUSuJx45lj1 zt0}3YTy;ieYI3;hx6KogNO_h>Nz(pSP`}1BiL+o*4{tw7tl9*fl9UM@GKx-2stLul zA7L&ih4t2%X?C8orDzPB0X40WN|s<otpq^NcnoVaMn!XwVXvCI!!j)K3_;8Wp75p< zsa+BhjXoaJKn=qQhy5O#?G3JP?@*a=I2^QpohM@I`wko4cp)HLzhWW7WS;*fF;_4b zpMxI*0h0MKmQN2t(QH1`?02t05W+`wg<&b3OiROoY5V>$ZKKfz62A%z16HdZ7V#l# zmcT4dlodrBAq5$p0p)h);1PqL0l??>BklZfw2&;c14IC&&ef#^QKjx*UeK?v@qhWh z{@?LW{)>N#tD75eW&G;HJN%1(@h|Z5{2u@6-~K!NZ~n{wHU8N@{ipcii!X3@cZZjk z7kN7~29*@Hn+>kETYT~A9{=<o{R7lm@$&M5fARnNcldAr+y5tayJrxpmW*|(f}AsM zZ|`t(bBmw-{1>RT;`!<E|JUBP{n&M#_x--L*52owIWt3wq{XX9kwZz5VqIuaR;{42 zm86Lj7miV&eMo?!3G$LW6fOD?^baUdpzlEfG;e{6qD@=FRUJo(?bu0U$#y78;zcHP zvrLK7aL6HN=3Mq=tvr0+x7ONwhDz<%&IZUc=bU}^Ubnrz-}n1&xV3fzw{ESmBa!4* z?<%$#$MOHFEp!BY`cVCXcgEuV@s&+V=tM$FORF{J^YQP}ewikm3CaA(HP-D%kEa*G zlxsdoLCJg%x^nyz!9Yh)W&B8LkX*Mf?D)sAPZ8iyr&qCUF{Dg{L0Ohk3&6)UYoY*T zr>*2{7`QC4fLPZ2IrPlLu(k}^Wxq=!nLN$g)&mviq%Vp9?=2k4Y(R7Qn!q&#NUPb6 zg@)z^kg>|<m$dDg6G0G0$G1mp#hP#`2lPH;j94?zfPQw5bgk6zTpLZ`EVa!L&#Wdw zYMSK9&tOV`ckpN%kM;GN`1E6EvADQ|wygn)Y6xEZkgS7ql1Rs@!ohQ{l)sT|nE=oN zAhEq`zkzP(Wo)bXP-qdV2>4{8`b+}FHIy$0UEke}MY%d%bLorhS;&7b_ijRsMlw3) zW)@=%ilRV6giwc+Rynifb=HBJs<3MU*gby6BW`p7?Cj?X6lDqP3J%{30rTk;jc@U# zFa2{o_V|-n-m@3wV1U)@AK?6}-^bS0ZPc~LWHQ6oUi=3B>>Gc9haNnQ&wu_|oH%|Q zWm#e_9@pv-%Pd36{k^=rj9+^8Y5bEfd=A$?Ud1ctF5}Hh7qGQ?Co&Q&y^Ppy`C;9& zcORDa?8U*^G2B{P#rmx^%x04gRUE^m<h>yhqd|95%#_x2^aSFz??QqF?30iLR~xks zN*>w9bBLI4;@F1(@!GbD_QWS=G)r`F?Byo{0c9q&-E6z;ngF6+LD{;9xPWgM^7rv| zJ3L_gVzz;?uGXIe0|jZhfXjp^nW!P^#;fDyoWo!=>h+hzYu_VK$|Fyp=y%ZpT{%bu zB2^sn&D?v5Sx=O#F-~4h0#iW&MTj6;1-ecWufZHfYPPvtMEeNRJOC54EH6?ne`7nK zhd|LI9;7Le71U%C9T!B##3<+_)^A(y#q<%UgIg7es~~w0EMf*r`CPr`K?G|Ij^BSj z7MGSWpG|RR{U(UCv@)+-+Xlcgn3>NjcC;i!bB&d7V(mxp9>ydGyt{({W=DuD`=C(D zzt8I=WibS$_19UJA+d=7y3WKoIEv=f?M=vDKnR%6xr(GK3Rorx1q>N@Z#ep+5r!&b z3S_2w0A@E2!0z!gA1s`#bG#VETfZy{7-LY)=h)obz%$RifM@>kbGYZ8{TMEc;C;a5 z3+Hfa?IRcv27^*Oh39B$;Pnfa@W#bAvAkyw&YpP`PdxrO4jnoaDM~F+lCp@gP18At zlP8X2<>dWnnqS81jWt}l`eR(W^do$5?Z=!!%yKao3V~y>K{1or!NW&URTZ{2H*kA> z4VxRcQO)O~ouqxwh;|=DGv{}r?dh|gZF-^eM_=6a-e-uvZ5!4Q4KbzfS?fyzoPVoc z+j@Z{cD8G7+mAlAzx~V{9OT+?r_CLKoIZ}AV23LwpM|dan)@qsG~4V=RQTgd7j)=H zYL>Fj0xcvjJa6W_UJHyy<4!FFy^u^p1fL2(z1nT%emMxdn}@ib-_)9xHUPv-L{Sbh z)**}Mr{r0V?Ap;c!Wd2f<6DGQSpY4)D?lV9jXHXlQ-6?>Q(V%-DTyszYbxV)UZU{t zja>vs+*W}Y+s7p!YS;(?E!fn;;g1wG^gYWZ_J3**=Cd&t#|v1$^)WWLrYPNj6Nt4Q zWJ;(VLPJ@tburtc3VAKSr1Qxso!i*{Z6H8}XN<1su93XIokgkV=^7P{J7-SgB{Yyk z1on>4Nk$2@O~W}*LO_uI7-4#dsGIdN*=7`3$98Kob^*Zd@iQGpGExnOLzIJ26v{=( zwC2{<CQkp{r}4rUe;tPpAH%|U4C@@;d-p9|dGj*brsXVe0jQfA);SIrtSf+kTWb~m z;xE6AZ~fI@V?18Ov7?9Z=wpxJ?3pL9Z{NO--O@?YmK+!yIB)<z|H#8IUw#2~UE}@t z-^c%c>2L7X)hn1yH&ItrOeR7^Am=c&4h!Q&+<WK<>Z-!}tu?HE^dY8`Ep{OEUKjw? zyL96gdKNno0l7%dweu847xjX;>r#vv&m92?T|vmsX5Gwj+r;YKrGHQO=dU}RtMqE# zH`OV+8=l%<qh^`08=YHp+Sa%2@6_;~-Cu4RO{Ech>6j($HfDj7-`Q;Qw8q5WkujiF zz5G4APudc|0!jrS<)M*MWJjsv)E^l)5j<5@BLu)Xizd`yPxcfOuMrO_u%o|0To3%6 zH8yE<QF}%d0P)^3=FtIA#*9e(ORR&j4)Berr8<WuGGGbNrpY6ygJH(Jbk5?o#YAE~ z+!3!M<!#9X_@<5ZLI7a2uz<yd0ro5|pdNbc-@gx~Yw^*?s~8Lx5KwV~puisSR_y&s zkz3glV)j8};feu+SV{iWiZ22YhZ*Mg@3UFj^ltdG%tD85&xRyE8~P0Bn#iBmcterZ z{QT&e=4F<gt`(?hl#2eXp{9v-;Q8!i1ed=Rfb9Z+-Q%Y_h+^!rD>(o6U@*XFVa)Nm zRfV=?n(o*C*}uTb>7T=RX%S_?S->v7_6pW-UI!?kZQ4%tug<0)0s>kzb&HMLH7;-5 z#+z?m!B@ZfB90t6gkOFBc|7vq3dZAcGz(a3QI=(NK;)1iPBXl+vVwno>J+M~!o{oa z;hW$3F5Y_UDyEwool0@h%utp%c;pxk9zGhuz>U?9FxlF~d^SzAZ2sV9+C}U}R1*WR z(?h>)e31m4jt3E^^OQ{_r<gk$m|Q&HcXmbqJHV7opx*s=UCq6t`GhnECUZ)oOsMp) zq1Wj(c$@G~Zj=c$ZD%idtaZce<USVw;G9Df*o!|>!!p)|EjXSXi0jcyfvafSC6Y)I zX>Zz{V>6O-8DihHzg}X&tGYr64z2)D*SwKOn{yZ7g`hqk;G73g(*QGHt)~bsyl*24 zicvb*T1?A{ViF=FOvr4SOl>jcamaOd1seg#`bXKd6>Q1r9d;zg0D5g7*D%F(;Nv)Q zS!`=9hQktL>p;d~wzZ7lxte0zwy-Y1BA~7%^s{YXolUHc_;^^${z)8$$!t*5))G1h z0FK+)G?5L7%uGxkBt8oi(wac>gwcI54uCF^?nub`5#Snp_d5WVtX?6lY?&_zFl3;j z)g2ko)J@G{!rg7D`y_{M+2~yWuzUPehiV|kT3BOI6eUIrV=OF;IXhk3Vsmo?FZ|Ol z;mp~mv2XtY-ej!B>zB{t%H@k_>RM2@0fknXFl5F+*))=^HTV`li!f{P-n;MMkN)rv zQIta*J#qx6A2^M(XCA|&pZ@s>09q*zs_0nhJ!1?${oqMF`VfPG*WY{_-~85harMfN z(A4wTPcI(d&T&f9gNKje;Nhc~O(&R4wlLY;z@6LcxV?UpwTQTR<{LPo=+X^NH`TNy zB)Tq&-k5hmwU9);M*%GN=@*}glhhO7Q4VJSBH1B#f+R`n?O(jJ+2?W_h#t_CZHCGM zXnEo7L}#z*+gc*)BJ^9j1D!x=<5ZT2HDA8BYK7K07;71X3i#AbT=S+!W=Bh}hJbk% zW8UjI)RQ~!djRLni1RCHHJe7fwIP`wT_JO65;YDfSQ8`zo=>TH<LqQ>Ts3{Q_p2kI z{=$29v<pCd{;Y(RwQbw&Rl+pca-!~+@%t>p9U=2&=*?!X42O{D>Rj{9#(gweKs}pc zIN%~fFb>1f0*Zp44`U3RbqL_>e}*hJH`Y-WC07k30!T|{+n8QA1i&^mOl{D}oIw-l z1o17f2}I@llD1Ey2_SP|OwWlF$<dC-CwJOZ6G{3^*N+iUMtUDz^aNoy46G|+d%R?r ztm|4TAIkHRBQxEFa=^?3z6$_$kDuX?1z!vXC<g<K$4e;65>+(^0&w8KKK$aZd=ZBZ zA3-@>0Ks5mV-w%|&bP4k@pS~T_XVFQKSKnctH+tmGi|W4nM!h(5Io*{_bt5p&fECQ zm;M|_jvmIdzwiv6dFB}$KYkp;;V`lQ-0ZZmDogSB!>94c=@V$01|Qv6!*~An@9=|{ zU&eIGVThV-Pbp+qlvv(VVtLPA96WL#nx@8lI>qY8*RlH12fVRE{RTu!&G$`}x=H$` zS0ruKd(T=w@8pr<%O+t*;U7irP9Pxur&^-6F(3H53unG=5^$>FQfISC;GnMocU#!I zRdz~bH}t=dw8pL(B5N}#$l@eVCcjSBuH-!}KrE<`MY?_l;;i8`v|a>5H%ns%fCzDu zRgH|-t4|xgdY}XF;EaN5GVs-$g?v%KkZ7<nrpk^L#Q;rH$8yBExdLe54Xe<dan~Cn z30H)GrfpFaMVvMT1bR-&a@ZY@7;+gHP#BW~-vD^ineS*0LU-EOcR$6(<Zh+BCm4)I zBTOb+aMqwGN(6E+w#5DehcKCJA%q|WoW#e$7;J6ci2#p`g>?nAkdq2S3P4c~V61@? zv*8>8bqH{-=p=elaQKN4Kp}KA?>wp^8;Hc<nG|UeSr=Kmy3eGfTt0$!y-oypA;9~l z<GYaW5pnM%lQMqiO~P&z!0z$W9J2U~WZ)``fjH3(VaQ-}ejBrDhJW?jzl#SSdI-yV zmr)c2X44k0o&P>oum1#1TZyBNYPPEBdQ}aw8+N1u3##n7@@<P&&Ns&3C-46R|K-2_ zH~jZM{U11f{5Z}&`58R-+;cd5_;6Qf0TPDP!~`wI7~H#mAHMwj7x3lhzkt=7>-fR> zH}S()UdH;ZwYaGV-4Fx&K{!{U+%v%9@*W&Hb{v}<8@RE09qTvOc%u$V^###_k?96I z^px1fSXVQIu*BZ$z5M0GCn2<{dK<FeNBa3L!dwNvf&fIVJmBv8T-WP6?nfDAtpcmh z45Wsow6;53K8{56s3z8&k_O##aDvLHWIl?12S&=Kk^za0oxrJn%d$YzG%=Z!_a05# zz_<M*OPMAwoAK7xW=u;Po2&v?+N2vY=l^GOL!#7^>!_D}`OXy}3h)&RvcbT`f;pB{ zgJ++cvK&ex97&BUY?o%gPUZ@9m=+ZVA#jS}wrOIe#inT_=K+HN&5e*hpZqQZGh)v0 z3Zx?F%a|-(4?2#S$smuC;8ewmRYcp)o@)xN6#Fr7#Q^&c9LDq~Z}UBj0a_hbf^QoB zjWO)sU^3xPDNA1fU`zpLEnHEcC>%ELtizZVZJSsX1>+HvW9P6zK*M(#a2e#_JjD6X zb)-xL50R0uMFm&_jC}G@Qov6pCHe6o0AwXqLnCwBWh<a;h4_4==Y+?77Xa)Y|G<&3 zI{^`C7eyHhdpK91ZW`28jpu*mm+|CNpT)jUeF~%D08JZk?b?s=f4}__)>f~h@m>~o zk5coA;?C`enUzsb?r0=xugojs)zutVu3W*@t5@;07hlB6%4vM=A3cq;Pd<r*2M==k zS0JM8CIGXl0emZQ!U6mDF5`vgp2iE$J&l`pHgW07k8%Fot9a+_D^ZK$=d*?P1Tuu- zXpGUqA`aYp2z6CqHk)EP-NHv7Uc;UBTU;7hD|dvfPb?c_KaC+YH9ye4?Fv4n(+v?| z4A)-I?2eJ1zbgRf3w}UK1tNsxxYnKj{I_Y&au}l;On0h6e6PT#bHz^c@;>n2c?8Bz zh6C<`XpjmhMFBE_izEffB52gnkASMGVXc96Hiq@p6`Q4en?f+1bEum})+P(et<8;; z)h}<ifFtj<OfzrlzHLy~RT3nU;gO_dF^3lN=gu0*aOdDdfx>XUd~2D)R(8lbho&jv zC8t4C*O<?HAW<~(0QHAR8l+bzM=^~xP0d0-5ZcgmW;*)1h-pNrcMmS`1+CVYJ*%0~ zE7MrT!7@RB4x1BA0U-&>s+vb9Hxn8F1&py6FD;=c2dJxx*Soa0uDS3SsWV_qro~#c zApj;T*aQNc6-QzV0x;Ryh=N{$AZLDLB_+}AEpl+AhuY?0k)DqpW2F@lbxzcKKY@hY zoFn6Ba*&{f&pe16NRojCA2?yy4($pV6P2?Qy8vMKkfTG=rB5^ZPz4Lu0B7M}mID}L zF`M4T@}4n%^^0G^u~QFVVY~=<kJYss_{NL>6W88*o3(X8)-ldFV*)hXNSm`w_-k82 zZZk{|Sfa@kU3+Y7Y~uW@uj18n=P(!!uyX1Yo;rILXU?3#efQnRvEa@kc!#DX)HOQ? zA#lMKG6qXai+J{PXYl!Fp2U2*g{$v<h*!^Fz#Fff!)!X`jiDg~gGk-FqQKY{7%whk z|AB*;&!)J!wu%q0y^ra1+66%&by53atP~8{J{dADX)co89cjbZS;}?~8M@pmfi46~ zr$)e%G>m|}$cXACce&p-QecO7J*qi=0gett000X@Nkl<ZCSWCQUI9JNW)de!#0|G? z8w6Mw^uxFKbgrgml7KM;W_wM{;1&Ycnx_De)g1nrr@FEYa?cPvXQNbxB?LHEqN--m zc`zVE+CPFD&kk{o#OrHzO7>v4XxkcvwNVf_Nwpn(!PWAL0)`BlO!!BNS$qQ&yaOWG zgy~?XU0(04XD{-89f6<#F0yqzH|)fhLJzm^A*%h0kA<W^*7HJISWw+xudjOoCvR#c z-7$lWqHr)-;vc2Gt17V~T#E!iXtR5mSjZ?))=nZAQ-DTe1OznIJPLnpkG^N-$VI=R zR2n)R?2M_=0*L|SYYC`mY6gR3(8=N70nY(MyavcxK*}JiX-WNf2nNO!fFm&p`~y{B zWm1WD0l@CjIktm<WZ#pA*$~Q-3wewemrxFdsOk#qw{GG;{Kx-<2Oc?t(RdF)1{<3< z@y(ZB!W-va21p9nv~4E*eO&12hFLRs*Xpz{(T&-s)H{RHtATD*g!#P2#Y>lQ@zQ1d z$ydIDqeqY7_<hH4YUMOeo;-;YCr-c>C9Jcks~S~PBX~*K+5*F2fu#cn@zkNCc>1%S zfp32U?_ax)|MT^iaOuM95}(Vh;8%4bvsf4}V!XJ7qxYS_bZZkgZ{EQAty{QrdmXiS zf~Wp)r8B5tMo&PhO*H^TS+YGiQmsZjymy}89@g0L9No)R8|iBlIZk8Y5aOJ~Y3m@G z?AnyQhVE+XI6emD7II2?d%u(gh+`9gAU+trZ2&lsXhoedlHB(!WW`aCxLTf;qmE`N zS^vD@&$71gJtb{U)Z&tm<G%-kk$?a(Gsu!>uYQVk>V50cPzxdk0F%uP6lIB`901iE z)|Eiu>V?)g1X6)bB22RNVGOsYcZA5m@i;e9EDJ!&l1M%R*~lP}0hIRlDas-~t}4Lt zDUar$1O&WKj6l-Fvw4R?P<DD7lpH<egXe-eWZ(*yQZi@1o6ROrzW^eN34GGFrb3l6 zwj#CII*ZZ5B5G^VO5KqBXvDk_O*|oBI2>X=pJO_mcFy%}%O*dgvH4x0tYDI4z2tpS zAV4H*)H(Q03ge8G$-okkg>?e~EZfZ#>fe$-FS`I>_mJc6qCqtzK!ra${|y%wLB?Wz z?Hc~gzx#bW^!U>lE#8Ab4sAWh4}bV7zWrxkW%{%u{FA1ZJ^xV??O=f1ZYBTaT4sp< zcOBpQ9>uBjEg!89c<;UU@$S3t;;+8*T^u-Y04t|X;^fJbc;w-SaqQSJjLH%cdk~$! zNUDyxvV<#3oH%g|zx7+ciLI?U?rdz}+_~5B`uTHM{rEcAk57`vAix-Y*q4^~VtLPA z`1?JklL_wJzKtyjFKimlHs`Xs=c!v=YM%_EIYT$K7>blnrF5OgGxNkJNGv<HZFXty zbv$$bfZWG>yCxs69R&b7?e1SA2Z6cSAdwB(0+H{i*Dv{THdvy0d5<;#WKzN?2**(l z1`MD?DEQDu(+1C#jjV&0oC~q+teQ_0cS!zuHP>i3pKQ-?u813R^fB;K*If(97((0B zti_3@S=SY4GQnUtgmVRoau~HjYaIin5V$Z-CWMI;{bu7QLPtZ-+O|o4==vR4OU-jy zcv9z2BbqJP;V`JM?o-`}ZHTu2>|cNv&_e?BLY(X96el39D2u4UH&XhyC=1jT=jA|_ zmbsqKGE)Qhn<BlHR$rH`$bd``=jL(%t7-P6A0Y%3MS-FyFrO!eAcPQs<ZL#JrJ^C@ z7<P6Si0e#!Xmp!n9}Z?rG)*;|>e$q2<XQ3v!d5{52KT}k3uB8OyVCWYVX)5ccLBie zksUh=fqe6Jjvs=>#bsFQFq=;B3(tNYPe1!>7>(}%$f0cm-hSsD{OO<kXN2HU*9~f+ z=aRY}pLqT_zq>BdOlBvoG=G5gchuR8d#&&MubVVGig|><6!6-OHLR}Q!1rGH0Y;-C z9#~ny>6KGBbLI?AoH&8eXv9=zH3gLx6udla7PTkTK7g#n6K5XBXU={G0O7+AKEU7p z^>^{^J8z-&L6VMmc(LJ=A&ke1SXdY%0GMoTp{_NLg5xT6*#@U`5xv?&vURp?Ciwe< zL1~PmX0O6uBxwlgeBC?}`=fhk7P~ETnLPf{slL{Cy3DVmj*;2jI+`GQe|FITrO*1V z&AMjdC8Q6A-{m@=wHD*?5*8M?Hib7Hu5joB$q>}5UpMF85md8EP1F7*g`AxaH7i}R zEAyIwXsnE}4d4SjiLF_Zz4*yQqEKeA#=;dPigMU-STthJ$OTs(DH6Tfb##1cq?bsC zI3NAI9DEiC1P>4Lio8M^*_;6&29MhSfHDHXM@nDUT4%-$#dN_6a%c0I6c1t`;-j{} zgTHy_CMPIUdI@R$>10y;T;@1eI8?bX1cWXC0FuuT5yj{t%`7??4kI|2&1T!o0{w#> zP;Gp#*G2>d{LeZUm%jn=S`KX-Ul@`Mr0F@*G}3AQ2%WIS$R6whfZYQ?PyFuuJ#po^ zvSjDK(P#t&kK1b>;a~pFA7i|{7uGnmEpX$;$N0)0{{g0x3B321O(*d#+b^wJK)O#n zmpUJ%^LrP|9g9+X`QawYKh3n>R5GtaVIu_0XBFPKa1n1@xQMTR<0U-!zzQCE@IgHF z)KgelSwTqvwGC!<jmfOWWHOT?9e^!Z%N#9^ap2y4c<k{<&@>)zU%iT#zxRDyeB(6< z<!V75@R{HoFD^kfSJnixyo0(KnZ$o6-Kj-g`ZL;}zo;<>afl+_Hz@mkh%8Jx(r4;l z(9!ZK`5kNn0HAHx%2fMpf<I@0<j&oWW$*jeBi_Vm$8!y_2eofKin3q;u(*ifXn|`l zh|uN?my$KmC*KrT6u>l%d&fi(l91@WGQ|!N#11CXu&zj~k_vEs<?p@sy!j(!j)@$G zSOYNC9Ckj<G7oadVz9}%jwD;B&XaoX>$ve)OF|h*It1xUXWV&UvdPJPa8&T;435sf zK<&WKS$xLg82JvU(ooBM>a4ZmuR*A*IkRcn9~nC~br7oABn!b))qwApt(y3M+7A+p z(KW6qit{61*T$F*2=GMk#DJwJ3RG2vs;X0s4$>k>E;)iKU{(O#N!83z4T;U;aW}>Q zo)BQ*A&ILD!Fz&wz_RJUaaGX>LQTgEp=)jz0Q`S_>?o4ApCcQ7S(GTt0hX5cz*vj* z^)>w7zy0@EzUN*zQve>=oKEn~KmT9&@Y?$zV=&pglb)j_x$sGVBWjm<3o{v?%kTJM zuTP5T0Xa8E67r;Xv;#`EG2O&M;Nlyvy?y}~E?&mhUi>=lKXDw7Jn}F;`_xl7b^0`B zC^4DV(D0?<z@aQ19JpMmaSlTwJn`fcICJJvOlNbv^`k3z<p<~S>JPt<`Ft9)kC6x| zfc*~07*3gNlHkyBQBB+!gN5;8ERjm8)o6DkULsX^^fKD*&Jh`SQtekYIsIL($;p+8 zy5IFF-;f09j`JQr>H)bBb+gX79pMxKo%F3^GRm}HWZG|rFw~J!wOO^hs@543NLh#J zWGgZPynaGzV&3!&T(zDPT^UnKCOQ(I4GR<@QpQB;*P$jWVG=xGoJ|uWj6)mRn9IWC z5dv^=qgS7us8PnbOYBH4xI3Qc89S$ofpiXK-a9N#HZMd82t?2cO$0^RbqI!ZT_Y>C zoUUQ5g_RV}t!n>ZC)*(H*0_C6#cVq3PWz`B5##lBxpkISzCPn7(E;3gs5yy<V$v~n zC{<AI3Jy0_h9gxNv<aw?g6hO#a#*A)D9E0DU89t@5JVvY*2r2I3tMoCWcD>MojFyo Z`S(yVuJlPY`da`1002ovPDHLkV1llp(W(Fd literal 0 HcmV?d00001 diff --git a/notebook/__demo/layers/mc_0071(1).png b/notebook/__demo/layers/mc_0071(1).png new file mode 100644 index 0000000000000000000000000000000000000000..c15aaee2ee9cfd9a7be8cb0ee90bbae8b7e4b7f5 GIT binary patch literal 225734 zcmV(~K+nI4P)<h;3K|Lk000e1NJLTq00IC200ICA1^@s6^mx?z0000vbVXQnQ*UN; zcVTj608L?ZaBOdMY-wU3c4cyNX>V>bE;TMOEFfrfbZ~PzFE4FjbZ~5MbZlv2E^l&Y zFW6!7y#N3J32;bRa{vGjVE_ORVF9Q=r)dBI002ouK~#90?EQJ%bxTqfh(5XZe&=sI zQ`I@A1}LFaK$$5<Q4yI0L_`E^1W`dmX+i9UrX9MkEplzNySaMXt9`xNiqN!Iplt*M znI}u;d8neGsH!u5<2&!Yv;SB*L_|hp=30Bdrw;d;zjMBK?X@x^A~Pc+p2*CV%U!>I z(<3C0bV-s2yY13HU{}sTCI?5e7Ee`PUCAP<l=phAy10<KI#xeNo<lr$N>kM9>iJK- zXsr@XyOafm46e*&c9kgL<b9pA&X+!M)^pNl<wdEELJlV@XYsE;uH?{VkvE-lfD6(D zrD*Xi=y^Z1h8N>gX%{MUsr9a-zM3q4bXiaSRUS+)4?wj&W0T`Q%Hi7ASMU5}*jHju zvYL?J(I(P+_NeMktr6N&Qu|qu@pd*XjdDTCL+axkDx;qbPfz3&*GBO^x7Oj$OxsYV zg-y<@4eg?G1>>FEi%(XMiRwJRr${*=Nq4mgtqK<pxS;~!I`ea)PW(AdR<CB)8~vaP z1Y%WdKtT2J8lh4i+LCpBjLP8PnSYIXLi*j1gPGM>-=4uQm0pe^7c|jFgXk#(t3rjD zDp`9jbMdqzMaA%HZS7+5U(Ik-W#F~y!lDLY*<U)5(nt(#ski9nDeJKTZR@G!{7sr8 zf{u=yl3E+?7!<wMKN_K|gBp+AU(;ZZ4T*cefEGc>-u2oaC7&&uslt_;T7b(fcW3`^ zG8`tA?JKY-%Qd2#f=O}%00IzTAYh<LqoD1iz6x$?f^v2E;PBo80Uq9KvjA4gz3ULh zb8QTnH(jy^O`{Q=qa&1ba)qSS;b-S72zaLztcy<`FnNmhPznZ65<!3u{Z%;ciY*#r z#+!K++WnEg=S^uw47MDmTT?9HwCIRu9Q1%&=Bot(gi)`cJ&s@4EfoNd;fc*_-{vX@ zaxIDeAU|_|jZb4d24!6@AwZ_-_<MLO^(s2JAM(-X-8EK?><DJt;v*6V03A^ZYd4QP z@H^a20s_|5)yp;wwU$obj{0TUk*p?}jW|MbWTXafBgs($0s>`zPG%izEQ#KQf6{ee z+7k(75HRqij;RU;Dq{LfsqB?b8vRLe{u<utG@JU(%5=VwPufZeR$|+x_GaQasP(E! zJx2dMe63Ced3(x#49`t-&^GO@tv#wd0o`?KLy+O%{LpT+zobJe+o@#XiwqinSN;nB zxI#B*(j0&Jt2Y&%Ds@7``OAP7t+>Qn4@xGZs*-J)U93(}J}qVddgNh#U-kcX%#%#% zgg$J8hm!BMV-OAkd;kHFizBlD1NSku#ZPqps$))<GEz4P$g(Lp*2krRAjYThoJZz_ zBjI0w08ksHBO1yli;@9K{NpNmS+jihKrd6_UfhWF^QQB+TxVazUw8b9k=DqN-?{_I z_t@C8f1uf@%~a`ECU@C4WuEcUsQS^-=_()929$bV<}g5Ng;@e_4$=5@=*ZaCu{5-t zwXmH0Hk`ktQ0t!JnG)&MoPS}%dhEI;l)*&Tn@0Z|X_2P<-SB?_;Ekjj`e<VFKO@EI z;b|k*QnD@a4Nlz%g$XDK5~d}93<Me+>Q6L#P$-=<oP47ns?NWjGG*>;({smlgZ|N! zJKmRWF56U3Zg9wxmT8#7=e*m?BZA=uNiGl7S!JE}td3<)+fA3Zr)=G;(pA`)AV5}N z`@@pRQIXeaIk+NN07px<gO&Bw!D^kTMO`0XH9*i#xsMzGAN5t+CtyU$^sZ-jI;81Y zYBt6|f6`?sW7QsCMf2GGM4M0Axn^}b8e-eSXpxNTXv*9y7i}18Us0Y-(-qp3k{1C1 zF*@VR0mC!t`1AgOF}ym^qINUc;cVclE#Kw*1@NJXPY#F-{7#C#6`pjU6b?`^awRWx z@4E<43H>^$ImWiL^xo2ayMA@vGHucM7ya5Xtxnjf4nN)Mj3_3gUJ3a`h$BzNrEce+ za=VVYk7*nWRBdiwQ+H7y;ONuHFxr-$eia~HJgtU31rFA7OTE+DVSL-DaG;D@iVRr| zO3$u4{}%ALI>#TAJGyp__H+~Du%}7>_^K17pj53;sNZ@?zPje}%_3uY*NW1IH0Z?m zuC~>P@)Osb>jtSr8ifWZb@u8Hul+38*h9XoZ_Z=M$u)kw%Ppfa)iEW#sYk{o__L6L z(d!KWP_LzQmYHBXJ`zSdO-XV`G5w|7s-#+mQgZY4zP|CG<L;jNbVkJrzinGeKJE-{ zFu|)rO^tA;N}d(SYxh~2)-q}-rLO(qfkY~#O+Cv2@xTzIUGq|iw(T+s!W|u5^L?Ey z#A0^I2@)MBTYE4`Z(e#Zp}oIeo${@&1J{j%5_I!t5=j<*t_A{h#p%PO6+`Mu{#8Qa zrU|4)-E>(>pu@YycA7ojzX<{w4p=2ZXFn?K(oay_9%C8kcpmYbJAHAjI*MsPpbL(u zePDs_DjaV=nE=>ZX{@`OEP-@Tt-5qHl{REO`P)liN}ViqpX4EIq!8+&2`bMo8RPs# zw%#=9oSQ8B004k~#7F+*a>IoM0%Y3AWj707Js@!WALUu63>9EdbM8E&5+N!MnEs~X z^~Nu)`~`k4jBTGcDxJSTh0c~o2RXWsZM?5fKXgD_!DpOvE<u1-u9|GSpY#=JohJ}} zM5kY@?^?j7e@39o@rNu$-mb`Bm#+C_%K%{eaH7R<1OSjJ+Q5<Jni|~z6#ewCz#Evx zP`tiefPtcbnz~z3<5T2m+m1ytuO6^BL-dK2NT5b*Gj!L6$CIWJMy1?TB`+HNG&h2E zqc;M)3Yr01o6b$A7V{)zUTIeaVptM}JRa(SL7OHbkCeZzX=O#Yk<d(r4IY{;%nVrW z8|Frh=5TQEY$q;@H>%dHAV~`q)#<OpuqQy2XB*Ny*UQi;_J+n0a!g9x`Rg3Ez;{dD zx=Kd&x0+dTlT)h4B7=^~MH}c+hj$f`S5=WZ^7I8IQ<7p?jP~aNn+)J8MW?3vluEa6 zS(E`gt+Z*Sl(rde@Y~yS##KtHERZ*^C{^4~0s>o<#fuq%KzkJR!9SNiO-7zRJP`hK z3?J!iYpGg?O7zaogi~#w0R-aH0;p_RZ=xRzfU!+ocE(UgFS2k-_GyXi_mrwBprhC( z=w&9&`Cs9<)Ie61lP1duIBufmI=A-2N=~V_m5lbLZmwG#ScYHW2x}7rsDTX`cuG0d z4Jx>$w@G`lP1QC&lJd1akHk0sS-P=R=TCU3EnUT8{K-OZ9nneMV}yW!)cV`QXX8!t z6&UjgDZbyoRUps>@-2thN=BbGMwBuag5uRBnpyf~)raH?l$4BUeQc_!$q1v=EE@-H z&sp;YUp~_#9bK;v=}FP7OpVU<CZop6r+gdtozWgN@~>NgO&Y7M9Am-4R)7MKU+e4P zP`tv(0kxLwns4C28%4+WRQ5+SX;o6=Wespqf5y>M@fHB@E@A9S9KmF+4hzfqn^AuT z<MMfV6mX?{^}aGw;%J_tLOtE0votYF3(O=w(|B*1wgv>YHJQ+xOFD6*-}NqNfC)8= z)BccWvA~x4(Hd_}avk8-k&9>q*akU;xoV4OB+}#jjR6sE_dsJGa@nrLdRZ_#c%O1g zLD4>(sg_c+8D+hM91R{O$kemuBfA?Qpf?)y)u(oLMYbVB+ljZ=h{;Ss?I4^&f{ywc z&DMx9Dyhdw8F$ReXac(8nfCgh4g7pLgHq&EJatntIp)g8+Wp05A&%fLJU$!R&7SQy z1mi(~%ru>MnI@>J2jF_&v{v|y6qh%>;sKhGg_)WB4Ad35Y!^|_lke+KryC2MRu!X0 z-%WIUoT^zvb{Ls<8<iv1YqM&^2uZW9w_)$Q{^Q3+3D3yvg`z&AKkL(S{(`&yTM+bF zlG@fCZma8dlb-D9^No6$W)70m^iQ;PWIoG5Tl7L>cmqOJmJ0N{#EvNX&_8cs*`c1) z0Z>GuU^f3T=rqr9v7b-&#Gd`(4=Q+K;R2lHM#C`nJwiDCqZrzh<OY`8Bs1A7^c%XZ z1mFP#jHfoHOze3ld_MJNy?xxur)gm3TP4S2bM!W>x+=c8)0x$2x+1SsYm%c1W=r{P zL+i0t@|(%%iuwc~ktuC@;PVOv@u|3Yg4q}(=<LZ&@Oo7O0s`V4#n9I%@E`oMyDFug z&33e|itZHCaJ0uYKv0ls%a>+7WWyW4paG3~GS$m6GM$8)*`_(>*1>J`P_XfBRi$h+ zrFFmLx`;-aenf>86h4BS&~8WJiA*`PGY2RGd7AfD?ZG6V(PvpoM={MB^?gieBu#S7 zWMt>@m&V{~QU!VvDVj8td^&U~4R{w#s^3v>eOV%nlPE#8ZgHeUUdB#-mcJbmX>Z`y z>B`(d`alx<ij!7h1l1vP1wG>`M1@6dy40;hCz2zg_Cg~*5xo=v5qUZW5J+b{^_9U2 zf~Nm!ed7qoANs!3A6~X}uu0Vet&9Vl%r-7HyrBt8yj5?#eOs-r<10a1IPg|~W|1fz zGFB(X*eVZtr_=GrOLzVH4X&m|2grM+mYE%2JkSk!Z{FV2U9w+rJC|L7J{pq{fNKt( zn2r3=Zd9e7qMPGt;}luAjD_qeX`0As)@2zni!ze7ZI5)5Rv8t=?YdKK5Bp-orusD6 z!zpE9>#tAy96W0fT}8Kyf`RRBxJBLIm;FupdFuxSg?8=g_pGeFi#;kWhL`nIUn$2< zcvQ+syq5`VK(xqf8r73D{!Pzm(rRJC)?OMZRbLy5QX?II{Nt|QxFP)fRfB-?rtU+x zZxou6bjVsf*$}u)0|28K41e+s?N2o&1+RgQw*S!YGynj<G@=*ldHv^v)DNJzQ4mI= zDVG)=IOCBr15g!8<F6}&I<h5Ts5qAd0@xIIzBa5tMetTWJ6W%)x5l66|B(9%v7+2I zoj(N?r93f9ahC$O3fME9f02k*i~?C2ZAH(MbMpLJA=l^p>;0rl*;%0F^iA_*8PaZR zT>R{E{7Qaz{l-n&(uKp<kXYGBwu$b!S$D!O4G>72HU<GB<Q?;=*o~5t!8Ukw&`vFs zOG)-U=8XHE5l6+mUd1C<?2eUHuZ9Mk^nt88|61x9`ymgVgp_=kfMb&77%C1UK4;Ge z*p!hkn-M5kpsy_%n^KsG$vH<Hc3XjJQT<gqe$)Q;IKyOXT>P1?y~4w`gCd&k0s+$N zl#lYIQLox~n%LeF(isn`6iQiiKBKg=$A)!1w(AssE;2_s%7$CRAO5_&mwR?}Wi^?d zya9RhN>Vg7rB2&2ctGss+qeZvnQ9Mg+srdtC-Wt&XL!YM%K?ywzwsX~SKVj=etVFq z8m+b>St%qGO;%J}Ma^cHNuV^QZ&}N-E-M^cS1?n4C|Pk&BjgLRrTrmZzpv2Dn}>Y{ z0v#VE(Yk}m-E{z+VygN+XR7yIa_Ai=;pwX6)k<w{xf)K1I7k(g&@UhQ@YaWm`9)92 zj#1+~&mOyU%hxL@o2S!jX6HZUz#Bu5j$8Rr_2H-zVq}>qw`nI!Gj+iNaSnh(__Vh% zOv&wN47p0=tFdOXoqxNIwZ*B>Y1T7^dnND7ZpgR!z<_czISq)#(c%oht9iwEODUkL zh|egY3j}D%09j_~3W%u6sxV>fdn5h|E#dm@(skja(;typJfP7!y&L<Uz_Xz5yxwGt zM+f2n=ZkX+84vkU9-6!KTUG^VCzj){&pOu5;GoXmDh(!ZZ5hB9|8gFE_RhMD|3)Y1 zb0Zia#slPyy}{6{F;16`Gp$Lt?7($|>!OZdeO?2Z<HyE$CtoSuse`p(W1N$(@aTLJ zmH@~jPn671Jo}OxnbLvUH|lx2A5KU`lhnDE7iB)v$XLm6V*Qp)A=z+QoqG=|y%bVS zzWS_!_Po%Z;+eP+RL&JQd!vq$xwa<WZ@PPof_`LZmoF@RaZ?^Wxpw_3Rn_{U%ua<J z`bBPDYkq*PsiwNy;a{{BTC9!FFh#EQOQgs9%69%litc`5B1xRfEOe}&M~aMFP7_Fb z9drPs^||(G=nYdXND37x$3Xe9qEUdDWa&BWPd;os?#&6HXi+VLycn6PXjFY#ISG)5 zO~Ws8Ph28BpO&P~*K<;?n<g0^>XM|p<wcn<|I;Z$zoF<(fxRh(FD`U4bQ-Y}Svq-F zzA&HU63;907Btn&MthrewVYkqc=@tv#R`q0&!vMI9YGlHl-D#(ueC4QeYh0uTchc6 zefg_%F^3#i;i^;jhP-yoTpEWELnv!kFU+mBpWM$-4UU`?rYjYg!$N~T^RGb1l72)) z@l`%YM-;L19*8?8*+Ee?7ER^TL2(ny3g=(u^VOgEmgNB(Ew~9dFiTVd$A)jwDE4Hj zcAY%~0M_W-s1@3;ie=m8MwD%5=}1!wYE9ITu>-9QV0&9YWlFN5yeXu3%r{2)&6Z?= zHjlcsdpb=@hlfqNpQ(TVdRL7S^`C9yVSFciwD(tX3ltE?X-zgWQZJgjr?<yIk8roz zU~Y>;Mt^0k*!l15_q*k9Jx|Nwm*u;w$gHyf0YMJQn#o5LB5eb-8kmmpbluaxHW=nt zok>ReHRs=Q`kYW(CTrX_^L8Y&DY<Rk>TC<@VsZdbw5ddz28S+A<_|ktJ!>P4DQF39 zn#xgVW!vv0k4w_g>PZ87WnWY%RBS=Dw+n!x0D}r!I&^Y7*T2QxGj927Zkb1al140F z^d2T-Q!Q!cRBtbmi(fVRtr9%-gmP_xs;N~WA9BgMM*vW9{<4hd8*9fub+Q@&==l^f zlY&hg*tXT1vbC2}C<utZOYJ7(&lvAK7#x|Xkc3bHk(v%nYjcsCjya{cO0&wd@1YL5 zTalO;k$oyZ^>NBYmH-^!%0?YURth~qOA0@t8JcO7t}xXx{cz&nDBQorl==2Z;Ken| zA77I)J%fj~!_bCTA^-3r@Kb11^eAsuqpx!1f;Avu-AQ&S4GChYlyO|QCBmpE&c8=f zbpxhxrenB;{OZr^Mw84ADn^`jUpL_4f;iO(^cGj@rq<K8c{PXXfMIz|{q(Ix(>7+s zm*i@V&m!W|@h3-^hO0{t%2OSE7<&;2<niadS3uPU&{gV5VLMuUN<}kWwim9rGXC37 z`ZClWv%`Q?LoDocvn__S5g0?U2Vk&x83$1EH8zH|rWTS_y6uY8p`uypW}1p1-dPd* z6(n-zu-5W*#T}BPccOz%hF$7O*><*~wsgUAkD*-p<2imMPDk1qly?PXIS#T2{A-}P z-j4zVB8%1%(+4<jqtQhHK8DE!1v3T=(aCymPeDsy)a&=11Fs;R5#r>Nw2e)&K0Or9 zvXOM>uN|Fcj0Rm<$urL~mO3Q(Gp9d{UH&mC7j$~C5s|8kARy37t>p?Km4;U8Q2K8E z%K|a99u{qt9S2NC?sl@wPm!gEI@wpz0RqN|H#I4n0EO{$F1$lp$Y>-bF0zofS++Bc zCSeKRhohW*(M<2$SpcxAOP4*eIPz$ehF8s;Zk35g7tACFoRRNnK#n*#@PWwfb!CWB z5R>@%P({M0XfUe<>#eHzhOMZCZKrew!(HBfZS+w(f0l)Q+=8w_gGb8RwEEN&G5PNH z#IX2Xq?S_{B~NWMmHR#V#+~i_>&p`Q1J5>W3i(1GITk3yPXRlkBBd90S-26kA$L?C zE**cTrP{Xh?_xKeavG5)2!QtB3X-$l0?<G}XxOOhP5G2TQ7!k*jJP%D!qWtwUvi-% zw3u1rzk1J)o-E4-Wf%}hzes;~2yJI6m89$)&z`DIRf{!D3mNVw1LD#Mm9tL;22god zp4UVelMJ6zwjPaO`NIqX;*EABH#DLC8Y9B9vRH?M=nVIrvYwys$qj^heah1aH4xk1 zNx3UZ2dQz_W!p?CtYru3Y~)9vJ&<Mq;*!RI2OO(Ywtoc7xxV+-yW+*nO8hn|C26S6 zU(Y@&$%&<c*tAfp?Lu2Qwi7v2UIPT5@kt;6NEgyNwgjSW_0IJ7W@<S9j=SASDtmE~ z*-Ldya3vYejH{jk0y=av4FmNRKre6b!QAvy0-IZaz(|gCj&=xAlCe7Ob@>Gmd1+BH zSmh^Ocw9-cRoE<yV9uTY2&30=!d@R4>HMR^XH!K3oA_@ByTZwsXuotWMR{jt6TkY~ zp_P-Ln_v1YM#z=*jT#hZ0Al}Ar=Q0Xt(?$3Q^&@Dom`QkUsR;;ND+IKw7A;IE<M)u z=hW-G+dW@OG%hV7@|H7R>Nriy0Zst{QJ_u`upIzX(w>yTF4z%JY$shgFbdALm%bMl z)w0usk4D-N`l?Ft3uxyGIQl5sL&fpycgp7s;6&6Rg6VL#uF6RU3rNT$LZVu7DBGgV zppmt7rpdIjPn+7(6>PWU^x1FiI~razhvlT9=Nae@_sFq8W>P;`BY8HQlVoj)#qP+6 zm$CND;da@tprbyR^)Lm%oPHH^hx|?s3{7@8jMDKUn+{)kQlG<i#jokwTTdPscU(+0 zO(T+K0J_Jh1OY{gHL4ISWPPb(T@}^5M7%pw@}*aSkV<D(l|e=<T>yf3No|}f<%g`9 ze)`P{2%R$M#4O1-P8_{u>+5aTChrrvZo*6oWPnrwOKUwTIyRMNt`H@)Cw2bxU-P{D zt$gIlv2}d5rmuPa_)HN=-wkf$8m%vtk3Utw0RZ0Fy66hGSWu(s$=?Y*;4$nKP==Xz z@(#%pJQ-hHU^zG~i#Ms01(<3Uyr=zIBe7o6Zyga_g_R$Z>PrAtq96c3*&<_Fs9yb- znS1{Kk5n1#F*OxehQ^JKOtS&Os|{E{Mx*8Ml`K5*{KI7gBv~hW$FN?<ULa)4obGGE zb{93h+?Y|9>&As>;zGsm6zwDrZix|Mk6;CO2+qF&Di|=40#=iLN?kFnUnjxKsK1pr z0VskajaXRKT3ss2Tt@#Lvl>2@3oTki_XJ^=Tm&yAo8H)6&c9$$T&bU}5=@QG95a{* zNn&X#1sZ89C}0|qg-@G4;;l|1VFDl{(kMjyZNc6CG`hqUz^QjOLYtN<5^t$8O)}Gi z5K>G=&mvOwLT!C80ult!3_QD}+9!5ThBByDpTDzoOXI7@Y1FCeM$R^WLu;l@W`OR< z**z`tHyW$((RwuAZJrfJP5DS*LNjpx*gC?N>RzdZ<6H?d#PxiXfzc=uw<AUO!&B}n zDCzRlMGgunJ1_2qe_IDHWG+U1<HC*TFuE?(i3iFg7;X##ax1^|J|@e#NI!`NcfSD> z?N|W><aK|#5+GD<;i=94a)t)Ps9b@FI!V`)sWS~xwp^2pbWN=40Ph_E0a6~vl-+iM zo2KCSYR}nBM?FoAFC?%jCDiVbCj<k?h@Y2JrUjA^oRf5-nzJ_nKtY>u5A8W%KhI>g zj~+IhxLU}G?G|2KmNN-Gkt_oOmNF#WC2mGNgebdjC(CA`6#2Nr?i&N`T!q6YmtOoB zeX_p9sp+SIYUJ-4J4>A<R+~C7HI`m<)mD=&q`Cx92&08cg7y~MV!KHOGHL_Yow@$> z>YaaWRjr-IJO7%)sFUhZl(8v-fOsegN6aRdmLd{kIw>jW*eTEZT7Uo@K~c_RbWrNL z*F%R-r3U`dcMt%T{;e`1&cAqVkKPyS{7OE(Z@JS~D+J5I)D?x7A@9Wt8YFfa@5qQG zRS*CKr_Uv$(P#YE(flSqpX4>ad(j&>g-Z|QLxq&wYI|?cW?l5lO#IUGDyotb)p9fw zDY)q@K>Ag8MWg8T$g;3{Ird{qmTf!z$@Mn}jUfJ8C5>)~?MD0kq?~fyFl3Fyqaxx1 z9nuM9G@n|y5|n0Hy<#K{M<R@*4nCq_#H6(V0};0dXml!FW=~Bun8Mwj4|hDNmuMp= z2bqW{i=F%Ncg`uN`c0hPC9ixgm4OMb6Ge$PY$w+GXbgX<a%ZRTg(s$H5g?LT0r3vM zqSgG`i*})&r+X?O!Itm}VdT@{2)E?;qZD9#mFWT19@NH9hw<8q_*Ve}`qQGtu_cSu z)l-2(QEqxz+CjXZP}xiy^-^E*;AeL?Goy<7YiW8-gcIE&$Vx!K55_KiW|<vD9CPMD z-z9<;^-!iPAJ1zCMY?lHrMen9Ti+b%NrNWm3pQ+a!&`XEKqfJ?_54{$mN@=WJ@r1w z-*_<c6a^YtYGp@&0A931*BW`Kjt>{*alF+;X9c?7zL0Yp`CA&}?LY<rktjVLh-=W6 zqOsDi+ZoKeE&k-WgZ{#sNYiEkBCjj<B}O7k0J?FBPaM0br=F@b^Jp2aESkT{4%ig6 zL>istMxE2Wr9{OW!Vx>nO?i~()X!;7$q`fK0Zk!1|7SDjXn=&wiBMO&xj1u8T#4-R zh9}e80K_6Rrq)hI;haSI8e57mk-->~SzY#U0`tfzeyfwibJnb$%@!Ea7AdKs4^S%A zRZ-4b$ZVu)mL71R(4s+xk05}`NBWCZ#~Ytf_SQHEEgQehKqH*d=CIebQUjnw=_6T5 zn8A~vADp<#trd-q5OF#Pc;}==Z)8i2f)W%JdCfdM?XndFVP&2&Uty)zNYQwW99<;f zos<edkpAJf#*i$^5Qps0Zf;8lB4MZBE`M7lfd6XYjhaaHREazT2w_nfJu5#-P;2~X z`{Q{4>R6g;a`NUmwJZ(kh&bNyGvm3axjvRJaw(Ef*pXiabq_WxATW!O@?HuC0=iSB zZEJf-Mmm2{SPXc@DMw@j5^XE>8q~ujdE!yz{ENJCB(-K5#Z%87btI=;l|8+=<D3SP zRs6n@C}YrrtNy&o<PMLnWlUTE^FB#r6E}-nk>Hh7e0xOgdbKLro4>_;OUDB{eK7W< z&AV$vDMv5!`{493i&oQ(`k<@Do`qAdAz5GCDRUaHz2$t|V`}$=fY74!dMr#>Yved- zMlZ|5PXnw2sw}?>HJzwuL)cp0@(ldxZKDv^=>qmEYok6sqiT!-rZjD>x1IbTj)#Z$ zK7jx&#ZUj1=Wpmz2!Si9-rJ+yv+pfe7ASg$sZZUyO}CXTNyW%{$^4)vCjq8^KxPE` zqSeVji5cxNskhJ-w4_Q>Q=BbN0fng=>l3t;ceB<b-#MuUx!qJ+)MRR-;&xP4_JuF* zG>9r=L5mBOV_wJ;(Jw55j>gH6K(9US5_fVzKHs9|x1N>Bvvx{*5wy0UZQyb|SwyX} zTs6dUOxU4%{D9l&&{QXHcLnPw>1Zu6hO)fBTNbFxLMaZ(IhWcz>jbAXOxsgl^(Z=Z zQv)2^vjDEV>{2A6_Z4;4RKXWHeDSk3Lb{x<>HPJ~MeDTiYtrAE&AzJCW0j4s0R~?) z*?)Eyb>eSVnp9|1(saDvUtVDcr;f4M`Cu?QW(qdwUyT$^()ek=yQumYk@N_laG=q< zW&C<x2PAD}`LlwzBHQ4|;`hMiT6(lb@wLEEe@fQVAH*>yg_Qu%v%=MydgYQ}6X`sQ zLZME=Gxe}j6v&sweYv$P$y5UY6{NQgf8}O7XDA)-0&&2RnyHqI7Zb^5K;fa(d;?%8 zT}%?gd!!kFKCuS<qhlxjOPQ#B>&jofHbxlTNpWFOrk8@+6QxjNjb^kNtQ+eHYBS$E zzL0qo@K*dojmT)?SLg68E-wwok*V9b^eh)p&laPu9tL&oXt;^4DzHeh$yzx7o{p>3 zQw1wwWF}K9&&E%3DG|TmOE=WfFRf)D;L>{caNp_ns4EU_xc=gi(p&UaLqGa7!x5Sq zC>!#ypql_+25{(l`^2?(xr`7;j|2h*?cm`Yh~tKn7Qf`yY;)esE`R~6=^enpByArb z{`JZyoGqY}d$BKq?@Mjytb)+VNomt&jy@Vr{SlMA;gd>mic=wum8Nx2^;-aged>h* z5_@g3X0&mE&C`{#+zPxZlPfNoVx-_l+1O<l3V%&Gdh6EL4m6_Cr^og1yl05@KF|J` z#-U<V3#X=iK&5DFQk~4p)576ZP)1NsG7O|LYDsazauiR8gSEab<21EA10LnPhL6`9 zZMrig3{i8Hux}kTtS_DPopqmErFuke1eD}FfE@jY=RUVnA%~9+UI*Iatd!`<vG#~i zDU)brRo5#NDu8UGw2>(<3yud{otce^hxW&SLgZ6tBzk~ELYsfouD@`7a^(tBFGE%p zuie~2szje^BC`b>e72R7^i&igS20pSERc{&HkVJ)a*s|`A8TS*8G>xGx3sdJ6ml$6 zt&Y^mI1(JkC=J0E4q-(3sho~_SSb|_5oW7&B?9G{GNMsG&s*FpSLW$YmowHy;bF5b zY*D17Bu^l00Rc9>t~8odcO#>?OM2E)Ix+)M(1<(#<DCW$%q)f_kqA2b&mt}Ll3wXm z(6!grY2^tU%SI(x^{3dlO``Qswu8ht=ReZ%8^6<A08JWI={##>3jFjPrA=<55>>9g zm_yzb>Z%gaEE&JmYDgUrZwUYh;^RPM&zIK1l|KHqgz+py?DT7zt0e$+G$bsm>IHph zDMqpDo3}{W)%sDb+EwWbJ3}&0FB@7ZLR9LX<W6!fj4jAmT_~DaQWMpt(X2;s;-Vka zs5a!-4CfjfBKcE!v)vCVFM0dII7O1yF(0GsiswW0pWgszC8}TPjetNO&~#b-!N27| zADh72mzQRlGH=!SL#nP9_j~$99i7@^BL|mR<Jjl?M~tk_tbLyY9yOwAM2Qh6*^Oq@ z0yonWLlPQQ0p~iLe<TawYEBdsWX4hL+%uqz(`o#y!gVShFxJhd2~q7cQCD`xIY+n& z;14+rV?joEu5P5qCVYhq89)!w8Nb)6NHy^2X@H93-`aR9xf1$3xS-Dmr^cTb)Qo3l zRL`1Ld=Fp@uwpXWzYWO>emqA^L+{4#0y#1+_zXbI%S)$2fCy(t-#j3jFov^&2oNxA zn5rF8g^F9`j)t){LIp5TG`(m)!PNo2^IIE+Xj@5b=Re)?w`$i10LBWDl-PxnTRV@n z+>#`nLsMK&6t2_xzpPX6aCH#yQq_|81$Fw>+)eRhe~*_61uq}Nu=Ja~q@j##wH5-@ zNX`S#XqbiFothLcBb`T)dS+jYXiMIuMXZ=fElneR@@)bh&1pMD22&`5K4Phu$Q~ji z$;*VaDv%y!5aC%{*9`~fufoGnrO+otF+J;B&NclT+cCTntRDyz`TF52n;~*Z)z-|W z(0Q4~u5uaj7n-RQZed^(Xs}!TAi!i|>Ojel?h)OZ^LOec`>oY*1OVtwv@!EOfNg?+ zmb-3ur~Q;U6g4X4D0GV2L?e`a+6Dkbr7j}P?qa=f541Q>EDVq~Pd`c?1t6e(V(VBp zFf0QN^>@j}RR?07Evd68n9Oe8u?bBl%T}v~Q>8--&nXbllgopQM9jWm>5{V7+R;pD z=X#l2I)3i-@>PZ`b!RSrQ^#F07N<UV=m6CKQq9eUlobU5qzpa2H`iSo6S3~Z;iCkS zblA|Df!f|+-oEvG?IghqDd`p4;@IPoi^{aTImz|QLSv0yw;Sxpr9}K=(jp%Uqf>4Z zl*(KV_2^XS6qC-czg5ROn^rg19B0E&PEB$YZVCbv&@zRpG#%QnmIys<qesK#L+SK` z-Aj46)--Bt2NR&3D%}I+z)|~_PG{8E$u?luyq;7-uim9UjR;@7QYR_oJ_x+YrIe2{ zjZVA*Cxi)+HSo%K(@(XdQV)?9p{`;^rLmpTLKXRA{iGfgk{JXvtH)a3EH|{eV*toz zke$CzP9K57@HPRR39v?y_9SRzbS1@?bF2|!zY?i_S1VE~oWGKs0VXz0PW-*HRAHbz z>Jdk?%L_V&wCRX02O=pK{qKWvxW-HXpFP;5mAOd0oiBJ=x^7Zz@ljw!_G_g42HLd= z2oRpNsEz5_x!hw~TaveADa-15l)ysG=%}|XZPCoL@>}<Q6H`<&;cTPTj)C<UW}5Ra zFUmY!v@;|jVI(||Ht5-7Q7(OWc1i2$WgQIX5!<V1qiUsmED3lc`d7>7AWY^{52^I@ zlC)u4SSCU|I4Z({vb@+2V4B!oH$o^2r$6*d9SW7HzOhnLD!<HE798XJ^Im{Tp7c*E zZRWQKx2{JMCLaKhk#cZ&RN8sRv%6O9$y%J*)`5nj*M;&`3wPcnVkuYc<dmxxmD0$V zH4$xVKezLACE15YHWhNHGJ2(MN`ITcu0L`1qCeD+&`1Kj&e`y3X5DMur~YDX*>4f* zxwQAMD+H1RJ*>U_Nh?}$ajL_nb$3!Tit_2cMyoO$wJ|HF_xaC$D5U96S8ALyVAJ)= z5V7hI!E@1RHed3YWrXNmRVPnpVMrg)8GulSJodEfPJd8KTL8+Xr>FsdtswH3Fd6OY zs!u1U5qkhsS5e6w5w*+3T~x%l!se9dx1V>-_e}40Iv9KNql$f4?u7aibXK1O2%B!o zJY&Sl$h=O2;nuFfV^o;l+vdy$V^Bt2hWQ;$d0c6=vi-R<r_tL)GSINSIe+Apd-Nge zRvtyh2$g;kIPs875*^*4nf&9Gnqe^gE<KkVyrK|7SH#YDJ&k)+Fw&i#4CfyodF7h$ zcE~$-=;RlxWjs1qJWS-2HlZp;tw`KCZwD)taj^w|{9DbX_b1yPY}@h2)CT}m?~qj^ z4MWfG#B1%SibQhM#=v^lx13ymlGe4B4;ANc4+PKu8FI)2NQ4uw$MO{sos@;r;ee+` zee}TVZN_SOLBycBDXWs2OrrG*h7%;{K7G+DpZ?*uV9ckf&Yvr9YlKk{5cdO=8}Tw- ztyOyTNI#jHIDEB&mdvq0q^W~|o_FP^CnCF7?ir~#`@v8bO3AThB1w>rrMyFeZLF1_ ztXB9$AkYrrri{#bi!@7j1u)ZSPoujT@9jE&4%8MsQH*AXIh5xPzd)(+EC9jE2g2KX zMX(&~`S;jPvmB;)t~!718FAvq6k7fe2tn$UTyW&0fq>d9Ud^Co-ALUx_RLmnzpY{6 zP(Qo9<V=6?K-1E{%H5G5AiH2gChMN+{98#IH$(zu<C~`YQ}xFxm!*>OIiP$Glb78D zaCIlqKSF5~Ofw`yH1@7OAvVemD6eq(#6FIv@HgmWD;S6~G4&=L)80LrQiZq^oqrCq zRclj_+M0D#=t<`F$J5gw_pEL`g!@u#foIo-A@zmYXM*8b`c`$;$}#m&Znhlw*yP3k zu$_OU4jw_F$mwM&2_H}I@}lrW@w*Z?3DrE4<Y*T%XBBDb+=wHoZ$Bj|m^iv3*V}X) z&w^!VQe5I-!NdRR^Yp)zK%+fn&T^t+2O!O*)8q|L8qR-MQ=eida(_oVM*pXIn65B` zS0X00H|WWK&KXse<5RYgls(&SYVkeFLb7$+c&fK=$M*kKJAa~4TLU=L%KNG2R;LC^ zZBah7U!?Nj06V#gC}8r73QF~WXJ7Op_k5h{qC1r7CX_K1tfeV40Y<7h{|=7vp3B>4 zbvB{VsWBK(_XKFzT_o$lR#FGwF_Uk6*3qlc&304AASD;PJ9*_(zstfCx^h$^Lb=+e zHs>nOYeLeQl)y)sSs81Z`57%d_Kz3*ggS$RIKgnc232EQi2!QPuOg)i$2RcfzR?;& zCoSjLpES*HwUIG2u3(^>Gg<Mu<36rl`U?8ii(#N}os!(a;USS$Lp_a&pyd2HlB6V6 z^Xv%1Ws0V2UH3WYMY5pG$V4@<)A{$11R+~JUtI$UPPA8V>Ml}gyD2(e0Xp^|Z{!y= zt8HmIHp__HdF@8b&&%p6a<a!A9itd#PyQApg;boDx1WXQttKhy>xc3{+)~GnB}O&N z7)s@M={@Ynl&l!`je6K#WROnL7jp@~(3e5)9M=iPlJDD!*Mp69q`cGZP9jL3_Y9tj z^Eb_>a3=CsVUx!~OeoR6o$RsFowMY>X)?&vEL40(W&kwfRCoUQ3?b6=vfiO%iip*N z?+tK?YU0gi8`w+%sYy#rHBF2Gx|Gylr`%w1VS|JnBu)$;uP$8HQ-$A4CJGHw3kiDl zp%?9kMrLiDf2dtBaZ_N_rrJD%>h?ldW4`t7hPQR7)2;yx$(8RA@MT7&7WNa*vUu^7 zKG5E#Pa{qXf;EQeO(iQ;4zaO|n767nmmR<)OFJcBew0e7NN^Ys>H89~dB|V8U!>O@ zqqhPw)e)XiF787a!Iq`*&YzSjB^vEgw&(mUkY5ugKAU_LaO^bR36v#QPTk<a+#o2R z0I{cG)1aVZx2N@RJP5FJb6SjJbr6wEtt{Ji+MCj=hL$4FWKqW4t+8tZtXO_q8WEp5 zc2WFL3N=80lb5czPmXx&5Vcj~=tZ(SpQbiMVJskK41>YODAAvEB<TThr_JGS^ty{Y zjrQ^7kE%m*L=KB?(YKTZ2LZZ@I3T>D85eRXz>p@^$1Cx=ah?fKyi1{4L<<Aa8fen0 zH7!kz{&*vA&7^kMW1B|2!wff?X`xxEMx26(?Q3{9t6!tS6a+}2gW%~^LM^D`3~eT+ z6|nM`S$j5%d+~RxK3l%N6y+K9#l=w^QPx1162m~0X@oO3K$9MD7z{^SmJk7TOnXmC zV*pp{0Cs?n1FefHf>6BPZ?}kbk4)7zZo#PVTs6Lyj`-q{SHfCZ+G{s$iIl>Y^H;uY zPym8T?Lzxmr?5Nz52Gs`uTe0_6ohg;Ck(o<r%-YJgsg;Ng__!psdH_DhFYrGbV>1w z9KXgY@w*aBk~vfWqqiQ2wD6!PnYjL_oCbtW&Oglrl)YG%?6HEvlSKM#xggMSqSz!5 zpd~|z9BHQF>3|RlkiZ*w<1~N(DkBnz8t!&lync>-1$6H`UIb_SjN{1w2UnYFVO=fn z2K~-FiX--91hg!M5~1li5TLB=BnCkI4z0?xL1$D_9HFDlv8l0bP4`pQN_~p~Uyv^x zCjfHL7nK7x_>0eK;8p{VN`7g(ToRP7{hLCNe{~TflM<TQ?URq=wSZ-vAIEGuKx&5} zSLw7jw_Cm2gxHTtnd%Zi_Fal+XFvHMpuef(Hs50>4oosB9GdJar`)gCs4Kf3Q-mi9 z8cq?33lYmzOaTyHg(ArIt`bo0Rf~+N%tYt!%BN1=uh~WRgX&gUSraYChgS4gG=sb` z&3Jh7uMi?%8_{AHTUwuRot?jD!)W-?)6WqEB=NdLD*CiW8#?XC)B)8^>}Klo^hzLG z_Eec_Z6}{eU2l)ue3Y+sqM=JNwj^QN>&UBuD#+HuxulntC?keMo(*v2{hsoc9PLt* zl4T~g$%9c5zAs_l4OlN)jb>NU7th%_(^OEg&YyumiHlWMP6B}~dR2pzQ>tPY$j4%4 zAh5ltze@xr&BP^vD6;AATiUM0IX&6SoGpVm<%yop3%$$7R7>zcBW6Bs#yb8uc8X9b z{mxzBd8xQdyVw|JfYm~}()rUooVJxn+l(>J>7v(a)uM9US~PpY7Z;U0+ex;YhT0xE zL=pWbU(wY1NeNDxaydHlU|9|eHtV_VNs0z4sN?)Cr)ns01@t>hXpTNylRxDTv+svC z*J`(D$HauI=)1xB`|2=_83zy$_^@b|^3GFn@_znPf4!>Si6c5hYfLp7;kgEz><bjT z&D7)Evjm-TNKYWI`@OlH-Rv_Zo8o}_YC@o~)9DmcJ;0`b<1}lENCbTZ=S_W}!lro5 zwZMd)3@=@?I4}Y7CND{{!x=JT(g$tL6m0>Y2w+z_1IK@I@yuUZPS5{oC)N2o<=*&Y z)mnR<+LaH*Gsm8Xc&X44s!k2Jnscdo3IYPStW{blt8k^KDOZyXfbBG0*s&#R{nIjw zOohDo4W#cs*duGW=jgZzi7WwV5i2!NqGWhxp8h8hVj}O^z48>`@&F*Jm~FRU4QOou zYI0YSgE=$6I#_vqYFnulnAxfLJkz*T2mEz0IvSj3Y4mb+gB(FJzLK{hL&mzo%azOs z+Y*?{&8wmq`Dr3cA{>Eq5d?$?aB9>$O)oo232WEuSo)lpbpD-^Rh_@gSC_(c_Jo90 zXUqB9W2P=g{+m7r)Gi=zk+1y~)|5IKB~5eqn+8X{kxA?+*<*d0MmZH+I)}mNq=`$3 zX?@u3(707|2mqip<5%K_;^DC4)MaIikLa5K8pIfGsz@MEax$|jhRoG=A}X0GMS5Gu zSfqr{Xd&I-1Q3X}?MWn7#c0Q`V8NcudK<U<EZ?Z~TgO-2MkiwMS!po~5HrY}Im!<+ zSJrneOwkCCE|TNA<H(5WIWs^wv+M&q+9?^Lkhit@4791_OrD;%o-`{s%`x+b)clQ2 z9gag8rz%HN1Vw)=P?GxJrDEFBRYg=Hgs!*R$CxxKFKrsbQ+iGd(DNjloW5Dx)4I&` zH3}4u#SItlRjWO&A7bAxlAHF>59_H2md}&&BEL_^RF6r;w6%wNSdc6wy>hXikfyFi zqy(nLNrSx<Aff^uw8TCQ+*8tMqYMNp<(+^CiUwOws=SInHgo)3j8@$%Axh6OK%v|e zt*I!WXb%Th99U)T$KYc|31wZ$!NnbKp}hzu;AP20IevTfSqy&CzBMgS?Om<;Nr=hI zjTv{gmDNUcP1i^-^JKPN2Kth&Gp-Xs0v3mEGzTx&19lyqf3^^w0yiV2+>ZC1oxCB# zR4_FzNpm#bD)*OAyINLL8FLe?OusxZ)vSZFop<5m0UyC(v2V~Pi4~(q4Gn8CmmW*8 zEGI_nT^JLZRdZE9z>MJ}eN<t0DQk~Ei4?PKn<UieL*b_31MYy055h!S<(0lJSQ~Oo zuFizh@mO6w`K2pmdt^pOO~*mdM*wLOD?0xS1PF%Egw(DPPub*!d{A&cVHO!DsZ9C% z++aO*8!+ijouVs~6}<iiK*1-9W9C=D5`T0>iGzSqyvdq<1_800tAc=bt1D1Uc>lJw zxB0c2v=R@b3`rBZ`lp@A7Z+9b^&956wr=)~11ckLqv;@Q5kEGQkG_m<T0bwEO3?}^ znqnC?nH%qNjKs-Bd453x0R|uafd)3ppIR`~`;{p6zV9UT+L5~YU)dTMG$|XCcwd2Q zv8j9uOq2rk8673p7_=1>Qjg-Yqt>M&?>;AI9?)J|3UGlw?a!=xgJa^e06sGHOe4S~ z_4zt))hXS1oB>Gd{{XypM66=XES>8$8y)z_rtP$Qf^+c^qM(0HJ93vOVW*4+oaa~4 zp!rH(p!7b|Y%o!M5?vU)t&~TrCs$NA<anl_fxq`(aFhB(W;P?ZtsVNtCFp3To@gT0 zQ&)v%YWc3o=}G}3XERmZXj-tTw-mu-v@9LJHwVZ_2_2Yv%5rS#)T2By*rkjm2x!V8 zV*{f?4aMr84InjTNIi&V4Za>_8m$Fo3l*`M1ZKogq@F3)Cu$ViBE^d){I3(DO-B5A z$twIB*hy!UMd7wj0yz#foFANjJgQoM{gu#B`d59GHa=ss4WUQU>_*$!YiTn>qP2EM zvIdRuCBo89XrO?Iq~S>Nm|pR2mG?>}w)39~am8K5Aeub2oK$_1AqTfRrt`0PQ!1zE z_o+&xIe@0|mSb>ydTHNOFxqSzNMQ>oU@<67j{Y5daQ-wL5{60XBzBuQ5RMk3eNRm= zuqSa3HJIWvxG;V*5RlBe;ND8p6l)v^5d7qzl(`%+NSmah&*+YFRA(WHFvEX7%0*wC z+Xfc366uV}*UxIMs2FZ+3Wv6P1UO{`RqX=`N+SpeddW^`6zHziulfu?92W@mH#a6) z=`MH18olPoNE;iw-&1yVCV)dY^NYVRCy5Pod2B~N$@$ZJ6#%PPfMz?ZJY~e7%#x(G zkYHZ1GuejKP?dhC>$rEBtoW<DurJhaJE;z6M~PazA1N)01`I}!=l@Jji=;pys*BD) zoxiO$bkXNdRfOm!3L$-JkNi8-#YD*IkNhrx_AwzkprwJ=63K5{jYzyK?KRn31EZ(o zYEo}{W_`tZS44NtrT**rHiE@9(Hm1hpsjXqin3;IK7~JkGpf_N!I1~Z(q_~2v`bj# z#Ug7mP@EfP8X|!75XQ!<mt&1ZU3<&+P)`gcET!}Bl_Y=uHuO+ye8%=87*F-r{2z;2 z`K%c})-6quQ(J12TqRHP`lo{rZybSjT86fzY+zY?9Jrxh6H4bFTB&JJbWEyu-xM%S z$|RGj$Q=AC2LbUxKPQv^#6-RY5J7;rMi~tOP}->>lnYT1&02!{B9dSrLTa08T!(zQ zu{0GWhMnH^^tqJ`m5)xbC+}8L=lSJYhKldEc(Gq0>ZD5nb@$p9rCXe?*WbL>y*4i* zBr6iUN7~WviyTO6{#AKUZv;ii!YzrVI(odeqtT~@uqLRYDXInhRNif-+@}+`L!5vA zCu0Te7GRK1ls@j}SZtu>9m2Z6bo|*i2^`2N$Gs;m*he3z75!|qzpz)Mr^N}tswMrg zRVah)oXs#+Q+#z-vHrlUpxPpCf`Cpbw&3_B-(e4cLwJ8#d1+}(Lkl446M=?A$c37A z%7ZTr6#79Ok`w-4q76b*yI&K+0s%o54q>3@SNV<U<S`#Hsgb5VrVO+iZ?+blsY&Yn zsjvPidQuFw4Ewa0Whmx_(KdKXV;ywR_JW#j2*X~~N7tv~CjlfnYpV|W?QzKld!sR> zC|5qPxfED{G)LWBajT@~Yk_}-B)_QgjQ8SQz1^tu*GE%at|j47&g&g>?g@uUl}!bu z&UV<O;#QeQZ4nP6C^PcXA2kuHiS+hF;LsM=_2rA5;gc2W;61`7#;ZyZ`e@<VKyzW& zZTJgi7C<$8*?Y&W13gvCX4UHg_kse+&>7cSUiQ<Qc}7__Rp3sg@6H!fJ^`%R=87$8 zuK$Yx8?Od1%g?3fz<t~jMMpPfLnd!}0!GyH`-RTZ`osgQ(k;#)?T#VO?9(r4b7_K( z!qQ|fj!%-5gL|yLj7@f3jofM%$@Z|YQ|vD~CM#GV71EF1ZV1lWm)$fd#0W>R6U8`k zA_KW+V7;=0=l^PGq2raLG{#xg4De7Sb--~j(;G9Cl1ZU5hB2}e|2Z-dAXb`*uF_jg ztRfX*8qS|RoiIbNh+e>_Pua>1fkG|QABk#tw){|-gfs?PUfRA*`7=u5LK`RXe%a(T z&C?}l30W$c7k#u%wTe;2*rCDuhZ=-5&k~i?8Kxplm1i3Cqcu|ix1Ee=L}B8K3-X)p z6A`*0RdZN#N1AYOn8EvXB24FD^2}72S))eZ^St#G`jgCdc~JVuZydN(WD7|j2h(82 z*b<U=IrZ<w^P=p=se_KRiDSS=3vi3#Du6ZRF({MH%g)ag&&uoyU}17N28`L2hJP51 z=*>HwzbHB_Z3Y4|jV&fMs+l5%4nNDB-1;nv{wL>*=kvx>*-V0TmI*vet5E_1Rz}T2 zh^0VCDro8WH9<Ca{_SLul53J%+|Ln`;SH@6tL}I=7jIbtNNej?5OMNIM5nLmY9Hm+ zZL0IIkMl)tUFRGd2i7Tz+9uTz3pa(1d+*aE96fUYirl8%rguBU*u+i_>e8Vv5h(Tm z#-!pkFH>bjX!O5krwdZy!*aO7`OA^Yxl_3|6G=I8p_s%d!?9A{csrhOYCC^T2^C$_ z82ix{>}8(-LqNR0lyG$WL6HgK>VfKl^^eQDp!r(?kpwq-J#tmCii=dU&|N3_^f>>5 zEu~vG9P+L`%qs>!7#T*G2$}b^ZSGVzQ!9_OwLg2C00PJ$?||TJ00)veerwc|q7U`? z&|tDRy>hJ!WHXjJuRC?ezxXH)c`8+_)ZIWO*hJ;1U?Q(}?nYKE&(9v{R-tK*zYfjl zFS+-o#VD7jSK7uu=KIIu+(Jn<asCDmO3%qD_Shf|;o~D?9}8>NbRwV@{EW3JWSl3P zRLZG+e8%yAblNpAKnXQKz%<w=N=ybCV-#C+{@YGAZ8<8nv``5IBTV-I0LZ(Y3xLPb zqJ}xxnbp(?7FCJEWqjB4H}lAd0d=2LO%5p58B+rVw-|SZ+UTWI%4vyJE&NFLqU8*O zdo-7#fQ?8Q&k;>Pjksd21Ur#K@EZC$8gCzpD#E1q)uqwoY+Fe>haP}k*jb~!On7V1 zpQb^XUJ}D~c46V*xSPwT0JcoN#feb$@-`ih(XKfqvy}v>SF;5E#_`%Zjc5~mk=y#k zEvLv?@yC&GET`L_M))(yW)a{l+pmMnWIf%0K;P-FeV}4fs9E&$1a}c_+oF;qg8+Ij zFq9vTsqUqw4qqu-meAhquhd52^|DC83Z@SOMen9MMMsou3fgc6?M^}2&fy>rp{%1I zg<mZSVEt(Wfg!I~X;BBw@+!%QUpTcI4}bsxg&LVl)s10KXXL!9?-8~*9tOl@?cl-+ zv~P75_d*58tD&K7ylf+ljtbmtsT@R?n^rdf>-1QOiP&7Y6*KjZtE$NgfYBARoEBe^ zh>{JLe0NC7=88fEWnEwUG|BOQ>^ucmnZuWT*MY0Xr_%Xvm;R7)&)8b9oyq?m`zmki zI=oQnQHR}~3{w;xzEn1;%(?)HvUpM#qm|m)Ig&^{r649=G~OGJ@0;6W?5a=>?L!)s z5)jaAuu?Y7_|~FU4mfoutvP*mM{G<~B+vyAc{A7`;S#Z1mhZ`~N9Syn$o!43V3M(! z+tn%ZzBJKDD(`)gBpni^ypCzNNac9nlyZ%Xmn=9%Ht;%~EPHO9KVUK|Y0&*tM$vw` zxbv6%^_hmUJm<vaDnl`af@!;ZG)_-f;gAc;+i?DBAjDH`KhQQ(qT)o4s%+~#7sc99 z=-dJvQhG}L(=Bq}a_{kJ$wSL4UhvsQ8#ZVZ7;fwSwvV9YZ--MF#|vduJ2^9tVjDmY zEn8Re#;$he3T-jyx>Z2T5{z-jOqN(yIM!jtn0yz3v>SJJieW5-pa@-qD)u-+kP$%P z1Pac?DYsps#Zy|+Xxj3!Vf>g<;ini~>GW$F+LEb7C%1&Bcf_<mcl;6nkchjYOp(R_ z;5_JTNCs#bB1##$QnAOt%t)@wc9eQuOGRGQ29@`;?>pqYSLga!@?$tPTD2OygomPP z+uin;#~&L{g-j**k!iu5HbsLawgV!{;0C>%{uh#nJOd$#SjAOpK)UYioBg6C4fk5l zi+fvi{(Wow!F*KoB{?P0Pug&@6^}YcfFB2)PlRka-CQN5e`!S~HfWL{8c3=frcerx zc+a;_;j-kAKwuCjzAEcw?&t!jsi%*LY`njzt5L^JF4m><?SdASx)M^CnU=XC2#DrT zC86CE-xFyhEiU0tJ?Zj%zKIMd1_w;);|Z9FIwu8d2pMf)EatrrM`%;0ot`ooTDn<d zEp0hiJ%}Zxd5QoqkCOsAOpS!5zjFt5uuLvHri{)vfk(LvxeeBnlVMjn(!!~yIJDvo z>U3nzN~0u8PL#|cedaW2u%r1wc9GNJ(XR-tc2Nz_HXZ*M!XX;S-QrDOmzD|&z}Ci_ zDp+*cDCG^H)ah1eSSWuB(<jnb2}oG7tnJtlCl^i~r+nPV&1!<OqdKf4QNcK-5)TvT z<u6@C18srXE`Q&fs?n5e14pjqb0HA*wTjL;^9PhYWtneuvlIj*&OyiH=1UJrNE~z{ z+n8a|5{6_x0|@X8L`o3gGC)m$AycwO5(SKQPI7V!BTII9ne{ZFS$v;T8)o3Iy0(DL z_7m5s?)=r~J+`dOv(<V_J8OvK)C{GTE~*2qIPk(qn&Gj=xdPq2V=<44xbpz74Fgp; z<NkKCZ;iNO>j&H9!WgrsOFaWn2H1A=vQf!s6eAe)=_V6U5AG_?cXTRZ5O&w8dC9b> zB1<wv)Yux_4R;=%xoAuImX0)J0!$&GHh}<+oO0yn0EZc)RlXuf0gU7K!gUu2*jl0< zQ0Sz~U@c2)8&c*IM>u~fM!lXI2%y@Ok3nN>iZ&IRk$j+IAi{?}A`?bgJs8L@K|ti2 zx#`--NC>m9w}Sv>bn~y-HKdONA7!)&F8$h8&pAbN3p6-Qf?`|~Kjk1hF%(f=>)po4 zvjVK9=yl!;z9Zi<+Lgg5A9$HB4yd3g!QnH$sU3-lFyz)DNv)C%Z&>_#C!_*^Q-ct0 z_2>|>8)^D7((^zu+rybA5{msLd6fqm;*j^c5F(MHAn6rZ72%`trN&bX)D{RZs~*dQ z8|=tmInC+HOLdc01i;>5rp(6W&3@Uzr``3jZsgfCUAC0WFuuj@jBc2t_o0ud|0p~S z1r1ypTU0HFjBa>elru14jJa?Y2Rw<u`C0lgziuA69i!ifpyN#)duF1&o_X^j?bx#{ ziO_*Wri2kPTUA0M!(gjRN0>9zpg_=F+JtK6p0@MsawGVm;Rjj8gdZz)*XT|epgo6U zO-ycgZ(k1OGQzSzn7V<G(#kg&GIAnEFm(3d*2LJPNt|+}-Dr8=zTUK7%i*_bgERia zHYIV-z)F})ZlbMio2K=x7y;YTN=bX{dZE@$PU+){kt&L-e29rnJo#ZVoKkK>Po6vC zyuJ6xrwN3AsYN#tnOEy;4OLdMyM68OqI}{@&}pQW!PoY-m_~*Oq)Y2b7O(ImJ?3Q{ z3dxdeNhY8F^2lGSm*`(Pp5m3n&V-rNEZSDiCCPHFwC)gg!%^VaGZw3T5#h_&pv-2c z15@L9p$Dqtsy{b$DFN_~`$Ze1w`5SZv6imT=?4Y?v^@au`jn<ND4{*8;XUzwf13KI zaJyE%&4WEQ+c@%VrPyVbS#2p-$khUgflY_$Oc9h9AqwwD0hP$8%4>x+fh>cdLE|l? zs?qH&FYo0>PXo{D2xTUq0P76w@~5eF;wxX4c+t=jz(IS45u-B==>dhmPE{1{+uEkE zJ2ktW9^BI)Rpj9YXXqv^Tr!-$&8fWd3aDiR&j%SwFU*~8z8}kWjVQ*PGS0u%fWZOr zqgRElw32k#sh&9{9K*(<Vc%$DDlDezSzRw`iP$HH`hJ_5^Y4mjO1+HWkpcnD`Rk=K zmC5@gM<ve0?e8B{%!IPxMTl<?Nlz$H<VpvO8#y%w*4Lx*8xM-dBgGlRxa%!|7Eow$ zr3&bU^Dm~DD~{cfD2F!s1SPfOsh1!%UvVOqyEPM_%_@kLH<Lw5oPUZm3BQ4~V}B`6 z6@L26%M?fg9xtV0<kZ?If2t+3zEQ`;^B0DWInUS*!*!{H2Jf1T#mo%n#pSBa0+1O1 zbu4EgRDNb(*+z{9M~dGq+Rib3DH)0ygSBzT@YcJcI=Y$zz5h*-4q`<g#CsKuZ{`i0 zJM1?PW+QE-Uqi!;I$D2giP)X}{ez0SLpPu;1qf4{@sWBErkmjWjbs{Zv>s>xXWK~t zrXCQWJ?>Ew!;ZwhaL%dyDV<Rw=b|zf8f_-o7d5f36aW~yrK>^dBwIA=I4y&K+}#0~ z`PhDhj}wNQ?5<7*#S_}8cxhU4@6y-ml&FLW%*`L<uWFYoC7Aq7+$@D4D8~hNwEafE zyz5o@b+v9S0YrdCT2;ly8qc1QP)aH5Uwj*a;H>P-4Ly~3KfPtpk^@S+)cdA<L^ZQF z)d7smRopQ_p#>7GWF6w9_%(6gJORO#X5gKX++F|x#RLA2zAjf3$}rLk5HS3qM$K0G zP19Hqz#g?6?<Daif`G}%K(WduF=`}pzTqF~yx8E~aE<C}oqx%p_*M7dNNrfjXFZZ_ zN`aTQK1`jw+$)p!3uIuSniVs;Eb|qmYXHDBqI!u2Ys2bM8#DawbNoUE3jh>}+Mayv zY1^`Xa*Axa7^Xu}#GqYP%38Jw|MEmhBbSjtKy!#*R$sEtJo2Ddm|B6HXupE)cnhF` zHjSJ0KnG|_2F20$0)UE$FQb&DGQS1jf#NV2sxj%RaApGer-%ogeSU>*MfHor&Ge`o zm0Xo40RqlA&&(Q*x;t47>x!S!^{bBGDjy;R+x#@jD{0f3+iWez-{wYDS$mmBEs+)7 zc<kWZEa?+9mVEP{4*)HL1q&zE+Ah!92oO$XN(c7zrSZ<cVi?nFcuG(~1CFusRQ;{l zS~dd)mdm9GbtJf8Nx}~%gJN9hEvwe~ZBH@Q9lf17@%@G6_|}|WqD<JE8#;Z?nDa*= zjZSdJcP<!>n$9Q>Oy?g9cy`J1NawFS=dy`0N9v`?{?a@B=^V)nfNoY|2k@v}Jf|6n zP|^9z<$xR!T}4y14T#9fZuGjig2V)d(x~*O5hx_IxkSHu-iFhY{jWI~CQe0Pt|FQG z=|(YT8dSh}GU#j0Kgd(832HomG#zX9K;ji#cOzPfQLKm3N0COZlmd3G`&!bTT0o56 zsN|vMq2gQ8uj+Fvk=hm>sst%L&PY(@Hw#@-fVk71X99U?Bxj_@2Jp84cx|K&C}>0I z7L^CIjqDj3A%4E6D?pN4-fwQ2Mo%9r4qogBu{RzX{ZDg@GyYeQHus;4tQhr5cp$v* z$@4NWL{5^klxQeJVoA}NiZ1BFn9m0ps##1r@`bE+^5jA_U{1^J#4jCuB{SVbA$6(C z)6EnTX>GH{OqbIW3&evJt6p176-zN?d|LV!)!sgc3JQRtV<8$83LHq^^vbA!1nDQ! zC=55^33O7dX6iPyV$3HcDD6Zl!R!TnARC<&*jl_m9bo=9jv)!m?d1r)@6<!fWN}BV zE_tJeI%Osq4eeR`@^b*JCX)9(yUXnn0|B&)(zS<Qha0qtPWxQAOEyfO@yYp^e1eeK z1=SP>fUQ2^1)#D_lmpp5t61Tk;`<BuTclpG7G0S`55|vHIM(r5dGerE$|oD)iSCvv z%fN_qs;XQf3FFiBoir2qQGex78*0kua|_x^5{76}A~Z~6)pGu66IwAMI1P4Ou+P)X zagb3bXc_r!r0xx*<9IX8DNlpZsks>|sZj%j$aE~Q+g^DSKp{)=E4R})aw5<0uwYtE zy?7yw@nr0E<*yraLtjh*^asw&QT~e1R}-)v4k$K4700lN=~8*l8hy}3OXaB<ZE3p) zcqCsGa#=SE&|+Li+T!HH%#jx;Y*aDKa=S)RrE3{wEma$vd8BPNUOX#@KckV3OMfW> zoq~67&bnla9%9*`hh|Jb0HEt21R$o4D<ul&0(uYUjSVD@H*!-hny3&Rol-b$C!f?x z>6BEnSJ2)>VQSqgez%M}asH{aj2JBueCo|SNCExCyG>Hzf!frsZa6yjhux<J8|Af+ zpITgt`;2nj>_x2)X#mS{lz0?rkb0#Fdy?W<dJGRS^(sjjJg~Bb;o#4wB(?6TT?~L$ zN>+JRyK6iD;`;-IfRww(Ishw2fGNjWuIwk})mFxVbqIMyQ_yOTrvkIe0L-A`cpvnn zK0P40k^&6lkIx1uKtMdHaeZlAzukwurFDP>EP99*?uKj%li)}07)?mhXN9NFd;|gX z)fL+-_oXTb(4A*uNqN`Dr9mq5EVy@9r4zqN^f{)Pik-scbNz_lfoED<_8@DJ?9E~( z|7L?kh2pi`8>M<T>BGqyN8F#Sk<NB@;-OO(g2D|+Ut7}QCSvG2`qs^WJ@TR4?G)wY zx$T+wK}zo6%bXs1@L-oHDNMUnA|z*>H%_JE6`Gb*`D)Ie7mEGwF!UwgNGjw_eGbqg zqm!HSJ`8PcbNzY^Hakmb&5Hi<;i<Gc<%|LagV9dpgPwrln;D)B@f1jirty_ulA9bg z>=)%lZw9&sY}I)xc7MBRGv{9>E~EJtfL%mM8M;?WXXh`E;`AW10h%G)sBvpeR~iL| z9mbH`6toChnOw4#Oin2G#~^7tC+RPBqh<gGJsL@YVU=eiDSJ;w6y{FX$f7?BWu45D z@5kb*krxl*P*(M;0Id{AW`|Fg4GJJ29dB$iH;gaJ-)Dj>m8MSUfUAK3bac^BFNS@X zydrBy8V?$r_^VUl_`0FN1sDT(^j-C4%@mz~w4dtwx%WXWqrUUyxVXH;%agXJGYdg? zB%25)*b|rU%IcM3dXj_s2EN8FM@?O^tY=ilIPM(l4|DpzkWuGz6)u0<$thPcEi}be zE2SD>dJekgEb=XR4)-v{ObwgMhXWB_^<C60p*Kq<x~}Krc7hnX%5#lUF%S}BmTer` zXsmN&Iv(U?%}kv{n{J*g5Qag4ajFOn5p$+!tm-nAe5j)op+<#9Dy!@TV8B8lRy$Be zZwFl;7+9ufFGMg+X_5NngKI-?#!YA8>u>b19?g64CQ?8^c-Zt~-slej4in1iPOZ$c zlerlzMw-(6d00`WrL*_)7sF;skEcJ5l~KV0DKKDR+V3vehGZc;f-NPYBoJuXXufu@ z+t>1Jket`4vX?f5>@}ip-g`n)Jj)fAkfao`kU-FMv5olH)eq*Oa`1kWwYuu0@fwLC zb-KHI`{Apv4RllPU=o6q;-qyTpFessygEkmllF}}(T6|zbTs}tRW@w4uu~H?no~>5 zA4a=2<W-I$FAFsWL^Wya^x~e`2C+X=pT^t{ZdUfyCaFrHdn2HvRSxE^GO}3OI0@2N zWHeOPUkm!$l8oZyDIZDKF&T3oP=}X~yY(DU6iGTUy(V%tPbZ;DTBe@v>>ZfO_~Q<O zI$Tk#V_a?8Zgyo`Kp>WOtd8t;wHQdzp7;E3<Ym6WTKv$RKL@4s$oH7f+Po-w!vkS+ z45<gnAuv?UTa_@nyvjWJv#LH517LWemnc=Wk0rZRhLkq}dj2tkf>@y`8vN%9;K|*5 zC<$3RMjmhh8zeNF%S(6c$?GQD?1q=FOQS+t{!1N{B0{l0?aK{*#fzhOc`&RQcA37& z%g0{dp3|4yOp5H)wl?2PD_jY1-z@C~ACJ7c;IcT}`P+RU0WW7KqkVRf#LiWS)-v!7 z4;`|MN%6c!p^z?yN(M*m7Wq+iVmyK+w}o4P`pZuC7?xuq%O*@@_@_SrsO9XZ!txhW z_X<5$$*`9y7?tegCCIbnk$tR>JL>53W!Y016kG1d8?s1HVA(kPMuGdhd}<lj9-XUN zqn9x0ql7-`O$$#PzXb#|N5Yz{Kuv*`%czq&|1<*-$rArTU%%73iyJ*;J6^mdQ$g4r z%~UguoK`Nu08LLKqR@3YZU0?vRqM@(;U7nS>Mck`C%u^7;m;d~cz$0NCH*?^F5jUh zB`T>u+Ny$qB6=<ha1ao0IyG;}o0rU|zQv9GbW~Kpmy;13grVm5)!W5y&-ygV>*a#I zr|!4aFZJhM&C(b-MQ2L0YZy19KkJ$FU`BO4T?1FMcUG>-xKrv~WD>r<&_ia%<XGb% zK%Y&d*N)_&<J^ArF!#L*L(9AX(Ph2vxep@E()t_j-p2o|@hEUH@+$=k4fS%#^tWzu zJG*<S8;f-va@tgZL`kDsIBzhKWV&(fb8cUjc4?|V?gv12ObHdcY(TT1eACLvso_#? zCZdvT^jeO|iY$(|6{W8k*HlMy=RUpYGggv8t>q#>9DM&;pf`t^<9#xYc`7(M^_40| ztZGauN>DlpCAz9rIkC_s?(uQdm^NWmZ5)KYD@>f>cda|RA@$-}qit$f9Ubjb^y^gX zToI&0m8GLlZZ_G-A{rdxrlk|K(9(uev>EXqP3OtpJdnD;#c17QA2N$Jwy>=<k1P+C zNAF593cPWjiz(_jR@u7H>_}QYiMCged}nvpXUCZ{@!u2x#A|OW5mPd<Ud-o64J1xB z15(HCGF=J;!qWg6MBb6jLQ}h0b=cDl019PSlvhRqtPM6(p2BfaibT0-pHrFSXNJ?@ zqoA>5#?#~~=mp#4c%zs31qd*eU?i|n1gpcNN+i|c_!%W-I;r^8bo%0n<=doVp*BM; zHy9!fx8{6xM5PaP>wZsCg(y<J4=PU^ooBfmwJOz0%Aid;PA{`IQi+V^;gan}&%T2@ zYjT>QD9!-@r(f>iNAXM!<}$CagdG4NNX*C+sg&H59&P(g0YIN6$nL)6>2`K@)62Um z2w<#;BOtr@Im&XP%?CwE`5Oi-y}N9Jfbu#zMEV9nk3v?4P9wEpeUrcISDO5uy#PHM zB=Zm%3NDDQHrKL?x^@77Z6v{Wa}Xf!w%p+q2UQ_RbzGBz0_mJ}1QWr~aLQ`ET8?5g z0LaB`30un300CP{lO6s@2AWQpHBoFe57Hzp$MCuK++d<>M1cTmbW$N6JODZ1NPj5{ z8vu+-!Y8ScDd0fG3t9l?WKUSB)!seHkYBmilF2Q0c6`oUTE@KYNk_jgrdH&BtlZ9W z&A&ca*iPmK2%wFgH&Suu&y7Rb5PabDrZxaT6i0j3?ffM_Ugv2^+gv76@iu@KO3=^N z3RiWN4qr>7K!DS_qdR%+m*LU6r=m@dSQd`UX|!0AMQR^iUd>7Oh{@^8OokI0sT=+C z9nNUB@n*UANt0mR4>pTOB30R`og?L_&E;lYe_e0LCpqykRf^n(a%H(P2$Uc|n*}Jx zl7n_WNG-zeSP?7k+5mt_Kf<PWkJ=6zEowF37%u0F@-RSF5d}GU@w+BP-tpf*kXj&s zIYE~dh`suxIR$ZVdg=rK3QrRh^dtew>PdErGVBW*z)z1$_wy8l7=!O*$Dia#|A1dr z3RE&_k5uEQ*-*wJ8wWF)AWU8mhdLGjG}(@E{<)U1*>yl^MWLzy6`s?SO1>r+|Lu;Q zqywKK#<b|7E2XiT_~f^L@`mdnr+huMH3wV2*U?s{MoM3hH8|OD1poj61oX}VBz5Mp zHug5Fgj9RUhP6}f0ot!ND(p!;%B1ix*e<jd@Tr6}a>NX1Ew@IYE8|uyV=<r4yACwc zQl<kt3!CwBv786u-;gol6(`Rw?vSQ0e>>ks&cCaqh78Mln&YR+t<L%o=N|`RrZ?Tf zwPT1*B3t|*N8R@8Kqp0B;O&=oY*)DzZk4oq=4X-VgQImCb?GW4)!QRncg0B#!{2t> zwUlfKkaS}-80pMvYMokMr!Y=)v$ipy4ur8N9V}zjrH?!_9TA>o&1%|<mNePC?wzS5 z)ouRrmVLefW!>va?LOCK;<k5F5YVgp2F(Vm1$X2W#)vbKr86hq#J~s}r8t23YfK!! z4l~jGl?+<W5fI>HWkyBO6#5AmSgY`M{E<S-=Bd3tsN_=fQXcV;A175^`m-%M|H)}< zGdnryer<%rLB(<#T0px^r|E=8h@>amE3hZ@!W9;RXR^>HC0r9qMp>yHMjFII#HoOy zyo&T%)`XQ+$DA@HUZGe>p8#+*Lq$T1QTdh&?>6e{Y#!7$Yj=n1Y@_SahS9{jQS_+? zWFt7#hHvC3ISaZYRVTwvC+_u?*3I*Xe(cEVT<eP%@5GcU9LF--EF$&=kR<@N6p#q@ zo)bV*FGf`ED!j(NoiHsK&b^X%NO2RT3j;q6c+&n`jIgydnz}Nh(ocgp2+c0h)M!l2 zF?CJ<w`8LnMg*>sQVj&w2(fy3<z7W2eC3yUdjs`SmV+xqEtIUhe#>-h6V288uvJvH zur`B`#%K)Ee3`eLKJU;TZ*kNm9h>;@<;%AAgn(1dNfB-2*YuZo##mYsvGQ7gTi9|} zYXPTGB2TyI6Pk4rcFM(1xHa?Y_)TTDWgkb4skY8f0e}q#2&MGTm}tUkBqg^2G_Do^ z5Uj3;ua&ZN6XlSVueqgcUCKHYQFgUVMZvEcT3N}8Oh*muh9}KDHmzmp_}l%}ov~87 zfnbz=tqvE<hj%7QcJOogsB*JJv*|m8-2eo%97uBh4*ZpCVF%*}f!eL6_nBR)>J=(C z^;fqw5Rf-9264O`6S3Z!)_F06dV)eihfW4ic~jF`;L3@+BJfhUcBd{7V<oY`mMbx3 z<-Sa&I!vgs4g$bu1q={SI{q5MY}cS#g2P&I|LUDTAZ=LP@dL5#X!eR_PTf$}WmBCQ zZ(p7MtM-EMmXqn+qA29wW>NsSWi+Oz(t>N|su{tLY+ALQ3{2hq_Jko*ea55gkpuwZ z<~gNwD%Gu|l?Ivs0_q$~05IIp&gRcHvke05nVTLE&}H({-lE>XinOmOhui~D=B56i zzBfw&03s0T-P@%tlb9v?9F$(v<ge$wdMinoO$PwHY!TVJsMusDsR;r?scIun6H=(Z zf)2-|9;07&pA7&Er4=^Ir}@;Pl(?y**DIR=sDu)Q^H0KDt$G*kqB2p`r3Ya|+75U_ z5ILef6wRt<=&&ZW(86^56+_>}ykh)^=kkQoxD*iXQ75$__Nu1Bku*SrW((P5gHQFL z<DzWm;N(np<7NW%e$@KMb=b#T(ekAuLo0;+vw%+Rtuajw3qp?B+|9QMD`^AA-zNbN zDqd0m0C45#P;-(`6r#`BJERWjbrLud-P-R7>uuh0xZ-&s9t8lKI)6*9o&lgxFcr44 zdsZ8$1_;<hp~iy%+OJCKW|U(Tsd;j4W$TGGS4m5Ll8N!wy;f)P-BswL)|yG`jd-=q zP4?KX8Ty_Sjeq%Gd>IhXGZqGUET_4F*=#i<`_VD;;-qXjpSfgUIGOUWuQFm~?!&0d zxEUPH{z@BXE3o=Dn#@W2Ua+v1iY<P+jJ+U$f(V&!LvU$Irb&_0VmmB1Npe+3&qM#n zM85;Wg4eLUA-)Y@e%!*+F*T#SE?j;uu}(f?o^?_W^>rPCnX>f&;Jl)|W2CDYmG+Km zGlPko``W9BxRXfrsCUe3U36om++Q8@4`x3be-i(Us)1f@3Eo6zZK6TaQ9*@m);zqR zWoS>edL0he@|E!za(JXEaq8nGZF<&)sf^>tV49|Pq<pn)YtCPEg3)$GOOG~7>Oj+F zBWbX?qBzH1?17JZ!5Usr?9t7dL=q7B_%?wD$gAU%mxj9x*OVkdnI;NnT*LkJeiZp7 zn*kVP?QxUi6gQzb@^%2-6Ce?uwtUcLmIrNWVA}W$z{z`40Ks;<r5y-&h9<Es*`sYh z*M3)*d6#=TO0ssn3a76|9((}Gk6CGK%l0vzRgx$Fb|)zlt5OeN8$_5<c;SmQW7Gpq zI31d|Is-tS7tvsNmcBz`oOu$pjxHn0@mwBv-Df`AVA;zX)x>6um|fe{lsDd;SMmea z@ZvVLepWxFH^z?W^|fXM^!xHHvG`lF1GbE%`PtAOPU%X;2KIyu8_xjfCfj(2QS^G* zoVMZYNyALQKvkkpdbkifXvpFpe|quE`4XTT&VND;>QB7n)t{(-=wLu<odL6>!Ht7u z?6|E<m^d~`ZZP0j?48<F(r_Wi&@Se;6AB<O!ucCbT)A0KdKCn{T3dBko{q;RheDNV zQEnqiTAn-lLX#<O^SmuQ2D{<I%jJ&YK8JW1lZ)5&jtiw~wxs=ly~3w}sti`hT^|8L zpOJ`reWnfHVEM@mnU~|jAy2=vk`DPZ^t4>r4t<-ab?~AALN2}%bf~QAV@LX$o>bin zFd4^<6T)F40AS8e<=4OJt;T(0HL~J!<GPjuJsgN<rb`HkWc;mwg#6}-M;>^+(??n| zP^<Q+qmPYcOrBJ`qh+=Tw2|>9X)6@XQ!YKPyT>pU$T;#maoRo_*J381SK#hSZ5q){ zVeD0wMO}@eaZD81Qt=7(X%>lYTG*mA_0PLT3q&X_PfwU}ae0#Hc{*HdLejc)<R;Z} zCey+DHFI{^=Glq*+z2S9sT}bJa`+gu(u@rgM4_xY{}O!heI5<0MSi5$$f@uX49{3Q zC3-4RkTn}+Dn#zyvKt=+q_UOViMDAmW)BQ)qgt|))A1%P&I@2~2bB5hV&yyZi-?5` zMfsW|<pZ)Osr%i0J5QCD*>74t0rEPKdOL2SPa7?#4c>wj9ctD+tr05dypUEnM@LFZ z{o+4`VDeV2@hg#yq(90$^#g$7ob?7D^KFTZk}q}H@$2=PI7jv+MaLDA+6-6fYWhsM zEUTt*0gyUl!E$hYqRX0biKDV3&!ntKVi#s25E~f(we-e9gBC9*TF<g8bR2u8m?dwe zc=>ji;>n6~di(Kl-9O%J`_sWyH71q(*4^1`);|;r$YwbF3QN`bIMN}$VqDC&EqC;$ z`^ov|L6fdor}Kf|1_GfPtW69WqOj=*w;AvWzBQjC2ep=(hm{%%S%*FKJ5|Xf2&o_< z>immACjvZ$y)B+DuBxwvQ8OHWA4n28s<wNCD{4e+l3(+cz8-3mbzT9^vi*Ug53|FR z4l1L7ayCH<>Nqdc{`Iwe;Y2n4pjBcE?4(YDVr?v%Zde=C;vWCmaL%HQ&8VL`epk^R zr7u{$=%&wV;xhm&@F&iM`;{I5VCS=v5~dW?bu7|nYikZ{902G{OypkBDJ-A4239C& zIZ~)j(z5}g)8`19>Tr-;_iSoAR&0YNaA#_u<ldxofjx9KOp5aNcD?F+TAM|k<Im)P zs5$>$jVHvpdRC&@UJwAyf!eQBmcU?iB^s%W^0hoFfUnUr<=7q&(9Nc0Gm7F`;o*@7 zARH?n?-kIXOHxfLI2AHciZp)&HFCzF2i%u7RnJ35q@3w2k^})+RBpDFgMh4=gJG#Q z+Gxtuh5E0t7Rw=|i%LOL9fYq@#=Yin*(3d8bkb)9Dq5t;IwHB*Y;MFNBMHTSt5Rg= zoH~#oadWNFr0K+lof5I}Y5#DY<RmIx1pz_`4R<Kn>m6db<(~YV$sC_sbo`9ulo}fj zS@w_djNj+VU`GC3_^Qiv26Bpl3m4615sKU5SBl=Dh+WBxKOUMymVxRPrv_naWi4dX zmZ;*KYpERM*~xN2wC|~<pV8jb*kn?as+!r6=f$VigM-wL@HQDT*%eDs+-r4`I7BJX zErKEeC;(gM@>^arc8|W{v0ks>({c|1X6o{wT_<h%PWS6YjjW5V)S9tqTB9WPIKBb^ zOrH#B0RZg-J{e8()0*tV9rB>8pW>H!Fc45Eg$4jfZE7H3OsW9o(L_dMH{9p;Q>W6G zwyqM5R{=l;7)WhqGXX7rl87>#vIQo5+T+F=m?dy6hdPPrMgo8~^z-tUCvBC=lysVP zHXnDimW;4b{IOZ6sA3ENPz*l9M#4r>z{I8pvNKHk2hvWvF2Oa4cnR-^h<BZ*yx9S0 zv>sH6+AK-gmIL+TuaeIdcap4-vZi))88`?K6{q-<^It6qc+h0d)BIG1X0)w=fTAK5 zE8Eby>i$oqY!d{C$4*vQ%f8JefI`67j@0=Vh&Vg{z7JFg;?T+n=bsQK1pt=wr-E<G zb(+07g8ozhaK+A_@H2iCcbm?bk*H6@)y=7#4d?*?^oHmB(<5R|M8vEb+U`VpOar8_ z#J7!ak0^AeWcbbL^=^l>BvGU04vGWs@UIGJ>6HA)cML-0+&y)#n49AK0WYLT!o?*> zhgor+03nFJTdDRb`X$re)Xver3d=F=r8-t+`qkDH*@uy8E<Ceey%NEqXCQ!|{wBGW zLbd&j7WEsBUa?8qok>pCb{lqvu`I3>0ED0Mb(O*?hs00mvYmOa`OAG)PW$tj2)zbb z?(s?5|D>CWB8}rULK-&SUm^e?cv}O;)2k)`P--A_N2{I2qXYyoVkiM?DN4HydkzQ^ z!bv9VLaTG#sL)@Po>ztuZ5zvtZm^QAh*)>l)al#5g;S8%ePXiQY8{z+D2|lSO7!?7 zKzQGND4h=|6C^13^7J0}uGFFVHQDecoLXTM+0sD2O>q35&NR-Y6bHBo645VE|G?U* z$*-}8r&dBifjs~qCt>GQKhPO9n0}(CZ}cGHN;Uxs77Y;K)edG9hLIyWQM~|1nwry> z&Yw7w3BIzN#xdbY8+0_~=u?vX$Mk5`G2n^O8QmmS+d>RJF~I9hW7MYZ5yc}<#-gHQ zrJz}FO_~ZVI~W%Ri}I{F>^h870aX(`>A=W#{xu0&sod;m&6Y?<Kl~~UvDxjtU_b~o z!X1$DH4>03W`Rv>1HlH8z97q2dGm5sru8}mPOX_6V)x7d$O~OkD<S1CNEB_$>Xu~n zBrpogBQs^`B9T#`?ijEq3ac|eg%PT+{qtv%5JY=+Bm-NT8MP<kk?os^UA}4n0Ay5G zE(H*=Vu#8dHI67s_?wbd!DKXZCtJHmxu6qpZmIPh$(n)4GL^ux-}wtFBT~;+6i@!j zr<Rp2JfO*~zS~uMW*I9PLU3oN$yxAj0swoITN|1RF$+V(K~pQqI+Yke*8~Y1CYVw} zSFv6NE~18!0|4px%}BeJG^bv3^p<>G$#M=nM=`r#s4sW=gl4KlTtbKpgEJ*-|8n0{ zw3RbAD{NpBP8w=0XKuCf(k5nL!~cTSHQQ$H8-zlYLz>(mcQiREN-Sm>2++z7$2K{d zjTYmt&nGk#TzNbdhMO!#1Aq>2s4~)=f8oqM)Bi-AfPmpnZgo=}wo!}@K6?fr%i69F zfa+RO-=REG$%xEF{(fbd;{44wFnW`Po?HAnh}v#n7}y#g=H!griUaDQtKK(=>)k31 zO1=G5AOqPZj?vR{)_~ZUWP$)HPUIsZH+5WBohl*P0AG3@p*d3{NhVkLw`<7Nz_315 zO`TG5{xRxjhZ_+tY~x|Rr^`YFp?9cHZ6O}!@HsuN%<gL7nF5UVCU2d;1Qjw%JH(0p zW&#LJJcvAm$dno8?Yn$Va>7AC@<xyM4}a9Dc&hS+7vq=g6}}eBT0SiT*Ws3_?gBm5 zpV#*sNI=rNR3INYd1FMX1Axwc9>cn&b!`OEpI?izLK$tqPXPdhVd-iz0ScG_l$9#` zhesR2v2=kjL2yDcA(|8?{mdW$vYiWHZozw7SIs(g0Rf|IHR(31CsD`EoqUlKwBGF4 zUkU(x39RVb2c?F9^;121b;VBy8R!TK0;n_-+p}eeu!*|Lvq4lA&d^7tV9|DCgwvhN z6}bDV3~oN3`)UOwf`{d38XJ4W6g-`dqC539%IOXR5-lg+PPWmpiKf{jL-AqVHZ+=# z`S#L4?Y3!*jimONVJLMOgu$@{+b~(v>0BQT#9lamDKnjwA`w&i;|M9C8^+penGA18 zp6kY$*O-^C8R-dDQghTQ2cw-kp92nbt-Ca~wK}NYN-a{@v!41%U?S;XSt1%Nc+o&Y zI|Yy4k6=KH`kf;m|4!|0^P+O~m|4&NF&%%gRN*L(WZ(tAQh+MnFWRYiSkW#6091yQ zu1h|A`nd;+o5D;j-OpyeSa_}DdQeSi92?9Or_WvuG;N14%3A^eb%(1<QcvTf2RXGi zc>^E=0&ThL)1-Qd?yQAK*+Od|db1dmawrFFG41TL6cp`idZ=3f4gh+0Aos)`=H2wq zHd;zaX~_4}-)M$Sv|BUUV*O$0ZPD*ardmBsr%{bc%(2$rmbUW;xHF^I(FP7qpKz>z zfS7+w>N`k>$e0BsW3Pu12LLLU#)jC;TB1Ew8^j&5?|?e)%CNKasMw6D+LIBf0}R;B zEbAvo&*zIgEIj{Pmx+_>Rd{V<9=~>^4+JRCHWO}?Hl<Nj#cCOCA40z@M#csRsP>Wi zXw%i<Ev3dxiWx2V(&<w$kN`lODjfqTm4VKspx{`mh+b;clda%W1Dc5X>21?k+F~*i z7^FtB8r;(0qQQ;h3z1|{!+(^!=j;6B?XiK7%B4U6Wm`q(P5VMd+BFAXcm90lqYT!9 zd^N0Ak%0n(BGHJSv_o|?s6v#EzwH<qV**0*eaA}F`?uD{^-Yw%@{G&VmvlLbxs~~R zPWo@8^Dj_$CkUu`I(~vxMrG+07G-lw=HK8eWzKh-&X=6CA!sP&J^Rz>yWE!3ut;Hz zrX>~3Zs`6S0abr_(vltJ*?^Tsfc&5zh++|lCZ`&BYJ*mpDUbxJsp8~nSw?kLrDv-~ zQwIV)r*cx>LX_gCZE!VUQR8U<4r!~%Z&|-`5k|3nR`RkA<%}Ny<sQ+nVg?}Rm-Wi8 z1Cq>|SRG&?&(O9j+HhSgU%5M48+T0z*5p*5=x79IH9J$OY;$%csm_F2O||O^AxerI z1<aL9Hd5EF$SMfP1JXjw#hU_RCx3cPgmq9kXzIy+3&4H_l^dZlvJvG87-^3mUVe(p zZQ<o!htZrNnCjDdBj2ndbpb|zV6XKZVM{k(*#J?CAT75xq6dpMEh{z&FZIem#(Ehv zQ>3IzQodFeE2Ov5m?5i0>g>&)j)vhgnu2O2(5Zs}v^yoKi;jS;DdCp=X$5CJ)BBq9 zH`nFOG=An(bN=kj2MPo_ruy3q$3*`$<&B6btAPP^wiVii8g0R=cazZDbc1sM^ieF| z<8MdS0TgJP1m&(!^VPobsa?M2H9OxTpij)l9hImAP&AK|H@cJd-t;C(4)l7m-QIM8 z4AUzZO8ru#F*Xft?EKAC??s(MgRhtZnHv4mq@Slzb9i+n*7}Azf2;j#K)c*PmrGdA zv}G6M(hmRCs{wWp0)#-Ii0(`3g>UK@#5KpC`Iillj~cezmf;WLzZ4WP7a>7;{yqLx zK+d_1hbmTr0)R40o4Yd8QA=Cf>PPXn0Gb*H=Un_`Ko6=ThEg!Gm9G=-Q==RsvNYWf zb%bvQ0s>t={{dD<CV$SwqM9*4V3e%2%vKzlfA)g`{m_)AEY)t^u1oAsUSSw@M6NT2 zdrs<6c0B#E`|{@odO3<0xi!WG<+7I3*V`Zt89Ec^;7Y>|=u34{!~%?o{_xpp&@rkL zvz%AXXYX^eW`OLZ*&lBBvlA)+(@4|BBKI&=Xe|Y(<#Wcqq`dA_Rcj+Zy{F3HQp*?g z7&xDl#w-PB7Sly4u=S%fgsSzcnCzN^-Z&AV8vtO)QdY8WU?}6Mj9z-f%=k*y%vkT2 z(oJf)xI5cG!K3NcfJ3;mF#zBu-c|GF+hzCD0jcvaWwGj@(Alo@r{<@0HWsf`_W}fz zvr6OT5tmmtf^~lEXGQ_rYI!|E%#O79;vBd!=Su{(Ol)H?0Tl#`r3)KciqYUukNQ2) zs15p!wE=5;?tJ(xh;3WU;l-RNQt;C3>u!AzkwfqM`-+2>jz8bi5v4h&kX{kIN)QmG zYjLoaZa8sI|FP7*5;R_k2}y*@c4Ppc{h3@lrHTtZD)UrOg3q_uNmkZ+OrqlCjgI6< z|LDeqjoGfKuD&#|sj-P-w18G|M+0M$PWe=)*9`!+<cQRE=Y~W#E?j0h#ayoYm(fe! zkm2)h!cAUoZRED}%+o(ymd($z6UIzNvnaA~3N+f#-m0KL$xty`u6&b%RlcaN9+8vM zvI1sX+xz<acKjPo$8i9v6oXVMEy^!}O>S7F7Y!Lp9+XetM!~kymo{G|WOYO6(_-&B zrQVSg;L%yyIyzqM7yeI$sD0yV0YJV;o_+uTm5nJ|kgDD=6#bLCBLG0AGzJLJ*E_5s zZWgW6b^Lcv>fhAVB4ntO4b$5MEgBugxAG=IA-iGXiUxAxk97RxVI^^+y#-KHOBL)D zpKss!TcSwAsc)#$ZH6{;ryFj$1XC`{m;x$44U{3<t=i6t4Jd$x-QE&7nPAi^FWBXG z{)ea9tAS&ZJSTv*mG1aSo5?X_IB)6r>A_C}1<h7-=alGgGy_mexn726N`~12JH=j& zd{a+bt;mFS5&frZ0u+PUG(g((Flgn}PZugGr)TLgmc2D~Vz4!HJ8ck&^<t_2Iw?l8 z#*-VVD@a=f0sS(TRIbQbTJISb&lCWVe%CfL@u<HA7Pzai9OHzx&`2qcY&*`sbk6$m z&^=SCvFYl@ljr9SNfxPs`)YJo0Rc66;3l`L>O2YMeCf(+kh0nb%)F2ELzM32`IJs{ zW#hDp7+YzZ1C9M5<)+SbGc#t*J~qJOd0NZBn<uY=fHeA@ZPTsIndG5HbjztE+H^tj zasU8Uc2O}>S?fq&&Ea>g{ijaPoBkZR*WYk$^j_pwK|o0<4>hl=ada%3bh3d)6N{dn zWq%rgsCy=0Os*?VYNSt0yV$wUb%;m*8YYrJbWDf#1+AO4;+R*%61z5XRp?k}DClq} zQj7c4#sC0HAus*f<>(#(E2(XrFwNCzvb7PA55;~^#AX0|IP!Oc82~GFpWE;HW6uIa zwxW6E`PBme6gGqLCbokVAjNt@pAGxTD&7<1+K=ct042AUamnxP#||=#a8;okvCU-X zXNtab=Wmbw!tFI1DK?R26wGx<nZuj`s9UM-jgf*U`{k7TGV0ZeSDe3Y_zh90gW1kx z!t@j)V)C~DM4AC}EJwIk2MauNDaS~$#}y=zzo|p2<F7<BnOK!^sWz1;7q%lG9F3T5 zQ_5)NOK@)gl8?$`uw{&jQJ}A2(ebLCrc)9pXqzb0$A4;XZ<t8GUZ*-;DN|o!dL2YC zU6MA=V*V>z2B4{&-QwUw2g~}hn55jkGd*cx43sV}+i+17OcAJ#oRcw4=rrE5qcT(M zVvuv=taZ36{^jCj=}Df3?t3euH=ohEwFXw%j^+@Pc8PG~EI7{`acNl;`I=EvUtadS zN1xj^X!GO%=K&x80%3%PkD)jZ=fm`_VvICrq-U@m`Z8Zfy<=DTl(8L!4PP7a`bZlU zF~qSlD3S^&EYRd*NfGJAELDdw5TN!mI$w4^NN7JM7m-H?=H)Hx^gp$jHY3>W{Mxop z10K=V_)xbzu7&fj6NRpD9nQZZwe}h#rOX2c&z@;z6b6Qr;m%88JHQuy49h@%_xrrk zSLxo%<~Jrs7#Ar+)(hqr!2p193@{C%nDdX3L>-x>0c{GL=};YMK>+P;*|7bIfw;n7 z4g-_R<aoJw*I?hCwzU<)!x7`C<%z~ZsBUzGHA6>AsJS|9*{C#eAZtZTv9z^Sg<$b! z0Aoh)INt0PCz}8I@=+^A{ciw)Vi$N~(gF>gQB-wYi?$6q=klk|x|4G#{A}TTjrJbi zhnF|$r40x&SQ!`jrx}YT-k&yLQp*bPUfqcw{^?r@P>gxJSCflY*w7(%kM3FE|5yx4 z8U?T5pRRN!KxmEVXg<Ppz}u5dkh3`<)$B;8PtzhheqP#3LeVJDzj1wpp?G4Hh(9u` zDD7tD+R2NKAStD$<Eay4#Wk6fUx0A-m8hf6Kenj`1hRC&K7qk4Pm!R((lu&-6(Ate zZLqCBSBGR$cTd|Q^+N=jSt+IS*ES0>N1={=5%o;9QWbm5jlA6<F&_`w`VHq8(Nh%e zggo8)66}Y%2M5(ps<MycfI4<53I`O!(okAJ0auZrJ&pt>lA154sVOPSYtvL)LMUKv zbzEh;?7~0l9<{WTs}M0?$Fq`WzM}wJg>*Kr^yb3E0HQag+AAo}>dtMON7d1cE(=7R zsQKPu6ChJuyPC}TCvL(F5{DPB*|ENos(e=2_*Z>3sMQ0#ZCM>e`g$dMUKj)37Tx?S zJk+~HFm+ErPwL4&Nz;``i#b^-MokdWL4|h~xs_?t!udP#jAt&S<8ri;+#^y+h4a_O zmUz}2yV0SQ_f!Fl^7TA2$GGT7zI)ENvrSloJgGgYDv0qW#bx_K0#l!vQ-+CT+K8-% z{Pi}hk9XaR$=5FBXMCefltykdI)lsWz=J#@SIXK#;<YzsB;B#&qt3VWR>XFbX8dg+ zNH1&SwoH{ay2{Ot@(n2mIOk?W8?@wT{(?X*+E#q+lfN7Q#QV}Hs{(8}5sP9v6a)E} zKNt}?3(zG>^Pwap6qPksXTwSGFWX__nASH}hJOvw7)a<zm8{gU@aVpicZUzGIbrsu z40QEs1Mu+F2r=!ANZO`Um9cU|jCiMwZyhnK&b1>kz!r2-f&eiwobp=J{(MuYY-wLO z!g!fBpEY-((`SYqr1AyYMW6eqt3;;4W;-TpY6aT=9*QIJQXDRQ%kf<CCcJ9g#l&z| zE(_x)z$Z_oP1iME0el-)pzy^N&b74A5Hm;8v67@ATu@(Hf6eiWdgqNjfe%~zv7LXw zx+Pej3<_%AA`jHk3Dvg?+P6Cmp($2hCG$Q2N9qw;Py=u#q0W1KQuRG{UANWZj$I6; zl8w}ZttvCB|1PxUaA#a2Bqu;+FzPui<$<qV)hbSH8dp&pkx5zEmptp@nMvy&wiPQb zDZ13FWj`dxDI}w7{Bo0<zWIR2<e14T56>wItF%;LVt^I-R)=4Uw(;2vJ2DfX;;ghs zf+(JgK!^(J*uU?LM8Tp~6>B<PcgLiH4C`*IZgpqwyjF+pIDZz<6*M%%Qr}YS04)07 zBlW?-3}Jwe>oJ0~hI|KRS!lMN6C2beH&4ohDu}F`C0!lzil7)Cd0|~6lccP&^CZtG z`Gc&oZ<}4#)2E7)*vuPEmZZq&@=Y6X@uHeB$b-?^6evck+9VZFYhpfM{`L;ek@aH+ zj3t9w()G<3dFn}fH@#k<o|l2mQXqvtA7|Qq`m82qd@nw6j}Ers^reV-NIOuSiS}xk zhF5HXRb}ev6{nxx?`L}GhdXH|ghxZeRttVekyOXjW<LGH3FJoV?tgv!=+D(WHC|(9 zio)v=Uf$Dq#y_sM6|TiE7L%1w#v*OvMyj=0Ddosuml_#wyeWj@HNbYt&f8c+v&yNa zJR1!U7o2TO9D#>htPhxe*ITb4TfSgZ#L_u9QWK^N9ih(Xq^}*fn!9`@kQ$&3_6KY! zIpwOJ@~bOtn*3MYz6n5PhZIDP@_sfd1i&g1=5{X`#Sze#f>Ya;x~X)uK?M}MNmVP~ zVy9b2^WAxIsR4JgosT(x%|5AMKn%3(mV-^Ao6m$N)b>00;zl_Wk?L7Qx7lbX`q3nL zN8Y-~a+^R#OVs(N8y$c#<Wrh}{WTLqDgDZuUxOSS1&RC=2=v+>EuRJg;{AM!zK~^0 zYFVz<&5<e2v=cpyc55^M07{fTqM)Mi@fk>EHBa9lD``<u1tUPkMA}%is%kRSvyN*q z$NrRQ)R6CZ-YC{9ygn90_gS%on2AtD?m>CHFjx3WRaEEScFWw@m$|1eQ&o6sNTixS z4EJPAW6}*=-n`5CIl0qcdyj8IQV+LbbZ3J*_AXDRIg+n)<CIPtg}!C1Kg@JGa<`bF zu<Gv>?P1s_IMisoye1#L=^`Y_j?9;UQ|fu11t8>-Y>vDU;PUdJlB^aUt=cZw-iF@j z8}HCqis?wAUu;@Vy|j~Pd8K%d^%~cpH5;g9caSDv5&+mrvVc^&pg0`Ji(i~b9xA$t zcf~XU)O>}fU_|)E6s6Y&Yjv<ynMg=cLrDC77v4955=NvaKN|}=*WB!u71kJ*G|F0X zVY=N^vXx4S$jH+l1#`k#>Yj3*fFB`Sq(bzu4-5pD;)x7uWaS0@%rE$7_IwcE0(8Bp z-M2`N&jaglS1IO#aKk}RhLh3XeJk>K5;XytUisQHu~A71pH)QU&Ch&}4zpJ#A_O3o zHbiEi6aO8+5T`d78v%elQClio#o^Zt;%3PKY*my!s~JDXM$lH|u<qJidV($8)$?B2 zMm;n-wBIZsz%Mt4@SUmH;74}%YHtW+5s6~-wws{<4MFn0zexrSp@S%xG~5N>@rIA@ zk7%fv@z`E3CM{N#6{H!<`(4R^vexcwi-`89JdmfAgr=xvM)Z|xw2KU)7fYSd&Jw7J zQ?%De`!H@+px$P+Hwx4;##qwj)Sa@A&*-{61spEFLE+baxRSfUNuG?;_^d*~pIShL zUaqeby(n~~u*06!A%ieuX@b4(hKvWq3`c$yd-y-S;gB|1yR=ijOrG~ukej|)kouOi zNu--)(3R6PP09^Vuc#bGx{6o-V!zTmOt*`%xS@gU5@@R#L$b%_O9lYc_pPIiq_0WQ z#->G#^8py$sN7bKI@-;Q+G<{TGyu?0VM)zmS%QEvlRjQbL!t>`Nhc3fF@c1YUw@*? zIeN@B%gIr#Bx0;tWM*Z9sDJvCf0uwJmq@OTf&c<Qq%Ibl!cg{e?KNCI@!r;I%YBe; zrn>-uujCSrkq#Bw#@?@)vy=8fCKj;^0KlM}2Y0lLh*SHS>xTjkL|>%c{mOC&_qQ$= z5QpDTTa-T%<Vl+V&dst-Rlz1tmVM*rzPJ(~Rg&)iN9ZM+?YNr60e}|d6}iiwl>ldw z^k$I;Ev>sdf`XR>09fmw+QAOinbWben(yR}h(>BMYCxc#M)I7fAE|f;JG+^b!!4Ks z*@Ee7jvWACxM4lfBrIeblSZ$-6UUqHF&AO*$^Rz99G^LUpX4NTIbhXiP6lNurQvN< z4*p)9q-G$FNlMF?k*MbITB!x7I+U6_a#shTCSETAK~09@V=xuf<W=;7WZqxFWT3Qo z!{;ZYf4#^{XHJ-nlmJvosu>ahW9k7s<3NBbba*>S189`1BlWdt=)frV=Y-T<QK8)< z8%P5IR429!09=~B>JijZEcM&q5q+{lL2~2N<FqkJ+bKWQTfZceD-)AaPtBMXNS7OX z8vqzip%Vmb3IGy?ks(VtYhlZ&)}0vL3;^_2lCh}9NCE<0X3L;7rP3Hm5MbA(M;twO zfqAkxC2(Rh1`W><#TL%h$6!Iu3@DDOy;;m|0ZFg;>@IcQG$(sgK>-GYwFD6?P>MRq z@^k%>u}(Y$X&~pa{q0N!OznRDQY94t@W$l%RiiQz2y|6g^vx!XRFQ29n*bH$G_ry% z+Rn{5n&o!YphgEwPZTFjs#9`|NgW!|jVpSGkU+b1%=_}W#y-cIy!|LI>*GR7=E;dk zFbRM4ogp9-+s6<-D;Qg=?Y3-%tjiJmONl<i4u1Cf7l78Qk(q91f5<i#ztbi>HWM&5 ze&`$%Bx(CuQa}(l>oH)FWlFz77XC{7kS}f+OiKkG!)|!CX}5tcgnaTDbsEJk_EZNM zq16F$o=G5_i^i%9oX{Y}2(i4)h_@{$g*te)p1d@HQ!z`}KqdADMThQ}|0ADjQwor+ z<~0Zu&F5|R;U)tB>GZkVoH7Nk(JFq67SY!@l*o_vvkdUGJTDa{?PjAHBD-BQ(u0kO z+7Z1-tTfk11_G*GIklZO(~!R8w5rvz4@sK|ps7oLdL=C4%<?|@+McJsqYTZ4tbs?% zOe<$yghA!KPmWiSwnLUOZ;s?eZY{E)?aZE&z4-C9NAR{PnIZuRgz*s%Yl^SgnFLI| zl8qLleabXG4QHK@w+@&E6`K(GYZ$S<^j@eB;Sl-oI+J@Oe<ko`&$VRfetS$94)qEw z1Pxu}?5FN*NlTi}KcuaR+p~{J`DJzh@B3_5@}Ci+myW*+6bhrtk(U#ZyeoQxt!c^V zqXNLqX}c=YQyST+_Ng;%Q;}`d*VPRgV6rwifvKXTWXmGzThu-n!oF6i?4ECwE3%tq zxf3b>NF7tA`&`!B!mx^aEH#u$<KJpI#m{smy$~Ibe6tyuVkS(Rtc8H4^DmUTZfi6; ze8)d8Ty7R7@_X6GV*rl0lWd0qeB@F<$d>ISh#m>~*B;)l3udW|wQld|{+~8F=DhX# zjZaR!WNEr0m)wYud<I5BrFbD7KfjlqD$(OYhdUw<<#BuIQ;}JFY_S(&jspO49Z3A< zQ(HYIp&Zou<}JFhg|F2xP?57!Y9ky6&&<k>nBn2+Dq`KTmwN`H=l>*Hx{|AIw1<Q7 zi{7{@08kkm)v~lbp>`Q{7}i(oOd!x&H<yk}nP#xxs0f7P`mq3cHpZY9BGgSp)R8zH z2N47~P)DK(Rk>Sx1rAb<AVa4bsz(Vc&cp&9GJo2LUvWtBZ3M>x6hpp1R674*j|I^) zLQC5t75l-j0|*Fxp_ZX`S^*Ri3Ro($$*Xw!3W9CB%2;KZ9p%nH-pjnXBmh-*eUB6e z6H&H0VC)A1g{3gOyh*Y7fY>-UY6-yTCCzz+pRqFf;L!%P^+}4{!1+9^N~0zs$~tfr zm>CZyJO8UnUR+Nfm_ysfzMxJ<17a_A>RrdzGzOJ^m$=vNU3(LrB57<h!mEfi2<tQ? z<IY(<C>1hj$4Sl7SaUN{&I9rEKKcq_7J(asmIFZ82&ngm9!oT7!t=K2Ryyev%RV1w z_I;wuz!7O9O(se=|CP2Z2PU&w2u?yf6dV8IKWPSKM(F1Jv7a(u>A-yA>DkhOXq^x& zCFTK8$bD1^xPbf?U~`iNJK7FIe^6#RNOcUb#9X4D6+lMm@ZW?eBSig<5fH(4yY1N` z?cOxw+O&pQH7hbW#PvOW)T*5ID27ctCF0;6l*St!Sll!+x)leVHUKe2Dsok6S+fi} zts$AHxcdC1gbfarCIJ9$0E^;MwX}U6mUbDDlzDTEN$Hsdu;iJrgdhYfBT5?$vfa|* zulBj?f*Ccka;y{}KySO*YzEqA=_EPuzuCv~p<kQ5W7{Cf5`Z1LHAch8Ez>=LCtIoz za!4nXT9dv4*x^uAxq>ayH{hY@gOUtigXj1$0}LO*0Ud(kb;!h-F4GW)Z_chpdPb_v zel(NN?Ie3O$=Rhg{}L42w98VVwVlPg1QW45@86n4hGY_tY5CaYG~i&7?w<j$c7dij zGT5yi0S9vY&K`HyDKLpj#dMz_Wg23oOS7dbg16QFrF8MlROth+T@m49&rln|$<dll zsC7?6PS$OUcn?vr35x9IwVZ!_Dm3dT*s!RhvlMqZuWTr`zvdOwdc7tfAka!{#5sma zb%-|rI5#8oeHyPml@>su0E>hRB`h3A3ry$YnmtiUXA{8Q*a$Q7!YI3<EVCSyV{ub8 zSQm1uL)Vt`tA*iLZI45w>t;nH9{)J!@=@Y0_lI+{3=AagK-kUd!ICUxJkpbFPEjQ3 zGpS1*Oz1No@mVd>9%njQ#%Qb|8a9ve*q}Ptr3W0rYa>IMNf6E>ths^4MYJ<8=_5OS zUC9Cu!gG-k>*U{PA^IWd$n?&H1r*KZRKAPMe^ca}5O9y(P*NQXdp%Dzjf~_|*Xt;{ zLOD4|Yt7#|JwnhZM;YiQR(;6PXfgaQA}9UixPt3!hFNq(UU5F2QA%}Ua-}~}F3-ky zk4|`Yp-W43u<oRyv$P^<ZQ8cvX?}4~gS??R=sIu7uM~L5uRDKfhk&qj05XFh?Uf?G z)QfycUtG+#j;&j3bt$US0oA<BQP0cx%HLELW`nduAJB2LiOuEx*;@POY5ZY8VzRAM z!v4FXWEmj?Os7DmIODWfZQxUS<utP_SA(A&iVCthCm3RT31Cc5cEIA7MJfjjpbr{) za1D(_#$vQO02po*m|$vzBCD5!AH9T=KMeptou|urO~6X>u$u&MW+S8Nh$llv7&Zj} z<Xnm<F`9Jw>vjCl8OQ1hcp%LJaH@X2CgTQ808m>Z8J{F4J(^C28y!|5V~HdybLK>E zhI9LUcC0jVA`Y7Z#k5Q!KxFi?j_HHgJ5Y5r*~uqfd<qW^xxd*`DWf6AJOLwhi$*J= zw5(Szi%eXn^}JI+fDI~o5_S9~xa$M_6H|{1yTUXc0F-~gfx#GuQ33$xsB?1kk&v{E zY=%E&b?DC6cusbX$gU{$U>K{+70RXU1E8xrItWmHTl70`m|a<AGI9k>8r06h>8y4M zBwB3{^RoRi5qRddwLT%s9CG+W*Z#?q<dnEP*@ZjjFbfB0u{tp#LvDVyKA|6X{F7M) zYkW`sMEHoL&02{ZjdIxz#NxE43X;T$b6_Lev5ffDX?da_gY%zZHk&~Ol`=3&edmeu zPYRmrMe0gt@+!^KoQ0LebaFZZC|Sn#tWi#wWSkwH1OmA8*Fab~yR@a`M18RVh?zM2 zCIA58rHFnN=lHWE1_U)IEPFk^kUtBDUpP35R)#gPS#vgEgQO^7b^n19Fm(anQL=D( zifrEVNPzYQYaR!yDm84TJy386PtCfvVx@|aZzMkLE6Qn0T*<H#15fhGsq<a{P)^^M zvj9T4!k0M$0<t6Hvkl3ikh-k{U;q%D)T{*Sfl0sfHwHke60di*HZm&X;I*E}8$?8} zOAuhmM?gTF-cKU%C5dvjCEF*d56;ann>n}u0IIV~sjdV6^*VkKDK0P3dQm`611h76 zKI&)wo$8#amclriH&vFBt<@ydhmfnNMim1nXr#Txm^yuaUyJq~|A+OZy|LP9f4b9V za9VLHG7-790NqO^>?);XtU6@P;RD<-R;5IC{ONyj%y4h2I&<AP>rS&KdBZf(n+5N> zv6TacwR;iiYHO_IvfB9E=`)2>2allNhyV%^NcE*IwG91G+yazJz8HWdAnBNnaY37t zyF9{`x?b#97l|2~hSecJAd*WUAV!!;CxUZ|z*&+axPjJ1XYPu8`g`zXEjzWP4g$CX zru>O~j5T$_LdzB7KTxEy=|HV`kKb@Zj<jc-1z@w1m6YE7_Y?q7I~r-^_K<)eHbJ>G zKpb0I%AifA=r047xji(;t=-Xp87tglUv#4yE-M2CrCwP5@ALxOOO1YSIcc*AYUr5s z=~e(h{6m|!4+umNczy?GbRbEEkrWTfRWgimz)%n%B7&k`hSW@a#&ru#YIDqY!Yz9f z3>`sT-a3`D(Q!>CW5}B<$EdaO$msLb*EK+?5SBhhu4xbT;c~M>s)idZN}&1LZ4?cl z&?FJHi@{bn{$czu3WBNFR7ig3!+u2lQXQrxI!#VrQ_MDBG5*ZS@qH9B`l7$f$Sjx5 zf2G|bIz#1Vj=!7%NDi4z({tXDN4zt04sJHbd_D`a0W*?S16u14`44n^00U2ogCo2O zUFkJpog$RrRx%;>Me-JH(iQFryWk@anU8{-ii1yHO4UD;F=b*WqtEMQM&#E7-7Ww~ z6o)I}M3bW;xzu&XD3Z(1yOIO~RVgzFphla%!JwW&o@$VPTV3FltL-IMT(yvHy5mqW zjG(sI(62sFS33PxEYKPvJ<874#M7&AuzE{?h46>%h)=;B?NLuEnDxcQ-Q1Cm<kxIC z86A1{EU!vPr&0s1b^VJVTkejh8wRDL5$si&wW;0g^r`a~GV%^%l}f-$fSYm#Kqem| z;0z?<Sf525VRb4{6|bL{JY~IN9=+|e%^@=YVHrTa5#ZtB*I~+ky$(7CVzbEpfh0TK zk5E*OHTR(EF6n_HZN)+4ao}T4MF+Vi<~E~$Q$8p9o66z%b3)FL&NuTA#%A<y5*dM& zEL&>JGXW6Tj6(9Ipl+)G0H}cg$|*Y{ssN5@i@KSQ@^E&(rj#_ANP{t7XGcIe>n@Aw zjmUB}K%jJIDw>v=LKYER>8UWpgl<DGx!sda4N6mnn-#j!7+CbVjKLVHLdpvQ3gO5T z4Fm|}9~=pN&97`WV>oA=VbmoLS}ublO{TS-GizTS_(PqimufW7VY3BNR^A__bBu<* z5iyxMr=@l#9`g-4HgkFEJ&pC4lj^2ngyZ!4aLr|pK*|OI(#G%^iR8@5_!uJob*AHi z*?f-qd_GWg83f9*e4}82S*cVRJebYuL@)Cz3K(@O$**#o=T0}BB++vf1khCISGno6 zWKoO$buZ7xtJ0=PcAZ^cUc;x@#X2B^w7n%J+(uFyqbdQheiOisn$+Gd6`LAC3I^!X zz);dz715n&GN=_rO8F{u%v261;bKv1|Fq_2^6OCt8w6MzV)*?Y%_j2Hu>q%=9Bt;o zRf0M@!X+8v%t;P%cJ4RwaLYO)ji>->1e7$BC$gt|<QI#SlD9(Hwt8DfpyQ!Li;eM^ zH|QmFz{HEw<m)xvt!`Fwob|EvPE+&(jD=nck+#0CfYS7=2kF{7pTQs{NE^z10ucNd z5Mu*Mf-nx)f-+(@pR-p8%bA+Ij$b$|nq1b0JOdhOXa%IG(zZ!>kl2u6*w^W$ozC{U z%P6EvZ&!nY^QPG@fzG%k#*$GHC^wT<5e-1tw4Au!G63LgN;$YuYEAWbHE>H&jmD7c zn)+I<OM@iYM}-_k={@qwfwRfls!Y?AawwUTIb!maBRMVS&;Gdr=kH@ynqLC|#<a66 zM?_?%%$K^FBD(m$aK?RIAQgt0>r_deOE!!#<I~Gt@~dU!96{SSt&#Uk_jk&sv<8t` z@n*<?F5iy5O8_$Iw>b5lNGN>`c&t_{u+4s<fE>F+dz2`XgH$e?>P)qi6ne<ZUnO*! zDlrFGtcIttLjxbqP}9ZQZ^D|Tx_Z`KQSo{*1^b%gCgiHi0YX<a8TIxvc#ldgADJZp zRF$ffQ67=FfQCv}001n6Q%cmc)?ao{eW;Wy%Z^gtKp;jz0|8cfeNC&P9K~R-pwLOl z6@6ZiuJ%hz<A<>g0P6V)`mVTR(#=z=S_!!^OY+tjaTMUmHItO-%TTV%5$k?SawhpJ zZAE0Z$68swcA$=)2CFJ{$R+VO5J+p+Y5G66f79L(I_7=KlZwdb@#$SB{sIyR431Rp zv<CpcUSsXokex*%XEWtB&$2pUxj+=ie?0%IKn=hnFKuMOR8T9R3u~KZ;2`@%>jUO2 zK>&g%SM*UEFzX<oZ7{p{0|2Q#QUL{QZsPpqoK(TmN(C6UY)!vVL(rm}JU%^@LJb>m zYys-igcBsFO?_z3gyI#;0CKuj@sV7?JS(pzBeG$VYy}AD$sXv`;s8x2%~HJ&Ck27s z%@GY=rGJEzviPtYWEzz<N#Mntzh=}bsh9yu7YcY&4J|F34SCy!Z)dm{ZA~IU@BQE~ z!>)C@79FyVOw#EntwB1L^|9vsh2zK@1ZU~&{PlX3?9zI@#(K4ao6U#a`s_=7fl1JT zI19p31OTCL<wncsC`F;7BORm-695&+ZxhhE#@PYO5wbQKnHsvO0s<B=k&YtcD$T4( za>ep&tUyJnj7Q}d6u?W(lV$DTOv+U5^tQX`Yu%131`tALVm=2r=VqC#Y90HN=~xP6 z9)5<-WUtUn;tMhw9Uqt?qu$m6F$dYwuG>LKDmX8$tO<2Z=?g?X3IJH1tV@|Tm@-yq z5rMi>m#XzP2Z;!5X2V71>-qA55J&1HxAjg3j*$Z;lnjM*m|P|*Kg-)Ru$j>m11>aI z%fQ6d^d=d>pwAfqwDtiABC>(hVw&Tpmlc?lB1omSF1(uOW?}{aSg+Q@^VuA3HV=+9 z9*ji5q91naQ_$$r_n9Mamz|(+{-y3X#pw&X8SBhgICj8Lu20D8hEpQt0YJ<aZE;Cb zO#xgF7{F)V9vlEDGqBW73!<bM>W;{C{*0338Lq6RsriUPqF!4qc~pst8`2P!h23m6 z699B77?@&!avAFg%_apJp|hx+&}JM>LixE^3u6)yBwx}V;rv5kx!I`K@!MvOTvcdI z-zTu0#MMipR3+8KZ2*7}cQJN(gA_5kbUl_BCC7;&MJcR4!@)T<S6yrK3@|JZQ@Xb} zr1^%jB+$5fE=kCH!-#}ZZt1gwv!Twv1Oa6`)Oz1*zlMsF@>ZlHsLSbi0S2gZ9UOXy zQr#?UyqjS*U$7~6A7%*F>otjRX~WW}ivkAEop|^|0bxELAjmD`m9r}Ym+U}O*<2uj zGzW*-e3s~FI>>QZ&8dz^Dz?+W54WdkfW(cnA!B^Xfl@5%cqI*8@3K;&Py+;va+sO} zujNI`Z_7;qK+ew?_27U_z+!7Hy;auQ(J!5J)4)=?;a@qmFC#UpE<FGsZB*7Yvgj_= z1XfcU2yAl}U|doZP9)8cXMj|KUL63iDLq0?I)8QyE|4~Qsq(q3cX{SO0TYa`(|(pU zt}Yuj_PtQ~$-k5{+W@8-P(ybq@3bM&WoJbFOIZ7l>;HxGS7+)}mZfkaxtdKhj4!PR zeZZZIV~*U1sC2eiV0UjHd;9y?-P^@-xx&TS8J5dStiuLDAKuxIU?A5bpQ*s=#(<0` z&m21(X!v6_7!OKFr4ks()%FPlq$x1ch{F<x!ELIo@a#`DNoPFVqt?s@(K-XemvK)l zLxiq04h&>I`Cg5JYy<wZD?nFb8<`e5ove_uKVtr?oFVGLI&7_o8WZ6RvbhQW*5uZF zaVVx?lDLO~mS@Wb78_z1G6<k-I~1`o-IVp*!hd->{HkXI20m5y#s1_%1r@+M_=dQB zRf&d>kPnKNw#LBe1FgU$Ss-nVUD%qov!|@8?M5`n+GOUaz*GQ~ZLH}L({BPQNPQja z5Rdh0h1GgBI8M4bjm=b)pp9*!<xGlBRol>9PnUK;@RgY(9p~UMgPQ^K#R3P1M|kS# zr}4^Hz7m(0m$-ZX9`4?~hl{gw96!8|<>e*TWa%JohRnf(Q*<WG8?oU`qH;Pb6#<-c zyc3YyQtDb}nC+p*px!>|0k^mX7*dm0FEiirw{C?5DRG0^*x_)mJid5sx#jE|T{K9P z$h|f0Dltsz=F)L`3N~vS<O*8iwgbGc$XS{pH7)A7N(Kr*Q<>+?B~3lZkWR3Xh*AwW zAcFxp3T7QL`#35H{j@z&=(>v?mlUy`Oaomllyg+wXOAK^*f<L(Y(TSrw-+&VQ9sBS z8UFf|*BBBdRk4$sM_7@U%Z5;+D#4%TjDlgJj*yuAQbYz$IWaox#Ep_CysJowKNs>A zcz~9odL;Q<WrW_XR;ytHUHFVJyyJ)OMEONMl9*{0kT6x+J6wQd&Yh(J1I^QjAc59B z+7#y;7CSq5<x@}NgFp25;C<fzgYe3yp2m8;#tY9qgYWsSZ^w6i`?q3wc?s`5X0tiG zi);Kd_!(IeApKXa>q`LS3Wo=m!9kK+PJ>AONUC3=Qis{lHje139%>dgRnqE9WyXOg z?Q_ZAvuk}LH*$Osf>vM5h=gnufFYL=Tq||x@T@6|7tJ~N4A$PJ?T!_y1w1|Wb>L;O zS=0+oOch{~g|MexT5GACo{OV3IsYjUZ8S`}qqdy4F9wYq#NB%ugn?2^Nh225AfbbR z^s5OFCVGD_e{P^N$cDWbG%V7Uwx}HF9>~+M$bC|jbG+u3^aTiDoT3wPNmTE=bp50@ zBEQ9$jUj1-Bi}}!6_4fd$UK>#O-z?(XTh_rmP@Rb!&G=$FDFOcrUDYbB)?1E3W~r@ z%yiN5CLMPg2Zi_pz2OkQa2@IuokgVQoC5-2na^ifEEf13@9|#v_)q#Ye87i(I39cA zQ7q;&+`DrRKlR2R#=rlLZw351)XxX--~vsb_&a1EG<<+8*Ts_){{~TgYMA%|rr0j! z6gkmBvIJR-Xa^1^klSo{xX!X50}#e06`eZH>)_ov<1HOZfdz^gEDuydog9+Qt6M!y z*9{SSLuxU?C^k*R2Sr7;5;gnlZ4h7^CdGa@@*t;$=vh&T4N|2(a2jwWPQL;m5*Z(n zjrfus>dn~{o37EB4cte)%lZ2b$El18YQPW&eDaP$tsE_HW67y)HpcNA7$*N#OSvLK zQYrh=`GXmZKy8+1p_0Z&jFcLTMkNl;Y3)Zgf*G<U*HRk~M#=zE8xRe>6xM%q-)ejd z=b!7pyu8F}wF+MiTwopmKz_9@6mpd+54H~851%6*{GbvbFvld`)R40RAniCq8ryN7 z#}GTr*w+r-Y=)i195-)2f;W8V@4=^j#%JTTzwLFnb@Mv*cjq`iyTt$FtG^om=l}7q zFrUqV*&K_7N7U1Sy^mE&a?#CsY!)Lp_hIkEYS>4SroD%^54`tjqaoitPrE4C#N0hZ zKXY%UUQIwNwG@@O2xj!uqu9OL7ra1+{a1Z=7^7(>jvGKA1Z)GmsyNQ#r#Jm<lR)I0 zOtS(4sK3!mgY_%n<VoPc8pT9XoQiYKhI8GOuGqICE1Bv|0>weec=s`nhj*mcUJCk= zZ>NBQzh4g<W>oYA6yT#xxT1X0$0+S09;F-9_$6^jrRkW`o>Sx1ObiV7^;7Ono<F_o zOQ(m`^1`5I0>lvVO=oOpGvz0AMJ@{vuKbFj`E1DJRIQI+YfCDj>xNUVSY2hCCMP#- zK<aZO`6_D->)67vX1xhi-N0vgaft-R9Y38e{~unP3n+`8RnMD0&&<$hI4uPc8MXZh znN)P}6~G&0o6lyL&u8J)xS?)OzUo!@lYi!m@rIB1a6JC_W7yl7V|PBo>FGKC)?fWf zeCKz58!j)-0bnRMiyQp1BVUVXI-d8RXGLa7nz(T?I{9^s_=(K1D(m!$W%+m5bCCOp zyZo&0@hu0CSu!^p8on|Nt4S`+wCI>VYGRU`e&gOS3DPZ=yp?j!e&<ii*%fDYj)H2Q zK`WGtP;N>?miCs~cik^cOs*3E1f@_iN@qXzRX`gA7;-e^?Rgu4PvO?kTg*cYlk$v; zS3c9_NGM*`NiGE#Be86!HVCjBxh7n%({jvUXv)c84=tFSesmJ@fR$MFv^*rfy&k7a zL5u@~0F0#o2`(C${M*OV@5FR<Z_;b(``cYmW9-d7(Lqn3fV{sZdj~gjn9X)DpU<(p zxPV`;Lfhqbp3V4}jL)KzEQc3qUq}B&hXu8-B}kC9qCh0d1`Kv%XR*Lyv48`x_G>J5 z_V9_H`kDC5&-qh$?6F6&GoNE;?l5-_XJ_a5+yBj9!}ommzr*F_1-u7lv*Dfkd;m|b zNzz5;gu+ud8)h7W4zI&WgK_UfY@?{()KJf6GsF#stJM;#)e5T!9wG>iGhiXD*F)b8 zUlttr`}G>j%X7ecIHeA<9qabXo(FWKFWK6=w6o-STG}mS;Z9zcH}evcMd9z7gOuLn zWgSNVa_ue^j@W1?euvB^CC~q%;*uO!1^_^aYvwCEC%zt%*~^U{QxcnQq|rGQ%aEOm z-FE&xj#5oti|*>8+0Vs}=bA!Olqr#9$JAbo$i_hSX%35k0VkB-;9b0GR!j*G|L|xu zxdv_^xZuz_K*#pd(0KZYkuYNeWpJ`mUah^IU%70j5@2QLjkGrI+yd|U9`A`)zxrt$ zAD`gOZ+a8%+<6hp<q{4K^Tj;L6<;^=qF=lx&!7bXK^_7e;`m9l!tZ$IKm-BI@z3a? zH!els^Z6V*iyiDN7ML#<SgqE0<gr)aPyFdG#K(NxM`LeyAM-e7Jn-=36kqwJUx1(g zg`Y><eeDouJLZahg${FE0rK)jtOscy^2|l~Q+XF0e{P_-itN3|a=FCC<z=3ESm)Uo z?|s;u>2dAWBY5SLPviaH|3mQjqmN)VTjQsG;z#i<-~25ph(gGpz^u>@rg4pNE_@Jm zaoH9sYRv3_0Mm859{Wa)?ci(H>m*3sEhzJ5)CSR6#~K|)K523bTL)?mXkE3XysTf` zL`FX*N%OYb8UQF55Fzw?NK<AsO$7jH1|SIHgwjx1YtCDnPBA#zbTqrHIe&$f%%iT} zCcr|bPbHXC$n!x&t|y_HcIs<O&YO<~2?D61^Qr#S2-5k63+G&lxad^n)S9bxli_yx zM@_vlnBYOlmk~psF6;SRUK@7~-p}x%ANFDR=#TzrTwI*v$KUuy{K}i&jE4^%V7Xi( zZDflSJ<@A&YY~ys85%ijCpULdfSv#VnGr~i6v$5A4b$v#Ib!Apr$6jXm}4IA&xd`` zuYZsC#TWmVe+938`f0dToDmqD^V^?&2fpGz|2({S=Wd!kZ~)oo5S>(*a<0gnYUs1A zi_03cE^&5YKA*Ft0)W05Alg9i2tA0^dX3A=3oPby{Kc>Q+xVb2ygwefaRUqIu(tq! zOT7JUzlmS^*`LL){K~K3nP;BG>Deh(s}=V4_OP?Fi`9CC%gf8ORIywxvAkU3;_?E= z$HzE5J;nX|4{&mFg8TRH<H3UmxVX3&fX8YjfVF3R%UqsA27IwS)9j6I)76<w$_r6{ zGoUfYQR+v{L-MytSet9EPRL}i)9azlimLWX08DnlK|l!rT<tA@F{wlwnIRL4mzwD8 zO(`fn?}t}G$n^Z6SlWgT!vG4W&DZ-Y=2*KO6kDDfK>nyQsQV9mWI{I0$j3l|PCWqU zeV+D~B5w%@c>a&ZDgQE2{Lr8IJ!sLl0syEWCUw!!=W8Hs^y1Gmivq)f>Qx511dnh6 zqK@1d7mrCEBc;fx53EQ7rKPf|O3*ntqBZ;y*g3j^Px!cx#TWdgzl290eH1_Y3%`Qz z{nl^6y$27%wD}I)e35{d!?1&Xh`9Xl5uGrW@&Q5du$=4w;Si?N2L~PvUTnkFYMmM+ z)8MlUp#n&tZ#KhxzQAI>2o8Ua`D~8)e1Z95j@fL15BvQegD?1^KZnDEBlwFs)^3IK z<r2$_3w+17eha?gpZ_CVUM{h_vm2ZdFrP0{<j>lXT3|X85G{!jF-9{*RnpD!zJ%DV zJ}7AfSb63kIJZQ9upH~v5?Fb_JG}Sr{vdq7`@9!!A0A={4vX2)PqWz!d%K7D=6~~V z@s?lz4fypcT9!;RjkgR|637Vce0X?->(_7KRZqVfJ39+3c6P9{v%uco9`^Qju~_WD z`}MF{)D3$geEPtW$8x#C`S}^{+_{4nUw9Gs?%l)j@iA7*WvY>1dz_!2<MQGHtMw`@ zG3EZIZ9mxSS=J#RoGf$b`~*b0<V92|^-(@Rfp0$d<X@iZqn0}71WuxHiTdDE24(Qd zu^a9>WI0QG#4fk%h0T<?+L80v=@h|1c3fa)T^G_3<<KPI0ATzwKoK?in&PyRstR;D zMP4}eC;Z^ECDqvgN44FSIYwuyyu!nBcEXsdA`IXqPfsdd++geg@=98KP@pixwPI%c z5*HT&ibzMVYqHQ*YFAY)RMol8X~_!a0(_oQ-@kSPf8-B;3O@fY{UyBmRZrpg^a2ka zJOtKD?CtDecQNb%aP#?aD&G0UV4N>6ae8)&2M-?NnP;EFGtWGO7oL3<XQ!t)JAR1c z<A*pqJ;8Fh3~SiK>x0YHGE83&PGb0fnKt6awe59q{Lz4?0L+(Qz*7L_9A@)5c6RpQ z;BfQyWB9_q{8#XSANc-QxIOrl#~N#Rta0z&9sJ|3{k!<_AAe(*PIp+Z*J(y!KA)3@ z^O9LHj-oE5-%1x0GgL?rKhdD;^u^2pnF)#CG`PGx$7*?j-PsI(^>6)syz6iOZP?%6 z!(u)-PUqJ+KR>~Df5*SWKmLdRGj?`%2VGBNAjlENE%O*2Yma<fGHd%1D3I1jwv;;D z89groU>hZAo6P5PEEWswEOrv@ot?!1^cKUj+qZ7wx#wTNqmMm-AOG<m!;k*Z52VjN zM-Y|e4t1QlJlhhxQqE4%K4deHm^SW|Oqm_^)Q<N72?%6t!DL9bT6q0z&0Z=1P$sI} z8`CNmR))W%!?Zk3{H^jJ@}^zQkp+dBR?2}6cl^CgAjMDrdZW`jFsZ0}brYpil#cT9 z7!W<FmTcD&1jx)1Xh9&~V3>;aNhT0w&H<pT8*v`Ae9=dw21z~_k85>>p_5>YR^HSy zbu=nKm0nQ5S}Fm%((FpoA98m8&BtGXFZ%O;0iW?F|1;dYaRWd0AATC&`|rOEKlRf; zh0F6Z%;vk;+1bN<zJtZi0*jqFc6N4f<HikKyLKJ7Z{Nmak3Wv<Hy^>#wIkfPc@5W& z4zaVd6Q<r>_<t6faS&*^UJsku)@xi|Ug90kJcGM0-ob<W_wnHVeLQ^d5NBtnI6XPR zgM0Vz@cw-qKYW0b(_<_zFL4=OMO-eIK!_+;<Y?lxAJ)VdJ3DyK_j+G^$(MgQ9(&>m z%+_;UUJe`XcJ>^eef|#q_Fwxi@ci@74zJ*mqm5~^rHzeNmoa;g!5agUN-rflFUL)4 zD*{lF0RW@qJyz>gIHvd#pY@qvh~M{#ACLW`1MKV!%Q}9&!t(qSckkZA*M804!!P{o zPhmEnWpGQzDPQU!61g~Dvx8FA*yp_-ye_<cYD#iMuou7uhQ1wu;u@>v8q3uR^O?h^ z{?R{*-}~`@7=G<>@6LUE#;1HV&W;~oHk)C!T1JuBm|#l}gMe_(1+d2lTny&&Uuw%6 zFrcWc9J_=avx&k_F*|A`m2T{ztt|meOWSh(v<;HsRh&bfVhM%PyjylKhPg$EK}cTl zZE(XEu{sKWZ@Xwc<rg-k5(y|Z0@gV)aC!3Ty>dZ<7@@Tnb&BT`gnMql{=+5B8S;lF zjhmZjbuuCk_rm6;HSKFUhtI}H1~;kSQ+<fI)M=*Bhe?rJA+ijcisH;doR)Q|twjGj zUF%(FmsU!>!fXbSl_^14FRABo8hy4{;5Dy%9X|ih{5gE;XZ~^Aymo}2`T1YQ|MYjh z20#CcKacgrMOy1z`*WQ5dxH#N`Z-SLXUFA2v^;bg--rh|H^a`(4t92TvAeg2-JKoG z7dv6Pcpv)*hq!*@CZ2x!Nj!4<HeUC---c_~ujBCO5c~W4*xlK|?#=@9aK^xDy~gEg zh2?UE<!V@?K0m*}>DeV79-rd$_#Ag$d;t$1-p9?`kKuLi{yJR0c@1vm;ASiA?+^0* z@|)j=fADwyJ3M%BAG>>dVcI&pgCBS4CuhdNF73^t3(BXgyO_R5Clo=3%V!isdlj82 zed8o=e2aT7Jp6o)YlnyU;E()0*ge?AY@YjUwY<b?wZvP0?XCE^pZamk7Ykw!qHx2Q zihDTd+Z<7DcDi1iQ49bgZ`f0UEUJs@>{YNf-oeGw^8)Z5W;=#<na^fe%~n{tC1%cJ z<vo7!=Y9cy@Q)l||L_32hu87G@Am=tf$#awFs^gU$JqdCl%2!y)yFu~<46`CUw8G{ z75H2iI#+1*d#)XMk_ROHlW#jDo5D|`wTuP_EQLJ?w&<M-0LG@Y$uA@tWvLODk!V24 zrg7MefXg1&hrwRZ;YZjKsn}&V(4pBB9g<y{R4p2eh(;}W3_8QWk_;^Y%8f6~iF+bf z98C(xm}htz@=#nuip23HWpr+MJu9vUC)gk&i!`>$8m3V>N}T`HiXiGh00OgY{CqH4 zUQ|7syuy9!;zZ+99qdBTQU!}FDWY`_PrvSU_|O01m*S88iO;~^&H}&urnlg~{jdHi z-u&iY2`B403<qkjNngx?0KjG*3H(sYH8{@TK(J!9hXXFp&l6zKW}Tu#iPPt97T)ri zAvv1aY=*^r2Rl1ESOfsEzrT;Yz5QVW+hT#me1_YPK8AOF{d?h6uX;~l?cmQ=IG>$k zeh4gfJkFQrxVXH)W4Cwk*T3q&!FoOHIasY$xHvz@`T03cPfl@haS_19Iqu)Ri#vDj z;)NIP;^F;!I5~cRv$GSNpPvo8@mDKcUS8nx;)0u|q_f0fIO@P-&t-k0ZRBInf;=YV z41fpHGQ}VI<j=tMM{Zy-pJP57deVpO6zkO*-|?;gCOdu~0XVYG#*=vn_@GFXPmB<- z9e`e*?nfS1!MxHXn{q~v0QF?EU6L_^Z3MtQa}Jm}tXFHi<C%Bh{PYAzM~B!w*u!7` z^8Xut==;A1tIG?_QbbP-7y+$x^C)j$5%DWi{(O&ttVco%>6gq*Po;$SWH`mJ$g}>Z zAWKjZHp{2Bqqly`008znl1KxX88n3Ay8<i#0x+;A85wvC$GKYemW_Z&uhYp}$<lp5 z@jf2v*^my%a6CFX8wdaq&6@6w1lQ?;Q&Y$?Y5}Pa1D?X#+*htFRTvEUT9Bv(;Ac64 z2nVoaaf@Nf!3F^OY8MkAMq9Fe0VKw?X$OS&t6g$VC9tAe$w3NOu2LC_m5YkHNkfns z4Ru_t*1&9r$De*0f9)&(20rD}KMiZY#xMTDFX8L{=|98I{p?R;F`r=`UaR%%VQn0t z#_6awH^a<%41uuc6(MSufohK6GMLPLRIHna!b6$xft>Xkex1kN3Pa>~F*}Ewxe%r2 zG3mX>&dwhGz{md)yyyG87Y_IK!xsxzz-k3I1Mc0wi+}mg{sn&W$NwXi%S$X4JJ{Jh zz`@ZGZr^?cH*em=jhi>IySs;j!vpN?AK==J>v;0jufglz^F49%_AOjHJQ$WZQs2jA zm0@<|^yCzGUc7_T(^H&ZT;THJ5)U69<H5s+I5|GSg9rC<{NN!TKDdX|(-WMYoZ#~E zVyNSCiOb8&tP8>J$fK@(x(=@ldSGw=03Y=UAB(;HVQnAlp^bN(!_Hy{&%gL0e&mO~ zAG`Z|!wf*|yo@@9Lgj%Y76XdsQBSh#LQ)25p33E`%#@B_dObMWcuoR>o`fm;nZxnv zF@EW1ehzQ=h!4ZU&GCv?zY5oG-om}-pG`I|Ytb;1Ff4u0Jwh2|#2FPjQ^6%owJ&@R zeG+GAv}f!}WRZ4^S`P(=6uzF9$?0Ve0J7nrYq{Z1LT*Utly!hF8!VwG!-BG%u2c@f zhsu#re7sdUvW=6_Fsfj~bTk=sX>chHjgWHr7Fik*2H59kxiJ4svQ)kbL=!*bMj#sD z5IW>X-X(5r;vCAZ!$6hx${LRB_sl^(gVX?>@mW5rJxCg6Mq-r8>k|9G)|UZHxZzk+ zpX;t_t6?-*9g_^edbNU^@8F47zY3rGCqEBg@E5-b^Z6V<@nb)MfBL`tFL=k>e-nP~ zF^3z@^k4fB4QVY9rl>K4pCP=zzLq(FgxAO#v7_kAMl!BwzpRsKqp2UhJK*85x?CZ` zHHYC9#G}I_eEMg7E<W<3J`&4|8P*rWwEYagY(B%Y&p(U5^HpDsU;U+D#O}@<^Th(o z`6VvS&v5ea9$tLrZSctTqr6?*#}J%H1ch$qu)DjDoxMHmg=K`D-8~#09pUE9TeyDx z2KEmQvAeg2Yu9e#$){e8+qZAw=-MIn5B9OQyNkunVpyk-^-h}~hXa2uE-rBQ&RsnF z-1B(&@EG^+J;1%YcX99TU7Ves;NgP@@bLJskN60jU7W(5?P4+8#bV(xpF8aC&9S_^ z#Q*$1{e2u>I})2?bJyr$L+T)sH#_O<KQn<i)4>k3Ro}=WeV>AW{CYPpkl!>x=%e*) zhMAvZxm@CBe&WaQfgk!I*x6m+==vc(>_a{j|K?l%HD-iV3Mk|(i${3t1i|U&sK1s{ ze~DR04q~{iD<MMw(_Sp?Dl-nOy=Zyj6Dk&rK#!McDy9cVghCXlNz^t?mUynYFys;f zrc0;Zw}sUls!BN1Cuk&1kpZQ$2*gSUag53m*oyhqp36fVQj)ZQt4{oh16jlgGwSro zV3+xY^BAfkKEf1?@^A<Wf31hMgA=mx%j_sQyo&UpCZ3<(4;4}iW;q<cNXfG{_Qm}o z2^&Id;MZ%o`3_$7F7JZ>@-KfmKK74%5_V>L_{E?9S$xe`e-+Np&#_vr$SZn2ohpYI zEybk`%7*k4HIOW#V|u{*oCI1)&$Jn-;yw3}-(mPt-)uGuvadsvud!OM@Z=M(#20<Z zU%`{Fel=E0hZ%<V|JUm!+<b*!{H0&U*L>Ai;o*b3aBct+i}|n)K8w4-9S6enHM|6_ z$n|g;@6&$HeXKi@M098n=dgcph}(}ofm^q4V`nGsj~M>n-Py(Un>TUu)=eB79^%HW zTR6IQ4fDku7Z*!hUS42zd5+VQhgf=#{evSM?On&w;UR8ZKg90-9(ETVZ~moU#DfP9 zaeQ)u2M-?L!NU`roSxz2_!#%^-^cOsG49@ffa8Y`uv%Wg$2T>+)-R<^$ZrJk{R%P_ z7DU<w2_i!~&w@Sn-ea|1V|lp@=M=2)JAcP};fwx@uf*ZeAu!*;&;P^^;WIwv6T^7s zn>rn$ZqB$}F`|CfWm#%H6<|R5C5tn&OLPwc91$VZWn5FnVI;roX8@vd$@jq%QX}_F z8Xb8$rGdk&aQw_D62q5Q<6Q~zWQyZnIG<dM5b%V4EaN<U+AL$!PY6|$d6v<yXB8ov z`_f>}1;eZ(9kYnhP$5Rx0iI}6MJ9ieXkkVsO*2O^eB6{Y80z(UF#ggQbAw|HMCQ@> zEJJ+l*F{4Ivb8U@XZiKNv`50F+)4Ifw__|n^qmRASzn+4aunb?0np$*yqn_#KInt- z*Z;e(!TY@5d%`are)$)F9{>0s{sX-2ZEwSBxk~+;Nr$6hqg=$%ODrDO{#lz*{Yc|A z=jSs3yv^eDITQy&or!ZZ%;s69*$i+PfWXCSg^&2)562(-+&_)o-F;kK&M?DpV&8gw z0k}*2#83S^{>T6OSL6KbApnore1Um*qa&Y_;qw;+gTU!EJnF2KdH~@dA*!>nZ3Qrh zpvb`y`VN<8XL!eN{2Jc=8*d&Q7U;5q&yEZ;(m%s%oKHUe8hrX^eHMP_@A};U=2*;T z*xLyQ7s2E7-aY*6ul_22;aA^`+mGGGwHw#*_-h`+YmW}GzrTn5y*=#hEU=i*hvlHz zJbf!*wO--k;u7Z<7dSsV!|};!SjKpWdw1{R{{8znIX=PJ*%{7G&v15j7M4AR{1@kE zSYBRWwY(Uj_Sm=aZ4L6qMFf^H%AdJm4@h$U;ccuL9A@+3BTjJ{<iYVV?mYh@_7C>3 zySsyT`R(tCgTq5SynmlN%P?+++0>}x4kZ8=FoojW+V|9nf#li}gO%ce;Fdw52_UrV zLL3h%<>ml@uBB|n$?8dN5Yb-&LxHxoDN)=#%Qs!ne@O>1f1Qm0kJ?4bzMs>oB$t^a z5TFZh+@kGR?sGKJFO7UT@T5*XgNWIDmK_PxPaOq&dDDfZ4rDbR*5y`6yQB*QJSI`# z<s!>)tDHs1=i)c$745DV6`99TgCMkwVF9n?8EDV;4)BH#d;`Axzx_LS-{1Ayu)18} z$A9=o@eSYb4S36&-;9gP^Sm>kjFc!_oF0`kaCwuX7c%6v?^p%eKykB|_iN0M`MLyT zIY{E~wo^k3xY=-+&#>M*AAp~mVZB~qcW)10{H0%x*S+U^z^`ZUeumlFVP~-bZ~^Zw z@V(#rgZPJE`#%C$V!l{}R}<&q@FCvrLp}Hz`Fweb3|fiv$c^OAB6xK`oZ_X^&x2+M zPzaaac1f){8-kF*(XX&xd92q<c<+Ogo?|w1c<QMq@ow+&URbXk77K^PVvhOFunBOr zyu>rlK8wHoxBe!)AC3`TuUFx~rr>D9p-IjSOB##$0*jqp?CtO4+O=!Ae&YrXkB)F~ zc!V1_Z{YgPo49`CIv#oaF}&to-vx(<``F#t#m>$GJG;A>&*sDCJ2yjoM`qa1F`V~s zd3lM8i{Vwy^YaUwoSfq1_!xIyd=V!Pk8yHxg5!q|@$kU|+`oT690qib)#?)K)iQiV zah-q!0307bz{S~pJiL2|qgyLDc)Z)Yy&iA;(H{yYEK*-VYzxupUJp`n|3p7Z+fU$o zwQR~kMIwQVBiDdt3WtI+1lk+`RMsWlDM?01+a|vrHc&;C;jelLN1^m<j@pM@YQK*_ zE<8Gn289q2bQ~)yD0yz&ctIXX7ric&GFIKih$f(5;$FFtbVv@K67)(P;&dZ(`b=&| z+Hjl}3~i8Q&0XtNUC&(Cq)uf-!0QoQTH!DVFI6@U8l;l}fSrRQeAZ`v4!+<^z6`H= z<zu*5d0bpx;{L-sIK1^JKH-x;1#kVeU&RYAynqMyAK>KV7!Mx~@7JH5ond)-i6uFJ zXYD-$hD-;7Ba2QVZ`9@em?Hboervx5R!C<k4DB^zbz$lhrjCbvZaB&}9>W{tIA5OQ zx4+x#@hAV>U%-t=AH{68JACYCw!mTr02esBILF`n>i-@;{vUq?vl%d(Ez;4zd`6Mf zH|bT>DPIO7%9Z{+w1>hdwozQ(%CD8?B|5+MLbe&^^U#h2kj-W@e9R|*8g}Lj43=o< zpY?j!J8*h>itqXE@51TXDduiQUgOMb-K*6Sv(*3sX3k-?T;k$lSW>w6;`31eUNbtS zo@RPn0{za-uvqM1cW)2ZuV2UB-X5-9zmB78*RX$ZfTL^IaP8VP+`N4oH*Vg*lTSW@ zcYposaCmr_4*Ho9K)Uv8TrO8QJv+zg={e5N&T$-OB90%N;Pm(*cCm-m@fvqd9$+;; z!E4|3-SCq?@nd0sMX<#IxaQ@h*yDw#Ez-D{Lk9urS&fer!^cp?A<zC&z^&QxlK#tn z3E*X!!r=8C4J<4>zoJgBMoP0Q#F=P#Rm5~^;t@EV*Pv0k6Y&qtP1eXsH5@TWaeg@O z19r^G()y&Dkf18nFp=Z+amBB}x#pP$*9i)#F%}5S%a*k0Q5y8O)|oNN3%{6cm&)MT zb;bc9GH?!y{R4c$CwvmV<SYILo__k3I6XhdkN?<D;_YvH8+LYP!`knyTX_2EC-H9Y z{%+Xa8;-S&C#TKhDQwY6uRSg<mpD5)!|B6^IKF=u4~`$;?CccB508iG-Lo^?fA9eJ z?hOa^+`0229zJ}C2M-<$(fNFq40b-OCQo?};36+CIT6Xwi4f-jgd>87GyNCvt2Hjy zOI)s(_yfQHqw$A6{WI{$Bagyk;Ja|MuwZwI-+b#k@HhY3U&GzIFJf<Rm&|a4w+rZ6 zHEHcUK7%l^@##9hhP69Eya&j8-Ep?V11q1v&hRXR8*#}ci8UwVc4*Ugd6(aYr(g5* zurS~NtS_;=SmJznj@5dNXP$i)-~FBc4)7i;zsk#OfyMxckii@U|DM>rVit(rCTr|z zs5@M^Gn^bh#JxK&q&|*10r-6CV`$r1_<lp&e>I;khNGMp3mhCC;@0g)@#qt;!0ksL z!_C{bF`qAngP_(PtK|xBed}BC>UX(`+fUqrUmxK0um2s`+1bVU+3BF0;Y7r!4@p#` z?{tSh1_e+>kzhbZIsknGvkZh{8M&!27B813rC$Cg05BoN&q->_KHPWJEx@q8?87y6 zx|A7;ACYZzzG~KjSxM6eO;3wBE=w<$D$;kxH7<@ER1%}xLhQVHPXASta+|-6;MquY zj<>p5u9jGIuL+>t=T=|u^9X#9Mse~X^dB;5!D>U6VA4h_Qm4aPx9}%E>vQp^zvxTw z#ACN{e!9d@zwtlfUwz}(<IQjSm9(C^UabHiz27`vEU>e)i^m^(9Je2NWSGu9I2hiY z-yKf%d&SdF;}x%X0*^d)3$J+kiF7c^%+0X!9?Ml+i^iZ#et5<3^70brXJ<G&JHf*T z_i+Et3%GOdE>2EPae8)!)3f2jG57A?#l1UsaQyHg&d<)^L6#OA(M$6GdObL-)p|Iz z_wh#`!KZ!ppT>LquHTJo*REkccbLIpF`L7$R`6Kj=YINU@wI>VYw+;leayq_akKgG zH%%L}{wg~^A0U%ECof;bd!%CrWTs3+4f}MMT842L^9>Fu_wy_{`3wSv>%5nQlKQMa z^MzQQUtk$t<pkF7Vc*Sqy~1~X+qdKR<T$)4xDNE<3{2@v<QW6Sa*aBUql~<1BKRkm zXQ-9qfQP<yHK_dn7FU<&X`DU0e;?01^DKV#mwo~9bH*<1V;bl^@x&AOvtRt%vAe&( zdOgF3f7Hj|oBs7T;un7AC$XM6EHDqUWvc|ZWE(?|DfQbhwWba{(Hjbc^Wy}@94$nC zF%C{#2ZAp<08s3feYvKrxygvLs5^;n431zt(z>?egQ|x;Gd>R4(RfD;D4}TtmOiYn zQ^d%2ztW;?^Ni1q%Udqp6J;g?%F*jgu2N%Ok2tLyd8g?{q<c0grCtTAI+)O$MDddv z_Q1C+DXlFB64dE?;$V($-Nu)E=~v)0{=}cc?qUze$H(}opZPib>u>lvyy=&IHY}ZG zR9j8ghJzF-E=7tKr?@+T;$AAayA*c_36x?*i#u(x3hwSw+}#Oo!3hMym*-vIzq7KE zmE@e6*?ZsjwP%!ks#<n8KT23E@HY`=SFd?K5W58oXX8cxLL2i0WJnyJoLc(%Q3fGe z8a*B*%gsAbo<TXvjHgtYFNf})s8n@8LLS2~RzTYV(sx;YJuUR~8ygl3EiF<8+z~jz z^tt>Ox7a9DRBzbw&;9Wg{=fixBLqf&x{5O9@`7pdf{+r@PpE1a*|g`5n9~AHsDR1o z1CC#y%HLOM>GliDtEd7wKGS&P;eix*uK)~zoIl+`h}PTue#mkjV)ADbR7f%DKxnAM z{G5#96HVDe9L_vRptdC?ZgX0Z>dzv{m#qz~qE!;GRkVCKW4@r+B$cffI?|upa)V9s za;@r`JJ*nFm41Vx9(!Y6D6JMD%gvX5aQxVM8!EoMut(xPV&~M^({KABFD3e4I@p<l zX{oDn;5F|_c>nidT!o;(iA(JZtZumUWt$(2o|kug127`cGp*Bx1w*vMV$ARF@~LG5 zw*~jTd(T@ipF4#7m^GPCPw6isN%SmkLT!m%<3W3ZJ;zR4=!y-XdUGZ2jv&rD8&S-F zJ*1f9GHH7?0(6OHf7ldKrzCLXbZI4W(rI^BSROTFdrYX4yjCgx)}5IW=0g(aX~GMo z4v^(2{MYvZV)#)Baf$WkL6U7MB*A&YEM+rH?gw?>MN@mTYMzJ{Zmc3&4HtIi0-$J% zturOgePsp{+oa_Y2ia{77X;nxfo1J7pr?;g@H_KB=JxCCCo$>E?2f#+ALd-TcD~AY zX$Dm#lX>j#t0x7@Lz8z{wY4Lp$6FuiT2nzQnX(i4<9ivSls$phRt5vP1AG@ezLgCS zI&ADn|A!YkC^@H{bl!EPlQ}^qUSH;#g^=*}e4ooKRA2U5-NeLX!}G4i!xtPMd8_Rn z;EN8^|1X}kH9WCto3Hes)RRhxe@Jed0__Q}I|znm_Bf=!F&?~`Kj7AWa?*I&U2|ZJ zK}5eYpazdU860#!8$%T=X~Qq(?Gt`hEWD!#Na>h{W)KEV<^LF*?x{WQT%uD&aBWl? z5tMKc5@xFs+ofzx4Q_V5lD*UkCcL3QG)i}<PCi!hSr8I!xVQz=pu_`#*4Glpe{SO; zHV%o{-<wZuY%ihY*d%3E`T-Anqbzr2<qj%6jdBw8=%2zBKuUZ{bhwNIzA@U;V;9nm z5C%%hy)y&rQ@e##!wm%pY+!??WAmu8)xbVPY2b@rp=?!>HkF`cM3WYWv6V@6D;-Ts z7&`HyS_@@Zj+wH#2=O95fGQpc9MieW`o+za8|zNWr}G44$uFt-H~LWV{PRA5hSuPi zI9H{3P$H3mH|rURCH!K#qxS8OX2%&@#>BsJ76;9%oU{*To5!L2VS~$`2Roy;jlnOp zg_&W$u&;p3&dq|e#iDm^FL=JN$44JPEiQ*RKd1P~YwUH=z7cjOY<%qHI!o_3?&xO+ zPcigtPNL-n-#lwQ2O>GzkCxkU$AJh@aq-eYZp|i=ggK@aJTcX`IW&WNdFl~8jx-z6 zjqzRp6u}WXOG+rz7-Kmq<MQ$g#u+VOV;(Fb>O@bJckm^w=Xrv(Crv&g079W7bElq@ zn-BfAoM6$ufEHr8yWtrPjU3;+i+N!eBXLu)+R5cA^SQ+Qw%KygS^y;ADm%>RxeMsH zF(}t>L}4Pw$FwEvJ(iM0u(htiK>=-4{fZJvlA&ZPEf5AG2I)?ev*`hPAZ8yRTBLq1 z{4*9SkfOLcpaqTI`GSC;@;!I1p8?{<77bxfV_x4HAmqxDwG-L{Sy$O~e<B8pEUfi` z>=%y3%>kCTPfzzcNL;<);hB#;m4@Hy{HIbK^TWPH6>!>NZ#UX@K+nfAwN~7|=U!0{ z?-BGG!hXeF%a6-!6;E&GM41O&R&0t?fW=DrLhs6Z-d6<h5E2r3JU!6<-62KEKs_;E z6hElXzsk3IZY2>O?eXtX(n4+&s3%>_519o>!pEgW3Cwfu!(lj4I~1HwhdHkL%)XM> z&mZ5!_}eU+Z0#JM*D3l<*b6U(o3ye&r*V5dHg(M4g7L4COL&qP$uX=f_c?}PEz0J) z?yYEXj3fm`NYrTVmo?e&^go5F`BFtbQN+!5Yaruk8;j%|wv|d`S|_Fd%tk@*ho#A# zAK6Oh(c*DV^uasH@Fc#+=b)()5EdcP&DjH<-?;+tLIK{e{?M_xXutMS`v^KLHb`u% zTWxZj2LOjc*6R2_bhCd?iz{ay>l(;xJ}Z~}t6~G)AE+@A9}{cPP2ztR?LoEyD4zqz z-6BGW`t3n;CDt$thM1<FYt&&lK0vYT&5L7v;AOvg=hG$Z@nkc#Ggk@a*9(CB9qcJx zWe3KrC?g|P8h!tZV=WOqJqjq_o2<cgy+6*l!Q*6!gfO1a<LJhv_2QtUvZWz?T|6p& z0I_*pxAXkytnD67h*&(})TSrQmjU~OKBFpDX%L(km0ABca8QBOAHIR6trM}nXJ4X_ z!f+_TUGj{WoYn~RxDcL67YV26tF(l<yD@aYtbr6`80o_=RzAf?okkEX1Bg)aTpQw6 zP%c{N`4|DVL(@Wqcl75g0=czhY=|rd^>Ocp;v-Rw$4V?G{fFx(+7HV7jA%kNoMT<% z5l7}vv*vw$D1w=AH}cFmfjtjI3%f?4cnl9+FclMU)@VeqX}El%yn=-1km9ji#OGFC zYQEI2H%tm??1FGkg=lh+A`7rPm^U!DBVt6jsi>=ziT<0gq1hY)VDM9Y2;!God=x%q zqrcqA-2S@Po~clpxZ~2o=U`#cot+TVKJ~{6bLzw25lK>Vm&B=fyLDXjX57dQTpUIF z{RoB6v{T<ko>5_m6Gx>9lUxpl_TzUPJ+3i8b}yfpWOt!J>J}-l*0XMmht69FU;E|q z6T#YfeZv>O4id8(77i980ACzyfZm6Z=vI&S_6H-$5*JKV?p-5yt=XW7!LH8!y&A)u zx>wUp5#`FkH)rri$OiN*5_!hHadze|{^%wf>D5zvGg9Ue;QJMVGAMOG(@#jgN)ukx zv3gZT0o>{702HDY__fvU&_U=M@7M8*$r@KtP@Ox8tY~dVL&AUV_1wuaO2wB%6{8Ua z1<c1MCtDj93%8Y!%7lUfXaB=*`qqAaZtz~$1v!ZX2=w&k>baG>#TxX&Gx{<awZH_S zvMwTzz`$6<?dj%eTaZ6uc`be~F9>UooxSI8;48`C4x&5N#_Q)q+S-*y<@_iSk+#xc zq|(T=yG#!r54qH8Y!oLle;kGilrgtRgW-|$7Y0KluHGuW`@g<P`DMKHS9Q_CCS=YW zz%`A(P~=M<+Z)py)&-t3fXN~I?~(k3uBX;*p5hDZJwcESSQim;;}(NTR9Uitk<^3w zH&;whQDHE7-KN+y|JFWdtaPgL*ta688};7f#T)!WjFU$5pK2beF|K>&KHDT^(^A`h zuw!&C1%i3ExI&c{D2^tV8Z$VMvJWsboaR>(`gS$b0$oAIOmd*&JpSSq5PEL#BR00s z@_WT>pK2zwM%q6ZejPz{=MEZ#oQs`xG2Dl`XKZ%$2!Wn%9|8Y`50v;3CuUjK-0LJ# zYCI)$e_0qh9=OfyG7g^{B8;%j9WYK|r6QI5m~9UL*?l$HF?df&@L_7u=l<<fVBCgD zcNT9l5Is`-1-^erw|(%<-X;Oc*)TXhwK|a*8`E<)z=(MfB67Ok6b3;+9*jYV2Bfn; ztY^1dq&tSFly7R}S^g2*?0F))m8n^d{RA=H8v|F*8qjld#*yN~gJ3ZlGv}b=$$|5$ zzj^&Ajwqt1pl8!zebp4j8qv}oZ~iBM`5-9hgST{B@9&*AS3bdK&ihDtLB0V^W}Dkr z<f!oPf73*Hz9O~u)%>YW%zAH^dBK$1y%OsFcm{B82+2mNtDawt8(g7K+1-LjzLzM6 z8udB8c7JTY)3qKY@i$`hziGu7Bi7V{QnpGpy&q=!ac0$<yTEwt-|Vvg<-I8WQ#ERO z%q)ANlg`PKfe|w66kaopXuN#z@;{zruQZc9hMhoVWH-Vp&B~_NA{)`(;}e=O9BfP# zz38+5O`E7~l!{sX`t?~DpzfiJl-({iQUex@qfF~42JjYb{0=j5bz72(yAIA9NR4An zvVU^;7UgcxVao)unPDw1SU0TZe=9M0H$=8kD?4rXAU>R~Z*GK9w|<wtQ&-K+AOFil zocJY4;~g!-85%=u$GzAScI$Xhht%BK=JqzJ8wg5s&hv!m=ro2r&SOQUiE{6Z#pxEr z@|(a1f3hqROf|Ct)ZcI#W$qU)266<O>Tqsd5<bBvUWEX}G_2Y3$urQVoy`$Opt1bB zH?1ho4S@gt^l0a~YkMaMLWy$j#~*f=&wQS)@;52Lrvp7rXH(s0>MDCYWJI1hjeJ_x zSR}`$0V4N5pW)gvEc0ew&B!|5JR`i!HT@5?nlCpWKqBc032!_e?+H-4g5}c&K+F{w zQDTO8*%*VzJr1+<gJIdVM2a^D)3sm+EdUp=A6|+}^&ye6D1(o*GKN9$D`eg|VKy*z zYzinP(Vt71H?T@+-us9>(0IEcZ!{z>#c-pBvi$JP#ifA^_x5#Gj6ZR<pTB2hjuONf za<L{?1Ms5%<A+vL$wq=az|lJQ+dBOv59i~ZPIa9qtI{oS+4x){|7sFtkFE>Uc1c5U z6UU-HB<o*X!L@Xy%qU~@v966~cKR}WzSpZ109OopB@HkNI8*Sbc#m^tIH=0oG3la@ zhkGoqiY*T>ZJ8Quk5vl0sa^u!nc~GN^E_O7X7z0@TkHqR%qoWo<UN-={>P;^(<>p? zbGrG;?CE|zy5fNbg3SPrxDC%9b$>!V)rU=nE-?rc*k`<cKX<hjwDdRmv!HC%_`H$V zihRNK2OU0SQYKpS7=!r<%Vmd6G%MLR8p7YqSO4NYwHzzv&%iHemE0e|Q44cNtg<&y zS+xAKXb2|ue7t*rN5rfru7ASf7>dck%gHm_P-(vnI<II)=0hJI#388ybt-T!@3##S zuSPtxw5JW@W|ngFl)W(=oxEjIi)QM4oW>K!r4pm@O7%3P{d~Xf<pmG8+aUvGKtCoW zP&AwW;m3+@$|rpYT>?E%rBKkzzq2o6+7wFXFiv&`CBRS~x4s7OrPvmaTY%7R4eC6u zo@<)M$9*!Cc}Lg45R921dxP2)^onGq*@p}p(Q}lQu+kpKp64%}-<%<vC|rvM@$rJ& zocA5zYR5AWs@&$~Y;B(7o&u%&&j)c)uekkZ|Duvu;ouwi)&ni7jn1Gf&7k6+-O!B1 zin;&P+|2p;rQ93iCd=r{`SlA5R1sydYuDHapod(sfyZHY!SH(&2+;$M7B?HFRuJk= zfQE;-B0(P<EQ`g{=%kmuO+t!(xtTeE>UXG7T`iP?!~5i!5*+Kox<C8h_Osnycu+m6 z<tsmxWxz@D(A|}9^>is1I^PPm@YO^_kEP^exE4vD8G^O~(zd2vsYEFJ_)$osZ79|1 zOUG~}&k%uvi1~V8;HTUEPrL4Wn-bt-><)(YJD2q@=Exm$RKGF4ZWdH?zm7j7tg+Db zK#O<|{ei;Ro5&Ljiq2p@bLL1H6gbK^hAHmE7%Awv%b{&e_~eBFq!p763EA<)-3!sV zo6+e}3BDSzXm@XvmeNYu4MJqVPB!6iO!Ft5C+anL&pI}vCRBOR@#BHCoDu<c&ta0+ z4~?a}xR-|}s0|gV^3GK4O&AxI#M776uasW$*aU=+{pqES$n-k93<#`7+4p>iuN9rw zJrcflolXQ6q640Fy<?}R8^^R~{R~L7hZ!9t6)zuOmDyfgg!fCCP}MzDk5i=qJ`H<9 zd^}3JCLtsu`p@r2S%Jr=3>Hrt#Hh|l@n$gH|6?fsy~Wj}BR(6&JE@pgQQbHe5^?tx z#L3L*Qf`eTV)OE)Te5AUrw?o7<mPT{!_l<k6C$5<P{*W_h`!CEWq=+(e1dmQ+)<-` zghxPAZ=eXsn6bTE(tHF(XveHSj5chY<_0aSW8V<|kDG=)HtO_uJTyOv#8Hbu?a{Y4 z{~q{!lKjb?8y(np`cC4{(8KePQ$vbCSDerE*y1!%f!x&|Q@+r2!HmJ-t`gn1dF>;# zy(w45sPn>E=3-~WCD?zr;<AXBms}vuU?YmTvgS3ckkSKVof><4b_|E-Uz7w!cD-n6 z={AGc_6SgF+Ex1b8p9cQVKsO2>VniQ=tu}&#Q^7h=&yJb^!2+vbA{amqW<e9YQ*pD z?R9nLM&@p*5(*oU-ZZ;JffRR!?^(|hOIDg@FwXsfV02%)@n;4Vq5e#4aXFlMQO>89 zhOdX(%qrd=5itBbHz?yh-$pf2UdqD8w|?ulNrEzo?r1PBB`6RG|INF-b0Fw?exu2+ zH6ZcZ4D<8NJD_7G%f}d}5Ua)mUQoJhr4sP{2%0>ma#P!-xT?G^+St&IdNmVzsKqv2 z_xg{Cp$ZSMM?4UjnICtgf^c7h9)sdm+uDAte#S7bnD<BCNx^?GJjnhB%p0BaJul8| zH^>#ogJQD>g2ACssI@eLJ0DHWc_$nV$8*f?;KShR>Z&Ei4v1bm-^9YrjVLm5{y&Ee zC7wbj2N(was|@4g%L&%88+}8T6IOc1#+-Ww^6WM-H7Mbcz6KSM&_8^9|JiFbH9|Rg zc_{7;;eUQ-@4gpKiL!1ZB5z?mh!^pw$~UkLqhX;3L?C_lhrI{;YeajrIr;T(47}NY z)@my>*@4G@^*HD=wnf_2L<Nicjxp2MEJ>uMjbj%B8D15=K6CR?fj`A?s#sJ*F1UaS zvWdXYirQ+r(({oaNd?3H0TxW@+ET;U+{@k3@^6NN{H^e%xrQgbRbMT|Z1{@iL+?k8 z;fX|dZSbk5`@il-Hw3hFyzT*DRCVuM+BQ&-u+lvMo+@Eek@TW>6+NalDw7`LOB0us z=sQ4_@d*rDn_&ol|0mh_1eDLQjp+w#k4lC@&t9bj{a23hq6B`6xwXAtQQ|LlbBJZ{ z6@m?%{<=@#cMm|4FmPGtdt}ProRhcshm3NIj7om8!XPHxIXB?pJ68doBy5Js!WB@u z6;=GNXTCkIK4Rt;^^mBB)`L;_QpMfNm6l8H1`TzVVZ@iPx)7BM7)J|x`^4RZY<!(k zxs7Xu)ok2EEW@7XkFH=7_G`(J-4ZQAISY494-<k&>DAT%GT2inL&)_|4}xC=B~(}w zjO?O@@8zWiXuadfb*1gn>fXwtP#YLxQ*=R_ZZN!Hkd;m=Yvc{`{F<CRtr{i$;=1T| zA+Qe5+A_jf%yna_4i$6$SvLkCNLB*3byr$NK>YhvsIhWQGhc-&WwPfJ&K6FVGh`lL z!>?hzfld8=ea}$wX3MIsH!Rr;evR>;7&2c0L!oWxD8+?*4SCa0f<ZC=o#vo%B@gLy z)q+O*a3HedQ|~D}%7#{X$n`)wT9X;82qd8NBu;#Z*pK@De(EWuKG`3e!qWb)_e;$W zLbR{`O7Qo$+0(Og{rvkIsgZjzrHLgkeO}BX)SG;Uxd`Hv_XkYZEYgahv}%Tju>2@K z#85}*V~>JK4xh(u_#TS%x@UX1N399;D?w;2EiK~W%@oBSDmIs{kHp1SPzVf3e0+Q* z3K~U$3@gpxC>2+FG-UMI;}w-I_Q2u1L4=k;)VIgL@SPnA-Z8!izbVw9M<rXGg9q;4 zM;}qT5A1aH>KH}v8SwI9R}vG}dlYWwWQX5QK=1Bksh{uC2#ipa&N-Lra}~}bH@bBz zdg^ZJgMwP%m*y9&{<F^OFQj5NgOMnNb#-;KlU^(zwWxr1(!tb_Cm8b9-yPPs6?9&; z`Ww2@Hmt?FzD#_};x3o5Z#V?gpc%aGWo0;cV@y!<DnLaBSiWpFU2Jb!+MSn31nP-| z&RrK=A!Ye{cAN<I=yq#1jd4-V1a14l6C!R?q~UCm#sOhb7|I!jK5h67E%7$H*SxEn zT%Kj`1>K*RZD~@6OV>DrA8fO$4dIV)L)u{-5gx=uXOc$nVU5}U*BTH<Bjy2}b3qLk z0h107jEaC&Sm!2Eww!^ktBg<JmYxAg!Vq8alx_|L{YaYSYPe(6cNIZ`Ws}zWXbhQ_ zYFnQ<i%x;{d=+P)<Qc>vZ!g!YMDd!tB9)Xj^Bap1`O-*@#M*-*CY|<wt3PiE;!p>h zfA67!+7^KOrZIZl?C5{J8IbSXC&t*K6)J_r+VG5T=eGB%RhACTxT=N2(_UF+jPCg# zpR=Du%AUVJzk_UQxO+pf9-QL#*3PBD+t?j6!26yj`f=bbIxla;`+rk`fu7<$jCrFG zar&2c=m-S1xVUuh<|aw`dSkq^ii-ck`M~-1bVc8Z3Vl!Akyz#b06eBP`*u}W=DMm7 z-jxEUGlTDJ#r$UA!d;sY&wp55-yJpmN=E`}$=vE{lkz`DjmZt9%u2@-U|bquf=)z9 zNg1vENxPk86IH%%kmM$Yc{!KPb4fp5{XHv@h3QzkJ>iVYAh>yX$EwVDP=IDDX+_|P zbEMynpYK@#@WL7nc?_%QJMTe!ZyC;PV?yZp_o~_ccx1S*@XzwQ9C*4b(fd7S|I)in zr02N}F|m5{)$%~O9cgc~(n_j%AAa@;s!OBAm!RY6HW-uN7}cw=x#bys2SW3=h~Er( z4U+-ilt8e~hG%3wL?aK}W+X^yC+azuaaXj9>|WI>^&0v(To_ro=!8+xr&j3GD~!a? zyh8ma`CjXl4g}NL5o*&v!WLANgxv<w!;k~AcnLr-O-Z^2x9=YOSHhkD!*B(n8Q(Wm zk@;~!MRWZNuiaY!e!c_yxPqyZUQxy?hmjeFnwFf9My-9GsGNUTaTsXrmuJ8tm*QGN z70JI8{(!`0;gv%)$3Zs7JKEW+M1h}P3iaaY>ctAvT)LY};}_0mu+rX=kKee+V;Mvk z<zl=2h1sp7dSzoKkFD%O+0D*bkiGU0df7)Hg7%o<*!om@?WW#uqow^M8zno!+Zu!R zv;%iuHym-73hgaEM>VCS18B!Qd_7}Z_}(q@Yd(vdFSDYvuh~SLw6p{naQ~Meg&m1S z_zk(OG=>h)2a}_Kgr2TR5n5VW6uK!wOK;kPM83MYz5Nd!ehgFKE{6feHh-7=%e?Gz z<e}&UVU_A@pb7_ZDd523qQuzPm^&&Z>${UM^S?2aM#MLu=41;hDcCz-@fs(HT*}F@ zs500{tpKsEJziG~AiGG~5$h1j)76$3RBphXuJIpD+9UhG?0z(<f@++9+GcoUZar6l zU=9y!_`|pH4^p&Oh~&+OxkRgX$F!{bi%{KRHH{Uo+{}{Wzfo>oJrl*zUjK$s;F(A6 zH$@%ywr_ESwT;RQ!?X(n9>#Es+Zb>piV{|@Ur(zs_DGoI<Zeo}KQ7C!SN|);G0<64 z4<M4AjR%j=1dL>Gs=f2@S={YAXQ6WkivhR2nohi)@H?PuNrt87lIX!1!A;^)1KE&k zefPc7n8wEi<_sQRcXz06>(S9Vo>WZk2=FA@qcx^ZGC7#NEG_Z&BHYXjeQ`txc~Eox zI^ZIf2hGNG!)njhp}F`eB`~?lOzi`$9ba+&WI#Awo@YA8D;=?ja~vLX0%W50k9W^X zbYG<Qsr-Ha;e4l%(=%6G!q^F4Y0V*{@zT$6W6aL$`1o|=pk)0S<nXeCis2ELA@Xtc z+1$|!Fm!(XE9|~uJr?%V4$~fJ9izm9qtKPuoq0#!FPcom$^y+BkC`1l{5_xY=Ai{6 zM<VXNfmjJbok1wU^0G4<n^)GgU4x~DaBR=(`1EvZt}GkXCqCfr?jDkxOLxqGKd?=2 zD)qAXgWF0kbAs&G0R{+uq>4&ofOixPHUcH;b)uRSmx83PhXy>5%j<MR46>br=eVf+ zy+;b#6X|E>kCb@0(m|51UG0i(_EDOD!FwPgBs}}0-+@J>qjT=;7JvudMl}tLw?kbT zJ)n|fW8)qk;P_e37l%N_9%oVJL`g>gS`9wVm#K)3zaJn?UlL2QF6|_4kdP@nT>L2f zK?9<uBVBX%hb}}Az<@{^iY9Y({Zh<zrCa53EunL*OLp$>i?kz=xi!lOksKn}wbX_R zcpLbi4R*;dq;T>K4dYW>_DrbK$)*aXp<N~C&o8vM${4-N5%n3^7kj;GhQ1E(6T6Bc zc=miF+Su+a^2Mj0;cGAvovwEs3?A?&Z|xb3+cn<(vxavpAjU0*%a6v$9!`SCnojT1 z38TL>u<Vy{B>iN0_mf5akJVr*t*y~VPZ6@6W=(y4m62Y}k;v%igUqOCr0}$<h)mIG z5~nUH=cF2W8;OjA96DnNCaLP>!}Y+i3`0Hewp}slr(!K!G#Uh34H~-%Dti(PDx>V! zW(93_@xjM<-d5Xost#n*Q0CtnnvppYyj3jDX9aMII_{^)uDC~cs%M$8Nn+pFuif7p z5TBVa?LyKu#6cPvkRW@>>!ixGHVRp<q@Fi41IJ6>v%KvvI@w;Ufp8vP#eJGAm*=K> z^{40eY5QmvV7jlCNaOrgFzW@{D^8&c?XJZdu}iLw8{^g;cJOCyw%^%V?D?Pwo#11I z)>~5;X3liBZWUM2!;2!NVTD9jGDLH-_wnY7c0PeSXC6si8Oibi<+5a6iMX2+QLUaC zv%0|hsp&6AV7=w<B7X!3Apv;^XDcl6E2`2`egi{W7whEIYahLP8BsB@#icd7%IY_| z-h(ekOJuKJ$s)fcR5mndNaQnrDO^69I=cQ>lY>p~FUtqs#4u@e$GctkBYHXVc=1P& z?Rimb@sHAsSmoIG_zZ3KSQUkSs6cWwZgxvY!}!`MZ_j38fP~6ymz%}!-=jiLA7*L6 z=E4M+Wb(}(UyAbM(*ip=R{|Nlu#5nmm^!t8o|In|ZD6lG*d<a=4^q8i5flQGaVX6V za(w-~Xfp)4&wql<e0=r`N0`^zfaw!WK2hN_{S~Adt=ZJq?wKX8yvkcqOTm-CCj$Gt zv&%FmW{}(uc%arB`mpyaf*rW}yO$Es^MA)JD=T?&cCDw^6?<LS44-t=#4qEg8|KCw zO(|{iaT4x5;B~CO2b}*{buxs8xHT&J_h`LGPx-V)d26y3=vKvcyX-LmD+GD<<;PTR ztbbBE`PlTzOYR-IpfK!D$}gq8dAfJ`k;{L}SMenO@Hvp>6c&lhNj)^_F7Xc&^j(YH z>17;!v>#g?;X_^kcL%^*C7PwzPGdW{%(8bsIyU%_4>EJnydw!;3&HxvSu)xIB`p&r z!grDSery&N9_x*DI3w#JxRDsv*?+L<+Gl5=GGGRmWI|4@j~_>dr$7|Tw#<q197=4g zZDt9}t{u6lT_HN4i)0kTp*x$p7xnJ-u8>e#-L;4w7MDp2C>)g+wRJsLDp8o^{L~L5 zOZYxNNac-JFQ)gcA&<Q#D}!lRtI?DOm+%$GQAEH;f$UVxezvm_8~@&}F4@S)-Tq!A zk~gR&==k*5)7!fjBzk#d&9q|+{%F;tZ4}v8FIJC@EvxA+t}rMYbF<nVKQmWgF40+T zXu7<e$_K&y`0?GWNUm$XreiYAt8{WDZMMxp_PmXKcS^5WJ~JKA-{1AoQ38E!%*Qof z9QzRLS5n`iWJV_(gWIS0^Ow+buU7dj!TAk;aP37Fc9*@5{*@A=uL?^)%tkiC+7Sk; z$GY>+y+^ssFR`wk&VaSTOp};AA<?36M>N{y>P#Z}v-hfht}boI>K^;R@K0jGX=&D- zwo^XC4{c-?&y(Uq(bz|x+`fO|lJAbj*0>Gm#i1Y!acw&rRbRNLF)*uX%2kqQ&u=kj zR$ONCc#}bUUd4Xv^@BTvV=50X)8lYNV(p#`I53XF$F~C_i+LB@>W9tS5xJl(D1(As zQuCiTjHJf8_(|x~M6u?J>yzKC4Oqf)-heN9rDVXw`Vh&NkeIG(Ys>Ab(#lrMN~_j; zQ$@*=w0b(Feha{_lRX`2q&Ov?negw>t}v#{LQJQu;@!a*oePGi9>|%*5`i4QuYZ9f zhk?2I-Yy>H0&1dLTPMFS(W$Ag>N~uD`PdZ#u25;1FPJ`<IPm7Uh&6dGs)zllyn@jM zSQJ-WB0zGfNoC@d+`Ur#cE)EEBr1mA@F#PTyemjbzsdW66xFJS%7yr|(^D=bd`!aw z-nnX}cGPVaFC#b>I($6AqdK?kh?eD}OCjK6@>QT|M8PX``HFc3bq+!KihqM&EM#*p z5FH4F!>qsimVR^J`_>3o%L66ELNTAxI1hR(z#^^f$aYy#(HCaaA6?+00TORjTqS+m z=F3`pB6Dl{+?F$7f7pBju?A<W*Um-f`8AZ4?benoJ^nkpKO2&x$28ZwInGZa?%P8= zsdM@J-HF!=AlditC1e{l)-3T|WumCZo$-{kn;duvB?K=dkJB+d`c)Woe<G<mlUhu} zB;McFtPfoj<GluIc+g0m;-J|M$Y_`)lU&}C+nooza-oI$PGs#F48{;<myDeW0TEme zkNHSPxhY|h$RM5bJ=lXa^6-7W;?T&KH)UEs^FoF{EB<0GrVb0S{XROHn|?*MRb8ma zmLaFf)cqoOZ}xY6q;AY<7wa|I2w*PuM~YKf?zyarMa4Na7N`=^Io-oNeg)0PvAm>F zmCU8LV7_<MGMsf~#I0CZ2X1Wjv8&y-u`W&V`;j%zscz(Ir*{oKw;x~aUCbWy+8r?z zZP2M|ZXa7(lB97yx@wjQY@=6d_|73ngRAp)n>q|Uzcl+kADxr+&GVoW?i#2deu3i% zZK~~{zx2-1&fjCxmhQ1s4U=|I>R+jr*a2pm%<*0ahr_I;h-n`f7Y+N5Kd;TM|IEAJ zk2vz0x2b=eEiJ34DSy#cuEu23PpAV74zB=ShzPMy)g*VeZrOe;8#mH`%^nPEviXjN zU8rzRMEu)I@?{1e8Wx(C&>6_FxL_RwxJc9cA%(k7%T}HBC8WhSP^XW7v!&bjUR+t* zxRG+*n^d7k+q<Ivy`8G3n{~(^Wm8M&y`Q4Zm)|HiX-YGu_F>VBgwv3;rhlqQGX9SJ zM8!wh9EXG*<9UIh*`nH=F$Yh{Pg|N_JUhX|a~g{K-qfEHmJ>2GKY%vqCf~qLOeqv2 z)0!89=|mqJ3cQ<TT$>(U!AMF-94zqBne*%C>eq`M_xLc#trYy&9;jhD>kxXrq_5@q zDQ9UiR-Sb#MAmhLm=3vLf|GYr71vltJ7{tk#ldY0t7`Vf4R#6B*r|QNqtbol2O3(= zY*TjVMnu%by41YExoEWr4(_qT6K<QGYjPv`B^~5Qrpi7lAx9jq#}Z(4smvzS+{POQ z&L2H-5fy7NTsN?{wM~tS^Z75LuSoXw?}}y{m+W67M6=C9M_4j3aJn%)j1EEj{l7#m z{}kt>kL(sj!^N|O=o2JXfZJyqA)AvV2{I41UqTRhx9B%FeiG6P_AV}Ql<n}o){SR; z7W@YCcGQByzi8k@Pq3$N3BlW8ddolQ(r+!uO867xt!l?&MwTSj`r1iO)+y&VBgS16 zS(eO@n`mM_8ZW<MzQF#hz%Vk8RT^#s>^Q48->Gx+$5=&%7&&GIjtwBURv-RC&UHAC zvRXL+AghA8e`$}Z5y{BvGnJV3hOr=Fw#&aX`B66~R>Ll#Tv($qte^~F`b;JJGg{r} z*dCm=gdM>eb9{CWr;)LTvUUx8aw?m^8<j<kiinij%yedMT!q>viS84e-F3Lxi(TYn zxG`)a5^`16dZ)66{)V5P&ZDtocmN3B16?sQ2<YBOD-<hvFU|k<wmOZ%{g_QX(A(L5 zh}Z$6h_2HhA{;B8kmN5v$K&ZL_jG@BARiqx&9=<ZS7<j9GYfyy#P>&z*i9?G{<=4S zuRC#&@wV#nPWqbF-PHHB!Ey(UKumE^uXy20oj_u%bGF!u_qZ=DY4KHh1oSIT{E7FH zV6|>9#FKJusl&QLkl)9LhMs5B(0p=r^}HXU=3NP-%wD!PFf|p~^gx(Ot`g?DMvg3< zw5+0+Ve8Sj58YU*N@QQQ2D$A`B~u36wycl##ZZ1T?BBiN6xGS!>vkdAt;v$++xKq9 z$^36a#@Oj)XOtQ7l1IT%FngRTp<lC~xp>-fV#EI}aedTHr$%I(&3u<b)z7xqn0WIn z>7j$xSJ=f}0PXG@^+)yC6mE-5HpUN7EV&>)sphQ*eEI-5SL>lj#Sh><b0H(l+rLZ0 zEW*n|cr4iw=5s-bX&iWzAv?TK@%N<j^!Hp-1G8ncJWH^c6>Urzx0{&x{ejwDeR^d= zx~j+eJ7o?deqDCVP6!2%0hmo*fOY-DJlro-oy7G*edu9ngh}~)vqq`^VxA`;&+Dcb z5A`s?v534U^!rCy6n&~Wz$}aGx;>B90d)(4Z(BXoH6oKfr$39Hj~7z%FC$euJ%=F; z@II>>QHgjfo_@akaWH}2W5&S*hNzi)tI|W~OGY0Af}IYRRLHKNCPuN_`L<00nJlYn zzs!CvX|f(daZK-j%qi~@pz8y2IQM6x77#LXvK%``L~?xsuK~IO*`t<jKy+t$n(uWx z=2XPG<j-<{exFCp{^p_IsEI48Gs#d|?T8`e(=3C<6>P%>@78Z0QZRpf-Lpx|$*SIE z-VT##Md+-nO>>CO%{L+Pf+T_u$@kovQd>?TBo!-bHvId7`+kE)d&bVmK2?95hpKHv z^S#{NQF<2|c1w^+^A$Nt0GkxihI$*M7G0y^YX3d=nR6g{Ul#g!e7`pv`nVt4;?=Im zL>N+_)p4BFm&NJQgK&zIyS!Fmu-#h{nG+L}<Eoan4z^C#Z@Zrb!Fw3YR+Qgtpo{fA zYHb%C#h2E(QLd5Ei$7Clh#-!4=SqD4cXQ`#|GrHM4KTj=lkDq5TvfBRnj{_#ljVp& zvUqu)JxuMmcjvg;V;EP$^UIGu@nnj+XnQ^vqp2Ie(1YSS_ID!!MI4f!KDk^D>9=LI zz=A@g$1~#xzKg&D5wMGJ><+nUVFOZ&nP|C>V~<qUYKt0cWy;or-~+$jcd@X?Dvd^W zI-cOVYpWQv-h3w)A>`ut18p(>n#TK$==KT~oS`ON^CNh({EE{Dh%WiIQdP<;ZctiI z=zc=fB%6{2^fYqdvqIBZ((&hk1`HZ2wOr*^^w0OwGZgm}8g9sJ91dY$*}v6R=qN9S zcpiQ~&!AEJ9L+*bB46Mo;qRk<)xQB_Yo{WCk7(*Rk^y6Nxwr^KOR3wZBwGoj)6ePe z3y&MZP9-|ITQ^dtR){M@Jw1I+Nz=Kx`Nos6pn$HJ`>Pf@NhSJs+{<98r-Xw~{cA|s z7AaJUed=D>G2Ux;!L{ebmMjp7K#bVEw@VgCZR<YRm2@DO5+Mp=QGGhG#Tknr6#p9T z1q)}Z`1l+>4D06Bw+VE><hK&cu1bdAunha}#(vcSJ&=9S$_1Pj=6>M@((uIkzT=)~ zqC%TYA0DMSxZKT6;e_9ANf<aKt3f<iwlDz?x!mhiCOAO~kRBMlamil|+$_-o^+M_4 z!h+kh#U~MEr}G;Vn&p)pj$7Z+{anU?!bj3KiImU6Qa`#%`jOEXm;AdRtT{-j*>l}W zW&i{8pSt%*X}(MG6Zo)f_A<w7QCAJECy_2P*=6-HufIW$4sIiO87to0$scdpE^6&8 z@K!(HZSlE9{65>e4jRB)F@ogtjOKE5s2Za(eD(KZji%9W-N=B(c;(*lzNB%efcP#0 z90JfqrwLjIQ^RWN@4AFiGG6gr4bSl?lAp1ken{L(abm(EMl&H9*V1VD9!GF*@f1=l z(7-Mzc=(5@W-QLuRFF?YFmqBBDrZN^p_Vi4NGoaRtTpXWZqhWA%B9a-{9~Fm226tf zwbjDbw)6g8k|x`@w7gshwZWs0OK#b;m=|Jo+}heYbyhy#wc-0eFV7>YMPY(V&oKw# z-Lw6uO@|TG#Xjm{@|8ZX>6W`&`W>hrBwNC*F;s13rgwAvtk}-;HBKx(vD8uctoFPN z0Ix`7;iz$XFrxx^&tKtx;!Kh|0t+>E?Wk$1qR;@%NL!m_NIx}cKh-*)h-wZkSZ@S= z;-T07sub5%CCvD<fM;{V4FKqkL>5Zlsyo*p2}+Kyd&lU_RQ9`Xi*?RJefoafZd;eN zDdb*0-1r&}ekR||i0SM-7_Y`B_70NyDvfPf{@%sK_2Rk$91VOdSQm@-Ih1VMRYsik zCaK`0zFhuD=2KLimH1_iR|OfPZFB&uS0BzXNc{DaTFZ=hGU&8q{=3sAYd@poL1$y_ zFcnpXlVO@>iFI~j@#w?!x-Hv*Zy-gY#I=Y2>yebZ`Q@B+Ky%UMGu?ltn;%b+nR<;* zuigmK^Dyy;w0JrOvML6(t%6FtmQS<ZoyZWM_#lM%AG~>K7qVg_gtbogI?*i3L@uif zokrq9wN;Yv9Nj)pxgWz8oxjZ-lzZOSv9=9X#qOnkR10`pjcPIjZ&^uRx@ubk6dL0u z53(3_{yHCha?7_wj7W$!h&J7&NuiQ0TWgo_>sd6e)pELQ)I*A8Ba0{yz{bYLk5piT zR>iSNSo-__R~he&ghWg_^tuaM%JR8vcl?T^2stP|KdP;-AF~nMyeKMJl!VZmZf|!E z9X1nW&A=t3kh@wB158kJvoBAgVCFdsZvIPOpMj91Ial+gX0wachD76-U-e`F_jmD} zRfF=}?Bc`%|GvO@mi4>l4qdjs^>=~XYBB4y+M%Z^w}CRvtGpjSW~Vf%-$@_F*hTf- zJlYRN$5Xkm<g!3rG8LDs<1;(-6Y9|bp-r`;X!AV7yXK0gO5c{m>GkkAYUf6Z-|t>7 zR(X*%r0+coFjI8t4K1Fkf^$xMwUu+Q9OoV>IxFNzBV0~Ck$?Mh6!$yt#I}EX+K26C z;_>vT%1_nwlb@7hYfLMY-=})nO{?LNXGfqybBSB?Gnbl&!4Z>!)`N#pawW?t&ag=U zT%6dF*JlgB5pQY_tQk1gCt^F1OABV0O%h~ukq?vVnEPPhEs2lCRa)*cd338a_O%Wb zo*E1cjV*(%Q_Ds_*6U$=f6ZYUPsI7tY$csr-2&-M9oF~X-i&OzxSFOtKFRq0F~fk= zczM~R@s8rO9Tt$&e88qRCrVXXHpS;j4}re|Bj%q3P|GzKppo#tmCh0NaCF|@*j~w} zbgvO(SNlivhLa>ts{P~BJ!$fC0|g+5ADQe~&_@~z&6xYCET@9)HmGc7alZ-FO3V{H zQu+Qe`P<m)Iw7e!i*CaRMRb<9WF?XeO+e&Dntwg@+`Fu#45>5?<ggq-fJBA@vo<OY zreNVeOiMIsu=HI;h&rLo=sqysw0~ymRdQy<SVFI0VSR(2m8)uh-ke2HzTkmPaQFI2 zozr-zz0J?ZPrdLoRht-Q^J;Mq8m6xgYgk%L(j_TYlJvZ+3r5cM4Gjksu5enirfHjN zL}`WF6zmps)$J?kEPrM_aV||JWW6Y<v1tk{IWO$>!aZ12>tyBl7|Eh%)>CWqR6llc z?)7Qu=;l603PQ77GFI8%G}hn$a#efxHu>Gx=A1Y0-|KlP>Y?;SYg8#xHf?`!6(~GS z^0eB4xCNa~Gt`{42o%v8a9?dxVK3LF>q4MSK@@<>!mm`VW(jxZ3Fj>rJi=%uDkqan zv6EskBGN~Sc_|%atV={LCEP3eZxn;x^xE6#9>#Wt62~{<RtV0jC+}qHo;#NITH<_B zeS98_q5bjY-|J=8dWHJv^vf9?mLj)5CVQIVzj^gi8#4Z|lbS8XO$9391MR@WwA3Hp z3+0cu1|k9<N#DKOru&krtd)BpwN!8Y&j7wWFHei63(YNwa)^A!SqAd?Ay3kOu-h&E z?9i5FP-wu0_l<qBeUcxAJ)>cyq78oXw~?B^4doi+jc<IqpB}f;+fypQCnSe|3SV>O ztam#2_ttTZZ{%!S5u}=1zxr2b<Kq)o7pK*{nl~FYXz`P&ut2-ciL_RgT1O)$CFea6 zZ+Ej=<|~`Du?|$1XK@<3JoXG7kLqo+W6ht}5k1&EmAGB?-3uZPWZr)`o_~!;D>huS z)Ef(SjYV2mB>5f?AI|I<dW5+TABJu)u^4cl5Xfbe(EK3K$b7ocrwp9z=l@c6&4Uim zFk(C`4BF0^D&Bz<6qQkE7XBqW^H@z%tstpvd4;)B&Q)Gtr$d2RaI@=Czu2esVtMt^ z{vDII_4IFL3xyUx3MVmZ7l~6ITBdQFoar1qv=$EBz}f1j1DqYf0~su-P?_fj_;}y0 zw2ZS$eiHmzdW^;{jJ|)>v(hN^V{+!>fdVbinB?6%a=H!pUvo~cYD}P>NXuE-q|oWQ zEweM(yACO)t*xiJclK1j7~8E+i?;QQt3r}y`j|N68U^H4ODTjN-)czmVfph;Fd-Te zll}<mUku%?2&zoykxzY=-=Y50LRcmu!X|)%wBoT#HTEW)C{gPVFRfRa?RJ26!+go~ z3F_PbeiT~I+z;zdbEEYw8jrSk;Qc(P6evkc^{JJzZUQHnWKePN{a3c;&l!2Y0mW0s z&(PqEv20GV`9k?RlP~}L**%=)(i~85X7b(}@az8+hoi^?twd{tFKV>kc9_BpmTpJ~ z+OMv|?Gu1_=LPY4k&k=#_o&-HKzCuU<Fv7E691}w&<fX1Q8QhXmZ6($7XmVryDP+; zp<9^4k}9sYQIpoK8#!CNkz3H_Bufx5{rQ}N<p>6=LBP^2&#b9NKc{uSjdVBJAr*F} zTVks4^D8=pchv*Ju(1WH&AC0EMbPyJw7O2LewrA3z<oum&a%!~=1>ajjU(q2s&0*X zR#fZwq~pE4a?dxRudjiZ!@z#M&$?L+-GjDSH5DWDnL&)H8z1(CiCyYo=dtE|_}U?Q zxR{O~zmZ>aGya`E`L_4Whg^Aq^1#TWlgCLFdv9#VmO3Niu2l_PM535CoMl)@Fq4%H zqrt66IHXHrjUpWPK4nKjsRa7?#)j=16JCga*C*&r!9ik5W|QQx77ZGR4?{1MjWZ|y z-_C|Z3JSK*Kd{j>%(^QrxQj(IzqiEXSGxL<D|9(T0C10#NuR5DEEsmh=FZ`pcMqyS zP%ee^j;yZ3MLKO6Ee?9Y!(W%boQN-!fs3AUQjW-b!W7}dZq?qWIdRiM3pd3vnYCQs zUcV*tPYbFW?eW&Yl#N%zmdZBxG>%8FJ)}uv)cf<MupgolD@IE306h2?z8J4Jg)e8H znL+{fz+4W)ehNM+dv^U-6?kdh1g?`fN%E;yyuO!X<uNp)TCPcs*g9u_oW+Bh7`P7z z%bdA?FCArEp}MZp6e&t$BE4Dtgp)SSd@|1+{>7yj29Bnxe9~OqIL@qd&0~FEO#a!m z;m8fU@r!)_5F-=gg4JgdxtYRPK{zlmC(K{nYOuLV&Fj~SAztTqQ;J}(vn9+-wXd!G zjzyQ!gXJ7wt{9p4B)63|yOgOE9`c8^CI$UigS&1z>;$QW=(RFN?MLi|<PbBfr=p*~ z`-F>^A7xwzh}PG4Hl~M$SerM}quiDyXo9GN*;GSEsyJZ1G7w%dZ&cfq5T?Ms)Bjbf zl4tk!)AT`Mll>&Jw~tt0RZ`AsQ?5^URnv`BG~KuRdLC#EnO9WgEVn&(S^whzSw;sA zuj$Bzw?w**7fry0f8sLV?Dx*UGOioI7ZUe2tO%&X{IK%Y5u?Pdvy>S#VDdU(FBxo= zInXU0EgSPhxM9;YZEZ267L4Y?oj*SDak(&iea`FK_G#BUJbn|m&uuGZ#@|n{qTugl zAs=kg3R2j{g(|Sb3|}Zo^Dp^c002zNuJbGa&Xdr$`-h}hhex<%Bsu}0^3M=Wc>J7K zP1*^htDdgnFHPS1C8xu&(de7;EOr2c#&=iE{=w$*wwv$2X@;iwA$})ft}~hLQ(lRm zm)+o%jt|$<XPGZP=k<N^dvseqsg<O#M#H0c2HC?v%jHLQXsexg4x|@-xzFYt-tdT7 z4BX<04;}=)bj(Y8Hu>!xqtL;To5sM>yQc4it|G)5>Zj{RUvbn<2F(XGTpL4w^43z5 z&&wY%dQ(ujjQFS3*OV$kkysS(aj03IzDq{^iNhvqutqfX&gD)$;AF5&*|Z>ZO_}}- zI1zurCAHL&)BZ#0!JVhq;@A;CTh2SNm~pNQIdV8j3km)1a*km@^>fm|acBx|-8ex0 z{P(DzEa2^5h_;oUdO_ApjMMO0%}i0_`yYBluZHGlUV63A8Rt7ZY0i%y>+ghz7cs8s z1a4z4+#jf0PiryI(cSyzLNJYJlEcWwpGa+IA9=^a2Yuv8wU;;B;iZpt!-B+}0x6~8 zkq-mik7Ph{Kn`JjR8ikaWd{_nQ3$%+>G!>Fh`pPZ1<Xg%9^7uiM4>>6k1ECJ3I?Md zv6veZ1aty3dNt86Jtw2+zEs1#_GT16G$3T<5A{eBRKxAR<_Rj<1ZB=#@$_^Kb4?rR z>U;gt$hk~A0bLbG?FNOW)E)X*6EF_ONtkev{kGZN<$s}60IVD5-FF$)Lu_r0#28rJ zJUYc)H+C%ld3x6J(SHf^wNa_rZ#y--AF9-E9>$8_!}bqO9>*$rVRe=EsdM{j9dd8M zN?Dx1V}F7rP4xj?|K!j{9!I2u^X2if-a4IBhh+cGG~s}p7&-;AwU2hO%uC}4t!o{t z?3<xowg-TN<>1fJ^Ld}y1<jNj3?fEaY0sBQZgMS6wcI;5x`zDO*e+Vbjg+sAKcutm zg*wQZN}vJQcQQy%CKg=tKDErD#SO&?T+~L1$~&s5<2h*=3>{mi9mpo!y?ZTz1Du&? z{YDIphbQz^Bf}4;j#NnG-o6YU<)ROZh{`C+>j>Rp;Cj&*<>wpx&i=<+x8?q}()9rf zol@2}S*3n|kB(3)1Y2@+6ZLmtBQf3285Btp?OQk#wR?30fuHOj@9O|bqL}83^%xHB z*4{@<l~p#Qh`a#kyxA8Wqa^PIq2GJz&AEy+GpP1HDcb%$RgtnUk}+QFp#06VeU8jX z#%(7n<$Yl^BS$=b3a9H)M?6Mri&_?4kkJ;*6q5F@&Jy{oTgChn!7P1~yCu`4ZPEAo zS+Jm&>oG~NJGF38?L1gXVcLO#O0z{Z?R77f8iF;+_x(M|5b6|^1`T65L##NcvT5VS z(LH|cn#VPZ#=)F%J|HC7GdC$@CL@stCu}&XSL_cqy9NLa08mqu|KLmY&S%qOTv1U- zavu+S-1TgxywQI``nS57TTQMi{Z*3MLwqK_7%RG0>e%nt)G1Vv8CK8Ii|TYXPj^*J z%B*~sWc>L{sMSEJ0?<Tt`RLBtUuc|EDEdVeH_52M`ohL>Q?`MrA<8d7i3r_YU1&>d z67!;1ZDP6Hs<!3nzJ$`bTCB;UDVn8>uUDen*+Lzjmy*9MYr)o|NMQ;7`pvxeVJnaA zp=8$nr!Qzv36sqT8YTI1T;q~^sw3uvh%Iq;XIOvKUY+%LT&)$Cc)}$8uH?SR;YwWv z%=cptJfks|vn;sO4%@5a8Evj>u#i&^l~cAb;G1cK2LUW%7<n8>bI2^yGB?Z#aYVIj z6@r(~hK2y20R~H~H|Yl8v|4alO>6C(szJ1qZ28NI<f=?A>w%7E)u3F-6*u<(<}h?e z*>~~XzxLK78u_u)Pg1yRDj#E_n)d!ydFA6IB{TnQmz`u9(g@_ryEeE}CTK~CaC}|# zJ3FG-_0tCJux73|D@#Dy-LZ?_7d&61RCKJ>tO_asRlDtM2YCNm&~}ZcTQ)AsiNP+= zz!2Ka)8K(Jx0-W5hlK@Wg~?(^MrveeV*)4^0!HNGtM=Gsn6t23BHl1JBI^`ufJ`(U zx!5Jj^RCq(Gry_{{bd$QHy-pX3wzgq-1P}+G?)1kL#!|i{@kBX1%9bih(_(@hLZ%q z>u6}J-JsVg8k4w(t)}B=TajU<l+=3_@pNrGV!wG74pJr?;%kL?dBl`Ub<|5bvN2Du zn(yl{p=_<pan!jdfXi6Lzmlsh^s5Jq2KzU)2IkSv$mXk&bnkO2y?VxZ377Y(&K_q- zWQ;#&wtf{{Jwn~b<#(>+e}h}TCg<dptx&DCx@vrLmHjrEoJ-5{iSLfDmPAd!jEk5o z*>=^)=8ji81R?IK()-#W`xkee2F?GGbdJ%HHSHRXZQGdGwr$(CZQJIA6WdNE*2K1L z>-77bwfc9~>eTMqRX48Zc%C&IVE<{Qf9z7Z>3z`JGp9UHBom*HB++wFOPBt!E@raK z4lk>PPpr>^Rzof6?X3J$31jOIN<M$-5M;@q*swem_JuXXUe15@^xnNY%y6&_+op(y zopKj>XK9%XBv#Xoga3f2%2m1eg~F6x$|DCP>5`=p%5H4jWf>3Sz5^tx4aRsSIcT{q zYjI}U!tZEpH#((xYQWuQ_tEFyYLmYG*9=bsk_Hq30ReP~8>3lN1i_ub*R=27_(2BM z)!4ne>!Y0vSiF#r_UL}c<MX?vY{T@%hjp`o?j^Fad9|G_Nthuo!Q3J{oTolfC{ado zCAE`3>WC|PWgO^H<}941>%2$ivL!-alJiu00#CyyveVQ}%o5IkV0%<tKD2_BJWzjI z1#d={07w64h9vr3dHT*~JNG3wA_OwWJKvQEtr{Ms5(J^ei#sl9Tb9(P-nxQBW{Fv1 zd?s}bHr(>+=KB6|4#U4QcWiix%bOdebe5`MR<O~h1<4O|H?}rW>hdv{_bmdi{1i+s zuY46Wd>@8&FlDE|ZtMjtS+ZF05`aWsV_TDmUYg}^C?lN>^87BruQ+JpL?~hw?;b$l z=B=vZCjVnBCiu-(ScOB@0wDWRL1Dhpy>fGs5Ik&#c5Fkny8@LxRi70@<<J<n#>}nm zx7`L3NqSwEb07Cyps&;;e4sY`QPRx(i3DPh;%@mTjaLO?q`FoawfK(QAG!FA0LG(| zI#51hyMKN0!4Zc2InQP#(>eF=z&{Ko<4kG)T$=+p**je@Q8LFgu<#Z*=QCw+PfkwX zb#-;U)#3)KG!+_{zBJAt@r|~CIvViwS)&J_@FGcdT6`dfhC6^kgViNImyg;clMq<} zJFg!)jSaeKM4VjK{kKsxPdurr%nB3h81Te>JjI7`iKIt*OQYv8eI#|X)qvLMS*}Xy z*rOdMiuSrvH8lECFRp-q!4?E5@yR64_^h$joFOi^-+Z6kO#mQBt*r`9uAIjY1>dXy z&~#wo##Q-WEL7XSqg)9}o#B=Cf6gJyUGSRD-Md@?`a1i8j?!UuO||o6*aJYXog;j# zxCk%aOFT0@uZvzv>-gc#%bsndEvA(*Z^D*SQJIm6k4FGF(1y$ezvm>WxZK`p8T`*^ zI<C?;P7&0pCZlC#e@#*?oP}0aTAq(^HgHXg41U&-Q6?|3&Z`Q`6vv?~)O*GyFF6Sg zS9e%|-0f2`aHe_O_IrGzjGGX^(Q!bWnktm^Q`yt_Q!}xM`Tes@?d`o1aAg0?XW7e) z0yDeXh&<|kZ55eP=QC_^L9+)IKPduF*r2`^g<Wtqe#rk+G9XFfg26a6A8r)F{t?Tx znM0t&7u4O%PYu=&NV~eSo5|xDy#`nbD`kPV2!V3NWB0k%+)PiKK>IE}+<&G)(W6!y zd^quLJyRzGg9Kn=;C8s4=^vUL?V{CR&rK>31@hGE#clvU8mR_yv+kH9h`+@cd3_Bi zm%-)%WmCK@Q)TJvuiaimcbAQ3&IqA(WWLzE3B~E8IW0{CxWc6!57!@WM*)usYus+> z<@EadE(PDT8Tr1!&g?}SSEBCX-P0O8IeAmGOfeExKXHOFNa8w-c{5q^=D%lG+>v#g zT@24xS62;fY*Ln%)H>OZoboXP#V2CBf1SF*7&nROqs5Mz@ZU8gxIC?^{r6pK+P23> zjw!TZ&z<8J;guKh5E9ybkD}A+aX$5YB0BTkzVMl><#-#03UGainwUf$&mCYX$bheg zf4s|=Je}R{WAx7dEZ9*{^baFTwtAX6LjnEfQ_YJF3?+_PRxJ&nTi7Ohwq_84L8L_^ z#>p4gbPK48Bo7$DLC5cN=@u>U{72@pQ|Sk-X$gA0E79=U1BnOhqUGoy40_@vq>g55 zYwNu8_2P12*LGLY_f7-rE(=87PX;u>oLeBbd1C<zTJcEx*^A=NFswtp7Jv~-Cod1y zo?b0+Tdv7(Ax&dJ1beealLt*?l~4tK``@zct!4H3QBcJ|Qj~3VeyzF5P-Bn$*50Tg zOFk0DPg0TH6pKNb@<1@onb-&IjJ*S`Sf8IwIo_0OyB!j^FZP|q4G6U1`RG1T*clog zB`B?>u&fz#J`0Kdg$PnD(FP;?uVOTTv_xt*6~oZ!uYveijx0s2MDf2e=c^o3u`T<A zZ$p3q0+FMmQ(axF?ApnyHXR0w2{5&~##u<&rcYQ(65+flk|s|2o*4^%Hczq?$~|)| zbLwMUX`zqoF>eHrr`hu5_lOLkRu8UwVY`gi_n}!5U}Gn*OH+SclrXGlXhT9Qjv&_x z^#y2W<NYW%TVO^I-t+)DM)D&%qP~9t3tzTz8|N#r`__zIS{8Hh)NYwTY!ZAWOALno zwXJN~uc5}o*2b!h>`(q;&u<HZ%J?lt94BH|w{y~a(i7-%GQ(1k#`|<AHc?3dxTT;_ z*%lGjzrn!-p!PovWI@&%4EitE^ku~HT{l_IW-%fR<U>Rft?FXpfpjVnl?uGj&6#UG zv{ov9Km)zTGjI%kCV1VfI>++ec{^C<Y)ua9Cm{Tge7SCt*gn1jwGd)@CqY<$^aW;H zG5MbyUGnaMrd*+MF?f&Dcx`O>N3|@RysnEF9L(-~@Rt?yg)*K?*0Ah^8@*0!E4AsR zGtcvDmSKiu95toJ?jR#!m)btLWSI%^*DF^x&K(1iV5g1+Azym6y4NX3;9~hs&zo|a zPB#yk3ZoPYx_ZiK<YGxIIa0l!|1@474g4l}YPr<$JvW^S9hE?=8OjM`rg)Lz@<yY? zlEA8qU~0gw1*}06Tth}%H<7R%JJ7Hw+queKU<<<3=4A-<$gXM??DSR|*}1oB(=MR| zV+y4bwNkxqIBUR+dVe~}-6mY!T4w@ic?pLIHryY<DOR)D33o(r`k;u(X+qFv3i`rW zEbNOasns<E`W<;$JHYOzbf2oEtJucm@TG-JYDvts<PY#1)l6RA+8QmZDq_2z((Zk@ z5Mt4487ECSx@u0pG*X#YejPAwt^ns=IfDSnPjIMdJIhz$Q9|;{<k3NNYbsb)$faT$ zN3~hQAQ;Tp@Koxw6|lR(o*|G*0%xIZI-T@<t_!@&+4p?#Kf5Eo&h|a@-7lghkc4qX zYFf!b#m$3=9-flZ4!8!EY-uFuuj4?i)QFX&OB&Ar(-No*%IfXZQ|Xecv5A-m=h*kg z5q_K*>_*iI{6(gq_a-Hxv8Fhn0x;e+Ue7gpBU6LTrR0qzx-o+UVHguu;Izt)Iy?=# zonG?bwQMp}wwbwp^#4Yx7<n7Xn=GUlq%0S%KRf({`HdSbYgTrCYdY-8Hsjy$LNT4$ z<h}1S1sFZ|Ofj>##79}8ICeRjV+KwebAW;wu*T4SV)JY^Q)_ddr>7`(dgS_#e-o%7 zb=L4<O_+|HzeAME7yOq7zPhtoUg5Y*+W^|8lrxcoM4^pLR8GbW0|#eUF*LDXgzDRo z)j<gC+~67@Lx1UE<8bFw9?89?(WsLVyPT)6`CT2}4?=1zfDydA>ng?_mNbgqrlSDV z@8Qcd^$!M(<6V5haIkJC`P*{za=(UlA8@71_}&Hqn$e*~xec+ZDXonw#R`qXCdmAu zYug-9_*$I3KVR_^a4UX2jo|N(;C}^HB+p94!fi;=$5WBsa8%BZLPrWeiIl+7{{w03 z%7bV)H48q1h8*_CI`@%q<)l3iDVSu|>l;>oBIjpY=L{`a*Rr`%$cAEpD#Tx?ZOrSv zqWo91{Fs2ku}Q_~1AV{vddx5zFAMrzBmF>>6rcSvhGViy8jQ?eHfb)0OHFU)hvOjK z&D;&x+L~5|G3Io12VbMLfSgkapT(7~OW=mfuEXhN++%~Io@KH7&}K+7$tVm@E}s@2 z1v^IRD(X7vNS&UB6u)YWAq8KVZ%pEVAb|;J0>nUSu8Z2AhAdHOcJ@}=<9>wy@_O$h z7-o823IXK}%sAXWsDtdwH}Jo>@nJLLI%xSBCbsRBq$Q#<ad4p*zU@Ha$#L1WsEvFs zMmnHY*(juxR5aRi!L>Pz3?vMNX|2lPML)BMrqV=eg8wrOi{>e4u5RW9jIYU2j#2yW zrbB|ky@tQD?Y~30XdPkjdbO%G4oc-Lyd9HMJLt_SH#S#~rv)Al0HwT7u15KS@&fN* zkM0A+j{7MUQxws3azD5kf2N_hE-db1I#kAKN@GPEpy#U4@>apX(rEhC=!|aKIX9&P z<KV(Mzzb$)@S^Vq{?Qv;qKgMDOVl!Rx}5bXm-a#kLhCr0GRwOZja7J_)r~~X`}hF+ zB^iIWq>Yhku8G^SJp-u669JwWk!TWWw;dbzWV_Dh(5#jg%K1@STSa;hj+8Lu)nn7G zD^sn*%{oDY_Peqe5hF10c9H<IhD|Gdu6<X4NhNA&gpNho@N34Ud#i;!`Ab>KP^x^B zgT(WkA)DT~EYJU9Cc3Vp<wd1Qzx(^z<v~kjMUwdJ8KS)^L99)oZiQv0Zu!ogJ8%D! zYQHMdP?;7puhu{(fNk-+impcz1hV5IwDPW(|B8i>6><Wx4xe)}Pidv_(v-lqs*LGm z#q47-yb#+?!F5|Z=Cr_V=Yp|L$i@i;`nIHfp1UoES^RMegzn#62RwSaMFz*+blPi4 zvv<2@U!mU$jn`xa*yaKW=i;LesQ$y2!!D-(U7zvQqE=Zk6QSP^;lr827rGl4@k<ui zUE$x)gYTv*9wO5Vx9p%lN)JP`86o#cWa!ANj!X1uu^arT>wGy#*jE?I+7GaO?>U=J zFM5Z{EZaL4{8@^#CxC_u?_=p~Q*Xog`Z<oYjp~Bt_HJak6N;$Kg>NfdBb~+WbyTZ{ zCt2=$L$*Z8Ptg@6L4ROcIxR7~%)THt1Xhrg7Of;6W*$y^jUUwZ^QsrzRG;68K5U#b z9d`vi9KYVLh$qoUS>9Ln2S`O2Iz#R(GM7`bz0}{Oa4QDJsNDAadA1)C>l?#t4?G)H z&Y~AL7a2%}lb1rM%$%1C^$-Y)f4?F(Y=W!`>pAo`8@9RK!t=IlSk=T#OenDous^+R z;@E&)e?^l39ZP~D38J-r7uF&Mg%<V9XG=k1<Pyfi-kLRY$>$ips5Fn7r6(PQRSfmr z^oKVFM?WEJ!e#CW^#&fT0Y61S?3S#efWhpQ&R_6fEIBlbEi}`<or}xCpXCgq-kT}z zkDM=_2}Qm3DWT?wy!3-I?A842QhKdb_2sPT-i@sg?DyRGLqc|G$l(}Kp@!pzwwuw* zlYDAE$KuM%3YZu<L(9Qa#J0m<t;|>v=A!LtyZ)A2Sy8xKF8BhMFW?KIwur4t)-|`R z;lzP|+qB>xUb5jq6GKcatWin*O}%|K#+ZlTrnX`0(;zDQ*p{M-XOv)W5%i+<5976# z++D~9c@!P$28Ye_AS=pd1o?5SnpA8b>pU~giotoa8UHp}=d&Y6!N})GP+TWFq5O9X z0Yb&_I=HA!#Oeq*30Pt@rCh|-!8=;PYzd9b^ZZ}~*EJEj=P~EiOcUW?{rBKsqC|IB znUWJIm{0|hM2rNUS!eSFXgNFMPa9~CEnk`h{(JOh)+Ej?f@t6r<!ss%)2wEr;GuU) ziY7*If=~u)@XvqqZ<baGs>QzkNG~dDk_FK1&34dKaSQdSrpr?5Py>J@jFl{fNNK7E z*z-DlX-!ByTraS8M7y<cE<nTs0cP`I9*isWdMRn(JID1SpOf8kM9iz~CVvy}X%A|A ztu^{3?!CFqKdJEbID6L#U;uF!4WVKd9MA52$<y<HvoX^cQKQpV-g)vyIfC)=JHon< z@|sAQ$`@Q!<rR`I7W1t{-X!W+6_Q_#CjWu`@jmfGycH4nemQe>Ui1~FEA7GEV$6$u z9kc+r8ruY3=}H>tUKAB+h3@BWS7g?V#If+$@dvn;HJ|9B0zjDbE69YCP=mcO*gs8I z0<%;pROrHq#7Y=RrR|GSnd{Pu$6i!LvC*fYP~~!+PcU#(I(E4xR?3?hNGzd&xF*NW zQ(X<BR4gS(Xkw5FNPL*x2&C>?ar3vWhU>!6&-=|2;A+0SQ(%AfEUr*)G2H{+M@SsO zl6VP`O4nAr@>z1^k%fy=NiwiE%4d_Mqz;l1p!Z&Cn)wmJ+oW-6NSh3q7<V)q9bTHg zbRWZT4SmM^`EntM->e)6S>x`1_f0Dt*Z@=v{o5i;=ZzYV`d+8(qOrI6kb>j0@`Al8 zL_g@?q;iSjw6n>QrQf#HkcRTIK$PUv@@AXQB?jh`?&NA~ZyZGdTGAHwp=RY%b4y3e zvr%Ak4C#WzVpTAXvKwF{XRe*y-|zzcJ3nh}PTzxG2+!f4!x7s<nEX%BmCokaY4?y) zP<y0_XYDniXDN)PFR9PU1!mH8$(P>eQMpLRFh<M?Nwyc*jnV4}cAYfAKmZZN#&Zbq zlc?k0;zLv(N0cB7@A?T}z%zY*`zsho&Tn}r2a6Z{mxpo@G?CIlX6PWKthDH%fCkw7 z_;&)&;sxr^a&7D^lQ3bJMAvu2^J|M_5UZ;}dXA`0-8D+QJ;aM6pi~_QY^MG~Gp<%q z*?um8k!+w+Z3{9uBBKUk^PstQRkt{gR#f|5DZ#)EHK(}sS*={Z8Q^AhhW&?m5XKU@ zFbxc*Nw<+OiKM7C5@xqBca=DC9nig65bGMMNv=TXay?T(dT{>gnQF2@;{()m+xJ8{ zOeVUBs0lbESRkH9rd32~WnaKJu%6QkFbfLQXxoHN7$n=y3g@WU-8}1Xu*T#5K;Ws# zHm@U2_OSbnPGI=eF@nMOy4d$Ngz#|Ez&CNtHaZnsOes;~AbYw@)hsG;B4^^i8>QB- z6>{5Az`MfC1I_ib+-v*G1r$oKNwz%-E6N>AmyTFnUE1!6O0tfq<nS`<;qzSJo3i`< zW4qr{+2wBB!t+(8;CQ06Zh_D>30r*0{03~4T694?@q7~)aY|^^)dU#s)v39Z`X}ZV zU4~c*MR$=;L!zAu$s%o`*CBjNYWs1>;b@q_2O4GAmYJzl!|M1NV6}gi1G+re305+Z zsmdc((ol`OEU)6=QtMB;Y)<#TfuQnI34>F?2C4dyh%j2H>@ORJvQ_Fj+2TrtUbIMp zV65^!F@(gKM{C%ke%!5>>z9Ql(GymtLwr_31OyCOemYy&=M?=ID_tquZ$wrPJMA;& zC^>b!KKtDBuJ#9HN{&!5_^i7Wv_Gl4F-5P{r6`C&(5@xGME5iCf#!PLES919fsCzO z{I4+iL&_?$W-TCyq@>a<Z0+m;cVZ}}=a1nWkk5YIiCrY@g_|0%!>$>9jXvajrw{6F z9hqeg475RLr?Caztt<Ca_b$Nr!rs@n**n0LTJxFQo)jU6xTkOK+|K^1w(Z#$zn`6x z1418$zK^axlOj@cu|;wrt^&Y7hsn7)U^lfO{ySh!s+~#{(!C4D7Za;-r&;|MovV$f z6A8|dgBe9pMv_iI{2~7*IOBfy=c?~yaoU5ZLX(DdxI!iO`<mnaTqA%1WZIX%w3d3J zv4r*{^#MC&JToMO&)uWe$<wiaZ!WTvdOD3r_3tfw=Zgwj1zZZUxN;DNP-jqNBos|m z3@tHz!y%3kyaGjO>gQ(NCxpkQKk(9`Y`97NfJk$t*W=vi+tAL(tg8>c=z(ge_!s9L zf(3F!98|VNVtXMA@!v{FnDJ~V9W~L*<}xQZx=IJ=Bl3SLd963E+Nlb{k_V3HDHmc= z%;ZNxHYiv^?baAfR<Q5F)H^_?uF5qO&zbOq7sGpD>KOcNpc?I>>~kd)54+Ff!HalO zrQ18igN!7;XXf0l7E*N>@Axb~f2c9}xz0o^8Q&kgDfxm(k?oLM;U9vmty8C6lFTTY zj@Ksw?dufMPyT4H^TG(7dyr2ucPqe>fze)$d)f_odpnT<dn!3LoKCVoas-?yT5Q@s zDg?E933dX4bo}29h%OsfFLM{wiIaHnhj|1WIwx=69N%CH2Hw$-eXm}}57DyOzar&S z7Ovd2baW(uhW3cv)c!N8?rRueafWeCU&ncz%)V2H4a$_WXi!FxKwKD?u*7rCxB&OK zBek6;Z~gD=8wmic-TzHystiy<P>C)YGOQN{BwbEj$HnC5Xt3ba<5s#TzrzO>)y8eP z&3Ji@S-Fh?QI;I}tZ55bag*>NQo!mm6)0F$hxUYKgzvN<90<1^GaFN^GwE71sp~tZ z4R-(Z#~2JF{=6nMv7gQ@qNmKQl0gZpq_Y*gu8w-$4$L++wgy{MBZ;T%l3-Zd1qP!H zoXvg7PBEl6v^Ri5uPqm|!W{Ick54UH<UJWX+%LxT(1F9mg8rZ^pZ#)@5l)4&;f6jB zy08-)eZ>z%QQlX5ZFsDkqkyyV(F<*0@kzKY8TeKDq>Sy{p^M!bMgh?TUH`P@NK`o7 zXhMO<sC;TLc;gm{j|6+;#P{um_*7K(caR&;V7^6G7Ra6#I3KBLQ*zEUPLq-0L{-fS z|5z618W6Hj`*G9T!<QzNDiOdE{X&xB5sFS&W+vfk@Fhf~`D;LA3A?4jWO$!BJ&27A zPoE7*Wt4bgs(fFe;2XNqeeAaR@d@83Pgud$qHL->e*@=vfcVJ?pngHAxrHv{P{pR0 z*4Vs%1<g`ur5!;7aZ&|53|DN4Sh+ls-_X8^{0(5>)LRR|kaCFsZ4~u3ed4h9%yV-T z#^6sSx5c>W6W;fF4%knt41QPI^aF*qEU~GpuW0HRSTJfb{nXUX-QY$Q?GV<t_6n76 z6nD*=nYra%u~^K_4X_LAI9^vwL|5jjq>;Pn%`K82%n?KStZ=UGSU3a}goKb*R*F`H zch>%?iXH)Hx&t%tgyx$e!xBUUI4lq6D?L#+{##Y!u0x)lqFfwj;iajvWh&cm&jO|v z4h8lc5*H&f$J*fHZk~>ojejaSavmkOdL_5<SrC;w%{VcLpor~ggBEXy?;s<|9t)ol ziG~*Yh=eI}hHdnl?Z)HfUj0Z>rbTrl&P2S)|M74pzeADD7rBeD`=jz3CQvjUTtou5 zXYBVaB;!c3(p1sNQmO#?ppx@rF=hXy5t-6B1D3r&|NdHqR9WS^7Ze<oYo5kSR9*8g z`|^8i?22x)g-}jzusn|>RFxCan(_K<80GYN!2e~$Z2s)MY^4kqc;0i!#$IJU8Ym#( z6$5(DC2bpWruev@-5M@`p9>0*10qAky?rrk{sNjfqktxyUckG%eaC^9>wWO%bDNc* z%)oy;F^$0;4*%otzLH96)?@a-wT#3Q@E(0aPA1^o)V|W>`9e|C15Y9(t|7g0vWVgD z@=st?K>qU1rSEa0y6%~a^FLd``EK7t*Z-ZWvxh({T?c}C&Qkn<cxVn;LE!5!*>g7> z_{b|Ft;MaiwRLTE)!5B0ttAc~f(C-|5fao}Jth&ID^DKSczBKkl}|AfsceK)tC$X% zXLaWU5L3Ur(Klh`-aow!eCsx4&SSz!z>bUmb;1(LI^#a`ophu}zv<3U=QZ>K5TM!w zRakJ~mE^95a^pu#zE6JceoQ{d=0r6TREeauZQeup^W+CwY!1?0%lLjV+2AfSNcP$7 zW5~QFH6KA$9Te+-`~!(wzgv;4LPgyM=kZ@>$VIzp&jN>Z5@s9y7eXTFV^INQdpU#N zV3HRE>cp6t$`y0?<%yuYAcvJ9na{H0U}wjY!;e3LFfzb`p-j4q0)gR;Jw;}f1M%xD z^{#8y1j*5s3170_>tmDN%RuZP;mdj*ZqBcFa}To)7?%KFn<YIfN54&mcjfvx0yhyl z3cvrK@DudB)EDR{($_Tp$Hx=p#B9q|>JF*Y22*{rOI<1m@u@41uJ5N4J>R#QI-w^y z(U>hSP#jrG^3B^e;ogJ6E3HICgsK_%ASbU(g)i1E?<_#vl6u>q5h@BnGh#@h$O!Pg ze1Xn&)IZa{->Ul%`o8M>5peuI*75ov{A2)V$_KokEetFK@MljSaE-CNvyPCABhOiA zhIZFZ94+d9%tvkwM{aki^{1Y!MMSEj<ul~lX3r;JE-rAZ?W&tPTBgs}ad34us;jFT z8XKhp>V?xSOnY(%I!!MgvF*Da<WUh+aor1>%WAF57N9?Tc<}HEoB<j1r7DfJjSVrY zfh-qH&)qP@`i_P{UuI+00#fp0@04ZTjja=p?}MK)L$g3fCotM_Hz%arM@q2jx*A-? zL#$3cw$a>;85e&#uy)H(p>yf0Py6`1Gs6bUOS@7@(A{%|QjH9Hu{F+Xc|Rn)$*Cq- z>f2@h#W{(IZFV6@=WY9)3sYMjX)Ho0OssJhxT{sqR1JRgRZ=rSAhy~ag!V-@lPN_* zRyKNF2Q=+<mb>)B%w}^MM1$djIXXiVQmFOWgwb<k5nXprG1l7C3$$9Whdjs#CBiR{ z26iIj(_;!jD^_hR$R$~vf<UZP=q%#ULM!VVz|>~?&)L*9hE?{hCfIfK&!RFU)^F*y ze8fnN=9AfY9@O9wa~4(UyHW=KaGo2lK>c!s1y;!{(iW$vZQY&Yh=A7`0I2d4!BTDk zEBjZe=z3M3R(jrlui-X>_4zGj#T&2?@|_j|X{bE%RU4b~*Oi}dz)ZC6Ge|3(;S+%$ zD*m@S#Je;G0ZY6kTI49~-bu=XrL)~Aed>Q%A1(A<1gF262-Ac5ZMB*5;J7v;WIVY> zpRlsb07pcp^G7Q6mE}`Jb%4KW?&6YDbETr6^6v(5j2YMu3(mW`wwiG>TQQyOWwS0T zmNGV6f>jRsC^aOnLP|e1r%F(5tG>&l|K_XwN3d-}XoJR|0wv~|SZ)r2muj-PiC5%I zJsyPNx4}v0AB2F2AG~^`m@L?h)*Z7P;tAB67U*~qy8^Jmo#0zpgHFvGJE;|9{V9^Y z`kY7D8oiw_9<Y79s}@iFP$UX%!Ul-HOab^z0USlQI)mgWQ7RCNVeo!<vn>dA?fr`5 zT1eyRvLDr?d?6|NTidq47i4QmKYVAjceqy%mvZ7H%eJc)QUmgXzG9E5k^v)vf|5pG zPSp9mu7FTU@rKTCD;z*A>eQV_c4VHu?G{c=8r6z{ft$U=11wtGWp`1S$>rIQo<NCJ zfxdrkA8wEI;Vmncf(~4XJCKcP9E=sGaF52|o4L+!NX?!<faN&3G3w;En|S)krq51H z$Hn&S?U+ViEE4-bk|O_UlJYqiP;RP&g4C72jH-hj@Zc9Ns==JMLI_ea;g^rVsKA@W zPwIkBIiU6a|7)9s_ywN9AaJk~w-iTmp0FIRDq+X<K`a!_k}NTXh7pb`GiWD$y3QzM zk|W;G<rCM_lZRA4gzsB34iFX7Egt_XW)Rq1T;%qgsRQ~4r_bJS?^T89Vs)d|0eRN! zzo{%1wdayRD%dg@3=aA}8Ga1Bdur2?<zUoOAKo?8jpNC^Qc^`}#PS&^QS&?6_+3nv z)N$Ospm_JxK~56tr(%)ry48^blWxP7^CQcmbS}LsZnf&ybX+6k)s7oNDKWClXdAHk z)34zXr9+`wy|!xm;irnm(P+f_S`5(q#hooGle6YrS2aK+QH=uD`7f3U78^>=c!(pz z7qfjQkMTg=HK(5Gmb1xHFjjWEOh%Gc@9}FNX2rCNBxUA$vn3uoJ`D6UWGPJujU4oc zKpA|ga4#+Z2JGu1CI86WTw<BkpNs4_-|K&bZd;yK{FaKFp0uQxgC9v?DN<Mlg$g8d z7@lL;(>5^GfI%HrQpz0Rz2j4sK+o>AcNGf$nQfn^0z@g;(i(-Z3-DB@Pn`gS(nI^} zYw_`SA0u!VSa6XF(cdV<ekm^mv>R*(L_M%ZtK$2xDsFB~_nY<$ug`*?x*tA|Z7;-! zv(N<p$B_R_&zbA(TD5TxL*}TNaupWZD|GH8SCSD7Hiq>n(j}lqAni{F<RC}c0srcj zq6(YiQW)1mM$bq7*Ii5`sLn67@4eY?khU!+Ts1wGDrpMt;#%-dK<FS`A>jPL_w1p- z)U1^7O>8xgQ=b`L+2J(ZkQrNL>8S|>h~xA5B>s(uE-H%yH)Lxj=i%S;Lt-PNK!(tp zA%)c0FIxL5g~}+Da#5C=yfO$|)4$Dn9P#cOMu9?|EV2LGq(AWY`_0a$XP9)ZUVGXA z@aoFOJl50qRL0o)Y|(nJ-?aNzmMQdS>WQlOLkas+4648IW~3{*>0>=6PK%q41Z--Y zeBcJBg!EQamz`Rzs71|Dz<PGgc7{u3GB`O|fr9|gs<QNX=l&aFcVyR1Pe$<&Xsw=C z_}3ObAi9GU7al84Dqf77GX9tQX4&6?=k|PBg(UNru>hP!zEw_2>?4D(a6LJTT|-f; zj~r=DhsbdU6WdaBg8%Mp$5(up*P4uhw3^x&FUvO~)P2$JOc&wqBPRdQkqo9?ll{** zDk@+Z<Iz0?yR}uwB6yMisB*Fb^sBoEhYyL*zXG3L5L@&HKkuZzk0JpBCjuW-*=6i2 z`>r75x-RK=S=y-gX!yp6V9n35<ct;M>#!PLk6zMHdeheryT4;sggGO)hXnCWl!X7W z!rNTve4g(3(6nv&59o@~(v%&gR@PdcM>}&L)P0|m>iVA}-|Gge>+i>mUR)96YhU!6 zG6JjX{+jo+&9C5(Ip;r>(;cD*HA(L+utZ7KgXOr9S7dhcf{&e+LXvr}w2Flu0=IX@ z35V*CBG%=&yoBvLO6D8e_jl|;y4LzAQl<|4g^05M2Wig?QU>Ipcl$Fe!u+A5WAZvM z0!iEjEz2D5z;SAr=@iWO9T5)|ar<ua-9>Mc1Y=h1QLLJ@J&5Epzz)9ONns@50}EsQ zGMSe}$d%x8v%KT=FY4vBz8ND{pn7$ULoz0K+m0V$+m;*Q{A?Q64*i^h-pZ7P3Lxn6 zu$DS*I(U1V_|=0CVAZbfY?xViWc1|O0A4hyOT6Q2MAg%J(P)hAUubWI6ely6bVV*k zvZ>P6%v9q|vC>wRm3ut_&!d|@H-3PV%KW0seUXKqD9p^3D{9?$Eyr!G$0xzT9TXLq zSNezQ_J0u|-jnDy2FRod-|HWyKG!Z#{huCzvA*w@A4rHE^y3AlfbZWg4;eQ;lqqLZ zfVdR084<>4ZVx-7+d~hf_Fxd0#b`X4vxP`YtW`zxJc(ghEvqv?&xqXIXx%In$<_u? zadP|K+_yhT1qS6#W)xT87re$T*;(44%3M0d#Pb~-@1i8m)(j0NAjx0^N#`r~GlL3< zgE-)Sr8NS@#j*V}{%&~b(NL0jK+kVTZf|Xv2+Mg<?9(B<i7gW$69=3U7t~RY)hobQ z-x^-E<@8`K;L^rTw?s2ziEbHa5E41hXqm&vK8oYuNYA{T#1m{LeJPtZ|5V!<@D*yE zTEIy5B#14hukFciP$XO6GeZ5)WBV`@edzRCpDBsd_m7YQq4b2AeA<=I0>~J7qMkcJ zeQUPjTm=iigos(8#t#evQfGb74`Rbbn$;g6Y5x0o^BpfxS<L2@Z(PltJp+yr#&&)o zOKED$%gd+m5Y^QVO|9raRqFChOPVesB6?YZMrvFff=0YXoOsTzp8bxVe=RvpS@Rk3 z2$%>6n6MG$Y!k}{hhsIphX!sY4e41p@Jb8@0631<RSEun#O}9<f67IwV(I9aj2L|S z-+FaNccX;I3k9!{TwTh^M_h7#C{U**ycse`-NnWTPgfqBLx3yAeZWCH&y9%n^g#mO zVAuBDhi><)DA5@ER#{?}9|Px|=TnP`q@DSdl<Cx`33D_gR(yY%t0ve_uqh`>x%Y}; zZm}2`Uw5`XNvZItlz-}OX`Ls2-Ou*Q!WG(B_fR!$mMjIUn}|x9q#9E#n9hYCGnJ)k zNbFMVAd@-@Pxk_ID6n<(;E4Fjj6h)vFB56B#R${T1tWV6o16-1YKpNQS!>~-yZf@` z;4~t*q@5oeYo-0v`z}zn7Ccp0Mmj!Gq=qmQEX8GyUlL>K5e_LLK?`o>ByQah8ft}m zi1lweP6LBihcsE~;(hdBika?Tk<YPL1#M?JUQlhExsTYHmbk8TsH-6lMf#_n%of3? z(kIMd<i7Y(O~z!i3|&TZ^swu|`2F41)(8mCYXI&o6?vY0!qO7_!7B}UrIKtps(Dj| zPnvui?kO<DCPp4YUXe)p$)mTQd;$OTn#&27-!rdHx%__)-uXFokADFz!ztpjrq)Jd zb|ltY@;}5SR#vxRUw#vIY!>VsL!+T$;^Mi)JJTssUSnPY0Jb1gt~@q8B342|RSmr+ zGD<5Lh?s@{qe9{K{KlIO(Eh8a!U<yK2s9NJPvH1DRdBp(kmzuJ!$z9W_v0Uj@Knw( zCSM&^0jck87!G(!2#6u{yO^D$;f70iemjl$$xZM*4EfV3ui621*+L~^xK41w-O+R% zshC*ZEo$3>B=olHY>Ns6Hupk;#Q0I}H6372ReJKr3GY!c*So6%S6zd{bJ(Ug0+OJ; zpk)a?b$Oe8Z4rKp<Yax1t@krc!gDXiKs?Fg)SVk}!ysRXbP9^9JXtyg<fmu2W+k!3 zjDjmt&9JAFNc&f#;)Rl*9|+7I{hr;_aYB1~F)6pCGULL)snzZb%FP9q#aP1bf&>M{ zkAWqs&m4D8+xZ~{B7i*cHXo$)L@&YZ*`#5!|KQRzG?l1#l1EW0Q0$_W=b;$+eFe<n z!M+^MSBKxx0Smyw1~L+)Kl4RlcYJ+dT}fBRX+1abVHzQr2~*VaKCpUhy#P_@m<>#v zXD0-njmBk7(q>THsg(>{HJ4S&P$=bO(DTjV#3YqKh5!TBx_qN_<Eo*dVPIs0f~M*M zU=K9(c1*9oQ(WNUR>MKKcH&3tXM7hX@VZT0dhnq2k#24SDw?&wCb<^wG67BV51%eP z0z5_nc(3;}830&-I7kS9w9V6lu)$^3o>wI&xybHJGj=fv$>`fx>;9SD0pQ?%+hP3u zFG7&NFf2s?GNAB1HT!`3bJ%BYXP0v4I7Z3;<o|uousuCDmz1HbhSol;K?LFz9~H%O z8(-kHj}C_O>40MTw@I!=e(>Sm*YG+1kGGVVgy=GF*5<GWo!0&(maNLkru)a1?@vxZ zW}49KAG*nCXa4e9>t^fILoS1WM;qTm(3_JPpX<_{8%k?!Gd5y<0UAM@4Tl^wNgGl# zX)49Ivx??qFJ0r~z3Z-vQyu|WWm5EC4~S&*Z^`eu(j5DU2%5nBLURqVeWgXWf(}#} zjW(ttXg1C8ps^~3KooEBRX8L>5um^g%@!ZEpn{UX)oD{5{sr+gUUR=2kcsd^7)=z< z@+r0t?#`SFvxyviq<D>QxcyTe5oZ%k5Na_Ccv>SbVz<sVNdiJmX=}1ckdT^@j?u2K zuCXk*sKy&}^#cUcPZZbvB7yUmCmprh3dyD5j9~p-P5uFx7J!#5tg!TbxVsW}+*a?- zO;d|sbW4ld@-q7>zhC_H)q<^^T~klb@cKH=R~mYBQT@PBXQ9U2MtOI7g%zNOXw2VI z2I!${4|L}`KdtlU%>WUT9n9tG_t_*vqvPw}M{C^O4jCNWA6Y26#VJ!#04}t63?QE4 zlllV!fb%d9f#=?2#W6Xez$5tgzF)w|O5e9+@TFe<1<|-xTE3dgiI`EYbF-7Zi!2vK z@MMWc+_Od>2^YmZh{tp(O1u}Mv5(mWO3GIj1>F6!YN^)%tic4X|L*i*R!6yhI(pMt zs4R{#)kAKA-)FJ!Q%pg*z4d*!iAs(%H^9VZYgxGkX=0x07nf0up5i`)HtM;zgS_W$ z;~KXyp2sq89sa~uxwnQ0l7cEG*(X3=jy&t?fR}}(k)ju;*45UIJ$j#sGC~WY3YUkX zbwL7IVm1245WfMEZAZwq6j>)vj_;dGKFZ=S5rrrz!AGu9`e(WKfx%NQwc+4`D;%!a z&faLaeq-i@gBQpbF4Xh~{MJCXPBdZkIJeb{;_>%Wr!t^F9z5++a1@-DrgjsG88S%Q zR3@}iFYmt7a1fk%!hoyTIY#kdCbGtwsx}Vz5%^Ji%kO^tDm{BRU+2!r(E;Q=8~o1U zHp=B28ajpz&C>LD{z9H1db|4QQ50i?ZWUWuKficXOk}sTz)xr|IG{<x0y0^zZ*5;V z50ypsI3ovp|H;O)Th4pwI<FlDpKO4cnE_e67cOsEl&^nB{}+=wNi_>=GAkeUc9kgV zbXKYl?a?TZN_D;*S^wJu!%v~Ez7!$3-@(Hp0teD;W-pX{I~{^hDS=498wE#3$*u$i z#^8Nd^_tJo3r!`r*ywDJ7t2f~C^N>q{TA;5*yQW>#`>n5ql-k6P5=P0kz&wEPGO2J zO&R2Mwx0C)Y;Y)#bqkgpSRxX2Shy91th|-665<k3OU&xg3e72AdN9-IsCs**1vB9_ zgJLZBL=sXFbBej>DL5?U3H>xQW8_n0D>}zApd%ART1dhH!owVF@$wB5{sJ$Z#s{o~ z6?zEpYi(`b0(%DGRB;`t62)IW#e-SkpH#PST7m8!IO$UN@mmbnF{xIafiib939LxS z5(=5U5TcyLLLK|8K7om>Zqs`M{FN1RBqD6t)6?*{Sk&Nu5O%X$|L#Na0!8sO%ZfSs zYH8YBX$<CIY+=%eIxX}ANQaP+AG}_7QGdK(*}?sPq_S855Y2xVO|7jHc`y70Cw#Xc z?8_YgU@FHm-#p<qutU=5bvA4yjh;WEpaDl*%1OY^yz?<acu4rY$#C}xsSlu|`M&*D zczFJ~=h5{)MhV_!6n8Z=L2t4+*3VYV@0b`nn|cKnZSjQ2sw4`T(BB|pC8M^c^eas^ zF3hv67Rk8<DypG(5AFKJ-F+*@aI&=X#ocWE2Pe$h`n-~CmduMHYwF~4@8%0QqrfYf zmIe7I)eJ(*em{q&Vve)D<(h6(b}D|2#ebBSQ9Ia~-{A?};XpiW1KdeVRVHLH%fc`p zc-1TFWPVjZM+5OEJemke1(ig7y~o&r+cZmSVPu3k5<3AZ%C>plJwHQmUJ}$45|1ex zHw+|uz%cCWbWA4xI=f)OmrHOzk9+HVq>z=lBQyu`n{dP6p{)y@2nowzamr4+?`I(^ zmXuR>7Tgtk4C(}`@8>f^3HMr8{DR_E<LZ3<utUQw>=$<-+n0ZVeECpG3u~6%#%f9O zqn*&jzjKZ&E>832@%%_7R~z|3)_)kN!anp&X;jjzaELPD5y3PXWPtn$WBF|UUJ#^x z(dqN)A+{F9+&bA_GRZ*{CBa@y!3V3>-2bX{9cucw`xy@kKWlx5W_6$TsWTmqiz&YM zsD!&Fgx@me3sk}rMB|#`Fl3@8St9t7-CP?BCa5|*8ZhK>Eb$x;+Jl%IPVlJkm8YvY zJ5bHYmYRaVp4!XqBrZUL(gW+~5C9<xx8tJLN3m0g>VVEbgIvozcf$P{(es4x8#5l^ zW&B~Vl6kuDytB1`<j*y(51YJX+~iOOBTzuzFVA$I@FTn=Q(C|YK)a+tQ~VwiueEw& zm4&G&(%oL~Cq25uikS2(MEq<-CY5CJvQxTQm4Bws!c`r0pB3oto$@#!I2M<vD5n8; z0RYH|H%MupN#&w7Uy+#=ZvVuzb7puei*22554GqVKpX<OT@9z#-7u0D`RRW{eC<3i zx5FLZ>E(%mW7!(bn%kC)QWo#ox<ULWy>N!++T|BIhP0>;oQ4^OE%ebnqK$~WY`^yR zLqo^-+o=~8`k!@zTwAQIl;_AlNk=k-!kH54j6Y=nrQ{XSYvAD;QZ2L45T{eGYRy{O zzQd8m;C=rD@GtrK{@+d)=X|pD0$|0x!EfIe3y25QPdKt3%|-N$Y4kp75%_#Eb$;=; z^qkOyv9|gKnHeS$ET?|pko@r@fqUUMTx!Lt*zWz!#?RW#6BsmyZ8apZB!VTueDymp zU>n_lL1^BCNIbA7fu7Utox=Z?PGIK!oErx<rBCTNzM)?fvfJ4%!=vX55i3rd700DO zgX-olyT?jSeX^^`d6M++;!~$)sQQ#!J2pwGUsWi?WLx$tD<@=vb?2A^15>j~NZctM zu$A{fr1n$lKO8EXY~rP<cVHPHRtGm-yGl4F-1AwYl3|NUDkaOTf%dtrB!R)I$u1Ab zdOHtzp{`v7D$()-uH13iQPW691STnhr{+35sO+sDa#o-q#-6)44+<kdD=a^jv`Wy& z9lNiV+prH7xndjN;J~3^ax&ccn!oo2rObf^DOj>cO8WVIo_Xc$?Bn3n)#Jh?VCv;- z#pa+7Q0@F;FZ>o2AFVv~H7yJ|ex7|e8q{MNp$tJBk)XF64Vtq87IBe@Xzq3fE!hxW zUS9V_4E9PHyt&q|4?68nU11YpwxIN%&R6b&1OjINTeF?*#>U3Mm#_YW+l{_21unO9 zG_iD*8ERD(m+y4g+^#oXhvuZZ^G;(6i-@f}o69R*Gm8_P6?b<|K()rx(-1*r!$mJ5 zgf5I|QjT*;_BaqBY0(&+4vPXkhBQeM6AaA7l^lh<C93A8bm+GB!B*T5Klm1GPOPcx z$BSW~tu6p`OMV3mb1oa;XCAXSLqELb*74uF@!xL?n6PFQ0{$#>XwOL<lBsg`n4et8 z>7gsPUO|Swkx+cApJS98iRXT)gpr`U3db^;(yK-HR|nl5=b)KrrRck!JN(VY_^TYU zeqOX%mc=>{su4bM9>pjV*Br?u46c_V8&!>a;n??DzE#nUeY0gv=BzoDN+eJqXlL#H z?&P*RoGq7et50RvNj=H>O)KgwHxNEB-cB%-%O9QW<W~!j_7rW<gBSr90XfBTJmQkJ zGsFah@e)Jz=|2-(Ap_Lr2{NIKy>R{p5>L^87J!FZ*5k0e;Zi|PrT#HoCCnEU7pBG# z5kr`qeM4*i+WT%@XUj74{S3J|d3)KMoLFxKZg&$&!TzDF!2t;3@q{0c0)GFc<lD*t zLJeT=>&`X!sR@|Sd)Y)}woq3~Z7EYZMC%ZY9^|~W8mi~sBJkMuhkV&|%YeQ%A)jol z2FQMZ1Cis^1PfpoqLZWN*xVd4pmv2vaIG?Zl22w`We<tXrCR!jyCH--N{=(5Sdggn zOV4=Fwe!MAh@1Hdi{zBdb}ug(z%i}+=p{U?<+&l7jAb>T5!1_{s7H+6vm6{1cxU4O zsZda4V-uE4nHptr0be#!kd9K$?z9@a4<4zoVY4(+ThjKn3xEDgn@(}JAC;=EQ)EI? zThk|m^du&X6~el%uGREd*JsCA4|O=Dox^osX>W&LdznHpW&6)C6Bk7eEHZeVea=>* zhCcQYB0T>HAEz{HRt5~^rajuEy+K;f$Gor^wktP&qb|V&NB-(SkXl|oq4Wk#_iyaB z!tWLLX3exTOB2*Un;k1%3~7?D6yB6f_0ayc=j;)P9*_xV`;j7CfFlRc`p0>$%@y0R z7tTYUT<X)nela|fNY)1jTAEes;wfa-J+J7?LQgcf61GqnTLlz%GVr~T6})|(0Qg?L zkV!{?oB}B*#-W&yo<{exTO9zdM|tGXm&@mqUhutUa9kenjfq`t&xoz?dY;iY22fRG z+f*_QadOHv4R%Z!HA`36uxp!}E7k3a4yBB)YwKKDmLbbI1Fqp-1a5#QCM=Pf*`FWI zOeZW^O#>VfUV2Xyu;C+Q%TOoYcqPYXf@E;1N^901ne~h#*h=OhA&`m3<3^9xB^{(A zXoBK3?QLxzz8w5vIr8`*g_Sv?J1Z(GxrEscvkX065<R}}2%XQy%Xx(Wg*upZRJ`B1 zgrSTagcFTLR<x_gLJzyOi&h1|97wJ=1%{)AsY#9@JHh0)(pmwrn#sEQo1fMJ5nIz+ z%IU8hy2cWcA5jGYG{oNG7+Bp4SeboSZoIe%%e)s@4HU0juM`c4rNuo$bdu@lBar>B z>4oyv8t7OZ@h2Rnw|8~g%_jLVSXn?#wS%V!u@!Vn5VSyDi;fP@1<nuH{08isn$B{^ z(LmJm1qim$hZB_mmRnt8_0+bV^++*sk3Dit8yUmBCH<9eOKW2!E4jb-Q`61rg<nB3 zdfrS_WRNSIYY~^G@^26N_-2~8;J)`UNYC%D*@MS59m~|BYU_JmmNG%sFa4YU+@`)B zW-K_*uZx|2fj7*b@ErP0akZfp0`EwHkCdIGv-12BD;%FMX(crmK|rcw25^S}&_Dr= z-X8k||GwF<9EW2-uCKnsE8D+MqHTdmzfMfPZ$rd9t7qP}WJ#N<Y=KIF&nu}jn=}-< zrn9kg<UBhHjXf(C8$XM4t7$Fv&U4C^+lZCdn7!bwpC>#)Coc$2BV`_lR$d0^dsmxI zF#Txr<rDL6eI<Ya7Z+F6OiW8{%8u44%4v6Ftz(4e=d=$n<UmjfjkS`gb><hUR=U(q zeE%yP=SFLeLb;nGALwZ66%Uy9X=b<Atd(GqSgb6N%vU#GzvA}sP2<C`NBt15A8vFW z;*g-W>5?@^tVSOKoItW~9JT~qluY6_N@S_I4%^ODW|}&jIt1*D2SjW%1}Hlb*?1lj zuqfpvB)Z4H&31x|UvH`ZV2<pj=pYW4nVG~gNzBOf+NQ<ymyoUs!C<2eVcRZHchr%W zZI9QVD0oZ%*vP4A#8RS8bQ*K#Fcv6i>79A?5fX#t71>-kW|5LkhhcVY7<=Pgsl28x zo}H$LX!qR8eA+mY#aAXQFV9HDYJY8Zy^s_dpFFS6AQ<?c68HLCz>!=Owm=hwGWydU z*?RxCtM15qEmif!1U%~egl6>Yvn8VA5yX4W7JL#EyggD@R8B-3xe;r}6oo8jpDmj1 zM`!)vagJjSa(wS0xX8)L<#I`1D4%tltZ8#Oz65V=W#??^nX&F0J(o^cz^%&N-X^1g z$sQrvx33!=8Nu+fzYJ<oIa_bdMdK}y!zRFIBp?7}07n6MLaYQz0M2#7Io{g3PR{Z1 zSLTmw0xodRcOazxqq6=(_R8GVv(<UFI2(Yzcm9?;g)&p;cU9$k8FFL6oTuzMrHh8P zO^<&K98)q)!hl!7XyT*|1<N04jGjpo2cjrREQi4s*O#?h8#PXwypPdLLbiiFDuUWD zv-P0?8~d}Nl`C2ePn`Pfow`)Q3Gv4@7p}ssZzmvKoSe0}-L2qLhta;qx-*ZS{!VGW zOhsT6OWdlD(pVlxP*4z*0POW$^L2{Jn$W5c9pAYD3yB2j%pO@j1k4gW)8a1+C|nel zkEwIakBjWwmaJn%c~#}%?rxy7J~KgrqMTftj%HH<l~{QQfGFfu1P28L16+=8HLC$r zViKpFIcc$C>!pqlN<jPS{!pf+%0c!Zs#zqNVubXED@IN2p#iZw!RNXo0#M{at)ZQ+ zwrTF!OE!U?XoHU{0L+d*ddzb9++_GB5%`Jeo0wSVF18v+HTZ%Fxb6FvsMXuBt59rs zHn$nIU1K}2JCE<Hm7yq(J_DpN${C15MUB|GGedeC8fK<B40bQ&I35lU3{I}QZj60Q z@|J`m?Avyy&g1}KJH{Yi*;K(H+BlUYYcw^r1=bd+wkqos;Og4UG;%d9r8E}`m6R(R z&-U4YYkr;;cdP`7MYpKbV3v~^=bZ<F-P*2eidp94hyM;iZ@%G9t&>*S;Ryi%@#U<k zK&T>|mjOk`EO$}-?*jx8Se|^4GQ6^M<%B+T^Wp^857hzlZdODGg`{Y12!x>F6m$cc z#c2anFR-}pee9^}?*)H<*q23vHmni4nr8Yh&r1Ld&*&cEml;a?pVbh7)K=FEu+h@> zBmicq3;+0GqRy>k6#6(4Y_&8h&iJ>IU?j33#BPxAKh8FCKgJcduqE!*7qh8YsgIMF zu&RZxYk}K5X>2>kSon*^(6<ftJk`4F5sB(tc?#Vw=ddlnldUj9km=5?SC+ygoGF{Q z`kq%Nptt=`;l?ooC|iB5fu#W9OGnuRtBI#;@Wl-J^WFuQXNTJt$%Z=pjKuxr`E}Dm zU^GWQuXMp+NK6te#fQ`Z@wvlIRbk@CJSOqKx>LmGy2Cd+CjF*xjiH4{!b{(W!s{Wx zy*5QD%3j0l2H>YA<_J^9?kK3ZzqU}Qf48iy3JdBn^RAu%{OwUfzs$*5-Ti@Cf0!&O z0CS9nrYe`qC;s8Y!Q93tXQ>5{d1>!IKE^0-{XdS*vaPDNi=uQR-HkLzw}c?wEgjMz zc@Etj(%m2}-Q7s%p&OCz?t1t0e((o)oz1@Qz1Ey#G#|LO6(h?1N}^&%3Q$v-N3Zu7 za1=7(%v9IHbFu6BYQU$ln^ngmu(DZ@H3eXs!CpR*`NrJjT-h1mkDd02mGHA8;rCtV z>-wEw2sLRU1QqT2u1v+D1jGN!PI^hLk{Va-lcF=l$5*SVm!z@Ik1|!?ACEobQMy%Y z3rR?+g1&huyz~m_FqSj<ogou`4{*#VH=D6Z==8Sqp~O%3%e;L4B4s!F`ibGSx5vga ziLW|s162W=HWQ7WdNW7I{gC@Klk4<BAxT6<!xJIf`#`Dikse-A%qHeV0edeNqloNT znjZ?r1by6(lLLe$e0-OpCs2te1=+EcU>-0NvhZ_2q(#Hjl7k$&3L6ib?M-O3yq0&S znLOLM5R#9#2t;XIZ-n{plvw$Y6RbZKp(kbSndz_uJY=<66KHY$l7vE1vQm+|{2lvB z%jPq{+`_IswC><)n<7g8!<l~fT%+~1YXADU`!y2?=xivcf(1wwJx<Cou40-2YnXnQ z&7sEl!*;ZNQ}^8;YV@{$a#6*?ICT<Z19QCdvdja#2ZQ=y5V->R32#A5ckZ2oi*TU4 z&iz4IEn&owK;P^?NVht$YH948m>{s<1@5ssFRff?Pr_PHu#?#v7nex5fo)i%<cckA z^<w~)nKCU(x^!iSf>3#4zEEiDa7RGRf|UH^y6e94XTds|M#0H^anA)Ak~Oh6Sk&(H znZMY$`b>aMb+Iv9l}}U9#2#rYu{dtoOm4wM)mAZQU&OZ~mGIQ->|BC5(dtLkXzH<t zl;3KkIlk5rPPzezT}_qMirBn&&AFBVt_#aok1p8zm-ltw{M{XIvVr_LB4seup6lkL z3nolJLzHUfc?cX4q2~bxG-@jr3pD7|i8`<XmE2S!qwJ!}bTdFFV&~C(#%KDeS@TWo zng&xOGz`(1`cG!sM6rIWYe@8j9jY<>>gp=+VfVFQ<mcK{d{b|BzV*de5pp-ZZWJL} zi$`Pw(WI3#3;7MyuSR<83E8N;z+y@%%+SmB)|iE*$;6q+Eyq8I8_(pv|0v#IUVDlA zj+o${{vZNend8Vf`0j@$qpd~X<7NPXZYosX;(1Gb{#3BJ-^(T<quB~4G#Np!xJ?uu zd7<`$L9B8wSAQ?Kz>b@b4U*Ph)_^iTxq^l@{paX(*q4l==g__HtkEDCicvHMfCuur zb$`>+`j6^SoXO_+bVCFHGg}YW6wwfDvxI#z>MbYPiDH-6S53Kv3ajL$3OE!EKKfUv z*K~U&yLBIvY19i`d&uVOnzeF>&M5|=ik+M!dE@|ilEiFU!oD{?Vhrn}$YQL8^s#Y0 z$F+|#BL3Ke@zWBrsBpM>H5@pB^e@=+g?h1R4_+g(+9J$3AYG_RZZj#a1oPHr43f&Q zqI*u*BLKhImPeP;A*}d5xSzL4!On)4J{~pl;};4DA<}+mCx8JZiPPi!xQ*9K|FiLr z95<#$_-fZMcYFjJBOC}3IukTnPe0s>?BJm$(%W*<FX@7C!uPs=4X`mppBV+rprViP z*>h86OzeT-1DSpIt7}Y5D9}LwsPptL0+!rDW+Hr(&2M)<XX)Ug%vMp93bu04WUG)c znohfi*zRwABxY85;_<~prm`1?yeJr=u}5u`$MxmVkRC<}M8^`Vy~ys@@BM|3^8`lV z9o4!dcjv1g4c~6NpWW76_p`?>@V-@_T>z(VSgha4M^ZAf<+yU~VzyLr=l<c7bNTQ! zajZ$s=0XWP#w1H$Kt@oG5}Q+ru4zq@JOz!yh$-SzeweA1G3bu&k<Ttj%ppYTe0ljZ zbVN7QdEdb8`s!O(WNPQjF4_~B=e~0NVj_S?M+1~VJJ{zg%gdd8xgD?Fc_iCV>9U}j zu`-0pPr7bCT<;7;3STf9IvsY;f-|iGba@Opar-12QJbNYDC-#Irco*-B;wGPhOfrc zxXPIDggPSVijNPO4j7_-OXN%RgOpK?eF;TzL5*s*3J+$8aKf`1d<*v}e=-^#6k~*^ zK%-?h7NOdc+{m8ejHRR4`!eMPZnI6NzP!KQQ?4kcW=wld3r9`U>JyKOG&kFMJGt`r zi}M>TsneI=%95Pq=KHL3WfX7`Dk8u}sHt}=S-ZtmEzY}4mQy)ms1f2dt*s->Mz6&G zZA_1qUs<jn$JbtnqWSrkuAv72EI2=4c@QGcY*+=h!Mp`!%%hLvRyZzDl(p*Lr%@yh zdbzw3F6sQ}zl?vRo0%K4r%F-iup3K<r=1DpfPE>c7oc#z&vjn?)I4LfEHQc_0qdyt z_OzR_dbVZscI-EB@4ZQ)igI^%|JX+_Ivytaka}`<>fv&COW3{ncgRYG%v9H#PfNa8 zTjft7>E&330c7)$0Io#v_@St9<c$EX2y>MC=3~RD{>Dpyqzd@+%fse7$63oYD<?{l zecF^<B#Y_vd0pL%rJH3ev$D}n0mU1XTBg^S;yPs=+CCIxi0zm{RL`Gl=`RJug_zt6 z#q{jylVi?jb_>}`@ug>`->o%LMr}R>W90o?NfcMn-ZQB(BSsJEt~=fP65KX>h*1|8 zqtQJ@`w5D0kBzwF_g7PU<<db8Z<BWi(1_^IKe;p+GmtI;d(h?=h@6vS4FzHMxBDmh z@orspO+3X}2?cA9b}_4YR8y45EXty16`d3!FOp84PYeW_Sj|%~rZ;a$)Pl6~UkVUc zbiKTq8uos&BZa8Va7j_Yr!#o7A{61ydxxq;0=Sd9j=UTq`bi-Bp~E~`^#KS*qItqL zEi^$agBT}Bx$Ry*B}EMCO#B`t0@iFJ;67l<(GQ7(xc33*X$ObY&UJ%OX=xyiw^vW( zV&Fj;jLEBi;oQ^cP4*rAi|y$@zu?bat|Gw~uiuzXpsD`W4w3JU89ky@yFW5R)Tpuk z3+i}-%zdtL9lTcAE}M*AdD>p_K75FEKe`O_*kAR_l}}~WnQx?p;kC(SJPgH`#|SZe zvxEy>RZ<)prse0h*J!8m)UEgs*3+ZbbE@6ZKDsA@ax|ERY@s7nvbdf5dhItFqGvD7 zj4aMY7Aqhqm|sRxII-8<HnaVUO;}7II}JDQ&WDQX-bUj(R(;<Z6{e?@%yyS^j_9`` z5>Qa$`}<`SAKI;-(*w&n0z)@R78WWhNK>1@4X?h6`TbW-F%pI20YZAlUQ6SfD;}5Y zZX&G*&Gy8noK5PE*4?F*ii!DgFN<{5ZLw`5%O#x@j@${%Ln)+zTY@iqBKQ*2$x<&g zK0Im$&9uIK_4em2=TS7|{y-*RQ}}MB<Q_dj6wQm<8~ZB>8O#+65)|>g6%O)j4#+wY zI{7-`HX8jZUtW_puXvhU-}lOC5Ya2VZD%|kwB|GQT2WP*xN8t8#Fx(fX#(2}{1fIW zh~4!))}+m47Ptz!sB>f}MB#58_y={8g-VA3eDTnJtT5@1fM;#?aL$m7H9AF>xm%=G zy>fAmzp^x3`qRnv-idVZ$Yc=@NU8^leG%sUN?7RK<G!}d6D8jK|Gy+Kz(X;-UOC_D zertXQ63}fFMR=*XU4Nc8UxxrySZ*PUJVmUL%n;=#D#2n>95sty!N>e#U8pngT0oMn zf3B+Hxc#2gm6B3Tb8vZi{1HM}%O|7ml)ze@Gfo3Y2H3i9nv9ISj=ANKr+I*AN#bEr zSsCMTq>V^X8Ixc(3^+(i<#>>uDW20gkeY^aW~J>^?~{KD%x`!XI~qKC7mM_WwPLXG zOdsc&N;OdoD23%}+zc02N<KkWY}S|vdB=l(ykb6*--0G5xs@p5&*f}W!BTU%j9&=W zm+f=M<;y=3OTu+%J?<sk<y&(8spAz9gMs5|SbnfYWwy4(jv0)oHqg4YNNZy3UV@$* z<u?Dye~cwfUJB^mdGNE@@w9kR;b3lFL}XtF7LuG!;QL$<^FDWOw#c$kJ04GH6%Q*A zBWj!c`>x?3mg82M{1<4x!b?t?Dho+k@aTKw0PU@1Z6ixB+e|LYNyj4~pAS&Ro0^*r zZ#{ug#to3opl;q%NQ|n`+wsk5TI4I8$||wP)tpsXb;q_+)R{=1DgkK1p@`3<WM^DJ z1S?ySD0T=<`Xg`@lcJNUq^W8ax!l>kRFZOCX+t^bmO0veW43Dy!+NcMe*9g+dO7{o zXgj(3g%$3<AA8LTD`C~X{paQzefI>$+i>jcvCHzR=wC>+$S}oQ?>QhZ{n@j$Bo>@U zVt9KjSC(+o?J0%*yCU_rAB+FHbtgK?cR7*<DC3hYR$+VWHQEH$wRy^~sW7m5p~7`6 zAIG>1ub<9$Cmi0yco+Gi5j_MfcryV@9AJ6h<1%$vTVADa?)@35w8%bJLCHnG*u-4< zG|MlXJ`7rL!Ya@lPC`J|73|Byl!;Ud>ln5sPWDGWEaH86GMmx&8T%QP&kh|d6;fD+ zt~yyCC4}m<@al~`P58OMGSBX}a@bT3?28CvFYdf9=t3>k2OImlt%y7f)G|*377`{W z6klP(%jQa>DkSIrUB7uphaCHZ06Trbv3?BJbM2Bk4UE|bw_z8~l!fua1b3#C=ONf? zw=#>sw$C{PFd*LZ;gmzFqY$e`%aXx!wly36LVUr7Qo?C&mk~&>$izhR%%SV=F@be^ z;DcRS)Aq<FR7=WMbpm($mxaSVlhHlM`hx-;7x3S*Zyqyd2W(D3nf7fFAinJV@pLXA z>F>BV$LRS=-f5qz6hHfkrjxqgpiW)4Ktrsv4W^_?wRwY_+j1p?L<5!=?4&vIdymV4 ztKbu0GB$H_i(T*Zxx=^viXHn_{G5T3I;x9<Cj}WO?BI`VD9((EzHrRp*7GWSfrz5d zvgGb>*E&X`F8__C>Iu?a9@29kiF~*H?x*;@?$Cf)$5Ox17VNnnMefsFiTDT4DS5K* zZiqL_X<t|*1&bDqQf<S789XT|3sd#6r%aw>Qhlj^_b*XZ;+}Z~QBI*>zdwsUa&`RM zWh+=TFz3zW%qIQCGj0JQE&{p`KnvCHuIe7>i+85YS}H+~Z{s=Xr)UDvH1K4F@awcO z^P*+U)xB2A<!3xy<s(!EXZdjAEQvVc-EPzJKCJ{oi`jDp?dnJwn(cUmCh@k$>mk|& z4Pu@Rer|8FA<kW%w?-JZRXUYPGqn_nfL`2mj^M!vprTW5NE1cXt2yoe+c6_KPSkmG zbXODIwo~^7Wy@68DwprC4wwO7rI5a07jtRmkNW}za)g$?@|}-Rin-`(&54K7p2F&J zNnggI8GCbxv_9?t<>}B0%rq~alTgVeX=s<#YVmSdd~5*h16KI7E(q-S#bDyl6>*rQ zVD;4bn9L1y_`9UDz8VvoHb9Ej$K|6+^d)p!RM^RRFYVtkBhTr3dAR~%W<fGQz*b() z{G+0}zO{AW=!n=BDEm}Z)ps@Z0?MayX4nO-=NnI{%((qlWW5}`jf#JRX5V4{-WRE@ znBCgij5<$xTPS?^Z|Oox>bSeY<LY`xs7x1CDP<zW!6(+BW);<X90AxAnK67qQoBzy z|9c(icX!;FSN}D78S@({H@x<22+anPod1Bhb#C{0r+&NVJWeBRAa}r3Vb@s1U#E(+ z_a6fZEgE>35%hvGnAB+>g3*YeCbna08hP+IwjeUWx37FI_>xK`oBNA?uY9eqO?s+K zrh;Ug=}}fkp=C_J%R+T~abiXL{NC0#rL88$4DXylogWl6lXr+p+n}>XMQBGOaB`tQ zZi)p-c?dKa3i9e<3sU9A1E||e_((0dfh=6NyRE9XmaWjxGjd4*7bq6j>B*F4X3E@u z<|R;~3b2ch%$gA{-|-jr9a`MEBp;ymwNonmXt3x5jIylS^1A3e$;VOqtQ;#s>4L}b zKJBseX}K7!{t+0HOW7Z!f_$zD{d`-Mqp^q=$wv_}t&T`4WT`U^Lt{mCL&T@}eTxiM z30Ez|Oq<+Su*c*+P>tHguT_lA6+Z_0E0Wf3FiN!3GHoP?@?~wxQoW%pV*jrAn(z8X zU3uHJo-bJ<CR11Pndj(NP2yj%w)S-Y;;KEga)JJWuQ?uj=^=;XW>O{U06_BK-V=xi z{Wr~@Z$xhbJbj&w0}FeCz|&Dt{XyH{6nJSf3X;`P*9(Z!L`F$vT9wFI+qWrxRF&F| zjW7VTLqOh@^yIw0zP|szw8}H0{_3&`@S^ajeEhdBGEmv9&krn&%srM@R`!fue)>%+ zzuio!ff0cd=6d>D*D$^4r4zaLg;=6SUwJUBYR#T739>xg-ihyR#rO2WM)!ji+Bn+U zldtcJm=$PFuC89v3gen>KO!Vnt}^Z^Q1$(jg%Yy_K`EOrm7D)=fRS>WiIAW%XErBL zBR(PyF0|%0a=)ne1~k)BHXt4cz&D#h!q~~gT%LguwK!22{>1D=0k=ovuYkn)+-age zx?eI?mt{{cjdJ2Q*vmF1E}mpI8ElRoznoXaZ0bcLfyYfYouh(cO_+6DpSZUof22`n znDIk)w$|XWT5lzxxO_HUBdblsN)AnEeqr+?!`#Q|e4aL^AXLM%0Oa<$wujnf=}uYX zmCvgpKhn4AY6&F8bTpORl_z8F+G*j9VpM7Uo(H$dS*V?SDy06kOeyM#lk9fTWDt05 z6eU?z!-GGh{1UPDF@gc%q1v_-%C6KOazmYwzqkwKtD;oe1RESzR@#xkPltBXP5k@a zcm=rin2}}NxL8<ltp~&$`!&i;1l55vGA8t6mHxWevGg>rh-`{EFe(K`g(SzBKYrNP z*VYa^J<*lhmS?SOeD|^I8GQ1OzU4s(BJVUzRVoP@=j7fKU1nU`IIC}k2Vg5C$rC8L z-)IXi!-IrD>rPr3!vDSU<<x*i1)uNh;{TCydJf$`FTsQA%0lCaq7Py~BR!TQN8yV! zmDOuzz#QB@<#nxS1?vM6$1iJx#7J74N<9hYHjyN?M$^c0ff*=D@Ar;nzB=`0S_bK; zEI0<P-uv#yutx~Ro5@wjR~=1K(i0By*x#eblvrw<q#r!q5k-f$F+>&Azwsk>`fi%B zj9*7}sOL2nCx$_NG90BufIf5U|HBiA05TH(3PYr3m8d<u$API<(^xym1=wIMNK-nv zPa?{p;nXrj+R@yV0+}K|xEO%I?g!`5?JmyEOoh&HkjZ3RUQKqS#8Y8|Ah^<^<KM)R z1;nw`rYjUs;%zd6rmO41ZeF9Zv3o?hg~)*pD8%XJz9Lz_`#)!yJ~=d*7;A_;WrYu6 zX6lG{XXA_UBbWwA=;99%0R>E3X!RYaV=?2xWT*FrfSU4IXqO@50;K3-gL@@3RyBY8 z*iZI<v^lfBmiECXqksr1!*YY%Pfve5x4&^*6Wrltd+$BrHwXbBsqC4IWpF64xMt1H z08n>IwOw7kj^Mu~G#RCHQAGC~jPg){gZc(Pe3AwEGrdtRu}M7PTnen{xCXZwKY#Y> zSwx>0=1PR-P6VtK@dSW`2{<}Pj!FKX2W=eqeToif9|e4#xJgKkakI&FHY7)*gvJ;J ziGq~EW{=BD_vns_O@#j28PhVcc|(3axV=yK_22uR-+$F&7h2k?&wXWacrOtBcPO8V z+2@}6)fw*f`RynPNrIM^FyLWOv~Th9{xCJi<Dq}Ucb?;6plOD6sY{0^xBF^$BfL<M zt@1k!EF<mv0iSQ;{^mQ3V93s2D+Ns@;6pC20T~G2yFVS4JkGjxW&#t=es&h<;~j%5 z1znskRt1Y(T~KuVh=v1I4TqK{r?--<j;YY2a;mG2jo79rUl=vi0RwfMT3uI@9DPuX z=6xoTTPTsN+bsrQwN#TSD{eCJkFNeYB$Y%GBSqIDV}^n`8plf;;s(#Hfax5+?DKDs z95y}A-cH_4jyGI)sgSjDK9!obs<QGQ&YHwKJWsd8acHr12godCcY)PrbwSXCv-Yls z%b2RyMx~=XEtS6jglWwO=g<9RnEuRZ|Ic|q8e`$JFCgb!S`4X2MWi(Ou>koDP0?U) ziPViavETQ->S6!Z|HdT}e`{D`CFvoG^?|gd{wUpTiQs31|IGKjUUUI=AH<#>!{}K$ zI&sZK+?g1%-n~HtKBJc8Fml20r|&PO+>?2K5pfmep*V)5n;KxE?fpXiL@r$;Cz86N z!S7n;l8Sh3JIp_yEO?M4Ri}?{83p0jmBN%t#(=cHZMp4#XGv4n;L{3|hw3y*MUBVN z_<!M?8em4<{mS<qO5ri4#}C>=>)#3=n-ZEhe}6l_eq{6R<$t6_^a`ji$=r~gjF7>8 zx3~RSSQ)I?E^R8lwfQ+zrD$H7N=fp{Hx5^mlA2g8bmzwatDfORI%xl~a`VZ~zWr89 zqkx}ZF#oqDz(ZD<w8#+?xq2||xbHkS1-qM(9-$4eGZ+#UXPDF7R@vZ6=5QSB;sQ^! z?7yJXLM^Halud}=#d)gc<PXCFmq9Qc!#?OsygB^*NjP=t;Fhvn119$hJGL8Y&jSph z?Bal+qj+XSYLy+6E{W?>Rek&MrzCMRfGWz&)&C+nyW|AiAp>R92&nTt?YFpf4CBlN z6cbmEm8ptq3j8_io&FXSxs6Lpli~W0J9ih$@o?wgWds*ToQ+ZR4=XmFah)#y$%G<h zkNB}rTODjtLHE6&HHEQq+X&5(jN?9zy$rE!y$UiaF)qlyS{iDuK)*|@YD?^J<j8i6 z1lPcWcPG>goscx+uk@bolp+~`U3nbAf2xM^(nmTt&bvU&B5+=-jIh8>k39^%l2%i; zoJ2>FR_>$*y!Vy-rtgc15JlAFi!)96$SQ@QWvj4fY42wnx?i+L5~%+*&iX2P|1AQ` z1UE+a=CU^<jtV4R4rlF3Jt~wdIfA;xfU-#MC=)P;2kv~IThS0;eQ$<*qx^2G-|+Zy zMW=okI$uW6yFXLBVo|(Jhm{_!ERCFAi=m{ZI1OcrYURdT!So%X1aq+aWe%Y9(J4<i z%lJCX7OMzZqlVFO6ZHgxUEp^06_A3HV}uhS0ORi^`K52_Rj7I0ImZJY!~?DA>|P_S zlQOpuaUStg8K`}AXKwvM_sQDl&ChZAcj(HQ*-iVE2c2{50GEzkr8^VCTtVN}@a?q_ z9wYst*OL^<%EnxM-lnXrxC(F9V{*PfLn)`ewslh1sIGR!r0AOpxSiosTGHsCl3Nc9 zO>}%lMSs%5;HtYhdtQ|d23*pNFOz|ss`WNv!&de<XE3{%4vZ5zcCIw9@2AsMH8qKt zj53a1FpQXs>MlM}kiO#u_#OGGBk14`6NZ9<qS6OWpgXp4{o|Q#?y2rtM(Y#4G(6f0 zR86x~ey44Cb=@1b)=I-U6A6UF>fn=c?K!SwuND8zc<w<u;g1JA$5Sa(Y>J=@GyeI@ zHNi8wgn+QG`wM-trA`YXRQl88ThJ!9duZFyJaBhpWOgCDnBBsWHzXxp_c7kC7!>3u zz~K<8#j~!|tH_sYY3H*ZL(;vG^T2XazQktk#BzAPRbu%9jmQ%72}b|>;r$*3;sbtT zR@*IC10$zNZ=C^KkyQgUoVkFhNTwsW#SI3k3+LxJXV>|2SMK{=_p95Q-}^PgSVDF- znaFke)Wx0X(??dLR-5n^#Y2<_gMC&C_)NV#EPK;XkQqiGCNHjqo-aWF)E}1z&~_md z_IGUg;ZtlRd5NHcp~C2dkW@KzF*h;yLNu%iPGpCtUliNYeh;63E6a}K8s$yW$U}I4 zKkR53@8Z_9_i22X$I$1u;9@Ou1v8ko>?mIoYN|UBFnKmD+WcyL;Oe#0TBt4~7?QV` zyweH|H&e#FZs22z!0sZ5ur?RniJzpth;Giv?^QOnpp`q{sG0NLlO1)R`@M#fol2EN zQODL)qy{=TV^C(<#o(h$P?>FUA|vy0$<oHs-rtKjdR7tZ2%9(t?#N=uPTLoYgmGJW zw67C|$XjJ2Xij&wI9N(!KhP$k@JHl#1>>b&@nm4MQLEwb>JrahSnFoWVs%r^p}qM> zHqSDpc&MO$E+D1r7@MRQLp4aO@MFuh*7Qc-7a_eik7J$|nR!v>_vgo_D~KNk;uVHO z=y2pJc1G$^`>^sA5&ISYn`^QkC+EiGv0POsS_yxBs2b>&9tecn7pB+~d9Ah%=VrPT z47s%BW(b)K{spb2Sk2x92AzF1!U0LoQSAF#AzB8M<X7wg8<N)O&?KUgCcyf<atHc# z+U5Mritv^Eiu9u+DgENmG3GsgM##Y-IMn6FqlMMR*NubU5hnh2K0<;B6=>A;55FYn znM_(&WE2BI=uK;LkZmRaGq~Km4s!6skyNc|Zyzg&6&Y;@0tMu+PumJ~bkd#Ug;PR% zC-$sEjd3$!F+3Cv8Wv5Jl$3`Irdq~bO1Gsr;)%ML>O;8=e_S{Giwh`1+rvPV;ynp} zm&`weGz4!*gwGD=|4sFMO!auR?Lsxng_uQ_6^|Exyu<kLsa8z}+V2t)dpQ#88(jQ5 zUVQo(ObABxl$44Wqr%gnJ8%WmoZJZ|GXVF5qLs}bK{noUCmlixW}&RPS+j)(7pSV` zqb9<%s0N;S4z3I$9NQX1+J{9af8fhKrLJe?oKhtol~bS3sQXcBV_wC?8yUf?WL^LX zw)cyEK5I=avtJVCrx`<C;A={oDjpG>Yphi)E51Ag!($oON3m-K2@bXOPzDL~etuex zY-lpvT?n=PM=9`c@9a`KN}AXRp}uQ0=mV93N|8(?w$dm@=2sb6DrewYA8liGv|=UC zP6tapqKk4$>yzl!i>Z++J0tlWOtYSrs6UnM+2KRRv%HR*9k@09Cu#U+6*Q~vqxSpR zx)cw8bh1{o^04|MUUc1IwQzV_ZzewZMVMdz5VX>tE`rI91%#6+tp<2#`&|CYyh|Nz z?$|$+oGiIb7NV$}$+A&Aq%n>k%5`#P&s|#{i?3C;A68j>?eja+8t~i#LPYV08ZR`C zAA>I%i=GeI!suZ}qWsByjRc@@k5DXS`E{*^Xw0RwaQ{0_e!q13UEsVlzu#>-4w1RV z?F-Z|XXP{S15sZG&)LkD(>rMo00;<7rvQKOhuLNB((jroUK!6Fr{yY!EU~&bEpxU| z3YWbsu!J?rHr2j=M7=txv3WR6-lc;#xN?_hetj%q6W0g%UpH@zR=-?TJ1&yB&BUos zgdP-|@sfeu!NCg|D`jzh`)+=*LlhoxMZ^f}A6{dqIM@5;EVJHFBE>1|BOkq$Qe;Oj z*Z#aU8%zX4*}+~~^|v@Pzgo`N7z8V>nA-KN$6Pkqqd@D{tt9@)*~nX+U=U2u9|u0R zXAbW$slQr_=`g}V*+>dFq)pit*GKAD`vYKJUbppUA)raiPdt@go>jkpUVL!3w6RgR zI&pvtPd&EW?V4<x%JyF)hbUH>0oROZ2AjG+>eD>6BDv`cG-={=gd(q23Ge6<XEr(? zoGmgG<uc;kN&s&9``T*S1fp-JFcc*ecFEJ!PZ$UnT?l|luq8;*)cFm8mXW0&>wFaB z85MD8{F?Ds`*3yY1$nv+%_kNL775UNmY3V=cRD90Hv(2c)^#OBAk${QXcfnaqcC{O zDDgwXaFhfcV|jD6_Ao#mLk*i9(;5|j(oh>Wq2HRQsXf~ypK@gxoWXk^V_7^27if7C zik#^$i-JdbNm&XZdvqkmcy4yas>2hZ2*sxph*!ywvYtj@udJ#B0CGyXD<9%Xil7LH z*D`_|>TaOP2GJvyXTVcfnLXh3V2?U?gQwk=Rx-<cs_6X<;V%7SOgN6!riF-D@w93r zI6adCI4JM1q;J3!am{54^>KQLV#hYtU@vCX!2|?K^sOGsc3bZ^a9f`!H++;UYqJo^ zRMo=M1bpQa{6a!ISG!|EZx7r0ou0{^ox(9OF$`lfGQwC?PE3Oh3`vO45Ml7O-i^K- z6l|ry8zyZF46|56LKxgCBaMv+HA%7Exp}oGkLY!x=*Tjc<!_P!Z(lgz^PI@Z9V}50 zbt9A+^#HJZ-i=64Pixv{N<P8^{3AKG5_OqKY5=O%DH?$M!8G9(+-8t*6xSy(wKca- zw_d|7;LE-MuV}F9^{$qvM-eK%^hKmE1F^7pk?{bR=+zgou+@3#bnnKKNXIY_cL!7e zeXx+hxd{GA{2LE3jH|5^&+zKXOAIMAF{7Wcq9W(Jxq0+$v?ebfg3Rv&jHk8d4g#+9 zq&ZC>lwxsyr0H6vZ@PbEZc+cMmE5BRm;sS%8l(fUSg`T9d^`<n$`7J3eNM8fOB3V< zn?O+Bs)H1ai=BiLsCF*)LSg|vo-^iW@5VU|-8~Q>y|1y)SdrG0hnA4gZZ!SVc+11C z8=#AFw9<g-%?OvD1u@bo_|1HNp7%rWU!SM*zDJm^9{`&v7zP#M0-vXJTp*r`*&=Hj zuTOKFu6>%5fE6Ge#HTlr_+PV_978~G$x<X&Z7~_1cV)`wVe57}XBqL3>yJ9Scp$PO zZC&4ZecYQ5pYmA8Uo2j-W=^+%$u-MwLdMPXt3T^GKzP4cskJJ^4hOBGr_FQ*4`)kC zlK~6MlnQQ0bgD@er0r&k71az=7N719Oi<GTSIWIh+-Uztd2SfUb1mh^{1TU|hRhaY zt!O^xElT9ii@m)Nn^qQdaK<DK)CHNEMe<)%qX%xIry0u;vq9q;png^~OIG8u$D*f~ z`NOX2a%O*X;4#zw-`onZ2YE*+l?>tRa@1?5aFs#(;J{A;j~j?I5E0o1G}1tu8dywX zs}y?vq3|IX``n4rRGNauE9GY7!MI?bU7Th?V?^tE&_l>6|6)$(J_dj%93Ff5W+*DS zvZqSR1loS5D@Z8};*_m~Q!5+32)=LmJ;jcX5tZ<LJ9PV8QHgugPM4{jLm(qxTEwmv zZevr(n~>}DHm0Ma^Gn@qr<H0!&h}^pvlpAdmTD=KY@3BsHpf~p-MBNemX`r@1`17Q z$1KFe;?);J7PgHFM}TvxlsN=@MWn!5ZUW3HWoFQI?By3eMDCZ>2|>$t5%6l88XaXS zw`B%<!3X)ql*tLMe;^@Y&Jy*@g#NjkmFdtLGGaFRLu&;}93A-E%mq5+gX8;LKzC~U zGOjF(D^r;W1Ea<DmMF9UEB%k)2VMARwb0&`d5!2gYflo5;zSad6}hPZWZUkyUR*5R zpNMcX=8CYDB>Hib%>h}T=B<gZSfo*GtA{WlLQ|hEkn|?3#+=LQZk$#!+y2nPJ2Ra^ z1;Bei#P;(5JPWghCNT9}w@>qiY#m(0ZRFkQ7AdJtpSr5F$!n%|(b12zciPjKSl_iK znR!fVS!M$Bx|>hUnI0OEWlX{cxl<DvOsGt2jVk*ur6=ep1aA4(8JNE@x0g!Gk!ZH6 za&&PN;nqk?F-NVUqN;-pwd;W($>LO|H|fDF?`GIKiHm{yH$3L!V_=ZCd|YcFn9aI9 z5)M=DQh(=E#9ihTkg6t{$Ub1NT(tQqadJDvFr}S_sK7CgVTO$6P}UTBq>+fwcMZR- zh{zEDP*pa~`tSbtc&Zd8ja%SkN!g0zs?U$=pZ^Ol|5oL`ch%*Fj1Yt;_zGQ40)&Tw zv-Z3-`m=+;)ZHLLIWwS3uBd5h8wJ4nePc#%&VFg-W#9RUYuoGlXO%@KOk+hS2k3K* z{rqy{6+@OEgpOTJKaWtV9SgGjh3)1?hPsY?#R(5@)y$=%3wBJ2!dGSNr>SgPSb7C{ zGQ;}5rTQlGb#C#<q&u;b29`nEwg8v;Ay{gip-{#9B++jm_a#-7=6q+(`HuUzTp%bW z@4$>ME&>FDlQO+Z#YBY}-9r<?u@b0MVv2pav<lO=5@A~)z<VU$=WW&(oLo&TnIe|H zdeg}@%*lYFs7e?|RXPHSV8RpRTZGG$BOxyo;~~~$l#>3KQ8AQ_(UFwTP}*qh;}Vpd z%yVU*`<C~$L_N-YdJH}pAFYk7ExWHYhf5X$a1z@-lte3bu<X;(+UjtoE2JrvKpMwY zt~w~kxQ@!c3kiPb6g1-`zXAsNm)~+<*nx?CWS>4dE@y$GtW(D*X*u3>ME2?_*=}0u zr<f%=!1?jR*pTTK2QrAoK2}JZ&kB{o^@)F9yjf{)PuxILBq86~0?o23TztZ&^7nBo z?eNT<WWp|dcK+X+^!k@0hnI8fBnzMu1vD@k$5M&N$ZG0A(Gd6HAH0_q9}4mZ&qTK` z(#!>P4BbOnPKCYh-QxFw6Gv-Z_~lQ%k;HgE|IY;%AlW{rIRF;4a0koiOqT9}Mx8Bu z=%XxD9`x{G8iXmZK-iFFhwvFf)ca5I3kcO$IK~?5GmpC3r-4vrNGBTKXtzg#qbu!r zo6(>!btVCqy|gp{y;H1S<gnoRY@{@cdmtxan&A8B=U8@!Da*;q2*Mv)aPqcBeqf2@ z7d$GT73WtBxzj=JOb?&2O3i89O}y%U%uo7f?3b%&&ojx&$*i!$H$>VfZX00pWig{n zNP?8C)@v7qfZ~xj_w7J>oJ)&|Sx{JOVL`y_jBYYVc;foJGx4)ScZlzl+4xG!F)NUg z7TI8+HP_@IRwRrK1%NPDH%0P7pvO80<;jVoyZf-WA!qIs<CuVALDU>HWZ9XCXAIJK zSLzCh7+v110GXKaf&BZhx;hy6y~gZb)|5Mw&wWmrA-W)b(t=E&HCB;cAZ`uNhX0Aa zZ{=Q02jyCty7Zj#<(k+jQiJW#<Ijvg|DnF*qbuC<O-};18*I<#TAIz23jU<N57yJW ztBf~<&98NW;*`Zyfp46NVv_s__evUB1(#0rTs>!&ZlO}al^etUm!Y6S;p$iM%*iR4 z+P<(-c6;o6^enhd_$ptz<N$J7SyKloSe#%iq^)+bbH<SQ+9B8~0se6}#KOm9WSd}h zl%bD=!l+GhqX3gHRKg&*!;3GTLKLAPCu{mOCF6N4GWRL0TS8M4I4%kx!+Tny-~AlI z{&P3TD~t4Qy|J3}l+=!te&_P9xj*kT{S_HdvPw^Fz9#p0PR60BOVyAL2CY)v+cgGZ zw0fh2Ztb!6t}$2vlWU@rbBii)alDRwkJ5&i%!s<Op&2*ve@R+aofN0zQ@0Br2Tv}` zsjOmkvuSQ#3ZIF|Gw3j&JPkTzbgeSnU6~}8mPU*k{7ARWaqWB*8=YCgG8V6M7IZE{ z5;ZD-HOTRy<4!RnDp3+5cF$vLdz>X~n{{MyO*A`_Hsb!rTZC%`qny@}$+eOPrJz%1 z?n!{lL`e0Hf^Q0$i+8Gg=X12yBpTfHW70Bs)EnT)9j>f0CZIO2jjAgf6x!Ql&^2?Q zvy0Gp#3<a2Mkn>`gv9!#SGW@v5Pfk!4*lX!;`XG<sW}P8LjJ;EAI<aYfk#E^C$L88 z`Z@~c<V2B)UoKZ0l-JTxvaPaDk4ucHwZUzRiNFgzn8N{%Ij_&3y-%4FFkW|!sHXwE zFVG&!66~C)B$&LuN)_rk{IuNxei|pT?{W+v==dwifUddDo}uvDLjB0O&s}IQeJu6y zsUY_1hHJ_Z>^|(s&&|kI9$8nxqK?M0U<a1|+q?A-3MNZYd;3Fpbo=@-Xy0dQyVAjf z3s~+=fdzT6E6V`bG+NllJ#$5aWB~7Rk?VVp;r=u-)be;kcfaA1(t&wU3`aY?g5agf zx?FC)yTT#=@wYq`182cMT=95W?PG$Q$TfDK&-{s%%DVo>MS{m8XD|=iPtts;VCNA} zqnXnMZl)zU5O9ShOFBwmoT#W^utcv%80;qkK}xz^5Rdit57D2Jz=tk~!yVFYMPEze zZa}6?)6wFniT<V5#F0YuQ}BVTYWReoVstQm;Ze`3;NB4zP)?x&2V}Nksy!b)8(cQ^ zH3xQ5VA}$B^hl2OHy)RHZIZUuGydu*oLw_PbHQwO;^;I5%c!A`F?aXNtLrBBE1FgM zz6t#W2BURwCRL*G`(n2z3&Ul3>%LBWm}^}D?B`=0E1*nez#_vBt?7lX?ih;GOU^82 zbJ#h>m5HT<B%88J31_Kn@HbsP7Q&6beVGPv98RTpfk_|c2i=jn7}Nsi=gN_P<pd9q z<7wGFA?rBsa0}DMUKtBepu@>=2lifGFVxDSpyaV{)sDNPz)k#jgsDk@Q%cAxyN<=H zcHNKoN5PSG?(cIWz?*dt;Iw4ss1of_kn&~keX#|8ucX~9XOZR=Y`Y08DX)LfnLMJ} za=VL?NY+7i=};0IiAF^9GKm>$!Hzi!bl}fq`h#QNI**e7YpCC1*OD|tUtKCvt#j(M zyyEz_U~3B@m*AtK`Nl7Y4LQIe9o#5?mbN=BHGR{SHg(En#u0q^{|8rF)o>jQ6<jnY z(ZOKB*RmORs(r~+z#w1P!&1MoGHDWP9NRqLF?>`!7!P>_k0y@<10l<QV;H{i_Z`Qb z8<RQv>8e~+4$gNcI)HC&?E0)T5x99|-)1T$?gJjH%b!j$0N4#!38qh20B*MbuE<<d zLjAxsxz+oT6A=-35txP+ATzazlOZxXEskX!$?M&kr0jNF(6VhKcAdKbS*fx*Gk(&i z7R2q5xh08xkgMzc<GQH#XRlPY%b9kz8kgeOaUSt>p;cWO;$5MRUZm&2-U{^=$9BTJ zX)CQ~16UXp@Kx4?uUN@2<W9u9z~CSGA#xUKS%Nw5qMLo14Ie=Tn8ub&tQ(by>(%B5 zC*}McZfBN~19~v^*nSk<SE+uEurPJ4b9aBP{j<V@O0`i<-fvom)%sFkxNQAI)KeT} z9u!ffBHVK3LB`4yT1C^lF!gM{Hkfrvuq2&g<Ug@)X}?D0>eSg&8Nu|LtynvnJ{jt7 z3u>y&Y2PxOH&jw5_kI*^)G-02)3UZY#x(k*YXRVR%U0lD;<6|KUSp2@-?_=1!7XD} z;Ni1L&7(5TXGtBGYT6eV=EHp=HM5<NkMZ%LvY{=vB6Yu(y$$P*z->7Za*RO9?2K)f z2d7NcO!2EB;b0O08LU?D-<A22%E)z@>e<7jt&8yYTemmM#Fv4<4VFZ@><S*{Y@m7u zvYc|>>VrS)eD}3)-&R`STR3zP6nYO~+W~0Q9LA?Ra*#Rn+2tglLO5^RF7);%QOM~M zyWQ(Eu=C+0r+{#;WMJ1pRb?xRjtQ&ZdDCkxOBa7AAsf-#L&`-$vTU<v*r!b#2|qOZ z{)!z%L*X1Ju?I~Al?l;gJlC+Ym+S$OFt5Iw{7yClz?D_ur01Z{P>u@1X@$Cd8C)J3 z5KsQ?`-lhv6bHUcdZWYWVrL#@#A?*AQ<>!SukX_D`BGUakiSO%y|vXNZE$sR^ycjb z-9@&qis;7!dSr#AU<fNJ>e|{S0Rl_@?5)iTe`x#7H(v$FqzLiv%4|5b#sA*R*%N^4 zac5?L{tMEE=~u`Gc#GG*>yUJRYI9uP2rSyX?j2*;Jq3Jy_Htf7pS4fD*kia@J22>b zK3S7LKP`H^Tn>5c#7p!4m(19Y8p0ty?W@j!`jYOl;JJS68@||agr~3%$|yGB&8%&1 zmR7}8pi|EjtJs?1T6BNTeL>a{*qLYR2-(OBs`&<i3zg+r;eYg?rwMklO4MS<qH~WO z=Zs584v3iDWOU|a)IQ!f>yx;aHr>8$r{U`>IZaM49HtGbGHYZ$+*L7)Bft(GG1mH) z;G|PyC~xyC?OU7+XE03gmjxo10*0i2C#M*WW5V|{)y`7wI0z++43@O(RT35{j|CIL z&Q!k}iz7Sc%v1F0r2w$d%p5VJbAy(~E@|c79N>;j1%@CpPp?^qLup8bA*rmHzqo!O zv14I|<Yo5e`CG(sRO3b;O*1IYe$mV{meSPW%A87{*aI3(0Et>KedfHHBQxgr9?mwO zF<EXM3q6}4u4HWfD*aeHDWFFsBd-IU60r(jvVZ=TYvJIRTE_$-t{dlfEv|*7j$pfE z?m6+8XK?T$P$NdyD!k*3KN^n?G_2m&T&wCT2r{U*loK=1+_?Y6D&LM^@d<61{fiB6 z_J6m;#jYon@SbpJ?oPwliD-2D&Qo3hKY{AD=|urZr09WC)*+C{v9|*O=}p6%d;*o7 z5R<z>!!MdCq-aAYrxaInMV9VYBg~}ar}f=#$*-M0d-dt@3?%#ed1#f6dxXayvC6N7 z)dz^iqjdV#hB0rRm;pxD3Ue}^rog>YGTnSrE6<jd`1%~Ti=s}7MiG|Wm5?QGwn_>f z;Qx{^#07FWiMs-snS&#(O;Ek*WZ9wttz_5_C0vV?f%w#ulgO-C#!L(mH&YLp!OKIE z?dR$~{e7UW#!}@=oS56s(Rs%zaFT$)!%dE(iB)l91gp>Nl`HrUEiuGjwebVSJt5g? z5IfUOukjba3^04B^K55wlDq-CB5(%BsPZKtY>h0BW+r7u!@NHc_&hA4&-sGX`}s{m z+l4v{AW>CT&SnX?<$ONxi2l~KW2l7)TPIYqcs_f4t8HYo|Mq+?tykImgV&Uw*lG8O z)#&9P!3289x-D943`2S3H@`)<%LIbX@PbD)p4@^;VmHBTYI7-_c@52hAfp%T^QU?@ z=VwK|HRml{IfkQR?g;y&V%10~+iiss?({!pcm0<W6{DL5iywo4(Ntk@e&X!0YuauC zsiM8zf>PTkNVYj~cA{uxj~?Ch1V1pJeFZA)-)W;cF?xPQDT(QK2Kq3C656sdF$SsG zgk=a?rw6m;nJ*8(2xNU{^OFKyB46o#{Q2SQI=g|Mm_t>)^PWXp$>faAVgB^E1y@F! z*a32^?;A6z?<ti=3Rfb0P<?Z4mrvxxY^IsGn7WBG_KsPrOG1NbTwf9U;L=`!uqh2c z*(I`R$+&YspM}_*%5hYk+PGyx$1vc!NxF_ya#J$ANmJUJOCB*%#TDr6_0MPj5Dh$+ z`3E&^T~Z}_dC3++IqW%WL+)2LbU3CkE9<L(wZTk~oRf%*Lr~Dn?VhQA`Q&|SBUe}_ z!OSveNm+B^q{`RFEmruW^HfDy1ydf%=V>djazPQK-<o#>D?Nl0gC<0L3u*JA`y#-b zFntS6AWLkDyKTf8N_Yw7i)O*yXvKKN8Z{Ruz8l8oxs3(TS1u^CSo~P0#Z9b<m65P@ zc5kRxm7bAv?!BLNuA;-Sp=rQNMQk@*pJiW-*jnO9hJ|@GvyjTq1%@>f11OZUprcM; zABhm!qxNik(hoAVBTI|C&=<fEGt?E!n>0`f|ACEBlE^3>Cf)J=_UunR#sxsZBn^Rq zjkb=CiH~Uzu&%V<@Jz{Uws$(5p<U4W_FtO%*<eA6x#Okplb|Fds~SX_Gu7hdm-~zn zv((-_bP1sf3-batWRAX`)brdT>@0G7b*|AdU$^z=dQrcPI1hTqu&{+cp=B!(SdG%I zKEj!|{yo_twEZL*U#~sRpF7^-eVb7VyTIdtB)a1f<5DNgD<rX{pF!yJrAWT_?%`*C zrRmkk;9H_JwN~m6uOL>_gDnmUT|whO6lgP_y1(jX%RBYT&^?Kq9VJ!xKqD}#61ETH zRLL5(=1=SxN{2Q}X&JVQYa8w{_eyX}dY-GPvj=~>kF{jFG@E!49eb@qR`4n7G-7Zo z$;zab(&gVbatxp-xRB{^Q6w7jUJ|O{<(Ts37zD}i4_Xv?#a^sB3n##idvP@XL*ToW z`cP!_hKH}IXid9k_<1V3(<@8FTc!#Z)%4*0S(_QNw90nF{rZ#dyWdl){<4lF(bU^k z{Pfu`TFaD>@z)ydT^;=%8N*73M{7>gVc;edl&TMPOp2o1oGR~;6et8ra3m0V&7Zz$ zYpsE)Rb=}zteKz>T}ZyfaPi?3eMKj$@^@{L`2=Ky@YuwgcmEBTR2*>fvH8SAPmn$A z<*NFfleJY9mw)-D-ZqPT*28(7V~Sfe!=JtN^MgyyRupzX;O4Ud!Zr?Xb`3lTmjXX@ zM4s&e^bUDXUO#RJN0qFO9aN(o-k@BuG|<`)F<b8h88F|Gqtgz1z4aZHCDTwHRpn2T zwsL^$(H2jgH7K}<Z${!CRltHkcq+20^l&#MY1+KCc#(OStADg~>apR!+<NXL0|BVY zXjzft$FYzLRC@h#;K29E5eT$p2|ZAr`G9dpluO2u9<|*5j&&_5+q_!BfKpc0r<?k3 zT#hkI%a|-^3q=w_HQM31-|DsRdJM5DBWzf}CFAI#=Es$zbqQ7bmBsDxi#X}eYDl^* z&pxuDkHNgcEv`%P(x#~Y{iZSnhpswU5Sjbd%V%L>vDNdGcxtU<q-cE%nZ2Sarp4Df zC^feoP(0Hv_Uev#t2%poPWJbIJlp6T+SvGdcfP)TbCOoDZAzDTt>IVQ!2U@p%!PJ` zGi^FR^-D}2BS}}R_%TZb1(OgCu_!hy1-gl*-c<!K`HOw@9(80l7Ru(-T{o`vQ-(@( z$Y7Rd>X9s09;K3-1V3*U#j@(%rkOppK#F%V7pal#51whl8@#2i7>fM<4P{>RZUblQ zVQ~(OKfMjhp8DL1ZaBRq<1#Jl@TpM&$KB}mkD%b~!s=3wwL<&ZG{A^%9x~VI=82ol zDhVk%xC>T8uhoE_Ii+Kx`Xx6)<UvL6_<;!{FP)46<n25zP2n3`?Xw$8bG1(@Y5B#0 zJ)aLV*22^_?Dkf(!4(Y=Fvye7OptlqpQ&o%W#=2;&zJ);;KY&OYTx5k?^kBO$)ZXu z50g?mMRNns9@D@yRk5Ne8G|OPCz7`HDC((07m#zMij-+m>A)}C-Iu71NQU@Z1R|Xh z<uhhapRa7G!Ch%o6yn?NBm`+HfA@PRZHxqG4-{l$LJ3AUKYntt+b9A@7F@$`z8tMq zoapaA6{Q~H3e3L7dR(YLd~P+zm$5uW`o~L3J;k(`Jtq@j$<Ax5{!HvG>BL>CX3W3& z*Uj$I&?GDb>=Kf(s#L!d(fNf;PUM=pm=7Dr%`)}{Dt)~zUkH}R?qNkJ6yg^*%|VEJ z3a9MHKqjzCay4r;(VgmD1f!sLK^0=DY>Y4p!l)_cKp35`s1qyh){L|1#|q0coM|PC z8LsRTFG9uS6nG4+8GnAgA<Ihkg{rmhDr3U`DKI+{yxsqG!}nUR<E^sV*}GxtaM>f@ zyb)Nme;sv>&mq!VoYN$GTX33@J*YYWLg|FP3Q-mYdL8xdY~x8<2$ex;iVVz2DB<q4 zyM3~-)R`Ig4T;klh4Z$kHW`FnvFE<yB-Py;k*z-iSR(^{{d%lik}Y$+Vp5GfLyr0E z|7$8*HS|3_5!*IbUC)4~kkq9TqYX8AN)m~r=`GhfL1CRh?cx5zlGlYl@QmXZDdx+` z1w?$&<AG7aw#TWl%VrnRWsWbq%jpk-JzIP9cjnjy+$R7UnRiiY&HIjSNE$If6M3YM zbqAwi6?>MO=%)e4fIsgerg$YARnX2xGyCa)k!}Im_5Go5QPeB0jg^;mWuu@F0h7mj zB}S1SZ0Uz7?6=>T(>Of&LRPx|E>R>r)WpBV1<bp6SNX2L89cP#e#3=RHQvWR-#3B& zY%Q$u3tyW=s{9x&3?MTH75zAHwO!cT3ZmP<Yp<X(7u}k07TSAxA&uR?Yj>_9FCC41 z?6B~%&4#e=NAnpH@bH-apHcvrKQ?{0+t*$%gmYTEKK?9CloGwl3kl(*0#Oc!>WUK; z)oZv&<|L2rhgzpV7&$$&V+gZ^EICC?%x7mQD(dQ-BYBC|$03I{f@G5M11M0ihFG|2 z{pQ~!6dfW|nKbCo{Ihb!2-a)-`|~TN({~@X&mjf|`?K9Q_k`#OH(?*MW-8tX9ct@9 z!1u_QTsP&nnAo@7?(g33BG=CpYNzW%O7t4_L``Log*r!Zz07>$G)uFl!FJ+G^!4!? zH6@0(i+h2`e$jtDW-KWEs_{-;9N$lOzq!AGx<`{Ot7@BS#hW*2r=q+uWFq41&gH$F z?2}^VNy|*4#7m6N3*~;Xd~%^J^2ToF6LZTSTtLyYt)uSW5s<9@T5Wo;lc9io#$RRA z0jL#luHY4{5NLLtXI8#h8BwIC=>7@dtQ>(Ut%Akb&Dwu?iL$Sjk#)EV=P%yopy;^A zpAvee*0lt#bvCvh*Po3(CLfw73?F7876F!)D}985M1q;{-%QM916hK9R*nIXc1R<- z%(r+E6lD#CVq1*c(jvJjJv|M&J=DWEFUp)Zai~XWiYt1*8|jGKvHC2fW_ds@-fEe< z4gA}E+|RWHfr4(MT|$FINXoyu@@aY8wvs@T4$#PsRaEc`W?pS&Kc9%Y_Z&jL#>B>^ zE0!o&aw#b*r%hP+7flv+urs58r;%JILExJ>zel!r_;rQL`}a=2*!66?w(Ji^508ud zp9L&{Mb3b?ln$#^gN(RrY3xa&vh6<S1o;($8oZc0ezIKMaIUux8{v`Jj-EUkw$=}t z8WPR%yDD92WP0~_pYV-L6iwr+H+86s;Aq0ltBqgDvfx?C(bC@f*u4%Z<WV}`BHi=< z0ir=&z6PqSt#R!lg(cbVjUjU!AMJB=xEGQSR~QV2bh|x@PKPWLk4>qI=`gKiEFfkh zN`|!#F+q9Yv@#Nd@8+COj`%lU`4Xomhg7Agr)62j8?V2f`pjRywhO*OD^1ZWP=K|P z$moJpsa7hLw-J8Ng4dpfn0*#%!t2^Hbqi**5^XfMZ-2!7BhO?qXEHh9@WXpt-|A6x z2jm@L4kSfRjK8-YEM!ZP#Yz}nqriA+Tj&icGh|sGV+ty3==674>Ai=~M|}1R{|nYe zBUVPM^am?+I_nHKuh8ocFgUdFSmu~f#<07~;KrsHlFGA~R@Ad8i<3hJ<8w^4;Cg?E zJvhLfpF_DoJB!AXqsW{iXTd59^bD@ez?~jpKlqU9|Mv&HkD}7BC=81{XTCaO^V6@O zR=0Te)z7ne<tC=zr90||*t#Yw0w4(9r}I!*s1^>puq<X3wRIxcly%8F;FUqwAt9{D z$$Nb|g8}`1K{wa*az$j#H82`<@b!?onoB;1&d?^8to5LzCyC<@tio9jMFvQzp%`t0 zG7+(PR#!8Q4%gX#uuf5QP(i0*J}<fR(L4O=-~CO7D<i;TZN+!L^JR?D42CNRRWBuR z!{LZu`#b-b$@q-3^E0N?2`5JnfCW~Im+WHAy>met*d}A$=Jwj%H(Cornp=;k--Tzc zu^}os3^5czU_|1!T1j<6Wy&N7b$oQh*T4R?6c)_$B4|V8Y;JDw?5$hexPF71H=p79 zwJVHPM+|#iR{A||T-pTxsU@dC8^d%_F<I1nbnhYWefJF>-2I57!vl^_PB=U|!rBt0 zGv4_2x9Jv!)zKO^u3u;E+BJUTSAU6DUwV$y(=+z>AM)<|AMo+Vce#J>KBuQADbZ3= z12nNrcUkBs=ytR;A><N8W+hhf#H^Qw&AZ6FG^5P`06LcP#eOV}rp0o3pKP<7chxFg z^r4ps0c1Z70X$j5*+ywgX-(1TGM$c>XxKQ~pkQe^Pz|Z1Qa7vkV6e1(^GAEXgqW3W zs3;`S>Gb4~)00CKiY(9RcKdWXJv!a4#0KLcteW<&OPcI~)^bY}m`0m|MLFZG*Z+#? zcueCJDN!}6Dk8#v>#Z?wfA4*X^XD0Zevggy6}Gq5=yeNBpc*BiO{WJuh60LAr_BA> z%2z8XFI<!&F4R>M5kH!jOs6y6`)J19hi44?8LOinD}ydYo}oM#6O`I=Lnk+Miwu*A zbg@@ZTTi`kiJHe4w6)+huAXstdd_pd@J|?yHYth@olcM8`c;N&J9Il8bhyt-gRjMF zwcb-ZPwhQUdwfr$iWPLHhuU7y>Ginr+y6e94tn%f;qDw!9=^}~Xpic_9m)sySWKq$ zW>fO{0s=sYhN5;3SJu?!f_gH>-@Qww6zBf`&AC#zyu;aOK)tn1_l1`kKJzTY%Qxw4 z?BaS|tWr{yP*v3P5^rnK(|1ln0;%VOT(2w_y#iyT(_&!=C7O-g?`q$WX9Ld94OLZ% z_ir+?++eb%Bcu1B?mUZ?1)3~36nRYe3{QY_%rnCv_YAw4=pSSmRaMi`8K*}F+`PO_ zmKPXfI5|Gz<nW<@;eJ1<*(n7tfBH54&OiKZ7V|QdK<*tJadvXV_;{bM{K@}BSxUZ+ zwKYlIuw`tTII?efhRrkXyhmMl*e`|#(7NFf9ur`WDu)gSRzevfE~L=LkQYTr3^h`E z7w*&P$w^93Ol7d)`R;T&j7B3~d+oD)_O(y(+;g{BUt5=i&df0E^titD9KZJ2=b28Y zoSdHW{s*_&KRn^y{e6y)Px$JW|CGsi%wPT0SJ>U%<v0G$Z}Q5kpW>zM%ha_b(*EM{ z5&c1r#bQiVmbkDs-1+zccRs$){=SqV@9pn#e0;=wKEnm}%Y@SDxTdw8{m7_ZydUYx zs*6A%dhdZ{K#8E47pU3}545G$WgFM5eUU9q;EdKBknt1%JV9eJ87J>M#vf0P4v2L6 z#f*`-MzoRrGWhi@H>+4i#&BVgXie6JMQ<b6CZ<-FQtC4vpQX){AW1;icrS{EEos$w zOp|4-j5gTX-r?cHJzoFjSFm-R&TD&no1go_7pckx@4xpwoUMYVGH1RhDa)G0qGCLr zv43#H+wXi70EZ&aGP>P@wb6j})gkL^EA+Yr-A+b#)T78uN+gP!1W}x%uA0SJYoWbs zXPGagrSEh;<AIt}*Wy*>xefqB(eGspdIi1Q(CbLDl*uwOlcRKww+=NqWOscAs^r^W z`#01pzsmM-ojfmCSzTwac7@(xjm(HwsPbS46_i$D+Cn`9Ep_XuN>8<@DCc8zNQ9h@ z&**kW3|2<uD>-Uom9DzUMh=DX<O*;#)qKwU;R)s51MGwQoc*)kMW3Bvl(ehSK!&Kf z$xT+|DDrB~`r(}N;DGYG-v!_Z#j(;<dBMEjr{3CPwz7fVxWu{hocoH6-Cee}b{P&w z^m+q&gFYRdOLn)`*xIp}TeQ=tLMk)jy6n8P`OR~UR~g<pGDA35i?xo$LO_R6UgUba zn!ID^7g|ah1CaJkn*L@=;jJY%Mw&k<g;kQfaDINqpxa6D?5}?1%hYwva5yA0hT4me z6nVzq`>o&PnJa73&9Ram5m$CMn9auAy}QC<`bGZykN<V*1{j}%w#;#Rq@0qLF<E*< zFFdDdI~SVuXw9R0ZJzsv<rXU6DNv!LFSg#!Lb;)iO|e4g&xL0?bn=nR{?k)F`shRc z#qa%dqL-_*qSNWIzOl(O&pg9xpZyHaJo5}+{>wk-qYpo1HeWECP1%2NpZ&ePRQC6; z|MefxAM_cmu5#(hRkSW75z$NNrmQ^HYP!84TRTIZd*KE0EKg36++XQ+F`La8pP%#b z-Fv+G_Ited{s$Z#9r5ttL(a}lsq3l<yN2)Q6R=WC>thUYrt9X~o_@o=$d49VBd9cm zL1QcBcC)36oKHOdQvmP;jq|h9WOTe1u@dK-_&>Bv_yrH4?X7e1GZFYg`yYU003Y4V zH}O8=1oi1KO10Sn*`pZnxUdo8bPc1?rr=yva&)-IgL@xwe6%mBYXLZ{t*!IF`#=02 zdF4~D^6hW_6<dRn{;-ci>bI-fa(X^t|KTb3?jLe?KB1~aWzW`@s<KRHa}JLhaH0UE z6?tapbaJljtaI)120L48^g21cPJy)*Rkgs{y3vn!9&atKmITMD656(|L#(~jWSOE< zWGLk*%Q?rvGjtZLgQ|wA_9#`;TkCSE+yD>z)h#xV%7)I$5UcyLO;u5AO_pnsDJFD9 zbCpP|IvYHWV90_(8#<R#x1yUW6Us#;-@7oNJf-tgL3l4WhTd>Me`SEXahciso4DWm z=NubHr89EtP|n5n1Xv};rPP{E5e#5m)3qX=<E&%kYNqoFJs&eW+^57-A%=ESDf(G~ z>U4Rq*5!_c{*{|t`?+7|+AE)8T|2U@hjTfl)zovDWLiu3Xf|6gn^jbmrL1eANHfDq zKSSY}&P&RL#nm;LvJ^#!tt(fh^>d03`?MJQl;~EaikK*T<h7=*YqBg8W)Aqh-}^nZ z)(nTka76^*?rv@I+NWP()Xi`m5-q*b?=YQp$+hL)hnrMY`FOAVF|Yl&L!Lb=laD5@ z-BwC$R0A94A!W8ZaM%!96Hy)&m`NQ<DOIShQAr>wK4TJBSE{L|u(sx4|2_wM_xa{G zzRGBIjlBnVDHrqbtOm^h=a|o7v6$nm<)8iTf6vk35x@Np{}Ed|yX3hD8kO@Y-d56z zTRG}#!E|CnS4NYnfbh~5doUQVxwXYJH*fN*zxpf9HFA!{V!>=S<M8m14?g;s_uqSu zyLa!he{d*`vla{H^EqW%Qirwe;)tq}AbS3dq;+#mAbR#qpwx$4ofe^xKuA0J`Y8Z- zg2w6bA$3)vO_pM4k4CgE5`)Xc{_-bjAyR+g_14D&HQ(OH1xI5k&JcksVd7uF6lojZ z+Bhn7rEGEQ7@waon@++h2sl_>+u*g&e3qa8!WZat3Y4ER81|$J0YZIr#>z^U>({pV z;^$uwxmK;2FG|kOXPli+IXWKm@bHw=vkBwLjIxq)u|-)iUsRl)O?mU(yUo>7Qro|^ zvBqa!+vCNTUPh@YMw2QWtP?e|EQAwM;|?$0PLXRVR|=$wbMm`$4(n<bw&Hxhr0(pq zzjr9T;Kvh=&P&wCM~qfh+1%P;duNx8?R8Y%$E%zoZ{&V$?6~I~b>)~%E#>??+!HO$ ze~JM`cO7kV@D5v9X{M5aG9e`)uu2Q3$du$Tti1Rvga7<LXY1ZE`}_Bqe!Pc$@D7|j zMAr`G70wvyqTtGZ@}JSa@d9pMQr*8p_3j(=?|#Ve=#c60DRXN%C`&T$sKXq|@Mt^7 zPv&flVFOSP_UL@`uQ*eNQ=Q|Af_h^M{meB6mpAEMd6C}A4tUS$gZn)Am;X1icizT1 z&D`W1YsCkh9xI>zWp-bDi7U^(Lbt!dXl;#4>ucm)9lAasRWrnHfGz>ts;X#vY{p24 zA<y%)pr4(cvG?FXFfds%2u5qZ_{A@>wXp$^S_z||$Z`~xdTo{C<CDKuL;u5$Hro(S zEE*bUfI&<^mi`>A*23Yt#C^oDhvXTA?OR_<X)OT;=hOS*0LX$fpG`PAe3+aCU@76T zEKBa)yT|F-84vdM`PS=iva@{|qYdlp>s-BYm7Pml?Cxx_v$e^fu2U&zlu9;6%78na zPAG3?$vKLllAba2`h7MwH+kX37vb;y-83g+;^f)+grlQl?%ch{g9m%uzjv2=ckgm? za?1I*>8z?$5RQs@2oYrZM%%v$3HW#?1Ov3<5prrKR2iA40N_a)Wx1d%OS-)*$cUQ8 zb8n3$gZtPuCE`xC^xD#BGYU%!(?wA6_)S&x@>@Gg(>NssHp8`ITh7&-pB_<FW$P1) zjjbJCdgU{$j3k@d7=v5PC~{HDQ+Nomb)_4cQw3VL+bJ0Ix?H}rfeA9bMk}1POlLEW zPsZHaJL3M{2?s}KoR4QzRnr8esx0^S4!Qpaf5`9u!5^k@N4Ln>SRHVAXN@bnYjlg8 zZl|DAWMWLc2qvAo(Ctr2mcO;aNH_;hOEV{BhRkMjhND%=a)Ih>V4X(UnzPemX0ti> z@82UU0<+M~+1yxXYjZPbL|Ce-qOy+jiDfoEMnXiObr!^+3LF}*GsrS5;&EsXS&Sz@ z@`|J9>$O6E;pZ4B#Yjn%p(-tPWpS0o+XaieACMo<SpUsmlO#t4@G73)#yMCl9EbZy z9KH26+xKoWKR96W;m4@M1Jvw{v-uotEj^&Gpc`1F+STAJs-9z~r_>+6N3Au7+E6KJ zXq4reuD96HWz1s1&^m_Rvs+p|{5OBZWPE_yxx}?+ud%kZMbRs$Ys*|K3KL@gzR6&Z z8S=KBd(-;A+wCSJ_-B9iXIN`l3uU_T^}%4kFaF{$O5&q)Z99Y3Dkw^7&d*Mlo(FAm zVaS4!_?sJ%oogB(Y28YIBLMYSV(grxyqZ`cq#A>o07CPnQ^TefwH<Q>thE%KZs<n% z$=|uIYtBwjnT$ohq1WqE2Z5!cDCiFc3|B@B1}pS>eR|y<{a%mVt5<pL^PlEZFTTX( z-E9$4Dx|qprzn!rY8;OZy@c;$LiyxqIOOW(T|WJ45HqV|5~roCDi#arW_WOT#K(6& z=A#ck;`Rq0aPaUUXXj%U3(5JY1IrOZKq3(4md+*q@4XGz=V>p1Cu-Qx%2NjenrEU; z*5n00&NyF;@wfhdd=RjC&oBScY`x4&Ew_r52R}_+-*6N$My67DA{q!s>{Vdvit+hL zD1nNHQ0!j0#<S1AM7JYV1&hUkUa!mQieWmI-DoAD5ow9qUaW%=Tl!z9W22yxXRHiX zxq4}X*IvDu!WoN2#eBZt?ChMQ({nz$cf|S3ax!+Do}MwAO@$_0RNUP^<^I7b-+1#Q z6tU@#hykq(x@>Q(aCv);;h-yZ&PoS0Ik{FgXb5j#+d=08%6ftBuH(H96$}<#8yppd zQc#Nq{$f7m^yrXx-+n8#GoF_<RpptSorUYDKxvGT#rAxB#`)xo(P))S8?^E`4OyWv zg(f$UYiUN5X`$y+PXq-ufLG)OI=zgdn+1c{XSlsC;SEJd8VvUpI4?cNCnd8*O?_nt zb!nZR)^xPg^Bb+%E*GfNG4}pl)ZPL5{sXFyJ|a6iz*KXTb(r9tmtGQM9hO=t>e@3= z9;XeiKS)eV?me%fSeeY|e*0_8&d<r7y+!ZpH99+6jE$2-Lt|2xNAIP^x^5Yxl)>II z?$Ox)?(hCC#u!#tR}+JvwdR>;p5f-rn~!WC4P|Z=i^ZG|-g}oA4%6B|Pz&_Rg@#p+ zb|n0p8u9zfc?t4!9&q7FQ377kzV(@AwP?KBN9)_QiV1RZ%}!5#I3~n<PhHncr_&{X z76I^NJYFhEjtZy0_doo17-Q)5`mC(1u)V#_v(Me)=RW^Ap1t)P+uNJ0tVmgNQ520B z8eCXQ!-(&BNxqfqB**G%O{XXr4F_D>-s00QznB=KvZ|ObN)~0w(dju49_+Dq|2`jn z_#q#C_#qDu51G#vLF%|+Ut_+M4<*b`0l*V9+R1zhsUtQ<TCukH`lT%%4GAp0{m4sk zk#FUnG*yBvW8QpTl2+Qu2azUgA16&=7v*+CO+L|Ea?)3Ra+*2=M#^h-ZG&fSKFhFQ zkQs^Xm5Vt>uhYq;lbtr<`v$K<C%UX@&ZD&oiC*IEnW$72jCImg@E(n0(9x{+dtBe? zWAa_JR;+AYVe8i4!&=RJe#red|9igkt$n`p&OP4w@PLzZ>CRSLhpR31#4?$c>>Zx* z`a5?UrwHg2Ih*T4uIz3w?DkmS+(LKOv31F8wqQ<9rpmC5LMZ_YPC<deSPxznh`Mr= zRY_SnoP%;Y!4m~#z!*hdbWz$cpU?Q}SN??EOIO&~+!7s!;eZu}<XKK;G`Z3kK)Jxq zv^vzeFlWken;O!f$p?{^E-}6dvl>oLDi+fzv)P2%V$Qs*sOp-slo)%b)0Ohk!7ACy z8+1O`rPuA!Eiy6>xdnfGgg@A4@y>VA_wM08yv^C+A+xIF%vmz;q%uN9)d5eY6kVWy zdPe`Rz5;*sS5z2gMzfb2$}DGPeS_@AvzQxK&^NE5)_2MKUC^H6<5S8~q-Ud-rj%lR zeLYR_{r!DbS63+tNk}Wp5@QUvZr!5a@3*|S<>yB$#dLhm(cwV~FNj`2oF^Kz!`sJz z`@i8Kxg}1Fe8@G4jEOWjk_>m9l4K)u(42d$fsZk75##ZaTVNfvo&QLokk|_(3MX|s zmOK~A-(+T4>fDoz`1pLx!NEQset4U&f8!hcvw!wK2F-&Gy<V5mXoa1f9d>qhxOVL- z&p-D(SFT*<+O_MftgJLGz*P$*1}fhMiDMgHi^q@M4FT!KX$-?bpUw3(UU}|js+@4n zv8ZZhvpFYc=ZvRQ4j&%!;QoC+c>gy02m2fzJmh?Q{uBT_QNv4?w+`)OO=yrJ0ASgY zKjNv&4$?!AsCloJfNgTl<37TJ(~j4-_qjyww-N)}Mt|wNf_LC)7zIhVnNcogDKQWw zi(`Md!nMnrY_Aq{1|9H@42O4>P^ejs^BS!}Bco8-827CJZN$^hgU7G67zHT>BrygM zWPZIvD=+MT5n15iL`!|PwP>Bu>-D+3y}|kyNBqVwzW_?g<MxlneCxY+`SzQ4xxaVH z*?3M>+fXr)E<3YD#m5hh_~_nI0CyUt{v?#TX;wCN*x0$o#>N(-l~wYh!*FGU$+FN{ zP<k0G%9{DyGMmn+N@>lS=Y=eafKpy0jBTt#wv5LM#_yc+{<~syv=UAJjm<SSH%4r% zt+Kwh%KF+G-ENm6&oNmB+DI0;5-_C#>(T(zbo<gmZoSm}ONT&*R~ozqr>GX5s#I7l zc?LeqQ6@+E3|}c}isT%w$e?TJ-MT{d{1sMy<#QMXwT14a#-7h%?*Yf({U)>h`<&dn z%k=I8^n8x0D=Kf9;!)bu0SYV`HAM-Xa)z6pGrM<(`paOExSH0Q8J>IRV<z1pb}&S3 zk65|(EWMRgwl=o$-g9~?^!?V>R*L@@MM0kD+`4ruNeDmIuz5H;Iiaqq<oT!gdMg?6 z-?j0NBgU&WfYvx1KFDwz6NDh0T)QX{eQ_Cz-fLtom68npWHf(_^O51GtwkFvbIAp! zg0Sv{<i_@WsH+;K%fJ*U#$(A7*n6<gyYIZ8k`)D@b|?xFMp{`}VP|KXOP6-JeCZO` zZ`|Pe_3MmABeK9E#WvJQTOqub{I2*uBxYASG#Yv#T)Dlup4g76EGg@ns;ZgJ7o3kL zPXWM_G`#mrr&BgIHYL986rD~t#LAZeKs)vx4RdQpK(knXzgR%qWA%~lqFs|rvru`K zK|p%)9|un4v({PW(=paoh?gtbtwtNRx7N74HDG7EN4K!_LhgfiNU4|i7?XonIIl!{ zHc@gUdF^y5e5Cz_qR&EkUR<QS1MM9KN3Nk$XfmxRvVa^4Ij*w{AhrND<het43?>sG zv9><o#pf^aPyg}HV;$7B<MeFK!@~*3Co}HcJL2}8hkShhkdw0si?R~$DNuanV!;BK zOh4p)(v_Ee=Xr<S%h%Ywe2qcu_?TyCCDN%rT*EqKrbq1skCL1MC5>b<lTlTrG_0vA z0SXJnd_Lx2PpTn`kTGqHA<qkX{XTioL79xfaKLad;L`3c8yjonq1j7hRYC(pKv8>` z&ODQo6UxOowqBr>r^pOuFu?Yu^<rj3RK{o>O7|SN8s!w3%IS4Y3PqGo+6`9=0X4Rh z!Oa^CZr-GaW>ZV;f02P()RZ6YGr99FlXu^w`sg<1<RRVp6z6Kjl?7|boh5gYl;}_> z=P0d(s>IC>$d3=;j%WP!Z}LD%Lf@af^&$W5-iKsL;bwDOR-{FLV`GEoo_j7e5_()* z+d9i+GL}0Wjh3^2!*Tx~ZFn!@L585Ns64(FpduhKumVx%18A=Wv7#XMPms!;D(qe6 z?~n5Rqd|||P*Yuh*pDRI+Ti=B28hSC!bw)WH%3@C=g`_F&>)6fhv!EC!QO*C-h21G z^qF|>(TI0@UDnpu*xlJ;YjcyGogH3$>1A%*xWRBRpeRJeG-;8jSV5suh%*Am_#GoC z%rnFK%7Bg4m8SsUNgLDY6z`q%U=NC8<MCN54<L?K+&#V200D9ARZs<tFLJ?iSB<p} zvHqn{Lx|@$LV|7?7_<OL+CM7A2%U3Gr)R0;B^r#Z$ho?+#?33M^all5E=f_j)>3b7 za+H$x#hDq%_jZxK56WI1VK>kscoazzE$6ISr|5%A?wv<_MW!`*2p42Q6;K&OI0lcR z4yfLMDR8zzJBN4SVHFX4iOCy{)*0(-87qSU*Dg6;ec`%L_O(Z8!}U-7CMTz3?tJh8 zzx)6BFS-5U9^)#bEEm+a4jKdz9L%_L`yKAwem78tvY-xzE39p7v$K1JwaqQG(&R;# zBI`034x|p+S*mKmVphuhX?dDxjZ$IJM9LHARfP%}@G!%loXP^IHQr0dM};HLGJ4$} zt7~g)Zf&u)wnn!oQWGDm3ikFV%qPdP5Ic`3J{pu3Dpaa0g7FVxO(v9Wb$SK8fsxz< zY1=4037p3|g{`4>CAO-9SEbRJbiA}^vO&S<wd-vD+zoQ|cd<?qI%nfK^V2iBlN0<0 z?=yY#O=fSsjz1mK4bsV0NlR*_#DG{7#zSE(Bc<7`&bV`S#O1s|@9k0V?J;$ZT4^|& z@y37syL@=<D%&r<!1lG9n7kw4v&c}!GM!8~I5+?#|K+D?SX)a^lCTyy@9;q<z_jRY z@t}1GfrL<|R;cvM2CV_-Q|sX$ryxQqF!G>6Dh-w*V<+o_Pa#d0lI>_H`jEHLuov=t zIVCKGvSH1m$t$|39vA^ZS<X2-J>jF<x0CUX$;3)2icXi|$_g8sn|$ikmw5KpO>SJj z!KF)=7!HS_<7JirLd+|P*GnlS8X`aGO?*0jy2fJBG#)Y9(CZJw1Zf-ci?R_ima+sq z#3KEO#FuHh#~nS^2gi@c?No~EM|yiHEg-%Z_w6LZbvijEmi@*3cDfyIU0vtO)(YKT zhRzhq<mAObjvowfo)^+j+;l~@G}YUZ@&II23g;0pKn)-&##kk7cYTP>+S=o5mvRJ( zOw;SYXhl;1S+1zd=1MB1Q27eBK1W+=Xd{QxB7z?l9IVIIVC(PzBmD<VVYv44Z;};V zw$?rG{?%7`?Mj!M8`n7Mz6M%TTbRwJ%x4qMP7WELoiLwIsmeua7c060HK!*>jL*+d z?<rz=ky64Ejn>w=eDxW+T~TI?B~e1{=VZBbqtg)>ggFqyInKufq}bR5v{4kfl8om? z$;s&{ckX-?40uMCixHkyifT5a*Y7hJjL17ZOxB_3^io$wV=`=BQ4}4DqEENqq1!R^ zx*1uf$h1d$C*_J-k!y|7;Btktn#|`xD9B1eq4DIIC(lIKNGp%BqE(<2^a?|NV?e#u zqpY`>U%ifc;T6hao${TxIDc>tXQ#|-C(WFk)czBqOy0w#UWa$eIR@wlg*~IhzwLO- zbM>6<*S}8o-EVUCuRI69)GI1w*uJ!dd+8N!{?2dn(T5+RR4D2FTkQEiZdhB35D+>o zA<?)R<MCcZf`Aq%kWcFH+%;ab6E(;m(fTVTnkc<~FQ_t#yt9-p>hO#=3(|5vMx)l} zEeU9gC+-4BX;{LzvcwQko92&N2oXf5^@zCN5bAK2#eB~B=?V8gzQY^e{#MXUkS1?g zp0hF<v9Yzy<*V0t@r7sk?5i*H%#9m#yWNyuq3fqr08iYgs|E3SF<Dz#ua%{Lk@64Y zacqA|+w#p{={@gh8jy&Q|KvwgH9rENh(N=)jlY)!nd$Vb6+)2142DCVy}HJwjRASC z#p5;xZMvYsRQC#<g;vOb$-5MxZaq4)-Z}yNG05)-M&DztqKcHi554KF(8<oqBB2yy zN;0%NnPO4pY_I27G`_0CVkN;&r*gakTU$&fNpjMMB=%ZRh-RKoUXpWQvW!d5|2kRG z#n&@F_{Q&|CkLzyG>giUX^YGH(ptFFXSBA-_N8mYq$2RRx?(mR^U>{h*t`ERZazgR z9lUIpF7H?=j*kv_|D8AG7R6>wK}>3MdzYO{S6ScKrq>%X91h4k(t|<1kBIn4_(ihO zqeoI^1--sW<%7y=N^8-z!_G>|(ur*HY%G8Ug;EBS6$vEtdOiC60lof!)zvk&wzk2o zVbp-4&?wue)+q(bda#bldFBhxcwC~D=rrU#gHkcn<1h#-WNn<B;dwFP9xFwj8+xNI zqv18S{!jl~j^BEp)31J=^7aQ*AKzwryJS9_C#{K2o@29|&h9S%#n-;VsNYBTdT5-K zLpsNbG2H0%>4g$Sg(Jt&#ZoCneejS={e6y(k2yIxAvLf0DICr^&`tKcyyzNrNF_;w zD&_=05V8^3Z=6&QMBwnFy8qIdbC7xyM2D!+-4CY`Ll3QIqdmNHSRZ7$Tf$^gPTVTP zlTV8S0!j3!0RRmvuzY}UY}YWQvE<JpAs}mmLg946{)79x{l<6r(?1kB<xaQDXnlj- zt5>;s;~FnK^UPBK@T86DbdrpGZ3W?KrLlyX;kNg$qCIYvu`Ji@(YC@%!XAmek7|9g zpZNANknnuc;??9L$Od&)GM`PF4=7m-Myo4)`uSaky-YItjY;i7mCBN6j^uTNbrPw~ ziX8Bv<6J=AT8z21z9|uc^iW3M-1)dKximT^1{xI_^(ZO@r*lVl?(kK`VBk<HM+(~r z2GZebkFyHp6{&BCl1^kU$|ZY`bD&Jd?#(aK=@0R?<lcAxfa>5qMgyqJob#y{fgzoR zxMhqV3y_G}!dX^eiVjsJQoF(k)M*iIGd|u3osLqtTAI)J%26&BjL%N_@cnn>v%$N_ z^McXpI-9$f8Le%xvNB>g=#!Z&%puu(rX2H9)5!w}^)`qiHC|6uiC5<m4QfTASl8%s zA^Ptp$EkF(-|y4!_ZbZOtgo-Kw!X?}w8Glz3Zs=F-9lPamlhsA7*o#1n7p9d?=cv3 zF<GeTcOF|ie4v#ha?Z34tdYPo?|mo>6+M9dYcFv1voC^D?CtOK@L&JW%*IpvyrMoo z$5f85z4aaLJ#!QHjjyu0bBSUwB+qlIs-&3Bc=<D*=ZpWrKV{|Q0cT(NHjBF-;!jVp z<$?-N2Zh@mlCP|=xwR!TQnkV|KUE`^@r9;4(e5jS$@0j>g|3J`{jH7g242Tx!Jw*j zk&gUf&Y(r#gCffmRaHqy&^L5{a&mk_rKiz~3wq}omGsn3JsNkNSPi9=lssE2@| zp$TcqE*p7YACsUjyhdnN7D0#6vGJRytVC^aIvKNn?=Ii{#@D1`=SR9qPsdOFn9pa) zxKwpOpb>eul2I;%@5Au4-)Nch5DRM^NYPq|{Dt@19)0`&wvtuUDUYA`Eap?n#k_S+ zVr+JHH+l8e7DX;bTpJUT*AQydTheaBgR_`V7>(A@SuO@CJ~-*S1SP(ZECvJ_(|CFf zTF>)FA0RUV0JLsO2x|u?Q%ljw=ywBM5okk@uz}Bo;@3u_yu&N$8b|OLTrFZib*<RF z^)j8oI?6ka-~TcX-u(tU>jvi($GXC5Y1Qfj0FujSMHs|;QnMTdx4-u$5BKlm+_K78 z`##3d%-Y5_FMs;;D5aUrCLBN9=kQ>U>Et~0UT*-~Vliib?;iVm_geEv7N)^)#LlH_ zjMg_9t*o-Tx=ydxBQKh=FYlxefe%u_%H#-xFN%xU1x2TiHqxqBt0+9=na}0|OvYy% z9qp$sjh#HF$TNx}rzkp@PM`6~gnqxrU}ePm)-F}O%3#o=C^E74T9aiSW3*I&C>8QJ zn$VL(u~Y&zZ4WNf5--X-8M;@H?W|E01@jNS%b$Mhs|;6$6ul0n$UrM><?u$a{mf-n zpS?_$U1#eTe<9r)TT4X-(*^Tyf1UeP#hc&#E>W*yDU|oqG}^InNFK9J^uD~~os}L7 zS%%U^J{y3$vleg6lGpyj3~MdZ>4c)_KnN*CAX`_J<N(k(Mq<oEACkc8w8Mwd=t>EJ zijPkKi-8ICt?YiK5_cLMtwuYbIr7Eoj-_jdI9t|-`R6Py02)bXM4UVnN?EE}v0(8O z06b}<oX=9?ibtqq9h#K*80=OFBP@@Ut*0)$*XZo0SG>gNoD0ZVHHbMP=pT&Ieflw- zoQ4Onsf#sP#<goZJb!JC+z?{7CM5!?^q*`KpGO^H-eAeP9gI;}*L;uIG7~SJpbve$ z8=j(}f+KC0gn>e3KrCU_O3DZ`r7=!Q2*awCu9nFqNzgeT)VqRLK<HJAr>s0>>Dan< zliu15lv133{08rQ>yH_BYdS^7yo9QDROobmT5IX|pf&n}*Rpr-BR+ipEy@0OuDN|n zuD|@67X>eW`seBO2Y{#3>$A4L&8-(cl}gmAa>3;MjKhZyn2gVvPR?1(XGy};d7&@Q zPL4P|Icxw&I7qKIVCT|RHn%U+>-AY*U#IAF()<x-Ko&of6{svjXCjIeiB)kD#Q^A# z@E7M}RaexuVm6=S{FvG70rS~RuC&Q8c}}m_XKihjjm=F~MiR~#t_&Hi4C(cxoKXb; zM_`TOoR$pyWj0Hm0SR|xp?2Fl$I;Od@4fe4(gKK?@v(2fwX0V{ZM<Ba$~Pce;nDpZ zUU;7A-X13>CyzXTKW$^lcL>RIG4ag=THgDRZ)2_Gu$T-TlsKJ>bh<|89m;b4BOO1^ zQKh2#XVaH}I+Pr$cGppb39OuTwjn8lhaWp22<V371kr@{;u__3Y;E2yNo*L$B_@El zuZwGE!%##gMTewkYwHG31*gCSN9id5c*4ePI%P7M((Mh<O3?`!uT>HRy10zAtU{c) z?ROsK^M$UX<w*u3CSHBJ<!H1p%Zp~5$ntr|WPFmueWKAVih}2#y~Ne60osI?qb6j| zxArc^Kem3AIs+9B;_)H#S4$utsf|}EWQltv#@|N-9=!1clv*G_HOAj)q46ag;OXU> z?Lmh2P^@KPAqn01GLTBdu;8)GhInVO*0ZQAE1R3F?7oK9n)2`-Z+!Wm;p-{G{s3hZ zwR0?LN9|0=8)$nbZAJyoP7k^L?i<Xfljc69_hU(>{G~I)E3f?mz2QjiLo4|SLJSx2 z%2wAmSY6+2riJ&E<(%1M%=y_V<MA11C&x@CXVg`Vb3rN@&ulv8_Iqz}`@Of)9gIM) z-ygEMwav!nHp9V?-pU49*2QUu*A5dG>ktc9Mx!%{6MH;W4W$>|1Ls8esH*EU50v#7 z=SA9gKI7n_Fb75pdypAJx7TH3W1VYPuCP8DF<cq4zP2U+C<y%6K*MTd$c&-rbfm9B zU1N+%qA!Ps0)R{~^42zz(K|ak+`4sZDGXy!R6c@7aMKb$7*JIeCnqNulRd^L{PYaD z7FyVxR{Y#Khp)<1;s%8K9P0jSNs7~f?(X%6)OGbE0|4h7lkquuUO<-N>zcAGLko2s zoPuc9qt_k)^%5(pS|GuroNnF6w&4yefW!b>&V&iq!zCSrCj21VwMQhLmhXKyT8m|9 zhYFOkIHl3nJ_P_z+OW3f?EH*wub<FrmgQ;Uw&&4BT3@wYLV027o%CAtRHC=(<Mh7> z75s%?o4=Kky7bxPY{`getr-jlyz=}m>%$_&?Q}@ANj!Ax#FP1sl&uoFkbwA&&cKKV zk(uBDL{T6Q_~>5>i{Km)Mxc;#zhwN4!eok0q3CxM{hnet$mryf2uD{D;055(NhC;t z%23YZEI6-lwS1Sds?jEA>*lYbGmSkT^Nm0IFY${hgF%i73yuTI%2P`QW9zcExC^Bi zpPlg5cfQKu{{7ZHYb9v5?uF8tXJ7afm#*DR;e(iX6t(7EnkVh-XwtnfMp_ZCtgg4- z3#>s^G8vz7@6K(`&rX=l#zN&nl09{{=KSo0^Rp9fzyD5X&SXS`z0+lFeT&uAb^3!L z>s#BbZ){0bfcGMKY&~UJQ&nYi*V^+#g?2tM#_Sxv4ytTgQCqpcWhKc~d-v{Pw4zgV zSXq(SeXO}Q#?b3_$@848tt|;5<T<n1jKxB96soG?{QNv+WJiDynS#~TRYs!`-Zy|% zDUp(ha<Tqoj9=?99*<ir$4^%UKzo>A_!~vd#`|r01PI#}nSp5dwa&0s6#N<q?;lMI z0HCZ&=JOf7{$Qy)U)uwZ=MiFM`1DrD6KW+g%6cX1MVxm_&suwd4a-(E`btR{4`SEE zXw;W0J<>dG=j?=QCLqG2d_1SN60E~%{S*K^iDN#SC5j%xQXgY*kHmii<)0v~YTkNW zIAAF>6%g(+!MF6;N9zK_V_(dtEEY2&{~PJ6t*v!ly|qoJP>tbNX=k!rsz}&3r>t-& zl?Bu5#Zg3(#yVL>t?RJJ29V%G$RGd!kW+CE98I{ygrvXBXtG>UWQtx_(eG=zJx!jA z5}+&wPPExuEQPNv&M7fGO5>0&dbW1>khrLn=K81qKBkjnrwd;H^Zx=jJ|!;<ojgz5 zEh?BTJkE!2>BYNfU*q{~!UylX&f)$&2()UmAT>8I-u2PyCNF*Z=ffHo&RU1c2oGL4 zmS#jG6Vl2U_P4YadptFGMP@Qq*EU#N-%4JPEbx}ae8$85`<xs<<m~jA#bPeK3A_li zlncvZG3Wg3ggfcJH=&PSUqT8Sn_KkyLk7bUS&=7=_Gqw|y*L*ZYynZSkcu~Dtpn$< zN<6^XY{ubH3}r;`N{p8=hSBPXey_)TK2J?rKo<GMV!_JFN?MR3^_%B8ufF;!MYl^G zz?D{B1d`G%@=!~C`up#{kJed>iTmkf0qUq>pcL9)1OW|rjjUk2);2U<iXj4=OG>9d zDj{O)n$y$c00M@>7zT!_q2t53C7>H!1D3s|G?v%LM+|mgb<+Ck8>SQ`$$(jw<D3n1 zzwODlz;@W5>^`oEah+;aGN>4a^{A)40G`ZIS0&NVwiivIu3B`HCo1E%D6aT#%sLJq zjGs^RQ>(6?W$(X5f;A@<&cl0{P0y*yGHoR^u;JR(9iG3o8VstY?Zq|c8XklwCIEOG z%GYR}OHb`kN~pCW%M9I2Gq*z9=P?F|c>m5f#=cF9<74b!OMd~QC<;xtqv&)rovzfG zN7X>(0_7K)vLrKGNupuAK+c1!q$(gLc3pYpSIGN)?7ZT`@BDM-NBa~VL${Y>G9&Q~ z6tjhAUOGG>1mGoeK3->QYwmpTJ??+}K~Rme7wp9{Q`7DB`NFUKR^!#g@J+b(K2Yv4 zr$p|f3eHihwJWW+q6gy~o_2k;OEFTET-Sbo$TPQI<mR(4rA5oyn#Fv^`PnHa#}7F_ zJ7qFHOR9uE%sp!@<MT7d=cl~)PV2rYi4&VF=lad(*xKG@ZEchOaD{HKml9%Q7eDWf zR4#Zg-lvlD7Z4e{?KKm_dnI0aS#vf$z!=TiXaz#&&FOT8)?&C~>)!_SIM&zKdH#hL za44!UFXZ+LU~irw=@;<E8*hNRNCE$Jj=HWIAdp5=Rg&eog!;6SiWEp4KO=+CD2P7J z82{kmtYto%Qk4~XQIKW1#L!jr=uHX(G*c?Z^?l3GHpkb^Li;FCXf|lgrH}_C-bN^8 z7Qkw)g&<DUZZg$q5-5}kVX)S5BH7R+s7f;8QvmP;j_GukCZ1$l3*Dt4lmW(46PA?v z+BK|!$!dO&@hzX0!nBX}!<gz<m(EDk(yX&g#wXZNoj~x$vn=Dq=dW^gtJliV4M{Yr z*++T+h+sfIBY-`KdJyVnqpYnlbP7#1S7;;hzB=Xr#C?PXMboeV!iKBVAurE0MW&L+ zuf34)AsvtSKuR6FMX5}_w-xH%c@Yx9O9`SzV(OdE{|d!u9bbD6Z-0rsciyDvcm{)x zcm~#Dfw~UufE6JbO}ulLJO;=8k8ktw?e8Vp`IC%>LKf6lUi%`w!O8_!DzG}~!fTqv zCU{<9acKZzvmiDxNr$tw(3|cto$8{u7jA7_bdApF_eb;xBX%#}Naa*9oG_b=IXyk% z<oJ-&lS5{ci6kFJFC9rnbmfBg-}x@@zw_NR8DrVmm1{TH*xY7o`x3pr0E2F~L!Jjv zXEY-DDx0RflK|jq>!>SPq@_<q&B|zn%z!KBbc!OCVj3f%3>)<SFJHdQrOQ{SoB%^> zMT!Cixgmi7e>P@j`kb7eksx+7G(Q7ipc#P;TFitIgs?6kqEDT;Cg>CvXtOOp))Bp@ zuB#+3-syH}msl#N(>bIO|86_-;TNyM^B=T5qI#-oEnxBYSo#{hdGBMmGE_GOZ4+aK z5m@Rr3CV$Twx#Q$8ulcfTYQF}0)QuQ96mfq6p{&9$!#xP9A4GP{Q70g`v?$7dv3~E z!g?Dfa_iGAmLP7Um8Pmn&d*Onx4*cZqTA{4>6fpwKFlOZNVVCD#>lsJC*-YaI{3x< ze5E8&&suPG%>E9EiJlah*Gl58nHFO%a=w!2mvR6+SRagDNczi6OdccwrYL=@wF+fy zpp*@#T9YZc{#I#Gsq-F<$C!-GXTL}>S_h{%yZ1WpfBj43g{40zD2g114q_q-?-f}t zU`Eesa1|DlO8-udAM)Y5Z!{n+WhaLbSPl?ibLGZ!>|TAQ0fOm9x4E39%Pt_$#S5U) zeQZ9|ctTodqFUxX-qk^T$Tn<3i{V*{!7fu#%|fdnFM8yiE~AYtZrqal62EIzRh%9_ z<l+8(jt=*wbg`;Z&-7TOU>BC#?|qNk@4dZr-bNd`y*`((-eC9A71q|bSlig5-|wPx zm6!t&yK<u1=qn_NbqpwqPA(NEvpIQQNXB~TUjR^B%WwSFZ-Ft?QKr~JRmJw$o;=KZ zdvwgPpL2Y2mY$XHH1X3c3iQJa1;OBZY+XYpV7jWx6e9Y`N0U`QpH1bs!9W{hFj+2! zSer2U!+iCzqiE|iQVx_4kH&=@l-6frsccj;jQffCAx#KDu0fW?J`qh4sf7K~w@Am+ zN~gl2=+r$008ikU&!)+vDvF#eFQ}@;qaREwc;j8mh?BE1`0Z_?(TLuD+d|80K6&>_ zD;D!Plkr)isl=;Ntc-?y`o*gZd(tE(QsN2K#(gG-RARYWt7Q12YMqIUfz~(&RaFzS zZ=I{fyIcy^At8Z6QRK45n7GgI5$6=v20@^p?;4H258xoQ4@}5H83RN~Q-_X??JQs| z21jNx)^Gj-`RWd!IlKE^zW0~^Bb}nA)63}=dFUZv@k(^{ZFs<Yg(ja{rmhn0I47-- z-+l9&l;uJ^q*(LcpuHs!wYt8=3$K1o=*}P&+}!21E@K1Ke7F(vQ?>3<3plp#Tfh-o zE6@d5ni~$E0B7qckFZ7o{ArdJ(<M+CSqT(*r%!*d%B5@1rt|d9QI-qlvk9li4>>;E z<Kg~&X46UVs+!ygYb}%U8SlRRI`6*ydio+!hIniH65BhM*xJ6t>grlZvehA3(a3y5 z8Yz{&rau_a?f2<)yL37oJc_JP{K=pE8KqV1T)slDzlQQMS1jO^#^eeE)F0mF$nUbb zwaJ6M`^({}WmNt%G$PEDTN_JUNh*`Ae3pL;7a+0<F+3E92|Wa)g5g3=Ni_KB{2K=- zy{2gLN5YMaxl>;G)Re3pR&A02WiQ5LC=~>{eES#;aE>y?!dS_^p8|j<aKt{`4$;>h z42I06<JN?w5&Ubx#kO}JUx^ca*(dakYo_7`?Mi`$`kGB9OsA9dS?{HOdwXk*SDxFY zTLi_mSQ6jb*27XWqEwR~{x_lKRR@%=wMsuDZ6;ytrVK~KUc}gExkBd}U1)R`YiJ`4 ztH?Yd8BPVQeotB#e5;gBD^!sM9eRxb0BJg8iVSjttsti&(}s<kzev8Z3raJ&`xfu~ z<?m8t6`igj%QcuRBnzr=_&liOd5R1Q?Lr(}DAD)c{x-AeSiFQlkH)*<)$&47bh^C! znJ<KTe_=b)V%qj(mhbijZ@&cu5*rYWalBcrUji}^dDmD5MWXG~F)uO@iFR!Pjxaw| z>zHkiD^aZ8<CWxU<VA;-(K^>}z5s{^XX~2D_>9w&BaRODIX!;J`24K3@JA-aQ&%Mq z?tR3Adv}Nlh*_4=>GtULhayqDw!zNsB@v&}3hNwaXJ>SK1J1`&4j&$%fP?*gzWMd9 zW3r4q@1V6|xU$On`X<+(eTGlHc#B)tuTda51D7sc;*Hl|Pllt-<ov9m0J()a+|nSz z6YgiC&<UOU{szCgt!rT-kZ@(u=}L1fT62yz0B&AygSF*clIC|8z9THp;lvVz`5wCz zszjmEc>Zl~Nj@YY(0@zU<mvcZJgTxx3!*WSE#0QAF8+)&w`q^-mlpdalpA^f_DK6~ zZ58Tn%W}~i$qOL4dU=}{Zfy$fu2qu7OaOppJ||lcJbx2ue{B-dO=U#E9%u!NMUx0= zjKca*%Wq^qd9E<Imc9X*hD;|-01GK(5LpIeA^?fG4+^{zc~cZB&qEvHymj^>0w7x9 z70O%IFMpnVV+WL`Jlx~$FaLMsrlQ+ZavsWHy}@}Y33DDyUf_M5n(Jg*YV*Bv+<x!7 z96fvxl7?(rNMwzWxMaMJS{t5!`877TcEe2)kK93sUBJbawF$wf1Ps$XPk8|<9kZDL zt+FMWBr4fM1eF1awyv0O{nHK&w02A6rP^8f@_(2Qx+#(L-lIe8ICWd|(q(ZtT4Oj` z<?8iYiMfh`M`x!eoShzV^l+c)bWFKeq;f5VByK6CL(`>7N*zD`Ff<&hIX*f>DaC21 z;V(kMSzTM|+L8wWEv+?&2XhYg?(xps-{DJtXi#{ny?tiAE|bX=?`&gK;#F+{_n(cS zTE8`h(1nm$J1JPo11~f<`x_ZPB{JrDL0)uZ9<<(<%Ay8zt7N2AVA53MJj88m1T;a= ztd+l$zH`VVwzW-;N__TWX=FSm!BKh|0(e4)_m25|PPf+sPe^hJ6GR32I#2-ZC8Sxv z!!ONhOiaE_xK+^@7cce91Y*ls%lX-9QtyiUFvjqy=dZJ~I~2Ozw2Xf;D8Zv_eIJEF zv)o7{E&D2}^fmkON->*P5Ec%T8C2~;PDJ=W*P_su1x26G5XQUszel4e3PYY5(T@+h z0p5A)+9AzK6xM5$(?QWJZ#l6sZmcoNvA%wb;?fO3Qyo3zjW7M*$y80R3p&?0G}e=n z{G0=$3_8msbWmuzh3rfDn!9)2<^G-biM90Ys*L77`gCKjT)V~9XP!?ta#@<0)K>UW z?_ae_N}~tfHo(iw(J~Tf7zG~;R{G3i419Vi8Mh07Q-%9O$ZKhX5ak}7JHjQWmQ~LA zrr&$(8nr3*Ebp+fwZq2N4$nOMQUV52cWs%?rW_w0aD4QTx~fu#H<SwOg9{z!L>r>6 z=gjA`kl`+#tpML3Y}Jb479FWbs1^%q?}7yL<D1j`Y>k-Vju^1S?5Q+GR4CibvI0fZ z{`TL+sH!r>>`f;5E;_WWUgF9Eh>4AlmS($eoQb%md1CpWd^Z<DAJz%LkJU1<4Y2I9 z0pN{}f$Zxk0C)n2bC$AP&>sx2wWZT(06-i+$bpCpaWV&O*1tv36Ed#_Ab6^>3i1Bs z9T$1d=U%<Z+Ily5P)!0~N+xf$1&+Tp>hTRoP^zKdl#(oJqaC6J5Im^LCe)G@1uSX_ zGiWfmk~YFx^7vgX4@)$<vFo47Ad5Z7jUo1V^;V3J#0ow2+)`6xaz%$Z#fnX5UY9k> zD^@!j^lp3xRF0jOeCJF553;(X(}k=M&%k>hq;Q?&9fY={AW4p$T(ii8sd;#G%17_N zEy+W+7CB(jt!mvYd1Z6^GS9yB8BCU<@s9!k@1(Pzk6Fjz8f$4<lol5s5t}q;X_`QV z&oxOK%?ZVu=t=FM8x~-BVQhi|?fL1WOCQeFhxxng`6MPHh6VicUL%$4E+k8)+!ZfL zexz&D96K(~{r(VJ*L-yQU8=xvwG}YqHI1c!TKWLWeYJ6cM>Gdol(5!{;jky)O>1gs z8M&pq`!hKbnG^qL(c58_A<J@%_NhGZ-{r8Ox~i_L#6(4QGRhmrNgqQ;?LHkoH5rS# zAwirflmQBR`q%?gBMw!b7dRF2cwAf`<$>}~8Gt8qNSRAb%xaY~8UsiTZe#&u{q%th zND==>MgjvZ03g4+Wc)pz#ca-OI(cO4Ubn;NKXsFpl{`(*%(OdZg$4K#kP_Jd`A;jI zXnz9rWpahdq&==jL{(G<()CUjPm|@zcqyZTgsc*Q9^_hB>#2jPoc9i+JPL!&9oAbE zI#$Gq2dX?4AN1X8C@nh6n7awvn={A-p<8b$e3!xHpF<U0y!E{Km;V(^W^`Af+m%Ja zp}<OOV3!mMgIBFokgXLe@O--9dvCu%T~{F<8jM(DfyAhWg=IKe<M~%UOMfs-o_nlI z_bE$W{&BH}KT(jNe5>_ojKRmIC(+;r<1egIFzSKwj7f&ez`zqj11g<+G|I~!RO<v; zGJq`v+h(z%1grO?9EgT<Z5Rw0nkJbwenN+*p#=bx%*W`Fog5!Bot(D_iVI9d7*$n~ zWjU+sTWs%KVSIiP5)-G?Rhh17j2Cx09WfTggoSshQBC`)Nayr3HW~(r_F_ZKe1{Ou zb2drp{%siz=o7~v0+eOPOC@otSoaS|{|KdUwx+5o>5lnBup1(hR0CN8*WoY;{5}N$ zPv}@IDs1pxwUSKMa?var(K(7b02e_(Yc4h05E%iP>@kPSd(Uh(Wig*!I19z<Xu#(` z^$bO)sqYtK)^hulL~j$>prZHR7?gH-pi*MQvrLiY8l8dGHniDQ80}GrH>&{C=>q4; zD{R&iCtBkcs#@9wc<;neWfID8wZ_#Brz~hujdR{nSxap#wsustrSdh-L&rGQW~bzN zAG}2uBUW~<Vb(@?r}^OPzsKzE9r`O;u8EF@BZNb|sPILPGIqf;8t{(ktmYf<9x$8D zmuP>vaP9jm*Spj0@xrU0XKj58@l*p19vb&FS`Oh}CW<`XV})oeEMNbq1rWi2{FLwE z!vssoOIn2*=>P=)l|gF0eDqKnZ>4Q(n`G3-82>hNkU(P#JUl`-v@Q?6c|TYhsh1AP zX2}Bi6f$TgzU;_^lEc|_l1en2Lp1`@?M;<Z?Cf6U%Jo~Kd9NUfRn2D;&Q6ax3kr2n z3`TW(xXHPI%l7qIKB<c@{*({7J39WBl0@acNFE1tyM2@joljW?jDOq4MGb#z#lzQH zw-S|`HpTYhGyMaGZOy?rO=F({=iE~O@T89EbVglSvMeIyrj)CR9g!&8;E$yxvh5LF z^g5CeK@7=wEH&5dp_F20Yn@NOd`0T#bxfvH$@7n&OY#5oa?nQ)vswp3p+n;qlWFqY zkma(iHX5aqb}d?aGUXDDn45-Mbk5^y7Zw_YtrfKu<L_c}j+c6OqZGBVlp$1r_IN9a zI8|*!2*6QWM_D<l+EXbwKYqx@Xcte3?q0$ahN`lB^!o4f@U3q!T+ws~!2?jy00lZw z6X<+d{EU_s#NIiovgXgey~pjnbF6J-LLVs!iXcfFu3UeXwT<my=z}s~h-XL1)tHpj z^Z<}WSGDfPMVygBorwil5@!woGk^f!gb;iL1<9*!5|~;?c=Ye36QJoS-#TX7;I~r{ zn|Zs;7KDqH7zmZVb1RJSm~%QiJK@2-k05*x<yB%4;t^8vmUp32VAwia9e{vN@9kc` z!P?F)|L6bgpRzbR<MnU7!T<34|6l&}&;DGlTToVPPUCN{(fdh;LZv(uPxEX<rpr2^ z+>K=AHY?NLVh|uBJ`;dn?g|)<^^ZH8ce0kn@L_9TPXWLaI;OK3wY5oJ(`4p?M|E-d zr62Kk4?^{}UXNL-v3A<p*wsolGRAP@>NYRj+6pnTAn>DOD_-Athzjw1lUF9Ido<aS z45U)mHj^px%%C%YA*4zO5Tpjx>@Qu^2WZZ<9!irRZ@?UN`AG0YJ>;o02dTt!`r z@y&upxU~-JTo4U%*ve8>jzwuHonkf}Q<pPL=Fpj9I$f~$-q+cG<I4<IGO}(+Mo7sI z4yB|Iya~w5i+rHy#2ZCfI==J0L*DrCjH-^wL#<mE!YJ)*>A}i~OIL16LYjglh?f}F zK+i`ODD_2X(K9Xkyevr?7#gKgNGTzMKr6)%z!C_EyG`>eybzCg5f8M_H~!-<(yM;? z-xj0L-ssV(uL2#`0>&}S(K=TA+j}@UI-*=G!gpwcX`17vy(@;JHTuJmz}k>3DDywV zD2?~x#cl8IqP3>$9IKahc;ST?_|jkeRcMeCzfQRKPBK<wuZN!<K+t#|Cer*$sxAb4 z*OY{k-_|pb!YF^+hKfmf{=#dd_3|efUMNYdia>r@BKRo)ctXcwv5-<R@5%B)CgG9? zq#m=-#<j5dT%wi2`;h{#tBUDlyp;T;6m&aXKJ)T*HrBeq;A?4}n=JD3u~KY4d32Ex z5D#7G?_m5*2p^cB{->m#zoDI7YD&`>Bgng5G7VVi-!118*Z>>5|M|2Zt>ydbAO~w} zi}EgH@@hP?txY}N9c5*yN=uOyD5ddkfv*hn(sJ<r*SPb|KW1e`$_~AfIKT4>tqe-Z z{!L5v)&*}=<5Avn@7|a%e`lYwX`~2aLPESTjpwhFChv53@s*!rI9hA7)D1<gb?{sx z?rIGCvXyKAKw7XaAdhw;VQQ=tLjvJuM$bRRcYJGpwdX`LF~VUVw?MWL3AE~0X<3AD zjCj7yXBs{E<~yX{RNSR+zC-IxYik}J+;74KX>D)i)U?i28^hN2W%`35-UmY#jxWb* zO1ieUcf^pLo?@M&*Xup@yDKHREGb+Sn49$Trx*;R^~C!S>yK3vlK<n7__}wGmdgFD z1OXvgRY$PjN-R|uAGIHGM6e%|cb6F}`RyqHctVG*DsgzN69by(w3ofddqd5Li+uzO z@)tpQZozCeO|v%|o|WN%FMQ@Yc^<p?wPL)j5o=eQ_$|qRN$q`*`c*1429cbBBmmTY z;E4br_EKx7Z^^%%;R;124~N#$4*-JQP+qiYRI_+T0Ah@4j%zgDfvqeassFF6lm7A{ z55QL7&=f0MLeb+nyz^b&{EI(gb3<eD3{bc_$_yK_EapalQZBFnh*h)_kAL`Z%pZLD z4)1<^PHp|;m-leuN-45D=ed_Y%jWKt^p;T7tzdy-c|OEz>h<z&o7>aa{sb15UTl4k zmUkA}fEEz&tsS?wi5EWsipEGsV6Z%g+sAJ_aa8k?I7W}M1OCGP!&SL(ZJV5!Sf73L z@Bzn%`^o5Byc?~v0HD+DF<RRo%L<mNF2Z-!N=elTusT{5X6^8hs?%Lkqig8nHk3=K zIh}h5WTboW(+CD645iY~XxIfD=+-=rpI>Hgej*U?lUn7pn_!&dd<%fF@y?r4zaMAB zoPoHH_I~3J#Zv(A#14^#4Y4NgQz@W#?gCO=9zrd*7tF@V@y;=ujw#D>$<tCwvAwav zXI{QWmPLiWw!0s^sqoSg^U(7ACDJZGP4NCN8viKOo0w+bEO;7e%<aPh@0~n+d4EWe z2|zHJmgGV_UVHKaVFa?MG8PtBMd(c+V8nZA6HKP5D@W}-wS}_w%xllQ^yI2w>&7$m zM!Vn@i<5hN?e~6{txFy9PSyz2cu!qhr2DKR&yAQFoq@N++<6a7W|lwv+J}7k^?gbk zTmL4vbLlQAAj@*D-F%TN*KYy-@%K4wt}g5$-OuFpt8^ci%w5ay`}Q&7!rV4=t+10% zV1Nb`v_}AB4M>O|X^z`Ae@jMOHD@VcvITI{<%-^N>-V&MtW<bBg8@?Zb$ob0xtKp< z_*-Y$0AsD#+`2@6up;+9Cbju+u1dAHVl?Q>aZb+gI|cju`xnqolUqS#F;W~wql7nV z6ctlg?&3vm_V>x}{kt0yUKFOw8^4tCzm$mD`f`6=ARqzFpAZB@8DFKA=XpE)_T!F} zTq}REv<5^39G-`#0N@E7RnUcZq4QK0O5vj5<gyv@EPFr8JpeocBqrl=Xf@nysg+_h z=rCI8GM>yB^gF33g~um(-nQ4W<i&-<2;JRy|H%VaLdnbPLd!QU9^gf=M~Q95hIKYl z_uw)4fGpE!yh#3r_@Ppuv?t3HI=0<a3hN?b4+1z|I`P#tC>+XLd?<mmUiA1oy$-v( zm$>=L&!N0$F)4Zf@RS?B`J3ePJJgdowywhY*C?zcD!SNm*Pwi;GO!*T)RpH;-+sWC zU*Dsun;z*gVQ=}WDzq`IZESPx<_n@7-d-G%H+VrW;GzegW`jy#s)>o~WV?wTO>2uK zdlEoELrphceS49*IF^};i~fECFjTlNDxg70<cmIVGp8a`zm!#;z(@o3h$2r3NHiWb zNSWyP{FDdxZZCo41dSds7#@XYZDX6F(`|(vmKSU18pE|Z$ORnE7HF-xd+%O&bo`@W z37Yec_X7$4`1q8^FQ0DjqvzP%4*}DETR;HBtpCV@#L!>_(JW=s|8<RcssFmd37;J2 z|Nac@58N*i^Z@Oel{kNcqx2L2JfWkmsssRHnMq8#i(_dqZIAZM^kAK1a(>nbUbGg; zPGPXlv3GFFgM*Wlv{w`v{cgc%)MI7XrPnR!bh6~dw~wRJ|0)^!%&3s$*8qd8<q^t; zjb|#4fW}0rUgxn@=*p)viadl40(w@)p^X3(od-<<E%A91jV$qd8f@+H+EM!^liqrR zHy*EHePzURul)+tFfT3dJvd{cFQG?Q$aeoOYb!%KnMTjYl&2puJ-r8uW87?yYCa*$ zDpclBXpGl54{v^O%vavnXSNW*A*B?!XjtP73im@P2E!50zW6D+-7d?E&INV9Xb9WJ zKm2UNfaIm8RZ-I<89r*v8n3p!k9fX5eZCDA8bjRL#(84K`_dvDfkVsdkNaz&f?u|E z@%T&U;#!An1E6Lm61{&U!O_~9vy(%{=cf&I+oE{WzFP2F8^gxdrKS6&mcD~r6Ys%f zhC$b)y?Ez1*xwJ|=c4gf$@y=i`Q-Sw0DSxR$B&Trk#6-eJpBISZxS$s&|Wh5?Q7ax zpZ4!Ro&j$`YW3sp<3eT2(q;P5_jgfCpsAeFpS(@@_bC8)LPxonN(|9EK*T3x!n6^< zCrn1ANkS@k%EcU|HF;6U`s}3POr8k>ue?v$_zsJ&VNuqckLT<?JWDpAQ)CPWT~<du z)>j9t^gDDrIYvtdG)d|MZGz#~t=Gc;LV*VFUHRa&d$KIUX@gfn%{xcv8xE+9qR7x* z;`hp{AP6MXzcQ_?{E(&HsK_ZiMv|?Z0^@PDmD+Zrz&eJ#oL7F~?}JlJ=a&65M`?3( zwV>bIrq^4c$aC^Sqx&0lHaF<kpO@xBWsR+B-1HnjzE5Uv!}+&(^Ue`}^o_fW=M`1m zi1j%C7|%gTz5mVUUS_nqM(nsJ4NIDP-LO4vQ}rkVkc@vcn$h5Uj}NM2=^7=^EdJiS zp6q;s6KEFh1{5^mg79JG1=6)j-#oO!0&Sqtd>empk-e~g-vR*3cDrSrqeo4oS%sl- z*0Oj1BWzu@j@usX>nHmd3`g|(!$*uroLli;dcYJp-9i9>D+;W&?Cl-!=y*IBz&FnZ zL`Foun?gFneX{hYZ@zb86FzCQ9e{A1Vtz-9@%gth9<$%3q`3jY%bWb@=dzsG{KGH- z5iCGJU^Guy`bgM$8?5*rl67fVvn4UExXVXA-HfLI;0YadT~SvxzUL*A-sDMn>f&ho zKB-RIH*0K`Wuh#IB*W!J&h}cLJQH1gr4;kBVm7OoOc!ag#s#+y^z~v<ae6-E?t^3S zl8`s(6>O{y*jyX1vD#-e>@w^ZA{DH}Yu8E=_nH_VVQIE#But>NDCM!<;+$+-*D+(> zkYxsMYrIv6j(l6XwPg%d`)Y*Pzen2gDuwel^$Wl{dYR|>&;0|GE~rb#d8P5DORrx5 zhThtM{?ITe6j{I&&P&pt$rLUxsBKQ&?NG05u&^(4-@eQry!BskFzqrc=O~@wyu(HI zp|xfx1)0gXa{XDhFI^KaDYW<%Pda?A<#o$;s>Oge2K13MySSJ+pOpTh`d_O5PjT5s zxH(ev@@LzlY8F0~Y<FY9q8AT<@d?cM)_JD|u?;rDja)YJ0l-8M5MSrwqS^k=o=B<6 z^>8@n8K0eSe7N7D@-L3YqmSTWV{?}*%a@*|mfuesl$b1rY=Gf_#bUvDJPFCWE$G%h z&3N5fY)9Kjis9!mAmGs}keGlUG?u5)ay<Uurt$xTkz)TBjDN#A{kZ#W-LuDpUzQ>| zs{OUwpY^RDk9i$hz~TFz4bV!eX8Cz;x@cY;PZ@wGcz71`8N;Epea-UX5dg5flr^3N zG{|?!vjbK~14eyAp6RBpUn#QOFz9vISQ{qF_2hKQbY3D!JwEBLw?h%rdC6>EasS{n zC<JOUqgh?)vbEl4dtHFR>aasEgb<V`EOtst@qjG1SX)x3G(ttWsKU7zl-5%67fPqR z^4L144LT3nOIf~`vK={y#(OFI^B$4;tdSf6=jaxiOV9lRMQ;`FVQO<KZOHqYe9$M) zHCe7G@=$#cuC!AM>!k<0cOpM*t)P&zvorqkFaDH!_wO;8PH`%eiV0`YnFD1ZFfiVW z9{AeE7T0gS(CSq#2F3+Xw^=JL7|iy)Cw}MFd(obyzkMR4{l#QH6@XO&1JO%qyp^^A zdvtM5tL@T!YfhwnYHcqnp4Wx<ybm6B1OrkYck!?Rt0oh>w5mhe{^aD4#bW-*`)Mb> z^@{?fH7lzd62rc5&D)vb@j4VmCsEF-*W>iyLF)^)N9%@OARW>#t=PZlFK___@CoCG zFqkc}pdJ4BNe%8_$7mlv%d*fR^T*8*@Bsuo9uzGRP~m5zv%)9bw+qJphrnBD>o%}c zjQ~}6yok{K;&=)Gp5U=q%&Dy-_f8~%O-nz!Jy(O#Q?cYGyb;l<N2vDAwIRcPCSJc* zY4MCZl3askVc6bWkxB$FVm5dfPv@MR&8Vuny-rE^z<InEb-jb5F~?_9-oJC0+J1KO zjE&VETWbS0SBLa_U9>WoOk)a1(R1WoAoL5cRywuG=B_bl$vYHpT&Y&(U~F)sG}4qu zV=>e=qplG{?Hz+bpWWwvflhZFg{N{kGpET4VG5#lf0jXE6uFXzF=^v_302t2V{3=< zFq=&I(jWa#y!pmAnT*c?mPBAc3`;D7%<`PeS8wp2{O|uS4Ek&A@7-l@?><Kdd#O`d z^nP7*X`*0H^rDwsN`8P1@JnW_>FN_FQZxiD&yeVeUSI_-9+$SkZ+L*nEHo4-&EndM z?I#eBN~@x0+B!-bN2Gt^8HT@G03<rpbzSk`?uS2wfor_~EX!G0U0*Vi5iiAaZRbUd zMyv86=cqT<IsV?8bc#;XEU0~vFIxWeHFPio4ZE;J8hHQ6)<4$p1RxRFm7jEnj~~(v zkfoacAAVciVuOAXCg78{Rgc*CcDSI;AS{2TweR%L4>||9D8?2}ApyL0T|oMne+mGe z=rI|er)i-eD8i{_k151>+X-ClMZ$ZBR*Id?6^e``<ts7f<v4I$?AqHKqsdy%-P)+n z+DbotLMzRDQ8Av(na-=F+GiJfrpJjto!6Yt&iLToY094N6d5an9;>4v+dErqY;LkP zT4UJnP}g%Y9$w<Db&XKjP97)~*@S3Mh!n9B&)iAXMC~-TF0qy9D&*aqOV9rTSuq5q zuvT+4gGDWkh%zHM!h0~m@MlPMLm=mIUQtz+vaIpWvsjdT`7i#M?|kd4jL%LJ`{FOG z644_uS<dSE2EYA}|0yrL@FH5l^=msQ{rMoZEY%E?@q!2UKH$#X`|R&Mpj^yT4u@}F z+<50(2IJA8m*0y<Io@1a+Xf&&bbi~bQrkmH_TPu?qY`{WcShP>TIjY}j9`R<m+oB@ zYw{`F-Bb&Nrau?x*K~sM8EBu9lKFprdd&Fz^pWe7hQIK-g5As4MgDh*ENFTD;asB8 z$g{9iA0Be1JbQb4EXoC0Q7r9#X|%om6kj0#T$$s<`Aq1K;ls85v2EfH0~G&yMpFUs z{m0`3fwb1G5a7R!@q>WR(v4@CwP}IQ#~Jod+*gy}+B{Mh-fM636aYNg<Lu-(AYqv% zCd<QAX|2d%;d{ih@*eLTS}Q*F{4PhwCqe$!lNp0n3hP{IHY6TRbgum)=r>WiEy^k! zicTk|C~`IlY`oUY<`EQ>fy#^7+_I4kUO`pYOlET)9G>v@2X_JKuGR1NxcQZ@^O?`S z#;sddS*uQ2>vhSE7=pSM-2kIhXm{(AZHnK;IjMkfwvwI!l}G2E-Df^emiJIzQI&8o z^(<<O%5s!LdK75sC7`uRrHyURvMep-yu?{YSysI9#<%&(U;Z(Z$vHOk{Z`sYBiYzA zBp5Mm41?j2&;HyO`TQ^ZGI=4N(@Q4IlV{Lf@36K0GM{?&Wt<Wqv{*PE?(Or@M;~yo zf56#UxVNFx-IBNb2-n%Vr^yh;h4<p`%lEmN7i|L+KJN+1hGEf<4TB;O2p%0yw?IJH zTq!A`3@n3mc@*%5<iLiHM&spMi)ZkjLU?QmbcAy{KRdzJ_2Z3R8`y;FueFq8#-v&G zeL+=tHiI}-^<WRXGNjY#&@A|$;7(rLPm^TPI-YKTK|;EJ1J?U*cwE#3sB0_t)P53( zSVnM<X4*IV`f)+T@^-!fq!-R3hJHS2Eaknl&pWYtVV*ofFFXYRPxP2CW`L;Hfh3E? zv6S7~icu<%rV>sX3H|ctZlGMr+4-4d!7D=Dd%>{iVvMFNE0M-^4qLmXj-IqWUvz@x zZyyr{3A*~xP*}Xz4Eh6xgJD4Q3R_!div`p9oT{pWn2rk_wrtvWRn^Sr3yzLY`Q~@t z4B*3)XNJ+B%eCD#ZeCgEg&P|@b8VHCwLaR!aw(DFabAg<pM>10Dn*Uu($&w=>#w4` z=4|RYoK#fKqw*Y8d%8tXE7ZaSWJ)zM$Osi~ou^#Xl;r~JH6MNa5r6at|AO(^DP>vG z)*uit;**e!R)%h`$HwM1zxCVyJ}aXYvP|NEibhN+#>QQ|#i4@2c}3pS^lx0^`n6r@ zpx}jVDd!ar5BB-^&TT&W=nhr2NSy&6w?O%p(Yt7%(%rwnU@XN+0kP0+ue(|3e4M9B zp}fO86##AQ6Mw-C4-+f)mQca+$8Lp9m>`BS+H61*W)MIjUb?F*jt}=GpW@LAaN!pZ zX!5*ZeRGG{_dT7af7DM44+2G=37|bZLXB1!3<fQ>p!L!A9@^K|x87?TtrTWxK-Xi) z;-87po}(_v2!C>xUHjfQAUEO47MpO9g}Zpn9|a&ZpZ#ICSvLM{;G1CH65tDa58wMK z0C<9jt?T4@LC_&j?>5Uyvp|JdF^<tnk6--sW%~V$>B6IpCR099(|A}N_2?8?*oy#z zs<upLC1oic^Xgi3s@n^{82r|v<b&bTalO(lvQ|#cDCl%EhW#94R>*?dU{%+gP3D}9 z=bWC;SS(6m2S_F)u@6;kd3ZA6@N~krzjrsCQ&D7Wto3>E)()S3=`uI2Y%m=3a9*QB z{#a>Y<NEWgtgfTHV!SXMoO>3PR3BtIr!&atbToOUC=BFU&ReOlkOZ$ZN)<b=IX*t( zU;nFr&gscfbDvrQCob@PMjHuvbULi8uJKR)!~c}4S8t#_XfL6e!Zeh(7;P2UV7boD zw^*8>c&NOW>I4m0FX#G=Yg~WkI=>VQsk5H(@q~LHzs>F2cQ`pc!`V7CgmSHW)c#*? zo@(8{IM+g~C}0Dh&Na=-7&-`EnFlGsl#7V<4y;Po^kP|51Wf73s!>c!c`NDN3yW~_ zv>U*1es;>~$#Dy{UU+;SvykszzCnL5YJnNqccbDfH$t^eVRfaCQi}TEknSrlvAVXl zbehTdFFBPhGv0olT1-a+04|*GW4`{+(unJn);hFp{{Ekpb)vb+%^YfZ-tp~ZaMfe> z6X$hIdj3f-a=hmkz{v#waN$JK>rVl|6Fj`Lvd|lefyOF;wgz=OD?BD8-MqTaE6=Qx zbuv_@$$c*LvkKdVb;cOI#7>$_%IyZdPI@++^~@I)i$%?1QBhlmvoXZrm%;|#iN`97 zcsxNLdIHFCv<}{zcPORlc5;S;9#?h^%Jk8hP^SkE4_K4}3=R*EsLE1e@<x$m8O^%v zDJ#p}2dCV*f5N~1^Y5XQe7AnD;Og!g*DkGd{pL+RJ-kKMozv+SJUD^UDwHyqyhCTu zq1(}P^TzNSl(Y^?I480T@;#^1DS!6Izt7(NyCPg<ZOHgn2?WFz$^e~Cmwtc1-}~*~ z;ZvXatdt~Zjme>xL7}2yY(R$fP&@gkavmKPChwYvxOdHh(HK;~i_u)!81mxA7kJ^d zFW|hVDjnsbVtjhW?f2f`U~iB4d=_*U8agsAhs{D2U36$IUkFrNUML&JC>6|wmdPPU zpyd%IVU$?qvcznWLKTV_3s<e9w2WrURrg_zogN=jm5ZhG`s5{D?%QZ>gFKY)rJ#)R zk?goIWN&$108qbso8dqD2VA>$ErF3Xh*;jN0ZZ-ITDwi>6{|OzZ_uJ8eg;Pb&?a;u zjdSypM{pU^G-z=|EnK){{G$=R06ycEI!&#ZtQrCCk6M`!^IVo+jcfW65T<>OPeTAt z{Aeayn1CV9tCHYNcsIoRKl8#iSGNYJJQEcj@5!|2@k?w~CUKLXC!VHK;)zDDEy?rd znog0SN77g)S{++EX7iHqq-4IRu-2vC1uifIv1|}XRH+LIeBLWeSjU{R6q&;0o^IEG zGORpvjm^y-S8l#QUDZ@a?{aW-#QPsT<h>6MI5-@KJObIZHaZzc=R8$yIXRngayH|; z?><2N`CI7!=J)CKq`AxX?lnI9^S{WIt2eoH^(vjBOObhUtuO?6;_x%JDT?2zu03T{ z@fTnEBi?`aEu6E``OIiEMw0a60%pYX&+{B(GCuqBU*uPQ{qLZ?$7n-dK%PM!nFf~p za1l~63a62(0|%LJlnx^s)4tSc0nrgeNEpdE4^ENi8l`fy9`WL<pX26pCFNp)wU*k} zoSqyq9iMV~a!NU$2MvR`iuwdJ<FVvNq<?<Ed~O-IwlVf7ly%K~PSYl;^~J<Hl`hVs zbZq1G;bAg4=jh>{(En+(u*XM`fP5e?I;?N*EPH4^PGGlWew*Yq7!6hcs2?8DH|Eju zwFt=CM&C!4D;y?ys;!HY7=+ddw{iuRK*P`2sH!>%l$nsXR94j|eqJs~T+bpa(Efy6 zuT;nqfA_x0zi59pVcizk^&T(@2>fI@1`_^!bVNr$KLr3!@=#i1oh1)*v#zV;^+it+ z#DL~m#;<+uDua$eWrh&G6rmj>(!RA7PbeCG=R77z!^#8EB)!FIftUzqw6yh&b^Ol3 z%AmvUhMbVKo~p7;=OvSQ$!t+mTPuu#^E3*0J|S|Yz$j0yJbC8Ha)(wHZ6txNTVxD} zeH5DMqC>yG$&D-P{OT8;!&w0n5BAUa&RZYzz1w>%$~x>jChN5pS1%s=`T05L=jYt} z_ztgs^DAUo&R}JQ&8=;oef~La-MYoK>({t>^CrW7pH5MrOcso(qIRCyqT)~g=ildh zZ+=Jm$|H5l>AtBV9ZxHT3GeOfUgo!d=bw=4g4`5zx`v{Fj#*LzPxNOzdktcoj3k>0 z7-<>6NBZ%m%bfmqNCktnP+5^)Rz8DXPf8v$MO9VgR@3cXLU9?P-7`$l#TdhEe8Ssr zzRvmiId!$bxjGywdPi~s?KQWF&-$>CwkB@!f@LL+LPZw{(X=qjb%_gn%OqY{f1{TE z@!>wlM-O?-S+zD&>4!qGGFqcQ7%qF;$r!h~!(G_JpfC4)W-CU(y$25hqw#&b^<?nl zpZ+nQQheX6{{Sq07D0d*$mV(e!G8BLK$N+qn%mead2M<|gl!%%;sHR!KjRvyni~Gt z@i2nDHk-OsUG*a~2hlmRPXWM_Jj6)XV#u{YX_F>l`!k)q;MYETnO-pdBE=h3{^WC6 z7PF+q+Y$jAhsjK!=Yz+uM9SA_Fb1*+2(*$;fhs0w$&Q`#SW8eV)O0#I>#G9+EY49@ zma?iTD~q$1I*5BHd{XYsj6xR~I#Zw=O4$&<wgDk~s=C7aTH=Bz0STGrnQI$dzp~D6 z+fOl_mW*c$j!wsX>&?3y9FM7MAI{M>WoE&ftZR$4ma<%MdVIu3x8LVWS%xu&m6a7X zx3+lsrI+~mFMNTk*RC-b4*B@O9$)|Zw|M)lH<-_-qO7P3oRzwLZFGoR#%%m(_&mS! zAN+?5daD$jf=)+^@z=gF{;d_nxBh9HkRZo^K^8IpN$ZyiTZSa4*l5RT$TLM{3{|Gc zjH1ppMPaaYy(GR87qP79F<9x+y|&6LpSnR+O9*7Ku$&&xxckw2Jh=BUCnv{PTQ8lD zYoC}4o_LGePucq|K+|lYT0bKQ08%-edgPPwx;a;Ka(qY~rGLMlja1FK>|VJ+QFP*q z%NMte2YeJ%lGDgDO*LPjH%2I}`OClj^75Irj;)f>j^sic$i*C;3ts8>HS|Aw#y^h8 zpaIl%{R2OrN@GL*z!Jc_$Ob?F0~edAT?A^4@egJ_ObdAqG=y*;@!hx?AmL9@0t~$( zB6$-Xu}}j0xbYMKJi)^|$8<VjWn~0PGZ>CACTkWopi>n5#%q`8bTUjKC05aUPx(+R zgMpAq0N!JQ^;v4*W5h7z;b*KKk3c{NM6ScWt(9sWp_##kutJ8WTV!ZDflcsa0bD5M zaNbcP58%9ZOc$Qgk_zIK_d>5*PvtG;c!4&e2$&iq=?Fv|+CaZoP;}P0a&?FGORtdU zT^5rGd#}IA*S`4{_a|qZS5=S)jt{duv;u~N5t+_rxPt@E&d&Jex4zBB))s@|km>o1 z*>uKYu}BMt)`~pK(n95e6>@b&W<=5Kmwx@Xc;UrYC^Ai6D6&jEf79|z+w0RsTG2o9 zhZvw%xIb*y_Doe`uOq;dR?R`*z-R#gwV}=h066E-CL_;+K$8(5m}e?AbF!JIcAjpg zS?Oi$?tYd<`5ET3l5$b8SS&bxxX;7GJr4E{m`x|7lZ6y=@{p<&+TSaoniw06tM~E+ z5+iwmEs5jw<e2l*<HsPQ3s+M$3woXxjMg@mZ$=DvD8Hnc)UX(m<1!p}sOK~E)&|a6 zzW4Uq4YQW)c*}sR){l7eREYGa1h&?hw!mQXo%|<!zn_iKPNw})X?Ag*VoP6$7ktS} z*P$Av+3Lc5@~z*4@lVMFGVhdExF9}u@&2^)5mambwnF_Vuh3}70tk(3h;umilmU36 zhx3lp(-SUTz7p!w3z5jIE3{IquMYX*OPh5189I|Vf0Xxaj6Z-+iD=1iho5<og*8ql zyix)Jq=8S+yjKvltYshazZiAMbMS$ZcTRE*Vi;2)Afm_=MW!h-MV5)jnH3ss#40Un z%Xr}!*9Eh($8=s}lw!~?C@arYITq7esBG_(sEjr$80~2MJXuk&y7MyKqAP%8I%oEc zxA~N_e5Tt+cfcye%otAcj6<Ut*OuBt3AhmJ)j9(VN@q;YrYz29)cX&yvoWgEfue)z zc2UOQloLRpb&wpcFvj5V{LVl5-|$Pn_L~%$CX4EV8C+=X6z<dyF~Y)e@zcrJlk7#h zUrQcPq7>vNDGesmbh;h7g(8m<(P7)BLqK33wDfkc##1{*=HxX+A$MGPws$YFwR4GA zUX?{H%QBp+7@wW7xA%bCAAZPua)#1o`C9~ou80PnR>-T(2+*8h`}>ETot++Yes+?U zZr`TzTdsUu)V=qtZEQ0LvHXjMRX|pA0ozWyF@}D(!|dKeiYu2`lqGxj?~@hX1Wr`a zsb~yJvvZ%$tDR1naxMI041ep#&+7O|TLnkmikK6SB4&vuQg{ui+|xHsQqUEbX`(KI z(ePGe8URexx$vJfJ>~BUZzgaO*Xpp4X(P_aQvmP;59cf=hx-`)8NdcF-Qe<!7j9hQ znM*mHUWUoU8#ZC3zGzewkelUfQymsPrFEm-mde5!qY?j)pdq4Elkx+Q&_LcgZ|j3} zduRk?G<haH0;2ISIxq`Pj@8KwMbV+JM^t*1va~1<uYT%zj*n+#)jRkzOYI%C_0&Ps z$kvV;M@$q`#xPpFfzg_}s+gTmc;~<U=M+j54P$M-0{Y(4DJ@$FAV4W9rLdzlCjAlP zx@1vTk_0zfFgv)1D(CW0mNTsPl-{!_GQ7^9=#lmNp?(=EXZg(MzQF3*8sqarwl+5~ zg%N-i?t$3hM)$r|-|?8mBfK7sS%P<;;2}L`A@V@&p|+l?mV`#U+`~?;D0I`d`7!1e zkhu`!;3940(aNI@bUIl8hepb`;(XJZEbp?h-DUIAF0Z`yIq5Iq9JBE$2mAZnzrWAP z$sw*TLmz~;r`uY%TVE>pV#Lx`kX)IQql2aLv88N&-&%-O1Q?3p%7{EKlHpxyPP24b z<HZpMD9dt`g8Jx)?$7@`508(D)eebah*WbMrKO##bRO|~C*O1Fm*!gh%v=AzhS7Fd z9ycOOkicd7oUo5dM;(Z$ThYGvGyv7Rpj7U0%F=WQT)N5W??=Ui!u(bwU>U){QvmQJ z5AUhUc|e5@SC?c)@yoyb8a;hV(KX5Y)ly^i$f6zT`c9FjMNhn2MQs};Jy~!yp>mxi ztQx`zs<mIGnoxn!iafLc4yPSx@DQ&LfI)@rJRw`Z3V8rdg@SvJ(Vi+SaCx3F8Vy)q z+o4<S(4D}%tXR~wcv2damfG^uvk9kXbNZ{->2(Hx!B#c5|M?$~E79^d;bFeuM<ue) zc`38=$A|Qf9@6(-7V<1ZdCycS&P~SDTIS9&caG9|TrF&cscKB8fUJWy87R$LZ@$iZ z@4n5T-(xr&a_z=7KK1IW+_-j)(P#w|`#U5zUAMemg_H`(ebfPnU0l)Ho<kyYE_@*5 z+2OoY64W(Rm6Q`|BcLpc*9gBfR~|W5JOwXa+M=|SmCPTl6h$r}gp1B@+}2qe^bs6J zL$SKX#^x3;zVhkDI4jTm{FsmL-edpaA*ZJ&EM{Y@t&_HVq*%3%abo%6XD3ITpB_IJ z6e*hKI_YokDY`vIs~f1OSQwvz7SKx983iHHP~pi;hDMUq^8SG8_$WLFK4>7ckA2ZF zg!_{W`||w_k3LJ43ksGJKjmnTeAl0baWPr<uXD8JxSRXfuqP2XEA7xxhckKNh(i%V zf^Fl!#6&3%Uiy2)-VFp$kkU884igCFQD~4rz=hTKDFArFhjWg_Vn$sq@OHs({>Cqm zsVSLW102d*VtG;|7$F#W8n3-m6w4k>@ScTLkSztdHuP_DR-$c+`;T69D__7EC0=0I zSclfK?Hs0fj#1D?DIa2Bq<3ozPQ@0Xq5MZ1jMj`s1)Wl3T{lp#3Z)!%?dWURz4|hp z!7lUKQB@`H{MDD~b~23ZpsFeu!R3-31sLBDvzhl;g1Vj;DPe3yspJa}iw>jUz2m`J z%V|||?i}Y?#-b`2bi3qvMwWNdg`Cez>gt%&lOtaL<~PW)j83P^+WH#1ySwaOy3Fd@ zI>X_Jet$@(+au3~R?$Y2=hDH^7@bO^blXrw4<cU5)?y;&%wwJO7pQ7aSz78U$gQGq znV7VoFBEF_n|YX=9-3c7gTXPMOYVTjljS)k*UL_8+c<fT)gfm?OERij%I8qR9HHoL z?69%98>?A`Yfvzs%{bV*&j+_Z5DkOH6zePmCgA-1l-X>OKoKo)5RG;)sp+)(gB5!H zLHJ^>bq$we$njz*q}h}rR)8q#*$ka$$#bLyQb>lb0cwvQEiW+&cWK#9`B*XG!)|;$ z$-lm#6h@n+W<1vZ;N-g>?@-Nk`kNVT_Ne*OJCE1P@5NPV37jaFfWp#<)O|dT*C_<i z98mUmk+FN+Y=~guDFArF$80+0?DUj=C+Ca5_-XM7-Hv39M&s}2C_e``2fqlfA>Ido zhtZ&yyx&H?SCRm8)9xbQc<Qk_AmssgFI1OzI5c%F9y>-pZ%o`qhkeA}c@1mnV>df- zaRp)L8kHM-)&ZM~kWT!Nw`i3!TwljeCwP}rE-dqfd^e*FRavuj`DHFY|I2uznT$(5 zxI2g6d7iSI;p-B=m{XpdQr>x=`R%uv9~@)r3S}Jz(Ljg>P<f95s^E&-mH~?8cQ$?n ztyu3A>^MoTv-6U1dCXz2!@MXkh2(8uOb{NDYgEnWOs7*04-fg?+usu^QY(tQL$BXw zb#;xMon3ZzFR{I|!`k{fqg9cZEsC5h6HsJK<DmpsQf_%jD02bG)J{BqTYKutQipDi zQmqgYIgO$MjP|JkRM_j%66Jv!2_wuGb)ecM)MK*t`NZ|zC%_OpLndHobn=*lK_KLH z#H3RJnh`=e=jrPnH*VeJnP;EDWE$%glhX-%5AO5!_uk>n?|dySun{CBXzW9xo$|8C z``DXdg-*AJQX!)|Am6xs!+fYT7YNUZ=>CHnkJ0_UGzMxL4i8a1u<`UC6^6O!`O8n; z)QAQ~L9S=g-6ow)^Uo)YB?{rO@5lRPtxe&=EXz|;+F#FTLXqDO3jM@KQB6|aMF`tA zzaZgOrJHUX!h}Y!7&I=lZrU-o0e0&~>QMUWy=aKEV{fT^P&P_G+wV80B=h4b0C>Vj zo_DZ|GoJs<XRywYYXi!oGlfzaT4|K-0idxcFCHsy4z9xc3Y=xM+Cl64Nfbre{x*qz zlFbg$(?EGygriZ99I}@OD_0@0FI5YWsN|SHC?G&d2fsF*5Y{cPf=;|K=%RqUhpBt0 zDnl6qv9v~IbXG1?4fpZZVG2*y*HXq;)eJ_P-1yY5OLHR+$JII;H%46T_tDx=WCq0o z$|;lcV;1uT<H?NUgCkDvJz%o;G4ls^nBBjRolLQ_Idxs5@mL(zI~<V3g)7{fxDX55 zBClr(*1cskncyZ<vP>>ur8MJihht-)*9nrs5nxHSv#l-Th3FLQ?LFX~@4XEQilU&? z>Co@@+1%RV`i&brbMq#{;gEj6&tN!UG#b(Ebdwj|$Q65u`3K`K`UyT-RX|EPXR`{( zp@@c008M*D_9rSKR<&CycT|~?ToL`a?Zjp!Su5|cPI3pV6=AE)czp1lbqsxkFpr9? zkOyZZbP+=k+9`%B14ipFv8cxUaXn`^944S!*A-P&Hv&ywzJD}>olcjP)eVYH7j1G- z!f3>Ky6pVRR%vd>tF07fIzuT%uiIs3cZa>beYAIy=$OI^4Gr8PB?2gJfK#krZ#$aO zS3$4@Ubg^11p9$8Xt5TJxl>D^B#A5eX5T6T^6<SxioD56F~%%)`}}c+QhLcS|J$Pf zC3JStO^3)z#ypxBulL^LZRkIc8cT)uy~8WeVg5cE!*3rquvj$rCIa9XM~%WmQ6f8) z70QQO?9NjF@WhX2Zau?iUfje_j_`Sx%H&`S+T_w5FjuMO-{?G`(*k@ic?Wnf)}f2L zU~Tf&O|I$m`{b$y???=6@K|CdwhPuuc}1QXI+><ZD2iNk^G&8OLC4<c=>5xMpcN>i zq!AGi7bWqwy`=9skFyF@7<AD^1ziD@O=Wp`A*GPwY$_ZMyux(WdG_=FfU2x;wd2lF z4>Me&$UA^RDT6YGA|EnX8?k+9hiWmWwl#~gVltgEna(&poiIHcQ%=q~zyE-fySJHq z@D69k$JD21nAw~Rh4w1+c#rk@O{td&3!8yPsy7%MgQYXBSO?UZqR2A5$=FkhJ!h%3 z#u<gyCQ<w`u5GPlHk&b<%{YAckaxcKHr{)TF?72<di@@&t81*Uud}_g!==lY8LW)x zbh~u>1A6@-on8-ZGCU6DHOjk|H!j~N(f`SVZx-id@WO(nRn%&i#!Dv8lWc2Lk#sa! z{1J@!zyx?=hPJ1w>R{M4MUj!2EU+7qQHo~~)c_lh-e?H}K}}sPxcA}v%x6=gdYtzT zZHiEZ5WH9qN*n6B!a2uqw8rMnWwN}WuBvoBv}ue1&W6N31Z1bMn~Rth&d=qXvW)-e zKlxAjfBiTAH4pCH6CLO8H&R}TJb)?Wpuo50msh$mFsdD@i^g0S0)<KqmC`373lnCo zPWO@)G0@I(_vlV0+8vdMT}4*l$2HnX@;Lwv+38P~>Hp|4baRXgA<rLXIPcN1xZl&< zTbA(I;|`phgQiJaH2%K1)?q&vi5P$JUnN0^rvTsy9?w4a44=NPm>=CiAv*oK=;P7k z-62_Li0k$#x;>Q7#RJcRh^>!EG%S>v$7H54?0_RjWouw8h6M@<DWt{COT!r9#bY+V zqR17!o@DmxpgEvJpw@XOjHO2?RwXWBYym4MH^}Q+hY%JH`~t1J_^ia398fqb6$RQ@ za0b6HR8@sTQ_VqH!%M&ZcX3XG^NbfA=x)#{y3%|{YfuL3G_}=~wIb^lbO#02Il9WT zvLSKtx{~v;m1VJ*b9!>d!TuhHhX<TIJmkT9Z*%m~d#K4NYC6GBrcf>t#jd=l)D=pS z!AxdS0;G;{zt;cGiZIeHp6#$O8=%NCZr2riwPl`Vm`(>%6yf@5v@xNDvv}gu>6Gz! z%>LdUKr*mdmN6I(+1T1<ZGD5a^$k{6*Vw&sjmuZA(I2b?u_ZBzCd<h3Mn57|d^F^F z8c{Q%)6KCcO3B(xb0HcPjS7i}3gui#n~PII5~pl!Wu7@t?X6J$9fMYmJj=+;QsI=S zN@_wVNsNe-VgnxBzspzt;!DB6sHOv8^pXQ803{(5BXjasfBo0^o&V+kn&Ij;XXh0U z?%m_Ty}KMAKA>F8u^uEj)8U;3Z}I8dz-TpG%Sf3U!;Kr)`H%kN|CoRAd%wqcJZ7{q zO6Qa1InG+jvZSgi>Z+nFOX{k^c~4Ok3<d+by&gqTP!t7KS#frL#w^_L*>u`m6s3}9 zEsvg;=wLKFs+EhQA}t-6A{xMuj99ZDc~4VUi<Er%lZ_U*^(2!0uVW~sQ|He3J(>_h z%i3O`+GX2@kx11Vs_8w^B*m&FAe?sH+6T@p0f9JEmMQ+QVE|k0*W2^`DFApv$KU<s z7a8RaRXeJ>Mi&NGE3})VP}s#0Mr*3fQ06(E!H`aGi0iCivI1=ilqnD|7{H?yRL&)2 zYpn+gyjM8gLo0{T77?|ucvs=;S`3^P6+LehJ_8^0>2;8%t!gV&f1vx7S5jYYG<mMc z^BAs>2go^(sw{3HLO->2XuZI7D!h{9w^*5=wUnDV3>KJ8EUGlT@T<Q`UFU$Oa)yVq zK7-Z1un=0&Y9t>7l0;1r<uSPmO?40^Ap_7Tuc;k$`j*v=O-Ab*n3oK<uUz7z53VvE zpW&S&LqTP!&(0}N9<sQ92Xl6UuSzoSFy4uf5ut@}+oMyVIwK?>Dninsg3?;9E6vS9 z$}@FUL0z%u;I4Npx?OyhOR`yDT#VMC2ZBpVezVz}>2${a-hT4bvn*#Y9J02t$)(Fz zx%SL0o_+o$E?vG#w_k|ZkM@}0oy!$mHo$RcAk$EEGYB+(@?=w3Nes3oNEbUvD09w- zkhmzIX(iB80a>0=6gfpF6Y1l$M#h9V0aOrM3j>+VsgFK<pOfQ52@5EddPP8(r(S?V zWLS!#!*FHDi!Z%-LxDvA0RR9=L_t)*&c-Tv$FMrcxxV`x_Os71D;<-0MQtq$>-me{ z|5u!!9LNs6N*>|%);dawhD3~?7kSR=>Kgy>AN?bWqM+aF(J4Aq&N7`&DHkQP*_6p- zLS0)331cfOE3B@r(jN@yhTH;>##7_-bE>+guA~)pRaMk=&1^QKTr8N+7g#H5jz()d zin6SjPN&RfGf+l=MqP7ucFt@zO9oCyupYpU%u!G#lS&b7sH+lNmp}HJrj%X^G5E+# z{56ee;&oz4fS7X>vSdB6GQclmf^?4J$i%eZSdk*6s1J#srU3%+z%95DnXTr$K9M(A zI`;@T5)e>N%K)Fq@gMxXPvdQk&NHbS&s16nRiK(p6zS2BX^W}O@oqvr-NyzcAeHyX zIwP{~3R-6v6{PyYaG~w4HgPg*oX^BdjmbvFqD)8>L%cNWEu{so9WHbN#EJ*)9C#;Q zgTc_rGstsvNL)*0R<%W0LZ5pNR<W3Ql$+!845u=jb&OBW+3H`ydxf<X^RdUy6xTlW z1)Lh79a!hNb22~|effSyr^iugnleQduz2tgG~l#Q_5{zpb_#3fROJlkDnL=!mdlr~ zaqr_hBFC&GLroP0os~YrXD*Zf+-qoR=BMY(k4`a*1^(axi-QB|*%WK5aPNXi^}@u& z+JCJ`c>#6!nT4ez^KebUb*1s;0$Y|?r8oypvVubmRo0Ohd~Q(6Voal;=0ZDX=RD){ zF_ZCxdv`wK^>2QiPOr<(&Mq&$@-olde1_*=c!9Oi3PoN>X;WxEm1KIOH%$Nm3Y-D& zG&bZLWT6A3LJY5S9_t)cSyEY>8c|74iLhvDMV@CAor0{$gb9cfHBj;qEP2&X<?_E~ zI+^gjx8B4#hcTMEu2TpF8roVZNz}@+3}Z63wzj!)`3l`$H+{}}0m~f&x|>ngiq%|m z>)Bg;>udYz`G`Pzv@#5!T&Qvh&2-t>-eP-un@*=7&$3k2VMG3db(XreDHLIhp~!Q3 z-7ZC*hYA>tcP<(Gx~^Hw=gjBx^mkPSkg_PHrFSK-m5Y+ebjmn@jJmd<Odtj{lj(%> zvvaI-WO+eZmZ5W}4*RdD$_4Y;jJhtV%96!=N>$FWcDX5!YTc7|OX$`o()Dkv-TmmD z^*(tdv+bK>#5vG}HXgP5j|U;`B+bBXY6&|=wlA_7%|s2A8sQuwmH!CJ2>Ykmtoijq zoZ%?|c!GvfivQI={0!dK<h@*!@<L2qLnxVwjd_AzfB0P~kH@AMEFM&Oj;qF0V?}N> z9d*XcS$Rx!hPNJH&r!K(pL?YxQOilMdk3HlT6yUNsG%|%hoZ8GXpDDgHv_l8)mCEk zK9sKM4CM^U88Rh{`~RQ4KYO-p%g+0--)z=ed+*a^pSR81-)aC<5g<rV5D5|#Ln1{| zaw9n$VTU8+7yH3_^@E=rdh>(re?s=F6%H$;uo_DgB@!e+kOWwTYH!{CX5P#^d76Fp z-fOKn=kUXrbFQ^d=B+BAE`S1*t19m~XE&>zbB-~-@r`d-1PLRUh_fS$HsFj9c9s+@ z$pnxs5s$Z?vxg74_3~Fpspax~Bn_4q-u@=twcErXL<2v1)PQSnq9jN|u9vq4SJVgd z{hHUft8-r_vi?j-wHL;5#2C#XE2Qr99;c)WCJyH`ZyutSvN_*kkB?a%9Prw`S9$f` ztHcmFJH6nO_dnwN;eFQszyBQi5=F^OT`p^iXGpX-0?FuW7Hv;j;t4ClA<&II*U_p1 zYYb7~0^tP1)>@2jz<Y%?3&fk7I>i*&Z7=!w!}s~@lMie3)3z;l?%w6~*Iwh^y?ea* z#v9zZbC=b@YSQi}r#;ZcFeY{Wj5SCyq$qXmE6Bw9{EYRshYXXqP0M1rqVXLD&Hr}` zR~PZx>i{x)dcG*@v28{-P98txJAd%)y}48%@HrH2jLJ4QZA;TMy!6tG+<Wz9nu26S zz56lfNm!$OG`xeu<LihNF2jV9+_`x}9W0}5Ypu0hzkZ!z7&2GGW1S*3P3|>;nW_oY zA(-0V7B0mE$-|=SD$1ihGNL*Ixr<}UPTDZ2qtFi{+wGRKvvZagYlcy^Gn{W|+Ljn4 ze`d!pjEv)$Q&WoMq?B@MqG#xLtS`=4Uz{@ZD=yBSFpfLII4H*=NA<<#&xZ8O5zv1{ z`@X#TW$FOz?`M{GFS&V`{hYU0-v9pGSuEFJ47xT-%#NrbPsq9bpPY<m+Wq;9v){{! z<(KD(!E*=Te<a)S(TczOH{QWWq+6=AZ_{dhu{N_2$fZ%GiH<8;{U(#LD2jbk`JK&* zdj?q8gc-M#9`&vDbi-#{U#>8wVUU(>>==`)h6wUbbCcX?EY?_})zUE+BBUimuldoG zG(Q@_C&R)xXgof7?3id>LQ-xzlQ{-SVFM6h96Urru!$gv-EN1-mT~)pVe7c{#@9Hw z`zkRiy!-y=foLopBaL6?2(P3cw1b|v>HwH>Z;T=;CE^x@7!6}c?6w<*VMk6-<_1g( zwF6k^)BvChMXCE$c-bOosnFu+26ykh#r30OoQ$0P;sp=>yZ?^&|H*&Ph260Zkv>Lx z5yq4VW$~GfiIk!7K<?^j$R&%@!evEh(1lbTHaNy`gkU7%Ln4hkHV8x0uxl4w3Is~y zqA4F+qOsj}%SRu4z{ekcsD?e0zq-YOqr*e)yzm0AzWORJy!aw7+<T3#JI4A&PCezt zFHuVg6^agw!$9n}niK67EDo0(9W8L)XVMxqjZmVfl&@V+aF#JPlg@>+hL1n`i1m71 z*I;W5$=ck2$ds>Oox?W`-h0}%<?XlM=GyV`q^V#9M2H@SosJD}p|P+zJ5$a_X=(%* zYq@d#7!hIPn`-pE_js=|+otr-uoj;+59S8GIDv&2TN({bW=oG_Ypz(TGq7APYm=Pf zXpN&9^zCj*+cvBYR`f&Ev7FN;DJ8}b*=`5=VayIiterc7JjaA_=sA7zn6_;>d-51# z4C{+CoO7fYsI~36LZC*))%fS@6T#H-LOVV0FEI@;?JFU1#y6<k0Mwl}r6g}c%I40< zv>y!)WG2(6>VZ+`eqm16=f!jn^0Ue>6i8q~D(Z))JzV|%a|hsm1lyah-sE5Z)q6M+ zzVZ0R;ai7wb_RTs7iq~1>{+KiG)E3I@7oxxadeGi**V(A^5UHXF18~vYGkuo7_J{h zZXWkY>goGPmxOJwY~zAHwL}_{The$iUX6-Ex0b$4;v^t;n$#JBGsY5)XB5YFutb60 zrJVnDBpgCdlpVt;jM6ejVT4@e6xsFx2|eRrx%=)nIeOt0#$hCg=fekyT`;swz%Q1y zHr|#7Hn~KxAS7i`Eev*2Y3KpF-N@znn(cPYFlvNe1$Ugo=g7%<M@+FwBbRi7$ziLr zj+heG2#2c$UF%pjEsL`)C*S@(UR^A5sv$9A*d^GBa2f*Z7#UJxn-ZfW#tcUna#<3= zNg}%$xNIx}FaRS#+`eELvhj3G#*{pI4#`S|<0al$ymJi3(65%9v<tQd2BabmDI*;k ziR<XvY_^<VT=2n%AMsni^;@+RuW6cGN_U-W*Kcz3_AOq1<sNUp`!27&{u<6T4E=_b zMy!Q{#ge1rV~(yL)3qMK5GK1`5r8PVzN#H5#=k(i>KIsHx7+dQC!c1+tgF1S7Mr_2 zmc`v>&V-T+9oMd1<K~T<+Q^Ag`K`Qz1{hlyg9dbsg%3aYUUg22pr2tP!2Y1|+#5%X zb-C(bE(BAqD>tbr$X<?4%lTFFH8+Yg!(TR=_a)BJG)+YSQc84PM+kw%VnNe(v=^7` zhC#D`##AR}90T2AMNC2n+M7Nl7{gf0JBtud)3oaN=Tt(|G{mrD82Y`n%$T_zc_IEv zPI;9vIXx5dI`O5Z0!sR_p3_8<ERJS%QcNzV%=d4P3^;@Or=3F)Xj1J8qhqsN=j__& ze-`ZtnZXcGaRaVI|2*da{Q2Mh`mesuo3CF7N%$s9`#L4D`TSF|0Vr~?rGuX&$<S~v z|H)(C8f7^j9kd)DG#nju93C`8XLxwNBLt0o7oEekD&7)?n4OD6=OUH?mkfRK2rbUE zINM--gT*4zlf)6l)|_I=?<pJCk*p`sFeVQ{bHv_Cj`kx)Mq+G;;t}6NP@F!+i8Vj$ z0{v!G$oTFH3_~C!!-I22AJrLZn-=F9RSaxg?Ke=X6QEiaDU%baa>ctLasK2n+s!4z zIO-x+B8Ln!J7*Dz8KO0{8=-f;5*zDgO8e$qi)<~c*I(uv|Iz=2v+uvhqksAj8Qy=7 z;n72O_dg+RH{A6tQDA2b+mtvR17|71%^S2|{}tLhFR=dbJM4b+9_i5uJ`A|b;Rqsl z5t@|fF@*9gB)2Oyvn5P~B$1FJ9z!z@9CM~)#u#?SvTj<|iv>@tr}v(I*ePsn!TT1o z(CBd7ToO+n5n^I%ESm?P@mbRl&^)*Ep2c#>ox3mc=9_Qv+Uxgt`IVP&?g-zmFs>m` z7F=pNK}1s-8A#Ya|9pd8F_s3_>owo{SHEA?>&gNzMa?eHiIV$oG6Hbp#tm-WzEz*u zeEv8Q8Z(JNc?+kf7qe(hfI@0hq~P)g_xbSs54iW*Yc#&YI-~jnrR1_WBAJk=<5L}d z?;Oti3a1xmV9Iz*$N;m~sM5t{O;E?JX&TzL#Wx*`)d9QRkR3WrHw<GS#6*lr;2cBB zsXr(@0gZGGA*iF!bxWM}N(c-)HkYSQt!HY;?R5Sk)d46oPo3tnh+T#5zx+*&bw(%B zEDe^m0tD(<NtwZ4kcqu?fSAfFF5{{^4<W-<8CjTf1B$~qPeJV2`KKI#>6PaWz@Ovo zfBHAS#*G^tNfJ%tGEA7IbxRl|xig=$m|AkD<;k8|ZaC`V&{$}_VYP4^9C*5}q3bmN ze(iWkw`ge+fY7yuF*<g=Aq+5#CUXSU5ooMnOh6d0$<RbgYn1~VjU&*~%OPW0Re=nf zCEP>|DH>ItvssWO=3WCyVK_sli+mD{^#mhCl`~S~6(hS{APkA*I>v1vS<6{}#2_B) zM$PTJRtZy1Yv|n!W`#-9D;Zlg+mona4#9ACa>C`sDckKf*R;0^OOqo8Yl$If$r?qZ zMo|IpJrlDyVvt&Y?hqEOr^!&TU081Z(!1RJ#dnDz5r;(o;0fm+{ea8&zDxh!_vt_S z5#!ktZVe;LS6}7szxBUm_3K~bVt2-qlV7DD2ErKFo$XkE_xn8j{<m0v@)2B~6Lvi| z223j2=DFz*iV&G>R4qEL3Ikk+k7V*;Vif|*?S`91(+^k+%O#gx#}kBIGME^#Lr+MF z1={#%h=JJmDn5iTU>GhgSf8Eq;rl<z6(KFh*RJ!%TkrDLSH8|$@4U-PFTcWaxt#F} zX1UP{(&{@CvN{>k4?g&ihYuf4eHBWS4HJjP7@YTXT}RWlEV_=nckgoh_HEsBj*Ls- zhM}fhq6p3y#&M`oYcW|}r>(A2NPO*k-+}+zxA~!OIa@9HWOc~#FTBZL_-nt;;@}`N z^b^B45JIHyd-}d-x7*Qp&&^x6xOMv$2Zx8WZCkkjdOl_k0m!FVw`xS4Q{*G1>{K)~ zv17H;2tUL~h>>xO4CBZcVtze$^Tc4B$5>a%nk3=q_!^ft?{IK<ox|f}#&O5`{DgkD zdum-1NhGmT3g8(AzGyAX`!4)6+nj8eAN72%Khc?}Mm-5)6C!pRH&8{nib&6uZ!@p{ zP^YY*f7uDBh<_=+oS%=W4#NILl^^@jzu~z9@aJ~>U;VvruvplfFSJ$q)@1BcCw&%e z$;-60Cd1q6BzOmi!3r#Z4vka_JRL^Cl87N-a5T=+cx}I$QbK~T+eAj^@&Go(q{dsa z<Dsi!#92dY6Af0qXh|3uG4YbdSd#HzIz(0&=`hmJ(BhJZF(KkfF4t01%4xtD4`xLW zAsQj3fZ(*OEH|1-F%nZEV!0fzG14Ij&S_73=X{0uCIm%m<~1*_HQLFT%x%cvu?Xkq zJ5C=zU~_q)(Xwk)m?&ix#2hUk)CkI0J!aFkxe*Nt@1<P!CI(3(t#>TCj-q;pO@yTB z7t<O|^}KnD)tk35f8$@vh6;9{o-v$0rhVZK%Ug#yXArrKq&Kw-V$R?8fAg>M{s$lO z`Ta+nJb1|Z^px|Hhg?3oPyg9xxJQqX&1H^i^vVsUGL845m%Mhx3}i}<cpNzwyuM_0 zdC3Y&??sXb<LZDX!^n9EmH&}_NZnT^#o3%I4Iyyy_z|a1PWV^9_q(*+g4Jrp^&2;N z<IT5t=bf+c=38%Z<Hk*#_e_{O)gTG#1Zz)$!1uoU9YlntX)=msGAS`vFi=o2&C6SB zIXXV(l~-Qj`t|G6LSMr(2vHa7)*3>dPg0D6F;!-}>y}t+Is51{4l@zAO*@V*dR|?h zl0N^8%YX1sI5m!qvpnuPE^oZTi6lOG^cg3oPmmDsA>hN7F6^+OXPtz<`uF}Gf9pT^ zUvul$tz6n#!_PhAbk$7Fb^L8gxTIyaF$s+%LQFJmq7B&z7?qC`lcswr$q03dLJ*py zh==5eeZ79dM<0Ce3)eUKf>yp);rT!8R>+sd@Lu(cuB!B@5Av+z&19)jN%0!A=gN!y z^DRz?IswdvOg?Z9*owq&%Bc;hA2c$h0_xZH_p<l;^D@9chudn|@xT1LU#n4$wNq<e za!Fkhtz#xy&0XhQRMG8sPJ7CGn~lE_7Do9?Wpe2Eg;65TSq7J|#!<@SB?@7P>^41V zp{i>}gvQ(I(U#RWNj4l=@7`1-OdS$cd>bK+ShL3B@YdnQ;qZ9VfONo$-W<`#%n}Ez z^Gd)QN20)xv;>T(qAR7uNv!3fUoqH2jI}gAAc?Fkp!NN#qUS5DS|g{7N+dA^97YT& z2$vT-9)A2GyX}S$lh!;>@u#LTtU4D-w7y%=1=cw|j`J=bB0+MD!-zF1=+m{TXct9D zDH5VO0AOdFgkpfF_Q3AtV~$=urZL5tQ^X`zM+B`6^pQ8-{wjA~dPCXVeb2?kIS(Ix z#-oRyGi-OH5HX`Le)cKrAAN`T@IJC$V=^RN7PlOaRU4S{-ztHue@9V;2+%dm0<Cl0 zSy*nPHS1#%hLm_T4m=(Qdgqm=5JE+149YPWhe7YlII!DoIeT)#cmLp98vQy=uiU<S zm$%=3mwT_h!JRuV&~@6=!k|v-#rXw4dhbWN@640%-XkdyLa4B-bq=48-!u)kZr$R> z&6_M1i)nIRu@jOM4)8fQyC-p+k%jGci#3MJfAZTJ-J!&?Wb@dQgeB05!9~MryCrPT z8I9!|#t@D>dTF?fBd1%q*hczMI2s4O`=9-1eDLk>@OS^i{~d3<`!3z0)AGPsCC1)1 z<9t*yrBTA0%j-xI!8pOjg!2j4w6qx&h*4(5Slw3?Fj?oJ?HU$g!Rqjk>$mRGbsg(3 zTIl{5x2v+sPrtwK(^bUg3R+P2m6GyJuB2b~co+zC8RLQsR)^5&!kR>dtw<K!m2;f8 zgPw0s{W-nx+yVG=w7qiofWQ6M-%;|JEje>tel@x=nT(>$W+`%%D6z{KWh8s6DT2np z!otdFyW6suL*Wf5RNXd?Me86YoK3`#2)jTWBbS$sc-(TZ@U*Sfl|9qRg(-h00unWc zR+<DgxlxITj`=9cig!+EU7%?ajSqO+W8D_9=LC63a4p-g<h(y7hLJHU2`q`IP)}|` zkYXf+A@dL#dbti+?W^%lyBX$OUez(T%0B=U2{8FySc@3X7=&>M>@L<^Jbp;O-4c@O zwL8~hU4wOA|5;mqAIF`-__>bXI#<bm&XIG{hB1?wj*kxUvsS-RipBsHo}MM<>%ybw zpLGEYdv(QQQcZs)YAHH0jyW}vB32?ts|81|zrk1D`3kmaaE*Z!8HS!Tj+{O@<Mi<f zXAd56`r!xkpM64j@Cn1?M=%T!;w0G%nV~M#DTtCA0U04mCUaqO`atm3&{)T@U-Hgk zp{|8**f`ILHGDpd>~iP8D9T!oArfOyN1)$wcyP$U;UUpP9zTA>#rXx_{mviIbqmH} z<ksyw+_-U*J9qD3Ok@}b+ODe(P0_1&-YfbwTiC5J93CF>_S<js&O7gDlx%enD>kIp z?JW$^5TnpG6JjC=r3H5q;o7z9U<^0^-ru76#y1Gx`2q2_{sFRHlg2=Zfq>LBlm#3K zD~TpMR7>F4T3$F@A%`nmo?9)3(RkuN`xXyF$I<I|SsWhHE*jcWE@<ao$-coem1u{i z<??+OgKA}1!P<mak9DfXXi}OXLh5ar)?foja<pSZyXZ3N_N6R~f8_01NJ1s#>R;3A zWg(@+HfDbxW<S!mxfjW^2!$H7%@9X31x=dLoGDP2fM1CsxgGTEe6O76l{cO{0DoS# z-}sBK@XnjJA$yu--WsT6G(#CPLX2RofK!s6Luf>q-!`eiX^pV(hQ^j&_jw?qo`rL+ z!k%51Nc{*Qu)7R|QQHA)BNpfu7VAy!>#hs?M8LASwi_f`O+R=;(>c7)-gc6z_NL5v zQ&SN(d&{Z-7x8I>cWbPD$Y$sW!vRJtA|Bg#5U-*_QN>cCy~ZdWF<xKG=zuj^Pwt(~ z(5|aqxpgIVqSX-N0OL3ihJo$+g6;Z@q3;<(R4HL{#h5c-G{X0d&!n*qi9*+Q44|FE zC=s({Ee4}`)22aUR038e2<pPC`&Cmgl~@&k0)%L^BEe_axs-}Y5<)TzL0kF8kaM{q zWC_`x6ay)$NKA}s^t#1@qwBY^-qLo5q$J$9^8(IjYG~Z;*ljmFIXU6cqeom`Zg~8I z_u2jMJ^GK|CtjRGKOiaP20&^&R3}o;F-p#n=W(p?e`eE@uOURPg~&1RYDN|MBqZ-S zH<k<M>76Gg=y$v9_>C-=OWLkQvLhH{plLfUH<t{<$b$!;(f2#LZpp1%%G0RAIOC{k z0PhvK$&0vij+bA4nU`LEnOiq+>Lkn|V<ml}&X==76lmQP5my=Jq!90$Z@r^V#f|GM zZ(JjO;~mWZ;%|dM2(bO|6UN{F4)I_9F7e?bcH1>$jEs^L(aEcTWCu87ZaVjY&IH^) z{T~Rw{f{_Dcw#%uFMN~LH@{Bv;)}S$7r6QA3O}#KM;*m6DO!{$4V)CxFDV{<UXElW z4?>wzbmVFin;i*nNKvJ~vyS((k@Y{t?P=}*Idq?2r#MOVTjdK{8dw4-DXElHkp1cN z#Zk{~lg(`GsPh%3^C?aMvqnxo;oPSepF045F1Ek_H{Rv$?WsoHW-nDqOoGMM`rrDG z0#E5b6ZM}hD{IcpjY(K6wJofhG2WeZIOlQR(fYuu6}IOC<1Vt>MI`E+Pm)-!98ISZ zxecZYx@gp-DFsOuUGeo89%1ESv2dDO&MjPx)7;@0^5iQKy;f~A42kWaBqVDBjoESB z>=>hEh>kdd6Uz`hK^DXfeDvUgYqwq{$p{j%@l1#_IB~faSDUvuXK~)qc;z(=ePFlU zFovLVsoP6Zsg({flb=dXd(=41S_-kxIVA(OZA;U%NJ<Q2i82Lo9_Jc-iQ2uda?2&} zEyZ|>-pf*M1^YS7;sBP%9<yVZ#4sipqvpX2k!u)whG8IvF&oXG3T|1{WgG*}cN`pF z%aX@14$6gSJI}%O1=nue;KdhTVjOxEkohaWro^<qXB-2kPtJJogAaK0!ymBz=tC|) ze4p|1BA>G^c%=+AVu+&RMk3lWIm=hfAX!^g_L2y9Bywknq<*K4n{RMU$6!3$WFdKm zG16Mg7)FeR5Hy9-c+YaNz;Kh@Zp&`F#<>yiJ;D1bds~QIAq3h?09<rk&Fd$a^aASK z1e*-bDyQK7gLQshW@3PgaCCSr`wwLSFV!XBJRH6KD)QDVgn##M)qJ$wMmFF3knQh( zkMVoI&2aJn8Dn*(Wai|Td#4o=V5Ns|{WiOA|2CHx20S0*=x*QS@U45ezx+42{?@Cw z&J)Bij1cm;nHzsh=6odWrI6~lEBpb7rj)tm6qPl!ony7?I6OX@CCh$3wlCrqTz$RB zaZk@|f(A;2ULtd?R!Do_o*RDsO#Za7*>UsK>IVuYYsw+&e#%xIlCloWJe21Sz@OpG zTFbxxw|{|yW$_Z#2x`+6D*R{++K)X?M1%?h*GNjhBuF7)qa#^uiV^{{B*THZ+{vlo z^4{THqVtJ<9q2cS7$A(9Q(!cQ-!4?##u_Tg(AqL0RoP9FY7&g9w99hkIXZ;pva}{H zIWbE@o9|#fm<H=xeA_6q-dMJmk<%v|PS4lCKpF#$k2GP(^~b`pb(rCT%gc}W&;MWl zPX<w8q?ccLoqMmn#f|GXxq0Vh4zFEfanRBDhOYH^XEkCDk?p4E;`9l9za_+wnfzLk zRYX%_43pGt$ssq5<}`$vQ>F%M7za{}Ir{fl+bCJ5@ftZcVQTIYqdHV2bzsyAE7V`$ zO34nJt%5Lx9iXtgseR{+Q6)%>$<hDFI1WgRnoAF=2-gqFR&N&_*6Xu1k{j=!ijT&M zI!m1cn`peFNr~lZrO1Tja<NxO-ucQqJURVK+`oUHM~@z}z1(sB!N**D_A#5!K4pCP zIgC9vciPiPcB<N+me~pAvc}Bv&1Eqb2qW?I3I6m62U5!BEOZ_5-~f)Vv0WXJj*sXU zON_T5k+$_Xd&oErY&Mq+{eZESwr%UPHo%k9Q-0@neuob~{E&a}!VA3o(o4Mb^2@yX z>Z{znbC;%THCoHnHjOsl<mBXp;>?w+5uj`J0z-Lj#!?s+^}3BgJ67m@Nh`<lm)~Ud z%Wq-L-%)>l6n2kJ+5FxQ*?s$;As_#cwCj<frwC3Nqt08YMl;4>(@07^@xg}E`yUhk z@o(|KXu~7p8`@jfu(xj!UVanz##d=xzE{P7ri|g_)D$70Br4dYZk<$!+!|P}TDs-o zK7ZopVKYw^)Ri}$dZjpH<?VU>f2oX76~`RBNSfBTydJ0%k#Aytp`>I|UO%Rz=X0Bl zpZV#Tl4H8EJ$C^9jBW?Z1^=_Z^HthBKw?tE-?bL24ZUmUH4J#Kf;BOj45L#uDq>U; zPc(v*v;gD*Z_tK0rW$VVJ&kubr=@&h7g?``6iO2d-G9?sY@>hcx#)gv78p{2K4twU zF@(&FKRRqUK8D3YXgZtAhO!gj)bKBi1LHv&BsGY5Bsq+;93HnE94@#UuhH*D9zS@( z`fRPW$`(W{&Irj5Y(+KVcYUHCMn3r9hkW$mdzsbUusS&67r*%{eB+mYo!hV8B-+S0 z4xBwc;o|H<>!L#>j3H~%E15^RKQTjmDKE{+C(!o9DI3)=IRHtt8)5#Q&1sh=E8scE z<Uq^CdQCqB7AuAQR7*e|shGq55^0t|q;?iG6KB672uTe{VJ;6tU!9SZ9hnlj_kEw` zX4PqnF(N6d12jU@HaMp#oftG#lt@{kRZqq_hxLZWH5lJ=vsuusu5ozn3F8>(-})*S z>kBrQmuxQAY%eZIyPk_rKV<#U`^1NzlQx$cVoHgHrnEpY{86S@$Ygj`9iL(_^~RX( zj%K%`IXR&-hCu{rTkO#h@#u(Qbwpe)NsV$gnzq%x2_e)JKun3{Vu5px$0sK|`22Hz z_n-Z<D&M<Yt+;dhHm|?&24DHw*LdZX*SK;0E{oRl=;UEWnsP*$Px{t%?IDmTYrCPY z<x>AME%FF1L(KVQHR!G7;FX&kzH$rmcYm#}BjYBq{rG)0|Ma)v+kZg+<b;?;lF<_2 zqV8uyz~=;0ltjdk#*zNBE%MoY((io>;Xg$H+q5iRxW#zyZQ`r%VDG*R%N5q@n89cy zTv7p$Cg;-{toJMq7Cd-x|7Teuzx*wuPZ~h)Thj^g&*peGCJm5coIdOnJ*~O``8%b_ zl!%aG030fSR)ob;)&7vA<9OaoOCXm>?;{dr+}BUd-hS=?{2AQt-Z<p%{TpvWN`#an zz#N^MXE=Z*S8klaC(Zv)WiAF0OH5#j&VG&}JxWFq(FQfvDLJlfEUgo~7luvZ{9Fj5 zp>3ec=tH-#v<q7Yb>mESILx$WC8N-vQ*oVTrxDL;p@KdZk1_h5abCL*dJop4<$e0T z!IH!=#+*MkU|WX=j0qeaw~VKjU>wd{8fV#Tw~T$3>$D#0m0fEx<R-=tC2_gE;CFue zzvp*<=O5v$#k+>X<7*sWzs0p{H#j=J#`53*=Nl4f>II@JAqIz*TSlB~@r{=D4MQM_ zp>2ieTsGLE5qEB4VvW@_OjfNCqdDV*;q>f+%iT!V=kh8sSs;XL_*Jp6nEAP|NFl2U zN*>gPOIp&Fk~%o!II`Pr5YaNvkpCX~o|IyiEQSyxHjIoZ62?f1i4aDdSrVNiS#4Wf zqthZ5Q#ufcC7Kp74lzR49b)Z>a~;doQI3$b>~3>;!RGRtoSmJpSzoZbyrf^R**$r} z?!))#AKfQht}!9xDuTHq`_!~Rj6n+vC()nc9ITANhLLpg81wjX-A}NNCyS2QHu!^M zq-~XvU&^}Bh1^+-SWEK0rU%Z>&Nx3i<GuIZ<G=lH{u^!R^TNx#^x_>JKE7bR8(A!u zG`ZchwU*^l5r$CkjcVAlqg_#t3<poSkowt-uxBVF|B;=DW@Tx<@)pNmd8^)+agzw^ z6UHBY!1(*$=HdrGWZ0Y%`Yoi07nxErCRc9E3||U8mmhzMeDn!P{yP9777iAK7w!;W z{tD*RH!#OXG+m2t8eHQFkBt<CzSrhJKX+RR&3R@(U9wiSild->^9K@R%y9lB1~k_# zknAX@D3xq&Y*~v7F*!d&VQ);7QCO4@uVNMj2`EI&=MKQ1vF$H><qp64i!Ty_ip@xV zpw<>5&a}uIw3$!g130JPQ)$Q}sd$iTh)w?I1gw++XBi`eU|23aZDZ&fL*t>}3g_p# z2>Dzi*tVAC(%@U2%_(Jx*+N!}2J2*!dG&_YOYP3))M{hA%ie4b8eD`%z&2o7u#J|` zX`fxvZsh#YDcjwUbBPV!SyDf+JKL!MlDBlNWwRbhgCNP_Z3J5+I#uXL=dZGFtr%?X z&=pf4gpuv%YaV|7DJ6&3EtVV|-Qf7fEpFVp!|M1L@0%>>lO3I`{wFDA5}l*(wIiDM z9z=~s9Lu7YKN|vlKa!FXGr|y6S#aHRaWUdtUr9nHPwYYho%6TLI5FjSsFAavgC?cO z7zWnsb1v5x^!<()0;QjVbr#<!8e^TJEn^6pVhVwNyTbt9H4NTV)X5qTHX%}+EI<q) zB|-qi5(11vsEudFah%GgoTX_R?%aJTOW-E@UI~WhXQy0VUeNcyrsurbaQ^s&-GfgV zA3R_@J0WZ@34M=C33V4s>cG@IxRCSI*`NgsUH)9majI%)1di7uM;P3bGcbm&z$wCG zXV^K1ESBIrCd)dLok}B<fDpjt<t0D({&)G|55CLU*#$!wvjCK*?G_xYj`$z`;XS_k z^{;V!=S7;PrKCKJ$!NzuNk2d9{L}2eCQNCPs|vJpGtsOp&FVJGySL%jf0g52*nRLL z`hWaeeDcqKkF+_*#37?aO3(zuh!Qu;SSvg^?a2{Hmuu1wFOVO;$0#sZOKMwWxgZ{1 zr+evj+BaUu93Bz+pF`uHw~5(bFc<bwfts_=_aUY#DpkH4V!+9)b+O1S`j1R9#s-`9 zTEvvv|Lg=<m)nw?Nsj`XX~6UI-1|ZO%gA#F;Lp<b@BLd}=Wyv6qp5IiVR{Eq!)_$k z@k3^aL({0#toJJLqY(p;OeSwxoU!D1RoekqK^}t<i#Pc*jn&A1n^>Pl(wNlgu+Vt8 ze(ZR1smgyMLJE;b4}03+7&A9ubtEi0%c4<I-QMJ=3@NK+icX;Qi1!E<Nux%!DS&IR zw8TDge*X#U(+kE?<#dBJbgkoHVObo)rMCp}Y}Z<zD8_<QaMjtUNJ1&Ufm+&S@@iWk zdOgKrGE@Sz-(J%98y-LYj352LV2q<%EIGb@lbg3+<i?%5tPYM4AjG6(43lffZNQI8 zJ}lxODJ5*y{2vEx863wFNsbJCz&C*>r)T)mAg4n9+Kk3l<wA<J%lYmynxqhjAseP) z7&tw7%-LC~U<h?Fa#{DlHw~JLbd1A*Z$^wHwwp`Fe!v*3y%QX059fgMt1{q#f;x#J z4iREVT&^$KZZ@PC8FJ*8M369IQ^fnMM-TX>%~cdC(Y!i1B7{InT4LA_J?E#7>9<>U zmzP|w*9_<9JpR`26F>Ssl5$7Od<<hu)%`DZ)X5k|U_@IGn+&Zx6oJv!#Ja#*;D#~W zNd_;1tT$i`(K+1VA>qzlE*DE4^;;f2`kd`<n;TS3b6Xt)qt~Az<1nyUU-19<kN;zw zb2N(uFTe6CfAKH<8n3_cIxoNc5=VyzSX_nstKR(#o-Vv|F*9_4d0ONrZ%t=tzVa61 z;SE-g?(^WgYl0X&suG$q-y%}VI}5O1(kulIpGUcZ3jrGjWP6D_IU#=ZKAYds65Xw9 ze~L5vQ`}}`Y9;kDp+MPi&mD!*2jFTYfeN+xiS%0jJ3UmQF)GJyH60+L4cx4itUuww zxvC?w=agLCiZhTi0nZ(PKO@_J@IUzrSgUZQNmSX@;@YR|07yzW3(03CzeX1_L};AD z8LR4cS;xMyT0Jb$;K_2qH9msIS(e_?HHNNLZGhcHVtp1FhE%Hyb}_LP$EPQb`zJ|1 z-zfC|;NgzzZHIASePXd_=^Bk2L|`0+aZq)%rn9ukAr`s@#5%%gke%kD(<sDIL0i|f z7~itEc8%^}!J#B}ms?Ula?}}?4J=w^^J9d|(P=$+=@@1+W8DpG>|u_qbdow-9D*{L zGmCo$*HIR>>`{rt>KqLHC66EOIC=B{zN<LPYIVr98@IT5`z}XE$JnNUWJykugaV}s z)JUN3dnGP*Z5Frb*=#Opnug8hlFjZgA3jk^BAxTJU6<R$s+f>(oJJ#Q-ViwF$&(7{ zJbv^!XQ!uZHyag4%G?BNEwPj)=Ff)MW5<zQKhiax7=~FiGh%H776>DWkww?#mdB+L zkfK#FBzD_K-|sTwpsI0huLpvr5Mm5;c0t>9wV6=Jt!uTa!s0Eo2ZtOV9_d^$F!o#4 z4<7OG^Up~apDTegXa~$OB{nhcbxSPnT`#$nZeC8KP@Mo@=3j=bMO4W#pt)=jLn8@u z`h@Q6l%=uU!tj=J*rOvZ50;$YxWWAg57=xjHMe_Z&KtB%bQIWacf9w5AMnAC-lJ_> z+P3BJ@PNB_@AAf*Z}Hmeuk*^QuX6qRbuBMrf}S-HH8qV<hAdMy;EN5$Y`gjL4UYf! z{~`Xr{jYiaJO7OJg9n5#W{rs4CL2iBsi4sDZ8$n6nn3*UJz}q@!CZPd)q`pYFEK(G zIp~DLu4CQz&p4Bxuk9&S!dd>mY^IQ|%!C$5Mo>~p_@>c$UZDFT#&iW$$h%h;OMs}s z-=x=2+^t!aK+gY&nWY4bzW&?+_&MLa_xx}E{x8us09N(1P5vinjV)BxZ45fW;;69u zSfN;LnYvnf4i*O2<Tk!WodD|{MjVzb+bh#fhas}vc*YUZ80m+=II8m8MV~mkw4APm zvx`eUe>ie-I_kMQL)%z_jI6GY+&mIqI`nj{8vhuzFZwv-a-sksB*Gw=XlSs67%*r} zp<oqph$WH?EDw)pmn#<6Zg4#G3}@%W^9x)WFfI|Tkdh%pSB(Z_kU=cIv2+q^iDT9I zFA&=muYDfDRA-<%08&>`g?uv)T{IfHxac`Qf6RwJ`hyJhwyai%93EZg_6sjE?6fpa zIS87^3!$gRRHFUZ%RjBVwi%)q$O@0nX}-N_p|z&Mh6-aSk*icD#8@K#6HZPZYqXqu zz<b|dol46T5u_w4n;b$Q4q7tVU&hQ<hSJa|r4>RTNr!W#;-uAu%4muz#>CL~Y_~n@ z^+nc<$o0>;?}90drYT($eU+lsRKY-qp*|h0hOjhkOWQ572+t9Rt3yt2EMakt)%g?d zw3Y;nz>r{wi9RKUB<yn6M3F2^WYl~bqiKL5=;N6|>1B*qb>v30E?zQJpG3P<E>pxl z9yvHW<LiIt-zFlgmJ9yh|LK3plP4#vFV3~9WE>QkkwPlXN^#a9A`HX8$;rTzlM}xC zo$pYp8Ju(6yro3Lciw%M*WY}T<Kt^IO_LiIO=ZHWVZk1;t&H@iByV$MZx32t`@4UK zd;j*|Vc12sXB!@U>tAs4gYUCDKY`OHwBtaB!F~OgabNu<n$@Asj}VB%hVkMNo8SE> zY~TMr{V+8VGNK~dNkBs2)#GEn^YGyxe$o6n-1Zs<88bC`%E)I7fjrRb+?+}Q=lh{P zJ4r$`v93qf+S<lhGM|Z(?}r*J7F5%i=Lo>h^>*X<fPeqr`YMf+T3Tam&fmK!0x3hJ zz|<j3N^3C+G3oclkQj!MewSF~7QWsYTJLDGuukK$$Cy%H9MmwMpZ5$QalVN>S&O#c zO^J{KLr{iyB+)DYJ1M*E`o!6}!q(Sb>^L}VvxYkm6XO8GU>I|wAZN6?k07L7A_j}~ z7JsPu{?u8Bn$P!bi(f6lx4FJHXq{|pA!uY9gCUHD6vli_86mL-k3||omqg3^BscnT zQys3$ze9=iCc`h;Q!0d-z0FWz?h3aW!H`Hsh;by0J=^U$Cnulr=_fzn(ZdIvpPkY) zEeA)}IXXIGvB>r0q^uDzl0*%#>I|sRQp$Y-AYpTajWJknv7*4WWR<`er1obYhk?!I zn$wdfT&^$KTyE%hTaqN&MhRMlH&9?|6~oaAf$e6ECE=VSgpn`~7;8A#u2gaFV1=Zh z`SaPLmIQYF$mQjZv(s}n+Z`c9mdgWt)2Ix!%fd@Fp{&1-S(o7Q@}d$JfvnTu@omdu zxx_oKyan5FbacdT{2%_0j2Bx@{^0j``0d|i@xh0Tk55?Jz|oMj%rJ~>`yHQcw>%j~ zB8K+(CO7`-Z?d|6!0?^-=<nYro_t0c0yZTT(8|hf-Waw>mNnMC4c;hnU~PtS5f0mi z!=poXL3t%nA_s>@tPTz-s)Ebqf?xTSZ}P!MpYrL)A8~eiLd=bJRF}hI{cL=SRw8`< z;6C^7f5vb9<9}3zvsMQy?%sWYuYC2Zy!(}}@X|{!ad>c$9p1trG4<H_R?qU;RKy^O zk|#~)Sll_{mA~;Dyz(2rp$=0NF4r5*AD)oT&#_C7SuOFM#W;xR7$0xZy!{#n{gz=n z&_7<Y{oebGPwq3W*Vv0ET-#l+zWCD+0{-LQL<EU3Gx}}K_giDtQ8c#BwW5j&6G~Io zn|bv>l7y>`x}~lK#R)JozJf40uFoBSpVRH7TSxr;-+YJ0OD?&Z9-gmWVP53PgFz-I zK+^%a+%LoW)+#B`8qGxu!Z=!@GtdM`&?j3VIuT)vDiE{j6Wd<sgO<9*A}C-|Rhmnp zL@}53{+$Jr5?z~k>*W>K4qZ-@rCb4!I}zr8&cd=YESH9E0oJSNj$e3u=P`}4#W7iv z-#3U!q;P=@k>PAdf40H(1GY(swW>%s2Aqj_Nwlq@@k&_gLm--j#3I)^5pU|GnUQTu z)TyOA)EQZ%IIsEuC2dd|yXc2K)@p`SD5-@KAt=N@3_CWL7d*VL@O#sCES3kXRtL0g zgY%A<4v8_a>w7(?s9X&1J#C}%iQC<fC4#{?mm>{j>&L9@x7%*HTwic@zGk=CvEA<2 zZ8pmEH=8PVTbaoz=5ob>5JskQMY2;d((iU09vyN0`ZaFex}~alA+kC+plw?O7{|zV z*Yo(%6Yk%?&oF44<fG&3+<D=}%!9Bw3eLpA6xr@}IxdHvv$H4KXCVY^j{2>&v~)E$ ztIeAnMI)m<KIEl;?bmtn*ZvBURE;j|dWHv|uzmkS<oAA$(+|GGczVj?^K<$T7(>sU z<0W{*;v4U<{N}rv-;#)@Ys~4E_{j%^`yX;B+89R!21?Dls%dtnlynIT@AAT}<gXN? zmWEN7{kn)-*YN6VZ}ZB%x9PeiUDtB*=m8(T{{uey;Jv&Gm>S)S2*!JCZY)qzHrvgX z58i*D4?g&S|LVW|FEGHhYu9-3rI&c~jW>Dg?YFpn`!<J%hjguWznr9KXJRzWAnZH^ zN;L%l*08vCNOydY+y5%c6p|3~V6?Q@*de9^x5Hjva`0DP!nKygYC#(l+wc7=KKZ}? zM?Z0$oEyjLB>q|13WuaR0#-?UDNSX$G8yZN(g+&x<ou(_k>G@kf^%g*Y7~kMm>juG z-u~0L?&sT&-+tpS-{b3V+)^@MGZ}v+d6fqaFnR3r|CRSj{@MYJ)86)msbo+kM|J1B zQ5bvZ`;jpeSx=*-bs37(8sMB^%8UM7)y_M^i+2uqvc3RB%UDJ=?2aY<HjsRx=`@13 zRz*-2ONdd^5?xn>h78_2T%!h9M36Cnw~7!Dk#SJ?8^d-TIepYKtOxC1Z~(>%aTjo2 zBXQ@TT{YOtgv}kyh7cIW%(~6+bgjd-Gn8dU>Z!(``sUvAE69K@oQ3O<Wl+n#%=vX@ zi+9_!69kx34aMOY`kvF1hm7Nhh|n#T3`5V?f9Y3v;l)>29ULi-AVjt?;eA8Xc!qI+ z%b?ARM4b{zu{OyGVdV01%P<6XyMf)dXR}cUqzJQ=(mj*YBw-xcZa0K5*2Ts-rPYNP z7>9xF_LALh!)9~I`uYtvn+?~lU+3^p$&e>cPB}e2=X>AzF2gY5GI=qHusYOhG0x(| z)Eep#g7O4XqTg*<ug|kaf&N<}`8spz#Zsl4RRqaGPOX%NPS!xvwH(~|I@iDY3xvP* zZ*nILy!haK&i+6D36DQ}$l_?3Q*czyL5xuy8=sKd9qr5CV7d4;7DqQ2?|%lLJi>hZ zA>;W8q2DnWU7Q=V!I5p6S{~?T8Th(T3mhCCsl$sQrpRV<$#%QNw@cpr`Y-cKzx<bJ z8pq~x%_kp!z{Ah)v)x=W^t~cO7-CM37;BX)k@+vyInK{7xVX6Bd*A&Y<T-q>T5;#@ zUGCkx$Gv;^c;ST?xN+kKM@L6Ag#c<yMHrPsqWwiMh4@#LCUYQy#aZn$B8?#>%h1|9 zmp!&oscGlIFfg_q{ujQ%8*jYDkAC#SAG=m&mV@$It~%j=1{?x4%0=%#r@RD=vsofL zW#eB;1~Y%Dwhh*WYQ6-O=4#r&YI30GOIATKpF03QXWQTT*Wcjvdp8hK@t)d(&rHHT z*$k;eFemMq3=0~~WqYe6Ja2RFaidPaJZ+Gop&tyF16=G9o6Dqae)D2)a(lkohBe#C zCRY?F6bZ+N4Zaa}!@!R|F^mC-%AnqD6W{vb2}cXZ@qy*qk>%#CR`morOVbz@PH^7h zz1=6@0bvX<f^i8G6RFRoZblF+{U&ktWZ?WPs^XbXoDT+*0ykD#53jdKRRwV{j)~na zvK}KLjwCOY#H4#I4LN|EW3LVX`{JE5UXAAH>J7e{8Zgxf*lz-&xfbu+isVqguFe9f zs0vC=MLaoq#J~J!{}|u2)kC~~<2J9{dxP6|?s9N=Oxt$)e*VsOw<U&<)$6oDPTvpg zb_1L3hV{h-m+K2IFE7|`)})y5-eoZ&tGWMJ<c~+~nP8oMrcnW)zVDTMHwOA$PZ(7~ zc(d7Xczlf*g(pwW`0jVU!{bK}F~-t$9m~}L)_a<^BgDu-IG|fBrd|O_*j!%F?{+H9 zyW3O|9wiq>y5*t@DNQDd*&H#mFjk3C*sRQFbgqbNSlxYvgM05_Z@q*uIZ98ZTr`i% zBn(3!CP7St^}_MpyWD&CU7ALt=oAC%lgDhgmuxm0b{~99Sf8``&cCATwOgSegwqpD zyTC0Dlt<w#m+MQ;PS0rCB{2#i&C0)wWxMOEJoSsOyv57+-p<c9vfFI9xH#p}!v|bm zoO5x0R;yT$G!bDTSK>H~5za5vDfr<Je^|$~bB@EKBktU}QyqiX-*}Vjx9+HZLq-HE zlRe*KYYZ_*s!Bh}<30(_K-(B3c~a8y&=dov@fd_Y1m1k-7k;7xP*ZSBF!wawo)*RV zdD$wuVke|VvfxkY2O-vArKAJ$_n!JCJN2_*qP$mm1kBbHGp$o1>A3^&^R)fX|BbJ3 z?fQao6c(LE*<vUq<n?Ef@GaiBGqdhdIhx!z{MvoYG1ZF$m7Hc;B{j818^!d!q2DFM zsso@J{4PtE8roL(-8Nox@m_2DAu78&2_YoLLG#THVHjYYpdW<GO<>q0R*hx3w95Qn z7!IyCn1xCO#~fu)qKG6)>We`Y$_yB>q-fag68$dWO(M04D2Yc;M!Xe{7M<o`y&?<* z?F<-z^=@Pr^z*oyUCXUF^WQa6PZP|TgZ>(~T}20gLa*LifDG#Cqx-8l*BqsqoQ5ci zWXjC`dDpPI*dZG2?Y6YtqAn7rClC4Hz3)=`3|zZ$lRI}_<i@Sry!i5~tPYL|aa3cp z-4J77bGc@He#+(gob6`K<@$ondd+UPQJCD?T81}{10q7-?-=@>F5ZB5o^H{xTCLb^ zw-^JvZO?YI<>F#Zw^-733l5L3;eE%apM1neAH1)r2J2|M1*?9@+y%=pj;sz3SuIzr z4i1Si((krBIeDz-CBiriv-_^xgtqHgE>~K$Q1aUOflbPow(=2bJLCfOP$Zc{tuoL? zOuAsk7zr_CGM24Drj~QHESE<d9bL}|m!a_uckkY1b-2P4*=@Ic_JfbvJ$?Xhy-Q3z z!*<8;;4`8m++v087TDDh=`ix0Z+)9<H*eE+3%cc!w(V-9SkfA0MYpync3PTl$?e68 zTen{%j6?40uw#93#`)PP4?g>ZaU9f{O%`&4nZgH{Z{s+!-ER5(!2^E(_kJ%sUE0y^ z@aULZx9@QG#aDRkjkkE^-fP@>;RU+oYCaisJeM-LjD{67vPAAC8!Kn@x!io=#h-5B zEJqP}>fCjr{(L$CP{x$Z#_8n9_@=4XR2<z2D*|1gn0;?TL?*s~5@W>(^E;!r#XWZb zejc`)M=SpJUws|pJuw*;EgFgz!(XHz%i^EQI;>RGTD8}$3i7yY__eM%4=(NfN>K+X z^P=zvd;?2oxxVyD&>DqxFWQ?YN6^NAchEH2A+Piq08}476U|~2hF+0`5-q1-H1a>N z_{QNe#6h^s+5iHypAW2#;NZHWS*m_qxol$$<2Elm)<UwGq^RexYz5lH5QHaB0=w<V zqH`LxS&L~voW(?y%3W`Qw!2L#ft<4Pp3NwV2L7owPnjE<xjw+263c9%sSti<-<P*a zt**-z1_j9}ghM6psJw9H8k7l6b|?(Wp3f1w%p8?U;>ruk{m(w)JLz9wtYxuSa&&x+ zqoZrwec?r3ef>?GYe->aySZe$xm01D^#!}#mKZX*&N{}ZI{Y!lT8bFMI6=(DaCy1r z;{3dhFY6Q)XlmVlgZH14QsVT<3A^1krxq-`UK<aUTK`?&bA0VOtAj%hcRM5{cAHC{ zJb6^}+A)U8b~e`14m~zsXX8Cxx1j457-ML>mcFVivl{Qhh*txph(UQ47w2aR@kiyx zNWP~<uq87%vT&54@t(HzEEZjU#)+;~<YnjsF>JYh^OzT2yvD7tV)>W<GMm5juW_){ z#r^;OfBHYuhAn0szz8Xh$YRMhuGxOF&gW+77AsZ<M=TExX}bl^H4}+%R>9(`GvKhk z<)H02a@V<i=S4yodHXA0&wP`f?dFn;vs3PW_6fV~<|!j;^7EZu(0euv1D`**&u5>0 zLi!i~oFW({BD8JCVzuJn@Q52XZt?2tZ}G-k?{f3jZEoDUO}AJomm~y2CbOzkc^1M! zD!KEg-^>@hTtnhN<o>?I%{=W`rIhygL6vKf9e|jf@8ZnYJ^*RzJ~@$*XFHb384yth zxSMl1^5UP;a|GZ|efy;skNC!~yoTfl<lR2=6R1Rxf?NtJVOub3<CI-)b3RCtVa&$B zTT_t)pOF9+J}FzyC0SFWhX^!DXjX}kR9ZLHh)HXll@%_TejeGa2jv)8gH47orW_?0 zy4LUuuQ$AKt6|I)10iZ>uoRVjFA?GZ{fTh49&uji7MAY7;TvsL8>8TjmNcq@VAd-~ zXj@?z47>Hn#pQ^zT83z{BV?^5;23lFvduQ;`gb9kp5)`KHL;f66`#4vbY_{wy%M#n zi%K@cDaBeJtf*_|0AvWiPR1E>;GCbNa&rToYWSHJVq*+Jgw5q;RtntJ^DO%=2cApA zT4Q-|{}Zgy_Qs3llI8M%!=odPj<4~;i!X8W#x>sm(R*w!)wwXa<W3{SNDN~o0FJql z%tVYd*uJM|5*Q4=X;>_mN=nPlNeGHMl!(weZHruT>qP)*90qlSqC)!H%Qcr5YsPV? zpDnp-Yb}fA3TrHneN&N(#ygIV59u0@wMO*~Qp)#(+>H_yohlE@!Nbo#Bc+iz4g@Kk z8(lu8$;VF_?an1txl3dSBmL!;uvoI_R0PSo#Krj~2TM=<>@(7<_gEb)ShTR+_M9xP zvBYp_gj)yKx%SdaEM9(t%k?>%&06m@f~3INlg~MM^jRJ^7Uw<7)e#4WhjiV7rfD(< zq(!`zREo1W)QGsI<*@7Yax))9QsnEu^iBHRRyiIS3HtPtk2yU(ot%I=UKROMBq9(~ zB*p9`<(?M9=_%)@Px$QP5Bc`*|8qc}Q`@#29$(|NH{Ry$uYH3%FTBEPb;xSfVGKI% zjBt5*`BSf>dt|^X^RZ5_KjCdM<{1slb9?rIJ)-v0)kNB(!x-fSrR?OnEc2-;sgl;2 zr4%#rSOP`uBO&$qm2y$%o+AK%s@rdT^JVVcyQvS>7}`cXKSfmqCkC9%;Akk!PZ7z6 zT`<WYJ{Nt6mLHWxsVr_{QKKy;YqOiY04iMMazvDJ!p<64G?rjsj7kcO$)LI)s%EFb ztr~|gfFyM=4!V}}^#B%D3(vhfo_D@xxp}+QQa@`LN7!xPa-Dc`o(Mr82_lx12kx%d zltCWCwBBMHi*GaXAqjGe%wdG>CUSZ)s=;q8%Pclzi~{&$5c<K;kBNQ=gd~hHfgNUf z`C|Adl3w+;bA4@Ls82b(3F;*0)=Dkze7;N0(@V-V`LjtcNHwTMAjA|TLe$AAxqquO zoN*kgYF;Vbs?I}})UBdLQ@&zv43@G+PzbhZ8V(MRxOww7hldA%8nzf!VQ(CifH(BJ z+U>BQ5GF@46-}|0VI0`)c3PvHjc3S_dpT}VFKj|v9i-`$O}&>&{9Ci#UV@aC$<)QH z2sqiZCt6w;c1YaO`WNZ0UBeh9MU5#SF%l46OexNl=EGwg8FyPqiGH`!G(bK^DYYvd zAB$>ZseZV)IIBd>&E+MFc8PPI)xjaYY1s7x=7aYzuiv3-9o`#0_~3i2j&E@(k+|sa z*I!_D?FDWg9O9aW<LlQmBBjQ9x7)JWT+;7$jN?cMBj-;Za(42$IyTnRbPE>Cm6nor z3s%b|-C}`nI-K`NVez6wRc*5k%fl9faCGekka*{-U&lMccDrSJdC9Ktd2s(epMCZj z<2YihA`>n}qDz&pQGe#~RU%c%$id0uhnzfm$iMiV-@;|I=GyfeymIdiUV7yo_uhDe z^~KpAW;w0TF%KV}o_v2YoAN2BVYnbq8~@okm3(|j5mp3mhFp}T-{inxo-zRRyCr=n z^F#o;FwfGzF~usi{oDcgQ`-K`zx)PwUpOLVBkYZKPZJb&cM*~mtSkBToa@OCw~Qrc z49QtY2HOB$34ku=JiXP3*;$)~e-u$DJpf9+DW~Ez2ZzDrE)(OZ##xf~14s#mU7+;5 z)??`RT5nl&j+bsPS@&BOt>gNkWpN;^`^XJ37;o{dqdBm2*Wh4;8#`5HLm*rxwwFm& z22)}Pkuj8B>Pq7CtyT}1Tty&a=y#FRQ&k#k+o`@brNkJ)Ce33=vh@7~|A#0Dn$wje zB$H|_?i71Np2kYZi-D9(E)UFgytCxoWK=ChHF)0a!&*~6T;di<b2Tq&REy-+pA-iv z<q{wj4>70#j44h|M>S5db{$Of1!%Ugl-K8r)9I5FKKbZ_3OzPW!{Ol(U;Tw|a(H;e zVzFeszM$W2xV&5w2z4JJgvwngkxM}{_Q_1@(m3aF&N2)=&ijlmXlvz=Yvj+*&nQ(G z7w4x8z4mq}2#52Iu3O-CeU3==zP62{YrQH@b`5RQYJ?k<c$Z?V<V7Gu&xtq=tS`>l z?RK^8a?yt{#xRZ{Yaxsz5xQ=ne-9(~uiwySFV=9dI%Ipf#ru{hf^ml3u4Vb;bIdot zrdkKq@?ZWJ{}AU}R>!wkE|(k}-z4I&-s3Xy6A|U%ILA@jaeRDTxe7y1zuU6iZWS2` zA-AR;xIEjjK7E{xiJrf2T9(Td2S>*o9UOA7TG1UGV6Cr_BM2rpk`fXTp;@eGx+RAx zap$Fb{Nk?|cH14h?T&F6=yy9#Pfz&t;}3IcClNx-!z`0%%UDC|agwB5CaS2zgU>!u z>Eo_reg2ajfO#72DWm_VuvzCSA4^k4T4wx{$%uIY5vk*PD!nw>!KS7M^cz<ZgK1Zi zIZJa|<ebEeF-VNh9e_XS&05R9``6y(=z2%Y2G`FXYD%K1`lM02O@fKVI8TG5l8>^4 zsByXE&se;*%COI!`?|(zH$Ia!?Sn$!vp}?N21OM@6gER*yAy^{*baJ3Z=rLJg|{@B zbKs5ORxQ_#8@i>V=|&!&ozpZb>a!c+$ywl~JEBGDNz)cWZe81I(;X4;EgT#Qi=D!f zG8l%zGNwd~(6->b;2LeOD^|EXA5~5^s=$$LRd2u~?M~P<+G;qY%ug5;z0i7X!DQ7p zku0DiIRRiMLru=TYx>h<Ms=Jx7RFS_jq+bfR8pT516-W9RMC^Nl{}xZ79;ASrJ|o- zU_?xY#8n!%Z98J-4Ah9c=mKP;TZBSN8lvdXUnLfn=f9te9N6t(eR0l%2cK%R=N!xB ziZ|YRm#_WeU*O{WoDdT+j6C@4W6sY`8HS!vkcixAaGtL$cPWfxmHoBZ@DIaK9f8f} zQpJdjHU-*kE>(UuqbV-)3=qA4E<>bktIkABiQRU?>5~%<4-e_HQ7<|FMb|-!7^7u| zDMrqooUq;QI5|0CyV)>?K+`lVx`iS&Au#mWQHiCcGaMcz9z3{TovK^6Z{uvk!NC#D zZb!Fh7{`ItqtB4;0BbGdIP$G;e-DFjczlz?qhl6}mc?SBW5PGYA%dNp_3~_-F|^%+ z!^2|)bzowOs`U^?`iv9|eV@sji7@O~k3H-2Q$EjWEMpyu<%;EU#o?hk1&agKoUqPk zbg8KI=^RQ?@V;ZYbhPb)!=r25y88lez5BIVVWP+ooS&WY>Bk>(c6ve>$Lgp|{0gaK zQz321q|e<?SWV5-KQf{@Z^!#5wJHC`X5LRG-=Wv_Q*A;PG@Is$DJj}K|F0%8<^VWB z$G+*o3i)0|`U<3G=6|Y7@!SFU6Wk7#9e@9?y+gNZ5G&el7kzHlP@DIpL?wraK#_e` zLtWZ?C|uck%W6^nH8hQ*YaNT$vdBN%W|Fkk6oW8~8fAw;BYY=P8w?G-u-PWoyTm3W zhNwux!Wj;|<!E6!TpE_GcKs8CrgI#uJj<13G#%ad3ztEinr$D60aX%9f*6IolEMi3 zdp3?q1aX3G6v|&MRVi@Wr~Dd9+zXMgjchiNp^q#(%fW#s8P7Omg|@<mw1yZA!=Sm_ zQmv4r+~h30Vx}lOr3u2Ha=j+!k8^4uzn^B(o8`gHi8}fV6eV<p`X?FBrfFsp#H!Dr z4uY9-de&lM(GV#6fpO@w@lvB7Q_3lTSfT2Q49v<9sf(o40ag)3Qx=@Ex=ss<!LZ$K zc=F^i|MH*zQ>=9rB3~UG^2Xcm;#|v<lSe#!@Cn=Prlv3U$V>V6RO<3gaauG_KaPVs z0KNgFLhZ%Cmc9pF&Sz^nCX@LxDRvxsPM@4`ba=>exdfPqdu>D8G@1f)mN1T_5O{F^ zGuG=1&d$zQUtG{M4db8&-&#kX4eFRH1zg`(d17l_ZL8e(JKCn>=FK};=U5#ytd>i5 zKYEYrO^dUZ^?J+aCl6`bmczp%RtGCp<*dq|mSp!~;W^>2=Dr2Q3%<5>PApf4T)TcV zs|OBRI=Q*51j>>sA_gwUp3CzmJiI>*__kfJJUHa&=!omrZqTikxW?DCRLLv*(%T;8 zL^N&7!YwI%F^-O}@zN{z0Fy<edM?)&y#L<!czFL)6?2L~QH~O%q)8Y5i?><+dp35z z)O>&5?@v=ss0i3ZTuj>C;}3DHZ18j7koQW7JSy*N_VNsPtmg~tcYA!s?I`QYa|hs0 zXuEc}<lp)0@8UX#$wEAs%-EmlbAutqT>6%gfHIz))p9oP4c<eSjr_G$!)n>!ol^&( zakQ<aYqa?fGDZ5<s61@fI?_@IV^V>h+#F@I3G6nJ%`VdCegcQB<)AUVaOgN(IW3EF zLc8!ZjbXKLbW2OqfwhV2y;sR%5$!k#45KiFtZiNecM2?Qz~_=G?=l3IFeI$an(sjy zAw^1?Tw&+~yGy|(ZB(>8XgE4v5%D~JaG_DBb>IvUN5nG5P=$Dk@ivI^2{I#WGFIfj z^@G!btA2OUXrDeGv%#D}bGmwfzPgtRs7*xj!Z!^44ARWUG1I=J!Zo=j9rD7y%iZu& zH9j$xd~BKweTn$@BJo-DFEb&PE5`o|m(&`a=w~k17d(3S0B0Sp@ia}#jhnZ)e&ZI0 z$2T}VdCZfOhwL_&wH>lV?a`2o!6sM5eL@&DHISA3N=gT$_EdMyRpUI4BfD+Krd@M( z>Us3}0~TFJw^(p+uwt=T(6()^OlWcn%hC9Gr^TMnKYzd{AAij0=^5+w1<U1<rfC_+ z07eObo6V(`3Wk{5_qK$foeU*&Ao{*%xjfKnh(*V(n+JGj*zI;;o%Xpf2IE>5%a-M8 zN!PYmqL#wONYgl+SEF0YMNLMD_Mm3j`)871G6H0L#5FC8<qEleQ;l^D3}a8oXiE}B zaE4*1IuYZrWgK^$KY7H*qN;<wU9wyquv#r?bA?AC9hyw^jBzBGk!rXKiLDs+6lt55 zcfRrqeC2Dus9Yp#`SAVs_~?TlvE6D{$ldm8d!!$;%_IIlavH$w`3}VaH>S+Pp9aeR zSvNt%C=smGeb3*Uf%+3Fn1BB<M*pc9od1080Q?DTuirW5H-G&td~0){m0LMxrh2I} zo)h;nQ5hgR4CIJMS@msWX{=@0T9%z<k-P7CuXXxuV{nF?gB8Lks=tqt|Gdwd0VdIS zLmxF79+Dv#ZP$C_*s*L4t42kIa#|bL8Jf<qTsT$-j;4X8L6!HSuv&Ub8ax)`HVT`q z(i1TXX~d}20EnhAoCnvsEN-GsfW*kyD|v5-qJ0OFiiQkZfnd0K)Z#oG-(2CFC1bCx zc83rNxz%xqjxpFu;8G|x-(yLTMz9(U7EnN{_>bg8wmeaNt(2kVr$jOAHC=EOv#a*o z)J4jGs-am+tWusOU6Y+73X(E|(es!4op#YHMzc5pGB^75_|x@Fpv1JG)#b$$XF#s{ zAp75W)>@daI~W7Gk=xnn6F&RoBXx2!1G#BBj<4U~<yYQd3?m=@==*Fp>l{HD%sArQ zaHX`(?JvMa?^P*B+-)!CZ`JgGZ#-?=(RIo)FPa65MMpc6y&cDq7$X<w=RAD)dA_%L z5$Yi5a#`x)3juQ+74{v+k-pzmL?>h(gSCdmvcbp;nyZhI)L$wQ%Q?h27R!dNYqafh z49q(=YDx%9Egdb-wR(p8&!FV-b9zw3DB>oQ!-?09k%}lvMP5p8g<%+ThsK_eNsS^f z3>$`F!|4-2vf7{kP1|vJbj<O!Yb+K^y!SKbBnJZ+_8edl75U2Bi!a^dm3wcf)`2zr z*Z=u{!p9$d^o&9F$Gy$buRK@Gvxobax=E?x$>%V89oV1Gd5-R_GkLB)bJumv$gV*C z^SJ}?$GrW`zxW1kymkZI6v<qb#B^Ei);V%LGTB>Zmg}4Svqj54!+}XBb{duSA4%Gy z+Zc$YTc8j}Aq?6Srv$leo2Pvy(cy)@*8?6NI1ZMckTfr6w1xy@)$s@<jMYi3Wph&* zOG=trC}}83rQbRXLt?wr8u%D9NiAwgUQD88eVw60Xgf#B2!RZVeh1qvtoz*j2Cbi! z0L#`f61Z{m2-j(^fS5+My(azpWN_jbqbCGaQ^RO^qO&HG4|ATys0tw!D&J@B?i<g^ zh^9=YPzlcZ>H1qK@iAoeFQC?;TZKt$2d^C65jEPKQW7R34n^QbC2z+t62`EX@1NlP z8G2BEpF0He^DNQ6fS8<%oH+us>zaRmkBF4P53{$wDf)=@CBtsFWxYP*<lzG~)NRKr z_uk-*x4z2f_dntOXCLRLL`v3+A+T2!o{<%eJk3lcvB+JQDh*8&_^gj#-uK?)yjSB7 zIsKM!84cKNx0zud>H9$qHCh4F=akDZ4y2egeUp)ha)-LMQ=y`4$Qy51zy2Cw9O)2J zOpGD0SS&Esv+7#f#?`y)oXwGQc^>nNFBVB1#Jx4YIIIQs%fG8p$rTSp4OE0A5pwFn zSc~%w-9mdt#H1+9n8}#q7zpDyOCc1ZX`mms^pCfkJpLRl|I}`bZQHS2Eos{}lPKqD zi=vT{l^jhXrl`D&QN^l$x~&+($w>auwh}_mf0pz7BkuB#auy{x$T<E}x(pfdNu-%` zKC%3#&*|$|c0O@@c<uoFv2Op~Z~g*D*E@{Y!DNllcs05%*Ql4C=f>vWnIcn@qyFNx zDa>PQBp*df^t@=}5s3*aO4Lh$By|u<iC)v7&2U;xAvm8QBvD8|j<D;sT+SyT=l+|l z_LoSQs#+yeu1XZK8bV?imE>oQVXQ1*VGN1Otu7j4NQ|SB5M$Cdpj~Sa<FJk9&a5>U z5r%E#@;tHLB>IqY1P8+q31ebdc&^_#q&etFc#??L$nR8ReKUd!j*yfTCZwu&pe0Os zp_DiouI$j1yrO#LStPiw#3mD#a<ooC6S6Tc3vV&{dD3YOuAi?~wT8ZYuMpI9ai4I# z>Kq!2a|RJxrC(F7pPw84ns1*O|LMQ`+w2OcA2RSX<XINQyyq)#&z8;lak=`50*n|P zQz0txZ*#fkqYvIwWXd_(w&TY28@%!MS9tXK15O@4WV_uk^nFHC6edr*T{Y}5InkxT zigST6KZBT3J$9*wE|IaIjzia}@vdFglB3`Cq*lq5LqBL_Jj<m6Gbc`onjvVKA;rMK zazVe_VMd_=j923buvi|@wMt%$c?{U>Al4gNpJ%z7<u2#Nyn;ekKQsG#cHhhME;T@V zgj8ejjm4wLiBL-VayQA$G0}F;D$6_$T8>z>84`(px1rx%a&e~o8UdVd=@v_tt0j$Z zX3nH&RgYC|jqT==pGX0KD=9NzR>u2B+2-}~<qrO7Y?UKp3g|zZH|Tm~3X(E&_C&I~ zoiAbT9+r7ApQX<ofIo)KJIBBGn_r_@dDZfV47*cBeq;tS3EE=Q!~)yue$)Zb@7DI8 zX!}nq;3Q&_!uv)NDX2PN<F)KB#@T?dY6w)gMa%gl<kuzZ`sZ_7M5U^^LO9C%2vKEp zV@lYhkaY-I+-1~~y$~kW`Z%U)951(llha)l(T|B-i6FF2Yukq&k`YSYFpP<?OYFAU zVGyn7KkEbAUF3MF+=t~-%MC)ZjAKx-p_B+w*bTygc#;?``77$FrbxqT#BWTfCRgvh zHY=Lv0gH(=cIr}BR;dZLSKdU~ly{M3nsbTJ^ro7vB+9N<65qU6Kq*J0j+MD1F&E)U z)%Z{2=jnA&Unpnyti^554VZ=ca^>%*zc0@)_RreppPP6ub0{-mAOwb?XT3h>(~m!_ z_pfPNuHU%H&D(c5I5^_b!}~lrdCWNMs&ZT<%H{hM<J4`fTwlryyvtP=CGYJEA7BjC zm>UeGaZf3AEcN%wwHR_^BvWtTI0n3TjALNvd+xpZDkmo=c(er9w+A$Bhc&`txx_J| z3V;zqWU^<)L4=fwb2EQf^B3k%P-ZXB9lOa<Dh_Iy5BhfTHm2Q!!y$-K&V-YMcrBe= zE>|3hrVxgHP}HV4PO}o((keQRBV&Kbc6~+&ktAf)VS#TN+Qwr<`53$1_9u>}J*!AI zjAmv)|IjA<YQ+49{Q8%;Rn3nQh?IF#FFB`-bLEnzDkjH!_M<-Ef-aZsxdZSeZwJek zfA_C{1>2Y+IS$C=&71jvHI%NpwJtV8?np@uXos`TK-W0D_jqIRBy30+QBt0B*=ui$ zt~}T*0T@l@lmN-;v0`FU12ky2vt)24Gis%%1sX*YBE(Ts0!ak1nsyihgjkH8<d&4h zVaO4-F<fp&PELCkjo0Wc-vnzUrw%~20W$y@{!Aee2Z2z^gbZhw1H&k+I#1Vlm4!8y zi(SH)#4rTLF=#2{s67IrI2AH7*;~#s%jCzQ=cD|Dx;z%INkdJ2P4<n8!GOzCNcO$) zY4IsAUask%_2{<7l48(^-)hG<U3iNVQlgvkoV1;+&8doU=ra#N{t)Zb<Q15wUe9B3 zo=AM=jweS#W@GuPgHV5yD_^ZYrgVzdI_b}<Tb_3=Mpey}sHTmG9zA?8Au8T;usY(6 zcfQK?8@Kouzw?i((qJm0N~Tm!$X+xXAfqp_LipQ_uZwQcV^>JtRtI4IPm&N~m~<Qj zMyKVC<2X|KC7hq1v-|8mOKY*qgWB{;bvyDiMQWN)k{U==H8j)BlX~|m5;Dywc$xw} z<EfO$Ft0_%C<0RJ{|nNUor8HL%0xe~)RI;-=n$t3qgJbf>by>mK67qRzDD2gv<xtl z4u^hV7&i2qz=a4{PZ||r`ElERx$0ynbsgP@59AqR^VvJS`of>02QZKNO->V+*C{q* z=DbxzV77;vPM+40dD`x|1MnqocaE3*8^8WGw$YZh<t`WFUjhUvab{9OT+7KOq>h|s z$2!ZxdzOoi)v}{&EsX;c$6PB8R<yg;qI0y3(a$uFWJOg511d&=M&34a%Z!7r({6s9 zv$^!F=%de8>Jt5K1=Cu_kn43Fj1nOUK4}A@m~;NVv85jlF=+ljMF=M0ouz9P!iq`J zhA~ElOUb+h?H6FOCPEQLxY$KP5WKZ`>$K<f5WqV6fRe$+NWTjRTIyFMhsUT*e-dOa zMIm02qoPnBP>u9w3k)zVw#Ap5uZm<YK!yM3#!n&9oc&khpM{&Ni!eid^f(29Q1*0D z)&qzV07J-vH1oWF+4getU${+UbPqQ8ao?+7nc~R3flFTQrT(^G(NrRn{lHDnSmx)m z_f~ZR>QCYfY9HyhTOL3Dd|E86)sn=wzREE4eD=u)wLDJi%r$>qP!ny+5~_ewd9J1H zuXB^=lZea&cd{;fV#YC0IqU)_kK@S0hmTa1Z@a@;LpbntplSC`9VLcD<FuSnrG~8< z=wx+K5OQl{>bcLI(tUWK00eegW2!}&84u%>Q&XG(Z0$E+p4~ieTpy)O2IuK6mu~NG zm0vdarpw5Ol3YuJsm<k@ez#-0-Ll(m+4SRHN!_!y;>Z}tsnnTrrh(k*tlo$E%N`N2 zygvPyqao#a|7mO!I+jJp^6NUaWN-S`HN;$bv3#dEa&_nW{&NT5OW3Tnyz}yP{?a#J z!TKD)SF%O+ltr?{Em`UnL<+N9Cztnz#u~at>-(F=(Keo@^|W0>(>m3-w_4^yN;p*G zzikYiSB-p47Z{=#h1Aii0s)9%g3xw`gF}zCs;_U7%_)GX!A~)E+E*RMWJneQD$1j& z2Z1Csjm0)TM=)@B;Au~lWaphBCRH^wxx=71!8@y>M5C7ZISVcUR)`^Gfh0BlyO3C4 zMioD4)gc*!u$9E;Cq0X!h7=NE7zw+P5cRra6qPV8IdVkrqburey8kIwK^Imt8Tgtp zHS>uE%ofFYzI|^^ndc~tsZ96+-Bn^?b`D}DDQfhU>LMjh>hY}AG*FY9%}_{xdkfW7 zCuF{vr#|yk;PVBxxL(rU9`>CEgWkXVpQ}E@mG92aXz~uGUgy(?_fE%@*CYqH`)P^@ zoDC=Z%isOSl+=lD8gAXb%U}4_zruIF^?N*e_&{0vGuc{=@MGoP1SzePV=cog_d3NH zQB;(STb~^UV#HZ3^@}NT?b<a~LyutCrNDKgl`y0MW1<os!+>8LATers&M3DB6ESIK z=x6uAWM?vE<GpvQ3wl)^2eX`V{m3kOmi_UN1APkjq#oO32OyQSV$9B}M*n4vE4?I& z!)J2CEt3tEwFzgnDkR3h(C<`2dAa4o_x|9=7~iMKaq2l2qT}9OsPnkYVPtYz)ET(? zoq~pxL3MS0{qb*_8cZ1DD%w@Vn53Rl+MACh6;M&c*}SQ9P^iwpa|hsO+`6{o-~5ZO za(sJ5<1?!qrnOA+gTxXO6%vQsf7}_ov$VOUziS*#WAR=)?s@ODd!BbVZ*fMjB#daT z%p+NyPo03qDS0UKlCrQ+j!KgfZ59j5;We+NfPj;n=aiz!lRaO^vsMkHHM!I*3jHn; zqvX_sIxWd6%<jGA){Tx2AFN4e_cSrtD0l_iw_{{GDyv@-Ro^~}5JpW&B%|ob`8M$R z>BwfA)UioICx&56T%?E`4;;IIGrB0pn6#wds_LO&a=&tge_fVG_TCW3T!uLX`TItm zDVm-l_RI^Ije|LCFU32r(TCalr{hA1^M*m9X(Da0tGVZx8`lWhvQ=t7dflv@MOicR zxCa70%evRM=TZFLOZ&gi_Hp$alcAY89GHsS6f~e1^SveXnV!cpPO~0Ms1*t`YcKo% z*}s6i7>Wo(-}BigAMx3zA7M-p5nAy2n{RV`e4T&!yZ@B!Zj+T3b$4QO${-6YmB%VV zF1KV_a4RH>rqE2`vZ!S9-4|ZKBLwf+4LdM~Pwzj(pk;p&6BezLkAO2S8`D^gur&r| zdK4P*rfSqBr<iKwzUMd<>#jGx7`&^I{ru@pse(deWr{LI=a}+gtfv1`)HJ4@43&Ob zJ6%ruDbL1$(SXHThqIo=;(*0+c!q)hqS2uh98v?WtHWS=7R5c&XIR=fm;8CLk5c<_ zfXS&Eo9}N)jm#=;{usB4+!RMH^N*&5syK5((JCm>UL_El$;qp(b`DUVI{-h!cDOp= zH^2EJM>iH&Bg9b6z+^l`Ro$=?1Y?A1_!~bd_Ia<}%k*{aEY`H@09a?U1E5TQBbwuP z2rgF_6iop&+-lHc&@-~u&^Y1X&~bFb<Gsb1(l$7!EJSjYtd5GCa5D^sI0|Xh>kPR7 zAc-)Jg4jrMh6n_NJGYlwT1DwSpb<(cj!`13)RjT53t-z=oHt7Pv%>we9Unf}&<~0j zEL+FX%Cqf9B&gKyFbG}OkjAl+;hfbn$1o;hR#z<1NvXIfx(YVu*OIjv3N1O3$;eAV zLy}IaD!5|HB0Psbr)@9VD)Uxmto=MmQ;skd5>-N(MpfvfHd^0b>gW~54qSx-r(@;? zV9#*Z4?M$E?njl+2+!;9^UqdiqqLbWujY{RS!lpB_j`4FhAqGP-u_3P#e=A`k!fkC zJOn~gnE4OB^)It=wKPr3>e>OfZok0U=?NF-XSwBZj{KPx<vqu14kwqRmobv((ajq- z7(cy_tPT)_ag6-KfACMT(N}REorVeP-1HoDfKB&75|Uebl`4RO6iwPOlZ!gD*H7JZ zbLD}Q*4)pynbXN!aX8h$YKp`rOG<81otzm-^&R$|U@J3-U9=oArNm<K(?ak0F3jfY zQ|Ff*|56sZ@8Srch+L`Gi7_Chb#!qA$vP}nOBvNkP_koby!B;n+6YW1YLcY5PQJ#{ zhh;vt$`~*PB$o(Fnm6g1klp#Z_S^yZBW_){;N6!FSS%b8BZ4iqK?kF?xsi{llQKK+ zc%uz;yi>^EBsHo=R97FTznkngw^=X1TZPFjRuuw8a3nS4HdEF_wEQn=^qYlIX&T}9 zu;KW&$9aPlh3366c%x*zA?QdShD75GO{)-?b&iBW=|d29Lu8CvmbV)eYG@nF;n1+? z95N)D##Sf9JEJ5w(XvH>slGW<VK`^?^C<`x;lsyUK7MdX5b)N}wJJUoqAq}vbkSaP zp2l0okSiA~ByUNhMpCIpLGx0l@=SCxSl3J*a&Bup&nfD+nVjtzWRS`#@zj=`2m^+x z-oG}+sX5&GA0(+^FHuI_hh!c>0?D1*QVjVV%f;jqlDbq++m+KZ^~K3UsAMlD9e`(k zf6rGiv)vTqkr$YZ09-`_zQDRXV|(f<p84G`v{mI-Qx^Kkre-%z$6$Uhp_15r-*f-7 zkHJ9Oby&NkTP!&|Jm&FZ6$lDhJ#U|Tu|LZ6+3NFenua&tcoXxxzsvY5e~B0(o9&iw zefRr%WYP0+&ehJ2<$09IzEtoOr&Gtpbg9+Q&yC^yd1l9FpMPQMJ=t@Z3IbTKCQ(XY zW#){`T+MnC);diari9qZxR-lW%Ip;Bn!0IDJcWdBew=qWJNFr~w)YgCF$a<)h;oJF zG`ka~l;|2&sLTs`aSQ}<nWL_G+8*8JN-FrNHUEFoRT-N*3eLts(gaT_8yA_Hhs_<V zlAcoWCsPr`>3;1U=(z*%N8Ka^eAm^eFs4-dE?aA`UCjjM2y+tt@m3poct=(QG<E%s zQ80sGQ__cHmBi<aqsa!lKEzCtb0(V?A*=o+Lda!%K_}Dkal`SAhNdw%E7+vO!NzL$ zKXS?2W;<}U9<T<ERt?984c5YL7uoDa*4u%LO<+4j`Z3Z6t?PHr(p?N(J8HRp+_D>V zqL)elV-((xW1Ngeo~1@imJTM*E#dR?fe$`i)5oL|$F0Nr3?EuU>ntG|t&GUdlsJQN zM$-(*Fy@IKXWh8=j5#%MrN*_UpaZ%vnX-W91?6c^fAYfjRqCFG{7XAwneC%4McI2V zQBzS)n-R;kR8S%&ntD#gn%Xva@2qBqNgbEDrKm4Xe={>G)nQ?Zrsfuf*}n2i1#X;- zJ+r^3^WS#_rhEA8&Fua7qOH7LgXO(z{Nm5o1+nCZAxD#w>S8jw*bhUW+tZc?L<cNa z2P_sV9zS|OzuP{A09j-4zCi>Q%OwX#M{s&d`)hxVlkJYaA9(oaVTGZsF?jE55MixV z)G9CJdd4;nT6Kc6zghzGd?N~Tf8W8`vyi2aJo^UXSzD$x)~Iv#M)oOWW=PA3mT6pG zage4!bQWdTzZH>GB>Tr3)Y>?!M7Py}sNnZAE~a+l&|^w*(rlF|w^rLUCsRsoV?MuJ zlMP5N3$5?v&YfS@rYQ}bmC0oE0@=G)dO7=P!HN>(Ku~g3$K>4a9p$+L@JHRo5ZDa? z5N+d|7wwn??{l6hDQr(Nc<b;+>-SAcxqBa2<8rOP=I1RM{Yy;50HcX`gjSMHLhT={ z-^pS*M)VwFfN@BqsO<kF(5*bTZgwmWJjSXJkdcT95pVM($|GYl3_Lj5vEB^CAY2}3 z8PaOyIb9DtI_r6GvZEg(yCE?IW!lHwRHthl7$qUDFGrosRuux16++O-?sCJM5{g-? zo%%{b_3_!jrw=!5dhLSNwR(QuDXP+S4vXGb>n6b47Y862Tw~eUghaI7ILT9!Wn$~k zh%;qDm_=VDiW5N{rJNs}=Y7$S&c2tAF@r!0oL`ecGrfRP^B-fZ{nVAcoyQWUlDJC! zzbe`J+4(T#RwXa&GF|2D!uMB#8foywj?0gk3)Q&8UhcX4qVJn$AOh@v>FTy;|IJgc z?_I~tN2yWi{5dfB1U0V8UiZALGq>kLBsXeG(>STmHlKLk??4_^hr|1Z<#NR<_g-hw zE$DX}Bn2Klegx?I>Ewj=ov#zefiT9JUJyx@WSAu3t*-_^C4C!G9GO(<N(umdelr_f zum6gZRm=0Lc13afrm;T1UuAE4f07=v=8`8TaPC)@Ure1a^EapSGyu*aVr$c_30V-V z`|+l!5*LlBC6XqW6eH6!n_b0pz7?^Xk1479-9r^bu;QvzvMIGZvpE9nIrTsLHch4^ z5ir@&&|}VfV-yF-=Cx#g-f{&YU~j$B>woS5{1G=1c<}g)ue^Gw?A@f1u)40O;Dt4s zxA%tK<&+IBXh65{93FS9maVqkL>aL@cQSK`*87W5qdqDO<fJU9N`MX_F%F41ru@1k zir_oP!C{A3%f%*O9W(<tA|@r;#<A*Dum9w1$EOcBoL&s<c9F(gnlbR{<4fY_!sGLS z)Ahh+7wE^t7=<xrCm;&WD~BNjRT5O8pG4y=+g-$3IA4z}7aqyi<g&-T9hFcRL*i^b z^5F4?-Jrreu0*<dkaw-q2%X|U>0;z;MgY9UV;MzqSypCR&ldVJS<0fL1r;$*j+tS= z?B@&(IMEU*ZFH2C`wHwf`<>}qHBDcCuZwMQ3}(lzNI|JxF9fAYkO-(U!lh2VOz6U{ zE>Y#g)P9B$pTdbLLbzi5$r0#&d(~nHXV;k_Qj@Pm*V}wfLWZDobTa$>s-d3Ww<{h% zahs;opQR}jqMeLV`SjC<V0QlbQ+r0x%z7@A>o3Q<ihSgIRQ{zj5XOP;eCrHrEw^sp z=5PGwZ}MOL7yn;Y%O%&ZU1zh~5mzhZ$qwf|-WozwtkBeER8yx%Yb@4*n5;vPv;?;x zR9Ej@fz+oGw@LqBqirRYPR`zB)XTluyTlxoS45$FZXZjYy_VfunU&DZ?QHJESbT^= z+SB`|_gGu%et}c?)RUYUVo@$nG*fU<pVN#untxEnp26bs{7p4Tm>YO4$tAB7GP?)X zy4rB-%iE^sQUaH0KAVa<05w%$a<2^Q+^lKT<P=oiikbEU&p7};({_G2<Oz}pF)_w~ zbB4w{mHN%Ox@s&W6Eu@flFLnCvmQA(@Ejbq9A8_o><r7+(^yzGhSnLpll%{buyPv8 zTEj5LTt=5N+-_(Zu#Knb9AaQQL=~VJg^eVvC`-QeiGI`p_QCy2PR@GP+Yy(ekh66p zCSkn|>;^UTH4l|0gX6u)21!-zis4u0J&YmYonf;ZaSl2h3E0J;1VT}%;4vgV`TUY$ zh&4>GlwJW!jGUsitd8icrc=B@!*hqlkg`Hy67BPjGg%a7+O!>THr#Qz8U$Sp8RynJ z8^rnIANPy_d%H1v6S7R^YM?}v^filuB##?gHTkQFuMUFu4U5GRYb-Iv9GMg$7i!&m zG6@koyO_D-!EC{s&ROP*C3|b>?85dV!M%G{&UF?&&-)8h1fV(sSN1W#ch7hox$<85 zz?IHLv(ve<gJ)h)@e1dM$-hkZ;#qqs$0@=?BErez$9(Yq`*n9R>qQ}waL#LbFqd~Z z=P8{8ZC=caArJvce)1+I&7WjFi^)kT&sZb=l71@O6Ufe<oeW;Rg=M_XCO}2I%p^8k zK35#=vd^64na)F|_p0$P&k9qo&zM{dWQ1|}>00RuPmBJ*{@9yc*zDevhXNvzC<10g z?1aQTwNImJlvmX{zf9v_BK%tNm-~P0Me(yu5hT67U~-`3EYAAM7tpfdeEk_fD$n4# z1Mo9!yCINpAW>nv#%kSuXKP*`a=mbbTC<t+?I8&lo5=ZQz@O|`be9|~8&)gN@lnUk zqa}B)cXVB&@OLGf=ze#7U>GCAs8GBu(QT<1@QMT!LpP49TW+&qb<T3W892Y_`TX&Y z&2A(mh0@#Bu^CjEE=d{uN>XzawZVjorW*Pb^;jY51PL>e;G*-a7LFK&0WE79$HXuS z{h$cIqthLm-P9MH3_T`S2$sqz2vNXlL!ZXmtb<@NS%e|Q%xe%+rBun@bXlNbnztfA z3Nxr)FjmW!3Sp|C1(K%z2IXfV^*zf0sL}Ck5iE9iZcv<cI+^Fr#%wEc!D3Z)&REN0 zkz2fq&}0K;bJs?#Q!gC?<K8(HBQY_A&E5htk2aolF3k4yw6T5K2$zMoBr~{*2JC(G zSqA@$orEj61e2K1)&1u4oxV7W3a95(@oAY|_Z<DmhzPU4%XvIi6@c)`#~)`|+g)zb zrIWarr>5)jZ`#UR@_JFK5=@Tttu>iYm+^|4>z%X+rm<I?u6n7I=Q=_7<uvDpWuE#f zshim?D^X;IN-8(RNIlQ8kD2<z^bE|*$*hh{d0o%XT4mV(!SDZ5e)1;!&*sWA*>^_g z_hSDQ9q!r=ITEVTEJWaP?d7goW3xWPPv@lkVYafKXctUZk3Sjur?)~-)aS4BJ(^IF z0p+52tar1tkKT*t4#3a2{ovCly#2xoF=|k|gN~+i*$`>DSAq7N)mrY-B~Ma;KMi9_ z4BN!{W+Xk*iQIU{(Lu}WFCB63?jgsA4XcI6TEjR-#*pYo)!#P;)zNmADBwgP_?Tcj z1cp&1atpv`jS>b=FM8ISAv+O?)*GzLY<*FuV!7~iNlX8f#jkCD$Ee0$qj#Oa{g7yU zV%G;!*8BHa6|pQfA?jzhePq{1VuFkHz<M(hqqa#lf<m86kYqnZKpPV+TgPG7vdl1Q z*XW`nR;7z~Nskjk7IwkT$`12_joy3ZBj|)lGM#6ED`zX9E;xBHD2wfWB+X<La#%Cv zI5ldUllDx3>s;nE%<H6K7DY{^OrS8ewU*^_MJZh>`Ql>yLm07n4DK2DGI-0PHZvZR z0g-whay6g(1>4n6?3tk%lEGCpV7^^7`ey%)s|)#6)#6fiI6vKeAZO-wU3CIvZpd;- zI^WU!x$a%4?E4(~Pirlk%_T8L`o3pa?}$xPorA`Enx@e*FQW~@v;$;fLRYj)Wr>vc z8~~%`cRB{=ZJ^6IO*sQ#z!cG|`Tfe#M2+^R{T4@Io(7p5fXN9k2BOJTOS2T)9;%S< zx5%syLH4T4_?!GL0g3$R2jAw$Z*wPh&$ZisJ~Joa8LmS82=!xny)lZ;$HI}Ce?RYE zqx2%-{gda%PrD_NnvyW49LIhkDRR2r875T5YD${291}L$iY}Dr``iKe8MjaFpYi6M zm5ym+FwSMqZ5j|F0zTKqQb=K@de1S<$aMLqh`=szcG>gU!!`e+^&Bo6-o1C7<HHu~ zR2RN$Y)(7O7^<TCU`&iLYS~_9td?mRV&dVGt>*LxjmQ_RLr^BNh{_OqtNT{tsL^E< zh3xy>{m<D%<JG7;t4(|ihPJV6wps2tX(|BJ@xZ_^M*1Ogu?eg%N9}|rK+=f7k_CI5 zCB#HXLWf5CFWg$;@R+FLN8SkHOw}5QrPXk5Jxn1P&dgHE?PE34N!2^93SlwjZcI4} zm}05Dh=1Q$QzNWW%d4e-p%O(+Uhu53HD_+}0;%=iW;Q-%`$cQ3%V&+XbgfpRsE&P( z6oC{Y&imS-tw75~rLEekq%Bxej%Lb&tc$zkGN;)+nMGU*>rdx4*;14LUzTNI()BN& z-T!;qBa_ciqtU00zsct*X1YOD3UzkavhBMWGiyC-eO!#3KJFPRGIIoEzK^SGem$nX z;jClKGQuyu_#(R}kJx!nhdP6xbFA$;3>m5yQD?9ios<9-xv|dIF;%JrCel}~9?6P) zd-eBuUD_M3q7^6R3VDpV12A)ZRShxZ(nsnTFWoQ;KR}GBuaz>|vVRe>Oi@7zvJtON zbrJFkY%VYOX|}7CH&3~_d!7OHnEMay%0Badjp#hOikcLMxg4dSM^8D1f7C7S-#I;| zIsgvX&;LK;ixth==XK<LCLt2@`(TWH?g0F(+xdE@PI_K<Vu(m%b1tVabsZ8DX||Y^ z1y#8N3YU*DW$D@pwl52cNRPqr!Tk#st*31qjknynx#G^v1+Tqu0M^np&@>ta_G8d; zxE!UYpvT<oMlQF3Z69jx-8qHV+twi&_ntiZNu(%=Fyyj7>k`%`yqnIs1Qp)pdRtQ_ zyP^Zm8g@g>(Rt#0J+j^g#xdqWsZf346lkfBLfdVlh{)ZWOAb~ZC!S%achnm}8<9$l zGGm7SQwSLAH9Zkj*0m4=Yw#uo4$sf1MpEiLRDzy9yjiIpWd{{mD3KBKMKtfW=2dff zR#{66<U1|u^(%YpmE?M0ZDT7mIihq~K&5;!xroi;LZxAlb3UU5YVb?Rp$Ud)3?T${ zNa|vz`tvqlTit&#EX?oAEcZK)vVnO&`$^4DKUbdB-u)>K6tK7O&i9&)fAJrt-Rx_g zPey!xBcI-9F+^(Yrrd7*esz4FUgYbsWqugLa<!u0?P%MEmtT2>{^AMS)rv+NfDnd( z5EBNeWYen^D3aCP)G^lkZ>+;+2dj)(gGKT_L=s|h6^Wgdo|+oB=T*toW6h1ena$gB zeO402IzkwTVahw}+9Z_jTJzg15@!wy*vx-mkEl3BtlCIyWE_7wVV#n~+Iu2p-u{Gd zPUoM0s}9XHUiKpXvL;gItvnU=@2Ap!_N|5n2Aua=Jr>Q6O$X?DQcC}r&7aBPN|glq zybSPX-cp*D8xa_Wk*0N+q7H$X)x#!I_Lc>O(?iaghupa=rkN8^7hatxLnix;u`E(r z|K2u^u60~LY`Jx9!B^kB!8g8gi`BBlHI^Z$V{*9}*bQ3Guc$z(%6u4&mir-QE`bsm ztur`ZNF=&ISPRYx4F<4SlWMJf$_jsDh^&?kk57ACYZ-$M$Xy>8gV2wW%gxBHj|@Sh zQkOXfHcR!Y8loD-Md!J8)N%c|Wx4RI79Nr%3>hgff{=(LQZmFubxOh*5nECKQXMwy zAY~Gw$)Y<#iRkAggVjrzY?U!HX8eQ<OpC%4J(bD$)Y6cRXI*fu!TY90c$1mki#v76 z%L|k-MkC0QYRI2WNppXNWM*qlQJ+ugV_zGt#2lfSSPkDqaLhtAPc3l8ow=GqnC{yg z>?(g$A)5I|&9p!EjNo*?YXmpn_8b;r;sDGn@^rfU58=vt<yy?%Q)T81UODvsr=Hr` zE3dxB`|o`p?>)cp^<Q9jalzPjY&IL3wq+Rl{C%m;$FzqDKdE~9B9Nj+%CqKB%z6Y^ zt2zNmEMiJE!G7Z-!_&jmnk&S&nc+~7z^dcn9KjBILOHruEfaj|HfP_!ka;Y{Ni)+Y zCC{xC2aFYlpSBI~>`6Su5|Jw($zM^F$~^V@JX$WPj+w8{<YmsB{_@#p&+b3+R-L9S zZw%BqT#osLNPx&w*L`&^RX&3}cL09oE#-(Ir{Z#sKdDAGQxqe4;S&@>4^e8qxs-X# z8Q{g<#59rV#+a(%FUJm}=J@T#@c3-U`=4F#dp~&0fA-&hz>VXUTi2Jo^1=}>+*)C+ z$-ICPt!gSD=61aO7->h#FeY}rWzjhfmYxs|ZEI;n&pBL0De?q}Nk~zuBjNLa?FWVW zyVfy=#CE6X!!V|LJ}yI%&S`mI+t@7pqiv8^3(vAs!@uY}-dTzyCZY~b3K5C18vjzA z5ktgymp$LYIG&8G2uKXG2`)94Sr*My^7myjne5n!w)jP6Mt<fI&ZC^CmWc{sPm9mK z0vPoh^FUUIR3Y~?IPU>7wFVY#vXU~1%sM@Ho69a8hK7b10>fZcFv(0}Gi5<dHF7j6 zDk5cMnkyGGkt^pBU4a_+35YXipu!w8!(SuOvdxW>)aO@q&ujXnEZR9Pl&4&Ur*=2L z?`5G^B-<h>%Pe1s=$>{!_J1$W-vHnI<zMB)_uu32@Q{12-Q)6KeTTSM62`!-Th~~x z*E(*Tft;4HrQWPML*-Asrh-1zDhewgwsMK)_r6|bsS}rsY+SvqwlwG|x3P@Z?3kKz z8xq!fnpR5^V;plsB*}cH!UM4NCghNzA{*6Z$k(ENogu{l1Pqo>Kl%7sPi}TS6H-#= zN)ECTvsBd80q_MjdT&2^fXV55hF?+svp=f8yv<to)N2Kyw8kLTRs{LSZFQRD4w_ed zCg8aP@Fi?o58u|tQS-@{7t9$`w>S(XYAU5^1qRj{-y&a|+55HLzVrp3)~1w-fs(p_ z_oHFc2OgjIy!Yvv-~G-b7M<tlprLIX*A83m++3+}4^u9@AB8b0<35Q~DdRrUj|sa` zAs**+vLw-5dvRRGG12$2Rsr;bmJn|HkeeVWDKSK;#=orDrFy|TgU>%3Z*fl38H>)d zTD7c}p04%PF|ad1BuNo619k|iI#{M?jDjyWOcY54)M+cxYm6EGE{mNobpxAkI+2uZ zpN(xYitJnoJLcWS%6BJjh&o|4+nb%oi9j_QVOQq4DUrQ%xcskaTWoYy|68P_DN?P3 zkg8}_2xNs}Zb5d47gdvz%tata8#P@Z8Ff%}Yc7Rr?Y`lcY;4NCtPVl`%skqh8yYB1 zz?FMG-TFG_u97gz;;cl#yrAcKbTvYJDnOh;64j@eeRdB3c*eRrHwVRt+`4@mW8l`U zTO1u9b9R0PN7t}cxPJ3G?|uIV`GT&(-4g;*5fq&$duNqWn4<s84VYX_CL>n%Y7CgY zQlgoVOo><~13Gt(ra%Ua@%YwaQ=?92ZfaG>NRhAxKo>JHV2T4*cB*XXe5%^@4g(*5 z^ug0Ncz$<gMA^!PDA92wb2{c;z*G`g9rR~B!@_BqkIZM?$N9ToWP;~&_z#;FsAJoh z+5<q(J-?P6gyQf&>-+PR<+L(QXI#GZ+yVF!w#_ioHZ3J`Dhrbaic*!@3X~7?NNy(g zDv+csK$Gzr##Hm-`ke`Rh{cLBEsQZ0Pdt-7a^C%X-J^B;7W<<ow2fuic@9?%H?J+Y zd3`~Qu+5$Rii6Q+PQw_pK#|j41BJLahQw|cs?wh#3Yucr>>^pZp1#kmQA3Fupon)g z&emo|jVn^gR>g{zo}+_SHUAq|n<x=2&Z>f<kwl8AIvIsXY0Z=_kzB!$V$u3H8MRag zK+=fh^1sRGm>k7WytJu$L$Y))^ZP$JW7S~pL2&yp`ZTpAFM_5n##2sK>Uvfey=?dw z%T+%1l(LuzT*b-Mp7tSxy~sf&Pj&Ha+E#0vW8B*ppj`{4oP$&+cdx{7W@yW6bAvE< z46Zsj<(&6&(0gyroP^oS(=keYdw$(8IdhnqDq)>gR|C8JMQS8n7tSk4$5k(&F05Df zTZwK0w{PFp`?9{k-@c8pmcxT3kDi>@>v;Nx>|JO%$`qYeghMs@tw<)T&K%M5>kK}s z`(T3Jjh(J%elzx*fH@~XWQH0{LO2upGkZ4kYcpkxO!v6%+vH$Ggv<5W)Au89bK+x} zD^>i4;&hj@p3u_yZT&)XJb&Qxu~vUC`<vhYFW%<!_bMv$<2DWaO5YDRYyX?)i8UB3 z4qpkrPwitCgvy>xF?kH>-_IR@FJXIfIdJ2!14_h{fYQxtiuQFm674)Uiy~uS&p9YR zlfV#S&7Dn9oNhHTsV~kZRgTb&(H)hj%AiocA-CGK11D#ePaa%yxN11g=)k=f4+&A& z^=eR^D=l;_ChBw;#tF_Z4FBQ)g`h;glqRQ0QwFIz4`p-CsosC?XlPN-w{b?H|AklO z#MaR^j<!(;AjyOPgp81kGyX&>5oa<rMKDQz+8mMSS(6eHcVG_?nHIiDDUBMvh?!D0 zHaFeS9K7b?i%3x3bKcKv@thfIGxPowx}Vg%CJ3F`qF3_ymbUF!E?3zQtFX-coJ;v> z2q8xeyPEfxN+?s_fi6@5^$5t(r(T0gQ>0(Uorn;|anHDyFQ%mW1172fRgyfIDe8v% z^JgCU&+pZA1G5u0ldUcbxfLOXpwA=g_Sb5FXDs(us}5%GO#3b4h9AF8j-T+<J`G%~ zFAx!K-n@x*j(GBz_N%|7lE6tgySUt|vw!*k#c-SA{Z(fmPyBi&i8K@E+D{`~Z4Oi& zi1IuW)w!JxJ98S$)Ay-L63^z)Rkplj$4EbsOM&L7n9Q!nfMjy&<@)@Yx1&}T7@J%4 zW@Bim4nVEZ*Tmd3zab+7W~NMe^>$x<82h835c0GvwxpTT{{6aguJxPwp8Zth#w4m0 zgQ9Q60jXy<N6)U<gfG}*y|%KCJPe*Y0AI%T;PEAI-95^G8OAZNShkcdU&RS<*>e*~ zn3VaXv%w=!qt(J#-!u3n!kHag_Wr&)2xqT~JiV`|2Bse(&RVv8;N*PANB7r!_eW2- zcGU91trf4mbjWI<dG{gcU@FxE!<bZ!FwU+;lxbQ}ijwAtNr-XZ0r1vf8&lgOd#i|m zGpavuuxeO#p2j;BS!%R(a@$y<7`#*cf^ih>pAccpWJ(diI>Q(eHV9z|RiUxmp!&Nc zByPd4ru!<nl4G{8X@r|HlwTa1LV=p(aE-BGrX{FE$Mam{e$6!*o$*=gdlpM7#8DR& z?>*K!y2X;VTM))UBLNg`nmZOE2`hq24(EM7caxDLsfM*_8f`N?i*gI;FU?it$j`R4 zGA<5iy^S&v3-hi_F8iEHl&0uuzCcfr{`9jN{{nN*`_c<nqR)N9W<+vXnoK8ib*j{0 zab~y*s&mB)P>5LecU2<7*^?%xS3daBkHEmSYuD)7mUwbPd*c?%)skTxdGh3}o^y2& z=cmN{*z6hnIjU5gvjQ6z2!3AHSNB_@$=S7~^o&wB=1%K$UDffB*-f~zuuPF}cG`>~ z_bT0UKKB0Qdi4;}7ZTizb#;GbJlJ}yeBFlZ_}W~(GIQpt-!bLHpN`|_2A`+yNqK#* z`lZVCroFxBEuH2eOsbDR9t}`*G?{GtXXTW|`Q9HXKiyWxNjZP>TnFGw+4^i0P3~=- z;`}B9hD_cNRp7IbEJRZV$xLc9Z^g4KktUQmH~qf16-RpRRDXeYSRILi5|F)9F$|-= zx!sMNuX`SzZ2A5Nrz|_qjpL5PgQm9Mb<S2nqmbcsWI{7`eaxzW)8ZeZ%+LZbSYk}X zWNA<cuyKyo8<w48xoGIxhNFXy<D-rnM-4{{a0o+EC_hFO94dpm+$G-{WQ1S}M<K9S zc&wWi&)OqAPvB~H=f9L_GJE1ht*qS0qRSpd#ds<lY09MAHy(vxIOV=`G=rA=_+0Nj zkrk%T7QJupJ*(A0?g!A)WE3Ek_N&ZLirh0`G79A96e~(%t+qn7&P@wh9&b{exs+1` zsR|L5+;7>ENx3Jy*;}Y72$)Px(%v>R_7!rSIY@=GP?3$|I*3IC+zdUd+=G(OE~Rva z>~tIEYK3a-r|(zi<|l14<3GO;gI@F5*%Pd>9336$TzUKme{_xGYe%dvw>*6K`TQI6 zo$eV3Q~o1+ADP}SYegNC`r%rSpT}A%jzif;9-pQhZ!faU22y4RoV5eqGh%y@a{>8h z<D1!YoPQs67?TK5MvO5G<Bw6in>mBlnAun;zR8|DNpV7++RB)qx|d&g%&XtqJ3zTM zSFUMF@0DjdIsCRdUIh`}bKIVBuqk-_G8+x$z2{>;cL2VGtsgQOqw1QQtY}v){2uh_ zTtNcLf-{GD=f;1Qzn(b)^R2E6^XRDrRN1-EMShyRP@UoG$Xle88Rs%FHPqWa)SUa{ zvz<!sI!n{oszq?HY-lnpuS9c0j7e4gvNI%-az(>*z1C{2em}<QBrQA51vbvHS~RQ{ z4TlFU*Nzt)AGRzyhi?)#3C5^`S_r~83T<PsR`4F2hsDB@M2U$iH>@0iwrMEBCDZ)Z zMQn1K=FyKDj%jhr2A$&AC?YV=W2>h>ciyI`qY{^x{ua?_sclu{$vIDyz%0<im`Nwx zH;v~1O-`XStw!DjGBl<}`^BKQZSE5w3YC@|zN*h@F4Z@UI;$mmGFn}bQX+;xa{0Pa zBE*mt2SXja1%a^Ek!-?B>6bn;!Z|XZkKer|xGb#piZWukZ?j1vBKWL{P!N#mzUTW| zqU`b<iepv`V2<QUfLkX>-S#8qy?HkcoiYh4lC#}z@ZNKLd<`&cPfloW+~MeG$^H9} z*j%pjePi~Vr#n&8F7pX3&p5$4M$PQcJYL0+8_MM|TO7a=4p+NbD<__c{Of!u_pH7- z2@cIHZ5abti>Vx$Nx;Y$GBN{V%XkPR3>RlV4*usUCuMIAk@lX8$<L(dbyO!D_ML@i zdI@E=o2OnY!{MoO$vlSnGb^Z_Aeh1l63J=AZ2T*6@=tzy?f`rV+c*kQrkg2(@&KBW zlP!5-l!TkWIOsC8lO)%yJA+Bne4ESC&Sv>uR6n1vFm=ZRLrDedz-MnF@A(o^my3*I zQ2%M<r-VM6H3BeHK7h~Uy{=U)f`etlqE#a`WN{;tCt;YCF=~?^z`__4(yL=Ij!q$e zYl#V#i-zU00hDvF?1}-HS0Shq(0JuRc@J%42+7ikAVcD^*EB_&CufPmOZ2XbOM#fv zY!RH_sNx{VZ0=7Gqcs*BNXoC2R;Oj5&3AuJU@B3zG2okqrfD(O;hmoZJMv>IC4$a5 zyl<)#p|4p|a@FyejwXoMYCM{}yXb7?4oFRxxSC!l;xW#v&`?neEcyKy114Ak<6cBq zp;?isoGCZJDv>zG%n*PnN}H~Ax<6ML-*YEx&gUrOHxe};Q_&V?<9+`;>$82zn#*)D zrDws9Lj;QP&W6ZXOVhSh1nAoJYe-5ADbXIU7>1Fd?{jCr{rNjP@N`;x=SF^(^Eak@ zI5|_MIz{D;>375Y(|bpsjr;vHdEWEPTid^F!hG0?kh^8-b23J2+LM`%SH`Ynhmjch z<l_&YeT&VcF_0(Q%n0wN6Q)y=y`S|m@`+C2T6t-9f3IA&{<?oRD1lY=&vabse4f^n zdJK~}3VG40l0r7GWnXGb;h%1M?f`rVTS}2WXbWA?hpj}wZ1HUwY%)oEixS=1##ZAf zVu*QdbF+m(*KS1-U^3S8t=Rn{V~QyP9%^U{lXO}#ra@f%<1#U-GmsA^OeDTCH-b^( zT~X}YY)724Jn=o&l;%IpUI0^19v$$OnWKRrro<2oNk)btGCJX68@X|9#oPC;<4jQ) zv@E@$G`K<_g{-S!6ai=wv<af<el=p1+El1C{3@bD!7%Hdl{>H@l`O|>VI)Ve^|}lg ztaet*(z22lUz;Ow^6xMiG3&Aem?QPZH~6N(S<Tn`qSQBwexb1U{hlz03O7w@7-eeb zbCn`C1kNePAdF*<>`UK!$xepF`KB(eKBom@j`m{=jKjb<4v6%mWN|WeNK4jYQ(4pv zB34PSc0cl&M@ZEO<^SlqX{zy`S49*8SRKIv6U$n?=Sj_={4zZcBXfj6>UZ-^o7K}7 z<0w}u0p^pA>>!lSPHK*Ay8slOxqj_h=4e2>?6|nN%w?8p1eD`Z=HicWH1_6Dy;G_M zkmvklg|nkor(7}qv;EJ;<KE7zpD<r7%6@12q!{M?l#w2$pe{x$0a4j&Ys_RkOGGqN z20Xtw-FMFFarF8WDJxHgsVisNuQ(8yIenFIJiVsZH|?k1`<YLOF?+Agc0R2KGe@Gl zJa_7*J3ISre!q?0KAV*sf4tQ1m%lxC0KTMcH%1O~q>9N#hcZD#EpYZ)m8+7WQm0Np zOpd`ALQDYUKpVf14XZ|rV6yQqtlGU1S&aT3<fK1yYP<HYpQb_nuS~mp%DZK9e&=a} zLai;iROP7@ORQufXAS+3K(wBJ3<}kIX9+nKP|g*y1CWH2uh|(*FL-B33C=EhzV(Ag zyw^DzZ@78faO=3`)@p%7PigWKB_kFjyce1TLA2kxvzetYxgpSOp`W1NDPLW#JLS^6 ztCQAJTA-FiRG)#_i!_sJpXUWl4ciO~wPw$0Q_1B9=alG|VkA9f08P!;PcU}L;kzqN zomQlz6sNj=lkhZ}ehF@dP)u!A>v`sLG{(@jEnrA7YMNl@rfbL45<_dPIsr0`n}|xu zN;Q_{C^J)AjDP((DHs+)W6i0S=OHDJoN(SDq7@7#SJzaSdgcI>l3Y{fhU68PX)gT# z+559!OR_Az6Z@^bx0#*cPJVrgF*7nF=Nhs`vRK7#7SUvNi$p^J3ANA~K(rt>1nEH_ zgnsEq{Q(jn2>l?mB(xw35JWZ90tiygCea*JWU*M8tRb_iGP5EwWAyOp`kl@>X0``C zti89{x$a38i3kD$+z=jq{oHfxm~C5o4c}VpTiF)F-ZOpP>7ENj*>hzs`(m-w?=gnc z(^I9owwA@R<Nfy^aeC+W3`t5^AcdQp0L9GA!q9ppQ}me!N>#(Nf2DFmCZ5wF<vrPf zNcH^rd@~y;H$GZqW$x&!OsO*#Lg6Yfxk5ibyUbsr<A^6z@cQEEo*|b!zoI&S%vkYe z&!_OA%$+xwIu3p;8c<=5X@6@$A~W)weUzj+FnP^t-d~Cnkg2*wY85{-)NoIq&KI@{ z-5<jV{FIKD4#1~$T<$z~j-)=sm?Qe4(9|23%$B9Tf2oGH*05+N=RDLrsv53hJT$tQ z3rF_!XAxA1YIUPXt|Oblb19WzM>qQ90pt_R{+VB5{+8@ni!kLDWu7ZjLk`L^Xsy|s z@E4{~FAv5MN;{tSkx-`DWuw+K2A9WJhM4eu;KPRl4<BD6Q5XkUwT`=|9k0IHa(v)e zbpioQCIyiK7baEEWq?e%;+P!=qIN?tGlWHfsBx6Z`0w5G%&VUv0~);tH8QEJmDy7! zMS&M3=khQqP(voOVmi{~1c*^&!IcM=4Q49WoF>Al5(ySVQ)IF@5C)USE0-K*xvs3Z zXU>53U7P3b-B^S7N-u2l^(P9M(DY~jn91&J4JU-eQb>>X41akK8Kp5=QClKCbEDlV zhFqwaqT0%OEqM>7T$!DV9j9G2UFCB@;LT^4jlUu&mcyfC#(smdmgD1NHfLKFO+(i> zcAK8{YMGx~p=X{(0GG~&x<Yf$yL@+b+Gj{qQ2<QNf4#o6_vs1sD9&j8?4&Cuhhjf6 zol=Ua@-Ij+U|9~MpE)uqky5}DCg-;}fTbNZ-^BIxR0A*}To6LQ&01tj&>;w9xz)D7 zOn4OnF-qRcX)^Ru>O}PQNhbH5&uNY7Q>goBl8ZF0YrZGfG<4kpV{|`6lT&T8wW#M# zg$=g+R&t8?r33K)cgH7Bx4d=ls75$36TvX!&@T$S_97PnHVNkp)<?!L6@M$~jv*0| z+&VX>xh&r1JXHY2D=!di4PRz|Wx?Mw{^hs(Oz4vnlRw9#SQJuaHt1zKe9*r9#+f>< zc)x16nBe($W+NXGF4qf`ir<veBtllyA%TZ+6t+9hrXP56ts_sJDH8*iESK%Xu9pNc zRtM)WMfP<=N3BFAqX1KTR=&oX^P9{=El8svHj{doTJdJR|3wX_dArjT(NYv!G3fJX zs2bwT`Zhc79O9jN^9$k9yjP!zuDZgo^XQQYvDh0<G;?5$A{1@gso^pPKaMI&tr7%@ z_p`gD8rdpIH@tyaOgr7<%-NZz14`Y-G@+2%MNy2YG5P+Z=2#^PwG}P@DKc5o0CB#K z`Kl&?zv+1I9|ih%&f#3c>Fv9G{K2~{x{l>?$$P*4_gSnD*!3gJ<$`6?@C(2E=lJOT zKVrMtFbtk?92om8DTaykYnB!$QT6^#%fSRQXF=w4$@|w?Q!aAzbyMG3W=&KM408Hv z?id23Ja8yc4XS=LI{|UOD36S&k*`trlBw_CdG_+)rGv%Pw%Al1rP6k5oI|qHRJZ|R zUN>8ZAw91HWp;n_J*D59(^+w9F^w<qV5jte?%P7lwO${xT&@XW<k{Kd+|r$ixMt_y z_l!$WqHFSRswnWK1Mn#w{SZ`tPw`9^yu!|v4Mmz8elkIdIstV9=C@j_{qdmC`8@ic zzjy!d$y0^twdV;~W~e}Y<IS_@_m%F3*~>TeWZ@>4d`l)N+`jA_!x%84(Z7oYil2Qn z|0&2tA@P~m2=&f2br7+VFeH3HS^s=QBx3ub;ML)Hbk-A+&P?~c(U}Ho$KpV4%%RU4 zKa8{JU^3h_+DH?nXz}{1@t+w<{k`V9O?l?|)e?n;k~Yo8#agR*;(|U%flXCjrh>R! zY*;=k)0(AfuTnMgC2wEmAQYn)axcFsSuMgUL@Cyq3Srs|!B-?JD{#r}lTFjqdru^+ zbByCiFdC_aU@`go3p1iRuai+tb3rW8f2F9MjQ{fmfenZd{76cI%hw<wRHGDS+BL-> z&53GN?`GvI0HG@9w6}{Ug`aMGv^Xu+XmO@%TGodLq!d}LR&-s*#dm(2#pxZ+FRo~s zhKuVR%k_#cfBmaCV>viHWwAP9^q$9$KH;73|2`Mb&bT;xLX3SzL8kW8n-WzvQ_8K6 zWQTXQ!1*n5<F1Mgo23Y<*)C4w%&BEc$&euBshT3Cra=#9Boj2n8%}T4JXM~OSR#hA z$B%JMgCEDq*|SBCLcJGt@T`tr&owO}_$n76r^85TpT)B5XQ-(f>!uOQ#j%8mUm_L+ zFsITc`d!KAkCnG$xm<B{e2dlk5ZAOgXKA~Z^Rp)mgRa{+47yheb#lJ8IYoG}4=-*H z{PYfymplNU+A)sGec!m^eHX)3MsAh}N+z!nD6m^$GBsw3#+)^bMw8on_I4J{)trAl z7n6%iIoB*km<Ka2l&=>H-Se;RNA6i}_kxoc6RU;edOPT_A0G*ld*D;KkLONVBj5rn z#!NXJf{qMsto{)+RS<$Y17lFanzC_26k<}S{Q4>~dbk`$x<^+mI?Lfo$Ep^xq8J9< z_%ZGqnp(S&y>-cv%U&2YcLem`rar4!mBu_GDv|c|hdoN$S^y^{?`daIyB3&D-<=<9 zF<vtip#G{jfwT9-JbhA3sB;AhF-(d6D^GkiigOcK(gc>qH5EAs*4E;|;FV%H%#etw z@Qyu2H&^`gXE1%A7C~C)Dl#M@)c~aA@Z@!jGQ0j%@1YI~D%YY9R~yx2YMY#ey#L}u z)PZu1!#anxhV^R2IF1}19wFB9=)2$L8^7>N^xGZF)si25_!Mh3-PE`xO}nOD9kFg4 zC%5kM#kaq%j$87C@tX4|XT1B)_jv!kA8~#8OdZ9F4os8ysw@<Fn|nI@zQPU1VE$YR zQgCC}3zYmxbpnL?T{Xzb##9=kPC#}$5(Z;Sm(l*-5rnJrCs<?ffOBe^oVA$=wT!_P zOtM((aIU3oJFK+~BlWsOgk)8=%-mq-=UE(H>l)g&qiI?-;-*Z@EbX#Ww}|eOX@X{P zZbAsk-f0ZW<%-2}MYmXTbbLa$SaSch*ZJhbAMxO$_i@9(MRsnUTi5)<ULm4<_D;Y{ z2jEjWLe$Z|<!K7J6F^EYG81~YAAXR-%gnJ~1T>##CM+}ET|aI1b>n0TW}dqmj8yjK zY~Q~~xQdZVH~#&{I9{MDjmfDDBP1(~GlwOn>AGt4$}}7(g~?OV^-NWnSeaaqTG*F6 zEE4*2p(6G{3laM<VF!b49T!(UPtJ0;!7ky%(#jPa^gzUj=JQ<1$BQ6VC@B$<vNBSm z)&j5ArKmbLC!QfsberkTvf5eMObmNDnli<}&Y;TdL{53|9A(u4#*}FeN-JK$9a81` zFEs~MK5i&~RkjHu4L8#Wdk`k&M$(Lmc!KJKw*;f;MnwYloSw87CDuH;ow^)~T<NeR z<v_63Rj1dbh#w8ZFk~oR9i>#BTX6ysQ|c$BN|9UkN)pZ6mi>5Bpaq%j3-)%1b!wE# z_a7b{KuR1RA2W^~*AJ{-e~sNZ@Y?A;-u>tdYr&X?&N;faWzn=sQe`0;gEd0%2HP0! z++T6`l~?$MUm6+ufy?ttzW0Z}%ag~C*lxD?Fe(p3c2KLyo887#%sBlmGgKqahRZx> zr1E)8nJ|gU)!dnzrT`YXvKTwn&&V7yLFyo&nA;(fS9HXCKf(U_Srz3Mb33YX4H#Cd zHEq{oovAYFgA#J-esXz0mLBub*lo99wOUsyY-5dfy%?KEpwCId3Mv^Ghmmm{7=}Sp zU-|5U?qBamuCFc_hMvW0$t!Psj<#$0==~oNLg3=!qOR$Swd=k^{IBf<+zdANekCsv zfKT)AKG2VzgGHM+n#`g(jTp5dy1=kd3>##lmkpn_1_+dLq@ruH(_jCTXmcKqy~qg9 zeGY;8{Xb5)it~R{1@6D|$45r<?~7rYaMw6PZxqTa(+*3HpB#xRilU={W2W@Ad5*mi z$w)wAM0wyRWu~q{X;<_a6-cQdGI{PoPC@U}IHjUTz#4#eGK+U*apMyuZ2w&URN zkfv=B5!$Ys3{PFFQh{BZf&Jx~rw^)IRigd55zQYeQF&r=c2ovtd3u4ub|-n=^wUxm zmXhzpy1s>YhYUZ$%xOu~&((Im0-Yk*q5v~#5J?9F#o4u+8;*&w7UK=Zg#5Rk(i|yL z#s?Q#;kh%SNQA4`SD|+Ujccm0Eh&MNosZ)9nv@_TZ!rZR5rWjB%91)U)5WWCH;Hi^ zwKgM3-6$_?11x@fe&%I{Lvc0=l5+dbZ9<63KXG!RQDZbURX`kQY^$;;Id2V!HIQuP zmB>g<+5a)IUU&TL&;1;`-qR0(cCqH{;fFkW^bt>=Jmu>8au%uXBQ_HnLIn$p*rx1& zCg#Y?%#IlH%z^2(vX7_a%H&kk{h101FgcC&oS7!~js$KW9&={ulOe=NV=RHdE(99u zFbLK;8l!*Oj0BXi+}@XTfSD0i>7JT1X?BYx$H%v-9yHd{G)<<(E{=lK6j+QpcR~rp zGC5WV4E=x)zNYWWh;A{7q2Ch1KoUdKb{KO#?eUZgAZH3g*NE8znWGo~ipL+rad_zf zd`d@*i6QJ|7ppRrn_+tSarS&Ns$9u`Qi*C)b*LwVKV>Gpz0=9w=_eH6#g0KW{<G`Y zf1m9ATc&;cFFt11YJ^HP3)<~qOM7Gf+G0dZzW&A;y3Vp%xY`OxQVQj+HH1*O=%+P` z8JezRmZKW~5EC($C?y-ns@P`ef@tam5yoL4NTTnzkP^?%9@nVz@bH*}qa#-91C6Yw zU}v^)({`SWf67KXlYbb6IEzs&=@9FtLb+PSF6B99lpxDSDAu4TjPlge^m8%(K}ttR z+UsyY1Z!P2_9Aiv+8hbaW9zk+se5z8B4jGysaC>R0}-TYDm*G)X7dUJM5BIV_AB;9 zjKce7mSV~4=Q073!oRL6=9Ci7HQM2k4Oj?*NI*hiCrr~d&c!vOE9GmfvxG2<py%+^ zj}v(@)BFZeXGljVC+^(6OTQUuQ$mi9Xq@BhvS+nEBqal3mmPm~s>qSQLBN`9oKs$N zHDs;Re7he9ItLaoGVuBvukrflK8LjpAy{_X3m$&-E+2mMAy1#4(f6B-64c$T_gME$ zV6F@%V?Et#G34c$6^E8;wAFc<3QlJQsHsrjOi@e9k$nPw)^GV{W05;|xQHV^+z!06 z+mUuV(lF@RQ+_5Pan}p0>kFQ4H*DGlyIzB{NR#<1a{Wq-k#W=kSOw;H&apZ;<mB{r zc1krcF=B9y%K<=>pRZnH5rvrdM+}Mzc<;5qFQSe?ia1;93#7J59vt7|+1XQsG!+0B zq-s`#SRBhVdlvsX_WzG_ymSCQr6Z-pHV^Mnv@y2=W}##DaO-oOMeo%XPiR-Qw#7>? zKNsaxBErc~%Z<&Nze7rK+T;*a&p*x2KPzFB$=KgK_1?U2nXdijp$1|W^+xJ&otS%c z%l(ww?T5fH1`by($Lp5+cUD+|tLu?n@97$g_sX+Cj3lpLZe&v8A!=PfaiB<Lt(ZZU zv)|1YO!C5}%8(ap5z;seJUe^BVyQ!T6hb^?eRxzOhCSz^M(i^mKkCc{BSHg&V6p*@ zHG(MDxR1~jhevbO6^dscMYx&A-DiN*Sp#GSz)6NCBA<c+sM1uJQ=gfs=n5rrktsi_ z5tjq<+7($dg3D<H9cir{7^ZeU88voHT?Zz&LQdTXv%IZ!nrpXiiqP|eTr3udz~<_T z(T@brG#n`-G;`vbsm7r2EGWV-_WdLjvzm;3gP5u_X=cy3ocHSbij)%f@4t$_yrKo- z`jF#Wr))xGy;|af5JrQw<e3&)B~EsL%CtM2!6lu3sU4fSP1ZUZF}Ow@M&}&O;!xKn zC05IZTenX6>QDSUehge~E_w3sW1c+xkPjbx!u91dyjR&P4&glJpTufHO{zGhDazm5 zOx5_$Y6@n{wy)pvt0^JI@@f)J%psw5^bWp$7<n@EJQ;c(TyA*0-Eek&jU&;91iKA! zw^c$lV~DP0TpeJJj<JV_*gW8>tW7B%Eb}uC4h}gyI@Vr&sGJ{0N=io^Fy}JWbc{8a zQ(~;y$m@Jh<2Vvx%+F3`IYdPl5aIazjLVC2U|@cv%$ivAPua0)Pji2IUO;)CFCBnS z@i@QgiKpu_VjjpXNwximN$6)siHKGBsC?#A1T^XR{o=o=$VZjsBq)=IFG$X_7nGX9 zDp<c`pVCs#H+M8<EpVhMjW@gg^6}|j^g7gFOjYXTyybO$S0X?zFppeiR>8&@?!?Hg z;|2Fmmr5!$1g<s%PcL>1!^jSuN+^<@i$sRLr)x@33&u*ppX}XhS;q(|V5}n*2)JA; zT7Vcr;`-{6&1RD!!bhyuN1UAA(R^gvR&*exlyjz1p9iK)DXR|-2~r`!rfus3e}20c z$0b%czUI-Nd-tpu(G;EmM`_pEFLu*42q9E<G*E>%`k^Y#sfDY^mDEaRo2iSL$)Nt1 zYG1R=WQ4g)87S4|W!6DqEQ~2mdFR?^-%$Ll;=Gm=N!zr<<%+bu&I&v1IRHi=iP^jF z>GzYOmf8Bh=t)$`7b<yFsg;1Fj+3#hRxA4ROTEye+nk)9uz7TjbIO2c#1<kvVpO_n zBH76?x>w7{=^Ukp{1C)g+O}05ix4qZCw8`7LkN-7WE$t7>u{?*<<`k5Z-3<*871?K zL(hjFe8_u0`~x07{DgkH$@^C6L#IO0o9IcAyL?2Mf`l20ISUoCk(^SR<@p=yNaMiL z8y3rkof8_T=+vvrLr!Agm0N-9;JFH(D?f7G_gr6WxZLg-hMhV^<3K!r3Y#mo+Y=7% z+(nklOr7oW_M2K*PmYf{Jvqhax|opL^lA`L5WA$m*J44{<ssxwoS0^N5W21<WQRDR zbxtO89W0iC_2Ch&aj<=nJQbw!d4oR>$Ue0ry&MMgsUBx%TjCpuR5)r=jzFqbtZpyd zP%1{G!s7}fmX3g|jMKg_%$<T8`?7Atj1W(gvx*ri&HEX0m=J`?;3MR*w%L)Wk?rJ^ zR59Ii2&R9;1ipC3dKXjs-~9ITxytW!%y3|{8`*3<+s@~7N1|&jM+a*@|JoWu;^D&` zKl*5gv5EB&Tx<q58&5CFLr_;eJ0T(S3s_scU}_3L&1lS#Xd=vt(;z!@)*_l<uLk(? z;u+Uh7r3Tnu~@QNtywIVv~7!P8rrs<vDvYwNCm0zaZJKuv8)kkjjZ#UroyI|Va*sL z!)^;AHOFa;tz8QRuGiv0TcKM)h$hY|^QW}H)W5CoEzwb_If!*);!J)-h|0o03FB;i zG-aVw!YRKeOEmyStis^A3qfK2+=htk6+jwer!bO9F;)c27}~DWXnKaI=z0oKVx<Ev zpDzxeh{f3%@=}~_a(f~2+%TEFBc)txAvo8tTrOE391!~*4oFRl6`ho5oSxM>M`@vr zUL6SUeVw*xj1ZG0CeLs^F!p^N-|QOAHQSU3Cgx#Ij&9MC5)A#Q+!@v=!PT@w)me&> zxaj!G*H*m!<u5Xhfqocy{N#d<-}`_^58q|GIb-OzjH6c%ot$<l&QBipQzQNA9O{>( z>TJuNV^Hc)%5W4Jd+u6GFb;_cn<Tdq8#?2N5{YTVV@cw0wxwAt3EM5r<t4#;7y>D% zu5h~@;n5TN)q?hLjqN&Z&1)QO({bzclrO&hWlm4;V6CO^dv@EcI>Irs-EQgozRK|E z2mGjQjMgcFP#II^4o@m=%(@(-*Hn-Z-RG<IA#K~$efHyzG}pGD$&p?<0H5x$+3fH! z(J+T@VS>lze;{uoeM|niMDp|Ker_wZf_eU#$*}LeuYPYa;Mvd#do#1lY%}ZU^2Xjn z7xwRS`t+pi>$TMgQkdz``ge#kG=ga<ia|(8BknP1WZ(CiQyYE28gNz=;vW*u2zPER zaMEE6+<nzBhQO0&Js*Cu<H3_1gOB(CgQ%hNL240T%ASEn>WV(3q8(H2w=d}ers!oF zK{~+<WvI?L4qTiMT%4a}qow`9>$MgWYTHqP#B=LHJ_?!4bG!Zp>o34K4tPK62;W>G zpRAJJ6sMv(9=Tx7+C<C+YSCIu40$d<$cj#LrP@DDjf5uuHPyB(VfMR{LZCd?sUD+5 zlm*Tg(KJDs^rwT3)Nygv<<Z4dM`%6)aE^A&5?1v)i}TiY6G;&$;3^>^W%fapSyKsQ z3W`ypxBW#|2`&5)H&KBy9$BECXSrI_b{+m~LnB6sfW`nJ*1<@|7@{OHwy%8oCLuP_ zwt{o&bof!Y8a9Mshh&IfY=ddEDAL$aix0(Umy9tjLqBFGZ$b!*Bd4VL2{8_Xp%II7 zmV;Hxm%n%)<9-Q@WjA;}djDhI`=jsk@rOU4-)%Cfje1@a>)^fyQbM798f&$XkTS`Y zkO+R@Bsot17k>@&JAcIX@%x;=`#t(GqZb6#t1+>R`Ya+sD^?35jlp#tO$Ww%Bu1JP zS@s*Y+beb#&*;~O*!6;=lT&CM$0x^p?I*s$dVM%`0z}wtw_IF2<NE4~i;HtEFE6>c zxIoZcf1K6cG>y}Gje>;bqCiPns}r&ww<4M5TnnNX%O!2wvD>{62FSAf{Jx)S-cRdz z=>U9+M~K>szRWYq)wzw3l+CY3+rV=TMa3uzdkU&}l{byBo<rtmC@=26o>b_pQ6Wr; zJefK(W=Z*e$<ZA3TB-wpzOh6`WwXyCuNxP(2U*Q4xyv-bJvZXU$79lZftdEsQ<VSc z16IIC!Dr^gm@L~3Gz-hg;gZ&Nyng?PfbjHu;K74yJ{+#KFfb)TARDdeUL_@B*b$|v zhWX}pOEGHK^^B!&TA%5D%`D>DZm#p_SA}_9({glt!fLhB;<fz25*4JF@<ctog7SL> zET(9~drz4k5G3SE@u2<qGoxAC@+#b2^7%U1Z!{L~J);OA27CzW02xC{raDU@23|C* zq!_U(7v*A+{byUzEOnx+aXF{oXoM>J9RSbogXfjs{H6Vx0j=m3(3$fw5-3~&Q~k-j zYTvn*Vd!VqI-R#z&uKtTmX5T~<)G^!Twh(#wk=18hiu+|03zJFeN68?VH_EK?ry;% z)?`3I2THlt&@K$^LRdH$0!RuN6G>?#`Jf#suGLgY;~+S!Ggy~f*F=%OwrdDJ5PYcX zu0EM)%FP%u!cQQPCv)Rm%faDViO3{za<t<1>#y^*$6qI<z;3tY+1Ujjy!Q^z&K@(4 zeeRwpGCD_Q=FXg^9~HsM(<ObRZI>**_6-hx^-tp?96h<>*>`@x_TwKhp8W`W_6g$$ z4;ap_X!^uD2pxv^auIELT1E^Qp>vM4bI3TbjEQ)4LA<yiK6psKSg>nW438hN>KaHb z%jJ^ga)q&{#PAwJ@433X<jLblT%14S@#BYFU0vZvO%sF|NJNZP8MjGU2g@9a(FbLo zE=c2;G0>=EwT(4ZUZ0og8Ok)<KPrYl4ios-a|~WO0H5L!W5P!d$xYF0m<CdiG$JZh z;dO9K`8h+X`sx&MP8j|4yYki?tnNMkxze3OokoOIsqVG1ej181eXtbN)ze6BB`XTA z8l~y)$&eO2LUN>$m5!f`dAZao=k>cLLs#<kDPOBlkb{&B*|Y}63gZadt>)ZPQl>rE zI1aj&(_4oew=Jiu11@(1u}SQPf!#K->*MrYKnf#KLbg@2#miTj6r$Ll8YfzN5K}^8 zK#Z;Tr0ZiyDH~4_{5bIB(I-601w;pjhb&iXx^6+Kz^~C#AvPe(kZ7*nSiMG<p<wYj z=NP8~y<!NBnYtfJZ?nEHKU-^QV!(}xOa$+%a<<l1!#<%l`v$Mlv)+I-wS~$~#cWa6 zOw(Ih=-1>lNom<CH30KSe_ls04}#LHj^(B@7135PGEl4O5hbQ6>~1M<uHpc6-Gb|@ z3q=uR;tbeFHs<?c`mTZ+q@>Q<ZnvdrT8@s7xJ(MqFFVK6i%WK!4cLaRZHVG%T&IJt z8f`aSE`{~V&^6!$d<2sQoHaDAAtb@IElq1_TT9awQlu=U!rpZoW56b5?Mt!hnv_!y zSe-;Cs1uB75!2#R9!ixWVlADEjE!X+BkO|`4v$WG^Yfnvv^DPOlQS+ZFM0apF_-6O z^qVVU^t1gOCIyfpC9RYY)~Bbm$A{JFU*0}o@o)buK75nyw&(GqGtx&7kOv>JxOmF& z;RjrP^hfaBGrC-_<FihS0xmn0O4yaKHen=T1rB21?jL*y|NaL&5O62Q9DeC*9DMC3 zIC$$dmiJ$!IaqV=)!Urjy~X*n3tqi?ld~s}xw^a{gvc-q%BGnTn8-Np7>1s49P$t^ z4>1w(wFuE!m+$$HOY=Kv#z~*t{LLhn|4N7G^M2_7e9FhgZs69Uo1nHBwLnK=75<{n zE6|w#GBPm%W`9AepNo-w!S_vG_DopPj3d4tlDiX1B%_0Zs$QO7$a9}85wZ~T;GUvs z3IZTEKA`!2?Yp;D>Rg1fE@}2{FW_9MM+~W=<gR$zM)?&}NHszY5rzS}Ry`uuSk1{V zm-rCa?bKi%uNT~YWr4MU&2`WDMbAeMHaxo;*bWhKhw7}8@2{pua<6bvEOVzRm357z zXeM~qxjNjX<fG?AJS9@Tyg1L5!4pwQnxQfCqR_J5<1o<gb}Uy1lnHz(gbJ5ShO}$( zBN0iG+2vBLT%Sf28=d%<){MhIObKgq{&O61?ZiG$`<!5<2=*kULP|;(ld=;qwfE(M zKIdrM#KHzt6r)_%Bw4cpsab?n(Uu~gIk#-Y==U~Sv?U@0rx0$aghbg<$VFl)I|bHS zqM(+9X-Z;t0qf_cZJ;tD<fyyt7=|9_EX(CmqidtE{n=A>0J`-7M1v7W+c<37fN{7^ zSaw3^G%aONINwU7ahAAfN#f`hj>W>#v=-ND+h8H8#OAiokoQmZx)a1u_phXsBUW8$ zti{*{*S5H>q3bNx2|gMc0h@M6>~RJ}LPo3%F?AT5xO@K<?!9uK`1ThVhk@(sYpyP? zIXgS!>Enm&w%7Qv$NLcxht6y8SZ8_djW1wZQzwOLl%4V*G0X9-Bf3?`(d+j$Kfm4b z;G+j5^Ix&NzDBkic4trE`hqd1_=<BFOAU7J&cYa4Yv^oZ1-PpV%<ujdyYKvSb|S>4 zLGIk+_$R-~;ZOY(CvU#N(Q9{k?TveEH#=g8EV~t8=ts}!13pE37}#zvdH=n4dHm=R zqaWGrdPH`lm~f4&=x6P^`Ij6uu&VM`b{Dgs((Lbl`5`m?_0j?Ol#i#+dfq%*lZr=P z+SMdS{uTD#H~#vXvgTEIK;|Cb6god=D~o0<j>C=j6a$`0gq~**NOm}=u)gdEy~Vhj z3Cb0u_B2e9(6ni5u$+~V50R#E)!3!t0n}?JI}FqLQc86~-#7-1&IOzktkH<y0^XN) zzs#JN1hF7uXvDBwEf8yvnW2g?kwO3yF$Pu($Gy`P>t)AaR&e-LuC_fxzvJTkEa&}l zC3)rwDEVq~6kLo!@Lr4Sq9q2a`T0r|q-|RXPYPb|GtQ#{HFbX8LRXAT*4SE@7jiqD z!TXV6=ySwp_6m!12u>u<3Kk2GxiNVxYw4qp5R371j&`v?^`sK_Sm!bUO32PYsL0cN zZbF5t^7WRM!DwRc(^sc3Gul&%>ySB&euHJOA}zCY!dw<}uXk~g=iM+RDz~mt{cjA( zC1PwU1YJ1=#IV_1O}Ts#j46aj05jf&>H+6%DpKniL=0`)X|xw3ZQJSPE<5}<vbnre zr=FC#;yW!YHI{Z^=sIX~8Hh>h1Xv4AYgw+BG+jr+(yjDo*Vue55u0UHvO}a(IStVZ zk(7yqvi#@u(#lN(Mjhs+ZD_iNt`piub%l?@5J5s;mtUQegjmUlrp@%*c?zFtSgwy) zt`E8Q>MO+XWrlvo)zyY4j~?;((I;FydxDHTQ4Bx%i(k{0M3bqxlR7k|9w<bJQAa+f zWWjWZYdE-dN;o{yJ$ZFSGxm&|YYy8Ee|C<XKS72oQc$wwMug5<4%(JvEfHM;i3w8B zI+QWNgAdp|`I!Fy`(NYQ6)X>Nr>7je@g{fw%&)SzbAmfO&Vh&OE1x1k5^sI^>s(x% zb8&vg<3|tq`2F{I^zZ?s$a=L_r|Vx>060HNrPs|vroaA`?7vKb4KIrTKlS7B(+%;B z6OtHWK%>-{5c6Z6&W(v(#ukWFGGv~Msa_Z*=QM+8VW7GBdv$heUaGbkN--)L(Uf8? zDDWW_A}ad4lAOd;iwLJ!uMnq9jzEF^LQGg=>c2^8_O9nqfK)%98U1{$z3<v7k=F=S zYQ0BEf08OrL@TTpZJ|{)#6H%@F~&&nBRUo|;(cT{M3NYm_r3|X!7bK!KXU8#9d_Fd z*Vk8UH`jUGtwt<0kDlibXcd3TgJ{yM&wldaN{{gzLa)A1iWP||&^_5G%WO^NZJ=$p zAO<bsvrhBo#%4-X5mFQ+^Ap50^+K2EI{5t-IZ#<$E|zp{H$}He85xJZXSdt1-E7br zgt1OJ+k39F2pJ}LJ_dEVk}0f=zDC_sokO|Dv@cirI;Ip;k?%ZSIlrzn?n?X<>yRIV zb1f-_ic-w0w#)YxX14^nwJ##cWJh3PQ`D}W!q}$gF9nxk42#8*l=M8-S|mie<3ld5 zx0oD#HcdmjSY)yoTTzS@lXBq~1RIs>qtjb->z;9l_#xri7VAoAm@3(kH8$^gy)`Qk ztbl8X&N6HwG3@mDM-c1ONwy8`vSqn+w2e;GEPBTRaTJ_0INK6a!dXk1bQ+T8#H-wj zAxJT;d94lDX361^W4T;#@0EM>eb3MjJbnC_fApJw$e;e@pW@(P#Tb}aJSlo42l2+z zG#$Z5o<4rau<J=F;hMsr=;#iQS>1hw@LHht1H;uN{^|mMeu4NvYXj@`id6&~(d&gO zSD}c-7;zyH{WW&CL7siW^*i5X_YeL*U|Zb53GJ7@!ttN@Wx6kXp5^`fj0k~5*Pe2G za>y&My~>xq{1q;qJ>$v8AM<<P`Yqmj_j{Z@eaavENU6$R75u%Uy3+sBW6z0BFL?ky z^<x+^?WC0oNvbhOR6hP0ocUa+PQuw~7C@XCiRZn*9F&yA8C6f#pNr9tXz@+4M<T`d zn7NKqNMBKd={)+j+K<fiv3w<a_f#&c^xPMvUd1%cKA+|e$#h>a|Iw=bVi+|dN&$9# zV$3K20&OSCukH-i3K%sQ<KPvR7yZ)cJz^mEsNQ>o=JYGL#S-r|Wl^S(DIM@J-g|~& zm;dhBZ8kc!%qY~YjEDLDVgd<u@Kc#-pHjll^3NsEEzfLk3rosV|I{t8Vwu_i)u;}A z&(-BQP1E9B!(zFdTIf*Ta+|Be%aRwO9X}500L4%vX{EExMPxw>1O)*jSTQVDj&8Z+ z@aTkL=<(x7-|yINHuU|jM(_L3<{TB6<UGb{^5OKB7ezJuvb~qus>*E2!3zcvEyj{m z>E`q2EM=GtXmlMypfVw%*HynK&7Gsk87e4%as^EF79|~Vdgl)3Pan~?9bm92u{>Dw z_}P{wr#sqifiVsdM-o$0az01tg5-f$8o4g5&@LAYZDJe~!ROSN6gkT1N65u#Vri_Q zF+y^=P`0rwnia!F@O~hP1>0a;L)%%pg`smo3?5SUK#DPp&~^>0)tYe_m9;WQlNM1J zJmi!@Bs*i%Kqs3L(T?~*7`?BxL9TVY^2VF℘$`Z+(~5a?QOv$GEm*xmsbI)`uv6 zhw2Gq9Zk1jv$>wu9*Ef)bxnhhidY#jG|LsPTfm)rv;wcZ`YLaI^XIS^Tejc(HuBz& zSZ=N$M55QR&=ak=?#mE0(DFq$`T?_hz~+<pIs1oyM>}f{k8pQhW%2qKSbXkn($NX= z<d$|I^*e^M3;bro!Fv6#fB^jQj~`c5c;j7rc*08u;8Q+g(l#@bNjzeiy<T+SOn=Rd zX!*H9^!eCx{B9gI6*@-;>icJkS0wlJ7ezQT_){2P1*5!gasVa;TO+;sckdal>HFu= zT#f3|-V#h#I$sASir|6-SSf69`uklU>4!)^>c3Y@OScdfofb5ij0S`x4C9#d-ekoc ziCzdEMi1?+SFne#RcEO5&8HM|5u2fNjkXY>eDUM1N3PEqpM1zT?6``SO-w|iEo_kq z2@%r%2-^Hy_DOuFTyu$P#VDn2s_?Tq6J=etTSX;?egJ{<XHP3(j&qK#TWXP=b$O1# z#EPbl0+0vDl+P7#z82!8iSe$qpc;`%W!&})nx<v9-LTtjGbL)Qbq`Sla=y5<Pgd^# zxvWGqO;&|qW_0(2YbNY7Ct*U3a&g(5pe5dPO6CaF#EPihCljr4-5N4et~Dn&Au$y( z%ap)v(-K19@bC~wn9YXnl~>r|a7~M~jkZ3PR?S52RM1YM%qvuVWOZExBdJ!MZ$^l| zq>C~XPfj&SAtus2Z3V<=6h4Z<hXsNqMo;6MrXE^ot=8G>yrKz$WSVW=H*M=+y<}`0 zKG%dqlGZ60O$^4Q=_JX2N;FXRlxterSQt|^#S}uWZ}5rT_L?8Od&z6B-UozsDRs_6 zNwwgl((f9p`?DeiC1o{wLJS%R2(@6;TZ>;TX+Hlp2Ztxz`T3uRi>EyP{vUGv&;B0n z(KCn&LBx>tRZ?ycpJlMhXc9zP)z>~CkDsyq<Pq1u_bq}%V%yNKk4Rn1W_ifDTk^r> zxfTchYd8QeGzEX0u)m(*`7^w906yhIVQa6OB_B1~%lb=Zim(1ZZ+JV~$hw*HrZ%%^ zhFJhz?EDNyef}s4GQU^Y)1?AP+Bf*+eO2ex6Qn(byMIN`e{W&lD-qUwP4tr!Klof> zl&cO&qZgM`BG&3f^?hXUk>Fv`85W(e$bHihg}%jD{Fn!Kl&CLHCoE2fxCN^_-&De) zL?-{qad(7-LYqz7sba|^Nv(Cb(6hdN4D7h=6WbkJS;NpR*mbuVOjDI%3_edkEbCb0 zpcpz+pLrp{0p-;%NRmFILU5FF{$E-CYRV>8CXX>{F<&k=S}a#A77MMiw>FPab-5j{ zDAAd*6tKqT`<;xSPTC{4Ln{4l)3$Vr1#<q3ez(Q@kvPuK0GVbCX#Iq#42iX7A<d+y z8r)m}Tk2wN$Xaa`EDl7PXpCb<F!oYt#i^|K8MUn|J3ukS>?lrC?TS+*Deu8pT)U|o zrltUL8bGHaCT`t2)gJMO4+vlQDs8vG*-p>ZG&Mq|H~@h>E_ZTr<}RWzrTG-SNV%3{ z8YJedsVlV`B4_7`u7yP>G!8-#h7fVBqmc%&g2_dL<$0C+k4YWZkU)%f)zEdySK&Q= z^mz(uPIrOIVv3{~@_I7y6OdaF^Zu#rtfN;h0t?oGwUNu~Evwanj#N`2$%wieIVvCe zzOqJoU#9Yv85P9=Ez>ZClma4ojPP<vaxl0xzFU*72ih<FB4hY{#t%P6hAniE+L-(L z6^qd}yrLX)+Ao2{V5HH7imjqULqvva0vA{wv6jToCC{Dhz{BHXK79K0j}fsKEjj&M zbawq@+JEnhb@7zaogXh9fKT~IDY5l|w!SjKGV^Es<4kpJw<~YTvL@L;R^tTOX~@D^ z5e5~2`FHIh1e9~ibP`H>V0NDJn;LBG=a}|Cz5m|&YMPXCdG+R{RL@6V@Vlf%ge4*? zsx3z72hHCnEL|fkJ6JSe4GPm4gE5YA*lG$OM2OHd<gNseC>(v^&vCu!sXg;H_xFb> zKW?(otkGmfG|aO{m|;umBG^RR!C~)7=YjFwZQ|WKG^<0rAK7fKxW2xm-)$>PScPuO zvoDdqnEKpH)qH{1buCA{4+Y$*$V@>^icvColrTiDFE6-wcBW~KuH)$Vgj=U~u+~-1 z|9SU7p)W2Ye)qLU%8rR%kIi}SrfIpnIOqE60wY?as6$gU$~K|oh^KME+8Lk>fc5z& z>imjm1c|0b#Z~^y<girPicwp$GQ(lalLx1COGcxzlcY5uV}{QS!#L>q$}Nkj*p0R^ zmh}YcWY4+dtk0`BTBmpJ;H;(TceHPRlhGL3&gn!$YwDg8NrhyO6d@qB5Kd4dzqdC; z@Iz!AwYariI>e}47apk?BfD+S<)g=($DU@{usS?uy<W3iT5K6}ZNQj`I=jeW$j)~{ z2-!O`)@ngzDbkDJqn{xxxzIUjy+`oA(&GABq#APCrOet;=OctnNMr;EMBj70*|0u5 zplHMzG#FtVdaXOibr+Q1Cw1)95inEwD<wsk#IRf+U~Gd)!lLW2ov`}K*SS1A<?`yB z@bn>}x5UeUiK1i79Yjk;VFEZ1<7kpbW;O{<lyfBkyX>@f37VvAjh(<E1=>b9K04ty zyA}WZ*;6hzn?Gh@;Dp4L-KY+B%8tq0i@x#6ynkh`;Cbl)d?v?sjGWvs!23}7{zI5T z>=J1eqpyd0_sa10V=<q+gY_M%RO<KV|JCa9@~+u6)W~b^ls_h?G=~Oi=r#%Eyeps> z&0^=%^rrgpibBk;rCe!BWaCi0c+G(hgHHTwoz?_&4q7K*G-3gR4~fn7mT?H0Geu}S z!5KpeuzdX+Y>mS@uLhtPRSGH3Y%Y09+EP`nGX}W6L?mjuG>LNjhe+}PIXUI<&KoFc zTVQ>3$UR=A?|aUlJ>z<F&2Dp*IT<qgkt5M!kWwO7{7=uo7^4MUxwE094r=v0rG6w5 z!t{tzex4x)w%ZLMcs84Bx^AIW>zREoC5^0#LSL>9aL!fapjLp)TJUsMf~FRZj!$UX zhJL%%dFfuA3pK`6ZvT0dZmm^TLNkritwpQRfQe|kXBEI4X-+a$&KFb44o9f;$faem z<of4nf-;^s0pp-#HWKpw5oU&Ja+K3-vsA~iUYX$XNZFH<W2N)$d!#d@=xG+2yvJyP z9%)wOnWqp3fj(z_8V6ktV(o0Rjv>*H0oyn&=1YQ2S}%}m^B9Lf9DAbQG5Q_b=vl2+ zv`wCpR}m2*L_ut>yf>1o@DovFBJVPSaSay1$3gQIk}<AWMiy(giT(*%AX?;>LdWf^ zvj)1qhoMJoGY!%KuD5+5Ey>rZ*Bhhu;Sc>T7d@K2w9<Z2^PCAYVXWiu_>?4$B#tNz zP1AC?bR3_YAYc7YkQjLS!yoYQ@BEi+e((YQ!DHOu!H=Xk5ZVT_yvM;ee}%)h?qi$4 z?!kxn_ueCY{4wVI8Ha;sXDmMN(nT^v3=3&kHwNEEUc>Oaw#mi0;m2wAJ$*U7R_e57 zg|dk%%QrbO>gT0sfBpSS2jDX}o?HyPdaAHqD((OC=%tjrSFKUZn?9P_`!6LOP`thg zNw^WfKj%+W>d!Qx0n;^<@0%I^^gJqY)6Vbza`s`^7tR7VWr$CyV<%tX=6U1=l3$`* zBZ6xzK5E1fgAjun|IsI`i4_@{7bgma>+2oY*E@E*+*d9}hp<E;E{|#M`~v;uIZYGr zLCIPSQ*l_C(5L;?0Ws5kN*Ix0fS5>8qkuF5K~oIP;i(!GKN3^OH4KiElSA&^e}mO} zh4(!VAAHP{Cr^0t$pdBJo1-Vp3n-^WFQ`Pw%5}~&po4-+G^C4BKRuJD5CZ*9iyF7v zjVh9os>zDfT37kejWu)&r7$gZ1;sfs211x3Z08!>fn%8??4j?cnd}*oFG}0zF|A{a z81cC^Q6p{VoLb3>l<0Mp=ThXm!o4#iRO%2Y(SP9=n4tpYb0I_6>HtJULN)9Ky_h@R z^Ns~YZKR?ah|n#TI&OBc(C^r7_`(1Bf5mdO=HQ#Z$l_;ymgd#3vwrigk`+ZVjGy;N zb_#q1ze`+)NbrHfla_@OLLW&cKUV{$)w-cE7Xursn`a!o@{efl0*Oigke4-O-uehZ ztitu$*N9KlRy=JR(t9^fks9L?;sZ!_0z{u{3=!{x76p!D?wkpg;Hk)Hs70o^r7+81 z35Kj~h$%21)m+j%DJ4Y!LeN?(5<|b6YaU2()*f1(o1tqL+`IoKA`M_k$<+2o&?3-r zOswDf5?}m}{}Y6S8LxTto4?8BJHNy5@G0Ymk4chP9-Q;W&;5Ch-@1#4B?QMfB>d%; z%isTPuD<<GIs1ce6CYg@ymoikln~SMYPaUwyImf;E&Mo!zbU;m*NjYhV*Y>00)e6e zCAz9ks?2mqQi|!94!~z{JiF3<Sv7un4tsfUbuX3TD)tO`LUa&FRtQ<QOo!Ax^8B%9 z)w5rC!}&;)Tuk4a${wFOPRn=feRpvt=HBJ}D`&6Gzb{5=6kXmSGJCK5nA^$u&6ETm zh0*J~LQqC8A4-jZD*KpBuD(lzB<ywr{oomgGQ>lTvq($x)?d<S&*<pSgkYV4VI-2< z7EQosqf+=1@<YNTFd>pgNDh)0VxKS(9rV(4Bto8+H?fm-i#5yDlI5zSaR)U|JnT07 z{;&THh9F$-;MvB2ZB!{!pyFJVl?o?-D!H4`VHpAx3mlvOo~JZQUcB_emwDv1@K2Pq z$mYo0dr#bK*lw<IuA%KZ7RwdO<vMfG+pO@XqQb^Hnzm)RI;cv290rD=CwO0pib9Nx zeUFb3lj{V`p5vp7o>Cx;6F!tO5>TjqZ^FxEdSOhZE?`0dN*X{>2(R}z<^skN*%zdN z0&zdDq~~=v+BqV$?SiIhI6OMUT7$jXaD8>n_1OiNpZrah|IOc`u?9IjWciJsVfFQ& zp#ADsY45y7cYLJvD+yAD(NhcrKk~^ZPiW$TNB{Z%j>EC1`^wMJ{?sqhy!8t0s>QZS z@9k5<0>Ou@FSH&;87hlWSEOw8iI_}g&P#-(ZN8yY-2*XYXRRL*n_KgYAl6}QR7ZdU z@8{OtJdWG@fFB2Zmb<#A3;drup7gc6zhlB0HDXhHX6cC1nx5TutIlqAB>H|w3_hm? zq^71s$aL%~|BK~{lao`eW3b8;X{@Dj`n+QlNKrc#V$8a0&GDc3Go1dZKdT*DjHF?J z1gl%8xYp9<6qR2j(&3Wz{a<DHQ~x%1&K|M(;E&k6_YuRx2lz+tF+4rPfAk4W+Tkuc z;()T4mA%U(`;uj`LiqXbRN$}jrkWlp6{L#F6(wKB6Hj_s-}BM|_zaG1?<a+k62SxQ zq$rBfEKt9`DD`z`HBv1Ut}i@_)h!>YKbAOnA2A^R>t-&0I$f!9o<+GvW=*j_?ocn` z1-wSnJCcs-tpjE#igQ9IUUZkn=vt74cML*-wq0&R_P*rhAw{W+8bV?mM!b*Y39GbL zXvAS({}qz8kbG@_Yg(6C3sbJjRz<1^NFno?x(iGUN-*Ssi(H@?GfzQ+U~Z&Ok{T@I zEZwrBZQE)3V+@SfAM!JA9U^w*2k$>+v(o(L)#!M7)iR`Y8Jw1fyQIAhy|>s*Mz1K^ znYO^hnDg%m!I6x5X~nlI)%s+IL)*d<0iWS{MM#EWU~_%Na=8WyoUY&F@=%&m+z2+4 z?lhGtuQ&@aj_QDf4BN*<vKA9<R&<HzCuE}10?(XPQ>xJ8jHRNa24?AjiWF4iQCI;J zA&lxY#7Rc?QLB9<rmS^J)6a--aBxVI$IS{5t}c}3n56A+F*2ltoSn1#^}o;AKmG?Q zW2*)B{wo}P<L5c}+E<bLui{Q`DN7&*6FQRbx%bHf`X9W@_BX%9&i$V_TXvYweS!7Q z{~C9H?N4%ea=?%bDTZ9TqL&tZA_ar@U?mX{hP<v?DI(-C5Q++9BObh_RQ&dW<Q&F1 zO&cT~AB{B-P2MLKGWw{g13}YqLD7d<G;8b>-B)KzH!_HFZCqSl;oJgbs>A7bJy(}X z**uQBTx&Ao$BAG|Q3qvTEDo{};UEwHDJj-+PUke>D(OQ>;6-W*B!o!x8gv+Gz_v8b zvh|keglIHX7lAP<1Hv{X`tA_(g`Z&k*4OF$Ku8g19J1T8`p^IO`2WZMtrkgFUGto* z<$asEK@c!ZT{>wdlEu-<D?I6i@>+&;OF;J00r(7#gv|Qi)#Dz=MB5e)J*oii6=meV zyVlUP24@Y{g#7-T3Se^h)Q0Z62qIKcomjia3K~!%`02Z3hQYrmil1^!)GmhS-dsL# z<F)e75EG3v3}w<ty@&kWGf%cUMWRka+nCDCmPB)vxh{}4_c!YjD%xT&h*%}~*^LZ2 z`WItZwua``o4C`j6GP9Cz5Ecf5wQjv9TEdUrZfOZ?UE1_8n>x74MGx3MTvzm!RULs zt|89ut*mE^QPG_oU5?ue(zEYz>rTTs!pYGBe|C)!dG#Rh`8$DrIOnp5#}|pSYeS&H z*@kh{KFA^un#O>XY%Yci6%m*Rv8rd261D_C%M*$gyIDK=me~Q*D(<OpE^b3cw;od} z{7Z`=z;d->v0UZJgj)6Qj8=a)ZHvnVfQ1wY6p^4tdIQEto<|U~0;JN{PD)MJGL?K= zme_ecL9E4qaTYn|>29QoP!x1ve(pIsTY6QB;;pHK{5wHdt(2Ex*>#%U7zRw{RInrz zeAbf(6mAbG;;%ONt9Lnn=ST22we7DxJ|cbT3*7qVpJegIo2=5ns%<gJv+O;CwXFMr zi;LgoN8kMp-}x^*t%21yzQJ36^*^OsoDjwxA$VM~AO`3M4gbYz8s8cns+Hoz78o-P zZx|yX41{rq@2@q&ZaQ4I%)Aj=r(u&*lr3n>TyX;QIaol)aF<cl3e8YSs&x2OR%|Ke zw4r6U-O{!ow#DS)&c5%tzP=*(Q5}=9uSib_NmFS<UyFA`9#Vuc92^~Eoy&C^3jK@G zpvl=%Lt&BR5I>S65pw5{@|qNcO&Ai`I1-bCh0waZ5fc;YW;As<j-GzkW1NA;(i|P~ zAN-I03jfvr>u(UkF1JLMeK<Lvb4^;hOp3!PGo!wzdW&w_&&%!~#Zmw9?|6Cq>mRBp z4Yq{cT7=eSTWfB<o2r-r+Q#6lDBNUa<}B>Lj~D&B93>*30+Z??CYbW>lAQq3UM~J- zE8q*i^SNK#`1({J#KfX;Ty4jCEw!d0=c3A0kbg3w_iwH8DkRYeMG19ux}md~qO^Qx z@z^npLu9)h2~iUpodwq{=|1-t6q@&*VH`=K9Q94p<jvh9lJHwk3_j;24M_^8yhTjH zSPR_}8A5fA1ZCiRUo5wVo^HLGYB@ynv>`{+B6<&D92m}iKxcL|&4Lg#peiY#wlz43 zxP_s0uym2z%PqV988KO~EgzqGhO{Dyn;ty5{VLj8>{TM-+RrYTkS9eoU6leiKl=>P zBeUw^R18Fh+e6I#|6@Lf)T;i=3s>hclw!lCZS(IPA&uGqMM1j0H{W%nq~|HL%PId| z90RSIFW09IL8&1qMSWU$7VC_HLN=6QB!!%g$<rXGs6E#Rl%ZW|A3rNj_g*fnL|%D4 zMf=j~+8G0lYx8iY#KmTdDUnyw^i`9Qg^*8OhD#+1Ei?FJ=+CZ5zxms2{@FjL6F3rw zILCoCq-Cql1HvXdF*>DQFptmZmM!bM$Mo@#-SvRq?bz*hBsxs1BY>^ZKdJV-XB(Ds zFTW(hFfa}qhV6!!0&%y+3?p4m|1^!dGa(c?mukQY+M-TCCM!y1*p-2tZnM@QOoOm= z-$ne;V_gSnP%7;NSJzkUc3NaQjzgZzH=zqUw_-$0ud<)1vyCwv93EA~$U4h%=~#6( zlP)D%BSd2mX)wL+PZOig6M)P}sO^Bt@iLN<VT^{R%1z!Mb>LAV##|VgnN1O4xjvw2 zTP4vVX^N&4Gu{-rEYDV4ZP`Vr$eqSfvwEMon*MQ0T3$K;pUIIBhS9TVi-6~RYe<-V z9ldA3=eFEgO#!&sFrX<Pl!~KSqxr;-d(d-rcH_sHgzQ~XmL7pT>w4ya)+*@P*=LdE z{1?Tck1?@aIJlsm$4Dya`kCp^QB-z3j1d~AFtA?IRJ@1?jT3^O`h-bj0v}7?_jL|> zYlTH)Ir-|ptE3$v(Dwr|fpsli(_oEbyH%>zGSRCT2+7K&7(ZhK(=OrmJ;GuIS68qb z5h71WT$ql-;DMXNgG8g}nCjXN+Y2@y{XXk^U43tinFBsU{2?YCEHVa0uRYe1ptGJY zfBuM{{-UrON3Qw}A3aGt9bRD=M#fxVr+%L*BAX+nV(3b-U?gG^C>X3c+K_x65My6} z@Th_hIj2rix?sgneKiEeXcX79EsMpHuIrRj!P?4LSOqhYA<)tvK5CVBlhZU!qeXKm z)yZpN9BXtxIX5~)2QfLHuMV3M=TH%bBJ348D3JbiMK{p0830xb3{zd(c~?Z+G_>84 z=%M!`S0Xe(3%I03cqXH3*)Ipt+`W-Z(JxxKss<-ArpS35FmdDp7>zoSCXuPJ6^gbA z4(`6n!C{AWmZ489S1rD^4BL@@yI~<K#J0G`68(szlyl<L`wC2m%CNhp-(I2J5r&Yo zC%<W3cGM=}D2|}Dh8Pv`0T5I6Q3);t!Du0$HF(DAFtn~?3_eHC1J*U#o)~l#@%8mJ z!#L3QJt_L?2wI~~s}GTJoF);v9QC(N$8K|tu?E+=YALI3HG)&+gGj>wFzVh0Es_+; zYaKJ^2(hN)j1<BqgKH#rLge&VR2uRqLKKU$h7dgcZcAYvEbB7468nZcme$97;fkD0 zX%5}j`~6;XXJC3ry5C+p0H4vZ9RiEC>>pK@<CrFn|5+4WiveecwUP_grl`W0q8v&n zHi?K-k02j66!v7a3y3)xQjPxSUT4vG`Mu?zbA(`a`g!qS`ImlYs(N+VxxMR=tmWno zh0Hdhv!*&hHJ2`6EQk|Qjy4(#IjGigpUx4IBZMsiG)5hOqu0Mkd;EDM2A*B+*bN@r zG}R!D!%&@$0&!1;IMef~QQ>k)dgTkq&=apONxKcZk3Qg0a)dJbJj3X!#HDUv??++? zj6=`myT4A;WvDPKfRJ<ah{CcyW-k6QFbp0aA|XYVZOeMqvgk4aiA%it%9bC#_c4#2 z2F7khYHo40i)^>MY9viERT64GFh8%U7%Nj32ain|@t8gJ`b@Gz6xFk$q?}U9mBz8a z>mx(IqiK`{uUjlxEEZ~*bL*IL5LlgCPzElc1^^m{A<^V0e&~C)o9k)1V!jp;$%BUk zD>kRFQf@KS3V$DCp3h-5l_Og1zvmIp?{&{b)$gfHgE3Zg2w<^TGL9q5<&t*UF^0g& z|L{LzdG?g+-}+6`Cl7F9Ndg|tGw*;w1Yf>6C7K+aH7SpMCb2WZ1|iLek#ZMlRq`fk zoq_-UJACrD{}#)i{}m43xX-57VpyGgC?FA=B8`AFFpc>JLa9nuy)sH9#ZeKlJQ~>8 z0iq`*oB0&f&?REs$JQ94H6(0K73F7?`xK2#`c1b<E>^UTBszsMj*-J=!O-h>`xw}6 zuh?#{388$i@?ylKGYm?=QjvhVcZGJb;_C9U>aebB=o-LIw8bKV6G#n&sOUzlN+wk< z3uQe7jKP*Dq=0K>W{J%;Fxk0Kq9DC)v6i>K@HW5o=pkjch;}tlPb7N~uHKu;lT}Sk z+mUB~OwQ<>gljIhHx1282jDX}LI`Y!z-dveNQQ+{hK{D^Q2o3pbt5N~`Of8yq0yia z>ZZ97>lYLty(koa&i7-U*Du#M%_*3DVrBrT-YL%^2G1Xp;;g=?Os|*ksHe?eSlS=0 z(N2g(o^wu`S_zE-*Xe}6ewRBXqPFFS2sY|#k^+rrZ~p4&h~qE(d7QIcU-xYL0Wm_? zwk(%RjV%0#vxePvm|DMNf6z?1{Dh7Sjq5{V(~;T*ez)P{vuA8WB#r$<QCgtiys9A& z?-}}@{=sjvy?98ww90GXGhH!BTe(mr<9%U0jI}r`<b0}iLX#up(F-Xm?}5aTad(b1 ziKByioE#kyLr*_O`oXi??Fc?p=S?!<5I~Yr6sN{DNWeyybMeIi(DuvH1}8=^si0l6 zF~Kq+JcU;x#Gs6UqbldpJ8q4l4UN?tdW=dT+%yd&9X@p3_l!f&(DxNeEqQ*uE~RSL z2vpUZ!pka)<B*}^j6kH6kf_}WdfmktPSg!q_Ci&{g%=>lT2ktLB1cEJh(2XvB+J## z)BOA|)43H#|K5K9VIV#E1pk9SVEoQ+<KO=wVb?<_43sJZLSmf~r%4O71`)1FBxBey z1rUNx4J>WEHvb9RbK-yTe}Mn%|B+{>w;8_vGjw123jOE5#Q5qPG%EwKr)^r=&S6BS z?nTgR$@?`C!GLWVnr@*HY=SbAf~ba9tNlIRM-XM)6iHKypG@5)g?3tXKzVKgIlU%P zQ7CH+zwu9ggRlI=Pjm0~2`PETab&l-;@Q~~`rJkrqoRq{IxRlU>t{+ALDFsnF%72a z=tmD%*II8PhR6}_NP~?+IbO8YXoP4DCh2rXF@=}K=rhP243xkw2Vy0yIw1^d{0kGN z1_hR{eD!Pmv)}l2U90DcdMBBiT3|DJm1|XP;VD5#d1zIs`I)0y&ma2wO9$YyI8x$j z=c|F!*MKB@<SbHcN`A;Q!&<y!p$OdcXEN!<(5hn*l#s5Taf<B9cTHx0@Aor{UR7UW z8XwGlwSJ9_>T7%6%zla>P7HM~62;<BNP#nr=Kb5ovS`)&Hl`HL*}4X8YiM0$J4Ef5 z_ORPTT$6}4k@^uAVR5kJ;H__B+a)O`w!0k(Xk5d3y;kEwqL)PQ11Sbd8TfwOm+Ji_ zlL#bIV@b9nb}il-wyPE4`Wi%A3g?k^i6R9^(R2Ou0sTkcV@MvnVYBu0eV}XANf4u4 z?>;1UeISrK4N6KzB%>a>hQVuhM8DH&>x;{g-Wy^+(4-#MSyqRqEEmE8xMPKJ9O-vk z`hKSjg>f1aJLdx+X}g@v1tiTBx+q8cq~uMl9kABc7NnBmC{933Q5os7gEWlV3T10$ zw&r}j_gQgTz~`~EdAxBfj;X0dg*vKvnmJG$1ZN$zs;Eo4Acl~u$S1gX63$5q=CWIi z|NM>hvjT`^xn3axkDs2=E!GS^;v~@?9+D1@Fkk!zi~sI_sO#uG!w<j1v)}wS7vKIT z^yiN;yFqJOGQ?|1xFobOGG+-)k`p%N@8SfA(1<z)X&8_PAHydf^WoqBTWpMAmrE9J ze1YXp|2+JOUt##dn=DohVhm0a(Zt*as1Y|-Xu7qowb3C`*cLx}<;&LvRWzowE`~r# zfs}kkCu8Xcrntk!U}_<+%CxZ#q88^a77I3;4gcgH{5P~s$I0n!oYVRb-}iM}rfhH} zck~q6f+-5tD7;%N=m(E;UX5`-ke;3C$Z_s)bkNc!Xfz`+gJ}WL)@*B-Y8*s=E;Sn^ z(l<s^GGbyj+5o0HqNZ^q(~v~?cYf_J@PGg7|CcPQH+4=CLD~PgH~|S#)Xt(*5!_rO z6V;iGsqE?e`8{3yvJ2odJGQ;AV7m@F$%-%Nw7EjmQ*z6|G%yIw`|c~)68#s$o%W1y zl1bpp@Au4C(OEJ%9&^NVatI~?k=Yj%V^(GoNJ_J=fEOVT`lTherIfzq>-JrNQV^$w zeTK$q5v0vgRVf4vIWhpP*zX!)v_cFzlUo4iJU*#0HO8>K|0b(feu)$Un_esbt#uq7 z9k5z<7-N-HZ0Ku6y{@-1vhCdtI{2h))|99bfOIX%7>!`e<iO1%(}E}@KXCcsKOy-m zlC_zUPK$$@GQ5PO<BkWPNm-_=xXGzNmaE{CPMbrcKuLk<w`{i8w9*l;u2?LWG;M>& zVA=(zhsRpy5tI;Ux7~1cbum%+7MMF}CB5YDD=mg|*$^YOJ*iYIR|KWvu-SQudWSK@ zYOsaO^5#9`FlYoXlWZ2w16}`ItAH+!*iv~NGh-$YQk}vWGZBz5MNQso-}pExgq%v_ z`)ps77pBWE&hiwQ)jgZn%v#Ix=!hXio?V>Nt(P=upj)hPjkeI4#wm<z8)zDqU;PEv zU;jm3`yc;R#Cx_s{4P)b?my(}_rAsO^Z|VgY(y9{O6F2RO3(PTlRz{@xD&V#!8=PA z6DB3vn7E3GaJ^&v{vWdW!S{IjU;cI0%LVd<uX6ZPKf}q-{{kG}#;v+6ixF%@RxOD& zAqnC&=dNvclJnn&7&JmxXEZ2m9<?AYg;>`zg*-&48mip3iq;Jn=SY53^v4>cwIG4Z zXAkiqvbnnA(ZdG-Sm$!PA9;4iq)&^pS<;w?$HzJ=BzgK?3jy`FSJ<Zw)}68&wPVQ& z5EFjqN#0|C)>%wrnNnvN4NOX!RLXry3Lz%T=yJr55`kG`F|8vR2O_-kxwp7`|3065 z{1HFynD!28OsZ&>Le$b-Az4->PnXP7Xn$+~_HrEXXLj^H)#xc@m$bA8##knP6(?Z- zvjw@CV#Xp^#ly=#r!q(<N9+}{&k)^nrZyi1S;+Zy5pJ~jWhKol;;+t$(h{dMAr?g# zZ@K_EP|OfvtObST%Bo_Q%=nj$f7_TGC2Fp990IY8jAJ6TDMyrf4N(TPT^}I@j2ReG z!~lysw>kRqUm^vsEq>0?v>of!l7oXa*6K7eA3`<$dMopO<td7<t6f{1biqt6c9RST zCsAWCf1V{ul$7W%A2MD(!8Tx$!4k2e=hyBJm7fqIV`<IG*Pz2y6zwStcDl#&ke~#M zg(4?Dz>tKPtnwCkPuy;i-G)S>ZChdtxTc|N8dir#tPT#id;b;szGu6+;{4f}vh~eU z0wtP{Arhj`Qw9ShQzMSbI+&?ijWKmSr%8R;DGZYgmCwR7C@AJu#>xPQDsSbcclp`O zqrPIO6JZurjeg8XQrU;Gjsp(CPY%wFy+V=J;tV~vtFny5gf#{uuw1T?6c~bGkwEMM zV_oKH%f?$0phaD3aWd-Hb{u@|=Q#ZO&nf-vX2<5;-(mgFe}~K8{#~}8ybohv&sBo} zwCFVo^k~=2V1$)3tYYF27!z!BVB(VCu&^0O-}zmh{oe2J^soP)2_*VEcUXVp=UD#q zH)-B_i^b7e>Bt-H`HvC$VW)dJJ9y(b=E6HwR-q6t#Y8HRXc;;dHMLZNj<TvELen_L z!gV1<KPs}+IORx@j5dwKj%}`~aZN+BZPd`Z1|zo0lM&0U(>uiImF$Peu2&>UOw0Cq zhderGv0NazJ(rY-!xo~)h;myjx|XJ0;JP+L`KsqrZWAmN8ago(+St%H4(A->;B#6; zkVb22y5)*jUwfSgAALwk;m!lIq+T&nEB|HEwZ$n<W;PGT)O)V7TLMES8}X6|=rcZc zL&#hJ1s>Fbj+C?*(AvqXD=k2!l>;W&-`3nxQK~uWkQ){GMY+Df;!gqN1iewvhjI~= z^Gz^>%ub-Q&-c%Xu%|97ljq){*QkYUO5<C;QO}bdfa*O{k&co&@IL02n^a+MV<%R; zlyqp&FpT&RaGj;?3<qER%NSzz+ATZL5v|9^$Hd_A<DkSH<Cr0Cy{R(5q>$cB9$A6j zgfg&aelG~MMQ7~$>>L%-l%KC3=^y<b#wsG9PQ9L2P`Pl<5H=(I7;772jH#kL<r$X3 z-x$fvYkH2hF*J>^yEbgn0v90ddSc8)bfnBfpoMT{ZJVaS8mpY;%Qf9%$;qudgfOz* zT(h~lQWn49Yf)E9sg7k0xwk&}Fv-pAPhGE4td!aK3Zy>qw(I&9NWG@8lGGtT)rqw> z3-{!~&YiR3Oqe|6NtynXwJwIB18Yjn#|<D$9qXk1)a5$Uyl8cHUs>>1>jSz)$MWEi zF+kfc=@uPrtFt8(#R$Z4K!Qh_7Hf2LSjhleThb*EO+$2+)ldHttDpRn9R2r4WVgdV z{g~Z%f16MK(XX@n<OAetgH0K7&U#=-k(h*F4BiNbBHT-fi;%daAWh(z$+9u{7#W^C z<?0{&9sEE1JNT67j*dBa`|BLP@(SVYuM+OwMe^DQUph_ndo^WKm;on>=0vJ`Nc$X2 zF8nJCY6t{ecI?8iBSfz&BT}Q>LiSXq43;)lljUa^wxoW;c6&(-k*@1FIKIVdu_lfI zp9C@5=39zL%aqR)OI?x2`yM~`q%cBM%HF1FXj<hEu<eR&xxzMDSSbiP$TRD$q>c?) zUupVI(K&-4R%qLfuYc_ueEXmMW|m#8Ju0h2*1O8jIFrlrb8R)0infu_MlBMwQ)_M6 z7kR%WUe*A7X2&pi#t>;;;iE25^EA-L7|D^h%%W_`#yQnafH@yFGb5R@_gSL!=Z$aq zT{iCJ#Z;nJ<!~2DvVuwBG8yLrb*aZWMI2J^j42A4c?l)ekdhjyLO4>cVL~;^mELfC zD3r9Rw$7y(5o}$PI&CZnDL~T*wuu~m<=^G-^cAiy&uL7H7^{U@Z9DA&G1&lQ=Em6q z8f&mn$HiuRF)vW5&&Zg7Rz;y40qQhtx7)ggF_!2ChG*|Ue~E2{AXe#0bL&xKp=~qa zQAjy;lBRnNF&7D{9FYo#dSn;^gAa_sb9J?2HwK>d9av%9Y%tc+_YKSS8s~EFcO3ND zEGBODuI;paE99K27>sE+IzHw2<P<-8hJHss^!Q=Gdrv>~xS=7DGWWX@?1Yf1Xqlw| z$`WQlmMT+;#O(cMGT^n^K23#E)p_vc`IPA9h7~Wzn5xqvdCh$O?7ZV++9GMMCWjnp z7vzd;_)GmmdDiz{d5x}h93C!te6ho}2Uuru&MLEB(oPjMVuB&j<h-&z=R}zXT?)q% z+NBW2$QT6g8shEO>Hh4SeD%NcmvKH2uP?a%;QKuO^?%I8@Bbe1<OyLI88bv25ioE| z45wDp0gq#1K#IK~AxeN{a*JD{j-DRR&$;;aZ*ZA6xpfYE`#$FFufpd(kG%0Yl4~i2 zls-i5R`DT^!k*T7T2syWixC|)oSm!S6SlEBg|Jjii|*G#q$RbzR?nl|4N7TkVkQU4 z(ZV<mTwk8^gFpBdZPRe;_FdKo$1GQe93G!yjlnz1c6&)8(YOYZM^NNa0|foI>;{^q zWw8jfqYfo%+6C?E2;UkSr_V1XrBzlSP}?|bP?HMHc7t`6Z~W9Z^)3peStW43VQ$E$ zOjuPNgfvs$r8Y#YrX6%B(>(Z6?#Gu7z-M&C2)z$<jiICgQa1jQw0}J|lL0J7cZ!S^ z?$S1rTxnY1BT)ruGTb+J3@VIN&Q&9IRkjE-1FPO{ELF_;Jw^G<|E?3kX4hDef`Veq zjsJ5il4=2CF^08pg((eSGx<;BOf9y7((AAHRt!dI)ek}2e{4Sa;^2hWe)8Yp{K;e5 zro}oX`EgDSZb4>hK0DLFDpZ|^x*%Ek&F&ygPDmt=sHGSkDAVi^9mG<eqe7lS7`Kei zKA^LSl#PZJtvoK!AQ(bO3}a->)&4Onj}Ve_vCp1^h)#7IM$fL-4u?<9dftCB;$ur= zMMwQ&i5<9RAVo{ako@31!#Loaqj8SD?daN0Cjc5#3#%fUqOncKs_j^%62)t);O6>@ zzTYtpJ$>Kr@$VPX9?As17&CW-KrV8NDN!o$Be5{9O#6X}nXyv(rb56|-Z3EoG1E>< zajIwGlk!hYBrO%?(U6P%rdB5Os~WK4NaXdgrW&P#!z21J(pWgZ+;Hd4NuCHfIWL6> z3AARTZ7tSjh&M46kV;{n%Z4$}ic-g{1PvC}E#0jZtIxm6y<h&*5F%k4*nRRbkN*DO z<?>tqjOF=b%*6$}5Lh5sgpR~Bgo0g*(S2os23QFUqG<!44Vt8cMUZ~LfAAyX`#&W4 zpn3Z{cL`tkGWN~4h^Kc+U8iXeXNXC(S3h`S-N~YCkJh1_hz4Vm7RV)ydMlEXpGZmD zkR8J!AjUe3bt)5CM`}x=>dvOo;Y`LlE-x=Qdv=E8E|cYY&8<7Har^Eo+`0cMtAiuu zk%&6Sz?cM*rx#{qVAo%>Sgctt*97nJ$zjF?%ca5DoYF`WYN`L$I}agZO|0ptH{beV zmGPKmU|)aE4fnJk<^fA_0#x2}3vqFbDM<9h6;RIh(gFC4j+7F+!E>~1_AF%4HK089 z*2<)}ZXDKVF<fbl6Dg6qV4}KtrBAeMkQ!-Koi~I1vnO4+2<rJtEkcGn_n`QE&cq~8 z^FwohIj>)@rF{QX#ZaL8{m+&Nsu+JYz>U=iRUMSl`H;wzD2zTJv9wd>YFyFQ8n<Y8 z?N9wxjDfaW<TgTea@wZRK3bzW%rcHNB{X`#Fv^f=Im6zL+s`vcL^<5@n(MtPVa^n> zmEtxdnvWf~PZ);{-CD1;Jfk`-5g0=u{?VF;5K={NV$__rDbF_P#xJ?xUBBa#ryHJb z45KVqtqzIFV571f8e`d9Zvib-YZ`}j7N5uc`bNhLdq3uN*SYaJF4z(3^gku#F~%WQ z$KQ6{0`CVM_Osiv-EFi`EQGp#!H-1m8NDY2%^4?h0aMjUsY1Cm21>=jGMVXb8ueSA zLCF{2JW8ZpI|GW*uQ_I!(pmG7)&-%MoonJ7D8HVZ#d5Aix8U$-rO!W%b!LS%LP%0u zLsi}qwlOq~veKno=b(k8ML5W9clxyvL7bz>*KJK67Nt~~N?_9{$<6xkEf!z+k1&7b zuaLHp>-WCT^>@BQ{O<2zzyAZ`#UqB`)$|5I#y~4-{2glaUD>1AF$#H2$te?)GC~zR z{-X~VKlmY+G0_9G3%GM1`}UVvy!AHr)*WapCXo?>plL%QX-qj%Eu=)PvfRz!YLd2s zj=5W;KF2IW##+KSRlVy&Ql!Ax28>nxmelb|R?)i6w&(i2clqf3cW_3z99HW?j&9xN z<n$ivgJWgq%xT-g<{3g@90!)mB@1!5By3WPYbOT86g^=awdFPieV)097-KM2SgqES z>6lg4=1TH~$4pkM^Sb|m2|cTjCqhnX#g`7iXMSAmJok<vn+?s=WM4oa=fkB&?>7(0 zilfOzao+2uvqtbUBOPA=eNIY@nx`y^$l6&40`q8JKWn7q<Y#%MxDQdxoXF|hWKvW$ zD9hK7fW1D~>DH@LqbZNf43@9OIYk3v(C8z@#1N83)VUYdxdNXGhu`@3IJ*A^+v^=M zR}w3nuGePs1h5bSC08l}ZPVr&26aUAKF0bW(%$Aw6vn*jUCGS(VOH#zH=f^JuzUJP zblF*nIr1+epoM+fPhC(ARU&GbVuo@_32_rt=*Or$<=(U1dY)Y+o@^RUZr#DPD@LDK zMvY#Ee#}$&Y=wt1Cm|^#54(QE`iOH)E>!jO!-#X1u5D^7pLLoCZL{+rfU^yzGdOGM z77Hai@?&n<3xsh{#qU*d+J0B3xRH?=pyqm~2u202(rW_{YTF_R6F0`>wH4Vd5x$7Q z8tvyU?pvw@Y79y0@QmrGk!IR^O(3U7Ce%koA#r@P#-{`^sF63Qf%lXAXqcz8z@R8p z(=;H(`P9NMllc{lO&Ak%@mMy>R@+Uj)4k*DqyZ{PO%f6obKp4m+E1|f(%0bM|4Z!7 zuCQnCbL)HG=gB|*b<RHifV8>BTwc>jVInLMrQT~GA=-S-NOqvp)bXN&b9AVaq{wdE zvHS2{h7aCh{BIMcUDDmTPy5!FSikvs?445<izU%G?UEt^fpOSj@!E<<emx~fk)c-x z$ns1k6i9V|?$cT2O-|9crop;`EaVv<X<x@BgfS+@P0!_K$HPYtA$=EXtvYtcM;sm< zaeQ(@w^(9Bt3!xFWb}z{8R=FB#L(yfvZO7MaU4iKAY~>&$^iod!59vYZ{b|SI1Wf% z2l74NNT2O#p)BQ+AGoRFIlZgMt*~c%%9~y~0H5J;xgGb+a?vANy+1*FC7QeG?TKhV ze3y&hnnv?BA!K1s%6^w_KJZGlSt9?uNi%Vb6vIa*lQ3q2hbS9fN|3sz`<}-DX4iY; zJu}duIxh1Twt0lF)$aytOBJkc%v$wJVjLrhs5#PP2)RYD6u5M!pX2Rs{yB{l`Y{^_ zgAZy*ol)bIP=#j25P_y?wA;W3E$$gcVjQW9SX<8~av7j{>@vIYa_^-m4}=r~!_|8v zzoA(>aE5@wu%>QW!H0kkX6jLosh+cJ<d|}f)CwuWFhn|M7{|!jmFNA-mZOu`X%+_< z+t4K~aO(S>GMUYoM7MAxplLf?)6zDr8pf!y*7swr-cMGQ{WvOFlCc&s1J?F5P0O-d z=uj1MPPZ6D(c(Lwna|p8#TUQ)bzXh_^Yr76AN}whzW?3d;quv2#vv0EWtd$ms*|Ib z6tQVa+syO+FDAf(lElwhqzoymKw6^|(`8(9;R;Ckfy#|D&Se@Yayt#GDhB81_%^LG zJiXjtNbEK}2g`N6w-_UF3=Dlw(>S2T7(=&EJ_<pd;E>5&j1`<1o#f}N*8L<ZOJbF~ zoMx1q3bTl&_E3(DafqZ`fNQOxJz8OpzQ*C_zr>wC`{(h)z|#*t;Di6{e?$M_N7~;m z1$EFbF=RrYpj-q45JixfFq!-*0?`;!B=Z*-3=v6*q2I9m;2q@scX(h7(k+prBi5h$ zJj>TU$GtCpnQpyg2odKjaa0yWRZR&W)o~1d8W@#oC(NwIpu#lM(KzKfkd%nAOh}C7 z<kLQ$J<EdZc<;IPmuxrJJbLgkVzj2CTP`^{xy8w?H(0N4b8@R8cww>ZuuX%t2C&3r zkuscXRDKvg24owxA}}Qmj*d8c@`$4MYML*VX`V8>zT8Ds-c!UNYVejM>mHfu<hlQf zsI!n>wgG;o$FA2-0BfoSf?3qLr)Fddu*<`;c_5Is7DXDX8_U~-^-4fdqW4MgnGl5; zgkK|UTPoYL_gf&giXu(9|M@kE5hP57c{4Deyko9u_agkVk(`|&089=_8AxKx<n1a7 zk^5%_#GufBhVO+yVH`^dVrqE%SN|s%f$OWD&GjXctBkF+NJ_Y-Q8+#+<)*ck5c8N? zo1F!(qiNIZ4of6a3Xk-9%q)jI<%VlsvOdhn?($>$ix23GAWfl1)f~Lb_uP+>-4Iv> zlYNeP%|*(QR$g8yk%9ImgXV|dc^VOShsEj`<67FbMFfUnR~4x-hUHSBeq$Yr<w~O? zs}4cTOojb!OURSmN*W@N7={5-!Zl7EH`mbbwj3ND(l%{n1~j(G&pptXgtZMKmd}0h z>ns;bhH>C$fA%gv{moxwyX(0)KjY)~|A=?K_xqfmJ(=bh%sKmK&%soONMWGKfh}m% zWFTwaKFysrscT!R`AtqI<y}xcJDLBlME}-eU7m87_gYGcJ9l1z7<v5gDaS{**k140 zu6mZM6(WYd-{fh7`WZV$8V7b%^Jz16tTmDyRlPRXXyI!?4-~ync~CQ>f0u%KQ`z|R z-ytg5Xo@=4Hf0AUdZAe^aE;~Y?mgV$3773BHIOKM<O-c@j=JQtQw(@?-hxi+%ITSz zAr`<U!R6;-bA)SSByO)@drkkz#|-J8urrS4^cKAKIZogHGP~8G-f4~*f*%=&o*4bK z_j2t;DGn@hkjfyEya0>E5+kP8)965{oEJ~2{$2Ka&B+y6$+b4bge2vR7{`&Tiwiz{ z|NWc>TXXO3mwD~gFLHEz#KG|~(trdHM4f*kf#6Gbgh%X1h=D)(E5FL${(t|CNzST1 zuZpCuXH_rzN?7-UZVE+<Fw-C~rrMQqPa-c7fY0>U4S`S{fE&kz%*>29lMoh|Xr{=D zAuong1-Tf&{qHEBE8{n{@K4#S3PKQ5!sg;cTd<)tT~Ae}^IR!1Da2VMKbOOquB@Mn zQKuZ%kCy8+Q{msdhj!uz$jUInm=faE<F__fFN;93y#Dilj-y+*7=}O?G<rAIQh2+i zR?4ce(C^Ch!lF5H44A>P54ojG7&2|V!gQCiLMc8^&ADZx5@RHcJ-f3%%0omf7&ZRt z)J+xsV~9D$lSpxTzSE*k9+jCX)5huO;~0diUE=umF~(_5zUw+5YL3}XRKG-z$q;_i zEohn!^0?j<BmHiN_rB(63lDnXJBTSV=HW*oyUM`VJEfL&O-2FG%8ddgH?HCA>0`#j z1DbBh(2qFlI6gY$?(I{)^rbKJ%m4PTF$@Dw9zW#UzwzJl;Riorb9sr+Ons6W*+dKy z0}=v}Skbi`_|wcej+HfV?_s7~gAfhIGQEeHlaNv^pv}Kf8L)0f#j4-AY$AO>aCLD3 z$>5qZZk^sDB__`L7&3Q4!WhRmhAgLQxb@Pt7Q%?8iHeh9Bq`EcuBSq5OwUNrUiO^! zNLC0=x4jWpWeyTFjYgwQ1A`-sfx&x40CIb1q2E&c5gnnN5ekVTp$rGg2$N8ZswS6g zu3=FJ0_~YEx+U)|z2$^Ie@1hD!R7b=fN**YZ+*4in;%Dpp|1#8t>egg$Y-aqM)4_D znO_|oROg_gO9&}hrh?EiQaaXi7e!`r%WjdcSb`{oM4%6Wez)V|;*58G_$`bWnzrNa zy?fj~J>~TF9lEZ?Hm!~<9(#h{p`9<0ul>X~_^<z_a%O0&>Qn$(g2v~L91LhYAhlRE z#X!Q6BuqMK9|EX9ymSCQ!($i&LkP20Kqke*EK1q)<mUg#S+U&mR6J{Ia<6zyq)-TP zX5JlY_)RvzC6Xvy`vpEMBTO_GE_>H7^^NLvNL4l&g3SMXp<v4MKgX14n@QYC)Mc$2 zCzGMAS`cW2)>&LByvc?Ua(iT6Q)>+C!~1;hr+y6)Vf3Ep2b!i+MW?iUh*xID!cQJ% zP_r$AZi3F7*S0P-AZ1>CeQd=rOLoxE+_6M*l&aBLDR{el`1>TkRgQAhX|P5I6qU(u zDZwztOinWuv(@io>h_q*(sIO_qlDf^yf-XX2e@XTWF=1flS447$VDR_*BoGsR!ui; zhsmsD);S%@W3=RJ=<`%WlsA7EG@p-Yh;ed6#|V#}oROkBR*R)NA6?hcEtX0KB*HNC z{QkH9p+>At!^z$IoZNkb_2CJNwo{Uo#?d(8-rc+W+F$(d;m3hzPoMDpKm0u&KmLTX zCy&@(UuhfS=n0}Z=Sma=lVdtF;3)~1G)t|dY{+vvUg3N&`{=>+`BZ-{mF30RYnm1i zR_g<{+Y7F@p393%jA?M~6VA?#>HD4XV5FG)*Ok4_`+zvdZr77in;l}^m|_yqD__0O zvmmU^0mTexGj<vuE#>}`c0w4FXv8rRm5tA-Lu{?&c_S8*BZWwNtK;O$Z<9WGkG>xm zC6Ka`kQ|)ogiV#h0zpd%crgslX}3)@I3gyDNFGik=-;YlGE?15SBWUQp-t+%SU=#e zujfypwyN$SZUqy`_d7i^)tRMYWVKrF8NnLNNUnp)b1bN+Uc7-Qq#AXnnS9mO?Ydtj z*O)|x>yfK>uK51<{}5{ojdQeZ!@XDD;PmtsZR?21;~L9y*<!6aXNpA@A1f8Ve@}PL zmZj>PaxDq=Nv$SxQuRrB>7@hk86Lq$HofPd)55bFxdTP`OorBqbC8${*7Q%RgfB(# zO3vKpI)D^2cQsT>T}20847uy?)QS~?9&3e+<x#INdynL6%yw@-+OJMP+W!SpkWzl0 z=er?QLtmT|@->$+z^jE015$y`(0wvEavC5BZPW1PpZSjwqXvpFP6`%{)MC`4Ce51{ zI4!$ADbaNcM(@EZ*@qZYA=1j|S8jCA<C$t2q>=>XbsKjOJaO|7+vp5$ourx>4~=@? zCaE*xL!{5+ehau#)`=1U&c8Rm$9t_^_~_||_0c`L<ssI!v|UHz1Zz}4+E&NJh&Zfk zaZN|tYFktip=sKjUJ2OTE;%+mG0$!{Vi-oPCD`ry3Zs@b)flzl$p_EH#T9VLa=GH< zmSMSC&!W#rN}d!0Pak~9<BvW7u^ipH$MKze9G#r9SS)lDa!NWX)fm3~ji2Ewxeq+} zk@K@BeE8n?dHCQ%E-o&($|OaF*d^9zPna=rP|^T3!ZQ|Y%bI6rInOUB&%6@Z)O_sR z&}w^P*Qvwx(Z?Tfy&dU?o{v8IfJcuX^6cy}ufO?u?!WSyjzMlay!V`)Jz>!;I5;@u z`1nXU75c<#=_o9nNrYjHY_7J%5VRn;aq6^TYC6a#ogf%<tC_;_#ZW~gM8<wciY-ms zfU`KGGXq3)=0LoE%uoKczefC@|1Wv`o$vGXyWisMxBfZTAN+u{y;A4YD~)f^@Lp+` za~II<pZrA*zW61!PoHxA(fe#a{2}S$nGznQIH3}G|EcpUNSe})E~!znWON`+`&C&5 zLyi6mLV=msB8#$#1@%dqQduk(`_$D1A+46P6p|K4AR!X=oQ9Hjmzg3gPFOkFocKyb zIO6QoUE}@8kKX-0Kl~$Tjo=ys&hX*KAJDcf!_ZH=+(_k(+4BHia1<3>f`(#CZt7&o zI;-r6mkz*Zc*K<0^ratp2IpjmSmDOW;1=VbU0NW|1Yk1!#Rk>xfLx+ekjo0E=ZK(i zV;5(mI3n7bmXU%4F=?^Ryf;6UpJtN+>v7W)cn%4W+25sLaXLxOL0RpmFS8B`<iG4J z&S~@>N?UkRLq4J$2yJJ1<xl*FbX`Xb2|w;I<Q6OIGO<Q!uPL11*<&JMt)X!p%19Q7 zX_v1x?N|M$(np)>{mh@)q!Dzjtq8_OuAlx0=L}6_k*JfpB+of;MwOl9sNefUKSqXO z-m6=b6&X9#?}#Zo4pC<XJU!p=?&F^0dv|FXE$ZvqhPE;I;6Zdcp3A)CO{>%PT;p&} zN7E`%k{WWYTsJA@`U1UYC0rV`FFHfI#lhT<%5<d_B5we79NM-~!%9O88aWvw7^`hn zXOBMM>BIL(X#K$I;FyD>V~$SlsA5Iv7E4^y;@TzmUVD?*KmRrWyUi6JfAB+o_|6~j z@Z%4;yuN1Wca{7^atKw5rz{h1e?s}>=L9o0PjW0GT$lpO9D*VfNa?NCyLPT&v$^K% z>6OlK@E+G_b@#Kgr+o1K4|)BK&vX0EUDgMO93CFyM{R4nIDf`^y~f!U!3U(#(YPTA z-Ul`p=Y$Y2*05MCaJI#^o%Yy^U~>d(73j!LkG7i*gA&&GVZ+$(V0A##9jN249O8_z zq!ER7VY&OwuXF1szQXR`|4a0{4QJo~A)D`hi_LHRQ!YPxhi%-_8;eh#5!G+W^>knP zGOMQHaMXPL<@p)gk3MGiyT1!h9+0lDbXsQ2g?y#|GpS6ZtRt*w-N2N>DI5Sfy#N%_ zAyPpH{M40EA$;<9Xv@6NxpY}*WM87P{lLfERC;MYk6wP9(h-nSps<8a%#jm<RGb4W z^dWM2wq^7^&pvse#8fd(PDODxWok2J?{_mqqe@}g|6Gy(`5W^;jhL4Xz-N7&Z^8}R zn2kuv5l1A$Y}13A!&;g<ErL2#>&K+g^P;sGKAv)46;3x(ue`JK+JWK$r0S_^@lf%8 zVKQ(<Xs6=8k_p)N0cxy2yVvPEOT<5IF8zoaLsPl^ot+Q>5jFmhM=3{*mK}m|hTE@w zgYMuB5|Y`vMqJb2Y=c-^qyJhU6h}1wuh-SJ4NcS04<j}itRL%lkzwIN)}c%CA~$?O zO^leVSQ3k_A@(28wHDV1anK(A3jd2%YG?hGjd`RWBPmYnUKCUDF-kyE(gjzWfp<T- z#Jk%p*T)!RX}d-d9b+Jr>3TY9SJ}rJoa=C|$-`8%RwAL16tRr@1#6V8Dh)&C4rob9 znGRD@Sh*lHDP!mbVQQNW>zZ8eAh{S*k%Qup86kHSXb*Vsp5O<rFP^Zye9DuLeu!xr zy5$k;qf-{ELzb%*%f%8fEEY?SPw#R2-mCn~pZvGz`z;SY`hXw&{%`Z%kKW<g*%|$? zt8}O;qDp%lqjD3B<A4{zl%XnOs&k_~`zDhb`6;J5-_cQX?P_-tyWNIeujEob_#D~y z3}esb#X0MPLsqLbN5?0M3YbIMg9B{^8%CPO&@escVb?PbTejC%7}wy(fv!8C#bT4i zq=Xku9XM++DPjej7<_;+B!*$E_u&0N3<=wr+&ZVNiZTMCtbrmR*5Nt<F`Rz=D;&Q4 z1%_Yyi)^p2IRE|!Jp0Xmg#G<*;jYga#*sx@A|a5v1x@F$?Sf``NVxqP{;NMlzq#i8 z;tAXL-XlEtgz)iu$g`)U(9;^32AUyYrRs~Aja^EGvX?!hnslLZ`Yct$SN2NVcF(J( z@<K6^dz1f|IR#K_XP$#NnH++gTDn=EP+J(wds23sGl^8QTEftBb#<lAPK6a_P*Y-( z-D1vj;JB}CXFtz^y|P}C_09avFCBo-_}C6ggK1~V2dMo2+5$a;c+$R*Ija+~6y8yK zO)_+zaxUK*%ixQ3$Xy1xhqm<m7m}S~$fl?$M`BTDT^9tPD0PWy2z2b{%=j1Ml%CsF zWnWd{D{rfn);aoCb~LH2f5QIXAtoflm?0#zt4~|YPH*4i;46Po$A^j`MfLujwYbKD zlu2?auaV%G&_U|}0C5jVL_t)eo;#=OS+3St*Ami>(Qkk${ZbqylhXllRve~}DNWR! zNzdz=25sF;oE!?B$)rmZhdtqki0zs@w_PjiV^qptWdNMUCyP{fQTZNbvma7cCLcb! z;DhT0ckaJM)2(S*t;Dy^<>_|H_it^hEuXH<aJBaI8(ZqL^~8S6lM(wJZQIt7yw2vo zT|?jZ`Spa4r4>t%TyRO!VK{BKsOu<YOmEc6iP^$w%E7g`P};n-${Ue9MN{ZEmkirW z5JS^0Ssk8mdiPZp%O#7&l7qt|tZi5>4|(fL-{AGnzs>dKInSOx;?aW-dHCQXo?TpU zb#cz-`jX&B5S@bP#)e_HQzx>_C@AY+BdwGj6@BJ4KP;Lu(r2$Nr-ff4#+cjABE!%t zWpm%NxxQk#Typm05f46mpW|D%I9MNW`}Q49PENRe`<UCePq6KRz7LH3j^KM@9EpRr z#x?DlQqPb^y^a_SrEffth?!lo43n}}DQ>kd-qd11V>QKR1pQo6T(MF#%T(YOBZzS< zKX(^%@7GxV*?)`vs;7T=hHDRz?wA;~Tfk?A%@DMfpjj<BY45W>IwgEv(?I?9imS_K zm>)hM{O~)BSI@wE8e<U2RRUR56y{HLFQrt?VZGM54l4g%9UNAtP4{A&-cw$i+y5yR zt4QTu=v?2JUrAcqU?tU=69tjb8jg&<?wNp8FiEU)Y&IJv=D;-Rn0e44^X$FM{$H*o z!~4b{H!iiDZ+g3)>7@hk86V@Q)!nX<NzjrCSxkvx0PCiH@SBITLfe!Fnh3!#6!Mo` zJY$l=%VCZlXNj&Azk>1rNG@O^)oOAb%~=WoXP#wDnI3d9-tk{#_-`C@8B94ZXN?fT zECnIcHKu|*NbYx!5i*6f4+(=J1?z)`<8S<h+J~*4wWoDjtY)nxWi%s+U?gZu6uLoU z3UrGFtMws1B$_5N^t+lrF2pcO^_mHYQmoHz>Qm3^B<C=jrp1V`STs1ZMQnD&q`-kf z@`bW9)d(V{lqc({0jbY%wuZV+W>Rzl7gsyp9UMn@zr^bB7OrtLt)p!_9if~CHN2=t zxM(}A{BN2HmC8);3bBizw8@QYv|2r6nq(<+8mzW6#TjwV%;9Ug1&ieh<8mE_Q62|H z%QMRzlafkEcHUZCv&f1*RL7(gU_qg94(u+^_;~XS5l7Q5I6A${>Fv8LS8JNKQ`D<n za(sH9Ten}~Cw}IaSS}az{lK%QPkH}G-{+lozRxEgy@wt8y#CrNUyH$*$cRcrWiv^Y zM$=lo-*pQXizTjc^utJu1wAr3l^_&OgOW}N!P7LF^X>Z`Po3lGlSdpK9dWQ;aC~&Y z;jKF~%Qayb*j-&9DdL(AQb0_q1+=9&IEKiWluB4_W~smzoNE;oGd5ER&-W&i(+(5; zaAmX0J>@ocih#1}8Hc!*?zmxb>lkqhjBT~}xgTI02!0@$L>RS7z8`m$@X3myTOF}H zyoGuFZRA(}6m8S69EAAZ_wb+mXcia6JY;H?YAQ~6c|HYRpCkt(hU1f4GqfPp$$1It zSo2Cv4eUD$)Bd}u+2)YE<TuqZ>6H2)X7wmV;}!z0>~x9n?Ae)iS7fhqUi&beD+Btn zuN|hkgMFlcdUf+>JzED}b^(0m$7VAyL`#<hNm|jX%1}2_z%caCv{S^F()6GNbpjM0 zGu00rGpUD8iId7CS3X0AV@(wb$*`=gB2l33QZSS#8!G$Af?j9Ly~f$;NU2mFJbygr zO_%RV%7N{i(SClJGE=5jHBb4n5L0Et)BU6M0iCnl{^HNjtX{38GaCJCYh9V7rcsZO zljlhG&XqaQ(k<7xrX|E7J3nPO%!HOiVS@jsyQ4+}v%Mu5RdFV<Xay5{$n)%rRZS_8 ze54G5RJJya{$qp`v=*Q^OZx1zBS9l<Dy!ibBJVuB=FaOs$?E7fZMUH7a&cd`ASF*i zd+(D#V=c=?N85CHXo{T%9f`_<wT8Cs@Iz0^bhI+J?4(K>RVuRe-pf*`VGmyC!mDvo z<5z||AyeDjp5ii7o1(F{%0*e%@(n3Z@vCx!5dDs`2S4J;$M0t4ZCD<h@XG6-<KXZR zagLA@o1M-)IK6Y1)7!WC$)ElO&d<;I?Qi{4-ueD_dHnbj`t3D=Jm;Rtu$Vj(p|sT& zc`(M%b_<%e!@8D!y8$t3sHF^nkr|9kO(T?g0+S0v``wnOW6$-4<NT~8{^&h?%+>9| z)3q(@^_s(@6K+S192a(pHM(A^GGZkfOJWF75d-TSf<*^bO$Klh;oK5y)Y&dwN9D1W z0Kr(*4?621VO>d92qrt=x<C#wi6NtB)+O3j9g3mf5@Xa_9@~(jFb2<}YgsJUtnRFF zZ@fa>Tw?$3-^K?&bpVtI`MGE|P0wp4l*SrX>x2D(W!46nC`H&6TAQuNz7sILSZadU zGrFZNgzB(Tc`-^5l~=kbc|-&sJXcp&wQ|1<`YF0_LIQ8-pM0B>j+t5&r?trSSGl;l z)=(r3KwdfkpYai6<lg6gmWFGF?FIei88L3AlmIXcg7->kTV;cSL#Y6i+_<yZ2^ciT zG$u$f;fxTZMD#P^O&Q`h8ohL_tD9d9Y(k<Mz!)Mf4<*sh2ZaK&qP7N-RYzpvc+WRc zcZzPun-Ek=`h8tv*!C*8Weuz;kSSH7HGi60S&||b)*0@+ddk7){+z<GS-A)ihpvy! zkagJzS~jQ-N8=ph&||HmX%@=X7kvFwjG@WZ=H<rb{lg^_P$P{REoed2VqsajXL+Xh zOb&`s$4tXaLQv>G=krsEyvp+{%2RShF$$jhl(^cA3>>mPzRmjZkmYij$!R)D9#q8Q za}?BeEnVBvwjG5Yxtw3q8(CqB(6$XEg_CPYm<?Hpena$?lU<d6OHoQOMjf@B$EHeI zPboDgwyx)V1n?wAGjg6hIHx*^DOQAF8Y`SKIgp|XDF$|zkNKnTJWz+jG~9XhP42() z8q3VPUKDt{SaIjhJ<gv!X1Q9i+iuxxuGsB%jKdB;j=4s{ROnXcDwv#V(R(y`X2LKA zL|PJpwF-m#5O87?aZ5U3uWj`+&N&u~1<S=!?<;tGh+JK5@ZK}{5$^}WI97wvbW7F; z?{eqfE8IFg<>2s$!=q!4k56z-i?x~Q(g@bHdD^A+<R`1nR!meH>avM7&QQXdf-==@ zL~d;jfsh?QZSR~ALTejE8MDrDt~hcF%&7G-ZPJd5aqRVc<De-95kjzRwi_+ZZCd)V zCqHz&_xj9d2*BKotNqKyb}tB)%HvVAQ@y8~5qxz6rh6)p@{|gKGQD-udHXdX6{W}p zeWFTbl67+Mm0LoG{&F^TRI(EQl~ZAUkwx#wbT1`kT0D};u{L=I#&n0)=3!|08ecj9 zpYf4W!rLWBcVDMXiPdn)cyY$=>_hzSOj)IpMoME$&wn26^DT01jnK79W$8mCm;w<& zlaw1EhFox$PasUKgNuc$I(_s}q4n&sj+9otsr5v01ZbQ_0NFe<21OjQ!#hR(1v+@a zjf9kF+!P7b9Aw^T#q%w52u2?<7;SNs#PMOv={No|jk7g3UDh}ya_d-T!^#^(d)gz` z*c=TBVjB`d@B<-u#<8z6%uUImRcJg_PhV3cadyox^$ABDfpxdTX<c*~vPQ->bdb#~ z@{2w&<}tM~m56ul-%t9v<duyGJ|rGrMeUzoE$KRi{>3zzNW^R1MpT+(;~a~w#TZ3Q zf)Ck1DIDy*D)SVBR+L+Z5l6~JO{B3Z(_t9YP<eHlBy$K%`NeGH3uSQrj>JUp1Y`o8 zR26YisAaf|7Nk<;utL2_Bk_=pWr{+|<SC>wBnUMBqQ)bIo`>)KA&)-z0mim;t3&R+ z@*0Q7CmC(hT=h7rJak>h!NHNXQnotc_Tu7#tMfDZ-6k7Xi)&hpH8`h}{klbmYgY8R zD7SP(P<E+!DIy)a^2gf;elG@ghV#_dUw?%2Y^kK{-HwuBfG2ngVdb8n!_kV~n zhNI&XPH*4g^!6Rr2M3&<-l1t4R?F3tDkIAg>VyPWOvu#UW(_2#&bl80!!YQ3Ltq$s zhEWGT6>99VHx!MdM!&^YmFb$+T3plAd(i!Fh#|A3T9v;PJ;TuBT+1+yH42Vl*5+4^ zd6XfjdpvU_^)011H!C4C-&sHAD0+odm74DVRKIpY2X3CH6a$tP!pW%Dcg%t&5!h`m zYw=*&2Q^KxNAM<-v7b2sw$`SoLtM$vM5(zoxQR9DFK0qtA^`tJj?3#SZr!^J1l;mA z&GI(OyI&;rJ;V9?3|H?H`Yi-sE7S{t4+&zBDlCX9&#u*?HXl6J6{4R=KZF}(GE(K< zS;L~U8JdND(7y8!=3<<I^APhe5xo{y`t&m->bx4XFyo`FUh#{LynzZG@Z5th0xeS5 z=A<G97>$}6*KqG^Kf~(qzE<_-O`Sp@k%e0{y?|AI03#5B=<Ec6aW`n+x>a88VHg-Q zyO<Uv8rrtS_I-^KYtJ}kQ%A}`oK#XMDMAdedzU6%>RMrPRG*ajEM?d<=z513wRJH} zg?(nGyvjP1d~79M5v7>E92|E~7c|bWSaz9=W>WHEwBS$Yty|i*!Irv)937;bmceOG zGDJltG~!lT;85lnB$c&s95s)f$~e<lWo$|e%^>p`pT9oi;^b%qRCJ`u`mBH7R86Jd zQ)(7uh7g#kYek3oq=`X=jG!dFez7g;%z3sKkNDyFLv?z9r)SUDTwgNuJ0(IAq3<`u zsD)~6x8VN$`@H_f8;s+~X0v0vxn}6M7$L7ctXC_IiZfc_gLajaIRoP`WF*dMOJ8t^ zI1nAT9EMWit`7Pz6z0HEFs3p$j>A-Ni6h3q*^@^+ef*FFc_QHvufO?uj*gBwI6P#v zTCrNKX}d)&SX3u9O%%u}7v;u;H3>;0<jIS{2fX)Ffo7_)YWCQ3lu~p-p$*J<Rw+<3 z)*_+I)BwytGrv%DYEI9bQpyF7N>Q!r5wpV=s!pr1dMb4xvZs40D(9Ta#tc=O8{_Ac z)Qwoap0DQRZ+v1;>1iFtyaS+KSN+QAJBmZ>eShQJv+F1k)`SaE_mR=rCIt;egy21; zcp1p7fcm+4TDg4NO9$XHKSZmJW1wl4Ko(kSU}@>vw`p&^NeY3ueZp|{A>-x(Nqq%) zG76>&pbC<qbr#?3_o#=M2$gEQKtpPyoDo`QXj-SyyAkXd7)IruD$%JFMm47Vd{GpI zqr7#7(VMEUU$8fxKN8y8U)G@T%rg}P+MMQ?B1WxfzxC=Vhp+!CZBbs@K%NaVRicLw zadE(Qt+p5D{WFdOS6A08murQ_gGOcJ&?DJk>Ge4sMJ&`x-U9!{5R{%Z8@Cv}et(Ma z><2j6=&bYVy-&HeGT0}kl!uupQPfnpnV(xWhJ_%he6Hl}{1~|0MON!$nx<j7T+%en zG~rLOy0w<J)3iX_c4`+(?%XPZ6iVx8g>m$6<1A*T%tDUR6o!q}`Kk9OnSdsvKPgAH zlcOO-V(ltPrm*qFJ;k>d;l)5QS+<NN=GpBO<c0FToW3ebx4@kl`qa)Ay+&i4&OB&x z(WM^<eq?uj&gSwN+s!63^=Wi3#$bad^*td3oKxrd=y1vDof8(z73;%W#3-CSe#q7N zIj63}CXLo(CY_Ru0(n1X&IOa7m#%H!_w2U%-V!Zq9$s&;c7+&Q*R|9_L_5t0D8q5C zudmo_u6g?83C=YvmP?k)B}d1{9G{$W>-HV)y?USHlS3A*%em*Gt)^h3IBGGsGL|A) zYb-I(vsbjtO^8`SWuqEFYU;>ZO9*-oQM7<EqN%|B$&PBUOZ#5sU?`4<5hO5^SuoC0 z#_XoNUqqChu{dD04&#OPe~u=|>{Y4zbG}FFXQT?EB4&k7n29Gt>OGauNTx4VJ$rq9 zIYsB@#>G|RUvy^qYEx5{<xlCZDh`6~(`g7)wFNUL=cNPinIDPw-+zxUe)a3PRv%i5 zI_?u78Ar5&FklbvvpRf@m?HlA5yRE{#QqX|uga1lrUFSw$!NcM%tdoC;EW}?i8x}G zGQyw*FOpK`1u$7p=JpdS_#Ans9Ca2bPi9>ON-$$+yz&fG^^qpgDvoht+E1w{!!+%o z0*OkFz>7znGCP;Gmac30+|T_F=(>dtV9Al2FEF%}oTDR*p7h}labNhF(w=U6V!vgx z>G6IfE(D1>kVEsxc{oU}a4r{HV8_zuUJjdi?~B19CBp8KaP|IVe3Cjerkp43!-pYe zrzcHAf0Xk;i$kp_)pLQsD-@oTEa=Hq;MTo0E>nv->y+z1uQIN~HA=(VbuBiJm<?VB zkCX=_C6`&@!Azf;Z=)bls@${jNA@7b`eb9sDIAUNw5B9b*w|u*MwRAP*yCQWN;Y3V zlT(uNfSHs`E}V_iy3CZe8pWAz&VpB34)t{UeVVT}BpMKdYZvNJ8iPbNIOEV0!-(&< z*hUc+Yt@0+Zni8}OPsMBy}IJfx4uZX`X#>m?ce72e)~6AE*9Lm{|43>`rR%&x}z3h zd0&<KYIVTqN7D6GE~w1>|F(3XSd7uMK?>+vNR}%RmFG-oW9p!-3a8-x4%l&heT^95 z!Gi~Mi;ixw;LhE9+`E65)7vN9x^;`&r>7I@Ra)3I=cHRAdL0^_A$3jPSzR}=nPxiW zanBw<<}uJQQ<;~1c)l+&hSIB`91WA<D#(t>skj)Uu2c5(jaZUNbsj+xgDD!%-(?K< z?!QJU&YSSHDm5?oaULH}sKS(&-^U1K_K*2Mp?NXlUJ+=bu9XG^k$2zufg0tE!c2g| z)D2MXD@NtfD7^p0sV1jdssoZ_HU}o7EOp;ZMS?FKfPVwW=K7kLay7ScIm*k>F$p9Q zut*+KBVuU|Ucs$jQO`a`#_c7;+3&%42}#G`Hc5y{2zl}s6v|wE&{fbxYE3}&5pfnV zAXbP`XsjXHL~_bKu9e4AlqE<WQli4#IITk{H3TV#v8h0Ulc%z`-HM@`s=%qvfWlTX zi%3!E-&*c`=@-$lsXD<+NEMPyF=%mP*W#=pK7PjW-~4}a@IU)c@gKj>?&FW~Cx^rb zACumA8}er>r6{uqYs#C{sIrXJOi3dc=gO43LiiEj{ClL76}S~mUCh)(aj;76Fy_ra zH}0h%uf!aZ*E8kMhoG`@-ACNwh}FS?R`ZL|bVr_90LqxRT&-CymMQ}wvJHWd?@@J3 z%Foph$Prd{rldHGGL5_iQ9c3JAiglJ&6w26J&BU+6!^VF?nRE1De!HsZZA$#^%7Io zyVGmh4(e6uGo?&QkyUwUk_~u<O!fk`RPVifcb?T=x)~B!>+%qm2|<f75_cQ=t@6?v z>u^nr_ny`2kT@m`4bHUm<H%tiI`jD92Rd0X1Vpqovs)}_8>NLEdZm0_#3d{igq&I_ z8$(3$kR^k)ElNvU7%fXwJ)3|RCI@|<^A927{gCf}V7uL5tmXXtjQ8Jrhvjm?YN?Lm zYPI6<@Q7QtZ?jykaZQJaQ`wU#zizC-M3-6orW8-es9H%Cj3E$GPA5i<ctcJpq*PbA z?h%uVEhRe?I-^7HBj)-U>(peK*|fh&pG=4!DR%&@*0r-~a_(n)y<S0G`stOqap(DC zPq#5k5y;IC6xSo8E2Th31VZBc+4;1O>St5kC;L~BJEKV1QJi04SqrT@iDQ`ukg79L z+W_+iUpfH)29C|ug>E29E-beKW?_#p63au2VTxWvp=PYXH7mOHDSo(Oym*(mdxT|! zgjgL4WpfkyVW4q#uNJ@<(VTN1i8f%dV8Dp7fHf8f+IC+A@FpP!sC-(ZPD4QgDx3_| z%5nBLNHKUNTCeYzMVh7UE5=M|Yz&J#Z*q9&YZ~=u7)=X;LXDal5f-Z@jkO&AXa8H4 z7gw|&{2{x)_xBhR#9ObxcfO7LpME9xO#2Mc>gQ{r5G6k?*)SKXQGMOH24mf<YCqsN z54D)nBpRnJP%#FIX)68yrF)?EFc%1&DgBX>qBJRH;-8vQSMPtjOFVeyx%cKPblrlK z5{quZVzEF_1fgjbEEX#c57(@g9f?HnFlLrR?|mNUTINR>QnEVnkCJwo9HKH9sZ`{< zrp1mU#yX7ggj^R<6pb-<%0FflB^rxJR7gLSw#qcoElcUmmOb4&={9wsLMjf!Jd&BT z?OyIP<x$abQle(hSQNY@)eevnEzLVXBqL;!VQ4>&_;H}$ZD|^dYa0UKN6+Jr-o;o; z@Uu2BU~_%J)rA_y<@$ir+xJ;6R~#K3VXb4g-6#SSJl>Brh)+prt#x3N<o<n=A?@6S zL#Y)?bwE+MzZg@dJRbFPIj8PJfL>D)epIJGW}gFS+XV-Q$DH1|$HBodC$~;D!uN^{ zgu=z25}-QEhmeOfjd_}6B&0NZpRUvBNBpoOhOtJYptR7|I>fkH(PA-Nu}=34nZh~7 zSSL{y#9(eHO{TrBx`rD%scfzNSEh5!BJt_{Gx^EsDA|9@-pS{VM!m-3q2vH!ySdh2 zFgw(f7xUc3?OkG7=fZtrY>|yrzar$(#p%X9yetCzH+T#~KTVjE$x9OfF;;tqyZ>K% z@6~KumgRT-=A6rHbIi4wH+^N6>#p{aKtfUofslfL5D|ock3jIwBVU5=fkN;C0TH+m zQlswZZne5p)nzg({ms1Q__NJ2b50({7;~+CGpn0^$$Gh~D(^XGn`NdM_CNk(MNYAx zeWyO?UPF9=kQda;BbLVx$m77!->|><bH>e?0+NJ7f46rmS}_2I!GJTu=GTuAzjM^1 zgpI}|n>5E<*uW%BFnOwWf_X>5wh7w8Hmk=w@etTC0lq*iR|_Fdr=8Ol%g02d2j}ps z6OLZ{>x8fn&$Hz43c?7;tdCEq>z393^v`G?e?fhGMEs}!l=S%*uv#)yA5q`#VbS7{ zawhWxP2gLbR`VRnp??cNaG`y?6FCWG?RfbMa?aFV=!tPcbd<+=XEIBvm`6WF0_Gm9 z;Wy?)3KAtrq%m``$sFB#o#pC?rd<GVbbP{keS}#34(}^gs|6=_?om}z)zI(vG)=8O zMTRJ$eg{Qq$okSwZ!QZrge@E<4_W|%lail(MCL72glZxhlIKmjesVck@kEN(bbyoA zK~hhCHjd;xdA;&ti7J()>NOqWf*Jveu=dv0)r`7Wj6F#M1?I<GnHnRcT|>y0YP#Ky z&pvuzD=(_Tr(uWXrKQ|YSPMx5W546-a^(2rlt*v8#V`z<J%2(!^u!po=Yl83k-p#K zyr<E=4Ru}V9zgpODB?Vs0i?==*)yq9@Kr^ym5`;<CZ>U=X=v)Igztx8!*;vli^rd{ z+wBRVqHPyEeDyVsj!syuk60g_l**Qj)R@OXDg=_wi}lU5h*^x0zU%1s%DkCUQKqFl zR73yHO%*sm!ADGZ0V^wYTGl!(n`~>b%;{8V@>e~~U@hgW97Yg|L96F?d4|=}h*q9$ zCc|quU~iP#c~<XV7W|8BD^8zd%JDm#L|9^)HRdwHBxXHLrm+-#BHw*!0DMD7?02}O zhGd;FK{+fRDdE&0-PsJ(l%{+qnF6%QKH#dBcCn^CdcfH2=r(8UFMdMou2?QSbr3%N z+Z~K!($YFH2plk`35_oyQc+UHq%|+T{4^FgYc>SS6olz8TE05Xgx}PT*urYIIju*5 zeGX^gSpg~r95f5=yz{qMuTP~3j8fNT1i9=q)LDm`rfs-)b&LNW{|Bj@t*;r+p}*b2 zW(SpU#t$iCEC~jfl4tWObcYE{mZVp^uf+4On^qznQR<P$7#S~rM%rKFD-o=wB%Gf& z9Z^gLlstH$SOu&Lvj$yA#WR;whxd+gOze8N+(h1ZbYCfqYjR4glo%!_N8b%pmFMX6 z0nK7r+R9erNZZs?{-04iS_Eq$9)u?o6zd@o3`uEPH#`%7sf2vZC@lF~?}Yn5RK;7H z;{@b~hCYiiFhy7nq&*qICOEw(Ukrz=o!<^n)_N{8R1QMCPSN06CvL`Ht~D~C3MVi# zNb-yb2Mym8CE`SxFPEi!Ek!Bw6Yt7P?p&3#q*lahPgy!n*0m7wY&X|@{EKUbVc_Qa z3Y@2HS_ySKuin3u8V<cg9^xqDTUAw2E`k$?M4a>m7~|9t(}xn>FgfC^<W$pc{V+0) zb6RJQ!z(!ya(_2BJb(5K=Y;yWZ5J$8YmQD%SuEEa9UW`iVA-SD1sTUUYoe4Qap>rK zX}mR#(tN6<*L2!sTnGKV!a#hM-YBU}KSl0l3juOwwOZ>`sxdPA%r7?vW=>4bU;7z1 zzs~Ff;+Q+;24IQKI9Jw@(JW*V7iZ5^Vb3EJ7WH`Hx(?Ie>KM+9k(ps^M&ZF7yXp7o z{4aR`zOm!t{28bBUXefCw20<FD6w$s$+An9hmHkdDgw+xIu1gEUj(YqvRFO@GIhVl zky(tNQa}BWo15E7{^o?F8gubR3yRn%I=x^6vY%wK7ywf7Qw8JicXWMZOiEFUW1KK% zQv|??;h=X=*yPOWO&KcP7{NJ`3!FUqF6-k5)QxyOmirS2R=lbZJWbnjQdPwN?!Uz+ zNQ;F3fhYZN(C9{DnH>4(NP%*BGO)x)D!J-$9F&1j!`jZ3u)kApOv0a;xId@6cueIL zv9AbqOWjOfK`!BCQ}BlDF98;JC`J~Ic&^caUkPsanZ@Zt>UKe0i&7xKYIVf%(TS9Y zEfT(Jr7W<KssQ66ud13l2*ceJ4wQ0G=e;T%5VV<&GfG=)%FsK~I7iz{$lvPxO+Zhj zhLbY3)JpN8GbJK6J^G}$bIxR!r6MJ3mqMqA{~U_}V#bv17h6;2Apu2ccqmZ-8;6{- zrZbGUnSwZX+2&72%R$ob*G)}bRT!BIn!olbLy&!z%5_xHW>@mxDP@{E6#jvs@5otF z3~3w+XikTn^~otm>l2!GA-IJxk&^IaA9T6X^(MR)(v7gL>O$e0Q-mZ7uC8mm3q_&E zIF=dm(ykHbJaz4~(pBVC-*;?xTb#Qt3V5+tD9KdCqFwRoYj3hTIuYXqM|81N5|APG zJ!4F|9};cb3b~LzgArhv;y2y_3t#7ygpWb_2j<?n9e3{DpGBLJ7-nTzs6zgl!<iB< z3U-odW$_*u0khv;)Y^Ggeel9nQ_6hs{!b6CZ1XpB3z!7N<o!=ZuA6;C41sJiC{Nyh zF)h^7ka>7%0DNP|`Poz6{myStEIl`Yu~JOJIqxbA0GAPVv*0~GhoZD3ls5@GQ7#$p zG7drS1`o~$>eJuk;VZw(Nw;Bp^$9m0|B%2S-awYB?W`WEMF9j{sH|tsLc$X*t2OTl zK?r&lZ6zg3(Uh7IT8Pm1&Qb?D5PB{YWN5<BV;BHWv%bgr{&#S`($=+=8Vw?leF)?j zOIc#|fBY}xXXm7*qWaANjv+F#(eVn&6Sh045=f~S0bmrsu@H?&hd9|BE*O`)2%uPm z_sDqp0mM=H(I@3!6s+#udHue2Th-@2wDJZ0EPM-XZK!JDr|%=2Zz6Ae`&FrgP;bdQ z$D(anu8zRhnnD<98fmdSj#GCsX}D8qV<QD&Ifu&-la{4n91xl8r|47EUI5nZ%xb|W zo_mK^irFdRW6Iw=w7EB>0xcVvjLs`&7^{b#CmLw06%eI8tufSaP3F~<(mPj_f{eHJ zhF4iw)~WXzCb#wN$v)xKE6XXOj2H-LGEvnPtL2iWu1YE;C_qvwJRC7OstT&AAyk8; zO_Ym2>mIhXFS&Yi0$i!@o(uVL=sA1-C4Jvh*ERPaJfx}C67r2BIIS=MOo2*TOAT4y z6d+yBQH-Y;iB&a`8O<thQjCmBv28hcoHV=|qePIBg8ov<Qtf~%9VX8&&eV8sIXS({ z@#(!{97^d>!e=cF#ZBwTPho6FEc;42T26+$flDPlCm55t((~SPd~#Y0aB?Pj0T#~{ z>em|qxx7<KWM>LL;{-EtU~uHaf9I!F(J)1Gb$zGE`Po^K4~KhWc3v}{3lOtxFs#bO zBCr(Ma+p3aBXn{+Uq%4F(c|{!hRLeaV3D&*mI#SL;!uQ_35~heRx}BEjtpKDcT#k} zc}o&Pjnqxc`p&yFt2b!cK>z%Q?9QJO_gndlhI{SsPRh`HawQBZVSh_mh~jk)mTh1d zA~9-M4zI#YqXw${4;6!2*%rD~A>h5o*Guld`+L;w5pCPDXcu_z>4!n{&t7Y|M{1w( zn`_4Z=bw{9i~mjsZ`Y)p=@{8MN1L*c)g%eI#WWu9oQuaVV78Qnx;5*j3tj|v)G%g7 zDSdZO=&sLY47@y0hDo^?79vmMX?40&S)h3gIwqjhtyAmfoJEP>ZWA;o)Xk!V*z3B1 z99gc8Sgen6!87z7F$$<NXUK+E$l|G2RYk^8Rk;`dIYY4Mk_%cw;)p7>a+xq!fR{0j zkSXPWC`Lt6B~78qol7#2mm<812WFm80Rv77&wz!Z)JI%4`rdp{Gj4(}Yu@<~>@;y? zNJ>HlV>&dTi$GS-&!QP2Nb{=$T4yJ1j@yNBEEssscmuqblE>g3E_p&VsFykk?#Vt3 zim6FbVWE*G+dH<)y{1;$re(c8CgsHK%?-o(IXOj^t2HO8U<K5ev3$GL?k|`qamA2L z8Yzf`Dlqf|!TXYG6GKIe<ET6UrT>Fk?lyF0jHR6Dx{loK@w=S>Mys0Z>r2ApPi1}7 z4YA*o)2IYW4qPaTNw=PIRv77!8A;OAD~^$zp>ArbN-IuM87&#vswx1$Y<w5GN#}d@ zFFKq}*8H$N4rT6h`IyRgb>Pr-^x{z>06BAWeeqRKUNHp42*Ied5A**LsxhT5*B1Nt zMeKlFwd}!};quY|_=b+{c1uiADNxmFOO}r|?<J|VXx5&`jlNjLW=a|uE9*H#9;VWF zJtAIeF$CnBRCUc_vF7NVzsLU3o?+NC?l0Ip|2g~1C%8D`vgGdT09jiJXC{U|=S`u> zeKxgJ1H@=m2Wp8czr3G$g^uaFfC_U3$T>$<SKNR5do;`Y<dj)0m()$ozU!6jrqYPT zNE&*UCu_oWPi9S6pTW1ibSsRGo=9|#(LwDU@s(GK5HpT}oFOKyc~(K0wA?QE0F{Qw zb0#USKaN|5>(As_yp60rkN#7z6#AOe)Jaa}{LJ_eoS~qFn<2Q&qMiC2?EB1@R|9W; z=PkiPgg{+4N~ly(FV?h6;s5tOGWN>Y7Bj;zkmFc-s7sebQR>!nAZ6)6VMbtfiJW|i z_7pD&?Hgd}5%2J>CL=l8x^3}Z?#;UK9n?SDp~`=b*v`V%qfrnQ;LaU{_sN1hk8zv~ ztg?otePo^H#4b^fGY7_D(9nM_-?K75>(D2!Py0pYPIBRBlp;7!-L@>2tHJ=7l62{t zcoJ;fveE_bfhh-H3=b#59p?zXA_w6~I7nmIv&>eR_a0Y^@-uJm{OqY#DfG0<6>YmL z^8kVvubV~<H!poKQesF0ag2iB2tmpQXHA}jxl-Huj<Jl@gzR@S14l+KYXo8#2gW!; z?`FoF81HfDw3}hgVs*sb`wvL5E#<i}N%`V940PSTT-OXhyI*N?<j4#&V_G5=RaL1W zA@?~C<!6jtb7lohHppLM8+^?t%&MCk_A^C083@zScYDTB(sInkPmBN!$Y65c=*eg2 zaC%Os9X~OnH<0tlSB{*?B;iredwOXAd_%{6zh@je+2{guqcE3PSaTLSl8~Dy)SRso znHM_OS@*AuY#47=cp5R!!p>^|6z>D$D0#lRs_<?_6<R`jkLAN1aoEsZen@})gf#3W zCqJvr50#r6o`B#1>dG_LiIluD*a<%X%=qms{9P<+OJxXoh<Bdm_z{b{-&MqYO}kjo zb%UbvMcE9)z}R=RZB1K291`wyg?nuzhalch^a3gfVr7TmasR<TB4#lnLLG21DbIN< zC4r`ZLa3;l8XvP#D-RN_hy&y13;OFbIj5(9_zna@c|;upRi?@1BHXI*RnH*khF&h@ zy<InQelxPV`x?vD5p`W_vll`8XXmM#K;4J{a0EzVh;?00ihao^lhLRW1;uadjv9ZE z3J0ZU!NTd9nve=S@sfS0sMMSA-ci+!-d9E4F0=~3j8^$s`$+8*A<P7rd5>PNr(UI3 zkebK5djle-qI_&@3n9}?v6u8fO2yE~qbSvo6rgA&r70e?f;KFN^?DF{#p!DTB5c}) zbYEO7i$b!nu=h&Nq6)y$HKT^-Gg2;B>ob+GuBIZSvC)J$pZAfs$jRJ*2DAxOEs9N> z3hnn>_WP}lZ$;ZSEb|fTqhsPYDvO+-MMA{0PBG!e@j$(0tq!quE<`@LL;>X9%y<)( z<*Nx}VVwh0O5`Y905K)HZcj>yo7-!yug_Vp*W6ye%KGFEtK}M(25xVzxxK!?x^+4x z<IN$Z!r<^pqaP~o>bj<B+7huagnWr=WsCI8AGA#PSN7(?@k>Go7Cka!aSFFjb2tC= zryspvL`7L=cDN!~ChuSOlWv^Z=aYCC$s)%dm**IO`CRH4dBH=xGyuM#<MQk|{q~lo zUCD+5&>WcUqIrHse^DR~z>N1So8VBuhxd4bw6A5#Z_6pBd~b>)gIeuYc4tDSsunn3 z;~)Gs?cJU<Zb|zy`s>dbw^x#Hcg`sIG19!0gcxXyUL#N1^4O)BaIpK9XEV<GOeST= zIA&<p9KZ3~gi4t0?%%&Jb;NO?ZKX$i97obP2qRe)B%in6usVC6_(mr8QIueeWC@@M z$<cf7!QcEFEJ90L!7xU)yN=9IJeR5pG;K@7GsZ-v4KxG?A)96#whY&gsk}Sbt0o+a zwLW(x^!Y<@#8EbNiW$NSA7JjyO2ePcHu3mk;5UBf5tXvhRYA6F%23yVP)Vpdr=%cF zhviVSjaf=$ESIYa(tErrbP%sU>BE%Lvhswk(9$|pYTi34D+ko@b=5Qnph>6c0rO^^ zk8-aDVs(^Ow)57wC6}uyrR1ivG65Q@vNr`^LjSs7Y-DpT>pS?#1I0q+N!StlzLUs; zJSxtNASey4=DY!df^P_Q13G77NT#w1l7d`}OiA+B;;W9sKy1cB?i5F>YM6PZWy~hJ zS5P#0&SH4FG?g9dYtB1@uL)I6N|B-O*==svZZeyjYpyR_s%FW_@yS61Lofrq-cvzb z%%Tv7vZ;8}7O5~9<p2fSf%O>B_cdA}@=u;E#gVZeB+a1w3hi=5)3nr;=lQcI4BZYN zq(l)l(k$g*8_k;G5JzxQrdfIn%(xw9qG%SiD9gMU7`*u23!i)O&&k1`sr0W1z{Agc z{LwGO37pG}gCpzzH93_h@Lw(yU>~)4Q?e*$m1a!$VIR!`h<q6V_y&(*95{RS1?xKx z#R3Dsk&}jM$_BG<Oe&?kk`I+T`rAA|BnCks$E*M*+pxY^<m2ck&!~6+LQgE7TZ;=d zReQ?f?sv#>PugEF-acly{(`C&%iDRVvTy=eE<Y;c7nL=`nQuDv@JwiAa5*z%$I%;q zjdpQF&agf@!iB)i&28x~?t`{dO_6HRvR(vHRG)nSZYxoQy^~g`UW|&?IaYPe{r}>> z<axW|Xwhh`dyk`s9HsHdxT9&;;0B>C9Y^|J=R*<UF%68jpOSXh>b+<6CUi5}e~B`; z^L<~M93=%z&JLU9q`<0O@7V4}E^m9@c<WpE&}gnxHm!8vLnA~Q_VX}U6hkaC$=Mnw zy)y$ty%Q&EA|_M#ql`y1cDz)Kktv{&wbZYY_RLD33*v>&yZ;q$#W~2P+$Lo*=K&CW z!c+sU1CMz+&dGhm=*v0=#bxAqE<Y7dX|A~JKkp_iOHwX<%aaSK)Z}qz14SC8>TEKD zf(9+pU{tHc!&KuXmwl{btoM@!i9Q)$!l+{|Q868DHNf)hS)@*043Mk}A-f63U|`B} z?U^nb`az6={f-cB*xp{L6X2+umgD0)N~)7d$q7@T86lRkRKq0Y32%{d63{WBT+{0J z^K9*yS1fZZ5d=>~l{4drHs|VOe2~98gpzq22U6ctxF?(|iaLXkL@6j(e5Szq_@u0} z@B*OH6#aCV!)2cK;XCEeUuqP%@>%jU?9=dD{#^~Dr1}4wn=+;^o_XrtXL`WQ3^9sJ zL?I(<ASKc`%=W_}Ze_xe<+6tyFF}Cc+>tY%eDn+6`p$3Z=9u`&WtCaSDnm^>{ds7; zP9b!QBG`(X3p(-25{Mwt%~t?W45TE?gGLve)jKyvIA$R|U#|(x5zXm4@Y+b+e98Xm zQ^x&sf*WZXhg2|#5bJyJF_U~Q6$Wwv1!NgVHITidz56XP6*<9TxgyjRPoF#`lZ&@W z8_7y^(kvQkALuV{xbyLk*d6WR#?jOQg3Q6;6SU58yj(KeeTz^#nnlg9AB4N0-_dQZ z=yy97s|9U)gmYVlG13o}=02zVaO`jB&p)M6vLD-uS;uM$_-VMYbS~4^)IP9|!j{LL z{7NwZ#+bOgj$B^s`Q&Wix8HuiLXrO|DHW<lg;E^Z?}SB6$^{RBSwiSCY92dJf}xa= zqPbluJsZb?v6r7QM*2Yz-d4J3&28GIg`5bXF3)cOxCzi?-iLbf&M*ggTE{sT1y;VB z(C%gxnWR7~IiGma()})_q&x@Ha}|Oh^ZdiaLttTJ5t<fVNG1Ja3OpsJ2Gz`fu)U{q zX^8YV3Se}OYbhSO3fp1~sIrtGg#b32rp486BL1@P=*q}i0!f}5G_!m!lL3%(K0v0+ zURI;V2Z9&+A8TX<(#5bbkZrf)`f5wxbyB|PJnN%lO(*ONs58ZxVHp)boFg6zF3F^o zh5l{eyz_#@PmsMQW|4P7!5ozjWpWq#Ug(m?QMynzifPE>fK?of+A=t4Q~`uN@#N$V zb{v+?>Dk@nq5m=^Jm0@xr~GYY9)|v3_{_}vHiHWUe7W6jn0xtluZHcK-$NN!H{Ga3 zg$y^5(s*#a*-cEk<v_o@i~xM2$NBkr3CB_dA(Jr5fX`*Km9i?PMNky!ES4pwuw`i8 zs4oh~DbOsc_h;ooDQ6<NfTf(XDgq-Rl88Vc2!mJ%RPBPi{0{Z$yCMX)XY^Me689I> z`CJxmhUg^M?e)6mAd@p~@a*({o8vd|p{4ISGO$=K*xYXD_IoY&v$8#T&~~w4*;J%4 zvHkP|?*HURY+o5*6NqF8P#p<QVi78;#e&<kCp1fP%<Q|!Zo6Z@y`|gj$!TD<ew*MO zF%48zz(Vl`I!j|mfBrr-Bi65=$hBf9QD#ZfYi^P(7>9yW<)o#L=IpACBqfN6?Pbri ztATHS=esNxD=FX0;FTi+PzJwLl(mKIGmc>pCb{1Fwr3MQxjb7j0Icy#8W@INnBc}Z z5yPl)V?evQs!QJ0p4&pzh4@FpQu3a<Ma7%Zhb{h$u6>Eji>GPLVL}zKY5*}*&44ry z*gRj`2=hMdOai~yBKG`f)0AAie`&O1Mn=ZPs8tR#;aSoYUchW|kdwcVwwRPZngdrQ zJsbCN9E5_{QW$A67|TA+63NMKk^qh=6=F(1J4+quxSPQ-qq?r@O5gTazkpIEnS@t< zeRRUnu{0SP`ku4rPslm*=(RV=ICk5O_@CMG`jVH&IYLN8pJruwz9`6)QyF`7&I|TH z=P6W`rb|LG-sYbti$P$9VhDj@=)t+t6C<m^QB{HEYNbZv)GBvU=aZ70esg8bGJowb z1~7Yl`u^AD+9laDSN>+)$g7`z_%p^~n4blUDw$zY=Ced$V17R@8ns`m{9iaviIDLU z1MrO>T`z4#eXt3H;w3O?gRBDE&%FO4)R2&mSpXJ6nCEw`y{9ODUj%M&UcgRT*X+@% zuNWm->pj6&_%!pT)RIS$z&R)CrloBw$dH;xv?s5z7)LhepVHrchP!@3zquku7)Hr` z#+0eNU=&uh=gNUwoUmBm!8y-vw`IG%<?6B}j*<OtgL9ts(NTH+5Gt0-hTuK@&4$$v zf1jJpEvbXtC)^?se1<{d3(bfi_?MF7-|RcCuea<r*X*`i#&O{2^n|8vh)K}64pE9Z z2|vO(4#fR)^5zMZclco7F%ATj({LP^$MMzq7lgNIqiGK1v$C<rG4ti~j`N}A2M=CR zW=K^+TE>O59`j&rVWq!BP=0qS*-AyIr5Dx-SnhW$?OuhaeG~&?OpGZ(s7e$7pbF9t zAZN|nI~1Tgks%%CTlI@2G|Bu`Oi?<t=6_aMk+Y)seNs@<Oz`HJ0f5azDqyhUEzR~$ z_HwP1^YlzkO9GMH`xFUCrOeSvuk4=Xv<YJ{G-GZW+sP<#<@*!^AgU1<<0uS_^9X=l zCufp*YI<I+IGwy%uT?rJ2~px)Va|;(rteH-O*%GeIK(l{3|XldGN9<wCyyD`>$Va> z=PR1JCIpZ17)Xh&U^FaEGR>Do3ueZd8ud9-T5t>7s5l!IRg&t2c<2?|edu#lwJ;?D zg_H>3kd4wjY4?J+ZsYVzVgT;&b1xo~-ZdjlzGKwi2K3BK&-=yapL``+Fu%uxkdwK9 zW+z~g9$RN~a<BP)&R#Ra+gVgu=K7@p@C_bTMq`4d<ZE<Q%)?*y^I&2Nn8qOygUno@ zg9_y=#3+-osL_OsB8|0GD+nd5HE7AYF_kq<A{EBrZ2%Ju<2oS^@y=6MQYtkZy@G4+ z;MecaZ=MnN7xcRuhRr48*lXC|ap$PzdaQ_xR|r86<h$*L^XJd#yN;%5=(@d@ZNdEq z52-@UV!fcMYGO*<JUwUmZ-2y4W#~NB!b9-vV<zq#uJ=?Ks4ALA?=ocAY&v$^Tl#Lt z(043WE$fq4@j*a$Im4jc%remJcZ~aU`lmk<u7Brn!Ikj++&3s~TC>^sGVVqHp$v=8 zj5MbvpDQ1TF)_r%Cucps_Jbdgv07}&lgBs`Tm@96q--3fGOl4r^!tIK-%03yMjT>Z zS6Ls~m74yTw9Y#v;wWi|eiUSTib<LuWvN^UAr#|7ZhuNU&BOn$I8P48%tKNoC*f<0 z5UBDb3X`5Hq7=tMoC6f%AuufTJPME?djZDfiHG7~H@&c5a-L?;^4uw<QUQ=PN>`MX zO=%IjVg#66wp2tpt>u*c3-@98j5rcwkcLX>(2F$BG8KM*d+`M$z#%w+?55|_b!QBP zDJ8|GxWm+jQ-vtM6a%G16I3pVlJ`>!Z3epiUS*kQu{@$_mo#lN0U~Gfj1z^88jN^{ z&z_{q#VQiKmkJZeij@(=$ScS+xmd<RUbAx5K=2iV6OVeaS_4uFcwmTYL?&C8Gked? z_Tl_+zx0p8kBI|b#??#->u<$;{pkE(Utb-1`elMAGon}vWDcqh<_3+Wyu8PUYD(eG z&QyM%Mc`29@TCFp4IVK@#=etwskm7LAOl)IZ{Ev`%3qJ1XK;`gybbwtQa^bX>XGsg zwHlrD@Fr*J(1r=FT)bHmycz>2?+tyA^TKSFqVTKNm7s~+reYjA@C{-08e#Q_mJH)9 z!|hXs+vhB6M}4&5^*eXj#uYa=TPhV&o7-!tV_qx;y{=xv+4E=Ab;Z%0wSe@tJ2q#} zi7~NQ)C>uZ5r$Kur@yVKck<lBKmI3#w&MCWaeZ|~-*1U&B-DZB`Yvs=D5Y{1`W7Yb z8HbMU>5mC{)X?VS4ICO~xs-jCRF0bzR8~*X_yA%wfiPL|j!ZX1E^kL}>WAE^7wo%{ zI9kr$Q8i1fDj{c4STSbCn2Fs$-w*WNo}nLz@zA5oGcO`#G{--Xlp8?^UlRQgC2Et! z+_SE44o9V}aOIIxQ9vccT9E%BMnIk^Es>JqY0o?)H(Tool8d;kz`q<oOP2ghu+F1e zQxrhL^0KcEODqfMFi({<(m7Mg0O##<ZU0D=AeM7k%D}vNn3PEYCg!i(vopiKoI63J zuusmF?tyon5BKHtzqwPYz(vId=dAaX90V|O-EmZMrBanK8@oLHJ&xKLab`GX1uY8) zh{%Pe6=uPdGyDC9-S!56<!a6P_#VsEN*ftTsV&aoR6*JGgx))sQsoJ7DCNHU{SJ^^ ze?jzHbY}Kh?|oT^-h0}1K`EicoaSi^-3(JPpRLSfG`={8fAOJ~Y+3jE^YF}NPLq!5 zA!5MIKKg>eKq_Y|RR9)AVUjbG0seLOYjS3OwU^C+zR_bGN3Ji=Sgs|kePC2(34uDR z-&gNqaxrBQN&3K*h=BpK#3^y59LBsCuZrJc&X?r?jZ45%5Tb;v_keA<-~u^&1(>8F z5bPes5Rgu2WFfQZNu((GIqxf6bHeh$DfP+g_~DGOYIu0}d)#^OCO`h+AJgr(3`57z z3utN3j%Ze<6~~_2>kFPef6AlR-lQ5v;_Wq|b@a|txkS?hT=q1+;c63bUBvyJzlHmU z|A;=q_05K1*s3L+S+0*+t?ywelavy}D5Y6G1eWcB{^m1szrj`DgLNI7a+f+WIwn~P z`DdG~cpP4g0G!NUG_an2#y0V8jQsfVo^Suw?{IT-%g{#^atY^ants4J&p0Hiko10_ z??izQT}R*b4E<09f|Z;W&(}FpjKZg2ecRRh7e`SVHJPfkj*zC;O+HR?(uB^7-7X#0 z32v5tv=PJ21XWRRMF|QK(}AapdOJv$xC4SA=Oh;%Tv_+>@}UAqv-fg9=fk=iPW!;_ z%jlm4+-jkI1JS8vlWq1m@SH6Nob&uXvO0A_ES0PzuB@kA^49aUm2#4j%{&?Tlh)Sf zxAAadj833ID<kv;A2A2Tna6Iq@_Ce`0Ma=8+Z1iinLLb=yKfq-U&iJ66Rt0vkV4fh zE;KYvBX|p{^87$i?j=1E$I|hy?|ZpV#RCL&6ehr@DnaijP_3UhQ<xckla!nmV_AbX zmS1<w=Ei+x@!KW_jjwz~_1c)pspMMYI53Rkfu5H3&b}ySi6BgdfQ-LBfy(hb1O3@< z3ZYV2J+0&EX7oJjP&oIp3g8<(VvJmzJ>}7x-zu+7zz`Ld81h%@{F#N8e3-yBVmVJ8 zpC;;6M6lrs+8%5Hfmo=<1K>(zC}|!tDCjSzX_J}98OMP!i?^JtWvmwuP0DZth~r75 zI0zu8&IDI8#*7OM%k}HL@$O&agP;Ey(S5<+{(JwB+na07pMS}hUwp>(<#}l@JPre$ z+i{s9o7)@C&d>Ssv(Kn<=H&L0J9%W4M&4{|7FENl_QZ=Cw}VsX@c+$!4Yg-?8`*C! z)Z@xj&636PM01N4`W8B1?*nb!(A{3rJ^uiYG%u=Z^)TI})QYm73C+2OW~Gq_Q2^)g zS|(-fk>wPQi`$+DZ~r=7H*kG*jR_U!19c^=Xdwg!C%qV|5V*bBvfJ($x?Y>g^mJV> z_vl>#pv}Ed$=8bD9}5VM0tU?(O><H&FX3{+S95VO^E660+EM=Jj7C=~5WJ0988179 zo+D512@gE@>@^oW^LSh)OC1#)2wZ#r1>8&tNI0Y4qC^~&o8NNHrmRP$<ObOn<A|mO zG9cq_vcHJ;EYXtragb#$hRiI&H&bHv2nOi0&X*1~B2yB;V38Da|6zK?l?RqwyhUWB zR8cA@CWR*sL{6E=6keYnFM`=hNZ(1?$LrqD2~r-h{Bq7p+ND4@Gjyt^6`l?48Q`3F zp;6KNmGT!z_+J_pNiPa52S&I@?70mrXjmwdli1SAHsU%yGoMNxWmZ%1H8wz=|2s3R zW+#}Gw0%bxgyBXU^Rm~(=H`msZae#ieKD1_RE)b9?!`c#%w&shUMv#fyfmpQrfH@a zZc{W&9L$#nz&CiLl(@V&FMm5N*K-BAY{J?ATNXN2!j&0&*_5ATW)$donRTdxa_&Mw zTV6vA4T}i)LQm|gP`nQNd{s4su~*Ld@t}Ol`yhlZamsH>NKrOmRaI1#<Gt_yZ9?4< zbI->g{e*tF;rl=MP2PF$cggAZc>e5?kALxVo;`WYZnrJh7={ttj()!*Zg)I?_8G@F zTaJTv26T?RZ;9ubVL!53Er`{EoD<t^PaO83>65Bn(KM^#c}U|EF{T!amOc+$fB6$! z><JZwAajzODH#zP^Wcn?Y|RC_iRA+$009!Fn5eWvT+WGp%-oKFqjt&p#TD1r*V1hc z@uYTDRZ6xp8p5tK+s%gC>uYj~41)mqO55LT9>ipr%p*K8Ng3Q|G{{+umR{2@F=_rk z_5|~Q^0anDz|AU1W}c;U%F>pT^7w1#Kw?=>ZZ7Cbj?<Nwl2&2(9LkucveM_?{cKG; ziFzF<0aK;U9SB7u5ki%QlmIe$w|RzEw@8}zr8DI`(ldo^-E?nB6q5<vIgrrU4dcv+ zH><Lw17?wcloCEoRT<g2DF~45Zl<+&Pz@m#07CWT%l8T<#Lc4@a?DdA<@Rjs3I=9c z2UFB=1_D(B!I~g>MA7fIw^$3@x@lM)opSfVL*g*#W=X`@lXIqRTlQU7#yopTJNQu1 zG>ci^2}nbacVXhpm_N{quKDcv`mn!#X%+z}pPj5%N<^U;*|`jvdHlF(9p;pH^7u26 zXMfR=r*jwJ-fUf!`@w13<q7*@_h}VmUyX{D4ffIi_@<9xn8LFFIFI)gIrWq1P=Qz) z0u|+NZl{Jp=a%Qp1NBbZj;6^QvK*%I2#J^G!Aa=J1aA?XGg6tHwKOqQgu13#tQ2kD zms)7KEo}s(^`;_BgL=&)ckaE#$(@#;{q$$L@sD}-^eH#D|BB^uB@vAbufP5#?|t|0 z&@R?|_`xrD^7vD_PK=H?^tjy?cXLA=5<`N=H$7MT#A=9)`#leRplK`aZMRe;Zm+MU zfk=utUs2a$7&u-iXTq^)Dz2Yhv3>R-!DUhY)=D)S&z4SInXk!1o0NS%umD7^iR8`m zUI1A;x4DXkufE6U&(GN2+|up$j3EeK#AyjuO7wllVzHEHM!TTz2X?z1QBm4`Kj<1! zMLPGg$?EZI#3PPVDnMJa_QNo(m7MAKI~<8nN!VL*m*^Z@7r=@9XQ}|O=+ZQH=6Otb zfJ1Leyw!Z5&{H&;=861d@@l5fmGC%f6pwm8${J^#(54~`*@H0-rGG}rzX$0NK{4#a z>k6)t$b=6wBf*rO8RAnFLDv7g0!R(b?z9``IF3{?9gLeD#&?f9Ob6H=FYfK^n9@Fm z9hi^q^l5Lbi1T+<;dm$90_FMi+QoR8DKhe*Lm~1d&QdL|c;q1jNw+x1YIVdI2W{$; z+1y-mdv#8zYwq5Az{$xeX$%DKSS*+9_WPMEf~Ibym2r>;S9RTpq3AqyU9(uOM2_Xj zNJ(Ei82KyXJ{!%ln5Hc>kETs~N&+qdax6v}vUXgtm$Djtk<UK;P&$tO|2PUR!Xi*< zs_e1r7ehmDyQ~lK9%s5{mY&n&r2+5_A0o&jE@&OEBEt%4Nk&SlLZy?ZY-`R-_$OP` z$wH5lcW+(MVi69Gxe}iiyDK;VX_g}Ny%Q6b*ZVVs>CCfLMc=d)b=@lBcb=DnuG?$p zIr9R<i+%mgclhk_M}mL_)<?&T<H+UtIXBfcP2J#}<LQ@wM7Q7JGTeLckayqv9!JNg zoIiiY*%zM?KL421cT&ON9K!(Ded4AY8FS{!!9|Xo{>dM6|J7Hyz1awjuCJ&<J5xZS z&JD~|SAp2waP#D+r2Q>b<?xy-PP&mzuLB3dFQtr6F9>P-H*1a>Wdcl@P<axL93w+? zEbly`u3qC_d_wIVo7+o<DE;1@T7@}BhM{9uH*9WO>bj+A7c7@Y5(QC^yhHiuy(&H@ zZBwP2pBOuRKhXEW70~s2VJCFH^lXnQvfqo*)l{0BOqrxq&+`01FdkO^XJTJH|5*&S zc=S^OOa7gi3zJVXlTopRtfxJ65M?Re?|fdQ^1yiqQQoU6y-$<t<vi1goqpE`A<Yp_ z>o6K%?|UD_P>M-PHBltCaBZm#EG2#pA%{visqzgZX7s_qtIamuOGZF~u0%zqwN;FL zAy1gXy3A8f)0xV6m9&O>inHiM*73;R7kXy-u7uySvHMy6Se+D`JM%V^PD+Up=yy_z zxN+37zDhfLhQhSzl;ZmG>={>=&&k<SElxN+I^w~jH#vLul(Xm082de;7I~Rs#5E0q z9gq}8)3%(PoN#n}q6TDQoEf^4;dD6nb7Nr&?M-hxH)~EclcV-Qu}uZ9GnbWi7|Z84 z4s14?18@B=J0{~R&njmQ<^O>Z0IFA1mRsbG%mJ>9mj=K$er&fJ5riQZZ{PVKo&1nV z66C%I^{yyXoRiflGnyu)U-D+DY$~(rCz6)QOS5W%;#Fnsy`3_61rKU-5+ek%g=pTb zQ<`3oih`7qR0%lATL*EAXxo<8-*}J5U;LaWUwqEZ^%eIXyuv%*dYAA2=I`()|L?!# z`I9fX?k@;c#d5h~xm@EMTwh-BM}P1yBy?X@_+jME?T$CI<O}yXF?Pzvma;JJrNr~D z<BOmE6n^$oZf|Z_E>_&Vd!N_e`Zmkumc^o`uBCl#(oN(^T%0{+_v}N65nqV{l}Ngx zcR>Z5dPUk*FMBh<a$)3~rb@#9770*yu^3FDUE@}7Q4zRz_a2LO$=UNK?Du>6{gycN zES5{0Ys=hA>7LL_ua1sbv@KN?G(RnC$Z4PVP*sFV6jqE;fP$kSw7afj-}M^h33UBH z*LBLi)=^i1I!L{@Ji9AVD;F#}<qo|Pi%iXp0P`BHUfm)fMR;miq$-jrL^9*>pLxNc zgjF`iZYJz3{Fzh`k{MDgIcMkm0muJjv_Z(T(m&mx<~3OjyZ~!G0Wr``8HEs#z;;G) zgZdaw+c(3I(^mj@q{+yh0J+wRd+N;RT_Ss--F8_bHu8*W0ObtM441hPpo3KArI<>y zYnst&bD%N-%D9SAB)lLVroE6eE?JJb2$gc3oHI!YgA8L4)QAdIg=gvq;S^&LD(M1x zbb5#5b<6R|F~@iAu-n|?oagfVIsJZ5*L8$2mYx?D^|AX7mEdJsZ4I2VGGr<McAm#6 zxq8#zIUO3dW@xJI;B3?m4AO})b8eW~GVQx9yWQ^KJHPyx*4|-s>@QaS^C`#8=6h!3 z7`Ef30q_kUMnF^5O<8<}oC8%LE~xjfhCsFj#k7xA;U>++&pq)e_axJ7dCYm9)_YIX z5K*D2RnGVVUda=u`xI6(VW6c!&MRs;Gxq%?!1Owc)tcpU$-cYfgP;9`?dBGMJ9qB! z#_R9Uwk!Vb-~Uhe*^mE>58wYOH`kY3U0$+2Iw~Cp>$=8Tou)qWc)#b1%?6huYwvh_ zvE-!k3|^Vha^kXH6E=J5RYQ!4tE($+Zf<$}#h27g!~OgBdG*n2+<)*2)?IPGx#j$$ z->1Jir&7BsI*2;nCGwIfyyI!MxhUS(v>{8hFzJYS>8hBp&j;M<HR^Uv97mdVNxN8b ze0)sXHWK<vneBE<ijj8FBC}HgiQR6)<@s~XiAuM_MoC;ksHkdD{ytO$FHxPY>)7u* z`azU^*Gp5Rx`w{*82X+u4phO@YFky@)Z)1qlGr+#1f0`&X~uwAqO63^-(-?{B7iHx z&CP_}WMpCjJu$8C0#4Nuy4koJkkJTaoSWt$4M{vtHwn(9RKQk&kT~?j?GVp@QiKM` z_1UU%k{U*n5;yANoD)@D7sE%$z(Uz?FbQdEvn#0vsmQQBnS8>fSd@<dNEI|ZGma+X zg7Ugu!=Bly0<1M~Mym&KMLF1b$~=jROn^^L8jtx5In2gB6M)E6GC6mHQxf#QQ?7;( zCOI)@lC*SE-PC;f+2_Pp?y*|7+&ewy+9ei?1$R!4=!XFx8m=zR+1y@hHG|-0#u8$; zF_FeoA$Y24!4g+Mu2H>nGmx!6gvnWH*=<77#_F&_qBLci9rJOwV^DU^ze)rEGprC` zxI|#m;nkcgG6!9w4rE=sLjz`R2)r}^zTu<m_B{XcQ{H^{*C>`9>ZxSq3!iyKMfvOZ zW#W{>d>pjd%T!OSB2>dau57|mn3OGzU^V_u8o1c<$cdcf`#GlBHBnxH7Z>i7`|J8W zQHgXMj@9~@#d5{T=?Q=OC;yV`%S-yc=iw`lc>RrUarW$t<zi2_-}CA#Z}7^4M_img z=Y#iu!sW$tVjNj47C0wJ{7_Z+=!jKC_7#rI2Ke!Q2WiIxA9$l_SXF@^-#O;Ji*r`h zJ;7Zh$l2jTVjKpZJ^hli=TBKIR@{5|kkiw<?4JBN`?JqQkT@CjD7!_!KeNDdsd6ix zBFJ<dSoijM1Ca$+%6oDG>J_WI@5sGr2(zvm7K;UST^E+R#bUvzA;jHwLr{D`zgTj6 zb3wCMu<wG}eU7GS3nN;nDymAoPQ^QPT~9v<eqb14DRGRWbP#k7R*MCpYBc<5PbfyC zDe|c~)#O#8*C{#hnev~<A15#SASx-JGh+Z#k`8sq)OJYIw`N|J{4SA|7{R+qS-T>@ zlX~qV-EN1`UYob(eJJxbe<t&AEp_J<izEA3&+ipH8^HNoqIZ>o)m-OrPP}1ZoXi?& z^2G>|$57C&muiUew-eB7)LrS#aB^-24pz@|mP@gypkRYi=~gK1tY^9HB4~1n<V_V3 zQUxR22l~uD<FXh+GGepn)|@cQIoVUQ=)*zeB5RKjZvf7W^EJ<&e8}eNDW`YubN|78 zmW!p9tVV)&tk(;c?W^qfr&M*r-3PDo&U@cw9D1&=uf*H7rcogis3c&e*AI##u<~g; z_b^C`On4C{*=qMYSN8Vzp;!L`!bRulMX=>xeoXNPG?ee0#Vgb&LuK?VHF03V&X)1v zUVUi*{7Q~zUw*-x@BUhuBxe?WoC9}~=6YrTp)8sxMdg2=c|(rLLqWrtlP6<<!TBPV zYpLTRVK|F0#IXU5A#&ab02T9-H|8cxLB`m+dTk`r(e0(TdfP6f)_%F-CqMqzT%Mn^ z-);fNTi^N)PrrPO_Z8_5R6fu&6~mBNtd@NL*ME}`0vG3JeEP|UTwk7R7dJ?|j?{PR zc{*)>?1(w>S>N-?&~sTY8F<F}&MEJ{a-XJMu;1<($5D~!Sv@O9*IjaPc|k>H^Z6eT zcOC0C(9{*Va>O`+*aR|=OB7}@rfihWv!ra+$t|Atr$fD=?5Iw@h4-~8T?N*KK+`T{ zOto(VIaAj)u#j<2;>m9}x72mZ(C>?~_f<n2J9fKB*LPH*rm<XUiU$~gaU7)XKWBVD z;C&_i>g$TEi1A7ByO~m%!ll`ZM})39%a`YrAVsO3a2ZFIw!9ofUZt#w$=EeNl(|rI zUV~xkm1c*_K_XFpI^*1XHDxblrIoZQp4Ervl<9~5z-W`-(=_My=o~(`Rf1sAGOfBv zF&4yoPV*;C1VyL&p%*jWIxgy-wa8pnPLTOw5s#E?Kc@mbH7~tHMv5_H7?3#=WGvhc znT$)WJbyur>lwr=*OUn;LDLJ-ku1)O1kp4?pmGbJnT%!~1vRV+{%CqYt=|{cznmhA z#W5$x$5g=)$By&o&$x5<E`i9d?{Qkjn{uM61M8y|@4WLC|KUIQj~HWOx83v6hwt<F z@n>9JUa;S7$<fLkXM6}qe*>#nu%C6^s4+0o_npj@MFn0k04VDxO~#{hWy|C&sff+( z%?pOYUv}i;z8Q{4?p*<=I5N?!=1Iq+f7|*zG)Kz0Um5_vf@4$<3rwU4`gSann2Tj^ z01okLB6-Fh1_-j&7Dy3p>0nV7O=RKe;;lxtDLmPmYo+fMZg4-{D6X8+Jc_>W=oO)# zVq(AB;+$u7bc%P5XU{(2$rqoq-E0_#frqcYPQTx?y}9P(&MU-mq;51U>K*I#5yLnT z$B{SQewWwYc!zNuAV<D@{4pQ=n?Gi6w8C{wH;zOV@-Zd)P;r$8;&sQL{pg4M<mW%d z`@o||uk+~jH}T%n_j}s5#aC7Fnr^SYWOH@Pu8*AEh;V4yisey5+X#BOgt~Jsd)y8& zrmWrWY{+K~oop&{%F?dcuUOxCQ!6txHKU%D2*`-_J}<eunE_VUHK(U{IX*rirpRu$ zgI?Zi+68s9B!r65_w4sua8ji)41FmVj8TM22o=r?Nf9m(LJcmEi;y<&(0>K-uQz7C zrYN>JDpEY+9V90hi<Bhgq^434Oods{#t6;7&Ky~X(w(MM=EAN$t#iscx6uAv`8i$3 z@^^lL?*hC}<Qyi4E1M8i9D-x|e7S$AiBHZ0u^5SF%sJhY-g&B{ny%Xm*_Df>43A7P z=p907e4teD2Sh_8r_{IsA13lI%DlK@NO<Qb_PK0S&~oqNI7rhjZ_RYfs0Oc|v12k& zOsULK15P6#n#w27sLIW`DLPRd4<CY3eOshKaTP&u8rgXs+<!ob*IZqm0VCVZhSjQ} zX_t)SK<yw7Jtjo~s=C3|70Xr4VzuD(-tX}nzx`WmZg<?=-0<_C{E&<D3vO<%aY)Yt z=LPRH-&-MDI!D+q+qNy;L3{1#VzR@+`E#twBs48LB-43)dB$JqFnMirJ2O3Gok$qR zndm;S07^V~_S)g`(g64s9LAL`!af&PzKN#O8g`iSRct`EP@U4!VvJ<Ef%N=2Th89D zI4S<A9qhc!DQb1eTmXw8pYFjt0c$fVw4vQ@$9}(KzuOW=$!#`GMY~wxL(hlr|CG(m zjabkzbLZ|o_S+4(iq+96bsZ*9R7xbK`q-o>=ek+2ST1?vt+)8S?|qm2hkwK$e)=(w zuP)e+BYljF`&)+Xj%zQR`laEK_CEOZ(~tP<vrlO1n%CZVlegb_7y6!*6Kx2Lm+zBF zRFz{KGW{62=?2pEo~m*z+nVE5P1^)2t;H|Hs{&3ux+y{c;OuvYhOlKWVs!Z9`;#T_ z1bHrdcH+D@?Ppy32T1XpskH0~hm;5A#4rqW-JYAPEmge$7qqdAXN<zIHV(qmP`69! z+K|)}J!#5l&AEB?dOKmNv4^=>5d$H`sLDT=QnBQ+G-*<j8)uZtNxXlj(B?cdKy5!1 z@1^8HXWaM)#}s7|?)!ufj_gt)xsnn*Pvrw+91aZWaTG?o#KfE@5t(TpnG&~(7x84( z19wvdA<go$me<bN7e&2TuJJz5yH56)pFH$o=!-XQ&z^F|X<4r9S9|`9cM+egBy%eH z^4<yNBpacVISxq;RWZ1vDrAr~q{=MD*?p(!Sq|#VnN5|>i^E$r9NwZe^E3oVdXd9Y z%JR3fh=Zf9Ywq1U=JL$5?|a4=8Tx^nZO^^s9rpb|%n4kk3W2(5se<GF-6I-5((R?E zMN)ZJ)sE9UEB^Yw`!@g>2H0+QeDJeB=j{1&`o6<ewM0=dg?i|z+t|h!r3Xh!+HzY< zqT?u)Jvn{NccJS#9zXv4Yu4^xaF_!)>jhADNePnaI9g+kxx=CRa{kKv&R!Y-zk<X1 zT!YGcCw0F@0s11FnIX_Y$^)H+po&zMe=L0GRDn-#9)?6ov4lFwS*d(APwjj$0CLu{ zFU%`d1cDLCj3ZsQXS=y&x49)}SgwyaI=RcEM-TYF|M&ly^XF%!L*2tyU&A>^*9|P! zOS!i^^K8A>kfdNC_T3ie0(IR&c2rf%;?>s(-~Ar{+3)=xF2fiHK0G_)Pygf(_@fVg zMjA#8y*%-Udj$sxXz%mSKH;-ZKOuy`>#x7b+poP!6C!=(pqtV#!k(6;$xgrL`gTuU zdqu_v+BUFkYpTlQlJU^baTYeg_Lw@R5prl*-+Kp#*EF$O2x<hlA{<``na`p^-aA6o z&@7e+x>|@-nkKPWh?lhA?bz?P3^5TE2QkJ-)3l<<i&6pe?mfN;6{p@{MrfVAuV!oW zP?(U6KfeS(u)Mh#xk>^w`?9UsBF*M&H%q?T`JiKKD_Vux%qX23yW&AQ&HZY))V#Em z81qm(w@QUR17%Omk@@01r(%3mb*;~yCgoP<T#al4gc<I`dEMu7-yUdMS^w7J*3Oq= zAZDS&B|{Eg*7-OT$6)Spdhe+SO15K+h0}ZUHoWGA7Vdq}y*c2P_S^;<GjG=EBjz$@ zbLHlyEi7|Xj8w07?92eL5VjLQo<$eZJo=-@>ga^JZCI|>?Du`4&+Yq;x@pK+%6~;} zW|q{fGo0SLM;<n;LPe?^-H^E1^z?&tzKn`bYMPq+_fL8K@BcmOre?c~Y_4zl_`~=4 z{IgFP#=eY^MZ9c{`Vgp_rp&u^(j4dqX{kMQ9Wf3vrzQh(=IrTXx~>!cg1VKyDSw5- zdO2YGXWBI{jGsIBbxL1-<=vMCz^~%iZ8x%boRFc&BCfHT<9W`%08pGOX!ZF<%uJs* zVJgag@|f&9<);fu*fDA}z>vWxz{-pU?2M2TiJ(?|B979mqucMey}n`?dg{6*R5kCt z_g((<kN+i4zx;yzULpe_RNTFHU%iA1AL;|-FIWQ>CFarms8qG(Y1M|7`geXCpCY^6 zmgREAZ~pG@ar*Ec&7Zu=r{@=Z{Lu&8+*}KB&^YD%$P@-LQSOP)Kl_9)Klw3^$g-_? zaI#|ARHPopB)tu63?zr18M}c^8sJtK7n{1`__*a{-P&Hq6cMwHDat>Qa=<TEw97lB zm<0=wEplLFA`@#|IZrv43T6G>`&v7r`4WZ<+PJ4_S{BQWz8~nio|KW2v~oV}gos2Z zg#0KFDyN}(2Tt>%&b-<3Kr;g%ljBVJ&y<AdmBid}x7=mU)7qWZsTw{rL&^ZHqTCNX z8tD>f-&G;)vVbj7<;om%Hif*as-g-N!>n{Ht8wK+DA%@qR@Y70hqy^OlINf={d-m+ zIXCJ-m@69=h37yFtH|h`GzyxfC%o6_SQ?a2N17w0EOX`6c+PfDa~a}*5<Q%jPZfeP zKu(BsqagM=)&<~cb818w^L1%+qC@X9g@Dq{)@w07ycy-8c>69}$)nAu<M{ZP%1aed z&X%?sNO9oy=AwA&W^fKeV&6M9-I5O<@2MM4<rCzAwt~~zF(lYz=u=`h^bBPB7-`4E zdcES_-ABCr-s^zl>T1u``30YR_;a2<d&+LR!MPVW0GzD7rVTVrOB>Y?SoBhAJM_dj zKuW|ku)Dbs4v-MYRSjqrO8g5*fy#ccxqXp9t1NlSE_yKnP<~8$#hj6s2EaFbIOo{! zcZ@?v-L$&!6IIn>La$7+g~wEqSP0NO@)!Is`CG%NCUmAbw+H}`1B40}r(WdJ<}*V! zX26-JhN?gXi&>MNq3_t--mu?oNjY(RdXM|}AM)(k$9(j`&$+$17Oxa|^x7NB)Yag8 zMbj=tD0=PW<pt$!c{VHKNh#4Tq>eX)icnX$O2X!=<(jIh$#p~h@Dcv#F5iCeh&%Tl za`yZwWT{Me{`6_N_o>`U@~09U7Z$+ne&plbH7P<}dDiQeqg9JGS0<ZMN~*q+bmAN1 zz^)&-yx!B+f%URs*;YD?Sz3I!Odb;{W>TnFoxXuJwlQE&W};_xv+$^`n>lF8fS)l& zq4b4<CBTGh7CwNc5%0aK8%<Fp#u)KIJ2^U6!r!q}4MlQ<oFcwzR432*DCS<bMiFK! z(v*VKb|<|ThqGo@=I75sB__1y`D*8cA3)LubI=&YQ?+|=`nSW8Lj_L8hhzqh(@4oU zHKEDECn1cB){WDt_wNp`hofnlsaa2+JZh_@w`Wf&YU$#<sgW5OI)8P|(ybZ#UdGw` z;!T?2A5$a`Mpz|#qOKcdW|Z@UAe<Z1`DaQ>FF1eA%0tcb4q?_MA!|Bn9^NU#d?;_` z4#pIzR!Z?a*{k-|>GSrT39sNulNIP3p{i)wR*l(E_%-_do{Q(tsOko5tL$B396ZE< z?)HlFZd(jdYxY#tHFe`zG_Yzti^>!8z_yEYX=KPFcdAoD77*geY0K%|*Ln9lZ!jds z=C<SJ{DNP+|5MJ-p0nHDmM({O<Az@_0O2_F3b@@7cLROb;X_4b(KRomWH}|eZeQ>! z2MV9b0dgkZ<;kXnIiD7H=;4?7KQvEOuD_%L{uLaKeb;gE>~kKx_ARmgXY{){MM2U! z1tM`M^mEyW>LrzMX>rSRP0rH@x`!RwOhV2Zs+OFi_FeY}IZ?3}rgH*<=vJXV3<LY! zmi=xk-hb1wT&;QQ?Kk-6|L6b4+4HCLU59gy(>wRLcmE-)^>N9W2Bim`hu6k&q#t^Q zVJsl6x^AdKqe4Jxo}(%;mmuZ=mmQ0fyZE{#1fc_6t&h3?;4c68KmV`z?4u9);lKG4 ze*B|9<NWM-!C**^`WAv9baO@+@qDHmBioBDPcJq!b>L{-aI~%o-ibM&t!yX5JJa_g zT{m*G>8OIIt~^asalC3+v;k6POdi)RS)INi<6Ei{)Z??}J1=bGIoQa6N>0bjQXR?K zuFlpP&f`K&AmF^sZz7BX8H6K18S*?1=aQB;W`vq~5XnQW%CUljE135^Q#yH^t<lNb zkcgJUWveZpdC-%FDCWTd<{{56s|&i+I2-;&BLmhf#XAQfketJ4rpZuOwHQw0sP~rC zFrAtL*_yX-c~k}6E|$WJpf^=8G;!kaFNREv<X|j!S#dka9A!!C)pbKvRpL4J9aU8m zD=`9wI6$T_1{y9WrA&w#mC@2ssc;B|=GSh-J4Z?u?U8jGDl1|1QeLb35JZWU6o7g0 zMZwHvj5BR?pm7X~WNt$dPdaaNn_{vorf8YXx%ZysYOOdV=_Mi+E0J!uqkx`gQPOs? zBqMa|N%y$(K@8s*={wKXIj-u8wymf_WZA&lkJQ76+rVyhER2OXs-O*zf@ihz934I2 z^><zYD)#%x_1QT;`{|E3d-_EB8{}Bzu=9?pZj^iq`fks@j}m<YHO95c5t+JarIq*4 zmo;7#zs^C{PLJ|p`pPKI4YD%IFB$|+oEKv?d}#oD!$;0Z7}$0l<Iqu6O|iJGrr$YV z>U1X#^m2w-NPHfWn{C*cWlixfnf7D09Hqm#K&YggCOEA$P(#B|$zXyNP%zan2#cH{ zV(%WG^1bi>CV%t?|ALQx@pHDDTb%bCAD{BZ+uvfbT!|7_VL$eJDh*{CDapR;=z8U) zPk{5ZZNs8%<U2}ZYXCFnGELhOQpShIhM`10x~^lfT=BhM`vKqn?yvJ7|KoqcmtTC& z&wlbFe){8o%csBik>stj(=e%=!aFDIteUeN#>n%FEziy+GO%nbR*RatGVcxyuqK{| zL<dqI>4(T>+f#XHtH9#un7gk$A}5cpMVSucz^JHsLz`P;6`d}MBrWqOe_PWfP*Ng8 zin~d{I$TM$Sd^h^)a$d@tdlWtWJ1xo!Z?^md0oohgiuPFNKtsIN-lVopGJ+8x$-Xl zQc)~<TI1Oih*vbee9>4aZC(#doU%FWBBq=qZsT==lHRC|+c*wN%{pQLyik<j)I=*= zdMa7dE3ZJn853kNmX(LYdwlkV{xt_F4J4<cXf5g@Ti8)IdY>^8s+xAWBBonyk6SV3 zp*&(tkvxKPk*calQPxVR1S?^^97-g^SSl54DW0leT<WGN<LiAW(T$9a^P$&&un65e z%{Wye9i%YJ(#;yB(zNCDvdttV%>z=U<2*y(5zMgBGCYg67{0`ehUMyrx^Bf#@>)@$ z)W*It!$vN--wW7yyK`LlL{*I}+L4F%5)V$7gb>(A$F<;{sVkZHs;clI(zK3O-@M10 z@BRZ~bZl>SeE#t#y#K*ZxxKz*dwb202kFt_98J6Az3=}vx0^qdu8}h%Z5&5xjY18B zR6xz6e|6JH+wNfiqmZ7bd2CP3jpW(hKm5@2Yvv^e;8${tO28r;M(SasDS(v8jOFzg z2~WOajO!n>^>PsGDIPr&aL_<gB`Sa;RJD58p?I3UpoguyoP2iFHlN$ghQ8})+6Aw@ z`7M6*r@zln{_US}dwne_f#Xx&c=H{OkJa<n$U};fLNM<tXV@vN=P-^Xr|W&iq7?xZ z$4Ckz;{cI}^-cFdlv!QZP(o`WXoUYeQU}MFB6ZX9-gm#x_kaDj_`84eLq7h4|DJ6( z@c3EBXHPafezu|Oqw?a5s&Z}`+mtig{lM+E$B@E{w&KCv)yx=B&&cJnDN{;xV`kSU za<^gYFWL2<aOd7b7ONv|#-p7TQ3YMqW$q5e@Jy&WujutD99V?En*{2#Ff=XT0AuCP zaVl?%i5R6x(%h)X%06d|kpy)s+}zu97->(5IF*HJQ6*vRbF);8n+Yr*)Of{VO>oRu zFk|NH^wE^7o)mm3=`x-S+d^6gFKwXX;n>Gm=F2(-iqe`8|FX{Jh8e|h6N+Jp-UMF( z5@Cqr2
-H1hM%0Hf}s%hE<*4JaTI->9QBKXxfFhJu}Z!YUpj4)Y)KDh$k^*)e& zmhww4pOHp62_HNabx|Y|4GQI%Oo^BQYAF`7Rfp)jJ27Ger}Sc~O4opmC6eCEDNS>$ zGQd)u-h0}1LDs4W!8~Xm2OV_jB_QNUKFBj29iND@jFAxR-n6z~sjO3$s*7TXCGm#) zPO2aJ;hN`{18rNgXguqsXH`2~bd0%TKSsRn_231>*|ZIJ9;~=~|JV4z?|z?tNSr;n z;9vjIzv9`G&)My^R3WhZ)_b(=f)9TFlUXw^@%V3Vt|gk&7%3IyXH~Z}?TWtJG4y-( z`wjc;?X=MjH`26kW`7){0L*LQWjo+s*>QIEoNr-XCRi|EJiv_0QK&Y(bn5%1M==T} z^Uu6|^4tJm_V+xMAi~EvC$+HI0CTDU{78z@^V^Z>#$LmfJ-h9eoHMV!{x;`NAM@w` z_D{LGyd=hvx@mds^|yKW>LZ3>pssyEREuXB3+*Nup{DIe1v80IShTIs*QQ8xS?<GS zAd;f=r_U-hf_ffF6<W%PaS(2TJo9k8^9=hPPk#8%c<uh0^(yc?->W&l>iP3uT=4mq zH+=Twmb06#^mms$sSUT~wq>5S`+?7%TvK^ZT?dZWEz3n!W~|Jf8V0UjvF|#bK6%XL z#TlV)Bvcq`ZIUA3ChHpc;#|)S0OtgZX?g1@Vqg&xUkopcOh8f9YH(_8e9GjR5o*Fb zctl{5k<!tC%gP>w2q~xFRV;TuH&-l*q?K|$K_VV_ir%Spq4RDApxx`Fz0syL^T-z( z)rbe{wnV{7N=reU<0v70t>>1ovX#fV5(z2!ST!Qd^Ebv$i+WgO!kQe(y?e$q;OwE1 zN*g;Q=ROe<$?Xarq^cWMJ}?Xo!_ZSTjpV+KWpfxX`r@d>R$e1(7NJNk!6?eXa5g@8 za(3D(S1=p3^Q4eUbR+ms#%<0+bl|OvxWHMU$<j7nSD=%y&=dqv>1MQ<h9l9rDc^S# z+=UN;N3Xxh*lihxq1Z^JNmEWVZ3Ed6)yuD{iq+8(m39e~{ox9!kH{4(2~~imcUTMW ztYy$CCHihp8b|g!&(*cgS>;(S0w?Q+le)!w&wg}_-ZAWjpJlOJP}dc86<B@i0dKth zpAu8z=BDGrpMS_FAAZ2{<UY+}&6kfq;ri-=@%n<H@2Q)bP{};{(2!zg9D7oVR8_-j zeI%H%lvs3IuAF1P+Z49NvLH<s%#5?i*mRRU{?Y*W)gIS3H-G@@!VK9t<$5LP>WYCd zIX`7G%WJt<gGKr4&$$kn=uYK5p?3Eom9u!~C8TE?)CWQKB3`v1^dsBNhL}cH%J%n% zfAafWUtcQ8k>kO`N4)dyyKJ@_7K<gp&p5+XsP6ZBmdjR4d}4`uSfs+}Yh#Ky55qW+ z(ugPFLXdo{(&c(!xoFw#$D)ADz;N{}*NNle^B*$ad`Vu^#3a7(>Cu93zkQd7Ckx(v z^_a(JJDyzZcy_bndebvT@gl3>3r?d9wN6mZnd{p<S2yzea#3?<-AKFH41_>kua%R$ z!iT_qyJZ-!h-0K`8Y=Z{N@zdl3H3fR=<M1O7S;9gLWx#ZO5FL{n!>WV%!e!|Q^pkV zBF<9<A(8P8N|_=;@FTzbavz0w$JXP_IL#>+z^6qH%5_a%sdxEe7}JDXiD0EkJz4nv z(EB%!M~wi*jF=~HK-1l3BkXWFmT)}=UnprbQP^4gVVHuOAKojAr|ug!`%mUY)=o~5 zQKM?5kG+xM*nOKK41vbAgiwnTs4FR990sDI&4-~cH~@2wE&Y%K#fTAHLnzN827rg4 zUG#Krtn5vm$xlm3xez87gIPt#<eZo>WOF*bpDEpgbf1*;RFN|ZboSD4>6KR>@%YnU z2q0L&kBdc1UDpEQ4AQJ)h|*!Os%u_-^g5yP_%s=k&P!^<S8@Y!^pZl!`5*!#+)pyM zf>TnX*RVN5X52e&Z#tf}19ek#yslU;JPRLiW5#bsXj+;@iwmBZ95DsjdrMyb_kO^? z|F^!+?aeixeewzK|NMP^{)>-z`t&(pe)*J(iwmx=F6s7LF;eS_rC%2#b-&#xlcb}r z7o6UEjb?jGx4R+uigE0jI<n59#!TxN=G#l7PP{yRCCAP6B_L{Ex@*ln0^2F5cV}5M zrUhGe=Ok#YO(aaAw*xP-=zhIM79~OQ;4Q~%7P*G`vQrWn@veuVXXtxwZ*TA}@ZR@+ zgFpD^|0_4wSB!&5&pUVT^XtFy+wAsRZBEnbvjI%C%=_If<ME1N=+z4`L6)g}PykZ| z63N3zCXN~J;b<W}za?BNO6TZk&1SnPLM0{X{Kc}tJK@RSTwn71XaAS5(`86mV3r2x zi#g+i<Kf*UN6Ut{+zFSvp7X0c&(1bn-$?DQSC3Wtyt^WVLBi(480oG@u5R`K9IsoB zPEKfi3m|p)-V6RBC8A4oyB(d*v5~q2?e6y#1isFRMN$eKtS%Ab)DgN+s~w(20uDmR zy0p~0_TC}9eWIX3a78KR9B~PxgwG=+Lse1!Mvx;HifS}iS^;nxLN6$LQ<iowxkMEX z0$(L^HH%;sBPLCI#k`z(*wd-;syX<q`TzZXN8k4|qc{~~0yhD`@LsyvRh35PDA$pD zof)>};!g9=N}gpAg$$9gl>Qp2QFars)4cIfaW3|mlqDbBxK?>MG<u=?HDx95QWCN3 zjPXwfAq0yEO#|zFC}c#%49lr-iJ1Lm1VUv%XHgz|t)u`Zi;k}tbv7@v20M2D)_0(; zYVO><!xx|X(wHZuOuJYV!%BeD*7T{Osw$3-j}`bSj!g&(IIjGZUh)|iv(l~~7SxH+ zAp0OFFG}`V$cr*+3`E9mM;?1FhlZ<4stlUiak8#B8V7vpX`6<oZlKn-=$ckNT`gIE z`(3{M&RhID7nhu0-EeVn&iUCH&z_(0$tR!k#gnHzeRj^1FTT`gYv{TyQ<Eu2T~$=a zr>xh<N}oLM*$}zDd`7?D6VrHL^iT6AbNJE#_!S-7?FRVjHZt;#l5YbI>P+_c6cNZX zuTZzE$uj#l&#qx!(tJT=C&jx7B>F#jH&Sygn>t5VLjO0{SELkq@ak)vJ^75w%X5ZN zN|%<)6~Fcyzbkq85ths4MEF5gq7d;ex^Aa@_k-N4(@<fSMeazlfL&01Wwq6ku1F~t z)UyC>+9~X<8h*Fka(uj&^QXwg=YK@JdWNq;3FT8McFyUTdd>YK;psca3y#+<Z@qTR zW;<|xvE#|vmg}2NykiT0GEvMr9MMAJ8P2bFTy7%Ovm5R|c!fu=y~%2QB=@VKO4Oh+ zC1_DSQOc9iRy-#pU%lULS^49lJc=FY4mZ9C^2zhhv-6pP7a|!~49=7tE=kLJfSg8R z5hPxa&+d?RS3fAmLY6W>SyooY8YaD9&*Ch?p*Qced{P$TY*CwWJmbADkp^Ak&S}Zi zL^Ui%m5om>#)5D&Om*0nK1sT!Le{?ZIV)qL7^Gw-<yu$+eYr1i$|X?ga}8K)ZSjKT za}r$u<L%cs#YR%aFU_^E9gm^ntEy58?pU5<M0o98+5Wk-1{a1tIp@?w$QK>~;~^=S zpV^qE<dH6ZhoDDGlbF1ir)<oo%NW}u#Q?B~!-QAydT)-V752((2Ci};RCTR5l~Hs5 zn%WD#^m)jn!m#Q*+71|Odh8|yc&vL&UzL4q=TsgH?R=OLxXN${NC{%!5mF@AH3JoA zR|C&-k7vuBlO?OAL;#!MXuLQxX%=<6b9%z@@eyyl`hc$MxV*mM;@7^%&CNAuXJ?$9 zo%8AEpY!KG`<RbE{E)g?YQ=~+Awk=*+x&$Ps6qt}?%%t|uIt!sx7=KvNm?U~#YoRt bWbpq7ueZ~!>q>Wa00000NkvXXu0mjf17`|R literal 0 HcmV?d00001 diff --git a/notebook/__demo/layers/mc_0071(2).png b/notebook/__demo/layers/mc_0071(2).png new file mode 100644 index 0000000000000000000000000000000000000000..0fbdc9e5f051f8ad84f7f11cbe382eed3879a24d GIT binary patch literal 192377 zcmV(`K-0g8P)<h;3K|Lk000e1NJLTq00IC200ICA1^@s6^mx?z0000vbVXQnQ*UN; zcVTj608L?ZaBOdMY-wU3c4cyNX>V>bE;TMOEFfrfbZ~PzFE4FjbZ~5MbZlv2E^l&Y zFW6!7y#N3J32;bRa{vGjVE_ORVF9Q=r)dBI002ouK~#90-2M5}^~-h_hOORvKhN_% z?|9F>=jvXNxVq>{LV!R>@&JXU5FujYfTv2Z9Re;WDrG~A<0NG#{$D~Rl}ZI?ps;}y zU_h2Efy`iGOANwDLc<-;_zus!_wM}Ay;iTWyT5zy_lTm;d7u3qx>v7Wy@pTsx4->O zU--foGe81>3?^lO>|I})IEe(}BqcB@fpbxl%Gq8s)g*O+QBHycq?7=XVh`lCT<gt6 zFpzVGea?_`Zr5uqK0Rbz=8xpixJXnEc@QGd%>+j#8QbabqK{cU8EIm{suM{yPM-sl z0rHg<V^|-`Q?jZWr~84)EVDmZ$VL;DQkl_g*D_L|qlxjWQ=Y9m_Zc(frA`aYcUei@ z({akWDgDG0&Q=x4aA`WIP>`6%%kuiEc$n#yIhxs=x?CplGo9x9IdF8!F&)-R#R7+{ zxXd~Z^1#I7Ny1ptbJ`9CnLV~cVKKcb(B}pB+MP&x2{tVQuL+|CK+4hu9s~!1MnrAH zuoJ)%D&12H3?kZ5`^H^^T2AFM%H8Rs-2PPglp7gPR;se(91}5Cd#%_73^qE3DZE|l z(`;}?h}BflQA&_<D}hZn?Sxd@&xw~dQHzr8&6E=4T>6N&vE-D3lYlN)`kuUMY1V-` zXSYM!nU#v4Z;-4I7?C7ENVhi3+JUy>Otr1guU7n7K(H|IQ?Vuwqc);%#igZ{)Zc-l z>GH3<$)ezYWEuodQXQT$&ok&7?xQByS=3rL2qyBO2X&|7=6LBJ&xJ>>_^ydmeINSx zQb_qi<Kk;@QH^(FqSHKIYL?rLrovo(xr)xEI<F~Pno51qCH89@tc{g9fG$}(s+4yf zhZK>(W6ogWw`yR^?6P3m0bBzPvi^&8YXL=;H`3PXX%dv+pR*=XK^fOp#x0KI`D_3M zUqOlqt%40i(?!j=o}uwzV3%^!CddOn5e$(gcFu~mrWKP!ARb}qtWkY^L@O$nfM<|@ z0_2*ieWetR$lg6N1+s}n=ELEG>J4wb%?3wxwloYNzN-Q`E=!OS&f0Y<9e{wvO%H-U zzdYB2%&;7w?w95^?s0xZM=BxpY;gcR9T{cOZwBh8<^;4Y;y_E*%*P#Uz@y4(9x=ye z<gKLRkZxJB(M!j{2I9f%Xa)w7qu##4qeBk>L-ubu{b7)}q=BPbl^xF$G*mcNrTLWE zuc=htGN~FMj{LLL!VsX~NFHZX<n##VLunKX{wX)`Vf9WachCUQ8_CWBRYIj+$B89} zT>;)<;B0$|Iz900?zO0*v93fIF;cfNz~K(754hc1j^fP+|556NH=C0KyHU=5I?QI{ zSl9E({FL)wwR{8w`nTrOBEG%412m1yE1+)<ozZbni#h5J@wD$$iTf+?v#`t~d1Om~ zKav&qS|o|Z7WXXaniAWFJ4>OET`l1P7*95|C&?!WZX)SG;^)a2gcNhhMEdI9@e+$) zy2fT?94N7{kx<bjJdvrQ<!nc?aWZ4M_;PaY<)&CoU!1}T6)xGJt7WO{Mew7Mk5XvO z>?)OdNty8<qamvDJRNIuh};n^ldfxrBS~@AaaJS&%F%H|0lh|8-t%0Yyf$w)n$|d= zFTZK~09-K-ZoH*52GUC&sr6I8ZQLi#%giFOXq-YuA#6|qfs>>dSjk8*rcw?jI2+~3 z`gDe7{iQx>wrkfg!4f=a)6Dt+ZLE6aA^fb45!ngaooa+0Ho_YUhF+8#QO)KsW}tgR z2FkEHuTJLZTSF7b#{?>3(df3^OFH7SQi2=m7};7G-)vwj&x#zhM_I~<d!%n#N`yan z2Eq8KX9g)H`A8dOuauhyLaGsME7i3Xi6IZ*_L0Of{k49O`WgXAs)Pujq^1LH?E%=1 zoUl!yF{}=83^h2rK)^wq6D)WbiBuEf-t>G|H;rU4F#s6*o>3*e`<^u{(Pdj+JHKV7 zF&7D}-$yNBM$`queu`O5;)g#DZPtH)5AeXXs&eu&BX>GTLNrH);g$=^L<1=QG)}|d zpPc>*co5eQlOI}wSs0xFHU@cQUM#3GvEP8FIgr~NNoL1UO2DS1GjsBS92!Imsy=58 zTIYJq9>3IE40SQ#;a?%4jx1=gn~D)yPv*g9RGD%HQQojqof`?-qQ8#ex7m*bVrnu& zoejY25~WBPaOW(cjwq!^(8k~tzscNDwb_m+eZ_KU5Kwt!kj7c$=5l4Pnj4PwB)QOQ z=xmoWV)FzI>KE_aO%r(lSn~(YWk{;Y@$hH;V__xvXFy}#$|?27Mye|A#F~el1_Id} z_<1~DT>iWTiqjp~;p8wNN406ZJ{*3r9KoXE`D7|@70jk#)v9#??TyT9bB%0vH0Uv6 zCEu)^xKBRh$M;R6HwRiOe6dk!s;kQBxpjstR>8|x@cQvr8eyY=m!&yM=riD+2(c-8 zu=2}(q2rV4%z`X)ix(L=%K}vLS5ita#o*t#_g+b)yVbEJz2MUTGil^nFuvVoYK?v+ zQMNr%-yu(2C%hhHut*c@D7|wdt2;r5cYArMztU)_TmG=XKN-K<CEdWW-}VV5kJ$3G z>{YO1(^O+?A`~mH5uH;f#hW|$Vs*P9&$eyI>C)iO7uiL{-2sDcAH-cTdIWfEnps;g zlQO`@2~P`oNi6^jnX)4-y5(K>?s+3ZHwb2y+u@t8qe9k|v@}wMI)lIs$)TieOfb@T zB`I^m5Ppfzf!KO{*~ZYpP#Fut&y<^-IA{~csm_(qRKF&H@=O(5Wzu2pgWEg&&45HO zXD}iu!SgD`BZ0nuk)Y!M8z{i1%1sC9xY~n)v0o&$pU4hR;foB7W6;FH)WKwUzhA}a zov{oiZ!t~QG4j9CM=bUCzTY;S4FQ$Yk=l8(_QnrIXV9)}v*|B<`-taW+?~!_NObEh zfq*W}<^GH912D~jQ(+Bs$&Ztw8<&9CMtYEVkhQY_z1Y{-&8^RJxm$ilN^7s-D}WRn za&A+|;?V>KJhiAy@aQkIwAVcNqwYs-5z$!nFWN<B)83e$+Y_#%$Usy6I17NsVt)tW zEV4X8Ipj92u9q0;{&o8pXK{=y&{wH?S@V~xD03j%5$YGY5AqB1sGq6u3DSW?(#aSI z%zqg5Ejzk2o6(s~N&fj&NgD7c_Nz47EgQDjj2P@`ithJFO<pNxuRNQ#2x(!Q3&GkT zKo8r>eF%Sz8B3u*<s-m@(+Hp(FnCE~AAmzr9i`#O8Q4^?!=67`?IfM8qqX|hp`$n| zpK+JFIc3XUrpiAyBQpgUzP*z4C2vIT5y{6pCN+|k5nlFR<3R@4RD&J80?GFQ01(Ky zfq;nTECCA3>BEPB2J);&8=P;DdTX;T&?|p?%TF|!9UqrdV1MJ}(hWe@DD^=4)EzIP zWN44|j!a=7`2><zYjkbY*FIPtS3KMDFw}dMG8f>!?b5S7&l!kYhxgTD4Q8{B0m0*w ztHuXfcBOLw0Pu~efN2H-X6VH4w=6<TWkktNf;^hMm+K%U=XIm5^XXVZ&p0Yh?ePNN zDX3RD*-(HWMvf^Q={Tz~TvE>Kl#(@Zgl)CE{n>pH<Q2|J+#ho~rn%A-WR4{?PnkM? zY%(dGICi8Fkx1r%9o5BN2L}JB&ZGK+Y_aN?ez$xHrlUV^BL&V*KL(TBI8IF~L3Z*4 zEO6x?;@9!W*|<bENOND4L3@K?B{Tq?DKMYLThZrXKI%E`(tt<Ep2wMK)SLn*UY$w@ z&H(f(ZcVf~Cs6y;y^bNz$fP&GUj#bj_&?f3En3W6ZhF1rx39ZEO;oDTD4`H%h@@hA zPo=pN^m*ZqiS2}#WDB$ND_+}Mj=$rS0mAKhHQ&?VwMXGsBc+a#wICw3wV&6y?45|~ zz9S9*WoI_#)TzaoEUwMgD%n4*)Z)Bu@b3(ms0@GGC~hTvUxfXg8$8XmOM0{Zw(Yva z(3a9kJw(7oe68yxA}mLLb0CcXfpwcX)?%{Bz^E4hfDV)tv0xbTPoJv)8=5AMVECi= z3vf0Dil?9w@P${SFe6a0SPS6or4PbkMJSs1;4JHz72O^WFolf!N~Sl?ux%eGr>S>= zNwY2-KEmaFK1J9as>C#cJt1b(>FuLGDv9^-484|0BQ2j~N3apw*$l8cRECSo&Brj6 zd0|a%oF4>#hm{5b7(Yru1IWkH&_OKZ=lC+NYyb|Z!J{&UJAIk)7{Z4(iRUm!ZjC2! z4!&P*X%nicDcKS3RPV~bYiZ6SOV{Q0K!6H>()ZL3;tTUc2X>Nk+jEa$h+uWw%#NCP zL#zzP>b*)_IvPI475Tl_Muq$lQKvv$O*A@DAjAU}OVZ*w00XY(DUdb_)98$qx<r@S zPwYlN(UjDQqyIYF6lV3wyxp`A8@b7Sgt8>~H{T^)7~2b=XU@iXogxYyzAGWOr6m8< zi`=ItyV(t>{Njo~BWg-5W}d#6Dz1&nI1J9`KQL{?*Sgfr$f@g`i&&}ESzGa~Cq`hr zUgp+<7#V#xj_5GMTP)geHL(*45&+<;e+C5nvg}AW#)&Dl$V=w<ww2L|y{Bk<l=6h~ zBQda)bU<0e+aV(rRfqffB0uqfu%zeT%IX6!hbNEBp<+9<esFk@b*o%v)H+kv%j|*e z6QmJS1DSSLyF}nOqMO-FPofK~ls_BLb+*oFZ-bvxZu;j2e#28~O#2(<1J>@ial(qH zrk7Rno_)d$85STR2eDy}8UK--^!&kVfTQ8rA)#`9D#<t_T{L^A38LqqrbeYq#YS?- zp@t?rpLgu??p)`)%MH2a8|x3SMrMC~rq~hr39p55S};g=^Y<alNWXMV!;m&6DXyO= z(i%37iLB0-7?txTu18KCK&*l3vv@i*Fw<+t5mw-fB{^8ASC*-KQ0GLZVcvn|WH8=5 zIY;eM4TL=CC%Y3V6(7u8_)^XG_<%S$OvA;^Ap75Gr-uudxA)M51GaiRWDLuA$Mb2t zFtX4M)&Nwddjr&RhyJz=U?x1RyZWDr-SZS3lFgCKq9xC0a5|oi%-!5<^ezwp?i$Fe z?sOjdhLn7ra0=k`mWfsTnAi%`IH({B$4j8z@{#jYG#=y`XnN@6W5B@25}#<AsItwU zpbbgyjo+LYay}KCMqWffO~GNy(nc{}oSD|IC}TW`>s~i&A(nuFlLr4*WjCw0Io8N8 ztL>x1bc$H_R)YUR23R=>fLN9(cX7Nx_%5e<keAs(5(ksYJdwt+yQBaBByniv<~iSj zzT{Ms&aW;lZQ#&B_FT+l<*B%^cw}zf-Lc=@GT7c3%5hhlw6Ykn`;%bqwxu4Z(6`@O zIyA`Id6yxTZt%Bk4IM$C(zA&;*Rxhr5wSOvk(|e5W@lHHCg=I*#I9(uCa638C^^b7 zQQtI)aiM8CO^5qSVcTf3#g`rs=02H^jwkGHFe+*8@ojpDq>dQ)70lR60KhhNTT<IZ zr^TUTDx+bGvZ=m2Bu1*lKc?z2vN2b}+>IyyOqC6Xsj{?1=H*Z5FARMhyaIz5!)BSi zJ3Y@GIJdDRBrYJ(v?A6S66bP{83Q7^=gOhxpxaKJ@~P{Xpk$QHE3<607L7s=!Ly-l zbl)8fl2asx;ink(VGHKwux6<B=b^l$t-qbmI^@%&1>U+di@|rxJVmt$K&~Ajf3*~R zThRU1lRKVMBhsvXb($1pY>Txr7vBw>^5|}ug~|E^AfT5R0Pq{BS(?uAwj&DBR}1O{ zKebyOz&KS!4d{!SaFWilHJVX>R7!V4()Yb6(K@TY-sMn7-*Xy=I+QrH$!p0M48U+y z>ZXqKK4lthM&i0E8WysQf~KWo>kTq{^~q_cQSPaHqh39%gl+lTaZ9R=vy~W~3S>p2 zBe1h9VXAYK1_=NhW_v+?J>Z!ra!}HuQQ&52(sK;5q9|{C<&Z3KI-+3#C4F&Ya`ig$ zkQC{dnB}ky%z~E=M>K-<K6zQE%wiBX!9RODV8J`z-WdFC<7SN!GBkUccBUvN7x-{g zw*;CtR1uHx4tGTTl99t&s11v3@uU{irEagMR_kEq!>2Rfr(&O}=~DAG%#Zsq|Jxkl z&!!VN?F=ypkeNn9N#dnFs4P<eix;*ZIubot{gd%!^zcKA_@Ka#J|`OW8*Y|XaA4+W zFw^6+KYt-=QkfV4XdYU=LgJ+f#T?B?)(gw4uu}{DP|%d7jgSK31KWKY<Jh;A1PnUl zogA}2g1C7gC#RKDk51QL9pcEQ%bXwxaTPz%=~^o}b#RQwPK=G9#OPv&h$=Q4Zo@JE zEP`L04(+@N8V8Y1!J<H`DRepew-#3Gr!LL62jpa^OkwjE5$sNk_JX?}mG)3spTVS0 z5FciyE=lLku*v)jaP)&<!08AUMEyyV<XvpXj1$AOX@Nt}6d3iK1v9owvgLC&(RRR% zh6UxHEIi1av&AXZxs{G?`g*|cW+4J!8uK#h+DH$(PK}lhO(Q)8@I6IGs_78Tv9fk@ zEJ}yYXLKdq?Tf7P#SF~PCIqiyMd|2){NZ{gM`=#9XEQIUH(L-Yk2ec2=w&_{&%upe z`3}7qS+yKT0IQzP33If0!dgQ;VUCE##HvF)f<r(N)YD-$$v+~=eE@3Xn+$C0+M-jo z+LvBW;Tq-9X|x&`kxY%p6+HP*{v|y&ZR7}{$eTf>4y|@W)_c$h`xGhI22Zz;W<EM> z&N%u02(DR>6(s`!c*SMsKxabg%Rrdk9{DYfDuzzQxuB1P4k3DX$c&|djwkN#<&sFO z3mefWwuC9L!7&l;G?}M%1JTTYV1d0ZjyFpJvCS8GLwhOtqKwX~GZwP|zS{#@RTadR zaf%u|Y@J(AxJQZne!EY(Hz4qmL$2@lf}2U6w%-X(c%KdRuVgUNHaNp4vXS)1h}?g_ z9I5bzXZD7Zvrae&#^yx%MG02;Jy(-s`Dq<t-<}r%K6-~!=hI14JiF*<!h1$pxICS; z3IJ+CCjg?;uF>tRdh9-9wCFckR#ocAUR@LtHqZAp=+rzjatDFA{?x;a^TE$37izgX zsEar_ZF1T}a`S+uD!1?!CchnCLB|%dbDaTWLGCSJcK3lMbN;<Ozq+Aup-xF{@9prB z2?TieD>S7mo+!tu7k)5{y_>?iSm)JD&Lno1mtoShrbpx*|2#~c(PuczFi$xJuj0zL z0EU&+&NL3x>*PcMxJTAp*G!5)o$G$`K+x3;0#t=5Y?rO4=u<Wy>M=&7z5=Kdn<SY} z!Dmz(i8=I~D=q77-0y#x<CwoFW8|D85Fl$s06*fPcfY%F6PN46!oS2un9Hz$2c<{# z*$UbhDdyLC^O}Udpcg&FX;1ipw~-D4qh4Wt%@9hkXcgSVEI>E-<Eb;K3H?$~Uvl&G z%J8=UY9_I1TOJ7AV|tt=)LqSUFNIkY!>0MH!xqorEa5|CI41bd=whfh<3{=*AQb>W z#ii#ge^rOsEPV$nI%U+zp@YVc%VZj{)04d{JHhH1<G%}^?MEEQ6(cAJ_x|UcPU_yo z1}RHY7^eZ~&ho%^ATus4B%+Y~2<?Y#DTpMd{s+OoE3Eb*qv=_J8LSy1R)?R74RofM z3Q0IqX8%m4B3K!x7(fDX!%s6odvIy0{Gz}=o1|h5)V?Ke;^a^jG37ebAty<PNB-ro zdm=gh>Zmk5E1}CtpRy_C(HOiS$)7cK#x;R%+7ZbqQmX&A8G#h+h$a1}&j1HG<m?l^ zIwL<4q>rQEfL9Ahp-AFZe0sO*@ze|cZ(%+ZKzW+1ep&6^>K%8bf@n0T@Z@R$0d;8n zm`3lQXl8><KX!CoMj^26Q|G4`!G!6b!GKTm)JD*hY&gV2M*|{L8ujlm%?0zMj|TOQ ztB*jR(@-HO38GwT-p$1-=KJx3lQ2cEGgIemlvD#f)+Yo1QE&)#K5~RC8xCYK+h(Z% z4h#NoE3p{?NW5Jd#mG_}P(Y7jJ$t}C&2y%m0%<S*Ah-)s!D#MOKHgmiQLklv?c}K! z*gN%2v7$Cy?havirs#?{Vq-wU;0<{}s!x)4j_k;(roF}T|1_oPwzvlC1Ud%x{DH1> zb=aRV0QK_H(Ndrg($`vTz3|-RTHw6}KJaZSgwE-3U1S>`Pvku`*^=JCy4Qxby3GLs z&V^IirVHbUl@UVCL}YVNzz;IK)xnCb&KPcFRC3M2n9KHfFjYXHA}BrrsJ{sSa!|Qe zqDZMm_vQ7OkxJ|2u#CQZQ0F;;UtB(2I5GngU8(3=+t1VbX=W0nCo?UY8pTP??MsEX zG=u-~EI%z7NpyK|cZ?iSJbfC00B>_HdBF#JvW&JBmlCfPOs~!Yg+mnZ;1by}LtmoS z?*yL6u{(bgw&PMA(m55LDlMNYS(XkNa#^oG2OSg)$q<5otY&dGsFl{X^#?r)QTw3} zS<l-B0U6pzypG5FQ^*Mv&l8YGEf7kO*w+q$0)DCs1_=ZN{06lQ?{lLP`TCxle&)df zyMAQn<#|R+vf_?20?3(wVQ$Gv^ZUz!swQ|^{kF)$0EQ!j|LC4GMZ|O`m>DtC<(~{7 zpmfq#Zxj8XPvJkN>cN1+QlHhe!(`b1?z?}T`zuj?0zo!Q1Tx-2Zv@u@9!2y@;_ll8 z0jErHyRijB8#ISO2{Wo}0wig5K|o6z6X;bP@r5|`x@>uO>aj7<)H`0s=l^o#DQOts zGBdxUvbQmrc9>25r-^ZsVI4k2#nmRMKyL6KwY6KdH{@1V;tm+rJHIG9`2ONhY+CcI zCeHZ55pR~lSZ@3>fA@q%q;6U~y66<Jvt7aa2ts@!oJ?_ZP;!F)+o>&ypIUiPr_Vt= zS#nB_Q}8%*q1|%|NsHM!8)G>^bej%%!8A%=QuB>E3POlY6Aq`{hX=z<ePS}|tLuFZ zhmQcfO3+1_kpZi$I~vi`b|I9`?74mx2r=VxJRM9?8M!TZe0POiH_Q<EssiL}Lr@gG z+-4<poR!fXfJofr+?<R>eR_Vy-SGzNkDk8Gj~|lCo1ME3b%OzNIE-65ma%+zbTd_J z^8?JyZOqg?e@oPR)SwzAcG?kJ6IHBpEq=Vsk>Z&4xOz2=ULtRY_Ec++>eC)s3kqgR z`KcH9V><$9Y7x$Ygfo4fo_1Q%38X#f+YS7u>Kj$D;3umqDzEw+Fef6NnGKqJr>G<= z3lJS%(Njen5b&U`H%BX^8xY9+1}C6nEM^fvU@|dQ3&2RApZ}v^qku&6(H+IvCiJp^ zL*h*eYPx*~`O5=>KmR=ngv{|{Q}p~bfqVHR$>*yF^!gttIT;J})(IWZiAMj19j)6z z-e%e{pgU<w-P3WQq<#<X2OZ$Dx!t><H_;nDRSE8Ab#uNs$vK*<bm`~SNk@WNoiHs> zr}=iD()I!_a*0(*-^&0cUX^?n0C-B7GBa^C#X$GHXN7sO!*_#va9?(4a`;xqONAbl zsq%}rcGkx33ju>ZNw?CA=R+bMB}(C8ZSgbtLz72Z1UsiypGfdm*`2OHA37SJ9K^1Q zjjf(ujY~nm$nm!uiyxg&u@cOpa91&7_cIws=|mtvnC(yoN7Uyw*SUy}n^jrZLPzAV zVN^_Oatj2p*jYg7-S@e67>drI@jEcM<tl;@C5=C_7^YJJ%eNW)S&Ak;6b}smc*^4z zMfatF0L}=gQPo>SIt>i8c?Ds)#~^Dtqz{sQ1~<%Z`yass&jZQTayMl3z|tof@56YO z*>9QENzUE3mnQbpbNWQxcFTmsBCumXK#wRo-mWFfG80bxB*~vnky!*V?^k?^*@zjx z?%kgXTBE2jF(WXC!$;h(z%5*qziVV{|1%?_D6k*iQ9~fD#XPa$+QCe`{X$N93&H<L z);6agLJ5NrDW*kyhqk}J8=JrWRPSOqpL+T8RIaF~7r<v^VjTz{TH4l&0fR&rs%(~7 zSX$gZJsV*XjakCtA@Fnxc|c+r&l58fE?Tk7$RdF>qbSf-fZRIMusR#qiz7W853^DA zMDXWDV!IuUJeMWGk?K}4B<Tff@k}lt<`j;{wZ5+)Om}cRu;8$KKO*TIFb9ns+Do!K z<ULQL?~SWB9^JXNAcYklNq3k|48Q><yL9XoH&Tgp#-7vYC>D2=%wdfD95}gbz-$4_ z9qi}&Rw{wVcHWYnYl>_1N8G1OTsdUh{JQm3-N~IuX@Ee#oK>I3RcJEoh7aJEIwV6@ zUBx5Ct?%y-^oR3fpm=t}DYZzKGT7OGYPIfn-Zf)&g~5Rlm&BF<;*VTN!G^m|p1>dW zyHIwrgq^*S{DMHx^_waaaiOj<ARu$7Vj;^?C-l0lZd-=K@u}O*&wBV2BGz+l)>1#< zbK}m!W*Z~=DYjhR3B6n{6Z4r*o|?wTy06v%Xl+yL-P!GCR0HX{L95TOd&fb`9%=dE z3q2@p4s%pvqo?bU*t+Dgz-dT5GlSKmvx(7~?b5?7S=8p}itOd)IVOEbzzla#3?MRM z;g?_CTCKxtR8{|oOP&s^(A`CW5^2nV+;+h;O|NBPy-U-<)2hsAhh`sh&ZFF65Kz~% zj6wr244t~U1}U0ZSW-~eC;XFRixb!-q#Y4BQ9xR@<U)N$-DP4KEQsoE9ymGIN22t= z)6!1(RfzaO;y|Fyl@~dy*8uy7)&CI0@#ZXRt7l#C)P)M{b^`w8t0We@*pXt_&$A0U zP&Gy7vgmM~Whus#-?Eu)hEJWCzWco^X9Hx>nUR!sP_~xg!X#5hI=Hqrs?l$OfM@UM z(-6Q;>i^;ROtw~|@hWO5@nz$bsid13VG*g+p=i2Xb=hy<OYDY<QDibU<<vRl)@CyI z^mRf1xT+=;{qVGq6)HAar#r~tb(@^Q*HMi<I=NULu{`|*3q<=vvp|TacG3qnK}MJ& z8S^awzZT!o%lmOq@<L*_4X&<abFa%y^_Ki&LCxkH7+65I<x@&%z>7Ild81&DVjKpi zQ-ZF60IGipN7G&sc5t9)IYp}MN@=qRvD1hV8emPfxrzNcVi-z?@o2+{1j;lb6*DKw z`i|@hxmA@jvtkPzDC1Z%Lvo#OZg`X}Ae`gQr`}6mB^?czHXWhpJ{`AyufXZ;b-2$& z0BqPx)~vYlwoXhxZa)oM$HC=(mE7KZ%JDt`GWC?AGqn}<dx{r=xrw3mE_if`c%y#* znd!1AK@SM@5)b^Ml%`>(S@<jlvU%u;GjM^66}4ZWu!tW^f(pV;Wes_mvo?8o9~7q< zigZE$3f?FsS^rWHfb};-Yp{l;)K8_Z!}}u){=GD-YRMdQgp-_8Icn_1oB10jK!^fu z1RhM8`6;U(4=Adb9a&TGO#n+D9Zd}|h7{V+!>_*#@`!((3_5TSgAmXO{L~2pzpMV< z03+gKpg)_@j0hh!_iOg>S%+x&@FouSx~_5*89fGmz6lHm19Y(-a_gHx$|p)w0X+%+ zr|E_PEXyp5Qm2Fx8-6iSTIbP2Q1+W0(Jk?qjNz=WpRm_82q5CE2i(5ka_g<M5`;CO z6SbmO^<)Y;NzsWX6&?6vNHR5SS!(7O&piBrSvqv=tP{&TZ6`WUgkHxz7V8|AUoya{ zBpRlf!wg+EXSPR|8)&!1obf{<S2`on&xqqlb8|6Fk8Cie6Zbpf8_od8HAB6QXwx;g zT*#nZe%jFt>A%JjwQUp?nK;-!&e0p1oI2>w(d(-^L&MW)NtmC7mdolNe=BUsaNfBz z_78lZ<x)Cq+Rz8V{^-;xsz5-$inLfIO`8r?X%YNSr57OE=1^b4?m=96h+&rMF{170 zY+LxsZQao;95}cp(NJ>lLquIbM!REm^i#97IC=$TbR7!@KO9mo(g_}`dcm}pT;M(C z;v^Q;<E?|CH||wc%9};$B^13uZWE9&cg~PRB(hm2jvJ2<trPk*U6V*mv3MX_T74@! z2-w1zEcO14vuXZ377##IJb3uK1KBTP>YS5klZZdUm;qv5z{vA<Zye3Amli0>DdFqM zNB-f6e_^VDA#(L2pV(gm()xIbtw!!G(Vxl0RV=GVrb!)(am?vve2`*TS@Q2l6X<C5 zOz;Pon?_*U-VViFXP^)9z2mfec($D4sEz?uR(xU+pc8~yk?wStSNd)2?nL#q`3IAn z-Y%Ddz{03vLp;jGu>Cg8Oq>{BxIi?Br=pK3iTZ=7#SzFqI`L61I#U7y3r$e-c{1y@ zGU)@VxNcz^L2XvteB9EPN{lap*%5OZan%_nn0$^QO;XjV*M&p1tgLwQI@}G%x)Adk z50*}nf-%ZmV3-HQE;atS^M%er`kzik-NJL}Xt8TCE%k|+{wN}GS{D2lGc#4gCMB8O zwj(wU0AJxb4L9seg8&gR+}qy8R2eWuJRdoRi&V~h#Sox<9B4pd=;_pmV{UuY{#L|7 z_H@z<KS4SgD%+WmRGC_gJGy*y+@!Omu1{(r(<F9@f|4;WE1qeZhF&)X0b((zns;=^ zV9O~Rs6%-^4>09fh-J-tQb#ianXNg>=jfapP=ah-A@>Idu??`Lq6P%?xat7We_Dh8 zv1wuOUoM7IkIq_b+-Qc9z94LHr0C3K)aP`K-q5OM4{>XDDPlPJlFFNDSeqEHIWnrC zDHc39csnIXw7LC6Bo4F9yBc0%RxJz=@IXKUdS&t?3WsqwqE%U#uhDDq5{Z?F-H+Qz z{LIihI-T0K!)h`=i7TgOwf50EPJm!En%%STDXb7(B*#g?FgoMKVxai9b{CF)^z}vk z7K03NRr!hXmdXM-Ea1s<z)&svv%K_uk$k*ad_wl%J_a~s7T_)M8wURfOl9Y`vty?= z{a_IwYdJF*e=%Ux<J}4QPPr~O!xHpK)r9e$msVn(K-t}ta|HpCF&)(6Ajch0Mv}aO zxN0bEUBW%_(E$N6POuh?y36RP9#%S>Ix?g37J=D<nyl-|71Dq~Q-T|6PfWnq9NVb| zqN9r7DAk)v9_S5peq>+VacI%TalU(#e!};-r{xpv#c8rl_z#~ax{txJzBM$*qLstU zqk_aTX7-nR6!+CZQ=3yXs__)VX<gSTXiinSprW3l&yqR7en+H3lKO^+=k;x`Eh=+o z5ugoQ{%rT4Nyhhcjh!_gi-(f9;_;rD6d*8^Mc5V!CXb_*D?yPxmX-9&^Ky~%9B(Ui zy|t;`=VjSg!cGtkgdJ6<J0UD;ou3{b8W6xz&cX7=i2qL_EsdkR+zh)GSKBn$Z7B?d zGfXG(6JB$|uRZF3QF((!wG;<nm(in>i*N@uWf<=icszfn_@blB$^sC0XfpaS1nx5i z;^*m=ToRwgc~g{8q>aezCgs+a`SByu{JQ=b<1j^fwMO@aL+gZe&nrzavsAb^7cgJC zJ2T_-uK-<U4~IE^3)vavnN%>&)CAH6Crj_92>z48?ceT3$v)wk6wQPz82uks;d0(( z(6us70CsJT>p4?kX0pRHkn@?rlh`h-wYQmoIN5raN-VV1B`&#JDH7^)R@5hSj9@n` zJ3$)Q-r_}<`~xGsa6BA}&-k&J!Xghk1oA4wluSzI&RYO7^TNSt%gpj8=;)7MdRbiy z3U}A;^~$o|b0xPZ@OzalLs*5K#?<T^8iypRWk6WAU_7&A@3AY%i(9M{hG@N!j<a?M zBz4U7xjr*FUe0f!qfU}Fl9&dpz2K_CZ!qMRyG1w;w^F+k*X8jy8zI=p{^0(YD?2~I z(hvN$`kqr08GS+=-1F_q>EmQEZS3U&+%!7Z^+su#+?{!xgG$e*6U}loYU8^m)2vPe zGXg4gHv;N@z+ockB1_*<?S%?sM2=O_gl#bLai?@o5;Z$cYKr_J^I%l~liuYmzKsd! zru)z)at>ZUfm*Vl8d%%xQ(%VVzWbXN`U1;0es^Mw)c;vYTn6sc$>5Ui0SN{QY2R4f z56LbD-J_(D-V&;FIlCVvgyVhh0W6&)70GGT9JBCGi>-{^<|h^W{eE}zk4F66MwJ_z zM#rh5+hFay9d7ifZRzX*C(#3v*~#N1KPcJ7U8x%x4{!y_9<tjgmd{i_m<J1LPwGt! zb3cM)RZxe(5Qj|X+A>+juOMZh%~E;;IULm_9za}3&`II&3#UgWp9|0BInH-$4-$Z@ zsHhmt4Y)D4dXAsTd_u{H^~A4uln<5Gp|p;R2qa$PGUt(`cClfmaE3(ZWwQVa(-LWT z(C(1>k~%tN;(g&PsPCjhd6^9Uc4XZ@cL8=uo6(Bf5FFs;1Z=wQn1*+PTo5PCg^q8= z=wSwuxs6xb^%PrHQkPHUC&B@4Se83jFB6WG@&OzD95W4iETyT&J88l2yH07+%KgcH zoZ}|J3<8*KS)aAT`e`zx54f>)_s4oM$!xqU^Ez2wrY;+N4)_yH-Ptrgd$1%<Wqn!$ zk%F#sTTd<wkZSthkm&`d2@VeOEP<-GPh{|SmJSCnts3c1j*W10wS&{|lPTyIG4^Dp zi}zQM<65%5nbkj0`$#mSZn2C6gO*+uGnXW{5mRoHX2!%zR76&ioPRO1U1%oiI7n$H zWyw=^j!d~Ur!6k+(_oTDlbl<2jmKwVCiORH>e4@P8{N8drhhtcO^qli$wp4GPHl7q z&aTh&cXkinf&ep2TN_U)S=~RR@|-g@E$2-CWas(*vx!FMU&=-gV0&`68Q-RQPt%>! zsT?vpSI^Q`TG^gLRveI*!A|>!|E&frbuLUWpuJ#<9HR(%N7dO6T)|XtjkGQo392P0 ziRKSXev|rRyx>64^ib<@DztoT*sF0dUL4lu*O-};Y)()8JJb=9F2Dr;M~qLWM*+Qd z=s=3P;W%mxFjHZU%boQD{TwLUar|(uM;<eBpYG^oj<JDFk&9sePLU3^;230%_22lD zZXIJCJXt!4Oh-KBVU{^9nr*wbpHa!N|H&*XfD?yVasj~7;NLTPTX}zUB*OKf9qt6n zXzS1D%o~j-b*~?|Gy89{V*?;$YteZeK87G*LO~aFz-VqF$(xJF^Y|s{>fkS>Omf#a z0AMhp@e{|-$E2y5uxSu5pZb1300C~9AX+mJpnJ*azwA^&XNb>4+*k9I?n(LQ#lFL^ z;8GBQDe@?acC6wDB?kh}7X$#k1$w)cJMvaU-e&T#Xg~k58*eG)&RH*w{f~)H!NA1; zfUJ*Zj4_`Y1n{zR`8pINEitdo#N^)7K~|k7dAB7kjbog}lKjik6jwd60~E?%9$G&3 z@?b<<dWNo-hkrVCDHs@MI!1Ztn6Yv6$PpP4RImOn9MD9?OuXoN?@s7)0*}b4is?t$ zA=AH#X<1*s<-{M4P31rMW=+wM>*(o1pPv(nwohhWcFWmGRy>LQ@X>!N15z&u0APau z!qh93oCjh{K)@muFpQ{?J)fpaZA_={C2;|mWS27JGPNl2P95YrRh45JU8joI<sH)m zbHNE4)-yU4EeM!Vn(ou%-~D&168be}CJtl_Jk7{1By3gz&2iJMQwD1tq{lwU(+x>m zpJ__2$}LX4!9kRkR&<D;IYnYJ?2VQ^bT^rnhxKLCg=4)%RJeR-;#Rr1L<791iMA~I zS3iOS@1EquJ^;xfd&*>AJWF*2ZDgWZTpFst0q7ZhZu#(rEpMi_e^m@}E+PAx#kcpq z|MC>^*vlK;bF}1$+FBY-(Z5xB4rWzm?;gz}3Ah|&fYGkL17dy!-O;!{Bp;{x)pYZq z-`#fP&b^4#A;QoV9O-olG|EVVR1cz#qVU#>IEQYQj%ePx3uVeWWaor40e&6&j+9|n z|EDFTrT`Wsvk_2H80K21H7H?;{;YATARw!2u2+pK*V*+H{L;in*cAE?89foT$my9{ z2SwF|iT<G5oxIbn8q_yGI<#$#ls}8pcuY7REuK0ph3gCX5@I?y+IG^R!A61ru3y&f z4E%Ht8@TYZyIk@Z&A>^YZ=HNS6mKF%&7f<?_KP2un(tMDN<A6Iyc`BkG9BqV-qjAF zp}gLz)hfjLHmu35GQ6X%^c38sc!b@CMKf%I!8RNJE&&0)O4~ej%SiJzH4hzG8r~Q4 z=1hGqc_QyNUsQyhHX}5pG6RMeyYEiNA3NK#ysT_%HU~O;5Z(>)>&e;*)Dv;e*<GjN zvgKawq$Pq*;mP7e)w25AC!Y`Rd2M<v7&{rGz~!CK-IC-d^0{dWJa}a$lZO-C8O+={ zYt@RK^_J~OLo}unf-I-M7S~K74s72!v+0NcC<YL1qp)A?N!+>MKe~R19ovoJ+6;g* z&@6dz-c4$Nk6{&qh)|stms@(|FJ~SUMksfBkwcO4c+{mL{-=X~&5+&EkWMEUPQO*y z93+SBgTsgyXPH)(Lwg*j>RgW5+c=D1pp@u<RtMQXiEcDN9uEVX{3Mcw>#6=dJh%u# zgA^AyeuNkRR(6p9na;RKts*Xy@zFNRYzvk5J0$pXQqgQrm^a|%D3xvYoMC?bSxhS) zAhbKd0N9w{l7?v=p7D>Kxt9wY;y9oqoJeXyl!KN2G*s?5XYY}K%MfL;*X@OIDAxB3 z&eTw8=phdIIPZ)W4jju7X)b0SGX=FQ9bJRhAUm-{mwSBpe(1z9m|^C`sm%;9!9-Yf zGEJBU`|-wqM>60hzx?8UUzl^rD~$G<Cz~ZH7&T2M8jPLV)JKBtjkXqmquIgTvJ}M| z1l0b#&M*!Lx7usus1=?2raNsNtKfQ2MV)RHAf(SA3L|xP$C!DqdOrA15W;`X<wi!; zcnEl2cGJl_YVV=x0Mj_yngRl&z`7Kw+t)ZkBkd(e`i1;5Zr*ar&{i^cQi@KKd*3!P zXmyHj>2z}Ndgxuc_4Wa6KV|2iyxU7%(R(%%*b&w4K5`q4{wH*Alnwz*N2hM1Y`!37 zlq^1>>HbURipq6d>JA_C;A?=ImCVl;022ZM0HlaB3jyV;s1}_P(jqi9MniTusLKRn zlKJ7mf)o+8oppLUC_Spa{@Kqz`;{9v@&238AK=~U%tDyX9}z<hcE9Q#CecIn8xe`! zJxUy>(5Is(XsTS2zUG`cHr-7#039#6Q!cg!kC!0F#GP#J+FFyzot!h9<~!ujuG4|~ zpz?#2{(Z8uwzq_<<;m-b8C=nywOSz1-~&n{4WT50Ye(l{SvT9@ubf310e}V5FOkv2 z`7sEz*Q)#}>FS(t@lx~S{ecShFbn+J+<B<)`cVQPr<+uYDft4AyJA|+7Eyh>2|Y_t zzd|J~7i*(8$l>K{pJkOp#<>MD!@Md`wx?p&k-q)M>`Z<OfxxuAb_V}CMVc7flscd2 zj#(>QuGx(;n!9+@fK}`Rfx&1isByrG%4NZbSTAF8;e}a{lKX3{-bOls3-Vg`mNAD- zov$eNJTx^wa)l>hE~a7ufM#UE$0YoF5V!TSwK+PjBUN7SsGh8TUH9BSS1e9cs^~FL z<K8zEC#=9#61>=T0SBhsCEK%Iub4Fi9iG({1_YwI!hl};ED?B9r6$#N3cZ(_YM;+} zGycKJLlJ(+PYzF))0)oEj1CtLFRD90^HX5LNxqK)X?R9S*-dY%L3LPc8nWdcFWunp z5_dYo1pmVS2qaOdEU$*H<=8Z0=+I6+IK3SRd1&%LfXm@RkUvplFaw}#?>Lp2*f=vE z(59E=F@b=T7dhFbX#8!Z-q$*txdvsuqDC*h^0VWlEP2#4b^Ir?jkX8@{IyQTSp>Ga zh}gN<s$Md3uYcsQ?li$)=dX3;`i;^O<h7&i(?2N~7**D*U{Ubr=LkkSnmtC_Aqyvg zwk|qYP@7|3GeCHh*H5XAE=TmawWYvr2YgEO4QAlgO@jf5l9|8mD|bi3ww|D_Zqfj+ zlg)W$w%f|iEC7~`?i#$=Yvu_7(`MSxozdTHS~@nBvacYZI&nI7D{1hF06pm42Tz!+ z26z|SEvLL!A_|zjWa;$6EX&pL2p%7){V_$%I*uM#OUcy>KX+2!ao|i%_U;UD2o1P8 zVN$F?RZI@}s4FA=E`w4cTta?H=W1Amqh+?r$>e8jA){ArzTT)QE<_-eoCUuSJ8KG- z705-*g@$`dkJAq-qGB?6&71}WSr$3Tv#Oa<;N)kt4nvL;Db1QNW$#tFK+~2dGs>RK zyD)7=U2^Ks8R97ieYS?xO@u2lNFF5*u_1QJZw~}SvY&dz4vlc>=uBn8IE!@Nno{y= zr}l*%SPuYmwtgyp!ymPeM++UAJ-!T2Y;=_iKV#f16(AT;D2{lBY;sHkojkk*!p5A` z_dRjn&+<tWrlTw4ClY?v2PxFAf)#?`Dyqi;2k*;)(jMxOT_z>m(QdL#mh!%|?V%vA zP<G}gZ!;x7^lJ>5`H9XTZXCqGfu$Q~o}}J72na5@qM092Q3ihv04sQKY>Lt(+NAFW zcp!jtMtn8{FsQcgeGf}asS%K5=*32UQT5ajY>7cO0~AT*SgNAMvv`aCxsOeC1>8)R zTHWmP)w((HA4~AaE*<h!XBfmzfjL7qAYewnl2ifLxHO1m1tRi;YG(s-bbZl?2^>k7 zz+5uXIvJM}AA&S~dZYIw$%GA<ZJ8dn47oUY@*pBZ05K;+wA)Xa>+2C|1U7VU9}4bG zngQ$G@?##B*vMN24B!w){`KInwn^>;=oJj==*ncU0<J&0PzvsW0L=_P$WVa-I)O~A zoN`sR<=ub1OuG(SG6DwUTEpCJpgN>i9;r-J?NwvS%&mOS>?j3{8ix?pHPR;Ls(BVQ zI&UW`tRL}AFSA9A0aF20pJI8FF<bi>q&Qc*BSaH$6oq2vW~1x{|6@`x$~AtV8xIG= z!Ke-Zn04Wfr|Ku2Rfv|iNdxl~197(<&7aakrttM%zZFT)ov`_;2%RR%tV<#!iRRF- znmlE-b<B3<TaWO=LA^fo`Ki}7VFtWzhe$FeyX69cxqI4A3Iv3tt8%7{vjr{k#~&Sf zOGyZ+C$T<HB4BzY`km3GO{P<wOXmF6S%5Kz0MWB}ANeP7Kk?`5-DmpJ(P^Kr4*Lj* zA;R8xuDflhc{GujAIUNwdy}CTY=<dT-Cjt5u!t!$$BhSgJ2&M$5C2T@E$c8&-qhRI zbs4z2nYui=IovoK4S)hb=mZZL{OdsisRPgpoZ5jSz07_R<PHengDAy}v!$)H?U_-( zsV`5&P){F@NnAHvB(=ac24fPB(p$z1PHlyY4SyYJSVkRB?+X)s*yZ44JH)s#?kJhF zKLrRlyt5Mf&Can+(P-@LAWaAHB@f|`keo7o4@9cmDHur%`-(a2q|SAPY|KJs3+~Cp zLx({@({qN@P#R%z{MSH$=I#@Oq@}*F(sE;Fe9M0hXJkM>s%kjA=}`>&IKVTZFAoCt zkgeX}DGL5>-b!USWHvBikiSnUxzZt~IzfM4(|Z6b0_umSqais<imwGedf+16d^7YS z2#RS_x^#fmdU`m?*x_PjiX%NL_!4GIcJycoOCA6Mtj`IAVgf}p#Xj%249M2Uhu8zP zp`o~F?Crv>5Y%N_FfZ%sr(SO)`3GzTwxXW%l*>qS0|EhOy#Eq`A_M^zh#su#1D$kX zqw{Rbbtbc5eaHb!>sx|BlfoccFKVYB1<0A<;>2yO1w->XA`VGdD*dkra@{((j3Usj zgPS)9L0VQx8dz@U<nyzWFHEERGq5v2X-IxH80mxyBnP_MpS243_a+lY?11gHL(@oy zH~hAqTKB;v?}Vl>6Y@K-At;Xi#7U@t2m<E!ytOrqrUjEZ5H|}AW}q$@uzXGFTLvSd zaH_M*r&nS21BbKwn5ZU=`Z~4>AN_03Z*%b`o4^pM2GYtM{ZSoe0<fiMuJmNl9ClQH zruMcR^VT#o(v+D_Il6N3iL5uOPRBnl_#YeiYnC4PGhT5S1`1eGrP*d@6HIAVDu0TG z>+S-d5Dh<dzh(cjM<{;$ab(h<5UTAStF}YNc%KZ0_A>@Q;P*H=F{jOZhgYR~3m~a8 zy?w4m$PzU!5Aw6QSw2-sKNPh>)E1nIO>M$=(48aF;mE;c#J}#WfE@{R$oS_DFYR8> z(}tnkzt{EZV*DafJWA;Fz~D=h(HW8L7ouwkN}EKH-~%ZsgENiZ7Gs?}=|#1*Zen4{ z3Rfq#^gf|6MbJ$X{PgM_Y^rip3RT|gZ$D<AoS#tz1_>D_Xw$4ZHbnv}13t2dY4)ss zSxW9<p_C!fD^AJU0WX(XnUJ?b(_~*sXTt8kO=VKPLfz3<2Ok6KFS8)bsX%~Y1@L*5 zT~Ia(KG3<}3n(6`R2Q28eV#b++n;DEa?M5{sH$_Y#!`)L9MQs59}#8g8V(6{GapMf za|4|>N~DvnQ8{s=FL!)rIWfv&QyCtPo?V30)8u*3>>)q-xNG<bA;MVGJa}mqJ|9<$ zrZk<ShkI-4dY~lpeB!<$g(oEqL^}4O4#}uX7j>VtxtZB0U%q^BlxaBEUn7A<##<wY z3>>Sj3Fd+MOp0b|M22M=I{h`kD0v`&-$S;5<yqzmd<TAzSovz~nV@(;=PfBA_Bs%S zXE19=8wMi^QQcG<lTzlzFFCpOd+9J>!Ar}t{(KBnVAH9!=YUTX4Y)p<(K-Er);u+R zr0q%ju-Wh|sV+%8Jiet_5RpdUEsH#d`gCa@6M%7&DC(ObH?b)Zs6*MF6y0$8mmPWd zSn1f}Znfc{@#4y{kJRXOT<x!l@j!B0wlwgoVFL;62%YX3=b^OXk=}x<B^?a_umS=B zn6kd_r6prQed&NsQ9KQkdG<OkyVM1WC76o}J6xo8FcoCQ6nDQb?3*#X4mCqCvH8Ym z-p6F7oy?M-UwM_07;!rBFw;(KHlFLq;f|u`{)B5=IA5R4!2#)@A=Gj69rD9Yx^LTT z53dnat`-ZA2;SW~mL>DKb6rg|+cm9Le$=&>8b~mDo6W(p6nqcFe`{t$3&8BE=Aj4l z3l+53P2>hCxrdH#VbaR-a$Jqa#PX54%iz+iP9JmufJCbOnh6A8V@<oYl#W1`I!%@D zg`7Tt7_j<d3p*Lo!mA3Kuv89MCJwQOy&an%)#ut)S;qi41p_2yS<JaaIu*Vnt<br= zzof-UkSk4=I^b>olle$c@C&XA+1#g6@<Sanj7%5+e6yXS6B8HW%xp>)2X%_L%Yz}$ z13Yq|G9{Zg;4o&N>Zrc37o0sBopmLxT$1{7==ujw2WR&qcgl;@bCdKMEhrgG?wK&G zpTBj(tIdwB26K}UE>%FjpP1JYNMWE~3%hc$c)aq?V984x@wKv`lX;-h0`Gn8%&;W{ zwREh!bjo?zI6TZB7^1!^-k$ch(N&H_5E(iVeOnJpI>FIN9NF^S^pLh*`gvH;NmvC? z4ZTqS;l`2rpI}I)<HUrqBqgizoV2Zv5S$*g?}Y}FP44B%)v|tY;mSzQcor}44~b9k z=)_vqQb9=+=%SL6FY85^TBpJ;)_o{JqRbjZ5J96|i-LcIqnc=24kKBQ2PZi8lGo3& zL=-XGW$lq0#|rolhLBQhA<C$@sBfnxO2o>>E*;}c3O#=)=v6xKGjxzlKliLl>g#-a zHjOU;JwU?0F(h)bmhSB<*4$RGRE>MGAk-f_sPZ_{8_O&!O-XlM@;20o#H<M?eZjBa z=R}cqZ>bTm$~H2(e&WV&9mZ5~<@_^%d?!~;(e-<d^}~XF!d+fxzeL#K$m2MRJNA5( zVm<6s+$A3bJrl+J04(ZJ<>G3+!0H#Mo=Nf3{246@l_(U95Of@k)JfEn9sJ-iDSJ^5 zqs$d$tiy1g{c=uD_bl`n+Ant)=>h4Uoyi{QE2NwpN&aNX2<QrYa(wXboDLZ2(e3y6 z)UK8jX(NTvS2X&>DU-Ml2t0=oBT0EWaCGMOu_&Nv(3CQ`3w4}rIc>oT>c++?YnTc6 zeR`e9?-n>6uJYhF>*KI5l_$1f*o>@-PWrO&+LLNIcQL5-#~n&@DF~s=GW<$Chn~&J ztPM_N8{ZgLlX;skpF#PGEgce_yaP6pIFL8oP{#_T%41ntpon<7CloSh8$a}(|DzLU zeHel5eqf(MaSqV|1x?Pi*U^a9x!(!cO_EW}$e_M<#{8B8P(l_@8~8cZWBlg`a~?K4 zjnjr{Xvnx(yb=WcIJR|Rg*@s?Z>eZ|(2!qd?rJpU??6ry{JU7ksz?{Gs`}()0DE4l zM+~z;UokN|rfu}~v$?*^Ia}R*0WwnapXnJtUoY_a2As|Ej50&m)sAy<>d&n=)%=@H zp3WGoW5JO(#o8MgxIvE5_V4xR9FSwe2Z;VK9l`D{P+y57R9{TE9}4`qMuCmu$FrK) zQ<JtM4!9m2x=p!69P%;avN3M+C&sHeTBQ6^1`vz(Tto&#G4(+}(3%9b6BP&u8$Sjw zVKV%W!~TH~%?bSa<hT?r0`#2C{PTW6#lPb~O&5Kt#x85SA2@793{jf>+LIbVfa?*& z^Wk}Ru!i9kd9^PE^r_R&jYYTi%Sd1`^ObLPM+g6?s-*G(I6<?Wh`>+z2W{6Q3Bjm) zV(5C{%dg9s+{`F#F7s^ilpk5A53`oJ7s>V^fk*Qb$kVGAQ+NJ$LF&xdEW^TDy4oHl zXDSlA<kl^NwDz|+6Ckg5K1}7XFzk#a8%XJ*)AyH0E8`oIyh{$5t6R1`6;>U@mV*)* zHE*$9MMaos&K=9Zf9$kECkX)H1^9l@UtnN~24p^ssJ!6^M8}Q#u=zI)W_VfN#-!?q zKUv$z;?8~n;20(4bCT9jsq>;74-4-5yd9oLJZU>=y&Wx*ik*2JC}rr9kU~K*b!%b= ze<$hJ7bW;>it6#|fQrsK04_HX;<;cIpb`Zki<xt-W7GbCMqy53bsHS8&^eYiGI@F^ zMKd-VMJAml?^iRx=-4pNA}g%$49(EfiNwpYa-4*4;7()Q86sbRUiZkY?5)F`3W}nr z=5ZndX@_u7aGm+eWzXiF3tskP18PK*orGL+#KL|=mLboln*!Lxqon8~HVcBjDrR3{ z&K<+^>P<4+kOfBBvpaq=>X_iwoSYFPb>u>Rz0)qYO_|EmXFFAnu5;4#0_)1H8t1M) zZzGc=x+@ryYDdh9WYz#58Ea(3MlAHaHsV!{Zg@}?1+uCqPoZ=SGE@GPA1joW#p4}M zW}bb-zRjqflQFYD*<NJl;~<^%S#od4T*3YtZd%}DTs_ZH_PBUzb~dxkq<J@ab-K5c zJQanqJ(ka~yn?_RBP}Ti{+^bMUNKC-w%Y~B7Oe(->&;Fq2~-ZS^4ViW)Eb_VlTYkm z9HE2c5j+G<Xs|z1<QUZA*R|;e4duKS2Yr`lbjfv>DsL7#-IZM?j^iv|m5OLndkGs` z*({H#oOX=~_IVEg0IRf;)v7?{<D^=@x-a6%L<h+%3J7#V%8X$sXdMK9OfIMuKC5+f zdzGuthoOll<U1oJ41y~^a9-~ln}c=Q+KC~f8OHQD2RaD&xd8k}9W$dX<b5=<ORTGs z9buWit)MUNk#c>gKb<HM#CK^U{<@`xGn*!eI1{s^_)RuX0$^Lr*?SSG@V;YrZee~2 z19_65+5vBg-Irk1vy(}*7_jQf)qq#E2Z}Qz$C$Sjgt23S_sA9mKs+)?51BY^(TxWZ zF~9o=+0`|#(f!_@e)QxS@@N{=3CJ_NWdIs!(=|47G_lRm*i_jQpV3r;%sE3^RmYO+ z`^zR!fl}6N?~AtB_K3Dkp|{?B?u7!SS>l9Lvi8LvGcd<P&r9Qa1Zd;-n(>7&H#GQX zQ9VQFuYa2Sgg>tiHkRB30L$6t<9f@hulf6_AMiyO2(l&xz91=EirT}P(MSY7gnGH- zz=FL2{P%V&P%503jc9z33PK%*Z_I|uYlEvP7_C`3Cg=#G3+PlElvO)xr8p_Co{r6i zU{43#ZXKQA9~Mq_P=$Y-tV5Cu_v`pXQb#At8UU}cUWW`2xdd)VR0Ti3sGCM306y~e z36wuAEI{pS#gD0_3534<*5z9|hw=>>1q#SZl;^s6pJ}v&zgakPP}BabHqlpoVVcE> zGl5HR&W;k#Q)M(7wRHMME^Omdh@7qr{+t&Z#|Fk%<3Yy{$tnl>=aT8Z7OPz-bc3<n zq-$J%rpFnjE(T*KIRa9y*k`o9iAGTos|b#z9)Zvmqc$`62eO#9rur0kY~<P~lI>yF z{<`f$6r*{Lf`8YcMh)rYOscXuS~Gd&d-Y>*LV2Tlz50x4dNWWl433m8_E>Rh&GqMy z9JT2|R>_Mf?CJPFU1`%+TxtxY0(YmAyoG(mq4!!nkjS+2)d*iN$U}o})@7!;T{K^w z7w&`VJ(J+4iOEyU2B4csi2^?r#jnrR;7IMDY}IM81wsb7Vz*KEX@uPiIQF1DGcDJJ zejghAS#b^l+IF9%0dfa7<&FpX5ki3k^&0@{E)H2)43#;&IvgkOR@`wN0i$NszxF^` z=FMf=sg=WLy`yKOYGtM5ROx4r;l`;Sqs(eXP%X4zRn(LjZ;m(-EDblUBJ@~Fd0WXw zB>1bJzQ#oiDos**2sE8vkOT>j;oP|gE%*gG<+akq#h8<4?|}d!z`lYq!0kPvi_A>~ z{DoTpO&|bYV!z6fzY9vmBLK~)wo<<#z9UX_PwU@oUoRD#p5j*S(^k+ql{6thigv_d z=m{_o2t!k4Bd|=KUuWjvB4BzFe9G>XjtR*n7JY;?*-3IpxT@1NB1Vu$J*Nw2^r+;S z>uV}eZDAHL>3~_BVMl?zC?*72FCj=tR^Em;`eBulv(4?e``VWZd}bzK#$76qCa!2W zB^4#>JQ>uY;l2k>jOP)DxfLMN!`JJa^&f(6$g6Ir^|QG#)E=EIiB7zag}WHY%eg4$ zjheo2`HJnYx&1GSs1a8)R_&FNz_DA>`11~cs)rOJ7q{_O2?X@eGE3qufCv-y*q5u& zPtaK5J11#5*~+uxO047bkY(>FZ2JVIRqozbruDN)K8p6CM3N;F*qk^!z-j@A09b_E zBBax~2dMXzdk?h4L_3#*=iY=GaYleeJ?_*J!$zQ%lVQHecS~b<Xu*_QfN}@*b!<=$ zz?c`W&R76j6J!_>RkhVK7RtM$-o!<$%J$^3bW>HywCg#HiTO4+8~jE7?ghohV9iAQ zc8@&mFG`m7ym*UR7i4FBp<mV=pVXeQ@8Fu$h6sW6=ivUp|JXW$JE?gBdpos!OVfg| z7H0h<almBo2f()gYIM^d(@3#6ZJh)JlDX#PUHWkopAa;k(0K(U_TL!VTukpCwo~pN zWdPz1mamFN10j3k&n?l3W|>FS#`r+_d4swv|4b*>y+(cLo*l2@8Guc9YY?Eh)ErBI zQr3X6{xv}|O1S^vSVxUJn*s}dpEfmS^?JcQ$<Y~dEcB)Z9KA)dH$`qX;xlYF`H5Je z9Zig+oTP6m-@}?0_0s{a+)^M_@|m658FPjat&2yJTUJ;`c#WxOz*6}$Ix_WG1*Xj3 z4oqfkr+Lo^967C{8xFqpxboACTVt*$$y119%v(qcf<HipjhNz9{#33k)}QJ08#D{V z%OKBt77N3#E3&MOL+|?pbtD-tMR1}g=Z|V(e+?LzZ7?!7C_z9Vi^Yfj*oP+;iefA@ zOs$@#6F7sRWg?Gi*rd+u2eBa+1deb8wp_X4>EYZ*i?ZRn&qoyWWZfeSsUy7wP|IXh z%qKDC5Xhq*bchTW`q`vki<6uT$_{Qu_uco(1FUgy3Jhk}VK4enR?xRS8b#;)`{CaA zh5)}QMiDl<yEEgUjU!R9U?0YiE{$V*TLiUva!Z^h|K+$6FnY!$eZO{0n)ibnJftb@ zKtOn@t(98r)m@_gf-Flq>bLfpR?Nkem~}|Z={O+wj8G@^Cw#_9tT=Ww!K`A=$X5#r z>~(S3mMG%uEDLUoY{Uky(<ahK1_E%8b~;yekN7=KQwI{6ab9V}Z4U(aE#QEJ>xW=1 zBXE+aBkV(T1KtRY<(u-OOTY|ROYHBzlX$@c({UreL#oA@jn;QQ70>5ranjpEDv*vu zQe1{?To=fg9j`pWvjK=Wu;mJPr9YA+&$=Kj1+!suXTZ$J6=Y~_ge;0^V4%|pqUuCy zHMB<n<XAlrz@BQ0{yGr|sCC*`=OoV={EpKj(-wpUv|+(g5mBe+1p?zPl_$;ewE6tR zE-J8t<w)e?9q7F0{n@=2Fei(Ki91-)eytu$tZpI9UE<e0XQ@X=OEk6RMJ;EK!hF9M zFx8GdJ({Z<9ZBkX*8+rl7Rl{AN;x9m;k^mObF4k!O`a0Ke~qtKR(sSFCz4|zP*3OD zO&{vv+dH!}>N>@$#vVZ?kbXoL^0tPI>dW4{{^+!Pj{0)*{JR1H4n?E>OOm0<oY<j> zk3WJoHbCnH2#u#yIu!`;>BuYeEr4dc=mcc&!otBg#3kNiO$#8WEP+4*cXq(;n8`5} zyHfvfCC-WGm*q*x2sp6&N#%5!+}yR~L4yT%#-rzV-BgvV0vfwWX@OVt0E{_iK&t(j zufwe~`p#cVZY`o~SPqHuyb2dvR$;R!#Z+rerU_4<yB7qNEDk!(7x17Mb<X%)HwO6P zEI0k_wZjeg%(-DTU4N;nXj%~k*9lsuOkVJh{D?Glr=X^nSzl=MV<~9R!PmAhxJZ7C zhoNC&ooT*9K!*z?-U<Fhwz3<;*5v#w^*dhv-b#W6sUr^en<fNW^H7ur>9^CM5uFME zn1iQV4pIs#Xb0LG02%WT^|FPC1O)1F&T6sSg7`x_#{u|n)S3JxLsof*%9rfj_MSiM z1_J^z`)f#sslT(|gm&rkESG%R{_=#LRF2-z!>^N%1Nx=nPDcrj>`FMvQDT8V3+0m) z3$EP2IspPOs~IUssSM&jke=yonCi>cMCXoswcW9v1E4v0?jsU3kRbb_xlDRw*7G;e z*O{?C^^@-IE+BHI>iwiU&T$%@lGZ5EIb{O^@b97^=kARTyo>t9ouZOg4^5$8_7|Kd zailvXu*<1*<RB(U$HIzJf?C@`OMPSRFHuO1Y@AFQ3Hf*oC_0PxpV_KZJ2Ib7+-|eF zqj5`HKd9>p+Uh!~<YX@jtVcsJP{vj0j@`3hL9hKEsLxV1BlVS)xXLAeChO-kv%c9W zI8yJ!6FOX)LBi3I)4<q21`ROLsS(RMUls>rrhOmV=ciWO4_pVPVNs?55)br2H|6cm z&bT5Gy5plp-bLNuzaUNaVy(E1$fs)5IyH|in4G;`3KYQAhpumOPx=gGD<3I$<=~bq zzU-t$Zu3}FIiS@idzgc_9$VHT0f0yv<?6#I`1@+EcfAw$2m#8#FG0Wv?8$oVqXOb0 z;JaRC84j6Q@4XYu2YK$e-;C;OBfM-~9&CQ&&`j>hX>RcQGP6I+>_aQol#mZjOJ707 zXX~x%rki?n+hbCUlubWJrTA#S@m!8<8_HW4?1?ZwSFf)EF7la^0q>x$;Dt1L63vQy z48Pr%rzx&<EEgwZi|hW?lu~5tgEUY*4mKN)kq9C}5nq0O*B4FHLO0#&oKg`|b_NaB z6&we=qHBx5l|DZh2v{YUBXx>d3t7Gc0D8r>VcMOQP^o%>Ul7gOxi$-wGXYXf<VHm7 z4gv;IcQ(e=W2(1Br%_hXsTpW*g{ZU>=l#_0bgb3v6J+?qW9`J+$<zmfsOuBx?Q<8u z>l&ky$)r8XY)~J8NtHjM9P-?A*TF|rR4#x%j}efePwi%)MX<BD%CfYiP&^MJ32Q?g zU?;lYSuvs;=+58EJR;~tor}Q02>>T}g6!4U_fPyeeMEzqq=&QodYM00AU?@Ios?OD za$wxaU<NnFMkziWZFL<|o9w@Z>O58Mpfn(OV0{7r%+W~dCz)FSK%;se#r4&(jc*tX zr;Tr%kvYT;(JWN*rv_Xu^bvO&)`@4CE9cObMWA)I?$zj`_tmrBM`0rdqNXR3^K3BB zEby~-ELFy(Fx<qN<xqUQ1X0(mX8{%@)1QrMm~n_WvekJ6%L&6J2LA~G8`C+p2eb70 zH6-V+ED-~Oitsvti_^u|wJf<b3|c2moqo#BQB22aHO(T4Y_`rSvt%!Icw!l{x}q0U z*E~|yvN&|<4zDrr3qX#4nFm~!Wj@~$ICk1JVs9g|Ed&|*HMf4ve8XFRBtWsg8eUNb z4E)X63Hx>{t^pGdjSd<O^hKc9M5mDrK|N~A?AXJby^#mcBcp}+<m=pEeOW>|IBzTP z#hInA8p?0Y&M<g^dx8ZgV^YoSw%w};U*|i(_>y%@ehr5tr<50qJf;i?K)XrpOSnnq zpCCE9G)SycIvjPpR|^*Q0u(U)>wtjC)O=1QJOV<8fLu6{+t=t(W5#G~qkWm_7l$CU zpgPUH$?hu^$L?ZItor?UloC=^`JylVIRY9P_JK(b&OSjPxggODfZ65ERiwo7+KB1N zHTaAU>-3Ib$nk1t2kwGEcWPH_iaY#jM&CY5o0~-$lJN(Htzzaz7X~BitPe8%mG4Ps z_SZLsw=qRY%Mvr+@ekNz8U5S1Az&~BnQ@*3s(+QEh)H8`WPv;ZeWb~=e@~(#C+O!; zSC|Z3KWBpf$Qw3=rZa4t@}vep`5w|7E(-y@4vt!u)l8iSn$?BcSo0l?15@Hh31GDU z|KTr^IcO4T;)i!;z>5z2<642^MBck%79E-sUAoC3c8YMD_QVuKS1vHau)->RZ#P4a zvmVV8yGl<J55$ZIb0F)DYu=bu`Wgs;xNS_+JL*sn_l%gxs9VtYkn8xvL%LA?^?-n3 zG`H^=Bp<mQI@05=nosMS&4C=JM!N;Fe34msL6o0rWpvvUh_{r@1On!qpz>B>fFA<{ z!(&)qq#x|MQn7B;HK@9~R$`U2DXNU(f+p7I4*5r8FDj(UO!0@7=hx-wOth<7#BHvB zxSAjQCYPuP148+8?09Q#(eXl>^*3C2i1&q1t)m*+uBy%6nc!W3ge**||J6US@2O%o z;9Quh1hrvepSw=_Iw#Cs$|n$o-Tpv;!`!z{I_xgCiEi8Co2yo7tQHBXtR<^#Cg4!1 zs=%O;pyh(q>yR1=t?QMX3kQ0Uv4ODw1g&K#=hjr_)N*kQ`0aQ8+&zi^JbrjB`aFsH zC3`A>ARkc8JI}gWUq`TZ;(XRGDL(z=1yP4a@T!%ONxhiZ{ULu7DXV{RqrB@<k4PVq zlB>hrIB=*-y~{lu-gV-@9+_q1^hnS61&4-L=P_Q15n6m}mhw>FbL`NhzDUAWn-i6p zN}lbrdzs~tHCPK0e$8Z&`R85j!uEXP$x-57GD2e452-pBv_&^pz4~m&vCwg(5zM(c zFW~cQNnbYkOzOffho6Q0IjSb<V-xjz@F5H94}p>qi`FcSJUSkps+FLFvt$d*CdJ2s zB3>HyO*SE=(yR=m;GfD%eV8K1HNm_V<zkQKT8bP<xmCx)9(IFLor98@<)~*_U&}1N zGf>d7ljM%!&`qH@kEJ?t6bneH1Mg-xW%GBAL=0TJ2&Z%J2>8Z7!lG+BtxA|Q_CE^= z3Vs(94ncrTY7wAvXAXkzoy{hrFvF357O%I+YjO(RJWq;9@=V#e$1d{4e6{MSbhy5$ zO2nz2&dDs3SO36rxxIw#@`HX(Z8>MZu9{;Ykfb`sWk*l(oho%mr8*zn97$5$bHwL9 zb9ge(V7;9%Skn9dNV3_>NL!{ZYxQ#m2m@AyI+GdFmc^JMldSot%C)Let-?l*PuTC4 z_o#(j$8(d7V756jqIJZZ23%b8Q~NT7cBa~IR8`^G(i-htJ9SLm>=erup96ro_?F{7 zOIgZAw`-CStH#|xH6WsSkR9jm1E2zb3a&3rMwMoQHC3FMlhfDKb94Z)cyL74WzsZr zn%R@2##+Q=Qb(*{kk?J_!=|jNY&<kW2cR$XQN5woO<eKrYT#kM3;}#m-CH$u9SnMa z0X#{}aOaim1RDUEzuLm62JcE(D#Dw+JRMT{ihz0<95ZWMgS&K+)Xd2D&L<7NF~YX6 z?>AKg+~nIt2q>0u94?p)NX6iQ*^ps%xfDYn+yQ6iie|MlFexD5lMC@NC(%hwC-hMk zY|WR`-*PDcpniM4d{R7BK$?#Z_#V^zM;(TxL<((18?G{qta#wXoNB}GVJu8jCKR>D zEEG~)pg0pi;wLq$4-@8$8dX3mZiMT-QPFrj*oz!mNseFGg=sd-dU^cOl0PbyA!!MB zN2FnKKSNKp<S(>3IuxzT=oCgJt656?*HMV=3fddKijnZ4iHG><-tVXBBJ;z>?n3Q@ zj3nsTUjC^5E-%V^1j=OMe==DFrKrz+kF?wu&ZQHN3>|U;L#1LX2fc~HM6e+u8OoF{ zf&i+qf&&>*7PZ0ye{L}DlW|J4;l4ZK=ll{NPvg2BB|Ib@9{gpR!92|*WhY4xpsLKW zq^&4h>oasUQN^F5G=^f<d2_&{rY|Y!0NhK5jmN{`)q=~T5V|z=1C#rbV-LwV^!a$; zz%Xb_=E|GWx3a$nN8Sw`gm0brxY!K<ecL~^6Q83eCDYf1<QxT+Pvn_Nnhx*7Y;158 z^hcLvl0yjT&e5yQ5Hb*z9iOJp#V)p>$S&xHp1U)2;rL$m9|7dtK!C2OeJv;EE)3Wz z??Tzft~1f|Xwa`}IU|IV8+wpPy&`2;f`7DPC7(Xc2B`PV1wY^vR7{s2iI^7;W=7YD zYELMg9y6b>>&-cw#@J&pmLO%z>ru6uq0pg3vOML#-bjOIXV0gjXWtosrWS38PVz9z zg7i9UZptcNm*VO{AVAR_I@@LoRF>7fI5nJVRX4$O;O|#}DKebM^`FqU(Qa!Un&Hl> zy)uV!8QJwIV9se0Q}8iPjl0k|4MjKe>j$RVZyPi!fK*5S&E1o!Wjx0^(@{zu8D8w_ z#|`BO%za<`7=u3|C1?&!J3pPgFU^ItOtw~5%;1FiLEaP-05$w4XnP_s%sooI-s;^u zxOWsN>eqgR4hV3xxLAjW)&PZN#9cq>yW`r%G}<*>0Gm983TWlbzdvAU=geMZMYT=Z zIM`>rdA;PL6tWN5(n^8(6;vVfS%S*-g}^U*T{KPDkvU!Ba>+moCIP6w8b($?OjX4` zy&^%3_8|wvdy{mW9I2GxS5-c&*U^tCxbpi4#Ma2xdKghxLo^%^K=W54mG2~JHMu+j zz;D6J@1E<CLt+%NxD+(OuRQ3m{`<aKTD_4TG!T#^O&P*wHMSE~CP@&W>hxI8@#u|% zZ0^>g<`>W*8AjT%QzhZMT2_t#H4$)C<fN(U<S>v8gFnj{CKpm!exQM3oiF0i^qT7_ ztmnz*z^6RE7A4i@z(^Zs9q%aPG;t!U%I#z#)^VOvQ%*5ZvHrjYJMrFqmU+r))oyR_ zAX+rXGh^IRSQ;!N5TJ?i75gTpv6&Mm-nBm#<{MX%br9nG%{4Ce6;X8K2*u<!S3L5> zAvcetF9d}rQ}h-DB>~WU4jTxtHj-K1196I=v%%90bqbT5e`YbC0fW@o%m-<-X2fv> zJ+3?Gr@uEiJFE^M4!Vh6nd*YgMLO^7kd=eGf&VTxI;u>6_LVz`E&>rd^^#rqZncq4 z{6zB6t}Eg(ML+enW#bOMpP`=yVs!vHG_N?J05dw0b^p(sx9_?&p97vk9!vkpperh9 z{*=IHxwr?}H#tL{0nltRz|H}zYMtQK#QCIvV6!RSO(V1QKRUDoRKY<j=zT)qgCcgU zZ%2@DTv0u8f{uAp5xdIOi6c|wCniT2i62z?C3S!BvdjrmtS`ObFH370%XDxiZJL5r zHK#qqq3yfRkyrK@<B4Gu(WX{r)@O2xBF?za8dXXlUWu~7KIoj_Sn#YAD%#;PVk{v) zju`m|miQxq5Zo|rw%Zo>&c_yDR8l!y`Di23iC#SmFl>Fs-nzg86hWO67(jy^I%6Q$ zZDG|j3=-5!CgVbd=LZgNUUu(07zw<-3IbZq?|oGhcrl+@;G+@@fLR1{9rz`pPq}{X zn{3yK*uj@#GS-fZd{eusExFqhi)>jpg8`URCTBfQIjJ(H^;%6(zP7|yNr!l!xSt=^ z=pY?6C2cr4RbbY>sy4-_-^n{mGa>2AH#jEzpCWPaiU-ryLTAHA;5x{N!Gjo)*iYSh zO$m)%awYv;&_3b#2?We1Z|Zyro)WSE5YNH{ozd_@@B<BO=?uB$;UC`7ie2u*oDeM& zPEMx+I+T_!e5|Uy=}b=$OO=^FTb|0UYVm;q0I(5`<hOyl1Puq<K5P0>feLyZm1kaO zWw5kgZ=+m{ZN-sR1(7G_#OISj>`?q|gkSV_pKHm;Hj?r^83A(Dx~WP*%A7ySOrZu$ zrRF;(O4oKrIhTc-+J5b8v&_?Odw@rg(|*M9{Y&)}V}sMJlL8+h2&n*uKXF?ri}u-{ zaB|!>OMT&#cG}*sVSL1Z*YI*}!(VvkE9vo^0+HwKJw|d*d8&dXeT5wiTUU8Fx-(I{ zaZrd#0kpsnvN3H%61&UG?X{?!*vEhzgTPr4$O5>>b&fPAy05PbN5ZzrC5N9>A0OFq zLyd23bKU;1T~ax@bImFbEsjk9d=>^jJPawdKnP1(p2ab33y+I+O;Go!JIHLR+7<+C zvAIah0RUf1Rz$+fa~mwX0Ln*#ygp~vk8X3Hpl4vR@cfw?H$Rpd&O94o#o>QRaE)Rb z&*6Q=b%v<-+8SPyYgL*Zn`ELeSe0Wkv2xVNrhi-BYJjDul}X4&zh3;dQ?~lbcsUG? z>KcxtvT3*;pgref29>Jm&Fr`~B~(7L(Ukhl>6)wy3mvu;dUn~ENK=N~qdTd9v=)Iq znrVb3AP@kb-J<E~5h&>JOwO0ONJSyjm5G()mu7_RM!5MT)Mz63d*#Jxzyk&nW+#vn zq?BnIy}e1Hknzxn8l7T~t$gck!;CyKv9=@2j3L%-qGT;(SqAR{T%?;W^im5fD7y+; zS7`<9n-g9%iNI@5PfUk`-&#+0DHfY2EN!C3-yERNs-DP>J#VUWBy~o8lf;jyNLq8& z7iFbRp!Z|mNEVV1stt$JSrL_w2L1lc=E@8&5r4gM!F>%}gEXsl-Gl}lC~<ua5Q&Nt zMneUEkAuwfdm{&Sq+yunqp8Zt<|>+5{)t$v7Y4v$>Q+;vDODO<D>Mo4$+>om&Tz)2 z1{|@Ux|ly@otPaunmJKjuOCQz!1gIK&Ok7t94nR8(VQx1qgsfOvp$^YO%#{0omBU? zuYtVx*eXlS!5Ne?D&`b@t+OYp9fM|=(UkCueQ-$rMF4x&XLUwk#mMZTTu(K?@}Q>M z>=>+a^yYS4Sg1ogi7|z8Y#Njx2*jLP$+arVu<NFw-y<BP`$Yz`q1GpK4~blVT#nJq zN+%_%I9*bGWd@E$)LJLn${bG8>PG@USVz}Jd4l{LAfw!abO;>jrr<f!21gbd+6b|T zq~ka}A8QZ2`f48T=#ngt@8^<2>JLl=6}xq5FrZSB`P>Yn{&y6DtJ_pZIu6d%!gW5! zQV>(D3EDzVPjB6%z@9~eA*(&dl{M3>d{nN@V)VgP7SDUD?pB?qbK*5Q{jP+o9BDr> z?X3D*W&t`yveOoH=+5&S4}5w1pGTm(f8L}Y$IS^4rEywX(S`B|3$NFOep%~-<_8HX zr_O!UG}1OoN+(?arG>&Bi2~WJrPBT|kGJTzFHt6QSLvIt)PXPe1~fXQ_S@c$@+y^q z?38gnVvJ^<4GU=B<znlKEEkWGT)Y6KY+oFUD1BTrL`nn#rYXOzg$q?^oAw2+HcGLx z0PPyzI+)!J5`P}&Jb&TzR4HDE3?6=M)ODs3mSN-*IU$ol86&ah>`cbWq?%{08=ZXG z2ck?|f(&}Fpg4Yp$$LQez02mp+noXtfL7PNw>Z32@1|by`kKd!b}&p5)tOA<`=$q| z8~p2b^<LR;qaHI|rNgB3OzYq&{gH~IelVP?P>Bu_6p)fLI`XEtS><JDzZ^TCbQL_; zgM(I|lUe9Zmn_U`d}gaQ{Mk6sWZuj$g$mt!`8YoFE>YmudP{F{1r<f9vdI0Jeo!(o zRtfo?O<DYH&?>Bx`w0O~to=8)(qpc3Ph*6|DGkk-<IK06HUJnb@R=jfbITMizb)6N z!dezT@*L}`^m>XW(7t1-5hvD<>Nf$}D_lIE^?wR6n!!mA)7f40BwyLNCL7TMS-!Jy z$BmTL<<u?X@$2U}#wH@8)~noo+%qyKHJ?Q%0}qt|fS$oGOSLFP5&QZNt3Ed^q;@V0 zz=E8<9_deIMQHX(cXMisAu-9`kR6{HNT4?W#EM}qH$Fhnwc6x^QUQBS;kGRS+Kneg z?K?7LPoJaWR9YJ*0}>%(i0l<*r>b{f@b^i#e$v$|8c7uJ`S7bKUFfu}L610bPui+Z zq|a(1RGer(5C+^SQ#ehe&gR6St3uEz68jcFMd1nUuWb&5->gnF3lK1<`JIss^<G=W z?rl3N-T?2?b(GwpVy|d5?=4)B4h?jc#VOSqBS+=s=l2l6*&H)LKfD*SYIr;?U=6%N zAc`^XYL;mx_ybr4_JU)l;k3C8AE8W1>aaa4Tj^Mv-2A<upY1ZMCCW~-iyUn@!Ge$U zFi>F&h(BBrtBuaV=5(s{+dO(;ceP&7<y={xX!sC)bXL<ObsrCsLTdG1Vr9n3^DKpC z3UW~#iZVoqliieUK_Ar$+C9G9F~1=lycsRnl-HeHqT3hxu#tIj^fp1bD@vVdL~8+v zX8?d1wl2Rgx^)A;5}X7(RU6&S^Hm<uD$>QN2PKA091sA&=O8;^nkA=QBo9xcqE>h# zD4Y^kQ~rbCKijo}bJL7)o1*y?ba_NMdM}>cG^Ft)YV}Zqgkq=G1v<OamF@L5K6V)= zNmk3k>0A~(Yv=;p_daX>by+t#(#qUT_lRV<zBWSz6qx~i4tLlqXcc&@QWE!-%7<+T z7YQnqEEm#6?MPkR6S2X}1Nyz43~N3`et87M5VW`)*+B2rhWe`gHRc!koP2PgFJvsp zASK>H|D}r}d0t=DgTyn0)pPmkS51+YU+>c0X2N#Q(mBA1a-h33ZA`$R4zL9E>wsSJ zzlFg&JSzm({uVnKgc2PvM|QxtSei`CcP&JFIF-rmf91+457X)Z6f|?Q#!POq44bMv z^>b*<JRkfe=i0Gx-Z?i1CIJ9dtp@-Wd(o2|EMhw&m1yLHG0dVFc5f!>#}9sAb_QU= zrc%-%V2TBsjMzFf^(`)g%-;QX@}}}i3v0^&xXmbs27ti~Scu7elI)<_0bQ@eMx^Y7 z6O%48asosQM6rq#EvfC?yUWGcPV&~HWKN|~6231n29&;L_D8rmPAXu^zwM&GZbEP< z?9;ff+0dWNp&>;+ZA@`e<yijd0O+QTcs7}sQ1N&HvWT~9$Iv7$GDlGEW*HV`yHL29 zJ()`Ee8}cFK*=S0{Gmhr>q6xWz#fexZ3tdt2<d9~={Z7es^B1dV0luTF-*-CXJ)UL z1Xoi(fjV_J9A1nna1mFKe==VsDP43F$XgL}C4<rs<`UgVVul;8Hj4Nmulm=Fzx6ws zzgdH2+GvUsajMc>hT=-*C?gnEB?$gzs9XOgNQn(Z66OkQj`9_$Ppeik2Oj&a%MQk} zKCq19TU3qfPcwkrT6q*Qq)(Mrl_&?ECzC4)otfRoo_FS=*8~U65!QpF$e{vM&s=54 z@rj?i?-L|l#u>LSH~*k<QGgWJR38lZv{orA+_X+*;fpoG>Dq8}D0i>rNXxTxnq|<H z(}(rNApB|<uuiPONAoET5s*TJ#I;M;&FDok4+Q82u;O0dV%r^u87HeCG&Mdnx&;B& zNiv95dejeUgOP)4IQ+4K+qwx9WNOsiPQF1piQ#BU)Wyxx0!D)`Jw_bcGqYz^&&aI{ zAfVxD>gq`Y7%ab=&`0E^%UY!T!(tTtwQu1s|Ki??Y%Pa!v@+=QIE#VrF>hQgx7`3- zx=H#osejcU`sh*6X!wT({_K=<c55VTneDK}8->pF2cr&(WIH#$Qt=j4p+iq%H$wj} z?k!b@=JWe+VRoXoGVRPBF^42Ob@hXPxxPU*3I@n6iU-om>@sg@V$2&55GLjbY78Yg z0t@O4plCmck0rt<6Ue`eQ>=D$Dgs-Ey2yjQ$$`NyvAiN7|4Pj$_#du*eJu&{tF#Of z1d1FQY+!aA#5v?NhlNMQ<#_L7kuMD3J)vj*!}Ib&2{?$ADFB16nM#MBr1q6R+zyzI zi_h71;t9^2C3a0D1y=MML8D-aoB81T{8F<U(<S(?nBLSr#>I!L71e5A1tYXT_R~Z< zugSSpz-UjD!@r9RClGX?er<48%Lcr)(XC}f40;e)rKBd=R6rLTG6zks*~Ja+27l$o zW!1{LOST04+&TB^%z<oV;LrLpG3>S`3OLk^)X!^>f^5YxFXW8+2-8LaDg{A+J4PGq zd4~;l83ij`8yt(`^xP+NBN^E9P_D@Xp)+l<LTdB|VJiRucn=`E&lYXqFUL)3tfLIt z003r%74d{lX;Onc;4ygK9*)gJJ@C!cACx=ri`f-E&z4!RQ)k+o?b&p5w5R3)&S{^9 z^<aB-9B-QJ5`cW1=wM9$wLgzHet;I1<xK$uYAXYVb&=$b3Q}G9?Kpczpr|sxSC0q% zoaG+?!GbCismd^-L=`(UP5;QwaV$?3r*BMv@QrpBHZ{NM*sci5<`v5f0Bz$YS%1u1 zm^wBXlgsLO&UY<|k>qDdxA<Nn(#L3idMwLVeEEH*gFJ>hp~_TwL^6@56U;W0nRtst zDwR)ipT|8x0nT?sG}~cltGam^T13Rh6f8%iN0Uf@UJbp%EF`#5t{40{lbvMRVHW`6 zdo~7;jD~Px!<POY4g5wNcos-fy&L2%EX8NXRL1ft=mkuABYy`T1gFmCR+>-Rtt}v< zgF)gt9C9JkP_#jC0So3C%&$M(N!Bomi%dM4N<QT;1E%#S@gT(dhwlpl^`21k1BXRo z{1-WFo`(L6>2>eD<c^b%K%-Yck6-orJTae>+h$XO4V(dUHmDN6)V*@FpW8<-DBq;p zKOonf-zXd@9btdPcWqdqtS{86Fs^usM2a{fnY+$uvbPQSzLYY}Z1rVf?z$*YR=a5i z<}hj)QKf7CX4|rrO8`xCDH>QL5a^cGp7<{V1DK=m6=><ma}y`p*-dD@sY}Ck-}Ga* zI!J_|{J<f=fOB6SsbJ;UPoED-)vIZW3<Ckt>h)nanD%n8Wl`7C#XqqMS?I|1Rq|+Q zn7lonSjM@4(z2LfA5=io(ACDRo$~C;R!lug3Oc|eIB?Wei;53mjr-yJYXUv~r&4CY zLS9x?+Y4=XA%s(wwn?$i>Gz?w?y|27aC=HkLS%B>h7&(5C**2qj~MV&Uh&Y^u{d6M zJH^@>B%B%atyVaf8<m&e9fbg)a0c-)^fu=cwH0-%WIWCg-pmjO;JhlPGgD%XgjpFx zYQ5^DxX@5S*V*oKfikZ_*xBvPF+fSO5yvG**_s2$;#yeTl#MQg)+mEZu*^8?Da2^i zr!Ki<6;((oxqN95;Jq^~{d>%-R^{O{b5+{I!JP~Ba+`&5le#5&)Nq%T$$d>WeS$HV zUGU|m>S91J)={~4y96Zd*)z>bK~t+Xpk^mQom%&!MOVj!csKD)gyx)w!$swuxkC9g z#JKV!lLJIWJMa}zDRzO;T)MgaW_78TKlCH9j}KP<m>j$&yYZK-q3NAdZ{n*a4(I_= z*ubwWUTqrlaIAi8#MzKq#CYHqn39cV?o8l!h|zS8>QFDJHTw(R`<_UqRlz&Mz^*Qt z_h`7p4|<lmJd11W!3aCSEZUjcH9@Hc8sGnQ0GgMS6YxqW00l&Pp+~)!>=?YmbaZKu z6jcShtlL0ljxp6hzHDT6z+21aOalXPDdb=5(aD0jHv`8;`zf(Nq-Dy^*}_c(5D02U zEv5m0t2ccp!<dnWS?A*31%1z`uNCNDq#6^p7J`qG1g0E<-{7-weU)@>N}nZ>R3R3( ztd*KcT8%Y$6t}DX*}=<^p>?@qiPOoEY)c!rbJ@jc5r{39!A!SLfGFDbQ!P+&M=qcq zS3s;9RCRCB(8R(q-cD--wwzdny(CS50He(SAoh`WXjliHy&vfh*y|U16c=Ii=_LA5 zUhcbf2_oBWa@;}p02+{d$latYUt1h~UXBG^&V%4F;60*6ueQb5re@?&DCSc_Cb{`f z_f;{sUo2ln{bGt@l{p4)anrLqQUv|(LtE)DD)*R*c=S-MtW;jsCn?C{UKlYMv^^r> zfHM<E4UJy!fNU~~fcKa2@XT9yKqxld_G3DuQSN(TMXZ~W>ngh?M(%e4cTMFPWf1+? zZ^0>W!A9!Kcu^C-HBc`f3^?w~+uck|`6eJIsY5?G2OJe-_Eb$foG9@ru|_gz2r=ZR z4l;JdfoC3j6G}jiJ2w#Ew_nk7mWnsfgxRtx+fQX32G-#e63)eM3Lgi^c4R(Sut76; zYr%Af0Rceg*5N5&;`Oa|z^X2<3k|3aKf2}A1AUO`Z<~zXtrv90!QW?#0}iaOY*5pE z;-MU_04E9LC_mTmAKAko@U#Hq1WvqQY(WMc9kZ-nxhAEU>_qEByg9R{_}%kPzjHmz z{6_uNfm>#5XJST1NP3t&Jm(hn>W>~*1(o|Qwq3<H;N1cfKD{5?hsYp6l}i<48S>dM zY#p*FWuHYQAqaOmY$ou#_fv8J0Og{fZ#yJd4ckju{Q|Td^{D*vj&UG_aUhc%1{I_> z+u_{P)O!<dIzDNxxVFgM6I+h#Ic*pH`_%1S*7*Y0Edwc~e5HtvE0`T|$t8ZD1!9xg zf(d!6MZhu`4lT*jWbZVGYjZ^97yu(jIlq2F7S6#Hws27J!G97Y^M-+CA<HgdM-xFt ziBxPPB<Kc6m|ZZhC4vR4eXde)+)gD3Wt>%z>e;caRYO2O_!DRlI0rdU!CxhJw%kNc zU9vqu^tOTL#oBiBmGDep)o%r9miW~GbR@4Sf`7mE_z}~>H1HvFcb26Mt>k1$?Z@X7 z%SLg?!F1Z4YF=|qMfNsAYCGFaztXPjL|T=OcC%qj5=1k5X6f-S>yDKOlo97DN*BJ^ zqC6K1B29@~P|>`3=f&72R8@f}yqNTvnnG`)XL57v%W=~O{oZDZV)=#rp@D$#dYVz6 zio4A<OTtWo`rDSd0NssNhy@mESr9Msb~y27M~(%YL5pShQot(t?D?rmfrA8Ly#5n+ z7e)z(?*O(gh+=x{Y$l__f1Cn<m!cECp_2@9EsIlM9tXk1elrexN%fQ4jCiMui4Ijx zHX9$%Xv=TS44l)_#dO_SU}jqW?H*w;y1poNBgXP1`m>)lQMa}<!JHXM#gu3&k^%7& z2qo&wEa;CKfr{K5dHtIK_EbKJK*U=VwN5&bOs}TVlxhl|iJSRNtl!p9nqAx9YhV-> z(7Cfm0A4U$7#dZs8CsH_r91#Qy$HGh{Pl3eG81d)NVW=p&?%3|G>$y};!#D=nkaDd z^(<JFfV4+LmKU{!Gf6?+LDti_v^rA&j394c665*-XLFA@b(#3l0dWXsd>F+0zLv^+ z4eu%Yn|YfgyQgk;;d-=M0f0bY6Qc!}J2Dq$H_1`aggZeV3QU7E3l@04X&dUI`9rnc z)7%A4&m=BbMkye-(E+*SmFJloK(C>buZ!sh@_;R~rP`KgC2!-nX?zL3`q@&#QGC}8 zTc;?l>Wwtqg-nHh;`uy&F_u*MAFb~#UV$*efNpaxaJcS<l#w6R2{5Z4GI{ST2N~@v zjEXZCtA{IqJP@F$MMaS=%Wc@LJll)VfT1+R4#G)lwhKtsb|J497W@~V1a~@mc7UlX zE01kxdWhc-&^F_`9mUw(`}Bt;HhDd_pfX}3@r&cKfkw_H-o@43L=y?Eh#UPKJ(YHy z)pg4^>;J6PNaoIv>aN4mlZ{^mJYkx3AT@<p@1RQNDD^eSv1=9{dD>6`KJ}t9je><7 zJtzjud-*l513Y@EJm>G{Cq;FXwI~+W$vNTZPBo5j58tfB`7nuQA~g^o={Y;XscGn5 z>gOo!vJ2UlzLXTz%z~K<YO)k%$q4ewk>;D(2!iU+dF1={`nJ!(K=xsfuYIRSsEn6L z$46KiO;T%LyahF~W5IgCH@ug<id!E~hfW4KYydVHl?-#MG6Up&mccdgcGM(LZB~p1 zT!-MS!>&UE`+{m$`{E}6^-NudMW~{}{)=ql@DE_QDak|hhPmod(i||oaRa{=`xLiM z@OP*j8}=r-0O(P1(68yzfQ@C`9pDqQmYEN}<waFSjWpRl0DbnOATjKI2W|=_$ZQM| z4U@<hWc7^5GM5$oHZv+0p-gd4eZ;~&`rwLE-8aV=2p|@NXLmSi8$CV&u+8>fLu;`j zXd8<qMQqrZxjJJu8y#yyej&%!mM2&K&A8@fR!9;)A4BGP5ULlnC-hI0YjiZUa#^a# z#pDT1{Xhrn=)1fL&MX8g1||68TO_!7atW&Vu`k^UM{lixoGy9(8Ziv#ZGfhY4`YvR z+<pS<KixMvCc6!Nt^eX3^PIfD%)SfRD>6)RR{prxx0PjMe}*jUsjhpmrcbo9A3YZk z@+$8*CjXZI29nObG4~3*?RomRQk^DO?ol&%@JKky1|Tn<FzBhq1wp_J5Ry1h^-~oA zgKT=4Xjdh37vq#a?K7t(pUH_Nf@Ta;qVb1}`CZv3LP7NHg(@3o>4HpM%V~5m@2rs> z+<qsq@ZSl(vuRKsN3BqURL}@6wrFpSVZnm~v{RQ?{V{T)U}djIZmMc6lSh4hkeL*p zZ4)v?3N!oghX(FsKwI~+8%K_|UGFANNzrBm8*pcfn*|Zortnc?#9NTM{<23~`snZ; zztA6+g83Ff$i5`T`(?@+mO2$5g$>iZ>F`dNDHZ#aQMsbZT;?_xeGa&=mfK&&Um@lj zvAl4Uw{30Bd~g3|M7Y`<pB0tMk-|ERW^hJ@8rvpOq}^1n1LeR`@W&p^u<0!VW6*;U zXpqc0d=-410*q7iunh=gq+uEr$U~9NIu`*h!vy0qYO(Kvmn72WAqeOoX~u<npWTR8 zP^%ce(4sw85m7KcUcXN_swe`qv&pES4rVf2d19AE{Nup^@u|iZNgZhmHYu3{byGT8 z>{d?;BiBs>bJYn6JfG8{r2A~JkaUraAOZfiKyE(N=sEhhj{XSmMIGz07D`SEhz)9@ zwz+qxZO{jX18#;Xbx+yVkw-Z`jr@SH3?*a86#xiUt5ilGMwtoxL08Wup_HsS38&C9 z@Q{g9h>@aF>@|FO?W{DDuAT7}00F+y44vydhKExnC-}|^JT(v?*GQ<N4&(j+W6)9& zKzUi_1P=*Fq{j>dh?~Ir=0K3mNXaDY(%dK2(ivCP9zjjWqvDY4%5@^KIy3-B5b4`? zEJ#=T8IuA)8b8H#65Kin+j`$3m{DHA1OndC4t1It&%sDqZgIw+EXvRX8P@<%j}nsW z1u@+QdIX@>Ju!o)R)&Gs@g?4s)X(Yi$8Jatg;pJI<2+4?JE`9Vv<;Kwm_-WP!U1;D z99SFLaQsGh)GK*NiKgoKG*#!lcrQ6_xSq%+Wu8IkhoZoMf}v>=hlmpeDw33J@Svdz z>sJw(oW!F5#>ufWCjDeIz|UiZa2!v^7@Gv6S^i>%4u59-XKI1K0F<Tg5ql{Kt?)8X zr3f4)6EpJC0k=Og62zGP&3vqBC>yc~xiD51R@b|gwb%R-)P=Jd)I0au&Ya7R&n<u{ znXG~onJ9O7*q+|oH0nZ?OY5t|x;{%<9WvsE6QuK!8J+3G{AX@$H`hIULyX~J$9ME( zm<DA9s|4#s3Hdcx4l;Y>dT*G`Ey%Po8N)`C7Gxg<e}101T03cjud{?9fG=2M&Q~v5 z>pDPTu*($}U#A-bd3qYo$~gs=^bf-f6iA|=o#oDh{9`9*K>f!DGXeY5siDg;c86)% z#dg;RUpfF8z0^7+M)3|}Wc=!Qu~ZY6bqycq$2E0%NR7^6X@qX^XkiTs80)G=ZRSRW zGD4e5Y0?I~;O`~l04;jp=G?$Qp6u{(UVJpv4<|O-kE=hzS$M2?_NahH53dX^#A!D8 z^TcopA4u6jRnO8<Q*$e8s{r@rEQ7O!dr^JhpNDiK;06F2oEP`Ev>A?T;=A0=g1{f( z`<k6iztM`I)K!#%kjtM2lyiMHp5$YIr67QxM!*8|@_>_>KAMqDZ70hh7v;U>6a-n5 z4aV$5+T+sh3@%4}8M9&zs?D+l1r;uEd0c3>Q4;n<qa$ew2HY%iqEWB-#B=8?g?9$k zyO(AuaG_K%AYR`b2!Bc6xO+n+&INT0E#%9I-++!bOJ=lR5Vmc(a3CwR*4vOoTzIcZ zE=f+O>+QTncGurUQkBUysmOn}%3MQkGd41^C0(||LzLK9?=84rW9<i*JgDmA_rs>0 zk>(#;oopNF|9H%WfuD0>I>VJ4L*W?Y6$l^)qo1KhC}fZtmowN^qJj*P2foE{ZkdR| z(?2E1&e6C8u`&5v-UOXd;78hn<k!sPnG~5&nH-iD%G&!Df>0?LVdAQmbTUPaz*RXS z)Yd1Ss<3?w_@+x-_ez(?0W7ST-|G1L1S{Wf0DxJS>bw?b!ITZc-UyFCWNmL59AuU` zF<CJ>0cz3#j)i}x{aJP4NC&Wf<|8ASilfm~HV=CTfSf^+*+&fXnO^^~Re78Rz?F)N zk=G~GS*6|p!wc7kN5)=FeUN{$Cq2OcXyZrNj?_d}PBE+F1tQB*?80#-{80har8BGu z{N23qhqs|aCUwHT=Z`bcEQGp9Re9eTAf7pxiK|(bL_D6uyrORAGy%`SHymAlHqEt> zh1>4)-pqa+%0~(`4zNKqUQ{95Xo!_9D#d%n_JN401dQb7wE_&RlG7Sx>Wa4s_CY9| z*{CV8b}1V)amVXB-x|Y5b<RRvWKnDvj&4vdK-6TDcU=ZDmy;-JF}fx+lm2FqC2U!7 zVy5z&-E>`@4#FMXb+7hx-3$7o`V9emBaHb^KIPi7iFDL<OM`*LGFPIBF|V9eK2b?% zkc+C?M0wo;-u<xlIj%(L=WS$hnRT-td=V5R0Ger_PWMO99qgzMwcrDF9Uxr)Ro*2a zfY%l76n{YCJunll+2pqA|7?my@wUs#!HI7PYl&s&h+i7*G})_hI{0^zSYyLLu{ARe zly!S$A9!D}!^-I6U7;`0`f!ZfoE%+cRGUo`4eoBm-HJnTFBB{8R@~iP0u(5&#jS<n z5Zs;O?he7d1b6uIe!rgNoSY<QcSr8MvokoAh~O0sC?P=O)N=kYn?Vmk%nuLu`Aq~e zrjo+%CP&MUZjOVtjO#PHN@aAL;@=@3JH2^vz#cjFHysrTLvd=Y+Ui_KSE0#-rof3~ z{N~YA_~&Q|d_1nbMA?rY3ug5nn!HV?e*_V@5yX$p9R=8y|8)2}smW^dyZ3(UmsmVn zfFp98>YyIs8Q%OCAh)Up(PDrZBbT9+>XfT74B(&5^NTs#wg1SCduBLL3zaPTlQo?! z3c=8f*QYv&{YB0#sHw=}K)@RG_cA1qVIU+pFFdJhjl_JY04xJp951c({wN4N<+8n| zNvZ1G<ny5<P4VfPp5q_$2XLBLLw$g4S=pz0X$AbgRok67oZ6~QEf=dK2D?&xwlcrt zD8(NT(iylDy8J``jdd{Ou4a<+#vC!myOw;3eqS(-e>f}AOCY{oSvE5mDSA>BW&nxm za#yU?B^>%Fe7<e)i`)(Ql*HH}u<si=z&CJsjPOy9B4LwWH={+WC`*&G&}3q|9Q|k1 zyfI0T=eIIqSQ1~jKXG0qUpIE03az+*7fJ<@mC(UPlz#>w*S<?kxhhJZl%<}lTu^I8 zmn%);bWgCE|BiexZE`k5+Z9T}ba$&SM9vd|6tIT6MXT(fqOyv=He9>>`gn{wyT5*9 z@{zp3hu+sV7TK~WE#Eg#nZ<{eig&41zzp3IZsNY+V)(^x5x2KcUmVd?sSW7`GoVpL zWLRyF*F;{!vnBD4GbK}((IQeHYp?~=xhfKKJCK{#D$y=?QWE{OuckfWa?M>L!V2Iv znp?~f{_^@)%^P0$ffseD`00cjA%ls2xXV`0IWoQAUvpMVh>Oy(0K@p0tiqFDdn&}N z<X%W-sg?|@r<Kf`tV;m5039?bonlc>aKk82_(g++r464E1{B+#%(ww@V98zL--nm` z#13a3nZAee?}bS!SIXbay77z5-?k46`BoqMmK-EWSkuEsrtjJQwdGJnnPllV7B@)^ z$;(#W%(jPc{~o{RdfH@hBkN}JL|fx_Tjz<<_urZNXWGu7Q`_cbBGwpU-qS~>bsSF) ztC5UhZ=5&CRvrV0nVWMiI|46v6(6Qp_<aJ)BL?HR*Zt8Y>>c6I{W*kGCn^0Cp|`96 zN$C<RLI8<%!TZzzfcS7G)6RgbH;Y4?RUu*&q9EMu8oSS{FxRV=tbv$KIW@sa6Ji5l z!`3rRi-f@j*9^WwQmc&w6lK>$Rwn7RYffdC5ekKjCJqV&#k+DVU~pq^y{67}6C}mA zLJ(!0Z(G87j+cJK#QO2UZYUF6(+e=2F=-$Td!+OWcb>sZfW9D^e(L)Cg-k42NcTqh z*0t=&XT5$Tha5T+_v>lM((<#Pi3AoI0}Iw%Mo$EiZg-G$)Y*Otko`o@s?R1;;A3;N zI&APSwypia=(9tKHd+Kz{0F6wL2rlva<bDJE`~|Pjx1PrGncal2EjqqS$~ds-^Yjj zK5eLh`f`n1DvAvUc3LfucI1r4SKPO?2xn!4fX`Hjw4~G#7x~9(c)T=xYY(hTy5pi) z3_6uSCbz`eCwYXw|CTuYxigcNJj{lZ0P>yCNp&e7&5bV*sK;a!WNjVC%Uox^Bb2L} zdm7n7r7zo(?~1cw8C*CIQlyW?*kK-U;)`DI*+=3_{A_4%G~P(U7M>CIt*pO_zp9_* z<%hL;2@O2Sk4lOC$oYj2c}klr{!vYwmZfJJYZ)}7qW4O}ZPDBPGmR#hr9e`7iXMgT zHyt^T-7D(LOsG1?zoY9G9(de=9%FJWr?aqKmi(Ed8CDovUX_2|DjzI;szz2LN66vd zy~bwQmC_dDg+-!8kQl}7Mj0i}TzjO$;|wC~e8=5RFZ>ONFX}pq$qh9laoQ;*q`&nt zDcw~R?KbVTNd6q7y(e{J#%160gf&y=kz@L5X@Gbp5XkNWIM4K`b<qiyN<sRavld!U zpY^XBRohoi-ow5WZ&0RQ%S>P8(_Cw$LAk-~E%mKji&<5E)pjPL%ZP92;cfBOq?D$= z$m1Fh30Ibz+s}9*-JMQ5$#b{@oEYJe;;r{Ir&%!7Xw<NxK)?{SC9om--^YKxHC7Fd za<!8Nq-mG|s~Ig}eB7R~WfK{km{xJda8ycSOoZzH&LgN5+%YN-LrV4H3zHFH`d@CH z`zFz^61@<8Tkhgdt{byw6jUh%rKzZRjONoMtpw%;V=^Y{4i=r|_iQC+VfyRIM>I#? zgDi^(I>io<0kN_JICknhGM}|zGL$)02KT0W5~qH$gqAYr;UUB63E#V9bob(xlo;!b z#l`)#lHpBu^&S4a9^2;7e<NYWK5^i%){=k{-Av`?R97m5pOW!7JXg!C-+?xbKaBRK zjBU0xI<03o+txuZ7kMLS!t*Lh!=9>6V(7-Eh`?jMw?Akn3F72Q?Cs_+#}~b*3SCrW z{;a&135YOL$Ssq3e7oSjbx`_@RfUbgMUA<qw7t$2EI>Qo7JvzRB#Xz6jjx6AD}TUn zN3P2-HP;Zld4HPKstk&A^#@BXxlSq_@PM)=N3tH#ZH&ibA2DssRd3f}`y<|Fx7BJ? zim#(TJmDS%t-+OB*?qH*Sn`NqP9Q=KVCIROK(i#27{E8I=2mD@Cy*$Nb9$n59z7Qn zf8+I034y7t{(ehlZhXRiIEy0IImDphZP9n)f6c+ble&UkKgL4De;=O9$+%vKY8ps6 zV=Jt6zCRL8$@oyedl?kZZ1Ra+HXklNIXYbl%TIm&S{;uhQCr4;C>&tB2HtXsw9xIM zn9Ez3roR(WWIwYR`jwvr1G@_R{4D{YgkW}}(ZjN~@tJC5RWyg%jU_YVb+fRCa{23p z*Vy!v_dG?Jo#H{1hUtA|(rQ*c<%<?EucxgWOAq~3QPV}ZO;pnt4j)_$8P1U)aLVS> zaWPZzN+X6u=*G#H5+67Of}>i8SxcDJT>)MeMzMLz6|N5JjgNz@;ht5eabIMY2t<Rz zXa03Jrt5|5wV}W1mj+qz6R-?ps$MkY|5G>LcPyRf-uI$m^m6QfkkLDuvyB0l*UxIl zq@jBkd569WC?N{wiKD)>?I1WA_Pt8J@;Vk(xy$0v#|xTYMSV~>57hV2ly}@ft`RXI z=EJ*YL-Elt8~yOYV`C#{Oh3l=<97D9c1tGSGDZykP``wa1PO7(uzvS*?y-YjyKnBM zJaWwmsGPOBb4n{Mcv%ZmofQsW*iVF&P|jU9M4uBItf^Weo{i_}6%+fCdi_C3XVb2+ zz*8B?zo+aGACRcLI^I_sf>2YCN5I;9VkgZ+y1|<-waj!>>VVltCe0)7u@x{q8xn%~ zlIL8>y#tPM4ps0=6%=J`yKjZ<Ea1nIea#~uA3!I5F&Kk5V))T11#>34VFMjbzY&F4 z%oT*SSZ4hlOW+Dldl~_zk2omVWH7bFgz_1wWD2m<A3Fz+7BcbGxKdKT{pBcLEGsQ4 z^TOVfV_sco1&@V^1D%p@7*`BwZ*L$fp(F8)o&(I<p-nLAp6zW;xZs*(CvH#`m?f<> z(+tE03lC51xik<+?7YO<Dx!80%~9KZCxi<*%X)?PkY%%>D(Kgr_}E<gxvF@{GMvQ* z2*^lb{j$@!jH%T0GmIn^NjY&u+~hcs-y7U>{&l1im!%82_q&^o@38AMCIS(W2+5w# z--?c;>MNfxN$d|my1;Rd-Z%~Egi~Cd1J+k&B>2ru>}rkO?arU+qPxVZW7+nsD8_FV zJOB*%2WRt}CI92BTMP<Ef_wI1GeK#*)`+s@oz%wO{BN98Rce?k)o!adq1{ZWPl^nO zim@grA_BVuMOZ~9Y>oz9N#L(o1|EH`A87{AsS=A(o}y)N1<i?Mty7w)udavi;1ewZ z>v(fcxbJg)0rHI?cM1ScCJ9klm7_^W`1N|Azj>(VE)j#-@r&ho3lX+O^NrQw!x|yn zL?~b&WeAJ*=RzDJY)>GMbOL*lW*ACSAHBQC)dU)lujnGet$buLd%4O%&IRpGU?_ha z)6LRje!;0C*9}#JS2>h@YKN+#->(`7EFH%R+iBC2;#A+x>CN6w`l5%tSY3km{8!$M z-CQAqo~x_i$w&6&W6iIBjH_!A!Di&N-RG%lcnS>0-iK`FrpFEmp8pvBSX>K903`Sd zuel0nB&ZsSW-!g^{ggnzn-)Eh(UY0hlv;mxAxbLQJ3x?%IrohtI+q#JLX(rA)45di z{)A-oT+}Qp34SH~dvZ`DBH(Vcp&&Gcslme*QfwP1&E*QDX`D&PY#RDp;3%hQoCRPt zZ6Omp5_pEO?c+6>>j&Z3VVelfy@_%-TId?P$A;=nA|T<h4!bF39!Qo++PfjW_$bKm zc-|3rf>OvUrjPPa7_LPsgUxv3d6(kGzVY0`1-I|72>ai1cocSY3uHigG^62#(vyXZ z%o4kpKP0PC4!NmHz!CnWG>?ae*^l5i<r;FkA}}jIvtZxAMtGB19?c!fMwTUwVfB41 zu=>L}1NcHw3+@JIwzaE{-$dqA*-T9vY@lc}JXl{U)>M}dFw|=m7RWZU=kJ3cmq|I( z8q*alY&c@))dy1w5qhlAGYK?mu)kqvs8$#e;PH2v7w!pK-am|tO+Dxrpy5<aAFC|q zW-RLuM~5I{BB}?8?#0a6H5q3rn0WT!^9kgK22JK@0^kLVqi$^vnm=o<SYu@4`38W< zvN1@dieWfb$d>OiL|O<V$6^quB*p6!jy?(fBSni?a=?5}u5Fr{`criRHVz^sG|8^d zjQkscz7fN?qqjnz@jIJ;#*fvA@yQ8kQizJGnjtJ$<*xSR@?+02gP$EC7xjyj_=7*) zL6_5<`n!9N6I&ImdR{3m!H<b(m%sz&1k^X9jvjj>PFplm(Ng^&_XC9;x%H$n{tbIW z`{;JK3-4ZyJG)*3UQJ}Lz{6^4#4RPZ<gc(UNVlDLRLI;gUx{W5{%#Ya5&v`vD@m*O zC>PC_*0sZa*(dxQz=i7(=HBmj#uXKI>=X2g`H)j`48d-k$f#)JtZc?}5EYJ-tMlZD zL-(H^AornY-DE}9JNsm(d2DRBg$tuOAHJzbDAxQBacrGCMj|)lI9o$A1T8xTDVTFe z{@c9kP)0GPdfSe#!(olBfr9&BRHIhs%uF;3hrE5tjvoKBr)&wa;b80iuS?0_Ur>^v z{c`@<8V+zqI%nka0w{>gWtZ6Dd&M6W*6ygMOV`W|Y9pt(1V0v8zv}70f4Er__foQM zY!sXnZua~@yps#SB0JZ=JueUmPu+Jsx9J3|2dyo(R!YZjfFKw*R08~Y=mzp$-i&HZ zWiPXuk?i6;+MF`iRDB`X#+vwl53JbPSwos=7I**nt^)WU3H<6XQqIuqlj8Xqr85RP zRht6Fj8s>{f3Tc<t-bpL!!b`SRzKuBex+h>47;=<Owden3}-tUT>I2gjixNuAto_; z29HE}R3bw%)~&hxAjg2UMJiEAZ_~Pp<>~*sr_9Y(_MmC3efeoqOCUZ`FQM71sGP+x zU0`>83GMgJE<2`(o0URV^#ad9_f4l%^1-(p6271DA#481`h?~?!~jqurg}ogk6f+m z8WP<rT1=+zVRisLcy4Zy@ji6vMJ%@IT@E4sPlj&}@pdMTQh(e$kdIG1F()o37&##6 zck<>6ZK>shAOdofJmqrl1{YLpAWB43KK5+*!sufAieY~lQEFf&D;y=m-tSeKoZr*U z^FHJVWJApMK&eP4;00#_Q47wof2ERMc?vZ{HchzLtY}h+kcSi6xu?3*GAmR)L9<;r za<?3f)4sk9qD-7Pm33!Ms<d$6#vE>)TuT`ceVq)bewUAE!O|oWAg?-A#I%GfVhFpl z!Q-*rmzyW*2t4PNVcVm+_252bB?dP4PnW+~dwmS;4%(>4_{%!tB_$$rB6^|GgLG=J zSF3ex7;CDMmUy8vJR&<R`6sSjQFn>qY0`UK)U<WZre&vtA|_f({L2gJbU{GlUYek_ zrc0v@c5g@>JNP{HlNN5TnrJnIP@!(7p`dID!J?LRYVWqyP2iv9r9-}PPR)0SuNdtd zCL@_*A?wPlNqEKhk4kmjZ5`1sV?D4IRzeJ6qLMNk0EC{EZ%48lnZROlA|L8gYuHnH zr9%CU*<)J+b@;)fzcap~p5H=A5&cbM46AnwiNr{xr@@Gdn2O1>+?(m>$QC_I1M1(L z2~XR#UGc!n#!gtz9ZRf>42yTW<H^X<BLG0of&<H%fxo^#k3m!FT3~`J*^gG>&&N1s zq|)n~-Y_E8HIHt(89!9Tt!(E6!4cR#hZlEE_G2;Pg+eSJ!@jin2su0bX_GyHeN+zy zj+aI8Y_HXe%Cs1?&j_l4XQC-87$c8e@~u>lp4ek0KO9jSCP@+{;w=Ya%hzRD=d~NH zn^oY6Hro()>E}xY`BAIq!))))W)3uy+lr$;lmLfdTz)k(+@L~-W5>oJSCs{H7*7j6 zkN!pTE7Mv%TQi?z#MAInL#sb6{-*y4Ab%!eofSTbxy({KfY!`sq4zgW*UMiW_mkVc zIKi>KvFI0B;F1H$i0pz#q@eeRI$kVULXDa+;;^srhK#*Kw$Ku6BIeqG22NEMd&JG- zkpRq~H9YO&))6p)hrI8TTSa?=?A7|>Z-J+L1M;WG#sJoyJu{0LANfhq2G0(KuArH8 z3?yc%foDTV+Kd#Wmm$S`f^bFmtDYBP0Sae?2kXrKfHS_9W3C#c`3tAaCH_E^WIlTA zhXsc@ZnUw}*|=QwI`R=&@qjD^4zW}2*v3@}qRZrge40vvDyCY*u(L}Xx?eVrR1;NG z7%v+Z#}k4s6y-?s{;rzLRtLUv7AWePF->7b&URm8Y0)!7y&^QL1prYT_{MpcttGMi zDFdf4pGN7j2XcOl#|V+YiPRp|z$$e?2W|hfa%JcCuB+7<{@^|FB0L$#^UI7ap@f+l zVmfuHafViUPM}K9<n?rPg?lI1@6;T*;e@nyj_K7N$kt5LDCdxyAg(g>*w_IF%n)Q{ zr%8H)Gbt!NH*u6-jpQ<sP~qZS-eopY(RD7qh7F=w;g8JM-5^1JaCYMAVz#leD-8JB zQ=!jhaWgK95YZ0_z2(E5haYk0kHy*)VW)(dE;XhTNlx_%hcn+38seCOxANK>t;K^Y zHiU=vlvRk#dt21{5x-Pnus`ZH*|mf}$JzZy8kCK3VdJ50ib=xCEVc|*S&k7lt;|ya zMIos)TFSrSD*frexzHZanzR7LZ5B4S|1GOqmP71v8{<r02OD$H<&Ma&kWKqa9jXb} z3Cs@?l9Hf_WX+duC<~uQC@SA!a{g80+UiZv?(rtS_DMh-b0$R7Y}Ae(FkAPksWcsW zLTSLsIo{=#`~6QQWL}uDrKRJ0@M-X)bN_w7`+a{TWdOYK`)K<1-2tJKvorYM0MV<R zyd&rqwHj0nE=&;no=zEz-o8QT^$d&eHd(WEVLC<lc-6+exppCWiq?chiIVySXtOjf zTTCEl!%9non9|hK@+k4D*cSL#<}2a{F18B>Jy_UVQ1kUS%ZSiyzBTwbgf5&6sW0T5 ze4VFxSde8jo2HeT85Zw=yTw_ekh~ekd~7Eu6Mg$*Mj<?;{RiU(?h^4vIp>3SK$+J! z5qnTK)7s(ID+4AqMq-`V6pD1EHnf<ztUKZh(#UyOfzBsowSo||evOjxx5V86_t7FD zR^*pZE3J`gNms<*CflNR8PW5~_CJ5#z$pQEtt9&tQF(b$$RXwl=!&8`GZeQqA~SLu z<W+6(fiC<SMl++TlIG+KRx6y?NF(^^_t~}bO|fdev$ufK6#5F|$`CReGujg|i-~9S zU~uqlcf>n5_?Z#BaLNxU6o0~lXox@ZgD0|CbU`|a+EK7iAL#{zg~P66(0n{xF{i|D zZGB#D1P#T4(5<ZxYXpVE;8m@$y=vB+Smc%$+U{!B98I4g0Pkjg7jJJQ9guPVSUSgc z*!@-*DDb=ja&T+E>_myI2+j&w@Y7n$FzM9ief=x8$rD&P6CtRJTSV5n<j-TbW4L?z z@hpf+khQ^Xin}x}SAXzrl?_2V_Xdbb%fF}`_Nnv=?d23325z~jra);z<*ehl>K`6& zBsTyCucI|c2kG51-iyoSdEHtp+Yzwa+oqv4U3<kZFNrntv%E1yr4)x_$CjKkoH~2> zB&eOaWOk1!)O&JPz$VNU(5RRWS)5$V$}Jp8Hp+=o>GRu?p^+GR8u5=S7sMS<0c{zQ z5BlM0{X525x>Q3;WW`!XED!+9pQ~X6wV2E6ZcP`^ixN%?Pq<*(uQBy7339JocnSNw z>@mN9FP^9$#NSHZQ7W}r9_+=hb|E@%>%k~kYivD!2-&xYF1G=b#BLZh0Sf-cvTvb{ z-+{mKKo1SRWAzFseAyT|xsKqMGqTCa$?csTG78Zk%!K?v)XAx-ZD^x}3$JIu=`E@@ z3-CII$LHw=Wqo6#ry@ZtH2c(kS!})kR0jm^#}fM<8Hwbx?6m#wj?k#n4+CV>8Cp?c z-_q3;5qS;=0GxTZbKBQ$^#^rFHZ@0vqLayaT5h$0D${MCc?zZl12EPNMv%lYCSEv= z>_qk-CMQ(=lyvE0XQBG)SSuoASkLFKK%@O*`R@bzj{G%GPH|+iFmnrAg$OzF^wrn= z=W%Nu-gVWhwn1VR)h-gSYk5?T%0w9uIM&v(fCP&Z#bgVt=o24H(Gt6PAZr{V@Xc_t zmHR}+Ocp+=o=W|-d&feplC}sFkO*`B0RV2Npn$)P+lDu-36eVPuqpR*a`e49ZE$N` z1t)n}GyeX&x^9IoF+3=OR{UTO$0e(&_j8+#95GxWKToaR{07FiJM#G%$>;6`;iWwo zg4Nf3KlJuteSNbp_&Ft*G-!|GMX;r-GcpJF>|S{J+?!Vpq@Vqf(zekqgvEOK{Jv)E zC(fH+W9Y3PMg;-l%ag82_tLnwU(`*=gHaXL9|AgnZk2Y8LfOWY|HG_zAmz(c(AGtS z^V5yHfVg<rtsMrIw>RV#6iEJd7JNwrP7m5=saZP*xJ3x5sY*$Q4ymw%H@wB+@_p~W z`8@5R<m4Mm=vSExaEm!KyZF1q={OtppPyqmGz%|Z+(RG`z`eJ(i@!gT^JYhc4u^4X zBxMk?vr%`%+M2=gg?AC&L#cW977=+_0q{m>!Nhni=bFOpW8nO`{SelNpA@i`@8j)O zfePwvo7~Y)>q8yM@rZ!ikM;g2!oyQs>Noh-G|G{0Y6)t4l;Xy!Tdamm0Pu$M)z)v9 zFmW@d7}c=^%7;S$@UumoN>6Kn{%%>;U~Gm~7ig^BUUt>#7`S}wY8{>F{<pD&1q&mh z;WLB}3og=a7e?`>%qNk7!CM3wj9>qYkxBNvN$RX1I*mgLEzykBb{E2`qP_KXA)ud- zH3>d&1D||61@h%-LGmq&Xo*dS5tm~(_9FqnMOJLo=*F{XB|y@kF(^0~i(~Wg)5|aM zn@BL$dy+V6v-drONBsI8JoTRWj%B#D-sjaG{u*Q)`WS>&UUsF|p<Ff!6g5}*&@$q& zydwe+R1UUg0)`A0Gxu6`hAh}2oWesm-oRMB_kkDAA&gV`z4b%s0087*!Tuqt`z-}x zE`GNQU3>$}sfS~X4<f-K_8%Y_{JiwK)DmTmtCjqaG8OSimEb20$io%aSw#nbHV^dN zK|N{P_v>qSIp*HmTLKXgksc(<0OX}5XYkn>>}E$0!bSHx#mhs&+Y-PQ!HlQihxcLK z<x*SK;7HBk{b%$_kgPdQTlzN_){}$pshw`tRz#vgY}s)QLV{szQ<keFLt-L`I=#Sf zfW-8O4Tsv!5iu?h1_sj+%d-{O+ceA&_ViaJ^5V(+1G2lzMGe3jMk1NpW*kL1WK6?- z(6XS)B0?$6xlJpU4YR(8=DzH<*8!t}BJ<?zGVQ>$xJw)Ey&qU|jod@>dtVPx$?ylE zRr9x^US-00rUbpme-DV5uzh(ZCqzzhC#xWOps!8^Zh>|MJaZLQKWd(cFKRFt>jmba zKX@;p=X`_wg<t#*50WB&Y21%Q84QoL=7>^Pf#I-dKYY9L>eXIRq?4$-M|iPx0ku2Y zEp8iA7uH^GHB7j9;8?+nd<FMujega(Lw(4EA6)h=@k<ZZE4y3;{8XN3xVP9XY@SFU z;@TSN!}B|sve)=2CK!d{qzxvZLxP9R?!*A_3CSdM81I2uL5s*OB5+e`^MV=<TaL+s z8yq|SdIxg{aCtmKc^L}cQR!=bX>*4D2!iq3Rr<E^duKNhg=ia~6)_x1X65iY3WoHp z!Xvj=1CcJ<@OPxQpK2luC6T2S+z}-kcs58E2zZJzQ{U@Ew~o^rO0uV<klo9ibA|Q} zT>=m(TJvAYqej46g=x}oXvbj-Q^Qp0|8W`&VCrQ*O9@Fpk}fCxOSysk{@L!LI2$Wt z98t?baq1b3q9chxj=18ARXW+1bCCX(V(Ke&pk0m!-glSEr*<mpkP+)@x*%PH3G322 z?7|(;WznhZA=Rz4YtoAFHXPHLfrH*QWy3hiTe5WuWp0tH#Y^N$DnDM|nTpHmC7c+Q zSzb9}8-bD~<MKI-*z<~WXz;uE!!D%1``$PN9<a2u1c|%f3|lDt`oQ-7a`AnwUAU#Q zH6*g#-sgJe85;CiT7rE_0VY_!#=h1(C>RfP2S;2-pdVA3kGQnG^Q#i3zv7$jpSd0L zW>K|mzw|&i5$Yt@n<ezmx8Ls%-_d+7NR1<*?((ARnf>K%>r&XH(HB1W9P~!8e1T@t z3&_#X>u6D^813(hJCSEh0c&|MfNw<R{2iAnyLFg*8LDg#%0#Z1fR*4Zb)Q^Z2R{3U z+^uWj?X|9lFS;PSvpeC3%=fpF?VXp7wB4RU3XKiD;}b<QFuJ}0j>|~<XmE<NA+vWH zDTZ2I9w<4{pghn~OdcfBl^f1rZWa{r6D2_8T2&F%6@9y@0`(Skxl(nNWXm3&51_>L zy&qX!#O#)giiBA+xG+cADOV9>WaDI@<vOZJUB_D9t8KnSD-fR?Q{22^t!lKO?^Ot< zbUif8foG-G-;ezv(&C=okqx|<U)<)x7dIE8m!gw3ApGwR1W(=)5kl}=rH2)XPO{0r zN?hl1;8qpnad93sVqCiZN0Hbopa1oeTYOLy$J(#nnO3(71?Ml2B_0|@E!R8e<}pa_ z)-CC__^bH4HRRjYYxZ`30%-gFIsZK!f)#XNZPLBfyYfg}q!r3ImDe{{qO$!ce9@OO z6^JJC{_i4kD&UFS=WY*oa*E%jNw43pvv}2QbBU@m^4tr_8ybfK-Qm2w@Aq-~`=tV% z-VmFx?rYXAw%@iXoSdDuPZqvDJoIBhvv^br3NHi;hcTLtb0?k90g@%m`IVR)(|V)c z!{GD(LgM8ixCHvALen{n`=CjQ^;BMOde;s8!$|kzR&O>xi26{}^W!Lu6yh@6*(|1i z>?#$YCz>t8BJ7V_mVW-ynjs}k`{B|UE|Bnwot+*0vO^a1e(|nj+G*5p4`@*&e!Ek7 z!$90x+Y#B`^`+<O?cViQNEvHGs%4>FIG$dTAj(=UfPE_7>IwBldD-_|YwD+S)*4(a zzKaoD{$<n5_owDpqsHp&!pMiuIomj-$yOt1-1xWA-hmKaiQrz`4chWf?14;`y`?Xh z2+?~Hbm)P~N7>u6{)?!p_nm1W+Sa2d7V;%u&Q|Rsq4(vA1_+7-`!9a^>UTeohTm3& zq8ko3#>FS&y$G_njrUv?le}znRWa_E7LHr>&>C#a85Ar9G&_elQpLxQNFIH*z?HUW zQb)?gyd0OXMfC8X;V0K1Zl%SB6Gr!-!*+AHGSOwDjs93TeDQkthVX#(?)}d760voY z4Gv3i0;{}ly`w{;&8wEr>yxFPVN>7Xl4Y$?xnCB*q>+8<Z0VHbVUEPjbDkKWZHr)S zP2}Pggn4)feRyFW5*<Qz9?^W>b`V6`T7Y9?Xg-%W(3b)5L`46605Q8>Np!Pe2(MA^ zrrhM4zsr41*jl@R&pWAc_<h%t<%6vFa{?Ijq7w|$^|a5?4-JQB-om<|B?#zca|=zy zxC0JU-G!JyDIU@O?BCMb74iJ+?{`+CfTCUDX=@!=1R#Ll3q+BAu%m%pT(HwJ@-Nbh z=I)1)@6rk(lxRmWi=}n}qLKVcjr{!l@&c=_00F&Dy({^=l?~PCgTUKPSQQPCpnzBV zSnS9TBbSAxK=Q48E=+%~evhP?Lv#1%Qh6Bc16mZD-3IYdcG_tPQYVXs2}YY60c1Q8 zi4^BwL>O`nhPd^lIa(H$^=CT0849y*k+f0Dqc!pc#F9qDxUkjef4HF=$$gdMQ~+P4 z-xbU|JM!C0K2+;7HYbeJF)=k!*=K=;i!gX0ee4%cz_#aIXg60OK+@+^;e@cwg$O?( z5*rDxhGt)8j*bKl-Io9bZO>BFVp)Y@fhw6lJPnz!bIoU-!fsBI*D_HUyF3lYt44N( zKgA?S;7SivEq;K4kIfblNY^S=QU2+&!oCqNH6_vZZ(TfYUPOw&F}~A2O#XKg3e)c) zCGV8Mh(TwdSId?*KR8u5GnA7!NVQn|5HsYJ5bDVxHAp~zHI4%wH#wH9ok4Nt^nxhR zq8hL)ff0&MOtq{Dp@Rt8&j}Z^F$_ig;E4_qG}kvadsJS}yAh0^S9PG4Uo2uUMGOTs z|7G4=VOv+C-57b|!7%TA7e4S6w<Hwba{71wk2(>vl^%yr`uj!K*VlWpmq6RQ3E~k; zP-uC|58A$k;?^f<fa&TA&t4;K>Fi{y$9X3IFOhO;|DrfRkM+FKrN?G)qbH#Si$4Fr zL|3&+n{>r$iSYc2`JX@F559N)KCy!6l?Xnz!xDd@4JLov-g<wo*>FMwNWSMMPut(K zCHt`xuK)UM>4k}5qt0c+kYW%&D+XKFI)L;CF6!IwgrxHs&^52LRy__Ar_ncLjmPwY zO@TblC_+Ee+7o)IStZ2KYQuGw&(t`7hhoR66^r9Ms--6zBFNC3Nz4m!Wg8h2z5guj zKSUxjejb$HcRW$QffeRuo*ivxL9sWX6|_f}^FC|jiuCR);)wwcm94hbZS&GNd*_f~ zd)Iv`PFAady}q0)ldhw}(}=qGEBXmov}SE0m0j4v!Bd2aT+108G%1Tv$`irE-Q)mr zp9)J4lSMEhOWO~P)>F`Dl;fy4TS*11B-hE#Ba!PGmVD;n9EZ6?Fl-g!c+b0d4SK+P z-_HMj@$_#C{UXo>8g!=KEFbEjZj|xtDn75b`h-Eufb5*x*IoW64rzU%G#g!)t3@1) zoMM@^2@I!HU-OB}eRm}KTF&;rgDkpG+TdYglg7}FDM%wIkhtp#s;Zs$2WAU_(BQfs z(Y6r9FPDOGgI*YeaIb=p0L0p-+--xrfYSv;c8YI(kB<mB#)i-bt<TjNv55a2ex8^= zqDr1f$kc1wRNvzYB0Kx!_SFo6NLR=Aq4Wgs&I`JBh1NzkI2JhS)y|e6@b4e^L`iQT z7)nqyLwSloPYjT8SCJ^<Xs5sa*CcJ0Wv6B+d4X23fY@~{91Okmafe?0?;cRW^YF;; z4dD;okzE}}yOWhM7@^a-X;e?gU4d)XYT&)EKU22j;$vAeqaYr!K3Ms|jzs0J%|E{+ zq=#9&HF*3{7TA#>>SPYZVEh2B%wlSN-i93-o=5p$?hpzJErRs7q$zFmR`)ilz_<GR zbo|=c=+OySWDO~Gagl(JkvR@QYBE$=r36AfUnebDGP$E;FMW(e3f1HkCBp`LhWpzI z;_#z9nO;pre5cgbQ-zyvMNuMYx>}f&^6N}~_jl(iyZ<ftX}C3L9qw>5(ObCvb0l7d zT5*cbnVm=bV-txli2#Sv+EZ1?ORFkdlYWGl+GOi7uq3%bmAjew@YM-x>+XCDMjR3* z4%oWQ?jp_W@F5C%DhVP9I+K0lhLR0w5{aXzegQ<?il*sm%*I7)>t=ncz+#UTb7XkD zC|IR^kaCF=pFMyn8#ZZ+W|KvAxiLKGx$Ou93==JC2!*=yhpY5pVzC#nXe%}*ccr%d z!`;PGRgIu{WOnv{ype*x9q;o-+G_F<7GG!lAj~l6v#8fP^@vrcVA%Eb5Q3tiVV_@T z#D84X%LA8)-wm{kFc2|;gJXLjh6swkI)OwSd2^jmYhSE@PxRJ8_xJH>iOhd~%#V!x z77_eX{|+$f>WDZzJcK-M-HEzfvvdQ3uNk3d@h<pfsHTjn=Se$_Q;hB`ef}wW1y^av z9dZO?XXBMp-xSs~-x|d`#}Oe1ZGT1d%o_;1z!)ceP5T>9eQs2_#sq0WXRp{D*+Nb% zy2&L?q{~HI;oK%hOHDf<t$5}8Wt)OgIZFO}@l>|F`bFT|ws1?wZ=6{?*bEqW$v@gg zyPuFbg+MUaCtiXXMML`*sp}jj06;fCoA+VFa2^7(OLl)Ru?w-Cm`Bjp(#Sv=(rtA9 zQ7)LZtDg@j55OLbw>g-lIa|q<eSb_K0`aF71sMPN)E(VBLHkDT%vPS)G~;`Ohn?mi z7_rxX*4s;gr_E5k@6kB4`~5zM<ln``2~$PfgR6FRCy2cyr7@s3*2_Zv`Y&N@m3ru{ z6<qcNqBe7HP;=P1mw_#T&`n2RBq{7qB~OU&<wux~RzJAzm#^K(_xIikL%2D)`Taye zug(2p)=-F0J-26R41i^S7CrN_{JWvRO*ydn(Z&E$N0oK5ifo9jdtnOLl^8!&xxyhB zsnT{N3GUqNDU?+KuUr#B#=0NeA)EYNm{?f%z$y31$*EJ4DEF4G*6^{huPp&DA2wgl z4ox~&Qag#ggmtTM&;DJ2-`=_$WIVh}DD*0i*s$jjbdccMxxiha=p-XChsZt|zAuj4 zH2GB>(7vwya88_~OC;?VmE)thnzT&6jUgdT^cId`*Pj!AOqeOp5HL$V@owGN*WokC zu8i;%yvf98Wc>5xVn7d4GR(C_m$hZ5e2cSW;Uv|m!<X`vf=%mh4Xh+Z>exg?*DT?X zlzjPtl+Svd$&ghnN5v2}g`TL9Q)YXUSteyv{SD%CH&Y9v4rp?&7r~~D;S`iuYFDzT z->Dwyv1{YmO1c?6Smutt09DNLgys@{dZbOx;py<Xg#C{N|Mw45?EZ18|8c;4`Qod~ z)_Ieqg)xdXVEMcW-vXup;rriw9jS%wdDd>fm%A1Qye)YV>*_+`gV@UtveFgvO>mpL zS->ZOf=VnVjdu>?AavvRRUMlNKyduqi^fIIob}W;bRCsX%LjZsJ<`f^Zk)o_8H!RC zF@*uMT6FMK4~oclcyo9kjrSY$L1kyRx1<k)I^D2PQXT+U^qfKf02x*C`qI0u`Fl8C z`ow>&5K*`U`YYEMf&L>mp&5Y#pEdN2sk@gph39_;Od%Rte=V!3{hTg~Zu`@uxijoJ zyW(ni=MCoHKd0@d6B47&mk&-(PG|)c5;TXf5_h+^qj!9$*-BulkVl^!UrEtVu7gE3 zA2(HwA|s=ov35f{z*P>SaA4(lZk;Wp+bu(d8rv8lRA-Do29`?tNyH~tBx`Y`$yh7& z^)UU}&6UcZ+x@gQG%G*#S>_7hy>!~<TZR~GvlgG^%CvBkX{G~CXiGn1%aZR-+WXP= zlL=9uvU>O%mY0i<@%+=5q4g3v{iOaOV+k7*7O+?0d6q%4QoXQm>AFE-oYMiF6r{>M z90V>5DY{+~Ub!LWKqxjJ35-5ofv?c=U5p2P?()0E6$^Op#O0*w9ij~Udqu0lYg4Tc z`5PX5dP}mHebt8(hpnMUt#T!2`BQw}B(hg5O3fW3=pl%|Ocx<H3PBd}<HIfuQ0O+F zM?_@3-{1J1#L&3=S5MqiGn6qIC=rLtu6Kt*bgIp-iCbEL#%8Km@~_9KTV0PV8`eVE zM_PS$-#kMoC&^qk%fw+!5C9da+osQei{RZ;gpB>W=u;>|R)5X&(8Ljl(zHfS=!~u^ zfdD847Y8yBG_8p`G#iY)>P&D-WwB)uz(qj0nW6<$cIc*hi@g&2XfCNiK>|AT9{`vV zd?xuw1-b>`<WRiUBCm48`JHWwcMc9njDl{c9VYppVOh3qrpr~8l+G%9^p<tAptmxp zq!B!oYhp1sZN>06F0oF?Ig5^BgR7gVM|=)pPYq5P_(W0wfT4M)PhxnhV@4YJ!3Y>5 zE1F-lyzH6!NlvzZi5rKzLa*I@w*Ik_<jkdVzJ6%7>+b_`x@4Dr6|S@i(n(pV6ShW3 zLV&PA5~DS<+qgv&<K1j&IJXU|d`h*zy$=hlMR^I#ai*;@u)>X)phW3Pd$<0$$_8a~ z&Ie%``G;Tyy8o{oKT@4;t%#O>4-={H!>gU5pY*<d%=9Rm_`N!XY7QyRCoyq7><ZlM zJ=NjZJ~=_X3c|96BCE$eVyHRLEH}XTX6tV)V6C4u89+nf|2<i3STF9g%<p7|lJ8D7 z2&WTm)wE0!zX7qRtlFo3>pe2rrn+J45<{aqcL#`@!60~PeG&9O;yS0i0Vg~cpUYv2 zqxfRFxG2|g-e#h_U%G01kI_o$kOXcSntf3GvbF|?8sT+kQK4%OBeK5LEGt$v4lv9y z?(wS+F@AS64$Xfm>$X4Vmd`VsN+fk|lhrdn{nZdYZl&0?#s<|lTDrT#PAe)FgHfV4 z>-mKROm;<_`AGlcJOOk*7xu<s(9m&6L<A9j`$GxrzHWZkJ~o~=9n$w)mn=BsV-<|l z4;sJwTUnfhl^(N*2Jhe*V|BOU@>`;-JjC|~ON7w&j_*9v(0x6?PyUTz=Eo`r!_ki# znnFRBdTbt41v<wF>hJQSYH8wq5}%YT5a3X;W0THMvNmVAA%rbq*fpf+>S(L$Ff9!a zyfX_qf{QcJKm)$=ek48u{zc$9!2y^7H7I%u|IooAJ5O(E3B6wAy#m$VqgQmMvXpN= zYrbCFp_@YfB=r=Zt5H(jCNdNUg^m1nHwPtp*$SlvUuA_OOr#nY;51mbbq=05O?L^@ zlF>MwK%@{4M9dZ%h>;9#)Nf{f*B`QL3=K5uwd;&fva0BQOcl8BZ@73OYg2lJ+hn>p za&ERnczOMXfV(U%lc6hl&5j_inpniV|4Px+&NgE{8v<R$i-4z%QP_6{N^DWp+v|nP zWzN*bg1pmvgpcBmH-lEV8PR`oj*^d@tIPxF3@mfBQSP2$W4Rr+pPrNg_h5=Rp#dC< z)>NPt2_<!SAO{nqSEu@w)eE>FbTSJe?k9#0#k3F<l~Mi=+-IgsH@P?PCw}pwGlX?= z&~FkAxY<TZRR1r113nA?x9RVf*1>6ep>5P#Vjl@yI|{q$v5|{c%3$HS7e5)RBwO^9 zH7@v*QK1xTzEWsZ^CjX`)MtQFx=7|CSa6(^GYCu$J2ZX}+ql{7sLw*k7=HMazSfYY z?S1mWedMBoxK-I}?ZEyK@%=6FxX+E(+P7&x)Mu(g1=PsvO0^iKb|32zGN?TlkPGC1 zL&Me&(Lj5_kA2j{B^~jRZ=jR%)rupdW67`#!r^Om5CHX<z0Jyg6x!sW2*2ZovyaTo zWt1IsSd!?FniM3}lP9)RLoxxHC>Crs*tHgF#r^H>s3iv2NM$WHoqM4<L$$N)Q<h;t zDEk#+J(WLGiVLs_hE}@H2ewDPT<~1<w;{W9vJ26vLGO21Qh$;6kR;=CfysM0N}mab zb)ul4FwrTwuD!&E)m{59>!tqktcwpfT<&0`X-(<Xf~<Tb2&h(~>T-(^o!I3RZklqD zGiHuYoL2ucx5r>5d{-tWZcHH2yw={-wROIYw)ONy&N^X~7EtH-Z{$m<6)RuGpKc+r zBxw%afw#n-3Gc7&vJDoZg#}e+57@QTF)^&hm!RfC9iC<^gNMi9mjrNq{(IvB=(1q) z8F4AL!S6f1;n1%?vjBXBFV1aW;y_DlZ~V*9+5lb5^Ri8=yM>RRhoJ3F1H~?F`Wr(M zZV=Ry*vy#7b3GhOYfMfd@EF4Zd{WFU3VMQH+p1y7NKvAhFKc%9IyJ+YfI!sEyQ~<v z->657JQROgx8*tAh+OOAV{YZ(ENVPP<UUD6vMtw9p=FZT(j|UCaMGzFo|v*NsUlf; zQwZ6yb6jKKb+Zt%-})q3QYJX;!Gh8Xobx2R**gg{xVVf$hJ*J|=YMDrt@sYDnWC%x zy=F7!=EY+HX!>B+yru?5lB*G1>)GEo*R5J|lq3Uyg%|dt+<b8rIccm1zZ!fG_beJe zIjBUC0IaRGq2F@BIeLY9An2xo@Z8#nxg97ejym7;QGOa#X+s`HGz8jP3QQ8}iJr;* z?WyV~!cY1d9A6()s{L``Poxsq1%4Da(;jij_*dsAX3gk`17|#qj)Sn;J0edjgq{v} zCW$HjU2Lz^A3`#x0uUEjQX8!cl>rr=brd##IOA)mbat}Pebk~2b)s;NmRga1o)K(m zE#ev)e_P-swS=+J=Ld|7!kwVR4P|Em5KLpolKP2+R*Y2sw$PAj*iF&V0#nyk^CO5; z&!Ce$(oqUbKYprY04yW-gv_U4JJJq`26`SjrbJd=31~4M+BrHhXFKpEPKHIIrnJzO z92Dif)#aD#ma&~hOCQr))x8C3bz}0eN=KO-DtR9G!O0Hi=qxa)>;7sH#9PK4lvzdc zpn?^<({ftBy3dMoMjx#-jFq*3OrijEdz@*dy79tOz6gC@jv}rflAe>IM&18v`K9N@ zVqRb~IM;$qgyrjk{{D=HUr~iz?B9rhhDJ0fO;Zg5fuANwhg&-ky&fN;GH!bgi)?l+ z5epCwMdN;GoL*$<9A!yrjraOGYMkSPL%vE0yx74xC=lhJS}*sXPk8E~7po%zq58p8 zUU$KlXkFt__!|9QA$r~ZEDPa`2fLSO;-~|T$82QPDQ_&{)dawBiN4yrjJm;C=xC!M zlB7Mg!u!V7M)V2>dwr@l#Gvc2xo_hf1DZ?0i5(>OI)mMX-6STzf+x?DBKT<zbe4Z? zkq)OO1;SXhjL{+~p^UC!apZMC<=Rc`s`hpRC^pG>l9Bv!^^GmwJ<z`GPhhK$Xp%*w zrQ;`-;FygE;fG_sudmKOIfXxdwxajxB&M4fTtJlF$xuQ@a6cE^y>(8*+(P^<BVC`+ zsD^^c`hl{oQ%IZFw7!Cvs^n=e%c~SlB6U|R_<-CRz64~kMmaxNP^tZ417IVTeCjVO zt=XTW;K{`IfphU85kIPMcQD{(CM?XSwDYL()J&w6X=+iWwpI<N2S~<t&HXul+ExEo zZIFWsYs_0o+jD6m8Tlu*0z9oaPv!O{d3=RQkzo9-^&Vp<RSkLHa(36LlvVOxb<1$p zs8AbU-iwn7`~S3{9CzPur^nY;Q36-h%GDmNb^a2Ee{v9k9*ZLSLS~mBI$uE;<kz%N z7=TRzxy_!@l}TcY-)mb(@vz-zK_@<I$jxKSM;<ZyeBEri1oi@+S9QnAQ6Q0C{gbGg z3*~wjaSh1xYj-=e+^2hOVZinNhTt=MLh5LBXu}0e*BuH1@>^&An=Mpj)#-lHYAIXe z<9Deo=fRD(<|SR$a-;rmlPuJYkzDPlnVH6~HF_Fi$ptQd@+*ze(}CO^YqYes+TJC? zR2y}NjtwQi7~j$n`rg{i`LyCa(7%^P_P$DMN*G95iGXuL;-l_#wWflT3Ww9V9&yhc zqw`khJ6PwUU6I0;a;d(pPQ)RRqk*X0!eE0l0}Nv)mgv~+CCvE}GzF4?#idgiv9+t$ zP{FBY$X;()P0=z2h%%qOPCPR#+?rUdrN?H1#kOqznCQLaYE5WppqlJh?r1gKsbp@| z7U_tqVbODie=m!vGPI<PX|M_l9~6~%wcUDB^I3zKH>ES&O`mE-)amz+#;|g;j)qfS z7x1YEZ&;wH`kO*li)v|r*zFy(C?x0xN5p{=U<VF<*+T*EbZgQ&y5CSV0L#Pt<!bDj zN)pjwxaf&`i*S_G^~Rfzm<+CCl#sY5q%E@aySv-NDunta>m-NradR9e!N=E!(i!4; zeH??nZZ4cZ9!yegl+-x}WPr%;oZ?!F{s<3^gqY*NFv$ZI?ok#PXl@JLbrPsQEIrpG zNY!EQhEzctSiuFnqC#1S)!o=O-NdP`GF78jW$pw{?c4KMM2Te*)Z-k|nrl`}M*-Un zlTGVJ?JkNf%;hvJ{`32NT17#)JyB@-8Ur@Axs(e_P%BdTGu;PZD1El0_4uZ5E3j12 z6pvZ(L<g9z->KW5Xpjqt_26m8hEZKjtUSe6n#{aoOp7m@x0CZ*`ceD0_Y;0eykwYn zn*;u%dt?oqbeXDfx^jOzE6bjtKqhfZZ5SC6bCj_lnu+X_famIH;)Uss?d4B|2tcR> z;8LjQ)aSF04LNb+4-d{5A?`xw)!vg7T6e;nFTy;H>3hX`^pR^q=~vf66&lmZq?Eh` zk}<^i`%I*4D}?2e0^bi(X}tj=)|XdR{&gKAVdBO}i7>iUrL4Q0NPvQBkFM_a@C30J z>?SO%L>MUV`Co;Q;$#LAeOFeSJjxVLT(rvp^KsC&$(OC<mCqpp)bqGyiY~!LzQM02 z^iaxtxXYsVedo7B;n&xaR{#Q~QQq4pu{I1d$64U7v<f^Q2512|vs)@+GEaCJVUvK( z7(G6e@*#ZjZI33?J|%d`3w|^X&wn2hN8{(`hmdbQeuK=6iR*+0&x%fynIPVMfV0Lw z>ZptvUPEeiid-vLjGaGA2wFKCh!<D(JPMQb%Y7`hGmL+%2fX=Dgt9(_*d-^nsQ$ zq463lU>cIsZIK&z?8-fcmKBjpw6E@n7fuAS(y7g9LadwlKE0-s%6mi~(XqJ}?V=<# zBB3Tuo2Dfk*)T-#<gq=o89RTB;7O^ZvBsvAPLa;H=B#6Vqs`EdGR#}_w{CDIVUdsS zkuM}4@5$@kJ<8J}O46<wx5wViC3b;-2vr`*oYCpkW2fE;SiwR&9=b>QYPk@v48(aH zzC8V+75$5FPM$C{Ssm8{{$N)wBnWx>GmI31X=U@MPoo0OQPMN0_i>^^2XeKWVA8y$ z@px;8(Ej?L5^D0zThCyIreR0mctMQ(Z$%fqSbd>&at&}A3s1gpPspf22iPX@(L9#c zCGr-eUhd4(QIzof<E^~+{V_(R*UEkHWK@#URBcLdX;7%%d38(mQ0{{?tGxAQ-LEb* zQ5AsWUwt;FnxWGrXNPvCVTLDGh*Q2PlrPl*87=VfDh~k5@4kdywOW}_Vxa0{>E{73 zzW@00^TBRQY%cU`Ku7I{7`o*53|rk1QR*Wu+lAZnemE$HS7Ea0@g4T@`{wL8eQ*Q? z{`e-jsfAE;JP)_iaVA%0H{J_D3~B2Z8lB7&vd7dYME=%&{Dyk3fV#(kK}E$aDX%9Y z9h$-!0T{f|PthpMt>1BH_`WU9z{%wy7nXTF{wt+KqHpAT%~|6BfE$W+V_`qs5PaCB zrXZO5&HQ=DgY|-m&=KTm5K3F)M=ncaw&yr{%^a+)Jq@CwqMu=8K!NLfBk&PmLY^P; zt3ank!kN!7|Dj51{{x+kuvb+zj1c|iFGl=>YW3bcV6ReQ5~=|pPzF9wL;VjlL_GTX z26tE5Onv&iCgwnjywe*Q^&27NK=a(DG7ubjaX&?bt;|@yc8Zls`J7#!Vb|5!S_W!w z?0j$?{3y9{b1+aM_U*az+|&$CxO=ddcW%UQ%8`6Yo<hRY+<k1kK1GRBsHkKipS}w* zl4Nz(tNqV;5Zbopo|ei|1+R$jQ)K`%XBBwoimdB0&e<hl*2k2JA%q{HdX)iEa4vgu zd+Pbi()IgIpdVo*D2(Z;gWy>TF#jdA)$tS^_>4yPAEo`(=W_yL0Qva?M$%Wreb=|U z^knH(e7s_0G~?arJh^Pqpx+uI)|LO`=&Zw{>bfXC4Bg!=qBPQ7(jYCJ(w))_3@r_U zbc29&gLFtsiFB8A*8l^2_x<>vXYMm|&OLkYwSMa$l+sYr3&oGRGCD@Z)w_E*4&>*r zoBbo>204wsM!=KrKM^7qBKmWT^3JcwgaZ+0gs{N1d0x^QOqbgTUc4p81N~h3jJ<;q zwzS}kPZzf=_@Ip>8oM?Z(Ad6}V{B85NIvReFGT|gH<i0Zsyva%3RDLdEDda^e>9eg z>2OEY`TC*IU%QERNqKi2%YW4V=`APxRkOWKA^UCF_E)Y$)>KoevF82S+2;7s{Q1Ky z>k{<|d<#q?;S0_hA9Nq_8By;tZz(-6a<o|VbZS{nWnKl^Vv&_MI)^DF687Zcl+LWP zyB?dw!O@<J8^0kRkj;)!?ANq29#&88T%Z2&0bL^F;qWVjp2d4)QU41ti=X5V)!#dH z@~QP&**vL3nbwJw;uSvmlAvwHN>96+HwxzuyF;Ek4v(msA@T{dz=#$3r0NAWLI_&~ z?1PMx*9vc^j7xV-mbbzZYEnAx#LMi;p>@o&-WmdlbLwEf+4dW2?Di8xIb@%wON;vT z<*cmB(Y^bh#vL)O(T6o}N39(zhRi<EMeo*Sg^sON-qJZ;qvfeRwwAp|ntUC$aS$<b zaL>>z{85-JRi2TMqpW|yV-d8{wD()eyIxWXCo+vxOZ-Dr#_<jXYCrfTltlLd-`gKa zJJNhcQ}s|6#pI~1(Sm*6QY-+2Vu|&ukcdCO>$@qC0%k5|jxGJ))={0vVwB>10jIA4 zzn+LFh-tsMif242lww|E5Rpe+J~&Z_G&77Fme|zPn0B&ZuI3L1czFG%$p???XKYP8 z9$$Bs{ipd>QXZ%_+}n~37i8XT-}xITq<Y+cKEK@zma|2B_bPrV8Jqum*65MbwQ=wb zh0c)*q}UC4InwFdA_khuEc46d;>upWH<ireOtv0%6=b|O<CCF3gW8OZ=JYKS&H1}u z+wLU?4A95N<p<gKH?Xo2ptes-OW2&rd&WAx1wCeOj3mE3pB|zm?HLYcU0U6WVETC* zk}Q?@BiMP+|4Nm6tFeYA^{CZiw`)S~Fk{AeRomUe>mM)HHu$ihTMo&=<!JfUWKj)j zh%0AH6U`I1zNuacKiAXk+8fU@(955K3&~!q{H&ZsPl%f!i%odv4@zpi`}Xt|pH{;2 zx|~V>w-s#Py#>MBXLi5F*Y7415Bw?h;u2YHqy&pA-3{?(T_h24U%}84f0e2*hK8ko zlkzPRu6oP8A>#N3O3dS$v$VIX-z{vp^%wJ5T;?}?I?S@^2D~kM7$A)n@CJH{{!YD` z&r~nur2;TlAC4cndpCt#HSn|s#4-e8<<?(}n<^}msaag=r;l2JG5jiKDcX?AaRzF< zQyU;p5g>?`Sv%{=s<TvpnE()h<TxF3sohSz+}v{P3q1mxbU&m+x>_{NYg#t9B#rK5 zo<o1$g@FVuXorSb;?r;z{`ys|0s429mBsF1qiqNhFa`m;(kz>gAF14fW^5!L^%qV? z$4k|6|Kjr0J!3C4MM=}j<9^83Y*~QRTgZJwM0h$h2`ND=qs$s7KlWH{`ic@BJA~!x z51F~`bj=aXqmD-E*+y+i8YZEN+}uI0b7L|fA3|y&>~WgWAuD<>Fz{~@-4OW)I?fW2 z7Vbq9HdCM1kDJ)PTpwD?Jqcdhb1bB_{Pi06ShNqHdw=p9A8WVxXBq;b71NSNl+RPN z*6uaD+(x29=eS1ISq$^5es|_ql<%|qDGHxIv}Hsqe4Oda+WcAQm(%hi+aRE*aWUcP z#5`(fR>-Cr72WXEeeMFdAx1^f>$B{m8~!k&s+|Gf@b?f2)AOIpXB)diw7oali`Cvu z2H!Zpi*<#K|6?mLWFXlKHo*6xOvya9P!UnrK^a#1@h{tuhp=5Yrh49W@PIc-ebw$8 z-5C!+GSrJcs-RywuOC);Ntu!(mBoy>k`(S-1)KZtMABJU@z2{OaQ<pTgO-Qw$NGOM zhq&vv;O384ZayR;8Qi_AsM@|gjlgC~nXH0bT`zh-v0Qz9(eH2p`!YA+AO0KuJ)2ac zjhm6GI#2%XzoG9fd!^hPmu5@WEgACv+J4c_SB<tX-7bScqgb;z{8<f`1AT{-&C8bv zWk|?qhsFeqS3Kyn+b9FPiS8laE52?#YSF;Ngf~BY!%6^2x@6Qtb1ebZI-|3xCqJEe zUQnyU{2oh8D?_eW%%x^G=OFW$f`J;#SCgK8#NnjIYqUOjAca@UY)usjFO$>{i@roo zj6YO8@BSnG3C?(ly0ZQ=TJ8hGh0bLg8LnTZVX5W4lH$lW+J-$R^!%=JlCRdPncW=U z^p-8Vx56^?zM!##n4Jy&42}q=(+m{<OJr`J(d{F@*I%K_A!119lnMc4Y)*-1wCd_n zkrS(!nHcU_(^8R6KW+(+JbbS>8$388dGNfuLpa5ea@O?Cg^kkjjYxn@x+eG8ZOi0^ zb$#UcJvpGW;oQ?Y+x+5QqI%4voe(|twko0u=&XXUPgw{@b=f<==Zt3yE&)Z#B=9cv zDY04z?TlXf@(Dow#J(f7%+HJGHBkjJa_wQIrKP!g_@inI{wfW)-bV@&eUpI&mx++- z%B3mPMa<;-MpLrrsbn?ymJ#|CxLm(;s|R{?>*jPJ&7LRzVkr$=-@QhWAXg+mK(Q9O zwVn+geDR}^b?>!tK+w!f@N-E<fVgeV%f2Dc%I2sX{mSfO`3^)i;oicASSmL8>Z_Zd zkwEg)3_oIza<kdQ*l1I$C~MwDnP;tk2&r&tz-z2uO8FY+q*8J<j2jGss;mgZPV)5= zIQb#rIU5|k@4LeDMLSS%mApmo)-IQ5(pZ$S>vpw}#diENiEpxTo1}h_l6Opt=)0Bs z{b~MEEn59qXH39)TC>DKiBqu#7#IT_!qX+Ak*VpocIMt9K(p-#Fv<<C(HXz@KJ4YW zdT?moXw<Qc`iUNgTO9a>3PWGEs~0f~3j_wOtQqx>-(a6}_9`|L0xSv`uzwKqGQWG< z@OMTff-pAH(Xw;$@xhI{>p@h&e^7v<xgGqzHRxl9gI&JW23RSe9o*Y*-T7k%=0x%i zp=W%Y52J5iFl1{;E%&`rRI_JScPFx+sI)Z{)gC%Pb3rVyCaIvS{UrkhbJgqZ-0nX) zl3PY8NQGt7AbS?0t5AC@boPc=Olef8e|4Na+f=kr)TyrKmo6c8==2-OlP{0XIqQR< zm#~cNKBUdz?qq)Cr}wfyVn^&N*Pe&}UbB4@ZZPdtDi@4L7Z{N!35H93MC=+JsN37q z3p*o(1{->Z?o`nHK{zV6w+t9nRmY!h@&&?bHC8=q3E48@ZMJnkXWA|>nO3|&rHm4o zey6-ekL7vQ#D<t?QS|#Knd>F1cNz3OGDg18M;MmegyserT=}Y=i8YSTP%fKJIzQBT zfi9kSgCV~dA$rPY9fbJxYhaEE&`gFVNIaAUJU0uU#mFaYTx<{3nz%5LZM07p`7Mdv zzro?0`IvWrwWa_nBqU7pp1oe1H*U45fsQVRF~(f6MVof|0v6B~@S3}R&0$|NFgei| zI&~~SV8msQ+F4PEGZ{tKsV(<^h-Tw=FT?2_6KsH*?$6MLbfb2!OF+|LN9k6dc2MTB zcoZI~M_eaA2Y&kx!vHK^$ix4cL?AvMoyZFQt?ix6F6x!(-IfTZe$~^lT8UppnGi@p z3%}LyaAF%`t~&xATHOt92)l7w4QiI3@r3%HR*my9iZXUn6ME^(wU+oAvQ{Q`p*7^t z&z~6Hd@WZWq#P_UOu<=yx^CC6M(BBHprC6S;Lfx_1eX^!(qR;OALwVboxa5Zy$<^O zWt7wt%>|>|xm>A=deqk=G=ATmW?Dp12qS_uf6Ixb+v!dIAI&HU`}{!ld$iAGi;<dq zMQnTHj0qt%E1xBI32I^qu;pn#i~Qv+L=#t~c_x#b^m_<s@mT$vImTU@(~5XqZ%<oM zuv;`lXpm+R`Bg9D@lgbJ9*R4P<3((lV`|hh^H%LZns3@#xnX4e39FcCRyJuoNo3N( zaKf@IY@^eF4M+37*ui&g-9%fC=u6E{r#VU=P17TT%rE|GYDj9TTjH@3xGK3W=J2U3 zVr;6Nht2#|U_R~SyBE~SV(PXs&$)i#y{)y1k9)BIeAdQhf#@3Gr&w8ALx1^ZpE2u) zeKgxPuJE@BKXEA&Z8K;VH0pwPCqHJn^SJK*bPNZ(uk}AYRXO^zJj$#Xb<)$et~qXG z1&-G^<p+<Sv#HpXP)lXcB$TZ5Vy>Z1K9Kpg!~*7^5^No+8WcI#d}<4OOdWguB}5}6 zZ_)EtiV2>n<0BzwSv<H5R2tRDZuXIHKyfW!d*oI57DcI!-!Xl3x3XPk+NL&EZGOKq zohNwX{#LC7PGEWNrF>0d-aP4<+J`152->iUeT9$dH6A&k2j|C?)aLsc@T)<#SFC9S zI)nwyDrzhw)APO8EO%x3){_jVayVGF&JlOoUxkqOR6SgSH6yT=BiRG4r%}!GE@NWk zfjOavUeyKh+sNMV5y57~OlPPT=?DVL8Ij5z_;b$(mKd0Gb<LrTV*@CA!JnDY=X#%j zgI1#2<<;=cY~^F=Js0`;h~MnZyPW(WBMQMXy(%-~bu$I%Gli}2%WfpC<OE2BNfJ5< z`*yb_0LTu6g3H-b5%n5VxG(3p{Sxp+;Kp0A6%*6mwC+pR>jMk$%guOf<Wx1|5p3xV zWXWfM#&jd|3x#qt``9FdVSCfl>>N1XHF{E#nmOi4@7bWaV`~9E)^!?v4;z`WF3zos zU}C(bcFvR(315E=FR$VfcOhNgut!qmZyjAYG3Vz=BoqEsuFG+PmX=>CKa|(I3St_M znY*JG^ho;4pCP>P=H2A{lR+O_+X;~xVMSWEl3iFhgTk(><%t~W((711t;SLQC9=L) z;I3TI^8gnuR^dh_Ly5$an)|zm2I7eZ2s2?dCPm6@$4a;dwl^^qzF38_yJCPF2`t{h z?6RQ^JE$CDbVrmRWb>csn8qm)5&7sp`q}p$4QLRRYOcm#H*C%<D`2p-Ghn!(pTsV9 zd<}k#wq=>@s#)s@rfj|q{>+iKcT@rR+tu=V@9$+1tq5P`(`2AXXbZH8Wdx?}Mc#y2 z(CSlYquh>xFUJzZiTs?N|6!3P&;Y)8U*FG3pxbsa(Vz>QfYYmP62OHBrVZG3I4=nl z!qrUXVNdy0<;Md$IjdctF+g4E64-76s8kX2{CRsNbTYcK4atC{ME2YdijdD}pi4hv z{^})XgsQY#x{;riS&FO++x~Mx{o}L5z(j!PdZOYL-{0O=6EZlelZ)r~+vbl=v}^1A zDaBU&-6>Di3Lr|M&T5vA7j-%A$lISg6ZehLi&g3{LwQ`j6wYXH1fcTHM@(P60o|+E z?|vhA-MoOgZ0MVl9oXcEK7;-66)~8R<5x0V5T<;)vlORel4;`rnFW{9hd(;*OZV-W z*#FA=rWfUjqat}*WT(gbS+iF{mpq@QtfM{<FC+G6GW~Tabh!+L_9aC((IgO#zhbeW zhCT;OGXVEDfQcsF0Y*EY#F+}vWgVu=L9vG(2GK8;&;L+iL~eCB4y9WMw$_Hi?X3k< zdR4jrO1e2a#QCXZb?JD2Sir&Oc1u<tSE@zsL{mASQ&s1F+p&J~22150%>t1Pq<=wr zpR_RP)0_hs4g#+tyd;VP>{<Mq)_Mj87%D`59KX8XhXXB5pcSkLeZ7%`_Rqn_rxrfq zcT?LGgIbGp_PT4$Wk>YQxQ2-?R*s)qc7w-$2yRlaKQk3VQH_|C8wk`N7*CeX)w_({ ztrOSh`YF9WETp|=z*8p&qgzr1#;$EYh+ykk-f^`cQC|1?NO#LICW>y98DAFmm+dxZ z&;~um+&M^JFv7-e0_#;DSCAU``W>?5{xbC+{V0oX=gdx3AzOhdkmd(oCXe+gcOt(= z!00~;mK(06{#!*8v~Rz!Pu84{_`23?RM^v+rYxPF&ffidzVue3TJbqo{0anNc;3@M z?As2GYljM3f*k_4*%UY@M#l&1>%%vjW`GF%uMbX=-nm>p1E35~WRUJwU8>~OY*N+2 z@D~$S!>S|ym0e{!W}hZDRen=*NG`(8cHs*DZ>|lrbU4wA9BzTVjM9JL?tcd@<~$lN zKVFhYL_-6Q&&7lYC~?C-aQUwH<vKDDP5fy><Ujmy-RA`YC?@p!-G283YaPDEB-+55 z2-qF#2J5<1FQFK$V44^9)8M@gw=(<E6f{u3kx23B;=}o8n}aaAv70BF)5Si88mum% z_wBp0SpYpyyKcj@tb}M}x=z$tjBkr5`9u2$%$C@9+}<Hcv!6eEsDa1J-0t!<sqCCC z-;qHiWK|Tyy<~_K1Tr)diQ14v3?JQgZm(KK(?yAxD42=5f*E|X6W(QX9-R*4>ImHI z4ky&mE`A`99NAYBXw<Dyx2+4|m)_vWC+~z#sON|e8Xi6!`tW`EbYav;e=pFQ?BwL= zsilsF=Zy*TVXvFGoXJi?z07hI2OlF5$&N79+T6eH(2}|N)EP1P=WmLZMZ6vOCYZq< zmz7(nNc>OD56&d1QOUob`4F|RPbwXj6S3zfg@PMf%24c5H701BovSxzE7FP+DrPZ& z4y+#8#Tc4mx2aQ-kltvg+f3)t5-PS#s>ZX_+Sh~h`{3fNslvlgHLI-B2_I$q5V1Ti z^{DR8m07}&AI%=nk4}5_R`sEP^HE;*@*ao)qwUK8EzEnv`>CfJ>F)0CoI&DYesioF z9#acpq6x~ot2JoC->?QAJ?PW}kY8Xr0J@AW>i<jy5PM+2rX?sM5jty+O%6H*jMRW& z^dE)~_?3W)Od7VN+l6KNylcv`5ewuMNQT|UuUmmYOb%DK>>HH^puW_rjDp<mcT&l_ zo$a0Bkf%gL67npKsyPSXGZe=|MSQIRa9PL*7^qJErrp@w%=Mwy)4`Un`Ahmcj)Mh? z$45*{Xl-fg+tLW=x3e{P;L-2*ZqQ4Vp6Wm$yhmAZB*bp73tJTg0v<|HE~2K7iuVWT zT)xdYn2}CWaCxOPPP>eGW^G6Jkg5RN`Q3t|a3$#8?<0R_Pt7FAGZo{x3jNkrAx$N@ zF$3dLF3!9OOYDK@eG&8Mq3e`->{bFSMh=$kc2N}4jfmB8beRz+E5o}@UrLh<XHba+ zyEtbEW&UPQ2Y=j?PtbAPCr*^EwRuFN%mQwE%f%FuTHgOoB83``$*xcLCn|wI%B}?w zV<<JuDE(I!USBxN)oLK>{Jbu(*N*s!+YR~$24ty|s&-Qt-&Tu?gOU7BGshzRM@u!w zhWu`QYaT?>BzY~gI9wHwFm#TDm(>vuS?VlSVtO#Xfxn~>cSY;&ONg$dF$diqW~ROc z^$ZjNCCWVj9(O|}9)_L;&c(WS+czoKeQ=+*OdlLvArRy{ZvlX4cImDWpoBsqo@hd) z3fkAZU+0IPuvRvjBH3jDoBrXNIpDD+=q-Hi?B3+RrEvA%idgQszZa^UcL2chqlvIx za@bf}%|>TU5cPkH<3G}TPK*km&5;2bIrygS<c;kvxZ2)bo9RuknQ;FJ`{~0_5nD*K z`w1LQ<<3z9;$P6dMFf!L^ZjWC(C~jKS%r^1Nn6pHN%?V@Ny;PH?{$_YnW<+UR82nE zSu?M4gx&b%zmCY86AHjAaF~WL*17D^j3Zg=T+F#;5^pYzw`ZX9FFCoS$QGM0#z|lI zWIivv3*;DJI+)%wsk+7DsMCvwX6e$nBN_K`AS**cgK_HYjdpsFruKrCqyk5y14_7* z7Rrk~H@1t9$~z~*uGq)VMnN0j+}Nbm#u+$Ovr~~^Xx+kmuXn}bzeyPau>gPAuv2S_ zfB|fl`)h9D3GXY{#%OZN*X54fJA)HRK89V>lAz=c#p^*dht$zeqBY@)mtChv*<<rp z)j)M}bi@kI1I(TO0S~)HV{IByP+p`!Bc5_P%$y~^8J+ekJIDHdBdiV;!e(65%~Gh{ z$B(2=(??dGKoXCK{+n4!13dqz5Fw7ikdJe`zz_2PowRS_aN+&9y9&?^LEfm|ciz|c zCe=q}tN?41+wFq@Sn+BXvwMRsgB~U~uGX*hVL$U8ePKzokCd(+5ajkqRK1!}*5qrL z^l*`Aj7iP+ZE2yVpvUqC^8ZY@r?-H^@I?%)11FY&B2{?mXLK)B#>CS10|OURSo}KZ zW$+Asa=xXwm~58E12||lwsmVZcaL<>U4u-!jnX#((=zbWZH{NnpHD~9_6u}fc>3I5 zGIjvo*V8jsH{01zq}O{{6|4(qw`Rl{sA)(E9JDd-FhGfO4*z+*H4S=qcNveHajnL| zEz&1=D`fco*aOkbvMruijMP2(2^(05-!02qPwKm+s<Rf!-l@#%)QYpNhxXLaodV@a zt1ge)FP+qJ9jW|I&mB-C(;M!;e*$<&(fY7hMdx*OUVg8ae056HZV|y&cY+_M#$u77 zyB2TEr&yt?K`9X5aL<SkG;gOe<9%lK4vq$H;p93g;^iD62gNrkiDYi{_ptk*z2~m^ zC1n=EK}kINgmCEi#ZM;W@55?1djS)c)kQIJok)naryF$Z(q%#jY9Ex9WdCZaN3B~C zlB;d6!W8V$z1&*?SVK=wQ!oG9X`g-36KIU*SO|7vRauf~WG>x&ts!bWJWT%0o?e(C z=={gzOgjXLO8PfnkfGM(Uhtpx)ss4R89M%F-u?>(GvBB69EM0n=kNFH-h1|;{kr{$ zkZ6mrZru=E3Lut%p>4A3QRV#X<w62sGFLR><=@bYFdSFn3U}lAmW2O^I6E(Imf1Ve zjIx$fm*921Czfn#>zC@znb-1%QIf2;<AL3!iwUb<m@RkSwSb7r8E`S*-whWD5)lo$ zC7L?|F9Avo>|0F$@$;3$(+g08=YAw_93rw(-aty=r0q}ZdRpGR*kv>_G6G6Dp%W(n zA(V580H#H~FDGhG%sxI$c@iA!O{j-6kdxB-?w7U$@M}Nf)B6}w08NVle3qwYSZ|Q8 zvETCz6@73fT}e706LrhWxtG<TLqJ7>U#%?YKCZ^Ae0k+scH3+1Gb(4mYR)cwKRDR` zBnFXc;6ioZLOjrHw~zSkjQICN0`aBy3F{(CblbBufV26N09W^>mAAATSRpTPk0-<A zySnUGj7u0+tm!;MfY?A!p2!iJnxBnaFwUOdj0{_IPuP1BYM#&2RCSs@1CmpmWGSuO zwko9Tu7~RNq*4UbVrcpxL3a;Z%OO09D03sHzX}CVbCoP>$09sSGLITt;Vk6K3A8`$ zMUR!8ncFkdG3V+6$QJQ|O5*hg{>kgIGUL--flnB~>z3)tuQLRY%v%GlTZv`v-woM^ z29aD6&J*+K?;{qa7|=N9*)@eUjFSfpc?Z4?xDp5gOyQ0IN2hy!F+|({-x7PeTaRpi z6v3~oD&PVs@`!2=)%!74Iw!YVn8K11xXf1*{W3SEi!g!1fV@%%z1qe306WUlSlJDr zL9@o&sPb}p{{bl_lM?`K3+CV$J#w+Ju_2lgT9DG;!irios*Ix5U4F~NL%18`!3xA` zxW1f&vaUQ}p)V8N*m;k~?N-t>poKG@fD^za{4$pJ(A{@sGr8{&=EOj2=7;)PD+OWV z?}kBKHV-`66ea{aObhz{!2-CP!x6>0d%b^gksQ7$aVfufFk_R*)AO`Sy|VuQK$8UV z2ehsekuJop-5Apl+%7;Pe!3)vFC;vZiHfFVL>*;00Cj7LelWVX;f}P|JUl2Bl~8er zpyt&nK1<?wCo%lb+fLt``i|iKhll&pH6R8ew~hj0Kj^>r;S=_mtjm!Ci{_gLc683? z3($lOHiZra=HghLU1bUXSaduC^T|%UaxkcFDiWE%lB2<cgGTq`AnIG@;99e>zGbVk zL;o+ot|4Bzl8{;?nJfe6s6grnB)wYEx(e&YSn)0bOQt^-KWl#k$L%V{ko22b7co+h z^Qh<A)31qAa_UpctS{1hjp<3r{`%ML)&$(X0CuL&Z=D7qa@KSHBSzdNnX}z77;=7# zD8W(hf4z?naG5fRwHJN3m@0MAT__^*yps9B0<SRRQ_z+yDhc3(@LbwwvGewzN!<Q^ zFVya90LtZr!zX(QeZXfOk9Pl+0*-T(z&b+%ermH82d&LVh}{t|OzjA`C+K>Zt?BbW z>qI^4yu<cs4Wcut%N_T_X3o(P;g*C{UC^95y8sX<O5sKVx2VW+%H$)sr#;V?l!Ml^ zZ+x6R0Dftu&(yl!Ps4rO3<B68(7dEncJ4io$e{P&{1KlcKc$|_s0SPvyb!<3?j5+7 zMZnnGW1RHEj&cP3+73?1uTD_|vQ*64{|~Xl9lFo%dTrM3|Eqsbx&oW;4>6uEP2n-; zTLYL2mGg}jroL-kEcO2qs1dqdO#j$7AY_M+2=&j-Qu>@7nQ}JpXp`QxCWwG`AP9W_ z$(?}r{RM$WA`t5_o4yM4A8`oSZA?Ui5NvEHecYQvyaS&|H>Y<Q175melfBNmCPV&D z4;bRG!AIcm#r5qDU3JD?K4})MZv6>x%pyQ<6`lZ)Hnbft;vIL-k3bux%(61K@{W(> zL1eQB5iPptF>EN?sA}keJ5c1m-354j8dbQ9kpO}b2tT3GpPK1-ox+#ttobbyR8n2Z za_?9%3i6Xk|Hm-3SN>^Q=6uiSVkL`TY{;EUMjy6?7fIMRN#}z#T(LsjK(>YYPGbVy zEa%m9NWV!(jsaUZ0{XWOU77Xm2&p>}qz)U+_-t-yx>8?<*2(nmH^?h!ceM&?p4@>7 zciU>_`#o_rX71mU6F$_(?#f7;xYQ7h`Vl(FzoAKPPi2<2_Ls&ZLMkbEb#7|h84Qqo ze$TB2RU4O=Zi^`qO^U);ir+Y9Xm9EWXY<^vc?HDz;*qe5ch_42Hw`!MUXEUXTpfTb zc^;YX!U#G$dnO8i-PEK_7M${^j7W3jk#ZooNe83Pa{(&?U<=3t&h8+zqP~}ns#+2( z!Q9{MK4Sd=Ko!dKUR2ti3LpXrs7A%%=ZLUfQ}|n;uvx`^22A<6Vh|J{C?pbachWx5 zKHr@WxIF2=9)@Z*Yo2w3umSo8=x776b!#y3fMHW4V1fa7$KL*ah%w$zr;4tNP%(f$ z8C}B+cB&mB;x%kg@}ykR24ZmkW8*jg{_tRC&(+Hf2Pm}yH&BD{XvF-G=H~@!mrW6h ziI2H^)*mQefF*wjw0nGxEx3&54U5U{x#^XxF6OA6TMqv<glYc;1U+x&x=I`}4t(v1 z9JfX^g*S8d0%s%eb^{)zSu}naw7g2<4u<^(oJQX`Uobj+o~Z&)1cER{ft;>@)Xh)r z!A>Z!a3H;*57qRE+Y-+G3c^+r;9&-6_y9xTaqiG{j|tS=0JYBqI)pnSW~u0Jv_Tg7 zR#(}9X)jQI)NI^Tr2Pj708{vIfRJ{nuHFFnt2Lue<|9c>#NgfZzd0zhjXk)fFZ8|D z;?9>3_32-zK4zO{&$Qr9^^H+7JzC?ci$%LHTGnLD($kpgK;Ju$qjFcFqto$qM|EXw zDdX*RY^;wsk8y)3Kl;TUFEA~2NE6D3eGLxjmeBYm-Nh$TNFHn6KT?{ZQ*W@P*Zu|X zEi*r6p~2_GA_Gesuh0gX3smNVN4PHm=n98giKIAnwok|b{s|M0&K4scK{%?id0u0r z&Xiz-Ntq=pM`=t>TR~Tay`xL$ep?)`ql!$_Ynj@}xRZmn_=jlaJo~wTSu5D(A>o_= zajpX&yXJ7nC^|J$al2#2Md|#&TO3j1x;=<2@I2@;)YbC^6tsN?r-ls#!R|(F0UOWp zF_k8Zf4_ud%Whl<Bw}?Hv9ei20c2I4vtI*r%_v<LH@N?O{YQW)WzG3)6G47gkT{C~ zD6W8anou#)`6lXF|LQ6=u(~lmpNxOGq=EzXBINbErx#IC$Ssxo#5rZxkwD)SX<i7f zX;(-EkQ@}VenEXcVIz(xK--Pm(qbj--?9uWkW{&zfTe(;wfNzeprvQth1AzVxWBr- z4DUL6`#Q|}YtI6IB5eq0NF#5ikkH>thrE_VqeH0PQkTOojOCt5AGdAddiwf2Z22ZG zaM<#Xx|~}Ck!-RY14Cqg!MoQ89CT2*BFfb=6Ch0tas=@fQ|7=gprxVNOv>2P;ghk_ z@AOyA{jDdqB5`-_>RsG>>ScJ`Ov&3$y;L23B61B$=sKD*#2nh77gPa5TO<?WBLjI) zMgMhQ?XHjRf7=>kg(b!W^5<FTOxEggFteEImn0Kw>`%24$>Ot<@UGLyYHVE;MGA_D z#Tkg_Z?&aa7)<`tV@sP>`@~-{-9+7-g?)IB73Vz7i=8VDiN+1umuA9{UPh{lWF~Iz z9Pr1bDQI6pqNqcRCS;LYiNrnPv*!HpBQd5ve}=O{nrfvry#7^CL_Hmy2HBy5c4}EU zft5zS9fhbb97q_-+1NQi&&?GbFm&l8E<(sGlr)~5qPH);I<P%v($(Dv?~sdQepMU2 zoZDN&D75JQ;<L<S8bc$#mOS{L>6a6YkbxE{=|R6}xnR!knp@@QO)nk$`R9k*k=|G9 zcZ4dp2b4)h@x^4FJE9(i4^a`SV#x*H@9Hp&{Lyz>&sx@-&i7)Z5@EUGIDfe(K*Z_W z3O+%c-<0BrhLMK$qr;e)iOdr&UWT~HKIX_+*E7}aaS(cYam^IT(fifQA+eJfmE1Pe zQcuN5_H8mg6kRsQEzv$lU6F{3D3<^Lm-01abXbQ7rD2iEN`L6q9&1kBG3d|7SN&fs zQc*b2m#EIM5F97M@P~qzHFSC4o3t-(@SQvup{v36@|jqV%hQ-C{Rt%~CH~5)DrRv% z-<EUHKVeO?T<<$}b_2qZzO9d~G58u?i8bZBoW_LNBaQKVpHTG6k|*_A;8nZN-bu?8 zFLvR~C#1COAd~G=kIBs-xWo&t+tDqxsL$t+mbCyv)0clou$=j>h_0ief8(X-)>n+q z>z$EV0xn<aeqf|n1sAfZlS!X!kli`~FU}a7(o#V&v3_8K+4cU0B|)u4Sx7-hb~PgP z9H0MompDy1dS5hn(+t|ym!Z9&JY%T`1m8T^fABVP5u}$IVjZa|zzD?D*52OVM>C$^ zobE@>_y(P?Lwcj+Ao>Cqlalx-uRTxnwpYm3xW_+y);>I|#ko&7ybE;{Lp{9Tdp!Vk zIR=xgYLkjd%TcdiQDlDc;i^z&;>L|tPO88TdNXT<laI3GVeP50Q>i=4_wS0)1a>Ze zF*+m>HwnpoCF?hDq4NzkEN>Fbi~(P&c@loUka&pfW#;kne<79x4aIHf7@K5o!~TuC zHu4~3aiOf!A~{+9Y_G<ba=@S>sI2_OZb|bgZ_ry^|7#YZ;Q;M*G|0?U<bLumSFBGZ zdx@e-Hp><7n(6g5A79iw#^;NLCgSI1e80!)i?zTAr`t@)ZN@h|q|3hS1ZYf*c@&xs zIzG?CX0fH2{3HtgCNyGMGtoxywY}|><m%|2;Dkkm6YC&2s=l7NT&zZstR-#eIeMGm z+0-e8V+$p(3Sq_6Qhx5Zy6#Q!02?a@hR`qZ3k!zs%umwq#7OTMXf%(sm9}x87ijy` zp8u*@{506ea_NY20kZOZZub!?i&~K?a}Zd*7kJ|Q{=6;dj|;V^nGy0X;aWb~aKywF zR+=?jQmT#bYfY66?mD~3nePrSRm-#dWIqE>Iv0=)o_yZG-IRdQKB?u8GFD#cRZ->U zbVO8)Vf)FCBq_Y}Qty?i_%=9`TnanQa<P0bDqQGC!jy@msQt;)=L>H4C5v?fg_U++ z*l#a6%Gy3_Y1^ghBR4m<s7PE|vj&qQJFi+X+5Dq6oaVR6y@wlk5|17dp`>SGsNZ=3 zOcH>dyKV-vVBdmnC*1<QqE~_Qt3k`LW!dr@-XdJVY>Dh^>QZOFP8P@(!^qgACzJpt z`MpQQ(f$rpjJUnH$XwYlT@xHkxG5Sw+spnLlCZr^X`4whhX|1m1nXv@)IjdN!HLr8 z-I5LnJ95|pA+82v%>OXh+hRR@ejt@0!3GR&3SK4<A?pQp&8=;ML)(!%X7*0FKFC@+ zdek%<Yft{LDP_(L`M@3AjSACyr;fW*5%r>Qc3a$$K3yHF+JE6*eoDAh2oI7mX;=&) zA)6GtP3*tS#L>3vebl!W!o1}H+1F-529xmd5!y#EjVgKa2q{P1Qq_af>k8ZSwpah? zX2lnMFBN>DGTIrH_41PVm^?eYNGlF+caRAfV_+3&m$3hv|0z`7mimE->gQ^QWa$MR zrxA(Y4>d)Yd@)0h;uL=2pKoMxUglvf?+UGxyWS?8)OnggYwI<>T!3M5SWLqSmba^X zuVKvG6rEPFgO2?2#K_$NT60<T7C3TFerYk}|7yvG+0%JR?N+prc-Ii`PP?IbPxlfr zYC)IVJ}?;i^Q;RTg{J$0x^WyQr-_JNl^*4yj{cMK(v}wb2c+JNEi|U7z~)dLltCt@ zvkfPCbkmT3m{Y04){t<Qprb4zLlfp{Tp4S5>ld)Zv;2$T^P%aJL+x6=1N&05)Uu;% ztHGzvvWuNX<VLP@rGhiaxqv#zG5Uf7sT=j{!5V^O!i3jClcAAO?&fOCIuc<4E?rm% zIk~M?nCmFghtc{zU}4cd?hmO)vgdZ4h0KOTShp{4#tE#;X{1gE|M|<4ZF=JR5}xLI zwuT8LDlItiBT-0pp@$q=yeloSn>udZZ{s*kY9KB+66S3;CeTwVU{YG?@*u4UmHzX$ zGbRbayPbVvQnml~i;5X%Wq}K1+kt5e95VnW&dV%gp`xai(&g)V%sDgvX;i>8O#2H7 zGd!v{UlWg&`>}K~RGX__59tsmMdc_%HsN!}E~9E)6jr`iBg#Xw?D}!-vJR7y@Xe=a z@Qq_C?^UNGKR$z#MTYJ7Pk6IU?B)7mk{d#1x=N@INncf=aE(rT^<2k4wKRFGyo+jf zmA4On%$VLbjK0aW#_U0wQS-0&O`4`)9gT|rSOkf=ljrcS!quONw0g(IcnW(S_#l?} z#rfgqo!uj9^<Jn+V4Gr{9%J6`K#Dsk{q9F!aRlH7=d9%9Y*jTZwbu#_UOK1w<@8l0 zZ{hn=x0mCh*QidzjSeK|<mW`Y^@Hd+JLCzfW@HmWjZUHC*3?Md7!=)u0bMfs+K3S- zwdg#iU%+_bHr!*8KHSsg?=EbPJ`C&?S||R-hQ6IVr+uuGh|Rm7k%%m>zQ{6t;O@Fu zIy3Y44PG<2?nQ`?Z1Wa75&+@dwh4*WjWpVTkO<5_w}Plb-n^H8fWGoMLhKnC(du|U zaVc~Xv2Wom8gx#IdQ^LE3B&>N++Nr!Q8TN1ooCGaJ%jIPI#H_(iDZNIwYPV66w%6& zJ{x0BkPQ9vtGD$@L8g8z>hvVMoz@z*B2SR?I}-%W-9S$eNG!4AE*1|6J05Qhr-k3k z<NoM|tiNXsb!zBO3%pW>ww$kRHb?;ZsB2q4{qMN4#?^I@Q#6?{2^)<Qnva+Tp1fiz z##kM_4SCy9jF%&7J0QhYdu%k~KDaI&&rZXh)>Q-UKSR86+MDBgWc4HO&4YiMN=9~i zHfNUMk=zfYNrbewxb)bDH_X@o8PM-%8W)^7E>6AIf88JOi24%6JH1Mx>Um}*Li$mD z=<~O}+&;ZeMpB!|vQHp_jhy*}b2=PJs>57Vw6XCW$ZcXnjF;+g5zE*HfsBfZCTxbv zV`0s@5tDI_5)oIUV2+5W?5G`<eMjTeAg!(Y7>;hZQuun}h*BsLldii|a)<Lc$iB?> zGUA_S$1Ow&2@errcZoI&yi2DVV}_LRz0iU#Q7w$(SSq19n}8ch$oX7cs#AV!>#_uM z)letUlvkaea<^csz57GnQ$fPxq}nm3{oz5~9)!O*&?o4;@hU^>t<STSFJX%8k`95A zqC$!H*S>Km1N=s)?%#q;>?|L>f|y|%q*Cg$FsEP(Z}Dvt`^lu2F)Gv}I@yC(Xf$ql z$by0#wS$fS9GTcd5s8bejXOPfv+WXX<JDVhMkViw?c_W-QQ-6Bi*LvE7DN<wDgvA3 zd?Hb$=~8}g%*>?KQ)Xt~OyBK~g?)^e{9UnjI^e^SG1LnRLZVt;6DHlRBK_3eb|xHf z(p0mtv-893TD(7(P1O1dIq;(UW&YylWDw1quaQYE;@tLhd%}6e%RgOLSD!G$7UxJZ zOd_et8*0Yt3mPRMut%`m!k*c@q43v{IksH#1iZw^eu}IWzn&pP{Vd*{-H9M#!C%}r z1HPDN!&!kXoiZ+l1RYABbY@{yrZ3u5K>DR5J+g**mr|RKt0m9Qa;*XN)&OaOYd}EQ zy(5X;j8G&HP;&15e7hdP|M`8t5GG~god4a~_VF=WETX>WQZry3-kHKo*w@{law>3L zc>$`#&D#^h+PQuqNry<&`*~mhMVUaK*8GP;U0AsP_E>b$d;bw9>xP(PLQPB0zOJ(% z-@Lv&B<DFAJV?YeMqs6F(WM7eFq*%H(|1^cQ7A-I5PnFe@>^gzDqutI?)NSRkJcmH zm7u$JxvG%DR(y>6y1!jV4SVi&N%)^{6R$Cc*P@`GT(Ljr9q5=`g~5dg*=c1m(H3LT zK$>G6Q*y<`P!r95jm;Jm+sNr|vPLo#ZzZE$)i1wUhrl|<%R|99Z>k~SXGju)PjQ6S zWuVLMBz9rqF71$tU$=kZr3RU@6pYZ^A07%#<2@zdQf5k8x1q%)KFn@@jXuO_!WIH9 zHcREfx0~F18hLmd9Ia;c{fiIFLy1pur|q6?f?I>W{2n_AN&r8VI~OjBTgTKN>JeTv zq%UrXYW~4%+jwtF^XgXf2A_a>xEnVAA}kKyO#4(dFdy_-0b3I2!mJ{WcM(nCK=a=V z?sAy+7Fp<uar=Ythvu<1fqI9x%KHfXWlkf}k1hf;q7<(S^r|87_L#iuK5l;M*b6}v zEhtVw%d*P%6!;=(;c727t#<{abq5C5S$tE>zza~|;;8$Xv(|xv$TM!y@lCufGn1_? z^%B3?SaD?;Lf@p_ioqWor)LLlHB5p8usp~R>W;`pqRiXQ-l(Zpsgqun%7o>FIjbF4 z&g9zk^Vi}5dLw^2XDU9sCTQ4kI^veq$hg|=@*3%4A+N+l#O8vs`?ls{XM`}RSx0tl zML%XSAU-q{5eU5a>lxQ|HnQGxi(pyGr+l?mfH5Q*12SqvX`3i&5&0+^Rb2*L<cJV( zwpkSiHI_=+;7|s6#MW#w6W_AC;Y$LCNcGv23E%!Bj~->b3rY-eFiMU&e^{}KtUiI@ z48^QtxJ%$RrO)%vc4*-Y!Gs7CDJ(J7V|XkEF&E$UV>DP8AM#pq#EcV+{s!?vs`mHa zf40QGX~{+y{%LDP$83<!=yHVD*FA3>21QuC0u6`O?hJ|U*tBt(UAt3<ckb8<V>THd z;RxbUWJoHhxy^=Nj4bnI^xlLjIehs^_?~e{;JWDU>sc)80wRfQa^%uFY9q?8ySMgK zn+;ElO4H&G?8zSv8WMi7%KC82PfvwipmPf5p>Ss8M`FE7FKR%E8$Z6-pOBGX$bChs zJ8B_ipgF_8zl6g7j_*4j;x8guMgIxOVXJp|2VXO=%GLT-O8Fml7I?W@&lj1(y12o^ zuB1*{@T5E#Iy@@xA-Qan;Al+wvvH(9XD1Z5`yt6u;*Su;Rf(sqLCjbM&Yq2-sEBWD z!&Rhh7N6g8-y#iUKBDd%zjD7;V5tdWTNK?VVJ}SM^H?QtKC$eAVqI=IzeVPQOJoJa z$PEKIl+R73GMxsSmxthTm%6Uw^Klmls_Da4O@W<PlIo!!0xoTWA749r#~$yN-7>S& zklC@|z}*#Y@XtpsY_83L-3ep@*W*l@Jr#_HkK^`aPCm&LvI~Cu?KE%q)ZU8-y(6IZ zEOzbsUi<E~QyQP?+@EinK&LBku`}IYt2X{2ZoXh>_Z}G-2Xb(7^#2IPfV{JFsM;Dq zw}`IIkxqpcQ3{wr@Nav4C#X8+Vfz)FoAw@*?THmVzJ-WOg$o5P{QK?fj_W<XJ-+|Y zMJGmRr8y|S^QKHsx6`_DXj9Fg35y}Wu7?N@D$0wC95*kUL43lxA6s5XQVI#l_V#Rg zqtoJ3Q>~B*<161+Dju;p3eF}WxYaTaNRji@GgaUtD$wzU>>|LjQ$@adpZ+X?gJhKD zNtPhHSZjIQ(M0p;&kMhYwS3Dnb`v<6;oFbs9N0c~ZFza?JHZ{QDV;$r44?jKx_wp| zJ;$Hgc<+IfdRe?@{>kO&P5SH|c<t8I=$r<xv6Lf|)BXi71LreKtignV0})7EGXi&= zA<-R8{w<-T*$K2t^-tK?2dT08wLK+&iyym{PoJe05SS}jT7Dk2Ilh>3zgEp+eNlSL zRL*#>iiLnlNLypa7^Q-iy(2GucJB4-;)3hB56FUs!G<K_SDho*VdLw4{gJo@DT9Y* z;lQrGo-_A!h3=Zu-^w}sw!yg44<|ikFNoROyg;m-C~~51TPrxB=9qUl_7VX!Sx0`| z{Wd4p%cH4NFFn(2i}tnN#aD9Sj}P-*(K9oIui2QQgsYxHL#5$;c`qKYB8mH<+9Q8a z$TdjLpVu&9{XVB=yQwCS+-d$-00yO-(L|VqafcIqxWtPH)K(~5wbGZ1(r(<k$NYmv z{l~fT$F77B!|-m<R1<q!bIfKmVVTPBU;8OjQEKHx5x=)8Z&<#c1BM)#OfF@;a5B|J zB4qw$>>PuAk@P}IgnXt7*o5=E%oxc%TFSm(r1zTtm+c}8LEOrJm}Etp*+c%gb4-}w zd(N~;o^<J(ySbwB5yx#b5VhcMnZ_|CcGFGlKmbki5i8IULDu_ji2@fC38KW&W!BN| zzK|~XxXVyt?-HkQ0eu1nPc4c|Gy(1XzP#(p{o@n{Z0`l0cCo*S2>fq{)eNtQ<j%j1 z``9B&OS>thfnz9Se)I4W9J9+ZiQOa0Mt~m!pYl@lm?=(s68Dv`S0BEj#)1tfc;V5X zFp~xUx<ixr{)+_UVD68RqD+s9h<IXadq|O=(ZThY|8<EI+V3wO<hK>o%jvJ7k4Mfx z{@h#ajssrXlfp81c9A-lZ^RC}-Ag(VcO@tMyNhaCe@1APJQ&}q9_jx=V3g=e^2TC~ z!#sp|<JF(sJeqd;6?4I43b}R5ho#?^X>uT}5a!mn@H@!Tprp=gy_l$f%f0Kxt3S|U zdAN%I_%L%4urP=3x`(Sl)=MvVf)3R-H(+R{@IKNDLsPgp)+{CxE(}dorcHmqLe?Mt zo%x+9huii)m6bLKru>k+9$P9<UkId93~XYQ2)=sTrk=`$^tHp|U1q%e^Mr0!boWir zeU_f7v3j|Fl1k!j75WtO_jCBw-MIwp?l}@R6=^yMIQ1Iav12t_J8EI$oB;^yPZKSl zq-!ZCB5AZ0ar8LA(is;M{mO%^@|sLki`lBv9y{9>ajM50*e2s=zyHOQjW_&Ux{-2d zB9eY@5K`<b;a&3G_Y9cQts`PL-R~SECvr_i*${%t$|=<HL__8%JjG%b&vj5y%WP7X z*F;Ez(Ssuhw8e%l&&lr2x?|5CyVSO~;A}|9!o4m5n=$)KB#xWO4utt1Qh)(t1G&)C zEHF>eC@jNZ(~TthRr)*h_?-%1VeC4ZZrs@)mNai!{?u-=eRxPP_tho1K}^Wzz0|>b zC@rdOkL?tCOvKXTmNMt&$o7!BLF6w<3?=+TrBb3lm8EsBO|exQ|2DBNmGqkbjNax? zaS_5DJK$m{jYUds6ZI30cY7mKdKR-M@#Q^l)#9s5Ne~k^PtaWcL0Tct43Z_ynxf<< z+CCf?>?$w|<Tqyf>1Y+!rE&?qB>|6}UFh=VrUo&gX_w6>asGy&v-z@EI;r}nbKH+p zJ43xH39&jMX#)C-{b*N2#|MU|tncU5w{3cVvo!tv`&R1jM~RQ(c|{(lm+c@j@{M;W z^hJW^Ltj5{a_T?&<av&AGCXmzV-zDyXZTCY<Lr5KocCeEeo8#qxW4q$4u*QK4Xi)5 z2jM!+GrHX3xg|D$SY%`QLzvDin2h$QDR=?uAxiNTx{Adx*Tnu#$DWwb#Ow`Li}U*6 zCVlw7r#PUhhTo=jhc(+V{V_&zrf_7Lr+~7YA6C?Ctv}wqK!~*C#$s5HGueqmC)8Si zy?dPI=H~}SRa5l|55{G-ORLaMzuk}=A}Q9>HT(X-1<{^Nq-Io+3{DMxK3)sE#YZ2t zsMAXvqya%MKk8$wj)fgwffpngA1G=eG2(76%}1W1vPmS`f1WGKLv$LoXO6vqV^Vj3 zk)wvAAda4jo!9$}8ktzQE3SV#t2O8h$Heb|k*FqsY)&{}x1~EeG?d|7T&UEx#GcxB zEb^v)^|V&sW%z&-l#s6EXZch}ZzicvL`3ZBS=-lZAGN*Bz~uQsk{$+H5C@^0g$6;t zCljhfR-a9KQ4b*R8`4oZiM6@K^zmnbk6{$@6Bi?3;wRP=olk3Jop2N4K0~b~XX3q3 zHF6b}1kK4WXLJVIJeT;qn*)2DX`^eugGO%-72Ve!3w@f0@elZPCF=wIUcWg^4;+jc zsAvu4(%w@y0&YjcJi2q51Z{k1j$CF>SIVrbEDJ-sqie*SvX&^*HF<>o@r2T6NlnY~ z?_hpma9Eo0TU_U=8@zfHRdL%2nCsTi*m}f6t2IlRWXa>X#f|pa_ImH=Vfz~MMZ@CF zMi>ZraqnCV0gQaG>Jr;~t`z$&j@C}*1bX}VJhu8jbO1iyeNS7o=v=paqMpil=tq)Z zH0@#aCam>Ev+uj$DZF8HNg8WCq7`%<hANBbxWvc7G2bdEF>tj0{01mU`a}@b-#n85 zvs1{a2W%{8w<f<Ov+tCjz0qCJ*FD1Yq4b3>vm{uPBAnT_rj1Qqn~|R~vMqP>FxnhV za(Y_g=VE$Iu$aTgfNiG?!9fKG5uvC#y=Hf^AM(qL_s9=!i~!m`yk&9lVm8X<O{$FS z!;zS)TVQmxTB)W_K!(fO&nv2>=3q@|u;?Nlm@?c<Ex=I&HIuhQX1-ZaT(l4OX~Smg z2il(K8sx5~r&|hy00Jq>NPVQgXSEf!dOwyt7sHLxgpQLNFJSrJe|730VLlIYjD7c0 zEhM4Ysm{U62WUUcFH7D<Ir<i66CvwVFdnuIn*Ws1CSxPz+rWSFZg#>&jr&6+C@kFf zR{TOSVEd@%Q=MLqKdJ?W;PN*77z?6y_1$>E?;N8t<<RWFyi0L2!%E={0*4GAC)#R% zXXwEQ9qK54r_nEY{6h}~*M4Ge=vdwT@rXl1qZyfwWi%@l$yh!8&A`;~N3dm#S%9@L z_N2l-E*F%Fmy?D}SLk#oOhyG$^h|1{fwEC+^r2B#ge^`vn=I$U=}z*Q>?VuqaoJVB zHI{*RqTOO$*V8lFwn6a*(H*zFHggY-1ZfC{Rgpk3GFEUxF)MBlqujywb@8vaFTr#i z0z$Jz^?u}H6&Ig>98c=O)NVKx67C!*vf6%Xo+<mN7q=U>xB$b1XK||aK%Dj)##~V! z+_R1={<dmq7iRU}_xHXSMqAXCjJ?(0qA$je+TuqHUMnzFU;yuQHfB!_7iB$6+Zu!u zX;Vel*2J~Di|t6Cqj5kA*EI4unCS`1NYeF;%X|8n*H8O6BB3geLmj?zGq*K8V*^Wj zxipQi6m{G!@K_)9O^?3q`F7?S7^vz|!hG$J%_`JMjz=~bm)YSzej|0Dgm8{Aq4^=) zRs$R&8(x1$-h7NUh70K~Y0Lkan=6jUYN$DGaT3IzRp3OCUibwk-ENFo-$4HhGZajX zJk&aC9(7+C#;m}wZsc@6VR**<4?O(_(?&Iz%BRX&7`M@}m=+5WiL;VaVOc1?C7qDx zIyd{$=u2N&V$YxEgE}WR)yetV&LY>9HH#(#v$}K(PakOLER{B2=w%Nsd<u7)Fc1Fv zkUS>>5G<vaZ|c@%6}Ov~9c%SXfzpQn;6i~z{Zsp*S;J!Dci>{h>_6{q)s#iwB@(f5 zgG*r$^YVruOY14B{IRy}?qHOtO~2_BB<8!X4Ki&7xhv?dtzUL93zL(TRYqMTQrpQ3 z@nzlxaA1vq^syxrHaT^_W%}5uKlf}UnNSw8EyCc)V1ysk`rj?g1V?HE9zLz4o&SP~ z6$luOeXtaf*Hj54Qc2B64{1iMyHKO~^alyUO0p+BN;jb6M3x${u{_aEs9yH|{8T!i zp5bvr)#qyq#e0F*iAh&Nh5rMDL3_UO4=N<Mj){xsljnXmpW~H}d=%gRgFl3#s&H}g z7;k;&b?kOK%;yWt<_iqhC()~l!nkWY?3x{RA(Gs7w+-QHc|2J_>0t7w*!fjelQp3# zQI%B;>{3+~oO5_~@)Qr=dzS+6XmS^i?f0n<0I*uE@YnwOU&m)Z^I0fp^tKCWfIFO@ zU*PLs{~DT>L#=wiJ1Ax1=dPu*{&Wf>F}|_yh0278q@U{;ZaxX&g;-+#DVw>`G}4%t zbxlP%2OpvXO8<`tk0Jor-yDfSpFKN?+A0S*lA!sy=bopdYtEunB{*uMQsfV!`3R?? z<9(@KANSDbAsG=T;pr`KxmhPb6M&fwu^%$>mjXwOcx<l<+csfK%6XUQ)u<ephd%}; zuKmdGB;HpF^(<-S6wT73ENXoElb^!k@CX_jMk%xnt${Co@i%d~rqIlNi1ASr1*)<H z6h&Yx$`ZG3-^TqHUqD%wn9b%`tycK(E3e|ypZP4dn>EhQ&qKCJihZ!TT4TH0VZFY> zv!^F`>#aBO^vPpH*JUv-(kEqV&WS&Zdx3tSbPB-?`OH8b`20I##gW_|*Bsv;SpedD zQ!paXLMGg=A?$QaN9?gOmf*8|-vd*X^^KP5)C!ArUC$CcFyR0wz7Jo|o@JpEqgs#l zWu`0L_e*+z<SeLCEvfM7@UtKI5({!_oD`<US`fF&otos<!?3g*OvIi4G|W*D4=p6J z48I2iOij}CH=b`cfo4z0;q|!y&C1FU>99T5PY9QL`_5hbzTf{j9N)f!ez(TgzwsKL zK79h)+l=`|rY>s?3sosa`3Yt-9335tE~NQUTElzt-tSvVqf2RGDa5P|;c5AJU+%9! zS}pJON&urm`8RIdz|a1fKZB2c^rL9o9?rF}&Z2EPoL`)wZ3zT;9|R^m%8*7_hhubo z*8xhQ?OIgx3f4PV@3Nt!s$C3i9PDL6f=<svzKs3&v59BX7b%`oIaOH;fRar0UEjg5 z!za>MP81`ng#xhIZm_<(gaVnR6P~3y%Cf}4!6D6;OHr_tQrYoA1TYXO#wVvl<vniR zzJ=v#0izXmyAIDz&(XF!C~z_(m*`>G=y;E{eBwV^>m(b(bH->W$MlW_+=SVm`F6B0 zgfhI$CEz{0v+&wODFf#zLDl)$849DYS}dV;fx>8Lb%?g>usk?IQ9gqy9JDIoY!7&k zrs={F!yawB13aDmcVU}sHk;w(=?Px{_O~c_QAyS`c780%5;s>X+<ERUKK6-E;75P# z$LRFUa*47i;l0Oty~dNrk8pK)g^P;|JUe-clar^o2w-Bj-NqOsnWCT((s0{EQ(-{& z@uHkzNinEKPYr3F?-i53?t5$E7Ek#1a?#`L03#}lPHcHS6U%d0SSUi`rR%O-!skqV zx&Sr!&1X!Rg{b(RIQ2xEr|a+&2wDCZGv;LtnJ9cn2$}pIjFBG-Ybl@y?Un7yXiu~w znDA8otKiWC^eF2WCeP6o$b<VlwdIueYx*}{RIIfT{SK3VWGxJ@`N4RN$DSD+KR?y3 zvMBKTKKCPd`IT1y0FU2&8*jYv9kgx8PNq1!Ah#j^EEjoXAQ{M}&UvtaBJ-<OnsT<+ z6@Y`dZsq!AuYTTYu$Ch1wGE}<ZJGwoQ;In6DL((zdX2yHxBnCT{lEA3aD03m;>a6p zw>umj9^ua2J9zKCcT&{7!jJ;sRS*o0QqC%cx}ISdG_J1eM(n`_6Eg*OB96xvsYxIY zUWN&9^1NNo9}tOX2<%xiSK+e`&S#z7VYl5xAsL;`GCED*Nmk>W!}-}6MfnpJ1b7w- z9yf2^29Td*iDhtDOofybDS!at8XiSSPNv`Y{hvXhHM-v7;&O|xeCaDB{C$ex$0HT# zB8^-aJLVA~p6TS8^}$&bko*17Z-g2yfB}y$w;Qofa`bp~$(+9i#hr0*)<cJI#Pj(a zWod%5ByFv<Z42AcHbUQbael0|P*AXa4>+JOCE8sFpcUhMnzmGi^yO*n06Mx#c@~yf ztyZ{m_ZD7x<z)g7Av`kq^3>4ApxNzkaeje|%L`mwT;lxv9B;q%CeF_&uEF`)DV{ue zB!GedWdj;c+l$i|kN40zS&a6yBO~8a(jJtNJ)#C;CTJG%x5y;NWvl5gdE2O<!EgKb zx~B^mac>Cm%PkN;OGX^(izW>&ZD6vT+6&2^35(4SgV;=6YJZVP<2#zZO!&)IAdQ)9 zGz-}g1Y^dT^!wqlyl9$LgKh}Am7cQluPkp`VcLgO$MvUMQ-hh;pWhvP%f>FSB{BH% zJh2kvADEhxPEMY3x_|Q1--kc^M}7j%JG}SyTlo5GuVEXsaAth5>WN8Czl*))WL6`f zHP93?0W?@rr0oGQmqJ*l9Mw;26O-YvABOW5^Z6VvzW4$Tj*g(9&~+W2ot)t0<SEY1 z&hYff6SQ3yPZ#ukpV1}9t}nuNL|xBN&1RU@6?(7GTXGs}+6LY_0Z@D@1hK*Cuhe{} z<~I-~vAZ!4xDGQ)fhEuKGjCHWWKIl&96Tx#=v5OG>`9<))>qi9*IBoSPY?}ht#N$g zW~@;2aYDIl1%HkI>y+4ue$}{h>xcqHH9gMG&hhncycVPJvF1s%AiR?@8cS<*M1x>h zkSrtgvrftl)2VZV@y<CHm(TBcfKDC-{^UHcS+8jhJ;fU6g7xC?-~fyHEap{knw(Di zvW4v_Lt@|eXm(o)Dctukroeo$#A30EM_>V;B4Kiypc9Ye^%ATwUDu;+T5LBvoSmMb zeDDYg^jqI|$#UaqyNmND@Ck{dqeJ}S-}oE2d*?2iw!>>*{~G>J|NH+4Z@>8+@YYU# zrSBu!`T%ko5V-)r8U4Z}PD0f|S#hfN{uVwB805a|0}KDb{h<b)N@0dA;K+mk&GuII zR2lseSlfs%4w2I}rHC~f8MTK9kV6k;<M6(SY+6`kzmHm!gt-8egL)wbDm)(;05g?T zPAY-3d<_9<WDJ9rWNjMV%{n>Jhr!rO5WtL=8CkYThQt(w_MA+TgK>x-CxkL_DlrCp zpP1KTvB2;D1E0rV`pbVA%hd{-s|$SNYhTCN=_!`06^g0~8Qa)%+Qler>92zuF#HH4 zrz{OZ+ZuvO4<OfMh=Jwr=Jhb6v#!T%R%5kVV%Kz7dEmy)V<@F?>-KFNJi39eeCdmL z{@y+4qQs{@^?f)zSm8In@C9^T8#Vhbc!RfXgQnTx>WTsYJ$m?ngnVcYo3^EgxG^Sz z2NNSWru|{*bQi%A&-3?asg!dW0l()YL=66tz|4@=s1O8y96>2c!C8xwr%&U3-ZG#x z%d{7K^XBa+^qr?I2u|h9S~2%ORv*9)ldX3ShX=<n3UJn=ZF{V*F0t9J>D+yY2&oxJ z4b}pWD+|NW{j`1tARu=D2NXLd2M0;7WUK%uwwT5|k^qzdy`Fpxv;rlpl9<;62M4RL zRbtVH`~}Jb+R*rGMLsR0{Zl^*Q((1Rh3Jif3kP2bZjXYBM{Ltp3AL**1~%|)?~$T7 z1`C`GeWkiP*xtev8mLMr1)QBe!+-Xl{wMfLzxdz7@!=7^|1+P#pZYVufdAuv^uI}M zMcVpO!|{^THzAXUw>?4}0N$Hr$2Qu783=ZTy@kq44G4kXm0pcg41RR%Vn0qu#5NNC z6XIo(L5`lve#`|wCWU@7nq1e=@y~J?y?jQ@W|#)#K_+}ItS~(lLou0f3%Aw}C`R^I zEc(F$mgc$$0His5*heMiUkYYHrimm5Kw#qjl%USg%j5`zG4o^^bzaoXi#KC*YFxxM zS2j*U*mAq?-Mf#!@R$Aye*cer4pmv8*)?dJ9(V3MkDvI7pTyIrPx0+<e*;gRJmMk- z<<eMl{C<kXPoDR5#4ngX9dSVCoM;1*(200Xn5D(Qu^Bhp)AoRM>12kr9c9@w1+K0( zfYR7(HaI#u!merX-n;MNjc<PwN-3Cvjx!z~A7efv$3m?Y%CZ80;H@42VF+DpdxtyE z-N9zpVAnKgcUzpDkW-uuiDvq~%O;1-p3(fN(s8mvB==$9Kt2t0G%mNeC{fk~{}SIk zOTMsX<G6{`vh+6yJm#%|XGqYh09;*Ng@i$=9%(t!TI1I3yRm=HIcQ_h_bx4iOcPge zT_<KkbTX?d^bV*r&|6MD+)>gc-u7WS3ELaAzpo<w7-KSxIC8VJM-pf`9f{+lXTxR1 zW6j$dj_FT46H^9<KI)K;*Y*}CC(rQF0JNbvH8gN=aDd%zhuwCIu5H69fD&4(=x?&! zZYW0vs87q~3Ux5mbNkr>6Z;$4g9^t7Qy?rB`n>G{AO=D50mQTK5#TecVc&HWRoWQ9 z_V_3N;Qx)E{d0c-^Qy#WKl@qSx%)gGy!Q^+%7s0^KY>e?K!8Mn;whfHLJC|GJRFs5 z4+xm7l-cKC@dN^7VxAQIqk@M|jmTysxb|uA)8$S5JP>0(5p2xtHWd0Ya+_?O+A}wM z+vGF(KNRxA*8;7_QX(jMAMIu=WQX$+78+DmR-8NUQ@{@a0_5wmcZ!=8dz(QXF-U@C z`t(<}k@~1Izl-4|McU{YUTpDw0gU+h2m}W09JEq?$xjd@jl8TXeC|g+k3aU4KZW}* zK8JVSc@IyYp5pA;1(cx>zBg|l;iJ#r!7HEq7&ezz*lo912UGCn#W~JSPvgFOv)e%d zD2p;`h?$u;#7ierJ9W$j#$_Gnp{KTSY=GpP<q}^BePQ#gF?7D%JBRgdhpH;kG!4qK zLOrYDy~D|~XL$3C@8bOQ1d4OVhZMY8Ym`NiC_ph|P2fgaI*Ou1Z?_?4{4DI3BG6wx zu`&h$_lJ&@(OLYqX)=F?WV%)%@RE*O5eyVKjWCDz<@B_ywesF{+qFOtkPM1hgO0o; z&@R6@qRcQy>#Iw8Pk>qieblGp;~UUM2c{2-5EwMkxWy0zHm_kHd1NThc@%|$wLQN1 z`WrY{t<ZKB?>s)oPyPH~#QO4_z=iG6?iyTOUE=)o6z6BB*le~jkq_8AU4UGrlBr*= zU!HH?4$k<B6!KB3Dj2!m1-yu0ilh2LLlp|UU5lQC7K~C*nt~uzRgJS}PqEu<uvi_U zC@9z!C&gkwX|09faL&e{4%ryB*6<-e0>{X3S$bp!A{t6@>SP9j)HfXiekmF@s0j3w zI5|SuDhbdirO<nici(y&j~_k2{TE)u3oqQqFZ_l7HvV`2>;DxTROYU<U(EOf0^a8; zQZZvuJbgn5_lOLqUP(+gt=^Hy`CVLo;_GlI_6&`bKU42SndVu>$20GYsJvLHDfUf{ z1e8KvmaK&Zub=q!I^i#$7APRjo@62;hLV6u(y)DOcQj)GqxTYc8wmelpR<3`;3eUo znzrv6gQw&U<U=2m(9Oq+=Sa%r(O3!|%)&ZWEFYQxQ%Zmm*;t-S585-ob>}vI>ZkrR zimJx1{+nONyKlaZ_uhR2P1D2#EdX$Q^FBWO>Zfq;{yiMsyn(}`6^@rjIP@0Jc?Yc= zWny!d688kA)r7eHeMdRyJrqU!b2e(r>#HlAot~oW+H@Q+Xi8+hq_nckxPr()vuofz zMO>qiFz~L!`symCf2BMFq{*M3UEs;1Z_@rTk}rhx@|Hq4at3ZsoMC#tp3UIT&cWLt zaYn+}%S?~ayB>ftg_vw5mO;|cWtv(}pX<B}9^p+i=|-?2R%X<Qje*eyyWIu{2gjJt z7j$&8uF$tFw%bh{OBLeX`|xglB#_4F^6~<^-7eJ^#)OaTDW!1txqE?^(0|*_8bwjY zXEhQKjC37oSo8q|0RGi4|4Ufc(#Z@sy#6)7yEbInD^Qpc)oh7_)e)Y*|1##QMF`eZ zp)3uIqQp$j_T<ENae<R3Pw?c))4083`#z3);#u^UtyJSJtt2aaB9$<oDvc}O)e5F4 zU|R=M(|9Oj(C->Ne)I@{N1+2S0GZr*9-OmryNI@t46N;Aq9W&$b%j_XMe39%VU!}v zh}W{MZ1(p^aWjY(paJ7e1glZTI3FVu@|IWIwD`~e-rvVx{O|r%ELVs4kstj$e)UIx z48Q)b{{>X2Fjq);z9*CyDW@@lp~G~*6Ib?z+}q{Fc>SwM)AUm2TvrLMFIAL{2|@n8 z>i2{tV%Wxs%92II%iH49Sa@gCA?o1ai@lBlYlweEK~b;{UJ`F+ea|%P<V=%n!*MBz zDun*a0x}AJZbH6)JRFG(_C#6AFRQ`#)ZfH((_&|nX=Kdd6%qhqtcCzI17Na!9<rKf zE|0C7p8g?CQ5i1&<h{duzQAWc`vcIrz_0xBKg0U!0^98+nx?^aOU_1BRmD)P>-D$r z-aD_;*?etKRx<z!^=yH97Glj8ltJ$B_y!IR4p7f3%ojBU^Qp<CNlf@0yUhk|+d^xF z`Fw$UFTDuoIE$Y{)3i`fA&2`Keb=GuiD7G9psY%G=doE|g``P<>U*p=>i`UhQStGw zuI<QqsVt*8R4E<JxHf=@&1OTIkBmnVfn^xWAROoOMR3q!ty0B#j~Z{BWH}#cvgI5y zP-RngP9$N)3UeB5Nx0bm2p)oU#ahZD_w4BtoIN{<IqSKd=?uS$$4n{HWY~t#24z*D zD9Dm>cKR&V71x2N|HjQ*5m51ROy+2nF@BCgz(?8=kf9Nw_7u3hyu|Wwi9Q71>3spH z3Wd|q&cQcZV7-Aqc>=h!9TXE`g}RHXLRrl)KRCi{d5n+Uy^r}~j<N_xJVBNgqct>1 zI@sP~yWQgQ@&e~)=Quk%L$ljqv)N#`-G+Y4bv<@6lt<*+wuiSJl&PVhu-UBf-dk_u zyWjaH`o2e5&j64`$T=6cpt`<;^DfKEs1#6DCDC!DA)f#z02q_DDVUtS0tc$%e_6R; zsh~rQgm7ju@>K%Iq)2KgKoeLoMq{_#;VWPKE&RUEe;)N>fnWG@e+ggx@^4|g*+?BN zFs|!l=a|3Cs~El@MR7DFWI`ufd5K}FAch7qR5IKobMi)AcjaJwSpT%}A2R+aF}1gh zLFIBQWCR_gq#2piF`kQwpZ##KlrY{flZp?kOmL+-e0m>wKNEk8+*Z^TI~hN7d!hpw z#QWTg_v={b2bH5nQ=Ght1LVn`<<Hy^!P&t~JA4x8Hm`i@yBhrLQ`ci(hbt>Dok3Ot z4)piV-Mgr(8sGl*H(`568TEodV4+|_s$mMv%i5X?X2G7amjSrCJRQ|Hyp&RyEe<i8 zAE2JiDf8cAfyHu3XP}D$&_Lhq(6k-erU?O2=xCpH4qe~FTG}G$IttV3oI_F7(AMJO z{4DH~k~ZW4C<pAYgVK~2{_yx1Wm!hSz^RCPXJNF)D<Am?o;-Yr`C<Xvhn(=vMxO-_ zPiX{#NjL;IBn{IiO^IhBGjL645>rl(06EU>U*`j!0z_d-btXC>TGhDs!b{LvhX64h z`nJJtx5dT9Ib0An41)T;k3y3)$z%~I$}(Cc_-X@i(puxr-RA|l^12Wv_b`e&q#TA) zG2u|!@}s|1Rim2EFq<tXfspmMTwh?b-D0_1VX;`yc8w3FYY^{qKAggcTWGXqySBx) zZE=1PEH)fC2%J{eLV>IxMOmSqEwDH^#B8xbHLG!O=RR)Te;HL>V!4>Xz`?sdgj1$$ zhMV;oZPQ}6+v1(K-;QxB0H7!+kk4+{qEVM{ZHsQ#;EnHm3va*qUEI2L8<&??@KErU zPN7i7PXut}!hSskteP(tVU6m<%cGToX5V`c9gd=syyme6yr5SG4h%rq--Nd?;v?Ec ze!><n7q(QKb@=Ajzk!c_;uE-e=Q+Im@`v!FKlX?5PyW$Aq^&t5r~MCfO<6TDv;fF8 zH6io|M%VPolX)&4?2t$!nCgaJr62ej^>NCVKmw1k6wIB)halm)y56sCqAbZ^SU?SA z&lC`m^Ah*;fXINdOZlvt92`wHFcYey;`m?DuqfOF0Fb<7IL7&CrV3)VRoOrBCE*#C z!qONl+CQMW<dC$l&k>r7@Wg)a^U>-Oz#hGt=>S=4By%vPz^&W2adml#jowhek-#YW zzK@KZwT$o@JniO1#xP{ovAzkR#rM{ir&wQ}inS($6|Xm?U`&aks8Llj)U!Ehpe6)4 zDGaK57WYJVn=RItSGc;m2<^9|)jJoClmT@;!)!LkVzop)t3yy6F`7zKq`I=i$3ONl zl-l6%@Q6YegFyoIzYjrKoTp52FMa4`oSvSdYj@cBz+k~vDWCN}_qxx=X5{UkS?zpe zX;ktwVL0!?ItcR;UsKp^Hx%|)k)WQ<7l2YBCw*!Iw}YI)Y$ohkke6izYi+QS_$Z|A z+<iWhgj^L}*P*UwQM>0=qoZbtNTW*7Mp03;$K`SkD2=C&AK=l$cVR<Ryv1^b#bOy8 zC@WMo<(!B|9(lavU$G4q;}dv584YDjT&umc=&mksd37F=h^7AUI8kOnvW}Ex2~!kU z9o@iUbpr>tp2xjcJ^`qZ+Pm$r+ibB~)Yvr}%;ziEu7Oe>@4fd9o;`bp)xiN?eDOoL zyu8G2yNT8XN;2glO?N#739{Cr<KR3VX^YI0C%@KwS|)8PA*2&#{|nElk44{r1QMKg z@YaVk(hAD!M195!Umc>#^~Dul|JJv0<Hiltvl)KoXMY}F__bff+36|BsE|13Bo)7p zat)<WFd+FLS0u!YEAlR)SbS`n+9ULHfSz~Yy0#1jUS!cia1Gn42Ja-XC(Oa`I|5u& zF2E+Q$XLb?Mm`jk*t9@%g=YAjo0$ZYY}W_A1kW4_|B>L&rh4Mv$#KimXEKA$`^sHZ zxpSrW!QoQCiLou8UmbL6{}qMfzyv%7vr7D7*pQx!z7K)c*qis{<S9h~vz!CoMF%c` z668#t-}RzQu<+sun(ov7BeVqaXxWMFAn(z;27T9Hx4i()Mg5@~Yi$&E);Vm}S79%b zLI-;v;<S5@#bSxsd;wD!R8>h%Q(gr}sjwO96@VVA#S&FjV?JLXnL(+Y8U>6|C|wyr zRnxZk^!I%q9zS`4X1BrV)2G<3uZS6j@#7N_F$J+$``OXQYpi-xmV@*oF9u1+1W@HR zRNwb-Y_0$R@6d!$%mg+Wh>ibBFLQd8HPIr*gD}S6==er1{KKD=e%VD($qtP^lo!W< zwRS}o8;Tk^$F6Cx-Cm*ZduXHKoyF$r65I6^ZEM5@oCc~0M=tpk1#bz^=?Wdsv?oAf zqR$J1g9v(q6P#8F061^awL5fOgWZ-oeD>@ily}hD1L5QgObw?>Xk7wcq3aqbXe?G0 ze&G8*i)T+B<JrkmC@B2ipZ*c7Rx51QSLnJ9-UFM>8ee<uD>ylM0`EO`%?^Fv;o#sH zRXIZ+G7hp+CpoIx;5QK348&C2<S3f9m^kwwM`QE|X|fUWA}E(xd^jtpF(#xl?!jrW zySBw^U;YX{{K|)M|K2^k_`*H><WKz!{_g+vZ^9@7pecsTH8Keq>(7+S0w3VT$b@sr zoeJHDG~ymr`n+#x?!7-OLq0DA|CC)omOF+bVR~2<jeuYrEh&{Vs9#=c^daZvQ_6-% zN(A8pz)(Re9m~A{@TURKxE-mIs4YxQQ)b2Ba;N+x<SSwvJk!8HGXUa(&)YR_1Wy4A z|7`p{VsfK#+Xuz%mybew$;c>gQ(kTOn}87jSZC3-4ZH`+vcP=4fOEn7o{va}_D8d< zsD}kKpQw=4O2;AZlcqT8wzwC^Ug`9{8p9j0r$S5Fd&rct)>&*fYdU)#p6z=}OipVo z<_pYbb7%#WWr?aPVT^|D!=ArSN2Rpt0NaQ7^z?q;x1nyLL+5m2uzX(HTNFhBU)6M) zKvO^#&UUAupsK;##4(W$j-*Yya7=PI4t$~|Ke`vjXNopte3a253Unb(0qnIzh<ovG z%(IYy;LTgNQ~#p;Cs1O7vzWAia7b(C7|f;L2q+Ptt7kKm)eM`>Hf-$(zY1ot9H2+3 zK+n{G*7j(_HdVg<eZ~axzSCT5V^G&*g(}N39ML4-2vZcK@tYzJZ9Ga^)G%5HAxaLh z0N{Fy-g|OHY#X#~g9q<z@$Nfs<H3V>Lk#~de*M>e1+#jN*?fW3>JU{mqkh9+F<+so zD=2tqqw(3#{t*7)ANqGFu0Y@uO}oSS`5Dg6PH=vHhSSq$;nW5I@6d77%C-v$jcEMH zvSk5<cp4^+R~kQ}d$O{Xo+34xq72(e!D3-8zVwAJ;>J(>5!^UF#!vs$Pvckq=`Z2E zci$$*M5JhpUd-cI4CI@*Jg>!+DNRt_^fh3VlX8Xc2hA>!$7EfZ^_&SwF2)JLp9J<m z_~#OTPs>EtWZeJ-sE9+wn%Xtjl)&Ymym)BPbqTC^UoEM>(<7StJK2+XGionkY*>@d zWr;*5%zQ-aN5!&smEV_(Rsw*`T$t4&6eqS84SyWW$wYJFz32-lX(D@f3_z4h`*=eu z%v3o5En1GDue1u;^~xx0q{&xmtPGIpGh54ofR8khBNKKa1DIjBXfkF8q~SaeP^JPo zJWK=@`9D!W_%K(lZL!;KLPoZfUm|5N1j^E&t__yU8dYgfYL8{D(V~M@7TczUb(F=g z)E!FYD8P?*&`P1M3v$|W7Jvr4gSQS2o`SDH1CE%w@&K%(VBv~|iqHBJ$tCnlX$1`p zRg{C?OWGY<33zO6I7t!1AxD4~EGtNH@5!2xd<D2Y6qF{eW>LQwegU`@&s&&t_U1o4 zypdky4}sWCQ4E&|6c8;VV#ZVb!I`fpN>p{7#xrcsLM6c+*DMS5J<N|4g*XYJZ_#64 zr4BgTW4E!`uGgu}qQ6A%!J#z7;MXD1QM5D^lrgfJ%}|yVx~74LM<0AHw%auxy!!?& zFD|iOud&%|@N2*NufkRh108D5dVK}&D3tYVHp9WeA(o2+)Uz254-asBbVTv}%L2!% zIc^@k3}ZeLO!w05pZd*53axW!+Xl~0pW))-0^7|Nmlqd!{NQc0&5ptmTO><Xh!4O? znVfUMnn1@Eb%?oedU}e7kDlP*;1KtoyNkd0@BX{^U;Z!t!?5)<AT&vHlfpUia0NBY z1~@@K1Fk(pwL`zcq2O1;A19b=_DGWOqw0NnU|RSO+djG_o}SWjW9x^MKh<J2{nG~k zN8?(h5KJ0J){ZFnld#^mI-?f9XP~2LeNavYiex{svQnWE<!8cQ0D!?OgRgnL4Ej_k z+cS8KZ481-@SW5cKyHy_LLEaoO}oGQtv!fi-go4P1b~=ORgvIy9ttimdBW_Qm^~jO ziXtOxJ_OU`6Xen<G_6%>%~5H1oCmZ+OxK!qO$nN(`nA@<3wteuoR0xZs?yL|=|bVg zVU5*6iLxMgF|UB5MFGq;ob3Q_&^8S=O^>D}q3*qd?^_%#YC!eq>jGWxU>!N;`I0p8 z!YCM1!FDYjdvratr=&rB&`6V+lgAaodf)?t*Lg(4Y)x^mg9S!OD_;V~GG@KptM|cM z+j}yF9~>OPgEU9_-NIa6h!DYIjfBP~bFfRmP(JA?3g2OH;*0=Al;ymSR;6gQ3_o+Z z9LX=rXBGSzn1+xXLF01)Fhy&Zpt&KCN_<7khf4hvy-x3WfX>wm(7^9G7S0_d=n=G? z(|uAvl-4*nJjQIXfCo8SUYws&qMfkcuK=`dgQD~icj;g~p;!tI+G^~YEzZtQvE6O) z#ozi36o!0bXzRkD2=M`qkB@MC<0g)dj&OW@6nrMg0k<kC$3`7;ZQQ?m6EEJo1EmbK zDWH^z@YMyd$tM%qw#DV;c{mwyhRtS;tBZ47U0$N^EsQDPti@|z{VEO)4)LKEU&QBr z{~y55|M|a&|L6bx|Aw-vvG4NYpW)UQkL?%$>_L4oqS#P45XGdqml{8VfPf}>XLX-o zy6zf@<AM2f>N)wl9E>qOM<!sI8T&YGQ-d-F5Nt6Rf`E84f$VFL!L+cAclH1z`03~A z9iNare@`s|FtE6UIfZ;`qR~@Y|A+?+LE0o35KpN59qCys_sOTU;Hh$_(>AAPh5%L8 zYx^F%-7X^Ys;W_htY0x#x>so%XWyh|U^4+c0SzETTdY6rd|kh<&5idA0u*So5@Ej; zLxD(4^y=~wZAjB=3^7LyigI>*w4{uIjl--euv`=<44~j(v_hdhO5I~QuK{0DAfj1? zgWh7(I1~l>NED?;p*j?$1_}e9h)mFV7jw)zZQxyt#jHe-0{}vtbvZ9_gu;1r2pUnz z>%@!u(Xz$be=I&<-BLiMbNd812{33ZmrLBadoOsmm!Q3Ai(S*8+HH|y4OpZz-&Bir z7Aja8$kW@(WdZ;=I5-S_0ZYzEHgE($1zE*6eGurWZ}fn7h~bruG3dK4oc!pRY9g43 zV41_hdk6{@eA3IU6UiO-ApSTPH0E)>Vv#<MvyWRCJUxl0@ErNx;_B)WrYuob1;xPV zI$T{{k?GxgH~`!27PS~d@^_$^0HjFxxVCrAjx1n`&Gsf9(Nz};j~+ja0FoP|L#&6? z^YoiBC90~zhhKRGckbN5-Me>j^VSU<9UkG}@PJ}SRC5?}famYtiM{{@Ei!oT(d;(3 zxH!XhyTx|5gLA-x$4}6<8+`T${u}tO{?R|g<>jUDGa7E`__P+ncxOOB$y@+&rt&-S zg*XXmKog1%%!f68De$8yDUr$hGqb@pSg89r|I}T+Cz(MkHvS_EPqH*BpGb&(Up;#p zqQ*C=d^PdR2dyNNt`HNlUn(*aRJou@CGw(Y2AP9|k!CwYl*4kx;?9~n-LP>xW4RCv zc+WMk=45lF#wJ<8@kJ4dHaUA3g`Op?ud3?ctd*A)O}GrAV!MU^15^SGk<Ntkqhz76 zzd8SxW?J43-~k&056N6v`%A(PP`JD}4@VTWIN$G4l?86yT!D@#GV}E?8ZeQmcxX6y z+r#w+@QNZ1dJkxWSyiAY$>FV@)hG-de>Pf&6u{J8GP4r{R#gpcfYNvrvl6$DX4qY7 ztQ*P{sC)>}5;T2|uxAvFBMV(NDUYro+u3<A@+LtJkynNJOCSPZCza)LMaQso2s5kz z>nNlw#dru|h9{a}`#$7DXeq2S3pi1KSyef;W_-!VL^k`@1A|4T$7s#)fKobzR_?7J zE}zBNVBsIj7{~{1EAvKa&zPV@Fz^Zko1T#tn^4{`2o!nCt5_2}(M{Xz;Jrgtl;}f> z>*%-_>fG(ND9Vb)Lo0Yo<y#TTm@FqI0AUgDKyehv04f!Kjs$|}6T+vMqVkfilV?wn zoF2oLktRn^qcy5vHCQedxP9ji?%%(Mmp}Yr+<W0A%;pQsmMhE_OWaUE-+Qbtx9DAu z!=oeocYg72;Pr33hPU2)6VFah@$kWWxdj%;tU1~Ehp{i%Of;A=F+o8bu-R%bX*nSZ zVhH6BBNJ52&wUUKAOQssEDO0H9hN+j@Dl_()zzts&7x4(J|@bWcxvy9Y2eccPA;Du zj9pjs2Lx7<*-6C6+U)T7Vru7D=%**f49Sl^T+<#=RZ8~?uysl9fnW1>ypz#t5FpYo z!K*Y|Qn0pdgO0<kYK^L_qSh5<0XI~vi#TMW&J0HJmWI@Bd;%zwQ^#%P%6%#;2V`On z`Cc*~gd7MoDt+J69w?iO!!t?&i&=@gw-3;?bZ)vX4cdlgwlE<Gj0TJ*;Yop5sA<-F z^v;KHtQyAjP_T5gOM947MTaP!Pj5ZS!oVv9T>(comN+_`V>z$z{J|EVdiemS7adM7 zwpj04?Aji^wRrUO5+1Vs>5q3VU~3u|ITUe_IG%=2fH%^Kq#LFSrW>U&o6X|9d+(r( zf#s--F$j+g6V4tP<P2xLL*FwUhbIU{kcA+Ec%D}u+v-HZ9KO6qEGN4kg+HI=r}kTC zDMI9^pfEHL!avJT;&VaH;|+w<JQxmini}z*kNG9Snh5>P{4)ZmRczuBBpyMT0v6%; zB?mdmB#fui8a5oiR9?ZU6bVux99#DskjKR%m@GiG(Sl}`_+LloSRytBcIn}N__I=J zy(%6eUi&_sW>HGv_3wN;`Z{nvi^3FemQHId7Yp1tx((V&@~|HG{vZ5d{Ll~oA-w$3 zhoBTY4pNY>rfIO=tjUq_{0x_umw5K<1ZQWbc>44S&QH%mDBwxvGmS8#dJ?}15J1!* z3(3q>6NLr3+h13r?}XSfAi}B7>4p@d6O1;)FA_X3G7k&lS`BoM@P`!h<4QT2UE&4T z1BmH5KA6x?j|+4yTjs?*HLi)LAT#re+NX7Jzn8q^@6#8Jz7($ewC}u)iMeEqW<a;x zMlPc7Xu+^~wkS)KMHP?r3@U~nlrwA-hb@-QM`N@q1olLq##RMhenSAT|8Lqhp*_*f zW|RHSpAT0RK6LL07gswdMFPJx8dr*aJVF8!9<&g_41s}J=V7gfZ7mcGyi>4!i*~oA z>Ya^YoRu~(3NR)8g;Fr4!{N~i^W_|6-(WsdSXKq@-!_1+0cXQeu@=AmdWqM*dycDZ zpT;fztKy#wUb7`g(UC?k9?fQQFfNjPdGCYAy^khatxXbO1A0z8$49=Ij`8_e2lD{3 z3MkPRWQEzj51Q<h;uUC4&V4uq!6zvYVmdU<E~GA&ZzF2jd@oyHg61O`3&l*uw<h?c zn&$A*7a}_?#J-GjItPrjsw$LKm4S=s)EF)oqAJpnNwUnicv?g9ECTyH*Suz22*<3n zj;XD)wHLvGj?EoTn{&LC7o<rjJAxgT9DLcqP=Z5aD0*a7RoHH}_|EI!#<Qm<(I@Gb z|LK2;gM%Zy`jL<0l@EU$H*XxHZ8qrI21;ubMTz-*furRLAA9MesOJlmvkFydP?QG6 zb@FiEXJn+n)1EU_nh@^D^&0;^;TZ}Eh;(vU?12tGYa)Y?X)q#$RaQg-9|}{N=kW1s z#ayaOiN3@jJ!;&nK?!Lj-~ZYNRs40oXN6BJSSA0ag+@Gm*s3Xjb{!ZHPYvd1G+P4( zojs`1{Y*0!3!VN=i;=?Q?$EX240j0G$_`x~7&w>lhj`{M-Iu^LS}a04eO|)YdY0b1 zZlZ_6f8XcfwO+5$w(aP5r4()-*ZAZ|ZsFu?2V*n}N8w0|aJ($r&Im%nXaWe@(Ds2* z1bBLD;o#wY1+6{KPadQ1Eou4ALzNn30hEP?(cBh?Qd71%?RHS@6^!zLbEpapgAVW( z-deQ%4mS=IHoGpfET-vazavDzkqIlNLl)R_>>>FK(}>DILDU9y(&|RwH<DedJN_ML z(R7;tf($_{MJiu?-=&nlUI=cb5ruEOFV3Jdttr4dkKJw)_r7yw%8wMH)b7-^Nz#l$ zZu+O}#E<wP31h_Hvk=Roby7I5RtLdBuH#Wi{|6r8tVQ3pFd-q8cOHG;WuO>Rp&5yQ zFjvmQYx1#>r#@n>@u=Sv_!)2^E|Woq0E7fllb-=QEjmZ142r^_tZH<9huv-q>nt{# zE1W(%!MpFiiC_D*e}Vfiyo7tt-NR;m5su!5w8=`Np3QN5d;<rogSZ7zNEAk67nq3m znHPUHHh!Q?@nRcXl9}%nkONJ7@)1BJ;ThB+K227^!hcWQ!&1K2YsB~m-?^SBCVU#> zlxavh8%{Pfy}!2+@zHCA>?9UfgTG#mm=Zq=rZk%HoHe8&@Zx(80unMFz9Y+$OmjaZ zm07Z=ERSs7v$E;CwLNy*PNZWcpl3sVbOwJCP$)509Ds$7f2DW@L2zUsAhba+!n7|s zXd`37p@kzeL#m1PrRU^zad8oyzO)g+T9m@=8*{w+;t?*c+DNA+#BiV2MF@UE=1_oB zof31RP_Zc~5m^bSzg1PDt}3*fH3g1Qd}2bwXob3<1Swh@809ga)tFTVrt47}hf)Jo zsQ}l(D+lHJptWk$MTg-056`q3Nm9}%A}J+7Jm50}vT~7U`83}H@Z*7G_73Bn&s7c! zyqIf}Cz39c0CYB`1s;PFkFM`gm|(Q!eR{1z_}`qJdGN`FWC8FVupNb+Chc>`De|%L z`9Jy3f%cMsQ+vx8f}qF`{opr@X*>fUVH}<JsAqHPlcOM0rYO>>3?4mC-u9GDQN&LO zvW;5p0qD3b5c`FE9m%*IvbXf3OpmMvKc*{^k&pi*-p1srghklXcOCpbC~iWDMF?)h z<L14C?;QHB!*^c)2DaNx%t1jsh%5=)wnt|jwrz{WVhK|i6jJ!7)<wA_y!i88G1(3w zf~1%9?1XUV#X4A&e(*Ch&8aqUd%0#-o`w@J63USqPl(D<6)OKYdgXnDe{7>%EW8LL zv8e11eY{@C4w={9HZe0B6cK-$-~*}Lw4Wsx$Mj3#Qxt;YH!s^l4WTLZ!`HKNBq+$I zKckdARvsZ7gL4lrxV~#c;uIClgVJn1JbjQDP~KR%FGvnVe9y*&Fvb|N_N392Ee~`% zptCpzKGu_6VJ@UooqR@XjqP?D^39VeQwAi_O5;QKR#?poTwJv%%K}D|hrf3Ug;6LA ziueXaf*Jt4OLWTP62~5hChGaY3eXC+?@(4Hio&BP2!NEOL0N_<fT~AXDb%%rhR3X~ zQF({LZvo%JdGaOj-l4Y^z4GXrChV7MA^6kKvBD4;vW5^q+;*m-3Hs;9loa*^ntE$d zITw?<@ZLYibx2xyn!lme?_DD7q#4VU!u&3`gx_<p=u-oMNPF_0M^3LQ05+bpCY)Aq zqctrCF*RWN@<~QO^fiA#v|jM(5&sF5CSWVpA-@~{Cty<)C27ct0tM0fGpXPx9JyUd z+a7W;Q<xY4iRx!R6(s9PCO+6fR0jT)eaeSXeo0Q$;dv*vk05}gaD4PVTLF3$)?&Fl zz(svZ{taS_!3P>TIeCg(x9<Qd`6yZEQIsXt+Xl*%(56IT3)%u;G$uQt#NWv)wv$&> z`a#ldw!mbeUhZ%vitw?N;Q$7WYSe^W^PePHfwH3j-bdTA^8h9)Odn&pe*Bwkx+pmB z*Pxe?w@!>Y|0W1SYNLMmaF_(5jd6Lh{m4G6gg!G+k``swAX#f<tT`i)Kp-i-J}{)* zq?SLIoJdosTV&J6_aik3ftiGHIAY{n%<2Y^kSxmzMOkGGinXJtS;B+0kaSi&neM1g z2cf`;G07R50^(;K!tJu7kv0K{c%I+sy?zzm%`~M<aClr@U17amLn#%`H1jblD);3V zR;Udfu`5{6d!2<gt?M!Z2i7v7G`v@^-o-ZRU>$LuysZs@)!_<S1KZsiKnExlotp?# zI26W184qm~>as$!J3*m(Xy>3c{SUav=zQ?GT5tPE3rW}s2fomzsU<$S?K1UTc-DJ> z>>C8)yRL^?=pY1q^s48orL`)TpA2A=cYc_xRFBI6K=?T>wZ89BRaKnh=#VC8oE55U z9V!HYso>$zh0`t40yXvrx<>d<jGr2`JFZc|dwGpf1lGYeol5hU(Q_vJsb5u9V>X+G z@$>}70`t*Y!-i_(?>;nxj~Ft*2(@RxL8Xt}_B?cNPCwoaWY}O_=q2LY(nlc!Hj>ZC zIs~utA-p&PhT|Kz&^8UMw^<#4$9B8MW<AGZxr#i+c~2)lK*u8ia%e3E{hsVbI!!py zxsiuIMjaZy#0~ZF*3|P!L-bH_0IwP5)DMqIq4z<6ZPrdPS^I#{aIMJxaHY{s;`uwW zJxT=*z><#LB<p~9H|vWUe5Z$ec4K00CeTs_1_t0~#2D1%7o;Nm=rcc`{SM@`qhuL_ z=R|oUK9gdc4DbvC1|s^lZKLUvoqCFrl8*#DnnDpn0h*7R0hzTXR+7TW=6i}%x7^!f z;4m5|l}0xTcAa8_OYh^9q0T3UCF<j=ZCmViJBnBsgg-G<@*vk*;bR{<fOm+2PK;70 zv_|hKL5lL^kkp5OJw;)Hz|nwKaF)HxJxqvP#vFpFcQz*mZ3+d1U`ZMpr7@_CLa9Bf zQejpXs23#`^#axbh3-*ki$Xg(=kGvo8XvL+dR%T?Hr`Q?$n_d%Hwn2Mz^b@DhL)wk zo5Yw#VBtLKx(;B-q3`MFVb?W5c*m!aml%jk)WyCY+(t<&sTYY?0F=$HD2mX(>9xn+ z{i!TZA$Y3_N&&X-VhH5)GP2BaBc)*vAlRo|B<))Wamg<Pu;uTvuS0+&wSPdNu4_OA zz!b)U(kQc2D6dBej8i#s>q3U#j$?trmh3=7XXOGO;)IR-BgTpaGgl$@u15YKafrBf z6_liW9Q(ebKwWi>-F73Zj=cQh;v7|7Lx)I%h+7Mkv`TA=Z$dr*K}ZeeFlbjQ{++&t zVqSdD<$3-@Hf9U}(xVIyqN7|yi~HKaC5Ook3v4hqdoMBWqlwu2e%P8AJGiK<nbR$1 z1OO3qV|tN|A}an{y!`NAW{?c|BJW}#h5-l|7nqfq3GSf)XWH9S)R2Ds`2LuW<RjJh zJ(}G%qIfpRv)Por{=-U(b!DK-`v}(PXL{afMcRj`e@epykbwo~eTW^N?(zRo+Zcc^ zsqJ%;6$S|@Y_Ja}8QkDLG0wx4!AD;@#MP!JlRsM@lm;}N=l9CO7y=Gm&^jp351X1b zr7=|?=cl3o=OHLHpp**)LqUF4t3y09z|1JrMx!nas-i$$8O&w|^Lc^gs=$1<fbM&E zYhg+YtsIQ;af?I2!&{HudUQ6Nxr*Ae7h9G*-Z>@2(985K@tQD3Y5RxATSq~VKpdUJ zr!ci4m8-Mp`#$ccr}=08mB7ddp$smzDkMcE>Vy$|`dFZfed4xBffB!if(MmV1+Nrr z*JYLl7PyG5Q-gtvts5x^8GjsU`uSQXVK%`}2SCd!kkegOPUu$@#Pp7{F2?Mzeaize z8dm^Ob56ArXwU_3pCr(d=1Qzd&qJW%_%oA`z7$gVjR1+Cg9>243ji>bJz<dLSjTcz zs!sv+Y>s9Zlo}*C0#6R3r_WAsaCj7>8tRZ&0gC(zpfnu=%)HU31}}gCIh|<|W#`k^ zY3)Ck$YL4BNs(q`DUe3j1U-gng&3>xOH)Ou!SC0M#h#`_5FnR-EHO1MUfI}X3nkpj z1i;{BW(Ij->BB_Rr^fO+P!tK+BYIU!5U{r-F|R`_fYfdxJ`-iBY_RxBSe!kxl^9Ps zMyVVU3cKAFeQ<uGWFsnP(1KYGg*TC_SfBz>dc}f4ZZqWLC&7qP6tHIWfKO+Tr6$0! z#pV5|y(opYZG}YuDVtdME<Y0(0FGA$KJwx**4qwsRmNE3T4_qWQxxc3Ptk-~(`T!N zSAf@WAqbBON6M0R;-Ep6mAckY+N0gAp-qXq_n*g;_r8q+9;G&zS0(DYLRlIt<^}3m zg|bjMJXoQJM-|ef7DfZkLMspNEtIBUM9OPyc7nd5CY{DRPA@Z3L<kWHhcI74pUKHo z>_aD60}f?t!%;mz!G(0jZPP?rWFgK-B;%_BIFDp(*dmeZI<DCu8Tq*cB~(0(5JL<L z{>hCmOG>p1rO<a2G>4yKK9rJ?O*7975XbSA--iHT@a{F10_K}uDS(p^#ot-@^BSNd zyMz-c@lN0OF_6ztQDkceuQNtue$f6H7a_EX(qFp>t`t-*vmzK64wcWwAkBxMK+zur zfh_4o^2s=~3UU1_O%~&_tU?}v<QKxt@t(2??zUT$RTb8`L6Pwkun#~qIuGY33V!ay zm=dOiOa7xAnyKfckQkUnMA1>e$AvpCAsQ;Uz2e#ra)$TbNB9o}8^4iyHz5D(BrTZ0 z!e=E|S=4M)W}=HsNeBl(tg*~m^FEdHN@iLfE^-ycZUzE|LO=cS6Ci-@=Y*Y~ahJ~~ zGwHDXSw&oGVus<puIota_dW<m@`!aD106n&DK9G4tm0m~=QT0tClBp}36_OQg2$ns zaeh?(0uVBQnJ7HcSOs(Lkj}kB-`i|o5(o^=yXYIhQ45vwxN%V7!!I0Q*Y>E&0#G{m zACP9COi0(N6O)qy(K^6+L;LC^?@6Pw4p15<Y$O)S0j8j!KYoY0EHEn-%A&xmC@`x? z6D_L}b**3uK*6Gbfrf(jE#~tI&N^79$^P#FuQXKW;k<(HfJJQrlcV}IbQ*WXw4lUi z9y_1WSQ=VEi(%d|V3gr8xZqi?Kx5#X!>(x}VX(J2Z`Z^cRNDLZ@p~vdtpBpAMr@R) zA(EYFGl0zcleHCzT<429fdmh9-Hrgu1jmw4S`FKgI+BfAwj@2jJ@szBcH`)9yCWhI zPmcgVnDfwY7XWm#-4W2|F;DWJ%;l|)M=U92aRBWgpvT92qYUvroBv!ghW>@E$862Y zPDe9;66*4EtVfO|uP<3%Y*bQg7(5tbP|xSES6A6sE0ur-<wGc8eMmkuAh05GuE5-f zkR}m7t3McBX(FWt^?p(>J(HY1_P-O&9FT;{UvlK1ZcPdNfpF$e1Li#05<%c&;5T8h zP}42Q%giA|Jni89e$&4gyHp<&7F%<!zcS$(2W%jaSx~abPyY;r^ssr!<Ub~vOp50H zV-oYj=hMe*W?~MCz<iy<cC!h``p8sXmQ|Wt0baRpdF45srSXw;B0u=prp&un49;-D zP3_%s7xHHVW70YOc&|~GB{;n3)zuZcu8$gtQ!WaBV-)V)Il$r4VAog_h69(F02GoI zpOy;=CTHoaK5IZGn0=fFyrrB0Minq||KG!V2kko)y2N5$V_wg&yL^nY)R@gm%<2k7 zp;1-}RShWZ(b*pBjl<%&r2374vl?ENuuvcz-~dlnh7LfnIL6V98EjAH_rAB`w1Ub9 zOOQ0fxopcQO*^9LRw0YwFHP%ODav^eLh<r*<Wv>P2_cmQACHa5oZEQ&5J?OdMVT6m zM1v6ouw{aORqVhvwH{T}s+Wru%BqG67K|pugV?v;Go2+ertn9!KjVW^_(wFH6`p^M zJT{afH1Np(A|K(B=}TFbp?@?leb)&kO8!e%JoYHZK0Kwh!gjq5L32#B6!OU+Ew_jm zP-Z<*LVQZ_68<`uMX;4lyK!5C6%U_AG+7lB?}}9AKnkH!n9rB!+7?~gX4WSa#?1CT z`mQ5B7|ODiwmn-PaslL~qlwwdx{GXbee7w@oQI5W-{s+Bx=OA<>QGV|B%y~i89dq< z21pbvh2hYTAzBkgom6?f6MacTl?!nBJGbrHk%&YYTa?FO@Q4nAS!q)sB~&_U?f^)z zaGut<heZai7)*o7BD4os2^zYN21bHke2y$`h;f+KRQ{R=AzjjJ5Rz(?Foi+JTqfWY z@Bc@uFN2J%Dj%Mai;}r=R#<!|*$xumfKRj}z54k#=_MTL7kQg#JgEN7W=q09)F-z% zs;a=pK70!rJ+z`6=)}}?-WTscd;j4+hhYxd74t6V!<veWl!BHxM_U3^N60}0huM6I zvM5lh4)aBggTq6Vg`%7Qr9<Z}eCMIPMp4aR=Fj2k;sULzVG9H2dY~W+2Gtw(FH2y4 zWN@?HM2+5sV|C7l?G#68hP$?n>0;T5EE5D`?Q-NsPC;xfC-X_(*PN!+dkgOg0CdqB z!;Y51V?3iY-cAZ*pQboOCiLNGr1&AdN&rN&L#L1BrvNm=^_=Xw^=yW!CZ|l+nq><| ztHR5Vp)LUoBsUoe|7$ME4~EbqQ$K<-=skdphtN~T6o}RoPxH(X{)T+cd!VXk@dQvZ z>ystWS{28mYcaT(FNhO2!DmJrP8eiD_+FFdCsZ!mm|1xTvPC*3W^0qzWaxU5i~0O7 zmMdIzr_loFIFw?T>)mckr$9nrFDQ<8Vna5-OyG$D7YKwk)1govPUhHr@3Y45du~u^ z{&mnaAIUHbMMgb=_3|Rfs!0P!#H_MO5hZ?L05dgqg5~Gez)F%86A^>T<%-l$LgBd< zJRI-*y+ks(lppb!Yy0crvtygmXCxQ=yk^-{6&n$|K2*W>)wt)5%I{FdzAadDC`>_F z+G3vu4V$<WYggdu<OT;y6GsGmWC|Ip$t?h~V1Ok!q@{qj9_XE<nMR6?X1siEI6ByF zw~J=Ybj*-GmzBZ6!r*9WuxlIu6Et-(jG-Fq0toTJsVXG(;p2cltf9VhLW2OD({PR$ zqX9VxYIwj=YT()I0Ls%IeqC3nYKr`)jUfSQEo|pd)(hPK_zy!@M^McY$Ist{_dT2d zM?tv0Yq43M;OhK@PHj|k^j2YO9m*AO)Xm7;9@H<^yt#u~Xjv@$UGNmQmX5;hw%d^H z(NeU+7~Rps0PtEv2j?-TNyys}Fvf$0sf8&@_^uUzHRUOgbfR_IvzLOC-f=L+Eb%5m zwkin2q9_KePKoS*>_5e3XQCx-D3MiJ*WmEQ&JF}cEP*+N;2I1F1su+$?2sR&G055~ z9*})YJsh?JQHaWN0mQJpF=DWo=P(jUE&%D|gmBoU_Z*6%isObL6kPy*97Qpm@W6mK zvv8*Egcu!CC107COCSJ;6h1ht*{~%c$2R)e#94^!C(2SE04o$wlqKrf9J}2H@VuUB zT%C9DU5D*<jpgbv<S$4aiCIoKidM$JgixZ7K5-6inxC5F^c$D6Z)a#E1*SCHVUxtb zFf2{Y3c@Zdt_*4O6N)ScV=GloNW+UKd*5$-T6omp;f<jdnb(l_Q!=@1G2}I6MTYlA zzsn|#*DUf<RjfN3Z*eL_F5B$Wa0~;%aT^A*Gp{qP{=D%%A2076c3U?0lPR>UO7hSS z{U7&D7C8k-ReDk`G<Z=z!g^7Op-&;1VB#IOK`<$4{TU=Z;ugwTWCy^eX);TKG*i}f zfg6W)aG)bV6mr2(D?|EH+P|iKbsM%!y3V5O+5D}+(d4Z2=z160q+p##?-Y7ZVUsCv z3Tf*`7f>E(cUOS&sAn}QW1!$r79}|9npPh38^?I*qd$z*@e8=vcx<aVs^tu;g9DU7 ztFpGIz5wXEEly9L;PCEaTwGk?@uNq$ytqVf9ePfb!<v2wp^7k`F$fY13+LdDTyzfW zEv1z0`W{{1!CH&9Y0x%1v|S7BHOguRtqg29Wnqkg(i*e*9P7T1V?e@K#kC_XGnqr1 z5Qf(B*3E#7nBE=bhL2h?YoxMV41j46B(wRP;s-bfV>ob5qQQ&<u{|4NDRPwpz={TD z$GYVezfbV=oX5(wKGdMastn*}HlN3GtxxeXcuzmJG4K`+_?7iB%u!WSz7MI-upEdY z%p->5wa(HB9%&u&ATZVMk!cb%Ak7;)^l3$YI4KP={m*UX<F}eYKJq#D-lLw)&^9|- z%WPrdqvhU*43u2}AEAFPrUOP4_ED&gyOA;0eCh^b*-t+)xD`4R0EU?9Jv-myG9)0) z_;;e<oXkYO*yfAGbcaY%Ui*%BWo_F797bf33AivmEHHQhGAd0}iK#_4tcVwFTtwpa z)P=OPY1*gePEvw=$0rSWh&p)jT+>Q9jGp_%(=|R`5TB84;Ea9rjtb`fBK1M`;DcCl z651NK7eft5AaajzW?tp=!Pc@VFdK(Tv@>jhY2;^;B~$m_$MgMOFg-0ah1smc{o4z8 z@3GlhSPOElQ(|qY6pGe)pbtrWJi_O2zTfv2z2#W)K-=|Ev(ieT>wC0akD@G4LIcV} z=_0hp!xS}~vuHLK(8|JFpfDxMLPI$X%x>WBiyy=B-TT<~3)s5Ct(O)sMTOD;v%*6; z3xx`W(I|=n+8BK3BOk$Mp<#W2-T~{igMtNYi*|Q~_0<KQJ$s5r4<F#sgZFTLc80F) z&~{z0n0Pv|00rmLNsH2X_<EK!r;td7yv#c|OZw()zCc;l@bIv<MNt+g3WL?*0k+#U z`c4S^upZdF%k+>046hanKW&Vjpg}5&k9H<rMcWlj8xaV^w-Pv<&E_zsfVEAql<@Ws z^MC|OCzq}le*$30{Sm}-d{PKWfDR=_t{aHDv%6lbeX%B-3(k_X#$0cs5}*_b$sw<{ z)<SC&btyTvnk{3jdjz4GZO17Eg92sN;=IkoJJYEi=WK9hwedR#7mHCCGu|c|5qmrU z3OXJ8)yAMGO0sVF;OuA&(KFAFM@$FIM<zKcD5cg`D3Uq-d%H3QHtL8U_iefmkv0=a z@Ffz;(J6*slzc78Nm-tJPld%P8y+aa1@G{o$yKSW1Plo>qT7tw`*B+^n(F+106@d= z%TXvx8x*%ejmsL=uf*VR)V(1n^RZ7#zL4lYz9lqd0C}2cFEp?m1mwaIff@2Ul8#iw zKT`zMcS-vt!Eb`OUxK9ZmCu-LGtwZ5<0JdX*26=~L1#@8D&`Rn+)*^gi}9uJYB+In zYWbtk68gT!cDs%JmPY{jZ&4V$eD4t6TQrReImb0DY^+ad70$;SIJhY6t*}&Zlv?i* zy@q+eFlx0yW9gkk*HcV^Qfu0>)COf~aBy@4+n!;w-9n><)-yWW4+k?V@WRJFjrs9M zaJF7y=N9m$MqQU!R33|hG!qSCXob<Js{&<N#=b}3bHl)+fb$ig4q@>EcAZ1hIkcTa z)Ar~)i>~X?cUv^uEw<|`oS&WJ<m3cT9zDd#(<ivRJV(>CPymdkQwF8?u#UD1oTG?^ z@E*?hAwGdeUDcT1eU8R1FnNkxn6lCJeUGkd(RFRGEbv}FpuB_k8rJqGt2)v{wtgVv zRS0?>SpkyZXTVVfC)i}^=)`)=*A1We84}}AXv$BiE~a%APtb6|ihrK~#3RY$hq5DI zZ)M!xBid}69h%)1yg$!>V{u?#76w<z!Vs0dG!l`|=Icv|p%N{QmWOniJVsY|CUy<p z`*0e`<{%;XoUk8D<fFVTWdWc|qb7g>I|OTO!WJ8yo>5u}&_Tzdi?XECK0W#O6uA@` zO#dEKFgE=QfilTG$J4%Fc%?e7g(X}W5AKMY4oc6qE`aFUE;as0pn@X{-W>&M_LM}l z(}I7{Xhb3$+|LARTs6~W#3MLr43y-fNvl_23y%`x&+U=oDRp*lq4Bd9_q_Z&Z1Sks z>AsD24m=_Fw%vtfDHNopD2tRC?Ycn^+dbSf32la&eGcqKAHczbMq0Y_uwFqS1jqq< z#Y4=YM>gznJiI7}V&%sqLyDqyCE-tPU`>#(<HH5+-kf1p0ZmIni-$x9Gqs0`!reI! z2L%rs7!EO-t_w`bahtf`B=`}`k)|L&i?XUh0+t@elqky*Mk!QPf%&|KwH~TAfHF`{ zquumSy2H&oub`-($Jw(Q+g77j3e{nWz6Tadg_#C4uLVt~9?GJ~Q?jP%C7KBBtChlB zYq(0od56ww^d7Koj?Nv@c82w^y+hMlY_<)yn+Ds>2G(}4Ayo8kyTN*Wg{!M8Jbw59 z58nO`HtVYZ=X$iA4OSakw|vx;fi%+qrGq74=$ymp$rGHPJwxAjKmb;~?Qwqk3^#7v zihIy(nP4YIs0~bEC?#+pB%@7mbWKY@hjHL-4ZsJ-MQT;k?BY7ekNfl5<(uOLHRc=Q zH)(cPiFl~AFd9k9=8Hg<DfoJ>hR{2t@p|+foy4%#rclfP5F`5qWyW(X3~5nFZFWBM z1j}laTLnPgFAs54a-VfL16pAT0Z>H&1Cy1V{CKD}3<R8|900brF-aLax+aS?(V}-g zS_&BSL3_YE+VZm&7w2bj{b+4y3xMj)8@unyMP$w>@+bC{q;f`>3F)c2R3ym}orn)p z`_b$S$bvrp8i`cao1<a6mtaUVy$xIVfrS6??mlUiY#&3}pUdm9&`-@s7KywjAMsLL z2SHek=vNFCW1x7`=ilR^l7c_4Abb*YDa#jS3LXMBr}bTju1n^AQxudDO%1?JR^XsR z3Q)mJ4d=ul4BxnZo}`~ZzGlR@gmF-c8D<XZm<h-^nyNAh|4sZZwLSiP|L!4f->5OG z04R@L=g4&L0qZ#)fFhx;5F(<5x+5T<X!rTBrMB_jv<_B<vMeyG3=WnR7IlfbRG5_% z+rKO{mWMUU!oi|Oy*R>l{R|!rdf#Go?^V=?FQe;@uw7U1<s8+l#H@A{5s<Zi!3>8M zk0AgXI$)Au4#)nqLJ0+LcueR-L+=!t868Pf+M%}^?b@U1$iu&!9pc9P7&mSMFMs4y zF#5k4w6~6gvbUf;f3i$%*IPV%=PkVX-EU#H+kve>)+R>Hnq46*8EjnvfSb4O#v_l? zil&spn{RYjESG4THVOfy6_%?*^j#NY695PSoD`JxD8e4I?K&V>B%<SY7&IQeAx-9% z&_o}@Ibg7(BCQj@jWJEUCx<<s-iX4Md2eLDL(WDos_<|%n}<MIJ;nX+`*bW*fR0p) zp9p;%c+nu4l(eLTYO^e(+|>Q28TQD$grt!aJC!$7A<{ck*bX%0XHxnq^18V1FL<tZ z$(N<;TJ#-fIAxxpW6TOZ1;Ha-$Tp@$wvRWBC7cw11AvvA_aQoX4U*hbD{>J(s0fin zvim;&CvR^M9BKfCBNhnXl3*AU*ig7mwS7;QGMJRtIc_sOCWXyVxN}K#FL}Qw@Fa_l z@WCUc6%|ZWkQg{=Q&!*5QZf+!9{D)sax#A|-vZ#jlw>6lGQv4s3Onn(7dsVdL>U9f z5`ddvW{CEmI3nZMr>M=R#TzMEGRC|gX%K|g8WtBbr(wnPv%_{v+Z|Hy$!vZ~0Ux@5 zi0AJvU<w6i0UyHjdbD8eQy!1^lv{^DK#ZnKZP1Fmt95V^jQh<1g$C9hT6x-^FM+!7 zIGh{IXBxBGpfVIUpez*1QlZ_RlM`QSP?-)zwZM)0pTf=Ahp_wBV>IvlCbsWB0IE6a z550<`PyGO@+xOsa-GDxvp(qQu&cikoZO?j3M+g@M%ENlE(iMem*vCkkse+CUdK?o# z!5W9IaOh_m@CJn`gQY~nIgnMv1FjFp37thzR#?p|)K!6lMTxQ`?Z5ck55d_U2v(Z) zro(o##l_hL&Q8zp_|YSL`Ac8Gg9mS6yIGSUw>BhJ0<<oG5OGk(EYl&~w1UQLzK8;? ztSY?l;>(Cmjn1NL8f<qP>~=fMW-~16IR#2`6c)Q}C~tv|*$fj+E0t4yW`Si>c@&b; z??9ZOQoIF_;cVn=cF5aCvzYx+K{y(1P?obeZlp|vz(7jDiaL`FOFle_X40DSK-zBg z3~mGu6Z4QYJ?kU;c}!bl<2?zyCcEuNp^!&c=pfZc=!LdEG_-ao%MzCt=djV4SIT7q z|3z7%u4{Pj^JGA5X7rOzVcDEu^uwN8vDHct)Ik1^UYi`ny@hk*_k)U@p2h-K2+OhX zN1FLa2m%7^ll>C|H@&-@1TED%u}{Y6R+v7MFivNBCDG6#NP;*Lff|5-VQU1Tq!l>+ zJqf|-_QuarP=;4Cv-e<JoV94XHs(fGisDwM1URYn7`1UI$a!J=D1eihEgOt+|I?Rj z(eiy}9MSujtBcPMXrB8i5GZST3NmSr$9B8Rv>F~yYw2ED8hq&fF>V~sVGIS(AqO%* z>z17QJRR}VDmeao751kQe<z`+VKn!{q0kCm0Y#zUd^oqS5zg={R2BVSmkwpoW4Wj> zpO>i10;QqnwINSq=P%&<bJ(`P!QB_|-1D!Z`{p^WzWOzse&cJnd~^ci9qM2IBF>8c z423b6*A?amN0=>-0Z)#4wriklk5XxP4X8V}G5hEzu=?z0arbjS3{wV+5N}-|2t@B` zPZSim&4%IkP;l_rHZ9Jswo%BFfbr-9^HlKA6=!WUsHzH8RiH2mRRPROk6BfqE(^?O zGjh;$1u<kO9M3hn;{xsN8P?lFoV|Di=gx8O{tfJQ4aHDU2HWix@4WpT{K=pG1#Gul zJUe-e$B!Q1;^GY34aGaK&cS(wLK(QQcC;>FObMeEfe@x4_FL#IwAE0S?(eo6vG$x0 z{!EVy2)$Sr0=SAx?Ga>20E<&D6TfG7B7aW%)p4;YfOAbKP1{-ITaivpM8|DjcC7Vs zraUhJOA<aD6%b)OBWeiGd63nJ0RnS7sf80*%awrWY%Z0XOgk8IU?uni5651?0`bK7 z7w@rL9pK{ZG?teEF{NnBq^_|#IO1b~h~9$3eUiM&eV@2=`B7!}GEHe;zlP;pi!uD@ zW{m8%2VLX<aOhz$_Bt2|HlP2pe;Py?lctoR&<p}8u7!MYMdF?u4<?ksj{(R{n)j7x zyL>G!+Oz;;`6@k5!zUK$px(XLK={jJEY3OfeHZuh0EjcQ$$>{KnY>O9IYFsi-Uo(^ z#Ke5+5bfoq`Ix4!90+9K0Ev0TX2fPmIF}=FZZ}gL2P4_-nrvL?FL~}(WrgFzL%i_Z zEmTE^($JB-qDbLQjpoxVG#n<J`(=D&RM^T=fO87kAml0VunH(c=09U}Jl&u*P?lsJ znAI9p3Dk9gswz-c1&TtWC^Sr=P#A@xEU-AZ38M-u<~L9jJ)Xb!QIxZrXkWd9)ki;p zo7D`nqDFDKg?;y3^bg*Gef%EUcfSj@-lBc@2yU}R+wXz{9AXkA{rDmJZ+s2g|N6hg z$<Z;2`yWF6%11H#=qFG<cNfL+0nEVyrY@m_?b$jy<<MG%)_U~T;p$?GzIRZnfPxQT z!^8DNi&~MuQNjA5wS!g`8XkpG&|X1%kJ1#-O3_#c^LP|EUcnoUy3jDnqiweEVfz4@ z=*E;9MOonHbI0)h5cfZH7r<v2t-u(A|MUOhe~XWP>{EbJI6FPX#l<;{DRJky7qHo^ zDP^(I(4L&hW<`P4?@-k<=vu=okIs3Dni#cQWPHUV$-s<n%N4<ECEG?2R=DA|LD&jV zp@7`P&paTk#R*;#`5zqMHTteaRm|d=@EqTtTRY*W!}ahs2LB?1D5U`y^6b>#+`>2J z{#23z9|g_2Bdt-PPbzgV3t^vcrH;pA>Zj0qc=&K6x<cDD;`DUR>vy{?=8Gkr0#Fix z<h>a+fWX4|-dLbwl8EGWz35Eu%NNoBj2oEDHhZMd`?M!Eim7#Q|9#s#)tZdn)4gOS zR~Tp7OE2ZO#0+ILk`@5QMWjnjOlwAPUi^`wP-U`pSZ1=_r=Bx$XXZgspA>Fv?jM0A z?}H`43gD6U!YQx@Y2Yc2eco3thfh|F>Tn)TxhTNJuw-3~1H&eKVG51IfW&w*kdUof zA>2c!l%l=jw(a8Y`JO*z#j9$CvbNZ{3m8+tC`zvj1ZL<F1Xa-TL5YBzjhqb{3QAM` z+5p~bcoP_hQ)oJJp3_D_8xj;oD^yk3ehBqcbxCm-!nTC-WPq)T0##jMK3~C@8jIBt z4i_)MSGRG|D9jFKsOpN^UoNnC@fPMk_%iD9^Rxw_IEarzchzI_op-SP&bQIN_cq!m z@1c480PgY<ez$?|I&@E-pn3QZn=kwu05mU+_vnp+D+{RA66WR&ly{#)apyUd&%KE9 z?n~&33cKC`MFp=5v<}#|9onwPX1js26l=XKf^*+Yq0kOaDLBg6gTffhW;04p>nZPq zv_io901OngB42^F*+GT980CXsh4xsj4p3FpZ$5g-mRM70INzh1nXnCZh~pcFc;zFn z;&VUpc{EK!`4;LKy3XR+von0{wb#&f9gc6$@!;(TSZ{Zf9INlKS{>l>@?t=1%r{iX zkr5Z`q{1`;!TGAn1+Wxw;4OkwM;;G@`4KM;`p6mi`mTYW)c{mD)@FlVpknZ++(#kN zK5IS<bdpsuDL#@tC?E^RE^tOHE4cfHAElxq$71mQ)FpVQ<P-Tb<IPTpaSROx;4z;s z$Tx(yP$M8A9_FmY`sxzJNbtv=i#CW3$FH*8*J*wG`}#dxp+TAS+FuHzOhI$;gOc9` zouxOGn1FpK=mYjbLTMqK<am<?st~1r9P>ROVA#)0QqhwWBq&M}y%KU;1_YtKF<vyO z+XKtourYi3h4^Bcy0A}cExN81DRA>Tb669;i)>*wwk?1FrBXC5s7#3F?H!gJ+BEEw ze43fy#8%VL%0gJpi<Q5p;4pt}*9S*1m6)+oAziP6F$$~I47YDCv07HBYeSm02^xQh zSZ1vU6rUCVpgf8~p$8BmpNf8mQxTenTm=gPfDkuDE_((T)MQ1c6^w#)J)GCD-ottW zr{-|J!ftC(AC$QH+{e)R1unNemMaTyHEdS_YKfw(p-K%?grj|mk5iJrgFezIf8b>t zeD<Zl;|0J4U^|cQd;@!Oh2~ptVEvV^;_~ai3H|gvw3{n*c7y)p49$1n!3Mt#2f!JP zRw=AK&_cnR0=BH+${IL001l6_TOOdibq}lOUx7co0kvA9(;7upVrELz6=gjvD-%JG z3lRdtu>iqvY5aO?v1=N1eNU$nJYvMfqAYOdxw~=8j{P<O0tnvqD2pO|4!#gZ<6t$z za#5iyXkWLgXILnM!yAWq`IQ&2YdUP!Ys?pS@$m5(in2o2Y;bsVgEGbKcGzy#@Ii=r zM*(AY+YM=tNg^{<hjvNJA_HN1W+Z@B;68$h(WAM2EUgo<{=Gx+XH3bb<{^QWF(I1c zE{qvxujK83eEfNPJGNR_>_U$qS{D_V(WQoRC6z+_SPD;BM=nd$fN6}Buxu!DJ{*;e z{Fl@u0H!EV)irk8ZA>H=E&O48cDpTy0+uf)Aru8EaWv#3l9<SKqVQU6`+cu*eWS|{ z9@$&Oa8G|whWv4##2vmo9FhsSlH`9r!Sa0;mMP<3LYMS)-x%gZnmrZYQE?GUqKeF2 z2>!eqKD#qQuhCCLR6YSvMlO1u9JKnbMc4OnJUGCG56{FPI#YJRVQZyE;pmy+VrR<% zgEG1&79_Ky4}j}ZxuHFS^)a5U0ZsXYb=tOz=k2*X68eS&|Dwj-TPxhTwLn!H6a}?A zKr~92rvMk2PP9m9a^53>8nl$qIhkgde}^K^V>!-I;QIs;c<j9QFgm1K^&whd>u|Qc zgw_rR*x~m58p_SE-f2|T9M0D0?GnCRL6s#;Ng6*>2u%|o_0zD*!U7>hG1s1k(o`De z&I;<z3d>JChl4-%dvW;m=W+g(-@?V$ejD!f?_m4r8T!o@B>?To1a7+y-uATr=>WZR z=&vr&Jb8*u-(%PJP;j`^8f96bnANCfHE!QNM)8SHqx|@1(7f;x)bsZ+pDlq(hX9K{ zZf&&}Yi!<q5BA~=m@Tj=N^CbRy57ZOmK1|Q!CHss@4txN@w^Hk0HE(103NQVaKqkN zIC#{vIh2S+@4bT#{s6Z3P%UY>2a5%E2OG4TBOD&w2%unrgTq4<rihs&8A$S$oO3o< zEgCdUgZ0%Vw%ZNbwiR22f;R*jVS%f8&plF<5RPok^kdc`bOyxO{mzAeS%4`@IPcNK zQ!*5oipMl7M>b8?p*Vvit;e)`JY2ndfI$37_HoQS7zXH=UO4fe3@CXBt7u+AvdD&p z##i>sNAEpm^9AL@=zE0SsH~aM2{7K+BlHq~qsGgB5&!k0cS7?Khjl10zo*Mje41(~ zQhfuII{ivSJCG!Lt;t({&g6MuWP({{Qdi0sNtr64$2gV|G!NP?wB%8*M5h%$oBcdN z%nb5{87^Bm!c<K~=14hjnhJg7_T`J8&HcncTzH4Q`-fmA)iW{`hIaW7{xuD88dN8M zPI^y>4^f?T4pQ<rl^p!Ie9zCv@t}psrgeEmaK*(lZE7<4cU>2>7DSET7>&XhRHeac zQRDt|hq!T6W4<sbN>b0A^9ZNK03Al#vA2Gjf1?%W6A@#}76QfWJN83yBg57T0177J z31~q17*D_1HRuC?QvhrWY&*)RR#q0X)d32WaI-nA)v$h!#laHGg9VCN30*48E1-&j zQ-bJ=<_m;nK=-Vt6AfwCHuckk7{AiM;?5F_Kk|9p|0AD=gTijxV{@^=#iNH<pFTs| zG+4SG);r2EP?mt#Xg3{BA3nv^vr{x@r%;y{z{yjT7bj5LEvj`3wS5m~@4kzRU-~ET zjvOXeGm5kC>lu7Jo~oeQ2Ci%2jYd~hSl4qrT^?a~wS&HW7g)?_9u*yRy?yt2^nHjM z06;0;KJakRfr)E4PiAkUHR`&A)(Q>^t@Ef&SToMS*&fdJ*latTpIyLcA8AJ^jjn58 z`xadY9uuuAnt-4w47{V@OSAa`@WAam&k?<cU`GtpIlqFnJ({LL*EVR|HvHd2zn-*w zr4}6-P=csF@ei^@x@cjkYdRs~0jw|9*laeDp0h<Msl$87Bu&&$ou1+4EO-|QX^gJn zEg^CM0idNakplY2tqE$gHYPeer}kt_ZB%2nvpB)e*}p(5jk2o5(NA7aRJ2w~gaXcb zGrT#dY4SNGejYYlIM}@}2$=eDC_u*oRptLoUegd|*v|adBr>Fc%Ar)&rit&Vt>T^< zKf>b#Alnhh7YkVGOx8hMa{$t=8FSWr`KX-Kgr%b%6`OnZ?gJD<(4wGVEeU>WlapUj z6p%;Th9i-6JA~(qUD2ShTiivD$dD-1rjOqN1_5Gr8P{Ze8V}OQY?%G85&XWw&<oL& z&_!VAK^S|F-deORhxA1>f0I80P#A^V#|zxLvBbea1*Pd7>&Z4x`@~chYm?S`^gV3@ z@E$S{BKv{%V7(54T+=u@$H(O;pbe7>{f4OdTkC{3bf613c-Nu#K-VgGZ&2tGMN#75 z)(iO9r+yGumkuYVEzEogV+^)k2W+-jz+r|Gom23IMpY<S1N5MC$qb|{`*%^b)CLAo zJmvvdauTD&8tA2>F0j0Pi0Z}>j;%-6S*+J<biIYO4t;OYTcF+UP~Cn3M?D2!DNKPv z7bvvBysA*cq3*UYC-0y<e};O!fj)hP_Tk&uJa`M+iwoGUMc;NYsvDGoRSFF}uDr*y z-r{1rg{~_2#S(sbfa>@*nxevsA9)q#YJ;LQG(VbvkMjyj6$EG%<wodxhpH}6)pJzA z`@eU*G6=BQ;PBTp)RskE<M7}Rj}67ru)7vln=6W}3C<9xV%E5#C{dOb%A!bqHo;0n zj%GRn{*;giSS)NfrspUi6(}x2-*sr)HUualpP#<(&@>Hf2zKP01^Wkapc}a>IG@j< zwGIw$9VNdJt9tZBr8ViDR7F!1K)FHhnMVgcsyP0>VAdI@@BsU75r0gKcE}r9iDBMh z42`P^L3{eHi)~8H=C%TP)Kx*_UeqOI0`t$=Y!PDvq?2axBZ}d8O<kE5G};PypUbBY zG2zgDe!K7G-^H)*^Q6yznQV&MSI2M+Sjf=lI9?1u_qBAgQrV(`D81H;M7$aIktR__ zGF@kHaTQ5m4jtx_`6|8nesk%)N82@-lb_ZUO)e2`;PPG+l#o|eeylInOFw9pJ_AN9 zWV)OuX~JlD=xIMS7Ia4}nh3q~dC38Ris?d)X77BW0oxN}r08zs*vHRP9TeX9g}X<% zePe;LA`f&2pzVT&<XJfT_>NL^&sm`DoamQA*Y&V2{0{PjcaA}Vk3-0`;=;39ha^Ff zeo4dTaiB<g3JMz50!kV9s=(p$0H67NKY=&jc!+O&{af(G4At@$=0~?sR261bg~hza ztgbMt3Y1kHBHESozbT*#+UhVN9k7E(sR5%sDx**+z=S#X0R-{b#MTCLF(oo0aMZLt z)|&=b>ju5GXgb;lx6Yz%I#}CLe^m$tT$WfIE^zzSA&w4eENg>#^@+4{Je{p~-lJ`L zzysa7g<H4i-+O@e?KiP|``b8w=XK!mW0=Q};kOO!wt?O3&^>;Ft@;iw`W{DL{Q|!A zOaB16D4=IG%A=d8Zas(c@FrY6M}4_L^VS2{*$gNY$^(tnVvf43&^rg^JP<Z<tnDdH zw6`cr1@A2mRyVN?ebfrDwhO0jLSUni>!4LzvE>tJJ!q;%YZz0YEXt7nR*Szy$T&$t zO=|-kg3}ljsH+(c4oy7L%Q+(`$xaXJD5782ljWe<?Qr_+DXuOrp|!z$zQEz(F;)i$ zuw9S7Z72(9P&k;EFsSGMnfEfVklTSCNFC*+9W-Rg9n)4{;tx{P5C5IIbkG!RINl5N zP)@;X7eg3lX_`k?%l+5htxHcJrmAY<J>Cu3>A(UIe%jlO_tCHitr~yyq?KksAS-TK zC=G@6@XJ)Q{NNdWB%i{`;t<C`%t3T&8@!QkAxzyH6#hM6Cs`M>`|F-bpAxF&w<Oy2 z5v_{1nR#Y^_tX<th|lJBh>QBZ3umLHnY*BK;^9HY<<j;d$NoCZqa>}0$;~Vnapc0n z4qAJfuFz<Kpcx>@bJ98O<&aK#>${L%SJ~X5FZv&_Lyki9cqbsBaj>ZH>Pxp!&kRgS zjH<T|zDE>hJSJREu+&q;IRL$7O-7-!pjh@+>^p}*K&&lm1&VQxAlMx<O2qAzNY!42 zHYjwx!gi+sPZkMNDwG=d#1H*A&d)CK>;J{y#)&;bSKNRuA3zrsI3%u88bxp-EXx9m z#RA92H*t7$jCnmnRo7U|7O3hulqty4qYEfwpbCSkHki#c7L~%X^w8|#80gG8);<-w z-lOX+y0*t|*J8VCvDs{}Yg$~bx45{tz<RSrx8A_DJt|$`V7A1KTQ{&MJZ@GC92kqa zcBqTcUw{}YXQEUJ^BE;&sVW71dja#2Tk!Y{x~|97dW+?gXSn*xSMl&SzW~))bQhQC zP9CFq@(_<6yoaM|4s;gXu7$t2!tUV{c>gs33TyA-wriZd^=-6D!50O(<qGe;@dotA zK7;D+J?O;&s@wN~TSrjK8rzmE1zqbf(-pd1i?&_Edr(e-zJvD`9wGIur#uE@eoTFK z-oXO!ZWqnTap@?9x}KAH-q3cQ(I#rSI{Mpqz%wnToDNDAC}7~r5;IrB&n@~@kAu|; zT}M`ewrOCr!D@MkzHiZoKt}8{A{M7ulNwM?@L?a5{Xkg$*m;=cXzt6e(idSZP+<}C z-|Md=57=Qe`Zzfk6Btd$PLP~`6q4<IYgHboXLB@71J^m>>p)iy0EX~jbPa#tkr@br z?1{0UWv}=A=-V~D$cjy$zE@eA4W1u-XJHZrTP9JE`K%6w&A4e3HLLe|MqEP0@X6MR z$-Ykl#POI*w3|#y!`BjCmf&YN($_l6dBi{@wx?L+P;^Gx@Ls=<rA#8VeY7N-vCm7F zi;Kda=ScvbT<!;rK$bVcp$Qmq-29P0!eHShFMhde9fT_g2q*<;O~>|TwZXl+hcL#Y z&_Le<U2jPvkL63vCNwnkgSQc_1AJg%)=_k{u48km3fi3yG>xR;DHQ_c@IF78$63Sf zEe8~Ga7Ll&fL%)f#1sy7rSL;P`p2RC48QqHe+QeZcc2b$LBYbi9pHK>V}O{AOu_X) z-vGO-6P!MN2P_nbAsbXxiTPrQ<?0ZtgF_T$g|eDqv0R~EEXjIMl;n3%m=H0K=#P9K zOmI*Pxe+X2p-|4|(A5k@y})91gzavJ&1OrMk+AR3R5dy?$F>CyoI_b9VpE{xOU@}+ z;ZUiJCcg_#NsU0|%0n5zY6m^9pq3it;T*-iJ6O0+q5su?g_nQ&7obm`qJ8fzw2vR6 zxjchyTe!Z*<$4XH4BFnI^&YP6vFm!Ay!PAJe)BbWtzi_!wMU_$su|q;0QUG6^vye% zJ$D}mpZE;UE}p?#i*~ySNwokDvZGZv4l8Ja0c`4ZFugD^^lV!9XqqkBb{FGzM4ti` zj_U@$60(kk$cbU@(z8JFD+u7q7?fp2CsQ<~0#<4P0N89c*+Ly#F0v&_)(9OyD93D& zB}7m&P=aOq<o7r-Nr7O6CYLTryJyhjU5L`9Oe#|)IU`%(h4|PPz->|<h3`r!%;$5g zLkQ_;U{C@8$i21kHNKhn-4ye_PRa>EIC=j4173TjzrW@IFD7Z~y)lxEuT2J-;Xetb z$=YQtYVga1+)I<}Ijkn8oe>ohiR>A&O!y6|@Z#TLm*OX}GBW$aKC~NN>w7XSCV{2% zy?#0VlY@Z4&<i8{1nrN>Flqg=AH!{#)E2q0A<&Y%R9qk0kjo!$Lg&5(dCSPuZlRQm zar9Nt_z^O%DJWE>!Tmdjm{l6{c?s)CXgj9{Z6c>A0wFn*aXw`FQ$_eqp$msB`W~5< zL=Hk!bPBW-PBaH5>O9E$5a!W)N+1NMD7la~;aFM=r4)YnM}8WGS>nBKei={R{36tR zfnt6D?KONTpDYa|L3GA|6?hL82&WXRL$_{lb#;L!kKT)epn?D~MGbApG`u)GCSg(* zC=BgkSJe!&*#c!z&^dj0+6Gb}AQH^Oz3b5TTPU;?(5Nox2vu3aEDX%Nf;9ztN2fBl zxxAI6w2m4h{TBQyJRSXOJBz04!{-hm>jIooK%wEh#>vGQ4nOlr7^Ts-4*j;p`oTMB z9>0g?(IZ@b<24kQ=kQP{v_etOaQnFz@xrISAFI^?C5}0JhV^&9f%8WXaeBUmyWC-U zb%k<s378)3$3KbhzWxR@Y?xoN+;Egbr4&>YQcN#$v8lMam@j#N{7MK7z&nrLc0knZ zRh&~g_RCJYKAUgF3W6z6*A*q23hBMspF(SeqvIo#B?Vn7%Mwbdkfjnru?RrGNsvzT z#gQ}>3t;8J$%7IYMzYw2`wW_MJ8V)I(%kcx#19gF65|I2Q&y3ll?t&ugz%3J`J-TN z18@<$$ZeAfW4fwphNdJ3%{VL`DA;s)jYR!Gzwf~V`SrW0A~Y{`d%uv*e;zc%i(&Kf z*C42X6c=BjuPG^dO&9h(o{nJ1n)9dl^uTbD2`U;Xsqu>hBcnFRPbxWc?H%y(d;Bds z-!3le=uE$N$=j98{bq!Rr^a%G#KRXk6Z9u6BsS&6lE-BaH?szIopFyRh<J2M<==Bn zM@22i2hFqZ`=CXWwqF<xt%>He(wLPsK79WeRYfUpd)i7yT^AI#w<k*hZx4Eq;=me( zhYDx>C9#meCe2?_Rz7h$K!yDWvZ5+Dq}=iVq9#lh04m!#3JL7Pa|#aa?i^kzeD?SL zQ53}y&fb0<U;fwsDax6LD>M{z01Fz>1t?cRP(MNn)8t^r<H{jw5mM=fL^82o0IY+u zTL8djeTgTJ-wkaHS<--DaVjyN%}`b~s(OamVugA(M-{diw9;t1hPJ6ZrHq};=9nEE zU@;>f1;AmmYv8=6d$oa4M3`C#9V@_#^(hwtIa+cc8`^`_Dg>cX1m@OPSI||7zVD%D z3iYhU?8d9Wr(T714!`pcG;Rf_yryYU6eaGy@+w~V@qY))<udN!x7!Z4&(>(puh3oY z;CDN0F5UzBOEjuSSytGbpFnwpEdX{(3(g&IahxS>OVf8;RpB4+>3F5{<hW-o32hhB zN2k5^w2)lLQi#AxyjSQw9e3RA)&K~Y&S&#@LTEmpqn^!z|3cVDj~b8?Y?XkbT&~fs z=^Wa&fdbIAjj(d)kV==pkm1ae!B>F*9jjbE1P5Xeo^?(PmlE}-c5<Xb7XD1Ho(Cfq z7X;#@mKVy7GBY_Mrk{sxQWPAh?<k%^D8I-G+@oEo?A!SF30W)NlV1jVwtEX4yvKAn z65JE-#6bx|KN9>?m9R!GfWUQa67A1OVDzjQiNOO?d)o>1<@Lm4h1t=7aT}-4kq+A} ztuB)@^*vqQ(Q!8R?kB--piLo^*K2^<psksJ77J-=p8e1~64#6x6cm<-=hO2(J&cIC zM@5Yq202n`tVgCn1+-lUD;63VKu8NU(5Q+6vvQ96cb6ziMFCw(68c^xvp;!W1JEiZ zK?1_LZ|a9uKyRsaoH7?cs9(XlL^{#;!c)p!Ix46lK=q#5XsrtG1H46|w1I-BBWC>- zpl{-HfACLYvAT_i-~I}|@@xMuEM_en3V7GS_AO8@)41@F2?Xs=DFSg?vPqtkpm8a{ zhf@dveTd;t@$4h*g8&9)jI(H)T|5%X&S!M&O$Te04e4SHs=C7A@eLf^yn`DzZsG9w z2+QRXRaIeD*H|s)nAKHseltFJ>ieh#TWdpHhhT1oL)R<pdXJ_HrzxP~zON}Xn%xei zQBaP<2NO|w=b^R7+i!jcpZ>nj(r-?qEHzfk8ndd1VTqjrPyxlACFVC4Xm=f&%N@++ z0lJHKfaMLeyB!P+s)ABZ_s)h<4?@tCV8^lOzarLB(%c7rG6)WtMhCE}0vID;kd6l@ z{=lbocuS1<uEZJ+msgjls}ctX2Pi9Y5QWkxN{#dL)2uDg0uX>1=SvufL8OyW$qxp~ zLZQpnFu*{U?<K2-4mk<fnx{28HzsRZvbZsD5H!wP96lV6go#m2fy9yG<r8nu1gHQ& zLo0fME1_mj!J^8tM$3L2@VO5_Vu`Vw)SSFM`vs$H<KV_v_<sPw<FBpino4uw&wIFg zz*Hi1@xurVgd)bmV9x`Yut~q}mC#=N?!zQ1Mx23sgXwr!1ov+rD2o7$pHoW6|0y7_ z#}SZCS>6)^?Ru&#?DfSn{n-fQ(w?mpd2Q3<A|r}rzsg}%gTEMj_i5~8JH`(W*+qW& z;S)Z8R)I9nUDHMfF=8CS{Ey)Drxa$@3^xvI%oYmsSqWu;rtj!DUvvg0!Rx&OAJvOk z5ELO$LB-%F&I2~Y0!Ttn1@)B5;3iuO@R1`58_a^)!&wjSE&4t=xpBx^XD#3ys@Y9^ z>IZ%ltHZl^_V(-e!ax6iV72PedjsDoc&E`-9gOjayFcDSLF8*kpasX2>xF|NZ%2gq z0M3PH!&U{GtNFcTYfh6B%(l_lOnWHhz)=&)j8DS4?MVB)xH!YRZ@)=<)k>i#3e@vC zj&9z;@y)w9I5<Q-n_;nBV!m9Vsw$X51KtGz0E(;!psMJce&06OZaZwZO-R-3V$24u zL9`OaRmY<i6x_)<kMpy0RCSH*W*fEEswhyEiux0H4xixgp1k%KM+-U{(v&z`Z!w$A zar?Pjc>Kl3l)pf0bk@eXP%J=#5KVL*;Fwq8^N>%l!z@dS5YAa63K}25Cw*sd;U}0G z`xZFwP*pX`vI>ch=mddx7Ec~MCV=Ww8`63UAWsAu<3(yToiZ_|piGRmkA4ii|K&wH zcx?kTl#=-?@qsM~@>B#R#nKTt@VaGZKj$2tfBrcvR)?^?!^z20bbUw8lbrvAffA5_ z6yI|WqT8X-+^PT!!W_}73iHJReb<sRub(&tFcki2l4UK|UumyIpmimX%|P(HuYi{_ zb=ZdYZIT~$Dtk8}JaJnJu%VzG0HFk!<bxy-$AmrI4t`(mk5S`DYgG!#H8mRxS@wt$ z@{US?Kt;#TSpcGmw^ON9j&pek-;sC!R1*Xsi>9=}{UJabdBu)p^my*Tf-MJhX%A0= zq%ffD{XA@U&I7Yb@}{Izz1v-b81w^_8IPjv1#j_shIv(?D1pOc15;_h01gh;JM>|% z-N%TA>Hi3tc;dXGh<`jzjszSZiR3OZ(~06TFgzdP1vn2Fr-JrIj7dWWMiY*08but? zTbQcCORszi_h0-t+KUVPn}7EAQRx;|QBWOnq;qiH2G9$rs)B-p@){JtIXFft4L1Mt zu|#J6Hk|ACj`ph&vb%XUQ)lUH)4EY&-q-;Rp^nJhy-#QLK^7Ef(hkGcZ`_{naM<lO zXdb+crw`vHpv&<ZsyaBhkyGGovBYe#!hCUn`ErTbe1^q*j>2fHuP$+Reu>?#B|#CQ z_Zd?_YlEk!8vwLLWWuSC;7t%|%moKZ4?q_ctR-OSoJHR|^t}&`kkrrKI{4r-(KQVY z4-Zk#74E(80^WG@yMR?Fiz1GF+6oY=i+42UQP2vZ9st^KolEa}=7Vu*W$Rhx{LHiE zi`Ls}c|hAYvjvKRf)W7^j~_q8qel+|{}IApMTrx6c;wAN;o%Uu+L(OXKnPYFoaGz` z&|$ii{As|me3&b1`wSRFatv#jBA%MKrhnkGpT!F=y@dJl08j={1-4rX(fs()1Du{d zL)&!}jj?UeG%YskbpS3D!O^jEU+Qs^y{QFI2>C6l3U0TB#}EJv1V78G#AE&B<5PT@ zeitZ2fPn1Yo-2n2(!?R|?-7RAUTW}BDREm3%Jca<Qvz*5(9_RCm<q--bxog3XKAU0 zz@`o}kWgx>^8-*7CsBO&h}j<}$57>8(&BZ&Y#M_32(5o)B8u2=*yo`Do)-RbEF^IW zf=l2s2MBDf@-eh&HX3n3kLrOi)v45+TtQ*FW7JPyjV9*Yh5df^2jJs<N&~aH!n_Lm z$~x?U8j2U-IbjdUIZ99z7%W^c7l;2+GuUt%Qt;}q59=+UT=b719vn^}g!yJOIn4!W z{LY4)>ekT_!=SZutOCO^?sb8K<GXnE6F-FR@(REFkN;!9?cj}ub7Z!rvMrR`fKCBe zXhZwy2wNOv&L&F~AJ63Z<ljTO^El*M1s8P1u*S!CIN3q6l;$RCx=FMVBcsvi!7C39 z&VCr$5}wt;t6v!tK&1|;mnk4l*LM`aX6tZqaSrcn1R;enLD-aNyAE%^`CYVagR-ho z6lDMb6wv3vdk=$&Hh9Pz>Z{QjZP(*!-C)=BD2o#0gR0SX9cmGNG6s?fII9om>&y8Z zPv8A6%F;lY0?$AH9NMnOJMX>&k6@t@)*;eAcq|OOXE5l3Bd7}?*G0{e`>ap^%Eh=F zfeIr)3)2w6CC?`>^Ek5_WU;t&7qi)ntR&uHz1iaN<HzxoKwS8de*|9;&z2F<DaABR zTR;p70VT}u2=ON<bgz>9-4kDN&cQkx0D=q7jXv^`$j>;B0T45elK(>&>-tCk=pW+n z@Ce2jI1hAPhoUGkpU*L$&#_#taCmftdw1{R=;#;+M@N`17SLLwX<9rxeTH}6c?TC4 z7r3}M$JOO!2(rXM*CYd_K34S%ZQH<G7jgll-^74Tew@4!zfKBcVGoGyNcTo14eC|l z`8bl-p@wVPI0aHhvTq-l*jMEQiitvlzj@?L2*{9R+PlOUAgDyx?4BbrO5FR})3l*c zBKwdHwHS#|C2P=Jr|pB2A1`99Dd2}mjC;Bo!KAYRPPKDe)3{^^V$`vCN+OPjd^YI$ z5w)jU)x>0{Gw<Qq0JhQ?(SSswjCh~5dgpy~_R~590Me9S9&o7Z8b=2+eCWkPJUzWc z+X8)0d#w(L9%K$aYQ3bIQ*WFL(1f=HxCKsuOzOeR=p<A0FourM7dCkLD+TLmuQ`nm z9}A+b2aXO{K!t3021W&Orwc4rH}JxTK7rl&1-|^n{~X)Pa~Knx43&zZY&AU4Zy8d7 zMpDOUsT|`ynnYEk@X${m$CqEqXg$nDw2<)c(TWg+0DtFDu%3boX_NC4x&G2oL_WSo z|5L=fbf2T=K`D4;!>NrRFuX_aJo?QJw!gx9eTB1UPq5qVAmc+AV^G%>Ui;F&K~+}a zsACl!78lDE`o71-`8fa|&DLjU7kK*g471rBbyd@rf?;e#gVQ^OzSK~@f>s(;RbjbY zU_M)*X)ShbhxPgjy|vLN!8wQBZbu+LEKGUyHPeJu*w*6H5j@UHLwl9+CpLK_c<0Lq zpbYeN2=y35GR1|MFHlw``mV>-dW{DU9^mBUX|#s$x*j?-GhJo+LuiB2I&N_&ova>V zA%J71Fz|_B0SbUYp;8@54+(S>wl18bxC#tLA}Eo^h`mSCwCK8?{HUD6dc6)onR21c z^upT<RaIfJSm4IZTexxKCT<-c<6|Fr1&7DSSS%Lkt;N;V8gIY-Ha43L*6S<mwp%n! zgY9;WzVEQzY*0)Jy(vk#=SE_%3K_Q@Nmr@)C6n`5d=B4DPiAI~eZpG){ytb?RD?i@ z``%T9Pd*z9p9$8?WCZR*Xc`MzM(w~*LV<-0i?}Iae;o*z>d5dLV;CR06i*_A?FZ{E z`mT?A+RPX^gr$`Dx$qzB{?miXW9G$PTzXde0I<cv2jRdp$JUI*%2PrTewRP+(WF?c zO7~)Pys+RUh#Ow48FyVD&2N0}pN=(=dA=|Oo`3ELFW#TS!G)uM>3Q!w5F!S88~zuj zY!$~M>>CEniLI-AK-%bn`B$6`+78e#27n?B-FZ(L1VP&jJ^+rOR7Wia@Te<;t^=Sv zbXj7)x`CHo{sj7Fhp&I>zrg9EM^FYR4IK$2#_C{{0knqIE?Z<g=FYKZk{GvlD)y7- ziMkh}mj%Y0?Wan!Y8VjaMQJ-h0)b%G9n!5dC5tT=rgd`i;u9@A@H$R{QW{=sDBFiX zOD-cBK5Oqi;vT=$7+0%9v~7>BcTn3Mjf#2#@5yA_Y`1v#t?xi9g?dhL5uQALgm>Ql zE{%s#P`V)SP?R`WEpdE2$HA%utb(;0%x4RDc$8&@4i<;UH}FD;>EHJxfLw_04^P&E zzVBo14*tJu+xT18wsE|45Tsg}1h&GA>HtuUN&X$Y_E-=)AL0;r2JmUCQELt*-l1(9 zv`w266|-&0236Yj%H)**4gfO8TJdrw+#_=wT*Rvqm;(T1IH}fPcU@R`X`6xaHPm&5 z-}8HZ542J^J3q(k-}z23@rRJgF2&+VR+AmB*1+lMGrarmI~lzaprjPl%Yy?PAK%2i zd-rkw`B!o4_HEp}c?-^wwd$Y!(tkzifG4kP+=k3OACF943mGoU&L?O}IONZd?yJeF z_qK@z#eQM5r)pvD;YLShjO@dpy+jPj05ldH5x}THAH-O*CNk1?luFU6<Te3vq@8!e zi_fD5g9RnEhuaU5Iu7V<mzml)V;`Gqa}%4mGo1Wut^}IW0LcD%&%z)dG%3VoIiis8 z9F37?6JKCBfd$dOkvN$t^TD`LV*wS?k!p=5#5Pw-p<pjyji61@{{M?F+{V$NiF?0Y z=VH8mt;qDBGKi7{C+!JA=%o%v+CWtD!dy6b*N1vZsL+utO965e0ObI!VS)w><=~LU zh|Rt}mhWTS0;LUR%Okw<kx!xTdOUmZHR$ydXbsFuP2qV9P5bB}27!ly*E7IbSWiih zv|=9w7a0~$8x3t>*ed;1NMW9nCZD!L*mC5x)b<iB5hyW1DfdvC9PV5I7M}J#0=Nic zDq|D`zT>@vLIAxixVX(BB{P(U=ac>s&k(5fY!a8W7CtQ&%QVN)$`hjRbv=r*B*#)~ zDT3kUC7iRkx;&?ZLB>F76M(D6@?eGIn|JZ*t1si$t>@6$8IEt<z;@$M)g>G{)U|~v zN^GxoaLz(&ivO>)j<gJr2HUkAx-I~K0C-)9=toC2d&*JJ_1HCAv`quRK^yK1191%_ zge70jIrzS(XL-(z#;)06xm;o!0v9#S4s~6VL*#ay_<`WZtYqcuJIz<rzJ+O@=ZmaP zDis)*V<g9{vLRo{8Zml6vP6oFqJg4-^B%Wv-^9=S%+I3jdi>67-@q^ZfBrGH+a21D zBB}O$kG9zbK-R@mSI)W!5ZJn5L!Ob#t4o}moZxNsCVuBDUk(A4O4RiXv-uolQJ`rW z+5$*K`Tu3_PoFJIlKe327t7i1^6q<?`7$eO>#kmBFf#;2P=J|Wl1NdM%=AhBfMoi! z^hG9#Mi@a-5`Ym08%G0xqyd6BGnk&<m+J0XvT}dh-Od&f`rz&naqfFrl~r9`-Bn#t z_43_!@44s1i4zg-{&V-AAKX;_^6;i6Qvaj2`{aMjjIoz!YVvDx(Zl`$QIoq#+)wqu z{PNdN6s~=Ks9A^wlFl57S>i8sbH5KdB>`(eg=~VT$s&<-6F|lK?NLw31Vo&K2d;$N zjWum@65+q5zuo8((MhIRQc26~eqNv;PGSFpj$m?NHWW88EgmQ}$WWlEeiTm?6^dwK z(QC&ryD>VG?P-Gmrb?7-B>8bthg@LNz~7~mFwJRSw4SUrxc|yA<}(d=htbm=_MPL@ zvj8_x(3Y2I=70oSvI9H@_o%F2iiv#KXKf6k;5Le45`tIo4DEUaW~}qzY{WEGV}4!! zL5iF=)}U@?_~tkN2*C$jJ%519XOD2)Pykw~fWiRQ(se}8jvjD90b>szM$UVu8;J#0 zRA#A%z^PCqWUq5nsL4hiQ`JChhq8}FWu31<^Vh_+=Ch(X&N)^{n5!K=&e7mK$6;`$ zgwk;17*o+izz8bi9Ytje&8x(L094h_dzTb>5T&xX0%o&01btLU0!x92wW_-2Zjq}+ zbJa-FGBpCf=Y7D?w`ia4(eC$n_0>~UR>3YBc;BI!&EUPm+4(shK75FO`)~dSY_}U0 za2kun5_eAT;`rnQ^Z62WT@yJ^Q=qIH)Z@r?EPNC=^1J~mJ~Tw3HDDZuXvGdgkG^Xs z>r3{E9C?xTiU1aH;wl0u$9bGaj@Zfoc|nH0bC3H*h=N<zRgMa2V+aXKyFi>gIsbvW zdE?A=j)UEuJ24S962q3osPMB79{Ax8e~katf4s)g>IlF0`@e@D{qTplygVanAeHKx zNWr9BDd@Tm!$8PPKTr(?D!P`%D0s)Iy@clMwwqWD(WdU-e4{rC|H+4P_aCAHWG9JS z#D}EBhp*FCf9+&p`sWQVGhz6GTZ<3v@H3f2H|QRDkqDYADh7AN`IE`ULjjTtN$OX~ zj!^L&QL#|zI--f@kab{dE*w525hD5dNvdRa$K>JB1PdWn=A!SA5RlZqz>|0)<PQfm z3ifcr+zE$|I4z`*-S-RhrOEpNSxRL7W_D-Uh9aeQl}h>TvMCrtbev+*94dSvB;hZx zD3Aig1QC$u)6^DsPnVd_ODH&aNAC}#hj)Qf@Blw5C_`=p5l{$3xFgo6)?E6RH#;qx z8s8hc-dPrC6onxnr@(ydnsbh`phyu=PzcOTu7FtLH6l<-!<Yj1?!5-96`nkP7Z2b0 z5mXovl!Z2=m=;<QeK7(?cqT1U@M90?0RaZ18{^Z@H$f4iG@gdi28|VDH&b+7tXD7J zB}7Uh=1KeTr2VmS#<2t1alDFwGGwg_{R(|9h?a`!g&`}PLhG9{6R5N;D=%@*WZdrH zegTp7&v~jsD9VQqq+V)v3)rHZN|g8_ple%HWzFNGBXeI>Rvc?0?giQltkoC>huwCI zSyiAa464}-&W)JO<``X%^=6Ile&^qz?e>Y?5COaG72e&g@$Nf`&iDSSui^HcQ<PPO z822E`^}*t$v`GzXD*!d8zgjrw&~-i9c8_r&G{HHCap*CQ17aykZ6@oss>-OGLy^KZ z4CK3>HgT2mdE!^Jr~>gE00n_+Uh{Du=VzMs+idT>NeD(;B{y~sHZ7G&F_oDwD)B%B z74ZD|8Qy>J0RO?=Q<$Q}|LpJnUHp?j`F|%q6-h6ZeKi_5Tm{p6uD(bGm7H@_J=D?P zqKu8>2se&YopBt|wR>_@+|>8{Ca=GJov7eNEgZfIG$?^hkV%1^n<f4YLjFdnPp8N> z$3xkFZH>L?T2U}1E#Oda9bPms<V~jB<h&})nuC*O!dQg-^a4}kSxJyo@@MC$Kst<j zAwn^qkOx;7$8lo4h-E9nF~9Y+9;O$}-=|;K7fp!$N`KQvp<)W!O%oxxIkL$b?<>u% z!=6fhE{z8X>!duT`vl16sA8p{bRO~dOF2_OV17*yyJ3r55uwj(_g9$DOBz!rf&$DP zpPp5K#^^k{egp;kQB<|nU`D~IGNX|o(uhzf#r)<(NU~g5JipkZ9~|nYfGG?N4LWZM zo_zm4Kt*Oc*%<Q&NkLF`y@1sgXHVY2lXrgxHx5vm^OCKC<31sXzn@VJRq%83T+aY0 z$DhYl$W-KcdS*`4Tun~p?k1ng%m#$$j?#<-1bHSBPZ0tW^3YgmWnip{>~30VXiFZ@ z;H4^^LvUl9H!>K)sUS)RF}NWr0D;;5Bw);QT!vyL-}yjM*D}9FV^gFI*n$crB}GIG z0#Zmx`LqZ+z*<YlOI0C`T&8>kA7C`qgt&9(Hmq{6wtycUj5Qb>u-$CXbuFy52tH** zOqUR)YkctFJ$&%N`_W!m9Uo&pUqn}dpg6K70L0HMXF1rSz^tjUT+ZP}$0S)}EEJ}| z<WpRG!ZEqn(Q*M>6bL*od<a-yT{7xrCWgvn+0%qUOhc3rjYtC{J`)=#b2aAYk=J=S zUN%0`U|kakH@wSHN<ux%d$Cf$)q0IT|MUM5fAoic09#df^DA%S*6lkuKR=6eQNAM` zpglxG8=6zz1Q_q(Z9)4uq)KLB-A6^mBXF^-ap+-REOlS5O$72wDiXQykLhUFzJG&_ z8E$w#E>6TnH5K&v<eoh7>)lPt<F)s$HF^I~DDmq6WMz4AaN_u7IWpb^-Nwz&Bni$i zS+sIal|f9?j)rTflr-6NZxa01`;iBt<kz}>=3JAGM`e(F-iVZi&X@b@v)j$iF}>b2 z5b>s7<Uw5=4WHcuUEfc>kt->Rean63@7IbTS8JK{gJH?#yuxeuS6D79XcegVj0c8+ z7UM7y6P)8xwZ<59y`u_#5E|P6r_%V6Y|n$z==z4)++6S&Jz4wKdel`3rGQ}^VGD^% zpekTWYgkR`O_F(_*<uX<LCI|or445D1-jm&P!>-=cnAI*=v|L7coa$jrGc^*gICyj zg{4+7Rsmkac?C$JoRLZ~Cvu-mpn3)ITgPdn$U;*{0eE1z**k*KLkMtz;qWXjWeA?P zfT_hK5WV=VEtefuY@z1!jT8c(<(N-bw`5!hn_yh8nSvU8fP;^J6Kp%iERSsR;_C7O zr}tiEA3m=Qv8av3cDIG*^1CEhDNV4d>ZF{D0RU1eX)p9xEavd*HB560fWpWWy0ck> z*?fl4^^t5y`g2Wm#kEd97w2cVI6s@NWr5ZKRAm*{eNhys>l#(vpss7wb&awtu~;lo zmJ0xw`nB1`FbpHAszTE=2mn(x)3Jt?w#0<_VN0KtLtbwJ`IEt`akwc;hQmY=$j^rq zXL2nuEjO+rY?XaCqEa%Ok_^yV<H3UuaB;cDtvf^>^*{e#{Kxp?fB64EaE{zOF-<db zZSp@ca98eGYgWhurP_wn4G)^b)>2G>jn@3340}Nf@priX=E3WUUYW}|zMe#yi$Vb4 zpyY0Lor8^ks=Vcb|Ii;jc`^MqKY*!aoZilU#Xr&#$&b%`_z`_bH+)U0$WJW0PHy!d zJO>fZhw&P5!wHD*C!=2$sC0aa+IWVEM5v_{lT7fZ6K6s*bxg^IH9d4PYTU!ayMN*0 zjhm75J>QG2K^$p}CgU>g0z`|J6gxox<RC#E#66N_C=q}7ka*K+j70b+DDP-l<E=Mt zp=k^Xt1u2D#=&8`8_{--EJGhqSc7qNaa=rGh(3r9nYH#f#@VI?aK17jCWSTJ4~qD= z#$mf3u-SFkw*#I$yTU8?Zebi*`S2;VPTS=EC`*gN8f<nw%C?XB=ue(K$Gom_x-6mL z;e$e<=>D3zLRl2ho`M($4>VRm2S9m^-c@izfzb^t@H6OA9-kr~r&5{4tpp!bfcJ39 z5ibHm&$*Dyk%0VtQ4HeqW%mcs^acz)rLzX5AgNj4aWO`tutlVHjj3aCpK$P6LowIA z)|LdcHPJ^K%e^v~H4bAGpu{Q9d$rbBUtMq?#hrz?evMM-+7``x4qKANFUkkBiDXD| z0Yt(iAovkYU7>&ejFs2GJQY61^N^CI(sk47Nw2SMUb2_c2kB#aZe7>KciR0P>#M7{ zHk;WD%cCRAW-}}nOU!07F4RPv2_bldF#y3Q9{vCXA8>hjj_r0s^vFtM$Z8qL-Wjrm zLQ_S>e&)_cA%U6%4rhCNF5s`Dv2pU!{c~m8$+)S5K?|Zt^7XWbk}80F)r<2BJbn5U z$G1+PwZ^SGw{U!N8)s+FX)FvY!lG=+ItmhGnkfQ&ZDM0gN}@uFZ;0+)5yX(2jvHa# zJ$dv88}N;PzCba^CQeR5BYxai<VBQ$5dX@~GrdB*85xLc)?iW|<eO=GnJOU}S$aBW z*7AYN4oj9~IQ(8ZD1cK<US!$l5$XU3W+4iF`7DS0lXWgaKYKb8MdkXC^us`l0GJ51 zRHz~sqWQh0YfLQhYqC7w60-Zu?q`B#+&C)fRLPpllz^zt%HmTm8eW7z8?5$$gDBG? z%KMg-FtVaX_NV2--?Gpp7?G}d_x1v>y>f)*ynt4~+4&ahO^01e#cT**pz$t>v>=6X zY~(<xC^)#k012qfK#P4fMq?NQtnnxc3!@eK-eJA%u-o?-MvvWYz`h;Pbps<T97JV_ zfCxcB84X)d1-#|5L{XFoP<Zz2l8fF1^s^=W(4w>@wq1)b1XxvKZb~TS;NcNmKo|n2 zq-nqxFs6ianp2pB<xP~<0HOwVZ0T!e)ssy-J#Wd279pIQG<l#Ht+e#4WZtB4O`D~- zo3a^=G0V}m)}km&LJEM1&sZ^262bXBjG@YOqBIx<RxW^K2T<@?@IF=}R8S0QbL@eV z^i}dNIOou|do-LS;6s2Li9}|%+r~<GRAWBG9}+Yke(VsciUP$(kGAWe5YV=JVv^&v zEqmg@Hk%e-wzfoXj$4D`g&5K}#&tFM6|mcGu-mTVp1wR<;b^s@qCW+V^Dqq9Y}W8T zpss5)b&ad_B`z;7&~=2u8C%f!Ga^KRnTW2OaTu=eE3q$u0~y_cY)OYHUTiYoB=uBH z#)9WE2kTzn&v@qzqR!K64?ss@oko7Q-{ZS~{aw8N#_MS2Gn9qJfA~NBJNW1S>`&-9 zi@Pj@IG?B8Pl^vR#V!~6f{4%(qF&it3!3OLQGQ($>jyIa#X{ivgaU-#HW&O-1V?4Z zr-w83Cua&<ys7x!O%`JIGCl~1PN)uUdV2qCR;16=RLD$vbSP=_bH?bw11nkyRcR7z zDeC+BwGU1^z3hRenhQ$#rW+lGF%R-f$2#YsRnn;G#FH}~Tsiw&9ri1YQ{L+-O2Fd* zb?u%G?;-6c*?3&P==HOy<Wi9Zkv7?6bslD2gy1Ln{gQ<tBtHOY*H&x1`T8x~URAIL zc=~LE^|nLbIjTVq5(3T#^uq{i44RsJbcMBWj`D%Wk<b{K_=yfR<^88yqOo<(Q(m<J z01p%fZ8u`Q?%1V50%aIP0ieH))~t9K6xLGoJ_qfsj^<DR9y}sW^2NMCPzo384Z3!~ zcDu(gj#P^E)?2{6x3HYga9n$Y?iu>sIsDME(qs_)h|$+@!N#@c14Sk~Hy}81Jt00P zxkonk6BA!P|CNfB_(bWS#Fc~q$MFpkTM>iSM8Oh;%cuPSNXo+KM(p?d3Gqs_oRzpu zD4?`;d#ZlN2wG7TFqVE46bEA(0EseM=6Bz<5uH*Y`D_KX*sQN`=kyguFh&eRkG<ca zYg-s=c#cii2>=vU<4^whAEB}(Zk^u2#l;zxdJdx%o<Doa^NW9EWUom?6~`+I_P8e} zMU4oa0>=}iXOQVWn2KXM*X6|-E-%hf-(}n3Hx`Qp%Bn^P0cBC4sv3Cjv6wHg+ikJg zYzR$Q9&rp4#c>S%fc<XE)kz(OgIEEh4QBIYM1JJC0~`yLxtc-<S<o+`FIx6m#rJ-& z52<XQr|dVM&9Jn#^DVaPJACiE-^JhlJAWIm))ll?IK6j@rkSJdTE3VB8k3?bGIOGE zNWXG7hMF3LaxWnS*vYKHfnd(Rk)B<=i4Ru}u4x4PcG8+MxtQkP!6oxKnV&i@uNz<T zQ@JKk4ux}mjqC*}cxrO^#PZMk^@7`zbE?U4(@k6imC6=xZvD|IlC)Imv=e3M5RJI$ zre#4oPeMkq5Xhlenf(6X9%ZwYYvp5*ToNz1`k|(zraDd3fHSS{n*Np{2GpN?!W_1# zCKoNT3ACJMtOSdRR;*P@6B-!u&+nT82<Z$;QMul)ym}i(E4=^kl5%i;K;Jv|IR~=r zxvSm>gn~$ThGE34DPo=YVWiYRkqu%oyNvuJk06%&Fj~VG^j<%BY<Fbo4WpxH?p$<L zP$B@As`aAug-HEdmIbP+z@sPUXxkozC7*OZIBYJ@(DgmW!NI$L9f0rs)pzme{YOz4 z&gToNq<4G=#uzv^!sq~9XlQ594~`0uFoBLT3eXmcH!?6H5WELC5Rb+}C!rbA^YHTA zbP7a^LMNMO2^P(#O#m|$z(csyL)<v|ivSP_S;nD<u@*&9vM}esKc7Wnv*oT7P!v_9 z{Po^*dR80flGYjyv@Uns4J7s^Adv-~U!HO5Ru}sfLVz1b?45@d1pooY6tspI4bi$J z<~Ou>c7BE*|MXoLtKj{JhYvo$<<%uK07`|%C>pM<ED|{RS{210p(-@CRB(yV#W2}p zqDCjrBqTK=&gqbjRhpO!jW)1F!ErY<?pkXc9UsRvD*=I|coK@R-CUt-TT)7xx>ss1 zR8@&T{G-1KYb~!^E(p~R*zfn)Y}ULkDCl$;dUWkRx=ZC*Q?GqAFf?y+bgLmMHIf3K z_9#vtMZRMJo81;a``OQM_ueUNQDQ!;@%3+f13&!1_emL6L|ZM_LpEM<U&{=ygcQrO zOM8e|V~GkFB$!pyszsGc4=6p$Oz>aZi(gVQLX?2a1(1~ZYhOz@n-64qE1foEm8UX6 ztZ*&9Abu|MKf6zL?I5~JE`YO3W*t-$jd!BJWZ#nolFl*xTNYVvG7EeOV7eHut4!Hv zA!@VnU8Q2g@#H%pm7x{5>LyJm`a`e5V(Is!4{Cbt!~34J33PX8nO|2CCzlgNgQJio zU=D1-3*WvQ6SXWU3S1s_9MJc9opco;);u_I-qd*Q-Z6&3;nDdTqx0zdk$w3gT9$!_ zPa@To0$V8_!{E?&1G-`06fuusp#DWDmmb5xddQU=kA862w*!<?7zRQfoFnVE>nXjk zC@FWHHn7~^4k)cKpI4YKDm;CDfpHvRt%eT)yWI}!O-ohm#*9B-DIj<}VY*nYh%cZh z3KT`bK6!E}nWCgR?(D}b3JMZ4hRW~G7e_GK!nqNyCm%I!qKbL-iMWTJg8_%#(eFT( zv*s*_Xh;Oa`7K+=L=ljC0Ig`r@(_PNAn<Prkn<rRuwrO5&8-kbK}bG+5nhhdvaBr- zfLJb@_6DC~T>=U1(K(DtxECy{s==cV-or2q(Ar?JIEp#ogXtm(46Q>=LX2n#p#aon zK|yoIplv%qIgCTV)zt;At}bzPdBK)#Qlz3QhVL(jkFUAQvh@=wo&zaGnuFFN{Vk6@ z5d<FWo$(pbL?;$(4-4u?T{p~=FM+dkuL_6-m9(OQNL|-arMt0b1%)$qw5IXT6nyUn zn5v{$8c?Q!wUoKyIqqk>-Qw!<G8zQJao|~LlMD*aYtD&5B%(}-!NBeyb~`DapBgG| zuhtk8g~ioojjp8(4XqSjd+k;H_=i87R%Zk~bCL(l$q<RA5+ae-E3X(WjHfA^#-?DX z3{IE`D*8Lg8+G^$<3kP8Kc`Kx_!MhKgzAKZ=D=!1TEMg@lW>?02iw#)C@XSg5)?NJ z5heG1AaJK{f@{0+b>Tlb>x%{5hY7*lXA{q!)MFr<ICNOZKbmOL`R}+HBC0aeCeZ4^ z4MwGa`znj|ra-=2At1~8Iz%?@*VHYN6dc(W=y@8hIpAE1&OSsRjL{_Q;-;oiSPNry zZh%DUSAcx!0l?4?v{6Db5pv<L<9CmibG&x<7+u@p*~JFCw#PU+E~zW?V~S>o0-!ZP zyOic6bgCozo&>i9>4hNUjDsmhHmi(}0>SsP5sUDrJa-B{bB^+U<#`C?Zj6Gp3iEk^ zqEy)Ji4kse4%=;u-M&NL4`{m~T2}eEM`5Xwk`<Nbs92Gkp{z*gOBRNpE`f!2QI@Fc z24z*Fu4lM?=N?{v^DV3|o}=Awn0_`{+2RLR*>k1>FNpmUg+q`Yl?ft=#8+CuC^PY? zYHirMqbpE>Bu6d<?z7X0${0W-TnXGKDI;txmD~-S!Jv@20F=ysit~s<5a6+Oc>L%A z+IEk>`ip;!vaGRKEHPiMP}Mc6szy;(anA~3bOgHh<Kq*|=W{?QtT#LIookJDPbGy# zp-YCxm?rE23X->^7$+pdSj(xKDMJDfHwMROWW-AOsnaS?`y2_W5Eb#No<S*vw%x{W z$ajr4F+EhQbE%Ri3P40zLy(%jxVX4rMbxrEWKfifvMa0wLcnUZ!ks&JB0tDDI+RsS zd#op7o!w?lu?@RTtR6Uw12*e5+P0nSS8T%Zr125O0u<`Hfh|frc<=z1S68U&3R+t< zvpN!eiE<|~BQX`6HWrR)aiA)pGAHPG4;RN>(g3}8q5vES->k(4rX;8U*|C}6p9sR6 zPQ;%o7UbauCE$h$m!BYB?NCS|7y5iJDtlLD(<aO3RB6YW{+6o+!~n@8K-9IbT<46- zl$HRbK(*xmiPwpXkiI2CO)Sp*xO^<GH@>fs_afb&1Pa|K_+_N>uT7rUbzyt$9_U5V z_W5H6H~H?1Tn7C0Yv)%`k^L;?t9ypa({t8Zp{fcrP089ZI2YN(F_ygYp7W0bTM2DT z6sNh>p9hjD07YSOdUA}_vc|>Lnu_`iBhmV@<@ci58(d&3gpdO71H=22CfE-y&2FD0 zey+#K+>e$;h@`V1D_liV8qZ%CMvt?zJ&um%P%1!cT6bCl)&NI~0#$8Ll@`1GfPLFz zyKS-A?$LDv-=D{!qL=$dmD2EPDj4KBQvjdi$Z%0?Qb3*v5ye77eC$8N_wYaR--Hy@ zsGB*8vO--qxOMv!$G7gFs%uIe8+r^wk8v2#cY7v68KK+=sFWrsN)sss0h(P7CUXY? zDh6kU5Rw8rk^mXqNEMAmn1?VCbb#>alciV`B@hC}u}27`NJ%^Z5aK<1P6Hi=9%@wV zHrNw7;627+z;3sJe)c$;LJ5h}sOtu0RbjbYVLo3(>fUiAHxmL-ltipk6a_ygovGLd zMvP3Xv~k8sNeYw)4+PM4fC3ZONQvX*wn;`qrpm^BfaYpW;1oAoUW4P<!x{?{(=QQ) zw?O~HI4}tgRplIdLi2o71_D>vBsa~or;j;aqlDHPecz$o@1o+SVwQvy0s^d27>70n zo>o<b)4TUz>}!Bhkz~gUkADb^NKovC#9#&I(6xK4FE6-iD8-r7b%VC;@w1=*5_R2R zwOV36Yw-1Negp6P;+GiR$ZVO!zY%#;c>ODOg;3l}wnrzc3V<*Q(zw|q`mg(7r>j2A zjTZ_2sSc2zEb||Qz{*4(vXzv8o3A|$1pLs>y+D_l_En{0a?2$io0(nNx;PZl@_n7( zZDwufUzd+^Enj};zJEFY6pWaDhc25;{X^QJn}oawwn$lg4H-G;u>x#HngdL0wqH9p zk44_{dpvyaMeR^QP#gpnJm9&Cq*&-FI+uLd%VmSADyYP6mPrxkH;<Juno`$>5!-D$ zNrg;Se-db=Eph+uEv#lW-hK2K&o4I70?waly2<Hw8rWhmUd41g&y~-*e#9_}l9bkw zlBakuXQv9J90@8ZEdAkQ#?fQD>tTx;)>vrGOl<~eYJ=rsj`_U8<>eOJO^36yEjHUW zDnt^4a8pa~J4C;6wwB0>OTvB<x%?vJNCdP}@wsa)h=Gp6r7SCyRgJQ$Q4}TW*$lJ! z0(CQoF&2x}F(kf*g2FluekB-K6k206ml!5%ihQ`5vg>%T13Z-1L{gWfjs*l3tO<q{ z7C{x5{@0CgY?Y3zbb?v?02&ip6ma7Z$HzG$LVE9mcT+$xH?1^IPVQi_TtORyzH6yC z4hygSev8ZV=Kz48{p9=j(|`U?s8lx;Y*FCeEB7NAlk7R7VB>HN=j;4nACl*L_#Vw` zstJH>oZ>T=y-_8_eNuOUuTR0YHXgTLU&0!46V2xfve1=6-w)`z9+#Kr*lex{Ws&h7 zDbr~j$EfT}Uc6HQ=V#B+%;q$Qc#MoSyiRnSgO=S4vN|2FRbvadvB!S5#bUWaS(PY@ zlFL5}qah(v0mLJ+-&|oBI$pL!)g7FJcS8(f^qxu{@B0B&?@-kZ{@@S)2>0&Z!w-M> z18g^2^uqw7$S87*`~|QfqEsv$9}%l;9meqomvT=6`J>tmlJ!Ft^b6aEU2CdA9K0>p zVgZ-%zSOVW>X*r<uAfrf^jc+NBD>WCqd0q&1Zb|zLaA%x5%O;zEQ;Lvmn#PTH{M>h z-%o^%%K9)pEdHJDZ#n{E<*Mv?1mwzM`YhI_zd`taSbK2*<%{RdVH`y84qlN)E0Orx zXxM@lrM%xX1<JBuW<DJ!zd+t;_yep_Xa|SQW}jK2sluNG&RK0xl_g#~y$u%}zW??w z(RM?8W|JVN7qmkqx$7z5%!j~bg!A10^t`VFC9<Ic(~EiprJ#NKUVQe93hZ_*p&^CE zOjjuD8Yjm~+`oH*2M?d%^0LMAvo$U*H)z}LBZdF8PpQL6rzVv+7ycim035csNyRFI zDhh|8YtinvFr2Sn6eY^4rl|X@AI4a!Wl+yhHx0_NMu5U>zM!rLA2|bPy)i2tl7D~b zhqO*Xu?fO32vKar|Beu^Ka7-SC#j@ew~q=531w1{ilRW@b<uJZrQpGP?@Y!42(U$g zuYKe9@a9|J<k45j;`9z<-(hogfp)jXSHAKFo;>;hzx?Gd@%;H2x~{|9Km7?D2gT*W zK$I(M3zSvOt_zbX*rJ4~$>t&m+O=5`$4j^kSQzD><;KLMF9Kf&^j(LGVL;#an9b%0 z-lJ{zlwn~k+I@$s^(FQ#6$Vl!gTg1NpFlEmNe}4S7VGsIdb_2v-HL>LQ4}aFSAJAX z`lZQDBhL~@NEaCk4`6M9x@pif^Oz1QY1KBKQ=_y6kv@s?u7J9#U=0-rQd*&~7VGsD ziqfK~YaA_?SRF0#^>2I~!{~5+vBr}}k8pAR9G4fD=z1z8JdQpFdkYE{0$^-G&mbBR zTvpn92n`mJU;e{eQv5O@mi>*x^Bib*H@=>pIh#o7{fQF5+Br?CEXO`dyxjhpw%poJ zR>#3H6N~t;f0^))i(`r&M4R(P8{IYGkqP_k-ZLXVbvg>@=?QOgL#TuAOmzn?Vk5|a z^ouuc&G$uAr|Bv$+w#621`>(2oAVCD1v=SKM9^}ULPipVHZ4Gj570_Os|pqYWoan_ zpZ#HAixeSXzwfYK?|6)J$e)D2(F)dBG);v!@87}Wr)PNZ_#C77!e2u0-_*Ph<N{#9 z9|9NY0b<Z#8b973($HiIz=0~NlEz<_1-dXo`2cGTQLm~V!3ybT4W$)kO@p7j{XVWP zuh91cbO>0^YOL2g3^!@blfF>~Lhhy#LL{Xm*hoQAmGU|KvS?6J78C~ornQ><{v@~t zTVUw+utfo5NGT8)RtR5`(8&Y?U!$sOl=Td=#S+V-V^$buRAtEmZs;+(A&dA=t}Xx* z1wfvP))cH}v?B|>>*5$WKgK=48jF7DvNE*<C3l?qB>{OvUPF=W))rDY5=zi34=7YP zI$Gh@t=srN{-6F2SQI5pY4D%@z5fbD)u7#P@%``qH9mOoKCaeR7`iUj{vf{i9_@Y` z_X62tXq*WeFUvX#M+t_E?v*T7#xo+4T!PmX1yPn_Q68S`ROkojx)$x83J6Jop{lHi zx5Ci+9tT2ogxc2y$2K9&KVuBWAt}bvJQvH6eL+ES5O7Cqi-nCT+HyW|2aRKop&!T{ z6l5>8QHd%zps*|n5vVwYR1^#q11?Ds*zfjn!&i#pbDlhThO)Gn&l=o1Ug3?`Uq{o_ zsLK+szj7OIzIvJ&If>U|bRKQj;_=fnJbQkQ?QVztevhtgIg>}wCaNEh6)nCwuu8PI z?2YRSID0QY^hV$BOQ8)1!aqp=GF>i0RrH1kUV?g%j>91cpeAPfHQ|5byN6Qv@H=ur zvWTWU(E-=?QpMlN1W8glRGbXCvN1h|ubP|gG15K@r_2UGpjALp5IH#Qplif#m+IR0 z18I>&r>SvBH$0gG+4D|+-Y^F+eLw3Y6i5K)!o^yOVDGvyPIws`g1Q~H+dcOC4u%zi zqO_RLYs{JwWoc2BwD2x3w%G4`hUe1!Hb#Q|6c7}uvc#R^BmDU7_i?q^C#&z1HeRIt zK%0i+8UUiyOe}kq-Z%`Lo}xvFW1tiP@jj5?_s-LEG|7r9ti@`z#GTtqthZY{etL$h zs|_wMH`FhFM)Rg(-z!-YV-^QMbsG$Bt&T8n>Vz`v2|4J-AtD;AE8VD0yeyJ*h#JVf z2(qBPk3Lo*@5!UNg+e%PdNC+15drPCYiKPo2L$;RWr^8*iK=c;H8X;Ws~Sx`1Ch{p z_Q@)Kp5)sd`WAh+rx=8h*4;2rK&7~qj2C)i2V*UUzK_`qS{t<cU7VN1Hz1m{#%!^q zqD^258CE35f#MFRw4uRjF$Z>3NpRn`Xcj9p3OGKwjqR>QGe3&+PAozx8bhvy7Q;X# zh$ZlH9EaGqIQtYSDYhsHIWQ)UWkeCQf(k<2J4HORr5yKBiT$v~U^bhf>w8pH1)~Y^ z=(`@qI^M=fu^2ecM4r2#m6}PH;*Ti(5>LSEhxjQ19Do5m>|i03(s|LPh-zvL9ZX6S z<w6>Yi#3T~-x`CmBG$~NX;4)aY*|rlhY+Y7wS0%i%m)o0$Thgz_jq=8iMN0GKGlFI z3d$I;231v}C<<m)oMX9IV6m8EwVdP5t&_N?Ip=V3afv6-o@2A`u-&!Tw;lSv&lP|V zZ|Y!kPr`X(R>t4gEd39){;yj$(_Q0cI5M}kCufWsDGQ0ojbPG`>u03j*FJgCeiaYQ zcj*^zZ~~*HMV&%$#2**YiEG_dlh@Z;RNX}<5TVMywJZQWSN2tFG;i)Y3faSPlN#Zo z)7<#%V@F=B=G~02$Y%t<j*jZb+d@I>0AtASX0$=mEKrsWl%~`@DsIvx2oV8p^tig( zVtuvag+OCRbi66BCvaI-BKM&G7V{aF^9Dct<%0<Me;Q3_e<?^OpzB64FMudA5yw{@ z&fQEQPSYUQ8c4AytR?apYfzRnW{brfU;XMExO3+O`~3zF-+hipPtLI2?5I3(NQzzC z4Wv+T@ub3<_}W@hrtY8KK|hSRxV(xH<@2h->$mUV$;CM~`#q<oxy<LBtKr#x@-gw0 zJcux`rm4N>5~*E83&diZK+d!{<9;InoNgR39_(M|XV0SIENDYf6sVd8bu-8EXoY&V zz~X3y+o$(fKxhD(YO-IRq1|ucH&;-`GWq}nt_U>@BWzKjXKH9400WJm|NN)1ANhPJ ziV{kf*lu^Qg@xrHI8khdp(i*yD75<>hKFY`i#LeBArShs-%|-$N%@N|h5{%<gM8J; zG(IoIdL-bo<Dj;YOa6|e<gl9~K4X3kG#7<KfmkP%)`TF$ij67?V{J65y2k09+gKc} zm`<4Dk;ZXk-+U3P1%}}9{Ml1He)5DeM#g~=HBs(a`3R|B62NIJ31a6#L`=Mg64cLp z8io|JaU3%ALnBv8eME40fd&sZbQt=8?dA$~U88LqG)==C5hW`}Qexb}c&@<$gWz>^ zeJQ2jlt<`E(UyA=ltofNeeeMH!}8j1>Kga&-@{v9{R-~iyNlUu23ycQ4>u_QA070Q zy_Y}e?Ds@asZ2z_jOicGz(VHQ2bo}u*8I)qh=y@41mo`)+47n2Q`e8VL1#Fy_;0uu z1yI(*)OwB(829CRBz5Z7brfRyw*s;t%IgAHAnsHToxX2v68u^xhA4ni%)~;Kbe6-k zO%u;a9hUD-lnlO{C|8HB0pL2yqqTyufYEZF6c|*NGc@&_%aZ~jl&I^9h+23dxp71+ zuEWBjENtZ9@4A6e4uugeF0#TJ94%%j%L2cA@E8MgxPKZg&P8rM1oVSrrD}|meX4Y& zzYe>R>Bf__CJIdeP!<K|vj($SgWvo1*KzCi3HqVO<ELBn!^oB{<*CCZKRwGt1h{Bz z#x8-L+u6kxio(V|5RU?vBOOOrt<gdF3^L{Bh8A6BpFk0i!ExL#myO5aD!683<mWhe z9gzlzQc7u4<3NF5P|xxB0iqz2oOGoL>a_*YDpyqnTa;KV7FZq~qbMsl=g_w;F3z8! zu4ky~ItKj7#ta|^kV$`T-MNQ=fT1Voeq_iQtXL>zxTp|Su52$ZuyC)!RyB6JJ=*;q zdrkw)$3#Vhke-IDMG~9_R8A5IMF}*ssRqi%4#gsj4BPK8^j!?Zb8dv|sQm1-N$d?1 z^wf3q@2`%Qc>Rqx(DftsyFIM6<VInEDI`c*Q=G@^U-=ro^3|{5^5Quz&M&arZ3+7B z2NXq#%kwk%-~dG^f^!ai-=ioSltsaF-m^P|kPqsj<oPpc60eWZQ<X*qaUp<}X4>os zg#bTCjiK+MltJ)7Q8?IsKs}qGC^&U7n}ZaaLc(A6CYjWN_@w#F-{J8L%n#7@1KPgF zdb7jR=jZs|4}Jn;Eg=Z3Jlev%90D-)-O77nyr}pfa|J+teWbxECp)-S{yM%Rf;$(K zhiF2)X5I%C`#M1*u1Tk<fWFy~O^S@lcbaQ`NWyS>KoW3r>$$+6Dgf#A)PlOEme6;D zY@$k3nRxGF;Yu?`qi!t9(r}=QC@O#tiZ}Ft0IDxfeC*RY4sx}!vIss91Dy<7(rTiS zs{kbOCxYS9eN7buYZZ(E=fG+h)1a<uG&6$Hio&uFjXCwJ3f@zYjxz=b9z|hLSlXZq zOZnJcH{kMWhraLNJuN<Hjk+#ya<qUC0q;G0N(EdFAN{Y`Li~q*dlyhQCAw~aAU6{r z=}_oTPLReb_r3(SYPHrVOUh?{_5LaD+&RVvkDuV;YK_Z_3j_d*<viv$dlv&erpouh zHA#^P=!OCPFeGaVz`g@6`8cf<N^5b{G&q?r@yhWDocH+P{2b@oHTHdnK^XYr_H}@G z#QA(Mh%W$}BCT&WHxHlTM=5lN@hUfcSMfrTu@Lw?UOO{14EuXS2&u}Z*08of-}ktE z=Pp;4r0Dba-~9yua<|F2k^)=eYv1^GjCTp%p&xqqVnk6&Bs<N6rkPQx-*G_Ow&;fe zZ8u`KU885^BHpk3H!<D<BwI-Kgo7`|ft9tam4?wJG1x7RWWXjVl9IL1b^E9&N&zKe zJZ$47o<DtvAOGn4><X}0E|1u1HmI8hRaM8|Wm!THpV29l^&GZrusR_^q~&sf@BGzY z;>nXIR0)!+cpe`uaeD6_DPSR>-FFy<fs}{cj#4t?9?Zzy=;L!0^hhz+L+}A!(H<yc z5{oY>PAi0l)|Oc!38|A}R`RT!^MppI#CVy8T=vOa7H2`paW9qQI5WkE$Uh?SGseE8 z0+3%Q!fx?4r<)JIijzxTCDC+nPM#>&ULVf78wCAy7!ZX_yv~7U`+~bllQ}o5#45?U zA&OYel9d)nCcs4a#)*^neOhfUU4sR;l4DfV%tcG5z^Z(c%loCcs1WxfA3nu_HA*pz zt6`18Y-UkcX3`&@)vKqb5lXIf<`Q|Od>noC3d}PAOsiuByePkuB2y77+{uQoRA9jm zIA<|y7MRUuXqpDitU*~8al;aA-n$XQDB~9pJTd<b!Nb909O#+7^WX{A+ud~hyocWt zB-{1FG}!P{Z2~z{W<}Qza6z&Ffa}Vld~5R0^s~4oSpYH$U<-O?)@m#l4IVyvjI)b1 zo;`bxtIIW|PhG6heL@$9a54l?AY<M?S;yTlV7=et$>kM(^6&vcr;1z(i>gLbmS~C+ zi@HJYDEj^3#TnMSEp1lgkkGip0a5uH=eHH2V7{rn%zfrDPx*d#)BA_tJ9KjZz=&b` z9hF>s&U>``ZKm*R%KZ<t282B@c=BaGeDDs+s=;i&L|ImtFP0SH4FjWnbW>C;Tx>JP z<<*9A;s=Lz-$s;2#XiZ9hPZFx@IEGEn!k!0UaG7crbjBJp^PvbF3`*u*NhsaD9Ewz zJ4)GP^uUdj0WkDE_WNBns=PO9&8{hf`C@_9>VyM9$+bWT#tdzDfqsyRoF3Y1jBdp9 z=g%+<Jq7Aj6!$WlFHl!U=w~(d?H<MuqvF~5c|rxiTqKU%3o5%01wu3mON^LWX<`{H zN@znyOTmVWWE)M@UVb2+cs|lw*AesxfMw4}sGyaSy*$9Ni;rg>6#(OygO8;E#4d^w zz*qVxw}JS*1yXx)%NEgrz>oTA)QA+zjC4j7vh!zJczy!W+9#C*qXLo!DIJ}zn_~;n zs#TIEB4^-jJSr9W#&9!#e$v+H>=WoeE-ul?Zys;yM}DKyo5C8Dm4WTq?`Wu;Y*{E& z71ePk!y<rFo8g>>)&X6|KKapO2topq&QFR-UQ;}OT6~<K2Dy9_WeTFW@O%kCRcVYP z@ypNW6x>qRHD>b}rOXtD`|4sn@zFW5c6g*H+Lfa11&w+4{YU5yEFgLOBlGcp7L8{D zybl=q5u@|h=ESsr;if4$QM{vYQHuS+145|q%DvmTyjo+|cG&Mb^xc4q^DAt(dv@!5 zvi`e+9Cej-h?Kgl-b4tTkrCkFF}M-CuA2zMJd3~>jjAYcvOL19st~-#uA?aCZWu6f z(HT*|WnBfNa=R0u71zQiZ#S*k5Bq)7v4`ghAz%<CL&nKV#*2@{XcXkv<K17r9kT$8 zEzr#7Xl4sk%>v*4*6))wX$p2f6sTW+6_1`gAo|=rm+4h1(ImeRMO6{y04C;8W`x|J zAcW-V5yMON&A4A@#*#3YDy2{qC7RhBT5BwqN4S0a7XE|3^|x?-eu1CA{WA=Gk0(za z;pvk{SYKUIMZ<B#7zlmox)x{8pCKv-9004CXlm#sNKnCfg7Ysg&T(;mcFmZQK9yyK z*?f+pqZL+*IScIqJ_O9>OBid>?pt(SOG4I>OOISV$*tgqfzmI*K7Dv}`#naXGB#rD zA&%Y6_G(CiCw~uVK2aSKDQx7ZN++fYECz*v<5fPk0&qB)UskII(!^JMx9adNLv}u% zR4>xHMOcK)f=?3~={<mW4nl5WBPuU>Q`ZJIeG*^A2Qc-|h)-NL!fTHyQv_sUgpi*z zY2>o8<$Az$<Dd3Nv-O|53;<v;CsLfM)G!v<ZUQzN#{ypg@F+?HYXU*;mi+nS0E{Cq zB1RQPN4}+TU_UW^JyU@4@sbSztiVhsv}nrt(B^ZbDvxmQ?lBhgIaaF`7Rv>Wk5{Pc z3f6KUq6$o&L6*-jj@WEA*zb1e+YWu-V!vy#+wHO5?C{=$M-yTd1wb1eb8y$&-LKK| z&svzy3+Ka)R_ir|AY6Na5M({^#u@^ZRprU^H~;XPsOkdG&aTk)Jsv-PhDVQ{{mQWo zBId8zg*PC1H?_EBiPaJUL7e~qhkgY1=y0{$P8CK_M7Gri75g!b(P*j~i)N0(T3qgT zxY}*8@4GlZXswa!=|w(&8b|el--#GXzIW5lP3OGv{<CB9ijyC<w|ehmQ6Pmj5&?B> zi=&mp<45n~l~=!tpum=|LUTOB*^e(-Vd$Ycpe!p^4msu^nif$^r|a{?n$AVppR?z$ zB6g6FfJ`tYgKe7K6X%ISECnq;-UkGwu~;lHUo0>V1Lj97y!qBQsJ_9zMc3}4TcO?W zaCv!wtIJDlx9h~l2RC^>gf;{OmC`P$Cn@$t?qI*)VYl1i+0&;JQ6YUa#-b<-lx2nG z(F*tOzlwXW+{c~Ux3N50qN*xfTwLPe!$;U{_Drd*;@%^%C63b+waIGD#C=_7&qT$5 z%n8~Q=qZLk!LE)oV}#LC<`SivO05U_{fQ8OPuf1tB02m{gww<H{hI=J$hcQLu@d~P zluY-u0Zp3d4k7&^7D@o1qs6ZyDNSyzUprm2hI7qXEarS8NyjR&j3<*bb}#i)O|^KX zG7ftHC%0<idp8P2sZf>*W$DrNqNK3Z9w_>lCJ5bQQ2<JLgrIpbYB*=$9eu}*iGo&; zok{<A6HqAvb27&ALdG_~kJZsJj#nqRb?X?b)e#oUC7Pzj>Sz&z6&-Wi2QG#}rF9*e zs>FWQ5SdNiqusao+1tOsd+$GtmSF(V`UW4Mw8C;h^qZe$lZ_I<#7aICJkqWShisFj zJvz-Xqcw`cqNywR;PCX>2G7s0@ZNimvD@t<Ti~zML|BJ>c7BYn-}Gic^b}2n(Bu$| z9QE9dLqZ+aS8@JmMX>B*HplC)zK*78@aX9iJUe?%k?UMUC*SCyXxz%8h<W#t4v0V- zssx{T=g@Oe7^3_gKheH+?e;(7yCDQ-BBbWr2+wuxwNlt0--5OUQQZP?F2EETZ9gP7 zJFO$r-PHKFW{Sy0k(BxAJ`}ic93Z2pCi|VdI#l$L9io6qHi8IMtqno|ilV?U45;fF z*24v)_5{TwQQV3#22Dfm!Q+$L*zI=s!FT^1I({yPqbi1^6dKaT5N&eT@w_-tYUSTB zJqL|3xh=M8i;MF!y!Xy8;@YJcoDyYOp>ArdR>!z~`xJFEXE%kFO)^Vcb=d915Mj%m zuPJ4*bCfrwxr!Uq$ACi5^vIINsg#s5SHwf0gbDC-((-`1k6LhXaVyedbrg<?+a16G z3XyB9$?Q;*O-V(IS0-#xsF+?ij?_1;0b}X9&e3^82pGo{7%0I!5+$8m0!abD4VpHh zwGSX$JoLJ0ELKM)Y(ea1#sXyl*g~PHOFVzRPlYo=KtBYiAz-vXQBdGr93JI4W<a4R z2$q+CKqpkYQgM$5Nzm%F8DwKEg5v<GP)eaJDy)u9aC&-*+qX|}v^v6aIm3M3psq_; zV+es5M-++>3@U)-VKktiF{>*C-VnFm;|D+bDSr9R`w&41C<+Q%G&sN503o35dTe+5 zUupAx*%kueqU9Ce{pc_9JdJBW0m<2wlrL=v{x@3V_;`U29zI3a5BTLTA2OfAry%_K zMqX4^;-$V0x*yGRC#DJV=l(-F8RriW1-_g!1WL0UokKSaIJ>+^0*)2;sw}Zu9ziMM z?C*Q>(N|@G+b6ehd~`%;P@tf_<JB>~^5$1i6c*dv4nO?Kk8pLh#(KNKdb5UOlA_OM z{!FhSl?c0TkEWT&V6?iaG3*DJqQ)?~NI;_%(cP9s$?+BRBqY5zhv%bJOc$0O@W0dF z$-PG?i&Sis<)6E3<up0+;Dd)oo@1|K-aV9t2kkk5jUFnZ)x|X(yo)_?<Cxvs&CPoc zZD^yqeR>b``GQgz`ySiv2D|MBeb=(WI1N;N!GnpPih|*s!=AG)E-!({j~)T|kqihc zsupEgqM6Nba&il+<72E=$2eXcF=xnt%gZaeuS^CA<QI)cO>2?*N|`&tPau^l0bt~7 z8eV~ecb^{x0QhJv`4BbDzjw%Vn7a#P3(Zu3Yi^759YkxpC@5MTj80ff6W>~jUWWp_ zOMz+50ev6PwggF%#+&>zH{M^Sq(mYS4&*b21hdu}C&vZq#=;s6&-lF2AZ5e^CcUBK z2e7rtm+J>Wja0+FC=^dnTK5F8lXBpk;l*Gu?wkxR0z%3%P}5C8rQ4Wn-ZI!tJ;!2x zg!z1dTPL@0_ueUv?;K&dXwWnz%A!DF=sUwWz-U7Yo(kL(<Q2G#C<3agMB8@wm;c?r z!ILM?va17&d4r?njC^C<fpK)qmHpy*_3LV*o5mdE^I(Dk@P^Fmp4-7>SLvMA8l0bB z!B~SwkDqg%{&m3X<F;H?{$#d)Y5|-gm>1&7Va*qQFYN;wgz#C;^Y$Syw|pvVE&gin z14ak*Lyzrld!R&UY_-D0<rScW?;=^p-~Z9~aeDg>?%p}YtZH!KFVXis6u^1+h?e(f zp$NpWh=xOeEh{*Nma4izyK7-)7S2)8ntj_r+k&bH76kxOyoO;!KlJf@A-G7K<h|o~ zDa6N}-<^{8vqi3vBH9J^ha4g{O@5MygwY6U!!)(y2*>4*yRPFh+vH;(2g;h!iqT8i zdjME#C&79z96N@?>)9Nyy!K`+wBx+zG)o7C>E68Cu5teSDbCNHW53(M`<IIux;7^Q z;NTO2u-)L<(<gBd#h9bQL<NenMAOW$JUYVB(TYlF8xq}8>bUEAj38uGD+L&n5L1qo z66FAW7Y)bHl>%^6JA{y@R((1q&CwKLKhaW=s$zu<)}EY0rA+~#C`%q|LKqZPS!0d~ z7L17JQ#wE!qIw(#L@3U=90>@q5BbCqm&0;tQP&1Vp;6Zcb*)iV8fB@0pfHYHBb}M< ztPOm>bWUp&h8~>uM~Z<0Rmp5U1#1~C)?|QlD&A*VYB;Acaw?1p6dV`>5P3t$EqwxF zWX!UiLILyH5mraHuvi>nzFgt<om*I}7MRUz)U$%q_zY@epuB?#1_N(WqY4;(pa428 z$b-W9`6d3FfBdJoxVW4=`#ZOfv6$6pyFU3pJw@V&&%*bg?)*bV=Zny-YlzAXXLh4U zSryprTQp6D^Jf=n?g5cL_TvhvYe7k$l8_5PETHpAnhybka~NXIwu0j7lOo&=M`Al6 z%n>U$hts91U8c0Az(gXO+U;9BeEbNr*^J=hvP6;PrpKyu9PpL<UVp7E1e9fo)vZ%b zxpR2)jaSg^cCdW~r8JjW9?(^LP)JXJ(k8k)LST|A=eUYsms0b(9xkInmR$MdLjWQb zuu8;2lbI^~Cm|0K6onTMJU}BUH6eI(ZHE~L-X(Xbih?&PKpE1|%w{h&Y!Xx9okKmF zNB#`&9eg9_2(cCbu^K9bZ+wfHCkG6ip<uMaW^;w}vu9YZudrwOUFX~jp8xc{Yw=TT zc#WfjQXQ}bF3!*K=;4ESpPGrjilRi*G&ngv!STrnj&GgdXthFFl<0>MZQJ76^XJ&J z`;X{?$EXy1E){_5R(VnaL;;u{BYf66vV$dSbPA<T$`q$F9B8jJ5uFbh23CR{rLH;T z@d9A2n7&6q8zBTFOexqdkH*feyu<qxC|)f8`P`ze6`IB{l&Vlh@}2-=r1pD=RlqX+ z1)kx0%_(=I1BM>(CP4F^IF11bWTj~h6jo!f;!m2QE=8d+4hIqKLO0CUl?~$f=njrf z?&9d^78XY<oSYnCHn*r}7PizBu!Vri7?fJGb!Sl6fI*2>2NZ?^>BiCF!3U4=PyhM9 zz;?IGe2N-hdHq#5H{xo&;X2qHX?@^V{dKnFB~cMFl;Fvikr5N0^|f;=uD4D~&FCC9 z8=`ErRs(@tH;#Gi<2lob<9R+0ZGt2rPUoo$Apn2}oO|K(O@@J}Wn|8ZlH|GMZ9f74 zMUkIfUdFj4rChD0)U)|~9z~zfz_wkB?QV;H=qK?4pH>SYU_PH?zF1*D?BT}_x8^hS z=a;D63b*f^V!7;adU^+MzwNQUx<UwnN(H+CehjgAO;K7ZKr?Hup)p=4m-`-VyQh@B zp^xLIvLL>^Z`mIay&+$_)J_nj74b<(klN@R7K?ebz{wyP;2pWMydxwp4>A^i`pb-4 z*R|MfH$>!A5P_0s7#$GhG^Ai}?k?@chU$)3i^XD&|Kxx3zs0SS70QAT%FSkj2M-_N zhd=xYe*X5`xHx-`eY?Ycw`J;QkB?sX`QE^<SwJ|h-_W%!HtQ=qeexv9IgVEm<)A1E zG_x62s})X8?!ed*E(Gj$yU(8jAeOj5B@kgRmjA(Tvb;HPPlOPr$N`WGU0{l99X6>< z7XTkH3}kf^?4R*-%NdjiS3($!1qwyNp9~kGxlMu~cU8z)NO0G6f_2K0eyWNVo;F;R zmCpeXg)YDWPa5z;QZOX&&xZh`0mnW$ssg8Ai|NK{j6$J-5HyNWqpB<gM=8X30Phj& zXXo&rz-S6UVJn=TzK&*b3-x@3qvI7;s~P5VgSs)OD?q6c+8b0TV0bV!TM$qR9)MLE zUUQ#^9)J1o{u+P&@4kn=?-?Eou-4*hUwH#v*WuaOMfCS7g$dH~>uhn3($yxP<=0k| ze}eq~QZ4tN@7r#2KB?<qH0A!nkiwb!*$>@aDc%N%fPc0TrI_#ET$>30Ol!`SnvdLG z<G5u=8<5JshL9-}Q$KGA0gkWJ4>Yefn@v=5W3Vv$t($s=Su>;fl>Lr`Xa>FiD(&Rf zEtsN2=%`F}GcU0__pr9Wy}Ngak+3fChkx|@2mso)$K~Z7PoJIPonO3-v$Ln@`aQGN zaiAE4j7agmMa6*Xror-P#f+O=c`g$A@VK~<eD;F0gsc*z_wY(XO5bv|3m#v|{G#XT z#*yilX+29Md;SanLbkLLD?Rbwe^d+J<NWL?#&KYJT)H?R0R(%hAP9$ClTa3!6W%#= z`#ljXDNqq1@L0{}fT>}N23^~dvck&x=tgvHi~Vkk?RJf;%L}Y8FDSjyjg$MEcKSep zk1N4P<Urbf-(tPKihs+TG{>D^zv$`BVVp_lGF}0@o)#Wj>aE#l|uvX`q>joJZ-? zXNd0$_p{a+U9M*aJ1zctKxx2@BxI?KHC0Me?3;H^VH`owJy(A5o`MIH)t3VC2=+Iy zmd<Z9T~jM?Fk*5ekf2Lcy-G=8owTV7HL%bGJ4Yln0{QcuQy`@Q%0gkUi5#7EP*iUl zhIbbhmZcV0LONw>FevE;MLH#x5RfjFX6Y^gQ9!!81eETO6bYqEP#Wpl@BF^uPljQJ zIOlzz=f1B?S%&$}YgF{Tc-L5>?|rP}^oSOpv(@V@DY9!_44h%*QOeZzTavKPfQyn1 zZ<hi3*{Be~{+Tlo#M96fFuRt3{e#6nkn+OKf6P5b=aP<h{+tW{Zuf@#cH*Jd^ZW6E zaSwQ@w~u|gby!GchERPX>jXbm{o?AjflKBy25OXjfaryZgZg8f3iZj}dr>L@oF`c$ z_riE*cSL67+EJvu>MO}_fj@p}cMJBzfSky2DLmd|sNem$?G`CtKlpPFmLI1KGa2R9 zDX6fr64&bu;W40~@rJMd+vU*xJFQWgkj=?=NGlC%5k<Y6tZ88J9}8Bv=w4ug0|{l| zb7cEVEg>%c|8};o$xNm5obY$gd;wNe#cW#hSMh<LKdp#x^zO5V4JK;>rlyygxCscg zn%_N;__^JF3wBy`{A>`U{{B~$ll9j1TY$3|S=PA1D%Hy&<UspNM-<6FHY-EV6dp#K z5?)IMBp_QBTYp>-`;Uh{HSt+^Qq`(5uFu1bP=6K>`Iy7<hyUSR6F|*;0eYKXhfa}$ zhOMtt4o7PX<Xc!{>dFKG74H07mf<*Lm3vlyF(B02V>E3U2<Wh)?&0XSXw4dOw<5%U z8p4AY&jzHQeByv7lZ@8cko|b>H2u9usnXpR`?{o}!NZeFuwSZ?WJIJ4!r>9_b1od& z%?c#!Ge5}iX$A_qTk55B5a~Q?T$i=UiL1c9fM8F?z}(B!a;rXeD&xz90aTySbl;~z z5AU(1;6!T=tjmGE&gAoQSti|J$otfm%N^p}bP?q;4qwfO%5tLJDk}Tk65cq5l7ANZ zz~{WqV}8w+xzwidCn`+I6gPzfT@hikqkSoZOEsLol_wKI9vU(SD}^jFV*9W=8m@2L zqTV&|cpbQ1k2%p-zrW~va$wcu;+;Hnn1Yi%UtI|WW%~F~Wc7BA#P|x5o%{_yuM){W zef%yfBmF!}C5fce;vw|KU%ANG+ehCQrQ(FUI4#ZJv7Wv<<sZE4v3O5ni$qTMVg<Ud zU9GZ;-V0e1cX~&VX89qc-;OE%=oidiUVQSF4B`5@z1yaV<sG%+K=l0T$qCZ5g@q(C zNPB&^A_$_X$I%D*)4;E%N#lok0DRQS6e24=e;B6=ebSWkBg1I;-b;gqYsoh)3}fTj z>pzo~0pO7Q02EWe?hfL*($`Tn{Sv6EO!$m=x0(JxkSKF(J7`5qpRz(IX`}=N*X7{B zeLf@AgJp5Wl`t}9_aoNlY%(_nyOO&Oa;3(nQpoaKDyj$g9Q~5w;n|b?`i5z0r{s#| z3)(>0W8}97Q4dU-gyJXrueMBOBCS1w%5v^CYD5YT>B9T(eR}}_j@7pL>(@@_`mXjx zA=ZbR(q3BECfp$Ml=p3fGVZrsOwaT0NU1rD3PnYKgYx2-W1_qFY6QNZ-Lh_V7o=su z4TgWxZ_eGF$oI9s87<{6Z)|B~w3B)=2H&Y>%qo?26nb`kprZViJf*H385i-`n?u4~ z9m#t`hHT-6ut7Y}U#r*T&~a^7y&}r|H@Anc#9gN@THr>}WuC^d-*GA8cD`S3$S|s9 z@P2=s+mH_3z)20~Q4gmk%O*oUdzGV$(W06MoD(}h#A-G$7KkF%scf1rd!14O3j&S6 zJCa|GRwYjg9&WOXx|#W1@y#+6a`$v`x(%A4YBwGR#4}CnsixlOegE#xf_3AaT=u&@ zVcf{A6V{@Zubb(2i-iYG_8L_a9-Hcb<|1OvMK6d0x?2NoRJO32z8xdT9o$v>O08Ms zB(|T<Wvwm3z_HL61#09aIC==zpCRV~>4QH*<tAvv!jxpYN)Y98+|0C;YFxU;7N1Md zqXZ2;#A>%>$dWsJExQCm7he-I=fjgf6q%nS`vO|}MLlUEvYd58$#ueYs{Eh_P9~AM z-@gRU6im=rx$bPxP*XP@-t3Brr}0!YG(j74KJG*RU9J^oKW0IiOuN!QIHs3<t<2ud zcYlA?mJWx?KPN|8%}V8@T`jkiXQADLZm*r~y>_406@?W=&WhR>o;5VVC7A5b?=1_$ zqA;oMp~@DmOC+>#N4#N=q-BqGew5Y#$m2R!p-7-CapzAHez<4>^bfU<-^IyvKnNq` zZE8c>l66#)rsk})%tFw^?ZCP(<n6>VUWb&*OFCI!znj?1qLBLe6_Fw4?X-643P5oT zhs%qPa+{3MY<OMm%HqbP!jUhLW@T<PCj=5~Ddh%zfk+`x@3YGzUqkVCMh8QnFYGk` zG8<jXU>N5VyFz8i&XA}VWFy=1ofRK*Kk^+8mzxh9O*+x@agW&Iz3xlJr|i>4Jj@N! zCpw>p=+ljH7TMYo^|^YQCKTJ+UI<_(rDb8@ep>wxkJ_*L9YkB2JJ*ZHCrKkR@1j~! zp*tBj)%BAS&pdvk(~H_o@YC1knWj@5L+|oG2Z%{!VRe24OVwvym|s(BUkftu8Nl%P zVeGF$m2{4>-RNI^8oZp75$b1uBb}PEwXxJ`eL&{mVNDGMwO;)#FUf%FHiv$v{pX`v z%lQ8Ij<5%!j1W)6FP^|Of$WKCat<gL65(=S-P0+spkuGy8@53)N(h_+Qx>YvVJ2xR zQ~CsU!7Zmr(~oI<JGZA?@s?r6fpx_DqU+l0?u3j|GrBK$&^}DtwY38%jJnZir2@57 zdaLDqGKm#sHJnUl9^{8G1SI|EO<}gvA=rPm??kpVm05)dd9Vl9OhntUD#!d(0DEEE z-U7K)EDKPf5S)4Ux=;d6=X!o3oF(BC?Y5nqn#~11F-h)PPmRvJlVMg;ie%vqde1V( z@e-*!F_FG5NTipaIZ7@1<u#n3)pI?v9as`n)y_NBELKQo!!Zp*xG=`0WOS|)n7-Gr zaBYKnnVTtCzF=hqK3kPGfV(mKK>udVGhme0Pj?_I<P0tg+I|uYi994-tx?M{31N1T zCI6nVOFHzmK<sJy6UwbAtqEUJB(I>J?)^ux`ZU0q`7xD;{CN<jXi|uzQ*3DiFQLkV z2A}%h+`k4M5OAbXUqpW~SsnZ1pP9MPZ`t1Ir*Ao9Xei(J+|XK<i)qSfIG9<c4@(&i zi+dD_ztRHC4e$PB-=5Q>6~z`5UmacD`g&cb9RToE@`E$tCvW&8r5zC0eGjxO)^s$` ziZ}oA(_x8Gvwzv*(;TK8u%!fh8RPkLafdu6@(id0fv9M|il>7e6j9it>coGS$=ZoC z5=l(2__H%CaqlZB&K!R|V@{0s8JaorY3m{lI28WtPO^#f{u{acy!@KUvxRf_TrdrS zeC3hm3poP6LZK@}k~Eo2%4Dx^%nc}0`-2&eV(s(j$-y#E`Y-fnUf0=KSLY~;)(DFW z;j_g^|0j7)zW;HP0|LSa5}2%7+B!u~0I;jwJc$7{HHOZ@DX0lBomYs^Nq8UAIL%wq z4{9*BCVV6Uqq9QNoWL2U9O*Xw&KTZ7K{mgs^ash-yQz4w4+?NmVF5IUCr4}xEpO@c zhV1AGPuJJke$?OlLQvEn=%~g+W9QX)0ZE+rK!hG`m*x7c1{Vb%>UMAxY8TznI-%9z zcQ1GoSjT&|jKPWboxzoxBFtZkSx=I=Kbb}I1yDc|b2KmC$vl3gnV&bNAoj~u(<~Rw zXH)@>9#T``noz1(?p0<E2-L#uT^rW|onbr#b1YxVG^k>3mW{AvXrdz`6cgeDw=x|L z6B60N1sQ-D>OUWjw#T>2*L;t5kVH3eLfDw-m9M|!*;Z~2YxnX=I?(FAi~{Jl>tlZ; zdDEWK^HJOVC4ZTVkvY6)K}4@dhZ<hS#o3fhS#!j%<l=tuifA1p4Fr9O?{1zfhZLL} zS!o(jnzaN{FJImz)Vj1JP(8>7I#iKwBuN<Xk>yNF?*s$C<n)))Jw^U9KhH5an18gs z(lc)%?kG`Qa=dC_098<Vo&wtN>8y6YLr(0Nj6Gp4Zogd6!Lb$RVo$9`!80qKPwqEP z$Xe89TFq5h=p_%u$X5m<|7zpF=>Np0lp-w=^}*VV`mwa?`(oPMAC5F$T2bKMTUnjL zSfoC|h1z1i`@|M1O(AJMg?Vs<Pu=^qPttxjT5Z|#1(-{Tg<EvKY3r)5Cv47DG)e(7 z)F>bs97w?;8Y`bYcLm8o>VYdV@B%Nlu)hmM??W)(VjeE|ZtAI2Kwd^9>Q%+9`lk%d zA5ZE=szuDuYA^+2{IB_b=yeHEvlkFL)EJJ`wzuZA31sxRv&yACegw%;t>HN!g;kRH zj9IDgFLiF^Gs)g7$dX@K-+b4vS=3D}2L>q+9449IFR{VSYsq(R@9*u{U<3q}1m-;k zsm$&ezE{D-sSTBD`$)o~5Y&p8rDQK?XI&#-X;62r%QNwg2`o8Jwhae{g>9eSXdk}B z!~a`;izdADK<CHd#{Of?>0aKF#}kk6)U7N#xZ*i;$|Q!>x*9zX40imVeW?vov>*gn zCKd7VM^_HjR-XZ)#FtJ>DS18P#tVjEPPlogF{S^VreL&;aJ1osW{`VuOYQ)6?*J=( zbU36FiqL!y1!{*QK+Vx1Od30OE=0s;R&@J*C~)Bs)~qo>hsHdh<6?f+%1~--S}JSe zuH?*ZjHRjxH!#?Y&^ln-;FA4T_Kv;Rv_RBjy@~Dgs7A}!EUs>1TSiJEUo!lbaZe)< z_V6yEWS=jW(BehG!H^Yo_zOx<EdARR5K0U3;m0!^V<-*#s<alH2aqFUBTIA4mKiZG zR0V5+g1>9Bbdti0P&J~)xx9oDK0v1_OR~$krN>>U2d#`$3<{vPi0u<4NlE}Q$M{NR zte)(1*?d;idk;7fPd9%pBoN~H{w7v+6L3^?_!W^?ic(^cdq*6-nEZ>C8C}0*Ig^5F zuy`9+bI71OzA-9YM5W}Qz4jSo2i=oQgOXgb7TZ2Dl4rfCueH6D0Us-XBnZri?qc#m zDo=yW8o2L?P(pXqXC#@2yCPobPCZf}87$EaJ&VW+mh07UA(H%H;(!F=@u9*;pu|Ha zJT+qW_w7gp)I^d=#D4Pa4FIS54bwU=`|un!tf6-g85VU?Ge-7Z#t5qWsHBFraYBfq z%R7M;mBLZ@*K0<<vXI`?0pNzR-7GZ)Fg0m7=koH|sK*)U<nj^`1|}frA^osd_RpVw zH%{)fRWUyDXlU%TY3jpXV(-ptembwp%k&XBHfiX?KzD0Tq%Rb@>_y7`JEG3YPuB#g zey{r-B%2=eW&6*a2I>{ED6N+xJ*iU^ir5GLC7W#tibpo${p1XIVl!+J<BJ$ftD+P< zVYn(zINTk-qiG4eIM=kt(a}E~CAaX7U7O)SwIB0s_mSypb-(uY%y{ZJYirlSAb}h? z79RF>=>!7n681TCggS!So!77!fxPvX&}S7`QRl%$Qi95q)dF4)?Um?Ylv9MW!hGCe z4Q!ZMW_8Unq=+BbYOnZrZuWT$r;P`n%E9Iw8@*00gu>gyzU#;<i|4F;W5<u3yf{0+ zf&s<g;l?EX++HJcdtmE*%9Bd}yr{7;Hl^R9M3aw&jO8elwrZB&ZkWMz*Tf1~hOQvb zjHsa5RN%1^P#`DVO)EhD>_z)W$%qBC`s@v$Alce0QWvaTBz-ZW>czNk5rJ^vzsSY> zj14Wq-Bc9KzLq;ko{m}2CcwO-0VlUR5OG1sy=g<>#FBzsqU^sOt3RXk2KQE~9I%n& z6NlJ_%I3c!5~ic>Fwmo||EOpbJyERNmB(yn9>=CcX<1cyE@Nbj1OPR>(RsbV2I#B3 zAYl8^!_#}EMV0<4i9tyOBJ26nk*F^#agC|<^AEka?3){>o7un{&Ta8%)~aE0b)EHT z-(s(WE_tAhe>VjE$$2&7V({eIx9gJH$oIRPH1#_*n=w+^cb{HF2uuwm*n3YbuAXZ1 z_HydtvJxH6+w7RTJji-!WYO{kg3f8^n(a8{BRXh}TcJD~MlZb8G@!G4jaPDBGrO#e zb-_aMUNEO{_-S>%iqi_Rx3>c%MZ-4X>n+u}cl`(Q{+m3VL+}r2njEEnjc;_LBfs<> z2*jP0&~J=gkyNdNpncI#53M#XC;B^$LyDXut&8bO!h7DtxNWmdKS*saT<~YXPDVfY zsGwPVhYnsXxP$@2EUi@Ne`Ptu@<snFz!(Q$if7l7{gXmFt1_9_*OHk`R<)m!m??nk zy0>>!qr)UIjt%8(u`8pRM_&iRa+M7d$r0yQ*7_TmHeJ4BW~lS0pjYm;R*M}$A1|8R z6`p4BNSmXephOToL*=bs&)5A3i5p*IT$Kv@t183QKTl`0jm@;)tx!ERQyZtvUlU6I z67-2wGjp6<E#wC|LRfa_npy;dizl9j05O3^)AP>3J&60s#`}8TN#Z7j8qr?>ia6Lf z`Ot;-D(Oy5w_PZ_!zIUefa=MmP<a{qNq*+)S*1aZA+KiYW1XD)WoXWZbdU*bq(vjy zm}}ITg7_tG3aj{7Ue!@C_7;l?yv1I7#I6ro>8yBt?%g>z@5&C`^0oVTwEu7E*!Fa% zV-7dQ=g*l%(yhq#mdl-lL5;Li`BhJ7yMjmHoRFJIz&uCbOv6mG?}46YTgVKR*$drz zs}bzs0s8LX)--fXHi7MAld{`adf+gIsZ-LMY4Zxc_a^4Hh{MMYGsB!FX7CIBgEmcr z(bDVsTJ)<&^v@T|kfkfCA3N2MaxqO~%}h#3U5^|PNaurO9w<?)>*LcK9V(9g$$TZS z6=frxjr9+z*QWA3@DoCuPhln>N#L~np|OYR50jT7;!Ns(1z{EgA`Su$d=1;L19<Bl z8~W{Ehps16@TQ$xREB-09n&HPGA%p}*L=XdNmTpSCl5wy+i^F)M-f`!`Z5{N7fz}e zvG>Z#05eB09w#Ng{dcgjnR1@+J$a2&zMSb*20>EjJGWFfKK4e9$Fi311W<lQND#=8 z1@US$Mp&Tk0!l*gbH|fJ>NtHRO-WFCPGp>_1swe2{?M^Y3~SfLP#a<{q3VIdrz=IR z^Vxa`Z}Eta^rrkFB*{n1OuN0~8MPMU-(PtsPX*N9^k!(o{k)uRdt~8+J^X2I_&M#r zFX2Kb53?7$Tg7B8xOLws!SRqegsA-0Rl|F%^E!wpg~Sb9IjJ_Hv5!sU1M0DVneK!F zj;ETUoU|xphZd*ifs)isAa<?VaObYhUw^Mhv;M+hKfB}1AEeUzV)py1z)?Qi?I(`e zHYPo`i$Iuz=X|;M&7$0^m>gh)L-^}ktelbNO`;ahb|6+Ab)#(kn3Qp`YT)eXUgPrZ zQ%}->pt~EfGu!diuT%jvXdlZ(I$=5!N&o1@gaClE^vsA=_i^;P)raIKnt%>>!I!x2 zlMb@UrE5Vv_*0r-SXQ&v@%`(1I3s)`Vg|1H8fu>EI@UwX_Ujr)iF#uHts$Q+%^Ms9 zB)najX6RV&7r9Xa>-DT5;lMORM~4C?ceV<G;wnIxE0HO=ZuA3W8rf1k`N|0vm4#>- zCp01V>XYnoEq&tjpAci76Vn7Y`W(H^9#X~}hXl7eWAZ36jKOn*8rtS&6SV*5{^@DT zVp$t*v1>f{^T#=CLFDv%sqa)-`-_^}UYb<5^w?oXU!`msn;SxziP83Ipdivyy&|iZ z=+7H1^p8aFcF!3Va}j>5TLf7*k0bPczY~y_#r887of1?Ec3p56fr<iDNdkP#D}0V9 zgMfVIkJbmO>^q%?VP)KF=M=S(a$4{Kj3y~zb&%2_-V(T6FR17URZd&)9@fp+WgKEb zG`Ht7VuLeWrhr)uQ+<@9b`RN_xDmjr1w7S{zLoRbgh<~}Ncf*+7FFn@D*A2>_Vf0{ z{kD9iuQHRS{5-EE;8__fcNt;Ql^F$&OiMd1QsnFZMDIXx-lnsfYMefnS~i`K)OhQ( z2R#Ey;9oi14s-d}sO1X)UrT@G+-ph0<>f=4+elXuv!$sah4ICv(PT?tmK}4iNbK9f zTfPSSo|}qdtb~w-qp2LarZ}UJvkm0gl0(h;a%h_`++zo3qXky7@Jy-a-;g{6`9=Dh z(er72s&;G0?6M<we65qq|Fn71V%vAOh2hOLaV95OaccZ2JUVZr-~NI7k@8SB*zWuV zGk~O@&8sQd;l_iK+xB4IEaxr06_sx3?0n2zRu){V=*bqba<uVBZ1~;qN2coEB|GHC zJPXF7u0A`ko(nk85B9pdA@X1DiQ{)yRB3&R?&bePEpzA^^gz|p5d<*^em2}`LCZWu zqD0dhcB7~W0#%u9(kN+vK}Zs<h!PEoN+fUe{a)fN`gV#rr?pIsXG@#i%!#)kq8UK2 z_y_%q)2dC>F#5d!Dph@kF)@mYG%%?$aF{uhGda`_pNs1h)ch5F9*XBhOru2hI|gnU zrIlTp7=E$wc@k+-A|J~lm=1SusO+0e3L(UsekKbgwt~}Gtty4JGu1Ai!WdCJ0Fklr zL{dUxK~%x++a)NUnA_p#-`l00z<&u?uCI+TcP)7+*MlW4Ac7tIt^9QBP5qszo#k{4 zx%jDMIF3;^G6a<)r7?HyBCDfj@!Bu8u446uvf&()&+ReBg>qOECtNGG)u_|n2ssC2 zT0uf6FPctw4jt2;1+$#1tMZbVK+^XKZ$E`BH_|XkD`R_@a&EiKEk%8UYvx%6=gqgp z(e+B5Iz$Ip^1r@;BpkjqpJ^%;4N|tt;eS&_(B{|N(FW%7f_QJ*L-~0+k$|D5+$dyq z8>U1T+XIq588KGr51Pd5r#j4!(8ue4_qyt{lHPQ475YB%{of+c1CjA;>Av#n_8>%L z?6W?IvG9!HBxRvEzDDYa1QX8@cuD6LXBaPs`IQ4-mgGYeaN05Lp@On-WxjrmO`Qj3 zDZdac_Orym@o;X>xNJ^T+<i*r)haVrbk@UCdIM$lS^Ir8L?6qRaLx|}O6i+!ZV+g4 zBOGDaJk)};2!thlvq@<ISqt`Qb3Bc}b?Z7z@8lXwMw|sftW#Kv+EUgvei><%sB%cV z6PLjLYz2Hr9*qlngXAVMIb<MLiMLK0bsgUyJtS3A{f0oQ@%wY>c8(=6nK{JOL84jv z9?^{c3FCl%_WU$(bQC!{)=dRA{v7%U73WM-^AqTR<~aG<J?u8*E>&~87d>?kXxIz( zuUB_q{cm;xZ(UZ!K!f-RWfiVI=OjzsTWtcd9azHoI@RmElvY0;DFs~Xy~)ycU0kyw zu0q$H87C97ES63ySBBy5tTvO8Pe@)ZxOi@$)GXczcWQS_7e96|Bt}Mm1W}^ta2{vi z6niu;2U7H4ucW*0l%>1wd;^1SeLG}Y+Pml80MNtzSzpvR$H#g!^)K0=yW6+5SO8l? z1^+ZD_?nmo>OyofN%lK%-9<LLJzkE>%j+cmm7|f}^$M3%35q!t#4-BQhU&75fntPl z5n_D;tRd2E@YYaZ-dPq9sLy+0Oza0+>eXk(A%5K$i|rga%zChudz$}&T^3J>U@R;^ zSxwd=YF)trKm#CWG))EvY1GQ4q>SA4^@W1YTbv_5LQQAMd<2PfJD3Yn<iw?>abUXw zS=KFnTBaaxwz(d8$Q66GS*RoVg-n%f;UmH;L8Vmg<4V29XyVI_DdpXW@8lHB!QuqE z4yxPV5?mpP?_{=;VOkdW1<hg~n`v>9V%*sIPp8B*W?F|K(6+pTmtQJ2?rGL`z~D|> zt_|Fp`kwyZoTGxH!egPsau2rxIs>H9UUp)r37lNpN4cFo0QJ(W8;O}A(In{~4$cp- z8_Uo$Ugwks-sM+Q*&HeTVvp+al)rHVoYiLst}<f<<erQ)4*9n=6qkjpuWQw|4e}it z_2c<vy;za_bJT-x$jH>w!Z<d*3Xn8s@{JGMt*7n_xLtygN7Aw2p6$s~wyOYU)Uuu7 z{dO(=5FQmA#Ijfv;w9KuJO5@rFtl&^2B+C6;w<d|{qMG;_blYCpktHuXJ1mCloA_{ zl$aNSeMC|y&omA6tnIciwd=K{Ad#SH3__yeGtB_W{w{cAZx#U0F20AKh#o}di4w(X zb2Dou7C$C$b_BvSvy0l?i}K%9{(N}T5i%1#`OMvb_P)qBF;xF#mtD-)Ro<Z7i1YVE z9OXjsjQMPJk6xtM{U+p&w|4UEQH$dsWfs*?dPyU6;;X`q{*jiF=RT&V9vvc7QrT5e z3TU7-4WRvQ3N0?R^G!gl$aK~t{cWeH_WRy|ru-jDT)n;g!2+!i5IanPOY!yQXWXGE zOaj&#q4r(But-E^(=|g$nMbVd$PM&qlD(P3znVAdo+j%q8yA9yAPR|^nlZY^Y~CIX z2j_xxf8Zl_vTUON!TY^Lshd$ru)y3s!KAe*S`ySWMjN~?nun5@=0TO3fnTyuxb@$M z7F9h?{}>!6zXpDcski|%;w?deGc_p*i|BpSJB+j<IGBH>So)f4Y%J>`L{7~Zh?g1i z9*sRY2)LqHC0vkl=<;Se0QHQDKm!(kRK;Kg=D!JV(cfJ?34~S>$LkLm0(POh9ha5A zmmHZ{J+UcGRWeE%nq2&y_~=8KSuNS>cDl&-hTvf!*#RYRC~PJH9Y|YBfD>09J0V9# zWJb3>EZ)+IUd{*N1hDJ6FFe7e&f!)k>Ex~P*~K|aWBXdq_p4ZA@>5&F{*Xq{Ei_eA zfN#OU#e#4RhbtOlx~v3$v8Bx2Q~}=PN+itz@qR0?ZZQAqr4H3XAA3LbH?9@{DDsc$ zjVk)>;#Ri<Ng{<e^trylZv}I>2^|~hyrlCg%5;AwS9&|}4T#mWg7XQ8f)Y*E*5rfg zW=k9xyL5zuNx{x@RvlutKMO=Rwf`C8km0?OkCrpatFkFE0F;UfS|7H%T>&e-kEj0t zN47`@9WcMgjRUDM06+ggZJp@Q4%|IHDyr9&KSi?C?x>)a>}?wpJc?8SrgS#@Q}idw zWGC<Dv+E(huS?Ilzv7~xNj%3wFPJa?7L?%TNVdH%``E=9`7{ytsL6-_-;>yske%De zJQ&$1qL)>Rm~&3O6cfxtcb0F3iiwJYARzd~cH<50<bHX~AE~ZKNu)1-CQQ8EQ@8-S zod*m{zUNO@u}AZ^0%|UD5Z(QrXqTmvm$ix=j@b=K30}Q#n);Fl5)NaU0>cmPHqAl6 zC4tDy`}DEjdd6~ZQy}*I5ZLDdyduDCDRVEDP4<WU!NfTmJtaxdXF2b3LE177G?EM9 z*xa8pu3(&;4ngzg`YZN<J3#$O?pu9CB9sUls{QA2f6F;1=Bx7@vBGl8?+zcr$C;!t zaN2yj)eyEqHZLy`OZo`jMFFTRIai9j-n7a4G)k+~bHN(7l-TzFG*!;I!~{+be7Y8B zr>H#Mp*}Q9I0vORR|Q>}B$W(rSJ2b1nMrgNW{-u=P?u-q9TIT78I#|^=n_TwU3zNJ zE<J^&B&PDdfl2kEWusgOL1ks(1Cjn6ef%CTe3c@0?8E!kXkzl&=&PMq_y7Dk2q$EA zA-nqc49~v1n2Cio{D7J;=5is&nW#+rCPnJO;Va^?LQYv1r#vRAyie(+Z(<%qV3Wz2 zO9OrkoMZ%F4f^OuCxTR63Z!^Yqn%lB!S`j@SES4(LuctGbe_jWLWeJcx1y%9OCwl_ zLK*A+a(zm=i`V^VcB8(roYu#=UV+GoOBhx@1TQ(5n3=5>OJjwcMAas!>TX)%A?EFl zOdYpHn*T^W@IkHJ51OVTxVg=_p#qEdL#<W%)#vxLkdGmdrCWghvM&%26bRhV`RMMO z6cjrHxK>6p-*rB}Q-|elp6URoo>6{HudhJpLRZXpeih52ajrTAx9vQgq4xNHtfA}` za%HPIA;AWn2zsS;1T9oDqvsM72MQDpal^rzO|G7QA}YfCzU^fYH@~S>$;8iXr4j0< za4CJMDcM3-l0J7uY5~xJ#Mi1mZ3ZiPhBH1rm~MaKYt#3FGY@2q!I*fa2(YmO@?}&V zFBlhhOi8fc{TXDjX)=5f=N{34B*fsa2Pl|s^}`0L{|!{;6=C__hBr?1t8j)l^9*`g zpP^sM^=MrxCBt(E`ueOgKl#f9MJk4U&AQ!3fue*TCb6QjB#<h3Y`D+6yv5}%^a?+| z(y+u)(1P83k=1hxXq^@s*5+~5Vz`_nBaVb&E(XZf)`o~tLrJ7y8fE_MZ_mY4a|u`! zx|yQ!6Fo{UOg{>KFD}!cYl`fORfC3KUMl1CYZ6%WP<FQd1I;OKvL7anmE+1;z<6v7 zT{Y)m2@wg5Ym0A}x5kRM>P#3d>Wu~((go(X%G(A9)5b~6+iLv(P<Z`Ox_%%3o{KpY z&DQTmhzmsNez~JpR6dI$F^g3_KmU2$Y(z-o{*W&6G|d;v;B&nm<664<)pR%`(jGQz z7Dzn6$%EFCPh}qrEn<|VQ6&?paH!U?<$@2fD|ABT9t<RL$B2u(E0@Ek(UG~tl$F++ zHvuzAnsBK+7>hQ@Hd&Da!r(NhmNu%p`AbM+X2UA23Fm7&Tlu1)<)z0)3}=uLz>)aS zT|>KCyHt@6p=aBzgm#YiC(b{FzVbyW3Q^5y>ZiVyTUbYAMwHvfu4CMo&A<orSGC1$ z20@18aU9>IybQO5h;VZ8*CUf+N|Rb2PNJuxEvsX>J~+4cOq~Ds@Knflh`*tJDdSK# zqPm@7NTBikWH=gf7Yf!0t-Rrf_v%UwXNVAdpH=<fz)xU;?ER9Bdiy0*5M=Q<8<!hG zR`-@fP+ZfnN=-p-#R0a4fXKTp^g^hEp21~gOda@z739oP0B!-AR|jDWj?2Q)M|lY) z?qI`fi?W9D@?}!qF5QAinWQY@I2e50cW`aT$7vXE>iqfVS$456uY1)QT7Ae^S$9Tk zHrrUJgbn8CTNozlMs#+e)J)CVBUsrxC()dP@&D-U<~KK-6M;oquI#Nd$aznnbN=?z zQJ1yKrlsz^Cr$rtNGx7Au>QbI{beU)f6u4%H)Ge<F(aoDS^eXbgd2rShm>%!5!Ad4 z0;Wx)Z$h$g;AC<4!0Cf;`THaP_5R?zj?$+!Lznyk*~a0X*!WXUYF0*_nYi6rIq*4J zXw6!0lKKOQJGw<g*3*mcZSTrucmv1vZ$#a{W@!uY@XQl|p)?MbAOF>rtN_h4Z9N&5 zw0}~rPM|VF8pyOG3y!Nbe4R0#4DxD;$IdCL_W6!LBP0=5`f?&H-k{w2GOaL*^6>Ak z9A1JtYI1t}lZjvrs81{lO-C7*T@|moKH#6)i8(eB{F%@Us+g|DlSxl~H4Uq$Y=xa8 z79napvGREJe`9|@TB&2opYnP>S4TEGO3jK&YgEBYZ)^#NA%gn3H3iKe1t0dCd6)^6 z?!%v?y?aS$v%W!qn0Yaz5g7FC+v5Qt*TY18Q8BUpsp9eW*sD7R2YAxw8<B<N<^H1k za%yE{knUUA#Op~Q(6$^%sa(!xVp{3u{RNo3D4tMk9SV0+2@u-W{%B*WFMr28nLhY6 z1@6iQjZ4b4o@m2LF-mx00#B>&UYdMUH?{gK-e38m3Fz$Oo}2qqy0qTmnSH^+<KKVV zev^ap%C#<Xu!oND#Eo(YUXi6f)(qn6G14@164@5(i)-H@MShY|iWMG$&(b!c{#4~z zoIs$De{q3#$_Zn8WCE@cu=nTWsRv@!+5P>7J+)8qFf|83IGu%6QG$){*2ssvfh))W zFPBeOF--(bViE3Ej)%4qO|dQ=f;{hW^j9F#8TK<1LKAW>Xly})2RKTroNBkO@P5o< zEVjXZK~^A7qUTduE5#C?eO&i;GXzvF3{q_Z+wA5ZJt2wHamTM=TBiB&Io=uKL|*B# zf12VI^da8sP@XTl;3KrN`-Nd{0|`ovneF@fHM!b4Zo<%wRIAxTwubH&#F1d#m7>w4 z2?d6SvYSG&_#X`(DHK{>*^IRcyk{!|V+6Rn(sx4wHOoz^7x+26gg?~dI5o2T;Tl)p z&N5t>#;>q~(%7_D7<>{+MYYb=Yel2AjSXDvP~cT|Hx=ctne_;1Z@TM6j_@}Lqi-T& zVmwSTC4p3OpWs;(0<T%fE_Be5K1C;%XhH)KEJRJiDl!rN9ns{JFuG5+<a-FpBHRGA z_V3^+|6kAA9Eg=_zpQjwJ)Jcl_%x-X`#LU%5SJSLcqM`ihVh_MR4ov_UZlDem2+6b zBcPW@$$In%_WFOa%#Wl|p#%5<T{JjbN_HH(`S_G4b+Sb(uFoF=FH-34yyUQHR2lDz zJh4S6P-myYQ=dWu`G=6)@3o0ZTyPn!#WXDwD%R~n($=l-zWo1Gna_YJ0TJ%6?UK36 zmHclZq97E%6TpI8;zd`=&Y#XX5q}enX+MCex-otgq3J)0DFyXPV4oev+)qb<8&`Nj z${uK~a9Hq$@OXA|m1x{t>ZJz2W@d#R%7i{p*r75{#$994^kH%+TI)$D@>5X^lhf2a z3_b^y-ry%KBC?s=RCh5E8R0b;ve+L#Xy3{0_@QxSx*pUe*>XmPKNYJ2_sIOjQF=A> zNCC!}xeYl0QhEZ1XXDFpt+#99A4hEfj5RO?yLc^mCopfjB*hC~Np2vby=8C!NA5_F z@Ej0)Nh?Ib?ec3)7-i`Qt%4?fkuSr#sXj0*b~ykQ2AtVQjrM~xplrOdc5^RF>J9`1 zC$8GrB1O+5B4Q=uZx>nY;+YfM)CWk4{RxkrSj}5C9RMzC;DvH`RgI;^-eliC6doBI zHygM456skZZr1bP5!G#L-*m*Fc;cFDDPh~!63Ulx?`F=5#-~J<Y<C|gy4#9IY3Z8i z#qfRBd&<fK&7y&0rEjN1F*yb8W|2ok>vK5hC4WuH_l=9WJNA#P<b~k7{1d-cHqM+R zysu)J@7#KGw5O#p{et`L^oRKDiWnqFU$j+YpJI&YgX^X3uq-+alS2Z0W5ZLD8I-P4 z&j(t#u7iaqTdLy>Xl3Fx9q_NY(t()<1z9Hz{~F3q*`(}R%G9{$ZvI3EAOO{HK@<6` z;+Mt)w}SlTI^`*}uUMP?(0w7)dO4jm2Rfq=S(s>E{8iOMUn#r{S8Sg;!dmOQcPl5M zNwn#p1S@V(k-wIL2qI-|7ZNfg3CjDRmK3FHC&v}v$w8qg$0PI=tdS)#a1GQ&|M=%6 zj@l59jqyuQ+upvsUVCiR(NV4<1LC<3PFqHpYw1w}Cu8Bqpt!O+Ksf$Egi>NKf~Yd5 z;yzTC3pl7<9>dPf{Bf4=La+oV*D)(#jN0e`<YrvG@8}JvZGkVLiC~e!QI$+4;<`xr z&Kc{0-g(sh>tn6Q1#c<@aL-D3Uw{KH+B&*BuBN1O{gZXJfdpr*F@x0?<JG0x+1d}| z7L`DvK=fd>KM9A?G}fEhIyiWPK2l}?pOkRyBmSCAN$)f{X#CdU{0RzCjIp%&(S9&_ z&d{F}$}4d%X$c>2o%LBp{j1-CWvSgzO~W1<KcGzww{_w_luRak%q%LxAaeAtzJ(>; zAcZNKG8sgw20f9D+yUGN1u7$34?WcZ0f;}f6_==g{o=a4e^{;y*#b!940cBt3EEaU zeyE<DOJ&(f#O1_zEh)M!kb`FV&9y>qOvVy_vA-i;c<^(3igUI4r{#<|fh8Ub`CsPJ z5cqC#an!0Lv<Fo}L!F2ql7UtUG27}jD>1Xb7iS)hwZ;`>?S$vV4*5B28uo36cZ*)l znKN=L&<7<&(ia6YV%!uCDO21raGG%NLF+$omUIV(*XNJ9-g|R6c3l12Cj$Yu6Jp5U zo^hVNo^fe)@2f@oFE|=6gY}Fpo-VZ9(w<Q>Ha@aDmrNlyG!%;5UTF)`=AY-Z!+FPP z5gX)8oANqtddR8us{h3h>ua{Jz!Ud3dB!Ovzd)8%ixGuA^GQ2g>vH^$?Jdhf98#YB z8lIS&<(Dx0q}feocJF9o^_u>o$colNE5(qp5-5GUd3wfPx`!2gbX)4kdRAIj1|)Fl zS(AC3KUCj*s#+W<@%~DBJleEJVmgne7Z;7UVy>cGBZM)ZM?DTlQcU+CIVehBc`<;- zhv|!?dmR!}KFr<IZ%|O0Fr*;JgiPCO!G!J;g03ujZR+ERg7i#Tbaf}}nwEk8aiX^M z9Wdr{jSG|~xRuz_P--b7=P5i@LKi<KpvybQR_Gm9aHL18_mMC_ZMEKHa(r8NH-gvF zUW-ff&+ETDMt_dJ@D$yi<_)T(6Cb%fm9*=dtov1fR&sl+@Q4l7oFsx!+)!3}`Zu@V z-9i%ycP_w4a~ZOy;Oa)FO~M6|Q-OXhD1j`02aF&Fw)_`=#+O#n(qDY<Bi%^S3^Fv% zWdnaooxW)nS~BT6@X63;@Le5paV0Nc{<$kCWh-$Vk#+u7R!p>2z7Tn16L&cth$$y! z1Qnmx&JyMwZsx3FKwEf9bfty{SyjSeyQEd!{8OM98)11<1E4le(w*VLLNI`7cd0e1 zcJp=%kMWQrW>?XuC1(bET52YCcm6aa3m(@TUMU^>WP5e$2$Yz%&g|wTv!uK|F}vKl z>LJsAamxYJH?{Ic@~k*FyBepk_LqO1;b}AJYZ+H0>QkN2=%TkQE4#a5fCs`|6@{xs zsgqdnJ5P3F=WWHe#I+U5BYNh@+Ttps%j0>C-)>*4Gv7(YQyM<EJ_qu^q$E4##J}tB z{Z_w6$VNG1DO5hG%kgWGaVg5}EUXan{L9sM1x+<q^zkZ>ZY`0sb5Jsx`a_4Mnt9ak zVmUEx<GX%#sx}FzAoa~jx-@J-nXjhxM8}>mQ7Lil9>Nr+=4PKec5@OPeLZ0f5rmlG z)66tha%ACHaA%J54QpG;M5+X@dUh22)L0GND!35@ZHjgF=Q}Y3T-7(#nz^iBKs-%m ziOr8M19#7kcn{5A2q;{qP<7(kXLq^>%6{mKvG(=BUV&MzIbZ(r>$gg+{JGqFsyAUs z0$)9*o(nwGIf;S(*jbhn3|dU5_a=!xA%zJhsr<gWgOT+c-9QV^K5qOQ&pAV20FOLy zjq^FD6qX>D9k*%g|7V*3fHlHzokQAp1izBWE(FtOemZFlrGoja+>0JHeOKBv#HY4T zlH>9sGfo4jjK!+BE{>qGmk9al#`crX%pWvA%A~9PX=35#iHk7-cli>v^-OPaJlD{8 z<(P^;4MTsmwi1kIW5MatkrR1w4NqT3VLG|Og8l?<-bBdOdgoXUQazW`0p;nR3*DCu zW{dcbvfVSS_c4{Lh&Q&V)XmLJaf@)H|Du}<^uXwt2`;WGhD}M(0AtjX%Z?R=B~p#9 z3gwLKkQ~K*9}C!F+KI~N4rJSEDPXSU@;rA;q8iawkT-mYQ(Cq3n<k-*2|QMm=14Fo z|21U_q3$)cNrXU4pq5Fz0ablJdWV37H7%<dINUrcg{kM11+B?}Q*tBCU(y3K&geRn zt9u=*x$(ROO-biqS~oViVW)fJ>+8EegqdmLTi@v2d%VrYo*r7@bF8xaL@^`PCZ@-0 zN_(UO_GYvD6+Uc|?PCS7=XL-xYGf*V^~=HWC>tCq$V)omz~w9-t@E38G-T}oR&?)a z1DWP99U&Wrn1rS7NcU4h{yPolS>Vj^@UwfH^746et7y-AQ@H<f-j4B@fd+){E3pY^ z#WHOT6SE@=R-!Z11Eq()S^k`&QBADH^iPU#$pHU1@^Gy0yzP9ug-U}_y4O)kd1{0! zMkbW!{2LY20N>gk9bZY)Pu4#tDiy7Th}t6mA?+?yl9|I7*dAM>^aD3hEIW}l)nC~X z{Nc-MdLVOBYr=0i0!sCmMG?jnRn?kR|ExTO5<(=9H(w5`ci4B!qwT!QA0%B2Ccpw& z`c%EIc`rx-1nuAwMGzDDvuw&67CDw*&2os2KsmU=tHgCs_=$HiML8Qc5qGDcF#@9- z%jyADISUa=U!**?63Te7`+`)Y&h;Ew0&|sN*Kr~VQC{{{8M556)1k=>IbsCxb&Jje z=k^wr{q?rgz{^RacG1vp%j1VxfeC&8_QC>^{H=^lu1zpjBplaIX>Y=~+J^Xf`|WEJ z`fBvG%j!)?w!EpSoHyA7nT{<-=Rod|X|5%~fW^0UzqQRr9yrVty}UJYYPnA*8V$>D zGE5^ea*Mofe(q^idkjjmT~F3dJ6c5trZ^K^1J3C80%9h`Y_N2s70dK2I)}qn^iir4 zcHFP4B9I$S6))4OEy_$nEVfrug5Sm?sSAbT*#Zt110$FM4yw_Wibi@R89=+ys`WCp z35Y%cVfyOaGW!p~S|*7cE<}3DkGVC)yfk-%EoXzN6?rw`pVu5=1Hool)zszY{m#da zbP(PtD-Vc*Qo%sL;DzJ4q@N~=&>f3Qs=G<@(x}re&Vr_64vy)(1wd9*RO<Owy#Yqr ztBg?_X@2LrwHk`7^kjE48~Z_jNV&k4e?n3TK3#wmEC%(3(rn{-wFbvOb{)$YCv$&e z*K}KS*9S4EKJ5WvqJtiOC*@Wsh@9xAsfbrI$xLuP-1bSZfT5yCX2;WeMMYz+&~R04 z69`Q1xJ%KF7+@2-05{{ycRvrNoQ+KST*?!_IVH2lQn*vr#qkH&lIQ<pg>pJ!BKW9p zvhR_*-rkoAi7Bf64um{E2iMb{%|M1lN`wtMedMWZbGoG<6d@;GxaulQUl>$HZS=<S zYlUjX`^ZU0ih~``+<1fF>|SlN_fiBt{aziiPBrZ8PfR>*?-4z*P8p$Uev5q_+e0$# z7*v;T(ex8t-`<_9Oj=`PZb^d|+ast&1V|CV)RVzTb|-&=N~BWZWH2{;Nvtj6O~-%t z!fmBDLB|25k224J>DHXHu-Dm%(9+$Xgd+j$Zg!U)u>&D*g1*=0orBlr^sLtSZ`2N+ zqS!iG{yz6HKW%Qjh~skzhSa1`uaqcvh*7x39<dohlkkeaz>!d>q1Vd;P#*ES9u|<G zq9HMTkQP%w!<$gGhpN0a$V%<t*t`F&;}vguf3L)Co@Om`LfkuH#!?Vye@s<DRyXrz z5ap^zzNGXW`=N1G?L^8e6UQOd<Z2eio(;vLWyt;9@Sz|o0S2<gM}1m@9ovTh`J@BM zXN|I@toI(`Cx*5;wrfYE?}vm+=LlvP<+19gL<x$IPvb=$Dw}{z4<_D{T(|YS*{WUk zbri0v^__9VshXkNJzuPbX5D>q;gy`S#9la&<A$4u(6JcvCW~+$Cz&x_WpCCGk$Ck8 ziJYAOdJ$oMb+WbQLL2eQ<{|yEcvmF&>vx&~%qNNfKXQ8V4NBZ{1EgIM(1GmEQWo0O zih`@wY?OhJrQ}@B%-5sYAyEF@rA*Ua75Rk@iE)c|(r9XUsGyfT$LlynBauT35*nNX ziQoUAHud+Mm&INdbk)}20n(AtEBJV}WS@<P;z^Tp0jpR%Zq3{H?;uL30Ik!1@QmqO zgVMU}mup#Woj-p*%*>X=my?<Oy!|!)9+;t(tqFYjvkB0b;M|;=-+IgGq{tcRH+%Sy zx&)j$c<seiuh_i~&a;m^2qTsf;KIa~z_sOi1|JZ~V3ah6WEAcz-;XBc>9j^`8(&YH z&%I@%E1}ghLeD(<Fuo-!{&z(wqROGe4i37Vxla(7dtPYow=phIZx`U;v080GNVOs~ zK`I0lXu9H%Vx~H)Ex?6sRI?{)Ff*`wnT3jea-e;f69?N>ka`sM!|T<9U7S)pl^qx? z>PkBi@s(8Hz9A)1*RV3WVGeke5Tl;TH*`p_d?MU_60!HD*LiF5HFzCHBxyjro;mO@ zhNmd~rtbFZuWIfZj|WN1j^9#)6GH4taCor!?dLlk<IBC8j7&`HfaV#Qs@TCa(SjKb zc%n+66P^2(N}QVqeczW9WZZK(^svO#a-4F|Qt?dEr}BQchR2Y52`~C%LI^2rmyP%a zVRg^VZcH3BfYz$bnS6L{4vYOwReSSgtzEeO-gD>0E`WJWX>^mK4J6nOW3sVCz^^X% zoTUnOe4hPDvd8}QvtHSmPCG&?KK=3+h78L}=q4G{SyVYWfWSRmdeYJRre10GZE2*& zO53}Nhd^JGbSV&@sTIrLXYbZ^-wKt#cJ|5l!)O`+3oKuMVaS_?`W9_O<4+VH`fkOU zffAxcf+$(brDISEjpUy2nAjjW1h<$HuF!<lPH>}z34#2X;|}e0k&?8ZY&3Y2Vv;80 zYaQ<eu_H^Ek7w*kf_|H7aJKf9=SEkPP_?u|u7KQEl!_KArW9gP5`cSsSLz}+3sd0W zhu?q*AkS*rb(iwDzgt72==hp)tcA8_0%?;s;suQdELFsmTEvBSw~AS5O%F6lx!v(& z`O({wZ(c;4rt=1ttw2SUV;02{-Y)xI6dq#h{JYOs3B(miU=U&fF4w?M+LwZ_kLssD zxLuRK(94akEID+NZ}uV^7j;^VTr=Bw5boMFd23se_#;7319$}zDT5gHf+rO0_1-4> z{j7_C7BU|}(GHJ{D@&;p)nvgKEokrq&3@T1>yy}!m@Fc(VxjQLg^><KwM=9=a@43Q z{y&sHok1G)wy?p-gmTyG6xKgp8mF#p5mO{9_87=IPN#E64Au2er4CR<O(^5lntmKB z1i&Q@yYLSHp+H!b1I4m5XcJtGOraI}3tpcCE`>O&f_n)Qi2#+Wy5mT1;j4c%5QQB1 zFlM;cjF?2n6A%Vnn28q2L{oEBuKLT&p3Uw0RJ;!#7(jpdV9{nKZ=NV|0pS99hN!c3 zo7>7slb%c&F`FF6#7xZ4TV%gj*L{=r;dpou*NZ_mF-4+wsc&51t7qMn*f67NhMu@Q zU7d%5ArpR0C5l~pLwSxrRTsN%r#(YYgvr5ixbVy>gCldgyL_(O<V}+xg0YP92a|8X zJ8=U60s(<v_4V)_`SEYIIS+DfwJ)$^kI3Y*y;~;R4gvR^4Oaaz6QrtY#tuKhf2+nt zIoAJ)x3Hx*KD4A0f;(iKV3GQ>9;q+BntQ$)KHdc$>@N8GTHjnz$4{17QO1_n%d$Cf zM|V&Ya`5a&!+ndQ&*8L>TbWe5RwR=}uabDzc6r^ht*JvE;3*pA@IGz)&UHZob`9vA zIM3{HX>R@{qeYQ!lJlyyd81BqNIrK5{{o?s!=G@3ALxp&XWB(Y_0pnt$#Jrg4={rL z*C{eF%haLW5S8O{H@CC8Z$;KRu-OMta<i2Sf>jcc!1MOG#=(E$YeQbZ7M%ddJ)kCZ zgoTk|nr{AH(E~J-Z~25<NMei>@rus{m8@Pr8u)3X8nl`{mU1)t88=&}pyLKf_BY%3 zn(MU&>pu=n7kG<uS4Ah+TP`+?B@D(fNC+aBVj8bU72G?;XC@4y<|>A%<uJbb!QDrj zc$LBY1Zvdi_X$awvu3S5a+3zf--NOwK7u7v+-a1lr>?`Zn(qdLat^o-I+!q%S{*1% zq+L=f<6%#>#0O@2^G1Py>l(YeOhjbSCG~6P8=C`%rup@o8%U36-T^~n27{byt8!$b z9+?yF!wvNmP-F{p*KN@4)L2|B7w3*KFc}Djr_R8_*I<vX%R=B2G7aA)so^Z1L1FDE zG6`h}EGt5e`)3u`j*PNZ_!*N3N%D$a!F~vTlC1{R&`N8X7!=%_n~ZJUF(&_8XHm`z z(|r0_R;XXMq2hC1xA?oGN3l2%<jA%KZ{bs&-$p^3$GD1<D|Zg&QSeZG__`?C|8-RT zmPU<HHL&_3A*=qdd;sCW+X4m9XV?B7i3NyC24?;Y%H=OajX$A3i-)fcV(WN8D9@hA zqPi4Xv3LM+YifXsUi()GVs|jkui~?LnDPCF1m&x!`E=h8c_#5u!RmQ1)nr`}y0e!8 zfwk#!c~Ho5S&R^oInFI4puA@4Y`;R{Gtc6`3q~X)h+PeF$U>Io?P)=gG3=!G+24_H zX{ah7d$w7JG+;8)n)f?JAw4pG0&Ww#o~OINV3Jx`y<Tp)Sld4^Z%kMu`SR`M)NFW7 zIX!LL*(Xvb)qCTqTg#u{<Gb!R(n(yc_?tKZ&DhA%O(?T3NRaGM8zSi>@$qmxcnI{1 z4H(UlF_b2<bKlA@lN>tZKG-ph#(^G?eel;%9l^`sgFAA(j4atGGnZHCn`VtHq<)uU zZQX~~|6?HhI8q05%}eKg<~_Sl#&$A5X6&F#iH~bZi=ho>zNh+%JnbQ+D&0imh7!YK zXEd@8hEycG=5nU8B8r}e#%nnDou~pP`L6Y!Qv+TnhdAz>D$H-fx8Z8?(?-fBCk&Jl zmR-4VN*08`Lg2;Q{k4q$0SZC&zQ6Z}c>RqxaOchmjus0nmMbW&P*o+Grulp;003!g zb!{-88<drb3IIX<m_+x-D1RgVb&<4)w7<EpUmFVSn+kt^&4P8p-49I7{phF3@;Mo% zmqP(eCL2w71!WS{C`v(O9#n|G1BmzExd4rHPx00?;zD<hd|%FaI8Xk4K->f>(foSq zyrl6<EQIp`-}%l3-hXfRX+6L%+ZU~6P`y%!k=PWRYw{2j<Rmfl-c7<i9PZt}^UZMp z*pmm3u;1;ly*j5%oLtU}sP=)_?&O1zgxDchzl$`V2cxZk!#Bi_E=_|`fvBiV00wR; zQ$c~5OTpql2x^%H76$rEX98I(#Y&}O;g|}M<=rGdzGObI(vkIL7zyPN#VP=p%@&w1 zmN3S^dk<?3hGB?=W<qQ1olAzJ1XT-qGCGXoK<tCgMRyCta6=yR#qJJHp;l11b9xVV z?%a*{U@W;Y_U#_$&!6Gp!w1-Jw~<xxaP7E}vK6|%!`0O#-ud}YA+Z`-YgkUboXzK0 z9pCx<DgXl2RFz@N-=Hcp-+wU``VtKv34by+J!>c}&~gx;HRKww77^w*Rz-zEENqq2 z@FKzSGS4O)&y$6aQUlYv6y-oHcEy{ixH!176Q}suLPuo5JH`ICq!o+%KsEvA0>;r{ zbROeKO35&g0@HPALIRw@ph)Q3g3i(P9)I>{kFi;gzn%yBW&6Ulv^kLlqw*a%y0)Z* zwrr?6R-yaNXDj^nG@+Z-4Cj}H#iRFsiU5snza<NiBkGkx7GxGUG9Hk6^2mh7<R_!0 z&7t)8chnuy_hSw_*m@6&;|@9aZvrClwF3tXYGlR{8#96E%R>N^(NLb;xWPLP0@Nue zF7_|Ylf2)Q+fUTwhn!@=dpPe<s1iykG_x6&M@K~RV{JVDY^Gt0k}4`1i=pqZ-)%7r z9mZh*0!8F|-n<o43L9f1+u-3`KIFTQz1Ogi)>?>{NHG}45rr*qdiOp~@7<5*(^{h_ z3T)O_ID7sKj~{)2w%rqQ0K|%c@BzwuH~<5B>~>pRoS)%?_uu>cDgXdrt--7*&@=@7 z*R{j}=uGG%GWgkpK)ngupG|!J2|36)0w_Bm#S0`&F3MVNGADfiYq?pf9v=@ye+aAv zAX@qSGD4qP6aYh+3S~*GQwUrHf`v6H1A%=DNP4kSO#Z>ve(V=16OMVZ14DGi014&- zhTh>%|Jz5{?Y<=U`LcbImcf@|&AlL~FZWZYSRKu^D8?An`n%S06eW0%+js6@zr7&0 zUI6)f*>5jtVSw1%5q}g1fSfh{l?1)cj!^L=G4)tfgn;QWK>U0n^|Q~#Qm4Z_(G!S^ zlb^fy9?E+Z*1{Erz7ssOF<d%b0`pQzXpUke)Rf$nb<;$bh#VjL%kaC>3QgUhEK8o7 zp7-v65yXgUixLVzS=E>?mMDvYSoLfHH#*`82*5D(R3Pc{9Gmqe_PZ_mu7zV|AiBar z{!HjzoKD#eH2)2Z(NH?i1mFNpO)lTA>tSq(J9l5foxAtrTxn)=IOlM2_KevTpP}zM zb{8i_?sKaEl!d`^S)iGjDD>;vps6*=Dna~Gp--ulV=BD-DGf0B_9dM!R{+HN7iwQE zn-nskjw$3N&p2O*BJ3y1f=U{oW|x}c2^{$Vj6z{G3Tt2sgQB!ik?>x@2M;%TqRh6e z=?lEZ|A?>O7`nLgbWe*#fr|@=0HAGs43u;(z!+dNIQ)Zu@IJckOIqKLYQM1v`Oj7R z@KnB>?v)f)#7*BA!^$aOxyZ>d3^D)vi#qnnt*2m(!QcZ{$0wv11s`+J1&K@|Ka+Su zD8uhFHi+c!RuL*sioqfFAL2Pf?3aqdJNc`#zRUR)N9RkLU<e2y<?REC)A9l|BN267 zU>rT%Kvag-8iWv--HylP0L_q?0RVtjsHz&;7<O04_@pL${<Ha<6@&nnG4q80I1p1{ z51<G{B;=GsC@8hCEK5LX*rI^<0ZlW9ElV7&ZebWY^z9yPyTfL^#%6sLbN(e3O9o9d z4}gzjGDP@ZvK8_)#pJ?fG)+^{A8jm`DlTyM-fK9$_iBuZD2o!#JM6X_Jb(81^Qiz- zmBrCfiP@}(QU5~qYl}RkFHD4e9u#*d{H@Kce=xC6awCZ1aLv-sS`h75J`4GA(|{ZA zlcq|jLPic0>4Ry45<!thQ5Y13VU|CdtQwj^4h;2K=93fX4;-B<?0_8bXDnbHaQjY$ z_aAgT`4uS`g~HGWoS$|0&;RpxW2xXT+s!Td5x<}U=r_~SMxI#hRNN4qOEjxWbBdUk z^=?pACB|Vy+qIv2)F4+Z0{~+U7K<hNek36(G@@JuPz)40UN$UoIwo{ctE^ORhSw+W zK`zZz6p+#<fxK1Z7s*rpl3svZP%*I?luqK9l><UV>H9{}XIdEqE$o#UUjf(<<7ZFv z#b=5M02R<QGgxEMhi>A&;2R_YB1KfWk`a)U2{Fz>qEIgiSZlL6s4)yZ+3_8{*S34K z`#rj@!#MWvqeE3SsHz4hx9*^8_ZWsAL*Jw8S`0%!shi?CPKz?Nm}9}PtS}nhCl?4k z14au%VEEs$BIMz+7z99}?|VQ2O*6ymZ+`9brvMa%!E#YzHcL!@v&Nu^?0#U{UKJzw zCGy`0{BKeqV9XGRE&=|{X@63fM<zT?&@@r0Wwe<gL1fXl#=;no36*}NhJaY!CSw9L zRx@)US^mc8sIkVishM(9tGLn0Mo3Yr0XncBEd=<%L+Jn$fVx(A<$jI7{>~L6Bnr-v z;_;ooy1<|Q>62@|voG60JMibd<d<+LkiJ9@KD_0@PAUWhMOI<l>obce1dq0D0f6CD z4{I$7Tfln?kdh7e^DyRGSj9m1xmYZ5`}QfW)*H0l0PlQ+h{thc!NEt1b;#91$WT|1 zKxN9CSLC~gxDInj9TQ>0Zy?1$B_05l_RNe2z$gf%PC%A%#ri@BI>MA8N?VC-Qc${t zwjRb<MuS|84*`OdI7lNSE>-?qL!l^2Xn|G_o^{){SS+dZuQ56jrAd`ZS)#TmV2y<} z24zve7M7ojiLkuv_v0{dp`C!P-Lp^L!5EFIEIB=|WHigd7DYq^@@xzdBF;Iglo*)2 z$axTrv!o^RxCf6AsIEW=0l^p!08K76X#rdwLVeC^0T`pPT$ZRs@H6}`41cAR?q$IZ zAPP1S@M1Mw=l@S|e__+H^h}iekEzcqs>)GY%zaX#T>}X{5DxAfg^0)m#~@hNHVaEu zzX*RLfgzyOLAk$peyyM*w=~5EILB4GqCeH4A3R1-)vl(Y&A=F{km!BD-~TV($Gh+B zJ`}3`vQg7oQ?&2LYH45(1A;!PB_TIG&+kH;C;@3f0>~^<mA%eB8wVnP5m%gyqqSVZ zH4s_MZzGbErvQdP^tZqNH~xKWcRRFgi(#Y^xcmJMeb-{g)@KL-ZgdPvrm>Ma_AGrN zz7}E8OF2tmOHz<ZbKtX=-v_P$un_iK8BkCfIiAdP5>B3j)tsYLg1~SlTf3Tr8X*}; zhAd;}I2f5NA(c%A36un=BA+p-jB&nZwwpC>-@X&?h4xS)=n)!as%~nbwM9{o&!5Wv z5>hMLjX?LF%OksSMBj5A0XM=qQqHU~C>TL7MAZtdSZPuzrYt}zEQ%t=&rfRv@2MCP zyAT8olYVFoasg`qUR*ornFW5<z~?LmU_LK6*w0`-Cj>wO_==JgfT{$Fl3{xh*)i}h z1r|-&0F$rXWJD7_kfKbkF%{=HeM~~%BS<`7+>|M@l}bV;!Os?d#`Kqv2~7G#<V6Jg z8>_jf1_^(f@525ksU>_;MkYMNp=8YyOyEO+9!Ef20>&T&g|hN!W|TppHSmA^zx)E1 zmtRKu-_#DR^r9%q2m32n?=Snkm>LBUU<`=<mI<rRss)5tU<Js=BtzvyYmX>g{(U}h z9B-cM<g1<@d-&bYswox_hV$#SF?j8*SFzpgadB})0u&nF8H528@!enI?BX0xo;+hH z+F=++c+Zr%d|re=LB?engW`N3!Q%s^zG)6P0~=5ISjKTuxd`U?jS!&VX@7)CK6;-F zCfd;Wx$*nX2WV?hmQ_?(0AL&ks9s_0JBs@VA|Uyif=GyxA)oM`p7QvqU0j^wjW@p< zkqJVVh)+RV4P$In9teIXWxyDzq$n8)Ix3FFScDKTj6J+#;XjV#x`~oG#56?(7TVFZ zf^;AJhM+hy#?E^bMF}arobNvpTi`hRAm_FbH*{{Oer^<i#e#hPv&Le%EHIlHR3!!c z6<my`EEK9rp{xYfr(if41Rq4m>x>nU23(+bK&)qh*b|bFB2Q%?Lyi<d=Zcmf2S|DR zx!@LS-(-r1L_CwVpMpKauNFc^U=%qE@(Irb9GW%(V`Sli^HNEpiKtZoR>uYI+^KMN zHR8Yg`|rbzzncQ(quNbEei&XvfqWg}|5aOVnQE<3lw~9vksRgUwI&hN@$byC&ykf0 z{Fxo|VS-#X*Sw`tub*u;jF!MKt%(rFJCucmZ%UMQ1@FeVcMMKpy$NW$IbK=a$7`=U zsNm4GTWq%%aNgtm;u7ti(Su>YFmg0JTQXW3iYWpRanEG=06;_wvO_XoGd&xv1R_Ti zR1uC=AlMq5xdc(!0*p1dbNddUIrY&P5^7_Cq9`zy6^6d!iho0juJ;~3kpEjT3J@uL zwL)+QTmXH~`y~nSDDYJ(;v=b%MNz~XrF~d&Rsy*Q+&B{5dI+%AqAV*IYoW&xUTYy& ziHeAiZkim`6Q>3TfE#%NqWn|;tx@od1c-t}iV3s*i69E}oQ9#tFbtgfn2H#EE))RD zbu>6SsxY5hEEX2?xdi=@pS~<o^uDnqRH>q$j(MOVNN#LO<s<DY#RkO5o0Lj$N_@2X zbJ#zhOoXD5QjkablLamTekv6Uike>1S|z|qw96ccpne1r{2Z(sAX<E~gp>*(x)seZ zR$w6!;*Er$;5^_)V817}sekkjKKNZVCO@)$d<%biY`%Cujpn^a$3E`E>u3&6`rT}5 z`d36vR8*7zK?FX2`?Qp-yq7Q2kCdXP5a7{vEw-1>aqsS3Y&#;IsjP{8oHxMLK5$h} z01l|f1(qjwF$@l;_t~1D>OpYcVc+)HZm#g`@%y;CI>*p;@Sf>~*$7DhKVod(#1p0X zykap+#Ck+hz%B)_6|6v&0O>o!IN;>u7QX$}w@@Fgu<LrPuhw*5T#%>R@6mNF3R_|r zN3wK1edgKP_KXey3T0KHEGr6lR37<=3sPDX70Rk6q(z=_K%`99+GeShOtsE|cF6W| z;%c#Ini;LZ5b*rjlXyMNvdAzD9D;|2pel&yi-IWpKFS6yF$(;d_YN?Ilo6AZ7i*}h zp@{@T0MsJx4N!_03&#QDF#L8a0M;59W3XCPSS$)0EiGnqgIS|d)tZTV5KHk!I6s#5 z)v*76_Wm^Jx-84@!hU-==MK;C4mnq4WsP0cRoyMAk%SN+Sq9;-um$!P2neh&!C+&9 z9bp_cfg`ZP{$PhA2s4FEKm-H^8W7lltX4}%Ahm=9Jxe{-&^2ad<@AovaPK|C-h27O z+IydKpZ9sQGOKcUGwZIZH=pU=bI-8PS!?~*fBjc(8A*xCW}n0IKwad;=8Jt=FtdLB z`3sR+8YpUcIcA;*%u@-VI{N7ors%pTT$$N2Ei(%y25m}cCNC4bGl3OW0}!SgTyKbZ zf3Pm3B!=Jl?F;^cfA8gk^M8!J8|1vJ?>D)Xw9IUHw@gH?b^g{)5ambB_OpH{cW%w9 z@^AKTMt$S^x094W9k{X^Z)ZRD$YH26{L?@4AM%g<qyH$+ee7d|w9NOvI@c($TnQl- z9#H;17DdpUeVUA7W^}agZ}W*yeu6Os#t<2Yk#4)=;e&hJedASzev>op($8KGZV#qb zm|wHaz!Zq>p$Gy&v`fi*U$fX3KmHQWKKBe}eZnbl<JQfZ=?-1T_Hx6;`2~GH<XH#< zVN|8Qkb?xtFu0`1VhGi_KYH>tDQp)@R_hbZ>hmmw0;B8kWrb8pgcuYV$eRC+%_R_P zNkQTLwrx2*y+PZyq?EWge@O8M<r-@8>8oQdfqP1^A{Vv9P*98<$YKo6xJ>p2>%0bA zxg1mc&;EMLd^Cg3NLXlj<%tXc)S0?0gy2{#94E)c`8yViBF9?@b(52HwnRz}5sNBN z+pGal0)X;KrS3A3>O`o+c<OqUir|!>Z~B7(nb=pAH1k!k88w(L!t`*OBIN1k!tyT! zM2-A3n5onKWQxA6GqbXQM$>Z<5S<Ag2?6?12+<IdBZ!a;{OYeg;9vchzjk2yzlFUQ zPE(SOKq-n}Fp&x81k!iQ9+$a(6gv+}i4F4Ioom?zz5Ad7p?MZxG(JkknW}@oe!t4^ zo%ibOV&s+YewY9FXMTqN!Jqt-tdEa5J3G&4BMifcu~r%IzQI_J_btvfh*-ujF!US7 zp(Bhv<2cYX4M!)ZwC#%HlViMJ<w>DJ3NI1kPmx5}bv+m77o1<5Ya82c$8LM6t!=|j zON|n<c7IW%E35%ila*oy4QQIS#WxMlJo6NOwZ=3JjW-+}Ep%X7Jr{aDF3vYxTx{8H zd%9iEIBGC3j)8IL8Ah$a3y#I|Xev9fA9F2N$1GOItd4Hrz0a9(PYh#4?uu0U9)eWi zdX*YhK0;y)A$L|}h`mu=ers(#hQj!ta}N}4(Sbx)RRhiJE5>4TAfOeg2`%1lV@#Ap zuLj05Bs<0M!IS{5vYz*o?<pfLPJPbyUoPw<%WG#4I<xE<?URf#M^(XKJor4tue1m1 zNteAWY*q!RHkA(aj|Q^T<%A3<lXY_R#%K#l75SkA8MbyH)G|bI^wwnOKO3-79}-g^ zY}rw3QHjTb1c;&rF(|}OX5xk@3?q!eFpR<wwC(5r{D1f@zW%j~gY$n&o1OD_d&~2> zpFp^hxzAg_;N63t=XRaL`LG5B(|t4-iGjqVy!IrZAhkOv|6Dl?k0z(H_vpXnV!`D& zW?A5ov$Kc%g`fL#48y=KGykn~tX69lZOd}CVzoX3>vM7<Y%VXkygZ}dZ5f8X<}vH_ zIy-(9lJV^VmxG7JVoB31Xqtsi>2r<{l~jne9N%1XEJy6NJ4DD?c_8#VQXKRAk=&jr z)J(T@T_^-z2IqiZEHDMlHKjzW$yT|3w{9JA<HnJaofF#SF^-JG$adSY+3XmGk^A?L z_}#A@DU@Du-TixMxjbUIKB4hV-A|F2UoAjl97d9)EI<YI;STxuR1GkMG5Z+HIF9t) z4r>&N){8lHDNG8nDRT;P#}@ndrUtU<5kFK$CC}xNYcMbi2<8(MYfE~*N8Zx_V9s2g ze!ljVSKxAeU(+btf4OihmX_7Zu~^s|095F^Fx{g?QfUD+8SYTD0MUiyy-`RfL9!4d zSDfI41Zb^ly4FQZOJo*F%|u2@HeR|erf0Z1cb`RlCIX*s*jihe{|eFRvU5Tm&|}Oj zf;J`okop-q;KzVCQjXkX3iQLku8Z_zA|wFE|KgwcMJ_MK1ML5O?Y%oeh3~;Ea7?xT z_pOkJY3<b46sYe9tZmQjgLaTVs8#20rlg><zJ({k`Cn&~e#l$As3shGY%xaquIJ93 zyWG8Vhd#sLWA2fk!^+O7cn!u9Lu3pieb;HGUZrqVQ{H>+bzdx(ESF0qmU)l&4c0kj zo}=g4`$n_dEN}x_$Br?O5QZ=!V(_jZro=GxTB9FzUm>&lEi`RQj020dL86KqIqPVg z#TvnxDeErna-h%lA|;T#BeXCsEUT60#*Gz-;nvMHzwv7)s-F_=?AfWd-E3H`k2pQK zSp%yWN03xouO(>!GY$jOvtCE1k0D}An%eQmEq!U$sz~t-IVr3<0|kNB);(=W%>hzI z168Jd;;5Anrl3gr{!&)7l`Bwu%iIU=`Q!ZA{%S`4ZrvnP-G_QZzEzZ4GM@6jwsjn> zJx52Lc9DnRWan8RZ}N6an~FL>LsN(o#%3+$qV8v^lxWO&dg;qA$38#&e9zSr4YRSn zly-`_&N)C9zi<<hQJj0>C)j#%sDD?5C&+Ug@W5C#10=tGR`0ZE=>al}w@d|$j6<%6 zNvtD&$Do15|Lh<CZy1I{+W-BnWdH9z3NXQuHImfd7crK%wEgu~?lI?mB_7pRzK0HP zj!wOofzsPHlcx=uNy)ABQO_q1ei*H+K<y0DNp%k&KA>q;pT17`jG<<uS7GGxd@Txd zd*u*g=(}#O?py+g#bUA73g??f1AwMsu~>3+bjoVAu8jE*0z>YOan9kI7VA{UBqfL# zM#+LXeMd?G-zaPT=FOYjx$_$BYQgd8DNDCh#(N0+2v`Z4GY86+fl^|y-jbX_+9tPF zCytMnb&NXIh3fek$DY&Eo7}p68)IzlE*NXptesTqtiz}QKuX%)H-^Awvtb-Ut=*UX z3L(t&0&<%+<=Ia@Kkc3$(?e5DgwkPjb#_3$pfmrPgT0*bTkEQSDM-ZLS~4{z)-l9& zUUYt_lnCkFB_{!<3_W;!6i^;!)+k)RSX$afp&&s?EGgxEwI#z=g5T8NZ|g)r@3lp+ zZJ=#)-@PpvwUz>`O#7&7Y{u9xD36q^TXIQX-&FejXUGhtzu!5NrxNDDL~hzYlV9vg zr$QcYnYGPy+hQ=O?3d{In*{*|Rrni69YPU<q8YngWE{!^pzN4%|6b2O|G)lQhc>^r zZ6(-x4<T`>|Ecy)A^5^*mn;43@3q6bE~EaS$_FCKt4JwUc(wGf7iF{$yBT9RIXPh% z28=N}*)!-^?!qIGG-aZ52meS-xt5;_ssNIa1v7IVw(r^PcAA-H=vt-8bN1gZ2xDNk z+hC2$4E(9xt<0vk&P`5G1Ybs-n})vAIV2beL&w91XNdU@AA9jd8gq&?UdNt`1{5i` z<&kusb$^u@=e@(D%=i#vP1F{PcIJ2X1J=#uIji-O_0bW|d&Xfwim|rU6-Zqq*5~gy z_DG6sHkWwcaB*=#iivR?bTVK{xLhh(ua6jp9#H)Q0TmQ-Za?YG*CS=Q>q6*tZknAi z)yp*?C}ris_tT>j=DYw~omjd4`Q9~(RCt#URH3Cn7(+clKg^9Y&xlLpRhh8mIP$@l zAN8M^9jGCRDcT8)qt>;3R_jwIItl6c>`cA48Ttq3MaTT^BOjVIIYkWg#OFm>)}~<w zy_7c^piEQB7c_6s)*(XBG?sSZShRD;Z}LT->NEO#$KJR~JDqcp!W^A~Gc6}*IU*+L zhCtUPhCvwmMBfV%ML7~i^$~vK*B|n){Xf2XsQ14EtBmD$*?H6lu*~4!cfqdSZy$s+ z{-7Lfxkt-GbDs4-`ObfaFqz5-*slTS<M{mNzrZj5@-LH;W{9PItdxExeG;?xUiBAK zZFzbgU;S$8&qXN61g))4-Afj0d)3!(I)<TVy*|Qu9gI^((dx6u(X)F5M^i;p{mGd` z8b*>e#4vJkdBJkMBE^UWR?9_R%ewC&2GzfqLGhYd+vzl-<=&K3j7^92Q03U?*6lVN z9W7a}7dYRtLrBT1;-7W-c&B90I?IvOj)Bu*$7;2}8pCea;k={k`x=Oe2olwwh7c4@ zcB<h~<&ASkMj;NGXh<fr^9{8Vp>_i7IrFO!{{;V+e^S<znaG4%0@pynuh+*JLQll# z@jliXM4BDQ+{&VRt8BjPpq;5R73fnJ!<8G;Okb_lvA4B{9~cH*xGoAYD$%b=2GiOq zf}zg8i2EpfuFu-5+Wmz$Fj<UfcFhbjsl=1{G0jkcEVT&avBD}t+_Z{ZG>sA#wFKa% z^I)~4VY5(A(G4gM?)jO{w|0eYjLBt)AoQcc{o8F~9Fr0N^I!}k29oe^{hQz5SAO~a zq2B)vtU7<*U2uDUyYk4!%YF63*}JDV@L@3#Fe15b3hzb&^Fdg7Kwr(+OQzm+Jukla zBCovi3gf7-bJO^$9b(MXyABx{$j|Z+0&zb7K%`0pm(Qt=;>vS<&*@m5Oc(6PI1coE z&vvuPqjZ&+WsUa3PtSW@_oXZ|snqFxV2xotj@<PY>pbmZNw?c!-P2H1_VVYe(q16N zOw!Ac_dH-%z*#^N&RR~6k86f~)l!O_p02t5)D1+na|t10t<TxDqO&G<nYC?8vrr=7 zA}&D^F+|M6^E_zBPU?RtF<4U-4MPZ%4?rEZZ*0BxYEftTn1s$Sn7R*&>R?Tt%e5)O zFlLflt^#pa673Q#8>>Wh@0%tsvXrA8hqZy^Yz_kUb?rsUM5ak9^YJTss!?2ZY=*0g zOb@BTuBasBI7+@KFbp~guxX$~eK9J`uJwIehyN69f8|*jLXfN#K;;pX&z0=VC7C@` zHV4o31}xcs-DeC`?fzVHXiOg9V`vwp1TcyFz{LJngacfS;PhjzGQK6V5KTUFlB8<? z6lhG6A%;X%H$?c~|MS1jg9qdHxkv}wvl&$M?l|QA?bhXU-DW>z4(mxVbIm>T;jww9 z&tspd)*62GSALnU@9^Gpa(u$?|NVb}B*NFe_Eq{pvvO+;-a1T*EEX-Tb2MS3A37dx zcARau?1quCWT>-XsRRIX+kb8wOiCo9&lz=;+Ag=-P27RfzO5SiE+3^jvY1pSUq?7k zzUA!ff(H-JI6J@K{Bp<o_=MX}J&kKuittjnS0xA_Bee!I>zu03Yh&s@tk>&$j8}tz zuIo5HT5{{wF;Og0B3(CPj7p`K>r&8K*LbY=rS8Ph=}o$>XS3O<YN4UlftB0P(sw<W z!c`MR*}XpZOBujfHzR}!B3bqwGpp&_sl~OF03hqbWd2Y=r_uIAQ|c%B!fB!9b5%)z zwO-&X#&}XRI!Z83P@2x4F7QE#>}m`-4`cRzH-DXGJ{9PCbn)k3#V8DY%t}p;MGIi_ zxiw07OWM*_0uAS>)BQ96m;nnpgD&uX<z<x57G-D_sA-NE%%kx6jbUcnDno_ZRz-@I z3zrA^<N&}HX7c3hMZk)w;gC=!`As`rBRNc6+@;4fiGH3n!o?t@m`7|T;h+0we(5mA z_Xn`L1mA7wKmX^tZNC?vcd!qi?Ijm8B%nNdHrov%!Z?oXc02z3U--F-ta{(DS}l3z zsb_fh^ajtZ8b0y#O`bkErhD*!Zr8CJMz(!Vh>7K5$u}OJ@$0X=!uf8eEz#u6d4>#J z-zu6iVtR#$Hfu#I!9baMCx9d&MCD~n=(0liCBY;mq#t>CeavT`|0L}uVZx}+GWWpS z#RA)UXdHIoNKN)_r9_c^PLhNfM~+U8>vR38^<78b4;U=YdYWbdG+5WDiefGg>r8}+ za2InO9oKSl<2Gjx&)94>#25+VP|@0^X)6~c#W?dhQw_gP>_brj>s)?+;jm0x0ev&o z2RQEwEIeJ0sfMlZnTgIxb+no&dh4>@v52<OAV@(1QY5)qJ)^*Eb|1j6(9vua7pGsc z-eQs?r&_zJQCSwcK`=>(Au(E$wTm;vAJnmrLGU5r{Up94VrvGkuzGQ{f@RXb2UX0P zvoXswrYhu9T=gt#E5X6^w{kKy=qN*q^q;4h5fQZ{QDhva^QH(xssBsfm%0=tt$<vE zDjf)jA_pnzzNBFE#xRM84|@K^f8m$kUF`Zt#je1w@7`vo8~4iOsQmlG#ri?b%mh|G zY>@wTRu19nu@tBI=<D_QISf6+&~tWn#@8tc9XMlIHJ%%bmZz30PTH2nSr+Y%8*R%U z`~2tljaOgejk9xx5D6tSe~Sl5abELIltLif|7UCFtk-F(<!b_yCeDI^lmh+cl1;be zjnMI+JHxgubRBGWm>4mltpBEM@HcMJe)>!JPk$Ew>}|}d#k3CFIE>BZTMQ>RZssic z(PN4+f^F$XLr9Tv1i=BGGONI#s<g%$Ojcy|#xW)xt-e0J$?E6?cXm!ni7|{?BG1o! z?V4z3*H#tzN@>I9>5L+Ij!PLZrV&A17<#U(K0}JuOBwxcO?~Fi%f=>W{*@DugUOQM zdgnaJM7R=V)V|Bit}WA{B#DY8lqpR0V#D0gSJ=No*VF2r*r{n+Z1X?>ZCgtcbu4ZJ z7(qw~t{xP|lEg3uumibl0KNh5BufR0A^~<{=zDJ|8vP~OH3>>vc0mBN{4u{Fbw5+m zXx13;jXM6-(z9GT7E9GCXxhp77vf(DPUg{QsfAUaP$KFXdC>bZghYdY5E3cDD3Auj zFhoQQfAiPw@o)c|Uw-V3`y^Q*_B>IM%6siV>OFGhbFKyi2YcIAgi{K)Mt}KXApc!& zrGCHvJJ~CvzMW$e5u!jOGQ`MP*Yon3>grFZsA1JMG|sVJENI)rX4ezVEa7|1XU(1e z-m`3u3g>587{}@h?5u`eURa2VDGAA1l2fVO@%{sP1cm_<0t9V!5=okUzxFEjYhS^y zS1fLxviQswSp3BA$3OiP{`3gbs1j_uSXTJ`5k8v;Z@m5{+b#f(VbuD+%KuLFc@e>+ zJW$B0qjugYoNr)#bVAdvG$Ze{Bvp7Rh)jcfteJ)%iOMRAHAtEMSJ2(s!a9-771o!@ zmn1>U(wg;`?JEjXIA{BE!sX<rlnM3I!Yb`?CC8QGwWm4JB3Wc+KN>A02{XT-d2y6& zJ<`hv6#`00>L7%i;?{sd1cp&?gRod6#&HCrldD7=AsEWss`4PP)*zYrZ;D`0hC}9Z zyL;veav+G98d;TKps+OS>~{;k(TRl1rDwVFES8S8)iy+J{VRF}Ik3v-bBeA7SL7S> z0hI25sjI<Fl97~F#mG3O99SfrgMZ~;{tbTfHy&Jjvp!jN-9xMdkk{LX^<l0yJFv$D zJlBK-2YZKh-Sg$cX4kEA=bXaIA#&~7nK{+#+WxNnoZ07X`ZCdScV(NIyCwS_2G{NL z)VW3V8wz%1n7nKkw5)9A9S5b;N*U|o9Papp<;OnB%};-ZoA>X)y*JhQ8&FjsOGF3~ z7~{xr(XqQc!@T+${+E9de{@Xy?9;SA_LIctKS7L%wp~2-d~CN{43=?>#2|>x{w42p zahp=)*dt0(&ywvaCKk&jjc;gtThDRan^BN;8itt56t<!tHl<w3rgjk2nF}=l$f!9J zZ=ke(V)CfrLRifHu8b|7$mfo7p$rKtg4gzqTvtwV?Sr_CITR7Z%WMbBbfx)4ofb(6 zC~6c_GX4BVjmosQk{Y3<dH}l9+W+783Fi#!HQ1nC0a~@P>~?{a41!J$v`)!*O_OH^ zl-9t;)$G6gn<rl>DOymVnSydm7eRvqpGzC<Lgk68^KTqYkt;3%NM77E_>y_2UzrM3 zPop9RCW{_fS0_M$o`)d>`auH#5hXPKGymk@;K75(ji!APZT~@Xz4M>1r4Ol#EM>9p zV;}AS=V0%pIhO^V9<%;6)8Cho)<=$(07`BDotSR(F~LSo7_aLNdt^JhvAv(?LBU=d zn=xQB!YPTqv8?~tALsO$=P?4q_g*2s@*U*mZxY{p4KB}cL(eiPDv(lSjFHe?(svs! z@83nf`gJ;E*jh`w-99!zynpWvR_g}SjfgZz&YBAWUbAIQzO2*MOEU_-(en{Pq+P98 ztyi3%HR@<%AY`PxI`x>lGD66$kW&y;3cs3!rdpP-z8Ut~TTOOcniT34_NH(tz+@Ds zmXNO?06JPasSZGe%(CL#?DDaH4J8Y1%m^H2)?YYVK;>(x`Kxlnw80A7?ZH|KyOd4o zSAA_5H3(QP%h+GRT2;G?N%aD(bvQ5Dhu>Nj3rCY%@S3JDQzvNMRy1llag_jAj#X4} zM_fYERNL}ix4&8`>|Z`p7X_8AS<r|4t#%tQ=S!FxXw-U;%Z^{l=td>agplaQz%WKa zP;SJZ`iK784~?>4MV7Ao_PSS=#qz;B$G01NJPyTp^nRM#2Yqx0d$R57Oo+E*C1X!l z7MEdCHBIv9o%nsXE00c_EYEN^%SxGT`>k5YO9@Z|1D)FtV`Lb5cDoJOfumz3e%qU$ zgrE2%B7aoNpBFv-_ugRlt#8o3`fcL9H;{`nT;H=A2Np39QqQjM*@ehr7#@4Pul?eG z%f(;*uNZGXO*%fto}A#;d4N!sX-`t*)}v<Ys_Cnh=u!qL<y)hgI?ViFL5_>#PBBq@ zZx};;5ETDIPE1SkshoiPx0I^Rysg2*ET}?*f-#T#HKx%?IVA`Xqhw1X_}YFT^-`2Q z*}H6I$Ba{QgUz)!tuJJ#UuJdv3P&YURNZ~b2uV}poolkB`Ga5ff`Jf(?Ka^XgKumN zB8uu>yU1GmMH9fOq_DOJ+N=bKLi0sH$e9esXy?Hc1Zd>vD1nK#g*51PowqDnt@W4I zLu+L()89L=67||iX`t3}^2N5~0Y-U*r?O^+aZC&$(T|aS48$N@oCp3_|MahZXvBT4 zi7R=$(|l5#Ka_pBPV-{=ow*VxT=&p>bV(fSo!NCs#z)@Fl}GUpVFK4?_N9;ht!n;{ z-DZ7O?mvjEod)2PprCxM&%%O^&UUcK35RjuV=ugrVfMU_`Yv#SzqMp>^CeEc^pd_$ zgcxA=^6OlD<9FG-{7r^8UgP}r@3Grl(zwS5Qg>heCNKZL{|yEVxGVy6e9ZBW|0Js~ z{3Ja0Ja&DIG!1x95Kl~&F@iD5GaxD1Ped5<T!t7zMN1}49EIVhQNyLvtB}MM?Wr|= zV=*>&;Ta1iRV3YH)Lc*9yo*B@O^gX)L`%#DpJxS-C&wB|c$cy2dfn$2YIc!z{`_ol z_~}AV@WmuaIgtqS<&7ZLkn(o+820&V#X!nuPT)tDgA_s#hC#4a34uCb!GN=bXy^wm z8~Dc1wuYD@&TFJ*omIy_>)Y3ptkAx(sybNY%_nrC)VlOySR+~4k4(w{>qHg$ifR;6 zzn?Go%7Mu@oRJ9vGsY4lS=V2PNf^dN*9W$JU>J1(#jD@l@qhXke)B_B@+{H*+#Xl= ze-a<=kF9@}@{UHM(^q}L9t`?eti!yEPx+6qUE7kDy8zx!?fb)MrRDm)go>^{?~DB~ z%QB_Ja3v@(#^5ujskCnw6D0S!t0QdN1?^%n`+M1jdJCJUpiXFm!8yTy_BoC|{VXy3 z9b8;&x%kcBX7kmr;D70_!{z0*`?`sNwGFfgFpx$__s%%`uV3NL&;JD?2ICvtYKed9 zX;z>463t7W$3Oou+;WL&8U|wtdFo+`k-qQq>;SVj;Z=|<0H=FxjhVImO)ZrPZ4oyn z2Upo2I^(j;^}cRH@lksmfs|3~m@p<1)iG(Xkx!`C0UDWQp0{MB5dZXp4f4oBs5Sah zzY&F`ON~eC=nk8bGCOm0R3VND^QeoX1ONqoSErlu?=<omM`0Wd?b2bK!8QihsPpf7 zUCdF)lkhCdg<-vREEcIs1h;L5Lz2a29qBpaLrTy>A;V0^Y|Cg$a!_Q7_JHKNy{%56 z`T?duVV@^aqXCU1(?mKHRL{B_Mz(!m4EmWr|Ciq2Km2#UbL~R@u-Ql9fqk9h*+UEV zqMYkO0ND!&5BAQibO97AjOQr{`EZ}p5XKLT0W&{!@5Vleh>j4RS#fxUsbBsH8u-jV zb4nJcfO;;7R&p(4L=!a^5j$X?K4ty!kHdGqdF_5}Ln6kE5F61_xDys=S6N7jKJ4hv zw`?EY=ib-9j#!I02W>+-y+QNYpF&>z44Zy~K?pIj-EMJN6shPUkoQr?F6+F2dMtI0 zf~^E}Etgo$3iF#KC)u%#4$kKmkvx>B2-az!72>D}K}J_}rh@}Py8sGRzSI+>1OZj3 zp?>z>g_}b-Q|m&i0YHIkBzdAskKB|M=C2E67L8iLh)%f^64ra#R%n~ZYHe7oz%Rgh z9ikH=U<4U+5D;}rUe_BoyNLHH)4N<)R!c*(Q^KG!G95;#jybE-6X>iiiY7Dq^*D9K zY2*g&!m?aV-34=rVVV86Tx3NSrt*bIsozY$17Qp!yMAQ5(_uf}8~&yL-EZ^FuU{X< z9_-1nJ*P7ZaQ6a2{q5`}A8tqWq*xJ?DT#^C57{#Ib{vKeRZtMFILr^q-m5cKcm=!d zrvA=3$Jv7in&sL@@0;(pF9j0_A*lSWM2?PD*S^*OJ#be%w@rfuEZT#g@;|K5ID?bK zDvrc3unPm*p=Y;EjQ8)8zWW{IndeyjzCVJrhSQT1R;v{;1RmVG2MA5m>S$$Ki0KV& zyJQ>(6)mbqISr(nN+hl#j$~(Uk`Pl=*<r1dDB;k|x+}_iWI_^RjF?=W@Wy7%<{2BY z?1n8cyp%X&%5J9YUuq4;iaPleW4>7W+9aY#z#{=bs!YpbR;CANN)g|B+9uL2BEA__ z?XLyn4aqu&WQYTJ2gw+fb4(BfhA7xUr%(AtShkivB)VW(E>+yYn*7z4ff7^8qG||e zXMj#6ER+5$CinPbU<_o10zC%>%wUED6qKbP9YzZK-^|XHs#o=6V7nXH?gT_98vf(| z$S<<n?Gtbg_TjOs*{EQslN}EgfOp->Jsk40XSG@rQ$)w<el#WoepD^S$ZM~@%KiKI zdFtt>K#ZnGIpv=`)ZC;dTyy>zXsz7OVE8>VhH<fkfAAk>nMVBP9IPcZ3&L^*zQHyP zX0-zEN!^y=yWgUD<z<$yzfRb07{-AP=!c&8%GY@6Cw`jFC~_bIr>8f0`0xRU&@Psh zsOQ@@*ZM6n>cFMaZeH8)P4*4NspoyxlcDIf&1JCi_j#v)wVLS*1<BX#ru=tr%dF@5 zhK(xAO(%)Gku*7eW_2UObizfDEd5yOp(0by|0MdLdIBV=PPhCknRMd<jqhpNgmVL~ zHMquM@?30VEjIV_Cs0iQuOA!}jG63*F__LMg3uWjOIQsSX9Q;x-gheOV70%q@t($8 z43-pACI=?k#^w{QCq9aSO!kaPa4u<IzcqL_wan<*)C=wMaHCW?2E_pwVodCI1G|1? zvyEAVN%&L$@Gl-@eLr$0v%1~E-ZRVP%<XnFdv>YKMQjfCgV}pko*2i0-~O%N;_v#S zf0U$;R2`sJ0)b+CA1<X-UdKUe8Tm?C?wZd!Us!(fkNuCpG<Av~lC*1VRtAnS68_-d zNf-yhcFXwSE}L(Djf*#5XA=Wsv%;O65Vl*4b;Ovsyu7T#k`^TZFs2IYS!aQU6a!Ht zk3EhW1_(9Du6(lWC!KRRQ`!bIdTlM%Ho!#goGUYyT1i1(yfO<X$3GWopq#i8SwJNt z6k=ex0y?!%Yxh)+L4i0`-d7}M!Jpg+CsG-Xr99x<2Imb;Gt&AIXM0=|@U6wQ7S}j1 zPDyxPv+2|eMA3S_WQkmD#e`UD^@b2F+YZ{!aN!fqCK?CcE6K1hPMz&(Tg!UYvRLS3 zKjRHS5+-KmK7t7{>-U%1Uf6g~+xn_OAQ@eln4V?TYKWIouJ`vN!#L9STF1G2r{{n3 z&;HFrc6hMIS|zIH|4jVD!=jm6NiIsw+2-!2$|2Z8CgDja$-EQgzYogZ)jcz&wkcu^ z%heHMkgSc8E5r8DZuOdvG9{v=Bpr2V!5$HBZ~yb_F3!$y2Ab9(NgaL6WNb|7YS82` zdQXSJ969Xbh~}9WIgNo71|HtO&%HbMXj{pWz>$;VQ~JJR4B8oBoyB{PcRo+BEa|qw z{4oj6D%r0P@Ao=jAS2dFT-Q!Mv=ksJbML*^HbbVhU%xNOcuIKdd<_8hBjgNK&xB~q z?1m|I1*$s)gGGDXrYJ=!#9#0X3lb;5CYJ_`H8jhHriI22G=7J-JDLUf*5Mk1X>yPJ zO#3*El}DF@3oT2CY6Ruz3M6I8U}p&t3{l$>lRAHG3p6yDE6_B;Mcc7lI@T-8a%oww z42xDYDjZanu?%>yM$bu|1lU>@Rg6fx1dNG!8sW5nOBASm{z3ak5x)8L3;v~l@wX4o z|6p%vlXEZ!=l?dWWIm;Bt!77d3eGDL_X9qUQ<up{AE}r-IBOlp$0vN^Ghbxa$DEXv z<jT~Rz*24o>TH*SLZ_tHc^t>`0gwIcB#Fz5bK)34Mw~0t{-iSMW7NRH7_v_@NYdmj zCPNGsL(6J?%IS@uT(+UtK}Nn|v0O0@10js+*z1rtsN_A0`YeQ)m0mN7>}Kn8P9&d~ zmfNOb9=pzohbhK9S4TAjTpq~ht#9U+p|S_}E=qwN0F@h@`uR2V(jC$WY*yRP*}lGa zg8EY`6$w+S1T5DL?Lr-Y>pB(-!MCb0Al6{L_TDQ=(IR6O(8-$1^~SBMNP~@B1wzV6 zH2V1yeKN!G0>LP8(2uUR3SL}l%i(Gzte1wx0-6SzCeb#^6R@gcfpeCoNh}tIMX-bx z{Gi<d&c!?}5Nw>CRy4{CF;>aQ|JT3%4SxQw+<g*~kb`|_?9oo0gFW8%iO6bu%5+y= z_d!_^n3;$obI|>x6ZFmZKc&QWv*A~M=@<CSkA0DL(N>A{##tKgaCQm;Om>{sWa)Jg ztQGoUtV4=?(>(UGQ;ghs;|+#><j61cZ;M*2g^X;6kT8^)F4JHmCE5XEX%`Ee^A%-k zT1!fi7!$ND)>&c*BuT_Ew+&{MK=q0Sm&YjA)<|PAxxBQPm!NP8Vr%I>PZunieoCow z@eBs<JSDkzG2y2Og8GNKT@3=TDMJ?J2AbvuDD*;}tT)pGnAJOLbe(t3dB<|?X_^aG ziw*5U@J)f^^N@tRk1^!YxuTr;iPTVrBmh?15H)N>wWBdQ$RY2?KA2Lzl#^-*QL_Ga z$|oDTo#8x3q0S||7urT>8lhcigzCMpTv(3QfyDrAE13(Ri?eAh>y^bj$=7T45HcEx z{0slv-{xyyJuv+bcCh!`p47I%`uMILM&`<2WiMzcq%ZjJ1qP+&oh0!~fBi4B+iqB{ z)-0AQR>w!QizSP;)vhaJGx};P@w)L@{nZ&Z+m10NTy8Ub9Fme!;@-VG#Bt0{x0JMP z)hrOEDT$iIs_#>(K+HbKU~I$s_>_D1?-OIFBwy!DPM&kO*{DHFjOw4XQ$@QT${t$d za?75b%2LKuHh*asG!*nBmj{ZJv57U<C<wgr(()VvXYqoqndlTru$O&Ki%U0RP#M9B z3goegl3DD9yjIS2681^~DXAXv;%Gs;9PsWw%f&#`3QcP?x-%BRA<1Thp(sKLWk!=u zMN~(x!y5`p0aC{MS(7KQW`2T{%7q?u1w69ebFHY(>P)3BWuP8|uX6^VT^M{LIRFrL zJ*?J(ccCsO=d=ZJv$M2~&aAdM0C3LGHt<jVlfTBjyB{V^|F>^N_3)6U9_(O`TH7va zA{EQTyBSKM&*-UD+t?X#dxrb!<4HAH$j{^&4$KkKC)Or(_Thv3Jh*osk$Zqb+D+52 zT(4Lk9kE)kSuB?-@$P(u)kOsFJr`#eoSko3E*CWI;{yNzF3!$!HXbw2D<`nI)vI)? z&EKv_cb?Ob`EUk943XT83MTFO5#xOw1~iT;PwcV~5Cu`l5PxX_HOA63zVa19O2iO> zP&0mOY##oTJy=TG)wVZF!pxS6`ctoqVn)`>&VLfKvDFi1{(7$C7ng6;(WXR_SV|`p zNTN;>M5p~pjQE9PdF=4*C5=6&T?E>eN}4lxl9WL~26B*sh&po%&dTJ}Nwua|$`Iu7 ziYEU;lFT@Z`KHKdMLEf4??zEr-(Yn7qnXZ+H5$~!q}%Fyq3?BnwvFL(qj10T&^XBs z-mq9$B^9=o*4sKN`2O9V|I7dJ%O4s|{~ySVsguPHcCdr(+vk4#C)jQ`JiLFG&BX=U z6%_Y^07Qu7XR~B7qp>*|D@XwP?91hXiOX=!o%aOZkMk0YLh$NiG$4u$ePHN!oISXY zX3mzTX=&P)#bUu?xvX&i=Hi@t_wVDImgRDVZyJWafAm8|I6HfgXT#_ezViDN;@&je zGRLL17|wF$k|w8=@J)jmvLIECXoNx(w_qBKwYWT8S4+{cqBoL6Tlg}%6N8otFld)r z)9eigQemJx7dQKCK@kOSeBEXZFhnrM;l~gZ=C)Jaf8I8rgf)d3WG25@qn=vhH`Q^L zOgzoVH02~NPnY<%$Jq^y+tBz#)0FYKD%7veKa1*!sm`~Qz$$w{wEmvR)0)Z)a+p(y zisj;z=%=6)C7P?6{FHLr)b$`Dq;i2Pku;x=q}tjsP@y4q32VVMCUXU-L_oibw2i4F zgDr+%`=$H*?4Nn{L!;^cgV_9h{wNTd4tB72YA?R@DaN5^``q)q{@V9=c>g||%|&L3 zPl<_sDKK;bvQSXI#|mj}j@gpy#^t}0+n=D`C+nWny>FVPBC>_}R-PXfsZD{Q8|k)} zoQq(b!)IRGZoB2~n{QyPqg^iX{xJan(Cu~@qa%DVq5412ChiKNm$AGl*0Qt8QEO;0 zjw4ZW(10euDe5(H-eRoFZG}R#RweC4vvia8eK3YPd~dF8pd|n$OPX9J(0wf>@q89@ ziC{()L1z=FfDj^hjdn~{+$*ou=+b$wgNG_NKq^9mG0fbgo(xQeVN@8W>}-jG+I5Tb zJFK~&wH<AfXj+Rc&L5XyE|>d0^fM<hLY*TZX_|DUG6I&E%MPFyglH7f&$D+cGLTH> zE#za!$6J7o5(rIziODcR*@cX3loyqiQT_&*87jnR7{@Filv`Q67Z$B@2>#;Fy~^)? z<@_U$ia)8f)q@@ENigReaqKxhKBjHkilFv=M-Vd1{HX1f)N+t;-LyX4+N1ogDKNOQ z-4F0y)z8i?;l4p+V&c#Dt)d$F5v}?v29e0vE4l9C>><1DR=3r4`#gy&w(EA>d$?ge zM3##MDMhStG);r|T3#qc_DQ<U<gvaAxsSt0*Y|qe!l1qU2CQoU$&7x5?8)6{V!`BN z6!H6Fd7}QvJ3A})><4Vqv(-!pemz&YY(yT|mwk4VyXhn){A#JJ#}XNqOuM$m7^8I& zW7$7{(`Z*ITe!kNEGy19%X01U?UseRz?-eM`?VJ9HS5=lY;$Iv(S%e12HlRyqC!l) z_)<KultpgpS3L=Zq-b(oj2bQ1(uT=3wXBLPr0GM;-)re$Rz;YN4=xZwAq^siC?El1 z4K9?6u<eBZ@@K!xy}RAD$lQn4u5d>V_FmfIWPeob*6pVVA+X(S*ladjoS(5+t|m=< z*n1uoE6=b>5WB{zqo|qN?EQ~%h$iz2KBxkLh!DcaH-Gmlyz%<0tk*}}y!8|}Zrx^m zbWGbWl$<A18?}=6Os=mdO+Zt`T0@E{XY7xk2-tT!e(N`XiPg~w%f*TtH*eFl3zdVn zj<#*_u3@=cW>FugiL-$)MuuTvx7)JaZFKltZt2rxy2(ub>?o|3q@A0}={oqy<OFx( zfK*9jq55HSWj)LZ_Ip}BBAEoJScWZ0uV|a0fAQm=(hrf8neTxZ0^``z4}BgvNN!Qf zuD;eiN+v8ondGD=8zLzNL;{O-q-{1dY-!A>q`6kvjmE05k3m02oj(&^PySjXfzpOC zEl*om^%;nn57{YiEqF!U`TXZ9bYvw97|q%Vh3d@rcEyzFY6^f%MiFKKIi?^LnT%kJ zmO}p0|L@!M-A7Q?_u!A-Co5&K4|+ci_HNiy&pd~S;o-xFT%4cLb-PI-{cT+1+QBum zx0A(Rea-$5D?ZTsS%ZMU<;6Ld7w6o0^L32TzV_v6#f_V{xN&m|2z=8}G-fhgjHYQ7 zUCB)NGHB@P=wg5v1FyXNO%{t481PNQVzFYiK4!H(=H&DitJRvuH~M*AwF274V@M1` zumAcU@0G9@V*n`{6Z;xFA_?o9X8cfnjl~j8)KdHWl1}h^=Dp1vQvD*i)xC7I>8~wQ zD`6oG7Q&=|@x_;FZDAM&hJIie2f`TWhn~LQvFo;2YZ)^UA*BNQmk-fEAc+uDBE^vu z2IAPUTy-qnhSrWO7KXNUSf8N~tYRQ(#!f8c3P1}0OF^{03FSd2^}^P806i%ZEhb9> z7pSA0yp+(BSst3@JkIJYWvU-kW#ZXF)c=TFedx+GHaPz+hi3JHNG>0geIAC$U;epo z6T{)jeXt+IroL}D@F_kjc64+?x7%@fe#UOQnLT5RF8o{BRYy^hw1R-X{q^yrt);?q z&>T!5*BAri&~tHq#`nJaaviF(K04<3<dpT%F-ONIIOiCK0p}b|+p^nkh%wN%3x;v1 z0z&n(a=-jyu^_}i7z0Cp#^&Ojrd@FF&DZgneCL}sqY##Mxn#9m(l!lE+tMzVS=dg8 zyN%<J9X7-iXJvC9iQr4}X^cfono92(=_u!<BHTGqHBh@kY<Bd;*-2dwQxIY({@36? z_t{S(s1E%w4D?;k`T04!-Hv`38OM>n@7QiPTwI>(fP<6>g`85D{wb1Dz@qI5m>unU z%VM$R=-AM<%}m9qz!T*liZ`FK?-}CG6c9{5m3h(yR@ak28Elx*1Ss<&OOUL7dO`uF z=(&^;rVpO<3-YZv&+hZ<=DY#&??m!`WVpZ>*lkAs@}K|KjL&eegS|7mir7A3&+CKz zfOc_yM%ymfY%Upx0h_Z{TjsXU6B4fE`ey%`MQP)@^4cfOxqm+^lFiP!$%)lMwVFsG z21Txiq37)3gQ}kAeUl&5hQ)G8A;2|lOOmA2$r(4vTF2)6Ay3`Dt?k*~6Jn~0f+8JZ zv<$t++8t%kj`J>)@l2NZ)iS|)z0PHALy}kr<T>lh-amTGnA&1C=RIJ+)}e9r;HljO z1^O>Mh+In7kFVHwd0R%7be@gB{nQPeo)@%+5yG028^?@e<l%#d>~@`wRUAh)n+;vJ zW4qh3*=^|iKKK2PSc!-X7#V4s9<%6a7d@+Ek6Accn{ezy>7~w5oW0Z|oYhJIV{)OT z*8Zs(d}U&~8uTD>LJG<W%oK%+9#l)Z4Jg^W{+trkS(i;sfPtxwy>tzf@{aC)$@=w| zcVFM|3xDmEYnJ)J4)%8K`g-lbKKwQegC<&CSD|4bU-J1wOdeeYa`knSO(oCS%jNpl ze(+}Mv(y+>!~5iCevB9b4<FnkWb}DHP_FojO5~o^y*2YrjN{1W@<O+1ot6-mYsPV4 z9Qs;2Zx;)Op(losrfCsTJ^onKY*7_G>wNy$GUyE?=@1`+A%u{VW+io6Yqb*q$<oCE zYrO_4vs%3|rQ}ncNQqy-<Vm%2@BmRM`!ay9{8m)9*jhzR3{uZ4c^k!V0r)R`;dAVE z9lO3K#KbTJc3nr`^&Fq9+3h;En=PBomgRa$7)QFUXV-P?`YjJ1+~xdyM;taRTA}p= zN5=`VTbdPEFF?d30kJvJFR@Fi5v*hnJ71b+)@EqP@O(@f;TWs6|Lk=|&&SO1>Pgi9 z=QAmjjALFh)9c75x9nTt7Um4!f)0l+$U=Er&h({>MXuY?f4}h8zRSHk+aKVDIM~7F zCf7XvpTr0G!QQEfB)VP4IQCVCzLaIJe|`SO>?4ztnX7)E8bIuoF`pp2vcEcf$8&OW zgQuQ;Hg}{cM=gYr%Zqa!KDb}|<LB+`F^0+^(0acfa7syG_>3;J?Sc>jg0Nbx>APJ{ z^we)y49>gC$54l#NAQ}W=dZzm&Av;!-Ug7w&RUkMC6Zz$#p^YVaR6~x=h17T1o(PA zbMn6@Q(b1yGsQl}kplqzZ5i^DVwN6;9B5?XpiNWRFuO$m^fONpLOHQfr_tqzwA=Mu zTy7YLfv)S=Y_^;|JmdWQlI^ym4=aw2SDc<7<H9{8-eb4fA?}i93F|D88^oe*heawl zGaE$^Y;Ea-X{duSdcsmHPF{s%G#E%#MK7g1@Mq?9=Vz%f{Gqgo=xVD`QGt}I($jQ9 zm9_~=DWU!z5UIyNETsh|AVJ{2{JC#1^dCX8-@!f@+sob#h`>k1cDpTMRNZ=OU40Iv zI1d1FjwiF9WlEU#9sbpzV3s<<lgS;)&+Ecscg_=|I{R@P@=Hpqx#9H2ElzLTQdQYJ z)GY+f_BWRoI*AWzM?>)iQ%zjucb8352k!KJucd>MaqA25xvWqFv-18NNMNiY0Fq`Y zr64KL_g#kL3+GJtAxT7{Xu!v8I8d(5&xLzR%VW95hWT~3^)n^!qp?;A{o_DP&^B%5 z#+44eA_(M<)+;5Q<Ui;Hr9eN7^h3{6Pv6q0D#0)Y#*pZ`fwS`s_aB^d=k9$rn=RwG zA&xtC-37a|@6d#A;nF=YJ9-lsts&($jUu}nqhXAKR0le5)6hV`IgNgjKpcdSz(^MU ziCOp}qX)&QYimY{2s31FOucYr#YsJ>%FZWE<p_O!!3b0Y2_$PD<qMN!QWB&@Tacpg zU;f-Ti17)#$$muaiG0AlD<+Tm{$L+w8;4$N#97%*+s87zJ9FOi|8nK~d1CXZeHhkC zaqoH#!Z_kGn;uH?n9*4gB#iYrtdDE$$v-*0LDRHcT%55>X-`dW68Dj+vY1lB8FjeZ z?FK>X?<V^dfhicUGt9VbEBlGkmWX7%7pE<EuEP8v8GV@hpj3WmwPU{!{455XI`W!$ z=FgRRg?zTXG8E4henRf`*N%jk1%s%*UI4#bH2FZMs58c>5ky=OYXnl9sAY&kH$=Ko z*mi-<wr8{H>9-xuCWf%%?EEhG?!3z8!B;W;8*H~Pv+3>-&46jt@unoSDNE{#wgJX0 z)T0M0`NY65LNW!y07(kV7uI9d2*~ohcJD+_Cs1mkK3{-*)l#XWs7OCk??045JrguH zDI4mU$w+~~&`18tfAP&H6K4Anu(uNXIM~77nN1JsxpRHDgUcAQ_W%5MF%NN>C-2|) zW2Kf-zwce}B-R3IEjtg#nWG&!^Pd;OWah|9c8v(uDS1%Ql%y!JwfLsN`v&LKIfgM* z9-7Tr^ZD5s&ph`$xdxCs$e20q2|*~&ezGq!7_0;D9E-N4ivE=M<Er1N`!BhCA%a59 z<lI-^R{{W&gOW)l(9EuLLCsCwUl1IQ0;?!eqGZHcG68&n+(EM@YqD0c_!<;wa;%4| ztbY}`2?_cj>_%bNN4nj}*a!Mu$I;>z&)obZ-SAUfT;AvW;ts>`Iw{?S@Ey+2z6Pm7 zL>R|JN*euaJ4-(pLVy^-CQwpcsIW_t>~gKj?iLV4=KcC)XD?;>WXE3!dK7xW)O8@a zi@@a9;W8vOn*voj14`+jKvD*{IPdvye*WbjXzd^DhqtM_;|Y7P9qdD9le3?)MrHv& z`Db`H)>_C?vDWI7EXJTDwnBER_BKCj22+0+tz`R)#iBZWL`maD)G?QKIF+`|)A3-h z7GiRC?!1cmXjbgChad2bO7J@8SuB?vpPbTlyX=&82wfrJRk9x0Z;+9J%q=SuU!Aio z8n459m=Oi_z$$oO)=o;(9Gep4Oo%}d1S0!ouZ}*C8YUy^bM(Bn67H>GtHMP22viF} zgAZRnY*t^XUULpQ<zFS#(T)Ns2#ph!z4d~$+P)I=fCFa?$BR=|{)lI8e2g*tIAQGR zx-GX(&Uy3B?}E8Uir>cj`|NfP2ogwnZ&OT+qY%f0Ga8&omJX1Jq6Pt?DTv5~l_U{m z{o8rQpJAH)I3dIPraJ#RS~y1rHRCts%Ik?JffypZ`pN~r^=ogu!=-+(ciW!C#O7d6 zkmb5<t%KHIPl|eP<u~hN;ayy0F@&7Kc`%0UcB|yHf+;`p=|8+Z>0xq;k&_!YNkyD) zHX*T$l8+{0u~=v7GkSvPE#7-V9?4r;3QNFHu6HRN6y8C*Sg0q=+=2aV7Uw?|ht;HR zr)?XRbA~MOo0Aerdt5hA)F8!F<$vom!?M*}qA2qqoOSrdYnO=6sDK!Rgv68s6<dRW zvXCdlVOA<aKhGzo$e`52HPeU5Q_gzxMeFO53M*2u2oeI9=a*cbUy_2bYFm!hD^{x( zZ^<o&iE#{!Ari*GXFu~3jN`y|d&z^dH@SEJ+dTE`mhJAFY&ZAWbsgttci3)vyj1~) z#nLkjBQci#&yjJ+!WjkrvgEeFIYctu*yTi&@WvWF3C5c8(%J=3qUl<9aZIwnqO8wf z`uSJ5JpX8p@%?bwhcn|j*!yTAkBGoH?^!Na^xckF0)v@@m&bhnZdi3lSwdYM-dMBR z{Hgi1?;yB+JK6se8!c<U{>NYZBq0R)Zb#pD^nFi^s#IIL0VGezo4+@ug!3L3HJ~aG zf9cnsM3R&|7*nLpA(6G7RQm93f##{=ccl!hf2ZpEmjJ^%pLquvrLZ;!Ez|x<_8Td4 z$dXJ*HBv;NsOvE1wV=d3XtF+py6dSVp(eA>$s7{N!A92bfk{-)7pdAAaFRDOEsRv! z=kmXpm{jnLA%)20!wZJX4JM9wV>!NYgVWPB%Y~=S5!x66;}{7++c82&j3FTjUJRcB z{vf;UhKCRD^TwTTv)w%8^7tW_7q64#lEt#+^u{r(_69Ln9z1-7^NZKGID4ILdzpg* zQJv)?3IrrmDodiU&g?Wv74gZDT2?YvP#`=1{Jbb+jdCK!G4hLl<-6=Q;rlG;gT41= z_8$aK?8EI~PnyLLYOgqe%g&-Q%-_Rx<b0zlbfS(S#Hmg@??`&bHm_AY#-3ahKwJ10 z%M}aY==eDEz7pd&5Q1tZXi(5mWOq|Wp2tDucvEU{&QrS2s!Hq(hA%bxlysE6bB>|! zHCV8Y%Ca{ZdB}BpiR!qW2+o^Kuq#sZr9M9~`7u+%Sf<hLm6md{S;&b~w*oa_ko-RD z93~h<3JEa>8^&NV`OoB0(LmPfNwwrXaV@~d8LGW+nKD=WohbYt6NJ1YAtpAvk@JTe zg=|iaS*+Kzi<Y+Ww2h&0sz{_hxT#}%ODkZEiEcNr+l>r;qVa2PoIJzx&wYlj4_x$H z?%lu7<;Cl?ONS%T*oL(0XnBT{<^|5&x4CRzVGNh-hLP<qDrZ0fVp1jZ<#G=7%+8Kg zq|DCFg9t^CXmaG1H(;Tt7e*1j{OflP&i@HAbLIOd^Wk=|C)LVBw~(OK_Q}NWMli6~ zj+S{<<sq)*zj-^dTz&Jq8rWXnF>|GxV1@#}KW4HLqA46U{jGB>-5Qa^YJIHz{wZld z(06p*j*yjW?Jlbb8ij2|Qf|4UmJ!Nl*(@L1wk;_ohQ4R9T;gm~U$2}qo2T{_(Vko) z$R&x|W(PRya;ajPp`$2uMtbU)U)={K#i!ZdYSyV=^H4ig>>V*}R^ZJgD+Rv|q(}_9 zug+-zG?go4KL`-X0e~>gyq|w&cK+(D^=nAN7=#cK{SfGPLndsrtWQr^ESjkW!hyHo zohjscAb&Nw%@Bog>FHO2&E>#23dTB4{Sgng1NUCOpbHn+rDb)rVkws4!F|H!A(wYw z<>KrO`o6<)1Mg31UE*jN*lZsX;s7=vCV$Pfo1&c{b>PAj05Ct^93536hzKU;14t=r z6ddeHu=xY)quT~}u=n47h%EeZTb!2^pu*A`0F?S<ExKOaowsE_4FB(u_vUA$xh^1i zXS?<G0vH2@9bX85wKSa{$Oa`%iZQg#R_WZq*y`x5v53?2?OlU4HfP|mREz5bLFXOI z<*J_hq3bFl;PN=%;ykO<u84vmgot3UAz+L}61fWjBnj3!tT6;KpJ7G_DEqG4Rft|E zL6&o+a>61ecc`hlAerAlZtp8jJpm@S^jl*w#?3C&eB5x#B>?uFf4R`*I*C9Op&x}I zB*q~y46zb3jDhvZF-OM>6-_YH$#vy>EvZnN4vZ;3t3+et46B7_j2eub?FPR3J6~aQ z_siU}rwo^8Y+n5)cP}pJcjt7w3&wFrhyx)Cf`cwm#D13M7UC1w2zG<@J<bOby5D2S zeV}5s#39;UkYbTe)FMl&q>M6zL4R`2vRZo%_GDN^JWDwIe&s9IJ!ucY$HCsFY0rOQ zmru}i{hoJT+4^DG|I@&kYq!pI_tx7%-0FV4Wq@w#eXOmK+2Q95SY+DHe9(=u`x`<~ z{Qzq%sR-j3gZGWTF9fZPPiZsO7}}<#Y1$f$g)jn!<UPr0r+`lHlbWd;sI7SzOBw^# zIGop?_1R#NQrFMdPEjA(yWWMU=)Knx(5$vE7(Bl2tF_uDX)|Xp<~al9desSog#njK z0ky3?2UQ}1&t>sxrOoOCBAN}4LFmRv*9E%WK!_=CLy#0XIz8cN-O}b^KPB6@)AgQ_ z94NemYSxe^1PWpkuit;bFaOtng^Sl-<Kp36?hPZ71}p(*5@Ea~r4b=va_~?{4Jjpj zii9{4Vj_wm$q8bQ5gW07#QA`8BVvjok{~3;7<2$c6ruwY4Iv2A^vHT<FczNs_%Sbk z{p>B4{K4KYn=?7&?L3X%<<Fg)yx&2{!9KJ$Ikc<FZ^h9|)^wlQTSNix)cHTo5l@*n zSAv1Zuj#8awAoI*O?vM1Im*IMR8_qBo~7AuN`0N&>mE~u_swj(QwKoAq{%TBy_lw5 zuw1R`&ys`~MjdkJoCX2DnQHx+yk}D37YNRQYg)W-u&&XTbt73_P&o|FT8#Ikln61@ z(Z1y}IIH`lvc)NvL9)(F-Zz~}=reMV%LY=~2{j;ynebOiOF%{gbX%ni;58#JCv&=Z zNfe&%hQzK5TwZnzLuRMui?Up=I6ggL(K?MvtY-W!_Z(IPBL@<cte*+xs&#ju9|OPm z-~Kgz_2>U8oAdi15o?9UCmILd>VY~Bjq%txyANhjp~OfCh9LyTXox8(*Pu7VXh<}` z5=??DHe{XP7J=n*2aAqKqVIuDc@Gtpo7G5;PujP&tPl2nnm#z*FT0wd?f>Oq2mAh} zj%ljP7SbAzIJx|KC_L_~Tl#@M`}>v41epoUyp3({?b&0T|8+skEY4Ugmi1+IKMJ8v z=Cy3HHcTF)%aoxP=U1Tmq8eK{1sVRg&aqf5SgqFhj2_GbDU+{B3?nJ)2~?+C@Zpp& z-gC4*X1zWJVCcJPs-FlE$sGckAb95yn_>Inth2A$pKmY;06A-Mx#TgmHrl-mNTvNp zVxB=zv<7OMzbHVFFnBXtN|Lksn4ljM7n_moc3>DILqCv2NeE55;OJz{YSqv*4(ANs z8Jq=gu5buuC%m3`w9;YFz`z@L<IY3=!q5IkeCu!h3L&V|U$mCSE0>`5M~ad*w6mbx z2(#^rkdmc|79SiTM*SBO-bKdX6d8z8rFz8(5(F7NjcHjNH6(M1YZI-5aWsS|B+~4d zgw@*PoH<DTJ~5VqKpvmjycaeP0(6ZY*2BTRpXIDI1`K|x&DP;H`)lZtK=Tp*|2P@o zcgJM!N&9x~@%vPRm}@Ex#uz^Tg`cR7&6MXlB{-U~>j6;xnZkS@hoQDnmh(1u>Qhs@ z{;d7=EvwZU=T#_3pYa7vn1=lz1#*{3Pa<z?v0U-o^B-f;9wCyryf|aG+Yp8!Oa5xp zy(>zyRoft8(UL(b=t5E-C1P`Hp;v`N>+s%FTiiw4-mP<0D5z<K7+YeR%Jg9z358gR zsUwGdSw~9p6GGHl|7J6Cxf>XQ5JMsaZ9`ZcAG1DMuv#^=jSfm^yrHqwdVdM-1c<Y> zT#(UOwSm?NU;g@Q{JEd`e{$!$-@-MP#lo^|Elp!91R}F-7-pg!%$~ObQdF6o{%gc5 zq+jKYqw*L+7GWr?OGy~xh+9MBZn0PgLbIj05r~Xzx(miUWhx1bc~<l%K6}cyzji1C ze9)#z($r4#zJ4%=eE(oSn5hOps*~J`dwRrjsdirKDlK3&f#XqU`fl1g+5Y1>1W?`o zHGeNz`4_(QQ#Ij(GEO(wt}{zMi73%ev{$}}`xIrxd6eXwt9A7P<tjH#5rC#?wDm8u z;jFV5<Lh-PrJ6d>r<MpNMY#3xF`xU~=drY;6nOaHE)O3*pzC%FeNR7hS>P$*Bq82u zy+1}`E=OBqXq?kgzjodUlCZ{A1bwb&U<)ddUs}-)Q<M@Fd1#tM2mvIKh#0X-0t`ur z5n|E+VAn;ukQfv6-9YFE+C|IJjU$#T&vN1M-r}91anM@uP6L3lyT$n{>0xsIpyGT0 zeLwIEfAe?vxqts(XBajtTE}W(Su8w_cU2m*qWtskjZnt=mYT23N)BK!&S6Cr{JgUy zam1KtW6CH%s_lp=vnEp%`fbDM`jdR(`Hvyif!`wjE@!)MFr*7Y8i+D5#=uYi;inG) zz!PCY?$i9BcjRCPdk3bie}yx$2mN1p-E|(-T>1L;KCyiB&hM4C+>5uf6UOW(ZP#q8 z@eQl>adjGLmhtQ0x>TRnI7f`yHrTYSGW-i^EBghNzjefM+}q=#n&+(DBLGTL$zI7q zKNdTQ^JE9?oYQRG6qQ25jhi=l>eeY^5c&>o+&INKLkKfzXN)4!<G?Veuu&KTF(rn6 zpzpQ}eU~R8#(L5v8NxVVng*Mul7KB^f-`zgDS42~@V1OB)<8*7i->qn3=uyB$<A5` zN!SgEF$V%&7YJiwv0QL^<A}wwVbNN=w>YO+f8(IB6X8$DZFI%)PbHAr0pKmXcK3om z`=|djzw-<K1-^BxmY(&hWzl-PpT;rni(%};Q1em)SAvhSc(m28O#3VE(-sbE?bLId zEHRoK7z8f6Ew_T@#_eZmmPaIKSseduY`Zf;xKBUaBc>hhxpOezIQX3>!VcN^!Jc%R z=j&?wn*VRHdarN+ekglaQL?v>4b*_;8ty@v-rBSatn*~=jY$wiNpZ@MPfGTq^x-Sf z&R}K?eN(qNwb{)?opNoxFzT1f73JJ3f}J24q`W5g|HI_l)PGn+B3Q%C8#gf~(6pYI z94<60mMdHs@r}=AiHNlen&ne8?UKc6S$PM2*Rj34WOKRU)mL8T&Ks{W3<D|a9T=;D zjw#2IvwocrXzDS~l>`e~Ak0aCs!`y*R}x@Knyrs9v;Lz71KwHus^#X5HOr-EwQzW^ zwSH^VkvlW>^%ozT6Yv`8CDCZaq9li3_*>uL&-{D;2Iu!)VZHPmA1zoeJ#AxYyv_9% znG};|K-b<l-+C=4?_WN<TuF8Arv6+al@dx61uijp+cx4FOEd##n|s`P?pgf8kQ^-H z4I2L(!)C!^w}5fUv5Z*$GZOpqq6d5bt-AjYWet9hMR2f>s9oj0y;H7AQGCl=o57;* z-@5r>N)3<f{~o@pS?zMQMr6{&$IR;Y6%EjAPLg(xtyU|>QJrOhoejz#(BU`xLwAZ( zw^nQHZQD?!cK2%4BqUjk%dK=6tSNq}42m*fET8zqi--io=;S^zDl;wCVv>gx5s65O z#Bt1Rg>B8uk4}y_K0P9ak*A)&O&Gq!ZnNX;!5Meoe3R|wf)D~`?@^JTcap%kdQNMJ zD6g+_SU!(OCKDok$jW~GAoOFR>jOg{i6PK>%klA&lcQ!*^)ve3vcY<;WXk^Mr4|uI z2t?rgqT?_ArN6@8_;WwQ&|Prr#+sw`lI6m(TsRt^r3;Gy59rCB;<>%Wq$k2mpM{nN zrin`>LMU*EnJFISnE|4wD;bSaTvB$Vbufe-=a&z7{`3aMdQ5l<w$ET59I@(_EV>1< zGkCXP2s_@-oA6+dv-v~i!)71W{XW?HX$49)WjI-Op5Jf%sK5B(*O-}q_l_fh*}L=e zy9N~bKOg(pC$N;(Hm&b#mxRSw2Wjd8FhmT3X%|@Q7{_r!0L<hACPH5s(36RQnMv=Q zo6e$?HbO&D;7ciGaULq%t_ZgV5+P|2Vi1x9T+^x&VI$f_K!e1Tv-zN3V`S`hnt_Yp zTaU}c!e!$LMmSn8c>ej@eD3p~q~8s6T~9xZ^t*xGc9W%$YuZhWk*@2glWX<pXFNG| z{>JL}z8i&Zhzvub>my@7l44}FY&khuaGIU}-0{x~PbE+)nf@HfGC-RHj<0|F4gTzZ z`ZIjx*Z&5q*7EFAr>vHq<wD_qXH6YZn9|hiDH+BuQBPey^R*}QziHHQb+H>$lza`= zYE1+YOx|x?o~3LJ7K3pHA+p=-NTVagTeKH1!PzOx2TL5vWe^YR_LMQ~4v+6Az^+EV zA0GR#?eD=pSeuLDyg!bAZ+pC*YQ*%AzW$|VO3w24&N+VXPyc?Nd;VEsjP%36X0xO3 zdu8`WA<o2niepYm2;;~&414!}K^!Edniv*hxwfq<32++Vlb~?RnA-64e9uZSB?vI( z8dxlXv!%yCXcivpry27x<T(#vRH<WYGVxH63?tAs4!>NIqD7LcQ!B+gmhFm@lO@Jl znzp5B7Jwmy#CE%590t0s<H7y=Twa{hbsgh4<Y7Y7Iw=1$82p3tfnkV*AdnK)!1`#x z$x+McaYN(h%6|LTt}KQ$cm7hK26d3*5cunV<2U%(|McJH{Qhg)JY93NY*;THtCgem zdU9jbx=zdzyK$zIT;UvJavMWI9*RuF99NUQ0Ojh!vlb+oj1=T;=MqH{mAi~du#yNN zGW5dPotBgI0`~qbRy5!YA*nt<48qgLpW<x$CWnXk2W+CEDR6y_@n8r0sM%gk`vdsw ztHMKXPl(9W?0>2TXePZ}ula}m)IY(=(FvQ&4VRY}TwYwz?K(Ew4X?faJ?_5wCVi(4 zFT@dNoz4L0b~!l6F1Yq=mkx```D2u4W^?v$b0AfOdFnA5gOP+u7V0d3=@>;&F*@t3 z<b4bQaXz0P?ewr-NBN3##N2scjH#dR3USZCqIHlOLO_uM0b}f>LI^k`SQBZQhV^Q} z$?+n0w81A{`ZzHr9zHzd{QQE=X2Wi~WpjDSFbtWrsOo{f>jM%KCMBB2D;aO;IbJyy zIrFcMbmsKy31C+DM@4|z9MwI%?D*L~^B4JRfAK#d3>Q3g^N3aJSS}2!rNvv5Cpcx8 zCx5SPd3)=nUc8heuDPhegl<S#OL?EoJYcK8tHjA9Iu}3^iTN-fON>J3A<EOZ@zX5Q z3ml0DXBhItK*>FhUwHoS<Qs4P(%V@02Yb)$;PVgm1lxNSlor%8+kCG4dwEYx&)lg- z|CT|3naa5(doFtV)>w{?j`+flf105iSgbsYRm<_oF}v-K%gYVR)taZDeva*C!`ayb z9zM9wIP^H@iAfl8381tJR*{`d_BOe*43r4&eM8f<Sf};#GN7lx`-ONZC@B!@AZz^B z%osR6IcCwiN-&QpBIGVJKw_jw5<6=VX)1c*ymlh^+()mi?71{i<&5+BhKvem5a5i^ zSlvgHTO!9`5OFM@dx~eCy-kS1-MjaBcy`XiyZ1Ohdq_-rtlp=A7?e2S8)%)U^=2<3 znP1OBqnOwIVUqq`Xc2|i-n`&H{ty0Re*G8!Jl+Owo~&rSrELt0#$rUFoC5cU>ipS< zTJ&0B(6PP+;+@C4SJ(I6Th0Cf6osh5RY;OYJfet#1_73_gVXf;`1JZ8;AD4;g|(Ol z5~9$*D6(TMeDS6KE<g91|H{GnJP~%d2nRdZ`;C6h9sm5Z9|;DeNE_G6e|?@CYdAVO zVzq2@+qS~?-YW^OA4i(Sg0^oN`hk;^n>0<s(0AOpd7D?i*Yfb;{X8A8CykQ1Zh2Tw z(f|Ncf)9&zmbP6`cob6hKPQN~dlSkcNw8jdVzu;aERFZH?LrZAv7B#5h9NKvL4`?6 zwr>N@shE#-Uik}TB*GhfqX9u->FeLixsobXT+Ss%u%z75sL8DJfUyLD5cOO?_4HG$ zPflo;Dt2^!_K;!d@eCI<uEjSEZEI<~_VjzF*}R#qQH_iWNRp2W12jNmU>pPAeEA;# z?!Web=hauf%5vd2TCG^Mjk5f$L87)AA~I$CNr<I=p%7e(qZgSkmmCmGQ2*XqpZR-z z&ve2Hr=VVFvcN=stp*{MG`2k7{0Y9){0RsROK<S53^Xz%tMb7KVF*Io-lQz)gFQ+1 z{p+I#JJ`YA9lI|3zlsp#U+(jCQo>|Ne6?OzVqVjF+EFL*r4(q}Occ*qcHxU{HXDwP zPqm-ld)Dh?y!VXbqC)VX&^%^phjZTHeZ%_b1nV23R>3n7P%;`kiO^xx0jC(j*osmY zhrR1ZjBSZ25yr@{>lwP9aSWR6J5SR#kV_9>XxfIhZSkXHwQg~_B<`%mAS$izrkMr0 zKeKkm%JP>zqyU7*76jiA#n3bhZawo1!#J?nY;Y;!eY3(hElu07ST=f+8`bu|k~~+Z zUmD)5(KbM@=Z5pko?rNd-{DXHJO5XP?vnMY;b^s_Z5-B!GCNBvhEUm^sSd$lsx{=A z%ypHm5|K^vz*N3tf&ceke}%kY%6q4PAjHHt7`#2^>BS%6_qe|wXBw<Gc@BXdXw0(% zLJ;~f&<#D#td%GthgQH3-paL>M_R59cCdrJxAr(r!gZyBy#PH24<CQ=MTNaRESC#F zFwW2q1HQ5NMgs%iG_czd!$^#QVdypMuL3kC56p4&eTVlAtJM+4+B}3O;k;+DI%csx z#<+&uXh0Rm7uD}4rRk|6DbGbn6*XQiSKL@F`0B6!7SBKb35@evf;hiqy!$2(zwv8? z?HSFDr)fX&c@{UHC0R=Xe7m4sELj~L<yOT7F<6$Z`W<78irGQ+$+{!d^I1mwnz{2U zQ)^M*)iy8$gB8bWy=JjqGlmi0ESD^n3l^>F+N<`yI>`d_!{qo&)Z_IUDbX(o-+TRx zKld{~!!Q2A&(eC!jgu9N#$g=@DYsr^_&pWIKh^oC8S8(};wuYg&xzM|PN|Ejlw_*S zf|t6D>iqQ#ru<pMkO%=9cbjLMKfzBf|6Z)|IFq{{1l9XDLNuE7_hZkl@92h})*a#9 zl9)yg_Q9Jv{_=1+pa2Iu*!ylXPQv`zy^j)1?P)1bzWd{U-+zzBS<PI<6WSINB|A)` zkACYkgU)SvB0}GFY%VW!2u@VEKS@$3JSzY?@3F?PTr62Em)yMlG|xQuJfHl`=NbBu zZW!6^wyGykrs<V|Ix&!P556rOWSJCbL>TYB!QJnDnaj-uX}2R<Pp}r*UJxJLC!Sp} z4iT0s7SBG-ji3A})?fHT49g?NX2H<ySRb7*^aI=0vsyN+S6=7g<XJnajVF7LGi_0f zd*{>`14;cZ#%6_H4Jbl193S6cb#%n$;sPJUV*=oWhC=8Q+6;Tc%=sG)09vE{@-Yez zE(X5*+h6Cu_)q>VUVioKtd}jTrB`-;7T0k$EBj@FL#?^XR8C<2v!v|M%`}DTDikrR zMeIG^ufE(UVo+433cLeWhaPni@GQ);e7^n1_|(ZyAozOFsn_Gi>A;{UIvZgO14#lH z!8Hvht7quPi?_NZ4)#9SoL#I)qa09xgB|Pxw8s$z6}_F3IE>*7U;J^c`)A>uA$p9B zBrKBunfxI4-qW;8jPdk+&oGX;du*B&kmA4?Mv|y>u(ewAx6UD1LGWn3;<@La!}$h` zM~tE0bv%4<kD>3_Za18to$FAa7_jK%LFXG9?^%&xdj@a30cZDN7?CkDj3ZqLj0rFf zT!ZaLn(w~K<%0|QZ+@5M7k@7&pZ~o?fy-f_Ssl?X7mUM#erQ>*Tb8Y5(Ha#NDn2aF zK1eZwXz-*wJd?{QU}x+BYjlLYw+0psC#NUezjFsKqHS;Em`KUch($<@Q5FB3HH@IM zj?r3w*G2AL^lY~~e(|sVJiqxjf1bOqzs!2saJ2LlK`1Onmm{@;&Xl&jO1uMVXT=N} zsv{jCk7T^EvSt`>DFsXcfXuS}3HG<vV5}o07`lLQN7(KK{_ycX%gv{r#$X8%LJu;K zm8Jv-#6cJ&v5h<WG%%*ft`BU-f#c;f+&%y1yK~1J?1!@JGK_;A>|h_P6(>I>VYA<( zPVF<F`AlZX3(go?YgqcM5S#r<7=zaH(X75%EZAIJ5JO~Y_p*>e9=-$PI1<Kybvh3Q zW7r*Ca(VWU?|tW6+<y9LZa@7Dr#El2ULRv`-Qu}to+gB%MX;sYY}s92GVZpR7%&2U zwPJmG6Z_^Htal@>3z%?DFcFg?J_h;(Q4Gmi#2C5+>HGq@_$}J=`&`~T!@cw+)}Q(e zX6?015hAi1DGa+rB#9#QmRY-^XzRYoY<=rhQ)e2Rtp6<3*Lh&QYDg*IW6)NK7|K*5 zaCr)!_o{>JoT2qvC%=EuGxQ@NjQr|f{jd1Smw$=-Z+@56!m@01Mu5&(&NGYiNXN-R zPxXD6<~9Sfw0)2A2ST0XRCKc|a!}uI>Sjx(54lQUs9b_12BM+s0%De&?0%d-^34C7 z)v4C;$DJ^C5C$Oyts`3l!zlD2vKcSwV_--leF*Hv9f6*wjz7z{-~6SrR|osRENA~f zof37hgFR99BfKsjQyNI3S@rYJKTkO~I@l*-C9(86AkGjo*GdySYqf`eySZe$-Ru$m zBxn6)I8Z4U6qtN-dBMZ`cWK*(ap<`7`l}dgX%|aQPj7Jhsb^WOPqEH%a<t^+Xo);? z3+Ed`6l~Vix6W|<sZY>+;U|dS{5st$Ut_#?hxYy*b`S2+Y%WL+<r5&9p<9bdiSE@m zN#Ff*82K|?+`3JA_9faEKFiUkzr?LC{20y0o??s^88ulRg7ObYNlE&-OTv1usD@Fr z-pr1-1OrBt*dH<6zI}`1lVg0DswC*ldnx1r=SdM7Z&|K9>(<b1d&a&arodPK*01rq z-}qacKX{{R_&aa2^LNwWf!udl!H9g##bhL4j@45Y`q|Ik_G`I%8YekO1r0>Y1?3}3 zAYi8L8sm^?*=~9;OP+~8&ENgfKSk3niM?UygmKW)Mi>R>z&a)TjUjT`b)5GdUFaB7 zWRL-4BSYNr+>I~(u(!s+en?YjajqfpBl?g%*b`{;<fcI4IZ3icCy^E*k{=P9mj*<H zo40P(zIWxd2`R>DgswHLmJ7D6Cx(_761{Yp1F%to-n8}l{t0bJNJ6(c4%nk3Vv1ax zKOlr5m#Zx)2JXD(_?G($&UuV=Sl{5h=j6sMZawoH$EUYAIy&Zfd4zWkZw&2vMR)Qg z_{=9TVPt77w~giE8(-%9H-C-(l~?E<-e*B%)qwX7oYw>wVYBTB-~2M+cYllium0ye za2CHj=J>f!apT2La^oj{g5#g~NfsY_mgo#)%vrs+B;$!<bR<B*)djR$L4}Z%h@YkI zt>M{cZ{wRq0~oqa^#EcD7%bh`(Kv@`9Lcp@_Cj}g$=Ss{UVr7geErM6LKwD0Q8gl! zK-3z45lOHrs+&)~sqD<X9@Wz7XG&&2*SIdU!FfP1kqJd4PxGVH3D{Q%C?9FC#xaht z>juIge4IbX-~H)-8e<piwlM637=$<qiGXPWVu8^zc82ZHaXIX`95)Q9XOuxlL57~) z@DPHf=n@|6gR{I0s3oKyp$F>0o@C2)@A+~x<W{z+#mg9@qBbEAQ~Z$#2+GvDAN#S- zGmaz9t4K}=A*-?WwdU=7L%Uq$uB`!MAjUx7b&Nw#h@q1Bbe4eD$Y%uyFslF3bz9nn zw%(0lV6j+YL<k`eW5PGS1^|Li+`D`44&VLmw>dsO=J@!O+qZ6Wv_4|FSTJ@S-q`A) z1R>nK#mOJ|!yNtoKZLUm#({gk@yl$#_PdPt?qKh~NfQRVBswD`=P}I!Z=eyuho11A z-{JntU*W+o{3T4gVtsVX$)`Wd(Pw{*^~YW!J^vEv_H&rk8hg~zH!x<doiRxth?yVI zII{e`aO30%f3$Ashe+Fcg-o^s#tMstW!XAb%a$Rj^MB+1E8KhKTfFwY?{R#z0y#p$ zDdTPfDNL?c)B8Gtw}|mfGK@LW%~^Ym1VuaZ$-h%LCujaSyDtL{Bu%k&b-H<QgDJs4 zMj!-BKM1>SBn|L!`S0@wU;3Z08y3V%2%`!RrKG+6$@PdtY}e9tJ-c1cZtUs8jy`pa zbVRd52=wDQ<IrQ0N0pco2m9bG(~Lggy*Svx-iApTDKn)FnzasqA_UBnp^x~p<rANL zNvGX8M?a2)5Eu$0UlMKGvRDRI>m!DKAg0I|M*6;E3<G`N5yHqgba{ACE+ym^IZX(( zkA56`oU?S@wxSD{oKZ#!hY%2yV_-6Y-CBol8oc+MKhVKF-^^aGZCg%`Pc(=F*6Sly zM<=}e%F8_W!b?2&{Ks)lI6Aq($NoEig2mtW570KAq3^l#^7lCV);F-PevkI@A^ze` z?49poH$4tV(>4S#j42^q$3@?>d2kQ^8-J6dcEO@uvb=qp<*i#RpMD0nK89P*z-PXI zfAK}^vH_Pc-e8@<I?J+gJooG~_|?Kw<QQWN9G$F4DY05KoUR<3kk~%h@cL_C=H+kx z7O#G9!&6T^#mR9)(-_9>1><g~Cl<jbqaBixuwvCA+f3ldnOO-4s&q~c2&BUJ`m^fu z=L}!<5i0DjTe|+gy3IoNGmOE|bt5ubo=$%cUwq~tV{@^X$b|?oD-cH85tF|5a`S-g zZbLuxj4~2sV33Y3UJ~iB5{MxZM^$^W#%pK5!9F0Hw;OTD{txy9+Ki|K>?4~~C{P5@ z3V9iFKv1?(@**Zj_hDb}&p-bHUDtuJjALLN6#)oYBu)et?Sl2u5ivw|UC+a_hio=y zjAPF*^cnz!QC0sc!cv5Dgd~xaVio~%q!<~8p0SeV5-}!1j9Qk-ZR$3cwwuPQaF1{B zjmH{W1%n>ky+cev33>*cQ*{02t#9zT&wr86e*TMCZ&@EbL$g@0ShgIU9CP!jTZ}*T z<BXvoKEm$)j^R76v-$16O#hpI9e=;$I5`G!j7kG!=^Q=<q`Rbhb;J4hUZzipAx1he zq-IHb<2K6|U*hNsKhCqi=l5{>=}*$E8iqLHoxv{`Mx_azp>0-dHrh_%y=6#|?|ko7 zUjD7$;NG3D^Yw2$;Ki3d#nH(zDQ)R?JNka8f<D$jl%$Gz)?!ry5t9-&pG3{dbGt&8 zF9ar30MH;o&_2BM$lstm;Hj;H#SCP*M~jGM7=@t^Ff4h&{SW!V&Hpi>Uudv`1|3SM z6e0tWo|uH~_L9x^ob9k-l%60RUEI>ebCPt#*ki?ElT-F7hIM<J^X}F6_%=D%<E>;= z`u)KU_T*V{@Q?rfl+5I$sZ3#|JTFVD)AZi*c$DnKK5W5&0Da%{<{NKt^Y&9DjB5K2 zfy>J+!x%^cyWNhy??_3f>4_vR&L492@V*WMN{KKIH2^TiXbWIg<1<#1UGE%-;PWKF z`Sp-o1{g!gr5HtCoOL)ijSp@z8sMCpe4DYvl=OX32g<$rz3=j!Z+)HL`R!ll$A0`L z`QlIfK5pK+%~MZ3g>#1Ga=~(aOj~9dq{zv$9=W~b<A3`<MY#K?c=Ip*N9=y%uVC-@ zEXRbPVtw8^yakg4C&B_%{o5s>iyhs)m%0DOx4HAHe}k9*vo+@CE!r18&hZP+(ms0| z^X4{55@8HNHzfK#&<`UX;g^5wSNWY^{Ojy4cD(%E*EqiMEHAzE2~JL0hVG1euYHHz z<vA&gq!=KRFr2k2UuY)@L!*s}xfRc5RU=b-I;%)ey$A`iPJe-bQXcS-%HW{ND4ob8 z(>5*JJ`o2n<1Ida^uOeV_Dc}`Ui6$|DJw*h83}akx*fazg3IolK5pq{M<37GjpxMF zk<y4BuHK+V3`rut`trZSz0KF&uY2ZT*VuJ><Oe(0lVI}+m5)f~me)M`uBm-_K9+Xx z)heVm--@$EcV&8JKI!(QpZrOVkB?a_7JU2@FY){Swm--xKl3>@+m3M@>H1z_|53$$ zUVY^izWeQO@ttq}E@uxOFbq90MnV`V95^z<TZDaze^5Pumi5sQz|4W0Dk4+~@;SlP zu7k<1S?4s6$N`1-4bD3a0%EFMf*50#96sj7PkfrEpLvd(x1VOQSYn;ynP;El#ZP{U zqvI2vefBw)iv~%091=%NiYyw-<|}u2<LCbay088!=D{VNhSsa5K}5?(B3jDc4Lu{| z(m^D}Tv8V$_y;kZhlsh~CrP5r_dW<+7YQ*UG4ZedtN%A%|JqjwrosA#XFv8LN9z-u zOKf)!d2shN#?2)r#X3?~MSo1yFD@s{*@*-=E$ErtuqhM%n1#Wz7txj=KvEtXEGk=6 zf(J#`lmofzg*aMP<_r9u(|?ZjcpI>FfKQAW@-H&P2qRniaKZWRKHK4vE^O#y`FBA` zokB(-kfP{VVREY@@H?;mfB4?RUw(h@nuG0G>H0YM|ARewRvv5x(%0W!U90=C!SuW= zVrpf5m*-Yx&CfP8-$t39YMrgztQf-+7bKsYo+`1=TD<po?>Ra;=H$jro`2!veC)+f z@Z85fPS^EZoIPZ7dCA>3-{5=S{WjapraJ5x!%SX&zXVX)gv(^U#d1lF7R+o+F%y~s z(>0nWnI(`=;$|M}>%EQ)&Si_DL*SfawLaqc=U?Qx7d}qgE;2X4swDAZ!O7_jj*gGG zdGi*}Jo_9U|M<sw_St7>+Xf>-;|$|=$Ng{I<?dhoS$5z0P2wBh!}U8%(=e=#c<M7> z<Wqm=--W+*O!wV4c;h#Ji~HaFU3T{#(C>CC9AphxOAt|EAOm0x3lC=L7=s}Uk$$&j z+mB!aUJ@7Q59o&tW9+#5`gf2q;Pc{gWELyx?431PL!kVuj?!clz~n%|<f(%-``<%w z%i_*dKbaJyj4`ToRMv1VL4+vugCUL$x0*l77mofBmfZ;$i}h6PAg%jP&VP^{eYoVj zyT?WUfIe;+<CZ=L0a5x~>QLedVz9=85mKIxaJ+gR9{vdT_&yPKaQ+8-QmthFbEjWB zwx?IgJV2PTdddIYTi<f^o2f*4)nbf!yV_}>j!+#~2%(P8{h+Mxy1b8uaZn=U#rZj} zzxEnm|LT{uZ8A^NTPzlwoSf3MEt|{Btn#N0e6d&p+8r?F@xTQ|26gXcWbZhR*K#Nx z9ce7}T$Mjffq*5(s7Y^7u_1DYT8vr-*H*<Ho6SYN4u}wfcHf0@WatOZ9^B{78?W=N zZ+w-eZCNdsoSvTW;)@^S=8c=&zI~e;pSj7c&;C#8wmq9S9+F=9F6otTbA0<5ZvXV} z<;E9Yz&47azwi(JN&4N$`78H1|IM$l`SoAn@|(X+cYcpujQFxI)_`@>n8emwzVxNP zo$q}4EBL0R-*rT}%a{hXmk$Wt28j`i&^C)a=h$Pd&$SX$9lv*Wh6tD$gfiFq&nG#b z>>7PZ(F&aQv+QFM$+M9KXAMITVstd-IbLZ0em=GQW7uv9F6$u+s&kM(OET-f4+CA? za53EDVt7CoE*RsEAqN2=cEn5`8A8xLN@JC@XeNh$WBrLkE8xKncCfd!oNO|$_&@pz z4Foh;*iVA$t7_I?f`Ym8-yhE_Im<Pes`XMeQVgmPXB$<N!zjuc!~3dD;Jhb<kdMdA z0;QC{MobtPdf09*dHCRdC6s&bS+t7`$49Jltk(+fcioO*7#Iib9MEI8SnFyFq7<K# zPhiUDbv{iN(kuX&jTE*CNtTo>#;DwI(WjXY=!r41+ile8#};xRRuWrR`3U-+7$Upv zmcHL{_V6CdMay!rV6j-xwk>V5;`GK%KJ|M)&*|U&`&lhKZEFbz8rxtbVkFWm;Pz*p z;q;|v82|VmVRL84aJC`rcKDP8?+jUg0dEbqQSRLz`+NR4fBygb?-N2&hWn7CCox#t zBC#jMf!%OHN(tv$8sFlZ1x?ecR<pN+I5~gi2ILYzD7~+9QfwvwijIEB%MoML`KR1E zQ$&Pp7Sk947+G-K{5a2>e~_ork7Ea~Z4XNKhYbHG5keG3Nep46ix*rD_qiA!vKcNI z!X+W?h^Z&0UYVmJ1QDW;Z<4HWU`q3&VZFGO!~6I0HaXZ^+W~<&*pqGQKg?98eyq)h z<p{>ai6dZ4MKT}P1#lhTU@s7$Fy$u{BF&nZ6lE=+_1<b~m~uX(bcwMS)Le&bl;8kV z`ETfZK<o6*IlA3W$J{q9%jJsYaz)>DB#DSX+qAP_j9My?q={!qE>oEXSRMa-)=0`_ zZo#BkfRK-;q6V``e&aX*g7-de+vK1@{j8*f5tmELqJcmd=({avIU#n=)3!^RX2I9K z@@0JESuGc=*Gry$<~E=E+~>G;^Cqj+3fKC4Y=O`O+82&!UpPg`vjK{8HAeONWA4L$ z>edm~dqSVU3T<lvhxZF4M3PZhU#u>kFm&|0T_!`cG_3{#ZQEqF<wO81-<OkBK3^}a zI)6(-2l?n6W+N*7=$ywo9rY;2V5Q-7{WNX(0?(Mgm-X->&NxhV{>BPo^H+qB^xqg0 z+i=eLaEHs`9$ma-Oj|<Q5>iJ@k(e|ZOqq~qjLW5t+{HlIalx4d&NhU27z_MC*^^e+ zJlMe=u?!neef{5m&59IF6lx8jWUI3;k9n_f71EZy=tFWqP`Fgri)hVBj92Oy?}`<; zzU;612gig6Py3|K_xgY*<`%wjoTjrDO&Di&9Pa7qDa-Y`zAlD9h(VPDjnVe-S>QAA z2(nJi48cjch1}XH+b<{pMD<yI%JiGYV=Ofpjxnmgvj7R_d=7w8J;kmB8Gs5K3H{J9 zj3dr!7s6&^a1RW3?!3;ozWI%MeSPD(apNYR`t)bH_0&_G-ndCb7>0;fa!KXqVS$)~ zO6M%DU9j71X`R7&pGOa7xIog3)MpW=2b|(S3<E>A!8(uk4NaTN1kTa4E#A8t2vE+Y zDRmXC=W9q9G3d!{+=A2Nr&t}`plMfFXYsPa4maWQIi9wE7k;>nx090=qcV#s5vz57 z)%6!H`g=U=-(WM|V@Ml9+%hJWIv!&r#DStjn9z2?(ng}!UkU|Lqd3#D@F#@Wy(>4w z!47t?kDghZo!UDDs~#8JzOA5FJ?3NHJL4hD$b|C%<J#@LtEM_M^ZiPxB!CLnm+U%b zM!ypMuJ3Nx3s&;>NQp>b7<w+w&uE&K#d67VwPvwgvN}4drH_yig&4F9VqqpsxBof$ z6PTY$)eulVgS8V9qa%jP-*fhFvN+MuL!-y!lE-<kL4tGH`D<b<xr$x+bL1`s6m{sj zk)i7{!lUK)i}Q27{hgPI`E|~FZr-}BQx|PU0P=OnJFDM+{MncI^*g_U<up6IL@5iE z1yU$1)+!xPY@!OXOCW_vA38b#YgJm&H4RO(z&DK&JK7fCxV#HSg9{OywJcXFPH*1k z=FJzlb@Ssi_6U;2L`T}Tq|FVE`2tP6p}Ngd&<r6NjTB2JKLnv4BWL{`&iXgmg$Imr z!<e>=v1g1uAr6eOtF?Tg46B$TC7GSB%45KCvU-6{f9LzH_JbYlU_XLZl85pTf2V%5 zJaZ>m;kUPe;+r1#*Q@*S&XKfv&Hin^x1I}y!xb8TbU#G$K%bf*<`z6}>zsfI8MwY2 za&=!*O7wllF!WqroYy2)vvr4WT9(TtcCjGEhz`vgr`ZCz{*RbE_^!;oQF5Uo204od zOf-yR09(c&7auy`ceDc!4K~Iw=7hOHyrc29`kFduk9|%;?Rv<;Qc3|4?NUnuV@M2R zASU7Nz5DoiP$*1(yJY8o=nwxP{^sxe0x|9AhlVIY%Pu(zD3XhM3<@C_*_W`~UwEp` z9QuK=+aOq+Z}YH)hUI!qyI#^P)+|;_j*d^cdHY#zoIcIz`WDM(jf{@e8|WAGcTe%V zXRvaLNiOfaPF@nLE_@VK`U^49jU5;LJ<f+W>Be)$+~yb4$e3~fkOmSt+N&hROwKTp zRf!ASQ!avXBW@pmme(Kt##=1DgB|Q(KUy}W`X&!&nM(IRSSI~mmAZc5?amX&!iu^E zaVVcr$JORH`^IbE`{PiK89HGwkP>N@<rh?C+J1i5wcDErdh@bEj0s}`3;<g$&hoTD zXK_vie~fcTjM>o!Vnn%YIe3`b-W}fgNlQQ!S=eqi4CBb!7^LVkWD;C0fdi6%2r<DJ zGWX5l9l0IU>g&q+Kr+wH>99bNoY<R+T!bu46l2naI0?R-l9c_mO5&1Fs^Rzi9e+FF z-x>(O*tdugVi=GVrn*RljmqWRKcM+CC=p-1DI^g>2cgGUM+iN~<|*3c2~Bgva{Uxd za}&c6F?#v{>Od9005&+%!xiz)4cI(GYfq5m326Bsl2qXjh{+I=ASp7&9oz9C7sH!$ z<C(Vjg-fCgM2YJ7C4i9}T{%i^qT(DG8Y%3~++mB!fxy!zUj+Vhe$X5HU<W(cN6W63 z%jdJ&KPa1jbm=tsLG4jTZ>~J_uMB9LKSK>!PFIy;i(t`P33`>n>%Jh;{_Be7!CNUK zKJvS3N-{C3lOHMb8B8uoC~LnEBvqWQuR(zGUWep)Ptz`N&eJq4N5`iepWFn~kVMgd z6ceQcBSLk`iYSOG5+>!KMX&sXrtx)hViDUD(ISEJCUW^9^WZ`VHBnckLlp<|2$|53 z34l3zC`iDqTTkKbk{AZYz5{EBV@HYsiD`<UW*Ae2sp^H)Kkk2*7e*dYsPlt_m?E3) zCD;aV81sM>T4L8A>xLGC?H%dOHFom?KCKC25y`U!>`Wn0bPz<8fj(^LhD$E`2Xw<j zx^cr0H;kzx5lIq>5)eWTT#D{?*<XuPqJqNxI_)rr2%^7RG&eKB=RgEJ*uf4q`ILFf z@CV`g_x+tb=J!9?cCW?&=E@6dYB)m(ba0!=E!OJzt<{n8WcXa){?^WWg1`+`QP!H- zFgjab|CWk~bwA(gB?2T(EJLUPf%8r~-x_t_&Uu=)rD+=4#R~6RPH)`exffpK;~)Pd zN5>~PYl>ll@9T%5Dp?HEIkvw?Q8P>KE~51B(4$B|)3ScHDCc&CJTm&x>H5RtXz ztA<K0lMoXTD<ET3-xvj76eJVc`d6HPh*~pu)^h9iv)p^_+xX)2qv{olq%1#}^2NM* zwo0@{W^B$P!(0O^NP%Doq9loN=-KTyfMd5ExaaQEHVw|5aBKYnPrH{`T|ABK9^%Xf z*9zVq<4mK`S%ycV^o*fn7`F^#$96bp+h4L9E*RpDG4<;Fi9{KIcx^Omuv+iQ?%o=g zv;HaK(Zy$RR<Ons4*|fz4t6lu^ROj3diP0mZ)->1v+atQ+2g$s;`THD=?AG_s>_{a z{N6f+*u^5Vj;iZQCI!Z?YOq)Qi<vR=Q%aegU-t2bI3I=kCIUuCLnMTN?UkS4oFk^F zs)i|YbaKkk$tkyPKh4AYZ{n?xlKRor!f|}`48C1rUCU;-Lj)e&zsu#tmL~J$tOX>| zjXi?SF({mf#%sx;$sKpbfK8Co>wG?S-4zvH4EVzMSK>h-%Rx7!`iGZ3{dwN_?$?Qa z1c^wT;C~h4$?(OMYdk-_nL9@b0Bh!)FTV0B3`l10$4H6+?-PW`w%ahqhdg-mO}@9i z%hUcI$Nm}G_K0P?!Lq%{s=bMoh7=-W?1*tB#GYa7=*KPFenU5I8AHz)cSItIKxCjs zFO`{NtCP2T`(4`qy#7umLZCGUtf%!y?1ugaUt9+}*ug%U_BOK2_r^+HzU;=ky%&2= z|MDRU*6(Hg)80(q?_=*V230DQx$}PvH=qzAXAY<Se8sG_buUGvD)Rl%=b~KGl!&?J z9)q?QcDo(UdG6o4i}x*G{q4WS3m<!tzwHnFA#UEht&+SkFvbxx>}p_WjN$gpBh2j+ z43;E@z8^S0JEPkTnL8lUY=SJhw^%eZzM*Yfnns0=#!-`X11e9PIRKIbU&bsZ(d>T= z!e$rQ^~$_lwT93B*ys7hpZ{}&FklUu{bv$^wqxWP#x)24Ov_?Y{hOR>={_itu^2(} z0EG}nd=s$VfrB`VFf_OjxVw9e`{_*<%Og%!PqAJ+&B^K+yk8?Gl2T9spBU-K9o^8; z4_k(yB)^yjl8M>*PmX;CEY%#}AXp<99D>D&V2Bvws=h&ti6jvR950_`H{Ac>7S+KH zcCe3}eGqm3$C2^gU(2=T`SZU1MQS2dYSfc<!8L{XxBH1ASKh6`h_w@%o6@@!1e9&$ zV8G<j_L7P(3mDVUIY-~^I6r&9kA2}weD=qFoTH;-k|abTVH`<eRK-G(JlS@V9KLbd za=gC5Zr8EdZn?ZT%kvW)ZM$T-TCrNMiAfko6+}uEtuINt&i;vG#K$yc|J{%{yA1S0 zU>qVb1pMiO&wcjuh!{c`X|lk9?r<5jkS70M34ZJc00woOW<L^4G6e`K%!@KSYagY) z()kwGBtjgCk}xSD1TMQBo83cBR_E-73)*&>dq$li8bL)NhOwg$oleFgk{EK$KkFJ` z_x3kW8o&S!ixGoLLDnO}8HaU6IV$EU&55JM(;ONBe{{{{fO1~#z3%xkabhO>V6wx5 zy&v{YTle0^7T?CUYWnp<ll|V#-dtx_*Z3oQEz>Vc`?g7`YWu(SE<ZlFxvB+F8EDy= zrmWoeUYwK4jWY(55;2#TgHhoh>m09s?-gG9)aU4jK}mhC0b_{PBIBTKks<71>qWt_ zX&g6io^b2tDL_@?HP+Mj1KVxS$&H&div`XKeb+ILp#}rRjrkIF^`o%eMQsxZ8ZE?e zz}O`(zVIyT<6G=5-o$waGQt0;)KX+R@OlBJQcvA|kotXnWsaJXpa=lE0Ah^veMch; zasdP}f#^55aYYiN^%nvc-J9&X3z~L~cMH60bKRqi5zf;CjS2%LMiL_!C7T#=7?Xt= zGQ97M)e4HF%wZ_RKs^o-LyBclWhqG#w~s%~x9|M*cX>%2?89TZ9-429J;pUu9JZ9j z>?}ho_tkZP+QB~DR%_7u(0NC}z@x1A;vC;P2&kP{b&37p8TI$s!|Q)%9{tNB&cA*$ zISf5l?y=6l*8Z>g*!j8IbMV;_6(ZmJ0*pvu!Aa%Gg;CgUE-S*3l8z46E(p~bFwWs= zv^6qhj@?X$1}4H}Z9&Yk`0Mo&?^~M1ns%{bu~=b%`}f}D;{0JAaU3z$<0ZoZ!<dzc zMDSL?B%1XS=Pb8x-Qt;#eT;AY_NxRE)=a}GYKD`aSl1FY*pGZwjA(`iB*T1bg5;Aj zLS}IKrd5%KHX`v7cDF$sI$kiUOP53#J8bYec`%dpFr}R@KVXR@#;nApVh)fnC~{y- zs`CS+2shLlCqZWa=j%%eYD_*aM~kO<?{2h%J<0a{viW&7G@puD%1G849HmA%8&Gnv zkA&^B&<h!B62xKlwZ1AtzzXNiI<MeuWXR-g7QgX+uBPjF0oT2z1TxdHl;J$(?{h~! zFC~{i=<0ahy7foO0MoXvlSqEI?Yc5X5+R1bZntG~c>xGbQwA|fh5S|azV!J6*}*&K zvfRGQ=(W^N08PdXLSX1F8M-YSYjIAue|qyK7E1`4T>B)djHg+@*18h{DY96#`fzF& zeDRB4;v2vDi+Lqk&4?u*phd+8W^m{Hkjq8TA2iEHrVCfzP_&oH7bnF?v_T<#8*#>} zV8l2Q>;-MQ!K7aem<So(7c5p9jPV%J06;S1UnJ#ym})^_5EDT>$t11y<FMj#08wUf zlfSww)-c6)<sg^MjSAHq?4xOW0$Nu~U9-i0-NShzE}_{DS{@T7r(evutm2iXiEf8g z^-;0BKK96RMbt*yx%LvLne)FEw!RV#6sP$9*fq}nkzZe5@GAe^d-u%QUv>O*yXyS4 zzCRCmm`c;8AaWCm0#{IiciHBF8cYE{#;{nd@U2b-R3BG32|2*A7H1l~Zvfp#*C@%) z=YQ7O34Ko5>tBVY(4-=SK;Q33Az-Yw1?sfKCB7dL<5;wWHS><+h;JP2LZ|6DJiqsg zKh2-z-^;juhEFV*9MBddO7>2A{m-76y@#0OKFwS=(UE^(qK;RLkz^y$WaumzqKSw< zN5Wd2xGCG2wuz{-*L<p|CMiU3D9&I1<v21wl#@Dq<MRddIm#;gtcZagZ<)@OU^dvp z8XfBx->T>IU>_MP@n?O!J?2?BxA}v?7^5WIqQ*75KSInCG0OwanA*-$$_pQ)pv=ME zEt`Tx5v>=;sL74bf-?$@$H!mqJ?F2?@Uj%AK;peaCg)Cf_FHB-Z2jHzo;^>%)tjd{ z_qPfHAV0rreZOS*itLvCs%StBqS)K+dv_mI=^`Wv5ratJJKy>mKm7;(j_S0%@spyV zq2BMtsuCfnlz!7RHP9)O1f6w2qujhg`pb!iv6j>)or@DAF$PR9jN=YJj;ZS8hY%S1 zo_4jQX&aUc&77SveDc$u2D?OLOD>G>1$L%DF(n9)nPl#?0w<UY!Aj1&^H3qdLK4KN zbYUU_BZv^=h>1<Dd58@}MjUMp?h2Bi0g8T#o`@1X$=(txaDJisfr!PLqROOl#z`VZ zOb#Td?=cc{RVQ}@RP-Yu(&J1^WST~Gupbqhpv>?8Jjrm~ETfx1&%Iaa-=k3T17mR3 z;2Wo^UXo?G5B8C;3V#cXnXL8>w=e}16$zLe;twAPyv_H|NZ-?UT>0+mZ?aRK5eVk6 z|5bE#s*PWLtv=JIfkEXwOrP^uH09m4D@cfl64X;FQ)cx!V9Rx~Mu+ibf2Y~L+e66f zvC2dfw8ntb$%83rx!#E?+XnB6Gu1(31RqmUm|zUV7+D=3(JmU=*5I9C2rv$jlhYHN zTOqQoP^UWnd?~84&*@99Yd!WUC{m$M#b&guAi2h_!+;VJ15pw&Sxg+k7$rE^HCWN1 zKyv|~8itnDPlirs2!Ws_fIU2QzN`{L#3V%*jO0!Mqk=%wyy{4qR+y!f(9VdCwmD*m zn;(3^9PC456;RCS|D#pM$Goqs!^Ar(7Zpe|L?LG9V2z<^l{6J%JOl$DF`L(`3vb}M zXY2fRRVTlcDhq6@!(84LcVOSl-nUn|UDu*sa?Q8(_ITV5ROd1wvonXMTKN0f`@Gz7 zb*rV6Vhs4E$+EqvP8)pxc{Zl*f77%q7RyZHEBl|Yk`)H?3<B$%X8C3=9h}<?(-d5l zXF(wb>cl|-S4I>w;~s&JAu$dEf?;{IV!7}%-r_7o5ylATXB#$`J3jHTkMX_lX@7ee zVW?4u9!$zG)!sswqdI$E^|hr2Ms=b}YCu%KfBL;q!69P_DbYCXk<@s@Obcpn5k96S zRlnKa(ehvwi8-Ro<$$~hwRYn&Y%3tjIY8130T4t+*3AtryEotdnmE{p(yo7qz5{1I z-+-CEyxlF-m{wHntM!iK)l#RO4Ur+lJOcD!ACwgW-_h|2mlqegM*Ge(&p85+(v-|h zt%Yi3ym~1a#mpNh<8&$9r}TK4-N*04^}m~*zt`C{e|Q_nSP62Rb$eO5P6D)hudedH zCX2M0X{g<_&$*o9J=W?J!EqdsAew}}=Rv?#f1@(>_wT*Q@yTavk)-GnBq!LC+2>?h zN71V~O-hk8m*QuV-WRJ{HP+Y)DOyZk8+u-iwRrFF-LAuU&vLb3wRCu=&|*x&FeYAk z<sJ_nY*@&S&wu{Mc;%Jf-iw&5sbg|xus^eh*_Ad7nN*t!&{LjxLPqe>hgnI|wRllB z5D~E?dc+Qxv{b<bVebJ7vjC(1Ji)9}tYGTNuYb#*uRp}PilUJ$V5D!h=#4l9v=bDw zY)|>&VYY)ki8cqD=C(&XdYhMBSBPA*2H)O$ANhR18Su`sTv{RvM&}rZk-i^^G5i3T z-@$%x)8}7|k&E*)&FZYfd&gq2WVhSZk+#LI>jJoHQ^&x*V-}fu=XJUrlujz;4^Wxp zDWys*{Juv~KV$}@&VTbxD-`o%DF=et4>CkJIXPjo*{H)ylBd*8lmF@+R5II&cI-d< zjUlV$DW9Tg7K-W$1d)2K-pg{p{8|~***~~{mrs21GsMg%liaFqB8Z*Z?TsiY-Z_(b z0S+TDj6)^>PD7M*Ad#s-pXS&?Ez{5VL>}i^t(UA8#rbQSLO+bW`n`Kxob4F<9bLEK z*3&O&Ml50Pp;Ztmb%4_m7Fa^6<DVXOb1<O%FabD4fv@D{Qd!bqv@E~?CXn&`3Za^^ z3HBetGa5#HPu<UQ;e}j+Afo_AVgI^e>hT%TZVAI|zbmJ~ux@YvV5{U{PrSWb&xrZM zU|K(KZ{zzx_O$K`L2%vV7NMqL^b5imY1=-x*G6_-m!ZUiy_fbVQm?hyVTkno07$Lz zdapX}+uc^PyT`1B{cTQAesO*>f2dNP&lYRF5>9j3w`7~&j{rA!{_~7_5B`69XJhX? zJo@eA$bl^2raY>qUFdYZ3~Tp8Hzj(=3>7JNL#jxCp|t#IC)Ygian5B?JE2VGt-JKD z2LqGWE2zo0zxliT)bINPP<&JUOeMif7R4(lg<<Lv(WA|>`Lh5(QX*N4F-a#D=2uFA z{w1fq#^Tq<i|YIhFvi5?<%YX=&bT<=F^nUZ7aO|EOU&XJ>snHbc$Z=D8Mbe)L4pcF zZ*tK4nNGcCGXLE?2$(?wm01-K6A%~Cy1Sj;ml28i_U2nHzc&R6$$!^9EZWn0a;614 zVFlC>BERPmBtg3sT6eT}+z0#U+dJWDJ@VSUC(rkJ?_++_tU^E%g2OeQv^=K8;%&rW z=!XFjSS?pbQsQrjaqr=C=qh;k>?(U*X62aj*pnm#33a+0K+`s?S8MvAr|<i{jK4zU z^)vEUuDICQ^)yv?WqQ~aCV80`zn9gUBD8bOqBiE*&v|Dyecsg|sW@L_43`%didyA& zl<XD2XU+SvjUw@@MC_dPlan?hSm*2ejWP6nPYh%JEQ>Lb64<COnaaZNx`~zm&d(mO zxj5(e^hV|F*vc_eF+5XB>jDK)DkGGsVs~-xdKC`91UuvsKoPXd3A<k|JkDurQHY7N z2WQ;7f5zsrr`rvjUtaR?!G^Q53pO3xdg@sozVR}GcFNaTzO&4J|D>52S}=3Rd(e3~ z;JK(nT?+Yx2^C_OL`pr;_RQnt5+~Gm&VRADIg|fCLk*0csLClQ$71GL{(P}t6=<BC zKVtB9`AB{4U>|L}`T&00W*+_Vam&VB`KA(}Gm=%6Eu6(1-DK4)u-?<{c7VZokB9~e z<2W*oBO!)7FI*ow3Q50D?C2j6yY5`p@wKzRmsYi57#MT*YmBLmu4x*&uA{KL_4)p| z>$FewlTs(0L9cTpp?uc&z3gQ(vuE~RJ6}a4u6eJSKT998(q~w?maHbfQH~qP{q0?a z{)<3P{iwYiFtcn}OT6Cuyqyt@a?14l=Y;V+2n42Qg!;2Ej$B-vaeDJ+^`E76uN<#} zgSo#y3W!Bano9AR|0AiO(i#M%BsibFlXbJSI*$%E25$|7km!fNy?ggLJG-RsMmCol zE-p7*UUqCYJKnr^pYyW^+_?D^_h0`mk_`Bn^W4kwsVA_w)B2a$0w}N51I<o9JOA=f zW9D$7j2uo#8X3cuMiMZ)uoX(3e}b89<52{noESriMas#aKEM9=%Ie<7DyG1p@oTK{ zq{CR?A02xK5kN(biX&(LQTQ0JwEl69P0fR5YZc~OoSbrc^A_u)V}>!XK00Qz+0b=6 zot8O<S|8l&oz8N#1tz_!Ja@2nY8f@WCY!$YoXT8KZE6qedz~&i3?sGc!#A{x1>-no zSieBQb7#Jf>X<7F?UC$zwx5q?{}V(%cZk=ojeR)3{BDjNT&>ez7YuyAbvIv|F-C@A zs7Qx%R-Jqfw48I932(7hGN(ZK5FrFY7_}^R<*;iWX{OJ7H%vqbF>?Rj9bWw8r*fIb zY0V#IH#bV?%llHweDz;Jt7oTBk{~8xqG|__63N6$5=>D89p4R!&1T1g2WMPfY}jsg zY&IJ<+Z|mu&~FFM&M)b<7mWP{i*`-I5EIyBaIQp4#T6C@IX{83%YK!$GPlZhoWHhw zog)B{WMGty_6^jFBQuA*zYhgIVSaOA5R<CIua3OlgvH5A{`i^muZNi({|v$vpmA%Q zT@cb?Ebxzty^|6EOpm*I*W??&#;=dwO7%W34+xu`zct{jrS+E6lQpNeU*NfCpQl|P z;TB6$6t<V=+`D_1&BZyxFfini)jg<KNKz=#=9;J^l`Ks;>q<WWbNpcQ%=oRPXRkZ2 zSASPTf)YT4VH|4!2(Vl(aT)O`HU9Z_>T`N8N7|19=E&xC$5XP>lKC5Ja~3*VutnOJ zM<2ucA3bUMUp@REbeR=ad<dzQRgAT`ony6L1K_;J3B)*c6c}SjHtwzSBB&$vn5MMx zopT_r+t<XMH($pZLzJv5lLMGNCC7T7>xoJ^SfAQ`b7pT%-7b=~25iDN3+2&e!eB}k zW5M6K^N{=ZA98uQq1*20hmq}eL*ESyyMYI18y-G<K#V;x1rU#5i4s*{VCMAov|JzY zReIoKZh))V$b1{uWky0IrcLhWhtk_x<$Y^Fls)ow(d8WKF($W;%sB+}<I?Z+*R$KB zM#J;%f-#oXuj#}2wa0s~gQ>km)NoBwWUhQ;auDFGq4k!dh2z<0pXIriKFy8WPhpyt z<C{<8fXlP{td?soFD}?@E*bisan$?0>pRAAAZDd7`Tw`~X3dsl*L~k_@12=vxVLUi zJ)ki((2W_yK#&k9f`TZKqC_+32$~AnR>%(?pY&ik!VW*!AHtu&5q{H~!{G;qY{?2) zA!;Ha5d;AcLlXeeLydPh=j5~}Kdiko^PGEY>aOapx^-7Y-FxminR#;9d#|<rYpwr^ zsaCoy@u_4gCy-^iFa#c5PWeA^cZGYHV@$W-hWXpJNv}l7OLAdB*R>OGd8&qUrqUKp zyM2PE&tSL~U@HTCFmkqx*e!_Rln$8gw>_jDpQjzYXR}$eNlkc)qL3Q=`GVPeK?u@{ z*EzRU84+VlooOZ59Ai#MSMobP+B`Ugsl>?f(V=+u!AlRDp<It4<Y96d=eT2j0SV$~ zs9eiNo*IlF#nf5QDOoU5yz}-=>P=1C^>lqtQ#Ul5hOTK?t!qwJC-j|^VGyD21G*>( zy_N2L`FWmU!VM6Vnt0`Go%d+*#0+Jgx!HI;@-;?6Y;m+0Rf5WFS@&8{Cz-B0071-? zC=ckJN0p;Or_V|y6K90~^XFP=X5}ST?F}B+K)#TtTkZ#LJ=A_Xp8qMCD1Di7;t?1v z|7WG*#jA5Z{L$BW@#C*^?d1<q&i0VL7>@n@C0DLo#dbY?*HhOuUDtDRa?E;l!qL$k znr4IZZa@RPb+m1RHYPEb`2lX;Vlccg1|Cv!;_#D65Z=mBiV#9CF>V0HTJW*#Fs*h2 z=A1X(K?NT8e5d&H1Z7YHK~K?$@heVO9}Gb1yPQk+lj&H^ITm%j8N2CeEyzGh7BodM zDF0zTct4;WA%;Xa@NlJ+Tj#<6T1zsbPwcnRqazqoh<+vFLnK;9Q5eZ%NIq@I1_-31 zX(D0p@+B`q4^+W9OqiVpA3VioQ`7c6U0M{HO~d+l#mRa_-K??w2H$tYsEDc{>Vm!f z15WNV5@(1iLHAkF=bN2gq{KRTJ+W2?B|IwEG5Igwq&V4kC&mH9XzBPlmHs?xqLg<Z zc-~=q(oMnv+b6s;Eq6xYFj15s0n;Zreh~nBv+LYh{pdpdKS%QDdT<vMeKgS;jE1UE zT$*cMe)$p~`NCh~%1bX%Xhm6x^>0*x(@U0%8GYMf`<_KTqiI^IS;c&@V6j}{Y>)E} zYh{7--mzJ)=(~=3v!?I+!AtVqi?QH^0W;5|=h+x|SWfx(vpQ(kD453hhw`|cb@9;+ zyKN*Q8x-QSO+z1&qY|<KDPMBxXuFApPeP`-13n0;9esZ)JR*v;V6og25+Q5x&f&Zx zsz8WRdiO}VG6_Y9G14|Qy|omDk)~f!5+98z286*!M+}}|%+~YD%3tYZu%)JaW8%GF z^r(>+07UtF?<hLw>0P9EK_>Zn&CzN_)2`^672frUk*}bdFE9rYyE@?b&JDJzh=;iN zX~;efFVw`si(A{|%7p20rW;H>q!D%r1lDQW0aBR2|2v|l2FI4WKe3|5fx5dd(`_QD zqhPXj^ZS$C_GZ`5L`E*;e9M_*?|$2Fjje~=Ga1W9L7^41LUH{{!B@WibrvtafbSZD z)(}1O#a#B$5f=hgsfiw{s-W)`WvN*%W)wybEOlCIym$20v09zb)El~{VZC0lS+8*3 z4T!+hD3I*qa32NoAeaNx8Lr>sh__yd$aZ<48WIP^6IMwH!F##iyWcUOvx>nx1!;7Y zlNYBYlMl+5c<hpmkzIp4y&t^C_8m$IO0c)L&;IN(F$DU)leyCODQD(hOpof+>s)oy zcP(XkNsy8-8dGXu^NV;V;RvA!){=X{xN4{rK9J^mMauLCmCy~X^FDFl7bv_B1lti^ zOW!xF>J2XT_|Ri*o1l432%330Lm5M}*n^xkJiV?n)~{^+#p!*`R%lMHAcY7fp7aEK z8h6|p4|xkmR5pDyRlw7QX8L|SV+opGz`Ydz&M_yuOhJlqyGUu~s07Pg$a5q+^Wb6B z`e-LUc<Y#lpTq&s8cL)1#ZND}`ucBieD@B-Kv00U7=;j?c!zh6u5FW#AT2~=a2TUl z?ky%Y)&<sD+O}g>&8U}qIBU7)EN$Cza(sw)p5Dr$cXD!+>Z%>yJA6U~#&ez^WT&ou z65E(M1`}^u{DNn}n0{3A?}L?Ho`T)y_Fj)Y#`TkvwsUKobHnRhPJgA;*5~h+jAQi- zLzF<YJ;z6P$srYO3}sodzki9MEa}>YzU%1wJ|z*#o>LheTKSHj{`iM{;mcngbt5Dm z{~)?C<}kG!CwM(H#?#s)J*&}0L5^p~5G8Dom?tw4QjEEyWTeo3gNhb{!&xWvfC?&O z(DNl|X{Q^ap{i!!3-<S~4wl4_2cVM@mpeEClqSl17ky6?esUj9ssE`?o`CylL5P4y z2z-jkE)%Uxu2WS^`w*WdCfd#Bk8E)W+!v;u7zF9!6i}HZMwbNt{tw~{`Cw#Mm)#El znxLY{IGv8q>1Ui;I3;f-DaZ(A0k8hT?+{&|n8AeLCpbe4f%$w+2wrN)m8R=DY$u7m zF-lVuMUVxfC@71Hs;W?0Q_W^n^EuX9y0&GxcZsW4U!b==&RRB`H7G^XH1vIk?K@mD z1cDc$5;e^ifUTP{EV%dZ`ktkb!sAk&@3)K|_oLnG)1{4U9piM;;k~|J_KRuKs5~D& zP&woKw``b*_Yy*I*3veObnq)mX0sW~y?sIq*iP~=r1M{D(~H_Nc;0^NFZk>iz9g`G zQApxmGJr$yDD>6|c<)d_5tK@vf9jGO<KXRUBllbgfU+J;w81KIA^h|Qf5O3)7g4HU zZ&qL~@6on~zMs=OvE)U`8_*?Dd-e{lGG8ol?V1>cM9Ac4tg=#_4ua9xIhAZTDE{4* zZ|AOWWe83;3Pk0R>V%Q*H;?5Zxn;02BHPM8K`~q2|5?iatN}dPW@v&iZdsZ+rCDHo zb862EIsc-zhuyuG)?`56SI<oh<Xs?4DaCTG`OxS88gIRGhe*UF@56hc%hpO!lm!vk zY}Rybi?bG+;Coq!g3NPd(LpI@vzd5>AySpXPS^Jxeb=FMs;y4((VSFue0)T+S<yBP zZCgvs)cfH&2DFYT)Op5jNgrm0x2zzZC4=Bul4*s<!%8+Ba-!K($>q<dzaR3Tpm?S_ zTFSWe1Ek+|Eh-}f+9Z;qA|)A0gQMU>g6vhAk5YxB)i~Kjj|o~Q3V!gOQz%@z=907h zl{C=P+N8!ua;!=zq7kG(eBopOeD`1cKd7QaR~55^D}4A9zrex4i|p+w`rcuEz(=Y3 z7i%XlFF(ZPt1oc-ZHd1N1JStPWnF#hnQ!TMxd=5?x?8`ef2t8Rh?(;_A0-lTz-&<E z@^f5$ha>JLo$R6#lkkANmyQ^BSEq>;L$+4)vNoQ7VJa5Y73%)*^mSdxxt4)gXLy5q z4}rn9og}F~V7O$HRBM=(iq}8=HG-0)zTjM{+L6hgW31jwX`i=l@K~I)Vw}W?Hin$^ zq)JT;3fnuZvqPv$Yt4MIL}`=wKmt*LHkwkE%vln(X1=%2>gaBwDGfuM`CeJyyZ3I| z#3W9=1`wz-WwU1r)C>9GB$ui!=5xxj8t7}Awi$XF<mdRX&+1uyrc*R4lAA7`5$4dE zs;n@^u-w1Iwd*fn`<}8aC7}=qxw1_qmpX?BcGi;N{sw7JkCL1P?;T}X4M?O(`b|n2 z#n>xUu+Uq4w_$T~mmj_L7nJ*#x&DdIbN!`{v%j}T?*rBe+=15UP;m9?HEzH46NoVp z7)WUWiUF)(3J1kOe{Z`n6aBx<BzTr<Fj)kK3-?5N6nhi@KAROg@D%w3w!;K5-QewW zQp5idco;akw$1}J{kBQ?LmBpF*SNd>$>iM&Iq$NaWu4zWo9qP6!j|rBEo1|m^t&{Q z7p~6v`fvOW>(vUE67xvVq0a1QM2XEiJA4k(TRbn=J|$<xYDVw@=R&Fk@F|f9Oj(HX zkHSuuOA-5|<ds&C+R!@hC!W7LbxFISfUVC?<pK<QAPB|ydFFP{<R};N{)?2>*<l?I zF=Di#Dl77um>COWh+8PZ^CW{26auaH13j_r`=M2FvdCross14&E<l=hkv!((=->wV z9lbaLMOhM~$D~m7K-@&2m{kG`%0m%Yz^xB?`%nG_Zx{cT^2&#J>6K4$aQQm>2UjSn zlEPH%&6X$>!AYZrs34d$&vW+Sj<K@k4J8l#baW^VXnN)c$jJ|R4H&`+KqL@iM?@I? zreC<d;3msMMRM1^?603z{-l^o{v!_FluC%iU}j|FVb|MBzYZ2Jqm{uwbFo1+xqr{! zM16cRj_}>}E?eeV&QklQK&r_HO2J~L`OIg&#PwG`!8`A~wFUe85Tt(Jd&y$9lECMk zaQ_GI2a6))*r72LWq~mzV6iq}bWR=;?;$wxx{I=878isVrK~7Ktdnko&RY7mOMC&a zdu8_<R;StT5?ZL#8FM;A#UmL_o|Eqe(!P*)FGD5B4$_l*9u!4EQ5B<+5E3F4wmBu9 z7l~1takXtjQI>=dDN8dz`jX${g?1lOoL`dpMuZIV++b3bHuCGlp+wQAre8WrIbaBZ zqNqx8hM|xf#8lr8F$TijpY!IepYl_nobR!B?PU(Gzl3&{y~QO~tGg&A8OJIriDilt zFihC3g>AZu<<IgO8G(uMkWmAslYVD4jM3v`J1_$78XSY;F*$*eyZ;^#<cP_R$5Sw| z02q@pPJ1@P>8VIrEE!5Uo*~&vP<zJC{ezZm1$D*%JGH~`V;J{SIqL`tMPU@LTtDEK zzxlfy9^R#CYP^^3X4d(^GtM08Kq_03<h^Xf8e;}{U)ru#7*nLCGx?gtIf%|l)^QZC zW4b6s@A1~+`;N`=5w>qe$Zu-_h`W>WAtXb{=_qP@jt*PJF_1DvV)BCbyeXL{DQ6{Y z`bkJ;`gtVM+aB!j#xOpOF<Z|llT5*BWAHpm2!Z9^{)p^p(HANqcUeFCM9^h)M)la5 z6Vq^64wEUZg(YyP5XdygG8c*>B_w3YXh2LG1@AE)st|GAn$3+4`kI5wukh8c{W^d8 zoj>B%jlTdK#v~&k5&mcuQ<4MhE@NtFAjCxZPY2Ct6$}GvG8VK_cqLY(4>g!6_|C96 zoQCZ6@V&c~KO-`+4e4)vy!-B1F5BdHsb?5n;zEDM#?OE}2NUpd%HZuzP@o4r_c#px z2W~nXQ!Ch;8Ghw!e}(Gu3mhHY9ZLEHYV{aX4qkAGk*;l}2SC?J3*Z=qflQ5c+A#{b zS>JSYU5|H?3@A!Jk(Z?TZA<}ZY+<FBfRgWNo0`6B1YsC&3gW4}_Zo9KWZXG!dUb}i zG%6&GR5{A_Q$=$jk1nT>nq8D9j?Iij)Y$5l6b6`pG)gg`P*ut$=(_d^U&RM6N@=cM zdjX}5pmu2xYo>;-Oib@BLHR@yl<(o#6F@1Q!hR8yD1N03S{KPsH&Rs)WzH9-FoQKd zRdoXQd4g7GBQZUt4SSca^Ww)p%O`*7*O)C9{N>;NU2eR6gSUS0ZNBwy{wcR_-yjB$ zHi8BySznNT)TDK8>=3XO)0DRue#J;e@usl<aF$xm(fSiY5zxv=C}4V^?K{m7Ux*T_ z$Zu~~3uNOUL65_k?wAvCCya2$ch1Uvs$xm+>QfWsX_mO<wOz;~%P@`~@+NNC0QcBu zP;!d0P<-+uFLU*^udrIL2wsx)th4mC$7qcYUcz)K9^bVcP21p7ELJDaOFD6CoVU2J z#-*%(Yu#{O#z?)hC{HOdQYzqFC&za#B`-xxRZ*labt?FYSMsFn$#}+bPsdJWyJUo< z>&OPlvs%8F<zX2J-*?#p!FJgKCw*U1JS-*z+R_h{yietIJw~Zg$zTq}W#cvu_a~;? zBL-}Y5$97`Va~Hjp0p{7;eP8F2ZJC2-gyb(mjw`r-cuAtZ#|S;hY6DPKUihKv)sSR z7k=%x`Piqvh^|VOmoKBV;UlkpiqCxRi~P!O{Vq3dyv2|H{lDkifA~*%=jNM$PY*hd zc>zkgm*p^lo^S{ZdC)PHIZSR;4Efw-RB5dUI^sh^?^{e!rO6#3CJN#$Bw*t6Z+U3D zuTF;(#-t2}n>|=0rwoqqwO0DsTwKogoO@~|?)-)cFqQt+3YJyDm6t!s+BxQ%H8Hr< z=GTe`kQ3)r^60Ilcb2}Fq&}_F=c&X_I{rmm+hKcA{L((vNaCN;Lk@uOf&>X|A+)aE z3CR$t&w4qV2_Z_KDN=W@^hw8-9`K!~K78-z^Fb=Br&UR2M?wwj@UCMqh6_YD=m9w> z%QCe=embx1afnii#bQZe49?nwwxuLJtx?$nj)JD=ii=GBn|l<*kh(JFoZC{RlFT@S zT5?XE)>`t?0u;F>aobW;iOw)9u*m+wi+tmE{vMzG#joH(#1}K7R`kx(wLNnVP_sEN z>jjq&UgGn=@(oT7Z}R<b{Sj~e{72k)^Cxs&1JR=hC@nC)HmO!pMOl<Uyz?OjG>szx zVJriTkUA%MI{!9vvrpzp9$?ii>t^fLZ~e-!?TAcFa{%t6{L{mk#wWI;0E)s?&y@Fn zA@9FL#vyb{`S1KTTJez&eV91kXR}#jG{g|3TrYwt%&@=n67%nRi*tbhL(D%!z>6Z6 z4uDdd?3E|@kUGhgn4-Y>yqK8Of>uHFv~434s0mdVurlunUQmG$#~$?`te$$(=WvlQ zb1#{O0R}WTZWBL^&qb8i>7>u|Df|2T6h>ooQrbT2FR7%+A`OECAqZ}qQ^4Sa3Kh2_ z1dR?_8W=f;Nt^&;L<DIt<Sj*x$xQG?IjoN;Bi`$^>#y;5{{H{S^=p@K%3#qrz=w$L z9Rx@0Bc7J|JfKyHQ4987dX<;{)`w}@mQ8)aji3G*Kl;IU_=_L^fVSS?os;T=lqaCI zD0GDyN&BXYqS{_4<#ZL1fDdbdHI<YiWS;(f95D>0a)t*m7(v^~D?4|YE#*Ii3gq>; zg%}A+fzcHgav=|r>3F}FD5Y4;3SNHob!-UO)W|DFDcOURsUITNIjohOfWDW!fZ(NW zf6T1cM8+&^@g^jrJHw97c?u=*N$0|3+dxy-v`tNy+X*N5(mR_PzJ&4G(yN_7+A}LT z6Z>?A@`c=6l53Viu^DiVF@aI!{si&N4ua=Vs#!%@>OrxEthdrU%XGskR|BAiuAC8% z3Oa?pC0tLGl3#5M1_>8PRX~9bnoO4m(nkboBbY=fh(Tfv0Y3Wbm-xH??f=03-khKn zHcA@Z4DddJw^#y&iOj146@{X(*fRtN#2J?l4uB8wiB~_xFMZ>;_}QQTgrC0gNBr3z z{}H#}dP}k!iBd^0%@@cgIzcA3Rr0h(U!}~(V(|a7M&G3d9z|k;Q!pT=uZvr>tT|3K z#Rj&Oz8ZEMt=jAl%!<9?^@Uu>X;G80cDCe&(rCDP^+n9$5^dekbv<R(qZO%%OT>98 zFKU{GrfE1iI-;yfi8I0^8$MO-OiG1fgx>aq5HUpx3ph{LZ-#Rd?@Z&pr)e9SwxLTD zz@P|fQu94c)|(<`=RgJzHYG`-kTA%FJWxiqmPua5&ajZa1Ru!hy>FtF=H*vD%1a;q zI9*#)uaB{|Pq_dJo$??c4&+zb7z)aidt=esGc`gbkx)zgU!}y$7zp0sqLlS&qbZE0 z$Rry>xg5d^9z)>EU;Hcl_J96gbNTWTv`lOTlnBF7?L4;YX*V03^+-Z-Nm&|Z)jq}; zOi@x+B>-*P(KQ{P`TQQA{=#SZjlc2xyz}NeeD`~Qz|Vj9eg5JnZ(w`5c%5r`ljfWz z_D#|N21r1NK)k5qD279>*-y86xam{lVE805%@0h-!T2RHj$H(YEat8Anw;AJswlKF zT)*@>Zy$f}+$?+-^7!S9u;?jKNcXhYKL0t|zQ@|0-b%+ltw_B4B;{Xo`_@f1>owjx zW+^FexmaS19tL^t%oa23n)t+l<b?%k`I}znZhzVo!vbXc4r_C1VXg=F+qU+(@%y(W z8&c1UxB6IRSb~!y#<Y1*#{SRSh#5snAT_`DxBoMK;mcoRy*lB}?VB7O-D0y@(bOB7 z&9Q{%ltw2MTgbd5wx3HVr<@m(u&alhJFNs+ms|iuUq)Fg3h|;7l`kYKHu5W9|80Kb zKmB`LI+#l$ks2BPLKN$)UNs!wxl7mfL<|Z;HCqS+)U0Gauh1HTmj}DI7jf3nc8<Pp zaaTHKmlk~V6CY;%&4#19C;ae@Kjo+2{T6S0|2slxk`$^WLFAZ!x(M=T3dc$efT#zH zCw~mv!zjjSynp<BbozGz%Sj92U9>MoF*Z~lta>mjau{GyU4BN%fG*^TN(Pn&IG$69 zufwKFntCkv4!Csr1>Sl49eQhNyOwfR2?B-8%afC1-g)ay)~k~tma4U;a*lx@M3KsU zM?+X^oyv()oX|UA0E`T+N1gL2f54@NKYkz@@(J>9>zd$vGLT2~Z0E(fk&IS8lgYjx zpo}AL@?Om7@AE+9Bp&`}zwnD(yZ$0quD`&CKKe0i*U|O85O*~-cW&R{&aJmNzI%hF z-iYoq3=M{4eiy_2G)0l}cM^J_b<&%X!;{-SYo(-xp2WzrXI=2?zwsaP>;KX3vsjKL z1xA5SI?lPk(NWFK8@Fic25n}{=a-nxW|U<?RT_*@l!X?hni!u#jKs>Yx2SM#NoOtX zVnN@p*}HOyE7z`Y`T7B$`P^4HJg)ikAAFl1efwW>c=Ij16J&r8hQ&~f0I^J>as(_f zs8rr(K!r1wn>fVowt3gbp*W%;`Qr>@sxf{w>=?yzPzerD<3Vzn;jFwQ2Ef3AaUqW; z=QMz_vjT3_$4@@Xl`~ag_}rJj$n9IVrJld<>ARM$t&)u#IXOAu){S>KI=qXuR+^9) zGr;j7NC(e6#-*|*3<_Sh%j|j{uoR`7O6C{O^I+(3mQVucowOWI6r|a(Id#qFOm=$} zT*$-8$lb7O1~BB9oM%xAX0ti3eC*ZKbjyO85yO(GM9(@OdEvt!#n~^>)-_GN=FaU~ z+<He0g09^R1VP!*FRNK<IwXyUw30-7K?9OostrmT3ew`DRYWo4ul)!A3BUTcev5Ku zw#w#1S`<1PS#4Tw+_=MLwPL=w#A11w<#NG%R#282qtpOBcqjFYAwi2F`c#G#C<@IY zEa<9=7%gkF!dXvQ&Y3OuxN_~Ay!yFc;`r^Gy!q4b@#dfZ3G1VqSlbE=IkY)c=n7(3 z6V)}8Dv?F%-V;+X#+<SNGywjSj!WA)2XO!aRLW0KS^1Ag8Wey2f<n*GYHU}0ArCL- zy$*OBbD6qxXM;5VjD~C1UZ9%oad`Jox`#PO+cXqKiFc0G>V)-b#p>jkwrzzhD}~d% z^F!Oxq9`C&%M6o168v1E2_8%LG7(V3+8*odP-){+rhf=t8W1^$b-je~c1U*4?-RU` zcOz4l#`I45J&sAKL_41&Czs`2xq6M|a)vPl)=KW3ka!tFB}#NQGqi0%SryEdbM~)X z<|D7ZmJ)zlRwpMM-@U`p-5Yf6nvgmQmQ_Vz42oR(H=<R}dqRj5XoZS_s=UnK`j7uh zzVh{7##9=Uls^$%gx*Cu>uH*fo41bX+K%P&GJE@%nJ?zdXC<?lrYr<4fYb>oLQpED z8A|F$VG4|4XdUT%<mmVq6$L;qv|(A6Vy#>&ST2_wyzmmA`s`og`0ib9-}o6n`QabZ z)^`Cx157N4x<)ArR4FkpQ7JN7lGEX|Yj=)qjHe2H+97btAUN^-A^nyuW85(cB2>j5 zom;=l;qrXSc~}0xR_;mqa~OU(`lYp^Dhpo!{O372J{G3EUJ~{Cw&U2{rD+;$-&3d0 zw!&L6;+&=Ld+`j)lCmfTkxPnP1<CgB`(6^+66uIi0hJKEzL&n{5?_=gK<C`h?l+el zWsf9=9qQfl{wyD>oKw{6lx!0=Nhl?5C0L%{aie(sQ=eg0N<IxSrpUEIDM9W~iv49l zRdjS+Nne&y-7~ZJuwd3NSzNlr3m<wJ;^)vxVcVY7(H;7}rQWRR8)?a{#;+yO2v86M z2bVs?@BKIbfKPtvW1tmACyzgZ^O4>Ow|LiC>e@ljEa&^o<_oH-qN)tbWm5inQo9)< z8p$0nT61ZxFe!%bqd<{u?>RhPvstgDBa$)rpul<vU<i~tQY{K%DA|h#nDR9)Uw@h7 z!@Jyi^9}lTL$EC-D&QCu3Y4FrNd1o|@i{e}Si{Tg{wKvA$0~wdbZY3;OdMmlOny(Q z0j3jpZ+4Ycd*i*0m*+^fJL#QsNw(wG^-gB1){2A6S1D)vw0Dl_yMBnhA0FPt7){sp zLut^^a#X1yXT~`{bR2V)r7%UJ5Dh8YTG#?}Tt8EFYn?rPDLEYGk&c71&y>26@fybV zuPKxJxp|n6OP-hemGY*x@?pl;=h+O>TJhVz`+I4Q1XT1=5ur8S1x%?aw3eiJ427=H zvx1_qluqNEr8E&&DnhJMlv*>Jdlt)mY-h1ui|rcvu3^18#`dik>Om5Fi;ukgDSrR& z|M$H3(!l`RhX_7Emtqh?KmZ|Vf{zqRLn-lvgM$iFYP7I~4)y#Ih)Q7;%#31DsG(gj zAhCL&>pdqYYx+K*C@4xzz|lKH=p<$-i=D-JhmV0k01eB_2Yjgf3|(Dw_vYIK*AcwM z#~QjG<tt3A(CCQ~kcU$`nL&xi$w<rPhic+U?Lt<0zqEID-L{l}?i2{~^5F4|n&&~L zM%Hs8Tha0fDylV<h2}F~_%gR|-KMVV)S}nXcO57&+6-OTrv1iqGAc?DQ=C4x_mymZ zA^wpVe(vJu@F6!65-%U`CCh(+|AC-z*5a%i@&IDkZrC$zPI4iSU(S_s9Kv65^42cT z!ub+o44?Vz=R_g<fKPKsYlAirY{VzST0-;z6(TBVjH!m(VvLboo}n?98PLJLUC=iR zytC{dT#-^h+jDYqLes1%{_a2cpE$TW8{z{YLgyl#O$$VfXa!vx=o?3{0Wj<>XY3tR zs6t6AU?MuIl&B}~RR(4$oRB3u19@5KI!g!!qLEUC7|=SRjl#!3V=Z;p)6@-Z(_!0& z&bC<B6C=17vB9H?QmO!qB2Z(B1*+@uPNPDJiiNa6jMA>~lw#ldu`}St52wR(Ym;mU z4Alopky#95gu={G$`Ip4xzK|o$Hbp2IU`?AV*iT0y(P=#0XJ{m8Hs&5$%C=IB^Gk8 zvbV2DF~-SpLKGNZV*GX}>+@dP_&Ph12E`bN+5mP)#Im*@GPG4TD4ZSG{(Pb#cGeEb zfu}+M7xGwT8!+0<S9-c-n*}hpR^Qh3LLu?2T+yS8DGEOE`s)J%5TZESDnxXEqR>Pu zl|9}|UmWkkV8Ela<d#Y798(xc`Yj5A4^)N5&1N)3N#Aw!t)}l=3~>4CRTj%7#pSCr zjFv^h2WYLt`dx?=TKWOBeV}hWwik$Ef4^eyQbip42*i|q9|<UwfxSWv$CWMQf#%Rc z0NTzYT}lhIsff|ze1~<8^`_xyRZ}-Deb>>{Exwl|Bx`#?146(BM_sS!`x+F9qZ~qE zQKm$P674<FgL4X;L5Gqe8v~3B=DlPK;-AL(rvU}Ey=90gxSNoM$}CbT;DrHjKe^v? zcpS%mY8RBP@iUIeS!H<blb_|Cciy3?YkJ$$wbE%%I$?U0m&H>BssGhlr;=T<wDqJ` zIHW|tFu?zw-a7IA6Qn<Q@HV2&*h^fcxt*EDob87m0Da#kBVtSd9GaRurMLV%$*$^u zCeVR6p0zOEJ&3LKe94t7SGjU|e^C4xL5@Ux@Zc0$2b_z-vy-}O1|Ow77expVRX}OE zSH_eWW0+O4b~qoXs)Bk`QWOT=8oIVYN9od6l<A)L9yXmHApbz*aODUdg7f&^g3>Hz zCCg<wcpFpHCMcK}iupwOXJs!{1mnd!A8DFE#9&M*9OKc_^^T^o9IYDarlV<Ey0*pl zju<@7_Vl((i;|;l)^zQPs63<|1Cpkvh^ix+9<Md3Dln8N7l?gN?=(1#i6sTn)>LXE zb;`z;@Iwv_WCv}#v}rQ!V*cJ;5xUi~SW@U2KJ@Q-;G9<(8iqWg#+Y^#dsdf>tz767 znJNp#)yw-VmoIYnoi}mLVfzm6QrQnFkyeF)+oDi~5QJ!xjNzOQpa)2G466z3n8N}R z4)7?Yljk4EeZvI_)Z*>Oi0vg0!CE0C5<|dlDgUR|*m@3R3mtfu^Xf^9q+KQKG)SKc zrp%G&Sd>!y_22mG?9DXRlXA)<PDMgS(p4l7Q97WEgyKYRYpSv!M4#9Jg*MrsF)C6T zM7b9QMG>h=!>lT(=M`05(atKmu0t0UMMNO~O&hSzr{*D!<Kspwe($ATuqc_$3g(L< z^$5sUGW=jxC@Pa;{eTO?9T0*L4aEq~MQks*1$`d~E{K8Q9c|OG-ZUJqH>@`eZPU_s zJ;94t@4ct*TfCP(<+krx9o-^?o)G0Os+3Toa_kd8dBEeas8XZK5}gtagNyXegIAQg zqEIQ3F~j$XA!!Khrx$8+-2-z~syL93QcnXUmU?;d3RSU8l>p~|fIq5aMfJ$aA2k?k zQ7P1YjDV+gT{*4%C6RVsm3;Y&zsgVExrMV*^5Z5=cS24%N&g5)EHHvH3Kg>APsVLB zaCL(4bFKA&2Bi1oc4m6ukkC8%vfO>l+Mar|8espCF)(lu`+vG*cTPP`20@&@O2+0C z6?huX@kxl*n&17M-(jybc<m`;q*c&+jq?yNkeL2LDDYm>sTS`fsn+|D5EGfNMOk19 z&8#RX3oSVVDlt?V;Sib64BcKu+wRfS4P9?3nm)2=J=S`9=h)OeM|Y2e&Ce8+)r_Jn zsmg-cqClHbvF3z#rJ*oqDE}aFix36wcP@F=$q?v!>3r1p;^{YS%WAXX&f$tp-Qb)P z;-4raByF?7T3H19wq<p62WQ)Xem84sIX6#QN>hG`0u_mPhykyAR8^qM0u>@SMeiLp zXsJF31tt~@$$~jYFy=VxB#S_efSW>(pDTq%k}|X|*`L3_s=fKd2iLPGS@}Qegf}KZ zSc+8Eb~>48l&5qtnI`=u4voSXuD$RIN43RzOV>6+wL8G-BW-F<zLUP+acCx@QU!rd zG@v63m>x3ph44p2ymyB0@F75$gif?@-8*M#>J4pMr}95ZCLEIhN9BJ`*Y9Uqo;szP z=Pgg|41KI36u^epKl#aFE|x~>^h*OaDwHYErj$7yBV89TO4D^-_&Th{`3(CjOi{30 z&M8ZSF;O~%Mko5$dsOsjqbZG{G%&B0SQjYPjiYIMn$EI1si`*&T1Bd2#%!^qC=1HM zP?ly;{&E#LPAQcG^HL2ZfKo*;D*vwcbe&L$dLL6vL*kEZ({g-r!g^D4yjpYTXvMm& zg^VQEMn+HDZs=`;?K`@rVRd|n?V5Z?2Wu!BB{}nXFjSNl<*bq+5T%n+P!_a8RT_;J z&p!Y`<DDj2172fPfx@7b5wAXi6gZBphcfl=Xn1IpGGyx2D|;X1oudKsAq?K{JwvHF z?~lA&<qwhpJ185Uh(pe3Eb=tU={Rlfim90|W_<apzsjHe=m#_@^IyF3w8sGFOJkk^ zkjutsit&lkPl{h<?r=RM>E#<0ydSCv0DSH<J~5_3P<ZF0oXGa{T{of#JKo#4*M(fj z{Y8M)({uKz&e?enqLgC3Sn$!0epJ@4G?$h4=ol$c6jen~g0%Y(2?lxs8jseVVrFo? z%>S~IZi4f<^x;toVrmJTX@eCqcdc`HABjF-6cmTYHFeX_wHD{3<4{#CS?nz-s*<WO z6s5)(=^TdICT>tbX||Pr2<d-}SQqJS!1_q=F|mzFBGP)b;ppU;x@kGt)EpkKS#Mgb zOO&E1uGn`CUAMvZEzM@l`uI@Lft^}skvMRiE3MLknHNL`#jLd+D-!ZzmtcF0B4|N2 zRH4BYIBU?cL{UL3B-oJF+Ud7Tn@c@00OTeq1(z1rpRfA%hmiM@^k<9_5-6=D873+` zNwGcU>SwT{vpygGE2^sE#g{+KTW`NZ*VL)Y-ngMkvG}Zfwa$ZZyH}-A()CLxHZY|V zYi9B)BnQB!q`tAEScribytL|$A<+c`F;H*Tv~7cPxtvf!1tB2{xdirNj9<v3h&X8< z^jW-r@|(Z;n;aY*ptQ!Ih$gp5j+EM9jMV=Jz<bI4>H8LI9RWpA78J{pzKfI<%x0Qu zrYTI$y;B6Q(LUls#5)NY=6r#W_&JKzYDEYn@7ANMIkWjZdH#A-{zj$PI)nEQLQ!fG z^q&=~k5a!F0`xY}b`EO;&Po}Q?Rt)mkJ&U0P1|y^+Hkbmu&Gl|@zhz&IpI3Dwx#b{ z*2l*j-@S!ghKQ_7*>g$DpJs&WQ&Qk?-pOE4S=j?Iw?s|#i7^OTp^O3}7L+bM1dDYo z+RxE(22l@QzXGW$NXb@8WwZg53ZNoIS<3qtl>n#Y-6a0asxlb>24%oUi$)Q{)2;ru z7CN>4zBY#a{Y!lM^Izfz-}`|y<Vi{!YfpPcc|1cJbMm$<sA>#JDJ|UKg@m=7_fkod z`2Ax_c8SS=4pEf<fD|Zjwx?-ox~?72HDVm&{$nxhg<QxZ%d|8w=LDTM$=CJGZ+?@^ z-5*p;Dna-=vVpEp5FB_*upQA^h=TYLti=51D$(jIjE)pW@}V?}pfnzt$HwS^{737E zb&ePng()fw8rxfpk_DnD3yQ)}6q=$?0{xQ~t^_fvbTLK?0+5w|2oawUfTnfSjiv7$ zP2J(Fqw9NCtCfTuTJijkS2cB0)3rUWw{&ew-*<R#3Et9mHJg*E@=u`AJ!8EoH7X_N zDdOPWPq)rB&1x&gABoWn+XzhR2@zt@=u#0}N3@n0Ds-$+(ToPiU}?lb@ki}Z+G7eS z)9}IF<Gi0wc{g`LDY1eT0-48DMx&L&D?wtOwouC?Z*=lvg!GkCR8`4qpZ*;0ym<rX zq+-ORW<I7cDGASw3njuRHY7u4gH%bUF=Gtc7>w2wWl2%wKH@IX__`sEpXWoEbhR7U z{6eH{n^flKhH980<DWPn2-~5Jr{x*!-0ur{>P2fkl)jxOQA+d5hhGI{2$NEAlqS|S z-Hn^rKYs)F(kt|@e2hrITA|q{wd~eL6TP5?WhqXj_m;AlNiI=_osA|$o%-)+w3dDY zMhmh~ESF1~x`h}iOi5Xm%#!zCChvcA{ecuG)MS=2HSh{cxsVtEZ70gVZ7ubtrt5mT zwo6`r$EN8xS=ZEUC(6HRv0X>owyDI(LG<)}Lw$V2(Vd%Hb9iiG!noq7;S9;~)U6K~ zmHgJeQ$t{j{Vyg$l)*ZX#n%8uDTaUxXkVaWiH2li1fq(d0_XtRqjZ6xqAce0ws~xW z=~<RB9P;Sizr_A?%v|A<1wAPJ(*gFUNOmEBoXlf*@x_<<)o=VJ|LFhvKZMmw>mlh+ z82UURXfh@5z`Qq^qH=$VR0dQEL5MaOQ>1Ktk8>lBK!)=3*gq@wnqf#OLCi^h6Q4g0 zub#sDo)dw23eW9Ab|sI&!W2Ves&gYTqGI4D|NB4Whrw{|Q(t6p{eY+gY}Tlg+t}}a zi~67a6E;8l8MUhkANmOXtA7puxnD(HKA>1A_AUw6hmHmvJ%!c~94eNmoERMi5!A*| z6miHIB1*Dx01EGfA*?XcZK#@+RF$EsG)1Aw%%8*LQF+mo%>Qyi^C#sAqWm|trD-~v zx}j-W+O}g;H#A+(YSXZ;8`@4F#lGw5>YAph2aa>_INPx~KIHE0cZT?V2s_DQSz+(w zC7k*zZ<KZUfFtbK50lNO+vV27%0N_+s5+rrH6C0AUKU0PrKE64Qcl{GpcPSh7K?rA z_V9g(kv`oX&$~_V$*@^b7_?&Ob`|_2mi;)+FaL;-`wpHpI%N#cs*=C@*Z(HBZoflW zRk(C5N-1f=qqSK7TH|wXZW2nhMWUh-C8$o5zeH)F!yc)Ca|z(I>?#nIpkLE#_90+1 zyI-6r{;c$~J-v0Kp1yIXKst3^SOQPCBy`IZ1#}<qxjX?W0sp=4@WXfh7tH=uW>+qA z`O0-J9ejwz!8LR!>1VG~n-y-;(*D^`+5GAMO1t+DF`xZ3^I!UP+?T$={PG;F3Sr>Y z(uKBd8>(tHkbj|skv1w#j1m$QL{Sjx!Z}BgdIndO)cVgViTw}!DohqcC3W(Jfg&gV z1(Jsn>3UKA^`=d=hCN;1vuRqIuIFS^OO1cm(l!mY>uEMMO<kwTfy7egd)CK?+`0MI z5ZeqHVw}W=2FlZ1+dBNn8_17cBS9P<@t$(>h18L&WGBSQh0D&vVN+9ss3K8Yf%v__ z#0p{{L=vHpMim7CONc#A_so}jaQKAX(`oE1KAncZyH)=3B16@Z_-CENIzMn}M;=4{ za2i+P3EsD9G(c<3)vMRIdhI1n)+a2M%LL8m+WbjuRI5b0J!$EikbqqAk~52Cd@F+U zgeYABV>0AHHc%?Hu#SnoH=%qvei&mIngoqp|7RHiPuCcm$~F#oAs?hn*Y9}7nx5WB zM5=1nvV7*{T3PafDyh1T;BV6%-{$5|-{6*4QhpvZN<~bmsOBF-6&=Q|vGp;lKl?F@ zYJq;~!|38QY&oOQ8rM4%lJpltM^TnTGrtg}{NCC?-v?psjT)s&itMeHRmFT!F`pX> zBa6%k@5za0kJe~W{zldxKuQ(5&aqxwHk*dJuIYM*b(W^<MftBctm}rZYw4PXuI*?y z4Nct$6dAnm`FlsbI^oXEH*=tVP{?^aY$<+~BmG&C^MJJ|FIp*9e?Kp8GWgWQiik>q zPCM#|GSU}a1qDHrlTsQNWvPq=g7Q?0Wp+g#bdv8v?zhBEKijd8hEsX^Ct42Ggb)*b z?Z{`J8{#}J$neSBjU82##*`@xuYTf_^tOX2ggs?Z;6uQBCvAL<!8<2oPx@)2Q;a{8 z_K-_mQ;v-H9(p^uFDkKzNt^Bv13JTeDTJc6NsNGUzCQS&<?nz1Oz!d1579=5YP5x) z*!;VYhmp9orm6`q#iW^)k}__s6ycnd17@`O%a^Zkb$*FOITOZCG|mSsju5Pb=c0lx zqNB&?NHm&qc@1VWVy!Vp4*z0LyQxtzU@mE55r_#LjQB(`EdM(j=sHi^ro1ApASw!t zqMTJMmL-d2L0L>ZX-M#ayw1r3Mvclp0?q~2>z+;RXqtx2rlzyvm9<?@+xBcW8|tQ^ z?;F~tp{ZNybxq%OvVceFCmw^RULA4!#?ObC{P0C-;;LMVxD~J8zR{;@6?a9f1z8xz zt0e*bJG-WPlK084ljfA>DbhMsMbdvoh$((0tSm&Js7f(b?rU|tTS+%5A9riPn{Kmx zb<=zM)GdmqJb>|8NV6)BcTa|X_Q@?e>4qo6RVhVTR2&_juwJd`+J>&J@xc#^;;gCw zF)B0PzV{xZQ}d6E6u{W#*SYjK^LK&PBX5El{>Pz;N9^eUF`%N91&36QE8H35Jw6YM z@`Ze`lKV^mLvD{!in6Nk-cyt%eczuO6hJA(m#-eMryNyK^g*L^Nr5ItEeXt8Lx|W2 zttzBbr}v`NyA|<!-=Tfu4Hh5yG?%~j74|;+I(+IEa8Wa#E6SNpgnWviqM!*n5Ti{^ zyF$9xnqroe|9oLmLSKTwb4@S|p0`el-%Rv|vw_3A4Nc?l!3lT2lLjMA+tRizbzQS* zYTCA@t{du2L%rI_LY5PeQtfeHueg2lO@<X~dh>=KlfO@WzLV*n6~@+<qY}@3&&RhX zNmV<?njR>Z3=YOgjCgW&MBaaU`v{nFhSrAYpA@(pcV6Bv<~gwx;^aO&O>)M>4<Uf^ z$xC>~X=jym@p8`b#*cr*X1!rCpW|YnD9T|lDXp2!W*B3zwi=88ow|Q{=f?vo(%=S& z1HXS%ic}1o5H(2_R4SskSOLW#(1juNewe31GyDuI|1*u?3wc^3#)!2R0Gmo)QG$j= zol8{11CH`^N=7xxs^Y8v-T%z1iz~z*zd`rIKgQnpbDSM{03^H&g%XBMo5FZa&~!1N zP?T<s|M9ozfBG$MtCG8yUt;fzpJMTq&vWH-UuW^c%b590u;)bct#A}Y99VcGkz#MZ zVm8y1MXry}&Y(bu22fhU-ub^m){(vs9Nw*2Z#trawzKrkW38iZMDaIm!)CK#vtCoz zEt_>sv#HafB7_9OLGH0_&5gHzc4~f303*(Nx%=j+k0!Q6oaj82^u~}5IP4gujBH@1 zIISFGoE$8bL2Yj-ig%3jru$jW#KL>us#_jrv5PyuA616C`!4r?I1vxur`M_cj}el7 ztV-z#JO3hyEDDWFUHN|g^PjO?>@i;~q+MqrbfCezA?B`$l*ZtdVm6yIUo7eSQAvxQ z4?|-f6I1svr3pIsT#z%+$pDDKp<*07u<V)jU7Juk;R<+m`PrY|bKZ`L!_$1O@0UzN z0$UDU{`*nJ-~=iDpvUf|OPBcAFMfe*AAgPc{BH<T?(v3`Z~u_hxBig&JO3Q}_M7<D zVbIL9Cin;e=0G2zkBUe^4sFd%#Gl-t`Pc8@{?-4-N%-HW=9e*_`8ewHuW|6DUqfHJ zOq|b?pC=?h!5fPCTqhENZ8&}KV#(hB_&P>tThGy9&B@6cbcyxSAKY3e+5b&T(=@Et zD^AvHn!07Z-q6;~&@VhB&z~5uZOzRyls}yI{O>If@M7broW(hg!+S&0-|%@n1AflO ziNo>aA;j^|t#e7J`UI9YMTIs6*nVrfXG_k2X5Qz^h%rd-?411hn7{x1;t)`POJqDs zDZKZrH!JF<rZ_o<7%_$6;NS{nSq>1qPvtzJgtA&tlykguC>4jcze89+E3^_00YXF- z!l0PB2b7A^^)tjFd)Rx=dbMJ`I+6M6!w0^2o+r5%$;~;;d3*Pw)KCT+-izm-6TI0m zw$f+smnfyUeB}y@`JA%QfWs)o^2(g~H^0aW-~1BJ{}*&C%lc1#$k8AEGmgIf&*|QJ z8(n*J)KWnZ!Fxp)03Fd@N#2<Or42J3(EVN9AK#+;cmIxK{!fBlpsrk|`1HqEe)-Gj zS3gXc?NMade+U<=QQ<1K6@Ommt&1ETuGy?NgaAGUdYfwgn~u6^+0<(`>lLd_!)7f> zfz4(kb;L2G_@-nX_w9x|H{T}s-G@B&EGN+BRPKe*Z@K+vJPZU@IrEr9EIn>*ecCwB zM#D%k6v_PvCO2$yPRbaTm#)&c_34v(CghBT>jPY{o+YI;jDk3h%@8w_9;u>6=79GO zYkM)oJ4IdB6h*;&zF<CIkejC%V`=LKV~ntOmL)OKA&Vj4<hz3;{V8S8ssODMjj#a% zS{cA$t)nOloVA>s9Mh#7ooCzo{~#r~9QSo#b}i_qFc;?o5Yayhr41lCVh^|D*|}k7 z9iR8vAehhRDVbgmp>>qdb{it4R?M%@IQaE1^73E(BCFMZ#qrH!j=ue;-1)cvnBr$Y zgtu<c*F7O>ECmWha7c$+Bi_1Ka&WC98cV=o4_BQ0tDkfCU;Y8;NV$KRLM~hs-W1|j zyT2KS<l)^FO<mJlhxHmCEp6M;v>i>`vfha2P&b{#`!}^@`g=ck{W1OTn+>;bzB$G) z&vN3oX3sRRe!pA&;F$JcAE-$i*=d|`@GkH5MR_3~4TfwA#L3&^*7Et@rK=p>e)F8n z@pEwzABYU)bZ5rZb7*6HC%55UuU8mjC@aYcXxoiY1vk<*yC{k@G&PDaZ~|m+U+I9- zIsTvOg!P<-F@zwAtDDV66n}2W^*-L0b0caeop{L2I7>l|neG=TfQZtXvYO$n6}HQS zVm;6Z9meaVZ_T9a_0;CW57}q(?qiXGrd}ytfBlnG)$CMBvpn-;)Tf?1B?|TovyWWj z@{3>N<-hV(>W$^*n>V@p-EY%=_mAlR{D-*1V|o|y(Xfabf*wfeG!diaT6_qo7$^Yc z!5<%r0iYNR2NE(kDE(b0`RH)NX0xI19o9vxkJ1^;IqJ6MWVK>-azfo%>bhmU+OXNw z67Tn^%r6T0P}{7zee*48S2(%t;vt<iMJCYfW1k?IGI(<AIEm~>(#)Kk%w*5;y*M;@ znK*h|qII$Ly=m*maS`u>d=Te(zC5C-UAWykSEZ!X(?;iZ$3zLAIVWv`%d(U*-uawr zHlr*{K?F>J)*9!XkO(QA_$ktejUMmAkSOF_kFyf*-)z?OeJ}Yr@6&xbZ<51}<5HH_ zwLAiL@9g;+=kHZ!)ojQ=net$eN(3J)69aluVmRg15VUrP4L>o2ODcB_pZ~%yU<yI% zLTa8R`ZhP)8}*6Oio$5ThIwTu3{+)gv3QBgFMWghYro9V?L(Tox8aZfE%B|NFgrd* zwH?uWf{VBii8d05L-V>2BM1N?JOD<YR{Yuf&o?QA$jM2|$w^Jydb&Q)yO5HXEKS?7 z-fTEIKBnm$^}1$#vSPDZ4H^DY7ANIN_4<Unw{MK4OXMFr%72RFKg_e)UR}2jaMreL zPrK7oFpfz7G*doK?hn(iP-F|>USF%V$>zpGT+s6@+l%M<fS;$=H0f9I0L*f?c6wU& z7(&3>o~GWQwPrS-v%i0d<#JE@02C$0lz>L-LOS;aPw<Ye>jaHcYN*KR+J<_w!S?+C z{g1KJM^RGGnsNK2L~SkXqbs8(YhRprf$_PA0VLTk4zT|eC7W^u<oon6;i>61!*LQ6 zFYirt-s8Xbmktj2%is95)WuZV&uguSam-~>TH#Y)lYB0c>>N-*!u49i!TyY@H0&QN z;PqFrU-~jCL<k;#d>8xOKf%87efqcGqB}gotv9rt#m7LUH9C#6A~&srZI6GtAUPLU zty)&=nx?gM7J3_TA<$b#Z!LAxaC~%3-C8!Q6`R!w>ys7E+oabeF6o_Pvp(kV&aG3* ze`*)2;e;MhPVIA#P{7Xfy{8dy7M4FnA@aml<DTlwdipV&)tG_{naUYxkJ|n0ye@`Q z<@%6&>?}?(<{W~g#On=x*KvG&#B9D`K3`H*bE<NVR*n!OUEd7#*V?2Cff#VX5mA_G zhISV3;;_Iznq2Vj%kr=T8LDBGNPa>bV$m^|ZpNK8=s6Uv^}z43D`$nwvNAV`5<8?E znEOeLkvQQXP)ew_gZCpsARE5t>oLag+0TBSgM-VoUB}64#pTP=4mcBW#YD}WTXU<_ z3@QJ2)}{ZVQ;R}j3Jt1Y|6rf8sHBtU%P-M?{587vx9IB)tGC}G{_8&={^`HR-MLHO z_CntaDF<L;`Rp!5eIM9tT2||ZwvBYQ#M&MgLZbfdS=SA>?;f(=v}{gRG@CWerpDPG z9|O8jDQnxaS)Xut_x2geKWo!`B5HCzXFPyYdf{G*;(p3Mo__00+3|i(*%WbS%jwb7 zsaHi=jd07o(7@+KrZCFZTRQ{t+}xjW@H~!78bb(U*{TW<d_Xxz-&>lx#+ZV#n5B?_ z9~V5OD9cjV|6;%gNj?lt>aoSkO68W1RC;xe9@)E<^r#2DuCmX6FD-w83uZB<*y>98 zAjx#te#oOxLq$uBQF?_uVE-6>BEDfj7<4kKWgB?6qq;0hUVHtM=%Qd#OV|zt^Vy8q ztRm0fX>+dN94=9u3lUJ1<UzzxP*G8&@Sir)xKHT<Mag_`hO<kWdP%XEF`Jhh&MMmP ze~0$%x9K-E$~g+3*+cV<V0<CUzhkxTXgW>r4Ayn{=y2Xk%zwS%@aTxmrlnqQXlvp1 z?^>bvRT^RtO46oYb9{7n0(Z$>&4Bq3``A+c`2n4ETh*g0&j%)uoce~-AD#tIoMBYl z3&JSMilV5neLIOLJfG8k>gbQEQH_swfalKZ{h4|i@BS!50$Dmtj8PI>Q%RuKmR@&g zCE=%>02qR&trL$$hD4K*YqXJ=A+j*W=>vK22{D8=-c9ZHxsW*Ibwn7D!H2&K&#z|? z;XRT54E-_E-#J{6hj4s=aj_dx$ccJN=~JJbE!)qoEK4q5xk^(vC{)S;h^*9#sw~*s z+Y=5BttZoD0>>+bPo!spAPc!y2p;b&3aRob3!RJ~C<?=TzQ<xwF<Vr4+tA*Ai~8;@ z`nAWZND-ot{lK;}+BTk(bx+ecI$L0Uq<1|&Sh~JrwW&E?Z#X(Srfn^o)h2oV@;gM~ z5|^-qr)f4EAKo1;vB^bd2yFaIjkz)pGXd^7Pj<b_`yA_DihoNnZGCd)LAI3Gu*c}? zM<T|QEcOoYu7A!;tJE2Pjmlpno-e&Ig%)8ngdfvFKW(lulBoz?HC~~V0~E$Pj4^4O zFu>0_S#a=xw3a>txo5_^j7^INd=FSaot{<aXHKM8f6NKSlf`Q4bt#yP3P>^F$h*7W z&%VS7Gvy=fbw-uNFuhW)i^!OF^Dy)8bl4#q1ZwixG;}H3fXpdV6kIwuV6|G~gQsm9 z7K<4Q>1cXzaEZOWJ!bRy0RJ0fh>)u1Ql0}5QxwTiR|G3<x?_x#3S!Wh!VF&@Bh2QS zs@!Mqm%hru>z`upAO9oX`e*-ylfU>mMLywtuVaLI<Ea}**DGw$_!tPmL9o<K&Ed(K z<8>{>KCNT3+EA}f*sNAG^%@^sY9=IvB5m7na&(AueSQ)X{XbFsYWu-V5%>2lap$iQ zcbJ^UJ!GPePCex5L3b^Y$+g6+*ix_da)veq-n-{?g5Uc-=Cv>m%KseQpB=B{NnPJ= zLes#i7G(_jm??s%iD)FleUg-v&QqnHAS%9ltm-V_?4H{`!F%(*ON?8k#^ahW-DdK7 z*G4!`_u`@DJ)j@=8>5r8_N-<1;oFqw?wfI9EGOfB%Se#-V~G5lfAt5v_Sz>0eh-t{ znlI)vnzmtoZ*QpL$%eT1o|DxHN@@1?_9#+?PgRt7@3GEF*r00(!BZ55s2R>B8<J>6 zQD|Pcc8TkM=Wp|w-}`-T{rC;Z0SG~=0IZ92Im6$Eq0?IMj=t|WJU-#h@rsjmL)*4A zsgvL4<b>79F>O;z+(s(`V!6~!&GFq^gkafDCYt)nBh)b{<cX0m4uvxwOuXkG_jrF> z@x%R;zuGd+w<hn7H#45^J&rqht&O29XJixYd4>N+*$K47>F+0TZ&ZTv-ZwtxGv zxfy=m{XT`b@&OsOqXCdxSf||~y_X@v+->pkLDRdMaNBP?R~~T8KES;Yt!X&(^ajsc zQGi_U`+vcwzVjh&{M5h(@%Xhi7-Pnb6x_OXi~skZ{NMcY*S<cGcFkuMM+#ni@kM%T zDU6ZOn^qWY=(>)RlVh5uWq*I4{YwX2zH)`D*RDZA=(N_U-LIu-YLr?gO7A?QLL&W= zL|?5H3!`}T7d}nly+D6WBOLzDN=C6uoc>MQv#A@7H#J8mYc_R9-}ghj|K#Y1)$t*{ z?Fa;N30w$)rm4Ae>uuB!Z;5OvV5KHQeY;5Jp%$5kwA4<&-i4VbvSSSl%71HnH9br^ z6}2^J)et+_4j^QiFAv7}&a>Iy;xWlR;S`>f@)vm?Zu)5>AP?r;;dAQIM>QJgAte`1 zlcA!LasKenWh`~Oznq?r`FjQrSl)cd?|s@NLowWYxIYxsd9QoFW9Y#%e6K`=q4Ft^ zN4Sp}b;}h9nZKYcD~y&_-iLSZ^2U#U#K&I!IC@_b0#sGW$!bm6mT0Xc%Rj~;L?;z? zN37RtiaU3>ba22YLS+BaC8;7X2Bjp7Cq_WSY&J^<K-R|zc~4=BJd6rw18wi=+n&C6 zcrP65UGJ!yj+46Kq^_x(4%<8Wz89!}v*G0Ukk!dCUEd-Ls@wtZJ?r&Klz)0}uxv99 zs4@&cD%1S>ta-9M^dDvs+Sw+D7w)y`_KWSsXiL%W*a#V_OVH7n$9sRYqM9!l&ggMD zRL{KJAD(+$BG2l1FaYi+<18EcV8loyY#}cpgt6{AjqXQs${(ck*fmg+?9Pd2c7EL3 z{MkkQ@AcXCM(WfCyZ7%|H=1&n&!=5ZmkORncVdimeMf&+%5vX+`z_vj>rFoPu~&KJ z!yn<w)vGL*OO|_k%;q!Z^Em*{_E>8L?yo9l^95bs)Ac>xd;YBZK3A_^<MNd&*uJN# zq;u%3nqjoY7r9xG7zR@6t5V5fHu@v#yFXpUuI;hT(RP-$v(#NrXB|x^Uub(v*Co2& zl;pQMK4P^xq3hc;SLFtT;5j)y<j$=dIeBs7c&n`&w^iylf&cS+W9d=GgeNz4>+gF6 z&^SFg?)SmA9Wd4U@<SeOKK=x+m_#*p%cb(6;?B8uUCj@_{m-R0LU7Mvj1R`ee-h+5 z^O-)r?|X8`ei~&uzw$d%^lD^AlPUl$p8i&xG!ENFkc7ZT4O^*)K>@bU`Lr?k9-i5K zzW?#V%)9FYoT=(hUFO4{hdT2R@89)3c~MG|=G@RQ?dg_*l!!4Lu>1M=TF8HlG3;MD zU~g}qD_5^__1bl=T)oPNKk`woUb{wBmMoS_f_H=v*x$cI2%Z>08%<SKl$GQINSNM} z$52^TeC*YaaqZgmRAMMR1V&2}usn}_@D#@<YwEV6ZhG3@(x=)(7bN~~t)uID)~hvb z)6lmKtK(xfn-yKxf=Y{rRygN4I=sW-?VH0wlPB*slh~<ScuM&XzX#ZH@<EJSi`teF z&P&rhAp7la&3lYS2-Dxg1;nifIh;@2xh6G5{Ns4wI2trDEu=*uIRKA0rur<(c&{JN zT6J$Fzn%5_e8~1Z*_P9ULdlGu8USe=XOH1sNz9bm_c6#P-+213cmKe4*PY#*h{u&| zxJ~Aiz3;QOO!NI+8@l;nsO`g?BT-sCki_R{lBv?qF?kq~f&6=Hvn?Tlqr<x#A0Kh^ z#ygZ{$^NBFT)uLZ{YwX2yMCRkSFiEPM?S)fFTRKmfuo~iy!Y(w?a`S&eP1qZjCk*c z@WG9D-ezxakIPrC@X9N%uzzWv<#NfanxTy$#(=es{~u=`2MSDnUJ3vJ002ovPDHLk FV1m6zhvEPL literal 0 HcmV?d00001 diff --git a/notebook/__demo/layers/mc_0071(3).png b/notebook/__demo/layers/mc_0071(3).png new file mode 100644 index 0000000000000000000000000000000000000000..d52a53cec111d1f90ba0c6f51c4d302f62a0cfa0 GIT binary patch literal 236006 zcmV)7K*zs{P)<h;3K|Lk000e1NJLTq00IC200ICA1^@s6^mx?z0000vbVXQnQ*UN; zcVTj608L?ZaBOdMY-wU3c4cyNX>V>bE;TMOEFfrfbZ~PzFE4FjbZ~5MbZlv2E^l&Y zFW6!7y#N3J32;bRa{vGjVE_ORVF9Q=r)dBI002ouK~#90l>KXuBsrEQj6H{>nY%}1 zW?j0cduI3DcUKVb0{TS)1n4IV(q{n@c6VlXX1cpBnUxXlZbtIx!@2O#+_QS+g{+7$ zH#3rl=YAvo-~X@wH{RNY|HuF9|B1a-FaaO}1AzV?41gF!Kq3MW$#oEN$@tIz<^RB^ z58q+G@A$9(_5Y2pzx@h;VRzX}m;t#+ApI$?A^)AhU;xW{!ax3R|2zKh{h#nJ|MK7Q z^WXjgZVg28Jy=Fy2AEm?f%OafyZiUDtc3IBg8%ei{!b{W;Oo~n{Po}e2imrw*9K-r z*Y~i_i$I{1WX&nbKT4pSeBOx)N-ij6K~5RD6c7=Z8Fk;W-|y&6-k<UUA_7qc5h3RS zN=d+w5^~BYrC?bW<dPlcr6i=Bv6O<|8Lf5n&PYjM007(>L=1y0C4h*~d&gcIc3Wfb z*tZS$+ZA=+&{{>?H-Qro5)nXzloQtVgp>;aMoJkek<OpM#0qW(a|d($n|)sMhma^C zQ34S_iBXn}^W}n4GV+p<DdButQ9u8L`~Uc7l(r);1R_Raa=iNd`Xf%SKO$c~;4gpq z8~*y!PiVb?i2&V8$2%~37u*1JorxSb1e@gDIcFr>69BDlVD12blrvJ!IGtaxoX-9% zn6a!UFf&?f=)GaP-OyT9*vOny$^gOVBzq?C%qb(~0-}W8yUs27_qwZsownx+ch&)n z4jd<7FbH&^YY`L=RLTh7(YQEn9(#{)@B9kb4h_5jz+;_6N>5}oWP|Hy9C?Rbm!HNq z2&D8m?um0S0L0(@`{#%mo*y)X2%p28d@?d249t9l-I&KbSLhgo_(~eX@EFTyLgB}8 zeh<@~FOb2E23Q8}=;{>@_yKR&_koX#cmnUg2WNjkVJG-L?fm$^&n?n429G8RzmMw! z_rqWqU~}3cq3x1|f0vSBa>{7Lh7=x{1pj$_BY(3$2T+*DkZ*?t20V(_`LMMS=kNe0 zG6YfDB8++ao<AT5q1<jaoGxda&nxPCn~~o~8;U^0dm^AW5hkrQl$4N-agw3*7;Ik9 zQ3;5M$f$L9f){~7Xo=9fDH36kIux-Wk<7P)^>0C3AQ5BVH?+NCITb89Bc}w;MUcKV z(9;dH`BJz>0FrM-$qUx?jMM3)3{KZ`x_~|sTJ319fk>WNmK7zJAy5<fCNg&s0J2O_ z62xh(VcT}p)=>8<!lpLVx})wpYTdxCp>s!~jAdCJmc3VpZ|@DQ?g3#j5QPYwk_w^% zP(oSOh?!tA95uib2pOinQ6OkI(}={&qC6mhKu9SI{5yb7KuNf5J8=3A>;Lfsw%Zrb zU;l#AD}V|l0(C}SE~2p2Dr?ROTiqO|BKA!JF(@cT;3*~KoB;+>N+@MT&PDd4U%<Vh zw+ikJV4&`ISKt5!I^(u~b=(FKa#=)qdJsUeznwcM$y`P0$ijI0P#BE%#w&VQm=Yv+ zASeRUXtqb=g`kwjv*SjmeW3v3%ruy^;XPws6VnrVx6zaq{CPMI2sI4>Y73nOkKFHL zn-XDgc8>H7f&WAZnR0G3l*eZ}`2A0m#yTpiLOkv`KA~F?pLGfBTz9}8&Sx0x>wTEo zad|;V_yro!^4Y}o`WUP{XYhOfF)26!;ymzXo{$Q#zo!Gx@tw1P<OxQzGT<|c>y5&H z8lS_@s6ip%HiiKN<A<2ulaeUvE~}ijB8{={Gx>0X-@s_-IY1t!=W|ZSCCJ30!cFJ^ z(m_$+05ijHSzD?5hV#n>m-88K*DKH;bh|M%B@{M|RbTr4_60wF{|5jf<ZRn!rf@`` z`D2W$tHn@TMehwcB@lp|3tDRd#)DlM{B0w_<cgUC1aQf9y<PG8@`{`?*5!=e-oYsW zy`!fDu~x+5&bj!!Ix|vEDC-$1FUWa8DJzz;U_G5smIWylu{^nnh1q3;(q&k6V5qks zffAwChHblx^~#Li8*1CpTLXyP((1jV?Q&hL_I=jSdw1A_f!o9s1wLKj>K9#^66Tt6 z0#J~OS-VB{F40gJ*pP}RUTBJsZjUe$MzAKj{*!ejRRWlWA@#0G5`bI^I(2jg*2@p5 z|KSz&cE|Sq1*h#D?>S@53x0jO;q$-#6>snF*lQJU%Ah*O54W04?kUWOAl@8Z&$^zG za&Zp@08q}LQbaJfDvDNT^u2=EaE^T}6Y8RnCua;C5H(Q>inLf1z1hAfS(~6@j5Qqv znt3#wtc*5U@n0F|#1J4}l8Mr7BN=oU0x4Ko<8H@?!2})KCY-WY+drR)DZOKs$~4KC zjS8coDh%cOz~3?UHGXDcKVP4~=zm5&W$)#Ov1|fI(K=@G$m2*Q!kCV}H7GywV-V5b zS4QHP@ijCFoA^7cF!wc)?78rD2J;g|Bd%&_GlREa;Nc`e=;4>JM}c`bAA$@1;n5xR z8#vnUe~$7$d||K{G-HAhF7V0z4hv7DbgT0>#i<+qPwUe85)Gp=tZl$V=`9Q#vD<$) zdX1>1e8X4Zb5M+BOh7RDiF;8*a4<f+zT&4}ehKb9-B6<Adjj*6mtEiAKtx!|;?@f> z!|50h#D7X$y4mcncHq`sya482-?l9vK>(Cl3jT$-*mF(~Bc+^C_Z^fH*3%j1^9$O( z1FfU1D^e<0mK7-%<gy}{MTIb<1E9Phmjz`xVO>vR1(t+d3bwss+jdn{ItmNI?7MhK zdaD2kIcL1ReZh9SiWNvet0GvsDgo{VFxUFT_-L%VhlRV99X@KoF<6wl-sER+*^w)C z1nxkmru%3@t&39SWATJs6T36wA{N8c$k>R6%+8QCvG2JOQ}5^mP$!hKIG(MiSKPaJ z3-0v;7Vh}^e#1{c|BT!1j{Cle0%FWgsW-X~c_LEzU6>&wDIwLmV@XLo3*0Aswckrw z0cHu`00<s+xR_I*47xGqK44}y$P~NJ^*G{i`9C24!#)R5df1d%k%)YE9*rK~?H^l| z3FkD%bf)<D*5T<h97y4sTA#kY!3!R(C7RxUWbPuDeA6En_&c8mVL|cN!KfX2N5tSK zK(m(;jr~)29O;y%|Bc;YqZ9R*M32bhVB@zb96{f@GhQ4<9XSTkv&S9!G(m0P>LZt* z9(1}NPmMv$sCc?>Q8*gYnfA$q_^{$_;IVH3^IZuRWz;2f@3Ng5o-^JnU-u_?_o!sr zG6u~AF6qApJT_w_i2q0U+aG#8YAmLV2hcb?fnoLAn-vZP479rA)2Hu|=zpR^UUZm- zPn-u9LJ$$y_Z<m9))2rHpWwKFM`mckKWaq`i#Hdv*0C-p<Ro$SYC_MnMHg^kzUtCV zDS6B`rKGW)f)B5+AONRz#rNO;h!5vioKF{&rReJfK^qf#2U>4vy@OIgE(>b!sQZrX zenan7gccb4zI!~qwTjkuh>Kg8l6e4ntC|x4L^r%y`h($PtP=neKSj0y%%}*=vD`t@ zG$`e`&#F--$}q{yy#tAzUf8Zjh0FHgfhmL;&_oX73nI@u0o2POQU!#BQWn=aPM25Y z+Q7X6z2h%`{RQvWn}&<j!$3x~x>_1xAQvz&W-5O-hAVpF>CnCDU4)fcz{!NHcuG>r z`aW~Z2dmu{7!<9MBN1U1K{%jeICy|qP^dBOs~Q<W&gfXv0|zE`6e4{5MW504xq`yS z`3%_DW6wnZ4Y%rHTs~gFfYZQHp06F2#POkTeav(CAQUOe12`*o!Ss!FP0t*~aJWE# zdnOS*3Qwe+j>93}MX<Mzd4+i&eYSDlzF$6%86O@-55zeIBse_EK`C*|)p$=3qye7{ ze$RB%xJKh|wuYhbj486s#a-Evf04)NCyV?*LouA25~*u{;3ok{CSPqW96j4{9RyON zAu6y;5aSB-u9;CifqmMdgWRP7x}kik5}-fLQ5bP?<{UG-vGEJ{j=F7F@`{`jS|?De zakmH2=xiosR~3lfD$07o<#Iu-JKnGFGqE^6$S<9b@k+;fFaf0$RR9`J>j~%68T-CD z<0g^>wPjgR7IDXqSZ+bil1yjUdvEIcW-P13ZFhCymSx3Wciiq*v5+B&b6eeIQz;{t z6-)`Y`xUp_SM2*;taML=QboixvB~Wlng6t6xOPbdvQR}3wA06tFur5#_Dsk@6f@ja zG-!3ah4uTK6H+S3#gwKT2+~nK2&U+{304V>c-q4!GE!zRb#T|jN=I~IT9WM8B+lMD zn8X8+N<nWMI(M|z;kh^gS1qrC!y;o2LJwwp&XPEjb3sxCwyWpGn1y*=My`esysy&~ z93Bd-dBMj1u>YK`Txh~#ApU7T!_GR4$Nt;eg~<*DA_^ah-$f=I$MHc2b8+Q-!o@f< zhs?L6zK`_~Lh!-owfh)0_A})Lfaf>h;p=eUQMf+$enh7Fa18_Olc(cBs7?<){rHU4 zHSFk#NXz`7oQY!j__iYq0R*>mn2HHzmkPh5D4C{jMuIQa;@J8kB9n5)4h~Ywcpfn4 zuEf1Q?70oEf09l;-Y02h!<uy-s)9cnAu>*KL)qVCbWIZ1PbNDw7bq#6JA6GZX896N z<{j4Uh7!~pYGD;JUVm7+&x<Ay&ez8t+8mf9G~4@-rz3>NgBRoYk#&{M9oOp>>*a!F z$*5aH$JncgGtRUFq1d(S^&Ky#7refFz~6rQYp}v}I1_*>P&^?!YzP#&*3%guK75b! zdI3?!<?@0*|LLFb;o~QCmQ3oLk_fGov92c{qc(A!kIZRC>kXY5wKeSf9Y6p28@_(| zDzRKeaOUpJzg5ZHmggjgAf*hVgxYG*u-FlAUhKT7jxLIHDxro*Rpf)gmsvCHht)N? zuP55(z<|bX#Ve$$EYUpA;T{rLMvqA;3rfyfp+G+7?0ujob2#$QpfDbU9CHI$vT2C` zN?GxYVQ%8y89;-D(o;z)WD}OPIB}SAG*~`^+kmrt-8D~QOw{*4Jw~pblU(x(5F5vd zZrJF9IfqaKc(|iE%xbbqFrG6w^7!s3z6gUa&jdL3VtV`WJ{R`J)WW@LqWOrXs5oao z?!8Ts9WImS&#pw!>0lIYiUKTFGuRCiqvZ!^Jkt&4&)@rgx^ezY@@z1uAzUY6`fZ_q zeCJH3=8rn;-IF<wtseLhe~ww`Z&6r8Ar8!NeZZWdbQx}2_0`CCp&^|8Q41pk98x7f z_yGUTUPMJ^@XKkgfoB@ubm2&$TE>;&L7(G0!DqWes&7P&SoKfzQqkl+nK+*FYS{0( z_MzOT@!)Z-haEV6H-Ux14h2|CoL{P&%wVy7AJt9aURyJaRWb^!+=v7jDa1X^1!OL4 zV}#w<LKi{x>AN4%>W<ng*3$*K6mYGMbSbGoDGPGWZox|?yj@=u!4fVnub!1%RHMr$ zDZRRFJ6aQ0SZfV?Yk2$o1^3$(+kTg_yX`I++q&4+Btw3bWbx3%Tu}*_$r_99wo*bw zI)$m01VRy<XXFSQIFMF1z}(92!WziSnjH?W0$`^yL$L8NWH-xn`X=0x9>$D!y6ZnE z09k)BL*r?KF&xW=4n`@CNPJ{m=2mkpS*>x4-4Wn(0wnjKcJTyQ&Pv-ma$W}$z(gB5 zKX$^L?uhe^mKMSBfmrq;xdJfUoy;BRwy_6>5CmrQ)_kiZ%B*W=xe*rwzqIe%{+K{a zYK%o89QO!ACQL$WUjJbGVeVmWmfYwAGfx72h_d*J@a5wmV`L8ho;`b*>(e0)Am-`& zFz4y=y#G%$sA(XADLlHCpbLy?{;wzmx*7cF#GlljXbyi%n{lCh_yj#b{vHa`vy=sY zXxf`NV`Fx7xPDLs^c@Zb6XZ|9!VmukG?snvD$es5d}}T(CCA+u8W1|R*JzkKWw-nj ziM(+>JQ)jSfE{KXJc=%S0Z*KM3R`__@(LVpiCeDgH2Apc-~bJe@=(}j5*<oU($|^{ zF0UUyiKRlol2>fGqeGPf-D}HO9_3#{8@!w@Se6r(^^A2r;nSz@@t^<G{~5RKhTa;^ zrwcBZSFEQq%CbnZ+g_zwz^p7Jw=_lYN+x)#6~Dc|;r;y$*XtYhZ9{ER&L(dD;*0FP zq1TFimy);E8@NkZ<53Wp%#ZmDlh6P>^Lg-cRgx@DBzvR0R0ZQx^)_%P*3DA^Bk#-O z4h|cvgzvSt%H&DC6qJ%8>8P)^MI@4ZhorEblpVm|HF$>2MZy4P4MXeE=a|(%;uwD> zC0b$wOw>6I?!zlHz8UukF{&3p6&LR8?s2fbUx|~j1cIFtqs;0tC1p?*O=CJP7!jM2 zG~F<OHQeEB5;-VD0ZNlMVwzRJ2}cWuMx^PPDcTLjgl#QDEF=<zv>(@bVE93&3>VEM zJ(xUk5b6hI!(kI&q5q36$SAf9H^!d85NUdEWTw;0AIQr@694W!4}U*gIshj;_f1jG zPlmFu=Ix1(d~+^`%DXYH1JD3V(|u7<pfIrW496LpTY$Sy;gP<l`^g~vcn6s=#RwKY zX}(f`h0gI&PceSTfMv9^_@KoA7$u-Xp%_9xc`u0>FQ+&<4fj3~gOKGK4bQ9bbQAn$ z0NQ*^hD5KH0mEdW!@hTyXCo)5yI?l2sD~>kLU-mPE(dh5$W;u!E+bTN8DS9P`#LU} z@}V-F2<7$DcermG?%N%I{-^&9|Mu5^!+JUcV6oPFM{8AL!^@&I(qgrjWpSpop3c~M zLpiPZ)1UtXYOUCAH{7-xwtd6b_cu?b+v_gEeBV*)4l7~n;orV(l8KH!ELdHPSgYCH z@@}!W>Iy{QL4yI!`v&SAoNVKbl>}j9l1K@OSrB!&h>mZB!y{6OSq+A?rAYIiRx3QK zG)iP$BZz?>keHI!mM0H8uqLa?`%95MGR4X&2`0<mg;~Ti8ibGr0RbaEJ-8bC(~)UU z{5LQjoBvRgWUW4??m=|7%RU=%NKc1oc`>?tmk4N>HD4vvSuKn69YUUnVDW|CnkzoS zSVp57shtPVM<N!D#RtYc6ofb*-{S+$9Qom3atDF@t&d6xXH29ke<q-U)F3uNGH(2x zQJ%acPT?`BY240JnAqm(g3mRu`Hc^ruBb^IW;4eBCNzC6{yv*IjXUS>;#(fHvj2ro z(7J;1^vxHU-gUTxf}-hg2;asz&N&o+XB|Gr!}X}3yBnE;5)h#6;h%Xf#>#weNb_No zF5JKg^Rylcru+>-JG_=jUryQ=X0rM*!+L^*D*yzdtc}iQVNOJ7Z3p*;R;5&$d!L0f zTN-9qB*Gj`R-`21M~A08YvE?ONBDVH&#Q%z+3zE75O++ij)vEyE9iJe(>5jV&0||h zgZ9gMJ|ks9Su#$S6Fz+R9o}!72&gX2RU|nqc};U`&6DM7-O+l**Y_{@_4AI~^&Ri; zS6tuURKT||*%2QxfW+)<M}Y9V2)3~iCPaH`uEhx8deDS0vM*g|4G;?As+)){Q3GQx z4roO<ecn3cMFqg|c;YRC!6l6?l_KSXDJ6+(>wB7Z2&5#!os!0(vUH+qwThx3qe-@E zE-1??!irfu9V+A#nUiN^?|Ncd&}3(?$bl&v*(WKhvwj4V@b~>NJP%A;)qdv>69a); z4Z|J|%7=QJV$6;>IpPwLgrK5JjsR&!6V^Rtvc$caKP>JeX^zx{P*Tod-M8qmke&_+ zKp$3#DR2Rne0)D5pzL*~kVK1kR=i9J__lNyjMqIOftKcpgkPQtu_uyMCoFUl`Rq{A z{4S%n!?wt~EU&^=@}yME_i*g_ff8NLL<mn}#G3I;OF8^~FyHv-3qRt>gULEnjUe*y z_?fRgwR~p;o-ZBW@Qvp!AIstSI8b=P82__5@ZruOL0sV3eb45SAYn7od$cR5d6Ge~ z8pqyg0*+N7<&gYn8pIesqTkd&%|eCxoWnxlk|=qiA35K0XE@yD-x|91Uoi#14JQSa z<Y&!7-9f2}jdc4Y{a)7hjNh8zPn1Kxk>(+>d35?vF5+BlpJ>pXd9B5WA@5rN8{ZYa z@rpu4tjUrq_S+S|e*S{JHKe>qTz}t%IjUQ|wI<1Nt)jJx+wD56bsidAQUOL#pmm0| z1s%+LMy5$AbXlT|(y5<4L9VBOOaX;ww+e-F42w5MC=8?+K(_g)CCKn_gSmyGq6}3C zk|ic;1EE}sXO<^#`D+Oo<kn|g#ZWBe?`2uXy%0v9g5qHbaX9t^K*SRo4AK<>)}8=e z$$*ss4}z4se|f%hhm36d;Ua8O0>B3m7$!3IgO%TzM~C3?|Dfna3u<EY5M`#eT_H!V za0o%q;4u9;3Y3X%A=ZC)0^}*N)08J~-UGM=ZOoG67!z7YHcrme9)!lkR0l=}5&v*I z+2l;44~ktJZ+5vm0K?z&cLzB%(bud9#G8U2ASe%}0L~aWydwuPa$2xVcA4HRAfr9> zDDDhd1fL&Gq~qrxg!%ECry7%aXDINdvFgKE6zKX}pNUAmJuG7BF5z(~r?UCI;l}4f z9MuDTH$4TKqOt9R38;aSoJ`;`rcScP&r=ZE#*f0hO~D>~ToIX+FI&bxB`~5fp~iwe z>w-|;6I<EGmDT-@UUzTf&E1-p4cOQ&vo*_ePpbaZ8&dEb8b2I+Kf>qC35gRp0SRJ^ zQZl1A`#y@tbgYL=9uVMN|4dn${)wkVSVWxj;1T6t{`tS+c74a!ufJitU-9|NuV4VF zEV%Ex3VrKKF4OPb1gY)G&`yK_bx@13X^iekcFhPVxT9@?1f_Y~NJmIZwNo@ve~j}m z8h67tdbX-~vJ3?|CwDLe!E8OBK7H?D2_h>M%i|vRQs~@iWR8<+gISa5x|VAw1&lcv zp&(2xC_GSMIAUQuh>6EuD3k_aGJ-`ECEg%HQ^x2>r~sI&w5KH%c;?Q<{3@4ewoSpk zY`Z(MX{~(4;1Bg=0NjC;_1U0&2%Zx<GcuWy0<^yAHqCfM2yhA?7aJ2ijCrNQKeO<q zGh=dMIxu^);Jrr!9>$%NO0V`X2*ugK-xcS06fgFfm<qdd(&>W~M=0LQ$Jz1WUGeuI zxI#|HytJWwL;*i|g1;%OCCpD=^5o4Ald%^~zc|WH_XURgd+(lJ`YnYb&}Dqp01V>) zb@afu=0}dN{Cl6{u+y~zEQI!q?gHO4!Ra>*Z{0ypaZzWATjUo}KN>>^S_v~8*8g~y z8-4`k{b5DKlZ)SQZwwp~h0W?Wx@Gp9DtT8Bk^nN1S9qD+^sVTOeV4OZ#PYAfSUu7o zjjn$KU=e)q5@TI6`I^RKejmDqcuh_<4>2oCRM})6P|eRG@--stQ*;nmLjMSznrr~z zo*JNh`ROOrx+4*zq>ME!*!CTrD>4Y3L$7vaCON~i)h$WOGr4ur+_Wt%834jW2;%yf zn3-BH2C1M}I9m%YlHd^1=f_42;HV2EXp2K?HRPO77U?pWv~NIJ)`38JSd1WtgdzN( z7#fT`TCrn`BbLeU2?><gdmxN2546k?xdstSEWU@=4nZ*!^2}*m6uKlZOk`<;+sC06 zk%*b)u%TwM#gxYx@536SAa>3yGng{Kd2oNl3x;@CQW{|a7nZt;&V#WhJs$xI`-gga zgF_(V@GAY9H1ScDIw+1nl(hs>j}O5U4Gj#&EEQ*C!rZi@{^J?Y#@+E(SMKahlgUki zBN>c?0C;?Jc<=B~VA|>Uu`$CJj)&h8#<~ZJkMn%z8=XhTJ<@w-&(UMV`u9FZ5k8F5 zK|jymH$!X)$!RKZ1uwqknR4Mmbe`3C*|RzS-e*=Pj*5lhm0zc$@^SoL-Z@BP@MQbx zd~9YT@a)mZtO$UG?fi0tdH1nLj|`0DK@dEY<$N^6td;4QLSuZ{6aZ5sgCu~_tF6Ub z_<}GR{s}*|^F7#d#}2~Z=5Y)U`&d485;=2(PuvL-3>!+hnn)(7K>)-^?7c~zTh2kg zMApupTQjyRdP`JZM<dv+|FNlMNg1h-$NQJOpm(5ZTsgrIh5Y~%+eM3?3SjAx9*CyR z4_`pJz!0`(Nx>9W_Uk4LQYx+hq@WA{+Re$`?b+S#DJ5O^h=ZhT2_ZI3Ed{X?{y5B+ z)TNWhy(SC>f3(eu3JJS+gl)rAs9G3dMw3}flv0(D!e#<m1<i2l8jJ$rI)n|*6q0ak z9qi5p%E=KQ=2h_f#`|p@E`Y-R4i06Da1QK5I(Z{>`~76V@Snd&-(lnSKF=$cGWFe` z?mw_sn*J6_qGWM6OD3AvCEgmd9>&t5s2CTAV1AID{tG?f_;F^o*E43#LTY|?{QB%( zga5pz&xO)Z4rV=eC^v9s9iEF*2#Y73)A61$wOPoH`OQkebZIQ<+n*zw@!ub9@<-wO z?8Ssw*5_}Tl&E<vLu5yd?)Rtq?8_&p@{RS=lbh@>hKVkkrmX7<?~5F4@DiTeD?gBt z8F%9VG+R3}yOGC$h8yjB8`K(<nH<0b&SMB-2!EM?t;q$ddK_F}hW`?gpDoi`MX$RH zf7T{(!}yF)oGY51g?ys7`<buoh{6N4S$W&RGYvw{UF8pfC<nrXwv`{8PJkcf%HY8! zgDmXZG<**LWjURZdI#!`FQ4DgA)fWURXqSlCMid$c3}p+`zBcn(3D85NoN)Va3%=H zf^FkXafr!$W8-sKB$l4CCeUTig10z3XfU41I}qF+hK$4d4M(VQ2vxWihM+Ma06q%i zv0pA217eth;KJIqJ%0cW6&i><=4@`dVfDIuIgBefci;-9UAy28->U?R&KCGSW+hTP z<OLr3m;^&ye4M}k9d3!VK3!z*+L%%f37zvj4r+s&dqQ|D!nO{;<O+xrF#&A<KX|18 zxDsRuLd=jOdL51?0O$Q0Qf~<OS@0j=72(D_;@!F-lOh<EtQnB=haY9?k&VT1$CTJD zlUPRPvV4;Je^2_x*FVnn$W$krVB#BgZNB1p7Xv+>435LT9AA0R5dQvhKu;FIf4A2E zxp;qm^&nNJ-wslLnhH&qj!)XJGYSs;wHyW$n(o1YMxN<$-2@1}y3nTyM^oq(F=ze* zND0Z<aG<@32Zs4h`eW1#0&g30(@+D4o+>=pkI-vJuX0$O9D^<if847ZKe3+V8Bg;v zXJGP_q~m(R)21|-$3;ArYRox{>IViZUI5-ZsP1|?tA2B6Xg2a8;Amv>%^C#7GU@1z z)bmaOf;8ay^4n+ZZC7ibgP?>1$E+@oBW03GfwJgc3})zAjTjSy9(0qJ73=AO)8&Gf z*N+42j43;EK;Ibb5yWASqSrwN49s+_#SB@S(}XCtxd(uaELI)OtY}>?2dtUo{Mgg+ z?k8*TTO;F}IL4^SW?9a27{vQY68Eg<fe@wcZ5V(Jb~%BY)sIWXM_CqdsAG+L;J6f- zzO#@=K^R$`2>y)dLE+98)>9%^@?j1MEjnX*SZ#Rwa|scXDF+i#0+DEuDj5h>0OYS5 zmYqL2{?DeA5st(>%1q~ZL<TR+)yA>)Ju?1pehx~Kr$2%`!fsVFd}JVVRhF_PtH z0V@093xAkTocmLpHo<?Kn{k^!L{CrBee%BJhrjt{U;^Jz28Qs77d1)tcf|SgVUG6) z911)tGU(azb_U{4K26edl!>@{WEKP3@fCu{!G`sBB`?)8Odfsi?OyWtx#CE1+Dh2o z0B0CL<EGhurUM-jC@7=)bMkDOaxU`&OV$_k8o-+DC$9gdp6=fJ1ncPNiVEP=Ps7(d z-v6*4`Yx+9i=IvMXgbfB;HZ4X_;s)IxES)cQRKMKW{n{`$@Wezm;3b!)`JXM>-heM zKjNpK|AN}YwQq@H?z$nFY*|(m72rhVUGpq9W7hiV{DSo)N9K-2k4}3JM8RRghCxBF zj9Uik`5nqZr=&W)*NBY66$F89E_I6;X-3LKGy&xv1otHW9N_lufS@>hbYn)$d}dg_ z*#~0xW-f68LplZ`wk&_Zybwo*cpzihbJZ|AcWm3H?(!^x?8)LELIL5v2WFze!jH1l z33Bh?Oo2gQVs^77K2U?_T^;LqP(w!8gJp60eAnLJ@|5I0jILk-xqMDTa2eAKaHK)d zo*ehUg9G!A@1F4g|KATCeqzksyg~s-bhS9T4vzTXq9iPTOw~eN)18_rtvq7}!9+k7 z7K`g2o|d=>rPu!jxC}*uk5?j49-rbTU(>u}lfDoL-+2<_0eTa~O;h>Sy!i1_K%U18 zf8~L$+{W1koKRdeUJyw&u5cv3h2&kMnXmwM{zQXSPICaDCv>`Z;VI~CZ37QvrZkO5 z;Tz#)1ncT&^Ck?s=O(4<iAbx0I>24s=g^pc^XDe01`orOM1J&2*;owsl*&SNo|??; zh6GE65hEd`VPG>`sryVxlNPVAV!&x;7?UBdfB{(6e|TdQ{PxCDTLm{IRTbR-@DKkH zZ`ZGAy@6DaGk339fBpC!mi6Q=dP6Ex7`%%f1--<)1xd0KC8lo#V;eYxC9@tF6kHu1 zUvgyAj&%<V4-?WoFdx0qh2i{#9P+}X4QkR%z+^;%@nQsoeS#eEGe~kg$kX=+#;2S& zhBbr{1|F%zWAHn&kz>xnV73t(j0jceC6ZVW$dSqtQ>L{}OOE^SEE9TchP4;AId|>? z^PWIf2>>~!mvs$pVL<lf<>ic@{stUDHg)Km2xwRy&PM=HhgdiI3|ZSy#Y-)`G%TIz z(f>tZqY8p>Wdp~ouwmdj0?t2toS7fM_yF=p&dPp0Ft~$28#v4X4Qy{sad7>?-#0xU z1~gBR?bQ5Txcw+4<2@!UW=RZF0_M;B5)S|OF`UPYM-FWD39dd~n?(`-E-d2|{Q18# zciE?B^FSDDX6wTXeXy#h^^)@pfh$i#k7W?x;V%mVa@_n!z(pP?OhQ8hfc5l{TLLdM zL<{fdX>Wr8Fwt-jWvoY~cM<BWCxQ*7WXOvSXb%sgXA_i%m^qo;82fq5s{+L`>;dVK z#ICz|;1Tg~Cc}e7Lk5|Qbg}JW4C{&*_uB>F0H?2-(5<P`_;T<VyGub@IE`35m_b>D z-1p}{0oss85~U;wfz>T+r?SC>Hmk=#>oV<V#7AI<O^yUJK<R*teT!qsn{5y!-B9y7 zSV@X`EIgZ28A=RA5P+Vfsm#<oBq#-wV2t=le%~Xx#%1!;OTqCodB5U)k?1D^H7h7S zbYPq_p&3!o!({2eR3eiUn6_~D;HE<fBfs`2yvDod-^PvRsS&=xAawbcbR6$J{rK*b zGA`#A@m4$=nt@^J1CPs($%*>N0DQPBxLXmx9=%M5#m`3nQFzY^@lXQve<mf(f^cLv z6=a^@%oz0*&yeyPA%O85xnLNiFf$Fm=Fi!_KW@@<QTAl|vuOC{hmU`_g87UJ1D^4d z**P4>bNryNeslH*v<mO=F^41};E`UxHOj#}_Vq>FHJ)I1On(bjKQDh~hZ}%--yDR- zKh!%%#_EhO`-46{b4Rar>Y696eyg5QVU}{J;+oe#9qJfj)`O?%ngY!*SbNX3$w-`X z0|3t(N#@Bj{;2Zg;p5NC|9jwVL%}jw*zxUSEta@#o<GACBWoGD4|x^FlzDZ{aUz#l zQQniygTq>*0YMn=byz)FroN}7vg#tFM543RA!aZUa>^i!g(_m@vJO{+0iDPf$~`36 zIVhhn2}kT9Sgf4LJFMv<I}hZLN37p*3L}h76~xlUHEcqjogj_z>p4dQ*$#w1+(VJc z4&)q)U1UbH03KIHHl`6(+>t1xO-RfoRYQ1;cg~7{{fxrN5i~N3qwC1#9+-i3gPeyL z`2p;WaUuc-f*@P-;~Y&1>gXWrk3cL{C0(jIEb(;W7(t;+DPvg*?zh{c)bl+y$Ul{e zW5-yO*4}|^rHIqG^VkE<2Z0%^m54L$<+8ty4ERA(Maa(AW^n2r9_RX0eg)h-`eKg< z1UREauv}#gqnP8-Vi6n)44iD_Fn4FfhjkGqCFSWSz=}=6K3y)kuyYyqZD^>z6=^`# z<{&iVI-YsJJV}ul9ASBQcACJGPsExyw+R!xR-U}pem)py+{;>K=Er7-wGJ<t-weRq z>4C56ceWxwYlXYJ(OH{?B@2J)y-8cQ`xzs;$YXrp<pvI}ai5prA`d+@ZbS4G1gY#6 zI}ctLE$_Iy<62Pgr|mc*(%{WtfN01uS6VoXN#c>9q|L4p4LBP4==&^LkSKv^@KJj& z>%o2OVGvUYhH=e+wu6r}Jm6obEYk{OGX@9nFpVZ^a$y<(VJ?dp*L&bcff{+b6t=<+ zg3x74cf&jra<Ig|#WkWe9A*vE&iqv-+W2VM&(`fXR;0{w2-F94V8Go4!(@k;unK}q z_Bk#r2-t5}6k(|8_mRj+)6`?Ariazp1f*ZJHG<Od6)}iA+*&w}$TQkJ%xrKX^xn~^ z4;1SH!IYp?#Nnvq05<?QpU-&v?JW?;^lFEvPvu}SDd+S(nAo<z<0zcxwfHkM9(opv zF&uX&JE(Ya8IHHc;i7Z%aUMf4Hc!D3kK_`KM-Jbsz?_ih;MrlhdFoMsfX@uf=f3j< z|B06bI{Ow&oxKflwZ{u%?Z-D6hd7Qib1nPjs6+)}Lh~)(PQDZ2Kk$$b-yeT{t_3(} zb2yRCAsl;a(5Fxq4Wj`SsCpL2+<OEr0LGajCZtRZ$`#o%t(RvztEEczJol;5k37-Q zf+7eIn51*;teCKm8PG&wI{{(bhwwMgeBY)(AXh-h;gj_YkI26fa2d{5B7Zre)}W!l zGp64$c_2(sTQ!6TekoJuFbXFi<t40B_kpAXYwI1I?Pz+v%M%v?=03v#MmnV54_L+Z zivpl6ZXdF?L5H972Eg6vgB=h2GL0)f_e5av69E@K##~4zdo=Qn3~?A>v+g!!?jJG6 zd&qNqfnvl#2XsV#PPES$8Y|~B50r|`iNAd7^X;z(V?2KE%mQOM9-9hG*MuPjL{8jw zeqqTP`sq!|XU6`=**zYb;ppA*%{5A9KSV3`1C3aJPasXwqihQ~KHpGEet2(?`+DP% zu|M7~dqm@&c>lviJiB2Q=+igHehyK#9hD3E=H4Df*z@VId$?R69q)P6EuOq4cqtAD zZSdlVZQqjSaqeEm$J3?wzR9H?GM0YFi*C304N<fYmP9Vh<a!t@3XEr9rTLwaex~Ie zfN;ct@&Df?d!OG>JQ>U_Ks&<4Xq}-+JMvhUmbTqo%64xQU_>b1t~`%*G7mxDwL_lA z+=Fo!J)y8ll2P?#AwuUhCKu*aMiBb^M)GasXOG@Y0He#S!>Zd&+G9jdG*z6oMABiE z4{yM{S2Rw4r5Lgfb1<)qooeeS&ZDI;Ge8NYtjNn5Wm%DP0TH3rD^g<I?^oRS8}@xe zZ98^tODvx7BaayJY$zM^6@|91WfH{-ECQiWaLGhsXVo6Yk3g8RLTAchTLN(GK1J98 znI{Xe?KoVD*Qbwd1RbvO_%3qVXV1G96rP;aJodQ{@5DgnIMtc75uj}`{(xGO+kx=l znmNpJ{##u_{Ea&(TAdcF8bs&({D~p}K#(}Ni-bugB+5VrxU~rx8Jd3)g$?()9|ev$ zGUg%*5nzY?h|Wd&k3BbodlwgwJ!=}Zg(o6cjoWur7%=a*Ly#HK`X$IdS=E6(%sBqR z4o`=O!N%t@aP3>wAkl)FzW4tfapQ?<pc(}Q42aWw`U$s=pGpHf0O;NfV}g3~a1oF3 zqA(p^34D7ZVgKkbp%?>?pnUYLgy*N_KN&9&!|YQz@RXx2K=b>Z2ZnV$Ci%&DG_7&C zw_Q<ownYPeYIU3CE$^4JSh~7?5rooIu4;2Jceza^D8k0?THD7N95jF@kB`Q0W4?+H zCaA++$y)lvb7JVHM`+X7i+P_E2H~s?R|*n&UYIV@y&H-qvX&$be^Sb*T>TuAlBDFg zsZbS*T-v%*XqlT*kp%ZtJaq8@AKOxLEVbF%;uKb<01$Fs!^wZ5V4W{#5EyUoUvRs> zqxXh=-$eNPPT789Fg4}3{XkbV!PsE0259gc8Tdzc0TO0!^gl6H|C6S_214jHBT&~6 z=gIlR<8}Yrglk;(yrjXWqR1r&hNA~RjQV8!1H(0i#gTeQ6Y`jz+!%p)WI;B=S*{Pl zv<`>yoRT9rY(3-eG1BvT?Kl?3;YT!J<jl_9b8xrR5On04vcJz7-%tiJ0jiY_6lkyt z5&*984ra#F+-7jeGrf0^mF%P}1l`3uV6gNiHL=W-fo<Ca^-OuweLT7h9YhN3C|hNj zv(WPnfr{V*BMiR|1bOrp%_#J^ehR-#^M7C`PhT+hX$VP$mg=sPq<RAU=a<<8ltIy6 zZ8$=4QE`?-a6Zx>J%xcEQ1bBQ5eCB*{SC|y3!3L4zdp%8_qFI9CV1n%#P>2rvao~Q zl+Z&-vkPXU2{~fcyUtnG`oruW8JFiU9cSb;PEHd(SAzdN1hAcgGT!7gJ1GDWzYkp4 zaR9+{DEAG%6<~JQR<Fp{ahSt=2p%FB|AN;*X=C7^k*o4z8VCI_7?m4(m&3xq&~T+D z^`(TA7nHOh=LPV0Xct+^NO>eIPKsqT3WBV0SVV{sz$`K;rJ`+p3DA&g%7mO5wN{)j zFZlZQE9$<Xw?3nR@dt&GjpO5*XTuaVpPKS+lSe!n@1-OiSj&)wgBTo@cqA9iENLeG z;oh8?C?64nX8^^aeMuZgh)mVA%10J3sRK0T??`hP_o-ztDIi1GJHt4RO=G;lR4l1R z!On4`;<MxLxkPU;m}liD(dBk{qhGcAB{yRxU=BB0FMCEv{KP;o4tr?pB_vQu=z3nZ z@AEW{{!_QuH1B}OW7kL%JOGPp5lL&}Mje@?IglYg8{=RR3%zw;Z`^MgFEGW4P~(>A zzBy;dP=I}PPlVHhwEvxt3yk0b^;htKi8V@jsxdsi(3l-~y6o4+TaM!RfisUE0heWr zgCGH5hJru-0OxsB?>%6Q{5U0Rs5Q;;FgXO;j^KZy5wP9MU5<JVEv^msNY8%oS^~G0 zXWWSvx|N-|dtKe+))_TI=^-f-GmM^n47U;Z?)<I5@bNGh4m<?I?d&TG!<%O-@GlXb zfzRk#I$PJx0qmSIa<Y@^fX+>5RAJ4qvrZ8BmC^1Hq+@o$z|+%Wouxh?gj`5OF2I;r zV&uNhKx6AvOVY5(*Kh}N!ukA)vYwFBBHl;Mt4Mw(h|M_|dry#4;2+Bl16{c?5|k@q zfEZbwnT<Pc*B#q-!}a!6&fsYs<5V4nwOIBs69w7h>{W3<?(?IML4MF0DX(N{?TeH$ z)@2n1V9x#Fi2)8GR$`belz`Te>8b@G2r{<#39Sy85@3aYQOG^`aR+Fgeujr6H0PLz z(TFQbgvgbBcf*e(%RE{Xz(YPln5;7xBibNf$2EJ-HbWWjx2*kV5Qq%+$>*rUu&qq@ zRttBAQWAwx;9ryr5|MP%3Ram3{peDhW0cdVP9y-VGc;637b4KoA|?j)23i)!Kkf|f z1S4MV=3qQTVrN$j0@(d;vUq_qEwSvREYVH?bR2%lzmGI=P|l77>rXiXjwc-DXN57+ z!c)a>UZ%j|8R`T99bP`agddelXM$nR2KNa9=iqjhw+1>^_&Uz`>c{$LZZY!!1I0sg z7H#k%N0sj*vzmDlh-Uqeo(?x+we5f}3d0Gwes!8*oR?kYhwu6EI++j|{V>=PyMm_Z z*0*|T1x?j8uQVT3F8jY7gF6J+ysM<jLx;JN4W45ybJ_-@_6}~FAD3%;nbl36pmBF^ zAcru2Tao@>>8@!NLF1-nckX{0+d&a-Gk!iOoQ5B)8Sq_%VkreB%Ykopu1q35Unb>% z*I`qGV)V=x9hCzaaxU%j8G56i1V)m?=L!+{U8;{#Dxh3kq4M}Y#vD>g$YsH@EGVU5 zUCwxY`6%ZcWbK?wA=na+bq91Tfk|gZF}^n#=DftA2@gT$7RzI2lR)P@Ju`hA@guay z?hTD9FwBUcDv+jmN5K*V79H*wf6~LylNI7{unh=m7y!3|l%bNXU!V1*P5dM<vZK2# z-fO>`K>vou^EBr8^b=nkelQJ~=xt1Vcyd+(29qSDytqr#jaZC(hBssuyhD%#hR$6R zZWx3H;sj<w1As(mbsHW9Uwgu7z2J?06E>!Un*a$mQTQ<wfw4y;tRVRYBTlO;#Uu=Z zkR6|~X|n*6`(sj*0zb@E?u)^v2><6w$Jo=5Vu&MNM=>(qI9_oO3Bb`c?QU3$BZgcI zK<jAjIm=I(JxGt0EPZ$jZFXcwY-0#+V}kxW2VrM8Ap6pLRfTl!E-I)ts8<vP0QCS- zepKOy6+4gn09*%E6m+w=I6y%8#e6*xkg^C)i)%-Zg#7G-eh`E;589Hi$1%MKo|Asq z-*L3A!pTnAW9j!|<C?B#LaA$hfGPQMWHvdjn>R6q_W?n9ROZeA8pIlw{D$FiJMyN7 z56wSa$<f7%cacC@JqAUNW-n#+T`+~v6<e}r58JD}k&Xk?6THy%br<}GgSy_%03^&% zD5E3c<NAV6Kl~$>B?&L<ZO9(?cx3kgkSdK6uIt<r<sg#T@9n*zRSC7S9tm7}mxPY) z8x$678>Md_zw$u9u;BT@N2xU<zKwTedA=N2?42;InaM&91VsL=F_v*<Vv2u9kOq31 z1om(dn*=ifLIc<ku`?_q8jPMEhYn~Spf$Qfd9Uq9zK&_ewl6jxgeg2{Jvv^5Q$%eo z|3e?Ie-L^$4na<;f-(yla3fVRC_KknAI~B;$cTzadH`4};AD0Af&+;%w)+*!diH7b z4$r8Ky}a%J)0XpNDVT%LYIiXN7WW2DLMSs3f^Z9vh_D<zGs0&Q%8wG=1m`@*p;*p0 zkE5suBRdQd)_zO~b8)B^WK=?I{Vwz&c^QGD=+UWm8X4)UWDLt3AH6_=5Z662i#tNk ze|I_uVt2QPkd)1Lf|V&LM^PT$dEgt5+$RX!Zz$NRGtNq+dq#~<4uxq>AhVYYIv?+~ zogp=j=cB{tEf%JdTp$cVVdut=B}toi)}yUWF$V!mB&VRlc$7e?Gf&2V?Eynv?&i@1 z;BDPa*kmu^KDy3HdjcfwAS?d9)|<raF%GYZ`!)nTY1@~;W9&v!yf!%G5$A?2H)WKv z__G2}6SDGqRKdMLnDPFHg8;@P=k4WyvjMl6!Q6y?IU(l-lrm213n-H+XN=Z%a2h=e z2pH$`Xj>Eu6nJ%pcWxBAX|<wvMyqnJ&+UG7MQtf(q@3~k`kjOTSe1a$y~)5}FJwnJ zVUmjML78*G>>6B*Q2~)5Pr~Hs;qvosLEZ~U<_pukv4+){htsC(bx$5VC;`VgahUTU zL?av;o)Opc3~uBS+;K)>G`i3QH?v-h48~!5z(032M*&M?2F9qOU?jGk9qWmx7QG<i z<=}x>6T6D=kBWr#ZWtPGg2Y@0^N*do;97XfSzPbbl(}VeR^^lknTo{xlXwS+f%EA_ zx>Ba3$unJ1GYB`9fkwFE$aeL9{XQj8KqN`BkC>^IKyh@ho6t}0ZiOp*Vbk0S3LGOc zG5;Qco7l5Q>vX_+2rLzt;TFd@6~y*MJkr}fDF|`9Pk2K|)5A#2!fs7-K>Wi2Sxsn# z+VkKE3TQgue^jV#Rly5m_%^NliGXIZVz~Hzgr{csJYzjB&xvMCv1f+<6m*sl_A>e+ zt7aK5h(gLtsA!cl6#snQB$jb&^K1`%)sM7J143qz3lAK7V3ux58968CU#9rP(m{90 zcU4HFslMx=AOg3!U3;gw7mCB)6o}Taw+bS${5x549^g4h!EH?hvE*swyhP<dLXU)$ zGs?2ybP~7tx}I^rUvd5V8|uCz=L{##pzQd+2rJM$j;}^|^zo<)VNqknwtsWpgFa*@ zt~S||4&jMkub*+RSG2YXpY&G8@@x<N04772tdp<Kx!XPgaRsurgwpO<*E3$zcPNHr zCajn}iZLUb^M!$g(ZVEH^i~-u1px&dkarfg#{){@mk%0y5dM*%kDXJe*F4prF#yQ( zefC|ns)lF8cT)js-_v-X5xGy;7`c5Lh2?<Iv>s!?ajgMNJ{`MLDRN%k69)Os-`RzN zl;#~Z*Z?nER(uPa%e0S1LCOXiYe`eD*!N9;AC^r@3Fns&xV*d~v9_KjJBK1mysCGv zSWtjVhe~rj8^B!<4oNd)HO>10cFRfrbx8!umJLh*(pVdjTe0Jn<~r0pb%o2smTVfa z@@7h|tt0FkI4G*2j#)XJ&)Jx?2-eVE+Y}Q`P-|^hMN6%!9{QzshPiwFw9ZH)+}%p| z<f@1(uH?gEZvvAL>5T!>22(svWt()TfMRUOH;)EPRH86fr6SU-w`~nKM>>i+k9!O3 z?F39#x(o9mOmi+{?`<3o?9qg%TIOUHD2ZT;a2xPft6dc{Hx8mO$qB6{v|59)feG)7 zHYGMM^X_3iW<AH_c&!PL8F0)4MkZ{z@eurMO3)kzN-3kGDaDU@>oB^;>}$?Bi?Yuh zTiZe0T>%|6{6Jn8lx0E6S>xN}>#ubO0OVZo^7;`=Sv7%AyoJfm@8}G?Ft+W6jD%BO z1?~vRkO9`ZjT8PI4O!>M#^;W*Cm{IX^by?^reJLQ9oOwE-fmxTuXh*xk>;KzH3ymE z3Md{uP1AD$pYu{sN=6}~(Yl%$V6sEf1_A=!rqHm!1Tn>dp8i4ys4ym1N|+?+BxkWj zK2CgfkVOL|57zB?J_^x!(k9R%aP_yTo#&&1;)#*YX5yWsOhmWb6b6`(h)=0jX;>85 zYg{8^Vt5n38Y`U@Hoq``;@6&ZV?u;&U}fCBq16q&)*y5OI;&=COs=(xR>f+m>VguS z>3&L_;g2yR`t@(hloHODSN!=O|2J_bmet*w00EkTEK_UPwyVOc11|W(84zLZM+Hz^ zr6LGYvg9!7K$ufh>g1uOiBBd-t)ACBK|D(s99gAg;0^(x5)30z&0ORvfZcK)Nts=f z+(s3~_{WTqozCN0WJE`7h}ippCBgcR7NYN;llJgL9o@c;$&rT|Jv_1C;{@k-M`p?{ zct<%Jh7!hh2pjwM5i~(95ne85yuQAIA@SI4uejZALGYT;GB+||DFvs~3PXuj8|oh1 zu3h%99lTq@17t38+_YGs14iV+!+N-PXrfjdE^(rfA7B=*t$)B~{Ity_pNI-|{mM$x zOrXlN`(*UAZs)rYk{!_HhJoCc^bGCZvsCc-+J`cbazZYWY?n(x(PZAv4Vh0sB9FtH zOFN~EmzP($7jS;zS{sk?lPa>7;Z6+Pw|89M<v=^bdkH-(KsSXy4g7hEiYiYCL*aD1 z9QU{xH_7Fp1et8(xGy1>W^Ws|wxMyArbLINpCN|`M-BJ*n?FWy+;l!>G)si@`2|Z^ zQBtyo1%UaTO%t3XNs!}?05(q-s2t_Ofuq<3)i$00ebQF&<hyBccAXCz*i%*(-oayj z55j-UGj4M9bQm+i^oqFPSrOpl-$C*Y;ZLJ)y=_up?n6800G?S9aDpRD4L`mKhet4& zydOmFgAwY!VZUFoZ#U@x_CN{04A#5Hm*RYE4#TP#@O3<U_zX>)D5373@&5HU{P7?D zj6eP3KVdn&f+22yizoNq(R#!Ec9nOBWHEW8j2&}KtV+SGD~DT>7OE)`GC`6HdUto~ z2<@nWs`1r9H^XX)r9&g1prfhKHbF12tL{$cZUTES*vO21?;-=%xh22vpjd^^Ln~N} zxelk6tv8H^@tnU~?-}?rgz_xh;Cv&nLs&`F1Jm+34MoBe_{b8=XfQU6?@f7JmV(z0 zA5c`_5J~oT%5pA<c?lT6wpY|zL3u|m8GEhRw!7l2g^~zmS#WuI!OP19r}GJ=WPJYh zSG;|FN8PI6S&}eUuZHil)#qNObl6Y7j{$4t%kYkS<_ec`GE-2EUdEod^=Fov1APu3 zCAG#a`Omx*%w7BYv(r+^vL>U?)+PJ{BD}o5Vp&fB5%#*FwuYPw*7f3D?uZC=zoYJV zZ2KLx?P%Pw_YJ4h87VE|f~Mq_e(xQ%iudYvyCH2GN-mlJ3~bvS+jbWZ7h6WV%sG*) zE2XS`7rJ{5hzVuM$`cI9)mv@kV|(IEai~*%Dsqs6aTgClDWLz50CNL3QFc<w;`Zk% zxZpR<)M1|9(Rv?FZ*jEwbMVP1PbUB$PTxyagr;QqVFOG_)#urrHfxecVPr%-TywKz z`8|PjlnC_j*L<3mYa9NzD*+hba)ssD5R(u#VP~%%tSag?x=6SBCnVtbRB)ZM5q7xG zECyT4;1FX!IUo&<4YY37M;8_Aakj<~{oMyhPTs<xjZW@AW8y9-0rZBloJ9arM%`|x zw|7Y_;@}b=>gbrA!N%Q-3R(Nz)~6I^jI4LUzyI66;NSo4UqDHi@E`v85BS3$|Aa(Y z=F%7m4LJchSu8Rt0b|_+(o(|#ClfZ#Bw0cgi3q(BGK4vaTNS?6+xu7S`_<#2_DSlU zu#z-^sU4JJirk3l8GPbi4vUs1^q8K}{~4I4bh@Vs*0{ly8UNkBBY)m=S9GtU!t^jN zjQi*0twE56*N%U_AB5BCf^}Vyi-dm4Qcy~n;M%p3&VJu;z20y+t$2OC;KPSkam|;E zycADn)8(Kw#{IUV)rQ6+hMsdqZ4FDwAhL7e3A?q74eQQX=5#u(`1s)ih!`CeA3k0{ z1iZi9u-z@B)%7&ppo|B>@5-UlyTQNn5Mt1KmsRpzz;HYp5HT-+9*Cxjvk3R0`1sx# z-{CfD=u<{c2}_YATIMbSx;4~R!4P~drAUd~BK_+V5!Ukwy*Jdh<F~KBVQ;&{^m#|+ z<^tH-hj$H2)h;<CWhtm!v6K}=8C%_OeR~ra_Kv!18{9VNMU)*4EjvBUc;?=xpfr+t z^-3<PY&{ACx8Y5*9bdWBCdZyfWj89J#_-(R8_AD`I%fRf^Ytfe^)4>|D6<Z~m|^Ss z!SB&|5ZbN+^zQt3Sr*5S!ps^A(kE1#Wj2OjTKltc20+b~8?9NBr$bnVSt}PaeIdT{ zL3r^1=FkO{z@AEK1fl%!$G2fNX*7`$jvu0IkjHu>j9lMy1wgY()%D95@02?Xr2=;} z;yyHhU}o5<dGqN`4hjds<6cGAAo)!WMuxbg5@Fa2V{fQrlw5GWygKo<TCv@(xZkg+ z+YPN%)cuB5Hw^7sl*L&=I>0$1Kp=FxHKhb<gxYTS%m4fz`0Ky^Pfz+Q%YsjzzQ<`z zSjri7NOzuou3W3Nqd*(@l<sv+uZ-8x%SZ~(W+MwarRMAv@~icb{TWADSG;SQq_ z2M4j2X-*-Uu%iR(!fV;+M0eaQYReXn4;<)h@IMtE5o@fhEC@B51p|_(=Gozc!9|{G z&y`Z}>AUZ7I-OCLf@LXqxty^s8I%N`y)(MjFyHStyuDrV>(8H+Q4=ngS6p6SHQQU@ zCDw8WcS3K#es8#6H{7?o^R-;W^=-|2x|OhI__-3h#@e&ype!0MO-a|)8}|K<y6*#@ zz(61H%$i5yN){<DyW%Ozr3iS-(AWE*$Ejy{*vRlAQP$r5NvmiGMA_dx`eH;^y?LW7 zM5gv+@3`M2J6wc<vvAM<sExsWlW|MN+wF#*f4kwnZ>Y7RwuaWL*7ECoy9r}LPNUf@ zl7unP357dqtGM02szu+0-n@Dwuw)bVQHeYl9iFp*pt=&IYXY-o&5x5~0XY2p(j>9R zb-{m`koB5iX2Fkat%4791RCqGagK70fY<XUe7XJ%(+i({d|Hv^yBx%z`Dxnv|Ko!^ z_9mr-A_)iN9gsZxoGjTSJtzTjFx#LhEs`K^=z}ZlnHDkRo-s#VZV-r%&yYjq@!R9Y z`1j#%U9f4DCYT?l`7rGPao+>CeumH)ioobZHulWQaqK+%;3Bk}v^|%>j@Z~ff%`$( zn5JjX8O01?AU~5|pPvlMi7GE1pVr@#GRAdTaJgK-y<^`u?AwOh`&Zm<U$JjD)Vc*> z5=B+OiQ_&YWa{f&*^UVY^eh6PqXNX(?u6U>o1Cttu<gvAm27yNynQBn%huuMi|UaB zJIs0DPqgA6-05&VZ{R`vatt?v!-g=LvF#6D9lO=`FFM0$dXfApxn1O2Kf)`vN^v9S z(C$=T9K0n813ge1_kD9%IvxQK7OSPiJ!F$(l(0nwAQ2&hQEzX!tQoJTGfw9-a*+lm zy{X{WHFoZ3jnNw;lO*A>Hcd%samG&$G!?3?W4~2w*E?#h*joidtk1HDi#laODGSzf z#<DNC-8bB>cbIjabHci=;-SbHbr-9*)g9OCj+=THYU>k>leLufzVEX3T*SL!o}z9i z_4O_lEXpHt%1E8X1E3xSPd-(86m4YCwluB+tj(->6k@f8?L*E5Aofa^`*y?E+iz&S zVOLANgH>s?J!sNo$-4C=nv+9WalX&upg~Rnlsf!`WnJ)cdBMx&BYu1TjQu8xlxM9w z!ked*!?h{0?vjQ4zVW+<NL-c>*5w33@S4C*P&BPauO9@h<#F}aBxKhbJm-izXeofz z-m9iEiWpq_O*9(m+1DMlm$A%A&=0|j`KIYb&n}x_w|nHDGy+mrQ_9(8uO*vA5RW0q zH)dk*&ivwMzUWNWCvv#c{ukgD=Wb;cUP9+Gg*8-Q&jp3TlPYFT?3bP~)JI)qnx_q6 z$TpawmeP5=8dGnT5yQ2~_koZ>{s<UGa~Ofca3yw)+j-(%+#gGrGx!<IFc`cO7X#Lq zWhgIWe1}7Cu=;f-Mr*^u$cd0ID^BM>;1mCd-Wu-rt0)B5H{9><?tXf}gTrSK#Ryp# z+zj%*=U_jJoRXdV#i-D7LuW#|gitFBJPse>BXc=iC&0UNX$(6N&FdmOd3y-&_<Atr z;(IgJEIC5a#W>&<t%{e|S6p6RK+puMoX}gvPe1<+wKwmj;Fc#$xMi%T73cFAr_%}R zx`125cDrKRcC=d2TEp$WYu$HO1!XiAv6i&9_>|KS1OU=ONitU}6XCvhl>3fPpMX+C zLF<hH${-A-;jUF9;Er`!(R;(Xp0vJO!aznZnk67*P`f0e5+zqeIx}i(>SAB<^74Xp zU6FE<rZ;%QzE>njXdvZ`WwnlLizoqg$9>ze-G}hEJebLIr}%0O!>lu2X9jmY8rQ=G zlCy3}vM#uw^KJvb90A%;%Izf0`NM(N@K9<}28hM_%PYXZa!I(oeZjr%t|&1W++<iw z%(Esv;*BKBeGTKp(F3wV=D3y>=gSK&mye*7B{b7S`2jEv&@v9|?p-6UAxj<`mg)ba z#_Y6}R0+vQtZj@v0g!+PCBSIU=p3--JcN#a{1fo;HQ~Sh_oma5x_(>t;Gf28X`a)( zO96IapQ9X{_8#+vzr#=cyGcUWt!#$@1*<QmsfN%6Qjp_vEs7>g8#nYcwY0nq;$Q+t z25$*4CRtrz*b->G9e|#SH{x}(GNRf65Rhn^z5nU&bvId9_wQ%{CipFL_u)gV-RwG; zayXlN-fV{@A;bxjad;QP6y9su%#7jc8<tm?w=p4Cq~s3E5EqTM`GF>Lta@0whAdD8 z0o*+qr|z4>PZHX?Hi}V~V}L0ROk&_sxH9W#6LaBdJ&F^Z!PG&WM#+`WS)U<O8p-RL zZ4U=V4F!b&Z2_#`CA&-Gr#$v7&eas=$P6PLhf$_d+nh5#yuRRaUe(nsc(5)7>uEvG zR%M{fghqBcV42v`Nv}1@-cDt~U;g^<fHL&nMvRd_TA@)<_Z{o9;^W8fKmcynD{k-a z`26KFuG?+Y94kHvISWiXv%8)L&IFI2Z>vKOFxO)#`1I*JeEjqgU};60)x{3AOr;YY z%<#psEa*LXg5T(0V#A06(Cd!<zJohZn+j>ggRB|p=d&n1m&-+~J`!5(*sEB&3~||? zmKEpI38!^+yatb?O0(SEJEO{{azBTWE7Pi2B=7EJo*FB)W4~5=6R%$adSg8vmH||! z&pFgH3!349a~6!=J2DtcT9KC(>m_5a8`iqvzTHsweH@Rg^Yy)T+Tn1P$ZUK}+wS<U z$9pHjx}LF|&ZxU~_B?n-$NZxVIEXHampCX6aOuMFT}o_;3J59Cr%{95H2BX@$QjIP z_4kJV_>YVqf2dfOhEM+&!ax5{;I}tDPXOxK31deaDy~74kB)7>Jwi~JNccU%WnA{R zMWZQvN#lyInLv0sf0T+6bWs502t|uIlTMudCHB)?ZR}qJm-MW<%&Rdbu1MhSWf!wS z+oPe)NWAY+35w8gvO8i>$fh)o>%g#QP1sYcgJx$q00xtf&?mUC8JnYj@F2XQ>?pw` z(l(9ribVK}fR^9c^s+JEVCi@6l3-&D*;LLjt_kASs<_VC1hX*xeY<;!Ud*7kIPQd! z2MzyOHuJbOaO@|~vA)lE(}cP~(eyoy$ZRmDv3Ic>b>lu7mjt2fWS+#<I(h;IMi}7> zIfGd%0}^sds0_EJO|VaMRl=5xa}$cdpa0<p{PD*R()r8Ez%ZJ#jCY9OAUe*B{3k%u zyd6OqXv}DxQEL;dQ!gb!nxw=X6J@7k-*<fZ@&!Ns_y+*Mx}Nd*%V*Ty<QZ@EYl^3q zqOmd_3XO%pT3d~Ager`;ShFYT0%v{M?c4#Y1D6hVc5>ZN0G%P53s*N-ybeltEV&4` zw|Cs`cieZe*1Ni{o%bl6ElUA&1vrDb<8ofn`wO;x$5tzHmU#P83QEej?bZmXqt))X z8e{t+({-Pio%T!sT1l+LV6~)GbE$I5aO+!NZU@{*JidnVP!n86TkvaBo&iQ<CL6P) z6Y{d6EDM(N8Qa%g*3=|c-rWlUW#2|;gDHBlq@wUtF+I^lpy`y5N<k^BR9{fU=fT6G z@#j=ZGrE8KV>b=zcW-r)`~%l+oCzr`d4?zHnhA0;>G$7vyk06YD!5jlGrs@$0dH>| z>abIePmZ&JY<)g%<gq9KE+Yf59NbTIEBeMCV~9D75kvSygv<FmX`IF##g^#eG|J8X zM4Nv$osjTnZsaJS8LXC?SnVD!n`S<g3BatYpcnw5Cpw3*Y|U}J<NO>h;|_+F-5u1l zV4;sW=v*hl3IGNJgJt<fy7g*Wv%XW{(S2NVsSSc)#CDz*hp%<VzHOR-w4v1s0Lqkg z&XN&@eY<13Us1PhvZ5mu(ZKQnli&rg?Kmny%q)pM#&nGFz(HVd9J@+UM~TW?1SC(_ zC!w6PLfJBb2c7qT2O@{1v?=FBg_tM~MYElIlcQO!oY9mZBEnh<KD@plQ^M=Z89)5+ zJwAN=gjRRlt~dPcZ$DwXZMa^qc)Q)TXNJPe`ih&vM-r<2^x=%P<RI{aqG<f6+lq%W zI%$CcA`~Da)e{MnidIK-5Q!3yD1!>QFpgHb?P;cjby>0R6(2u*0t5K*hkw9Y&bZy~ z=v~UIa<Z6qdg$cXHAf`on52MP;`(kXWU2}nEk~mSf>`KejcF7Y98_Im&@l%>GUT<} zoncl7dTqGfuK0SrqH3wAC;$!A0ZNS03c4vuN`D0zr}Kh!S+Q*uzkK-uahXfM_UrA2 z`+dXhzG2%o@6aa7i_$<SF$G90X`?B0iA5<BHV8@y9(;c&5qj+|AiFB%(kFi?4`vMb zSPa<lz*^Kg8Ve~t+1d7aSy0M~Wj&#{j_tNd9G<P(#rR_ozySp(UK`lQxESsa*DY~3 z(ZJ)RM{e8UM;!ip@(NgzX&lGPo(~Mg_>PR7qm*++!@K%9^O|2`bdmrp3D~X``}<8! zfn>(k5-z6;Zd(Czfu<c!iprqk7*dz<_Ii&Z$A3Qe96Zc!`hA+c{xU+RiUTzIou~pZ z8bMeBn)e-MVAR7RXqE#y3Pb&yU9&PPVb<U{Y#?b(BMqbu#N&YkLa2!!D>H#22ph3s z+UChUBCxeAejc^=3Uoo}M`2IV+K&is^J0L=tZo%5o)sN4TP-I*EzsU@yS`)FZU9TR zvo*mWqHlL$W9#nrs2&dQ$^40m(@;Ffg{j}6zel7Tig954py^0qCuuSU!p_v>J%dO+ z-iClzao0G8SHyD9xrp*kG@6*OVhSZ`7^J6q4TUdSWvT>}MLVx`Eb9rmWZbXs`1R+% z;C{OSnsi1BAuTJ`mshZ6ESK{Mv@A#r<W_<E2D9>05@|myUpr_8`1QAUoK7b!B`b3_ z>J9?lO1c8E#@)5{uwy^R9;LJ(<rSa|B8f{TwOp5V#rbqb(bAvW?Fw^Qn}B=$@DZOr z{(zU43)+6iLN90)0E!5xuCp;(P+^~Qc3u!0;8<K*Iuc4*nbmenyc(#Lv}Rj*g(|&_ zBxgbxY!ptNr3XETh6S#4lr+xX(XroexNRHuTIHBnRyx$?P$_H6X!WA?Ec570$ecVp zu`a6!|1A9h_I;Q4?iIC;(oRa_Fd6ft+Ce#HKtTn(%w5`CFC+(Pbuw?_h#hx52*xaL z=X^n-5<WMCf7F0QA?^dWZ10lscm`=Ggj<t-6n3@)k3AfiX4^1xmB<F8P>lwX@mtG3 zNY)Y2c_1roKJv0>ioj#8gU&GU?P1)Hu*FhV3}#1@tQQ&fDEy_Nn7Gl_rQ&|uaeLdr zZAb4rIwxsgTrxT`<V=(_x~L8T=5HJZr0iR5yTe^YBw#a%AaS04n4`<1$N97IdLB2A zY7u#)Ow2|Pi!cquW8x7R7~v%};lzj+lOvjEyW6`k+^wp%iU2n)aN6J?yo1u=i=m-8 zM)%F^g*arocdJVs7WjC1h|#N{j_2Nkt;=22%vG^2w)+kHcK73PTdi)zn5)Ie)nZAH z`xQ58pO*iqcg(K!aZgZe@aU<SK<b*Cym`(c7z&nyJRs5RNg0ZnR1%U~+_vXzdl0x8 zvAE3=7>U`>_y9<(lk*4Aa+0Z*ENy@D0?Ja7C`n)<EV*|KoQ_@>jCCn75)(>Va5|rG zx?FI6c|~s>fBeV)9d+OF{@X8j`}{M&4TOyA`wjHr6;ulL+K`um+8N9Fg5`e4N*Y(r zNm?Fvjf(?%G%8^&Cm<D2UXYSl6Ji7>AgRy;=}!p-3=2Tk_z>gevF9llReXy4P6_Ap z8QaSX&Zi4rUth5-C*1Bg0FtW#mbf>-=2Qpj9lhOf+i&>w^DnsHHpw-y*f-z`&gpc~ z?rtO5)m+-GNrNM^zH8kT@5NJ)k{n91YV#L~AXw!F0V)tEN$ADGO({vEn8u8~Rw)~6 z49X)Z(JbbnD047qI%;j$wjFhEXs51O&}Ia6^&BOf*A*pYTuvvvUElQtH$zgv=e;)1 z&mhP9@h-uAgPVjez~sq^r<`YA3P#&E>0ZZn5SDptTvI<7HNyyT!k+S<jAqTvE&PvI z4xQPRkCD@P^jsq30m!>8v^7R^MAbFSAG6M-1+da>7miS^S3vSWslQ_=HN*0Hygo?? zSwP^K!`NYICZylTkkaFv$GZgv9SIHl-mo=BZ-iC}%mpd0dNg`QDq0CZ1Y&K+Ob@Sg z#n!wx^O+i9El)q+{>InM@$Hd^$jBuZRd~B7xZHU(lz?h%MBabcEp27y1bEh|xm8@z z!LSZY7!3i;aaRJ99!LsT0A!<P16L7}XDig^JQ09rb;>w(-z8yf+feI{wr{X_w^`b) z?x?$1Dy`Ph!q&!fms@~$R373F8oN<dNSZ>xfrtkZ9`~090owBcn<m+>bC?xqnl}FU zApoR@fZ*_6qoL&OIpHo_zf%te8E}#3t<1~X>)IBxau8}AwC^B=D=~vi`0Kk95pt_o z6XEjdJKRA)%4+>*Ww;EYVd11=WqyN=*jBaHhEi&oz`1~tQSypR1*vG8)iYy#dByAZ zf53LTVt@aPa(+QtPDtsD>#skfEGs$^h%$co(|<tYicE~lc?AIM`!2Aej3q7L+OX*P z<2h$6MY8lW2$Tva6(AM2oJ4p?*1M-)I?fM8Tr5u8hYo^S<5FjDAq@uOzU{c(HtD^t zG*EKJzIWu5v6LNXO~<Tg`yIFY75lckyPq9~f-`&FQI=Jk_9!ptrXY{X0ZB4#hz+C6 zP*~QY+3^5*9sd~1X~DAGNdyV2`+naWPV1})*V=px4?UU^pwFdLaldUipHJW=gHwVr zJLV2T!t41A0-;w;#EZ0}G}E~O%}Qg%^_z^YL9o*gqSw*(wbqJK1Sjm--XY$SRu5u{ z1D%eEI9>zpxpY1q6nMMKs}vw1pp=p%@%C|^1`&b!{A?UE66<6#gaMzGw<YzaSkiRU zk~&)l8xJGPo$9c}g81FR(LH@8qbTxY2F~jR<{jk&hCN*;SaDXuN8E)(dK2MK06J$R z=mA5av>L&qDO=ZV2YfF~ak2(L2B)a#*)@CS`8?x780JZGTAOYmsi4s?aiWZ3^{RGK zl32A`R@K?h1+Z>>Ly)OUEm;rdxn|kLf~B91IR&||q>_U0*MCd^*Q&=FYEz1BQ`h=9 zZnSqjXogvZxc!q@UBJqjr1Y{S%dy7425e^%Fyzr!VfZ>`1;pSJSZ09PVdsn>osrw7 z@x0-|m7Y@8dSctJ?%s@OEzm)U5awjP?}PAXQ~DB?wIG*_k`rEDFGz{7?^^QIn)dhC zm}DJIUmUHqZdm9+2wj_-io0H$uMC?v?nh8ExTCinFNM(Qf=)o&H+0@Xtl<$JNoGfK zo~j0vh#dDiqmu}x`+diH{vhoZRG_Amu;haC<pb)ck4V&zN(S17vYb&WL%3kZ^?E~I z7M#x~tz|F5P+5;Sy^A$R`-YUxZY5?a3a>?2U2m`qc1t+w%mW7vKh&CWwbzN$4j7VV zCy69Xa=&k|$^pxmw>svnHOYKumd<ajf>FS=c^5VelpL_s3H2^V%;rMU5|%L<!-VP* zvxW!7=-iocS_=$;n5CZpn>C^TI!i~tF}O^qHi?rrwZiS-rWp4&?~f^j44}1+eXqFP z?s(l_(N;+c%$mg|3P1;7hfuNSDp>5=PRp~zM)QOioW!L)1ek@qrlWybvif_L(#-*E zS)Y_84!*-+<dXF~_puMco9C($SLUs!h=J3d($>48Oj$0B;8y~nPLS5$%rY?HIHvIQ zGw4!fiJi5foi(ky<CJjh^bd>`nE}O<@?~S2m*vQd?Ej{WB^rsjc6}17CcH7|PQuu8 z9tE=)rhZTuWl$<$<8-Qoo6+NPz!j2#$B!oE6Sa#Dzkgf*8SwhXhX^>GUfi<=5Q;RW z81=hSQq+N-(33E2%OVA6l(Ml{VO|Djnbl@7c-FaQqU-M#19aqtc2{Z=TWh_Frrs)U z*LS?XeGLnvdGWJ)b6D(%3HfNjMP#lzO6&rBhV|j4K7173W2^{eACU$j#F~A3*T^0Y zYYA)0IpcIbi2wp{I!n#6S8ZTud)5=XHxbg!6Wn;3qu26kM?t7UP)fmaTJZ9EmbmeG z1*0S1i<D69hWtFji$PNr;Ra7Iac=-65ED{s$R&YTES@}ZCicBzK-~Q636%jV$-Pn8 z+@;?j0CqezffaOp6`~z{$dK(|Byf}DIq$X31Ym(yeIexqr<V`dw>$PqxZiHxZSYQv z?S2D@uy32fxufnCi5d5l@WUU!moNs*S{o%$17kV>X)@v+6jd>_xMEa0<u@<J2Gr{B zCR~`Y*IksF_2gUT`6Db!ft;+yszCIClVfL8;0^p|#i_EKu&if*fmYwtino6ASrvff zr?;6TX0T-82Vt)(burkx)a`G(Dl%*eA8S^;bbUOni&q1Tc?0ppNwdlrlCQAsJKo-| zVwJumQ7BnXr9-!b!vum^%pyc2e_(h)B@ZGUaFPR_n&oZDd4U#<C-UH<i82y3&BnLG zb?m$3p;iA7yn&SSFk^LUNa-vTt}LhP73uuftxCb@2lKn9aT0*}j&FWu!A5R%3eU0= z?_%ijXmDZN5AEc~D!y%PVD&POJ)TaN58jw(Ov7L`WQ6^HHpWb#ceaqW(6AjsB(DDh ztjw@_3QvLa+x7Feg?W$(bi97}-F1R*Y>d%FqJ;DLqbju0Zo6>r+VrDp|MI~=n_1dO z>M~c$zt38I?;UO5vEA>u->z<bTP%ENP|*tJ@M8#J4!@Ibj>T$*@KzcaJ3Rm&7B0qw z#;qcv*beD?qQy)&2xPsV!aGN{a~Ph6i_J9MSdL>Qd82N4Jm0m~JP`p&;xw-xUhv_= zD{{#LK}qKAS=c(qu1Qg~i51w|j#`_S99fc4Qq51=tTL!~7ucm_ynMLeayesJmm!|B z^!^s>YDb2_o&aQ@mxP392vF1bkwpQh4LMbu&r<%yy$NgW9q0`}2dU7YvVfLVl9TF& zZdPqEE#7v7T#;k8On#fV;a6}PlDgblMap?(q$fH2$8wQUDVm%{?mi}HSR@w^Hf-At z5K#9GwQjEPvclH(m6(w)7Z)J<O+;SZUSSqJD2d*>Rh2vnG%}PYeKs@+mjt&_BW~6m z6Qpgc#pBryf&q{qUIO(9CUYg~{#v3NB2MdfIWI~#H>V{`G(t$4oCpnBFca>(ghyE0 zv<_yep}SVG-8b~cB8UUQ_1>{<6?Ltklu&X(?@f9HVC<Xe+cp`4T5EFH%<JU^tueBO zKt!>Ye<>9ZSVBfbBeAdxtu5NsZz_p3L2Ph>DaF}u@qQH`SJHEamzy@F9cJ_L7~gD8 z_GJ7q8YVQplPyRAL&p5fd(m45H=)DHSUB7dRqm(v*k_VH^z<hC+QL$e8I|i?a;#pF zD2fN8pI<*z&^X9Y4CJ2Sa`*0)N=I^g93!sb2muOWTs%8=lArUMY0kD62Sv?hLn`CA z<LmYF0g&JR^Pxq47@M9<+xp+dv7Ilg(%O4P`M3Z6|H18c#qIizeUtvqfGPmyh6?U2 zo1CG_F=pY;>Y#ZaWa)zj>n`)SAlG7TvBRPss@uVEp0r7Fg@D5SAm{-R!E%ab14!LF z2OoejUXRD>`=hW+lAva>JxN*$C&0Ce+x3cG$C0g$hPqf2qIUG``MkQ2Ga{1aXQXXH zSqZ9RyI-a6xiWP>8Qft>xLi(H&u4H4$||9RrdB{M3Fpg-vWTm3uMmNdJC^eb<l^yv zW;<Rp<MQ%~WnI;v?e5u-Bp+a*1Zq-qO4}WYC0t{>Vm-AD#@l_v_4Wo@PM{)_cq zx8a9AEf!`|$<0pBvS&gOj=!DV0<QapbzN0(E9IzGY2Ge*HbLTmEU#xquL7?`;&R@% zUD0^Nn+<1(7~8ga<${NICYPh!9K%47n8}x7_Y6%pqOU0sy^H1V%7oF6j$w+uY@)dC zoiV1Q`5(hW=RzMt0T4LJ?8!VDuBZ>5Fe)*EM^5K_yX{!l7Z92z0E_3tJWcyvalKyA znNc)}uB)fRy81DIOp=J%d)F$DP)g|>VK88ulXwCu&h6w0fI|t&NSr`f!W~OqbV-E! zz7GKsgpLz)N<eQe=u^rAh6m*-<&2U?cRK0w-;k1e2Rx5JjxNq*`3lB2WZ<C;*dE!Q z5B}?h6ht{q%z9uC0#6>e<!JgX;U7K+@if5U^BWoHotr4lt^nu`5zX&098!K~ZvF>( z;=Fzc|M9hXBhAYV$G>scBaS#MIs57;We|5DWq_-Dbk*57YhO=4@?!C5H0*VQsq;gS z&3Fq$118GNgE9~wIo#@ypwN3lSws2n|Ly;Kcrw1x=5&DA*ddddKKZC^J5zgr#~5!y z5*V|4Bv!lGHWX@Y&z^(B{DS7{o1T&qco}Q64Gsu2nAYI5!^O;FE-9%Mka1ciDau@R zlEDn@+lKeIHzB%|fC8Ya^&1(8PBN8@ykw*-?*vP{RlF|6^EHH+Bu|0}D5rwc%Sn2A z*XkYsW6VGP@ela^`ya3@lCYL?)^3230NL7(RDiwh%A5#mDp*QJYaJI#=xssPu#xRe zZ<>q2U5^5l^U}Bb26Uh-8SlUTf-`{S@(QGc^7@K;zvF(rqStqINy|xKmKnUHA`CB= z>9njtE83n@1;;=V;Szq>hxL|cb|t{PHN7`bRw7s8<KBTBw0zHG2Dmrrmd0YmPMsLp z@-NibP~7ZVGY*nOuN*AKc>knG>-`+KLqOGuc@6AQ>tB=oOxcwrMA7)C40$jTByrE_ z$1SPkv|s|p6&IKDkqI$kefLC%5FyB#{cQ=Yw|m8Rsen=)iGIp6s+Qi>y$RzDoL`b9 zMKE{W&rD)D=PadIHoV)EL10D?g*WuldFND+(}I$U&?pF<#O=S;s?B(Wj;&6f!}~2f zF{)3*lVPC(3f8}z$fuza?LJ6ahUjMms4{Bd0135`S5&zB--Y0~$A!O#M$B!k{I6D6 zS*HkKOdsdXrd>qYcI4?tffM$MAfb{{R>zgS?U<wBE_Lzvu|NR1ke&44qXKrAVo6%; z#)HPEO+!$mqwHYP+&6XebI8pi<v$Eq8S7v=A*88Z4+EpExpT<n@Hv?x66B-fRaoA% z2jpvW{%{nz`iGqY>ER&mD1*rufMf!mrEUp&uDu*S@q#l;j{H;?LNmj#hdKPNa~KOf zFiK-Ep_VZr#WOJi6N`*0B6C7sR&ncT%$(izWehBg7nBiUu-ZzJhsz(3<0h@nwfBx* zJGy4tx6WAB6Zp;mM7ZXhK_$B<f)e@RKg*JFy1d}iryucpK8ZE0^W;91lFl8s{T-AN zUO#=WYnQd8LO|-c-LF{B7c8d}mL=hIKH<E6M9B*njMg?OW8Ck!ZymSmP1?!Urio8_ zW;hdC&u9&}-*4Eq`#AE}8kMxFNG5pGTLZU__ui4-uedSe^zx36Kl~Br(?@LgJGSkH z+izdIW7<&EBoAO%GLe~!ASZ6fse`Edx`j=qaBeo)=8bM<D!ja(K-4N!0FkxbRYAk8 zB2x#qiud<-)O|-TBQ8H%{iN4)u1*_J4}q4q9jGBDjSV+{WDW;nGhv1<LQnT%#J;s& zzZ8_R;C|a(_`BI+9)W=Owg*EKi9$2NRqxk%Sg4Dg1C4uf%4jT|a7Y!UlokLPgaYtp z(1#sjvsX#(En&&VxJ3ytFXhPf@K98w-7yvYeJ~4A&fHln!cp-alspMqq9`5L+tnVG z&?gbltG~K)IM|0US^;-~L$^fOJbLn{lr%R*|5-nYMABy-0NU_gWi1~?AB}+qf7IVc zYdTmp6lucZx}K5q>Rlo&U&Qi*97YyrAcO6};5(x4!&fpN6Fg;E(R#(+wJdaUkw3m^ zcr`HOipq=!QKF9xUBGaaa9S_(oZMs|qdk6T{L^MtAkuyv(sJ7-H<PB(Z+K1kDYr^r z3L{<lB6zQ(P82l$0bj-KpqIIwz++BF7^N)9p9X`@U2*^jp_`QtO!K5CMr;7K*pw*_ zG*1wQKjwxR3$aDZ4~8*b`#bOtf8Ll)iYpt_bYhqk0ArLo8AHZI3C$IU78KmbI0)`` z4e((yVVyxxx80%wJrfG+x!md&JtxWZZ|y}Z6GZq(XTLkjT4d}}a6VsfSzqz`@&T`f zk#oXQ7RlOVvo;8|Gv4nv)Ej_$N7i$_TWz2$3}A0}T(29xzFqP0`%k!hctO8kv8+k6 z-4~Q4fpS87@8DgUf^?SbYhsr6S0pW5Th}gYUw%`ICG4LG9QAyZTwJ*lw{u0W4S6fb z>naIxDPh08qwja^`>x6hB~W4Xx(_B1n6{O^Ek(CM38k}E(leu>psQvW^l91B9vR)h z8$akr*Fz*}d6r;_EZ$H_SQYDuO<{mOPuAUSSY4*Nu+xj-nG=&dZ;5|TS&|`WP=o<z z(t}=PA95}LHea_WqK`Glkx?BS#)DTP&_-lKnit^0Rs~nD`!px{nUInyX-%x!)A>dA zM=f><Ur6`9ZQI3zq;p|I0Yd`~by)0rbk=l)kiGzMu{8g|kg_{btg~8s1UauTdLAXY ztTUq-jzB|iwITH+ZG6?*k0B)1d0<(TcV%ft#N8Vhm9n5V5|_MM{Y|TqQqHi$hQxC0 z(zn5dk@31i&XK7^COio+7w~er02)p)ym0T8-e;Z~+wr3y`(OPCc@4hXd&l0lsc{s1 zb)sa96Iz3iqk~21kGYVr*Z41%n{hf_4o(8`AgOK?*2E4gft{Xo35Iw9R9Um!85hI{ zpx7MTW1#fUtmiDK$M7KY#-oQ^i1>O_xZ^cGz{cDoK{!$(ynOg5he0W{<#f!Hu;zku zUT`V}AI>i*rC@IxwpMYgJMMLt<{Qjt#>4_*xm1tt6%2&3I@w1Lz(LtDo@m-Aha?dj z&erAc8blh`FMsNoNwbo(YSl?x=s7VG3Xm5UEYb-~+}t@@hyb9y+Cg%R=&ogkmzN8E z{NtZ+I$xxTO_A(osR@_HK-=|(`}N&3^lRP0+|XVcmPM@by6<Rv!`pVn*Wcdpaw_=8 zKYk}M&a}97wAY5cO7i9}zx<5*{f@Gnq^SxRB@^~ttn0mQ=-hC<zT=O7{u4fa{{dg$ zKI7%(1gsY+3ES@2wkx)~C=C0pgQy^<gmYd{idfY9e#ia#hPrP7?8-Efxf0>-&y<r` zeQCy6CIaOo6$|?gu3Cd`f;4rYlXw)sXx0Oo&CZiBTuwkHfJo|wSx*4mXbnV&p;Vi& z_w*0LQ6smx$%$Fityb|gX|}Y@!%NPdbYye|lp$T^@;K~@U0D_-K^Wgm4^LjGc%LS; z56kk!iq)TeJ*`(Tm)YV9Oi#+_EKw>lqG!_(0`$aBD_=APfGl5yG5T=`8yt#J3LXGy z2St<s4N=s+${F#Y<jq{#BiK4}1&m)<zKvPcwtpiGIZFxFP|5wiOU@3F)Ou%tn>0%4 zy5?<{J_@@wQ6g6afW#TCOIcz!9EsaTB5W1_%Q6yjCD~H;Gv^}j=r`<k^sZ}%^3S|0 z4IPDyH(5FCsE~=Q*upCIo|H0j7Aw#yNJeaZ-t`G&e#I@NN7Q)ww<&@$SL-@xCjdTs z%P{uL6Q?xxjd5iWPrlP@q72ix6nVN|6ya~lb0c3zS7LY%OVCV`NpB^+Ho{S%aHttw zDeeYCV;BYl{-LmAC=w4!4uVGy;~#<^tbZpWynOf`=HctyQ2UPZU;gPo<Fph<jFLt8 zEu|nQi80^rSN#0>XMDN7;Z`?P)4thapBU$vv(;-37iUZWnLtBUCq4r#0Vr<4Ye|#& z;uOK5$G=*FjckG@)s#gAzBGNwdQFDRK$h>Cwj50<qZEm^OH58!r#H0gT{U}FD}X_{ zptT*pef|l1-SB?>jO*<)3Q0!2LBDm@&SN{SZ#UepH;skLjMvi%m-87!j9>opuc);` z&N@#>{EA*LsJw$)0SF=aDWmlrckM^NZ#&9DIA1Oxk}hA{eZ#ihkurfR<KO@F-*7tr zN6<NId8M3Yw%zZjdzE8Hd&0hNATW9o=DeOH0cpEQw);3#C2ZYc8)L(!&XQP#y}AG} zGJqcSN{Yl3g5TDKQFcQtJfczRBPi05(Lvlny`igTXPnFskPU+wPadLxr!%>lW^T+Q z2sallD(f&TadWqVEg_Imio|*C?VZ^@Vm9W}5LuYw?49B<^<b%*!fg!9I?{Rf%O|4U z8a^cun!;*?5yBjU&TWi|SuI=zwh5%DxF?V(1CBScpK`F0meHlG5s8lbcE{~@cQ4DZ zY~>_IrtUE4oxMw+CF3rOwlLPCwq;L%DV(9#_O|2m*Dt8O;ls<THhS5yEGG@iiO1r7 zyW;0Bzo4p;Ipul;@0H=FZyOsQXvjTFNP|Y1B#1nG)VN7$W0!sk%q)tsdIih_05BR8 zmTZ0X2h0usW`odhlUxwzvY_9us7(xn2Y38I!F2dV#rj*qn8GiLPo^yHZL~+9o;RUv zuuBFzxN-J;NE1E?s6Ez8MA){QR5BTUYK0HY69D2Bj@RekM2X0NDzJ8XYvhR(=3==( z2xXM9V<k)(n1_2*CM*nM^k(;%#>a;ju#9H&J6~Q^_;)Zd?%NgR)1Utdz3yn+U3y;E zj=~Kcz-f^l<I4&7^x+d~Z>X$?QY3)X1vg5*1_QJSvVwIfVg+^0+%?VEHp<G;?687T z3d*v;`iWD@NM%9ej*lO|M=7h<8Jop#y}PZ1#tzTOnt)XI3TAP6eSQ0i^LoPhvU&p; zVM;r0*E{a_JKnEvc+)-vBMc!)ZJ$1Uj}ITe1DJ7r`-<E3H+=uYci6b1kam`1Ms18* zr3Go-E9$;s-*-7+C1;d%!TEeaXNkG@+R#`|VymZRFmV+g9U5;Y#&*AJ)0M97*o1A{ z^+?%*r7YSMNjh%z#`yWKzu=F5{tkU%-0ttNY-mP8Z$RBU>fXS;O0y76a0Ez`|1yYn zDKoPMCT8_P2_U6V!weM?B0!~2!C;~)RtEuKxS_?ahik1*S%5MJYE6_jvQy!W7`|bb zXjZVfJjb`zR7VvR1}J6CmKH|Swa0r@4jyTDX!V<AjjLAP{d;n`Y68>Z=tkM(|HokB zZdn+04NhRnHrz7M5RA@$xbzRRHJT;mC0d#qE&d~e95Q2m7lFL}HBHYCC8jY@D+^t7 z0iyyvApyAG?owunVBwM-v;_37%0#!hM*385LrPLU=;N~fpM$Uw+`sP|_)V%c&gTn0 zz5<<+bf09#+wCj9ynn%MyX)Q`1fl&T9mlP(;nEhjenZh@Rx1^5*0Td0`@Ugsn>16h zB)_i88(XMJB#8!}L=d^>MjE$GUL4z2-v>E2LyVdoyY{k}PtiOGqa)cplf*P%C%sQd zmwmmUj-!I|@G&`eSi{37&g0n)`T}WhLHf>!!|cj)<P=U%%-(}!+GynoOwxjzY~KM_ zTD<Fm8A8hcY_GODTF2WOXP6G<=eQoZY`?Gz|FIkz_XOFv<Q08W<*NYq`xRyR^c~O} z+P0x<XQq1Jur+aCuaLUhROI+b+A~sDB3mT6Xg!_8ZLZ}rr0Cf-$&M&vSy!A+7nEf| zvzmB~+fhm?gfpyE$xD&cUEH+Gn1S}~?Tg0}0VNVWXv3MG6T7(VOF7|u{(yBoq2xP$ z{`FVvf4z&Mz;<kBAQ*LHMl54)YBgWMuOG#2xbGkW+Wm&}%SkYfJGe=yO-2Wk9Q<KO z(ezkZD0618!1s0st41!aW!vf@P!mas-`o3}mkJRx_PQZ01=N8h7c9#vCzmm6_A=xB zw<~U+&Nx%Sey`GJfD_u@ux(9R#&$zo`I!hvxi|sMw7{~?=;r5mwt13%1JF2X@7V8m z-Ph3$XfUaO>?&-{0*TqSUGa--yvitcoH9*hu8cXBh8c5~LCh*WvVh@Y?J5{~9Fgn9 z$<s6bVE~$}$N=uQ8&2yolpAJ09n*RO4dNaQ)R|9UR;Dx@hqV<D5!Tb{%~$-L?pmE^ zJ1mii=W5+g33XxJ6a@w8o_Ejrh+aS24-0h=iB(;SDwte6*)2glW?lQ`n{$=OgnSBn zW%(t|@3AQsvz%2Si~@(oTSb}f9b4Vi@~%JvwzgqCozS`Cm(M@rm*0LxRY4s0+;D2% zFQ1(rgd-KIW|VYg`j)(GhX?H{kZZ4KtSzjY@Db}7@2+5iSGmYB!vjyEg5pYCP@sEj zs0`e<cQkI2ZxC`Dd`}7EZxbfrO8h)?QHy?W2HrT1+QSm@WswmWY#2W8sCb4!$4P+U zntxO<mQ=!FKWwvwy2f;(qn-F9T)|TM2ZkLEB<Fq*m_rMFj&6DjUytxptVUrlzP|k$ z4CUjZA}4yLX&vBZ>>+4hW_;MS<$OV*jC<d}(pd%DwxPUy_y9Y-j#Zs*bq7~*sZy&T zFiweaX&=FQDjUk8r>QN->Sj;c60^HImr(bL`|XDF`2t|X>8uHhG*S^aa9nt;8>*g; zSIUC#|L_N-TyVSJ@#`-?;r8|wy~~lO#Vu2%jL58L#3svnLMbPdT(GV$VE#pt)mW^t z;kFhRr6u!_Hs9f10dzS~rpRet>w40|J*1=BQeHiIEvYt^N&)kZmdJaBOSW*szRSI3 zU67SXZ1xgUG(u8BAOMv7@SK!LvbzZ&s+xp%!L3&8dvKwGoI&5-B@wZo2+KmKd&hon zX#42a*jqzOl4!T@J66i>rHL+7$!cbRNxU9P3}E{y$FN!mkC{<#H(7I8hL!z52DX>F z(D*mBJ**Lzmg4~(rHGP1ekhU(f56?O_Hi20@yGuL(M8LtcB|khfSghg=uk&;Mmv}< zgR$3!(`l8x;31URiIl^?85Y4f$6zHx9~i3{Wr(FLo~XpYB#a{*Sp^X5(oMb{1)W*$ zvxp;A-jfR9p?G^v0RW3N4<RmHE|>KLX{Fkw#k1B~O9`VXFLA%Z?~YG!YuR|bD=d@* z4{Y!4K`2p~;=(K~ajnP2SH^W&aNf_jZ+HCs+b_7?w_zOz4b9xXlYGJB@65yP8~2_8 zH124<V%s)s`z}d&ir++}3V<pavFQ+`LtdexMF9c7jc54Z>>(BgW8dGg*Sm*?yhG^N zsBeCPp8uds4mtv2EF{?}gh0THd3XIJS%Yyz!Dp&RgtdJ_k1fOLwVYt*)I_1ns(}%! zXM%!%jm`fk#vz~~nUt_sNF`6P^EWt5Vj$+Ih|!Q7L63;;*!KHq<$VzPHgP)a!K8rO zPdm<jngUO-AppyA#&+G&T18nGfEjh$r3^6Vtc^5ea#>r?QfFYVSkORxLOw6J{rish z>sMp|xBFe2um~gA?ssoAU^ScEJ1*x7E|(X)ef<qT|Mg#$;JP=Uk-^M57)WFJKKr)e z_4O0}@TWhZ?mwx3)%d+x7riUK3E{h*M}qW8-MHI!$LaKf>-9Hq+W{-xn>0xVX?dX> zCu%472|^@R>n3L`>sgRS*O4fp6T#GbV?3gSbgy7wmNuOGc1LegKVQ~$%z!1sxV4U) zim$^gU`o<TRq`DqtUy^5i&{4%B0t!u)vo>21!3yFqZT<sVWW=g+lKuv;Sn&vP0I0_ z_F4x6m3Fu4Qc6fY4TS{c%D}UXSaxuTpzb;^q^vdgzU7LyMl6ycF3QfZ+5kdI68mLn zjF}0w0T<0HbG;$Zf>VewnLt!VKZ1j1l8?0!%u-fnhVb&E=R)_-g%R@@j}CJ)LFD@$ zK=*{_&Et^2(=U@KA=wjH9^Xq(-b>+G2Z*j+ZeTx<#m4cUrdTLr^~1%?Yw={fltclL zTeMRi5mMVVw5Klc38vkdHY<Qc0Z=@kG@K;n=^$;v8}>z*a*!`7D2W)<3HNQoR(IUC z8{Y3%?CPrZMZ`Uhu;p1ex;K#-OynIuLGT7*7T4da99Sm2hW(`@A=)ZU_$f-ngzK(& zIar#x_T~55?r7Up&a3EkQuf#ZKCf4lXg-YTzXbtCjywJpX&21UW%gkau0Rb<$`x}T zYo3D(#JRC%_+FcgrKHLa1BOFvYfAnC@mvdU(Bqk4ZHrBD>}+AdG~^8PGzsyZ^-=Qa z*PHHV^-i60>*4^@p!m#+!IKXil!dr;B!~WdxP0$kJuq-@n;69$YDq;)GetlWP>2h_ zgi~2@e}BX0Uw^^-egnO~!IPpe+=L)24bl^bSZd0-cVv)S3o5`V3hVh3Cktl0zx{?k z@SjoAGBKYAcdtAwKNNADF%ghUMlKmkS&__rmom85$nyma%$3jKoCDGWl1NKxRyhQw z_lnaR6HRP4RbVv+?3fK*R|lilj`y!$@$%s#UOs$>U;g@6UqWl*l3$kslWL6ap@F3o zoX;oRZZ~Y$e6F=MWRiqP-Zl@l0FnoAKE0wqLOHdHwIQv8$zzg|K9SUmAk3<6`^1>c z>WWC~7Ll*h^k~D0<|i+L2&pWnE+ixT4Su7CxLIu;`%Z+`2zvw26Ivsb2ITxi(As-l z$k78HO%$ecGTgE*dkoTMGk$e?Bp@Ncgwbau#-o4d^Ls)cctR`VokRGU#iirI_Jy7d zuBDsVy46{=!jO<`8Pb|m2iSc_%427&50eg)XV%JtoH42bG^*X<r{hJBjeD?MkxJ-j zsA@=<7eew0><Q9*paC3Z;{f0;{b9ukO%{d2W~UlXrxXUT$Iakz&%A!IG>Jzt7DJWg zq>6U0xNkR&$NN)&3H+|%z!YoF$p<%@^UQffZwJ6(My%eB*0c)AVM?LuASiAJC1Bdt zu>K=j#lJ0#WX*4SNSd7AH)tfHj3qz<2y{y0rY9OL0n$utS&=9Moi$lgd5tesdT5x- zT%NTs%J``(LF>@+OTFLumdZ@Fy_0UIln5!W06KcFU?Tkb<)>+_KH&(<M}as1VhUGK za_4*H9#VO`o-Uv+CuK_WH^$x?a#>K!C1nZ#k-Bm%E|>_3#O<FbgKHJ92wM^uTo5>l zkZD^&YRruD>4K6HKL7eRDRD^<fz>1P8Veys#32+22}x@@(_mD;i+Tz;GQ=0_m=f^m zk3Zn&zx}hi_2cc4$w|HF(1#i5QVQ8y(|EAtH*9z9*u^XeNA@#Gc~5F^TngCD+_Bv^ zIgAEE;D(&sJ8t(oUM^=%dSWb@&@^kll#F#*u&yg=t7yzpx~R&B)n!}xBUsXhUM?Rr zgwX)pa3R9Ftay9hwbwa=8>1&iPYt~n?F}y-3FTBk?E?_qd8Pm)a^@|t)AQ95Ny~*U zVWzSy-ux)CPup)$49kQaCTZHAdIBc~I-wz<QO3OyPMyHng9w9W*yI|yhR)$0<9EY~ zi%dnlO-xeKYUOXXr;fh{h`1gnP&!O#;H$^TK_l50u{Qu*i7?CfnKEF?OiBr@RS?OU z2eyB+ppuU_Z!(-QWzFj)F_<BlZZu$%h&+rS`)=PWoAffyFkc4V-+sf(%L|Z=ZwO2z zq^3xrO0@L|i0cIObidZ1$6(luv^%F(mqhJI;Rqr?ds!Hs0#Vqo3de5<{s-XG(_iC| z0D0F?CP_xN{EMpRrWgZYgL&^@Z31LXf+isP`%O@fFqG{Dn7s*>ScGaZx&f4I@j<uX z2|t}UqK<4+IPz{Y%vh7U)yv1dBb6jxMOVJry=A8GL;*hx4IX1EZp?zuL^6A*QrfbM zyW37NC6+2DiRCZ){Tw$KO1&YK=3r2Qgo@>a+SHpSn@aD8L`gfL5?bFy0np!<^97A1 z0seNqVjLhf_FyRRBe!5$A(6I2kN6Rl5JPn}zL9ZS&N#n*P}oY_b6yC%cP!<MBIl(m z6YiFcKY+^wY;{LjGtP^Yon(+U&4BYU691D76f}1!Ta(yB%A?OX%K`5*UE=r|h+6jz z1gKCo%U>DJxZ9yHT#`y0U5=Qo`yFLnl-H29N7eiX>!vm^O_6ONM`uRr&{8=W;&eKr z?wdFN8Rw>02w-?fl5MolO^&*S$FT!EnDO=P4eP2E6uqIgijtEa*h5|cV4;`wykc1v zX`@<q$t@_Ojb%<5#F7!(P(j#`Q^C5P(ECmHY_GW2yM!OI+7Ap@CPtEsk(_N}jIkZJ zGTIO0B*Nh(dBlO?Mz+6f9t81-NY;N(3B(E16W%JLtbQ!O;7!gS)#XR<eIG-xEeVqq zMYcC07?Zo#4}$(1s{rvsNSkzjz3kB~F7n!E%x{@LL6DnbKq}~x{_CxRl2}}w5^4*L zm2}P~w2cAT31<KTLH)iQVBl7bGwW>7aW|)V%baf*BWH4$f>}D}=}SNV{5RaMCw%<) z5$n>CP;u4M6o-DHR<H?epNqgujvpT0nToC<&5Ybd0qFXSL5yrpgRH}zi82FiZS6^1 zQ5mGbYm6C3IcYy_z9ziPgQfV>RU_)HiIOD8P6V`K?G$H90gd<Q*A}@C;&)WVDV#-l z&;yr}AYmyhuKaZfYr_F%pO^6211>-N_@Z@w+QBeE6y>rM&6^Qr(^{9qShVHXsiG(- zHE7WlPZc(f>kmqoC`fXi0-@vuYdL|NwHWW(hh+y?Jgjx!yku8+ln6>U0(uqC1;dj~ zO(C(W6dB%nEEN6T${ic_wqfr((kk)E^XUcaDy8L=2ze2YqLhZ}VN^tZHihwCIb%lN z-?{m|y}rD{XwAZ6#02UDY8gNO_80AOA)%~wJ>&KC5g#v~Bn062Mxp0)5+HMDkk;Dv ztzlUTc0Hm(GH6)^zjk2@2xFxsfb<)GeSPufIxyFpLwe?^UKVAHAB=t9khApL-=Y?H zM1})mx^CDR%vG%;(aw6c6Sjm=t0n~a;U@BiW9;pIzp7HRU|CKmIb+`&USEqU0Gf=J z60!@9jGRYrX#3QCm+w`B?0s|Ldb{25e!ZfUf?7A+w>$Q_V_jFA&u8!ECCWv{%j+4h zA1+9F#oN~#>b9ZoH_57I08H4n9q01}Ic1#IvslC2aCtpRg+p1;7SV3k^`xysGfp{S zyKh)DS3!En!}o`6|2lgsQp*$YShwO>uRDldq`KgDKAsR{fBQZtBUPc3h``AXK^h^0 z`B03(sV$~CQlC^IokTAOW~`WyXjnAgob~)3i`_ol<%$iI*~)sXBb_S@W+?=v(TT-f zzC69tlof&qm`3D>d)cf8giQ!Y--q7C7+@3NK7Mc}lL=<!5$5$#nzugbK8E!b&}+4I z{QJNDH>~S|pHBs+C1YJl@Ir^{U?j7KU5REu%lphL)|yn+^rT6_xnN!7aH_plNZ3w+ zsoJ;2)@K;YXB>Zy$&eV;5V~JH_}haJwpWr=(3D){BuUZ|**q*hcfzZIASYG^KM(s> zt0G`H8~7s)G_fTaP9#knOo_A=?9f6@nPT(Y*cSv>TAzx2)9(U0#e>mA$Ci$uWm%B( zg4#A@J3&<2g%e0mCA3A3cN3tUH3!bgiJazrGx(FjSuOCC(Q8Fc1($LLx|HHV6P%@M zq_lwUDUYPw&ggAN>(%i*dIRTtHF9sU;6>7e%I2XhX7MofR)I#i<QL@Sgn#^pPbiCd z-Lyi{JuYy3hwrxn!j@_>Pm|<4Or+i;<MX|C{Oy;2!{zcSyjuI-T;G241jgbPuM(UK zr)C<C3{tgU^m$#eLt0hV7W$6sq>@<!DFIF1X>RGVEGX+4e0?A6kq3|+w~owG7hT(q z%jx3Usvn3kwkrV906OXF+G*^L&f>O_GDTAWFtA>aC>?W%lO$ZPa_sSWStSuKXN{MO zbtJu`l}HI%n@`^Bfb@V7(z&*MLs{ir)mz|7jQ)1JxdKpI6(wNbQ8f(F)Qy-Z;dD9S z<45U8cs`x<K%Nh{U9Y&lOB15o{fhosG}L|HK*U;NDcR#?DX2ALJ+1iR#~<+e;Z^&E zcigXc*HE{+SkdO?0C#nw95|}OR(@IqL@ru6q8=e*tn5mivA{s+kT@}UBA))!1|Oos zWpv#~JLoT9mv5(^)aVMC(ZUcEP$ieSt7#%$5OI6+c#3Vl<fD+j%S+eHnu)M+fz8hF zOnI3zy2%+fVF;f2-0>kSm?cb=Gbv+IflYvA$NPWo^%6>I9iDY=Vu;2F;)*t^W2t_D zcEBURdv{ozQyMzWbj@H*o?>v@(3XO_7o=>;EU6w&v#>BP0|{Ii63^_N(UbQ5C<RMt zqxn&YA+uTF7QzBtaWUa;ut=mm`eA1Sz%7*Ma)++Pl}_7QN-FrXpLi+OsdQ;<Z1^We zRL%um+mc&7zcf#hqmol5?;c2Gp_{qEnv)Jl<J+=#o^;5<ms+d7M}s!y$(%EKuVEcQ zy9oT$aLooL70xLo**8dTNz%jD?)wcHvi{TM0xH7|F4p-_P%UI@XCfpL%ea&Uv4f%E zE)iiVClCnl*RLo!;luKZLW?FcN4NPX8|~bXx+Wu2*M?L)c>#QVCJzqDrYV)M2du`P z&=C<!SJ@&Bua+#O!2P}<Eelw5ZnyRs(vL!DsO$0F-Hz?RUUww*a%|fT43={?w0YFN zZ{kT{!u@{5r;k4(Q$lTb)VkyAm(RGqziCe#MiEy=)>?Qw``nnHc6|eI-z(Oa3&?s? zn|7!zPKD`M*__o@3vz9B$F}dNwW6#iw*)37V2E&Mex#dZns@J2Esf;YOdFd8juGkj z9T3LV_6_&@6?w^6PAA-MZ-6oq*Qzx3>B7hVve>A+ud20@b8*+HSn?d^pzfk9uCTI) zq_Oa`?i<#Z3)a&K_uF+4CTok}R<(>sn&>p$Y*Y=2q~wix&Zn$|C?zm}=wmq%?)M#E zKL3Wdw>Ryu*t}^`N~CRxJJz$b)BW)Af`9n)k3a%i%lP=+C*0od`0dv(_~~zdL*0ky zl<uCR%*jb&@}B7ZDlk$mULm1d??Ta(iXK8ECfvlT#`Gad()BROv&=Mgt8|>uF?w&( zC2ZBMZ_fQ0F$JGn6W3@{rZ_R(fp`9D7v4ejj26V<V+?F$;nM(wXeuK7UE%Pld6?eE zfVe8f%^FRLVdaaG*2DP1M7lEKR(qVf&Tl9Iz*t{z4foq!^nJyrk!!$CgT{QvCX3Y~ z{V7IE-(@MvU|Db?=s*@%ww*CovuDav0+JXUxn$&?QF;fOjO`f&Il01X>$f$=y#N7A z%Aj7oYp91KxO-&K_>^(6=u)?ie@V-v*ULo(k7WKcTb@Dp<GanH)yZ&8uBSvnk&r~@ zMcbGU0wchZ8v)OO$XO2KNo7G^GOqWIo(RZ#WVyZ|XA#b9)kG;f9|yX7Ud;OLnxJT{ z)|X|)`E=2~Efpmdl)Ol(_VNm(jPvP(Bv3DMeo0Olr@Sg$G^}S8MMQqqLu~u(yT+p> zx0I6uOWFW#xa5m^76{97mWnI3(rEpcl5}3pnp_^dI)bATw`Wt<VkHOI6Tz)YOnAMt z-In762zgmRneew?{#_bf)lEI&(56q#*DzY(2YQ(#1&>fM590LlP*vh7B`l@jw4Sil z8#-6~{PSPX_NH?b{#m-Z46Li3C8ZEa5=?>~WCKWxRU#k(_xlDWi)oALC7G&$D4c;v z;+nYQhTwLsOm8Gue4Hl>$XZ8AfAAfr<%}zS^Jk5CjWZtPf-`1@Ajx)n$7TJ9vP!4H zl%kz8o?tXsl>%Ul-T#n&38tl5=@^TvO<ax%tU*1|*yY^voD*6N$z06X?{}PEUvPeT z#oKRR<gg58*r65N#8U94Eu<aks3{zVx1#ror4%gZ1^KdIyKl&JK_+O^p^m+7%CI|F zl@iISZ{o5m1!c*&d|Z)|G%?C+#mA2ya6X;z>BC2G@A&1HpQpaw&6@KZcEIsLzf5{k zq8$okrb`f+PH0C(u5(A??3-`vxA&`|K4iJQ@t`~~Gxq(CT;#0xq}H3fCrDUjO3=hQ z@frz3wo}{`QQe9%x2!9>6H<;Cbg&nLG7ESJ%0dEmj{zj9)gO*QmLqbdd~@ILV;_jT z3=`A1X3=SfJ!Z7MO-i={N@;9ZK9)_sZ+CESdW5azBG^XK5a9M)#15tL4mmM%uhKM( zkwA%&eSEn+Ya%Pts7OdD$)P;0$tiiN<Yc$HwM?0<WiTtK2c^e-F<j&TtCZqFLCT<2 zNEy>-#RvaS=ixXEq1~J^^17h)9b1)t9IaLWtcj(J#Oi;f(T&j*3J?KVN{~}2$a#Su z=%zfJnp8yOTwKA(%ZhS3BN1WScPuX_tn>;l2}N6#gGgGZm!b*I;=x#!1rk^j?`bO9 z##n_;YaQ!)(LN5q_3IbpMJ)HaZvaFwZ(!WFn;aj$H*njLlJJf<epl;!lu9S92C>eY zVioIQOUC?lo6P-A+RtUbUeVX@VPP!N@M=+|%#vJ5WA4H7aAg;c0wG+eb2J=ES$nr| z_hdjh+^K^4j=Y|L1pNC?{{yY>07R~~yLCk52??XwFqGfHyCOZMoIP|v1e7AxV)nXE zA3lMpf-+&hZg@Gp;`N7*e*AaN1;w;aLRMExR)#)YAkwQF=#ZAO=8_xxz!Sir*KDG_ zHMH8W*Imjoa#8owxZkr>VNB43uw3iC<Nf-EPoI9ohu81$<;%~A=d2sC%KIW&2SR6n zySTkSCh2`3@o$=@4(fswempCjDa4e+y6@65H)T~A#WDcw)Tl8zBF4Hd*ze7if!^Q> zK&utYx+;7!s7YC(CnBk4*t9E{pAx1@2_=$ve{IOApmW0l(nd)Mt!JFhtL9Ot@UkXY z%4kOn7kVZ_!Eaw~SeA^-<$^{PJKeD<RL(Ce&Q}RDSSb=Jk9y~@7ZhTuDJNwz<FF=U zCPQe+kHi-3oOjgz9xzrh-w9RScakF@yXpjFNC{H_cBFj6Qr5u4;X+;03?xyfCu~iQ zsil;V6M-5=5|b(|#=yENxC|S6;Dd?Y@CTfdL1J}*M}l(nq7WewgD?_-<d|v^hSC*N z8L0^(!y{WiK^veboFMhlto<TVCZwJ`yPqd5Mg*!fjH+T_cR3E)8`h{YHT5ze6QKHz zp&#h}5NcyT=Yw_KCR7t8aMJLE!rPLi_PuF*Srj!&dJYJ)#Dj?-r2=AWTc)@iv&){4 z8c#SJ!rRu9bU%{rPlL5{hAJbzc2$-pPo;Y4C=<BByP=BUf-7PG+!HhoLDF}r`?r)6 z%5nnb1+0RH&H6KADrLNW_=MIZ84X0(RN<9s1X-uWgN1Dq$ST8Fx|Fu<hTbY_9mn_< z?OS3ULf?LVlfD9*bopG@1?QKuC~c`Dp@XY<E$_E?)J-gLK#vVSgo&cDU@>;bLH*KE zD<=A=K}&#^9cEw4l9ypAL-$b#0CV_eDB`oCs0u*hu{Zv@q$jot-JQxAYr3E%#%;Ty zCm<~stQq2AgPnXSRcNUcl$5cS6V`H)WNp&55wvnaD$8=oIGxTS@YTp*m2ItwryZJG zm8oFKEB^TDPp~7IyEdNcy`cbFx|Xy~6=MBM7+(OBDIpaRa-Y8YfS<qoA_7S3I-?LC zih#NA0p^a|{f5`qSL7l|8g4ZC#_10-V$<!_4fjPd<K^WQIZJsHoUt0l*oFl}ntT9K zpP99Mj~U*mV+bpKo^V*(%&_)-Q&*K*P+C#J43xlBh1p6?D&dBl2o=UCgzOUmOUWLq z%Q=gi(kzTF$E3E_wUkvu3syg^0{rdEJLo_D0}^X&mKd#xtBNvE`yI>`(Dt@g9yk=c zajIC`E3VfK+x>#m0#p(&&bII94QRAsSu*xb6tSEL-3T@800AKPTu5ictOzfSfTGd| z_vVOBXo}+OL2yPeOv{H2;-TTpx4ES)5A@bNek>L!n@x<)q!y5bN`{M2l^M<G<~|ND zf?l`N3Bi)6CZxfR<93jU(3_q$fTV4eg>C>E0;&b!YWXE%-+@se%uZ-h>g*GkB!0}A z$1rO72kZoQOc9oL$5u(e?(VguK!r<}uubb-ezp$gs+9)ag`v&esL%V~YEV=5!@P)c z3@_As7KL6{1;KnYqgQ|^lh^%@r3!;DrAQEckuHHbvkDOLc;((vNn-Av$g0dLDw@t& zC@LT-3RuIGM&BynC6RZ5mA8%1stEbkD-w#tcB{nU-S0%v${WUp89}!9fCx8%eN+CO z!S1ajKugtr{^_r-)ViMfPDo2eZJV42u-)~X5}Av85^U{cC1grd)|a4bS)$IA{cpye z@3_5RkrLtM^@9Dj<8*n!c74ZwyTe*!n^EQ`zw*I@IC;e!G(pbDRTJz9l2rI|dWCt) zT`Gk4*q$B*{qednBm2K82)^g8GzgA4<06QcE-{vM!N))Th(CV+NA%iIx9WSANE#Jc zNI+oG1}t2O9P_rG9fF5qptM%S3vp+Z^D4X_gtDA*Szod3H=ysJcE{V-&vMWfGz5?} zGu3nc2w*g{D#-~;DWXAB#t+~B1OEAc{)@24L?LG&GFCV<mLwp?_5CaIpZ<i-c2+qD z%g7kCI>m!4k(B{<?(QmE*VW73bh5f314%4tVkG+LcRY@FO-0-{B1?F5&SJpJv&>dA zw;+%AZ1=mk-&BKao{1?h5=&gkL#+a<A-4oegI%rF2k&|;syI4LxP*jDhV=iZz?4b$ zs%{<IR&icL(c0P_du_;h#kSv3+Xip3I8mCaM=Xj)*Tky2?WmQ}svH<3@nN;1RzfFP zzqC#kC4f5#!?vv<k|rFw5lLN(DUrC}-6AE26|1ncrXl8TH=J@j3B>AZhci&s>RlmK zZ%JUdMy=dC*u6Gt$pfO%rwpjok3?A31^u^<l*I~2oVCTLD40nrT?C#IL)`Y=;Vigh zu1G?wcb#8W%T*LX@uXCcCI?YcreLL{elU&nn;?~|rs$?3rJ~YNku@`0F^<ixsjy*& zv^*tm?Oofb91(qKxEEc!hn7d_QQ1Pb#Tgg5P}4b)wPYO%jwP}sJsHrgZwv(vRM51{ zDNz<H+G#VPbwaJc>-hvG>DCDbPRj`Zp#h-Qks)Eslrsu4cF#9Z*T2D!0WTS4tF&Pk zq>ht)D1sIW^a>dDdI{bNK{Rw^<#P-vYnBxz5niloCiV(IXK@P4&aw_LyuEh^i&w~u zikzX&3NQaM;ne}udh-^<y)o)G4yNhdl*B`VHLD`oG?N|>x+a4aKwXmF5+zWRP~Y|K z21<nY_jgHlqzq(9o=YUTC#=@6;e_Ffg)jj21JqI$W7NI}SeyQ2thq=?yDyGIgsd=B zKCHd@$Q6kovjQ(9-REZ?^R*0iqx?jFGCHh;@_pZM{_u*uH`IEUJ}!zAlo-ebjfB^= zR#9t3t(zPUwckDL7?mVDiPYwjQj*hbmj#!PKceIlN?Gyqum6Vs_W2i}aR}84QstB+ z1kjD$byjaIfsy2}5_O3sZJEpK1?zdmc5muJYYvj2Yt6tSVB2om);3A|T>8!3!n)sZ z7fjI9h(yU~Y5{NihV%I&*5!=b?cF!l4}~C$*vubOG{oI5t!T@#ASJ1*H1CIN{pQl1 zEK>@e0<{==_pJ81Z`f-^$*V8Q^mtN+AP8({N{{u|x_g5PJ0sk!M-6pM$&(%6WR@K? zb5;28{k9{qbX2R|8l`M{wt$rAQG&QcDX2LvEG6*}AZ!{|s8u`<y{gzy++aXpsK@#O zYB?GpRWTuLE@c{50tDamKp0`<1Fi%}4Q}0#dqpRSXZnFp8t0W>@(e<D%~=M?@RQOU z>1|I{38U=zI@+|V%iP3c>srN<G$AWtS){juELStu6~~4GF!pfYH*dZ|1aZ~sw7Q+< zNLCh<K$a<<)N*AAd`%ds!ptPf7EGL|;A~y;JeJdf+6A{8HxZgWNvmgNKq(Q<rxQ98 z&LHf$ATJV6+-n^PzYv%oEuctSiAXcmDHsDP{MBQVXn0YY=Tao!D^rTR?XS{c2aAhU zD?sejMpM^Bp-3p@1YieuMlOs6vTs*AfGW)2aLt*NDy^hSMWhWdOL)WtiFzr_b2<zk zj~0*rSbKG7%$`8l?l)<aV~v+sV3U`GUMniJ0g&>hoRZJqyb;ctlqcDVqTbj?twr%f zb-{NXuXb%Q4nnV+GzJTNGdRN?FH4pZOL5t22SyDgu$I*=>!R(+rK4<X4cq+&Q}mEC za$dn8l(LG#OWDUA#*xMRcO;UU{*xvRLc=)5WF#3+LMuxu_~q;0ka<C^;;k5att(Q6 z#f%42FyP!8L9pZb#}p8|$HT}$HgE!?;_GieVgKb0?%HS#!;5HMFt;otyYipWsIjGt z{qc2h$9FFu@v^*vAP0igY6+|i<RL@AjM^KDp10~kSX>k0R<mR$i)p0<q{|uWx?-z0 z6!jb+AZ7%RdoCE#)$Vq~>&r!4sV-b2EgqE!_9b>^KRm|}(cJA$l&(1j=ULR?n8C!T zRgzxTb;VLv)V6D|mql}fX@H{?a2ye9B|}n@A<2oGb{TAVe|y8_w7SMks&s$^2BJt= z41Q!4OWD?lT@M3G%BaW>xebu!P`lgJjoTXD-|k49kh6sgk}3h=>~v@zf+lW`(i%v; ztkzi9y-F;wHh>ttnJbY&nUG2XrLH*%05rbZ1H8mNnt`kY2@z<uN;4%`audwbBvmeV zwCx?Z{RW&~0Ra1U6UI{(<mDtv05p@i!}m*I*R@Vudp#&F7(>o^k;9y*feJi<$OM;_ z`E_Qk;TFb$L|D%!DTz$tNivI8VyX*rPC#EkbeC!k6`(0=vJe&!<WMZo=qtc%j6?En z5&&vVPK8rfyzHJQ2Z%ODqQulDO5Rqr$%uwnKv}#-waHo_F38im;vfI~NAXN?(lWe` zWm$2(UA4D7Fv?@e3ESjPQd~hwDB9xJnW4GBtz_3jMBTflNf<@mpF$#^_l{SAE2lpW zw<}>(?+^%etEhWNNg2}niU3Flx7x(>*9{Mh4?=~33UOCJ0{=;*A&1FDO>XHMle4Wc zm%StkHeENgAx;iQVzY-02!x{J)I_M8;InWbQMi*Pu&wI}YhE#(c@l7&n|k9&6rw^| zTK_6vyw|&Arl+LGXba8MUKRGF@!|zbDbfcdB{cPh5r9^ARS=u+ZOH{oS#c^SU1P`X zb_GC6vl4ctl<|K34g3C%vYw@4Bd^XQw|WD*<So?w9x7T$Lmy2`r4L@kQjk)@eZS)m zAO8e7UOJ6^hIs{t@HbvKOL~6#tKDYak#UJ|XgH#%&uTR7*zY$qZr=HH=ouW|dl<)T z8B2~o%x8EY*yZV`@Be_p#rf`iyA9ktydTUct}TYfBi7hM;+X1w)_7N<gpZ$oz~|ro zS&|iU^4|EQTJ!`Ql7uCOw!36#2tX~qX!(bI@Ha4gqgrp+_dB2(q3CO(dGff~iNVGn zE=U1Z-FLKo$GTo54%j6jMYPJH@q1Xrt+^vMNGy(<)f=-Oh*ZGVsmYF+WbG7Htm9Jy z>B&$Qn*}#y4Q*Hwk@WrttV<S=CSNL(a=c5T4D{ZyZyVkrp&MlQai9BM(W{)K*ENP` zV6)JL39;UweWM$0*E>$jN#>(z7mei@;*?EFS^Y2polrD9Bup_OkuZ;(h3WNL!Btym zE+_O_Ra+1B7)0Q<qu#z?O$m8D;acywUf<9=V?Dp3EGI}<XT!eT0Nq0`nbeMMzJH3J z=He|ylz{Jl{1ZNY|07B{!*Ue}S#ckz1T0jLmlKc*&Mz<6wu)R9%_U*%ipOPHur4e1 zea8YuxeGJx+>sN+^MRo-#JRC;i-nR%1Zrv(#>P0{B10K+@7VVp_x+By_pj3HdntmO zMxQLWcRro)-N%nOomZ?UO=j##+9`uP4`gzW8a<`q-4VguU>Or;rKFTJUqV`sb`9MT zOp(_4B=N$K3Rn0Fl@VwuhtI&3ef!;%ArZ{mzT<ko<Ga^afC;4}01~>XZO5JxwtcjK zmKbY7UbO@)?1dz{E$S%}g+w}<ibZN=qpsYmcxBzh4zb7$_nLaHQqiuJ%2Qga$je#s zM^eGEoa8M#q>Ri-lt4M7<V6p9qQN(n?z`qh<wZ^w74MQLeCN{#*pb7hB3=<DYf`jI z47o`;xbS|-1K4ZDR=;4|H}N7-LQdKFZ>`naqW3ON#q0Hk>-$%{Uw^}SeZlL?cWUiR zkA|Oq`8T{@zfR3>l4ad!+1+FT^AK=`8jg<vH@BTY>RtVE{fv*N@BJ>1qaW~^pS<VU z#aTUIS4d3c%|@(}uPW?y-vkd5!Oy0qF-*`Q$9U1=5C0!+!ZG+ZpbE0IH_kn|z~5^~ z(2fgH`YFsq6LMjz0@G$zcj+ZgIe}BgndBJPeY;~>PT00O-ma}DZ7fn?F$=N-cKTpJ ztNRS(Bc&^_&1UUgnk3wAS4pa}yV;U7Tu#DutD|D3f_=YTar*EAYrkk3(QGBs@F20x zgvakB?%icsoEPoehV8!Nayh}0yAn$bG9@Xkvl6A2B=M?umUF=OJBppeNF>QqJs>J+ zO1f(NtO7Q<1ub)zQm`&%CnP0?#EecI+r6SyvE-Y(^9MFE!<7*0F12rxAe1zFnH$6t zpfN|ukeBB(B@mj{@{W*-2wUK!Rw?Cz{eA~}N6HJhtez(zN+UGHK<M?3di{)lxcn2A z(+R({4Zpp8#qGU<DPiC5nkz86p1D`WV-beV#<-P0+J@Wqj^Extqx`E_JL~BKN?CDw zdBw}?C-A9bzh7~_oUkk>Eb9gLeaCt}yHa^NpHbEo?_a(k=YnNf#mZBQvYG(Uu9?<e zRK&)Jv@+n$iDb_`8abE@pw_Q=-&$*^ZO686`10FlY`vqbt2D<^<sI5+X<1jCPYW&| z3&iN^K$8-_%5p%?{l4LLziEjSBnQD2r$_ulABwj0tB|t5h|9(>EzT?!DtZ02c~C6b zcPJnS8s<S8L*JKBSVlrg1zqdX0g^KzQbu1Te8{(}?-_$pPAkfqwb7Y1;ZY&p^;sk> zDU?IMOyGNEhqpA>E|-=^!xA6o&REVT<Wl7DtzOk*SRIb*asuUy#*D31F(UQ~^BycE zqZ8xaZn#&m>Ij4-uONnI=!+%JSNX2?rt1>oELq(A%d+Cb$4{`T$m{J5zkdG7IV}jD zxCzs-V)#U#8;5E+cDe#&uF1FS7wm1r4?p||@hGeX+jf_nnJ`|{<W;kmoEZ_^Hg#D+ z@%JG>1TO~dORS$<cSsb@@NhHZ(WrAob0u^BOrCCEb-X%|mXcL#8Lo~e;!yJQDDL$q zjWPXf3l5JeLAB0U%L43*n<*-&^UQ2n#ZH;B_+HmChTa*Z77DYRBm{`tcU2(ly<>qe z-4?93sFm9+350FCiNMepXQw*unL$7O-!j~L@2GXheY-nT^k)n%Cdenq4sG4sW!xL` zl2OWntx88Fa}OGEQ`eFbvbTjK3T7}%9rUN~KH+>id-IBY-|+JC0zya5mMzR+Wz6T- z3%2_PKd(FsW377nSkiK#)Fp+5``8D7U>&`<I~8KMwj_MR1Yw5U!MirGITvJFK)A~i zLbo^5lC9B*DOFj+E&I0Xc?9B=q@I8-2TtS!a3)yAg19*WChJfrl_X0_SWCufJs}ai zjB`C-urY%*Gc_y16SN<Ds{pRZ+ZF%m^%MTnhmUw~cl^ueU+~NIj!b8C9z70ZZQA6> z+<cStH0Gu_q(3`L$<BS>gn4`>tjh(Lmk;><haaU|A)T<CJ|Nw9q-<3%VpZ<<yI5J< z9mT>3P5PeK+CV8|Zz?>x;gV%h3tmdYA+dreWvvK^YP$+b(t}AL@$sf*viG(luPYer zWoAuJ%E>8V$!8H3R3#?d0cMiaG)r2uFi{eLy6@VshGnMXSXV81^eL)R&={N&Knrq_ z<FTm=&L%1%l$t1hNl*7=kcLLA>^0;N82zzJd=>r@XC@-=1;7lveE0}}v0d*Vk{IZg zlHhI5;9VQv6hg|3${RM`J=7+xX*+gGI4x(a%h~x>@7gpi@HaVFO8%~G*D%azG?Yqq z;RFKi_jhdj9lM?h-?^(-G=Yhb%PJ?gk#rXoujN-o)e-L%CF$LbHntQS<p@&Z%w9EA zwe5LF$Fg03B#OiP{VSNfO_H0J9&JM8sgQgtlaDaIG~bJG$;;RBq6S!ONgc=lVY^xI z5}_v*%q~2RXA(Z#<6#|+0)K=|C_Fq&%s6SXNdy5pKL-o}JD?HuRZAY#_wi6Y2dri= z%);M(rNbSDcL634!>w-|K-rvDk2;HOQOQK!_15a9Ed=0M#(**sAU6iBXMkBVO<C*d zP1B@#gs@6!8w-zR#g?S*ad`NUC>DzNwMi01Sx?eWV80LHkHe78{DWG;(Bv@&HOA?3 z!u$QJYwiqo!6XV<_f53D5aGzu<*F=LmKCSd3AOIt6|n#R82h&-N0KB>6#LXJ?f@bp zGwagb(=&6<S*{!r3g7wvU-$z^ijZ#<p)7aL?#y;~RaRyM0CzJ}<%6o4nIodQ2i;W_ zfdJgyZmOT&K5eyIqdIs1mbn~q()fARaxK94tw}Uan3KhwwUJ4yYB50E_2gOi6IgMC z8zKl1=ko<bhCWZK5JOg;_dqvz%#&Nso<PhAr_<;>D8g8lY|E*Y0PGp*5)dRJMFJBk z<*aDgBG-n=k*_6}Az+DCqGic^tub2BFhERM0St4`zW3N<6M$;P{rVL@oz9>bu*Qg= z|MUlt6nrfe|BrwBiXs`Hs6d1nDJ^i%h-YcL2dIZ$OsVMl8{3!oe$%kfcE95FTf)oB zXT*^4a`_RL%V+%Z%fI1vdxghxvF`{JQTH7ibKg@-UO)g!X>k7Ux#O4~6;JA7C3&$r zb^xFl5R-;8T5Xm%W>tZtwqO%MBWT$kbkA^Wn(${<bIhvDbIJ&bKwvNv0`zP{1S}D! z^`x2B7N>S=nhjX>{1)<fygrBuc0n|X*FeTB8I_q(!Ql!iJ3<gEm(%_1=ijg9z+Z)^ z?<DGqsJ|!ZC17e{W?U{$=1L~udIz^1WR()Cq$_Ui3S>=iETRotxM|Sc3L20?LTx*| z$qS&lE!Ftqy@uZz5UZCZ&q<I1kRn<o<{`me?&`I2FOcn%m~=i;TyU3bXH{&LbO*8o zHp>y}6;v*zyIvW|ZPwc7ARw7VJqIzO>>IXnpG?D9ihd-IryI>pt6a~`*1H*g>v};9 z2>~h>DF)qJoy2C`hYtUiBaa098K?iwHwRfI5h2H{#88JZ$oTBz+tY1m{+B%bVbUwJ z6+iL|2)&utgcbTQ`ut4KVAq_Dl7pAwFbDDhXi!;|a~>c$2wtzhby@bIS_Y8(AWM^O z{p;>BhP!^S0dKq^F>4$%S}ciKv!dHjQr?GKpq4a96GxQC*to5OCGjvHCQIhI3l<;p zn4y7`)9Hfsbi!V?G0A@D=rDbg3labr>$)m<DHZGK1O}`PuEz(5n{%EtpR4tB!n&+D zpD#%1gp?P=n6a*B2-p%-OyHY>r>LY2wKk+B<NSO<Yp)uYO$j+CNGr(8f~S`klv2QA ziCv{&yWP4=UZwvac2N#)%`nykuYmLE2^1n)6D;X$-(w?TGP+j=ny4ZUMjg2<S=SkC z;3ipou^p-ty!ya}r9MXlA`nF9Q%IA_Vju)4QOsToq*QFT4G<*(DMsNLV?+R1)r0OO z=irYiB1pk)|AtFm5J?a$qxKUE{;xlt@c(=h6cGekk(RSnW9Xsj$(HuJCoYNQ3iN;4 z(JSRFVWn)?Za1v!34q|7SNzLA|7YCxE8ebOQA)w(`2}D9`ae;wZ)nU&F<}h>r52=^ z;B}GIft<T4m3zbAQ^mO;B+V^gVIVRjHULT~U9D@L%P3_9LqBJBU?(AEbInTo3xSdC zC{a$3+$EH{ovkd+yOALpV9@6wIGGh2A&MnH#=+aJ@#19F3ZBrXrEd*d@}#b2bDKBo zwr0RqEpqC;7u>@&TQy>9<niU_=a){xm2(E32)qIO_J+OeD7E0ay`j(!N<b}|R3;)2 zI}@;S!zK-cqInZ^Mu-WQ%L{(}`WI~b4W$-a!v`S&jI&9kxiZPf!JN&`J1dHZsx+fM zhJ>wNtsJb_v$=fi=GZ&y&%+>oPy1oo`}$T05l>H_u`FkV5b$P`_@Eaoq&eHNK0KO~ zvW(9H@IdTAUlNegf|xY#%Yog&1wO2;qr!D?^N|9a!j>Sf0vp$H3Ur?%b1EHl?mv9> z>$@&^L=F!xj|2O&Sy-%JuFLNu$fAB(H#B|yfKgrG&tu?24ig0;!uj-~`-yaozW(-$ zea$`JI3fT6l3S@B!xK0Gkhug&;Jw5}VDajTWm&Mb+RFqZ1;niR0t9q7vR4VPxy;#I z#3^S32cs-V9+suI&V^Se#NIR^Wu>UhDJkfV(Q0a`TelDwW@>rr_?vQ7w}!g!NO8fs zUQp^cwbTN%)86@PjVE+<VwmVJZ8Nl{4SDX{UD>rtL5vxV1#j1zPVkZtk_y_G5?b9* zN(Dm1a#|q(&d*O+PbZu&XFH%z*owBStgR`PuaTSV+omlnW7c}-7>wB~X`&4X_j|$Z ze#PnZj1&{Dw;jS2ApnsgA_bh*6A~qqT`7UJp^=tZc~hZg4U>XxUJklKZuyA09l7a$ zb$<qRCx+08Yorxat{`R*x6Uw@;-VG-D+@Z9tT|8wx53I+Yg9`utU$`B?T#flfgqug zdIWxo1%H!>lvgb0XS8bNN>g(s-(gOmq~(OED_X8q*}2Su5i!p#X&-U6_RB1cz=HF# zg6I?WqA~NluK3%3`>$x*U6U{YEQ`i}$$&LrNo2y^YEaM`dh%_`YqwZ6fh0kB0+hL} z7QIH}hLjVUk?=HYQw?ao27CNofZ9~~#}G7U!jmys07=7jXvt#AO`-drS+nSCb)p|w zNCY5pA`|L>36MeX0^P^z{x{3H?hqj~3j=z&ug>}86(ptA4j~|l5=VK7p2zW-xwlG< zIiWhYy#dw`BJ$G;c?I5XZ#q|~kg9>d&iybc8G<L0GICyxvtIX%yZI*@p<8JJSe(`b zZUhjZRaM|#70`1COhyt2r{&U1-_(8oP$oTVGglMc3)pqTBu59}b^XfFwJoLKw4Sl# z^WpQ4%5~Dk_U9@1YD#P9VVRy&|3*Yu)(gCPYTIuXM#LDyyVnE=j^^+2cX{|T4Q02a z6+yJ}r2~)YE91Kk+$Mt$<E?=*3G>(H*DyMJ#z9x)tms+8VxDw?aS{4x0;UQ6{rMU9 z_I#Pk<&*wZl!M@QyB_E1-J$}CElZTh61WVGgs3&fBi5t?2^5f)6Fz<Ug1`Opi<a_u zceK`US{6XWh<F^`>VZhhin8BvI-PMk8I@swAnAySh<XocfmRRHrh+P`#guWt`FzHj zPYO)LYpGK&<>?3&8i(8WyP~7k@cQ<OC7)3W@ag3fe){<*tm}$qrBq~_S1j*9tj@oq z(pn(|Y_(w9?l|WRgn+$N<eW``3mO*)F_;9Etnovw2%?E_%bIa{xgaKh!v;z#mdlFr zO_RDbp^30Asw`7H;dT>aFeBt;>D{(c(&Wr-yW`u}f>-$ktyvOhAOH=_6_pzz0z!@; zWPq|!OnP;O0;L!T>-nODHwb9em<Y`xQGh4CA(ST}Aq3<#_P*bNr8jXwZHQ3vsbx7q zj3#=N@x-ymMX=xR2nmSG0y;k<U!JjS71_N5E@z4Ga|-zDy<*3PxKyj~@Lmj|AIf0{ z40|AifJh1A>~N-xIuTLSTII&99uBK}CMM*#0?epjoR$^q(-W>`Lz^r-S4Mh3O-4+D zLonRN!9oB6QUERlih^q4jnK(!jCd(%r_9&a-xR<F%@0tkUyPti6<r|Z0VwxR2y6sR zLQ~1nG)Dw2|74igs9N}BbW<bJK+Ul41rez;=4qV1A*Kb~2+T$4gC~~6ar`|Qa8gJB zyd$0%@bvy84H{l@u^O|6B#Y6?x?m(R4gnG+#-gGe8m8cNO=M^Yb^)&4F|&t~NJ0O$ z-}+j*mHQyqO@~=}XCP1vU;}9&^iUJ5pNEE6i*@PKyal~rM-^R8b{*{&9ns)wn7mvE zJvyl_gFQWDGX~=WIjH%0DITsg{nmBTd_BEp%25f!03{-u<nrUo!7BBKpC<NzM&8}t zzNfE9$ygfgjM0eScfcdZ^?LU#cHwciqt>SBU#>5@_t~E7m#_bQSpE~#I*$E!6uko~ ze+KDq!vU*0>h%80dhX1WfS~OA5$MP?OuKHXt-?xwfv7G!<!BEUPPIC8vt9&(_56Y# zfBa{}(-V*u#JphN?<m_9#H`J3%1rVREJ2G<>kg3>m&+Ng`e$M<w}F8T5$kH!1)e77 zaIN_E+b>ww6Mp{bPXIw{o)K`nU2(tNQ0l#R%VTa>*E8~Z!tK84va(>?Zusr{R|qmB zFeqx0;=bLwa@C|CE%R%wn5ATk*-LD+GJ-G9U4h;1H&dp9mQ(<iwrdMzJNQdpur4QC zP_-)4LI|;9Syxb8@%=Z(cD-ZY?#6$R%uT<5S<4sQ@}ZF6%}BHqu%YY)buaL^Y6x1k zNJPjfYu#@O`1JA&Lck9{{%8VG`k@l2d-8tWP+IA(^8gdpWJx_lSkBhY6@>M4MxcnN zPoH)FF=M~q@a=#68&C^Q`GnXSQeIK6SLK{&n<}ZCAR(f1LunhD0Bd{((t@X#Pe^e` zxP4d8g8*dowx<{nxL~U{w9|_cjL67wm`lC-ITlf6=`LGXj))zWV9BxGO^w-rDgzRX zyd@AyC7?B|r!zkP^fT(dL9E=AnLB0bNG?L(>#A&w&?H8!ih$M3TcDpv69S(;eL<@? z%`-vM%y9@_-@X}BCiO&3$SC>j)eu3zE#UTgNB(4<3`s*OnS@9&qJ#kE3a+N0tgO<{ z=K)MX;O$JA)H~8ijKt*#cg5GegT5Bx4?rf|#DJU5H3hLmHBA%ml{?Vzi2%57J8s)% zDNTeWMWx*)!n!U<DS?CM`gm`6alLs=II~wU+Et=}t=#bX`qf9<h4(w{=x<MgwsFO_ zaTmlc)H|&=Gq(Lc2zf;F6S`*&de-#PqqG^87trrXP*5Q<9_``pEbfJ1R6bT>eWVEg z<F7|BVLvMC7gz*ax&Qtx-hqsVPd-fb<M$kprr<4uCvUJT?J0h*mz$Ki?(BE!_yBl5 zHp$;TqB>Cmw*A^m#K)s|iS+R`9f(dpJHXNR99$3RKt#yFXv`^e*3>?eM@-#+NdK?@ z`~U3_7N9`LG2!#)FZlHNCp<lWQ6dvjmcXY^pRukd#B{>vFAGu#xZd7y-!`<$$m<Eu z&!2F;z9|clz(_CDJ^%LhhWqV?2vrJ!g4RizmC|a%w%x}xg@ClKIGvwR_Z`w23g2<P z{)WH)^}k}<HZ&7Z-Y(LY)%#_?8pr_D9hj1K(0Y4&Ma*Z!C8E@VRyI)36200Ke0V99 zCjMFnGIMk1q}=1x+;zA6RhhDcdwej)fRqC2Ua_|dGBz%jfV?b7dFH|gVhYG9;t5(t z_??<5VYcQ&8Y|6NOVUzKBMf7ub>52_77NlI;$*Jds6d63%RT1>%Xz`e%L_sfoU-=R z7S^ocZQoJ00zpM-chur7FRj*_2yrpuqM&3%DK9ubopE`3L0YUFQW)n?CoH_-fBb*` zzo>uxD^{`2b)6JNg;`7q2-f9|G$(*!!VfQB5J>whI7!dYFqX%{%8~AU<GYpfU<tW< z&jpQcn>l7~taV0P9gUv1_h1jY%N%gWm_UuOZ#$F`?S#GRv+R3?h?1RXOJS$YokfNK z#NLxeYq~Aw4g)zML_nO<bJilj_4;O?)e&iY-tsi;e?AB5Rb$P@uYx5}SAyN*aHcs@ zMbXR?qR(v>)s*b!ja_Ejj$2b1VA=VeSjraH7OvfZwHXKC?Zv&qVsLOc+o$KV#Gu>? zVrk>|`yH>ZZ}3*QoEI#%ZUoOqaB%Ai)TdJH+MbMM|02yjDs{vC{)*SPZ#u#ctf?VH z9~6k?@#LJ9@K-EjJG5RtD<UXun`qL<1&us$aso`Cc1*W^PmYh`k2eoVLxq0dDNCF` z_~JiMcpu(qwwe1}=$I;x5Y^+C-|2R@uI1rxU2i@h7uz3eK0kbzh5_*K@yDllXN&jG z9KY*~kD~;%|Dn$*fhMpe7?+`g{y)4P6#wBpVC>U}XVr=aAES0%oOw^Cn;$@Eik4{P zu6luBZ;ZeG@(cd<>#raPa!h!>JYhYZQOl0cfA}YawBY*f7recG1DjAd<r8jiSN!$$ z6^$9Uw>L}VQTMRM@zul7YC{SHNb3V}PlXe>IEvl(9WiFBn{^&)wgIS%u9x^>)Um^a zlwMnd#(@a67KG&l&FTdR5iCH+C&ZKxQ^vmEt(lIs6HN<(CqEG>=XD5RX?VL|JMqkJ zibpf|8&ZnkX0gM4he$wLGGIzBq*aAk)UJKXDZuJBlLny%1a00!(Mlo9t_hVXAunGP zB$@Z&{`Lw@5@M9LtBaHr*l{zfiy0JD0hIcNyhOZwdIm)SOF;}vXWMG6V%zT6_Z{EA zeaH2tR!U4tY3xK%uzZor<%H+w7o66J^C^H*)kH&Pa0TdmvF?yXDTZ6KISs~U2uQ6x zk*hI7Vn8rY3<!|MosYdI_ldHnDP=VGc&(Rax)|^z91(ZC4>@-{RF1NZV9At9%4y;n zu#W{G#e_TGz@+i@<#fjV?G2l)c_{)4Cj?YLc0j6cQ8>i+7NwdMUI9e2xRp#R5TWf? zhzXStBZ`gJL60X5abvLOvYPUDLnyCFEzX;k0){lsi))&k7u>cxLX7IEv&s<nhy<FI zzs)WUsix0R(ToyS^)0JMfva^6Y_<jt9=rpo0}59Q<~aaC(2!yVH*I&T2Cp$HLh$<f zhFbMJ-EhbGv?6Dv#8$xO&9z3{{NVnd1u==;gS2^%)1C`_H+`VC9+V7geoWmrt-i1d zD6Q5BdcF;S)KVbHt3n=>MmH;`JJL~!jd95M9n*KsUF;#!URwNnmi6Cxb>QX-MrOP) zej?+&(0gz%aeX&kLQ@XG<CIb#)9)(H>HRgI;9k$Mu#@uphp6VgOMaFUdKq0Gp98P> z==zqNF%@{6+`h->=by(W1I!#jz;vC5VR(N8-Ot?P|MT;ZuhWEFQ%p-&9x+AhW)*v{ z_-e^$$Y;dm2@<u_(3%6DUOwUS^o*Fb^hOC>G;aI$`W^eWnI)tA``6nQx0~`pr>Bf< zzk|eDRl*2upd>Ip$;_koww5LmQqDLT3Cp^us~Ljc9WbTbNf4U3r+r?Tm7enQ{Dj(o z>)Rb75v^%F9Uzoa5Yqx6prQ<Sr&%pT0qc3e<@|)Vw{O7hs`2g+mG?bpKW<p*q)4;s z1?@i%XZMS*`1wx;I-=$^Xos*0=h#+3zz|~PZl=^rk3ubY1#o$KMvlq43I^P_8%o{L zn2{Gvl&n@y%)($JiYV6JGbF-K`~`_Lk&?MWs6s*oO96Am{eD+6ASf3=+gd-@$_*|E ziLgfkU(SdGfOmjLgcxAlx0@!O38QxFV`K*h7(KBaToQrQ2DF9@#sU~nrB3om+(1kq z>jjYVie)*Wm8zko6qQS%ceWD@i{qI5^-dc4VKqQ8w`aw4kSRn|DG2d|ecJ#7)K0dj zJQ*1=Cx8<mJ6LM>%&5{+ce6<Au4yljR))3+X*)2{<<@;SFhu61GNwgS6z%~a1HU;X z<RxKU7Y)&z&VxT*eTwQOvi<07b2Wjr_GUvqUA?`k|7Z3F*m(=qVX@X7+={iYwUSX` z2%36W5LHMKS@M<(Fwt;_(If|nAPLG|=d{zU0hDpST~SKY3IGANy<lCHKi(NJ4bi!f z8B5<^lLG5`Q9#bidqw$9VSS)rM9Vk5<!?$ECG6v4q{*7@c_Ry*^m(1O<*W-0qf9$_ z{`cd!45`8iarEZ3jV4u(&;01g_~;{#<9{6e<?_-2r~+~$`?53if!+Uj7f3&B<Fm)` z({ytv7`G2iOp0z$>UCzT{$NSZ7o{T*7^Z<d%&X<D9axO)Z#00W8~=XJj#r(&I)N&i zq`&(j3Ru@CyObu~-nZL>2Y`+k!v2<i`uR@-5qe8S@~r>S;xt+>VFBa5Z=e(r^8!lB zea;Ao<}N#(6JkiHMVqC2td*tWe!t=E?TXv&Hmnk8R(On2Tjr8mUSd|Dkyw}o`273{ z>$>3AuU}E?729?*!j*_^zjvaJB`eo|N(s(EURzZT`Lu$AAcSIMA`z`=2^C9K%g4Gf zx%-oZ^&c38=DMPOtLmQLHx-htY7+{JUxG#X6N2#xh~R$TkQV~p-cagioYspf3$7X} zC|3|Mgp-wQkpXB%;l0nBh^RN9DM?RW7Q`G;uWDHXngHl8=j|qpvd3VV<l0VhF?W66 zsd|FQd%ruq?i7RUR*p7r*={@T=NtC@hSMo1b0F!#Vrc;1dd#*TGEdez93AP$gG3NS zkSq}oAp+(Ra3M%ms#u!f>C;QMAYF!qs8uZvsSf2i)6aA`|6~VuC^KDBHl-hWRR~4G zvYb(xTD7<9n|UFIe@i?4k!AE}P*Xm0uQEXA#Tdd}lZ$k!Lrh4^S-ZHk4cFTZ+jd7t zxo7)-luo2Q0hEO4<@tis`HUDdF6*iu02@cQX^pK>L1^o(z?qG%*+GT76g<Joe-0z0 z<#VrLz}owe_bL+OVqjt9WQ0Ic4+hXo#HG5sA&8c<M$-3L7*Yil1ynZdy8`%q+p(7g zOAdXGhGi^Ap*Zf?e~Z0QRe+Nd9hB>Xf<Daq*kIigz-TDjrlp!)Gia64n$Bb1-ud!r zD3j??d!8J*b$5J-jwAeYqLn~I3Y>aE<AjHX*M8PqA6!(X&m0EqN{f)wqTV9dIx#<d zc3kxLv6UmAhe`HZ6Gk&QGa}x(5`2#4n@``@cMqHH01qCY?)@IHc@i<4rG}4lw8-qL z=|6s~+~+-cn5F{{@bR^tpALI-+wL<?R~gmsIrdh{R&F$E==Bf56!YwQ5z!7p(b&ae z(hXVmU8y)zLXI#XVAhTZ;FcLBoG;p?O`vhhVC7JnrHmfC(3)&7(HV=YgeD7Wt9X6A zqP6W<E;CKgt=w?mM#e6nZqxJgCx8OVe(OqEJIxi%j%^iTBKYVrS8f1TNDJW0la?Hb zpcqi7X4$$>)4FI!+xoM5SF{Ir$_cd=q#PhzaKG)?%MG>M5t4u;ftw(wh#PB0b}O2l z@2FGEgW?^uO4*g^jhz!;H)Nn-y%fB)qz=hDxK*hL$hN;sQA#sD^QP{@9KglmTVA5Z z(4-@_4Ed;JO|REioK6Wb8~F-bgOVlUbji5g?qFC4IhxXaOyN#vWppnVOE9%qIIK?G z1>3Dz^B?bG2XxlNVO{eP$&Vv4gfATxDGOVxR#Qa2-xyj|VzjgxtgTp<6}LBKZd1>X z0^<;~?NQC5*IK%f2&*p*iL@%6hl8f`8B+%D-%(q`ufP6+ZQqdB)i~-$6^{!F3Yvxe zr{@>YLRh~%A+&_casf5z)_)fd6aY{3v}9m^wwNN??iS;)p=P;3W(2rkjpki!b?@uK zlhW^oMq@N+sE>k6bzPgD@1ZILP5CDQBn6|e{2?Ch<;ELC2sJFIe1cq5X1sen3gBrE z_<VToMZwnpbg)GyEAK$(>I%U?9JdCk9$IVtc0}5JQA2!96Q!qp==R&eD=-gW(p&%N zwd8Z}0;nF+`pzmG_qMCfon&ablOxrGQkupO&p#R!Fy^K*h52}$fAE?TFNT3IY4H98 z^MvTdyPTNy@Z+$ip*?<f8o&Wu2%If;3=1L<B9waXUI*th7}ul6tM=<2rJw&-rq4Y* ztPoz#Pg;p*MziLN*~HF3z<+lD08n@TiOq_)E**oN;E1RdU0X%wZ2OzEp1f2@&PXX* z*^S>=(GUZmkdW6CPF8PStGWOQ05whcVhcaWgxCqXnPN)V_q)0<0n~@Zm|sr6=~=db zDk=boc>!)WgqXn4xTI#>8W?HT=9gW`Dn*#ED%?_wlKU-6HX~-icjaL3kv_PkET{tW zUhm3qXoM%Ew6S&HvF#fcB*ZAFZO84lqn2HB2pE8b(Uhg%N8N|p{jLo<j9iHj(3-kb zn}M2Uic;lOz<#gz%fJ5(U;fk2NHI>tPg+S)OGPb3UH7&voS3Ckx7zI2!q~0_x3@dC zr-IB{O34s32?#0R`O^uvzrLy~($>i$YHovC7q4*|r4?keOxX{~WWf;;a*TlND7$hc zcxO3y$rX`t4AjF;3DK4Bd?+1cL7(5AF$7pCobfTb%iH4PTB@46!p<q7R<^LzxR3Jq zM_o(uUh)7@wp<4#{c*-jfdI8YO25%Vr-&pCxBI{2mtTKTYxovBnUjNim)S7{{L{~W zz>hy?#FvOjXKddHp=n=sJ^KON+i8!pqaJ`Tt<RKvHW>_^X_H1PU{Dz3R20yvHbfDg z)7r;W3t+@MP9kJ~@b<a}76J$)1x*wLD1gu$1%{RIy2T}=9*Zg{1^9mdI>}Occ!-1G zm@GS^#5VFI-=T+(+Wz}puepITW>!)&ajalUkUY5*024~x?Y@?kKArXX@{>v!@4WxO z^s~O<L`~>tSN}E?gsJ`+1Uz2zLxp|JpwYfJ(!Fu>W5`1m<?v+u-u31Ed-V7>>i?TZ z^mv&A2smuQ@c<L-n!Y+egFdjTNj^Gk3=O<qf0;Z0lYwD+RSwHFKuh<ojZJ7@c^HqK z5u(sJM|2pTYw<8=AFN$E$~-^3)Cb|+_8jC3JP8lOI=2U7X(&a|TIjX<)Ll2$W1Sfk zv~<l$S43LRC~uW}Ot~{yIS3%lp5FF5F3-=1DT0bEOn<(4I5f>4br8_Fnq{<LD|ZvH zo-wX<&KfV*>#>ODDHtmq6Er)%G4itNTm|aHH`D$=FL#Oo!LCPvj15j}{JAoiH?+3* zhDoY4yhptB+H?`E$&MJ=(E?rcX5ot76ofT~4qr(&K;sFP0x&5Z?DyZUc)PvgvR<G@ zpm|`LgC3>$g~xQ~9q${P1+6g3-N2NH_2h2KxF&=OpcqRWNG)rh>jT24Ba#mxAlrUZ z!kC#=Oa<%`y@?T{Za3uR)RoaFn}P`>184K0bipwJEB{9;3fy9~3Ih=Y1BnD>xC^Ac z)>DY6Af%YI?Qt{)J7?GvSNQsT=pFd9%OX*-Mmgvd-60tf4llUf)w)o&N5(OwaqRsV z0?ugx&J{78kYYqjgvjV!<qpj3?#4Hz6@ukISTb)Ht#&XE@l&H)_6A!$;f+kF;o)@v z7P>YJJA)phH#x*pJzQv75y5DPWDI+dUR~g8sMb(JjD)wX;^ut%4}!g)*LgeGo1J{j z^9RT_=d5h~*I58P4A$o^1hTvbV5}872#R3<s}H8@u*UOicpx6X^!VSA52D-?m_@i9 zgX39v2Wng<zZ>eTKuvbK%im<7n0M)8$NC4)?U#ML$HUyu-wR$g(LbOAoMnou_da-< zFZL0No0i@`;c~(hI=X41AKJ^k&sCp9*J<y@b$t0FO-*_qKhgEF($7-|4rTIye)P5Z zm0~bD-|25-fzT0&FeZVemX!CSb}cPHS3(7~vuAnswIg$usu}PE?A8FJ9|<qJ6Pv6- z8U-Tjd{%Z)Qii>b!rU5>X<PNZGOQ9+O1lXLQyAT~YnBF}pQWKF$1v5!Qffi11*g+_ z2+W}DYx6`88cqcP{)Z5~p$}W)UqfRh$p{p|jj?YVw2NLu$_Zuj*uJ1PkBO5J{b<#I zXJ_{@u_&WoAE*7(`#c!oQxkAy?4cs1fPL4pPGLPjGkvf`jD{T#n^p?~v}<Fp4q)yT z2zzbVHl5>O`@#!ly8b6WGkR|^Mb=tHZ8`@+Ft<GS!xe)w(m}%)Z0(iJJMxH#XZ6)d zXnZHn4`TbvIS|Hp6&Ny9$#M0NgwoJ%_gi;)&j-@PzRkWd0Envo7$QQ_u#8tP_#XBS zfdaz!@2~JUZU^kMY$USSf5bh0#fe|g^O8lN33q;Py9of9tj!byYDgf|QNQ06xnOtz z(7gr9i(np&5Y@ZFwex|DIHdwxpH3a0pjiT>8t)!%8e;<k6;-Q$%!5WD0#Z@Apt7>) zQJCVPd<R1r{08Ibd!yk%<N_l-^WGk_#D{-xQWzg{=-W80d=wB1&sk29J%Cplh=uE- z$>TmRn7sh<aChBr-RnVp6aR-^BfRqXod-ob{aqeEKMnWb<`zwybP&<3+}CwV|ImA6 z`2N>E_UY{pK^7r~qy~k%)MenBzJF~`Ia$-}*8lJsK6*`?r-vjA1$z5v)1LOBN&XyE z)O0WRrcIzh9=|ZpnGj;mhsV0#uLripzqc7u2;so(EJk#~G*~g*4N4HeGJ?DNbsmrJ zJ)^edwxbetL>4S#xA6`l;B<b%+wIL(#x}G}N^{y^qufYF7JQyug@(L@cv4J;lKS5~ znNG9uqghzJ<`~mHAUf9i&WKfXGw=J3PcNSo6g2Jt>FBB%NZNVR{rA=yTB&H+N~4&O z5`jZNt;0n`2;HKB*=z1u=rp#h-1AO3ONI_vq+6~!tSQ;c_mLeIJ)n%nN<gFD7=S2& zt3b@^2G1MNrnx8dd(#+I`VPjG{*|%cHk8d2bE_5_aDnXBgDW~2U_gM{Dq3UBP#`*X zD+5&F<)CV=gVGssOV{f(t;<+@3pu&)>mGygT>UZ4ucukt0?_DFLH4r<jM2@@578Bj z#|m{iwZILg&^r&m3--R3ojgZ@aR}NiZk&&);$l){Wz)9MB1)#El-agd{W0tu`C5U< zN>c^<W|a!&MG;WXH}L!RaDjOhoO=SMa6OOUkbF6v5^oRN^8#ohFCskyzE_2SA_Y|{ z2npN@DmLtVSEkLT`~o2wAquo5POWNe9IP<kZQb+X?~#?eYU!RPD4)6vdUwJfLMUBM z2L~3~d9Rc7%rBesQg$F^G;6TY@8Zuzz71TX9j`G2@WZqDe)SI;w?kjk>HCkDeS96B z{Gb3QS%Q9av<0zU`?g)X_jtbAv=rlgA3BCS^;3v`?)y7k#=Ga4S+uP9@O1L-x1)?l z2W4)M%=6Ymt@eA*&mcIgKnK;BT5<Oq8YuleeN1CKkLc#059RQ2JimN~hu;`Va`$eJ z{mv`R%t*uKISZ6AaV!F2SW=w*#Vq2UbY%<Xu|6HQy5Id?42^&1<vf&;mHSQOgWrT6 z4*=BiT9y@Wv)|1Gg$qmR7nA;ME?8L@$r9(dRrNu1Nl0BOPM7YBpk9QE?S4bMJRydN zo$sA22Il^rGognLvbkjKgjcp3<b1OEiV)e6QwDQT1xgCIqOm*;(W5Tt+8UB*`P1{K zFG>w;iEk>X0cq6N*T<q&iMnZG3RX@vz=eQRdWn*=Xbb0wWJiqtm*)-bDLJGxzuvBv zz0r~Y>O?>@DpHRQ4!7qtXI)#XrQbx<Tjdt-WcdaIJs}2&aSONw%^wI{4@>%fXUwO{ z-FUM=H1Cjj?XUhtV3sPIN5ihqjr&}LFcfAVqkCvD?jMA}6fOH-Urk(`0L0!v>*!VJ z*dovnGWO&wf?5IQWUPOzrJ0AY9wsI}pA(C@TP_dRsjHkT<={CA!<*4-`bCw#=hJi$ z1OpTOK>M5z&EeVNuDrVyjN#p?qSk&ey72q<hT3*j@&>xJY*4Qw;!01zJ-mQ%e|jf# z2bi|9x#lHv<UnxjfrBQ*BsI+w<MVn%ochTS0&1;T5_j1$0Hgimd?vc#&@UyEm-0U* z^ZP|h-C<V3<DY&P1xzqv{5=0Me*l0d3o{yS_v`qh49xWRUI#@s-NWInD@%94q-b45 z;Z;}1ua0x)${OQ*b@?NHlku#5mFE&ddbei)Jr^8XPsBdV2k3oHB_4l&RQ`{PE7PY5 zKRmtkByi@D2SY>;xfbtVsSnn7ln+(_1UZ~dmzr*I`e9USucG5HL;fQx8C~%@#U+8T zu4i-KNk?5On7Tuyi{gG=eE>iNi^t#R4cKSWH-%m)fWXtnuKR}Nbh3N#$c(3HmjOmj zArlR-SrDv5I<1Wid=+{VLNy@uZr$v~!pb=iv$CSK0zyJ-4Fq+$HxP(YpTF*5aE!u? zS}S(z4wu)(+B2Jb*c1?iV1}KQc^aWh3dl>w)AI#AHXaBRBR~-$WhBw=boXr^d*pC1 zkI6r-xJ5#LPVL;|iJSp<RtqFy2uMt8JkE_CxF&+qnzl?00TM#bz9-ugDFC@K7{NkR zepNB&w;zVbge`Z+(%4F>Q9C&a0TzC$NQ+yu==-lzx=vjhz24gS>ix1^1a%-W<o95E zGqyksLFr^f-l4C#Vr2`71kcSFK#{qjRKo3Al!Plcv>FiYraIoCw0q)kj}{z(td~7% z5+hBO3VpKs-1KT5<Kj>+7Qv}GX67;ld94H0?!hr{z-R!3E-Qpou_!of{XF*Z8xc}( z_A`OtY3tfrI~tn8LLhASE5fSJ-dgSFZ&-rUesQJd_poao#^n3egma{TC9epip$4TK z=feZilo!zXA@ooT<^Lai5y;x)0;TTLempE6Tmce3_~YU1j0+skj=tHXf-G5+YZ+(o z@%!}n=HZVIW9W|u_sYRMn@iR%fCqvqvCq+T#Sd>cf53mAjjrQo`yQ}=`S0<RQ1{2K zqDQs;(S1L}Lm%9_Kb|PqNY++cvEf8?_3)(!Yz9D(-pw!dwR<=$X5SF3-+k)`SP6ha zZ|8|HJ`31qIy0NOg&{~;o6vA)!-8QExA>_K6f_pm50jV9h$TTiPNq_XhW-~zL)5cV zc7zLA<Bevu-2r1or{xlXne~UwF3^4jo++(5gT@B?;5EwzKr_%OEFdb%m)_i3A#22< z1Utb5?cvKX7k^{yyXFhTlo7MDCh7)>QI(KpVOwJqXhKqm+IZ>Z<;BW%^zStg5F&^a z;N(Tw{}_xW+z;NN?99MJ2xRPWD)12#EGrNx6R>7{x4B>vqkp04f2y?mmJI6FFV%8K zVgy^=JZ$d>w6}F4U^lNxw*UfZOKJ>d;4NS0J=1^cx@;T<*AJysV`)_0gKpiifDr(S z5Gh!eGj4P>ccgYCB%7b^4U<_RjS!fY&DQSu>g#T6?IMXgkG+Q?LI<f`<+0#?C%pc4 zgEYd^DT6pz){PMgIoVJjxLW=pCIo5F63SW86WlV8dC!xD5Jc;KdUB$X+{BoAa-S=3 zSi=?<=496)=bGpO$~}5hAAlfgq`;OFo})45wa5G)4&}i4lkn?cl6qfxH*UBAIW5R( zMX4K{ys3W?e(t-l>T3$t{s>M4)FlfMLeNTy6tjZt{Y^`Sx!E*3829@~=i&HR`9G@k zv404p7P9>wVmglhK}*e1gTsgXS!DX$tVe7PJP#vALTOr_`++`3U)y)jeS9Vv+E$k` zjB)uGPs?Sxq8p?S!<#kegWh;F0LOc?+MK7&!p{D=NC*kQHgabCbKQRR=YRM55CVMs z5_DiV>xNP_OzLN)Covx+>bPGzxV`Plv!WS4&)*|>tIt4|oJ6G5xXflXu^nzzD!w3| z2LOnc355hmv+Q5DIMC;td}60L@<HWgL0U5Q+njkfkX~<1+OH*je8P;J%zeofZ0^;r zGz92Mf7&SiJPv$B#N6XfJTp6%<}vuCY%Yj&YJ#^nHJ5r-w?1>jes2(NaAGTGWfPu~ zg2ciJ*3~gutvQD714wJZKmG6pdnuM&sDFzo;pNk_^|?0$X@}cK%uUeU?eNghIC$cl zDTl7~FHcX%IUy#}dBg&ODzK0&X@z9$HX66^UDsXrq_K4G831w*Kmgbiv~+G0DX?*7 zMG<JDE1Q3J+bRZlI1=J}-es5zk#QzU*>RG!BW!=)1(=ouqW6SwA?{SQdSlOw_L&1b zhhM8N3SvOtUwxqk-IK8_E8g%8AnHH>@Nk?AX%_%)g6&>G*pMpWv}(VHCJjW3jn|%{ zyZ)_;2T)c_GOvmyQ^sf^DPg@yKV1q;nmA7gX^nrge)mZLYcMuq{eZ)oz9Q6z+-KJp z$yY-OjNBU`7|>{3>EKHD-Fo<aEX4p?=wlBiU}MY(A!^HIE_x;~J)?VPrYCh+qmwd# z%(yGMXCbErrS3XMF@u^`DutXz7>1jMgn|G?hMel++GX7bio`ybqV`Wv#@A$RvD=t= z$9MfI^x@_FO&|Nv*67cbV#b<II+s=s{HSloHKzB+)DADM9Irh<-8`Ero4hJWbD<t8 zRb2K0=oyP9dtJ{6+`9h|0Uf5mWks)=S(KCi`?p`<6<UXR0S?deA9?w%!SQMUEKC(N ztWavjwr{xKuTzq@-C91V!T})(E5|(M;hNCu!tn6O(ybR4V1WpTY9%!Cj$z~Jbx+Rl z2i;-`A%dBdV%GTN<=u`r{^*uLhymyG1!dc&HJXz%Lce7<y+x%cF+-Z*e7fLzyMlQK zP!W44Dcy7<zUHf^^WyGI@5bkG_u+b)9=ZR^g_8d4)W5!20j;Cow;i=Ml%jm@$$*pt z6m12oh*GPgJU*(2+Lg{Q)(EHPGyd2A{I58t6(Iy{h4Jlrg|vzwqFofrhQa|9m03=o zp<pi?wtcg;4xp$WpOi9w`0<MhcOv8^fmyWI`1x%80tiGaI5adgECSS&I{D0F1jqC{ zR2hwEb`!>CT^Si}t?F6`MqJ)YeL}Ro)wplHuKY2hVLAMJC_@?U@4lv*C|RquR~D!> zALDVKLP24tNH!tgYD2bWFX(%eI^flF<)x@b4{KI^hgqa9{~x~mfM0(3i}swb!L-Ih z=m^w1;e%%an2=8^5=Y~O&+sY$76B7bt1>+jWrScoBdWH?mMJGlLx9o1MnmwuD1eAI zt8y=qo(-jAb|)Ky;W0S{4c5#HW6gbyd`#562gAdmK!i~{2ZsY}Omxa!SByjH!ru1F zkPkY?IV}nzV?>PFYCEL`;r5%!EbdKeG}plQ4;{h)env6f+J90W4E^7eb+7#P_G{1W zP)g>c<)1{_u&g!f5IJ42E1=(b4eX&|45$n#b?ZQEme>6|;<5!pX+C-k9^V6irr(KX z;CYzXy<rFE^n_I(5!4Wy<BS|WV{&;e?_1Id`WubbxRdBskMKAbGk|xfZ|GnEtLgLo z+5F)=mPjgp6A`3XH45aATl3NDLufIrfewE%D(!w`ay@44>dFFarQrM9Hw(w3ui?~5 z`rX}=TIyD+*Qa5c8ge&^9}-pk%2=iCXhB+6%H}%M7O^%<G|B)6f>Dn_2!v%_(QbFW zPatz|P1&iw9@7Gdh=w32Vlg6~K0XI^L}N^ID8rtES%p?!GEz#|%iaZH4DJ@ygA&ks zt+XaqxX{ot7j5Ah4w>-tf5+2}n2|EpHQaAEjm<_am)UL`?st8b=F?D`qJF?)uA1RY zAzE#|j$3&QY_06pAq2!F;^p%bQi`AmKpIY&uzY$#sTKFz9dEA{_w5b25pr4~9I<UX z-d^8~UC;!FWp}5T@qhZy{|TQyKPd@I(`2vvwxR45F*#rXKmjq4Ru&LriTP+XbmV<J zXC1=|pw$WLj`d{GzQ4@GmuQ*zmVBe-TjK=G`2};x$PelP6uA2gFjpo4P!ge5D<~;B z4-h5+O4j7Ylk?Of_dJr?Dl*po=r;O34c%Qwgi>!NK(h&AcR35-?2l1Vzm`5~2+qp_ zHT&Gl@)XowP8UR0dTgSMAPGX$%d@<hAcd@fv$h*SmIdv_!Y-_9LDbaZVnHM0$sli= zYzdQA{)cE3%A}z<ve1IhO_O#|>^?^VvLYdwEG^yZOI{E|#BINhi987AzQhkee0qOY z1V;6{<i+OHE12}W-uE}n<hRd@jD0gaVf_vLXNnYzZEL`YqQ?G_EZ?UAOoJtGa&gC) zmC0~&{T~!3WEPotmuV(rkCA=;c7J`xx8M&uV<iv`MK&vuesntu(dV#%wx*R0DJvDU zDzNF|el1gQvzVUOYk-pn+t~?=SVM_{V7wT$hj7MMC;b6TB!t`*s>;s8&8P7_V1P-M z_?l1<aM8rd+x->Y12m8I;nk<&QB_R8%=&K*3o5v5xR<-KZAzWGb^=PMWxLYO!vl;# zlGZd4Z`y2bne+wsFFNHZtj9QOo8RzYCAmw*T`6M$La!%wP(j^wjvj;V<z^y)XtIo> zId_YeqHgSz@`KXA^ej+xj%n~NXjz3*N>MZCw+$T~!pCFv-O>=4RhgLm;>sz+shw}2 zA*5*X9{4g6x=Tt-fYjZRvnWD@u<sT7Zn+eou3Wu_)x9ll;p#)^nD*`7m54wPQv`w_ zWWv+uGXxbJSZP#+z_lTeAVvWtMtRc?bo+J#aKi0+!@g@rKo{srenSYEpcP-rj+asd zQ9@b*_RWZ$;CqowJ_JA*Icic+psAd!Z%GsICh!N?SGI`jeaC97SI1zB&UuOo2v`~@ zERZs>&vmPex}3IMI)t<x7XO=w0PG2eTDeeLMTi+<&3qW>dtQ^cD)!w&M7m{S$krPJ zeY`SRSi0341O=_!@%H)~DmOg6e8wpzRp>z=yr5XW3y=S$9P#x0g74qHp*3{IxfByp z&WJJMyq@uVe#R2iQwIRvDmqb6md6IO{55Z6D;qpcO(8*~sKTevm2*#UV*!Pvt!6Fx zv0K)G5GW$Ypy4NBBw7%_kRm{{c_$e7_su{<;rZg&E17jk0a#MT79tuE#PU7544tp# zN8A540RVqj6ROl>qs)#Cd$~il8@^w^Dj}Cyvx=tm9=*Q-sC$~`$3D=|_l7^p3jpy> zo$X-#I}4;z_d<JLFpsQ#KR0d_b~EoN>3x3_fE1Den~3{%g(HbBujhHAN&R-T@o?Q~ zenrMJ#T2llv$DEcb?Rw7<L$b?E4_16pz?Vb2D9~i_;+8jaeo2h>G{V_ZA>yC8Dt7I zcBS0W%Xr^_(QGdJnDiqaDzJTu0opZmrp7@`8Lbo}keW7u$YI>`+=h9cI}ow`-wo#p z0FZWo{qd(i;%U|HhcN_v`t$|+{i?)Wtj+S)^^8(>?E8Jpn_Vv{7x}<`eY}PkJT`VD zc+f{`jkT#wUk`%k#*oJh`*+5okq}r^_~)Fb#fMr9y;jzq$OtZc83jst3-P$PGrgJm zo)5Z==0<K2I!TOkRBIw$0GQqh1VvF1pxVKN6CmAh*RJphVR$ZrClk(!MaBW?2Uq9o z_3bN8%YxP{9?E7plG3#T(v?`SWXhOg-^4mgf_>kRmerE{#H=)64GZ>d!+yRY#03<j zyYg8CTitNqcd!sz)Aq|LucI8vgjq8X(9lq7HE__nLLmbJY8C4t@n_R{iU`5N7X|=m znvY=}kYk4KTJ_lfTP2(pB|w4$NkFN3Nm=bEB_ouoRugV0X%Yj&J4o|U)NA%RH4lc2 zFoHlVaa0pw12aNM5HE+b{uR<xSpuTxz;Y7Mtw!#ZG;I5nz!1LS_4_aQ%fJ60D77J; z&iLu`GtTD|KoK#lczwO%*ROv=pn!E<@W1@)zu@J|GhSccaDBbu?RrHFQN3F+BFBj5 zr>A~aU|<~9e`9!3019MO#)73}>}9j^)(ENEi7*&|Bg+j?NK6Qn`V4DZZEKxugjxa6 zgiHxYA)#?alniPKsNNn~dLBy8f0z_o_w0$5Bqxce6uTFr1M${AR9Lg}=+!%xQ=|L{ zWJ+0$j+!b&c5}aLn86za^@PURK$&Gn*E7_c)%bqa17QrCAz(Lmd}%v!)Z8W}ZN${6 z!^N-Tp|i<)?`LNuJ&%FwoIPJYVO`GH%Z7csYeOQS8&x=5W|D)mli={fI63ZcApjI3 z)_B1WpMS=(T4z*ZEK5SEs}i}{cRe2pk54TJ{obEb!HbS3P{28#_549_Iz3y%F(3$` zVSq{MceMGSaCr97BSdS4#K`D+<r>tm2yxN-na9eT%%v1j+Xjl71pKf6^1oxRRXb2Z zpZS!R{_H(eEYmvLz&l_gD<QV<GN8sNNXeqKy|m}C32G%Q!ua3+*Z&K0j252O@@`?{ zd4YQ3f+bTYv4jvOPchKZ7eRN#1YZg87-=;$3}e)Di=Ole;W2pjKJV@hwTp`gPUj20 z{)z$6Nt3t^=N{v`zEMgw+FU!xt+vUHLmg=Nz6yQwXy~!pVb<?hd`b>m8huOKcg0Y) z=t^MU?%H%g)Ft1V^aC@2S5t0g83-(<;|eKgr^BrCr!oA{H>7V{7IdKF9NT^t9kjGs zke0012wJ-xh_LVK!mp*EhM<Wm#x}OqirZFD8-YSb<A%Lz;=Y!cBs3asVxJaf#@pKs z&o5^a@Z1r*Q}u!s(70e_QAW5M(}6ExnxzgP4-K9=%GXxS6c$j>d7>a731iLyAX(f| znptcz_9eLh)$x0yCbvQ6UJmZj5_rx>w3>bgALte#lhI!rzkh8TMuQ*ECTFY8(E0MR zzCbod)F4uDyM9M04P`IbOT)j{igh8NHtf4jZR4Wem_Yda=?R~|T=4nR#gaU==~D;_ zNHpJu`WaAAVnCL?^iMrr$yf+mtw<(BmUTs8Mys1i<zRwdt$i37lJ_)7Ibm5=<R!x+ z`i&d7Rs-RK4}Z|?x>qm(!7X853+Y0%Tb&J%;#toXQk5P!+8L<^vfKlsqH6-*w&OyG zqgL81=@27=cuAR9lOfIP(0viieeZ-#jM@rn)y|w=iZ$nt_;Uw4<AJngGe|9CvXbi@ zGuV1&B=dBIkhD@NuZRe^w(mNm5RTd8;?EX3_Xf;Bd3pYV^YV-(uZSTbhXq7Y*%Mm< zkrE$~@l5#s51#iS!$Z+QJCPbO=8Z~e=~?(GX2d|6G%1V_Bc7kW;PcDRh?K@zo4j#7 z&&HcZ8Ndpp@`9{<+*=v<11~s?SD1Sz*MMLE!G(#2&&0fW%F5_Fj4)rgv%<pV+En7( z8)Rjrl#h(p_7y+>^e;HApTUi>CMS+M?mxh}D5M)at`&6*YVcKWcIJD~lPC@RIYE{7 z%>iO0KuTu`O_n?2C4$1%FiX&LKT?dbTgb2v$#~+9_8bj4@+3f&N@Jt@9Gj+>boClx zu|e~&^6Z`|XE@Mz5TF1+S<8HbJSMqtV{F?Ud0mi~1+CrQA2^#>7c{+8kI>PO_IGE5 z97k`1z6X3v!Cbx!FIp4P620wy$8vhY{r0VY*Aq1coTdS+4pxE!o$YqTDd*k<NqYrQ zx7PHakN7YVS&oH~=~xKI+pb2d3ni#)vFsK5t$?3B&a0MwDGjAIfFg1_BM5_}YTY{P z;g3rKi#2BgdVCV3!nf32twR^g0!<=gwe$eeQcY93Aqpx*P2OsQ2&m6Xcd6N?u#HZZ zOynIGDP>Se2nuOCI235sJ7w1D4vULL$+p(k2xWHD_T)g%wKczhS@1BS8mvXGxWya@ z<h>F|FXLoTBmuRkg~hd?>;=r)(NTAnKwC@eUXh>&pWBY@`UbAriy_1X<yL?i0TwLh z6)8o$T@^^=ydXwK2pcF65}?U?DQl%dRGtm8QoLZ+zYamm%ZRPX5GC~b`w+2YLM{tR z7R3FIw4M+`LftiQC8lJJWyn#k<}JjieL8}A8JgvXxRt5OPpzj&5o=mCnbB4u#|0d; zJeQ(*3{4p{QQ;ksP-=zKh@96aR4K?dZcf~VX|e8@UC29lX3{a6*TIud1F45%UCv4; zZPhisD<c#v^$?~AN-HR3(-6?)9wyQfTn~#REBOO}y>3{Rb(A$CfF*$9iY65x!Lppd z0;F^S&KfefT%K$%+Flm)amm!{Lqm2JQZT^64G`mOS@Q{56y!Mjq|5uE<ehC*h2rRm zK+_p<=Eq<xtvjy!-4Xzs$xYFaR7glcbATEH#mbkxOq_!DLkOgqS1Jb>TqmV$OtW1H z$Ij{n5o265jtquO95p6q+%refzU!b^*Ox8XSOI??c`P;`F1=y;Bg6>FjA#0c|M|E7 ziX8r`rM5=%zVCOV1s;1rL166H6K0gUqtt!uAG^nrSM|yT1CKGn!yC~&1hqBXu2(f` zEcw?dsQdkbC*5-o=_YQ?n%(&A6hW)2n@l!JSJD7m+|v{Bs9X5H2>K~TV0{p=_jLh= z8%HgeVF5VBtb+i^6jO(n<XA$Ms0ZS*ykI$<u<x5KvJKuZ)Es3g00|)~dl)zT_U$YF z_~-uxzkL0h5!4K;w8xd@2m;vn#2vhqQU{@tp}W34sBgQ&OXtBiEn&aku`MT*qJrw+ zBJzzejme+S>#T_gOImuJwR=$X@kL|U#p=cpz|DmPY;$BR3*olk&}u_k5)wtM%f%9p z0zxdH){s)Ld9-VY^7DtzRs#@a5UY<PhJ=WqghnBPtTb*}SKWk-O)0p)L$^?rf&3*T zP)eW}vD7PSIT`hF*04<!5UU3$L6nn!0ctCVQLx<$5CthLCd67FyPkbtH}^<5nBeY} z(K)r;ms(K)q`V-lS-W7i21-s=Gm>C)T0kL#kWmYx<pzpgcW*+AwGsmiZ1;wkE)d)i zV#E>?;<6wFAST^SZn23drE-V@=3+)HLF@Z9LD6M8Ssa#R>?<OIm@-OXF|G*FPKrUR z71m`%X$%Sx>w3a@Sy2}S!)`ouGDrhJDFmeC!qoPl13*hoq$cnTxpjF$PA7P{$+PZ3 z-h;wOex#bB7QKE7KvZIzCoI^@hQ^wh9E}u-nek*C7@n;kpcM%$O(}%iuGYPX<`r0{ zyvEvNL#(daEnX05awG((BXv4?Q<m;U8nVFS!OfIW3=xT<cKC$1UdE_mF~QwR0RmyK zt$RMW8L19)SN8sze(ct;%V|$+9*W0k)y)ggWxg9yaLYSPvS^$ScB|Cx<Lm66wPZ<} z{@D-+S9~*`kfNZ^pT8TLrb`@PTWFP=<`rpq@5qK<moq>slq*D^CC6+@bqdtnQ{%Gu zF-g1Y3>x}lxc+_27@NFLuC|v45fIgj{7*lB(PU?1BUM>F5#kxZ9PiP1R?N5YFc^0o zB$j{FdrJsoU6)?M-AtDQFiK=E)%Bbz_ozg~py7kG-ERnafgtqQv)F^N^#vdfV-xhr zRJ2ddK6bEj?WXK5cC)JtkyFsV=Cu}}8dKU7FLu|K>r;XwQU?cmI7C>xtO1}HdYr8{ z9TAMg7_Zy5%^fIU-*+?-Eb9fg{WnWUB*zQ-JXU50ikiJluuOD|$FpEr7UboO?S7jM zqQG5SJ_G)fkH!CXyIyg*JdeXmLjZ`O&SY`d*4;Q7$44Nf5Rvnun=24brzfn-E8ezO zw8~hQ6*(<xMb?1kJlP?1OFxhx$B5Em=iLt>fvd**OY??9j1U9X<%FD9w5k!HW*N%r zCT(a<$9c*bAtv0Lc5xR7LP}UpXV7{E-|w1BZvs-iNd~ZDL`Vq@1g3x_0;v_{enVh^ z#00j^ifYs|K8J*_6<AgkJgo@?5!`@%zeAW2(*hzwGi%A4F)hnr5!1vrwboNwu$)c^ zF`|VEZW&YxaJzvh;Q8eRL<wcvHSYoeje+yi3zp>sAVMTU^S1<nHE+U8`g&8Uwu2xz zKb?`!|BUPP25>bCwSgt7U=T)L63%#nKu~H$t?GGb97gqs3$+P+d%~Xj{Tl=U!d}w4 z8nF}^FNPqeh8TCG7;#D&k$^-If`Dj(xO>$&So#b1Y6urTdafdz2q{DZuoMxao+b9? zK2gv}8)GS9k$xW1I*pD*pasoCV)t(JBt#yVPJkvw6+3CkF$8v11*>b$Ac`i_Ey=DG zuviX>$zUe6pp-bQ!Q+9Ru;=*!P2;J3zPmi=vOxh&=iDG@@|w#h9u|1aNtJ{E#6bZ- zY2CXqnddG#>>hxtt`L=Qjf5=m7MhC@2nZR>iz?Y(#%yJpq~Q_i6<s4~H&Q?(LWGtB zH*22`^NN(csM5C24)3cnKIY4Uk)f{iweHPKDI1s_%GO=s)JtkBQd}l)p{^0J8i)>Z z{GUns!gZBPWwH(2Rj_+hy0vdW&J{zK)5CKJQF`>cX()(Ulj~!MmU9&kVI#sYjJ<1R z@AF~z@a~o)XG}o{QAAo#sM{M#tH6G@>rHbJT2CTntJ>+^Ol=;_h%&cd5OpJ~n$s!o z2}6@bYsv|v^su#*L#)B$4Z+ZRSGsmnbz>+UY>dhnczJrp+v~4mlencz<hfgRZ@`V4 zkTi)+X<;pquP?5(BOTLh<`!v*Q&3m=vR=TA@xzaQ#_e`T6HQ*z_@4@evhSAb&=6>a zCTdlPsDex(B0x*$o-UukqAqHsjV<cNHP=f=6&PeS6as$w!=C{uP`6@4in`@lG=VIc zTU8UEY6m~TN|hEXMXYs4UbKYi)5~WpDWkQDl(ZgRDxqxxNfx9L2C=sJl?F{Xj9HbX z6f}mB5{Uwc=@6~!37~-OrrD+xG%-=^a8V%CCb*S~*v!Ib0UD4)#M6&Ipxz4dryn4# zB6(Azs<At_f`kZ5N~om*`vxurZQl`6GU22OH&8^PfFGBL{~|>b5@W=&CY;V^eE;?a z0BA+s?4@p+*i{4~R%TT^emiKcO>;ti8@1AoDcu?h6p(Vp<@}8E`5Bj|7v#L+a(MzM zC<SxSdU7%A(py0X7_bZx4H>8N6SjRvBqh?h-R=McF=e<_x|bbKPfu#Kv7nZKeFrFs zf*SFyHhH6<VKc5x0RaV2Rlz5$9SA}CJTU=M3Ot+rloFa*86w(zNE)LwvBDrx#fs7O zkF7zHT6i9VbRiOT4vYjWfUvg;N(2e2nAu{rAV8uCKKBsm0Wyc7dK?IZ92bQQ#tFcz z)X|<l6it{gM8PFuSJF%hBDEqx5aJ27-qg4Y$to07mc?$MsGRb)%E7`^ARxsBi54_2 zD6Obx05A`ob9I=v&VY|TGaGes0L6g3UT|8Uv~_wZ*m*bQ9aUDdvs|HDj6ExTvgq07 zvYA&mg;hOaMf)jG)Ucg<AY;nv9w+PN(FU8Ah@fyqGhJ|RMiFivM}egx3XtMz;#Z&N z_3bM<$x@7+UYTqxa|vY5Cu=6eBRmQXGjMHS{%+wx;B<OI3QJd>-GhN{l@0~(YY7KX zbU4o+zG(d5Ad4u14Df!teZ{X||JKJphm*WZW=~d!t9da1Fxt0|s)9KTsvz^rmmhIC zy=Y7DK=|eBFZllLH+yRN;Bg;4n+9Sg;Fv5ZWbQeFC-{N=02-PKp@#|>(aP_rZ#s>! zsdiS^;9%h!?hhZBx})7?w4R^9Qtj_e4+E(M=!t$HrQ)2C^?JUb?K_tBjJlVO;+0`g z6PU;lks|eklva57z-y;t4*1ib{}XO+w_%NPGqRLt6*NTZ{18Em0d>3M*ROxYUam-c z#Ime7pDqZ*NI7<oi2x|2^u!iTkXn#(>`0afxZgIUCF2}4*@Q)T0z?Mckcfa<K#XQ- z^qNndkNf=%+kVBetX3mUxNjRE8he!1Q1%^J^m^4}vlZ&fWY$tJM~>8xb3%wicoF<_ z>i&!I34s(KwIYzfpd7mb+RBb4s#`9YWuF947V6!+H&Mj{vkG=2Spiwj0goh2Y8Awq z>C4Revz@poj3k1cBQ}mWt+1FIVfo=Re*5i)meh@Z!n1K%XwF28iwR2BSZ*z9=}j(H zb(c;QpN8HWfL01h`-a!+8`js~@SpzE{~60Esq&KmG3$%mOJaF3<cVblj2jau2DG|q z_H@vgB$r(UvH-1C+-^6l=f(CGz>Ul^<Qc<i=@Bf+$*q3tqzM2qYci!;;kv&ACG2~( z@>bSHQPnIK6U3fa$=uLv@Ad5ap1kL=RsXMt^DJ&10$|B?l{f6XAv9I!F(!EIxwWc% z|6p57ueOlR#z(>^ZO4w+4*69U2wEjHE{HMU`LZIgXtj$tn7V=}o5v{|pT*tW(;70& zF&M`Nw3(6!1dNyxmgR)o?W&D+1URoR$mxVuD=M_iuFnm$i{Y)lbv9HHHe(<mNJ63u zfK@{-rxWrepw=Dt+beFjH{7moBYz3{y>YEcaX|XItN0AaX+bjTVFkGvm3M6W8@BDP zhJasrGU!}!kR@-9{qLSm0~$dIxIkJ-a>^@;0O#ci6&3&f>wg_qy|~wg%){akVNzuD z4V?rC)cGJxm2_R5qOJpiE4=}Fd$P2D+|HoGW1qJN%{hMU-T~7A)AffFLGatRuPPhh zds25|6FqY}g*2}3xCCQ9eJ<U5<NqcLD+vTKubLp57j3RIH;Eck@&Sw)-VGlQ2uN?Q z-?557$hg0)aY-}8rIv@f1n>77YS~fB-Va1$<%(aI6Y`=i8D_z{WSmZCh^S?Fd3sUK z>zpj1N`XR(0hgx>Vpi5I7m}sy>UJh5!Y7z#f<YnRZF|M-^*h>f0+<lv3U{l<pc$xf zUO1!J%vlBf>#Jtc-tRYrq7<C#x}fdaPPDS}f3r~@Ybixl)b0QQg8S_a_v?2o>jmBd zRanbXoHfo}p+vyG5w3XEjmPR+j4>z`GLg-#Dneky!E4>S!1GulAt*H{0~9i13gA|- zZ#y82loEsqF|C>{+En{$zjdYMg#eKP8fo^ggn-73L{XE&M0w18xB4b!ZlIPm`LmI^ zKmn(IjWPB1%dSX+XbN5m3Fo}v+8EdGzaf$-YTKwOFPao%AsY4Y6CwaE1wpjV-46u- zr3T*3<AN1$8}O$uD+m#_RKyVQ<BzNMV;6#Oz*d?z)UhNpPxwlU(&IK$b`I2PtBA~_ z;f5(RKVY#lH3l@PsGb``sz?ZG@i{OAw0us4VLVT0!uajmU-5c<McF+YTCKt!8=jtx zQL)z@Yq_A2xnZrYu(!YV_tdmj4?qZzS`gN3N~9u^GXJG)y&J#~Nq{Wi*6{uNH<YsJ z88`VL=A}{sCL5CoyqsguToXJrHw!@uP;X4L(zI3}G;x_*^6B6`xAIrfv4~lw1U;)y z=NCMkzhJK$-nMU=mCs6I_5Jl%<EPO5?@Ad4@&ZLwm}Yo+hWH&f1Q1T^MS)t@9EEi` z<MsL-wN;d=xk07<((|dvtb5O@S1~`TOaKh!X2LnpH(V~C5toFkT(M9_xDdAc9oPGJ zRsPO%Am~baR;>LcK2-!r1J@gN5Kik8Qd~88ttIUDS7Rh~%g`0PSM)q6koo21jij0A z)J$PF#yOuf?}7wdxtj$)3{Zi3tVnQF{s$#I6r$sr`8f#aUOUelBboZ9bc-9q`gJ(q zaaek|W%m@w^t10@P5N|?2L#$M)k>fHdk&>$>Tx`*jXjPV6SLxX3%wr|BCPqW#B(8N zcTO7=!Nc~C<Cvcx$FbVmsg#QS*Iz&>Xrfg}mUv@HMdp@iRW}}7c!|}{nrnNzU$Nb< z9kJZsfZzIn-%sLtT5-Od@#la37o0CoNb3pvuJ=4&E_ez7r4((sTX!_BIIRoHzGK^O zxU65W?^lhxQ|@stz?7y?r$me)A;$$dFOa%}mNRl*vF#Q2+ndrUmK}LHBal(JLf}qc zKVSl&?gg!GI_Xv>BFre|Ziz&U5YK9DTT)-or67wJ8nSL8y-Cl$tJ|6akh8`VQ&v!u zmeqEOD#hTQ7zsEpE7tXbec!>TK*-2Bg8<xaZvYpFg*#LjYL`J0Mx=<QDhPoBil`O& z_WB*Cd{XPIsTHaT{Whmfzr$8*9m0wj)S}|Xs8*H|tlS9zV0Ea>02(93h;sdo{q_ce zX0xWWSQ}wiDoHJ|R#BS9O+yNxvLggT@s`Xa%%EEJ`sEd=5k!<0RLk0mS%c0tr{16Y zwj+iSa}=*~u=68gy!hE%_znQN4Mts%IP+|X0sFq;iJlE@O9!qncdT+tpzjUU84Tfq zx9`8<R(90gnElMt;Fgw_8=Chj0bgH#L6Cs7#=aj3)JuDXSranN{R<1nP#~b~TF(!L zXLxH-Nk$++2o*p@t(wuz<{50(c~8WvfZfVh1E5<%q?z4bqNmg4iDfF2p5te{{qma< zS^0Bx6VI$q3m-J8V|{wK!|$av=R|@fC2WCkzuxsEiz?(+0V8l6LfLM`gYQ${pLDeV zxZSUKdH#Z&R;=q8uh(yQyMF5>#fP%7Zi(By#uTAjcLI&~_nk!e;fH_5>2$`O-|)75 zMf&-SB%g7A`x{z)Nct1>eK9|$|Dd-r#o&_-O-wzdGlT-_WYv4c-|VsN&;9TkHSFlu zbq%cmg^^>%X?X&}h}))1x(?|&s%s?&As9;b@%5lby<dYT^>*j~SX#jL0BCRz(DX14 zmd60?U%p?vH^jzhN}GWWARU+X>7#M)$7!6c|HF{_J&wN;1)R<=eQj!K6E5q1uRbe} zcXUnm_)1Q0Ax#iSAm-ka9ve1v>;p3R=1pI`)X$T^<9bq1V4Fch3(gEECbSaP(~7*V z`1bu3KmFlPczHTmtlYZ>0w)1JeFEH7L_l{jHm;~;!+-zp|3#Iq1n^!gCqR{}(wGWj z0z#~2eMDSezv+SpC04k-zV(fw&53ldqi=YCCmB%^q(}faoX%&wz5RxLyP1N~Sl_Lw z3so%nqFak0^o-n`k`Xxs+;4A?su}jd)~Ree?yoz95-46xxNx^nmSw?uy5RH67yR;< zf5YqRS7WGCZwzz8zVAx893#H|D){o_i-Hi+<g*Y7IRwP4)?00YuU~(~cDv&G_KIi+ zE2hOj0O5YWf>^MwD@xeaWhy`lSuOOstD<i@?<o>euPs)Iy6rc-{`M8$e*HzW_o3Vj z5({!x5b*t%zvA}#s_tgkA#4rX`GkxoglgG`F)N{o)-@u9h{QYEb_L-JLSTqARA>oR zvv_7{gne(=_ks{AVzP{7OPX;w-^+eTa|(b_Lo1V2!s2qC5K}}cPO=hA6%Wf;-Pq_t z+Q;V&d1`4Wd$YK!c@bpP4hxGVZU&^dAlwr6cn87)0$CCo^$cwyAjb$;36b*{DCS^* zD?%RB&3e`hY{ZCl$(;?-&xLy+$SMc8R#P^b<kf{+3>IroP@_8`rfA^~WzM_Zu0{?c zqt=>q4BetqWaC0;h_i$HR*;sg1XnC5?6kdlsa{7d02<(jO$4SaCdqx!RQjJ37p%+0 zKq~O<`&ac?fDg}daE}wb*kQWftigssrQon?MFb1><qg~IhLk>82=Law*{xw;N4o|2 z^w6X~XOD~R>C<}F<>HFBH<^^%N3Rk0)?eu`MG&C#NQ>^D5CXPs!+HIT5LtUGgotK| zZUa4x=cU8LKK^|Cbp~#Fjz)|>&`|!vx_`Kq$W$rdS9I6714@HtUHSLH0<g07FuYo# zHy;&s6P5uw7MsR^<2?4iQ~!YfNzb~5#zY$Sx;-q{hdzwI^U^Q(UTrKuyKW=SAp^Lo z0<_Dz<po{1Xo7-bL_R+uqy=y{9drVs)h&v}NJ0$iM#~v#Q62!NEfqgF4j$~@o**a& zn<E%GWqf*m!Pj5E;(ot>m~a<j0<oa%JIcO~NvDA2bOPdneY=B2aKFAHne{Br00`<< zhHwQ*1DCtD(Eaky2tn|-?W!h<2x?_iv+M~LYiyn)q2r1%0qY4NsI}Xe&E>6Dgp)q7 zZBlXT$~T2*8PKw>sN8VBzhU1ujW<=nUJASf%7Nkie#3UX;h+BHkEp_k07$APl#ntq zHYSvPGtj~ob8jGHX=8Ho4q)GQJJ6QBOUj0qQU*ytDHXLg5G4>;%iK(o@B5~7m9;>s z0kf##j8+RmN{D$uEgR~-!xK*<fN$4VMER`Dagv7xC=JxARtIpiMwFU(6N!vy&gQuS zr82f{(~yNdpA+*8E{lPqM`;u~6W&O;0s^ZWvv-dRT2&L{Y~NXSy;+CBUC_|E)@Q3& zmJ7b$w!U`rITyBsHG-A4o$=$3e?V<lBokOEYL-58>y~~rARZ>b-br|@VbYLswo}de z(R%-gmzPg?ef@43&H>Jx>3h|JGys`9oe0g!<wR4@4Ny62pN2AS_wS>uPS6D^0>=7I zQmyO!Zf*_hC#HzBERZTa@y(^IZ$URkMtcSK_DvV|YfnIJU7s{rv$8c#+WVP?UsE3b zYnP+h3(yyn`n6%qsI3+?XmUW@BJwHX{`#AGSqvmh4uCEf=WBO4`KSd9A)HSy5F<Y$ zuj@a&#(W>*));H!?~^54M~Vm%jJcGM^NLR|KjG>80%Q&Oh8Xb6um3)+!<0Yr!K1!g z?=j0=+3Pb9Qa-`kPSf<Md1Bt_S-+m|x%t|5AUa!V|EzoDY|qOC_U4Bd|NI1=X59BU z&kxwE|7zFmb^N5^;(lHZ`__M@kFIpQzP+7tN}%RUT<B6jg_Xu^g2z3~jolxfJo}Z9 zFE2>z#kvB<fu_k>_@E^`7Sjft1Hj^VqVcQ_@O=W|{lEP?YAKN@?JF}-?l<iB4V_1u zjOK7z^mzkJ`D^Sm#)!OT#GJ5P&iMArUr_hE#epp$DCjs;(pu&}TYKI>_`{EXMv6el zP=Ob9T(UQCaT-zrmpZwfT?kch*4znKCYqRK;7XLfV1Q~DPqx@1*lX#HV6=a@`x2># zE4sT&09eAGqhrlTCG%Sgz@*C7*37vU^!vkv5gjfB+VxNO2SH2Q)v~2VpcGKKq3)Za zWDuxn2t(tgj6k04t^bWVYZZXG)`Xo6QS1BxwWY}vzL>c~_Do<#v_m3RIvL^uLO=|f zc%_vMjJ;SFJtDZ(ui4oIwbFep1_<y2H7oyd@SMp`FOhPF_qOo1)G9`*g#d!B?`VPp zG;H_#lr3zh$X%u40^dPK#1B7w!FpbBBCX2NN7B9$+!)NNP{7hjlVo~kE!!MQq_v7# zSWB_2Zl0Np2VlkB;`Fr^c>f9&a>+ahqpkK{?xutZ<cY1^lpn-2pNJ^ezRjy;E@CKb z>42pFi!kCX(^y<~sh~7g#(53xelvdP0<y33N4ArmKuw%eit}&Z{$dP*lk)eC!sB`! z#93bCxcZQ@I;5awWR^3uZLhd}d&A2g{s@j&l)9k{$9~%pru<0RzZ(mA9!1ckYYwPw zhj(Fp{JzV3zmm(&^>o40<uh{3Skj6dS4cxooOIH#=gViDFDvr0;^}h6`E<e4`32i{ z#dg2r+xK7L=LwjZD$&<k1Xk_iG4k2EcXBI$D8h&FvC6{)>EF-SWdBdYpHVUTxgXQ1 ze`6Sz&b!ObV|oAUM<4C`!a+EEYr7{x_1m`HAdhF@cQ1|uikbm*Qu2yn{m3-&o-jjw z2ahWV1Z2rg%jt~u{0!s_M(B!ICn@yArxabO0Mr9CjD5d@>k~qz?g0=}Od(M(wQy^z zA6;SOyntKPr4>eFO<GHa+G0$IWcAl(?K&rVTvoVi-t!!o8DMkM24`v7ZBCk&(8Lu8 z4IyZ$)^ZBCJfD#+00&Jt%HfQ+|F+}%x36fs9kL0nY0bNOJ*p`^{gZ)(N%_n8)^sqb z(+~?V4pEpq76v8=W3EL+8|Fac?ydlXD9}+QMz%f*{KPy0?vnM6gbol-Yf|?(1)%2= zDU;*ASKLd%?SAXDv~1)eSpWe507*naQ~@wrSeKOyY6K3gyVsrL8t~X1ltf50d_iDP ztCoO6YQ>&Th*c{i$ev+cPY`y?>ZVD5_Ur<u;GKy&Fb=(gi@xu<$LjmU+q#emTz4lD zU}PPzOx**71G5IB#pp;W0L%sd{y+YIC{;aiy{n)z?TETpQ&f<1xm>U;5flrSlr5jc z6fy$D6?CgzS&7%P2}8(8m|_50LBXc{4G0r)j^=^v#rLpQ)5Mrj>juCpUX+&E_tWd` zD+Ht=HS*G8R$wAL6rX#Qj%MCa_L!#mAb*Z87ualkB3=VM+efob{yj<QnD8K3O$w{m zBmzMdXU7inwOk8)ba^||?+sq}4{3RFsXOlXD}oSWQ*MK@w|@C|z-7K)->?UCboiTF zuhInDewz#il@+cEeNVerb;&DE>jj^mf52&dLPY9q%j@+ULOv^LS70Rn{Bps1K4UAI zTNXn?U0$#)H$+5y`~C~`{OG=;$?)i5Hlt>kfuQPUPxkYAfBP(W<Q~maLk9^wW`~Ax z(=Gl${qy>_!PziRcL;=Ax%Iz!)y4dwNlZK_?2o|a!^;*XuPdCqDUgO@_3s~mfOjLG zemfolB#q0B_(``?Jp;ym)?_4@b*M@KtnR-;cbs2HUH^j4nQw4KU69@VI2INb(=OI) zejpP8n9)QNjgn+*egn0}0jtGlEXxTgXKb6hiuGgBy5+e=7_-GcV^o)B&InQ6zn;+y zNN1)~B_j|n&^kG<4_7So`uYog`1vyyA$<PBGoC&#NT&#i4RvpzMhO3!@b&-gT;jd} z*FY%0-XnHQ6tqqmm;ivkCU1)j!PEtmsDg0<8+8qdVT3uZ2%{CY*xcw}stO7t({~Vd zm}}P`IRL`cuiaf_&|-zy%STm+X;Pt9D%`F&yxndn&dE=trEn&wiQM=QwNhi!u#I^~ zER1{D#A2<S0ZnEkvABFpAOJZsN^1((C;&#lp)T)wz_L0NeRfY48~ffLjt=|to$~SU zR2O7AcAa0b	r(6+f^{%vN#+v~6R^_PFczHcb4^gS|`P@gTOfKOkZ@Y4@J<92<+ z>9peW4`;-zrKuzY7z3lL3I`9G$79wXt0fC*2-37BoEt(i%*XEG2*wOpHEd%QDw_RI z01^;F_vlsLQQN&M6s`WKAW0x5Y*mnA#`DuBI1}32{ng_B^CG+F3BUgusLcMa`?c;n zoW}v(U~nbv3S<Cj+tkxq+QlbDEnTT{FLQhEHlLo$4k;a>f$8P<(wcm^?7Q3js^E)Z z`4bIX=WG4WM*Q%?!>%O*?+OC+3>8cEe!Mg$<sXAm_~wvtS)XvqXU(}1#(sarZ-4tY zKm;i-c>3}u#IyoUqs1{U;AT}t2uQSm0VG;*IekXm3$|U$C8M2FfdUkesa;WH)8(dE z2+S*PPNyd%O4bQbFo#K8s}22jT&M#p;AC7G1nT=mgMxs2So@p?1-6IR-&>al0QirV z(4Xyeeo`4P>Nzg^{=sPe?rq1<(_u?qC*91_n<)e53-=og|Gc@>l+U@fhO~Gorp6eh zPpFqi8D1mm3o9VhsxB0djf&N^!s6k4Z<-13Hw1$$o~x{AClC}7b?zp!<O8fh$)e?d zF-9!w86hvqb_Ff#afK%smagyyh`RmNvQYPCX$AZKrqsa@JiVN7I%lL4p)wGHpxi4; z-4IU%>_;odg=po5wX+(I8J__>^_h3jFfE8FV&{jRGuQ{D(~r&WwGg~y4c!tG0&>!W zUQo2mE|>sqWP~r64u@_e3Z6xbj!@O5Uab6Q(^_>Gn4$nc*JecQT=9mOu$)eK{q=8f zO-;u3=g7L%ikQ7$yDK^KN`;6R8aD4_C}QQD4p1<xq?sX%d>)R+=-@`}`;QKQZV+8b z_W;D?d&*Rkz+9+FOA&3Ki2z@J{VT55R|Sg3`Zuglw>k*Rn()Uz{)8WY_z87?M#>Rs zQ9>9rRTz*47Cm#_iefPeV5k?xo-+ik{|{1ubXLv*pM$Q%wSm!nyWx6M4@$L;hassl zto2RHWF54?RV^uq-#2CI1hCN!At!vwUjPE``*q5X0cP-nejQ9Y?;y$!l1&wswa6Bk zJdqzL|7qR*nlAJYrHa$%m4=u=QMm<vPvrJ%dP~~*AliQ>wS4$qZ~e=n-5i&Q?d@uw zr*{xw9?HW*Jbu9UKiN5TK8p{4j0l9C<Hf)rL`kAJAc%!ziLl?V7SaPM1N`e>aQ^fs ztSKYKgu36+pq|-Q*~)Geuty5`^!yp$zBSZVkb;Jhywavuz>p?+ivfbMRmcGU0yLE; z;_`_;n&BZf=fCv4hAt!RA9>ho{+}6L(CD{d+f2{=JB>WnUWQHayRUh<i3sP*^Wn?w zAnX6pwchU={~<+VTZ<wiC+6V7_YbQzbQt^efm(Mgd;*7r5cCi;$Vvr=@*fHf9ieMo zF@pnlq3x)RM47$HHb_&X8Ceh)a4T5X(*d~)^Z<Fr{j#i@7z8nnWNogKtXV}~&LH}x zn@w6j^cn{q$$Nev*bYwPJC?kl)SH$Lnm})bvE7Ph<ewMZUhkG8I98s$q>nrgU_yqI zfapmwz9S}i;&i}yIU|OoS>lIHOJkj2JsaS0z=3o<Y!IWinB2>z&HRE305Roq1cn;c ziQU~M%+n!)?Tgx}i$Un+Hjc*wx$-q-T@1zZoRHTC41v4G<FpSA5Y`IG3mhqUwtB4$ zW{*{SR{q$NuyqYnj8>-q9x<1LmItd9W6b~{=RqqB2QL^PptWN7fsOk?%o@``rdn$r z!qJ}tlm~rTB9`R|U9nlRrvg=su9;$GhVy&Dm6C^f?4MRZF@r*$z?K5+t=w_FT{TR` z42Dv02ew=e1A*1Na$<X3{5%2bWfQFcYDRBdTh+=8YuPLhlRwwCKhCv(s4GGnADKrY zSl)%!;rsD<0C%<#KUNhFZ;^V@D8h)bMs5E`uYP3zo_O~C*EgFOD2tGo5mH7W<z9L3 zaPaZ_>3(?D>G#=QP%mgeAOoTgA%p{Qjwajyq~0Siqm>=|wjtyUgoym~1D5-avR{$% zg7eD-&(AADOJHs&MX)s^d1Eal|MvBNVm&=0s$0^CpU}MxLX6UiQCPo^%|A}5drLaN z3DXB2mxt*1^{$ugT>H^+E8iBV%Yosh?xn1Ix%(f-y2#@#e1hpP-yd#|v0=N+$st>B z3c|K;ormY6*E{Sn?XSmIN-5d<0wztYlb{*If?@e-h<I2dF3}t@mF*5WKWh|#)RG8> z64g@k@7O_|6t%aMbYhV{@UHy4xq^w_rZM0^0#9mj0waM8#zGT9DKA<=VHBFmy{^<U zDXLNkA)(4{;AdKVI{*U&*?$7i+K!wP?pMZsMX!}diQt{kcBqw>1Ij+)SAbe4wJ6)1 zxBWbTfcaoQuCA{qtA`}z)xsU4Pr!g$vvBh@aD+R&GeUxZ&=oopcluJ_YTZRnqVp#( zx4rV*yCQ|%-Icem!@My)?M-Pi)w`kzL>0B{Nb6|~wj*o3R$<0DhMtVr&k{GFnB`Bw z000~7BnCJ!5a3JdH*k;0@mb#;r@jF+oMrFybs37x!5ck#6^s^?VDZ>Cavv=HQH6B~ zUGRHOKrITWQZ)W`E2AV)I$q74F>VBZFwge)`Sx-`B2C#~2GxR;HJMfCO6P)^vF|$q zMXf#n15!J*?5&@njG?>bvkYAn!BR$PAhaigcjzN)STY9cip>S7yr2FLU%IxZ^$el_ zt`#vQVDr1ae|6)2Akq&$1e0OL?@({JEHB5;%SYdT*f)<_hw$!i6bQ>|glgQdo)<7z zb^psDi1CkK(|(+gLGL0MV$}08KL<}h%Rs0ElclYK!;ZZ~<aj}75gZt0Z+QOl&swFx z1?%aAHLnn8cp->&QI&>Pcl`3#{{y8I<a|aTZK)13WHbaokPs2Lc57b!6~11!-@H^0 zO2e*acE~sKxthlJyRx*)fCJR;%k<%l+qnV(dwDF$!|&{g4_=R-lWFe*U3W$U04XoH zfB*V!40620$FC27N6I0XU>z=6iP{{d_hYuK-b(7`b0InZyuJN~_W4IFKxZY=TKk#( zYZj@K;D#o&1y8zj31lDkxGEcOw3fJOkg4<GuPgRa05F0Oye(!-8W;9T0?&6)Z$JPH z5NMlLt9)=;HdEFD9Ed}RfYYb5Qniv=n%k|Qi6ET<xDq0g{#^t)C)Coq!Wx)RfsGRw z4U~zlG<>{c4QIr!=**S4x6t%!%|u3hGP@NVbgd!AQ*B@kBTgKkKw!AC=a)c)v?VL` z7A-w|L(tv=6g9lj!DDzI8<ma?ML|)m$fq-0_7fab5-Mx+8~D7?02;vnrqYU<;sY5m z%|uO0G89YK0uRTA#$0#gHnhCP+X*&j4vagzoiBs_N598|RB3H^N#4yf8E=Cq_}RBz z+4xwga7Cn31d9<cA?P}I_qRbvV_?seu7faPMg{>CG4@yJbF{8cczu0?h*r}mNtp4_ zlhU2GR#CZ`T|B%tjcb=J0<{85*|6;!PU{IVEghWv?#n0SgAdVhQz9a0g#wg+0(5l! z%exgqSMvQ<GM3DjS&xq9IcV{d{ekC)IzG%{r~j@(nB-j0#ySX^yzH7!vD4U#9~g4S z%ROwM*|P|s6H-yMsuwe|+z^}}Sq-TM2@#bUp;is2F@O-TE>_N+l7^G)e@u0pc>@+@ zb8m(YN}!Cd+*;><@jXZVe_j3eo!Rq4$eVk6nfftlclMmhVFEr}fx{y8_lSCql5~r~ z&$}9~PKfoWT#q8-@1TJRd&o5ZWMjyA9UgR2w%B=*9{B~vMIT?jBZmM=F;FLGAZWsJ z4A5+1LxIt<<^vC*>+v<V%zJNk(C1ivI%9*)lWPZuY;y{0qTKwT!y2~OrGHz7mC3A$ zBRN~+iUM?MR#G>w_l)jV9W#W2HUqK5#AQ(rK`Xm{mc@jq-qhpwy=ARvg44e5SXLd= zcHK}bA?~_qMRUEN?RJBDQi%E{A|m5khxRP+LwJBi$7P%oRtPY1kg0^z0a^c+3p;&o z@4cXsC62L1d(L1Dn!20YEm%{s!><W<%x(9(p?2z4tUFC2MT8Xlnsq`c&!V@@Ak<TA zAk5hBcdSn@LoksmZN2?(_Z>g^_-yO}0z~DtN6=mYJ+9w901*@#U|`Rmi5}+b-D?5^ z{cJn<n%~42)9_{i2dh@*j}ZjcFJ1Vs-ZBY;ZV$+)lBs3%z7R$5Iu|zHzRafd6aa_A z;dkLk1W;TM@(SfI@^;3WCs0ZO3s81V<kSv})t*yhpnKiW;32$Okns#Px>DFS?O9Rl z-o1W(_Ge)@Ps-nsp+0Gi8)DOz%i4q8ze|(mRPag`Qkrayfd~5=1TQg+F>3v_Xs5O2 zbKpxnQ^!u@_~1ctK#czJ5I}K=Od>7iJdFE6N&B_l?OcCjev`cMj2S`faP2TP^K`0G zCe2%FtwQ2S<!-i8>y!|ak~?(*9@g^GoV8*CqMoZ-)pMj_j)3d+yR}CiH|(A&QX|wW zN61ep$zh#R%2VFQG~W5Y(!c$9U=N1YL32+KWK4-1{t7Y=-b8}*_t*S*?+^dnpBZp( zMz(4-|NVA<`}-j9_g+(Y$8VWJ2pW?!ra9+iRw5M@l1<F2?#M?$ft_zOFS`(6v<IH& zLLZ!_$?^Azv}~ib;a%{*_qYrVc_x5`C1O9oDX(ai`=k*7iV-PmuXBGkr@Q3VjGRb4 z6zB63@{+-AL2H|if3C5#^<~jGF*D=-dP99_NR~Lc-*$vbh|P#rs`f&!CN%qbwCB^9 zvs&IgVQgL?kwH&+SZwNZG^D?NiP<X{@WDRQ?u`3Zu`Vk*z;KU<$Ixh?X|*QD{pff( z2%uy?7{YPh|1ktmve1kRdG?xPF&-2XU<L}A8MPLiLIB0o6&68(0<&PNBPan+t`yN{ zrO`s!*UJxgFAcKKtHsg3I<9HT_FZlCB(znI9EHPR77Lc7qigEd_IVg?Ruy#q9DR=c zjQE>k`pf38HMXWg4sHSPVY~XxdO4G86`5}i13zJb<O@nM4}$Z%i(2gawp;U^X50dv z_^5jnMB28wjUFK~%`rTw7qA`|T8-08nf_hHetg{NjgLNR0$LbENh?nPIJy60jzPcP zqZ?sTs>9W6fY#*OvaW+z%)cSyyT3P%?lnDpYMigW&Z6a)p$WJigysiRFkS8U^vnY~ z5J6{m{CgP1Uu>ni5THrL5`!vzFPEdCENk0wT2?H}qC}H{0V#-a#q-Ng#-6C28dc<a zBh68ABgjyYM~0v^G%QDNq?h{+<K{nx7U}q}zdLp!<(nBtXMlz7;d-Z$e`g<b+43<~ z=w_dtRU&983!>u`!TwMIa2V7-00!O5W3SYS8|=T$tu>lArMvvq<w2&r+^tUL`s+QA zVQon<)Kym^M|eH`><ZdGH~BS)s4IWAiv+U4NL8|zlp*C<Gv?s|uNNgNNen@I-jgYX zWnFMSpK*Qt%??E0b+%A0SX^PK!Y{RAUG(|X#ZRMLQUbVWN59s1C|f_vW+5uoZZ>8$ zemJM^g;S5Fkamd!S#R!`(b~0BGdnTG_@Yi=*{z*0sE1Zmo2y`Iwe~TN&Eki9awpoe z?Pb>rf~*OZySej}*GML%=YrHc7ItW6>#zUg%~Vpxj2himS2_u?#IF%9BEYCQ&DG6p z>upV<QUcwjdnzD9*mj}g521e?OW||XeZuq3#UzsSI<3_KOdL#@^(6<TqxT_!RUo*R z&1R)Hw%0W(MUzLhzrBW!oJh;hj4LS*>GV41*-zQ^MF3F(+~scoMqu6q5fjv!sH-8X z+1tnF4OS~m8%$Y(q+4{o<Wt3XF!Cw|DCQ-!ak|&7Pvta6hxZ<2tB<kNf*hC5X8E{| z^B3KU?8nUanop6-82g?#`vM8h=L>FcZ=JlXKic8Q%ENy?md@Sd*4JEspnyHJfOdZz z!^5kikKfVyQw)Hd@E_`a@An%I^WpVXHb=yGLRwDR@wKm=o>?VkGx-Pif}!h|KoMbi zMwEvA{;R#`lHKyaWRku9NR#3vnN0$h%zj3sU+aSj8q@K3{f}pLENK4@b(!HGxZS=F zlA?ZLmzjU(!a~2}x*wl$U=@>gf{h`dlpVF!55Mt|{y!wrjzRTTia7!1hU?0I;41`E z$SfH3x}rkV$#&eT<?eDD$%FbmD?4(_!Vh`}1?Gw(7hvIVZvAk80Af9WT2D?^pI))7 zXKc5tvdDEp8?^#iEJQ(CG8a>_`c2*ZOImQcJefQ4SRNxlkNN5PYl36l8L!{I<N5NU z2`n*MQxHd`>Somb-!35(#n~iU_(Kne<{=ck+m3RK33oX~+L%Zs4ve4tYybOT#2QM4 zMR0w);q&LuN>NK5H}{L8=S*~^Xmq7r{Z7{<f;Nt770aSMAUwgS6x~bgO{BU~Wh*l~ zQjod_4OW!`2b_3+l+M<6_ORi*4$;Op>>2SCkdmMlZK9J?Gyq_=?BwutC`tLih2juH zNCr6Vi-9pdduC@lbOET#t`B*%dg?)_h$rZ|5;_1mLMc^ifRol(H`Y#qNi^4jysIKT zJfry7Oh}5&ZZx7E@qIerdYb@Te*(+g*17jMm&pxw<?pfF>Ax-<Nr0f>91i5%lOjHU zVj+z_vF~38IX~n^Fc#9<yqChXJoNDW4_@yL6?<$0JxAuw-?^S4ig!lgNB1?Q@7_q3 zhG5<7T5Z54N(*Xx#*^KC4@?~HbHu7fVwU^)Zf)1`8adQs(9umd{V8Bwp0Tb^DnsLF zdES{T1&~@abioy+>NjiI(dq^^j|_t>Zf?rethr+!2s|9YVLW;0*ynmSFdPItd=(BE z9w+4ys~x6~<`4Po*fW!^!S(k2{k7ix^3ls=>xZ8mZ+K~_>$7S!@4xqr`5E7T?EUvr zj0wxK0%ZqUL!G$*OnCS<=qTMbVs)|;o6`{DAbYXLaZ5~u!9?iXT;hM%!@@H7$a{j# zKmh$<hJfz2CXlwTEgN#yhBYv@IS*y9aS23ZL$C?an(zo<8?j<t&sa}q@U<zMU^7KP z7D6x~pzOIC%TzCbdOZL_+bT}aC#0M}62J`_?q-1!p9}@z<EgbMm%b-x$wxJ$x_Dhp z`56&L-3ykd6?s{#oKMhA7gH>=TTx57TK9|~295Wc#h=X^A)?V+nt=6eKmyV&b@73M zG1}eQy7q%EJ{d;kEALS$SyE<7dP{B{S=02fOSG)^K%Heztp5W^193%V#(mRLyOaWA zB-AF#euxqOhY{Ymq8jeJA%S|CqARfhf$TRe3-h%L2CUQzpxp@JrEzf2gdS?PW?Xt; z-4ij+>(GIo!(!wxLT34gzNgT1FFGHC&f&~c;2=QXXV=H7<!z$-$?f|LV(q6xFp6xl zwKNgYy)nL5d|o?RwCR-oULZnBsprA;k@tQ3AAC)k+C;NmVwy=mF9(7Ca2bEIf5z6? z{;SM_3NlLB%~Ljw`FJtAgn`OQ0Ud<0Op3;2oUrJU3e?hzqY~usd@}Z7|ATMY?$S8k z3q(eDtum~&4`PK~cDtgb{=Jke8Lhh^F@TP6-^<BbgKJk+LTy^EUF!}|KyBs~^=n}$ ze>Xb%^!uKaqet1-Qaw-H^-PyD@cgrRZU2#0p3eMnQp}(`E`kWO>6gn3njzH3JNR(* z50>cQ0yBAYK0m>$0c!i$`u`Yk$iq+5y4he-i~*PP1?#e4+jiXcJ4&sc9)jjcdze6m zbT_mBh=wlp`Z9n4nJ0kFUEATfEp{+r>F)Y|A|^@Dxz^QvJvu%|G()5*W$e85=Wews zaY?C&v6`zrT1lXK2c#D5gouE3xuDgGZNF(rl?{L_hk%=k`VaynK=Te*03_r^>%Nt7 zF2Nb^l&V+|Q-##p#~xz@dkr*Z*S~Zx!n}lC_e^UYpjp}BC3e2{)(R{o4qa)87|;^L zDJIWgfHia4WnGM;U9nfBc?ps|-Ncrs&)r%zV4>OUv12?jxuo9@qOO1UypTu_?SOpm zhu&dse(847_hLt+_BSF}zgR#7*@VgMRv^$U`DiXFEp2rW;NBO&L4h9(m7!gt4k<l7 zuL`a)Gvp{m1UV&5)SF1AK(Kxj-1j)Q+Q;%vk7)js&N}Njmt_G&S=EF`op8q|JZ&C= zf$wo~2R^C~T%pf-JHhc@cZ)Y}2r+<~mD_fWWamS)PPx#AE}r^5NB)byr;Sab^#Yk> zf}@=-BOYFpY<!eOzIJY@>+}1Xb@4Y+J0|@}$A3)=&^IMOjBUU7(#%r!4uB8Wvg^!_ zAv#?90RbHDH{NcI(MrX7zH|?OUHJnGkX)30pa;fW28wt-eYUBVo~Y_d{(zYLC%ad# z<X|m5y>D+got`yp83JnAM&q{rjMfZ_n}PvuTI0XnP@M;Zj(c(_SNn|!D$lrI+h5)f zV@%$3K5?9jf28{V-lyF2>&xs)yqE0ybJ{feUVik_yu12@(*&;Wrp+W8cFJjm6ZYM2 z*Xav50-TO?ryG87j`SSp-cBrx6cSQOz2pO;&1MwX9ZT|jbBnl=*SmOUDYC3hu~@iZ zWG=fPq*-9u)Nb3oBTnCtB%Ts7YCK0Bx3|vKWGK(7cNZ#A=+-rb5%*%&%@#~SN79W{ zNeP2)cNKCWHZyXDrK_$?LxZe@Kc(zg(g}H8JN4^$1|`aADI><B{k+Ngomlb=8^6JF zI$_`LXkz!laCwbY8`x5R)jkT%yRn5}$zZd())zCQ5uwx_%4^Pm^`sXfpqX-v(aObe zIGlZx4;|U(dD|<N(~eraWvo7%<~|rV<D^{4=JF_>?c4}dfSWtHdxV@7kN~E!PrPHD z-_w}}Sp==tevfF)ng~uyP0&t&=zGg8bk%zYZG#R-4=5kglVj{tpzpsJ2dHJM+ZO<V z17N)=wDMvImifBmS_`^Qxd~!eEWzJLXEFN+zqRL?IJh|&tae@~F5QDQ6uRv(qtR{# zShU=;Y3t@`(a6S|<ANHBRS66s?jLdxq`Vb+5l=uqZiEk{*1SpRgZKSU<^kbWdM=8~ zn=Zz?yfpbW$+!1lK+ke(6{QrUP*Gd8vf+`l<R70absoJ&54hv_BJ_L+fi*8<O91?U z^TnyweNOw748$?U2wk5Pvp#bqZOAlv;trdG=rF|)1q;`kwmzp<LP{Aw{unKJ+Nw-M zCJuhR0y`Zv5kgGZwp*v{RW?{wVBoN%11VScQw|HXG+8jZZhDJcA}tf19@^$<oLl(R zJS@PYm_1JP_}<7nu>H&$=2fqs>nGKjBYb*5hR1t6zGnw-ex8&T<hW?X7gy}}J4W5~ z?>)4?Jwio&KOR4T)M^0&TT+LLYb^x~X59?MOE5*!LBWVg0fe&OkQQ$T?E8u_7pZlq zLx7U;s0bErsI_8U*9X@bjc@w|!v(YpA3;hP>w3a=yXkjgu<UwtYri!{h^;r@QA@R< zl^eKiAW|1NbJf~ccVTwnW6#oSt;eBh)l~@rQ1TA#yKa2i#=zy|CowM;ics*9^Mdts z#_jgjtr?de^EPp7o<h`r;)3h-u8dkaD-VE|l$qOk5VL3~rnai3CGh4p3Lcn%>wZ_) ze+US|1N``G`vEe9d*3$v_Wc#7lU5c8FzWP~v8JU9Z6AxCN2^jdFxChP?2LmzoA(Uh zHxlVE0YTg3vl3wL$!p56*R)l2&d9N#gn&qb6g6qFFY#=FObWo`jWZOOr=j21&Wiq> zdf60nR%T4kd9a6VwRYWeI-RiZcLkhrtUGLP2LpCX&YgJ2_aV(Jn?$CNs0*ku>jOyp z+=Y}uDQh?)&|y3_nP&MJh%>@0NbRhl-sch|I4vizRNOar{}0X8^%B9dz_krF*E$Kw zF{y|7eJ7zGB;IsRJhz8E%w<B*1^D6hsOZKGT<i_qDC+IJ->=<!(XT(1l6A%9`hVJ2 z?(H~YOTCfi&J4=*ecy4qJfrUFp@fyf^^(#VcRXItf9!ypx`Bi+SV-BzrSga(1V>K^ z>9d!*qmd>Nv#95?m1;^D9guW|Y~BJuLnvY(fa*3WQ8Qj>RF=4>x32@pxG=&{XwZBv zCqV<;V48)2*f=KT|G~@0*@Fx;CSneVOq$zHlg^*gT+3JtH&WfA=}R+Y%W)eUKzHxm z1cJVN{s}22#E`Vqwkb`x8^^O;l764*wvT`4<I+DSnKJ*Qv*nR?9P<RedGNkT8#kr; zorF&<oAq-Sh`SO^Q4HR786lG}>c2q&+qP-<wth=jcn@(Wcry|JMz#}U#Il^RtXD7t z6qQuN<NdxN@3$N7_ctslLaEFJt?tlr!i1Ev3Mke->CD~)Xlx8mC?qD_UhgPL+qgmm z`IHceKp|ka62O#V&zdD7q?~cOoN>N9sY_mzhSxnR_v@P;&hEP%APDfp%7(CL-MjXk zk2sxQpqaFq<i={&BRWbA+M#c|Z8)D!CKR+SFpFT93W)*vw5ovF?tMds5U}LckgkH5 z+8En*#pUS&0kEtmgx0jJFcAVbNMmh{8|;wO9YGkxO-tI?k^+N(tO%MLgOU=taExHr zl%j`RVp7Uls8^#h&`6WtLLfY^85z~)&D$<(r9#dbfq;{(_1+lHd_9-QdE%xgNp_*| zPKXSI*#BhL3FcbYWn>eOE^P#@><C17x;&wj9oxRadDkff<n@Hh(-Y3?g5<p(ME7Bg zUNz$6R=zK--rs0f-Lug(8XPD@gtUNSw2B`Z!|}Nw?FHaN3_%qLfk0AiJ(SA;1V|7( zU7kC5LyR9L%Q4sPZA|He5U$;8hJ&?kvq}z%=y09Gben?nk|{vtS*2niz@UI5zQ=VG zdjD2mTfKiNJ3>}I;3cmb1`tc8H1OqXpz(aInoy6PO!(FJ(vZ$9j9T^F+-`5kS*^bN z+jq@J3N~m*QjgZ$<o`DaGGPM!sd2-$ZHSFEIoIZbj$fb9)R=P$3Uoq@IG>*JbpC`T ztzB7rGGGi5DX%6!cL0QxPT;@@R`SVQ(Lz9}n+_-VO@Yw`6!4rH!r+;4untiUfSk`0 z=z0u~xCh~|s2?poj!IcNm|+i*d=R4O`EE3T8KAujTqo+W)3ZnY9~k%?$**21(VF$R zfriS?=L^<+LK9^R<tcAtUSp8V*x@h(etr%MZ1a>-N|val*2(#FK~4*5tJuqqGS!Lt z<ffp)t+Mpew#E&uR@AZ~LO>xI@r~ZuUAw*-nxHo_<OvbqzJ0@|PoJl0o_?6De~2C! zJrivF=qt9e<LUVmO05uxx=(UeYE99F*lurVZAXcO)3P9tATMX^r6T1OmnXt{e$qI! zhj>T~Z6>win{%F5MA9ZY`K<1>kW{ILNZ7ZEeN$nWmux~R;PUAco<4oTdOm?fdMo17 zcE;uQgtApFFA|L<w^}WnVI&?QYO<VB9H$f^ae+uhj9(xG&Ae?@pVb7>X??=^azV;x zlp?sCSDV}bM8Zyt5EIUq7o5(|AR;VjL85@1Bc5JXET^QTKO!i%J6cs>moh=5BBiWe zAOLB*<4+W^7i~}zW705Ds~~2r6loP)E2K39MC)sy9+S&Ye?oZshE|KUd<G%}a(;rW z7dXKTg@gzKRSnymCE*e(LXN#WP1iqyV#Miu#(k>*N9CZPagb*hu^&(xZ}h$ELVez* zE;~G|qa5dC;1d>3vnz;p*<;zzYC}%SS;0nxl5)a&dBGok{uxhCtId^KTs_&+Ekg>L zUjel|T*tuyfr~D3OHeCew82(DbBoWdGLc~xxpD&`=M1(S0G8;cF~kx;g#;29pFVxT z_t)RB7Zb`pKT%7XAcB40tQ4?yfH^!3G=!oVCtX)E4)Z>iMVUhH_wRT*zrgz(<diiA zZHk<`%X<tDJX?J*3(l-Zg;*AgUGRMRY_euUigySEm-90&=VvT=QSX3twezsg_4bBe zfBWk=!_JgNnj{-&FzB^b@bvtG+63Qz`<qhm>c;4!J+KJ4)|ww*HP@IW0uThPRLDwT z<L>ZhbZ|v|e`A0dIMsSWjthSN>7ViC<);opxb?$@7&G#+BF2n;yX!uV3sPFZXeez* zXsb1tGXDH}M^D(Z>v#^*W7vuZQb&v#Aug7877i63{X9<Iv3Y_HAZ!j(J-%$yx$b}& zvknWHwYw$4IM)DdU;F)ycG&><EML6hNOOV&5=7;wf%nt-2}@E#CsIJGb$FgSkT^cC zf?U$;+4x5Jw)8RhaMO9cpwxoBY-qyBY0<W@DM2WJ_YKY+r6NKf7%a#^&={yDv}&th zxBaC-EJImcT*eB8zRrfSIt~I5uy4D%lWp>YJ@9Y^!xlxKibd~RTSW{(o3K#q2rB2b z^It<4PnRcbJFvvuc><UNTGfe*%L=rjKSyP(60YhU$ctIg39$G(zzCF(E~`?I2Cd5v zk?{Qa43>aas?pI3@|tkEtOzmK^(`rnfwDJz|MeAlZN{XhRx{Vq5u^Y{iyKg@f`?^Y zw9!hA5U^!dYv!(7u*@2tk1-<UMTIa2tSM?1e;`~g7bJ>^O9lkEy(zE2k^`2@f^a^8 zQ`C(uj6?~1y`k<Eds`5wA&4M)@=9K@tib1={s6ApASb5?-tX!iFgH1Y5JXV6O_Mtb z02t?&XRMdAmcDRP>Sk_eRKe@1&js8H$(ludK}6ne2qA$bnetVaGlhs{JpqB$RZZGN z$i>D`_+sUX(}6jd4o8dHcIB`Lp_$EO{QMM@pPu~SH>Jeg_gCad2<Io<_d5`@Y9Qr= zFF*W*=cgycXhH#+Qvk_Unkqn(vCh_|4>pEqxi4ZCKyXISsCzl4s5yg-J{BL3h_Ww+ z5OF%KxZm%S@G%NmtFvd(L}1O8ZOF@tr{~Yu>yFL5LByoZf&$@kdDcvEX5=qF<8*$) zZq{!M36X;JIIu)bfl*UO?UrYtz^$v=cI1@R(?mc(z#<thr!S_M^m*^wn_9u;ikwdH zPL_U65<*0<Dj6t{H8#2s2tf$Ta>BAc;pr0a<>hA(sld-6sjHU4u@}7vo|h;5`0^7< zt7uKvr!nK#@Bb5T*WZwG#A!X@<<k#{aY5M|Zr8u*IA?AU@|~&U9-)Y%BKPn0kduSH zeA0@Kra)+2pH+EUxCF4!U+@eQy<biXmb~K2m!EN2pO7qfMVL{|JL>b?ta2x%MYFVo zmEJfLLP^-S4eRL{*Z>i2uPiRlXTP;ElX^axC!YFKrIfMc6A08v<S?Dy?v*fwJMC^? z83V}=VA6OJx~zp;>a$0{N#PPgBoLYB$&(<bW<))l3k;0mzX(7=+FcPa(luyBlO8{O z|MpdNt$ABso}QGc*VmWOfwEUHdDTgO29rzdfZY`^0cp((YEcWTwT4oa=F&G!2t`q< zExL2%lf{oknr<pROW1E$ZO==|%I63`fRHLBu{H3`Ix@1wEQ1~Ex*}R@(oX$I=*ofZ zuxjhw42l^dcMwIC^42-}b52M(;_cgCal8J85CcAc`6HHmLJUzY_>>_MQ0uo&c+#xt z3R`29m?FYn5#k1T(uy6-^W}^fGenf9z1Ce_{HHTYRm)pD(iNPaP8xr!4S|C`e^Vg9 zjlqbB3*q*5*9IU~KB(45*5`;yV_b?rpt%aS`yDwY?a&tVSz0N$ZLff60#l4+%v}+; ztMrnY^>o5%SrH;>*%32h1xjtm%YqmMmzRu?11J=P$Y_*0|MuzS8QcWdU%w-Ou$~ei zgjzIq9MgiF62t^c+c&fRBSMZ?l0Gk&9TFqTwrf}iFwmtmqr(&seBW>QDJ^KK)ey<b zOB;g;2*^mGKqM%&tz{gCNI(f#)-!|@tV(TYwy%2)z6lD?!0$$uZ{99L+;XITp#A%$ zY&e}RDxkQjYcyq3Y=SDauT6*nDQ7&Ti1oZ8q==LvmYj?*N!uQ$te&h^6+m!f%cEdj z_W)4qk<6al*GFWDS|WnV3@Ob*0Io!4D_n&ag@BY7(6*VSq5@L0uhreIJ+K6N#0gBS zF3S*=qzeQsTht!(T(#*_Fo3%vBL^)B^qv$hv^<0u%$V@9RJWN03=Z1qlbVHWih7ei zpFSDifUeKyleSb9Qg&0H7qL=RC)5&A4g`yLOvbh;qsl-aEOF82sj4`n0TT3|K%ti! z6B>GTLeTPQ=7!IgAMxqw3nWxKe+~Qn4I+f+^Jk<d<#{M&gyPi2ghPH=FvG|@A_j4T zRGD32+znbXts#+=7o1K{czXHK=xnRH-(lJH6ir8Hm}glu)~;S(Hg-$(WN1Sx1@j?9 zP|TCZg;BXcik4h6fS5AQ;RQLLuy3zuTzi79h#;m#b4@Up>yGmeh=oX^83%0pMD@eL z<&ODfXZPT}b88eIfCW3x7H)QODG}*L*3UowvwAEZEc4-g8I?kFLiHS~aA4jIk11a$ zrVK#AGX=uS%V+%bqXN&?iqUji^~>SD?$vpJmei}GYn|Yg`OKPu-Yp`sNzR7AwFR$g zZ}d~)oXvW$biz_vyUSM*9F1}*4-3#_L78P|yVlU24`{@g?5~J1fm`W|ot6{MQt`LH z{T17OQ<pI}T)+RSf=K}-s0IAx-~LN?#ZXkC!bVO~whdg-`^S3%i{}8qV(X6bVu-lD zt@!i5{%;5X{`QxDM=3?~5mvSGYpEzzlhI-f`26E%eEP!+C=wC~Q34tp2#_87e#hJE zZ@9nRQTC#WGQ?rciN+!|>px;SJtL-s)A<R?qyL6|yMoAK{$knmVRmzhS!{&2x9@oQ z^cm;#ipmAQef<S>Z-@}=TLB^9pZ@ia`1JELmP-OCf}8dLS4WQk9I%`c+D6!}8wg5q ztl82#uHRm@%EJ(HwlIL#@2U`ssQZSp-I11)HW7kgD?7y6#ey}zVTln^8^F~lo$XvV z1x*1B!WEbGf?633K#J}W0=9iOM6CTBoRq{BeXxV0^4}7VrWm06t$Z$rg{HrW2==mR z4~VFOG+OveD^<*5A%JngcDn*?2Sq{K8Zt)^B}mjPaJ4i7LJ&PBGQ4nXuKyUNKZ`2@ zk0tsXvk_H6WLSBWKq(=TcE}u&cj}(0eXj^)C8lCsBDtZ57{*aXh-$@)D05(`N>-%` z5vWaR#Z|$$x5r$TBIr4XWbRYKnEyE(Y28X;%z_~Xw7NlBGtPpDB31KE4(@%EctNkr z&;&Fs&upm9*C6A*UASWsstrIB<e06ZL31TEcZbw_$~r%;I3fiwq-S;SWygKHgBggF zAdPXiEbn!_7!QYf@-(MMfit4GZb8rQu;kBfeKLa(b+1TMpj1a6gOn{PSpX@TI7_1K z(qV=j3)E{Rf?775*9(x?+OZFL!dB*|;ys~Yv^iG~ja3Gbt)cJBpsmaUYpZCbY`01X z12G|_ejk--3c{3nTskwXgChl6BRW1O%DLz}d<E_$pu<Oc$jJb7e{S(T0i+l}l>2@9 z=cY5)0R^Eyn}d^a&lz<%Krrmt#~zGrmAgleNJHE%n;xTBn4STCtr;PJkWz{O4^C($ zMbSiqS_@Llh>;=95s*%(hhtp$dbX>hI8XvZlc3lHm1<%c3pGuGkP76+RfRt}|MKJ( z0_<?fpz}2kL(U6IDcJV{G35fM0}?i7xWPCWQ$}R%R!1>{A!wmtD|gg;9Rw;CSAl5a zoeO|K0c;uTZ{J?=^63*oNT}t8ecN%r-8(>GLtr5Q_uGc&_M&ln5o3)3nixS(YDg!+ z{`H1xF>L_7<KDng1mcLYU-9(m&qyKR+qb`9->(`sw6U@Qt3wiHN5D$Pl2XR`@&uxa z@2_vzw+(2@5s*{DR;~!^iWYWkwV{-1al`=PsQ=UzM7fs(`34pdTwlNAc71~<^8{`P zQW4t@SQa=%rK4pb<n@dYBlg$txPAWx;;m#w6EoKsaF-qH`K0k(5ikW1bN4=c{d$Fj zKjHI_Um#G6ge;EAwW97D-rjDw?{1yNqsx$nkeH1x&wKCZR%RhX{m|x=RW4h}q4#|V z?%pPCLRHEu?)x44zG2@rZp!9b|M{mE{OQks#`E%|xvo6UCz*BS&!*YITK?AA73_Q* z<Ei%a%#dWt)7;6TDdKiMbvz0@86s7?0D76HS$IBbrv@ftn4~Cpd;1kl8Y-9W(vNY$ z)A<F<dPc1c-*3O6wSsMX)1)w&n!yCkeoiqf5lu*aPcv7|agk=;n}*Bsj2x1Z8-<9? zWDa9kR3T_vV+jG(tX{Cuc(-cC10%(RB`!LaU=45L(reu#iB>z2Hd7-(XB^cz^fuJe z*-2|F%9YV78W*$T^_fD|w(Qb$Y@0M}Z0FZ3&OnQ`#dS}WmGoJAa{xetm71zDk13;7 z^#}?ZOC}kQ!LBskV$Ey<6B?1V<qeix$`(G{ahHncmml=3m>|;dnspZi%rnY}i+YD@ z*)=9^NooO%CfXQi#PoxDc+8Rw-QXLQ0j>eWfLht^sI}<XH3xx{(m~K^wMVRfRwDx- z%nJJPjnMy~fW*(PNCUWGulLT1=r*x~N=*9Dgu?M>n*Qde$@H$bv-cbUEnAOR@?wUB z8ce;9h|9*QT-_&P9)55}TbmaOghWzsdVYdrWnXK|D7C60g?88KMPyzA2<;`;?7>t) za!(q8b<-n5rbL1;Sx^G8#t&*qciwsmR-Q&E&ausN2EMyjG)voK$jbD`SeFI2kWibu z_X1!7f`vypoM;mVAteA>mIbHv3A_vL<p$>v*K_6|0G)K=n8?AFa5u5JbytsTYnTuw zY_~hU{p}mR{P8o0qUAv8MlYqH)}kR9tDRNUEasA=u|Z8UiCOqch-IW3CICDx)DIeF z<f|_h#`Su|OW73&oS$%gd(+YxW^iGA`}T^b?<+3P346I|l44^7Xeb~^f@~E;3sPJW zL)K1SQdO9hO^H855Q!{tR1r0KwZ&d_T~kI*8Rzo_eBZiICO=dHa3f75H0u(eo>5OC z$faW2ZkpFpcH~o5tF;!ivH@IhyS?ci*O&nygM!!(VK)q9%E6jnGX0kTXU7ASKc8EJ zq-6Uwj4F_nQAykS-nI>IZ?DQI201Lyx9?Z{>7RDgyH#s2p)o-kBY=8{NJ@c3?ks)e zu6i=@(Cd=X_cB>H$Sv(j0`|Q-&YkjI6zi5rhJ0Asn1r6}uS)4!Uh%el*M9P(323mS zsRY7#xgf-d+wB|f+w17h(Dyb0*!}R>v)FSQ6812b3$?A>kd_z3n2}<}-+ujXy`h$j z!RfpNHz;&*yRh|Y1Q0Ikf>H|@!1?ry&o6&K>L5Ukj%8W99P&7;$V9ROi@!%TI+!c& z+YO~|xR)y`D}8!SD?UH}5l^QdaJ_%UzFmz(hetVY8{kV08_*4dA^3egRmKLS7;##j z0E$3kl=}^}?wx^;d&aX(`Sg8={+`o<`~8aN=g)X~`57rLAjEFWh-mV$rdw(F^M3!1 zYJ_JVx7LL5z0ZHoS1{c$yXb>~7$uJieJ`kID465Jl(awZq|v*<WU{l{+;fP)tyq~4 zIr(m$ybI`8QShc7)NQ|+0m}v$$*7X`8Zo8r$xsi#{0s^z_OfH!Zt#9OIi0jLJfC`w z%G>Qb8dsEBkyAtrBiR&Yh=^E1J`b;EjH!ELynz^t8pJ6PfpXT?oFb<Db#Y3mn%E<x z?Q^YUur+lLIg=L|+GGH2-yr)Pv_=RVJh)2@aLQDjUE>;Xv<BdMyW;8T37vY8ECEBr zTtKnY2`h)RHq8)Xq@V&+h|t<tu%U`4*Iu)1TqLCn76BS{b}3Ij>I>xug2pCt;pCRN zdp{1PC=<Cu5MbXn+^;w6+ZhWjD!_%nyrUJZq$vB25RBMj7<1!bc+HM`Hd+N_0mwMe zy|psU&u(Lv!RlpGf>L(8e*ccoUp^zn3}$hUB18n+-cSqU`gZSm5<0Bbg%emn)DWTo zQf*VJ)ss$(Dv#Dw$p$j_C?UEKu(3(4kWxVc%_W)UR56dcyv^biJNQn63<0Edq|98g z<fzpK)IexvC40lF?(9A&AfNA9G3xqHf1h8r=K2gSR42Z3cqmIh9%6(PL9rYWRkP@T zw^s?Y4I3Ar0YobV(dOE+rKMT2qa_m&jN!2wRhD_60KgNYCILx(Up4g7S{tC|02ret z*A6Vn1tuMZwU4cu8=j@26`ccV3^Hp`TEqSJik!}))K;}jx1>z#=zom`QQ4{tl*qgY z3id^SHJ_2<|DUgaYmy{MvNW-eMMPE2{1OqFSy^4x_qi+$KmZ7|1T29F|Nj9Gz!Cv? zSOB}TJJ_D7>aMEHj0kr(Q&qVz9+*W`J+c>Glob)~=4Ps*B78Y~_;BL&{$h@0=o_4B z$?u-8|Evf6{VOQDqmi`6y1kLo#N*{7Q@XHBGa*dGIDu3z;rSc1Qv#sSnciJ&E2fE9 zCqj*+Zu^2z%0`IM5WHGP)Y&uNai!hH{Ca!BH_xK)&DI(r1eWCi6!!ZUO4|=)=xnk$ zObm{8ra1BR_>oWF{mAv<BcjF^v82$txdi2MT|7vyC>sw?A5A&%{>ts`E45l+jB_wd zE5ONXC$zT*thF|8w>;mQFwHYh&)<8O&%tv!R_wHeMofL2#g5ty&-0D*A1<l~NN#sK zuWjG&eE$3=_OctoBuBP>eip}mJ}vIpV+=&#SFdZYq?q{I-~J<)<-%S!e){ttOcz2e zj#KRc)HepHznR<r^S*fZ5>-;G*#?SC3qg%_Kc&Pb!Q@P90ZbilTB7xNJA4y8;|gK& zLvQa@_l>k%hZEQFu>FwtjqC7uf2iO?hEg#0d}{*=8PQvJ;6r4@rX;nB^?1h!nd5g( zSninA2j;k%pcJB3<`jsNF;{i4PxaVD@1CBFP1S4kX24`T6y&_Ax}g*_MD}fC+cwLh znzivY*T*hfVOv+LE4m!9hCZL+^!U0;VyiyH=;9ygkWuLAtCtVdz^U=;rz6ptIh$HL zoZ3(iwEA<~Zkvz(WiXGm`WiMxT$Cn=s~_q~L6T#W8_ANxfc0mDI?1k4%TCK>M6Kh1 z3>3*=e5N#rZQ~#{g&<6`MchrBWhAPoG-42@lx$QnM`qdMeLbzsxcU*acf&CLHU51# z6g_@+c$#5oj#7@jb_6(_tZ)x@BkXy%AgS2?4>CC?#Eo<xjO0*#C$1?*J``<;bfv#$ zs%;9g?}TYN1wU<EV-IpwVRG()&|Lh=%S%<qx^$;xflD=8P<ESD;PA3EL(o!;B#B(o zVp<|TLK+Wx&f+uYV|N^-BM5$XF4fro(=^-J=*GC|2%^tMP(~o&_wlQU&i37PnYnK^ zG-q3HOkrV)7jujun!JOblyF){+oU)Gcc75f5xN)>Q<^B%UNfhK>-@x;-;9Ie1peSz zjD%oi)*dL!v4{TEOCJdfnA&9QPxlC{#>?fj|Bk>gI2<2>=^jk;!klK<cd81-Nzx$* z(X-wu%x1HLFwYaE6bj0`T*!HY-L9u+{l?KM!_J#t2m?v!j=$e`-=EF>P4tB2xRb;A zk3S9=VBF#v7dp=SkxBPIRqa%@A;e_+w7L}ZyVdXI>~W@ezp+l`j3X%d_G0Z%Q9}+c z%L6e)o|eb)^N{3tuXg;-`w*so`}Ez@diLK*WnWEbB?NLVtho^8*+&m%Uz9c?!8lDM z?@e!}NMp5x5Xdx^5KUx)W4I3<1PntsrjF^zBJgkJvYULWqXWGa3pH|0>xaTzmt{gh zXw}LGDJ3>LF=n*R3vqh5P1TBFzWHN_opj*aC^$m!{xOY5s76S!PKjg?P&=a=zupAu zhp%a+=0Zt!D6O;*X*H9#JlN(TSpPWAmR9L4L2}weHiW|*#xVx=aIE+}HpaN((}wA7 zoyCWn7!)Yo`T$UKWnT-ES{5-#NG*6q7fs<y0x3ENV8E*C{E$xA!O8<b4H04^v`*CW z5>0g#Ko_++t-7HGU8-2|!{4Jc8SRxRHkTZ2h*%KNaE9|V(=?1eUBVegJ0Bq(3pHqe zCkp2jH%P>c<(ry86d2+VOPj~1u#+EcJ`y-uhWkVGww5DF5lRxHla_5<b5OuFTU zhB5qe8&1ha|Ay00obFsW9O{5Z{d$}5;rWSDHYDPmE$!WT?(liPrx@TmEwobE)ke-v zQ{w6J<bquboukuX%;xsuotkT3-IKZKXUa4S`nAg7V)PP6ubtcCp8?=gcsD*v(bGNm zXBrUZ5Rl8vUK$i71uHMubsIXuxPKjc;3xx_O|cSW^KPqbd<W0mv{j}!W9^2K6emiE z2Ld3rpMuYSXx}&}rGLI0w<X8(3?e4?9@9IaBCFfC(|+W%CP&%Trky6UQ?;2YzZkw` z+$GzO3EP`Z@h&cBw>J+Crr9h}v$CnG=~pyw5AWShsCWs@g3TdO4<6{+8egx^gJ5_( zN!}|h`t$$xn*&MpwR~3^?Y2?Jmh+EP3j{_&a%kC(UkztLo^OM*6LIczy=TYoD-U9f z{}`;L{B?byWSgdFo7wHF6WI0L1#`Ua{QhTu?B7ba`<;d`KX@BT-kGLEMakY<FY0Vi zR}JgE&Q7nPy5R}IG^Vwh-nqWBXaaK7^LxLkUFazbbf%=%1Lkbfjm*)0Xu*a3PH^WJ zV`pUcEVg%Vo}yfZ1L`%mq^N&pbzdUyA56c-{?}6`YJ|e%2l+7aN3?k|_Na?41-AQU z!2^*h)@R&uqwWTOYr`iJ9=q}E(7VIwP;*RiFhbwKe>mYp<#aozNEEwnQ*7&IQcm|F zY}-!TUEyj97!fT%3(!p8p|?G?4hM=1c+Y|hhL2LgCPOOrK8|*nEU;fxXYvln`g}l+ zOkv!P{}I&M9p_lcTFJFI`Nf=Mh{^lq-yPf2Gd`cr_a8hm`mq<}{M&B$efRW0vWt-% z1w=PEy^s|~CO2G^@9!AmxE}Sr)**b;bV$BF$7n3+bGQW;gAqsG`sdr4hH3K8@b<JJ zm)awi{(p_{zkfpGjr$(CzX_$-oP$~l;K-hD7!fmyK_ZtldrcEA(}iVPm{Nien5T)- z8rRDMwPnkUy`0#c`jO@OT8j>3t{-8*f*r!phmR7y4CaPkk8+{$YL5Hs<waaq<Ve!2 z&YXxmU9VJ8?yH#eZ1jO*a6s7p%twaa5r~uXudNQvlF~A{tfQ<_N@h-tDbDO6jxuE5 zUB-ULxC=cSR%p_TSYhnL{s@m<YI`Jx<fuh+64@!@I&FIk4dhrOmz0iSqBTQ>Kn8+S z)LLo7C6JP%rziBcCxR(i9luYO)MgGWro`-ZegyKi6ShDtRv)jenqTR%@oEX%G@1C> zF(L1C9*>;heK2r3((h0=fA&ZIb`BJeHCK%2Ii`k=eb~ziho2dqq#vmh0x<UA0qY)5 zOdzGmkDq>rD#R4{@|Rycz&)LZ^KT9x+i&mGsr0LRW&|l|uQr-=U3Vk~E)S1fpPsqj z?`-={EtM1_69<IurFK(Lb9S@h!$oql0UXF+(i@{!Q8fZW2nQKrY|+uW(Ws>o!es4v z5)f(MI5mc2R1W}R2vj-Og5JZqeR)U8p>J?E#?i;niU{viw0^aF)UVq&TT^Ggb_03@ z0*ueXg<E_xb$&xrs|!W}NzhDftj(3T*OgjyY(O3NdZ;PlMzZ<=NYg~W<8gn#3WrBz z!a<wqLz3Jv^^?$@Hg=t%*+e*L(FuUjpKUy?i5><@AjQZsP2AS?`1F&Lx0$qd`1(A0 z>7VIAg%eTSo-4G*6s$J@h(LG0z6TZ7vTp%o6u1VVAl$MU(ctsTYgJ0A-H#*EpJ(3= z{ou%P*p8HW9Hil?PoaR38;=7TQ?ekhmoZKdT=&KAh;P1UyZx|EJ1eyWiH<hO=!Ms& z#L4=ld#hSs|6#Dq%e!;4bCxbM>9P#P%J-43-BY8YR8%r?QZCm-NJ>h|eG~S(QljZ) z1m`^Tflnq+Z9(l6Ezp>vEAq9#6qA*SYGFw;Wxg6Jrlzma69RLBItWcYt8TS2B+9ir zI3Weo9Oyzkqh(7#)n`vg*B&{Hd`G?B2b97bCbMC=l3OFCr!ko=retlWebw~j^!wKE z{baVt1|OBSlgphg-)S`u-axL_0WnPrLk=3oTJ$s7+!+sN<nR41gXI*+`QAurw(_W& zfLXu-r7AEo(>`?SgsRxNw9-oSE(`@DmiEqyz6Q<sEWydr&Gk|`pDM%zp%Huxbf3`? zQ`a9bdos;C+mzVWJ9%3PVxy~r2Y*d%mWOEt^b*p0C-}}?j3cSut$B30oDsV5QhmRc z@4h^c?$79)a0TSpm;K%PUh8@`$T*+B{<7B#FwG|aU9zcIZtI=1H|v4LJA11AXU8}D z9`c(U=AmC=x;#Al^{5Gu%nO%!F%>2e*4y2(b+rc^dgSJ?V)X|SrirreM2&3PhHkS( z((d%+xN-3d(r)|@Jd>PvF4x(jKJlZ_ox)f*j|jC#@lFtoeLFgduV(=7LR`-Td?q#3 zIvA$u=;=H@=UWHLyMNo%yYlY+Pg{we&W+ltSYPivFWx~BNO3XA(y5?RBRmA|x6D@e z@q6a5WX!@nhbaB;(>#-=$w)JO_0M6g2UsKW;mCOVMw#ZBt|~SzKZvonqqyOi9RjuX zqoZc*s%>K3B&{hSCFW&;*O$?I{jM)NFt`J@{}1DAj=T2(_h?#(C{e5RuB$o$T_Hpw z77Z){uYH%)p7Gcalcq3FiM{kJ5ntnP+vQH{_N`IrYkLX``t_klHW5a@dw-5PUfUVD z(u0k6TTMZ&r(RSDQzT8vs4oLWJBW`Rtr729>E}jcG&IH6HZB2KGBtdqNiYP8!bQHf z3K-UJUbXmMDM(b7s~PXs0{dnytro*KhiNTv*Q!j5j5WN>&Z|+&Bt6~&#aix4;WAxF zG0_Kb_3jnLgp!i@e0l#~uGz6iU$bDMKvSB%4?Fu<>qyh$dzgVL#m>X<zI4Pg=>Cjb z^L8{9q(N(eHD@la&L#v}vHR_%hVJCYB)GFRFpmjX5U}ODkL^D8*g=Fm0vkQqt)4uD zU_o#jpM__ZJ)k)Sr6R75df~b}co3$fkf>zmqnJ*{a3p#JrNU7zD0ySgt4)pVdv}mr z#Zf;{*Gk#eX7BAK59=m7l}LNQDu!T=(a=Clk;}t_FGC}5tNEi+59wsVo?XA^?)<)S zhVQ=g_`#6N)gA<#Y+ipO<ygzUKGMnW-LJg&5Av(;__0=wa`y3#|H?($cVn8zo+zcb zR!M)s;S<lu^bvRHk)QnP)B1C=*QCqiv$dC~i9OVPV|_EhjyX-lXVY3P`)cgzW+tLG z69l=;iy^_aQr)=5m}t4!JOC=AZ(iHMF7;J9L^J!v3G2G?@bF|cCM-A@_f9_)$1-=L z5kj&WG`${ohU(qWo@(GAmhI<8T{o@|k9-MTsO4XKM#pFOz0_JI?;9a}bXf4$!NT~S zV!=~Yqy<C+Db7q`CWS;x7wTkfLCf_*E{(j|)GZMRDWJr6yUS`~W-zDObhq<v?L87Y zGhE(X&->_8$Gxh;a=l{xrS&*eDx@?sCv#XSP8fe*#)d+@O=*&$7tzCVYl{hPSY<p5 z(MCj!OzHvPU^s{1ohI>k+TBm8Le4fI2k1(gBDVfP0$a&cDF!Qc&PhMG7#umz>h)|+ z(ezRN(0>IU?R)fiwx^#+aDfan)S*vo?5Wi0#r-<2%Z1NYgdYa52O;;j4bczIF)`Mk zVD;4=*wvhgQv`QvsKLp%`;Dz-LK5;`xUDPuW_{m5gcyZ+o>`WKfBeV4Web0Xm=HYz ze1IU87+_g!J!<w6U#Ya>T$WO3xf<iYDS6Aj7bh2NX+9#@9BYa;A+n#BT8k$V*4`*U z@=?{3qjIfPaw+7xoAP6bgIH%>5&qB|l?*2oYjBP{2<j-Bs-iAy-A-ph#E8W~B2!vO zX(Ci}KCNVG*j+ckM0U`_&Kv>R*<v00+8pGmebRS#4920^%SvlLP1AqBzmIVxJXu4~ z;9XRDSi1KmEJs0GqvUL5z~0KO%6S)ehu}}ie%BGOrdAr}_SN?IB817>Tg`FyGKi5( zw_EXypD~eBPyZ7P-3bKhZY0Sx+WZ*ku)65fG*8xQJqVTx9;EiJn{JEVeSK@c&woF4 zo^?C*{@32GqwNbuGTZ7A{ERge3+&I%_V}#RoB!$`M_|yO!#rOcLAU9uHh#Ka%i%Ro zrpSZ0)2;duIC>tw`4ULeG{I~-<+WyN-dXc26->%A&Cr_nV&ihbWwb77Gw0N5HAN?n zrfS}p=fw#l90pd0%NcD-cy{2P#M%(MAjvn2cGN`0L$WR$V(<9j>4`6&e>$QZ@z1js zP5aEQq@?EDsExYsOv|ION^54Q9(pABK67;#)>nMrO}clUFT@y!9`+G!s%3FljncZb z8Zuiyv2_s$5~2+vijnJcr6N3hG#K>$_G(iKqsg}-f>c3Lpkj(^)AVQ~g>SF6IUVjA z`|#K&r<Lr_#WrD&<j-4F5QFVfvNk-iK}q8GV+Pu?t|sEbPo||_%TAgnuGhukK_}vc zK)c^adm}_atI$cF%_Ce>zmws=`!fVVx1G4mmc6vz>0k~dB2236`+dBZ0<|h{x0P+* zOw7mwmHw#Sw|M?5r{(=te7Ancuqg-3{H|Qn>(Hk}M3vbmC7#Kb>OTuXD0^d`#pgm` z?YI(L_3(hp`|s^JbHA_r{N-nE>jv0*HV(<w(Sabw)c(!yAGtm(sJa-CBM4E1C=h~@ zq%uv7n^@*sb7p&6+1JfSVfReXf~>sl;~ql{OiS`IhEQ8ZikiY>YX&EaosZ^;g%=ee zdeGzg5F7C7Vm+XvHZFkHomw|Sm_0iLQP1Qt$><oOL(MqnAkyc^iwM~Vqs3q)qnIXQ z2s}T2hgP>YO)2|!IQwsQik|-V4vFjMa6q!YFFYs`3GDgizoTP6ivLb0XPyzX^V$98 z!~NgtC}k#!4|1v=fau9>p5C*c33cMNV5NiBD*JY`azZd9KtizA-6rJSM1MvLEY^m5 ztdfp<(Po^Yt_=}f(5E%Ew$qv^`%Wo^yx(nnwqK^n3-|MTwA$L5ouYXTTQ<<(ZudM1 z8RzG8vi0<@cUd#8pgB<Aa}aj~4ria$pZ~Xy<$ZAC#-k@(B0N2O^h8KpmcG7!#{Zfj z`u5-cx*i1d^LTzy>JjlV4pL3FH3TG1rgG))Qd?!u*+g%|)XsWT6oQ~4>{^IKhn3tQ z&>`z@L$dB)I}yirWG9^%!}6P@dlwO$A{zw>fn~Xx=!$^EK#XG0r1Tn-1qEZwsXO>q z3UZBJn+ixf4%!)t>xb5erM7XjHTG@gvOJn1;Ypz8{qwP)C5DL(?}lK*M^b?0x<HtT zd!Wrg3P`jK`uOoeE*TAt8ZuRsdQ+q&mieJu36{&15TXTaB5vg5ozeJq&y4IFHPU4( zNGDABrfKTB)Y^vVi+Y&Z)w>9;iYB%fnwNd1%f!d<fq9y^TrNz>YQX#33+uo96R*GA zsIi$0D~t(-V=xDYA?#nNHV;O^$iTFkxRY!dErm8kaxUENnO0Z6{_>e^UD<O%MO-kd zKUVP>7eb#!{=SRi^!ch|&BTq3UE^V3jHGzzd!Ms`;}j^g=GkmH_A#AF9ngl&fe4eg zoE_?Os$~cQRqw|}tRFt-Is~9hq{K5&XAk55-nN}T{qryU!@vKnox9qh&@KyX9Ty=$ zh=tqTlrHaYD|yY(4usC+U!AX^N-H)p92zM_uFqCSj&U-+KoG*cl50j=F=V3a(WAK3 z0|e_nDka-MAxE3e8Vec}rJ${lGd^8XhQeczK=L-k5Nu82XeD&rdkHk%L4_1;bo8=J zJUl+r?xx<CLKi+eGUoFs|JHfD`}=7>^~_xmQZk+W=8naErTJ)a-jDxI8{IX2Vmo4X z$|Ael>2_ONGqurb8XiVUv>-rw+34)d<aoR0uTLQjAvBzvn4(EOYqQ{BBm_aM`@|#m zqsv8nk2rq_A<b!=H@kO3kxUb%lDEw|&a{u%^{YIc`@Z_)XXhs(M-uZc{gLC`z6*X% zzpsAQk^Y>`Cf;7ZQo1OXmuAN2i2t5&a<=`wPg%k#F*|<2uRjDX^Tp3Q<dWZ6K=sbM zetCy$JwETfr#+!Mr^Hl5NU4*Q)F;zv;_>mxHX3G##F@gSm{^EN^}!jDDOtaGtA*CA zC89NNtHYqG)?w9CG^8D_)4oxU#fV`d=Q7AB=ZACLwMVL>x8J2ViF|l^=A~Kt7h+DW zxY5TSV$k5~eOBk{wdQG>Xl<fPBR7}z907{zyG_!suGYf!ay8W@39j6CMlg;Z_13Je zbHBe)$johHp60Rb-rin$`TBxt<Kg22^Cb};FG##Vgz0i2q=~Xu)~`EBu23D450PoP zP<&+Z(6aAq-Z!oGyO6P-tyZFwoH}#7N4eHzk<jLFl-G+z%m}P`<K^Xzp7qw&2uYA& z)6#O@xxc;gb1lRe`1`;82R?rKo(Dd2|8l1Y1Agy1_vtb_qx>+O!;jKi1m7Q?)(W&t zN;WyJmYuIJUumWC`ua-siFrD-5l(SnYgU`2v#yWNJ)A$|@O9@u&a!j@Ro|xXI}Q5b zvv2EwwoOt+4qbEXeWuBTW@7LFKmhgD&{oE^7=+u~K#gn_yCgH}-DDkt7y5DQ*SX(K zu*-yt#M@&X9v?Z7GKGk0=JoZJ;$yCl$082BTbAF0q!=QXhYO#6du6&zCaW7~M3a%Z zE{WUA>*#(-F)>e(i>vHONaS3|C9`VdF4l5v1BVWy5yjf(YPC5Ny%ZTkWQxi6uxXo2 z!AOpsQxLFPc~zLBQlzrXGnZvyxy-bXh+=yqN_4dHxbJh0GLi=R*02Cb-9{ao<ygBI zqLCo0A)l=t!JBCsF#i4jF97IBNWYHro;4IekF!5K2OW5QpRx=tf(yUJ#<E;kmdAmj z#E|TIqS8d1L~TJrjFXd-E4^JCT-i@dyk~HGd<jFeBtl{srOj=<+3r&-JtwibC^p2c zjdS$=OON;N&tzoS|4Oj)&DRL+hiUAKW2x-Et#nE3u@M+?z-bNJ@%tj*e)8#R8D~jw z<v{75-`Mj;SI*V$=)bLc===Bk)otn7`yPL!WuE;48_Q*8)``{+UET>k$;=qYl^~H) zx_o6aX;)P<-Y7~XP79T;3Ex2C0mZtJ7wLmcdalu@k=YnrRdubA(;arG^P9(I8vV_) zs75U-F$EJM@k~nQ*{{2|8U{jbLncv0$z?OBv0W&|;HN&PT%G9Db+hf0Pf;5T1wIq) zIEfCaf;NN4_nnfhg=*U(mwlmJFSN^rRvY)*8+kW5;C;)KE%U?gKXQ4rKH;=XHl=U6 z(x%44{76|rYoct7QLiak#$*AmoD79U&+pER2U^-}V9E9R#M|qO2bD*=Ve|~Y-*AuS zxAld${l?d~H*+{%yIL*=Z*S{L-Zv`~1wrQ7wF}&!dWh2ft%5<_(`@CA(;}NWg`&#R zo%reZj00DhU6-Kk8@IPNTk~cjHO&w62<1GA?<Ql21HCJ-^=){{9JI&Qr(kdF$!7Dr zrSI@IuCdW<&r7h{EMCIs{h!z~E2T0|oh<4>v~x(h9|@gE=%tw2&r~pyY?s*{XGT2m z<}egdCd75?O}Ixa(5R534G9wgEtx4cyv@fl_&!6yJ2p~`UO#U<Jw0-{Jd#L!`tbug z*U>|6K}m#%#Pa$GTSZ!<?pCV~Ay5#?wpvM{7WQqkKz?vZ#La?_8z<1bG${n{eUHp> z0w+v%gvuV@@$8X648kHXF<IR|M%LU2)z0iFS@w|H*QKAIUuBaXV08S@0*y2>`jHsW zpSjH^D76eEKt!kmjXXWe{#@IyFjCvaeO)A2`A8Y-bqwV3{dUA6?}LC5Un%pn@ciLB z+mEC%);Rg7_3Beiql==oUP_`F=Lw&A5R=>bzGvhVm`23gHw}S~HW#D>$fn#W5iZNZ zbbTKF<Jb4^Yj9*=<4pa^J-RLM+x%C8iT=9`n@~$0=k&-(#;S2t6na?i93M_?g72>D zbS?g;*;`8_tE;abH*0P3#P^ZB$h)^V0+{}D+)ABv&6Cn7CA06Q*Pha3<9O$Vb~9<; zQVT7c{(JS!BUr{bK1Hn#-NZ$MqM14y;9{>e<+46B!WUjW2KT7AlXqG<%{K3$)rho? zKZgohYlN6+wJ^_#yzgj=rr6}anx-^<N7ckhV)V|3%Y~MG%x|<>x3P~s%5K$<X*(Q1 zkM?~)#J=AV5$0*8iVS7FU%|lYV_+++_q)lh=3)@%W)NpBrUAabu6+I%xL#-GWk#|B z1#0#-7|-%T1*$s&bIe-u$ew$)s^_3;T#i9_CTar9a^?Q^G7f~Q()OKJH_zzBNNJcP zX3@&tjGbG2B45MCBWr8qyqPK;Ak6~9-e;V%PbBN8j&I`TnMWtT9l?|(sJS%Gr6nB( zQfLypNo7+(-H8|hs-F7d?LaF&LN%r_t*aaLW1-$3^qxT-8S?2%%z^gy%x`Oq(qAL^ z;qF&!pW74Lp6#`2*(WMvMuTPCalCi%uASP7U%nfAJ=W7c<XC60z~lMpO0FAwDJJfu zf;53<#HJ8!wnM0aOPySCFYx@`C!Rh&J8{t3{^rX>i%NFFAoD^~<?}t0YU1fR5vS-1 zjxZ(Rk|MP#OPB~n_?Q3k&-~LL|G>IiH%s!ez_#1Wjq0VFu5A%xLV{_Ogm{dR?VU(_ zD@3}33N-4N0BMrZCR*M{ZKvRU?xkX6edm_MLtXL|QH@|kPJ3n;d5;vV&%gwE=5%#- zd~u^~dnv`4%lyc`-4Br<aaGUpEOos9QL8_K&+cNnHxO5_i{6RR^%gpZ;$1rR4zl+1 z<o04-78CLjp^I0QlD%#5D4j_N&UFH*k=_-c9soq|#zDn1exI@8%AB=@A+97bF<l;z z4OAMT2}mPOiRJppdf(_Ar(cEYs;9LW-+XsO&tE#eH&`3*-_L^;3(WUZSm!qKv~Fj6 zAEckXp0exzLW+KRwr;1UWM^dGcVGA8DXU_`%}%->s=vN3GmA2UM*HVs+0yNP<9>T( zy}yz7o$JGer;oyXc|yPxnM$RUO72pyatQPod$-y&vtls&92zNk9k{CqVr)hUGFaLD z05?1<@xK3c+qgbF9AXiDSv`QT7{NDhfIx(3T?X^@%8!5jkNh?W>-xs_W;M$mu{RgN z0E`>Z;qM({oO%9mVcl-5_g8Y;@Y%q0NVCJN_<`@ye9k+czWagu?G>6084A)z0XILu zUAZti>sMGF7UCR6pp;uReRNk`6M<S9_pd9<cZ)^LrBUOC>SjaxcJa15Xbu-uuaV}Q zkG^Q%d}H=>XQzrYnoFbZ&T8(6fk#h40wK+`Z8d=+EF!l?F>G^+m3{0$DtpeTRvIP- zBOYznTKVaxzi_=g&@h&M?+!qqVnop8!Qy8X4>%n1s|2!|u^W790qp@>n%P#HwpL1k zVn|PyVQpS3w?}8Kjh(pn9;ka~0*-*7L$2eeI(~lk_0u%HYj5@V+l+~42+QS)e3erW z5b$0<dmgz`q>@~kS!@Yy@K5J=gafVUb=c}t63<SeAA)i9VuB-DEBjkv%gt)~Br_U5 z0hE{tDKYIkfBfSYR84s5;ll%;zW+o_kr+Xx@V374^3yMT{==*9@kpZ*QXox<G|&9w zfAu#^%i?w<FonoWfU4~4oiCq1(@G`pnW~M|v!6a)?^tUgg~&3^#AL{qq`+mlvgeK4 z+bg)zprPJ2Ut`qm#cT16AwHHwXvKoAMxeDq6ce3k(uivIudgkq?A_MhcaXiUw>BQE z`xqi~T0qr_Y&O6P6bWkAzCWB;=11+h+mPBv@Ai$U#~!l`R7UA609uRL6+LrTI@$J{ z{CNc0y@V6ETrWI4JrSbWiEX{J-B<4S8!0V3JbYl8FYi7d423eDfbjujkYWX|dm*mR z(X~XhxH4e1R=AjELp1k=rW+DGAYyFi;i{z{j?;<j$5oJbnn(Ydv;6f!91dQ@2mA<w zV5%N4bf3<V6LQAb#LxP<WcKZXpIBygzwY~ba@6IfIX^M=+YR!syzlWfuE}rw{Ic}* zm!Hj1ZW|&HqL6N{ppb%)w~aj)cb52QN6%ES4Owbt%^RgDX}P|;K!Yx<&ogRoRqA!i zqb<y$8ate=R^DD;dH(p})a!h5{usm@M368UbXJXgcv&9!@wfk$zxwTOxGpxBV&4mU zHm!ZDb6WJeZ5v;{e6g{TA+TI7PH?pAF4f0;);elFJyXs(Q*vS7c4{dsixGLg|KYdT zsM74$UTq9$DLyYjS#NimR>CAaJU<XqupwP)Lu$0CjU?8BP`O?%B$=4v#59{HZCYtn zp{f(FYzmafPK<td(@fr0a?7LFevDBLVw)=Xq&kVzQdrkJDJ@L%m7G_^Gx2}==l{af z$19Nl$)M(z%=xhUvr}XAr;w;>1hHC`E*CAH!Ah`R-%>LY4Q|a+e9L$i@6f(PYk_Oh zb0{+a{~Q9JLUP1f(GZSP9THJj)RpvXueFg?^?lxZ>HFMy83$O7gZ9oo>bpNYjP+n} zoOj>z2K$fJz8)luY!L{7=MUfU%g=wNmV9U@^x!fki#?ka$(jfqO11Yh*gYmkJd|M^ zyORK47VTN%DR@?;;w@e;(6T|)wHqZTr777|KucxI+0VYRmsctuaatTgV4fp!%BW=S z_syJQ41^+Rn`mw4_4PB4`pgtBXvL&r6-wQC`TCi4+mPXCZCQIu)VJ|j(?)S+xsrG5 zO)r^wn$YW&?QWeQ1RtL)z4m-qM{NytRl}MqN4dq7=YmbW)M|GbQ#29XPN?)VtFGSL zFH_u3(X0yywO})agiKdbGh$)WYC%fK5F!tc4?I3SjqGh%t}ZohZ1CwaaecfvU!Yln zqxLy9TlU;s)zms^4z<an9nnOUBna~|GhZ%TE*DF@#M)O&sjT;#ak}CJ8hBgZ`0~q7 zZ2Lx^f*3<2rHRxOaZw)|(_9Y(s)1@DMm%iCh6uGdP)odIRZI26sqaJ~U9N<1p_DsQ z>ZDm2e4JlvNV{Ve8K?POPXE8;{QK+QM;8aGs=EU_hl_s?>33AJ|DJqfLypTk{V`@! zAi}adI)T-+4^9_1K4-)pP81yL@UMNnLx@gqrI5Dujgog#bhvEKr1fSSM1^%-?LmpP zZq44?o2EpXCUbHzvg|vANZGSNI&q??Wo_EL|G%%Sx|FLEuFi+DqYJ8yecKH77AF{W z@|BFIg1G!_t%|nHj)_qG^FMz^5q9rW?rkh6!^zjGrnV;uM7eLTt|jkARbA!EE)vAs zh~h+=7g}pPa;!~C(GUr-_rL><oK58`xa6wIE_eVXb}g67!qeji;xtoR<@S1KyT1`a zz<3&sTvuCfQ9@L%mqY@RPbI5O2`rQ><XpMkR@QZ6-#2de8v;YLsMqU4FiB5So-%== zT8*H1TVKfaji#B0>y_XA_*YPsrZW<3fYG+yQGxY`ov*K7$$6!e)fvs%#s`<(f-IED z*~HVuSgzB&@cZBWhX4G>pSj;QC`J;DB52N5|BjP!Dx$R_QY)_lWnR!`v&N&BfzU=l zO>#C(Ad$MhK#V5*G>nZ^D!bumZt#0B+W9D*tmI(gVQ4%97+Jpu7DK>Df+?eweJG<L zg2dwh*JflygYr$Hwbh3D{wbw-#v0IXG$w)vLcL@m>Lfq}#D`5C;g1I<?=4T4o315L zcg5Ph`ngmH$%UaT(+wf;<EIb&@h@L!xpM#V#>?`Pll3f%tF4e%VY(PqpcN<Pxkf^e zh!(YBH&l~<R-x66lHbU?B_p{OXQ1mzSEAc4%S?ld_n=U7u^`Z$qF_m8A5|M;95T4? z1aq2kR{G>d)uS83>`_3YG2YGY7}ACt-RL!NhrJjY?Wg}ljx5yX*Q*<4S1%L{8ZWSy zjfcl4=IKJs1(P_o`;6BsEo4f)^W`spB8J&vciVh1MV5yPm&?Mu%uLfnnkLs|aJGFD zFD-f5&&R3H%gnM|5HWIet6j|P2fluO<@L)Oc`JPW{0r;0oy2>TZM!ke7v^cEb8>pw zws``S^Gd0^)z9%xqYy}GI-cu^T-*5?Ij?Nnjg$;MYI)-~zxka_Ks|E*Q#yb8o;yE0 zsJFlB=-@g!-%e$d{x0v%%kgYmEu@sl`{v1t`s)sqX1u(Y2E+sK(>~}pT))?I05Q)G z7$JRTuREe$kjcXiJ$*<&%T*6sa2%9lEBD_y+W-;L^QRxEWrJW@V@eZ(Fg;vJ(}nBf z6D5~1%wd|AqxV|^TWbb0Urg4r&c)l33@#E;v=wLQpU6ASvb^5*(-$wM$wWYEW4+zT z`(|~QywiJFx9!gB%PV`f%_K1rJs?>w5B&1^E6eqfDP2x5nj(Ebk>C8t_N1}bm4E)1 zf8yoKjVKeB%R&q=Pt$Oi2WsIAbce|LGMhS{Wlk{}QWC@*EO<07-X^05p-y68y-mEn z+>8k3X-}``zTG3&hYQ#1l_{Ata%-9U{cgmo)M(pAs|nGDVB$>@60or>7p~VQ?>DzG zqpFRR5-~bwAb2(zy%iE=-*42K2?6GLVt$yMjoQpnNU&&q&nWPB@gJ-#;QHOQ6xWQe zgZMa4GgFFOmkaYWk!#_0yYuunZ_Lw$ho=u#cBvWBit4{*+g8>+lS`rHOn!UgyT?b; z!xgQC6oix_Q}S$cUik33@z-1BiyCBU*^Xt-_xp|edZ!fAX0OG$Ea5N|>SQrFa=Bp~ z1|p?LCeR~tIUjznxhjWY0CTX-(SevEm&+qHXHdxA-5>(fl(^kjT2r24LZZvLV)gA9 zO+=}B3zpSiJzMbrrU}+(uXcOA^2@k(VGav(U^q&H^dr+^4kUzNNYdLI*QY0@FL#r* z-72@Que`O_A@a0bFT{8uO&Q`F(mL8<pO^Q{t{DwVqY#10PN{cp>&lmx+h}PV!?lzH zP3&vi)at@M=}^Q1^JTdbQ=*p4zFYEQZECyi|I_;c-+YGpdmWF<obxecsv|CDKZ13~ zbOlns#@?T9T}I~YU5UY+ZXLD^4<bu0tm}<=S}1EKsEb^+j5O<7c>Da7ZM$<Y^zW3M zeZWvX?&W0f58HaIUH1+Hwd&s)dDV&5>cPjnTzUHNi4UK?=Z7Euj%ixhx0TnI&(yLq z%?p#MMGePke2GdfE4kje-CmDz;({R!|BA!vKBAP&wyxGu6fD3=smo0JtOPM6^ZW(} z;aNt2*ng@gXMA?n=da;cPs+7MoUFcw93>VLXA7~<(@+bl{k(O%aN2Gs`=Q6*hd;Iw z^OR-}jI1oS%r-W=<lVZvS|^w40aAES(|w!0IqyHY2hlF6j6nMCcfa$fNSWrD`LeLz z?reLZmCEw)$RZI{%QEtw$=lrqT9jf2CHQa=7j4<|#@o8Gmfb{yFrQ{bvTF4;ClK}v z=?u#bea18y4CUj8NBh=sG(mhyRZ@~-f*xUK&Y74pDNN&@ZO0vT<m2hv-&-xzZR73h zPXN4q2?zAwSD2IDI;L-axjb^cK5|>Xa=X78`A`oKXdFQQm!S)jIYN(^OWAxQMI^xP zy{{rLUoK3OJ(sj3QWTcUVk&rQEh(jB6w~`gg<6zWO#!a=qIcc{U;<6Gn898aTk{Yc ztuTc>`#zv1lboWd49-_WD2l7Fnd3DSrZ}<^hd7WE0@X$UH-!7PvG2mVZCox_L?VR= z(n7p`q%pH^H}=iQp&?Ghcx8DI7Mu(BX=6zfGDoh9l@KIFWKP8WMu;%|(D<%Y9<#FE zH@1B@fhmDc@i&0gl-F&eRvW>*ZX4UWTjuIn&^x}@$qC`l_&sY_M~h#Yk`0OC2tQG5 zrUKYLh!YPFk$?C%|BkY6?AyxMuP@x*-gtO?;P3waZ+LqC<fBgu(`334C1-ET^oevn zd<#`8h0QbZKO3`OI$^hGqY6Q-jZT_yy*{u!Ccgjv0xGT_V0Fk40+ZN~mh|*Q3r}1g z3;*`{J49gHGXMF1{!bJ~ZRX2FOx7B<uS#Bpx>w>Hc=~Q(SuR{ISF|kr<xek^Z6&1u zrO@(D-78B7e0ZGs^14~(-yM~mK91J09+)wlA1HU%QyB9C)WRHX4B}t^8bKRJS?1gy zZqRn}33W<snTO>G32_9>gUv2|&-W6d*_`GgN8RD%vXhH-#CW(d?j_0066eA9sIG+} z!Gyzz!hF3jrNxx-I)PNwHPH?($<dJ!iJo{2;Vbo$g=epADD27b8v%xNa)^n`^?|3S zPsCt?Oj03n;p5|9nO;K>o0d2)NPzqHX2NncQ|r$2^An%G|H#YB7e0Ua#goK*%HEF@ zxs+lZTtG^JCCx<dR$CS$m73yf?YaAL?RxyZzo*hOe>sWrok{{@=EoTX&{HR*9bA(( zZ)RVX$qBN-wG1rbg~OLA77Pr;WpDtz?CNN<(8n8FLXfcYU20~_FVwo4q&3YF%<$_$ zXaHmI*eC~hNxe1qWnE0j83zjK<>f2$GBKybe!KDYr@wH&t(4q#(#88}lhvkkwi(a0 zk0!Lba@co7BDoc|edoU3ShqWSH5tf&cs<=2o@$FzePOzzwE9!9K5hTgq-jrM7kzQX zqcA(UmH}9s#twR+kI3w>Za<WLr*t-JEd^D98fovwr@8@gD6%iAc+{yC($olP@%q%4 z<6e%yZd|iqkgGNegsKP+j~{6_<@WN0z3ijQqW2od@JjSe_VDz;yj%cy{_y0(A~Gdg zmb-7im=xz~N_TlTv5GWJql^OL8D1KhfwqQLulJ6O=>4Ji@c6`U|LV8QOJYiq=m%i+ zZ0*l~{tLhS^b5cs?wF8`NhOz@p(zg!k6bP`w)wZe`yC>IZN2k)zw`F<&xBy(Vq=<! zY3A|aqm_P|qPY;Oi4fmIWR8^-8i7VkLY#omV1DF&S@`mnhhRsDkz5P4H81ZlGIZNt zI!0U@T42Lo`smeeFwW(tzL)HozkgkbiFv*dT;jDm0Ks?=S{1|`%;Seoq!b9E-0ycJ zOoVABC4;RWmYEoo>vc913(!_6`_Aq5>RJ2b<iAF4jsMO6;s4~uJ31Lmhx2QGpMr3` zURjojDHiXFS-i_bKqi`>yN2?E;O$x7X4o44`~T*@vD$O7;Xy=u-nne#va_!{r7ES_ zTnAcUzZY}<Ps%*aHvTqe>b7%xdFA2uipWnynb?c6m%_TQWN*uzXOrixwYaLC9BOjX zwHO?Msiq;&)hT<KX4qnXrZI#unz#qBcJ3=x8`sB2rsaZ66De7_>=0x<Wu1bz#Til< zqnKoGQP$TtO3juX_GH8}xabbsI)E&Q2_e|owZgdvH16;n2?{Zcj)HERrpac4L>KDG z`(|a(VB%S-JtVa~oKDVaaAo}S<213%R~{ZdjCm=w?xZ*|r3fveCjUz3cZU$TEEn!; zAq3&~zxy5299b?4fAv?trPeyeDbLC5L<k9O3`7`h+_sIE+bfMm(LN9dG*?=&WT2I9 zW&8Q-T{Q0lJ>~Shf$SZ>%J30A0PM%x*~{YmxFzs6|MqXuT97HSJT5HD#B!O<W;A>< zYcdq8nxK)P>xneEFjeSs;lTr2#%vJd)irPT{VP<3R+W9teE#JNpMUwn?d^WF#g3fB z$^hq4?5c_eC6k?0TQ~>7>Fw(a+my@z1!29f+}Dj()rC2F6nQ}4XhB+G-F9z@5mJm? zFIT3Nxa}LV?}S>Jfs_{J`D(D-X7yohHiROo42|a=Nso+4BE;n5fc-(9GA{|e*Axc? z!Vs)64f%$Q%-0D}Ck&xyY%wOvRt!dz1D+j_5uKNCz-aa}br?U8%gu2KzgRt9XZ!ig zxb^#6H|n(#=PT{y%OUcC42_#E;4x`HYei66g_oBb*JY;V%IbagdC$~by`HV_GL+GZ zCSD9tt0CJ4?T-Jr@16yT2gtc(YRQDfP?cKB=&iP(V<qnfQMLNg&)F$MGRF7o+gENk zGr0Nw$|S<qFJG-(u-*)D=}hl%1TE(;3BnQ<{{HDZe*671aY<+l>}{v*uf%C)t%3jh zKmTRStVqfED*b&OJqpRtrdpMpi^Gxu)twL$HuL0wRzsg!c@`m(-mT*Mq*Zb@;^{oc zLk+XRp_}e9w%+!1zwL(jm5hW!eR(m+SPS#A5T`)ERq*nT)_i1nak5}zn)v$m$~{|+ zmhtS5QMsrGr>!xGwQ=?i5^aSLR<?bow8nCMB+iouIQ`ywcB@>UuGr&In&zRy(MqG$ zNZDp+GjnJx)562Uqh&h}J1uXZoyQQZo-UD4q2<DsGixpECG&E7qvl2o3ne$(=e3|( z(b}D5B!x7}Y%v-!?dj=}r{^b|I2Zb+^vu`yS#5>&zVh{#FQ(n#Q|WRkl$s6R7a2)W zpHgUg2f`s^&L|0pFqrL#7|~b6g5Ma8bEQWcA{c71uB#zZ+se!97ruP{g;vZXY1;?d z(<kkj6+8B$qU_m%uRd}etbe{c{N9;zLZVT%U_v`$=rY_X&P>yldA=~uS41Nudwp&h z!S{EwG3_l2NiDPe`22|wKk$b?{U^S@eIcdDr|-Ta#l+9Q{KV_atKCmkf<!L!!o&5- zhvyH@)rnMXyxqT2Y9YkL_3~hA7G|cjlUqI^J3VFZS-;<Bx7i~Bl#$){xZ$ucju)Je zJrU#X#29&ce1vo-Ou}@T?Oet{FQ50nhY*;h6R!u>F#hi-E_T@79h}%%n+S|yM?MH> zzDAxteb3+io8MT+SH+T)s^q;<vaRL5S=n{lObvG3Hh%f}XI@^uvadG}LhZq)yzhh< zXw3{)%{viO(QCD`=Q`BwQkn(~8bo+p7Fw;Ol(;@TaQ*O+(v<mf;eNYW=VMH+CK$=v z#(KM1=3mTN7@S-O(MSC7g_vj|(&Qiuwvn~Je`JWG2{ohbcmVcw^j``(4t?JgD){EL z!xUqL>UCRj-ucKD4x`^A#8P%d0+;KPwE*f7taO;TAF$(k4H6eMVwV~EgE2d9>by0D z!PwQJq%<+7g`zukvL5_as?T$%){o!e%-Sr&nI=NA%)xqTuarHruXk$B1~Z;v3+b$J z(<@Lgfgaar9d#~Ie)!D~yncPbqy+RpFg#Ofo}H-wM~qxQeB$HN2VP$P2SP5M*;>>* zhU57?jAP@@8@ZFpLf}H%3oS;JY(gU2%9KqJu4-eijkexLz0DGYBkG>!iD_O8wV13- z^ZN4DAU`L!S)JEPVT$!J_q91PN*VvoBFN8wF?Gc_)91#o_g8-T<<G-`{qC>+is$E# zr0K#mFJAJnQO9`)Dy(lWu2+$)?w=xUs;D%wKouxSA#K#h%G87q7E+3XectzYb>f${ z#@0Y{qrCkB1Vj_1G`9WDw%@5fb1#autp-OFVvLpn|2d3(5`xufYpLX%sRbi3Hnq0G zmblE3$4?8>1)5rkE-e=;`SsviU~3(@3nnN-v_WOTGqh-mfk9?#;d4V9{o1;b4>52r znRb6AO|D)S14tiEV|Dpb8hdMSnV?NJ=3LzQ#e`5<=5%nMoO5B0esYF;U`)sKwbE9- zL(7~)42GUvuNOXkc;?~p!TRNCeEH=sOw-KshY!@&D9s4O>;A^qFTe2h>(6!uTczxU zycbHbO!1sJjFS=q!I8c+d8;jq(YyP;vff{LyL}<&?DD`K5c!a&nk!KzuJZ$z`D*gL z=eEk`R?%&f@gJ0uo3#K_2}y~`N}X@FH(p-8dfCd(gL;`zb!Xk~eE#y8Km73zATUKs z=+4{*6rMhO;)m~lM=v4k`R60S>%5(Bk_WZKtqFEEJV_ZgyO)-ZT#bQFBeZ%aT^ez= z@z^$eN(oayq9UO=SEMIE3Xa-Yd#~A^s-VpYzIu9Qp%cjkqLG>j9^5F--%{%=5w){` z5SGA#80n`ipm-~Kq~yT=_5boG%66yKVy&Sb;H0272~Vbpr>AG0e|QFGtmkbVn_`+~ zt`AoKvX&epv(-|JgtyFS5N_+r%lby`A(pozZR;B^FE3VG_1ad9$sZyvKBgnHPidk_ zpm^=xA~<zNeSkW27+Wi~WO8<)1`iUB|F<YzJnPpJBx=E<@c8h|m-uHIyS4qOlR0`O z-?Ql9B<+1`EnKf3_>%sDd%*V_uYb<z*Mh6QS?y>)5Ce79xDHdP(nTP;e!%oFIfP~~ zeu$B6v&^CFg_f-)X$XY$5=N`grvtivfx(O6xVCeNq;EEdme%#o)AJ*U)%*#)t<w(N zJkR8uQ4KVybP*ei<_{%2IupNC-d<jq=7oKGBgIIrw)YGL=pOcTdaFP%?SW8D_BYH| zT3QHwd~z;?-FmA{iu(L0dgkLbL208MDov5=)d)D#{JnK=^j0v1AjwMvR!=sPmyGuu zwbf=d>HF=4pMLrmbUeo}o_R+A?zcPNefOi2_SBuTxEP4JsT3zfj1(yWG&H7E2tk?V ziB&7R-f6ozY@4b!(L5M7?o6|GNi3^qrO|RlR7h3H`_9|Caa%XmedTt0v*0$^IroEb zOl?ymB6d+8Rpt6HG0$n(hkm}zDJx%AWo|zbRFMER6!QLN8WR$TVM1i0>`<Ekkv&_+ z`}*Z(19*J0Vz0p;XR?<CEwBqIFwe##lDFv2Ffw0emStj|Be=x(zBea=s+TuF#A?0F zg<6%b+s&R&E^MzWm-&HZS`dW1?RGBbh3GQ`nqOmc1S{{Adnw%BUU_->%6xs~<99!r z9ztkLAuumO_~mD6&b)p7Y9eM{o-<qJfoBWQqD=;;(Tv#9vknw>MbO2{B~u(E?p_XT zty0R)y55|V&`Y0(4YrPjNQzyOI{73}FUvOd36Svc_+Yb45KAh23Lq%^o_T$H;kLf9 zIX9pq75jFhwqh;F+uceF^TIS4_o<eheP0m~o}WMR`1FAo0^3%|<xbPhbyh4m9J#g} z7PsdRXAOkzL(CTR`6Xdg_Kp&eohcgBwnKa%rAHnfuEbf033vRKsK&l-r^My(1{0lk z5xPyTYBt|d+w5Hu<`0~lEsZ_`S?pMx>`q6Id_1)@=Lnc|e`w9@wfaCI^MJ#orr-bd z-w~&YI8BG3NNYBy`{5a-8@tLq7euXJHl+!wL6-Sm$e#;)E8N$W+uhl>rI0sM5-hdR zRdg-WD?=TwI~l8?Sr*ztW4>OP=Zp1#`(bZ>v+Di))_dL;O0d>DtBIvF4Y8rKFYeC2 z|0#;q^`_bQ3|+dh_D$2BzA%nh4=~&?ss|XBxx9byL*(Iv2=t4Q)|k?KiZbD>eAmIE z7)-^?nDmRWv&Gu@de*b8tNG1<5x~YKcc)Y;wH4C5P)Z>+C8Wt5vj5k~H~sjWNpHCr z|HH_NGWx0&6O1XfI`k>PiF8y=p-`Km!P@y+Yb+0rX3U8VhTgT{$js?l`m-~%$F=MC z%`zgfw$rfJQM!sT@$})5+g1oUlf|ZoRn&tE@!D@38UFR*krWd#CLSK1NGY=Cb+no0 zo_W<upBZ0j9W~SDfA30h+8wV4Qr*!J4kMG&<OZYAY9XczrBs?j&#g6bzVnx#{>bOA zKhfx7QehajS~BTT_^W^XEzb|nq!=OXRP@-tCo^O^3_fMiVMHw}lU6=1Gq=|_TCS8_ z5vfM*je(GY$!^Qh{$}-Vt8>1++<8@B2M-EE>;}=+<NF^UOjADwhuRG;CqM``Eiz8F z-mO8J1NYZVi!c1)pZ`Gd{&p*G^Z?&JE2iX3@x-)DJUm@^{`km}79JlT4Zo{5^e&V# zk(S9iT&6~iIuMKE<7@A?oiG38E9G8{Z?kRQArsi-#X6SKWQ1i2aC;j`!~1>P1`*59 z&q8?l%-5g(#RAVXTRBb}m&?Mk%ogjqQ6J22>D&enrakNT<rvv)2!YTFxfE`1FGe8i zS+ew&vcp03mTcR^c<>fR*`!LNwbhWtV&$TgCJQKLOGa*=@5Ha2NU5Y0t=_E=qcTl_ zD;MTDT9C!T(I_>KoTT4JpVQKuRS(L;!xR7bZ~r}|!GHJv_<ypkKfB(=A;@;N(Pt~H zJyYrbKP0!il~qS;B7I!6c)Nh21W_KJ9{D%_{@?NV{6q)}p?aAzj(1k?voW>BLYH|S zw!D|+v?CP3kQK4u&hGa}yatig12&U)?_Cre1k9-DY(~<wR|K7)Y{DP@=RffI^H+Ca zh6)(xB$3kf>KgPn?r*Q;Z96_xUA{3Uy8N&08;96}8K^z)>?PX_c5Uprc>7*oTD(rA z!+7@|(k_+T$GOtfhze{>mj|wwD-sigKy9W8-lT#|J#`-o-+S$2a--sHBF84M1s$VT zyHOOccTF?P<x0NaMn8YgE=Dri`jPAV&5gg7Ba$3&(%J0xzn!op42pYvcr-&<+Pmnq z2Lwje>uaP=_?bylqJ}^ch*PBOcedM`bu@rEr=uQW$b&1$q1Afp8^g192is%h!MC8d zk3m&4NHLmLIwDLlP_=S>x<W9bXUQ4DWE0_B9@tvJ4Kj-<F<laEXJnWXBT^emJs}_Z zZq+QHu|RL4Lu9i%kr^oVJg3BOpC9?@^=^VR>q^N5T6N_~81-=iwKTT-hR%&5JNLJ* ztn2Na7|G+~2d4Rfq>!R%)3@rKFxbKF*FNIKQw*cpOc`7|qGJLpJ(0EFYR(O?SiQBv z|M;K&JGQ(z%xdq07H^G8h)k?Mul!5>3(LQ|GCc)aZ@213PWm(TY`I@x2*`wWnS^GN z-#OE2vp~2bFv?L)^Jj_kD=ZZaP}B#8^<Z8`z#R}I1*WUma4QMKu+Y0jq+e?fFlHfy ziF^m0D$8VqQkx)ai&}?zqJ5RT6Q@L75;7G-equr<B{v96J|rqKT@rC_ZoqA}eMpI_ zHohj;9bN;MoOvx@d3$+58rB9ahC=CXEu=B_x_lQJ(^2x#cC5#t2znU!zPHk3EsWp) z=0DhSZoBCsY%95BwtY1{jatTM7{RePdDU8+r)gqdF3ihp(>v+s+iaEk!z^VVrz&{R z+q3-6#&1<ed#c0)5}1|;(+Vk-J+E+c?tyw~NxO6MAQebc;PS9AUnZ7lC_ycz12Cm4 z^D?>UlLeApq18HzbnM-jCjR)xKk()ASHAx8Gp%HsDHys&MtA=21AzA_V1LE&(?f?Q z*!_3Z%>9c9JUl+}yTASo4-X3>g%mAus@Q!?n22Hab1y^`qWKEriUfirpQ?ChAB+s% z(S};9ClE)HiXINXi-dL3YA3D^(J^hPL_`v`S^4ZA{^5Vc|L(v3Kl969e&Ox)&64un zI9=)Mpa0ChT0d#6wwXGsI7S=x(-DC(T33z>2|<unhyrtr<f5p+@~~KBq^1wQ?-?ma z+eQxnDl(Y7L*cA;0+YDo(4nN)S{>1<Wug5DIRn@QYD&w@a(Vy2Js{~i<RYi~iv*_0 z>cDIuNeILdW2pBs_7VbplLc49n(=GKH|)s!-^UuKVKV*aX__s=D2L-Shu=46zYQ6Y ze29_j<Ab%JL?OnB-~9f!{C(NEfBiynHA0(uR$1>WG{{AGec5Rht`ApKh5PHPlg7@+ z0`IUm>WjDA8_)X_4VZ$hkM%?w1o-d%!@ofigjonl2objXoq3MbqSOt3`r~KzTjA;H ziLeMk5)Y3LytqL;p4D+N{kV42r3XcqzTrK%@ew=J7}1niE(@2^*fuK-pdQqTnTIYq zHSV`s5Ku~Hy}up9l!BF62=Ii^iVe!42A1^5UX7fEmtzz)Q6gjnH?{Q+d>z~ZRYpcR z0v_*57@{bBI$DvD8T38SYDdrPb@wkTBI<#38zZmJZKz`(ssCA(R6LNIFVwtxfT^e7 zJ94X@#nf6EItg9u%m1TiFMhouf=rPhjqU!%ygV>Ziwnj?LO9e9LEQ;Jt2_I>vfZ~K zo&z|da^eEXkvSTV3Gybaw~WXe_xaA{;m-APC0!no6d)DCWHn|Y#*L9kN`d=+C)CR0 zJoE7JNB-mg?H3ajn&y!dsFQzDq4t?4!_imI_Uj<)jXm7aqEp>ExSHwj{`Mb8NnqXB zb7tQ*p9I&2ZLT$w9bPwS>*6F%Tlamx^Y-@j*gJH@$HdztI6~LYb%$m9KJsTe$c>}C z1rSKnm50YqO!EWtVsh>4{gu4kX*C;HqZlDn9PLsRNv7zTO97WwzAP8(BvAFqm(hKJ z1v1k#86q3J-8%-}-ro4~`IWqHeJh(!>9*3*TlB2l@jfAYZ&msWd^SO6{EMG2%m&`> zZ~W;`%EO05niFrLWHlnL4S2FHH1$MEIx0Nu`SGb8aXgEPi8%7y_t&t22d}6H1r`7( zf|UUeG{6MZQo{9T40Yev%(~uL9v9LwlZ!&Ly_@cDuk72(zOM9Eg$|8Ica(j~oe{ds zsLg3&N{NsnrKwM`GFj0kmLZs<j^w>kYU6gh`9KdBtpKm-`6~1}UNEO;5uvrl;d}%2 z`jv=3s}5a>ZBVc&YWu!%y*`@q*a#BbnR+JEgBb{@M5fv5PBEGK*AVxpiisL3TE#^T zbR4o=Hli#;5CZRvkmLE%9oPF!2(46`KsY7#eWwdQcEVARVC^CjSZ^D$Wwt%D?mJ&z zK680^VB7Cx&4@H-cvnJ#<zj<ZuFI9>DlC3ra~9rSGO+N=Up^1RuHc(j$8+h-c~!Wr zD}Vf#e_^>^c>eT}G*8^#ZYIZ?GieGem)Vv73Lk%b;>X{8AYO&K*+7dQ{_X>1ZG-u% zHLyIGj=0u}Ru6&(Q1ZU}!VbMJVyQ$ov@rR7G#XAGbw+=4rfiph7|v|OXBHGHxU{M% z>2+Oqv-QgDzOwC=IbKL%F$RC@6C)jt^)g2FC)qRM*h?TDtSA=smr@6Ma4sE1!CPb- zDNd}q(m54fiyX0TjP8_U@Jyh(#df~JfTX1(J?@+v(3Hf4N~B4mh_y@h@v|MeZ?y{~ zIp`8ynatb9YIA*$(O>S4qbf04>FU$R4{UEcDM4KdA{)!)ktr>PI`!D08Q({X4aIu> zdgqV-<<F;Q_YMy_f_NCDvRWGZYGa`-o84L83NJ4=6UKU4n6ESQJTWZ`lU%qwCWtVH zK+@UtATl;3@G>D`LaSe&1bQtzhTtv8VI&u(&*7~7RtL$qOA=eK(%k0x#ted%%Js60 zRzL`B`^_bp)q?tFCC=8#%k5i~%=cY$bPXRto*iA8l9ylvq|xVNs5Z3p?8dXuZs&-k zX(6U7%k>j!z5tdq#AJa{tvk!*0YRyCr{tZzSU|mRw_`4fz%GHiliq@KO@%`lHiYQO zUbHd9^92csT70arx6gG_oav{T0F%drc0{~RHvax=6FhcOQ#D1sftD!^n+4Nb9pBa$ zp3;K>Uit39a__+KmiQRyysa*}(?)xx3{*YFX#`u=wPt&&@8^*K((Cr!SBi~KS4I0+ zYxSXc9w=Bl=7j3R?N*Gt@^&`_B2J{q(6{vT{5?1MLQ1no64rYflR-(-eDTF-!+=>w zKys+vb>T6&-%>NBW$tfpMl`}5y4pmk+Pp^J&N}I1uOrSZ)n>{^l6KN8pkYAHJt{j4 z6eBWn0KGs$zbw_hCk-Sa+FNaU7I--2zMz(S2AjnkB25Y|NN(@jFsB}^m%pp^sVaMZ z<58YWfh<<)yG{d+%!LEi??={PS|iZiZa05@cL?IquR+v#-)xOmL0;boG4ScTA6VDB z%}c+(p)@2YX^uR6y72MiGnbSR&8Y4O)()3u>j|FbV7mChbjl6=^K8cVgZT4r*npoV zLi_TSI88uf?<0;~;Y=M0-PSj*Ps+pe?9ZY*IkkaD;)FGWMh3Jgr_w{mNjlg&oVEyA z0*^%z>L?3HtpqUvpX}s5`Xl%z=s&};!w^N`Wm}DVE&-RKv3*{Yysnf~`S7&(^YdUY zcnRx7Qo|3fsPlkBcUBgp^?w{14IJy!?_b0RI~~q#=;9xijh-o#T+zwwx6QFS21E6| z+?tNL1ERt;TA);0L2+sA(u+QN?AzetC8~p9IHYwQacI>LnW2Xfyq??O_4UTn<9F;g zMQjKFd8^Fx!sYsC$wuwWaL{_l)?O|Px3|@UjU%Wz8+F06TQ#y?38t_oB=)r;1TNQ! zKxUc}hzVt>Wa2WB%W8x>0g*(YkwW6TPanyv5hqLTd(C?NJL(g{p=lpN7<wHx-g~8Z zCa);cjM!DQdVQX;mcfIG<#OeAUkN2Uno`*JJ2~&p$tt6Bs&AIQ2A08k9UHMN*_p7x zY*_=O=}GXajk9Y>nBB|e`p7&#^Z4{5^W}qO^+VmYpv~5BzFO;E5EJi-qHODp`~8KN zmtSbR?WgLtVIZK*Np@NXsZ+reO+~16<?U_deoIW#g&1b6W2Gm4gXv_pBfPg0=R<!4 z0gf7-LIJY_;_kx{HZ4^3ESu>3jmTazbBauJWWTMZ_Ni8)KpILpke4p=?e+ay3stj$ z+%5Re1&Y|%X6eJpOarF}>>W+8%-U@<oqN`8s)8rqs3%!ON-q4r{@ec#dC$!A%=f?f z5mn{>_LcO*-~25fwjU`u8+=xai}l#z9(v~nfof|esFE9GTlj{l|CN2?a#^S~Q{Ham zTwLOEg^*|j%AQBObSQQ8XX0^As}N*BX$nK2!>j#$tM|Bwj)QcgNwW!X;%t7i7`ABR z;g1jY$cx5uS>TIrmm@_)k_9o^Iy|I4Lmiq_0?C7iOp`#bwe^oUx3Rp_p!Vxd(`=4j z-S~N6V3MaJAgAR@-70a8Oqbc_YllQBcUoiAU~@Ji(;O3z%gl9|QEet1K_sTYzTVNg z6J3;|Hp?*H`$&2B_o_xX&bc~W+75MZ>**vX5km#amTh{Ws&NiFBrN^dHe37J9pVVh z#uIkmIYgg^^P6T17)yhx(o=kCifAG4ncHnOXLfe}^8QZ=!H1|Y(1$^;>i1rcnjpPA zbuu0jj{P*W3r4_hlD&dBImp*emCNNa9Qc@IraidC+X$!O_!&mbKf8ILt3pVDx>s_l zp7l1HY^T;yfF&fTnuBjui7~OZolCfw@sQ|To$d^ddk&#P#vq}M#W`N@rH<2?rirtb z;da}|1*Q_%?`EvZp4q3u_O|=Ibx{~$yYFo4#`?BWi?zD;7CqHtBHn<lgD_2TpjP0B zPTNONy`iI|bBQ2xL3JXQN)?yJCK8#MTB4RnjE}6_mr<MU?;oQ*=hn3d`g$m|X4j*q z>@0Y4V&jN=Inm1lJxPcbbiTcPrIwAiw=dk*7qhRW3?kv+ri@_usAa#?efZ`?nFy5( z0UbkwJh-eLxQW`)j**xi`1swwVZJ<BU|;hH)bo}HT3bqCxm;aZ9FWF5FTB3~f{2)U zAPQ7cjAIWE$3`#f9EWt&^*w_wCDQ_!_CTVmoT{9Nk^X)M>g9hpB%pe%#rdpt9$4Sc ziV>zIDiUp9T^?sLU(vnN<U$C6>t#aqIz*<xwL+wqqyrL#riNroG(&bk`o&TVfhvZI zwtny0%Lv^x=^z;&WrpU6L(l%LYeZszAmp|2|Nd|Pd;auKe`1<u7U%q}_ZvU|^Pfof zx0kW`O5R;HY9He$#aYty1>_K+==07E*=VE`sCl)%VPMTWWjDFXeY4I0tN8_{IH8)U z>Z34yQTkLaS}+;Y4v)B)O4F``%z#$L#`g!S9@%Pbgd}5<+&SYKXYL#+s&zLE7!`#s zpaBrYhq<UJt6@egObW^7R9mJb2l-3S`J87{M+7j$Sw==fhrG=>Hm?(P=Cuj+1Y>VI zV>zTa_Ov*Rq9|dC#Az~xF~$dwbERZOG%_XA{nvVsczkz_1JR#xcV=TqOSKM+<1ih@ z#(gz0Kz>`P;%aTJYj}t8Iq#ka2R_nc`+nWW)pXw?-P+RYX_h@G(ki)C@@6V<N9x^Q z)Hy7!G0`faS@xEuiGACge`4?3`V4w8l*pWUCkS#lOg%Uvoc1KWoI|3JM~l=vFa3f% z!0!j&Z%yqr##gE1eZdTOH=dT+3;SA0$>u%O+*`<etgru`$!hzW#Y$Qx2oNPvr3?a8 zH$Lx-<#B5RdDGUY<*0)n*Lc)rRn-;JW@5Zh_H6%ExRs4oZw^r#y3u>f_bs#DcMmv) z`Dr3-LTFI;N>E{$XWs@E0EQU(@cl=wk5`apS+fVkmxq~8zkTN8Z@%NZAHU~vePo%h z=A2Z?`yGlBbfWH&fBwT?SbY#q*Pd^s6IDHVaB^;|J|HJXM5>`at<guhs@BmBP_hk^ ziLUlIFEh_ikEAqnzrWF_e0}+um)D=!_s#iF&5i#lEcbIM+RJu<5Rah9M%W&+3mPt0 z+<6PllA6{GvbODHs4k+^yixLvm@eeJv#&4Y{f(UOetx|DF=eLtLI@6)HYX95d}RC* zh(Sj=r1N8XiCIp2#sVYp>{`7=Gz>Dic0O7!`FA7QgY;pGj<5Is4)6A7Cmh?kYlr4c zYf#`d-`MgCKgtJUQeO4Ol&<#do173J={Y4KLP!=YhbaD^kpYcYUdGus5jsIahR`hI z3Ejz`l5n-p>!eb9cJ;6gs@4%8nTAqU*zY?bMwZLW^>RTlN#*6TkY0ZN6L4hPeQ-_B zsA&ypexcoQDNaB!M^j7XzTTMU#5^S)mMc@5dAKNV&F02WQzUtPqbWvY8O}R&Yd1Ex zU~3S)Wx@=u4ky!kmO*f%Z`bR2Gp#8(@1$s%uXwL}&lvO+v7H^X*=je!y_Ie<A{Iy= z)$SLF)!8C6*+|nN7NT-qFTu!Jhm*1_%Gsao*Y{=F!GR+f9OeO!L$M(y8{a!kbm&a| z^Lkw=rP*Lc?U|8vZfv(~1W&a=I-R^Fie>9ykeDB^<A5APT6Fkb-|=I*o?UMcq2@+P z#!R)WS4IXAG!Az!&c5}{_p9Uj{utZq)?zZ46`*E6Kmn;`1YifedA#L#2RROYhu_jP zag|4(rpJg92jMJOHq$#w=mDQcDC+fH+e$r*If4MoRDCMl*lRsBv^5POP>JKZyWv9^ zEroV-M{Z~JN;SUC?kw@W`sBTy5&QmDA$qpE%nNZ66BTM3dn@Cb`dR6v1KV?ls-&aA zF7niu>I|&f)%5^<nHP}Aba^5z;sI`RL)VzE6OtfrtF^R-#?mU!UY2aN(x~X1c>U8W z`#p1MiT$=();=YhUGn&em@X`fm2}cPak<X?{`Y^wkKg~E%jLlwV>pIj^*U>JNI4h& z=|BEQwEUUmEth#Ko*|!zTD>^s?_u*$4h2ptixdy8twvqS?k!@BiJT%ziURe<GzW5- zdHnQ|*V`9#Ul~J${8@Lo<G!DD>^Cd>;K>Qnh(X5ZL~Mv#YtkiJ`qngFn0Ek(lYCLA zWo2DITdU{mUnu!L5|Nk^Xhn5ly?^C$eROBlXys7pJIJd&Nc2R=KTG;W0EftyGDv-# zc^3w!i<kPwsdlG*-g}(hSKj^mKmqXm4m~)rKbxhE{=72x+sfykem2ejaTeVy44WK> z#($bjxU1Xm>*Ixo$1BrpEvh!D(K=H?3Vxn^rgRf?<e@n)P@F$v*VWrXHDG>759L6d z7f`dX=SnHIcW!qZfcE_HlO;(aq}$u8vjx=$ltiC6W(%Tf4!qm>D3RrQu{N)fxhani z5A5rm56|E6<6r+h+xEu&^@Z!(E9<(kmBN+_+qSXYJ9)wkN6##Kmft%hO+?9C1*;5< zZ3KFBA1lLox*MWvo#O_SZp`}DI6nBuG@DwFeVWkSBW*oxmGSFhMhgrT5Fyvy>rbbP zJAKyiEgje09ZTt2<tNEm)#Kx|)vf>!A|^lS+6^%zf2}#!zyVK2Odb_qk6KLOvF?@` zS25>nI_~zNwbmnU(S}X^d!KtNo>A6Hq(jrkff}=|RoL%^X=)IS)MMQo4Qha31D7g- zcrC04F{0<sJguDv7%H$<hth-V1|Y77;->JFp&o`oj{QbAmM#Y5r3?v?<#M%A$9R@< zJo%BCcQ|;A4tCozVj_aq>)l~$e@zd1ZIY%4UI+CcK%?J-Gj+Y4%d*^_>Ac@hVAr(1 zZOqd=g1P993C`-6497P~LN(JwDWbGVm@k)+sRkDU8bN0WL$iD=vOtK%b;<kwKM)p+ z4=qy<F%Yjxx+a$As|}Z;pdm9)lMllA-fO%<Q!5!t6Vn^1UaS3G;(z+@{|Em3$3L;J zg_e!^9A96VE<Z6}ZSr5<3$+N+0{`jxdmbL1Nz=kKUk$SM(XL&~pm+<U&9Eqzlr-gj z%ciQA0utgt!SH?1yeonR%^`Rs47k2OtLEA#hfKF6Staj;XnV10;rcwWJb&W1|M*0c zLT#CCy|b;EZO!DZdh4GYXsp^ZTi<r-Zp2Mjn)l$p!|e7sK@<^_7pH4?s8VV*p4Vgp zz-ld&_D1apM=xvmUJpT-=Y?sSy&TfK6?n729`W`zPjrSp2#hIues&I&soN7hB@Iq= zYbGpqqymiRaJEywa`xXk{_Z&(?KsY#2Po1#i<1G}5r-H@5YPi<MTcGvZeJ`Y@T5dA zU5Q^_ndaFB?=2S}x9tSvQiw^I=15Es6KH4@%`|DGYlk~L$RrXZj{THEBBhBU#gt%k z<n^aJd9!XNr4c4?^K>3tk{Ep~Y;rP7S3{EF1Ui#B#K`l<Ph1}!DW&l8`7_!Yk-#)x zNYldd_(;w>FJC^huPd!K%TQC|zJDdVgXt-Q_KcB(>3EoagP_8^pg|n^aL4R*cIlS! zoOcLbYxR0vJ!SZG=PyHyqDPq3MTC+}lvaqzvZ{#B5?2{yM*>Ll_mOCI?;$OT6WNZ9 zW}oZ#E61h*aV-RAe`;?ZJZgK#Ti7qQ)=1rnG`xM%0}cOOtGgwab&i8^jw<UtJDh0R z_i3I<aV2l>6%>u{z*x8LX!}96USzMm^}watIB0`PJA2%qt5O<e->Ex@2Esg9t6iH$ z2KDQ_|9Eca?*Q!JI9m_<1nC_b5?I8`D^1_OMbEl@z5C%67g`Fj%l<MVG4=cJ|I^-5 z;O{3eT9L+8YIpWWwl=~OF<wi~y9>O4s;R0OhHEWB{n;M9<HvRPGoq)@2@+`8N;4@W zBJRK?x}u<kl6`VmOp*8`Xllf&OcnmafBkRx{HHJMs|BVarh{KRPz>Qf(8TN9(^PHr zvy=F`K{oi-hR7@riOUa>PyetGmWaeg(bdF-XyjIDB@u~qPIMBG24(kh#%9S%XqEfR z3xz^14Vut`b=9=3vaNP)G1$AsG!w&2t&MGeqrJW|rd4(Xu9F|tkw@FuwAKhIkscnH zmJ1<G9t1ih->OS#XIeIG05fY&igm|}x}sZ*KBm~#scJ=HLZu?HqAe3IiRm&C9w&4z z1ey6DSHy*-YBrLmkv;u;rE>f7#{F$&Uw3v-Vu%WHMp7cpk#gU-|8i&jWu<J@vq4Ag z8cZpTl0(ird-(~G$o1hn(zIB>SZ!v)?19wv;mHG`-cG)g^UAiZWBv=i4z})2h^$st zQBG~s{haj7U3xIg*jF7j?q|tV0K3iYHnSV*)Axp}I1)|M-|r<a^9KWUZJC_6qkF@T zcAVmIz3xIr@Nf!rs@uXC<46{3X&}wku~|@FiVZI7gPmIGojAP|;qTjnC+*~9Mw=vV zgMh*5$ZN3~Coyn+dgRlG-w>Pd<?COlwUOp!G0Dhf0q;K!1J3Qykwt2VWs6^b`Nh_> zR?D~o?Dre%?S)@{`Xl%I%`zL$?BYC=OJUD>Fec3b_qX?pR*OW{7t^9;9mce?GZ~Ml z8+LQ7!6ELx0PA|^@!@e~mi;01s0}$<J_Kl@#3)=Y&;EXHhus;d2(3$QO1}pGDo}DE zrP<nqN*$ZJXV><C`m#2M2rDXqkY+BIEBk)5dl|xeIE#KzTC>lJDN#Zpi7-zKEf<O# zG)q~n|Nj2A6O%>GHZaJb^EO09%wfb74L0t9k~=!>htaQFu|Npw5Ejx}p_Relx3(kY z_3O^{QQ2-Axm2Lh3M`j}eJ=!NkCr>X;W)b^i$9L<yRVj#@jIeB$x#BbZ2M_*Hm=xU zsJ@*2p&f!ymi615@ty%3?T6#>X`>-*`%0KC3vSv7I%qqLmLP{CgFBKz5VMG69NukT zZJx%IP`qW;(Sts3-gr5c({?|;{ChzH%QCaf#*~gC%yD5(vl&mZ^I^kxtc@={M5a%X z^yryNa>9}*KmKn&8ULl1H?p7w$BA(YM>Ab@n%h_lzFMxd+#IrQ#Kq<-*d7Z=v~k2m zcXA7~B1E+kp=h9%jl8c=P58(3I2=Xu&)>E?h_ZiewCu`+QIOEkY8n(#EC>oAalJef z;shbt?#;zUTKm+s>MDSSoLHb6d(x=Na(y69vmsS6LNNO!zDME%XtCi$tz^pUjh1`q z^qW+`6QH6#eNrodnZ{0>VV)Mk5|FvEw~eyz5Dm%?A{OjarEZn|zLU4YdfRyU{KoC; zjqR4LT;W+>ElS?11-7ZHeu6|n=7?@KL!<LWPzWJ`Buc|4hX$7AV&i`KK-up|2uzc8 zJ6Qj|twjhzX|@h|H;oy~-i<fY`DIAwbRA#P4?o@UALS=QQrkFV;@PkLLs7!8KfiMN z-5QU4%4xnn4!+m_d*apKv*g|U4(h?Mjx%j}WN-xZu=UM9ucx*>327Kgq)|<bYBK5Q zRxRi>;ib+K@e#g`whaH_#_%9fid779Vep`u{lum@+C<2v%H!n&*ZIQR%NzS<om=Vo zyYE=8Pp<41=mUZF_0FDmi%@&dX|*Un@7W%BYs@Z(8DeD1JNNa@-p5&DwY$10xi#y5 zOw*___lWMDRrBmzFrI<<#v$}t&?zuEJudO-G3qU0mBzl_>BD~x!Jz&-J(84TLt%5= z(aQ4pXv$cQidgN>pdTYP_L{5Jii0eqOX7M>PDZy{pE~^4JQD2LfVI$6`qaW{zHoi~ z#PzDE7D~B0Z06;R7*VmmcMSz|vV|alDa~+&J*=jeKqar4bzYce2wBkDOv*M}?`rEt zRbakch-o2hcXl5mjGm(2aV%`^wfLr1siVZvGymQTU7L`1c==^TQslnc%!8B?I+@I; zV4N2Tkseufqv}w~C<mO5rtJ?AiW>?Q)1yduu-YK0a=ko|cXLL)=y?Q$Jxg`h9g+>9 z@=`@tSJO_4!VG@KP@gH;&<*uc#DQLRoFI&R#L5L>MDIPr7_!w<vS;j2=_pHzsV3U> zxumX~NRMi5lP2vsf!es-Iog=j@$^)YE)0aQt~aPqzGk+4N0M;)wD9oVl{iN_0V=PR zv_zhMxLSaqxcV9nAqz<ziVWt!<swHWrFM?17GhA8;+-mjXd<*|<ja~ME2ZA4+uf{~ zw(;!62kkU<J^pp$@v@-13pxcq#myqeDVVHxlw|F#ts7KBKT%;!vh!NGcnMA%+)+EY z$NGr{FT;!Ujo58a3`m%WDUqg`^7cl#-A*-mBWhYeXilxv9a7}_;feH+P$|eFAST@{ zs-y%hSoW7oqwWpO%6_+Uz`pL>zO3B7uI%?h-l_?26$`{lu8c{J9mScQQ&JmB^Tku+ zi~zM|>i)t!KM^k<cz*i8<#Ht?^ARaMj-fzxv<{lMji?aP4EyGZjM?i}&JGRF-2WBF z3&Zh`G7`t@WtfM41|0oE4>XPb40ZgjJu2Z48R-w1aSh{N0;*lVL0y)-bG6QBg&v=G z9RI@(oZnLI-<FwgHp|7C{;kxZgVIVK-5#fGb-efZr}ht%BT)Aw4K+L6Z+!04ID=4| zP1$U!q?|K3|3cZ#=+$BZ4xOll8aH4{mht30v)=CZ>8(*E@bK`2&I`E|@=5c5x=f^L zLYo<lI8CGwtUp_elgW;oQE^9qekf}7B=Ndqhg$o?J76NtzvTVTb$mwO5Hg$!1CqDj zJ%%`>6#3=rPv#IhG_BSv-r1wJG`%DNd%646L~Bu*riIILbw$O=h(%@hiG>HWQ)@Pe zG%cV$5;aER9LZ$`upVOd0oVgU=<sEA#0KJY;W8Pc*~nFjwn!<a!64$y^UG|lRtPy4 zYA7J)gyzfDgS<Z4w;Y=}^vKtYK(DW(N(?5WN-GwOAs~syM9~E)_8M(!17(`ASAusT z#5l2BAE?_(D`f<DApV@j5g&)4;8XVi4PKX?X6ufqN>Jtcc;)r=?$^_egTK?s7z~IV zLk4QIdS`21yL3+){8_~~!PyLSk&jdFuAKI%`fH3~+?k|m!O*Z5mWi8~j`+CZh3oZ! zX`WoAb8=&DMz>~r4n`yrB*JpN&|9PizU9}_wDHT&U-<InD^;tZK++x5h%1J%?H3n< z3CK)~iB_d4A(-xfk%yhD6D`}Hmc)GV4wTv$aI62>M}IHZ3(I9;xn4|wtEh=>A)o<O z8&PYSRiV_~J~JzkdDw)WWsRW2C>B(T2~M@0T7@(l(rE$f5t!rWPQdndDHiB<1Mkj& z7C4hWyD=ViNkN*SDbwQ<X`0x+ex<ccC+Fg??fi-`Cmx<3NDB}m5*lJ{K12c4WPRfX z;=u)UQ7+3u-V58BNnz%CeWc`Su<vfu{Pz1!$%XyCBh%rkY@p8Sd*2r^2(kp~>N6QU zs!G$$_3@eLCBW{zwZEHmj+2;VuvVt!Lf%(GOptd+C40dA-d>+ibw^eE`7zn$=+BT* zf*j7y6T*>gpX|fgEr08<kDu!4PC9yEpHcOI+mG->={zJHQ5Zb5ZnHc{u^8BsqMo%Y z9*kN!)cl1dKV3hildMNanXlP5(Td;I$@%y1_OmM^j;7XXgP=m>e!q=Lyy=hs`M)rw z$dppQVmgqnsIwF;1KGEYvaUXbN|-KJ9v+`~`tEyFB9E$6ZPq_2Vo+Gls6sB4{q2sZ zO{x-Kq{b0w^vyINAXR73W}+TC%cuDJo3AcF;t{zBV*=7xyD$vVyNJ(!l5?SH;O*sY zL}jC=)-%Vh_7o)230;D)Yjb}h1~+2DNEVQE1SAcaWvj#6M7GE42Wl=fgwir{3#9qN z<>8q$J<;k$X}doa%V;H<Ub;;T)1%K=EfXe~vg6~^GkC^!eQXB@!#CZ_msc#WHKy>) z72(jsj!pnGRkP+=5!H!LwtA&l<f^Dau_A<+czAr|yYIjAHOSPu6V#{5VdH8WVki`i zwk%G@+G(X2q}n54fUX{v5~~V%TDVSD+tm=!<$~rypBgvK$&}CXWDHyEaJ1G?vEXeO z;$+XKsqt1+m3{9M0SyXGaWZI4(tt6K_NC6_z>VTjGaNyi@AGZ|dr6?*p9NWc{{lhz z-QWC<<r-<M$XqGS$aeW&nZv~8x|kAMX~bv}s#Jp%4K=XrylG{9yR+|B7c4%NZ8(2U z*EEbt&%gp&ptMTcl^jd~u@%#O=m9CfuGan24Ochh>c|GlIP*XJ_IrN(-S=FQGS5Om zC^d|%4uqz?HPPzcB{%A3NF`NKF-?P`+y?iuAz}kh<`k&Xkl=f^t6R3Nl&B-y>;aRl z!9hH$EhEM1xS?U*xTBRFQ93)H=8i%V%hN};moL=1S(lZ2hgut9p7{9VkNnNQ{cA!h zNOC4R9(+h6ijs_Qalqjr(g~_nE9I|Dh{*)QT-mSsK%v^Gx$*Y(&i!?@al%_+S}(>G zSoc9j6>yYAkxS$9bm9Bo{FdutZGdIpEEy6tmRgT)If7t=hXV8E!gQP2*W2l3a@hJ2 zT=li{C;rZ#bvxw&HtsCPK|A&;!ZG~q^m&~G+xPSPz`#FnMBzFvqHB}%avmsM3{OKR z5c=NkcjQ6y`OjYN>p^=%Y~;5GHaNndUb+<(Cq*+7Oz|LNv;~SMVk5y&2ggU`aa@N$ znkOv3wuju@hNMN{>FL=B2re{X1Srpv)tLWrns|8lfc(ZXmgVxmJkNAZ>KGH^tq-+T zwsqt6^#!SomzUSUgtT#)W`HYYJcuKxIb|+KXzxZ!`ffQH&||Y4(7r)TrSuVq2Rti% zhrLr0JVD*fGQ(P}PDnL5O6EAA?XL0NH41D1kxvCf*w#CBzkBA`#zPoAqJEGGffy&Q z^CMJc-|npY&AI}{#`9WEO1vA*3Z!Y`@_1oh7WRB+y}b=>hAx48xjsOMT&|BavFmKk z!)Q&(TjBm@(0mYsW>Yjx^yvG*Hee)*)yWNNJ|03-MFP~aTjr3gt}h|*_~D6po_v!R zM6X9J6IWMjjrsCG)Ix|(CQ|E;D5cPQtq~yw3m(!uQP-V#eIUe%P&efA$W}HkE}m4= zjKqoMazQm%z23DHEQo32;KrDoojW-X##*#ujI66UlNe3xX-dlxq>ffX8OBCM2g=ho zX-}p{kc*c9TzJV6Fy}Bhg3@XsMC+$cDbO^rTqeR|lNsehWC{~gOr}~`#RQ<LqRmv< zIyB!^9k+G2(pnIM%X@awvsm?P$q(SU-OP@n3y}n?<Jξ4P8HhVP<K-TWG|a5&vg zzY-73LkN^yDBf5UVx;V*e%I>m0UOThuk3rF=FE0mElE%v>knd?tYSpRuGohWuZ%0z z1F-{U?)TR#(pIjqw%^v81sftp3<$<C0AWmm>v5DXrnXAmHzRZHn?GP1(TaE*Srn$r zg_t5g{rM+eK35(;%_x-+ZGcV);!_;~*L_!U27V0I28Q!Ds@Xsx5Q88I=HAAO@JSz` z3DShJE8Be^B(eM3%C?$R?-Z1_HTK)e<I^XWt8%}8<@WUrs=DCPLU6LJnSxUgq)JG_ ze4Wsq;9(^(#kDoMy&ZPh(=t5~`?_!N*IGwQ7=cfhQ0_t7fe`lVIDA8Q^yli$@e}oc zT^TLh;(La}hW9;v{Jg{Lr{I2&JNv!Z^J*#{c$ywS4AFwq$$aS6)CkgUzXzhx_wnia zdz-26<l(EEw0?j`0Me>u{}0d4NC@ovZlz>LHPY|@=I@!WkEGe!J!s7st+f!-WVIas z@TLr{fIVmK>l?S%7i+(X0f~{OHid56cJ_TI7prym-}kv-zHv_3eupx&Lxjgo)1l^G zXYCI)oT53^V?lfq)>5d=bde82*C}Eg8_a*#jbtC&+WK|4gEz*r4sjm44Z8;wAzdy$ zuYh-q(eXLsh**H4)zqfud7+Z26tWMN>Gev0CgN?EW*mDnSIvelO!LCJ-MFuB<aIXz zq!5{=i8Mvl`&XLogs@=bvL0C)N@MMB)g*=Y)f|rmAJu7f^ECPNMX|%bEElH5NGx%h zY=BG6v>H*@Dvwj-{-&h(>^;9AK47T}@JtgVD)}<8uE{zx#E_BT!<m$W7og2hCf$9e z_`WgaG~}HnE#z8UYSsu(PtPAn^X_}hf{CpU6Y=Q2l<Wk~W@VV=foZN>^nvT6aVF;Z zO3yyJlN-DT-(z~(i+x`XkkJEK@jYE@VM_A|3<lJwZX{{EetluxR$jh-Mrq7T^zM|# z^Y>Sl=ZhJ8ln|QL{oA4CARa*X>x<sGBGDWH&HvufqpG823_5Ah&*BO32qG?H+DT7c z4bn~hXgTc0x~F7r1cP{Yz)YMHP2v8Qfo3`euA$$v@al60O17Wx>(1NP{gi3je=#1Y z9NNXh%rW<1J)~%=>uRG@RnLdi>!)^0<HVM2bE9h9h&WA#WFoG{8K5ey?3DYRyxwWG z94Fp+5E?D$i7BDl*w#DwUv~ca|9f-QQ+Gnja5zJ!e`GPvLXXzPA*261n)p{r&O?Zf zYDMqdI7rW(5IRkfd71e1!$((9G@I5+WxG|r{^iDP{X)&gMIc1i;J4WX-lT4#T)}t- zhz0v0sq<T=k(7?%NS)YrDw1n=#3Q)2oAp$Ilp<|#4fS-)^qrmU9%cB6fz<G;FWdI+ zcSa0p0ZP9{ZAU<B0fAj>;|OB9Bkm~JxqM~>MGs1`0~15Az}*!=V~9*?I*5PmNE*)^ zi0+TjV^4H6M4eFC1MQj{wb)FXhleMcHnzNy^Ja;$D(UI_ADzS@Sf_<$=A|jOw^wq` zHkd*feV_)zo63{A^U!9R&f@J$>aIQttU0siorlL~S~VjzPqV?8CEG(DVnFR();we$ zJ51NNN)Nk_=X{F(@PlLhwbOJNQM%HMs3Zrku;(NV8+a51u9pYi_T3=o*dby&wBkxk zc#S4Ft9D*4WZ8$&)V?pfki+{OI=*t=h)<tLIl1v|?|y#NmK?hAji620*Ns*h*XuLu z?Pf1?b*L6hdF$!fWQOAe+h*$>C9>T&(meC&;RkMSUy+z0L?aPpn`IrM2R+sHK&!@E z*vp-84?I48B<94IUp~9efIBzm2>kBvf5(UCg%GU6pfo%48WY#$Vgk&yuteeW%V($= z6~X!i<dFXjE|8(km(#O|@W6Cy)a63%&N&yZ0a9<7@z?MB=7cPJ0G%V!A@02GAdq|y zggBFYBAFpw?KFPXYu<=E8bCu&oc*~S4y0Q^rDp|}5$(GVNa_2@H%P!T#C=~)Pu|D- zmRt$J4t2?I{P6L2%uy+IqvU3gxV2(~ipzrbbV`YnaRpLJgcydh9BN1dE@adLa#Jp| zGuRO?leO(_a$U_*E$HaR*6-tte)YZ4q0Atrb5L@J@tYCfP*l67fI;D{DW#~-H?Tw1 zYp20&PDd<|u2m2aNl1uHvvoU3w0|3$zPa5xoiz`bz>tM@t}$m*NKLiE<%-4%wLx1c z_dDt~rzc4!*LwtrAx0Xu=Zcq2nj?RMMKAI$f#^Y@#ZHH%>tatL`JF)-`;E?=?|K7g zJEG&6zc-mjc{RBB(tNpad3xmX@Py1_)3!ZuG#-$ZXKE|P9m*RL1DD4OPrrHQAODa4 z6)%7JiS^~p*0ktY+kMT(dN0k?6>A;WqjC;dOeeq3z)(G|RmVQ-D8dmW$-6r{?yj$q zoYr$3T=#7fgGt>F(X)1}RcppIeHT%fPdc~j9-jr!T+psUvNI3}CMVzhXQ^m0MOI5L z!;$2QwU6RSxS5m#!907vF3oLzS(vU9As8~hZg)!F##N>N@=yO0`@T8RZwAk*_AZX$ z(T}P!rHOf7OwkL2|C&3&Mj%D&UmlTL2*jp#0Q2lHxlo#AD_wc*AUy;_Ad1bCudO&c zTv4qACPI+IX!#1OygveRT8Q<2_ukdxS@)iCQ<LgZpgSgQ#2A^=#2QVF%_J-%AzIy6 zLmSb(V4Ea}-~VL74t=!oF!+pW>#sJYh_Fl#)KrKeQbnkKPv=&&zDF%Ov`yP`rS6p` z#wBP)-({uyx^aJd<?;EEd0u$_@W_05V4fbhtt(0+&Vgn5y~E#7S$VsCq3i`|Q1{0D zW##qj3txWz!g|}h@7NB}vRs!82y<6`Uj_VU6q{k63vm10@|rLfF1P_4FE8m(-U z{f%;aqi4;H?#DV6OB~idqWP!iWCmFig+$Feb>G-2ED2g$$T{=*=buL=)$7SUQ?#09 z@G;mC4JKTY^P3%#G=V_Qee#!Ik3|;a!Sw9CXY<49E92?+2wv0yOf|^1DMS<rX_S}L zOEotB)%&Ma?K)AU;vF9mEj<HO-vef1Mn;3J*)-b_uMh)T@u4_oRgI<180usW-wsHS z^VGKC-Z{umJrM2!KHUhafA)bg^t~bO#A~hwtNQ6^eyCM3M*~3gv#RuQwrMt`s}DO8 zfl`~J5`h?fZhA@<$R(R;uPR<I@BE;iMfI%DXR`a+wVw40*btyfa`t@LO%fO1GsVaC z_5c_-2`CvV5r|ga+Ov20n2ibPr1+@EYz+%Eb-bU)itmj{_j{gk^q&v;Vuiy9daB#W zY^O}RKe9frpcGR@%xhu3TzPo@NQ?`bD{V8hv6RhZ<g*dTYpaxeN2bE%!*~4MfA~Fw zf~vKF*JcDX>wu};KkwXrzH|S)QC4dcZZ37+g|uu~olW)xJ=&uE*~z#wlc$t#W1DZj z&P=l5$i0kVrO(ZSV$+`(^>trr_43#G0gNQ`n`;_N-f)FjMVgX)Ebx7QBd^{r>4ApX zk80B=U9-dHm2_-Q-zjt|jCm!s*vyya6IWxhGv1my5xw-wA>G#-Iq#NPxwGvXr?+o( ziPhv}K^vG6tcEX^880E8HmEssW4c;2`Bp0X{f$z6{Ao-ipD|E_kaH%)L@h@CDtR|` z!W2d(Ko1h!nDut4V-L%C>V5I|eLemATq9x_js8;whtB6y`=6P)Rx1)a55P0h4iov~ zZ`EMr;3|B*maSr~T0KH^#0l|Ce2PX2oTrOtR-WDZ<~-02-?knVjv4G~Ec!n1#G*%o z(rRmb{`rNkU)~7eFT)ttW{}#$<0IF{D-xBeE9oLE&$A2kU<P;(%$LMNyRhEgSl?F4 zZgs5?qGby6Lf#CPZyfdS%Vi#{{>~~6G15w*iZR_=AARajb#rl$o?&*|b!0-ec0nMO zOh}MgvFs|Zs9F>~r$Wd(+6ri8z265SFwB4l0n<DYuvWm<D(iY<z2C>&dyBxWr@W8y zv>6#5jP&OUULKTj-RGSreYc5q##}E~VmS6n^2pyDuyVaVu&#GDCtumfQgd9<H&XGE zU8{|np=J+Lf`7PAaFSp;9z8JWXGbIurwGZeu$DsJcQZ0QU~vcEN0h31F;A>!+7%T0 zP4=Fhp2?27WnYx$9E)Ui@t6*k!d5(VZfYe8H}>MKe%75ck>bJ+zfHWo-nrjRD?v0k z7@!t7x-$)8%yx0&F71HYef)wi%Mrk-XNDqTB09^$G%d`Fol~s^q6-2wBR@Bq8|FBA z(oIP*Qd?u+Gp*(k<SH)h9poU-x+<TQnmU@$yw-AZYa<AFk9{6~Nl*Xp&ZiyF`N&lD zo8R~S8v-`*Hy2j1vEPz}=kLB_T4u5|$}MB0<ji`zk@H3^g?&$?2Vvi5Y7s6^kr)>b zM(R*fthMpsW26494dV)!P>xo({j&1%mpAfO`R<1w`244p`^z?L!Xdf*4Jq)Q=hq{- z>yhVaO*-r!oXcRG7Dt&>hoH{6OQ^4Xa|1Q(^Lg3j_<;V`D8if)OPaVW3)5smXf<!- zeRExw-t&KOb4<wY{Z~W5M;F)LH0A4H>*pRZi1Ei<+eg)A$4D^rA?0Gs^58Xy;B`HG z!Me&&kNi_I_^kR68gaF?=B(YmNTpV9TQWE`MT7dXlMNBEdC1Wel|n5(I6_@zDvX6_ ztrFF;x8B|~qM)-=KcNC+p}JhAKeZF3>3EVb;7JwnzU#hG%+Z!oQ7ObJ9nV>9`dJ@P zQETDy_<@+Bwcu$(PIa2@*m?jXxJGvh<YuFO-@$X^3WwVO400Wg(4A1Jl@1fBx04~l zz88ZZ!zoksa}a_JHrdvdT<+A85ny_ZTpky$A1_RCMxxT%PFjTJaY6s`>M*R6C2J!k zFJJhqRtv7wgmtP~8>sjMwb3(g4k5-!sg-%TvTmz8PuqmnEpp1LF=HKoOAs$1m{W_b zu!ypGR2++*vPR7CoJs)p%!Qb2(&RiZESC$n+lw8{R>|2&dIl*Uh`~UtPC=)?>AR<9 zKlBot2MOkU?b>3D3>i}2PeOMp%5r%E`9dz0J_kTNe2-J4xNwvz)Lp5YApjC5`<zZ1 zZ62f+%Y3WrgW~~E&2ijEQ_CPsFJElff-po|I%-9bQ-*p3Hr*JR6NyJAst(&~Pp-wM z68g}UZcqVdw;?VbG~|c<_xkq~pk-2slv3FR^a8mRgP2ump|Raps5{s2NWkP!``!g( z-di_=L#H~?YpQXYnU>43uYK<ZnVc1G?-5h75wDYL5coCMk}3N}_D+QmCU^XesIF)i zw8!{kfux@oED6(aLa@$|GzTKqgH^`!ILa`pzO3J5s454?raQ0xHX%kwhZ9o@NX?Yn z3)9mxdwHX1hNMi7Gtbum@&sb~_0K<Ed3>HolUlhYcxzv@Og$1v6GwYs!|l8IgpZ$; z-~FSBLA5$@d;Mo_UpGdHhC?82*vMfw_1*s)I_EZ}Cz1XCJ38e*i$Oq>5$ifT|CA_> zsG+a&w{U|8jp3VTAt4abLP%FsW@<H5ao@eH*yonOxQ}<~$_a7k!RdK|q5_Aqr9H?H zBM(m>Km)byqitKFAO%u%BEmc^#1Oe&u5@xiulJ7|axzdU)_&8Mz488Hv$MBrtFHWH z!Zb=FInl(}!aEd5G4YUQa?Ug$he-DJy+${TJqXZ4hx<JOb2xc<e<&1pn#1WFkYV5P zgK>|c0IAD;wu77^)eddw%5(mCgB_|Caiw`e^D%E7#l%Hi2<F?(qpIwABdV7TdWPnk zQ;%2s=eR@Zo7eBj<eV!Sx}u$Js1RLr$D{ADbW=1ns5zO`Yc_dL?v*q(q?m*&Ky9Wp zwXLhw@x1Qx`ufT|FGfa^o;lg2+2^_=DUi$VM$Y$*8oPV)9&`FL={{ARk=q|rUt~9w zme6=zT9x2>=#j=l6V_<8JR`#CSi?4qglA{&1g!*MP;su=P!KsxMQe@F6m>PoBk=6G z$5H$4LF)0;+PLqdCmvqkzViJ1Yywmq#4o$1gh(VrBj{@F0xI^&^P;S`n+*>mpjD_@ z2%%4<jNVybpASmiH@0;nZ@bl@rPt)WH(nXRs*K?OIQty|5E09O905`6tXQ_%Ghgps z@rPP#pZsa>(^T2EoiO$H_xJYs3UP`~GL54=6I^E?P4@Rj>$i5GUs6fa1J~sf*T+v> z9-as>aBDxCPDQEYb?5En&bFHT@V-}aw(-N;W{h|VCLq+OyeXC%wlataOv}Q-jj;br zKcepl$otL~BYM9Lhh>OCK6Ex{^ud~PGVCHCDGvLjjtul*@LY4&bN1UEIkqnSY{L0> zIlb?3#*`kY2xz5b8w0$rrUsbTmDgW>A*Klhrez|eK%5rR6iCU3FkJ#+iZqn!^}HZD z<~)EUAsX}`54K*{c5$l^ZG3T4rprV}h6b52dU>O7LOGJq!)k_izG8ST%YsgbNe>2s zYvPzRxAut&axCg$|NHqr2OpdgmZQZK0<{@!B$r0W)zwk`eNQ&3b0GSUK+b<1+AkK< zbgAI;MfE^AF)xp(y69MO5~g=RrFoipdU)cy?|v9{9An&C9qd>)p_Jw|pX?-q=9#D0 zu6$vu|88{Eq1r66p8B|45tDEALlPx&S*|=@pG;_I-+0^ZWL(%+746q^V5&!?^zH%L zB6NcSLM@p%U(9H^Fp#_p5E>>r;*oKP%*(}njUANc*%>2?cM*|u@aGv(N;A1^W?Y5Q zn;IPULr%H`Y6Ke712|eB$AFn}RQmNEC)|v#J*(y6f!o{5fR4v*7zZEvP?C|M`L$2e z!n)t_W(~_;ra0Cl2<+R+de3aP-LnTHA+}nWX44`_DN#ysmAC+6MsD5iT+{WGdDtF^ zAq=Fa)XIImJIvXkWjfAAcN}uu8Cz5Cx0S~!5xd?4!i?2trByUn*4xUyJM5}`0gh)| z9ev6<GcWD*3=X8G2f=->o$Gx4Ejux^D@%@_$_UqR&|w4*#mgUKFKQdX2(q9AE|+I> z)~)tO3PIR6<#xX_sby2z5;4rf5!s#$mR(9PSYO1(@a95sO0|`>dS-bT5G}5thzw{n zxP$IWc9!MpI3Hu^OJB2n?{?V&K^(&i(Sk~56BQCU6yCfv5T?j9&!i<0Cm}9|dc?_6 z184-AW%&)N1VWgYw`VT#Ba3__Zclvr%@Zjm{wjVy&W|em^7$A3{O7;$=Rg06*RQ|u z_WH)Q8uzI<!MV5K2G^fR(K=3=sPBJs7!nin^1!q#W1pjju1WvhX`+xlQLxd_rX|wL zF}82DRfLY>y>}`WgIH41TRiEBN;|#Q_qz1WH5`4<w(HRI=%aOyJuU+wl+zh)T6uf> zO8rs^z`QI>%S_{ur{#&uWwz&&Y>!OWNSdRSUVN~XwlMBR(G&8}%bSezFv^LNj5ije zCqzA<w~ip;nDpA;cdXdSH;e?3(~Fy-zP7H``kk>Zq9Dn8^?CPou<p<06h>0SyS4Xo zkL~YXDyn6p21V4k1Stku^)=FNJ@iO``dtX4^UUvxhLydvzrNX|z~HUTAtY22`@Y-R z-^xft(=^YZjr;2tKq#%+{Aq_iRiIA}19cX79rc^0N({$>#}r9onQW~EaRn=r8MbUR z<UlUP`xeb<Zu^bP@<>XN3yUq(zB*gFKk%+OE?!eVAC7*AdW0t9VdZ^iUM`1Y4IM%| zXP3Q}ZyD4yU+CqHBP;KFrtwbF64&4Noe)E?dX84l`t)#qeFMvh<tmn8FZ07-S&I`D zdH?+Bkzhv-npSK3iP3jlM<Y%|Nxy!ZkT?S65gfGEnCFYJ;O$H}AH*QA;H^t}U*D~n z`1N%oQ;!~<;qBDt56ny>@ap$vigq6L2C<2Oa?1MU6bbi3s>j5~0KD#nE5Rb#;O$5f zoD^wu$fFZShsaLrMncB(wP|oBTy=0j4tBBhn?40@Mz9K}N92e1tpACERu9UKul^*g zC*R5oZM6RQ)rpO56$xA}S8lIgXx`Q;L~4P3&qOg*LT!yO3u&H5o27zvg?QaH1hM@u z9MGo2j_(pD<b)nL_n;|Fgvr}0Ma+>LfvA<rOk~L);K|<BVycxfhz+O-1}_H!lM^jf zAYCG138YIREs3-QLM+InNGc<6Lm8P*(8yDpdHs3i&p*BJ_W3_kbAmAWocch^g~#Uy zkih59pSj;($4mhg(}w8M-BXIj3kiW%ZEB->klBNQn9PAIR@y{twufNrEkMaT_xme( z2ujINf;?=22S<{|`E5Q(C<Ym4)mr_ModeXneL4gzo!iVgPv|@M9kLX>eBz>B<unrn zxA(pLGcAkDgeNZ73n>Y;>_8)?i78!4OF*LAR8hht-fl{7`t~y<mgI~x;%8_COqQv4 zjgaots_wKFxWC<pbMOCOU030KVfR?q<Gc=oLPt$SoG;>`hH9m?j0EBN!w3H6fBkz) z47Nfmh7hf{jqSEkOK(kWF5Bzqg&K*LZXev(j;pi7;)!jemfaEEK$m?VolD@sysyVM z3CMWDLv~P*h!b&5-hH`VjRz1Gw5mCOM`Hv?*0(M$K4Te4&L#tE+3+C<V;lR3_G3z< z9^IzMvMeK#D#dzwLzsvfhH=0d@(9CN5Dgx@-M*6I3|K@og+T88qORqx(S&`51u!r6 zE<+m`oM&a#d+Oh}!<^uze!`?@I;PgwNnU+%bu4}l0CYHz;4O#!30Xg99qoY42W@C$ zd{*Cj_8fx|2!pe-JEY~i_}hrGsTq6~>zbICPYkKvQw)6mI_}**PdIwoQ=Ex$GNh$| zRx2Ciyko?vN=k`&X~dMh3}6@3q22zUoHpsYnyhe(m(kB^&qfEls)%KJ)6Blz$6+}# zXb<>$P|<@i5kBX_Z<-#`oBn+jA(WjM6PIQ2&o(x7XMJ_U)SscPPbGze1bRj+%t=;M zjm`b5=<IaL?f1+G*q<j<!w-M6*xkBI!~}}E!3+XLg>Ai&_nmdUd&$IF%d}Nf{p$f{ zYcBrO_cUW48lzn)wUBEuq^1^-juKb^R;vd`!@0I`h7hc$+_@!97!Iumm$e;Q?>(3q zF38WOis$Xpx({Gp7Se1EKVA~DC>oXdl9(<5#D?m~)Ymr{F{?OgQI#u!+shmK=Hqvz zA`-~umD~1(S`~@PU%qZeG_HLn0pNqEvbT4dSdkK4Ni#Wd7Az|+)eN{+>ogER%VsTb z99jge8M0)vREmok9W`Ea9;W5d3BA&{RYwJyjI6J<LMYAq`oqa~9OmMjRCLp3iip9- zzIS<J9f?C!>u$1ozv&7bh`OJTs+7IZsxU7X=1XLnY}ic6<(OeH7?r}5>}G7#g6|V7 zfU|&HycfHlUG+Vp^m0I}*2~^%92_3)>7D9u=y)6X2oE~cc0yZ+pE&)Rt<zDG3nI+( z#K-TRc>2*f5V}yZP&O#}n1I@<1t2xM^l~ZWJ#%}_Y`1LB-jO8nz$(Oms>#APCoAV% zy)5ZZMtczisLgbvL@bd`_8x9!?Ad5@m#D)f0<_%7$pV_L4vH&u_76z46t+_hyE=Se z165o+<D@(!ShPC%{O4(&M~%$t`W8{vQhcFwkk(2u$;m!`xI2$t*O!Jx*<u>(0U?C| z(PT`cJKc8Zb@>AndYjCMHYLyp1l104`LgvpdDlMJjaBgaRhq1|ZC{UrbTaOJQ+1iz zCKm0NyqS||&C3?H%X$ViT5rY%ZD{nMsrBr}@8u-S{w)(gdPE59>zyghG-s<KjQ8m4 zb8sH~`L}L>%y{?ucPn<_^ID0qP-CT()gePeaF**#%^R&SHj}EgiDn-p)YqrvY?&+v z+&9QEdSoauCc?D1Q#iUa4*3o7d-i|#zlb0qA!)+u*bSB7|5aiLTrU^ToXWdZeBTAq z73I{%e-1<1F^hf%WMnLz=-30HcR7gYff6Ajo55k&zDU{;i+0?bArE%H>w4q%_Jvxr zx8&M@7((DWClX4Em>5l*s7(#2nQSPHsmCc{7M_1|<@=`({N40>>&OsbQre_cX>4oe zmp{Dl^$&N--Bm%Q&$h=}lGKLFRG$IR5u6ajctJskc-z}#<k*ty$cn`GL8~@jy_Ck| z^CJ(RW+W&fRKnEIlxfrEL6`+}Mn*KDDcvfmEF`KEa6y}ReOQ?<flUjSd1fZCZYv=` zdQOx&vEA=%>&BipkR1_7ID(;0OjJVyV|pS@R`ypFLb8siPJ}!(4IJXFy9MdBj5g|~ z23MQSFd5_4suNfn`v}a<cJ+>n(EGqgp5o^q90|mzG5cQb(7nHaPI|M!JZ;!V#u@0g zqRR~X=exL&vFvx&x7*-nbWVs#Wm}>XV_?2cOw0d|vOjCGC0W+Pu+L-2Ttijup}Ws` z2iyzL01==-=|$9ws24p;KU1%Iq3MBUGSG}NlaT-f5h4fzxc8iUras+!s9_D68H4M= z-6LYv-UpJZZTGHSwN|do2oE1W|J>tnzr*1;!w0D2tF?Mf*Grp90l9uZq}h&2N?)v< zEyMx561HoSa)~n?HfY3~Z1DKML5JG<nJptJA2d&t1uPtbLzo<9zlZk~j06`qOb1dr zaUoP=mc6tV-I^JBtw@VdDc2&ns%=X$p|XZyLWgv|T`ni>PN~8!Nd=W|v$vu@^uC#d z=L3x9Eh><-gM{@n90_H1&S1BpmQ6mN4Fds$%W}nGo)LLgWlA!Qn@A#q7B%Y>w;_U* zjsZR7Iq5ubNhcYHfc4RXfXj7}R2o+V?`6DX2%0(~1u|7IJCt(49HTe}(~LAQEERot z*--8KY>@`k&{*A7W8zvtApk61Hn(=dmTZBf|CK`3%S12XTkg@mMSaXRT}%YW*qLgT zdGcHh1gJKn+6E0)LOxME$92V(&aLIDMWtxxU!PH2Scxd*7b$H*u;i^bwsZr9&YRHK z-gJF(7O-E*1%xc%9IgAOH6ug^7Yg!a1-PJWB!X=B*bbkz(bzMhhvNj&TBbO0Tq?)~ zG?UJz#sC+iDAWQ)|5tc6!cSXyb=+9nQ>DHHa#8jcru+gZXAoEqm_-V7V}t;2K#;#> zc0`3|8A@b5_^ONh2kS<Tkx?VIv2Fmgz)KVYv&LFzps_|lt!orQkkq*EBSt~OmY6o3 z##sw!aKb^-J#yIZvD@ziOF>b1#hrA4?CvJG=-_68n+b>&hztsXy&&?Ugrm+xaD@2~ zaR1F)xPST%1P@mxa8-;%smQC=7Na=jPRGO&JctD-mDYmooRF8KYcGiX<+Pw|3H6%r z@b-u~deqD)neg$44>(;NroG2>2*|FYQbq{CywkSTq`<_;@Ta#R%19`XCIeDOpO7|> z?aIgrn5L+J-HNy0{S3!9cZjnGD5KPbb-N;MSD~;DlI=@rL)tdXyB($&k=KOfbivE# z3zlm|tvZXs2}Z`TGKVVAEc&1wK#WR4zEVnpLflcffNKJCMlD0%H!z$}0ZyBYi4)K< zOXj?e%#zJOpoxg+R5RG-yjI0B5y2Sl#(ZISY{hYK#xm$^SQ0heSBiCopmk-GoKR9k z2!uJxybl+|fd+uWgi@sgBPWrM{XVupMIa3Xstn42s{wWO`1IQs<fX3{jQY7fazCGh z0ZnN(U|1VFhq7LZi>i_rugXur45V{KA^;S?F379~=MaK)ulaWDRZr_Rg(Ib+q#_Pw z;g)rj?hi=vjS029k#)3Stn@NBsFz}!6Q?bHITfHlW<RVMmzN8+WzoP}?62t};)J|D zBX4WV;Ile?fi(K4EGa};M1mhvtr}V9+*zlDv!{ToC@a<|NW3BjAgxu(o`GdqT1%dD zQeTU6#2lsGpEfyoN!uYp^o=mX#|d6RKB*bO{zsE=O@Z3MAv-Kes3HeKyrw>E#8NL% z&q#r9&claEQOs!RwW{q(meL>2j;8xkBSSG`NLD9qH3aBA$lo;=B+~xYTAEPZI184x z((80gsDY6(rfI^JdL5}BXtaH+EJ9W*!&OF!MQgJ%#@On@Y0Yq+5NGJ5$O0-7VUCWq zR|hUDeQ`TqL$vI@pt%`+IFr2J={<=HP?%vTX9ItdeNUPm)5(B_M)!IOC4ey}&?){x zCacX;z<xhrO%j<|3J;^aSnqXZY<ZP>um$RndaHA+kx|eAS(afjSyDi{qTt6U#GGK0 zz2=-L<t<^hY^Zb_XyiA~Q;U$K<}BBD-oZ~1&d<_64l(>;3RqJH?HL>kcxGTnl0H{1 z07=1a6474Ov1Dn_Bo9<qK~z!dhEiFE%48sE+B`1_C1s@=mFaUei2}<>0CZp=Ok&XI zUBv!whj>3Bz7254h;p7$EAZ*@dwlrxJ(g>N5TLn+z6XGuS1@O-g%iI0*|+$MKc7%J z>*PTpA1fJ1o2+Y?oTiQid|avE<Bz|^AOEnS)Qq^F;HQANi<st!{oMi6JYlz+!L<k= zD<@oDPS{cc;BdIR1CWrDln7;riv%sO5xCZu?tEie%q5{#?Umm)aM{H0m#owE`hY5v zq1Nf7I3+t({8}N9?44IqC(?80oB=d@2EnwP97`!76|G-4r@dXe|I6@SmgR*SIBFnk zX#20=64FvI1&8B)#!jiidk2Nc$F^)(w+(4aD5c;-F7Pp;=AuAR2t~QdW!-?sk5Aav z4Km|mV4`duK-aC7K$onYwFwStr)2`V4sP89>=5FF$B&<JdQqlK2?6E&1!>#1Oa|-! zShJZzuN<UZUQ_-}E?}7zf{&sPJTayTuq?zlL&KOZi9NtxWNjF=EsmlLdMe)*aXL0B zW92Pjy{<T)PVgn50(krW7uX+HtgDa?)mjn0dH)U4x+q1jqAWGq9epNdX}76dlq0{i z=ns%-f0oWCl1*&<)J`5|-tSwQRvtFVlr0Ciz~Cf`&!S0?0MHzSM4^I|anDI5iOl2c z#-=HC{oA5$=QPtWD&Qs!J*y%6Dc5oi*dLBcvZ90>YH)Af*|IfacuO)q1MT0n&oO(! z+&Tz|s<0{Mf<hUbOG^QEQix{xG3W^uW;uvyy&^`*hDfilt&12hQl9RreWFB+3PRSN zaPJv8<yO!4?2uPMBbN*iM+7&+gHUN{kpMx!YbBRv)a<@QjtHqF?7@Qqv-B18aA|7N zd$9J~3)rvYPR73FzR8440-ixGpg^En;ZZ;ez;O|{`$@z<`q?k=ul~Eg6<&l*J!*B} zjOmdf3Y!2O;oMXGRZ%lO2$#H%G7zaY03F{bPTMnM<Fn|jWs=mJlXg>abclSzNiegZ zszbot{R2Kf2Bac&f7FU^zkP!^i$fMe1mICB@Vnpsi0gGl`VR?k>M)sN9Ma4#^s%<W zmZ!tIB4Ivy%!eqBtak{zh^=H{fV={Z9gro1lsBn=N?W0n+8PyU(rJrcJ|_f^<J|%G zZyxZ=zxpdMR&3jXv}A1846b&DtMZCi>tsOQgdR0tWnyQXMMhE*^H>WZXSC8AIZ5Fs zE;yf_khTSzQu*RjH?j;hX1>ookkRL2RKbGH+3oh&?~g#7<>y5rx;9RDkV$q5(j$O8 zX=XHm6^O}N!ZCv}nsw0+XwiACx5JeT$#41w08;8fkJD7VSLQ^gJPHO1t;|3YT4j+m z!DGOj)|O`*oslY}Q>t%W&^mSP5wCzsfda-t!1?n9!AFo2SvWnPv0h~oVa_ruW?d7u zRUCn&on_`+_z)1nqz;7B;7mZHWX6A(;m}}nZ96RGk8UH(UJNA@*0yL?S@Utix@|aL zH{`N{ykvKoMc!@jn~YcYEi!LywE7IA0kxXGSLQ$AhzPBWLn?Qj4q9zj%fwhqX18}X zysWXJG8%7z1TO_{@;Kbz<8qc#R|o<7yL;R{ylwXtc5%W4ja*bov^J$S_gMa_+HdH+ zYrWT{D1#Ge>Qy6rH#D`@S`g!m2mp?7K0RaI7HC(8+5?B(VFy;K*pk!}Vghmo+@#nN z*2pg)*J8;RjfgGkrDlK#5}C_XKPC5IJ5ZX=9#g&m7}~}dBKCLph|>hF8RwU0DPaJb zin5kMv+O`#S9oQ{Yf4u^F--w8wTPxgcRFOF*uho<J_M0X&~4%v5w(N8EkfTcpGmMZ zcWVbKB80VcetgG@0?rBZ?x;xk0vm5xsA9L9Fz*9uVxW2j8uyl(lscG-P3Fn!YNAH2 z*A>UTby-wY5Qte=09#6`%TFUF(T67<yB7=>Ag?>6gqkzv-3&(+wPtY5IBf~{(}cG_ zdqDX49)&XgxBsVq3@F<mX`MZ-guD_^jns-zQ<Yf=oUmLM_((`w#&W4xP8I95B5jPk zRdCLl-j^0GSlXXepe%Jy>O_x%rV2Tw4aei1I^gm;t`c#R1Ag|4pWrY4>O1^T|Mp+t zm%sca2tZC3<fUTg_Mj^D-E~{BE(y6-={L@$8M*PCR86Daf?`d{Kx_Y9zMOL)FMzmd zCrEIB!0g~^Kw#NBN5W)QxWJJ|ob<U>D+}`6Ve$cYsHnx^$J2_M%pn)$SgY`+w<a5c za`-z;(*b}I<Wxq^>L@sm;5{f1YGPE9tP}-8h|&fHVx&#=SgATdN*%5YY*nUVu38&5 z9)(&es3uTe1=z;cBCDH7Ci60cNd#0J@mw<2H6i7Sl+8G}rq}`KFekJUKq;l`0S#^h zR5&<ux}#&J&vajN5(uC|4Szz=ZVfF*Frk%snW%Mx&=}dN&KAA}BYaYw<vqxNqyQ`v zmMi1Khi5!KUZlfo-H^79DIt=;W7{?fI<yR7!5XvB0n<)P4+=DQRzYtWUg`pJ<3&+Z zm^A$C#`wF2wrl~RI584Doz53*>qR;?-0hjQ3@_MPF+Hq2E6#6ePCt?G!t4)66q1e~ z>GaC#0Lng-eztW|iRy4IAQ-<wh;S~Wp3X{HK7dd4iM{F^Ar}JX-6YNx=NrbsAT**% z531?Swx1gH5+J{;030Lu&=!^?_bN9WMTw?T6!9-Whh<q>nw6Z#>G=g)60lg9BKEtv z_3b;aGm^c4XcDQ=a6nRIY(sFi4IZM)n+W;q$o)prL81^XUEM$yDunZH#*&3iEX)Ty z#2MSVNUysc1Sex#xfY3_e8hf#L<lpM>qQP#D=p}G(pEp~MgRm@S!>0%u0r9Pa%)u- zZ@Z3<)|HPs8JE)uP6wW_qK(HgMT=6Y&zonqa*gaG7nYu2=TTT@B1nh1QbcQ;6A<*^ zXG!g|JW~v_fd1quL6DZUniULKv?8uvb73n7NE9k#W=9rA^Q%O8Ida+-+7EZ-ilFsL zc#q5V0<INzQ9kqK`zQSVZ+?gUn+b=vGxl#H?%p4ebA?naJTMb{fJ{3h=`BYExJKOb z1kxGg<UP20Tuuf5{=fSb(nj)rs}Y$j>K%6i5HyDl+Qi73&5<dDp(A^>M8g^ZGgtUr zf!X6f|Ihz7NZTV)x`4}!5*TG6l#P)R14TwTZ$&4yc~g?znF8qqxgMUhOh@DICndM4 z40c|Kj|8g*qOFx905{OOYO0ib8>$>LbvB8Rn><U$L0T82Rpu)M7a*WJ0@$H))-0B0 ze^`>PF-ZD4Z$<n6CBSg50^|iq7y&BsnOiP!E&|Yz&cO@VSf7`uqpnS<^sN+9>&oKz zrXsu+j%p*bVHggjmx1IOIy5U?ab3^YHk}U0=Dq?3rUP7SIpx}k&MceKwAt8rV$N|h zOx$!qtrf_!uPJ3AP71#D*c+zFN`d|D+z*|dF;e~#&F-0=6b4e!_oh!py%69$YDJ6i zb4pqZukHHgq`2TZsSTscAZz(S@fBw5+vD>9c6<HRvH;`Hn#-i0VYPOEe4jB;D<hTM zxLK;yHrkpn%Q@@URbB@R+eazT^Ph6Ux~>QzBF-}o$0LIGNNL66<5L5K_SS8+PikN6 zv+e3K<cT^aV~~>u*soHuxVw7`rhx5y!H?hnPC?nKuVX}r^Ni&ptwkPU2wV^+fJxGQ z26n4b_}9hnT-A2KW!5^drVU$?v<_EpBW34#2XYn81vq3BmYT)20=wM~QwRtyNP3b; zN)vTKVMeYQ@J<z{cr~)}+y%qDU}yjeO~G4KGtH<_hC__y1M|L3b<3=SX^!}OlG>9I zgG}>`-F`0{RV$EX5Rmbw@Ae1O9bt}pOmWvKdd>4|!pQyewAWJ(rCf(gRUk>WC+Y@8 z9RizX7pEECM-*lp4)2iSik!CwXsJpdGf1W$0Evz~MR=0&lr<+flD53veg~omW~bR2 z59h^8op&<C$@`#O0bV%jwcOBBZV;eKE(H^NO-sw(uy!Ai^GKWY;Fp}*J~|DiSnGKG zR4Z7BoGKy*%m=J_MP}7=E`lTD```VDkCzqocO>#wE#=o!jd70R?07<m($dN-<D?B- z<viix?LBt;12~CSvn^M6f7HEkLwc5al+agv_|ga(a*jd>LyA|7zI4?v7zN9=V!0;# z<Y)Kbx`Ap%Ez%+5XO9d3)D=j}sAx7p6rDPHmU+UE#&yt+6U|(x)5;`WL4c$$<vpa} zR&KzuZcO?gE1lS2Dt1yYuT|Q=a;-RD&JrlF)OwkPs`&HAM_jK9eDKOd$)->7oBDg4 zPWPC09@88Urb(Q3l7U6FLY+IolPrs1i{$+FK{Phav1$M_(x-~zWhLffILb&#_!gXJ zb(*Rge;rm<tWSlJi<CA~S+J!ADJ=~c&0Lxc5EW2$s9GX542#GoX(rP+L2Mbgi_lHf zD?RNNXj$gQQ2hWJ?QtoRWi`x>8E!eV7P)q#R;fQ5ffavOn+zMXrgMZa2{U3YS=-}M zGyHZRmUU`b3O(1A8B{97A(FkHrU*w;;u^D;0ASMrUzuHqAy+`K>P!n9*z~@o&J`p{ z5U{j#D-oD83|u~v@mM?X?U%|9_e_j^HjKvs1UMF~$w7MaQ&~`JLM~ei!pESn%gGlX zc=LOEy=Cw%LleS;{oxIq6GzZ~4+aWLSt?lDmMB$gKY_l;hRx`(3qyV~D``RPfF+`4 zSW^~ohasP*I4N*SP`SJLh?EjG<uUiVIi(oM33S$VM93NE%N5tOA?^;S1OX<o(($qx zZ~2D_V_!5enAgi$>NehKiq2BfwsAVjR@2{3r~e)ACS0#4)Uts*34rDF2rfF2N<B5G zSGCfD%1;0TwPxh9fg#3(tM%||M6Ir>0NH&rB18o8(kdDD5#DJJazlb^RHufdWa%p< z0z#bO!w$g<IShy!II*%iBP#sP2?0y+4kc|k?hlx!h!6vIhduVkBfOW73OWQTZy9kS zy#3~g%d((kz`KBHj&S}SFOM&H`u-7dny^0{K#_60+bfzlYL`c~RYNU|R5mQjifvt$ zpI)cqH6?@Q066Eg4GxWeVsV7HT~PA|ko3G#5R|j87PW|MvpSL1<IjK^iwaL(>Z6++ z{%V~0%ESNk;~9VU*T2B~H}|+khf@SnTHyVz-6J)mrYh4>G2JL|%?DUJS7qHFQCyBR zlH!WX`3mL*?q^2;4ir34#X$fuG#LYs$b!)LqIHxQDC$;enD`7)D;qvWPlozjmAG-O ziDM)<l}e19bF1sNS?~2$kx3>?_R)tKF+}8?aXwuI{FkIt=;_llK7W3a*3IJ{(-b8F zZ@PrAZ3*jjL#>4M3jJ9@N(I|iT3f4H7BCCnx(qxs^0IPcNB|5`m1GHg48r;+eQYv~ z&Ie7yR}e|Yf)&^-!B9df+TYCyDX-GLnUl7QDcKGPWHaJX!G#3%ZidO6v#%(55=Ah` zRnHK#muYU_(#@uCSlbQ-ZO+45i6d&xgVfo5cScpqSvP{5nF<+ag$590$Ti7B0Dh@7 zoPg=bF?-8a%u^!_2H3E*>MeulFK202_pbruVs%#i5@)q8<dcV@Fo1MvwkA5F>(i zaxkc(ubDLA->kMdX>E6CSo^^-V^no)E4Yf2dAz@uj*}Lg+UJk^hn|rEj~L_IuR%tL zEOXs{Db4bvKv}NHjdTd+Eg)P=0i~@8@ia-o*A8<v1igNUF#6diiAR^U-*vy+tD*2M z5|T8C3<N2fR?JnRX&XOm8vu>EGP4dHasu9i^oDL_L8=~Xtv2S}u^s^CLHU>?A<^8j zUU8Q*f}2`&VxMWt*lY4~-_tzf+xu_u?VmkhT`nkf!>8YW#^v)mumPe)UDYw1i|{&C zEh!?pvPR(m3g-qkYQP;*V2hK(R%%AsmIg4h=nRI^XY=%38|`WbnAyRTC|Dwo7$zL< z?)4y8%20Y#<-k_B5M)+5S8z#~rU~<YCvAX{Fzq8;U?5bGi+JzfgF(o7L*|4S0~iIn z!w%#KPk(%ALx?ytJc1agA}uU6)#eCPSrp_g<8c25CGJqJSCn;WNNFD=OK_7SD{}oQ zM1(1#00PcImF$u-3+@VmXccY1GV#(dF4kgWsn?dh&=fcqYNJUlLcE?<<ZteAe7D18 zD|q~TMdj2KSkpl;MMTZ;3#5kZbjx{fihoe#5C!Fkkg}lJm*oX{eE>tFRwxr6q@3vk zfs&<AH63ftq@}sr;U9pDgVt(gGW-0&&{P%*Qxr-6T3>%o5*=4#034zr=x1;h<VPtL z`-5Zw&Zi5w$}pg(#}ht%d;~x^9uJszQ;W15#27F^%0yMN5xY6Skkj*Q!2qGMyhc=w zL(YuL<%;u3Q{%qEvG3Um4RYjp2$Tx4%K&e-gAlOS2dVeMvOUrsX+wWxnjC|?W^_=M z0^RiIXza9=wMCPC@0&b0>ieiVlpr8%(^;)^phfH5m`Wh$;eC{G)?k$DSsj25u237= zbtVh%g0-WKt%brfQU}@439@RioksRGl@`%<XLE>*VYh9Q8!aoPmRax3IYJ1^=~1-P zhh0l|e^CZ#hPpc(gM~yNXFaUBW`Ho>DoJ+}WrEX8SUcB)FKuS0)tQ^aKc1^@H-j4D zs@*BikB=zIxZC^(U2kp<OmkswzHU20)CTgc?(xpc5UW~nIzO4;B<Ek>A5to)l|b8~ zU>OE@QecYy*E}~b3|K0d!fPySZg=wzyZs(S)J9mEVwE}BS+fUfir73s8de_Y9Rfl+ z6XJ{*76fKw^=1|Ks~r2bbXJoaVjb?zKp&kurYA>5s2fGy8=K}Cm>BFT!f^(C0BS-y zCv3R_m2R#lQNQq#-%RXlhlqzw0BjHov$ToAIoQkt`P0`BdPuvt%RDV`g%8?7MuHv4 zX>A4#On7=Sr$N)K8VN9DjPQPUz~Oi&b*Xj5ayi4F#rRWT(Bu$yHbzyVPr&sE)K%>6 zJ$7q^cLBSH88Juc^WG}TRwRqT4xBW-oy1wO{#SxT?z0c5^B#4*wz3jItLD`Rpco~s zK-%C{X0o=AAq2@zfl-Jsx$YK|E`CctdimKHg>w<*=AB1XAfqTg;h}flBX0#s9ojxH z#y16Ub2iaafEpu>$G!coccsWa+BqpHA*BUVj99J(ObNLZ0gW<=3>Jy*q!)`@=B=v3 zXKQA4<(qQ>z|zt^jVWnZNup~Rr&d&!?iQ|$ngx_si$o|%J4kL6(@hjB4i~Edzh1BS z?Qi~ozx&l6Kt$LdcG&GYTja2Ox>9PG6u>A>bM5Lw^0{C%(oj?;l&TDcAlRTDQI=JJ z!E7A|c1<-*WRxv~aT=U(8Gn018cSA6kaqX>jXGVbUr<|Hqo}v6nVLS~(blWWjAiP~ zz?*1jJg!+hVQO`)9&C}L&^8MWDD$SII+BH?rt4IHHp@m$FPbopGGV8vmwpnQtAkPP zAY-&nsX+!T%58zVYO-5<srROH?7em#vFLC((is-&Jlp=fZVNQ~<;*#v);`G8J1W|` z8wSm8v8Dg@Hr2VH_UyV{O~$*9ztPgv?{AvtMzOpui?TqDqOPk&B$%whgR!jK&8z7P zv1u<MM|l6;PjR?A;PU(^cV(R*)q(^@Kut{ub1rbcHZ*pHr1~sk0d*EPBAGSsYQ@e4 zz_~^roRTQ1(O`|U>sdG7$ZYKMs6`+0WVsfAw2!=cumX=vUQ}d<H6cN@DheKiCeTcT zQZfRIH*Aygpw5VG8x!mB2Wv|b^b=<ZD-QQN%!i1wRpj;d0JnRRlL_Y|DsM2REc={s zvqbjv8VU%a>fm&~g76M-kL*YVgaB!ilKt^s>*0`;ZQiWTIVhSs)QBM|s9Fm+Zz$Up z$GZoVnsGWk3I(u(&W@H<u8sIZ{_}Chw41QoIrwld$m|GgN_$%kg-%uIQ;To4Qd7ja zLNY>JK-!8EqlXWI_I4p?AYmOQPH_?|C?_1YD|`&1^ay|f+!RfF2qLppJ!-233Ja;W z<yZ!Vwb$2a`M^0;=Yc5uaR26BTJJLB{IX$LvN$iTZ~bfa!Pj4QBKm3VS*)%Ft#wqu zoEgq(pSzPZc0om;Aa!*m5GmS`z*%U9+4p$B9Np#sKxNSk#?8Gj2s*^Wl%*P8cHPl+ z<fH_UlQOr}7V(b`jTtI(gl%2%H~;Qe`2DYc2Xchne#SIUO}P%Pa(7g?|1id=`$Gtm zwo>VNGv!=-LCP7qi1FRlt=0OQ18BP6GHPR24sg@wUbVFlO7N1m4codltOJoShaMgt zusiN`ou%y2qF{$%U1a*@I9l9Pf>}rV>^`$Z*A+bUmCKjZ^b4&0(muob$PM+~f2T&) z*dQ5NqH~ycGc3DcStATGBY{grsobJ}@5DW7r6vtFEYn1|{c6!UjlZKNk9{$;{;0rZ z+aK?|lvGuZ3te(229rQVnFXOBLvyA?bICezMTNHBRkcIRsGPu6hnm6NoQ<zN&3MQR zEzt#^RQ8?Vt-P$cWC5fdyUF7C{2*AF$UfyZuo&)uzWm4Gc);#>koI2Z5Mq=vSVimd zVrB%V-km{H=6MgR|1>Ydc9HE?hA79BNfl+Ei!mwn!|TR0X!B^eAx6nNSW1B4T04rg zWGKkcc<xD4frBwMW;+Z%Q{SvXkhy<$kAk=<M%xfE;8iDmwQxdO9wWie0ZgkzrFI<^ zFk?rQ2~QEVOemb1!Zl-RcTZqcmQjsyw-aLm2;HNR?ywmzG$kN70RS*=ZxSJHhaX}D zxTq6QhY0#seoa82&V|(AMd4r@X_SXf1`;-}k~idSQm_31v?Fj45|3J{rUFS&$)$oS zfvSUzN#;@o4Zf{FVbo;-(h5{bFS;m0gxK&A&Pf*vSGcsoSxU_lj7g`o6()Gs4Ur?w z5~v_auW^(<cx%B^U}D@wtm}$tk|<M%vK-Qq0bY?4qZacsshyXm@Y|W`Mi)&A>>S9Z z8ZWwCOK)DJqp}85!a)z_=D|BB=y<7(N{SXNXFz_&?N*vmVb&<rj;|v3n`1r-M-`x@ z8XI$_3v%PPXimMY!{DAPr&MdTT`ntr{KH3t5b*H!0e5#hoxCU5B6CK%DeSGY#<(0~ zfcFv3MFcNHYJBhj3Ds^^*<(0dmjzFsPe>^b&!oz)Im5LnXu|<aldu$~B;Z*g+7i;E zZCMr1(~W`;0rO#xX*Y=+STqTM;RVoJMUJ{EygiA{Y_P4v@Vcf;<vpb<-*y>W=NMx{ z)dPmh>Oqf`I`lpmczQg^Kpg-f1|078NSn?l7&1lOrcsk`Vzjek^=wvWM_?a>p0l(6 zn@+Y{r17t|7A*twsug{_k4{!cZOz*GGl$7_o6|E6G~A7X8<hj6<VE=VA%pG2F4T6v zJS@0=3Wke);U2VKX)B}Yd~bmj>z<Q5s{y3VnfSu$YhX(^>vsF81j4-AAx=>SJ!$!l z9Q3RJHfte>0kBk)Omqtvqb@x%#rm8DA7FzeocG9F+Gt>-owXbH-h-G>soX4@l@_GU zrwqyioi>q$9WHa#v5x{6EUM&s`h|fu#iY~JGIRetHPHQMeM83xo&W`)Ih2$^sQ^ge zoPZ#F)Z4`jx-PdG6q{njT;Y5~*#@dlJJi<7IG!t=CWX@(hld9My|3PAB?pb&9hPc_ zLwKaEGeV5LWDBg7rQsC@1q%?oqR`1kZE{bKm6BVn63|++7Zxnb=0W#`$Tv_?S+lf| zRgoJ4y5X-<n?zOQt)?dHmXNm%ye06q03|h?0CaAIWK{&+O3d)JU~!C+H~26^TF<!k z<-<8_sUj;9U6Lh+-X<+S6iGo=7K%^Zl#+!QOH$|>%@Gt7C<98w?~}}u$@A!8k?ukN znR#-3FDrUvc6*A=BoMp{Ad;3hIe)C}r&SrzgulSMfO(p+C2cp;k9L}EGX+U1htR*B z4(n=>pZ;wbG0PS?RrHReGsw9iLTr*H`=sg%V8;37id82~dNoqhJYn0iq(Zg7-MgS| zfbC?pa|@N)!~TG2nh^Yi<HG}XyMtsF(u(u-ift*lUIjS$`O_oTbrsSbJ#;<u2ZZP_ zA7@On@YheX)beWvSlN5mC86Yk)6-eHR8sDHMS@Q`+#PXzxRXG}ZWL&`khP6@l#S*O z0)sx_wrA~}H`!1}pbl?rGAHX-YC%>G2k*VGRcch+u?VK~fOXlL@dt!DnX61QWpq|L z6(Wrfe9N5Kz%0Yej261n6axkjeC-6F{eMu1mKkX5gYriVaqd_hb+39)eiK7joDV2a z9co~e#+me7L$BLO!9-U@KLL}Jd05YE)17Rxu0J!U_~r}`_oLZb(Z3nBCOAh}TL!73 zMfpwFS`fgnEK<t_sN!uVzkT1YAv1aem@I6ISsXEM?;S7zxfH}0Tiqumq5Jhllu#kc zM<Wj#evs7(D0RU!%?L3fkg*xzwkE|DRJe`*l|>haqn!!jmZCK!BNKM2zD^@b6jTz9 zxF&9ca+8QyUG2fsEIO!YYMatiLSVE7W=IX#`3Uk3IbCH8sZ$}*)FbNJH=)Tiqm~UR zdufN!XkN|{H}8Vo&CaQ^t-AKTR?|Fxg7`POAETtRM)pL)?pBKfYF2QQhNxzY%?q(; zP;bGhF$AP9J#A|%=d=T<&XdqN5BG0QqHy<OYdiq@tVIBSo;+M-P<y{zW1b?`MOe#n zN^MGD&05oDh&I+ouFNQOY4`m|z%R<cN?A+$<H_OadKKDQQ$Tv}mXaooU`R7I&UtZ2 zwN#MOCjE#IMms}>Gy5hl=8#ze#kSgh)@9_@_{;LLU^eDS7Ey1KRpEQ>oZ*_0GsAmr z4=aqU(<Y57*?EuqH+NW40_Utzvng5{p5IiM{Gfp$t7VL;w#umzhnz=GLBM5ZcmPD_ z04`t$=@_YEWYd;#dOjm1nMQUv?6E)W;JnB2c*L8x4>+G*P)osb6&As@iqlueHEQB6 zf_uJPvD@zis5*b&zBflVl?}^!#pQfym?H;=Fh}eTvrv%lBH|>puGZn?$zcjpBOt1U zQ7U7a6Mp>t2W-oRv~E2kL4?D@0sr)W_fHUKk1*?`L~zTv)m*WhGcGR)X%T(tf@F1) zb}Y0FAqAQmI8piB*~%(opi=8AM*#h7n-f9MvueOM3F^q9?eX=xV*EPX?POn-5USxZ zSmg`iOn4s=qqNR8JE4J3&Iv8GZTCj~?Db5?m>H8cJvldoT9w4AY{I!<_^xX8Ycty1 z?hS)ZGX2lPz1!zjX5lq}{Y+=2DA9#E&fW!agt&sq0F9bmGyTPAnIq>tn53gA<&2Vz zV}U@95GP=F??7Qgt&I8L@zy`!^n8+bZtnVdTo-%BSH-d6TkblBbY2e_VRuB<iJ4E2 zk7yki=BDd<1s4K#`vb0!_MTiMT~?Ls$2_@CqBHdRf-%ptC`D356pZ`XWYJQAbYpZt z)C8>=GZ<Z>(PT=5TR~WJhVj_LXiU`uyYZZFyeB&}V!T8+`}8R(`H&1lVKc;N^)aG7 zLfDi!ObkKUst!|;&!{ReP7O3uLCq_+<wb0-Qh-`i)tz4hFln|zqtvvnu+$`zM0&)K zQQ1tb2HP#O0JKs{!aitYL>ZDzw1}<=40R`fHJej1Vw@T)V9}|B=10k&E@gd=g78}J z4-@8H=uBTmXRC@#0%$Ew_#yodU32oVo@yCP;~F!iyGfU*0j;KTfQ^8Bxgs16B2o+; zBqBpt$~6flrJX0eme%G3@Fz|{b;8t@w-qTZod`=Ky%-~QhXX>CHED{Nji+Fcznil< z99q1NhGe4JocCHE^lgub9AcESRcghuE;53Zpv?pf;v(ZV9EpeT9l|_;y;3BzMWXin z)b7L9paGlA39bwoUu)Ffn$mXCm19cZN^9P-1zd4HU-0?!lSJMG9FGSa?)G9Zv_t64 zn>YC8oA**XW`}i7Qa04`mZ7T6X|)VV<%&Q1%fG;PKmAT{14PKB;Cw#ebb66%5FwU| zyQ3FI(V{@OYsT{_joZ+J0McjH^J$-%Q$|U>4HW$d;Q0Oy-~8D-eE9GIhld?@Wx~9l z5T^hN9>GNf7jXAZa4)q;VA3l^rLn#>&>Z*9q@ERGNDG-NaAhFe){K$?R6@=b+nRAc zFP+$@R&_#3i_o27Rcfesd3tGO4Eu`HghoG3I#WPX*LM6w4kRlkI1uH`D9W$ELnjDS z{|^%1PlOsGP}9eT!!cZk;hRd$Xl$yj0|5QK%?TKSy3rZX&%5auu+ul_7uGqmg1adw zH8p)|e{2>BS<pk8`C!K1`v-rCpZ@tzg#2z@C74P&fs~8`!J%YvE=w-R=^JEiug_c3 z*5fRWu$7*4FV}5TS?sNeL}rUbX9!*eq8H$S=y14u5aPYceVz;?+YzqUD}wjfO*<^S zNXl6czNGx1iz<W^WX6wV@>Pt}jbb%`lhn4m=W2G^kjVzvU>lcbk&~vc97#(LRWT^b zx@kJ6+t4mzYOHv~oc8R3$Oq|QAJUDGXOfWGsT|xsgChs;4@f1!lgIUPLONxv&l@-a zo&>+pvY>z*<dRXgi{#8XYwf+t#|`||P(d<f6hcHxQ(7df&V$&5TSH<X7h;*Bn76Gd zW!5pHogr#;xb)*$DPxPUUd>)m*o}Lin%f2w8zLoABIy@)L^AU7vSHfG{a2^y=PE=- zj-0F$4G)a2bSoIS76E-$No%)`2t_U1sV9}CMzcc>HA_2|3sKVXPFjZ|C;W1r@atuj z*%706Z8BNKsj5x@G1C;V-yg9pXQXWv*-@(2s`tdD0<NlaB2lxfkTn?hMK(1z?qA2p zup;S81FEVgDTGzQX*SB^x+b_l(($26i^xkh$r0QfFolS61`ar2Ij^Y2jGQniik;yG z*fZzT*v2f&gUWF1+j%r6fyknNbF$@LLkPH>PWb-&KjM15007>-dxwXI2SwP6{5t0` zg$Z-qgEPTnMhqD>XvMtgiKeBRF|={nfB5b1aK60Y&HJ~Q4?B<tvP+oXMC>RinbUjt z7!W5fk-igxF;S4L5tmRF=aR5)8(tot@%iI3(wcR`T0(v-GJWlp@t^lIxK{k|w?8%~ zP@JZ2_?)({hUgJ?QO4x%0zwS(vndD(Rg|Ck;1GgCoP?0dPhO3T;CakZmAM7#v?<Aq z8Ewn9)m%_B1JyyG6%xsATf(+TDdu1Ov(Fg6e)gB|@W1~*{%3gkuwpp_rzeN=`Gm{q zMQY+DH#%SoEDEIS$OacNcf3$BM?f`or<d>gt{o8b$ziRF6(KN!*YX$Jk?mbut#;3L zEkj*&AYgBeZU<kl!Ckfq&GE2YL*<HE6QmT|9S#eKniF4pOQiP>pFe!UPyg~e9Nz3P z*N9|JZPoO>mbPssfVoDt5Ulc<b45}<4~BN&6g>xuMX?z!wMa?w@#6{WH33zqg1sjY z3CpIOy#RO`xG3Z+lq^)h?1Qv{)dU0mc&%wkfT1_YLT)fALB?2Xv=_Jf2zoRvZ7H^r z^1zn5guc!MBkBz53gH+C1fe)(d5<^(d?O4!<@054ttnme)P@|i3e0fx;1<Dx8Q=H^ zyq({{`-1dlLk4i&Hk{8_eE9Jro=<12n~dXiju68no+KAs(;_2nDatHx(v8N=$G1N< zC*-Zyrwx2$#&~=;+1jZB$SEu6i#l?crRHi4GP+>x09cy2s1S))?J!R}V7tON!{LTK zf-=F8b{lX3RH;<1n0685HLa$??@8J#jdjbA;-WN2g;=KIIol@;+r$unBcv^D46;dO z&4q}0+9BtwMmY>Fz#bL5;IXDxEov|qk(v^czbfLi$L?^4%8Yeg1ZnSCSpr?-!mnP5 ze5wLbTeRTB+a4W(c1G0j0{|KL%(n<dULk9oi%j+kK>(UEWp75&I<1=-e&-P%BI03( zDeQ2sHEu4-h?iJ<sI7Hr%mz8ES3$I2FIQ~qDp7SR*shy^GHU^6ZV?)|r-r9##<E=S zo4@-NPNx%`b9npqJ%0YPpCM(*ytn})09_l008cZ5Pe8qZj0(7&z}v{p`t_rm0Fw1M zJ)Q9K^rCOz_Bw!ND3m9-0Jx}zIB3n<i_`9$^3ktJN)T&7-3X`-%ku^2$5UspvuKhC zZ-4e4`{PdTOdS)GA92jARHkQ4)5`f=u)U-f*;{s_2S=~|jb6S4tSsr^qeF-ueiA2Q z+D+IUXYB6;gcxJMq-0)tJL0f1BL<If*x~8pi&8Ml*X}UkzxY4=ukcs@>0je_zy2fE zWyMc}gZK9!{0z&o;CfkbeqM2X*>HK@kXFOOh(RiwLtdqXSd|@?F?#CF%FDWp*cfix z*nVyRK=Oc4aigXEP4AnMu!O#(1~sTt=iInzn(1j-0X?hDp=E$cXF2pTrP-x+lf$zZ zuB5W0+Ml0JI6b{!Uk-?S85vxm%!?@_r`%e+?Ys*y5dkC<37uDmZxXdj+<75L+Zao6 z;1aNH728^Iy=;i{8yT6MWOAoN1d$hxjwEBzrL<hNl~tZE5Oi<=OGGop*k%da?l4OQ z!8}|8WpsP4249}zCbH<&7l1RP6mA-kS!!?HW9tXMva}^`$|@NA1j<&M)z|4~^<HPY zYigfi?Kh=XoKG*<?GDmkI_Q3MS<-jwA!Y_U!Z8B-=n%pIAcs;3{Dwe3|8q1_Bvt_> zv_o8(k(hDK880c}ab0k}o^idLg*7ZEZ0mx{^^A30L@?G2@(!95hjXDhJnayW$)cnK zrPmjz+Vfgf;oHiqdh8x}duB5_mSQA?IK$-)b-lI&)1&b22nhI1$|*Suh^%P+HtuBT zlD&@r6c92M%~r_4Vbh&tewj7h2#~45!RB=n8N8F)!BfdY-d1ofN>t=QkO5UbGExmK z>tN|sQx_&}y;rvz$q*(?(_U)9MebVwPys$f;m)86?~IGS1ENfs1L$@58-=1B4Y+NS zZ7WQq(JDaBVNDBO&d-?Uh~0jN7#tpcwnKOuKoOYc9pDL!O@}B|P-VnQ@a({F>QHEV zTx%HvimTw5u|Gt_6*xU!kd{@lB8K6p46ZhaTj--N=L<f6`h?|rh4&tB-@d~)-+T*z zaapb{!(pW@%NpgBab2!B9FB54eL$Q944ShJhB57AX;UXN*hBQ#?RKz{(gtjmvXzZ9 zXK-Oj-4jdc$rl}u>vW8>w7r=G`5Gi4niHOXe8Tl~`64||j_}jJ_&MhNu4M~rE{bas z%#-&)pSd;%*C>*`H*l@}Z;<0bHfRV)ddXE%?9F*dGKgy91!ulCz1$oNa~=jclqgV$ z!_t-%SS(+qRQ%!hKVbfwJ>GnCkMt;dYhx)9atH_y_t?)nU|x{vgnCLSmxQXc%ehFZ zTQD?6G$xLyDFF?hUxjAq7D9td7_2~|51I49S|w4VSep_X()zD5N4Ef6^flM-yF-qq zOKO$-?q3$k>MQJftqI6+69?;hUGR5*^IQDY|KiW!;z1nFC^A_p0R^a8@G)uI#5gO4 zD`&|{k(cx3G`s4&&5M8rgp6%Ts6~Qend{+DGYf+u$@I<`BFb7(vN>hBb^A2y&p>Es z=sI}nDvTovwb!t_@)X&<^~l=hk}=$=x1~mv)x$EhZ!HBvx`1YZSwRswXYDLt%+nET zQB*xhfkMJBKAfPoVQr%zdW0)uT^6LY!TF9;unL4_2ngMP6EQBSV4E3xy{IFGcR|^N zxuw-*4U~V{nKL6w@6B$)Pa!}TF?eDGT5U;%Ptu(N{wZ9sHTFP8t`%#^xTFnh+Hk&H z@Zs?jo=(p)WX0J$YoNFcuyjyJ%ARD71GA9Z*goj~IY^r6a=n0@lZl7wG&N_sEoTRi z+!#&>dzSNFJW;k(y+%*WNL)}I3FYn>7&?b(-eau{)`^DXJjerFNl}#D#cOG8Fg%1c zvX%tS5V}^*fGcppBiQTP?%L5e#W7|_Zk4VvG3K15+a*<OYe9&FIL(3+;0~@Kwc5sT zHqKc$N7*!?l@&y3IvJ{@5)G9h@5PBc9`A6z9ub4b!?zLl-%gnCXSnFVRKT=pYnX(5 zm9@rL8MR7@VM_^@(*@f_MzW@>P_^bIgL6gMsyGA%L)wxW@eLpV$jkYR$B&;;N`Vg^ z@7}+|;dlfQVOh@2fkIn%bF8}a*fLwnU9hE1&Uq=yo~Kza@4$)%kIbOLST1K>BUwAI z*aDK-y=o*OP7jL%QwyU|L2(5o$bClyNyB>&OoZppCw%zbk1}(9482K89KZPMKS!Km z>z(JyV6UI2Yc)+1Vw@y9R;p3}ckC3`I>-Zexg3nOIZl>Vm)8~r-1%GMN#j}UXVP9_ zdb!VLfU?hZ<UatUHRE6W*Z&j#{r~f~_~~E$1jqX$2o5iwUa(wO<W2TOXu9>&E$%T^ z!P<j2X?Nor@UwmXP5#ra)y_6GWn;1@vqNR(h@4g>b?R^H7i;>cgBQoobH;H$q!wEk z(aH-IM)%Bma9dYp`!dJMt|$L4mGSAvC-^Dg&;G$L5vK{>1;K;t0?ITYrGykWtRWz# zgl$du{NoeW>nih5T8pVUCU$Q0M-6v0$O}0TG&pfW<Noev-+;>4*(G8Bcs2nbR0VE0 z?t&?ryGOy}ENUW_`Smmk+wI~|6U@H&RuQs2w}W$IT3RHJ#wj4g4-VcF?&bsPa%qRA z4zE`!vwc^zYgg`KY<qM@&Z+UYK5JVPGxYi)sJJc#b9I6+a||LGXoSJ3DOKBV$mt(a z?i$9e7%Fjwfj3l$oMkq`s}Y;#G&EOB9jE$gl2;w-yI^er<fZ`DoN!(j{PFQK9$#MY z@$;t^<+Lb+rT#g`07p9{9VFC-rZnO2QOcM#0W)fr!|D-kJnUKtS(?^m4TFaSg$~F4 z5r?}Yo<DuY^M{Yp7RgxycPFJIh(n`@4cV(IBV9wB1(?QwSDZnC10c+n#8y7ATKJ9T zXd-AfTJSGoh(id1ue0>AbMVn)cbrj~v861W1WLNnl!7`ogs#->0|Y49-H)7-%y9P} zR<D)xh{qHi=5G)9_UC_%R91uo;3viuW`Ja`OSM5FwiBew%s{EAiIGnil$R^k=PS}B z$uzySNQpp~pqheFM}MR^y}X?9^yvv)8O}Sreg78IG$}EY0@^CyoW~XfI0HaQhB1aH zj;c*vt1|G)&S+IEkL?|-U2~c+g&C3`ll9&56*+A%Iyuo<b_bHdyO~cw3{VBA!UYDo zicdd0;dg)gz0~_h=Y<G&?;h~(yY~V{uGUA-O-?K=>%Hv1WjqK2ik={u7*^hazN|eX zFgS=k6E)O(wH!1YDPRo9nm%sfL{q<BORDR#GyoZ1odIUXH^2M_zxaDUw`c}$zPU%O z6=~bBURP{OLb_&@%*e?=YDFB%b<+u^d{d*g!Aq8%um|ssygJ07mZ6AIG6yjVDHyZP zpHM)ex1n&_abnMIvgRz1H0MXpoJH<U?T(wERN;(@0dz0~hh16R7WYin<?p;@{P>%X zSWYW``j<b&@%{*gWLc`}XbT$B20VYfqGkfv0qnI4s@&@LA@~_(rLl6B0zwA4q?ifD z_0x>7KPv9y+{?nlql17TL>#FJa;-AU+t`y#85j@;fc6Aaqr2^fRW8ao_ckk{CMbp~ zHag0dVIYYvVhk;Us4S74dA&Jrppvn7go_?>Hb=!4$?8WW2D3SrBtWMATHQ29ikPgL zhPJwpyvI2pZwcqEAT7WKLM1}<5mP8?$kEnBgh0wC!ZZiiaHZz45*l%a7=i8>S?{Y_ zMmP{ck-E1dU3WX=M5wOzD3cU0;#iXAnv!hq(arx)e)@AgJUwME5o1MWH3mdra>xY9 zJggf|mouJEC;ai_5BTx($Cfd1P7djAKjE<7>98ZYN47mSN3uv~g9{AuRg9j4MDQE% z&b`OW=g&x7bv&{1mV<;aih4Q9#!we#oX=<6uSxju)sQ;|Vs#Bc`$fQjW-6N_+ZCxp zj1%VF9;F0i9oLy_0jCx91gt5;K^QPefwM**+9NTx07#vg{y9!TZ_wywiV+~M3PM@b zYDL}%ySsom2h4tkn*a*poD@z-MaJe<h{3NlNeaA(66H)ls&E^_7a&xJZLO%+su7wQ zoL34$oq_B5ikHtP9RQ?r8Hn)o_|&pU*4<)jX@4ZM;Wd395Q9W<=kp1rWLz$1EbB$- zbkWX!OJNr|-&R^Fxq!U``5>4Oa*Cu*gH}`Xr@%(*rm3vu8m{0hy5f2%`0;n2@bY-> zD0|%_7aYF%>9?5ovtlo}d%J2NN$H3y0Xg;3<hb7r*P+glft;K1CqSr&ZQV@&Re(Hv zP>cx28v(w>3&29FW~|zTKBAVT{QU6~j8U|K;{a*Xd~?K`cW)#^lx=LWWNu0-!hf=) z#xN@2V}h%KF>=lUIz`h*k65|cP_QBEtL+XN{$@Cfvi<@D%(=+eYrde3$JUI}nAI@w zwDX1&7#Ti2a!xoL@3G(C!7?TtZ{}K91@2R8J3zcO5BIgDZs+<rx3ezxWLq*m{^1el zrxnv-k7+l<#Rxy|0CuP;Bdu5Dbw$k^ShIFifj}O9zf;0EaTaQ+>Nr~2Nbje}`1q29 z<3R}BCd64d0Jvn->lrcX+>mPW(lZ~SR2dB!d{B@c1ZC=ddnn@Wsg+uhi-3@V*B){s z72)0|PD9qfqDW?mbVDO}0KA(JVr)@DHCjuEal2kGxLhu>KwkKvJqTIvNyu=t3}A<C z{9o6@kknB>Y;qvIwp7*jT0!0thzqDzOw%4rz~o$uG|MIflmr(=$X|Gc?Gp!qBY0;H ziU|?7esnm&V|a3i<lvc*^q>(zrzXmwl6DnU1YQ1`XYH9mwMazidRd}5kmTTkgJ-F6 z2XdG}Es8Wx$aw;$9dLJt`t46p|KhKDjnfprLvym62`=QmDul$Ts<T(Bfc*+rWCv^x zU~))BhPJHNEB>kb^8f(=07*naRDSsNuaK?<Hf>CtPvHn4);?Z6z$tkArWE}ARNx;x zxMZLdahwXn=PFbZqOxwPdwTBsfvNylA_)c~L}PYyNNGi0D<T8VO>i}f1Ck56qh0_V zW!kvomBO*1{>_G%0s~{eKeVyPIZMB|cfz$_a>D7l0r?~|DJF+F35g9u2W)YLhew-p z4uA>+h2S}WK$u-bMv@lEYLW15nGYJJajiH#opE`-NYC<q!kcg2AZq=*l}9Y99u&Rl zfTGS@E=5X87jDY+NB0B3=s?jgTr+i<Jc$rwowi`Gnnk(8#Qy)(ln(X{WCRQ7g|4 zF@R8=OB{gfn(*Ndp9MTyyWs~5KH!_5eG33suFDXq4vrlF!1}`nVPciF)_-pXqB}QZ zn%Z6?L4&)Q7FtWbH8f4dQPXLbHn+|O8`uLtXQ@cP{*T}PAUq?@k+EQj5MspL!vm)I z*ycINj0ceg>nI?2)nV#!LZX}sMj#*)2_J)&!5sMpAO-*q+)(JP-B7=*E6jOGWy|^y zY!XjH_3QIG{k`q2=pL~trDQyQ{(zU~M*xh^pMJ#8fBDzAzke&TqUC4O4xY*xIV~u8 z?IkE}({4eG?pr&+_Dlq{7HKv!BDyed8C<U@8zb%sp=6K`*v_Ak*KKI`tIZ$~0XY@8 z5OnS8us$kF+7eFAfg&LxK>)>GI!fjMKS?QysY+|AlQYpBM{x!M19Au=OAAtyGD9gk z0lM5icWV{&#v-VT1dAf84hkY*zngK`-($C%712z{I{&>gW7`tavSM9V@jhYw=~dI4 z3ijEA>58-!ikOubTsOcrg1WJj)f*QOEg~nFe0ga()HeiA2*j8{*t5fZoCTQS1o>XL zpp;1jNb51B3UH>N!PaC`R7xZ*OYlP=VM<ui=MGd!+IF~t)C1Rwvf*IS2#^NFY1ea( z5Qz}P8Al+7qlyqb$T$JC1uUnGQU%3d0mR@i#VDgH$ztOU{4@qNRwIL|scZ%)TM7=^ zf+vD11Ry${jaWNRg)pO+D8x;wfxw3efA2s0C%`}X$8aownOYdzCSLHCq+Yx(3(}V4 zvz>4eBr0G}V9xN*pMbmq+lsI;zMBvDL)uV@AT$cM2f_3?fe?MbVYkPY6Kc)Kx)w3a zGSb>l;0&bN>!D5+DXD|$t(RZ-eq>WLqAU|mChFuVV4=EIN7FfnwN`xi!xKI|{sy@$ za6!sbesb8~O}KkFNVa0$Aq3x)rH2!&N@b)iYdJ?-;8b#~v}4Y>Fy38oeG!K{P7!b3 z++o^HH_>M+SBx2e*Eam--vk@56hp-Ea0HRVvMg9un|i4-#xfDKYSdViPCBK8b=`12 zU%>nU#-i3gj9M1Lob8(wGm(rK*J-9{)An48=2R}c_qc!mfV6GRNRv9ZcFt~%u{|p{ zhlm)cB<I;^c`fek8G+6y*z}a%|2SL+=1jA-8Fm-eqUM(E?7xseg}ktsmxR;v3p!q< zZx1=beAvMS=`1knZs(%_sB;B520VkNfEZYK4RUQ=5^i!RJ|H&0Vreqb3^@P;T(wp- zy$Qp>fDDhOfu!ls<}meCKZeMg)#<X&^e*7;?hRg^AGKpiva;TZp65~^t-Inp=e!D~ zd69BdRR`cEP#XZxKrp|)Z%a+`Ox&J>TDiq!4uBAo<$^*RTws(`d+V>Yn6^knHE%9` z*)+g%tn7%ep*}JYFZv10K#V&a?jNu_?7$FkG?7v!6RE9pO&XaQ0U+h?Pl#~>6Qu8x z4I!=(LKUM#N)*J*D9}lQZ6icLgZJ3aGY<P5=6S}v+e<W4D%NGea#?g5QfUXiD2lYy zuACU$s2d#s&p?Gkg(wp^!vRQYzBDI9y{2|bNz>?duTWP_G7;VpA~{UKV-CPih!JuE z6**ix$Cz9N1ro3wywoXGfflaF)x)#ZA5CI<cR~lEadVytO0lYrfhm#-k3{186^2mR zS_G-rHgq{ddTuL#;0T*{@a!<5!px9UWrtdjx!~z?#vdO)<Bvanz_zYU@SJy;<_U*` zWjs9Yrycfj!cMa^Ha}cit0LwpVmHr{dec5}t8trhtF@OIn5gys1LAXff`Ij)!%=Dl zk+dzjnQ%OG=0`F;VoJ9~0o2pSy2^!tRDu7J38!Vnk~VDHhVz#2e7@qthaZ}^pHf23 zQj1STx(EdEKf%`uz>9Lr0${DBAcj6e05G5%X{U=hcU}KA=eV)KnBtN%7@a6VrwnV} zdu-c^ysp?T73(#jvQY54;Ba}&IPEiz$2|^r6|?r4J5n5p_GOonq!zd)Fg&WxCU1bV zQt|S5!ujbUN?{6k_wK$;2fZa8A$zp8zW`tp^~8}ulT&>a2tl20EdhFwkr1PBT~uzf zHOSJrilG3|Qo}LMaN3@n^M+EkHtgo6e4xRjWu8*X*cPc{Tl*C|4~wu`c8nQMA0C_X zZjOXACxBYS>Ah=Nhn8CIrnS*0ThwmR>v&y|sq=mh=G+(~qhX~ieT(7s&GBj8iTqW_ zKA&(oUDdGLo(++=clhqlzr*?Q1-qk1E)k`Aab}97r8x^Vwh$v#lvKrzWPnQ_PE?A8 zKMsJ?j-2isg9b!9OFO3w1rxm{z;8py=eADZPEv)&wPDAu%ZNE~a&5(@=v3MtfA}rl zym=2oRYbfF0U{YA?x%=QGPd=CZCg;YDH>Bc=xc7#BXA=pVAnej?Tn~MICgMFhlUjh zcv5a(_-k%rSZgC~iVgr!k!~C}N4{eo9DzuAS6B$U$TM<?2tJ6Ovuw<OY7Dhj6e4VC z!!*fMt}Sh->(Y&-DQidCUrOBrXJEhE;jrJ!KpC(mKdTPvh**~^&gTo(WozjU0VQa^ zb7tf^5C=gH{NetH`LKs`4uu)(wjpav965(vtB@^#0Out7uF`VRQJSN7Sa5pz1n<7V zZokJA0uK8f-gt*Q@9+>MMPG9Pmxxj-QWg4PA3UbXYx@v4@2!;HkRl)|aRQ_+D-pbr z{&5o|8?(wSlTnLs)~~f-Ed|fZ6`OL*djg{O2+ko43Ik5+p~fIv!AO;nz}QgR90g7r z%C_P8^n%m#3sMnwLka|sh;5Z=ZZ&1RT(0=x!zYOpYi%jL_BEuyO!#*(;N9_nw{ISB z*zYy{sRKetYH~414LAfrsz&b-9U+i7Q^9-9Kxn@?L0iHAax83jmSN%^O^w-<aeh4@ zget_k<huj7?t9wW5t#nk{HmKjHdeyYWT{jnu1K75Dhr-#!QcGtZ}9Qs6H=+Nn{HH0 zG~(wZ14J4PQC5$?pR5qIXSY;!hzRTiI21w<a-!XgoEA8p)t=WP1W0hW@QN5F5C~;+ zh(XZDr3xEj<%(@9SeJ~nRgjDD(P3N9c>MT+^NRp$!xVA%=7?#I7y`{+9w1Rxa-Pt- z1KRJ0h*lJ~C`u<S5vYaX;soY`l#A{ez)Hq6B=BVAjI@OSBCmbbRh%2JOw)7X?1^JB z8dklBD*Pkmnz1cgGd6Ah31mRZyKmosJmGp>hajPYe4E}H{+-rz)9Tlq(lH?K2HK)S zQV_6H2g2C)?B5btSc#<r6PqU1diZ!8JMO}w<R0*xPZzXtzOOPhVTyS3{(#H#Gpft7 zCoCb8A>!*+Ku$70E;{&9kQ2Zg3y3sJR@7KgCDoi|NSEq$0<=}uHzy#cRrZy-%$QE? znGVZ_IJK5gy7&Q_-@UiN38<LoeG4qNZAD6JW3jY}c%)G=0dQePj5{1PMO>9WKBW~o zNuVS(`P}?4Yh#yfQTZ?2^f3_w6Jd@7HwEOpN+73uBjKQ)mC>=j*>HQ#A?qt2B-gU; z5X~ai!tjn2%O{;#NFq1QE~@SfU}bG$Ns*+S1+d3G)z|)3uU94+Nt$w=CTYrHNja>` z6$FNX{|Ym5skmIOLW@|{m*XDMF$m5F+}+<{e|NyNn}sE7irCK+?z}^Uf}FI5<(NR^ zQHm_2E#uhWV$MY7imXwxb3$Tt7bEsDVDcU@m}jbU3^1bt*h<D$GM2O<vzYU!2z`bF zs3LfGqs-0As)o!00YL$kdUz#@6)$1S8P|2iHEsCu=?OnPKjPEpM=a~2skCbQ)nt9Y z+u^w10|2IJ5?%u$#A(8A-s7;_!8tKp*XxSU&oA(k%r<cQ8GAaSR>t}98AKIfngubg z%B|GgX@QH>?5maljPA3$w}fk|Sf0-K<MY{8p(#TXcDeVSmL(8e5U}YqO?Wuo>ER^o z=NbEH#vCJJ^ax(l;v^~h=w17n3_dZoE2k-RjWP;g0lEXUrba+Dg>I*d8@Q6VcBdf_ z*c0|75e=7!?{LJq6ny&+@A1$6`M<>Jx}v~3`i-G&AYTHS5|=;Pc&R#zG~(0qtx>DU zPw);tMBE=AkhU|(Ra}<~a!TMzQXaV`a0M>m0_P402ajAXV4gtirChO9q)mE)YXb6` z@%h7NeE#qRfHBPxcMr$b;#Q0G3F|tVfLBvOnt@UW$$qUBTIF>YWhI7)!Ca(84hoo5 zpq9zBIqlMcAuMT@G4UZvr$>m8_RreZwC2)U2pQ-Op4~Y!E~g9D>pJMtp0<rsz|a5U zr*NLIT-Qcg)+2wX%F>)oi~jm~vCO9#pQa2N5N=FUx3|I~y_~l0aM$5lgW<>c(dbzS z>k~Ie!m<)RcvR>!kz`13?oY4xlRy7f451?woq^GU6xPy>C*+X98v_M!RY!KuB&>-` zL0t;4$v(4zlUYiA1~~2%;;JJpt4Ywa)17E@@a3hJMbT>()+v>P6JUD)+keJ1&A41n z082S(xt{Rw@D4z2&Z`K`kd<{kgdh?EsTg<SR4GF(U|>d#7ECtCH7tW23UMH|7938~ zj2H>P9hfUp+E7f-mKJ%)^@jbo!~;O>lP#(gn@%7n<CD{RMc(vv6(D$oFd?N4%z|++ zCpgq91VAIA5;o`A2bsJTx`Opy=CKQFTSdO6)~1uTwG9zrmfC))j8v)u)(B3~)iKII zi7?LyQ^bCna5qOBV!%8FOd%k;fZ!ZF0I$kb$aRX;#$AAi4jn35n;N235d#IFDfol* zaQLV*2UIyRXLtp#RBac7lS6b_SG-)W$Xi0m3A-3^m}ksh90+d)L%l232ryS|T4M#Q zXgYG+Hk{8VJYO#O{nKZhuUA-lFl{T+dcn3Xf;wkoLQ^F|z{}~Rhh|JgX-ZY;ncu(v z26xAMJU<J9+j)oG{T*VQQ8t-Kbv)ilYII$METRE;gk)k40R}GVXGIh2Y)V+1$EprP z>tk(E;}8+4_pV71L3N{GNeR!Vb4!<vID^*SGekUAOaY1FyW5M?b9Xr4?s$j&GznnM zJZ<L?f*jsJ4uPDON7S=2kfeeb9U#B20A)G&@HVy@a7C^`xMdS-Ps(T{Bn@e;8^!Hs z7Vaw1iH?zmrn)Vi8iU7o-~1HEL&Rly!J02%U!+vACLlXp&a0$iw>{RSBG(POJ&;Ng z-ti*TqNkTDKK}3#r<XIhN{#>S&7mplrVBJ;wY2LfXE0eu$9=$}8LNR0O3Qpf>4uR~ zj&&R{7{Phztcj9EVF((#3Xib>0Yhv~LFLj&O{D!$`?oQ)#_F2aT5*0k-;mxwoh*VF z|Mx$6hi%(nRK8Lg=;b7P-UhZcV*|@}aR2uhV!yWC1O+tO@F~|y0Cv9(fLH5~SulP2 z<wea|kkVAT=`<KK0wDzL!YS=NW?Me};S)}uU$9(O{OVu*S}BSh!W=N`(4-JG)$A;$ zVZaIg%XtSM2-Dspr-JpeBCT050!45T?6hQRLw;DMX&Nfs#LMoPG=;6@69L(2rVZ8w zkYS*}5es7eLoEeynr^^vA3l7KH*emf3A65jX>HSMHFwrf=X$1wDr?!uB+gVmYmip8 zMV<$TY*Ij;wkSf%VYZjkbcBh)C@WUF8nF^)KXOShGAwz$69P9MhV?0pXoy@uj2<z} zs3l8QP-QIylG@xn?GUFKAVN?<@y;W7Z4WFN>*WmSXjxALBa_UfD2_mYW#+-;3WWUu z_xBHoyS=n$1P>o0g7>)d0e91cIe6@2M2tbwDo%h4(q>0(0gOBZg%lXH0dR;RBEl<4 z54FvazVX`9gcX3J+Jaa16&@8XSMZjxq!pPNnF&`Wylg9e_5C05`1uK!(+f^7&$wO| z7@W;K#t<gF-yd+VQ7eUjIYxvKk(srB++*R2^SYuW8Tw!)4`+unXK*QSRqFSpfqusH zs(H_lL(wAb3?f4DGT!$3@`6wq`w&1eVwxsQal&pt!{6QEx-9s^hwpJZpBfNLY^tRZ z4OOeCb{dGB0KsJ#E1@HVX~KTLS4FQza8NW&X>lKaD`;cMDhTOQ*60fW`!><c)}bk6 z8l!`PYdXQboB@1n%DBa@Jj6Uh6h|cKJLeqU9PjY%{vNw&#uOta#XFR086m)Xp{U*+ z4)D{AU;XY6Sk?uGK|tl9o1|ww%qVmP&ck6B#df`1aeR0q>2U~nD|n~;0*t#z__O_= zVG2&N0+ynz%Gfyv#lonuFEZ4tlma5)cfbDw{%`;7{~aGcJ%X8WJnZrC_U<M+?Spvq zw#M7nb?mj=0br+!snj~Gd3O@f9IycAJf=8xrK?JD@{<gS(#(yG8fSGrz4rnLtePGn zb?i|<0Syz<0!$FrWySS;{lX|)Bp>I9_uswM?2r<RRVY_PHwoh^bcb%-PYh>s5cbyw zTh9Zr4d&@*d3;fK4q4<#!IL7s9c$3$H^3Y<`CS{&n=4K)7i?=9?i1~7IPVbWfV;N` zIg_V~mrp0*he$fjuvDR=XjzVSjO3gL%?wAUa}RXRK~z#J0^rfQl!(31Gc&_wDP!f0 zHM2yp8j#HWVKd2Xbx556xt2uYO5LWiJCYt%?Hq|nyaCKumP^AHR5g^S0tghWKt|4+ z=;C4{)I}Cr2Ed2b-fDWWVMA1gop<0603}B29atH;s#ASq@ooPk0I-0<1<R?mC~pWf zAp~g_6+-k+V-yX9{Z3wQ41m^o=RoR6RD^kV&`u49v`B3@XZ0{@LD0HY&YQH{RH?N} z8(BmM6PV;-t$+FMyKiuRIAV$sbBx$ebL$6oK4^bGArcUw(H8Z(95t{Ap`t4CzM?qB zS_-bE;QJpwVoMvm2i_izh$Ojypc`W~Fz=l%K5N~VQLzbtB>`KOR;APRir;_wgunYy z`<p8R)gh;ZZM)!fc@eyUBT+;w9&F7Ob-m#Ed<H>Ci-HM6tM54+<~{biJ)HN=`(hn_ z<3X50#C*I*-0hHS!TEf~mNo&dWoa^$+p@oP2DL_QL=w3Q0CR_TcMrHb-eI0*0aYp2 zK}lD9{`^OrE@zz1XPlQsuoY$WC`VA!U~sudvStLl^9U|9IUzu6oKO(gP^X8;nF%6m z+f#tYJk6?bdm7D<&;6Nu%C+5_DK_<#C3-3fEYmddn1a92&7uG<Pfz&6(_@QvEgG>b zhACQ7u79tFi79|6=l~Jzjn=c#jKqxxH1JH=PnyHhQ+Y*h3o!(2V60n4<xK#T+86E! zh@JqhaH+KYsy3_%9>4nW2mD|D*?)r{A0JV<;_v_R7x*v!$v?*1hdXu9MfSmv>=|<d zo#x6&wPGuhp)tJ8Rs@u044vz`;Pa;sNJ?fjw%G#EGianxPVq6Ski3Iq8LH)jv??)c z0+N)M9YYp{#4Oj6kvGvtMM243PZCZ~C*&>ZioY`cj<7%M@a~&8f>E-%vKJ?2tmzj6 z->K3yzld3IJ3QQ5+vX-*El<+U3)Imf$Ia30kuM~|B>}IBV*>4{>96U+qfQESMnPLE zM?%w`wm$u^2MThn{c*-OKYx$AZ}tcWhxm6M|M<WB`><BC*4d$tA}xUu!KWo-yJn<y z__GL4z_uh@Pgiv!xKU{vY0Vf!*!pxM+jWgZ-o81GhLi9v2rFPSlvW0)H`lfuaGG(c z`m@V&#^G=$*+oboBXdX+*5%xFb8~q5y_TFow7$Am*Kil)q^xP}>Mlft7?plnoZ(W% zwvz88QA9RnGjtuRSu#o0_h3vtN%Idy9&b1-It~OXzfvw&XM&9wi{RKJO!E$<Y$yQM zES}KidV&Mva5y4NvmRJ6IE95eG{k^8P6)?4_!zO<@A2+<he#g55#|_i*dGu{$Ug)C z14(NW#JQ--^d(`xfEJw4s5+7e?6PinT2`E{3zl`m=ci{pJw9Puueh#PY1^;}#r4`M zAdF=(1RUob4)cutZbl3N^KJ(p0#56SW!vy_z96qF*5!ijy285|fS|pl)e+e5CWPV< zs{ojawmEVUbiILHijr5_d<D{04c-{+fgL6|$Vk^|+F`#xVxDHa{q{R#E;wIKIRE$q za?MC3t6^p}WUA*#)+dkydpX_CIRxhsW58~j5wvrnmQ8rknX#q?OIomQ3oh3yuFHyT z+uGc8i|%TzEiGqj$?EW!rgKBYVZ!IM1}1-_DW(>M^Ps^@n^BJhjW6D=6*XFH&rYQ1 zRs&7>CfHTOKc_~B*+7~ZC2y@ydWf&osp2mj3l>j86p8lP%Ns~ljpRZZMSIk}4)lQ- ze^a7bAME<h0YgM1*Q`pw#lqb{0^osTP4fXSPD%vdaKV%dN=g7rPkSLT+Qbzh$N-Xm z`9J^9_;3E@KgW5w0w4tMaG3TuT^9WJ|Kq>KPv3uohvO0Zon)-$5D;|F;H_<ogi3fY zpirlJEXP=?a?BWv>zZoCmMbpnis$nM*JZH~QhLZqUhjQ(n$2hvIrtFttVxDw<BH+} zDruR3Wv|J3Fc&<3dQm(8-vr>Mpx=M{7Q6l2OA<Dkx(cqrK#tNK)Sl+{9N^3EjfBkN zR{2MF^(?9*P{)`wW5uoQu{jzH7&y&%R)&i;r=)#?U0Y@E{Brps`_|V1_~l>y9M{W5 z9c99Nh%LozrB*OHSd!$Xd~k3_8GS67qkf<a&}L8N$iuOh!Bk1c*{++kbFP;Sc`3+C zLD8&3*33gOTIgJmw$$2>U)f_lW>!+78$BYr!Z+u_0EpYRV!uDOz(C5wgsg3{V^(bZ zuvRX#&oze~tgVJL;CVJAC$h`?BaV0904|CQpFd(-u1MSE=3Lo-_B~prM+n`F1<}Bd z&VnoSeP=*BD>|#9kFz`*Tiam|8iVr)<b;Y;dfHbY7mzV)F~dcV7<Q`Q94N@(lXu^J z3rB?G{(#_vfU-b{bHp4XCPzTtP^lpL0Lns_y7L+xd5@|!lS%-{qmUDXbE^39`3XNf zKjVB|aJ?={0wW`Duh$E%tMK}-Y1MJIy~ovzmz|Ceufi?{;Jl<GfBKW}Fa?ikH(@z# zKwVLI!8GkKPcx3k2fzWTCM-!DhAm~JR0jTXi8>o`M!OgJ+~8%x-hSTWn>XL$uscY{ z1pz5-NNK}we*3pLU(Z-pVdBaPoM};s)jDrdu|2||N`S8jp5P$uH0QHTpAzDoYg)u0 zYHEHrMR>Aqiqfu$8^vLileNvDXH`~QSzG2rqj_zq^yJWY!=iWXk{I@2Jjv$u$Dp$0 zyp&3~wCEp@)SVp$n{z+*H#g9h6B3j-?cifTm<Fm|#;|s3bj;3KwqQvA)8KVmkFtOv zxs@k~RpD4#oCw0+&^4s!tAXYjP(voYR>1{?AgM%Vku4A*x&WGYI0X;yfQX7%GkDwZ z!^e;K{>LA{rQqY^XZ*Wg|1Fkvh4&uczI%`RqbR$g^8h|RKjZsPACZ-nO)@M41+K}H zI(N}~%yGhD-eEVZ10AKcD0+|mG>daRO_+2N-C;LF#`hM?1XNFWJ0J0jH+Lvi0J~Ku zuSuDXTZAiFCD$A|XnsU+3<;;}1*c`f<M{=Pj=v@%JU>3-^XJn|{dSbE5CgvZ$#)=W z(g)OOG|FfBFKCuWy9!2EvDF#6Lo{{-G$*o}BXE0=nhiCzWErdRHe1#JH$ci;%V!y? z;f?)Q086B5tajrs?0nC=34i$yevW_hul_w85%OAa|NhViKMmP3tAX3|s+Zf&4|!_K zLM#TCbiFF1-P8L%`Z&f7(=K9vw?j?^dCkaM=^Y#ZxH=#c@<oD?oNUZ_JLS3$vi3O( zr%Y)KhW#vCYo-MN+j;@xLCJuO3ASfA+Zund$QX9Vq_Y3s9A0zaKyrS=bO4hV9j17W zk~W}ms`M>v+t{)K1XP0YL6LIa++^8w&jmEUhxZO!t;kzKI!REQ6?|`c(QBKna}J@_ z6{V~~e8B><*i93@eg7@?4{s3Xoz{6Kgy6w7BRG$j%L#w{@kjjbH@}xCvUY(ZBD{UL z$9|eHM*;9mlkfppO2law0f>;9@pxJAbh+TVtm^eKI1AX2pp%cB6Tw!12%DFu2dXLN zp^e0m39%t%ed}n5-XSjw-n@B(m**1*8{WVF7RTco><{;d^A5{)#^v&Y?IdlC>$WPX zO79<z-h*P4sMyl~ut=yPhKM;%csM>_f7qeagqQOfDJQ&~PBIlR$#lS6iX7l(_+Pb0 zw)01At=kdj3?fEw1Xe_^jh>7#BD#p^BPvVpZYc#hiebp1s4=@$o?Kb#cr5K{7V$T> zH?GZqIC6;2ONv|-tfiS#EsZy!M~QmqN%pCN8=hpy71)XBKPgJmX?1Iu3WwH_<#42R zL2@Ti#?*nXw_jFzG9K{`&LW^4G>h^<(6&S``&|_gauXde2$pTo>v09wq7Hxe+C7OZ zaw({JLxBgC)Y6OI1>7A3<Os477x3xRM?5{h;J4rZfdBWu{(s?oeulAd#xUWqzeA}G zk1yAjF%k@p!{Km;{Z8g5*pL@n8!K6rT5(+#T&@?K*A-8fi|m=TW>Q<d8x3iZMf4t1 z4A@VzfHdcwfPR(od!8oD)2x3Ye9*NejeeQIZ5?EfFh#tX-k>}@fbkQ62+x-b{>8uk z*LeE$8C(p+NH@>(?(JLrqks4h6;~vTiGDELn-18zE-SW_u$9{8NAx|V9^qFj+dvg5 zDcKd&nXIin*xujhTev%*02xbfJHr-Pk~&2l;>i6)WIEt>4~PXn_3`PX2GaD<@LD4L z`Ct749TZKtJYDdU|K-nm-Csm_$n@yDTci)I!S`#*BDrSNB&(sb03diW1j6J3LRCyh zDJaL<F#s&BuQ@aFBAKx5R8c5{F$7h*s6?G=y2c@OUs?A-bkfHUe*hpx@bvP8H*eo# z-tC2NM6-0&GRRCIHXeS>Ww1GAn%@{Qg-u^J9j!kj3CdzF$XT39t_9omjJz#+R=YlB zpr!H!C@Yy6s3T~ELk6<#2~@iVBTN&*G+~}1&evyDm*5IPsZb^3k)<`*&Q&0)`0kr; z0P>i3GU^h+V+sKt4yA0kE(PndVqF#-@9!|}XIvhiu{~d~UKeC#muu7R04yJ#S|n_d znDnf7#IvO>xE4v<>Oc`$0$EraQA{ohliL)9W@6eQ=A;qy+FRAw45v0{X;fiA3`=8% z5HL?Orri-V9dY;m9`ApChy8AkEoD4Cf5yv?-{W$5!LnSDOVTuvUSHEkqap6Z9}b|N z)(hU_IPc+@aK5}CI4A8PIblm#jh>FMbq*8)$c$yR>)aY=9t5s=ol2NdAt}|$tYv|z zMW+mDJxnR%yl%Lx3$~Qi2#BEDFb(^%v_6v{VH-l+IRpsW-lFjW#c7d5G1c{ymDhnu z4d}$fx{>uQ-x?Lxg9ljKkVPVT5YZ1H2yOgmhXFP%DL+%?WJ+XwO*j11922zfsf~QK z!7tLo92C*+n!_i~SLbdNw6S&9biy3l-`0Lt87NiT8jbBM<8nEHYr)}gKq?jIrxTu@ zUhpse`G1dJ|LQ-8tP^316Ap)a1TTCX-HEYiN#x~xz2bDe>K<6y`Ag@|(*65+hTDtr z+)a~|_Ck<;=vuXXQ}??vQZ_Vu!DU(S{o`k(T#!oE`4c0meRQ1EDN;tY=q01DpJwdm z9p2pC;r?*IalglYH{-gl_&0z1w|IPdf+uN7F6J~>S;xQn<)7hy{h$65DVx-)0Rb5a zXOFzpfRT0v8OA21jFi<$)}cqa6s$=yfms2pNq?V9#=33@pyuqV6o{Qu*TH)9h3HIm z;gDUcI^c=8#qKQw_c{n*W--VFEX#(H8y9Ii8@98%X~LiVy`Ld(Sz5ZuVZ9{m_j|0@ zRlFFkV5Y_wQ(K;b+JWp&01dln=M!jH9;Zf>SbK4yoi-jpN9CI1XHzIkVr-sqUN>x2 zh5(_MBP1<sQXlX2f9om{L(WYH%NgxPHl+=h%L&so>pIHoLv$eWl4-2~siSLL3>9{C zyEo9(r0JygDcx9?l#tdHAp~%h@3$qPv%ogthwW&`(DbbD__F@Dw%DrH3}MC;71Wsu z&QC8$Hr=wR%)yZaA-sL}owV_>(1nsCAQvp#i_9%f2{p5Tyd0sf8!~%bE(=cQi_GhY z6DShAS5P3Jh-UMwB<&}MCxMfV+*GltUGbO!GX8IJ0f{`SbMQWDDT2X1!ubio&p_BU z;8(2`j;p5fEV{J%n<(3P-YIozg!d6EJ1|u|KR;pn@kivec1EaLnz0w6ozi&Dd+m6P z>SP<O7AXFdv@3!|(R<}1XBOodLWI@sYL!%H8`Pr_v>Cr90L>}r>03u69T72No_7s& z$RLe!vee+xhV%7`HEoR|*3#^)7LLAd>{Nm2UYfugNYBLH_HP7%!3?QJUt>%{<Lm8j zlZ&>FXrGN?O?!%!yNlkO0r{T|c+!Bf9nf1lN9{0ljVVzi>5uH?wR)72Wyq5E2tn{F ztPX(fjSzttu+LOKG+RZ3!Id=px^Aua-wMQ5L;*vlt)-0Xaz)J<|HJ?AFYs^w&Ht!q za))W!;qLf=7^4Y?o+}&R)z{5vW?QME4i1TxnlwFKYzvu10hfv;B|M!k+Cr;4IIJyn zAH5O2c#nCv$BqbZ?;o&N{t8DjRLiU5w{9z5E@!OUhVyd8`Fcev1(%l<pZU3EX1tf+ zBnBZQ3*O=Wut&}X*KO6=1ER;~81el4jQ_{K{O5Rcyu-uc2pifpPZNTdcH`iMqS$#| ze&<0hf;@o9;&Qb2n)A|CJ}W*-&TKY(kXRBh7%6QyoliKO&tSL5rfGU}hOLXrepai8 zq1pQ!jokDQ-54Ov4ie+}>D=@Y-|UKf-MzU35#jQ3MerWMd(>1xg><xf6^si2!|ZVG z?<Wy>G{dis2b*I(I2#}uq5-)!E0C7;*KJ(^kb*?P1;j$!l(q{B`8G%hx<B%H+Rv^n z(6W|2n<ce*?sBSU|Mc>VH*em_?_9zB5OJ6vkk(b!e$8$8(YB`cY;0@IvevJ=IH)-X z-AMZ|iE~mnT+h!~m#YL@DpUkC2XJup+VV9A8O^n5b_P0`mzfdaF--@gZNrwXI6Xe$ z`YbpDo3nE>cf%Zj@BjD%xE2A+-Q8iDXVjdLw~V~5()Pw0l>p$9@a`uw;$g<y_#O89 zdoVj;L}TFm_=s(jhb*3ifQLyBM+Iwb%8?Cz@Nm%#0~&#fbJ7FMPG*8<0EIJ<hA6z0 z1{i5=Vz!71#**}Z5F@LA3LgS0fYY*JU0;NIT(9Q|GFx7OMYeDi4h&Ihgdp;amax!s zC?q<mWZa|=$-%n`M4=fOat?D8W;_$nQVKR@cdL|@F0$(6xPcLj%}6i+4{Nt0f)W^2 zq{^5zO_p=Prd;}lR*yck*1t*>)%B9YSW`E4z2?%?ZYbsMx+4cmy+VveGw39BU3p3q z=zgG@|7-7o)wf93SQT7Tywnah3q4&M?QF_fl#G0KD?2nrIh=teFE`$m+#mNEErS%$ zDdi7W0vHY+g8cQa4`(u2;PwctP7Ksv(ddE*Aj!<6T;RN*fJ;iqTf%a^;&eX4xqvrs z?(pls`JeH3zy1%%Ib)i4c=!HW9QH>%KRyD?$a#}YilUI=4OFW&b=Q0CN9tUA!nP)Q z7TWo$hGXd25E=|WGYh}EIXo<_!7?ky92v%C`JpK|GwAmBXzak;cqrU{udQ$ncl!gT zIN>*c{2nit3%qx&^;nJ>wM>AeR?q8-({jZRkDp=fim#FAvh8v&UO6MCIAK4}IPUhC zrwLOC+SN2+H%-{ZNy->8Vu}-jlX4dbsLnKzIafdpd))6HfN%7i5L&sa?SN&m)Umc! z&Rh!CO-h7qHV1@INq}|Iz4htyV;AA^n!3N<dHkdQ^dDe<nDO~jhI7y|kT`e5q!|F& zZt@OPEz%~5dQI_RaH`oHdd&nv*;>uY!Pc9*(KBgN%Vt`{K~Vdi7`u7KbAFOG?h4fv zPOuw<X84VJ*Y>sHI!HjkF;3XFrJeVbq%F{Sf}bMdUBGk**de0kjC9>Vo`t8}iDO<$ zK~5R%C=6$&g)^!<+E6wZa5&z>*{I<<;xaT#00N8__$K?P>up(rw%#3`A~syg3jhoD zDsM>Zg0dx~HOp`*{k+B}(bP2~JfB`5NOy;nGv2&?k10sI#hN9W4k6%hJmT)*4R-er znBTlXIGvF$8$N&dh#!9UTRfhhkXdMGYY3na;CvJk4<GfA3)^7SLjz5J0i9^5wV(kS z!BtI<k6;@$R4`?#hF=Y-)oXnS2w_$uD_jOCXRO<bT9QWFS((*pYv1eXc7k&gT$~W2 zDL`r25VpM1yu(JYQCR_j0wnSZHk_x3InFJ8ZZ){tB0?Zl7DJs2a_P}nkN&AC2b+}u zi;UU07b-FX<gXy_vELn9#=;D6@E#mvtKA#zwFsZ2|G<2M_%_i4`b0hHc=OG;exZF- zs7G!9i`c6fYV;plN^FQBn&D*T?rb#A_?D=~yl6Av&;tVV;4MmNpW6NH-XdtP8_qfP zgUD67JZeqDfpu^crEF6xS{DM_I`wF+Mc!Jfg7Y$fNk6-kg2&IF@tfcLw#mim=_Agk z&)`}S<Ak65{FnH}pZ^v1yFH#he!%0$4`410FJtGxfK6;av*@HhmMBrLWhX`ExAUZU zfS}H_Deb<@Qa-4qGzQF`jdJZd&A9hXHP1oMPN_Wup$>q^WjEABz{kfYT(|WL<J|yj zB<-|!hXY2#3J@lBwx<{|Y0IG>nB>IyPFS}MDJP^{@Nzlh)AO@NY~~<QH)5LUuxyB( z7w-iBFolRI2K{%$G)2WeOxVp+`?oWqEn{9Jpb{fGhw3G8I?e*DBv50;G>}^^1<pDA zU;o?xwq-`zx(v?F@o>PO-F=6LaF0**Gk9j~`~*)Pfdjz8J(0DJ=HL)0LTG`z0cvUo zM%AqDyq?R(RZ=ViV$v;o55$dwBOpj$IzyOklLi@?khh|>d@Vt8MISDt&Qnt!JsaC4 zTz(a&8FZnx4kc%-*9FtVJ>W9J&cjWFIL#=VFiql0aM2?GGQ0<pC4oA5L-Ds8=o_gN ze2;)x8O{a7ILp-ClKXwzo7CXj-z^AgoZ=&1#NNm4TL<ZyN=c}O)6&VUFtBQl-WD?u z)^&qX15Q4|RmO35L=6%97_mRzVcP9lDmhoi_34bu%QG(53;ynRzru&7XRKVI4Qr@6 z-`j4SKn-AJsbJ?kLY!n)xEH5Dz<EMF9D`B1aw`Wwhp?ow$unrHMQF657J;Y$R$yJP zSXZ>3drQfha+J*|8u2j-G!pQV8nlBX(UV81Xrv(^5@1&|UP?{NmePjwIeP~eCb$sc z6<}3r!d5bXo<>hOYx=*mRG=6q`_qNoes1E<st`~skTaGoVK*0eMaM#;YwrXbFog)4 z@CPu220#zkD+MdtXweGmkY2?b=*<xESKrs7cwPH;G{@HxwI1;D>KfzocjK>Vxb|<m z4%)#n{D<wIl@R)u8?xm*C`|)i!7QX+n3}s{jB7c|aE?-n0t8)0)Ek)4(*6)5n5(7# z1Qf+w@coZ}#AUr829H1f@dt3JNZW$*^JgrV7chVrCw%wwU*IP{{|hZ&Nqd~gOA_J$ zbYp08VF#aVoyXsqk}>B1hLxeVZ+#tXy><AF>;2B;yk>9YH3lT?J7{Y=ICo=f7a-sy zr6IR&8Y__yfXjNtbzO&2(Crt2u$y)`?)J#J?O-$8DHi~1|7p7yZvQqX$y&;SkGR_( z5f!u?be4tFAYml6GC?gmSZ&>;%$7?pA@;M|4fCz5EBoV|Oy=CpLQEAykfB@Cgg1A0 zcyo8uZW#gF24ejCzxy?a6_9K}#^3-ra`>lz|F3Z%LP#0A6tSlnZ}L6<z@PEU<u4={ zvT2dT&=I8iXu`)Le`I|N3bHmn7g)(deh-${0^+zAmJ#m+8PJod!dJxzkdu-|wX-JI zI-eI13AnmebykNzH%m8&s>!!uzxKNWUYzf9TbOY=KV!e&0Vwd{h&XvLRa6I&A9AP~ zpjn05K$D}?+4aEPA!vW}W@IQ5YinMB%YEwND8EGFblqgxUOC=9K;rhZ5IlT{GB^qV zmx`P-tTnM^Xt)<pHQ9uaQh_7jC*OU8U;N^ixWBtc3;`u=x`>iO-?kOow&J=hSgu!G zmkU6Ic{igxN@{3KPH^p>A3@TmRTXxzP~=K&(?-OpM2+(B*3)P_(MCNQ;)MPFh~4f8 zA7$(%S7mf62BN``X0&M07Ech<!Rhc7J($)fYo8A#q{+3SrgVeK@AdD_#swvVk#*Ct zt^nW_gh$j^u7sYmwhfU;Q-Cp~ujwMvd-EGWjpcZuMOWQ3%%xz<1wK?Mdl135XiGqw zt)927AWq0EZEa}6hprg)b8QxbDJw!Z?vjEZdy~-)Nb7wbPO3dii`Qv5%Vv=EPrDW* zHt9xSG<V#-GqNEfJD|7G(5sv2hk_bbX>_t%RNOX!D@raXS!QvA2IRSS2vIUe^8DI9 z2!P?h<Q1r6LtiR>{P7BqL%Lq@^7%)kZE0(NcmD=|`B(o54tMteiSyh_Ur^^3<|Xzu z8NSu;2Xmvwy31X6fNs#=wyYZU^mXWKCuhciw4|prcej}cTTAoinxdwjX$TQ)lgsoa z&Ut)(`XrG*>AsH7Ly}cI9`A8D+)1sx<PIk0!O<A^|7P#I1JsvM?%|ZK?Pa&I9(8?T z>jjk`H4=iwnc<ucyPBo*0f69dQf_k7I#if-^zn-G<$_Pz>UiVCsUvS$hP%TaZ;nU2 zd$`B>y1<6=Y&kb9LJSetWx?P6_P039Gd_I!g#A40Op=Q2d}+hCS{bPtuL}3QCkX)z zBh$ZZU*-OaW3XdnWF*Qc1G68IAPp)C91|vv@DNUuLK&$Plvp4Ww@rosG~=igz)hx2 z$h#8-QmztZ?u#)t(x_T1uGfo}DIDf_z_cTzyy3cBQ6L%0T4V~MICY&M%FadCIDpN_ z==Vy}&I?GpbWPaSRY7?Gkw^0-S|+g%IU*CYZvF>p)e;i8IpfoAhq&8;Qff0+f<xoR zX~UBk4V=$lgrEN67nr7q-8@OJ_~nFi&iYEJKZhXv^1^&4-0>a~jX%r^a)5Y=ohH|{ z4QXcvCQPQNxve6PN(Zeha&zd$783yY#6PwR8?i_4k?j2Oj!0&vPcwGY4wY>_wA6_l zAa&dz^s{hIJwP|0@D<2t_1nS2vna(jo<Z8CCb-|~2*iX0-1PNZ4|E$$0aBECP{i@j zpH1BnYF!P0ww7s2p3V;NO1T=Q9mr3J(}XERNg*j}dD~Xhbw!91CN!4_&U4Q;wEtjU z+OV#q%E9*amiE_dN0V{e%|UAn@mKd<FuX|x9p(zLeLp(Sbo&;&CYf{5&EaUenp`>S z^%ohoI$7_Hw|lT_4F}O$BAJH_hbVwr3#eqc5F5_`7l>Td+DLZnGt#=?`NQ|fX>02j zcY7S~-{B`e{W*^JZxE(Q0fC!5k4B&)Pk}Aut(kjm^q>gt!67h<YY1<mzVA109RA|& zXmA0L2xZ(~=C6K#bGe(Wgvl5w5m?33<we^<yVA91B9d;NHxF-dJlrW&t4`F@&$HP8 zf)$X|He2U|Ir0Ph+qhKivzWV+P2)0iH$aSbmZ{##qunn~uOD8YT8&kU_DFQoaW~_B zziVuYQ;fq~Wt~#aIA5<=mJR!Pf+vZVQ<f5C%EA)qsNi4!&EK|i#hNyBw#|zF^N0Vc zU9&kDVbVDp`-XKes%-BZLJV!nr+3s^9W8((64v`2Lf0RzN4VxxwWwXsO{x`_$Ap@) z?jLohpCL?&umEXTY0|!cAq_wfS=#UKu&zsUV7F~WPDwayV#MJv;j&dsDPr>p6dWiL zTp{EP7}KCRY$g`3_tUh4bA)N0ThK&~ur624n7VeKH~ap|*tZPAYk7p}*WOLS8JPSm zJQyHMQ$)#Q#{~4=E0~=YZy3P^FYP+#6V6YMNZSf7rGZ>xh&Uc(dR&2|xTFP0dTv1u zhuw_xvVq|Sz>pd9TL<8k-qv4nix^sf$;0o=+p9g5OYJ18Au5d0rV|XBLT&5ydO<Tc z45<Ms`ZomMcnN$6*v&hTGp=XBC`d#f;ao(^NjEt&hlZM9Fsp&D8O}LLEwR)KWehT` zgxUnD8%Gi#lD4)mxD5~i+3Vz4YArhQQc_jRDl^^F%d=u9G)<|VE5VGlT(b#~-b4)H zHjQjfl&w$Wzm`IPMHs9GrJ-4g6w$BS(3Bgs4W_RdeO0VHC{}SUxxJvfm4l$%oQ_U8 zYtLK9(|TjXY$bWvj2^wVNLk-%2ew~<`?XZDu^oCAmdFqSxUhgGbj&J40EIavJbn1X z5b*<X+T(DiRJC3}o^UdxYGg(y5Vmz09=xwb2TXqP*e0ce@wEs~uVIhX9*<xB+kX5N zqi!<xdVjuRSVauFGHv@xgmX%`Y-`sCO<sDmJcodNoPce`MKdwfvJX(wlL%)W1Lj;P zCdsmjhK{yO%~(WfnUOj;4JMyFl$N-c1gf69wgZ3CvFK}CZQYw*lixLMx+Pq$SAD<f zS25t9PN(rLH@i+GZPfRNBi`NL3-jYV<JaH+LE0v@`(TO_uIq|5B^e{l73cMe({jEk zUwm=?%+V()?am66Y#0b7juI{uk>}v0lrrn@z3LVNsur$zd45Jt3B3+cx)G~3&xP7E zirjVFiaA!cPV>Bnl}5nQk#@eEa2M`@>x84fN1Q#T8ZrAF&hvun%YyB)B2Fu|Wkc4n z>5^d{97aahSELza?=T<l;ig#}uv&Gbu)A@5XpH!8)^v0XZqE|Y;5ZWiIHWD(x)cxv z<Tb%jkaoznOnNR=H#uf70parxKOlsF-F`-lK@N-es06He19L&#B*idm&0Z$|Z8G{d zXMFd~JDh&^eK$@w9`J1<`__#g4x0Vlyq=-Ilpu7vPPo-ZZE^cK{cza-8+)C-54u@} zQF6h$ZWvGJsL1;dHKkAP#)I`rDiouP;hm>lJ192#(uPM66}TcD2!H}z*fphZ8`T7Y zq#PjQn7s<QMSV)DQwvU)6E4>a)>T^iijpA}9X4cftH|f5ynxr>EIY^qagZ9duhp)o zmp7XCX|Jd5l@jR|QJ)3ynp;42s;jEzRb!0QdC;9beLFe>W^UvjbZ-U*FdCm(pU;$J zKR{;t$J(r}oGQJZ^`QQ}N}MOOI$?jGL{{XqRHUVyk_A<t)+?Sr{fM+(^(ut8KVW}& zkcpgJn*!sOm1x#bq9wh-(O%zd<}3R=Dub{6-xNgqvS;t#4t^T9b-eiuM#n9^`t0_7 zlNmLxEwwD`aNbrdDYfSue8Xn^kJF4f_!c!927<;HgOOgZPBRYX0CersZ_s8sSUnxh z_}l&4V3-(v(+7rCvhv|*I9rRQItb=a$i-_rpYl->9k6B|xN@H^32xma1j6UjO9Ry2 zZd-S(yz^L7!XH0<QoTiZxk?*gWkw89hU1Wq6n75$-41uVJ-nlqwFJ-%U&BBY0cod{ zWC&Hxc)py~$sNvWSM|65RtfU1vw%8B$fe?%atp)^mti`{bg@$~q3LDoBI|N4!A*!0 zybnN8QXvLTrx*PEmw$mH@A1v$9VU7QpdkB%d|$8~E7n?YPAk4Y{{ib|fhUg`q_lUw zoN&3GVXUa7bV4-e93}@GX6d&2@cTc4S(s99Y}?nqMwv9@JqFXZcxH!u#NqxuhzQ%V zqO7T9_{Qd@7HGC0h7o*_+EknbY~tq$#6TcmuN0sUZ{HzKGjgfOicp`X0v{(_E@$kv zO+8+@ZSD9RcD%;}pc_?i^FST=(Ao4v@z?GIwD%5%{#B%DUbVRqg9_`1SYLaqFTSi5 z_Dh#rr(k@F(Nm+F+d)Uc3s6HSF{Lv>rY%Yq!nn{Kb%sHr3|9%R^nnx1jEhnRr<|~D z8QZpDOB-^|U)&p-;p)azU4phNJ@qNSA%dhask2qNQuQ#Zw@$7pJLf%i^G><@<@t-w zFle0-W^e~XKc*b*URobI7+OJ*2&r{Fpc(Y$9Af;V*KMx3?QggAt=_7SeB)SfU!U7U zM|~|vC#S6?!w|~dnRP<`<3dvq+q&TC<M-G!;s+7D3z&9Cgg8Ue)f)&5R|)Wv<;iJ7 z4DlxN0i;I$S{B=bHTUS&_>WS|!%qaO(H(Y^kQ-%1{rSw=f8p9$AJm}4Y_CD+DM^^K zCD+ZR;CZ>C)LW<2?m?6*;ciwILx{0_{rThh8=nRsK--YpOU5-(=Wu*>+iMJ0k(b)D z2{^b-TJw@^pqp|;*MPF+0Zu3AHLMEyIp8WFuKFs2H|ixv4ln0tk#@3ckLOtK&wGdc z?trm`BKNq#Io~><WF)e37J#r`uXv&-7~ZJij@or>KXvV#uz*f+!kZAWpJz;yMEF5j zSG|@ks}7SY+TnFxRy?22;y~1jH6>iP4LO&#;<w4Bac{;yHiFk9gh_evrS%(7Ab0KH z!JIR8al+3Iceq>5n1f=)f&^a-54Z`y9{>35TWMh@LM4YvPB2r@EDZ^*bt)Na7QU6N z%!=E(;qA{EPp2~;FEYO-=d77q{`#}s96BEUZCVaZ2l_Y(2)S0Ao<7SUEb*y_x10X& zIt~Pc5F_TjaC}cn(HVWj-TokB8_8iS1>5z4oE7oz0+>jFP6-nAbe^jl?KqlW`}u1_ zO4cK;o}3C9Gq*tyeQCN<zg2HM{MF)K`5kMWl)6g*U`RpR8@o|xxArI9G`j~h$6>Ic zg90&Qn1F2=-_;dz)00M~B%ZK&y4`k(L2WYvwC>-K(RKqoJp1@Cwj12n!0w!>Vnn6d zeYLimX7Gi2bKdQ-yCGDPXrd@5!>H)3+n@o!+FIE<D8gPN3pU5W09@7RYD;qvdfQlS zfKvk+8eZSlY+QqG?CU5>Z9j}7{ASxN>K`0a9`9Axi|r=#-IDq7LQ-=%<HPsAZ5f6J zumixgV7WYhu~#N3k01XCuam`m2#8@qh!M^?q;<ijiqgSY8|{AW&U%(+uwd<XdgJW{ z@_d8z*g0+vx|DaAJ7BWg2D<qH+q%ArU@CX{BO;vF1xre|rJCV(nHj-39OoT85w?<X z*|sL-jb}oi%hmz<ck~13s$CPRFN~|;Ylr={f^J7#Kl#?_9s}N%Eo=^g@i6p7>&~LK zFSqG;a`tPfK<ZsQrVkjvvWPwzONZ@#l_%r={vGb#yc1bho)707+_Fel5)-D~0aB~( z41^<awt}q}7v{9l%`?!=vuxXf)A<D>-b<fSpF#fgb<jNv9uJ2*q?~cAN=QTo&{i(} zA|=nN{1mz5hJ6yQ{fwNY`>Q($1F~M%*<@t$0eeBTp+Fo=PXshfnVb))ERpIshI18O zRE5feWT>l~P@G3`9$YJY5C+ili=X3szT)GLAMo_@gy&_!>3YSoEiwkZ>22LZJA_>d z<-=%n*>(Ax$V`<MwYEn$@8?lAyO4%?zt>)UkE&_uX_~dRTv}^L(Fos@C^hdx>$jih z8E@|I@%Zx6grpmN+}^NxjDuzEXyI4Jp9gTx?J+}J56GglSsnJdb{qzS({%F}dX{f~ zJbL`&3i1~}9sku8=kVz_uj>xX=+*MD20-PcEga$y_4T^FrbWSDpt5h)>Q;H(Ja+Q} zb?y5J?)yUo7b4;`W1eT3=P=Ef<{2>vAjt>gcn~m^A`Ne@L7L(noh52Ap@xCFf*``M z=W1lN<Y7v{48IN7=#OuF2ZKLnQ4|KYJH4hkq;|hIvdOqnAhzaxHpA#C4u=$IQPpxf z<MYQ4u#AV(=)~)2Y$3<e0aDFTs(q-GTH;dr=-W~1Msh6xH~ZLDmu?krPr<wP@7J6U zT`t=8G#MgYZ+D~k(e{vs?{6JwbvIjIm0a-gdX~0Vm5<kllmP_iaKGEbJBOF$iX{mT z!!AYy=Wm=F%aV*&*%atk8rMKSL;aEaT6hxVzHx(eXYuxYjZV^SX$n9oH^Y8zH--ks zOg^^^vep)sbxpWqcmUwCEhr_mU*B9?Wi$AIyZs$XE-hLQlW?MhDGD8~BOH!Ly^iW4 zM;*AzeB*S>a}Inb+<8x0AY_h$Y2)^9xwlfKWgI{Q>q-R6*iy!Bw-e{K8fe-;xd9Yk zKWo?5t;TQXRP}>J+v{>s9l(uq=F{g7aDV<6$S5d@5eTT#1}2|l(>|3-y*d3w1|69W zv(lN6c``gfsFbxum*8*+9_wL`ni3)$0(qRhZ;Y(MEz{GUuQWTl5RQ6BN>L?kaxSZo zC4uv;DL@mHzJ3G*Kg}{K_Pn5`jCEeIt}DKI{~o0lENShmVO){P15D}w1OP&-nR0I1 zavKGp3EyznW5_VL2faT1)rW1DG;r4V`>&J-7&ourSN|A&)8TgeJr4`VL_MW)d&S!? zduAT)X^ghMc<-oM&9N~<Qu`~vvYB5hq`uCU-7sVN#hu#vHJfEl7@87tKFAQL-41S= z5%xPw`vc~AC(%hRT6SRd=zA*P{w8uaip%!crjE(-P-~gAD6>V#rf|&YzWyG3;}BT= z)UMm2R{iX%ZDQs)j5vsKd(8|9NsC;=-d8kAx^c+#&Bh_WEDO$;OG|ip=P~b(*zfOz zVbUU?ZY{gPw0mMf55If=4R(j4PCeUDa>cq{aXvj`IloA>!?!8E;ZeTgKsOP%`BxWt z`F?Z`JoUZt>ZB3Af?^(=fI8gEn0d3$&ZXe_dYkg^ciq36yvN;ckKi0WpU>Ee3?$o6 zQ-9qnADGNCsPVS;;l@w!>MY+l0+5rJm6_AlP@>_lucs&Kj)?wS>g}%0zvvFm?G0O2 zP7K&>3xQ=~<lNZn8JBH+l`VOt{aB`RUQbWWnKNSs03|0ZD*su5fA;Xkut%-C>y^`^ zr9V&cM(cL{(;q-^0tGc~-BHzG(q6`}9{CB*JH>w(y*3T!{Z^0J2?R^)WiRdN{W$<c zm}e;=dLQxf^0~2FGBbYtn_uC-su^gVR1$m{dD(G)#KZ9(yC_p`_i@7BiDL-JtQBYb z>;pm!LXZaGm?>GhdTQLEt}7;D#Ncox!sI=Y4+6x548Swz?MvN`8yjk`*d6Y$+sz<U zq;=6T$~yheWabNT<#sN@db$WONhj|WWy&LRxWC)O#>ooUz&B!nZCeonHwE$T;Q^QH z6|Lqzc(|b3n>Pc|f5ctT&6WR?#{X;I-zpcm<kywnYXI5pedyKNP1{m`S?A=}_jmJg zUAVvET6E_Jx9@o!ZMDP2U+w^0K%>9mjiMi~r>Ej|HuLqTjrVdJZ>jIjjG9)IydiB1 z91*Tz!b=F4;*7Z4gS9nDIvdJx-?z^`uIGrsut>*&!8#PI@h=PuNEATe#_b@4N47RP zPz4U`>WzZEab~o8ftfXhnA>x<=N__67D03cRN)Z73^*l3k;AIl4>kPfi_W~)FYkj) z-#gyJ`_R&vi~(^@UmlT`RwdU;E_0m#x(AVx4pqj}hu`AUAAXBY6|GLBDw1(jZ67Mt z<!7u7jzCOQ?ory;C8rsF8unNm2iFXrQ`S1Gb%TXdW6K#^(KfFyPp>#%L^#en%!-%! zaC%0mRgmQ&Hs`9{^>7|~IjDc#+WcFC-@(VaZ~A=xRVHD4&DWf(Tnes3DT9XVd~L{9 zbFiF4Pz1Y2FIT)ac+8A*+FH-PUjFt=4dLtvC9SvDA&IK94q$W6;aoG&oNir*SAXAp z(U<zLopx(g*6c9pv-^1`_fbkCA8TbnBKS!M(SfBM8!{Qt=*n-h9Iy83raWg3|0^Bq z9ATPfcps$p&Ww^Xmg^PU`HGxZq`axU6CGoG3ikev=dx^>mY1Snpr#P9pLf`W33HsJ zW2y>?Jfcj*bs-{^4HO9Lvgx3u-jOqAvc7QdMwx=?h9FaVi#7J4^V6uU?&so5p$cV7 z8le!#NB9^pO_Ov3I7O@vUb0LzVw815-Jk>uMS4`5yP;~~=J4ETxBjoMXcsZewQI_+ znc(5H^H+ZUHK(Vm8C8C5U=V#F)PtYU4}5!=+g%#%@J&5#6x3H4h4CI=pRw0#!!&+Y zH*hx!jc(Uy%)-!cFJJi-jB9vPQqcF5l7#oaBy20N=-zrSGD12g7yA4@#7^t1*R-{< zw6kk~LP=o-<v*}l4Xqq>;|mj5yN#I&q$i}p$dIVD*s!9w^^iKPCBpVxQt&3PHafH< z1?E(nSK-ydu$0G0snX4eGEljol#1u`3G24C74^<xw?E)`d=QR*qDB+kl!tW)yxxxX zZ*!WYtRY6F4py(Xnl<NT+&?u0{&n`vzPrhen1RtjHu`=>XM42tr;uS8ABO3N(Q&V! z(yvcV6o(Fpk)Y=*kM5nrE>1Ezvob!OpTNx6#i_AbnnNdlzh1h*;T*poKgZ6-7b`P3 z_?Ffl-fxrV>^0`-yf*%}rjv8HpJ(J|@W#)OugZ+I6d(&;sPE~kg<)XLx#<CVbshVf ze9$Ph>lp!gqGizlb)<_8ycyT#l`a_#>Q|hCzP5wIKX9>_Y>bYDIi->j^9Yk7^$E&v zVI*m`ht#e=Is~nqQ{{0CJi4(2yw_PS`hIaT3JL@Bd<21pvWDUzsOul%_D_9(ZJDBF zP1@pkmS-@+xT<ptpmcGXIW!9O(Lo>gblC12*}HMPojKqDd5>IV7#2AvZO8hIjoq_7 zNdGplj$8CTVA@H2cb+G_fBy{#jAgx|CTZ&kK7gHonu-!kc<<X7Osfqsaq|QLEeqc$ z@-AA<!C*9H+q|8o(DePI<8Ui}{cpPYtAC0{1#OYPVstI-EE(ai-ILx)|HoGqSo5aa zKW|ive8$(_%r}3vdl)}y%wW8Juch*vSd5bN#aEYvFA{5C+?+gfX%VKX{Ji1IuRo>I z(Tssa9=?GJTbG0n(h*?}fV#vjt!gbnP9orOpj21Ry7PnlRdpaG{b^VYUC&w@*^?lu zbyTBpj|#hFsjUW|OKt$nQVUL(GnUoJdn6*5rb+6U{+75!{IKqrm}4Z$<yKquUT@8g zk#>T(jz_3fW=-65IGCc<{T;VHYm4Z3uNJMhG7b4Y-dC^Lo}oF(w*u915yE|O(<Wxl z0=nV(`kA@?D$I=sU{s82PQx;d4#sWSqT?Dcl<xZ1jZ4(d&6hv3=aYSsbuX`4XN^PQ zyuMD$D|TU?uvu3O^nM1pZl8YRki0&$A_r?u_)}Wv=EO4Nw5{#h_B@UVxfX1tAZoj} zFTE2%Wa9NFh;kW&k3aq4<NlVL_Y5vVf1BP{%^PaoBhLHgusa1zw$bahW-Xgy&b@Fy zyavwM&&<l)u*weTj0(o?c!ZBZYv?TLd!0e^+A$Jfr|Bn=>&Av^>*D}VG69xZvwfOj z7wY*wOGK_~GB9>?^o4cp9LPJIa|qrG`I94r5S6``5yJ%btTgr9<mx87ptdy-0U<_A zyBTqsWJa_Do*qBSfm^P)oKBdg31JrjI8@H+C1vC+>8ky1-xLtFh5AA|x;NP#s2eoC zd1$Ng-n{+wmHIguU(?|IdY$3-V?Fq_7tju;sZ{FnbmLGEzzxC9x4-C5(+%-(gJ0Oz z@xtTA51;+|Enj|hrP14yzI;{lKF57|bzwU!_IqkCdku2@+C9B8I-~PuE5ZQCyldOT z?#VmnZc)=JM+~4=Igm#5VFoOC8S5<VKM~Wk!xU#YPwj9Lv2^4OZF9|GHOv64<3i-P zq$G9syfp_`P{0{47V+yAo8h0Q39WPDE7=s0X@bouXByks%)E|gg7Nb5goiip+WT8n zS__uz<z_Fsv7@#ZOHR#j2It$r80MZ1wmmij{TdwSh!9li1n-&xwiKf%tzI*3e=|3O zWA*eu^<}AWli~c8Aw1)=iV_<DpkKM>jeMayF}F?vHPpQuWb*Y9B8?=-bd}1bBj98# zZ?B$bA0swR&)#SPyFj}=HL|af%7dD!T#*bc`5*ZT&S4ird%qY_S;<^0HXSd%YTNLd z6kIy&^SDm^`Du8aYh?=p-S8B&#~YrZ?Zqoct0~=DQMLs{4so8*9AxI^#2L4Wj#3<= zTGKl$&cJwa7JERDj<(&r!?vvrY)3?RdV0kBH}4Rf7iLf&#K@9NhU}R_g7YHtSqH3{ zjj?DSB*wW8fd$M#)~SN>rz(|qM@|9yynxPjxz*2xx3N~o=p)Ly!p}Q|S}+meFhy+J zCY0~a`k_d&05|@d{3Gm+2PK+e)UtvLkk-=LL7;;<P=P5-2;||y44wp3alCr~d57cO zhJX9-{+)Up{K|5UUew@Cj?q5)fq?z4DHilI(GF%e?5~Y=|J>nQdi6v5EW*vdUpu$A z#{SE<-<r&u7~-qfZ}-}s6R+NL>#)4~)@}%B3h^tSiO#6lH+#%V(Cu4zd?*Fd@VMxD zO<QapoUd2+fAa}r`tP+m9sk)3hRPk~*Dn~p<C{&oy()EfLn6d5BgR>YMEdPC0ue9V z46+1btV)vMSQg=P?P>N>3(nUIF3Y8TxFd&o7OG`ApYAJ;r5Y+Sidt%xnh0&UkU3oA z(-JXqPAE0Ya4cp($wZtZY}N{<7aL`#)QTl-$h9CSOIzd8x3uG{L*s_xb9Z7zm~yR1 zwSc$VJ&|{6SxAk8a~&XPHUIxu>@O+*h&fDfj_`C5MoUM8gVm4q-+j1Fr)=&ZJ9FRA z<;3J`{MlE&Zgy>O8swi}cN~IqxUB0<R=~cZH)oTF|MxS|ODEmI>AJ1!56h_hsW!>i zYH9YNUsuz_mh-Okde2`uR6sNAW5oITwUsMsuGnszM!Wa!ep+Np)M<hVI_`al<ZaFa zSmu>js@|UIbtXsO_3Ezv#FyC-BJB4EoK7z?F;%l`m-7oA|M+_Z?@@9ZxbpRrlm)i+ z+mmDyy$*@8ETo@3qLNd!P8SSkZI~F_vWS*FR~^u%wwhjM$rz0HM9v)WK31E^A*T(? za#0XqXXNeMO>G3Vy(e6+FJP{4UOcA|0stW}@Xq6~+vCl{TfDu0gS*2W4*R`O0doa~ zh+G+|6ug`-_{A@Nj$i-wxAKrBNgB3&_GlXHKyXV%e7R%8q5hBVu~|C1_V6`&uP_0> zHGa)djneiNCjj>TQ893T!HqN8Px7lTYS))2q8t3Le5^g)S1v<;@-s%(#l9rBwcatk ziQ$>rr?I`LXJu~G;po)Rt?}ybA3n7$&hQy}54Wxdbn8W3i&A-QXhwB9IEhf?NGVN8 zZ)pQvUxxSg`<FxJhHbY<&{E>P!@Y9F`Fg>cdP>zf!aU80-Vb7M+rrgb2=(VgfcO2m z%?U8W-s}~3k>s9*X&E-|UT@N&UFM(>2!$)woUr8tfDnDaWJZB+k?bS*Z8QXZSGy4% zpWTeTIg8^iF*8z;%)*xQ7e?##m!ahu!aka{o5KKCDQBUJ^+G=#$lvT^`&@i^B&@zF zwA>1m;z235=k3q<#rMO%|Nr^gvJAEvTQFN$;>Hm$gC-9pzaO54sLclX+Shnz7MV9! zf`|2GhSPS!KiL^Vq;%gvM-q2g8Sn9{_wmX|k7w8%835oso?_htBH((_R@tB=K9bdo zac)=b&W7>{@c6M`d9D^<N{gJ~lZ<ezRA9NjC}x71BRygtO5TvxbAO&;Et)DtFF}F4 z0wHBuCZLAf8MA9IyM!>S6X6hIR5nC$z=ROW*k85P+E_w~L6vbmov?b*Gk13n*wTt^ z-TFKeYb!3Lt-ArE!?Ila!VzJfCL9k(9Pf{qry0k?5pV7v@NjpJ{ceXjL>)L$P+dTE z4%c-<X2Q$Mb2sV)8To0(afmX<N}?&C_C8zSucRXTGLMSfgjtNymvTwN5wlMk6~*oS zbfffTByN@2_TE>cA#cu1dn@1Qj`2v1-@j5f!}Gn09ByuaZZC54$)sD_otrP$X1wy3 zH!0glLrLXpSNUR9Zf@1S=|0C-JtKJ=_s6qnVl+%QK3el`n%Qc83xjVw@K<*;>~>K@ zYf+sW_CnkFRvGDPU*0*)QE0R6)2$!gwY8SNtybv0Z%UvHodx4F*|V7Om)~h7r}3NH zKpKM7J*CT_P=c}YEosA|j*26PsMM<C4vpu|KKFK3!eE{T|Im!5DbzAd4wTR9|IQ`< z|7`pLAZcrscQPqaz@kv&Edfa?Hb?aJ86K`T-2WJ@2Pe}Cn+WpF8|-P-NC7-#8O$NF z?>oise=Mgl7(ebE6<@#K?hv%>0(wcLf|35eluzthla_ZzC!g#;M>kA(U;C1_wvOFu z-lv{NR$2d(_j2Rhh&Jtxx6z!BFQy(?kxrCUAfR;Y6r`MRy<X6Wl$fzBk|8=C9`NSv zw>LHT*G{X<-KdSKF8F{AxA>ChWyQPwPP3-=KKlC5EDVmz%}UU#?khVF76=Wm)o(}r z0}U9g4C;J@cR>b<sngrLnjE}N2K8RBP0j;xnz29JD+!xT7u2>~Yssua)>dmpC^=)^ z?Qqy1aCdi)<Kd{a%o#p-%u%Mvm0EGVT(R;M9x`p}biH898Q1FtKYsj-w8?;=a<gDY zY|z!N5%^G-e%1W_RQ`Y1`;(_xmh3(d`?-5WWajsMcY61}xh9NF3KUJGb@xUxYf~?z zw*IfwYtgK&SJFx*nHIg*Le?#jG6Nye8Wc&xzyb?ZK)tG0Z@$wvWo8WSM~gG~@yNWd z08l^y<c+HPzRbuN+>akW^Wdd$hgr>6g`+?H2D!Eh68fhOL>QDvpt7<p^Y;kdzR*jF ztDj{4K}=0msPPYP#~V%`;7^(6*V3=kIR~TM2G(=bl1@IH`K`|J&6hhVgjNJv{?jb) z`PbMPb6ZdqsM@ro8UfzSw;57psP#n-=8A)Qt^EU+Se|FAaR9K^+xLT*(SyOn7>zOg zXz#aFs8}rk(Fr+q5&cQeR0%OATwPwVWlow1F+K;Bvf%Q;L(In`4%39gcm#oj;U)8@ zM^r*&pm7UeLRSl+_SyhM7bDSHlq#bwrQjfiO}>p`1pr-2n4NHy#X6z+^vtwmX${f& zODpf5GGe74MV_hg1ZU-u6)tGyz?4LgINj9%fV<<^j33}^szJ&D7b5HESsdf=<E^MJ z0-=moVY(D&`h`c6R!Gw^<&rVE`xQT<{O=^Qz=J{N?cvgXZdrSM>nU{f*Y;iVi%RNs z@bZz2Zn2r01zbX~3b6!8k*!fG4!*{Acgg)TY-E*&c$c9T*J3NT{?22aa<=(K9aif! z=Vwzp=T@{P&%)gIhGEo?0hU%@@j>fSI=-T5mCn7`j3H<RU05cSlCu~ks9Emdvh5e# z8=>#eJ$m>A!)Akv-37M03&a?4JRC6{M}#2NutGqBG~$uG-6a=X@9!~5)w*e%ak1Uu z{&+8hDwuR*i*J$6jwrkD)!$elMa^{{h?QiW%hUHzBKN+Qi7AsI1X9ymE9HTJ;8%6^ zB7e<!p~1a0D5G)+wVvMDi73<3`)eG8`s4i^n+GW()9Kj#4b2#A$f22reRMLLnWf?P ziEaP0n*3kv2sO>ctNwniokY<HSpJ;h$olEBmmFhU@`8C>q;xYMF-B>E)j1|A%-m%v zK=57HDTE-*Upq>|YOMpc6e`0_ghWV`vW#6#lzqREO-<qp3<!ZuhB+^|zPrYfxe!+h z9H?hyOdZ^9sH@cot82~@b%L$4T3K{8^z)Jn_S1-5PV4iZz&^$k=Bd8{+^NzOLywrA z<SLO5Z`l7p+a4BmZ#Q$({}LK^fjk|$w(er1joum%MDU8DI(Lzaz4(A=&+wHQ`!q1M zI_T9!#?)F;0(ukh{Jhv*wMg_gHS=W{X-3A`gLn-KNkbbEj84d&0sqab{3hFoBkhVv z1`7l*&X<f707#2&5L@)36emIq20J3I7m!j-9S@DBQTLHPrxz2uX2cMYG{4K(bnK$@ z5&A_Kb+I@P;W$QbDvpFYOZQ1&)snIHN)rO9p10mN870psXg0%YUHG@zJ=LrW@|y~U z_wkik6}!}RD21>;9I!v^tLc;oo%$xV%%ikH)KZbzOz#0@Sukkrdht<&YC|$&T&Rdy z1(k53B_swBNaBrAB~Q>i0i&wXH(+&SjVj4%n3h`~-NgLGjl>>9SlM`t3E4HRgyEOx z&3-q7#rb>fe!Z^w`P5ZWpV5xhn{(Ia&%bp&NHl_g|FMZ0w@WKKIZrOm5bialS%Ia& ze=&mtVi8b$p$h8|P8<~NxB(Oi#L2lfeB!8nDS0e}P#KqXAX@>GH=9_Jg8Kgz|C_B1 zAK}aEul+Fm-XH*+q8k8o(uFKjL5vAseD+g({@Krwa~5-P;z(wLm%v_e#zmN)!#1jt zUjr~FW*Nh(jDhz=E*ax8!>2Z$hd9Hjto+$AM)WC}pSuuQFj|G}N<i`ESaL2z{qFwy zcenG>IR{Y$l=AoyqroXX8v*Gtz!su$mTsJM>WWmNudyZ}h|2`rozF0Ah4Ryqaa=X| zB9H}Z>RPC~NEx@jOJS#z7?*{!KF%EhnDUG_`YZG@8MiNFRObfwo8RHVk=2%o8S~=> zV@*9cff@k;MQZSC3amC8s|3lkey+zWOqA?8UH_PPpUjvm4iQ@c1}*Pv+b|%B#-r_* zO^EY?=NZLp&G5b4V;_u%dfrlZq!$p@o6~;N4}MFTaHU^sbw^MDWgv%u?r<E9K-%Ud zAP_-4qM9pReKickBvJ$cAW1FZA_$8qy1|b!z*$w)JmWPwB~)&%3S5(r{BL|Am+5t6 z-WEoozLE%48boutuE)2MFIs&)HH$UxTEFDnBjGd*07Pp5_(wSL=P$sqRpUEhfDVQs zoEJ`7#_6!xuLWAD`1j}<oM*mhh}3#AI?LwnutNORn1ilIAeNTN^f$RFIykeIH&2TY z6PSeDOaJmJRCuP`j`l>OR>BvhH@#h4Ej480(izGqy|5sKb`XGh=I&nV8+`fI=lJQL z{R#GWx4aLN&)xSht5m09?r7J`6E)Kh--uhfGR!OsfN7bV0JY}X?oM+Ptb~NV>#*Bw zF-y!q%h0`MRhfHz5nof|FPay&U)|^dB`a$!yuSMsBen35kwFvea$$jG&RQngy;MG! zMe2MkpIz^9e)*QPzd|)$q_PZojN81v<@dKmE$q79_Dcgg$6%}FLg7}BOKWX7r3F>s zQ9Q4Kkxq~nORNfDBFEUXgP5{?IdBB7O568aX9bj+_#SW6N+Zuq!stCT7HdE1Af?+H z>`J4c<0E@+%lu7bbV7hyGTl}7Q{D40I^1USXk(}52o*l-by|N8!UHXB);+5`97h32 zFy@>h*Z$Vhl?4Hdn2sWZ5J9ERn$l28mY~1Li&Rkii?20T<F-yhcTC(EG4YwwFzpr7 zSZ!A311$tRBIvD^$-q7L+qi1W5{-G{O>EB4_gkK6Q&`a}KNcrQxN&<)aQ%kLm_mD1 zbK$z^#OZT*8JsXdD_98tPVv(->o?7xR%7+|ufK%m^T~Ry-yS&P*CJu%UN&fPyHzD5 zN{~|Os;S>;@T&0ycMcw%T@^<C&HVn5XF&q`5Kw*o645WPuv8$bI1><Xdvl9--}?ab zG~tJT{I76x{TeX_>@F`6037b_Dg#z4mP6G5WxmzQpzCG6X}5>oBm}E)q4#DYPVYOj z2J79Rt_^R>jv=7$dhE7adxQS5ogOL%k%LQ1A<z4@jX=8nZ}kgSgQS!Hx>pegBC3@# zOIJO`Gc6gbKJ<00f$q<sb2~#S=*-;ni4anc$+gP0{oqNSTc^gd@J1_S8~kjF^@_MC zF0~p9+6&ImLN8cpk*I~duiibv?XxI?bdbVd+LF9T9}rl@K1l230xCk+3c<ow<S3;` zn`M%CwF;AF&dtbMI_W7JOi5S+0tO>*y*h(>E6|<E&^WOsoIcNw)(aQyJ6AL|1awO- z=o0%Bwa7=G5|<BE&Aa0$T+yA)j1mI-Q8<NzA>GA*B_$wNsTv_z^{W=6{D7Q4MTIJp zTI%nW2(-^>pM>T&FCeT$2XOHXdD<JONM$xUj+OzPXo`MDD`MK1q#GF}xX=2sQwCjc z3unJ6H}-xXf2W_LfA%TOU!!O+DYXJaF-t!ChlDz^(5#j23o^vE>l$ng>uKX0IW%Sm zV#|raPKUwI(*i!+1c-6S2#mElJ{KXaOuU-Vg8M00CW!70Sh|m$SEel10gzv{R@*e! zMNCo-H6V2zzWM5N{NmF;L(U6^&4w#*YI7isEqDXB@Qh#`9M)<iA|A+k)^VNU%%Uxt z&%d(SZz(0N2<TuDW5m$+*lxDA_hN|Fj0Fg&i5$V!t3H^%-BM<wUG0CN^3GU$_O2Fy z5&$WCT+P$#BT1p8<~hR9SyA+E3jM8xuF|VaWHl&$`N4bM?`8IfD+6%BX={$|PS1I1 zGC5iyzJB^Ps59z#LQ(IuK-iPft1!j;%rj1=`J5KIlnh!XNr%%aeT2K)m)PH5*UF+P zq3^gBf9j+MNGZ}*e8D`AnCAIp4w(oU1nxW%94XPlaKX`*O7m)@fBQsZ!iFry*j8)q zK9NzJ6O!7%60p6jG*p>C-2IiV!mVpv$*xNrxYETc03^}yxgujQ0G3h=$OM?b3xWG3 z@3tFGS-F=jRBDMtEz?-du>q<HH5*Qm*jxmyZ_jaVH`6n$p}B5_xGM}k<@>E*LG?xU ztpKLIk!pCZ|GJIJGoyz2S4QWFaDxR95UBvw%yTXE>&<KC-x4~n#n-uc=FtiaZ#<k< zWiMz1nz(+meXkqC{o;r+0Owx|Zq3dMFAdTQuK8|=g~(E00PP$m&mn>pAd=1EHUH>* z{<U<mS`0j~mv_sqCAN<ORB9Bi0=#m2ft3mw0dSgT0Ji~t_2LD-o{t!Y4W2&x7`w|W zgb2*@i2LhnT)%iBl?vNjcY_q2uCpiV=d3pjhid)s=+8}jemQdrfz#NsYZV*7TKGn) zCW17tK|A$T;X@u$cdy8do}sr}SMh&+?%dhcohusfCIYSFH+9G{UG6}~LSoC5t0L11 z;HU2-u$DTHqX<0buRm)w3oW%<vv2-Nr!Pj0N8tDKNSOJaXZ7By;P<aSC!7%i>b-tG z=b#{y(dTPrO}&B$n7BX|09;%=K<cE?mZZ8((@}7=6|s05)_oV<uS+So9Vc84Jq903 zQ(xT9!&#GYvL1EMki4^v!*0j)ZLS&r>|pHE?O;JQA1v*!QCw;0tsGq^g-;^HydR{n zf-Io=X<`=<W#e(}YpyHKS_%O%Aax1b?SSnxVLxUdL?EImJkn~#D!NoiRiq%3@Y?%U zC_^j8v1XB>-m#V)>SrZF=MPOilOaMqrABUuDwFot)*CAG*K6&$?yU~@O}hz!?~xfX z^s5lHA_4a2&8%BtE~8gXs*zH49{O*E_@1dZi0=guPl%}bTj5$qz1pULu|UV=J<>N! zsUeMMoU8;h^~DftW2H9{Cp9^fwhqn}Cac@LfDj}AR`dS3sS%eb<{}?mgPA%9(;h;r zap$~X9uK&?eF-WB&)$6x?|<;I@Ie+PVjM8{J*WH`Y}O2&VaO?Iyk9jn?S!?Eu0uIt zh<4?hemDci7(!D+A%F{wZHEDU*Mm@_+k*smnM=l)iF@}NOHNSpl=WB4bWLK`w?X%u zf6tjY$$zyCb+uCJeASv%1x!!8Env;lKf5GY#=^k|{rSa|hYnJK&a6fDs!*Tr%)~w= z@mw(>t&<R)+qV&Xgh8$2B<gR)!47AD+x$Vpj8tHV0csnl+uFm33>H*MW7!<11Ge!( zf@Qg1P2(;Sydn`qOUVdfK`cD4Bw0FIvigEL$%Js0-V>;uJJ({I%~dAl>0z}OoBgBV zamKvuij{@A;g!LjAOxcJMG&db@Y^e)1auKn(JS)5T)6xwh{<R|0L9{}`!d4klEnmA zJ0_(rpd)Q2A<Ww$cGD%x!^-9r0P&~2iOif|i1SyU`fd1Aqd&BQ*ow*UAlKT|`FHDt zS|+DKL$>!lQV~|fT8HGGL+t?1Y0K>ef>wrb)NIPN@Z=GV$J7cXEt=M|Eke8JoNV?w zj`q7B#tAEuu~o8Nfz`sd-k<`LOuiYa7Q<NG+YG4AgNdeVMkMp{u;(?c<1VFO$qUM? z0ZIysU@nFbf-6JZS!1IZ6L;Sf^JiXW+}*syJRgx_hj*U7k4KN5V4fvlH*(Z@US`bG zWJI~bS=XYjkQS9`0k62>;je_9oS?wfKHpS{?i@I^CV)TJbsa8uJ7ZqjKuFisQtzk+ z+MTXgfW=(6AJ_A!d!)rJ%@R3rjRCO6OAW?)yyf-x1%mwi{9C;C-&~|L)IGb{*aJ{} zT!q_APLT*kLxKrf0Rdf#sH3ki2;j^S4%R%SmAwR!rWlbzY-tkJE|3sGz+045IPj#D z*8kP}WS%NOG;4N(TF$&3YC#*r30L!fS!NdQoqNd!B(N(|2uRz22T@M7M*vZg+8M#Q z9(WV4>z6b<ny^wTRt!bQE7$oe)+@nQ<oYE4i~qd7uZjTfsVlzc$!8^z0Uh^VX68Ie zhd-Sh*Hw2B)g*vZ!W?B{B5lQ(FboOXO~UQ5K1cm<Yd`mTe`tZAHA1}!6fHAz2<Mp7 z>9w@J(>*w}Un}@l4>?^rMe=awR|dWk7XTqN=h}<?UpH2VV{3+b?l_HN_P3m4pfCZ$ zULAB!r{YGH-74ev4AdS-&4lbzt7x1PW=@7C{@Zqq+VoE)twF{?IH9BNZ~O524$^xS z8cKA%NnABmkq)?z`x-*QigzfnE7Fl~84r~~%76-$+QAFblq3Y)-MvOBGx}k`FbwDi zZkepDONA${-tMhT^)&`1LUolm8OyE>lILEE)u69?qJ5eFraojZEQAm+^gXUFE&!ml zLXc)2kr7<E$q{usWi!!rRo>VX@;X@uH*dImLOpM|;RFgT;$r$*sKU*;=m#~!1_u;l zBqw7!v-ctH6?1>s@a%27en7TX%=}}Kxj2Q-gio?rqm8(CBk5u?n%l(l$fa7dLho2t zJ8j$=RNv=?1o`9y0tX}kUJWh`h7X#1f8ug73ngpz$8nF#%ZKdiH(mv#$R)4?3Sue9 z0SE<BQdctpszz?vB!12&Ou9*;!nx98Z)bvyuVF1KmeOoqj}Ku5WXID^$v8Dj*Q~H@ z6o*6sR^hOVQKMFC4z-#k2@*(Y_1^iWB3+NVl*AgqLtq7C9ZV&1xNQt_;|PXp_32Xb zbVZ@PbfiErUH()pN3#pR?J(wWhQ+Off)h>E240t)sQqrJ?y0Thsn&h&u_D0j?m8N~ zWL+--?Ksad{?%kpgea=!%nFdYFpXQqo0|Q&^sGwFcmwns1P!)M=ZZKtx1D{U;ucoa zPv+z_V7<_l-&sAp8KTW07%Odlt-l-55@F3i*!s@ZJ<xSQh+S>DyDT%t;~vX&KmfP) z?E2n%l26l!Wv;E4wTvfZ+KNa%FFQJuZY#XhS@52cz2z99;=+^{O!H#JhY<YTI^7D# z7^4X}c4dfCUVH}-#|<@>Kmb$<y2M=yXEA>Vz%_)iP3oR2+e9g!3wZO-_G|5}S*Jok zixm~G+WA&ya4H0uGHd4XR_oP$O{@FtGZA;@J24H)_ygB^$V;*Q5zUIU=npN3V?}e& zW?|?v9jitmwU>Fay1HitEUz(}rOfVZY5e-A%#1D2zMEf#sajlW_f8_N2~fnMF^xwo z^IQdD_&5^SUakMI>MF{E<d(tdEWN4g?&f#Gr|Mey&lPYLr7Dd1xu-A+3YvQJicB`o z@&HvB=vQGqjDW%RNvA0lbue`xg~%FlG(ZTh?|RU_&D>Ckg$dng0u*HkA~LN9TYcfm zaUu{Lfm_YpHoY=Sw_4xEM%HWE_>oVpT>n)Da~_p>G<C3R!6e8En7?dAc+QW)P25cL zwab&g+g8n1yhT<|w5Yk)F@Le-C|sMj*c!F8iOBn$RT4E>-+^oe>*g6cs<48~O4u>R zYV3B!oZT9&C6hXl)jiFRw%Jq&XmLP@uG3a{X<7!sw+3+CfeL?i9n|!|Tr$S#faBo~ zAfWFz*z7K4uZTu0ME>IP68$hBCLJT!N#EbxVt;>c**K*T77(!Lfc(6bFoi}iXbQT> zG3ShFQG)6htNozQv=*oYyFQBMzugRVKB(Gu&7pSSQ+RoS#n7VST4iv-Xxhofa_ia> z*ig?Z%DAg-NS^K(8iZOap*h6qc}^R)zjcq+7=rqOX_=vJQ=@h64ZD7j>5~1@2yS2+ zRKc)v2fP98T@vg03mR@;pUQm1xt|=M>Ymoy&J#SN!6E=?SzD#1Hb!b;yUa6|1&!N? zefzr4ID5u;SI}{>P@PM`veft<okIu#`)RgR_yAZeKy-U3hJZfCT7TnBxTj240j5K7 z<Zi848V%Ah`-drGC$(E(b<GL1(QF!2+zSEdtiO0Muf38wD;KC5e`L-tX3dK5YEDFe z%l&r@=L~Qf!r4M=wc}1^*W#mYUOM-)(<|2-0zzy~h89+T^<is<>LjZ5(L7UO5YU+X zSA?&=y)r@nm=iOi!H8BvXi=gvGWVNtWxe;*;<834v9rq0^4^t@p`R*`SbN?5b>~o5 z;d36XJzUz6*7?<SsdG2{bK0RXalO*v$4OeJ$Hx%bI1c@fJz5Ek7mPwn;6lK>OxWMw zu>Ue9^xG}^et<=g*MV|P4oPo{S_}n+Eed^)E_N2kRHxHw`~+zRBK6R<fB71(JpP%5 z&TX)@P#BE>)@`Ei9{LU{ZfP1Zz)|KT9m)voYE;OXP~zrqqtSIR4ZGr>t@|4U^fgX3 zBx(IwKRCfPxW9^{p@9jHyA=QkYewk!X#Gm;qu0{NYpSS%QI|R+-hP^-)-Ds;J)Ns~ z9?vx6(8fOqtx$L}4$&G{P+UFDy)}5jqMfUk7}U?t?~j1%$Y=YL0I9`m8b0@@X-gJX z*I7c}4>AtrS9*=a;vieme-E`T)qq-ko;n{iFi?XDkEj+cdw1YijELHVs!I`_S{+o- z4zRfZ!Q41HW=~6NU~&UVN0wTQp=R}U-ukV@&o1X|v^=1iMp9yeQx~pErdm;miHfZd za^}FEX)cwyo)wH76I~71u5e=cI`zj0yMA}?Fa;26Vg{Y0q2-F_+23y?AsRdZH}Ajb z(GY`%P<f_Lu2gdMnXO0C8gm=S*gWic_SMzwUlGbT(oOx{9-?zrKv#hK_xOjdN4F-F zfNJ_@n2f)(0Y+#qa>C>Za}N5>dS1=ro^Kn|RPA0(=&r4`ZsH&tSntnSQ{7fYf!s5L z5Te_=*O;dx5CZyPgMQdCV^?CRPml?8eQ(9LnuBUwjiad!zgv+kLalW*NNSD2r1z1C z8Kk~gsuld4i94_A`Rg7@F>)0<BFT_&8jU<tS$9=Xh>5RfMmRkx`nG;_c4=URCv{wI z17qzfI5q3H_~dn!;2-4}dW6Gkf!~Q4eWeWPr?z>L+ez|(jh3WtWC=fBM;{$i(6}ny ztKJ2m3{TTFlcvAw+ZzjJ9T)Rs-B_o1MDF>1_9wi`)>m;~aNPC*>SqEoY!}3sQo?+) zZoKbmif#=G^cJU<1~EMkQClGg*;|g$LSau$)yZ0_8kKhlJtP9g%%z+a7c`)fs0stx zRyzjn9g(!LkMw(Bd{=z%GgZJhKy|_nDw)RV5eVq2Hs?|>sQzor5QH|**jWJ(0wM)u zBFu}Xg@pR@W(1CjoDQolcxW%LL{YEwKR9L|+9!uliLoC{jlJ;1;LYA>8`3$x-%=ts zl@@-d7p*^rlXK0l>&0&V*3Eb_aF9vm^*TDe?BwMQX7m3;;F6sI?k}8XT$#Cl1);4{ zx3&VDXiJdshP5u?t_!CnJ#Bpf@9tXdQaA#10xD-p)T)=LjC{q=07BQPK;X~2{AB{h z@qqjLYY<?Je;t%{j_Af%i=))voW{8VfU(wQjaOJ<U}&{QdyC9JMpU8<m@tr~pwimx z4S9w#e*jnxhm+qG_QrftS`pA7xaROg=OYpT!Ow3sxfQJHd;KWZ_bRTf2`vOCl;%_n zYg=Wv%>QI8CNTOWFou<O{d3f!8QswLcBk;GlNl>nQrc`6x;gu`im?g+*5ATE(4*WL z4Z$FIhBm|V4IR#Ey!G)8^HgXCm?s6sx#}v2P$4^|4r@qw5~BN~P_Cuyoe*$>x4}i> zyK!io1c{~G!$W5oTuFEj3-4ZQzzMb<ETv#_R)kEPeG@{!CM7((ylgu(I;a|K*S|TG zY?!~}i@FCp22!XKi@fnIZ&Ha2Y48O<T+5YK0RSN43V}o4V?T~&JE7)3o;$CxOg5BR zq=UQM5j&mXnkd?bmG2AHe5ijt%Mb4RX_5tOlY8G+qfUnNV`;pOv?5h!7<_18(_W+t zRyPXHQUO|h*YWd^^`_O>*Y~WVQY(vah=n%`0d;*U94Zl~dXJx6Gxl$*%HR)KxwAsR zYRqb>kdx$};pHb!MH^-j+>QFV5(5*0&CH+VU%>HjkGs2Tl#<bPJ^Fr&?ZpFErdY-r z^jW3uKOLG~CyZbAofkrQ>4N*#fXXqpmWkQB8+=n-<hiQQpCyaIH=)tkfs{I2Y&IO_ zPX*IFqm+W7>sm{Ki`3S0r#18g4&&4cUhaMMyA2-A47}jba;EjJvfs(mlrsf$1p2KI zP*LjqR`PEbp(gl25@B4<S5!3Zzwh01NX+)F^+UIH6X@lp)8M}xTDL&`-Tq))<hKU* zAhW#qYjtcZ9C8%%w1?X2lZl@~e^gOn##-r1yRK&rS}}GToGL(dUhDa4`R;J`4T5VD z=&F2C-HS@&JUTYk8mbF#LPKB|K@g_DK)P4Ph@})9mj$m62fTZEc{&{%cQ^z03X2sN za?jwi9Z4=<V>Z_b>w?tPZ8k3BuM#2F_DdmbH$CD#m&~Nqf_U$SN18^asVn8S+sgms z_@I*#>NzI_wEkY58ydjbh{AgLTQfYH=!K~&4BXgTqO-<&<uLAn>ruUFF;56JonS*l zaH##ErnLFjuf|CJ`qPs(L))aNTBgz*zxT+mRb9nKGhJh}$qrOuK^408Y+(#UjK8O= z7K~}C20<>?!5iysZ-&Z18HCDY`CXd79-x&10TeD%s)7hVgb8aY8TWTLI3Djo&`f}Y zLIsDzEmBPAH#_cmP6fX0w1OoNu-)!3YzA~)LQD~bGD=yHml-GphY+|Fw-Z{d5~71i z1!=oCn$`B&7F<3wh&9!mVOFvL1Vqs!J8XvyYU7#KGEjZ{1d0)k9vV|GRAZ3<K9^nN zm!_3%1y%hn!>+-N(FqKES%h=R;M<NBTwox9TBS}n{94FgeXsIGee+yuYy?)<>alUX z?n&lXO06%#!wq=zgk(oGbeNyhX*WYh2kRyzoiI$mG{mgvb|UDU906x?muw(rp_PA1 znhaDypWm)o*Y{^0DEQ;>!eW3V-VM+!no8(`cM~+cB)I*eu0QD^;^uA;@cS;*--3>d zl%<MGKq;H-jbeP5uRG=iQ_hlc=lG)vLT3dcFM$MuLxqsd44qj-l%NVJ)pC$Az|1FH zfF#yj%ffX5s(+#&6vE|pz-HK>9FK0&M%En>hG3DS27Xc^Wm#lvJH0d4``_!PH$lcT z{6-psm>Qi4>;$E?J^|Ud%^Yd7^LI4Hf9O<U&mh}Dp?OEMN;1}SGk249c%g{df~cLV ze)(mocl9_SWA?e3w;O!j@+$!&tj<#VbpHh2#~wG<R3FSVO?nOXo0VzS(FKS_s=`90 z{pM)a!wI`2kFher(Pr4>{>pFTc*Nb^YbjEa&~+V>)c0TJ(W3Ul-E~_eC?-w=?0T*$ zC;@W2?FBBcE-`EeAV@udWy0O-*O+eiSe8ZHb8g(I%=_e6;ho%7KYIoZ&I(wv^HVF6 zjR8Z~qe~qJWsx?=(dWE@@PnX%k_O&JU|=6_f);=YM$FZ6;`bp@C8{J=lnf>KtEuaL zaMlDLbD+YVk$r*1`bo`q_j}z7Yl?shR5`tz3H<Z07^FFsK1CUq2@+!6JKf0@K01y< z#Y!_P6S_O>+2`!$o`RN#ukJ5DUyo60t82i#5_0&S;I3Okl4qcWu-g0FIvD(_@^S7U z>7k+SYPHZ=z`I(s_31_*b)w_~)Rm+A>k>2@O9cYsX~E&8F?0T4;k_#%Km``x+oDei zQ_fg&!S(TocP=jkr5rSzV0-=u^@V;79X@yLZ{W#udOB5MfT~1dCLq9CA{GHQY)SZE z7l3yjT;PjoLdi94&Hwjg(UfsHBHnBsl@66!*x~`Yi1xX;cg=wK3N72amdIOpwh`G? zC_(KVu7M(Fn5>aL-qCKcX!X~@z|2bWyJu<!AAdWof{}zR{Zb9*43yo8Go-71p5x-H zS;&8>-a~Mv$!6%^GBAfNX3ks-Jv`Sa18xN=Z&eBisHvs(>0Xd%p(P}#Ucoj($*-3o z6!8g~H4LC!aCiM2^E@M^gsZD3*zT^H4w@k*%+nG3{SB6R5{AiXOeJT`(+J<f_0`LO zFTdcR+)m02D>Wq|Oh>M|l|q!jp=ADCAFx;4GyNXXwa8ZDwq5zTEKOTlWtd$|7=}S; zho)nl7HnxW)wA&CA6ct);uq=OstN$vTB~5^ES2j8^oQ;hCAjkUTsA~yoUr|-%rUA` z5<KoO@y<q@PPeJwL8`1w(n7tx1`V*b!^TM;)jxc8nofIVOB-2s0Kmcn_j_TXB1;#& zY&G*4s$5}zIvrO7Uac<4co5Zf?B^Q%^%WM>P7!8NQl<vKoQ{sKp2zDDPjL>4JF+*4 z0IGcfG=;A613uP%dWVTs;4n)|E$*dChNs)Knq(kw5u)`tq0i#r!V;=$p%Y>4ex7kL zFW3!(Jj~I-Uqa=Lzu8czxus*mrNapBTFxm(@Tm)xxrR_DNcBxd95(~ks}8=$vPh$z zIjpNnp{O+FP{5d*XM&X}H2>Ut+NZ#-S43~Ufx&$Hr-61WAO{k^cN;&T&o`7+6ZC2n zo-j8fToFYxY&XQFa$SqxgrR7=PgaE7exy^l)N88rdx~0b;@EFG));>xa-4Ys;lyDG zWw5OgkZV*%6cmI~&GL=aN%z0o@aM)^HC`uGi$x5?wfULha#XGsVlkX1!hU~;aXJFv z0Hy8j5?#Lml`O<ox(`x8>N-4l_*5866_|2fke5ZO0v4%z4s?A75H~={QqHtw?p3fX zT&b^RKI-P;zw5kzEe)(zkdz`iB#g`4fN5G5wpIw4Q`36ib?Cbu8jrwmc0|?IOUKge z`ZMdU1ij)(b<((%5~4x62hXqyhcYHCRE>G{EO)&=tE>pQ#wid;(kM^I9|EWGt>3AP zQqRR0k-}*!<u!u@IPlNY6ErX)Pv+|U<zxsg)6(=$UZMg{RI6@*R)J{+j0Q|bn<W@D zvmj#tb#QdhVOSXMMZ+U|cc`=(t99`>Weh5?!0NMmJdBE@2$~xZig^zIDmg?zrTfNT zSAv#aXWz}Tpw<OH_jXVUw#t><yBtrBA&7#_88Jn0{CYg%VzV(>uzC9VE!7;2VD0|X zt(iVs<ZGEzW{d&w5u%7v^-m>#ts2NuOiHUJ%t9b45LIYs&sDHdvoRV|k08HkQ!D0g zt^hAJ$OmK0q4_~hw!tp#L3O1_M3|uCvZvZ3l~7i(N`(N?OI4Cw@8IVBO2FM%RogL` zogqZ)k?T7g9NK)|mZjQvvYDTG`Wrdv8;?e)av*Dn1)&+u331cE&5ke78VejWY<0|_ zW;m?gapv(Y3_PyNIuQsttKb*KG|j)y^MsqbYY?&7db8OgrJkFUkcxm>aWC+gOC?9# z2&Lv5r>^6&!UTXahJL`4r_XS4v1361z}?*q?r!<t&Gj|rd3N~Z%)i8qu3Dy5F%tpR z@g*p!sHqIY#wkQwwaBjHDC}A$xUP+!i;`YeK+x3TQ;#t3+}5GwR%Eq?Dg<ckhquTz zM;+8z`gp>}-CX%SEge&OI7!N$Syw>D*i^eT!2yKq@j7SQ3sLB*w?6oix4U8M2BvdZ zbA89S<iBPx(CbO^)k_^Obj&e9n;W%oI8O)9Sxnc==(OQ)74ViqAY_~_zjLj{+B*X( zaP|X~b}^n3vZU9Yyo*RW*D8%|1=01mG^LTW;-$mTmf|@}6x9^j>S8#HWeueKH-1jb zk0JmHY>g+9o*D#9OU7ZIakUvN_1^HoFI_|K&rx<SaRhYQxyq`y5v+YFL86*tHK!_K zBWUSQk*-5PDG@0WQq+JeC##&3Qv6^;EwE4*tX^=6j>3#Xu}D!C0?6{aRqCv)vKpJ} zQ3W7B#7cC6KLIbCxF^*A$X_LxinQu~f<??LrL9X@jbCz&J=kk7LFP>j0SgVB$UT?P z%tNkj5YY)8c5hf++2GkZ;?VjED-msf^M_rhuXvM8;n&{_CVox8)~2B4V{NdKUUgQm zld;)AR|rbPcpQScd#HpaA9=sO!!(bGA!4)HpzFBF4_gQdG?sw?A@&6zE_ZG3HP}+a zl~hESr6OO>Sx_Kgv)LfV$4D_^9w+pva{@p+2W`4zt_E^`bmBlHWvW~(i0u6~77;%C zu46ZZFfOG9=A)Ojs(X+Xf*{tDhBetoW@7WAIH8sbR~FX6MfbM%nKrBUrlme}oFhx? zcedu@nh~K#M6hN$=LoOvMYBY?{TJPD09k6~ZnLQ)b9i2e5Y5^ngCb|XcEZ3K3^j-h zBE%)RCJC<B>%5s<_u4Nj17znKGz@MmmDa*P+iCtpgpwEJg<ANd;)MzZrK~bX+%X=H z=%s#!(GO3<*2HH8H?LHxTdXLv_i!riw-aEH;f&(A1B)Hj5mN>lV~}`7LW+_5767<D z9B{Gexdbw~`8Xa@zpvL{geUiM0-+-@X$4{E&7@H!(h!x&*3FIpbgq&Vz&+PXA%rN= z({MnyFCvMB3V40SsgM7>FS{}XvIUOvxB%4#dD0f_CFY_kmdIRX4E!hoq%vG%IIX$A zS#O7wD|~_ybtUG0X~>PluC+M?m0+qMp(7T=Wm$<D7}V#pDc_sGY&gdB+?xgF_4y9c zL``?WdVN^UmB$&KJkbgQ?hDx{@k@`e`s@TtO|J<WAzlE4Qw`*l)T=L7Am(;VosPr5 zMgk!$OUC|ihf*?9>aZC$vVUT|ECA}C<YGc3>9)n5X(Y~YUf$b)D;TD*R=I!*tX*;K zd+uIr&k{|O5~6Fjszk18tW3m?)6}f9511Re9)0Rigb_h#LxdEVkwJSQqUib{G<$-z zn>u1HsXFp?F`(~yb5WcGG#b++6FN>TJ<ZXs`<kA3^i`M7$>ET|v_N~V#7h-w@qG0F z+t)fGg1He9fI<NX836%<SXXRbCJQLlPzuKXF>9@#PXqHh<^UF0th6m)7GAe?8%U`& zqgK6h>V?6>3k&|8^%*t_TCG+9v;(JiDG}PZsCtfZDyEJ*{H@lEh%ikP)<<yvQJAT< zd+jFUYY4twx(U;z;-RkuX!BhO@}^&$6VTi~)bSt|>#?InwWhq_?l|J{#SUuO3#gd{ zCopg$s0yR-MERww<rIT0oTKeLIKX^{EZI|C`Jg;VBO(K52gHEBOC06ufnh|i0-`d0 zY8FVA=j^6ZV>mAyY|+*-Mco|yLx^<~`%UEJr+UtaxVK2a2}$l9j^Oe<yaZYA_8UZh zbK9&Lbcmcbrhp4}iJGZpQ5%M#Tug%$Wz#FsbVR5U7=@XR)0=ebBb(>@Gok&>8x+>O zTLGs*f$Nc<CE?A2k`yA64YPVTgfWErmEZG5s!z>84Nvs1yD<nZ+~40K=ZqL5w%ZG- z9@adRpRCp_$sHz@P~^E5sHM2*79*H2k<s;o5qAn?rg_!i{Zvoz0Cjo>-}U?C<2cWC zPZ*)%v8v`@Ab#*bRy9rO8p{OP`J2fYqm>M{#V5PZ#xItMNY%X(Bu{#Mn4m6nNCg6~ zy()ax0+mghJjC2Plv?`@4u`*I4=)_NNf22-q^bl)e~7T@2logQ5oKr|ANjMk1NKjD zErL#nrHTs;6FRr<e%O-rl2!tUr{y*9*6$-tB`uBR$ums~0U;!&bwWRhNHS$yPZ)=@ zA;wy%w)EiCJQj#Sgp?AtJ7$!5;ULx`L6_vLUpj*&XBHTYhln5$wMdf0E{I#fwkm>i zHM9pcID|8})8ds`U7%%=wT&@Zn(X!Ah^y^}t2UZTt@5Z=F{O%Oq-#sfdpj;{z}FYR z{Qrs!DjB6v`-wLuBK0fD0E*I63K+VC<0vmC`=Oy!<|}VDs$6fHL(2d>vUBi;?|Rk( zKsN$E{)~WQkM-dpOr*>Y6e^-yK_9od)U@J-fORQTeJ_!d*iMF_(n>&x3El^3Pg)fy zX#-W-$afv1H|15jBJ!qFeSI)!E5kP;gAG+*RhgfCY2krZ!0>_rt$+}lyY#o<)<E&c zF|hSG!wOyqIPotS=hVTpFhhe+>>oTHkC>(rF$Qdg4f=l5z}Bh*HquAMWg8V$A<GAx z>Ahx77be#C142qJXexn_Pc+erk89%X;7A5VTkoahrU$*1Ks7qRpEUq3Q>l9}wC_{m zuBm4FIZFy!vzKK|IcJbF+9>hYAmURiU=^S>fUHI+c_CnRG)%SDIAHqI-baL0mA^L~ zE#v*A$4WqG7$yJ&rkl2^tLtN^aQDo<-j8-|pm4GsYC)jwJ^aBKN~L%WjrKI85nSB9 zwexDRakManTGftp9<f90dZBr!y(%1&E>dr!lng4xm_Hz`eWAQ*w4!#~?N+ij3SgZC zfpMD5YF0A0rdGw4N)7lVA}pBz%FSB&qY63-<FGnc`KFw9a21%7#{v<IR@;Po@?^|8 z<MsUk?>)TYczLRea)R-Wwwh%tI6F}Qw*v;mY)j>2)2kG;HpLZ}`)Ft&bWXLCB>vc@ zo`g-j4o-=&R+Iygm`vBqzupw=zR3TimU@ed>j+xM{FSpqfv3RN>8u!_jX5}A8{`dE zfM!BCF{SBTSeYCX8UGq#5{`icXSU^cwc~0jPerOVcxyF4evbCM2YG0@%yvD$TB`t^ zzl>+~{`Lr`LtOoSPIF!Ws6bc08#0Y~p<T8&Jdyv}HR_^*ZAv9h#z6G<6Kc%kn5Pkk z;~oI9xqq{jKI3G#;3Lulu*%SI<ke}HN@#T4>Z+;)mxHsK60Hh<V{n=)5}GDRRoa(x z&Z<$P^*O#^l3*&Y_$pk8B#2E)`}$NupOQwPrb1uQ(yIWD)9A)kvo%yWFG7F;jVt1m zz*36UbZ<$dTkqg7gWU4@`TLtq5UUVv%(p5ak@|I=g+`v0gXWhzW*l2#Uzhrv=yIwo z)^kIuwdnoPGJD$zD`<!ybRqyY*uyk^O@sY7g3<ybckMu^Qol0~IX#G=$>N4zK(moU zh|UF_kl-0HkXH9B%VfUs7!yDR(=^K7DJX?;C??%6FiTvu76*g`bSdIuw?!wVg}E42 zg@@w8Ebg`?b0HxrHAuDz<OFJZyc4)R3sKBa{;Fq!`@KS!*DHmHLWH|%#P-nPYO?{k zCR>%h*V`+GIIFXL2<Yrx0m5u5(wmkPv`#laME!fKeWz>9-!ss6(haOOBW{Q*L31AK z{kq6C2*dkx*E>hKi==DW)^MA9JwO&QZ6NLD=l`_Ip=YK#2W7;bb;A8~QkDt`a1T8h zzZ)B>7Fo4e4_Kgmlp_uHtl(B&g)7HA+ee|g5~_ef&Cu!%+V#;7`;7Igoui-Lw-O6S z*v!(>;*G+@lxi8DSwGH<#c;~6VyMrkfkh1_V_6m)j|Y$l#(lRz*Y&K4yGi>osb+7H z#X+%?+?wbvgGu}0%ska62!OR@a7ow@15(e6(Dg|w6c!nNWlHuU9b>a@0mtcxB`?r` zJ9SwwBai$}IhRG-FoFjFXmiptl)-4QBRNf4@5xvT^#M%8ZT$j}QbbI;_p4R18cf#u z4%Il0wQ%e3q~fu|8NVmo(9{py9)wJBm3A30q)wC{HE-*0m3HuNfLbQ4xspSSJ|&yv z>6>eCWj*8G5kj+F8o37*r*zC-^Yqtxt6ZgGjmq<_M>unh&C}o^d`3q_1w_g2R9rCn z9V$f)AtH6XX!IImBNkJ8F=3u2r0texE>>a{V13pYySF(gl1f2|j-d+f5dsFP0s#T` z{-%z^iWts0O9n<kc2=fB&JB{?oE^NB|EQo40&~L%Zdv?byFrQpx%hRXx=3=e(w2sc zA%M_@=uFkx*~!Xr*2_I3Rb+!~ZW9*V!W979o+F~Ekfk_z#5#*5s9Hq30STlH7X-uB z`?F=qx*jWZtQ5p}xQ*Oj=6I<8t5QAr9OU3OnGLFWcq3>SGYa*4eNekdHs-n`Pzi8l zX(#Rv2d63owC;<xMX{q;)aFX)#&sU02398<e#NX|aH+)bgt}oRyjeej)6KyQL7wBN zm8Q_x)9f9UDz*Z|+QP&mC^=)AM=T4MM2Rs;L~*KwsG?<iP$iZt?3Dqm$+v@t8!rJ; zp0r?@XXIf)UNS=H5EG|w#UUdmZlqIOEKgWJw}ArBaX%hJ^H#HbWeh-YZBF@Kt1?Ix z`)m?^4-$ajO{R1LqqD(Er4|~}G_C+hMo}HVD#t}$ra{WuMeqcznj@?%Gj7Z$13Ghe z2w1Z7yROD%OvS0qQ8YYe90j>l;tzMfzBZoS#C2dQWauvje%sTGJyqXw)|S;=>N<Kh zADT}^_xx(pQ}cHXk&0_nznmfZr|VU<QxZDV3N5zR#g)M6e$mC4=yM3mJcEV-N>vE; zxqkH3Y8XypPRty?Mq?xW74I}4*&kfVv7K>i0jR$fZ4R_7Qh#G*S&*?8B8<y|uW#<K z?R)fzQ=e0)DY5>I&8N_w?Q{@oWF!a?RUsgVq)JqgCae&^11Bhq`T9-Y;V=~h)OrCY zJIn*fnP+T66E9(K(TfeyF$`_ZaNa+A<~FCX31XcP%he5VxD!HCH{OubcBEKS>h6)v zAohV6DlZ@>UpL&vO$Kzb3G2Jt>y*#vTXki5Xk_zH&EF8iK380DKedD);PjeyUsYsV z&!+)(X#O_Q2kwK9(qBKTwb<~7W*+DGmA#hNOgGv*k6eil99z=&15!+mrSsG4TAUe_ zu9seIgV#kl&!%ctf)^hmmSx7WELfI>gOEZ%Oc}t!ZZ_){cqSLVc|MTKg2Q-ZW)r=2 zt?o_L{Pll)dL0*{Q)Tx@o!%+K|BD>T5H%=yDr|v?l5(hH4FLMoSpyY6zSdO&Tj+*a z6G_7}yPyKc=Cryi)N3sB0A3IZ_4hN+Do*<eL9aUlOGD&l`1T;r_?v4Qswcvu4qcgl zsK1BiK0n)b-`jhQW}Krz>UyfMsG~Vm7-}kFLsdW}qo^>d*Xk2ZNEMzSQebUG&2c0F zE&a$Y0KLfGPz}7Dx%BBka6JJOmz4>xi5tngDlFD+H@n>N42A*VW3P05x|GnTgk9fP z7Y%Cl$y^Gq4@Zm(_Xil41vld;f<&nJC*Spa3Q~Ydx<7U?qE883is-6|ifoKk&~k{~ z5H&YH+apzqDuJN!1e-o#oU4hxGBOW7MZeZJ=b3OdZ?4#R&~bTLu^pRtw6FVxtDv!d zU-SLs@T&@#pI(?zV|F1GG<3Y0CZ^^jpTboMX+@UyU8kc8m6=0QFV}R-t*vrQ9jop) zuQ6A_$gQu#hxMjzht{6-@eCDwg8XW#b?ZvHvE&7wk?Tit&vBq~bMSc7;!Hj35uLE) z1@m-7DQu$d(txh(plN*(nonHu#Y{+N5GJgG4y!41J(3Drui;eqXh9yWyjJ7}j*w2> zfUfVkdY}<R59*3rbDlBIoEjBZsgi0M^=*9H)TZ-X-C#~{zUD7;WY-oq1Av>8;zHkb z=o4opSW2bNfn;vFR&q}Td#L-ACsy4HAV95R@|#|xOJ|z9=Lf;re8@i8`)i6946i|_ z)QqU=-}(git1+(AUYS)W0jSxlZd+G4Hde|rOdpj7tj?YjTlA@`Yu3UA+*u_$e#0ok zipF>WW&RQj?W}tRWK}ZH(`h#M=UgndfQ2!OMrcOK*OP`4GKF{90-B|!h|$nM`Rx=s zVf9VvUj5d9(UB1=!4H@fCWe46MI7epO3)(;lP5S!0eEZ+04$5`37^H*HKbCRf_%}( z^8-s`C1^~#&iqWo9TRhrsOYF$LCtSkNW*a{W$vK@XT3ZQzbYGA6I1_8zkwX$SXv1j zfjIe$v!87MGOiX5z9~|T^smB`jMr8AS_=|rrtc}t`N3!<!U`=R1Sf;8rrh@3ryJkK zaW-Z{aYPt*vsP|%pANNsuYpj=;+dZ6Yw`zFSle|Wz{i%X1%UOO9ro6z5Mi1QSmudG zAGjfp2BQ%)2+zSo1-#%3+nik-c*3nStFWsxU1xJtrp5o|Qp6n1EVDxq-{CN9FwYYc z1&?30V8Bsb8lf$)g8(aLlBLt%+C=}R!{AA8z@xvy;e)15e&Y*JN<qJ26L4*R4AY=( zUpiM?;}W78@aT)9Gz?j!<3{T~ht!4^p=G@K4pf$SW=A)4Q-uVha4WK=R@HS{<eG(R zlcms1xz!Gp7W>hK=1Elu`W8yjF!5Fa_R>>pnbly}weX|!=jw!22;l9|?vpalP`YMm zziv;mYm<zrhY(Pto25Uz2t<Wgd6n;4&%*XZ<^NF2fHC6p#Af|*MSWH$R<zrcAj6G- zUEkv{ahq+e^Fn|KLjgld7*fLGN>-OrI51J4<4mTl1%P;Qm|uma)vFRiGr>TRKKkGc zVSa@`;O=C}D7n|kT%5Pl5Nlw@n%GxpInuobrNcchK<N8g!q$49JQF!NyIMi5gAgh& zi<Mm|GSsYsiX7HV!oTC>C4M9O@1glw*R1I|t>a&9+Eb)kSxVeHbS9_1QuisyN;o37 zUW?G&Qb!OF#R#Gss@*uvH)VoK$o<2~E~$*Qp?GHmhSiMoGIKO>sYHSO&kIUf>NCO5 z@<d1*?pVoE6-c1K(?Osv3J6wIgmlcdz1*}NGm-nvFCHRd<e;JuBf6eYh{NwfQ&zSz zzWc*Ha>>w0>t>A*kZJi#Gk={?L-YRzk04!1O}KYNt-;B#V$61|q297*i^O+aEkMk% zvgs<QouB=r+M54X_mvkMs)@bAGq`(n{HGL8e?K=jeQU6p`d!{?_|$%H1do+9Wc8}` z_HXnCPlwJRNfmY~ZR6J3ZMvvghTU2g?WSojY6fj%FQtHDtXU~;9Qp>0HLLEcDm=8c zB@A3902pK&-f<2{o|e_eG-HN6s$mm#9T)?4eb0R-h$Nd!uOm!3W9Sk#v9nl{BH0fG z)Wj7Kzyd%!8n=Oj6Zj3Ko1l^W^sf?Ns%E*q*Zk$0R-==&|G3Stf?6}Vlfz8OID@2K zR9G<^$2^+xI|lu246_*zc{<@Yz5L*8jeY~u>TiRYey+sKw#lit%iD38A|2Mk!<qf( z%suAAbsLeVv$|^?P`M^Np{`ohu=Kg=;(=%<wg2`yRc6f$TcYmYy<RJm1_Ux>n^jF; zn*X~j3$*sP2KT8Bs2kf%e>laz1+xhSR)-=gp{g#S7$Q>Q*(-eN+VHhn=}g<9a@uWd zhz{QqMG#<fU)T3o<`ECy8L+t`91kOwV~<k!xzjk}et!ods#Xnsn2ddz#wObTFMIqd zn15p>aN};ZeEttPtTJY+@Nd?1<#qy2kdapRm~}zSuR5G+7m{~*T1oX@Z!8ZY<f#mC z8lYO|+uVCbQBsCk>ryx{If2sC#KxDsG9fzB*3d$Y32SQ-oH?k1QkkFt&KP2F@MV0h zHD_7~=pHSO4)VP=U)%d^@y&Tb46wjfPz$%N>tqZ8+*<^;_fG@>eV@3S)VXc54{JVF zVRdru4X`3d$XDo$0N`R6aF{uL_vCgW9OnfWJy+6<PLPQJqO*(uKzGJA46pqwKow1_ zL?Sf!<5a?q5r|!fk_kiXxSp{@^^yXg96~s7R0aV!oU9AGVnTI8D>v7%Ic9Knjw`62 zli!pduHR|zlTB2JQ%5|rC-q;$-P`(!=qw6UCj3VBz5Xf!h;5HE!a@6n3M+kOi^NJc zeXyGjE#NH9tjBMgL7!9&j6nwtU2hj0TB%Dr)^qFAz^^jxO1K*!g3a8E1rNm-(RDq# zesI^6YQ^z_z)C<XrB=EF#Kd+E8n#E&_ZDn!%#^vkZ%Q4I5+V{vS`I@53br(GJK&Te zKp6-b51x#8^f2J^qDKt1u*u;-_~g&``1#NF7&ZZj1C}LVI<f{3LO|*w_IG=+9{kmq z|F7!c6gJrUm?$XBxY>8cgHJU)0EUO(ZuxNgKLiPoZh!TbBDPE@qw&|()K2}Y=k*QR zIq)1CAtFxK)MrDPXX`FfMraux3Jdudjiy(+)S&m7D017O!MPx8vjG;R8(?G8U1NK| zD^ktAhz@=Lx9-(?2yKj%rO`R-kHS5s4l&NK*uS9JB)kws1YJKPb*U67JXPIDZjOy0 z!0<AI6Y8`pv?@Nnfz7X=TWNL`hvdBeSB6tSNC<ei-Qwkb-!zZX>zACdNI+qYZ*lv8 z2%2!&HG>IlNLB+VVe~xEB4;9yTuVoNQv_1i15}Vw#AfJ_$3;pS7Lduv1r4eRAgjrz zWz2qLt%ln&|0-d6#CF$)I=6OtR?GNH&7n46n0ThowOe(8s7m;5yT0)a?z*~9sebj6 zI4bHGDJO?KIHN(gGev8f3eK7!Yv5rKPT|w6RP!#?`s*m`Cam|X36)O9>PcHAwz^SB zOk1>CYP(A$qH*FXew@=Eh4~BP_5H+2f)Im525Uj8sG5Eha1@lR)yYb;HZ^#N<TIMj z^_XSul@O+sIP*Z73PlwTh;V!J3e%AA_`QhV`1LKGJRA_?h!{AXFXsVYf3?RapWNg5 z^9dKbfbEvct1e4MA#T_;FTgin-E+|3Us3b_RUJxavNVD*8P;IfaNJ5KR)U}ji(W|3 z-_bn6&MEHF`g!`h2_HdD*e0_5tY5u6;a{4<DxJ-}q!dC*wSbk5i4#L=283Co<ZoGN z?aiol9Cnsa3mmm`w4sOgo`zej2)YkQR&%w2-DDGcwtpcPgG2Q73LwJwX&Yr_-eDEo zN`*t{xWk_GsS&0h0CAfY<YhrNTB+3OoN(B>$xhgi1d(Dj7gBhjlFf<+{(01}t(F(_ z-(0vqK%WvOYM-FO*|;oRQv#@syKGL;aHwnYCv9Y*l|(&bQ`%oLxV&Nj!~|MF7DUVF z5JSOk(_>r$kQZ<>H4b24;iVGa76B^2Ji{^Hv^HsI?yk)Ll)2V34Rdg3D!-+(i}U6~ z1rGT};BtVjo$7gg{H$@m5)gZR#fWn<i5J@RqBrUP-c0J@5ZW_U3#b5Z1rQzQw;amU zjYzvxvJ<(i-tb1Tj4ui3oW?-J!e9ZH^vqDrfPY_>8HeM&MVGV2ovIMAVt|ccsOCu} zrU6z_5g@7H)gdJ>$cXqFYTSvI&^4i;kk!nu%!ok5k^LI1w+^&TDd6gAK-X{Z$&WjH za~W`P5wY0>#6Xy)jGz5%kHaD3;-bSaM6r4hLKm>#XYBVAUSH2xW|C@q-@1g~etfG0 z``34b7|{<~aA4Phyl`ei%dkiq#^?!W>~85f-|M~_v2_n@(xlN)I<sgt4|9y)#_e%C zw76!k@-(EGw7%C_I79#nMt`e-T+982rtZGJOYEd4%Xhk?TSluwhn;JFaDspzw~{Z< z2+hnJ+@A4oUBv=8I;z67@&k6kB+KC8XL<t4Fwi&vvuqO!JDE6+#tTq&=Kl576%gEf z%z|k`UoaeKsx3G-f=3bmBF{wu4c2UxJ$_igw(BrARt*^EDnvNWGcJe0#wfF^xEBJt zloBI|)j;MKsvpweL<KcHrm*Rdh`W+W@<fd6?<Y7ZG)C;U1MWxFfJ90o_D2*7Mg&cR z_cQgHX%HsjfE*0)O7yGXq6;E0^bd8WSr2-9C2uajHpXSC#SDLV>ftW?HX7M7(-jpk zuK&yEY_oIRmX!f1JUlTvLx|q^Xl2~ZW;~rmQ|Zg7nw)b(X@yNE)Tl`@crvq+5eU{C z1H_w3{aJjDTV)m$9FBX;!W_EPIdiD~p=x<pNmk^p0Tqx&{96#HK8M^5GNz{Ag%s^U zXmMHQmrIt~<z(<F$Os{0S-9>wNte04PoOg6^{WNPeMCx3=(gL0tE+^*57=xXHXGiL zITLaQaxVDts}a*!a6D!X1S$Z1J5rq-Yk99NCi9nn-e2_y;8L(%*EeZhMC^XFtEj~_ zbLHsT858n^743KT`P468tq!I+2h}XqT#ZWCJWX@3(vMma)}fM+MP+Kryxns`EhQ@> z68a@V5MY9*?n~~;pgW9CaKF->hG3k)Wkphygs&h+{%1RDf>R6*u8#hzd&dO*VgRu@ z*>l)(MpTOe<;-|dh|mFCg->Wwa2Y-n0*b;`o>v4%3_n5u3OD6xXjgMoo}zQDvsWCe z!e<pCTIjTlUanugFMxSq7b8+&0Y*g)=GRP>mQpb1BCY_rSCtx>S67G$MIqLp6#FQU z^jGK6gh-%3h>;g25s<owka&P4lk{hfC<SIZMF7$e(02iI=7yx4s#IjZ5Ng#oCbTt$ z$03sN1@ocFy(_-X*VWk?!FGGkfOvwyXP4D8D8Ckt!TQ5?FEv;Ab*?dY4&hNvdiD8h zUfZz3vme`+wR3DFcl)_LSKr{y7?YG=g1@egdX1*C818XyhF+M^3Y2=8AD}*0UY^0_ zR6}OpwGSfH4ZJKf_Tyfvge7#TL*EZr@`7BJcG=#*w1OKifjE8B;a0;4OaPTHUPuL+ z@sVmfa$AfYV&CDtci+SN??1+{c@2ac+}zz^zn@V`z~yC+Cy#b`a5<plf}5K?_WK1P z5SE2=q35~a?yjKk1Nxq=1*HJXQt<rwgz?DCzeq!rzY4SVV5_`S=LpoQl7Ib2L_n5Q zFbgP!<WK9k{E|>*8a3Zu=hC`4O*vR2M{tY_dW{xp0aW{IWrS+7uK{YI=~zudz`K}0 z9_OJb6zUj#>M6Cwocy?qkD?Y=;y^HF8UeK@iMr5M+YXi5R@uDy`Ru1kTX|3GhZXG# z5Ct<yA**Qj*s_(3m^ztvD|nlL01bB3dI7qC{IF$Nm_HFAb{)I@y3Q;BDRt=kj%(_R z`%i5nzCS_E8OuDOXy1%)nScH6tu=04&Iw$O^V|HLu+ZokU^hVu5u2{VVV*r1HTp~h zOgT$=X=VNazS?9rFS*Hg)Ipb0kh*|=m(UGBN<fT+m<Xv8z@)%sNmD?{1=C@|beP$! zNWy#zfhI!VEr??Vp&-!0d5a*~2o>plkOu!bmokXPPjU|MCP1i=LH_r1#~G1a?qFOw zXD*ZXtW~4Ntn7ayH?Au6+Kg#^{n|`-%4XLSqO;enE^@-v`E*M-taHqLC3CFb)ocf^ zsyNDG>*y>1s)1L;Z>3=X64WWoo@!i$qg5zWaCh8u${V<+eBW=XiOxNgj8QO|GXnSq zaCk7S1D7gMa>9y}{M3{gwAo3hsaZh4<HwKi;YU~a;DZCU10kj>EO`q8H^~`>h>Pt8 zT>=OheRqMFSQ!7^-~9?-d~rZZ0bCGJg9d?l&Nv=34hR0H%>S=?G?;8~teoMmkNG<{ zl9+o5kXG5Pa8G9#jS1xH&hp&Mp0DC#{fQjXs61HXPu$&3fPgTnXamwQINV@K5bM1h zW7R(E9u*ovDsEI<W(C@f+eYh<53C95{t5^uRYF_weKj}#*GcGJ_&YtS@QVi1D}yp6 z&;2tVX|#it${+=96!O}Nh9&4=*Qb=MW=D*{de+R#!q3hb(>OL3hnOO|)FCFW`Z@Fi zHrp+>+Z_PTo>}Gz(>MY|m`ee2oBr(SUW-*aPJe!dd!e2pBF6*P^jlVpycZwXrXF)H zn8p3kC>!AFfr|<Oa5y86?3SFZzjz2hKLl)d37c&~>Va;^NL@ip88H$<0%BqxJ|i_t zvt0zX4<g2WLYWD9&M29Xmx9z45M><p6Tc^t6ftlhiP7k0am;58PLra&jm(&{>@-Cp zyS2U6UizkEwL#zHPe052;U6!I5K??Wgq^jih(G9dKi$fWAkb)@Rj{EGP|16}Fa$Mq zIf7c*?wMJh5jdLpoxd)e`3GP%Gk4EQm?O7dO`2fkIxA*G80QJoJc5V`LD%)@(ommq zX7uXXYQ|)uw3<@gyB)))Q1j}2q^*}MRM=tWuW<)3f(H5h=H?pTJfHFFKiFWq3rML* z`P&U*0%9l#A){oDCFqBMWy$#c-+zIxzdoAApOO++e){p4@%iUR9FGM#|NC=i&s$q& z``5$yy~$mLu3;E(d3lA+W`lX=Aj-V7)dHK&e54WME?c0X7yR8C^EeZ!F1OG4C?Y&~ zfy9`!vQi3?72@z)lme~lXoq{QHu_o1l^!0a=VEIWu;;=QDvJ~ke$UlCq&+mgbrrqx zwW4`v>4w7%%fAmwZ$blK4cu#(B&p(60IKD1Rk85#F+p6<B}m}zioR|(8^o^1JkQp+ zhwBJ%5U*wh9S(<f&mwT+t;p^L4Vn$$9u-mcKQ|K+%Zjt`DW0^#@+nA_7J5O9*UrON zA0)0N;o%{0U4Ug&_j>EjEJQdgi;WK?nFL~S=~5T5+iY-g)nj*&kh+W*7X<s4fmm4M zNC6=MA&Ch~N?>wta-R0Ei3lYC)FU8Z9y8`~!C_B$@Xmnaq2QY@X58J-s_Id(=|>SP zYABl`%PPXt0ri9w(W+o(rMN96TR*T}qW1Z}OvUjgK9$r}BJ&!tdmR%b&-`^)aFAm| z48BcxIiU>pA3LGUf6bu0Mr0`HBA6RL@40!e;G*%SzNO$9gKBeY6Lv}M`%X=N_4Ayi zw!I*K-*@P{!3aeS$f48G>#4IsoKdXyoK8!tsOfWQ4F(asgg__*lU-Y(9Rd&t<8+VM zCG<V}_B&zdTo9KDRfvQK7ZI;sjrhYqe2tecC&UPJ9nkmu*1l)K`bR&y!|_;fJeGgI zK)*K}f8D13YRO1dvkL(!br`l=Y_>b3en!q2{lG$1R3*X@++|s~l`)Dje$&@O?SfcJ zZYC8_nYIS`1tNsJfE`h~hU_ENa^NI_tLB?qz#0E)tz`Y7W3GjqLW6pW|Lp6pRvg1A z$8uU6R{`3eX~lJ?E3EEzsksehIu+*|wna|xSqbp9&PpSG+1_0}*5(KYLw%3E!&?y| zrvio;n-bFfu)(m|V%U^gw2cV4WbAgAP!oSC871?-oEOdvC>irS)%L%u*{iTog~n=T zk1-;Jh!_J>sMfz2f(Z*Y8-tsx?kDfi%AI^22RVE0mSV)vC5%=VK=4HGDH(@(#^q)s zd<2#a(S7)xhv+vMv73<6QJ6m=L^0P#LP#V5eZ;T}<OsXGhUx~Qpb@CRumd)`fU8Fd zL>&kL-~X*0hys=g7{`q9ka2sRad%U2*caU276U+y`eZ`MM6?z(sf;x=0zsw7%{DsS z0fto$^W0uiWz<}{V#2HDK7U({G*+Hf3B9{;y{Xn_JaYHgpz9ph{*M#h?~ro+shMdN z!Ou|i&<Fu<VEwE6Ok6vW=1)>OS4eKeV*Sju`$jiS$=Dwc=HE<W!qYT8Kb|)hxlv{u z*1rZ_l6portXq52VwAC%RjV@mT8yO%hb_Du0Rzy9DIb8OJ2Arv0od&Ve)5xB{JVd5 zhk0hLzV8FJTOLP@z~NBv^PeAZeZ8Rk6$1VKHXZD;kcy%yp&teen+;OzFpeX3+a1!b zGX~D4++-SM5%XtW{Zrz<%rh3M1)XB#uJge$93#?2vNK|0joAeI2tou|U|BJor3U|$ zUc5mNh6Y}@98kYyaR;qQRlUDb6q9|4ARhh(^Zb5bn(2BR$QT`wFj`hA$s5EC`*I%X z^o>Ejm@q~~=zE<U@5$<tA&_+HgJ|M9x)x?3D8oFFXzKN1jZ5fp_3$yLtb^Aw#V9x= z?<oaT7Tn+7;MI$7Fdh#zs|OViwEq6-+bS6Kj~5b}j19FO1P5se*i4bzL~|-Huc-<F z1Yk%VCUNJl5u^}dDj9vw=wkv0^9Mu(bXO1ei2aNZGh!;j>|xB_OM?18$DM6ynPAFE z_3H=L=8gSme{MmleiN|00*Dgc{Ww9j-a<g0ft%ME_csOCFEgHhr9y#dL<rKksWLI; zm95FQa*xV`TpfWmO<oHEq%f!flKQ@rTio@!hfepZH_Llgxn>OVxDdEd1&DnkI=285 zirUe;E&7IenU&hj-HA=@A=gp+wLWP5Zol4eW-agY4E{l_hGKID%;cxc5nw{hIsFq8 z&A`6?uIuZ#+}f<gjG%DSx2>4J5}Z~earZ01QO0j3VV;yvA*%JrIaix$Tx<jxfDi>S z`#x1c14SzIWu(Nxet+->_xSWvHtB}|Y&H>H7tnP9(^N1`1wZ-89{YX%Ytj1uCXY5( zpR2h|(}?@KTL53lRm!-venOAFAF#W)!0zG_4<A0kMb}|oW?}qb4Ujlqq~y$97Bjb6 zE+t!e;V8nL66IV9`k_Zm5z{nT^~B`TO1-5bFEi%p$V409cOw8HBCPf-0--D#o!?Rn z-J<NNT2T{6pKUw){Va@Ry}t~l{T_tJauwR$NfBtoVAYnOg{QfWSb*9g2Ni-;P>MDv zF9cT$qCBd|x&{7QqzMoaYB_F38USrzB!P@!@)m6d#Ob6~>x11X`pmuqx2Y}*mTAOx z*dUY)joNChnicScilrSEDx790W2nLwAvbM1&IwIb7*JP(rgnw^bTM(eY~m`1F$Pd^ zN(icAQi!lfzW@vVBtrM(ql_4#rS17)nUELBn{<n>LJpCafMo*25|k=CQ3L``H{yjY zCrHeI(DcF(1+c{KhNtfbJb5?a<6q-~h4Tz7Ghv>9c><;*;cy@v_JrG;fN84ZQ|$F) z)i;{JBGiA)q}L`hXLEB;@XJ&gM#V4PAdQR+P0<MMzEFR*jq9Io)wg0X!K-feQxU_2 zfHN{mGp}Z|wlbZ`cm%X_K%LjgT-$dwgl6?}TL-;xC1mjUgZmyZO-CG#dovjh-GILD zP4o8mwM6N34$XJJ2Eond6tsM&A(^uR$mhoYCP7F<00quSKrDdeH}jiz7lhyX%}XiR zp}sr`#7)497Zd*Ik8X^~rxdW+Bn$kTXTmfQzW8F4V88R@{txe90W0S!AOOJY*DnFU zgoBuBCP?4+=!XsZzC+g!*ll-s`0ybR0`~X!m?mkOBtmkC5h*70A%Li0*lfg-upq@M zuxY2pdE$Vx)b~ikRxG1zZ78LHa&WS6wRja;5C^G9NyLH(RjXK$?y9DMDbv&xz%w*U zEnA*RC5e>xZZ&ncYWFyX9Zt54$h>t+2b+ey(^JQl?96WpN|y;1%v;FS+K6^z)v7u3 zC)zE#_c-1sNib*|FI3-ZskUadWBL$dwD^G#*#e}Q1eG3eWyg{WYRPQ-397<*^M63s zT45bc;lMnp(NAolT1r7KH5i|*3k2g|;0mAZT2uj5T?8?3fM4UNP&^}G%F;d@5n1q~ z`}ljDD_lyzvP3LP!88NY4CDnUncXSN%mgi$U<68~F!SL=2q0x$bAcpfE0`*SS#wYj zPy$QGN>n2dLeZcA3|+vmtGBQw7MZD1L|y{!ZWi3%798#irjdo2c>=~GVLUdjp}N4U z!RX>?x=>}dz`5vM&++Vf8DHa(0N|U2P;<5353EZM*P)7OE6@sn?O+<^^~^8<VU8Zr z-5VRCAwxO6?u?5e`0J=KPBaBEng@CE<cW*2{eYYo><{-$n87*y!!U@XuN$!5Ln^tP z2!1-qN~Q>Cn`+30<I9?bMO{R9S~Ygr2Wk<BG9I7ZP)bGsN9aRRWp_Km55D&VAAi6; ze{D>}8b0vlmm~hozq!UdvuUsE61Ll_;Y<_ny;rYh+}{4j#QcBx!NLKX{bx)#9QKa5 z2g4b)>gd0exIA;$_t<Q<xV(ITcb>i@T^DD}(^$=~BC&Ic>0-r|h{Q}=*oxCF3vwQD zxW7dNGj3m1@;Dwr5u7yzF?U1D`bI1?GPN+j4xR2(n>Y+N;pYaX&m4d)`+!2N>_=@E z(?%FZi~3DqpA+c)#k!B`cSs62^9q!Jkb<~y766Ge%R-Xb6?=~c@2OA}g!vd_l|4^u zzn7fzSqD0(lsc$O#sd1x4Fr_T*=j}q$(kzu_}U7pxv6o`4hKWi=4*#MP{+XWDXJvG zL2-X`A!I79HMm~OHBSNpvOG13B3=rCv|wH!P$BH6$>?hg0o`wW_Y%uoFir)_LYS9= zX(CKZ!88}l3t^fG<HX;`v0#~t)LZ5SjuPk)qm-qL;Ck64rkSV&(wTOt0<G2o(C9`P zxC~SU4MQ^#Y`6qwl`2yN9z6pdzZ(%GIEM;QGXI^%g8f~_{w`xY0Iy#W_V;9Ssd!Tf zKLzduuQ{S8MKeqjwADt{?J6^NY`$t2{#6c-_^%>(%b4}1`Yic%r7inM8`8SX$iktx zQkrMOP`nC~ZWN^RYv=1mU1t;gcR$=W2`?}>29dlE;~vK&n^I$n82SNy*E@-<zF)N( z=d7ymu{mp`tQ!+l2tWgD7sCi&l}tsM2A35_RRe(&0%e0DaOLc7h*;)=p(lL!!4}{7 zC?JLf^AyqbKq)i24*2AgBmVf0Z;>;X{_OgM%_iCA9!EC&efsGhH#alpxpk+!J<c3X zOKs);x~C+$p!xmJ|I98kP1OX3E@9|5c=FCO{Mv8)edI#e@Anvw2h8(?oELPdAeR9| ziQQLJ**9B2@3Fgl#9ExBvzMGPjSFj^<zW5Z8IL70KDB$D>1?S4l2oCRD`H|FIM|}0 z42p}g0dYm+>K<B47%-e))3xRrVN`ZjtTJjjQ`5T<M2QE`tyHrn2q7lU!>20TDE-my zfDF${(+FG$t9ERy0(<Iua0~~#orC=2SPUQ(w(KAP^D;^5x<eV8pb`pCR79C|ZrYZ= ztTt+>7X-k}{e-x_vYDekn822Ud08;!j4W##g@<v89})qxu2A>)e)9^)5!mm6X<RVP z8F?v~mW**^!C+okI9M`aUI^pN=LoR&f~82+v4zc%%Upm&u-L$0V>O0drPNx-x|Q-E zE(Dcgc-Z>95_!c!tP5Y4McyIp3W$JR7qPvFc;~%=eI+Gmi*?KsVVMc{cMGRY$vh5w z;ML0vlR~`6M{rtnW#8Vs3#odzF7T|#?~jTgTI@)k?BQq6t(*G<IXo==34=`|%U6VG z1hODRk!0GTd6v%k^zDEVw&vTL*}lz3{t^+UX~Z}ltJdH3*lxFNfREb*Dp%NF)g0VQ z8f`(=O07KAPwTE%-fotK3KxBj3WiYJ6YV50DV4@C1OjXSr4*E9#%2h3_^?Av1+QMt zI36NWTEst?@a0!``0~qJZmcE5tCM;gr2t)@Fpdkp{PKYN`vuFg?lbWA_)8r`Z^X~l zWzgU{J?0rW9uBy<d5xca@)LJ;sBQ#tL3DksO`#@d)g=4a+no^+ArW>Lj8Ee<p-UY! zZLJUo1*V>xu613)FmO>DAYdM6i*JZ?LRrLu)OScj4`k<J5Spu<<4lBJDHm&tnp()3 zurq4@G>S*?&oQAy*fi;<0%S;9qG-5U?J>{D%M49@<jgUChQiQ_+<2YEgmg!(0uYmL zg;V!<DOu7EIhiwnkX`rCTDj%)AfffD4k`U~uRvq<)nS^&vZbB%8a?kVI>FH%hQYAe zU^yJHXu&VEYX$&)O4xK9JllQrQ7-{81xxO*%n8#3Ok=?QkT8t}^UPA{vK01T6tFOm ziLC@;DHtaf7{;++nlk1&W1I^1hlSk?S!$1yFlee0SqyHP1PNwfOF*F@6$AlI1#A{U z1YTbS%mhSbqJgs+7}f!yQ-;9T?ugA|kDm7CCgAl5$V<RH6->v1<Dp<Y5{{$9BFq8z z_Zi1yF$h-~fhu8HNvG}NdIa%g$c-H;6^9BZ-9QcH(m7Jy1YSs$$9iVbMm#HntDDs$ zQ5|As>s9nY9ouRq29ni~gJb*vSMfU@_Lvv0@)o0L{rylSZkuW~$T4hex?l`()W}mJ z6>1a?wlO`B)?;)9Sk7*L@n6c3i#8of(l1LJ2ayGIu_dbDtIuZ+yiEa12FBxvX_^s3 zZ$*8st_X!B=Qt6*_;Qci+Zo4WW&UpkfWK{r5MfCzn<Yl!O~)rc{V`HX*j-%W@#A-J zdHDcc-y_9<>sPO^*=!MFz_M_P8bBEOE#@$Dr1xB~WX}2SHv_uOAg1qx{r(<6z-D)e zz8^S<O6oz^>W~FNBisu|1(-tS8Ob>&kM^9u#sXu7Boz=s(b_Y@xMPxcxguGn^vD>* z1ReocoR5q^l?b)W#1O?a&a^P+jMRl@E=j5kDmT&kGcg3SJg_^PE!?Vbgb+{@;hcNL z{R8M+;uF&xqvn2YDp<DjS<`lXenjPU%43wzJlJmWa(@q!F;qD5*tIXp!|fJbhyxN4 zQY`2?fQEvL3yD}PY!(7_APOiFVMv8b|1Jw5XYMX`JO&&Ng#BT`-QA44J!{g(k*x>Q zOt?Q}-0v5RQ)Yiz7EqAJ6a>q)3{kXxXb<CH1iqaTOk*W@AmVfZg1(1VKL+ke-~#<k z_>I737qPhzDK$rw5>T?hCufWkke7%;0m~e5+y}gPUT}TQ)z@5ASXuIw=GyR+;6Azh zR};o1V3Pb*en-l8Wwh2hbcIXKO5r2k17ag76V#L?FCd)*q>Qs4b(LP%a;z7EY||R} zIS==EJYb$j)3m$Pq3e3C^X-Co{4?7+4Nf+3Qi#IK2T(!ot*)4g3tmyto)~L!ris=j zf#hl<rw-WeB2t%5(tIozJVq=_269B63U01%`FmiqENA3I><<ZDV)Jn70uG0WWeMVM zUdOS#J^n5pTDRc#<{Gy**JrPZF`?@_Y&Kh5T|K~~$L}DfguE=cySv3W9#IO{8%P~9 z)p^PMJ#~ov1=41~R7m{l1qGP{@j^n39aB=<OJZ3P23-HCq5(8?LBEGe;mG!sRba5s zB*Fj_AB}N>qkF||JxSH1D!^BzB_c?mWK*S6{+3dZj0O}SMoa%wt%jgXUM)933W;Hw z3sOwhSV`%IM&)~J<cjJwltamnSy&vsXt{zaW%>XgKc_roMUzkkt|4(<0N=h@<GuiJ zqo9637obs>QdTqQfVk>kP~ez(LYGasS`guY0~O{e;&_M{$AJS0GshF;C1RWc=9vSR z?(YaUHxmxW1@lrYiguh9?DsR~S-YhbvmVe2puzvg2iFl>4S3QDL^1gbg7IIOk7)m@ z@tYtZNRe}Pl3n2TtDQ)DA!4%=djtjUtFRD0_>f`BK`y}Y5OCN7;}O^&3hr(SZf;ti zQnQlsx27NZpLxE<?853VY+82yRM4pNX*6IDW3R5OY0x%2*()1i#{PO)Sm12$uM;F9 z%+n~*{nd=EOmdn>?wTu-88?}V)~Yv(Ij~91Lu+0%;iQ3)2Zo!4;FCs>H&Oo0ZNV8} zibX7Q)2xKewnNt?&aj~cxk$4t2{M9=nGn!#dK?ZDZmw@7#VIsV(IlqXB56K{yCdd# z!ZI)akp=yo#smGwc9fDaja<_9_U0O2eEth_CnPEN8dJi<M^7-`@2$!mn}@fY_Le$y z-GX@@CDSWPIY6cJp)&9gEvuU}4Ow}Cx)7kQgaR}10(HwfhF<ASWwr<^7?A7>NSS9A zZj}x(<Bc4gM~?Z+{OZ`+R6sy-`Uf7Al7ZCsf=k?@UKwRfQIt-e!~Xsr(>Nk8Tw**z z89%D_FIEAacvG3x<0`RGQ&E_jpMBt_(b1sSF&xCP;9$^dJcS4s{eU@VX%tkSt#i+% z;BFexsoAn>;VrlEu4Zqd&?jk5Yf3<mfX%=yOO;u$PlaOzmPK2T2F@(VJ&p&${=VS; zKI8g2<1iNN5A04j9B16$Pnc##`en%$Y1?uhHCd7Is-Wg!#)}G`BEDG>cxtd1>{^p% z!SmC_RMzNTd&2#?7(qP{P-?@E0BpCw<0pJKQNr<<FpmM_u}H_ZfO!Ir$AZIwaCe(A zFDp$GD*XYzDYxN=4$A5+oJbDMSetWo#wKCcjqC+LoLW|zhqVTBGN87vB@mW8<9Iv> zk>ZC2XD-np7|$k-ghkHn6hbf}sD4$yF)N@5LDs(+W0ir7An7LbW<@6}!6J1tmlW06 z#~5+-U?X^*QD%~{v57HJKnPXXPATI0`Uc12Xla8=FspSepznJYkdFr}%Ot5ytFp5H z!5_|_`u4DcP23A|UhLd>JOBVf<XZQs>k$A<;{oMR_^&U6?aZH1iqAMcZu>&>(Um4x zLpHMz$Q@!SXe9c^{pt63aPQ$y0W8P>36Z!XCcDtG8ur=6mbfoO(O@nWMD$HE9u=&O zgV_YR)G)U{m(S#MYa;8&Nh;g~&ZKW$r!e|p^9cUiilz#|R$YGW+gBlp+~xk>R&dhS zS4T~Xp*9K<xNDq*(v-tIqk~kf4yp~?=ekhZ<x8Wdy@ppO)#`tB&Dn?95n<>mGo}JI znO_p-M+MW=vw%P(IhUM~a6D!l_EOT6SS!50UvPbsEhgbO6|N{a6^s*Mp4shCGT?BW z{Y?oViW0mC#12x31)vg)kv6F6yPT<nAz!Ew^#maziJa(nkYgYLxVQ+Q9e|L;tpb1o zN=YCJSQcPBa%@GBwywt`aM%|d4h6S2MV8zP1#04{Gawz7L!jVyw?mqi>APvs>O`vw zH%BGVWMgx0X3d@ortyezI*P^|kWz0N3>B@JUK!k4=vu#>h>({V8FSTMY`8+ag5M(5 zonRYCH(*n;w}q$9OoOM)IuIga04^>DbREwl=fdWE;xyYB19Bn6SUA;*2(Mq?U|D7p zvN;+#NITP7$9+5=rCezXm$%1X|Djr$w%sj%2LvzMcR6DgVU;aQ9lCD7I3AGmVj4Wq zsD1X=OzM%#Fvrv(rOq^U6Yz-;B<sstkxQvv5$f~ZCMNejp^+8<2+7q)<gBogu`Dyk zKLoa@r4S{(Rv!@>dZl~S(re{hN&x{2I5RDRa^S)|DIta=!UusUgR(}lYicuDyqOjF z3d#i?jn$yRP+OMU*c$wy=968bb5NeC0)sI0D2&{%o_7me^gX7WvE(d@jJOKTy+Tz0 z@J!qbZFO)?lQQ7e*P8sHfNJg)nJxrq#D7Rqim(H=13(v8Z7Pp6?3XU3SiWt}1$oIB zr;Po+;OplLzWgfV^-aKWEI5oA`@@21E|#f~GiNvu2vGzY?L@g|c*>MH7?A;9iq1~} zsd#J*Nu@fKKBEEN{sQ3o?h;_)v^@Z>$}!<m@*R223J66S!UW_TvCP1D47j^3xV<La z-oSb+7*gox;HIdXo>1o@lWEsfnWta>GlxCG`Kd(XZkRC<re((QaBmwjr5@Yug)x6U zwCIUS{>pHbU=^+1tr5ar(4g}X@uiW->w7%oucrTq5J@^`N$o5}6x)aZLb8CICr=(o zZT^n6^>LP*Up^O;v_B0I(>USw<_61>Erk}5{g^o~SQgdrB^9bT?dt9EH+m>DJE<Y^ zcjTZ_fS52(6NqkcaruyOIz~{D3W-&^bwaYzhXNE}nP(v>m8P|a_HT%;QI1w?)t8Xa zA33Y^)3uLRw=}!f#F7`aW&&FdLx|{-YUO+sg5}O<mljy4)??7Iq!ba5B|x#p4nX%> zAht9vGjd*-Vn_;|I1EhjD%AkMf{9ur%`FMjycNbqQpwSO2hYll;as_GZI#B3DL7hd z69kC`h{!6it`w&j0y<7vs0_i$Fvj?*rm3USg*+uk0-A<csVjg1kmWb=rZ@@nTy(WD zqX2X%0Yfk6q#wK>)UW-3V+f`><2WwZ9|~^w8T(_w{zw=lNBTGcFJH}geLdp(X2Sh` zLCn1H2y8XbOar0-Dp8_ji<`ez*{XgY_1S_V$is&;*S>bVYL;1r4gFOj#0%8gqDZ4T zz$CB$x`D901RlO4+IFcCy`=zo;f##?8^U-b9QFY(zhQTS`R)vgE!)=>@-B#z^%10K z&;k|F%tb;#US=G}JrfbI`EIk>qU(ErxbA&JP^{ut-8hOP0RiZ`Dl`ESxm>D{C?@h^ zct>JluL3P=D$d6rDluv1EjY@R!+iV!Gwu{4KK$qzcDpUFT`3sH2_bgu-UtDmbSO-z z!+yWVJWpIgHb#kW0Vs3(&b%x&659zsZ;$`~9qS@FdUzr8FYIqnKk47%Bj*JvbsSeS zjsV2!)(xUz@V+HcmO!Gly1a4S)V%GBE0iTa2Cd5IX$3hKT@?&8_g}4Y#GF&|-!=E0 zkn;>c&S@t<BBVg3G!$`P5DIcxAT<q5<E2tCjwAA`mr_zV;C_FHo7>ljDdF<s5*L@3 z*lsppUYC(+K_KAv<~8o_Z!wKW810}S6;zBb8|iB8gbvRHM9PS%k|DVcr#hD7uO!k^ zbyvD|QN~o|3t3a(q8~8jf;s1!-R+*+>4nX+z_W6p8SqgJraju*^f&EVR7bBh0*Go& zZ1Smmf&Z!B$+}yG`Zkkww6Kg^7fiGQVkD$Q==%=4U603)fLz#=I!!Zf?<c&z&A8nY zV%%V}8Ia2zmIavZGbpc+xwsVx01^9+jUX3|Wo5=xC~%oY38E)RKk6XGk>I4apmTBp zk}X;=Sh<<AFrv#Ah(!d=MUlTDX>YRnj%^8e@D5|yGI1QnG6n2!IUw<P2sqqxIpt+` z!kS;(&@%s;8l(X5DCFQ6IB01c4;YUJXn;{l9k$yY!kTcJgmo$iHct<(e35LR2(bAs zMRZ+P;VJ}O1%i2*s#(&c=KAzjscD4+=H+~WRt+159uFTqz&K6-0=C;N`eDF!cL5II z1A?>@ou-M48iDat{rV+m%nNJ%fmquqQY_{z<Nx<Ni~vVx;Rz8jac+JRYmXA=EHNEb zn9O$WjmI0-s1+=LQ+4TY`Vcy>%))@VAdq^z2!)NU!V}oC741I2S)<eyRq8(CHw5Pz z;CnQmz7(%s$cRFao-U|#Jp?Y_-1U|o$fo}Z^D<fBZ%n=Tw<8b;9flf28+^bh0HxhU zDKA+gvHkrW@O2%3jFC%>1E5?$QUW-LDwhJJU3XBRcnHHx!fI-F&}lTIfC?k{uTH5t zx!0>OYt*CWGdB+8jDRf4kSVNkl@=|QXIGy>&9c;?1++t4y}S_!D&Z{!mOfad`GZMI zszDjkSE-x;<jUYx(=#zi(?&G?i5mp*senikL~L$N5r~2FJ#Y3SzI-v^=f7C+^2Lb# z{lq~mC31wTjZK3>xOPA!E;dw30Yy1aV4=ub`I5K|*sVZ9bU0#E7#3Bb!biM=YJ-Mq z9Z}(+T2rc&ssB}>AXxWf5fmk&mB-C_=!Dn>Y-F=Me5!u-I*+nMlm(cMTn2g?fobGo zNcXqE-HnV-DvXhg@8l3PIUM&m?C-^&%}jF`Hk^lSsN~SxHbeW&Mi?{+&|lMtsv@Y_ z9fsE-C8WY-UhA(S+!!vw{OrCDyx(>quoWexj2H>~`#tiKG0!s&$0M88x{iykq=@a7 z8;*b$7F4@{M~|)$Lc}~TI37pfNSJ4?L(g^N{X5?tf3YLj9?*3PVy#K36Mu4$Vmt$e zVS~+PgJIYLflb`gG+Gg=d7f+qN~u<}zo@qVw@G*tnVrqqK^3sTd8Jluj$KgRwCrO9 z^qvqquC4|$0f0)b%8_1cab=EoP`kSc1Y~mLV9}c~rx6z1Yudc<1tJ8>wJo=d)yFLO zf^+gRdA5wB<kfkh7dfMp#gv{v)vTXlLLVbG!-fU;dEsXn!6}lmTopl0-Bx%u*9UKL z@^GmTCwE3I0eV%9d01UXDj*QHU58PviVpSxKo^7mdh&MrMa?QAD$6Iw&;m>nViR;g zDUvg9gq}>=M1YmOjFCiJiU@&yH6gGcM&IEzGd0yJvt$I;3nGAo5LoNVIpfvM0e|?T z8~o89AMyP8jCsnS%<nIOwS7h&0wOgGgx|;SirSG%iHibWs|pfoQwfo*0U%H?R;{%a zI2%C6T+NVG>{?}cy1mp`B9!6<*>FLGhoFKKj9JD=vN0Gts3a*&!&aKqF%-9#5PnQB zzdmsQ+cF1C$B6rzfV&&u{*G|mbGoN8^l6^4zrQnWH%5+P-)y#$p2OFYmB`d_dJSQ{ zYwIaH<3FtZk<_lCUG8jcmY1*Teu(y2b}y<q5yHd^*Mb*<H_r=RzrJqX6=TG1x5eYf zkMQ8ZC5EBLrcW690mBl}cPt<rk6b1;MqszwqDu+ieDl27$ZwCo%po`^gr8|`5h1^r z+a~7)(|E)|*1D*$=Ugtlk5tidaZ-OLmxX5%CAAKM_ttPI6tjZVO}55Dr85yRc9L<! zL4hH5!fXmko~^4QYut;#v<A{y{ef!wJOwLpoKHXig#x4`0*u5@B>*uX)6xoLR4OS5 zYf54S)Lri`Km~y*4syN(E_wg=|G_`N<Ht`x%Yqma=4HXn>ubFH`Z=;xEwwr76GHu` znG7h|$`}9AR>DqEsxeu0ehuwYy6qI25CXP+kNat2D}Z}!XWA428s%TbXg@G9oEQTX zLh7~Jz#Ax+T3?y>Bh}{$;g7<g>ew@Y2^I83D*Oeosme!~suck8cd;=79ZCVl>4+Dv z?(vhK-Q$Np8u8_qGsc4;p)jjOOe9d>FA;*aQ>?tXW)g&enx9RTflve}fr_-1MBrG0 z0_-lq5vM{>N|sW|63D2`+oH;CA%lV6E1<#tMUeFRmZ3Y8(elFrlR!X_+*37yt)A^1 z8X`<oZfj3Xz|aR=UIaXP%t46rOqh;b4mB@?FMe^0U;O+UOD6OKH?Mi;*#&mH9(jh8 zS>~opQjN3`B-h8e#z-pJHhbAD68awq9<A>60)VWk`t&Uj99>mZl-(L;=<e>8?rx9{ z5v03YQo4rjMp{Brk?!u27U^b?uA!Ur{pV_KXU%$N@BKbG!W(S<JYduNZ-{|X(l4AU z;0-5V%rE@Z21#a6Xwv89k+i19#m(P8>UdEQD6JM0Y-#NV8vHtj!lHCrJC|t6z~;o^ zKWf1u=;D}BbS6DPlY`qXDSP+c(2u&Gu%C5xu@zU!enrSt)UFP5%<q58e_D0R!%3Z{ z3{OXNYQf@~^e@_!P?yN_4L7hR$Z*IwA8Z<{ZjKvQxdqB+1}tKY1g-OJ<00X``EFvA zK&c<sG;hTOZf-H3E&(Y)x6zO)UZ(?0YrDmlxA%M&u&g}T2y8=`4EX6E*{ih7P%Bd9 zEj{<~&Bf_-j!tc&?j-NAf!+>~_rxT5`b(ce`12~sT;o>Uw8Y5x{w9E)?eeS!35Zb8 z{xVO5r!d$iF=p3Hnf$vs$IsZvLThi7Q(cY>y1bgX0eq}iED<@L5>&1ToF8Smh5uH( zqOyIJIQrJ4WQ@~K@ry$iG)O@mDi2BqV-w=z^VY#2Tp6Lg!G{nGsA}?A5J)YNN>QU` zWzso2pF<xO6#^a~a3o)Vf#T#PJan01XeKPtTlM}~MnUH$Y$0=8Sq`I|xQtA<i2aH! z%SR(Kh6bp21aPJ|R=4`XFeUFRM*OG!tWdL5dV^@!);Y6=<DpsHY6v5Aj$0#^!_cg@ ztdF3*Y%<=jY_4e-W9PPecHi>9tZRMrmaWG3>iIhw+8$t1sKuu(UAfoRUnNQBNEBjD zy{lR{4zB4I+Sz=8vY(w3elZ>#lIvI4>>BJiH-<GcH_sN9^AIB>zs>98RvWsI2@E%x zy|nr{oIh&n?mMb{aB7fJ<iu{xt7QHS70%d@pv2+ZFtwU=d-XtACF}E+Kh<_I7NsSz zK%tCKBASe<qH&Z$5*6gA53U5C8=d0J`TQczG$4`c?H+I9Dt@u1IwcbUi^_y165R15 zes+!pyle07kk-~WzBQ5s`aeIBm+OdG;wzg!)X(1pXKuX_Q8~t=gwwuyjMcr9iu;4j zvhH~KujwN>$a+k#m))m>!@T3LjzYvKD!K^kKxBgxXvbSe?4UTu!~9+4MgUXGhNir| zl<8}d>@iFa`<@vs!+P&$p?lY`#nOZvHJ9*k78{DVR;FtyNEU(AF|WY@HPkrjBfnGS z6HcqTB66?LbZb}F$P<;UQ!^Yg$ank8bt-Q%;|Zn2;PW$Cys%0N1E(vhQG~|NfAkei zy^hwQaUaf215<Anj}snZMN5CcjH@qW8nTVR1&FCAL<II9UDb34zYDAIHITvX+MPXN z0NEi|Fk@@}$y_ZQ{{mayTdIdGBOeVirj57kKmFXl{u0lehRVHkEwzXvKqj+EaBbXZ za*$^U$ghKv)Frw`3f=;eB%d1K&hB^}mk52nlk)33P~~aU$X6k4nVB&j^`bYz>%GBV zhT@{Ry{CfSYb1@Fqu(n8yY$}mbPW9a2Owko>p1id+6HXXD#Jn_gyMOt&j|w_|3!Cn zWD5=q;{N+js^`iIaf821EqNpZX`r&YF=GAN{%S~`N;rPfoRo@7mn#R$<rq+|$MT&H zMq~T^yp>{j=f&fiG3Wg@)y8%uXY161jiS$a82iTC1?&K03};6n8Q2+lNpo<1Ai7g_ zLZw~;*N824yEU3WL`BVmOJxd%fIW~EN*sBWzf`HmNk(1KJdnm#{fz}%^$I5RI*6$6 zLx5%ACS<vx{J!sQV`Q#8iTj%DaEcMu!Tgha5rTn5`!OP*l6}QC4S;&8U8xvddgl;L zEVeL3{8wu0@1HcVJql6^&h(ky`~gAtxT_V|#<peu@J2&k%C@%>`@<4rxoJsTK*O>( z&p_(NP#^WOU(M$`Je|kGS$y~YQ6_1h793acm(owATpr{9H~?)LnJ&f#L!~c}dj?F* z@abeiy0Fcij3l}ubL>+Yf2rfs2AgUt<>|^oY-Eqs(0i%gc<gu2mBBA>Lz$+*G2`Q` z=mUtxBcMsLF={EMC8HCrOoTb8T|{hSu3eMY0&3|A?$|uR)($+rOQn>KWHzO<3>ZtR z^tJ~+(NvF6HO{M8iwLIipbB@`U~AAsr9#5`D{Dm{36^Y)by*)O9f)EEVY6R1;LjHF z5TtG(E|b?}W2&`nvbF77-R5-Ga43FA5t7#`c#?4o3dyg;z~!Rk&6g~=SSG@gcys7K zUL}zwF_H+4NM6xMPR<1Xn%GndY=psAdfv5~WBF<Q2}T)y|2B@0L|<yf7$y^omQwN% zTJUTZmn3lj-Dscy0&Ka^$;_pO*hyW;7q;k>m(6m}f{qsn*Qn%G=QK1)cuh8KPR>KZ z(y<rZ`{xE3zBbj!G~-Lzq#76{S;)C21SxENS2iGB-c?ORa&UNdBpb7yJunR#6tfAq zOoI!0Eca(a%YCAfID&Rj8JT(arF6`7f|X@6dKFI}QDBq7_~0ctvKIErL9(LKuUELT z)Yz>3vRSsc-pa#b1a&$0R>QxqE1zNziq_z<-HqV)4|D~kkSCrcecr^Mx1P=+V`&Np z9U)<T%H|l66{w0a#we?kh;P$xBa$P6o1I)c4a-io>(1DggV0`C0FuFs8UT$zG{SK^ z#e=j*ScHxw2M2OaVV0bzkV!_7yK@+{+skoret4lsJq&VPA87J51b8;#@8+o@f1Gd6 z_?yA<jX|-oTW>8C|0YFz$+N4C%(=Qo4Nvk!bXPN3vwvjsMIyiRO4ZJ9m@ffXC;*9} z&&?6S*>8-!n83?!v&?zs=vii54yN-pn(H+8J|ID|%wAR%B}e1CK9ccB9gZAn2u>>! zCP8znU8!cJ9;xV*^Qc%P2gdhSp+40JkjqQBjX~qtFVe!J`hVos7_v)|(GO=UN0MK{ z+q-w^&6i9|m$t*V{e6{VoREzO^>8Aa0#mq9*r>s9BFdmW^tBCyfUC=B7n2VFsSOtd zJp>MuAp^|HG0Dj2?zn>vl3wvtz4Eeb6{Kkc9ANPR^W)(1dU)Df+5L=O>G`WXV}MHE zo17&YnG9or;no62DT(59FSG->6A3tnP;3M?56sUKcy&-{Y7WlDBf6uN<yuL@7E#f1 zaL`hUpVaR5UD}VdndK}kPPM&&yr1G%pAez|U?`beEnLY!kg5dG{=09d`XXkK51vo0 zc)^6!GY<4#I{r{>e*c$NuG2;XPf<lmA9=bb@1j_;d*~Fy<u$G{{5&W)uKXMmhA%dM zyBj|-D~XM>h<WyOPK32Treh?+^S7J>h{;*pgE3BS<|qj=dRpPTK32_}nN%WL@5o$u zELZDc$Xtqf-u1*0bS&5t7lp;CFIoi8f>vg2MO9{yNL&6@4H6!Fs~(IcD0oLrTS8p7 z{+a6<P8T%cbe2~}a(Cx{R{uby%l+0eQgg86)N;@sjqMkn#pP68y9>BiXa^%Az^T&J zVU(njf#S+IYwAt9@))Xn;-uQS$;VBYFy0Gsdz*_sU`<pDlxSm%7DHt~$fUEART<%> zh~o3S%PjGD{}i1Pw+03q5gM6@57w*t+=V3p8_LkM<by|N(1Q^?O!Jv|(8VZQ-W-pp z3axNuh#o;>XJ-R`2?xp~{h3x}mw}W};s|51*4!q$sI+F(JZzd~R7b}mlP@8fvxPN1 zeMz;#rc0H13Nz#IwcOQ5wDR_{1VL6~jS%q2Y<ajjDR-hjHuATg(uEKYoLw)wpOK>H z<ZKyuF*&O)h{&igS#E@|v3xIWt3&~}^Wil;=EHCEy1@IZ9wAzmxlX4<)fp3E9M`pW z|ET?=oD>?R20cDl4pAA5{i^qJNS=v3$pgauqzA)f*IjNGr3n0jQAv3D5^+Aa&i!|i z<QK1V?35CngI?Y=(!pplqcA@UH6r+HiWnb0OHZx2xe+5?Q?z{6;`N!cd=KA6`$ABr z&q7CNrjIOmhga<a>|*(@<id$&<be2X9QhoJ<mvq|Q=h+4P!|7*gA$Vz(>%W>>e)Gp z<m)zj5cCR8*{0|pG>vleEkVUeU{+PfMjO7|H*!=bJ&O+l7pep*-}9%DD1F2u$#2Fe z{J|TW;4oi~D|cY7RuZjkroUv(Jq;3E?1jSE{~0)othOv9+{wWJA|N`bf~nrdT!OJO zGYxOyZ2E=N^xSO@3t*1lCxEAep$xAVSZ@?(cm9Le-00$u-TRSJ06|LbM&1@O4fWys z@pcNmz0Vce@IR+pTQ{~GLyPR*x`b_Q4Tv2uPqNPcWk7EDz~i3Jt%f&jc{+t6r3{PY zBoMz!bIGBVV8Y(*w9cUS+dSF^2kk=<D-Cr9_3O*;{%B;t+5dQ>LVoLC24~#w+%hm{ zJ6%hnr?ewfK>OQ#L@W$htA5_c3`9#e9DUdQ2KO8md|mM0Gm@1i&!Sf>F)LAFt-F1A z{f6Dy+2vwq2yJbn?$|v0ol^^$Sim(hfIA*MCeFzvDV*HhWpsD2#a(-8+`%me6uO~b zS!F1jE_BR<O5rfzv-u7Sotf`lx5IwOI!JEEXb-XsNn-ZYJYf<c0>v+epf-1?Oz_%L z+sibPOF#6GSN*^T<#{t>F<9O@I8cXIfWXywm_k2!Z2?rdukskB=iZ^8$dnQ~xkzWy zndK%HJ1K(5IybJ50xBt`LF26uX=ce`NgXC`?ayJkvap9)`jW0P$c2C1wd*yEx|9l+ z(U$S7Ca(XFDMJdcngglxNjfP>BKm&IzQ0%jj)N1)=mZgcfZE^<-3*5njwbwrfHZ$8 z^LtC)Anpb-r2e|5LY00gI9puTd66aqE(?r^T3-5{V5&%ypR{LOlN0x4*%z07!#9(m zkQ7({T(`iqx}N>QabLz5(V0jUBR?TLG@{_w^1J(%VAljl2trO&l7HvhHs-n5DmDC> z@kdMJ@E=G&PQDuP=Fz)ik7b3u8AulM`0<aW5n9tKs@T>UNAH0Ms%eQ|zagt-M@({z zKN1qQ>dm2q{sHA0%Px8oM`8vF0!zXxsl?+&$C9xVHsB&Ax%yrj=lCt?j645gAo!{L z{_tIah1iFKCx98DKAt2%b#Xagnl9ko^YtCS2f!-`Qpn^pGyJY~KM#d#Z~r{AAPR%7 z$l^_x)<znv_7y#>BMx5RJ8iZI^UP3K86Xar!J`=0+G{X!lw0;Yb5w<~xPI}!-{4dd zZASXpLDO!Z#N1=unR{?I)y4Jl6L9cRlyJCR(N!+?0V&tiCDBDxGk0)v0f&^WY-nfB zCJ^_IK1MmK+9$en@T5(zS4SV@T~gIvZz^w@JwWLUzPyOX&Vu2oY3VT)_x)f8NwA{C zO*#W2T)KS|0TIoWkdnO%rn8l|$|Sm7*yE8y)340yUp_o2qbEVx<zYr8Hd+!Est1}$ z<_+(YHxQW_V_FV?UgPw7g?*rmkgLz&-_O8a9B*r#rjJ-y)YM?b)3;x88THhh2zO7> zoTlW^$#I<E+d2OL=tKCEzYRxU0O8LnBsT)CIaZ6`H>%bB(Z4u8{_XxcZ1zC<A^0>! zQ)-dOsTn|_!KVUSJG9$J^&>;QL*VWpfD5NQu{HTlpuXfpm*1Io(dSPg5zsPFj3n;0 zin;nZYI4S$7*~_!`}Trn`g7)1;Gg!g@l@_ar{;HD#lM&%VVJ%j(`u^Dh+NMau}Ht? zkfO(k;46i9>ZfWCB}VQDp}D!<?ybsHL6VW33LnUF%WKoR1eOb8w6k-7cAxNh@f%JG z{t_1q?J(V*Q+ENuU{PZF+;y=_yi%4oy1~6O;T(F8JfUR3>QUui#l{GVIP&(W;zm)% zUiw9VoB;wsTSgS4W6TSk^9%iD1(c~1IS(FTl$An}QLeIP5!fYv6UJb}QuZ_qg&`R_ zJ+X={i4Qb*OIR>|2zT4-XEu)28yqC*z?{>X@g#fRIDb+1f$k6}GZROGfT@H}xcej4 z!++N!9&|IZewyHkMo$amyV6iNGD^92pAgfvcN5uAvYV-^O~Mcj9zJfQr{pcW8-}B# zwa~{dQ_<)JiAiayslP!xJf`$A5NPBr*M5~=Jqb67S>zD1wGkd`QsT&6&8^Vs*nd>5 zh<frr5g@DcZaALO%SAZko}_FCbI3bAVrCMFdJw@_1WvA0OVDwWAfs^KM%zbKR@#nc zb0wzXXOOyyxwGu@OarE0dogNG1@be~LVT0lED@=7Ow!yP{74T1W_GpYBe4p6Ha_#Q z1|~7(cc-*qR1vB%6Ck1R+3C++CVYyF*{In>hThQ})08i2>nfg!3FrOM1E?U#tyewB zebDElWDH`dQi`1UBlfTcNMpol09}l5A(la~kt@w?NjpX$JUR|->yl-Ar+#3r94-hV zY8dbwl(b&m08`6E7-h{OM2Tu*Y%A82&7B#KMAYkrSGNxD6d7&JOq@h=m6gItvfPAG z&jFiz=L?s$3=e|n2~{K_&(X_#L}sF)E**WNcMcWQK*VuO%%#a*JMdV!VUlg_F?E=b z!c5H}ytt4aw2q$=pNpx<FR{Zz!pcAw3w9fP+kU&Zz3+M3lo)ue-P#_Yqzbf+GJTt5 z4Y-D4%94i*sr7Cv3X${d>3?#GEzx&JkJygRc?xtRjE$BZwepix-lOiV#ygh2cx`mJ zY#COX;vSlbCUhO`cSqcd$ER)2FDd*awdj42axs;L)Vd-*ICRU*(VXPw<{N?yx2J!k zf=%QZ9fEDqpGuT2b8q{0?foAfM@+}T!7+0uzAsbGlqzAKLwLp7Extk7^AqB_WJ%nr zRV{#ajH_F@`%+M6HLUGeizl0QBElM2RjuKf=JieXHHs-DfTB^vm^m(4%%H9FuajY~ zF^^-%XZ9u8t8ijGUbmZXBjAozGC<YU??uF|ej?i9$40}=&a@W6tE2<!AkFekghX3& z0EAgcZ<k;_Yb8gHFhRZBq{lE{9YWGq5@xs!Ic!{a)vOepn3+3(bqY~PqM)M2{GPur zX9RE5$%Kc*^LCi@3e$7HTu_fd$LQppR5IU6sQvq^Y3xo3DEKG5Z!1e))l6O-#n#pk zQ}uZ~hg=mg{o9~!Eg^c2vS)XQh=cHkCfJ%oh#b5q7_PgBXVOUujjKt#e<(*<+jKCL zhZ41U|0p|m#6`x`IgY$fv_AW|iD;@v*Be7yAzLD0-k{|3=+ujJ?gHILA`7_xHPBEF z8n8)5p0a`oo$}9ggBEUWi-w=Gk)@p7M{w6I2lbe8Q4&qaW@VDh!E+};J%n7o8dDjM z<cJlPc{zJd@Y5pyP{|{V0e3@)!zQs)O7gLC$BY%kDwRypU)!wKHdIqzM=h0@Ee=Gl z17$Y7sVzQ{%cLwbQlrD%IMK2J_g4Sg;oIY<=exI;Y3SIyJL1Uj&DScVd-b<D?+dKg zZOicVTC4iJ4QpmS_g*nLKsFzo=jJbJo>!lJ=TZHYW}g`-xVf_Fix3e~(+C&3uwA$| ze|?i<1LesuBU5}6g&`n<g|TvGrI1q80^<um6{|??{!DW+Kdhyo-0lm*n(@|cZEfYs zlo_L|uyTIJSyBU7p`_r;PtV7}R|>%S!^~i0WMoE+i2k0_u_u~@f9oMmR|oaszlWbT z1$V8^hNpOSHRaB1@w@wim#H^cX16p7c;|qt=ZD4r&<&_-FQ0m9&Ga{2B1M(;kM{q> z)Z_~S2Y%82%WSH*Ir95rJe@7VI)oGAk6vq={Bif2fld}`3m+p4@VuYKvpC{b&x;x8 zqF6GJ-tjgi<OyMr$B^I6hrRRm_PM@~X*|HFmcYPLfP?+2&h3NvMF}2;#APh}ujfG| z<@<BxC^V^w&U2O(_g~tC(%|j3iJllD(>K_t0dXmk&4)AZnH#bRTDJ7OW!oM$A@an9 zj|l|t?Qu9l;?xM_f5L_!_Iz^t@dE$Fi2|CcPX<HGvLEqy6KD>1dX||9UR^~n4N7wh z6yMI(^?yDgLh5YK2Lzrf(x0xHD0ZJW7!4l17X_Euho9#|KYBcUif>(FIN_k96kFOE zz~a1EPincp&>w`1AQ%^5e@ene3?F7YU!yRSU%oSo{D7k4%LUJC4hJeODWt&ctT3iZ z{;pMTVfXzQncMyRkPX2lgM_h*wqdzLh4cdO#M)eL*#7c8)~2>(zI?P9etDri<#qIn zF6(s?2(Qj$GNomH6GoY6v!BFz+a-M44Su70zS{Ipv}f_z|ArB??@hVW^UPTQ1Uq;) z7wHqT)cYzrpw-$}<EJvJh6CdK$!8Z6p5Y%`70mG-gM0+!w+L6MDVbJ30{Gn}&2VU9 zP&>#RaEMYHbs3q+E0`7v`fXrWpMkh48Yn9X>5TBTc=IZ&Q;T}-ZgdeRa*Q4xsqL;9 z9VhQ&Q6@2B|J(lCi{y5iy2Mx1ps@SrHVz@Yd<391Jdd~g{*tUZ=yqZM?e?C4(xLs` zGHVi*WZ(Jo^c&7&^$1_WP5}q802y#9-_ajrlUy&F21n>}nr;bEawk}RZcrg*`sF}0 zF{)H*W<ZGT24k*@Vth1%bwYU@1u|YNJ{Hkn%HHO<VtaL;P3E8c7#>*Ig8X2epOP72 z*)IdT7g~K@(#2`cyfP=X7861MPrLPS<x;zD4BCR}C01M`su<dWiHl&NrEnFK?$fMC zc<&xhi6$y%4vP`Fu=OR2U*xyJAn`|3G^X>w3yFNOz{mkx|MXPoO{V0?`SZYAe0C5H z$9L)5{)y~;o?pWd9EjT>)F*vd&PW%G>aD=W(NM&aO8z!em#y&Wx#WW=%ayjr2L#5# zD*NRTthEiBfQR|`OyK1EKacPwX;m~dJrqgTn)VAt;i37;@gPAD!ByA9)IASeZ|r=Q z=kIF?c-TjdEsNaRj%c3?yD%(ZcfITJh`1|Y6bleSv)pi}L#t(M5hxf(dl0kN0b4Y2 zNrYy(Q}@Fg;#lk|>jmmA;mhR(jquyV_TlIgw`L5!Yi63@ts@Myn$wTP`GK~C4jRCo z^+cIC$zzauG|a@Mht*0&WBBMwEMjDgNgPRi$9(ZOwm%~m@OVGByq&5;C0~<F{|kc3 z%%li<S>%NFyli$RnLahCOsxndMnj{`(`wf-{`_E74s^>*B3<ej4r+@~GetAkhjsq| zoJ=G3gPN#-C>Ky^0jP~&3qlm!2wsI~Wbt_$^K6hhZXwgD1VNP5E6K?*8hj#-)cS<M zSR7&MRvAuU?2;2l$c#C;!nN@<B;)eih&_BX+tB&m9%0W@M^6$Fr%6ckOkC3Sj>S0R zTR%>B$9l#%$aK>pk1@Sv<!u$>a*tfJ5Q1c8<5=pox{hhAoK;rmre^<D_53(!|BzQK z=rWyTGZnbC6JB0FTm+g|Q#14D$lLx1?Dxs&jK1}oR=vn#>jtC7sIV7XRoA4b5ITko z!i57nLl`!=5(#UG<(*C($Aix0nkY4*Gq|iTw$y6d4LvhAS9ERdWQcT<qpxUxscGmB zHO)%9jh+U7v5Hz+9!lW!b@?#^k0e7$1*2n~Ln`M7dge&*JnnyhP0;CLFxh6n4FYiG zOx`#GZlUqYN?uf10%VIdZuFr^4A+29sMrkkX8DBVBmWJfkeX4dFKHbc-JZRS?fQw% z`aBDr7USvV{m@9T5MjW}WN1y#G9-=@>wajT&ZL_$egq~Kf##xz*m3J?&b_b+XO3{s z!g<-ek+s{mWz&eS_+zN>#wN02K0;e#a}?cI-&h0goqE$0NCpJx1~Fs~!u1~lTzn^g zM`;>UTJ=l=W-)eR1!hx~E%&U|@NNjKoG~o6h@Em#Ki57$%vXvh>boy2QzY{uoqU~e zMo6_G)CeykPHRJWr1^dx(hcFKJ>r@Ue+gN~F>v~REc8<#mP)iNyvPL&5-!!+Gks6> z8dU?`eDRj-%QU6rM#tHFIm3Lr34Q^+LM4MjQ``95U<@%Wwx|cJQ@yf`chrdZ?s0&C z6b!r>8pP@~#lIj68m51tbT%U>5G^io4kH{_4vTiYRRw0T9?RkN?yVuu!Iz@Ug^Uxd z+C61WVO-6sl#*H#nmSsb)0mdS8<a@|^A(fE1l+*C<Rr<d5bx1POBe^n3?#p}QZIm* zzP|PV%m4<sw<@3mGk22OGEZtSBFv-<z%|yz%k1l0BU(mQA-evxFumx)kh3$wX;U#I zm<C3~rjnr*qW3Dz`xB}G`L;0`!4A@aUzvZ#dDORXWb-1I#bi&qiJ6hUBTw=tzg75T zB?M7yP0agL8IF!yieFL<ry;NWUDaM7qzzxMa;HpvEuivv`8SRcv|u182_htOOzw&( zliujYgTRvW4?M!<hz{e%U7Qa7%Z(27%&pKmxv}Y{MtX-2vg^ww=ah27j!4X^`aGUJ zEuDF3qPA_Rzus?dNxqrB*33$a3hAK1gsQ}0IteE-=djX`J?nFYrL*oy4f$rvNwex@ zD6N1DA5>f(GnqW3aZ^WA*!Yhn-z)$S<pjFCPuG3#FnIbB3K=cSS+WJu&o{?c%M?l& z4x;|0)spzr!@(BIDKXIvJ&km&gX3t%$<(FzZ=-9t^Sa+qFzmb{UUH(AFhudIkSms> z`1N|_*T|K{*bfzgyawS1r)a65gWgkdqf0F|H2&a6Te7M_8=Br7+P}_{(9KkVF;8*t zM&tSJH3^HIj146BL?FPWZ8qHheV{5AUuZ`RM_{h=Wf_X@P8yAv5kDwO5LZUIUk`r8 zcpZ~`zzKSW7@`Lb&Xtor4+P(1zs(2VNK{wj?%8kibi&V3%KU0V<9k049ogJef;wRE z8+QjbCbisf#xp!Ft9G5K;=ZjE47en&B{_{~{l*Y_K7{*%FfDt9+~bFY0CE=X?2PyJ zjs%i&Of&d*o@bPsHXM^E6Kh7&FM43oV^@Y)AO_(p%=LRD*)5?&+*YDmHj?R{2Xx8j zV#&U3SMV(gRV3vL7g(x{1U(l7(Emb|NiNyInWyXb3(6tOUMLqmxU4V&2^s&J;l#I` zWpCyv1wPLHzV}(<_fjU72diD(x9XbGz^IRLts%%j?SXd-P*sTu6hGG;`t5GD8!hE5 z$K<9Q!;phq-3rIYk(Qjip2Zoy7@M*a>R0|!rYpp+8^p;qKQ;(H&I2<fEjc0K$LuID zv1wgsI~>a&(JtcB5aQx~=fku_V2b`{q*6Ho^CboEn2_1UndGCik7YQ#S}MN3Wn3>8 zdTYC1c*m+CHee2I`R_3r7L`OY+^_KcLKfpyB?ck4Bty^j*$`1mh1=1e1IL4dn!b<? zomcrlh+67jjU9Z78&ljSxOl+joG0k@O1%5kVX(Y_;^JnU?(A+wxfvWsh`_4s(rqXG zQ;|JPI|fVRXjzaW1l+qG3NsdgMN=3D%2n%g#&h!}f$km>s^>dH&l)hgpQNM4Sr@>S zRFzF^uB9xe@^*%ifvk@tM*UD%BUhn`<ZxJKOY)gJjfoejBV^`w+m!P%DZ9Bhy?%Pu zXlX@@-{*fqC(9JM;~aFbFe$I<w_M?eQ(l&gECiPjwff#?Plv`^$Bd%o9$NsCW5bKh z=kr(Mx97X=zIy!5E300tAlI0;ogSY^EXfs`Oz=xc?j1Z-+diF3d6<iS8H|!sJzB<} z8Ox*tVvwcbs+SJ^SZ3eHHx0HzW8%0r9^{gBlHsA>-^$Q}pvxvtFwk)t`B;j02_=f( z-XS~%_PtOPQOC@ihxxY26taf<AoL>^I6HHx@d6sMzYI<-nXP`VAQl7&AB}9kPZl(d z>IJ{x^@J!ZQ$P0c%kZ;yy?#dgsaM=$4UmPA#MsyK--5eRY`~?xKdbm+zLZ6kgI&b# z5Lm9uDE*wxe+HH@!d4+@6DUQu`1)z3Z2AYR)Fu|-jQup1aCYYG=I@a(5X3p;wPdi2 zWn^eYc--ggA7Va!TK`FTbUbtkD>~zIgVcD{$dWlRBAZH7svuB@XG8_Fw@8`f51_@4 zT!Y#2zqoFVW$JfaoU*^|$GaKTP8igwZ;{NekD<EDBSwHZ7?i>ynKVEQu+rg-m?wr4 z2{^R1>$mq?#Yq>J{{#Uc=WgfLJIP1OXUN-0a0Js(yc9y+`C#DpYWE*axM3yQ^@h?A zqKwi)HWCJpi)|rmFb^#%EFZ>4{?Bem_=k|Z(uK$4MTCMNKVbGwp%0lz0apR?98yQ9 z3J%`Vsi$F(bBFqw8Z9`IkE~}!TH`PTU*$?td+zx)NB&IPATMF|7AsKXi>(4&Ex?8e zY#l<vN0MkG^P6n`wkWa~u+toe9a+Q^`z31rGZT4bCjzLj*t(7_oxz!f4q3&RurXn? zq$U*!E9oL<jQRK`4zNzYA-1dq8`FWNbdPnx%Zx%un(~+U&(EEhSd@w=Ynr`vJb%=s zl-EC8g}NE2I&fw~2omWo)ZY#l?|YsLB>QX&JQ#Y+2SR){#UytMUV6HRN2pA<4jb4h z#mO%&X2Iszi|=>7<Z<A%=hrTK)l0iGP-?w=q_KlCq^b>SUIHgvBFS7{TlR-7>b!Jt zQQXYWKxRZGDB9X*PI-C<1ZI_plu=2JhVdWKbHv;UaLOCzCLC_wZ!jZJ9CySFpbweC zog=#FJ*vS@%X?<LXjo^Lr2DYom-n3kQx7k>lZec6N>|4W>`|7|?Ht?l<GREnv#?GZ zlz<XWEy`f;Z>XoQueAZk6O}Rl)JL_6oZ^~lFoTEE6>XWh0AhtOrKa4+11mzoBV4Cd zdAdijGV_MM2JcNv)&WiW>O#HAc&JZr{RB03hVL+aNc0FKIxY?ksB$EJdZ9Qwcb;KL zRN4uZ7FV7Elvnzf#|>H+^w_{4yL#Ul5Py+hR6q~Jnu!kwt@n~x7#}4!iyL<Hn&;V6 z$449VmgARMN0dk}rPf7<{`J)CO{CSFNxdZBA2jggzFoqAlX#x;h8|7_$NJ_-0pV^Q z2~Qo4PToW(-Q31p)ZrgkD0Ge!c(kbwMj{SrE8b6<F`a~R=)=RXj<E=;&qV_a#uX8$ zATa2^6A&6VE#K+KZ`trq@vu5AL>5D&GRW@*seuE=0CA~YzE-}1pHvnZ1QamQU=v4z zgQAyCY4gR7E;gcoYj=w9T<i>b!LoBiYtH*6nwiWU1XB5+dO?(W*~}4@$|s&MXvFbU zh|dgBEF1D<wjfSzq|Hcgs(9sD2vFIE!QEi{qX&ne13(Yh?me7(do0*6<ej4_b-?m5 zXk0k)!H5cV8m1&M+gu@>!@gQvih@fG=ZaQB9A&~hQ?9S)Ig|6^spk!L^JN2bdILDj zbrsgu*nkW=i3h9UX^CYB*4q}TQsYJUem7dK+Rl#Tbo2ej9S3y7pRDug3{cJDMS`M> z6a!$u$#Qx-_@Xk&UWMUq2CdG$uoGxCzRKbB7+IRT0OhqHW<db2pDZ%Dgq*zc3XjqY zN`>ELYa4M}G2<XhZ<G@}k%EMB)W%ffE9M8A9hwYZ@8miHDvt-G*0yfBc+e_^Ae01A z;Dv~#5M6aH+<FXf`Ri@y-1+-Ivy1*D$OPy$aBs@VVvT9h$3Cx)hMzx_dG)B17M99X zzRiwjHFnr0Z%LpG<0VKiI8zlc6movDzD2Og`T4l>;F>LI5rLtJ>^z2s%)cVeiN>hf zYn}uU9rt^=oWd2E^j{4mkZN&r8DvZ>7jOyEiJ?bBg7<S&uOVM0ZTgtZTRM9G{X?KM zGIoO&|K~k*Y7qq{i4EHb^F$}oKpx16vox`ZhfK7+M3j&V8|J@{MUDd|;}4}pRCMpP zY%I!6VA4DFg6+Nk){uDLoQt@EH~h_~J{KXPcqVOQ>32;yS%k{c40!Oe7ims>IzFh) z;^o!~_`5Juu!S;NfK$i3|K=E>rUp&oDPWk$)b@F&LEPEJ)=7XQmp%J$Ib-s{#3uj0 zqQ|>=dJa2#zP#~M<#KW1ABwq}z0PP(-k?>rK~Z(V|B%3^^V5sjCo&@wStmpeDI5qo zZI$cSr4eb(EZStQ-FRya8+r^Y!bAs#oEguizt!!csU^E^($Qe^17Tg$qh;2x@?Hi; z6mlm*nG}aWgOFr?2q0fLdW@3lx8ncKm&K_-@(n>=lYkZ$oD-@$&XtK<%LbautFw}c zra-Jz9xaW&yJIUfGP(76{1SE^bQfBM%*!>2a5WhHv}_BQg}Jx){A{iWU}n0i+>}A9 zpZg&r;*{cN7f=Pm=f@h;ox=tUN=ee%4j2LP+!^=1^j=?c#O#=?LvORU&TEnbOIaeg zOooIoJ*%a55CN$YH~P$Nft9sXgOkXX>xpX*m21m67pLK_^}t@67)>cA5YGXL@3g{9 zM*%wDA;30V5PVDWy1V&`JTiduGSeW+C<nX=-*0jU+18uv&GFH2KCoW}`#)ES=CHw_ z;Ld&UAAx|7dx7<mi^8prJuu3A;IK-mV*w!%VFnvUy(Uc$S*WV25dOz75gn6l<w7~P z7Pm|&`q!k2T24aQ-+y4D;5Hk(gK)<Cd8UVh%U+N_H_qL`H4_mXv?uyb^W=WzGSHTm zq1Iaf5o|meIPKqz6QM^<f+uVH&URq2D8=~9?HZO9+wL$kGqFenxGg$PYvq#0Rh*$y z8H&s>@`J`imQqq6nUUCRzIR98+i``fpcdXSlU|O88F@HdaYJ&A52?~5qq2px_7Nd3 zFC>596v9P5#R$vb)Tt=`P&iuZ-=w%D@xCLeF{Qe=xk4xiGyy(Bi8$rgHl`HUL)Rl7 zXB{!Tte>R=aOT6|QC2)AOdo>ms^FS}4CN~ShE(1f%ZmlJi~w@Vt#w<nfb#(gO3BV% z8^vgQSUbcN`Mmm`Owk(<G7j_gpCJxZI_4}}Ld4b~wx`PF^y%6Cxxr#ZB}3cG`!<J7 zHvV6ZZlqEkm-FJ(3tXT8^j<EhKZ{upaKCQ6zuCQ^FgE?r`cZog@<f#)6p8KQ%>=vc zEOd<bAM?-`o&)A>lvOp^DTMQ`j-df0aR5YNb|)X;Q$XWbMvs>YK0g=7j)Na?&*ueV zC8GB?<6FCoU4_^H;>0yr5^^;iLiM^zwwfGB<>tG*J(dPK@9r4#?)C`5l3d$4k{)y> zs$FNm`=!a*gk@0`g8gY<#+AjUwz*FS4|Bm>Y9C>(mkDl!8FJ&<UwIsrwVx!l1WI4} zo573C^N5K|Q+LNoG?9hV5f0cFBp$8`wrwR}n4^(%Pv!Z*g9W8u9e}()E;I6X<hR8H zmp=Z0IbDEirCwk-`qb;4&Z=D~FAh;&_HeP?!FOp=<Arl_E8W#6_qO#(8&=;JC6U`7 zoFbqQx*1_lmlQUtn7&xmU_Jdb2k;-A4i$=FbC|FF_EBwRhz_2*1gM%PAA6hbEtOTJ zEm93$G~Y~&eq_*g0i~=WCwKnU5nO-{z28lYcFnEp&7Anc!iPiS<>VFsPiS0Y%@?tJ zTyL;D##MkAzzh_e_fhNr2p)sX{`u*H`x);HnwkYVRhZ2r5*2B7y6z-;GYf)k7{XLc zYDo~;gyZCNeJbERQ%kZwZSlFK-ry&G&Y(CQRP?HTUx=`t6zrE!)13_+$_%gRW@&B9 zcOxgdHtuuQ{h3Y(1OLMvUXSVvax7CQaZkOS=3NJrH+26qc^xI!HRxRIU(VCH*!tEt zZ-M)pbEBQHFtjg$Qs^YTw6IYQzd?D6H5u?#m&4Qt?Iu$RS+-|iw8?m^O5mLy!;65t ztK$2=ZDv?Vc(@j$OzF~S`qz$NR1iYOIrB<T{K}D_Wu6V&RljtiBJm@p#vUs+9$sEM zLLOC=#^4T(gBq+-Af3R&G#VNgvs?Dgx<Ju+W%8f9@blo{u*t{*T}23v-XMyxRK|CF zgEg7B%R!icXDB9s$wXA8dHoS3CyKZ1+b{5VH)7Ayy2;tvmJQtx4vGqfa<-!GIA^;0 zX1m@L4j@rEL0_K?#e&u#%X1j{VrSgwK*&602gTxpdJHdt^0u>n#Hh#<PF->uzoZ}# z>oB}7zWwMNmV2y%&n88@9ID}Pm1;SawGXH8-aDQb5K#p@HWUCU*SgJzY4{w=XU);f z*<gQP&xnpy(X~yg4IV&VwV6Gz<bzBsVCZH4SzyA9K7Yuf>9nADS*B*b(Imry0|J49 zS92Yu!b7^xfd)_6%}RzOwk5$x>Wm1z+&LJ+{lDe(%P8SR``l+<L_krXfqgQ99|ta< zlK`+71In#D@vRLanO*nZ-*FS}IM$MqvPXX8SpE}p;dz1|A4vzh)Z{$w-@)|lptpAq z@Br*<<uv;SOYBZX-;yjntj35=Lho~h3QF!NVG^aJje*Hhlh`z#3=AOI5uX6E@Z6*9 z$)Shuf+Lf9uEgzDI(67$Q@7<SI=_aGIVPk>gQc3*eN){h(W4R8sa`LlrzK4<j`#(Y z&PDqFS+iF<zQRA0Kd<@p&}6OQ9lIEaMYDt0nz0ojs)aZ=NmL4AzPK0nN>T65uYE3k z!p^&cBan#5zA#e{PONmc6EaB^PYbVz#Ys_z@s7hj>00bcbr1{x=3+F-GgmaSD$gW+ z=BDuk8UJLwe@tSiwjN6bG~r+4>~Cdp{+MT%E+rOkt1xRig>s=AnJ0gu=U0>sN99J+ zK#_|6gHQuUqXeUtB3xH#VbYk$4=}y`LmVPSs=D#Tmj&WvwX1G9>wI;FmL1zSV-d+b z9k69eVZrc4^h4alCur{5c3Z^YNo?q9&kaoQ+qq<TX(Fzxzv%XKkbBf|F3B8V4f_ZD z`$Tp|g8fFKvtXMI33c?O4laP{d)`9Q^?7?i6AM^^9Q{<-RCwo8`_&@9bqESriYZZ^ z>P99{F>6eW%<_=0I+1qJ!Et=0jfHsMGimn`M`T-r0u$6<pQi!E6mQ@U-wjWS*Wi<v z<(kj_8T&|qL6dooRbA@dxvk4OIvNR;@uDPah5goR)aDw<$v8Zz(y*_{^cz0%)cRsH zMfIrIsq9aswM<a3@si>Pw#wiCXe&=*Cw|%S&^i0JcikB{PCYmxVp%>1d7K4KwYj;- zTFDM4@Sm;Qo_6Id*9f<t-v@bjbS2{J_qdZQ{O9xlvS7acII$plLa1w;NY5h~Nr6Bk z*I#?}Zo5t>qh=HWLxRxO|BU@yck$%^M)>(9=T&8D^iY=du9}?3?+sHzud*h@K>=+B z<8LH3_8>~M4rX;t^%!KTcXk+ux?kvwc$fkpOK6e`B;d?)rt*@!k7hjDTh<M|{t`_~ zLW)gaZn`_TWl7Zn{c8q3XJL6N&B8}IXjFxC_3Zd~D@<jJseP+&$%%DfSAN8^v}%#O z{t<5A*s~um`c21<V8m)y!B4U(;BgGg7cf8uU#h>5R99EK33O*y>a?yVT_rLw-^C=7 zIb`fxa%C)=J+vSS%_8lz1iO@FOmJyg{0(TZUbuOEu=$5pDC#b*M~czz_0Q?Jg^-z4 zYD0cctV6@+dGM+a3GO_Y>tdrJ<u3p1;i5}?ni2zD<J%L<564n-I>*+USgqCH2YCp& z677W{lf}m&=3J?yL{&&NAZ1o8{*t3+_u1EleOPAgJ$;S+DPLtZHjkoMc{_tgO%%m_ zRPI=m)dL>Q`k%@_!wVrUZXZdk5C~XYf~qKSSW9ULQ`#j;UGrHmry&X=pgPZ2jOeBB zcLOwE3Ri`G3e7a!$$N=vBjlC!uN&`uVcBIXyDWd#iVu1RuK}jegm%T-6|?JaLO%2D zK_R`859$(g8v)LzSepd!=gxQq!2-;CTSGF;{hKfTg1xqUIzyF}qe2b{+XGl$0oSvM zrZ3u6l=s*;@)-e>hi5qD4XzT5nk;`wU2!7aqIkTt$rJMk`)e(U<t5%uc!S=&gBRf? z;uQxf_k7}0EOwYMm#A(#10GTrYfMb#pM%V+7%(noQUb3gnLGaRL7`Z0g}Uae;_7lC zh+a={01If{Bguts`R=PdgVniU@wy(*jGYa;hP!7jA2YK4;AgAFqFq^OxU|<_^Ub-v z$sPvIN!+-dbn`Otbc?!+^mKoqG?xcsc$m7281gf9T7J_eQ2R6K1rfD(w;dtG=?JwN z{|F(6E~Ic%O*+4hdwb=pPVzPkDJ37kd3fXXUrfT-?P?6>+hS|kc*l8e==(+0e+<b# z$!vOkmOHEB(Gc2Lzq||Dmu&IZ-kL2Q5%arFKR$jpC}eP>Z-3U6q?2%=BggLyUa2MW z>p`Qz{gzAOjks4h%dnD?I{E%>q+70v{FL;MQE{_8Tu1&V_V?IY!uCC31JXXXPFrDE zH9qIdqY6|e(Ag(ZN(z>Nne;Vf?|#w*U)Q7E@X*UE74M5jJuN&KKSn>(gNpjqsxH5l z<&oE=2iTSN^LdGx=Fq9mMT3}G-UV>9WxgjF7t3$+zXGAh+DN1Gw+IP;mFJt~emK_B zD89)wRcO%{=@}sKal~N<%s{L?u2!ilK6|VtVSmR(Mq&G89!z}i5qyU86sVU(kYn5v zknQ^#u(#)Fp&vVys)K+p089JL<+BgMAsyqjdqIQBkfMwL=~l-#P5<t@jnRU)EA<L( zp#qi>%RT>1$;;=52|fZq8~Idv`|aHBUm++_W@h5wVcNTZW5aXk^|HT_sbupZY%#7) z)egNzC`|#&=G(^I!>e~s<@lB3*1l7QP6@5{6IjAW;_cca!`e3)<7M|Yx&Fo?IK8=# z`6YGP<#nOJBL5vQLyJlI74O@+wr_90UOr{2O4v^A<JFjmo!?DlL?A+-o2Qrnix+NA zTxHyR{9!!TsAh>s$AM-wPh9JtguTR)@7e&F%V%qUCzf}B!}jTg@<%^k!SX3)B*^Zw z&L}hQw|CDxj$|;4tLWom-WK0=+?+wGW7+FLBOkod>&r8~qZczOtPT4u`d2hdUZ$eU zmVY^bY@sya{*hTD@IpePR%YCfFd#6UHJGMh%KFHP@Xv&a#naky?HsGi^RNptKTf2o zW3D*ff5j=WA2%&&DCu-3x-SlCg+L*;Cs?}ZkPpjbSV*@~;>CyD$q66r1)KG~uyhR0 zKo+9nj$zUiB@JgEMiA_Ld%kIT{v!4LayY0#?A>2{Jo-d+@~{wv6m+FqbHBCR8&q@M zED`=Ss7{dP*Wh;gaLXYUU)2G7x0JtRLd^6{Zt!u0A@^_EIZwxq*u0M5G#@y~%nl`* zk4*2V4?ZilC0Qxd$P}r%I<yIo)Hjk>fAmis{Kj(pVaYR`HcOMAd!2+(gu$oG?|;!W zD`9p0S)r0vB322ss}E#|6o;Y(1Sx(J+CSl48IfYuY=nS~eRnKPx|~9m;_6T<Yu`a~ zXp}oPfu{Q9L4Khj$c;24ss37XWin!cT1HkuykIybc!x??PJI86E*uy!NYcBYiviv% zBWC?_p|T(Do&IAZR6YG|=YRaZbgU;<R<cSweoX={@4K&0Vu+ndz*R1}l}7dI`pqRn ztw{mBHtmbNF#PltXMRn6FHy%5XQ6n|GjYoA;$wy9-_`705Ez(jP9<4st(sSnq<pdB z1sMYyO}s6oYzFp;eO_;GL2?%tp#t^Y5|RTkHPwCI8WVBTf1$Jf2ITU<Mbwloo@Ghy zeUIItY|6UnLV`q5#a6S`RIkzKxGT-fFsw1uRCf4F-{;E;Wv_;^MYcMSQ#O*DTOGUj z@rLD(wUp3)lji3>DFZ@0##n62JEA5B{~`vSvFPze<>ahSv`aqgW?4mBSiLVl6@M(3 z#1J`*O<c8kkolaOCxNCsQ`u|-gZbAZG?mqTfG^{FeXn#^z5yO<igl-3s^9lzWalji ze1y{hb@$#tM#KUi^DX#>`>gWl>Wca81<%xmj~6x+f+zVE+C1+qb_DXLbhcop6e5kS zqmS+-pBM5?pT3Isyv~N)RXv}q{{-(FZjLHn{@&e_(!njD#VeioqD`$6c>nV?R_6@p zRg|-Neim=9i;Y4VZ+z|Oc*9zS=}Qbxz+v$j7A5vJz>S^N58wBF9tDHRcA0@0{pXK? z9KK#5y(p&rAq|9~Qe>r$gYm_^sqmeytQd{f@N7zb19RA4Y5VyNG}1z$lU8K(Vq1Ma zGE+Oclzf({YZR?=YD8irxxMqdkdY+q!)k?oZB^{CjFhk6z4Zqf5m5I%thq}E&3~~e z2@_s_Z$g#9^JqM-;KeXRDPQ=V`lUzW@u0V*+jCM(6c6)zn%K8#v@0h|39rI(`<*Ds zdz#>j7s=Y=MJ=@PvXT7-k6$6N8G@1Kh3OOf1zp|X7mizJkA#X!gnCE0lcY3Zw+uaB z3*uH0@=^P`m@=u~5$55n`xjKds=8Jh1ynJGO0(yniF42ldy$3-yt$Gco)HMUV2$ZU zjh*oO>(!Fp?W3HRpy{BN#eD+-7T8&uVV$E+!3|iShf84yS3STF!@Yky%P{cI2za?i zSzJtFZsJn6MOZMma)Bs*>Yp>Lza5y~r=zhm70BYkg6#|0JZJkc`=|YCh14h`!buyp zw<KMc9sZ-M3Bl4s*iN*})|d7MrO;j;b-v$s0!I{~%FV2seS7&0Kl%lw8SP-Db&8<U zaN!E-zZ^*Xj=wMbUWaA?*Zk#!ZNarblm`>FhQhu;=i4b_XAHulFc5dTcQKpW;*I%E zC-PRr0=sx>yytGC*X8*!#PrE-w-`%4UwoZeL2~bY_K*8jOM<1z(aNz)c3>568%G9- z17S{ro_vJIFFx|d*xJpA4=l5!V0OH6;o#L86N&P#F?#AVe&Vbm8^jqaX<;5>?F-al ziJw}75m)`>(mxgI;;KH|ws_xDtA3Kl)~p^j(G#WOXA+*?#wJ0Wg$|`=6ZvI#=b$^I zvl#xmYGWDXO9VXT7$O;37ap{k+F6P}iK8S?dk0z7LtRD`1fPzuMTnZ^i>r|=X#Mia z+FT`m>}-zfqIoO4Jo&KElO?3bqSze#`&3E$`iane)~N?S%Qnk)`?i8sKDKSfGpR#7 zso>;he4oJXuiiWL5xnv_ls=75pVW=Qz+Rmz4<z0OJe^%_FWEwGDr8$kOQhZQlWDJd zOD~SUfwU!V^pnUG<F%9zyd20K#K?P{?$wAsa1~wGrU`Ra#N@h*i(>xgVciWFM1|HK zrKerKFR{8cCa#?wr+t0(6Km|eErK;LX9!1A$D^CTh9&7YAw;UU=<Dp_+&Evm3c<)i zBNmjZCzR6MX@{h6K9?WOgkY!RE+I`nQ3b`R2VF$%rd~+c$yw&Nb#+;<Q8DRPj$uX# z4y(6_2<>p`p*2-I6-u!$KOPpHXEuw{wA;;Nf|$u~MN1evE8*3VP<0?mdX;qfq&e<| z8#TYY{!qBN*fz?}FIVgn*5L4Qxo^0&1`S4SJ`#wkj|HV0(!@@l#5F1y9+VB%AV1G5 z?ZlfQHombfq(MQ*;d=KMh9QzShW<hS22xzQsC=*OtfJrVZ!H#Nz&1N|5>UX;)ASB+ zvuJ-w{2P-oJ8irDWnrSpfbhp<8?{D^*B74NJ*v;nxU<4qpRIq<1srFV3!e}oR82|8 zd_D_a4O`3(3ameRBz>H(N>53cC_|zmSg)4nb<!xD+BNt})084!V<lX?4=`{~6!(RH zvfJ!bq}vKsiN;ycEM_4U<)236@LMa0{!Xgxh>_Gw)I9OaeyiHVfD=X=AV%i?la=Qf zw|H`HJ&T3;4MuUqp!&U8&z({EXz>W$)%Uf((b!>$mt8?kuKt-q6b&i7_7@OFV;lCw zba9o?+~WNJmWfa1`sqXJV;MaC{n*7i`LeDApAIXBxAut<6_ioDFY(iso%#T_{2SHt z?b$sq+|!M~>JZ26r~1z@*u|H=Cjh(bT(evym5;WA;KH}IA<g}-#}mFSrI^1vO`w0# z;CoI9-_{0~ETysJ&SLP3AjUvRu^$8Lrwu^AA}CnX=KGT4oBu_m$O>*|l03=VWjzzy zln1>yff!SV;;%9Q47xSd^_Je9Epm67le3wt`qZTN>I+uet%T>G+OsP$Z#wB$SkI z2}CT6$Yi2Asoyt9Ft<(Wb!Y1=_esA6f%cV@LPG4bPi?s`g>DousAdi3Hng4xMJ=@& zVfqY6s)Yj_u^Leae@}09^ho0`!sj1_BFOtU?&wDkm1sVxRb)P&7Hm+t42myw)FFrx zU2xO#)UKlS+&ZQJGb0-GFD%4XU0gRR#LaFt8LnS^<alMRkk6dtV)eCaG5=$n>mSXr zG2ZDa+bW11hFHbwnbO#&dYqAH;y;?i77PX#v}L=Ij)7)m#k}uMSNpCpOKv~^98NA@ z=DcMn6!mv|scp(@qY_T}{X28ZKbPU(cb>+v6kPcuxQ*niMO{%!$rVTaP3=zB6NRh{ z<%>iS7Rn+W@nH%q>C)Zb7UHG$Q_%;VZ~p@<LDRnLo0<JVRr74L6z>&am{c5($B%3R z;mQ$WSRIy?J)56Y1a1qQG+-;ea-rv897C`AAi{18y!Y%t9InVoc=>AK)ytXNyUgp? z3)7^>_|<FS?iiS-((wmvLV;4rPJ@9hI@gJ^m!+KbW?^G8H?LK+XKM|`-1~4pql~-( zrY?4|pRTRfREz^5D$0M{jYdVQ<?)iV{po|IB2_BdCD(S~D!^r~0LZ><lDH<SCI(h( z4yfG^1s^>zj0|JsaM<(Vx4vaP@7ftPOUcaBnd9+})9J|Z?v}F=^oS_?Urveh8@ssz z-`YrF+kMB{%2<N}O9D$_DTPlz{vj`(f1$zu;fnp?z<cj~z~Sl&k;hh+A3>Y~=yr+= z2tE+K5)moTPwy9{RAq)OnY7I0q*DR&G_j<)%Q346QMS*uL=##msRv&MjNI~{1gjD> zhu^0&T1(R=H5xeHi2x0xsq542w(-R7h+FTS6*=DjwQ{wS6-}w7b{)mqUpfBdpN#z4 zM+3k5D|<eC7P!9JnM9$MxqHu`kET7i@fjGT0o@v9u0zFPYC-$rMSH*F=oxpqU4pam zLhW0(ZP$ye(kNp~srEkWL)(GveLGRcIo$?t0x()m?=$XI*QmWQQQdjL9CO=^wPMoc zFgFO)4$ebM%*(PEw}3Fux_>dkFa(AnaCJ4<G=WKXqKs0`Rrb5c7_pLmr4$7aig>&P zvS~q2=W5dfmF9Pze=+go*$AR^!anE)=A2LlJ&yCDgiz<HvfJzSD2w5yC1PdtlsvU! zZ5gd%6uZ8?1r+W4dSHx(Q}A%O@*EC3e(hHWjwhA){myqLPNz!6;e4gmvwmH?ife2m z;#xB$JG>t#Md?iUHqy7uiIg&*eDVotS@p`dR*Rx^f7W&>|6lB<ZQAzJ-^blfvv(hQ zn{e29d=N+myaSwf48bEoMQR*E%EdBSRtIA;>S_*YGT^1)MNE-y1^BJBzxoLU$SJv+ zRttTf#M$i+y#K+6s;ZeYAOGMF7{-w&PoFVQXQpZDfr3(SYo$U;VK$&*vz5Tk=J|_h z#fVUCV`^PkmPMa``4Z>gd;DJie4Eif9Im;3^qBqrz>}x%@#M)f<qUDk86thZbc*13 zydkB9Y#ITj=v;p%L$Zm9Ht8i>5wR_v#A&jm<KxZ0g+A)&4RGF)R%I*<)&^-9Cr3+; zS`ZY1>adiOiPUT-c5VLm4KT;(94hM=JdQx{11?4mSA{?EC*Z^P1HbaEk>B{0J=a&) z#5meWm}UB{|K2j>hB=TH0ksIT&0W^sX7H$%u{wUpMSJD@gF0x}q+_jA9-~peigMt4 z?>L<k)1+f5xi}79RiUZ@*m4o&(a#15bY92!1`8Bo11cJmVAU^DE{!(<kWKZV1r!ci zKTV^sHAry2f~b1mG$nG@R*3h3!&Njv4wD=X#hkxGXk&pZC{K^21wm-PzEt7nbz#Xx z%jQev@#BG#^*jrXySu`B?|Ul~*-gVPv|1h0q*9oIE^jH0-Kd-jD&pg*S&TJNnH;Mq z&%wMX;9qY776^z2bJ0735mgM)f+Vl1fu#gqyjb|&_h!C$G4T3!u;A@Z`*AT6ypk<7 z-Ea{h#=zmQSCEm7&`jqur=s)EpM3nu8)f~bj@D+5FV6U4-wa!mtNs3pTq>g&_%|ow z7;p$KI4DKI#n3B!P6Q_vS1Ya-W0Pw%z~P<%oZH^hoHrWu^*=9Luq`%6ugG*~(>1l$ zrmWJdaLQ0vjR8;tnX5;SETEqmMrG|2(NVy8o;aV5oQ`*#PbZrOGl&1+d)+E;{dR5l z>+Rb_gk{kH;qLa9&p-R*-tl#=VIY*)=x}w#IE)OVPBD$+$hh0{^yxF=FmwQ7PPTti zjkecRXj_TDXOT)BtfQ1$HCeaPEw^!J-yWS2EyYf*)Du_R?vi!fF_*0O(~>J|oM5?` zYyyJD+iXc~b%AH^7vBG%^8R~)-}u!Xf8y7!c>L&!IP7s)YACgr(j66i>xZ{MqmAon zWk8kVYA<=zqGJ?@qhuw<0bv*_<Dfn1#yPE}r^Z20ti-PCsa1@lx-ie`q*H1KT&n;} z5-odY4GP+NEc~!#2%un*Ccaa$5DX+!eT$51cY15|MXx$I!yY&)r*pD$kfP<4nNUxj z^Xka8$GrwhdTIDxrCCdK(oeJqJpW?RQN5)yO@;GR7zR(yO*}*CA+N7?O41|FvUy#{ zIA|~xLtr#zK#xieBaSS(4~kb%$9xtIrrLJ6h+Q;m%LH84LWmJl@zd%|F2c8e_rxFk zLE^K|A}?OT%a<o^Zzj&?1u(Y8K}UAlsEnXJx_M5B(3$--uz$rTAAfq!xo@=|VvMAe zF3$gA-x%9o%Q+X$=QDb(kN6P5)vnA}tUBs|Jmo%mTMaX%$xtxj7|S|?0^dS#cJF25 zWYA=<wIHq9DOLKmHIT4M(keahI7D@JCjX0-{^Kx^78UaH&UbY?C0Wy!LmUR;IP&Q6 zQ<i1sd%yo}YI?UwSDUpDaj+_8*@$|5mHR;3hho@*h4cCN&h_jMS2o7?h{sQ!vfJ$$ zO}@B_kT+w-<2VBAXmvHfdnpRibWS;YLRhnX^>3k91-x?%qhjvXgia^7WNg*&%#t$k z{STiZDdVb@L0j}?6thi%(7VWc9|o=;2cCTp_|<O>{Fy&F@Z`xgA@1;gQ0LzQ00&6H z^oceHcGLfNHdD~X+-j5LwJ{6lKvd|*dl+|B723R&j;%`2O6fW=&<KQdmDTIT{OEch zcxT`-ZA0k#gp_16rbZ{UDW#Gu>&~Sq?`bunmWs!bQWJP+m<W}`Y*A$huB#@-L4%TM zuFO-SDO4eq!_}w+8`0yublT_AQ1bowIRi9maG{KWS^+4fa6Hbud^s`C#hjt^k-V#e zQr#A-%ZoS;``CL-eKZeMG#sMg5S%bX4H{bOL8XvY_HvmW%aU*?C9|SYL0j_<aVp#! z4UeG{G<xpipxokjw+r9>-o)?z-oz)LRBmrQH#hqHGHc)!2kps~QcZO$DUQRG$d+YB zY9U1B5`X^u1+QP--uqH2SZP#6G{j_mFLVAE`=*%UjGCooMyi;wjAqm~aX{Ho71&#H zHnqBz+3P*Udu5i3qazx7obyrHGKbLHuC3r;^<ALhY81pK#?7*#|MmXuJ)F-PaCp}+ zNZz`qE74d3#x;M@kp8P#rjJvEd--x4k7CP|Fz5Xbzs0!UlP%ky&L^GK?<#~pzS?J_ zM?N0!I34f!;`2|}v*bN7X!Sr92zNS`Hw=v9$kp{DuC5;O`0-<ME-YEq1>4k}I(=m> zMYM$zLr|b(lX5nC;YKOkd}~UHoK^QE{ty51|AxEMr#yf4yS#q=9d2KL&hhpPB6wdJ zM;$i{gK+go_~8A(pZK*MAAPjvaCnOMBOP_<nxii`L!V36kaVn*1XhL?te1|Wzf<WN z)42%OS9_|cuuTZ2BIR3Oy)CObGhNrV+|&Se&Pws)pe2&?q-Bs~N^*2ugAkj_q2V4H z(p5}ixEPAv3(Qj{r}kwtk|MDlngI*rsE#_@Seti_5WzVe?}N&2H{zTk)f*PW6+Nj= z1fe2ctXHqwoRUzh(+PlDc>cx2>7+UZje@ciAs0u<3W|(jU^fO%=d6)$uEZe3y*HUm zQA%GlD9~O}>-AScg#D;sz#*!JfFgz!Sm^9{39YZ^DYfE7QN|9f@Du^b8erbtWj_Br z@!2N}KltIo4}X|>{sNB2LQYm;$h}@e&Ql+E>_AazO%0{h%v0iv&tEW2_xt_r%TYEr zh(_Cav5S2(?0zX*iGK8^pHk-T_O?3&Oc*BG?09!baj+7y5OBEOHZ)}s5kjfG3J^>? z#Je`#WcTC^KTF%F*0*o(8V0@DE_3ai1NwHoamN_6tnRc0fjPkT-S>V4{vt5MaF3|y zU8aI?m2uqh>%Z|^R_#!Rz`SVxewk<M<u9a^S(cgUeByjQ^$DY|bnobxugy~iL|m5T zzRzmdyVg>%zJ44=_InjQy1KgNa5$I>V=$J+y>TS?9&9y2r4UuztR3^+Zf6r@nfPb_ z^k33jYst)~8&0>Ma5{g=X?o7{SD!NFKO}_jv){kw$#voV_YXXId|=!S8)RYDMXxoW z*4ej9#!COvf&{w|sxw4lWmy#At-uJ+vu9VRkc*Yosn%~Yti6-IqigAVrET0&0JjX+ zrgj;IfGk=;2myAkvKxFa8;gj7|DyKul}N|d8+Du0tV)783E5Elx#(=Y5>yCrfO6&@ z_$~z4?`?EYgkjVRI9GFuqV0^}l}Eulb(9pL6vy3dVwx&BD|yf~XXYufEIL-wv<);+ zQ1E26ve{^CfYVe6UaJ_v3q#O0#)xBC=%pvU_?%TfgtSyEKj{~fEL>gb1$#OzcwY#? zzK~ush$sp^DODJn7P#RwKmUB;(@!S8_#*TCi_E8=7G6A8=D~T%h$zi*tyRB(F15?c zz<&xx1*0uR%V}SH{<5?8>37R%kmbE9Gj2pKF5LbX`zF{r`seNi0BeBjC`IqnZ5pY{ zvX1<95L%noQgy$>{+e;zvELoo?-U6ihmknwc%6?e8<$PLef@EkTq*Xq^|_$|%iFfc z!LuxxHf3Gx{xi=rRfHi%VhmKN9is+xA|VAjI>KT9m5x`fm9#9JPe+coHx#=MG~7TJ zFEW9!VHB>euJG@FK#W$tua#+@c>U@HuU<a4R^nF-3O4pO!6iLq>co{6dE$6?bMG8E z3l4^1RLsG+<8U}IjyuNP$Zoe|zd!Kw*?SDbs8b$Bg5*utAZk>FDg!<J7S~U|1^i<) zhb}D(mKl*xKt4v~V_v=fyBzkPG7NWwkb6Hy=OWvWW&8bPR}h`guhlCtK@sM;az1BL z5}rLfu-gsFuD9uZ-xvI`o|DlH-wOmRW2S@TjLE8qp<uO#A3|X7`w}~9)py6+GzB!0 zb#~xuspJH1)QH!+Knk!VC{v|UsZyCzrOvI&&;T@=)z3?1nhWCy!+yX;O|>iFj3QXj zd0lVS3ms>v94AQ2j+`oYcN5d3$4+NX8<a+SYtD#?bbp-{Xfmy3qS-+L(HYnf^~>2r zgH%Z|*fFHH6m<KFsR!zH5@N&$h+Zp4+K;M+^tIz?7kH_{Cm&CI|N9dk|8VBT^ThKP zh2ya@&raJHmPyQMW=VOIIk?_iYs+rE$x;fhUf$3Y5*z;FaCK#KxT$9j7rWRu(X=1G zUf-oGhy+AbeXf)>yKLX12DocI`)v2kWjS*?-q>=D)h`YVQQMW{uro!zLCJg$d*TqS zI#+v8p`d3iSNq_JF&H)X+St?^uu6{#g4ncBN{iv64D=?g#jz5$X+UpI@s0MtyDcRR z0CGy&s+2Z%*ZfDDake%@E2pEu!8i_FT^)G*=$cXz)A`J@EEZ@fHsR5uC-@MIc6ni$ zXB##C3W>*CDhF0pryx)&B`f#A7J<+Jn%)P3;R7^C*s<Sh5O;n3h^y;s)2@B1xxVAh zdAvk$e+Kw70DSAi|1s)}7fSsucjx~%$nO%u=XjS^WTKVf8v<UWAm)%&RWFgVQaT<E zgAy?8HS1r0noOh6ItuFeS5cld2xvVh=_4#Udnp}=(lbVjPFoA0vl6mK)7pR9lxU1? zP+JS?G{-%Jsgeb%tDH{SYbhq{JB*%j^ac!6=XAB-adkZqf;z^g4Nyf%B-ZE|5Kk_i z+gs21?5V|3QssDdOp_-qo|JV~Hl+m*9IQg4DtF2Rs8x+d>R|*IrBX%5>abG1&hyu` zno=Dp>!gI7gfKc%sgzXNN7#+7ODi`i;qAD}xWndND|g4lx4(VI_r5pr@<rmaPZwUj z%FMHnb7WbR5U5&vXa&P;M`hXtu3!369BD~b^53wGImgxYfl{i9`Me=-d9jOqQ>=lj z@0*BnplBwkn)WSGQ$e3SAq)^2jd<Dgy?e;r`|rs}ecXIx%j@6NLA5Gps(FTqiZL>b zdkq$h6UG_kFRroIIRm&U-YFX5U2p7}A*wQA$;rUvYckl9H{IcFHRQ`pL^vJqD77%e zfr`$}w>gIG^4jD>@Sz7z&U@kz@xd_;Bh&f3S+9=w#bMy_lV{qCS4Tq|{Yz;vb-=mP zD(AG^zt_FF)erXJ?fV7Viq2gU`N+d@bm!fd1pp7sz5Pk&c7*Wfd2;>db*CvHcZmEw zocsHv^n2VM|BzBnG+lQ^=tm{JSyZHD7?i3u#$qQ}oxhH~Nnc-;Rk5%s%~b>QX_hE7 z(w>(2w*aBx0h;7*?;UNb6|EvH(g+vAy6@&VL#TKclsT&k6d{g*VXT~&ig=J3RN~hQ zAy$I6u^0@gDZn&mf;VuTeE}4pqTs<Qm6RRRteN)tR7s2W#A_8!Q|5T57g5PsGu%?x z?E?Ow1WVp4+8$T&9<Cn+p1+{Kc0OmWuR|X-3BeI;J9P9?TQsLBaeGV@(K+IF97Blg zdmpi>>FK(2L1%+o^z7mGHuL@O&wTH@Gp}AHUcbsrlL7-vnU%MpUD%t8dt2pcr9`Pv zy<<5gMaZ^R6PPB$NLn(<ggh>Gv2Uim_2vw$&fskhC1;ptoe)?nW^U7aj>I^kj#lnH zHocMUXZ7DzMNr4o)X6u88N#3?bPEzxSx{%`y>~{ObH+KRWJI-cKA(B?=!xl%l)il1 z!yW*%*6=uvOb^Ju-etL{T3?K@-#xmbtw>*Po0`!3X)s=YeQq4JH_y%MeoR{Bd6~~R zp58zHhHn_g9m6<sEsxhE)PAJu2%zE*5@}gDo$i><Ck@hC8T`xaK?UJ$*T7c~0KUZB z<{upcd<OhQ;4iY<3A<eZZV~wbH@Clw$ag6D+tfN!B~lHP<$NW?1z}Z%S;>i9+oz7! z7iqf7n~@V)iGNyP&_)ec#=lLbuS@Oig0@EwS*<!vva8m^R-Wf78m3H3;W%Yd)=JiX zuVf4A%!MHe#c%>S`5sOB=vZpCi%HS<;)LZ~xjR=*r(z{-9fvGgx$x&%`{JkL%ra-= zvsUZ?4qo3ScDumSoq;c%qGYch1q3BY3L$WJEPVK(X8aEAsfo27oD=TuW=gG`XD#{H z3j4i|1rCGfupc?>BfC)<3w0TSbCnnyRb?P$;ge4?zx^K{`TgIYO?*gOK^hS^+2P8z zk9q&1b>{r_S3y{&rB_edmruE{J?Hauar_ti#@l-Bzr%iHHoV^d^syMwc!vAMWt&59 zPTYWHmeKaD5Nr1~Vy#VZ0j^gDoMqF!b?h8S?Sx$OG*N2d?)Jzy-YEv4^XA(qqEQov z;0?E=%6VTk01zwpZ_EB#DXiV`Zyj?3<qc!hk>n6m*l53B_sf-jJePUVtY60}dR22< zDS*~uv8o8FjJu1P#6SyfoK+FlYE90W)A5dZIx$ZZ^D<K`aBAa}UuHi+0PryCTqB=1 z-xq=RaPB>xKKV!OJx$f<NG<;bA^Zox7tG5owI+ta${6h$a@cIDBbWQ@TOIzI`L_T` z$%V`bifn=ayBLKY1n9F`wr}OE{)(*cz^V*67tT}W=BV_!-h&T<A3VY9xLojxQZI{+ z9X94b!6U9BrSS-;!);mwr>SyxQj#EDv0i}7EKKLD69~DQ?!7a5Vr5)(7L*9E<YK}) zqUARe?$NTj@cLCE|7K-~3O<ZM+YmWf1neDYQJUfC1LIyV%*T%h9zPx!2A%5<UMWR2 zeYbL;*U664De>F?-<SOU?;UydGP5j>X%?pQ8l;u}#b`as7AUWQpEKs<W;*vTtt|#L zra^kY|6&)r*iXw^J8rh%z-&`i_8}0XX7&1s^}gC&o+w|-Jyt>2-5l0p?^*cybmX~w z#t@^mmRmBWA5@-#NEa}wTQRmTw`x+U!AWnuDz4C3m2@+L*gBBDsT@Y4NgnU_`#y5F zMfI1Gna(G6yMqN7tMhM<t2<g-7tX59?SQP<0|iGa;$MZ!o;`hf&sVj!xbhR6IUVn~ zy?M>~boa*8(~l7VysO;gzU1|H1qG2M9oUV33HVD0!Z2oPJ(BYeDe1SlJ^p8ua>Fnb ze9-=k55dr;1?M#5*O9bh41GFc=TJqv;MZOin@kZqpsmldPARktQ97@GV=-J7Wvg12 z#Oa(#C4h^>0mM0?RK&&rg99n+jQuhzlD`EUj$(cC)p50+_mYK@K#GD|6r88BoKkHT z*6DJc2XEB9-Us&kk;5V2op5_B$})&)3>3$bu;~jOPpn1oqf$@KCgCdrb1LLgId6iE z;3MN0xW0-!eXOdF>a4YT(IyUpcf5R=`1G@xzw>u)`Q($Co14VEIL>FWbsIpi;e}ei zt(C$0WzzyZy`kvL|I&}k8Z>Atr?oRKcClX;`?&_YBE3RdtCp>|)_TvYN?qJk4_d#w zWms#UTJOb*Nm%AHwG1>K0bTBzAT+jBr6f;$brZvg)sB7WEd}Q~KY<`N$}C7J)KHKb za8d70AAa~PKKb~EEVEV}S4e_zKHYIR9PF>Px7poMZ$-=2_0TBR+a9}iT%;ZIw%@%> zt*u#af!MI)>iRM7z5gx4U=>PQn5Glcbmn|My%_+!%~ikojx}oA{<*23KUmlsPjvGh z<^(Zd#1aEOJR^o@u=}ra^~iQsGNrucbpDU{!yo(&oO{mW$A$zKheOBUq!@p-*oX+u z0Ep{>@Bj8mfi{}5-P?6%1nu>wq+@r>(nx$N-is3axPnXtEW5_4U|4pWmTG-&>8Mrh zb4e%RfQDsIG-}DJh9_3JP_dw*5wMlk1>tbL=YS|rzgO0$B^iycwLgN9LR?>Gq-y=8 zl*;X0;r6cJ4Fq&L79&Lxj;F%$q*=Omo~uJ7csLv!!w509XjyDpK`R)yH;J2@%qO2D zzVqEPAAhVszq{MY-Cbo~6kpIKjN37>GFW4GTqiqf?>V-a=6;qoLBj>%f3b`G@w1l6 zm#V1s{_Qn~rud*hn@GcXood?n3sntVXrRLTv-53nirK32)ipgtgx9Zcc=BYWY6p5d zwE3=91?UxLBdgPFTt9Pt{fN8UTa+=@TFfHGOseJoR>^KHf^EXH?yqcGDORa|u)A$? zO_Nleu3ML5C_0mpZ&eu8@7c54?|EuChqqP$zFH8_9^AX%_|8DU%0QSffxIm=*nGlS zVBkOG>F}@e^vS=fks}4_5#e{Zx&2Rh`TFlu>I=LtUBljaEsci_8DXg_reM1(zDJX~ zW<gAmsS)t#2;DF!5?_Ifk^O$)c=8ZENeYWi9taiZSGwF%^--O?j_1|7k#uYqpFQU6 zjGow997XAhQxYprVdzqbK@5{1oh5K98qxY>Paf|q@>C845azk?>Qy17%<XOBbSf;1 zFwa`GsMT>e3<}a&Dk<4d5z10KYh*3(;>FDISozL(&-~u+9eMpK^ZF)pJg$O7%5QB> zzl%ay<llKBSe?H)_Qu+`{qnbq{?hBe*e|R7!iKz7IViaT2{!luV6Bb2wf(B>qZ&f2 zz{PeS@aqWT*RbQ=Ein#Oxoykyy}z#<1g#xl0fBQ=@4B{1t(C*!U|>h5B)E2)s<kpt zvzF~!wO6_er*Y+IH&ZMyY5|S$GPrFOd%MqUTHBr`w$_4xY*TkqE2cwxFX;G@Er9LC z_4eYwwED!m7xI?Gx(7V&%Rl<gMLLheLwE-KbG-NLzsZxwiBfJT<%iVzL+0rReDVBu z@bNh@YGl^<t;aa52ea*iUr$ME4QLQhdjBS;!1-K=L*()G$kp{oPD1oE5;b5bzUdMe z8Bf(9M5<dku&bVMWy#VDz&D~JuTFPf>PFE}tatAfKVa8*@M5GsLJ|EOF0dOSRkZ9j z3_;l(Lj^H%B~kUiWpUgcEB=&OmWAV~a6VU3YT`=(9-o!FV4Ag(aX3U}Bh13G6iOCe zy-Ixg>B8^+?vYPEnfUCpr3VwGdJ|sCMh{BA(EFE|*2h{$W!g0}O>YPEU7Y{Le%VcL zrTVY;!4j2UMALh%xN4dH4uViiwoG>mhTA;S+6+*oP`_piaGEA|(}Gl`+ATFJKyia> zQ02W1fliDJ<H$HDeQ)rNl#7z%*>Zhrd-$ODG#pZ-#WeT#d()K`0dbnp2_Esrr0U%2 z;4NWn!HP3MwUvv94vKVmRY2U56j^oktpUKc7y<V>=I=xRY)~0*f7ABE4iqT%aEU)j zEUQwm3O0O7DgO}rgYfIWZt8tfsd7gx-($&tlX>}lYW)mkCI*N1QAv2TIIdWN3{oBE zbK-nfZs-t&!+zkSZ#^YO-&yKZbAHvlUltYKQ5nj0w6U=jsty76p7ny&tlW_bEQ`?v zi<ZMQI*ts{${A8|PHA{+an!1G#oi*}7@U#~jbhaT!Mnht>%iSnZxZutZ3Pb%<^6Tu zun`8BY>}^Xn23)C5P4}Vj*d@1UHDsn^A$h*;hDR;!p&{scq|$u6yJFOy0hMXiF-8b z*3y^7WMX4L9UQai`8B}j#V+>CY;KcHDcR32Y5-tn<?*H+;C<9GwkoyRXtwLXp@xjt z3|P4Yz7B_fP7BAoSDQ@K<D8cF{k<S#{Y-Q0p{wqBQcBt$-pI@wu8?I(G>n2Z655Wg zRR>xw-GuX?O}J6ry>++5N$=OL;{#eyAgF(Bt!>q}(U$RcGT@yRfO|oJRcg1-eQDDE zHeA5=_iany-h$k{jr+RR0TKF#IWR3N1w28XL3qk;{Kt8GE!-TRb9eXKyn6K?G7c~C ze(t0*NWt4UM^o|J?;ZPn;K`FcAqcf*%WzB2>bu^(^{{hpJ^ytwp;o<?a~2kJq8g;o zv-VQg{<e3aUm)855^9-^RoPRr0{lc&x1nXzrRefi%@DE&=PHjL1#WK>wWu=U`CQrU zbQ!fMqJNBzBub1CqvNoH-B8($h25AbWuX+sFq}@6&p%su`AUE8ZZoHIAuZJ^AcaQ9 z+>k0A&F>l_qtciQk;codQoawJf1}~N^!qP%G5tO?L90@}djI>6uW5N)*-d?SZtB#m zJ+S%i3s$g|int%ghX^^RUUgK!pJvsqEzxYvVcSTcff{WbvDRYZb}NP<rG?Y+mRgLi z*f<e-{nMrjS~a|NJ}Qb23j|!S#IdNKXw`t=)<8*H5ju$mSn}o(xAGdaHi}r_^rbC; z?(nzm@>W4`t<&)E(6D*)S334TRcqYvVkINIC$zDP?LSU<_UI9T=NyJ3amW<Qx}^%a zK*>5=8oW~MIuGOM@V=0e&a&SfGig!h?|MlFnp|y4+DmVJe?|Q3HsoAbmP*Q1<&O(G zNe~4vsbesQs9C&Y!BOpEa~2dkhG8xLw2WFr83`3Nzk)#oSd!qgmZMI`f&zC9G-3sS z7<7_h7+^oD5YW}m@#x@jqGU*4e6jHDZy$N}Dsl5VGfk>ISn^6F)UQ3+fLmJD-%dx% z?CqkTXI1BFq9CnzwY}M0>|(#{=A6H$cVFu_ApqET6Sro<?S(f2|K|96*-*Y#3?L#V z!5(@JDzzxkyH-ld_nn_xGj8V=bLtxqqitv#M{g>8%RHONQt0D_!AGS}_Hixow|h94 zFKYdLuM=&)Id`GfK#bZ-Zdk9zi_)eT8s2RSly1lHjR4?bLH=Q;-yHwL_r4u1@UEu8 zSE?iY*tR0bO`M`T7r<4Jmk9qExWC4e$2Z6$$L(Fy2=Is(eH<F8kY(+)GMxjbqcR?z zr^NA?X>5czMa%DY8ZjPEnPsV#<+m{zXDCqVbjZb!nu1UZ6w$JMaN5)N!QowkDx zeIDO6xm7gDXn#d|39M~fDMHGXWG#nfX*Y_>`J6x;!5deB?Jul|)ewXjg=yB<aarJZ ze&;pc`Ob-X5$^7a(fLZ>$0jP&zL(89m;WYUY1fK#a6V7n$+y5DDxD$e!HChtF80f8 z+S*;)VBfT=Si3(+YisltcHR8Fy}`7!_3IsnQZil)CTA(Q4?z_ZH;Zj!i=FsL1Stx# z!)c)4gWq72^uC{SqSiu6fmJt07u=k^H+tkoHq^!?gJBT7mHXTMei#NE1DOaYu~G;+ zYT1%ZO{r`>9()(r14M}BR$%Y2_HRd`w|#!&gnXsL*&P47-n~6Z4-p4Hxoyc9?)8;f zK>i~{{u&}PILCQXM!(%Sup6}$O&7+n=q(pRucI`)HtH8+U>FvrxiY7!Jk_o;FPgC~ zsd7H6*io`le9L;zXDyx2vjzb=^I5gR5a}v-LJK}r55c>}o2}8}F!&8og^s8=8kRth zwTL?WlryyycB3|@^j;Ad0tDAYfY$z1bN;nLh!sB-Zf+{)$?>=T)=PfxcaOY!mGQxo zlcyAA=4ux`to^Rmr|VANyMAFeuuYZ9@p$TG%yu5faiCUVo;Tzp7rWTSv;y!A$@=fx zTE<pH{y=Abtvw2O5b$W<`^WJn+V*X|dDpwsT2Rm>wtE#0T<7+um)E8BBG7wRi0bTD z;2kv5x)t{n`npPWI9L1U`~J6kXA2B`&`Lt|rp{`QCj1j()ZoH9LL2~7Xbl4)jKny0 z9}@r9|Jxg0oGS1AO60?DdHyTE75Rt%Y~W9Q6u8=1x#4Ra$~S5TKjQs=G!bhs514ZX zDF}ZDk$(%Rulfl|X(7fHP@(5f8Tx!b>Do6BQHVvIXwC`mE4c`95JGY67?I&X%862y zBOqmU{-?7rPnz)~+7DkAIG^=LiF$-FDu5*i9T|+Vu^2ilNfph+oo5IpS4_L88rDF` zkA?xe;M#iaP*-^Gy$C|D42VF=DxBmT>)2xzm29>dUI<JR+}>0^`B>5ZTG?<`dZKTG zM!80t+@zFg7kw*FIh&)6<ea&?J!$~6>GfY-9hj!M6aQT7Vi#MjDPn%pOhl+90YZ#} z=>>SDJa@{jx~)cUZLRlyb>AYjBEBVyD*xItXK0lcQP~()2i*b7_bL(VhOPa1Xn<$z ztybe#pm(o;x)tPSn6{R{mQtvtP(q-Tf=|BFo`+sJXmZYtyMT^^>znMFQeY&0|MLNW z+uw(O@b@dfooB>l_Kzwb{l>tb{c{8V_+J?Kv%eAf;E`ht>ZINs6#QfkT{hL628Q@? z8wE<ucuOh&4z>O#NX>|MRKbw%Vkg07{_R9|jsVsmK+E*z*nA+(T3U}04*SL}5V_)j zh$rXD`Me-?LF5dwFinYRs!V6$JPFfTnFVVtRNx$hbFExgVLv)@QE-TJ>J+sMt|KQp zeb8hv>AkBE9MyqV%#>s&=fZSO+}>uERPB<|K2a&!p9)dA{8JLsT2LHBwH89k+H>0N zDz9&ZfAF0%FJCS_c<~05X^dP_6}*Vk`O|hjonJ3jA3QO5a$2~#z3ZUIRz|zNe#G&3 z{F=;O7rWRmk(pD`d)7Cr{J*v`Ewc@Q<Q+M!rTDek-}c{`(=Eu?I2=ub1gr{BTjkQ0 z-5jZS^DBPEG+6|&u5Lx~xBY0(Z@0;{D(Pl)j|S#5EW;Kr)hnt}kN^P%th?gK=H&0I zGq(NO`cSQ0hZr^a8uqcjIEu2?<rFDX<q!Ug%y<6YnScNPal-E$S5F2G*PcJ~rz8K| ze{JB`KXAPF$Z<8gp1uAg_8@qAu;D+>(*9Gt`zutI6<JveIc2=Btl?byM^j`i!)z1< zD@I;Z$wd|UT2Eh$_kM^D9rsfQ>VPs<mIXo>2;N)iWunTNl9M6-1+j5RXEU26InKoq zT*3JSQW!=R&hajTXjZO(y_MX-2NUt}HV)#~3c!*a&PT>kI2=522<_TpNuK>7kW$q) zM-`PEF1lSRV5C74E^{~}UcFp8enD+5+xIVGU0DwMsEYUC9X>{a_e|5w@pxKKgJ{41 z`udueuU_#@>uFx>Vm~c&&M^$5qRU;Iw)tj_#Wt~?hG-v#f#8GgYgtwCwweQ=PV&c@ zi0BEZjTjn5k0tlkVi36}-19as)!PDZeU+Zw(?;QC+YVoedivYia?!w~GotnY!EbN^ zTOqr(72ft~Ug+zHaqyPe>WY08;^>uFrbP0hCm>Ii<6Y&Jg-?Hf;<x|(OpL-X!biWc z;~)DABft3@k>C6%^8RDTvun@Q&TV?pKiYnLXaCTi1OGdaKcv>Zp(8cZEmass%~IK_ z4pJ?uEJh}gmAS80a?(*fPywB3t`>#ra=Z^9{$3BgaR?xu7y`qfW%d1T4-$!S;dIIj zOXIk&)T+Wi^HgyxcJeAAIOe&UV;5pnt%01iL@#JSpuW{_E&x0EUbFFWgy@A3y>S>Q z+0W?=SJ#1@g|w^~hgyvWIoni35zZ&a@z@xr*3#D+jIZS^@4bF;95`vCE*@v<fOqFx za%1%Zn}7%$4trj_eECzm8ZLIRZ=y9;yci>K+);97Iv;=Z2Y-RA-N!=k4C7#}%LdMt z6_j_c5<s7T`g-eX{3@GlzT*P)55eJzkrIjYGJCs+_b$N0pv0}g3H|jI2&l=gv(|>g z$ri_U9}D1ch{G@juCJpVi;_}T$L%Etw+Sk&vf+Io)^^NnC8jY$t&S)#?mRgOVQ@(G z)atYkQye56_xkMjPyCJV9tjcHIezs|U-7^CpTEcT;cFfLpMsr%zXI|%5!nNK9ND;` zwI4kUtt6wm^=s=!$0w?^=&INlpB~7ZE2p!v+BpIca85yNC3}`xN9#(qsR6O9dC3-) z*DfrfK#q|i1{^}lN;1^g0aMD<+|&)V&o}J6wk)U&gGPBOG~^KRD6^klz#(YFtnsV% zvtm$I!Vnx(1&%C>21LiZ#G~t=EQQ4gib~ZHL#Kg^QWr;Z_ME3|?FT)0BD%j_%@5Y{ zQ@`-6T2U)m63a3ha(4Yvc&GdS>h;af?25VA#ePw(jr!svX`a3z902#tHPt=SG7-@> zqDaM6Wj1Y;?cV0=y=%bd`D;}W8*Z%BY7+JEMq9;haDA*<3?D$7wdc)sw%+@88TL$T z7PJh#i_f{Xt_DWX7n<`2ZO=N<5y7<?AzERT_T1VEsMVy7trFl!L`}-9#A37NQjJ)$ z3gUqP)Jmxp?<y{+7>%o<BWm6;4vv53pT6cV|0|F96W{XprV0M&?FRUFfd2%M07P&T z4b9(KXJpMzH8|4lv{WVa$tA1OU&_pLBInB8(PrCc9p&>rtTXojIF_X_P0G=qji(=6 zZy79eCTC?9R6PKd5*DfCoXEM5i;d6;OjGG)Js*^rFXfE)aM(wpMSkMevBGu#8W2w` zA{B6g6i3ZEe=5}>HL%QjiQHw!lgH7jAWa!-U1YUtK&gc#E!>@iluO4&RM}JjEMgYG z*#+DHEvnool<ge9ZL{;C&&yuyVi)_-=A6;fdf(CN-?XofX8)0K9JS;wdXJQ<8LQIY zY7o%o@SSt)c02A|s|Kvq0k?I=4;*!)`5l0g6Dch!pW8pM-7ssr_SyfkzGn-^aGMXv z_QQRP?l1JMkDKJm$nCZnee*Z>XZ(99qOaEbu+6tXD$#qP>Ck&8EOQ~JLP;hdP=x4B z$w*8RF=!7Y#DQ^e{5SsM75~bA>%d1Jc;eS^{BIniuWcvbuK|C<SfjKDujTYL8*RP% zt-73uSG0Sn<We}D7nUV+Iwg+Bg=xyh@F!LUz(^YcwFCpbDcEnBg?SNU_iHC>b*3rR z&Ihoh#tWc&_UCC~$;JBYLRu0{EieRdz7kwu7zPzM3iQ&tUW9rsstFA>8cAies#c!z zWbsgUloF^FmK2#6o3%$cowG7Xi5Q?!51i5!Yajy<qL8!a(c^(vuNKv@c<aesNq<`J ztoDoZzI}5?nJ#v*KRQ#fnvuqUw`HvRCYZC)w%u;mMRsb{#G<y0+nl<0N|MuBk0l10 zCw{APpuWP^vwPQYYz{w;w034`psq~`-h0n5?iq%iQ7;P>Rif<~Jk7VYKkogtdA=>% z0+#kqn|5F&nS1cbem~VJg4c<^cAs_ku?RZ)y<!WT^F&9%iBMAEG|f!sGs}FY6a}db zamQ}h6T_f=n86bQTwewLnSb`cKmX5+eDte<o$rvkuWUb#<JTQokowng?ypno%;}hL zUdQHENyi4N@DH57&DBd`UJBEcxH~SKj+xnlpLwZFQ`L+<S3Th&P<>Em>a>)uRJ)q> zE4hyJalA%V+dz2AnO~Tu!ZgD)7fz=$cXx{h4|R>&6jbOLhsa>yO4o!Ts%G$d^68IK zrSBtcSwNLw!Oo77MpGtK?E)1UQar(Vf^iI5Q4lEhnob003CUX<A?L!g_jdf?4~}b5 zWnJZ4&srM~eB&BuWz36R>|$Tbyv=~C?05af1<~Gn_Pag%!_{Uq*ijKYs(I3_R~r=% zb+2Fkjy6E=zxO~w$#notpkg%H_xl(F?{y;U>C>mgIFM4}baE`qjN1^ftr_lGEp9Q# zc8gr=!NcmdXt)AR&{{XZnNx3>ziaq`&0%Q!)+v;o1qBW7wid#PX`0C?aX#NMO|MDI z9XX#-@Yw;!wIb%-2re?lkw5jPulU#g2Uq-w-w5pE*LVCsj%h+#$@AaC`+pnZJKVfJ zgY()GccIU<*G3p2+XG~gkUgIZoR`Y&ZRX}Sb3SGAQm92ZPq_o^oQqa^^0p4`F{SR* zS7yDGgp{|=xMkpwvalot5S~tj<7wgb>xpS<N`N{|Fb<J%P&(k~M3tyQ%j$)Kj(vn+ z0K3MxC;i&83&B%s06bL!C5@yEIjOET=nbRPLI}#~kJG+?t~z0$RR!IT5F8=u{Aa5Q z(0X5diSOqvJu$OJUUadGUF_>wjFD&WeZX$NXF8ubpO2hRr=Ry`{Z!34$D=1tHKQ*p zc~0<3h9etK)>QkN^Yxo*h%;=_yYEu2-^+A7PVcoi*M*g|hrUwm#u&Ih?1*tB4M9iD zYu?DcuYCJ#$NV-yz`aucgEIc=rJJcn!4{q9XyfbJo^NDE?e*UBaE)<wTS?G$#haU# zq~*x6+>-MxRTg{Gh`34(i4rEpF>tur@jw07-{+tGM+P44f0EMu*E2!L%L{7xf8yL< zN66gV6pDC)Q{bAb1;`x`(k_l#T?c09!SbZ)SW@ORDH4BKOwcE30N|Z7#l01Q>hK+8 zqGCQeU!QYjp0#Sw`0up>&{_|AuyYYoQgGokCvJ}u(^SCbN@H}4gJ<v+A3b3hb*#^~ zi%2>WRKy%`t7h1bj@vb<VUNn{21<@BS=XJGg_IVmG;rif2;`$)X0=pGt~w5Acn}x$ zq92FAFs`artM}i8uG@3>E(d>c{ujI0k8R5EhDp;7Jbn5;yWN2=KL6zByk$Q<8-|hH zxU>HLCe3U;aLa@n-pm<+PN~({@V42#<<f7v=a@roU_9k|5ysu97yxt1Zo~5Dou`z- zejk9!I1JR?o@_*MrOn^F)o-k<fGa)kwmr}lQDsY^uC&8a3nE2>ihF?%D4U?MsWzY= zpxJ&)fvto<<4LeFz|-kDIiC<oiXLPH>m7&a7^36gcKpl#(y#G9`O8;4y<Q6zZ@=Y# zHG2!D;vMg)Ea$(4@NWZuK#Y##2^DUrl~SDo-8}@q1x08UTXMB|^}td*=V@l1&(xYJ zxiHUKmY?Tp02<FY3^d|}VF*2f6oHadyeBQfyeK$uUR3!m7jyhoRsEz<>Dm;*v}Ep1 zXYNj!Gzq(5AR3*cM{uq}h|skRw6~8Jg4oH%^a6_L^3iR^N?%fyOQ6XPD~n%I{(_X4 zmzlK8#3;rhwkdB_<+a}8C;EjFVkeLocLU=tt;hN;->Dzz+%L}mVi)`IO@w)#2q7@f z69DJ)H>U#7fPCX_N6s1V)`_827|0x&K1(fD<hCkrjFGe~R)uX|-o0_}*>v8CMo(^j zn%!=dFy9iA)mpi|yXE@o8t;^!0Oy$JS>0{P9V-w*qib(Jt_K9pHC8<<=^N49T9weM z?K02gv{)ce?^g(<nryMPKxnPqHhS&)F>S!b#@7<la;G8zJ{WL8Ro=#7$00o9U;Gz- zi~q&H{*?W&#w%}P6yI&~@KM^x*n?#_<)dGL4nnQ3$?5-$xc?OIBO&Z?6w^Fb1t$@D z-@nbxm!j%=wHBRop9WsMP<(^;g33v^OkUTe;5jX)EGaRLLswQ3p)1?vER-xg2v`>7 z`ER5+n)$n40jO2TrCQd1W?m{aJ9eX%n#LFj6wQdk(8U<MIs0Db-+0+3Gh9pw&>P`T zs{m=FDwOICr=U{}X_=@+NsxlEHnpBvE}~<cI2|_>XPq{^sNygX<G>Ij<1p~}dhF+K zjb`;&UVQt-F7`)jRVpQCmSv`tyeemYLrg@N&Sze|e4*q&A(~=elLNNw*c#>P4~<yO z9Aq0S-a4xL_p9C<#-aD>7**O=Y+1YAUhz*G-V^T|KT6>|Ph1_Yh_w)6?3HGcwt_?O zCh8Md8T#%A0ZrtmRh(52DCoE&4%rL&>OfAJloGWR#7Lh+8u^nzRdOI#b7z9>)WRFd z;Z`{iyiNh&wEycJjKiLTf5N}~&;KU>>c93L?_WEj`+82l9aK<dyCRS(oaf4tv_v0+ zvIj<Etqb1a`v}3pGXFJ@e-Gy)Aw0slf}?<|j62UTx;{7G#v?Gmoj8G@news(j>p2? z-K6riD)6KSyg1?zSQ5sTr}B?V6x2%j8bp+=w7n|a(|~^}_>&fO@>>3P)`BoDfLxiD z#Ob_nJ`1I2#UchB$p~J#u6<O7ynZsl0usAO#Zim(e5$h`M^9qo^A}lrLL#1Ag`8lX zXG&hEhE~;!tM>PU$_hK@aKVA|7FX+}gI=V87y{!E*$pG_y%*W-zhFsqbG9$e|6&*W zSy;)L*-gYDl2SsdPBVRzY@TPn`217*%h3KlFpi_P2X;Hgaa5d?aRVU6eInJ`2HU>5 zEy=CktTCyAV$9-T0f2F^tZJk~2SfMPf^#fO=5Xb4E>dd7hrlq5`W|aVx9w}|)NSxR zAZQ{#D|wr<7HOmLb*lXmBD-Ded^NqbEuzFfwX#enmSrL>i;i2{;=ETvy6rXqM3JPZ z^I_o8@R+~&PyHr;>A&-oKmR8Ot_G#N`Kq?f_NzJlV-oJpm1QoJtd2hhn_m~l;DzAf zFnVR+%YTPj{!NfC5U%hNky_MYp`-^fD)CLr%$+NC0`&s%-jTDXhC=WHHF0&Y1MCGT z9n>*RnR%|vb7ff^wR(=HL@AS%@E!9~SQZ5adS?Ve#sa7)dBq51>;EIp=KWz>GSgI8 zlA{z)EgpiSIw3lzbA8c)_c$knU}YR56B2?|0ak}CRkQn5a<{eNl^QeGk+eX{iFuk# z+gAg<7(JyzFt$Lw7+Vmftpu&8IO`v+tb!^avBR-vw{tvtwCC<_(Ezelr7m`{i~W&X zt(CMa+~ilNT3)!%uknj)hA(RL;jotVOVRu3G@ZG-+oq#pd;tUFIBK=PZJj-<<G#PD z?&zELz%Y!+hErg_KQK*atGp%^<*`7ZluRuZA3R<xS@MAppgILgH-7%MUu}C`11~n_ z){aq7AF^e0)lX;!AJ(eAwi`sid8AgZt`3~fCr)>_%+ncAoXCE+XWZ@Z&QWrLT5;YJ zLyU|e@LM1K3jd@3*>CX=|G6E{4xZ7*`r6@I3%vKM0P^7XY>t1)!f_Ffr^4wj;hd_} zwFsvH5%$ruAEDNNz`Xn)N%=eE<f-CuobX;42FGqxF$hnzY<KNbL!dX@K>>S4m@vf5 zhwn#@Cyl6_S0LcL6pkm|u3C-$*D45A973d`bN%xI^UMYnPmcz*7oRPX^el^hCTFPP zNm;kAR1GeAcJBliE8+wZEjcx~M%_lG)lsDd9d)yAjId`NJ1jCV&9J0J`&HF+s*O(A zp*?>sOS!ehQCHw#>kmoQ+CY=Q^j=k_oHR&@u-nJ3M)plAKVIx&zX+xy#s%k^eEBzI zoVLxpiQG@#?fK?A`V74Jlv)bYRGH_s9pb&er;qTE6QGaRwX%Mxn|}RvG*CF5P9S=( zt)+C(UCxOZ2Re7ZE?L)S|MozpZNm!3r)kbKV6}6a=(SNs+j3R;bFQ~Px{ol-n~T=g zJ?se%q!e;aiZKhG7zeH%J=XQ*Ldlu<Y(MbN|BHW)f8oFV9>4bCz#%#Y<C!tBIV}Xc zcRPO2Y;~!^ISZ#*I8T*%s^q!gTG>5-4?06XM#o`*;6LW(^}m7SZ<9+PmBF&@1mXzZ z@%Yg|IaGFg0V(Uru>;%2BO0A=$tWOCY<=Q*@<dA~)0|m~9*}WVr|eLXoHnYrER|`R zDRb*7X(d3Ny0ck$tv=+eGxN1LQi6HXvVW=CBPvx-RSOjMd(Zx$IEz}XbVNiXXv9cG zB-^9S@K@hyft$cjLyG1iq#T%+z<JIrOS1l#x@ia6?{|6<TMumoH(Jn9wWXq$+FHuj z3sS2z&I_exrg>u6g(fro=EZQai(TwzW?~t^H!TRiKY!n!d?S<Z=y`kn%Z|gnio(6+ zVgbaN{eI6d?sTlsm|IgW<eYVas;FOZRdHtXvf#Z+^p?{2Uv#1EvD#Rnw&3rB@}wG( zlXI(@pK~Uqt~dQ{HK05H?Q@m@Yl1EvCx=xvq*fdiDGTFnPw@~3PyE;am;VU=*gyJ+ zM~8rSFc)DeTDGtws$BF|dT8=F?Y`eK)>K)Y|GAK7ZGy+>a8We{hTw?-1`k76Nb}#| z)!kpEqzQ)}z-38FsAD|$*H?kGRA#55H0sQnUNWdMUZa>5&a*PtDBeLw=aejiKC8bh zuq=*caim3wbv&Nn9J}c7RJ8e#s5LVT)yQ|094HmB<v6BESQgJRsZh{-F5p2Z$Qv|y zmD4$~ES}xy*zZEm#6wi1D6S&4fk|9%b<`?&pFvdSveZB>QF#TX%z4hFRB)y_P-&UI z1`YPz(9u2sQM9Ru7!|VE?5jo2j*Yf}BMur|O-o{t0&^e?s~E+_E_Sh>pM4X2|Ehqe zqt|VozGd($9_nEk-@Wns_PLJgf0(H}2o`e5eD>*QeE!+zMhmPAtmC+2zdw*m*7ASb zCf8cM8U!?T*T%cw9kR0)L9g3yD0^EVVk~_vIPiv1bJjxe-cuUc%en*lUgxbnV626r zd5!j+5zh9Mf6pGwM?Qi*@z&tH?P;}5?m>__eY24`}z4u$|@bSwb|?-;|{8W4dZ zLKc{la9)J8R9)H5IOna+Jw}H|h!j%#FS&dDS6I$}V5APCG1ECbjxh=nVK;bU6slyV z8T{h=L8?Z*T&vRSYDr%i?t*vhM%2k3A~`A1jRN(YIq#L}FK5F9wDG#)apD-gM~2u6 z^N3_ahbkUHuK^X)xqVes2fz!5M;>t=>h^3Yz_65x6r~^r2%!=}BG%G5y=(DE^?e4_ zI|$JuA>!&ll|stGoC>EobDA?HR}Fa3fFZ_UWi8W|Htc{xO7z?X@76%B8ojecc&o~l zM%-G_P+)>A6`XPfT<l^O`}x>5n|;f4+b@)@I3ve?zvt1T14yf0I+i(cI-gZ2t+v+Z z{lH-R``ZG6)_N9!aU3jT-!S*-TL7&F)S|p8r{i%Ge60O<B`DHXfH+6VMcc`>SPNC} zxz0I)1TY%+#>`iZW;KM+3jVf!yH8u&Rqx$JX@P62TzH!tfL_b!AUvT-L)WU*#3?0? z$2&xXVHh|Z4wPJpr8<sxN`y0su-gT8JM9q%4`OBR5FEk5ZfFif9e=4p5ttV3C41*+ zl?$&U?RXIm11$LkuU`Hi$mee}#7eYYOU}BZLnu_|2tl(>RkbrJ-C~iIXeA<-%4}nJ zOLk1tIvNop<m5P?EB@AcCStO=#gR&+WTyc^R>|Lz>pJFFl=4=~_7$qf;}u*ID&rtb zAtSYrCh!#Eu&}=hgdrl{nUklNZ?wdeaa5=oDV2FPryHCBUi33P8#i!@w@5S$5gaVJ zvgFF~yf7_UwHvaY=-`zTyB2W9A>bVJX<1nV7vK6iu2pg>xL^WLc0+NVVps<8{R$(e z!tLwSCowK|v5WnD>=(TXw`TsdY=p+<=Y#UH?8cGn>x1F0v^T9FJk4^aX(r{Yj(d|~ zZ%J>!{E~NEUte3rRkxvv_Vt%}*#sFZeFZ~XUDs@IcWrSf?(SNwKyh~|?(QzdDcS-- zio0uZr%14(0YY(#1b4Z4-tYc{WS_IwnKf%>){?Hf5#a9{C3~qlh_UR-9*INbYkTSl zZV@wP9cCyEV$gZdZVJ5<2ttQw+D=tFe7jrQNEokEDv0>0HN!iXtZ+811IW86x^KU2 zR}e>o>qt~oeJ{;x3ylto!__Wr*nlT<sS=rD5!q}Hz@^7}FTN3u$e2hOW3r!c@J2Z~ zZ8p>;8YAsC;2f|Mt~A@!B|J>3VlEw}Nu+*Ib6rriBgPEc5+j;V8~2wk!58<7S}0<i z%tfe?(|EMUQ`&f^&>Q}y5?x1}8P3KKp&ifL5`6XT(M~IUS5AnM;0hQ!*9gIi%2W8@ zl_*nNJ5_Anr`c^Yx71!Or=OT01tz^tFrpF%`Jt?*xotKQ{`CW`sVYVgzBD10ZzXAZ zb<g^bsJA$P#8vGxo*=5#{(-AOG={Ug%tZ?Xni{oHo_k(X<gVY9iMC)@q;nNr<jLUr z4MJr1%(rxE_*iY40ZgMe4vGA}Q27D+5oLJ<wQFPi=EmE176en)tgml!e_rU(?Ap+& zY~?xgdD$dC|AQM_MG{(X(7+aFozE=SNg@(r-UYb@GU&$vvw9_+je72eE!1g#T9}jH zC3d9_;P6ds<<F4yH^YC?H7|1IeV)~aC)00uYODeu)l?NWMsn2uiLq8>;krAqS8sS% z-C$Iy-hA^{`jbmQjPZ{d41PfyhObxQ8@T79Y7_|DnX@jWEX={*zt6m>l`Qy@`e4XV z>nZRT0{_6JDsg$_%#P!r4l{LBsVYS~X0+Jkz{Z2b9xfoZojlO}m>o%mYpOLr^X4F* zb=hxUHmTZ*OOw`+b^;(0qBCMcd>fX7`|kGmrw4#G8x!wY)XV114z@}{!0BBFhyKs+ z24&hC#Et(VI~>gMkw|sRv4cwqK;~8w970)a!1BQ_Q<0j^6axXgLPG$l27v4i-zqNq zksb~9W<N6%O1M5SQWa6CoCwACrLyG<Xl%->4wz!lZWbaSSnwb9cQ@Vn<Q!J8ohF#< z*wrhD5Vo)V1d+V(sYoA-PX1WEzpKP7vJXKh;IDS&=!#3g`nY?PKE{@yD%&a?l-Drt zRA5L%>YS;Xavf+V+6MB!eG)(Ku$>pSRTlANJm~C$IF|l-UG`oc<RR&|UkuBo>~Gb0 zhIxm4c9Jc~Nn-}Q?AE*@lCN7|u5;04DjoNVmx_S6pm&uT3%s*!AIa*yq@K4#*1<0H zr+E7{*>`EJ+U(6gcr-0YDR@Sc$FH%ACNutZiqm)Jre5A<pS_y=yL=kfSTT{#x%qOd zr~=PSlo8y(gSqKr*m}S`EzK$uoI{*kKILEKNA>QjQl=A27(%jAlWFM0?;<7&Sh^Qf z5vKH0JInx<Ys)d%6@Vj$TlFBQ!By%_J6=lb6bY(mQ|O2)Xv0avmQkNnDPR&0;Z59o zmX*T7E>iME9hpB(pDS7IaVx)(sfGXO&|r_P-rd%((t4Ib9-H8X@!;eRaTxFuai<Le ziPf>yeylGTUOv@6c)D}ub@*-|f}+n<gcc&!XJ_~aRu&Sr;&-znJpZd@HJ>Rm*3`=J z?*ybae$_qA*jskmOq!G?*HfW71s>;|%Lc7fjvH|Mh})lPcix4329lwz{W67`poG!o z{<Epw1=dP#a#=^~&Tekw8MbY#5p0V3i0-``7ls882AyXZKmNk`+LM&%*w(X+DFAj< zP*2=8DQWsIw6f1##WL{()=rQs_;mH~G-DTU4q=VguJ-9R_1NPw0p{<n3>@go*9AW$ zpGgRKc)9IS@C#`YodJtExNOCxXqZxyhJ;RPdx6d0G%bZ8Zru+iK2K2Ig6Nmm<!?0Z zzWIvw@?Uhn^wOYNtq=esCS=h!r~mwm9XJjOa4GB=d;n&XXpD&n<@H?CVY3GV%ZBYG zv^+F`GD$+TmD(QR#uSwwqNMTC4BSlJdI9m=<DV4ZCX2FPo0vYSD`j4Fa!vmW`d&j6 zK@$*Tx8t>4_$y?9&rlJf^k^E1w}^JW=8I0L7nOm*QL})`L3pXjRI#D~5-I!9be5pa zK20|$(-?<BL2)qv2wB>Wmqs;3?Zq#)I%Lxh7;!wB(5Rx*OKHcr^vV^YOjn{;L-!!G z0?KS%V{KFR!G>{jHJPKKhB_Usr}u46ecTtdY<$iUc4R?L(tc)=sJO;fBUgA-Uhk_6 z(ab6#)!r<Ewf5D>>#R56$H+!V+{;41@q;vT-_J)Q;U312(R?Kwj%x{{gh!wS`S~i? za|9OW)7lv6;%RjT-fD<<M{ALVzNVU{d_`rO9Bg89>&pLLH;0dct*3`MG|q*2k85|c zPYOSxkE+Z~Lvt`5+#_?+k6>UlAg7J*qcq{EHnNg=i1h`Uxxz@=sa7X5k)HuMcq|S@ zUk}YQeCwLJqR2>L9_#z8+NWSDG1eJ<$U5-RkeIp=N2WWOI;mk)RVJoIN);~^CQYT4 zNY<F#^Zu#$m(N;NYn~D>8Hl1Zm)aWx^5XyN@RK7sO}CL;uQ>~nfOfC_Lu=2kN(H94 z0I6u{Oi3FC9&#g^Aj25rn9BOre~H~p=EZG3vYzvR0dJb(0ns2*Qn3v6%0?c}Y-9X1 z3?0MHPjO$VNhdr@6H4;lW5^D-<KcfZtTdf<iI<=P-rgO{^Vwyy(hxcj?R##Y38ZEz zDPPKIThV+UZo(VwSb@=F&FyvX?+7db?SDG365CGUI!>R~Cyc+wZt7JX|0ruSIejtX zM76^VGlYvB!p5B}td8G}g;Gm<mUo<%gI^YFCtH%%$~MtS`7SAHm6V~)?J9l2#@Tw_ zWZj;GAJ4xR?L7-zmOs@Hm{y&?N5vNauL+dGJ^wjc@=0Xl`ow(2p;`X5_**IAzW=87 z$2D%hLQ!*9rcUaQWKVUn_Q_P@p`P>k4;d|E>wf3r`M6OuLOxwmm}J<Y80cC_Ydai+ zno*_3={``6$@<i~H?$Jau7@&6aQ6Yp|B>e5%r$+cPr=4g;%MsSuY(lOO@y%oxtq#e zb&N5FqT|q@hE~IIQ6+dnw*2s=Mb=~fvL*hONk+m}%}{poV1QuG=~vFInv#C2^bfG{ z8ygUGerYr5UyrArNz@39sC<}PBV&*MlPZ&7u*^wfh@`&euqvi3N`}5xjl?uu_)_37 z6*i*%)_pa~UppX`@ZLK{xA+}BXA}Pl(!3BdpsGmtcO_2&Z>ctDOx7@7<n1%3i>ZzC z%>O`jXO2jCE%Nhn^H+mj1_7hT)mEDgR0qR^1(bAoPBPpZWV<^za%eRoyrWs)Try72 zx>+?cvZY^T)~VySMwjDXM**S7&T%N!kS2tGhM5<fF|k+iFPExDa|T|7UE$9q+%-zo zv2ENcSeV_-r_Nn;OYdFa<iV=TuC?N5WYrUmt_X;B+iKAn=}F%vZTduA3z4EMPoeEp z2mbjTT`(H@F-M=9xQ~`xEwlL3PFoc~XcX>Nv_nKT!YmvmKF^K9c%LHHHv_<pCVKGO zv;yCGs4lGhy)@0Prs6~2ST_tAxpo9Td^GKS1@F$heYCs>0?j3p#X>%?ob8ZnRc#S# z=EqTP16nymg15*I5GT9!A2ui01^zKcB%5JwsWV9YUM%9E@KyN~9g<bb!=Bj%Ggdk5 z;^bI}QV%1O!tI?e+o>mtH^xd)AsEYfUt=)5^k8+&6`4WFe+#{Olgq6n#p65U_t7fF z|4}m8w6Y3hwf|;wJ4(w`O)Nzw;6BQFda7Ky_krDnU5my#J+H;15MaAA)cfCcxoSUk zdR%S{Oor5cii55{)dg}c8^V{VAJm>6cQa5e1};)JT>fJH+-&{XdUL-5(rDd+--Tnr zeguALwBOKk6tD0!WA<F`F^o)U^MzKW@wu6!hHnV@z|oj^k0{KLD!47-H&8x_agHJy z@g28+sEbeH{N*iEOxxj;0tI)$y?-pbfZvXGxE?WbimuP!LfCO>**hF0LvjbjEnL{u zVmaG(ADgn%?q<Lo??l`>787n_x~k=aX@u8A;wRYQ)yMr7UYH>pG!Vg82|2e)B`P+e z+v4KXd6iF<UwTlC8xTrSY?uSHE@L-tczserGnYBv;IEGQQdsN#*vz&j?qY}Tm|uCv z>zO7~{XYq@Xw7ARz9~sgqqzDY|G1#~!{+Xoyt{a!&^ba|AAk2`d^J_mIw$JNprdm- z=(VVcEeTq1CSp<_65A%zo%%GMqw`&t%Z-@&zKXH$W?7aGFo1ivX}|Y@zRceupWvz{ zii9H|V&Otwx|2j~ehvusfAvX5tc}qwrqx{^o>)KVNu|I_9Z@erhDrqn$d#s}<l%Pu zyLSt{!Ju6VEb9{b#rO7fruEC&uLVQp(dksdMw-mbn;xVsV5D({YNK{<fR1HwLc8-9 zxoc7GJKFEW<fwIe#2!jLzU+&CUUnrGOqJDx)XKr1)hP;HNyD(D8nfF%`M;e9_ZfOi zw|h6YF5TYXib)9N0>&xM+eNJRob5Al7oFy+!tI0$87==+<nnd3Z1eQAhG~(1^a}1W z++JSmlt9ED>JJH>-O<hP;wYD$_(UHCktU*WWjK8SY0+@L<J5_>y-j`5QQs5)ni-C% zft|a0xfn6`{I8PlOW<Ns5;349O@Zh~Rk09FY(v5~-_&E<6d|!+Wm!1qm*v8VZ+uVR zR!8DyBwuE-XWr;lLU9UQJN|l>dF}_*F~I+{PH8x@U#t=@Qgw=~I@4iPs%82{uuc)Z z0J}s}-2o;YqVHbe+=@W+ZbAR<^YR+13clky?aqKPd)%1|Yr{uZw-9u5=I^#?g)t7U z22W2156pl|KA8kSErmoR9B#W0q#ye+hM6j^OIzXGUMBZ@TA--h0ed0X1Dj+ONZ4OB zxbcgkl)1GdNMb6$M^?KFYNmIncmG)tIm>$fKL5On|CmU|czD*+g%))~mD3hfEm1{` z-m`qNT;zqa=ls56dew-wqzyDD3JW#i+1U6o2#G~4$@m=PL?kiKjA*^>NCcC*EjTwE zZ0<kv?JPma^wpa^aZJ<MuC{yPs}fsRSz44P>wbh6_WOvoJ#E<C8Mebeq_yc8T{>aI za|hfl^_nQZtywa~FrT|v<2j8P$}%x)7+3oofRLz{_SMgKVat;YSugyimX7%sJ76Jo z8VY1pbVO{C+KX$ar59~gN}}b4pqROch||CI6%OWgq#|Y{w@f0VtYa`XOz85^!5lZ( z%7j7U`CJg@UV39Fpz1TvG4l)zw9MyG#xD7wUX>(#7?&u3ylu?2VNEZJZmM?3qo;Z> zcxtkL#&PxRzkgd{<*(V|v=f=8is%ZwAMm?0x;-VwMk+_$3=lp|Ya0vE^mZ{TNAfyx z&0*Z{ynNiB+HkhWFAix!A%g=ZDLq!jhL#tn3<+`R$~`EktA=d_rnqdxE1~9WpqSl| zBBuDw>>Q_dfj?a!7Y!&Sa>+VJ20ahyxe8DIr&A7@JFy^MU%3M=mlPqv)f#iY<j=Ao zI5j!4k#Um6yOSw9v3WGP3kk7CA`oMG9bnxVf<}by@aAMk#t;6$)q^>lOM-S{4Uc+z z7^CdiR|I*tG%<SH`sqnCjM@hTQIaH-Y-1PWxN5!>D09d8H7dn@hIt1i2f*54jH6%B zDv=pzMXG9_Y}Yw^9;I;Ls}4ns!pcw@wh{>dH52N(k7nGz9s~Kt$gTvO@eV4zq&}YK zyC)_VmmU8*C;y7)^BF<v@Liqj9-V^iiKi;X=fK)LH#;IY3l2BqC}AB<Jaj{O^vInF z|9q_cmyj=rA22$n*7y1*PdChL*I(ZJt~asHgy;y#<2*z)c-Ve(vnTt{d1JwSi|`#$ zjELGOq`&sZD}yyrL=u7d!ucxBI0Fe%To=XrPCI39i*;LVo}dj$+d8?l(|G~hINsnW zhly~QG5}-74ETf5A{#;Gv@jFM`VMQVfhSYGWo=(SYna^oX_Om(M=DYEt~C?dUF=R4 zTTkq+TXpCUIrT1*5;Q`U*dCoYUWQ%78s5tPJ)nzI3*6Z=b;p!YcJ>78-o+0iWZyos zHA6JdZdn@dZtqyk>Q?AP6j$9GUrbl0i^4R~X{vVWbo8@Er2KoejztdK1eELYqKWz% zoFjeW|MtEeLrV!`K;+AsMi_2v7M`R!L5)w1)+-|7h0=ihUI;g0OkwyRi#|H}TDD<B z)PdAABtg=i-XxJM)#oL6POIB$IUSfVAVa0rF&FtzrTGOn2U=Sca<B=y+i4uY^+VwZ z5M#k3i;NiP7JlO%>`k3om1fti8sA@8BaOVZ<m+-JE8X+;w)3o82Sr~MC7a>W11<yL z&WeUoA}=K|I<$Y3&D@_PykRiEQOKIAPpVvF4A`C{6~P3qH5u`&5tA~X2Y-8=@joqN z{3Im8&awG><2<6LC^rVL>=K+~sr@UTG?L~0Bi4K~mD}>`@?pE&WG)7{?4*@No#>$; zo$K@9g|^@8^DvK*a=(RD(Br#G7BTG+scap#3G7>IZ4f*(T8J@*#-MQ9smuGxs9+{= z`ozi$Gg24*aW{h31sRsVA8B-U#$go#dpv@3ZR8I^3UD&aim3gDZMswzI@48yLQcT3 zrGOOw=5^Jk<|E034BZpxI~V1mwNMGnUnbUjyExqM9nE%hE|&J!{mM)QzUN1E3by%r zXO$9eW~@24yNDxq@*NnBcUCZbHsJLG9@i$e_4>R~j45IU)Ysv^`x>svb6~G~ZVskB zE)}&+Hfwo5i%?fs3xKpuiNYf0zSU$r*OG)&s6u~{nwY7*1>Y>Yw_{M_7By2gW`R%$ z5Z(t(T6j~8DBYDN)pf?8xYe3?a8@0oUTQzw?+wF(4P}e_`$-W7j*UataYRT8qPwTo z*PlZ>dL9JbfoOyvEon_TVl@f*iQfbG=e=8Bm1<;I<dEDVaC^!LPo32crudFy%{Vgs zU9{UkOesdZ<x-Wp0z9?w8coR1>j(aAr&#>}voUAYC~Z2yri%COUyAW0Hi;xcLl_v@ z)&34M1PIKLFBN-&wV3`m{7Ek5Pd9gG2`86XN*(Ap^tX@K^hq77fHTEZYWt(#*u7je zeAoLnp=A8uZR!2JMDEkZ-RqxSON4u_D(BcO_{;6MQg1TEsBME4(3D)uPqG!<P-3GM zvw2@Ropl(gb^X=>VGU!aufn?(f|ACh;ucAaqI4iCl)Jfp%I28AY70Z6F5Sa2+p7VZ zIno;e<_Yf~R|Kz_qXb+|v2Zl1!f-Hml5u^bwy;9WCbelxr3}+l30t-*;<>jb)>x#W zZv%nGiFxf(tOMbs$PTFTa|P}?k+lv)R_<8Cev-KQbnrBzE40K<7da!Yd3`;4IAM7w zZuRKB%v~*!5P0~ltK8v(dIn8H?W36l_|@lrm-ZnlWMIV(qpibhA_?a!mhpqYlQhM_ z#qM~sIzBAY{u;4cC<sfIWjNx5LgGu_ff^b&{lFplu2R*6bpdfTsSx|;R+WyM=8}IE zc^8b%v`VYj(|it|F`S2c3_oW)0$k}?+zBV2p=ao3Vv^}RYm@eqZ5q9ro_&XgtbLi$ zhEahj#zo-@vbucr%c(<cY9Qu(=`kVxSiAVJaxJ-v_07%Rn*@*lrfRwN?9#^o9v+TP z{sf54n0LBK`;@=Qd`@>PFKkFr2aD#}3ny0T7r@8mZt#gcxz!_gm9)tQdF@L=Q;PsM zKz#e`OpXrQq0>#U5=pL#7s3y4&Ne0hA=YupB=D%GE(~Fa^17kO_Sso@n+O59D6wjU z2Gb7%{_*KYT-}y2b!kf*VK+k<sCMY-Zs5lq@9~!S5UviW|9fu`G?TFm4gmcN5Re#h z*dKQ1BDB-b+!4d25_+452YkG7EoKvy7Xyw>>D*siZ||MTf_Q1F4pmW8X<(T{r?FPU zBm>{!Z!mAb>)rPd-f;?|l#cKWn7=ams?x1{dP=L*X3>npfanHDVCj^JPTxD1)|ZCJ zp3XHh&8@e+<@RwnZlwd*NH$8@=M%$P3x5cAywyidXjY3EEf+vJtd(Fo`<~h_Q`^)$ zCkkxj{o4AO2ob_*3RiL^f4pwtcyZm<fBU}ezfjo{U7iTm0P?lpx;g_g4ra)rjXG6I z(lg&f-v0A?*=#WTh<!JL3W7gGE}F3V^|(m1BV*obqnxhhvVB@*yJGL>!=u5b<CJ)! zDc`AOu$rzUQE*opdLN`-xk1{R)QR-v>52X&&2!nyKex1HE0`K5+kzZRYU6M{^P`;7 z(I;m?BZZ+6=^glrsVfz7`Spw8r!Iu#imtF?5rxzezO!D77IN*+gE>yYUCX}7Kc*%4 z0cMVZd=opmsc!I~uf3gj?zpUD;jy^I8V|^}AV_EOZTpqY9?r2<Jxmw1i||dZOI=lY z?@BLQPmrKPg_KqzKn4?&y9pu(%l&EHR+69a%)06u@p=s9zE@;P&7hbB`rkP0pVh&3 z0*#3Z6-4`U>>3C9qYuNw)09u}z$B<O6aKb&m=)VZ5H~J-ASHjma8$rrawd$k9`9`Y z#~dL^0>{`<^9Tp}fjed~`|x>kG*YfthcH7ZFFH5ZN6hf8%KD#kt3V2i$k`l4w<83h zR;nhG1nf=5Xb&~p@xZ{YQShEQiC{U}e&&QFJOreBW7dNin8I#+JfWtv)F3XTtmtd< zH)qw?zXw#krmP1GjkXQBJmsyOt=6dtx-8wFx%ez;mz!XqE}k8sOmef`KR?cWODyj< zJu5B`Uw^yq4{(4<?Z!i^^|E1-MCVNy1+(qh*%{#!DJ(BjJi-UZN0m9LXTFLR&ujr% z-@q8G*7a3zGc2>hen@?mg@2P(eo#5^mr=QZX#pIyh^uudPCf&!)g^Y%NxkI1bE7uM z^2SX1M^>bIwM<S^+x?7-NEAu@F)25$(SA~~9a1-8f?az1$GaahZ@xt&qe2Z|AaZ_L zm9RwAT=4LNv5;D}KXcVI+XNHSA>34{4{~36=9=1=rK<74c3u+P=;6DVLPO*VPa<xE z%_^4AwJP;Ot4gJJKrAd4c{uWjF|7P;LeHPup(0rt@nL>2pj@rTTV8p~x!7~5gi_e@ zE@XtN#{8Y<BWMk;p$*PZy9X)UDZt^e0So<*<T`CZZua26_5*y%E*+k{ghaPuV3ZFZ z<L_|yfmL#-ZT{^%MbIf<wfgE!18kGr+`y7{Yd%sdHQ<}N)lysOLA3!T)0-$OqF#!b zZItzX)ZERta?KX534YYnIXsoX)%<2So<xnR(<~<@%(z3|A^B^?6^fk!Z|ZF~ER|Nv z4|&0;_2}<O?BU-B|Bdam;~v{NS5;=8)^WPo`RIst9ev2+!5WHM0$*<67mSaZKY&BX zLSyI85P(FSjL@-%t@noE0_)Rr-oDZJY3lxY<)bG?ILRv?_E(xx-WIdX($t@N@ZAiY zYwYl^6IlqITHmY)Qv<cl!E1&YR&GkqqH_DCSm*$pkusc`U+aQVjl&b&X@u06S@x<C z#pA`^Sz4o}re*vNRf4(8VN&eO449o<@h6^Y%Y*@RvBhDihhx<+&Hm~UtgQd2_xVgN z_;XN&SqViU%{oO&F!|npCp*#`AIF4;EgycI=viV7s{LO1Tbuje<}c=#zQ9$H+xE2Q z=MHeY#OvYSpDNYRK+X*7qo*Y$=yc=qFQq4e@;c{OA57XLHhWU}7<YxrCO9nJKsJig z`s8(oc8RS(BLBQ2g%*X4wf1;2^@u!8^pWADF9e7kXS{}J?{uGIT-1Vs({aD1k;l>{ zhrfV$<;QTTqo%thTi#=15ysm2h%x@~Qi^&3Iqqt)4iw?;j9VRG(Dan;zlC*OnGG!( zb(865seri3qq~1Fsj&dRPXYN*g{I>wHLl`^{#MFOzD#O%b{hFz$XVvdQPkPV6|dbJ z*N$#22i&y6x}(dVOq$b=H-)S}KQ6`%9oA|V7E_lp4e}z7aUqV9R?2mV7j*Va0%w$1 zfz77zM!1Qr^11#vip?(}e6#U7@WA3~^ElxE(Sbpc5IdcY%{v^^_IKRW3H{Tj$G-Bz z{~a#JZE@{QTEa!_;fkB*k0j@eSP?$D)6OwiOd0t?F0FXzAKfN+IB>vI&q`<Dogwt2 zErv0qiG{8XJ<dt#a!I#WkbAbOGwa!3T1BxktLPIwczC8>XB(EQ6!x=KWbLV%;^1tz z)O~;tE9cZ=xo-#h{2c;YR3T)1dV!b)Yv{un)nIlcv939SVtC@UzZXK?b_GEOe;&pP zB_%pGF)DJ!d=6MsqxD1j#a_$|=Aon?3vKfmJ&1MoswXPV5X<By-<a*|C1=!0GEZx_ z$C-o&?I+fICb~mX6@N45;3xfRo6yLCb7aDo(f=LXf>OxHo%4$TeK!5yxbTm%FmOg! zVmd^0l!gnNPB}+7&!$ORQ<u9)(<pEgyC-k>F`3e!&rd%*AR<q{xY%n6!oy%yOl?}+ zi#-2Frv*bkWoUZ(xc-3%<{p9#n(A$)?W;cWbEF~@I%)T~oZ5=gVLtM>ZBd=xRy{iR z**2lUFJ;8b(6rx1xYBLqTaX5p7KY#c@s(vi(1Tkx1O(Tbk0~1Abc((aQwuBTy&O}m zXZU&>H`IhrtZ}u4vLrQBqQJMMY_`t1#X?@6Lcbrf>glC)^!~DG2fIs%ZF>bxE!^e9 z;!}4LO|S`FiQ{!g9dCjIsJ*02stN7(q;QcdF+C6-B=`MZeGTSGFhR|`QqwY-sfOvG zV%?hsIl^GGB$4IL!bQ~j<{SQMp8+6mdG6r!WHh}qVKKVn;-IPxYB+8;9;Lm{$!x0R z@^zql7%fwe)*qWhDHx5r627Q3h^w%{U}J2cjax}-kme}fax46Zc8q6x%*j8-UaL8) z-tx=jeeq#*;hbfg*4Zy9lm>LemG?$1CXStn53qSE$<wNlr@F2+)SwdMaO016@>7AD zwMUQIKQl9zx+>d?pK%|Ahmc60EW8cVQd0dzcoXl4o-^8f_fG0Z*66|f2`h?b)vAhm zAxl|N{868|6cO;fpXMvl1Ap~l^@~|T5n>^4Lux`NcbFGhFCk-p8(_*np%Y)@V2`cG ze>p=pbTJ!nadbpuOq6=8U31M~IhpeklP{sO5Kn$QYL;Sh_e)=)f>)OEhd@6)()E19 zJL*)WpMPX4O&d`)0$KPmKB6YhH6p4M%I6()YtLs0QII6JM|Wv4SnpT~l#_PfYDf46 zdvPNY&CR8k8PC#Ad>|FDlwLdx(D9OKwu6#yi>Z3wyCKH7OMRg|AW*IYf-<{2Ee+9` z^{kVsoNJ21IR*N$&+=TKiZZgE`uww9Xvc}2EzQVJ;GIg}VwNjfn@V779q#Ekj{h4@ zlROm*;;{!-V|MDTnUR;iTAHW5-}*&N!;V2y5t5J|kL$H*mN6(a3}+UR6f62<+}8GK z@??1;uJ$Km^uTVMqy3FnaP6NpT#FtcgoVX#KnGJLwvD>R>$H0X^_Onq4x{8f9LRsv z-MkOd41vD;s_2&g;<EdALDZ#?65AF2V!?&tH@)a*E+{)nDr5{578BvhN0!k>5q?zh z>YGUbzmau5n~eTVp2OHoV*5Qo;=`5T@eaR8gfku*oXSQ-o2VCFYQvMvgSKD{v-1Ga zOYf5>poK|?wQ@!J;W6{tax$!~+VoYp8uz`iO{R;Q&ab_x`a-OwWY+ae4}*Mpcr708 zf#3atzh|q;!6h2twBY!}7(wNOW?lmw2j`^UwPY`vCh0dnEY=Y1fY~Z^0I*HZ2(;Z@ zJyr%;1>1YD;3e20N_NJ<710~qKJ%Wvy_J-ODbmr$<DKU*mRa?LwM=0SNhKnfw_N)n zC^%$x#*tMD@2E8?H9j=nuKBd!83y|6c&xLu-`<A7O_?YYI{Uke<O9Zb>3l;h*Re2n zq%dKO9<Et8?Xc83R;;Jk(-vBn`-hlVUxcm=qOKRBug9!)lqTGX$wTL9N7rD)xAu1% zzAIRavON4EHuj!34B`6Xnu~MTkvyWGi0~H?siU|7bblgkb1<%28dQG!0or;<27bz7 zuQB3K7|%<E1b-<?vGzllgj1aqe6N*VMbt|rCjC$;$0KB-$`ZGe(b2;WRFnCA?XODJ z_CkDgA8wd5x;(+dp5r8)SR}6}SC{pu>{#DHoY8_|ML~7a0S9xTnVNnHf}zfYm&P_- zynDHptfLe#x0LM{xvZYR9p?VZUykG%OYOTVKA()%oc+a%A?E#4tL>yx+-B@y4h0Uq zGlp>T80%}8$;h&1))9H0!`7ch-+$QRVdjkbedpnyIHwqd9J7(!xsI3gweyoAwmbD` zKdu;5Jb2{qzd+2tcX2_9JF#@U$pTtXRvPUHP65YCMC`9~J0EDa_0dI+p-~;4+Iqj4 z8&xolGPHX;h`Y7oOrbQ`VRmsLBa5uG^H0d}&Hcr8DJ43JKu<!w#UrEP*?r24lYxNK zI!*e@EGdwRr;TY<G8uz2k<-&B6V!^$F?S)9A-mO{@Q=Xuy1u;oc(3>Urnvo8iq~)e zuk}$tV(!%2NWyo?q~oXm;TMiudR<4F@@NZEHxPGn@daANy!jAX3v)ynjaG0g#5<}< z=`=lo{ir6`%dHr}Ty^+2LNdY}b^kluKI_NNQ{z9S{Ej5#_yFh9=QQv83%9DqzOQ@l zy_}$h^ncB!Q8mPijf~?ZwTJ&_C;4Krcd@87dLc+CbSS|X6Su`XU>oz}ot3p9`qv&S zN$eAaZxm4#+T9#}v^n$#nu^M_1vZyraB&-T>hYD&Nc8uW^y&$q1J}U4YIWIMg;q!c zg6BOt&vlQ^mRnW-0o$IBOy*!(mB@<$+E<S`_aRNMKWZ@jf)c+6;&PLhZrd<1fKU$6 zP<>nEN(*|rur1<<*C6ND)|7JmCgT1g<A3wGUml!f2CGdl=&@;0T4A^?boLk}h47{Q zA2gV!@M+IKI4!^5TcO9lHW(zPgn}5+heGXiJ>IH&UaiJl>atl%?8)pWrt0CF^#``0 zf%vD?=u<W+=7USlSVX2o%s7|qHtr8sI_ci%KV!0YMzWH;*aSmvma*-_Le1dMCoxLb zwmw#W-NM`tNabmwh`yw1?FFd<52A%<b~ORkmV?Z3GmAQ8%L|uXB7u&as4plQ+Sbf# zlfE2>#c)rE1YaAtRDfAK2c=CVGD?<`6QmWz36}V&t;hIb$BfMyS`)X30{x@NQ_C6^ z$RgVBR65@b1rdT*khYSRV4LkWkWPI6uc&A_`h|@=zDTrO_NAhE<Fz>iKVnfuc=Fvp zF8T5m6-sb3M0{r;Qt<=`cq`2OgQk$T?KayB)bx(SX{4U9G|eIamSf!wJNtpPf_y!K zyJbi7Rs~mZWNKU!=AL0g4OWSIn6C&vk#4QZY&+TZ9Y2>2V5@t{F^0ayeWb-+;~}M$ zvW6{8)Y&I=8#peJigHKM)05VDY7*H6s%Q2TIR&Y5efzr>>iSNwZn}W@y=Z#f+z+f~ z$`jz?#etI~k|P}{Ew3I1V0hvpUiiG{v7bfJqBJ*apxrd2`qc5L+=T^x`oWbp%=E2X zkNE5?dACW^@;~!0Y)DgHd-Wu#T&-iYIPI>mla2OMTz+)UcWJ<(L>%C%4JRAW*K5%? zEKCPkz<UaLgRY|+8KsZaG0y@ndfCll?Xz2+d+^FM!pYPQ@&px3**&L0e?9e!b4@pi zgVHBkDFCECfiWAf!RANQZi$rP23rzI%fvU_O``5DdQ8q$toqmsB6lIYod^u1ZU;&= zEt~9&5WU&_39kMSJ!Yh=PLHDZ_A??Dvms4M`)CaP->N}h-VgR^d!H@!E2tZ8l?uPL zWT`(Y$~*5-OrH@UIavQVdv2VQN&2@^NNAWl(8z=7A{4qg{%my9-^K6OA-w4#ulSz? z$>ikw>ROK*Maq)_7iK(a=NBDP%=pWhR`ql)Y*EKJD*}Y+Bi2W=HqR$4FVkgWDFnob zR(!ifGu<>QT@U&jad|5U3t&`w=j0R0Fp$LaQTN~7R(1LH`^am|zVCH;3PC>`5%?7# zgGjbvqA2&cOg!nDBmS9gPIw9PaslbS-TQMlUyV<ZkvS7Drb6z7-JgHZa(=S6G$eL$ zAxZYlq+v6rU@^9D&`hxU&4M7t8EsuBLa(k)F0F}fVNKRjBZ1M%;>-;XTDWV@ygx7) z{{%w<7wAHzCWJKQ^SpkxIt1hb_Os-nx!NmX4{MF^rw}lA4f~~|6=fZTUUBjXqk*z~ zyDy2y|1@(XfeU9=Rh#zvn4#}KX*(jFtgzNg!{Mo2zQ?`CMU|j-MyF<XbenG)WI$3r zzGzlOTDe_2`^hI|h<Dh55SZe7XNjKk<EMHn`YCl*6O&!|=)^8_)`c%)EAthrVDEmP zT*h3*`wMAL70@sq@T!C5z6w8ilf*bx6%Eb*qv=kE=q8@!7xKFk*qidVJ@!m(dmS@K zK2=Teh*v52vuZRjaTL$OK%1aY_`#aFq!f1VZ<P33B{l5LE1f^gsrJelSKXt~3ldfM zgfn5eGuug}67?@<Aj0+r9PcFX9YCj^K2nLB2Uj7%KN=T5EwWnXy>^FU%SM5BHq`t& zO-~rxIavk&Ii4y9RnEiY8ljleYwKV(k<oDZ0n>l+Y_3+m&?a*<XXP+G$Pennp28pX zl{#||lRR1;n=OC&!Pi-ehN$Lot+nGvFJCgHHp7r>WolFs{tb0Myid_7omP{ptS!OL zjOSf5vH#UyQzM&08;DS0-`BZYQ=>Z1f^@7O=_w6H+rH3b#s=2&sah^CfRQ}~|04N* zA@_yB89Uy`lk>B7RQIpLiX5ETF3H^i{$<48x55VC0hmkDV=f;J^d&^2Uv6fYBK8t% zmv&8{BH2)i3qXTi--E+qSI~DzD4kHX^s2;qH2Z*Nmo1jGxxD^D{C5>pEw(#k>JHE9 zrv45yr92@KN`><@r~0ye55o_VXKmS)B%i6f7Fr#=Q8kpGmX1R!423Z1U@*v?6jcLq z>}1n7M<rNjTA8WM!_4RbT7veO)wvcJIUZNk6R(*|t96S48VE}p1U0*Rli1yz7Ok#Y zml7+;zU7Q{#;4CdJx!+ww`bi&D^1G@A6f6w`KVS<8p9nRLFK9ey%DZK!`Bkg$KJl) zX?4PD8Tw*EmDETdc1#93XY^HPeqUuj1X&s|$i`RFS?mRte*SaQ?$N2qt%R~A&9Qoo z>_k|9=qN(Gg3QyCcGdP8WKhhgJaOtrYT4Wp9}&*iZL8IN^zQAWT#c%g(_(D$pBC@K zCk$oK6p2lr8LFe1O$Q<ztT<A+f+G$E6gfRZqLrAlDG9}%Tkc>?|I1(W0}A(9#I~g( zV-XrJ$qzbSZuLv1G!?laZ@0a3-}~GzH$ubU5Hgh&($&jf+ff*&scJ(~C=sQcFdSXo zvi1U*vj(1S_V>sYj|!vrpZSGmC&KTr8FhS%bmOb<jnBEOcu$N)>%K1;d2M$aWu5{B z8I68^*x#|8DpzBA7(Vi2U?-SN`^3z8KMNsQy?|rgyWdP(InA_hpe>Pehx=@=J`4-x zdq6T=lw$i)sDml6oRF-oP4vRtig2&JT7+gQlrz<Edl87*AYqs)1tdid<9|S@Mil}r ze4!ppc%fYxIf5aAKA|=knd5h#^!p|Bx>Hk#!j+l+>f{CI$BgZK6Bj033Z;qBULn&V z`OmU1q+znBJkT~axQe?os#?RkXTDxR%IesgD?#@A{ZOZJuc|58OO>}WgBpHUB@lI; zVK$XcpC{{BH$c;g?<cX5zNnw+>PgjBFyaIQ?ZtggEBls-Z@$qW;)W<nFA@QIv?Nu5 z=dY)XhijxOFB=1xq+{23+&WYB4?;Ug%7M&!K`XrV(R^UAsRmrH^7(kG49D>eQDcvh zN}KkF!1wUtHjm!S_?DiZ(%P)+PL<>%sFWv}Az01`;eoJ72c$Cl$N7ZI{|^m!43r<+ z+9+y`F5qfuO$8U%G7SYwqjU8*-;Jf>qRfl&ezv6)4@iuSM?q6pvdOmf_}$~%$9{)E zO(sn>iRzvHC0$BHR>|z`pVp9#XuGQ1$FHyn7(1<<j`IQEvCk;SpW79Q?&)VR+$>gg z$G-uccveR!f_F!6Kv1LmM?_n5G_>%4z(#CjAZjavW{%KC2*@i4<Q4MyHwH7k=0t|& zPT=TS`$nI@?VKU;apNC^b+2z0?5&~;R7|Bl4HQh=X*l^pQAB?^BT}jlBTzCaeJ1j# zRU2_$2JNnbl0#;zn+P`~Il%;f;4uS(a}L^jF8=@j)@pE=h{8JWWp8f33|!c}0)?mK z26jVQ2J+yZh=Z6<d{F9eQUc;aVTZ5Fye05hetL(Vl-4I~-$shij)vuMM}OLSd)UKK z?KA#%8|=7U6^h<?Lw)FKZ|8Zma-Ez84L<&LOISmwDR*Tt9R!wcsgPCY3p&7>eHVg8 z?A5X)6>SXK-5Y*5qaOovDqgXdvXx}8A9HRzR7=h5<7O{pe8%;L0&bhc7;dVmD)uaJ z=U9-C{n(<@5ZuqBDm(@pF^ZG;974w);P9-GoO0B$6>8<e-}y+jA3Kh@M+cxLp<m8J zVM12e*IzQgQT5rPORs^aOI$Ax?6!4(i``SNCv9As^QLV7*UxvT16<vk%nToo%3Q9h z#tE;fe2~)EiD-q}QrqBg=ToH^Y(9Cp@h^Anwtnv-Nzl-jbE$0b4~YZHz_9z$*3ZRq zK~ZqQGX2smCBhwlQ;v^R?rSr~PtHlvyxOlass#2D+!SUWPycwc9u#ZijL}<RtM<6F zx4x49uGOTuJq%06@OrWKyv3n7kHq+iL@Xa?>;`jG5p1k}-Fi1VE`&`y@>3_hN=DA; zM2dCCmkT25^rVzI(NyBw`#<3gj6z&!WxxK1<<oPvOsKU4R8+g1Z4^75OkjScx53ML zP>D_5+A+)#oPk6DZhnpk`3HefmulMJ9(CubDRi7(8-7o@w)u)mH>`@<K9P)c#5E#K zGR%iJQ6}pOyP}LZM}~P5tqj<)+7bCG6pywhu7>-<YZmHeJq!o+?s)}`9Ni*K@@Ob& z#+x8;|0zpm#Nl~+RTkAZ(XMnZ3n_C7r_4?1?ku5PcUpTfe0Nb~6{4!B%#fSaTEtaK zz#aS2%)Y}kAG#3H(Brnfa;7n{w*Q~B^}m+3=9EJ5&G}t#B%}>S@}a~qq!~2*-Hu4c z`L&Mm?36`c6ydTBOkP~B@_I54krfW$0}B>)nx?i7cR!4>1Y;RtuKTDNrqU@fmx&k! zKJ>Zj1qPClxwWO&(#<Q=lN~^psH}GMvS^R5MCpXwZVjj7>_vF;Tsyn`2fTXe59B7# zoY%IbsdlgqpaP6Go|l`X<&L?%jZbI~qD`LQg0koa{CBJ6Rn)5LuPBY?rFF$|v=p^* z&_={sLd5I1*em}bOz;1-8+}ttJRJqo6MhL0S5CO;C#SaZw&nNYq73f!m%W;-avmgb zmzyj*E+5yMfA22}l4iQ5w|SFIynGG~9D!@`34|gZLYjhSA~)Qzhw+}^jc4<{p+q%E zk!9K?cuL@%)1Lv~E{uF26MOMWUNI9S+PwYEKv#o(f`y~3g$w?xAllN>yU9IDb(dPl z7R`XkGChHk&u-Lr%4c`qujm;cr$4p|Z~0WnYR_6kehu?Bb7#Ht!bv%i)%3QM>Z1SE zvnd>rvc9nqY@Y!0!@&B+kjfKVKS`%gtHJpBU%?ApMvgYC&+43YMyudfm6@{}aq1QA z!S*odeogR`v6+p|7&NE5fl&k(jpBS+5<G??s1v;uzbPglNf3NaoHR?3ef+ehgpSPP zhOH8yD>$x11q#@4L3(I)T6JZGSEU0ssZ34E8iJ-4Qel6{TDbmjoU+x4=RPFs+5)Vq z{|Vn|A?np%puqF)dy9CvE5n=1Rh2i3TLkM5)xld!KR34Lm(zgA=}OnN_xziira~|O z(IqA)2iDFWHKnmeV*M|7;%s#Fu0f8lSXDC&%C^OuKppIZUy#%Mj?CwTaGWHKhU|8Y z;Jp&}9{7#*<kEv`wc7b*ys?+UcOj0<ia7dg1T$m@Fu#NgY4m5RuG%Tlk6iQPXow{; zcx6`<_QG11gAYMtO+eV@E8taCYPb9I-HFAQC5pEp!Fr9weJdQuMV%StbLXuxEc0@; zd#t-th~5hKYqPmMmim%|tfN5-(ysQWBlz3@#sx6vWO*%W;4;OP;ea#Lkag~ka#~R6 zD%>)(W*+(@eG`6VFW=KJeO;Hre5W6d@z44fOM_~hHn?d)@e>EZw?%@vu*w^B_jRNZ zz!si+UR<4SIBf?$ra_-UqZA#L9g5@hrC#q7r5qY{rnN{D+r+kS{uwNhp1D+lfEnuX zypGZIi!Kud<=gbJE9IiMFgX2T>7*~%>uD85;U;OOvvr-eZ6TQ-)vtpQ^pgPVhJy9~ zYH-5K$+U%j>td(@2(#(ey6WRnnz^mjz5s2->2>B@edKi;(`#J`82|HU>Rh2z30E{{ zk_&&K@MXaY6t-G=$f>mXti*dfISO6oVEDqM2Y;4DG>-MVw>vS20GSJ4G&^ab!%!h1 z=)lPPx!h=fPsPwi>38nyNQxNaab0WPYKH1&X-C_r!f{(j_5viQ?sQsk(?|{jbXH%f zV9KgxQEhsdP}-e<diejpj?HcRbU_H~{BHh}gMxS0PcY%m6^;;<8_3ADmx*}F%{!QH zeQDuk7P<PiL8qtI2ckx|?5s}_9EsQFF1@Oawp+`=S>}J#d_%q8-xE)Q`O$YCtF<GU zO~0>@ipiG~-k~BC8fE`$C+OGTpkG!73?8aD0WW5!yH1nL;K;e6+7NsLdP1rQ)V{if z4dNgH6S%Xt$Nq<AQ<Y$_U_nRWe{*KoE1Z&@t+h1a)bo|wQ@-AD`{vPyT(cGb>|;qf zytjFN?=hvF+wr~N@9ke$`!GAI2L#d<$R7SW|AN%<#3>Q9zsXX}azx~);FtF?Lur~w z4?_Y`Ceg&E!TNC>%$29%#gJVg8NMYpwp?)WZ=~E1PElF1<Fr|FLf|*A>)B%f;4D)% z;A!{R`q`Dk&ly4N+0XacRTkM*vXYejqICEF=-be4=Ukx3>GJ&H-$0|~BmM5Xtc&m6 z9(TS6kT))MKh}%TqqXHtai=Qyegx2uuT+lE<*&B`PZFO5CYJ$WSxJH9`M3)2mAJ}B z<LW^@al}!$qW}8vaQNVWq_p&$>l;A>)dy6bV!aIIC7AxT@#l1EaCb@vP%&*+4BE}@ z$WXSxZ%2@sU1<HW!fNUI|NW*uKcAGy{k*%2(+@w8P)u-aYjJ(4^LZJc=_rN-NV%w` z-tyYJ#!!-b5oX$d2q$0_xey9;)%Ph*YvZvx9$q@Ihk>A9x&F6k?5FMTR%JxS{RN7J zBYxj{SkQI1g#j^z#yzvhTfs>8^H6ISXYdVUjlh4#fd5LTbgi(1bV)1Lp>w!E`tk)l zt@dJCk6F*F#<Ac1Q`Z$FFtna1ia6?UX;^PYQY(2I7w%jFcRTD#TKTDL{=jI|HSJd` zgTuv%kKV8lEv?FdQCXLfi)qNj#x#a%xu}P#S@p6SWQB9)`EC4Eq0aOX_|}u|`@b9^ z7)(%h!g6J(!tJ^(S#}~nM{kDQrwBHFF>6EjzaL(rj6fDl4h_Z`UbwI+J#-d-CY`=e zh;bhl#sCcVcYyKaGf&y=Em)#AUZqrduO1YqZPTW2_0mPV+nsR)PAufMsxw}0g0W&R zMpN&9JA>~az}$A{MRC;r|9#701kAcFVkj&iUw&QCD*R6A8b<<$403t?9a%E)VEtKy zd3h+ljU7B@K|bR8CBPe=+EB+Fa9AARLKjYI`GwRMMi-ECo%vw8o1f?N&2)#{M1Z@N zr><ltFf^0UFR+M9>(}tzT!W!A86tNS(o)UJ1^-)+G7{2R`!HU1=&ROy$F91a^uZ^A zJ(L%|!Mb)PuKVE;+;;RA+LqTli6O*#fkM@C;@W+SRntJ>>b7|k5`m1Hza@_SA{x~n zQa>;Nw3%=E=BaBB`IQWCQNW1y6}@h^UX%3QeEuwTezlqL-?ReujAy{W@ZFCy&s`tt z$46KDCjDLegYSYSjNreb6ufwZcIXHhhx&$zC1M+sQ1}%F_|DiLPe9@m$MCF%Vaaca zi95+O^0E#G0QKH&8Scft+QNbFr{gmlN3N%uZ~woRX5XAh-t#XY)2#+-y+B_(wv4jw zh?X8QtKsg}pre~$NRPj}_v4-T`deR5*ReCjCu}a`#gdbEh~si$CnNhT{jYDKZBp=4 zTPG`)%cj?Yk{>3BnUz8czJMCp4Yn_GYAk)dTXjO&^f+`^qa7$|P;Zb-C@BuRR5u?b zoB)Ib;VCm}4`KyF`yVfU41!lqAOHZl^afvrDfY_LgI+7(Gkk-?gZ}$p1)*L#wCap- zH>M~%q2p;c%ES!y@4u5}mEx-MGa##Osxk`S^gQ1@Fb_SD%M)*VMP>gsqoV2z+&Xbj z>Qzkx09F*%&;*d)u3I%%3*_NGyagZ0KR!P37udh>=#?S;%MI?#_i?H+ApQ%yHX&tJ z{B`e-{#r0y7hdbAh57*r5ccFq0H{<LkgM7<JG&hl2)!)}*2eYwyBRcRysjMgDfDS_ zL+|C|xHzoGJu-G^T+vm$HDQdb0Dkp+4si_GqFrQ)%qS(bUoL&_-Gv8)1y+z<C9w>B zUPGi7Yat99t=^UWXZqR+e!+^9>d{ku5vf8^1dP_GBEz<?zkg&cr$uL`Cs3w?qov)J zDKFME{kg~$mlUG{0Nm$jo-Ko_zfwG0GMbTJ7Q7?ApT}FOClDnDbwAQX9fkE0zQ*yh zA}vjj362LXjkEv&TSnXJp@#U769CgO`U;G;@S_19gkRrY3?%_#GalmH4kS-;+?Wef zHgdQC0Jrq+xnz#vzxN{;A7?7v+}_t;$I!eT<+gJ!ON4YFO6inBW%fch1%w<7&s+)r zfZGzk`-H*+s4F8v-vjI>PW7-m#`Xh`BVMtdP^QFe_hUWM|MEja^nL~x?GN@<cQLrS zB{IX=8RFDC>0tuyvw_F5)%X0OI%dmo>-b$Hi>@Bd0T$PJ=>ze<xcigQ!bU>?)*TYQ zN_J^s-DMtf9_M*h@0PI=$%Fs^b-R-n*X>{?9-M;Z=`eX^fGx{web1Qo1fSEs|1yFu zKT=^X@)EuM0wS3+;q`b#kG%~dpg#?FYoVppK)<x?pCw!4{9oOw6`pwe?>Xmt&?=WG zup<BK=5a9sPLd}m+Bx=RD|bj=534iD>ki^g6UYl4nfXHp0DPOOZBM}ovX|}IY~>7* zV?YYIxw17K%97Og8==^p#+SVUg|*Us0C2oI&)<@n%fSJhlDJpof%#_SG!=clxF-iE zz37Edwe4SS%VrUw4^&UM7mF(0D!eQak^m=8&Nu>LMRmUhjLE-O2Y(Y5F$at_)kB*+ z=?d@eAj4C7xsSuEssEB8Ym$_f9Fw&72>rLCFeCAzzVTPiY6Wx;<sh<=MSO_QCxEuj zCL}cd>Y+JDS#2Ox?5-e%5O8i~|NK@pC!y6SXh()x%Ixf%-{{^Vp0{cF6Vl0C;^-?o z5ej<`3@8s6T-J-;y;}+3E$rNaVBQhj!vWf9&qL#~`8Qky$>0vv%Jui4JMTkN@$Vm~ zZ~$R1l@%D(>t_=1g;n!6J+axC-1m%#A%OnsxemN<*{;i{)v;QPv}w5;;vu`>!Cu6> ze0bD>w-5U$7ZPm}gccphfb;pm>i|ZOuzOvCNtkz2)l~Nk(gjXJN@K?*hZcbOi8=3E z^0z$zpn+ui1!M44;OBJk8KV9vZ~E<ziy`VEuJKK7Uazjxz5+nWmYM|>V5_{^HFn6j z3xn!A<8bRE#|fUfMFD_H0hEh%As{yTdVSl2Sa|Y-5eF<o3J5FyM79yF0brg^s&N=A zW>Ga+m)DmeF}$+e+!YHFAVb|SS`PI`lp67_I|*d-vV#YhCyOwaFXUdAYmq)m7JN+Y zzDvh?F(&6$l#3dAFebv?<OcmCaR301WitC>?=4VQ<KOwd0RYCS2avq<y5r%gFG2+) zdaV0{Ow#XI6bVpEN6#cKd}!c)KomNT)#knPx_jO@id0`8Z_0r)1s0W5XaE2}P<bTW zo(eI+X!idF_YDa0=OiFMZ*ISw)G}Gh=k?w?B8%~PVHsfc!jW^G^rtuZumAoZ`PZ*M z<*#3VFzgQiz&GXL{VQ|+^C8ztU4h1AKwZ0sf{0jJnqN)ZU+4pnmMny23~%qh%isR~ zzw*cb|5N_@^@p6#pXG?i0{{TH!TlTYrs;UAf`3|ZpiafPF4yi|?F8t$UQ|_n`;Y&W zzy19m^6St43k?j0LCjki`rma!VE_PL#r$;p_mzGBLQXJ<conZh>`~CgcKsLLwd>!c zKfTM_`|qO8$@$}7v2j7DO7wmZ^M03givR$;j&_J%L^iCYYqtg#35|-bBmk#an9zy& zL8Pig^nMT-ZSn&E0Ir!U+!NWOBVZZ<&}+*8!!m_lhGD1=FBcQ+CpAzY(EtFvfZQE0 zB?ILKJ5>K~AMY;K0GRh;&L-RW?yC%47zGCafLD+=<qIE}#@MDJY9f~Q5ZI8revqZx z-y@7RQUU<r#Z;^5b_})G695r;+?{{gXebVpXj<n;RsaBaepY`}-)!#?cCU`9tGeB* z{LB8y<H|+J&4*}01ORvq<D$Tn3v9eApsb1PJIqC-_fb)Cu5O8#mKkbOfJg!W0C;Y5 zAy`LW-Y(W%ECMWt6N2y7R79L}a(a7{zUxI)<n!Z0hGD4o8!#3F003UVTrk_OyY9*w zfc==6_+bzcDcy>kib?91EW%0v006#c)d+yu<qZn%$;@OJ2KhXHN*C|?HU8gdf1_i` z+cb$B_80*Gh*l*4doi<EZV*NR+WNoL+xVct)ee4q002}DI0X>84SMgzTi6dd)gPoi zlaGtw4*+-$hf4q?w?K>o{ytUyYwTg{!WPB5qyGQ^;B_2o3P7a2%Qx@En^nW>BB?ik z*`tQr8RiE7Jio&w03xNy&)|KIwWT*uwT0rYad^L_82|um?Ql~7b*De`zUo4l+9QUK z8H@)2;Oh>T0EndZ{?;t}OT~e-0RRBt`wlq;keQV&5#tt#007|oo};2owHoqIA02H! zfci)I96we7cujMY#Pn(zd!nC4yEEV(J0;ccz5HWZsz!K{A1eU7oGM;e3H|AEeXN_u zIs1g>r%C{(9)0NA{M9)8FBrD)L?;w*d|%j!R>%A5jvi}k%Z_-qR+-Dj7Ha_VTKvQO zfR1t;B9qH}J@PMdtV6{?ktzUJ-5h_GgMWV5(mJvOPYI}q*xI#jUqAlY1Rw<e@`I_{ z?;a;1c%-^9QN+4LtfpVNu>tT^^&Eg&NCJ+$q|B<j$}2g|_|aSbU6W;ir4wJ<e_z!- zunq5#)VKMgQGl>#u^jf73Oh*2^JN5oU<<K0-14V+33>TKd|2aj!699`j$BCx^!js> zY6Kt!`uZ+ka{|zHE_^P7oQM6k2R@$hm76O$DluDM4)EOl16#A1&aIk)s)}fAFK-&Q zo0ld@IDmR)q8V^b!vR_zYd^S2pI$VL@~7aRrUB{=c)G5WPcxC>OYa4|JhMxCM#Z|C z-Hrx8Vq)TQ;kK3vfYfK^fr-HEF1J;TpP6)S%LMAd=o_X0`tauYTjRkvQI$CC--&Z7 zW+tjmPNz5d{QOw;;=oUI_0;3`AK0Cl$zbX3HQe;7sJJ+-owlCWD)QDV2KJ$o4>cXa z%%ZdJmM}I&fMxza-1R%xHJOR`Ub?RP#@hiu8G#=-1}n7zX~VfuwOy%&d%(y*J``=s z0mefCCZaKIDL3%zcgyW_(2w2rRGm0gQP+ucF210a{`_Y7a{yzuuzcsB%Z&ht$h2-? z9Pm{SP%EJ2I7CED!}UhhnxMZn3Fzx|BF*#H^Z$vNiT8teKac<b7md#if<N%=_KJCv za)8lY|Kf3sivm_$c6!w`^k0_wg}eOnX6Zj~Ud(eL18&1P17MvJ?@JGW#Vd$4e>K+J zcJ%d9KM@gcJ{Bpd41<YTSn^jV0ssKuKFlmnxo1@!KnUhbv3GuH`kF}Hn|bj*ynJc; zqmy87siVT-cHsj6;1#4L`7^5lY?KDf#(f)oczGP4Zv%Zy0G#H`qdd0%f(QW5>3DmI z0LPWimlXV)B%t25Abnz~0PuV7JK75%4)YJG7eJj&a3TX(gN8@Itx~7LaT1V<{!=pT z)P)X)Ry7HVf0*T4_v-vx9tBuYCot1$2mlsw%>Zsu3i0dJcWr&%QVpKPo(7WY^x|~= zv?1X1dl$C@zVuB1u#9U4@FgaB9iTR40AXrgBsAo+(#Tj;oRn@x8iT(tqXHs}r{szR z0001NC2zzhA`+YJjSB%)H6#LEU8EoPG)TR9(tmNUgVYWnBm(&j^2>fN0Z?t`5L7fT z8wBtZG5inQDhK>g!ylJM19DwWyIEgay_cTvy%%v##QX5<d^+l=E+F_`0$}Y6S~Uzo zG64J}+FZZF-3CbjuvV`8uakiA74haJ-v5WK3F>pp;`eIU*vN|)ONqm{b@8a`Z<{HA zREQv@xFHN#kPrZ`N2@=}R|x;WI$`AA!pb{~$+V`zztWp0?*owM`s>YrB%gTsTpaIT zFghuBJx^6toa^$w0svk>Rjrgq04`M?0m#x#a``-eG-(PnX%aO4rkE61Y}%LhH?r8_ zcYIzxEKv`A20}$6fM=!U+9PEwAYXt0T-3Qv)Twx1pEFCrf81QFy7O-f2&&x;)AB$O zIZ6Uhl+J@B1Hf}>b_^9p0DxQ7MSOJ+fK(1J_qFu=k}gb_{I>~!jGr<8eUGELkRkLj zAQ=FTtPcJn)rExOKj5yyi21lnVEDKM`V#c(;4f02lI^*9s01MW)y^og`4Dh8s&g}u zv<(L~7WV6Lr7u7lK@br!6K_8D1PEW9#{NT10gSbqA~Z`LxUc|+Fuwa2sc$$qPk}w8 zR>977qG>x}6Y(~LDfKD|$idzYod6`$5rL&)3;;W;MgZEF&$$Ua$~YM?@5}xGBGvRj zT&6EiamLbJ3^*RnOW>G7oq&cvB=-TVmI9jDvm^ij0N`emdY!WG!1E^nO3P6I04{4+ z52(IC0-)8dM^jJzPXhqp&PpQi<OzVztVJI8JbvPT9smFvdEx{>^Ad=9sX*QnS*Fbp z002PnoC!c`fZ$xLZWNJJ;h3INCjs%{(FZ~mGXUVH+Gac8O=<3rTnGPlf8_YFs%VP; znnnZWa-MNh6A}Udz-xQD5rBGKW4!|4>ObP*w7^_b)BKHJKUe?&4(h2AfbqV`%lGlA zH}dEiqmD?+|MWT`c$yy%0065!PXeGSPF;1dbBBHDPF`k40hV3|0D#x_6bV2Y_MhGS zcq!)R&B?1mzbfdr@&E8Y0sz1(IY1M;!zTb~*#F{|z+bH4qh|mBU~l!#eK`_6AQ?E& zDu8J&l7qjPRJZigZ%c0c`DuJl%Yy_g3j_e{Lz_`*$s6_T<sb>b%s@n4@OSO!@vWa% zP6MjLIQ+l}u({l2GY(Z=9EAh0-oom&y=Mgu5b5UE<-4?>v03%_l_I~3rvJ>jSDhwc zT=ej>l=j-G(`E?%d*7V^FE5^JISTHaWFKGzVEPYE^COdGe0P7Rg|8nVEdm}P1^;Fr z@qAI@qyX+}G7_+F@Hs#N&<gE+@7>40O(j<Sh?}|qE_`@q^}e6g?{eNJJUwpl%Q5)J zl{ftM1AF;#BLIbJ-P?c8LLuNq%R~R`kp$p5rOmQ5ZT>B7I;?qL4Q+<_Q)=MF?|Z-i z?nLW-^0N9o-#7tSA2`d-ej=A|J8nq=mfHlcUOd1G0X(gcOt(8`TMq7_o3@H`ow%+O z7w`Q2;Klp148xFj*W|Yzc&rp3*B9fCW2H)Jsgte^Zua}`VkY%idS+Gef4?q$EB6Rk zEABcBJdb!T#TM927}s*%rQ};(CuSBe60UiPM>i}1emYAlankv!D}vH!^^T=WLj2B+ zMgY=S<Mo;MbODm|=&I|?((AVGv8L1i+~?Qc5qK_X^DHSRnZ?sny$mryP<7IuPT?Z) z@gb@zrY36q{sV_G8j;g#h|fmPD<4|CC)XxQZj=B_m-Q_Lf62jr{P-=y9Mg|4eRn%B za_jv5%IE7StzZci_Lk=N^SEEg{p+*DECl$$yqGufzL);=Ca3pz8HTf{vi=`9vikf? zMfC9#sk;nX-V86#1MF1<cq#bL%`aZQ;H<6aUpLQx!^LfF5TC5=yzza2d$7{wQsb}R z?C)cqTlC_+m-FXGxL9}}{@d}80eoFPUsc7$sl3or$HaRd69LJi2oEW5Z{{v$qxAQ~ z^{v|jT-sBpd~oGes=!~qh07<7pgQ03?{caVPBj2kEspo%{lMKn@WfJ)uR52T>v=!K zSwMS00-$LYLaL}c?tl2T1mJ2AzjkPsp5J5wGs(-$`*ZQcu~n-9M9SKKkuqe+?=bN6 zoO9Bj-lXgLQljVm&Iv$shn%lEGF|q!ehOf7D~1kcM;o|s;%U^0K=lhv0sy=e=Q=sP zy-DAnVh@nr;%OOfOrOpNe_3@%n;rDU7amt1O#UMH<H?ogA^a`_uj_Pr+bIE1ZSO3` z6aR}xF#o{KD+QZlx%GuEJz3iixme;QEVK>=@KQEU07A8YdaF5W7a6Zx;<xSzx8MQ@ z0C+tcE(6qRW1lMpc9pa!u&t-R0r46DfUCAi0OHbv{AvBzifaFxgFitZ0Dzm^JpoX4 zqRvTOOeB)x{!H*+to~m)|No`n-}VArehvTtuj${;1f+rZs_!TO0000<MNUMnLSTZ> Cp8(zf literal 0 HcmV?d00001 diff --git a/notebook/dynamic_bar.ipynb b/notebook/dynamic_bar.ipynb new file mode 100644 index 0000000..d9475fb --- /dev/null +++ b/notebook/dynamic_bar.ipynb @@ -0,0 +1,393 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import plotly_express as px # import plotly.express as px\n", + "import plotly.graph_objects as go\n", + "import pandas as pd\n", + "import numpy as np\n", + "import os\n", + "\n", + "name = [\"NeRF\", \"PANO\", \"OURS+\", \"OURS\"]\n", + "foveal = 8.0\n", + "mid = 2.8\n", + "far = 2.6\n", + "blend = 0.1\n", + "ours_full = 562\n", + "pano = 1e4\n", + "nerf = 9e4\n", + "\n", + "times = {\n", + " \"fovea_l\": 0,\n", + " \"mid_l\": 0,\n", + " \"far_l\": 0,\n", + " \"fovea_r\": 0,\n", + " \"mid_r\": 0,\n", + " \"far_r\": 0,\n", + " \"blend\": 0,\n", + " \"ours_full\": 0,\n", + " \"pano\": 0,\n", + " \"nerf\": 0,\n", + "}\n", + "clip = 0\n", + "frame_id = 0\n", + "\n", + "\n", + "def calc_total():\n", + " return [\n", + " times[\"nerf\"],\n", + " times[\"pano\"],\n", + " times[\"ours_full\"],\n", + " times[\"fovea_l\"] + times[\"mid_l\"] + times[\"far_l\"] +\n", + " times[\"fovea_r\"] + times[\"mid_r\"] + times[\"far_r\"] + times[\"blend\"]\n", + " ]\n", + "\n", + "\n", + "def draw_frame(*, xlim=None, **kwargs):\n", + " global frame_id\n", + " for key in kwargs:\n", + " times[key] = kwargs[key]\n", + " tot = calc_total()\n", + " data = {\n", + " \"fovea_l\": [0, 0, 0, times[\"fovea_l\"]],\n", + " \"mid_l\": [0, 0, 0, times[\"mid_l\"]],\n", + " \"far_l\": [0, 0, 0, times[\"far_l\"]],\n", + " \"fovea_r\": [0, 0, 0, times[\"fovea_r\"]],\n", + " \"mid_r\": [0, 0, 0, times[\"mid_r\"]],\n", + " \"far_r\": [0, 0, 0, times[\"far_r\"]],\n", + " \"blend\": [0, 0, 0, times[\"blend\"]],\n", + " \"ours_full\": [0, 0, times[\"ours_full\"], 0],\n", + " \"pano\": [0, times[\"pano\"], 0, 0],\n", + " \"nerf\": [times[\"nerf\"], 0, 0, 0],\n", + " }\n", + " if xlim is None or xlim < max(tot) * 1.1:\n", + " xlim = max(tot) * 1.1\n", + " \n", + " fig = go.Figure()\n", + " times_keys = list(times.keys())\n", + " for key in times_keys:\n", + " if key == times_keys[-1]:\n", + " fig.add_trace(go.Bar(\n", + " y=name,\n", + " x=data[key],\n", + " name=key,\n", + " orientation='h',\n", + " text=[\"\" if item == 0 else f\"{item:.1f}\" if item < 1000 else f\"{item:.1e}\" for item in tot],\n", + " textposition=\"outside\"\n", + " ))\n", + " else:\n", + " fig.add_trace(go.Bar(\n", + " y=name,\n", + " x=data[key],\n", + " name=key,\n", + " orientation='h',\n", + " ))\n", + " fig.update_traces(width=0.5)\n", + " fig.update_layout(barmode='stack', showlegend=False,\n", + " yaxis_visible=False, yaxis_showticklabels=False, xaxis_range=[0, xlim])\n", + " \n", + " # fig.show()\n", + " fig.write_image(f\"dynamic_bar/clip_{clip}/{frame_id:04d}.png\", width=1920 // 2, height=1080 // 2, scale=2)\n", + " frame_id = frame_id + 1\n", + "\n", + "def add_animation(*, frames, xlim=None, **kwargs):\n", + " if frames == 1:\n", + " draw_frame(**kwargs, xlim=xlim)\n", + " return\n", + " data = {\n", + " key: np.linspace(times[key], kwargs[key], frames)\n", + " for key in kwargs\n", + " }\n", + " for i in range(frames):\n", + " draw_frame(**{key: data[key][i] for key in data}, xlim=xlim)\n", + "\n", + "def new_clip():\n", + " global clip, frame_id\n", + " clip += 1\n", + " frame_id = 0\n", + " os.system(f\"mkdir dynamic_bar/clip_{clip}\")\n", + "\n", + "os.system('rm -f -r dynamic_bar')\n", + "os.system('mkdir dynamic_bar')\n", + "\n", + "# ours mono\n", + "new_clip()\n", + "add_animation(fovea_l=foveal, frames=48, xlim=30) # Step 1: grow foveal\n", + "add_animation(mid_l=mid, frames=16, xlim=30) # Step 2: grow mid\n", + "add_animation(far_l=far, frames=16, xlim=30) # Step 3: grow far\n", + "add_animation(blend=blend, frames=1, xlim=30) # Step 4: grow blend\n", + "\n", + "# ours stereo\n", + "new_clip()\n", + "add_animation(fovea_r=foveal, frames=24, xlim=30) # Step 1: grow foveal\n", + "add_animation(mid_r=mid, frames=8, xlim=30) # Step 2: grow mid\n", + "add_animation(far_r=far, frames=8, xlim=30) # Step 3: grow far\n", + "\n", + "# ours stereo adapt\n", + "new_clip()\n", + "add_animation(mid_r=0, far_r=0, frames=24, xlim=30)\n", + "\n", + "# other series\n", + "new_clip()\n", + "add_animation(ours_full=ours_full, frames=48, xlim=30)\n", + "new_clip()\n", + "add_animation(pano=pano, frames=48, xlim=30)\n", + "new_clip()\n", + "add_animation(nerf=nerf, frames=48, xlim=30)\n", + "\n", + "#os.system(f'ffmpeg -y -r 24 -i dynamic_bar/%04d.png dynamic_bar.avi')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig = px.bar(\n", + " df1, # 绘图数æ®\n", + " x=list(times.keys()), # yè½´\n", + " y=\"name\", # xè½´\n", + " orientation='h', # 水平柱状图\n", + " #text=[[\"a\", \"tot\"], \"tot1\", \"tot2\", {\"fovea_l\": \"\", \"blend_r\": 13.5}] # 需è¦æ˜¾ç¤ºçš„æ•°æ®\n", + ")\n", + "fig.update_traces(textposition=\"outside\", showlegend=False, text=[[\"a\"]*11, [\"b\"]*11, [\"c\"]*11, [\"d\"]*11,[\"e\"]*11])\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<div>\n", + "<style scoped>\n", + " .dataframe tbody tr th:only-of-type {\n", + " vertical-align: middle;\n", + " }\n", + "\n", + " .dataframe tbody tr th {\n", + " vertical-align: top;\n", + " }\n", + "\n", + " .dataframe thead th {\n", + " text-align: right;\n", + " }\n", + "</style>\n", + "<table border=\"1\" class=\"dataframe\">\n", + " <thead>\n", + " <tr style=\"text-align: right;\">\n", + " <th></th>\n", + " <th>country</th>\n", + " <th>continent</th>\n", + " <th>year</th>\n", + " <th>lifeExp</th>\n", + " <th>pop</th>\n", + " <th>gdpPercap</th>\n", + " <th>iso_alpha</th>\n", + " <th>iso_num</th>\n", + " </tr>\n", + " </thead>\n", + " <tbody>\n", + " <tr>\n", + " <th>0</th>\n", + " <td>Afghanistan</td>\n", + " <td>Asia</td>\n", + " <td>1952</td>\n", + " <td>28.801</td>\n", + " <td>8425333</td>\n", + " <td>779.445314</td>\n", + " <td>AFG</td>\n", + " <td>4</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1</th>\n", + " <td>Afghanistan</td>\n", + " <td>Asia</td>\n", + " <td>1957</td>\n", + " <td>30.332</td>\n", + " <td>9240934</td>\n", + " <td>820.853030</td>\n", + " <td>AFG</td>\n", + " <td>4</td>\n", + " </tr>\n", + " <tr>\n", + " <th>2</th>\n", + " <td>Afghanistan</td>\n", + " <td>Asia</td>\n", + " <td>1962</td>\n", + " <td>31.997</td>\n", + " <td>10267083</td>\n", + " <td>853.100710</td>\n", + " <td>AFG</td>\n", + " <td>4</td>\n", + " </tr>\n", + " <tr>\n", + " <th>3</th>\n", + " <td>Afghanistan</td>\n", + " <td>Asia</td>\n", + " <td>1967</td>\n", + " <td>34.020</td>\n", + " <td>11537966</td>\n", + " <td>836.197138</td>\n", + " <td>AFG</td>\n", + " <td>4</td>\n", + " </tr>\n", + " <tr>\n", + " <th>4</th>\n", + " <td>Afghanistan</td>\n", + " <td>Asia</td>\n", + " <td>1972</td>\n", + " <td>36.088</td>\n", + " <td>13079460</td>\n", + " <td>739.981106</td>\n", + " <td>AFG</td>\n", + " <td>4</td>\n", + " </tr>\n", + " <tr>\n", + " <th>...</th>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " <td>...</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1699</th>\n", + " <td>Zimbabwe</td>\n", + " <td>Africa</td>\n", + " <td>1987</td>\n", + " <td>62.351</td>\n", + " <td>9216418</td>\n", + " <td>706.157306</td>\n", + " <td>ZWE</td>\n", + " <td>716</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1700</th>\n", + " <td>Zimbabwe</td>\n", + " <td>Africa</td>\n", + " <td>1992</td>\n", + " <td>60.377</td>\n", + " <td>10704340</td>\n", + " <td>693.420786</td>\n", + " <td>ZWE</td>\n", + " <td>716</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1701</th>\n", + " <td>Zimbabwe</td>\n", + " <td>Africa</td>\n", + " <td>1997</td>\n", + " <td>46.809</td>\n", + " <td>11404948</td>\n", + " <td>792.449960</td>\n", + " <td>ZWE</td>\n", + " <td>716</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1702</th>\n", + " <td>Zimbabwe</td>\n", + " <td>Africa</td>\n", + " <td>2002</td>\n", + " <td>39.989</td>\n", + " <td>11926563</td>\n", + " <td>672.038623</td>\n", + " <td>ZWE</td>\n", + " <td>716</td>\n", + " </tr>\n", + " <tr>\n", + " <th>1703</th>\n", + " <td>Zimbabwe</td>\n", + " <td>Africa</td>\n", + " <td>2007</td>\n", + " <td>43.487</td>\n", + " <td>12311143</td>\n", + " <td>469.709298</td>\n", + " <td>ZWE</td>\n", + " <td>716</td>\n", + " </tr>\n", + " </tbody>\n", + "</table>\n", + "<p>1704 rows × 8 columns</p>\n", + "</div>" + ], + "text/plain": [ + " country continent year lifeExp pop gdpPercap iso_alpha \\\n", + "0 Afghanistan Asia 1952 28.801 8425333 779.445314 AFG \n", + "1 Afghanistan Asia 1957 30.332 9240934 820.853030 AFG \n", + "2 Afghanistan Asia 1962 31.997 10267083 853.100710 AFG \n", + "3 Afghanistan Asia 1967 34.020 11537966 836.197138 AFG \n", + "4 Afghanistan Asia 1972 36.088 13079460 739.981106 AFG \n", + "... ... ... ... ... ... ... ... \n", + "1699 Zimbabwe Africa 1987 62.351 9216418 706.157306 ZWE \n", + "1700 Zimbabwe Africa 1992 60.377 10704340 693.420786 ZWE \n", + "1701 Zimbabwe Africa 1997 46.809 11404948 792.449960 ZWE \n", + "1702 Zimbabwe Africa 2002 39.989 11926563 672.038623 ZWE \n", + "1703 Zimbabwe Africa 2007 43.487 12311143 469.709298 ZWE \n", + "\n", + " iso_num \n", + "0 4 \n", + "1 4 \n", + "2 4 \n", + "3 4 \n", + "4 4 \n", + "... ... \n", + "1699 716 \n", + "1700 716 \n", + "1701 716 \n", + "1702 716 \n", + "1703 716 \n", + "\n", + "[1704 rows x 8 columns]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = px.data.gapminder()\n", + "df" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.0 ('dvs')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + }, + "orig_nbformat": 4, + "vscode": { + "interpreter": { + "hash": "4469b029896260c1221afa6e0e6159922aafd2738570e75b7bc15e28db242604" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/gen/gen_crop.ipynb b/notebook/gen/gen_crop.ipynb new file mode 100644 index 0000000..615cc15 --- /dev/null +++ b/notebook/gen/gen_crop.ipynb @@ -0,0 +1,83 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "import os\n", + "import torch\n", + "import torch.nn.functional as nn_f\n", + "import matplotlib.pyplot as plt\n", + "\n", + "rootdir = os.path.abspath(sys.path[0] + '/../../')\n", + "sys.path.append(rootdir)\n", + "\n", + "from utils import img\n", + "from utils.view import *\n", + "\n", + "datadir = f\"{rootdir}/data/__thesis/__demo/compare\"\n", + "figs = ['fsnerf', 'gt', 'nerf']\n", + "crops = {\n", + " 'barbershop': [[406, 117, 100], [209, 170, 100]],\n", + " 'gas': [[195, 69, 100], [7, 305, 100]],\n", + " 'mc': [[395, 128, 100], [97, 391, 100]],\n", + " 'pabellon': [[208, 115, 100], [22, 378, 100]]\n", + "}\n", + "colors = torch.tensor([[0, 1, 0], [1, 1, 0]], dtype=torch.float)\n", + "border = 3\n", + "\n", + "for scene in crops:\n", + " images = img.load([f\"{datadir}/origin/{scene}_{fig}.png\" for fig in figs])\n", + " halfw = images.size(-1) // 2\n", + " halfh = images.size(-2) // 2\n", + " overlay = torch.zeros(1, 4, *images.shape[2:])\n", + " mask = torch.zeros(len(crops[scene]), *images.shape[2:], dtype=torch.bool)\n", + " for i, crop in enumerate(crops[scene]):\n", + " patches = images[..., crop[1]: crop[1] + crop[2], crop[0]: crop[0] + crop[2]].clone()\n", + " patches[..., :border, :] = colors[i, :, None, None]\n", + " patches[..., -border:, :] = colors[i, :, None, None]\n", + " patches[..., :, :border] = colors[i, :, None, None]\n", + " patches[..., :, -border:] = colors[i, :, None, None]\n", + " img.save(patches, [f\"{datadir}/crop/{scene}_{i}_{fig}.png\" for fig in figs])\n", + " mask[i,\n", + " crop[1] - border: crop[1] + crop[2] + border,\n", + " crop[0] - border: crop[0] + crop[2] + border] = True\n", + " mask[i,\n", + " crop[1]: crop[1] + crop[2],\n", + " crop[0]: crop[0] + crop[2]] = False\n", + " images[:, :, mask[i]] = colors[i, :, None]\n", + " img.save(images, [f\"{datadir}/overlay/{scene}_{fig}.png\" for fig in figs])\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.0 ('dvs')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + }, + "orig_nbformat": 2, + "vscode": { + "interpreter": { + "hash": "4469b029896260c1221afa6e0e6159922aafd2738570e75b7bc15e28db242604" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/gen_demo_mono.ipynb b/notebook/gen/gen_demo_mono.ipynb similarity index 57% rename from notebook/gen_demo_mono.ipynb rename to notebook/gen/gen_demo_mono.ipynb index 5968a13..47953f1 100644 --- a/notebook/gen_demo_mono.ipynb +++ b/notebook/gen/gen_demo_mono.ipynb @@ -2,8 +2,11 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ + "%matplotlib inline\n", "import sys\n", "import os\n", "import torch\n", @@ -12,25 +15,25 @@ "\n", "rootdir = os.path.abspath(sys.path[0] + '/../')\n", "sys.path.append(rootdir)\n", - "torch.cuda.set_device(0)\n", + "\n", + "torch.cuda.set_device(3)\n", "print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n", "torch.autograd.set_grad_enabled(False)\n", "\n", - "from configs.spherical_view_syn import SphericalViewSynConfig\n", - "from utils import netio\n", - "from utils import img\n", - "from utils import device\n", + "import model\n", + "from data import Dataset\n", + "from utils import netio, img, device\n", "from utils.view import *\n", + "from utils.type import PathLike\n", "from components.fnr import FoveatedNeuralRenderer\n", + "from components.render import render\n", "\n", "\n", - "def load_net(path):\n", - " config = SphericalViewSynConfig()\n", - " config.from_id(os.path.splitext(path)[0])\n", - " config.sa['perturb_sample'] = False\n", - " net = config.create_net().to(device.default())\n", - " netio.load(path, net)\n", - " return net\n", + "def load_model(model_path: PathLike):\n", + " return model.deserialize(netio.load_checkpoint(model_path)[0],\n", + " raymarching_early_stop_tolerance=0.01,\n", + " raymarching_chunk_size_or_sections=None,\n", + " perturb_sample=False).eval().to(device.default())\n", "\n", "\n", "def find_file(prefix):\n", @@ -40,6 +43,16 @@ " return None\n", "\n", "\n", + "def create_renderer(*nets, fov_scale=1.):\n", + " fov_list = [20, 45, 110]\n", + " for i in range(len(fov_list)):\n", + " fov_list[i] = length2fov(fov2length(fov_list[i]) * fov_scale)\n", + " res_list = [(256, 256), (256, 256), (256, 230)]\n", + " res_full = (1600, 1440)\n", + " return FoveatedNeuralRenderer(fov_list, res_list, nn.ModuleList(nets), res_full,\n", + " device=device.default())\n", + "\n", + "\n", "def plot_images(images):\n", " plt.figure(figsize=(12, 4))\n", " plt.subplot(131)\n", @@ -49,64 +62,50 @@ " plt.subplot(133)\n", " img.plot(images['layers_img'][2])\n", " #plt.figure(figsize=(12, 12))\n", - " #img.plot(images['overlaid'])\n", + " # img.plot(images['overlaid'])\n", " #plt.figure(figsize=(12, 12))\n", - " #img.plot(images['blended_raw'])\n", + " # img.plot(images['blended_raw'])\n", " plt.figure(figsize=(12, 12))\n", " img.plot(images['blended'])\n", "\n", "\n", + "def save_images(images, scene, i):\n", + " outputdir = '../__demo/mono/'\n", + " os.makedirs(outputdir, exist_ok=True)\n", + " for layer in range(len(images[\"layers_img\"])):\n", + " img.save(images['layers_img'][layer], f'{outputdir}{scene}_{i:04d}({layer}).png')\n", + " img.save(images['blended'], f'{outputdir}{scene}_{i:04d}.png')\n", + " if \"overlaid\" in images:\n", + " img.save(images['overlaid'], f'{outputdir}{scene}_{i:04d}_overlaid.png')\n", + " if \"blended_raw\" in images:\n", + " img.save(images['blended_raw'], f'{outputdir}{scene}_{i:04d}_noCE.png')\n", + " if \"nerf\" in images:\n", + " img.save(images['nerf'], f'{outputdir}{scene}_{i:04d}_nerf.png')\n", + "\n", + "\n", "scenes = {\n", - " 'classroom': 'classroom_all',\n", - " 'stones': 'stones_all',\n", - " 'barbershop': 'barbershop_all',\n", - " 'lobby': 'lobby_all'\n", + " 'classroom': '__new/classroom_all',\n", + " 'stones': '__new/stones_all',\n", + " 'barbershop': '__new/barbershop_all',\n", + " 'lobby': '__new/lobby_all',\n", + " \"bedroom2\": \"__captured/bedroom2\"\n", "}\n", "\n", - "fov_list = [20, 45, 110]\n", - "res_list = [(256, 256), (256, 256), (400, 360)]\n", - "res_full = (1600, 1440)" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Set CUDA:0 as current device.\n" - ] - } - ], - "metadata": {} - }, - { - "cell_type": "code", - "execution_count": 2, - "source": [ - "scene = 'barbershop'\n", - "os.chdir(f'{rootdir}/data/__new/{scenes[scene]}')\n", + "\n", + "scene = \"bedroom2\"\n", + "os.chdir(f'{rootdir}/data/{scenes[scene]}')\n", "print('Change working directory to ', os.getcwd())\n", "\n", - "fovea_net = load_net(find_file('fovea'))\n", - "periph_net = load_net(find_file('periph'))\n", - "renderer = FoveatedNeuralRenderer(fov_list, res_list, nn.ModuleList([fovea_net, periph_net, periph_net]),\n", - " res_full, device=device.default())" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Change working directory to /home/dengnc/dvs/data/__new/barbershop_all\n", - "Load net from fovea200@snerffast4-rgb_e6_fc512x4_d1.20-6.00_s64_~p.pth ...\n", - "Load net from periph200@snerffast2-rgb_e6_fc256x4_d1.20-6.00_s32_~p.pth ...\n" - ] - } - ], - "metadata": {} + "fovea_net = load_model(find_file('fovea'))\n", + "periph_net = load_model(find_file('periph'))\n", + "nerf_net = load_model(find_file(\"nerf\"))" + ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "params = {\n", " 'classroom': [\n", @@ -165,7 +164,7 @@ "\n", "for i, param in enumerate(params[scene]):\n", " view = Trans(torch.tensor(param[:3], device=device.default()),\n", - " torch.tensor(euler_to_matrix([-param[4], param[3], 0]), device=device.default()).view(3, 3))\n", + " torch.tensor(euler_to_matrix(-param[4], param[3], 0), device=device.default()).view(3, 3))\n", " images = renderer(view, param[-2:], using_mask=False, ret_raw=True)\n", " images['overlaid'] = renderer.foveation.synthesis(images['layers_raw'], param[-2:], do_blend=False)\n", " if True:\n", @@ -179,49 +178,45 @@ " #img.save(images['blended_raw'], f'{outputdir}{scene}_{i}.png')\n", " else:\n", " images = plot_images(images)\n" - ], - "outputs": [], - "metadata": {} + ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ - "def load_views(data_desc_file) -> Trans:\n", - " with open(data_desc_file, 'r', encoding='utf-8') as file:\n", - " data_desc = json.loads(file.read())\n", - " view_centers = torch.tensor(\n", - " data_desc['view_centers'], device=device.default()).view(-1, 3)\n", - " view_rots = torch.tensor(\n", - " data_desc['view_rots'], device=device.default()).view(-1, 3, 3)\n", - " return Trans(view_centers, view_rots)\n", - "\n", - "\n", - "views = load_views('for_panorama_cvt.json')\n", - "print('Dataset loaded.')\n", - "for view_idx in range(views.size()[0]):\n", - " center = (0, 0)\n", - " images = renderer(views.get(view_idx), center, using_mask=True)\n", - " outputdir = 'panorama'\n", - " os.makedirs(outputdir, exist_ok=True)\n", - " img.save(images['blended'], f'{outputdir}/{view_idx:04d}.png')" - ], - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Dataset loaded.\n" - ] - } - ], - "metadata": {} + "def load_views(data_desc_file) -> tuple[list[int], Trans]:\n", + " dataset = Dataset(data_desc_file)\n", + " return dataset.indices.tolist(),\\\n", + " Trans(dataset.centers, dataset.rots).to(device.default())\n", + "\n", + "\n", + "demos = [ # view_idx, center_x, center_y, fov_scale\n", + " [220, 30, 25, 0.7],\n", + " [235, 0, 130, 0.7],\n", + " [239, 70, 140, 0.7],\n", + " [841, -100, 160, 0.7]\n", + "]\n", + "indices, views = load_views('images.json')\n", + "for demo_idx in [0]:\n", + " view_idx = demos[demo_idx][0]\n", + " i = indices.index(view_idx)\n", + " center = tuple(demos[demo_idx][1:3])\n", + " renderer = create_renderer(fovea_net, periph_net, periph_net, fov_scale=demos[demo_idx][3])\n", + " images = renderer(views.get(i), center, using_mask=False)\n", + " #nerf_fovea = render(nerf_net, renderer.cam, views.get(i), None, batch_size=16384)[\"color\"]\n", + " #images[\"nerf\"] = nerf_fovea\n", + " plot_images(images)\n", + " #save_images(images, scene, view_idx)\n" + ] } ], "metadata": { "kernelspec": { - "name": "python3", - "display_name": "Python 3.8.5 64-bit ('base': conda)" + "display_name": "Python 3.10.0 ('dvs')", + "language": "python", + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -233,17 +228,19 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.10.0" }, "metadata": { "interpreter": { "hash": "82066b63b621a9e3d15e3b7c11ca76da6238eff3834294910d715044bd0561e5" } }, - "interpreter": { - "hash": "82066b63b621a9e3d15e3b7c11ca76da6238eff3834294910d715044bd0561e5" + "vscode": { + "interpreter": { + "hash": "4469b029896260c1221afa6e0e6159922aafd2738570e75b7bc15e28db242604" + } } }, "nbformat": 4, "nbformat_minor": 4 -} \ No newline at end of file +} diff --git a/notebook/gen_demo_stereo.ipynb b/notebook/gen/gen_demo_stereo.ipynb similarity index 51% rename from notebook/gen_demo_stereo.ipynb rename to notebook/gen/gen_demo_stereo.ipynb index 138950d..933944a 100644 --- a/notebook/gen_demo_stereo.ipynb +++ b/notebook/gen/gen_demo_stereo.ipynb @@ -2,14 +2,17 @@ "cells": [ { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Set CUDA:0 as current device.\n" + "Set CUDA:0 as current device.\n", + "Change working directory to /home/dengnc/Work/fov_nerf/data/__thesis/barbershop\n", + "Load model fovea.tar\n", + "Load model periph.tar\n" ] } ], @@ -20,29 +23,25 @@ "import torch.nn as nn\n", "import matplotlib.pyplot as plt\n", "\n", - "rootdir = os.path.abspath(sys.path[0] + '/../')\n", + "rootdir = os.path.abspath(sys.path[0] + '/../../')\n", "sys.path.append(rootdir)\n", "\n", "torch.cuda.set_device(0)\n", "print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n", "torch.autograd.set_grad_enabled(False)\n", "\n", - "from data.spherical_view_syn import *\n", - "from configs.spherical_view_syn import SphericalViewSynConfig\n", - "from utils import netio\n", - "from utils import img\n", - "from utils import device\n", + "from model import Model\n", + "from data import Dataset\n", + "from utils import netio, img, device\n", "from utils.view import *\n", + "from utils.types import PathLike\n", "from components.fnr import FoveatedNeuralRenderer\n", + "from components.render import render\n", "\n", "\n", - "def load_net(path):\n", - " config = SphericalViewSynConfig()\n", - " config.from_id(os.path.splitext(path)[0])\n", - " config.sa['perturb_sample'] = False\n", - " net = config.create_net().to(device.default())\n", - " netio.load(path, net)\n", - " return net\n", + "def load_model(model_path: PathLike):\n", + " print(\"Load model\", model_path)\n", + " return Model.load(model_path).eval().to(device.default())\n", "\n", "\n", "def find_file(prefix):\n", @@ -52,6 +51,16 @@ " return None\n", "\n", "\n", + "def create_renderer(*nets, fov_scale=1.):\n", + " fov_list = [20, 45, 110]\n", + " for i in range(len(fov_list)):\n", + " fov_list[i] = length2fov(fov2length(fov_list[i]) * fov_scale)\n", + " res_list = [(256, 256), (256, 256), (256, 230)]\n", + " res_full = (1600, 1440)\n", + " return FoveatedNeuralRenderer(fov_list, res_list, nn.ModuleList(nets), res_full,\n", + " device=device.default())\n", + "\n", + "\n", "def load_views(data_desc_file) -> Trans:\n", " with open(data_desc_file, 'r', encoding='utf-8') as file:\n", " data_desc = json.loads(file.read())\n", @@ -124,38 +133,29 @@ "scenes = {\n", " 'classroom': 'classroom_all',\n", " 'stones': 'stones_all',\n", - " 'barbershop': 'barbershop_all',\n", + " 'barbershop': '__thesis/barbershop',\n", " 'lobby': 'lobby_all'\n", "}\n", "\n", "\n", - "fov_list = [20, 45, 110]\n", - "res_list = [(256, 256), (256, 256), (256, 230)]\n", - "res_full = (1600, 1440)\n" + "scene = \"barbershop\"\n", + "os.chdir(f'{rootdir}/data/{scenes[scene]}')\n", + "print('Change working directory to ', os.getcwd())\n", + "\n", + "fovea_net = load_model(find_file('fovea'))\n", + "periph_net = load_model(find_file('periph'))\n", + "renderer = create_renderer(fovea_net, periph_net, periph_net)" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Change working directory to /home/dengnc/dvs/data/__new/barbershop_all\n", - "Load net from fovea200@snerffast4-rgb_e6_fc512x4_d1.20-6.00_s64_~p.pth ...\n", - "Load net from periph200@snerffast2-rgb_e6_fc256x4_d1.20-6.00_s32_~p.pth ...\n", - "barbershop 0 Saved\n", - "barbershop 1 Saved\n", - "barbershop 2 Saved\n", - "barbershop 3 Saved\n", - "barbershop 4 Saved\n", - "barbershop 0 Saved\n", - "barbershop 1 Saved\n", - "barbershop 2 Saved\n", - "barbershop 3 Saved\n", - "barbershop 4 Saved\n", "barbershop 0 Saved\n", "barbershop 1 Saved\n", "barbershop 2 Saved\n", @@ -180,60 +180,46 @@ " [(0, 0, 0, 0, 0), (21, 150), (12, 150)]\n", " ],\n", " 'barbershop': [\n", - " #[(0, 0, 0, 0, 0), (106, -67), (90, -67)],\n", + " #[(-0.08247789757018531, -0.17165164843400083, -0.20644832805536045, -66.00281344384992, -4.354400833888114), (0, 0), (0, 0)],\n", " #[(0, 0, 0, 0, 0), (-114, 10), (-126, 10)],\n", - " [(0, 0, 0, 25, 20), (189, -45), (173, -45)],\n", - " [(0, 0, 0, 25, 20), (-148, 130), (-163, 130)],\n", - " [(0.15, 0.15, 0, 43, 2), (9, 0), (-9, 0)],\n", - " [(0.15, 0, 0.15, -13, -5), (6, 0), (-6, 0)],\n", - " [(-0.15, 0.15, 0.15, -53, -21), (3, 0), (-3, 0)]\n", + " [(0, 0, 0, -25, 20), (189, -45), (173, -45)],\n", + " [(0, 0, 0, -25, 20), (-148, 130), (-163, 130)],\n", + " [(0.15, 0.15, 0, -43, 2), (9, 0), (-9, 0)],\n", + " [(0.15, 0, -0.15, 13, -5), (6, 0), (-6, 0)],\n", + " [(-0.15, 0.15, -0.15, 53, -21), (3, 0), (-3, 0)]\n", " ]\n", "}\n", "\n", - "#for scene in ['classroom', 'lobby', 'barbershop']:\n", - "for scene in ['barbershop']:\n", - " os.chdir(f'{rootdir}/data/__new/{scenes[scene]}')\n", - " print('Change working directory to ', os.getcwd())\n", - "\n", - " fovea_net = load_net(find_file('fovea'))\n", - " periph_net = load_net(find_file('periph'))\n", - " renderer = FoveatedNeuralRenderer(fov_list, res_list,\n", - " nn.ModuleList([fovea_net, periph_net, periph_net]),\n", - " res_full, device=device.default())\n", - "\n", - " for mono_periph in range(0,4):\n", - " for i, param in enumerate(params[scene]):\n", - " view = Trans(torch.tensor(param[0][:3], device=device.default()),\n", - " torch.tensor(euler_to_matrix([-param[0][4], param[0][3], 0]),\n", - " device=device.default()).view(3, 3))\n", - " eye_offset = torch.tensor([0.03, 0, 0], device=device.default())\n", - " left_view = Trans(view.trans_point(-eye_offset), view.r)\n", - " right_view = Trans(view.trans_point(eye_offset), view.r)\n", - " left_images, right_images = renderer(view, param[1], param[2],\n", - " stereo_disparity=0.06,\n", - " using_mask=True,\n", - " mono_periph_mode=mono_periph,\n", - " ret_raw=False)\n", - " if True:\n", - " outputdir = '../__demo/stereo_m%d' % mono_periph if mono_periph else '../__demo/stereo'\n", - " os.makedirs(outputdir, exist_ok=True)\n", - " img.save(torch.cat([\n", - " left_images['blended'],\n", - " right_images['blended']\n", - " ], dim=-1), '%s/%s_%d.png' % (outputdir, scene, i))\n", - " img.save(left_images['blended'], '%s/%s_%d_l.png' % (outputdir, scene, i))\n", - " img.save(right_images['blended'], '%s/%s_%d_r.png' % (outputdir, scene, i))\n", - " stereo_overlap = torch.cat([\n", - " left_images['blended'][:, 0:1],\n", - " right_images['blended'][:, 1:3]\n", - " ], dim=1)\n", - " img.save(stereo_overlap, '%s/%s_%d_stereo.png' % (outputdir, scene, i))\n", - " #os.makedirs(outputdir + '/mid', exist_ok=True)\n", - " #img.save(left_images['layers_img'][1], '%s/mid/%s_%d_l.png' % (outputdir, scene, i))\n", - " #img.save(right_images['layers_img'][1], '%s/mid/%s_%d_r.png' % (outputdir, scene, i))\n", - " print(\"%s %d Saved\" % (scene, i))\n", - " else:\n", - " plot_figures(left_images, right_images, param[1], param[2])\n" + "for mono_periph in range(3, 5):\n", + " for i, param in enumerate(params[scene]):\n", + " view = Trans(torch.tensor(param[0][:3], device=device.default()),\n", + " torch.tensor(euler_to_matrix(param[0][4], param[0][3], 0),\n", + " device=device.default()).view(3, 3))\n", + " left_images, right_images = renderer(view, param[1], param[2],\n", + " stereo_disparity=0.06,\n", + " using_mask=True,\n", + " mono_periph_mode=mono_periph,\n", + " ret_raw=False)\n", + " if True:\n", + " outputdir = '../__demo/stereo_m%d' % mono_periph if mono_periph else '../__demo/stereo'\n", + " os.makedirs(outputdir, exist_ok=True)\n", + " img.save(torch.cat([\n", + " left_images['blended'],\n", + " right_images['blended']\n", + " ], dim=-1), '%s/%s_%d.png' % (outputdir, scene, i))\n", + " img.save(left_images['blended'], '%s/%s_%d_l.png' % (outputdir, scene, i))\n", + " img.save(right_images['blended'], '%s/%s_%d_r.png' % (outputdir, scene, i))\n", + " stereo_overlap = torch.cat([\n", + " left_images['blended'][:, 0:1],\n", + " right_images['blended'][:, 1:3]\n", + " ], dim=1)\n", + " img.save(stereo_overlap, '%s/%s_%d_stereo.png' % (outputdir, scene, i))\n", + " #os.makedirs(outputdir + '/mid', exist_ok=True)\n", + " #img.save(left_images['layers_img'][1], '%s/mid/%s_%d_l.png' % (outputdir, scene, i))\n", + " #img.save(right_images['layers_img'][1], '%s/mid/%s_%d_r.png' % (outputdir, scene, i))\n", + " print(\"%s %d Saved\" % (scene, i))\n", + " else:\n", + " plot_figures(left_images, right_images, param[1], param[2])\n" ] }, { @@ -245,11 +231,8 @@ } ], "metadata": { - "interpreter": { - "hash": "82066b63b621a9e3d15e3b7c11ca76da6238eff3834294910d715044bd0561e5" - }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.10.0 ('dvs')", "language": "python", "name": "python3" }, @@ -263,7 +246,12 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.10.0" + }, + "vscode": { + "interpreter": { + "hash": "4469b029896260c1221afa6e0e6159922aafd2738570e75b7bc15e28db242604" + } } }, "nbformat": 4, diff --git a/notebook/gen_for_eval.ipynb b/notebook/gen/gen_for_eval.ipynb similarity index 100% rename from notebook/gen_for_eval.ipynb rename to notebook/gen/gen_for_eval.ipynb diff --git a/notebook/gen/gen_layers.ipynb b/notebook/gen/gen_layers.ipynb new file mode 100644 index 0000000..ec37fab --- /dev/null +++ b/notebook/gen/gen_layers.ipynb @@ -0,0 +1,118 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "import sys\n", + "import os\n", + "import torch\n", + "import matplotlib.pyplot as plt\n", + "\n", + "rootdir = os.path.abspath(sys.path[0] + '/../../')\n", + "sys.path.append(rootdir)\n", + "\n", + "torch.autograd.set_grad_enabled(False)\n", + "\n", + "from model import Model\n", + "from data import Dataset\n", + "from utils import netio, img, device\n", + "from utils.view import *\n", + "from utils.types import *\n", + "from components.render import render\n", + "\n", + "\n", + "model: Model = None\n", + "dataset: Dataset = None\n", + "\n", + "\n", + "def load_model(path: PathLike):\n", + " ckpt_path = netio.find_checkpoint(Path(path))\n", + " ckpt = torch.load(ckpt_path)\n", + " model = Model.create(ckpt[\"args\"][\"model\"], ckpt[\"args\"][\"model_args\"])\n", + " model.load_state_dict(ckpt[\"states\"][\"model\"])\n", + " model.to(device.default()).eval()\n", + " return model\n", + "\n", + "\n", + "def load_dataset(path: PathLike):\n", + " return Dataset(path, color_mode=model.color, coord_sys=model.args.coord,\n", + " device=device.default())\n", + "\n", + "\n", + "def plot_images(images, rows, cols):\n", + " plt.figure(figsize=(20, int(20 / cols * rows)))\n", + " for r in range(rows):\n", + " for c in range(cols):\n", + " plt.subplot(rows, cols, r * cols + c + 1)\n", + " img.plot(images[r * cols + c])\n", + "\n", + "\n", + "def save_images(images, scene, i):\n", + " outputdir = f'{rootdir}/data/__demo/layers/'\n", + " os.makedirs(outputdir, exist_ok=True)\n", + " for layer in range(len(images)):\n", + " img.save(images[layer], f'{outputdir}{scene}_{i:04d}({layer}).png')\n", + "\n", + "scene = \"gas\"\n", + "model_path = f\"{rootdir}/data/__thesis/{scene}/_nets/train/snerf_fast\"\n", + "dataset_path = f\"{rootdir}/data/__thesis/{scene}/test.json\"\n", + "\n", + "\n", + "model = load_model(model_path)\n", + "dataset = load_dataset(dataset_path)\n", + "\n", + "\n", + "i = 6\n", + "cam = dataset.cam\n", + "view = Trans(dataset.centers[i], dataset.rots[i])\n", + "output = render(model, dataset.cam, view, \"colors\", \"weights\")\n", + "output_colors = output.colors * output.weights\n", + "\n", + "samples_per_layer = 4#model.core.samples_per_field\n", + "n_samples = model.args.n_samples\n", + "output_layers = [\n", + " output_colors[..., offset:offset+samples_per_layer, :].sum(-2)\n", + " for offset in range(0, n_samples, samples_per_layer)\n", + "]\n", + " \n", + "plot_images(output_layers, 8, 2)\n", + "#save_images(output_layers, scene, i)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3.10.0 ('dvs')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + }, + "metadata": { + "interpreter": { + "hash": "82066b63b621a9e3d15e3b7c11ca76da6238eff3834294910d715044bd0561e5" + } + }, + "vscode": { + "interpreter": { + "hash": "4469b029896260c1221afa6e0e6159922aafd2738570e75b7bc15e28db242604" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebook/gen_prebake.ipynb b/notebook/gen/gen_prebake.ipynb similarity index 99% rename from notebook/gen_prebake.ipynb rename to notebook/gen/gen_prebake.ipynb index c8f7733..e9aed19 100644 --- a/notebook/gen_prebake.ipynb +++ b/notebook/gen/gen_prebake.ipynb @@ -60,7 +60,7 @@ " enable_ce = True, output_res = None):\n", " ipd = 0.06\n", " layers_cam = [\n", - " CameraParam({\n", + " Camera({\n", " 'fov': 110,\n", " 'cx': 0.5,\n", " 'cy': 0.5,\n", diff --git a/notebook/gen_teaser.ipynb b/notebook/gen/gen_teaser.ipynb similarity index 100% rename from notebook/gen_teaser.ipynb rename to notebook/gen/gen_teaser.ipynb diff --git a/notebook/gen_test.ipynb b/notebook/gen/gen_test.ipynb similarity index 96% rename from notebook/gen_test.ipynb rename to notebook/gen/gen_test.ipynb index cd6197d..7196353 100644 --- a/notebook/gen_test.ipynb +++ b/notebook/gen/gen_test.ipynb @@ -31,7 +31,7 @@ "from utils import device\n", "from utils import view\n", "from components.gen_final import GenFinal\n", - "from utils.perf import Perf\n", + "from utils.profile import Profiler\n", "\n", "\n", "def load_net(path):\n", @@ -135,15 +135,15 @@ " torch.tensor([[0.0, 0.0, 0.0]], device=device.default()),\n", " torch.tensor([[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device.default())\n", ")\n", - "perf = Perf(True, True)\n", + "profile = Profiler(True, True)\n", "rays_o, rays_d = gen.layer_cams[0].get_global_rays(test_view, True)\n", - "perf.checkpoint(\"GetRays\")\n", + "profile.checkpoint(\"GetRays\")\n", "rays_o = rays_o.view(-1, 3)\n", "rays_d = rays_d.view(-1, 3)\n", "coords, pts, depths = fovea_net.sampler(rays_o, rays_d)\n", - "perf.checkpoint(\"Sample\")\n", + "profile.checkpoint(\"Sample\")\n", "encoded = fovea_net.input_encoder(coords)\n", - "perf.checkpoint(\"Encode\")\n", + "profile.checkpoint(\"Encode\")\n", "print(\"Rays:\", rays_d)\n", "print(\"Spherical coords:\", coords)\n", "print(\"Depths:\", depths)\n", diff --git a/notebook/gen_user_study_images.ipynb b/notebook/gen/gen_user_study_images.ipynb similarity index 98% rename from notebook/gen_user_study_images.ipynb rename to notebook/gen/gen_user_study_images.ipynb index 4518b11..fceb675 100644 --- a/notebook/gen_user_study_images.ipynb +++ b/notebook/gen/gen_user_study_images.ipynb @@ -140,7 +140,7 @@ "\n", "# Load Dataset\n", "views = load_views('views.json')\n", - "#ref_dataset = SphericalViewSynDataset('ref.json', load_images=False, calculate_rays=False)\n", + "#ref_dataset = SphericalViewSynDataset('ref.json', load_colors=False, calculate_rays=False)\n", "print('Dataset loaded.')\n", "\n", "print('views:', views.size())\n", @@ -226,4 +226,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} \ No newline at end of file +} diff --git a/notebook/gen_video.ipynb b/notebook/gen/gen_video.ipynb similarity index 98% rename from notebook/gen_video.ipynb rename to notebook/gen/gen_video.ipynb index df80a3c..c157092 100644 --- a/notebook/gen_video.ipynb +++ b/notebook/gen/gen_video.ipynb @@ -44,7 +44,7 @@ " return None\n", "\n", "\n", - "def load_views(data_desc_file) -> Tuple[view.Trans, torch.Tensor]:\n", + "def load_views(data_desc_file) -> tuple[view.Trans, torch.Tensor]:\n", " with open(data_desc_file, 'r', encoding='utf-8') as file:\n", " lines = file.readlines()\n", " n = len(lines) // 7\n", diff --git a/notebook/gen_crop.ipynb b/notebook/gen_crop.ipynb deleted file mode 100644 index e7f6a9b..0000000 --- a/notebook/gen_crop.ipynb +++ /dev/null @@ -1,103 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "source": [ - "import sys\n", - "import os\n", - "import torch\n", - "import torch.nn.functional as nn_f\n", - "import matplotlib.pyplot as plt\n", - "\n", - "rootdir = os.path.abspath(sys.path[0] + '/../')\n", - "sys.path.append(rootdir)\n", - "torch.cuda.set_device(0)\n", - "print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n", - "torch.autograd.set_grad_enabled(False)\n", - "\n", - "from utils import img\n", - "from utils.view import *\n", - "\n", - "datadir = f\"{rootdir}/data/__new/__demo/for_crop\"\n", - "figs = ['our', 'gt', 'nerf', 'fgt']\n", - "crops = {\n", - " 'classroom_0': [[720, 790, 100], [370, 1160, 200]],\n", - " 'lobby_1': [[570, 1000, 100], [1300, 1000, 200]],\n", - " 'stones_2': [[720, 800, 100], [680, 1317, 200]],\n", - " 'barbershop_3': [[745, 810, 100], [950, 900, 200]]\n", - "}\n", - "colors = torch.tensor([[0, 1, 0, 1], [1, 1, 0, 1]], dtype=torch.float)\n", - "border = 10\n", - "\n", - "for scene in crops:\n", - " images = img.load([f\"{datadir}/origin/{scene}_{fig}.png\" for fig in figs])\n", - " halfw = images.size(-1) // 2\n", - " halfh = images.size(-2) // 2\n", - " crop = crops[scene]\n", - " fovea_patches = images[...,\n", - " crop[0][1] - crop[0][2] // 2: crop[0][1] + crop[0][2] // 2,\n", - " crop[0][0] - crop[0][2] // 2: crop[0][0] + crop[0][2] // 2]\n", - " periph_patches = images[...,\n", - " crop[1][1] - crop[1][2] // 2: crop[1][1] + crop[1][2] // 2,\n", - " crop[1][0] - crop[1][2] // 2: crop[1][0] + crop[1][2] // 2]\n", - " fovea_patches = nn_f.interpolate(fovea_patches, (128, 128))\n", - " periph_patches = nn_f.interpolate(periph_patches, (128, 128))\n", - " overlay = torch.zeros(1, 4, 1600, 1440)\n", - " mask = torch.zeros(2, 1600, 1440, dtype=torch.bool)\n", - " for i in range(2):\n", - " mask[i,\n", - " crop[i][1] - crop[i][2] // 2 - border: crop[i][1] + crop[i][2] // 2 + border,\n", - " crop[i][0] - crop[i][2] // 2 - border: crop[i][0] + crop[i][2] // 2 + border] = True\n", - " mask[i,\n", - " crop[i][1] - crop[i][2] // 2: crop[i][1] + crop[i][2] // 2,\n", - " crop[i][0] - crop[i][2] // 2: crop[i][0] + crop[i][2] // 2] = False\n", - " overlay[:, :, mask[0]] = colors[0][..., None]\n", - " overlay[:, :, mask[1]] = colors[1][..., None]\n", - " plt.figure(figsize=(12, 6))\n", - " plt.subplot(1, 2, 1)\n", - " img.plot(images[0])\n", - " plt.subplot(1, 2, 2)\n", - " img.plot(overlay)\n", - " plt.figure(figsize=(12, 6))\n", - " for i in range(4):\n", - " plt.subplot(2, 4, i + 1)\n", - " img.plot(fovea_patches[i])\n", - " for i in range(4):\n", - " plt.subplot(2, 4, i + 5)\n", - " img.plot(periph_patches[i])\n", - " img.save(fovea_patches, [f\"{datadir}/fovea/{scene}_{fig}.png\" for fig in figs])\n", - " img.save(periph_patches, [f\"{datadir}/periph/{scene}_{fig}.png\" for fig in figs])\n", - " img.save(torch.cat([fovea_patches, periph_patches], dim=-1),\n", - " [f\"{datadir}/patch/{scene}_{fig}.png\" for fig in figs])\n", - " img.save(overlay, f\"{datadir}/overlay/{scene}.png\")\n" - ], - "outputs": [], - "metadata": {} - } - ], - "metadata": { - "interpreter": { - "hash": "65406b00395a48e1d89cf658ae895e7869e05878f5469716b06a752a3915211c" - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3.8.5 64-bit ('base': conda)" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - }, - "orig_nbformat": 2 - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/notebook/test/__general.ipynb b/notebook/test/__general.ipynb new file mode 100644 index 0000000..2278581 --- /dev/null +++ b/notebook/test/__general.ipynb @@ -0,0 +1,237 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Performance of Randperm on CPU/GPU" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Node Random perm on host: host duration 6384.1ms, device duration 6384.4ms\n", + "Node Random perm on device: host duration 2525.0ms, device duration 2525.0ms\n" + ] + } + ], + "source": [ + "from common import *\n", + "from utils.profile import debug_profile\n", + "from utils.mem_profiler import MemProfiler\n", + "\n", + "with debug_profile(\"Random perm on host\"):\n", + " torch.randperm(1024 * 1024 * 100)\n", + "\n", + "with debug_profile(\"Random perm on device\"),\\\n", + " MemProfiler(\"Random perm on host\", device=\"cuda:3\"):\n", + " torch.randperm(1024 * 1024 * 100, device=\"cuda:3\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# \\_\\_getattribute\\_\\_ Method" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "a.a: 1\n", + "a.b: 2\n" + ] + }, + { + "ename": "AttributeError", + "evalue": "'A' object has no attribute 'c'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m<ipython-input-3-bdb259af4410>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 24\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"a.a:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 25\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"a.b:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 26\u001b[0;31m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"a.c:\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m<ipython-input-3-bdb259af4410>\u001b[0m in \u001b[0;36m__getattribute__\u001b[0;34m(self, _A__name)\u001b[0m\n\u001b[1;32m 16\u001b[0m \u001b[0;32mpass\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0merr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 18\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 19\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 20\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m<ipython-input-3-bdb259af4410>\u001b[0m in \u001b[0;36m__getattribute__\u001b[0;34m(self, _A__name)\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m__name\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0m__name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mAttributeError\u001b[0m: 'A' object has no attribute 'c'" + ] + } + ], + "source": [ + "class A(object):\n", + "\n", + "\n", + " def __init__(self, a, **extra) -> None:\n", + " super().__init__()\n", + " self.a = a\n", + " self.extra = extra\n", + "\n", + " def __getattribute__(self, __name: str):\n", + " try:\n", + " return super().__getattribute__(__name)\n", + " except AttributeError as e:\n", + " try:\n", + " return self.extra[__name]\n", + " except KeyError:\n", + " pass\n", + " err = e\n", + " raise err\n", + "\n", + "\n", + "a = A(a=1, b=2)\n", + "\n", + "\n", + "print(\"a.a:\", a.a)\n", + "print(\"a.b:\", a.b)\n", + "print(\"a.c:\", a.c)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Performance of Various Select/Scatter Methods" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.010159730911254883 tensor(100., device='cuda:0')\n", + "0.011237859725952148 tensor(1400., device='cuda:0')\n", + "0.032263755798339844 tensor(2700., device='cuda:0')\n", + "0.02148723602294922 tensor(4.1723e-07, device='cuda:0')\n", + "0.009927511215209961 tensor(4.1723e-07, device='cuda:0')\n", + "Mask set 0.02173590660095215\n", + "Inplace mask scatter 0.0041882991790771484\n", + "Mask scatter 0.00580906867980957\n", + "Index set 0.03358888626098633\n", + "Index put 0.01044917106628418\n" + ] + } + ], + "source": [ + "from common import *\n", + "from time import time\n", + "\n", + "a = torch.zeros(200000, device=\"cuda\")\n", + "i = torch.randint(0, a.shape[0], [500000], device=\"cuda\")\n", + "start = time()\n", + "for _ in range(100):\n", + " a[i] += 1\n", + "end = time()\n", + "print(end - start, a.max())\n", + "start = time()\n", + "for _ in range(100):\n", + " a.index_add_(0, i, torch.ones_like(i, dtype=torch.float))\n", + "end = time()\n", + "print(end - start, a.max())\n", + "\n", + "start = time()\n", + "for _ in range(100):\n", + " ui, n = i.unique(return_counts=True)\n", + " a[ui] += n\n", + "end = time()\n", + "print(end - start, a.max())\n", + "\n", + "\n", + "a = torch.rand(2000, 2000, device=\"cuda\") - .5\n", + "m = a > 0\n", + "\n", + "start = time()\n", + "for _ in range(100):\n", + " b = a[m]\n", + "end = time()\n", + "print(end - start, b.min())\n", + "\n", + "start = time()\n", + "for _1 in range(20):\n", + " m1 = m.nonzero(as_tuple=True)\n", + " for _ in range(5):\n", + " b = a[m1]\n", + "end = time()\n", + "print(end - start, b.min())\n", + "\n", + "\n", + "c = torch.rand_like(b)\n", + "\n", + "start = time()\n", + "for _ in range(100):\n", + " a[m] = c\n", + "end = time()\n", + "print(\"Mask set\", end - start)\n", + "\n", + "start = time()\n", + "for _ in range(100):\n", + " a.masked_scatter_(m, c)\n", + "end = time()\n", + "print(\"Inplace mask scatter\", end - start)\n", + "\n", + "\n", + "start = time()\n", + "for _ in range(100):\n", + " a = a.masked_scatter(m, c)\n", + "end = time()\n", + "print(\"Mask scatter\", end - start)\n", + "\n", + "start = time()\n", + "for _1 in range(20):\n", + " m1 = m.nonzero(as_tuple=True)\n", + " for _ in range(5):\n", + " a[m1] = b\n", + "end = time()\n", + "print(\"Index set\", end - start)\n", + "\n", + "\n", + "start = time()\n", + "for _1 in range(20):\n", + " m1 = m.nonzero(as_tuple=True)\n", + " for _ in range(5):\n", + " a.index_put_(m1, b)\n", + "end = time()\n", + "print(\"Index put\", end - start)" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "65406b00395a48e1d89cf658ae895e7869e05878f5469716b06a752a3915211c" + }, + "kernelspec": { + "display_name": "Python 3.8.12 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/test/common.py b/notebook/test/common.py new file mode 100644 index 0000000..69fc5d3 --- /dev/null +++ b/notebook/test/common.py @@ -0,0 +1,10 @@ +import sys +import torch +import numpy as np +import matplotlib.pyplot as plt +from pathlib import Path + +rootdir = Path(sys.path[0]).absolute().parents[1] +sys.path.append(str(rootdir)) + +torch.cuda.set_device(0) \ No newline at end of file diff --git a/notebook/test_constrast.ipynb b/notebook/test/constrast.ipynb similarity index 69% rename from notebook/test_constrast.ipynb rename to notebook/test/constrast.ipynb index f548d3e..d820133 100644 --- a/notebook/test_constrast.ipynb +++ b/notebook/test/constrast.ipynb @@ -6,21 +6,11 @@ "metadata": {}, "outputs": [], "source": [ - "import sys\n", - "import os\n", - "import torch\n", - "import matplotlib.pyplot as plt\n", - "import torchvision.transforms.functional as trans_f\n", - "\n", - "rootdir = os.path.abspath(sys.path[0] + '/../')\n", - "sys.path.append(rootdir)\n", - "torch.cuda.set_device(2)\n", - "print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n", - "\n", + "from common import *\n", "from components import refine\n", "from utils import img\n", "\n", - "img = img.load(os.path.join(rootdir, \"data/gas_2021.01.04_all_in_one/output/mid_0536.png\"))\n", + "img = img.load(rootdir / \"data/gas_2021.01.04_all_in_one/output/mid_0536.png\")\n", "\n", "fe = 0.2\n", "leng_sigma = [0,3,5]\n", @@ -37,8 +27,7 @@ "img.plot(enhanced)\n", "plt.title('Enhanced')\n", "plt.axis('off')\n", - "plt.show()\n", - "\n" + "plt.show()" ] } ], @@ -63,4 +52,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} \ No newline at end of file +} diff --git a/notebook/test/fisheye_undistort.ipynb b/notebook/test/fisheye_undistort.ipynb new file mode 100644 index 0000000..9d181de --- /dev/null +++ b/notebook/test/fisheye_undistort.ipynb @@ -0,0 +1,135 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Image size is (3800, 3000)\n" + ] + }, + { + "data": { + "text/plain": [ + "<matplotlib.image.AxesImage at 0x7f01e2d35250>" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUIAAAD8CAYAAAACGq0tAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9SaxtS5rfh/2+iFjNbk9/+9dl87KrjsVSkTTFMmXBlgYGaMOwRXvigQBObHhKampAAEceGAYM10CwNBBowoZgAaZFi5QFS2yqWE1WFavJzJevb2577j3NbtZa0XgQEWutve+572VVSSm+qheZ952z91n9+uIf3/f/Ogkh8NX4anw1vhp/nof67/oCvhpfja/GV+O/6/EVEH41vhpfjT/34ysg/Gp8Nb4af+7HV0D41fhqfDX+3I+vgPCr8dX4avy5H18B4Vfjq/HV+HM/fupAKCL/toj8QETeEZG/89M+/1fjq/HV+GrsD/lpxhGKiAZ+CPwPgY+BfwH8L0MIf/BTu4ivxlfjq/HV2Bs/bY3wl4F3QgjvhhBa4O8Bf+OnfA1fja/GV+OrsTPMT/l894GPRp8/Bv7S/kYi8reAv5U+/kURANnbKmuy+9//yccXHklGv+yfPgASdo4i6Z8SQSmFUhrRClEKEALgk0auRRCBgMSDBUAkfd67DBEQQSQeg5D2Cp4QAiEEvPcEH9LlCEoEJF9dQIjni38VBJjWFV4JV1dX4D0qnUOUgCiUNoioeD9apWsZ323oj6cE5tMKpYZn1W8rgneB589f7DxGpRRKq3hOEbz3kL4P3vf3rJWiLAuUUv35AgFrLcYYjNF7VzQegRDA+sD1usGH+DnE/1BVBVVh4jMMAe8Dzvmd65f0i6TftVIUhWF+cIQo/dIZ90e73bJdX2OdT+cPhPTO82eSKInIzn045+Mzvenuwu4v8bhAPkc6rvcOby3OOZx3eO/xPuADBIEokqEXw5tO8cWzLtwou3ns/mU4y5/GQA0vXa3s/jW+5xsv6qcNhDddxEu3HkL4VeBXAZSSUJhib/eQYIQonRko8wtMU6M/6SDBr7iE3e1395PRLi+LgYx/FyLIBdBAYRTTsmQ6mXJ7vuTkzm2eeYUyBgs0bYezjnldEIjCqCdznHM9EHpAlCa+v4AHiqJAaR0FTYTgPUoCrmvp2pb1asV2vcE5i9IalYBDa4XxnkJBWRYUSvdXXwv8G3/tX+NfvPcuv/1Pf50Ky7QuKYqCsqyZHt9hfnSCMRqjNFqD0nHSB++pygIlYJTm2bOHKN/x8994g7rSrLcrvAv84Q9/gOs8/4Nf+dc5PDzmH/8X/4RN46jKktl0hlYKFwIX19d0Wzg4OKasNF17SVFobOgoioI37t/n1tkRIsJiPqHruvQMFHVdMJ1PKIzuX1fI/xIYWA/PLrf8V7/7Ppumw1qLtZa22fLN127zrbfu0XWWbdOy2rRcXq5wwaGVjsCXFgFjFHVVspiUnJ0d88v/5v+YxeG9HZkYCUq6mMCLJ4/5tf/i/8Wzyys2bUfTdjRNG4HRh3iedA7SWuYTMG+aBu89VVnuoMYY9Aie4H0COId3DpuBz1psZ+m2G67On3F9fs7l9RWX6xWrTcPGBlrA+ZCOEWVuAOzRfEpCP0yPgCYuGj5E2c1XmMR52C1P3wRQ4PvbCSMA9vvPcbRR2Pu+P1faZn9Gd9buH60fP20g/Bh4bfT5AfDpT7bry2vIoCmGne3GW2Ywk14xGYPZzSvWoLmMtx+dd/96kjaXBaQQKI1hMpkwn0xZLg/4xmv3aecF508bRGuCcxitmVUlnQsgimpS4I0BpUCi1qgRgqgEeC5qf1rHbUbX5JMWaJ3DeQ9K0BhECUpptNYYAqUWqsJQmAiEZQKwKY6qrnl8/hyCJ55SIaLQ2jCdTgDPvKqZFCUhOD797GPOnz3jYDrlza+9wcNPHnJ0sODZuz9GI3xaFZycHWKdo9m2hNZwMptzdnSKrkvuvv46v/mb38cYw7MXF+A81nom80NK7vHxjzXaeA5OC0RaLq5e8OziM66vrrD2bb7+1ussF5Me6UQJWmuCeN5/9AhnLUeHC2bTKQY9LFISMKbAaIPWHhcCKgSUCCEElFaYoNBWo5XCGE2wURPL2rYxBVprlIoaswuObrOCw1eKVS9Uk8USU9T4cEVnHZ11iNIUpkCShuoJBA9IGOGdUJYl6/U6rf2vOJFoosxHuTTJInHOYVWUJVHCUkUtX5tsqWjUZo1qA42A1QolnuDGkLZ/N+MPQkD11lEGu307aZi2SWsUIKQ5Gkg/Q7/foOiOriFvPPocDxmipRQGffQnUTJ/2kD4L4BvishbwCfA3wT+V5+/Swa2EYylOwz5b2H8mEf7yfjn7jHzEcafXiVXN+077COgJJmXgUKESVFQTybMFwuWy0MWh0cc3b/DH3z6GFMUBKBUghSGTdOCVhgtFGVNG0AXRQJCSIiE0hrvHcq5XgvOpo4IBB81BueiBuB91mDiRC6NpiZQFYblfMHhwZyDgyXaaD7+4H3uHh5x0WxZr7YEARegcw5TGJy3PPrkQ3Adb/7SX+Du7RM+e/QQtb7idllxenTI+aNPsdsNB3fO+N73vsNkOuHq8gW//uu/gRLFz/7sz3Bycsyds2NOTo84v17x+MljfAiIKCb1nEIJIgZTVASuOauXzOaCp6BrNXVn0RfPePHiAm2E5UGNNtEMj6Cd54fi+bML3n//Q1rfcP/+Hdqu5fTgKIKh0qhyDgpEa3QIventgiBKJU3aobREUzQJh3OOqqpRKpvwcdFyDrabFfvTfmekya20xiuDsxYliqqscFmDCxAk7ABDMpwRAUUE+85aCmN2tbOEIiGEeA9BknwG8G5HwCNVowgi6KJAFRVKncfvZY00jg0BqzQaEOdxDNr1q0YEtuH6d7XWuAWZ0hmBmYhKIDaAGSMwJG/PoPFlwLtpjP82Jm1eNX6qQBhCsCLyvwX+IdF6/A9CCL//hfsx4rbGZu5opRyD5Q6gjTe7iW/bPy4M3NvOVtnkTp8lfVJp5Q2BQilmVcl0MmGxOGB+dEy9OECVBaEQbNCIAp0mUescRV2DqKhtmIpSa1wSAJ9WdaU0opJwaYXzvj+ndz6Z0AHnPc5avHME7xHRVFoxn045Wcw5OzpgeTBHGzBGR00AYTqtuHvvDg+3LYU2hACdD0jbURlDUB3nF0+ZTia8++GH/OAP/4Bbt065c/cWb77+Bp9++inP3v8xdV2iBVZdA5vAYj7nG299g0k9YbvecnFxgWBxic+7ffsuwRYQoDQTjAHrAiEIq5Vjuw6EoCkmkQ7wnaFQc9bXGy4ungMW6xRGa4yO702JICh+8We+w7e+9iZPnp7z8PFnXG+26ENhvVpxvVrTiSFwhNYa7z2iovbrEzdK4ivjs1d4H+HIFEXiMdMiKCqagT7QZCBMAjtMxMhhBu959vgzfvj73+fxk4eRb1UkjWsk7SNNKgv02Egpy5LttqEsVf/djrSOQUB0rx2pvFJk7leEimh+HhQlRVGi5SlGBGGDtC0bBKcGCiQEIli/NJP2rznbXNKbvzuma1YLR5pcBkbZM/L2wfcnBsA9MPw8CP9pa4SEEP4B8A/+GHukn8OqfPOqe8NN7iPi/p8TwO2sqjcdaURH9hphEiQQdAiUWjGpaxazGQcHh8wPT1GzOaI1hRGeXDYYHR+3KAWmoArx96CiU0QhUUNKum4gCq9W0nMlIQuzUuB8XNUJYAMu8UAqwNxUHC0W3Ll9xmI5YbGYUFUlKGjbBlFFz83Y1ZqDo0PeeXjO8ekJ7eMnHCzndF3L2eEBLy6fx/AC73n68DMenNzioJ7y9OIF3//+M958/XX+ws//DJPplHfefZfPHj1iOZ/zcz//c9RVRdd1PHv0Gc1mQ316hDGabdPywx++Q7uxaRIEgg+0Tcet0/to7tNcG7ZXnmK25sHrE4pyhTEGbwOXF1f8+j/750yqaMpWk5r5fMFsOuHg6JCqrlnOS46W9/nma7fYXF7w9OIcmS4pTw+Qasp//f6W6ybxYD4ACh+I5q5otCi0UihR+BCoimJHkkIQQgAXBOs8m9UqLkDJGdaLT/BcXTzj/R/8Sz7+8D1W12ua7Ta+R580vhEHl+d4xoPMywkxzENrA7S4ENBK9Zpgjx+jz3kopfE+ardiZCS/EYQaEZbFLbTR6CcKJRpZX6O2lnUQrDKAS88pWh+vhpV4JYEMallxYODy+ikc0uXua7ZpfiYQf5VxfhMovgoMP2/81IHwTzzGS+LeEiGjL252jPTixKDVjTa78SR7p+9N1bi/iEKIam1dmAiCiwWHB0csTk+RaopHoY1mWmiOy5rNDBoXQEWOLwOfJ1ovg9Y5CKon4ITk1Uve4BBQ3qO16r2bwXvEeZZFydnZGSenh0xnNUoruq7FFLo3m0KQfnJtt1umVYUXhRfNxdNnLOY1t19/gw8+/pgff/QRvtmiFdTK8O2vfZM7t0959uwp5w8fs1jMgcCq2eIInJycsFwuOTs95ZOPPuZ6teL09JRvf+e7LCYzbt86ARSffvYkcpN11ERUogAEw6Re0DQbJnPDfF5Rz47wrqOuJnz9zdchXGEkcLg85LhusM0z/PYCu33KM+vZLmccHE4pjYoLiGjm9RGvHy9oW0tVF1xuHVWhWXcBrRXOqTRp4uKkA71GqJSiKCIn6BM1keXMe3Au0HSO69Ua7yxKmX7ybVZXfPjuH/Hxhz9ifXHFZtvRdi46ILyPJuFIIZQkY+PJKyPrJySqpygKOmvRZUW2RjPv5kUgCEF8MlGT1ztZIkEGcM0TwAewyrI8u40xBaV5jFIKIyvYdGx8oNM6nsh78P5lR8bLsyZecZqzAvgRQPci/9JuKnKlZFN5fLThmYzBDnjpmf1xwPBLAYQ7AQQ3er/3QBD6VSWD381jpG32mt4NfEKPj2llE4UCjEBVGGbTKYv5ASfHJ0zPbqGqGhfAIJRlwRbLlYqrqkrhM4FoBnrvdoQzny+IIptJ/UschUEopdBKg0BrLbVS3Lt3h/msoiwjyS86mmSI4APgo/dQRKLki+fq4oIHt0540Vm67RZ/fUG9OOB6teFoecAvv/UWd8+OQTxHR4f87u/9Lp89/IwHDx7w4N4Dqqrgn/36P+fq6pIH9+7z4MFrzBeL6OFcrym1Yjmfcv7sMc1szmI5xXZxlT8+OWJ1tcboEpECYzyKGqUd08JR18cUZUtRbAgotlsNpuDy8oKHzx7z1pvfoBHNrDhnOq/QOlBNZhRFges2aO9pO0eQCWLm1IuSuqpwzlFq0Mol0ziglEdUNHEFopNJVHI2DSE9khxZQaJDw4aA8oGu81xcXtO2DbqosW3LJx+8wwc//gMuL89pti1t67HW4VwMVemSA8aPJmyOeIq/h2gB9NI6aFZaa5ptRyijPA6aYBhmS1AgvpdvISCSFl6EIIJJemaFwvsNKMX0+CRqnSrev5cVbLfgAl02rZVCEhi+wkgd/YyAJmHkBQ43zNl+AoYdcMs05/559gHwps/7f3vV+BIAYV7u0u+jn59r9+/h2CAeg1ndx4PJTcd9eeRYvAyC07JiOp2yXC45Ob3FwdltfFmBUugQUDpqio2zXLQBXdYgcWL5AJ1vomaYOckQCDIIgfMRxLI303sPAbTSGJ3ADri+vuB0NmG5nIwdzkCMgdNa4YIneKGzlrosEREKramV5t5r9/jDp0958eQxR9MF2miePvyQn/n229x/6w5fe/0+i1lNAH7v93+H7WbDerVi5R1HR0c8uHefuvoa09mMH7/3Y5p2y9vf/A6/8iu/wma95mp1xe//xh/gA9TVjAevPeDWrVtsth06KJASJRpTBCRMQNk4gbspRXWNNnEBcbZmvV5z8fwCZ1uevrigvn+HO2dzfLfCNlvEB2zjaDvB2i3a1Ny993Wq6ZLgA86H5HCgB7nhXybx05qnQCev8ECPSL9QRtzJ3nrP5eUVT598gjk/590//F1enD+haRu6zkVvvo3n9yGa1c6H3ieWXj+QnSQjQOuFclCPjDEoolYZ4ztHC3jm2YAQVJL6MDgoknMviKT4VZW2DWybLaYskMNDTnVcbAMKUWDWDWsbaFKYkwDi/Rc4T/bM1v77fH0j3ilrjkne4zwYnCgvhczsjZ3n9cccXwIg3B8ZrG4wh/tNdoGt9y6nT8Mmg0d5H2pfdTgBjIJpVbOczjhYHnJy+zaLs9tQVXGlJTo4yrKkqCq6ZosKINpE3k8prLURVFXSEEOMg8s8kR8FEI8FQ1R0DmgT13LXtXSra2anx2nhV6P7CjhnMaZKJHfUJrXSVFpzOp8zsy1SllytLaYqMMs5l8+f4dYbqrJk1TZcbK55fv0C7xyvvfEad+7c4bd+87fomoa3v/U2k8mE+/fvc3FxQbtuKcuSqix5/uIFL1684ODggLe/+R3qsuRrb3wDH4SqrvEBqnqKUKXn4CGUBITtBmzTMpkeI/qC7cYBFadnM5ruGeu14fnFC05Oj9mWJ9y7cw8Vp2xPH9i2ifdf1VEGlI7hIOIRraPGJ6PYOBWj4EIkZ/vA5Wi232xihcQvdtZzeb3in/x//xGl0uAc1meQpOchIxUSj5Gvc1e2x5yP7HzcP7c2GmttH9847DYGkpuHKI34KC6SeO5KBGstPnh0VVDKAUdKEbRGP9dcyzWs1wTraVCg0swaWS03AVGvekh08A33NtonZFpouPfsQFEiiUYY2cnje/kCTXB4bq9+Hl8iIMzq/Sv+mh9Gv+1NNz/iLMg8z66WeMOB+x8KoVDCtK5YzhYcHRxxcuce87NTpKyjA0NFr6UxBWVdEZTG+BC5I637s3XexWtIcV0xiyPxRkQupdC65wAlaZLx2Bqto4ez2ayoC0NZV+mCE+GOSqZ0NuWFUgkHiwW3jg6ZVAaCw7UVf/jBJywOTkEpNu2WSTdjNp0RJPDZo4f8i9/4NYJ1fOtrb3Lv7h0m05r79+4xrSdMZ1M++PgjHj56xM9873v8yn//VxAlvPvee/zgBz9CKc1f/It/gda2zJdzzu4fc7m55je//ztcX28IXgguaqyEQKErvvedv8Rv//oVXRu4emFYHi2ZH2xoGsujR+c8f26xdkWzWTOfzsA6DucPOJjVvRmFgJnM0iMJKSQlajBi26hxivTPNSQVMIRBG8sLSm8Wj4AlOrXictxZS2stE0qaTYfXtp/w3kcWIgZE30C7vCSbAwD03+6RaVmGjCnYNg3VnmXzEr84GmOA6GNslUIbAxIXqPVmE+NQS0O5WHCcFmCVKZz1GjpPi+CUQgePj6/vZU2PsRYdJ5Kkd5LBTqCnAMK+AZjuPWOgGt3/TSPvsmta/xnhCIdxM6e3Oz7PzB32v3m13AVE6TlBQYUY+zeta5bzOaeHJ5zde0B9fIKqKsQUO+lzZVmjCoO1jrIsaZohULazXQyByWl3Ij0xrFQEOCMxdcs6l9LdonkiKoa+ZFNhc73h7PAgeToHCwOitjIpS47mMw5nEwoFm2bDs6cPMSKc3Trl+OiER1uhmC+4unpOMAVmukC858nz5xQElpMlk0nJOz/6MR+++wG/+Iu/wPd+5nu88+Mfc3F9xfn5OZOqwlrL8xfPmc1mzGczvvbWWxRFifeBbdNwfv6cF+fXWNPw/o/f5epilSbfFLvdRiAsar7x5i/h2pLgFW3jeP7UMj8MMdTEC5WZ4mxF01zRNA1nJzPKuqILHp1NK+8RY1DofqKFuNJEMFRuB9yy48ATAWs81UQNWnnUftJkDAEXLCiV6AaNjW7n6GXvqV2/K7XpP1qpnu8dh49EgBjJo8R3mb/JVoNKC6XzHpN45zwpxtK9rx32s0AUPZyraCaXRGB3zqG1QRBkPucohXhl+ZL1BmkdjYBDJYdMDKJ+FeSErIDk6xnfM6/YL768nXkucKPXun+Xo7/tA+OrxpcECHdea//d+N5uZiJ2/yq9FI6FYtAKZVyDYjRBFFBqxayumS8WnB2dcOvBG0yPT5CiQJkCVZZRgNMKW1RVjAeUFKOW4tWc83FShhgGkSeBys6R5P7TKb9WS+SAFKQJGv+GQOsdzXrF/M5xElJBi6IwmlldMZtUaC1sNyseffaMuig4PT3m+P4dLjdrPj1/yht376GqgqIuEKV5cXHJ/Tu3qSYT7OoFodlwfOsWq6tLpkXFwWKBEuGjjz/C2o47d+5ydHDAdDrl3Xff5bOHD6nrmr/yl/8yx0fHPDl/xkcff8izZy+YTeeICO26JTioijoF8CrKeoIxBZPpEkTTdltCMCjlmc7y7As8eH3O6qrj/fc11sFqdc35ixd47mCD4NIbvbxYM5/PmE0KRgmZgAJTEhIQjleOrH3ZoNjNk5X+3XriopiD140pMKYAEVxIuniIGROStMsg6fes8aX/SQbAJG/x/IN8R0dXNtVTmMwNoSLW2hSEL735mfnAsUYUuekQtdUci5r+lj3XWhvqyYTr6xWiNCbxh+V8yoG61cciRmBZE1pHk3jH4GPItQu7NtkQIL07U/ug6Z6fChm1duZx2NEMd+/pxpGOu0c0fO74UgGh9BrbWExz+tzLiL8jypIBMIwA8WbuIHtxkRjbVylhNqmYzxecHJ5w57U3mJ2dIWWJ6AJdFIgyKfAWlDExHMXbKOwetC7woSPGyzkE1XsjPYkrTICs9SglKvhkShBjzoR4nuBp1mtqEaaTGmMUk7JiMa2pCsPq+pInj54xKQpunZ5SH59wsV7x+++/z4cffsz506d8494Dvvb619CljWE+B0uWx8cUVU0InqZp6K6vCOsVP/fd7/Ltt96ibVt+9M6P+PSTT5kv5pwcn6CN4fr6GhHh7OSEw8ND1us1m+0WUYrXXn+dr732JnU9ZTabcLG+4Ls/93MEm8FQD0UitOHpxUfMjgSxhyyPPaI6Vtcdq9WWDz/+BAlNfCBiuLy84tn5JZumYzYpE04oysmUTWOpaoXgoH/beVEcgpGztqD6CZmXxgFQfEgAEwLWx2IJ2pi+yEIfBxgCzgXUcKiB0FEJ3ILsgMQ4DCWnAUZQVDvXPGhygzZVFAXWWTzFcP1ZhtPPfXIoB4zn6x1M/5i/XpYVRdnFNFAzhALJZIo6vRU1tHw9soa2o0Xh0+KtQg7hGZnzY0/w3qzbmX0joNsf+1EhWW15VRhPfnc38Yr740sBhDflefQyO+YfduDxpT3ib3vby/5mafVXSYBKJcwmNcv5MoLg66+zvH0bqeqoqekSipzKFrWqzvmY7ysKQjLBkukiSnBt6D2WiMQ8V6VQEs2ooihSwryPmqFIn0GSq74E79lerzg9POTkYMF0UtE0G549eYgWODk+4tbrb3K1XfFHH3/IB+9/zJOnj9msG8THLJjTo2PWbcflZouYggIotAY829WaF0/O2Tx/zMF0xnqzYVLXaK25dXrG6fEp09mETz79lBeXl9w6PeXNN9+krmu6ruOf/tqv0TQND+7d5xvf/AaIYr5YUE0MD5885uNPP0UkcLw8RqQGWkTKuGD4hqOTGUrWFPU51griSkyhWC4OcXZLo6+Z1EccHp5wsVrxW7/3h/zSL3w7OUw01no8iovra0Q8PvgYNlNWIMLah70JlJxUPZ8nuBCPhsQFyLpA28YKN1prstYWq/4MwOK8J4xywXckOUjP+0LMElJjYOyvZLS073GTeTtIjrfGQjVok30FGwaAJmmkY8Aez4wd3k2Eup5ytbrCSOIPiXhiZrDgLCloyfscVtA62kQ/iALxAfcKc7Q3VUPM787eYP955msG9pCvdDen+CYz+c9cHGEco3Ukg5ncuKa8tF/vFOk1x1dtn8nzCIKFRMfIYrbg+OCYu6+9xuL2bYp6iirL6AVOmqAxBm1MDInwISb/hxQnmDUBEYzSVKXpzdwQQgphkMQR6n7fmDKWMk+8B63SBARlPT/7xn0OFzXN+orL80ccLOa8dv8uLng++ewz/vlv/TaPHj1mvYleayVCXZRM6wmz6ZSDxZIPHz7hww8/4uLRY77+9W8yU4rXj5bM79/hEw3Lb3+D2WzK7/z+73Hx/AVnJyd85zvf5vj4mKdPn/L48WMIgdoYnHN0XYc2hnt371EXFacnxzx68oT1es3X3ngdJGZDnJ2dcH15FcHIeZRK5aUkoFQgqAJRFo9DmYCI5uA4sGRC28zoXIliivOaF6sG/+Ejfu67b1Mpxabbcrneoqqap+dPabZrEFg3W4wpeOPea1gx+ARAIYzhJwKbHwFb9BAITdsmXncwpyN4CpIDQUMGu2zFJLjMJmAPRHERdz7ymoPrZZi8vdTvTeLsbXYJ3K3zrDbbWC0m3Yv08bbZiuqN7V7jjQDkU5562jeb1cm50zqLURplDDrRCOUUlmdnO88rsIbW04hK9M5utsxN83L8DMPwcSd28uUpKr36ErIZ/ROC4eeNLwkQjnmF/jc+HwB3t8thEq/cqgej+JgrEeq6Yjlfcnx4zJ3XXmNx5zbldIoxJaoosaTkfK0xZYmIwgeH1sPKnS8hBCi0wTuL0SbGlYXhZeXaf7Ec0eAlDipN0KRRGmMgeJrVJX5W0Kwsp6fHFNUZT16c82vf/z4ffvARV1dXKC8YbZhXNfP5nGoyASVY61EEHrx+jx89u+DJhx+xnEw4OzvlzZMlb71+zLvvfoAUUCwmqKKgazsW8zknpyecX13y3icfc+vklG98821msylVWfJrv/kbuM7y3W99i9OTE05PTlmtrvnRj34EAe6cnUJw3L19i4DQNm3ippIjyQUCNirSAUJoCd7hnMV3Aecbtu2WpgmIadFG8J1HQsej6xXPL6546+4tjFb86L0Pee/hQ85OTwneUhQF1+sGmSoeNlt8UNiQJ8oAXGRez2c+bphIpiyjpg6IT+/LR490IGBSpZiYzzIAUQ9DGXDTOQbt0ydLRSA5HmL2T+iB06VSWl0qGebDAHABGWoxiqTc66EggyTyc18zyhlJWVPMVoj3AWsdSlnatsHarucVI4BrzGTC8vQsvSifrnVN6KBFUCq6y30ABy8BVb78wbrL4JZra95Q8mtnTo8yVrJiNNrnJg3w89DiSwKEN43xbYW0Mow+5636iNWXjeVhm+GNCPGh1GXFYjbn6OCQO/cfcHD3DuVsjknJ6ZbIqYjW6FSSCQRRHkFQQdDGxOwDF7XCuFCqVDB18J6JSM/FWGsJzmO0Ah+wKlL9iphFYpTCrtfcO1xw+/SQoOGjhw/56JOPub5e0zYtXWOZmpLl8pDZfA5KaNuWtusiGV5WHM9nVNMpaut5/ZtvUzqL947z9Yb2/Q/53d/9PUwIfPbwM+7dvsO3v/1ttDFsupZf+/VfI3jP5o2GQmmOT45pmhZnYVrOODk64d5rd7HWMp3U/JVf/IvMpjNef/M+3lnWmxXX16sIhHgIDiUOTyC6OwKhK0FfE8IqeTEV1m5p2w6PMDnQ2NZit2skbGjblj/60Xu8efcWpjA8eO0Bnzx/jg0BLYbH5y+oFnMCimfPL7i83OD1GZ5B8xtMy1RYIGlquxM4xgOKxI1EJC1WyQFCBBjdM1i72spYw9s/b97CB09nPV3XpTqCKa1SxbCpqq7RKsdBCuvNmgBM6joCsdwEIGH40YONoMxQUMH3zhuhLCMwXl1Fb32hNbZtaduWzndY75HCMD0+jk5AH5JmucVbT5uoAZXCovZ5PBn9t/81q6t7V71v90WNUSVwH8CTG0DzJzGL4UsGhP3L3TGJw0vLjYxXjPF++YFI8urtHDtWFNEIk7JgOZ9zvDzkzt17HN69SzGdUZRVDCkwJd65ZBIXyfubymSp6BH2yRQVpcCmYGl8n5oEuzFq8fLC4ERJy6VK8YLZpDRK07YN6rDis+fP2GzWXLy45OJiRdt0KIT5fEFdGhyBTbulKqOjB2NiwdG2oypKZtMp7vmGW3fuErYbqqrmat3hnOL5quP8o/dw1tF1LlalNppHj59yeb1BC/zgBz+irCpUNUWbmgdf+zZ/+We/w9feuI8uFJvNmuVygf75b8X7k8CT5y/48Xsf8umnj+naFmMWOOtxvsN5SUAIlZEIhH5D23radov3Foh1G0UfcHV5Be0FYAnB8+6Hj7hsWoK3/OE776J1wWwy44fv/JiLzYbTsqRUFe3lBdNiztaF3pzMJnI0dcPo39hgJb3b7BmOQ/lkYubPIiB+b+kN/XF2l/CYYQKh1/asdb2XV2tNWVYpzGqs1Q3snjEFTdtEDplBQ1JyE9CSHBIgasQVpn2D5Hx0YqHbqmC93TKta4zWMce567CdoWtbAjA9OokVj5KWy3pD8DEdLyhBpSj1gd0b68vjpWJUeeYGUNu5C8le9gFibzKP8739GeEIv8AE3rVC408Zf0qbjJ7UsF3Km8wgWBQs5nMOl0vO7tzh8N49yvmcoixRxqCKMuaDKpNq1mlMqgsXUiSo86MYNZ9yg3Uk8MnBu5AyHehLzmfhF1E473o1XxIvUmhD13WsbOD773yMbxsmOqaBVdUMrRq2m21Mq1OaxWyOLgsaa7ncdGzbKKCCsFws6ZRi23XMy5J333uPzfWK7739DU6Op/zDf/gZzaYleM8Pf/xeBOkE0EpgPlvwr/2FX+Ljh49Ynt6jmEzRWnF655DJTPB4pqpEdMCn5x6AxjrOzy8JPt6LbTqsszjfosSAOKBA/BqRDQGHcxLjAROHaF1L2zWYUlCqJLhoDTy/vObv/2f/BF14ttstP//dbzGvJ0hZYrxnvV5TVCXXF9eUh9MIaskUdD46uDIQknm8MJTTdz4FUnsZUt6D78NjcmuBCERqWIiTQI4NlmzuNm3HZttErlhHWZpMyj6iYCyt2bQe6J74fR+HmM8z0pTGC24+RgT8gYrZnUsDMAYCRVlCs6XznlJrAp4Cg0oLs9aaQhu00GuGPjjcuiEEhU0BlSoMFWvGcX7DvJUE5DEeMSST+lXwtTvPA70n/hWc5J8RjjByfNlR8uqthpFE4GUMHUgJBEnBshEEp8Ywn9UcLBac3rrF8b371IslVR1DPJSJMYNt58DE4qmS8lQhrqA2eYmVUljvo1FrYqycS9u4FBkdzXbf18QLIWBUrBGYeSMQlIpC1llL2zWossDUM1Zbx9XlFb5rmFZCaRSz+Zy6ir1CLrYt7dUaH3LVEYUYoUBxdnTEVefoNg2owGFd8vDTx9SF4p/+sx+xvbwi0usjLTxKMYJBtOaH779HMZmj6zo950BpdDRZFBSlRlLSf6QChe01bDcLRIH3hm6zioVYg1BUZ1QTTVVPYiZOmFOWMfm/aa548eIZ2sSagO06LhqYktl0Hr/bdDx9ZKkOWo5Pl2yd5ZN3f8yzF5eYoohz3kJoAy/OLymWC6yTvihq72lNi5cL9GXPIjCMyskPksl4ukaQiZ+1zsHy9FyfdQ7bdbRt24NfURRUVbUDfvupd9mGSYxmL8uCQutcOSf0VsgQFpP233Ma7HLtN43QX09ZVDRtSzWboFOA+kgy4lHUMuKR9zhigVk2LZsgOCUxiD09h5u8w/m+Qrq4JGo3A+GIBZNRsPXLiu9PZhbDlwQId5/bTcg2Eo4RWKYyaOyuEbK7ncRYwVppJtNYVv/s1h1O7j+gXh5QVhOKIhZSkKKE5BUTpVFEMMtrdCacY+HOFLyqQPlUkNUYnI2anpZYFqvn5BmaPEV1fwi/cC7GwbngkxkVt9NGY6qKzjtWm4ZL75jNFWvrwcf+IaJLCh2v0bk0QZXm8GjGuu1YHB2h1s85u31Kqw2//lu/DavnmFRBOZaLT4UivAMUjsDFVczq+JlffCtNUUFLKpMYwpAmtaOVe56/MDx6/x4hXOHVZQSZNaANPmh8oXEuTprpbI5XQme3WA+z+QFVVdB1wsWTDu/jpLzWMVSpMHPKqiRsKz75GJ48XtE1JWV1F11AMIbV1gEaVBG5Nz/kJvfmr5eUGpecA+mfJOdKkKjhRBmL03dgBGNecVChzxcPPtC5yPeFAEZrJpMJxpi+GtAOCN4kr2nRHLi1Qd3MucYhemqiaKcA7Oxw6Y92Azjs5+PGz67/riorulWHD5KyTdT4CiIAA3KwRKVmUCHlWYemYwP4FFIjo/PcPAajWSQV12aXaZXxtiNrI1bXkR2N888YR/h5N/LySwV683NfpPJDjI3ZxrGCFQfzBafHp5zefcBkcUBVTyirCtEaSeExjY2VnyNZPcT1wdg0Ur0pHsssxeKqqIAn7h+JkyjEnhzYCiKp3L73KVh3CHrN32fTxivBORsTWnUBqqTxGmNqSnKB0SRIyTsY86UVh8sDPmpbyqJELY948eI5G+ewm010AnibU1nQKlbN9iHn3kTy29RT6sUi5dDGjBejNT442k0MNZlOJr12HoJifSmU1SlNe4XnkiBrwKNDgaKiNIdM65rLi3OsOMrZjEm9YHp6RllEKuHycs3jx+8TvIAonDUgGlMtqO7ew9ydg+3onqxwlwVBz7GNQmZnMfD8bIt152zs4zRpo3mcCazMA7IX3/dSmlpvcva6DIEcigK2s/0700ZTV3UCkmFxH0/UXovbs2SiRul3ubNo+5LT47KzTaWA7HwfMj7Z6BxjDXHXbAxDgYO0a1HEjoGddZiqTOXdfCwSmy60AzSB+vCQY+ew3uK9jY6npqMRFcEwOHRIPVmSPp0N9MG/nm9vDHyj5WFEMvb79AZLyuTh81Fjf3xJgJD8Rvm82xu/UAnZhzfiSfoHHVWXAJQiTKuK+WLO0dERt+6/Tn1wgKmnFFVNUZZ4BF3En0igKCI/KOSMEHqBV6mGm+0cWjTaKLzO4DUKi0mrllKC93HCGEk17nz0n+b2nL1ploU4mXLWWnS7BbtFmRJtCkxdo4yJpohE8cnkt6TVvioM00nF6llLUGBRBFXw7MljXNcQUqn/kCaauKhx6eQhL01BNZ1yeHLKuGBtLg/mXUfXOYpCk9Pk81u72rSsty2IiXpU8NFwlkBZF4BHYVlOS95++zsslku8DtjQxefUbllvNriwJYQKCRoRQ1HNmL12l/agTF3bWqq7C+bHc9SloVlZOm/QuoJiiior7IunOBfzvmOvl7g4xY6CqR5gX3AvyVKucSa7Ezcvs84Htk1H21q01lRFialSHcpdWI17KRUXs7F8jsFxJNs9LGR1e5SjPAQXp2vrwTVX0RlrYlGOsry+bDbvOmSUilphazvqqkwKQHp/6f36ESUwOzriqGujxzuH5HSOTmI4GCl20t0wh0cY1yt84zqGYXeLXvaythzlfDhOXsD+DDlL9lbj0Tf75sLgn0p/HwkZZE1QKASmRcFiNuNwecTtuw+YHh1jyoqqrqNHNHmFSYKjtaEoqniGMCSP+0Sap9gFgs+l3QMuxEILQvS8qkTOZ7AJIcTKx4UZvJVkLSqR9gwWjpeU1+oDBYEqtLRe6HTsp+FDDLYNSB+fGC2lmNO8nNZIVbC2lqKq2LaW1WrD5fMLrldrtMSy/wHNbLbk8PiYyXxGVVUURRGLDNQTFotZdCCl3OdSp0IRPj/3XYH1IbBetYiyoNfg1snLqVGq4Pr6nMPikPPHFxRlwceffMAtuU85qSi16Se9F0FJiUdH7Vo0XdPw9N33mb91D3WywLeOi6tz2HiOimNcUNgQsBJBV6RJkzQMWuFIM8sLVyDkeOoIfCL9exhgLRCc772+Rqlo+qpYHCM9npE4R1mVZDHsI8JYQ0zCG7cPNwBBesbGROcTOUxr53SqB6l+hoSbQTBvL+l9ZRApy5Jt28QitjpWQUr/JwSDyY6cAKEKLE9PsTaG2VgfsH4Te7MoncKTMnDtcYZJGditQJPKq+U5MEY6JJnbA8CPs01uMqhvGl8OIOy1wX3+ZBfgXj0G4clcjIa+sdHB8oBbd+6yvHWbIgFgXdeYskJEoYoCayM/VhgTC52OVlMXcmyZ9LUGlYS+nl0gIC46ZlSQqPlpF8MXkvaV7yaK0y5nEyfm4NWMq1wURq8KrK57EM7XoxJXmfRAspAYEZaTGi+w7TxFLbSdjSEShyc0qy0qOApdMJ1OqaY19WSCLmJz975smDEpxTCWHgtJ09RaYX0k7GP/31FwRID1aovvtni7QptJzKIhhsVMyjkTs2R+MuPZiyc8evwYVZccHJ2glzNc8PFamy3Or2MYizdRS5MSaQ2rh4GrF1Mm0xn1Ysrm0uGPDBiPN4KbBELZ4bYbbOr45/zgGSZNOMeQbhfxKHJ0IYS+8EIgBTonDrcwhrIoeidIb76FFHeY3udYevv3y97CEQZzL28Z+ljUPU0xmcRjr3XW+HpLOp9XxveT58Yo2yXQV8WJrvFE4aRCwJ21GJNyupNjRqe+46E/XIC65vD0DNdZvPN4ZwmbNtIoOa/ev0JLy60kEAQ/KrqQcXHIRd7xDTCwAGMwfMmLcsP4cgDhDeMm+NtdLfd/DgISCykoZpMJ88WS07PbnNy9x2Q5B9HUdU1ZljFYWkcPqXWRN9Fap7psEdhc0iggOTsQSCl2fXgDaWHP3epcmiipRSJ55Y03ARIzBWAklEk7IXGF1sc6K0EVOF3iRCGikxYSCMEmAQi9UqEkhr4s51NsiGaeSR7rSVlxdvsOWjSr5+dURlPVNVVdoYsYJ6lSip8ApohVV/oJlSa/oLAuJKfO7nAB1tsVMY1ORw3MW8AxmRwxXd7m+LX7oDrmRaBrGzZuC3aFX7tYen+7jU2S3BZBRw0ch2CR4JHOMX1wH1sUUBXMb00RTAQ847BVG4FEbKQgUlP1nEkSgUXnR9d7LvNikvnDnN6mUnqlSSlo2WGWZS9bDBF8sq03ktek1cRrGpb1uNtQkSb0XN7INE6jb82ZwTzLnYr0yhhR859D2DUXRQbPc/wcItgnoVQqFmNou5Y6VGQvOhCL3BIwiZgMCVHDbMbR6Rk2BYZ7FwhNy0aBQiUKwvfPppf/vSHIUKdwb7GA0QwfX//Lh/nc8eUCwjHVQV4NsrYzcDYvP4b0OeWIFiJM6prl/IBbJ7e4df81ZodHSCqpNJlOY/nzVAk6F+3UWjBJIwp9JZFhNZdRov0QOhHzPhWxfpx1OYUuApPb01T9yFzOgjloDIlvC6TUNAUpyLswhmoyYTqpKYOj3VzTdl2vpaqkmZbasFwu2LiAKSvKsiB4z2Qy6TWbcjKl0EI1nVCVFaKlP04GZucc2yZWgD48WKK0ia1Axad+vdL3A/E+cLVyYDTr5pogNUodYv2HhLAhhMCmeUr7vOG6eYZgabst3nbUkykHZx1+OaeuC7pmw3bTImqCChXIBJECJQvQBSdfO+Xpi47iQHj+4YbCOE5eP0UXJWHR0hHzmtEbXLCx74ZzgyNKcphM9Oi7RFUg8T7aFPBcFAVlWfYcseTFMUvcyAkxaF/0E7nXAMOuJOcRRmLbA2DePQUxhkSIDfGn/Q49+O4fe985ky0FZKBi8pyJh1P9/CqLgm2zjfUPe6oiApRS0QGozQCGOgTq5Zzj7jTGjDpH5xzWOmwqz5PN/VfrbLHvSn4C+61Ex/fm0733z3EE9F+kE35pgDAQXnk3nxcs2WtDvUks1IVmPp1yeHDA8e1b1AdLiqokiGEymVCUVeShtBlyc1OIglIKh+/N2R1yVklPuGfeLBaVTMHIKhBsLsQ5DpcYTZystWqNc273pY6AsF/ay5ptYVBBqIymVJqFgfONoyyiaRzPF4HYaMNsNqGxDpPK1XddQ13X2Bcdy4Ml1yIUxIotq+0Kby3b7RbbttiuxbYxe0OCpzCG/95f++ssloeUpe6fe86HbbYO5xRPHzumh0LbWJSJ9Q/duiaE6DXOXtHN9QXiHR5HXc+YzY9ZnhyjjWa1vibYlq5r8L7FhxZkm57dClUcsDy5QyMWOzOUa4N/4nF+iz6qaJTDSIspLJI8uqSFJ/OyIKnyTMwVybqdc57rzYaAUKcqPFn28iSNr1t2tJasy0ewHJuj+wT+IAs7v8jn0D+f83WWqXwYn9WEZBYHwkiL9MNeCUR3jpcWdGNMXLy9T32kh3rRImronZJAMGuG08NDDpstbdfROUdYrVm7QFAaFQLG5+e9O/YXh1TrZl8furkMV16Esjb9Z8NZkkYYPRjZ/9PLUjEIxPCh0orZZMrRYsnZnbssT0/7v9WTinoyifUEQyyV5VxumKRSZgM9R5N5pSEGLdYgzFpCJNdJJleke0NIYS1KwA/BoHmlzi07gehMURHMxqZMIL58J0JbFtRKUzjLZr0mbB31oqII4NXA6SGqT8qfzedsukh6BwLryysKwGhFfbik22x59uhTnj36JBWHzeFGsVSYFtKiEP+giCqqSeWaTGGio0lrtlcORDFdxP4gtnM412CbDcEXaM4Q0QiG+WSJqYVgW7QumC4PKOqKdtWwDR24FmyLbdb4sOoBIi5GlwR7xSd/0KLlkK07Q5XHlIcBP+nogiM0ChZbVOGQYONzzh7j9Gwzr5uU/cE0BSb1hM75lxfe0QI2ODhk58879stgve6Z0rvCG4EEwCfQkV1NkbEpO2iJPaeWF+IEcMm439MnQqqZGR1+alTpesfbGuJCb4oCay11WSULJr7fXG4uKIPW6eFlE7mqWJyc0jVtdKBYS7tpozWkNCq4wSG49xgiRKf5lNuSJht63wjeef77wPc5yhJ82YBwNIZ1+MY/9k80R9pL4gVjWa0ZJ6cnHJ6doauqz+woqwpTFFEbTNV8vfOx6GoW9HRsl/KFMxj2/GBPlMdtg/d960QfsubHDgAKsaF2IHkw822ka1BqIMSdd/39SwiY9YaNtVy3Dusg6AC25c5yQmsdQamYC61jf95ShMmk5NI6VIo4Pzk9Q0JgWgfqquDy2XOMEoKzKPH9s+7/K7sZENHr6piXUUOw1mFM5qeih/DRoy3HZxNsp9DLKe2FxrQ/g1YWpz6h5REXl2tmckrXNszmBdfbNfNaCJ0ldA1GPMF2eOcxuqacTOi2G4KvUSxQxSHH91/j2995i/c/2HLxQlALA8cr0AZnQLRDJJZHYw9E4u9DOEhc8IYcClGC+OG+9wHxJmkch6Tsf7f/ew5nycI7AJHaAc/x+cf73+QF3gG+EVcoyA4kihJCTiHcO0c+phJFWZR9kYecAOB90nmVBu8iuJmAGSkKxWTC4ekZXdOw7WKPF9c5OiWAQgUHAewNz3BkrPca575WeNP1Zk12R4F6xfhyAOEeKToWiBvN4nTjEXDipDXApDDMp1OOlkcsz25TLRbMlgepSVKMzxOtIUQy1waHyvX/UvhY9iIapWPFjV6TMPS9KXoBzRcelXoX6POac1HW6InNpP9wg5KBz+Wc4yisuNCDT9dZNm2LdQHbOkJQ6KB4cm1R/pJZPWE6rTBF2ZPthVJUZUm7avBesF3HbLFgc32NMZqyqqiqinoyJWtGIn3CQl+wNv6u+u8DAaMH/tBaS1EWUcMKinpS4L2jo6L45mv4Dy/oHn2G5YMUguGxdkWwhxSmpNmsqX3J+SeXLI4WlDrgmgYJNtV1qqnnx3TuktAWqGrG8jv3UWcLfu/3nvLi3HJ0f8Gm3GDXa+qlpqw0JgSKoNjaIZN1x2kweg+ZgcjSN5Rf2APAfpF82YjddUjISwA61oKGv9Of4yYg3f/+phAYZBdA+mvJKinJKgl6kFs1sjr8zddh+oZiMZ89ximC90NMo1IqhjZpH6MXvEcZQzGfcXB8wqbZ0tkW5zYxz1spxATExkD0lyrVZA1vZL2D8MoUvPE+L0H+zeNLAYRh/Er3QHBEpbw0Mn+jA1RGU9cxPnB5fEQ5n4FSfdR8VU3Gahog6UW/zJf0ec8hOzYi4IZg+2169TyRlLlHcU9a5kbieqhOY1NGgkBM6UsR/mp0n30NuRBzbn1rCcFSGEGhMOJReFZdYD7VsVhENo+JDgxdGBq74v0ff8D62SNef/ttbOf6yiXL+Yzu4CCCXhgmQo5JHHvfIzAmvUnrfqGIzyc2n6oqzYN7c54+XyFesH/0PrLqmOo1Ws9Ab1HqFFPVVJMjquUMEUc1qbDKo0ooJwYJHcp2XNoa7Roun23xLgAN7fYpD3/3kkflBPFnCHM2TUP9+gI5LFmvWyppmFAymxZYH+gCvcaSNXE16vGbnQnZHo3OMH8DFO6OTI2MZWZHnkdgmJfL8TH3KyPt77P//fi8OSvkpWyVkQYP0pvKmXPuvds+JDolvcJEEZGeldIaSWE0hTZk2BquTVJ4DIgKaBP6BACKgunREcvNmqaNQfd228QcFQWogPa5FuPuGCtBkRIg+Z1fBsPdZ5+uKQPpK8afCghF5H3girhG2xDCL4nIMfB/A94E3gf+FyGE52n7fw/4d9P2/7sQwj/8ic4z+u9w7i+8NnL3bC1QlQWmqrlyju//+EfMHz3k3oPX+Plf+EXmyyWmLNFFQetiatvLr2IkLAzCq5VBqfiQI9WTtDxyqpQk8ySCkE1VTujN5JxnqpKjJRdwIE3MhJuJtMogSIj7TQpD4zq8s2gdMOIpccyraV++SeUg7xDLeiml2HQd548+o/nsI95bXVHOl5zeus1aAk27pmnWvbZ3E1lfacPX3niTew9ex+gCFWIVnBBilz3S8/Euaa5NR9OB20yxfoWRa3ThUDKhNAegSsxihpnO0PMJplaYeY2ZlLg6EKaBogjU4uHCoZsps8kRwTma6xVde42mgtbgZYWoDe5ii33k2JwL+lBxbTqur7dMXi+RXBpqrLEhfVpiX6i1HyMWesRtjDWzHS+/7LQCu9lyYZjE47CXl+zgG8a+dpnvo6/wcoP2+dI17n2f782HCPZaYrpeGIVC6RQuFFtRxKe2qyykXtESF3kJsWanSnKrq5KDk1PaTXKeWIezFqcUGI3u6B1Xw+IQhmo/SRmS9Iz2K9nsXMvo75/nUIX/ZjTCfyOE8HT0+e8A/ziE8HdF5O+kz39bRL4L/E3ge8A94B+JyNshhJsybW4cMnoY8AVqcUIQDVSFoagqvNasmgbbtmy3Wy4uLiAIf/VXfiUSxkrhuhYdUreyxNEJyYs7Ksnk04swJsac+ZzLmwKdIcbseTzOBXTKOQ4hRs37kABTIoiKUjHsZBQG4VzkIYc0udCfP5unxmh8UYAS5pMphQ4Y11JVBaaIvOAQgxZiTxIBax3NZkNwHdvVFdum4dmjz7har7GbFYvZLHKT/SQY9BUtwvfe/ib/zr/zP+Xhixf84Q/fQxCMyoUKAlVdA6TCAtA2hk3TgT7Ei2Pj36H1HUbNUMUZ9WwOVYk1BhfiezM+Fm01oihk4Lt8JzSrLba9RqSgMHMKplhnU3zlJDpDtKY4uYUzlumh5vRIIdLRdZ6mdZHb6svq53apOzlIO3I11tzGGtw+GKUPrwSzm7b/ool60/4vcY0Sva83AeArryHZmv21JHBTIimzJGrJfXUeiQt60zS9JpnDvvJxs4WU0zIJKQA7BLwxVPMZh6enbLcNjbW41Zq1J3KMOjZ/6hXxfI2RjOm/QYhhO+kvA4jsyaukwLER93nT+G/DNP4bwF9Pv/+HwH8J/O30/d8LITTAeyLyDvDLwD/74kO+bIzs39b+FkKsXFHoyIkVZUnrHN7a/sV31vLeO+/wS7/4S8yWx31grZdsGrmoHYgkcyVWhvFhLMQhlmoPsU4dSTBc8IiWZDmkF5e0P0YB2DbnJyfzN5ufYw0halYhVUtJnGQySAulwRTowlBNS0zokEYojB7xkMPE0UaD+CiA3RYJDrtdU+oOu22Yiub43gPOzs743d/9Ps2223sX8R5Xmw2/98M/4je+/7vcuv2Aspgljik+m+12y2SyiPuLRoiaYdfZuAjoKVJcE4rARja0YYVyINZh1wKtQtoS2Wh0U3AgNScLQyCwtS2u2+BdC8Fg5YCinLE4q1mcFawurwjecf7kBZvzFXJYMl06vn5s8MGwsY4meDpeBiOV09H6hSdNrbQgioyAZfyuuFkL+2LR3uMQ974b/23Y5eVz9ItjdiTcxBuOz7N3zYPX/AaHix9pVRJ5wm2IDqdMJYw1zX5fUaACokLfYiLXepwcHHC4WrPtmqgZbhsahKA1OgRwYVSPMC/7MJCE0U6CCIiys+1LDxnZzzvcG39aIAzA/0fiWf4vIYRfBW6HED4DCCF8JiK30rb3gX8+2vfj9N1PMIYil3EivnrLnsNCKESSSRxDOVTb4WwHSvexRc22ZbXacssYrPdU9SQ6KESlPq0Sg0UZtJ3eGZMDqDMKJ/4ilt6iv868Qook/ibzbZnrkMzhvbzK9+cTyP7LLOwZWAtjEPEURmGcQhWGaVXHcv97xypTBoS1Hd5aNMJyPqcqKo5OKlRRMZ3PmS0WqJQ6tfN808/3P/6ID/4fHxOU5uj4DkqlCjk+pqxVVZ1KWcXYM+88zSbgnWKynNKGWSwQUU6gmiLVDFuUyKRCphNUVRLKAozgtaKxghOPF2i2j3B8hviCEAQJJZ4S8TWb9RH3vvldjC5ZbOZ0WnFZeLq64ZmFSeLGxIVM/e14UnPMZTQdM8+WX/PL5vD+O/tJPu+/k7GG2PPLw0YvifvYxN0/R++wGJvA+w6aPf4Q9oq77g8lO1kmOSrCek9pdB9T23OJ2YmYG8hrIPgYx5r+VtQVy9MTtut1LP9vOzrr8VpSOE/q6cPufY0VIBFSv++hVuNNIzfN+rzxpwXCvxpC+DSB3X8uIn/0OdveDNU3bSjyt4C/lXfKhOcrj7K7by88hTGUVY02JSF4JpOSVbPFZwATMCgmyYyL2nssnql1Krk+4vlcqk83EOtDnmhM9EjcYAKo4InVjH1MLJdkKuRg3XgJsfl7XHFTbrDEc+SVPQO7yqZPuleVFE6thUIXTMoK46Cqq2SyR+mVTF4TnUbWe5rOIbajEMUv/ewv8Oj8GRfrLbfeeCtmW3hPUdWsr/Y5pvikXPCIS4lSzg9/C/Ql5pWCSa1pGkdVFLTtNcF3bJsNZlZRlDNmh6dUx0eY5ZzOKEIhWBPwGrzxKC0UOjCdOEQHnPXgHIoSCQVaKopqSlFWbB6v6VaKz9gwWXgO7hsWBxaHow0ency9CRpDDsGIBm8OT+qrhWcByaAhkhYkNXoWu+Er+cWMzbCXttkb+x3bbgqL2f/bq8ZYU30lqI23u+HzeL/9cJQcGK7Tc3KJDhIlfbhRv7L001ViOI3y0UTTUZMMWlPOZxyenrDZbth2LZ3bsokCHQOybRgCrW+875R6J/HQMPI4j5SQwax+9bP7UwFhCOHT9POxiPwnRFP3kYjcTdrgXeBx2vxj4LXR7g+AT19x3F8FfhVAZ08EI9PhhpE1pPh7oFSKsozN10N2MqSuc0LUyjSKUmtmsxk+mcqxx7hJaUPS54XHenUpNq4/V5pKSYNQxOorQixV3/fCIK/86WWMBAslfbR+VgZe9gS6WOMuV3HLGozE4hEimroqY6N3J2gCwefCmrErvE8VRQodg8XbtiU4i1bCm2/eZ6vAXa6ZzObo1HBnsVjw/OkjdP+ER++IJFppYdBapcyaGEfYti2zWcFkGpjOogbe/miL6NhsSYummiypDo6pDpb42lBOQU89urKsrGUys3QuXovREWib6xbcAUYOkDDBi6fzisnsmG9964CnF4Ftq9FzzaVacewKFpXChyLyjggzJZiQ4gh3yPVxpZiBlug5KlGA68HyZSHMYLmr1b1kpo60t4GbexkQ8z4967UHvvtaIQxtBnblx78EojeF9Yw/j/fZ+btEjU2LxL49eybx+NzZmskmjSiVHCexTJwKgcnhIQerazZtEx0nbUsbVHS0eEfiqfaeDTv6X39b481GVlrais8bf2IgFJEZoEIIV+n3/xHwvwf+U+B/Dfzd9PP/mXb5T4H/WET+D0RnyTeBX/+Tnv8V15TMAigLQ1lGJ4JzXWoRGYsoOO9TAQLNtJ6gyyKmsyndh4uE5DnLJG+uUBI1stRDAyHW1EtBzunBxzjl2NrTMWgTeZtMQocwhKSM7yGbAaIicBMCXhIdnEw2JdnkjseoqwKjVbwu7/pir/1IEySbyy4BjFeK3/nwEzYdnNy9h3UebWJ148lsER0JajyJMvUwkrOkTQngvPTl50UEY5LmLNDZBiUeYyZI0KhiQjAlvtCpkCex/JdyVHXH/VnFxjnuaE0ZhKfblnPlsXZNsBuUiW1Uu84SBIqDAw5mmgcHNYcHhg8uPSZAhdASPfULZagCfb3GXfkBpYdZ1YfPwL6is8tHj2ai9zHDZrwwB26ehvvHuJH7G/3cN3935IVULcePMOAVx2T/WDv3EMe4j44f89h5e6X63PSd40mmceICnsN1RBSpESM6eLyPJrWpK5bHJ6xWazZdS+s6OhczqkQFVCon1y8G5MUpfhi/j12ukL09Pn/8aTTC28B/kh6AAf7jEMJ/JiL/Avj7IvLvAh8C/3OAEMLvi8jfB/6AGED+v/njeYyHdXr/tnqhSxO01DF+TkwRtRWRWEcPDdIlx0fs+Xv39m2m8wUb52JKmgxcSb+gEeMAc5R62JPsPtVOqf5t5Fgon1K4xmZzvIlckj9yijkHOac4SRKyDCI6aQZ9WSgEUlczJYrCaIwWCBEIpZeS3BEv0QU6OVDSjYgu6EJJQHNyeMLV6prVekXwjrIsoklODgaKGTBaxXJTdVkxmUypqykmxZcFJFaf6XOu4zMKQNd2BOWI0OQJweLbBrc2+EIhlSKg8KTq2C4w8547peHiqmHuwJca3z1EwgpnPZ0VtCiefvaQ69VnnHzrbY5ef52DhXCCwWpHGVcfzrThQASsR/ygMuT3rUShU3XxnTWEgWsby9sY7PptbzBJw+4GOw6Rvln7GFRGPzOfnOmXfN4MhCr9Hu9EesAcm+avGmPT9yYts38uIxDMP1WKcgh7+0RlIL/0HIrU/yFGIqjYC1yney8Xcw6Oj2m2m1ipZtPQBGJWVKKI7FhxT/MrTrShZGvs2jfSFQOQY36/AAz/xEAYQngX+Pkbvn8G/Juv2OffB/79P/bJ5PNvQ0T6sAcj0WNqihI/6j0rSth2LQBaK4ILFKJ58+238VqSI3dUdj8MYa0D6Tw8/JGSt8urSM4/CD3nmENmkgQjovC4HSK7z1ZO3MsOES851CbyjSkbCZGU2qdyLURNELsnmCO+RqTPB/bWUqjIj/7M197k7OiAxbLm0eWa3/qdPwACy+WS+/dfYz6dUtUTqsmEsiyZTCaUVYk2hrKuKQqTskjiQuP3S3AlOWzbFqU85byiXV+yevSYUhVYUcjRAh8Kgrcx4wXhiWtpbccnV1u0DcyrAtc1KComE/CupbVTtBwyO7lDU0yZ3rrDE9/wyYsrqrLka5MJ4gKPL7Y0reV2XTD1EtMRQ9gBPK1VTC0MQ/P1wbyDGAwVF6Wb4CUDmiSzMb/fvo5kKvUVf8/9UAI2eNquI6s4A6hl4B0AZQDC3XMriRqaD57NZtPXD8ymrdrjD3c01pFWOA6DgXHa33CPIjGcLPcl0SOg7GEng6uSVNgiKzJqsHSSlaWLgsXREc31NZu2Tel3FqskmsjOp6KsiaUcI93Ow8h57+wEWr+aUBvGlyCzZJ8A2EX30dq3qw3qmEgevEeK2HHOeof3UdKUUpSm4PT+/VjZl3H7xPQic4bACJR8ZoxSbJUfg2BSFUNIDXzCEPsnwccabBn8dvaJi2heeeOiGgu8ZuIwJACN2kkEYpW86WrMSWWzegykPaDTe8CHiej46KMfI/p1nl3Dk+fP8dYynU4oT884PTntyyfla1daE/I/kdjIKpFrepSts2PyQ+KUPNtmRbBbKq+Q51e4jcdvLXY9QR/M8LOKbQg8Dhu65x2q8yxmFahA2ILhLvffmDMpPT/6gYAccXz/kPJMM6sqVHD4qqALlk83G2rAaM+Fdaw2HaUTrq1Nk3WQsVhmTPfilYEyW8jxs0/1ICO1EIsVhP5vnXOYruvLsGUtX4kgRu8+ExFsKgFW19UAONn0DeNFdtcM8cH3TZIga5bQtZarsEpcdbo3yfem+sVQ69gsfmgYFs+xb85rPWRXjflJo3RMcbtBq9wxx6Nam7hKCCrNBWXi7yqgdKCY1CyOj1mv1zRdS2uj1xilUR50cDiJVxayXcywYOSrFnLhsLTNDRr6TeNLAIRxjGFwZ6RVJ2uDpog1BIUk5EpF7kyrvmtZXC2Fg4NDZosFiN5JYxuHHXiJOcghLUTeh11eT4Z9MnsR69vFniIuAQiJa8nOlr6YqxqqSGdB06kEV/ZgBz8CTpdM2pC5yDSJhZEneg8Iew1xKOAQm6sLKMWjJ095eP6MDz/4AHHCg7e+Tl2VPS+aJ2vWYIxSFCKYVK9Rm9irRESY1OVeafospgFnO8oyAnxol3TMuAwdaraJGsD5BdQFzCd0laU6hNA4Dm8tUVoQ7bG2pene450frOP7DTVBnbC+vM22nfLiukYdzZjPY3D5lsDHbYNqWualZjqp8HhsyKlog3RF0Bpi+bJmD7BtWjobq9Ro7QaA05pC5baukuInJz3oZBkdO9cGeRHERgdbVVXprzcRP/EaJeV2h/3t0q+bzRZRitl0kuQtpL7N0QTNjeObpu1lQ0jl2YxO4Bj7R+9z1zvWSzKNkViYWI++z8cdUwl90HZ+HErFEDBjUN7jVUAZQ71cslwesE4lu1zbxSbxWkWuMOSMk0H58b105fuJTcZ2Hsz4Mb5ifGmA8JV6YH6ZgDYKbUyclBkUEghGri6kmmmCDnD/wWuYekKb+9VKVKlz1shgtkpU2RJ5lOMH981f7wMqtYdsrUu8YlrgQ+YLcx3DpFmq3N94aOn4kmcwaS3R+z2qmpLZOxnMEdVfT1ImVYzwVyEQnOu1yqZro+YahOrwlE8efgaqAIGLixdM5/NIUvuocRa6iAuMEqqyxBSmD6NQIhQy5NdWZUmerlkCfQDnhOLsBMyC5sMVwW0i4Gw6RDvwBcE6QuswtcZeB4pJSXFWoEwYTbDYCVCpEq0qrHvO4/efxfOJwZkloXqAqg+RswWzByWCpVutmZcFpYqFaiNA5SZVUChJZm9e3eivP95zfLbZEbQ/+WEoaa9HzobhKeymtQFDm4YwTiMbm6vj7UP/VMeynysiicTrr6py2Cf04kJ2fMT2BHGxzgVpm8b1ecpxMVaxcXsR72dsZexf/5gvHZcUG4Aw/rdfeEShTVqgvU/xubE17ez4iOn6mm3b0liH9SHy60rFvj75/PnAAiMSK72yWF37J3ZA8KUBQhn9d/RtBg1CNMmMSf0TYvvMTC4jmUROJZZcwBQ19x68jpfID/bcXgh92Es+X+49nIWazB+RyrYn4cqC4LzHeRf3c74HJ+9d7FEScsZC6IWs53/2JpdWqm8sFFf3kJc/eqN3rESEQGpzg1GaUhtsAmkdAoWO+5+enLFxjkKXHN++xxrN7bv3+fSD94mZIBHwcvVrncp4+VR3cMf0Dek+kMhJpuvbeW8BBM3EedT6OaFYo4pztAZdlBRFjSiLVorZYc3y3imqUBSzAqaOQIcRjdVT7hx8F+MOqY8PKU8XXD+9xjtH5y/o9DVOa4KaU1cGMYFy65jenXFnccx9o7m43nBOnigJRUL0qI/LYGUBiHX64v2EQA9y6SX1INBrJft/l33JHeQX2XlU/eK7v8/4U+b78oKdN+irx4yFVzK7Ek9iUBBSAd0kx94HrLV0yYJxzvVZQGET4wSN1hTGYMpiJ/vJJ8Ugy/VNvGOuopTlJzo0IrettI7xqEoRtKKaz1gsD9hsNjRtS9c0WIRgFDrEmNVd6zAvEKPnAEOGTX5oX2Ahf0mAcBg74pEFyceioqaIGo2EGDPonKcsYyhD51yiDGLoTFmUHN++zQB5Sbg8qV9u+k5i8UmbXmT0DieOhkEbjPv6IdA08Tc+xNxcEjg6Z+P61Wt1w+qaf2bBGWsZIdX8I3FTA3cYhSDHIeawmnlV872vvUFVT/jk4WMO5zNOjhbcOTvgOji+9cZbqLe+zvnVNU6XiC6YTmum8yWLsmRSTzCF6fmkDHxZoMcjA8AQ4Ljzl6Qcet44sDzgQ1of+OhiS+U0fnNBgVBRUJmakzt3ePD2gslhzE9VqxdoLMEKYbKE26f8tf/ZX+0dMg5ouwldCLhwh60KbDxssUjRYZuWH//W+9w+u8+BrqglmsvZhzReYrNpnIGj1zJ8n2MyvKssfzvSM9pvvFAx6McvyXMCipu+H5ui431l79/wInyfHz8ul5blNGqIu/ydCjFeVuuSqiqjOR1C9N6mcmrWRlBs246wWqG0wqR4VJe4SaWHDJN8rlznc3yP0amZ29mqlBlVYEOcM6YsWRwecH0V89+3XYftt43VaaISkgAwi1xuSjU8wFhwISs1r1iM8vjSAWG/2EnyFAcoEg8oCUBQYF3aRmKgr2vtEA8VhMXygMlynpwdebXP5ZgCQ6W9gXuLI4Eju1qhwLDq+di3o/c8Js+ZS13TstaRV+msTeTfx9pWBt8ow/FaleRA6vhE8nQU51mUJUdHh9y/dczXXrtLNa343tv3QQWabsvF1Zp3H57Thhm3Tk+42mxjzmgINFdXnB0smVcVqjA94T/WUMYhJOORG4tnEj9PhLF01sbRlUJV1JyVFXfv3OXFZ59iL9ecnp5xdHpENa8pCkdwLdoUKHHoqogJ+UYIOlCaOKFjrKcn1C7+DHFZ8CE3bbd45fjWL9/D4fGbF9gQaC4aJEcTpEblPt3DuB5hvN+4eA7axa4pPAbADDJq71nl7JGB36P/+75Xdv85M9o2g1v+LOkCs/xk7SwD+avAN3+fy64NTqMY7hQTA0rKdHyb+O6u6+i6LpnSbWzF0LRUZUdVvpyOOVYQxpYO/X0MHmTti6jtaU89m7FcLtmuV2zbhm7b0gox+UAJ2sdGYLuGUM5sinc3BsR8z583vgRAuMs15dELHhJLS6UmS8E5rIvhKcYUqeKL4FLZJSUKI4aj49MYZxhi8/LgY5tGn/i88elCyKbzaDrEGRInX+Yueh7Q9R5lIRbtHZPXA5jkCtfDPeW2kcPnZB5L5LW0qOQcijVuKm24tZzz9ht3eXDniLODKdNpBRJDMi5XL1itN1ysrrm6XvP8xSVPLjfce+t7FEpxMK3REtgYob1ccbKsKUtosik+mpBjYQ75weRPQqz+0rVYG7XZ+Xy2ox36xEupUjM/WPDRJx/jrzYUQXj09CmrZk1VT/DBc3LnjLtv3I/tQssKinJoA0lMos8BJl4kEWVR/1EhJiRkUDJaEO9jWqDv0F2zA2CZgtda9WyTZGBN7y0vlP277xeIrKDLzrPaFeHQ0zPASIpGmtorxj4H+RI/GMLLgDfiBF869ghMh69285J3txWMVmhdUpYxLtd1lrZt8ZsN267j8uoqBtEbHbnUXPCDwSk4vpdAVscFQnScqOR4IwR8UTI/PGR1dckqa4U+EFI7WeVdVET2OID9p59TYJNX8XPHlwAI84g3HbVBkgkca+BpEzvOdbZDZbBJZrNPfJx1sdp0zChRnN26R5snukqq9oin8d7HDnbk+Z6mYALEnpXIkyULnY+NviHW4tM6aUqJaIxhNTlS36VeIANBvy+3OgVY23SuUguVrnlwtODr9065f/eUo6MpiKO1LevtFc8un+Kso+s6VtuGy8srNusNhpKD6ZzTN+4SDg/REjieliyM5/3Vc1g/pz66jVKKy8sLKCaIKfpacjvhHYz5F99rxBkUYrxinvLRPPYUqCJqyB+8/y7bF+ccGcXxrWMm05rOb1kenvLk4RMK0eiUptDzdioer9eKRCG4lA2UjcBB7ntPbWI6VH5/we3p+HGxKbRJ2ly0CqJzKmuacZFFBNHDIjU2l8dhUfTnH57Cq7SSl6iGsdY91saHDQZAGwGsD0M3u32NMh+35zFfcS35ecRUzgzCGfxzrGVJURS0zrHtumQNBNq2o21atNbUdUlZVRG48rMR6S2mPl5R6XjGAMo5gg5o46hmU5bLJderrBU2tKJAK5T3iBuDYLxOFbKFlb4L8Z273ad34/hyAOGehjby66F11Ah9iOEBmggaQmzFqARaF53seQUVJcwPD3B9I+lMYw2gpog18QaAipyD782vQTtwibfrnR0+x5+lF6SkjyvM4Bn5DaFHWolBsePJo5I26IGpwBtnx7xxesDdW4dMZ4ZNt+XFxQUf/eB9ri6vODo8xLuW7aZBoZlOJhwdLPnGa28wn03RRuO85+n1lk/XghYI2xWtg4kRWhUh4PHDR3hK5scz2q6LGTM+Vg8J6bqyQ6A371PmTDaDYjhNvhOIzaNuoRdbbGnpbMfB1HC2NNy+M+Po7m2CmXHdLphv4fj27Rh0q3UU5q5FlcMbGeqNxCDa6CKS0TUplAS8ShMkEaiRqE+wlC9Nhkk+hLmA3a44evRfc72u2Rx+m6KocN5TmJSlxHjhGqiMXmwzl5s3DHug+Tla5E1a4pg3hJF2SM4xpo/nHF/DTgTC3iK2cxbJC1Z4CSz7uTM6Zm7ZOpvNkBBiy04bKair6zWy2lBXFXVVJmfTsO8+WGcTOQSPeI0qCqaHh8wuL1k3W5o2coVO0ryQlFI4AodhLg/vOC6IL3fI2x9fCiDs44/yf9IqqEX6Buydc5EXUrrXSmLtgPhoiqKg67q4nyqYLQ7xnlQ6KAVBh2g+RfZ3SLXKdaOzhzpeVPpbWt2y0PjsKMnb9y8930wCxFSTP55jCADo91EqxkVqjSh4cFjx3bcfcLm65g8+/DHPnj7j8cMneOuYTUrOTo6pjwtOTs84PFhQVTVIFM5t2/DJk894fnHJydExxXRBCIHHT88x7TWdXXP54jnr62s2znNxeQkYDjrPZH6ANiZqyEmjMGmV76vaCD0IWmujNjheuEQIXthsDRI0hVEsF4dod0A7O+KxXfLs6QylDc21Ylqc8azz3JkrVFFEztZuESZ98o+EqFETYr53wO80AQ9ZbhKXTJCoQYrCu/hzaPEYwS+2bCVhpKBdS3G9Yn55zSfXH+DKGdfX13ztG1/n6OhohHHp/SYeb9dgy+Y3O+p+D2q9WMQM9qy97sh/5gFfQVPkkRfwHg72zjf+mbca/xY51+GYOyCaj5q1SlIVmnTMMvV59t6z3W5j0LlzbLdbmmZLXVUUZdH3xY4JCTELKgkQaB2LMSiN0oZyOmVxcMD11TVr09A2HU5pUAHlLTpkuorRdScQzNo6Egu9/pnQCCHBfargkgS+MHEV8YFYnimvWJLWAollx0VyvJsGIqGs6zrxgaEnscelhHK5pd5RIukB75Ex45ae2WMMgwd5iJ3a5ZZgl2fMjh+F9BqVAkoTm6S/8/ARv/OjP6JdbSm8cPdgzs++/hZvvvWA49NDiqogeEfTNjy7esHT957x7Pw5QeBiteXh0xdcX6z4t/7KX+LuNxdcb9Z8/7d/k09+/EOCjwVrtdYs5rP03ITlwTFd0+xU5RYROqUoGPKfY77nwH3mEIwcbxdvVthsG1y7xq1WkautJ1y3BRddh7+4hPWWs7M3mCynzOsyaiamBNvi2xZjW1bblvX1Ncdnx5gilYVPbyMziEpkaPadJlrWYLworB+0vmzeKqUwRg2cH6DqBZ/Mv8vj9VMWx2dcr7epBNi+tjZAn2RH10jz6c3YsOv9HSwGtXOsL/JwjvfNY3zO4H1fG7BH9hsPApC90jkGbzdGd6zJ5vL4We77RX70HLXWTCYTQgixxmAbtcTNtmGzbajKss9hz1krsYJ69AoHrVFeobxCioLZYsl08pzVNqZIdoTIFY96KoesnoSQaJHBgdhrhZ+Pg18iIATGa5hOarloE0NjwmAsEYhVoxmJaMju/MgP+WQaiQx9XIeyWYP50PdOSIAmPUgm7ihlfeyYOHnuZ/J5ZG71CuUOX5Nj0dK/zMf1ga8OI5qvn97hzV+4xb3bx8ymFZ23XKyu+OFHH/Di4pKJ0Tx6/IT3P/qQFxcvcDYguiBIQdA1SjRdKh7xZHXFux99CJ1NpdEDqSoiOcD76dNnLI9hmiamJoKMs7bXWrUSCB6VzMuyLNP95f+QFhFH013img3VRCiNYnXxgrLyFFqxev6Yub7FjJYX55esNx0iHThLQcB3LdX8CZ9+9ClhPeXBN+9x8voEF2zMf64nCRjj+RTJW49Ki+Ggo7md9gNxQimJNItWgkskoyoKyntfpy4PAEVRT7h15040BfNbk11Q6j27e2AW+v/sisJuPcKBbvlJwPCmMfZ8J91h5xp3j5u4wCSfmlxxKaQ5tHfwPVDMwKlGSoL3rr+G2lSYFELTNG20TpqGpm1j1fhiaAg/tp5Uql+otKaazVgeHHC1vmbdbmk7S5c9zaFLxX9Hcy8MzzS+hyFU6vPGlwcIZVihJEQ+JzozYuoWgf6FxlUuhROkBu19kKtAazvazZbqIK8XERj96OX6tLLsP8KxIN0kXDJaj/pIfT0KzQmpqXji3HIO6Pg4SilsNq+9x7Yt37x/m6+/fsbF9RW//eN3+PizJ5yfv+B6u6FttgRnqYiNcEKIWS3OBXzTgLRUFcyPTlKKXbzH2OCdXoh7XjNAs92yWm3wKIwu0FrhHdF7rXIArCaI7u9dKYXtul47Dj42+FldXqKKCUUB4guUFi6fnzOfzFnMZ8xmMy6qAruCxTJgneLo7BZlqQhthw4ddrOhWMzwDdh1yYP7Z1RzTdNtY5xjkFjeXfyNAc2DRz6MTCffqwoxli7lAo9WJdGGxcEhznqsddR1Hc+XtttXNPYBbGBEbpiNe86Vzxs/iWc5856DY+tlU3wMsuOwsAzefcziYLPfaIaLkh3wkjQ/RXQvQwRSlo2gVY0ri5iq2HWsNxtUI9RVNTT7Sn1OSBSGVppQFEwPlsyfP2e13bDtLF0gZpukBW+/k93gyswL8fiGbh5fCiDs8T3dixahNLrnBr2P+a9ISiCXKNiR08imTuwjEryn8x0PP/yI5Z07RDU/1X9kD+j6C9iLpO8dJbt/H7iW+HKycOWK1v1qm0w3NRKivF8I0byI1+Rom4Z2veK3Pjvnv/qd3+Xqco3tHOvrdTy1csxVy7SIfIH3niZ1B/Mu9ADg7BXL+aK/xpjDnOhQkdQfIpL3hS5ZLOfMDo+imZuCZmPpleE6478IJoLHKIVXQttaysJguzYGeG9bjJlweDBHHLQuUG+2HByfonxgMplxcnyMYDk4mKAKoZ7PKQuDdh5si3Qr9MERZ2/cA+cR6VA6MJFyt6FWiIuND8SCBD7EorSpTcL42XslpEx+lNKpBH2UtWhKq9jgXjQ60TD7xSRgsBZu0uTydBxrUeNJ24Pvn3D0TpeUdTQO487/DaPtRkKd/p/pmSy3w+K+H06z6x1PspvPE6Q3l8dhMtH7HDXJwhQYY2jbjqaJvUrW6w1FYWKudbIyxv+U1kxmc+aLBZeraza6jc7PqMKjvL3B8k/pjZIrV4eXN9kbXwIgjI+6X3FCAjmlsEDXdTGdJr2RvELlbAiQUcEEj0ue5X/5L3+TN37me9SLWYwlRO080Cybg3DtX5b0P7NJnoOxo0KRijUE328bg7tjvB0MgnWjFiGC7SzNZk3bdjzfWDYXHfdu3eP01innz5/z4fvvwuYF87rE+pb1dkPbxIDXYUFMGjKebrvF2tiMKaYFRuDItfAimGje/Nb3qBYHvLi44OEH73GwXERPeEyYjhMnpRVqlbRgH8VNa4MxsVp3cDYm8KsIxieHE7Q3BD0BrxAXmM80d45qZssJVQliNGgDuohPXYEuClSxAKNj6Iom1sJVkSPUpBzXQMwKym8smW2IEFSuM+npXNIaR3JjdKxWPp7g+WXEHvV60LQyh9HzHGOxkJfeZ69cZZ6NYVFUIxl4KWYwfNH0pQe34KMXNV97SHZxBqohBW1Xjc0MRi/O7ALg+FnE95E0/eSAyLKew2LiJqrvJRJ5u0hThJT9UZghT73Lgdp2zaSOpjQ6FQ0OHnEOVRbMDw6YPX8ePcgu1isUpSKdEQID2zG2zoav1Bc8ylfUHP9Xa+SHDam4gtYEbfqqKMKImE4q+xBgOwQx91U4fMezp5/yo+//dlrJsjk7DsocVlYlvAxWvVYY6JxjvYku/raz/cuICe6+L7iQy2fl/aJqP/CYuRG2tS6lNzlAoasJ9f3XeO3n/wK3vv4NQlny7MUTtqtnNM2G51eXXFytWK23sZab96lSsZBfsRYdU5mc67vu+XTOXRMtYKqaoDUozdHR8Y52kBeTPmjc5UkTehW5aRpcnsQheq5V8IjdEuya6VTx4K17bP0F2/VDCt1SF6Rq1gEtscimpMKzQSt8WRBSSI4i9jKJIJtMJCUxK0KNtLlsvinJFheZNIvH6XX41PclHn8MgnFxG2X7ZDMwycgOSNxgKof9fzKK+/P+Jbkajxs9vSNzdPiSnusbm6zDlSU+M7x8gYMZnOT/JidM2s4n1MzzMT+PfZObEPr3HxWDuG12JAYiiNV1zXQ6ZVLXKBFW6w1N00TTWKnee6xSC9DZfEZdlhRKRWBLyQVKYtxAlvZ8xcJwy/6/5S52P72RuUGl+lJBrh2VyMcjqhi9oOyoYAcEQ4hlsiTA5vl5NAdJkUcC+FFQaj7vSCD3hVOUit3tnY8Tse9LkmLEcl8H72P1l1QPUCeNxAVPkVfOsFvwQUQoJnMuJXA9nXAoBfiGH/7gX3L+0fs424B3eOsJwZFLfDGqBCMiLGYH3Lpzn3oyjeby2LT1IcYTpmtwIfDpo4d0olDO0W02FDrWGMz7OLEpWDPby4acgbHabnuBV8nMr8oSwbNdP0d7KOqCVkqurl8wn8EHf/Rb/Owv/+uAGYFMziSA7M6K2lvW2GS8VgGxFo9Xyf2RtUMlo4DrOCkcOQ3N9xqS0WaIIxR6ufCjCZ7jPPehS9JTEEYFUPMFj97n/ojRAkOVmpvF/ouBMoRYEby/tp1riGcPPiQnSmDsBekV21QsY/DGDsfP2U8qKRYh3dArFdbRfbvg+5CZvtJ2BknvY1uNMgayN21L03Y0XUedqhuhNd5piqpisTzg+cUlldnSNB0WhSiNlsgNx8WmT3UYxZXe/PzH40sBhGMuQqtYVssGj7c2lSrPBOuu9hiCR0IyXUM0F2Pws0e8YjZfxIZIabnuU+JueMP7qzIwvFQvaF2klY8BkHx0unRdx8VnH2Aby+HdBz1HFcHR91W0M/B677i6POfp++9gNxuwHVJVPK1qPnOWpx9/gLcteIvk2EeypjP8q4oJ9+4+YHlySkiVP1rn0D6k56hTtgYxayJEx9MnH3+MF83pyQlnt29Du6XPtAghPjPf4ZzFdpbKaNptQ2dt7NxHbB1A5+LKP52ARI89LrDZrNkoj1OKTbB0qys+/eBdXvvmN2KIk0TOFgngugguyuSXG0urxZmJRw0aro+g2cepKyDEFqCxEVecyC6/Q6UQn9LrUj2+saxlyPPORW0jB7xnszH91/cgklGF/n3mY40Dem9yXIzHq77P+71qn3j9u3nsWU3tr21HtNPnsZmfBVsyFzhSGNPiENLfeu6zVz7ijY5BPRa6TdEV6dnl+1BqWNBMGZ2fTdOw3W5ZbxuqwvQ0GKagXi6ZTadcb9cUXRcLNajojFQe3AgEh7dzA4V4w/hyAGEqgaQkaVJKYW0XS1ylB9W3wuxX2Ph+XYyaJn8ZIpmFUQXHd+6OMkTSJqMP49/HoweskWbVTx/ZI40DXF0+5ekHP6QQRdtuOb7/ZmwpmszGsix7Qbq6vOC9P/wdwtUzFkqhJPZr8OuGF5fP2Kw3uK6NYJ74PUXUYrVOdQ1FODo84e79NymnNc4nftTHJHmFoFLVYDdquh2CZzGfcn5xhUXx1Fq0CNPSpPag+RlmLzfYrsMBlxeXXF3VlNWEGLScTCIlVLMp262ltQ5s4PHjx2xCjZYplyvLG7fvoiYHvLhYpXetEFMgEjBsmFY1IjNMtQQ11lpC4qLie8lFZxHwXvA+msgoBcHF0mwBRHQ0p0RinjJQFCqa2/l/kjQJEdbrFS54SlNRluVQwFSkL467C1DDJMym4/6EzNvulPT6gvF5WmOuqpQBLwct9zTm2OmRkK7XVNMzQ7JimO8j7JwjbisDSAo7zqObA74lKTA6pbvmwifxLz4kYPWRt821FLfNlk3bYiTViFSKsp4wn825uLpkrRoaZ/v8YyOp1e5P/DR3x7/6QJi1gBALJoiOpqhL+bxqVCY+r1BZb88amyRhzVkfWhTTesrh7dsj82d4iSEMXeteKjm/txr7xLW54Om7B4ekoAt4PE27pQsaZUr800e4k1tINemrUGeSefP8Ee/9/vfZnj/DKOFSRZPUi6Z1lm2zpetsSvWLZb6yQMULV0xnc27fvsfi8AgxsYeyTVVvnAtsmxbvPM62SIqv8y6W9/LeUxhDpQLNZoNTJlXUqfDWgfJDoHh6TiF4nMCLq2uePZ8wn3vmsynXqxWz0uDawMWzc+r5YawI5AIvrtbo2Sx2s1OOhpouGNadBuew7Yb5PMQ4s7JDmQLvmwh0krUx6Wvlxv7h2fMpPVBHoj4hmorNsnye6DL22kuquagQfKKe4n5KKQ4Oj7C2w7v4rmJrh1T+3sRSZYMJPZhlvaSI9M9rLGN/mnjBfIy8v/MerUYFiQebd3+n6LTpv5DefO5tXnKCgKRVJj2nMMyxOJ/SudIcyf2tc8WkzIH27ZWSwpC58Bx/uKN5AlVVoLWw2UCzbXB4tIJQGqbLJdMXz7huNpiNo/VJI9TR+dbHN+Zzjp/H5zzqf/WBEHqmWem4ujvvBlW75+yGwOhE+8TWmyNy1yeT1SDcv/865WJOFxKhm4RKax2BIanxOb0uc1ND43UASYUiR2EGqfdxjFWLQFVPFyzuvUHwju6zj9lcXVGZkkCuPdixfvGY9//lb/Lk44+otKGcTYHAZrOh8wHro/NEGYN30RmidAFET+1stmR+dMR8WjOZTCLv6WLwuHUWZ6NGuG4sF1dXvPv938BevYi5oc4hwWO9sN1uotalYoOeZn3NdbelWMygiJ5cFVIOtHO4rqOe1ry4vOL3f3DJdFrxS7/wc3S2ZVZotNKUqb1lzvh2ztGs18wnZYSLYHG2QQVFoRWTSUlVFuhSU9fH6LqKDrLkQFERUREdxVcgeYXZmYAxW0fFNxgktVWVRKMM1ZhFhMoYjCTzOeUm578pBYUpkGLg82Lx0g7bdWy3WwJQllUfY/mqOTcOd/lckf8ckBwHIPe8rfN9jcB89mzR7DhPXjpmuBEv83kQSWFIo32jWj2EhaXnse/1Hl9jfzzo+cxAjq+NSo7Lc4s4L6qyBB9omi3eRTqnms+YT+ZcrlaspI1eeKUQ5WMxhjBacJI5P0T2vnp8OYCQSGUpLQQl2Nb2vEf8p3rgkqQa5uKmcTXTPYmtgFIXfO3nfwGX84k9BB1fQa6kkV+yhNi3JD9In76DCIY+a4JZIBMBPPwuVGXFZDrnenOFN9BeXVAsDyNYi3D94ikf/+B32Vxdc3Z8gu86rq+vei3DJi1GRMAL09kJ2kywhSK4lip4pidn6PmU9foaJdvBRIIUXB250Q8fXvDO//2POH9+gShN13Z4Z8m80mazxRjD4WKOMYalgcW0YDkt0WWZwh6k58BCgG3TcLVeczCvWa03XK02HM6qWHJLYriEKDAqLkYBOD8/Z3F/iSk0d+7e4uRIURQqmZ0FItHU11oI9TSlVQmx2kxs0TpoG0nTkKFFKsRc4qCytiMQFNbHxTTWkfCJ+0vVchJnuAtA2YQODFii+kUTwHnHZtOkvNoGk7TEsix7iyLD3tiMzGmc4/FSkP6OPT2A4Bgo82edwn/Ib753fgz30iNeryBJr2hk7TAfY1Aq96ygkRbXA38YqhONtd2dMJxMB4waQvUUVnDDh3w/xlBPYrhOs93SpVCaaj6nunhOabYxhU8pjMoe41xwgdGT+GIw/FIAYTQz4wP3JPJ6RLSKVv3Ddcl0U4GkNapk8gSC8xjR3D6+x9Frb9E5n3qYDDnB/QskThQt0scY5dSd3pmSuLWcVhVB1adm8oOKHgBTVhRtgzMl3eoC6VqCKbC25dEnP6ZbrygUaDyLxZQgjtV6AyH20hDAi2Z2dhdRkxRi4/HO4PwWub5kOa3QRRErxqTUPEIsw75ttrTbNbZd471nOj9gcnrGxTvv4JqWWV2xmC84XC6ZVGXKCa2G7BejonmCY9vGsu5N07LebLm+vsYo4cV5zOV+6403qPUS6YRZXdDZjtKUNO0W30KHx/kuHlNrfv/3/oBSd0wnBaUxzGZTjDFMpxPe+NZbsUteEmSxHhUcqihi6ETuY5vtNiLIxRTIPNUjCIYQsAkwrBssChGJwdsSF6Z9KyqbbREYZAebENDaUJaByXQK0Bcxvb6+jmZ3WWJSZ78oNrFdxE2VqWEfLCUpbUMYSn9PafhkHUXQpdeEdmd+SJi3GxcbNx241fylBOk75OVryuAVW4fafq7lv4+3ySPHF+YYTO/9TnOy+F1ASao8059viPMsq5IQAtuNp/OOaj6nrieUmzXbtouKgjIo8b2c5EX61Zrw7vhSAKEKoE3MK46azTg3cUj5Avon0PfWlVTex0cPc2UKvvnzv4iURVTFTc6TTCtU0gS9j/t6T+Qg9l5wDHVJTdgTV+WzNkgq15/A0LlYd7CsSmxZE1bn2M0KZgseffIez977IUfT2NN3ax0H8wmFiVpsdmQgMZ2o8w7vOoKLwqqLAgKsr66ZHRzgvGV1+QKjFN12Rde1eB/73Qbn+jJii+NjqOshnEcbDg8WlKXGuo7NVYNzL1g3FpueebxHi0gsPOB9oGmjaa0IGCXcv3e7dyTU0wrREWysQJs0WxeIvSqMBlE4J2yaCRs34a3XD5lPhelkQllrnl+eU3QrTKkxpsJ4i7MbjJ9Q6BmStKD4enpyJHmaY5EFBcRm0ClfPOXCSpIbo4WiMFFLHClNPdk/sibI7yT9ns/oQ4jd7JKmWFVVbz63KcdWJc43corRlP1JRp/7nuU+MYGZ1h56Ecdrz4t6xsOes2bgKqMSsZdEeoP21x9333GSNM2BM6RvLxHwkcYKA0jnkflDpWI3Q5XC4QKxcIpKlItS0jc6U0ooy5LgHVvXEQpDPZ0yWV2zaRo6H3AmWRDe4ZAhjnV4mZ/7jL8cQCixACtC38lKUoT/OKgWMg5GZi+ukrH5UHCBLcLR4oQ73/oOtjcH6PeLGRnxJYcwqnCb1QE/kMHe236f3NdXeuCKgdTBOXx68eKhNiW2nrAKjm71gjWW808/xLUbfJ2Kx/pA23SxQoeSFPCcr9LTXj5HJkds1oGyKBAfiwX4ELh+/BkKS10W2NbSdpvoIOgrY/vktYuC9PHjxzSbFcF5Lq4uad5rKOtJLLNVmFjZx0Zvq1ImLTiG2hQUqYHT9WrF9WqdJpVQVhOKooiBspOKoqqoZjPWjWV2eIBrHKbpqCaGLkboUs0PKOsDjm7VnN2eUBWOoAUbHIo2pth5QSgRCXTNlqAbiqqKPKHEDBN8DJwNIbVfFYVKdSCzRtglB5FWGi9xommlIxBKcpZECRuEI3PRiX7pvxtpH0Ovk36n3rtcVVXsDd22NE3DZrMhBJhOJ5jwcq/jvH8WzLG5Nx49CGcHlhofZ3wP+Vgv3VmvbbKz5bgYQ+YKdxcFiItGkTN2RpxqSPmqY+zpTeTh4kYcZ6yWE+fTrskfo0AMzkXKoShLuq6jmEwpizK2lHVdXMCURslQLi4tH/3CcSMRmsaXAwhTyIwLYWgfKDnMIRcDHXcgSyuiqL5s+HbTYpThjbe/h5pOY/Po/l8gZ6JkdToM63C2KvrVD4b0oRxbljnJ+GIF50IyLXzPKSqtKadTLgXs+op12+DbDWcHSxBH21kCkRyu57NB0xl7G7stmBYRQ1mVFFWBsw1eCWF7hTKKpt3GmKqQWyUGwqjqclkU1JMJzeqadrNGAbP5gvnhESKKo8MD6uUUay2r8xdR2zNlysUdsj4IKf1N5xqQEFzsNFbVddQGk+ZnXGA+L7GlQ54GVts1z6+umZmG1+/OeO21mrrWLGeGUkowk5jdglD4DtNcoSYTVFUjJpYoQyvCODMylTILIgSvQDxeFF756EkOAYtBpabiyiU/v45xj6LCCMjoeejMh+XRy0KeYDt8300aVWqqbgxVCHRtzLFdrzdst1vKsoxhOcmpNB5ZYxsm83j9jqDhchJAvrI9ABKBQZMMe6CUD5hBb1cpHMu76uda3Cn3SBm0uFxrMF2xDNkzfREO2DGVc/xncDHmNxp2IxM7XbfWBrzvuddiUlOUJWVRsEmRFCT+Wo143jzF5XNAEL40QKhjBkcugppXDDUQq9lRkgFsnPOLxPSeaT3nje/+HNbHAFqC7D6wkF9A6I+ZZaRXtHsnQeJltI6lgNLfx41q8iShN0MEihKKEttumWtFVxYsZhM27QZpYghI21om6eX7tus5KgiI9wRrUSr2WxEjhO2aqe5SymHSaNJKH5JZlD2LIQSW8zllWTGZzZjP5hwulxRFSVA6ZrrM6hTRn+q/WY9yTT8BIm8VHUHWebKvL2ZjEAOro5o0Snn0uLbBBJWAeMpkOuH2cc315QvWLy548uwxB8sZ9954g+nxAb4o46zsFKq5hu01oa4gF2vNzyQLigzB1SE5wjQp6V9FmqPzsdGX9wqX6BRtFIXJAfn5f2Hn2H0cHezEDmbZyfnUcdtdfqr3DyeZKasS5z3G6L4hUtu2KKXj4pb4xDH4yXAIcg5xHs45jDE9n4jQy/HAFeaZIVmZ3XG4jMe4v3Ev5+lp971IRk6QHI+5783OJvsY1PbPOXjPBaWjnIxHiKYZyit8MqPLsqSoa6rJlHp1zVo1sdNdCq4WRx8P2fOFN2jU4/GvPBAKQ4011+02NVJK7dxeDo/xELU1lSaCd2hRPHjtLYqDZex7kOLKItDtmkEZwMagmM+ZvclxWxWzJdL2/UonkjiOoX+x8y7xMrEgqbvcclgVtHVN73CR6FV1qWtYdPIwAlVALCF0oCaJy1sj63PKeUlwMgpNiCv2kFoYJ5FCOD4+QhnF/OCAyydPWLcty7qKUyU5WRRlXChQsSKwyl3t0q2HIW80vqdonnfOYa2nsx1hx+wL2NUaawXlHGd3b7GYl8CWk7sP0FVJt7rm/PKcs9v3iB6nIb8X51Aqexbp0WYQ9Xw1o/VfYrGFlGJCJ77PKsmUSgiBypioEUoEiXFK7o7nM/0na+qSEa+Xj33Y2lHORqZg1NKKouhTF7uuo9m2rFcbkKgl1lXV82f5kC9pjOkd95Wf+5NKL4u9kRjGGu/uNe5ovHugdtNwLoZj5Zad46LE+3zcEMFBf/8IfWuM3XOMNEnyHE/l1ZLioZWKmuF0QmEMpdZsOxvjI5VG4YaFY3Tcz4PCLwxrF5H/QEQei8i/HH13LCL/uYj8KP08Gv3t3xORd0TkByLyb42+/4si8nvpb/9HedUTvukidWRu+gDOrMXl1Yes/cR0KZXMYkHFMAug1BVf/5mfJ4hQFMXA+TC8+HFs18CPxM87DzGZ0tErPXztnIshGz4GO+e+sK6LqWjOWlxrU/XpgA4+ZWzkLAyFF6Ej0Fo3uoYczpOLwXaIeLp2S3t9jjiLFjUIWdpnqHQSzSfrPVobDo6O0MbEFENRuDBULgkorMvZ10OIjPMWa7ukwbTxvpxNz0xSXcEpzWbLZrvd8Yj2YBZi8HMlHlGWs9dvc3D/AcVyjqlrzGTO197+Didnt3tTpoe4NIl10kRVSriPmSaZn9L9AtmXckqf+/p8IZHqfTgOlEXkkQcNMy+AqUhGthdlcC7sdf1E9V/IPg6MNPqXQSb/K8tY+my5WFAWBW3bcnF5ydX1NW3X9aXQ9idz5tiUVnvnlF5r3VGyAoy5wt6pkr4Y83M7x0uLa+QK81xJ4V2pT0lvxqd9+7qVIfQOtOFvw3vZ0T57HnLUC3nvWYlSiNYUdU1RVZF26FepFN7FH2/8JBrh/xX4PwH/0ei7vwP84xDC3xWRv5M+/20R+S7wN4HvAfeAfyQib4cQHPB/Bv4W8M+BfwD828D/+4tOLiKgdArGpRfu3lRJPEUew+otee4RvOfo6Izl3XvRRAr0+b7jkYGkL/Xe/2F3xYxtLh3WdQRiQLNIzNBwIZfeAmu72OInfxcUwXZUrkNVBSo4RELqjhZXpRiD6LG2Q2KNq+EyfCCIR3tP17a4rqP0HcbEyRu100GDGcwX1TeWP711F1WU6EJTTyZ9IHnw0bRAhOQzimWOUtZELnaRw5QKo9EqlgrrNhsW0xldtwWidpOLbeYbiGnDLb4V2tZxfbXlB3/wLjRb5lNNuV3DxTnb1RVmecTRvdfzowefHBHa9HnZ/TvuF6qBCsm/h6T5RQpEDQCgNKJih0EFlEWRYgJ9b0Z6cupezK81MkzK0Kto+Tl7NEOB2qwojr+QMA7r2O02NwadojTx3ThP10Zv8+XVVcz4qSqqqkxyK+mdJw04UxAjjnAHzBJFM2h/YWeRH3bdhdrxZyXZMRJwzvZApbTuaSuSxgYjk5iht0+OvcxZXvvhNZLAMDqdA4SczSSgTZ+Kp7XGlCX1ZEp5fY1ptjG6QQ0tP2V0z180vhAIQwj/PxF5c+/rvwH89fT7fwj8l8DfTt//vRBCA7wnIu8Avywi7wPLEMI/AxCR/wj4n/ATACGQ+J1caWb35eayRs673nGRg497E9EFbr/+NVofKJNAK8mTKGlN3qd5kjvUhUGg98oXZRNARNhut9S1AA7fbmhWl2y310mDshAC2uWc4BgnWIolKDh/8Yy2s6lEfkjnjxLprEOXxbASZ5EMUGjBS0dwGxaVQhkSAA+TyvpoXgcE52Jfv/v3HnB4epsQoFSxy91iuYwAnLIhoqfcJXOd5M2TXtBzBWqbBT7RC6Y0tDY+MNu2dLbDdhsW80lvinrn8Z2jaxsaV7G9uGQ5K6CwaAnU8wnBeprtpk+Viq/EQdL2ROvI+WUbsDcZR+CY0VFB8IJXMY7UEuMEc866TS+4LsoEdKmmYQbYkBYmhp/9RYVYINiRt9vj9GS4qihCAzpmDSnL0H7snUjyONeasqpok7d5vV4PzpWqpDAaO46pHcT5hiG9CZ+DrfO5dtiF0TXkOxibs+kwOOeHxVGp3RjbFKie723XiZIphSzr9KE0QA+OpMU5h6HFY4+uTcVe5pPpNFIMSsfcY6Vjzrh91XO4efxJOcLbIYTPAEIIn4nIrfT9faLGl8fH6bsu/b7//Y1DRP4WUXvsH0pO6xkMkLQqjpwaPvgUXR+Fua8oHAqObt/b4c1UX404ekAjr5hX7LxC6R2+bX+oxFVk0/XFkw/ZPH2EEYNPmmfGNh8CjXds19do36IJzGd1NC2cw+hoymdq3TmPYZ+7CGnue5RvmRgPKXTGdi2FMQkAU/qXczgbKIuKB6+/xdHpGdl0K4qCmSqYzufYroMRhxPrIEZtI/OVSiWaQeUnT9QWXQci6XyWQmtciM6SQpuBU+wXMAO64uJixcH0gPlsjmHNZDLl9bPXqIqK5eEZrbXYIKB1pCC8oILGKIPzgZxM9FJubUiykey+CMIx99f6lDKpVJrEsZp5VRq0FlxKSpEw5KjHZO58x0O2RO6YpxKvOJi+9M84o+Zgeg6B+rHv88tjbNEg8fh1FYs9dF1Hm6qzZED0gNG6N+hjM6sEQMOMIi8a8TENi+sAgtKff0zJDJc+AG0IYL3rrbKcoSNKRQeajV7coiiG+x7RTn1gdmobkTlGnaihoXan9Op1rDyf+6FEAFbaUE2mVEUM59LW0QVFUBotDhXSvJUv1gr/m3aW3GSah8/5/sYRQvhV4FcBiqJ4GYIk5o3uFEzNNxxSForEVB6UQqHxzjOpJ3gdV58qrcjZiZAdEuPjDWlCyfQaaaO9N603ywObbYOVkluvf53p8vD/z92fxeiWZfl92G/vfaZviIg755xVWWMP1Rwb7TZEWIRlQYReKEMQQD2IfDBAg6ABG/CL9SS/NKAX04AEiIBsGZYASwIBGxAfLAOGYMCWTDfVIptkdw1dY443M+8c8Q1n2IMf1tr7nC9u3Mwi/eBKnqrIG/ENZ9x77bX+67/+iyloWp/ENHkmP/Lp+z/BTEfi/gpjHHUNh3HUtp2m7CtEqXe2zoEXj87oLO37A027koSMhg19P1A1DSGKsIL3nhATq3bFt779a2xv3VEh1kQI0FjLkCgJp+VDSj4U72ZeAHRV1tA0pITROmUQMVZZEBLO1RrKubLXmOBPPv+cqxc9xwkOU8Qfn7K/+gibBlpneX8jRPKYYEgRj0q1O0MTJ7raSEWJc1hnaWrH+brjYrNme7Gl6RrWXUPXNkInsoapcuAs1JanYyy4cs52YhJ1reT1pVOVlsY75WVXhh9igGP2shavy6df9vDyYk0xAjeHxouhPJ+MnmvbNHRNQz8M0gRJBXCFvO2xlSMtKl+kQZmZFdyTKjmnDCHMDz7Fl8f3q7YsmlBpl8K0mCsFZzfmJHkSFwkS6UvsiqJ7vkeFGO6s+APqOfscOjtXGnFlB6npmtL3xBnwKWl4bLBhySf84u2f1RB+Zox5Q73BN4DP9fWPgHcWn3sb+ERff/uG1790K8mQdEqHKSGRyS4/5YEkoHEOV4ngo1X8pq4bJHrzilfYkv0zRpoqSRgkhlYmtQ6KxeiUhx+L4cr9IlYXdxlX5xwx1CkQyEKrgYjgF/fe+TrHRx9jkicE8eQkdFWcykwQMyVImlSdZv4AEkN/FEI1gHGMorXFME5MajitdWy3t7h99z7BGFGYQXiObWW5NBI2eu9JIYg4gq7eKSW8JkYyJrXEtqyWQOVs97PLK6yB8826eNxN2xaibMDweL/n+YtLPTfLFC14S+MsdVNztRtVL1IqaEKMNMYxOqiNwdrZW5IuaZZ9XXFcNWzahrpxnG1WrNcdm4s1brvifWfY1YZpXeOHNcasy9jKlSNVXZFL9MT4M/fuICvRlEdwsqrnxXM2IjljnZeWaz6AGjUzP8xrxjC/l78qHNA87k2Cruto2pZhGNjt9wzDwDSNrLpO1J6dK15esafZJpFKuJvD3OxNf5HxI2OKRhJvKUFViTpRzmz7ogilMvzTNBv8fB8XDoW1VuZc5hMq3p80YxyTsi30nhXGRl7MrMHWDfV6Rf2iprKGISZZ+Kw4SiHlhekmX2ze/lkN4d8F/hrw7+q//8Xi9f/UGPO3kGTJt4G/n1IKxpgrY8zvAr8P/FXg3/9lDzaXEM0XY9JM5sxudAZdczwq3prc1Lpt8VqQn8nXyxV/uf8c6lpjkCZtqYRZlEFvihGYNKtXd1sGf0U/jDStL9gIKXti0pHOTSOpqmi3FwyffyQ9mZG+Gc4Ygk0lIqu0v0OmBlljOTu/4NhPYC1Dv8c5MXBBV/WmkYZG0cN2e4atqvn8kXK7qqowSbzHy8tLKmNoLy4KDWLoB/aXV6zqlkZDj6aucVr656wprRo/+KBnHANoSHkcjoQYqFxFIsewJZZV/E0gCUeiMrCq1Dh6IWQ3lWPyicrI+5XJZkUnEarlF6V3SvKRaZh4shu47CrWzyu+9rW3ub+t6a3BD7bgRgU/1mfcNHUJaXXVVRwsnGSXs+EQg2TK4nuSIV/8ZzYsOSbNdfK2VC1lQzpHHzlzWpzB4p3nfef7UFUVxlrWTYMfR47HnsNRmqmvVyvhypaz0jC91GRTXrvuDZ5cTMqGWs4lpMTkfYF98rxbYp45k7zM+sp1SbY3h8nLBSBL3p1EZcaIepAuCOIJOpyVENkai6kMbbeirWsqV2G9J5L7mAfmFeWL/cIvNYTGmP8M+IvAPWPMR8C/gxjAv2OM+Z8AHwD/hl7YHxtj/g7wfUTM/W9qxhjgbyAZ6BWSJPmlEiUJZpVpQ26ccGLjs2HKGU2DhMVV5fBT4uziFrfu3kFIxWERd2idcEr670KGi+yNzt6mNfPD1+udwyxradqGZmoZ+p5+GKhrNUD5QgAbPSmNmGaFXW1wdU06HjTUqGSVUwxHDE5W95DJYa2j7TqiqfHdhmGcSMmrQfYaThu5TxYubt0q52gWWTppXhSoug6jjZkMohQTYmR/dcW6aVl1K5q6ElECK4IGBpFEq7VWWDqTDXpPYJq84ouBppHw2BikgQ9gjCBaDkNtEqsKKptwNlE3lhQMlQWvYpuV9qUwyCqfNQlTDFCLRuX6bEVjDIcpUK1asPD+R59z/sZt3rjYckXis5Cji5n03lhLW2dDmPmWc6jXD9KUPDeXMcWLEppWyPdyOWdKuHKK+WVI4YQWcm28zzQcyv00Gt7mMZftaojijZ1tNqT1WkQw+mMJm1frFV3bUakxFxGRWbuzhMjXPcGbbKIRiMiauabYaWlpjFJOWlcVk/dzzXFKJ05MXliWCZR5/nJCwcnzDpDIa0G8XobGxoohbCott5u8ePPWYY0XHDd9uWDrL5M1/jdf8da/9IrP/x7weze8/gfA977seDfuM2MJSdnxKb+eiCaXtSkmaEwJJawRfPD1N94h1RWVqzDuesiSV2WLc6I751HMy1qca8pnMracjeGSs1dVFV3XYa3jeYz44EsEn8OgRMIEaUqdVluMbei2txkOR6bJUzc1zhoNY3IoqqKTOjFdVfNiv2ccExUt2AaTvEygBV7ljKVuGtbbs5cGQSCRAlTWsT0/45meY8lmGsOt7Rm3zs7LOTkTMbmtAeIBuKpCGBOz5keKqfT+1emv92umK5k8mYlUFrraUJnEelWxWrfEYcKmwPEYVemasrBrcAUGrEkQIv3xyH5Vs7p7wbpZ83i/o46GdPB89tNPePfd1/nGvTvsk6PXBxmjZPIrV9HWTu6fySNC/lNVlWbKvSyuNns9+jzVIJ2GxrKVv0wZMSdj5SUvcPH98vdioc0h+8wigGmcROJMQ8du1dG0iiH2PcfDkaEfWK9WdG0LRqhAtlzkHNqfTrgyIMiRVTGW6kxkb3RpzBKn2Oeys13erWiZzLh0Ls0z+fU0cxNFGENhqHw7tYKncEQNNF1Lq+RzFR7SAYcs8l8SFsNXoLIEtebFfF0bOPkSBU+Ys0/yYAxV1fD62+8UxQ/hEeZQR/ll2hu1UAXID1S9B31w5ZHqwAs5YWKEpB0Um1ut1gzDIARmNIQzEP1EOl4xJelMFzDUd+6xnY6M+8uFRJGshnmFzJ6uNZaYLNE0+Nhjhh5XVUxHUfB1GnJhpBnRenWmxkoz0YplpqhZ6cqxPdvy7fe+wdOnT2TwVRUX6xWrpqJrZZL54DkMPZWFEDzPnz8nxkjXdRyOA/u91CtbRFb9tfsPdGHJ2UxZlGo7Z8VNSmVmVCnRVdBVkdsXLW215bjfY4kMg5fWnTmMy4NC/zLGYGrHRORyGOifXTHuevpk6H2CyvLks+ectyvi5vZJNBBCwNUiuJDyzNQFF8QJrJz0z/bTRLJRtRIXIT6zZ3c9+Do1MPN4PWnhecOQN4v3Fy+WJlY56xtjFG91MRGstcXwDcPAse/Z7Q8cjz2r9YpV254kEExKJYGUr7u4vTcYkJgyh9AVCEFOSXi0eQwvk4nZG13O2VxpMnchPOUeFsqN3DFiCgW7x84wi0QkNU3XUVWVOgRzUszmaOSLI+OvgCGEWbTAmFKWI28sVh7tVj6HqyLnf765y+3XXsN0NZNq0NkFjiibTFBZdWcOlF3EtMsVPq9eRMUqnKOu6wIWV7Vo8KUsxZ8Uq5h60nCg3d7BrjckIpdXB/rjyEb7+CaSeoCU41r1RCrrOAaHW9/CjE9EjssZxmnCmkTbNKLSg6yYghVG7eJG6RmRUqSfPE3XsD0/5+rRI959+y3+0T/5J+wvX9Bv1jz0gabtREiCuSwsTqMYICUqu6rmtddfZ9W2fPsb73G+aXnt9XtCqF5MdGOEd+fK0JbBt7KGyiYutis25x137pyxXndcvQDCiE0SZke9BpFYtOINJjA24U3g+Ysrnjx6AdFqXxsnHn20PH22ZzKfM33rTWYVf6n8WXc1TaWTh0SW6iqJIWRSNk1D8B7vR+qqyW6hXpfsc+6adi28LabnZe8vL8jXw8R8jsvPnXARlVRXVVUJdfO+0HNerVY0TcPxeKQfRna7PcMwsV6vaCv30vFKlHPNaiwjnxACISaaWpqo5UgiqSOy9AaXW/auU0rFK8zztfAEF9jhdRqPNfMimr3YUplSSZVJU9UCA3hPaQlqorazyN+8efuVN4S5VHy5lWDDGqKPhSqTkPClchXGOoKP3HvwBs1qhalFXWRaSo4nodpAfoAKrZnclJzTh7UYIDlR4pydFYm1l0VVVdRVTQCi9/rdANOIj5bzW3dhtQJnGPojvXHsh5GugrZbMw6TDDh54rhmjcUS/YBtz6FZUXdr/HFHnHyRAUs4fFRvJST2xyuurq7Ynp+XySaSXEL1uXPrFuuzW/xsd+Bs9Dx44y3BLElsm5ZoGhqlJtQm4I97nnz6EJMCq65le36LzcUtzu7coTKG733vO7SVoXZzJUGMYG0FGCpXUWFwJtEay0VtOKsN2xY2G8PdB+dsz9Y0qzWmMuz3Rz54fEnrLJOPOGeYjOPs1m3uVInj7pJpCPiD9BNJQXDkIPqwuAQgMmI+SDMnY5JmEiUsa5q1audFsuhq8XI4DXtlgfOMo1CVMEuicCo9dYvHVbxGeSaxtIo9tTU3GcGbNjVxGCM13RK5yL7L/vL5qMNUVRVnZ2d03VR6b794cclqpQmVBVyRXj7Yie3IIWtKSUoSbwjns4EqePzivaVBLeINC08xH2NpHMv3yz1VPCLfbWPACkOhqWvBCb3HJ1msLbMj9UXbr7whhAxuozdBRnHSpIlMNoOtxNeQiqNcdwv3HjwAl0ut0lyulQf44nerYZF1Uq8Yg1cqgqT23TIkN6aEB9GlooqRNFyJfiIY4TVZZEUbpoFmdUZ9dgbOgXOc375D27Zcff4x/aOHNCSwlpQctm7ozm5hV2vGp59z9IHm7DZ9lPK7ZGCzOedoHVIUGEs4sD2/TQg9T558TrteY6xTXEyaUo39SFvXnG9r7r33TVbRQ4xcHXvJPruKKVWkusZUjnVXsb1zm2ePH/Hu177J+cUFtmkEt7JaGJ8iVd2KxzmObNcdfvK8eH6JdZWIkhrDxhhu1YZ1A01tOUwT4fKKiwd3qNqa3sNk1jwba4625RACg4d+kIXq7Yuat998g+rzj+ivrhj2I2MMTEhW0yQZJkGrhXywDD6Qe04ntRwxRprW4ZzBq0Cl9HxWMCalsuhm61VXFR7DNE7SPc05SltK/VxeUAFJ8GmYmTSCyFmXHJjcFFbnMfZyIkOMhPcajVwvepaj6n7nkL2ua86rWipUjkeOx55hGFmv1nRto0mwlw3b8vec8MjsiUyduenz+fzzT14YS923euQpJdwNOGk2psV4Mt/TZY0yxshzaFupMHFS7OiTZqnNtYXiFduvviEsbu08WGTVTgV0l/BP+/Tqqj5NnlVVsdluVbNuEWsqADx3MRNaTYLC8bLGUVo36WtRH1oJPzT0ywXlTdMQQmC9XhOmieQqJoTWRJwYQ8/qztuYpiFn7Ixz1Jst2wdv4vsRE0aatuP+nQds7t7nxbFnPO4wKVBvb9FcnOEvn9Mfrlitz2m2d6m7iLETl08+oSKwWnXce+MtxuMVz5484ng40q7XGmKKATgcjzQVEBJ3z7eky8+5OhwZdz3BVkzDiN1cUDfSYGl/7Pno4w+k6qSqCU68PGONVvMkqfUk1z2r5zkcOByONG1HbQ0rA2eVJEjq2mCc4bmvOD6F8PMnbG/fpjs7p6s7vvNdy+545OcPnzNOAvPXlWWcIr5aMbkNbddjQqRtWrAVx35i9F7xclkUiIkhOhpjSpifPfxN24oBUIc/h8VLI5INSx4HdV1ROccwDLRtI9VFi3EpC2duEL8cygnnSjxTIo6Xatvz56+HqIvXffA0uXJjMUeWv5jlSwoXdV1L09Qcjj3H48DVfs8wjqzXKyGWk/HCxYHNXBEzTB50ASj7Xxi8ZaY4n+tSkzCEILzBLPVlTxtdZXhpaUALbmhm0rUIQCgMkhJVXUlizzlhdyREGswabPzydMmvviGExUOZXescwlzn6uVEhrMZK6q0/hFyxUlaDBzx/NTDzoMTcJUhxWwUTcFCcmugvBkrhfvGmBIiG6BbrYQzFiNN7Riu9lhT0V3cJbmGEESEVcLGSLM+493v/RnO2g7bdgQMw9BzfPKY8dkjams5e/NdQtPg2lpUWKoN0xhwDoxt2d5+j3DYYeszPvukJg0XrDcyGcdRaoSDhja7FHEJwjjwzbfv8OLRI0z0/MY3fo3v/+Sn/PgXH7K6G9mcnRMNhClw9fwF2+1Kkz+6ICg/UPDbQEyBlVa4hBjx08z5Oq9rhtpQGfFeU7I4a+ialhf7kU+fH/n//OHP+PZ3a95774x6c0EfW9brLXHfM0yjhqZCGv/8MnE+jqrZGBmnkSkkEfA1hlzXEjG0VU3SiKFMTmDVtvOYSrPxqWxuvZAn0SISMAZXWW5dbHlw/3UunzzhGLzwRDUhZZOE4ETB9pJ6mtbWZW9JoY9E/mMOj28kNy+8o8kHum518nYZl4msLwFw0nBMxrxlu1nT1DUHZSy8uNyx6hrWq644CaR5tBvE2/YxzIY/xrK/fM4hhJOwN19TKaPLiZScKUbvwWJfS8zwBDZISEUKAgtkKbUYI1bVqyvnhF8YI173fXJvXrF9JQxhxggyKpyzbSEEqkb7mBggZxGNTDxi1FaSUs9LAueaQkPInzVKzFUvWvEVneQLSZ9SEbDYsqHMeFLWl2u7jjCNjEfwU8949YLV2V3RIjSGGK0aQiWRJkcyNb7qqF0jJOEYGZ58Tuh7br31Lt3tOxynkbZqsK/XfP7wMYfnPW7aYkxHVcGwu8X+eSTEgbaynF/cIoZ+DvPUA7EkCBM2elzlePedNznrbvFbv/Y9fvHxhxgCXdeo5L14fav1itt37tButsUQCo3BSj1v8HRK5s6iuV6bPMUItXqOMckgDxF8iOzHgegTfkp88miPbT7k9bdeo1mf4ZNh9FJexWSE19i2eB8YfMOzvuWcSfarnmgxLCbhrKFxlma1YmT2+PIkrZtKvUR9vYRjZjGeTjEsZw1N7Xjzjbf47/2L/yM+/elP+Mmf/BFX/Z5hjEwhSHOmGLGIAQk6Tqw5LdnM9umm8PhViZOQK6BcDvXn7+caZZgNMJwKqeataaR/St/36iEKhrhZd3RNe5LdRsPxlFJpRLX0AJfY4DIEPjVkaY6slIy/xAiX/MKML8IiTAblkM4eKHpc45xEHc6JjmcWo9AKk38uDKExGWNZMNIREdIqG8YkaZVF/pcKqNsW0MZH3lO7pgzIHC7kFTBDsgbtaeGCVh/M/XOz4YvLcEBOSs9VbnlVVfhpYjxcMTz6iNgfefO7f5pY14KzWEuKAWcrIJCStN2M+sBz+ZBp1ty5/YDu3hskW+Gc8OeOIfL04Rq7u09Xb8Faej9BBFtfYqse6+B8dcaDN8+w1hWhiYQYCGugrSyPHz/Br488fXZFrwtGU9fU7YocYp2dndN96zt0BpJ1eh+U3a8JAK9kdQvSylJXccGgKlUZT7ic8U1CHu8MHFIkTiOTcXz+6Bl/7//9h3z3175DW9d4H0RcoGlouo67Dx5w+/4D/P6b9E/+iHb6mDgcWLWOdt0wXh2wJmErR1VJBz6vcmI5jAxaYtnWmQaS772alQz5sYw2Zbw4JWHfvfeAqq55+7u/xur8nJ99/w95dvmCQz8wGekTDbHUd0sDdrMwgjLeclh9OuZvVqURb1AWr5voOSz2dT37WubOCRZnNCyu2e0PTNPE1e7A2Aa26xWVhlApibxawlBXlfD/9ByzUVtiifl17/18LcYoBptOvL0s80ZJsMUTo5o3Z6TvdMwVYujCYmRO1m2L00os9YvUQaGwMF61/eobwoW/X3A+uafEJIRbSp8DMMbhrHQkc66iamqsSaSMJyx3vVzxdAIn3Z3Rz3tlw2cDlVemJUict3jNvXfOUtUVL6aJ2/feoL11hyEZTIhYm0MEo9ij0ltiEoNvDFXd8PavfY/j8cCUpDG9c+KludBg92fUpsYPDo+Is7atwdUDk6+AxBQMwSSGaSSMMIZQvON7t++w2qx4PnpubWr6aeLjx4955513OB4m9s1a1ECSIZmKszv3sH6Yo+Lcr8VIln0KqsYTRZA2xUjTSCMnax2uMuQhvDQxdzvD1Qh7nzDSmoLPPn/Ci8t/gKukL8XoJ1zdMI0Tq1XHO99+j/5Zwjx6Ss1EcIYYEi8OO+qLe9S+J/kB62TcTJq5LhiekoKruioGI2UIRU2Tme0hmZJlkEZiXddycft2fpO7b75Ft1rx0z/6Bzx6+jnHwTNMYgTwhhg9SbFkS/bQdPGcR/aJobrJGCYg+CB15jd4Ojd6lWYRii/G7JKTW9cVF+dnHA4HBpX9mqaJ7XpFp1zFaZpmqCiH6TfsK4fGObGSX8tlq7lGmawCdW0+Lv9e7lciJ+X+6vsafIu4Sl3jqkqFj/NObHnuX+QV/uobwjSrWuQbFckKyrKyV65SLEBxjRQIPlC1Z7imprjSVlo3RiWk5nC7eIjMD8PaZbldKsaQhZuewd/rA1aMZKJpGl5/6x26zRqTDCGr55bjSd1lXdUEE7SnSJaAEnPRdCvGyathSdKH2TpWa0tdDaRQEa0MBGOcNCKnJqWK3eHI4/2e+BRAqlRixs8M7I49D26d03TnPL96TLKWH3z/B2zWZ6zPzjn6SrhxOpnqypKShMIo0Xz5E0KirhvGodc7YUqoGWMQLya/Y/IjS9QWHmxrfnbpaduGiKEyQnSuawfbNZdXezCWbtVy//X7tKsN/eF9HM9pNzV+TIxHj4uR58+eUpNoXKCKlnZlqFYdI3JvfZRWAq1OmpSkIiZF4XwWEeDleNAx5Kz0POm6WmhJ+TMJNrfv8N0/+7u0P/iHfPrZQ8xxwCBYsER6mnTI+06FXv6SMXzldIgii7Zu2xwL5/984RxK6dRY3bRZa9hs1rRto96h58XVjqHrWHUtkw+n0lo3GO3rCZOl8GoRbM1z2WbdwVmlJt0w3/P+Sy8VbLH4GdbCQFU52jonTNT7VGjnZur6vP3qG8Iv2VIqa4KKMAhGkIKna9e4ptGQxpREhrMLbEYHUjZ0ywlgjCnZMQmdVYKK+WEW/GLxe3ndCal3dXaH8bgXlehK2gQ45SmG5QBB3P6YpD4yZy7btgNGQEJRZx1tZ2lWjnFnRYjSiMJySAGbHCFU3H/9Nq+9bbB1zuZKuVIyImIwTQNNbVlvzul3E6+9dpdHj56x7ydGxLuLWKlPTYlUVG1EtScPOBHEtaWs0Dkr9KEomFI/DATvqUtNL3qPDM5B5SLntWN9tLi6pm0bpnGkHyZ8iDRNh3WWtmu4c+cW9XrNLz64BB4S08B+10NMSmxPrIaRIElFulWFXTl83Yih09AreE+zbansabZYxkWGSBaGUAeGdYbKWdZr4TsuY2iTDO12yzf/1G9T/eAf8dHHHwFHIolhmKTtahT1nxwUZwNoFOT7kghODEwypdxP4KA59Cw2cbGj63b1JkO7DGvruubi/FyFYKX9aK6UWjUN2eHIoe/SIF7nDuZnnZ0HY0whXuc7jWKDGVO+ybiW89Rr9jGANUXD0CCheF3XUgOti1MJjb8kNv5KGcKTFUJeYNlo2qrXZ6wDD+vtGVYrHMhYnmI8IabiFVprxaMqeITcNGdV3FW9s7QIobPUf1o8UGetGMk0A7opJbq21XAxlFR+SepoZUplDDFOC7B+PhPrHHVTS+ldpqs0Fe0q4I8iWFC3QGUwdaRrIYaWN99t2Gw9VsM8awyVFbGErqm4te1oKocxCducc3a+ZrU648c//xjbWrpoaYyUzbnk8ZPgasaI3NbZuhOytZY2raxU9zhrSz9ngFF7+ZpKyMBFzNQI3imeOtze1Aw2sV3VNOdrLndHnj695PxW4t69O7z+5mv8+vd+k2q95bOPn+OHh4jAV6ZUBNpOAKEEtF3N6txhNy2XdUVS2fcQJGJY162ULcagVTfyo0y/4pXnk82Rg6sc682Wum6vDVAgGap2xdd/88/hqor3f/4zfPDSOU8NSAb859JRSfPOnMPTbUlE9lPQZvSZfsM8Nueh+9K8ualaY/l6CXGZF6nNZk1dN+wOh9KqdvKetqmxSJjvFqFt9v5yLfK8sMyZ5eV3MsYYF+djVZ3m+nku7oa+PkMzEv5LwsTWdWGMmBDEezRkj+eV21fKEJ5sVjli84KsYbTyilzN+uLiVIiTpEZBJmNQCoU1piijyI2XMMEkO6vvGgGNTYqaJDjFGHMWra7rosOWclmQtbRtR4jScD0TcCtniJqIkX4goZTlGdWGF5qUFdzTzIkd20Te+toOeydy727L/decELipaesWZ89pV46mRhV8Ha6y2rFN1JklTBQlbdt2YJyG+iJtX7lssFIpIwMxjO+8dpc3H2yxVr2lBIfjEfQeZC1G62Sfk/fYuiZECEZWdOujlATaxDhJWeF5a6iNJ/lIU1u6rsVPE23X8u43vs75vXOsqfjRJ79gfPo+rQ0l3WCMoWoTVQtQ0W4c7dbhLlpeWFe4jVGlu9q2FqOZez9njHYRLiyjz+z91pVjuz0vJXjLzagxdHXDu7/+ZwDL8Ud/xFA5pogKhWSjY4oRxJgyzq5XVujQJmIk4Zd1KPXksozWF/k8rwqHl+8vM7t5IWjbBmstz168wDnH8XiEGFmv1ziTSm2xMaZQZwqEFWMxhFnx53oWftb+jKV4YWmk58/O92xp1I16ksaIM1OpIbTWYALFS15CDzdtX0lDuOx8dbJqL7AWW9Xcunu3VBNkV5mSW9HML2rInGSN86Baeoq5rtMaUyTc8wM5SbggRfp1XRNjQFp6yntVXVOHoLW7plAIgDKYnKtUZSxJVzqDCFeaRNRyoUqzhc7Ab393xXfee4OmEWxw8J7RB+F7eY/3YnBi8OxHTzx4osokTdqFrveGqwTdZkt1MJytpVSpH/28gBRscwbdvZ+onGSfMzRr8+pvpOtgApq20/tnsa7mGAEk/A/RkJKlSRFbGzobMf6AraHq1oQxcrFdc3brgm//xne5uHObwy4CB15cPsf6iCdgE1gED7KVoaoS1gWqdaDdGtLaEY0toXEIkslt6gqSQEwhxtLpz2tGNEMWGS5BF8iqcmzOLvKrL286PqyrePfX/zS7Q8+Pfvh9gmj7C+CfQ0Uy9epmuah5jCVQabP1esEfzJ7kL7ld97BelZCZ36d40hK9VAzDyDR5zrdbDffjCZdwNlRWHbEEKo4sbWrdCQaYKWTZ6bhefpc9S2OMYLi6/+VClCOsSsvsjJF7HLPnuGjxedP2lTGE172v/Pu8whikCkTd4mQ5u3MPQFt6GrCGoIKRos1mSphmjSWFUIyj0/1KOJxIiCcoXqRme+McsuQbb6yhqWuGcaYHpJRw2oVMGnlH8ZA0fJwJ2a54pSCh+XGQTnlZJVraIIps+9Wx5+dPXojCyDiwPw70o9RZ9qNUWDTGYKcBA9w9O2O7WfH42XMOmgHEGJK1XD6/ZFdVvHH/tnh/KalSsCW5ZamTiDaMWledx3kiSYJOB+k4jbSVKII0Fxdsz8/58KPPGBKQJIXQJiVdB0MTEnUtnuew39O2DW1TM+w99958wGbbYMJIvXJ8/POP2X32EVU/UJtEa8FZzbyHRLAR14KpAs0mMTQ1cdIyrxCJXiZFV9eim7jwFPN1TpPHavOsxSAU6kzTstqcf2mOAg31Lu4+wJgf4sOYX35pbOe7e9OWz8l7oSdlNaRybots8Ks8v+th8fLfcg4Lb1BfpdBmUmKz2UBKHI9HfAi8uLrifLsR3U2WCQ2rxlOjrwV27hZzFzg1oszKPHBqEMt1REoypqmaEh6jdsFVWm/sLLmd1pycfPX2lTOEy21JtBQD6VT1BCpjqBdy8oXEacyiqU0S0NeKiFTKGaiUsUPxGrGmeIXL8GERLQrYbnIJ0Oy6Z6wkYyPiLcZCJcDa0lBIBiOFz5YQ8Nhp/JlXZmMMk5/obc3DT58zDL14ND6oUKgQlacpECpDk6AmcXa24v692/TjwO7ZJB4UFFzqOE28//CRJgbc7C2ESLTKg9PnMAyT4lOzh2xV6C7XXXsfStgEwi2cxLFhihAM1CnhU2Lwhsol6iZi6prd4+eE1ZowBp58/AGdOVK/do9dTHz0Rz+kmi6lt8mI1HqTcC7RYXCdGOzgR6lCqesiQZYxLGuNkKkzbiiXKYkMWzFNg3jfLjdYzzQQQ9s1mij5kjErI4zdi2eyrxGtUXbFtZ4NoDn5zk2b95OojZONqYTVGdP8IhzsBHe+wWDOC10+NUUvU6QfBoxiy3XlqJxlfxBjeLnbs161dG1XEhb5/i73nY1ZpQmWTE3LBirP4ZtggaXXmhM0gPQ2gRND6pxihdZSZGd+Ca/5K2MIl9uJVlnGCI2VxAjiYdmqYhjHMqiW4W6MEVOytVKkn42CaP7NmFF2uZNWnlizpLeoNFWaa1ijhqX5uyEIJpiVR7JhcCqfn3lU2WjGGCGIx2KWK6KR+DNGYcyHSVRVqqZhDAGrIXeYpoKmpJTwEVwSQ/Hk2QtCCByGsdzLeQqiOUyjzQ3EI1xSHmIQLzUawzSOsjhU2VOXcD7vK4RArWG8dHwTeCAoeBE1o+eT/FQm4WKiCol6TBgbSP1I07aEF095ng48/+ADnj99jh9GiInkAzZIu1arQugxgW0ES2tMwg2esbX4kEpL0hADVeWoalO4mzFkMq8+d2vnRUhhlUyh6VYbquZaouSmLYnCzYvnz0o/DmMsw+hxVdaqoaBXOQK+yRjGKF7+Zr0m10azMKMzvv3yjL8pHF7+ft0znL8ji8YUAm3b4dTw5Prq3X7POIqqTQiJ9XqFY55jc2JjWaFjCvaavbiCCcZ4Ml+XZXlBtQ7z/mbDGef5YUR8RQRabTmesfLsvmj7ahhCAQj011Ots9x0WpIQuWnMQJWg310xS4PKTXOKtWVMUTTokmY7EYuIPpyU968lfEnC6Zxkydu8gspP0EklNZlBj346yOaV05ZervLQben+ZTW0it6jwad4tovbUlWNJFnSqGq8nMyiECM+JmyKPLva82J/LOq+eULNJYLlhotnZPJRKfcv6mo/xSBCtFWl2RLxoMWIyDlY5VNmIdG6FSwzD2Tx2+Q8IkbY/zHhtMbXeYMbE1M/snt6KYtNlDplksElEXWVByAJnn5IcCW4aj1ODHHAbho5Zox6DZGqqXC2UiGKSEiCEQKl8qdyVZGXl1VQytrWmzOsik582dYfew77XVk8XVXhgtBp6roiE37nOz8/vqWB8kEW50oX+2VofM2BeuW2NHo3Gc2bMrXjOCLMh7qMcwlxDWfbDYeDaB2O00TcJ7brtTIL5ntZapfRhcqeenJ5/GEFnrp+7UunJISgEIEIPxA5qfIyRlv4amlsRnm/JDL+ihjCjNfdkFHKJTYS5YoBSt4zRnjx4jm5ZWMZBBkXtFLilBIqZmqKB5eAEGZANgSlhFwjeebMM2apMadE7Diz6nNGLO9vWULkNFNmrCGZhHUGGxQPNJKB7b0vYLHYbCWdprRYMR2JcHJvjLH4KEosPgT1zEQQIIf4xQAuIAPxfJWmY40YOyNZhTDsqTfn9EPgcncEGuq64rA/0LWdLEj5XheQW5IAbdOAyQKmYmwjZj4vtKonSfmfS4kqRZEys/k55WVFxVqTobbKyEsQfWK3A+McbjB4Iu4AvskLVILgWdWteLcxlkRJ0CxniFEEPq2BaJS0L8oslXOsNmfzOPiCCZZI7C6fF+853xNXOaqUGIZR6na1rcGriNQZp6vrjFlmn3GOivL4uHn6vBxyXscLr/+e/x7HSfv/zGWmeXPWslmvqCsh73vveXF5yfnZtnSILNAQUkKag7i82JtMuM5/X/NQl3M+Y7ghakit4sBlYTcGnJXulWp8JTL+8gXrq2EIUVoMiNFYrADCPJgNTvDCm/PB8+LZk4LlOas9zDUGdgoHVlWNdbbUqsQoXmMKMrkyLpTiTE84aYAE5KJ9Fu9LCR1lFYvZTddwgBilP6+1GMUNE2EWMdCHVze1UBbIg2FuUB+VUZ+NVgiLsr+UMDEQ+yN9jJjgpW1AJbzF4sUaQ6VhvtXWoc5I/+C6snRtTdO01HWFf/4Qc/UEtznj2e7If/eDjzjfrnjj3hnnK0dTS0bWJoUQ4ty3FqBqapFg0jAetH9KMiV0cUBt5oqLBPgo3mLWg8wG22IE0sXQ5IZOSYjlcg6OYXDYUAu5W++dj5G6rcGgBhCtKhFkNsaIyVw358jq1QaBL1bbM/T0vnR7/vQxPobicea74SqHi45h6GkaqZHN2zI0zoZgHEdWq9V8yDT/80Xz/CbjVubOF3iH2fj23tO1TUke6pvl39wF8MxarnZ7fAg8f3HJdrulbWo5w5QrsRaYt742Y7ZzlJfPJM/pZfY4zyfjjEbZUlEFkryz1mIr5RIaMwvo/HPhES6uoijLKDBfQGb1cGLw2m84cdxdncr85++YiDGOtqm0aXTSsFLL0EopD5plRh+kLf5IVM8Kk2uc5wh+OdBK5itjmtkrdU5qLRe8q2Hsi6GUCpOErSpVUM7jL2noZlREIJUVsXKOMa/0MeKHIwQvAgMkMUKKpeRQPYdYBjFe0p2uYtW1rLtWeGRVhfU9W/+Ead1yiQFX0fuE3e35ye6Kr7/7NrUbOVutsMZwdradBTf12VV1Le0DTMyRphzTaHVK/pzLPE3xdnOoY02uAwcipb9usjCbVkE5rTOYGmhavGnLhBLvI9Bqh8HsCUrmOENvc6WDMUKDyeG8qyq69fbaqLx5izHy4tlzYgzFoBWScZJFOEapvGkSJ8ZwHu+GyUsL1ozR5W057n7Z7SZ88HpIXMJijURWXVdeW3qXme1gjaGtK+zZVvUNJ55fXnJ2tmXdNvPxQEsxA9a5Isy6PGaeW9fPJ+ODOcvf1rW2oEjzQmBMafEr3wNDnMtEv2D7ShjCE26SYlVLwDTzihzzSoWx9P2R6AOuqUhIaVQJqZMKpqqrbrXsLqpHFB3EIAYlZw7n0BoFfDMJVYVd88hkHlx28ZCT4mYp+DLos+Gb3X8xxikYrS0WL8SPkxhePY/gg4SZIZ6EBlVV4f3E1B+xKZYGU6hU1qkgrWTXrTHUlbYccI6uqWnbmq7rSu+Rcb9nFQ/UZ7d47hrhtBFZtzU//9lPqZuWd1/7FskkLvc7hQ2F9yXYVkXTNvzr/8ZfxhhLU1dq8LJwg9R1BwJt25S2k1IxoAvMYkB//rzng0fiKUs4G8gWJodaIUZZUExdkiFJ8d22bYocWDGQeZyRkw+ASVhs8XCdq6mbUx3AmwctDMcj+6vneM1KQ2YE6GZkcUgYjseetmuL1l8eGylJIsdVNcbYsvS/Kgx+1fx5VbJkuS1fjwn6YaLSsDg7Gte+cPJnXTnONxuuzIFjP3J1tcPENU0jsl3Zg0wLCs1SZabANa84X2stvWKWufQ16TgzeYHPi6dir3Ni6XQRub59JQwhLLACO4eosz8oW6bPpDCKGz4NTENPte7KZ7L3I/ZKehWnxV6stdp7VtzqTPbUL5cDOjXA13vaLo8zeS8N2p0jJx+sNThbE5Oo42SvDK1YCShtJ2m4ppUEfvInq3/JlJFEg81agpG7UqVA5RJjcoV06pyGvDkpYy1NZWldRVU7WlVddpXTwW/LpKwqh2stffR0NmErg/GSLX/y5CkXmzWH/Z6YApdXB1KMnJ9taepaiOpRvQtr2J5vqOuarnE0rVBsQIROjZFGVAbDOI4YLE1bMY4T3aql1lajMUF1TNja6yIIJmUqTCLZ3K1Pwq4UEilnhXWS1bV0NQwxCR5cRBfStQkuz9xaJwtH0+Cqhi/bEomr588Zxp4QQznPvGAu0DpcXdOkxLHvaVVyfhm69uNI0zT/1MYvj8NXvb7EDZfRS0rCfAg+sN6uZY6oZ2/036TzaLlfYwzOVZxtNpCgH0au9gfWsVOvUj4b5QuLSMQUT3x5zkv+YHlNm4mVUFqjpCVctlzs0YhB7vSrt6+EIVw+rPzjnFMAGpJmiOq6pesc42HSqg7PeDiwvXsbQyqNanSvSL9ULVo3ZhayVMnqZNOsYWfmkBjSib7Z0ivNsuu5R+u8usmKlXJ9pE7K4g3aOUzJKjEhiVyUc2Kc5Kwz6VfaCJQKF+cwweFSpHUw1ZLNNZp0yeC/McLlqpylqWs2q0ZK8Jx0JZMEiS0GVJIcjmFo6VPN7baSnhBG7lw/Tdxdd3TnG1KSbOLV7kjXNjRNzeRHjHp3zlWs1p06emJgMiYXx4h1Uv3hnJCWq1qrgqxlnAKTD7RdQyIVQYec6c2GJj+vXBubKTEl3NLER13NlSaFVK2Lj1O9RZ1Hc02wtRwOB6ZxoF19uVf47MkjJj+SxWLzj46+hUEUalGTEn3fk1IqKi85wVPX9Y0z+VWUmZsM4DIE/bLPD8NIMoZWhY1f+rx86cR4yTHEsJ1t1hhjOA4Dh2MPGLq2wahnXas+5NIALs9l2RY0e4teq6IK53b+wsl3cztfSZak0sXxi7avhCHM20vAryJ2FiFTi+pMBtMSIXqG/Z4sO57L72SQz60IlyNMslFOQ1QwuijlUijU60JveAk9E7NRMuak8NxYK43KzdKFl0G0JFZXdU3og3alS9JLNyVRz3bKZVQPJZMDZlzNYeuKVeOo2o794GiSTGrncq9nVHRbBsqqrVl3rYSoefAssDFQaMAKTjZOhtoaqpQYsTQ28c3vfoPX7m643O1ZrRxdtWGz6qhq0YSMKWe15f43tVWjE9ULMQUzqitLXeeGRHL8yQdGPy0I52KwJNzMC5UW7mt4W7KLyj2LaRH+BhEtEM5mmnHG3PI0ChYn8vYoBKIGOyX2ux0f/PgHfPu3/iwFV3lpoCp/8Okjgg/4uBDdLejN6e9A8fr6XmTM6rqWVq0L+snLcdDL8+LLDOP1RMn1RkkxRsZxpKlFUGNxWdeuM52cyYwjSlSz3awwBg7Hnv3hQIyRrmsW3pzc/2zS7CvOcb5f8mwrFULRSZe/MHuqViGXBWr8Zd70V8oQLlPoOcQpQYYRAmxEssZy0zyXz5/wFqchbmJGDFIZ+EpHMUIYzl6AtUa9DjV2RkMniygiKO/JGIg5hFjedJPl2ROiozYbw4yHoNSMtpESvLTAGMXrmaXGsptiVPpKXheDYitL1dXYBC3CPXPKTSxhgxrFjGeeaAqqQS4XZAUbC0EA5z4EhmGk7uSY267ma2/epesMd25vqJ30RvGTZ6UJq1w26NwSK41FBzBE8QSbphJDvZjw2QBZa7WMK4dzRulNp1FCXBrCRcncUn7Lh0C9brVcMixK65Q2FSOukox/cSSShOM+iBbgZ5++z7033uD2/TeAm/wlOOx3XF5d4jUkz1Yv1wzNM3g2SCB0k6Zu6PuBEBJ9P9B1XVmAZSFM5FX5usHI28lrr8De5K1TIxGjlH9Kz+e2OFvlu9kLzPNvASXkiCjv1xnDdr0mxchhGDn0PRjDZtXORQlmriPGmLKYXb+GbKx9CPP9SLw010porFGi0Qgh3nCPltsXI4i/Ilux7MsVIv+oAyiUFo+JmZAZwUSunj3XZMhM3lwmMMju/BIpXLxfAGohuBFiYvJRgfZ5EOTQOa/0xliRFc+f0X3m9c+oESoleXr8ylWSJNHwNJ/DEtsT+sGMr8jupS9GsJIYqiunKhzZ01NSqZ6vtctFxMxG0cyTK5HAigf38Yef8PDxkR+//4g3zxoaKwK4CTFqlZUV+HjseXa54/GTFxyPY8FZ56c2lxOOo2e37xkGj/dClB1Hr5nUkRCk6iOoOG5OjKQkPE8fQimdCyHig9B38vcE5ZgVZbIxbOtaK4Q0C5mkFakYzbmj4XzGekytQNntrnj/J99n6I8vJxD0aV4+e8YwDEXgIebQO9uwYuYX40d/mralbVr6XkonZw6fuYZfUr57cvzrHiILQ5Pmcre0MGZL7HAYRqyzrJr2lVhjOd8M7eRxdG2zSrxetQ1OoYXjsS+wwEljtAIV3Bzyj9OEJATdSTxUzjGfm9VESTbQN/YIvHaeX/YBY8z/wRjzuTHmjxav/a+NMR8bY/5Qf/7VxXv/tjHmJ8aYHxlj/pXF63/eGPNP9L1/z/xTIL958M9/6wvm2iBCiZk6qE1K7C8vJXy2swFcroKJnHi4tm9Ob3AG0QvdIgil4WR/xogbkXIjb7m9wUtIm0O5QsXI1BqdIVmw0qhxc84J217Dd2NPQ1gZiHLcqNUvRrukVVb69ToVaQBKYkcwTPV6eHmg5wFudDCFBIdhpA+G/WEiTiNdI7hljInKWWpNsJxtN9w637Jer7LzWhaiuXpGvESvHmY/DPgQGb2XCoWEGkLBiVrtO5PHQIyRYZpVSCTMzoNDvIAisLDMButP3dTSBXoRrvqQNKLI+Psyezx/N6REfxx59uQJH/3kBzreXjaGjz//TDCtODeUz6Yve7WngeW8GQN121A3TTHeBZe5Ng9eZajy2F6eWTaIZjFvlvtJSfQGB+/pulUxwNeTKte9yPy7vfZ33qy1agxbnLVc7vYcj8cSlmcsMN/HbKiXcyvGiPdRISmnDop688zRUgTB4XVeLAsZv2j7ZTzC/yPwl254/X+bUvoz+vN/1RP/DeCvAL+p3/kPjLAdAf428NeBb+vPTfu8cUuLR7oMg+RvKH5ySrMRROThh6tdfnd24Zd/Fy9AtmzwSsYpSkqeRGmqDjKJUjgdhLnQO2qDcFltlQNlNUMdQjHsEqq6eTVMSXmLRjO9S5khToxgKSpHOHkkcMYSjQWrYqtqKOeFQj3iBeZ0vVomb8uOfcYY3vn6e3z7N3+Dt957h8+uDhruirFsKkdTW2pnWa8b7t4+5/atjQh42uW+5c4XRRDnCo1IkiSVGnUBL+TZ5ufOwqtLhBT0kaeiSDKHwHNdar7GrEFISjRNLeHSwhAas1BO1teWEwxmoxtC4Orqis8//YjHDz9kcZqQRFjh2ZPHjN7j9RghsjAmOQa4ecvXHTSU3+/3KjSgI3cxfuTzyxkyb0Z/loasvLfw/GH22odhJCZ08aG8l5/i9XHBtXD4epidj22N4Xy7Fil9a9kfBz3WnMjKE2NpHJfzPcagdcSyhTLX56yzM7L4O40j5XXzCgBj3r7UEKaU/p/A0y/7nG5/GfjPU0pDSunnwE+A3zHGvAGcp5T+XpI7/58A/9ovuc/luZz8CznkVJI1qBGSezp5T7dZF8xnmWlKC+8rNz1fGqTsbeUbmZKAgE5VWSIaTuVkijHFg0opqeS4GjvrsEYejYRzc0vLjNflsKyEsCAUFmdLMkOtofwYIT8nnHg3KYGGeyn3zjULr3axus6esX1JEftky16yMdy9/wDX1NjVOabtqJxUnKSkHERn5dSMSGJVqtKSkyHT5JkmL5CFPgVnLednG87OttjKFZBeEhYSuku4PF6DRYTyshTHOJ00p4vmcjJZC03ttL44E6rlOyXTPx+oGJiYUJwwMSmO9vz5cz782Z9w2EkddLaIuxcv2O12GqpnonaOJNR7TS+fX0pzEBejLIp3bt0ixsjhcJC2tcwG7+S5veoZvmJbfncmK0eGcaKpay1nXEjqm9zcLBWv+XoyAyjR0k2hrbWWs7MtjfJVd4cj/TgVvFDucTo5ZvYGRy/zplIK1dIznQGG8tjkp1jsxe+v2P5/wQj/Z8aYf6yh82197S3gw8VnPtLX3tLfr79+42aM+evGmD8wxvyBaJq9/BmZ94aqqqmaplBDbFnRhZd3dvu23IQbehakxYoVtbJkxg4NKYmhEHdbjKzUBOeVT7zOxZljjLrt6pVaa6lqp0ZJwtcYhQuVJcqTehlLbbbs/VW1Owkpy/mpRyXtm7NqhxEw08pgWZYt6X0V40zCmKSaipGbDOF1jyUmeOvdt7i7fsxr9YesmpquaRh9IqMCOQwpxiOKAKz3cYHhibdnQEnclpTE2MWQZMEwUmOdq3y898WryxUgJ8aOGf+LJ880nr6OSIlVWilScMQcYSwM0nwf5BhCzpbKSB9gColDP/Ds+VN+/qM/IvpAjl0eff4px+EobUh1cY0xcXW145NPHooBf5U/qIZ4nCZhElQV5+fnBPUMQ4i86qtfjDZpZHPNMzImS+cbxskzaZLELRbRsjgsHIl8b7IHvzSMS081/zvLcFkuzs9KxdB+f2DyocAxeczmBUOcE/FUAZq6KXMvsx9eeT/mW/ql2z+rIfzbwDeBPwM8BP4314693NIXvH7jllL6D1NKv51S+u3T0Eqc/cQsiuq0JWNUJeayY2MwyXDnwRtCheEUFF4+wEyxOF2Zc5ZsPtWgn5cHIcuMTDwKxiG0HAtpLjovAbmGsiFMYhSz94khjAPT2JM4rb2sconZYhUcjns++tH38eNYbm/0SkdxFlyNsW6u6SwjQbwW2ZcYr9L4+/T+n/wY5DrvXbTcX/+CN88mbp9JfeykA9Ys7lEIsWRZx3GkriuapqFydWk6tHyiUiMe8T6ICGgUaa1x9AuMcD63oCGw0WU/CxqUEHHp4S+MoygCOe1OuJDtX0QDThVnZD/yk5MxGSMMCXxMTCHyYrfj8aPP+PD9n5Wx9NnDhwyTZ4pS15xSYhgGfvTDH/InP/hhCT+vG92YZlENoa/UxVBdXFyQUmK320ny6Jqxuf4MT+5xCYMpUUr+7hzOJo696A4uNTS/cEunCcaw2N/1MbsMw6uq4myzlp7JUEL/PF7zgp3hgbyoOmdKmWF2XICTBX9pVPI0nafwq6/nn8kQppQ+SymFJHHO/w74HX3rI+CdxUffBj7R19++4fVfcluCuzNoDnIBKQTpsBZjKekigYmG2/cflNU8D55l1iy3t0yJhVHL3DHA5vCREkbKA8tYjymdu3z0GNGNn0Uji/tOHoUEH5jGkWEcGceRq6sXPHr/x3zyw+8Tj4OA/BpeiDz6PIAN8OLDn+Gef85wdUWcvNZeGw77PSTwEYytbgCKxRCnVK5ucd3pxCMqkzSJxxe8x1nDxZmjckOpBZ6CVmaAajFG+sEzDBOH3ZHK5clsqGv70lg88TrSbHCGUUq0rkd/s3FC9BCvGZPsUaXFPpfQg6sd1hkNi5mfK/IsBbNdhFcaEs98w4wVGqaQGEbP0+cv+PGPvs/Tx4/ZX+148vgx0xQKdSYmoeS8/sYbdOvVSWibf4/lEox+L9EoiTrjw5vNBjAcDscyPq4nPG7a5vfiSyFt3kZVNO/almwxX0qqXHtmLIzb9ezvEqPN5zmfR6JtapHs0rm02x+KgV969UCh89R1XY5jjBE1tqQGcWG0T69OjveqxFTe/pl4hMaYN1JKD/XP/zGQM8p/F/hPjTF/C3gTSYr8/ZRSMMZcGWN+F/h94K8C//4vc6zsgaWUQ+QFZmElcxT8RAoT1sTy+WkK1K6hHwbxFhNz20PmhzOn7JMaS71pycw5GGQI5YkBktGdJo9JKq5QOfEEc3KFqHJOCWccyYvBNUkoGP00SfIkBp4//IirD3/C0E8c9we++Vu/RbAGWwm3bikBFvxIHK44HC55/Pf/X9SrLbcevMHZa6/x2c9+whtf/zp129G0FpeUF6mkaJIYgN1+TwLpOWGF7BxcLKB4AqE59D11XbPdbvE+MgVLar7NEDquriJNK2Gi9zN5HGTSChHaE/fHIuWeuFZOpQtDXdfU1axojXIkra3KqJZ7PxOqY5wn+E0/1w1k9v7qupXFa+EFLlVykp6/9x5T18XyZoMojv080WOEEHom/5Tf/3v/NQ9ee5Or/Y4pLNRmZEXl3oPXOLu4NfcGzmNcvZU8xsdxVNhjNkDGyJjbbNYcDkeOx17UaApScvNEL/c6Rzg5AlgajpTYHY9ibFcraTXLfH+vZ4hjjMI8WHp8zITosLj3rzoveRY1XVMzDIkxBHb7A2dn0g4gw0QGST4lUkmgGH1G4vjkRGCGtObnmBZj59SUv7x9qSE0xvxnwF8E7hljPgL+HeAvGmP+jO75F8D/VG/oHxtj/g7wfcADfzOllEG0v4FkoFfAf6k/X7qdBMYLfCz/XavIQPZ0DBYfg2QSq8Tu6pIHeSU3Wv5GNg52sRIrVhSUUAuqJaVv6iQI+QFbWWdyaGmT0eZLaS74tlboJdVCLw3wfiylc6LsEBh9YH33Ls8+/5if/qPI13/rt7DrtYa4hmiFxnL59BHD1XP8ONCahOknXvziOWH3jK1zPP7BPyLFQLfe0HQ1TdfRbbe0m3VJtmRV7JgSlWJBOXM+el9K/3KxfVDF7J13pPbPMVmI9AJRJBimRNfK0ypNnqxjHCch6E6+ZF4rneCSRIiCgaqaUG1nsdPKORqVypLJPE/irDsZSWR09MQIXvs7eyExacMmonr0OTxOJ+PAWPHal5HDjD1LCGvLcZWEHAYu95/wwQcfiqybZhQScwbaWcuq65bDqYSXco4C+UzTyKpbzZ7ZYgF3zrFer9jvjxz7nvWqOxlbJ6FyNnzXQuHrn5sm4W+uNysVMxDc+qbPLudh0n1nWbhsJK0ucHnxLmpOLxnFxHrVyTMaZQHoe0fXtmVhFYx4KvzZVO5JkraoinnHFF9p5owOny/avtQQppT+zRte/o++4PO/B/zeDa//AfC9LzveTVvB5KBY/vxazoJGdeBCFOB93W3AWXa7S6JkOiTZmh9iRCW6hBtoTNTWk5EY5UEmJUMrGeck3JLj2jnjpSuYJWkPEgPRFvzK6ApW6DKZqhEj9fYW6ze/wTgM3HrzLa4efsLHP7S8/Zt/ClKFcTXWigDD1Sc/Bz/RVJa6dlwdjoxTZHz4Ia+983VM23H5+CH94YqmkvI6Uzfcf+ddTNuJwkndqA6gDmTmawoh0I8D5xe3Co8tK4dMPhHaSpWaHT5GKgP9GDkXXwr5qDyMnATa7Q60XauekMH7yDhO9MeBs/MtdWM13KGEtlXtpPWCGhPIyaWc3JiH/UlYDyXBdW38YYCmqTEJfDrldJIWWFMSkYXc2jTGiK2qIjQQ0xxoZSMHEgr3w0DTtEUmTc5nEQZnL2rpuejIBpQmY9T70VcXk9gYURharzv2hwOHHta57vmawXpVqHz9M8dhAGtOsNhlWHziFaZU+nqXeaBSdsWwm1P+3/VzWeKGMUY265USzyO73R5jLV1dI1ip8EqzEEWuMMk3TqK6BVxm5sK6+da9MjVVtq9GiV1e2DJgkm80SFicV6EEwzBQ11V2fnj66UNxoYMl2jkDHdV3TmbW9SuadEbC0qhVBhhz4jGIB6UPQWXdUepLMqrSYawYL80q5/6rGfeL2cMASIZ2sxEazASr23c5PHvMk5/+kP04cfetd9jcvc/u2SPC5RNMijS1I1mh46QY8GHi8w9/wdvf+jUeP/6U6XikNwZSoKodIUa+9uu/SdNKksNWVSlOL5PZwGazZrPZ6PnmuZW08kPuhzVS8uZ9IuIYJpHOFwqJKRO361Z4L8rKTV1p5Qo446hrSjvTmyZsfuW0zkO2oNUgGQQ3OiZs+TwnIVLerDU0daXRbip0jZIoUUOYFP8M2ntmaTAT2QMxxSiDJJRG78FYjn1P17UkIGRXZPm88zUvFvi852EY5kqSGzyybESqqmLVdRyOR47GzJqBX2D8loYq36LJBw59T9t1pe2FrnvE0gpk/jzlLi+uI7+p8ykvFtfD47z4L52J/LNedVyFgHMVV1c73Pk5kBgmzRY3Fcu8aQEzUmZ76G3W6KYsjppg/bJkyK++ITTzNMgDfgZGZ/IySTheCUtdN0U2aXf5gjB5kb6KqYicYmQQ6FwUnCyKVyMkYfUGs+dmLIU0mDPXzGVZyUh4zKJvRwwyZPwUlEIzhw4GzZYGL6F8gna1Zq9F+gTPk4cf4Rx8etzzel3z7MOfYYMnEWnahuMwUEujFWKIjOOB93/8x3KGKYMACCa53/Ps04e89a1vkzlhy2lIkivv6pq2qmmbmlVb02mf2J99+jnTNJHza85pQ6QE+8Ez+sRhfwBgs92I2nXpZSL1zjnMzXhX5g0mhGSbyd8nj3/hMyU1tkUphtmLnD+fXzcL70AmrNMKmGXILIm0RFY7Ie/OyOI1eU8+RIpRK3005GX26LLBrOqKcZLueZVijMX4MXumYMp+MjtBBBoiG/XwkrqE5lpsl41I0zSEGOn7QduMnsqDzWHkfG+W70VmWspm1akk3RzK5zNflrgadQrE0ThlJaTl/YfisHxREicbx6pyrFYdu/0BElztdnRdy+SzIEdd5kweI9IqI82LXl6slsdLhmS/eIGAr4IhRN1z5gG+xBvC5HFOVHzHYaTTlc06MVTD8cjgPW3lEM0Dc7K/oETaLFoTU1ChASfZZMQ7EDFYUwaknIMt0l0Gozw4q4PE6Ipq8THi9IGVc89haD8QJi/fdTK4TduwfzrQ9wdWXcumWXP5yUf4p59TYbDq8cYoeCYmFS3CaehZrTqarYDq6+2ZUFJIPPnsM27ff8Dm7p2TwQsyye9fnPPOvQvFiWKJ+4YAty/u8snnDwlRrm0YPNJGKtGPgRhFluvYD7hqpG0b6rrWZkMqZrDQkjQWqjr3s7AMo9Bm2rbRRSQV45mNRj7hGOdM72zO08kEiScLpmx13UhZYPHypAwv34c8keZw0DKMPU1TKx5M8XyW+87jKL/Wti37/YG1nUskZ3M+fytlN1xNxzRJf5CX4Kw0G6HrW9u2+BA5HHqy4G0en9d2Mf+eDZoPHAcRdaiy+nXxoigVTnkzOsZM7s5VXjcKjJxu+T6+GiM8Db3bpmYYKw2JR4ZhAAxt3WgHwevXlReR2RiSHZOYTmzfy/f/dPtKiC5cB4AzzygLDqA3zhlD43LTFkOMgXEapVQpZcmlVB4OUIi+UpEhhi3EyORzKZze0OyZLibzkisFkubPVJrygOQCCkE0G0GnobefJvFUregrNlVD27ZSl2zh8uqKhx++z8Of/pBpHCFFKisZazSMsU64cXXlaBpHip5V19A0IqzatK32kE18/sH7mLAkgcu1+ShiArVJNCZRW6id9LJNxlHVazZdp0KqcDwOUo2BkcxxkLK3ECftNOZLeBK8ZxykzWgIgeNhIPiEnzzDIDSiYZDqkf1+zzhMhYsIL0/olBYIYAYXc+XNS9+Yx1Crqtj5vGKU2tqg13QSti52lGlVWaShtABlrjiZvF+MEUlI7Y+HYgSX6icLiGv+OwllSCgziyvQz6IQTsnd6X6tMaxXK6q64nAQEneCG7G5Mi6R6zj2y3I6iYRyhRbquS493mXiKa8HNxmYJZwQro21m8Li5RzaaKuHuq5LQ/u2bfSY6aV9yS9mEQozdyvMpa5fZgX5ihjCXLqWEyPZ0NVtKx5XUKpKXZ2sGDEmvJ8wIRNqUxlM+V8fo4bUp4Mm+KCriniLRkMiEiWLl8m+TdOUPsn5e3LelAHltUIigeBzzmkf11RWOgMiYV8L8fjua2/Trc9YrdeMY89ut+M4qmFXUN0YWwxWU1esWglrjTGsVh3TNImhNFIeeLi6Yv/02SJTqfeKxL7v2R0OUjtcVdLQ21luryzvnifu3zpjmqRSZBin0lB+8oFxCqy7FevViqapxYuKSasrRJI+T7Qsk1TVldCOrOVsu2W16thut1RNLUkea16yanLeuShff+wCy8re/sILy5Ov1QqkvKWEir5OJzW0J8czZh43ZQxREjclLBbuVWkS33YrJh8YxkUP6WxMyONofgbjJM2Hqqp6eVKmhWoSL89pazRhYozw8TK4d7KPhSHRhe84CJbZqpqLWfx3eb4ltF7sM3uHJcRfhKUZLoJZPus6BWeJFS7HYVU5NusV1hpWq5XCFXPou7wnkIshTp91DPH0+Wdj+AXbV8IQyrYYqDrgV90Z0UjC4LT8LJFQ99h7iCJR5WPAZ7FOKJgghpI0kdU0KX53TSrcqGCnDoIYApMqpJQJCHMZlGI/OcM2DAPDMJwMGmnGJQXl1kjBeO0qnHWsVms22zO+8d1fxzQrjqPHx0g/jaW22KoBcE4SGHVTa/cwEfpURQIqa5mGHldV7F5cnuJGSSb3FBIff/aUSUvZxslzdTzy+fNLPvjsMc8vLxknX5RhyiBMhmEUXcfteiWNfIzgiLkZ+DAM9MOovLsg1RsR+uOESWIIdvs9x2FgGCYur/YoO2L2+pD7nj3rzB8rC2Wm7uizmENg8Ra6pi1RhGBhp7nlMleK1zT3my6K18z7LAKwOanGafXSarXicDjgF15RZrydeoRpkSS5YdLDYr9pNmp5HOk4W61aIond/vASoTlfVx6L/fFITNKYScbuEvUEOO2mOP9bRs3pOembZTFaeHkvZZ7LbV7AXIvrrXX8yGWlAiktWwnI852vLd8PyjNHtQhNHjV80faVwAgxQkQuF6MPI98kyfjJypFDZpKGPQv8IESwQTNMxpKSZPmCAF+K8ygBJkHyXj0ZxVWsJfmo83KebD6Kl+dVTVg0CGcFmpyZNcYQJi88ONXYE5qElqJVUiroakdT18KlionV7ft87dcdP/kHf3+xr1OcRjq8zWF73x/puo5b5+eYqmbX9/hpwgwD53fvzsC27AyAKUSe9yM//ughPiYG7xlDwqdcXSFwQT8GvU/IYmMNxz5wqCcMsNmuMTFrvGqb1QIZWOq61oTHxDgNrOkK6d2oF5+hvxzsKgoo2Gq+rzoWkrpnJTC+hkclfV5tW5E5clG91RAXvaYXTbosFDWaTLCe9SEXgqRJ9mOsJH+GccIYoXs456jqmv7Ys1qv84idz0vHpdRQR9qulXFnFubInBpXUMOnxmEZBldVxXq1Yr8/sD8c2axXJYpaGgzvPcdhYrNaUVV5HOVzWxiPpPfe5nM1ZNEMs+gVvqTWZKJ6Ieen5RyYv5PLSJde59KjDEHoSNYY+mFk3c3UnvwMBChX25DvjyYgp9y/huyhpi8Mj78ShtCQn808LQwyQKcg9ah+HKldXRREBPsLmM7OnemS9rgIsTTVDikpV1dA4hQzGBzLBJ6bsyv3KQ8KY3CVY+wHuk7UpSkk0gXX0MiDdVVNHYOsxioJlSlBzsyG3RiL0fDZq2e6Wq0BMbyNlSZLPviyIotwtkzOoG7r2A+s1jX33/kmF+8a/NBT1y1D1TG8OEjdbQ4rgcpY/FRzdeyL3Hl+AsnkQWUJXjHN7BmROIwTZ8FKkynbU1UVXVthcCdeVVVVBVMbx1HUSJqaREVdKxYXo9bZosYGkonivEdDDCosm3JWH7S1ICYJlenEG9F/67rW8BbFMcOMv0Wt/TbZgxC9xLoSaTCzOH9QAkkUl9WHSOMqfIw82+0wGO5cnGGtY9WttM/JRN3Uy7imnNswjkpe18ZhZaQvPB79PCmx2MXJvuQaK1arjuPxyDAKOTm/rztkfziSQHqIUNac8t+ShjJLg3jqDbII0su91neWZXBLA1wMpDGnRjA/I1QBZxiYQsBa4ZFO08TkrEQ4i/siGDXlu+U4qhUakEhQIIx/LjxCCqayxD4OQ0+KiRA8koKXgR6CF9pDNFRNC9noZeQ5JZQIKFhGngiIARPhUMkUk3mCzKGS93GuUjHC6Qo+4lyFn6Q8ykZUxktl4BXAreqaNiX644GsUpNClOZJZhFeKY9NstHSID6H7c5Y1quWfoDJT9pNVIaDxbI537Lb7UghEMLE5bNnnL/3bcK+Z4iBwxDEYNuJzhlciqXB02BH6VGShV+zW2aQtpZWmjy1riohWkiJ0Qe61YbYiG6eMVp+hieEWJ5NTLA/HIRb2DTUVYW1hsOxL96ic65km7NXTVoOdvEsLRAzbpbyxH0ZdwJpqF7XtrwvYX0gkq+T4pkYOAmpkz73aZwKxSbflBBmbpyfPMPoiQaaQ8/Zeg0m0batUFyqUy4ceszJe1arlRiKjAXmMbkwJmU6pJcxt3xjLNC1HdPkrzVNkkhinHypInFOIQBdRO01Azgbuuz8npick2uYYSnz0utLg5dfX3qK+bU8xw7as2W72TD0PZOHYZwKqTp/bjbF86KSUiL6gIkRtNokT/kv2n7lMcK8UuULWo6jY38s+EvbCpvfe8/ovQ5QWZGNs5pByl5hDtXEG4uKJSwzXRlnKFgQcwiS3f5cqofSb1xVF4ww44yGRIqqqqKhRtM0NE3L3EdFJ4AVrM9W0jhg3F+xaizBT3zy859hU2AYBnzwOANdW9O4SmpDNVSo6pbX3/k23ks4YI1h3L8AH2hWK1zdiMdrRcRVGkU5nK2Ee2nFHymQS3kKGbTRK1+E/CTJGscofLCMnYnMVxKRgETBUquq1oVG9j1OEyEkjscj1hq6rtUFbfkMKMeSxzB7bpBPazYibtGQCqCu6llxGZBmTTOQn3mNecYsPUoWk9yHoCpE4mNMKpcVU+I4joWd8PxwkARIEj3KjJNeN2r9OBaPeWlibkow5HPItK4EJRTNn8zY8Xq9wlnH4djjg47fFIWn5yxd255iduW0zMLgvSzbddNWqGwLXBJmMY/ltdwkxrD8ux9HRu91kXSsuhaLOjfTpPuMYETomOUc1UUrxFjocAb1EdIX+4S/8obwxk0nWfATaCOgykmD8KxdlxBeXrfdgk7OXPCf8YdZbUb3q9neEGf1lyI0iWJ8MYD2HRaPSOpmJeECVd3MQH2c2xBO00TwXhqyGzWm1pRwexmOVJVkjrtVh61rHn/0Af2TR9JcfLXhOEzsdkcq52g74es5K2IF56+9AxcPuP/218Wzsk4M6IvntN2K1WpD23a4qsYaR3K1NsSeEw3Xf4CSkMjnKCHxvE0xMU6R2jlVCbEKM4hhs85SOVdoNdMw4n3g2fNLrq6O+CnQ1C3HowgKeO8ZxpH9oafvJ4bJl+RVUO/veusCay3GWZFmq+qieWeAVdsodWbpkcz0DmsWunqwIFjPBte5iskLnzSH8D4EHReR4zCqTFdiDJHLwxGvE196U0/l+vPkHadJk1qnIeTSEOfxkXTsl2mwXJjNvFDlEHSz2WCMUR3DwLHv6ceRzXotauCLoFh2PS9yzL7US9PPmNPvldev7fG6tma+vuu0mWXFSd8PGGNZqzJN5qIaI939giq8l1U6Oyy67xgEI5yzyXINX+YRfiVCY7P8Rf+IOpBzj15MYgq+dJzLGdjN+ZkYKdCEi4Y9MWI05Mk4V8aHUANYQhTmiUeiTHAxrrZ0r/NeJo8NEnpm77DrOg7HgWmaMKYiJachoYitemMK5SYB4zByPO6ZjoJfDlePCdPE3buv8d3f+R3+6L/7fS6fPMQ5JMTpGsZxZIo1d7/2HaaqJTZrwfEQ2rNJ2gTIWKkzNpYYJiWYu5e5hSUzuAyV5i2vvhmrCUA/eG6dVYLvIbjM8XgkpEQdE/Wqo21qmrpmdJOofIdKlbidSvVHrCYe6tppQkOVSBS3NMYI7SZxMqHmxE8imFnBJKUkhfzGMAH+xedUT9/nsnuTF0fP2fk5zXZbkibZO6zrWrDplEqihiQLqbQolVpkEkw+0k9q5PQeXfU9q67FaZvOppHn5Crhd2bKjMsRxrUw+LrhKxidXqexFptDypNwUz6Xy/B2hwOXV3vGccRYR5cNrzHasN0s9j8/3xui3XI61w1LMcR5MbnB4C1D5XyMPNKSVhn5EKnrpiQRU5LMdmYa5HmJjq/s6ZKSltcF7VWzjOq+QAhXt6+EITyxhAmikf4cKSm9QQvjU2IRGknf4W61mXmDeWIgvD68p6rqgkGB3DT0gZUeFsZACFTqdUzqBUBehHPoLeo0zrkSJsQkE6vrBMAOQSpXKqd9jKdpBv6Bqe95/yc/5PjiMWGcqJ2DFOnWZ3zzT/056rPbfOd3/gK/+OM/5NlHP2OcAquuIaTErQdv0p5dEKeRYX9F3TQM44CpDJs794rn5JwjVtJ0KcZJmt3EQCHU6jUtPcDcazh7sMuBn7d9PxFTN+NgCbquExEKIw2mYhSZe6nPTqQUWK831LV4a/k44zhR10IUF4FWW1qCyo89OZfsWRCj4KvEk/dWq5YMd67GA+OTT3lSGY602k9jKxSjhSjuPP7E3U9JSjQnZQd475UYnzgchxKmFn3LFHmx29Peqop3E4LAG3XTMAwDTdueWhqz4PEthn6GYubzSTNFRY3Pkl4iu0w0TUPnPfvjEZ8St863co/T9SpucauyinX+fnn3pVA9vz7/W85hYfCW/2bn4ab3SIl+GEhEKffTw1vAaJSRSzKdtvMsvvpiDAYfJIkYo9YjZ1GGLw7xf+UN4RIMzZvRpAYpYJiTHsYIDuWs0R4hyv/S7N4ybT+HNVa8C2NIKYDJ60zmqc0YRAxBqgbMnIkkJayZ+zjEmKhMxh4jSXsLr7pOXHsviZMxBfw0ibG1omOIMex3l8TjjpUzHAhadWJ582vfpDq/RTSWutvw7vd+m+Htr/H4g58yHHYE3/PJJ5/ibn+Eq2vCoafe3uPw8fusLrbU21sENWSVqyBaTAoiKe8MjQ7gW+dnuMpxtdvnG39ifEA4iYXca2TCh2g4Dl7utZsNqHMOq1BGpc2ehnFkv99xfn7OatUprihSUM4aqrpmv9vRtbdxFrpOeJHOGiIyqLPUUzbuyzKuJZ9QxouExrKOJo4Xb/DBtme73XKrXdGq/LsxYMKcFGMx4spvhZUgHodT+tVxHAvenNIcih2miX0viRNjpAhgv98TUpK64pyFTmnh6VAsTSTjV7MRyffWACF/9pqXlc/bWkPdNEy7PRgkC66YYm6DkUPdDBMZZm/wBCstZ5dD5+vRwinel4ndZrGfHLYvsUJQYdgplMIAGVumhP9N0yiWHAgx4EqF0GIdSYIleh/UPiiWusB+X7X9yhvCvBWvbYGDmKTNjpAwwVkJh1MyDNOERwrSY4xSeM1ikJu5RaDDqKJ0JubMAq/L4+ekSd7PSSijY0PEX4We4xVPClEm8Wq1Yn91Kf1uh0FrmkdMjFSuwhop2t/WFU1n8NOITzL5Pv7oF+zHie/82T9Htd5oguN1vvXaW1hg9ANP3v85D3/yJ1TA6+98ner2HarNOWfn55jK4UCTSEIPGvc7Hv/ix9y9d5/tvbvYGLiz6Ti7fcHP3h9UnkwnXjZ+ZoHH2UVZlqWIkVZOJ6YVvPWwPwqOue5KMma9WgnxO0Hf9wLN26wPaWZPHQnBm0aoHlOKRBNLJr/IMi2el2RfLUaFep0xrLu5NSW2oj2/TdO2VCoqkR9i5RzHYZDjvTT5ZXNVxeFwoGoaSCjx/KCafJI42e/2dOsVBsfl/siq60rbhbppuNrtWCuGl8/9ZKpe88CuX2sOP4vxXHAcy3Xqv/v9gWmaqJzjcDhwtt3qQnZqHIrTwexVnsAOZIMpCYuy8Oj5FlxcTuSkWqck0Iw5MYaZrXEYBgDONlucetsn12ktTV3ThyDZe+UVniDVMUrdfgwEVar/Mmwwb18NQ5jgRFlRli31xjJuJB/z3tOPAyEkNs2KcRiZYpR2QTpIglJixItTjp/ijymK95JiOhlsGacSJYXTfgwpxoI/LhAdxY8CBhUFbWuOe0N/PDIeDipNJen+phEZ8lW3oq8b7p7XHMeey8NATIHhuOPJxz/jj8Yjv/67f4FmvcFVUpcaSLh6zevf+h733n4PmyK2aQgx8dZ3z0sljWjryQCvnOFqf0XjHFcvnnH37l2cNXz+5CmXh2PBP3MIXIyfMaVx/FIxxhq0GiXQ1AbjTMHau64rIq+GRF05rK2ljjklQpR/vSaovJdQ2Huh/xgDXdeIxx8swk3U0G4BeVz/F6TlY9ZumIaRw/HIft8zjRO2qmhXq9LYHmaPbw4z5VnmLbd79TFSW0sksj/2PH9+yfnFOdYlpsnz+NPPaNcdr7/5Jr33XO323Do/03slfW3qa/1blttJNnUx7mdzNIthzYYrk+3nfYyj9I3edB3OWRU/7Vl1DTn6XTYby9/TIGox5ZI6njnMnalI5d7kShxuwDsXhnkZZhsjDeXHyZdxcoIl6vcsknAax3FudKbr7TL5FKZJEyZL6syXG8SvTNa4ALCI8VIQRrKToKKYI8dhFOkeY7BOuHjidgswnYmxcpMlxA5BAFbNqOhgmvGYfKPz9256qHlwlhWZzEeUBu8kCa2bpmY4HvHDwDSOJC+ladM0EqJw8GKKmAi3zs/omlpaZRJIaWL/9DPe/yf/kDhNogkYMwlZEj627fC2AluRMFhX4eoWV83CluLNQRh6fH+gv3yBV3EKjGG33+OnURca4RdW2gwq/wjdhxJSIiAFxzEUDyFpZUDbVBLKkErv4X4YOBx6MBTKTVVVhV/Ytq0+E6OhjgzuaVJIQTPxk/Z96fuevu8163zkcDhwOBzo93ucm5vc597JrpJkR74WFs9u2dDppq2U1mmHvue7Hccs4BACJkSGw4FPP/iI4+FAAF4cjozTREqJw2GPNYm+P5Z9vjR+lkZEf+K1163e5/x9+TWdjNer3R5jDOfn55ydbXFGsq+TChpw7Xh5fl33Fst5njipp11xlso51xMipRf34h7mf/fHHmMM6/VKy+LSy9em+8iGUhSVOOlbE2NkGkcpo02zWtAcyL96+2p4hIutDASVUMoeRIihgNUguMjoA8bANHkcFqdVIhijWKErWKsPntqKgjKabj+5gQuDKLikPQF/JYqLusLO2JRzjhQCJINTwYG0v2IVDhx6gzu7oKvXBO1e9/Tzzzj0ez6fDqxWLZtVy36YlOMGJnmePvyIe0++xZ033tDzklOMIYreonp+zlXEKGWCFoRbmAwximFIwWOJuCR9X3zV8vTZM8ZxZLVaUddStWPdXB2SB6OrLDG5uewMSNZwOPTEc6kKmXygri0hSvgbU2AapRHP4dBT1w2bsSthVeWEb0cSAYjJe6qqEoDcOdq2JiUrWG0U+S4Uh6xUzScbAN94mqaFFLlzseJ820mNtMIrq/W6SGQt6R1Bs8ZeuWw3bZJRbhjHiSmOvOhHrLPUbU1lHbiKW7duYYBPf/EBX/+17zBay7PLKy42a0KMXJyf0/dCE7rew+Q0HJ2x6PLeYh5kTqFOipNIZX840A8j2+2GqnJYA9vtlqurK46HI267VVL1y5igXeznOg44H0ND4ZwgWcxRc21xWV4PzEmVYRiZvGezEimwLKyaVcCTfi4bx7qqGIzRUH/2SpMuvH4c8cFLeZ1GZHLcrzpGqKGJNfOlpKQseCtuNSbfWAmF5KFbpdMEIVl68NZTmQVrP80PPoZEsMI9xMxqIkABfJfLoVngHEuvEM2+5QddVZVIasUgPXxDIB6uSP6K/f7I8OIZ1Rtv025WXF4+Z//kMybv2QXDGAPWGWoL0VhROzYGE0eefPAzLu490Ix5wCg5OOOYKSWqypFZMeINOonskQRSs9lwfCJe6lv3b+NWLR9/1HP/wQM1SHI8ZxcSV4rbxUwR0iw0Rvp8PH/2glsbizNw7Hshj9e1iFyEQNu2pGHg1q0LzrYbAJULk7A5RWk0dXHrXJJe1jBOI8bAet0xToZmtSHWWSV6ngjZk8shYnDy2tl2g9G6ZxCc1FqL05K7PAkytJKpMbOfNt9Do4Y2ayl+9uwZg/es2o7aOfb7A23bcef+Pfa7Hcf9nqvnL9jeuc1uGBn6nru37xQmQd/3RTBkmZyb7/XpVHgp27qYE8u/p8mzP/Q0XcN6vdJMfioCqMd+oO97tpsVhcWqcXXey/VQezEhyc5CPrb+QmZb5PD4JqOef/ch0A89VeVYbzpN4MSTrPmppyqOReUc06RFEbkNr4bF0zQRMnWGpHjml5FnvgqGcLGdrlbMZNgcdimCUleNcvYMT588YegHqrZRoU8/T9wQNfskiXbvPY2V1Vm9ajAwCwGdbktMahkCZGyjrKbOiax9lHKr89df5/nDgdXtNcPlFZ/94qfcunuHyxdPCcORpl1zcfcuTz79mJooZOk0K5xA4vD0Mf54xLatRjiJFMTjw0gNtUtJ4YFA3dQk6zBmJhCf3bnH7vFDVk3N2brl8bNn3Lo4x1WNTgg53jJDK5ghijO6GS9UuaRUQdetqSuotc610X4f+/0B78UYSqOrqAkjX7A5r15gXVmaRgxEVbdaVrYQZDUWc+15LHlrghlLKH62WZfwN8ZsNANN12kZ2zy+collbrNg7TxFltGBMZaI5TBOhJQ4W3UEHznsdlgMrm5YnW2JMfDo449Zn53hK4fXmmOgeLLjKILCy+u4iXd3/VqX82IZ1mMs+8NAQjoVCj2Lguu1bUuMouE5NhVd00gonPeREs4sF4GMSJ6Gu9fPI2954YzanjOH/MtrSUlqnqeQ2G5WknBTbz0v5taY4h0mdTCMgUbJ6dM0Uc9AIWGa8F4MYa7+ySmh+CWW8CuBEebBXx52ClJ/G9SFNnkQg7NVCY+csxwOz9g9fiTe4qKpt0HoLSHEMrBDCEyTL/0osjHMPU1giXmIl+rMLA9kjUjg53rRHHdXWk/rg8dVjluvv8Hd977D+u7rXLzzNTb37nP14jmVSaxXa9589z3uf/2b3P36twjJkTC0jejG1c5QWYjjgWF/RW5iNK+6qXgYk2oWhqDY1Yk5N1Rty1vf+R53vvZNHj3bEaaJtp5bJspWahrkW2bWhFyutBmQHgOMU9T6VRn8PgRC8HSdaDdK9lkMzZw5FD3Hygl9QjBFxYPV+5e5MHumM4x7OhmLwdbE0NmmLZNQcN5YEiQSHaQyzvKurBWdy+tbiJFaEz+HfqQPkbaucZWlP+yJIXA4HIgpcX77NskYpmHk8skTSODahqPW0hqjcvsK/t+EDy6v7+Uw9RSLS+q+jePIcejZbNaKqXHSBsFaS9e1OOc4HBQvvPZ8ZX+RpQG8Hu6enCPXEiQnUdLLz2ZSObe6rum65iWv0SCcXIEt9JiqsOqq3AkxlAbwKSXFByVrPGfXs1rUFwfHXwmP0KCEXAQTIUrD8UiEaJCFRzyYuhbhA1c5Zad7Hv/iZ9x/913RktOJ1zQSdkWtSQaKQkrMJsPkZMzpLcwen7O2SNDnMFLei8VrzVnGqqqJMSgm1LDenGNtzWG/o72/Yn3rFpePHlKZHZeXL7CrFe/9+vfYnF3w0U9/ROj3NI2QiMXIRFK/w5jbZSU1doHrWEkUoXJEwQeME55VXmVjMtRtBzHy6PkjfuMbr/Pk2XNCqjBNS7blpCTKL0aEvjLZVUZXLlOcF4TjEFl10h/EWOlX4qxB+tDbPGs0XFdtZGNKzbSx2QtVnyRPBBJ2mj24jInBqZFISUgVIQmWt+pakia6pEeH1CIbNb7oAhK8dq3TUCD3M1ny+6Q9QkUMif3xyJQSt1ctxMjxeCSlxDgOtJP0LFlvtxxi4vHDT9nevo1pGnbHnu16pdU0rlScrHI3uutj7aY5cYMxAiE1XF2JqMWq6+aOczEbf3mOzgnJvLQFXa+Vena6WDLnXmGxCJ2EuvG03UGeSzddS46e9ntR796sJSRWtG92OsS70UU5O0CURVrKNUdNqCVSCPjhWMrrBMnXQoWU+LJ+nr/6HqF66CePR72w2lXiPVhH5Srpd0GiqurSGxULl08+I06TeIGayfRTFl0AH/2cmYtR65VTKVYH85JrnY2hVdzIOauJikwtmGsscwhda+mZtY7VasN2e856fYZxFfVqzZ23v8bqjXcZQuTTn/+chz/+CXdfe5Pf+O//i9z62jfZT5HjcSCFgLMOWzcnXlmVla91AGW+ZF498yJQxGlDKD1bfLKEMRLjhLMI6DyOeD/hg5eQIwT9jhgINJNbRFp1JT70ExaDdQbnEs4lKgeVNTgrnMrKCoWnsloF5EypvXaG8rNUY8lVDwv/lFfYAwmzJwHhm9wWVIkB1lmV15L5FmLQyS2k/EIjYYZf8j6zxzRNgat+wDnHqq7pDwdC8OWzx+ORZAwXd+8SEdmxF0+fEoE+eHZ9XwxHra0rM3cuH9suLu461nbiPS0WgavDkSlGtttN+X7GB09/ZLysViumSZgVeSzNxvBl2knhAbIInJee6rUQGOYse/7ssR/op4mu62iqSuZlFCHljMV/EQaaWOQEdGFPITCNY+lHHc3cpvbL8EH4iniEKYe/i9cymddpzw57EqICJEL0kjQZD0yTlDXJZLIy+IPH2QqvGWdnM5gesDgdwEHIztfCg7y6LR+6sw7j0JS+gr4Luk5T15gUibEiBk/bNVRNxf7SMU4DzjRUdcv27AJ/PPLi6VMunz3j7jtf570//Tu8/o1v8+lPf0w47nn93W+wvvcAr6tkbkWZm2CnlLTBvIiG+nE6GUjCFUtMPoKz2Lrhs8dPee3+Oc8ue/Z70SSU+yxenHO2GNs6twO1tvAoTeVIRmqOQQyaMbraZ7xL8Uyj4fGNhsyIKRLAHfKCNcMUp2Nj+fsycTJNE/funuE0uzkpZgViDPP9cNrPOi8e2feRCMFLC1AMcSHOennYs9dsZ0riDWYjY4zFTyMpeJqmZn225ZASTx5+yvm9u9i64erQs+4kwZJD5GUrzyQXNPtk1wwDzBh1fm+aPIfDge1mo936YqENzZ7RHCYaIxJdfpro+55qsUAsHsWNRun6OebNXvvcMoklZYmBw7HHaqN6fbqC5tnZu8QYyAtuCbeBJKhfLqTwKmISJs84jIzBM2k/maVg6z8ftcYAzCEKZn4YMQEhkIwpyjNSz2tE2KCVRkcmpsXD8FS1UCRs43DWKf1GSNYYiGnOHvoo8uEhRPEujADBSWWmNCVZQq1IJEUZeM5I1UpS6kit/U38NJKIrJ0Kie7kwVUVmG7F5o23eP27tZYHWgiwvX2fb/75u6Tg8T4xRRUozSuuGr9lCZMYxghWKAcnK7YRjl7yHucqLoeBN6uGvn8qAqvGalIilxRSiNR1I3y/jOHEqqahxpmKfgpMQcqlTDqdSIY51FH8uxg7WaIUClpkeXOIrk7oS15KrmjIk07UgyLBT9w6W5N0UfTamyQvGhlOwUojcbN4PaW82KkAqDZsd9Yy+cCLwxFSZNPUTP1Qesjk8MUQGY4HNmfn3Ll3j6sXL0ghsHvylDuvvcboPce+p95sNKJQXFfVaF7lydycPJG2lle7A3VVsepayt3W5zx7bKeepEV6Cl/u9vTDgHOi4r2EHK4vNvroTmenmZMi12kyRudmSiLJ5kPgbLuhstcSI3mxvPaQ530mcsc6o3CKVD8l/DiIuk8QpfNspOf9/HNhCFMBi8T7qRjjIDckQBZZNVBW9aauBCg2iZiCZJZTKhUi2YAJX6wtYbExhhSCaunJfcyJF2elPrRyVkjAmpq3eXKrIaqceJM5CVA5J6o4VaVeoqFqGqIa7HbVMU6eaRilDKsyNG2HbRu8F1wvxISfgobfNcZqAsRI4/RM+wBKHWYW9gTxlsfsFaZU+jUnA30/0NQVPsBnj56SotT8+hDFxotWu3hFUZINjIrV1LlOO2JMwjnD6A2HYaRT7cOyoKckj0rdkiyZn5VeulayqRak04Gdn7mOAmm0lXKZl/huqXSWiyXkjyFgUuJi05Xw3XspL6zqWhNbcxY8xojNVQ3LoWcMUwi4xcTs+55Df6TTuvbLw+H6aAVgHAa6lRi2s1u32F9e8fTTz7h1/z7BOq4ORzZdp2rpoql5PB5LFc5Ls+CaAVwancPhyBg8t87Pi/djjNYw52rlsv7M4XUm/rdNQz8MjNNI1wifdo52ZxrNS/jg/HBPzvN6Ysday35/4DiOdF1D1zYn17TsLZ2DgHmRXNzYlL+TSkIyhcDYi7pTDFJFJT+/TFCs5/dLf/L/j5tZxMUpzR3FluCrQXhybduyWa9omkZCv3GkqhowDutMkfMZxkk9vzjLPOWwKXsG+pCm4PHjVBaY3AtBsEr1AvTciKr2XEnmU6+AylWlplVWM2n56KoaV9Ws9JxtVdGtNxhXYYzD1RIuOxUzjVr7lLOeiVRggdIUKbFoZrXge0HBoYJ6HM4apiCE7ZgSfT9xvtlgVVWbzNxHKimkS19UqfupHHMcR148f67k9sjhMC0I7lmCfWLotfGT4pQ+REYN6YQFEBfPdsZ4EjpZsuLm9c9kMrVioN4HnDGs2prgA5OPTKobmVsv5JmVM6TZo4E5V5q9tEnD4hgju35g8oHtumMaByY/ledcJr9e99hLb95bd+5Kfxvv2b14QSQxhMC+70up3JJOs8QDl9sy/M/jfxwnDscj281GFsPF12zpbVOuSOaKjtqszNQ00mTrmKtOOD1+gShu2K57r0v4KO8jK2Yb59is1wX3zZ/PZ5eNs8yqWUVnfk75+atMXtKwWMnpPoS5+nghbfdl25caQmPMO8aY/4cx5gfGmD82xvzP9fU7xpj/uzHmx/rv7cV3/m1jzE+MMT8yxvwri9f/vDHmn+h7/555VeprsTlr2Z6dUS0aV6ckCigizSTeWdPUrNcrVm0rGaUQS4Zws73AOGmElLXmUsolYLNY6EmmK+ngMUKyHsahJBwSQsDOGoLWiieUPdIUoyYKrHpnoRjHbMCKvp6r6Lo1Xbdme3GBa2qsGsGkCdLKOVxdY62blTWY8cwsF2Y0ZPfez39HHVZJwo8QPDF4cvsA9DOjCkFcXvU8evSMaRpKdnkaJz796GN+/uOf8MFPfsrl8+ekGJnGiasXL/jkgw/5xZ/8CT/9/vfZPXsuZVOHUe/hPIAzny3G3GNadSOdo2laxslrC9VMhl14efrMpvwMYtI2DaE8lxCCsAl8wE8jbS3y/CEERi3Gz2NquaUk3LrlYDQLo5YTGdYYhnHCx6SljxXH/UG1J3PUMnuUBhiGHh88tqnZnJ9hm5onnz0kxsAYE1fH/iQh0zSNqpn/ct5MSondbk/dNNqDJHtKkouV3cyLNWpmUu6ByixYsupaUhJZ/KXRyzDBdeNY7pXWF99kvFOSZ7Q/HAgpcb5di/rRIgQuHmbGOym2bgFRyD1Oi/FkjHSB9OOIH/qyCGc8NH/2JSzlhu2X8Qg98L9MKf068LvA3zTG/AbwvwL+q5TSt4H/Sv9G3/srwG8Cfwn4D0zmp8DfBv468G39+Uu/xPG5ODvj3oPXuLh1SwZsxqqMxVmn0ltSeuWDJwTPOIrqjLOW9dkFSTkfMvHkhk9Z9NPZUtxfenVouERKkuWsLFElmrIBBEG2JLwL5M51UY2snJeETxmzq9RTK6IFxmCdo25bmq6jW60plZ4pFeFMayWkIxnGYRK8yjlIqXhXJ4kc5Q3mgegL50qI5KjBmUbR1hsHCS0uh5Grw6hVKBIGD2PPo08f0jjD7uoZn370MR+9/z7v/+THfPzzn3G8uhTlnKbi6ePHxBg59BM+Cn1BOsZFDoeBq/2RQ24Ob4wmdCLGWfpx1L7AaTaI2dtTrM57UbiJUfvX5uz34mdSsu16JeV7o/fCD80Gi+VzlntWRCGyEdEJeZK5RaT1E5HtekX0E9MwwvzEZOIuQs+YaTUk7t27h7GWYz/SH3pSguPk2fdDmauZXTCoGsurPMN8nvtDT0hIxzpe5bPBrDNoJPGXsdsFUOuco61rxklr800u31wmS8y1/Z4Spq9vKcHx2DNMnqZtaeuaZbvqglUaxYjttfYAxQgvoAG1kDmKGaeRvj8yBpkXxWTGuNjNF/tcX2oIU0oPU0r/QH+/An4AvAX8ZeA/1o/9x8C/pr//ZeA/TykNKaWfAz8BfscY8wZwnlL6e0mu6D9ZfOcLTgAqU7FZbbh77z6vv/EGbdOW8NIY7e2rFz6OE8d+wPtQKh4ubt9iHAfNgIXSzyJTZfJY8D4UI5UfhkXCXWMsIXo1MHkzOOuoq0ZuZZJgw5i8EqGd4rJajRirbMCWkzHXQDdtWzC/0kNlWbniJPnTH3vFVKyqbSguZuSRSzN5baXphSg+DEMJIVOKBO/Z73aYGBmPR+IkocXVIJpu0zQSQsYeE/urS5qqpq4d03CkqgzdusM1DqxRHcMdMQT6MdL3OXRVPp6rqKqGEMWjFgkvyZjGhU5kiBriLug5Pkq4O/rpxPCVEFtFGLz3TH7CDyObdafiDCLWkAGn65M2QxzWZqqOJoYWn7NGqnVy57uUIn1/FC6rjpScBDLIDmassBdMtqo4u7igqWqePXosnmaI7I79yTO+TrK+ycDElDgOI4dhUKoML3k+c/h/Op+MzpeiKam0IWtEN7O2VntQv/z9jBMCNxre6+c6jCO7o5TRnW9XGMNJZCUOzctyXSd6hWnet4zdhZNCIvUD0yS9fGJeiNT7T+VMv3j7p8IIjTFfB/4s8PvAaymlhyDGEnigH3sL+HDxtY/0tbf09+uv33Scv26M+QNjzB/kWuHaVdR1S7c5482vfZ1OyafGLPungjXiTdRVRds0VK6W1dBIpUVCvKW6rgv14PLyUkLdlCSMtcIJnPvBpjJYfMh9URYYJUmxwkw2jqLMotTsqqqonaWyUlTujNZOp4V0EirQkKCuG5nc08Q4jgzjQN8PEjrqtfbHgeNhUCOehSe8Th5K6CEGNjFNI+PQ48dBuFdJhCaqyuEqS1VZ6spRVTW4msEn2rbmbLvGWeEAhjBiHcTgdRHKeV5ZOKyxRRnGp8jV4aicw3ytibYVaX6bvWT1vJzyQvM99WoMpxjxSbBE78WghRiIcWYI+GkqJVfjOOGnQIyBzbph9JHJR23ylU49EST+clYm4pKKIrC0nEPuIZOS1OqimJgoKufJJr+ZhQFcJhJG9fDOb98WEF/fc84xTJ5j3pceX7zCsfy93BKCuV3t9qxXq9LxT75/ei6yLcrj1F9d8otFsFoGodPGTjEEhnEkXYMI8r8lUfKKsHMZEkNiu1mLIEV6WeAhY7EzvWvGBmf0cT5eUqiEGCEEguKaPgYCqaj0FKNZsNFXb7+0ITTGbIH/M/C/SCldftFHb7ovX/D6yy+m9B+mlH47pfTbzlr8OEJMVLaicjWb7Rlvf+ObGM0wLcuu6rqm7RqappbqAWt4/vwZbV3PYWTKIgiCO9Z1LdQS0FBOQmpXSWhbCNKK84WTSZXxCjC2PGH1zuasWuV05csG0NrFpCz/USPsqGvBivb7A8fjUYrJNRGCERhgOB6lz4OfGA5Hht0BcWCDqmin0g8jRcHNxgVJ2jirda+JlAQ7tAg5fAzQNJJ4Skl5WRa8n+j7AymFxcAV5ZtxnKjqqmCAu6PiqkGM2+HQMwxjkeSaplHwMPX8RCQjloZZuRug9/q+9wyTeoNeyvZyGJyNoTTIknYIWdV41MZPMUqzJO+nk4yoRAi8VFmRjXJVSaIrxnjS/S0noxTW17D4NOzL42bqjyKTVlXcvnePO/fulbA7pMTl4XhS6tY0jRr60+QIiNE67I+4au5bfOrtzoblxIPThSsjO1E1N8vn1PBUyrgYhrHgqsvrKeeySAwtzy9TmC53e0kqbbZlrumBSslf4rTb3TU7QEmWaSuMHCoLvhiJk2ccBoV+klaTKCuieL8UHvCrtl/KEBpjasQI/p9SSv8XffkzDXfRfz/X1z8C3ll8/W3gE3397Rte/8ItpYTXtDg6sSvruH33Hvdff10bLs0/xhqlzrhSr/r5w08ExE/SYSymWCZDzq4uQfn8d6ZW5KQHGtrmFXmJJwmWaOceyKrOUrxKDbmthsikVN4LagjyvlOc5bSmaSKFGQcrvVGmiTCN4jUOI599/CEf/uN/yPHJE6yGvmC0xhgVrJRM7zSK0SCKd7qqa1ZNDQaiHyF4qGpChCePnzANA5vtls3mnK5bsdmeqdbdTjT/Dgecc7z25pu8+943CnXo6jDSj5HdTrKsxjoMhuPhWDBC8Rwi3gf6XkJbEWQNmpn2GvZ6yTCPAT/p3+NUwmHvPX7ymtn2NM7RqEp48IG+7wWw98InvHzxQoQ5kLaQGa8sjIFsxBYhM2j1jhVOadt2aO1hniin/8K8WMbINA4kK9Um3Xo9py+M4Th5dv1QjJT0eG5KC9DZyCT2+15k/rXTm9Vk2IyJ5aRUZOkZiZeoizaCr9vlOev4s9aw6qTBU58l4BbbSVLxWuiej3fYHxnHiVXXsGoFFxQOoN4VrSKZoSgNac3szWYDXbzZVPxZQEnyw8A45URm0rEnibgAhVN4A0hwek1f8J5epzHAfwT8IKX0txZv/V3gr+nvfw34Lxav/xVjTGuMeQ9Jivx9DZ+vjDG/q/v8q4vvfOHmp0m9QtTKW6ypePPr71F1c/vMAvYxlx0lEkO/4/OPPiq4XKageB+oakddS0e5nK0LC28uG8ps5Eo3ODXQ1hoKyTOHvbm0ThMWJp+f7scaU0IK8dZmGlBR7sgZaTMnFCbvGcaJ42HPk/d/yrMPf8HxhUj/N02NcYY/+Qf/LcPzF4g0lwzKcZroD3uOL57TX11x3O+Y+p6p77EpZ8ulEH/drVh1HZu1ZPcePLhPmAb2l885Hvd4Hzi/fZc3vvZ17r/2Omfn57zz9fd4492vsTm/AOVQAoxTELmkFAl+lgjDWBHTyV6UTtSEdIPL3uCUw1of8UGqYKZJDaP36t35hTEUjzAET9fW0k/aR652V4QQOD87Y7VasdlsuHX7tmSCEXn+jJfl6iIQWbGmqsokydJqXV1z6Aeqpime/XUvME9ydBwZwPd9SQiYE2MiXuGhnzPIxog8WYx+Ea0kDseew3BgvVlhrVExXUr2PS/O2YNahsdpTsNy3TRkQk0+b+eqogg9TXPp3+KUZ0N+zZMbx4lD3+Pqis16jZSXG81xpPmwYq3l3E7C+UXYHVPmgOt3FB+MkpCcNFrK+GDeb6HjzEvRS9ew3H4Zj/BfAP4t4H9ojPlD/flXgX8X+JeNMT8G/mX9m5TSHwN/B/g+8H8D/mZKKfvXfwP43yMJlJ8C/+WXHTylxOgFK0temwPp5OlWG+6//Y5mS3L1w2lNpsy4iUcf/kw8iHESLlyCEMQzMhbqRhScc3OnDOgCpewKlHhrDK6qSgiX3485oaGJg4SIQxhSUd4tRtXMrPo8WGOWFdNr8VEklbL6zpwkkBWhv3zCpz/9IWk4cnFxwYP3viGG/7if71+MfPbzn/H59/8xh49+zP6jH9F/9gEpTIzjgB9HMcx1y3GYOByk094YAoNPHA9HZAWSa++nhA8O6ypu3XvA5uI2rutIOrkzITYmmAL0o+gLTsHTa2Y6Janv9UqEznhgpvscj57JzyFxNoJ+EmpHDoUn9e6yR5gb+6QYWa9aQpQM8jD0rFbSW1nqrwWq+OY33uM73/k2dWWLV5gTWRkHy/1/E9kQRtadhMcxCayiuZGXthM80ghRP/pXGBVjGCbPodQgzxnkcRxJwHEY2O33wjmtK9HWLIalWAEgJ+JOw00J9bNJmNWDokZJRv+HJiJXnXT4G5VeBpyoK4mzlk6ucRwnrvYHrDVcbLdzPxgjzsfSC1xyd09CeD3XE52EpINKn29Kkeg9U39QqCeUaC+HxjIfX1YQumn70sqSlNJ/zavTLv/SK77ze8Dv3fD6HwDf+6XObLHFMOGnnuA9LtNXBCLg9dff5vFHH+GHoRjIl8HlyOHyCccnT1k9uA8maWhssTFggpCx67pm8mNhuI/jWKoeCk1goeCBnbuWVa4qBeA5C5kUc8qlfXnLhjPEOAO/zHJf+VgpJkJUfEMHSgqBpm25/fbX6Hd3muzQ0gAAcuNJREFUePKTH3L87CGrd99jCAETVRjBB4KJPH/2mM9/9n3WZpKOaCnB4Rnjk472zms8OF+z3bT0Q89Q14RxojKOaBzBwuVh4Pbtu3zywYeSPDArsJ1IlRnDse/ZnG2lD4ddNERPIou2P060ClU0TUNSHNSHiE0gD1JW7hlfSyWDn41CUsM6jEGSXjEQoywW2QhKVYlMklXXEYP0Ve77ns16I0X9TipK2srxG7/2G9y+c49PPnq/UDqs4sEheOq60qTJ6bhy1rJuVyK6YJc4tRohA0VedOH5i85ivcDzwNlZKy+kxOWxZ7NaU2tSpm0aCev3B3b7A6vVirVqFyYjNdM59zIblZzcy0IVp4IFIJhxxr6VWcjsr8zjtGtbjoMk6pq6WnTVQ481Ox7eBy53e2JKUkLnTmEGk9LcO1xvSiJhkpk9tpj90nQqIpiSPnM1hDHi+55jf2AMXpgTKSnjIJwsC7/M9itfWZIxpHGcBExPM3+IBG274uK116VpOXnSLDCFJNmlFEY+/+mPyDk98TY8wzBJ2BZmnt809qQYaNumCCZkJZes7mI0HDEJBe6FYpMd/Wzk5vOYs8yyYmeOmgykrH13EmYsmkRlXl3R77OOZruhu3OHq8efcXz+jMN+jyFS6TnGGHn6wfu0acKYyNyuKtI/e8QqTbx1vuL2ptFQrCZZg1Eqz5gMu2Cpm5ZuvZL7a0RUdRx9wVCtEnKzguDymneHHu+DNOgZR6yRbOvhOOAnzzgEjv3E8TjQ96MII2jI7EMiBMUQtVrET6Nih4IfBu9FYku9rRQDFiNN5MeJjz76hMP+wNXVJZ98+D7PHn2ORRq+v/HmO9y6fReXDFcvXmjCSwxdLqsEmZg5PMvP/2y7YQqeum11AdBHlv0txbYEk5PnvdmenXpBINQsmBMHiHwYzFBK0zQcDkcqV7FVVe+8iSTbaQXGcjGa/56TKVYz/iWRsMD5ZicilTHhtDxzcWEnm0RSkavdjtF7Nus1bVPPmF5CKLaLz8/wunymHNdk3uhLh5k/r206hv4oUY2ftI94xutvCIVvctkX21ei1tgHzzSNJXucXd+koOhrb7zF448/lhrhsvKd0gdSCjx+9DGvPX9Bd/tWcc+FED2XH7lKMs398ch6vaZt25IIGWMiMCt+zP06pB5YBFh1f/pMMu6UP595cgLCg41yjiFEAkhntwwWk4pYqLWG6OVhC94oBnt79wGPnz/hxcMP8XWNJROrDcGP7F88xZlC8Z0HUxhYh57LZ4/AwOsry1hVPNoH7t5aiUeYIqmuIY3cv3+fzx89ZTfVWGeIweuzkDuQTcAM0ySigcM4YdwZbW3oe2kRejj0qrqNktkVErCW4CPis82Cm6KnlwhBFp2omnMxUniE+WcaR2qgP+zY+UlFSNfUVcX++TM+/OlPeP7Om9y5fYc/ufc6VdPw+cefMKTIentLRTfMot53nlAWSNaRxoHz9UraTqYk/Utir9UVCyNnDCSZ9F23EloUiPFzQliv6hpnHVMQefttt6JyFUsPznupAFpv1lqdo4kGNXQJO59ngiInZnKNcM6G5+SDFgxomVrRW1TXe2lCrJXmW8desMK2bYqXK5ciepS73Z5hnNis10VjMEMMmMU+jZxfHo95Li0LFdLJSJo3kzQ0TlLuORz2GiFEfEolxE/FGC629MWU6q+EIRTC7MSonlrO/poYsTGxXm1Zn1+we/oEG4I0pEkGkp0XiRTxfuDZhx/w+tk5tqpxTrJ/IUpTpxAnUqxo6prAyPG4Y7XaCk6HYBZSgB+BXCEi6RBnpXzNmNkYGnX9Y5rbC5QMdQJrHM6q8Va3XgwnpRMXilvKBFPAOYqXFPxEZQyr81sMzx8TgKaqCcZgFD8zcelpShiirghPHn3Kpquom4bKOToDFRMXVVTjqVUhwdK89oC2O+enHxzVY7Ic9/tCJ5HdmwJmyz2QhlF+hK6xWOsIIdE0reC05bxmJCcp5grKAUu5rhzGCYYph8Gz2vjy5/mTJ7z14D63bl0QUqBpG54+ecynDx/StS1d1/D1d9/hd//C/4A//ef/Baq64eyNN/mD//a/4dBPEIT65BaeW9J7JlCcnGntLOfrFZfHI+umZRyy6jRkj1Z+FX3MdrMtfVseP3rEa6+/jqsrjDW44PEpsd2uOdusFyWAiWM/st/vMZrMa9umODeF81juoynGe+nhzZ/L6uLLUHr2IJdVNPOYyW00p0J9qp07+dzhIGIKTduyXa8WSjL5Kk4XlIwVXsuxCLasvNxlyL30ArMTNA4D/aFn9BJFhJRFXV+NCX5RmPwrbwgTIrUTgmcaevw0YNu24ARRV9f7r7/J1bOn+CA9i91CccNoSp4UePzJ+9x575u0W5H77qpWJ5ZUgaQYidZS1Q0xDvT9gabtcKbGOicq1wtDbIwrgz/r10lzcnSMmUIoTsST3hmicqWgMSjoD1VltVRwrjaQ+mH5XYQ0R1KS2td2e8H44jHb2lFrH44QRCAhc/aWdzR7b59++pDPHn5G03WsViuatsE6y+5iNyc9cnVHiuyuelzlEF6snPd2u2FJVRVVmJmY7GPi8jCo3t4o105UPcA5JMyJqkIC1wUkxVxJkJi8tMy8yQjmCXPrzh1WW5HeqpzDkNhsNrzxxhv4aeK1t9/grXfe5Vvf/S3alYSZD15/g+1mwzhdMk7TokfMchRSvIqqdoToubXd8mK3p+oqnKvwPtfoGv2/wCXrszOysXn26BH98cjl5SW3794FrYvtupbz7ZngarqADv3Ai8sd7WrF2WbN5dWOEIK0CpB4QdVl5oSFbNc9wKVRQvMOc+SQTeFylJQEnmLedS28whBCMYQhBGmd2g/UlePibLPIui/3l+b5kM/vGoRSzq0kfxZ3P0WSlntmutl4ODIM0ukwqFcqCvTZwF6/oi/efuUxQkDrSgN+GmTlVfc4K9MSI7du3aNpOyIGUahf3mgQQxg5Hl9w+dnH4iFOEz5MRbJ/9mTEda/V2xFaxkSVx7iz0kYxo/gaZsimYbBiMMtEiNea38xtylintQZbaf2zVkekdFrpYI3VbLcnJRUZUDw5hEjlKurKcTge+PTDD3j08SdC4k1ixJbYY6ZwRAxUFVNMXB2OvLi8IgwTtXO0TV1EWF0lE/0wJupGJO4NRtoner9Y2k8HXn55348kA23XYTB0jRDe81ap0c1cvqDwQUpiDOM1mS0RXFhy5DLBVqgWdVURo+xPxHill+9mu+XBa29Q2Zq2WxfkbLM9Z7PZijAoibp2MwGYGV7KmVHnHDEkNisRVp2CeJ4FZGQ2L6v1RjX+YH95yeFwOAk/Q0zEquZiu6HTxIshEb3ncndF09acn21xztK2Db5QWZTRYK7V5pbzzK/nUtQZE5xD0Ozlns63EqpmT9IYaY2KdI30Spi+2u3ZHURk9exsWzzZ0jlOd168v2KMZ8Odf07P3VzjQKY5bI+JOHr63U6oPV6EWCdyOaccMZWn+8ttXw1DiBoRPzH0RwXFY6lCiFHCj1v3XyOp/p33yybd80Q10fPkg58SRul34L0npIhxRlSrUe9EjWHWqJv8KBULlF2RQCk0Mw0BKIY0G4JSM6qfCer+x5QWyRhD3Syl9qW6wDkNs63R8q655Csom/5wdck4DOrBBZ588j6PfvCPcZfPaaR+irQwhsYYutUKW9W8+a3v8ua3f53Xvvkd3v3Or3Hr9nkRuI1B2n5K2aBhGCNt7Yg+Mg2jcPiGUaDHMvnmnzyo+9FDMrR1RdPUhXqxnAC5cVNO9AQfdXVfGI2gOFL2IJbGMQmvDKSJe9IkRNM0bM7OmLzH6bMcvWc45ubqhrqpOb+4I6rHZkl8T+UzN03WFDxNXXOcRqpqvq68NSqkIfJmPZ9//rl08DOWs1uCRxpjON9uWdVN8ZBjTFxe7XHWsdmssVZgmLZttc1CEoO7yBIXL/Da3F8amiWSm81EyomZa9+5volXWJfE5W5/kMbs1nJxvqVZLhyYUv+fYYLsaMRri7LiHyVDvAzll1sqi2DEDz3D8cAwjUw+Q2ULLjGZeP3/be/PYi1J0jw/7PeZuftZ7hr7kpmVmZXd1c3uRndPT2sWNhcIlMThAMSQb6MHDR8EjCCQAAlID0MREEYPfJAgUgAhgMAQJLiA4IAASXAwIEGNhCHFaXVPVXVVdWXWklVZWblGxh53O4svZqaHz8zczrk3IqvZVRUZU2GZN+655/hxNzc3++xb/t//+8mF4RfeNI6OFrxT4oCuXTO0LbaZ5IUgXolUb9x8haP7d3HtCh+FYd3EMfYjrmpx8oTTe3c5eO1LmGDwg8dWFh+EYfBUdWR18WraGKt4wOXijHoyRWwNRgVuwjp5FyBScRnCBrUSjMIQdAH33aC8eHEnM2iqV91UJDCslv9s8N7hB6X2AqFv10zqmtYYTk+OGY4fMzGw6jouX73OrJrRLxY8Oj1meXysfsHI6RWMXr+uTSSrjdyI6CFVrQSdxpoN63Dw0HaBw8MKa9U3qq4EF6OwTaRzMoiB2WTCwd4uj4+OICgOcDapolG0uTiTSVQaM2IlBx6Sn9eIKP1VLfnNgJYJ8EFo1y0ErR/tg0NMAjwLu7v7tF1PXVkGN7A4O+Hy9Zvx/MKly1e19k1lI4Hrpo9NTYGxz1VlOD0642B3h8WjjiCKoVRuQgXiz3d2UdCC5969e0xmM5bLJa++/rqCuI3hYGfO3rQZSUajpjV4z95ejDLHUbFxzLXQk2rXSfglLQpvYqpnQjYU47stJGFjTpb3e/59BXh3Xacs07Hs6v7+LpOqUtFT+gWDCkSfAjeGjfOPyI6iQ2GLbGF8O6911w+sT89Yr1a0fa9kHJk70xUiULbE+7PbF18QBiAi6J0b6LuOdrWknu8g1qqJ6hXdNJ1MuXLjJvc/+nHW1swA1gpelH0k4MD13P/xj7j8yqsEq6Dl4DXlTU3NQGXTAvA5/zcAQ99iEQhWc52DglpVg4hqfVCyhWQqaBQ5mcySTUCNiEaIj0im6EpCoRsGrNc6IUPocoDk5KMfUU9nLNqW/ugekwp2L9/g+P5ddhzsv3KbwQ0cP7xPkFTiVIE9PkBwOlWqSpmItXpboAuBxipWrOtHTkMJKMDZCbPZhN15Bd5xsLeLNcL+bMKta5c43Jsx2VEyDCsBK4abV3YBz/60YtqYjQebFJikTWfdJC0SP5rFzgemTWA6mUcAtgKy3ZBS8RynC829Thg8K4IvFnSCYnkfOD56rHmgsQMHl69S2wZregaJWNBSCDLqFwEUCmQM+/M5D49OGGIQaBg6EGG+u0di9n744AHWGM6Ojrhx65am14mwN52yN5troSrU2F0s1nT9wN7ubq60l5qIMJtMOVsscN7l3PWYKBWfV9gQZDEqkpdSea5S+J3TwAqzOM1Ha0x28Yi1HOztMmk2/eFsWGCb50qae3L5JGstQ8KK4zfdHi5rhH3fsVqc0fWJfzCawsFnxXLL8B/vmae3L74gRKO1DiLTSEe7XjHrWkxV4Y3BJG1LDNdvvcrJw3u0ywUBxaEBcYKAtzqxz57cY/HkETvXb6iQMCZDG0JU9URGPx0y5qJ612OA3nukrhGxKeSFWBNLgKrZbiOpamaGjkJxLHoU/XWD25h8aeINaBYEIdLIW0s9nbB+fA8/dOzt7XBw4zahrpAnj+kHx0xU05zMdlnPdulPj9VrkhVDdSpPJlMQpaIXAl4CgwQaqoJhRpf/uhtAlCEm+5uC+ve8G/j0o4947Xd/g915hRFTUFrpT20kB610swjZlZAgMsm0CdHMcaJsQuoMV3qzuhKMg0EUYiMxuCAi7EwnWiclnt+YxN5tIwg7aD2Z4Dl+8piygHtiaE4iLz3zUGjycSJp7rv3TGMO7f7uDo9OztidNIhYptMJVV3jvec4pkB2qxV7+/vsX72iQbq6Zn8+o7KjOb1etrRdy97uLlUUgmUtD/VPqmY4dAM20t2naDBxU436YEEnlz73eaNJLoDSTC0F6LbQCMBisczzuKlrTU2VBOciC8F8TpH8drKItq9HGK+7YTJDDojiFR8anKNdLlktTmm7NkaLUyJCKfpS7zdN8GdpiC+AIIxNZPQTtiva9QozmWoeriTaJKjqKTff/GU+evdtLepEGug4SYLW3eiHNY8+eJ/DGzc1Odu7zGINCvtQXLHkTJP0oJqmyoJXTAyUhKjteBXcWn9YgzkpnzeZyyEGZVRD1f4ZaxUUnPyMURNJmqMxqfh5w/TqLex8h+AHbN0gkxk+9FA14zVCwNYNl157gwfvfY/QLpQGP8Jvhn5gsndIG/2kq9MTurNjHuPYm085ONxnf29P/W0C667XsqBe84eDVz9eG3qGwbE7rVivNROnqkwkpR3hGq0xEdCtHvsQBV6aoB4glHCZMBKwenIAJdF6+fhdI2CjDVjVVmkh/YhES0zhGtMJWcM8PTmmW6+YzncBeHD3M/peCWPTgjYiDN4rHIukeQTWbUszjaSv/cD+fMbDo2OMmTCbzZjOZjgfWK/WHD1+jPeB2lZcv31bg1q24mB3hyZGtUFYrlqWqxWz+ZS6MhfGPJOwmEymrNuWyZagUSo4E40oGQMUoUhXC1tM7PntTc2TBLuKn61WaxarVS6bq0znLmaK+I3OSlqMW/eQsbdBgx4Sn/d2cCT1M/kwVSA6fN+zPj1jtW5p+4HeeRxxnoSRdPf8yH1+++ILwoA+FFGBMDhHF7XC6c4uoaqyWh25Dzg4vMaVG7d48tkdQOIzjRM6xPq7wKPPPuVLqzXV7g4pkdsYmx9wGHQmpYCFVrUb8MFT2zpqjNC7SA8egyxeBBtG6EJ6wBlD6NQXpP7uMefTGuXz03KjChlKkeUEK7F1xc7+AcNsqhRUXaeYRFsjth6j3iHomNUTqp09+k4puoLXyPRq3XGwX7FYrTl+cA+6hRanMsLJYuBsueBodsS1a9eYzWf0g6eyTTTF1Kd5+dJlHp88wQ+O1drx+PiM/f05lTPUNmmFI+P3to8qaSelSRziMwxoX5NgTFAaFZKSfVLKop2A1S5rO7qIJFetS3Nn0jR4H1gul5wdPWE636VrWz7+8Y+Ufy8kjsRNU01p7wNt21JXVSyXGejanllTM29q+sEx39nVvFfnuXPnMyZNQ7dcceuN12kmE6wIBztzpYWL49G2KgTnO3PqOta1yWbmeT+emswKo2pqzQLK2RqMfIqjFqSCacPCiW373BcFKpbLFYvlEltVujka4ezsjK7vtfxn4ZEbRdGWWXqB6V3MgvPmcAiUsBnvPN16zersNNK3ORyiWTjeZZjVRSIw/ARy8YWIGsc8Ijyx+FLf063XdG2XMwtG/jrdnW6+9hbT3X1k9KszeB/VaYcLnrZdsjo+zjyDRnQBJChLiNdLuawhBNWQSIW/Y+H0uDummZ0cu0PRtxAX9DBEYtHgciQtMUknN4nzmpKmTCtupPbyCpOZTqfMpnOaZkpdTxgGz+mjRxA8YmucGzKTsohlfuWGBngC+FjMfjLdoVuveXLvU/rlMYLTTJdIOWassG7X3Llzh0cPHtG2Wr0vLTZjDZ/cuaPCoO9ZtT3vf/Axdz67zzDoPRHzsYnR2OQSKKViENncx7Nz/7yXJy3qJARTFbwhMtEopszFYIEQfMjR6MTgo9NJ6d2PHj0A4LNPPubxk0exdEMUuhEcrh4PdcG76Keqa4X+qK9Xhc7l/T2axkatO3D37l2MMbTrNTdee4VmPgegMcJ80mBVv6RrOxaLJbPZlLq2kbQ3CY3NqOe4ocJk0mhB8xCQVEObUuCM40RwWbCneXhRkGTj+3HTXi3XmglkKy4d7DOptZ51XVXZRXCRECm1u/JamWiENLZ+QwiPz3r0Hw4uUqmdnbJeLWi7jiFoJpbCrPwzKtY9m5A1tRdAEIa8S4cUNBl6+m5NtzojRK1piPRLCV9mqymvvvWrSAQ3ixmjVWpAGBDP+vRId1ghZhPoRKsqQ0ChCs7FxdZ1kaLLjMJQdMEtTk7UtEIXt1K3anaFC1oaM0RTquv6bOb1kU05hOg3c+QAQN/rtTJTB2ryTCZTpvM5s9mMyXSqVPxPHkK3xjYNXaJCjw7s2c4+B6+8QbVziAtKNnt6esKj+3dx7Rl1JdGcNdnFkGarD47HTx6xOnnCzsRmQs2qrrQuzOA4fnzM3c/u8t3vv8ff/bv/Hf/93/8fOTtbxqpsRklp4/lTxb3tnxScEFTLzoIzCtRkYufi8Hl+SHakZ+wbKn+9d5gU4TY2BqzUNTEMA599+gnrxYIffv/7rNdrXXAphbPwXWnVPc96taKJuMS0uJvIXL2zM1cBacYUybPjE27cvMne4aFS1e/ssDOd5NS4vu85W5wxnU2ZNE2ZKKd3Jnp/Zb2R1KoIBXJO3Q0jXASS9goUGrl+5hn5BC+O0I6a3brVCHFVVxzs72UtGDTbJG2CpfZ3kea3HZTZ8AmG89pj/CKJhdo7R79uWZ2easnRoWcIMEQhr6fXoroXnEh9rRd8UrYvvGkcUIXQep+57tQ8blmvVky7jjrmatYeFVLGgDFM9w658cYv89n771IB1oYc8DAmgARWJycamIgMxEYSX2Fko+6jSLPKTD2s19S1FjdXv1bA1hWT2VRN6tBp3dwMLgViVMv1XgM/3uNWrUJjCLhe+5WJY6OfSvF8TimkasFH/4oYowQJ6GTeu3SJSf0W7dEDpoeHdMbS47FoJY0gYOeH7N6aU+9dYvHgDhICk9kO8909/NASXKfBjDgx09QUYtavP6PyJ1jZ0/okjBUEl+uWdnHCzt4+djLjgw8+Yto0/PP//P+S6VSzICQ9TEa8ZXIJKKFmiBqrz7iwEH0/TiMp0T8Yf0uqEeLw3lA5gTCyL4PiDo0ZYSe995EQQ+E89+7d5Zt/+Ps8uPcZbawRkzT0hPNM2nrXdZnvrzQfjbHQD0zqhsZavB+o64bZbMabv/xLHFw6RIxhbzZlfzYjRD+3iGG5XDCdTiO4POTgQh4q0axrfZl+JyC1Va2wH2KmyRiFFUmUZkJIGMMcQiG6ZUaQdWqlr265XLNaKQv2wX7MeCnuWwlq1ZUTmjrnQG+3UjCGMHILJgG54cqJCyaB43Vzc4QhBUmWdF1L71JuceQlTC6T8arjKG706ek28hdeEAJ5cIw1WStUZuY13WqJbbTGggsgQ4zaiua2Xr7+Ct71PPjofWwgUj+N5z09eowfHLYxmYZ/Y+etLcEFhk5xUz0+R87quoFIclDVVRSEutMnnFgftcbk8xGxVLVRP0cE+fqgtVlN1HwGoG4amslENZXBUddWU8/yBNEAi7GW6XyOrWumB5cIBEzb01QRquM1AyXhzZrZHHP9FSyCxPIFBo9bneCWp7ihJ4wkUgQZhdh8bxJ9QSrk57tzJtOK2XTCtcPbDFXDk8dPqMXz6Z17PDle8UqzhzWBEDU6pQJLhBLRWW4kkheHEfjmA94AcTEHSQEADZAESRa2FtAyxumz9THHO244GnBKmognBKukF+I5Pltw+u73CMaokIyLKmUNJc0wFZKaNk0xdaLgSmmSonne62FAgCvXrilA2xh2pjP2ZlOtjWJqFmcLur5nNptqrrbZjNSmc8e/ik8g0WoFfE578z5BUvyGWS3io1dJIig+amLjXeRzl1HbxWLJct0yaeqRTmvLh2iNMtO06zaumc3844uiwPkm/aZJfO7eQ9TunYPIKbk8OVbKrT5aUwHw0fV07m42X/0ELsIXRBASdxCv9FPOJ8r5Nev1kkkErg5etSWMpsCpJlBz5dYbeBEeffCelsfM6r9neXpEv1hgqgMlaI1Ql6S2e69ga3Hah7qqVKPoHd63milgVYNQEHKIWET10aVshvzg4xy3da31Nfohm4Z9rJ1rI1/hpK6o61110EdOROcdxgf6oY/8ehXgqCpwgxI/IIK1NSmLwAahEkdTC85U9NU8VoYjwhOgqSoml6/QD310SLfjbhoEY2t2dvfJu6yBw4N9jPUYArvzOeZLr6iv7eQRZ6s1H955yLVLO0zq0R+YjDhP8sNtxkdHX5cGv2KQObLCEKu1EePPMSptIijcbJ5Do/mRSDTCVLxXP/AQX1sL+JDZS1zQ3iUfsQ/q600pdyWURfupz2sYBsXURWJVEwtCzScNB1EIGjRnfL1eM5lOx9K0F8z30TtY6OaF9pa0KWstQyRjQMZjEh9hGssxiLLpGyzP55xXFpleAdu783kubBWSbxhUywyaadK1uqGnAlIb91AIwxA0wOa3rlua5/n2YpDEx8qF7WLJ8kwhM51z+uziMS5tWOmrnPcKjvf6dG/hiyMISQ9XQdQumhjdakm/XkIz05KNpsLLgEOoY8qXsRU3br2JHzqOPvkQIOd/9sOK4/v3ubq3Bz76v6JmqJNNh6iq03uCFcGJ+iO7rqNpGiCQqt9JJARwQ0Ccp6qryLwSAzV9pOyyFmIUN03qvu9JGK8hajeJYKBuaoWwOGXdcTIoe0nQ/FwxhuAE58YUKjc4jPcM7YD3PU1VsdM02KwhqQku3uDxWN8wnUxYrxYslwvVlqsKFyYgzYa26NzAdKdmvldztFzwW196jTcv7XLvg3d5+4+/A35g8J46WNUGw5avJi3Q+H6M/Y+vJVFfhYwICEjU9uMCcBJxi2bD5DZx0ri4OaacXB/B9yl7J/gxHTLBY2KvCEGL2NdVtbGAy4AEqEboByXb0DxkFULzSc1BxAoaFF2gxdjr7I/VIOAo+Db1v3H2ywVrOIRA0zSsVivquo5lV8vjR8EoRb8vSqEbeqcZLW5gvjNjZzof6w+LDlDKZElixxoToUkDwTe6aV3U0XTNi0xnCvxoxIv6EBTP69TyW56cKMFu19F7JWANPtXwuUjr2wy+SPQNP6u9EIIwgLLbOhDj8SgkJlFzrRcLJtWErh8wVqOsIWWSiGCCsmfcev2XWB09oT07RY0cxR49/ORDrv/SW5kqP/EKumEAUXjDdDqjqiotqRlGXGEIinbPwOHkHxRiQXhH13lsXWMqg3HkHOOqqpQItKqU0j9GVV3MaU6ceM1kEoWa5hwbo2a8D5XW3bAqaH3XYyJGcYjV4SyabtaLYaXc+VR1Reh7xDmmk4ZmUlNXExqTFgzMd3bZ7Tu69YrBBR4/6RkGVIOKc321WnP58j6/8mtf4Yfvf8pwuuD0/kPefO0ar9z6J7l06SCbs9Ey32Qo3ljgIe7koxBP/qQUJAopWEJirBmhIiV4O4RRm3TO08SaNMZYhuS+cFrSNfkEc8BBUiaQYYhV5eqqoiso9ksfYYjUaSnYM61qnG+Z1DX783mmqu8Gx3K5YjqdMJlMWCyXMbAj2Seba9lcIEy2IS+jr05dMMMw1p9O4lTHfExdzNfYOmfKHfYhsLe3o+mSbFnnySMiYGUM69R1zXqtVeTquiSqOH+dEhqTj4unHXOeVQi6KOi6xYrV6YkyzfQDg9cgiVpYpYC7KFQyWhtPE9CpvQBRY21Z9fUqDLxILELe066X+L7Fu1T31mfYSmIx7ntHoOL6G28R0iSPE+Xk0T36szOssVGTG+JOKNGUNbSxLq3St48lP0scoKYAaU0UIzbu+jq5+0jyIEbrUCTShIBqFMmETmZyiNEy0J03AbC1fqtX/LaxGFOrCLEVzXQSI9omAod1cimDjBKADusVU6NayCCGdYDOB1YusOg9p6su/jjWvdCHmtPFgAu2MNJ04ngfePTwCV3bUvuB4cEDPvrhe5ycDty+9QaXDw8iJEm1PlUA48T8vC26aJvGczEbBMSoMMmaj+jR0c2ohYeifzJXDXQ6R5TDbkzjSwt0iJCNPubTqql7IUhErxm1ee8cs6Zh3kw42JlplgsqjFertQrB6UQJNipLKtA19ns86/bobCzkqPGqXAqFO2fULXMSgX45+6n1PCmQp0Dp49MzRITD/X1mk4mWqpfSPCevBSPF+KOCWETo++GckCv7m9cThXthexyjEPR+wA89rtNIcbtaqE89PbPoz/UhuVgueDTjyD3rw9xeGEEIOr0Vka5QGu+1klwbgyaaYhoKCETJWedwfWDv8Do7h5dou47lSquGdd2SR58qJq6plLmkjxgpBCYTLWIz9P2oqYHi1hJUxY/M1YNTAR0kaDFz0YXftx1u6FX1j5T4Pvk1i0lSVjlTui2NNiOiBLLO03dDJEmosHUkgfCeIIIPmzUbQtBriLEEDJULXJ7vYq1VNphY1CiIYeksd0+E+6fK/xeMJdgK5y2nZ+u8SJNnp113PLz3BDe0rM8e84//+d9k6LqI4Tu/wNM9lq83PssHR3OJ0VwsBWI5vSUCt01c8CGkxRHJL5JfNjr9U5rjmMfss1aWNrS2i37ZBO0pgMibKXf6S7Wynumk4nB3TlMpI6YffNYEm6ZOShV13cQcbxmDGYza3rNyf8vPjSirj8718yJUtn7SKHvvOVssOV0smTQNlw73aWqbBda2n00ueKWBK43Iu0iNV1wi+sSjph/Ud5c3wxgZLqFKyt4e+S+dY71csTg9Zr1e03Y9zqVMI5ddGoJEKyNtC2Pf8pZy0c6y1V4MQRifYojOnJT/6WKAoe87utUCCYmnMOSHoJpV3EG8+pQu3f4Splb4Sdu2DG7gwccfEKLwa5om4vbSg/ORGVjoYmnFummyeVxGwFK9D+8168AHBWFr+pOPgjNWyBMhRP49ZblRM8oYo8I31UcJ6mRX0001vIS/i6C7qHl61cCMIYlCH83Aoe/BWqrZjJNVy3K1VC0pmowEYeFn3JNrHMsBx36Xs2FCwDLd2YO64uHjVQZ9EyIXYoDFsmW+s8NbX/kldvd3CcCPP77PJ58d8eR4SdfH3mzNydHyCvlvSQ67i+YAm2ZhaZKWAiIg+ToKfE+5tZI1JM0Zd5HjMZAqXRL0O1mwxlYyjBO7OApG8jMRxkDJ0A8sVyoENS93vB0boVDeK3tOvq+oKW0I+m3BmPqQxlLURE3+5fQdts6h/Q70fcfxySmrtmM+n7O/t5P7DowBxTBa6unnAl1Vy0vE2tTl45Io/NJ3Mv9mdpeM219eR05r0AzdwOL0lOXijFXX0Q2OHuhjlslIrvA0Yb/Zx8/TDF8IH2FuEh++94j1hIhBUjLTFtuvoakRX0EvEAy2Cuov9Eo5NThhZ/+ysjqfHgEw9B2nj+/RPjlidv0qPqZiARkqgyhEpu96xS9OpxuRRIgLKCSson7HDQMDYI2aygm0KzYKIBSe0TtHZStsXeFiYSJjDUZsFprOKRWXGGV2Ubr7BE71GIFKDE1VMVSVFnUPAd914JzSZtUVQz8obfzQA1OGYeDBnXt0l36ToamRWtlFWmAWdGyNtJwtDSenO1y61MT71nu0VUVVT7h2/TK1Fe4/Oubb79+nvrdgPqm5tDvnz/9jr7K/O9a72IDyFgJSo5OS35d4f0lYmBAyXILsgI8QnPTNnFduIjZwFISlADo+OqaqaubzecQlxmi/B1tFHSGE7NfUy4W8QY5eKf1trWUYhiyU1l2vmmA91iApv5Lyz00MxmQ3XOFyuaiFOAb5VEbxnKvVmpLuLY1baoqHVH8gAgf7e0wjP2R2WZTXlXH8k9TZ7lEgWTQhV/5j4zmmTWZMZjgXsfbJJPa5ZG27XLI8OdYCTX1HDwykgErY2AR0/pRuga1O/gTW8RdeI9y+h1DuHkYX1DAMdG3LsFrihkhXFSufKZmnFm+KBT+wWK7ceg1H1BKCZ90uuP/RBxkL6CKUZdQOiVG6mtl0qhqW9xvaWUbvlxkOOS+0x3sViCJBM2LiORLrcu8GLXNZWaUeCxFobMbd3DufZpkSDtiUV5rKN2o9jWldUVcVViy1FQ4r4bd+6cvs1DX4gboyBKd1TU6ePKZdnDGIIdhGyW2NoQvCowdP6NuWSWOBFQ8eLzVXOvrXBqfYNd8Hlicr2lXP0dEZn330MY/v3+Xk5ISDS7sEA86zsZPrPZHv55nPPkq5bYGyrR1ua5lq+rqYmRJdAHEV7e8fMJvPorWhz6wfhogC2OykmqYjPqfEMSYBnARh12nFvtl0kn1o59emkkSUvJXJLN32tWXNc/scxbWrSiPzfdfrvRbHgAr4s8WSk7MFVV1xeLDHpEl6UDh38tId8XkhVxHJ917CxAjjw04W2ngudbCE4AgJrhT9+u16zeLkhHaxYN12GUA9RBdXomzTs5Q2xkX9/HxtEF4AQXhR8wRCqoubMjIiK01ol+po9UX+ccxV9EMs++gDu4eX2Tm8rNg2qxPy/icf4tdtFoapAFMTI8E2oeBFKeDVURvOCcLtqmAp0psKkUtQnUIFm9YhHoY+pn519H2v5ltKjwpjqlQIaP6xjymBjClpArGmiC4+m3yNpubMOb73w/c0KOMHfNch3rE+O6Fdr5XOqlviZIITzYQVDJevXuPg8hXmu7tM6oHVcsGT4x4foOsGjk/XnJ6smVnB9Gs+/PgTVs5w5dVX2DnY53B/hy9d31NOyGga5eih5iNGs/npk7UQCbpAt8xHibRf2d8mZtQyA/SDixqYMoGnxajatC4B5zxt16l7YsMKLc5bZE/osx41RYkaXtfp85vOZrnuy3ZLG5biRYMSB4Tw1CVbmrnbJmAaCwM0dTViYGVkpmnbjqPjU9quj6bwnoLQC0+gkC1uIOLaw3kChvFRhOz3Mwh1ZAUP3sdUyeSfSxRqm/dWRpBHX766cFZniwigXmkOeQZQa5nPHCTJfd/YWgvHyE/evvCC8Km3EwLEBPuAZnBoyc8VoW83yBi0Hq7D9eNvQ8XN197E1k0MJgiLs8cc37+fH+gQOewCgapS07ayFsPIpOvzcREFF7WEQKSUipFrCNHcCjivsBxNfw1YUeGpwtozdD3teo0vIBvJLEv37gYlerCiZTFFtFBSiEDXpq5zkAZjkfke6yCsnKfZO2C+t4sYw/HREV3bcvOVm8yMw3Q90+UpzclD7PIYv14q5+AwQBiw5oyjk4X6/QIMAWWmCQHXd9w/WbDwwqUrV5nu7HOy7FmcrUd/W5ComI8UZMkXlRznhfq3uTrTWBT/bv+dfIbleYfe6XIVk4sLlQEVkOwCSQJuA3ichFTZl9IZH+fBcrEAxuBa2fNtIZCuZaOvMr2fTPlt4HaeBBTCOb+tfzdNQyrcJSiG9PRswcnZIlLq77E7n+b5loXqhgQOmRXpIiG4PQbpL6XXIlos6WOfXTYblLzFPJYYOPHO0Xc9q9Wa9elpLNWpnIOagTRqg58n4hJkqLginycYv/CC8Fkt5SSWaXdD1+L6pQqKFC2OQjFpZM453DAwne9x9ZUvEaJ57HA8/OTD7ENKJnLKZbQRv1fHHxh35CQYk0PdxiCGj5+t2zXODRgbr+V057bWYK3WU7ZRW1FyTRmhPHG25lxX1CEfvBJQ2AjfMNbiQsiVzupk1kskKK0sYhXIvVgumc5mHF6+wuXrNxkwyOI++4/fpWkEPzsgTA6p6hpp1zy+d4/F6Snilni/4vSsV80zmjeaYeD40u1bLBcrVoslq6XSqa/bIQcKdBGkP8Zf5fTejD5uTuBx8TMKybiwjZHNg2Jz8Vnm4JAAkmrgklmLxjKaMU0v1d/dEsibPi4l3VguV7GI0d45H1gJzdluVVXluhvnbnLDlEz3PVod2xkuJpYaWK5WnJ6d8eToiLZtmc1mHB7sUdd2FH7b12L8QKL6loe3uFbK5kliOAns5CJKpn7SUpNprffv80/qQzKJh6FntVrRrVa0Z2eskzYYoAe8S8S659v2e+dH+h8BQfg01VyDJoHgB4i4Qj8M9F1L3y7x/VqjSy5hCiOdj/NoGURVs/cv3+Tg2g0cetyT+3eQGP0KsbxkcE5JJH3y+1nqytJUlaZO2bHYT4LrJMiFiGaqTCexbKjzSpEf0HzprovHmExomj4bBpfN+uSDgrQI0FIBBb1UM5nEVDzNSsn0YiYJbY0yN7VyOFprsbbCmhrNOO5ob77O2dU3GCY7DKaGqqbvOy4d7jOd1Jpytj5muV7S946dScOkqTFVjQ/w8M4dHt65w5NHj+j7jum0xtZVpLZ62hSNpmooJ+x2KGJcmKF4fxQE47nLRQax6FPMJDFGYi4xeQNLKXTbZ9jA+cXf23x+3nuWqxV107A7n2dWls2bDKP2u9VsLMxE8iMW7rokhJNQ2fb7bTd142hdkbPFAltVHBzss7czG9015V1ua61bWuA5AVgIwXJ+p2NH8mL92ezn5t+lr7/rO1bLFW7oGc7OWC4XrLuO1nn6QMYFl1ktsYfF703Iz+YIpRF8evtcQSgir4nI3xeR74nId0TkX43v/00R+VREvhV//nLxnX9dRN4TkXdF5J8t3v+zIvJ2/Ozfkac6IIoW/RAXfgBjVTNjGYLm4HbdGtct8EOXK90lpHoKoEDS4gxXb7/Jtde+DLZivT7l/oc/ZjqpNcdYJAs3szVJrFW/oTK8jJMoAbkJIUfkVPBUEJTAwTBi0/ro1zGRrqquK4zVGslDPygzdz8QnCba13WlkdpYbjNH/bxy5TWTCdZWuc9NzFAZhp7DvTmvXL8EsSZuXTfYyjKfTtm7cpN+coPAhKHZBWto1yvarufJ8Sld72jblsXpY3ALFoszppOGg4MdqBs+u/+YTz/5EL8+Y4i1Q37319/i2uHs4mdX/KQx3T5qe7HCaAqPi3B0SZCfw6ixKINNkdMqki/cx4yM7M/bEMbpbza+mzaeoR9YrdY0k0kudG8gE8FuXO8pTUSDW3hPCTXZzr4oX6cNoPyBmMfcdlhbsbe7y6WDfY0KM4oKc+FgjuO1ocmV19yy0LOftuhDE0k8UgVBis/LVmqKfd+xXCy1Dvd6zeLkWLXBrmfwaMDQDeBGnsjz3tTSXNe/z+eZPFsj/EngMwPwfwghfENE9oA/EpG/Fz/7f4QQ/u/lwSLya8BfBX4duA38v0XkKyEEB/y7wF8H/hD4b4C/BPy3z7789i4wPrIA4APiHFQ1PkJKXNfSVytsNQUZefyCxJq5vSPUFV4COI81FftXbmMmO7jlGXc+/QQz32UynTJE9hiMwVaWSaPZAc10io1ECFXML3YhZK0tqfx5whgDkfgTglbLMxaxCnFwg8PYlMEg1MYSrFUQqfPZTLJh1CCUmd1AVRESjZTTFMO6aTTNLvpxqqrCDy1vXDnks4f3VQMJCjKureFgb4fVgwWmaxnqhoDFrp/QDguCmdNd+oqy/LQn2JM71JVwfPSIygjXrh7y2eMzThY1N65f56y3tHaHpmnYnTY01ciJFxRcFtPnnrUPjkIhjWG2qreEhL6dgkupfk0026Lvyjn1fSFK7T+EWIRIRq1mMzgQfX+gkCjtiH7ilaaKEJhNp9iqKgo9qSB0hR/wQn9f0VJx+FLD2lgBIs/UWDRDZMVqvQaxWSilYFrqumI0o9mb3RP6QRmA2tAK81AHkKA8nggeZWKXMAawKmsVteYdoWCjKaPgY6BMXVXr1RqCR5xjeXTMYrlg3bYMIeQSGsE5JWEtvQeBDJgZt1PVCkfq1/TZ57fPFYQhhM+Az+LrUxH5HvDKM77yV4C/HUJogR+LyHvAnxORD4D9EMIfAIjIfwz8C3yOIBzNoOSw4Ny9Be+UNMAYZHC4ocf1a/p+SWXrbD6Kicn9Xs1NzaYI2UyczPZoQ43zgQ9//IHiBLO6oalxk0mFNSoQ9w4OOLhymWo6UQdzjEiniZEWQKJIqmsVbM5FMoUADJqRIlYKFuyYM2qFurbZt5ngCUrYoJ6W0uSysQaGHxyeEKE/Qt+11EyoDi/zgzv36AaHzPYY2hW1CJWtOWwmPDRHVCcf0zZXsY/epzv7CD+bMzm8gpu+hm1qZPc1zJVfYuUecrh7ysF8wpPjM5rZPn7nCvM9y41bDaGe8MartziY1xhjY8U12XiW4cLnWQjAc49ao5FGEvsyRGce6WVqRiIJQwiZpKO2tQpMY5S9J2tI5xdLiuyG+P3EPRlCYN0qY/NsNiWV2yzPYK3V7JoL0/LOa4gpGp3my0W/lcZMzn2/7wdWqxXOeWazOZOmoe8jNVZ5kcKfsGFCRnUva3fF+UfDc2QzTDVWDKB+1vE55fTQLS16zPgJWaMehoHlcgHBYQVWp6eszk6VeX7o6XwCTxcFmsZbyKJOe+TLGfWU9qfXCMcOiLwB/BngHwK/B/wrIvLXgK+jWuMTVEj+YfG1T+J7fXy9/f6fqgUCBEGcU4p9E03KrsVWK6ytcfEBiTHYoPAI9Tl4jKjQCcHTVA1MtaSiBOh7TbELaBW93g3AlMkE1u2K9kHLyfERl65eZf/y5chQo+lamRkjPsDELiM4CAqb8NEc8gQk1UuJZpc6nzXjwyYSiBj06fse49SMTot1TNg3YAPGWUSUWEAI9MEjkzlu6MCvSXVRGFp2JhP2Jw37O1MmD39EaH8IvqW+fJvglOQCYxhMo0ugmjDs7HPiV8zqFf3xjznY7Vh9+i6TK1/m6uE+b7z+CvNpRVMZYqE5nUPFhpaUO9kQJSHJto2WtJUND1HWLAsTjdGHGvwIBh6cRraT5giSc8Uvbhp8cb5k21HXQGWrzASU9knN+tFr/UQen0L7TH1PG3IpiJImmoIjqQ2DBuC6XnGP850GGwVqXTcMw0qrKKbMo3RNUA0w2VWFfpEES3pOQsFiw6YfLQlAE/OZ0zNMRKv5emn+i+SNyTnHMpJOWGNYn56xPD5mvTqj7dZ0LtBHk1izSJKoS9bhKPakuPbFo/6TaYY/cbBERHaB/wL410IIJ6iZ+xbw26jG+G9tXbls4RnvX3Stvy4iXxeRr194xIaLIEFVYhEXUWp81w+4bo3rV+orjHi9EAu9QOQ3LCeuD0yammbaZCr9VAc3VW3ro1YmooPn+p7H9+5x94MP6Baatha814pzld1I9F+tViiJprIm5wUUFFOn9E0mH6+El0GjytZkVhyI/qBVS9+5NGiFv03yDHdO+2Kt1mGuqpqmbhQYPt9hPtNCQh/cv4+I8Nrrt/m1r9zi137jLcRWeBMITz5h57NvUz/5iMqrNrQzmXPp4Bpn5hJSG27euIStPB998CH4gWldMakslTFYtgVOdLiHp0wKVXML0TjeUynwspOkFBwi4/HF93SD0feMEeqM8RuX03jxZAiMErnve/q+ZzJR9pgNmvuw1VM5H1TJdy6j9ld+nhjSS2hNuq+0SNUNrAQOJ6eneO/Z291hdz6N5T/1e1YkY15Txg3pfhA2MJuhiEAX9x1LzShoX2JUPgnkYsSSgEzfs4UTMgnx9BPQIOByuUQIVMbi2k5ptpZnrFYrrU4XAoMf1M3lkyBUjbQUd/mpZWdzOKfxbnqhny4MfyKNUERqVAj+pyGE/1IfSrhXfP7vAX83/vkJaO3s2F4F7sT3X73g/XMthPC3gL8FYEzilH6aLCV/rCzWkslb+65DqjViG4yt8EYJCyrvi7m7hRELwmw6pe8G+m4Akm8LAspa4wZHFWdIWiztasXdjz/m5quvUs9nWZWvKosJNuavCt45jLURl2gZXCKFUJA4g0JsrDFROAaqWjFwxoxciRLNPeVDjIEdU0A1RDVJvadINeUBMRpIqSrwPjv326GnqWquHhxCCHxy/4yj5oDu0g5Xzj5htnpMtfgh7cPvU195E3fjTTi8RFivmAn8ypdf5+aNQ+7evZcXhImEdtEtlebK9mPbatt6H6OmBVlzvGgmjAs9LZDklyJvZsnkTQD3pC2l7/ugud2l33C9XsfyCE3UJse5kxZ4ei2otmRiDvn2PZ9LLysEX1mKNQmnZFb6oAxG63ULIsx3dpg0m77JLLhFsaTeOQj11mCFqElLzo4p+5jGUCQUUWLGewzj+CdBF4rvVylyHC0wCSH7rruuU/r/WFxraDvaxSnrs2PWywXtuqVzmkHiBkdwPj/t0jBOdGlSSAaSkDy3+QjnATbn208SNRbg3we+F0L4t4v3bxWH/YvAO/H13wH+qohMRORN4JeBr0Zf46mI/IV4zr8G/Nef20NQIZfu6VmHRdxgkIAXGNyA61qGboXv21ge02UHLN4j3iORrMBGEhgjMJ/P8KhDfYi+Px8JHPrBMQw+5rASvxfww8D9Tz+lX64yBZd3upfVVUVd19Sp+A/qXK6sjThATV43xuS6wz7CPoZeweLOqz9Ro8Y2c9FpGqFuFAlTqKb1iK2zqZoc5NKHPgR64Gy9ZrFY0vvAybrl0XLFZ8dLBjPFh4bq0utcuX2Dye6M+Y7Bth/SPP4G9en38KcfsV4d8513vsulnT1+89f/Md54/XbERD77gW37/zbm8LhC08eb3y2Ey4auOao/elxIletG+JP6bTe1yXzewqmvLDQKb0oM4SFepHRV5G4nM52RVGHs1+Z1toVj0gC3U+5CCLRtx/HxMYvVism0YX9/d8wRjufKGproXKyyhllGy8lkq5K5J6N5DySakVQrWjGXMh5TmOhJCG67JJJpn45VVAX0rdYYqqyhMpo80K1WLE9OlFhhtWQ9eNqgKZHBK+WWowyKbD7xBIMrFd2wITQLbfAC7bxsP4lG+HvA/wZ4W0S+Fd/7PwH/axH57XilD4D/nV4vfEdE/nPgu2jE+V+OEWOA/z3wHwIzNEjyORHj1KI2mMOGnF8Y6S0fdKuQSMjQdYhdY6sGY2utg5wYYJzgjWC8xDy1kCdFXVt2dmacnCwIHtRdrrt8PziqOEmsCFKZGLHUHOLHdz/jyqu3aWY7iERaodArZk9Ek+xTCuAwEDkVEIG60pJLqunrXmyN7nYJVKrpfjb7uNww4Pohgqr1XkIIGkl3nmFoCUFre4TgWS7OMEOn5kmlEKCpEdq+Y7q3T13XTA8qwpkwBOGRn/Cl+S47B8Lj/piDgx3+4u98hRtX97l7/x74a7z79vf44L33+d3/2e/wlV99U/uRH456cFRhCaNwK57d01oyvVz57MvPo0YkhRaTl0L6TFTwu+D1eSUtP2s46pLQroboU1TgfdM0G54YibaYiNB1HVVQPkATJ44+sVEw5YAHo+DZ1grTezamelaRhKHrOtaxJslsphCd9Mzl/FDk8YI4l42WdqhjQCdr1snkjuUDklgRIXMRlmYwKTAVBYuJ95+14fQcFYaQIV0iCvpfr1b0w8BsUmsp3l4VlNXZCauzM1bLJet1DJBEbdA7rUUSwmY2cXqV/Z3RAmDr8+2/y2d4UftJosb/4Cnn+G+e8Z1/E/g3L3j/68BvfN41Lzhj/C1bry86KkDwyr0nytjiupahWmJsjatrfLAEZwje5OwUgtccYJN2N9iZ1ng35/R0hR88VOj3Il+aE2GI/hSp4gJDU5ue3L3L9Vdfp55MEHqcJxaHJ/MN5kp3xUSTIJnGSaye0fkSEqJlPrUOR8orjgvXDzhPxDcqi3eqVubCoKa1qZjPJvhlx9XLlzl69JhhvWa5XjLb2WNxdsaT42PWXMHbimAMxy7w3Xfep9m9hr30qxztNPz/Pmi5/fABb12dc+PmLq+/epvvf+f7fO3rf8S6W/Hnfve3cw0RGJXD8zv7yKBcColzwjEetC1ItteAFDNezdSQ98/kZoAxwjlqovECRVS4juQLKQI7elPU/TD0PY/vP+Tm7VtIU48FqBgBx8lFIsV3y9+lZmiMycW6+q5DjMQa1tMIvC5uNWmRbK4KPUg/q2zFMLiMI02fbwRp4ldGjTJgEYyE6PtLjDH6dZ/EUtT0kslc5m2XAZ912+JDYGfW0LetEosMHevVkvXpCevlGcvVipVL2qCyMxV81ePYoaBuX5SLOO8yK19vaoPPUgpfEBouKe5Ciu1567C8wUf8njH4WJPYtC3WLnFVzRBpqqxzEQ3vwRvdSAkQiyhW1jKfNgTvOT5ZIS7gTcA7rXXsjEecV8FlRJlg0Eiw6xxP7t3jyu1bmqYWQdaZedorW7WxVlX89OTTpIz+xGSGBQAfYsW2SMLpY3nQyAAjNgVmhryjV5XF1XUshjMgYpjv7SPzKav1imY+pW+hYcLjo8d0bU/dVJzKHm5PI+6Dg97ssXf1NZr9yzTTCVcuHdCK45tHp9h7R9y0x/yF3/p1fufP/EZkNQkQEsxC0p9bixYkjNO8XMwmBPyG0NNvXpS1kR8+JURHz6MEnqrlOe+1yKmEuNlETTu6HLRMrJY+SOS7IslaEIauZf/sDk8ePuJs/1XuP3jA6ekp+4cH7NUHhQCOlFrW5hIMT53ZMgL2V6s1q3WLCOzszFUAWg04lcdv3LtsCYw8XJq+6dywoY2WbWS5jmZvHDMRibRnI7N4rPQa8biJm9EQ8jOJ71lLFc3avmuxRpjMpnTtOvI/DvTtOgrBhf50A2ugD2M6rAslw0wpxEJR/7kgYs3jU06LYq78FEzjL0h7tjZYNpWFPpZaFE036ztst8JWNa5qcFWFtybnIwdjUDYAgyitDVYU9b8za+h7x3rd57xj5zzOCEYcLvLcaa3k1E9Pv17x8NNP2b9yhcnuLnXdYFzEA8bIsEQ/SqKBGjWUMGqMpXkgsfCU02wZgqIJg1O/mTGykWmSItgymRCcjcSXHjEVzsTatOuWum74yq/+Kn1Qk7x/bHniaxCLDB43PWQy20WMUns1tmJ3Okd2Dwjc4P13/gG/cXLKrdvXI2QjTcrRZCyfZHpOoVQ3LnjS6Z2kbZ3/bPPJSzZMR+67pBE6n1heRt9WCi51XQeixAUXnj8E7OqU64+/gzv1PKn2uXT5kJu3bjCbT7VXWRqNPrMSH3hRGwYXTeCWEGAy0eJZ0+k0++U27zCmeW7r1luKkIhkyyB4j1RVHhei0EvR3rRpjm3MckmR/bRfmSAEk8zipEUnAzoRjRjCMDCJ0C3nlG7ODQND19EvFvTLBevFGYvVmtZD7zVxIHifM5KLuyvuPoyKHmHkPSwEZfpGgKJi5bPbCyII822Nbz1LJqbdwAewuoOpVthhbcQW1hUu8sE5bzDB608a1HjeWGiO3d0JfQxgJHYQpQRKQnGEKuiOqlW4fNfz5P4D9vqByd4uILleiURmG034BzAxMDfmVmbHs1HvVwJdBxIQN8/QyOeWKrgV2lNQU8LEvNYggeAUmxWC5tROYj60CYYhQFV5/FAxiDBIwNoJIiPpQ/BKg1aJIKaisg1956PfdHMBb4Jdzm9pqY4wjKZvSMIcINZBlnB+QouMG0cKQpWflfHALBTjZ4k2y0WQel3Xmbq/nAT5XqY7/Li+weN9y6UbNxhcYDKda+rkBXOxhMBsTM+4Ca4jUYURYT5XMLSPBAREgV5mbqRL5DMWLoCNcUnvx8DZZrqe5N/J7C21xdG/mgdqYwwM+rzU5VL0RyTWiOmxRrB1RUDp8YZhwPUdru/p1yu61ZJ2ccbybMGq96y9RpVxniEoZjeN/uaqH4Va+TP6RDZN4dEk/jwx+MIIQkgGR1b/pVxK55veu485UtFE7jv61mAqi13XWu/DWmyl9Fpa88PEgkAKOUkaW2Vg0liWyx7jLD6aocGrueycmldeAiIxzmU048WIcProEcYYqvkMH3OFTOSjS0GEFOXTa9qsTaQbsimqnHxUMcKYonOYMeKWFk/yJTrvYvodGFvRDz0VwsHeHtXhPg/u3wepcrRzZy7IUvAugWm1KJSgTN9WxoUQglBVE4Y+sXnHeSnjSt32ZiSRpZN5zKDY3tE3nukFgYb4wfiNYjokPSUtJp+Fin5uY2nUqh7xmaOTcVOghhCopnPCG7/LzkLBwLt789EtMR48qu5AFWm2UgBkGAatvzGoW2Y+m1HXFVXmUzQM/bgpPNv2GW80KdZ5I449SAGY7buKSt1G3m+iywqSto94UDKXUU3UWCUasSbVldY5gRFu3HqDj9//iLPVUvP7EyvU0OP7Dt+u6JZnrE9OWKw71h766LZxKXh17hkXIi/bwoXgzkKh+EZ81hS/n9VeIEEI4/KILM1p0j1ltoToXDAhgFW4w9B1GLvCmoqqrmM2iE4WJTL12CDRE1FoeKL5uoQeP3icFZx1mCBax9ioJmH8ppki4vIiO3n4kMMbN5CoeZQpeOTriFKHxYViK6vpYoSoKY5OaUPyewHRH2hMUVA++SMlYKh0DIaBvh9o1x2LJ0+4tjNFTMP+tRs4U2lUGri1Z/nRkxMWfpdq6HHtWsubVh6pU2U9IWUpGNPQp5KkSLHwStEXxkeYx6fY0zY/eqoZvC0qSx+SbCz3OEWCJy1t70MWAtYqFEmK8TeAL4MJ8XV+VlKxt7ef3/NhyMIiifexVwonaZdLrY0TTfO6bpjuTHJeeqlZJTB0KKEEW2OyqfkW2p5sHgNsUGNl1iKi0Cu0PGPGPkgoIDPxOStJSPSFG00WqCtDVVuaumb38hVufektDg4u4e494YN2zdrFanR9hx96/NDSr5asj49YLFYsfaALbhSYSeOP1sDTRNfTPnmq//gfLY2wbEk73LZFOLeSUoI31hKMErjStlrnoa6oG2VysRHPh4xYKoSMV0s4Qxv9ioMTbB8wotALxRhqQSmF4Yw0Q871GFvj3cDpw4cc3LiBjRCaVKchBU40RUkYgrLOiHM5yqyMxiPWTIyhTnnJPjFqRyxh1By9EdUwQsQ8VhNspfT9OxPLWgRcUKCwMQlFxJTA7f5D5kcD63aFLBd0n54xvXQDf+k13LCHdzaay6PNmkqPmkSuUGwm+aBicSctX0Ki8dfjnqYJqdsBpPAiJXmRfIGbG5GabOk97z2mIIHI4qTQvi/C/G0cL0UeeT5HEpjxroJy6K2j/89am+vcjOcfrRoPEdqjG27y6232Iwr6ZBEV5jJSbjljv40IPvq/R3N23MBKIWyK12IExCi43xos8bdVGrdJUzNpanYPdrnx6hscXn8NU9UE5zic7VCZR0hwWo4iBBordH1Hd3LC4uSMsyHQBtGKk84pwiGETchM0uALF0mKW5/fMosWzs8f/9QZpe0FEYQha38p8XtjQlyMzchj5Qmx8LnFi6bJmbZlbZdY22DrCVVVMVir2RZJrYt1YpNzXfkChX7ttBCTcYhTX50zMZ/SC8arViEEgviIE/RgDH3XsTw6YvfqVUzMEnHRlE1pW6IUweNkcA7xnhD5B3X+lw55ct5rSJRhUSD5oABtYy0SlJQBExBb4ZppVKxHbSYVDmqM4bd+81fx3nF2dsaDu3c5PXH4ox8zSMt9Oea4FoWZ1DWr1THW7qsglHEj2dyszpubWVMkbToXOQLVNBrl7bZOUAhFtgXcqCmkjcmIzVph8nmWpvFFSyZrWDKCqoHsg9NKoSGagpEkI2jAK9F05eh/OUVj3wyj1mmtpes6cg75ltBOzx9Slghbo7xJ0JDS70rcoMnCsGSrjr+NicXFJLOy18ZSVRXNpGJv1rC3M+Pw1k0u3XwD28zJPfAB9T57cAPGwN7elPXRmicnJyweH3HaDiwDDD7WHfecC5Dk+ym0uRRHFkYFpXSQpWhyQN0gusGGp8yZzfaCCMKyhY2bT+/lvy6yp0IUMqKqvfeBYejp1qtofiatUDWi4FU7yqeG7Lera2G19DEoq77BwXrEkfM7vY/nIeWUKp1QSjxfnZ1hm4Zqbw9BswDyA4ylPpND3XudJcYI1oMYNyL+jeBdLE7ufcwkiZDikAI6QUuMpuJOVnNHSZHM4AjBx7S/aCZGZ5O1GvWr9iv2dw7o3cCDew/YOzjgn/6t2+zPI8Dcefp+zuXZDEm+w/Q4NqRKqbOMhAi+lFqUQjIeGYibXeE/ylbPNuB2FL7JT5oqn6UocdJQVXMWej/6KFMENWwLl/i5L4RSAocPfU/fDeqHDVo3pplMmNlU/LzP4y0h5Fo3GwGxiMujwOClASz5AUXGP0bIy/g35XHxd2UsIThs0gJJWSRh1ALjMzNiIi9mlcenriqaScN0NmV/f8bVq1c5uPEqzXwfGOm2XNvy+N0f8Pj0MeKUlfzS5T2s6/nw4484e/iA08WKUw8dIcPIorPrQkF1EW703D6pEyH7Asvndl5WXNxeIEE4Crv0KoXSn4XTKr8enNciRUYZnKXvMKul0kTVjdYjMQZnBmwwINllnP0odVUh0uF7h7GxRMDg1Ow0KoxS3QmVpfroFB7jMGJx3rN4csQOYKZTpQ/LGQMGzXQYhdrgegan+EVbGaQSvCiWsfRjucHhRXFzKd3JGINpGtVuI1lEZSucsQx9C95G0yOy3sR+aI3ZhGOMwQIq9i9dYjqdsFNbDpqGnPeJ9t0Q2Hwc55+NmrHjjlUaPFD6eqLWXxw3juifoBULKftUo+aoQs+N0XfUREzk1Ml0TP1KrxOVVNf3dH2vRBaTiVYtlKSbaP9Thbd8x3GT8oOPKACPr6xmqJixoHxZPmCE4GyO50Uu8hEwHYWbEbyLc1hSgCRkDGcOqhmTc+CTYjBpaqbTKXv7u1y5dpVLN24ymR+AbIoOv1xx+sP3+Pj9H3C6PMP5gcvXDjncnXPv3fc4/uwzjh+fcOw8LeRNPoK/zhtzWxHfp0V+S70wz5r0nELYELDPkhIvhCAMRHyfXOT3DIQg0U/1LBM5ZM3QREiNc46+a3UHPK21/KW1OGNwxsVSmZJ3GRGvWqM1DIPH+hABzS4KJC0mJcZnM1kyWaiN2plOPOcdy+Nj5tYisQaxiX5CRHNbNTgTGCobq5NF2nnf5Qhy8r2pf3CTOj3tpnn9iCjdvtdyBZYaidFC7wbdnXMARzNT0jRKEW6lEzOjLxASt6ea3IUGXban71WjKXzeeAnZ/7gh/MIFin/xh0gx+ZNJGSKvYL5HPYdGyc9rHulzUzgd+yj0SkjTLPr9qrrGxoEuDf4goyAstVfXDywXS/oYSKgry97hJSprodyMxkc3jlAYtWnK562vNL5faK5WAQXRz633a/J9aiJAylKqbDKBG2bTKXv7O1y6coUrN24z2d1HCgEYALxnffc+j95/j7sP7vH45AnLrmN2sMurr90i3HvIg/c/4OHdBzzpHAskmsR93pQ+nxKheLZsCcULJlYaI4pzf97m+UIIQm1hSwimpRCnXLk1lnQn+dCRJSR4pww1oGwvbcvKnOZJYKJJIKLg5UAylaKv0Fqtaxx9XAlLaIzWRUmhY3HJyR5R+kDwDmOr7BNcPjlifukQW1WxjIAK1bSdW6Nmikn1SozJZQCI51AntlVBCBi7mfCv9F4pGhkyFswkx70fCDHfOmmRqiUF9W+iuyzRdExytaSATw48fa3Pa1MYbk7DTUE2ZjCcn6zp3OdN4Px5oTXqW/G6YRSiLug1DOoasdFJmKKjuSdZ8wqRpCNFm7W2Sd00OeBxzhIp/Xjl3YRNWq7gFAg/nU3Z3Z9z8vA+y7MTZrMZTCZZQOfnnPySJDFLfgb5eiEJ74I1RpL5KyAm+xLH6LFmv9g476tY8Gs6nTDbm3Pt+jWuXr/NdGcfMQVWMj4Id7bg5MOPuP/pJzw6fczpcsGqbTE7U778K2+ysx545wfv8fEHH3G06DnD4IIjDE5zF5KLZDzlxmZxjqmHcb5duAmm8d2aIU8PvY3txRCEAS7GDSYDucQXfs5NR7+ZTgaLCz7u8itWYqhMFQsaFZFCUfycASoLTS2sW8mX8yrVEOcQZe6K/pZRGBqjgROCaEDGVkTyQtqTE3avXFHK/eTbIzp/o1ZQQmySpqiaoJrdxoy1fTMDCOCDUyEXF8HgHcanKnqxDot3+dxAhOoQzbehMA3JGlVZ2GjzeaQHsf0An3bE04VlfmtcGZtTOiRtMgam4hdMcS95oYWQtSDvPZWtVBiYpDn7zDCU/YHeM5lMqSplnqnDptadWklGunlHSciOLOXGqOBhMiEI1AaGnR2ePHzIer1mtrNbMLiMgkH3Rcnn3zDXJbI0h9ESSBuV+jyDzjW0dKyNpCTGqAlcVxXNdMp0PmF3d5eDy5e5euMmO3uHiKkLcaVj7tue5Wf3efTxJzw4esTZ6oRlt6IdemRqef2t17haTbjzwx/wg+98l/uPjzkOgTWewfU5OLi9sZUb4dNM4XKJq1gYhV96zilAkrTBZD7/I2AaP82+f5r1f8H7xQoMQYMMxmok17lA3/WIWcHZsVJcxagZRPxgPIc1ykxT1U6FWlDT14fA4IMWVhCvQY00Kb0gTq9bGQh4jA1YW2VW6u70jOZgP5pvWuOVVJwpAn+1kI2LAkCnUYZreB9T7MxGxNCKmlrJL6XuAZcFbnqd8rO1mlsSdGoyEVzWhieh4mB3riD1ENQcTJM2sxXrP2XAI1lym8rbU3XAkZp9K51ke+Fsn0X9XZuCUH+NmkcSdlnYOKc+YzNqR0m41XWVF55NrgbY3HAv2Hw33hIVln3ksUwBqZQeNpvO6NqWdrXAu0MCNQnakqBfZQvR96XjmkbcbAgRpaTS4IgN432rph7vs25oJg3z+YzdgwOuXL/O5WvXme0cIGbzmhAIg6N98IRHn37CoydPOF2e0nZLBt+BBPavHfLKa7e5YoWTd9/n7a99nY8/ucvjwbMMgWHocEOv/vKnGKr5mcoY8Cs/S3Po3IjHYy/eip8uQVJ7IQShLniTF1h8J3+a81BHa5nSdN5scX+IO76xmjvZB09oW0SE0xM1R3esRO1OIuBUv1vXWvDIh+hXSn3yHu/AieAGgxOPMQ7jRYu54/EYCA4G1TSrqZbfDD4Q1h0yrQuqLdVhUo0Ti0aKU2qfahrxnkJcNBGMqws5Amkjz6KqrwJWCQVMzFM2EOs3R/46QX8H1ZgIqR5uoBZ49XBG3Rha56KPUZDEkEx0IWRTTfuXkf4kABR58pYCcsSQJfk6irn8fvzuU2eLKD1aryOESMi1jRHFrgkj515T11hAIoV/GbDI0CJJqXw+v5eupUNb6IHx9Ub+rjEMkjS7zZk5abQMq+s7vBs1cGMsPnismBzFTm6TsQcmDoiHyG4+9lXXhdeBJZWGsNZSNxOmsykHly5x/fYtrt28zXS+xxggHIHhwXu6oxOWn9zlwcNHPG6XdK4jSM+kEfbmB1x//U2u3H6F6slDjt5+m+994xu8+6P3ud/2nBHoXa+5xs4zlOZvfq6Fa2R8+MW9pNTLQHIQSORaLGfCtpaZ5s+WMX2uvQCCMESzLqVsJKOxaFHwbXiRwii4nroZ+EDAIdYSYg0PrTO8QI40krtzeKgO82o0T60NTBqh9zpRs/MasnalMBhNUXPGYxwY0bQ9H48ZhgHTDxhbY0Sjt8E5QMZSoinYgURclwU77pTO+0z+mq6fixaRSEnHgAEQI5uW4MiOddCAifpFLUasaotetcEkhbwEunYNsssg5AyWinKBj8ZUflKlhlYsUueiwLVxMyD1PV4vJHIKE8swePygGrhN2I9kL2UNtIymj/UzkvBxXvPCE2V/Z9UqSD1PEJMxEKG91UuMIqjE9iWmnDJYVTZjRsGYP4naa1VbDg73It2aHiBoGmM/9Drntr8b/yrEb36V3QCxQL03olUWY11vatg93ONLb3yZW6+9wWS2M94rSZgE8IHh7IzFnbs8vveQ4/WSlRtwBpp5w87OnMPLl7l6+00mO7u4J/dZ/fCH/OAb3+Sd736Pe4uWY+9pYznaPtYfKd0/aZ6k561PjI17GYdrXOMbmt+W5pjf33jjhReEMCr52RPAxoOP/2w4qEmHbJnJG+tRiRNMiuqK1rkV1hiBs4TLOzigTrs8it1qasOwcsxmM1brRdEXzRLw0RcZIgW/F8GJfirRNwgDruuQic2P14oBU6Zpaa0UYCMVTP9OYO/Sh5jMpXScjPtHEhBpIErhYQwWWwjdQvuSEZSbOHbFRKqyasw5Tj0un0wo3s/jLmmCa1nNEIi+nnCOLcQDwRqCxA4ZQ+c6ja5ujPpoTm0YBOk+SdcMJKiMMVpSoLKWPuLeQiC7NErEqmRtK40tG022BGHZhfRZSp0zVgN1YxeFK1euslqvMxO23sPFxaVyxDgpCfGG0wYQbzb6egNd79XXGwJN7bj26hV+88/+4+zuXyGJ/VDOuMHRH5+wevSYo0cPOD45ZdUP9EaQSc3ewR7Xrl3myvXrTGZ7gBDaBcM73+aH3/om33z729w5XvDEO9aup+86+mFQrsFQjmq05opnHgptcOuugYKCK6u8Fx9brp+fpL0YgrBcXRdZu085fksEbjaBBLfRTAyiL02Zatq2ReRUzRAjyP4BVYgZGoA1ASMKCIWIZI8TND1YnzQa78EJ4Ah4TNDKbnjohw6MQmjqSGbgou8uaTXWjnmyZV2LhP9KGk/KBRWjDnJNbU0OfrJvyiczKc4TH80fH4kjUopgFdMSVbjECGRMsFfhF4pBLjSKbNaUzHHFcYXAqOt6U0MoFn5A4brJ+R1CzBuXUuO6eKKnzJFkFmm/4tQIEecZoU3GJFKrzQhyBh9HoTh+dt4qSfedzdd8u+PrjCeUsU5xEobT+ZxmtoNpJhsbWIb1lOOSn4dsCOZ8Le8ZvKcf1Bz1zlFbS9PUNPMZf/bP/8+pTM2oOqjwceuO1eMjlg8ecXJ6zGK9ouvXDD4gTc3u/g6Xr93g6o2bzHfmaooDDB3+x+/x8Xff4Y++/S0+eXzMg8Gx7DWvXUmDCyDLxqa3uVluqTIbllZOx0zHbAnDUcv8k7cXQxBCvNlimPK2T/E3m8fkCfQ5kjOQC8VoPVxh6Ada1nnoRYT53r4uSLGKybLQrtdINNmEGB1GFT5vVOiYuNBVINo4DwKYCCPuOmWEqSrq0FBVkhd7qfInLS0tCsWZhQj70aBK3ifiJCN4Bjdk4SNFMCUErXWShVf0eXrITv2koZXwmcEPkdJdx/oCpSWe/6JpGTY+Kw8ZHeSbj1SSsC5MoEiPMO5nxXdEUuaEXk+Ka6Yia955qiZmT1iTU9nKlja2dM6k3V0UMTciG7U1tjfhNOYpl7a8Uu8Dpp5qxk+ye6KWbTBKwNFsMxCmaHGc8d7Tx7z1pP2J0cqHzWyilgYwrFvOPviASdOw8+Wv4Fct3dEpi8dPODk54WS5oO3W9N6BeCprmB/scuXmNS7fvM18d5/kRwQIXUv33T/m0Te+yte+9U0+uPuYu53ntB9Y9z1tP2gyQNx8N4XXTya2krgcrYrCarhAM9w8a0j/P/NqL44gZNSCLjKPtW2/X7wOW4eVh6cjfQCraVQ+BHzfx8La44473dlDolVmDLihj+l4AaX9Ur4/bwpfSBQi2aRNPrwsIB1d22JsxTCdZv+gjdqnpuqNu2LaVG2qg5w1SJOrrJWjFCIzsCBgRi3TRIEcIIK5jc7xC/qdhILJ4xHB05+nnZ97fhe/r7/TfE7+vCTKNo8b7w4SVi7E/iQewwQKF6fHl34+iExBoi6AyhgqqzyM6fPx/OmKSQseMyG2F9Y5EPlGTxnzY4u5ML42bAxOFMDWCq7fpAxIfmAXYhqmU/ozI0JlDJOmifyW5PdFNIA1tB0/+u63uXRwjenHD1gu1px5z9IP9CFCqiw0dcXO7pwr169z9dYrTPfGSHK6d7de0n7vj7n/9rf4+re+wbsffcZn64GTfmDdd3R9n8txJjeRL0ZO8bmbo+jSOI5Sb3OlF9rfRWbx5nMJ26CDp7YXQBAmioVxsUiW7z76UdKx6a5HgThqR+l9NrfrDQVSWXLFmpyT3Pf9yM2G4SDAZGdXMVhGAydd7/AimCgIRYTglfQ0azghAXrHa5cQDu8G2nbNpJ9hJlZ3dud0oVZKtoCM0cBs1ge0gl3QDBeHy6DoFPmkIOfMDDtJw07mdTSpgVzHxbuQmUdA2UuoqiJjZlO7u6htZ2tsPIf4HEcTeox4lpPfQBS6iSBBH9pq1TKbTfK503cSiN0mH1vMsfXZvBKGyOqj0XmPtYLPkjBgzGaQqowUm6QJU+qbIyFDMqcv2iMCyRUzzip9nON39fv6vnc+5yqXYyooGLoyhqppMtkFyQJBNX7V9lV4BxEG53nv0RE8XlEbBVGbqsLWhsYKk+mEw8O9KABvM9k5zL7pjXtYLWjf/Tb33vljvv6NP+J7P/6YTxctT7qeVd/SDwODT+xLTuuDx3WQeCFzcDNt8qEAV6elWk6tZ8yz5HLZ0HcKJefz2gsgCLWNCyNsv7HppB5n1nhcOvhpZK5bwjCVlROjkeS267JqHggc+sBkZ09JGCpYrwaCtYQQOazEK4jZCxJMoQFGNhvRzARjiTt3XGjesT5bYGtLiOCvfotNBklegeQfFK2vHN+DksUm1i1pGiaTRvkEk6bnwaeook/U7CN2Mg2eG5yafAISNBrei9EohhSazcXDWcZjosbn2dacQh6b4hlQOrzHZ5w+y+Dn8rqSNspRmyQJDVEfa3KxeBdrOkfNsTJCjwOUmcaahMmMWTtxYwkBBpERjpP7N459ZS2jW2bjRjGiqZ1j4S6ycMhg9Zhh5HzKRdZ7aJpGc4Hj3Cw1znSeVAYz3X5ScNNoeu9Zd71Wb6wcs0rYqRvme1MuXz7g5u3bXL52m2a6s9H/4BzD2RKzM8O4gfYH7/Dw7T/mW3/0Db77o4/49GzN475nOcQqdW70j3vvNNqf3Bsw1t8u7iFt0GlU08+29p20wY33ip/0xjmNnae3F0YQZt9JHEzJK6zMu0zHlspx8e2kLV4kEHXr1CML9VtEFCjd9QRWEDRvcz9As7NDbQRrHG3nobKRfkoXQTBCsKPWajyIJzJgFxohaWJHMPVqTTWv8agJG5D8YPPOGUI2I0JcAImaPWuDGz5GZbjG+VgzxecJlbNSjF7HhxFWI0azLpz3hMHh3EDrAqdnC3bmzRjJLp7U5gSMxn00j85OF8zmM+qmKoIB8bg0uUNpfI4mcIj9quuKvh2Yz2cbuuXGVYWRyIKkoSXROuIKU0lWY4zy4jlPiNAaaxQvurs7Y2dvlxC17tWqZbFY0fZalTC7OGKBLmLkN49H8Xnf9/TDgI1petvadHp2tqqo4/MchoGmrqkru2Hh5NcimcVldGmkcRCFwQiZEGTwHqwwnUy4fOWQL732CrdefY29w8vYqt54mqEf6B88ZnH0mOb6ZWZhQvfed3nw7W/y9a99jbff/4hPF2sed4MKQdfjgmcIDjd0uASbiX3L8JnxNjaE2NNYaLZbgMzkU56D+P72exfNkbK9IIJwnO7JTN4UhpzbfS/SUGTj0/P7Qxq+mNqq8GcFgDEET+i6eL6AD449f4V6vkvdwGLV4b0uAGuEIE4F4eABp/4hL6o1Bo0cm1CApIuayn5wDJ1QTWuNGEs0RYG+H3JamN72CFZOviDYNleTeT46q4NPJULj6BSLUodVF40pDLa0/FwoFp1z58c6Ls60y4cQWK/XfPThx6xXHXVdceXaJa5fu1Y4/APj+o26d6FKprKcSaB67yDmbJN7uKk9pJxasnK2OSY+RFZyif61WsHtYjSbqK4sk6bid/7Mb/PGr/x6JPDRrJ9vfPWrfP8H79L3Q2RSUZxe32uNjrKkZSiek60qBu9pmmYjbXLjJ76X7yFufE/zyWYiiS2hWl4/GUbpuV46mPNbv/3bvPLql9jdP0Rky/xdrVl/do+jT+5y4joOf+U1Dg736X/0Az752j/kG3/0Nb7z/kd8smg56lUI9kOf8+V93zP0Ts3jkFJByx9IPsJyrm7cQQgbgp80556iEZavfxJhWrYXRBCmtq0kA4S8QJ929zp/Ct0hT6inzKx0ZDRXkn8uAa4JitHyIbDrPM18h6byrNYd1hhcDCgEUQHoRQjGq2/NeYKBYPwYkY3/GEm+oUAtBmsrJZVlFENVZXO/8qjImF+c61OIZJPW2oqUipWIiVI5yzQmKdiSNShjtARonIy5rCNqxs6mU4wJ+fp5vArhVWoodV3zxpuvM/QOH7yWGfUu6Xv5uSZhWGrl2+dSjU6LbpWgZkmbSbE3pmBK0ryTBpW0u9paLTZkYhDIJEC5aoQTI0wQmmaWxyvMA19+403ufPIRrM0YEAiBtrWZAAPGKblhvoaQr5GEZDomWwrpt0TyV++iz2+ES23/SDlm6bwipBCHR7OGbt2+we/9k7/H5auvYupmnPDO445PWH56h6NP7/BwvWJlhdu/8jpXL1+l+8EP+PgP/ge+/rU/4vsffsynq5Ynw0DrFCIzOC3OPnQ9XafR4nFsfN6w8/pKP8Vmfm6FF1YCeQ6Sfar5s6KdP8coJZ7WXhxBWNzdOa0wvlsKtVJZ1I8TTi0dFci4i0K7yqeKAjNAzMNVzdD5QNv3pEiu97AfAtNmynI1MHSDLioEh+CNx1tf7GRaSN5EAadhgqDBFRNUUAXF9FmnJkxgVHhLzSH9nTGF0W8UYrYH0S9WV2PkN20KwSg/oZYEjSOa6dyTuZ2MFaLZOOgPg2ohWwk+6TGNmmY5IQNVZWmaQnnf0AZS2lTCZCaZtanHaw3qoBtHZBQ/3wkNliTuvbFfqlE775nPpgyDRyYxip41+XFc0x2sV8tzM+zg8BI7kwmrrisyd8iYz+3tN/UBUQC3lHM3FLRZ+TmTNyBDIOvd5UYTN8TEfkQk592YH2ncYm8EMMFy9MOP2JkdMN09xJ8tWd9/yMmduzw5esRRu2RJoJpPuPHmq9y6dYv+7bf58Gt/yB9846v84ON73Ft3HLuBbujpBkfvHINzSlLb9/TORyEYa+dsbGb5YY73svUIQyH4khDM728euGESb2qD0S1zoQK12V4QQbhtACUTGTIkI8/ScVKWptn2MMg2VddTrirpwYlSd0lMxu+6fuOBTnb2mdUN666jHlQrdAacM1hXpNwF5SkMQVE31gouPmfvA4hqOjYTL5hYuL2AxRSCBgrhSIxoWotUI+2ToII5LZzgtWBiSOmBaVTDiCnMlfBCMSlFqfmDU0Ed7EVm+AWTdezoOVOH5N9NT0hSXza9HRvR56j9DN2AG3rm08m4IZTLIEo/RRyqaemd49NP7/ClL32Jftrk4xIz9ZAWXfAYhXOzODsl+AFjqtzf6e6uFmBfLrAeCB4nIVeNK59NvuU4T0tKLtk6Tl9fwJQSijFIQjA+z74fWK9W+BCYTqdKFMFIk5a2s5Qtc/LoAY/rir3vf8CnDx9zvFpx1K1pfaeog0nNwdWrvPGVt7hx+Srhm9/k+7//+/z+29/g/XsPebDuOXFa8qJz6gPsh5hB0g30zim0J6gAHP2DI5LCF/3aus08LhuWQfH5KOyK7J8L51zaaD/fUH6BBKGMo5OFYXzlS3xaKeCK6XRuZhWV8D7/yjrO3hNi9FYnYB974nHB00x2IUxwrsJYLcKUMjaGQUlbVREThcYEmE1qfIBl62JGiWAiMNY4ixjVkByjL8gao8n+W8KwLNqktxwB0BRYMpHIeONGLF18v2Rl8UH9f84NEIWIFYn5vmpK+0jGoNdXTf3iCVkI2QtGOJSmSzZ/z3+/9CcZ0XutmyZ/Hs9GAlyBZFcDxJodooGprmvp3TQeI6PfNYF+gxJQ+BBYLJe4vkcmVTbl66bh0t4uD46fxHxpIZUVLYtF5SVbGBupsNeo9W7MNPJkLcYhsQulI1PwpW1bTk8XeOeiiW8iX+LI4JMEoo9z8WSx4juf3OfdeyeYaUNlDZUJ1LXl8No1Xn/rLW7evE0zDAx/+Id89x/8D/yP33mH9x8+4mHvOHOednD0Q0/nHIMb6LI5rH5BF3RNJMuiNGHL18KmMDQbz3I8NgdY8lYX2J4lm3+VY/mPiCBM0zqreUUd2w2DOASQQEoBS20DvDq+m78SlzDFP+d6kI/1jhADKM4Fur7PD84HsHXADxYqqxkqcYIGB8EJ3ghOHIMxrLueet1pFNU4fK97pBscxjhspbx5yS+YoBSpRwHUzCrNx9JnRPKbybh/EAgeBhfNW5HMoAJoCljWOMbIMkEr4gnE+x5oGqtPQCSPYzm65YTP4y+bEzPBYZJpflErzedRsAg+uJwDXZ4/4eaSpqfmoCBEFp+6ou063OCyn1IksvS4ZHISITqBddvSrxdUk1nuhaksOweXqO/eoR+0DMNIkFEYxYGM5EpvaInNPgtD7wOrlSISprMJdVWP4xg1XR8CkrgS44Y4DANnZwuePHmCrQxXL1/KGMvkVtjQpIL6VhMrtJHAXm3Y2Zvz2qu3uf3Kl7h09SrWWNzHH3Py1a/yjW/8Ad/84ff54NEJj3qnJTidRr6TSdx3Cp7uB4/zgSH4PHd8xLhq1tIYPb5QNIUw1jZOcyetrY1Zsz0vxrmR73ec8PEhvOimcYgKtG6lnBdU6cGnKLJi9YKYwkwa/T5Z8cj/FsfkxSyjGcc44BJndaLFz3CEYYD1mhACVfDYBpyz1FFgOy8YBzJI5IkDQnLeR83SVrpivC5i1zucddhBwb0+jNjANC4S+5S3iaheqCaYxq6IBsfJmHgNvSsgNGIIkWIqmdhpzxnHVrXftAgD0bS8YJJdNGk34SKlMCzolLYE50VnDSEJE6dugELrGje2zbzfID49VpqmwbtBQb7OKwkvIxEusUyB8x5HoO071oszZgdX81QhqJ9wUlnWpkPc6Ic8l2ESnqaT6PNZr9csz5axPIJjf38Pymcaxzhp7D7W++j7nqquuXT5MsPQ0UymI3dmMYajianP3VpLPal4/fVXeeuXfolXbr+i7NgihG5N987Xufv7X+MP3/kW7378MZ8tVjzpPUvv6YZe008HDZD0OZ/YaTW6QgimwJYUy2zTtC2e8cazDpSugHLzl/JEeXw3PilONVa9O/elrfbFF4RwgdWQXmyZyKXGEaIpUWiHo0YomyffkJdb5sn2YRIQj0aBEYwo6DrVbw265TGIx1X7VNUMMDgPodfMlVAFQu01pc8HhiFga2WtNlawWDABPzh876gmWk8iBB/poiLbjIybQC4YT8xwyIwKKQdaTeZUSY8gMe0pamEVUStTwZiicnlXDonNREkDnJfIipNosohMzs94jBdohOef83lIRfpuqSxsaErxnFGvjK/TcXmY4iMO7O/M6btOK/ANOr7qUdGoux/G7BznA/3gWDw+4tLtze7u7O3RWAU49xIi0YX+zhdnU/hfJBTd4PBea9IMvWhuccGuIyGRbYTolgl5M2jqmqZpsHa3yCEfN520Oap5qcGMK9cPeePmLf7iP/PPUMeosR8c7t6nLN/5Nj/6+tf46ve/ywf37vNw1XPiPSs/0A1qAg/JLB4GhqhVD1kIxvmTru2jbzBpa9nEHVt6PCnyHQIbcyCpISXEXghbq/gphvI5rfHi9mIIQrhANpVvFMnnG8KQcz7ANJSl6ZKZlfMpt3b08rvptLFwkzcaaQ1B6AdHCOuovQWs6E9lDeKVcNVLIP3nEbBG4TUIJkgsFmSi9qZ+OoaATAyakaL+RtK9JhxcYb7rIolR4jBqbAFUaLu4sPJYpZtTzFriS5TxhGhGiCrcbdfz3qeP+NVXL3OwN6Oq0mIPG/MuPYsEwbloTEHdcj6ESCBbCLjYsRDADV6psuJ9JY7j0Rm+qSlvmsbj9icizCYTphMVAEM/wLSCELGE1tJ7deb3w0DVa43ho0cPeCWyWKdLNbMZVc7wiJsuBYnFZrRn8/5TcEeEuqkxK4lunRTIKgdSx34YtIxs3rfFYKvx1KUATNojEQxP0KqEbbdmxzZMhlaf9apndf8+p9//Pp+9/z1++KPv8+MP3+ezh0c87h1nPrBOQPC+ox98FIAxKOJDBpUT51rJK+nHp5Ejx+WYXGQFjP7AUmCOr8qtNN97MavGdNzPA82M7QsvCAOc9YN793n3o2hXgYfPuxNFe9mfz29ftD697M+z28+qP68/7YMvvCAE3g0h/O7z7kRqIvL1l/15evui9Qe+eH162Z9nt+fRnwsgsS/by/ayvWy/WO2lIHzZXraX7Re+vQiC8G897w5stZf9eXb7ovUHvnh9etmfZ7efe3/kqelQL9vL9rK9bL8g7UXQCF+2l+1le9l+pu2lIHzZXraX7Re+fWEFoYj8JRF5V0TeE5G/8XO87gci8raIfEtEvh7fuywif09Efhh/XyqO/9djH98VkX/2p9SH/0BE7ovIO8V7f+I+iMifjffynoj8O7Kd+/Wn68/fFJFP4zh9S0T+8s+xP6+JyN8Xke+JyHdE5F+N7z+XMXpGf57LGInIVES+KiJ/HPvzf3nO4/O0/jy3OXSulUn6X5QftJztj4AvAw3wx8Cv/Zyu/QFwdeu9/xvwN+LrvwH8X+PrX4t9mwBvxj7bn0If/ingd4B3/jR9AL4K/EUUcv/fAv/cT7E/fxP4P15w7M+jP7eA34mv94AfxOs+lzF6Rn+eyxjF7+7G1zXwD4G/8BzH52n9eW5zaPvni6oR/jngvRDC+yGEDvjbwF95jv35K8B/FF//R8C/ULz/t0MIbQjhx8B7aN//VC2E8P8FHv9p+iAit4D9EMIfBJ1B/3HxnZ9Gf57Wfh79+SyE8I34+hT4HvAKz2mMntGfp7WfdX9CCOEs/lnHn8DzG5+n9edp7Wc+h7bbF1UQvgJ8XPz9Cc+eWD/NFoD/l4j8kYj89fjejRDCZ6CTHrj+HPr5J+3DK/H1z7Jv/4qIfDuazsnM+rn2R0TeAP4MqmU89zHa6g88pzESESsi3wLuA38vhPBcx+cp/YEvwByCL64gvMju/3nhfH4vhPA7wD8H/Msi8k8949jn2c/P68PPum//LvAW8NvAZ8C/9fPuj4jsAv8F8K+FEE6edejPo08X9Oe5jVEIwYUQfht4FdWmfuNZXX9O/Xnucyi1L6og/AR4rfj7VeDOz+PCIYQ78fd94L9CTd17US0n/r7/HPr5J+3DJ/H1z6RvIYR7cXJ74N9jdAn8XPojIjUqdP7TEMJ/Gd9+bmN0UX+e9xjFPhwB/z3wl/gCzKGyP1+E8UntiyoIvwb8soi8KSIN8FeBv/OzvqiI7IjIXnoN/K+Ad+K1/6V42L8E/Nfx9d8B/qqITETkTeCXUWfuz6L9ifoQTZ9TEfkLMbL214rv/KlbWlCx/YvoOP1c+hO//+8D3wsh/NvFR89ljJ7Wn+c1RiJyTUQO4+sZ8L8Avs/zG58L+/M859C59tOIuPwsfoC/jEbffgT8Gz+na34ZjVb9MfCddF3gCvD/AX4Yf18uvvNvxD6+y08pggX8Z6ip0KO74P/2f0ofgN+Nk+tHwP+TmEn0U+rPfwK8DXw7TtxbP8f+/BOoSfRt4Fvx5y8/rzF6Rn+eyxgBvwl8M173HeD//D91Hv+M+/Pc5tD2z8sUu5ftZXvZfuHbF9U0ftletpftZfu5tZeC8GV72V62X/j2UhC+bC/by/YL314KwpftZXvZfuHbS0H4sr1sL9svfHspCF+2l+1l+4VvLwXhy/ayvWy/8O3/D1Rr7IAAM9GAAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 432x288 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAOJCAYAAADBX56nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9va8tzbcuBj2ju+fa+z3nOjDBtYx9JByYAAICkBMSEAKROQJdSBxYugkIISe+/AGWkBAi5gaWSJBxYuHAwnxIZCBuii1AV8aCy7Ww4BJgzu/da86uQVA1qkaNGlVd3XOu/e51zhrvu/acs7s+Rn2NesZT1dXEzPiSL/mSL/mSL/mSL/mSL/mSj5Plj1bgS77kS77kS77kS77kS77kr7p8ge4v+ZIv+ZIv+ZIv+ZIv+ZIPli/Q/SVf8iVf8iVf8iVf8iVf8sHyBbq/5Eu+5Eu+5Eu+5Eu+5Es+WL5A95d8yZd8yZd8yZd8yZd8yQfLF+j+ki/5ki/5ki/5ki/5ki/5YPnpoJuI/qtE9H8mor9PRH/nZ+f/JV/yJV/yJV/yJV/yJV/ys4V+5jndRLQC+L8A+C8D+AcA/h6A/wYz/7s/TYkv+ZIv+ZIv+ZIv+ZIv+ZKfLD+b6f7nAPx9Zv73mPkdwL8G4J//yTp8yZd8yZd8yZd8yZd8yZf8VPnZoPufAvB/V7//Qbr2JV/yJV/yJV/yJV/yJV/yV1a2n5wfOdea/S1E9LcB/G0AeHt7+8/+zb/5Nz9ar/NCXlHglGZWrkTs6NCk1Qs3m/9M/J8tRl+in1z3wK9VL14ZOvrZywfFl9vMDOaAEObqi9I/BAItBEpjhs7U25TFGAtPFJDjP2AwmGNZR9lSRw2S8lL8QbECcmCCXO/r6t0dloHRb1OSj9f11cP6VDLKt5dOLw4PfknMeb1aXebyvZrjrydn2vF5mTE6lO8FZnBgpeO4By8LYaF5DtEv+biln21rr76nU+0ZHC9cnelLZNRXmjLMNnUnSZ2XTpurbzKX/CQ5mdE/+kf/CP+//+g/cmP9bND9DwD8hfr9TwP4hzYQM/9dAH8XAP7iL/6C/7v/0r8k13MYckAvEbmT5SjOrEi6GThMgW6q4vZ1YtOhZpWqdSAilVINEaSLTu/hJ1ZJtPmckSvPDUge/bgaxaTwSl/bXiMd5N6of9n4RFT1N/k9K64+RNmcuFjT0SHfQ0j3SU1dTioJ8JECfp4uId4AAwhMCMx4PB74/fff8f7+nuMsSzvR5ToBsBBh2zZ8//4Nt9uW60nqriqDaTP7vYSrP1thVCa6E1B0YGaEEOvvsQfcHzsejwce+44QggSu+wf7I21ZFqzrimWJ39/e3rCua7xHC7ZlwULHtqotM+c/yQcA9n3PZfFkWZbGZs3k69c7N3qM7OHReBi1ixc/cARjNn7uy7rfMDVhbPrxXnD1je0j+YzLRcSn2vJVMrJXo7rX7WfH4Jk85stsbSMjVHpQVd/v7+/4cb9j33e3jbV9XJYF3243fH97y2NC8grGDpTctWpU1QfQW/5fOnZpztaMbLf3+6qcGeOeuGSDMz9KXt5Y9Wy6jcfOONa2mIiU7aJqDJb5I8Br315dzmAArxyiwxh51/3gf/Q//B90Q/5s0P33APyzRPTPAPh/APhbAP6bVxLyKumoo3lxZmU6juPBHU+wGiih+TbMSwUVtqb1Skc8zlHif6x8hBHx8riSvo1zNIE9K56xKuzxgsTTlvC9dA7y4Zh4NiOc8to1CMX8mLCGrAeqZiciogiE+n2jHoRe+2odageK0n9RHmkiIER4xjq+TBYqXU7OSQTfwP3+QAjAui5Y135ftg6cNymN6kT6Qm/ys3V11RZagOJJC15fN3Zzy6Y2aafCfh+6Oja9uqvnnUvJPiVXbc8R+HtWF9/5AmSU1M5McVs5OUn3+x33+z07wU5CVV632w3fFOAGkXKjDsSzC6YMHA1Noa06ffvseP0oecb58/pUL82rDnUvXAgh/wHAtm0K7Lb2OsYb27BeeWYItfr7a9vwp4JuZn4Q0X8bwL8NYAXwrzLzv3MUb2S4nwHSs3m8QmbTJwjz3cLwVhLIzkbNA9xP6EH80gnlFU5P0b0GVnnSiTNyN40zxuDMhN1jbb0yfKQcuVZTGigWF8wAFzApzOowj+wIIDMWHiOuwz8z9nwjOg+8ddstCwFYwLxG/RO7yqlOck5VWtWd7KDE74/kINwQKAAgrFSD5KN+NqofC9Z/5iR/xHJZaYsgbFWOHFutByClnIdjq9hBnVYLhmb6XAuyWt1eYyRbID/Hmr5KPOfiVfNrlQYROIErDbz3fcePHz8i4PbixQixnxBhXVfctg0LUYfPnq8nbbOqFBLg7juzdb8eMcVueZzfo/gfNb57TsMxID0Gsb34mtkWQqdmuHMsY9sYskI1AtyaNZewI/s6tsXzLPeR/GymG8z8bwH4t67EPQLfsx2yF7bXea6DgnoynmdtBTpNgG9K8KIy0p2OeILvLp3w9UZ+pq2O2kgYiLMTngUpNq8ZFs8zSl5aVmbK/YxJPdNPBdyMRAwXM7JhtExnt51QyiKgezTZvHIyKUnVbdqrH2t0iRjLAhAtWJa3xFYH7I9H1DOD5oQBUHqhTl9Ym33f45J1CFjXBZzqYlmAldSWoi6oK3r2rnkA3sqIuZqVGd38MO1YZUbFSlJmFY+B95E+QJ+ZnhXdj/rg83nbmG1Hk2QiYGZIkifHkjf3zQLuI6fQirUfzABzBNyPPMb68YgZtCy43W5Y1zUBY7hxrgqnwU0oe8WfxRendfhAEtDLp8cMA+cdhZn85LvMK+u6ZmeqkDRxJqmd5LpfenOyZs0BfxukLssry3ckPx10XxU7IZ0xRD3vs+ep2fhHabURMbTF8w16DL7nmZfaARiH//gO6DHJZ4yMDEKefsKkZhdtWs8Abx1Hp3W0OuPcGE4co348ApNe+KM8pFZl8h0x3CMHiSju6Y6gu5vEaZG0/Krs94lZ4L0sS/rNYF6w74wb1vRwFxCE4UpZ9VzjPKmEALrfsa4CFjasoOGeePkuOo1WT2YB9yvEjpcZwBezvw5YfxYAuSIHw3YifupIRA1tcrXcI0fziHn1ZMQQzsTRttX+7XvA/f7A/X6XwP080/V1WXBbVywSZhYQF4W6ZWCTZm++EIeoxwzPEHtdPX8i4D7jML0afAsTvW1bTq/em68t6zFpoPvVmLmeLY/Wwc1xcM+XTwO6gZalnGb1zgDmybTmZQR2p3PNm0760/sr5RU6FzkConbyPgW+Y8RXqFnpcwV4v0oK4+U7AkeGfSoPYTdUXqOwmjk4k+e6rsmgxh6s4z7HCAkD0upa7vu2YuTsWdCtGRhgR6CQlr8LQ80gEIf0u56wJY2AyNCFsIAZ2DYGcMO6hJhXpXFbJjuBjEiD0Ti60oZe2qP4lxzOnyivJBE4rTBG4H0m3U5rawcuA6Jz46RnK7zfo7jAsTNnHTDv/iivEAIej716IJiNF0NE2T4RgNu61vu4TwhBgepBGUZ7uEfM8CzQ/kgmdVZGgNvKK8C2tV9SX/KgOYDmYVil7ZReNp1ZfUZp9YXN5xwu+FSgG2iB90g8NlWuj8K9RlFM4+JZ5kHz3hoUM6PzAKXNCJ0wjrIEde35uplhgHXYU6Kqg/M/z+n3DJh9qi/JhHMSnFx1AtwYzJnlBhB7lplsZsCXvv/6SUYDC51flfulOlmWxV2a3DYgYgMGB0p1VPLMB/6YyaXSmBl7CMC+g5YF67oAlPpdVTz37BlVTt9Rdes5teezfdzLyxvTM9+Bni2q83q11PMB8IxtE0A8mbOTF49/qvR77fuR4O0IcB/FFWnbvawAyV5edgZxrjF1bzMnAtm8rkoeT1CfpJxoeH3ZB61HTsqzOj4rPVs+k+ezOtj6Otp2aAfFjD2fIXbmytUrq9WhJZRG8ulAN/A8y/ireJmje8OBYPaqArCnB/ZSxuEkk2/rHeA++B4Z1mEWnUn6fLt4no1XxqL/aF/7s/1qBshMOR5c3CqdpsewaOBzuv4UuNcgO+sgf/aeyrubdCe7V0jpL21OtZq+ziMgqMPJfWG+5TjAx+MBvt8R0laTmGnqix7mVd8DMyAPilFcJgfi6SauHu7VWkf73cbNfMzkRHskXr6aBfT666sIbo90Kfp4wLbV+xWrVMfxW110f/XiZ4g9aRu9a2dt6RWG+pmweeUnPSMS9/OqdCzgTtdldAjgPrZ3x8ROQ3bBP6XEK4P+nJGjen4FEWX7jo2X7bkZp2f0nJWZfihteLWveeWw7eqRE+ccib4DUOLbcGP5lKAbOG84Zzv3x8gE2O3FdDpQNwvEbFjmfje41WVUH72w/mB91ghdB991/H59M8BlRWBkYM541O4E+sJ+VoOX+S0aAuy4BK7DDvTOnw5I6BktZq4my2VZqr16SqvL4gNmnfY4/RnAbe9bo3673bCHgMC7qtvIjFl+mojqs6UBQD1geX88UrgSPsdNNz6SJHgFAP/o/i/5SLo90F/yfg2w7gubT0+omYzHzLg4cCVs37kY28+RzK5MjdIa1e3Ihus4+sQK5tLHvRlmSemt64rb7XZpW4lSvr00MTe35R0768dqHIP65rqO3wnfWEQzd9g5xOtbM3rO9IFROqN8bR/q/fbyaxypA4Btf9s5Jd7WabK55+s+kk8LumfFLqeOGu7lk1sivzyderoC/Y7uGeE6LQKntwWyJt66xfKUM+FdrBQD9SbAEXv4EROhnqx80Q1RCjjT5h8BSA7jOdesYZllCKrcidxqsmlbNp4H2zQEZDNawCgM8UeAxtoJmAt3Ju2R8SYibLcbdgY4BISAcrSYypMiCq9etiEnqQdmYN/xnsKHsGPbCoNHRAhEWFNKXWOS73v36uuWhX5Fu7x0PB8AgDb48di9vAp0KOPJHRCftg+ySzifJNCgfQakHGp6AEi8e8/a8saJV0x3/HMcWyevdV3x5uzjPjP/6PTttGaB91y/Ho1JX0fvtxdez/XaVdM9JXYvru4Ddf1ZsC1p6jFxBnAf6f4K9r+X1ijtGaB/JH76noPd2s4z5f7UoPsZ9vojAGAFVLg3nGvpTX4zHWyG+c7gm+zNuQ6Z9WvAtw+8P0p6TGvtcyhPozORpViDe+fkCnN0td+9qp4r89FhKXO7Mhqj7eoGVatcOhxJmwwmpyN2ohcu6qg1GIc9St8Tb8JkZty2DUyEfd/xeMTjBMEcX1Gkso51Is5O3NoUYIDHvuOxLPjtt28gWkDLoo4TJIQ9VBOlr/6or9dl+Ygx+ypbWvn71ThXIMRh6rrpHbDDPS1idn1Gq77mnQF/nIsF5Vwu+lqZsng2xTLGVdpZ23HaHlC2Yc5IBfxQxkwIxVRk/SQPleeSGG5ZNWPm7My3Og1sDfWPFjxfxjafEVs/TGkAGD3Ip1VotMhEiW+3+/Xm59/7PSMj0O7Z4xEZeXVlZ0a/vmMJeDXvjZUz8qlBt8hVYzC7xDObfs9TkmPtkgl3DaYMBLv8cz6/JvuBQz7nqTdRJF0FvIHXgcIj6a5SFMt9OW07qb9KnnXytF6vADi65T3Qm68R8oss5HinymhbdjulKyz3slA2XjHdp1XvyDyo79XjLLNDRFiI8EaEfVmwLAGPZUF4xPO8AzHiNiZANjPJ2GcgA3Pm6CDKPu8//f57PEpwu6k3sgFh3zPbJ3U41z/TuDS187PG6SvljMNg23aOnDnjPB934jkbYsCto4XnXNhJvwtWBjmP0vM+vbAj8cYYM/DYd/x4j694D1zGBum0VZx1WfB2u+F2u03ZvtFtUp81UG31Pi5fHQeoWemc1wvAq+8wCSg3OCJ96gfBgRpsnyErZwmQs2n0mOIZ4P0qQuW4DPNzyhn5KwG6P1o8UHkENGsDUXgu+XcWRJ0FWW74iAHG08qINB8aomJiLBs1rZ+Tn4Sdlek42eJ6U9y8jjZ8T6cRO3VVZtm7yj9yrlu9XAaR272lo7y0eIa+Z2zPiKePV7czaffKdlTHuW6XBQsD2wrsqg4ZiKeZkN1yIv8yiBYgsd6PEPDYgXVlvKHU/UIEJGdHTmw4PXFTWW276mhYeY3jJ45bm+8zjsGcLfD0/1nOSA2UutqQ9JN27MzY0KNx30vrCADNSYG40cGMgPv9fs8vQ5F+2Yy99Hm73TLg1kd4HssccZWngVEpXLsSch46rSapyT58jjmlxmmo9DAnwYgN1tv8dD16gLVnq0f6z9jRMzLjNB/hpufExwevmMP/WoHuZxlML/45gFiDbxEPPGhA/hKw1seYc9FtOasiyJc5D3q2PF6Y60ueSWHrj1xgzuy9nq6vlpez72gZUI9RYB6/HAdo2R15iJJo7qEnm+8Zg2/1PyM9xttzQCyjJSULS+TqmBcsYU0sGA8nDgFUcb98yMvB2Hfc73c8Ho94WgqlF4Fs10y1PUr0FX3ofF+XN9s2l52QbR6jMVZfez1ovlZf83PB2fy9OvB09FKfmQJ6TPdxPRQHIUYpz48wxKmsjwck5QxWn8l+fPv2Lb4ARwFudw6OirbfnTEsY3dIiTv1ob/LascwhVeMM51cWScXZcAw20fMmOm9CTin/wRo9cD1q+ZA+y4B2+ZHc/Er5BmGn7nFGVr+WoHuj5Z5A5VahGjW9rpAyLt/kMpYpYkkqjI2VGoNvoea6PL0KNm+FtHkcYE+I8au1JWFmcf69dOC+/uKnGM6fOlOxvr6iKk2QFMkhNCwJ03eOh3E4+/kVb4xvfn+cCRDPZ5g6GZXafJ3xHIvCRTnctIKkuVzinUnQMJpIWSgInoAlYOzLQuwbbhtW7W9Z0omxtVopU5Lr26PHKQY3mfOrDMwy8TOyiuBwERune+19PWh/G+pp4Mx1xnzHiOcQafRwwXsDuCeWRFhXorOyfQw4vYpOa0k60XpGEBJQ+hwBbjLS6nqPLU+Ug+svo9Gh15ZYG6Pjz0CWxn8g7PuMr6rdDDqBWdEOyb1HBQ4ZJtQ5ZvA9szbbqPqNXHxanLnSHTd2m0xNkxPfrbOnszamr8WoPtKg/QMdm/S8TrzsbALvEdseo/9tl59T/e2LhQTxo3t6Gs+Bb5LHr34OkQ8a9x6iZ5Ckb8LzGAOVbk90ZNYNskTTeRNXB/NbL8CgHfji3EzDFN2STrAu5d2G65Ax2XxX3FuZXacefGuytE4mc2jYryzcxHiXhO1X3fIeKeQCq5U90O6LiDBTrK9AVsNSepvLzmSGSfn+LoA745jWH5MM5AS94p+V2Uuvb4tGrPUNSiOl+tRWsDWnLNi8/bAoTefnau32pkMSPOBAGEFuIXlbpxXXR4A27bFVbJejhJfHIyiPcSVO6S9LjDdgUMB3DoPB3AP9Z7UiZxvOqycVCayUHmb7owzpa/Pgm0PqL+KeX7GuX4m32fkis5/LUD3PAN9Pf1jtmcECgEZWM9MIrOAqY3ofp0C4CPwzeqfoV6sADeQWJJ6om6mFiLQQmDfMc661fkq8OHsqzxjFK+yaJqJ6i2f6bA23yvSwB3DfmtA5jl8++Qr4PVk1zBSE3Ws73gl7jmZ+vdZED17bSipDpclxluwpbLvDXvjwC6dTKOHgIrAjD2xgcRxr3dmO3Ub1imq1J6zgb0Vnvn0Wijkw3Df2Z3R6boc22515VI64zTqUzWaVISXYQO4OzmONBzNEceAuzzE2/jzKt8KqIaAx+MRXyjltSvXZ/vLWdxxPnHsH9Ugv7Zr8Z9DwG3j2fvazkAcnQAOCnD/wcwqg0ELJaKs7I1fqAXPPVJDrh8d6zrvXF+XI+JldkXuFfKKVdeR/LUA3VflFcuTI6CQrkIvcnl5frTTYNRJiqT5PH0/JQZ8z+XLTj5FmWLsZPqOpjpuGe4omIH8HKA947T02kinfRR3Bnjb9K70xx6I0aDNE2Go7u/vXf16QJ0IiEQ3V1lYcNywFDAtppisHkjzZJYpv8r8WrYuX1tWgBYQFqxLXB5/3O/ReeFyuoCwugykBy4BwgJ96q7UVWBGANILeVJ9yyqCAdzyqbUjul5O+/2KlD7CVd87m+rsGDszFovMA/ujJO1yvU7HOqbMbT+yacne3Rmpmd9XC6M+db6+Y0UA93uyHyLiYOjyCvC73W5lW0kaJ7pf608B67FO5wipilQ6WIENHPK8w8wIfEw8zNy3+fTDD9Iho79DnoyArLZjmhyZAeyj60Wd54Cr1e+ZPH41+WsFui8zwS9Me4rx6wCCZmlu4BR490adt0kn/WSKoAB0EaicQkqo7EypKx2kPL2djSgfDUBtps/J7ASu6/AITB8ZxCt944zkuI1ehVGL4WpG5JohbZ2eEeMFE9p3mVp5xjG54lznJVmdBoAViaFbEii43bAuCx73O7DvmbUWZ5YT4M66JPigq1qcH8knMMe94onZAtohJuOjfozSL4euh9F9LUeT8689IZ6H/Ef2vdyrwUvNmsqn7jcljq9p7fx4q2291ZozfXqunXUZ23LpdOQM+mofd0m0sNsp/XVdsW0bVnU0ICFur7L6LXrciQbacBl9mr5alajvbGlnR2+NmenbvRDnQWxnzk4jO4Plg/Q8J/rMeP+ZIv38LOB+hc2ZWVV7loz9FKD7I8Hys3K1ASpil2D47lG863VxKS4jgwA9EI4cAqQ406jJpFXSaMwJxFRK0qzy7zKyMeFOmq/Qqw37kX32TL8bhbXNQ4ggMAJu4PEoYE9/dnICwPkhypL/lJJJoRa8NSyZ1v0XsAsCviOUi8z+QgAWwrqs2NY16x045AkTDIQMGPowkJlxT2z5siwI2xZfnMNx64rUtT+JAgLdNBPmhddsLCbC23gfKVdXlsa6JVvysi7Ud/yqX5MZWpZbwEi2LSed4J81VqRf3tPxgCK9/GVLybptVZm0zdZpZMDOccQVx7JPEFDHvnj9yKtvm27PHg6pnxeME1XSufCD8gKYeu7mo2RUzz29zrLez5JUH2HbPgXoBl5nOM6CoRlwM5qMpsAR87QB1ekeybMeWZVnAGgZA+8zMsPSd8tI8kFjZyWxiBn8y+WB3rOrCV1wr/qpbX9v2XlGh1dIjwkeMTJMhIB6H2k3/RgJTMjHBdp8JxWtgfWgDl9lDo/6g+TrhavaVGkVx0pham7YwByw7zLRyEOYnB+WJDSYIOugmW4A2NYVa/qD9Betq9KnMKx1BprFq/KT8Q2ADtp+BEhsHb3C2X3d2DjnsJYyPJHlE5E1QBG9CE6dpn7QhD9UzX+hUP29vOiq0g11G+VtJfd7l+goTD9llpuIwO44K2VYsrWvenWjk9W9WXE4mpJNgFmG+3Ue3GBOc5T3+sLIrnnta8fxR61ejeb9Kwz2UZwz5NSMjnOJ9W99CtCtjd6vzHprsUbvOAKahvKAm06/B/qu1M+ccxB1vJaHTtuLm5BxymNkQOpJUO3T45/LfM7Uw0f23auOT9anFyDPY7ExprOg6AaNmNcmK10/aHvGyAHrpT5bLyNAba954LIXXm7rcOu64Pa2gR4A7bL8zggB1avjC2Oec87f9v0BQnF4gzjriv2TBywJxVmiNFGPHKx8KopyqD90pQaD/tcRbVPP6sbCij5RJqq89z6z9jp2rO4Jkn4GJ15ZHMCdIjbAzANXXYYYOruxkyqAew8B62DcEunz/MmAdwHa2mkgEJUxdqWeBXAPe4HpnKdIutManU/NO2rThrS2ayRHbLi9ftRvzqw8XSU0e/deQcoe5ffs+P4UoBt4HdP9M+RoAk+hEkdbe1ezyyQV6DzoKK9iijxQVN330rYscww4lZ8Fq72yKyJGZfLHypFT9KqJ+UpaXk9sQgioS3k0R9VVwRX7RgvWdfvQZcvK0coqnGczpvNSQGY2fM2axJNNtm3DshAeD8K+75m9DoEL8M7jJeVnBh2BEfb6VBRhCzNES6sUJN8T6Jb937oGNNu9qm0wXrmsHDH/R9d7wNtlJ58YLxrIXbF/bXjqfJ9M7zBEOx4tqLFAqwdmKEaoNT5R/pwqEepRx+VfLu217zsejwf2fR/2JUJaEbttWNZFuRdsgLaOp/NuWcnpMdrRqRvemXuO4szKGfvt4QoPcPfCz6Q9S5S8WiwRdKTFRwJu6Yujun1GPh3oFnmmgmcZSsnnLLDpAd1XdNYznW3ElI/Cd4U576M9VZYDMFzSo0jL5ezayaZWxzs5w8+PkOaGgdqFyZpxmubF03NmKWvEQPXSOkpTJs/qLqOud3B6oUWcQG0eTZ2jVPmynN8jezQeX7Fyk9lBlaf+3mujnt05o2/8SVgWYFm2Ks/4t1fndOc3zZUUqvQCB1AoZRCmkCguz6cMMkrR+4IXp4xElLcDNY2nANtMn9XpjsZvXb4ZselcscddmN9c6c83c/PGoU6dsEf9ilT7egSGBi3ktN2psSRhHbtbdC8MdQgBP378iM8foPS1qg+kv2VZ0j7uFfGZJiCd8t11EC6VwRYJaCB9SY9zddqjAXvA20v7jHa+Y1nbUHn+AwACzAkqxpE+QxDY/K/KbHs0jmHn+5X8XuEAtTO/E2a2vgbBPgXolgqdOSv4FfIqhsWKvzwxHqbPAr4R8B6Biqt5DgFUZ84TtpqdQOcdFoO00RLrEY8cG1GtyinHZbCUf1XOMnQ9fava1T9SNxSjrR+E8li0HvAmWrAs7ZvkjoS51FmeemaciZNg3XOI9UR1BCxfwXQJM61FP3CWoUlirBtRbSX7Z5nZPW+XmTNAYwHiCYxlIJ5esy1Jnx35l+vB5DVOpQZc16eABtZV6X4Ei1fVqarny+nJWPF0Tfc0WLQO0ExZcxgF6izIz/0pfc/2AqqWPSeO4tGA27bJm6VyHp6D5/32bJIew+NV4/zNSSvklaGqHnji5BKiQ7s/xyi3egW0L6SwKXwUbjkrR2NajwXP3vTWSK/YmVE9aDfchrI5vRJzfgrQDdRe/pUlQiuvSGMkPbZb7vWs7izjpu9JvKO0zoK2Nt3YRZ+pOxd3U/UBGC7WGlMtp5fF+Ki+mqvwTYeOY9prgg2z7dIr11FeI7kCfMsn52O/DtNKky8RpdcPX+sbmqXT+ozyP8sW6jBe+tbJO9O/joCBDufte5e6DqHuc05PyGmLcySy77th50IuDxO5vbnSW3S+ML7P9rczoWPSR+MK6BnWVrc5e/HKOSenO5W7EgXmqjlF9LLBc7T++ct+NgasGhYVZkyISB+U87g16BdgRSqt/MbJRb1/QfR1dBr91uN0vo18sA0IAGvTOkrXsvlHMprT4v2kh9OfdfuI85W5kwmm27N7Z9nqUfgcBqjaHiiOW8+5r9zhSZ1m5wZP98G79T5kawnwiUA3UHfQ/vLfJxGt7oRT2h+ctQdehaHJxA/y1XnZrniJibfIO2FhO+BGg+bMvVrKEuJwQiUkMAkFRDCszirvg/YdGfWhd/5iZ1EOk2uMdgIwR0Y2309AfVnKHuiX6vlBzM2IyZqZnM44AzqO3vMurLe1byGEwsY4/V3CC9CWOPnBtNQmGYx29tnXNuNj7GiXdcQ5C9VXr98upXzaRvovdZJP/X3aoW90fW1dFjBTymEdVZ33GdBixzmRsglO+hJ+3wPe7/d8pKVOwxP94GQd9tjBbtoL0TTH/j8OW/R2r7p69tJ5Bfaw4NjWh8dsO4kM0+zle0aywz4gQPQqmW6IqmUV0O5pQPL3gcRS1geonlmayeNVc9CnA909OWMcP4K9eErk7TO5TWszpxmIo4bXRkw6OJFvbK4MwKxbRgOnkjjIoM2v52j05GiJLQ84eblI74E/HVWXs50jWp3z0iQu0Fqvk9pQDsKBk1FUjgvCJSNDVNftaHxpBs34YDkxL7Zl+0rwOUCs7/dsgJ1krjLtNh274qW3dizLotju0ByfZnOStGSLiX7YVeq+Ii2Zux0h6+bk05NLDvdIhmnVx9X5E/+4bD3HpcQ/sok+xLU25yxIr8M7/YlRTw3p0zKyZ1djLNgelr2pn5jOY3/kvtcru9bvtm3RyXQ4jiPtSx3EDXzMETgVEqUeq5fndieNV/ZzWUGU+lrU22XjnD0BuJUcOfhHYY7S1qudrq2U9BXQsKslrMOpT70C0rNNPWduhm233+X32NL005Lfz+DGTwW6gdcY+qNKe9VkciYdAqo302m05k3c8zLeYXw+PceoZqZ0Ih0yk8gfIjWj1bIazkSkmHg9v3s1m1+VclDIGWboVeJhknoZUOtcTtU5o9uyFKCtAeAR8HYBNwCyxtF4jz0QeiRen/cMumW/Zyewo0lQpyv9T9IW1vr+eMTVA66XYnulk4lc0pEl/Jinyn+gt62XmZZ/ha3sAf1ZxrNcP8Dt09LycVfZ7tncIuiorzLXF0ltjdOA2z4c+wqpaiADJWSdiIA9cD6pZIYMqvqk2kI4p30Bb5D5Rsq+JAt2UA/imI3srnVK9Pejla/ZVtBOdgVkufMMx0E63u8zDtiIUNB1Va2CpOtB22inXjldHwJuBbwr97PTp67Ol+IYHI1SQgHmPQLlGfl0oBvwK2LEWnmimeNXgJ4ZADXMS4G6HuOdg07pq6ayAQv0jKidhupRGMyxu85M6xFx1tg9C1QFYMo2iKF0blfYnMZhz8hLWUM4gIh53C5MeTIPIQB8PDHlqGDE4wLXzNieGVu6GhWZV93XL2p5VU2NgLRldjxW8GjZ1euvPaZbhw3M2IGyZ7NykKQPOu3A5e2VzJxfoFPKQpkl7endk9lJ8ArTOOyWOswwTe7Wy1hkIDPqHojEnuownRQOnDgJk9tTZSCEyxAOZFNet5sHhF4pefVDscsAY98Dfry/436/j48TTbKuK95ut3r1q+MMcv5HbppxpeKEDtg+Oz9U4QfOXm9lgcxnT7TD3diLGOCgjys7ocIezYuzdWTtoS5rz75ZcFqVB3B79chGHK0cHTkXHl7In07ZKr068V8pnxJ0e3IFROs4wNizPUrHfj876Cu9K0B6FjD3dPbTYXCfapoWB3keUXOtIt2wXltcBt+knYWSVj+dQeVoLymzFefU0Tq8Wtw0M76wR9JRZrs57Lg/Hgjqobzj9AvL/ewZ3bZts2GPFyutXyVn+tGZthqRAl6eUnfbtuUy7/sOJCAeQZpdWWrHh5xoUl4Tv4CZ0moaZf+LaGxhXu+qX5Oz5sST1tZ7Lp7cv56HSDUv6E+h5KV/A5n3pSruwIlbFM3xQtJIXSg6Z6ay6PD777/jx/t71GGQP1E8qeft7a22Cy3uVnnrPkkqVNlKkn7FkZCr89w+9vJ53ZmnznctZbU02ViyZ56X+DP5awe8St/TzwHRPYJhdM3269wnTB495+WIpLBlOQLeVkZ1kMfNAaazBEdz/wXjDPgrALrPevgec9rtNE+IXUL28hsrKhHkn6t66aHspDPhWZ/LS/IxX611ej3GnJeUf9/btuU4Vjjb7jQBQPbR5GT6bXi2/16XXjmKQQ5MYFoQQnmyu+fM6usE5KVj2TLxjCPRZU70eD0K/8Lx7MkVp9wTq+O6rljWNY9LEtY7lBMWAAFqPgukJ1n9oCWwRveK4rS/gAuIrxyxTlnQ9uKPYllfI1x9L1U9p2/NJAPeGO6xgMOcDOiLTpCt/wTHB0Dgdba7FjbfBXDv6aSSH+mkEs1c95zIm2W4jdQzlAZiVDkmNQWeDW2T99GYt4DbsydHcUVv/WmlqBvHVxq+PuAmOrWTO/Im5U2yM6DZXXkj/7mZ3uqVt6Ij6c6yzl5ZcpmApr8fsfdeutoOZv1ipCpuL+0hG/7kmPsUoLvHHli5wnbreDr9j5ysT0m2SGW6m+mQVdRDzNhOEMcnjo5AjQO+Tbw6nFGl8Qvq8r5igp9rX9mdLUqdmagFECVKkef6U7dtX9UfbTKdIoXEtBXb7Bsp+b2mB6R6LPdoDNs2nWmbkcHtyVWG+lmxNskrq3bSs2wbEAIo3QtE2GXmZuclR6K7+gzM+QzwdV2xpzwWsZW6XapEuLmmwQmhrptn6unMaD5h1bupe6rqNvKXtE8o6WjRvc99PUXkQTbRM4Yuzq4nr52/ysk48idO9QzLnU/nMfqLSBUk3rqt+/wvV/UlwHOe4db9FSA6btQju+TlWrPxxWmJhIHhnybbyYLI5AWdKHubH5v+MwLWrk5A3kaoHTDPAXUBv6Q/GdZbAXX18gB3bPApxvwSSXpCPgXo/mjGysvjGfb86P7IKzxbzmNwMCqHYmKpBsPlIZdn6r0Gqm0dGYTNaI4ObDS+yArX8XzWuVf/fXjTBKwcJH0q8tHbMD2pVkuGml8QKkxRNTGgb/hGXn98xfnq3uvFIactvWoarUQdjb1XMrA6L288exP0LOPvTSTrsmD59g232y2fhfz7jx+Ix3inh107SQvgphCwp5NQJP1lWcDLgthaiwIJyVksHaFNV9rusETH5T1kgy/LHNDWumid6j5GeqgM0+iCgE5+gLR3qW8Dd5zYqSwO4zojI1bQ6ltYzBhGXvHund3vjUt9PKCAHq0wodhWVQtWuQZ057wc0Dl2AmI7EnHT5qJPNUs8aTvEVSrTqn5D6Hw6okcGuCFkB8Zjsw+BpfpORi8rtq9m+5f0eU9bjKp2hj8e5Lde9bAUjZ13ruIhLx37kGrjHIT+iV1HzLinQ08+BegGDACZ9MR60jOQrwT3RwzANelDLubIqJI2HYdArxegBt/PAW+TZPqef55gFJ9psxrU9MN/1EqHGDedRy/vnljgfU3D2OYSnwnxNJnkLDDH/cCyJ9gam974W0geDqqv67I1dUrlzYijyc9LT+vyUQ75mT75jNPuxdc66EkqhID3+yOygh7brRCi1G1Ip0vszFgTELrdbmDlEJTxgfLJdTnyS48GTtBHyiuA/kjqNhtP+KN759sekB7vpVry4gwYz+Tg9U29apEyyf2lDOKSrzh91i546FEz3Jr9FKDI2f5kKwRrlnPOGXTXgOgM2K51a+smf+94V2f7DTrbtWIdtI65lHE490TPJ696WbvQ6nEgOo/U5mfmPgbyyTW3261uay+8k7YNNwu2xUGzvdSmU107KpNhuLOOF4D/kXwK0O0xSR+d16vlKYAwAM8lTQaYwFQb71xvOY0+6GzrOIZ9DngX5av0TXlGdTO7UjCljWJJpB48htLPo8c8zeri1/0UE2py1syQB8C7Hnv6V5andTBhtOREgllanYhAeQKYH6MeA6jLVIV12uijxebZY27072d0O1otW5YFb29vABH2wAgB4N2AEZhmSwxlSG+tfNs2LETgda3OAZc4xYkofzldRgL1mOoXVv/Zsn60aJAr0rLbLfAcp3m+PIWNG8et546LDnun7zIRkJxmZu/IOgJz6DLcnqzrik1tNyMiLCqe4nujMxgMINNsatbVtJd8vtIWnJhjKCnY2+DFiVjyQKaX7lHvYSAej5jJjf6LvNz4B7bKzq9ZZ4foCFxWHL59+1ZYbtR2R9LyVk174uXnliX3JT8NjRm7TqohJ7x8zzh2Fcs+aNFPAbqB+Qlt3uN9LYivmdRxmJFcmbgLy10gi3jazxulCzPsQAiUt5B0DcFEllfqqTr1IaGIwuy1+znjd4nbN4yHupzDoh+dTEwr1XPimSDzuX71uwfnSxsVsxJf/b6koDXb7cZ1dDkai1fGRG9MXhkTnu4zel9hvCVtnQ9Q6pmWBffHA/tOYDzA+47sdMcIGTGzSpeA/CIdIC4JB+bsMOX+D2T7Ua0+MJe94GpsXJNzvXmU1Vwdp5WBggqaNGqgPV+4HmCRlKx2enLW7rPpXajBf6uzaNlbAezpBKQ+ZUBXq2e8Loym3luuNdIaypaSuN2sMJ8egSFgjGLErFchZvTWkqJ3P02njJ06aECnUwdnHf2yGlUDw3wfzaWqrD3dgAi4r5wK1ZQbpc3kPQhn7CEnu0JEpY0lvTxZ9o/59Zjj0fh9hmwZYjHzadOfAf9ePvX86cunAN1nO8WzQPMlTOqHSYf1j3OucLfl8uGEVE8LH7qikOm0cRjZ8pDV6+h2DXjHf7Ux15PgUysSjgh4KTlP6mkmjGf1kXKJKo2xMXUQ9yK3+lYTbIyAbV2xrSuuugUzQOVKeh7wflW7euPkmbTPOB5bOtlkTZ97COAQYAZLNZELUGHm/DKTfd+xhpAZyXVd60lOgW6o+CTpz/fmyXAfL7E4z9m3fltxqvYaiiZfNOVtJ+QacM+s9mVHyqY0AN9HjJ0DywHE4yrf39+zo1bpg9o9EYb7lraWaBNejcWoWE6HqN1vi6rv1cyj9OVKFweczc5jAraDk4aVnLPTj6J9pZxepaOTZ/7epGTyJGr2PntpTbPXMdHmXo9Vbq4TxW0uy5L1qsJw2S5jAXdP95L0wTM6kn83hFXV2cttPnW+Z5htKzOAG/gkoPuvm7iDYBKJOA52lUYkV2z6z8KcIzHAHuIgdAaYslgzdrMHSq0hzpg/X45Lp17YV0hOkoDCRNZA35MzXva8LhWHY+qgsC1BPUySVx0GIoA9T750ri9VfpjW0TF+V1njzKhVKxjX6vQs0O4x+6M05Xf14pwSOQLuNIltzLiFgDsAjk9YZgarqlsFmoE0QXDc5y3HujXgBfXEpOutth0zopZ4M8NbAE8eKt0Jst+vRoymTqmU7yPtXb0CYLjTWiNB41nD6m57JYW3J84Uu3a8DVO3Xzmez/a/eF1WRSyQyGmoawvFV7zfbjds6WVM8W2FxZjrvkwwbW0ZbmGdSVYn+mO2N35mpF518IVQ3tArv3WvrcEtMstdjxUfAOf+744tpSfGI03iV+2rHZc2ggsUevOgTSe/BdU494DeElSnM2q/2X5bXevo7pE4R3FtHkd23eqsbfZR3L+SoHt2Uv1QVveCeEyuXK+lz3Yfz4G9QMUAj+rlVXUmZqgPqFKIMhvjFJhzBkXEkLUh6S07Nn2IpIaOH8KtASSrKi8o/Cx408DkjIPQYz/KfH8wYVmSo2QcwbYx7pY9cNM0EmKgqmd6Y/gIwIoePebnjLzSNjwL8L34sq9yXRa83W4AgMf9AQ6cHwjj5GhmdlqllfdlqvqSo+BkpaM4UU2B+jr3C1Pdj+CkDd9A+QnHb6SDhYcCgM427agNS5p9gH2YvsmDmyRqZ0izsrnPd/q9ZYn9FKVOasAtD06OZCHC2+2Gt/RAXcwjRGAq5k/bYtFjBvQl0C19sXVFromdG7wSemC7p2/59FteZgYPcIcQhts8Zspr23vGdjWkFPPQ5sh164jLZ05joF/lsBlbPSUnbCnpfnaQ/ogIOSJJeuF68lcSdAPPTbiviH81z9F1j3m8Bg4ivKkekEyIRwPOZzvXIGuA67Hgp6mANjvXjrKaBF/7vueldRdwa73Rr/NyzQzSeDPfIxO+N0FasZNtnWcd34apdK4mhuJsSVjNOAHtHm0NiIhITbR+vjNGS8BhruZOPzxa0bCs3Cx4/xky6yxpZr6ZrKh+KIgoPgS3UjzHO1DAwvF7DlMSdp03ecEGc1wy3ratOFQqvnwe7Sz1RmcFRzMA98cyme9zo72CAk0dvbLF/bF/Pg5gQEgVIY9IEPwxr51McsYKgO4+YAH1rR0ogPvHjx/Vyleje/rb1hXfvn3L53ELuIzOXh/MVUCTjSYacJMPeF8ltnQLLSU/N++DxnbGrY0mdbIb4qfXH84Cb31N2xOdvxeGmaf3jnuEVeNEO3NbCjyNWyoyC35dDMH7IJ+puekAl6nEsn6j/vqpQPdo0vJYtSOvTe79Smz3SFhAkLl+ugzRzUSZ0vpeLSQousG6Utd/Z4J12q27DHUu+ypiNPCSSltfFfCogOL8tN9ky6zyrK/rTxFrFCuDhbrFqvSgoPOB0ajqOS+TLpFtpni/Aq4HbU5EeHt7yxMuc01GnGHlc3iqHZNRvTRxO2E+EmhfsSGzTn0v3ErxxJjAke1Gehvo44H4PERQx5CJd6sAjgbeDAD7Dqb40hwQYQNA6xrPUlcA4ugNhJ1SSLZVuabHVeqXU8BLlbHW77n2742rUduPSuc6jyqOOOoENl4IZcBSOcgdB83mVzmoivDQY0fOX7b7uJsyIO7j/u2337BtBnCrQul5gBOxo/W19VKc+gLsj2Rmrh/GQ7SHMleNnWLAb936nQpOzJwnM1engFhb732/Ip7td8GyA8wB4+x35pEqrTmlpuylvyqT7s3kcyb9JzAgx8Smw38K0D0De2Ym47OV/LPZ7hnWEomf7nlvR9r2PO+igwMiKN3gctScp/Nx/ZvrKUOPDXV1R8n/qG2qMkgHUm/esQD7lW3NXCikqEJSINUjc5ncRmV3JxLy277vOpW0PK8+bkHgPDnKSQU149IaP0ILwuJGkdFk1WcMuGOIZ9vkKO5HOddH+k31a2rZ/CGISG0pfFRYlgiSlwULxeMEcX+kBX45MlSPB2qAt15BkTdYLgnYA4kxTboEMBaoZyQGXnkp1/GE7dVL+dF86cgx+LriIB1fM4DGsHOHeZi0i+kyI9u0G9Ldck6+D7QbkoFLm+n7+77n87glbs/J2rYIuG+3NQNRz6nPei7jh+maO8zQU90MK3lGKiooE0NjW6yudFJEbodC2xR3yto6Uu12FWz36kXn08tX5iEhWuxLbjy5Wu85bwfnHGKfyXnAcy5n9TojeXVA0pDrE3E/BeiWScJ65KPlFE+uesOvlisdoxJuIVbTRzOLeTLdPp5Xwfx6vApcPeB+VDfdZasjF825ta5rFwBr4E4TepVMPLBkfiYj2NueUemgGLxZsZNtw3Ckf2RTR3mlb8yHFtlDmRw9R8qSMlDq/vr4GvUtue59F7FvgOz3k2vSS6Nnd86OCX+1pU5PfxLidg8mwgqAtg0bR4b0/niAwWnPfHrASeVDSG4Sc3aXMguX3mQpjlWdPyEQsHA513ncK3tbFF5vh49s3isAt0hNPsTcy7990YCnl1cyxU0VsQlHFLcXyYNtR32typNLfUm7v7+/436/598Ne56irgvhdtsahrvWNV2jVOalMMmuEIE47QVXqyOvYiRr5dLmJqof0SVT6X5+PQff347lRiHn2EO5dqj6nGOp//TqpZ5jBXDLPLQsy9WF7Sm0YR0sj0nP5XJsC8VEpsbYrC5XRAD3lRQ+BeiO46De4zmakI7kEtPyQpmdiMfhBuCGUZbxMFNelVZDrOghyAAfD/bukpSkwv1h/ZxRFQNaA28SxOzFSNfXdWkMfKtcX9e2ro/Bp4DtaTZ34v6lHstlgmTm9KIMoD73OSbOQD4dQ87k1aDsaII8Aq26Hk8BiEEe3jj4ox1vT8jYOLmmZbQioMHcjRlgjsA5lFMkqmcCqJx0otOXSVgA9yJAH8AOoMCsxFpZYDggPUq79s9zvyp2KmYuW1JGp4h003Mc1hqE6mn3/JxiSaQmX28sqHCLOtv6aLVMvkeNazAj7SIst1fWDAbTd3mrqc1DFS6GX6L9tYC71J9warJ3ncFc+t/PGqdFt6srYnVdpR/5e4O5geoUmleBRI/Z1jZDvyFUXwOAddtyn7Pa9PppZe8n9daAu2vrqLNNxyM2nLQ/QmzOXpvO5P8pQHfrJPZZsNNp2w4xyRj8LLnKHmsI1gXfNTZ1867S43oSGA3AsUp6wjpXtuoFN8298inTLcu2DtQGrpQhpUXGYDa6sxT/oujIZULRzOwY8CvAKAbQGDwv9mjlR4cPIeRtBXYM2LS183SFOXyFwzwC72fS+1VFg2hPNCixjk4IIS8TywkUIaT+HuBOoEAaUVy2Pe37jp0Iq/TRlE8AY2EUj7XEBgzMiHnUQP6KTTvNumVHQZi1ul/0si9VUsD0iCSYldkVF92/ybkeEnCuAPEkYJNVihQRumxyHvfIkZVctm3F7XbrP3AXUXRTZnL7i7RPDRZt354mJir9NdB3jj3kmp7Jc4FJq9W7hXmWwS9xWqfMgkuVYQ45sts90fbY2mZL8GinGkT132ReOp1ZwF29mdSQc0elPWqFj0Js5931sXwO0K0GYY/l0Z3sGcD8zMRwNp/L4oJlPZDTTYOWjgey7O91GCMx0kjA16mfCozLvWTcSphaJ1uWmTa0W2f0wKccYjxAqrpIZStZCqs0SMCIX68+FLYM15l+plOkSv82J8ucjgCpnFggbdfTqGq6BvQd1bpTnovjwNbb7OrLMzLjMLyKAPDAlGWtdFjvt5zII3oHBpbEImbgJu3tjPl93/EgwiJvsJT2ljDoT3QCtgEgBMa+y/YtgGgZxHxeLFcQP2z5CERtmatI1bVJMNLVybeXvhSgaPuTtq1XgKhYcH1NALc43ZUmxhbIme7bVkCc7bfyWTkQ5PUaU/4DwH3OVpD6a8uUiQPRwpmD5vPRn167tPWjXYBcT861bl2hJb+sbZC87NnR1XypgLa09VGvOqof6oTTfcky5BpEe/nXffjnyBmw3XexWvkUoFtLbwBeAd69zmM7889ivc8YF/GJfXhENqAiOHrA259CG1bMeZiyl25O0QDvONGrUESO/R3v2ff3rGtT2offrWGqy96Fji8c7VeYWpbrTr886qEeQLVZCEuqWZtSP20+Ysy1U9bL8wyT7U0QNp2zjvFHMd+vSNcyVFa8iXU0/vQ9YbhCCLg/dqyJU6z2eMZIAMr53ZKXAG9JdwUQCADJ1gboga700f2LQLSofkV+f+nUzznrW9ItYKZxR0+l2ORgbF1lT9A3E3Ze8dKMnwAgR+75+WdAOtDTzSdzyqUvyQtwun1ZwBjFk4pkFcXmka85urbzta+nx4IeiTiRzJz2tntbl0zLSByjg1sep91KO5lcXKd8rHsVsCIwaijX083q7tn6qm1G2GZAKngOfxW1e8c4bxZws5nJO87pyEU9I1X/PLj/EbPGpwHdVybYEUA/St8ygz8LeJ8SRgWARx52140czRK9TOEPWrdeJUsLvK0a1LK/3XoXBwIDoO9F6OeOqhIIIFYg1+h3NsmR83ZmcrH7b2dUGQFfIoDj68Oq6+LUVJCekoPHiN+J8qvDp3Q/MX6Oxq+9NnLOPkKaPjfQ70q5j+yNZgJ7LLfIsixlCxMRcN/BHKLzrFnTmHFh/9J3u+2ImbGuS+wSRHHPLpXeQjlcAQzSV3o6zolvW3oXYlUSls7o8ED/Uf7W1nVByKB8o7atbWAZ7zp83sct2h/0E2tLg4zhJHYft42vwZLs416WZ/fjO1Za9b0jm2jHfuD47MJCFB2E5AD20ikEkran1DxsaDEAVNhnpAf0C8+cR2GOMWNzjhwWzxlq0sC50nnOX/G145yv87Jas3PtivR07o1PHycYgD/ZyVv/bhzvU4Buj3kesQ1Hk22vA/8q4HoGMJDYTh6BVGdi4c51HYPT/UFVnAITcAZlupinZg/4DZwjGRqeozE6UnFG0ahLx1BXhWiC1WLJFWjmyndWDts9RogTRofxtGlVRrDczJeInQkaUs8yQcXG4hR+u2349u1bSpKb5GfliPHXv4/A7VGYUX6zcjT56TbpTWxWzjgIPmvYd+ZEp2VZcNtuABNCeCCo+sqMKsVjCHeZKGNk7PsOWQW53W5g3rCsSJ2nQIUlZRknUqr7P7V8c09k9GlAJJCkDug/HinVY8PPsqYzYYZJVYxlq8PImaySQXFiclyd1qGmTn/hUk8hBNzv9/pcfseuEcVXvL+9vR3PLxeFFEDLvw+EAYR9x2PfQYteSfHOkq/rvMYLTtrMWKRDu8a+lP2I9BInwOZbbK12XGO6RK2uI6Dd1SPPlbXms9JjuY/ah004b67SpNYrpZfmUU4ST0bD6Zlicm75FKB7RjzQOQuiPZZ19L0nr5zcXwH+W7ZNPOpeByzTXQTGsxNQGezdQWQAYOV1K5A7A0AiQzcMgJOmpf7aieoxxWBVm8q41uFU/4LtI5zmaD9Tb2mzjt8XUgbXBWqpHtlLJ4HpFurEOMKgyrUz/bXLPKn7M2ygFS+dY+f1GiPuOfk99nmUxhFg9pyPM2BeSzxtZsW+b+C0X1gAF5lyCPMY9UQENvlIScYaArZtxbLIWSZl25mwV3KWt34A+QzwbsozG045zq8hUbz5oM2dxQnoOBiHuhjazwJu+cx974Qjo5OXdtfncRtNq2+3LTrY5eQLnWInn2buUal7xACzIgI6Y1/lyByPuQzM8Xz6ZcFC9cOCfZva6pedz6Z8BXBfI+U65JZuu4xdYvioSynnq8D2VTlqyxkb26Q5GXaKhOJ2Bbj3e8jMwz5uOykn+8SnBt22wX2291xao7gjUD3L1L5ckiXqL4V5ehsuyUHhXWAeZ2dokKzzyTqYNGpGyqSu0uyBTI+xAXW1VBrMiGE0ctQWWFU5ZEJLGiF+LcN69ES2gHC9y9KmP8dw2DgNUIsR6jTlWgIP+gUJcj/yLqoeE0hvDX47Bq2OM8B2BoD2mOyrY+1ZpsWC7xFgPqODB7Zn4/fsIgCs64bv3xdsjzvu+4798cAeAjiUrQwLl+8RDJXhph+4pex8lXknA080kNTjqm2hc77NLaectuy27m1+mdlXaZ6V0QocK4a71xfcdmQ0usZTl/xtRGf6uldn8sZJd1tJRdCQ2lKiH8YrY96L7zmknu4V0cWdlTuUdtpT2vq8eXlPAOH4tJOC632dxJZZm1bKMAbzI8mpUf2wogWDtb7jZ9S8soqb0LbUsYxK5c2mPTB91aIe12sPKtdXmjuDcanjPOukzM4lnw50T7F7nUnsikcm4rHoOU5EMNCG6BkHQKc/0isRUpfSjWp7wLufYK7DAyahSk7y7YSorp8vzLWZsysqMS7q9JyYuvyU4ykKI7NukQH0yscJbGgjP9ayMqpH4wF13TfjgBQY8cAyBHjrMukH4eYcgqvjdpTOCPBeSfuV0nPKLSvei+cCkBMs0Mj+xJdgEOhxxwMcD98GAyEABDCX/a0xHcTrKc+gGG9mYNsWrCuQX5HZ5BnTSiW/BnY739tQB85K8Q4O3fJSh8djMuczcByaOFKpNk8Ai3g6jj7PCDPnYyQbQGxG+ros+GYenJQ00jc3/aP8vX5ZzXfqT+pTnKUeSD0G3K19jeHiX9xKUo/Ruizj5yf89p6BvNKm7RxzBLg9sH1FmOsHdrXDbUG8F/e8lHo5B7RdBeIH/PLnOlSpedD9WTKnjd+vl08BuntsqtwbedPPiscgu+AbVIFYC7xnQLRN09NhRl/vd2vkEAEXHDBIQLVtQt/Kk9aUOlVnD82NvlGaKW/0ETw4/1IkXuc5ZWRa4xwNW+pHA+fMS71aPRgwe9cktozs222FVbj4b9la8tp6nmV3R4Cyx/IeAdYjR2HE3unwvTj6nOoesB46sR3ANSpHr8yUHK1t29JQJzA/MiANARnsAAAvNUsdQsCyLLnP7PuCtzcAW/3gXQu+nxNj2QxYIfN5NCb6bajbpQAzS4T4cV9RZgGb2sGdAvHU6ln9ZuDxeLgMdyGPYvh1XfD29ua+wMsDiVZ6JFVbt4gOkL4ucSbr0q2bGi9Xesfg0X4dMcw2/XN2tvGa1HxVTqnxALfOz8Mfug5DiVhn12rQaqhAa653FCfnjIzmrlqryfSqBCvtqiu9LSGunSY6XS4vvZ6d7+ar5FOA7lfJqxivHiMYvwwgnzBGTuNd1WuAj7tAQQNneXMlK9aY5DpG9TXeiyy65dAky9a13zzypEcdeyTqNPFOyufkCPB44KZbLxNtVQI6UV8IZPY9vvx7T/s7bXmkFmOHkLqMBn90aslZJ7gHQo8A5RlH9kiOWOMr90Ts1h3XaT9hmzQoGLFhndj527qsWG7RgSLEfdshMNKTtWnyTSDdTMJytKTosiw7gNgvkNKTF2HEuHEPysfB8DLWKTv0/YlyJNMEh/1N5Wi9HkFTM7rH42LGBo7Gof7bA+cHJ117lkq0LITffvsN2/BkouO+OhrPeswH1ZcXomzjqvkDbV8v6bdbiaweRYoN07oIIPfruN26ctSvyhQ7Bp1eftrxkz/rrByRCJq9rkrfwxtcb9uZtdlWrqAYjySRdhrGO8hPptrZeWpWx2fSAf6age4jOZrwxyyyBngF1OZbOZIJctCYhxNAwkRnZrPWeJnyKZ3LkuO4Yx0OUiCffPHcrkoknZU+w2Su59VbRbniIFX1Q+cHqoraGBvCBLjg9vgxRjwybE+g0GPeq0wA6OMCJchR23/UStQRE94LZwHrUZqzbeUx9dbxnWUtZ0TA1BkWtNYNkIZdlgUrMzJvxGX/7EIJPDj2T8onTpt+sI2WJYIotUoyo9sVqW03EDV22l2DrWfzENaMqkBO2L7DDkVcEBVbK1DSpjUrwlRKG4XAuN8fgxUtUZ/w7du36FSrV4ZPyWDc9b5rphVQZmay/kbET0lZO2S+HjpdPa5s+V0cYHSvr7YzZ+mXtSX3nLXep1G6vdakXsrXq9ueLenB334/snhIXxfNDsZFU6v2+rE8Y8uP4ui5ssn3IL1PCbpt53gVg63F9177nRXA0dSivnMXC3qDoguEBrqPOkWVdoxQxZNLctZuM3QobUnhOTbDRFYw3vAA1kEZ6S0sW7zg5GUH/XNAv8deXUgJupCl71C5PZmClNBjCqZ0FAbMeRMdYGsw/rIT0RHj4mc7ZrR/tpwZW1Y8MDsKd5Y1741jy5qekaILABC27YZlWfHYH9j3gP2x48HvEHLe7x21HvKAZQgBWBZs24YlbV8RR02zaLHfVhi40m2sfw9s9Sf1iuHz6lnFRtM3B7ajo+5U2wyC6Jd6XWXkmIHAcbvQYw94t8cDSl6qvNu25T3cS7cvy9xg9DL17c1jLuDuMtglwzHAg5nDcg6ITmTUdQz8Ry+oGjseuncUAs6EMXa+WfU4sA+e7tmxcpXitG2snbNGIPJ50efxA71Jfb5P98F2D/B6s/6V8s2SSdUqBLomIcunBN3A9U7yKoDuLdOwYleayRh6eVZNDo5DqA3UlK5NNZwx0moS85IlsaWEmrlvB/EIgMWJtlsLtXM8Cbzt7y47mzOpvuB4eJjknDY/3QepNryNVOr5i6bsfM91eeCkaUMh3/VycwOIAZAypFEtAd71tTFzUcLNyExavTRHcXvO+pE9OXK6jsr1zISmddNM3Nl+6IHUeC0+SHYjwrowHvRACDuYHxIKZXAGBbiKTgLmBHQTER6p/9JCeaUL8J+3HIKa6FkPy9S0eYMHOZmwaNCsmdFOrKA2PbZYXc/5XvDjx324ybGJO8feUQLccUuJ7OO2gNumta5rfTSgEyblmPWrdOrYKy+vvu7e3Fmue86mBjql5Swc9QG3p48GwESLDaE+qWN/qwS7eUlaR+y7lsbW9cIBedtOfb33QP9c/r0w4lL4YWSM1qHnZD5sD/DqrXCvcSyKXMGSnwp0ex7xq9O/6g3VyyJeA0+gSef2DEOmE6gY07POpPVM09fisep80OwlP2LVSx61UPNFK1bKr9s/pzc78dVWeVo8QHcFdNWqUKXvaLnS+mRsAAHQL3oFytAWPU6sY8Y0g5EUVh6ivGq7PKfgWUd4xunT8mr7cWYF6qrRH9mmZxicPCyJwBzB99vbGwDG/U7A4wFiIIAQlFccwU/RDahfLS+nYzAzbusKWs1Dlhf1F3BqbVJp06RTsoUNCEK574nHjAXmCsPVTiknGznuU7MOI2UtalBbx/fSqssfUF5+4wFuK8uy4Pv379i2rWGlqWOrBMw0gZyyjVZqKpbQYbtHo9QbU2Ihj3pVVaPMjW0qxIJp7/xJbrn16kgF/VXfjLrXaR85/XX6Ke0JGyaEV/7tAO+ebZqZW3ToY6cwDO7ZOpizz2Q/qWyN04TSeTtTpyf6VvfM54x8GtBdL5udr0Qtr2K7bZoAhv2kzTdBIY2srrxJQkmVPSFPPMM4uSMJCDtC7MVI2pM4phSkg/QbpiAZCVWenkE/BFQXwbdOf2Zi7dYFI746W7GEdd+hKmilci9fXOoqIAJo6Tgzbvry6vcFEfi0DPhR3ehJbWYMnmVzLZOv8z1ylq7YkyPWTOvybF46vatpWCKAqAbe8RN4e7uBKE2Re4j7FAAEZRuIoq1oxlwI2NXvbV2xM2PluN+7r8+zUushL+sh0o7qsS2035kZHAq4PqvzEeCubJkyjba983fts+fwZZSG5BT1GG4ry7LgdrvlbSXaOZK6i3nHfDy2WTSwZXtmxeo4XulL0XRKZRy0sflu7WftVPkgMF+XsZjz7+TVqGQunC77YI5j9dQUlXXK7FA69SPzv1d3VrMz2MlzFo/IuTMkRlX/VS61nXyG7Bjpph3GWfkUoLsHuHvga3aJpNeRn5oICAUoam+929EIUIYt43BGw4gORY9u4wCcATiUDZeG1Cid2+l0px2YCZSY0yWJADeSGAvPc/e+v8LZehooyBOlGfToflJMXwanOO4Gld/m9OFRqT3WyfPoZdl5WeySaz9d/anTdXWcdg5/rjzLyMvDa/a84yvySnaejX0oupWHZdd1TXnGCY5DQFHBn8wCc357JQDclwVr2t+9EIGW5UQ5asegXO0DIhVzUG6/T8pvCevFPyNdgKlW8NRFiTWXeIWRtI1DBt36AekqavotgPvt7a0e14YYsQ6kpEFEFWB8xhF0Y+bGr53FKv+sb1G5tlwdW8iKt2bjmJA8ACxsN5v4dQ619N27MpPVD+GerbXR+JG+vGTnSf4dzZMd0G0AvKuLyqOvI7vjztdlUiacjkvp5mRaG2FT6qU8Ok3nU4BuEWsU7TKYDvdHTM5ZDFtxrEuKkLBYRTQLhj5CXiZObwydk3a28yak83XNU8Dbj+mxpPX+4pFO1ZLla/BLlXZvGcoKV4RMsbyZyUcB3jNi3RJ3otXh0r2Q3ko4BBoqTjwqcJkqo4TRn5bpngGyz4znWQf8SjxgrJst2yx4v6rzGSntUhuJkmw8x7s4fwG8TzjuJn15++EaAvD2lvvSIs4ye9s/tENg9bI6tEYuMmAmXpNJcS4FpFqAZdvOMtNsAMTZditbAc8Z6l4uAmpCOhpQHpAe6bWuawW4Z8ZzMVsFcAvreLRq1pRFxSfnegRQEiaREpWK+kmqck2lFK/o9KxeMhYa3byrKk2XqHCCG8m5PQlRRrVbHoItny3DbR0ZM45OOfjkjLEopb6vP/x9kHPJS31exShe351htGfz+FSgG/A9bpGzE1GPhb46yWu20gJvnfZQ1wS86w6cEmttSUdaRHu1041WBM6m+7z4SD2yLc+nfrwqcT4tr/7q/lA+M1Yw1J7H83jmc6YKbBmDOS6wGyfdG53P3Ys7YrqnnYoOQz7Spceoz+Zn09KfZ/rItm057qsJgmfic+X51ftXJU0B3o/HA4HvoKDLUIBzjqNAGXN8wPLOZnsNUT6OTpchM+qVjik8al07JfKJ0XaBHMzaQc5qVaL1W5blkpPeb5vyEF5RQGs40deU7ZAfIcTjG9/f37vbSnRf3ratvEq9cgjQVFtgrnbk6tNNRjauJ804dvpyYVG5vZqUbNoth6e0W7Pul1ZHy3LXOnjW15Sv8gRqAM+N2hFs61TPjt7DmjXzRxu3Lk+xA8lp6MU9JJJazFB/tvVsccQlW41+nbzC9h+JZ9NHD6t+EtBdDzoLuHVneA4snwDHjtgliFHTVSxK/icr5ET29Bjk4OPTl8s18K2ciE60I1Dmsd0p5gk9OtoNJpPeda//ne2LzKi29Pf0YmYs6L+Jy40Lsfllgoig6JgN0ytKlFg5D0BO6WHqttfGXto9o/8sazwjHmM9K0vaTmHtjLcKMMOay/cZ0sEbn359FaZAOysrEZCcBgZAyxIB+B4fqxS8kicZoupFOrqM+77HB3HFgUvOcpnoKeejNZL0ShHOToptDHEISpgCgZoVIkoPopnqPf/OvoP40lao60Cu+VJCM3M8GvD9vXsMaI6VALfd8lQcrwIeM6ih0aL5/FxgneEMkp0+ypmhVaCwTg1V7eS29sB7/JaJDmFeHfzg44m4AnO8MmfzrHGsVzuzFkVsOMO3hxl/UDmW05fjHEc2r6oDWkxZS3/ULLfV06Z73laLvSCcmw2P7bnXxvYIzatzyy8PuosTX3tvZyaeWRmxkqfSLY52xJaHHqLkn6+k8APgoWehbKBipmfnpp/LVr9OntbbECg9Izbj+c5sM/CWI/WnsD0gatiKihmhss+7TE71/RmJpxs8hmFKX3ru9IyP6mPe+J8B8ccT5+SEcyA9tv3IUfDy1/1G/mpnqF+GsysMlYNHhHVZQLcb1nXFQks8VnAPCGB1qkkcUBpwS147M4Kc481pw4C8QCfFyVtOdBlEn0ljdqZdbVnjd8BB14cy867NUqfjhDVMYamrgToSbg/cPYs7hxVnal1xS+1Z9KtSHGhYHERvDp6ZM4mWTDZRZhpMOnUJu2l5MYou5bpmdJkLlF/M+PKIAUk/A2pDsNX5Ka2f88uqtMo83x4H2Mxbbt4jG5ELVn86ebTtHUd9bZ8C4gpCfdLV60gQnc6LKnkghBZ0W5mdF3550C2gNYoAET0I2gF/NNGNjcHHbKc4bBDbcdH3RSvgHbVSMWQPnDk+UBKdFI9ZG6p/4Fi8ThrXwohyRAbqGExbUj/jAQ/qdWYZzr2ugLc2Yq5RtfHl+mRfFfbR5pdzSI4doUyyMd1+OY/6iqdTz9nVk+CZ/uU5OWeY6h6IOCrHkT6S1oxxntExhGBAU29SnC97V59lwZJB/hKBNx64h4cCTaV/2PYSfTltZWJm3LatvL2SCLQgowULvFcnzaG+1kJUDkg7RoYrN95gQ7FB+SQizNWz1E/UZcK5YzavRicFwjiDsPf3eDxgTyS9Jb28KLLcQD7dRQFUcex1PI80mCe+zDYQTrU26YDMi9Y1s16J1Vb3UezlDNta0vPtQY1KBIi2EtM/sfeba311/j4bn3Nq07oo3ipZxllIPZDlaM30sDUCQCuWxQfHZ21yCgU7GKMe58oza38r/TqHBzS2NtMDfaV+edAtxtpOXNHLXEAUXz18hn06A0pERgDIxiFlIBkDIFKBNm6A95FuDUhSQ9+CUgLQcw5/HmB2ZORdYA7wu+GpM1OeUe0AfOUcqC6CNeK9SWtWNLNt84dOX18fyJGxo2rJti6LGNEewPPKPgLNs+zreIJpxWN5Z+PMhH92zPRA3xnHYlH7onvpW+ejd+0gMyxAAX4LsICwMIED4505H0sWQJB5Nhg9gDgx876Df/8d7wn8vb295b3jspVE16+wknOq9lcrVY8AgObhQQFEddzxeDp1wtRAho54L44Kc7/vh8cDSp/RDPeZfHvgy7MntcMscTxbo0ti8zekkRPb9gkNrMUpsU6cTrIHuG3/k+Q8u9IDx422rq1tizebnpvHoDOOnIAq0EGfqNoeCXQHILLbkeXWzrSsMHh9Y7ZUupZCaMe3JGXH/5Gdm9HBW9HQaQvIVqNgmN6nAN0/fvxwj9sS1mVNwBsAODpYaDy9J4HP6UlWY+DhqBGA2F6P0ecAPkZhOQJuCart2eyIPgt+J1I8zPwKsCmG8JW69icnyv/I73G/0zq+Qp9RLXr5sLkPKFBPVLwIaOMYv+uHKEdl8FZJrKG1E3W3fk1aR9IzuGeZ8p6uNq8r/VP+ZieCHgA6Auk2rxFDNiwH11scViLQugJbevkEEpgOoYAoqvd2V2VhRiDKD/Fuas+41rsqu534BFdV7JlXVwYoxJCIeNuDO7r/VCk4REYhOLov23HAm77X+10BQKWpdb6ZGften1bSk2VZsoMjcQXcXunHAvBtPyoQiVygPUqz+n04gXqQNSeWV/0KCaOjioa+M+Hr1eaV7xD5b4Ak3XJtffn5nAPvuQ2TAzjzbo6OAkO9XJuVTz8S2wIsyxY9cxVXg+JzUjPM+mU3Ol1J25tvrczMW9V187tup3mwLfLrg27EJXBZStXsTvmM+wJznBDbfMRS9CbyERjwWLsjNnwILbOCZlBnyxqXxHrM6Wkp81fO/gxLcwRCfq6cVL4nx9i/C5h7GvQMt6zY1CyQAUQ6zoliuOL0LWLOLy55pHGVAXdHJAVv7OWsBvF7DLf3+4hhOyNXHWwb51mH05sIRmzPTF6erbHsowteO+n0dLE6ZbC/ANgW3PgGWhbsIeDxeIA4gLGkJWa/7qzj93g8yhYTb+JkdWycmfBKimW/rae7D2Im29QA/G49KYPgOX/d5M39mTZRVYP7/Y7H4+DZDALWlbBtK5R7A6KlsUdHOll2W2ShuCISw1LTzlV66ku85dXR7Lhl97unp7bdC8Z2p27DNm3r9PYJgvFDfpwyGAHtefFJlmfTreunnJ0fnSxCPHJN5rJy1pBloc9Ji838+cHT8UQuM3MXly1egFicgdM3kF8fdIfCdDNzA7y1sa4jpg+nTp6ZjC1I8u5lEUBH6WsTRXpuUVp4Anmiu3TcSVbK5lB52vVXqgBnCyG7nt8EE3dKTNbH5fPOZu3oM0jKZ8aOgUduDxd1H0+wI0BnHbZRqpoFPBJ7pvAeAvYQ0tasEs6tVYZ6ccbrtyKNmHFPeuPXTqBn9RzlfTQ5n3FIj8p2pLfo2es3o/yu1k0NMmIay7Lg9kZYw4rHHgAC9v2Bfd/jC3CEleoAb0rp3u/3bMdlNaUaB2liz0+rJLbAstyu3iBwFTbqf7YLH7YLpzHGI/BV0pJP64h5ABgoZ/cXkEoIIe7j/vHjh8s663Qj4I57uEMI8RSZxV8tGQFu77q8hMWmNTcrHLhD3Sq385oZC5VRc06kSdclvP60dW8V8QB3ycpe69dC7TKWtPtpje63p6bNA26NDY6cc/9oUVL9Usa7t5Izb3eOnTxti2w+liSYFQ/zKHiWHX2b6xkM9MuDbkBOWbjnI6fkIRAt3cpVo9cuAYrxkfizMuo8DXOZXcI6XF4CMh2nxnHljYXPiwO+02XOo/4aoLoOwlLZX4vhKjkyYlqNFMPcmMlEgiZnwGGMRpOwe81Lvpu/9CNHVNnEJnKIq0f3+z0tiSqonb1DDfxjmeqHYq6L52jY+6+W2TRHE93IgPfGaK+cI6b7SL/eZObZJc8ZuDrGa2cRQGZKE7DGVuwVMzgB72CAN1Ht2skLdPZ9r15HDiRSJRe0OI+HFpFtGEtaTNrUFGzmLaweITPqF/p8fL9NpO3kO4OYwBRr4cf9jt9//x18sI/7dtvw7dtb1m1R+22tjgJYvP6py6brg+SvKsPIaglZcDS39etEGzaXhdY6dz2y9mjL6OBI+rp+6jFmHSQ06ejvvu0vUw6b8D11eyCWpLBN2tPIYbIddH5ks01EFENfr52Xkk1pP795kmM9BNxafT/MWVzXfGeAScD22Akyd7r5fArQDcTCyTaTkJYyBXxr9lv+vA4KQFxcyIH4R97XNKvduVdPdhKgpC1ATQ8TsSFXJ+axngaFURu+6Ps8IHiFuOmqCbjbDvb3iOVz5+FiFJh75bMMyrgvXWGWGu6EzakBRcGsNXUSiI4eI4QHOOw5tPhdsuSqXyC8kN7P/fz53GfjHdbPSSZDf56d6GZExxF7ZbfmfIRjoUWX7wwrPkrPsrA5DVqwIoC2DduyYEtneePxQCA5L9gH3KLP4/HI9n3f9/yApaNJWv1LlnMCQLd2Yq5NKU22iylDkz6Xl2HMOJAeE9eCuBrACpBkim+cfOw73hPDrQGmpC/pbdvWPDip8/KARm/e8ZhgrWk177k1peoFHZOb78v2FK2fBnvsElKj+asLjxQQLPXSpidpzowdC7jHYa7ZmcohsjlNz8XHLUUkOXh2V2YOFMCdWbx+63a0LloN6j9+FmdIHqycteleen4csTV6bI63sQFi8/8KgG4tMpFpAy3g2zNilSivWNgGOyG+AjgOJzbT1wTe5MnhSep3CC49BV4gZ8FMrQsqfeaA/4hJGYud8GqHrFGn3FPA27Zv85CV6UdngOJZUKRrsKqVZARtUpyObiNCPGkiGS/GmuMzc3V+bVyK7rESr5EeYzRyUrx66tX1UVg7bmb78BGbKQ+4eaeN9OxNry5mRKd5BjT0J7hxoxPi1pJtXYClnCgROJ7Pbet1cfKS3499r9hU2VbIQAGOKEC6J6yAACiNJ1LXJoUILqjt5uv0IRtvtHIy6ushXsD9fseP9zv2EADjxOg8ZF5sX4DTlkNY9ysrv7a/Hccdzz+534HSGfACwhJBkL6PxusM4K6bcTF1pMtSp9tzpNrvBXiO8MUMk9uXFgyfk+LQ9XVY3Out1npfOjd937e/KnZVDz7ZUqfTxzmz9efrRTn/8Tzd6i0ryCMb8euDbupPTGIoLPiW5TNbabZRtYfeq+AjA3sdPA0GGl8HlF7+Qz1YGB1XpZc5IUNJyPCIuehEvMTcHaZtAHh09ufy+hl15k40vcBGFRkbOp0S0LJJC5bVX0r9SBnlM6PDlTZ6Zdk0cJS0h2TAiTQlvd41/du229n8e2Ft/hqcrssK3mJvCgD48QCbkzU0lKkBSwTr8tbLt29vWIiwKcDd6uJdjBg7vrhcQNwc3q7Zzmf7BOXZ2dILti1GzpAGciE9j8Gc9i478cRhud1uTV/XAFnmz5m5zL2u0qnLMxq/3jUP+DiwjmXlJuQ96UdpxbmNq3rn6oU8vXTGumid6u+vt/2trZJD7fOFYfjJTPIMoNsxfi1AW5W2kDR1QpNOWH12ulGlknb+6dfzzFzlrdqk2GDu2VX9cqSSjma4Z04R+uVBNx0sZ2ujYcG3neRaoBHRphgO640eddwrk2du5NE4FuyN0eOCz4t4pJDJherfZ8Bsw/z+DLCu6sbTNVbx7FQ7I/4kYB2b3oDue/vX66pm2w8kgwi9PExqmb6Ak2h4Ec9kVg9defn29Pr49q/zA1o20d4fXZsd7zPlmgG5V0DOURq6L2rmcjbfGTmuJ2BdFyzLDbSofpABUwGKxIyQ+iAHgChavZ0ZvMRthLdtiw4vSh8nomrarYECio09YT/buszfhttLcHBPa8GczjQn6ngLEs5Pf993PB57AbodHdZ1zdsugeDqx6o9iOg0y53BRgO4MweZf9d2qt5z7YkmYJiFXBGiLaQcVj+u/c35sL40LvqhhWxofZkI1A9tBqcMD8pX53n04K3oqR2EGgwPdXKlfVlQHpNFM6dNHYCdlNQOmJW+MzYPuEv4HmCeI0L9dKNuFnAfiZR33/e8Pe4o/i8PupeF8Pb2Njz4X3saGnyL4WkMgjUSDHAAAuR6m/4ZwDGSqkEsHtSzSuVDnsuPCrky6IRt5tkgxRnmdL5XGWelwlQegEyDRebKeFFUMmeAl4Sf8fq1o3dkhC2w6oWLmaLuEAA4MMJevPYCEAHb+YkI62qXXs+38dN942K+Z9P3wHoPwPf6wJGenoPWZ176Dox19mZ0flam+j0Vy7GtC7693UCPBfv9HtnvPIbjv3Iuiagox1guCfgsy4IlHbe5iN02IK5RQermibJqse0koD5ugQh5O0tdz52xezJf+Xs8HvmBU5uGBdyyj1szr9ZWyKd9HqotR1/I9OVR+Xqwy8vP8pixDkoZRlu1CO0YEGZ7T9uXIi7Q2tQn2rTF74/5bEez5n6ZRnXaB9tWh0KO2JqcB4sFcDd9wtWnBd5tiv5c25ZL45qR/SQV3of7Vaodp3Ikte2snTF/vuIqnIDtx+ORsecMWfvLg24iwm+//YZt2/Djx49M3Xsejoh+IMcC7/otSaZTcPXRBUyzAGLKcA2DKHdb91UvpNXJhD0NehT4P8NaHoLAbkSk4x37hayMaGZLfAb2o1nWfvl8Z6WZmAbtMdNWR2n0wotTysyqmtvJQfOjccz03354lOfPFCJqnHN/Qjtmo87WcS9+TzxWfgS4tS5Wtyttc1ZGE5s3asXmbtsKogUPpD3baS8ykHmyRA5STkhAlkxo+77j29tb3i6R+6eA345N755cMV3o/E/VDuUUFa99BTR0QIVzpyaF5JOrMauXri0glc91XfHt27dqH3cPYOm8Z9nBppTqdBkN3NwYVBykwxXcTp7RFiH9je1sTgrlOTCgPBsgd/MUa0iIsXoaLKQ8lS84Q1L07INf9HqcPzvPpbWlRgdxWM6mJkB+Tp0+4K7D6M9JTTxb3+lzozHnA25kx4+ZowP8eMRnpE7U2S8PugHKwHnbNry/v+cn3YFSAfJdiwbftK5YE2Nij0yyHVi/UyveH3fuJv4Fpmscj5U6cwOYCMBSDK4MM93x4lApJtKyp1Axzg7yNq2ZSJViBb52qkW0ewWL+loxZU7lkeXbVt/+3raRnK1fAvJ4iPOPPLxLGe/Y9MVR1ccFXnGsRqzPzwbmZ6QHem2Y3u/euLFpaYBl49twZ51gDdDPtNkZ9si7mllJWrBuhJUI6+MRt5QwZzBkLRJD6q0s3Yr+y7rmV9IT1c/leDqesQ0j5kskv3XQJFm3cwG72n5lx3dKG2SwLad16b2ivRIty1K9OTbWYVnytkcFjvrakW5S/20cb4yM7nb6WnVdHuQmENVhq/HgjDNhubUdq9OgJo6kq5NsdHTMvNXLE1vn7Zgubddr6Ss2s5pxCM3cGfsqdWL0U+XseNRguiYIYpiIpbIWnTo6R/DZ/OqU4jMdcyvjrd71OIqf7+/vuL+/V+RBHux5Hu+X4dcH3dl7pPwK28fjkd/CJUbJTlrSINnDDQH7smBNRmlVRghoQUDpiKRW6FuwMePRetKb0I7TaDiSTqgISKnqCPqEFPm3NVIj+SlMsvKYWanogQ3rSDQTSeZWOmBhyukxyp1ZtCY0+jXfCUhPfTXhD5OfaA/LGZR9kZJ5/MwlYwaoXhnqscX2+pl+8Wwf8tru2TS9PnbFoWudYL+PWjaTmZulcw+gzzj2kqa04xW9bZozosuUYQRRfsidiHB/PMrDgBCoPT6O6/39HQDyA4LZiXW3dlzvCy624nIyg8xHMPlWZIUGFlN52jYup3PJnxYvzW1b8fb2loCl1Gf9kKPtBzNOpNbRXDAgLV32bCSLhZlzOo7D+NtAJW6BSpFNiOWO+Z9xLMp3Y2+8FiDdN+Yl6iN/UoLz6VSS5xarqT/fE5HbltmBRNtyujuMbKZ1RI9A6RXxHBkUytANp2I3aXmk2L7H1ab7+3trJHJKnBFHT3550E0AaKE0khjLSnhb4n418f5lX40wIh6rxMJ6E2FJ2062ELCZ7SeuEUreXL7DsQNWLwg4YJ9mJjPt9ep7lU6kOzipBrYWSD0gpxXP31rA7StXD7afwygr3Y7sTxrPvdWDMzIEW051WVBVdCidhZDGp7A07PSD1LlyPSfDXczdNdAnOsqRoTHb8tQ7FwRhI2e2US9TP9P2M87NEdgdgc1XA/ij9Lz7s+z9UT1aOzQqc88Z6qV1JK9wpq0N1jrIPuMAAGKvQ8DC5ZwRJkpvFCyDjpkzyfLt27ec1roucbgtlIHxsLSniqcCJ4oulkXu9dqlvVaNIR4DT3GW5Pgxmdc80el+//4btk3AJbJ+srKrw1fE0kT/cPNPYLEAKfl3yVWTSTAkyschrkYiLGnRVcol9rajm3KSJN48waJBYr2XvI2r69AHtH5+HzSPVo6Bl1sh3pox6iRDel6q4vTtTs1we/32XB84Iy27Xl+fiW/tuLy86/F4OP03r7fnSjsiOX550A2kCqwMILBuC2jZsIYFYd8yCNeb2qs0gPTK62LQ9nXFY10z8F5SZdV7vmwqSbid9I5An+2EnnNggfeRcYjmwdTPlEx608LAYly2P044G2Vbb1edoJzyBKNow8pEUOeVVa1aqWK6s5GjJk5EFXopfUKflGyc5GMcealGYJWGYas0LyDHjnkPLT0jQ1b+5KQ8k+ZZ6Y3RXp95Vd1ox9+m2WNxj4DEz3GSi9iVxjiZ10CPKB4BmJnq+zt4WeK2EwKWEIF32nWKMmriVon7/Q4A6aSqtG0QBlhW4OCK7dJbfXxbrH9qR0NnX0B6JyJKOK1jCGVrSe8AAZFlWfDt2zfcbhvKClZJt3eCzUxf7oWRLRvcmXtk64JOYw/x1JFXOPEj/TTg1jrIKtJBiulfznM8c92e8QuQ9mik3xriH4kGdRPlmREH79Q5qaBqBQSw4yVD4upXWbVK7pODXeba9vX4wXdoZufuMWkRQsCf/vSnOAabtpGaimUXeyHPnfTkU4BuwDcGAgaWBVjWJe/7vj/e075VBqs3A1Xmm8tb0B4JaMtEsIUwxfClfgYy49g1aAcUTA9sTAE/Ssq0zvZE/IlBIOnnH3PyaoCuwbWXlwbes0zlUdjDJcWuns6N2o6pCPGe205kAkHYhzqdyjtvsokvmQjMuMsJCGk/2tLpG5TyWdf69e/PriYcyUzbvVosyO6V8apeR2y0hHkWjMzod8aRPJKerarATWKcOJRJflnSS3RCAIcV+x7D7oHTudPIwCmnLfCO5aHCB5Z1ycwnLfV++KKbdiPn6kd/+oD7qF8UoH3urBJJL6YpzyRV91Bb4GVZcLvdcLvd3LR8Uqgug+3zVRwpv4BrKRfp0vn2WD4FkC0oTteoD1r4qllLzcD22lPP8fpvitGXf7l2HLUuDTGSdSkEUC0tBPZ9Bb88Zf+5SbcX3r2aokyvWmtwXY4D9LIWlv9opS9eC4ftPyt+GufT7ZlNZsaP9NZXGyG3CBXnWPDnt2/fhljhc4BuB7BqgEUUH9ZZFsK6L6AF+YhBeSUnM7svJNPGTU47CRwBioBwzdC4E2haF7XgW2kbi6C85d55jh7b3aTmAJN8zQHeL5GGZv1YBq0po+oDFSjKDkF/D20yCXiuYuyk6wMpPbF1MbQLLHsGuwqRmes05yXwXU1RlZb6GwPlxRopHg8MoIBt3f9zLh/IoI6Mct+Yn5NZR2sU5kwdfBQTPxNuCmxMhD2zRFskbndgMykTxf51u60gekMI0SF87AEhGUpiAufXLgt4lr3vkTnlwLi9AbTcQOK45uGpDXLN7PVXCPSydMzzSl8vcc61OzOqByczeEVrdYTF1q941/fqcVSPXW81x10pkVWC5sFDMr/reUGDXbG+lB9iHDih7r0S5szKo9ZD6qqNX7bjWMa+hI1hStSxHnV96veEdGOk8BbMdtGge7mB+gdjWbeRJl843Zf3gYaqLv10dFYePok/wwfOG1eJCv29tJucFvR4POSuiRBBn9Tf7XbD29sb3t7eBjslonwO0N2R3IAJ4ayJuVuWuHz5eDzicrqA7z3kjuMt2OlzvsO2YU97vpdlyefDjpbaObQ2I3dITqyAGlniQeklrytMVBPnxf26AbnxF/S2k4+QI9ZTMyBW6jp5lSdSl9U3LgUYR+Nl9EIHNKUZtWXq9fI0VR8pQ0Pk+Q6B1k/n0TJbtX/1keDaypW8fgYrbkHJq/McORjPMNM1MdEHPDZPF3wdjEWdtmWJvXwFhK/pVCl5sHIJnAAeYUHa+50JhQXgAGZKQCDZchlrb0ukN8wWAgF+x+UvwL4/hlqwast8VH9eLcq9EOJr3u2b7bw4eq92bLdSRutI9GxhQ97oNpuw7dY2WQZU8l0oUk8+4K5/5Hmym6c9BaNct46VnbNbh1DSSX2E8g7dFN68+VGB79rJ8VZadPo94eqzX+ximVsXZ15kawmA/DzcEj3gqLMB36VfCknY1qOHeRrtyY/7GrF9e5aUUGVVOgvglm1suU9FF6Tkmvrgb7/9lsH2DIv/eUD3yA5SMg8yyJIh39YVewjRoO87wlqeCEcoD5jFqAWICPO9rit29WavdVmwwWMRdDpa5eIhAsmIGaAqnVkf83QVeB/de7azN5NqrHSAXz2IaqM5Bt4Kaxo5v899JGfNnLR9iqUdxG7a5iqrp6+pVDdUUlX9JOeudTH0NKKuDgwEEcN7+Ep+9/pUBS4OHKYz0lvZeaZvn43rTybX+/4ZxvoMy9xO/mi+X5FZp0Pn4wUlIixYIDu25drt9gbgDr7fwYj2Ob5PERl4ZxCk+lgIAY/7jsfyAGHDkpcc9daCIY4TLbIuvTqvANqg3OShQhXL688AYd8f1YvgajzKeaVMxu7sqTQpF1WGkm/uK2iPVnNToco1V/rZMPo3m7RrXfSOYblR9yO72nw8dvQYaNvS9mVtC+zButJ3enm2Dw6fnSdmpK29c6L3cmuHnvIpQAnaq3Fu/6BIoJHt1/3j2O60fWlebF3P9Y3c78xcxcz5dLzirKc/1ca32w3MnJ6luE2BbZHPA7oPJBukJMICyLncuzp+aV3XuJd7D3mpMqehOpx+MYOkF9Ir5hdlAHwjrZERIGalPGBCVV4C8mfLWpXbnRyOj3Obvd+woWZSjT8/bi9uZWRHzlfWqbDNDVLtpn8MJuJ8O3dcW1bZYUWkvbGoA406bEE+ElEXgfXkbSKnfLPPz7XrIQ5l13Gkch7utq2QdrUTYF3Wjwe8o/izTPTZ/tkL/5Hsv3Uyzxhzm8bPXKXwxIKwyhkwE+2yLPFFK6oN7/dHtJoct/uJh52HVgqbT/p47CBQfLAybWUQtnhdCyM8IzNj/Ixolls7i6VOCI99L2+c5Pr0DWbOxjY6KLfqVe/L0s5DBfxZcNSSAQQ599zMCeq/FKNbxphue59I2pvLS0Tyg5jpP2nexi60zqNKGQLqzo/V+ljHrCcR9AOSBRuosJnpAZhDBqH99zD0RHQYbCV1vs/0vGZu7wBuFaGyNbY+dbtYMqaw2LW2Gpy37fOsbeq362xcOw4B5Le+CtDOTrYB3MJs12fio0qrJ58LdB8ArgqXcFlaWpYFazqne0+Ae11XrPuOPYS8BaWwGDUY1iBl33e8cWSmN+coJqj8JTWZKOLX1HlRA/amLANQYlm+HugYgaWZiXnGeFTDbGD8rkjrOT+T9jwzAvTr1H5v9ZQwQDn5RaVNZc8mrXGyXIgUO2fTbE9RsGA6shNjfbTutmyW2QDJW9+ckxdOyEx/eMUqzCju0T1dHzNxXindiVaNzd74PUrPYwmv6PK8RONnncgaUgLCYG/blkkRZiCEHelNTgl4Kx5Dckh2+vF4YAGwLQt4VVsbTpxRLulVJTj43aTT1kAFnr0+F5jx+++/45EYNi8OmLGsa947qh1nSuRCH3CrGagz5o4BtxWZZ8p30zL5WuQGqLkTzXo8lSYWUVbYiv5+15RtHu3Kmue4eterkhNyejmHJmjEBgRCoEjyLZ3xWcgoX2oWtdFGtYUcpDknTO1aRT6JZbDa2SPu6vnCf6lgwUzW/tTt0iUmO/Wg9dBxrENWp+3379j29Tyn012WBff7vQLcRTeZY+N2OO3wjnX15ZOA7mcBV2FSljSo8/YRxXzv8tBl0IOn7jDSWNu2IagTT/T+ukpYfRTclT7bSbXX+YFrE+NowvCYES/8EKCbpnkV8D7N1D3fRerk7IRE/f3j5b4HzL1TVVS4OpWaATT9RacrxeVk3TNz5aaaDE16BXfPUSQqm1C8l+KcZbs/zgGblxmg2uvzR3l+NOM90tGGG43hV+g5Czxbhs2AN1a6VvGWSnciwm3b8Ejbmln2njIQqCZYJN7+eOCOCPFut/aoy7FNafu5BXMlndCUtUAOtZHLAYUhzy0lbgjAfddL2o4p43IcmUz6fRm1dwSrR0PpGHBrsF2Db6LCXGfw5da7jls7YNQ/laCKc2R35tq7vmTBc8mTkl59QkPynLOHKnzuPZ7TYvU1c42Xl9HRMt06rZFzrx1XcYxrsF0D2prIaJ+ci9cXvzs04axYR7IOW8+tCmVlB9RvN3HYy0OTba7ywLKMPTunn7GxnwR0K/Ec6s5lWxnimdK2RSMt20b2HWsC4iFdjwC8JKw7rDAr+7rG4waFTU9HxnQbgDmdP1sM9EILwuCpXl2GI4bVsmMjwHAGyB92qsSyfMTe7jYjz1tPlz+YoTzC9aNVCw2K1m0FUTwVJ/QmEKJ4ekM29g6Y8Rge1E5dhv4c8Hi8g8OOBdQY6ortJsK6DvrxLyjPOKuzgL5leM7pNwNUZwGzd/0Z/Tz2dVbHfiSJcBSOcl/Vk/x22/KJF8ycT5WyyWu99scDD1kOppiOPlGgAgyJFWRu60yPram+gdppBTQolfRa2ywT/o/396psKoH0oiDg29tbBbh9RtdjEh199Xh37HtZjWhFl0szi+V3CeePSwAIVR0X8FIA92hO9L57v3N5huOIVV/V7V7PqbnOFPup89SM8JFOzJz7TGa2qYBuDSB1fedymL6Wy1OBcfUdBbdIOiOWW8JYTEFprrdRWkeufmBfp0nJGZVw2kCMx5ozD5q+p/M5Cs/s7d9u01mprMB5B2mctbefCHQfQZ4oFnz7BgVAqsiQmD/9IgJ5AFOz3wj1cTkC2kMICBS3sUgD6gbyi1KW2whLOle/DPxXsd0j1mtknHr3jsE3Z1Jjdl4+klafuX6Q406EnXFSCqBtj006mzcRYVlb1rsKkya92gjjUE+YFBnlmet4yoMAkpopk0lgSUDE7lX7SKD5UXKVHX+13nPM2/W8ntVpdP0j20k7iEAZ2USU7Ge92hBf7BRAadInjjEYyfQkUP54xO0aCwBa4wonc1zhZHA53CSFp5y70c9hBoG+by/AmnPpxraXmfOxZA91UokljgBkQkdP+tYuMotuozZr7afHdM4+hD4aXiNHrWb/I+lU2NQjwN3W7flxrretsPwfPytnwIIsLuGSx9aWDY1+vo4KcKMAbhumScek3uRvYkoflucb9Cpm39ks/dwCbk+v4mhJ/NDo1jqF2rE4aj8N/P0jd4teNeC2TpH0OXnLpMQvGKukuorTbrbV9Oou5zEYP58IdAOVwTAWOy9roO2mI7BYDPxSHRm4MmNP18pDmOXMby27YgsEuAvzrcE3JTTKJv94n0FmktH6e99npD23ooD3D5nU88xZZXdJrJct19zEO/lFdeaAuq77fpnHaXlOgpcUkfQHr0z9wazzkb7kOZUM1Vc4si8MAmhFCDsWLx8AK6XjvZ7AWlfBbqXLRaBq839lH7dM8rNlnJWz+VwNf7RK8xGSWsldVI+2Ma66cPIVOQA7h9h/83neZdQw0puH9xAXtzmuXr5tG7bbDSsRyoocx+1W6RkGXdYx4G7HdMm/dnlrG1ZsR2DG/f0d7+qkkiotk/ftdsO2rQr4SI5F39jv27GrQdPI2QoIF8Zd3zk9Yqp7zKsN1+oj2+nkvt9/++O1A24NWBbAndnwinlu26jW8XgcelqUOKVMsU010+6Fh7lXP/PFXJ+QNiL2NIC24f14df1GJ8orMVRd1mU8Eq9e/Xj+Sr8ey7t5YLnowlUa67ritm3Y1FGAXn2M9Wnlk4HuseTlEOeenTw0qyL31nUtjAiXvd+073lfz55ANYe6kmVpUNLLp54k4L1uG9YYoAIEzHIwffu0b89TkzD6WtdAEqW5yRicgT0dOShTQmh3nLwInxTDo6dZkTjj1FP4HOC26VdigXzHsOp2i/2w5O0tSUlfJQECAh6cyVHYoJFTaft4ZrVjIIRkZCLz50zO6d9lKU+o90DXUV/o9eGZuFY858umeVY/L4+R9OrgiDF+BrB6E7q1BWcm+VfJyOmo9JLvNp78Vtf0v/XkH/vitm4glBXFfVeAoijWsk0Jzz6WBRQCKAToPaWL069sOe13/y0PUgG1uaiAIopT8Nh3vKezyZt6NGBO3nK3LDJmdf2M+1kNEgxAq+avWcDdB/BX+voRMPeu1ffGgFvuVaC12QZZO0RyrbY5pW/FVZSyNbAuwxjwVWkO7Bnn9ph7CLgtf1sfo/aRsVaSaevfB9wl/1LGvrN0BXBr57Lka+P5TgQpmyCEqABuEzqH11uFt3WtbERvDjpjez8H6M6vkvQGhwkqwKRTCV5sPYnozimge1kWhPSynWXfEYgQljj4OJTlJklDNx4nsPPY97ztpAZGavIxiMqCcwB5H7qVHvCyhsQVB8nZSf0SeEjge2aAnE86u02KXXo+3Z6wh3ZxDMClxzWA2Gnbft4aSMS/3uvbJYxVPuwPgHcQhwi6O3VFVBieV8pHsKWz7PQsk+Ixm0f59BgYPR7PyFEc737PMfpomSmfJjfUjO6M2AK7JSjFTBLYXEALYQ3pQTYOYA4IkO1eNaDXEpixh4A1TbqiuzyLo7XQc0BD1FCxOZXodlcrVrZJBHDvaR+3fStxBevTdXl4S79cpK7zVvda3z5Q0N8tMDwS2+w95vTIWa37kJ9GSX9ua5+Xd6/Oym+xrPK7rTMB3GBG4Ehg6AdaY1mQ0/EcAe1kerWs2WJATlWp8YINO0sY9MarPdUjhhUtr9vulmiy+c71uTlioU7H9mt5UPLxeHTTyOy2Op1k7Tre1+VzgG7mhAbkt/pU9VAxQZT4zkGjjuE7MnAmivu/t23Le/DyHvAlNezOtfFVE69MOHJiij1uJnIvUaPS12vtLPC2T683LKsub05KVRhLPFOnzsB4SWeritMaz2fyyHFVms3AGiR/VMaB8+/qUk0o0yx7O5nrMugtShFjSJmd89hNGkSUnz+AwAJnQo4OEl72EOUV0NmL+0w/vAp+n5WfAYb7zvZrZA6A1U5lM9mWxJIZ4vo6KLNjEWxrAITcV9eVEAh4ww3EAY9HWXq3TqTgcCFgHun0EwFGclTnvpsH5a5Ossop1sa0lKSsgIZ0ihBx2fhGKh2ZW2SeiOfly+3xVsmxzvWWmStOpk3vXHgnhazDktvGM7SyR/g1xEqHQYHYXB/kyaqKrCD2VkL0McPabuvxUdFiA0KmaCz77OtTtPz2a8s1A7hn0nFSbhyjcd0eOwlt+kB/8i1OAmcIVvq1frukzr9uu7h3355Osqj2OtTSgH1/f36UTwG6C15LDUrlShNWA+94oevXjuLqa1Kh0hhrYr3zg5QCvpNd8BgvKCAuDIccMygMCC3xoUrKDoZ491zpYic5LaeAN4o/Uy5I8AIYLYN7WQZezlF5htIf5yqMPJg4ERbW2MY8Pg5AtRXTrfOBIbCGWztpeiLwciQUJzM6mmsyRtfK7LFpHwUKR8zFTDigdZRfoZf+nE33DCvvxX2J8zoRxmvfKUlAs4XIqkxl9gRoQTlaNYKzdSEQ0tFSj5jWwpSft2GkSTjFEJsb3/TI6YFEynpkAoMorpB2xlgGXNpdyHqW7WIxf381ck+rnrv34KQC3EDcxx23lZTtMFEnqmIege3SPi0plHVQjkc/LcvQnB/TlNjbgNjEIUTAMz5LXVryXF5+v6zLUPpzuSZ5NUBKkB3Ky/fq/IpjpQk7nY+2vz2Jvl9cjayObTTbYkZA2SMt/Hqw8es97D1HOqY5KEQnX29eG89l5ORTgLakyazHRRQ5d7vdSiK2MqaxLEt6ZmKrVy4GOvdkZjx8CtBdsw/x02twf8mqDFk9RAb4z2RdV+KqNtUvy5I34+/7jrCXB0O0PpwmkcDl/q62mwgDs6JsG6DKsIoT0ToEOh+drz8x+wNezRtO+DNe6ViqZUQnadt+xx3YJKIci8r50n3BRhllwZJc2UJ0fpJJ/w6iFYYHjb46jFJLedTlmo0vzpz0u1InDgjWLAzpvtfTdwxgR99fBT5npcckeXK2fWf1/GjG+xl5Vrce46dlts577Kv02WWJtjFvu1gW7IHTHm95eLKELyZBtgbscRwn0H1Lx8dmquwAFNmpXYgdruK2z15kwG2WuPXErgkZAdxxvtHjpsxixyRFDbYF0HvEkncU2limZs/2k2qf6jjfXj7Fjs3YItvH2rmzpiBcnRKBR7RgaeIUKcRFnUYPcMeVGpmE4z/axo/K5SiJeE76qH1KLx5V/diRy9+g93D32Oye7a9/6zby8q7BdnuvtOn9fsePHz/cttbXjgD3R8jnAN0oxlMqbDTxd6+ndGInV+kedG7bUeySUd73vYR0wkmo2ATLfItx1aecEBHWEPKxUPVOQ+TBqJes8i2hdWAj2XLEAGXnofWc4RjsVPOp8l7DBNZTkh2QdnC8in3MWYtIp6rn2ypo9aIkHOvhOjoUYx+xsjMArnICVDHQiV8B74P05e7sG/xyvJMAedSeM6z12bzs51XmfbYfjvpsw546AOioDnpOdY/Zf3WdPitH7S/6Lssia32Nd5nt5rJgCQwgvjI+HyNYOdaF1Q7MwL4nkxbHxBpC88IZmReqOlX/zoBOVqH2fa+2Joo+OhWZN7Ztw2+//WZOm6jZP6/epKxi6+WaPNRf1athtef6QnnYfzzkrWtSdLbxZm0N8/xpWzG8D/q0LiZGudsbt1wOPYAhL+xRh3Z8VvVsdbOrnDgCzSMZx7UET3t/kHIXb8V8R+HsCooeW61OVon2+Yg67zpdObp5VAYiwu22YdvaozhVwk0Zer/PzCmfAnQrbBTlYoe07INON0PMyUlPG64Mprf4xrHIeoe8rC/3SYGlzI4ng6iZc72vKJsvlsmDKqdBlw05nD8xa3YlvhxFfnuDgcqE5zA3Vd5XJ3Uq5cp1VDG6XN2fTndWdOM7wDv5KImZec4ByGexToLrfjq6rY25VnoFdU+OvQxSBvjTImCZJwsL5qW36nRWnmlrb+LVfx7wmHJ8Dic1O6HMkQNnWHNr5K8wzFfG1Jm2bNlEn206yLG2dwJ+ElhbAGAPeUrYgywlUzU+xDEFkB+AD6kf3ADQuoLWtSE7fMemdWZaxo5y+rK1RQC3VxeahPn+/Xu1oqoBt88AWn2LYdPvn5A5xgKM1zLcae4QgifX0VVHt3zX2+NiWiZnNY/oazGd4oj5KuhjIH1wlcd2DlK3uaePn1Mqm/pXiz/Gehbb5nfN1tZk25xOM9e6dVDNMaNy+YDbZs0MhFBWkgR3VfgsRZJVstttrcZZN3FTjhkyZSSfAnRbYCxyvYs5QP5CWpp11gZ029YIvh973vvNzKAQ8FDL/JaJkodswr5jS0se1b4wLkfM1U1cn6ASdev5Js2uxMR8+14baRORwem5/akaiGgjrM8QbwymeBoQMNzqJ+UU9epKmWvNnLZHhETvBDLx6/xPTR656jw3z9PpgHWxvytHpQDuql8FeVmB1Jk6/zWlKUtterI/0m9GngXez4jO156H7MnMSsZs2380k/wqh2SmfSzL/qw0E53Jp9LtQKd1jXuelwXYecf+2GXHd95zzWIQZX8Zp6P7sEMirwl45xfmJBCTrG8u/0HJqm9BMW+9vaXyVsplWfKWkvrtd+Uhwr5dr1KtgIYG2t5qyBkHaFbYTkjVvfMAXJwJT1c7d3hk0yhPe2lkf2tL24aZIu1UGkIs2bgteG01aO/7gFlLTPba+H3GgbfXSvAx8y5pF/tj79VjSLZu1XHKbzkQY9vWZDeO6+KI2DgrnwJ0i3gA+SzwjraAa+CaLFlOyxm0HrvkMVrye1k4PiG/Ltgfezk9QjEPjW5cjreRY6VuCnwLkBKQVO37VqyOjD0i5InDy6t4xn5ncsGtc69N8zisTlfsc2Ww5INqh8BJAVX51E8f7LfSDOpsmD4CKFKVsrRaJk46WTZ9juWBMdX/cg5FGDD9re09cnXNW50kpoQdT56931rf8wxXu7LgteMsM20nXu0wy7XZdEcTzBGgeIXz4bHFdux9hJNznqVuxQNMvXAe4CnjBtkoicMIAN9uN9xBeOwBvO+t4VLHz8oy/mPfgccdIOD72zesy4I9pSv2SUZCzts46eVesaeMsq2kAtzGEZS34n379i2D7t5e56NmjaahEAUe0C5pne0jpWxXHenzDrv0Nx2v39d7LHe6AsB7WFQf8XkMICUt79ZU+dK82wJIH3Br3Wu96jqZE2+WqO+NHKYmRuMcjMb3WZtRnAidTf29BtzeShIQ7cO2bXkXQTyG1JmXxH6f1PSMfCrQrUUbwFfAo1z5Cnz3/EYPfFdpAJXBWxbCsi/gdFbsw2w90WlkdiYE7JzO+FadpVrigoZQ9YQk6WhodeAsD4VTRfeiegaj5/E2AxWoH8xWuFumL4nSBUfyWjpYONnP10vHssa9cjwr5XSYNPkTQMdEbNeoZdCdnZbURzgeZxmClI8hNSR1S52JKGs6Uf5XADKb1uz1MzICIVek19+ts6DDztTR6L4HMnqkwJG8si56Oh7l27teTZqKJbQ234JLIgLeI+O1hwCo+lbTeEyDGeCA9/sdj8cODoy32y2f4S2vf2aUs7Mz8UGih4w9Xf6Ah9rH7YmAhRACvn37hu/fvzsrTayGtE+Q2HFLBHinp1yTuT6hge21blSXjRILEcdKrUe1Itrk3zqjJc3WzsWjCPWqc5uXxNVS//TnljOO/Mx9E9rEGTv706l2APcZW+LroOt0Ro84Utu2L/eZOTu1ehuv1SG/6EYOrljGfbRyE4ZluiafBnT75mYecDcDoJNeFV4BcFcnZ8KzaehlvRAICy9YV8YeVtzvj6qzaOCdXG6ACI/7Hbzv8a2WasuJ6Fax9qaMSZMM8YBE9uTIfo24ZWLAe5jQAu5TgEKB+VTcclkeisK4raz6WWvDcs+AkQoQOcGeGXyzgHSGRfKMgdtXk2FyGjzVe4wRDZFOUxvzczpfZbdb1V+zlcEy3PL91TLDNvfYrNn6soDDY7qvgPpZkD+6Niszurl5ovRie1e3a2S11rxdDykelE1PUCumGxhMjJ0DfmfG/nhgW1dstxve3t7Sq+PNA/EAFlocsF32cb+/v1fL3VlX1A833m43/Nmf/Rlut5t6SH+ufnvExgyjrftLDZq71Eqy0efA5Fh03PJCmGJzxrZaj229d33btnxd/ur98M68y4z4lECdZolfA9wYJ/7WVXDUv4sj0doCfw4tFEldH95IsFLi1Q7FeK4+vyLRQ2fOvKORySEZ1m6pGrHbkqbYAXngWv7ivX5+Hw24gU8Cuuem/YM0DNvRS88DaVYXL+2eSBoClJk5bj0JhHWhxHqXLSfMXL1NkxP43pVnt6gO5D2J7pbflJgYkV3NldEa0p7hPprUy1LdBGjSGFDYDaWtrtnDvp/LUlr4FQyEF+dDZNaDlOCWpTRORplUgurTMbweA5EZI3Vawnm2atbh+mixjvDRykufyTp20J7VsaeTd89j9rx+fDW9K+G88GfDjBhLG1dSWGi8zztOtsC6KpuaABRyGoo1Q7KHHFcW30PAvq6RJQdh29YCHwYOpQbcAgiafdwpU7H3b29v+Bt/429kwK0dXp2XvKHwSGaG39xYtSDJr/Gz48PPW48Hnf8YcJc4Zf4TsN3mYeO2p4tZXfRpMmNg2Nqdka3R+VjQ7ztREr4F53W4bNGdfI9RVHEgfCd7zraT+tPXjvVu78n1Wg95RsI7/lKAtoBt/TklHQLzlfIpQLfIECzjFF45TM+mbcPP5mWNjHyu65reOhYS6xH/HultZWy8NzHmxPGpeznxhIjw9vZWHWPo5a/LwgCYKPv0XV5DDTQizZV/DBjJOmbnSG+P0TxXDvlhOogeH1pOJAYt/niJcwnUgDM/xAvbZ+vciOIb/zQDc6y/H3KGNe2FeRXY9YDtFYfgLAA9A2bP6jO7+nE27Ew+r1p1mM1PZDZP6e+F6abMbnmvXLcrA3YFYk/HCi50R9gDaAFWkgcSfTsr423f9+qlHFXaXD84+dtvv+Ht7a1hNuUNjAUYtoC6zy6etdPiaB9bIJ8dn5d2LPa2Do63kIhoMmtd1659kTosetTp7PuOZVnzdSlfD6zFfOq6sIDbgmwBtbrMtt/1ybO6TetyemBb6yBx+9s0e/nYMvdWVup8n7MTuj61WHbbc7ws0K5fUFSXrynHU1rPy6cB3VcBd9fbHaXXAVsj+HckHgiQjhGPigrYNsa2x0nicW+XTXJnTBowlUP05WHLbRu/wlu0IACBhSEFaElpMudAlvUvp434Jf9okNpKxdei1us6hG2cjZ9QptiuGgRfAGRU6DvRW5a3ZRVBxWjSkP1uM3UXk6OyL5ba7SVH+p5hZa8CvhG4v9quvXgzZT6T51E+Z5yJM+BVh//ovn+U/mzb64k6Tr7xobhl+YZt2/Djxw8A9UPF2XJ4rGQAHmEH849sp2/bhm0DaFnzFkDt4MqWEc1w6zEhTHpIhMnb2xtut1vOUwNRiSNOcwR/BRT6KzPHbWcdD04ef53csUPmt1v/RBpv/vPSjmG72Vd5i4Nl87Ki59G4192uIMhL7+KBkVLfPQCszCyY6zrp131ZcdRp6v5Yn8veMuYNgeaOfxtedGuKUWtn+qknOh9Pr7M22qsrj/mXsWUdWZ2fAOz8nhPzxlCt2qgv2hJ8BNHwaUC3iAaNVk4BYWlYXOgsZ/I5Skt5Z3GwB6zrgmWhePRVYJelyftDAIQH485lCfUtvanNSj4PPIH1wihHAL5QBGeBA5CNcfRc84SWasAe6K/L8wpxJwy9n5zL1ao3nMbaxy35UQyflXKSyRPMLEqJBAQIuyJpUrPZqHWwZvNKEeIKzIsclJ4x9sJcTe8j5Agg9pijZxn4Z8L05Jn6nhHd347yasCHSUsYZBs2MtLRDuo9vk2+tl8oIJVfZrOkbW/rggUMRoB+IYo+D7v34KQAcmLG9+/f8wtweiKsufQR21faNimj36tTW+4IcGKcslLaVadUT4eJ7DmBY8a6d9RfPct6QGlmXOv0iPSJMCVOAWc1S9s6C3Nkky1PAb/c3Jf5X/To9X0Lhks4j+XWrL7Eswy0Rx36T/LrvHr9Izqhsv/aJ61m7a9dOXBPAFKi920L6C66Fw1j9qoOzefPkk8Fur3h2OM5c5wBkMjdbsILvyJnJnltVKUTidHd9x37wztqkNP/jHjGFeGejiXcti2+8MEY6hACIAyBuOyJXWBKQ5PiBBM4gMRYHdb062Sq3mwz+cTLlKpEYjSOwz4r0WFK+aJ82qyvAm4QVX1aqrKabIiq6pM+d5lNhhqPJ0DnYboXQPwozizjdiSzaZyZZGZY8pk8z6Zrwx85XmfaZMRonpmIPTZKYklauay6b6uJX4CNMMf7vudnZ7LNY87QKP7F+/ENkoQl7AnI6+RTfaSLj8cjvW6+BmECxvd9x7e3N3z//n2wKlm2NujnLGbhga1Sj5UsbTA+k79mSr020w8+lrlmZgVDp9/G4ayTBbR6TpvvP8KKF+TQOr2FYCo69B3/UT1L+N64le/6PR+jdsqrM43jVeVovrNpZ1ZxCjAVp2CkL3IfNHUAoKy9tzLnEJXf9TslODuq3sOSQP0a9zjO5fVWUiatqYpvyufpfmV+mOmPnwp0i4zAdzeOnUwS4LSdxfe6W2n9ZSfMURrOINODSoPvsMm+7/i2S05PX4si8TcAJry/pz2D64ptXbGsa5yMZBKKGQIhxDdKyKTBNXiSQUCUmBAmyBJcrPu2bD+LFa5Fe/LWEraXPCEABy97e4FYg0Uq44yOq2Cngacb1mOxlBvlsGhyfVqIqjeuRlXGQPFZAHwWAJ4FoZ6cAdJH+nyEzNbJrGOibsR46vuVEoxWLyR/77delRP7JW98FKY7r8SZyXRZCMttw8MsOQMoL8JBOtFEwA6ifZNfCyivHK0rpZVJgJYC/u73O+6PR9ZFrjNzBtzrsuAf+xt/A9++vUXTC/89BFdWQOKURrCMZX9FYYGwvzGrXr/hfM+bp1oA1+bdpOiAbq3XOM6x2Pneptk6fqUOLKN9xTGs7x23p8UC3qqEtdPFGYt6Wwep3lZjbR+rYXJgh4nSCIjZaVIncLuP/Wy/bR3BArjFSfbSjm+VlAeQDbEE7rabrrVXWeEzffNTgm4Rr5hHGKua6FU6tvLPMmw96U32vd8WiOh93/Ghy8KAe8cNSmfb97TH8PEobziTc77F4WDGgrSshYS9Y8Z54qgGPwHM+xS7d5WNm2FI5gd1nNBYN3RPSCZzCVqfFkB4DWiz+pW8s/c0X3fNhcTUqT4h1RlXLwo7Zw2tZrpZtX2X8XTyHo29/sQ/LusZx9XLr/f7rLzKHgDXHQwtcV71x9ozDkZvRbAJdyJNr+5mWEBXP7R9SWyW7zjGz2jnCERbDsfM8YF1lU4eP6hJBWbEk03e30HEabJfgQQOfvz4gT/9+FHGgSrbY9/jC3gA/Pmf/1kC3HHq7zGEI5s4nkuOnb3SN3SdzTuvdZ5jZ1r/btu1XVkpevn5e/165EDqNEtY78SQ6+PbjjddpmXxJ59eGaxTasdJHaf6VeWh4+hDFp6xY/mJruSk7KzKKsRdR3o2QH/XJ7j18A0zJ3Z7w+225TO35c86h20ZVL84Wf4zZRvJpwDdMxOIFPvUZHAyvCdXhuusx6uvCTBi5sx+66d4q8PhKQ3YUPZ5Px6PfEC8bC1hIJ6Ugvg2QgAIiWmNJ2u0xv8qmD4Ke1Qvl0WBaXYbK11MncFwtbEc2dxc8+TP6pudH0w4Ifa7Ch+ZjhbYZNytZPpIJZXXIsBFDOJRnJPG6ZlJ4iPa6Az4+RkrPkzqrH5z74wja6WKO6tLLw8HXHj1dNZW2DgtA9iGiV28Buc/fvwozyJUjiNrnxjpFVZpv7Z2aAn3+x3v7++xbMyR1EABEo/HAxwC/vzP/xzfv38vVZIGIiuwUF5bpeuzAGQrnpPhNUXP6VUhzPfZOaqEtSDqWNoXSM060d51bx5px0ELZEc2vZ/v8di3TPIoD89R6TmmUV+9LcXfFmaZ8ZEOI+F8tjBS5yIELjoeYrNO39O/9TMRQirqcPK3rive3spbugvY9tPVUtXDQZmv2KNZeQp0E9G/D+D/i7ij+MHM/zki+o8B+J8B+E8A+PcB/NeZ+f+Twv/3APyLKfx/h5n/7Wfy9+RsFTCQl8VPL+ehmJxRvs8sveg0JK5+Olc6qLDh0jnDHicJ6RS6Q8ubmaTHio+8JlBfOzCyR1gMuj/pedIF0+zX18iAHtfbsQt1lc94uVNwoCrro7uMwjO1kL9zYT9yXyXtQtSG2WMKR2XP/USBlivjyOZVpWm+j8L/DJGXZfzsfL3y6zYVXUaTQGt/WsDm5XFVxAkUGys6lPz8sd0FJ+qTUe+HzUhTxzXf5VfkHBYwb3H5+vHAntq1MHdt5oH1XtOA9/uOPcSHvAgU7SeQmW4hRsCMb29v+PM/+zO8vW3VOePVeVCd+YE8L7lSrWNQgcam6jFV8pK2ke+xZ2k2u9/NW7ev55xaJtje1yUapWXTsay1xzoL2C6fYzkG+f2xE/PXZZubJz2xbL0G+6XcoQrbxjvOt+uUpb4ad8MXp1RCLTJvqHw9h3/E2GugrbeTWFnXFd++fcPtVp+7LWl7xFFjWzBv02ba5ew94DVM93+Rmf9f6vffAfC/Yeb/PhH9nfT7Xyai/xSAvwXgPw3gPw7gf01E/0lm9h9J/VkikwKem8SjXby2FH6YtjEgwnrLp5z5LR02PvgT8sknOg1ZtskP6axrvTDVTFTqpJIc6MTLb9DWq0pG5TVbG8f5vAwbd5yA687TCdhvGKsqpgHCjNZA2NfiepqI9E5QGIE4DaTqG71zbY5BYZ2Mz4iOwo+kN+GflR6j+jNFgwtWE96IafRZM+tkteOHuT3p5pSuoosBRlYO2zd9Vo+R2zKqTz029NjR+Wzbiu/fvwM/fge/v0NOR8okjK2vFDeAEcKOx+8PvO/xSM4IuLf49sqkm6xE/tn37/jH/vzP8HZb6/3bJ/qPlFUYQCFdMqhJ/1EM3Nh9LaUPe2DXXpuxWWOnyW/bmFc93RyQJhNgTo+NOm79undPZtj0Wn80ZYhz47xtOIMX4pGDte0Z5eXV1zldEsiXuYiKg0UyVqr8pEuLc9q+qM3qpY/ZrI7zNLb/7e2W3kfil2nm6MhYojnp2VKvb58l5T5ie8k/D+C/kL7/TwD8bwH8y+n6v8bMPwD8X4no7wP45wD87z5AB1fcyov0bWNuZivSmqTZjn4GBIgh6RkzDb4FVIclYH9E9kY/UCGdX8LRvgPritu2gdPe72xFPOYxDUAC5+0FYyakLQvS1pWUMmCZmguzfJ5wmePr408Yvr6e/rVXg62ab+rokz5D0kE/hw+jq27jXN9urqVfeUarx65qndzptMNm2gnxCLw+szJU6WwM+FXgfWYifWUfGQEMYaI829VLI9YBqgksSuwTR/UzZbNEX/UJnBs7PVCtpdilAaNn8pbPaDMZt20FeMOdgMceHZnFOI/azucHOIP04yW+82BPxwhSeeHZt7c3/Pb9e3yrJSk76YFh+GMn+iycXwwiZ3vntkR55FMAd29FxptHYpajrQInyAKTn8ql+iygv6J8crlG6dnx4LP38w72LBtcfpd2rF8oND8/9JjlDGtNOSKJ0jr98evMGzBnyxa1yBAApXSk7Hdtdbz5p/QZ/VZY+ZN2kweM9bHItnzbtuJ2u2FdqCLt7Hg+AtrPWuQZ56bJ1JFnQTcD+F9S7Hn/Y2b+uwD+CWb+DwCAmf8DIvqbKew/BeB/r+L+g3TtD5FZAHWK/ZawphP0JsFnJmbpuMJ2yJ+AbHnhzv7Yse/xDWchtE/Vs9p2sibwveqzLqk+gk7Z9gRss9+CvH96WsogrxNHzQjJ3cO2SIOco0NQSXHS+/PHwEbF5F4Lto+EgGofutuP7HfFiOW3UUp/rFOO36g9LpCaUI5e6k/yjlV0zLye7fdXnZ0zk+lRnN4Kh50cW4Zt3rkeiR7jMu41YTB02FwnqKfjvJ4zbdpMpJ3ws0D+jG69PPT1ZVnw9vYWt9y9v+P393fwgxGKR5vj5Alflxtli0vggBDKuItpf8O2lRfgPCP1EYKinaqVifHm1QknvfWK15W5qWeTiy66BZfqvgZiNi09t2nRzsVI35k5/gwOsODa4agm0nD0RAtjPafC5nsG5B/fF1ugJ3MGMuHGKD6uTbM+blGcRd+RjKf9yMvbPMAd8ciKbVvzNhZt83Kd6MqotPmYGfuQiD24/yzo/s8z8z9MwPp/RUT/p5EuzjW3JxDR3wbwtwHgH//H//EKgD0zeXuSGxu1VzcMaydemILoDt7xvi0D+Ix4bGJ50+UCejwQdgJRBN5aFw4BTBTflCZ7vhMA37YtP2Dp1XU8bis9+kOI7+tBAsydFwmkWcu7KKWpr+nlrVlRILXR20mHOw2f46sGfr7PjVC/k3cvqDJ6bAwRAOzqSXCvCgjy1HcB3bls2pAdAX11P6hrRxNhLkaHoZllbs5Nlq+VM8yHN87PTpYeqGcASGN4BPB7rFCP9ezFr1hGiZD6Sa/c+ntvIpwC3WW2z+mNHDvdj0bh8jMy6wpaFizv77i/x7dHlqlb78OWLXeKEeTIfO/qTOFt27Ctax5ndWHgAIUDUEaUzyPuAW9xm47aooCr4sQJ+9xjqUfOb7/9iiNXEQAJwEUiqAbWDTFUpa1XVWvbdeTgnrUFPTa6J2fqpeqD5rOXdj6utxoD/fRnsEUMYzWRRABCyKSbhIvEnu8IxLwlLd+BCiFUgNvqI2+WfNu29PyFalulaf5T9+z9V4lnL6/Yc+BJ0M3M/zB9/odE9G8gbhf5fxLRP5lY7n8SwH+Ygv8DAH+hov/TAP5hJ92/C+DvAsBf/MVfdHvNWQZs1AmPALeXr87beqgqsATs6jozOHosm1cH0kkFdOnTTuJSTkLHCSURcwZM+uURmf1OxxZ6jIn2kPU8Qvqcvh7OdCvNAeBc3xUjXetT2lA8bFuvJFS8p0vy5MtPM1EQJaD6/PYEzumP+29Vtw7YEsMiky4hAvDIusU2ZSIExFNWY5ya0ZB2repTAytms3cUXWZBx7FlHtWHV+bZSeMZOevAnwlzNM7POG+6Tu02oB6Y7Ok1zltPWyf1Imrtp3LarJ20wGomn9xzVdzR2CHHaezlRRQ562/fvmFdFvyJGWFdEUJ8aHLXL+egEifnBUpMd/2qb1l1q0FyVRP5qjcH1fyN2CG/vBJBQLfui+3cEdOO479+aYyTeqfeWkfMi2ubSICe2EAN5iyo8VnuaPnWdewEvJKUs/qPxvlxf/Yvhphg0wLiDMWxP3bUZu1BShl6o6LMq3Xa0THSc1HUpz3qtyb/oL5zBttymo992Y2EXde4leSW2W2TTlLUfZ7IaJ4Uq9K/Ii0xcUxqjOTcOWF1Jn9ORP+YfAfwXwHwfwTwbwL4F1KwfwHA/zx9/zcB/C0i+kZE/wyAfxbA/2Emr6Ou43vEXb2fyquXd04fHfAerUxXn2c6RM/AynLktm14S29B+/79ezpyZ02vm1/ypKAHh4D0+/s7fvz4gR8/fuB+v1dvi7L1IMUUwBcfXSHEPRKD8vUrrQ3IQHpY229vApbVZ1n7j/iZcJ6Do78/acyFZdb5HWhUx6e2wjRc0uedSvpBtUgMXzMVddpFr+646vRnr0weG1JulqJ4k+5V6Y2rXnmu5KXr5wqLNgM2teh6FEAZAd9BHZs00remDGf1H7V/m1+Kp+KfzlPnjVQC0YPLQ4QCJaqcmasx4epIhCVN/G9vb3Ef6bplAiM/5CXrexp8EzJLpwmK/fFw7KYF3BBPvNIplzcmrhiN+MdUn1AlyRD8V4rX5dV9Kd9pwgob3dYbQXcBOxZm2nbaRuQWFQdBdO739xmgZO/PsMLPAW5/omP1B/VZ59kC7vhg5VkbZOuy5FPyK5rFdHW8+k2efh2UehAscb/f89GaQuzpP2G3v337hrfbrQHcVQk8+63rjePRnTP26RVyFg88w3T/EwD+jZThBuB/ysz/CyL6ewD+dSL6FwH83wD81wCAmf8dIvrXAfy7AB4A/ls8cXIJ655INVvkhz9mkj6CQWsMiL5XBwRsJ6L2IbNRHkeGxpusAeQX7ehXzD/uj7jnOwRIY+gBI8wpqaMJBcjLJOPpl8uDMhGo3b7lwxIYqIMAqb7qSkzV2NbjsVQmTelr74m+ZUL+aKFGAwE3bd5pnm9264jTpPtTWy8cq9XZI9rmcwzkPMa4xzRV13QZZG/SC8TrF7Pj/Yg9nRVvrPbA/qzRdif7gT3pxdNMVK3LlBpVWjOEiP6031WCXQZXg2x5mMuaCulHi1NH2UFw6spkBqDs877fH2CODy+SgF4BwwQQl5OdiAiwJ4ow4/7+jveF8zJ5c6yZqYpqHqD0IjNbM/nM5Dpevm2c6HYMlzSFtbQ6iB2J9SGAq7xUR2pcl7U3P7UEjVyrHf+6f6pZg3rl+HhQ5dkSj6QYg15b9+P+39oMn4yQOpyzHz7gr1VIjjzqF521JM/IRtb9R0C3JYJ0nvpV7uu6JhJBp8nNpwb+gPisdv5+rfTIKe/3SC6Dbmb+9wD8Z5zr/28A/6VOnH8FwL9yMqcWnM3pl7+PJn+PJXi1GKhZiZ10e8DZxtFhm/wGE710ciLK4Pn+/gA9HoBic3RceVWyHUgaxPfeaCh51nU7YTirognw5urS842VzUqVlp704u4YHxDMSNco23kUNXioGbHyvaSHZJnq+rPGrWIwqpCc+0AzmaW6PgKrnenjnOdPKO0q/g16zsLrZGZ8ja57wLYHdo/yG+Wj29Ez9Ksad3bMeenWgGZezgDlfFvHl99mAs1gVoXp9bvm4WiTjwdaoK71+qsXVpi3fQ+ZiRPQnfNJU1O2mAQs65JPNQGQ9q8+8jaO2y29FRhiW4rm+cSHSv1jh3c4Rk2/LH2lTVvb9/gG5NquS7VqU6zjaKdCGFMdTuuhSZPStzW4iy990QDPJQ/QOWXpYB7tEVP2Ws95nrdNLdi1dX+EVWyY4rBM9eacn0dU1RoGyDk42pmUV8CXdujVaflevehGcIXpqzLG9Ev7xBLYetf9XIPu/HuiJl4lI/A9I5/mjZQggpzOc4a5yvExX0HP4rmPBgw6H5GjCb4HEogWLN8i+N72Hfd0LFVIb6oE1NDmeklIHtQUAC5GWnSwQCG/WF0mrjPUWp6MihN2tl1L4etkAc6wumKuErB9pi2tcajSnohr1a3uq08B6rJnDiHA7tTU4IScB5Bs2kfePAP59b+zk1iTi6mH7Hx8wPixhtvq1Ru3PYbakzO2yQIRL33PedJhekD0KM++lSunSqhYblotnHDCiAOH0q66ngV0Z8BtdM1h8Hyf8PrzkJ0kylvlZLzEPi/9lFMX5iqeZJNJixDw/n6PtnZZsSjWWHznyBDGbJdOWWO99ftxzt8B077UICaEkI4k5bT9cIUGwZK+nBXdMuKLs62l3ubWAm1Ab3Ow0m/7+j0EPcJHpzM7Lnv2wAfg9ecVsWPCiueEx/7TT090KmN9MH4ITQGyY0h5M1VD2rT5AiEAj33H/njgse/xeM2Q94NW6WvAXXSrnYl2laQAbsEadne4Z5debTusfj+F6f6ZwszZUL1aZpjlM+GmJAEVm/6ISStRx0B7ZuDW+UZ2ZlkXrCE+NHlfV9zTW9pCmg3sZCjMhmW/xXvtsW8yucpkU35ZPalrVOyIesrJofpHHvpOG71CSl107qswan2vH5hsDaI6QUEDbfmUCc/bWpLrUsDSSYZndP9ZZ3TaaXYm4pk0jwD3FUbqaLL36sSCql5ec47NvM2q68uCreN8qvs6f3PNAxlVetyytx5jO2IxZ+usTafUwY8f7/j9xw+V/5J8f9M+UC6MbUuKr8zGHvDj/Q6iFdsNWLetbNKg8pBYdnkUYNLqFZCrt9jpPc7ps8Rw6qBcr9JOusd97fUe4mIOY0l1nYkdad8I6DmOom8NpmfGiZe2TmNmDp9ZFZgXr5d797SMx5Pt33HVsgXOoubIfmnAPXKPVeoIhOxUQeqjcu6181U77o9HwPv9jofZs233YAvgjs9MqDmIGd1Tz1D3FUpvf/VCkxPnSFoL8HHyKUB3lqoTvTrp0vBepXvM7VkA3tO+51EfyayXdej1J+C2rgsWiqD5lk46ecjTxgl8eyDEMt8yqIDy2uwGvEVF4NZIGsuSlS7ekTNyGdSZUTfLRk8l7emLODWyXj61qlA9fY7Kpmuyy90ZA90cFXhBckyT9ggQ2ShnWKgz0gPMVl7Bgpx1dmfu6/Oee28NndWvZYwAD7j8LKHS+Ekf3+5WYXGtr4izPxUuBYzs9Htl93M7p1XAnfUyNzdOsugtu02IgR+PBx7M+KZAqt6nbnyPRqKtBbQb3QBYVR4dzxfO/7assgbYfny9naQnvYcfZ/rciCzqpeHNd0f3j8gCkztqh4Sd6zUgLddm0i8PIEZpTw6zc+JYFIhWeogNiA5famssANW6d7d1UVn1CCHghzl3m4Dmra56S0kB3MfOkvqRP7168/p+L72MX9J1r8VKOcf4ork/KNIvD7qF+RNABzXYzhpfDW6FN29SILX/uJmorLfZ97CHy0Uq7bOTnT+B1t6xDuMBj56RiQxn/JQHG24h4LGueHfeHOXpkLc3AJUX27BUqQ7EEOuWiPi+PiO7V00jh+Vc3faG3GulTIyxYONBPAe4bT9m5rwPX+J6LEjvIUpbh10whMiOEbcrITMiRWzSf7Fv7fWJWZCsx/gss2zTOmJXR+GO8pgVP42jPn++EWZXDLXk892TNtqGzdjaZ8W2RwjlTXmWwSUgsmwcEII/yfbKyGl/q9hWISTWZQGpua2IBr1FAws4hcDQDrBNarYPia0oWRZIItfk1Aybbjs3EeoHMPt92o4H/WfLoMvvpVNeDucfc9ubQ/35U8ph51lJU+43Nd6UK4Zv52URvZ9e6kxvvSkOTl2esUi/0oBb2lJAZw0+KwfJpMZpK6ZWn5lxl9XVRM6R6R/6Ycll0e1WZi871zRtqwuPth1Hc1WVju5rVbknwh/gixn79MuDbpgBWAzLNeCtxfqlHgCXSaBW6Rh8T7OSZpB/hPQMjK93HDea2ZEHLsWT1cdn6TR1WZi52utd0jcee6oNW3pxtvIwYmCw9a9b7qcAS26oc4B82gmwP6XyS2wAIxaGazVVno99rx6yg2Hs/P2XberEnJedHZWbJfUcx6Z1wD796jIC30dl8cCjXO/Vi4y7j1wBkGVr3yloz9GVuFfb7iie7ce9ceT9fkbYjLn393f8/vvvlS5ieihNGswLwhpJgz3oQ7gMyFNsGieGnJcF9x8/QBRXBNfbLY/PMiv1GWZtuxu4N9k2o/rj9MpxHUT8DiFEcvlQt5M3l/X6vr0m1z3CaAy4Sz+2Y8rTtTfn2vlL0i7ORryfCcB0v5jYoz7aP65UyCpmTnOmHFXJILIrkkdjsNRLJrgcsN3qKHXEgDw8acgwfUXP8/f7Pb1MCqovI881BXAvqb7qdGUzU4/Y4AhKmj7khh/UjM7ZtsSrZqQjy/TLg27mskVBfhMRFulKROnhj9n01AMsQPnOZW/ebGq20WcmIzux9NIZGcXe/asAvgbf7QQsA4eWBY9ty8Bblr+t6CPrNPCWdASEy4OV4qFm40YMhPKSh1w+dUyAfiFM+eeJidgYglfJmKGry8EqznQbmmD6oSYL31cMDFWn71qTfOR+zLZC1CPFMBEaIP9i4Nkt68T46TF1+r638jSKM8rDAyDPSM3g+fmWtkEOK8CgAnzDvu2nbb83AA3j/jMD+s/YUpv24/HA77//jns6JjA/cKzCiS3b3m7Y9x3v7+/R5oXE2nMZ06QeLBfR24ZEtm0DLSsISwZGRw7e4lybLWfvNyfbHU9tQXc1rAaB/Xo+45BasNwSQz5QTzllR1GObdTjcKSrHa+1fvkbrPUbEhZO+jFOW/8h6arnyJrVpiq+zb83twBI72dARR7azzKei6NR0yztcwUA8EiHLsgKeKMBUbWVRJ4TINKrJulcffM8gGf7dG17dqMnlZNg8mh0HqRj9evldYQhf3nQDZStJbUREk+fsSbgfWZa0sOnmuS53Vt4BcielbMM0mjikvs9gzbOsw+rtvSa5HVds2eut5w0xkQtlwn41kBcmNZqwKUeqwcKyFk2KggV8qr4D5GnsLwyYk7byk66nJWerKmcHS6O5pFywjpoJ7XqJ6j3583sx9S94QhwnxVmx2ly6vsMyPqIcfoMK2/bYQROLKCVv2fKdBT3TNk+2gaK9GyWnoRHTo/+lO8zuocQ8Jd/+Sfc9z2zahZwE5W35iGd3LQsS3qt9Q4K9iyTGEfPT9GBicA7cIhMOQG0LTmORjk5/5PO2wyFpOt0T9sD5AVBsrVBM5MWwL5abPoyr0Q9A/R2C2Fei45yTKFfZs1iW1AueemwYrcF8OtrM4C7dSLMNRSbupitmEpro1OJfdSnA0IxqUon+avKoXAVVbm2Djoz55fdjGyZPns7nvVe610jubodmrGvwnpt54XV+rKqg4/ov8cjrcgnAN3IIE0zUQGERdXdoj0jTLJt6dMaVeB1E4wHCDSIqfSZYNqO8ngmjNIEHrwS0EbqaECi8rY2PaC156vBtwBtmaxu24YNtbE9Kr97nyE0Qo3HG0N6TghUv5umyrvj7TagwOtpJg7a/kAKgI6dshJTv2K3NeJl0tAPUZ51+F4t4lR8FKTzmK1XlNemMZrsvfAWGDYM8iCvZ0UzaLNpt6dTSFpl3M6mNcuO98J5E+gzjG8IITHc9wLsPCYssXfrtgFUn3PP4R1M3KwA5u+Esm2OAUIAMQF7nOMoPQsjjvGSAP+SxgabMj7jBFv9OITyQCcRiDTD3bgRw/Suiu1fMpfI25GXpbDYQL+9R+PM09f2WwHXGtDLA4M9wN1jkUf1knMgD8jXzkQBysCxI5XCkL5Wz8mVk5/Kyy7gbom09/d33O93975+eZ6A7ZxFUS6XkIlyf+8Rg3oceoC8Cu9Uhge4q/Y2nyOx8xQbzCHpjNL65UE3ozzJa9luWZqQEkqFHG0VyeA2he0ZVwvY5tli/36jd0e/WTlisXU4q6en9xHgtzBSA+9lWSrgbcE4AJeFfTweeLvdcHOOGawMI/n766uyCPORmAk7WG1ZvXSae6ScJFZMbFRmUEMmbdThpwFCLteB8JgJLHW7nD4No3IWJ/VW/sK0ZE6R6nxfIWeAoTcOPIDtpdWL1xurvX5IyZjLNHlkyD2ZA7aAsHjC6PXDzgHcozppAE9RpEpjVFdDO9VpKwta9f0fP37gx48fcYiS017J/uhjzoio2j4SAuNxf0AesmQw8ht0yD5snNJOe+wejwCmuKc3v3CMaibS2j89hxz16ZHzIvf0tga4M1Rx2nWas8TGkaPkMc9ybds0W6r1K79l24Iec3b8efp5QFo7pWfNEHNcwUhaqXzbhHr6SJ4ZQAPd8emBdauPxSG6X7G2LgZAatGvcy/6FJGTSeqjAKPOHDt8zLsojt5jWlXaCaOdAtvm+qj9gXnALZLdF+bGNh+l9cuDbqB4adWeQubMQOoTbioDLkbhKH3MVfqrRHtL3kNnR+DXS0/kiG0b/dbOSEzMTyN3MiJAXhqRJgtpK3lpjoBvzYDrvPd9R9h37IPJzFFlSjgwaJmrG4+Z6rLA2jWeUcwJp4Gs85b3kien+1zHO8zA5KVZq2VZm5NlZmTkpBrlz89UbjKv39Z1BBaPWDSgBY0zMgKeXn4W7L1C2jJZ3efKMsswHokHIGdlxgHQoNAyZjrM/X7Hjx/vaW5fsu3RaRCQAcWyLOV188nu3W635EAwtm3B/f7AnraQaAufYGs8zQQAOH5/v9+x8Q7glt9zEIjicxhRkW5rHdVd3deirSiX4m95Y6YF28yaJGlz0zb9CED79/T1MgYlXWZOBIE+NSvWYnaQqtpAle/QqTVhJaXRy3qOHe0AzoB7vH3vyPnQLyESmKezcsuWPxUBo+qbVDyW9Mi3Y7knMOdnF8oxhipP5SjKlhJpWz0GF6oBt4e7us6hc23W0Rza/GEKbV4jCzmb1q8Purk0uuwDFgNKR6hHgcRRY04BCcyB25FY0wcgM7hX5ApbrcP170F5Ih4iTHgbBAooL3fgeFSdtJEAbzGedguKlOGezgFf1xXrsmBZV6zM+SEmaHUmy1AmF/+kFl13R/U1vN/pgpkVd/RuA48DVY5kRz+9x97esxPQsvQfkHqF6Gn7ypg5w2K+Wnrj5wg023vP2oqsz+WYv6Y8Y5vsCtiMY2TtTR2P8Hjs+NOffmDfI+U8ytu+zCN/JkDxtm142zYwM37//Xe8pxMddnPMaj4NKF+LIPjxeGBZFYlBBD5YkToG3HXo+Fs7l8nRoKhHzarW5de52frsbT1q05FrDL1lI0NnBbhFyhF6UmINGtOLW1jKMgfE/HK12zysszCaX6u+aa6X+tX5jvQEIoCP8TihY8/xqVMugBvMGWRrwkzCB/nG5Y5MRRJO5pX7/Z7bxGO4397eskNaALfZzqLKLY5kunkNT03YgV4crVe+p6/beJ3vZD5n5NcH3agHYrVUkoBNBM7o4cNq8m8mTwlzEsCebegZT+lVMgO8DzusAZNVuDJW8oHnsT2iby/gWwa7Bd31eaRFn8fjgZ0IawjgbcOK2qBfdVA84Hk23lBc4M25c9mJ7xXSMEfMLujWYeIKQv987pfKZFtN1/EvKCM2z4bpXTsq+zM18xErBcDYqeixgFf1eFXfIKLsuIouIXA+eUTCsJOfAO63t7fuw8eEst2OmeODlgAeROD7PT9IKUCxrY7IiN/v90wwbeuKPY3taquJI21yNYMswM9jSgUQHq2+lPRqMsMytj6rHY2hBpECIEsfKQSCLV3cG1yYeD3HxAxcVRs9ynZHeZ6lD2RteY/Tr+tcfh/3YXL7Q4yLpGPt9OSTRkgd4Zcy1idi1Tmn/okShh2+UbCV7N/WL7yxYtnt0v5tX+rVwqFtkLhP2rOeA0VUnpkAUG95mSFjO3n05FOBbn0CBpC7JXqPYHlYyDOWOh8vzCWdnfS1TkdNM8vCPhv/uMOrs7JloHOtvzdoF46tEogQ1LYTDbr3+z0vs+rJWe7LUYOywoG0rKs9Zl0ODaxzuTrO2Kx4oLDUWc0ezGX2PAjyJkdxbuTZh5l4Evd4si3l7fXrTobZ4X0V83skR47yK/Lusd6e/Thi7Z8d50eiy/zKeuk5S94K0lHavWV2L+0z4XO8jp4aUAgo13OGXH+73fDt27cGcNt609dvt1sFQmTFL54Q4ulcg0Iiwo/3d5Ccp+/EyEDEcxTUNwH5Mo9W5/NTPUv2gbYAwD4Atf25hKs/vfGSzbUDjMrZzpqnZSxU0h1vCYlxQxB23fKTpd08W99znHvORoxDSS/fibN5R1ZYO0Fyr2G/ihVWgFujdkq/635KqFUhFYaqNKS/3tUbJj2R4wA14FY1pMrqzBcnbAJLWS/ayB5JoAF3zrdWornXDQvTdwfz/KcA3UANxtrjA8dwxyUiVTwJo/MCyiA83djJUxRwLezvjNfUJjWelI+Ywitgp5pIEM+SpmpcdiZTUvVIEaPTumDldBbpsiAo8E1cnvS3R2rlSSrtCxePWh4wWkzZZsozmqyv1M1pRD/qiIdxSl66T2rDGtSDqs1b9OTvgDEbi+hwzZOpmIUDMDrLul3RQWQEHs7IGcdW1/+IIXyVzKR5dbVhBLx7csYeXXFIGlJFgLTqd2Jffvx4b1nVZLuByFz/9u0b3t7e8oPHvXrSfRtAFZ6IynneADhwfN6EWoMg8fVD59++fYvg2+TPKO868KQGgcpeyJ+UN7Eo3nzX1n3dfrovz/Rn/1pdft1O9XiJpRaWXKZUvw+W9HS+o/bz9NSOShO+KWO7jSn+xXsFYOv60c85aRDczlXylmEBoU1hUywLKqG2TVXPF6R74pClL7in87ft26d1W9cnlBRn1I4D0cnFV6hlxuF+tdiZLLt1k/Ywhx+OmVo+Aeiu9/96xwfWm0jjV+1HzjSXByMus8xANSDzS2AupZbSHExWswz9zCTWeIEdkDQCRfleAt4gYF0I4MR4J/C9LgtCOg5KH3UXlJ6yXUKOjarP/oyDvQ/AS+vPGN2hYzNsvUEv641quYdiP2d6m2fU8nX4oCMmbp4cH8gIhDGO6qLKPDqfF0Hdq+WjDLdOv8eWAb7T5zlQH6HXR6Z/Vbp9NckrHa/CphL2PeBPf/qBh7wAxwAYGc3f3t6GgNubaHVda6C2rmsEye/vAEJc4M/xW3ZX7slJEfklI2m1j1GfuW9FUgzpLZjxNfMafNnyyL1al4qNTvXTzVON8zMkRo8MqffPowpT17e1iXouqstxpIcOy8Z2WQeD6wQMWec8jKscBX3POyrR1kVOFygLJWxPxKmJKw/AiwVXqQIcwCHkubj33g0pt/TF+rQbXT9zzpaNZ69JeZ612p6t9fKNdTvhpOlxny/Nz3OfAHQn7ywNHp/tJgkF5F9n0n8OEDfppZGl9XjldN8zbKMOdUVmmazR5Fl71mI4CCsDvCxgtX1E9iSvyaBpT1u3fd7zmAY+CwuEYpiUNo2RGwFXW+4+01MzHI7fjsNWp46XrT8nOo44J3priWfMAXss2EmZ6FJNbV1wctx0X9y3dbpn07POaK8/2Tj6T679UfJHAPGcl6APR6ez/cJLw72OYlP+8k9/wv39vQKhVrZ1xTe1h1unPVNnElbir+saiRgA9/se93kbDb00ZCUw9y9m8OQzGcKIjh08ht7uYkFnCpxc7fblM944qAHbuC3L/O1dt3XtpUUJyNbpzDoAlizqzW2uPgrkgu3pKmzqSr9oqKSt2WFPB1uGfGKb0tGLq9tXg/64cq3TjGe0s3oQ36uD9vztpdKtzi+V0zgFNs2Z61qTM7jOG6v2GsUfZRPPoL9I3pqlF0xy1pZ+CtAtIp3KY7s7NuQ04z3M3/w+qmKb589k/H7WpNpjKUQH14tN/xAIHACiLZ/xKeBxT0tu1usOIeS9Zo/HQ71itrxCl9RAAp0HeCNjTebbRzhTKXMkX1OJb0iI4v5PqasGVBvjWO3pxKi810o3itVjdv8INvwZcNdzRjUAkTB2+dXGP2J4j2Sm7q7WredaahdzRteqnWVsdsbkTHpVGIetqsKqO4EDfry/4/1+jzrJnwH7chpD60xpUHUstv3XdcXb7RZfF7/vIDVhh7TH1q6ExTENEO1YlgewbVjMiSYaHOfoAuhQ5k2PpLHgrQHciHZap23bzjpLLWhr60QTZnUT2lNNetKCdauT3TrUI1ksw90Lr/VmVlsiOQJX5O0hdj+11EG55tmBSCrtkP3dsd8YFjy7P+X18X2gHvMsWbRPv3Gabz3Arfvvuq75QeJ4XrrdSiIPB3P+bk+FmwXakorUmAecRzIC3HJd48J08Th9ucf18cfefDpaDf7lQbcFrfrki7rRfVj9LOM9C0NsPPGc7Dncr2TsZjz5HqM7O7F7HdjGn2EzLRuSwyxxslmXFeu6IPCGsEdgfTfnfAPl7ZbyXRwwfVyRGAkiSttb+k9Vj6SZdJMRq8JMpzYvyWyrLu31wmJApR70ySVWdzFe+qU4vUloRiwDcUZG/fYqEH4GQIucNe4SZ4blPqvHFeDdy+9ZO8NAPhYUaCdTnYcHXBqwFwN2ww918dIy0jgEFF/D/uPHD/zlX/5ldExJPRSsABAR4e3tDdu2GX3Edoz0K1DBpgnEyZZACDtjfzyAEGK9Quq06J+LyelBzMeOeyIQ5MFKSjaOJZ+69N2664HJykWpkbJfWgd4A2hegObpUu7nFBRos8Dcy7d3vXYypP49kCvi7V0e9UPW/Z85NZa/DaXGJ76zHXUNYN4T6OY074lfmMJRAdy6jLacpX58MMtJ5xACHonAsscBSlqW4RbnIfqqegy3c+uozkfXIZpTDV3FhbI6HtlKzU5rwK3bMQzSyPVdEgQRZRsxUx4tvzzoBmqvR4D36JSGK/tFPBbHS06bkBHvUQ3MXp4vAuBXwMIoLQ8cj/Kc1c0bhJVhJcKKJTHXC5ZH8cAt8BZjo7/LspdsPcrAO+g8ZWo6r7937xVgT6TpDyx9zJ+4kK7qB06tflr0q99PiQkeeZg4KopfoPS70Df+CPH6Zu+3J9ahHOXhsYxn87sir+ijeaLGsWn1ypHrICc4r8/IMWvyUjrmS4jnX//pxz0D7lVWHlIcDb6/pQcnD21VX+P8Tfb1xiicGcLbbcG+r1hXOXEo5LGuyMIEpsucF98SH19Q8vb2hiXvT1tAayQYFgL0nlq37TVoGZSktFt9SoZlVzX4EaBW4h/oknKo78kWhZ527RF7Hmi2Y8+bJ705uAeMTYbaM+oAe61DydfDLbE+Sxw2acuKbVUL6beu7zJ3m5NkVLyQ9m/vabXY1oWQM/b0MN2e4iD1iKxe37pk5+IgcG/N2LZIvvVPMMl5zOjKHN8f0rs/Ib886E6OFfTefOa4xWTbtny0nF7miIF0AnMyar6r01Zv0rMGfMRCHMkMuzSr18+WXnnXbcW3ZcFtXfFQTK48/ORtOwFK39BbLfTyT2YdCEA6Rkl77QNNG+xrJ4rTnt5A6rSp/srlawCwM+cXcHSPCwSavXhPaAfuAe70u9L+DwbXZ+QVjnDLOh2nNQfo+vk9E2cm/kvsReoXo9xmWSubZv7p3Ht/f8fvv/+enwXqOZ7rusaTQgx40nZmRl/NTprQIIqvNP/zP/8tvjb+seNPv/8O3neE6EHHz2b5HmnfbTz5ZKUVtCU2co0vKmNmBMiD5UmXpKPmPXP5jM5orpYyWjvriVevHl7qOasCOm04nX4xgGMn1wPLflv542BmvAo7WgCYzCf6OYC6/nrAT5yMZREsE8NkEgnq+NWUadchSPdFPw2F5KheS2Rp/eyDku2cEevfK5fft87ZJy98v9fVtnOUlyYTqz54UrdnZ7NfHnSLMJWGlEoTtruesAwyupKXSmk2RXcyUYMy+60dI6AH0LMg5RkAL/F6evwMACX5LwuBEAd9WNf4xjYiPJLBkD/Lekt8mWT1dpN60mV1Bq4eTB0WklG9kr0VC5Sf64t9XgiaOskG1BNr5M89RJn0HyAlrz//ESDbGtOeHmcc3bNjURt+/f0jndszaQ8n6dk0JsO5RMNAJxtv2lk5yDOEEN8MGdh1OCXOuq74/v27w5LGvbrC6BH1Gd66TNL+yPHlT+ItSwRZjxBA6a1/OxHA6PQfAgLwCDtC+B3btuHbt29Y01swpTxy/oqevwBMvVysrcNyioTHNnoMr9RVtMehqvd6jLZM8FXxQNdsP+8xyEXKEYUx3ZDrWbW6qov2wUjfljACI+0Hj2ksi3HU5Q/lfG4NynM+8QfEvUqwuKoLebvkQ7Y2qbkSQH6uym7VLGq3YFvmlKr/y9+TZEBdU63zO23HVP3b9uDo7Qz1iL5gYssP9JyRTwO6tWjQnbcQVMZPgZ0LBKTuyIUAGHhQk1mMOskrwPYov6ve5iuYv7NS1VOyOQsDt22FAGUB3I/EgFtDYIG3OGgCwO1RR+LxktAIatLSEm8757PCdJHqfvvU/1xFHNxWzoYG3ZZxkhGxruNXSj8jv8KqyVl5ZX8eOao/Q3SfP9Lhii3IYBHPsVheuld1AdAw3VqY4z7u+/sdZasHNfPFsiz4/v179UKblEL+E7sQ1ZWtIm05WvDN8IoY40SbcUtHAQIA7g8sVD8kp8sjkp/fSHlXW+uozIBVWzn1qGoLxbko6QptRAqYeSBSzxch7Ljf37PNfXt762pypvmtQ6bz9pypo7417ruSl/6tnafEaiuKrg5bvklbLgBiM8cNentEkrmdqr5ZlFSEnXqnpII35XNxyT0gPrh7v9/x2HdAgUcNuG+3WwW4I94X7Urd67nGXTl9guzzxBsHvVUJi1eYOVZcx4knouiMzugsjt1BsKN+92lAt/iV8ilgqveynCOW0Ru4fr45wjDcSGb5zjMT51nx0pyZ9GyH/lmgQtdDnvBXwo22NAgBDow97Hg8dtzVK9BFR/uwrfwWZ82+wKJiqPI/uq+MmaKqfqqAnOISBhDB1kD+tx8nsiTidORymLy0N/9HgcK/DnKFZXuFyFtdIQ+wpfZuebU5+bAeIgDDcegbHTrskwVewoB54eWtejBsrGarBHDLPu5evqoIcjUNKefUhgq06+Lbc5/j9du2IAQCsGGh+ADd+/2O3TCRutxy/X5/Rwh7fE397S0593LEH6qyj1Yfom6hbJmodKyPuxTQ5ekmoIyo3qYgJ5KEUOugmd1jESco6iQ6zNq02XBFH52fAX/O+PLSCSEgcJyXmJZM5eQ5TNV3Btu6XjWRlLVJ/6axLo6RW+ZETj4U4LbjUNjtbVsrZrtUVw24vdUNS/LYerBhKh0H7cLM3QcodXy3bxvALdf0XGnHx0iXZ8G2yKcA3dLZtOcuHcA/PtBUj3H5ew2kO5DnVY8AcW0Kfq5cYYw+q1QDbgFWXrCtK27puMFHOm7Qmwwkvl5i0vucddpL7gt1/nF+9eq6deIa71yDYbfD2AnFyYrTeEiDQpYMdb/Mx0qlBIgIiynfq2Q0Jj4K4P9M52+Ul8euzabZS+OMXjmN9Kk3GDUT3ywwaTM6tUHK1kE1BlSaGlj0WKuzosdcfOPkj+J4o52shYW93W6HadY6ir3g9GrxI3vg7+nVehAxtu073m6MP/3+Hm0Y2j3UUhamAsTu9/fIjq8LFloBWsuSeKcMGmxHJrY+DzzPhSgv44GqR4nrybou2LZ2Vc32e+8BwL4UAKzJEZ2up1czRlH38TqsDtXeL/mkt0I0Dko5ni9wfNZGALcGeSEDbqWjtGvMKOdX1TFpZh1mbErsshIBtRK8K8Ct9dm2DW9vN6yrbCfpYyBmrtps2G4n7casnCUOxfHUYaW+gdF8PkhPSQ9Ljkr/KUC3SGG7E/BQwJuW+sxImD21vYaxYOzI65ozEK3YowO/5Fgs223vSfOuy4p1W8EhAu/3+wO72fMtwlz2QMufPue7APoFa2KNckuX7qSEq5tWX98JVAkp5ix+zPUSAuJb5lQe5Yzytm+Kc3EZsFongdN4PBgvjd4nw58V21f+WjD7CXzJhinN5spvwOm6Rno15fO2x3XbjFmdlnVIHcKjq6cG7EhbHtR9fZZ/DOZstyLC7bbh7W1DnIP7bFeV33R/UlsADHjy0tO2J+oUz96/u6/jllKgrGaFgP3xiG/5DdEzX4mApfOgWJqP2OhXtt0VOyKAW7MAfdax6GbFY0W9OmnD2Lqr89Qkis1HgjEnp9RjMewVB2jr/PWDknV+kmIkVpgLK2zrKeLf+hmbyk1j9SJAIqxLvUIj7SZhS9px3SvsOx73+uxtAaBElI/ZjSsRcHW04rVfnqMl7cHY9drnKKxOzXPOZ21FlZfEdcb5GRkRDCP59UG3mkDESAjs1stZHBjYorEp0HwmeYeRdLy4IYhSYj3pWXkWHFgj9GoZsXp/BLCxjAyAeGzWQsCy4PHYq/OrLWMk4FsbbA1cmRnE8UUA+S1gXMePF/329vpU7BvaKaxiIHVec8uiXWTwX/q+eYiyAsYFmNhzRS9J1q+MwSuM75X+c6aPX+2TM6BvJv+fJV49kvmd71/Mo9djZ/XyRJ8u5IHcXjo90kN0ZGa8v7/jfr+rcCa9NM7f3r51XxTli5PWgXhg0MunzGU7CMDttsWTSNID5Pf3d4SmPCX/e1rtCsxY1xvW2wZaKL2ptyaWYGLHNOUMZm3bCugWkquiaDvlBdry2nKfsxk1edZro/ZeBdkgLorilCtdLLPr6V6NsQbHqdSVE9MDq/LTK4440XGffq2nLbMursxrj/ujWQGVT9lOEp9hgNKj7yzN2PkR4J4R2ze91Hq2wXWKFdGZ0zPO96x4ZIGWM/PBrw+6YY1AMf/aG6yNG6Cr1HqQIkce1yzDUaVZFLCJTbPdHwXAfa/9+a0pzwLwkRHVYXqst01rW1cQLZnFfqjzSC0rIsBbHyeWDeW2YQVA6TXz+gQdIPVERvUG1Kx3F6X4R0XmwB0DzOC6XxngLWkRtcC9YsFPt89x+JLv2POfNd4z+Y3kTPqfmQk/U2/PlvIyYB+M12v9sRZr2+VY0fKClvSAm9hfZjAhLamvKA+KlTQozzMWhLUg3pbRY2A90eHsg9DxlfErlmWNp6+8v+etAinhuL1EvGplywKAZWfcAGxvBOYFgSKA0+yhZRBb5tAB3ECuQxuvxLXl7QPvOp5TRyi2rzdzWqdGwK/BXol55oqMO8NUlrIWB8DiDCDxzIrE8ctKlb3MTjLMl3VBW58pnaJZXpPY1VYSD3AL8VL22hfnrecE6vKfEc/2d8vh9MsjVryHa2yZj4D7kX4q4fH9E/IpQHc2asxqSSDx2VzYbgqUl0rUc9dojec4L+/3FKuB8eQkA81L6YhBvyoj/c9M2t4gOErzZwOaoltsdyZCUIf7620lGnzLb/e1rtuWAHdsO6JygkPpWVkDs+cuXRtUQzVplSmuuh8ni3JHGyb9FkqdjqwPUaIyXnM+d85A5QMApL579fK8XNW9Z5C9+2f1eTXbfZRez4nRv8+mfVSvPXbtyGGfSbdZqZps42zTojJZJ9lWUgCsmbApPtvw2/dveHu7YVkAth5zSdnLOaepw5wFbzasPuo0OgIrmAlrslm8rgi3GwhphQARdIdkDDhtJ2EA2AP28AATY1uiLVwQvwgIGfWZHlgiVc96HMXv0gyM8gp3v25n2licHtXK+m6lZ12W+tMNp9lPda+vV/2AffwUkqNRPAL8DgObH0BFfB5AFK0OHiT9xTiEOVMZd6XAcjqJfahe8o57t9/UNsqYoi7biKCbwSejft+zvdZNe5aAkfnZk6uOQ9sSYx2O5JcH3bagpSIKsNZvqJTXFRfD7APDsw0wG14Ghjsh/YGs2qtAwpm6m1klOCM9ptQNu8Q+sjAQaMFCb/lBS72f2wJwMY46L+u41G9cA2oS2tON3FHLdQjFdNT5VcBExWUwHnuIhZUn5KXvKeAtOr9iBaWaxKg+KrEUsT5azpYTrJ/EH+cjEvNL9VRIommZm2D/asqrnYNn6s+Oqx6oPyMydgV0lHxUvulTHpws+dYjakyb6DxFz/Yh7V55evXWsnnKgSXGtq0IYQU4IDDFB/TCDg4EDgHEhWSQcRn2gD/9KT5IervdsKajUvvl6bSJjFVjI0ud6ZFMuT70A6b+C1Zm2rmxHDVJ4Y5pvw2Z49abxTEetV4CSHX/OaYTpL/Fc92L/gXrlz5QbGSG/8O02XxnnW7CPg91epduS8tul75mAP0AcOvrLks8OV7z3KTA9hWCRrd7JqSk70qY7NBcS7u6diGd0dk2vzzohjYCubGEEzT7urNh0NH9wh8tX5xTUYERoFqOM5kO09GdUqfd0/mPkhmm60p69ponXp7D+qD4tjZagWXZ0oNG8WisPZ10ok8AsQNa2GQ9YXnnfLMC3gS4L9EZHeJWTS+swpOpC1V+ymnGh3uIgEXOI06pEgNrmvQO6+pAPHbJE+s8XM1Hvmvnpp7/2kn5KL1fQV41fqVcvWO8/ggZray9ytYCmvUrRwPWLDeQ+0QanIsaB/GyBdzyvdav2Bwy9sFs60JbfiGDes5FBcacupO435Y3bLcVIcQHxd/fAcaOPUaOdkFgHBP2PSDQjvAjzotrOqnFA9ZW//F4GYNOSU/mY3s6lLWvMbKkzJGVVzkVgErasHT1cDVmrk1H4+xZB2xc1lEeMc4CINRtC7HXYp91f4uf3lyvNWHEriwODTPnt0tKnQOlz6zrmtnt9jXu/vNqI7k6bks7i1OoyumEO5PPQpRPGpO4vVL0cNWrcMys/PKgW7y1fd/jd+UlIbF5+gUoROrBt4nKPGS+bPyJDjHyjDz2z+pTsrrGnPxM+YgO63nddpCcEkpmm6LRo4WwMmNd45P+8oT4e3r4SuctDIL0Q1mq0y/SyE4II58WkMgS6J5g2edyvVK17hvZXhUDSYgvXIjOQzkzN8696tQBjkvRqwEbr5BY5rmwXrAzPaZiEpGG4E8wkkf9bAQwf4Z4qzEfbROOWF1PZsfubHo6nOx5/vHjR1MXMViiZ4gyyx33suq2m+3LlsWsAbPkK9tc9Au5PKCrt5VYoWw7QhrXS7JXK5ZlA/E7fg8/AAA7A8GADbELvD/wpz+FDLw02ym623qtABkiQIzMqJQXeT+wOCOSlmbDLeDW+cQtMoLSk21U42mhAlBFj2ILa92rFQLPuVFlXao4pR9U4bv98ABL6PjCwEreKDa6l1aXYZa/TDDG00mEENKn20hdl7O3N1P/7dw6LvO8WHIoXUS92ctxbQYEm3td0nD68Uwpzq64jEyDG3cA/IHPALqBDKhHyx71VoECXWYnoWkgy2bke0GU7p5Ip9H8iqfHaILTE+6szEyUV4DER3mKz6bpAvYlbjlhBlbEvXXrQtjW+Eau+/2eTwKwrIwwitLP5MUPuc6IorGl3Puge0P8pcrUMLcO4KayvGsNCyMuM/ckqfMSIOb2tY53OXI6rTzVdyYJrxGD9Ap5BZB8Ju+WuWvDjPS4oqPHlL1iFeVMONlWeE+veVfzvBLKb9vbthXrSsjv9TMM30wd9thpC2S3bTMMY10Gz563+TPk+DlhSyNwXoBv0Q79eH+P84huCwG+APbMigLv9weQiCtKzsDYFWeIxRLQWK8UWLqgLgtF5Fwx2QFpT7oC5+DiGJWc61PLtB31V1GGBcmAu9745pTYaRf9WTteOl6qKZa6Qs6nTuPcWOOcdkwvA233KMnS19/e3pqVnb7ufZ0OiQeuWydFKtfIWd991iZKfXZuj1K/aqPOxDoq3S8PugHkEyi8JRcZnnqP7rLQcBTaSejSBGKWSa6Ah9b31Mm3Onn3PTDUW0Y5pdtJoHIGrP/s5RzfSEd948NUERK/LWtmhR/moUudln5gSwzbsixYlyVNZsWlIsgDTKymjfgvAUPgKl+Y4E6OIYTMqGggrk50xbLUJ5dc6Q/e8iNRnFCr1ATkn4LdbT6nVjWceewjxsPPkjPj7o8aR2cd86M69xjWo/CBGfd73GoR9gwLda4579vthu/fv6ej1+R6AjMct4kwIz9k1stztn8KyztazpZPXeYeS0v5PwAIICBvHXiEgD1wftW46LpkEBjtzr7v+Mu//BP2fcfttmHdNty2rTqrWJ/gpMtNJkwphxyvWqZCIsKyLhXQ1nNV/ktsrQzeddsiYFVvqKwPfMu5iiYQEKoBbivCbp9zjP02ka2rem5WcfL54cX+zdobbyzHrMrDryGECLYN4Ba7Li97EjKoAO5C70VnrBjuUdlPC+lV3hpsN2V7wlEft6YvZ22MzuvV8mlAt7zyHZB5tp7Ya7Z7Bcn5bp35f2ToJL0c1nwWQBStTdNxjfc3ZFBgTMrkBKUN9qgDvwqAX5lgZzzo3mC0cnawnJGcLgErFnxbvuHG5fgxOYJMiyzribEThmFFmowWeWBElhk1ixP/rbsmtZ3BSG5nAI99x/v7O+K+0vSGNCeysG6vqju3r9XexNkU54NakJ+v01kCyUnijwHjZyafHsCbkWfL1yMpXpXfbPoRcAN7CHh/v+P+uKctRxrwFNm2Dd++favu6aTLC7J8zldP1nrvvNXPs2ejMEfzj29zKb34pjCaf7YsoPcH3u/v+X0V3twl5/m/J+58IYr7wdWzKm29FwaactmSNUtA16oodaPZbJ2+1OPj/kDYH3lFQMiJUicFKOr48vKXop/o0eszx2Dba49cjmZ1g1N+3lhElcYZ4eo75WsCuOVV7rKtpAe49bZHnSInujyTQJEdMfpf0Dt5rx7TncMYh1Dr/Wz+VT54ehpw5YxWM/n/+qA7sQbrulZAR4uwexp400IgXkwHuNYkFrdr0+6CRAHEGANhImrS6U2sHjjtMXojkHwEoM+wTa+YeP9o5rFZ4VgIK0fwLa+Xl1fpymqLPhdbfsvbHtd1xbIuuN0287axZPRseaVzcXk4uJHEduefHPea3+/3uHeTAeRXEwNMMh6QDfIrRdq+0fTU8Cr0WG/FphLj+VrQX73k8wMdtI+UX0Xn3hL7z5CaSW0d+D0EMBPe7w/cH/dqPhD2WuTt7Q3fv3/PD0HbfiHjl6hvp1vQNQYLM6sAM0QJJ3vgMpEggAjbtoKWBUwLCOn0luSUSDhONiEyj5Fhftx3AHfcbpztg7DzRae4TXMhNA+qCcjtlUHIBgu6c/2BsC4rbtstrcQRlmWFchEqkKbrIa5K1G0hOun8pQZ60l29M23Q9sexLY1hwmH7AwpXyO/cd6T+kR/yF8Bt01jSqTTrujb7t3Nt7uo4XLUK4ZX7kjhzwQh/eOPFC+dev6TgcbpnpEsMTsb/9UE3Clv30MsqYhgUTKle7c1r1UK6c1+VDmneU/o4vYklF48ROWKFRmzxVTnDdr9Kns3Ti9+rx2qyFGCHePKHTEjSB+3xTEB5w14IActO2BWLo5f6dHsJP7Bwefi3V1pvAs4PYuUdfylVZgCit32Q5rxYkFDSakztuXQ7A6rX7k0RWH2Y4B/RV6+A+T9i3JyVGR2nHKOBzAD5CqR1iAYGcN93/Pj9R37AuU4XAGK///btW3XqUATX+ReI0otoFMtasmwBozeGj8ras88jJl+XtYy7qJPoIS76QoRbooGIgMeD8HgAnICfvF4lu/RECBzweNwjMbUs6aHyNa8Y2LosvwVwu5rnfKoyOHZjXVesS9nKQ6Rn8raf6CNci6MkByisSK/+cfowV5bRA4aVPTZAXN+3NtTOHRIuXvd0acMSCtAmSoRJihYCx+MAE+DWfV2z2zLH2OcHFpNXOZ+bEOA7th8pM6z2rC5XZp0r5Zx1JM7KpwHd0rEej4cbRuZvDbzzQMlsIi67Sj22uzUTdZwIf/w0mrQ6LMmMZ/hK6U0KdnL+CEbR5vFs+mdZfy+/JTFL0p+kH7ZHlMU62ROzIEcNWvBd1SEBARy3Q6FME4AwVfK9pM/MidGq94nrfgYgLUG/ZmvJDIN3bnDVwL1nlLv59S6fZGln68Zjxp5N81cSj339GSsG1p5U3y1YRQQjf/rTn6rzuItEIH27vSXArfu+WN/alsY8BUj6x/aJ6DllFnh75evFt2BPQLcOtyyRqZSVXQBYF8ov8drXFY91xfv9HY99L459Rd4QAuJpTXsIuCUbtVF8m68WraGuklr3EE/USG1WzVcxsGFgqbJznBInKiuIEpdRmPgQBHDGWPFFeEuqo7a92LGfWv+ZMW0Jk/JZUi7OhVxr21z6WQHGBDkb1l0pCAH39/dma6Oeg263mwLbAJGA+Zp51lunZMX11WKdF+2s6HqYAd9T+R38fpkwn0t7ojyfAnQDNfDe9z1aANJstxjPchSTlifw9tPp6CNzeg3Y86JtmNqj/jjxmUZq8v4ZE/OzMtLvcJUgTXDxGSyqtpGs65qBt2ZhsoEJwL4HPB57OjlhrVgJBaXzWOUMvlFNGIUAVNuokkEQGw7Is/kxdlwafu3WEmtY9bUPFUYpa61RNIwXxsMsW3lWzsT9lZjwownSC/sR+acfpf8rljOCyUe1dc/WYXR0b+a6ZXDLmIqfZcRFAFPiaBvXY+i939YmCDt5JBJeO9WimADOFDLrs63RSq1LfHt43IYRt+JwEPY1lokZ4D0ASzxakJP9WtYVIQNkcVEq2G3qQpEAERGnE0KSuqoyxUTlWtbzHUJ8vbytByE7Ep0gb5uWOiKKTpjMsI0tL1p052wB7MwEMrZSM8c1uaJtn/SfgLqP1fN5YP1Au6QRE8g2P4HtPQTcf/zA/X5XOlLWSV50E9nrArZzi1Fya5hNf6HT6PQIl1gsIH/2gVy7UnBFYlGcx2sP0j1N4jF3+0ujk/THyfDAJwXdeU8tBATLv3Fm1ixj7rAfwHZfiZ8K07zFSQNyDwgeMcA/g4H7DAD7WWnKx5GNthPJQmt+y5tsN9GnncRPxAktxDfELcuOZV2S4YxMxUJ6j13NEMmkIQ9jJnXiX1DAiMq9rCelccH+MVG5eBnNe337elvPjpUR4wc4oFQTlhOWbqbP/lGgd4YxBVr9qonQpjmZ99nVtCPg+azkpe/sSLb7ROUBPA41iwaOjOe6LLi9rXh7u1XjQMLk2mJta+OIIup3qLOrIb009EpXz9lqHHdElrpuHx0h/sMc4tnW24J1jXt3lx+E+11sE6dyFwadmUEBeHCaXx8PMGT7hzwQWY46DWklQVhlYXeDlE8Au1ZN1V+Z/4rDk9NJTHApp8zqfdC37/IyGELbRJmJaPpCzC46JXH/td//C8CXhzd1/u34aeOJjY7HPFJB6Cm1wkkzx9NcHvc73t/f3e0k8lCw3ipSO4v1gYjaKZKwM7ztjD0a2WwNuF9hK5jb+U+LzeGKPXdJxk7YZ8v0KUB3BjoJ5AjAEYl2pxyFk5lA86a2V0nLnZx2IKujmnQ6H8l8vYKZ/Bns5q/E/rlgNAE/IsKGNZ8jb1+KYZcv9YPAj/sdj/sDt7c3rGsEDACB1RslLfBGqpfA8UFKwgI5x7tWrhjG+YcoC7R/tmVHgPv0OFFOgZ9IHzx+BnlVX9d1Plop68Y/ywZ9kPTyDiHgL//yL/F47BFNVG9YpfjGxW9veHtLZ+d3QVILO47mCAuizpZH/8m1KZIEUOxoD+QUQCgvrIl2Cbhta05nZ2CPG9kgdbGY+fJ+v6taWrEtBLA5uMBUkwBuAd1WqvmCxYbFHLLDEADQghoy2nK210rdtCtd9myomnUrfxrk67AZpDKDud1CqEXXuw5TbBdFok2+qxwJKHu305ZFAdw6vdvtVgHuOindPqXfax3yJ/rSGwOWze5dezXQrn7jeO44GlMzq1Rn4+d0plP5BKCbUAasMIvt8YG5m8X/ZckrgR+RWfZtJFeZpVNpOgb2WZZZx/+p2wI6uoh8NpAEoALi60pYmLAu5c2oj8cDnJy+PdRnfeu2jCxUwJJOScn7B5clTmBNP0BOI4SA+jHiwmJI+gK6Cej2nzx+uDBYCr7BTkavdoWmWz+p0hvDlqm6AjxfKWfAtIS9Cr5nYx0tD4/sw9NLw5343vJ1gUEROocQcH+Xk0oiWNSu5LJEZnfbtpIOFZa0AR6TdtDWzVkHSbYrEF2rv/blJq1eopvdd7wsC95uNxAtCYfJDEnY07GDKTUA6VSYxwM7M/awY9027MuCdYnz7aqYVZdt7MxZ+bfEYU5bSRL8Z0RAOnB8dDt5bdYCQUr/B8kgdypvFS2GaB+qlPL+/9n7d1jLmm1NEPpGzDnXWjsz/8c5/3ncqjr3VpWqCgPaQ0KYSDgYSOCAwAGjpZYQEpjdbWG11BYOLbXUBmra4NEeGLSQQEI4PIQLFhJd1K17z+ueP//M3HuvNR8xMCJGxIiYEfOx1tqZuU/1SO1ca81HvGPEN76IGFEGa9ImjFLTKcgN7xXKJsTjT1SVZYq5W0pZTiKH3czLSetsjraMj0ff1abDNe1xbSanFO4e3HK1/tv53io4L10rtQHsJ5GAVwC6AT1dQmiNwajWdZcyrTdTal/KibF7h7H32kLPZU2Zb2m0WwaEpUFmL5tzrRGQp/NLGwD3EBlUidzBOF3XYBonN1042bAZxvppVDcG+sHOs9/TNMEQBQXLahpa4gAAvWIkn4DnrD8E0J0B+Ar8wbbWLOxN/t72+qsZrqugEOkgVmurS234a2pve0D5veIqgZWvRfT0uxPn4q6/9Hh+fnZAjQhNtvZWDopxG8bmbgHlM9dZSzpzxrRV2ua8bqjwfT2sPI01dlvSXAM5+r47JKVFG/afjBimETYMXL4fIZJUMpNmrMWx7dAcmvn0vUprnmNk9/Q7+ldUH26JRYklz8uq1nfZ/ycbJwmyfJPVE+XDZ+I7mt0ug8hou1DQ+QglMDeE4j0q6jiZXZDlJPpdIgoH3TiiMU9Pjj6iDpZxQIwcECVP3lv3rc0UleRL6J5NYFs/U2sDm+KpP/UqQLcWOflPpvQB3+SDvnbsn97c9hrk2o5wzfR0SXnn6fjS5XZNvj6HLLEx4R4zmsZ4Bs6ibUzw9T1NdgaOmf16Pj/wuVPjurCciojUMCWnrxZAAKLqJYp+d0Pas+9u/HADggFSt4XVot8Czln9r9+kYgilKUugwoJ+BWD5NcuasXzNjNhLzCo43e3W7U7TpNpLGmbTNDgej85nNbn77oOysPxYUGQtr9Of9TCuj6M0u7A2jpUYeRG3+bBD07Qw5oLpeYIxzhOIQGbjKWcL2TDIsGxgPPhswuFCC8IpAx5SlBn8mPVxUzTXty4VcLo0ntooUQIZ0865MVYC3OV4WD3vjLrciIs5z9n4kDYfaSBbhiEsJ8n7GRGpo9zjxlYnallthbWf3VssyWXZopu3hrH3vc8lM7CNudG1Brb36JBXB7qBeELlNE1VCCBT8Bp8JxW+j5ybhS1yLxbqmikYDZz15zVxf86OsTWd92Dl7g3ecwVZClsPfE3TwDYWjW08o20xjZMD4Xa+yTFfF962LbrDAaSmFpcGYYbbeCXvEik+PDewsje13+x42MxaRynfr6euHHtNasbhrVIa6OT6Gti8xUDO47+nLNVUqR/k6fmSRm4OkKSvXC699+JA6s/JHHAjAGtSADvJG5dnR0uyvIQhXo9tR97TYdTzmceRAzYgztrqa3vaUQ7kjtbCns+RBWUORorhOAvH04SRHck1Ng3IL93RmyhD3jPAlwOYOMaISeRa6gzQLOYllks+jLtsqPQUwGeRHRfGugCY9bvB9aAvL+uvpx46KuOn16E6f3aaMHjQnc9aiItZtzdBrqdlmX+/ZjzdK1sN7y3PfTXAm3l1ZLsX0Nby6kA3kds00xY2VAKKY+Oyz+4K2XG1fEkrbg/QLikUDTS+9LTzWmf80unLZY+S0ye+tS3DdhbTaHEZ+sB8x4bpuvoUmHH317QtGr/uWzbalBRwOBTeqNNYKV+Isju3MU9YVkRpAaRB7Km1Ulu4tX/V+spXMwjcSZZZ2Po7n6NfrfVjZsZkGeNkcblcMPRDmJGR9ixLEbqu88deF4wGZZzm9zg8slzvuX7MAdI8H4zc7dxSXpeul55ZmmUr33dGilyWZTiWgWF0egXiy5vyDY7OneA4DOgBsLXouggXpCxkTXMCmnPjfpYuKaPIAlNSP3qvCpC6BOTwfj5jmMZTNqrTu6GEoDVbkeX0wJ647BIvl8BXALDqvfx8Bz1GtG3rfW+bwHCH8BaMvvx6Ptuhn72WoS61sXu03T1yj1n4mdE7jySdrbky30vyakB3MihQdL+UbKjMEIFmu4teHNZIvBVZYj3XpnDXnntpy/FzMvSfa0AvxfsSsleR5GwWSfttDcZxwjCOmKbRg4M4dkn77fseGAaQV8yXyyU5/joXC+3TIDbxFYiBfbB4Q1ilyDdEkedrTz3eS7nfo71+zna/lOsSg1p77kuIBg7WWoyTRd8PGEe3rITUQCjPOYDSBsAdTmdVQGk2UCoWdG12b2mWoz7412ZNlttALR35rEsNTJXS6N6fX2+7DicyaCeL89MTGO7YeFmuFh0EAmQZlieMRGGcNY3xQNt5G4lAGCHOPIkxHXPgK8AmN4nYL+PIM7FmUDrWPhoOutwCMaHL2z2U7BvTYTMAvZIv6O5k42qg+pJMMwhgC1jrDEnvoUQDbglPDEg56CYt0/lSmVoZvEQfXopby1Ld3IPh3jLLvPReLiE1mX4B5j32nnr81YBuESI3dUi+4S8NbNJYq0tMVmRpKlB+18LdGtcaW503tFsG8pytuSa918o9w95aBi8NeErKbuugSJ65I2NgGgNrW0x+2jH4+FZxsLXgaULf97OBOE+LnAwn4FvzOEXsG8JTD2kqaPZCsTTUw9fJvQzBPeHX2Fb5vAe7fotsmYXKgcOWtFyrR7bqqdLza3EyO4Aj67iT8FS44q/YueVcPtI66P/4UDX+Nanp/3ivzH4vSU2H6Oty3kQtHfn1+GyhvNnvNyECnY7o+wtGS2CePFblbBEP3CnQRJiY0XQtuu6AVjwseSZdmGAfRYg/Td9iUUAtCoHGnSUgbzMgGspOYqX0ugTHLMtD/CmOBQWX6tKYcDn4Z07gpctZ5LudHMgehzEYNbnulrNHWj+LOTdiCm7/uDzjkpfFNtlGtqzpwlVj6M7YYk13rd0Xnbn01K14sSavCnRr0Ngo0J1YyqQ6PafTixHgXqd791qUe4B3LUwNyu/BKr9E47+Gjb/HVNGXlj2zESUx5HbtN95TiazjHoYB4xC982yZQiTFRgl7IsCemcHeWGWaDzMaLs9ykoNvfa3w/qoEHX89SF8GbvX2uASwgbTv7A1nb79aMwC2skshvCvi3ZK/PfqrFs+W54QxZEbiYjNPb2NMcJ8mgDtngUP7Vjpf+kJJcl20V59FABSeyD7nDGqevlo8W8ii+j3Xx5L6dAGDCDgcWjSNA9UXAMPg95mQnHkRy4WtDYx4Sy2oNWDKT39eM0oQdBppPUS6/lX/CyHp5ShOgUR+OSuLSklM3vAK6QErt5MU4geyvieLT6SNqTBDmlW+JA5mxiBLSUY5xCf6ltcnS6bMuU3adZK3DAdsAdzxt75+nX6stcM1wL307OeUxJisAO5biYgteOhVgW4txluJssREFxURIC6HteIqyo0E3S3M8ywpmYLKw00GkJU05WFuefZa2TtIl+K/ZiZiLS3XpGeLlMDZUtrX2ojxCoB8e3aAuQeNZT/fW4BTUq5KwWziNVYeqBtM5cF3i2xts1uMtVva0T3787VSMrK03NKmt/SPa9mdGhiwWq8VjBzNkPbDkHh0EMk3B0tb06xjznYmS04WQPc9JG035QNbtCyOSVm4+rN2Pw/bSXl9eQzTwJjOp53A9gI5odF6w9j45yf3E2C4g1wAGKYESJbSKt8lJZw/iwB1YS3DWn+AGCjUuXtU6YdiruSJFI4L8xzaoJRMtAEQwX7elkmx+TF0eZGReqLS/VYvJZkZjk2j9iNovWdDOraO8cv6Ste/3oCaMihSBlviy7/nsqVN36pfr2G5Q0nk9Vh4vjZ+bOnPQn4tPftqQHcKql2ByGE54rNbPQEmd4hCznRrtts9yiHwPcyPBshLDb/G8q5V4FoYe+KqhfsSsgbA11ixGii4Nu2b2Ks86I1j870Amk6jIQrKuG0sRu/DW46aX8qPTk8C1CUOAT2esSE9YMB3BR/sFnAe2atZjnbk3r+xsxy3stL3iOs1yOcwNkuyqsugTLGCXovfkbhQyxk9AdxFkJ0DAgVowxJERMBXTOeGtpTfq+c7HWv21sU9jC0BjeX8JLXiQGBL4AODRri19NYfLKNOimR2s3EDALBFizbUTQ10q0xFtlj3XfW/A90O9MvYvmZ05Pkp6kfmwFZD1bN7Vk4OLswSBmZdYonGISFltmNUDnD3fQ+2c2yh129H4zElBnU5pUW47Gc+fX6Z4Y7vpcbGmtTG46X62VaHZdk0fi9IUl5ZmDXgvRcz6bqTMzeW5NWAbsAXElFQ3uLH2BgDq325+rbM7j8w59Ng8Zm9THdeOVqxrgHKe8heUFuyUD8X6NAdZm0wWwvj2rh1/Pr38svq+8qjL8Wkt22LxgANx82Ul8ulWo4zdtF3/ujnGxFw60EifGFYIhCrLCtGcTnB6vsLN61r21Ht2VsGhHuL7idrMyfAer8p9n1ouHUfqem+pM8tvM8MjNbi3M99Fgvr17YGTSPt0YKoKYITZnYBZoBXq3lHnEaqc0ur2at3l0iYUjh7mbXSO2nZubJyOHMZxDvGG2i7DiBfbqP3DMaRoAo1Yi3GkUEmBdyz9GC9jTnQ6uJws3zON7V473btOH0+/ybfa9qKPMmgiTfJEZEc415i7GPwaUt2J2qmszTu++VywTAMbpOp/yfh6vXbLp55e6iVpdzPAb5cj2mTUkhdK+rns6uFa+txbn3+WtLvWuIxj7MUrtaBe0D9Evmqr+czGLm8KtCtcbIc5SsN2VqLSbMVqrsL4BYvJu5VmvXSJeW0ZYDbz0Qsx5s/V4q3lpbSM18KYGggseVZLbWBZemZWpjr+S6obaVwKfw3NyTWwt6sfJxlGeIyAIxX0uI+sPhaVsbjOIY4xTBtjHFDS61MPfA28G4HsQ2QpBnd8/AO60a/VRkESmC1VO5bQOsay7SUplv6Vw68l9K1lo/8KrmHIxi6Ip01cLjGdAkcyN9jdu4Bz5e+0rYJxlAAKlrX1thA60931X1T8g6VDgJgidwmZZ4vb8sBVam8c4YyL6c8fVv14F6Zh8nJ9Xn9pPk0xqAzBGMAYxoQOe8xdnIn6coBMh5uwjKhHwaM1uJwOLgj51X+gpHvYyqVq2z4DilKwGN+zR3eAwaIclAZDaiantWAW9qNMY2Ka74kwP0M8CyJUz8qZysMw+jbcHrCprDb8XTJuNhmS5vJ85A/p8uNWZXHJpPndim18VvkHv1D97OZ3smeu0ea9mCrVwO6EzjkTEQA0b+ltRZ2HJ2CUOwGED2YRC8mBHHyr2tkjbEpDdr3ALDXWoNacgWzxpx8KeC99kzt2j3Su62+9H1OvmqXlPlAskeW6pt8HOzXhcqGJu0XdikfouyFHZfNmWFas21hmgZNjZXKBsKQ2S201RYpNu99gDsHP7qNLLGH+XtLwCiPs/TePWSL4bw3viLbl8V1r+pckmK6s/xaa9FfLv6gkPk7xpBypbZOfhTZKPmt01ZJTy3MHIBrl3F63e7WwXeN8dbnTyyBsC3hb0qH56Ca4BKQAL5gYIax7L0gxTKwAMja4EWEmcMG12AcQdWJ7pu6Xnz5AbI+Pz2wxD3KIbxao020Nqdjvsz2pevPjXrLVppBmVf3yfZ/jL4fMQxy0E26/ImIcDh03v92m9UlJ22+pneCIbNohNMsD8v66j7AVn/fQ6q9JP4opSXBj3eOK5e1cngVoDux7qCUqGLyZG23nSZQ0yQP5qDbXcSsA+cMU5VBuhPYLsnnBsNfUq4xMEodKrf+dT1ew8zF5/ILkojSs/dTJkQxCjezk27QWGQVJZmebZIDpIjIrZn1BzAcug6NMC6UHghgETd3hoszyv8+kjBiG8tu6YS+rbIEtEuzLXmcS3JLWyjpnhpAWwRdmAMR/f1z6RlS6XBpCNANloF+GDGMQ2Do8rweDgccDoc0zALDPY9YATzFvM6IE2WIlWZN9HXpfxq8AZj9zsPIpdS+SvkpgbCtYH5rG5Q6iXEaNA2D2aA7tGAA48jBWTUnfw558hjH18PhEJe0sfN6Irok6pPUgGFEssC1l3RJiU9YnvJ4C3NQNY4jgDjLp4E2efSeG1J1mQNbZrf2XU6WTJ9CAPnH4wFdJ3sRol/zNcO/1v9jcRRNyKLU2812kFyON17bS/q9pA5K+nF+T67tNBK0LKU76ox6mK8CdIvUrBUiSjoXWFvL7i1RmML8xc6XSknxbpHPOZCVJJlO2QgMvjTbnZdvzkTWwliTJcBdS8stcm9lIq97gggE57uYrZ1N00t8WnkTMyZ1P/+01sJOU5jyNL7PQJX/BCRTpKkZcA9Rmdwopbo3JeVeeH5Pnay1w1IdrxmD94pbJD8ePNlgWEpzIY49sjT41sIrGQgMwW+EcZpw6XtMgSlOwxTAnR5EUk6PFpPtY2C48pJTASX88Iz6rcPPQbfskWiaZjHvqZExFwlT4twCrkt5X2LAtwF0CSOCBAGkbStr5k2iO5gZNlEF8Vh02QTrWN0mGjlNkyxtksgD4NanO640zVLeBUjpviPratP+JN9D4pP61c+6/kwhfGm97rprC33fO5Ivq2dZDnU4dGr9djQNSs1ii85ZBurzNeJr5bZVthp6+nve/vbo4iJTvQLi18Ll+NBi3KVwt4Qv760bcK8IdNcAmzTo6GqtZtukbLdroGXgrePUssaafg3A+zVLDiDlmv58ifjEmpONt7eAknuArIJt7dqtAt3hPfkNAMbEMctP/er0abZ8miaMCng3TZOs97as/Okm7bpm+l4ne8Gw7mO5AQJ1XQb4hF2rsEru9nKetoDMPLyS8XePdpyDIAGBORCpyVaD4V7pzC6CGej7HsMwVPcoyJHlubeSHFDm/U4/r5c+MPPcgV5mrOrw8sGTiGbeU/J0kW9js7CKOSwz3FsIhz2gZXv/mq8VdktNOgCEYRjQDwMQ6ssTW4H55bC2mZkTsDk7SkYhfOmra2BIDKcteZrVqY+rlIY6SI11yKo8JY9937v6ztqIW+7a4HDoEuPMiV7Gsp3MC+mY6RLJ48uN+1t1nf5cYsP3hFcKa61/VA3RhTi2hC33a2mb6416WK8GdGvJh31p7Infbl0BnsjTGyqJmrhUtdIO9jDdIteya19CbrF+v5TcWr75+zVWaZm9k5EGQd+tserzMErhIgGKok4tMwbvNlADTgHFjOjHuOs6AMDoQbVmRDUQZOYAemRfhJ4aVonPc7Oal5eUpE+qvOeiqmZR9vTvElitpu2FRIef+0hOwBbup4uWwtma5wh+KbgGlGl5hBQ7adsWp9PJn5zo30c66NV0V85QJ6QMYh8wxsRlEgt6MGekSyxjcK+H1BCUsYYL9SNhlEiGkqG2tS4ljjIBNW/vtfgkLLdEIrL7FgBr16WIFeS8nQA8MaZhRHtIfVGX8s8ss9LrgCfP+yKIIwr6gZkRlsjNQy69HMKX98UbVN/3AUc0qk71YTdt23iPKGnat4gek0qAOyU/aIu9Usnz7bhmLyG2VQfdc0xZS9kWI1f/LhGD+f01eVWgOzRG/zu36DXoLrwdOk6dFd8vW8HWawK2LynXzgbULNO7zTIEFBtU7gKgyMw+ogI4rcusHVdCjqrRMdOB1VbAW4uAbmMMOuXfe/ReTybVLyRfkwLmMn0uDKMxJslbKF+FaL+E4bYlLj2gh/JcaSMCmHRNal2zJf4ZG/+C5VJT/sC6wVG6r+tS8rFnLXtNdB+SDb4x3JiaCPKOftmTNL+5H+OluPJ8EFE4wjt537ftvG4Tw8a/V+rdwuAWR5sszTky0nHq/sfMwXCu5acUhn6+yvZVQIS+l4cvv7uuBeMENgb2fI5jLAPEcWbMyQRQ4zyfNHZ2QEyMhxEcGlTy46OY3Z/lxX/mh+CE/Olw1P28/TEIevsKM2OyFufzOa7dztpS7pnEhXk9qNW/S3281gbubfCXwtvDPMvzW43yW2SrftLx1OJc6if59WuIllcFuoHKIO+/i7UpyksXiqhOay3GcUxd92ylxe6d7p3vitx7IL8ZsN4gueH0OePL850MrpRdW2EUWAZw7GtOJeCNZABzG3bsOIL88pE8zSLSpuWv9ZsmxdWgMIwyQOqBRQZ+OYRH/Mk2TRNdDepIb66zYs6vDikfZGux5TJTmqSmvAvv7pnReEnZwmLeCpSvzU9tgJKp+TnDHdnn4/EYNk6S36inJV/fPevDFdAY+7Xa1FcZgB0zyrNT7GpSil/yQ55R13Hk9aIBt3aNWIpjzZjbAork2naDyj3ftA1OdHR6QtyXWufXhHRcRGC2boMsomcTnfYYJWXnJtZiT+t81g5K74U2nIHW7DkKbcKDbn9gnoU7Pn4YhmA45Gxn13VqhlCn5DYQWDKw1oinNbl1fC29X5q9kM+txt/We3kargHa+toaKbpFn9aMpSV5daA7iFZgHDdkCPCorRUUX90CvNcq7hpL5qXl3gz6l2bhtzKH9wbns3AoV5XsQViJ+ywG6NKageY10QA4/GbF8vmT2ggAFdaUipRmb7Qfe5n+lGUlVlx+IR3QBBhN0+Te8cA7OSHO/+fSKezQNaAvL6ltLPZWyQH1FiH/bGn43Nr3XpKB0oN/Lc6alN4pDRxbAdnWvEmY/TCouMO3hDHU70RSWrGRC6zgUprz4+hzAzwJEwgGbjGHqo+XgFNg2RGZ8FLb0e7yShtGa/kqga097azEcJfLLcZjQEBDePvmDcZpwvl8xtD3riItQpmS3yzIzMHA0ieKuri8u7wsTQQEjzIu9giQavWsy6Jcnwx9+I2C8YAA7XA1/h/9bw+zsm2MCRt9o16Ma7b3Gue1GRotsb1eX+/z0eZ2WWLit4DSWh+shXuNntt6L48vr5NaWvU1l756Gl8v6BbJOmLTNDAeZDDHgyAYwnan03ktteAZ2Nove6ZR7glybwWinxNwf+64avWxZrGm1rRvYgkNviyaRVs16pJ3PHD1epHj17ixsZIHraRLcbpBndB1bu123/fBj7e1NgJvMWKZMXpwPvqDdZq2dX9N4z2eIK65TVC4v7ahP9Biz9Pvr4A/KJCUAVIOr2svDZXwpAzkO7ZWu3ZzVmd4agAql5cE7XmaSt/3DHDh/Uq48nscR1hbNrKMMc7bg/EwNQxuCPWx1QAQVlL7jC4vOdwGXhOYpgZdaW+l8EK4Arwr8W/Jl37mVrBdCqsGuNO4CIbccptJAMjhAIKfiePJVVM4/yKy39M04XK5AIjgW7cWbdwGF46FvNXa5Gr9eaBNogMgrU4bVOlmyXEcA/GQS9e2OPklUHGzpJz/MXt8JjmYy/OoT/mU/Mzr+P5j6Vo7qmGXJcO9ZCzXdE4pnnsx26V7tfBqBF+NHdfXtixbfv2gOxPyjNw4TW6Di1xHtGul8OL6bmft1spqCcDNlKy6vlduYbCvBfP3NgJeQkrlW5IXz8tC0NK+GEhckwELndt/Jpie07ZmLWMax1UgbzImuhyZGwjbtoGhI9qmQe+ZnGma/MlzSpiDFxS2FpO1MOLxpGkC6y7eTULcpaZfw7hqyF2H1fPgCRHnO3BdHoDl3hrE/xI9oaS8l+TeMz5LaZLvS+xywjRCtWc1yMqJfYy5niMiHI8nGHKHoziDc70vL6Urv6YHzNLAmIcVDFB3Mxii4fmVd5NrC6BWh1HKn05/6bkSY12TvJ3lwCY3WDXgVoEEY0PWnlt7hj89J8wS5WmUtfzC5retN4jmMSRp1GmvASCdr/oMTd67I8Otw5umKejDvN0AwPF4xOl4dEvuTMqek+hYus4Qyv/KYFuGgWvGujo7uzkEVeY1HVGquy39VMKreQhaSk8tnrVwthKlpfdLuGRLnfz5gG5pDJgr1TgQ+I6nOpNjw9cG/G3M0xYm6xprrdQBl5T41w6ir5GtMwlb31kqq73gXQAGyfeN8STvu6fTdMAx3NZ7R1hKq2ZIluKRhm4aQkeOqenaFoNf750zO8nA7w+f4mnCJOu92xaNX2tusndiLmZZK6DbBchbfDb9Jr1f8riHo/6cUmbhtj+/9b1rZMvAtuWehyAA4prYvu+9DpuHIX6ddfSi7zSwqbGedXDCsz8xTGtMmjw3Mz51/ijdmLlV1oCJvr6lfrcyh3kc+bVtbbAMbIPHJL9kE+I5LHvfThZsGaYRciDWRTBSEEmLUrrzMioRXhGwGZSOdgeclmCVHwlDlpLEk6vju7LBvOs6tEHPelQR4i/XbUlK7blkZM3rdsPBUEk84e3ZvbV07sUtpTa81Ob1O3vydA2hWUrjFkNgKYz8u/69lJ0/G9CtO59s/soBhFiIANKO5Xo6rl1nsgbSbh0gawNKLZ5rQH4t3HsO7nvBbP7uS8gexbP2TIl52ZGQIi5lZoyy7rNSdtLm9e9Z3AwwRfOSiADjwuyoDWu2NcuT51HqTzyhkDFoxjHZcNk2TVbPa8bGbfWaplMBd4++dfgVSDmzlOZlF32Wy/05y5GbW1ESYMEpQ3dLn3hpucbQ9W8GADVOI/phwDRbVuIGJgEypRKQ/Tcl2dovdXnn0/Y1McbMjdzcqObIhOv+PyNL5NkFqQH/LZID0Nr9peultrkcX3ymbd2ekc6v8R7HETxNgC8teZ6ZYf2auTM/o+vaeIgOENwqGiDpH/oPiEtDS2vho5RBkTMGfJ0pgJxsMrd2VoetX07iltUB2uNKWoZATQdIWCUAmgPBEnPvmts2wD0nPbYZZXue2Sq5ASN1tcRmb8U7tzyz1NZLBtEm8iypx3oavnrQnTfEkgSb0xeOrD81fr1qEp5/Xnded3rWdsx9/WBUls0WFpa5u1I5bRnUl977GkDBSwHul5It9VBmYBDXH3NUurL0owa6gbkSyxU8kaN/Awj1bB0T/NIqtxdCvJ3o/pEPdM5Q9YBGuRpsmgbsl55IGtZkP18YpcR45fGmaSD1/ywhAMJp1xKB+6jETWatR94u99I1SwNM/kxenntFQnRLCgZYO2V3AGMAYxp0XeO+F5hj3ab3DJY5wyb31kDLIkDl2G/kEJx71EuephIY1s8uhbOU/jXdUzIYIhCPzB2zhbR5B0AJzK5MDoeDI7vGCdM4hXitjeuoLbM/YCeNS6+/p0pe8zag36lJURerMPTabQ24JU2HrsXRu1Algv8TcCWhabBYJ7xKgDu/L4RHWu9m1n5rsxZL5TC7hoou3BjmmuQEQ6n/1croXpKHl+PBOlNdnlmryR6i7asH3SIhM1IohWc0+O6aBoMxqTIRMOPXDWowYRqza/jPK2UNpOaA4Co2FGm+7z3c15TCPYF3zcLPr90Sfok52vPO0nOlNNbi2KIEwzNECSPGSL0esB/5asp2iyceyNIqYXlUW5ToCSawT3og0msddR7Ceu9pApE7ue7hdIruC2tAZ4vGX5DNhmrCVs7fJzG00+JfDD8JM7GUltNRameltrO3LV0jNWZzZqjtFXatS9bwTtOYxRGXQh0OnWojaTr0IM0h6Pka23wgz43PNcBZrJOdA7UOtxjXAkDKn9d/uR6r9f2S3l56t6R3a2XqvstR8O4vcaXIruMQEY5dB9s0GGhEz31cF63Ti7R9EMW14SQGTSZ5neX6rl72pfGMYFmdYTCOgOgxCQdA1zQ4HDt04WRNQJRWHl7ZU/tym9D3pL7zQ/1cP2kgfUbe294vOSkHqG9L6veeumbP+uxbZcmYkfKV+PcaLbV4rsFxrwJ0J8pLwK26T1CA23/KxrKa60AgA93G3AQC9lRYyYq6xsKTGF+Ka7sn2JbwgOWGWmIt78X2aakxo3laS/eXBre9oCU8x+LjO06A+gdc2Hn64xNVwF0EevIiq138OejwsQlwZubAZPd976aQOU0fZNCwFk/ThPZwwMG7KNRMVpr3NK0yqBcKKc/Y/Jnw6BxkRcMG3uhWzyMrW1WwxTrMo97RLEv1sQVwv4S8FKMkLOLlckHfXwp93lWftKcl9i41mNi1WQVIZ+DQfYGOgP8mdQABAABJREFUSNxlztKp6iEJTxKIOD7k8a31tZTooXn7LeSvpFOWyiaXPF9Luq0Uf10kfjHKU/1trayVl7X3DdDF+KdpmhMKqg7loKTT6RTG4flGdAOo0W4ZMJGPKmWt5bsA7smz25QBbgBomwbH4wFd53RX3n5SIFk3XPT1Wl3nRpbWk+5T/ubhlq+t9+uX1jA1gkHu3Uu26LDcmKktV1tLa42QvEZeBejWkoPt/Fq4R+Q2eBUAm2ZOEsXK5BXubQW7BriuBrMbFXjp95qUjIGXki0Dgn52y3PXWJxbwfZSmCUW5nq2kJIqFnVrgOhKKwtTK5LV+CjGEX66Fz1ZS97jl0zxum+OzKKwfrLv++C7VjZ5Msc1r9Za9OczRr/JqvWnZMq6cZ/wNA1LSZZkhuRyvJD117U6dRfUoKBQd65PZoCHltN7bf9ZbF/Y35dLUkvbvfq7azauHbn1sX0St4gxbh1w1zZuQ5opzzAmbRwRAKMITNR7zEn9lZjFkOYcTKtwZFmXvLO2SZmR9lG5FtrUBiM+ZzmLZZHHUdA/eVi1/JckB/oCYCWXOnxmxjSN3rBGyK0QXuwNGA4zZhYWKcCVGbLn52d0nTs23oT4DQhS7tLP595BdJpzLgBAcFMpaR7HEZNnuPV1IsLpdMLpcPBGRDrzIHnbInn5l9aK18o8FV0Xa3XI2Wf6vURUXiN7xuN7y5axNa8zonTP05IeXBo/tupKV5/1+68LdEsnFoDoL+v86cZZPBY+jNFurZoG3S4ObAbetwCsm4B3DGT/+5ui+Dzg+56Sswf3DnNPXeUD054wSkknIjUQVSxyiYvTTX85C1LqM4FfLrRJp5wFbTIMOXeDwiDKNG1p86W1FpfLJRyyM6lj6qE3qxF5t4M+QlGAtcIRsOwTn2wO3SBrIFfCqvbRRD2ssyE1AJW3j/ydfAgldS9J8wv01V26TP68EdZfLsFHbwrg3IxJ13Vuz40CMGskRQC9GejxTgYDLJS7kp6afs7Z5PCcHwsC60p1dlviAWkmlYv1pAG+vib9ZsmQWJKtbWFtvCnlcQ1sEFE4aTI+4wBHOAhnHAGi4KOdmEB+iYeI3kPCzGG5SdsIaQaUAWW9rOQ99xfBtvjgdurMGw4KcB/DYTfRZFoq47xNzQi+AgBcS3t6f/vzPsZ6eNnntbKk3+4lJYO5FHcpbdpAWtMrEtfS/Xvn91WA7gBiEMc7rURqg5J4UygBAhFRsOKzW94XoLHHutl6/26DpCjpjY+X4r21Ae0J89q4PicLv5QGkaUBuJZC3TaX8kGIJ+eB03Vo1bL2A712liUsUzkdlIDbpbToxuWWvjDa1qBpOjAD4zRhGJpwimWJYRNQTn7w7boO1LaAB2FuaZdi6DS4jgGl3zXw3rHQKg1mu9ch2miI34NNzlnee7X6LTpoDUQURQHOS99jSI55j2G1bRtO8FsyImvpCobIAvGgxwINvIWtLta5AkacTUUvgdE8fWL06vSGtCoAkBsCe8D21raUbzJM2eBUl+0d4/IwmcWYd+MmGb9J2y8hapsGFyJceg47lfW8gj5i/Xy+YJqsmxU7NsCMWHY1Wy4rKccItgVo6/0ooS8LOCPCwR92U2IpryVRamz8lnd1fj6HfA4gvUVKfURkC+DWYaRGS9kNY/7eUnx7SJ2lpL4K0C2yOgBJoYgyqx0LT9LforLNNzHEIFdA0hWN83M26C0NVTf0GsN3i7JZkxp7u2Uw+NJgfJtIu/S/CoOffkw3cgGyxbYJb1h2XTwe3gPSlCMRg2Deg2TAFHZ8CYg6EJ4+0zYtjGnQtm3iBUD+8rz2fY9L36NpW5AxOPqjlGM61cYrdpu2tvaWefmkLgOTjHD2vLbow4WQ65lw+t9VsqbUJTmb+K1swNk6k3Zr/5G2Y63F4E851XHLp/hzDr6Zd8RRGwwpXpAHw3VGWiY10CleU4x/n9o2hiPoTed3oaykLxmarx2t6biqLsCCnliRvUA+j6MEfErLKjT3zJAyRLI0jYyr78kzzNM0+SUjrqczx10sjmywAEZw08B2Nom7XA4pf0uUMtvh4C892+3jcctgWrSHY2DmYz5TbKDjL+2hKQE63e7W+tn83nwwWK7L6/pwnu6SkfmlZA/gTkXyoEmGtA6BdZCtn1tKWx7OWvm9CtCdD39rTSKAB7hNEW3bJi7PXBhRscw2VG4d6SpxF/OwE4jeKlsH3fzZLY17Twe4pXHek/m5RrYzfeod/TMYgfGuGHvlcOLUdG4MyjWiyBEZIhwPh7jDfikv5eQWgUVN5iDR/df49d6y5EQGV/nT7zMzLAAeR7c+HG562S05KGy2DBGpfCz0sfi+/tRtbi27+U2nDELeCT6AGhifM3k12QSKS3Es9O1r+u81+igPw04Ter/OP7RFP4A3xuBwOARg4wPYHWctDbNZHQW+3c/yIR3iWYf8MwIe5Z2lPGt/FZSlhdSMaf7e0sC+RHRsBQS5gbH2fh5HSecV24cvt1CWLgQE0z7UiXu36zq3YRFCJNi0r/goGeyBOYJ3E73pNk0azfqzBtvCcs/KkYBD1+F4PMI0LUDuVGq3hjyGzZwScXrmYwsxtQZgl/vquqvksq7aNybqvHwtBGKNiV6KVxNT7lZc+y/1uPT+PdPnftfr4FWAbpG1ppQ3UumwwsJJxbiwIrVl1To+vZZPh3MN61oDstcw6n/O8rkNkiW5ZWZjxiMXg5kbIZyBOBlIasuiAgPq27cMbSVFlLRjGeaULRDu7mTGRIzQWgAMGXBj0DQG05Su9xbw7WyOaFDI0dDDMOBw6NB2bTq4KWMipK1Urn4wTQ3IWGAJk6PyW5SZhRJ1RXJDh8Fep/i65OoU+J+fMPP8NFNySwzkxNOZYbiVECj8Dn2COSzF0iBffhvffkKU/l25t8XPs85jnqaSfm8zFjTMJFUAVP5s6f5WhnRve9v6/Cw/eV48wGZ2M1s2Sa8DPzLTEVloCz3bpA0nZge8Lxfn/eZ4PBbZ4hrgvlwuqYcldR8AurbFw8OD31xHgZ13qY0iy5FKZbU4DqzU6XJ7iynZVj+3Y4avQU9tAdr5/RJL78S5IJVnrukjOf7T8ZTaRM1gLcnXD7qJttBTi9IqFi5VnpHFyjdUzsmT630x579rlvJLyGsD85+rXJZk75QsFVU2z64ktyjG5Qbl2OakumrruYMdTXUXSDqNKfvL4fBVkXBfK5FCjnKJ4Uq7FvADUEPh8BNrGUM/YJxGjJMFi/9enye9JKUZRr/ZzrsbNJQGrNIGYRQEaPlyFWAlfbs6MHkc7XAyFx9Ly4EyS0X1Z/k5s7xeRrb26VsYni0D3zRNbh33MOQ3QUQ4dJ1aK1tnj8PAtpAOAbBBJEwuHxwlxmgy6AJJWmb9agM4ztMl34nSDc9JujeOHWsG/556v4Y4KrG1pXu1sc1a65aE+T7hDkZy/bdpGxxwiGOtdZ0vLHDjVN9MshHbMk6TRXfoolGVlZ3MsF0ul3lbVOk7dB3ePBxnS0Tc17muSImReK0kW2cXSsKKDSn1lVrYeVJe21i/57pIWJngn5NlQRz6H/vxdL3eSnpgCXCX3I/q36ITl/Lw9YNukdyyroieKtHfm6Zxu5YLyocRN1PKVFYWuRtEIGsRy8pnKwDXVtGXBpginyMtW+NYYhf2KJVblGDt+VIexHibe4+vpgwyyERQx4hO99YtdAJgmgacscFbpfr81iwshS3Mt/9tGkJzOsDaDv044dkfFx2iLIBvYf+bBmBRqvBGCbK6YXaMeyEz5MF6OBBI1x8njxbzK0ZQrldmCAEIcW2RWj+oAZt79c17gHW5JcyiHDDish+XbMgsY9hvsIU8EWA962NZ06R0xkI2366xwjmI0oPqrF2hXptC1GgQWAOopK6VntlSJ0tArxROaXyZGe8LoKemO7ew7qTWYDv22wB+6UbTGJxOR7Stwfn5CeM0Zn6yKdaDJwfspcc4DHiwp8B6a5GDu9xhTOmJjjL70jSNdwfYBZ/i8zyX87PWD2tls9Zn52U5Z07rzwIyTryUrOXnJfDCGuNtrcUkYwQU4UHpcqdb01hq/0v9JZwcnXvDK8jXD7oLCnLWO1aEyK0rnLkPdBGA4abE8sMQ9DMhLP9/aYPWtZabTucWRmST4tto1X1u2QPul/JyfQKy33cLml3H94xFHbsK4JPPupKpdV6Gmx5v/Gl+cm0HhzkrBwppoeSxNNB8VJLLlF1I25oAEmMI1DQAES6XS+jbMujm4HsYBrRtG9zMybrxGmvqM6FAtegLbzAnQH2hePL0J3mcy6yOAoP++Yzq0lTnS0gE3IRpshgGt25WM7xiEIo7OQLcMo9CW9cMdwkIA6ptqraUPLcr/fPBswpoC+8CbsOflbS4AOL3itQGcd0/tjKopftb6nwJcOdEVS2OtXQI269ZSD39YwyhMS26lkCweHp+VjNfCM8Fn+fWQmaj9HITmeGTJWwacGsQPE0Tjscj3rx5wKHrMu5uHdjmgFuX0R6jaSkOH/rOPpuboXXZM+7vyouEv/mN6+LREmaTAgmz3G5rca31tbX06f6r9wQugXORrx90K1lk/hY6j4Dutm2jJSz3gLDOVKaowoYf1g/I0/JNgPdtAHZPR9CDTUmBrlvGKL6/R/Z04Nqze8H0tWmdd8SkMv1D2e0VWU1zAN77JAw4qszmBmIq4nlhDRTukUXgUHkqbEqW31Qf1AHC6XR0G6umCVaOY/anWVq2Hl+592UzlMxCBZdzYVlNMoqm5SDV7ftxZDnFLMqBUHw9aTuq2cyAewhiu2G8Ve7B0lzT10tMsBZr2RtF3vcykW/3Dh2ZpsHpeEwMJGmjGqiUADdYDmaiuFkxA6g6XfLuWknp/BTzVwDNMi6UGONGA251fetgPfqNxGlbLqe3JnvqWZe73sOkl/7kBk0OIGrhJ+kopH1eP+5+13U4Wgt7PqcEgzLiXV91Yci+AWZG2zroIqBbAx7JGwF4++YB796+iYf1VMplS1nm4+uWZ7ZKHv89ZG84i+mlgsehDYTE1niWy0qXjTfkOD0ES9KTX8sNo6WZCvle0jP6PQ2wNeCW92Wcq8mrAN1roDK3dEqdxhiDzoNuOU0vAu9UIY3jWHALVLD+w9v7B9hr2Ki1PJZ+l8psySLcmqY97HtNiX1OJlAlRgHt24HRLHg4gvU64J1Of+uBKFfKZExYXhKYwApDNY8ISZu9pQ7SAVe1NbXeOX/GEECNARuAW4OmNegsw04ThnFw6745cF5BqckAG06uMwbGuM1QapxWieNY3xzjTwoiET/Iz4zFQlun7CrPQbw8+9nbuJcSK7dVSgMPEPe/PJ/Pfuqe1SyJezYcjLICGJeYxgBqiunYX64JAFThhe/6OWUAlMLJY10FbDSf+pb2uxekbQXhEl4OOiT/RDQb43L9kwOQrWnRVMHcwIl5NMagOxz8TBfAHJnqFLa4vsXsmOvHx0cA8QAenVaRQ9vi7du3OBzaKqDN21uJoNnCni6NhWvtVPeta/REqcWI0bornNL4DFS1ZXJ9Q1+ste21Ni8A1rUPG/W8Nnaz9OzBJvkz+tmSMSz4sMRsS59a031fPejWrMDaCWZrCkLY7sSTiao88Rsq3haI/PG2CVDbL/cEnUuNd8ko+dJyC7t+vzTk42gJqd0mPFNVtWdcnDJAESEsgZA2v1TXxoNuCWPZts4lHfwqeH2XpG2vztyQB2lMAMiEvLi8dqALgZS/b0hKOSo8WXbiWO8WTdOCjUFD8rRssAtvbykGlf5trEjhTQg4WJPPAcav7W+5oaRCDHUwJgeNIIBjcQ24NZ7k9yy6+UCYpsaDutr7C3HmrG4Sn/pORIkXi7U87Il7j07Mn5sbhtvf08A7f660ebtksFTjy+KuEWbyJ2utp8lpsXEcwd7ADuWULNdLw8uBj/G+/988PKDr5Hj69XJRJTRLb/GpjcCuRJLNw75GD8R2XwPDa2nbpKcW7uXAe68svRMNQFJtMup2Dbj9C4t1ViYR5qL7pr6mCVk9Nku4Arblb6n5vArQPQyDykx6UljOmKyBzzY7LIc84mA4rw5iwQSgT86Rfxl4R2v4SwNKYJ3Jzp+7No6tA82XZPn2iUdf63g5fevGeg+DDxBPZWSXjrWw8/YuMH4t+XFZVD5olJs47SwTHU/pvRzghMHTfwpoEz+70dWgH3g9ABKXYoYGt/m57dC1LRrj3EWlyjOHZSqXNSonkVr/T9/TYC25fSVgupeU4imlYQ1cMQPDOOJ8uSTXyOtAMYRK75aYbR2/HOcOxBMKa4wdx5dnYW0ChTJoS37lz9Fp4dnaoSxrg3sxrYV3c3ZW7udM6VI82s1tzszV6l3Xc84S636Tg5Q9DOIS4NbGtACWd+/e4Xy+4NOnT+lSk0T/RIAjzg4kHmkzxhgc/dKmpbTlZaJ+ZaTBct/Z0odr5Xft2JgcIJbHJc/cALTTuGK4M2wFzFT8Uh/cHXcoX7fJVbfJRj3jElgmSNbqKL5erws9yypkkLS1fJ9RZLlfOdM9DEOSSQ2+cyAu79TE5Gy3vx6GZrbJOh0yG6Z9NoKklxxkdfhfCuyugf68DD5HGm+Jr2a8LcU1j6OgtOFAJJEz+lKmwoHifD23ZqdqLBlncVdUX4gnvTpX5NInKL+wBu+z8WoJhOVB6/58OBySNd3TaEF+1zozuzXgsLDTiGmcYLsOh65F05gEMBE5A2DVILm1j1756u39tQD01eUa+FmSoEvV830/4HK5hE2EOm5Zb58D1S35kgE9lxKIzJ8K8ajfM3CItITESNW/wakpugdY75UaEMh1eH6vFk7NWNqTh9qR91vfL90rgXT9XnDzSGIoK/dvHkhb9udmgMLYrduFbKJkduu8D10XjDVnQ9lZOnKQDbU8jVWfIUrHU93+xMAuldYak1q4Oisn/WzwvHSlgtnaXmf1JkyMupe0sUJ/3BPfkqTltD283GDNjUnVw/M3Z+FIG5SVD3JNWG29H2NtSYmWrx50A2kBAKiCb/2n3wNSa1M6bmC7dVyIlg171tG1vRW2C2UlsyVvt4LPLcz2psGvoJxKedgKZGtg66VlS7r30rcvlW4icuAxHMrk2rR2qZfHL2zPjO1WShKI0DgfYsrLKij5kPeXvYDHWHQbk+ngtSLTwI5cRvwAHMMT//rWWozDiEHYhik3SiZMIzDAwtro7STmTu292ADAl9Ic2ZX8Jq4G3tdLLUJevKul2O+RDrTTNKHvB4A59ZhDbiq1645omjYJbwvIrzHgOQAssb/lQXUeF7sHynnN4yymcl1mudPplb8XIF1KSy7XmMYa4F6TreOZfJbqrwTsxXtR0xh89923wbi7XC5hHBajTss0jhj6HtM4ujZpLaxflhLiRcSOop2i0OxZgbZiCAq4Fhd18pwA+xDSAtG0XFaxztLyleWv+1TKCh2ykI75NWmzszy8IHk4l3k7WjJO9XNRKPzNWejUa468q/cR6bY7X0Yy73Oujddz9NWDbgHVeqogrrmmBHjXCgRIGZHEkwk8uPCAmhmwHKcT3PpE1ZRnA2t9pC01Fp2We5RNkrcdTNa1YL+mTCX+nH0pPZPLvcsl75iVp+qXdxRLkp+cUnNPzMEeKxY5a9+ATVjuNaNmS9klAFgey5rtZrxYTI6A/X2MSp7GGfuIWD7Sv5uxCeyWnWxgdJ2inDAM8Rh6rQ9yLxG1at5lnG5kizeHtyor5ZuzBwtVsrX/C+gQ14CAZvccSD10h7B+tjYIrc0CSprkd64/wkCo7ueeLLZIPrsiLHc4RZHipsc9ejUA+wL7uQVw79HFetZrSxgl1lzr6a3vLaVn6Z2S/pc0TP6QE2YOhnLXdiBmTMMQDtppus6dMMpukJbm3bWt++3/hmFwy58CBnB9XgA35/Ws06m+W8R4JE4xyvRnSfaVZyQtAtCGbnfb28We0Tzvk7qtB0BbuJem+j5SmxnJ7+vfa+1XZjqkDCmwTXO9IjurcrCt9zfIkqZ8abOOb6u8CtB9OBwSx+PaPcukNvSI15F8oM0HAs0UuiksAOT9PzqNG/wEd12HhhoAynl+DrTkc6HcdWNeB4T7pMYobFWGa8Cu1Ohr8a/J0mC/x2i4SZbw4b00SSYcm5aa4HKAXI6r1kaleNipsVD5msWc9Q7xigHisybp0O11zTRZGmDmT6ZXkjSqtG6t31yxySxV0zTOhdg4+U1YPk5fhn3fA3AsXtO2OB6P6KT/gwBiMBeYzYW2MW+f6cNOr1/XgNbKN8SnpryX3osMckhZFtaycSpDPzO7GYZh9OGqOEDouk4tK7lfn81JirCW0phw+EoY/PKEVcIL6ZZwoQZwrLfznF2rsfTJO1mcS+Hp5/LxovRuadDPDZia8QCUvTPs1bs6fBFrbbLmeimNcjfoMwasItWkv+vZ65yU0LNh0zTh06dPAJE7SEf0p7fORRcKiEZWjhFoxjgkbqqU41JdbWNiLfK+I2172WnsXLYSCaX2sTfce0gNl2jDMAfYJcCd6ubwTY1KKeskxo1vArPDbfS67RxwS3xLBOKSvBrQrdfWSOHoBiOFFKfp0wKTTi2FIh3Zsd3eZZExsXF5RS8bKt2Rd9JBFV0oSGbDgLOmSPdKKaxaHItMaGXg2MyGvQBA3qq8ro8g+30P0z00gzwwtX0xDACpSpC2Je0ciG06hJK1XaA8qEGY5xB8ZC4kiSl42g6XVMufi76oBtTq89n95PlCm5Y+LQOtzFYN/YBxnGbLxWSA5mFw5apcDRIRHAmWKmNwPY/lNrjeaLa05bW+FvSOKost7Gntkfw0xVl6fJqGYUB/6RMGTt5pvTEjB6DcQaWlaciMg0afbglEhpsrfroTckSBT8T2phnusGymAK5FNPulP5OerN7TBkGt3mtjQg4wSmGssW3XsNXbno/AJQdAUi81w0DHpYG/EF3n53OYqZJnAkGmDq8TfSDPSP8fxxGPj4+wzDgcj44NV2UpaSkRFLqdJzNjhf5JWZhL5bhcvmXf0EvvisEAZKNNpROutb15ilRcKvyXAt+SHv1d/wFpn0tBb/zk7B8l46vGR2r2TAFuiUuw45Ifey21/lmSrx50AwidSzZS6EKSKUbNgIuVLF5I5H053Q4AWA06zOyZLw6N1rLbqCVsd45KEvBNPgzO738ZKQ3IexrFPeKXuLaA+S3g/pr072FUX1SbQANQpSI582kL1+707E0+4OqBRq4BcWBiWbuCsv6t2hYsrvzWWbvFcBbezUFJLpKrUhpKxmSY0TINxmnEOEzB5ZgekJgZ0zji2S9LORwOzt0gNXq0Svq/zu+9msbtfY8SBq6m+HVcOSewldkCM6ZxQn/p3cbJ7Lbb6NrBOd3ZD+yWWKIS6A0sl7uQhqcAiDyfmghzcEo+j8nJkhvSHzyr5DpOjMy8rDaMAzXWbI9cox/vNRbkOklfLwFSXW/yjPWze+fz2e/XSMtYe2ipGUWB8fbGIp3PzlhTsyPaYC0DbgDgyG5LHpizUzaXjbM8z1vKMA/DZsRFeNYFvBrmGtGm484NXADBsxuhnLct4Sb3sF2n5mA70QG6TYXPCKR1/M5gSMdQaU85htRxCeC+534HkVcBuoG0UYoVUrJUSiw4EE+uCgrOg3IB58wTQOmmEsscNm611FZbiuqrEU+tDDBfSkpW9FL6SuB9r7K+5p0lRmfr+7eUewnAzCPRL6wlSBSDQ0Az7yGBOXKAYVLptxw3rwFIdvAT+WR4OoJC+IjGoEqrZt5KEl1oxtcUZrsJiNaAelLWKGzeJAWI1UAUBtu2gWkM2pZhJ4vJM9vjOGJSeoCZw3rvvu9xPB6T6et8Kpd9ue/Ja6nd3Apu4oAgF1AsyFo8sS1IGHXGRsIZxxHP5zPYA6C8zcw2qi4Uki4HPRO5lOZa/9dtMaQ9M5Zqssgg+jEhB+95+nPALZ/yZ3xYyXMb8qXvLxlTpd+lcPWz+b0SwNov6cyGDlPvt9L3anGxtbhcepyfn2Etw5j0OWMInd83cD73waNRKWxtQMlmzG/evcPDw0Oyr2Nej/oPSZjWb9AE88y42MJy12St7KuAux7gTWko9ck1wL0I7PPPUriVNJfSpcMIn5Bxtfy+HxbDO9I+c6woQLu0lCRPw63yKkB3sTFQnF5ijptptJ9tWYqiRXdWsWCD0gQSJoOIMNl4NHxtsHO62g8HhWduHXTXQGsJ4G8FumsKvMZIraXnazI0PossFLX2nMFgLC5HYr+5yIOTJBxKfdT6i96Sl0SQ/1cmQ4SNEwajnuZ51qhyPyY9m07GYrGsxltrQxQfiHGTO+mSTYO2aQDPdvX+MAObzWyJH/C2baN/6aZxjBipaf08HhfAPE2Zjrqm/a/115uJyQC4xRCbM35E5Jfs9LDjhBxcAdGX+jUMbemdXGXmszvuGYZ4xZmxlFkce4pJkzC6rktgqmSoiC7U/aqUFg3M13R0Du6XpKRrayDmFoCYhRbClLAkPL3eOl8KUki8A9zns1/ChAC45XTKpmnw8PCAtm3BDLx584DLpUff9wHc6/oxvu+zJzlYHWhSYy3d+/PTf/M8Cd4IdR7iERC5Umo7+soSuaFt7+S5Vf2x3ta2tIuqoezTcKuaApaN0RRw19/xD4cZCr00WXvCK22SXErLrfIqQLdIdRBWHU9AeNd1warRTs218gvvEGHy1q5lBnGqVPphcJsyZhaXPJclqEbpXSmlgXwLQ7T2/BILsvbeUifN460puiW2TYct6fzagXyqDHl2j/3NdK1ZKtYvjQh5VWwZobD5idfBqVZSIcwF4F0C3Pn3muRsRhruNTDcv6vSXLwv/5ED4GACmQOMX44mJ1nqfi+MrnhD6Y5HGLUEDfD6xMcvJ38CAEMAhQzkaae/1dD2kCHkbpZrJmC2rKNQvjT/yjHYJGRhoi99H85GkLdcXt0Ufn6E+dZ+uWSsS9myezBLL0d9u6R7PImSvF8wmFiFKYA7BwslNrsK2vR3Ye+y9JfKomSo5SBIl1n+md8vSekdnb/8ey295bDT8RQob85cSmPf9+j7wQNuA/HexMw4HA549+5dtmk8eiSRzdIOQMU8NEQeaNlwmFbf9yGfyWy2tbB2AsBF0BXqA/M2AQAM8kuUALNAVu0bu3T7r+xXyKQGObbghNq9TUBcjU+c96HKK0tuaEv9bi3NVXyB9Nj2uIyEYEyDtjWzGbulMO8lrwZ0b2Ff5TnduYxxBavZb70kZZomkAaAHhRJ6xFPEnL0dENK8XoFrwexu5h5FSmVwVYGvCYl5bDOuC3Xxb3kHuzMVsb/NsnKMKwwKzzh2whX1GTOhoXrmLMS8RlOIpNBgjOFrZsnA8nBPNfU45ayLYL6Qr1uib8246UlAinAMNBRC+sZM2FxBVyKUS6f0/kMBtAdDm5NX9M4MGjMbKAgOanWxYpYujWTJXl7Jad52aBobATAHNrUNonlOGcr+77Hpe+LxpwcWDQ7eGiD5O26xFZV008+i5QWQwJq1SCtAZI2hH3mQ7tPgC/qbXXpt480hJ1erhMSNdBbas85AFkr87W+lYPKHPSviTyi39N/W9JjrcX5fPbAWdbqRrb5zZs3OJ1OmTtIZwTK0fFt2+L5+Rl2srA2N5rgGgyicS39vutkra7xbHlk2MvYwnnmcfZUvG9ZNuKmbS5997rxkeYtd+HZsszIFnexGo42oDbNslwzZshn1uaXDMsQnwpjadySPIgXnHAQojecm6bzM5z7iYPFvG0M49WAbi1Lg27tt0wfSMcT0N17Vsd6n90ggNjvgvXxTNbi+fkZXdehO3RoW782jB1DsqSHQzrCf/eRewDJNAy6exp1PHvB7z3Y7Vvev6Z8Z2+oqJkBUylcHZcw3TpMkgCIKmxbPY8zhitLb87GzfoPltX+nmnJ/L2aQbVWZ2szI+pJN1AinnApYFsfMR8PwmJYuLWgsvH64E+5sx5QGAEWAkpzuydvc3lSOfxXuKleovpsyKLMi6B6P2kL3vC4+NP9oLPmTwU8HuOyEv3eFhC4ZEyuv2dhGhNAbegP8qnCroLZLK7ZswtpmIWVt3lar6m8ber01lhoDYhLUut7tbhq90vXl8dY+Vw+OqtmdEzThKenp2TpZ6hnY/D27Vt0XZcAIq2nWkNoTIO2bdA0Bn0/YugHTGJIM/tJoLA1O7TvYbiAiNE0LYwRIK3z6f44AHb3/qwbscxExXq8DwElaXDx1mS1m3NG/HCdMdckRJ6XqqaSOtk5rgd6YkMbLF1jopkRIX1InpM1+DbzSOJm6Q6+7u/jbemaOn8VoNtAFTbzoqJekhyA59NMY/DNSABMWPcjU67jOGIYB3Rth6Zt0Jh5ODVhilTUS7LDN4tYHnem7Gud6asuizUJxVTjycovEanBHNGDSVB+EppWMFXAPRf2AL1ahf7+Ukg1BvC2VrEOLpaMrSXmsPqsb89EcT08M4fPy+UCIK4/Nf5dO00Y5XMcncHdtu7QDRexi19HM2MA95XH4pNb+squvhtdZ0n4+cYiPeN3OHRh06muL/m91VAKz60N1gqom8Z5nxA/ye696FUCgPLHXGd5pWQYSDYm15MwB71bAPHSO/p3Hk5ptrYUjnyvsYLX6NRaXsrpCN+q7wvo0wYRM/vlJH2yTppZZlGOOB7dLBNhbhi5GGNZERht28FQC0PGzUiPIyBtOCRR9jFYTJPbz+GkCYy3MyCc60vWnVl9rbWH+wFukb3euZ3M6iDeWHwOgBtfdD4W2l+ppeRlUysP3Qflt36y1jck3hqOsFYMKws7jWAbPYDJagdHGMhJzmWydI9sJ39SeRWgG8gqBrHSagxdNRz1nD4gZxwnsB3DuGUo2zCByIjZycIM8eRLAfGlxfh68BdDem+aP5ekAGvb4H0P4Lw0yNyD0b9Frh3QZlyFxwOy2jMZYBGPQhYgkQNdQlwuFRgJAddL6WbILOusD+3Jh07HrVJi3e5pgOWKGkCYChXA3BgTWJKmaZKN1+GoCvYbsfys2Ni2aLsOh65z9SFrjCG9JTKfQg5Uc7TBknHtAYGt314BC31XcGkGTvu+DwaIAFLLFgTg4A/A0f1xs/Gno1bAe7VX+3J1+tRlJ25WjwaroinjZw1AukTN0rOmY8QQyQ98CZ/q2SV9kTNytRmAWjkvXdPXtxqs+b1SOmp5yfNTA0OsvEQMwxDYbc2qNk2Lw6FzgHsGsjOh1B2k8WdruI2WjNHPWEd2nJNAmONSky747W8QjdCC4U8IxkNeFgF0z3K/TafN63LdkAvvqHEif4uz74R5ews4hRZ22yykX3RkXWKotXTWQi+1qRx0u6HSAW3tNMMg7j/RrqLdsjgZPxeS/cLyakA3kLJ/gfXw97jQAJcavNzTlWInbyGz84QAcicFWtUZpUOGE9KIwi5qsaq065m0U8XU5YDyywNw6ZqkAEStq7xA7C9UFvcG7XVFqm13dWlLVkTpceqjO3kEjs3L21QW43x9rG5nhNnawz1l/ZItVA8EtfslKfmQ1lK7J7pEylMO2gkbr+VUMv+83Lv0Pc5ti5N3N9jITBcig9P4CNwStXnMoVfpNp+lNMmvXsycX17Ie/mheTmO44jL5ZJ4ngCcgeKWlcgBODXmc71lFN9DOpCWlhMA6bjOwopkYUrK791GpV2WZpnIjw1aJ+iZAA3IEmYamJW1DjOPu3RP/86vl/rKVgKjpN/29sk8LvEUlOt4Inei6fF4dKBoQ7x5GDKmmsag4QbN1MLwJIhQjblpWoVAczNefryrjEGECFBLh0rlqVwq5611pe+VZhH2iBA0iaFSMFb39J11QzP40Kqna0O6RRJSCoC1mDnIcAacQVsgQ11YosNuq5/Sc2vPa3lVoFskgO8FRiNYYZXC0dasA8gGY0HhEREMEDZjdeq0LTetYRPQrX9rQO9+11mLrUzf52J/040c0eXd3cJfsqDvkL/PxpIX9cqysik9bT0DkwzGXlkCjn00lLmsmjEU/oAbDeE8SLl3/QH3qycARWNi5UXIDJQ2d3KAIwWh/UloAkvWe7MxbuMkR49HUh+yzl7uDd4TijBlh66L6ReGO2PXYl5l2j3Njhi5eQm4cBZYyuS2fjsFDbGu0hYjDKToHw0YjTE4nU6Z94jbjeLUoFgeAFNmawOYrDCuS9dqtrGut4QZhBofAHf4CsoGhMnCAtRSJjUrujSIbyGPlvKazDBsKMM9s041lhtkABs9h9UA9+l02gzyQ5z5LwKaxoCoBRkCMGEYRlgWzcfJ47JsarITLuce1gJN14V6TAG36I6QOACABYFYDqqOOGNt5mEPIL+XSKhE5JZhqXtueFiOV/RqeF5LZhi4ZTpzUmhu9ugglgk363VvxFyR3dZ9qW1btA0FIiRddSDLOnWK7lfmc8Oo/uyrBN1acngjvyPoqAPv8A4RjscjxmHEMIyzTgcgTHs1bRunXwuH8WhL2BgzO5beNMYv4lesDs031GxVwi8PLBWME7JtxfL+8qz952S4kTXCdAhPbpWwuNcES0ygtA8NfsLgnz2P5CoF4H5raWxlAG4Jf4+hpAeBoPBdQCE8uR+E47RiKCFy7VoWiRC7A3Ear8TFexH7taLW15e1Fr3s8/CejU6nExog2dVfAo0OBEubysrWA/MZECrVIKt3A/peZgd1X2Z2a9rjGtf0eTEqaozqrcJAOBFSJOYn5nhJL25tL7qd+IAiGCk9n4HnXKR+9DpY68eapD16sUg3SecHteg4889bWLWtotvbErtef1cPs272t7/0GMdhls62bdUa28Q6DeW3xnLHfq7qwgAdGdCbB/TDgOenJz8rHvWoNlKJyLHw1uIIwHQd4Pd65PpDtx8O5vrGtlepJ20Gb31njyRAWcoLmRFwRbild2KYstF8CWYj9AM9UxTqB16Heh0gz8RDbTjZE9C2LTpPbjbeys37ViBaaKnU8yQukB0bjfuSvG7QXQEUS8UZsREnoKZpGhwOBwzDOFM+AUQLs+HBj15jK4yYgG9pJJr1FrabTDzWfm6RLSu6LazA9R22xrfV07Cl8dXS+LnA+VZjpiSa/Vt6vwSo5dKiX1IVf5GFcjcDoybPbmWD1Di4S5aMu3vX295BfvY+soFFs5HQ1eJBKXNSLrrU3R5q58e1gYG1DdrGoB0bnPsB5Fm7wLJbi6HvMY0jME1uqtxPac79aPtUsC5PzSNl+doNMPNwSgNMLBvZ1JYbBszOR7KcTXAt6F5towpc3qLHkqcinZWGIeOEB3YaUu2ZWK8CKGkPJX0YkqbW0FbKVJdJ6YCsNdHgWc9ebHlnTz27MGPb1cUux7mLOz4JUwDSwbvkXBoXZvrHR8JFEs0BvMCg+/qdus4ZzC5g3+8jsJMj4xkAXS6AtWGpizacmKIWkXzrQzOv0Vm6Leq853p271i+9s6tgBtItUkxjBB/rn/TMJg5LA8UiJ4vGwairpqC7o0kVOcBd9j7gbT8soRtz+RGuQZrvQrQXVPK0iEC8FbWXD7lKFZUHoqwYzLd1TRNnA4jlkjC8/okI/nMFaW2yuSaPoJeA+/ck0qyUU797ZGrmXAZn2pTL2UibT3YFwDYW0HgFlZ+bWr1JuBRupA0TW/xJ87707TI0CZG35YaTZ4jARZ1QFBK77Vg6HMYUyV2O487YU0V+CoOGpoWIjF2gMYQGu+5g0wTlpyM4pJKgblL38NOk2NeDrLkBIFZDlBPGXC3Ghy55Kxpkiklso47H+gF6J1Op+yY920Aek8eSk8ubQ7eJBUgT0RhFoLJH2YCATp5ENtYrHDNI84A4CLSTJ7Xa/91GDmzrdO8V0ps+R4SZ+1emsa0rTFzANxxxtfda5omMNxCWuU6lXRbpDmPXDOsS+UmvrwBhD5bZPJ9GNM0YUA6O2386bQOP8Q3gk7Oh8d8rElKKc8MB5AZlgleAeCqMzGldEiZAZvhZxEvFcJ299JYq+Dc590CYb9cPrZp4lKfPgpQWLIblvWVY4npuqEfXXt/SV4F6F6TIiAvDD5LPJAhgmnilDIAsGVQQwHBaFAdpkNYn2zm3pF443TIlDDhk7WAdWmUDi7gO1+OsiWve8pmccokMD/uf2d41AHbl5J7dogSywfMy01PV20LXxoNZhqwNoCLQVcEDBvWPEflKthjHk9xIC2k/GuTUrmTGqwCZi7VjWe5/EtrEYVndVk1DeF0PMB2XVhyMolXE+XnW9awDsMQTm9smgZNO18XXeqb0VCQB5eTO8/qetucpmm2cVLea9sWDw8PM2BUAm9bgHYR6KjBn7JrwMwu3SSlNqD1tHoy1DHLs7yNTUiME+ZZFc3S7AGVBuIaVJTCfikjTL4vMfX587rO5+kFdI6lTQ3DkIxhRPDeSQ6Jd69ZOn1ovJD/nBBI0pM9IxuA27YNh9u5tKXvG3nXj9fPz884Ho84HA7lNASDapaFWVqCgV8hwUKaVVtKwinU1e42QenG7Vq/yvtf6Xs1itn3BYyh+mbe5jQBJcv3NBHlmO0OXdtFoyiJb7/hn6frc8irAd2LbLd+DinDtaRoMnLLL8ZvMAzGA2QVbwjSdU45KUuDbwKBGglwvvQkuCSzFnKMtAbk+VKT0hKUrQxvTdZBo3RM2Y53H8BdApLXhvMSUmKc9rC8+nIpZzlDlBhrAFgZZUiedAahXgO6VSj7ZMTZnhwEJGmt5OFLS5XVWWnTOr+r7W6hDRgiwMS+KX37crnM9nbIZsxhHMOaw3DkMKl6yNIZ45X05DnxaST/O6WQkGq1uUh6x3EM+dPt/nCIB+Bs7aO54SrhbpFrWdg8fkcQUNIR14yBOFuyo7UX4tgzC5Yzs0vvXjPLVHq3BpxLYW4zpABrI/srsya5h5KmMX7Z5pzdnoWJFDoFY3ol7UtiiEBt608f7GCaHuM4Ycz2MAjDPsk5HeMIEKGD28tlKG0jSZ/NGHmdj/zZotFGu1rfJkkY7QWgnbwj/Ud+L4QLqHYye4qzz/W0yp/GSHp2Qvxsd12H1jRVsJ2nsfQ7SelnBNpaXg3o3iPCegQwvKIMBVYSgLZrYS7xYBy2AIysBYsA2lpbcd9G4gwY1FBoNMwclq5YazHZMRmk9VIU3RA16Jb4auB1q2VcAilF9jVZk1VWDtuZ39tlD0tzS7h7AEcSDtK2VBUqlGYtb/5z+WAcnv1MnqTi13JIBXbmaxXd9vYOzqV3gfJQEY3qeFAXqUN2iMh5O5lG2GxX/TRNYd23W3ZycOBbNsVmBEFIB8+rgML1kvG1wC75AJnL67glrcfjMXEPqPPvgojltTQrJM8u9aP6oL1PEhBbAdxJXsFJ3EQEWT64OEBDMZOinyvvJAb8Qtr3gHUd7lLZbtXtW+7pek+Beaz/fNZE4nfLOx7QNNuNkpuMjEIYjitjgL0v8KOBMQPAHIzOoO+MAfk8DOPolo8xo2N2m/TSRdwA4pJV6V9Avb5zQkeMxNxEvkd/SH7veHcp7u3tanv8uq70MhLd3jp/RoAxxm9ajqHeQkK+JHm3Jn82oFvzsSHbOwuWiMJ6zGRHv4V3RRSZ7mmaEiA0t7CkAhiyRtR5LnGAvuEG1k4JiM/ZT7H+9G/x/62XoOQKOB8c9zbGcp6iq7NbwO1LTv1c25GuKadqGnbwZhJf2NBTSb+uZxdH4ZnlRIU2uPgYp1P0e8pjr/F1i6G0ZHTW+kHp/X1Mbhwe8/dkjWFrGz8tOmAcUibZWoveHw4yjiOM37itDXdhpgTQpcabpLmWyvyGC0H6LDOHKXZdT5Kew+GAN2/eJJvIlsqjBrprZZ6DfHkmN36W6qbEyCbXgAQI14gEBgf3m062sWMEJCCpCDk29IFa+10SCTd3N/iSUgZZUWeJ/20RPSY9PJzCnoaXJmVyttldC9/Cb2FMiQi4XDCNYzyDA44ZZwBsLZgIfd8DcBvYk9MafYCWPTFXS9dKmqH6/T3kWsC9hWSpAe54nVDzf50w/2qszZltEU0yyim4QHRIkPefXO+v9Ytr22NRn1wR1p8F6NaAW6RkOdamfdwFtyGTiHA4HHA5X+JBJUbejgOorNmsMQ6zyiA410XEMIZgqAGzSZRp/lca2MKpS+oQnpIHlC8p11qfX1JqzOdLS5jpUIctETmf3IFdbRqYpkmMSc26xTyUYvCDTpi38FcqdLywNnsBd54Wnb8luZexs5SuaxTj3IiYf3eAQsAiQMadimfIoCcTWBu9LlHAL/zab1nz3bZtOIhLAMD2vRRlniwSwHFDkl7HLRu8mRkPDw+pYVcos9K9kkFTG6D18ikZSAW8arBcM+BkoK7Ftwa45Xkp2T1oJ2+hYiBJmDrOvfqvxsrra5pBzt/N37ml3efp0HHLNWlLeomSEELiCrBpZLX0fcckF1Y0fRbbKaK3knBGlDFo2hZvmgb95QJ7PjuQrYxdOZFW9mYQM8zDQwg3nEyaxbs0fszAYane9hbGgtSMwpLoEq2Gt8pyVwaUiggBoA8ZFCzTqXMPxD2zhFwr29L3l5Jbjcg/C9Atkg9Ra8C79K6rfLcJ4/n52b3DDBhADpkQ4D1N04wZojASx9/hvqKvcoCsjxjWa7/15jqt+CT+fN13vlmlppRLUzMlpnDroFFriKWB6Z7M8j1lC2hcT3Oh1WWzA8zxBD1m5/VgzI5HlhAIkWkpxpa1rdJj7laBgc+s0Nh297eBvfI5DZxrGfvie5R8RCaPnH4AEUxn0BjjDzxyA7c+qTD3OysHO8hR65oFWx7I5izv7IkMcGv9Ice+v3nzJvGZPGOpCwvM8mfz/q3j15+Sv5yd3FJHpZnAvL8siYAqCWtSnqj2tBFWRm/pno5Pf+b31+LIpcrAX9mH1vR2qR8MQ4++H5C/Ji53IzN5f71BWZ+wYfeReiZ9I+paUZMe3BEzcDjAMqPPGHsXqGdjxwkDs18X3qp+HB6spzd/QjHboV/M0rxfltrUNQTYvRjd0huyHEmv/xfsIjN/jRCI2bv3ANe39L9an9ibnlcBujVQAyrWDvZN0+QdlV3Azqo1Bt2hw/l8Dh3MpSHd2KE9mei0JunKkqpZg9LAJdfbtk3iKHlB0QM3kZvWE9eEpaPo78GA3CovDbJemmXfHn46IBTgvGtXcGsILaeMkoByA4CMSdYN5uGx/LeQnLkKy8Ly799jECjJvdrc5wLpxfTSetk4MMmgxqABgs/ucLz8NIGsxaSMaGGcx3FMDqRZ02lC+jEzwOVTR3XYOj5ZGnA8HgPLXY5Et+Cof0v6K5cccOs4eEGf68Etv17Stbl5UnpXx631dinfnBmee2Rr2cziK/wO7OsVadnT3/SzS6x53/d+eZJOmwnrbh27TdcWXTENcxLI1ZdlC65oK32V1V8UCxBgGsLx0ME0Bn1vgitQMIeZJolejFZZSibNpmRMAimmyDIX7oc8biqVNL7V+xUCaQYWC+FGe2I5rqV2qY0KCWWapuBOkj3OEoM3uJPc0N4/V39YM3yvHYtWQTcR/c8B/NcB/J6Z/zV/7ecA/jcA/hGA/xTAf5uZf/T3/m0A/zqACcD/iJn/D/76fxHAfwjgAcD/HsD/mHeUxC2Mm+6EpYEsAUYkB+A4ZXK5XMJUP1PkCzUjLcA2URZ+hGbeVjlaSevnNUMm7gw1+NZT13p5gvi1bJXXhDUlXgLl15T7EoPy5yQJaKDYtgQEq+Ei019zkJGvcw1t0QPu+5emZgdV6BtYw2vrt2ZovnYpzdwkBrQygMOabllGpgCmdjfYdR26tkXrZ67YN6oEhCBi4hKAZeZwYqboELnW9z1OpxO+++67ZN1kkv6wPADVBlhifPawtJKPpQG+NAjmbWmtvYqEJYMZSCqlqQj8F+IpxZe8u0LQ1N5ZCnOP5GB2LX49lsy9k7gDpI7Hozq11BFT29LiwohxzdNYSFHoB3Iq5Cxcf0ens/SkAOKmawHjZpn7YYBhOfQqpkNvipb9D00TDbZS3WjgWk7putQZfAl6HYBvaT+cffqXN/epWposu9kkMfxln5xer900TTgBeK93rjW5FYPs6XN7CM0tTPd/CODfA/AfqWv/FoD/EzP/u0T0b/nf/yYR/ecB/HcA/BcA/H0A/0ci+s8x8wTg3wfwbwD4v8GB7v8agP9kW5a2Sz4+rAFuZM+KyHRHUDSFF6Ujpo1FsRSBGlufisgHkdyCBuLBFV3XhbiFsSoBbyIK66Zyq3JPAy+lJZdankr5qz1fkz0N+t4gbguAmD1DYnClYCHJv19lrcGQPENE4WQuAWyV1KlvNeCxj7u+anDYCLJqU3JbBoavHZwvph1uAJId+F3T+KUnIwZtRPtycIa1xZkvDnwfOjTGbUprjGJnHcHtWG6eb7ATkKDb4TAMuFwuaNsW33zzTWTVk/QrNm5GI8/zXO+fUq/uOxkDsNvImA7qro3WWNbwVEEP6e85Q156P3+vBD41S3et5G16iT3LpQTM18iPWrh74tPPCkkj3m7EWJHn27bF8XiCMevnB2yRGHW5nBjbdQAX2lYgRdjBcvYGLFsLQ4yubeCbZXSHKFYtx7blyK4Jbdska49r6QAQiLw1PSmaugiCkermmpEdaJSFfpqksZjyZVka68VYtdY6LzDK9R+Rm4Fv5a/rZmu19xql1zy7JiUclsezhneWZBV0M/P/hYj+UXb5vwHgv+K//y8A/J8B/Jv++v+amS8A/r9E9P8B8F8iov8UwLfM/H/1Cf6PAPw3sRN0S8XVFNASqN4HPVyhdp1jicXFlgO9YRuO74jZEhMVSdjIsZMtrjEimq0G4ilfwpDpTZhA9BKQszsyhb3kfWVr2mqyByhvlWs75L1laWB3+GIOHkRpCyPktTAs29RTThZWo4wluUYUYRGD1a7um7O2SfaU/VJ/3RvW1yrLRgPHTVwgGDlBjdkNPN6d4DCOGMOysRhO7w/haT3r3RzaEKdjeH0bUCfjyv3Sxsm+70FEePfuXXDFtS+fdVd5eb4T8cAb5FjEW3TiNW0p77MlMKxB0l7JQfVWsLwmS0RHHvetkoONYRhmB5TI2mYHOFuVNrtjDKne8fdVnbgUAeRY7noUDBQXWAUYGn6U6qYxBtQ54xXWYprczLZ+RhNb4+iWusT6cceQa4yS9Ecs64kcaK/VaN5vXdfU+yScsVAbM9fqqnY3lEWIVEo+gm3tkUTKI7Sbtq2y2iVSZs2IfinZSi6W0rCWrmvXdP+amf/WR/C3RPQrf/0fwDHZIn/trw3+e379alkC3muyBM7DMxRPqOz7PjQyHa9rYBZNaxH3xG8Jfb3R1youf0/v9tXrv/Xab/1d0j2OY9h0qTdfLlrFK0bPNfm8Vr4WAL5ViuXggQjDhsFEg3ODeHR02qYiq63B+JJsVbgl6772XB7u3jDvXW970l5jMG6RUr8gNxJ7l6PegJJlG4ZAE4H8BqLgH9h6AOGUDuzEGOwE2zSYxj4c0b40c6CXA4gOEBD+7bff4nQ6FfsyM4d2ubWP5WA/TVT5uXhbkxXL7VJ/6vBK8df01FKeEkCxQ7RezdNQS18tTbXrCctZCaeWrpLkrmh1nLL8SLuXlM2+4p2EqPE66/p+k5YTRx/qC+1kfeyRd/MSoxksJ0pH7LY1IDqiMS0uw+BcClpxDRjHPmulvmWWEjDBj7czDpglrXC4YZYhjyGWiyjkpGjOJ+VUcpt4A/Hl9ZaOKxgTQPqZ4QpHALo0GdOgbd2fAO55VOv9XqfjJeVz4Ip7b6QsUz316+VAiP4NuKUo+P777+XaVYmYNcSliGP8iYVmjHP/BYpvy/1pGmFti7ZtcIsCulX0iZXBHVcGwDX4ls4BiofwyKYv49dZ5SC8NO3yUqB6j2wFW19K8vLSCisYQ4VGS8aAmiYwGLGod7KEO9Kqlevac3vkJWY+7iX3ZCX1p4QZWJ0AUqQtON/9Lfk9JIcO02Rx6Xs/4MupuBbWMuw0YgDCemwBQCLCdgtDaVW+ZFnJt99+i2+++WZ5MMva416AF8DGQjm5+NOBfen5rXHr528F3FR4rialzZn30o1JKBVjcYn935IOAU8CuLU3D+0K0C1TjMvdYtBbWW5pkwXjCZyVNwEclwDlOiTMGsaQZt+oAEZz0e3RkVju1NgebnkmZmnyhjAGD7YNjOFQLpLWZHaymMrrJZbZcqi36ttANiICbQlXG/Tj6JbECdwzfhmcuI9sm9QD1/ZZkZcfL24B2te8ey3o/h0R/T3Pcv89AL/31/8awF+q534D4G/89d8UrheFmf8DAP8BAPzmN7/x9X4dyKtOk0hctfs+HtNE7wOy5ouhFQAwjSO467wComSaqZbmPQP8GkuZKyX9W2/ELIJw9htE/MZLIu9vVa1Vy/2B19JWS18tT18DYF+TewD60oBR+u7Kfx4/IEzPNsU6G5z8/zmgjuWfhv2SdbM2Zfg5Za0ugLlSLYHVTUwlyeCf1yH7gdv9tY1jhYYhgp/cbeg0TXh6egobkWSpWNO2sMw4933wjgI4/XS5XPD27Vt8++23sz0C83K4rv5n7WppUx3Lf9fVf6kN7WlbS/eu6e8lcmLPewuJWbi13O/1cyUDRMpLliaWDk9qGrdZUvS/D3Fb2hezxDNgbNmBcZkdcnFk+SW9d4WzTyR3olZL9dusDwPuKHgwQNH1btcyiBnjRJj8QXZun5YfUy2j7wdMkw3927m7K9RBnpk7yBpLvqcdz2Zn5Hp4IuovYfjdEpIpLD8SvNGqJSRNY2DourbyuQD35yaCrgXd/zsA/30A/67//N+q6/9LIvqfwm2k/GcA/h/MPBHRRyL6LwP4vwP47wH4n22NrDawXQsONODO305sWnI+uw/HQ2SJLYNNGu80uXtt04ZQXgpMrOW5NK2qlbH4FdcAfPDrr/RacFYbRMWVmbgx1Ex6KY782rV5+VrkXlNOmlGNjAEcmwMTGmQ03tQBOeRu8obi0lN+LgMIDXuxzK/AQLfW35doA6U6LPWXJaZUX8tnMUrxLJEG+bW2MQC64AJUZqVS7xFIjpsnItjLJYAmAVXjOOL58RGHwwHff/99cVPurK3MGkGdRV0WCuA6d++WMH+VcDa3iwDy172Y3HsGJw+/1mZq4ZYN77oRx/HhxXTU2lv+W3uW0IfdAKnv7Txde/tskk+Iu1R3zbL7m6wFs4UQV61aM219nEaAN8kab23KFsD07EoxcWH+ich9N6ZB13mvGsOAvudM97o2Lf3v6ekJ3eHgln4RwBwdGkTjYr/kLPlKTlSWltvH0rOzd0m8xoiRZpN9ZICaDRE3xSGe5VmvLy0vAbjX+sYWl4H/K7hNk78gor8G8D+BA9v/MRH96wD+fwD+WwDAzP8vIvqPAfy/AYwA/ofsPJcAwP8A0WXgf4Idmyj3shJbFUIJcOfTQESEtm1wOLqj4acx2peaOZzGSYHu7a3sWgY/lyVFmytzeU5Y8KZpMBjj3PtMU3D1k4MJcY+oWY8lpb6lbl4L8Ba5V1rlFLQpA1LCShsAbX4oDq23LA3s0/S61v05y/pexsrnSPNSWteAk/SPtTyuAe4YD9A0hKYhHLoWk50w9D0uF8Kg1mlLmoZhABEl7Lb017M/4Ovb774rMtxiABL8ulQNun125lC5wCzWygzuMCAEgBQB8i0S9B1lqVN1oetN68eXGmhL4a7NBIbZCL/ZvXTiZK2kNMGyBq513uU9zW7rzfZ6/XbunWNPX1wqD1lKMk4Wj8/POF969EMP0zQ4dB2OhwMObeddyhlYuJNenWHlNo8TxZaY2I0b8ELS3/OHiGAMwDCBsWVmwJ+nME0TSClj6Wvc9wB539/q3t7ZjyQps6S90NK/4qQBJeU6TRMm5ZEEiLPgnd8o2RitK20IJ29DX8ts50vJUpa2eC/571Zu/Vcrz/87AP6dwvX/J4B/bS2+JdlaOddW6Axws1i9cYmJNW4AyZW69tntBhhFL1bysYcJ29KRauCgpjTluyhZK+y3z0t+GI8oaVk/np+CuWVHcglk3wN4bymjzz2VVANyOVsJxd6ISJ1E0L0++Oo4Z+VJctjD/RTclpmMW8P4HLKF0V6SkqGzZUaqfg8ItBp5LyenB7TtAUO2yU0YOmT6SMB4PwzBNWA1vWrNeQph8/rLGbB4aTE/W6zFK0TitPB5WWDsqkzzyu+96VkD2TUpugUNAHU5zmv6kAbcelOlMSbzvX17H50zqQRrLZ7PF/z4/j0u4wAjni38TOw4TSAmAAbcRMNQPAGFdg+APTNOjLBtYsbog4Mb1lySeiNAPNQ3jYBRg+PpCDM0GIcBsJNbDkPRFSDDMfXTOMI2BkzxpMW9uCWUu/sRTV1tVK+EsSbSJ0lmo5SRwIhdiZkDHhh9W5E0Nt7tX9u6PWBOjaTovdQ+t6Txc47T95Kt9fwqTqS8pdNfqwT1kJMetW7D7mUt2o/pPBHYPOhsAaB7BvQ9wKchN52Gtk0O39G+NoNVr8JtmgadOgKYEDtbyQCqXfucjObn6NSlPFlrwwwKAb6sYlvTTyfKd0VKdZ7ErZRoXgalcs/Tfk9m4hpQe0ucNWPrHu1tr6G3Wf8k66HdO23bwqiDdi6XSzhcR/qbBiRd26L95hscDgdM4wgC6rNURICw3oJcsv9dSvaX2dIs3K3iAAKDrcWo2Le87RbbOFLwIv3xnppha93nfZKZQ1pyMkierzH3eZz6OSFPxHCTZ/RR3LKc5FopGTv6sx8tPj4+4unpCdQ2ePNwgmkah/TYrZWeJgbbERaAsY1ftuCW11lxGiB59AVDlTTAA3LJay29Cemh3jUNoTOtcxdMDMsOhDqM6d4Vw28cR5yZ0TQGx+MhhL8U76Lw3PPJ1vap23P+TvS25h7SBjxzJBLH4MXF9S19sI3bU1I2+q4x2F4j0L5GXgXovqdcCx6S49QL97UbvihlFb4GIr4EwMmf0yy2uCPUR9GHqWmvxC99j1EdwiPeT/T3e+RnTx6WOvHnZr1DvGpj6zAMzjdz/gxc2mdMyUbjTfIWBpPCS0UWsEJI3rOcXqrct4DfW96/Vm4LVwMH8mv7KWxU6toWT+ez8qzkH/XPN4eDi58o+FvWJ9TK7Iow5fIuMzxKie3O/dJ7CuZGwZ583wrCNZAQIx9e92p2LV9WsShKv3/uGbEiUJXfpZcK6cvzWtKHsnZbr98Wt7MCpHS6arKVrdRpGqcJz8/P+Ph8xjBNMF0LaltMAOw4uSz55w3cWGLHES2EWTUAGAY0B9EFBji2AdVGCmnXBEi4I4w3x1CJnOEb9j55Y891FwdarbUY2fnab1sxcPXMV73ekvzUynTx7jxPsV9T+MxnPMNYLmlhxiQekPwsSAq0m2jkez0Rq2E/QfKvCtgW+VcOdGvZ0th1N2maxrG+bIvvDMMQGuUW2QJAPleDzDtLDpJlXZtspix5QdGKXP4EdAd3hGoZSj4Nf2+2+2tYuiCS51Gm7ZxDU6UAEafudDnOqJwbpN6m3CCTp7UECm5lnren6T5yC9O9ecq20H9KYS0xQ+pJJO1CgQxDBPafrZ9ZioZTfCd4PfF/k1o21nUdKPPPn+jDQtxF6nVFEuPvihmHlLFM+4mwwQQHgNL+si5LrPYW3bz2TG5Y6L6vw9DP7203pfTocpC4ZDnJ5XJJ0pV7J7kGaOump8kYiJ7zYP/5+RmXfnDsddeBQRhGi4k5YY0NUXgXLGuoAZAFcYO2Ib+cQU44rZMFAXzCH3xTK7vsM5apZ37dmhWQIbSdmwkQ0kSMYQGu1uv0y6X34Lv1Y2F5aWUt3SFv+TvVXJSfdUtJIujO49V1JptqZTa7NAOSxiGAe97Wa8bfvWSr4V4ysr6k/CsNurdI0rx8R5/IQtZ163vSaIvTtzsHqzW5BfjULP6150sKQwPv0W80YWsxZe82xoSdzfmBPPcG23kaa/l5aSmCK8Sm4GsB8bgULxnLHadStw/whdSUf+ogdzDpn1Nuja8OFu6zl2BLXFeEXIgLQPCaMIWTcvXAZsideilnCwzD4PokIoMrg6rxfuBDn/T6Lc9TakwUSdYikNSAuyalOqjW10IYS1IDuvl7e+tuSbdsbVtbiJ/ccClJSY+KfpZ2kJMimrmsnUxaA4Xxe1QkssQi3PeA+Xw+u+UskwU3DQgEa91mfWstLFL3d8YblA2RY5CnCQyLCQYNu+UnnVoCEzBfyZgHK6O0XIbkDYRF8cSHaQwa02AyUyRPrMUka50ZABPYAsMwYposuq7D4XAA0bLXL12HYlDq57cYaDo8G95LjWgdZm0ZKRElvtnnx93HwaI2bLwE4N7TR6/tzy89vv1noNtLqRHrxh9YW++Hs7SuG4iNWDaELE0plRimrbJHoe9l9JYGXZ1WDQqlbNgr2iFb9y0KtvGDvUxXyUE8Es+tDX/rILZFrq2bLSLtJMSlPjXTHe+Lgts+M+LYEnWT0rgAuOUCC2xREtYV8jkNnFvq6iXrOo/nqvfg4TYzpmlEP/gj3jWbZwyOXYfD8RjY38sw4NL3blaFY+sZvVtQDEPoi13X4aCOkyc3WgNuqxrct1RYTb/XdOiabC33vG1r/bx2nH1Jh71UbZfYvlncmUFSImq2GBP5bx2+sNsaTAEoLhVYinsJeAd8rdqAyGQZnz49YxgHd9qkMWD4McIDPWYGZ0YQw21SZGaQpI8AJsY0MCZylI7M9sj+PceG+3BE1/F8/NUTN1tYUj3/IxHJbLYYMhZAYy3EOaakQ8gotx68Tcq6bPzFNm1V2gzm7bbGJGvmuriUBH4ZjJ/1Yu88QcLT+qDspYzVp2imWEL583k+rx3jXwJw30Pn72XS/zPQvUFkqkcapDEG1k6zxqOZhT27lnenZafUgGgNaOwZPKVMZCqK2bkgbPySE+39JChbX0bTNIHUJtXOW9X3yHOe72tl66zAVnAhoUg70dOfIsYYkIHQJgkg3s2sRvocmu/g5H/1SwW3lKct+d1Tb18DOL8Ha/1i+VDYwXkYUkvcfBsSbwJixBoiHA4Hd2iO2jwXPBD4IPU+DSEMmqZx7tIQWcBYHgQBB6W8L5XbNQywimB+f2XAqw3486DVe8yzg0dKhMBS/jWozsFRAopoDopq6SsBmZIwc1i3Hbzc+LhkmYBevlZ6fyktMf5o+IimYhX/5TLgMoyhjVoAY+YRS+pUl42wxmDnccQYt5xqYguiBtwANI5gwB3iJve9+5IETPMcEGp9GhhlXQf+veR3EmYk4U6nE4ZxgBl6TBYYx2m2JET6nrVTkTmOn2XDUac7gecLRhIzh3S6rzZskhRjLPjZZg7LdWrGmO63FqzGrHkbyVvUmgH3ueXWNNTyk/bv+vuvAnRvUdT3GDCrYcOvM9MbCycbpm90nDJwbR1crpUtjO4W2cLw5VNgW8IyTRM8KyRH0Mt0FjPsOCbHzY+eddNrv4vx5QPrzjwv5VHy+VISByjE9uN1lx6EhUkJ06MhgHK46/U4LzP9tAYUW9ruWvu7d9u/Z/18LoB/byGicEw3c1rnTdvieDigbZqkXg0RqDGAMWiNwXQ4YBDwzRz6KIBw4IUMvAS4d6FYW0TTba3NlersWsDNles6tLUxIGeXk/d0m/e/19Inuq12Uq/uzxrglvTpUp9bA9s5CNCH3QR9rNbl3uJ727/hdTAFXca+LU3jhEs/4Hw5Y7IOVDMRJu9dZvRevtglSkIL5RPAOLPzO+/LtyUDMt5/9gSMDj0CXQPuGrTUAExuk6W0iqwKHQOdtkkB3EkZzl/Nch/r0ZWlO9DqcrlgnGxY363jmSZ38I+AdY0R3J9BCq/TdC+lpwpqCWDiMEPGTJhGt4xknMawSbLzzLaMvZI3+UyNMH3YDYcPhvf4smIMLl1fMyRLcus4tfXdtXTskVcBurdIrrS2gMktokEIAWGnt7MSp1mlauAtzK9LF6cmtkrz3rSWBhOdhnvLlrTlYI38nyW/8UsfR+8VsPVTW3rQB6LDff2XDFyKvSgkpDpgLpWz7vg1EHkXME4EeH+uAfhy/si+DWHb0hiXCKg33PXCAPxagek95SUN+T2iB73gVxlx2tcYg4M/yCTBG2LT+c4o672b5oi2azw4mzDZCW6TGYMtBVA+DgNOxwOMB/IMRgMCqD4Tdm+dG3RGyIh/Rn0u9ZUa0Nb3dfrzNOh06HvyWWKgc11SSt9WI3IPqGBm9H0fvE7I+2uuAEuAv2b4hE//HwOBROk92HZ7eyKxwH52c5ymcLJkjbkXtjWQNS4x7qh1Jheu8cstiIAJbolca9AY5bUpCz9nu1XEAdSSj4uLZRE9dTD5A3r8uyADENB0HTqmmYcvgc3Wpl6EUqcLZcC9JHsM3nGYMI5uqYvM4zSNc8XYVWY+Am4ppCsnbSj73JLWrbpiD+BeYtVrhu1SOC+h8/9sQDewjRG/6n1yGzpEgYVNgGaC3hCtK0or7C2yFdSVGlU+SN0TONUGmypjpN4jIjTuRhIWM7v1b1656oN4hKmRpRe6vAMAz/20aqBf6CxbWB2dti2MU6l8tgoDibER11pHlluDqj2y2I6o9PN2lvrWfleSa4ycuxlGV8geluaashJANY5+ut7PjOgpYQonSiLz+JcaVwLC3EapEeM4+I1Uk1qd6U5LfbYW1BgY45abuNm+2w7/WXunFLbu7+Ea6oBb6+BaumozkjmrrsmRrRJOMVRhlL5LmnLdvUV0OLJZUjbXSrhyPLccdnMT25j9tgAmMEY74XK54Hw+h9k7BmOyiMsJrQVovlG3VM+mMWB2RqIsUeTRt0M4LyQm6K3Jn57s2kPbNOG8CaOeIorMPAkB5vOd5yufgYi5j8CYVU8BOebflXGDcRww9L3f92VD3AAyMO7EAW8p/3UDsVRu+X0xWmSD5Di6DagAo2nVmn7jTt2chxf59VqTuEXjb2mLa1IyiJfe34qLchy39M41eu7PCnQDLwQAkCocGeimaSoel34N6Nbvb5GSEi8B73vGW2vktTDzdOpGL9OxzIyu6yKzoT2hqN/6vbAERQFw8oovt8uFvXgp5nY3KEZsT2k9cRhwTEM3abRrDL1r2s1Ly0uk5ZY83oPNvcagARDcveXXm6bxnhEo1VMqmsS40vknAroWbdvMjwRn741pmoBpApkp7LuQMqy5G9yUL0QYI2lfLQelP2qnC4ZnJe8VZuuWdrB3kNfPlAbxW0gSIS0ul0tYTiJ1Iu4Ata5dSnNNHwgwTd4HMLHFME14fHxEPwxhLTMze2bbfTIQ9u6UyibJD5yRSOTeEf/XAnGttWCv5+UeqX1UXdvh0LaQ/TCRkPEzfcxJWwvjhNSPAsh5mQhrnesBgjtYjolALdCaDmALyxZuyfS8vZTqyt1DEscWKdWrLDGKezgM2qZNDrFz7nwBCkZ5jF/S8jnHg6sIrJU2LbLXaM7fXfq9V/7sQDewTSmuMZ4l0YNa27bo+z40VAHZOUCMioaAghV7rfLPB5bP1Tm2MCJa1p7T93MgLoy33ngjlrsoqrBG0cSj6YNpzuynAmPat6R76bktA+xiXpnDbvH5A4AxcZ3gPaU0yG9hYPeUWSnszw3idfw18HWrcbG1rvcYNKU60QOoAG4iCqeatk0bADfIMY8pZChGFL8zg+C8MTk22/2N4wg7+Rkodmt1STF04zS5o+nVGlAd7owzy+qh1Ie0kbxk3MxY6YWwHTvOqdFRCGcJmNfu7xlTbnlnKRyZ/ZAlCxKekEKdX3K01yiqETr62jiOeO57PPcXjGNcpy2uACe/kV6AeNkLxlzI/0eA46k9mAVPLrzJH8FuDKbGOP1O7tAmBsFMFiPcUhQ0jv4mgl/rzZDFHJKbuCnQg33fH2J7mfv21n059Dc/zpimARuDgxgemecYLbLBksjAGN1ul3VUrT3q8VGMZ1nKcjwecTgc/SyqJ+fj26r7vgyhUOu3L0X07AHKRX105fi1pZ+9GtBdnvK5TtGVru9mLD3os9aGfqmZAe3FRNZaktcmaxbZloqT6cvqs4oZ2pqfPdfvJaXBTTPaUpbCDIgiEcWvl6EkLLicuAcsAu8tgOBeog0zm82Q5GVyTbnvmbFYul5SkLewgl8Te36LxMF54/NKX20xekr3xnHE+Xwu6rzSprjAnm1IH3sgIsCIyPjB+YBpnND3A/pxDO7EIP2P3TrwcVJLF5KA47paF4/Knxps2WUm6KqEgVT5NcYUN5Mt9eUQX+EdoMwuhzhU2pfY6pIsDdZL4H3JyC+lQWYm9PptIO45EndvNRZ9S7/U45n8dkB/xPP5jMswQvzgWHYbH2X2l4xx7Pbevq8BLwGGOYydFgD7TYjuUDG3ywBEYHdODka24GmAbSzargGRQdsYwBAMGEzuVEvV8jFvJbq8F5JK9RkXmWUgohnw1u1nmiZfh6wY6HjCY56OWnsUsH25XJJlUw8PDzgdj649+LwvyZqxuYew2Sr3GiOunR2oXc/b/5LBv0deBejOM1+6V5PdQKTW2rMwiSgsixiHadahNLgyxgTAjQ1TNlvSLGlYfE7f+4qBzxLDWgPgmgGXP1Fweh24KDJL81PaanFeI1ve1QaZzp8ug3sC1Hsoob3h3Etm6dkIJNNXygyzLuutilMPsDMghwxYFp7ZI1qHhI2TpDaJATgejzgejlneeH+8Uq6kLxmYrnHruKcJpu9hNXCwDEsWbDmsJe7aNiwh0CygCy8DtpyulWQoMD5LXqFfKMCuGfJcpLYCZ8lulqmob5C1uQ0AexZGoa1tGdyXjLDSdQFqiftHihsmD4dDEm5JciNwjYV3wM6iHwY8P58xWsbkr1tmjMzBHSARBa9UtfCq6fL1RQAayZe/DnYECowH+RbuNMvGMdYM76bWt4uJ2buhJZD1y1SMNvC2GjpAaE1ZXWkyR78PiidRauCtDSR5x3maiYw0oGaQEN3P6fFLM9vDMGIY+uAhRVyFHo9HHPxafpfubctDtxBwt4yT+ffPMb4ssdlr+HLLtaXrubwK0L0m92TTcvBNwsR4IX9PH/Bi/eCjJXGTd0X6tj6/xvSENOOWiaN5nC/NCOu4dJxS7vpIa+1jWLPhciqfZr9lcNJhf07R6cxFZk/kuWumtl66bl5aOPsEEDbIlpjOXPYO9JsGofhwEXAnz5R+V0BeSfSAKut0S328bfzGyUKcKWNcjicC4lJ63C9jDA7+JFkrp1uK0Wvd0dwyozd5Y7dVSxo2nVUg7Vyxy0vphWoHeRvJc2CZw0yXeNAQHWIQj+6WkxS1EZyTKGtGcd6GSoyZ/i3395znIGV9uVyS5SSiN+Q4903gVuWzxuBHVp3RTxbPfY/L+eLKCwguJ0dVtrkXjD06TBtprTE4tA0aQxjPFxjLIIruVpkAWIKFO50VbAE2aMht9h3gWXKfj65p0DQGsBMa04R14Xle52n2TFkmocx8203KUb0h9SLLUcVvuoTh9A/AHGdzHfCWtqFLRuoLmCbr9cOkSCeg9b7D9Vr+LRihJnfHVS8Q9lp8tfwvtf2t6bvmvVcNurUyuyfwTuIA3GCQFa4MKs6LCbk+zxxOxwKikgyK8Aq2bo+E/HOB8dJldWM8ebnfK6za/VzIswjavZSAbW3shAN4qHzssQbgpYFRx3drXnTn1gZabQrvHtN4e/rEWh28pPKtStZeUzC5v93VmJqlOqOF+0vCKINguZfHm+dHlg4A6WmFwY1m2xTCpiJ5N2OPZ98zg4ajuhM3g6yMXWNMWNZALvGw0wQ7TRj9/XxNcS4JG75Yl/mgWGGSs7K0niFkSZ8cRgUEwDVjtwuyFTxuZZVzll+urfU/5tQdoDwv3klS93PrUgLYpbKYLKMfRjxdLhjGKRgo4ndb1m5LWq5lQ8MWSyI0htC1DUxj0F/O4LEH2Lnoc4QXwYKc324P+pkBsgxrGH73YpxBYfafBtZ4Hp0awHhInZNqs/KZs7PqQmC2w8wa5vpF/xbWW+bEHLyI+8Gen5/D0fF6f48D21Pw1T+pmYWu6/BwOqJrtxk9W8fvz8lGXyNbxoEtbPVVOv5KoP5qQXeJiagpr61TfotSCTcAb3jLn+B82SIqMjnlLfgX0CPynSVhO3OWBvdju+8p1wJ37ZZLWBYpb2HkhD2QQUuWn+gd3HqwKCmZezDHUid6KUwpPzVfuq9ZrgLIG8N6yUEhGTjvHvpcIrNog896PXiKp5IIwuthaQa/9pgezOc35+E5Y9V52Gnaxq/77sMeC5/4sNwA1gKHA1j2WGC9ntJ+yNVpOgHMAnJy1lKf45qzykaRH7qc9PiRjyd6Wn9LPkqi63cNGOk06fXbmpEXw+ZanbHUL2X4OPcDHs9njHZy12y6dpuZnRep3cx2hdQgGb8seu9DXoAtecBNTevOV7QMsq4+J11eKgO2aTDBgW87EZq2QWMaF4+F2rjJHqjnHlbKgI38+mjHuisyrZJ/PTMOyEFUNoQX0l5YJqmXVOYzvF3X4d3bt35D9XzMr5a+akc5+7vl/XvItWPsPcfj0szoNYTbnvb/KkD3FtCcgM3CO7XwZhYPtgNTabQC3iZrAQYsWe9PFM4fswAtU94sdG8WUQYifT0fhAOD/8ol7zxh4ypQ9ICiFZh+XkC41GdpUCxzbamssVZ6yZF2ocVqYPkaQfeaQXsPRTgLu5CGkpT60d4y9PxXlVXnSpgVTHi1MHOyfECkZJBtmYEIwDqPZ/EleEdLOfL24JsMjDnANjYcFCYeE8JSr2nC4JlQ07bO24nvY3k61gBLkuaC0TV5N3K63xKnTHa4VxlQ2UYAlPf70nhxbV/dovM1uJf129rFnGa39yxPCeG7SJKyVxwNAMI4TXi+XPDcXxzIZoa1/qCbSfndbpqbxhG3QkpYXxd3mLWEA9DWTSOjNQ1M2wFNA/YH0zEBMJzUq5XMyJgMT8oYAzsRMIzoWgT/1CQGHrsZEoPUk5aUjys7x7bLVkxdpuQo61keZYySTa5EcvImvC/v+JzEKcuI8o2y0r+apsHDwwMeTie0rYlp2VEXNQJDvt9zHLo2rFKfv5eUxq4949i1eXoVoDuX3BoRuaahzAA99gFv453Li/JzgFfSZ8E8wbIBcwO2JFomieAeUx255GS6Lpt7NOF8huFLSg1sycYifSBBzhTI5ziOyVrUxAuKF6+a3TM70yjxx6nF9J6kd2mg/5rlJQyFpWnBmwB24V1SfyHWjeVeZeXV/WpIWRyy7lMPCAK4t67XrUa183rxQR99ZL7jUpKu62Yb/CZrMfojydtxTIC3Me5o+jALxIxmK7Ok0m2tdeBP7gn44TjVT5Su4c1nMYT9lnBrbS8H5SVCSIPmHLzlRn3NaGXmcJS7zCQIux2XHdQPBiqWmdL/YZxj9429kSUbY5/OZ2c0Ia7bdl5sHPA0TZOc3HhNu3TxWwd6ybt6FZArY6kxOJxODiD7tdjjZDFNavkQUXr0ujcoBHBb34cs3Drv8Jw/HIaJg5Eph+DFMqTQRRU8Rtpr3O8lPS3lo/1x9/0AYJoZ2Hqs0u2JmXE6nfD27VvvnYagzsPK0pimToedpym/nt97aVkE/9mn9NF7x3mP8LZioVcJuoF1hu3aRrQHcEu40dG8m+YKFeDTYacJtplAhtCwCZsxsTOu3ZJZ3ve2XiXMe8lSo11TLEvhyTIUGbRkGk8GGM2E69kLARbxBFI3MMhgQFlcW0QUac74AShe2xP2tc//OchdWZkYaJWZnDHO6p6AGv17KS65P3m2WEty4mQFYO0BXouy8gp7RpAi8g7XxcCVvjIMQwA9EIPTWkx+2QwAdIcDyK/7FkZLc56SJlbfw9KsDPDpa7LGWHSfuBwUMJYbOgLMVUZVftP8rxnDGnCX3smn9PP7ooeE3Zb81tjta6blZVwSoC33xnHE8/MzhmnEBGCE8rltrWNlyetBJVf1PQYAC+s35MJ4IyQmFpI6Qw2YDCwD0+iBaPTUm6QjL4+wmVYAuIzLiOx3G9ZBx3cYSJYhlftzhIBi0pXqQxtpzISmIRA570Dn83lxyWHYi0CEN2/e4N27d14XzEntHKDqVHLWpkv6bIuuS+KrPK/vbQmnJHPv6LeB7ZcA2aVrsRzr8b1a0C2ytSJfypILzKgxME0Tprak2OVgCWstSLtT2sg8zzo9L0x1FwaE2pT418+dzuWadIfZh4ydEjY7uH30679z1075GnDxP8vMMORP9MqYEZLEetEKb6nz72UyP+csw0sZa7caFCWmEcgU9Eocayn4HEbMOAxhABbRMy5arim7EnhI7nL9bjkkdUUBwKZpcDqdwtKufhzd8g/Z3Cbtldy6VYIbhALzy5mfcdXpA+OHNO9kjNOzArDgNuZJP7VWHdQifxWWVsLX95ZAxRJLFxh8X6f5iYw5OyYzbnqdPBElGyVr6SnJLF8STyCG4lkPzhXgs2O0yadFvJJYZ/mQ9wziAy+2qS0pE/3IlsF2gmWA2J3qmKy3BwAmDOzS4LDM3ItRLd+58TOJ+15rMXgmuW0aHLhzGzdNPDie/dIW7dmaXXJC6qStacAtxgzRvI3pMUIOQRNPJXrvUT7bomfRBdDJDIWky0dSLI9SW63pTfm+1saW2v2e92b3sQ0PXRv+HlkzNq6N/1WA7pdkaGvh7gF4wkS004SJKAHeIS7dqKEGBhdAkqZSfnMFV3pm1hFQb6QvDbyrjNBComaG0ZXxbbmXK8SDPx43Z7+BeBAFEQXQHabWqVHTxQj4JRw+SjFv2qduKT17BtR7Sk0Zv1Ra9ir4WyQ3bJf6w9L7u+IshFkaTOS+W7c7JOs7mTksJUhPto33N6UlY3CLDJSsUy0EucSA1eJKlp14jyayVELSwMyYvIF7GQYcFIuLQnsM7aSw3yIAZUE7Ibscz0nIAN1iPoAA7PM+WSqLJQNP8lrykqTzxszJ0hx5Jxw+tFE/1AyEZGzx1611vrUvQ4/n8wVu+6lbbzxOE8bRp8OXO7J0J3Hk5TC7606F1F4uLRGYDIiUq8HwRjx63mPtJD+l/Op24Eh8ms1sWFmLThSWx4jebtkx+YacEjfEsKAItAt1LkacdHC2se0kJZAA8kj8yJhj1d4vnUftLMAdlPWMaerC8pKETCqUfChP1QbWdMmXAtz+oU1h7Y37JWVt9iuXVwG6gWUr7d6yB5CKEjWe6W70Oiz4aRLPYOSHR9iM1cmnHSUtci/EGSN311es/5qSXMvX0vt7JORLUwbJA4Vn57cWZS/7p5/X3wUw5G4HZQDnyR3BTcYrTdOgbaInlFC/RLOGVALdt5bzSxijW9nkreEtXV8yesOzm2Obh1ECwKU4tsscXszKJ4tDgM4sT15PDMENnIHbBxKXQq253Cv9XqqfYjkQYCuv5AZSKe6ltEkeurYNmy1HYb+BwIBf1L4Kve5bA1ANOmvTuxJ/buRSAYBVmayV/If3EUkTUvdzYmSJMcsBt7wjMxxysmRNlupCt7EQn783ThPO/Yhzf3GH2vh8WLawozOULCPsV6qxqaVmMwdxbitTXH+sGdzWB+lOiLQs39hfI+d9JFlnVI5L3ETqPqpVMEPWbjsvJQ3cum8e3CbRqWlCfg0RGmPQCJmS5NeHI20Kfgy2HAB9XmXMam24b5viYtOOY9gIKmOPTntoz9OEy8WdXsnMOBzSU0eXwPNWMiU3CF9aiv248NyW1HwujHhr2K8GdGspsjVfgCHM45eOaqcpKjwB2OKzu50X+dJgJupjDehEhmD+vr6/JCULVk+D3iaVFN4YbA7S90hNSQl4FrZR6g4MD8It7OQ3YWLCQEMA66k3FJodYJLXtfzON21+TlkCMkvPb5U8z+S/5/C1ZnAlLWcFXNZA9hZwvy41qzENiZJnKkwpnNE9DANGddAJQKHd6RPtknfvoOv29plr+pjWHaZpcFC+vsdxDCcYTtMEthYjx+OsdX8qAYuc6U7S6gE9EFm94NECaflpIM7M8QjzQp3V9AXFC/JCeL7UpyUcybssJ5EwRX/o8wRK8UrILH9KT0eGOObbv+0A93nAU39RHkL8enKv10DONWSIu8KgSwEI21sE4epP95IAttndlSVA0meIHJD2Hb8ct4rDqtiJVHoofXJid6g8s9sQbxWozT1ZwVgYJmglJLXO5GhtZ1QT4ME6Bepb0kmAP1KI2R1sM44DWO0latsW3aEDGDifz+iHIS6HUkYdAX42Fmia+QxYVkjJT/LsfvQQHq9/LlnTI9JuJd9aaqlMZnHulJc94exl/l8l6L6n1Coqv1IrRlH6+qTEnLG2GfCuuXlasvpKTUA3zi2NuZj2jc/uFuZMUXttxVtLtsQp1o2LGO11HmxKg7kG4bKu1g1KkQEXJk5ODpQ/GTSbNtb10A+z6UNRutr/8i2yd6prazj3BHpioFYidh/yE/V8VPvtPdpvMVmRN1uLYs4HzkGDLGUCS3eJDHeXHN+M2bsuTdfVyUsD7pRx8nnzP6RftJ75Dsu5/LprfbpsfviV+OHX/axEDASd6T1WCNtLSKfWcxPK+ne29KG9U/D5NdEZArhltlTY7U2HChXCLjLzAiqZMU4WT8/P7qAbdnm2Fmr9tkVj1NptYHZ64yx/i80jReKOufW6j90fW/nNYROsGyNN8IG9Wp6lQpHuGosh6BdmQK/bFreT8njbuhNfjZVlSQTD7gwOIgL7VVDEDMMaxBbK31+TPUPDMICn6HDhcDjg9PCAplEsNwH9GA+/afyyK+kb4wj0/QhjWjQNJfHm/SBm/ja5Cy5YCT/HO5+bSr2WUAq/xSVwbeoQrwh0p7b6ncOuTEtogLcEFXPgLSxpAFZwnXOyFo1Nj4Wvxa0ZMQCJA/6kiylwWwSkS43oDp1oKc2B8UkjRVqaAnLTMEvlosO/V/fPp9P0IK6fkWtN63add10XjCi9+VKvAzeGQEP0hDKOE9j6uNxIEgbbtjADco+8rQG0l1akS7JVwdWMw9lzO8PdJ/nAtpSCPLVy1LMyxK1FPwyYrIASx4LJATjRtdi6x4zFJQYbnxebglmn/5o2E/t8rT6kPwmIbpom7KMYlR97KScACfNfIy0EqGtvRZJe8ug/KU9hgwvp3AK216bpcz/88il7RPSJgtpLjQbceZqY0/LNdSGrPMYxAhit8//+dLlgnJyP6EmAuN/wKsuANFZllfbajNhie6CYRvEk4paPxCVAkmbxkhLW3hsBj/P1yiWmeyZcacHC//ixc+J4JA5PUygXZkbbOTeFrTHOfiD/J3lxVoSyLeapZY6nicqMKcig8Xs2XH83YHan9XRdC6IHQPlnL42HzmDtAUib8Qf2lAzQUjlU5F7EzZrUZir3Au7c6L5G/295p1gWHJeIyZKhPyume5YVpQxqQFbLtQWbv1cC4YBzMSRr8QKj6dMpymupQhaZbubEL2p+fzFM3YkqaQeictw7tTJr7Fk+ZFNhGM918EsJyh7RiiSB7VeCrEUmqWRMyD3vTMKYJrB2mvGWNeDTZIGJQ8FamzHGRCA4DyiNaZLJgZoxdo88lu4vDaR5/7p3GpJnr4qhCg/V3WuGHxUS8z3IoiCDX16hubrGGBy7LixBK7GX+e81nVd7byYkAELtD1kAW4vGHGnDW9Kp05G2KTEyZPaoV31I4tGuNnP3iZr5rs0OSFJmALJQPtrbSAlkl4C76rjhWasIFsmvMPv6xFHZMCljx9rMZcJgLzzDcCz2MI74+PQY1mlbUPBOIuDfNE3wva3LKelBe8B2eAjBD3YwcIKR6X1tW6cbLVsPughEBgRZB+0UY60/xASiaA2nJJUCdpTOlIRlF8xh6dM4+tmWtvVrtQmGyaeRQpi+5YB82Uo6xQ2jXj50OJxwPB6z5UNxHTeZBt2hAYxJZkNkgAjpZ8Y0jGDLOBzdOnLZXFkylGqzJFIlgTKo1OucStgnJf2xZJxvkdps194wdFh5WksSgLZfGqd1hsyS1ORVgO586NTFIcpgTVEB84LcWkF5Zc6sbkRQ2BoD27Zhk0RIs1hCXtHJ9PFSWnLlutcCzNNY+p6HFxih/NoVMsPW7BiOItLWdbPRSLinLLWfav5JlKSBsZ4Jb9QmTOv80I7j6DYo2bjG01DOglEyyNTYhj3T2nvr7SUY4mK5vggTvdRO8tave9JtYHybRK3FjDA7IlFL+QjTGVK5Qz9p2ctUhYFZgDfmOgJAossqKalEUO7FerCTv7Zt0bQteg9Mtd7UbjwFoOp179LWSoNvYCY3lGm+abOW7rBOnCK3KSWgGVwB4JfLJTkcS2ZG1w67KcW/VMfC0k52wvns2O3Bb/JzPIBaygOg8ey6DsuxuVm8iL1nq5FHQjgAs3HbgVXHe4MIDSIINWTSXqvKMwFZgDsYiQGrjD1mhoECqOTiqi3gk3ZNRDDWOi9kvt6sdcZA17beNaU60AluyUmA3aqtikEjS0qlrtv2UJitiYBYZrX12vJB9YfAznjjgNidG+GWYslMkK6DJUqCk98lHyg55oqp3S5LhCJwn7Hn1vGuBLhL6daH6kFt1i4dqFeSrx50h86gL6rCEq+2M/+uWGFjkBboTWyiT5M08Mb77WblH1ZEOqB2ZVVKa17xiUVXSoNSQkB1+CuKPGtcZLvZ7s2xiKZdWyCS13cm1+RxTW6ZRiOi4NCV4DYgSZjCbp2fz+inIalL/b4oVLd5KTJgIXyVziLjtpCnrQN5bmztldzISsK+g5RazZyvzAeyEkMt5bYdcGvvCeVSokI883ije0CvrNmVT3focDgcXNugAuLRMSmwek8plW9yBBS5qfg8HYshlOybWvw+PFliMY6jW4KjPAgBEdjIwCfGymxGKus3JjvQSsuMWCn0uRrTWwKhuRFwuVwS7ySl9dur9ZkxlTkbzcwBTA/jiOfz2c0agJzvbWZMNq6bBjAD2xIBZ5sHHfDylElWj8usvB+bwHGslhsQ3WmC+9yc3GJ5ljkcHhXKEcDpdIKxFtS2yRgsYFvgj7b7SrN4+rv1/U/GdVh3qiqY3R4dXygUisjHYhnTJGc9TFGnG4M3b954A9GtVS+Xnz/WHtHXd9MYEMX9PuM4BsBtYwAhLme0O11kTDA5QjyJjs7amyvv0mIezJ67hyyFs4cg3UK45mEsGedFRl6N5cmsm5qdkn7t2l89vV896AYKllbNamK1BCNTiFsYwjUAsxW86E2VGkAKazP5XdJLO9u3NqQShN0wvi2Gpbtq6WSo2XulDiLg3SeIosZzimWXVcAvxo7ulZJRlF/PB1BjDPq+n93Tdd33fQTaFH30CvNZAgH3BF15SLHurotjiYmbxbXD+C3dTYH3HAgyF/yjL7U/yp+93hRxr7oGP03WTxXb2McIaNvOr+NUoKrS/2vTqLkxVszWRp0SX5CP5XD3SMJeZiA5XwNtDgc0bYthGNB7t4qa8db6VPzohw3M2YFCs/aogHmp/eWDbY1dzsF1LuKdRECRMGJiKKyx6rrcWH2XcYXVbwHc58sFn56eMDIDxmBixiAbVFmFQeR4ZheA+wy6miNPEvKMcH23LLyjQXLyih9D2LqTTJ+envDTTz/hpx9/BAA8PDy4ExoPBzy8e4ema9GaJp4W7FB8noEqlhDAyezdwsqmfyL07FjlZjLoWoMu1J0Bw81ijn2PcRi8vuFgVMkZEC4t5Mp1Vt/pSBtvG0hTzo1OqDaau6NtGoN4EkjKZgdNGdqw3CmDxZye2Dsi1IxVSW+t7+yRkm4rgewtacv7fq53ZN9I27ZoK0vQluTrB907KkMZs4mCEsv6VpCyFRzoDZVhmtG/k1fgQmSLaUiYbwXshQkn/X7G1FQBYxa3KMMir7cwwEt6iiUk5VYpvq8DWu+TLWBG2kHpXVlqFJUqw1q3rlWDiK0D9DWiDS5mTryLJIxTlvZZfmYBV8plZx7WoXi5b9bKfN6o1fucDzPXCXPURtayP/hkimGS0xXdoQ1HoXOmwKvpL1zbM7O3a8ZEl036X4pp0qdU2tR9AX0FNknnxd9AY4w7Kt5vjgxrotWab2H/DFHoM93h4N5Vg7ro4ABaadthOSWpsekicrqk7PEA4mAtxrT05aX2GnRCHj8iKBWw3Q8DLpcLzn3vADcZTJYxSf5Z6pKSOnXNnSTQND2AY4kz8ugaHUTZp86f9LjZOMXOj/3T0xM+fviAjx8+4HK5gNn1p0+fPqE9HPDdd9/h4XTCm4cHPJxOgDFg74Ul71fFfhKocI5l4xIUvKrIXfjlOYfuALCr56F3LgAJjLYxOB4O6DzYJmPiQTySx6S3hE6RqaWoh8SgBOLyND37I+BQ9go47MEgUvFU9bXUQd5v1cFTV8rauHgPQ74WztZr+X0pS81uM3OYlZJxuMn6btqe6nF8/aAb13Xy3azOTlmyqoTN0Gy3FgHdeecvWvsqvpJyFtaGsuu58aGZkVJehF2b5W8D85gwLjpelS4ZJKppUOG8NuBdNTx82cUDPuaA2RjjpkhNPLJ6miZMdgJzHLiFBddHg+duxZbA1p7+k0/xJteYkzraHGpusPp2uycty/3ZxPSsAVV1m/ILRdmiRwpx+gGcrWywlc1zLonCluh63BJTieVeTV1mcC9O10IP97me04OzmuIOV/OWMdMKDvxtbZPeADSeWWRmDF3nlhmMY7JGWrxOTH55xeFwQJvNKGomawk46/TVDN38WlieYG3Cbss97X+7FEapbrTBkKRFpXMcR1yGAc/nM0brDrqRzZJWvS862b0YIKQPGEmcCaniQfetUq1tbRAFAyEuy3l8fMTQ9+jaFu/evQMROeDtl31Mw4CfhgGXwxHDmzew37zD8c0bmK4D+82hJpv5SPIZgKnXSQpzJ8upAPA0YZgYuPQYx4+YRovGA+K2aXA6HPDwcIozV+Q2yyfxKkqQ9GesVlUW4tTQLRfRBI0AQl1XGni7tuYYbyI1YwOpUin3OeAu1d3ecbnELl9LGC3pi73AvjazlbPa0teapnF6RAA3IiF5jbwa0A2sV1hJCSbh5M/fnDIVdoFFSthudV06yziO6LpOJzikKzCPeYOpxM2VRqCv5WxJUq6kVMMGgyUqLEpYkDyN+rtm5feq8FKnuyackpTaVS3/a+WSh5WwD008PEFYv7Zt0HbisQBo2KDt3AARDhHxrIbeAS9HhAsY16zZ1Uy4KOQSaJX8q+9LwDnUDZHfQHu7bAVpetdDCgRLCSwGgjgFzPrqSjryAF04dpow+TWh8q64nZRp59xoDcnU4GdB7qEjZwPk7OWcpUxSoN64TbMuzSiSB1AHInfKpdqwNnqQSX4APZ/PYc2lNm6WppRrQLqWzvz52nISfbrkGku+qYzgGO5+GPD49IRLPzhG27elid36beFtOQN+DoT571IGgN9jEIGhA31pevfql9W8SRmr56y1eH5+xof3793sgPddfzqd0HUdnp+e8Pz05PzcTxOmS4/LOGG8XNCfzzi9e4vjwwPa4xHd8YgWzruYzOBFA4QrTE9hTEDcpDr2A4ahd55Dug5d0+Dh7VucDgeYxoBN6uEkNUFdrVASMgFqZixtk8koOnMvq5/VxI2TNixPEWMt1TWy4XTZCC9JDVDnBv7SO/eWpb5a6q+aAJWyA6KRHIiusGRJldTCeLkkXz3oFku+BC7kfmlgKgFuPYTmY64U3q1T99pKF0WbLyfRoLt06liiA2rX1TX9uQYHSmVkaN7lkjKuZzemUYHpUtmG9KuOX5O1vMi9l+y+e2ZKiiA1G6ACyyCuhJgBYrR6La+nOyIwc0yorGkV8A4gAHE9qJd2T181DbwAzPaEVlJIISyan0j5UpL3rXi9cLEgs9tbGqjPt/UgzPX/WK9NE9f0Wuw35rbe089oo/9eovvhen3Gp/ewVrleJsCt2zUGjdez4ziiEZ/5fnaR2a1lltMvS5sWNZBKllTl48cGgDH45R16OYkG/LUDbyS8EljRAEkDh2ma8Hw+4/HpGcM0Ja7+3Kd4DNHxqQbPwm56d36WnYcQa92MgXUncxpjYJron0O3o3uKLt1pHPHx40f8zd/8DXia8PbtWzw8PIQyfPPmDU7HI07HI3766ScM5wssuxNNrbWw52dcpgnt+YzTmzfh+YNnvmXJCfkyA+WbB+f6Qrc+gvOY0uEAMKPtOrSHgzN2/PkMbAkwqsSlbl3Bq/C184N0VBM2Vcdt/RghbckY45et2aT96FkWoAFR2SsPebCv982GtO0knnLicUm2kgRbwqh9z2dOcgmn4fp7sjEynIS7QGTRgq5Yk1cBumWTjP7TDah2WMIsLBVmCdiWgNzW4qwNFuEYY2uTsAV4izeTEEaFsS6lpQRwa5Lji1yxLw7qtTh8enOOS8eRrw12X8rsZz5ol4D7PWVPZ1lj37YokXiPAHbGzuxQHJo/LwyZtBlJjz6cZxzHsF5U7ynI03dN3oNwlsDVfNavcXpzf1rmofiw3OVN+XOU3vXR11LlDVA72YTxZO82ksikB6Dod6+Mc8tszbVM5UKkAdzGWYFCPSfMQNnLyxpDFYxWlQcJpm0aGHJT77mByuyXnPhTL4OrwaYBN42bSeR0vbKEr3/n/V//lv6nl7rIbJQ+zn1JiuMHokHASl9Ow4Cnx0c8XXq3lIRo5pIvAesC3VQcfsRxl9gB7qHv8fzpE8DsluYcDjAyE7Ox7awZK7W8M7tlQWPf4+PHj/jd736H9+/fg6cJnz59wvfff49vv/02bEo8dB3ab79F0zR4fH7G4+MjWHQj4ED4NOH89AQ7DLCnE6bTyQHkrgPaFmAOnqYAbZDGmScKZeXLybc7Gdd9pt2M5jQ5RtQadEZcSqY1w/BeRQTksu418ZvM1hHmbRHw/sJN45ePIGzU18+Jd59pkg3GcWkTUS3scj3qutLf9+iSWw3+rW1Jfy/NAmh2W/Bj0zRoMrCt012K51o9+tWDbqhGkSu+HHTrz5LMphXjjQA8ieMonIPNLUWcN3yGY2VkgJK0i2hPJqSe2YME1p4M7ATKDV8r9OKUZ42d2ZKegiFBQP14X4mrdr0Q18xQ2siiLQHptfeWLF8ten1YDEcs61jvSwpFBnBmTlyjAQgutMRiF3daer1wzu7tZati28C8sK+RGvNcinuvYs/CL93fmwXXXiVBS0Zo+C+uzQ/TvO6WMQaHQ6d0lFVhLm+qu0WuHfA2GfSrgH8OxufPpGHV+mZYa6nuERzzaJndISbGhLIfhiFsJNT+k/XU8UGtF5e4pb+Uxh09mIc4fP+T98RrRQQ523RSfk9czjKAcZrQ9yOenj5hGkfANA4QZ6AciH6xi8SGNzQc4nMGyY8//oi//e1vYccRP/z858lmMXY06areKAHuLWBO6mbwxsQwDHj39i3apsHTp094Pp/x/v179JcLfv6zn+HNmzeY/ObaN+/eoT2d0LQtxssFdprceOtluFwwnS8YLz1Ow4CHN2/QTBPaw8HPlDQeeLtZSGG/KRhiqa4K5azaIMMz3NY6F43MsI1F2xi0DQUAHerGQwzLwmQT1FF6CeBO4k5+CQYyOBwOAJBsrkwNVeM8JpHbWNk0XheQCbHlaczreY1VzmXLeJqPR/eSGfC20S/9zCjWDgowPxArD+8ehMVXD7oJCEs0gBTUyp8+SlcKJQfiNYsOyIAm5qxwvDkHgrUqMMaE9YVaCeipDCCCssB2+/g3MaelNNaeVcpEA9uSYp6JMiAk3gBulgZO9Xz2QGC6q/nb0LgDt7ax017DwmyRLcppHr9jWUq+uEvv5EyfhC0Du1ju2pK/XC4AIisjhzNoQLGF/QxtEvuBd3GQ3fyua14uncC8JXmomo1O60YoYvsKH8ugcBZzSE/aNyT+abIYp9EdMuLDIkM4dN6jAem3uJCCuMkqCT9LzR5QvKQDa1Iyivb1mvLTe1irrUaiHjS1kXrxzLcccgIAo7j/kml6D7KE5ZI60/pN4pd9GgLs9dS+M6oOs/Xbm/OprlmGP0HSeb859wMeHx9heXKeORBBoCxeFLvPgW7OOq3LD/m/se/x/v17/PEPf8CP79/jcrng3du3MMY413dyKAwAtC2awjhW0n2zMdpXjj/+q9jXDIDWbypv/IbEN6cT3p5O+PHHH3E+nx0g73v8/Icf8PDwgLdv3qAxBqeuw+H77zGNIy7+uPWh73E+nzH0PQwD/ThgshOmcYzrvA8HdLYLy7zACEtp3BjsCrO0XyrmO46nbgO8RTOOwOGAxhzU+JoSecSEBnEtdbTXU6MyF44PhtCMobBpWDYY6zZprWshxsjmQMEfLqecsfFLeuLeTPWtILY23oalI74Nyx0B2U1hNvhzydcPupUC1QvegbklrddN692n+k/C1J+i0PWnjj+EqdPlXiyml9V3A6DxzKNmvbSxkHsyKfNClfLZ8ExtwBJmf60bzdgSAczyVwp7KW28fzNliK9gIC2C963hb2Rw1gb/UptK2E5/D+ROONsabu056R86Xs2y6iUo2sAjovI605LC5zjwhDH8hSX2UZt1s+2RL/VlHV4txOLz6lIymKp+VNJVRIRD69hPmKV0qcySen+WAM17rbfb0vU1FnLTAKvbS+XxFChsC18zdfrallkhrd+Px6Nb9zqOGP2pfprtstOE5+fn4JkguPXzyyqS/RGIdavZbT2zJMsfhDlf69e53hewbz3onhhus+Tjo1uqBIBhEpAt+jiUikeM5C1AgvUOOtxTdprw4/v3+OPv/4D3P/6Ix8dHmKbBL374Ab/+9a/RdR3O5zPO53OIoyVyzHDTJHnK66TkGnXtXAYDgCkuxxmHAeMwoPfgqG0afPz0ybkLPJ/xu7/9W3zz7bewP/sZ3j64Q2caY4CuQ0eEyVo8n88hLaO1sL0FTRZ2nNCOI9pxxGGawMMA9v7gTdOghQP/BPilO0gcDJRGOufb2x865MtJ9C6RAZm4gRMEEBk0IBjFMfvSK56Y6aqOle6NOkCKumkMGqJgNIpRKAwvAFwuF3RdB2a3ubJpfDjsUzAjNhiVrjsvhR1s9RaSam0snL0nfUCBbU1UNYp4qrneXTIgK6nQb4f/10aorx50A7EwpMOL5IObVnKlaUFdqGGtdQWM6jhKwtknoEAoIhDU0/z50cAaIOnGsAd067iXJBm8WQ3TC1a1DlvnM3zPjBUd1+ewHPcCd5FblENtenQLi6jLym1QMsk7S3FsMQi0cSkKRjPgsu5URNqc3uzF0jYoKpG1tF0jeShLNRKjlHLWZZ21gjC2rRtG26WcumR4IoDYreMM07yIdd51Hbq2S4zyejxb03eNplgI7QYWC0j1Qn6tpCPKb6ftGcCMSS6FJ8+HqXkO3K7zYGIMet8vtO9seLA0KmNUZim7roubqfyzerOkzkPbtjgej6tuPEuGIDMnruncGOE9eJzPeHx6csCJnIejAM798/lSEkkvgWHAILZgWIz9iE+f3AEzH99/wE/v3+N8PuPNmzf4zW9+g5///OcYpwm/+93v8Kc//QmHwwFsLd4RYSLCqbI2vWRghk8SZtfVMdsA5YpEGAC0fpagbRpM4+h8XncdTscjPn78iKenJ3z48AH95YJf/uIXePPw4DYyeh328PYt0DR4bls8fviAwVoYy5h4BFuLyzSiE49SXQe2Fk3bou06V8+y2VI8kCBqmTyPLm/OdaYcRwNPtAwAAKdbLQkJ6Jd0EPxBRb4Pc8V0lngoLn1N24//9D+apsEBbsamd40o2ag9DENoYy6rBsFruELYbmMlA1zGI0sG+lXGeybr+iIa5sxxE7AmXhPvIwWHFbX0Lt3TY6OmOyh7Z0krvwrQDWDWOTV40aAlB+FyXX8CSBg/zVbklbNngNbDRqp4nBWvpyIl/ZqVDO+4F3cNp3uB7l4QlTwlZXbH9HwuSZSDXMvube2Ya8pEWG6tCDSIXdtcdYtoJlvS2bZtwnizB4jyJwydBh8CHIE46NS83WxOW/ZblPq2EOYDTnENxIZ0bTGUtgrBH7Otjyz3UYtRI+VZSleahjkoK8eYezdwsuUU2S1yVakUX+LEa09Vc5Dmi+TxaDCKj+Iloew7wQEWC4R11qM/Tjx4ALLqhD+iUIfTNOHg2WsGoT/3GIY+1K/06+PxGBj1EuBe0oVzEskZAZdhwKenJ1z8SbWAB9ycLiUJHkqUYSqGM3nAPQ0DPn18xI8//ohPn57w+OkR/fkCay1+85vf4Ne//jXatsXf/elP+P3vf+8OnGlbfPPNNzgejwCQjJWS1hKxZfx4B3iGG7KkBD5FGcHgXkzrkJxbyMYYtF0XWOjj8YiHN2/w+Pjo1nj3PX77u9/hZ999j3fffoP2dAI1Dbgxzl2gXyry9PiI6dK75SUTg88Tpn5wzPfJ1V3bdbDjCFgL7jpQ18FQGxd/LPTXcK6QN6jFV7yvDYyT9ZseGzQNoTEMGIIRKB9UxdxYVREGxjuXYBoofSPtre/7wPpKumXfjxM5WRPBYLX+npW0KVyyRWdeC7JL428NbIuxbD3Yljzq2aoSq+0+awa/CCVtPQfUyXPFe8v5fzWgO1dc+fcaCK8BcQAzx/IafGvGcGkaYkPCYSjz2Z01JM12s1f894ZjVcZ+BRwnFr1cUxa3Zu33guxS81+SXOncAuoDc+YBpC3cWx3gF+7rticbt4AIBGRAeAmptVdRRDptYhTIgR76Oc0UJAahC/TFWO915bXQavaSxZvEtdRadqW95Bt1hJlvmzY1sArU0ZJRVy5nXUZ6sKbA8tbCW8pDMZb8XqUg5rXGAYxUH57/gJS1GHwttXMvP/kbS3nzfwII9azO5XJxyyhEL5PfOMiM3nvTeHp69gBJ+nV0Nab9b8v9/DCeWjoTsogd8zlOIz49n/H09OR0kjCjHJeQBJJAvuvic5axZ10Zl/Mzfv+7P+DHP/2IcbL44AH3d99+i7/6q7/CN998g0+fPuGf//N/jp8+fIAxBt9//z1++ctf4sH7xO4eHmC6DsJau/Ta0I6NMd7XM8JMDnuH38QCCn2q5T6UUVTQ6URumQaY0fpxeBpH56P9cMDxeMSf/vQnPD4+4u9+/BPOQ4+3332HB896t0Roj0fQd9/BtC0ef/oJF1/PjQVgGedPn9Bfzpge3uB4OgIPDwA8cz9NaNrW+Qdv26yXIfsVAa84BiVmQNYUGwPTMDrAubpk5xtbIF1efVmDya/MRBuxTF7nmDbmZRgC2y1P6qVRjhRoQltiAGwZ2pWi1Nc9CIok7RkhWgXcyugQZltvXtYge9mhxlr65xhzNj6V3toIuIFXBLqBcoWXGOkcBGqFuATChZnU7+ZW0pKvVaBAunkFLgv3S1NxGvzcssRkj2wFTEVLE2nergXe14DuREFJ2q4EfzKA3JORLzGT+gQ6eaZpWhCZWVvbE8+16ZN3ZWOlgEW9Dly8ouTKrJGNRoV8LqdpgY5efXa5lewpiS2zGHsGFg24w2a9UJ8mnmYmXJ+QW74xLzGgdZZbPyd5CFfClDigWNFrBssd70RGMBm2nKeGkDK5n+WZs9+kGKaKARGTWL6b718QwK31LhHh4eEBh8MBl8sFl8slOcXRMsMSoTENmNwsxTSOsNa5gTwej3h4eAhssJ7RWkpbAA9AiGdiRj+M+PDxAy7D4H1Jm8ARz0EfZg1fnjTMGC8X/OmPv8OHDz/h/Nzj0+MTni8XgAz+8i//En//L/4CRIQ//u73+Nvf/Rb9OOLhdMIvf/lLfPPNN2i7zi2XORxgjXFVRLJ22eWzaRoHun2NRud7vox93RtX4EmZBLdsmiBTGSEiB9zhwHfrD5Jq/GZBZsbPf/5zEBGeHh/x+PSEEW49dmuMO4nSGDSHA94Q4XQ84unTJ3x8/x6Y1JK7S49pnHyYgH3wS408YG7g+5BxR8qrGnRpC+qJYh4RT7JkILgLJp9v40/JjOx0ZjhfMSYxIkCWTzEIidzszahmXTXpEsG3ce4MS2kQg1TypOK+x+hZ03VyOGDifUThp/xodglLh+szkIdc/JnoJm0M7s9SVV4V6N4jtWk+AAnbVwLiufLUYeTrrzWIEdFKVd4lv7ZbDvqpsd0Cbq4B3UuddcsAvjkexCkoIDIWpfTU5FrQWCqXPeCd1GdgjATgZOnbbruWRYy4EB75dXkgt5Yuxx43GABb3qtN1emNldoAFIUcTtRUDLg+Xns7CA98SSkHEIYzv757BmUBWG8JqTSFqpnr/J4D3KnLuGCkdG2Ry6L0592E1H85i3QvKTGT1wuFJiHsdhLXtaEqgkSmowXk5sBbTgY9nU7o+x4fvZeMxhh0hwMMORZQTr0kD7i/9X6iA+Fgsj0aMYfhu5xOLAO6LEk6X3p8fHrCaEcHuMkZLGsMfih9ywBbDJczPr3/gA/vf8Tl/Izz5YLn5zM+PT7iu5/9HP/wH/5DvHvzFs8fP+IPv/89Pnz8iJEZP/vZ9/jVr34Vllp0hwNM02BEtIms1wuiA3xmVVtmB+zYBs9MBs5drpSBUYRSIG7ggG2YeW48ay4Ra9Kr6wDxDObBpLUWl2HA5XzGj3/6E4a37jTK7nhE07mTLNE06No2HKhzOZ9hxwnk4z2fz7Bs8TA6t4KdWMXGYAJATRM2fMY25mo3wQAkRkc6nljrDh0amIHWLVuxZGD8ATpNbRDdKG4ugZNP3baHYQCJZ5NMd0W9JSHBuU+UJKm2qg0LLCS5piOWZtz9lzjuclxCMqoVAq0ah2okaFxGskLYbNBfW6tFbaVfjPXVgO5rQOMSCMiXocingG697hWILIYwWnpg1ctQSiBcRCz1fFmLKI9pmoKnlnuyr6X863zvEUa0Pjm/rsJcS/9d86iUwRYJyr6S/xyg6ZC3rJeVtpoexxtuwh1sYOL06uaUl0VPoiV1ktVF3uZKz+hlUG3bJn1B2r7eHCzgJhyTW4mnnEKReimsVevMAFsB3FL3aWze00NgnuaMSU65yuAW9cWUpEbKKAdiYPJNj8sWpErzvcByiGKh/6/FJ2Vhc526GPMW6oADqnNB8y7wUTKC5HqNQNHv6d96Q3HrlxVIX5hs9DbV+PW5YowKAC0ZDBpMAFBMo3uiH0Y8n894ulz8Me5NuM9cLz+N0YgdA//44QP+9Mc/oj8/ox8GPD094vHxGW3b4Z/803+GX/7qVzBE+P3f/i3++NvfYbIWp4cH/PqXv8A7v3678548hIRgsHc5h5DXxKMLO3g5jSOenp/R9z2MITRtg0PX4dDJATtRP2h9pWdIQzl6IwkBCKo8+7hPpxM677XEGINPnu0+e68l3fmMt+/e4XA6oT0c0JBbVmTevoVpW3z88AHnpycMvTvKnaYJ/dMzaJpgGMA4Ad0Ishbt0eUhGFbGbYgUoEpSGYnRqDzKsPfQAgDqAJ/GOM8mDRGoITSULktanfHWYxgJXA7Rx/KF25xKRG4WR20CdvEA0zSCYACWI89JLYFBUREv2QlanywajhUiKJl5ZQ7ehVpP+OQ4axOWCMNMSb/fIMHQAuZaYC6vBnQDdQWby5o1pRtEXnnC/JXY7xI7LqLBdw7A8yn9Wro04CciWMW23h+CX9foNGCVNizW8FKtlGYDeCdYvlVCnS+kKZe8bWh4OOcvU9Hre3MFkfz271+tBBSTFFgCnbYM/K59l/TpvhDavLDg6hRMUYam0P7TuGvgWl+rlEENq0OB2KRIqPSoCoySuy5lDIHTKiA3/iMOYPq6tQxXzSngDgcSBWzt8y4fC3XtwHz1tsrDfqMkvyf9cK3tL4VdanNRVoD3Sj7zFrNm1FfHCKKwzMFW3pUNjIAjSEDk1o6ONhjbkh459bJt28Amwh92JZSEgGY9xe1mvyymyaIfBnx8/ISRGaZpw3rgRUIACAe3GD+b8eHDB/zpD3/A5enJeee4XPD+/XtchhG/+MUP+M1f/iW6wwGfPLv98acP6NoWP/zwA77/4QeY4wHt8YDj6RSAFrNb8jL5xh/GNhmTRBfaCY9Pjxj6wW8eZLAlcD+BJ+cX++DBPCEuAchJmlQDyH4h64F3+o7WOU3ToGlbnN68wenTJ3z89An9+exOJh0GvH33Dm/evHHnE3jgJkfKPx+P+PjhA/rnZ7eiiRnn8wWXccKb0wlvHh6cFxu2aLoOZprQdJ37awhktM6c11UcJzgssxoB16aGAa0x6Dq3STR6k6ZkOU65ESgwTjTrXaLrXL+OesI0DbrDAdz3CaHI7Py2W/IzEcxgy2DDcWzZOVZvIQxmoJylf0zJDPHB97Gl/XWrs283wox5K70+2FcFukVutVBK4FuLAI0ccOSAWwNxYT3y6eUSANfr0nRecu8mPsByGdxUArdLAFSV+2udYA2wyjMl9ih/f6/UYEDpmq6jUnupwkj/XMlfb3Kksv5+peRlslSecj9MKS6EWzJIqetAXjEGTyjThH6awoCoXRFq7ykUKKH68q3qNcJsgyCpitwKEANYRTqIuJSFwJKnKY5iaupTADcH1pqAsIystPmUV2sIswnR8uzUEnOU5zPNTx7XBnSfSt5mMsA+7x/RY0W5P6eGcDnKuQvY0jO1a4meIpWOMNbLEo8Lhr4XmhmAOzX24eHolhmMI4beuQucEJcEDsPgjxc/BqZcWpTeT2StdyU3Wjw9P+Pp6cmtO+5aCJksdRJ5s/RkRAHcxIzhfMYffv8HfPzpJ/A0Yeh7PD4+4vH5Ge3hgH/6z/4xfvjFD+gvPf7FX/81fvzxR4CB73/2M/zwy1/g9PAAalu0DyfvJjHWiPMTHgG3AD1JmQEw9T2eHx/RD0Paxtj59ZfN2ZO1sJNFdzh6F3WV2WAN8EJQ6XKgxHOSMWjaFgdjnLeRpsHheMTj46NzKdj3GH78EZfzGd9++y1Op1Pom13XofHs/seffsLTR3fK52Qt0PewXr+9tRaHaUJ7PKDpOrTW4tQYsI1sd5IFAMS+zVNag/JrtJOzq2DAo1sjz2jRwMDIOnZfHqUy0uUs16SNh/R4PRHIBnaH6HRdC2MIw+A8+LB1ph6DYSeLwbq13bJxWYxI2Vws9bA27q8ZxyU8NU0T4PdhiM92vXwkH0flWl33K6JjVoxLGkcPNCscNu3HIq8SdN9LQoXx/LoezPNKl+963WvOhGuWMz/1SMK07HbhirKR8PQSk2SgyRnmOwC2W2TPFPhS58ivbuA9i2FshQ+C1WbpqeQlAd5b00Pz6bUAdFWb2pPuPVIL140DXC3j6jtwgFJYGDEeZcmJbvvDMIR2rzdhyp/eclVM+4KRVmR1Zu/nYa/XXQRl80E0GDXG/WIrbsGUr2Zy08RGDRQlAw0Qo0vAZjogh2lh9Z7G0WvtpcT65ylIan9nA8z9AYgBJxK8N8xiTd+p363LFj1Xynv5PWmv3h/287Mb9IVF9oxo1x2C/p6mCZfWhINqJGxm9p5HottZ2eAV9bgDoH3f48OnR3ciZtOCiTBa935gf1U5RQOBAyC144gPf/oRP/3pTxgvF0zjiOfnZzw+PmJixq/+4i/w937zD9B0Hf74xz/i97/9HS5Dj67r8MMvfoFf/PKXrp12HUzb+vW7zjyy8JtQxShVRoPUK08THs9nDOdzOPEPHFlR/0IYo6ZxxNkvwXIn6HYw4cj1irEk/ScDWrKWm+C90filbdJvZebhcDjg8dMnfPr0yZ3iaW0A3nIqr2kax+77tfufvO9vYVr7YQA9PWGYJhymEd3x6OMHWNa9d23Qh4IlZi2Q8xp1cHiy6SnCXdeE5TKGnYFhfBmRgDsG8k6btHlNdiWtnWDcoAeiBmC3Rn8KmEaPVe57mJWv4Yx8HNEkxkJf1dhJY6jGG0MabCeGcxb+0gyuuohCjeQpWvwWw1r8uVleFeguAZnSMzfEgEh/YF7IWQVrF2z6EJIceOdTOQAwWRt8eYpCtcww04TWb6hM2FH1XByEyx4OvhQIz+PeBMhzyxUZ0Nka8crMgKRtL1sWgy8rs+R9pIOkLMXIpcl8hy6l+RrJjbL5A+s+4DVjkjAbYvgRJX1AJFemAsiNMclpfQ7IUAjSR7acq5ovvIKkW5G3eYiR5SOl9uhTAPb/7GTdFKx/vqG4JhiFcOR9MGOKv1JhaUOl+GOPICBsbquBzE3Tu/5ftqBms2hDS+LNAbcue21muLFds9zLg+MeA39NJP5pmnC5RL/bEk/btnjz5k26xhiAMeSBeIfHx0ecz+fQ1oksMNnQJy6XS9icaYzBpb/g48cPuPQD0DSgrsXkMKUD/rEgYv+VUhMcZC0eHx/x4x/+iPPHjyC/lOSnDx9w6Xt88+23+Kt//I9xevsGz5cL/uW/+Bd4+vgRBODnP/85fvXrX+N4Ojm/17LfQPlPn6z1DK0JwDeAcQKYLS6XHs9PT+Bpih5IVLnmEsa7acTl4paldQfnGYXIzQgI6JeMSy3Lpss8LF9RCXkixn3bNI7x7jocDwc0TROMnffv3+NwOODdu3duiYlnc9vDAd90HQ6nEz7+9BOen54w9Y69H5nBw4CRLbppwtFvpCXLII7eSNKZM04+pGxI5YHYnXbpffkB7Nd6t4wWAHlvOZaligzUKnEQSd+F18lplDNyIipwAN5zVddhgHNTCXb1S0SwNh2TjV86GEnK6/qhYCI5F0KW0YYlWtnKgDT9FeNs4X5goYMBF/MfjIw0hcm7W+SakftVgO4i66vuAbHQdynmfAxPAKCiHpSUpjZE0eYseI39Lk3BCGM0ThMGD7qBuFZcJTn5TovTKyrdq09cJyVDaC8Dn1isXOoM5Xg/h0Q15+PNPuV7/hvMs8FcPk3TJECbmMu+jFdEFOCeNxfLlTlJl48kjS+7JtflngBPmbIPxxF7N4TJOnC1DCOGkS4jqM6OLChh3VtiuafPFVnoJP+K2dOKmuHAtkdL8ozRO+mJwmbjmBJAFlrsqa8E0iigXTOsYntDdj37jbjeU+LJN0lChb+V5AhAaZMeXjf+ssdnb+VLEbbGydZiGOIJrQIAuq7D6XRKDMk8j13X4ZtvvgmuBs/nswMu1hmX0u8vlwseHx9xGQd3n4CuO4KaxgFuzPULst/MDB4thssF7//u7/D40weMw4BpGNBfLvjk/Xn/xV/+Jf7+3//7oMbgT+/f4w9//GM49vsXP/yAb7/7DsfTCQc5QIYonqI6TYEAMt49YBjXfJnJ0hV4l23aEC/WYaEBWjthZAtrR4xDj7Y7oOsOaNDCNB5keosyhE1xz4bMTIRyoegKMqRXNgyqJW5SD09PT3h+fg6HI53evAmnXxpjcHjzBt95gPlET05PGHIGxzSB/TkGAp6td4jQHQ5A4ycFjBgKPGvdgRcC/KwWuRkFa8HBbaZ/qAGY5fh4r0/It964USS8wmrc1GWXt6swt2AI1HUqbSlBpIlCIu+7XgB3RSfX8Jn86bEAcIdKHboukFClNGu5eszPk0UAzy5uDEoTBVem59WAbpHatL2WTZUjgNuWQbsAgKVRsvROPiWSM99ho6SfEsv9ggs4Yb/MRB9SUps+kUF4SyO4FaqWBmE91bMFMJWktPykZrUX39dpxLyfldK0FwCtvZO0TZUGzdhUQWQWx5rkAHhrGSXxlMBbQamulVOJlRBDVAC49gUuClgDcNfOo59YCSe0KxnEaJ6WWZkWwFn+HKl+o/uO+9DAVUCk+8/lJU55GyAwbK5Px3WUri1I/fgWQbRK2NfaSG6kl0Jx+VoIvCKasS7FWZMS27TU/7YlZvl6PmCupVGMACZyp08yu2UEw+CMDQW4ZekBMDfOdF6bpsHDwwNOpxNOpxMulx6Pz+dwzLas9f7pwwdYInzz7Tc4vXlw7u4w11elbDNbTP2Ajz/9hB9/9wfwMADWHQ0vp1X+7Ief4x/85jd4++4d+udn/P63f3BuAK3F4XDAr375S3z/3Xc4HI9oui4Abvh2bP06WvFYAiDMohgGxmHA8/kJ58sFMqMjrVovrcplpkGUwRhO/LQORHcdo6MuADvjwaU2C4lothWE2S2H0TNvIHJHuiuXcrJkQWYg+r7Hhw8fcO57vH33Dt3hgEPXOc8YxyOOv/hFWHOvTz0EXHk8+fXzx9MppKU7HFyZKS9ORVF9P+/Fk7Xg0e8VadmlxxgYMmHZVnAHmISVhlPDAqS+MCOs8W4aCoRIfnjfNE1gAA3HpVPgOMNXzKIC2nrvj5TPw8MDDl3nDYq63JdYk0Fhv2baSuRufe5VgG4ggrI8Y2vLTYBtlVdizPVr+f2lOHNFrVlAadTiCic9wQ4BkFiiBJTozQXFk5aE9VRlVAKYa6Cxlg99TfJUA96lsK6VWiglkF56b2n83prCHETkxkAyO+L/z49+lycaAWizBDlAdhNY2SE5E3u3cCuGaOmAqmEYAgh3bjTdQJAbmrI8JQjP45ulo5CmSoLjFKR6mUJEkdlgC0yTDS7UCK4+m9YD7sCJS0hzHpMQQXP0UqJB/lJSS7N9ay1di2r1PL8j7H1ieFX6cymp0UAqhL2aruukZCyENgiF0/y1YRwxeoAh7zV+GYheR1qbWdVxELnNgsfjEV13RNsd8OnxER8/fsTT0xPO/QXdwwlv336DtmvBhtzSIpby9mHFzEDsNLaM89MTfvy7P+LT+59gJgtME56fn/Hjx4+gtsU//qf/BL/45S/RDwN++9vf4qf37zH0PSYAb7/5Br/84Qd8+803OD04sA+iAFKnybHOBoRWMZ6OBYQ7sbE/4/z0DGtHyNZQsDvtkpnnehDldlGTaXLr3Jnd3qbGb4Y0lG6+DUkzFBqTrEUujTlSN3KSpfYw8/HjRxhjcD6f8fjpE6ZhwLt373B89y60e9O2ePfttzgcj7hcLng+nzGNYyi3aYhtSIy2hzdv0B46HMwBZPyhRiuDjPQL4xuCc/5iATYATw58mwbcIOhQyrovBeMexdkHMTjn4kY1t7Y+zuqI0eheSzc7ikGhHUTk+Cs/aE3e67ouMX6I5rOBdxdnGcTcXgG4a6Lb+gyTrrz7akA3UAZaNSC+Cvo0AlWvB0YNCApQN9pVVmXlvl6r3aqGmafZehZOuxDUJwTmB/Tk34tpoZz7m6e9xAbW8pgbIPcA2gFkYd9QHKrRK84S23ZN6vawdgFAMZJpNC2yOWYNLK7FeW15S5Mmb6Tl966RWr+sPafbqV6GZe0UlLVu52KsBjDkmTAqVE7afsvp1YysTF+7oITigzNg/W/305+Gpn0WG0LbGJhGBqCYz+Wy4MCeE2nQuA5bAuvP7vlNUJu1opujbdnQPY0jpnFEf744d3iHzm00axrnbo0oAIRQF+7HPM7Vtrm1tV13PkPIqSIixmHApe/Bis3rug6H43G22X1LnFo3GwMcDh2O4wGPT45Nfnj3DU5v3sCYxq+JLhh2Up5ymZ3buscPH/DTjz9iuvQw44RxGPDp8RGXYcDPf/kL/Oav/gqn0wnv37/HH/7u7/D4+BgO7fmldwX4cDqhMQasNhqG/gbvaSgzEy0zhr7H+fEJ0zSEFqn1RQ3C7RZ2TPvAFkPfo21bHI7OAww1rUQcTnMNpiwxyMo1x0IzIukks8jwzHwOvE+nk1tq8viIy+WCj+/fYzif3Vpvv5bfGBPWvzdti/7Soz+fce7d0p5pmmDIrf2+vH2DyVo8vH0DMn65iTZuCdk4okswXY5lXSWBmUBsYY1rq03ToPHPN0brlDl2cMGlsaUxulj1+C7AWHBGbsxaOdIeSD2bKBJFZi9FfwtJKDP2RbJwQbaQgMvvxJzXW+4+uSZNubwq0A2UAd+1wDu3GsO7fjInDs31uK8Reb/rOsf4+XWF+p4hClNk+RIVfXKlBty5t4icAdDLCe6RjzxPWwySLXHKYJ5b7RJG9b3KtVzhvKxQAI96dkbXT/1NJ/eyx9fCu+/0nY8rm/2oiQbemi1xoGAM0/PjOMKQO5AkbMJs3DFu7Nd+lpc4LANfYWzcDz9Ys9xRTK9LWDgaHGA05A61cKy8mYUvBqMe7EozZGGNN8WWHtjPitESUu/XqEROUOdVwor6asYI+8QxM/q+x08//YQ//uGP+OhP6+sOB/zy17/G23dvcXp4wIM/VKQkW4Bq8d4iA7D2QIy7Nvspb4v7t8vlkpSJnL5IGRhY02Wl+BjAZejxyXsQeffdtyDjfG+75SRZXjglQqV+Lk9P+OMf/oDnx0dwP8D2fTg8h9oW/+if/BP87IefY5om/M3f/A3++Hd/B8tuKcJ3336Lb7//Hu++/Rbt6YjGNEn4o2IejaHQxtnfn0bnc7u/9I4lzsvaFU5irG/WINHKTN50fd7dG4Ye4zSgbQ84qY2OKVvpvpGR9m/CjFFgZIFYpzKeGneU/Ju3b9EdnE/yNw8P+PjTT/j48SN++uknPPsDdd6+e+e9rPjDkkyDtunQX3o8Pz/j4j3dNI1brvJwubjs+UOBjGlgmhqxUiCx5NMbcCzEBAwsW2eYwzpf3+peWO9Nzn2hM+bXVyuHepTfqoxkfNIb4jWLLWWcP6fJw8PhgMPhEEC8nu3XhMcWErCah7sZ9etSm+W7BnADrwB0i0IAygOXSGm5w1ZJx9fQBWZMSSnua4ELETkXOW3rrMgsQcavRZOGGwGJzdjB9NTDnAkv+QmX+O/NWG8B3kuSTBWqa3tD1GpdD2y3yB4GevKHQoR3FcsUPXdk4Rc69maGfeX+1vzfG/TH9lWISwxeRtImXdEc0nauBgAiSpmTTJnr3JAmjhXjNEtH8uC8P8z7O8MYWYNuksDIz7SI3sjnOhLWkCjbvMgyGs3KKA9Dc9fCXeWcVq2P63z1fY9/+S//Jf76r/8ajx8/ga11Bv8wYPrtb3E4HvDLX/0Kx4eHWZgseX0JWWiMOciv6S+9eVez0oH19Lo1C7wYBxfGAfk9Wed3+8cPH2BBaA4dyLjNkksn2MqyCvbs8k8//oiPf/oRtu/B04jL8xkfP32CZcYPv/41/t5f/gbd4YCffvoJv//DH/D8/AwG8M033+DnP/yAN2/f4nh6QNsdgMaBUdmoN01TGFfyGVX7/2fvX2JmS7I1QehbZntvd////5z/nBOvjIzIjMyb91ZdVVe3SioJwQT1kAESMINJD0A0QiAYMIIJSK2e8RiA1FIjUKsHgBgi1C0kBoBAQFOiW1R33cpb95EZGZHxOHFe/9Pd995mDJYts2W2bW93/8+JvBFV1yL+4+77YW9b9q3Pli1zbDt+f38P5xwaQsaESg+fa+kqtJy0zUQ1nNz3HvCjQ+92ADFjHM0RTPJHxD2dV7wE7MKlugwIPFemwtwntutN02AVbLm71QqvXr3iUy3v79G8eoXHjx/j8vIymA51WK/XeO+9p7CW8OK773B9w369h559e+/7ffC/bQBP6FYIZmdJsVkKsZ8BoKAYuTAW+2GAC2RDYwwGsqx0gIkCMtIv2ST2mBFZJagomfbJBmPBGPo7nzqaDhCU9wRol0ezT8ZnnujJmOEkfJKAxElplKFU5OfuA4i4cS784EG3DocA4ffB3Em67zJo9lMfu52BTp8vxcuz0tE1CJcJVP60aUP5vjEm7ha2wbZYJs9SgztUn+/KpOSh4ajVjHeQToHbDuYjMgfqu16ROCa9pR5XZUEX4jpKCCvWK+ei3iaUirHOVYYvw28CwCy2ZsDh2UWf9PclLygSpaei7CalEcUnzeQjjAUBxDKuApnEgNtYGENRaZDVGR2H954901RqJmD3bDNRxnxm4Fn6WJLl2sUaX1AsuMQxMz6EFRyGAV999RW+/PJLbO/vebNYACvOOdxcX2M1rPFeYSb1Lsf84ZWrWv5zRUWrG5qg2O/32VK5BtyRzJAUKpO/ZvhqeRjHEfe7Pa6ub7DdbWHaFhZst+08sg2TcUyp/uBGNhu5vbnB1atX2N7dgfoBbr8PNuF7bM7P8bOf/xyPnj7Fdr/D559/jjdXVwB4pfS9997D06dP0a7XwSY6KBIecN4xEATYx74aI1rp6ncM8g187EeS3+wwGpxGBkj7CMMd6yD2n7JtpW7Y1//oHNqmAQLrTErJjgtS8p0IMAak9kyZ0Jcp2CITwOYm1gJhkyLvyWjQrlZYvXmDN2/e4O7uLno8efLkCS4vn6ALfrk/+PBDbM7O8M033+D1y5fY3W/DyZ0OL1+8ZJbbGJA1MI1NeURt/siETlZjEeiG7x4eNtQlez6xsPCwlgAnm0gRnnn4+JS20TK17/sJ8NYnRq7X6+ACMjdzrcU9N8amIZOmWd5OCe8au5XjuRr/gTR/VKAbqDPcp75zyru1eB7S+HOdUGye9sEdkWZUss14CrwJ+JZP/aeBuM63DBQZEGLDFY/2VYLpmOXifxHDsa2uWVn9TrkJtsY+ynUNGMtVkDIc6pdLYnhu6WzpmbcNAjh1ehHyF+CXvxhYk5Yza6fBSh8WF2KNjb05TPjKFKUAFvwIRZfFkalGAt6xTYhgGgsiky13I0RbAu9SOGdCW3Czr7dRFcSTjk+5WazW8xSACyMmwEYOMpLyOMUQOu8mzFWdrzwc5vr6Ulhe41J3KTO154NNFOCWIKuAjfLUEXOl2ftKPjN22DkMw4jb+y1evn4DR4BtW4BMbEtHgeXOuzR/d3yKax+Oa7++usK428P3PXbbLe7v7gBj8OGnn+Ljn34MYxt8+91zfPPNN9xexuDyyRM8e/99PAreN6INNIL9uhsxuhHGmriHRJdhDJsy9/s9e+AJykv0TpI6WgYijjG70XPVqRA9JunYhtiPI9w4Jh//xaEpCHUMVUZNSpH3EXzLGNAkFINy3kwq8lncDF5fX2O73WK/3+Py8hLn5+ew1uLi0SN0qxUuHz/GyxcvsN1uQcag73tcXV1FRt3aJvrtTx3guBETFT4IO8wHLHlY3mBJHq1lU5a8Ly/HvwgW9XOqjjW+KN/VRGDNdDJT/NWqyXJQeYsydKlcuWytxvMWIVvd0jErmZ64j8Np/ihA95I5R63zHAsSTgXwc0smh8Ic4JbQtm0E3TpfYivVVGwptWCr1UENhGtttXTZJgz45Ph6LNd/luaBaxLXYhzvAOj/TTDwOt+lj1MJSxtJDjN+4bkT3pPn301NJB+5EijSTCdHleIobs1Z+Uk96qPlY5/2nickN8KHgz08CM4E5sV7XoIm3v2flJrEmhFRdk5mFKpe+eKWcREYN+95Y5ER8BzrRN5PQFxPYKSfE8AgE4coI1ph88E1muIZ9fu6HJOqLvqh/OaDXtZ4+vQpbm95qdw7BwwD2qYBWYuL9QqPLy/x6PFjPnSkpvBVkp2DWieP7SMe1xMeglzb7XbZ8jgRReVhaUPXIsRXwGPf97i+ucPV7R1vMA2+nCf5QVT74MFeKvwwYtjvsLvf4tXrV7i7v8e47zHsdtje32O73eLx06f45Oc/w+b8HHd3d/j668/x+vVreO9xcXGB999/HxdPnmSb/nzQ4JxzGB0j/SYqhz4qkvDAdrvF/f0d+5kGEigHeK+CAnEedf/ttbC4Cn3gvn5O16R37KbPjSOaxqJtO/atbfPDtUg6IvH+D/Glr72FAcGln0nPMpAnNA33j7OzDd5//33c3d3h5cuXuLm5wcuXL3F7e4sPPvgAjx8/xmq1wqrr8NFHH+HJ5SVevnqF65sbDIFs2e/32O337DXmAXWmwa30XyPKnJMDjDwaEEZjYGVPCkj1twouOiIferV8GIaovGb1N1FAeayV5rBzjPfRgSZfQvCVX38YglDLmoem+KMA3TocA6jeBojPgdhT4zk2xEFlTGabLQJDA+NaJ9ade47x1INYbGRZOLsIwPV7ekOmDZNtTFsYM8yA6PCMrsFyEjo1/BCY94yhPCKUE/sp5iWzfbymvBXvSVoxHwvpHLsEqFJAXhOH2Yf5e6cprXN5NcYEYOwjCJZ+6Z1PTLUjmGAHaQMrHgG49PvQd4VdimmHTxs3oLF9KciCvON4pFSkxhtHCtns6IFoBaKVC82eaFbHZ9cVssiUYH7ezbHdxRRcKoGXl5cYhh5nZ2d4/fo1bm9u8PjxY3zw4Ye4vHzCp/sp7x6oxFNeE8VChzngJv2t2ucr6D21i3rM8/V98MGsVwjF/l82xuVxHDePaAVvv+/x+uoa22GEafgYd0ep7eojxAMjy9vhfourly9xe32Nfd+jHwbstlvcXF/Dti0+/uwzfPiTj0BEvFHyu+/Yk0wwJXn27Bk2Z2d8yI1qEw8PsP7JZk+UABgBbCu932O33WIY9jDeJ88lPijUBvDORw9Luo1q9bJUh/l8NH0PoIo44xrMrzt4L6uHI4ZhRDMMvAk2O/1VRQHEukmrxmNQcNnzCZGBCWDVkAEssFp1MIZgwqbttuWTM1+8eIH7+3t888032O12ePbsGfencIrl0/feQ9N1vGpgLR49eoTNZoNmhvnV9Xb0nOa5jdnOm+3c3DjCGQrKVb46Oteza/NFrGnnJmBb8qo9leQrGcicBmi3m9mzC3k6mNGD4d3igrk2qZuSQCaco7P8owPdwOkMtbzzLgDzQ+KpAWO5DiAyMQIUmLTgNLS3klpYYt9rv2M8otEWu5RFyy1NUSZ/BRCPZVqqBzwMdM+VZym8jeI1iQv1ctVi08tw8vsUwH0o1FjEeM0zo3XMasJ0UjxmEihVKcVLeZksD9SUz7/UwOBcfrMYC0XPEkBkIew0gu1jYigR2C+KR1+XHn4MwGDFu3CMfBiLZGCFNSfAh7tcMkoCNzSE+IMVMOCEpZJHVB3LYUDMWKPE1Fn9kQ8JTEAQIssFZBA7EpysCOdgyRhgvV7ho48+xJMnDL77fg/bWLRtg/V6BWMbrokTmSv91LFM6Szw5kLlz4Z/PADvHIa+j4Dbe96I1qmNeIfclZU5LJfT+37A9c0t7nc7jPAwDbPLUjQf2z7PugXgBt5YfXt9jetXr7G7veUj6PfBG8Z+jycfvI9PfvZzdOsVrq+u8O033+Dm5gbee1w+eYKnz54xmAunKHLfotDdGZgaIjQm9TPJwzCMuLm5CaYkPp3iiNTvpI2lLlwhI7ImOXK+Td+BUljOgsIDcsB73nTqHR/+0wTf3vm4UIqlJbCrRiGbpB97tcmRK8FYg45WaBoX+03TNDg7O8PV1RWur6/x6tUr7Ha7uNGy63iTpX7eNg0f/rLgqeqYkJmNiGJEYC3TeICSgiQS6WhKJLSP9j4igHu320X/848fP44bK7f399grP95aHojfeyK28Y7597Kyd8rcR5N/Fx57N5jb5/U3va3u+OwjF9iySqAI1DL88EF3AWLmlmPeJaA+Vgt9CAM7J8iapklLNSK5PZ9Oxe6J0rK6TnsuT4vXAjgzgb3zIe2xMEWRT63JClCJPpQVCA+JZcvpMQ94O8D9LkK9n2gxdUQc6nsU8YqtK+tLg7q37aMZSxEvqhNJs4ymSajsp3k+aiVaykEJvI957/hwDAvJ4DRXNk0A/GTEVCMxaXpCkDTiRmMw8GVvwAQK299kCBKI7WKNYYacU4mKmItXQv4h9pfBk4AHHPn47ATcAXG8pDz6mDeffYmlV/WFkM70sJJpvSXQXjJWYt/bNA36vsdutwPAcmlU+xMeMs8dWj3My6PcbAq77yvpeUTSYFD220RsMiCAW9Iv81NElfdqlVcxF3j95hq7oWef18bC+2CzHdrLx7hC//Ph0JNxRH93jxevX+Hq9RsgHOF+v93ifrtFt1rhZ3/0S7z/4UcYxgFf/f73eP3qFcZxxGq9xrNnz/A4mJJ0qxVsMG0SICYrJzbYJgOcrkGw295usd1u4cYx2xSZZJf89snTSuhL72ZerYD2SQ/Vyv9ykL0y4pGmGUc2HWpbBe58NgiIkLm4S2aWYexTUFmJ4u9ytbfrOpyfn+P6+hrjOOLVq1e4u7vD48ePcXFxEVlx7W1lLkjb1QqckWjyXKghUgDWELtAbNsmMvbZewshKi9BUd3v97E+9UmrsucLALsBbFvc3d3FA41ifEB0BrHb7bL9Ym83752m3L1tzDVPQ2X8XjSfIH9kDdN73jTvnMPtzW3mvawMP3zQXYQ5QXCs2ckpHUA/W2vctzV30BOtZpS9E7+jAJznU/BGN9l9XsvnkQlnwpcAUNhUohkeDSBrQLzMd2Nt5pKqHHAx71DA6S3r8N2FAwztzBvMFqV39SbKGIteYXgH4WiWqGC+TwE/x4cIG+efKMbd8tPzoaa4mXAj9TnEiUn+orIqwDSu6vCR4MaLj9uIQJilJJ48TWOjkiobZUT4Rg8Valxq4BgWueE8IpMuZQEQ/Thn5dTt6DWgm5afh5ByFRYo4AQk01iMQBZ5RDYsiX/yySe4vb1F13V4+vQp1us1SExpaopdJY9zodb3DvVFfVAZj7P0nsigPhzoI3F1XRc9KZRpzV3TLK++NwwD7u7vcXVzi945PkI95q0on8o1PNiLxjDg+s0bvHzxktnDvke/3+Pu5gaj93j2Ph9yQ43Fm9ev8d13z3F7ewtrDB4/eoQnz57h7NEjnJ2fx82fWj5L3zfGZuw2AE7n7hZD3welLgH0uVAbX5lC/0DwNH2tZlpyMJYsT9IHhsDQts6h7brZFUWRA/pALgZL4L5t2NWfyJJSZguL3XUd7oOf7vPzczx+/Dgy3XqjvMiEWjFL6kIHqW/t+UqeNUSwZNAYy8fWt21UtMpaymgV1fdlk/F+v8d2u42r6JvNBmdnZ7GfleOViJWSzWYDa/hET4lbN6YA7zFsfu3CCv4xGOU4HHP6/DXXBqfEGuvCp/7HoNspwA2MfQ83jIuw5kcHuoF5wHkMS/au06/lY+m9GusShagesGGKFZOTYRxhbSMe1cLLx6VRPl5jxBhkqBPmiODDTn8RcHMuCvXRr+VJmTZ4RQERnALj+sS6Q3D0Xa1kLKRQuXZaeqVZSSm0Sq1/qR8cEzKhquI4+N4syz0fjsvXQ6H04SDLlBm7jTTWRfGJtxXgjgyt2HCDAD8CgSVFyDVPcohL794jMNwWxopvB3bb5SLI9DCOGUIn9tYEwMupkcGPrqdwtLXUpfJKFP6b7eMB6HsIqSrHcHP6k1qXqoKWI6oeJfj0NpHBer3Gxx9/XLjH4+cbY+LhQLVJfU5p8F6Bf+9VnlQ2lMxeIhJKwK3ZOQmr1Qpd182CrlpwzlUZrr4fcHVzi7vdluWWtYnZVoXw3kfTEm5rDx+OCn/x/Ftcv37DnkqGAbv7e2zv79F0HT777DM8fvIE+6HH15//Dm9evwYBON+c4dmzp3h0eYlus0G7WoW+G3y6M0pUrG5SMuEdxn7A/f0d+n4fwGToP0cMTw26a3PEQ+SwXrlJv6UEtSwdir9Yl/AGQ89mRW4cA/vbJhmgy6LAtCaRCAinWk5NzoSxjcfVex98dzOzvQr7HTJCLLaLVnuLMtb6qPqUvEswABpr0bUNGtuga5vgmYbTKcdlKbPFTlu8sXjP3s/Oz89xfn6ebYCM+SnmKu993ONBRJk5l1Pju3RZ3ATXxFTE+1ahJiqPfzQLRY9K1yuKuPfpICZhuBmjOWDk73zy6bxp0Y8SdOtQ6yRL4HsJQORLvO82aPZrLm0ZvM4NcVKVd9woGhVNetGESTxQhqXSTZapBIQEEC6Tb3lKpqSrl+8oAG0pm8StPUAIAP9+1aSHhgMMbvgsJ6ayjWWJcg5wH52bIt6leI4fA6mMy9laBt6n9LdTSi/CWk9CaSLPxz6D5jCWSLwypMk23kcTmWE+UCMc5U3iw94AZGEoMFeeDUOI+M95YERgzh3Y/CKyyzLGxU83YLxMixSYdQa8kTX186sQalQX1xTzoupGj31RRsqYym8EAUF82maYTmJ8DMxr70/DZGUrAsUpK1ZTPJeCyBbxvCS/m6bBerMOG9emY+yg0qiYeuc8dvs93lzfYD8ObEoCxI2qE3AT/iEkwH13c4MX336L+5tbwPMGz7u7Ozjn8MFPfoKPP/0Eo/f45puv8frVawzDgLZt8PjyEo+fPMH5o0d8GJGJOwswRIDoYY2qV+Ke50eH+7tb7LbbsNKmi3dgRUFIn6KNa2Dk4NxSVep1W9TkzLESopYjFzaQ9tgHv+dj26JdrRIBBGQkjwQbNmHzvOXhPM9bJfC21mIV4pPyz3nCKVeyDsk6qnwX5ypysqYNYHulTnhkU6HkWSmOMaQ20MeyCxBummbCzB+Dm+S6jGE5WGq/3/Oqt+CbkAdZKQIA33V8urYiFUU2nYJbvLAJqry67h6MIdT4j+mU99UfX8rJRzgXDioKZog0TyX+KED3sWBDOkRN21t8BzngnmOyl4TXMWB9kYWmZEc2jiN8IVwE0LKWDum1B8slccfviznM86PjEdATGTuTNpPVmG/9nYiiOQqgWN8ARK2yCdds8Fx5yjKdEo5XqnLAnU2yM3nT7pN0HjXr+ocOuk9P0/fqc2miy7+fUg4WhlNb5mMmbg2251gS/Stt7kWwc/TxNxFARsUnwDwANSLAUoPGtrC2Qdtt8PjZexgdcH97i93tLbwf4P2Ihhg482l/HsYlJjgxn543VHoG1S4YSxgvWx4dv+8z/FRhVyiWy3sfzVmyp9QPPTHOzE/qWUk3fAmqA1dxskuXuY4CSOE4CyWgAqbnxqyvXKs9L7FLvY7jmJ0wSUTRnMTauv/7WpxeV4rkKfjevrm7w/1uj9H7aLutttjEIOYc8ueDbfnrV6/w4vl3GPZ7uHHE7v4eu90OZ2dn+MUvf4n1+Tlut/f46vdf4e7mBsYYnF+c4/HlEzx+con12Rls8IoS0wsdRJRICLMWGNvd/S22u52yI/Vxw+D3HbIUFtOrwcvF2I4LonsG5lFA5jCOfNqkHKyD0GYyB0l+9byu+lm5+dYYg9VqFSVlVreUfARN2O2aDqIu19QNIvaw1LUdVl2LxharpPEvyA/kY24YhuiDX+S+5F+vBJVz0jJxIuNF3mOvZsaYDNxrZU3mQ1ESZBVxViDhGAU5/KOrv1KPx4QauJb4IhBX8i4H3TnLTSKbK6RbGX4UoBtIDRk1pPIBLWj15XjxeI8OpzLkp4RDoE80aPhkFyTgVcw34iRJh/NdjnmtkCwpAPp7CeBlYMV41UDSmq74UNaaorYTd30fN2Gagj04JAyOUajmwhQMLD+vAffSoyKwM7aRpp5LZttqBqzUnjl0bS5/C3cltoV7y3EvMfnVSWgpEKAskLN407+JoSMidoEWJwVlWqLAuH7OEGAN4gRiTQdrOzx773189sd/F4+evQ+A+NTAN2/w4vm3ePXyOe5v2Scv/AiygA0smffBBMsHL0SqbnQdknfw3jCT5X305S0CPFeFkntOh2AXntGFaaLgZ/IK9kA8OTPlRSuEFcYp/Ju3I0kjTPtR0d41sL3M4qfn9CmgQcDFU0jFX7DEtV6v0HZylPsUGU8UmOJaPALdOex2e9zcb7HvB/hga+RVef20mBIhvHO4vrrC82+/xf3dHVzPdubb+3vAe3zyySf48Cc/AVmLr59/i+ffPod3I1abNZ48fcobJTcb2ACIon2258mcjDKJEBDVNLwh8/4+unbT9XhqiPNqpS21UnVazDVZBaQ++7ZKAcU5EADgXfhtom/vfd/zce9iplP0f4mHFXTAj6n/xQPOSmWREE2K+GcBtI/Lef5byAIQWmuxWa3RtS2IpvmNgBup7DL3jOMYvY8QsXmMbCquHV6j0y/zR2VGC2Al85rexxXn+fCYcw77cACXD3OhEHclljueDKtfmXv72JWe8GNyLSNUKn+AmNj5bAVzLvwoQPeUa6sA60QV8bVioIjWokn/vyn2sQwaNMvSlXMOCBsqgRzQ8TuIKLDG0B/Dbh8CrotgXl9TIEADcgrLcfHQET9lwR2SXaUwDAJUy4N6lvL6hwiz9Yhc+JV1pk1LjkrnHZdvWdFLLeYDi6DJiPK1hyquD51gI7OEgh0SUC79LpwQnTNCAWhDlmyZQbIC0sjDWF5p6WwDa1c4O7/EH/+9v4/N4yccKYDOrtCuPsSTDz7AMPS4vbrGi+ff4rvn32B7dwc3DjDBTMUZB+/HKKilXnLGBDy2g1ohe6EE3Hn1jpx4KTaTpVxjgJYmLuMBJ4Bx0g6JMfc+bb0rATdBPLDolNRG02PbrjKBCSuYcoTU2aYxYFDs9jhMl8iL0uUgTIVoAkfJtl4Awf39Fnf7PUYPeJPXRUn28HUhHhxc3+PNq9f47tvn6APbvN1usd/t8OTyEj//7DOsNhu8evMG3373HPd3d7DG4OzRY7z3wfs4u7hgn9uFD3HnGEAKy8lVRzDgldC7uzv0AVylqq2bKR0CHVOFqwIKa+8txjqXxrQXHS/vtBSQ4ItLAv7YPSCfSzFiHAc0bYO27eLptnEKJQIZ2VtkAA/4oIzJGIrkiTXqpNGKVDtYlMKJAbFSbK3Fqm3RtS2ssbyJezZa7pXCaus/gD0Oib25Pn01y8UCwTMF3D7d8CIhwp1AmInLYzFjMT6tysHzOPb7Pay1aIN/9SizaFqP1XzNA5mYS6JihehA0Ksc+ppX12YBN+TU2eS95IgkfxygWwO5WtCVXOtM00kF2TM17f5hmv1cZzkNcMmfCwcDyHVtl8UX845SW1YVVnyOLZ6Ao0ocx+Q5i5MvMiuHvA7LAyoklBs1NcswOSVTTUJ6kqlNHjGPyyWovJFCjbmr/ZYJUPKpFak/tKJwXHq63NnIKJ6px6/r/V2tBFVTpelXAgX3gOLyj7IHDLGP5NSHGJDJkqgJaNwS0BKD7s35BX75p38Pm8eXSJ5vpa+xTGi7Dpfvv4fLZ8/w8z/6FW6ur/D6u+/w6sUL3N3d8u51H46w9iMAD+fHoEDLHwFGTpcLU5gIehJTFYrAmxluXQmUTxKSS+9Fl2DWWyazIM+8V609p1XFMvs4xyq1LHvlIU1eG2mlzJZP9rSwQ9/3caPcarXG2eYMxlr4yhZIHUcclz4dkuTD7zFsxry+uUE/OnhjwvJwzFQeX7jsEMSu9+i3Ozz/6iu8/u4FvHPYBvd87WqFP/rVr/Dsvfew3W7x2y+/wOuXr0AEnK3XePrsGS4eP8bm/BxGHfCiJ3oTDmIik8vvu7s73N7csHxUdVeTSSeNyZn+8C7IjpwA4g6qr5wiq/M81ECO2lAdanUcHZwb0Q8WbvRx8yPiAToBaPogJ4Lyxcwx+/f2Ii8CJI1yiJTx3KHqkbEZgKoJB9u0ArbJRAAa7bXF538COQCSFxJZAQKA9Xpd9d6z1G7z96Z9JyOWdGG9j+Yrkh8XQKgQbm4c4cYRPmCXtmkmbhWP6a9xNGo9vpLrCJxRV9Vm4xcwXQDuWv5kZVKD/qhJLST4owDdp4S5JbJJ0MysBg9HppM1dIVpXspTDSTq94Xp5hMqc9g6DENgTo/L5yEWfC5vtWfLfM49E68jHwRT8JmGhbUGrji6V/5k2UzSypgHolkmmQcBxe+nDL6lMMcc10xLErP4rmws61xUvU3menNNAeO48wkrxVUDM0vtXibtUe9/ZY6m/S20HMn0TNk7MoH5IOxkoqKg9GV23sbAhA09jeGd/42xWDcNVusz/OxP/hSP3nsfIHENp4G8IM2QD0NoVx2edO/jybP38Okw4PbmBq+++w6vXr7A7c0Nxn4P+AHGD2xS4tjWlgG2530Rnt1OOe+i1B6hd8kjnLhI8XAcJpu4TSzEhpwAYteEFsEURfWJaM/qGYjwHgpS910A2EmtKRdKE9jmOIgCNPd1dW0uLIIq8ISnT8UTG+7zszNcnJ8jujGEUvyKeKKnD+m7Sg6wK8At7u7vGbabtHk0golsPKllY+cB73B7fYOvvvgSt1dv0O/22O92GJ3D+x98gJ999hlM1+Lb777D8+fPsR8GWGvw5PIJnj59gs35eTxR0qn8OudgFckgc7cHsN/vcXNzgz74T5+b4/Ryva5TX3m2GmR8k/IKVElvEibjVqeu2ofy/L1bVX0+n957jMOA+/EewzCwOzsFTilkWuebZQYlEij48IbMY/7w+p2MMhIFmFiRapsG69UKXdNExlzSJtF2RSVXwE/2Nex2u3j+QNu2WK/XcbPn28wzc3Nk6l9TSkbPB+IFJW7eDHmXT23jLe9oLLYUWO7NYCyOLP89U4b5svFn7TCvciW7BNy8WpJIwaU2+FGB7iUYcWxIXTn9lrihhbOA1bl8VLSeUzv7XCcQIGmtxehzn4/DMMA2lo9+PQJCRq0tatB1lmsu/yVYP2Wp8tB9DQy9sAxISkfZ0TUbrju3tgPXbLi2NVeJZrv0QymreRUgemzQXlx0Gd9GEKY6KkXdsaEqfgCYjLFcWvGQ30ttf0r5vNCnakKuTuzpzHQFynlxX09Q/Cf9IZ3SRpT6giEDK4fcGIPWGjSW0NoW63aNjz77JS4/+AlIA+5akQTgcklCPght1+Ly2VNcPn2KT4df4u7mBm9ev8LL757j9uYNhv2WCRoX7LYdb63k/jzCGRbgnngzVmlHODoG04IlBXwzI44ALsMzALxPHix8UEB4c52WflqBCYA+pFGfvurKkuarlkbLLFDU18TPb1gu3+92cN7j8vISm80mzgGuSClXxwJ450SydPphxO3tHba7PR9WRGl0+WpMwZ47TLJjP+Dm6hq/++3n2N3eYgg+j8/Oz/HHP/85nr33Hm7u7/G7v/wcV1dXvFHy0SM+5Cb4dI7HxyswEmV+MWEPw4DbW/ZK4os6zOpTjU15LvZSBaDlvaW5Z+l3cTPWdaZUZ0A7daZjJMTJUrKQI0tBxg27m+yx222ZGV5vopKjQ/Im5thuOXjckoQzXqMoowBs8bdtg5OE1jZoGgtrbDwmnttfUg2r21phDnsaxP+1vCNmVpvNZrGdHkz4hKGQzWflv5SjEPFnLnJXuw/k6vdRiWbXesFD1EHg7as3D67MV2RMfvs4wF2uwkvapYtkub5U2z8K0H0q0H4QAEbqFOVyJ1A0bpkvxS7Ed+X3Sbng9wVUGmPgaLqEOg4jrDWTMs6Ztsg0UiocD8lfLSzV9zIrmnJDpOvaxI1DNeBdO7BH0siY8HLzyMmCp6ythScVQNL9p/Z9mgaOSOddqJz1dI5dfjx+TJ1mwV2WShQNqX2ZV+W7MWGSIlO0OfuaT15KwnXLLirJGBhr0FqLxhi0DZ9e+OyTT/Depz8HmSZPDDOtktBM9ltebdsGj58+weMnT/DTT3+Gu9trvHn5Em9evcLN9U08xtq5EdYNGN0Q3JV5OOtBzofNlmPo36IsM4ASFhxIPrLFb4J4TrFebQAEE7Sig4qS4r2qZ3FF6st+JopPvhRMlDZnlishqQ0PhyhLfTohbxiGeKy7MQbPnjxBt1qp8orpC9NuSb4pWYFcVR2dw3Yb/BSPA0b4aJvrQ7w5bC2+OmDY9/jyd1/g66++wrDbww0DGmvx6aef4qeffAIiwudffIHnL1+gHwZcXFzg2Xvv4eLxYz7gxvIhS6kNOfI4acckWbPa3d/zQSzDEAFcVYYtMHM6HJLRS+8eF2Qe1OO/3A4dU1X/zuepzImWllE5ruSjlh5Hyb3COTFp9DCWbaB1vvjJkIKYQei5zCff/iXwlCwYYh/VTdOgMzYCTDGHoyIdIAeB8QCoYF4FJF/0QuSULguXmP5Jjcw9q2vW53UCQuJCirlB5rhyX5Z4k/ECvsNm81H2anmfzE6r+TrcH2skaJHzFFOhoELkhU8toVcWZEXBez85bVOH7PeC/PtRgG7g3cCNLL4FoFibOCbXNItKaqNTJb4aXJprEm0Owv6sCX4MvI5MtG6Ec1MfoYfi04IsluPBAnaajoRTwJn+TiQ27D78ni7TiIZfst9yT2uiGMe45CPuGK0x0Xd4ymsSf5WSYb61Up40A6/zUjerqcZS/K6B9XngffwqBBVNXokzm9n8RIBMhA3UUJAIjukDS9WOxKBGsE1pGVbKoqcug+ShJMyGcfOTtYZPc7P811qDtmlx+d77+PBnn4HskYC7lv/KDSGUbdvg0ZOneHT5FD/9ObuQe/3yJV68eIHbqysM+y3M2MO5EYDDiOBqy41wjmDIAd6BSC/TBiuHYHISl79J5kgK95ndDpdgEFwXZhMpydXUGLFLBABAyPp16msJ7hIllkiPrUMEiEea2Hb7PXxwd7bf77FarXD55An7R5686KMywfGkfEUGOaTL7PYttrs9M8xEGItnpLh6NEiu3Tji5uoKf/Hnf45Xr17Bjyxf3nv/Pfzi55/h0dkZ3rx5g999+SVu7+9xdnGOj3/6U1xeXqJdrdB2XWRJZVna++AC0Jjk2znIi91ui/39PdvAqvqbH/2nh2MVbV0PxUOzz6T3a21PM9/z4Ctyp5IJ/caBZ6OqBpEbRLxHowkmHn5yBoaC9kH2SFvxFhGKsUbg7WTVwrDXlK4Lpmz56pzOr/RbViJ9dLWnzRXlQJ7SlWG1nCcA7GkdpZKj+B7vKegzTTOt/mk3ngDvMdGmo8Mw8FhomuhOsJzHhDQMiUzKUitrds37Sc+ICnmo7/K+mMZopVj/1dI6hZz6wYPuB+vcRWM8ZHmlNmFkQvAgi5kamJQQWcpJqTHK8hZ3Dg94wug8hmEEhcM8DqGDxfzVtPSZ9x+8TIV6/U8HDJsHhLtK5ko9YwJgS6Ct2W/nHHywKxsBDAp4A6cfWrNUBj1IgbQxtEyjDoxL/maxh5yUv8PPzY8wqmSlmC+OB6i14A8rNGXa2dKdmiOJEA7E4fEg/cQbNlsyBFhLbFLSGLS2wcWjx/j4j/4EdrUBH2ZweHyelFnIxMzBNhZnFxfYXFzgo08/jQD85bff4PbmCvv9DuQcn25JA5wZ4L0D+XAAiBtY4QaFo+zVahCBnwVXqyFi0G7SaXE8WRJ48Sx58RAlPAfSQB00lUFNkEDwDKPuhi7tkXebuJzrHHbhePRhGDCGU+4uLy9xdn4+yV/GgOrfSsmVd4ZhwG63x3a3x34Y4IjNUvgglGRKUy9V2FA1jnj94iV+/Z/8E1xfvYEJp3f+/Je/wEcffYTd/Ra/+e1v8eLFC5iuxYc/+Qjvvf9+3NRGisEbA8NngLikHkG/c+j3e9ze3mIY9tnZBVK38lkOv6PmyEpcWTwzsi0DlJX3ypzk4ONQpmpwSOI6PApzBalWKvmZ/PsQ8cEum/U6HRsf7mtiS2SLyBy5pdshugoMsqYhYqW+adC2Ldp4LHzq/XqVSgd9gI3MZeLmr+ZGNxbvSLKrnLuPmSu8+jeF3P3o3FzCBABl+88mYHgcw8FiwBjmyTJvItuWevkc2aTNyibXlKyQ31ohkHm7NB0pw0Pw0A8edAPvRrt/KGA8BLwBPWGlsCQMa9pkGTQ7K3ZcOn03jvC2YRYqzvDH11TOWKV8lYyF7pQPBdxzYarVyiRY1lBi6zgv8Y04IPTkq5lwzUJLvY1huQiYarFzGq3EXeZfrtcGMBHFvCwD++V6fbu6r703FaTltUOwP7bQabg5z8IiYE+TeL4YG+4q2ogQgEwwNwGxDTf73mYXgY0htBZsWmIbrNdn+OizX6HbPAYJp/5uu3e9TGEyt9bi7OIcm/NzfPTTnwYA/gIvvvsO97e32O/u4fyIcejh3QgygHOWTVHgATfC8Wn23D/CqZcyqTufNoF557KR5PlkH/4VbOQFDDqi4GEBGKEODAsM+VJvKhk8uemVeIoMExho7PZ7PkWw77HbbmGI8OTJE6zWawgznBQryuLl8R++C1sYfvbDgNvbO+z7gd2SEjB6RLAdlwUSFwKGUXHLJMZhwDe//wq/+Yu/xM3VNQiEDz/8EJ999hnWmw1ePP8OX3/1e4z9gEeXl3jvww9wdn6O1XqNpm1jpTgfXKYBoU8mcwUB9tv7e2zv7vgZOUVxTiN4i3BKFz9V5uSrhqUsl/tHlmmJiT/mfQGGAR4T8Sa/1ZrNM1i+T+WKft9nxI9cT4oIfxAaIydGdmisiZu3eY9SPjekaNLcJP7ngUQEyYmRkTzQ8/SRTPbDgKIvPstbucCPeUniOKUTxj6fqokM1EpMkfH2Hl3XoQ3jJiOpCsFzaFyUmKb2jvd+ouQIyK6dNCp5Orhyd8SY/VGAbglvs2zyLtItNbBDmiMVnw8JetDpNPVGq7j0NfP+XKhpgjq/dS36GJXhmJAD6Vru5zp4+Y5aRFDgNg0a7118Tg82qb9ss0eh5Ub3jEhtUeZP4pBrWbsc7J/H1WuqC195Z+698vkY20wewq8MVc9DYh3dg8ahD2xRhYVLv2niaYMoHBKj2CuKzBSDbhLAHTyVNBZoDTPcTbvCh59+hvOn74HIhqi/ZzlSHaC8smMbi82jC2wuzvHRJ4EBf/USb16/wpvXr9Bv70Hib9jZ4I5rwGgcfDx/yqE8mth5Ni+JPUDYZXAFynwGMMAAUTo8BCm/DGZzwCtgJeDddGuimOpyM8AfPNtvD8Ezyb7vsd/tcLbZ4PziAm3YaIi5MeRDTD4ZDMD76Apwu9vhdrvDMIZzAOCTOUnRJLE8JG77uO72ux2+/v3X+O6bb+C9x+XlY3z288/w7Nkz3Nzc4J/+2Z/h+voaZ5sNPv7kp3zAzfk52q5jV3Qh/3L4TubyFEkx3+/3uA+mJDK+M3MSDfJ0/r2fHZup7r//ubFIUX0X9ech0RwBuKV/xLR0unKfle+mbbHZbFiWk7wabM1J0iOMQx8BoLV8YBY14ejyoi8Ssb32uluha9toQmIk7koRtLKp/2TOEVvtEvTNAbmJGdACsZPNpX5Z5gZpcJpErL3AHZjltTVowe4xHQA/jlH4yPwph/8Bss/hQPxF+Y65LnbysplTKzm6zuesGN7FmPpRgO5F84i3AOLHxjvXAMcwkDk4UXldEixKsxXgJ0e6SprOjRjdCNuYyJ4JU/M24VhITRNWfTpCEnN9KJzAgFTzUrsqAzp4sQAAcmAvKU3MrxyiEE/JDGC8D6do9X0fhaBmwEsGQh9SIb+XlgUrpTjimRoLIdJoDoCfEm/o64cE3JGxHhtKTiGH2ErhjTdkcgl/oa9RMCUhIhhrYA2htYS2AVrboLMtmmaNZx/8BJcffQIybYrvD4FPqmmEsgT0ahsKAPwCP/n0Z9jd3eH6zRu8fvEcV29eY3t3i9GPIG8xWgc3anOqMQJv5xzIs712ZKE8QM7xITBgtnt0/N1Q2pcCIAFR7wPIhvqnANaqQ5Sj2AsjzbwhvHcY+n00J9ntdhidx9PHj7E5O2MbZwHTlHtciuqAYlC9Atv9yMe4b/c9XOgc0b5b51fkOaP3GA/AK2F3d/f4/Zdf4ub6Go21+Pjjj/HR+x8AAH73u9/h66+/BhHh/fffx4cffoj12RnWZxs0wV2awE2xcW/EvEwB7nEYcHd7i6HfA2B/8dmqJfL5RWo9m5d8Mr35PkMNS02E+/eQB6qlEbXECtAGIR5xYwzapsNqvY4nJibWE+FURLbj7vsBd/f32G63GMYBxrNnDT7JskPbNtHUwxiDxlp0XcsKvDVR2U+gNzd70uaO+hAbWQ3dbDYRbB/Tlqew2pIHKfjUc1equbImJ/HAgybSOryVtKFJvkQJMYHxhvcYpF6QiCqt8FgbzE0o37dzTNAKUlnvck/8is+x2jr/p4bayoYOP3jQLVpQTYs7BJgPmYWckgeJby7uyTsoYGiZ9pFMRY0xlWvjOMD7BhGYiBpfpHfUQD74xKFwSBtfGjAJONZMdd4mkAAFL4pA2k3PE5YJhxTUTVJk97iUpXZiZk2bBhCXB9/OPKQMtbqprnEs3KuHCXMir9Pk6jsJpNKUpCO2pvQMB970RhTcvBHBhqOb2VuJAcR+2xCsARobbCxt8CLQdnh0+QQf/uwXoKaLDNcfBHAfChHLUsK2BKwvzrG+OMf7H3+M/fYeb169xquX3+HNqxfY3t9hoAE29lcTJ3jelMxyUzZbehdsiX1wN2iC672AEmWjqj4dgFeM8k5QU+8EVgMlEcLvex+OhN7vsNvvMIwjttstGtvg2dMn0b+vuDedTP4RcGVbPllBHkds93vc3t+jH0c4CgfdhHEoZ29O96+kzW085j36fY/t/T2stXh6eYmL83Ns1mu8efUaX3zxBe7u7vDkyRN88MEHuLy8xMXFBWzXJnY7pCvlEFMRCeM44vbmGrvdDhDjBxLYJkVVZj3lygFOGdEpLCnKR3f/UoZ9L2Bf1YUwoXJLK4W1d0J9t22HVdfBWsWshvzK+8Pose930Re8tFdjLXvyCWl34XRH2zRorEXb8omKcmJkzK3EHWyoNKst5iNpbLKts/ZCUsre8gj6aqkn9ypEmOo/mW/s4q1DvSxbGZhNbzmQITSw0fxmGAYMaoV4zA7Ia2CMDThpuavV8IIA7f1+H/GjmK8QpcPRCpR2Unlmy3mg3X7woBtgm7cYaGrHOwfE3y3YyePTQvEUZl3n8yimnJIwEdZGhoQcqBDrwyQzk1MAd0zr6KfyzSD1JPwBvWK+s5+y+nAwKFaMU1UTeiUKmQBl5zUrfbmbQr1pUupegLnOp3Z7eLit55hq9YQ/Vomh4rurXD8hHLH8saQoVZkZyCQw3TA7q8CpR2Q6luV6A4reS4yBAt1AY9ik5OzxE3z8qz9Gs97Edv5BhRLT6AsGWG3O8OHmDB9+/DF2u3u8/O453rx6ievXr7Hf7dAP+9g/+QjsHqMbYcLma0eACe4InWeAa4lXzcRMxWXzKsGQjyYXadwsy64cLLrAYrlw0E0fPZW0bYsnT56gbToAoQ8FcK1bh4dwCQIC4HYON3d3uNttMXLiapPkMpSoAdimaXBxcYGu6+BH9jbzxZdf4tWLF4D3+Oknn+C9997D+fk5zs7O0HRtFCSjYjVlxUVWDFw4sfLm+prbhPJ6qtZnbUwVikOtBdKaQCIXauHBYPtgmMI4oKJIKZXt+CDMp08yAAZN02JztoE1Nrr4055peMUmMarbez7MKJoTAoB3MDCwxrKp0+YMbdug7VpY27Cff+K9IwaBUw+dKJZOpaFZbQHa+kC3chVUmykeBtxSMl0z9QezQ8VIq62INVjGM4+jNAYqk5qXB/I8cyOERkHPQeZWl7zvC64R1jtQZpO49fwq9df3A+/bQjopM7r5K/pcFqPCdg8NemVqLvzgQTcF7VNXLDx7o5D78lkC8RozXTMRQRHXUjgVyM8136F4srwHH8MQsBfec4HlMeFkM1NBuccy828TpAprSczX77tjs5fDDMcz0dil75QKgIExfFRvWiocg0mKixq1XpGISlK4V+6EnmRlYbBrQHoc4K6FGryohEOPHF6cqb+22NejmggxWTqkMBIBhlJmuM7ztGQZuLUWne3Qrc7w0c9/ge7sEQi2Gu8POWQsEzEA//jTn+Mnn/wM/X6Hmzev8erFC7x5/Qp3NzcY+wGjMxgcm6VZ5zGOHo749EvyHuTYMwrBYgSfiEneMTctwJXCZj+Vl1p7ChOmL+tl4/1+iEdXD0OPi4sLrNdrNJanIA3TlsZDZBCdx77v2Zyk79lUAMo/t5Y7HGm0V5f04k0PgDzIABZpM1Xf9xidw8WjR2gC43n5+HHMOxFTcGLi4sFxkBw85TlPfd/j5voa+30wJTEF7Iz54nHg9CrlpB8cowPP89qLZggnPn/M+wkq1UrywHlJlBkATdNG39VysqjOiwBKsfXvhwFuHEIbhZUI7+HdiKYRsL3Cqm35iPamhW1s3KQt4Do1YUjBM5hNfXyIc4FsihQzBi2jdF+XFVKj7kkyTr0XFdKKFknQYFjD6XnV69A53Mcp14cD69Oh7JaBtwe3jcRiVJxiUgtq4sF5Ooh8kVNrx3GEdx7WNlhvNnyAoCZkJ4D7ofPpwZJiaXT+8EE3+LAJYRwja+jlcIMZVkN33GISnwOCJXtZB0FvD7ilXDFNqulwKT2CAt7qMBgg+LgNAEMEeC2PbwO+p+8cEv1/KEB9fEiC35801BKYS2yF9wRrgbbFxJ+qXkJ04XS9pLEnuz3tHsn76VQhgW3S5Zq4tTtUgtpGnu9H6aqNu+MVWc3AC1AoD3vX8VBkYfgnAbKBCaLs+GBeEjZR2g5Nt8J7H/4E55dPQRAXm4n5+VGETF+VpWxWVFbrDbrVBs8++An6fo+rN2/w5rvv8PK757i/v+OTFIcRIzmMfoTzvJw+jiN6N0JsUJ33IAcYARBhvwMQXBAW3W0CYb2SDC7YUo5DONyD/U977/H48jI7glu2bc3JXK9kvLBZu12P++0WvRvDpkte7fAhPlcjXETOataeqzMy0hQmd73BarNewzuHxlpmzZqGnyOEFYVwQl2kPjnCvufDeLb3W6QTQif0YGja/IxNUWLK2piFTjOKyimSOJPqb03S5ACnpq0/FHDLPift7QJEmfT04P46DAO2+x32w4AxrKDYcDiNcx7Gs7p2cX6Gs7MzrLsGXRNMSGTzq+F1NClG3GxMgBtZqeyLeaBtW7RtG2U+cJhBFdMvMb/Iiq3qkKCq8xCfNPPM7O0Tm+TUNoyrZEAwBTQw1sKIWYl6hsksBw8XmWoZ/7IZUkxHRCk2FPZf2YpS9weCJYecyP3gQTeItUq250yaoveJ0fCOWQY+ECKVWB/XWTLgMfoCkJ8GGk4ph0JvSMxOznRUng/P6N3veklS2NTohup7CJrFVRmsPKfr69338Ldri4IW8JEwOSq9ctVEbrFbNt7Axi4h+HrbtrxErYCCLDXKpKFPFUv+XOfLmi9klDRH9uTRS386tkDXqFiW8lJPe+n6hB2FMDNyLwcZCWCnySYdkBNAdvgjYwLIZreArbWwpoFtV3j64cd49snPAJNMAX40YPtgELnF/7SrFd778EO898EH+NnuV7i+vsKrFy/x8vlz3N/eYuh7wFmMfkSPASCDgRyIHIwbMRLBOw+QBznCiDHzgOK8cMooQE747gHn+bRNASJiN7tarXBxccH2P3OlUeBRxpzIeQbxI65vbtH3zCRmjDUoDZJKf1uSTCTCoJgnjDHwTRPAWnAHZ7gG3Bi8upikNBLxicH73Ra3N7fh0KPk1WI+JJWhyFn8lo0NNSaWglZna8B38vwJMjbTA2fvzL+zFCZ1FYiK9WqNtmVzJOc9+mGAlcNtkDbO9QMrZfqkUWsMDDybXXuPxhAen5/h0fk52oaPZW9sOLJd5tqY59A2ITLnHIZ+yBwciAeSruti/6lhjVDASXuW82wpM/OesFCTJ8i2dwVvTg5hvEay0Dn0yoOYfMZVpFAXcjqnKDar1SonV72u7+Oz4znBw9meIQZ0RIeS/cGDbploMw6Q0jAApK7EP20A5F7MUZx+MwzKOtutG2+O7T609H24QFPgoT+lzFkHCECjBN1SnkW7wKWszHx/N+F4oPbOFJvFMJP2whOcX232UL6bD3CCB5GHJ6BpLNbrFWTaE0ZMXBX1fR89pCSXRaWJlOQwAewE/OdLWuu3tb7xkFp/G3u3w6st85t/NbsTWe8CeAszZU2DxrTomhUePXqK93/2GUy7CmzYcWDlBx0W51uKc3K3XuHZ+gM8e/8D/PyXv8T1mzd49fw5Xr18ieubKzhsgZFXB4awAZEcM0twANHI4NuEyQ9i252Ybaj6lHuyeWwYR/bBPY64uLjAZrPhNigAx1yB4nNBxm23O9zc3THjbgwGH07mBLPbx7SplpWTtCv6mBxiw/LYw3kHP5IwIWpkErxzuL/fYnt3l50FQJTKIgpjkatj5vtJqMcFXh1TKwfzAL1SB5U03ibISu0sTPTZR5E2JbC9WQdWmzCMI8aBVzjEtZ8HhRUQ3hzpnGOizoqZBrH3HrB3jLPVGudnG94o2bVoQzzc3KkjBOkNz/YdgGJanXOwRDBNAxNkeM0DSWqnVFh9+CWJsqAUzWldZJV6RM3/MEMaf4jEl7U2rlgMatzI8+MwoO+5Tbuuw2azifNmqms9Z9YSRvaczssp55scE3JKYhp+8KBbgmjquk5lw4yAEyLmCyQwIFXsOAAUwNx5RAP+bFNi5S/mJQ4MSvI43nv7ss41l/aWkTH6xe9Twynsw5w5zuEY5/P3ruzO57XQGZGvmHl+ouZwMfKxkzi8c/DOs72fRSRCCIC1bNcpfZM3ZrJgFq8o2meo2H6XG22MgXJplMxGfNTop3VXCq1qvfqiRGpOOBROWQk6VRGcBAWEBEiwnX1grkxgua1B0xhmuMnC2Bbd+gI/+cWv0KzOAuBGnEj/uQ5RWUN059etOjz74AM8++B9DP2A2+trfPf8W7x4/hw3V2+w2+9CnxzZ+8boQc7AjwA893M/jizvQMFHtpzil4CsmJPIkrscdiP+7oU0yZTdot9lY9izG7/b7Rb3uz0QPBo47yOLKaC3FjRjnl1DpbsHU644jQd917mkdMD74I5SeSvxHrvdDnd3d9jvdsr84BQl1y3ePfx+eihAzDwPE8a0BNxvL3uPub/U7lEmERRrvEbTsn9tmaNBBNu2MNYCIIyjx3Z3h91uF80TKIBoGfcGQNsYbFYbnG82WK9W6JoGjQGssVmGMuMj+Vq4nWMvKS26ALTFs1JWZiiiAEpZpSTPdD1od7SpjtTGxUyxFOxxhNAuH6H5W8Xttw5z5mJZ+uQzExw2M2GNms1v+UE56VOe1TlWqv+JhSgnwtPLMxPrbPjxgO6SIdadcYFBrTFncdlCHxfuNevsQ1sIA0FZfLLsyA+HhqasyaFb8V0ppmK7JOYKuiziWP6QeczbZqVqJqAmmbcGWe86xEZZHiz8GM0Abwl+8nUc+GhuXWYTDmER1lERJ5nLQSAJGe0WUwC57msaiCc/sNO+HbNXAd6LbbNQPceMtVODB3DoNMu45C86R3yWW8qAjx23wVynbQw6a2Ftg65b4YOfforVxSP8c8NwPyRE3SyZRLVdi8tnz3D57Bl+8as/xvWb13j+7bd4+d13uL6+wrDfYRhG0BDYQjdgpBEuHEfP0QYGM5AXwv71w4B9zxvJ2rbFxcVF7ge3nHCRFNNa33LOYRfMUxBAvnMOTkVVtukEyxVjQVeN9tWdVZsiU0Qxlkm/nEvu7u5wd3fHYza8TEVaUvlVOqI6pNL4rmauLE+85pW8mZpr8aNlXb/lqKi8rmmKzAyoEryXZxh8rdcrrDdrWGN5TwEh+jC31sBYVoT6YcBu16NXG9kt+w9lWRtQb9c02Kw6nJ9t0DYWq67jlTEiNjeh5AlFQLr37DVtHEf4cYynuhoiNF0XN0aWypsw+6WYnaztiPwOc1PNDMVn130iZI9prhPE9CnRzsZxYF6orbwCYSyPLnoIk3ludAPGcOYAIc2BshlZVhWS8lHU+ezcslzad2FafKjqfzSge27JRYRcAsz5O3M2VaXtVLns6MNgEDtx75OWTUQRFElOkrAVYD4DtvVFtcx6TAMLABPPGDrPwzjCjCPaQuMuWWRhed4GGB+y230o8D6J8a5p7zO9nRbuTaOobGpdAIdeCWp5RMxF9CsCMEkUtJgpE5fXpB9a5a1HADnAk3/pJ5y/5+27jKAP10P1tQNt/oAYj7orS8MykcZxFerQEqGzFitr+Djm4B7ww5/+DE9/8lNmRiFyAlAf/2IFBb4hKggBtm3w5P338eS99zEMA26vr/D862/w9Vdf4erqCtgb0GhgnIN3FDZWCvuUwLb87YOHiPOLc6zUZsmYDcVyi0cGoN6/ookgAJCFwxjdvMF76FNn5+KYVIPIJ/1evDftG3JqpPc+O51Wg2jZu7Hf7+HGkU+XPCFPZf7ynFGxkkrqnuSgLIl6vsjv3HNzd2j2rlb461oLTZ5WT8Z25zvGGKzX6+ATO5lRepLeGubdccRuv8f9bodxFBtogMiAyPCG6rAI0VmL87MNHp2f8am0YeOetQJ4tYKCeDDTMOasdkMUfHTzZj5UvFAlDsRXp4vseQ9o2+MyJEWqqPPslWSSVMdGtdpXsf0NCcFyXnOOTXeIKNrCe+/RD8B+v5+SnEDmLYw9AZVl9ZUGkAyg/HJ6GXRKDyChfjSg+1Cg4pN/UFxuKrXRzNZtovnnIMbL4RKaIQ9sizwDFZcRbTsIHis+W4kyt1WnUOCSRwFaepMokHx2HwJBJ6ykvBWDPa3Pd5dWBFBH93eaCjBJtxb3QtSpr4T+IEalMvY9kq1ZIWfzla+pMJWDSHhzZnhPKYR6ZUYz4+JpQUxaaiHVqWQ2KZfHtuu7MgM6lAaPIVJjilkriwS8ee7zcdMTeyyxsLbFk/c/wvuf/hzUtJFF/dugQ+qbpC61bcMM+JOn+MWvfoVXr17h66++wjfffIPXr18DwRc990GPweX2rXJ668WjR2iCx6lJyoXynww9KHtGv2utBZkRY88eDtTgiH0kY6gE0El6AbhHIy1FYzsk/EOYruhIf9RjrmmauM/IE6HtOrRdC+8choEP/el3Ozjl23+GzpYcLdyrAfGHhYncOSLWOT5cjyui/Iksrti0Seak9UTeDCdHtGuzASa4o2BMLv+C6RLIwMhpkMTPEjx7LWoMztcrPL54hHXX8kE2si9HZYzUUpvst+n7Hvuw4d1a9mKyahs0tklEHcUYKhVTFFtSK+fDyYu1cFpbT+fNeZVpLizl6GjTioItlnmrBNviUEA8jpCS923L/SHa5xdlk9U1ZsHz/XdRkarguqVCz7Hxs+U8HHM1/MhBd63YebeJpzBBa5CK5a7Gm08A/GgyB5DP2JF8cOwefycH9yCKmpwG+ZmtHU03vVRzFe61bRuFxCQvioGfsw2bC+VS6ylg7GDcSsOsPXs6kEvL5Rzr4qPll4NdR++t0I/qgSinZ+kI5HTLaqTZFdX/vGjmPhM8fIsgfU8z4N77uClTvosNuCzRlQyBKIdUtPO7WFJbCnP9Y6IA+uSHFuGeTHICvGWsGAv29WoNWmvQkEVDFueXz/DRL/4Ipu1ywP23uJtDTVmNmma4aXgJ/YOPPsL7H36Iv7Pb4fnz5/jdb3+Df/pP/wnGsccwjBicg/dyipyPTGUEsUf0JYV/Z+7zeNoQj61932Psx2Bi4uNGyrwoXA4ZW4S8+UkSBgN0gXoeNbKAoh2pTPQAGPBFDZDNGsg0sJZNUIb1Gn0wi+kVcNBBg4Tl+b28qbX8eshnN8oUlJyrO21glAB7MaeiG8mRoJRWgpumjZ4+Mn/VIW75ve/3uN1tsRevFeokYAqH1FhiL1Jt0+BsvcJq1WHTsc22ifN3KrsMAe8B5wb0/RDBnTUGbdOgbRt0bcdu7VQcEtVEdlH+9Rg4LSWOsl5X4JGb+5ZWiqrhhCY/lcWtmXFljLaw0+E0ztjuPhl1pr0IiM+IMqSDxJsOvKH4dlaPZdAQICrvJxXzrcOPB3RPKsYf/h41naKXaZY7XHITDbFkF3zGCrKg5O8WOSM5+Q7EI4lT1hQwVsC7BMxzAFX+BPRFExPKne6fGnz4L21NyIF7rQzZ+0cAuEPPTJbiOCPZpbnSVYxDjtHNpjeoUNRm4nPKXITAp5VF0K3muVPG9VRrT5XAdcORNg3DBed8OHqaXbVphUxYcL1MZ4jq9XREvo65Fu8VvyPTGJWM+juTW57gDR//TmGCtQQ0xJ+h5tGuzvHxL/8E7eYsq6e/BdxFmB88fAR2+C42pavNGp/+7FOsVy3+4p/9Gruw0iNAhBkrW9nglCtcE9BZuZbnh3gp33u0RGiMwbpt0Q/spWIcebVxcMAYvFSFU7jhAIhhkdrCVkTP5kmSt7HMiwIJvIFd+jvLWumLBhZkAbGhllPwukCO7Pd7NrsJwFGfaCuVPR1H5W/tez+fqxKvnz+ff89NcRIQPeGAk1xDXny0jJJXEcLmw65F2/Bx3LrckaTyHtvdDru+x/1uy/611bxmiZUcG0xG1l2L1brDZr1C17RsSgID7ZI/qmE+saT9fo8xuPwzwUNK17ZBoZo6UJhUxVvLlUodxuFH8fvcfDl3vdimXEl3WfqfYqZVviPEn2a3Ab0aawt5QABpe/XQRkgKrxBHYlaiV5/EZWMco6p0NXb8hxB+FKDbUE17IegDBUodnn/42tUMjGcabHox6l0pdhF6yZbKqMMQ5jROzUyWz0R2OmYrAe3yewnCrbUZ0y0Mt3R4YWbmGEbM3CtroFo7xdJrjLQAiMcx4PWNmZH5h4o/ZWgSqu2/mPBMHDO7+6RocYLzbGOdlroxYZZ1WU6Vz8wAzN3Mf1qmesC+e9p48Mno0rK/xCnMgFWMUUwPxylWJ5UjfvoID+RqrvamIP0z8nnE7r68IVikSbehcFKcsbDdGh989ktsnjzJ8/y3gPu0EKkiAZHc1+9u7/Af/+N/HN1ckmH3giybWCZGRouQs5c1sD1JWJRMBR5kTIW7Y0h3tbJYrbowBh22fY/dfo8xmJ44F9htDzjycIHpndO9ZYKXsVyucqUc8Gl3gAcFBdc7D+cGDM7DKj/wHgAZQmN4mXy1WjFjt+cDc8pVyqIaKgC31pHLEXRI+s3VeojtwFhPJZPnp3dTPSf51TQW3YoPskmrgGHeDBHJmN+F+pHNkZ7YbIzNzYKi5IF102C96rDZrLBZd2ibho9nJ0IT5K2D542SSHNk3/PGy77vAQd0XYtutQrmLSbKm0nZK3357USLLytwXhdeILdygqacKwtZfiAdHW8tD3MgW6+y6xUdAdk1ryyTOHM9MtPaxFMMgDhuJG2950mnodvraDOTP1D4wYNuovIYeCBCHz/dJV7rUFmFq0lFA2hoZixGFKf9Ik95/oSpmAW5C4AbAJ+uWXkmTyMH4977uKFSfpcaZpmncnBWRTnlIDtVVb3TMjBGrNf4FDkQzExnL/IxA7z5SZ+5gdRxxPGaafm1lE4IU1mY6xIqfy64DIxC4i1XGU7J4zSkVjPEvmMb2Gjrn9nV+cCEE5gxiu4JTVVoxRTeWbmSMlUdMz41QjYCvWcN3PC+CWa7Wtimwwc//Rne/+lPxQblHeXzX9AQxzIP6NevXuH/9x/9h/j9F58DSDb3tmWQyd49ZIXFReBdHgAlwSPvV0mm56ozEfEqopJjvvCEIv131TbsBcE59MPAfsfHEQOjOrX/BijteyPwBu+NAYhP1Awg8Pr2FtvdDk3T4NHjx+i6FtYoD0QhlnEcAVnxMsy2myA8yFA0p1gF0xMB39oTFSLDeYBlOCkIuTQjDRdIgTQ2y7lQO9aj7Hnvud80TYNutUK36uK+Jgep4zSfyWrAdrdjueQ9m5EEuWSD0uO9R2MsNqsOj8/Psd6s0DUGxvABKyb2W3AcYJk3hpOB+75nxYwIq9UKm/U6HoKj5d7SfPQ3HWr5mMjPDOPg6O6zVMY50xFtYimYJHp2KeaSU0KJDYRE1OnKfDaqvRM1kP+HartjS/nDB92g6JtawiEQu1jJCrRXbwr4XmDJszfUAJ1diqK0EbO23GF8WtqcK0+tTDkjDMCnjU26403SlXxV2B+i0mle8A6qNWpJW9eJmjM9EFaJnKqufELVZc3SrzA9kYkqC1DEszi4p8lPghThMEPPUk3XR7yjBPiDQ9nllm9Pc6fSF5d64mtY5LF3LniCSDZ3EowxGQhfUo7eZfBQ3SgAbwoMl7BcRAYgw2Y81MBQg8dP38dPf/lHME2rKuF7y+Y//0HkgvP49ptv8B/+f/8R3rx6hWHo4dwYfSgPYUM5hUmWWSfeTDh67l/a5C1OxEbvj6kpqdxLhUEX9lFkmdNyw3hYTzCmgW+A0Xs0Y4tRTsMcHfrQv53z8OIeTskZUQKc98FrxYjddof9dov9OGKAx+g8ttstbnY7NNZgs17j/OwM6/UahgwcyUHhwqyy5BwVkKYAfm3TxGOrdwFo7vf7sEcDSun0WX1kNTQBFNNnikY9ouGnrVD+ylOZklJEhK7t0HUrNMEW3nkXfZw7fgjwrKTcb7fRRCAzfwt/hthNoDUMlNm3tsGqbdHKJmoKUYqi6DycGzEOfADZbrcDgKjwtF2HRvx4YzpHfu+kyQPTOAQeZ5njI9Kdwxe1axpsUzG2tXL9LuuRiPd2UFDy5U+z7Dp8X+TXIVRwzHM/eNANSk7ja6C6Br7LT/03G0S6z/RZH5dupoioNmCP0kjjdURbRMiSm0+TQWRVlxQLpQXqkw5LEBgHJlGMX8orJg3CMc/lVyY9Dd6NqruUM9lBI1fT5sfJkrPUYaHriBJwjFCsgcKYrSPnHM23xfQ125tupOs+ladm1/quw7GiRLPJ2hsIAJC1aIqxUS4TAgns6L5UskLyvRaSIjPRV+tBg21VknjqJAgNGTSwMN5gvbnAJ7/8FWzXpfj/FnA/LISB4gG4YcBvf/PX+Ms//3PcXb3BOOwBAm+UFFZXyY64sc0AtmEraj45cIjsMwGgcKhMmqh9JlLz8SY+eHPl1orsii8hmJIAjQcMWTa58i1Wnl3AjcOI/Z5NCxgEhiIHoCYrjfv9HldvrjGMI4O6oFB4MhhkfIwjbu62uLm9R9u2ODs/x9l6g3Xb8KE5ho90lw318B7O81HwBmms2KbBOigr682G2dh9j74f4sb8LFT69ZSJnnthQq/MRTkb8uHFYNv7ZDHPisQaTdeBiO1rx3DQiQ9KswPYQ8huz6dKCvGk7LVN+N2IbXzXRGhvwPPNMPSAHwDXoGtbeOKTKv3o4McB+/0uzoOr1QpnZ2foui6SW7odgHn5dez9tw0PZWPfNl+HwLaeEwTkyhzQBOXxofk5psw1xlsDfU0Y1cD3KW18MC+cyGz8OiyV7IcPusGbVQBANi7WQLcOxwDvGoCNIKVSZWzqm9OlPjLijhfMyUxBuby/wJAzzsh9xyabDQGd7EbO+3QCpV5agSqPHIcrmxdK1nLi0QKKs1AMSwJUZUfOi5mB93DTIaoPkE08fCuxxBOQLKzQgaAH/ty9siprrVJLqfpcRZE6qMRV8lXGl+XNY5LRh4qIMq2lFZhavywVvRKA1/7KuiDKfecTgGBwBCCpY5P9AlLXSOU34U82T3ae0MFi3a7xsz/6Y1w8eRrGJv0t4D4lTLovS75+t8c/+6d/hs9/+1fYbe8xjj2f+Nmu0Y8OfT9kb3G3FUXMwwZzjrZp0FibeTDgwzBG7Ps+gm9ejrYM1BZke6n8Sh8TEkGKZAkw4SRiEKGxHmgbrNo2HN4zRM8/o3OQTWtkDDarNegx4f7+ng9FMQajYdlOYaOW955NAoPZwqs3b/Dq9Wus2hYX5+c42/AhLGIjjEAcyGZPEySjIbZRt8bAwqNpW7hxZFC6D15PxqAAK+VD18p8dz9mIMxJxlPiCGYk3Sr4WTZsDgR1xmb4vdv3uNtuMYwjLNi0TTPbxpi4MrfqOlxeXGCzXsF7VpqGcOiSdwz094PHsN9jHxSjYRiCj3TP7i8vLzNf8R7qnK2/YZCtQ41IOzX9ubloLk5fTOAl5pGxqjf91rDEQ/K6lN9DQfpJmWZ+0GFO0M3NUbW8L+XrOM7ocLl+8KCbwH6uvTDRELArYGV62tWcsNYaUfmZgahqxQVGRiZ3JAZPphwSKEFTG7kSU5UsoQtuc2QySQBY2BioVk9s+GiZKXHFZCVLPzJoxMes1hLLTX95bvP6qy9npm+SHz0x8Hv5oPdhmZHr0+WDQt6ZqaMSUC/dK8PSgMm06YXnylAbYDWBcGggvq14X1pdOZRmBLcVRkCbdZVjRbPhZX/SAlnaJfV/ii7lkqpbKHrS7lG74+mSTUoIDVm0TYuPf/FHeO+nnwBWANbRxf/bUASx3765usJf/Pmf4Zuvv0K/3wJw2JyfwXmP29tbjEOvtMQkCQ3E7xHfixKStPePnDXrA/CV5X9rGXyXk/qhEPuX6jv6XXE1KSYF1jYxD8MwYHAOvRsxjg6mJbSNxfl6jd39Fvf7HVxgauF98KIT+rm1WBdKxdXdHe73e6yCl46z1RpNY0EEkOENwQJyxA1ABAgGsKaBbdkW2o0O/b4PJig9hnGYsP4zjRnbB7EdZh8snj30TgI+TdOgabuw54qVai1XPMLK6zBgu9+x/2sB10iMtglts+o6nG022KzXaG2DzhpY8iCy8I3FzhL2e8LQ94APp396PhV4DGk11uLi4hxdNz05VM8rS+EPCbjnwqH5TD93zLXavRqJtCTbS7zwhwbbpQKhPaEACXgDiLin5izgIfnJ8dh8nUccuRDvDx50A9PKiiQwio4T/kmmIAFUFBpZTbOsMeH6ekpDvyMZCYy0Z6YnPZKeZQ8sBH1bl8roTqWBR5HPWJaQF2sIrbXofb60IstquszSKcUeSj+rATlRwmBlneXLmembrqfkGk7qyGVPO+cx9Hv0/T7agooQb5s2etbI08uDFkr56aDTQUFEh0mdhbT0/ZIFfqfBZ9j3QeFYAC5Au0yOoMYPpmOnNHPS4KVU6Gr2fUQlHAhrIj7v2zyh+sk12UD55MOP8MEf/RJoLWLEfxuOD1pGecA7h+ff/B5/8c/+HDfXVxjGPbquwXp9gZvbewbcsuEvjGetrMXuVlvxKGRHNCWwNnnaGUeMI3uVEOCt3V0eCrHfLoAV8TbVGAPAwrngU3sc0QUlYHAjhtEB1qA7O8N61aEfemz7Hn4c4Rxv5hTzCW8tYAxc02CUDV4AdsOA/TDg/u4eXdOiW7VYrVdojZV1v0hAxLoMswv5sHxvG7Qb9tQyjAO70dvv+Z1gT5+RIL521FAip5aBt65J+SxkSWiztuvYHaL36Hc97sctTNOwrXQwNxiGAfc7BtqDDyc5Wxs8DxFasLlYG2zbL87OcHa2QWsbNjEhnx0kR2SwCTbdYjoy9ENYBeacNo1F01i25x5NMvUjijKt1jfetYnGQ8DyMXFUVxPfYg5aAtriqu9dmme87XypybWINUxy0VviNz1PS184OMcfeU3S0PPhFCPVww8fdJ+whDEB4+oVBoa5bXi8VwHYNUAOJPioK5rvBRgcX8tRnvdqOQb50b6JVCg3MR4XTFiiFF/gGiCJqx0g2RuXHVK+S1xEiKc86VAbgBrkRS0zoG0eHKFckeHqcb/d4vnz73B3e4Nx4Il8terQtR02mw3Oz89xdnYWTyqrabmSpg61ZwDN5qIKvI9lFXQofe0KiDiUx++DRZH8nyogq09IvlEX6lXTJC8rK4gbNgWEx2VjY+AN86F6VUMDJc2Kp/x5wDsGO2gAslhfPMKnf+fvwq5WWZ7/NpwaWF6N/R5f/Oav8Nvf/CW2uy0A4OL8DF3b4sWLl7i93xaTC7JxNBmHB1LVy70GiN6pmP0e4zHc0h+0R4SHeCYQOcRyTTxhAI01gDVoGwvAY3TAbr9nW/Tg/cQMBra1sKsOXd/jfr/H6JhAiX1YEjJGORfke71z2G3vge097I3F2brDqgueM8L6AJz2AOUZcEpdUjgEyrQ4axpszs4wDgN2223cLBrJFk8KKoeyg/OaGwjqltIwXb1ZyBIyBqv1Oh7VDRAwjLBti2a9hjEWDh7bfs+26cPAaRp26cn7MYA2uPXjI9rP8OjRI3RtG45op+Dij/uFVIrIl2EYsNveY7/fwXuPtm3hPaLnHMDCEbAPzzdNE+c/H4C3qZf2QeFdkS6nstUPTb9GlpTgdY4s+UOFk1ZrQ96yk0yVZxNZ3deeT8p34++Z7/ot79NBiC58R7EiUNtHV4YfPuhGvsz90CCipWZAUBPgc+A7HkVQaDcJeGMmLrbLTrlRQRUt4kINBA9otGFvUlqND0G8mGi2iD+S8lH747wu2yyXoDsvD9eyNudhHM4Dot/vsd/vcHt3h9vrG57cSHaqW5xfXODp06d49uwZHj9+jPVmM/H7WzPhmGO7J+ztbKmWQ60+NFhsCuf/+v4PJcTJpsyj/FDaelmnc8pPZLgptTu7KuQTAxnADPFkN7GNBYHnsUIAAQAASURBVBhwGWPy/h4QUhhZfOqgZ0a2W63wx3//X8bZ5WV85l1MoP9CBJ//8N5jd3eDv/qzP8O333wF5wasW4vN+Tm2uy2++eYbPtBlnG7kTtDyQM1nfV+kLxvSlWNYXAzKxDmMPrLH+/0eQOprAhAAqE2R84p5hJYkbgiLLHqCsQSzWmVmEbvdDs04ovUOg22w6jps9wMrB84HcM37bBwARwykZR0xujj0HoP3uLnf4X4/YLvvsQqMcWMMxFwi8QLsZRo+bT7XNuBd28bTLodhwND3PGxkPlItw+UG0h2pEc1C6PakOAb5MJsOTdvCZKQNsRcWw4cG7foBN/d3wW2i543aJCdQAuQ8WmNwcbbB2WaDs1U4iMawZxIb5rAofwLYHoKNO9u570AAzs/PsdlsYl8ZhgG3t7fRTh/gzZqyAmebBqZpWO6Eeeb7BtxLIO+U+eChpE2NkCpd/NUOrPkbC/40urEc3yITZDVOr/prLyvybo2VzsC2GkfOsxyS/qVNW5q2jd6Zyrjnwg8edBMSMwLUO+HRnZjR1+w7c42h0w3cRAa2awB1DsAnUAv1qTNYsLKU7LvLHAt44sFj4By7hitNSnIbyURTMVAnlKeVcT6TOx5tVpFYzXnWG0C2NKjrQtyNPX70KBxkYHB/e8tuo8LGpqvXr7G7v8f2/h79fo8PPvgAq/WaBWYoiwaEOo9liNc98DaitmR1awywbZr68tQBgfauBd6cpi73Zk12ODPQfWQS92xexfd2sKMD4E1i/ODzVRXxH87mBAZtEP4izIRBdCEbYxCi7/3kp3jy4U+CrQBFu05fZOtvQfhcCJObc7h69Rx//ev/BK9fv8boHTZnazx69AjPX7zA1dUV+n6MKxd6NUz7DinJiUIKxk+97qT5VQm6X4kNeNPwhDeMiekc40bDfeYHXLyiQOL2Ah+n+0JYpk5JFYDi9gBv2Af8qm3hgQD89ujHAW3TYhhG7IcR/dCzm8RxxOj5TAG2beZ0HAVzFIgnD1YS7rZb3G23aBv2vrFqG3RNE/1GAzbOBjxmpfZcdEXfdS3atg1KrcN+v8Ow38OPskFUFBJZAVUtk7Tson9QBBOy0qifiix3KA/L6R1GAGSDtxfiPmIRjutqGpyt13h0cY71aoXGWDTBwwuITS8pbsugxGrv92xOA6BrW1w+eoz1ZpV5MxOZ0TRN4Xox9Rc7jjDjiKbr4orbQ1bHJgTcnBytzENzGGVuztL3HP/gfn5k/uR3OV8RUVytOGZeeicrtUvknX7s9JgzLFDanGsmX/qKPBfLX+CIlGVmsnvlR788vp7CysmpCtUPHnQDgN6MV5tOa5VW7TBgt1IsD9NmxFoo4yrT8GG2Zzznq5pa2Yg1dnzKHglIIbABeGLHJyUPZRGNlQdXcutTUwg0mVhMe0oOEYhsYM6n4Hly2IrsGJYEfG09IYW2bfHo0SO0bYvzzRnubm5wc8OMt1fLXrvdDq9ev8bZxRlsa9kXr0+bI2rAezZ4r8waHw7JZFmutImPeUICtn8IhrtW5pMEY0WZy0NixibMdx4RgFz5IanvACKAIMzAvul1P9oPAygAcNlYJf55G2MAa7E+P8Ov/vTvgsQ+T+dSDZW/BdyVoJR8N+7x1ee/we9+85fY727gATx97ykA4Ivff4H7+11aRo0TtvjNzqdJr0CtKEoSSmB9zLSamRl5dnXZNATnSPkCH7M/ICzvBgDmSVwNapmtciOIHNMJk0iUAs96nfdwMOi6Fk1j0I4j2mHAvu/RDgb70UamuR8HjKPD6CluKvQUTDsCwSEu61woX+8cht0O97sdOss2yevVim2dxZe0FyUnKTZxViB23YYGaNoG42oFN4QjzoeBPbBUWqKU7TLHtd0Kq9U6M0uM9RNkBa8A7LHf77mcxqAVIAwe6a0xWHcdzs82ON9ssArHq8uKZiSWQl7EG8y+H7GX00UBbNZrrNdr9gQT566prC/B9xBOnYymBuHQHR/c3BnD3mgeSngceu9tmO5szkUisEjdS/Pe9N0oV4OXl3KfzeyK8AzReEqoYa7a9+KlBwHuanqUzEn0aZWyB8IYA6/ZfanHwixFZBmfgLuqugJOc9tp4UcBunXIAXgIPgm4eAl1MG6gcKwSvuolTqekzpAP9simiPSITIRisSsNcgh4l5/pe4WzDOytFqlswuFDviycI8Db9ETIm2Ys1I2yMmYZbenY2Z9zsVI0GK8NXmst1us1GmPQ73a8Qadt0Sk7PNu2WG02ICIMwwBjcpvi2qFJOp9lfVGsgulzS8JHrk1XLFKoeVx46JLi0nuHhL0+I0+9leJTV0TxnOFgRH9azmsRs/fLeSzriBXMoLSGv/1uh/1uh/W6g7cWzhh0xoRNbjvA9YBpU87DGCT9M89cVvaZ2//8BgW4++0dPv+rP8c3X32Bcdij7TpcXDzG9e0NXrx4iXF0cTnVTRq/rDElCxeS12cQoAoBZ96j5JWE95gAxlg0jYFzbQa8+76H3+8jmLJNA2ubKB2jnOaIsxxIP8+7bTjenigdR08WNqzKrNsWu77H/W6Hu6GHbS0aAwyGmfnRJ7MXhzQfiWvYMTBpHkme7J3DdjvgbrdDay02tkHXtVgFhlbXB68AleUQAN6g6dj9oBtH7MKm9XyFLtUJEaFbMdhmMJJWE6P7v0CCMOM/ROLKkmFe3zkYw6z2+WaN8/UaZ+s1Vm2DRgFmIXfkp/PhQKW+D8y0h7GWN012HYMdKtsmlVcHYTOjZ5WmYQAf7N7HAL5HazGGeeYYG9xTwylM96EwN1ZifGFseScriEoJbWx0twy8A4LmQJgr41wKS3WytAKgHsrqR89pjeEDq0YFpq21oKZJpl8Kt7jC24m1FmTtREk5plyHwo8CdNcKnTVKmG15kwSDSeKH+FkB30idOGNJYzzpnSoeJVJkyQyzqoF48XpkhuIsNDVVKT9LgDcF5VwqYwz7xB1HeMe+TJ33GAlAY0FefMbGiIq86XrO09CKhvz2k3dCEKDtPDzJhoPkQ1P70bTWogeizR6F98/Pz7Fer0FNg6ZtQWSCxloXGkcJjpKFyxjZ44dPTdDrJatj3zuU1/gev3z8u/JOUi0WkpkgjWlc8bbm13Q6cu/U/En8PKOmbhmYhnEEPOKGzKZp8Or1a/zf/6//F/zk40/x3vsf4fLpM5ydn6NpuyBxixTqemp8YlqiItSK9WNB6j59YVHjcP3qJf7q1/8EN9dvAIxYr1c4Oz/Dt99+h5u722hK4nxEyUoG5Stnwh5TmVwRJvV8YAVocq+cWAnwwc5ZgJX3PjKbffAyog8I40k0mKKYegNG0a65iUBMiEcqAsF5Zt/3w4DbqyvshyHadLZtC1pZjB7ohxF9mMgH8SEMYAznFFgQxsCCC6vmvI/7Hfb9gP5+i6Hfw1qLy4sLXDx6xIf+qNrlZsiBNwGwjYVtLOCBdrXCOPbRLEcfctJ1XdwzU6uU0Tnc7/fY7vdwbky+tWXly3tYY7DZbLDZrNC2bJJztlqhsXxaZKxKpGHqvef2Cqec8qb/DqtOMdGkGuSIgadlrLSH2Pnudru0VyCYn4ijAb0/4Fg5XSP0ar/fRajiH4fKnApeTRACSEizU2RWhqveTthlEOpAvZSrZEtxAchO09ayBaFfk7VovWdf9wp0O+/hg62/ED5WeWuJfYHmV4CpTPfE8IMH3TwnT5m/zKwAMxWhWWn1PqGIM0WeAXSoJ2TiSAfooPJcAnN6iVTpmkm4CwLWaU4mSgTmfMqM67qQuI3p0AYhQ0TRdjYTYEWGswEdQNhEuy4HDNGkDiU/FNhnH7QP4z08TCAz00YOcRV2d3eHm5sb9H2Ptm3hnMN2u+UDF4KNtBxVLlnJVi4euNP6IOCaCZKGZo2026KT4zvmoQIc1/TBU+J/l7gxr/I6M6rH5yS/2cqRT+MzmBLc39/h4uIiACbg5uYan//mr/DV77/EerXC+fkFnjx7H0+fvY+Lx4+x2mxgbJNS10Dc67GXYZXlUCL1SRmOjOcPFbQc8YB3A57//nf4/K/+Gbb3dzCG8PjyEgDw5RdfYbfv4278UUC1iioC7arSC4AAI8zuMXUqYBbHgRRhjJcUZWEtu66LG+jGcWSfzgCI9rzxT7GbWTwZslfkTKRxBBg7bO+3uL29BRFhHTzonJ2dsQIAwj54YOnHEcOQ8jKOCYi7UK4RbGoySPkkC8HrByyvBD5/9RKvb25wcX6OzXrF7Lc1cCR7KRDMEHzIcyqXsTw3NG2LtusmPph1kHlrGAbcb7fYqUOMbHR3yHub2q7Fpltjs15js9mga1sQCNYQr0oq0Czy1gXPNAL+jRXTHTndMKzdHj04U9/Q+df9Q0xPZA+JtvmWTwHfZXy1NHRd1b7PhVkm+IR5Kx0w5bP5x1oL2+TOBjjy5XycMv+QfOdM5/cxGUJHxe/D+wdrTxEz8dIkm7nyKavp0tcA8OqPeqexFm3YGyJ/MV9L2TmU34XwgwfdQFRgwvccgE9tTNMUX3YuH993Ko6CIKv1Va31hGdiuj5xihJfBpB05yTpnCp/ujNFTBwAQhBafpJGZfOmD3/GAk0rEm/ybI1Jqv0uBQEVzxxkdSnBWkI4EMUTDBkx78U4jrg4v8D4/oj7+3s2MWkatNZiGEeYYOPrxLbS+WDfmS8ZaZb5UL54yVQmUaUEqXKWv8v3S3eBS7ZyxwjUowRT8YvzKXb4pK6fKFCL2MvRdJy13RwaDZN/HCupD5arJ7EfBiZxdA59v49HOBsiwAWWwuxBvccOA7zrsd/e47uvvkTbtTg7v8DF5RNcPn2G9dkZVqsNyNoIwE0o8gRAzmlh/shnfijAOwPcHsP2Dr///K/x9Ze/w9jvsVrxfopXr17hzdUV9kOP0XnAeYxInmKESRPmO5LfSpboZuUhrzYoLmQxm5xnGMNJsTL5lca67kuJ1bbRRE3sezUTLpueq7auRX4IiG7mhqHHdstHtYt53WaziWYQXFcAkUHX8cFko/PsNzq4tRsH9ge+G3r2iDA6DN7DeI8BanQTAY1Fa03wJT5g7Ae8ubrC1RWwWq2CF491cLcX8h/YmnLznNSRBpa1VVTvgd1uh+vra/R9j9V6jTa4bQU8GmvRtR3W3QqrVYf1iu8ba9Jpj9IDQl6893BB+RCga4zBer1G2zWF7CyUhiNCadKnyy39Q8rdBq8vu90uynHJU9/3se+U3rJ0Osey2++C9ZY2EhMZ6f/s9alJrn2L6jpoHTDzjB6begxExwiFLJ9rJX09jt1a+Wbenws18kaXS9tlC5striOje80A8mVcaEUty+tbMv1z4UcBug0VfkYr2laC2nWADiADFOXEUXsqC7rDZkiMJxvhwnmzEZ/ONQmH2lCPnSSzAgYnxdT5NAHG7EXEHgAGRWAhdt7aJEUEbHwXBRgqBVlx7SCoVMqE6CHkp0vL5+fnUQvdBx+5tmnQNg2GcYTf7WDMmnedewZibM7BzIXWUCd+fDVzhHxwSp60OBDlIDmiy0O52lBVfqZvqRy8XVC1r6KXTjMHfGfiolTyOoPAtWAmYk7DcBl18+mWyuvkmoK/YlvHShWv1lxcXIT+F0DkAMAPwOjhhgHDvofrBrRdB+8HjGOP66tX+PqLz9G0Lc7PL/D42RNcPH6M9dk52q4DEZssqSzkn2VNU6Us8aZXVTCd/L7vMK35pLzcvnmJz//i17h6/RLej7i4OANZi6+++gr32y3Xtdd7L4Luzhg8fM6z3JxMnoMoqwvWae754wp52js6vbZt4wqauJFzoZ/JiiCQ3BXGpWXRJHzutm4cR1hrsTnboFuxJw03jDwqAla2ogSQBc81Fq4Nm8QdA4N98DgyjEA/9Ljfb7HrB15pCLDTwYf4DFrbwbctvF9h6AcMw4jXb17h5trgPJxp0LVtOL051XVJDpTyPZffFEHK5eVlBkYs8UmdXduh6zqsQr0mrKxOF5YmCyzyvu/ZLWxQiLpwiA7b30/7R21F4yQSY470Un3CGJPtByg359bsvU9lto8NJUMbld2KOWaN4CnfPZRGfL74zJ6fuzdDuE0UkUp8iQ84rJjrYA68U4Js73l1fxXGp2CCcRyx3W6BcZyAavHIFtu7UOglvAvx/qMA3SQMVbqSgYW8MedtfBPw0p46pk9VO+jCYM81cxG4yUQkfeSH3xyOEwmoKKYJkholsJ8ddYkcTDnwch+/zgghB40E7128HpNR5ZH8aiFUG+RaO2YMws/yMfcM9ggO5HlC6doG8A7XV1e43/LBHL/47DNcXFxgt91iv99jt9ujbRmIew+MboRzQ8zvOI4ga9BYZlzkREu9Oz0KkSVG/IgRJcJQl3/enrvsR8dPGNM+WGMWpJX1s/w7xVNL45gc+YlQLpWRqRis81PlNS3QZYuv8z477MN7j4uLc+UeDBg9ABNsZCGbsEYM/QBzf4+m4Qm96zqsVitg9NjeXaHf3eC7r3044GOD84tLPH76AdZnZ2iajt3NxdxLfeblzK9Olf7y4drk8H3h8XIyo3HEq+df4/O/+DXu7m5gLOHZs/dwe3uL5998g33fB1bWRXANhwD2+LcAb8n5MSpdWXOTHnzkZHtoApe0cm0pl0kFIRcnYQ1ohmFAL3+hToBgK24tyJjMHMFai1XwL82HIwDOjfDks3Emq0+SB1bwDLxLddo5BzcyGTKMLdZ9g8E79AFQ7/pw7LsDAD7R0RsCkUGz6uA6DzeO6Hc7vHr1Cvf393jy+DE2m1UEvjbYh5eAVT6jByjwaGcyQwgcfscQoTXsVWWz6qJv7WSWkxRpmV+ju74wnomIWe22zVcnaDqEjjW1qAGiY96RUG64FBZ+VB605H5Uxk7M41yYmzf1nwbb0TUmv1wlMpbiruah+DzmWZ3XWsiANfI+Ud6bvHsE5ipJL1mp0IfglKch6/lU3BX3yp87VH0DiLhB3q2tys7VWUnqzYUfAejW/qXnnii/pWl9QlDPDJgkmGrcX/7ckomLJOF9Ap46fl9MF5qtzuMo4ZW8WWpeMsgovyUFDyyFMIVZeSO75eG9yQZ7ynMC4YkdXz6tUtKN5fdcbud5JcD6EQYjvBvReI8ODtb1aC2w2Zzh0cUZ1us1Vm2L25sb9MOA7XaLi6ZB13UAdaos0cFrHIDaGb6eaJY8jOQDa7799eECc8t1daF0WCEs49IKTK1XslCrw5yUh6xTzKR2OESBk706ZUAlN3MpUPHdw/MS/JDAtjGEVbeBVcf7SkhnHjg4Hw5UMoEd7Nk/8b7f4357x6ZKbcsKW8f2fcPuDq+3d3j53Tdouw7WtthsLnD+6BHOH12iXa1A1ACKCSfQ7Pgry/43Erz0A2Dsd/jir/8CX3/xOcZhzyYAmw2+ff4cV1dXySYUDADjCpiXSZNNJJxPvS5OPnJlbmIXHMYPZRpf5glFWOSyGAUzG4qWJ0Hcu3L6YvqMyC7ORp6W9lDQtC0fAb/fx5W2vXMYjWEgpsCXsJ9cFwloE5D7iZezIEKNsps8EzyBpF1B7JbRYxgt2sagdwN812H0fDBPP47o+wF9H/Il9tU2+Lk2Buu2xdPLy+DWjH1fazOZWh3qekpAIh1YJS79GjJomwbrruMx1NqJEi9zM5eDbegFDFlr4yE2cfkeohBNba9PDQ8B3inPoazKHCmaIYVNl32YS8QVoXZVW8Yj+SnTqY2T8lp2qmgINZ/S5VbXmne0WngIK39qrQpSyEg35GrxyXlTSrpm/qW+9MpJ7VC6MogCI6sceiVB1z8BEyKtss34+HIU4QcPugni5k8Bmpke4eM/6UrJ6skzvnhPA6aqW0LIXDEPNvXS2BwwzzpjmHzKvORppgE+YdoqefKhcFQUnBQUCrg5POtjp/beBzOOEFME5LmGWZ0c/bReNMvsMGIMFOBuv8eb777G/v4eq7aB6wecr1o8u3iCR0+eousaWAO0tgNdXGC73WK33+Hu7g6PrEXTdalgyJ3jR1/NhUCXZUN5Tp4BkGnHXMd6alQVrdpDvsvgL5cIj4NgIqDqbEWqv6T8COiQ1/N39fN5KMHyIUZkCTgvhaTYTg0SNHiTMI4+MUw+LaPasKqRlYXYz7FzvHHPGt6E7D3BepYRvEGX27jvR9jdHkQAGRdNDdarNbrVGiMcYPa43d3h+tU3MLZFu1rh7OIS548usT47R9Os2CY8VXleVmgNO5dBWun+3oIAbu+wvXuD3/yzP8eL598C3uHx40cAgC+//BL7/T5Tqh0omY6I4i/AO+RfFOykeJd9PLWpB+LRAvKKvqffF9l31DRVY8D0d5Jn0pbHBLan0U3ktzFoiG1kxcWcsN8iL+QdDSYtpU3cPmMf9Tdxc2iCv22Rp/yMNQYwvE+lay0GN7L7POfQNg0DjJWDd5vYVvfbHYZxBIIPb9kExsGh7HCxOWrkUKxA/mWCNDFE7BYxrBgZww2biZ7QUUbnEtAOB/K0bYOuW1WJo1NU08nQOQCqqu9gOmbjHKzmXmFB26aBQTrREo4VeTeOrOwE+3Y9j8yFuVXgmumINhuZI4b0d1+J96Qwo/TW0szir73HD80D69q1kgAssxc+a8fVL5n+zPYLNafKu/r0Si0bZfVVcGE+TpbLckz4wYNuXoJadk2ltal4PwpjqjyZgxUNrLT3kqnmKnemkCQD1jOAW35L9qQhZwWFAuVxupKZ3EunyDIBaMZbsl8kkEFCKiBfYF8krznrjYkLwHRPZmoG4HEIipAmfm90Dr/94jf4zV/8M6wBbKzF+WaFrlvBW4PeAU17g1XbYbM+w2a9wfn5OYgI2/2WvVk0TTySWBLJWOzQZ0qf3lzc6aFBJSDPGPLwr+Do0aWTOvXmm5qytRwmal+uINIRgzn0x7KHT4VEPZ5j8nroiXLr3OHnU3A+B9wAYEwSiqysMcDWSgeDRgCOYMgDBvCjY4bOB7viwFA5JxOkxzjusd/3uL/fgsCnuLZdG30CN80A7/bod7d4/fz3INugW29wfv4Iq80F1mcXaFdrGGMrQrgCaAAcWDiDqrrlyqq+E2p+HPHmu6/w+V//GldvrmCMxbP3nuHq6govXrzIbB1j3xWgHE+cDMrxzOT5oIn9uOwHveXQ3ojjIvWxnyw8VmHThene7hjUrtd8Oqd4U9IH8chyv2ZAoyxX6dpwdKT05aSUBCXB++BHOXj88AS0CCYnDL7HcYRTY8Ru1uxvOlRcrpjnrjd1OARSiYDGWKxXHXt0EE8OxKx+nFY8e7gZxxHjMMANPAc0bQPbtWljO8ScMOWHx26ePwpz3Fy+ynbK7hfz58F3jkiHiOJhKNrrjHe84VVs+kXR0cCvnOdLskof7CRzjTZfyVY3awrSOwhG1dnSaCvvHRqZD1GgRRmM90RTDvJJ8IU+qXiujk5d8SCiaO7UBw9Hup30c6Vp0UNXWCQcBN1E9L8G8J8H8K33/u+Ha/8jAP91AM/DY/8D7/2/F+799wH818DekP473vv/U7j+DwH8OwA2AP49AP9d/wApuzRwZJJWD6s7CPzlVOBGYpuS7SJ5DzejDerLUoJjGuGUxhKhoplB7dRdY+v0EuUdm7RCQUkRie/mQitWg+Fa8GrjY1IWPAxMVah454R0CtcDsyM/4NDv7/H6+RfYDFd4Zi02A+Hs9hr+zuL+dYfXtMZoWti2weXTJ/jpJ5/g8eUTmIsLDG/4aODNyC6epH6KInM7UrK35kuVQ1lC0MtWADIBqJkHIsLQD7FM4ziy0GzsJE4S5ahonlzxy4F3MmDQaqRqpXcgeZf636nRy3Qfyxr7llK4AroiFIqz93xannMgicMQrBzooBRcvWdCryb5ELNjk1c4eJiRFTwiYuWRUtsbQzAEGONAZDAMhH3fs+ecYLfaWIuu4yOwW99iuO9xtb0F+2i2sN0aZxcXOLu4wPr8EZq2YxeF3kyaKLG+Wpua1qPWjTM9uUQZmejifj/2O3z127/EV1/+FrvdPVarNVarFb7++mvc3d1ljBqQWB0PkvkN3iew/W6h9aHgs4/4fYkkKGPQJIaKgC8vQwsBQHLk+ND3aLsOj4NJhPQ1MT0QP9dihqCXq0kDcEAd5y7yOnwXGYw0PZWgTf41jYVzFt4a9oAyOphhxODG4KKRkvJS7OnRdacfgQB/hA2fgS1frdjHtqVwgA8Z6BVfQmIdd+G0S2MMVt0qbkws280oWVMjoqKsnm2hAljpSkORHM0rHLX6WLwf2rxpGiYG+h67sAIi9uqNtcx8h1U5Dcy0cit9TANIAfVz7hoP1UPGEi+UpawHU9Q1VZ6tKtx5pJM8VutbKe9arojiRuo5FAq3EF96VUGHtwG8Og6t+AzDEMuiVyJEuSqVorchCI5huv8dAP8LAP9ucf1/5r3/HxcF+XsA/ssA/iUAPwXwfyaiv+O9HwH8WwD+dQD/LzDo/s8B+PePymU50KryhSduJdN0BPm/on3DK+ZBrqXnMk0slTF7st7+OUAov9fCXCOWQmcunpr2lwC7VAwgzDk/m4pCkmtC2BjEZZOTObPOphBBAr0ezhlumxKMez5K2XuHhoBH6PHR+BJ//N57+Jf/5E9h93vs7+/x4voGn1+/wed3Da72a/SrFn4c0TYWHg6rdYf7N/e4322xPtuomlYVlDfPpF5qn9E3Z6FICLukT9YcxgEyn3sCbGvh/AjvHQzZLG7VahCQFE1PPL+vxW4mmIqQJsBK2xfFfxvgdLo4y30Czz8FdZyxx+gdRjdAzusjYlvVNHmriVniUIA7NbMqvadwvDbXl6PkT571UTY/YpCe7P4dEZzhtjVEuN/tcHVzC2sMugBINusNmnYF13vcvLrDm5dfg8ig6Tpszh9htXmEs4vz4NGiCePMhvHjY91EM6xMA5l8XajHpNHe31zhd3/1a3z3/PcgAi6fXGK/6/HNN99Ec5JSuYxjEglwp9+pLYW80ONnMtn75e/zhRCbaA1E59+b7/EpOF9GQOoznyi9T4fpyCbJtmlwfnbGK2gFmyXgumkabDabtFFQgXYK1wQwrLou9j0pc8xZodDXCmwMwcMxW95YAHxSpBsd+pFtzXc9A3FPSQHl2kkgP9aES8oJEe+F6JoGbdh4bISogIvjRcCQG8doYiFApNtsIkt7TEjTzzzw0/VTjaNGuB0AYDWZGPNSPJvmxdR3LHmY4G1l3/fR608fTj8drYUN7LcGZnIEPZDOcWiaJlfGJA8HiBBSZFoNyB4dZlYVll8p8I+Oq7ym35O/IGRqqwC+GBPlKvO7Xl0rWXIZg/rYeA26iShbzV/yGpOV/UC+D4Ju7/3/jYh+cWS5/gsA/nfe+x2AvyaivwDwnyKi3wB47L3/f4ZM/rsA/os4EnRr3yB+drhMwWSt6FobpgjA801r/MWnDUE6pQmbWcmvF0ohDZZDgHsJSKf06tru3L0J+Mvn/1Q/pGuUALiQdaWC6IlIrZmnwcMsokziEmKnhQO8gyOHT9od/pVPDP4z/9lf4bv9Bl/+7hbtusOHq0d4+qzBo5c9/vF3O3jXw8DBjwPgPdq2xb7fow2AgkjyLl+S3XvSC6T3iL2jXgrObcI0ow0gnnYnf+w2bA8G0LJcGHZCBxCdQLykkbVolHtie++Ioh9gKvpB3n71geyL74eE+NsujekwG8/cuIh5SPWmBZ8NgEcm5rL0VOQ/7knwui1NULZCa8cOQXBwbH8bhib3ce7rzhOMA5wxIMfwZSReerzbbvH66gqWeOJcrTs0rcV6tQJhwPXuHm/cc4AITdtivd5gc/EI6zM2SbE2+M2vuSkE919fFLZs7ahzecCPPV599w1++5d/ju39NZrG4Pz8HNfXN3j18s3ERjFTJkOKcVKMbcIjxU/Gtc4ExX4a3xUNtEaDyPuVSSjeiuX1s/1GUsjen380wxYlAaBdxAmAXK/X0Y+zm8TF75emaiIbRL4NyvxETFJs2Og1MVmryB2dFj8DWB/6hU7bEtYNbyRvmwF9Hw4BGjxcqJXIgIeaknlOABzva1ix/20jc2uaCwXkjYVfbW1WI+WozzWYjN/sXqkQHPHcKaFUEDmdmkKWBtVU4sj94KnKGKxXK3Rty3uMdjvs93uYYPMt/UPGnHhR0mBcq4Eho/lvVMY9UB0/x4S3kvIKD2nEVebHF79jmwn2UfJHy5Ryri3B9qxC+pZhjjWXk0v1incJwOeU5VOVg7ex6f5vE9G/BuAfAfjvee9fAfgEzGRL+CJc68P38no1ENG/DmbF8d6zZ/AwOaMluC90CSU24uzk1RvxnoQIfPTvElzn2GVOuNTzLyAK1RMuqRQIM8B+0kFCppaA0yKoKpQIymtVzZ1pcpDfebypdidLLq4QqvE+m/YMGPHU9viHf/oBqH+O/8evv8RffnmPjWvw88sNfv6swd95H7jzW/zl7Q3ub29gmw7teoV+v8fu/h6PHj+OA0JYmdJwKJokePkeGHkzA14rdZ6z4h7eW3hlz973e7RtOkLZO0ZL5QasBPIkHkwFMI7rW4dCTSU99X2jvp8W6uBLx83MWdicFMCbLNEiTEymiC0Keg1OSNqWAmjm8UZhwxfrhhy/8cEuz1EwPeFIDXwANB7kAGcYeANI/UrakYARcpreFmR88H7RoLENum6D1aqDJ4f7mx1u3rzE6MAgfHOG9fk5Li6fYLVhN4WgJhTMRAWsrEuRZHHUeWB3d4Mv/vov8O1Xv8c47rBad2g7i2++/ppPlnT5xiAAGVsjMMI5YYd5I2rJbFcnknfMPL19b12IWZRy8KFawkjn7v9WyY0dcg8rNeBWBlEWiXgjpvc+neypDlwBcrtUefeouYQfBpB8CUtoG4vGGjjng89vZqSHYYgbL53zsCYw9S2v2ljDJlzGKNkd/tzo4jHZArbb6JP7eLBRU5on5Voq9xGM4uFQy18JdH12LSmhOXqQ5+OhPgF89+OYYvJpU2TW1iq9TN4Xc04kFooSnKJwTkuqfh/Z3+baKsmhYpzovIV7WvaUJ6Dmc2P+eWo4hqw8Ng5tUibxlATiHGifpLuQh4eC7n8LwL8Bbp9/A8D/BMB/FfWxNCdZZ3Plvf+3AfzbAPCLzz7zowNixyfdMZI2JpN1WupmGBaPEFbPpisBiKncxQ4mk/oMAD4okOUfn8frs5vqGkca8579VnmqgmqvwPOJnXDyNGkRg3q8s+vBFMm86bK0hzHsoqu1DZ6YHdBfoxla3NytcbdtMGwdNhvCP/zZCtfjS/z2pcNXv/kt7OYFms0GnoCzizM8fvRoUhe+rDvkHc8HQMaPLQDDav3yR9zw58XmizdcJbvx6W52XvplUCchs+XTYBKYlEcvddbCqcJqccUlfE59ILxd0GyI1Bs8g0mjGO74vGqDuXx4XW9Kc/SeV6iinTgATwbwPnhB4mvGswcPLxMCeT68KaziJCUpASRHADCGAz0AM4ygfuDvdA8yfFR227RYrVZYrVdwDri7eYPb69f49ve/g20sNpsLrM8vcHZxjvXZY7Tdhk1SFOuYLPwBeJ64Xn77Df76z/8pbm/eAHDoVh32/Q4vX12Hvgk4R8ENoDrwJsoxseVO5iS6/jTgWJIZuj2lhXx+98SQv7OY9gFlIH0NNu/jiP1eg22T2dTOsa5a7pVjUZc8Aqqg6RkweBcQru15xW5UfECXbuHKUE7oNbAS66QhdCGfY2Drej5JCl3TwjYW1orLu6CzFgzkEDZHAsn2uHbS7qky512raseEWhanXUdab67/CapI98UsSdjQeHoleLVD2npUYNyWc9IcljiyXiXHk6cXcMChNsv6eeW+V3FP5/bCdK0YL7VTo08hMZfCqQB77j2dV6L81OvSxKR0ynBqnh4Eur3336jM/i8B/B/Dzy8A/Ew9+imA34frn1auHwzOO9zvexjDW7FMYKDSchkgMFF+ExBYZi0Y1QKS4HIPOEoAniciVU4B+HFMnNBZQiedPOYnXxIwDKMpwtkKuJ4IQKBwWZWelVTyd4rnDhQjy4JMzpS4ARHCiVmqDywv9K5t8NoRXl1f4xcfPsWf/mSN33/r8bo3WFuCd4TLxxf4uF/DYMR7l+9jtAbUdFg/OsMHn/wEpmtT+RUo9UGjiYO71ve903CmOvjSsniqNO89xn6IWpMbRlgy2Kw3UUmJfTFGT4lZ9z6T7a4inGTylqXIWK9yvSjKuwTc7zSoGUHXbjTHGdmOW1wDyiFGUtYHreLwA0qB4fpmJoZBqPNhsBsKioU2VUGQKT7kJyjqAXzHXf9EclYJRgKMCWMQPcsYImxpj9u7OxhL0cNF23ZoGgvvG9yOb3B78xrPv3Lw3sB27CHl4vETnF1cYLXawLYtyPDKytDv8Lu/+kt8+flvMOx3YAWWcHt7ywDAjQFkA97JBkkG31It/EnRP7dX3VK30xLgFrkUzUsmCuzxEyC3dw3yzIdavqLsjPc5xnF06sATB0MGbdPGY8dr8WSrdkVeZUzOASMqvutJHEibEGUy15sxa4d6lGyifGYKqc4LAXIQe2MN0DZw6GIblStvEWirA6kkL/Ewlgo4lHiWxmIVtFWf/MOGynSKTF3M5iuEuTj3OiIKk7itQ5BdomwNYZVAb6B0wda/aep9b5J+kdkawJ6rY9L3vwd5r/ulAFINTONYUX9yPcv/A/N2Klg/BZTrlSuJX3vX0mP00GmlS6k+CHQT0cfe+6/Cz/8SgP84fP8/APjfENH/FLyR8k8A/Afe+5GIronoPw3g/w3gXwPwPz8mrWF0ePXmmidow26+rLGwlpfHyIRdqBSgNymATYAcdsMseNJdhckyJWOj2tJ72YwllVj3XDJTR0lH1g1SASMCtCNm9TNCivLNnczG++pmPMmofp5tjrOHUOse85p4qkNhzCadX88DXu2uBwCyINPiTXeJ/8/Lb2A2v8O/8t4HePQPLvH1mzV8v8cnzzpcnK3x+1/f4nzzMX72q1+hPePjq03bwFtgIJ+BVs6zUfUmoNurElJQhJJ7tDjrV0A4xYri94RJJCStfr1eB/+7pZ2Xz98naau8qkpmwAktGdKfgHB9HUeA0IXwNhNjPc1ciVRdJoJe7x28G8GgMdm7Lsc7H8ryezCDnVZrUt2O8OyHWDmT1v8SR8jxqePBifhwE1+ZQIgouteUwrLpdjgIyhn0/QBDPcjsOK5QbjmQwxiD7XaLm9ev8PUXvw2+gDusNhtcPL4EiPDtN1/h6tULjMMQgf04jhhGcV8J9RfAdzY+HMQTkYBlfV/rg+UkpcevV/VZyq9qKBC1BmuyUdvrxE/syhpwR5LBO2a2+yFOlKvVCo0Vc575SXuO/ZK0jsqeUph10AeryJ+AMnHpWAIzDXB1PGWetdKuUzWQvQJ5XsTsRdJvmiau2C2NwVzGnQbsjm3aWSCv2u5wzEuSrLyXOp+sBgHstnEcRgxj8tfeti26Lp1gK4qeeAWxQTm31sb69cHmW9qwNDPKsyJCkzIC4djw/ZAqyTtYOV/J9xpYncvPtB2PzXPKh6R9zBg+NUi8xpjMREYUCxnHYqImZdYeokJEs2kc4zLwfwvgXwXwPhF9AeB/COBfJaJ/AK693wD4b4QM/ydE9L8H8E8ADAD+W549lwDAfxPJZeC/jyM3UTrncHN7l7F/JoDvtmnQNFYxBQGIh85Pho+1lUFhAgtpgMiCei6k0hBzhsF4D0eosqapzXNfxRISni8ElfpMwE9NfBMoTFkbCusW836gsSfLIBlBUjpRnL6rtTkt2D2mG4+KbAs1FrUNoga71TP8Bzd/gvHLa/yD7RU+OX+Df+nvXeL+joDVI/xHf/5b/Pq7Ffa0ge8szNk6HFzjQYZg4aIyMR14CtyG/JZaqFzzAYH4AMZF0DkfNk7AhKYjjOOAcexjPOM4YrPZxOVaVWGqfmVVhvOUK2zTjZsixOIADsI3m3RJ9e+yXUP6NTE2raepf+9Yf6izK8cGUXq9/Oc9fPB+IOUuPR9MWnFmAilXVCb3Ab3PN4s9jtHUHWNOTXqgSA9BaUrtR+KSMFP6wvMEwAUXicR8unhK4TKNIOpjtlhu8UEnotR6ALgifP37z5lpESbbeRBsnOzzyW86KUp+5HTJxHLrpeIEWiXeVCbufy5EdPJ8NvO8nsSn945LpHzOOYdhdMF2e4QhE+3tRXbotOeCXnHxxfXyGpCAbs465yDY62vqOb0ZcxgG9ooRbMC17WsN0Oh86bzUQlQ8xxH7/T4Dkdo8LsaRpVOXBBroZ0/pvreQ16VyTO/Nxjj7zhLwniiWAWyzW8ZRHdRl0DSstNXqP8roIrMWgOk6ZsjVPgJhzAV4RyVnBqh+HxD6UChJp8Ril6Yj88pDvhozuau+P6z9yryeEo57h58RgkSUYgTyiNuS4koVkHBprU3LcIz3kv9K5fL/auH5fxPAv1m5/o8A/P1D6c3EmXUGF46c3e72GXCxkfpPn41Nm0aMMXwIAckfwmyag0lJJxOdVU272MRZdCKvJNIElB8ByB2SQMhkevgvMdAVu8MDrE02uVaeyUuZ30+YMqwUeD85VCixWjFFAEDXrPDxT3+J7d1H+PXtG3x7c4WPhwH2zQ7b/YjXN9/i9W2HV3gE/+gZmotzUGN5AxwQPuVI3ApLmi9VZKywfJL3cdNUAiop7wJKBCzV6lOWGHlZ1gAwWn9S2QiAu6jTuQlUBm8qQm53OTrHdsjq2Ww5T/Ie2qcs/2zamBeHmsHPPytPpwTjhwu2opKH0i5uKV9ZKpnbRI9pruXqVMHI3dPl/YKIEFx6Z31X8uSAuIlZAJYGAvx8TCkAdJqMq/KTvzsQpcOBeFtA2GTqgXFw8GBzEu/CkdEeSi0XtTn10zH6J0/Vw0e7J1Y8q7EZEOxTodQ9UadSqMo+aX+oXpPF74trUyYr1dFM3OGzHwbsezYjISJ0bQdrm+jvvXx+LkzaSclXLZvLsVVEMh3rSskpyyLjtjGGN2CqE/iEDdc24Hrs6PqYgmUOzjnsw8E/wmqvVqt0rPmMLJBV2umMl1YOo1KhZc5MmGewlxSJWg7KUJNaNfUoPK36QGm3K/f0ke8s2yumkpX86nYghP0qCriNyvREuxEUWV6XuceHd8Hy5sp8fjy9rpNy/1IpM1Wsp+QAWo5N9Rm5l8frAzOSFIVj0sl/T97xokyzudYQVhDlWe/FnEZWLRs1F5vFsfCDP5GS3S/tA4PNzKOwfESy8YnDoN6TBpKK4IMxgnlKAOV89G/YYBLjRJw0DQEW6d50gi8Z6WIwqi+TiYnC1OVr3TIM2gLM8pcEGJbZwBkN9MC7tcBgN9RnHmHU6vQk68BtVIpM7z1WqxU++vAnyb53GPDdbot9v8d2v8Ndc4ttt4V3hA8++gnaroMhH8C2BkJJTZoDkel6DpwpAO9ymaxkxPVv7iebyFasVius1+uJcPAB1VDI3hyfnOWVgilSqdSoazr/iX3goI9Q18Ch/CvrihULVV+iIFBiqqE+y7xl5aL8t4BbOYVUA2459CDmoRrnUliWql4pw0BSXEFJAaqaVRX9hAEbC1hmfXkg80bN8B2U9TVP7D7SkE2HkaDEQ9KP53LPXij4MRO8TITJhnifiwBoDYjFEE4sXuLqIESBlxQoZqM8gXKqvKv3ZmYzP/k3i3DCoMd4VYm9r7dJma58Ew8hfd9jPwwwxoZTRaVvzQOvY0IJYkvluyZHy9SW+nXGBoa0eHWWV3CBZAcu7giFWdPsd2kHzriAwftOge3VaoXz8/N8dSkCPaXAZeRMDmhlvqqFmqVyTcFYClqRfVg47j3NOovJQObajyh2ehkrS8rBEtglApN/zQrj6OJKg/c+MuAUwLkxJpi+nrbR8KFgu5zvtAtXosT0TvPA42s53SloroeJk84infxeCbj1O/P50eWsvZ/Go/ceKPoHPHsAIsNjR+YzfsfDGMGM6W8p/ChA9+3dXTYgRDhFP6ihpCy8RJj4yHIQCKOAiwKURMN4Y2CsSbbjwVwl+07BhAWAwIWS9dJhOonk4IUQXJhVpLVMGdJH4iMBOAhYmWNQgGknnDDVR4ZJ9mh+Iw1BnURGlBhl5ACSlZ8OputgN2cMOkNHdt5j7xxgCMbqVQgNpaR3+8Ausr1kWTgK9SVt5b1Pgg3IQEENeOvPJXZaPxdBlcQfZ+iIeiYg2AMTZi0C0qK+D7HhTrFlNTbcyneTAFWKLCksPlMZVN0f6ECyQuO14EJyDUjGqGl+2penScwL01Rlx01OaUUE0Q+/gONMuaAAdMmrd6HGoo/tyLbifNWFI77lYB54NmvT8apMS8ZiH0wTH5JbNxg+rj3gcBP6PgPsBLK5Psq9DhUzpEp1zrLcyPvI8jSrgHRC6pNrDLADiJPqUB2gzL8v4uvHEUM/YBhGeDi0bYe27Yr9AYAAgyV5dSg85B0ASmbV6yxzy6nlorou85L2ITwMAzP7+30E3xowjuOI3W6Hvu+jrfZ6vT66HJo8ORY4HWKxD9U9VXe8A6UScGzIVjVD28vY0sAy2tAX8pTAc5XMD6V0Iir7aFpJK1leTcrI/oJsk2UAdS60n+CPOfPBY4D+MfVTsvtSJ5oQqbWL91JDNaWKy3xCTg7mM49/SZE+DKyLBzK5JO3BJySnOVYrtwDYReSQnzEhcaTfy+X6EYBuj7v7+xxwB9BtVMXIUhlNwDkz3CSsVLgmoNyNLpvha6BcmHFJq4lp8rIgp83xG9F2AMgSzNxpgnFRrtZZpQEDkMxwPaWnYxMrYD43yWRADvOgvAzsXm1aPzqO6bs8BRtJlYSdTmUVhUgzhgig2MBH13XprZTfzJGTUqiyo4eL0ms2OLGZqRya9auB70kZvQ/v15gABcDFdqGSFwminGSx6bJU24Zb0waXVcJ0TRQI73hjkHhOACtGxlKF3cnTccg3hS5NgbpevU/pxcMF5LQ/oOgJRTwLaRwbSuCW34RSdFNuUh9HVOC8UpBmmV4v6gkrWIzl027+qWaTrvO77E9Z3BdyexiADHtXChNBorBTzuVAplqYbO6BAN7Ukr5os2nZjmuPGuCeU2BPmpZFmRH2KbDbANC2XfCAYzE923Uq22p94lgZeOh+te7Ud5MezGS3PDdhin2+KingcOw6dIH13u/34cCufjL5X1xcRJd/S0H2XUh+lke4BMrlFKZgE7P30jOH8PQD9R2OvSAgRAZFvEAUyY1aMnI9WDPHPJd5W5QzyE3PMuLD2uTFpjhYyYX8ST6z1ZS3BNuulMkqP8nkLy9rSvNdSOaHh0nZ1Zzp1W8JGud4/U747VQfAcI4C5vbMxxRKMVaJulPefZQLf3gQTeABCR04eRTgWMB4VR8lk7ZjTGZiUr8C/FFkBv+ETZbP1u6j2GvKuma2I0TsQ9g+Z6AeYSZ2b+sSPK0mJb3078ZQM3qInQEUAYUUiX6KGSAKfsgjMukwwhQjfVdPjDXxaYMgZVfXkfE+R0hdR9qw3vYTNtAGmSUDvaIgi3USc1GMWkbCa3MKQ1zACQTrmAvFcLB6zuTelXaLy/PpjqpMkCkWlMrXmWR9HvStpQY8liPBBAfA4MxHIjiA7vCAkfGFcchiqpm8HXWPOaFiq67UrjL4RplOWd/nxi8L/ZlVNtALmRvBvmS3okrJjPzGyF/1kW93cMVGMcLyo3ZyvuZg9jppxWYpASBGW4goWUkSJkUR0zSyJZLVWC74akSWXs21VBI5AjArIH30hiqhVq+pS9p111t26JpW9iwYqK3PeYgSBQoivHX0jwllGN7DgiU/TljfQ/EXbKPOj0gmWgB6fRLMZMQgC4+wWvu/yZyX2dfnlnMIy0+o2OpVS+XY6rgHxOOAZ2auQQ4z6uuy+b5o9NQU1At6URClcqNn+kKqS9qAosJCu5Pfd9HDxlNafZyIN/l2Kkx2jUvOXl5aoAbyOf0v0EAXpsPZ+5HIkq+BwLDqTlTz01ElDmm0Nf1+FsC3v6AovuDB91EydfpLHPiPdwwZL1bJkYG4jaCZgHm0pHLY3qzgRk+xSNKzpSPIN6JGQG6biDtGqxpDLs4pMS8J1BOGSAnAsiLBl4u8efCIJOYJB/5YNCMrpEKDR1Ov54OESoEsZRJ5SFiV6+rPLEGvsh1kSGtMYWKy9QKFV+uXqS0PINeYj/HU/xWB94EBagkwQBupmWUCZCvlGA+jit1ml+1uGoJwiMcFy+/a5M28n5emyxzgBTs/mcZF75Poa0MUcy8mPTovKS/fPkMQDS1AuqrBSEiXj4dxrixTQT8MRNHynUejnlLA4alyZmkSfhBxpNIdUipS4YiTQG9Zk9IdSk4RHt2dSnrcnLPAxjDbnhLef1wGyAsc/vg/lIBbqgTFH1eO/OrT3yMONtQp0kjWyaVCgjxpnzP16dXn4f6tA/KcnSduvCsdm0n/chaCyPHkEPBAK9zIUHGi1ybbkCsKr5FqN1/G8ZxEv8x6YY+58Yx2moPwwBrLR49ehRNUPa7HcaweVLuS73V/URnUq+SFw2y0ypVlEXF01OQVitXevNUpWcpaPMRID+UxR5IZ1bmYrmts1rIBjkBpE0A1TsFTkhebDyGcYhtNwAYrUVbKE7lp87foEwfdBpLHnDKMh8O+fxS//79hPI07znFXh/WowG2YDtb4D2gaD5UFGyk+iSiKJe0YqMPRZoLP3jQDaKJoKgBBRQdUCa30Xv2mZtpcANEC9cg3BoTQDFNmPGM5ZbvYVk/3QvQkwDmbnsG7ZZdFyYzFZubrBiTzGJUfGkjZ6iKkmGg3OY2VEAhCfPBJMrE9E7Q4rJf+XselKYtYpYuveOzZ91EHC+FOZDslfs3KZ/6Htq0BJnxVkL3KVpKVRTBUbgdDgSHwsl8y4sKoLIXT94M/nArU5Z4XElVYzPAHZlDn4PzeF99ct5r7PN02bxkajgdCnWqDtzBVICLyiRBC69xHOGUoIm+h6Viw/NjP0SG1hpZ/s/zvBT83K8FMLkUh0yckT2GtKt0BORd0OcxRL1MGFMBjlFb097g8/4zLY86uU28jMCAbZyJ/YhDLEk8QImp0Sjf6XgrZET5XYIBRVt+B4DITiYop+pZRvxcnceN3rNgO/WrdMx6qL/KhCkTmGwclH4WDyNR5dZK3xK7X833kX3pbZjwwyGTMrPj2APRrEZY7bZtcXFxkY3ftmnQBQZ8CArLMAzY7XYAEIG3gG8BYlp39opUmQPUMpXmMnaufO8OVHPaeX/T/U7LJHkuHmqF+ngo40XluTkFQ1/LlNIwuYiSwmBNveT12gwUIPQg4rbp+z4dtBOUJ+3jW2+ejS4nwzjWClYdaJduV+dA9Fz4wwLt2O8q18v213+xDyiFI6qQVMznql/NKiZQDiJCfHo1Vx95v9TXfvigGzmdD1Q0kKLip6GsRNlcEWxWnQdRYbpCiABbm4yQEfMUAc0Vt22cyZTqCLBrsADejGK5Yxw5ECdiW922ysIrhYHilBwzHwWBB/RmCO5w07oAENxa+Zjv6TBN/8pb0gFrz0bXdW/JZKTXZWZQ6fg6ENU5KZfLJM7IdoKmIkSVS5Q3flJVbpEfZYCT0pYap+yNyPZB/c76bcibd/Ul+hoQL1OPypUXAZvSLJmcvPT5Fe3tAEFR0Etq4zhmTL/W9q0xIEtxUsGMQNP5lzzlvfphgr0E3nwt9eS8n6eyR6VE2i01HKS/yCZAeV7KsSRsZQXBqQN1TFD0iQg6GU9JISvLxM2gwbUuIRXXFVAS1Tl8F4VW7Eul3MYHe/zRwbkx2n0bIRlqXh6qoLtQ5ArgoTGn9Jsx+KqW+AVsy28P1T5lajPAO403pUyoZw6Dx7ryuwjuJ3JhNmYZlZO0nGcPF/sAnokoO5pdg4usDwKZoqLtmrfbLc8t4XCmeIy5lgkLwCMblcpUrnb/3bCqRezFfK8B6JRAyFv12BUL/VwyieS5ca7NJzGTkjHhlaSkF2+pOGX+b6yNm2L3+11ctdB23s6xFyMiQhPaUzZC1oio6fe5a0vy9nsG2UrRrKoEMwBbwoS9lvHwgL5Y3tN9TlzIGmPgAIzh2bghc6GefvCgm3DcIF3SVCfT64JQkWWE7KQ55I0pR9JrVjwD5vKMBsrGZ6A7TV7CCctEkx+A0hiDxrJfTAH4emC2YYONxoOxbOFa2nRYM1VRgFL+LcCE1KBW19V8WWXcSk1yEo/3WXyk3q+BpVqQcj1IiJN6P1xiMKXzVPN/mwszYTNMqGzl2BAQxQNp8MP7zItLjKkCWrwJdoGpgqOyOHk3/eDUY/17tXqhgIcqsy6a9NEy/hgn5SwLAIxeMeHKltt0HZz36IeBT2vLvEvkaUwnrWBc9Q5kfKlKCBaVwykTdkyJuVDvRKKITeOcpFO2X34zY0IE+JT1wEuhmC23RzAFyxS3envl1yiURUUe+oiWh9LfyRg4Ssx3VLS8hw/2wkTTVcjaZJ9lh9Sd0G8cfPQnLUzdxIVbUTanIz0AnNK1PF+5Qj6nMNTDIdZ0btIt66eWipjV7Po+2mp3wSZZpz9hZKUU4bm4EuU9unBYiwbg4r9bzE+4zgEfCJ/loPvf1MCuBlhOldO6fJlcKcwltIyepBFJh/qY0gznXNC9ZI4RrYJ3vhPHs6Z3oixWsr3MV9NYGLOCtXyyrXjXcERwgdhYrTp03YpPyZyA7Xrch6//AcNMvWcr7gWpWluJKMF2dl89dygcXPlKD8Y+QMawe2f5c0sGpz8C0A1MK1M3QI11mFZcDrp1HGUoGfOSMeHlnDrzkYHyYKNpwm9jKdoRyfH1JgBpuVaUGkRgTykkbGkwYaEE+q3h5cK2bXjTRfQ5zqDCkuGlEM6oqo002ST8G8VEeN7HK0cNzxmGQS8PJYWg0rn1xL8QZCCSMZhjTw9mFbq0+rqyWzworFJ+DWRDp5pKw6SeW7inWMXWt5aKZhGTMpIvObPMFmBeXFdoXaC/8/WNyPIpAKyE5McwR9pN4W63w2azydxPjWoZTsat3uwc+6gEf2SfWwiLvUKDv0qYQDGfahPFtbl0pAVIAW69BJ49W7SfDtlKQnGbai/otFUfjd0JSgHUcRFFLE8+7GUJrHLmC1qVRx/kAqRzEZLSnY5ZScQoazLRBd44RLCtl8UnZfI+m4Bjvjnzk+fzmqmB6rI2sxhPDqLUpLqvh3zuSAqf9x7b7TYqH6ZpqmCb35uXn+V9+S7Aum1b+MCiCwAf+x7Oe9jGom0CYxrc5Mqco/OQFJYpaF0itJZkdbliJP1M963I5FbS8rNpSLxzGC/hi1o5aqsnGZM6ua/xRi1tobh8NNEsVw28TyZWfJgO0LUdCODTkcWo0zvshx7WhhN+w2Se6uD7BdbVVI5UgpeCNnnTKzoli11b3eAsLIyTdxRkvicEJl3kE5YlyI8AdGO2w58YyyROCbWBWjNZKcG+flZ/lrb0dVDOn8LoiC9wYbtB3JAjpVM0hbnOO50D7fusTMawxxSyltlwa9HYJh4CJIcEle6IQiRcFoQ+JDVHIiryATUnSOfa610MAULydvLQVRARi7pvybUEkTPHhEUO0rcI0mM6lGnqURQHFjN/JtQ3ieBVz8+wMDVFcKJCZOBEP4/JcwKQZBlUGH7ph5OyFvWp2bNhGLBer3F2dpYz2wB8IUi1mYoIrvgOiXLii7Sn9RHTeJf97IgIsrZVFzNw7vn0XOfE97bhjYABmPIj8xNjhUPMViKOYegmwER9158pThUHUTykS/dLzXLrU/2i+zORM8ZG85lYpsJmG0A82OaYkEkhYQxqMnzufZo3E0jRzs83h96VPMY8zBI8bB7gRh9ZZ2MMbNNEO9RaukusXhzLRWaiWZXy5CL23cKgivu6/f4uEDi8krrqtA/0qau/Ofl0LMDW10qQHRXzAmjVYHU5F7EMKxS0ifyYxwX62pLCUL+fr9JNFa2yT7hsXDjnIjboOnaNSQiMv2/hBJA7Bz+EPTTOxX1pPvaPtwOfGfmz9Fz+Uh14F79rpiL6t85DbdVrqUzfB9iuKmZQ7R/M7w5tpfzhg+5QdzUBlAGmoyq5PlnNLksUlVyCnTI/S/fczJJDAsomMuTaVtwag7ZRfshJ5ms5ZVOVnTRAdhCTFRtsxsVjijGUQDgoMExsU643h6b81TTn5YG4OCCK36dqpR6Iu9FrmvaE06oNVD9jFwog30pI6vo06I2lRAB50X5n+pPqG6ac/Cn+E8ERY4o8NpnIY0uospSgO0JWL8BXbZTz+cEjNTGZTRAVoVNu4um6Dl2YpEm1EQFA4YWoFLTOs4kKhbQ0u4HQd/naJKOxzACqJ3vWyvcQsVyrqwloDZ9OHYLBx5IHkwkkDyKG9AqDzlxNVqn9AQsT4UQZ0H2lyG8yVckSz0syN4mGzFhrIUy19Qg+4bnsu36fMVXCsHrvwwpdm62IZOVQcmECao4AAmU+y3jnQrrtJ79lPE7TCJ9R5ZI685M6954BEtvrsqeKtm3RrVbzm0Ur5ZBrenyK7M4VLV0OHz8lx6IItgGAC7s6DgO2fY9+v4/AT050Tnmb7xdz18rxrw+JEbNJDbSh5F++ipLXacaAx0/1ZNRCY8UUT/u8OJQeO6So1QmSet3IM845DC4/QMxam/lXl7YUWU7GwCIp7+MwwI0jK3Cjg3fJBNUroHpolUGHY5TKWB7Mz+fFxWyuKT3NlMSkxkWTNCvz+Sl5fkg4FL/O76Fnf/igGzMaxkJHOoqJONABa4B+CeTX0qwzkvm9xI6PGEclPIq/mocVPr3KKsAutuABABr2J+0cQDTyNYh21sff6eTNYJ4izLv6ntlYAkh+SXnTQI0FDzUJwE8Pfyjq+pQQlQJGFBFQcn3OCP1porPpV/tPAB7lNEPqtlSufBUwLEvOWpnRadfSo1CWKcKcAkt+PdW/gPIE4HnZ0XmCN0Vf9PoocHGNJ+ZIOciIgj8UmIDseGphzrKjppGUhgxEl6WqjBUN1HhzSqoDiUKDe2kb7V4va+dJqlmVxoeOZdLnpExk/6P3DRsBd2nP70RhypSvuQm+buM+l98Iq5bGlwLk8/WzDB70b0MAWZYdjQJxu90ugm1tZqRdFmp5XpOVNc8A3wejNVVNUphPLuud1Vi0LbVsNu5WK5ydn+cxqblhiV0tvyfZnOqwZF+lDD7IByECZEyLCQqgzH/6HrvdLswzKGzA66ZAc/nXQFvqIG76VPPdXBvPpVXbKFcCwszDUHjAK3ebSXcp8lxji326fijo90qzrDEoGkJU6HIs9XMC4vHx3uUrR0nRt2yCGey958bXQ4Oe5+aCluVLDHatjHPX/ibD8fU2n+8fBeiWUGrLs4ClOqm/XXo6zaVn5wZK2eH09dpv/TwRTfw/Zps3M+8q2pbcJAY7Y0EAQy66+mMG3MGYUeXZx+eNEVdTNktPDgOSODWzKV9IIFzGTsyzAWV9ZPVd+UqUfP7Cy6RYSekETX9W6CvGYZIlShNy6WbNIQHBufQ4i2XZs1/ZvXq5VDyU2CiZUMPj6jmOyQaCJwJdlVptfUaArQeyk830qWblsyjAdm0s63sT5TYzTQHEj3gCDyK8feyLZX1TGafKpdjyl+mXIcsblF2+gIkw6clmGvZKxEyusNv8Qlqun0zeKp95PlRHr4QaVNTsUu2ZKTBBBsSz61kWNSgu8xeC8/AueLPxzISLjbKAOTlVUSZgsetemohRaVtQsQMj9O0FlDwbAg4tIyufWoxD6ln6hZTVB5BVeiGJ7xVyX39O85nLDR/G2URhCRoiVd5NCqxHOkGZ7xkDWMsrV2mT9BDLAWCyWlEbx0QUgaa827Yt+59W75ninWle67/jgkx2sW6YlZTqCBlVvDrCyrjz5XP5htm5+V3ve5CyZbKy1p9r5dTxqvncUyLlovcM7yMZYgL4LlnkY0JtPp7WXP68KFX6/RqRWJZxbu5fksffN8Ot0yg/JZSs/aHwowDdtUqvDc5a0I3+tu1zTFpzrGnZ2WuM+SmaqAixjOUoOjNRzpAbm1jx1vCBPQzAw3OOxYiwtYkZcaB+ACFtgDNhMDMLLrvJlYeVoABYCrCbfPTaoioUpbjJBZ/6Tjo/MvAJWXWTTHThh46HSsE5gRp5PkyITEB8bK8595X5rCbliiD2CEG31BfS91jUrFwUbnog852cszO+PEeF8xniZE8V8WHeTIcciGWtEiZP7ZGjZKhlUkBRZ4f6d22izeoaJhOCAsbZD7Z6XtfdTPy6mZfyqH/rKV1O+Rxkmdj7oJAywy2AO8UDUHRAXxHkJCsDUM/U+89ELqq8zSlOCSNLu5AaN/Pxz006+fOsRrjRRReABoT1es3Kh6HYb9brNQDE5wQoDMo7ijCqHnkfmFcClC3rAwC3hDpxI2mktOaC9AdteqVXgWL83kdlUK+CUDGuNZjO5EJ4RlZMPOp55/Fbk0VzAF+u869kb9/CuXQM/W63iyy4gG9pMwEjwzDAO4e2aXC22cS5Q1KqgXUdDspOEgitoeD8eElYQEu0uT5NfA6Dll8LT0sasdw+bZyueSuaiWGSBx13fiU8QbmNvrSP9+z+E0qpra1OzPWZWtm0bNSKpQbbQG6TP4fhDuXhFAXh+wwlW683etYw2FK2f/CgWw/MY8Jywx45cc2kdQxQODau8lme9LWv3qWJbbqRc45Jr3UIBsWAFbOSaKtn46mDqeMEwBwmMSKARj732gziBjHEL64Qw3MmmKw0Vv5M9NpC4UUTdscjpiWtpP4lAw8Bdumep3gh9RO+wyCnNu8SVWRaEqNZe5H+nXy7C6DWbCqB4MmrZ1X9V5SxUvkA8jaPbFP8B/Ce1MRc9DOf4hGxN+mLAThHBUZIsAjkiQFAdR5i4OgiuJU8JrdkkmYmlL2PvmR1PpYm2Wqg1LYxt9kYyNtJ0q4ptxMFVSUzGUGFwqCfkbhFAdb+ya1tADJxTIvigiKmTCdSz5mcl5zN4dxKRO3+BCz4ZNoyC7rVff5aB96iIDg3RJtgIB03TSZfSdCfAha8T67txgBa+2HAbr9nzxrKu0nN1pPjVIX9XoMGbBT6n4DM4P4QCHtymokgmoJfuRHMA1VLOU9V+X6oiCWBo9OcBzzTwU9JQAe53mReUMT85P7+PraRTnezXmO92eQ+/1Nxi/TEtI3UeF+ed9Nb07l3fj4WwBR++fJ+Ct7X8pnLAQ3E5FoJcOukW23cZfRANf914oeD9tEuiuw+nOzqnUvkGzExBmBy0uMkn0iyQFzE1uq2dvJlTpDW0plXMr6/UPar1MdLoqH0pBLfIJooMHSEAPrBg26g3ln19UPXDt07FtA/hOnW9w7FR8W9OeBdY0SXWLny2jiOGL1H7+VcOx4Mwnjb4JrJWhM2XNqAH9IyPgPOMYJtk3VAYVQ8iMawbIiw8VPZpSvNW4RAPJ0TChyBCltY8Y2tyqaZbaLI2Ndrt3JNf52ZkCgAdl212UbKIn+xZmcm3DJHjvJcyvspHxpEJcAYgbPXdxBPzUyHM2jGVcaCSsN7GGWro8vpfeDJZsCWKCTCvnkU75b9VI8VX9h6K6CczXVKCcrj00LeoPRYIHFmglPS5IQiYwOZhPIC5gxTmCklLjGVMAFg2cBwZ6dGTrlZeFBYWUiKoDwlfYF0WSux6LzlKWVOQas54HcrIEOeFbCtQHctveRD2WMYeniPAI6n5kZl0H0iKprBc4aNx2O7zBxFgj6hr5zodXzvKtTmIR8GnvjW7oNv7aZpsV514RmKBwxl8YVPlynv5WH1Se5kk3vxmU4F1uM79YBMyazUy5SNzJ8p825YoIOID2bp2hbb3S4q1OIRpW3b6BlFWN+MEQx5LnMk/vOPCfV2pvB/Lo0SuM7LOIcx+N5UBnjPq1uy10TeMJT2XEWTNUr9JMWJ4rtWepJsngNvh/CBbm8ZJ/v9Piq0Tq1+E0IfnPQBRI9T2k+6gM2aL/1lLDL3GXNeLc9DwvxYjVcx7Rd+8nz57qGNnceEHwHonhekNRartgSX3p3Gt8Qol5X5EKZ7Lq7ZOFAv16E8HgO6ixdBMGE5iAf66AHnHYYhnQoHpM1q7BfcZstG8aCehj2gCJBhJjudvElAOM4+mcQYCktQCshbW2zgNJY3iRoTN4aSAl+RdVY1SITJ+M0gbrVa6xORDmk3fT4xiViPmrzP7UtL8FyNnzxs5SkBlfy8sj0WsBnjSmmZ+IowDGlSc+WUnvUTiqAZoMiw6bxEtjy8K5gtTmYFiBMgXtaHPnBlUhch+3LiqfwmQqyjTMhn782MmQCUy7tREQ3MF4L3lJhuDaAgZ7fFNCJOQhXBvHx6X2VLls+v6+XcWijrV/ph7Y0spgUxERURfU39FgZIb6Y1poENez8K/a6eRo2MCJ8GrLBSAA1d23K6Kk1tXyx+nAUQiLJSA/ZvG4go5kErXXFDnJE9FfPl90Hj1X02jWetFFNUoEvFWr+XgEO+ghLFVgG6y6Vx+awTRCnPEXR6xfACON9s4gmXYr+tbbkF/InnrCirizQCbzLbVtPrsm+lImvLIUDSr0Pavt7PyyCKupR5HEc476O9dGxHBZSJkGgORQRM06LKd20GUw9LeEPfJ6Joc69dEo7eZyBa7zGIZVTsvfasUmd3j8AdB1ctppjrIWN2Tm6l68nmnP/yMpTlO6YvHi47hx8B6K4PvmMaY/rMvNB5aD6m6enfR0d9VDpLDH2N/Z57T79ja2l5D9moBiC4JJJNYPnyn3RIOcpeez6RpdWuS0cNG9JS0MOQA7Pn4RCGnsUUx4n4DgVbdB13Y9kuPXlVoSSsTRCCFABbBs+TWUy1nvNKSl+BYJNaqUv1uC/f82lS0G9k6sIsVtQ3xA8Kx++9h1Ecl3z6OPlIe1EU/hmg9JTl03ufH1Ijkan7Bnl/EgUgKQI1gZczaN4jnuCln8/iAHtbkTrwAMglX6iVmuI6QeFJJ6GFKbAvfjuXVBJZQtUbgnhcMVgQ9nUYRjSNRdcxs+vCRCn7H/L6iOpZXkc1+QbVTqh3j1j3WuOK90IMlb7qs2fzfMyC+kL50q7lAITDOcIGyBx7LMbFyc4rStkGZGNiHxagIKyqgLu+7zOwrQ/bESBepp0TM4dlvID9vufzEZqmwWazWfTkoYUGt6dPsqJU3rMMAoRpX8mkQtHVl/r53Pfyec3yReXXK3bX+8yMoSy73JN4+nCU/TgMcMOYzFCs+HvX5AIicaKlb4yedH3lpliRNFDjvuZClF1l8kUX5rUox4o6kD8T4iMitG0bx4tshVa5SL9I4+3QwkdgjtSmdeyjPw/HlZRSUUg1+AYQx7GAbWk/UaKW2Ox3rdDO5f/YcTqtF8Ezcq+mAE1Xgr6v8vwoQHctZMJDwKG6Pg+o6/eP7cCHg+4YtbQPC/W5cEjbOrXzM4g0E+2AmUl9PZiLRHDF/zBDAHjvgNHD+z7GGzICQ4S2YZaqadSpmYHhNla063Rip4fYgwdQDwA0xsmWo/bMihtKfl2jRxVJI23qbKxM1kB+LE0skKrPSQXnXMSB+uXJNBcQNEmnrhCWLJWAVPk+OeyhZJazVBSTHC56kqkqATLvJe58PFiN0BEgv2cnkZpx00x2jWHQbH0SoPlv5/K6cW7MEpc45JAZ3ReAvGanUyymJ17Ks2oCMWEsENKqhhb4yYODj+wdT0ZsBjF6WYkISmOhnHAJCkDEkU/KUMunzo+EiZ9tOdtePztZfZiREzP5KJdbtXsyZi8T2A4RT2TKUpiVeZXrGhSJaYkG06IQSFtpEK5Bh7y7xOTrOhclQ06MtNZivV7P+hgvMy1jhGVBDsC1rJiYlszWwPSJQ4D6VBAhp+z5imlBzb/6UprWWrjRZQQOKzAexrhgbhhkEOWb0dLKaCJ8dHVoX/eeDOIeZfjJJm79okda2RNRV67ASfpCUMU+gXq/LTgSAJoIAJKEKJ+r/pgNRzHzld9amcpkSpjMPRDt9edMt+bSfncYCqion9VnyiRreWDAPfWmIp/8fdkMTsKh1YVjwo8CdC8KC9FSkQBA+U59cMwD1YdWKkdRn+COj+Ph7x9aEZidbJUgie7dgGJqQGIefC405BoFG3GdZ+c9+p4ZwWhqQgF8iDAL9pv6YCBrLdrg7jA7KCDklwBgcMHd4ZDiJQqn4Bn126Btk6eVxjTRftyYxJALLcEMMDJ2utK0C2Hql7zmR1Y/r8OUqZpPXBj+ekjiXdoza7lAiTtdxvgt2UtLDsnz+06n58XWOwFjX7sXgHp+T756yAnGwkRYY1g1yEB7vhwN9b6nFLkLRShW5KvTWWTGYtFpVtyzwHVx2Vw2/e127HdZpmrtRk0rkjoPevIudJtpHkOZvPdTTySTWQdBJiLV97GTpM5nwWRppUOYMGtbNhOIjXJYVp3KzmXX1L0J+IpFyH1NC2DWwFlMYTRbXm4AEwZ9HMfooQMA2rbFo0ePMk8UMa8LY1xMMKwhBPHCzRKUYBAVm9lOA8glQH0IS1dbzfABaNdMCyafOt8x+RSnDSuUci2B7wDEnWc7cVkqCfI7N1GMBeV+IBsCJT7x4SmgW8aCGmXeJ69MfEZBkh0ERKJG4wrSaejP8EQ+BPLRXgNqsf1TjRetkSJcGjK5kjhtQ3lfiIK0YsfzZNM0ob59XLkS8y3Je43pXsrP3P2UtXqBiKi4l+oxf1evxEibTu3Ra/EvEbFzxEZehoq8lVnV63afj+NHAboXQ6b11l3uxYqOA4Ib1yt2r9ZZTgff08ln2shzcWrQf2KySzlSHfHg0qIA7kOTCNVhHnntTq/YiIfEkJJ0VBF4/QCifQYgmcEWW/EmbrCUz+wwILXxEsQ+x6NfUoAB2DYH5WyeYtE1wSZd7ejODxsK1UCUMSgA8jog/cVlTKkYeEB3w/g0Ta/p+i0EiSEF5w8wLQyUcyidT0AE+JyRLWKLyST8rZk6D3ijWB/dh2u/JcuStsTCQj8y5vpTMzRlnegxjqRQSBJelLtCSeQociAc52kVauzpMAxYrVa8vByY8cjaKTvjq6urmFfxztE0DW+0LNzGHTPcfTmYVHnz62o1qnY7Rcgfhfws09SmG3Lghiw5T9WaOsg/hk2uhdleWcgfvxCPyAdJc7VapfZSNuHep01+ouTL0exiPlL6oddy9VAbWmvgvIMSA9P2n5GrS0FhwyzOYwCEDno8ZadDhlMyqwBbAet0XY/7Im3i+1yFhMQxW0S/+y7kQ1a+xMQQUKRNAFjgVS9LLP8diyNhB+CD+1CI95cAtVO78TzDmzZ5Fc9D1ZtkL8fQtdqr3JsBllJLfrrhPAJIfaWyLyNNsTnIE9JC/yVToGLTcSV7YnbSDwOczw8vKsH3IeA9c2dSlun9ehw5hsk9xQB5fupZWxoXFInDSX6irC3mB3Wd3yv8dC8U84cPugXwFJfn2Os5NpdBNUJluBi1dANSYCrFl8WgM7SQ4UnzHCn40saJtFuav2sj/4cwGMey+MSqcqbhL8Zb/PYFW5NXX4kAfDYBAY4nJY4IgwP6YQDt03HAEUBHMxLeONUFEGCCvXc6JAiItuJq0iBipo5hgw8bOgmNbaK9OGWeVRJ7ZkJchhBdJIqxyhTUJoDAk0QqhzxGxTgVAJG8olBmk5gD/TmliGNTc6L6kNxy/XtPCphr28S8zyRAG+yevUGi7EI+Ywwe3pdcv0yEAQ3Layhs5L1DZvqiJhMVTZpY9Ks1mZCKPxvKes3mWJ8YXiL2Ny0nS4qShzCBtmHZfb3Z4NGjR/CebVn7sNHu/v4eAEI/YjAu8c3aAwvDhnwIzc3xvnLzEGaYm+C0eYYG2ymfPvt3ZuRP4l5iw3SeZ0F3LYUjWC79nYjQdV10VSgnRWo7V+99ZrMs1yQ9yYue/NNcUs9DCbgxN7Zn8j6nsNTKV1vl1EErlQTAi1IVPFeJj/lJfiCqd/LPH1tLfZfnsvdMrqTwKqMBBXNG6eccSzAl06SDyPkg36NJilS8B8ScgHUHAZ+yWqT2/VTqxQcZpde/MmVeHgryU28sn1E1pvUenp5SAfn4TanmGABKFrL4CSZAArL13EPJrKoEp1lOfVp1hmFm3LkxKt1AOgit5hZQ0lsutZ8dozWWOlsxd/owtBRMnOcTbpqmW48zpl3ivgpJA5mnqnlkm/Fjww8fdEPm6Bm7WlUJpTCvCSgtHyBfi4qkAEbyYaSXttXSknqVJqrxQ4LOcxIShyHwNCyy/llapF8KV6bKQy1oaOW8n7jHK+PN35Wd8JKHpGzoJhG71ViOcQQgy187WAHChUcVAeUCmHnyTMuVxvz/qfuzZkl2JE0Q+xSAmfvxs0XEXfNmVmXW0tUcIYUU6RGOUMiH4QPnP/Bv8p2UEeHDvM0MpYU9za6uru3mcrdYzuaLGQDlg6oCMHNzPyduZo1EWcgJdzeDwWBYVD9V6GJ2eqKNHigVoD7VdNcEQF5jjktEFRQTFd+AdKgWx1sPFs1MPUrPUy4zm6C7AXaPlZn9nh7TMaQauqT2IU0+puW1240RtPrfOn+oSbjiFWRSZQ6VG4G5ChdsoFwLEbgZa8zMVJo2LBC2iebcGClzuW+R3BrAK8y8oRUL5ZfujRoCzuaSOFLyZD63AKeYPjgHYsZqtcJqtSp1psQK7ASIPz4+lkhBxSRFgZ7XcF4yRPbuzRvMSWDDrI9B+Qw4zM83n6LZFtt151pnRHPaXUL/i5Ns8fg52u2XHM9tLwOYjJP9Nvv8GKMI8QrG2wg1FqqwpS32+/wOaaXfrenepN3PvMuSkLK01b9UZqKNb4SpUq++g+30mandJPjMjGmWFa6Tk1BkT8hMrfTMzViLAxUB3eomUvCtlRVAx7mWA+AgCdjMTFDo8lQLzwzkHMFq7pUUfDtnJiVNcEWea0xr+/Pieqlg29p0xCW55WmnjyqWLNMkPlrM9Xebjdfeweh1MWdr+735vyG000ObQkQIziE7pfu57vK1/dXy2VMCzHQ+nsdFzwmF9v1UYp8Wmy3Wc3Y8zgPzYvtfhJ1WHNI2oM7Bdld76fjkQXcGMDoBJg4tEDGO0xCxAta0k5eIuxFdYIEg1SXUapuXjjKFJrhB65vd8zFmK88xjpcwlqV7zj9/yiTqPfNy80U0/Vat9cqDrAGLTxOabY6DVciZg+623UdtZ0ZivSmbB3YuhKYF0QWIe4/QBQRnSYFoYlZisVat32pIQ8DMU5yDhDAszlmuAfdSvvceQRkIqfZ87klPmG2X6lIu1xeZKh9PsqY+44h1ZSwT9mLa0oQUZF5i3pgla5mOiVVsw3Cc9lLXFQMlojA3xgmTV6HJCQPbbZliDmDf2/dq1j+X+3TeNExc5thUSzXFStIOUq20K2MEbU+dt3Oh9tRuG0DwAfDBA+ixbubzOI7IKWGIEbvHx/KOFkEg+NOOTfKuU+1c7bvzxxx81ky3DiGoZttVbbs8bi4AtD/Oo+6zu5Gzz485zr3rkgbNtPhJHUKDZshcyhpojoRmPjQNkdhm3XNHLKcA7vqjufa8hDKfW8/dM6EXqP3Nap9tc56I0Hdd2TEs9FKeWkC1/W4rLT4vRh9nRcrOH1WncAHgso4qebAdw1aIaIA4eaG9UIBNnQraDOelvx21yXiE9ntyYJdV+5vA0KReWe2bi9Ce4TSzbVkHqCiA7R8350gAuYMGbmiobEEAjKO1OOHbrQKhHaxCSlvAPTUXsTUKVABq/Ibazp6NSdPExcN2Pq15DhK7W6KDyXjkXGPyL+2szN938d3bpjT9fnQ/2jlxjDVmctJEEXCMEeY3HF+et2v6+/ihJnjUnWzXCOR01ofrkwfdIODgJcSYY9nabiVpqJRsq4KYFTg0FaDFKM3MskJsE+N4i+CYiFYyVCdAQxj1JsLC4M/qOPnKE8YktdbmtiDVWjJ7txN1na6/PRgVPtPCdUwmOTd3iMZiSqCtVGu7rK9xsh9MYzF5JPOiPWX7vRK1amuatYEpMZAiCm2hyghqoh5XIqzIdrrYkvsQZGE5gneEmLIwFGegGQ1ol2d77xDIISjI996DvAeKvbhD8AQmB0eqySKUa9Y+6zXWwTLiSFTfUd7d+m46tadxWlqNtfVBpfZcqzuaSvMNtyNwnqvTUq1tDqrKxemzJmV0rXK9h4+IqjnS1HsqXayRduyaMepJLFZ9idw0xIC4vg5YY/BONGJkDLV5/rKEWMDNFNmj/jCAARRt+BoGgDM4V+emYRiKtomo2olPw7UtbYueaSMqE21NaCyxjcQfpkn/zuurWq763s8dBQjOAOWs0CJ8PxKyzhxL79zG1iYidH2PzvviA9I+346SMMxC4CkAPxwOMwDui3B/TgN96ty5owjmJwW6elRhdm7X6yaCWwHbMx5anjn7tC9EOJKrW4WL1zlfzOmo2mSLIymX8TXlRussL7RUdxEpCPh2Ht71RbDxPuBic4HXbz7D+uICYODdu3fYbZ8QhwE5RaQUxUSCk5pKJNXcCuDOGWCnmmKmkm036xzL0BclrkSVJYlctn4uALqudzGPm8+9+XjN6WnlYWVtNKC79PNEyDseLKOfHze75k21d6inhM4AOROYne6EVdOTdqd5CXBL2Thbk8cKhMm3c+/R8v8JXbWTzZdF8nwGhC9ea/0JqmAIEiVd4duwXal/xaDbBY+rz14DKSGPSbaNNJ2pabFscpL+GcOzziZQ41RFQIZkCDO9lWm1ppBx0m3zLb52nKdap2UtpdUxP780wO1E5Ga9V+37qQXc1lW1LkvPM3Bm15e3hk4JDThWtFIRb47rato5J+DT51kbTwk7y4xsSZN16nclaGKRmBlAzCh2/jSWjjEGask+QlDzkuAVSAuoLuUcA5RkDqjpSlCGQ5bgxzKWOYlh3oWATiO0kHPwwRWTlTb+uExdM2Bq81LKYLRCps0TotMa6pNpxk9o0I8BtBJ4O+1svrZAyvq8GQc9l9u5VeiiMLCJnTsb6K6FefYcA9YV+EEya7LxzFzqsmeYBn2agbMyuMxA4jpfjEYYWK9Pbtv6DBRsQM28/e1huylwmKTObpncOI6SHl3NH5wKh75Jk95G8DhqSqM5E812a0bihT7g9Bp78Tt/xD1zemvnzoHsU7sM7bX2PVNKJdyfc24SBk4rOW5Xo2hxgvhgYfMAaFSUpIKLmBABuWHS5qQ5bfdLgPdc23cEUOy8/WaWjIONNrTY4rcczvhJYVbLINHMDKmeqsXJeqVpg/INMibhhNY4UtDtKy1zBXB72T2ECi5tSFnnRZvd9dhsrvHqzWd49fo1rq+vsbq4gA8VwvwmJQyHAx7v7/H+7U+4//Aeu+0WwyimQ5wTUq5gXMBjQiYHzkInmBmUc3H6Z5jlemGWQt9b7UbpumU7bRkWnnxO5rrRHrXLZgOymAok87rqvGyeykey0884pkB1ugvhytxNqZqdWLvanbiJsgJTgcHqbXdvJ3PtVMvmvL38d3T248B2o6Rp37vd5Sz82NXrsBaX9zheK/Pjkwfd5B3Wt1cCqLP8iTiqkpZKXJwzOGUB5VFAOWwCF+lRtkgAkXZtiAWcAK3E2hISO8xE1ejTIiw9o6F5qcbjHDFuwZUBh2WWlGFhdE7VTTo7jh93npGy3LYI25aEk3mpn8OoARM6jp9aBZRjoWZ+HGnFT3yvoCQj5oQ5c7dF6L0rjkeW8MGbZkxBtVPgR5TKfLNtQdHmoDiBtueLtj14dfD0CM62s3QLy0FtRa1HdD7YXJ2NgNlYnsTWaJim9ATmowhmiTbYCkfld52PU8cWicVu9LxYViowXhqj5nEVeJsWjafszc3GzTR3YnTROmnZXTZnaHKffTcQ0wppBZDn+nzr+rYt5RnUCvGVESyWRTuPl6+1Dn0hBPRK29rIKmkcsVet9TwudQvCW7Bt9urOWfg/M1VpBJmfebx0rU/oRjO285V8Dqy2698ElNYx0uy1fcv47TmnaAbVvSADtdycB1C0xyGIF0fOU4EmZ/EVMZDZxghf2pqvjz5xvr3WzFkzm2gFqEnECSlZ3qboMU7Ra13P7uhCLVBN4lDWnNAm5ZckWmtRSngE35r86bwkc1J3IBfKzkLfr3B1c4vXbz7D688+x8XVlZiSTMauNswHj7XfYL3Z4POvvsI4DHi4u8NPP/6AD+/e47Df4TDsVFAdkVKGc7rLk7LskucMIIFzakBgBYPMjEwS8YmNFpkg36gOKkOEkeO2W4/4TAGmIMAdR4tpyyzvFD3HtV92zDXc04s1VKeYnVh6+YPO9zihFzbXa0CC5VjYrQKwXftn23lG2J5ff+58uz5a3j4VEKCC6nlMVc6dafunD7qdg79YgaCgm7mYkHibeErkHDMoA5Sr5FgC+6ckktmYEMcIx8BhjEgxQezAJIZqsdGaC0tcl3iDK84cU5Gz6BiOmMZ5xmbAuC0vk6wFOGdlw3Ld6qpgnaaTanLP+feaSNdNCz5Ge3P6+suv1X542bMnZgqnJGK2xWnvWjVHFXgZUweGYZw838IRTp04q1OnJfOhWLVhtvXqHZUIKXNwbpp2RyhmMKJ1d8LYSD4JKNu2k/4xZOyM0E0dIqvAPu8Q487CWmBE3+b2DCwW0O2aehhlDVnfHtsg1+dVOaLaVNofAFCuJkiV6UGCqlj93Lwz1xjXhXmx/JcL8G/qZIKDmqQwF2bEkLjmhVk286WEPgRN2mxr0Lat2zZM3//0upsDNDMXAGr6czNRSTkXbacBzzZdenu/zcmydo7G8uVtlNvrmH7MFu5JLbX9fmEbDOyO41gz66nwew7gnhTYJ5KltrX5tPjpYqssV5xKtiE45BwK/4kpFp6kDztyzGz7Y/69fa4JW60Wsc2+2TaZir3W1LZ8QhcWDnLtc6WOQgUIYM5qh1UFkTSKJpmcw+Zyg05zMJiJnScqqdM9OfFVcJJgqe/X2Fzd4Pb1a1xdXeP69hb9el3SrC/1zeTg5r0J6NYrvFl9iddffIFxGLB/esIP33+H929/wtPTEw6HgwinKSFZjGrKKkYQKGdIVoJ2bxHFIbYQKQONNodKe6Zz2AT3zFlphvTZuXkpt3F5Jy7ahxnwrOqWGVpoiPvs2lHd0yu1TXkqGLC2Q6Zxllj9qBFGcq6YxnjY8+/HpTuP2vbMMVeknQLk7Rpv/0TxRbPz0LGx7qGK5U4Iqc+jDzk+edANQDSAAMgLoC4H82SCOxA8CIFti/rYNiqljDEmpMxImXGIEeMg3s4uJ1AWExZWDXrRcFUMBtdy/4WJIcp0HaTipNbAPWoHqJoDlDU8F4uPgHcLXp6TACrBtbIVrDfEuKm+BWrHh9w7j9D70glXn3GCyZ0pf25X4KX1AAr3qHGBYca8y2Ws7ayDX1jQcy2FfcaUEFOCG8cyf1qA1IYhm0RE8Q598OiD1y0sBd6oknirLStxxb1oHor5i5c6RMtOJcGQgHlXpoMwyqYvuf1iJiut+3Iz35TpHO+c1PkzAd2AmHXpNWFmbV9OCTNzZfD1nM1Yo84GiglFENToLWxMzdYIiymJ2VtyqVC1cg1DMQbAqOGCufl0JPaeVn/5bOZEnR8G0s3uVcE71bqPjoa+zLVbJkhNB27K2MmJ2VPpdnUatLTlraaVmUtmTYbYypp98ynN1LmjtpGPzs9fsWl+FWBmR56VnzNl+x0b8xFmCXHY9/2RY+Q5Tfm8nfMdtAKQmrJOz8/fCSwa0S4IV2IOAEQoalPWp3HEqKDdNTSh1ea2NtryjhEWuaPNrlnBTRVVjMqVVtOMVhpbwPGposEmAe4F1OmXlBj73RYf3r3HeDhgt9th9/SElBN+/Zu/wKtXr7BarWSHIfiaY8F3cD6g8x0uLja4ub3F68+/xPXtK6wMZFuzWt73HIlvyVQRMOR0v1qhX61w8/o14jhit93i3du3+PH773F/d4fDYa+7RaMIQ8khk+xSOCYk3e3MQFnn8qj6OR9/G2tgOq/Mj0giPQEgoxkLL9jQAUYGZwO8ufh7tDylDNhiRdN1MHvE5Lzt7slL1HO2myKPEZPJ4D1EqSi0LaqAaQl56q7b3N9BJlKrBHkOZr9UkJ8kN2rWUqvJLrvVes7IKlEta8cEfZ2gH1NB9/Q7/KsA3RbSzaQmwAg11Gmg/jNHywm74NoJngW4jzGDY0KXge5SGK/nDJ9ka4lTFG2Rbj0ZAAcz0pAw7odiV84N9zTQPKdr8tmAhcmVpqFarhDKEnOJC5Aw0FjJomvqPHecAunTBbms7WwOpWZS7JhJnXz6QtmPYYDHZSvHKAzSyN+J5i8+b6ZJMu1WWYiA7LAsgIm2rUvXijbKhL6ckTW7Xdum4okePDpfnTq70MGbDXlDsJxLE60WOZ4QtUAS+skpCC+acdO6FwbvNDpLfXep0+biRDxENeY8EcbMtEAtc1cuzeaQBCpRA2r/tdx/Nk+nH5CEPI0w3AxbCzesrapI0XvkTWyKEMzRchbSkYHMdUt5DqRt56oV6oUhVUZSYErDv6ow0O6qqbZ98pYVZi5qgOdOoYUgUgmRaIy5Bdt938OSxbTvlDgjRbF5pdxmmTxmVO35pWNRi9+8UXvQmWuTcg3AbgWMYlaTM0BUzLtKW6mdwZjX0LTi+aN1zp2cN4GofcLsuS0gJjWn6PseAIpjp8V0H4DiwO0cIeZjYULCV/rZeEDrt7dq6RrPXrPxA+FpPznio7Y7V6/LMhfb9bdvf8T9u/cgZjw9PsE7h4v1BT5/8xmuL6/QaXKd4IT2dH2Pq+tbvHrzBW5ub3GhZYow8xHKk5PHfKK0Y0GEbtUjrHpcv3qFX/3617h7/x4//vAD3v34I+7vP2A47JEiISWUP8KUjgM4+Vl6uBHw5rtUbfMKLZ3TOVTak3LC4bDH9mmLu7t7HA5i0nFzc4Obm5viXzB5PozGkVV2EpDLq3EB9BWLmKCpyp5FPoxSFgQB4Y4m5lU5pyNfk8Wjefm5sHyEBzAFx63gaU7CZQoU/yidz/Ye1EyXBbA9eb+F89NTdOL79PjkQTcDGFUbRSwYtABSEByx6uJcAdytHNXiSZvqzgHek3riAgyH4B06BwQkJa7yV5klI6eaNYuiRBfgZBJn1IgDaleeogD2nICcJSa1AqQqRJozqDbQiRa9Mhiuk55UMs41vOHEFpYlcvU55qUQZHLOJu6p+5autfBoEXi1z/wIUH707MXyrVaeZp+zRi4cVWCZFV/ScDXf2wW7XG9914mAYBo8I2ZLmgT9bWHJDqwMkWQ+e9USGXA2wuVMSx4CxJy0xk8N5NQxaaoBC+qoJBpxMS3ou4A+BHTOwzvSLKDuqA/FKdE4ukq8TVc70v942o/6Cy2uFvpfifu0Jpt1VPsPzVxV0MrWKNSuzG0Eopa5cQXcXE9qXcfMEgAoi8NnMRtpaUEB742WagLMjxnyhHEooCethyZCAUrAhKx/Jqw0rSzfnBE6kjoSZ4xjLAKfhR1smf4ErDkCcet4KckxgCo0Gri1rJQ1XNk0HbqtmUlrT/QvZm80AfpNffNztk5ykzFv1fditqAEdllL1bZqXvPSMe/zMwfNKOsEhPO86OTZFolmvV4DQDEHiuMIQPgLM+Pi4gLr9boBF8ByQhACzbcij5vb/BB+YvStKLhgIKSWN/8Tzhnv7+/Qe4//43/97/Dbb7/Ft/t/hnMeF6sVbm9fYbW6QL/e4PrmBre3t3j16hUur29wsbkE+dC040wf/zEYfGm56PNMdxBCwJsvvsCbzz/HcNjj7t1bfP/dH/Dd736Hp8dHpBjViSMXh2ybh1j4LI8uPHt5AIx8SBPddIkUusVlbFgzRO72Ozw9PSHnjOvra9ze3mKz2Uyiv7Sv3+5StvTFjpwzUiPUEUQLPw1DeIqmL7yXrj1PXk0mXTF1SymJYO9kp8bJ1muj9JnSp6U+tVIWLcy3ygBCA6bnuKT2ilymSZ0vOZbLHoc8fu745EE3YOYa2nEsW3E2oYp2WzvSaE3BBA3gZmYkZUqZWRgqs4YOItnycgTneALCigRqjJfRPB8gTUPLWR0xcgZns99jUErgNCLHiDhGzVAXkbJq0ZlrNBZd4JXJkgAMIkgoOVek4sk6hTiTzbdj2+sW/aiAJKDMxpPTZVFThMk950xF5tLquesvO+blq608UIlZ+XimTadqtaPQ6jP9AHvOEuhGXY7FB6GtvyHathVpUllmDW01JoxIwGFUZkj1HRX4GFCWTwHRptUu9mogOBf1d41JLkmCHDrnEBzB+4Cu92K24rxo2hsNonMO5OmIzJTlVi5M5wUBE95H7Ey21TBiKONVwWkDvEr/Kmhvn6sT3MEVUF1MORoNz7F50JSJtmWIGK6sMxF6sxIAxzZMDaNomJptw55kzqxmanaOjUbVrrMQi7Q0bybRTeX9TNua4ogYo9jJ2razXi/rg+u41H03jRVPopRghoQOpArE28xwpp0tZihUTSSWzDhOacDb60Q0DfcoF6Tf1UwmW7SVxSyZqDSNFmfn7JifewkYXz4m85vsF5drtQ31WpkvTSIeZjFH22w28J6qNj8l7Ha7suYtmRImz/wZh4EcVMBdHK4BjaONqiEE8O79B+TM+Ju/+bfgGDEeBlxeCPi7urrGm8+/wG/+zb/FF19/g8vLK9HEujkNPdHePwZonzqO2UYZDqNOq/UaX/ziF/j8yy/xm7/4S/z2H/8B//7/8z+LplbNJLKukTqytTo3F7ya45R51WSXZAI0p08IIeDq6hreBzjyGIYB6/W6ROGxuk4/10C3EJp5UqDgzedB+6TU9bLBKO/R0npSdSg5ZCfK0QQLsZmRjU8WIV7qck2dZJ+tphoWCaUqleSZU744b99Sm58/GgXBgoBr43bMDU8f/ypAN0MCtZfBgBIBqPY552ITawB4yt6VKSmWzQCSE1vLQePhMmRid94hONliA0+zBZrWedq5UsJBGL9FUSglGBJfnMXR08DVPD5u2YqJUZxR4ogYE+I4ilYnS2pbaeuxJGfaP7Bo56ichIRHJGhgf520Jrna9aa36vtOx+DU2MyB+anF/9y2zTl7rab08b0NMJu75x1ZpZ4gjORqED1uxnACEs8t0gZonyp3LmC+2QtaOQOC7ZbfsZkDq9NcxKAmBPb+ZjYS1EylV21a14mddyiJMUxj4DCShfc6gLdcNFwWf9iANzmHru8QOoeVZVH0oYRXct5p4poEk3xtPlUw0owkKfBrsmmW+d0AsEUzC7ujaKLV8GMRxCrQx3Q+ciPAToQgLjE85GK2pBhU11sZi9JUqZup2GyLuQeBuBEQ2UxKtH9KeyvQboqCZzOZqWmXKQ+U8a3Xa/QrLmvdTGEarDd513KJedLtsrQqMJQoFFUb3obMy+q8GTVtvAyhPHceRaNdX1auyBATZYdqtcdRlBJatut7BJ2HE9oxUyBMlQGE6SOm1G0JZDRVnj1KP9JLWa9oLqXfzPFM2mBAugXtZlJCRMVkqBV6iKbRSphZMz9WQHnuUCVhEcyL0WKzS2aCeU4JP/34E7rQ49d/+RtcrNbIccSXX3yNNCT0ocOv//Iv8X/+b/+vuLx5JZE45m34lwDVzbHIRfj4se0+is11EECO0K96dCEgeIdxEN4bOSHrGuaZYgVo5p19LgmZrRKhKSMfy/yvzipG34l5mOGGOleOnwNUYc7etyZ6o7KzNRVYeXJ/0SXN6PHCA4+vN98dEahxZrb2266Z+R/RmT+HCsSZTkf+mSi8XrCAj8s0wvIz9xuvniOmc3d9+qDbELYeBWgA4JSRDiOGwx6rvsf11RW64DRTlN5XNDQJiYVhJmVkmSVjVYyElLPGUu7BnhCQERSZOq4MjxXsS9MqgQLULhxV+16IMHsB3douAegGGiqwYkajKa9bSjGKY4J8z4hj0riwUYPUJ8TMGJL8me04K+owospcTVIS0HhkcxEuJt3OpvGghh7w5ONouM4A6+c03S+XPGcTvDAocaTlmdnDIlF6wZNa7bYR2rbepXKnuLQRjbm5TSFuDeiX7bm5UHWsOZ2D8VagS4mRIE7DdIg6B6hoty2Vstl7d0G0ohauy3sHH8z2Lar2bYQj1SSTaUSlbB8kCkEIYsqw6gK64BCCmsIo06bamyDw1NlyBnxIn2O3ZGrWIVfCKBrh3ND4FgzLvCjaJAPKzZzmAn4V9KoG0sEcMvVaoQdcnCMZArCZIVI8hCHIrpNoxmv6YH2kRkSxMlYnazuFgJlmmouwPJnz3gB5TU5h7wIwiN0kLKRoy6ms/yUhxrRgsDW/eLAIAEJQCvP23iPM5mZMSWi1amrbozgCQ80VmicyUOybsz4jaBQMcx4GW5z9KZMvu50znnHqbeYCPzfnCdM+mt9z3DVcQcrxXeU5ApotnbabmOuIoHv6mc459H0/adc8NCKA4jztm8gfLUhhFt5FJEuMSOagZYd0VLWIQZODPT0+YTyM+MXXv8Qvvv4Gm8trvH79BpurS/xX/9v/A/6H/9f/E093H/DF55/j4nJTNdsvout/moNnn3bQYikYk5RssLsnPN0/4PHuA3777T/j/ft3SEl3F0m0rRJggTXPwFTRIkt0Op/m3xfbPGlOW7byNTucc7i+vsbV1VWJVnT8LJ6s4dYErBV8l8BmO//nXfUc1zRfkhaAF05t8zcE9H0nKKmx724p/1x5JcqcBoug5nk4B7pfBLjrTcvXXwC669ES3NP3fPqgGygZh5gZRropZ3DMSCnj8WkPsMPmAjCthcFhZsJ+P+L+/gFjynDOo1+v4HwQpkUO7ICYM4YxIQTxtIVnuAB4qFSlmitWdXmF2hr9AO0EIQQQvJ51jeDgQYAyBgHh3IwV1/Uy0UJJB2QGOEsEFmFmGaOGQow543GM+LDfYxhle5lTLrEzM0sZcE2fLW0wEHIcLWLCfGmqNWlNbUrxZyboKZuo+WPrkxbAcnlodSaVowKyCuyWF+CUjE3bNydGR/dNGFdl1P65hW4C2Fw70tbfgPq5FH+OcC+Bp7mmo5SxBAwxYhiaJDs6b8mcL0OAD5ZYQ2KydqotJ0KxK6ckc5gwgJjV0Ua0ZMFJYqGu6yRsW+fRBfkLntB1hFXfNYPBdbqx2QWb6UJdB7Xf9B0ZaJNBWT+0Qs2k/wrIJsCyW5YLlW6Y5rcC8TruxIxMzb5KtpEDDLQnSAbdbHU1ID/rOwKi6bTXsTltyTmKeQsD86RYtW11PbPeL0DT1QcaoFdBIs/mzPxome/x9SngQFu2aVwgqlF/UOemRe4AdEuea0KXqjlCicRjYNueVzKMHrVate76vebVnbbx3LoqwImXNWlFcDYa0JyX+mo9RWjKZj7I2O12GOOIm+ubor2ujTtqSWnzvJ0trZrHYGeW5+WYEHksz5iGFBS0bTssBozKP/tODsMh4nA44M3rN/iL3/wlvvnlr3Dz6g0uNpdw3gMEjOMBv/yP/wt+TElNXpbo+v86h3mKFIs1AFXihf7KQE6IhwOeHu7wwx/+gB+//x7b7SPGYcAwDMJHU6qabVgkKEbUXQpLEFMTp0ydkJcO4++VfVZaZq0r5WCCspR2jnB5dVn4IOdK6wvvKoEnqISOPWoDzZ/5HKTmWROPBdklWtuuIXLVdrtmXm6EAb3Hzc9R9eWzdjqa7vzN323Cw+fXF8rP3vRY+Fh6jhT46Cn+yYNuZiBlrmYbpAvABYQeoAwE59CrNJ7Vi12cbTIeH7f48Yd3OBxGxJThO4/Lq2vc3L4SWyMNI0ZOUnRnFiYIr8k8dALrSlFmK4Q/sdjcysJWW0S1Ywok2krLxhVItLCOJHSZREsxw/9KIJyuBeeoaMYrBCXAA67zhXFHECIzDjEhDwMe1x4uZeQktusxRgn8HyOQE9j6Mme4nEG5OogaM4M+UwDDLGqAtrP40+Hl1kyLi3ph8Z+GxcvA2M5Pn0Llc8LXZovE6qLm+nGdy9eWFvbZRToD5nPiVNo005oUEP6Cds37Zg7Cq9ZVGHMxa2LVkjMjRfE7YMxAeeN9bs5fbSzy3nt0TuyHiQBCAlEEYZhsVXsv8ciDJ6xXvYQ6DGaj6tH3Ad4zghcfhuIgbZoTo8SQnRvPykSXND4N2NTXnvR9a/JhJhx2K0/KV7Ba5mB5HoMdQXPwNPULDanxvg2IoYB92RnLTTvFlM5CKxe6wkth+IA2Q5zZP9t4WRjG1jQDXG1S25CA7Tyxbfbps6oQB1UczKSc+hU2PjNNkH7vvEfuugJEx3HEfhgwjiNWfV9NKayPGzvnIwa5IDCYxrftj6Sa9jZ6wnw9kr1TA6rbY4qJuQjJ9iyjZLbjZGvLAWWNXF5dyl6BaqAZ074+ZuHP05P5uQL+AFQzltoeK+ccqiOaE/As05bK3N9cbPD1V9/gz3/9G3z59dfo+7WUrVoYmVs+4Pb6Fg/dd/DOodFx/tHHeTA4L1ifXJ5eAKpEIxv3O9x/eIf79+/w4d17PD7eY7vbYhgG8bPSncKYUuHxGU24QOszEpMrowclSR+acWj+FgU8/a8Kq2bONV/rJrxye3ehy5OjSPe0MATLvcnt//M1VbbH2pU9L2dCFpU49VVwo8oTSPxulBRN5juRmWtYu6e8u33adOobfZfPVnA/Lnt8zHeWCtedCdZH9+G4e18yV/91gO6kbIJIkxBAAbFuu5KD9x2c80gskzbmjO1uh/uHB4wxI7MQgmEA0t0W3m+w2VzKRCgGzlJGGKwv2l8BwARwFpDNdWFnddxiAImMqWZEpqJJ9gwEcgK6gaJVdAbKtS4P0YR7wdaARmYxRl1ImdFpEk1SJgCekQMD5IHsgMQC9tGDM6Nj1ZQzS2hEY/gKBlKS7J4pScKgNI7wzHCcQFmSIGR19hRwLi/tQCVkIjX/nxzPdmCpLpRWb2VLyN5xOh9ORB8pp9qlQIWHWpmy/dwQiXmrz21ZzdvYNuBjgPfJ7217ZqCecFz3kiZ/6fmtfatD3ZFhoICflDMSc/EhyOYMzNV0xcKb7fd7AJhozoJzWIdOnOnU5MTix5IzL3WSbWeSnaDH7b7cb7GKvSf4jnFx0aHrevQhoPfiGNp7zdCp/ZN1INyMUZ3cragTUJycDYgWQUg3LpXoy9ojqCxfHiF83OZtq0VW50wSsCzKbKFfxSRFmaH1q3NuAuLECbyaxFQteY2FC7TtoqLpnvhXKm2ZgEOSdntFWFVIyMjF9KZlwdr+rEJ5XZi6tqZOnqXNhZ0uz0VukvaYXfLrV6+KnXgrCLZg0cZzCTyXurlq1L///nt894c/4OnxEUSEm5sbfPPNN3j9+vVE82vAZS6yl2cu0R1uINAcaKuA2pnvhAKPVr8pTqvnQDaVupf68NmdRUB2rhbirbOCUJCk844xAVCteQh4fLjHX/7VX+K/+7/9d7i6vlWgXcF2a1gJSFSki/UFupThY1ps8886JkjruXKsgipDQg8xUhwxHg54ev8OT3cf8OH9e2yfHnEYDhjUb2pIsdC1NriCBVww/ms0ue17IjERylloYTLFhc6D1rTD5lrZKaHK99p1VBRBNB3/loYL3cIComw4E6HGvm4ESRVBaqdyPbvctVzWdTskJqOaqchEyNACk09U7LN01HeuGu7lgyevTUXrrf184j3OKavOHmfKTcSOF875Tx50AxLQg1yVviuDlAEKvkMIHRx5BbwMZoeUgXHU1KTkJMNWysiZsNvuserX6PoOXhep7XY452VrnDKCBzx021zrjMraGNWsILMCZGIkFq2T5bZKIGTO8ERKttTuW0GruZp4QLJ0gZDA8AACqibWhlS2tRu7psw45IgBYpeegZJNTExcJEqErTvPgCcDcZr8xLbZFUB7ZqyIsHaMwBldYsRxxJASRjCedgN2B7HxPez3yFESCjnUrS3ro4ITmncoE5mlz5Y2aRbNS4oWpta4tFUmoICbz7rIWtuwJa1ze/7cufaOJULykjqWzk8C+9cCJ0H9osbuzFG3l6VO530R+gB5L9c41Cw5/poNafs3xoh4GOQZjtRWVDXkvglV2HXo+w7BEbrgJ4yptNEx7u+lDcHLTpZXh5tV12O10ljFaray7iQhjLGcyuBmMLS8V5YQnVD6AqdxxAklx731JYvgzSx0wJhmMbECdKVXAGx9Z59FM04k4NYAGzXf9dNA9lKK+grs5b4qqzUgvbys/ChLDSjhUKnR5MgznDp6G3AnXbcqTHiN2OJcA/yhfYYCVqy9hGmbbSa3kTiYJZzh5eXlEcgg72EwLzRCn4EZm39tRkcDlzlnHA4HPD4+Yrvdlno3mw0++/xzbC4vxZm+GRcbi1abfqzxm+sZUdZDzjW7bJvl0+oqfkYvOtqSZ8BQ075TtGkC4ef0QZ1iE4/YbncAM3wI+OHHHwEAn3/5Jf7pn7/Fn/0K2GwuEboViNSMhYw+1znXqa35br9vIjG16Ohlbz8/Jrfx9MdEPGQGpxHD7gkPdx/wcHeHD2/fYvf0hHE4IKVY/aNYTERKLo5cI5qB1Q+sWXdLHKbtZcGKpkgTUx6brzbfbY608yMa/bTdnCZtenn/GdBvz0+6ZPalmNjqv1a1ZUqCdrfO2OJkXsmD6tzR34DwKYvb7VzVUE/51JIZWqmp/G4VY/I5n8G1TY4W6sTp4yU899Rh/OQlcHpa3+m6P33QzQBnQiYg2IuYeotFQwtQta9STd0YRwyHASmzehoHIJsAzHh62mF9sUEIHbynkrHP/jwRAgno7R3QqZInEuFgmqoGCJVw72yh3qpjlABwZZ5ExamSGwYNZYK2tWv2iAzRfE9NTTBZQBlZmQgQWcIiEtiCmcBkR9t2EWc6s0VHqZUmCUoEkK+8w4UjXKhwMHLGwBmRgZiFOA3DgN3TFtv7e+RxBCXL5GnMWIUlaASWRkvCKo6bHD2xW6X2bdtj2U5tvt3VCPfHVaJdJG19PCtLC+XtrvOMb/GeF0jbNCMqS99fovF+rv6JhhD1TSW+6vK9rda7/YwxIkXJ7FoAuiYtkW3XBB7tOazrrKa4NzAu8ZYdgg9lCzdFRo4J3mUckPCEQxVMvERg6QPQB4/QqVNo36PrzTHUlxBTBhUkRGxSbaACWFSB3hRA5nBpmucWxAszrIIloTLHpU9m0XZTBkIJP9iAakKpz+qu12Vz2xwqpa0o8b2loGi+J2ulmcNFY6d1t88wxieAWfpJ8HnV5mfLStgIBGUFse5GcgUr9U/K5Jyx3+/BzOj7TiLeuGYOWn+cma/e+4kQsiQQ5pSw2++x2+1wc3ODL7/4And3d1it17i+vi6gp42qsjDRp2gAFf62cYeBajrSJv1YXjv5iB4t0w+bF+1Ta5mXaLknjQYmGGC+c8XM6FcrjOOIP3z3HV69eoVvvvkFui7gb//2P+GnH37AzfU1bm9f4dXrN9hcXqNfXcCHJskJJ8Qc8TQcsB7HxqnTJvSsES9q91zoqfXZTOE04rDb4bDbYftwjw9vf8T9/R12u22J5T62CgJ998S5jKPW1ED4+r3ts/bzZDc3Alsbyz6lJLHXdXfH5jNDEiH1XVed6ek4wtaRUFXW27QNpGvQ3sNwh9wzbXA116MinDNMgSS1me21YZ0CwvW+kjeFpqYgUkbtthd6qvJWKr/LW0+uGZ2xABH12R9zfCzwblfdcxpsZprROz57z6cPukHI2YsGmWTrwCnlL5qPnLEfxxL3MTMjJsbuMCImgOFUM6RxgXOSiZ0J5EQ7XjtY7TYZ6JmwAtCB0SnD8ZCtlBL+D3XiCjNvBkArjKgMj1EBOEHsN8WaVO04iUpEAxP2LA65g4J/EjDgoFvWOl0jRHsTwSWEIZOZphiYELBSFomBNWX6ABBJorzAEVbO4YKcZDgEwcMjEBeQzzkjBeDKM3hNArjTqHbiIh8N4yhCEdf0sJkZKfOEEHLT/zIYuYAQEw4yHDK8ChQVNCvqmdJqMotzAzKVaNSPVtCofQC0X5cBbXvuJBF4Boi/tM723FlATijvfLJ+FbombTPAVTQXp9u5RFSKNlfnf25sxSUpQizML6Uk8yZnjGMGcwIwALwrtt/FdtyLA6f3Hqu+r1k1bTvTSxzpPdW08kSkoQ2pfO8U0IeiGQ/wnhC8hU30KOiAKoAE5niBCnMCFIyj1fLKXDQb8BlukznoKsMr81sfR1YHt6Abpb4CzLmO8wQQUDVBOYKwmQp9mo7pdCzrq1azmbKTZ8LFfFqZzTnJu7VJimr7HEK4loRh4GbOtPNI22P9s7D2iKo50CS7pgH+lETwCgH39/f47v177HY7/OKrr4GckJMBhDrfJ/Wj0nPrndTwGmuDmacsta9999ZmdM6LF8H5BCkfM++XAg5uvzCDqe5a2Tub/fz9/T1+//vf45tvvsGbN2+Qc8J2u0UaR6ThgPu793j//i2u3/6Ey8sr9F2PzeUVNpeX6LsOTw8f8P/7j/8Bb+8/4HIdkOJYX9YWUOExtNDA828h4ysCVYoRj/d3eLj7gMd7MRkZhoPSlwTmXLJIl+QvDZ8pSjGbf8zTNQQUU0zj4e3n3JxK1vB0h2vpu/nA2DkTeEz4mQiBM/p8vGaXwaCtg8WeLfRM5r/5j4Gg4ZZ17jVrohUO2h1saQtK5BtQSzfKU5bHtuFRhIZfUW2x3Wl3F1tvvHz+nzue3Q1GWTZo3qyONx8rnibz5V816GYHSisQJ8Bl+dOJlaKERIspYb/fF/u1BMKQWAA3+8rIAKBocMzTFxLBBNZxYicq+vMahQQKcMXkQzTvniG2jqYNA8qE9aaqVgZii72AS6qOTxlAaLCfOWsZ20owZzEB0W2cjgyxJU9azrTnGaYdV1MWfZYJBubACRwvCwbQAbh2HpfOoyOzTbftJNGmOwDsCCEQfCYgEzrH8L2HU92/2J2GAqYzx0L0su46WCQWA+Exq01dqtt8RUORIWmRS5QJIQe2NljHoLwT1eukEjw376nFa+cXAtMe7S9X6jGmDRwv4kJ058y8KXtu4Z8D3OeAN8gAQxVEgMbODiimR8fPb2zqSj3HbZgzlaV2cxM/tk3E0DKZNrLKoBED7HoGEMeI/WGYMAFHmt6eSKJaeF8SwAhTk0ydTkMaiiYmgfYZRAcBjmDJZOsB7wh96LBerXCxXmvSEQHmRAQyZzMFT6zp66cMhgWoU1bgB3BuzDRg4JuLYF0F4brxm9WJSkBtNXsQUxM3Y+TyXOImWoOOO5cyVctc5IkyTkITDXwKXm/nA03O1Z03qIZ9BulNEmFTEvgK/qmCa2Yx32M2wcDeCeUJlrm1NN36zAC6mcRJD+h7y/h4AFBt+KrvERxhv91hFXrsd1tcXl4gg5GyOVbWzKxeYwWz2tibJtTmY8kE20YA+ZMfPPl/MiJnnrfI5LmZB6jCTTFf0PX98PCA3//+9/j666/x6tWrwqMIwKgZGQ+HA56envD27VusViusVmtcXl7hcrNB33f43T/9E/6Xf/g7bJ8ecNMzHu7fitOopKkFsa9zZIHC4mgeAGDZLRv2O2wfH/Hh/Vs8PT1it30STXaMosRJuThAlvfV6CKZa5CAFhi1GknSB9ddIouhX0FsnYt89Fnrm4Ls9jCNdzuGrQmKmecJzZnGtZ+MO3MZt8VxnwkErdmj0QhPUz5S/2R3vD6TKqapLzKlfdZ/C1OTjr7YT/vXtszKVVzS6NYX18GSIPLzjmPezVzNzwq41nnVCl7czI1JHWee9umDbpjJh8adzULEI4spyZgkcsfIQFhLxIOk0TjIUFh2GivbgSmBkCXrXterFCcQlVVDlbNENXGWSpsZoASmjKQ2jI7FQXKEDE6CMhQSj+YAiVjiQOjICQExsCmvocxS6kvIIJbyiUhjZFPZPk6Q31lz7pW2AojEGJT5Jn2bAu5YQ3TtDuCUcLlaI6zXDcYkmFZMttpEo+W8aLdB1TkrE0Dl2TKtXLNgyBE6kn6pzgwsBuRaBirC6JXyaZNaKYN6jztEBd7VQYVxGCPGaNuDrLHKs+4gNBIqSQtrP1dgnckV+z2hNI2GQft89oYTzUP7u3hLFymGC7DKzfmfA7rn4PpIA8G8WMb6tYDnGXA/dV/bxnn7jrSNzEf1yutPw/XNiSSAEmu4jS3cEjgLK9earxwOBxW8JPwlW0IgY54kGvI2sopotrtp+DkwiDJIH70bEh4f9wB/UOboJFyoF23muu9wEXqs+x7eEgRZfzkCSmwDFbgBsGqzmVlNxCV8YGoYiSJsEGrEEgPNVAC4zmXGJLGPgdYjYKb/y7SWyCXWw0VWVLpQ9/doZurWAvI6nna70ZeJnbK8xEI7VOgl0wLJC1kYtJY52fiX3ZJcgVGNuiEtsNje0JjhVQumfaLg5dWrawCM//gf/xNACZeHC9zc3KBfrUURkHSupYRxEH8EMwFYr9dYX1wIIF8A2vM19LHHaS13pZcMmmZHbp69VI8JCXbe6FLJ+KfzTKvHbrfDt99+iy+//LICbmVkxIyo4+W0Xuubx8dHvHv3tvTN9vEe7+/fYxwGjG8H/A//7/8e//V/83/C7ZvX2Gxu0HUXGiHFZobRWVIJVWyfh/1O7PHv77HdPeHx/gGPj/cYx6GaD3Eqc6KlIWXX1EzarE8WlAQTcNzQ+8o/jpUzE2BtAuX8ngUgeEo7bfTKdkvMvruNa9/6K3gLR1js5XkCsufPmPAKex5RMbNzM+VLAbsKwA0bVJ44m7NFzV3n05xH0uye9lulKEWEqMB7CcW39Z7hTaeOZrj1t3wzwcycxVuTtXJvc98fe3z6oJskKYf3UxAqoZASEmcM4wifM8aUQZ6RWE0f4BCjMtfsQZngskcmlnjdfQfAHB09HKPYNT9BonvkjtA7J9oukq0rRhZTDgXBI5I6b0IwJiDac5I2i6bYwVvSDGa1vQYK14Ww7lFBrxAjKpMwQuo18A0mREg9MRMGBg6NtzVQJ4qlb76/u0NaD+hVo6OIDCllPG232O126EPA1eYCF5uuaAXFcbMGsU8Q7TqI4TKaNMHibOU03llZtO1wLi2OVlRWzszegdmDS2IiA5IqaGQB4NJ+TRaUq51eqzWPFtc8JyWQjMhJgJvWTQ3orkRXnilJWRRAqP25aReh3zVinL1kee32nP2eEq5l4nxK0714rQzlVFNtRGYJdC8RrZou/rgN8+fPAfdLys21QKe0ha02vWWSZpZSBEmNRz+ac6dmQxzGEYMyLWMEBBTgFIJHFwhdL4A8+ICV6+GdOF4yA5SBgTOAEff5Se5XW/Nihx48+q5Hv/JwHsVWOJBoEkUIzA2nkfkjA8YltrexnbIMMsmiakM26v+iOBAvDgHzDKe7c7Wf6z2sDq1o5oO0g4qdenO2ZLVs2eP8cM3nZHkrTZhk4Cn4UddErgJpWWF1oopiIcvVTEK7nKaMljVZMzmKYFDvLS+qvcrM2O8fkNMev/zmC7x6fYsYI+7ev0W/2uDq+gYh9EXj2O683N/f4+3bt9hcXiJ0HTabDfq+x2q1mji6tcKl/Z53SRmL9vw5gda+zADVXKs5XyNlV2JBQDDT2hYYjeOI3/72t7i5ucFnn302bZPOAWYxC8wqwM1piSX6eXp6wuN2izQOGEaHf/yHv8fNq1tcX11h1W+wXm2w2mywubrC1fUNvA9IY8Zut8XThzvsnp7w9PSIp/0W+/1OhSwzP6zZmLOGQGzfvf0rNswtaJ7xRAPZBiTR0BjLIjsVQLkqdAzntveeoINLYzYfu/bwDcBuBYpxGETw0Z2WRcfzGU+wUJBTnwUzp6rljhUvM6CsAm024A77z+jYMTxuf58Cw/X8pLT+fzoG96l3bo+5sGSHYYIyVxbm0f8axycPugmM4LOkINYJAAg7GlgzewEFQJLzcGB4T+hXaxz2EXHI4JSVmRG8C1j1K7A6HtXMcYSYZZvycCAMkfG4Yqx6oPNA5xRQa/mRGQNnDEmZoGpmHDmMjotU2ZMCdwVDRsAcm9a7LnYiCX8mJiMC/HsAvTozMAijMtsRwIGBQ0oYUpJPrnFCmQgBgAseq4sL5HfvxPmFCDFJiKiYRjzt9ri7e8AwDBLN4SbhdrVB7ESTH7THI0SLl8EacQTymY0aCfAm06EZE9aDVbMxXegN4AAma5B4QeJVHJ9AADsQOTBCAcqt9gGQhTaaBgTCxGNK2B0G7A6Hxku9akRM2gWgQkcNCyk9IUKQgQQRLizdkTSyyBuNQFHfZOq0p4qHApxhwBlTPUDVEqESOyOUDZieg9yi4bBrBhTKOIgI0WpE0HzWxy8LBfNzzxGvI81PES6PwUtLDL03U7HKVJnbEIeNM12u4Q1b27usmjrbEypAHAGd95LivgvoQidabdWQMwE0MrzLNbY+EZzbypx3oqVx5BC8hEoMmhRo3XXoNUMgm50Y+YJabfeoGJRJPESIYVvL4VHWU9ETkQBul1HGlcqcKzdpn1qfo36ZcKh2tS0ACNS1at/zQglS+tQ2gQHR2JZ3lpoYNg/NxMX8YkR4ZwcwO9VcqrlANkGGGqXfDICC8eMf/hm//Y//M26R0Hc9fvcPDqs33+DL3/wVHrcHvHv7Dq/ffFZSaZfMmiHgw4cP+Pzzz7HZbDCMI8ZxxP39vdB39RHouw69gvCgOyClxycgmif9hnPrajJA9d2q9n9qR7oUveW4bi4D1gZ0vLu7AwB89dVXR8KDjQnAyEwgzoXmVEBGZT0KzUwY4ogxZozDiP3TE7YPD3Ak0cVSziDv0IUeRF74ZaqRbLI5N5rmceYX0Pr/tEDZDqPxLW0ocwMAN2tkfi9s/rTlm8+yW4TZuzftm4/Z0vf23NE92g6C0DqwRPHJ6ohpmvEi9OmCmYyJfq80Stus66UF3eV3/Vn4Mdo6mdC4zGIi3D4Lqj/uGoBJexav8vHY6o9qXmu7HXoxqwnrXAlkn+fa9KeG4p8+6CbAUyVasu2aQS5L1juNWOCcMExWsOmCx8Vlh8wB24ct9oe9AG841cwGseGKVDJScgI4MTgTHHkcRmCTEtYpIniGszh7EMIQOWFkMXVRowuAxVYz5Cphds6hJ4fee9Way4t5CCMaoRBAt4IJEjrQk0MgIIlBtmjelelmMA4AtjnjIY54HEeMOSGRyBYOEGdP0qgjOcP5gH4t23y2lXIYIt7fPWC3H5GTxPDebg8YxoS46jHq0whiaJFQN0BNd0BOjDg6ygJ/J5quqnWtYKB+r9Zd06gQ0KJFG9YACUKduKQ2AgbojdfXBevAxaSlOr1lbKq5j9mUJxnXlLICOUZKwJDEpME0IZEzDlq2bb85eBo04QKgp+CnOqHJveI8qGcWoikUIjHvH7QEthJBIip+AdbXroB6w/Su6XEHg/lLGvGlLdN5+1pCNgfVLXOZawgLY5uwsHLzlCmgZiO0LXcC0M+y8bXPnicGsQQWOYum3LTnMTNiTGCOwGFoAKmYmxR78UbbVDTb3sEH7aucARxANJQwWh0BwRF8F+CC1+gsEpZ0pQmBnJcVZu/LbAzFAJMIutrjmjYeanLSXCNbSRUiV7Ddxg1CucYNgjbYZjHF26QvVHq8Hpah0QT9pTlgY1kn+aQF5Ztp2Jm5xBe2LX0TRD0IOVPRWHqLrgDAIrwAQMoHjE/f4//yOuIvfv0N0K3wu9/9Dv/p8QF37+/wsB9xOAwYhojLy43EmO46kKOyvb/qVwg+aFbWGsfbBLlxGHD/4QO22y1yzmLrvF5js9lgtVqha/waoEJaUZXSdCROMX7b4bF53MYVb4H2Sa1fWbsowi0RYTgMePv2Lb744ovi3DfXdE/kMdiOjK4/BXJO+50hZpbjGOEc4/HxEeOQEHMCEEHDobR7pEGAUxZeLvSYJ0qPFgTbe9T5UNd+S5/Y/oqcyhMB00Bt2y8T8MbTaB+lzvK8aR8v1YHZ/UCTpEnHvwigk/GhyTtbXwFQkzkdbzJTJ6u9BdF2xmjyFMAWWlrkhpm5FHBEb7VgGW+LIFIqKe2d31Qf9BzIfslRaEuuJj5ms5910LMFXmjovgkWbT3PCURLx58SeH/yoBsAWs94W0jMgCOP4Dt4L1vJDNFUS5IHB/YObr1G3h8wEoM4wWUgR8buYYfLi0v06xUoA45N2naIKeMQRxx2jJgDYmb0q+rYlIk1TF8lFi2rYxWrTYEXOCOA0OWElXPonRMgruzMnDcTUzHeBxIcZQQn0TpE08/iUEkSY/SQgYfEuB8SdqNswcKLNt7s0QnV9tH5ADgv5Rwh5YT9MAjATgBnjUPODvuYMWZgdARxXDJoRMWUQiP2QtahoDkD+mYWUpUiNm1ncZMtrsoZ7c/Sb9iINwTEcBJNypu13uShE3BMFHQcppKzRVhJWcC2ZSuVbKfiwCvmPYwYGTFDtOopaz9Kv7daBmO2AmgyWE0R3Pz12vc1INz0RWu6MUmbq98t8Y0QUZ4A7irwtDio7irMt5DnfT8H4ac04Kzcrx0jagi2fM+N09Kce8zrQp0rDbGkZsza5ztUkM9c/QKsRAXg1bETkNjLh8NBBHBmsffdHyoNajVMGglmtVoJkA4BXd+hC10Zm5FYTFfGERW8CID0jkAuq2Zd7l/1K4CgMczbcWhiSMMYtGrJBf2U/ig8sZn7AuCPw9YJFSJI9l0V1FkUAa6pq5auzEux+oR5/Vwm285p27Wyoypx52Be6BMYgKtCdULAX16t8d98/Q3+H//hA4Jb47/9zef4/nGPf/zpLfL6El9+9SVWXY/D4YAff/wRpjlmZhx2exz2e6HfXQcEdUAkQlit5NkXF7i9vS3A2JyBt09PuPvwofSJ9x7r9RpXVxsB9jZ3bCxnoBpAERTtfhPyTmuzz/Wr0UXpU2bg7u4ORITr6+tJn1ftZvsh/xcVA1Whp0QMAqHzAU8xAsR4uLvH/f0DVuu1CoSxvjd8EQBsnJOB7sZRrYLYhi5PBLapoFdbSvqeU0A9P4404U1/tvSGidoN26N7588o9TR1Ny9SwL/dY/KQ8QhTolTTEBZqQdVEro7tgqkgbPf0GGS3900+j3oHzXkD3O1JLt+XAemczp8+ngO+LYgW/muRz0xom7KEWh/Nfi+0cknQPdualwP1U8cnD7qZgTSI45MNPIOQE5BGANmDkyTfyAkAWRQAmQ3kHNiR2CBzRmACMnDYHnDYRYRwAd8FEEVk0gjXGUh5RE7A/jHW1NY5IwtCR/ZcBQAQ2MCV8oqsTo4gYfQRwJAz9uwQsgDvtTI3kyRJwW2GbLMxmgQOSjYDM3KOiCljNzIeD4ztIAl54ADPsmg9RFNuNYIZfSdbfAcl5ilm7IaxbLswCOQ9UuiwzYy7ccSBfAlZKPHCqWTODJwRGOgZuNLcmrYRZeBqBtcWV7fZex6BgYUFceocKwNotbu19uXjSCAwCkUk803IV8n0Z1Em7FkCnBWQZ2jUFbE1jxmIiTHEpCEs1fmPCcxUUgxHNcUpMWlIw7G17TegDsMWU0A8J7xE6szHpN7o8o61jApI+jxSYeo5Yg7gSCM2J96VIE0Bd9ProLI9KZ+mQywOr8/Y9LWgtzl5dI5QhQ+7xzV1kAIsx4zQdcX5inPG+uICnJTIz7Tk1aFLiH5mxtN2VyQ+Ewwk3rlDHxz6LsB3kk3Th16AlKAOOCd+K5XJylt4J5pci1vuNZGQ2aEb4Gcm2Q00sNBwIDLEBda+qLnq2eiV4O2SeKoIJUcjZ/+32mdbJYsDVROZYcbM5uNVQFUzt4CyXTwH9VPTAGsc1TVKAZ0j9HhCx1tgBC78NcJlxl/++V+h29yg71dggoY35ZKN9927d9hut3h4eMD9w72aHHVYr9diVqKp6isAZnjvsdlssNlsQGQRe0QrPo4jhuGAd+/eIyUR7oLGku/7Hvf390gpYbVa4fLyEl2n5kkhLO58TcbkhQJOo4MAmEsMc9/sEh2v4eODUYVcB+FPjhhpHMDjCA9GihH73Q5xGHF1eQX2jBgHsNJK+c9NnlXyWMzBqyo6ODMSV9MpRhPusb4lbGd0Ctob7fiCIF/KnHhnZ7HqdR2VkLa2DgoOWKi3PmAGuCXEqSvg2pVPa2errBBaOrXVPwW4i5Z7IikcA2Cj//XqfMXb8090zJmLRE6X+AwBvEAAAqNGo7EINNn6mqaRZcr9Z9r4M46l6v5YsG3HJw+6lXIVoirh4zSixcgYI2vcVYeUxPA7W4gqjafnOcCxQzb1Y1YikxzSoIsxBDiSrHQr78A+Y3/YY79LyAfC5e0aq8sO7BLYJ4h3pGaXIxKtZUMszPHCAueBNMoJMyJlRHYYQegg5icdeUn+owAyQpPccEaCw8iMbc5wGloojhmHIWM7ZEgGXweQvLMnh8BOIqw4YbT7cZRYycMAH4Jo1nMWJzQW580IRvKEvQfeDwdkD/QcJGazs1CDEkLNk0NHwCWAFQMbFpMcS33TLmWilqiXHtESc5CMRqqeSurljiXgTgKKwacB4/E9y5I40bRB7ljMbwhihRv2/EKf7T1ZJPOYLOShRGWJOWMfE4ao5ixctTxCWCoxN4vfVICR9XIobWu1FqT9JCYuC++qIIugIaQW+5XrSM41YQv91parfTQvw7PPWo6oPf0yMGE1VS3awp3anhJDf9ZWA9s026onLz4BzIzOAME8fBRz0UqyAvESDpEZKSakFLHf78Wm1RHg1CzFOTgnUVJW/UpM5RRoOXKq3WXVfFW3RXI1oZDYd3qsgkffeWHMTv+adVT+r8Ov4ElF3iK46nWahgkkLQ+aAm4wF8Fm2uUVVBdBoBmPo7kzE5gYVSgwJ0rSe7kRKmxtGCCytnU5458/DPjfhRX+7//u1xhxjX++32G3ucDnr14DrtPxzxKjGAyEDlh12O964PUtvvnlL5FBGKMkNRmHEdunR9zdRQAM7zw6Bc59302S7hjw6fuAVd8BV5vSLwLCB+z3e8QY8erVqzI/29T0WOjXo9U0E0bmx9IqyjljHEdcXl6WOuzeNmLDxHRjBlpNEZDiiMf7O/z43R9wf3+HOA4AxLzkf/yf/kfcvHqFr37xJV6/eYO+73XdMMCpGb/pu7TvlHRSshNfpzaiTdumNv5460g6mb+zuqfPkvnfziuqV6wwTEQ41nQ3vd2CfRyPkbRRnCHnTrnHSiPt80aYJxJB4EjxUMoDdCQFz5Qq9jdnvO0znztOllEOVLpjKtzIZ5PYSk01bRe5djcvPGcq4PwpjlN1/alA9vz45EE3gSRNNStBZSCNEdvtQULspCwOEt5JzhtHxT7aRUKOQMgePfU4DBFuYHh2yCAMdzsMAyM62ep3TkCqA5BiRIwj0piwf0p4vNvi+uYKN69uQD0QuwHZRzHVUKLAqo1n0uhZxCWqDilDY92kAxiZPAZd6A5ZGatcDaqVcyB0IPQgEDMOOWMbE8aYMcSMQ8xImvTCk8Qw9iAEBcYOEhLHqZZuOBzQrVaIEDtvYR9qiOIA6jy48xgIOIDAuSbacfoSzgEdMTIRLoSSyTMAiLa7OnMWoDADfefZw3EZOnFNiKPZmZ8AmKfm1plybdtFZmoIX9OAqebATEkKFCiaS8soCobYfqvwkZSImPlKG7M8pqSfsrNxyFkj1CjRYkJiByCILb8yKAmxySjhDslmVW28MCQ56yTMTnGObbt6AtpoYRRm+67CwHlS6qVHm4V1fn8ruLVmKHMNnYVv/BiC2SZYaQGimaJYlA+ChfZrAKD+Bf1t7Sh/OWtCFk1drtq+lBkxjhAGnsH8hGK65ZyENA0S4jAEj77vxc/Di/13Ioa4OWtoMTImqlvQXn1CNGyi8x5d8Co8a8EGgbeYwUbBNGFtvxRIooK6XS+fqEJQyzRbEyBUzLwg8LIpwRVAA2W7ZgbejwGUzB1mRhc88OpX+O8ffsDXIyEOI77br7D5xZ/Jjp/SLdP8z6mKD5KUKYPQeQdeAbyp42vANWmOiO3TU4kzDzD6vsfFxQVW/ao6PXoRhkzLvdlsptElmmRhOWXkmAA39dnACYfJjzmKWcMMVC+B3rZsa9rgAIzDgH/4z3+Ltz/9iPFwQI4jzJQtsUTLenp6wg8/fI/Q9Xjz+Rf467/+awTvjRkeC2s2kPr9SGus91k7LIrRbrcDgEmIUKeO0Uc7I3oUW+vSmMYGHI2ZYRHmpJizsnq/tXNuHuedReKvgLo1HxG5apru3WjnRBEBqtFnjGfxDDS3IF3/m9LrmVlK087K6z5+XrVZueVErZxNSFKe1obiM8VS6T+7tz2OJYfS+Jdwlo/hAYtKg2fqrf25NJFP3//Jg26AgBwgFmUy03KKuL97RM6yRexDB9855OxASaVGHVhigieP4AL2kZGHDJcJ5BzyISO7hNE5MFXI6IjhOIDYgXICp4jDISLuD+DDHpevN8irHikoSCaAfQJ1CewlgQ8p+Gantsa6CByyaIpBcCxAmyGabYaG3IOAbiIBz2tyWJGAIyLC4Bz2LKA7pQxHDp0y1b736JyAb1IbxyGnCZFCzsjkEDOQWGzGjZCt1xth0N7LlnMJq8Ia/EU1ApSFqBEQFDQaL2+h28dsjRYYcFKCPwXVjzXiz2m7n9fYTttE9Skn6pgLBtNrFbgCPQFmvlKFMIXlmvijEnIj/2LvP6g5g2T4BHaDwz6JSYvY4bOGuhMBr4SenGgfTOwzwiAaT1Zq1up6qq7IRAcjzQK455uyNB+IhaMw9xPjKW2b9qG10wSGo7oaQmjMaHGbd1aracnQ3NPac8IL2HOz5DQF2OtfC/Tb+jlnOHQCzNWkyJh1Tgk5p8KYxGRJxnyIGfshQkVfOKpOVc5RybBJztXkLt5phJcEIrN1HIr2zzkZS9PIdrq758iJM6dpVwvDJxUSbZy5fiOANLdAEUAb6Go6dOj3jOnqKWLZEehu8bWMxySbLiowOmX+lEFwweHXf/PXyPxrwAF9dvjzFJSO5doWU6c39Yr9tBcbe5K1mXIVBqz9q9UKzIybm5syb8y2+3A4YLfb4fHhESEEXF1doe9XCF0oId+OFBCuprkH1WhKxQQjW+bCdg0YXSHV2Dd9Oa19cjjnjkKmTceh2hWX+k241b+nx0c8Pj3icDggjZJEx5Fpm4Gs4QRTSui7FV7d3pb7BbdOwb0MRxWubC3Isq9roy3vnMNqtcJ6vQZRdYKNMYJjFF6ibQ+qVW4FSKmzMavg9qP5n0VDT5iawmjn6PAxyHkRnnU3qt0hbP9aZUExH4GCbqpCIJGNxWxsoOvtJJDmSXngvJkS7NkvOuo6NGGj9BHXnb+cstK4PBPabQ7NaPxLkPQzx8/XTp+/72h9tPd85CM/fdDNBB46sIsgx3COsOodPAUMwx593+Hi4gqrzUaichCpxi/DB4fgHUImjOkJfUpAjGCOSPAI/StgFQAiJKipmfLRJGfAJCHCAgUgEe4/7HA4JHSXAdSTpJr2+rci9BcEv/JgTUstMZydap7FLsvrb9N+CsyiCVEx4NA5iXgSdH0FOKx8wN4zfBBW1vmAi77DunNYBYmm4EiT5XAGJ0IXxBaUiQAn9tdwBIQO7GWBBB8QfI/eB1yGFTarFRwlZBaRgDJAmeAz4DOwXgH9hUfHCYGcaOwaRlLYwpnFtLTlder6uXNLZf4oTbdIIZP4//OtuJYwGtGa1FQ4NBfib+9oGtmshJOO6gcqQ622vpcN0weAEQ5RhUXKhDFl7OKoNuSM/ZAQMyHmujVrpg+FgREhgZA0LGUqIH0KWpkMeKm2ZyppNODeXpsrgmr6vIYtQ2Gu9rbnxoxLlIrjiCoFZLda13YuLrWj0eK12+u2LW0RQpglFvbxlvJ0q3vedmYJ+VXqcU6UAXIRUHvamrFT2i/mc8fxZOUaI8eMGPfYbneFZtSoKhIZxWvUDTNX8N6h5CYZRgAMB6dASnfKvPjGuCAAru96OPJFISHgRf1rlvjNbOi4KdQKY8wojsPTPqu1ebIAijSbQtQIFHbO7IM1jnTBQk40w1IhyB87aB6bUEhErBgldKS1ailBTasZNVOCngPWqx58dSVRcZKE0TOkmWJETkmSvTlJwNaaRNi8JRIzwfkaBFqbZwGCYiutmnFonG5A664gFxAlijls7nY7XF9fT9bQkqmDHZmnbSlzUkFWcayH7NiBPFahR79a4fXrN/jss8+KDXntwmYtARMB2Hhx6WvVKE6GkKbCnIVztIgsUds2xIjdbtfE6g/FO9fWrmsVHiZeNgJP2UkjNbXUBSVRiqzP6loRet/yh/mcbYB3c88Eh05xtdxZ+EXZP217dEHxYe2yOk/RWF6or7nK1axOsoEqsObZOOaqjJnscDFPFC3zFfUnwNyTtgJL77qMkCcgetYSLn2quKBIje3zXt76Tx90ZwIOnXoVZVBH4DSAMyOOEY4SLi+uENYXSCzRIzizKUUAZvhMGO6f4PcDkDMYktji5rMb+M0Foifdns8AJ9j+PaeEPEbwCCB5IBIOe8mMxTsGRgIFILsMhIx18Oipg8sJRMn2+ZWAkpqvmE20pWZHkfpJtSmJWUKMQe29vUMPdVpxDn0gXPTK6HsU0H3VBVyQ2XELwdlnh+w9xtUKT8Mg5iROFqt3DqvLNch5PHx4BAUH9B3IBQTqcOHX8D4h5gNiGvHTDz9i+3aLvMvoM/A3f/YVrn/1JS6Q0GMsDnHAMYA6j3+pmdSzK2du/LnX7PpZbTfVcHU0u2/pObXsgt3zHIwpqLO46wV8NiARmAETquWsDEMVsc6iyhCYPW5Q7RkzJJJMygyCZGsdo2T0tK3smDL2+jfqXwYVvwToZyaHSITEGkpuhrm1gYWBmmZj2mcORDwhfRON3wJ4bSovzLcWkZ4omlHtl7bPW1bSmqK0wLvVnNmRlcmIRokluVbDqJe0hBNtuNVPjU2ybTnPytm7A8KofFvfDOSrikmcrWfgPA0jDjzYy5b7xF5cteEqgAdNgW4xf+XdGOx01805ePIABTWLMFCvGfKINKFHBT722Wwaz+S3U+PbzoO692NaxXqLjOa0CjtHpSxZLbM1BQiYnc+/VmjquoBxHErGPpgWElXUbt/2lIkGswNFEWTKGHHWOZyRkyQ3E6FH+rGEAVQA51DntdRbH80gcMD02Qp6xH8oCQ3g6nvgnUR6sQQsQE2mMx+HFrjMNX3D4YCHhwdcXl7i/u4OYMt8quaIjnD76jVevXqFp90WmYD3Hz4ghIAYI66vr9F1XamvxtjG5NncLl5uZpe1pwHdRxr7Rpjx3oNDULNRiQ0em1jnXdej07VggkOZjaRKNVKfJp3zNhvaedvSvAqOK3Nr6ZaZLJaZRDONNhoaO7kPaCMZLR3LYPN05JuJ8Mh1h9VMQ2KK1URk3s9HX231sm4kcemXhVs++nhem/3ck6bn2p4y5cd8lc+fefz7mSY1x6cPupngxh6cEshLRkhkwtXVFYZDRBwTKDt4DogpA8mIr3RMihFxNyDu9kCKoq31wKs3t3h1e4XcBQzEmiojA+xhqhJmwGeCj4Q8AvkApFXCOIqNLTPAGRLyq3dYXwBdH8FukCQYBrohIFsANCGYkxQTOEmmRAtNRyyRQQiEQF61HWKnPsAyQRL6EMQBjgnBeVx0HhtHuFAwn6CElTMOCto4BHkeSOOZA9Q5eO4Q1p1ELnGSnTPngDQ6+OzQqYaMYsCH7x+Rnxg4DOieRvT7EV9dO1y8XoM8ANUVnNIi21ba0iQ13jwH7EflXgConyu3VKZ+N23TMcNeqrdqNY7B3anyRpgrLZ22xwhtodfU1kOFGJsGvOjdCSASs59G8oRtXYrGY4XUOqoTicMYS/jDwxARY0ZMjJiTRGNJCdvI+JAyDixrhcCawVV7jY/tYwVM1jKOaouOjqn68uRhRbjh0k5fdWqywg0TWKikmYRz4MUs2vxixSwnJox9DtqtytKshpHNNfLzz7YPihaxvmQB5RPgrQAhpySg2YAKGuZpIRFT1jjkPBGOnMa57rxH14n9NwUqIeokX+840cQSkTp76i6eatedd/CaO6GmTTftoYy4K3OyHaXpmi8xSLgFIU2HntSJTdfsYinSXcXZ6XYMzAzBzDiYuYDfKYOuz21/l10LAF2ARmBQEMNqzsCoyWBUeAKLIsnWi9NkUM5X0x97P6crnlnN/uzdzeQr55JbgDmrQ29C0jq89zgcDthut7i6uprM0dpVNJmHZTcoJdy/f4+Huw+i3VZn1L7rcHV1ha+//ho5Z+x2O4Suw29+8Ze4ff0aXddJRtC7O+z3e7x+/bqYhQzDgP3hgGEYMUYxSTAgegzEq9A+0aSizvt5ORv7EAJ8ENjTpaR02JeY6jbGDDS216bwkD+b9wUwT0C3Ultq8irOgPN8DZS53wLwpl5MS854AU8u06QSmi+1I77LzCVHRSxRmpJmha07D8fsullDs2a2819f5OjupvTJ1Xx6nVuLPh66/xzzkyXAPVW0SHteWvUnD7pzytg/HEABYJ+w2jhcXV9ive4RXI/37+5x2B7gaQUHCcdn6T5zzkjjAfkwYuXEaZGZkRODEmN42oG7Dtl7kPPq4GGMi5GUWA1DRB4YPDjEfUKKSeOJEsg7CTnmHVYdwbsMeI/ssySYICoEURayQyAHzxqlhFmT8ojzHKmmw7sAIo/IDpxMK86SQTOL7feKxJ6zcx5rIqwY6CA0m3VhG+FgqMMYCINpysiJtE/AxeUaIA9iQk6M3WGA7yTOue8CMo+IQ8YYHTg59Ex49/Ye//7DT/jrr6/w5t/9bxCINfHQHNDShOgY4Tg6DEi2p34G+H4J6D5VrtVKyO+GkD1Tf8uUz2rRF+pYKt+G+TtdviJzIqhPAjUEuCZUMm2DJ8AVAQnl/jURCA5YV7LAEMGSmfEYM/5u+4ifhidwjpINMEOER5ZPyiSOzVkcHonFsbeOrDDCZMyJa2ebRlh+TNsMHDPYMjYGaGqPTIB5PjEPCri1506ErCkzm2I+KslbiAEzd8nFIAIV2BGqI+YJoN3+NgA6PybnrB4D+7plX/qHq425lWn/JslHuMad3x4O2oZcgBlAmoQsIIROQxaGah7h3ITGAEk0tmQhE4M6gwYE79EH04y3W/K03PeaUl7KtIBBe2kBd9hhgKddV5O503xaX9nRdx0cakzkdl65hblU7221tTT9rj9IhZ3Moo0WswUFx5qwDBkFjCdmsY22d9G5SNY+53TLP0204E4dNsv7r2p7U0roug7jOOLt27eT+N+W9dVp3TIMtnsADMOAv/+7v8PD/R0uViusLzf4m7/5G1xfXeFys0Hf93h4eMD3332HN599hi+++AKryw2o0ax/+eWX2Gw2ePv2Ld6+fYuLiwvc3Nzg9atXiDHi/Yd7bPf7Y1rQ9Hft8TrW850nW7LMjYkWzDTEacx0V3YZTEicmz6RMi9qmJP5aBn9ND8Xmt1r82bKG6bz59Tu6fG1eSIknv5W8z9wuxuns9KwT64ZfMvaV2E845jGtn35scfSPTT5PFfrOafO5wH3Esk/BbiXzi/tXp7/Pn3gOXD/yYNuzozh8QC4CNcl3F7e4Ha9QkaPAIft/Q7bhyd49HCuQ0pAHEQbzTGB0h4YD6DEQMrgKOlsD/cH3HcPyK4De/HuJ+8ligMn3VrOGOKAnCLG/ShOmpGK3acnBx8CXO8R6AIOIzwBngKAJPG2WdzZzN41j0B2AJGGzlMQLUEOxDQmdB6WMCerthE5AaoZSVkWUvYAAqMnIHDQCAYaWk4ZQASwBeOJgAMRkmOAYwEKxgRCFwAIoB73HrsPIx7GPT70DlfXHtkdkBPj+tU1BhrhHjMwZrAHnA/SFw4AxWOiwQZD7OTShJyeO0eInjs319o8B84Xvxfs3YKB59rG09VeBK6jJxcmVgHzAoCn02C7Bd3mAAkA3JpuUG25FOfybnWzvLlOJ95NwlhgQxEu7BFpB48MMMFnB0uD6gmgREijakqywzo7XDLpvPSQ/HTiBBohuyrCJMw0hAoDsMNipAuAbXvR/m8cnLSWwq9hetZyw2RMyU0BNytzmvezMfoKYmEPkGdnjefbon1GAecFuDf9OtWSL4O5I9Co6JP0083qKIKE3a9tKYl/9J4WbBZgYi9lQDALAI+RcRhGgHeF9tnc7DQySggeXd/BqzMgKeh2Lha7ZRAhaIhE530xbxFH0KDlNYJUu4zQjMVC7OG2c61fDOhYPwBt1JbKtq26NvZ9sYNvQv+h3oqi0SxzbDJCpd95elHu1ckg46Bx+3MTO72MJxWQlLIogBhNkhCWCCdxSBiHEcER+r7XaCeasVCFqzkBMufD25sbfP/DD+Ccxd+HZWcEREgxNr2ciw1zHwK+/upLEDJ+9atf4vXr10VLTwD2uz3evXuHmBIeHx+x3e3wzZ//Ga6ursr77fd73N/f47vvvhNb8CYiS9f3ePPmc6Wd0Ayv06Ods2Xdz/qvdd6zuWg7NN65snMj16Cfc1B7gu4eOSliMk8m53W+GHAXGmzfp2Un86Scc7PzSiWbeVx+q7N3ZtVem+CWNCNvTIW+zTkwzz9fqrZ95lharS+/c+mOl7frOTB97vcpcH3umM6F02/7yYNuMAt4dhlv3tzim8/eIKxGRGakuMJFWGG3H4EoSWvibsT+6YAcJUwX4gAethj3o3hX5yymHfuE8f0e2SckcshwoiFWTsmAmn1kMBI4sWaurHSMiZC9h+cOnl/DJYZLI3rnsfIeGSMOacSorB9ZCUmSrJYCeLMwuZSRozC0iIxdGhAgyXOIM4IXYeCQRZ/mvEjlvYM4CJF47ScSwJJZ7NuHnLBNCVtmjN4BmeFzAmdCzgBnAuAgnpoOcQ8cniLiI4G2wI73eHx/wOsvLvDm1RvcXgH5i4yf/vFbbN/dY58j/HolTmLE0NR400lHFdwpCjga5rlmAFgmYvN7Tm2LHtX5DGg/qkPJ5VRjViXs42fKXazfJ7bayqQttoDdas6IRUF1BPyn3H4CAIzxY9q3BDUbsrbAog6YeYm8lbVNmiCM5KwGnyDRFYjhSDQjTLrbQ2aDSgBlaDwcdI7wOTl8BUJgYITHyMCoKdij7/CYAx62sqXsnUfXrQHvcdC+ceSQnMdIqi3Mdt7aaMhWttkTaqKnFpAXkDWB6jqHwGVKtuNo5ay/MwPQ6AwFHBn4dQA3EU5Apr2mal7QzNWleTvXgs/nw3zrvI7NsRlAqX9WlweOkuC0yU5Mc95qxV3zzBbQMDOGMUqmTbb5l+GcL46dq9VKYxKjaLsN+woA8hr+TBw5yYkZXggB5CXiROi6EkrROUuB3fQl2TzXkaJ2BOu6KONLDfCY9bEn0YAWxYp3cJRLvZPx0tnlJg6PzcxR1M3t3NKp5hiSqI3dbFxzBfNMmqiNEVljGVv/q+9S13lc9AKYYYArxhIlxxI02fosfwCuLi+xvbzETz/+iK+++grr9brMm5xTaa/RiuDEfOhw2JVIOTHGAmpzztgd9vjwcI/7+3sMwwAQ4fUXn2Oz2Uy1zTo/UkqT95cwqQne+2LiYNeq3XcF3cw80XS3NKwIfzpvWtv1NmwfaLqDYbS1UAoSajrdkZnRcio3VIGP6hyoZZcB2WlFTnt+CkSZSYE1V3Ado4RS1uRMmStteylc/bmA+xSQ/ziwXYXZ0y3mn9XG+Y7fc2VfetTERnVOnHvnTx50M4AYD3j1ZoNf/vJrXFyQOI4xY3i6x+Fxj1V/gcAeyA6UHTiSqHgjgRMBIyGPWbVxTjIqMoPiCJcJmZxsAc+eLQ5NsnEtob8Az+bgw0oUIgI59Ay40YEoSIQV8ojMGOOITrUEyAxm2ZZP9jznVPqUtokNpGjOEhieHPp+jVUfQJSBccQhjmJf6kRyhwNGEQ2KM2Niuf8xRTykiAEZwQEdAx05JCIMynwjGA4BlDpsHxPGx4y4Y9AuI+eENCZcXQPXV7egTp7x49tvkcaAX331Jb76zTdA51C13A2D4tZrulDwo3Gea/QKKGxKV+BrZ6eRJ5aOU0By6bnz3/om+v14JZ0jnq0mom7/LW0xntCQtPcr4efSqmldzd3l/JLUXaIZmGRQX7LWP7t/2iaN526RPDS7JjiDGGq2lUDMCCC8hsPnlLEBwcFhxUDMEdvdFn6MoG6FuI348bu32O0P8KFD31+gW61UcNSxXq0Rg0TSCD6AgkcIHUIXdB7LepS49ozkCJGLiFOAg8WdBlotpV6x+LgsgI0h4NTpJzNL9litjwGNRq99Z5rJJYLuCC5LqLpTx9z8xM5NRrddI89ca+fPBFzavOFmNi2A86ItPtLA8iSLYXutfld/gDjicBhKfxWNY3HKDCXJj6VHD95JuFOSKFROQ58SoEDPqWmAmbvo/b5mwBNAVd9vukwN9FHzq2rWCaIxtj50art+tNZLVtVqPljrX0Dn7WXtjzpnzLlSWiB9KWFcOcs68JyQTZNZ0l/Ld+JGIFJtddadipK4SZvAM/B9fX2N7XaL9+/e4euvvkLOGT/++CNyTvj666+wXq9K/4OBcRjx+PiIi4sLOOdKbPL9fo+nx0f89PYtvPf467/5G3z/3Xd4/+FDtQvmuuMSVZNu9djKkGQxQtvbBFTlfuv+5pNm79T+GRhqY52b0FGVDShjWMmyKU3qGqlz6Zg2zmOnn+RLhY3M58mMb5a5IGVzMZlN6tCYEGMqmY2txnLk2e8XHOc0w+d47KT8ifMfC7wX6y7tO93O+e+fo7EGzr8vzeaSnq3YR36ePD550C3EKOLLr17j4tIDNIJAGPYjvv/dj3i62+HyssfKAUAGhiRRQLKAa5DHmBl5zKDMADkkFoLOKSHzCIZDiTVpS0InOyHDIQFQjU/OsNBwxAznPVY+Y/fwHm7wCBtgfdFjF6NqpNfwUMBCArojEsYkKeeFABNgmeTIaVgnS4ud0IcewXkQefQeGJIENASJvWoyZg3RpjJruEAI0OizxPJerXpceo+V2m0/DhFPKWEAgOyweyKkB4D2BDckpMMBSBGcMh4fdhiGjKtNj5R3uPn8Em++uMJ/9es/x03IIB5AmnTeCJl0p0r7M5OSc2B3dqEZFSjxO9YCHBPDSSUL5+xKBZ80/TIF3UXtc77d57TsczBrDjdH/HxGsFsJuhJmapta75vdf1QXqPg1Hrdn9v4zAcSTQxwzQpJ6EmsapCxgW8KaMAIz1uRwA+CKLZlEAqeM3dMW4zAgdAG7/R4ffvwJ+ekJKyL4FOGHiLy/r6nWU8LIDgf2yqYcyHt0XQ8fJLV6f7FBv7nAGDzIkZot9CAfwM5Wr7xDZpLEVUBNg24vaOtRx7oktoJphyujJILYiaE6UVos6uIISPotSyIpMuQyG7O5mUnL6Obfl4D5Ke355LfGJ6ZZvW25U0xpydymPUwr3P6eM+v2HTMz9ocBEMpTTBoslnKnNuDeueL05oJqxYk01B7BUQCRAGjvJSxq33XwloCm64qml2wnrkJbuVfBMxmdApU45pYt0ED3BFjT9P3kTmp2niqIY9gaqHNINO1O+VsNGVkEGMm2BlbAFdii6bR9mcWvolyrILWCDs3ebKYGjdNmZkZwDteXl3j//j2cgvDLy0tcrFdwYIzDAUH7lIiw228xjiNub2+x2+1wd3eHzWaD9XqNq+trvH33TuJ2p4Svvv4av/jmG1xeXorWu5lL2+0WOeeSFRNExfFzGAbVgvORMOiAqWmIRgMqwNgJjYCtN6r+BZXe1TVsP21H8Jiet99tN6+ZBu26aHjIy5RBpOulrn0B1BEpmb11nCSVadepCSHzfAc/R1H9nNnFn/J4Sd3HZep8fg50v0STDZzHIC9R5B3/XsYm8+PTB90gbDZrrC86AAkgkfR++8+/xw9/eAtOawzMeDjs4HxAShk8ZpH0chYnkCwp4L1QPzhHwswxglyGJSYhBcDmlCV0MCGmEWDZNgenGqPYecB12G8fsYtPWF2u8c2rr+Fch6zAWJLf1CQ6cB4xD7h/epLQgL2H80E0ECygNUcJJ8UZ6IhwvQLWrgMjY+BR47VJNMUhZRBJwh1HJEScGSOLPflBF3NPhKvQ4bbrsSKHlIDgI3j7hI4TRmLcP+2RnhzyPgPjAJcyKGVkStg+RLz96T02t18i9B6//stfwTuG9xnEo2o7zajBRq6gNzvRIhxUEtWM9sJcbTV1FkUA0MU1A4bPgnmqy8K1SnNUQGqK4Op/aIS1akRxlBRkDoJbbZulE2s+ZsB2vuCXQfcS+ObpfbPyk/enadSUJdDdbpsuEp4sTsiAhLUjzuAYQVnti7XmFTv0IIxgxCjC8HZ7QEwZvWqy393d4+3dFi5LFI3gZAcqk4Q7y5rIyeeENUfZEcrQOLCymZWIgNDBrXo5x4zsCCl0kq+RPLjvsV6vsV6v0K9WQN+BfY9MpE6WCoRgKbioAPUSJQKs6cjVfIct/TlB9pTauVz71+5zzqzNUScYt2MHlMl3fLmM5xwAtwx4fn1+vFRbdeqQ+u1XfV4b27n9feqZx5rxqgHNAIZxxKFkd2wAjWXkdCRAkCSBjffV/tp7J2PWgLLgHULo0HVB07V7CcnqRbPuq5obgBMfFR8g28ZezTOKwRgmSgVrX3GkarTmtk6hs6sk4hH51KgDQU1MUAEzG95kYTOcCbnsMJl8S3VNQK9nA+1aD7SMZbJtHOjsWV988TkuLzf49tvfYhgO+MXXXyN4h8wJHBlew/ztdjs8PDzg4uICfd9jtVpJ1s3VCiEEvHv3DuM4IueMd+/e4csvv8R6vS4mJIBosrfbLe7u7nB7e4vr6+uJpru8f2Z4jcduNAuYAu4yxtbzrlFINB8FdDc0l5rxsbEtILwM7JwuN0AdNuYz0E0iMFVQXRexTHGhNTkzUooFWFsftQB76TiKlb5Yavn4lwTS7SFsaQbin7nnpaD/HKBeOr+EB04pEMpvXlCutc9ZOFfreL6PP3nQ7Rzjqy9vcXnRgWgEiPHu3R1+/7sfEQ/itMiDQ4wAHIuNMvvieAhOkv1RF4mNi2zBRVQ7ZD3fahL0BHEWgqgsmcGNVJzRrzxuvrjGZ9+8Qr/xyCkj5YDENS28TYiUGY+7AQ/biNVlpyYiWZOkOFBm5OwQ9yNcBFwI6K479PAYc0YasmR/JkiIRPFnFBtvXeQpZ42KkhFzBsGhcw5rEFwGIglkCp4Q2CFBNJYcR+RdAPYRYRgEYPGIFAeMj3s8vPWgv/pSaE3n1aZX7hYNdz7STAANilVhpUKSeggdO68N15NH1w2UU1PGaqq6yVl5YJrCtiHW5RHOYJNdMxg2LW/f589pIOwU3JJeoXn76v3UvIO92zEwnz9v+ntRcm8B+fQmzFu9dISY4GNC0nTdnGVniXSL3LNDRx49HBwDu8RI4wg/JmQidKs1hpTw8PiId+/vMMYsWf8SIeaEgUdkSGQHczJuzTZIO81sFSVkWULKI5zX6CwskX3GnLEdRhxSRnQOQx8wrjq44JF9h9F7dBcKxLsAt+oQvFwfnZidRe4AEu24Yw+QR2YCKGksc276LGkoxWlWUQmTKBraGvu8RhYQcKV32DQTZC+ZMG3enGAqp7aFT4HsJc32krnK0tZy/bowt3A8F5977tLzK/DKpQ9Nq5diFC3tbl+SvIg2WgB58AGh8yVyhzlEmkmM2YQHddZc9T1WfVDtuJi5OC9zZ0gZ5Dul9UrjnID/YuOrfdGufaMyE+HXhlaRtCulmiGHCh9c50Y1zYCaJ6odM+cCwoVnVRMnS07Sgvda1ilf9GojLeVCuMJf/fVf4Lff/hb/5R/+C17d3ODm5rqE9Nvtdvjw4QPevn2Lp6cnPDw8iOOm9umXX36J7XaL6+tr3Nzc4PHxEe/evcPV1RVubm5KtJT7+3s8Pj7i9evXWK1W1aZ7piBwtuurewcNsVNyW3cJi5Z6liq9HY+pIDTbuZlWP733hAKjAjQAk2yPgicsGU2b9nyMEVGFktRqr+udBXO0B5/4Xk8eO0ZqKxfPfszxMYJ6y9VfAu/P0Z8l85ClsvNdvvJXC0x6oYznUvutrjlv/BMfnzzoDp3Dm8828F0COeAQB/z07j22u4QuXMKlDj31IHjkJMRFEqYl3YoijEgARwBRwC1LOnaRr03LgMnWnakQGEATklMXEwMeCBvgzVfX+OVf/AL9lTgTjswYDiMenp6QmbG+WKPrPcaYMI4ZwyHhu5/ukRzhq6srwI1IPglQzBnggJw9xiGiHyWxT4eAGBlDTBj2ozhDkjhNjpotMrPE8k4QgDJmhs8MymJf25EHESNTEhU5MobDgBQToHFgCRmH7R6rCPjEcJxAiHA5wiGi5whPZvbitIcBge0AGiBpjKgSTBNuKhCdHDTFsfNjDrBnt05AaasZaY+l8zy7z+qvMVYbsIwpGJ6D+DlcnZqmzJ49/04AkI8JewPol7XfrlRR+mLGOI7vWeAws/PzNMJC6MQ2GVnMrsCAy1llJTHH6ABcw+EmJoCAt4+PyDHhs4trDOOAw9MWj49PuHt4wNN2ADS2d0IS7V2jgWsFEgNhBngEiGtEjsyIaJzdNIpI5wg364BhHJB5BKURXbRY/SIU+D3Ddw7ZO/h1h/5ig4vLFagngBmReuROhGNwhwyHEQGcPXJ2GJgQKQCcS6z/RKbVlHmfm9B35nIn3Tlxgy1acLZ31JnVRmeow0YFrS0xoeeOU6Yqi/PhmTo+9lhaDxONvSUomWn1Sjmu4LMAy8wYY8IwjsC+asNE++01S6eH009vGvC9RJwikgSFBsq+++5HMHnc3NxgterQd6Ip77qAVd+Ldr0weFkvrkmoJc9u3lnPOi5UZoKtTFHOzqOEEETDjzKLUknf13MWRYm+ezaWpaAbqCYnmSHKHK2X1M/G2mKmLn0X8G/+5q/xcH+Pt2/f4ne/+11Jm55UwBljwuPjFgzCxeYSl5eX6PseY8zY7wdcXl3j8uoa1zevEOOIh/s7/OEPf0BKCUSEi4sLfPbZZ1itVprSvmqubbza746NBDYCjrGUFoCXe6WM3eLa8rM5WMrT8pw83mFsrhnXodrvuTg1jiUJmZmHtGO5xIPs84i/NXTwJUD25xxLgvBL1v5zx7kyS6D6pSYh58bKzIieqWSxL62f6/o9V1PLnZqzRnfO3Pnpg+7g4btR2Fl2+N3vf4ff/u53IFoVgsORTa8kcYIl8DXIJYAikEaxyy6OTA7kNQ4pOzDEg140Uqz0jZGzJuORlQDbQu5WwBe/uMaf/dU32NxeIDmJeZ2YMAwRb9++xzgc8Nnnn+Hq8grkgRQTfnq4w09/uMd+z/CbDsi9SOHMAMnCHIcRuw8H5KcRlDL62w4XoRPtTkxY+YA+SHr3gRkJGQcwDpwxKCDWBPbwzOgYWDlzTpL+IhZP5+9/+AF+3YM6gGPGh7cfwHGjIeCyai/l3Z0SzIEzxpS0vwiRAGQvuwmSJx5Aq8EhpU0Fgh9TQPARsVw6zi6CdjECWNqcWySoS3UfLVxevPfoO6B2wKeJwuTZC6C3vVbBfWHTpW28UI8w/IWt7xPPnQsh0z6xsWraBgjgzqr102g+YGOQjAswXsURayIcmLCPEfuHLQ6PB9y/u0eMGfvDQRkUiQOzChw5c9FsHzEo1WwbSFC0KfPdQpYxFU1mRoJjCWW38gFxZElqNQ7oOgeQmBUQMSiP8Jzgxw59n+DGLRwzHDI6B3h0cD2BnQecF7MUBmJ2GPMKzB7ggMQdDpmwZwdGAEDgBKRMGDmIcyhJpCEmILOTsKBURqPpfTll9udHM19tkc2co+2vP2Yb+WOZ78ccL6nL5v38PVrha3HeF02uhDtst+lzzhNzFds5MRtyb8A8iIbcETAkxof7J6TMAHHRqJvWfNX36PoOfRfQ9z3WfY9136EPQLBY5C0wZLM91gCYk1iS1u/2DtTsgOh8bxIzmcY62xrIVSjNLHJsZoigZ4CduMTUp+aZkz9IhJnXb97gzZs34JwxjGMB3CklPD48InRiWvL69Rv0fV9SyseUsFqt1TSH0Hc9PvvsM9ze3k76vvSlRhcpdI+aqERlbHFG4dDSy3YOVeHnOOb27NNowKz+dhdDGo6CeplrDg9mLiH5YjERKdS69rPNXRvrpbXAfJJ3fdSK/sjlf06r/NJ7P6be555ztKsgJ4sj/EtANfDHCSnP0ipq5sXH3Id/BaDbe8L6MiuA9nBgSX1NXMKDjTGWUH6yjSYa2oQBjg6I4wDmBEcagcQBfQhw1AMUStZHJqiNVYZ5qHCxw4KAdA/82V/8Gf7i3/wK8AlP2x2SZ3Qbj5hHPG4fEILD52++wuXlpTIQ3cYbgbz36NMFaCQcHkb4zgPBAZSQU8RwHxHvE1bZ42rl8PmrS1x0HkQJmYDNRY++D8hgHHLEfTzgnhP2Gls8kUxqD6B3Dj0BF12HPnjRxGi/3t3fYxgOuHl1A+4ZfBiQ9kkc4iIV5gBo1AsN4fSYM7YuwcWMCwCjc0jOKdhmkIZenE/7wkj19wRMNWmZq+0dY2nZTCe1MpC5HdWJhXm0IJYk3oboz+s4TZjb1vCk7EuBd6uNOQbex7bZ8++tlpqtvoKYK+E6dSzW37QpczMiDCBluGyhtjICgAs43DJwTaJpHseE4TBg97TD4z5itx1KNAZzIhbTLTIMfazBVG22MSSLz9O+SQnvhupYlRMj5RHghBA0OlFmHGLEmBwoiJ1u5wHqCN4xXGIgRaRDQooZ3ieJ259HuCQM2vcBIYjmz7PDGkFAtANSyljziEteAe4STB4jCPsxYRwcEnuM6JDQgUIHphUSXDHQytRpJCUuAk+NplLfuGy5z8b/pUzTyv4pQPqf4phr21vgbceSNn4CvkrCHX8soRhwRc2wlzSqR04JMUaMwwCMZp6RMRwOeNr+gPurCzgnCXOCD+i6XsIYhlBCIxIRgg/q0An0fcCq67Bar3C5uUTfd+g8oe+8hkxkMBLgs46xTX4db6ayJtp3NmFTFFBZBV4CezXFYg0DyxIdCyzmWaSmYEnCbhVyKTsoFkEFZRfB+gwkTqWkgosjh8vLK3z15Zf4+7//e7z96Sf8+Z//OV6/fl3GIoRQ5pZzBDBNk/QQibOrOsgSLGlbI9g3dPkolfps3LV4JW0N3aPZvZVmm/bb2tQKd3Ld5HqLGhLjWNKgp5RLgimgsbOe0deJFnd2/dSK+1OsRJ7+97J7PhIYt2VOlT0S4JsWLSmc7HN+bSnR1ck24ef1YZk+M77/PPj++Gd98qCbHGG1ckgc4T3h1e0lbi7XuDscAEfIrlPlqixw0Xl70V4TNHPeKCCScwFTjhycF81VscEiSVCT8yhmKuY4pysw5YRXb97g86++wdMu46d3P2B/2OL1l68QLkTi32w24AshJHd3dwARrq422G23+Om7e/B2BQ+xOX/6YY8+XGN9fQEXPIJ3+PyzFZ7oAX434vUm4PObgFUYQUhYbQK8A4JLgEvI8OjSGsN4wLshaYZA0UK6DHTOYeU9ViEg6LtkApDEEembb34JulhhGw/Y7+4xHvYg7kEIMBZmFM3BIY0ZQ8zYISEgw4MQmUGuU9CgiRnU0nVpwi4B36PzihpPQOfp/xUfTgi3xpUoCkRqKDNjtlaWCPrkUqXo9rs9f3TP/F3bhSw0HWyOWVzbbGC57buzzOZE2wvTmgBpbbf2i1to21SeoUq3m8Z7It2WzujJSwxmEFY54TJG3DiPnhz2MSOPI1zMOOwOiIekTpDC6M1G2+uLM5v9Npo/+WJaIkn+1IACbVoGZAcHAqzFv0HtKZGRNepF8F7AVkxATAid2vyC4EjKpDEiJQJ5gHrABRbfj0yAk/OOGGkcJCGOC3DegUlCa+ZDAsc9QDtEkux/2CbkbUQaCePgMOYOTB4ZDiH0gO/Q3X6GePPFBHAUfRk3oLPESLGxmc7mJXORU+vQTHmM0RVThubepaMmyPkZHOfM8RzgbgWE9t3mO0RLn/P75881EwCLmPP48CBAnAJiihjjAOAA8KO+v0dwnUY6CehXK3Hw9A6hEzrtvIcPHySaThAfmlXfo+8Cut5hve6xXvfogsOqEwdRZzQBXMI12hoQICya8KPxInFkd+p86FhNmZKYN2UWUw1W4A0I2M+qWQejxGQ3jWzJ5MrV2TXnLKnev/oK//ztt/jbv/1b3N7eFtvvcRxLCEgf9J0mMYwbm1ua5kFoAY85yM8BV3Gkb4C24GhuiCcK/2rrlGeIgq2dQ5ZxF5D1GmMs72va6zIG1r6jWST9NF8TcxB4DhD+i4i+c+B/tujLgPdLwDbRLLIMcFboOKmcau8/c09b78nyJ84vXf9T07b2+PRBNzFCIFD2YE642gT8+a8+xz8evsNjGpCzB1EA2IGpkzjdAMBB/kDINMK5qCOt4DqLBSZxAhXO3zL+qV0gswzKfrvDP/zd3+OQBzztH3B1c4HPfvGZZAdDBAg47A/48cMHPD0+4fbVK/R9wOPjI54edwhxA58DODHgM3jn0G1WCH6FFYBN5/H5L1a49oTr3mHVRTjaA9CJjKBOIxLhoXcORkYcM4ZhxLDfY9OvRIPnq5aBlLg6cthcXyMzYZ8zcvQYdoy+80CX4JhAWTWGSmxyJsQxS8xz8kqQFWSzB7mMQFnonmquK8Sdj+l5MF6k4Zfct7AsuTzZmJaV1K3EaaWl7FzDfH4RnmDuzb2tQ4Y2oWgwS+sngkDVUldgLyeWwIQxoLatE+Zm5xsgpxyqMLWpwCAsohUCqlAkt7uc0Gdh1GvnsPYBNB5wMUZsyKEnj/1+xLv3H7BjwI+MFWm0e936J2bNWCzb5GJqYdrtfKTxtva1+LLdEhetE8FnSJIpbXtOChCdpCN33oPiiDQmScQCQugCnDMmkpEiAw7wcOCo89hLn1icaAt/mGIEUwKFTsIqj4w8JAz7A2LcaqxqcX6OIyFHAiXAa2IqMAHOw/sVOATg5rVOEl/mg4zKVBMntEj13zRVarXAcv69Pea2pXPwfe74lwDc8/qxUH/73LnG+zngfaq9Vo8LoYbS1Pm3325xe/tKhCqYQiZJdr8kCdPGGHHY77HdW7bO+rzQdXChR9d16IIA777rNSOi2JB3oYNzjIuVlLlY91j3QSKCeIdV32mCHlmRAsah4LqaWjF5UM7i3K5ac2FpAsSzZThmFFMVsAB7CztYdgTUHMWit3Awx1YuyXkufvMbvH7zBv/wD/9QIpZcX1/j9va2gO2234vG2jnMR+KkgGXnmjGs0auqGR0RZEdKKZ5ps42GOqoBFMzuWsxCUhEk7DszF9r4LEht30H/joDruYoa5jDlVUvPOgUnT7fyiIdpPdM2cYvLp9r5M7RjfszHsCZlmrdafs3jreuNk3cqPO1ZuFyPc8nj22f8qajXUT106kI9PnnQbWow0Z/K1t3rN9d4uHvEYf8OY2J1dFQTjqzEIWWkMUl2rhghdt7W57I9TJxEg2VxZklBdybkTGjt32TxegzDiHdv3wPBob9Y482bz3CxvhBNiJcJ+fDwgMNhwMXFBW5vX6HvN4jjB9WmKJGHB4+Mp5+esA4e3aUHVoz1RYfrNWEVAPYZB3LKDDRuMBw8AQFiIxpJaKTPwJgYeYjY3T/i8lWACwASI4vFCAIIYAlVNDBwyIx9TOp4eUDiA3xyIAYixRJfOWeCo4TxkMEjIfuACMnk6V1Axx6SiS4tjF+7kBog2ZY4wWDnRINPlV9YSLZsJ4CFql1+vY3QOjBOwT8VonEK2C61Zy5ATK5PAPWCCcsCqSGNZMGzwgbq23ZNntf2ywnGNi1nY7TULgiTToyL7OEY6HLGJh6wSYxNWMERYX9IeP/+Ho/3OyQFHr/44gt8++3vkRRwl21sBsBZbKSzZeKrZiVmYmL9byNZ4kA3WnBjXNnsV53TuMUMignUKXBiYbAA4LJDisJ8vSZX8YHhg9zPKUBCsYmjJnVCEyxFeh4lCkHyGXBAStCdtYjxwDgcGHHQ5CTZgZOTBCcKcgRAZ2T24DxdO6cAM3MdynZetkz7XxIQm03u5Jy1+Y+ot4SMwzIIW/reCgpzYH0OcM+FDUDWUgkXCqBbrXA4HEDew2ta+KM2a5KaLNs0YI1KMSgIjTFiGA4atzoCYEl371wJc9h1AV0I6IJH5wO6IA6eRJCY82prbuEO132Hi4u1aJKdg3NB4pYDYBJfJlYbEiKbU6pBz74ktmLVaqcsjhmky4YlTA8y11jz2lFgX4XdzMDnn3+O169fI8aI3/3ud+j7XjX/ktCo7W//zDjMz7egu2SPRLXRbjQKNpIoO7NAoSFJwXUbks/iwk/Madq5wI0514SpTLXdS+1uD92YODp49uXF4J5bLmRSdvu89l1qeWquZ5q+b6Gxqu2Zg3QrZzykCE6N8Hu09qB4yR2PrykwHdt4PfPykw6odfypDpr9WNI3HMGNP/KZnzzoJiakgRFTAjkPQkAXCF9+9QXGweGnH58gTpO9pMxNDEQgRWBMI8Z8ANS2k2xhsjmpiLKJcwtCNENkkS0JXmKeSCZKIknKsXL44svP8ctf/gJuxXh6uEd3sULnO2wuLnBzdSUxSIOkVH562mvdubwXokN8Srj//hHx0uNi4/Dmcg0gICNjkOw6SCnj/v4eKUdcbjbY9B5rL+YziRnDmDBGSSPfscPGd7gOK1x1azhy4EwYWZw/ZCtdtn6QE5gIcYxIQ8Rh94TLkeBSRqQBhAyPDLBD5IzHncebQ4TzHpG82I97gmPRGiaYJnlJNp0T3IWxLifnoLU9MwWwSwx/rg2basH4iFgbbJkSDlfOT7TgmC76l4CC+fUjjfp85Wv7uN5YWgoqQQvl3Ax4Y3aPlamnT0AkmtZi6c3b6w4A5YyQGRec0QPYOI8L7+GhWVRjkrCW7JDGiC70anuaZes6A427gEQgIVuTlQu1/LAl+m10kwK69abMEmowJ5LEWJA6UmI4r+PMynwykGLGfjsCyAidQxc83EqFGy+mKlk19BL9YUROHuRUqI+q/RySCEWZkXIExwTOCTky4sBIAwNZwHtGgmxxiwEUuaz0qybtKWON5blcfhNgsZ/b3YnWVntxC/aElns6Hf4IW+8Tzz15EIkpxZKwd2J9tb/nETDa6+fut3vtyNp2QH1+1EHVkuTM62mjylBz7yUaO1+uSU7GmJBTxjgOSCniMI7Y7nYyv4jgIZk1vRcwLmYakigoBDF/EkdO+XSkSYBWvdqNe6xXPULwcE5iYhMIWU1SmDRYgPopEWU1Z7GoJlDDQC7rkTQKT5luDBT/ekBt2x1yzsWp0rKItn21JMifG1MZu6KqKfdbgiOlygBDTMhSRk6xaLBTnjmitsdcm1NGcMpleFb2WXB8cr3QyV98osxpjXkDmo1QLrUl27qGKDqgc7JJ6lSfwaW/J+PU0BS7p7S0CGPNGiPdq6Vp+flhzzl9HFGBM2WPS50s/YJqniVbBNDi/Hn58cmDbgbw9HjA4TCgX0sQfoCwudzg6196bG4OeNxFjMkjDg7jgZEOEXkfQWkAhi04HuCRVHsAYXolpJcDs/yRpYRVLVQ2gA4j7uLIyTlhterxxTdv4C4cdsMT9sMeq8s1MmdcXW0QuoDQO8QUFWNkxDjA8QhGBzDgEgGZsH9/QN464KbD/k3EzcVKbc1l6+sPf/gB//nv/g6/+MXX6L/ZYCC1SSfGIWU8DCN2MQIpY+09Lq9u8Pn1LUIISElCDcZRMkuyeqL3FxvkzNht90hjBA0EHBgp78AYEdjsthMiHFKMOAwiXPT9ayH83iznHDx7PDcTn2fEZxisnDwuSVNiOCFohaiILR/RtMQM2lvJAnoL+WmIUVnYLwTeS5/2vRKrps1Wjmd12H8K1C0BSLmv7a+z3+moH9pnt8dcYw9IqDLOGSvHuPUBAWLjnSIjpoyHuwc8PTyKY1bKiPsBOWb0XY9xPEyeYuYhGmphArppxiy5ucecmLipg5kkLj7ELxnMsr3JLKZcmdSxy/iUJKEaYhIhNBMyErInkCMN+we4kAsoyTkhjkmWJiAZbZNEdzA3z5wzOEmoTspZdtKSE013VkYpwVMKZ+ecVfvtQM7DfLefM4mow6tAvFCq0yHADGCbQ+FLwfFZ+3A0YL826kV1F43mTOP43L1zTfY5TXd7bi7ETOpotxG8VwEvT0wl2jokORLXydn0abt9zszo+h4r06Q2GSHFXCWKhnw/wDwh92NE2u1LHQAkykrQOOQaBjGEIM6ZTua3L6AXWK00zGEf4J2XBEE+SCxzkrnGiKBsgSwTnNPoXaiKp+ZN5NMxXOYimDOgSYg0HKOvMXYn9GtxDh3v+pEx4ebtTdCOWU18NFJLTpLy3mhCqyGfzBduNOeArq/JIDU9XQ+mZnzPHIuqjBP3LQLqc3UvCQ6A7LidfAgt3mf8bb4+LIHQpOyMZixda2ptmNT545QAVpo+/9Ey++fqPluKX1LF+fqJnq3juff75EF3jAl/+5//Gfv9AW/evMYXX34OOE0ZGwib1xuEV8AhsWi3dwnvvn9E2j+AeQvwHnARLqunOFgymbkA5qAA2EM8TEzKV8jF3GiSHIiCpBveePzyV1/i6qZHDhF3H+6wHZ5w667BacQw7PHwsEfXd1hvNroFaFKmhtXTsctRtiQPI4PHhB9Wb3F71cFvOjgfcH/3Af/pP/wdYk642tyIqUgi7BOBHePtdocdA8lsu53Hq+sNLtZrMa/JGTxGxO0OIXS6tRk0jmjCfn/AcBiw3+7hUoZLI4ABziUQqVqSAxwSAtbIMaL3HqNjdCTxv1V0hUDBtAyOZ8c5pnpSQj5xbv60KnhTsbOcXH+u5kZ6p/JuBQVP7nvJ+70EiB+9ckvAjhb6zPRmCeS8QCiY/ub25OQMKXMFmQ0/I5DXFDAZMWU8bffY7w64v38QQVN3tjmOIC8xgHc0qgYwlXqJuWgMzUykMOhmO3fRJMAAt2p1MgCXUWzEzSmNkwBh54O0iyR7X3lvJsSY4LxD8g5MAog6BjovZmg5WTBOh2gxmTkjczKVp8ZBzuBUgZVIH6F+VYGKGmYo4RfNu82Jln42H5Yy1C0B6xY3ni7TOFva7l9TdhFY0zITr+8g/Uqze5a+z+u18H3PtWF+3/zzFNBuv5/Ths/LSpi8rGnnp6nHAdWMN6DMtLtL8E3MOXTOOgcwJAoXm28CY3PBBcSLDbUIuDFGyXCsMZ8Pw4g9HzRufW27AG5ffA/6XjTkXm3SPQU4T+iDRGDpgkfXefShU+249gX72nAFpBYBpfBIYjioXXVmdCTv4x01JiBzp2Bt60I235YKMbOE48uisbbdrZI4aFZfnc/Vdns6xlOh0HYH2Z7IWtf85hNT8KW4rdS2uGZ41jc27ifqmgN1NpHo+IZiEgvUNUlVk93okuo9Z4Di0rppr33MQSe+23H0Ngvs6aX1n7vwse0+dd8pJcS5WfLJg+7dfo9/+sffI0XCh/dbOL/G5nqFyBHwktQidw7eefjsMQ6PeHj8Ax7fv0eXM4gHOEQBukW15EB8AfAaRKIlECacQSRmGAIAnAIwL0AdASDg6mqDL758A99FbPOIu4d3WK06wEX87p/+Eb/952+RYsKr16/xZ7/+NVbrS4yHARZAhR3AkGQ2MUakOGC16sDJ4enhCQ/3D1ivX+MwDPinf/wej48Zl6+uMVKPxzFhcMCKgOwydsMAMKOHxOIO3mN0Hk9jAu8H0fJFRj4kXF3ewHcBERkDgOQIbt1jHQLu3U8gN4opDSVIYCpjClnBOvD61Y04jnFC0D6KlMEuQ6J1T/UjclDt+2dWz0sXQwsW51J3y/aO6nvB4jtmwi1IqRW1uu+lbbWXA+/asAkIbrU2s2xrhHkdy8B70ts0tZUsPUUKvhYIb6nPOZmzwr0kU2ImDImx2+3x4cM9tts9DocRKYkZycXFBv1FQH+xQgqE+6cnwCeI6X8TiaLVfqPaGbZtty1SO2z7vtpfyoyVVNiqkXRcNIcOos0p8cF16FgBAEGcHoMXQJEh9taJJcoJOUNWEgVflINkSvpJjPGURfOfk4QuzJyQsqx5ViE+J6i2Wyqw+O6tE1dhyqbBm2mc7Nx0wJY1U7NpUA/zF+BjweZjGdMcbJ6am6cEAfv+0YycljXRcg2wubakDZ+DbjPbIUBTmEcxL5EtUpipAwglbjDsvVkj6NAylbMU7cxLIEo0tjbxZUfHA8wIXQegRlZpyzJz8V0yQF53f7IqYkwTbSA8IDiPzhvQFrDsvYPXWOXeO6y6Hl0XQMpXJlFIio0Yg5zYvSdVbJVZsICgmAHLwWhdkFJsnBrr5ylatCSILx11vtW7WE8U87lCbhdEpTMC5vzZlZbNDsbxeT7mkWyPW5gbVRN/fPpYW6O74Die5/KcOr9fcrxEcD5V/mQZnH5+FYaOKn4WeB/Pl/mF07z+1O+l8mdpK1AC6Zw6PnnQHccR+6cIjw12KeP33/4ev/j1V0AnDIwdiee275HGEd/9/rd4vH8PjlvklOBLfG4G5wDOPTJ1cKEDc18IgKOsDF/jTbNI8oCGE3NeUgJ3Dt06IKwB8g67uxHDPuH6+go+EFIacP/uJ3hy+DAcgBTxq1//FXKMkjLbVYhgi5+8w9X1Chcbj241IrgVwAGP9x9w9+EBcAGh32DMhJwYPI4iGCACMWHjHEYiZCdMezdGYIjwUbQrnQu4utigI3HWIZcwpgj2AHUBKe4x7J/Q8QCnDpQZmgRN9PEABeQ8gh0jpggG0HnAI4tmkAT0nJJk67x/fuIfXUfVTlgdDazGfDFNnKOUSbJJ+meeex4kT+H2vH2mSZjf/1LgPT1Xal04jwKOz29i1YObOuYgXM49s33Y3suSgpozMOSI8TDgh+9/wtPTDjmzAG4GCB63b14jXhAe0h67bUKCaAz7IDwkxozINXKJIU3ZX5mO8OR9mGH4xBh5FX2kAqYMJlcS0pD34vORCcNIcEG264kB79TGO2WMEejIkv6wbuFmkHeAVw09siwJHYEMi4DASDEjJsY4MuII5CymJcbUydY9CMw1fJnPmqp8BnznhxH9RfMQRnGUOmfPDbSMwwD3UdHFdkyA+awMLZRZFAbP1H+q7KKGnaDmgvp9AqJZNc+VWZPZFUDuoRZEA+qQWInE5vIC7969AxHBecv8Wtvmnnm3uYqBm7Ep893KMUCazKZ1brOy1AgNXHiT+BE4lxG6rmiDra9KVI4kguKYEg7jWMJr1kycoiUPQXZBzUTFq/mKaPfFRrwLXXEG7boAYol61a82eNzu8SZLWJYKCGsa9BiTxrpmjQQjMa+L7fFC6ImJM97JefpxipwJPC6A/BjuzTFbaz61bO5xvh1TR0eerFGLwDQvW3jPwnufWluOaAK6205b6r6XCi8/9/pR+TP3Log+zYWPe44FoLDnUPN51KKGt546hJpMV/Vi6Wfa+cmDbs5ASB0ceyATtg+P+PBuhfWrawAB3IktpvcR6Bh0AaBPyF40wD6z7gA6CS+IFUAbcO5LaDvR9CiDVWLoQOCSNMf+oABZskzuDxF3b/fo3RVe334GwgHDYQtKEYiMOETE1QqHDx8wPNzDZwfnDgLiIVuMgRh+3eHyaoVXry/Q9cDl5S12TyP+8PsfMI4DLjYrXF5txC6bgDyOOOwfcf/hJ7z67A2u3rzB4BxGqtn5RnUk6eGQYkKOSTOvOQQvfbLqPIaY8O333+Pp/XtIj5JkolQTACEzouWMMeLp6Qk+rMTJSLdJnRILATozpvuRBPHUdk3L0HmhfKtFE8Zkd1ZKbZuKL5VuJ1pnKKgu9do7q/PoRwLuY0w7BdaTe2gKuDEjqNYfz4GA01rx+Ri13K8KhwkixAUG4mHAbrvHYX/AbneYZZOUTLJdCNgh4oMDEkkdwXv0njTaQ0LK5uBcQcqx41Mdw9aBsnSOFkmQ+ZpZhEDnASaHMUdJOuMDxqxGIlrlJL4NqwlIdoDLZZQ5A5KVECqOare0I6HmACllpBHIEciJxJabvQBzzu0dAuz1xbP1umnudR0t2R4z1yyUBTs02jwr22rI53NgyYxjXu45U4+59o6wNLdqWZoUP6FFpGNNUmtONKUtDdBGfa6At2oGIr66hEkSlHJPA9SbdQYAnQJZ6+/23nmbl95jOtoNaCuaaAXHzCKA6XV7pi+Ja6pWuxW4JO+CRf2Rel0zbk4jr7CWL2uHGTkl3S3SCB+ZMRwimMcy7wVsS7hCb/baziGEDgxG10km5+AddtsdPtzf4+LyHa6vrmECQUoDxnHUeNdGOQ3kmLSkP2eKcqFnrpmLJj3JQIkgMgsB2/T/KaF1MaTIAp9izIpO6M6srAlSC+eXfs/XlpWidj6ebS8m9y+dW163HwmQF+p6qQnYufpKXR973xkBgiaX6eiDcNyVRJjQ2+OuXsoPutCu2blzPfPJg26wRMfwSAAS4i7h/Q8/4RrA6s0N/NoLk00JfR/QXQRQB1BgUE5FwyRq3QDCCsFdgjmIXtaIFsuzkFm3ssVeTjTRAZnEzo1yRB9WQFrj4f0D7j884fXnt1j3PTLtsd/dA+mAwMCaOwzvf8Jvn56QBgfPl6COwX6E2HkGkHcILmC/e0C+Jly/eQXijB9++AHb7Q43t9foLla4uN5gv5fkNe/evsX3v/8nIO7Rc8DXX/wKAwh7ZoycwJxAzIiHAzIROh+kb8JKiTYDCOhcxsYDeNrD7/fwKcMhw9N0wx+Q6A0UM+J2gL9mUCjxISTLJ8ShsqKR6tQFAPSMy+85oDiDmVUncWLCtwDECJgzpjprw4sAODeA28wBKvuoDF//O1Xnec36mfZM6I30c8H+oJJp9BwBfq4t5VVVuJiPlqWT7p1H54I4UoUVdukgO07sJPa9ZpyMMeLhwx349YWE2gsemSM8O3gEsCONrQtU5EglG+McRGLenubOwqhVZWjuRRkSzcT1G3zzb//3iDnju8d/j3H4gA4Wn0b7TweY1YbUkoRA/RrEMVS1lSoECO83sdTBEyExVUGTZS5yrsJ829M18VYD5EkSryxp004CWhUgWo11C1BbAHKKYc4BbQHss/4/+t3UJ+NwHHXHyp56B4bMmSXAPT8mYMoEUDMRmq11K++8lOOGgU6AjaJtmq3dvu/hvT8C3W07zrX5CBRYH800nk5/J9VoF003ILtQTfIWSjYuDQj1sptT7MPbsbZxLECdCjgnVTQVMKmf1Nwf1XGaY2r8EOT5wYvZSec8xsMB+90Bv//t7/Hq9rZoyicsgWrmYraeJ1/Akg2n9akl65koGqgCKBCK8+tpcyie0Ah7zxcfOmZzLTVm50Q3wUdLfNKuBtEtCnFc18bkXQrz0Z+1+qM6jA88B4dtrf6cMi/hM+eOee8f8agTbaCF38+1Y/KbxRfn6J5SjhYq/XjM8tzxyYNuAuA0la1jBsaE8TFjXD3h8voagXowZ0k4sY9494e32D/s4UfRpDFnEHq532d49rJV7BT4IutWXlKu2sQzgywO7zzggoD7Edi+T3iLHb79wz0ehgF/9hdrrFbAYRwxHh7QuREBsn3n0gjaDug4wHGSrI7+AHIX8LhCt+olqQxH3L5yeP0m4N3bH/D973+Lze0Gv/z1LwHv8OHhAbvHe+zuGe9//BHD/Q4UD3j/7Q94+uxX8JtrIWBRtG3DYcBPP/6Ez29fwV1fAQHYHxIcOuwjkMnDU0A/JoTHPS6jJj0BIy2AnQCGT8CKAny/QnDABQGXntE5AeuWoLu1Gj61/Onoi/586URuCMupe8ZxQIwJl5uNZKI4qsKI3FL1tFxOCWArChgDkY/Jr2OtxeKr0OJnOVjPzR08YYSoas6fe8byoZzRaH95P3uCvhOLQ7EnD0IE54xxjJKVkSKGZPakBEpqagLCmIDddgvkCIZHzKQaZZS015buXEL0mSawZTAMkFOAe1rjNNFgwoFzxub1ZzisrzAyYe86fVVhxWKeUAFXBeDq8Gy2q9pe0Tpqfwc1SaOs5k8SKo0owxHDOdsBqSC81WkZHGCo5l3NISr9n87BI8Y/Ya5a1wL4aM+d1P7NrhXA3T5zxsDae+WNpMwkCggaRjkD8e1RYjEvzNO5FrF+nwrWy++lgLooBezUkv339Lv1eWvKs1Tm+Jn6/RS4a/rbniFzoAXd5lMDoV3MmhiGQcniu2cVKpyEscy2W6v3MYvgl1FNPmbPsDTwttgMYJptuyBVBe/czEHOGkGEMeYRnBJiyvju++/xww8/4OrqChfrNch7SUrlHLquh/dUwwpOaFnlu0RQ51XSpDoybnKPXnOuJF+Z9/vx0c7H4zFZ2hFqr7Wf8+/15PLzDVxX3rHQVqISUaWsf9TvjdhQM3RiXsVsvZWHzsottnKqz6W2HPMs5OzPA5rt4YqEtfAe7fcXPndJeXV8WGS6ZTpRaeDR1Rc992OOTx90M8HnDkSWyU6YVXo6wO0TAnocmBEi4eHdPR5/vIfbM3zyoCxbWratSzTC+VGSuDgCJQI4qTmFaA6YGvLsHFwQRxJhJgRkwoefHvDu3Q+4e9qDrgLIA5n22B3eI6cDPDECGMQRaqiiKaz3IHYA9/D8CsF36AIQQsKXX93iy19cI/QR3//4ezxtH/HZV69xc7NBQgJojZ++P+Dh/gHj7hEcD8A4Yvv+Hv/l//u3ePXFL5H8JQ4D8OH+A3b7R+yHLcbPMzgTNpcdutUK7uDw8D7h3fsHAMDh6R3G9zv4KCYlRmdt9gkd0N2GTPB7IEQHF4DgGFfkEKjwVB20VvfbEoM5sQHa3FRLc9gtEJNWk3YOeKeYMBz2uLq8LFG37f5TgPv8Qp8C7mPiebpd088puFl61jltgn2akLPESD7mKGN1BNja78KIhxTREYEy4/37D9gfDri+vMVud8But9ekGmLXyc5jBNCBkFJGlPANGOKIw5CRkiW6qY6RpKBAvtuTG6iqBNKxJnqYa4N1XLwLgOT9wPbuPR5//A5vP3zA/v4DLrzTyEQKNLjOVAF/GUTZOKW9vQrxAGcGKIt5iJfQoqIJF5DjyYufg8uIVN/FxLHyPiqgaAJy9ORBatg6naMNtFaAVmx3qWJ5i45CjWZ2ScN9zrRjcrTlDEw3vycbr0QFGBZwPQeo1puze2n27FNrYQ6OWk0zUWNOgtbUys6Q9i2rYHR63RVNaz7WjC8L4x/HfFst+UTQwRQwzUG7XXNeMgQ7rmMs9bH6DRug1jCVrhFaCiK37IxT34DjeVKFD1IzHRURUFTYGoozAXjcHYAsoThvbhhd38l1cqDdXvboyOKNe3RhpcxDQJE5dopJC8FrVkyQOAiSOnzKeNPR3Fkaj1MmHu2xFB3I+us5zaycQzt4lY/+/9n7k1hrlm3fD/qNiMycc671Fbs8xS3Pu/e95wpEYSqJDhIdetDBokMhWbKEkACJhg19S25ZQjSQLCGBJRBYAgkaWAiQaCAqgQGb51fd4txT3H3Orr5qFXNmRsSgMSIiI3PmXGt9e+9z7j6G+LS+NVfOzMgox/iPEaNYfD4vizUk27dVs8itahpes/h8oWwKtat62/dsadMfK61CaM1gC41tmvxe7d0ULpoL528rn7b5fVtv8S04q/QJ7dq44eJX33vQjYKkWRMlCGlUppsRGRN7N3Dy4ENg/PqW3ZTj5GaA7tQhEk2iTx51I8pbSJaExuhGCStXCLcHLI6piNkzm3bLoRq5ub3D+YneO55/8Jzr/RXEN0x3J9IUi44NjxqLVZeZjAHbTnfs3BW7vWc4RD74eM/f/tufMvSJr7644c3Xt6QJnl29oO/2aLrjsO94/qzn17/8ijgekXAycxB13L9+w9C/gM5zPDnCHUwTiHQIOaW084jrUODt6zfcvb4jneB4c4cePahHJUC2vZ2PLxXF2h9dD9rh7pVu3+FdkcEb05KVFriUtdauTu4MT6nHxIvp120CUH4uMMFiP+mdrymInSztLNt2PFmSfmQTygbh3Abv1DU3f92Cq+19uyBoMylZUc5VKx+jD+0nncdvdrCc75hCQLzgOs9utyMGy7J3vH9bHQYTiu8d3TAQYjTHxKsr9vsD1/0VX33xNXdfvbZssq3WugUgqvVPKV85tdjzABqaJB1alERoAfwCYwxETUw37/jLf+ffIsTElUgVEkHNLErU0LmzzyJrLXJmemKRUTSZ+VlJ9KMZdMdgDpZaAHbRqmj5r/ydx3Q1LzbU835QXa6dqrFeCUfzel6zz/K81iZc0iQ/iaFuMNC2jjXTXwsO7Uqy4c/PPMhIz4Xbx0A3OWZ1eW+hUKXyRZsugO7yuWhkvfesy2Og+33BeBFYaoz6sg8LqG72R7Xpz6V1oKya8hpNZNUmXdqpb5pLQF6irtJScSuBLS83tQYhzoGz8Jv3xxPDfmQ4HBYRebJ7BKGGrJ0yb8yaSFH6vufZs2vLoJwXzQyw53lxNfdCQyiatmk5oULznrUvNjXarQmPSHXqXIDRBwSvdXmf609RuKyo9JPf96Q2ndU5nzhQhdXm27Lv5ptW/KaeKZ3RBCALXuXdG/RorpbFXdKc6G7pDeQyfy5KDqvmu9mv3/S57z/ozsDVGK85KymJ43Hk1Zevef7pD/jw2YH7t0fil295GT0nDdlkxJ6nTLIqmk6kdI9ZIdskabbZRGtctpy10Sa/MlFAzICOFHukC+yAg3g63TO9S8TbhAu+2qbm6NkkPEoHacA7Ty+J3QA//r2X/PGf/pirq563N2/52Z//muM7gdjj1bHLR3MOx49/+Alf/uozXh3vcClkJ9FAOp4Yb+7w+2fEk0NDqml3p/HEu7evGfqX3PeeN2/e4tzIT37yMW++eMevbkP2mbTMZWaLnQdPy9gZNPK7ZyR2hLuAU0ji0CuPMqew3sp4+LhUSEM312x7ybyXz22/o3xOKW0yy0v3b31/6b5tsL9s20Pge7t+eBQhN2UO/9QAi6LQKhjjASeci/W2fFVn4K1JGceR0DuGfN84jrx5/ddMY6xtT1gSi+N4wnnh2nekZ885OMe13+Gc5+39PePbWxNmm3envMdbI6W6DjHnTO8cp5RIxJzWOi8gmR3JxpSQF8853d4S7+/pEEuxnUG2kHCGz3MUh6JVA+csIsTyqB5KUi27nu3qLVizxRPO8bljhKhiGSvTbKaRoTswz/KSRC3DOZ5pQkWWDK8ZH61PLe37i+DklJyJcFnvli13+77La0TbbbsSBudSmKVbtdk1z7Xtad+Zmu+3yhocF4m3mB+0rZi31hJwX9qTRdP9FKD1TZh1O5cpmdNuKoDbbjA1RgHg+UdXP2f1yNIkxjIuN6B6pbl1LvsdVAlX5lOZpZqzbLG8lue1qgAeDtfXvAyBV19/TQiBkJ01vfezCifvKSGHVszCvbXBTrO9twyTkrNw0sxBWUdzNJe2jXODi7KmBd5Fs3/mK1H+rdawcO6cfmktPOZc+JTrm3yoac+l8j7r8ena6vLJ1T/quOS95VbX2wfXxpzznefC+fu3c/tU/MH6mrZ92/JNwXkp33vQbYD7ZIxPzEkQFEnC7au3/PIf/QW7qwNvXr/m7vUbiEqfiY6SalpbU14pSkAJoCFPQg6+lGYW4p3FMnVim160JL4oxEZQ7WHyTO9A73pef33ip/+fz5H7HV4NDNeNrA6HJ6Udqjuk8zz7YMff/Wd+wu//8UckRl5//ZZ/8Pd/yhdfviOMPc4NvHv7FtKHDE65uXnLL3/6l9y8foXGQNEbxHRCJ+H27St2044x7Rj1juBuiaq8fXfPMDxH0zMcyg8//YjrZ3uGzvN7P37BRy89/9b/6VdMweNwuDy+Dq3EEfVoGrganoO/Jo05nkmO/9HLAAEAAElEQVSXN5drjygve/nXGa1qt2bDimxIqQtosr0+HiBmS0BhbZM1CL1IsFoHmKUwcFnD1d7/2L1P+26jibl1uY+sBRV7/7nOk+VYLBRW5wyn8qWmElUYp8DboAzjkWkK2fEwM5x6PCdoCLz96muevTywd1dMKEdVkpsYp5GuE5zTrGEqB6hUcNH2szRDVfHe7EGncczftyNgTnMxJZ69eMY/8R/5D/MX//jP+Ot/9I8ZfEfvvSUkSYpmjXbXlfBaiu8sXbzzijhb/ymDaslxuZen9PbulKTG5o5JDXQnA9wxlk7MY15oSFYRFphcwcVi/C+UArwXt4lWmjPPtJBIdUG0+01TmhfXCjTUuchah7PmXADZpa7lEfI2mLgkNLd1Pyb8wmwPrtIImxfeW66vwfTW7xKxo7U/vtSG9wVbLfBzzniQhW2ffRrKuBcQXsB0oW2t4LR1XSSfysh8z3oeJYPpBhXXOaf+mYWiOrZL85iy5533XD17xng6ISK8ePkSn0MOCtgJamp0W6XTtVEZVIs3k5KiTJjJav3ZBLmroV77Mjwk4BnApu7Bso4eWh91jJv3fBPAu25Hvri852KtD9e9vudp67auOkrUzbaF5RG3ON0q/c81bArvDwsmW+193/JtAfF52SLE76/Iasv3HnQrluAGyZJwhRPC6e6eL375GeJBYwQNiOYQZNlOuxo9iNUmzZGUEagMy3UGi5bVK2/6bO4tmjIAlQxJJ0C5eSP89B98xas3v+b2S+jCgMicdt4kRUVSB9ohsmN/deD3/+jH/OBHnxJC5Je/+pJ/+A//nNev7vCuw7sd3vdMo0n84XTHP/h//z/5xc9+YZm6YkJSk5wg3aPTO6Jc4dxzPv7wwNXHH0JnEbdfvnjGD3/4EYfDjq4D3yl9l0hu5JNP9+z2ifF+qvpql7UDAngs5BlyYPAvmKLn0Dv2qaMLIBLAxXwc55httM/Iu/0/0/PFPcutMkPGNWtfaOWYox6sH9ekaITdfmdJe2qVcu7zsgEgZiIKi1BjxZL6AvF6ypbfYvZb/XuwjrOR2Xo+m/o0NG99VFhqmzXkrZ2k1ufsiBYQx/10z/HdO8L9aNnysvZIMgh1YuCBoNy/vUWcMlwfCGpOVzFFhn3PcBg43Z3QaKEnaypnZrJfjtSdiKWu1sbprvRf7Ag0aSSECUU53t/y1V/+Jadf/5pnGWx7l02MxE5unIO+84iASEJ8/pGiaS/AW2f78pRtp3MGW1WIUZkmCMFZrO56zxo8C0sdUAYVJQkXG7tGpNq7t+C3zFF1Os1roh6iF2aommnWPM0VrDUAZM3ki3lD/e6SCcJGeQoAWZdK1aVJof5UwF2uOyHJObjY2mMPgaitZy8Jxk8FO5fK+qRBmt9VsF6N/cIBs+yPbG5SwLXPaexTzp2QkplSqa7W5gUHwHXbNqHZCtSChVn85Ic/nPu01ipnp1BZOBXbEkvqsjhazIGkguD1/Czo8zxadf1fpM8yn4K09zhW89n8lqaOx9bGgj9dAPeLz+vx3VqrD9T3lL8fau/y75mSzPz6XCFTWu9k/fx2+aY87n3Lt69Xn8bAv2X53oNuWwSTMV9XyLEDnMXujgYQLcu6qaZSjUJSQHoBT6bFJmupqvd2JkYFbBcPa60KotnGtQCQ8n+c4Ne/fEUIIy55NAkuJ41xObwcqjkxQkJcousdMUV+9asvuLu7468/+zVvvh5JoUNy2l7UEUZhvBP+6me/5Fe/+IIUYk6yYyHNLCm1IuLRGAinE4fnH/CnP/kJuw86bk5Hpmmk8xaBpfc9ogEXLWFQ7z13GojpCBJJjZBS1l7KOhjvr3D+qtqsmqd8QxzRhnBAu3qXm2EmtoJj9VAz50WKnon6JQagW3+ocDqebL53YhFrUNY6O6ElMaW95+1uMeglIitiALfeWurhm5U1DZn7P4e722rH/M4VjJN1T+ei5y+b79V8WOsslF1IERctPfU0TZZ8o4S7yozBe0/fd+wOgyXYiMnSpovZfl5dXxFVOd2PNSJIMVnIL122VbIpSCd0vuP+vngRNIAyqb1z15Ni4te/+AU6BQbfmHs5C+1HNiPpOoc4S9iR1XEmZNbkO2XvatOy3LbsqBZCJIyJEIWYnGXF1LKG2y5I07PZobIoAdbjX+hO/bYBMrK6Nw9+rXcx8yKL+x87Ct8CU1tgYn1dctseK2fvre23ZVTX9qrd9W9px7EBBk4qeFo/u96nl8DTWoPZ9vkxgP4+5UxTyrbAtXa4bMF1e0/rCOics7CXjc22y2telWo5aHT8cvvXNt9bbdzq15njYvmOeRzNDIys0MpCsM7CLohFRXI5tXzetyUUYTnxsnfmZVdOepr3oFrNlNpxX7e5/pS+P2G9bNXX7pstmiwbzz0Ekp/yrvbzUwDw8hZZ8rZWSVPaLOfXm7u33nJWx3I/PsjBz+u6eGn9nC5uat+4WJPrtj3yuu+6/E6A7sS9wYyUl22OLGBOih0abdWUmKMQsXTNc5xu0R5weByCJ6nDcjl7wMxIOt8x7Pb1aEuhpnkWNSZL/qY4f2iCKQZSDAgJcSGHzJodUOwZEKf0veNwNTCOJ77+KvDq1WtevbphmrI5R1SLYYxjPCV++YvP+fN//FecjhMpBTSNVGaeyjF1IqaASEA0Md7ec5oSN/f3TDl+uUyOd7sjcTzR+cgPf/iSZ9cdX3/+Naf740wQRLJgkV+hDhgY+he4fmd9i4kRRbVHxBUy9+QZnbUT58BRG8ggzfcVTDQKuCUQKpS3/K189tln/OEf/BH9RwNmapRyzefAu7x/2Ub7cv7sztp7/rnZtbp6fvUMbBPndVm/5zHAPX/xeH1bZQV3K8FUVY7HE11M7HY7wq1pulXbvpuDVt917K92PP/gOeN4snpjwg0eFU+IAecF3zviOFEhdMG+UNlvxr41C56FHCuv03oE6hxcXe9Ne61ZO931TONICjFn3hOksxBr4hTv83rIBs+COUsWTlS03fPIzE6bYFruMCkxiqV6z+fnC+vs/LEINnW3NFrGore3PVC7hojgZdZo1+N/lsCi1LtOyELz/XzpfA1eKpc0d1vPtID4ofc9BLozNjwHpStQoavHF3uM5RhsgZf3Ac4F6K41pN9Wy/1tyloDLiILm+XyXpfXk8p2uMYC0NuyKWiRTxXZXj8XBTgu45hSVzXbbHyqfNfRdT2dxzJlSs6a6WfnVnHzxLd270vb7nk96Ebba1sagW69dr5JcZfes1H3Y6B7/j6tvj///FBzLwoOFGC9Soom5+tgSQ+23pGfPRPMdXlPVV5utrT5pMtLDy2otmj9r2nXWfXfqmxQunr1oVd870G3OYtFquNS4cpkcG2HZhQ7EEuPnm0288Kx2/NsJQeyQ9KQzSZM0nPe0fc9wzAAZqNZklrMJ7DG0hTTqtl3AdWRFEM2VQmZURfNKoCrze46T9d5TqeR0zRx8+6GcczaQiCoMvQR7xP3d0f+0T/4Fa++/ArSBBKzBahmDbdkxh0QTmi8Ybz9il/+eeAUI6dg6do739F1V/T+yo73ZOKrT4783u9f82f/8K+YTlNNCdyS5jlIUUc3WBZK87VsDPPKnHyjcr4TZPXbxn3FMOrGm+FZjQhR4Joq0xTo+4Fqj7gBfrcA97I9y1Zt3bskYKvvaoO3ietTNSjlmnA+Nu9bzhyJ3gM8TONIJ3D17AXTzWiOglpCfQld3/PsxTWaEs9fvqTrO07Z/jqkRJoCrutAE07gcNgRj4GYo/604y7YtCpmX1uSlbgcncK7HI7T2/4dp0iYTmhw2SlS6L3n6uqKmAIpRsSpRbYQwTLRZi13Fl7JJ1plOTVk28aOAtJNMo0l5GG5PosJ87jmfaq1hmZckfrs0uL23P60gOq5HRcAs6x51AVAtKHRXrS7uW/r+lPKFsDW/BtaMN0A6oKdigLgDFHIoo9F0FjHB1+//5JG+9JvkRngPQS4HxqX9xmzQr2q4HQBzK6FngK4z0EaFu42JXQDXJdShIqLYfPWbdygH2unTjgH42ut/aWxKcL1MHR0Xui8o2xZC3AwA+6ZjpeoQranNwXDldDY8gDZaM+ltbH+fv332mn40jNPWUvt/li7J54riR4WIC/ymgKpaikXtvu9fOfj79qsQy7TpQfLeTWLoqsvFt8/+rpv0J72qfXLL5TvPegGqBE1WDFByTpnLaywuE6aXaYy22LapAuWvqsD7Wvdzgv9rmO3H3A+25eKoiHVo+/6boGkkpN4RFQDKU6oBqJmE40mG6Ole/eoCkkTfdehIXGMd9wfT5yO92gMJdEhIpE43aGdAfCbN28J44T3MWuAGqBIcYRSRAJejqC3HG89KXWWdAQxs4BO0F5I7AnpwK/uj3z56z/j9buv8dLntNhHG7OFfsB6nmKkc6Aa8vs8nQMh4lLIHs3nTO/ChDZzsv197eMKHFem3dalq79ZOxotm3Wx7vX18lBTwYOA+wGNxYP1P/jZWjhfKjbpLVU5J19r7UIlyN9UPsJ2mIhF+QDheDxRIoeIWLgwydF2Esr+6oo3b95wGiM45RgicYw4H4hpQlQ47Pccdyem6YgXi8e75pVmTGba6Gkc8d7R9Z4YIxoNRHedJ44nJESi5jMNVaJ37Hc7ut6hnTHjErc/JVlEMzDhbgbNRVhr90EdP6WuMUWgNUFphHMkR4fYAgHt2Ob6CqjZ0sAWO+tLx/czbJP6sZ4dbYDr+tQ3BNMLM4cH6lzU30QVKfS03LME3ZVws6Qrcv6y+UVPBtnr79f3tdfX8/FdAe4tkIq0ouflZ9rStq8ICC2IlsbcpLX7fkp71wB5q11bgPtSHbWtua4tIF5CD3rvLFa3l1lzLIATtIDv0i5VxJdILO5sjETPhYEF6G7HvYDmFjyLzDxgdc96DNege/FZthP6FDq/riuP4NmYLowncozzipUXd7XVNu97iA+0PkzfYn3/pspDb/1tt+mbvO13AHRnjba4huc55qbnaCYkUAOmSWjAI8yr3KE4A8I5e5yKIp3H9T10HmfIEh+E2edMGuBdNOwJixVsZiXOW3zS8q6sb81REiwUUi92PBZD4DSOvLu9RQEnhXmbABEDpODxvUdTbHR/MxSeN1MBCImgE0kn0MnSbScbJ6FHU0eMDhVvmr2o3N/do2kwp0+dshZba+urxs55un5HCAmViHc5LXZSJCk1KJ9Asatr1NHLOSh/LRjYlrbuAeCdSwNzFvUWYu6zjf6DhGOjTQ99vnRt628j5qs12IhjG7TwgfdWSp1BlF1rZ8pdGu+axv6pJOIMQpk2N6dIH+PEF+9uOOYoBVAYkhBi5Pb2DnGOdze33NzdcxpHlMQpWK7Tvu9IGggpEJLi+w71tobnWCLlzbZbOycWRSiEbMZhjMY5wXemzeu857Dfm79BymHHBMbpRMra+C6bp6ScrbZk8ZO6dsu4ah2uyvpyo+yUKzP3VGxTJWuz5xVZdsIcg+2h8a93Z0DwxKmiWSfSZqxbmmqd3csSOK+Bz5bmexMgtfWtengGEDdB63m7DFfnumX9njWQ2B6PhwD3JQC9Vfq+J8Z4lgZ+Acgu1PNQ3VtjbUJxBoRbZkSrz1vva79zzkGOWLI2I2kBeCs8tcly1mujVUI8Nm4Par61Mbss/V+tSyd2ktUknaz7fS1clS/XdS5+rHMLniE0a4JleMCLApYUE5v21cuIXXO8/NnGvLyjHsiu6lgA4obuiGQT1/U9mS5WGbT+t7EOnwANl6zm4ft/08D2fer/zbbkPcsTeezvBOiOekQkYMDbgGQmEZTFrZrtuCWHA2QO8TfHnAaQ5rjSQHbXD/TDYIDbGYMUD75zTGM0olBSVRcmgPlwOrXQYzFZNBMDDdkCuWq/zIHSe0hx4nS6ZZoEUsRJBzhUYt5cplWOacIlA/Zn9KUdnaLll4gScHrCacDprhIJ3IjSoeryRj6R9Mg0ZVtuPyLuiGNCtVqr21ipp6NHxDOFYEkQgiNKYppGdv6Al5gpWYmo0pCZTIAeluSXwMCubDOxQkCl+ZlXyvxhHEeurq7Z7/eZSWQS2D6kdUIfAN9nzdhs19bnmTovW1rgVQljWdv+XsRs0eIlw6E5cl+B/W9WvxVNCaZEPI3Eu1uIBazavVGVGBNRI857vvz6a8bsaJk0cRonRIQUB5JLpGRxfMXZHkxjrPt1bnUWk51AiZvdHCOXdk7TRNd5UopV+LBTq1KXElPCq4H+EBJBU13vdkuei6bruv6uMPCa47R4G5T2lugbxg118W3p0dYYF5D5+Hy1gKDYsqaNR7a0j0/xIWjfcVEzvmHKcRabdwMYnffh/H1lTc1rtwWlD7d3fW0LcJ+3YfvZ0p7yd6t9l9V9l9rxVABhpD87GZZrF8whLl2XDFRbbbZm4A3b9tvr+tqkO8VkZXGfSI1AcrEvDwDuelqT+zufBi3putlwC15aLb7duzlvsg0tF8JD7n9peTk5zo/nH79dP2U96eo7wSKitfeWcct0SJd1VGG+Av6CnAvLyNfX+pq2LU3bC/9s37k1Dpc3z/blto3v+91vqvy23vib7NvvAOgG5QQacOJAPMqEoyPhiWph6kQiFs8jzD+CgXQ1BmmZFb1FLxAD1X43MBx2dINDxRwSUyiJLuzoOhYGr4AmkGzCooGkgcRI4g6VE6pTbkeiRFBRcYg6NAXG8Q43QUwDgseJJ6aIOV9lgqCR0/GO430kTOMSsGrR4hdgXAYpt0sCMGGprAXT7mcwrAnBIp+EcI/yFuEImBMmmttdYYuAeKCj7wdcB/Tgux7vOrqu6LjXMU+Wm/9p69eI6gIUNISiEu+GmF8C3CklvvzyS2KMvHv3jsPusII3LAj84wxUN68/zmDnWXL1BCBfEVnwrVnH+t0UeeCvb1wU4v0JPwZckOxkqwTVvHbVEnEkoUOI48g0TQbEYyRMARDGqLjBYqYriSQJ3ztSCFljXBiizZKTcrycw4DmSAYBSClwPwZQxacZVLQ9dp3DeY+RD4fvHSodjKfK2YrDZGG+KueRbop/h/lr5Pj+hWEKZj+r7Uw26c7LWtYZdOvqxzLs+frepGswKnPylPKGZs0lZ6HYVEuPskiw0lo/ZJNb3vVokdV6FVm2q6mb1Wet/Vm2YT7Cadu7eMtGMx4H0U8B3pfuc84Rs7/NReF64+9L19rv1uC5hHmsYW435u1RYYiZviE53OSq3ZdA+1Z968yXi/q/Rana7a0TlZTQNCGyQ7JvBhl0r7X5bZ+XfVq2uCQBglkoqa4dzXxruYZb1HF5DRnonq8pi1wVTdsASpy9hYad9d5pEDiaa1uP+Po0rDz5EIJ+4PJZXX8z5du++dJafup6/dY9r/bMl2/5HQDdRW+ntvw05kWeyIH5iFnbJDmOtyPlEGGzNqpsOMHhvDMg7D3dMNANHa7DgEGIjKfJIqIkIUVjqpJD/ikG7s3JMhjI1iNJ7lDuETdStOwqJRqDbS3VRAojKh4lp7FFcOIqQzetVSSERIymGey6HVMciTm8YUtghHaeNYPvCcHC5YlPqOyxYEweiCS9J6Y3ODni5A5HjrxSCUgDR1NHPxzo9wNp59h9eAVdxwBc7Sz2MWph14xaNQd4Z95o58fmawm8Zczn2u9VvzcABALvbm746U9/yn7Y8/r1az79+FMKq5DcBinjtXrv+aZ9f/ay1nZL1UJo048MvPOtc1KPlmx+MyC+fr7MyEySt1Qoj78lpsRxHInjhIuJqJY0qoTbUzVtMiLgHTolUlSmyUJdFs2Z14So2X2rqMVW9pC3N0WrZYxPqlNknTcxEy2zMbf4Qzix/aWQcihKcR6J0bLCCria7ETMxrsAbM39Lx5FUoSgMlpaBaWU7zXwnS3ApfyUaEL1iWZcZ2KsadaAJyy2dBLLjJnyPNl8NQA7r3XXrPkaz5p5XMqYqFKtWi5pugs4qfe0QuADoK6955uspBYUzhq68l0LODbevbq+7k/r8PgYoN6qf319t9udaYefLnQ/AAJ03W87sVjQuBYMNict7bUt4HzJ/Kdca01Ltub0QTBetN2bvXrC8007Lgl3JQoLpf1bgLtcZ8kX1iZQhefMoHs+HXJujvlf6ix74cwu+7H1A5URr3MhtJruQvPXI1MsUur1JQvh/IlluzYea4o+dsOD5Tep9d2s+Ul9ev/3fFtB8bsqvwOg20o5jhJpba2xjafkI2fTP7WyZt2WomjqSOKImnBe6XaeYT/g+w5IaJwIUyKGXF9JUS2gLkEKqAaSTqQ0ZYRgNteeHlVvzFSEJFkLLBaWUHFociRPzlZpER1Scoh0tlELVtWcDlvh+uqalx8d+OVnd4SYkLqDqwFIjmhSjvwSKiOBW9CejoTzns4LGoWUJlK6I8avce52BtzqckIhmtBmHicdz69f4Psedp7uakcYwKeJoRc6b0RGRJknJjOIMni5tnlOyLGPaa4sZ7vVm+vi9zKwkchSS5BS4v7+juPxyPH2iBPHn/zkT/C+45x8bYORZWmJrK7+bu+Ss9rr4jnTmZYxaHs8r9UqWBVNZxZkWu3KYoCaUk/Az7rQuMdWgCXtyx8lrtM0mX12THhVQgxojKbdzlq1lCIff/IJx9PJQvXFRIix0QCDqhBDtBCO3pQ/msEAycbBOaVousVZ7HvnQJw5P8aYTKh12ewrj3EScF3H/vqa/fU1b37165xwytJR7w97QjjhfIf3PVGx4/f6LttjLk93ccpaAB9mVUBSc6xWtALy9p467wWgJyGq1AwCpY4ua84XpWH8azBzCbAs7kHPOM1S07leRk/Xgl4q9f6N9s2y97l5hlYlCRWML+r7Jm3gHLw+5Xf7nPee4/H44Dsea8clYFvppOY9sHq+gOP3noPGjGTtPNm2qThXbtl6P1iKKcgG8F+vzYdMZLaEoiJ4GLY3v6sWcEvuH2QevwLeWeY9G98F+M5KglJvEehhFkAfAtzt9ZaNGQmRok+hruiF9lNntlBeSGGd88Ul/X7q/G8R/6eV3wSwfmqdvzlI39CXx97zlNM9vptx+h0A3TM1UhF2uwO7wzXidrhuR7fbcxpPfPXF50zTWGP21ke1YA61+LvOMtB1g+dwvWc49CjYEXhK5hzIrOkqkZ1LSSSSTkROiCQc4J3D+wNp6ohaTDnapmvOKqdYqLQMjlNCXQRKpJGS7iNVDfmnn37K8w/3/OKzP8vaNRabdtamKWb2ElFORI1o7AhR8eOeficgEzGdmMJbVO/wTEjJQ6mlv7PGxTnPbrfn6moAr8iuxw09nYv0OPreLzGmmvhh7WhhXjubDTS9uH6lfjfbu51B2vbuOhZOhI8+/IjD4cCrr17R9/3sTCnK2s/h0ia6BMBn3tDYUpIJeG5rw3Lm/5uhkGbyimBSAJi70E9B6hzlBgKz13oBeO5MjTIDeK39l/abtqkPUiZVZYqB3nWIc5zu75BYon9kTWxn0Uvuj0ezn0yJmKyBpfUak2l7JeFVDHGkeRydaM0/7JyzxEY5TJh0Do0po5QMKFJ2ghKHSA/djuHwjOFwjbqv6J0jEU1TfzoRw4mu6yz6SRFm6rB61Jnzs8mgK+AqBrKjCikpMVk0lOLsNIPtxQY1YTwL0ynPtRl7ZTMStOZzXSXre7RUwXNTO72c1PbofRb0GmGtBT+NQLss2gCbC21yq+8aGr7V/vYemRu+/P6RcgnQbd3zFOANsx30e07JexURE0SXrz4HeOfPVYQ5C3X5ZysMYJvsppwKrB0oH25nNoPJ49Fea8tD5kyPauizJjhmYmBg20ajxG/X5nPL7q0OWMazzqtcMm8VRcXVYSua9AKM6zsaYWE9BvVz8+6LJxqVtFwQIhd/vr+AdVZ+kwh263XvKxD+huv/xqXh5b/p8jsAuksRnHiG3RUvP/iU/fUHfPTJD9jtd/zilz/jqy9/TTEtccU5KgPdiDFm73q6oWd/9Yzh6hn9MGStQMiOkAHnNad9LiAUClgWMTttrbbPCXEO33UMvecUdiQ1E471ZiqmKfZczGHLEqSUiYrHu9403CU6gxOeP3/OrheLRu6MOc8RMQqJLawzZIAVSOpJdEhypGhmNd0Qspb7Nd5P1s7qjNYeiUNJFnJ1uMJ3nilG+q5HvMdppBPB+44lCWq0mfVa/nZNvBZ/bDCU5rs1L9rcGOW+rJ0qhPPHP/4x3nsWqO9Cm2rDpfn9UNFzULPVpcoaSgScBnzP6el13bymfecs/9xucd2Hdmay1rMRCLZJzMOwIsbIOAWcU9xuR8gM2JJWZVvqEPn8iy9zvHyqCUJ5n4MmioCdJrl8euPEHJmrSODMFMx7h+8E35mQJ6J0aqYnKcYcJNST/ID6PZ3fczMqJz2SfM+kE5LMoGNUO6GKwfwezB+ERitss6C4atetLuUoJabNj6qEpDUlfEmgVUxLzqfDBj6pZvOXmSIoth6mNNW9XbVteg4fHitLANRsliL5LTdoe+dq0UrNLgr55I3F16u6lpSAMqb5iqyYmpKexFAfAj1rMLdlTrH13BbQvvS9k9lIUTfu3WrjpWvzdzSgrt3LSwGorWfd13KtAM92bh4y8bhU31PmYu1IugVMLzl8rtuwdWJThIhCL61vS7OyWlc7dyzHk7IP63tK4/J3VWFRAPfcpzWI3pzb/L/MzdjuZ/19iWmt6n3PdfRtylPW8G/qfb9luaC+c0UZ/8bK7wDoznojAe87er9HU89ud80HH36IzyH4QpwQiUgFtrOuVdWTtMPJAB30uz3e701bFSMxBkKMJNEs6iol4onQOiZphvDmtAggzmzDlUTSe1RT1rrNwL/8c1i0BC0AXEcEh+MapAPxCBDFYmE7wcIL3gVIyYxUpBxMV05PFQ+KNp2A5kySMCJyh+M1+92eNL4DvUNSqNYgpb6G/GW6lbi7vyPwmtglXn7wEYMqRNPI+i4LGPNT9T+pNc4anJmgLW6+6KV9ThgeXy3lSBgs3FfXdVmjE5F8hF+rKdq6RQNkBq35t7Rgpa1BSk+by/XrmbiXetdkpzCS8vjynkf6WWrR/FT5vaYuZ09tfH5CcqNyHD1NiRAnjvdmZuIijZoUNJ8YpVrvsk8lq11ZqSlrynMQz4oT7djX5WRSjr4zO+wElk1SDURHg6pM0fPluxOjCB89f44LSj9FnPPcu5Gdi3hVYso+H1Vikhzb3/4uPLgdyLrbhAy8yVpr03ajru6e4ui7HtFCkVrqVAB1VMGpgbvQ7guWjpOl/gKGF1NdtJ6LOcvPaLN+W/ujC9PealALoFkCJLm4ZuY92wC+FYg0R/ANUFPGXjj7bv15yzxhDaLXQHz9+dK1s3Z9w2vzV+cEbvmYLH63QPySDXd9z+bpxtNsqh/rx7qFa134EuxuO+hy4Z6HNN0Lilj2ZAHF+X7X/l1Cfpb3ZrpdNefMe6Dy8zJH2LX1wczWuMxJZM7p99b9lfY/Ql8fWncPkvNH6vqbLL9pYeEh87qt8qgO7f9vXrIqYlqvpKDi7AjbO7OljImbm5vGLKSw+RmYKoKIx0nPMOzxfsjPKpqiOW7oDD0t1JhlpZzZY0JTbLTcGVRJTgaiI4lbxAUsS2YAyobJz2NxrlX6THAsg2UimVkADnRAdEToUA189fWXwMmO9ArKKoJIwz+LptScOB1Ord3Pn3X84Ac7vA989PGBzz57zd3NEdTiFFdSWridzhK8SuIUT0z3t3SHPdP9SHx3xyCKd0qnGVjLUlNTgVZxLGnhfAGiOgdgrSxpVqQ0O6QwopZxbaP0tRbEnObMYTU2tjlnxLK+d2EtPn/XMjdprLe19vQ8XhrYWBYmkZ9dbO0HhIpziF7qLJRf5uRHrJ7bpAsrZnY2dqX+rUeNUZ1OI1OMSEhELDuqawBUAZsuT28Zs9Y1d6nZyn/n/FOFwRbnJkuMYYC7Hzy+6wkp2Z6LlmEyihBxJOlJkqB/ybD/Mc55rq523L15xai3KG+AW5wqHRZa1JwfHamEDhSzWvGS2ha3Im4dPVWt2t9iM1pOirQIbFqGtLHfZjYrKd9FLLqRR0gilqiqAaUVnDQCi+S1JIvx3GZIW2DnfcoaKMO8LZin+YEKyq/LAOWpILAFyFsOgw+B7606HmpLEeC/nQbygkZhUdfy+2K609p+L6/Z/Q9pvy+VLbOTtanc+XqfQUtd8zTr8Alge/2eS+2sgkWJgVlANw0ARxtHx1mgrH4jshpL2vfOX6+FI8n7dt2qeS+e93Hrb6tmxfuesF4WbK955m8KRn9X771Uz7cBsO/77KN3/xaFld8N0I2ZfHRddixxnqTK3Xji3ZvXfP31q7xgHdmrkoKCStzsmByyg2F/jes6Y3yqpKwg1piqtrBooysI1RJgvwBv27lOcwQS9UxjQsMVzkVw09x0UWZ7AmO9Fn6wxAs1x8dEj9Mhb/AedEJT4PXr14gcQSJzGvriwDED5pa0CxYVousSf/J3f8Tv//6P+fDDD3n+4gP4t9/x07++RWM01r9aa5WRZr2cSkBcwimku5EjR0QioyT4aEfnZfH+8vT6SsV0i2NVFou9EHaFCv4vAci2t7lim22BKYSa0GK/2y80dJKZ1lK7PgPsAjAW1Lk8WxqZHxGRbIaURbvybNamVGJ+1sPyXfM3TT2Lrpa2SYZqtibzSpqdUx8lGo2EpmRH1obRamEWdqWdvdK2pJYlVTTSacOgVRBnDD3ESIDqrORQnFrYyvmNrYDcMPDcXV+y0fUWltJ3DvEdEW9hQvGMKLcpMEVlTJ4pdQTXofqSED7m+dWPuR4+5vDJyP3xNfH0NaTXxPQVY3qL5x6RkW5w9F3HeDwSwogj4NT2hslpDkmS1dNGB6LOdtkigvhlohEoAsjc4yTZFCWve5USZDEbnilEsVCLJehhEUrWWs4KFlafCwhazPoG2K5zK0tNdp2donFsQV39r1Vs1Go2Stng84MViFze2LWtW59r8pLShxZcr+91rqZwX9f1ENjbAlO6+vt9tcTNW1Z/r59bg1ddmZqsntYGFF/QJq9LSZgjIvXEpbWzV2bhudYt82x/E6D0kKZ70Z8iIJEFVS0C+Ewb5vtantK2bT6Ztj00v6M9PSh1kOtthY6tvj4mBC4+iz6wui8/v3XtfcRj21ZNfc346tb3D9XzQPu+bZmrfFwg/fdi+d0A3abSQVFCjNzd3TMl4d27W16//prT/dHAj9gxrwo1Egc4LNZnh+893ve2oYXs6BVJyTJLemfHzzEEQjDHS1GfKVEENdMSc45wRozE4riO4x0Q82aOnC2oDLKMoZl5iuTY3HAC9lisbsHTManFIB5PE8g9SAbA6mYQvxig9fY0jf3z59fsDztefvQB/TAQ4lTHqGndhUGfSOmGGHZIekm8TcQpckwjd8OI6oeI+FUtG6qCVVlrpNdvXehkGzB4RgAWXTYArCjJEAxeOnrfQ8yh1kykqgQ8L6u5LVuahZao1tc+RAqX989EfH56vkUq0C8YvDreLJeNPZkSkgozyTbPYuEv65C0QGyLYJa66odZCFBtbtkg/GbPbG1wjebfOeVwfU1SZby9rU7DroLLbXjhitBVwEMeLMsS6+gGjzk2eiIdMcBx6rg7CW+Oyu1RiUGZSvhBjSjv+CL+nLsbR5yuOFwPSP8C8c9A/xAhEsIt6Jegn3P98Z4PP7ni7uaGr77+nOPdK9LxloGThSNVcHmfiiZEY7bLztFTRBDvs6tGsNOzur9cHrelhruGGESIanMRFSKm5Z7d9kyILMJpGaPitPm0JCprUGB69/qNtoAjO8PmxXAuNmv9tLGk5vbUZSXLG5rv35fNbgHrtmUVrG2AYjaeOxNgLjzjvCfGcLGOy+9ZG2O0va4i5ur7UsdaOaF1f9rvPBcroekcbG+MdBGoGqFqAfLWJh9gIvgC2M6fWyHzMY32UzTd9b0phzR0OQtlVWIYkC623m23yhqdx2rmwQ+ZI1T6yyzY1b62ks2quXMb2mfWHx4vD935rUDvine9/577pq+9RCG++bve83Duver+7sv5CXRbfjdAd17YmpRpnODmnrubEVVlmo704gniECx839KEyja3o8eph2ySkkTRFEgpkOJEDCNJlJDDBmryiHrMbjSCWvIYsz11IDlddQxEnYh6AzKallti4ZRs7FSo+q2SAVJwHPDuiprsK8QKjBrBPVcxM8AHB02KyYy1Q1V49fotqTVLqDRlBl/zyCVIE2O8Jeod+24khoCgJG8204XmFMa30o2xLRA80OpNxvaEvs5o0kA3Yk6geJxZ0+ehz8C7MKqmty3+tg8ZIOtyC0mBLaVrG/trCbhr01a1ZDMKCvDUVQ3zcokp8PbrL9khDH2P63tc1yPDvmD3+T0PMjRZ/SZruh4k/QCEEInRHJWjzppbp5G3797lMJfGHV0jLWljZrQerva4vDRDvDlQgpCcww8HfH9gPE2kvkcH2B2UXkGjo8PNzNJ73OB48Tzw6SeRrofg9twdR6Yxcbzv6MIVV/1HxNMnvBpfE47C1csX/PjTH/PXP/2HhFe/Jp4iAeVIjzjF55j5Fu5PiSqIJtSZb0NKgOaoLKnYiNteLsvEhH0lXVgwktV3ZVUKugAPBrBoQMWKqWrRnJcXFsTe7mvLC5AHvwqf5X2JGWcs1pA2kX8qwGFV93yCUdu7vPXRclGjuPHduv/vXecTQLQTQWOsoWirYP6eWtDVN2efn2Lysz5/KhRjrTWeP7e0Ny1odKuxl+a5dV0GzkGLjxJzTKqlDfY5qC7PP2Rm0pb2valEAZP5FKbSCYqd91o4mdtY7n3ImbP8OBFm08bVuq6k8Xx+Ku+T9trqwhNKHcuNdr5vPY/e09CB7bLiUiuh4rsq720e8lsHzt+0PN7Q3wHQLZScTZoC0+mOOAZUe8ixqb2W5DlkJlOOd8zMQkg4Gei7K4uVreasmNQyXaZ4IoxjXm8JSa5uKGORAdURUkCIM9dDiWEi6A0qd+BOKDmrXg7+ZgxMaC06kTgzYg0ZcN0xuBf4bkeMYqGDxeHE5xBHgkS/hExbeD5vekHwrgM6gsIpwFdv3vCrz76C1IEEZm3MArLNteXMe6jZj8dpJOoRcZAsmDlTDOy6qoY436S6YhbvyaAqKKvh8taMpwGPKKTE6W5EktDLQApa6zDfWDN0sLji9vz64EC1TaawtGWdbzoHqutRnEdSmmdW/QbQlVZMJIeta5hijIx393TeoxotkVMX6fpdWxN5wM/acy4CzO8q9z5GCM33wRBZyqAuAU51OceU4+lZsKmmCs0rZiOwArwNPLvs1dT1HfsXH7J78REqO678AQYYUyQGSMl8MrzOZjZRFAbP8+cHfvz7Pf3BNOUq11U4ub2fmI47/t6//Ss+f3Nk538PQfiLv/oLrofnTP0tGibGGGB3zZ/+6Z/wi7/4x5xub+h3HXp/gjihEnNIww7vEimWAJx2nlLGoKyFcpxfwPiimC1LM1vzfpqPy/N0rfcUuvAZkAyQG6je3NlcEllop00QzYJ+Rt7VtKiAr1Wzy3yWlbo2j/o2vLIsxzMgxLxm1w9svW9h+91c2zLFWWu+zQbaZm7GK7L4fKH1l7r1wP3bwLvuXClOgMvvt0Fse+P8eWFqJ7K4a1Pr3wjFFCGQmZTNAlq9fRO4t++upwwbra0nGggiHYKnhLCuYJtZ211p3dkYbNDa8t5WEGD2I1nd/QjYnsfqqcLfQ+WSELe1Ih7EwQ/Ibr8pAD3XffHbp9XxyJ0tT/3tl+9u3H4HQLcV28yRlI6oTDjtERnsO4omwkKQIdkEI++bhODw7PornOtNH64Wuk81MI13TNMJ7wQRj4gdJycGS4jDhJZU6ajZebqAaiTpCDlmd2Hq0BCyqo2YgbxRrRz1Q4q9OCAvQCxueAVTMtn7JDWOk0YAz0lMJqQZ9Hf9DpEe2PPl1xN//me/5HjvcboHjlgshTUVb7UkBt7niCmRpCdCEizhj3XYnND83JLGdlQQy/65fkNGD62WbHthNyOppY9t7ZlIJdCovH11x0//0a/g7jnj5Lm/Gbk6RLrekg+lyofm9aGlvqzZFjGhBxGLDV3GutnxJemBUo4nbWKLpf6sRc8z01AMO65NaM4wahYj9u5yPC6NNhJAxxE3TcQQmFLA9SkjuVTsNLIJzSze1REsIGFDm3NWNqm83T+FmDW6c8wan4XKqvUSA+FrhFZWRE0g0UxDGSURLBGO8wy7PR9+8gPc4Zo7dfm9tv8KF1a1SCpTI7SoCG5Ujscbbm6/5Lp7Tn8YzCHOObyH3V5J0fMn/8RHdIfIBx/v2V91aP8jON3hnl0z3rzhF7/4BSE4vridkOefMEUhaCJ1QpgCXhydd4iDTjxxckajcghETRl4Czkdt2ZtdCECWahFEBl53kV011dzHFXQlLKjZ8wmNNDndaGaZtOTlHWxmQaFpPVvxNaaiGRHuAZsFfOifK/kdpZoLuV7n8d2EQklz6nOHysgvaS53V5ey/XYpgkqqbrr89oCs5aWzKBNZQ71t3hfBlypAV4PAe8zm+O6irfu3zZreb8yi0CtFrdIXjNMtHtaW+ut0gpr62LjcH6t/J7hemIJoDMh01mknNtaPi/H4pKmeyb9swNkAbFRzXfClFcpRxcpz6mp4S7M01afLplgGeAu4zSvo4ZYnte5+lz/bpUk31G5VNfFdzzw8qetzy1h5QmPfcuyEGQ2vl/jqr+58sQWPHDb7wbozsTD9k3JmugQmTJTiCAFalRkY/epgPQ4N+A7nyXlhJNEioHT6R3H0xvQCRGPYwDdY6ByNMAtJ/ABTQ0QcgllJDGSNGYAZ/EcRPIB8oZN5WybaCm0DSXl9rtIcgF8x3A40LmBcbzhNKpp1SRkwt/PddpgQCZCs21bh2PP/R3c/eye12/u+OqriV33Q6L8EuVkIRJX4H35t1TNmo1DIDEaY/c93vmslTwVbriauMLcpWHi2tY+z9c80XksCzlbkLXmvpmYxhC5fXPDz/78r/nil28J9zs8z0hB+LO/9wtufv+e3/vDH7C/3mVQlI9ay+tKmxTUF8aq8z3l65a4i9RmiJpTbbk+22XnNkY1k4OUsKgxxrRczkxoYDMTRctNDEIF0ZoS43hiPJ3ACV52iNesYZ51ngXgtRqBAv6rJqmdnadq6XTuhxRBiyI8NDOY17tKAdd5JDNQO18d86dSh3OeYTjw8qMfkPbPCK7nNCZCGhGZcHi6zqPJTG6maSQm2+cuI3fLg3GPfPGKMUSef/Cc3WFPPwwgHg94Ef7gRx9YWE4FP3T85Cd/xHT7DgkBUiQN13z56g1f3YyEKfEn//R/EOcSv/jH/5iUAqSR6BI+Z8rEGwfXWMBwyTKry07X5ZZBC4kPXlzzt//oE2SXs9dmgddoSiKRCMkS/KgayUgaM/gWUlSmkCMmJeV+jAQ1B/SUpgrkY4w2XkmrsFSdPrUA/fZvXTaa+bsy5UVpkNodLfP37X6t3gd1j89/V2FA2vctFuL5mq2AabmiLpUzwNdWJcs6XAbvM81atmkNyc8b9lC7lnUuu7USCOppHywc88ulDc3yJcA9g9DiRL8Ev9rc07aF1fXLfgSc3bvo9Zmm+azzZ+0t62EpFGQhcuNdjzluzpr28o9Hl86ynTOPrL+/JTL9LoHttxf+vuX7n/rdIwLN+vrvDOB+pPxugG7gHIBZuD3I0jglBN6a0HjbYB6mdEKiIwokGZniW+7HrznFNwiBqA5hh+eazh9Q6U2y1znsIIBKsh/EbE/THP7OQnybOUxi1iplpG2gDCNO9r1l11OUKU14nSyZjzjw4DpPGmdieAZ0cjEaW9EeQsftXeLf/Xufgdyh7tq03qkHcYbxFwxrA5StPmlSogQcalk4O8np4z24xlRF2GQMVlXD1BpmvJjpRVZF2WAduV5VNCZOx5F/8Pf/jC9+/gYfX7Jzz+i6Hd7BeDPx8z/7mrevbvin/gN/yvB8MA1JQzVnWIoJTK3mLGWYcdYIzdrodtRkBiMyg1NX+qRZ45lD5hSRx2wK89qwhYEj1nTHMQZCGBmnY85eKCRxDJ2tzzlUXe3Qd1BaJtVebeBEWYcLplwReR6l/Jw2w6NlLc91WhXm8Ly/fm4a7gjHceQ0RqZgTspDzjCqKDEGjvdHpslskS0zrKfre6vv3S2nceTm5obrZ1c8f/mcw/7AbhgQp9ze3PDs2Y7b+yNTOOJ84uVHL+gEvBc+/vEnvLu74/MvvuIv/+Iv+PLNG+5v33E6TTx79oLjzRuQhPO2351YxIys2s6CaAFJRTxyzf5omLhYXH4nCmImbFLM6rLTZpc146qSwW5PHWz1dZ40r7OpaMOx5D4VoOo8tynHVS9zOk7JsupmoqVJiDERwpTplu3zGCwKUwh25pEwQB+i1oRBSnZW17J/5tB30p7FFO04DnUu06W5M6oG50uWy3X4UG0+FxC5pD7t6l3u2Bqlqvm+fDLxx9xf50js26WlIeclt6uZn/UWXbZyK4JREXiL5X0bu+iBdl0ApFTzIUCMRqkzehdXPGZL87/WWs/AOwveq+tbIF3OieqiWAbN1qRkCbpVqJmp6nzWPs33rttZrrsyJxv0cgu4zqtkVnUU3cs3Ld81Pl6bu/xNlEtC7XdV999seej9T1sJ33/QLab9mk0LXN10pZPVtGRD22BgWUmMHMcb8CNJIKR7xuktU7pB5QhMxOxyh0SS3iPs6WSgZJFJEgwoS463jcUrjjEzkwQkZ/GTRRcW050KOyd4ZwQgaEQlmmbTukmSCdGJEAxQIA6VSJQI9HmHRgPyxQGzEEzERkLmnpMSejI9GW7EO4jhnqgBO+r2uW+a27mkIOXYFIk4ORL1hi7tUScgHV3n8J1mEwyhUW9S/jzLSj5PK2YvzvYNq/Aqa21O00g+/9Xn/Oqvf4VP+3x8H3Gi9G6PsGcKN7z66oZf/vxX/Mk/9cc4cRbCjda8pZxAuIaBNsx9xd80C1CIWBg4GjCaJ10zuEoUBqI47WzsF4zNBkm1GCMlUsTAOaA5ak5yys3NPafTxHA68eEw1DfWNqzGcpNRlraux/MBYqmq1abbt/aYurzHGN450Gnfu10/RFXcsOP6w494e3fk1WliUkeIiTAFRLzZtAOaDAiejiczF8iA23cdh6srs0HuOnzfMx4nYrjhdJx4dn3N/vqAdI5IYtgNTCqE44kQAil5hqs9IgkG4cPDnpcf/z4/+eMf8ebNDb/67HO++tVnTO/ecDwdESLiBI3Tsq91CJqTiMKhdZ6HqutO81ozDWt53rTcNj0FVJb1khUCigH1Airz+nJSAG9C/UxnbN3Zc+qMbpQG7XpB8Q10LQ2ZQ28u+pbfr8zro5hMabJr9h1Z6579b7JfQsmIq6qEZKcORXsOEGPKCYh0FkqLllZnyJ1yHS5HgBJx5vCONJtitUvzMZbL+1iYTQBr/HktDoh5/zQkcgnuHmG4zcJvZf5F0bltZ9rgSgibt+vqvgrqtfajJQrtiZPorHQp1xeHGjKLL2fmIYtuzW1eAm9qRVtRS86cMNthwIS1EALO7ai23FUZ0gBwyg6TCrjPcIDC4rS1fVH+kTLJG6WM5fz21s9HLj8nW727XBb846H7HjkZ+JsoMxv9Zu//mwfTTy3fRsSy8r0H3d55rq+ezZA6awTLZqlEeMH9m18qTNIjh8T+A3C9mWGcRoefBoZ4RUoejRMxRoSOrhtw4um8OQ+FmAhBCTozv0hikkAgGDYKAzIZkTbCkrWPuX0l9q4HSystkJLPhL7De0d0gSndEjEtdxBhivdEl0h2sJ7ji0eSqqXjLnahKwnXiWn/RRKdiyD3QCLJyd5Nj25t88pUCkWacG6k454ob0zAUc8UBHEhm0WUcV9xE2kgx0aMwnIcvUZjZ0S9tKkS6SVjevP6NRpGOuxIOHAkTQNTOCB0KBOkI29evyVNIM5bVsPWdpX2He2ayuYKuR0L0iBmSrEOU1YJcu2zAXPnujlMV2aMqQKZLCQZx6For+0INeBEef78mv7FS3b9wbI17nal0fPY1XBii2nI410YrgmEi/BY+XoLEtuiqhmUGggxK5z5BGA+Cp9BRRnVORPosuY1CA8K/bMX/Plnn/PV67dMeK6ePUc1cXt7S0x2ulDAXFJlHEecCH3fs9/v6YYd1y9f0g07vvzqFfHzL9jtBrqu48WL57w73HD17BnXz6+QTvirn/6c6+fPefbiA5ImUhpBOnBlBiJOld3g+fTjl3zyyYeM/+TfIt0f+fyXP+Nnf/6PePPlr5EYzfY67yqRMhfbJU+zaYiBmLI/CsWxqwDGeeSKmbyx/ETJnFveU6M3qOaIMdmhMs1W0ma7Pfu/VNEyn7x0ixYu7bVtaS3X1mxxp2VRNMKkvVHU15Ww/CYLn6u9XyLjFP8UzadEmgGiHRTlNZB0Buopi6xZ+2n5EGYBReues32XqgeGjaiTWZ9tc6h24oSaCVFReGSg1eDZhmbWXlOdtesJUPv9ss/Fv6OO3WLpFDOy5vmieNKZfonamjDBZ7aTruY/ldiShZJU7dtp7l0qOOadPDe8KGrKarSf1Nh/S21aoW9zuxcmProeuQw+c8IqEU970lDNQcjO8Q4LFsY8zFZtoS4tPJ4VYUBz2LRel3Nb5/Fva1o1dqOcO3U+DNa+iXb4fYDqQ3c+1LJLZyn1mUb4ecq7Fm36nQHa32353oNu5z0vnr/IVNWOMrcUnu01TdTNr8Aonk/++Mf88E/+BPY7AokYJtMm50Q1MUVO42iEwoxDcSKmccQbd4kuJ0NRxjRxP91zPx1RjZAS8ZhtmzNjAzIYVmKMTONETIkYI6fTiThOiPT0/cGOcdUbg0kWPSPoaObqY4dOwWwxEXISdgNzmFZHV4OQxOPUoxpQd4cXQYkkGQlRMbvRDgq8awSVqkHLR5hOlegiIgFxE04i+A58BLXoJpZALEc6qeC0hVXnm7PcYdfPN+DlPWmkwDlHYrJxSJGoR5CAqie5DnU7vN/h8EQN3B9HpikxDH2OIZ0TBC3eVxBjiatxWYqvgKVhTOWTNtdKLQqoW1qyO7B5K8fwKc2CG4K4zNicsNvvLRmTd5kZSc2mmnIa8SL3KKu2w6zd0pKQpQDErNOqDF8q0y7tVJgZtDaLZaMUfmdAcTkulzRKAtxPI//wL/+Sd1MiiSXCuT9NDJ3j7ng0raeqKTpFwHumacKJMI4jIUb+1g9/zKc/+AF/9dO/4s3rN4zjif1+h/eezz77jBgjfT+w3+/YHwZiSvzghz/kk3//J/S7gd3gcC6HFFUa0JcdvGSiG0D8jh//8e/z8UfX/Nm/+/f4+V/8BSGl7BQrsJj/sih0tjyhQNoHGI80pmkFW2mJMDKDGZuSlH9rXcJlV6VysrKYpLlNBZyvgcUCX0ulFNstbtFnC0TLmiv9LeN6PkL1PVIW44W7LBOr0cAK/WTZ9pIYp6UvVVuqEKOFgq3DAJCFg5S0niTeXzvC/TU/+PBgcayKvT7FPl4rvSxNrfzHQXZBpZmUvK7SjBSleCOlZgizo6AuR7ydRVdyRthGywIHy/sb8CzVpMSSyNlJn9T7RDLPK5rvwhekNa7R6uhaKWduYsk6UXlRbv+83bVeLq71tXWNVt++N5ooBVwXuaDcn8fa5BpZyDTLmudr1QOmTHg9pTgHgAslyhmwPN8BunhmFjyWLXi4LJ9urn0DcHoGaNvTyY3yEPC+aJ+/vu8pDXugvu+i/Cbrfshh933K9x50C5agAFVLDLPypgaYbWvJwIX5M6DO8/LDF1w93zN5B0nodg7YVeanKHuy5rFQBhFiijXdtmsARBJF+WAZfUFl6UBWNriYVjdotnscR47394ynCSc9fXeoR7SgOCd0XUcIJ1RPqEacJjrFBI8czcB7T4yR43Q04JsSIUZSzEfNqYewM8EhGvCP8UTUF8Q4EVNA1Ww6U/5pNSeombkkVbwb8NojCdIUePayY7+zyCYVVDaErMDOOotnm+GJC3j9WFNPYRTPrp8RgbsYLGeheDqX6Hqjruo7PJ6r6z3iC7rIjKUATMlEufxu2qjNeysRrBqiWfdS7k0FKcmy+S2ALVr7qFrTnpcg7YpH6kKSDL46QjriSZBM840XhobpVyYtisx+UoAFOPECLmXWns0OSFnrlNe7ACq+rn9rar6eNiNMX2QKRdG31pbI6rP9nZAUcSnxrOu5U7idAuPdhBeLaCKuszWZggknMVqkCm9mJ+Icr9685q8//5U5feZ23d/fE0Jkt9shIkzTRAgTt3d5z0wTH330CX/wx3+Ad7uZbmQ0p0k53U84evzBoQT7cYlu8PzBH/0+b199yVfH++VE5x5WMNyuhQe04BsjWeuYh7rVSjZ3VnVfC6aWo16P+7Ws9ULEGjC/WNXlwfOpdov+Lhd8BVQNmmhwZhUM1k94Eeqq2SAbMj+cSW0RNArqWtqMF3vwkt1QAe/zMyXBkVH4uVX52nhw3L295vc+fWGy8dzTqqBQnU+sJDcnxIRIPrFKMyAM0Wh0G6kkpcQUTYGRktRTHDNbzABXcwKlaBs7qQlS1TQEzBa/nLA24kSZUVXN2u5UgbPM2Zcs22ymBWXuUk7y7HTuaxnD5cxJBdup4R8qUrMALyWcMlV2wVVYrBkgFhMpnddJUQ4U2iqmnCrRn2ZL68qCz0t+XzHBam2gt4H3PK/b5fzZbwX8NjTeW7V9UwC9+cpH6ntqHfCbBb1/0+W7Oln43oNuJNvDatmMjhKe6OzG/Ftcw1iA1Hn2+50dRRKM8OTHi5YkNZtn1tSSY11jZgQVFs8/5dV25DgTbTJxq+8wLIT3Djd0+MOefQ7BVo9GNSFOLYCFg072IHsAOhH2naf3Du9yZIusRU9qof9UM7BO0foahSmakOHIY4Ka9lQteorZVdqxvR2vz46EKDlcmdL5Dq8eScIH0vGHuwG/zKVOa2+4+mbzdKJdw1vhux4rxgAcn/zwB3zw6Se8/uLrPM6Cpsg0niAGXN+zO+z4vT/6Ad3eEWU6Q34zvM4HuSugUt9ZwIjIgoe0ofAaueschORrdQlmzVJxmgSHpq4yNrsxkqQn4egx0wOXVaaamaFLSnHN1VQimyzX6gy2FRdj1qobF03OmI+lz/aVsSEO5ztrY4gNLJnHbQHzmv4KUrVw8whszLGAOMd1v+O5dwQRXo1wjCNTNIjgfW/rwwLY52yyqY6fYgLtl19+iXhH3/Vmu5+Uu7t7xnFkHCeeP3+OiLOEN96x3+8ZhoGbd2+YTp8QBjeHI8tNjVG5eXfi9s3Ep39wxW5fMlhFEhHnhR//3o+4efOau/H2vH+rFTT/X4Qqqq1zHbe6vrSC1TKTqk09FWfOIPtseGUruoVWgaidlTYFSjELam16G/xce7B0MbyAsLV8lLPnt9q79XnrgaV8M8N4yf9JaXcjRDo3v92yulbr5UXLRAQvEUfMygXoXD5rlBweVKtBUcb+Zd34rG3P88lsHqJSTENmuplUq5ZaVTOIN58XTZlWq2bajkWxSUqMqdL9okAp10IwXhCTEhPEJIQoaL4n5fvM7t5OJBJKcrMtvlM1x/48gYqdxNVZr0Kf3ZMyyC58tUbGqfOVhZ21ECr23ay5znMh+VSjOLiXIcsCU8UCmeDO/KYlsovlsUjytAaL5zzIdsHSWbRpd11xy3e8b7n02EOAeItfXgTcrdLoOyozH5hrvUDhLzTptw/QH6KTv63yvQfdhcDRMI6SgroduKUzicyMRgTvPFHtyHgScsyTZVnD+PPl0BzQzpj0rA7YcibJbcrPioLzDu9MixZTtCyZxY4NqUC4PNuLMIjQYQeWrr4NVHwVCAy8eZIkooPUiXmkK/VI02KRW3tKdG3IUYOds/dm1JdSQpyNoajZPe5U8OJITma77IW13HpMy6eZhMyRu3X1xGr0V5cWR4gCeOHZy+f8s//x/yg//+nP+Pyzz0jHkePtkdM0ItpxvR/407/9t/j0Bx+h3sxm2ras53pTy7d556r9MwJafSvb95cr5X7XUfJ+p4ZIappI4sB1eZYtIyrO1+yDQkKngI4jKQY7OBfJ0QdnZmXmGckYY9UoSY6gY34EKHhxOWZ2h3SDCWXjmGNw5/Wt88w2ieit1Sr5yL9IGWl7+EonxYRJnwHRrnP0XphsUaMlSVMGUGbrbmM+xWCOlOIsbJ63PvedAfVhGCrDTKl4V1g/nXP0fYemyNvXr0hpZLg64Pse15nGX0Q4XHXc390wHpV9P1TgoGrH9LvDwIcff8T9uyMu2SaPWsxJGqCtDVCtYI+qRZyXizYxs+e11f5/Xs734BZYWEaWaGCyzmEq6/ONMFmnikaYuygsrxHPhSYvvroMtpd/zoxTzr9crJEC1KqZQulDVpeXnV5ssGXxilkBYknNajTP/DvNMf4z6CaDRufKu2e79RrxgjSDwlxUyJZ6Lb+IdQhnc8kMxDGTMs28ItV47rN2vES5idnu3ZxZra4UtZ7qqiohRkKIJIUQLThAyqA+xERMmq8HUgwIpnWPwdpYTktDShbBJp/A5ejyue2lMzOfLqBZC40qJNRhJ7wCliSuAO31OignFDbGCxywQICttb7SNGWxbjY/52fOBcBz/vEQSG7ft/XeLfwhcGF/bZfVrjv77rsq62RCay7+0Lu+K7B9JgC9B5D+m9TIPwq6ReQPgX8d+BFG1f81Vf3vishHwP8M+AnwU+CfU9VX+Zn/NvDPYz5C/3VV/d/k6/8s8D8EDsD/Gvhv6KMjJZQwW67xEK/SdLaFXR/L2MQbmfPiSEPPyQsnbazTFg9siMRt0Wah6fnCLgzI6i2HbYXY5hvK1bqjBBy45MArLisRYjYPKc4gzhkA2XnHzvl85JZQEaJAIBNVTLCIDkJ20loGFFk6ASUpV+f2VC1MaXiJFqGKUwP7SSA5Zcrah77O00xcN5f0plRzDnkbjDjfU/rRApOMYsQJzz94zp/83T/ldLrn9tU7EM/V1TPevXnH3/m7f4ef/OSPc9jkojGRxSvLdEj7vlUT6ljp/GB1LmsaXeu4uK8LkCrVlgfze5uINoqdwkQ1wakeTOf22Bxb4iQZJxhHXJrQHDu+hJCREqqugW1JHL60Jc2OXCAkSbiUBas0EnCkmGabT5rxWPWsOpstvtgeDxEyQMlH0JJAOjpxdJIoI6Eph7JDG8YqFWSEYNGHQohoMC1tjXQkwn6/x3vTPsYUmUJJbpXY7QZev37NFEZe3rzgw48+5PDsGf1+h/QdDsdu3/GDHz/LU2NCsiSyxs4Y8tXVgf3VnuPNCTTH3n8SH7iwUKozdhGaS7+b8ZfLpGutBbdrS63dWgMuUOmOtsSj1NW0WFd1t+Whk6sKlre6vPHMrMTQ1fVlP7feY23VCo7tEVfBTOETtbhlf0vYupSUehhV2rNY0nnMKOBQV4l9WmWMzNe10OVZc1xfX6MZUefZBGhtNLlZiMzh/sxxdikUkcMeKkoqih7frgnovKC9B3Uk7fO+sr1efBCEOQQkWUgsJzQpmfAZov2gBspDCgbm06xVj6kkerO/x3HKETZNY59Swgv0PtG7hJcSLKDxKSndlwK6Z3A/LxBo1dpSf0t9vpj2XTQxqVN+vocWE/PEMq+5B+658N6HgeJM1y87rC9NIb+L0poiLa5/i/q+TVt+22UDvTxanqLpDsB/S1X/LRF5Dvw/ROR/C/xXgP+9qv4rIvIvAf8S8C+KyD8N/BeAfwb4PeB/JyJ/V1Uj8N8H/gXg/4KB7v8M8G8+1gDNx3R1o2VGq8mAZ7XDPivm9yxOmPqOCSMMxbUlrh6pi/OSLYQu720/zxKszpJ8syFbjFmcZjK+yc5y4NQcNjXMdn2mfRZ819E7z+CELtuOR4GJYu9n9wdNhOL8lbUNqrMtXGmXNu2ua1Vsw14Kf1XsUO8rHdNK6rRZ8NVecP38+aAuhnf73pkJiTZPaGlrsW8ETQFixAv8U//kP0lMws/iz3L0Cmcm0xlwF8K2DPlrVzfNbTdB44qIad74ZVAvUdcqgGWhSuc474v76/oRO15O2W7b5TWk2SRJTYWlYUTSBNlBuBhDLYSogvSdy5pUl1+j1aS3aKFASdlZLCQhhlA4eTMP8/wv4iuobve9DkDD6NC6LhOumo44DTiEkAwck2YHx1qyhj7GHPs8vzfEwHE8mdZRzCa8mFjFKXJ7e0OME9N14HA4sN/vOR5PTOOX3N7e8cknn/Diow/or67oO7Mlv7u7RVW5PhxI4wmnExqyOY/39H3H1dUVx7tTBXPFHbea9qyGIftoXi6ZtKWYGKeJFCP9MNB1nrU99zKqxEZVK4B9Sd9RQblNTgV4C8D9LY5nH2OOiz01ow+odGV+9xy5Rc+AfjnV8J2b5c28Xmr7l+iXGZQVEOaasXoc9FQ+JbISjhajN3dPJNO1DLyb5iwyc63eA8wCc74uxQqz/EYtAVomnEnAaXG+1HpPAeYpzVE6UqUdxoNSzn6aDY4oZiLO2fPemy+LQ+jrGOe4I9qgdiUnhVuC2Pmkx4QCiAy9z6dfdbTmockCoRPJSd7qF/M+0/pgnboHwe5FTfdy7BeAO//eIt8X39M+W08ON+7ZaMvlCueP7d0zpnlCw96zzPR7Wf13Abg3TWc2aM53ay7yWB1y9td6rJ9SHgXdqvoZ8Fn+/E5E/j7w+8B/FvhP5dv+R8D/AfgX8/X/qaqegL8UkT8D/mMi8lPghar+nwFE5F8H/nM8BroFi9ZAXps5HFTKGznpvJubj/nRDDe8X2zGicus6dLAic5H/mdkUGd4oy0Rb9vAPEGJArwz2K5EGrx4+qEzu70Y0GSJaEqUC8tuqBl0mf26y0Rbkmn40PISe4OB96KFMe5Zbmn7U4buUsjZHFiFDqEjxw7IY67kJDDo7IleNwQzN8pvqoC/Xm237rb0fN4gLeelJoCFSJwmrg8Hhq7jNCU67/G+szpVIWk9ManHhogx40JDdWMdyPm4SGZe5Q8DI3Oyjcs2dwuSSh1AmigTrQaltMu77PiZcxEliFNEZLIsiNGEDq0mFFSNEjnac5UFyuC7Zn502TZNpU0RVWcxsVPKQEzNdr4+Me8oAw8lFoOULPVzghw1pllAXbV4VeV0mrg9nTipICrs+4G7SZlizPNigKCYnJGBwMLu2NleSiniiglOisTILDCo2Wof70fCFOm63jJ/BotiNI4jp3Hkw08/QZ5d45xDFY7HE1fDjhQCKQU0ZvvYbIZ1dbXjZvCkOOXQdB7NodkSkrWQ1u5A1s/VKde6+LTZHSkp4xi4vb0jpcSVCt67jfX1dMajZ3t0+Wy7dx8HFE9jhu21NT0s328xMhXbU62GsnxZTpqmKQCafRJsbMzOWXGuX2SJFTVlTXem4dTaZ5hNmbz3pn31C4+G3NY5skcBsGa6lE3AWGCzzZEsdIhmrAt9Xs7xvIEWXCZvpNS0v3RnjkEOzWsaf5D8LufMdrvQSJjXoupsSlXAcT7hoXzWfALnzHE0lTWssz14KU6wU5RmbWipQO3kEvF4J2be4129d6Y32VJeTVApplz2t6wTd9r9chm4bWm6pfm+LS2/LHT6fYDmor7HBNC15n3z/iWfqBS5bdcaGS8qVc6W2WNFlmt13aqibvgm5ZKQsaAfvwmt9iNVLp3Gtx9/ytC9l023iPwE+A8B/1fghxmQo6qficgP8m2/j2myS/lFvjblz+vrj70VKSJ89jXSJJaSvVAMnZmDNEdyptV0DH2Pc122gTsHm0/r/IJG0K66Uud8PG/LMIsClTBKZrCzDjI/K9lvXvJRO0LXCTvZIap4FfokEBNxCoRg4cHoPHQuO6FYuLIEcxzjpJXZFwLehmqaiUcG4prByqbqza45AZLiY8Bnmztcsf+VFQ3RWbOs5cr8fmml/LqRipZt/k7aJxVDgymiMeZ410qngp8C8Xgi9p4vv3hFjIpTTyddjbqiBXRiphrWfMmxu52BbzeHC6y9X4GU+Vpz5EkWF8TV+VwD9aX+2RJ5LOIrk21PnctY3BxloyrJ2SZyEXzKyU9CNA1Wjifcwpl6MpBPOyqQE+aYvhYQuTErclk7PLdHMbtQC6lZGPvsqFmiMM9gvlnfomgqsFryeM3rYwHyyWvQdaQpMvQDw3BF1CkfTxdGW3bXDE6dzw6gziF+PjLe7/d2fD1NTDGQfJcFMUenPSKOr79+jfee62dXOC/EGJjGwDgGppj45Aefcrg+mHmKdxxPR3Q8MR3vmI63nKZ7Ushx/kXpvNTwaYU2FU2e7f95EWoGB60iNbX0o2oBtQLAxRyshfyMrr4TxU9uksWzl8WGEJm1+FtMtyg4Cvhb7KUG4MI8l+V97R+y/LC8J4Os1gV1Hut5zFp8KCKoJJyqnaAu2nzWAopsN00TQgedwzvLamz+DcuB1gz6zsv5KM19y4B7hXyWf5UIIDoLELquq7S5RJLKlCYfgFTFi5qJYEtdHYJmB0pxRbdlIkWNTyWyiGLSrrGZqmEntyVEer1vBs3z/0uwuJiv/IUJ0XNfpcnkKkhjyjmDnvb3en4WQHEFtoXVDG3QqZZvNgO+vP0blKeAyOW+WbVi4/Ht06zz585e/YSObJ8ENFcepD8Xvqw86Onvfuja2VsfIopSm3DhYTZvWMsqT1kDTwbdIvIM+J8D/01VfftAJ59GcebrW+/6FzAzFJ4/e5aBNlW7PWd0m7dYna5Go2o01OG7AcHj1VUC0pL8mdbq6tsmQoU2HSiMRGdQnUpii2J7NsPt2tW2dm3WpSrEvFAtEpw5Kg7esRdhJ0KXIB0nYhiJk8FF0Q7EkxwEEseYmIrTZLI2JWDKNnVIBiaS7V0Xzj65/XquZdZEjgcu9AKqCQ0BUsBnKTk5qdntKjETZ7aDJT12HedmrnX+oCXTHDNQt3m1EFeiFg4xThOatYwhx2z2XU84jaQYuQv3vH71DlGh9wPpNHG6uUP8lJdHAWXYOHhvEQ28paFW3wD+RiiY953Uv1VWUrcqpGDZRpvjYScZmgo43yOuN611AQjJRKOF4KH5iDol7u9vcC7QdZ2ZVAGSEho8Qo/FFRBUXOV0Wl6oeWybzIOzRGALuzBhs39VioFowtbmSYVRnZlrVZ1aWcSr7d0yhweJ75qACUO/Q4YdvQoBxylh8FVASeakiPk5CObAhaoB6a5D3dIXwsY21tMe28u2Fw5XOztNUuXt23fmOzF0xDhBtg+fQiDGyI9+/COG/cDnv/6cl8+v+fDZNbHruD0eCeFEON0x3t8zTeM8BJCjUszH55qBYYLmb1mORyFzzM957zkcDoCZsjxF27Nlsw0tuJmB6Zk2b33K0gjIZcoX0LnFxZr3Rf28nOv5k55fl1mcAl1oK7d6W8Q576RqeBenHpv9UmYD7RambZdia3zSxPGo7HYDItB7wfs8D98Qca3B89l3zec6lQ2IXdy/EMBmHlZKMatMmMCw9VqhAcvNtfVaspwAc+Sg+f1F2Dof0+K4Wz47N6/HRfuTZhag87rK9dVkO/k/JYGYr0lsQdWaz8yDdAZGCuBerr3V83kNL4DbFvAUngQcv13RJ6+3dt5KVLf2u/b3NymbNup5/9d7mu8fYgdtTe/bpqeYlzxepz7YwPVXZYW/7+g9CXSLSI8B7v+xqv4v8uVfi8iPs5b7x8Dn+fovgD9sHv8D4K/z9T/YuH5WVPVfA/41gB9++oMaoKjQy+IgWTaQNdL+q3SpEHrncPsDrutJ6kpNJpOrafjKEeV8TFhbUvq/lGgK4NISO9XC8xmt0HosJi474hSAI429dOFhGbinzIxdEsRpTkQCgxNeiNnfHgWCUI8BJUZcAO2M4IwhMVrQUjQnMk6Z6SUle5pbVBTnOnzvcX5mTraBpPZv7q8NpTnWYGnAU0RiyG1PiLP3VcCcwawkhzpFPKYRpyzUhsCpoljIq1YrIprNijQCAZKZUaQc5rBwkKSQpsTtzZ05BKrS9QOSxMxxYiSFEYkBnGbNts2L2ADYDEgj07lsppMjypR1YDbVOZKGAq7RwAOaAtPplhCPWGpu5t6KhaDcXb3A9Z6qyxKpIQNnMGv3W+CEhMYJ71M+PhdcDgtInGw/5LAKS/3jzKVLLHstE9qs95q1r9lKKYOmpEIARlXuxkDU2dSpzqEy11UGscx0y3zXx5ildeVaTNyNI/dhYkpKVEfyHZrAqeSQamZa0on5OWjuR+c78J6QEtM0GsBOcJpOOZ20cHV9VUOhdZLQFOmymcbQdWg0p64YLb7RNE3EEPh1NFHj4x98xIcfvuCwG8A7JlV+9vNf8OxqxwfPrzjpLWgx+3BYTP1CccpAyWJm6hhomZe87NROqjTbBHW9px88xY7fnK0NjDezlvdPAwY2tV1LJrUG8JcZ2ApwPCpQZdCkF4BII7Oda9syyKp12eot4Kdt0xJszsKEVSNzopx6zc2x8fNzmgXcpZNu+bo4nnqmOBLu7nACh/3A3tlpSeVJ0KDjZWdbxU0FIg9w7CXPmYH3AoAv7jlbVbWWtWnPFlgoQFq1ibVdvtOZolRNvpaIMBvg2ZWF3NCVxRws12jbhxK0S5qOulUfSpQdzSesxR69QfUsogiUd+XvimBQePs6GsfimQttXdQpmbq2k/o4Dly956Ev2wrPBZpL7Vvv7aeZq7xfWdfwkI/KU972TYSWb9sPW5fvZxJzJrzxtP49JXqJAP8D4O+r6r/afPW/Av7LwL+Sf/8vm+v/ExH5VzFHyr8D/N9UNYrIOxH5T2DmKf8l4L/32PtVLbwRNLw8awNFsk2XphzFpPCCDCIy0EiqxGTxRwNKLMd5lS7IgpgsgF/WKjqynVgG/yUWdkhwHJVpAktqAp1ky48Out7hvDcQLpGkofajHt5r0VwqkzPga/7YOUSfODqnFsKst1TioRA8MXu2KdhRuDmOSwX6ChZOrXMkVaaTeZH7LpFE8JhDVsuEUrOp6zZX+y8heM2AL2VLYVF8TGgJ7QRoDotVUk1XS2fNNne1XgOA5jwXZlv05rpoQglImirTsLqkChYWyioh4tgNV7z84GPevXpDHEcDTzHiXMw9yraW2da7hO2tWkilhtXLbvVlM9ia0jlJjMwm3CbKqTKe7kkxmPOeczMTyc+4fMzRJlYqazrfMWuKFDtpCAnZFbvE2XTBZeHKbJ0BPN65WQOlpR7bHGVchSbEQQYdc2ukxsu1nJ2uMqmks2EMeZ4LQJ8ZWgMsi42LzNCpaCfLX2SBx+xF7Y27zjMlC3kZgzkKTwhRE70zc5Kuc2ZO4hyCnWKlbGNVhEEwh7q+3zEMAylaFsKkdqpQIpo8u74maeJ4OnI6nVBVhr5HVLlLic9+/nP6zrF/ccX9aeQ0Ttzenfj69R3xFHCTMp4CIYCqz2tsjvQwS3NzydCciAH8pFpDeKaUmMaAKnRD30RZgBip8fRbQFnSn9tp1jn5XwPtEEIdgy0wdF6a7x4BFDMFkSVAz+BhAaZbE4DFrWuIei6umJmLNu9rmrgC80VgcTKPT8qmeN5vMVwhhkRKME2RvhvofGcaw2hROULX07kc213Nhrz4XbTtKH2ufcr9XMerbvvVthuZl9Hm/YAvAgdS/W/Kt1s2+8trxaTP/jJL9RKLnPVALuaodaA+P12pptrzhS0hcKPfNKB4eXkWJJwz88wijBUTzvJAxcDtK0uduS8yX669WpcW8K+vLd5DG4jg0l66cP3MmWr7XQ/XvbrrgtC9Xed3V9qav7l19/uW95RymvLQ3FvVDe1s7vwmI/gUTfd/EvgvAv+OiPy/8rX/Dga2/w0R+eeBnwH/eWub/j0R+TeAfxfzFfqvqWpR+f1XmUMG/ps8IXIJZFJb9j72n9kPZys1FTsf15lAWZg1ISbFibOjtWRH50WT2x6h1XdUQl20glI3U8FfCWEKMI6R0xQZY2G0RsyTGGDoUmJQoe+FzmOmGyIkEupabXKOqiKFWGp1suqBHbAXYeg7dldXjDuLfmrvEl5PE1+fTkwhEsRU7NJEeSjxWgG873PGRBuPFMwBTIu2RpY2pfPRG5Xpk7LzpmgTUSRH7BazixbnUe9y3QWgtZOq5yu2GqUrNS26alZaCJrd8mcJ0+Y46Sw4ifPsdgPew7DrmDTinIEZyfWUDGvF7jCVvzOxNhq9QMQNoXfLMIxl0eQVo8mSTnS+43A4MAwD4iwaTQjBomwUoNwIIFadzVsxMckLGY8njJGph77vzK4x2ZrruoHUDXkLCGI5K81cqY6S1vEudN2YqZv3jJq2H411aiqzE0cvDt/1qErOfJdTp8i8L+18pUogcxFZ9WtZDMQr3gvPDjuu3IHO9wSBowo+JPQUiceJkFIVIrvOzydJasJQypFbxPlGC2xrKsVg1/KJi/fOwFYW2sTBOI68efsWTYnr/d40bClxr8qXv/6CF+ElOOHq6gpUOB1H+hfPePbsGb9++5rj8UgI2Z8iEwwta6sIOBtj0PkOV41XbS1PMZBCwnWeDj/DzjxnMcbaRwu9ZqYtu11x4NtmCarKNE2cThbd5XA4zOZfPMSoW3AsyzleTmid19LntRrvsjZsjZRnoFoE0TMAJGKCZg61KplIFUEkxoRzMtOSvLA1C/WWqTfifamXbJoUOR1Hjscjb16/sfkRZRg6nHN435mT33JkLoIcWwJa+/MYNFs/mwooXpHOM0Dd/C7U8iHwVd5geFiZx7g4xW87ttd7mOdoDeRnIcvNWvYL2uJL/ShRHLeApwmjxsMkzfO7GJ+2svXYidSfxUutM5UHtn1ub5EKtNtRz3vobNSaRpy/rKlvvv/8jvcvD4Hrx9fFN3jfE6+ty6OtkC3K2T77gFT6YL2lkgda2SoKNx49v/1yXU+JXvJ/fKDu//SFZ/5l4F/euP5/B/59j73z7DkKqJrRgIpkDVc+5pYCyDIEUCUE0353vUWSNtCdMgGr9ABFq32abbLMtHJVRThPaprtmBKnMXA6BcaQSBQTkiz3Z2CW1DSEKUdycIUhuGzxXXmGgUIDfsnMKtQiVDixsEwdincw7HKiEExDdhIh7DquU+T29o4xWlKOGr8Vi7pAVFKwRdm5DsTlPgkSxd6ZNQuewlPFiBlm8uJU6kx0GSgVghhLTORiumENR7yjq8C72GjOrEelEEmH9EM2My5CUfGWz4glxQpiSpKXotkpph/qhNvjPW9v3pGmQO88/X6P2+2BYKtIIElJApR/V6dGgWTCQl19otkGXyyVOjNzWgBuQEPCqcPFhMQJTQ7FE2Kw9OUCZi+dKKYgLSMy5lM+zHtgmib6ZPenooFHcP0Aw56CfgsL1GKzv7F15z1iJ0GSiZWohURRTVZPFsbqfvIdwZnZhh3xmhFTid9QCF/SHKGgMOtG6Co67tqqhpKJGPg8KbybRtNc+4FTCNydTqSg7Dqz3Ta/h2y3jZ32WIKPCUHpu47dbofznnEcidnRcRh6ywrripOWAXALiSbcHe/RZFFvAGIITLn9r1+94vr5NfenI6++emVTlAz8fv3117x585YUIkxmcpbKOtXGgVabiV0x8znkn12PMTKeRoahtxOumq+gpLI3TXXXdcQYOR6POOfouo6u6xZ1t86XRct9f39PV8bJPaKPeoz7F353gVPMsG2+YauadSuW/FA31zPMTK6NB728lut3RUDTnGo9cjqdmKYJ730F4GaSZMD63bt3fP7553zyySf84R/+Ab3v8F7yOtqKIkOmUw/b3V8EEFsgSFuSoM19T4EzDzTgEZBSbHYf+r7SQJGzPms+GTPd1cMA78w0otknrflHhgCgriqfpKnjEnif1+fFRbpu0OO31P/O5/pJNsQPlNakpjlQfa/ybWydF6fKTyiXltP7P3+5zdueCN/gZVuPFkB4sWr55pJPU773GSntiKsAWp1XeTZdSFJCFbWb0mxevYuZWHlCtEQyUXKagBKTuQKD8r58LFc2ctZ0WyxsJcTE3TFwc3NHVMX7vkHvGdRLRNSRkqBRiJPZfvc51JcTDDA2YreFOEpV8+nENAOTJou64gyc70ofRZgwjbhX5Wo/MMTA8TSh+fhZze7CNG7RGH7ni1116XAZy1lL4HAWe9g5fNdlzZAiyeK+plQEhtL4bG6QhY52E89mCMXcoRx7Zo1fEVa8N8fAIldVajZvM0cWTLBEPSUOrw294vsdiGM6TaQc6WW4Grh6/pzucCAScoIVcJgtt3eZEeOWGph6TNAsxpyUwsJUFvOMbGoiybT/Gg1sy8Q0TozxhPi+6DHs6D8lnEu0UKSArQJfq+m/UhNGFBOQlMfeI9UpM9W6pAoItBocivDaFJ01wbYbEiWUn2KnCHbV4l6PqQiPRVOuOUTXzHCS2qFTojhuFVOTwhgz+5DyS+oySsDNOPH13T1jBOl7fAfHWOysBScduz7b0WaVVgjKcRwZ42jjIhZ9xYkJSfv9gNAzdB1975v1pfV4//7+nrv7e8bjKZ+W2fjFGC3ON8p4FL789ed89do02maqIJyOJ6JGUkwWPF8tQUhMGXgnixZRNkA1E6i0TDmdThDLqNkeGnaD2fB7R7EFLwCjaGgLOAQqYIwxLkD3Yspzf7339FkZMU3TxfvrwgGKudq8Ymz+ytlQca+tG72Qh8q6dfF1U82ibPHNMyFto1+FhpWxKaZD9YQOTKCsgnwWHp2j7/scfWa2Cb++vmY37Li+vuZ0OvHpp59yfXVF12XQ7daaSNd8XgKeM2Cjm5juYt8WeECX37W/158futaWc/D8tLZt1XP2LqGeKr+vZrUFfcvfVqklT848pAH9S9t8rc9d0pW29v0VxNfT2PJ825oiEFwGre+D/zZH5KkL5IHybUxIzsxnnnD/txIM5AlS4EPvf8r332ZM9duNZynfe9AtYM5ugDEsm5SoiqTs/JbnSlomLgZcnfeIOqaoxg8zIGn3fYlC1AJw0RYwChHjieOUuL2753ia8F2P81IjfqgkqraUDJyTQDSg7csGlQguULT3QsX2gGWY9CgnlFtRTgKH/GxJmJNyO1XMvnvyCRm6fMQWa8inFJX7uxPjacK7jsPBkTpvWlBvqd0NPMGsRYYYlHC657DfszvsAUgu4kXpNeKTZiacE/hkoC4azAzEFQ2qQnFaLHOa50uF2aERs88XLURvHpskDbmb/8tHu1l4UsX5AVXH9fVzfu9Hv8df/+IXOKf0ux1+sO80xQwCZwfKKLIYf1QXJyHtYix2oaKJhd1ATgOnaSKEd3T9iSSCcgV6wCKM9JByFokUc5XZgUvImnqz8i1hJKHEG4YQElNIFqM72gkKSYkI0TWaTRTE1TjZM+BZacZaGcNGdHGHyGzxE1W5Ox4JUelydSUEWaKJxS1KRHNoLyhJOFrmlHlkbZdQGJq1JCVBpSfR4ek5dI7rYWf22ALdIKjOpzUxRaZppOs8w6GDmFN7pAgehq7HOaH3xZZ3FvtSTJxOI2/fvSOEkE9QZjHPUmcrMSW6lMxnISam+6PNfwq8HY/0YuoBp7YPNDtBpnL6Vv0blCpIaisI5e/LuAFD39N33XzyJuXHzFtUtQJLgA9evoSs/W/LDHLmxdz3PVdXV9nePeeULScSW6ANZkKbr5R22TNNh3IPqpJkUV3er4u/Eouy2nOUJ1b8roBDyZ+LuUNxNvbe1/GxE5EsLDd9rFlKY8Q5Z6ciMVbTMMRMTT788EOePXtWNa7Fh6LsLte0qdKNb8+f5yGpSoDl3GydYpTXLwX6+f5FfZlnJtU6C/P8l/2aeVQDZNv3zVB0w6BiS/O8Hhfl7Lnydq27YxvUFSB//vDSHGBZ//bkFJo085q6+CgjuqWXmZ8/r/Mp9swKVfhv561tZRM18dG6vosiFz4v7vkOAGhbT+nvN+nDpfXxnZXvamD5HQDdyOzoY1Jsq6U4ZxCSw6CZvbLSe1+PEVPJbEk+uinaIzIYbxwgVExpNS8H0KSc7o6MdyecWmZIb6EuqqaxHoPqvClTMhAbJWfwcrPJRHWmJAPNqhGATpQR5U6EKxyDWpSSsjFPAkeUoyZOKdWx8l6rECHA1fUVyD3H+5H7r9/i/UDX7zgcrjns92Z6EsGLAYYQIuMpMB1HNDi6zkB37BydBDrV7M2ecDOpBrLdew7rhk8WVLoB3YVB2VxaR1WkpqQvMa5ngjdvpJSBqc1fDnsI2RTExkacZxj29P3As2fPiXHMdn8OwecDkVnLnrIddQGos6lFi8LL5wKwC962D5pBt2gihYlpOuK6kPs2YtvMZ82JHX27MGHmLla9EVVnAoYzu+NiXz9OR06nCb/rmVSqs51Xsja6CGGzeYLk/lUpUpkF0nz/GtusdlJlepqF3RCjOfBi7araqyxAuboyywmU0voTmCzQOD3JzNDFpp6rvmPfBULMZjSS2HUdz6/29AMcx3sSnph6onbmRJwiu6Hn+uqK/W5HmCyut4GJRNKIo6eICTYkNnchmHkBeVUVu1AvXW5jMTtSQoq8evWKu5sbNEYzcfGdOdWhlokvZ4alLg/z4WgBdqE55ouQTXlqmc3OXDmpyJraotVz3jO4OZV5yvGdnPPMDrHnRaQG3kHEGaikYZ4F/KxA8kxiW+C7fI+eXSvrcKMdi98673Fd3/F0TpdSIoZgUZQaQO29r6FRZ8qR39KAhgK+vffs93t7rhEqDodDvtac5OkMMs/tlPMsK1XJsB46PR/s+eknmgVcvK0qBB6pY+OuM6BcJ0wugm9pVoCuv5OGz1Y6VIQfe2pznWTtu8jKvGShgdV8qmXvLa7ybbPZaOeyLM0oKitq790AmJtY/8Lnh0oB+GWMLj33UISVlq7A09bPQ+0ptOW3WdZr55s8/xsr31Qa2Cjfe9BtdpcdQjZrSCkzTq1Er+Afk0Rz6uoQCVNglMDudKJPkUl8dQyZw1gVh8HlJi0RUNp2xNPE/c0tLmkGhw6vJXpEhjo1eL/gUsZBsyVCja5Q1FapSs8Fyti9SS0G9eSENxkMvkAYNGvPRDgBtwJ3atrupBEk4Tyo5NgNzpzFrv0B5z3vXp+4u79H704cjyfi1XO8dkx3I53zOGeRF+IUITrilAiTaYe9WorfASEmS8eCS9lBsdhrF6YuBkLLsV/uo2nFG0xNMYdox0TmTV+0fGi2MbZrKhZFoNj1JxHupyPJKVOc+OxXnzGNI7vdjpAghJxKvACYOrOGNIxoZ8C9gBD2zspnDeWXVYESq5aiODDeT57kBDcMCIMle0mC+RMLIZhzZ2VGleCa06/kdZOcadXH45EOT+d7Tl3HQQXxCeray0LcKkTWAgLld6BNpAdZjMJZadl21aIV1aJmO2WtsWAAbYQaY2UFdFsc8JwECmijmpC/ExF6Lzy/6jjeHEnaUe31NfL82TM+6K6IyXFzH4liYUC7O4Fn17x8+QE//tEP8M4Esnfv3vJXP/8Ft3f3durkrT3FyTgly2QYYmw66/AC3nn6rsmKJ4qmQExwfX1gPDlO4ymPQU40pGrmXDFfKydIdU+f4dlazFSqgBlrR+GiZrsOberrxpqujnUFeAXOnjHeHBNJ5j16Nt+FRtVrOp+y5/ZV39XHuNyDTKoanFEyjZb9dl5WmnBaUGifx2niNI4rMxnbE3W/N4xzPnWx9VVswaH033xo2u/b50r36l8XQI5rblw/WRUPj5RtAPU4ClgLc08r2/XK6pu1CUdpp+QTunShzVLpg1Bmvb3zTBOvbXSR88FyMu/PyEzbloLdDObmNm/3rwqB74HgSrtaG+zyzrYNl4rhl4bnrF7+lKasZ/p9TUMWz77H/WftaPv/vsD/OwD53wSwP7mdVYn17cr3HnQjFo/XiF6sTFyzM1exR565pnnx393eEqfI0O8RVXYhETXlBCJQj3sLGBFtPJjFtN46EwBFubu5I4wGnFxxKEsZfIjk2KSZBRYAZDuA4tBoVhnZPrc4qRX5XMxRShRIQhC4jeawpqKMAi5YHOKu70mdcMfEfQqMEolOST5ZdJSoOUlOsR129MMBP0CfLL7xeDry5bsjbhRcdHgEkY6u3+F9R9c56IUwWdSHXh19cgzqUO1Q6fJR/GxbTe6R9dvaXrWuMtvLVaCALqhTdfKT+RlzPCVrDStKq17nFpbPc388EVLi7e0Nx7t7NMIHH3zAaQp0pynHTZ+1huSTE2naXgQ5wz0uf2jdWNo1Akpn4RNzXGZVGIMnTIp3A37YoXimYPFoDvs9nd8h0m3QGFvLKQRUA+KdhbZLyrPdjkTHnSp7hU6pYeS0DL6mhui42qcCtlN9y9zX5tWXtWZlDzTH2GaY0zJjCyeJqplRQTU5qfNcgYdUrWv5IZ9COe94frVnjIl3QdkddlwNO55dH/jww494+fKKpPDlmxtcf0XX70nZpOj6+orrZ1ekFDmdJvrB8evPP+fdzS0hTHRekBoaTonBkuZ47y3NvIBIYjfs2O97fOeyw6YB3hAmVBPDMHB1vef5y2tubm4Y3J50OpGO96SQsg2+mckkTXZikcMYFnpT7I/t77lukQ5IOausrUXX+zpri/B6ZS5aMJHnQBf3zHNU1ljr8NaaacRkDpkxn5wZiDUN/ngacd6z3+/oupV2sgG2RXs5r73y/taIaIZwRVExA7rmoXp/FojXgoLaGLSg2XtP13UUc5PaOF3C0HUpALvz3dleeFfMj/rOzBqxMK6mXMj0v9kfGYJRlDfr97ante2XwnIfLm216x3N32e9qN9fvmcJQNtnrRszhW5rraO5+Wyem5VQ0/SkaUsxPZqVVZfK/MjKJGkB9BeNsO9Xc922/dKbpCLvpTDxUBEua6DfC/59Q5C8fl9dTlVL9PCa36rj0XueCGy/CQB+ioDyXZcnt1MVLt779L5+/0E3gM8MOavVUkrGzMxLqTKRMJ04no4cT/eEKdA5z27f0e+uEO2QaEfFnciC0AvmYFmAtxbViBjuVlWOd/fc3dyVUzEAUjDZWp2vmfBUNYdSSxWY2WaeHcqSOlCPaEIkzgxRcmLwPH9JLSnJTYwEErcaiMeR0+nE9dWBQXuCV+5VOSKcRJhEmCTaOKFM40SaEo6eFGE47NkfPN55pvsj482Ju/GOMCVS7HCSiKcJkcD+0DPsekgOp10mxokuSU6b3ucQjEVLt1TpCKalox3T/EVaMNrmAWysKFEBcghCyhhWtJazD4ojOYeqcJpMEwnCyw8/5Hh3NNAgjhAjXbYBNnlgPmGY8fYjIYkqnhWqMUXmMw4H2uFxnE6R6TRydf0BLu1QHDFMhJhwRPY7h7i+HomWqmOMfPXFl5zuTgzDgB86ht1A3w08u37O2Ckx+eqw2Wqa6ww0YKrYElMAcqNNWR+Hn/HQdiw0O0zmpEQqyUx52tFTqjOtxWuxdvl8j01/Bil5T1ikG0U8eC8Mu47hMDDs9ly9fMGvXhmwfnb9jP3Q4V3P4XCN7zz7Zy+h2+H7Hu8HfJ9jKItwOkXCNHE8nhj63sw/IqS+s8yFCOMYePP2Lb7r+cEPfmA23aOd9nRdZ74amMNr8cUIY8KLsusdu/1A0sjzqz3pNHE3Tki0k7gaWzTjMC1xwxshSPOYF2fqnB6LTi3G+v04Mo6RmJRnzw5414OkxfyW0tp7LsCQmvY9xSLD2owlTaQUZ1vnAgAxje6bt2+5ubvj+uqK6+tn5qvhHK/fvKHrOobh4+Xcr/bJonmrcQgxO34WU78iczdaU23WVCnFNKqaz5QTlCxMDrsdvutqn0pfyaC8nvCoqwqrek+hWwo5ECYGEu2Tc65GOAlDD+KMcUpxHM9CVDP+BSCXHaeYn077XTtoxZrtEuBelqUddxkqo0eZD1Uh7XI91Wm0DnUBxg0tX7520cZLDovITGsQmddss1AvabovdHeW6M5bVfvZgv6yCBciyENahcqfHo44c/nxNT29/K6HfCe+bTlruVwes1Ley7H1O9BGf5t3LEjLb7wlGy+/OFYtJ3+4fO9Bd5EkazzNzNjEPJwgWYbC0+nE8XjPNI6oKrtuYBj2DLsr/O5ApKNEa3CZaLWEwWlOmlM2uBSTCCO+4zgRpjR/XVQUraax/C4abzXwbfbhdtRcTAdKdFfJP4gdkZV34zDGXwA4MKXE/TQxhYBME/QGhDt1FtVEAGdObBFFvSUuiUSiRkIUhI6+7/Hi6a6uOHQHdFJuTu8Ql9AkOPUgnumUON16docDor6gByz9vKCdCRySIV8VruvsKTF3p4Bup4UFzSYa5VeJRuFqZAqzqa3ZFsUiU6SC2pjBY8raLucdn376KS+ePeMv//Kn+KHH9505jXqfvVltImYbZ1lo4cp8FC3V2TZbMIByb/EXsBjRH33yKVfPPqDrhgyujoS7yPEUea65X2gVWgQ43t/zD//BP2Lvd/zhH/0hOpn9v+87hv4a0cAtjiiWQKbYGlsimyJNSAXaRevZarhrH3W5ao2ebIEoq1djQnNGU0128mN7s6mhAupiQ2umHCLgpWRqdfgcZ3sYPP3OGdjuPcPQ0e86ur6jT8K7ceR4UoZ+x/X1gWG3o+sHdocdO+lIrqv279a5SErCeBr5+utXfP7rL3j79h2n45Hdbo+mRExmC308nhjHiR4Db/vdDrffset7E5AmS8TkMmj0zvHyxTMOh55h8JxGM9OajoH7tzcwRfNziHOirnMtJRWEtutoxipScUmK5hwaU+L+Xuh7C5O45kc1YgPkvFKJGKLFi89zGoNWe2XyGt1ktPnafr+vq3s8jijC1dWB3TBwGkemKbDrB9q4uQ9ADFs/ObTi8Xhi2A10LmvvtUQd0ezM6HHeVQ1m62RF0gVgCWkWQgrYbseldqn0tWQk1pnWkE2NVCHG5bhUzXfOfBpCyJrpIjVS69sax7x7aDnEPH26emQJjpbgfX5yK0pJNYupNc+Cy/qE6vGim/fNwHxZ1gCyHi7kzymPV5nPWbyjavkLHVvX6/JPMT1b5FAS6ovqiU2meS2do/18AeyW09c1PH2qpnvz+qPPtuOxIgmb9f7mwO53IWQ8tXyXgsZvYkQe6pe2tPvyXY++43sPupGc+ACYNDBGSwUuSUnjxHR/X7UQAH3XZ22Mab/cbk+S2XkGsN2etU/lOKqxHDbmBXPGyqBm42xnxMYYaIDKaiFpUacWgq/mUGbxKiJIQHzA+Yg4sx9VUZy3EHadM9vpnXMM4hhEGLITmMiJ4Dv2vmPnPeKUPoMDcQUICWMCFc/++Z44BaZTILmEhomUY5r3rsd1Fi5rOOzooiAhkYIJNikEjndH3Jsb+t3ArrOTAi9YKMHBNM6NntVieWfcV3+gYT5ztIpNGbwBbKbVnsGcPa2VeBZiXqZU1dKBC0IIieura66vr/G9t6x+LjtsVkCtTRuk0f42LKbdhPnVSz1QAwryUjiNI1dX1yQVY+SQHfuy5j/7JlCdgotgZ9kzmczBLyUlTCOa16cbPO7qQBAx+3vzrKuawqrpabM+lXY3PatDfT767SKm+E2gisZgPzqHuqzLezGNkgU9M+Xxndh67h197/Be6HuLtd33HV1vWVu9F+icpXL1nsO+58WLK9wdfPDBM549v2a/3yG+Q3Lq9hqNovRPTYP99dev+eyzX/PXf/0Zb9++M5C4M1tdlwysnabJTL3ETn2GqytSCAy9M1v6OBItvSuSsGRLnaNzQAp0JAZNHI/3dCmPRzHazgmYCh1Zx3SomkihMWObgZliZjYiSt+Z2VJKFp5QfDYFWU2czUUixsDx/mhp4sWiUoynQN/39H1PCIHdvjcBtkmsU8yUvHfsdzs674nRzCiiKt55Xr54QUyJYeirMLVuw+XlpDkxFPPCySWEyDieCCHRdQO+88QULOJM19e45M4Jfd9TnHqT6gJoL6NuzHTBYU7JkpLZ7+c96LyrYRe9s9OwaZrou479fl+BfBm78/HGwkRKhnuyHoci+M5XDYPKWV3nwPpxcWZjlJthXUL8dowWP5v1XIqVsV3nU0oVDmWe+gcdQbNAZOe1qZ6izQJTIxy5IqDZyVrxCWpbXarcOimay+LMaG7Ge/f2/cp3Xb/J8ktBZqvPi+836rk4Nd9C2/3bds78PpbvP+gGillB0sQULDJBOJ44vrtFgzmylSQPfd9XzUdyLjvQKU4kpxS3hCiz/q8sBHNOqqHatDBEW5zTOKE5HX0J1SZSIpGQias0TpK5Dgro1twHc9RyPtB1limtJPjwTum9o3OOnXNciePgHHtxDFg2ND/sODnHbhgYfEcSs1V3SfGa6MScM6Mzpz7vHN3Q0+0Vf5w43Y/G/FIgaUdMCfGevh/oOg9eCRLRoMasQuL21Tuu93ueDy/oO8V5JXkobuNFa+2ymkOYwXYr1IjMEMRlpDYzJXumpqMXUCmCStaWSYkoI/iqsZoBt5kdKa9fv+GVvkVj5MWLlyAO7yxqdIVAeapc/lwhdMGtl3UYFJR3zoLUHGBDsHWSYl0/KUZSjHS+RzWZj0KOtFOY8uk05nVimk7NoELIAC4qfoqMO9jntTXHGJEcUaapsmEcpd0FnDZiRe3DmWCKzlnwUoQUsww0g5qWKZVhtP0ndN4z9B2DF7rOfpzTbFvPDNycIp2nGzr6vId93/HxJx+yv1defvSc3bDH+Y6EI0RFJFJOCpCIiCMmC4/55s1rvvrqK25vb0kp5dBvtv+nkAgxMY5mijSFyNu37zjse7wIQU04dGVBSsSJCUzOmVB3++4N8XQijYEuKb5zpCkLGiomm+dwgZE5k23G2XV1FWHJZAcTIlJS1Fvm0f1+X7WtKUZScR5u1YmlpGTmP2nW/JbEUvv9nr7vM7jOc1X2GTS/gQxsLZqHVNpoAMnbIVxjGjIfX6eLMNEAqtaMmYsoEmr7ZAqBcYzcH6e8VCPOO3a7nZmIqeLxuGR9SqqLPkz5ZKKMcBufW0TQZFk47+7uUIXbmxsU21+Hw8HCAXqPzxlPaeruvAkcmrPKdvmEMVQzojbCRhYFVfE54dgciHMWBMqGWcrGs7B8fkpyLrgt7svrSFbfPa7lvgSkV2tMdXFlYwVulq37LtmEL5/LwFpyGyW3YdXUehoiZY0+DGK33t0KH5Kzjj7Ytm8NOmfh6Gk1Xb6r7t12vbxXW57yln/vlO8D6P/eg24hbwS1pA/39/fc3dyiIdCpWMKLotmucXhzUeg6z27YWbjA1PrIS6m8YRbzZ/PAzpqHBNMYTJMlxZbQQrZJAt9ZtIRAs+CzKkTULWlX/SCVuRebVztOUzpRejHFX85MbOYiAm430Hce9Z6REkPZbJuLXaADekwgkGSmLYriDp7e7zi+GwnjaNkSJ4gKY7Asm5IEjwF/SbPt+3R/JNz3uIMjeBNO1FkylTJTqTD0MsL5byey1CFoccKTTE8L4bDnNGukS3xu40WSM/zZePmSbTEbzSeNhGig5d39LSkkupxYxDmHOkfSmEF8o0cqoAJbC7M15IW1mKl6a//dMqIUYwUtMcSc/M6Opm/eveOjjz6iZE+VilJzbPQcRcOVSZcG9JD5uyiT80yasuCh+ArAS2skr6q8BmW2VLU7jEG7zIAcM8Nui9a7NcclT2fxiL0IvbP10nUdvXd4KScvJi4kFWICV30BcuzkzuEHRz/Y/u2Hnt3uQNcPuK7jWSf4PiFimU0RGFMiZlxmWs7OHKSTAenTaKYh0xTwvsvvsp6lZGAvhGCJUNScVu9ub+n8NckZODOb+ezg2a5Tcdzd3XF3e0c6jdncpsEGzcrSrOdOqiSt1ryLNTMzejlDJ857hkFW4EspNslbxTlvmntvZD1lqbREfE+aiLFrgPMSdOeXmPCNX4KPGpVpfT+LdVzqaL6uNLyYaThnwKbsOTN7MddcVTgdR1Qjw66vmu0qiFNspw2sl++KxjrG1GhVhV1OMDRNE9M0EWPi9evXDMPA4XDFMPQ8f/683lMUBSkD+0K3fNZ4p2Qnnip5fNXMiZwTJPcPKEkvq/JhFnzP578tLWim+byE7dvFfMNzlBWl0rp1XaW+8sYsa5mwwNaaa++e0WI5UCvnnJtgurnvrB2PokNZ9r8O37x2oNCi8m8D5K/6fAY2t/bBVmu+AWC79MxTBI9L9ZS1vehX0T5tvO/Jjo/nD/L4JL3fmPwm7Nh/W+W7Auzfe9ANoCFxf3Pkzas33L67I8XI4DqeXR/YdX0lVEXbCSA4VJTDcGDf7TglwUcj2akGMGhs3/IlR0nVYKA4ARot26CZBBjDcChmTmqpgpNzoImE2lFYPpaXnBNbsrbCHNI8KXQkV7TAJSTYvPlLEwOmWZcMrKIXonjToKVAIhGShRcc1QB0zAxDi0St2e5XoQTtC6eR+7t3+NRbOLqhJ2kkHaPZ7OaQCyX74c39PYc7z3N10O8tPnFmHVKjsFgf64jqTFzmYIizZkY14Q06ompZ+Q6HA+W4NlMTKOMZInc3Nwy7HcP1vkIYswkkZ9H0/PAHP2S/2/P5r36FE0fMx8oqmjN7tqYtbiYbC6a0JA7SflAWTpDz49mRVubTixJVoTB8lDl9eZYZyGDjOFq8aF+TQZHjiNtJjzjFi5lmSN/hk8ORcCnW8G2lX6lG8044nY155pWdPxWtY+67NP0Szc7LImgMeCEna5m1jB2aM0DmKA4pmeksZvsdydkh87oTL4j3+MEz7M1RdBj6bK/dm1a668B5HI6uS3gneGchMTWomU7ZOYxpUMPIOI6EEHj19Vt++ctfE0PCeW8mYXluUoqEkDiNY12bZa7L6Jg5kNawlpJRtZK4u7shnrLAOgUT4kUWoUAdKftmWMjAotOdgVe7buarmkxwKN/d390zjlMFxyV+tMiyhlLmXAZtJJPl2nQqiPg8z9uAu91uiyLLNdQsps32nN3mhGHoDRS7AuDnzTQMA955vB8yqLaITrNwUMwCpGrgqyNgjtoTo2mid7tdjdHd9z3OmcZ8t9ux3+94+fIFIsVkxS2UNUUgg2wKlk1wcI7dfs+u7/HeTl1j9icq+92W2hJQahUT5rGrZ6wNkp7llfOx1LPfj0Rh4SkzslWaN+g5+G7rt7samnIBREr9rWe5Acork85+ENU2P68rizY2BzwoORwW/Rc70Y2STSwrUH/AfGXRtraqGRMsbb0fLu8DyIz+vo/D5gUhYf1tC8yf0Kan9u27LI+16Smg/Pugrf425XsPulNSvvria169esU0TeyHPfvnO4auw2k5x12m9oUs8TtP5zo68YQILoPuGjc7/1Ttp1S3RgO1GRSlMZBCxEVFavpuR0lKGJOliLdncgzdrP4SBU1GOJyaB3uHItGTRgedknyO4oASnTKpma4Er/hir0bWWkc7Hg/16NqAcVQlaLaAy79DIVr5yNssBISOHSElCKOlTFdl3+15/uyauzc33Lx+xxQCroyTCFe7gX7YcXf/lrR3+Oc9Zzqc9V5QLFFJCKAJ7y1TXIyR8XiCqHS+xzlPmCbGcWQ/7BELF5GrEFJS7k+B23HkPsE+gp6SaVW9jXeMljXQO88HH3xIGCf2+2uLdoEjhWgz7XM0FNfYQJfGkh1xNo8XNc/7zFS3tn7Kx9MzYZCqWfSuM6koFeHH3ll8+E/H45nNYY0LXo66k/Ci69nvEt2ooDGHbWyhnM25ZDMASxg/k9jqxloEwQq0ilPZDNokC18SE4PzTNkZT4tTbd5rIWvuI2bKU05pRJUua+5NMPB0vqt2sn3f0Q1dtvG2tVDci1NK5pjoTCvtUaImNDgzoUopOzTe8vbtW969u+XV67ccjyMhzAJ46XdIymkyu92UQ+JpFshSPr7SFBGN9M7TeYyhC5ASMUykMaAhVWbu80lG0khMMUfTkLxW5OJJdVltKW+hlMdHc6r1/WHP4XC1eMbAagYUjVJrDXikASnoUnxs19b6+1n4nP/aWuNLnndhI7ACapJBTA7/mZLaCYTYyc4w9Gg220gpkZKB6JTSIiJJKiYeXWdRZpzRNhG7Z7/f5+sGpp2UZ60z3g813GwB28UuvAgu9Z05YY6lfc8p5fO9qolpHM18qe/zSGVHTJF5Z2udscUgt2RnOe7L8dsC461SY/3d+5TNp8rcZzncQl+mSt+3TmVyI5o/5ogukAV5Lcxw9ZxoNtuxU4ZeLDrMot+1nsbZvfCHPEaLNdm0r+yFcpnVbXO/Zjpo0X4vA+7l+pfFtYUMKsu7tHxX3tGU955BoRGCz515pWi+F43eeksrwKzX2DcvD8Hi7Vb8/0753oPuaRz5+quv6bqOFx+9MAcXEeI0EacRXYnPxa6vRG7ou54UAtOUCMFCnRXto/k9zUDbnDUsK2DyoPkIPB5P6Gm08GeKMeecWVBiQiZLduLJcaBdyhE4tJoXkLItK2ayIdmjTzWRooKzlNTeJUYHJ694l8N6kZlssntCnDMoKkqSYkdI7VNUsfTmKiQVNEJK9l4NE6fbienNhJzMmWi47ukPHUO3g/Suphp3Ap3r+PDZC66ur+i6QDf01azBO2MuM7WZGYUAd7d3fPH5F5ASu960mgDjybSN3jkcpnXa7Xb4qEgA8TAlZQyB23Hi7Ri4d0LEM00JiSNXQ8dh6CwhzmkiTUo/eO5vj9zcHEnagw68fXXDFO7xvdD1Htd5fCf0Q0/fDZXplmymlwwDW5vL0r8FAckMwuEsTnpeD0UgnKapEsLiVFRqUWQRPWEBvDPzdiq4MbBTAedITCSdkOQ5Kylx++6eoe/Z758hzler22LD6DNjTFljF8JkR+X55EKcw3W9MaAcKcgc9Er/sw4v/23CX9bWimkkiyOs3eTM/KHr6Loe7w1se2c/RQurKsSQ4+3fHTkcDuz3HidCJ2ZCFELg9dsb3r695eb2llev3vD6zY0BBS2guDjl2ulUSeeOCB9+9BGHqyvevHnDfrdjtz9we/MOJ7DrB3rv0DRRcG6cAsQIaYIUDKwqgM8az1SCKZlAoPO+KOYn1TQCyeYJMzguEY4iJbtkMe0qSys7N4vg/RyF43yNNutzBbjbuhbguznCr0lNCtZpNeILRPEepdkoMQRO44iIcLi6ys6cgkiy+YnmNGrRqI48f/6c+/t7Qgjc3d0Blh3y5cuXNRa3c45h6HNdZf+4DNazZt8VUag4U2cfiMYUpdCBIqylPObFfMVA+jw44pzZcZfTvDQLq2Wci1NfOTkpJic27tvD1ZpUpBZcF9paLuXrbSjKhWLggVKd/cuTzSPmwJ0sRGIIdXyXNCnfy0xPcq9Y4735iRXFzH+aw3URgCTXunyXVBqyJM3tic2i9gsYf35++Y0B7vMIXHOft8d0S+t66TSqkvv5plWbtsvl2VwKteWKrC/+DZWttz+0Mh9r7bcVBJ5Sfhtt+N6D7pSU6+trXrx4UR1qwmTgYLHDmmJe/CkfAVqYqjEqIdnPrBV3iPqFxNsmcBERnMI0ThnGq2kpnUVBkKg4Z7GX1ZmdsTlLsojcQQY2khwuOWOm6lBNOWV6ss8YQJZkKaftCDVVsFcV+5mYLLP/5b4jObJfTk2vkJIzbXtWp3lRhv7A3X3E3zmIcEwTd909pEBf2UQCgcF5uqR0CofdAenMZKPXohWA1IgBsy5GmKaRt6/fEE8TXqRqolJK+KI1ionT/T2ffPyxOYRmc5nT3T2/+PUX3KeEPzyDbsehH+jFcX86EboTu08+wqkzO1/tOd4Ffv7mV5zGif3uwOeff8W+g65X9lc9mno6cqg57c28QmdwBFqp9ayBurzVWgGjCFcpRsIUIU44SThnTpC3t7e8HQY++vgjCnmsR5mQbUMd18+e4ZyzE5hkc2BJlQQ3CacQSClyUDUw3ERwKGDsr/7iL/j5z3/Oj370I/7On/xt9rsD6roa27s47f3VT/+Kr778wpL3xAlS5NNPf8DhcI3rdly//JD94UCYzGa22AkXRm2mFK5qW8v8u2wS4TtBvNnUaw7v56oNb1EtZc+GvMZLVJfxdKTvBOcikiY7EdHE/e2RL1/d8OWrd9zc3vPu9o6bd/fEemSlFq9dc4bP7ERbtJAff/wxP/zhD1FV/uiP/ojj8cgvf/lLXjx/yfNnB6bTifF4Y9r8GNAQCOOJvkQV6jwhJMYYLVZ/LCDG5rI4UGrl+q4CrRLRxHBbceotHFObtVZsl7XSj5QiXh3ODRf46WzHz/rERE1QGbN2tqQ112SRcgq4KtreEMyHpmiN+74v6Kfu78UGuFQqQDRA/dlnn9H3PS9fvlwkFUlJubu75/7+nlevXtF1nZma5bZ3XceHH35YwXGJvFIAatGExxgzQC6nTecArjxXBIzZTMXeU8xLSlSXomFvxzI245ty34rhiNmuF9OGsl/yacRC5bnUM7b9sTtmMLuEtdRTKZhPS6q8tCJXl8xE5lM7zX0inzREYgpG+4dhYeLTCgT12fnjg+9Dl86YQB1fV08Qir32ogOLvi8HotTDk4osfme630gJxXxlLZhu1rU6NVrD6Pbxb2PL/D7Q+Vws+aY1ve/dv/l6z5Rc33Epc7ie98U7Lygy3qd870G3y/Z+5ihlDCMG0zq1A1S0JDFGpikwjQHXDUyT2eiZjbKBIq3Ew+wB11vG0ovPR6F3xyNTijgspJ9pHbHMZDGhRCzWss9HqAYqyKEOUbN77RC6nJkyqprGuwF4qRBSBTTbLEoTZyWBVM2+2YGb1qwlbKDqUHWWhCe6ojJBNZu4eMfh2Qtuh0C8C/x/2fvTJ0mS5MoT/LGIHmZ+RUQehSo0utDAUM/07gzt0u7//z/sh6Hdoe2ZARpAobLyiNPDzUxVRYT3A7OIqvkVkVlZVVkzq0mR7m6HHqKiIo+fPH4sCMtcePv6PZ1gziVul0aBKAFNieXjibEPcFGX/6lFNFt039YNVKEI0+nE4e4OkntRn06ImEPCbhwRgfk4MR2Nlb37+JHd5SVv37/jm+9+4P3diRIG9lNHPwbC2DGXxPHjHV0HL2++NK3oEhEGUprIGXbjHpHgk2U4m1itvbd0jPrDZFp9uTdAPhgkKlOFnr2nQMkmXZhTwawhCwOxsce1KJBNdGaHBdZWy7Iw9APzPPH23TtSSSBC149IjHQxcL275jQtDJKtIzb7wXU5tCyJNz+85nT7kT/M/8Zvbm64+fWv0ZLNncP15PM88/77P3Czv6DfXfP+zWs+vL2lE7Ek1M7Yrbr8K3UiarOiAYpQl+lzdqa8OnEUVDq6YbCy9mJJsuJdMrtUwPzoLQgNjU2Ey11PFyMhCgHzCA8ejH3/3bd8OC4cTom7w4mslvxmgARStuJZwZMZxFeDhmFARPjXf/1XgJZgV0qhpIUPb79nHHqTxKQFTSd2/cAQgklcfDWkFv4puaCOt+ozXNRD0Kql9/bwx6mBnQq7Kos9zzNDHkyCVYHQklnm2YBmF+nasvpDoFH3M002TnYx0vV9AxHH45H3798zDAPjOBqYzAZ2b29vKaXwxRdfoKp8/PiRlFILkq+urpz0YHPgT00/DwFldZiqwYQxwM74q3JxccHV1ZVL0ULTY1fg15LIZGPRp+vYX1eULGHTEsxrIOrsAKWUs6qbNfF5C7S2IHtbWl6LP7M1QPKxIpXCMk/GhodIf845ru2h6gGY50DUXiAPNdFV+7ud5m1+qMTRCkMec+R46u+tbOWctBF/pG01JUYnX+4HgvZrWwmpQUDFrvev5X6OwXPgKWwA8KMA6JG+ZzNOM/F9Ys/rtk0GrT9qsn/7zBZQP4gCtvs6P+xTzPiPTZz8Y7efdrz1QuTsbv182/29/ZQz/GO3P+ouyNO+Zuefe/qtXzzoBnEgbT7cxnD7oBFANLgus3A4nFa9JsJutJLmENy/c818b8OOA2sbb9TBtoPuGEglMU0TJReCuN40SAPT5pxgJyNBEPWUsRicwdPG9IiIHU/X1JrKsoLr/0poVTARBypOF0mxxDZ70Cujrk02sF5IpBQxFj0JWgKoyTiC2DHH3UB6kXj9/jUiEDUiRZiW2Rh8NQ1tkMDi9owDMMVAue445Zm4M52y1mJAFXBvnFLnaUIojLuRvoI4VS9odOL2wwfyktjvdkzzxPevv2f5/ltev31P0Q6hp+8uGLpLxuECNDJPJ4p2IJHjwVY8pskKn4Q48A//8I/cfrjl3bu3rhO2lYQ2Hoqxq/Z3DbrKmlS4aUq7R1UGcI50tqx+3VK2JdnbuwMpm7xoFwKD+x5Pk3kobyEYmBPDx48fefP9a3bDji+++oJcMlkV5Egcd3RdZP/iAnKi6yPaQRJpiYy2I2U+nTh9/IjkwnI88q//7Z/RZWJJmd3lDa++/JICnA4HToc7vvn333GaZ2TO7McLDrcHfvcv3xGGS/6n/+f/1ftPoet7YloobCojCmyBEKGCfwdGwZxHLP9YURLLYsGmWdBFA+TFNP+xxFYgpQvm5lNdGXKxFaz9rmO/6/nh7XumycGH2PMdfIlakgEwK03v7Sxwmia+++67s+S5UiyR6/bDOy46QVJHv98Tgbt5IS+JTpVdFCvcUmyfllxNC+az1n9CDck2YZ0Xr1lfq7AuYKtp7958oIsdly8uKZrIWhqY3O12DYjeB1otoMQ06cs88fHuwDCOXF9fN0AZQuDq6oqtbrnuJ6XUmOVqozfPlqBa31/b7HFw83CSb6gYsCIzv/rVr5ql5tZBJcbI1fXV2RO1Pq5r4qQFKdaiW2Y1pdTmiNvbW7qu59Wrl2c+3rko0/Fk43kpXq1WOJ1OZ8D77ApE6DxIULUVjDomVLJEMBJlSRmVwHB/WNB1PKnAdg29aKB1/bh9YaMuagzb+We1Nu3ZPXiY3/Q0zKhJwFq/62e1erjfA9Dbn2fd4PMCsbradMZen1PCD/5+LkHz/JeHSOfBq3L/5pyfddON+/z73NXUp7xC1PY9f/PB0/Acc/6pA/2E7cckHK5t/POC7E9tD8LSP4ck5pFjtOt/4vif2zqfA+j/CkC3L1XXZT6chXA/5GVJzNPE5O4FwKoVHUY8NY4gztiKaaAbaic6yMWfokCR9eZP02Rv+rK3DYmlVUXUUiz6rsxNLU+vgK4a3ZrMUxOmfOSGoISQISSqd4EUt/wCSlCE4kUU1dhrgVoHsmwecmsuAQ1QhJKgzKC50IXOwaYQSqDMSpkTQTORwNiN7MaBY1HmdGqgn5JJU+buQ4F5Yrjao/MF/+3f/nf+w6+/4G9+87WzExuY4Y2ZU+bu9iNd6Njv9ux2O8DYxdvbWz58+MDh8JGh74i7jpNO/PN3/8IyF7ruBUN/DWFHiCO2ThC5O06clgUpgTR3fP/dHRcXmY8f7yi5Z+j37MYrjnEiBPOJFl1WcIi1XRQr9GO3zW3iwCtEro+YsE6PLXhqFEl9/XwgDyFwcXlJyoXYd+y7DimFH374AVWzg6uTZ913zoVlWkzfHDvGYc/u8sJaVDpK7AnRgqlLtSSyrIVEIIqx5NM0oSnzu3/6Jw7v3ln+QBDevH7N8eMtXT/wD//5v1iVw9OJ7777jjdv3hjLqcpIRwzR9Mk5IznRAQGl5LROiOsM1SaXFXhXhgoPDE3i1YVI10diwAPjTNf1qPamgY+JEgPaCV3vLGaokpNgq1fZkm2nObckzf04sh97TqeZQz66dXzwgNGqec4OXE1OZs9ryZm+6yw/xO9hp16tNifyMjOMpjtPXpjFb5qDdEVLlX3Y92ueSHvA2zNZ+8nqjPQQngbGfqSLA0Kgi72tOvWwv9h5u9fAcUU7Z8mKgMkDtAVhW3BdaxhUAF7v4TiOvHjxokkJwFYEKsNbHUDqQfQsnHhi2wDjSoJUtrlqrbfMdfua/12PIJvXz4OMun+7B4eDFUmzapoRLULOStfJ+n33To9dx24DsqucpB67robUNo0hrJIThRhX16maJ1C86M7WEeccDZsL1VNNFe69VrXS7aB4r9kEGqXeBd1Ikdiy9OcQwdqgJkv7tFZ0Bd2bQMa+7frsekW6/YxiEsl7+78P+O/du+15niVDPgJ2tu+fvb75WVs5PgqWtH1Yzl+9/6mzIKAe+ykhwf1zlXs/bZ/yFH6z958LJJ4515990xo01PFqe8Q/DQD+czL+n7v9OPeZ57dPXd1fAeiGvCyepGis9nQ6eXLNsmZXi9B1vTMWHTH2dOMF0nXY6q+0cuLr/CnoZuCQOhiJuI1fIC2JkoqNgsEGD6mDiBaqtdL2ddWCOjDEgQ9eQdDrShI0E9QSEaWzASypLyuXzoFdQbxEeHBc15bx3Jf7wcDgBXo0CyQhTZm8FPrdzjXgzm6cMqePB3cQCfQxWmCjmaDF/Je7iHpyXZpBo8Cs/Ps/fU9695odC199cUOUwQBZsPOtg/s0zV4QQ84KY0zTREoJEbi8vOS3v/07Xn3xkkOe+DDdMs+ZqL8inW4oGilkplSYDkfuDif36g6cKOhpItFxnJSsPaqBt6/f8vbdG7dhs4JDEjdxDmKVM2u0lV1/2wIGDDNtJoq6bZcPt4zTCjAyIUauri7dPx0GAGcrx91oYZvq2dOrRU1GtSv03UDfj8Q4UlSYS09KI12IlhxLb+xxMWlQVmWpguZSeP39d5Sy0MWAEFC3touxo6jyr//yL7y/vW1MZqnfjRmVxGk6MOcD+e6O+XRHP75oMpMWRHoAt13mry0lYoxw33fsx2Et/x4DQUxiZLIxW/HIKdMNVgZeCJ6AqcRsORJTyrx7/4F3Hz6SKJQsvP9wR98NlMUC6g6r4JqLeW8LZjXYBTi6Q090u8guBKoUAxGiFPYXI0OA/a5Hy0zOC4fTzJJSnZJQtCViG9gy7XhRT6B8ZLR9nHs770/V1aM5coi45EabG0rxQL54Ua7a5ueThUl99vu9WS9u7PAMyK9a6O33YoxcXFw8mAzrdyuwFbFgtSVyfMY8VdTkLkDTSx+PR66urtpn6v6PxxMp5yZ9UbA+LGEdYzfnnVLm/fv3xBhXhxGJ7HbBLfyUtGRiF5sla63KWXXaFXQ35ruet1s4Vr1vSqmtxoiIOSz5My9qz/w+RpNDiTx6vuc4fCMt4QHma0FcfX/7AcsLqLKkGgTZ7uu12IpPXNl1p85Nf77uO2eTQ0mTv1U3kMpwKzXHwgDzetxS0po86p+vx7f4yvp2daaqAZ7dO3Og6fv+rBs95lCyefNBMzbg7at9dVjdtNwD8PuYQOAJeP0scK7cGXzWo3D+3XuBZj3p54KDT+/nR57Eg+3RcGR7tE+8/9Tn7r37VDD1R7Dcv0Qg/9T2VwG652kip0TVJU7T1Ngay6weNhZS5pvddQPSj0RP2stYgQ57QINFojXZxSP3OsGpFojR/bbxcttUbLWyC0VRKe7DbQmQ4lYjJWdnBoOJW8RqttnfyiAdYwe7PYS+4zBn8mwOFZkVXEd19wWjGdxV2gHjva2yECZjtcCBXAglEEq0c8+FZcnMHw6kuxMjwk46YlHykggS6GNH1IIUs0FTL2WuJZLniZwPXPSR0+HAd3/4jr/59df0QwehtIRKzYXbDx8opdD3pgXNOTv4iwzDwDAMXF9f8F/+L/89EgKnkHjFQsqFu/d73nzbczguqMzk4vr7bvAWiCDm8S0ROs30JbEcF765e4NI4ebmkoAV+9Bgx5+XzDDiqxEF087XPuDJsuuobZvca2XdsPrbd9x1Q9uyCW0lVUW4vLkhRmFaFkbtnKGyfSwpkXJG+kjSzLvbdwxL4m6O3J16ugEurwcWVcbrnpFoemUfbGIXiUE4niam6cSqN7cEXVv96fn3b77h7bv3jIMFqJXBQx1kRVApHqR4EiRWfW+uHsbVhcdBWGwkqAWhNgHWAPlI7AyAUyILmWWaASWnTO57clYG7R0oJCSpM84WBH74OPH67Xve3R65mxaOx8SUMnMq5CIEiXSy4Qq1MABSlOU0mc++GAgzKcIJEK/+ClGUpJlh7JiPM0VTtfcmSMRKxZj8yJQkurKG1d5OHXQr/JThv3pKx2jJpqs/ER6Y6GbMkycmKHv4u6Gj067VDKi6cgLoPU5VSwVfeQWZvp0x0Y0Fex6IbM7EQYSd6+l0snE4G0CtjGc9Xs6Z0+lkq5Xq7LFaNc2h7xrwFrE8n2VZ+P3vf880TXz99deIWLJnkEDfVyBoz7JWcoTC8WjJmhcXF4y1erHt9Oz8m/TGpUc5Z+Z5Zn+xP2sf03B7lWG5D+d8HNBtsqFuvl9f87+fbVFp44rJiJScV/nRVi6zzIuvTtRTUO+XFtwsKdkY1gIqxdxjigen4UyW49OgjW/OjBdPyq1jevBANiXLQ6kXF0JoHvpn2vhH2Ov74Pvss3qePyN13EZBvM5FUJ/3/Hx/IoZbQf/6Wj3b+ysS979Ue8CPOXYLcO7NO61/8HmAtM41P2p7wG4/t/28wPbnlJI8pWE/i3P/DJvwsC/f337xoLuUwt3dHbA+qBVg10lqe/O6ZkfWUyQwTQvITC4OQ6rExCGTFh9I6vKZGBVeXKc5ysBFtyenbFZk1ZHAaE1jzooSgm6YZKUEGxgJzlL75BbUWTngxdBzfRHJnblCHJZsxXDq1Ogjh2Erl5MIDSg6TqxQEdRkKKEEgidSjt0OJEBSyFBSIR0n8nFmH6w0TadANvbONOPO2ucMyZLjcJsyNDP0kR0jhcT33/5ACMKvf/0rQlQvjGLtuCyJLkZEzSd7659bdc3D6EveFC8AY0xcYuYwn8h0lrzmcUduS6cF1ZlBIN0euRDl1VdfolHQaKW5+87cNQQDi0taWFI2Vg9farbZZ8N+yPkALxVk17dWZucRegpUN4VKgILLFyCOI5S0SoKwiRDVliynEXKycy1T5s37zO2U2F12JDK5BF59teM4J8ZO6NRKmb99+w5dEvk4tRyDWq3T3DMCWeF4mjhOC/2wY06QS6DQ0fdWrImupxt3vBz2zEtGYo9K4DDNzClTvad1sxJQJ11BmjVH1oIuGRGly4GUMsu8el6LKFkyRSI5ZJZgdUgsBzkTi5BRUiq8efuR1+8O3B0Tp1mYc+SUYFpASWZb2Rmjn9X6a6dmaZnVZGWlEbPFkmWBWAodytApF/3A9S4iotwdZjQrMXQElD7AIJZPYfO/ukWgUoqYZ74qRWVTBMraqbqVNPX+FoBtmTsHcDHGNre1iV4CJZTWts3j+kF06J5Dslqgtk+5NGXbZbd9eQuI6ntbLfWqqebR497/rv2UxhhP09RkPbWEe3d5sco43AFnnmfev38PIgzjaKDu+oI+mhe2auHNm3f88MMPxBj57W9/S9f1mzGwrh6olXWvhXQ8effi8oJhHAhAF7sGuqsrT9gAzsZWe6GrxrQ6gK1NURMe0TXp3Vj0SCnu8PNIi61MtrPm7Y112lb1aM5zAUrJzClx8FUBkdWx5eLiwlxmRJo8pcrBaq+s+0iprM9tuwfSVrAe3tR6ubqueG2Ir+pjPo5ja6vaftWtatuPQrVbfGR7LPCr0sD2OjQ/7XUerKe+RjM/Ck7W87v/zr3XngRUNeCW9Z4+cnVnOzifTx4H+s+y7feYbtnMUZ+3Pf8s/x9x+7GrCT/39osH3XXJqu+NvTbpSDyPxB0V1Ye5Tl4ikWVKaJkx6s6tu4ItyBVnuhuLik+EIkgqLItNGPt+Rw6ZVBKpWCIZbtUWFP9nOnMtZZ3oxIZjEZv9Q7HiJn2AXpTLrmMEDiWwlGxJmVqrNwK+72o/VSeV+hSugb4/OGpJXlIiUiKRQAwGRkIxjXU5zRT3Hc8pobl49T6bgLQkA9ulgJpDTAzB7BBLJqWJOZ3odCZrQo+Fvo+MfcfuauTq+rKVUE5Loos9ojCnfDZA5Jw5TSf2+55lmVFgKgspWBJqLBO9KFEFxL6bkiXTRekpZILO7JdER6Hf7bnc7wh9h3QdIcI8H8nJwGLSRCqJrrOJMCfoorFhggdMz42m0HyTW6LrZsBsYMxlABV012Au58zd3R0lLfz666+cfcvNeaZoYkmzHyqQUuFwuuN0CJQyWKn3IpyOhfcfT9zslCi9SZKWzPu3t5ALQwhkOnIN3TQgGljUKubNGZakvH9/R4gWmIl0dMNIIZM0UGLvxz9wmiZKiLz/8MEKgxRrs+BApm4CG8bQ2kZrv/T2SYsFrbVPUQTNhZISGoS8JHK0Bp6LBbnzknl7e8ub9xOnWZE4oBIoFKtQiQWHWooHAc5me6KbFYStk2ami4WbcWCMETQz7iMX+469l68/TolDmuklMgSTpHShBsEeSJfSAqpVx2rtYF5G7UH1uHllJ/XhlO7B/1aKoDQTZ2eoowZSMWcmEUHjQ86tdslzb4pNt24zjN0XEWk5DDnnM4eQohZ4933f+nhjFj+DO1qfBwNb19fXEALTNJFbsvtmExh3O/px5MYdqkTMS3/oB1s5UWVZTJ7yxRdftCTRkksrpFNJmFwSgnKx35tUx48Ro9h4urGOza7HVl0L5mwZZICUs1XM3e3svirtHlUpiHeJtlnf24LpR29G+0u3v+t57kAF+vX14MnZwQuOgScQu1PT2RK+6Nkxt8D3PsA9uyWVPaxI0p+lGEJzOCqb/dXvN+/uCpY9oDzvH9ZLn2SOP7XJtgWlAe4zCPmZ1G8NNrZTwNoUP4qyXo9eybF7H3nubETOP+C7+NHbQwb5Xl+7dxJPscQ/bfucE/7UsX4aN33/urdHeWyPnzeSnX//p53Z+faLB90A4zgwDDtnJgxI1GGq6c58a4OVZlSsaI16ZTlLZLIlyjowtOXi7cMiddAw14sYPPENW86mHtPlJSVX5lwxdNRjLifVyEhsiboUOo22VBqEQxbmJJyycLhTSjbG1ZgpCMXLZ28y5ev/RDe/w8qMF4ESoURbni9GEZdckFIIxZIGS0qWIJbrwOdAXlNbUsULnYiYfu90Eg4h8SIcmJgNfAXh9u07ptOB//Tf/T2XV1cUhWWZTctZE3XUNJi2L1vmffP2NSKJf/on5frmhhwF7QP9MNB3hZdfLpQEx2NgykoWqxIaO9CU+eH7bzkcj3SAxI5dv0Niz7DfEbuOnBaWNJHKiTjA1c0FOSfMTlEoRSxRtRRbkXiC4ZFK7fpNuG8p2OQkCktabOXEX6tL86K2zKp5QdX1oqsRBdNpMm1z7JEQSUk53N5SpkiUC8px4uNpohvg4l3hxasXkIUFu7fHj0eCRMLQs7u6RgS6rme3vyB0HVcXO/YXF6hE3r3/wO3tLYePHymxI6tyTIlh6AjjjtD19MGCv2mZ+ed/+x3//C//hk/pbVWg8bSGElCpqz0r04TC4ox3BDSY7WbwQLJkx+kJSsgsmskhWHBbMosWDseZ2+PMkiPDWJBoKyOImnuRg8RQGVZM7iHOQAeBiNJH4ebyghf7niFkoohVNK1e+0XpEK73o/3emXuKVTB0m7gKgKpr3Gaar39r7SfQJv5PTmlSJQ01X0Rbv/LmbT7bZh9YGdl1wizVx581jU/9AVYf5wjGAtd+W0rmcDgwTTOXl5f0fc/d3R2n04lxN/Li5uZ8MvsRs049r9h82W0lsuZ0bB+jEKzMffPOxsYlFcwVqvY5EX7zm980W8CcM/O0cDpN54y9wG4/ujWrWk1Wv44YI6kksw10L3L1e7XVvOecLeG277m8uGiuJw1gboCwbu5xBc32rzKxur5Zm1K2L4nfe1ofKFmbDeKWEbW2qonx98aisoLgBjo352n3xb96tnpxfnrNHIAW97VgTkKV+shZAab7yZI1YNmumjQJSu0XPAYSn942YekKjFtg8XA/n7tvYQXf6/b5QPR8Fejh+bY93nvhMc2/nP/58yC9s2M+9tomSPvpe/6Mz/xc4P7ztufO6McC7rPXfkSfvb/9VYDurrPKgSJWer2FuWupt7bZQGmAWYIwjL582BwGaEylj29r6FcBd/Cl4byyTUECUcwOMJWVsaNUAF+XGAXpQhuYVE1X2UkkSkcyYSUlFZZjRqfMUjJLBiEyYJNmQZs2u2J8EU8A3IynKwivn7OgRN0ysGQr4lNtzQImb5FS6CU2SzY004ZMqc3imk7XyoHpYuflgISZPkYoxsCVvHD8eKC8yki08+ljx6yTJTP2Pfv9jiXN3L59x5vXP5iLyQcl5yMvXl5zdbMniy3GF1F240DOPX/49oCWjn6/s7aMHe9/eM8P33/Py1yIooTYcwxHY0HF4KFl5WfoEvvrkWE3EiNMS7akWpytCTQLsMdD4nUyqf8TaHrYCiiK6yyrC0TR9eGMQXjx4gUf3r1jXhb29AQ1jb+1aSZGK9pTcmA6JeYpIwW6aEWdDqkQpiPjD4W//ZuvCUOPhAnVmbvTgRgCv/nbf+Rvf/t3xGDFkSR6aW0yIoHYD3z129+Sc+af/uv/ync//ICK5RXMCh9PJ3aHI1oKp3lhKfCHH17z4e6uFejxXF0PyhS8OEysk0bD3Gq+8vVZEQN+UiCTKUnIEpCcWSTY6sicQNTez8ppWfhw+5FpiRBHCuY1b+yZ9fVSfOXJt1b9DxAp9AIXfeR633MxRkbJ9BSCePajrsCujxDHjuJMe2MYnXWsh2og9t4sqrV33JtAN9D8QScTb6tcqpWkJbstKVsf7SKC+U9X0D3u+tbGeN8rWVncOi8761t11KVY2fIXL1+6BGFleXPJhCjtszmbd7pqZkkzfe/FeH7MRKPruXVdbMNsLXoTK0uqbdi1IEjuuZZs2FnAVzkt2K/uVaX4CpiPufXmm10pqHaE0LVwMYRg9pfBZA8pJXPrEVn9zUMgOXCNIXCx329AaAW1ZqW5XvM6Een2tdZsWzilqGvxVsBTv1JMYrak5koE0I8jfdetlTDX3tOOW+U8NdA532obdoSwsfl8DGi1dtSzb28BdSlrhect0K/FgmrAUO9bBdmnk7ljXbSKpM9vtX/Utlqvans/flz3fGx7CDjvgYunzu8zDiy+2vXcHu/HUMJDkP78MR5//cfg6J9TZ/3YtvWW/z/r9lcBuqXO2LqW+X2shm5liEopLEuiH3pEhZKyA7AAstkH9dcNCyFVHeg2V6wMaEtIAjQbGF19nrGS8LWCjWTwYjRBlCF0dCGS7ERJObOUggZjb1WDSxHWCjhFI4EaJQih1Ijc/hWp8E+8M4uB7mLsuBSx0tVLRpcMKSE5G+Otxr+X4J7LDvKtvS2BDp+ERCy5JsaODkV9klIBorVFVuFw+5G8JKJERL1yqHskm/+5sswTt+/fcnO5R3VkWg7kFOh76GNByBRfNyjak5kJvSLJqhoSA0tOfDwdGjAKAkUzyS3BspYGeMSXXFWVw3Si6wO3h4+MqWe/69n1+wYIdS0huu1VW0oFPBBJ80ReZnMEQQixhxApGjjNC/1pohsGQi3MIy5pKsqSSus1FbhP02RL5DljUvpIiJ7o1fUchz05ZLpciIzMxwI3kRA6Z1YL/ThCDBymyY+TmZfCnBZO88Ruv+Pm5gXJAeO3b96SgvliX7y44d27t3TAjDLPM8esTAiHZWFaUk2RNbcDBbC+gTNeQWuJ7dpW6q5D4uXUPQHMg99AoYREJpAzxFAIshD8mTgcTnz//gN3SyAVoYsFkYhoMS988JULNvryFcgFUXadcLPruegiQ7TETFTJXulVarl1x072HGTbn9sBNrawrGzyKieoMqIafBtQrGOWaH1Cfczaln7Xjec+PhZgBZqcyPclc22A9XC8Q8nuGmEnXeVcuRTmZeHj3R0hBJZlaSXUO5dNXHqRm9qlQwhcXOy9IqUlpO32YxtPDeQ+lbj5cNvKbbaJkhUs9V2H+DnP82w5OM1hpd4D6z/ONXC+8G9tEmKgl64VZspFW1l48U4QNoFCLm4r50hGUAiW8P7m7dtWCOjq6ore5Ytbac0wDByPxxXg+cqYetDXkmvVZFVNviKrVWJL0l5by9vsvP1KUeZ54XA4UIvCKRD7vq3o6Ka/b79ba1qM49hWC9rsVQmgexVsz86pupOcneH2GEZsJU+qrgmvrZqpWJJrcblSc88Ja4Cx3++pScE/Hil7j6iDNmt8UMmPn7Jt8y7WvYjjgc88rXZK27OQe689sr9tLCYP/nxABP01OXU83P585/5Tw4c/deDxiwfd1gDbRnBgpOKaUXNnqCBAi8k9NEE3Whn3spT6lXbL60PWHrDWu30C9iS0ZleFVoLCMqcBLYXozPWqo7Ty8wY0lRiNUeuClVwOQZpOO0slQqQmmDu7bIkwWYNJJ0pAirTl89omsj1n8UTRIkgWWwZPBUmFkjLiSZHpNLEcJ/foBqkah3qNtZWD2buZRRaWJCmmH+z6jliSgwP3SCggGuhD15j5lJKXk06wwPF44OPtLV0I/A//+b/j/cc3/OvvDuScmE9Hhl0wTU0d/rQgJTHdTRyPQh4HZLSJJ4VAjhmkkIPZFQYJhKA+udq/4G4Q/dibZd9+YLe7oIu2apGTZf17jhpsW0Et6W7b5qoWnHx4+5Zvfv87gkQk9Hz5q1/z8osvjW2cjaHq+8FXK2wyvH3/gQ/v31P+9m/aUquRSco8zZxOJ2LoCWHPfr9n1wdYLPFsSUcusBLkV5eXxvR2Xr1R4fLiglKU3//+G6xqlJVdD8GASewGRDpzrilWTOri8pqrl1+wLDO308Jw9YJf/e1/IMbIaXlH0iPZwXsFQIqBu+AWi+Ig04CG90lHvVEgdgGJHuh6ApYqkGHSTFCli8U0+kHpYiJGC1DmuSDS0feBriiaE0IkuLOOpGJ+3f4AR38cgihDFHZdx/UgXHZi31HaSleVlNXvrPNYlVapF75xIFkge9J1LnjiZNXa0p7Z6kKpmL95Lexax576b53g7XNtIpV13IuxitOwvtwFhnFwIMPGicKSBm0YcJ/pEBh3O25evDgvQhNCyzWpeTFbgGn7WgHSWe5Mew4+tQmtSm8V/jcUZ/2nguN5ntG+J4Zoba7uNqQW3CnVuvCccRXwpG2zAby4iI3RN422BXfIKjmxIOehfvXq6qq5f/Se7F11yJWt7fue7777rumpWzCx+VcZXgVKCI3J3rbL2gN45Ke0P+d5ZpqmlhhZj7mVaQCUtGGsN/ernqdujmu4dAXZmzBm0z6PwyLPToJNX5UQWq5DTZLXeq6cy/W2Wvcz84N7/emx3rVtncfel0qY/ITtMXnNCno3NRk+Y3ugT38EgD8WFuj283p+Do9t60riZ5/aL2b7nPHjr/G6fsz2iwfdKGaXFZ3C0sYPOFAEXHutWtCcyQk0B8hqNn4UL79tzJzWtWcqYICia+Zye9TEmWcFdTBdJ+TaM1IpxgpXlqMoGjKU4BrWYOQzPsHWMU+FqMFt36rdmLHTzejLwb0462VzSD13l4XIZsL375DVbP4Wc5AoS4JloUwzy3FiujuRj7Pru6U9xE4C2eTt7Dc1aU58wK7Jf+7qYW2R7fjZKlEKME8Lt+8/GmBTS9ZMOTEdJy77QNcpqicgI/QGdT35Kbi8RHzfmgtoIGXoNBC7gavra+4uLijHj4hmoizQG3slIYJ0Jv6WSAyRL776glcvX9D3HUFNppRFSVnZhQ6zu1s1iE5FNmC8xmbGRKbTgXw6USRSSOYlL4EYIteXV1ztL23yPJ7cuWPm+PGuJczVnlZt7A7HI9M8Eah5BMmYWYqtisxHlEjuBg53PaepR+QSEWPrlnl2gFO4uLwi9r1NRM4mTfNs7KgHZ0lhyoWw3zOMA8s8sd9fEPuRLgRzhAiRebElfMCrr5rrvRsqnLVLFjUQLGZ2U0TJ2Z6xAAR3EPIUC3LKzEsiRiEF6KMXdkkmr4h0vNhfMKqS5iN0ylc316TpSBc7cilcXV7yw5u33B1PCAYq+xDZDZGLKOykEEpu0906gdtD12qnir2m0O6JqLGDJilR9+autmnGemc1d5oi1b0ECuv40txLPNDeAm97jNUTul0DW9vTg4niloSIgdGrqytLQvV+mtzyUUJoet5hGB6AmQYWN0VugGb1dn+7z1Lff28FkPe/aNdeMu6ysj5DpSinaeI0TQzDYIVsRJqXv6hwuDuw2++IXWROM8s8c3V1xW63M8b93rlaorqdzTzPTeowjoPPCd6GYuGNuPa35lVUx42t9d0W4IbqZLVpK63t6RK2UvJ6/87a6Mdt9SsV5F9cXCAx0g1DW3Wo71tBoANgIHa/37dzr0WQYA34qtNHY0Qe3M/213n7NoDvY74HMrHrvFLslpTYAsiam6Stn7MJGuzePdmLHjTMeo5ynzhu79VkyM9t+ftJpG0Vo5IrP4bxlDW8eQoxywpe2nY/Vmj3av3SM8e8/+XPOM+/gu35Zv/xwdVzz+KfmtV+bPvFg27FEi9yN/ugYzyRMWYG6GwZ2BwMcsqULKC9DQrFfUO1Rtsrk6zOZhfXSdtyIDa4BAe7dhImetCElgV1cFidmrVUDtDBRbZ9iAcGXey8aqOaJqTWl1BLdDSA6frSbENRTb706gde1IUzwG9yFztB8yf1cETFgGUqpGnm+P4DZV7oQyCq0AG5mGaWIq1wRAUeSPVhVmfPlEKglwVIKFX+Au4+jjo7czwc2V3syYstc6q/l3NBCxyPJ0YZUc3kYmWbgxecKFo2yXA1Ux/qqkMI5okrFK4ur9Bf/4Yf/vWf0XlmHzNFM0GDA+4AIdB1HV9++RWvXr3yCoTer4pSy5mnJYFmogOblQ2rSap2T7QuI+eFPM30IXhZb7t/QeF0d+R4Wri7OzK5JlOLySGmeXZGe6Zkd9JR04EfT4lUHPjlRNKCDlYJcCGhJJBIIXA4Hrj92HM6XbIbEzklpunEPGe6oXBx8yWFQPEiR3NKzMWqYx5EmSMokRQCxyWRphPz6cTHuxMf3t2yG3piCIy7PdNsiaHV7acmKD42whcRNJi1nq1EqT0r2bS60du1oHRiAWsqmZwMpYc+ICp27VoM/Etg0MxIAU3Mt++42o28uNqRlwXRma+uRnbBkoN7DHgPQeihJXqtTLLdS4NM4EL1Fsybftsf1epJrDUlQtvjV/xxrYC6NEBdbQPtmBl7pKtTUu3bdi41CGJzjmv/t8TJxTXIJvPoNhpYEWEcBrKvIJRiz9nd4Y5hHJmmmZQWwNjeYei5urpqgbuEp0H1Vu7x5JRV3Xw2H1oT2dVXuqx8fK1GW3Jqz2DdTqcjfTeScuHdhw+Ejx/p+s6Cz2hyBHPycKBWAV6TQdjYdTqdePfuHZeXl+x2X6EKacnkZIWS5mViv99vZCOuNRYhibDVJostR5pfvJouvR1TvTiS99Ps1VqhSjMe5zO37fQAL23aD1w+0/co3AsCQpOcvH//nnEcub6+PguQ6vXVrRX5OgOvj9zOFkydb1WPjDPhwS1R2zzkx67SFqAx36UUpnm28xqG9nnxi9bNMR7btsmNNhbfA+pqo3RBW9G7T/bbR45xfv3u7LPZ12Pnd96WUk/mEwf7xHubg7breA7Ew1kAUh22tisLjwfN/+fZ/hLA+rntFw+6UdCyUBYIGj3hR0nJkopySWzWgZ2h6rHSNoWSFzSY9s58uv3RrYMkq66sLtGpVAsiX4509jWXBTSZw4cqYpVE7DtamdkCGk3egSVgRV9uo2AssSdvmXmwoXuTaBQH+pUNUEuG9M/noueMt500Isaqlxr1J0vU1HlB5gypWOGb2LHrR6TvKWGiLMnBPo0RVcymTzwQsEEPhDWLXlnM6s2HBQPogePpyOvXb/g6/sqYytgjwYo11AlDEGIYCFGptLot/1amSN3GzKYpAzShsUtlmREKUTO7y2v6qxvu3pwYNBC1oyyZvh+5uLimSODi4oLrm5vGUmUHTpUhW1IhHCeCFKSPZhZNjWVcNKSFeZp48+Y1b9+8ocwnTnfv7B7ESAnR75WSZrMv6/pIv+/phx3T8Wj7WRJKYElKKqvaMpXMkgOx29PFnmXKlKXYdWtgVktYAoiSSHlmWRYOd0d+/7t/5w+/+28cP35kSUA4cZgL437H5eUlwziS1LyGSxAkyKonF+F4PBoQ6iJRenYXl4zDiCDM88K724njDEvpKESU1MDh/SlHcPtNbDUpYsFrxFYVsprTiqrJQjYeRBRxS0sPYG3xyKwuew18ebEjmyCIPs9MH94YoPYiUFdB0d5ZdJcFNemLIdrG9NXFooISgnu512DMwWsD3dlBdRE0V+bZddQY033GYFeQX9uY1e7zPFTxPIoNA7+VclQf8HE32Dil+QHjuj7/4sVSMvM8cbg7ELueaTJHj5RqsZQISCtstD2bLVgptZ387/AgMPDY351ctnPasiwsy3J2LalKYJyFneeZIomSU9NJ931H0czV9TVa3KpPAl0XzhJCtRQGL0u/YkRpY9Nut6PrulZBshbl6bpI33fMDgBjtOC6AlKzwDSL1S0wMomLof15SUxzQmStamkxnAOdUvuCBx5UKoaGxyoTqlsEfn+rbCus/uEb6Ug9/5cvXzKOY9OyP7GrxzfVx4++OU9dXzrfylrJM7n8ptYmqIm+NVAopXA6HumGoYHuFmF8YmtguM6v1Lnx4T4Cdg9rr8ufdYR6Ouf7ktb/5ZkGrJRM28u6YvzEvXgM7Mq9n49/8RMfeBBlVNTyxMc35/d/NgD+S9h++aAbY0dSKGRfPk0pWfGQkg3kSuWwAQ1EKYQISkZztgpzRGe0bao3HGsPVWkg29neIIQiXtUGB/Pm011y9mVLXcGx+imId3bNoNHZ6WCJK7WgRdYm/lKxAb3UILkm+DjYR02zp9l16sWXvB0It9onUtrAH4qfjxfBKdNMh7DbXzD0A50KOs0GpD35Xv0aq+vSyogY+ijuSR6BIMUYZ7EJsGpYu2CFL7777jtjmIcBCetk2Pc9y7IgCF03bsCQs3eq5reMNP1rwaVFCs0BQwuoOS7kVIBAP+zY7Qe6UJjuPjIOe3bjHuk6Li4uGTrzZC6VBWjLwNFsCkX9XluAY01p9/44Hfjdv/zvvP79vzMfjpgrjvUt624BuoHj6cBxXjgtsNu/ZLy+NuY3Z2IYuLu7Q0JPPwRSipxO0ljTXIQQrukGK+QiFBiUbhwhBFulkEjf9Qx9Tz8MdLHjn//pv/HNv/9XNBuwSNkYn8Os7PY7QrCCOP1uRLxyHmL5A0EC02SSk4Al+Q7Djq6/IHQG9EKJTIvy1de/4fbDB749HFyGFWgJsmwmaa1rICv4jGjLcbC21zZfdrjuO+Cl7AuSXc4UzXFIgj2Pu25o/SKQ0eyMYln9frdFh+wWhwZ86nMMbCZHf7ZZz8nuiTaWOxWrZNtY72JJwxlIVFAlDVw5JMUY73NG7hx0n28tKPWTi9GTBIMFp6pd63ObXW6uKRCjfe/q+pqu63jheu7KOAYRswoNBnLreHWGmivYlnNIcXZcXx1KHiStmvDVyQIsODBZiK04VXBWVyxDCObfjYFVJBPFGdNskiYJNPa0AoSUM9EDyXq/tBjg3jLZ1ZrO5oxMzqXJXcZxsDybYHkqVWdcbRu3fUGwYHW327GkxG7sz4sJibrsatOP2vkqLXzRKtmrqxXbHnHe2r4gg5a1QmQFlOpsdr3O+7r7to9796xJJra/t/fbbw/2cRaeueSyeNJ3Xcmo57Hf79vvNTi4cdvJIDUP6+yAn95qoPfJD8onn7FnQabfL6HK/55/Zu2I5389R6o+xTivwPsc5P//AfFj2+ffjV/q9lcAugs5nzjlSvHWgU2dgVintqqFNjZLiUEoZXGArajGlpxjgDu4PtnBd11udfmJZAADMkkXSk6u32s+Dpa8V6deVWezxUE27MeBziURaH2ujQW0ZJ91EFI1wtlsyG05tSyZkoz1qqVvm5Y7gEjx4hsG4mLBwvwpISmjhxNDgZcvb+iGgXleOKp9WSRYYLJFHNUm0dvXvSbouuAgJVkw4E4tqna9lVVacuaHH77n5uWrxnApNB1qiIGMMi+BeSkuO4DldKKLow880mQby5y9mGcCd00JZFQTp7sPoMoXX/2KsRPKfKTkwsX1NRIjsess2TCI6/FXS63mdEBlT4JNJCFU0p83b17z//2v/zPHD6/ZlUJXJ8IgpGJgoEiEMvDNt295ext597EQT0J3yBADooU0nax4SxzpI7x9f+DDx38lOiNnKHjg6vrVGeOoWEA4XpqMxQIUWxU4Hme+/e4N7z8s9CPsLnaUlPni1StKstWVrg8s88SwGxkGW6oWCRQ1/eppWkiL0EtPLsJCQWQBIjfXLxi60cDadceHd+9cNgB1+byuBthD4wGNNkLZrC8zFiD6U1clGrDux9EFCHRewMquXVHnt4Nb+omw5tl68FsnxuK/S12E3gAgWJNWGygUz7W4N9EZy12ZS23MdnPlqFejW5//qt+u51Nfq3/XRLTHt5YA6OdTHTjq+FQ5vK1EQGCtainqwHshZguAJTgD7qttqLrcxCp/dqEC781Wb94Tm7GXyjTNHA5HjocTu92el69eEOM5g7atVFi/C7Rnb8veQiAMkdIFY+aLBR0hBHJKHA4HYowMw0ByhnXVBwvJ/bZNz2ztv+92XFzuCeLBphgsExFyTs2atTL/DxhKBS21rwSGYWSeJvRid/55qX3q8XbbNmfZSCWe+owdWh3U5tZn78tqzvTRj6G9tiqhZ/9KXoO3FYhKY+l1fWLqhx6cYF2diL3VzniOPd3aAsq6gx8FkbQuFz3CJm915Spy/nz8iGPYvnhwcz4lz/hTQj0jA++9qOfX9VnX+Hhs9xfZPhn8bD53f/s/QiDyVwC6FXSmTtstIUQKeHKkKmeTUvbBtOozRd11gERWS/JRxCpKxmhsWgSvkOKCKC88IQ7utVgZw2L8Vl2jVvx8KDZAS3FGo9B3HZf7PWPfUUSc8XOmQR5GurUAQetXWdGkaDK9sMlexKUg9Xs26WjxwTRBSIrOCZkWyt0JTZm5Gxi/3NGF0Mr4tii+jjQZa1MpFBJIaudYRCnBfJWLxhVweTZdCYWUZopm5mk0R5J59gkjWOJbzsSuhyDMi1p1PYU0T9y+fYOmHRJMkhC6kdjv0Nl0mcoOTUeKJlKZmKcjd3cf2e/3jPs9QTNBM3JxQTcMnKaJnbNrKSW0WDW76kZweXlJEmEqC7oUOneG6LoBUG4/vON/+X//z8zHNwySvaqdGAPZ9eg8M6fElBa6aImNd9ORIh1zOpIOB2PiciEtsye3QU6J2J3IWZ09Gyme1DX0Pdk9h02TewIRxv2FVfcMkWmZOJ6ODOPA63cH9hev+L//P/57rq73LGni5uaSsixMpxN3dwc+vL/jeDyRFC5vrtEMqHliT9PM6TSRKETp6KbCcijkXUFnAxrESNHMkldbNLZwUq0HBl0hpYhu+rTnK9TncWMhJP5qUdN4i1WxIeJWmwCFdSUINc2+9/fWBVnBcJtqdX2yGsgX2vNHBdzFJ+o62uia3FrcqaRorVp7ru+uWu6t3Vh7pjYzfsUL51uN4DzILObTbe+YvKudr+3F2/bhRBRUIaz2pjFsqvJuHErqT9Msr9+vrSab37fvtZ91vHLyQIsVtdmyvFVSAND3/aYACk4qhPN/m+uRqM42d/QasTyCwlIKt7e39qyPY5PXNMlYNg/yCkRDpBXPGceR0AnLMpsspTHa/dkEvmq5ve03ya3TNDOOI/vdnmme/Tq9IZ6BPLWvtDwSWZML6/jd9uWtvMUUIrRcIC2FvLn/ln8kjwPaR+5f/Y5JkCw/6oyt32yNcX2k39oYGJvPtyUIV5B+Lyjc3ttHQPJ232ef3VyLbBl5eQSAbr4vbPvxI+j5E4Bt0xt47r628zv72OPOJM9tn9IaPylT2Ybvm3Hu0XM8+97j93OlJf7/259j+ysA3QBmAWVJApY1bQ4BEWNqt5/VBm7VMv1Me7jY8mJKYImUSjd0hKEmytmkjtYBGFrGo2TTlecFNdQCuEUXDrQFNATE/XNDNMA9xM7U5c4SFn9gUhuIV7Yq+EwoVI3msrJ6mBYzhGC+tsES5Uplp3MhLBnJiqSCLIlympnvDpQlMe72jIejFcLIhR5YXLxaHU+MOget1x1SAwxmrBAoUiyoKdIq9VUZSV1arvZl7TUKuUQj0rNNhKqZZV7IKXE6Fm4lUdKB0EHoOrpdps9CShHV0aVB5o6R5oXD4Y5hGLi5ubEgYknt3r999879hy+an2xK2ZKqcibGyDiOzNOJNx8/MERl6DtevHzJftyTNPEv//LPTKcD+zDQhYHYD/S7HV98+RWg/Nvv/4WUE4cpEqZM6havlmnD/fE0c311A10k5Yi4xlYLjMOO6e7OA0hb3g4xmuYxZyiF2PeEnIldx263pwwKEkjHAxoCSQtTSlzES5YUOB4DsOeH72dIC6/f/MDd8T2nKfGb31yy6zsDAB50CZBLIWWTQyl1kUO5uzvw9u07S4aKPbksfPhw633AglCf+kFd2sHKymzBTJv6fHJYk9/speDHTRQKgZ3LJEp9VlQsjqUQgngAvGGcdTvZs/LJauPGNqlNqFrHKt+yBDqpAaxAs+wspkHPBQfeBrLr068OOLbuJAVPJmWV2VRJ06MT2qoPO2sTbRewBQ6PT4nW5n6MoFxc7FAd/avSkrBWXrG+sPEPv7e/ddVihS5tavbxMcZI7CL7GNjtd2eMa9d1K+hvjWsrDVECO9mtUprW8A4ya/6Nev7FxpFlKxtpJd9dOoMz5xU8j8PQGPXqV978wP2eV53wevFrdGaFkApLyny4vWO3FOYl2UpB24e21TPVTXDXgGhlj1lBdrv3sFrwPbyvBop7IK2SnLZ/tQH5fInmse5x9nolIOpK32PbVlbRbsq94KRq7K3J1veK77+OsWfWgJ/YHnMLefyb8mCMqcyphHNB2Zozcm+fG5Zd/e8gYnkm3ifPwehjIbNsdrjd+Z8eup4nftZTePRJfvDn46PRJlw461I//Vp+akDx07efd39/yuTLXz7oVlCr405NvLNJNm7YWvu/gWYrsx6DMQClmCY6Z6XMal7CRGKwcuguFLcBX20J1rSCxZYfJVvST0loqc4dli9t5+fgs617W2EXlsz88UAedlZlkKoj1zWzODiQBnvwWR+H4u9LDCZFsfiBTqCPlvAzL4U8ZyiYlCQlm/1TRpZEyMWL8winDx8Zu8706ilBzkgupo3NQA6VAGwp4iHi8hWIWKGenBeWNNNlK7BTHTjqIBx8sM25NFa0UFiWmbQUX4o0Jiolq5xXlkw3WQn0TgNRZPUVTz3IQJFIoBAkM0drpevra3qXaKh7xJasTKcTV1eXfPnll8zTxN3h4JNB2TgUFESye117SfhkjOa7D2/55ptviALEgW7cc/3yFS+/+JKLq0tUCuVyR/jue374X38PRbjejUyLErueUpQYCrvd3pwlCAzDsGEAB4bBErH6wav9oXQOuqO3Y+/Wb5ZkJmRVur5nf3nFNE8owpsPd/y//uf/jeurV6DCbhiJKHfHE6dlNmB0fUO/30PXW86suJ7cpRxmfWeooeqiIxg4zwu5zNZ2ZFRzA67+eJ4Bs5oG0ez3/Gk5Rxv2XsZ9sh0O52wrRJ24VZvbRkoRT4uukw1nLNy6dF7PQzdjhTZwYhO7n1/t6/5LcFRU95P9X2XyKmuZHVxntdDDrAIr4PanX6q2tLbRUwO4hwjePJWVru2pm/uxSgkqC18eyDbAQGvZtM0DTMA5kH5ArT74/MPfQbzCrJ1L9Q2/z2xWiYxsdmCMZNjsyVvKr+1MdFDWceXm5qYBxeY/LcF86PsOkWj9tWq0Q2iXE2Pk0gPwZVnaPmMMXm3TZS4tCdKdY5bFiZrMN998w9XVFcuSPKfFaBDFxpRS71dzklkrEqtIc9FpUE5q/s95626ZYitWJC6t4jyAElnvV72Hj8ggmqSkJqKqMgzDaj+4vaufWPaXFtLq5rO1GJ0l0NZ2qO3+1P6251VXPR4D3o98087kkXNtQZxuWlTk6aevjgv+e8BNA6R6k53B0U07rP9/ap8/ZvtzSSbkkd8eCyjap565lr+UzOPpJNU/84n8EdsvH3QDQg/a2T8ES2EyaYKGOhRspxLLRK/VtUzPa0+ieHW8ZuAPlpSjXvExgGqhFWTWRGGh5Bk0+QRSPf9WhkMRKAbmAhktsEwnTnd37GMkxM41hDSmLRRloJ6EM2P1SnxC0c4lJcUkJgGgMrfTQkle9CNnc8fIpgGXpPQx8PLmhnSayUsi3x0IXUSSVakkKVI8+bIEtLg6vSToPFFOqj7eJTbqVSa1KVsfsA7zPDN/eN8mIFBPjBJiFOblxJvXB46H2fytgzLPgb5TilYnlp6YJxbtESDqDFoYx454uacsiaHrSF79TEqm5Gy6+5yIItzd3loVzdCRKeTq0S7Va1lBIqHrbIUiBJIq3/3wmne3t3RROHYd+wRl2HOXfmD/8cBwOVLiyO76C0r8lkAP3UAHdOPINC1eTbJjGCJdP6Kq7PZd07nuL8y1RiSg9SeVQfXErGiTUSq+PhKi6VwVVGdLeAxCZuDulNAi3B0XgiykPDHNmf/wH3/N/uUXZA8wcrFgMhUYLi5huKVMCrkCVFtxkRgpPgnGfqAfRo6TPjpI23PyFLS8NzE2S6uNHKWCU7XVl+R9wCro2VaKuMNeTUBdIYzqupS/LrZX2Ctnk7l11a3HPY2hqsvlRaue24EU9dm0nw1ws2G6ZQ1AGvv+aHs83kIViBUfi5QqbZhYUuLy6qoBk2maWJbFyqk/Amwe3IcnwLQ+9tn7X33ifCvQCg5uS1n12Vv3inP2T9rp6PbgHrg/PLbaeOYrPvU+VoZbN418Op2Yp4mut2TjWkkzRGmJnsuytAI6xpRb5c1clFAsB0iLsriGfJ5nlpS4vf3Ax493HA4HhmGwldO46ROysRPd0N3r7xt87NdWtKr8H4ZHjbkVOVstOGumrVyjNeF5G25Bd70vWw/vx7Qa9dj3+2997h5ua0Br+7bKyttruC83uR8IVOb9fkLotousK2RPg90qMfmc7YFOu/7T7f144ojb4OdsD3+BbT3NP+9h/4RM8E/ZZBvZf+b2aND2Z9j+CkC3EHRH0JdEuQBRlnJL4SNFZu9waiDYR8KilemClvEvNgAbMDbwEEN0twj1yoEVTFohkLks5DKRcaBZky7xbEexgb9U722/8bak6IB/WWBO0K8gXz2RrZNgrh+4l2/w7G4NHgyAhGjloY1yIy2JxRmgnCw5EFVjrWcv854LsRSCFqIoMQqnU2I5FkLXW8JWUdDi/t52ZkqPSkKlli73FQBn4XNKhJxBE5lkCUhbdkIMTL3/eEuWNXFMNNgtihCCcjh+5HCYOR0nSlroorm8zB2kLPRECObYsoRCzuZUc3e848Ot+jVH5tPJl10NJemykKaJlBfevn1NKYWb6xfGXFY2yv8VNSVHziCl0Adr95wLp3nhuCh6Wggysxsyd3NGJRK6SL8f6PYjx9PMcSrsR9Oe9rs9seuQOVlVQLEELyu8YcviEoROOw6HO2IUxnHHvNh1DOPIaTo1IDXNM+NuB2JloWM3cDqezM1BzPmh3+3pxr15wYfIft8jemJJE0ULv/2Hv6eIsORi1oGint8Q2N1ccPnFFXqA+ePSAOnV5SVff/EFr1+/toSzslBa2pknDIs+nORhw7o9ZFFqSXRjqbUxvJXfVCApLMVKdlemNAgrhU4Fw+e/10k5s4bedWhoKG8zQZUtHSZ4UYoK4GsQUN13KuNN89v2x85K2PuB6hk+NweuU/o5h1Y15KUokhWC3fPjcbKArEl7zh1CHmOcHmiVP3EuT22PMp+CjRtiDiDGOtIAVgXbYZt3smFFtVQHG7eZ29woLbQ8kAoOu647Y3XrtddVAEWJ0RIotTHY5o4yzRMxBna7/RmAnaaJw+HA3d0dX375ZXtOzQvcVuUU6IeB3f6Cly++IOfCd999x++/+T1v373l6vqqMe+CyRNKBX6bqo/a+t29wKP9X7Yvn9+3trrxyL25d//u36amm1baPdpaTdZxUHR78E041r6/Be5r4Hp/v8MwgktppM6VbJ2iHl7fFmSfab7vfbbKnO6/cV8nLoL1NR5VdP+M25PcOT8FAT/3LH/26dzrXz9lF/AXCx3OD/5nwvOPJx+vp/BkW/yR5/dXAbo7bgj6FUEvIWSKBgoLyOSDWoN3iJfADs3WzBMtRaie3HUgNB9p9eQ9JWHM7FIKc56Z00TWGSj2ORFMOOZ6bi8AAg5ixcC+FkElUCtoaM6oeqEYPEEqBDQU14qaH7NKIXbmbZ1TasVuiq91F/eprUwNniRKKmjKxhqX0mQlUjJCRkgIhTQrOcnqFV6qo4oCHWh1iAgGvKlescZqSSqEAtplshSaI4OAiBLIZj13MTY9JMUSiYIIfQgsS2KZF3SZzHIsmwAhhM5LoNs+l6VQyoyMe3JJVr78dKSoEKMVb5mmybSDCJ0aw53TAjgzRmHJi7PI1a7K9l/UPLrTksmaDZgm8x6P/Y4sPbNPwrMWDmWi6wdiNr388v7IaV4o9BA7khaW45HdzjTTKWWO84lFTRQRgzCnmRCErAvzcmIXR4qm5lqR0mLn71p9QSFkcp5JeUGlMKcjWTOosNsN7C8Gxp15DiNKHwupWBKbhMD333/H1asrujES1HyPBaHkwovrG15c3RAXq9IpEri9/cB3337Ht99/z/t371iSsebLfOcsLGcT4BnAYwM97wHR9mJ73Z6VWhFSMcYwEZgyeJYeXbD+GthiL0XdhagGyZWlqtyUfcxXifSpAdSexbpwtV1ubhUk6/OhUJOcW+CGNLkJ90G0T/vnr63nsYUFlaWsK0M5Z8/XEMZdZbMhJQt6QrCViJp0W1yjX5MEDXusE/mqt96ci+rm6J+3NRZUALHEz1phtTmSbIHUYy2ulpg4e6XJCpCLKjmVJv+wFaHOEvZKlQBKY9hre1oVVjk7dj8MdF1gzw489Le4vLR2LqVwd3dHKYXr62suLy+bNV83DK0KZL2S2AVevXrBN9/8OykvVtCnH1o7dtEqQ2gFyp4wbP1Q8aKirQeYmqbqvc876EPwdc4yq6Pe1r5ar/Kx75+zsU9KSCpJpef99Owjvu+ipT0Xrd/WKq1q2mrBVhCq21jO2bziN4z0c0FFfTra89KWNZ6D07LmSCmrPeEz21m48diK0TPA7OGe/jjI+mP072ef9yZpR/8Rp3G2EsG9lm1j2/03/nRbJWU2Pz7zSz/zOTyx258jKPnFg24hEMoNMXRQerR0ICPQtai2ajiFiEhEiI1NkeAPPrXohYFKWxJdDJx78mMFAznPLGki5QnVBFIIARAvo+xAvwiemm7aPgqIuI2hZGP2VEhTglBIEloqe4iKBnGGGzQECoEoNnmlOZPVbcQcRKtfE0UJTttKKpAzWjJe/ocoimi2f8Xe64It+82LqcrV6bo2qBWMKQogkpEwEeJMXSbNxWQ4ZmFmiaMZ19mKstuP/Ie/+w/85j/+HXG/47AsvH7zjh/+8C3T3akBguWUvHCEZeNTWXWCJayhhJStAEwRdqNQSuJ0OpFzYRh3dLH3c87M02TBSbT7VkqCYBXkQozrQxKEYFQ7MQTTd+ZsGv8iJCBrZM5C6C548epXJskIkaHrPTEoEL16ZiYw58I8zajbemkplJysT0ZhKanJDmxgtEAlFyV2dm7zYqsoRQUt2Zno5BKTwumUG0NXspXVzqU0ffrtuw+8zVbpsh8G9hdX7K9vLFm1ZIY40HedBSSl8P13rxm6gek4MZ3MiWE/7ClJOR6OvHnzhtPpBNpxmI6knChpIpfZZVje97k38denp7EuDpQxltmYclh5KHuv8rB1wE9amBSyCkmVvcIQLfA0Vs323ZjTDRCumlyb/jZOEdwbLM/RJ+LAsbE9ld0uq667Jkva01OX4B8CgC004N7PZwfszWxjICZbMSxf1s85k13zUiUT9VzLZtKEVTr38JLvhwD1vcd9nu9vDYI6yFY1Z6EYglV7rTYdsoYbWzBT26Dpf5213ko+agBaZStbj+8K+o7HYwPh42ie/+IRWdHiwZmPs94b8gYg9r1V5hzHsZWiX5aF4vkoMVp7VNa9Sh+63pyupmnieDxyOBy4urzi1cuXbom6MrLWPberDFshSc0/2KCLezfsjKneBE719dL07tKuvV5fyrm1W7sHm2PVZ6W+plUsfq/Tqp9nY7q9/+eUbeysx0tmI5uze7YPZiNIgePpZH1XC9fXV8jZOX0+0Kxz86e2mvdQD/A5+9+Wj18BrZ3lul5bz+Ks6X4Zm2x+qN4748/4+pOBj/KXuNR6zM+5Cn3w109A4E9c4P09/Vzt8IsH3SbluIJyAeUCkYwB7mhRmFS+tUe0R+j8XzgbqNYSztVuyi38GkNtQDBpZpoOJJ0xWJnBATUS/baKJTmSqVIQCzXFWZlsCT0KlExJC4qxx1TLLgXtAknUbMeyoeiSJ0QWSjFLvZIzQd2ezZmaUAuCOADXYuDakTOaF/PRzmZz2LzFNSC5QvPgbVRQjWgJzjoqIgsaJgpWzMZAhvlpp5gsSKgJq7Hj+sUV/9P/7X/kN3/7a0oXuMsLvSiXL19wcXHBt//2e07HI+8/fGA6HRmi0YsaIrEbyCUxZ5AlI7EmNBWKKCOB6XRCszIOI3030EWIMaGamaeTXVsIaLDrtOXmDnGrx27o6foBCdG0+qrEvoPTbNrOEgju6f3u/XvevXvPy5ev0GgTTReq13Dx6nxKUoHOgqrDcmdgKMS2imIrBuuDGmKg5LU/Ljnz4eOtadJLJkbhYr/jeDxwmmeKCkPfMy0Tu/3Oqs/tdrx9+5b3Hz5wdX2FBHj35gdyTh44BkL3jl//h78DgSUlXn3xgv0YmZeJd+/f8bvf/c6uIQvzNPuEaTr8INKKnYh0BOnYjRGGkfm0kOeTnb//tyaC2Sb35u7HtnPPjA07RwW0lrFhj6XSq+U+iKgnd2qTMzSAgwEHO6dw71hQ2fB2ji0Kqm+7g0kty14cwPj5FKo12ppzUe6xj+fX8RB8f2qTCuTVy6eXBEKTV2iT2gixq85JNNbTrk0e2PCtOOr5qfhTS9ttPy7VMUnBwNDXO+p9+x5ddn6P7N7tduMZ6zxNtmI5DMNZgaB2TVtQeS/pzrTbdl790JFz8uJVdTSzY2c/nohwcXFBKbVYTmjnUVm/GgTU12uVRYD9fs/Lly9be714+YJxHG1/pa5QCb3UVOL1mW9Nc05QPnkf1ImWhxINd9fxwFtVvTQ7HE9HVGE37ohe8EtlBZL1SdDNM2HEij8Y3gcd69O+uOnNhVVysv0noQaDzjSrMp0mcs4M+3GVzDzRx57bPtE919Pkx3HOjwHOdXVoG0RuT0Qam37/BOzYf1qY+qmE1/8jbPcDnc/ftp/+/J72x5Pln3+WfwWgWzD9dHSZQHLmGgORDIgnopk6uSMyEsOAupZYi9pEWjz5BmNsc65TkTkzZF1Y8sKSTMcdnLG2x8ihtc9xUmeXkt3tIxpjRlkHqVKcBc0uKTGpicToDGgd6Gtp7mCFccQSMc1hxCtgllxpj3UEqhNuyZSUKMtCmSZkSfQxNGlLTpmSMiV1aNpj1n9mp0ZQVDuK9hY0yALBrRG1oBqsOE1N7kIMcDMQu47x4pKvvv6ay+sXSNcbyxwDAaGPcLk/8eXXf8P3337Dkg1M1CS9QqBzn19RSE4La1JKWRhHs9krJdH3kThAlIWL/cjLl1+QloWPtx84TidyyqgoC4kokdM08f7DLcO448uvviJ0Vo0v9gNfffUlqHD34a6tHijKMIwcjycQuLq+ZLzYebklYTqdOJ2OCEoIXSs4op1aRc0N06Yo3dAz7Hckn8yjgGrmcHcgp8zd8cDd4Y48z8ZsByW8U5a0tNWYWijmcDrYOaUr3r17x/F04nA8ULQ60htbGUNgd7mniAMHCrcfbrl79wPT8c6svCjE2JNKoY8BKeb0I8WsyeZ5posGQKUThqFnHC55+/rEYd5MyI6kzgbHs7/XcvNgmv0NnGif2Q5V4d50qcDiXT56aG1uPBVQV0eg7flsgA6l2YGubOvmGE0eZk5GzR0EWybP6gGxrq4lq02gNgD+3BQhm1fP3qmTepO0aHOX2Ca/Ac3VpAKWIDXop40BpRTLA2lSknVi/mMB9/0r296lcxD1ONy5/0oIcS1OtWFoY4xcXFy0/d7/dvBVqnEYUEy73TsLbRrxQMnuQMXarqWord4AfW+MvEj0hM94JlmxYJ0m26kss4hVQi7Zmf2+p9zckFNCB697UOV6okbuFF2fiW0gorYiFDbykhp03b8f9yU7VVtt1yDONGdvpsBu3LeDLal4IRxlGPvWlmt11Tr/4GP/GvjVFYcq/6ltCWb7WDzHYus8YlOTEUg1eLq+vkaB0EW3g9QGTj+1VfBb4W9tt8e++5QGfiuv+lk2B9v37+n9c/nU9tgz99S3fjS8foRYeP4Iv/ztp4UYn095PPztT7f9dYDu2oskoTLbP51RLcZsiQIR0Q7RkdhdIjqiJQDBZCXZQHepEb1XEctY1cVcFrImlrJQiumCkYxIITvuB+i9mqOWjEQMjCsmQRUD40HMYaKkRA5LczVxcbNrciMxC0GCV180HbhUqyulMdXNZNAu5HyJMSWm44HD4Q5dFsZi5yjRDQjVdMm5uONCEQrmnKESvNZPh2aXbFRfcgf3VmVToLjrCwMhqjH2saeo8P7DLf/rf/3f+C//43+hv9hxnGY0BO5u7/juu+8pyXzCJQTzMQ7REpewks7qk2QOnXmVZwuI0mmmG+4IMZLJnE4Hk1hwxakXDnd3nOYJRbn9eMvpNLOURD5mPh4P5FyIpxPHabKERAIF+P777yhZOd3NjDIyEHj16iX7iz3jzY6XX7y0Qh0BT2CluaKI95sla0umO9wd+OYPfzB3EF+x6PcdoVO+vHnBssy8fv2alBfefXxLnjOH04l5WcwGMbhuvmTzOPdS8+LWZyknTtOROS8QhdhHxnFgSbaiomhbgpcgHE4HSsl0MfLm7Rtk/sgYA7GLdDGYTGhRIkrnwaFZq2eGTuiig0EpxJKIiyIlQS1ys5EL3H9St69VoCnOjvLgW6vQpEpRzkG8Wqn1Yv7sHUoMBsCr/chqUSZtb3W/quZmYue10osqFaD7BCquXdTKossKtrG1Lgthqk+31EeCqvt+fNw6B93C6nJSq9OcyTLbytx6/ZVlbS4WGxDxFKO3daeoVnXbNn3s93aPngIMeg+4q9I088CnCsVszg4l1xi1+enD4xZzlXWu78cY2e12FNUG7HLO5l4yz80j+vLykou9JVAWryAcxN1JloWu61uyc25jkPWz+tyZVa1tpRSKs+418LnY7zkcDk2DbkC2AmAP4FTBk/XP23N18HmsxZvMIWCJ6Gevb3INRNBUuLs7euEgs29MOXM4HoghcOnt22QkQCmZw+Fg7RpiC0Jqm1dnmmEYzICgBaoW3EgIVhk0pebNnXMmLRas7Pd7+mEwZyhfpdle17a/f2qrgBtZc4jCE89cJFhlXdbj/JjtwbP85Cn+NBj43PZoP3jqs/fkRufbY8mr9R6uR7n/3fv3o44Jj+L37W7/XNuf8FjnLfNzfvjh9lcBujVkA4nMFDlS9ISGO2CmGXeViOaBIANReiAYu11/FiHniFEMC9WfVzWT8kQqE5nsk2tyHis35qxpSNWArIBVoAy5nScIpXipEMlQFhLRZAqu59YQ0CAQgyfdWGCAS0+qVlFUoHgypE9QlU2pP/O8MJ0OHA8H0jzTqWlhRTFnE6Pk/fwscZOwQLaqkoqxOtUFAFGyBqTUIhJV+x0MLUhhGC/ohw5KcleMxPv3E7cf3yNdRxL47t1bJEZu371ty8koLDmDmN/0NCfTX+K61dCTDQJSRFlUyNMCxzti31MKfDwcCBKZponv370z1llNKpRzpusiKXsCqCeXLWkh3RVStiluTokP79/Tdz1jv2cWYXd1xW//8z/w8ldfM6eF29sPqM6UvJBTdnAg9LFvPq5DUT66A8LHw53r6BNpmZEYubt9x/sPHxiGgXmeLGkrO3gg0odCt+/JFK5uLvl4d8duNzJNE/g9CW57VmYYL3Ycj0cuLgYgcX19wd3hYH1KlXHoTK/aBSgmWQklcTNGbq6/YD/2FDW9Z9/1XnQElnnxIM+kM0GEPnaodGjorE1L4XR8z+FQh/MNcGs9v/7vcabzHA6fM+DChjH1/xWUBUvG6kStoivQqQXAoQHv88m1ThD1mOZmIudnrG1kaa+uPPy6omOJkuZ/lKUy3Q64N9elm70V1jNyAtEuSrZn6g4X/lPEEm3vT3pbyYMdYh2DqoTkkw4Xj7x1n1Gt+zubZHkEFNWm8/HCvr/Rgzd3p6c3EfPH7vpo2vRoSdT1PM4Y+go878lNuq4762Uiwm63o+u6BoAbk4617W7oG0hX8AI+VQqhaNcRxJldsesyMyt9lC1dpS1hUwymyl4eaQbvmA2P0w69gsrzI6xhm6znsdmZ9SFDryhwmtYALURhf7Gji5Guizy+GXufNDcHGBEfO32fpRQk+Cpz7RviQbKYE8zd3R3zPHuiZMc4jlbIaAMMdROwiwjDxgLy2a0FgmseB75CdP+blRARZ6N/CiwWH9/X/Z8Hm089Uz/+OPefrafP9qng+tkPP+h/Px0p1if80XN4rp3/nID8j9l+RAOfkUKf+c797ZcPujUQ2duvzJSysJQTGicQY5EBtPSIDpi22/gtI0iysbsaQH1ADQbUzcBjJpeT/SS7P7dZHhWqtEQQLYjzZk1aUuUdmObU2BJf0hPLpF4Ws6ELMVRqBwnRgK+hDQO/IkiI/jm3JnMhaYhCF4Pbz9kSZ14Wjnd3pHmmpGQ+0y5RX1BQ0/lK8KhXxWQudGgZ7fwlbJhCT6LUDkkXqM7kMIMUJHeEEul3PcPetJDRmyCXxOF4R9HEu//PR3KAFITYdezHgXE3sKTEaZ6Zc0KCJSAupbRJRRBOc2YUmyy0mCuESuQ4LYRklRNjN/Dq1RdcXF4054Sr/Y7daNXn3n94x4cPH6yYjLsTfHh/Rxd3vHr1iv3FtRXtydmXpTv2w46/+7v/yFe/+hoFL35R02eEQaJPbgVRL1cuBvwuR1tZKXmmE/h4d+DD+9fc3R1QIHY96WQV84IzxSUrWRfGYaDf9ZxKAjK7ITD2FtzEEFaP7K7jxcVIJ4H99SVB4Gq4IYiwu9wTOmHoI0Pf0cXAEHsEKxRCKey6yBA9f9cnlCCWlLksC8tsPueBZEGMmBNKJnjZ6UKJlpyrFFTKQ9bTn85nx/W6fFMJswfvOYBVIYs0oKxSg94Nd6Vup7miwxUQ1P2w7vMMSG7OJdhjYQWCfCatOEYxbXkWl5aIjSG1AE6RdcWpAuoK1NvRGrCmnazdhrWhKkCrYNPGAaGkwvF4ZL/fb66qQfm2p7MA6LGJW9dftu/WBLiUTWrQx55h6Hk6p9L943Mh52TAS+q1VeD/uGygFv2q1xhDIIxjq/5nfWcFaDWp8rGiKTXJtVEJ1XGkgjhWQFN7QGVs6+dlk1cDWAGyaCumG3iPBEsObNUXaz/btHOM0Znzzlc741mi6yM34sGmev6Zhi03bHm97npuqqU5RB2PJw7HI+O4M8vSujISLOA4P1Y9f2G/uzi/Hm+3EAI9m6DM0oHYhqmCSZnGYbCzvLwkeO5LDDafZV9hMF38ZNWQ/X71P6Ja5XrNz6ulnwtAP3d7NPSp3ZT1yfsxmurHzuhzv/2jAPefYDtzQXrk/Weh/FOAXB7+qg/fevIzf4ntwbFrLPhodP18H/zlg24CqiNKRmImpSMaDiCJmjRl47aB1RBim47MCcJ0yTaOGSstKpQcCCSKzuSyoFplHAagxUe+mjSCuCq1qK9tFbTYsqGGgpRqgwTrbA5Zg9v8GRMiZS2GksXBgRhIlxCJsaM5FhTTg1tVsp05YyQDSdPxwHw6mG68eIEcB6tCRtQTh4qFEZZjmYCIyAXky2apVHXBLYjQCGUAGRxNXFibpcK729f0ceKi76DAPE/M6USMQhAldAN/95u/5er6mqHvEFGOpxPDOHI43HH4+JH379+bBru4q3KwJM55Kehc6Pqeq5tr9pcX9P3A8Xji/fsPjBd7llz48O4DQZRf/epXXHvRkNPpwND3fPnFKxv8JXBz/YLryxNffvk3/Opvfk0IPd998x1/+OYPHKYT15eXfPHFKy72I8fTHWGxPtT1IAS069z20awPVa1dS7Jl1XmeSdMEaWY+HTgdbhkCyMWIhGje2e52Uh/DKLYEamSMtbxEQcLe+s+FgyzvGyFYvzCXl8DQxwaeY4S+K3QB+q6zwjBZSEshJwvCejIVDlmSnQ2g2fXg0hy4V0BoPkBKEEtGy2J9SsUSxSqcWCeELav7ie3eIKX3fm73G8DNLg34DsLm2bZzbMEvsjmfNirYEy1rQLA9d19nsecjGHsbGuAx/WgqasC7fk5WUF4rT24Xc+38Vp9iaT+FzqufKkCwaoh939F3HS9fvXBjI/UFL0v4G8fBAvHWYHW17bzdtoDjTEJCpQ1o7+WcmWdzzZHQI2IuOhICvZnmPxpUZc2kbMnVUbzir1rPiRrXG/fIpNreaisaG7cYsX6XVbm7u2OaJlJKrQrlyoCvvs9ls68Yfczf+FDfRysNiPt3xBnp7UfXiV/W83L1ojr5cXl5yTzP7Ha7dl45G/BVVbo4MMRhEyT6/dgAtxW5nR30/p9tq0n1sHptV9lNLlaFsxZK2mrA10dtC97dglYfB6lVZlX7WWtPa/DGzNez7X1Fod7blkiJQrHgALHVDUXPysPX+1D7wlMWf7r5//qicn8sqdf8U4GqP/afxcA/lYD55Od/zDl87md/BPBfG+XToPDHbJ/a0/17cT7Oy2Z8eP5aHoO2j26PvfEzXe7Pteu/AtDtLLUzbIXsDhIBDSdAIF8i2hPEmG7Eli1FPEpXv6khYW4o1hVyWUhloZRkzEG1w9Oad24M23apCc2b1i9+AD+QuINCsfLxIFCSl5xXAnG1PJO8Tt4OdIx5DtRqd9UhIvYdx4OVec9pIi0L0/GI5qU5mNgAZ0mPNRQpPolXJaqd3xHCR0QHVC0hqU0Q6kU3YkfhAvKIiEtfpJD0SCTS7QYSZonYXwzsb3YMQ0/X9/zq13/D5fUNy7LQ9z0XlxeM7j2uRfl4e8u7d2/5wzffMKfZ2bZqGZYR6fjtb3/Lb379G3b7SyCQloXD4UjOiX//t9/x5u1rXtxc04WIqGvn54zkCEQ69/EmdlzuO6bTxLd/+BbNcPvhIxRljANXl1fsd+bl23W25F1KYj5NaJ6Qksn+j5LJy0xeZopa4Y3jZF7jKWc6zby82PFyv3dXncB2Vq/9J2La5HprFPco1pWFqoxO9tUSEUtE6ruOvjdNt+mzhRDVyqaLpRFrUhaZmSlIMmBqrhyrtWYtry0lt/drIuL61PkTUEG25s0QWXvt+ldDw5/azo5xPtRuB2iR6hDgobDA7K/3Ugs61c2DXz9AbXZfzzo7v1UMtrK0AMlZ6Wo1qh4UpVAdTACJ5kCEIKFj6Dpi39F1XdMI29J6oOs79vsd19dX7Pd79vs9wzDY58aRYTe2ctwV/FgZ7UIIJpcI1Q1is0pQ8wj0iQjnwUR8DwirCjkrIoGu61FCCwxyKQSNxGfmZXGmElYtu6r14aABlad1yu0Lfl9r2zskBNYEPnMEsQTHaZrY7XZtF9uKl7K55hVEbkNB26xAla0ibG77WTM9tgW3hDWwH7i5uWluKymlJgFaltkCwdA1JrlWRFZn1ZWNHv8xDHkPomyTGud5bseqEpJYSYF5MmJHTK5onwuIhnadJq+0pMucDcA/VgXy/Jw2+Rt1TmyrE2DuVeJ5JQ+vJwSTdiLK0FnFYXUJSFHPgWoX/8zgob4Somtf8WyuB/ftp+KrFtj9xO//2O0pEPmnPf7zgPtnTzr1bTtrPP2+fPLmbfdzTzD4/HaPoHDG65PbYwHw0+f4+XfurwB0O6OkEUpP0Eu0TGg2D2lKQPMeKTuQEUta8QGsShh8FoiqKFX6UciaSGWm6OKDo4KWpldznOo3ubhzh5VjXxM4nRWQAsUmMBX1tKsCkiAXq7AoNlSImL2TFcbJlqwn2KRFaEA/uA68FIMOUgolL2hKxAJSpAFuo6eMEbXiKsnlMbgcpnouBCQeQY+Qe2cGjOkjQukiYbD9aEnexkrRhW5MvHhxyX48gS6exd/x8uVLrq6u6LrIfrdnXqzy4hgDF9FkD6rFvFqvLri62HF5sTMLwfnE4XDHvEyEELm5ecHf//1/pO96csrklEjL4gyzubJcXVwQED68fcd0OABKTuYfq6qeTCS+xClW2EgjwzDw6uUL9l8P7IaBGANDsIApp9mY+9OR090HSrIVEHJGivGt4hNQRl2SUehEiZ2gsTN7L2chK/RYsZEBXlPwn0+sQZXgXrbV8aBIlRkpotAJxAixC/R9sCVsWRmXqps0Vq1gCcCWQFuBcyirQ4Gx9+a0oqyG7euYoiap8gfIuroSRDGOeP30GRR/djwzbqO243qklctS3Mxy1V0Aayn26Odjuzi3BzSdcR0zDEiXlUqhLhXbH0I/DJbsFYUipqG/GC9g6On3e3bjyNXFBUPf0w8j/bCj6wZ2+z3dMLAfB4axp+t6QgwNJIdA+7vKJcxtYlNwajN4G4BbUDJL8nJBsroxtDlCK5DbgIQN8M21iMx541ILlGyBcvP5LoXt7fic2Ok8GdP+bf21t4jyMdZxq93eXoMAV1dXZ8dQNRnU8Xj0xEeXnGxY2lJlJY+Ahm0gu7LsPm0LnF/8+XdXybQ42DXLwDdv3vDFF19YwTAxjbnpujtiV4MYX8dyi9oajDzanps22rquVHeStQ+Fs0CtSW3qmFN/5/6x7PpPp5M5nUh9vorJtHwc0dpe1qiWGOorGWXTThZcSMsDCCJuyXseQoufyco91AjAfnh9tzWfwDtfm7MftNPTI8tj+v9PbfdzBVpnfnDcR4/42cf53HP5Ucz1T9zsEJ9ux1/ydj7rbMeY589doK1OijwMfJ840NolfqZ45K8AdAdER0QKEAk+qM1lgRw9Ch5QGUA6c+RQ0+KBlTmvyKeyYfZOppRE0cUSJ0NNubJBxoLvVdtrg1Flw7IN/hJrqE4FFOATGeIAvziAzQgRE8cFr8JebPmtflc6l6IY9FAJJk9w2yYtGU2FkgokNVVK8cGSQD/ujCXPi2kRsyLaAcbOG4ceLelUbdBVAaKaOqcXun0kjqBFScmYU7TQo+yDEpY7QphMR9wFugijJjjeojGyzBPFg4olLXycTuYYkBYrBCNCjIGcE2MQrm9u0BfXSBS6vmcc93RRyMvMMmeWOTFNM8u8ME0zYzcwvnhlVT5T5pSO/qyFDbOUCaGywZ2Bq65jiJGh6xh7Y136TuiCEkqizIAUynSkLBMlz+ZWUqp/RU0eA1SJfu9yW5PAtcjWJYpq6xfWKVam6IHydUVONlWLWdnVJfAWRHpX02L3rQTcpnLD+JXsxXVym4zr+TX9vtpkmv0z6hSSdeUqjZCz01NMx28SCANs21LqdVx6kDe/uVQLKTfXuxkkK7BRVQhq8eOWkix+niGwRPN4N7lGcFlExzAO9H1P7Dp3uei5vLywIijjyN4BdOwiXdez3+8Z9zskCEQhxEAfB0JvB68EnCUtekBMDQbcJx9dkyW3fNUqOHfbtfqOB9ibtjXXDAvo6/G2dovVvUhxfbECsYKGNdhqwIMVULT+JtiKVvGVObH8hZQ8ubfqgO/dvu0kLFguQDVLrMcMjf0+Gw4f3dYS9vV+1+Ocg44GkkUYhoHb21tb5egH2ALobas34LUer7aDOW6sANAfY/vnwUrw97dBwPbaVc0l6O7ujsPhcOYp3nUdu93YivrU+1Lv9LNkbh0b2D4R59fT931jptd7a5rtrgt+jdH03M2rfQ1Ci2ZnzCdC7Oj6Hk2FJHnV5lP9zO33lFILdrYWj3Yf7dK2bd/un4/H9bVWQdk/F2MED9SmaWqJl9LmwU0/fqQ9tu3Gpp/rvX7x2PYcKK+hUj32/ffO9vPYvts+eNA3/xTbU0D9zwXgf+z2p2yTBsSfufnnw5KcffzRFcLNz2fClB93ovxVgG5MOx1MUlIUUrmk8AVZR2AhhA5hh8pgjgNZSXPxrHiPxl1bZmDIWV81u0AlnT9szjRXLfj6N5i21orzICaZqCyGsoJg+44v6WPLY0kLuapT/DTEbbdUhexeC6qhLorTlWB+rgVKwhIBtdg6ebGAIkighGhWfKVQJFLEF9ZVkBIIbhNo4gZFwgzm2kwWoBP6y4H9dU/shWVSyiGTsCS6KxW+Hnp2+55xMDu6GKIxqPNsAVCMpDlZpUqFKWdPBvWywQAi5CB00UB7LJnYR7q+R2IkaIIlW1CRFEmFWKBooGew5VsWc5EovkpQ2RlVBFtWRW3FIEjwf8YyR4xJtKqkxgiLKpJd1OP9Q0uGbH7leWNB1SZIrWlzPkmpM7jbGbuOwKwP9f1HVB0AF9dMn026WPBVGd9OIKLEWoTJAV+uh1Rj4EvOaD6XQa29W5sW1EBzQXSFyhpWNkTtqyyYnlfCvWRFOb+eKsM4G/ccxRg4Mx261CA4BLrONJ5937PbjXRdT9/3Zt84DAz9wG63Y7/f0cWOi/3I7sKA9H4cXdoRGfqB2BnoEExG0AcDW2fFYsraxs1yrmyCjxZg26mXUpizScFCiAb6pLIm1hLr3sPmvq2Xf36/rfFqOF/7bQ2I2lhf+0ux4ly1QmlKqYF4cQemxojzCOCW89mjMd5+lp1rbJtcQza80XYiUggSnNVdAVRlYlt7tg6//SGNiT+dZncOsePUa1FVptmqVHZdt7pheJLkfr83a7+y2v+1/Xt/MtZ0c+zNLCv3iwZVYLkk5tkSIYdhWG9Yix4sDbSU5Dp4q4hZzyu4Z/e635oDhI97lWVf339qeypWsWMIIWxdSNZntotGolT3kfWeb1Z+Nveo66LJ76ReW6ZkO9dmn+gylZRSA9xbwK94mfdN8GXWgcWek65vr03T1PabUuL65gYR4TTPnE4nur6ntmAjGB6JfD6VSAk1UOePQnYWYq/g/7nPbbfVQ1x8Lnp+++XB4p+6PXcl8uCvT7XLn2p7rls8WCHbfvJ5LP+jt78K0J19OdvAMWjsEa4gd84MWfU8A1rFJBuS/JkRkELAJSAU/2+iyAHVGXwZcDNt0UqriTgSqdNJoLinaRYxcOhuF/Whs4nAGR1xfj1I46vEQbQWNSJc10QS1YhoD1TLMozdLormqvI2rVzRiGCM+7Db0V3srMLgshCW6M4syd2p8YnTwWWw9LmCGGM6BIarjuF6RxHIKbG4u0mnhU5hiMLVvqeLhYiD2SAEtdxSKdpYOVQJG3vDdak2EEXoVAgqBM10Cp1GD1gMLGpSyuJMuzuzWHhibKMQqDZUdZCznxsWy+xpNuCguJ61UB1JSin0EWIsZFXSPJOX5FUeqze1g26lgZWqYy1+em2Jl3W+MIvvc5O94OyM81A+kdi5Fcqa3KqVQS0+eReqjjerutyjOIBzYOtltMV/b0y3Wt+qOKJUv3cc8Ot6XHRjIennPeXMHAq5F5cwOAANK1iLMRL6jn7oDSwPBqIry7wbBy72e66vLtmNO8ZhZHR5xjD0dNHY6QpkavEPA5Fr0RfzmbcXbc3ojK6oIa73daUV0qqbWGJzZdjmaeb7778nZwOz19c3fPOHbzgej/zN3/wagLdv37IsC1//6lf8+je/8f3cV6TX439qKj1//7mJIKdkT2jFgWLFioJET7B9+J0t4H5sW19WS9DM6/e2gOpRJk+w5OBwDrbbHlWdfFTQ8OA9W4EsqCZSsjyO3W5HjHF1U3HP59vbW3a7HVeeKD2OI8fj0bTjDgBtbKnPnfWDvGFUc9Vce4KoxEjLn9EaNHgQ6p7Ta5JfzSnAP0urAFn15VtHFKB5VbdGZAuyPanw3n2qn3mKBaz3JW68srfNXp+9lCyhvvlit73VsEfcIrFvINre8OTqmjvg9xCRM8lQ84mvbete3ivzXTgcrDbCOOxg54HUNLEsS/t81/dWWCxGC5z3+1VKdn7lbawVv2hbAfa2e+KhEZHqBkxdEdGnOvQj2/nKDk62fR48bsTbvdeePd7nndaT+7vH7fwFt8fOYD3bP4VW/C+6PX+5z26/eNBtjJqBsSKFEjKl65Cwoys9FHUAVn1EkxcagSLF3SIqGLKiFxkhy0JhwR7uLYPgHFQNmTXaP4JPJNFYbmdS7eWIhLgqXZ0tklIfXGwwW8c1vzhnRUqgspqqIGrSEisd3wOdVZSsvrH1UfMnPMae8eKK7uYCzYl0d0SZ0GxshIE7z/5XbfZxVVrSXw7oGMi7wLGzQTd1tZCNV5cMEGIiSCKi9HWJXSwRL6CNnRMglHVpsQFAqr66BjcBlwhTloJ4JZNclFQyKUVyhpLFEnJK1TGafMV+XyfQev9arFQ1sJ5dqsWU9iljB9UOUEvDK+amkpaJnBdyXkz3rE0t3I5jp2zVCs+SHz3Iq2xmA4DbbYMRZfN3XXKvQH4tp12DhMISIhpsAu47T7Jr7LpQls25OFIorb/Ug6p16eDa4OK69xicgYx0nhwYYiDEiPSRL//+N8Rhh3SRfjdweXHN2A+Mu9ESPIeOOHRuXWgFOmK0JfvoE3sNm+r1Nj15u9T6DKxttrj8IZdilfCKAYEKkE6u952myRIZB2PY3r59y8tXr3hxc0PVx4oI87Lww/ff8+133/K3f/u3ALx7/467uztubm6IXcfr1685nU7c3Lyg73u+/fZbAL766qvnJ4+fcV4RMbvICNgKVT1EJQPOP/v87xswXGOrGqwJZ/Z87UJUz6/Hx7B15U7XZ1osAdXsoLV9td3Hdu9DK4CTW/L0Woo9pdR+rxUkd7tdY3DrOZojkJ1iKYXTtDCOIzVkqLIF87w3Sch+tyN60rQFo+f2f/WYNQhY29q2qqcex5GbmxvmeW768/qoKhYQq7d9HQc2Dd62+1Ka57Yt2LW/7aiVQY/RExrRB/e4bjEI+91o5ePLVn+9kkO289WPu4hwOBwYhqEFGPU8KoONgog5c1VwXlcoVNUK9nQrzCiPrDTdB9yCnI2bRkBIG9Oee9DWRFWtXbZyMZ/cLLHzj5NmPBU8ferzP/U7LVD61Jf0zwDMn7iYXybgto7xx7TJ/av63G7ziwfd4OAlgMaADIF+CBAKaZkpyXXbWQ2Y+yRQWcni2lgF0Gheu5gEAwZMZbrRTAo+IJuvt/l+G/AVIkI0L+OKe0uB6J931LgRm6xRqINLS9IsDiIjUvz3+n21wiQiHV0c6LuRLvbkdDIhnYINlLZcP44jw35Ht9sTd3vGvCBTJndK6Aohm6acEj17K9MNAxf7S7KMzGPHy//4N3yc7qy0bxfpCjB0lC6Ql0zXBUrsoT8SKFYIRjxpy5coVxbHgHRjf+uFe1ABFSfqOriroMWqoql6aeMcSQlyipQcKEndezqhJTqLrJtga2XzwZMGo3igZWeQBSQIIWgrzGFmFNXhwvTMqrakvwLt2hErjNb12hoolzbzto+3nrXdVnstY1FsFaOE0qQPBSXrRlNMJkiGMBDHnt1+YOwDXbCGTjlRcjF/9F4QzQS1iS/2Hf04IlGcSY70zXGjM31zb4UxzBFhyzaHDZPdI2ayuZ6/L73XSVKlQrOJbQABAABJREFUatDXiUCpOnD7ow1zG91ma1uhAQmA4+HIf/tv/4ol0yX+4R/+gXfv3vHmzWu++OJLXr16xb/8y7/w8eNHVJUvv/zSfJPnuQHxi4s9KSWv1hcoOZHSwsk9sGtFQSs8dNHA+fF4NOlJzu31JSU/Vd2MMWcX8eBuf+5WQarWlZCziUpa4GDcvmCrI+eJgyt7+VDX2uoICISIBbqOSM70uH4dW2hzBhBdSmf5x8USnVUZRvP+L23AK+1cts1SgX0QQTfsaQjBSoY7IP/666/b6/We9H3PsiyknE0DjxWE+eabb7i8MvvPGC0wyzlRSm4A0ByCjCVXtfNeZqu6WJ1BquNS0+BvgHI9PsCLFy+4vb3liy++WNtcV5JhBZG+AlrE+Jo2ETzsJ08lAj68N/fvq7XRfrdrlTebVGkTOym01SPCuhLW7vQ9TX0NjGNcHVBawNKOXfsl7srjwZHU+2r7jDmTfDVBVVnmGfr+DMg/aItHcNqZvOSRuHDbJvg13zf5uf/MnH0P4Ym3WmDV9vP4x3yu0Cc/cz+Ofez9+9/7saPKfVnY80f8Y7dH+nI9lK5zw3kI+5fd1vM4P/fH2vn5EO/p9577zl8F6CYoRGG42hF3gbjrmNKJcgLV5DbXVkEyqJW3NpeD0KyaUi21jnpJ9EtUI4QDkAx4ybqEZWXle9AepSew8+I7wcC3s5BFbOnfSgdHQoi2f9X2wCtiVeUDqJffobjPbQXfdbFceojVLWHP0FvxgdPx6MVKKtCF6+trLi4umHJCJCJZiCXSE0nZ5ChRoi/BBysCEeDy+gXj1RXL0FP2I/1X14zHgPryaIfQBQinmZyhz5E8YFZ10hGCgVLaCoGDXndJKc76qmaqBEQqo0sF2qafjiqg0cBzipRs1SdztmTYnIKx3W4paIoRIWchFxr4qMduvK4osU56NRDDtPIFr1ToLLGo0leJEAGViBJdMp+gAU2lariLuM6+Mm6y2jz6inc7VnucBS8z7RNasNYoTm1LgV6EKEKodnSDJQju9xcM4wW7/c5kGb0V9OhcsyxBfAm4EDt7r3dXDbQGG+dL/o9rfx++vw7imdCCCvez9+hzDS7r4OpJyU/OMg8H4fuD3jwvnE4n3rx5w83NjRfZmJnnmWWZKSVzd/eRUjKLS4J2u5Hj4Y43b17z93//9wiWJGiPq53vsiz83d/9Hafj0fe1NL/3EALXV1fsdjuGwRIzf/Ob3xBj5ObFizNm9KnzftCO9/56jJdSaDIHnOWuAuWStxKT7U9pCWpbR49neED3AHcJRXGf+DPafHNFZ17TnDFqgiVl3n28Zbezcuu5FHsmdU2cG4YBN+JBBPpO/NsdS0osywLQdOWIFwPrOwdB50FFBeElZ9e52z0f+s4SfcEKr7gEpGquV+24F7DpTB6XPJBalqV9ppRifUZsTLFjVxLFknbTPLdovCauTdNkKzLO7Cqr00wpvspXx6ftvX+kT/24zQM1B7mVRloDte1N9MC3okiVtoJaA4fW3tACzvr1yjXE2DGOFfi6vr0l9wrVltfGvICUOhdZZeLaLtscAtrql78kviq6QdGqW/rm4dbA/lms9ynotH6q/lz7+XkgVIPjp58yfYRo+XFw97HPfm7PeLwPrQnLP++m937ee0Wev1fn3/zThAT3t6fv2sOgqsgff98e2/4KQLeiISNjYLweiBeBEjPxpMb85oSU3iZXFaJCCDSNqi3X10pxNfXNqB6VHi2XrqVd7DXHb0KPamcVGulBrNKfVImJii2riU0yIXTE3l5PS9owDOtEpaIgyeQj2oFbtYk2qwZw8B1DT5RAmk82GafZk6rqjpW0JD68/8C0zOT3IDFaURxPpDN7w9J8F4JYtUNN5vuaO2Hs9/Qoo1sgalCCFiQKwziSktAVZewLQ4CgTSBg16Sr/Zd5nNtV1+JCsJJd6tphrSyFCiULFEGCeZSbj7CQSiAlmxAso95YtFwcdBdxfW/2nS2wmdBqee3KSBqgMUgegnkKO1FsJxhNDqTBtJxZV3eOuteaJta8kkO9LszjPRiciM11JjTZRmWVh6Gn7zvGPjI6y6yl0A/G/NTS793QO0IXCOI63nhm1YU4dN0wUfXfp7S9T21Pf17bQLplCrarvVvngba/x4+yGWzl7GfjRRxgzfPC3d2Br7/+FaB0XeSLL77wgiRHXrx4wfF45OPH7xto6rqOf/zHf+T6+pqc82qPp8o8z/z6179mGAZSSuz3e7549aqx+13X8fVXX21YtRXlKlugQJtUnts+aUu12XLO3N3dMYyjJRYLzvyaNtlYWzuX4IF3LUOeSzkrDf9YmzfmU/CqjEpwuVcUsef3/O4a8G5SDFo7Ho9HXr9+g6pydXXNPM8G+DbBXWV+LWnP/F+0Bn4O8Kp/tlWKdCjj3V42UqMWPHkJ+BosdTHwN7/66kwek3MmeZXIVhb9zF1FqVpoME/wLeNez1s8WFstABXRtbqllkKIsYHZcM+vuuZ9iKrPE9pIgVDHzHvb5wLvc6C+rrzVPrOO0Jt76VvNKMFziypKLMUcr4oWr9DpbjH3oJFigUuzs3VCJMSVhKnBWz2HmmSrwDQvbq24zpDVg6kG7hVwN+JKvSKs2u+VldZ75yZeH2GTplx30MD7U6sK9b0agHwuivqcO/Yp2P9jA65P9h3dnNefBHDf2/mjF1fvb72zj7eAtk/+eYD3Y9t9wA02dtf+93Oe1y8fdAcI+0C86eFSyHuPQGKHkigpoIuTQsGW0OzmCagxn8aBbwATgaADIgZ8hSrxkDYgCh1VEwxCkYAS3YIvoAKx67h5dU0cAkQh5cJ0mtF59gqRxScXky0IVZtmgK/O2qXY+YcgqCh5ThyWA6p3BlRLHZYcBDob//H2tjVT8d35sNKOF0Td6s38oHOyiZ3TAXkfCK+/5/S7f4dooLDvgstfgBTRHEhaCGUx3XZQ1Je4VyBi59AGKzYDm8JGFW0gt2ClrnMkqxUckdCRw4jmzljuogawc3b2zCeFAqX4xKh1Urbqinji3Fpeuhbl9mRKxSYaCUQvhhOjEDtFSeYe0iVEC31vSUeqBoyDs8qxM51z/ScxELvoRVLiCrD9PYnmFNA8nN1H3nrTucXVdlm0YHINP2XMn9je3S73VjB1Piz89CHi2cH/3tKs1v/XwOUcpp5/9cEr8vBPnxgbmyRWJOY//+f/zH6/I+dsbgdd524nO371q1+RUuIf//EfTT4TI/rVV3TONlYQVbfLy8sWJMYYG4CqSWOnkwW5MUbvg4XRXVK2bVQB5rNBzTYieaYltvut59TcOTzAqhpaS6YczhjIELx4S70/ev8o9wAINRi9Z72n2tq9BdIemKqDq5QSp9OJXJSLqytbfUiJvu9de037rum2tRXbqZ7NdQl+W+bdzlI2Y5i4c2VDXWesY+y6By4ipi0vzrpGK7qVzRIvbPZzBtNE2jXXe6y6SlHOg0xAtFUWrZ/dyl/EVyrWu62bMXIlIu73gh+j8d5+bqvzruxxPfL6c7PIX5vB82NKUpZkqwa55FrjzT63WRkrzUrQ2QZoVXnneebicr8B0n7lbV6obWdz3G6/81WNuj+b3UqdE3HGXmz+VXxFESUpdGfY8vz5WvOxvD3Q8z60vTdnf9edPsHL6uP3bT0uz77/3PazY+INtnh0/88EHT9pu7cbvfeXU13PBzsPd/MX3e5NsT/r9osH3dIFuq93lEE4XQhx3xHjQK8w5UKeCmIuXnRRicWX8lTBPbARX+ajAuvKFIVWIjoQfZDxJdpa2CI7AC3iMKlrpHToO65e3NANHbnA8ThzzAXNCc1qCZJ14pXSBgBz4HBmgspEC5aciQFIUm0BxyIeNTYGWVh1kzVQgArZaPuvyU8mnwm4tk+BJJBn8vFI9uueBQd7gSjG8HeqlH1GL9QsBEudsPFJ2wc2fbiwZmexHbBsItcC2YOaUlmgkh1oK8klOsV9p7XZDhaQDCEhIZvDiGRCSCgZCRBipOsju75jP+4YxsjQRzqvFLjb9YxDT9cLsTM5hk3agRixgjfOhNXJIYboEg1j5cUZR5tIwqMDyQMYrBYE+bRiE6HWREK7f8UDF8FKc3d9T4jiLGR4MEmcA3CeHdie2p777AMAsP37kaXrB69TmTU/ww39oqyg57FjDsPA//A//PftHEOwioDbz2zBT30t+N+VRa3vVXeMOtlWV4XKFgPNPePi8pIQTQJxPJ0YhqFJJipAq1Ujn2qGep1nPeEMMKzPRQXc+/2e2HVnzE9NTnts9aICviAuUdN1Kfmsrzxyi1vbQNP4WpGXSIydV/MtLfi4+/jRrPyGwQNIaYmR9buqBkqPx2M77y1lpIQWYIUWIG+up4lw1/U0PT9p/66BXK1VGtvqgxMnQJrnliA7jqM5GYmctWPtV1WCUt/L2QxcuxDbuVfGOwZZK0RumHuTjJnj09r2pQHH9RpoBX22249hO5/+rGx+riB/800qsEWN3JhOZulHEGIXbaWv2LyE95F5XkiL1afoe6swnNJiK6YlU73iaxEdYQXMNqRV2K+Y4k0a2LY8GmntDGZ4oO4Ws+RCLpkY7J73F9FxZQ1Mt937oWb7OR33+pnadNpWEbet9eDzz+7tM7f67D3zkU+O4q1d/dM/kjH/nO3Zfvkwnm8r2+c7eXp/D0mjv+z2pz6TXzzojkNH/qKnROivdsShN0aRQD9npkOmTDMSbTAMRdAkkMyTxAUZZ53DJqfBEhbB05YDoYsWrUdbyteiHD/cOlg2LXelAYz5HMlzIC/KsmQOdxPzx0JZaiJOZZ9ck+m68Tro1UUw85aWZox4v3rZKt9wIF3Leq/zDNK+4x7keLIjVt7eCrysy8dSgXwx5r1rsM9YBasKmIEJgGWBY8KK2ARTR4u3g13rJta/99CZGZ6PqVKvPSGyOPtVTO8YM5G4VtoU1rYj0HUD3WBOGKUUxl1P1wX6IdIPFjP1gzlp9H1H30fXN1ewbAFH1R5awOB3QIIFJGJe2NIYmDqJrG2tvrTfBnsfrG1yaWu1VgnSAUEubpnlvtSKTbyn04m7jx8be4mI2WzlxIcPt1zd3HD94poQVy/g7fYpkP3YgPnYpPRjv1uB4mPM0eOTXF3UPmeMngLcAF0fLTgryYp6eKJyZdgqs1ldL+Z5ZpnNB7qCwP1+30C1ensPDhqz+2/HjaSgJsKFYCsZoy+Zb5MsH7TFk3NSDSgeamur5rTJBNgw1tQn1QL0rnNbOJeRxA0DWfMZtjKqJo/w9okxnvV5OzMHpqUwLwtpWfjooPrLL75gv9uTUuY0zZymmTdv3jAMAy9fvjyznKs6+5wzXdcxjkNjn2uZdEsOP1fBVgIixGiEgeqmouT5J4UVjwW1dS0JyjD2BFZZiZEkubn61ABr2y/vy4NCFMbd4H/asds9KAUt65gvTnpsA4wqH6mvLe6qs1b8FDRW1rcy/ZtreqLvfA4Af0q/W9ttS9hsWWcjL+q8KFZ8TX3lIRq5IGENTLQSLKHKOnzuClhBoGje37aKacd1v691XvPj5g3tbedQyLkwz4llsQrES8rMabEicH4dIQb6oePqeuZiN/oc1aiHs2Z8JI14Rc967+VNf9iOSc0xePt6bcDt35+7bQD29uwe039vTu8T724CVD1fwTnjQM5ef/qsf0pOger5WbaVrPZyHfWf0cE/Fdn8FWw/5dR/8aBb+sDuq2sKMF7ujfVDkFSQIRCGDnqlk0KkoHNCU6ZzZrlOeqEqmzcOIb7Ab1rcvmN3sd/oaiMlZ5bjiVSyD/2rl3cuwnTKvP7uvWsIk1Vraxkcxl6bltoY9DbcuPTDWJ1aNhiqphyH4xXQiSgSFpCEgVpXqPtzZxaA9ZH2SZ7t34CuBV4McIN4hlOok7ZbGgZqcNCcxUkxMpWOXjNKNi1o2CQHtQBgndBawmDs6EJEOrOWMreMkWHY03cDfTcQuoG+H5xRNn1ndLARY9csqYJUayor9iNSkJghLO5Dy4aZuj8cnz8gtcnsLlghH6lBi/r1NVDrg1KIZyXKqyIRqnftTMmZuw+3aE7cXF2xv7jg22+/RVW96EvPbmfOGW/fvgMtnA6WyLrf7zge7piXxcC67y9o11ins+vZML3bIeCnDKD3t2cHaG+Ux0DzdpLffuMMaPvorPcjNG/nChwrmPn222+5vLwiSGxlwcdxbNZwV1dXzPPcgN62XUwqYtZ0u/3en+9gUgBMA16/U6v6mWTBAPcZiNpO0s/ei8fbccvIr/dqc/Fnkynr++rl5UM8A8+lFNKS3f96bbdqqVjlFiK4J/q5Y4QNHdrcQ2obFC0cDkdO00xR5cULs0/cunyUUvj++++Zpomvv/66sfG1zRs4bVdUwc0GgNTg97FAsL20RRA+vqnQd935pK8rKEaEi4sLWzloxYQeTo8iZrnX7kkDp7beWC0NK3QopTSXkGVZzI62Fpvy/rqtQAriZHc99v2g6uH2UGqyjmePfaYd5/5+7n32bL/1K0HohoHozix1zF7nJJsnuq6n6wAN7R73/egAy1eMiW3HihA8/yl7Sfk5LZyWhWVeKMVkLUtayLm2n59nW70JW1hJUFhUWFRcnmf+/dsx2n5uG8ov1KOce0PN+R+67mQLHM9DwJ+26SO/h81hP3s/Zx/eBFgbenntyvocI/CzzBGPnZ+0tq6N+BlXWc/lEysSv5jNg4ufcra/eNCNwk46NAi9VucQAQqDDOg4IlkIczKpxLxQdEHFnS7q/Val+myL9qj2mOe2dYz9cMHV/sqXQ61DTnNCs/h3qle37VAENNsEVHxQadn2wZgAK+OygmpjewJoorKoW/bPvqpWxCcUkGRstShBKhj0pTwq7vMLbJ3WJAulFnWRSuQbQLbB0UC1hPVBCBGXTChdNC9oq1w2IqHnahy4vhm43u8ZBksU7PqOoe/Z7zpjnHvXVobg1nOxaaCre4YxzbENqupFdqqkpwJa9cDF2qVeWwXRGZPfaAtKkLg+2l6JJ7hFY6V2RNwFxat6qlez3O33pGVx0LaAl0y+vr5mmiYDDylxPE1cXF5x8+Kly0480Ucq2DF/4MPtLae7O/oQWIaR3c7YwN04kucFOvOXPx4OgDGXihUrKapM84Qg9F1vqzdUrKGbyXs7aOqDce0pAPhjt/vs9dOgcwUGW6BgZ3cfRND6q6KWTwHWfvOpeTjXrf2uluTV9T1xWRh3O+ZloR8Gdvs9wzi2xL3KZtfy0n1aVg3xJliIIW6evy34W9kvYZX9fKqtFMtDAFpi2TLPLdGxqJLcsePi4uJMN7vZke1nI2eBdXyxU1R3+Sle8W/1u25Mre+nOoT0w/lqSZVWVCBe728pyjxZouIPr39gWRL/6T/9J/q+bwzvhw8fmH1V4csvv2z3SXVNpjT5jVcI3U5P6gG/V+apAdz5yeGz2j0wDEZWKJ7rsIHzsspMqsb6/nYf5G/HmQoQaj8pfq31cxbMFFLOzMvCaZ7pPbAAHqkI6X3CA8z1EbX78pyrQ/uunv9dd/3Ys2dd9F6A52+0Vz3PicaCQxfbELk5q3Vlyq4p1AY0QCXm2IUaTZHUZDQWBFplypKUZc7M82IAO2dSG4vFHb5qi6zHrml3LroEVYJCylbALCss4oGLVhte2nVtu9LaXutRxNmsugrA5p5Y/YV7QTP+uc0Y+HNs56Pk85u0+3OfRrJttdCte67Pf/3W+ijB4wHoT9ke3YuubSzPf/LhV58gMv5Smw+1PznYemz7xYPufJp497/8E9L3XLy4Yby+opSMLpk4zewLSBRyUNI0k/NMrKISHxTsOTc+k9KjdKCdLVf74C4lMB1mDunYgNmyJHKKTk6sUfe2QqXZQimitZIZIMWq4dWP158aQLOzqZ78B62ctFKQUJCQkWC65cpqR8BKkmfMf9A5VjXwLAKxE7rOXEhisL+t2q8SIoyjVQms0otx7BmHHbtx5OJizzAayBuHnnE3MPQjIfQgQtTCGJS+gxBsMrRJW5qu9Xyw2y5Rsg7am60mY9rv1m41CBJ97GGrg6oNjxYdyfrTv1Jy4v3bd3TJ/Hxnrz748uVL7j58YFmW1adWrW1fv3ljyUQpIQJ9H+HqisPdnTOGloQ6TRMlL5QMSCAOnS2fOmtUSibNM1oKsxfjmUuhG8fVUafY6kff9xymk8uZhDiOLNmCxa6+1nUVyZq3cvW33g7+dUR+dGS4n9//EDuubGGdBh7u7AF7y2PmZ9t9l+2H/eBy9nfNp9iyizURdXs6BqQjseuNDRNh9KIpoxczMUkJDdy06xV7TodWiOPepYn5xG/PX7wz1+qGFXTXNqjgcnbbuOTJeog0uUWMkRsvd/3RvcBjjK3yYQjBqsg2TbCxdsVPohQLMB6TtASEKo0OITDuBkqp49w68TavdRGXWIUGqVouSxBE1lLsIgG0EDs7f1tV6hoZUQP9ly9fEKMVl4qxa2OBnaSRDes5r0KAeg2wJrk2Xfn2UzWOrAHcI4x2PVYFgpWlvw9mnpwwvZ22pAfioh4H3dstZ7vXy7JwPJ34+PEjr169OtPbn+1+wzDX1Z8zt6FnUNd2RUQ3z8eWgT6/kPO2rKASB+61X9WVgu1qg13zWgOiIJaP5A9Lq7oLDqzN3SmlxGk6MS+JxaVPS0rkVMwcoLL8NYgEcr3gp4CrrPNqrd6rjnpKgZI3lrSoWb+ujVZ3crbioRtZpc2b0oIJZL0N1YKhnuu6XqHngJXVC/2RC+CpHvekFPCp1x/s0fFMfaUWQtJtsLA+/+14tf+0HW6uVM+P+1xA8Xgff/xzm1vxV7v9qU79Fw+6y7yw/OE1YRj58MNHr6RnThw1EUdKplNF8sSQZ6o/cLUZUhW0dIjuoOwQ6VC1SVrdq/ZjOng0Wx+/OsoEqhMIlV5x4UidFMQnQWrRmJDR4MBYbWgoXnBFJBPCzMpiZwPWodB1EDqztFMM/IUoDJ3Qd8Es4yQw7i7Y7QYH0YP9248Mvck3xnFgHAf6PtJ30SdcGIeOvjMw1+ZHf2qrE0OQygb55foQJJshaLuM55C3bed63ocT7YNt27YizwxZdT/bp7lOYJtjqjJNM4ePH+kWX1FwfTWlMHulu8q0ZNd9ps1PY0jN3SaEnpwLp9PENB+5urqgq8vRsp6KqiVfTacjAsRhIJWCdpGpZIarS+aDFWSJfU8W2F1cIv1goC1Gun4gdMrLV698goRu6JFoGlUF2uKEuC74PuO1maAfmwAenbI34MDaZhtAnUtFFMf4DtpWX4Sn7toKmB7ONZWJW883yMYlxIOJGCK7vVWabIlavrPV7s2udTuxVEePdt5gNmQ+IbWS4V6USHBrSdc5b9n9rWQDaJaFNcGyseoiLYGzfr7KU6rWebfbPQqmK1NZNb+2EqTcnwhzsUTfyoD//6j7zyZLliQ9E3zMzMkhQTIi2WXFSXf1LBqYxWBFdmWwIvsLZkT2B4/sfoGsTKNngG6gUbxuXZY82CFOjOwHNTM3P3Eib1Z1A33hKZFxwo8To2qvqqm+GoIk7rFWAGGIu3EnJytxCzDCSJS4pjP+UOV8ncqijaJWFc56Tk5OyKnSI23hYVDn/bl9MEfz5/lKrLUhBeAl5WgOllVm2ZiB8+CjwiEJrkLQGTxmpaL8fagwlmMoJJYUxAUxArFENVgemXZQKc7PzwFmLjWH7yhlUkjvK+doyUmWj9Sn03NSnEhpxZy9i7hiBVnzysrLOU+SsvmcF/pVyU6povtlBO8oRq/wTu4aBktnRwlEdp5h9Iyji8xSiV1LquKzHFe5TAmwC1idl3+aucdBTvYnj98697AXdGqfcjdA5beki9RkpynLIh00G2sUd0vLMHvaXCXjcHjfq8esTge3HF7z0BEi2QJIjFJq0RCkL4mK2aR8xbaL68mkoMS2VzysAB1ULRwoH/NjDtz/uS3U/9jjWF/8U9XpOw+6CYHKWXwHXo3ie0nS1SU8UKNwymO0RGB7ZSRroa/Ba/CVJLYJNVrVECT5SUBcOXSa+iGmFVAOfeATnkFWSBkYowatggBnLcBZG4+pHKYKVJXw4GrjqapA3SiaBtplQ9O0NK0Rtowa1quWtq2p64a6qmjbltpISu2mqWlqKa/3XqjrjJoWHi3sJQlMKzVREEpq2wkUybCJkz7+N1nHEjAqXQggWfXz8nmwpcuR7+ZiVB18R3FNAtzT2Zk16MHj/rNSHSqtaY3B9h1917FarYS7PTi6vkNpw8npKcpaoRVDXAFCCIQYDLVQChst1WhJVnN5+pg6W6MDpqokwj+OD+8sJ6s1LFfiDxrEhSAoaOqGk+WKOlINGiUMGE3TyPvVxG9szHJu0U5WjFIQKCL9ZNkk6kCAisI0F4LHrBWHgGE6PwsyUgf9GArA9T5C6pkiUJZ3AkXHhJyMoCI6IS6EIRSLVTE/s5+zm5KzhNw3Hu8CdVtjKvELf/PmDTB3C0j3pUDNBKbL9hADmqZtJVGR9yG6UwmrQ7tc5vJb51Fa9u9dSvDkBbCcnJwcALv7wM15l0G9LqzicWIDkV7Tefb7jq4fUCjatomGzQy3UmtkAANzq9ShEqAUBCSboDEVrakzU4/sZJW7Ciq/IcuF2ZA9HJcq96fW9+WDKHcxyZj32e83gVdhYIoK3RFZMYP4WZYdjLHi79QmivhIPVnN01VaS2IcrRQXjx4RkB0poBhv5ePvKxMJMKHIYD/dWMCyYt0hW3UfAj0JdCfe7XxP0LjgcUlxUcUzPYw+MDoZO5IYzTKOln50dFYyf/nI12pTgG6qY0g7vEQCgKkOaYQJyH5/sGA59koFKd2r886DuCMKsDRMzGRh3q5x7cq9Gcqg96KPS6PJQ2UjgdKynadVa6YghoBkpT7o14NrZnU9fll+1/3PARcc33z9mq4bqYy4dVZ1DZF1ZrVsqQ0oFaZ+mQSwYIZUi6hkTHSax94ufwaVuQ0OV/XZPWl+Tu9Mc/uBin4Hj4eUn4fO/6lg/DsPuhUIi0ZAsloVE1pFi7Ms3gqXuIxDBWEBrpbEK+mfTlwm0a1Ee4zy+CBUSEobWUj0IIuoadCVIWCpajBVQOuRtjXUkW6ubWGxMLSLlmXb0DTiw71oq+k6A3WlqeuYCS1Gexsjwz8pEkYbam2oVPJNDBFcTQGNZIFSAFaSX9u0COrDiXOsbdVk/Xho4SqB9cHN+ZqHe65Y1BTcm8zltXMqkA8+ZlcLOTpaCbgZQ8BrA3XDgKIP4JRivV4Ko4oKUCm8hsV6ibMOFblmm+WCoOH88hHjOLLOGR8V1JHSTSlhhgnS/m3ToJomdpvKbadif07bfTEgK/oue+9ztlHnPWNw1G2dFYGcW7sERwq8PmyrqSMnAXG45BWMBumuBHoTmAqINTHuBhz22gS8NDpG3yYLMhEg+MhikCwp4gY1uaRMOymx2EG2jcnWwGTVjL8jqHHOY50EHCeL8mgl6PTkdI1Smv2+Z7vbxRTWMQogpv0+Pz9jsWyzG4jSGh2BlFYKU9fCs17XEsAbA3vnbSpHGg/J77/rB1BgR5vv8THLa2mhlyRXntV6PVvYs7ITf3yQLIdXV9c8evSIxXJJCrEOobgnSLKSpm4BiQvQ2mCtw1YWFSpMwZp0eCSLdzl2UsIdoytUo3K2zNLaq/J8VdPYPAJLSleJ9PcxC/lh+/rYBunnnvSICsPk+hMzCJSL/oEiMXsfZOaRDMyVz7cFHbLSl+4wlfDur5ZLbm9vZyDxmJwsXWdmZUggOKQ2kzKHyDyVDT7RPTIl5JoUppDBndSDmK0XUoheCAHrFGNMMOZcZKqxDjdadt1ANzqcS2BcfnvhpkIpYQ+StDbRfYUy42Lppz71WRQws3p/21H2fd45mAkJqbezYrX3Ie5q5HWlhIIq71hMu2mFS8mDoHjqwlLBp7j8sD5ZUQjTiRBl3ofUNRflyNi8fyOEoLndDVzfdbKLT1SqFVSN4Uc/+BSUihm5/f0xqSJdZdFxPrWLKsp2iLtjvdKckSIf9j7RhTLEXkixbe9tjn8Wq/i37Socfvu+Ev6pPv7fedAt6cW7JHEiw0bIJolA8ieWNOxG1/EiC7VDqYCuhAlDV4ambQQMtxpdKdq2Eh7ntmGxWNAuFFXjaBuDqTWmVtRVoKqgqhSVrgQYazOzJGstftQAwatMyadi+SRVtwzKoAsQKlIqVS2Ku+JQFMEmapI/YbovnZoP3gcJeu4f6uFrP2xClIPumHh6QMrNrv+Wy+5f/WA5nPeYpuVkIRbHtm0FKNY1p4/OYmY/AWQroKpr1rVMhWTdBLKfrqkm9oPScqUCBFdsfQcBm8lP3EfmBul7LQlG4nWJDzozdMRFMcSFfa3WaO0zkPXZYpCsjIpgJgCUW2DGQxYX8qIrpo9iNRyGnr4fsaPQ8PVDzzgMPHnyhOVyOS18seUnTmMJmCVngBNf9XEc2O32OeAu+UenpC/JHSSrBNn6Gzl5rfg8B8juGUqpnPHQOY8P4powWmHRGPpesnwuGowxjN4xOkvQdc7eqY2hWUiGUBsCXikeXT7Oi5LRkxuIgAWxdKvIAJKYUcZxFCVsvWa1WuFDYLvb5QBipRSDtdEvPW7Yp52N6GpSmcmCHvIqnSDXBAQlrXrI7kcpGLMyiY5OqEo32y1Db7m5uWF0jrZtYxAjEuBciUycIPfc7z0B/zSGnfOMgwWERlUwxBTMOks2c2/2kcdMUppKRpkQAu/evaMfBj56/lzSxCdoWyjmSc6J3zcZ6pU7NgHxLe77TgAwcHZ6ynK5/GDpVyqe0qaQrKdJp0jZdXOAXRzPrvD5zuw26ecAWOW/8jNC2WCxPmS3rbmbQypSslJHSBPnugQkgvOKIdLuWe/YdxLAOwwD+77PGSdT7XwIMX2Yzv1VzvVE7+dLJSqo4tpJNtwDo/dA2zwI8X3rSr7msD2jiV6oWH2BySeXkqk5FWXck6yHeqZgzcqV35PeHzLmmK1upZKVmotpRsm9x237h3UvcDoclOvwHoDtdsswavrBs3eafVB4JcqEIXBGhcWIsSkkQ9xUlmlXclonJAFROKJwHJSDdE9+xExRn64rRpFKORPmwa3/PRwfAqP/3Cp950G31pbl6bVw9iqFqaesfykznfy0rFdr1usTFm0T020rAdSNxtRGgLcR3tu61hitIKcRFzCffoxCWDjSop3EeIifxIGNLBZUGog6pjqOS1yIz9UjytisgUP0EZvU9QjkDgaxmm9R5m/VHFb/U4/p2bv+Gx3/NBqvomlaLh83GK2xzmGqFBUP5+fnM/q3mZUrCvbUezmQKoGRIKI1BdGUNGFKqcwSAQrDxJVc+nLGtRMffHaDEGCqSUYYU9VCs5W2UEkCMS3Okr3N25AFdrH+zbZs09clCEpW5GHo+e1vf8vQD5kqz1QVi8WSbnSMfp9BWkrmUTcNp6ZCV5KSueu7aFFzGbh3XYcxhtPTU9rIYOGjtXcbgwqTYE8JVBI49s7Rdb1Ysr3HGFkYrJMF10YebWM0jWknij9jsF5gqzKa1cnJLNthCpztB4vvBnzwWelx8buzs7Pso931PVprlquVKEzR+utDQGlN3TSSxMZHi3UIGbSvVktS3LBQXEZbZuzjxESTdhWg9FeWTrQ+sNvt2Gy2oBRXV9e0i5bVajWB7jQiolJxcnoKcXfCaE3btjR1I8xFyQL1wBRLS2WIVjutTVQQk7/6tFQoyDEheYmN8ihBkgnMCsPTLmaPXESFoG7b3O4hj9XCclrojg+6h8Rzfd9L0p66FiaNqJxMbgYPHKFwhSmeR67FZE0NGZFN7CeTy8+EWMqY5pIFQ+ZPmBlmU1xQMsDM3Tc0ISQXx2Rx1ZIK3YG1wqAy9H3kB/fsrWcYHcFF5T+OBQG7WkB0Bokxm0O0XudmyApgAaAOgWbx+X4w9bwtD3c4jn0+PMp1YLVacnayRivF2O/xdkQFSdxTMbmGJtCYROH9d0y7eZNGUN401SiQgPNskOe1WfzmoyNV0gWS0hRCBJmFUlUok1O51OzcsbiAw6NtF9zeXrPfb7FWM3iNJeBUiBFXnt6D9uKWpgmkxJ8yXuOYTosQkpguGwBD2XulYlD+f3jMFYnDgNM8jg7cwD50pT9skz8VI/ypVmgo6lm86vAxxXL7Jx/fedD96GLN//L//r+htHBrV1UtaZlNRV1V2XpkYpS+JFqxKD1itI8gOmafROO9SaJUxplPvmkq0vVFJpAEarMKnCag0A6GyEWYUryjUopyJWnMnaepG5yzGOMwjcvR2IWMni+CWRinAV9MSo538D8NTH343IcIg+/EEZj6VaeU6eLf7YP40aqo0efEFgVgTpZnrRR1TBaRLFnltWLRNHhUYc3VkeEEUu+5LFgVkKjqigXBRj9JJks4aOqmxlRVoZxN1nWY9Dzvg9B0SQHld2GJd9ZGP/Bp8SsD/pqmZrVa89d//a+yNdkDNgKku7s7Qggsl8uc0Cf7PUegs93tub29RUWguVwuWTcnnBRZI61z9Lsdt7e3eO9ZLpcsFoucYMUYST4ioEYSIDULyerXqAngGOcI3lPHOaSiRdp5Sb00+oDd93jvsiIeQmCz2WQFaRyEXnAKiIxKltYSiOicPB+yH3dasNqmoWnbPF7K8peuEpPbRVLkC4U6nk7XHTvy+HCBm+s7bm5uaNuWfehZjCMKWLaNiCQfg4Z3O7p+jL7lFc57mrpiHAeWi2ZaPlWgTCny4KHIitI4DDRt5M+nAFKlNTgdacxHEJLGZVVVrNfr3E6rqCBpxG0lxN0QnQJSsnaaHjtZfUu/+/S8upY1oWlbqb9zBDWldX+4niUAK145A57T8qpVsgozkwchGW5AaGGjZS+EBLwnpxsfgbs8T2RWUEEyMAZRxuW3uIpYT8wGaRmGkX6UzJDeB2xW2iX40QaV3bpywGBhqvXp1VNFZ/We+YsXXZAApQ4FVAzze4+1Y1Z4Cwvvt60lSun8qKBguVhyfnaOc5ZeBfpuX/TLHNfKfSq397wM5d8htn0Ez8nam+rqZ5XPv1Oa+hCIvvOiQcvl034AEDG7PFfF+3S0zEXkQDaoUAC4Ypfo8KiqimfPnnJ1O3D14hoXDJaAxWMD+MHxH/7jf+LHP/iIi7M1lQ5oLwqAApQThiSTjEAKiQaN7EK6lF1ZcY5RIIGZ60jKrJyOewC0mFviFjspGn/CHvy94x8Lwo8+80MuOnhNqdz9qcd3HnQvFjU/++knEBoIkpFOWEAiD7ZS0zaKsiglQEk6NgbCBI2LLCbKVaiY2c57n4ZUXBADeEcIwieqFJEOSzOODjt6FJEpYPQZzK3WwhG82+7p9x5noe8Gzi80wQ+sTwwVAvbDA1tPskZ/eDf+U4Dtb3vOUSF5bITe0xz+vONw6+/oNYevLu498kCccwxjj7OjAKwg9UpWzsRSMI4SnV8Zg6prknX7cJvXh+g3qo0E9jhXWKiryNcOkVpEfIbL5CqQAW5tJDh2HCXNvQ8Bux1yevInT57MuJfz4pU5wlVc9FUGgAEY+p7tdiv1LcCgqaoigLNlHEe22y1dzCiYnl9VFScnJzSN7Bgppem6ns3dBu8DdV2hYpKqs/Nz2raVNNtA3/fcXl3RdR1VVbNcLjC64vzsIruYVJWkBh+Gnu1mxziOeTcgAF6pqDgl14LAOIwE7zLQaZdLQpAMk7vdLiazkbY6q+scZJrcMggBU4uf/KKuM6d8el5mq1ACrlJ9krW0qutpgT8YoyXgPjqmkzUuLTgFUkgAJkwPJwRJJNI0DU+ePJntooiyUIJCKb+pNCZIOY2paJqKRdtitD4yxw+sbMVfadFVGgyKcXQE71BGfPhD3E2Ybxmr4kHJYj+BZRUBjjBF+ehKpDJfulKBMQTZnYz1m4Cbz/7kwU/KYxlcmoKaq+g2RpEc6VuPwhqe4PEMe87kckZMOO+xPkpzXwbGTX2jVBnsGUF1ZAtRKDwin6wXeWSdFev1OIiblQuMTnjBpT2nnpJA/kpSRxRtEsqShAkMlb2dr8k0HgWALvowjgTSbkRh+52uT400e8cD8vgDjtJlwXvPMNoiB0ZyZYvB/2THJLK/NjClnZk9eQZlp7T0k2KdNgJCUIUBZQLgIQHsIG5NCYinp0z+4xGReZ+HTDIJqZDUNjmUoihFbH6l5mUld0uU8zLGhSM9RJekIONxHBmtBtUSVM4FLW4xShhrdAyCdd6z3e7p9r1Q2DaVuNk2FaYyGXQnN1k5fHSrTfOaVPus7qhCiUnjLfeIYpY980Ndjh46SgVwatM/8zn/jY7vPOgmGPR4gtYSIKfwees2i5O0UCRAG4WJBOKIcOp7T985jGkwuha+VWupjKZdVPi4Pd7t9jKYnaNdLGhbcUm5vd3x5vU7Fu2KrhsxVY1SgX7Y89n3lphac3u3Z9gLOA8hEK4cRgeWq/NIhRYDQpOfVZZy01FGPh8KuFKr/2c58shUhye4P2z/vFJ+EPAurSoHoHi2FRpBt7Uj3qaERCpby/J2I5PlavJ7U9PzAVLSH2MwVYOKgDn4eb2d9zlwJC0EKfNnCJFP1XucUnRDz69+/Wuur65JvofWSjrtTz75hLpd3FN8mrphuRIlzxV19z4wjBY7jvTDgB0lu+V6tZ5YGGJ7dF3Pft8zjD1d31PXNev1msVikdsi8UkPw4B34F1Aq5rFquXs7AxTQ9cPbLc7druOzWaXqeVCgNVafGtXqzUhgB0EUGw2HcN4i7CqePZdlwGv8+LC43xARUWIIFbX/X7PyWqBqSRTbAsZxKcAv8zuoaZ06lVdUzGB1ZwgJ0wzKvvJFzsKpc/yodErja/5YvG+8R+XpLhAi10p3hNkORP3A00IDucDfdfR7fcsFwvZfVkuqeqKdtGScFxQ4u5zcqJoxzFbVbWWxFaLGMtQmjAjC3MGGmmMa2Sxd2FyQTFG0zR1DkiNBukCbN+zb0Ecx85OQXsyRhNg8vR9l3ciEo+4VorKVzjls+IRII+prhvwzkcw4CXBlnNUUZlslGSoNLF/lUqW3m8/ji+4JeiJ9QyFTAghZuUMuV+VStbQ2OdBE6KiQhAmm8F6hsExDhbrRsbRMtqAD+J6lFzWXEiW0wiuozxJ7iCBqVuTZXySfCGXOpUtLTXlWD4c14HiwvTgAliVYHw6FY7+/W2g+/73aVROJRLslmolclSCzx3KJHLDFEp4MF+Lvp+eEQ7qmgK9k1KsspLhoyKTQWJQma9cdhllrlgnsTg6Pz0ZAQOSr0NiuRREpjWxEk87RVElj8q5igMpqCK8NsjOqR09b95dc3W3keDH4NEBXKIIDLLD/utf/47gfsj52amwm0S2M+8ddnTc3tzw5u0VNzd3dP0QWbgSy4uirgx1U0dX3IpFU9M0FW1dcX62Yr1aYFICwAi+9VHcMpEJTIpe3K1VafensHwfguc0CB44SlVvhpX+TIXv/oOOnPsnOP47AN0K74wQ7jsPSscgLoU2k2+hwqG1gYLpwyuFDbDfj7z85i2KmsXCo1UnfoBjx+MnF7S03G1u2W07bO9ZtCtGa9l2G9q25uTklM2243azw3lDtx84Oa1AeYICXRkGO+ao4KqK2/XOcnN9xcXjJRCzvqVBMukK+SiFWzqRROixZf2/+ZEF1OzEP1NhZHIlBpDyKH05o+cdWptstQggCWkUMcW8YVlJWuuqqmTbOwZBmujKkMFLtNrJiiA+cQnQApGlhKzUBR99vyMbROIDB6Glu3z8hE8/+17OoLjb7RnHgaqqCSHxBevoLyzW9co0eAfb7Y59t6fSRgRnLOd6ueZkfRqTl8C+H+i7DpS4TVRVTVNVNIsFq3XislZ03UDX76NVVbGMLiN1tUAhTCpKa7yC/W7PZrdjv+/peplP4zCy33fs9x3OST33Xcd6uebR+TlVdPuw1tIuarQW5o/Fcol2jhDfYb3HBPGHVhqaRgIkF4s6Zu+cLCTiQ72aKVJ99DPXWoLdmkY460twfWws5c9pHB1eVIDUcqyJNVsW2mTvKR8UZn8E3MyFIsRMlT6yA0ygytoRpRZoo2M8isoAOD3PORczUk7zwHsvlvr1ipQMZarRfaD8vm3/e2njcxsevTy/xVnL2A8Q3QU8geA9/dBRVYa+77MPPExMMMBBWnUY+kEs21VF3dSTv3wE18aYGFwn815HE1zRS7PyHuvrY0fypz6Ucz4Edvt9tMKDUtH/3UeXkJhYbRwd/eBicLAT2sMwB8kKJj9uEJmSd2gLVusMZn28dy6HfVxZ8tjw01MTHXgI09JyzFAx68PUYIURo7zqz/KV/VZAXo7NCCJjcLWzI33XSSC1cxApdCf7MHkelu879OtmVq/Ytyr5zEefeq9QVpjOdDRFey9xFt6LC8+uG7jd9Wz3+7hTR6RXlDW+NoqTkxWPLy+oGxPBfVQkQ4odm4qU9kElYiwpEqndFSEovnrxkj9+9Ya9hd6FSYGOOy4hjsEXb17y9ddf0zQ1JycnPHl8yXq5YBgGbm5v2O57umGEuOO/Xgu7kXPRLj5Y2HU5FkSBgOzg+f73PuZ7nz6nUsJx01Q6Un4Ks5zUr8DKanLQSkauUr2aen2yjJffHzPvlX+X3funYuPZvUleHLxIHVz3T3F850G3tY7NPuAcvLu6o20XLBc1y1XNcllJdsogGSArYlblCRPhvOerL79mt7Wcn15yfXUjAEyB0kK1Za1jt+3Y3O0gGEzluNvcoozi7NFz2lVL96Jju9twcnJK1WhCEHeF5aKmMrJAGq1QlZH1NAS6caQfOrRJi+xkOUh+XjOhcaT+Dw26f7ZjFnXPP7kW+EFFKARnspTlyVysrmJ1rlgYofiTsTI9o+QcPliVUVU1QZWklSs/s/bMmiEDF4Vzltdv3nB3d5cDBY0xtG0rILZuANlu10bjYlCUuKoY6nrJYrlgtVzl7wXECxuP23fRhWDBailuIDYma+n7HqU82lSR/lKDMjSrFYu2yb7Kzlq6rpdkKtHa4ENgdOBilP/VzYY3V7cMnWO33bPb79lutmz3G7a7DV3fR3Ah1nXnxO2AEOdWnIx1VdE0NWdn53z22Wc0TcPz1VO00SwWFU1doY0m6BpQNIg1yMTkVwGZ19Za+ugqst1ugcn3Olnn02cVXUQEjMNoHU1dHSzC89k18z3lvrAtaTgPx0AKilRqen+5wCf3HRt9012kEpTkIjHgVqvIziRttj5do2sjciyIO50IrrSDQky4I/7pKf06CE+3ynOirMX7J2zamUmUkRzcL/NmClw7doT8HEU/WO42W7GcRcW1j7sr2f0kge9k4Q6Bbr+n63sC0cUlgAkyBrRRnJ2eos1Eyxi8l9wEaoJuqiiR92V3zMfA8fNkwJ18eeOuebS8y5i/2+wZR8e+6+mtsMlYn0Bxkut6AlBJfKq03yFpzYkJ3eT6yb/4sF3T7wwwY6FmVsHCShPiCyfXBxX1vXlgdQZGkH2cudeOZdv840H3XPm9rwyGAHebDbvtFu8sTV2xauuojBl8iAA1ZbZNBT5S4gT4ZuU+tKwW42+EuOujIegiXkv48Lfbjt0wMjifwzldgOAi/W9V0S7W6KqN/SYusUmR0qlPVPycDUXSDooYvK6E8MFay6uXr+lHj/UxpogiWDf242itKHeJMcgYVt3AdteJvAkKVS+oTStKhPN0g40yJMrROFaUj26LWoyXKsDbmy3d+AXBDXz89ILHj86oEwVzUhWyLIxrAdHN6mBuptgHSApI/B3lb8pg8D4Vrezt9+KnA4B97GEPScb3ScwP3U0rj+886B6dY7cXwfbixVuWiwWrZcUnnz1FqZpxtBA8ukrboiI+ysAG5xSVaRltAHRO/+7sQN/3NE1NZSQAp64M3o9stnd8//ufslo2KO9oa83ZScv5aUs/xEACrVguanA9OI/RIY4UEWLGBk5OlrStUIOlAZaOclFgdraQmv/MxwEWjScPr/pvX85k0QoHM0gWlpC3sLQxYkUIQVJuH7NyHn5WatZLSROPD42nS0VJ3DuEUs7SDwPjaKnrFmMku2XbtjEJi2a769nv94QQWCwWOTNiXVWsTk6zxXqwlm7T0Q9DBuyiMCq0qVGADdDv9pnOLgRo6pp2uRIfV2Owo6UfOm43PX13y263Z7/bs9/t6PqOru/p9j37bs92v6EfeuF4HmPyIBf9HUOcUXmbZmqLEDRKzbMvZsCsFN5rbm92/Gr3O9q25fZ2yy9+8XPaZQtBMiliVHRH8BK8ibzTOc/orWy5F9RzJrn7RPeZ5KZS+mgLY8jkUpJdSO6BhgkI5ADUg/HmDwe+ApUStoBQQkZAPY6j7HTERdxG94+cRCUBTiVBmnVdR/9rYRlYrhY0y5YJ+IoLhjLiIpKSdNV1ndlV8jVKYSRjVh6nxxaaEuZki30E1RPuSlJUKpx874+lI58ATWLMgK7rJHNn21BVhmHoWa1XfPnllwzDwCeffMJisWARLepi1ZPgwLZdAJqmEXDRxWyy69WpKJVK5qWqKojB9Gm+lpVLY7e08uYujPVM7exjAJwPCueJAbYBa4WFxVmHHUd+//lLmqbG8i6Cao31MQNysqyUgycZWFQCu6IkZDCcylyMjUM3urIuKQiwqFQBMIpx7sVdi/jOZBhIICdbX4ueLmXqIeg+ZJI53DU6VuYP+/4+dFIqzhet0VWNR2G9gFunFMqLC1HpIz1rn8N3pDYk9UYB1g+uVaRYGTJwlIsUQz/Sd4MYHRJA1dGlzQuV4Wr1COfh5atXDEPHOHScnqx5/vwZSknSIoKAcJ98pIngOxrnAhC8y8GxT58+5e6Pr8TlKsjuUQm8Q/yclKkQAuM4cnN7S9suhG1JGzSKKkBFVEJ82icR977RWmDaSXI+AejA1y9eEcLA0yfnfPrJxzgkliQppzquDyrKCKVAh0BQWnI5qJDrWFr6Tbg/ljxkV817R4lLjnw9Ow4u+Ke2XIcjY/d9r/jOg26F+M0O3YDtLc44XC3b/t6O4GWrplhfIEJuwQiK9fKEXjkBwnXc6sHj7EhTK1SwGO1oayCM2N5ytl5QqYC3A7oyeNfz+PE5i6WhrltQsv1d11Uc9IGmUdCGvNCvT84w5gxTB8Tt5UN0tgRs4jfvsyb9Yxv3O3Q8VJf3WVRKOHB4/vC55YSeLxxl0Fa5IExZ5vJz0k6F0qiohwfEgn5ze8fd7V1UxJacnT2aW92dWMOGQYKklssVp2enjOPI9es3mfJssVhiKpMBet0uWa5PM9d4Pwz0/UAIYwZ4yWLqnGMYBjbbLc4rttsdNzc33Nze0vejpLIvXBG89yivMm0eipi8KXoaRgCn4/6n0Sayt8y/T0tziPV0ztP1g/AFO4uP3Nsld/cXX37Fk2dPOTtdEYLFO0fVSjkUTD7aStwqKqPQka3FFKC+jdZ7H9Ol6QwKyb9VUb5ygITZ5Ip9G9K4isA7AnAffEyDbYv01x7nRDEhTAFSeRv14EcbcQNK17joM79areKCmHbqApVWcVFUArAjU4KKZfIhsiIo2S1JQ7fsr8SsoJSKAcTzReFwzqWe1FraxiflNbfTw5SD5RECOUYPFTg/P81uKmfnZ9zc3LDdbvnJT34ibkPRtSoVIijJqeCto+87vBNQY63l7OyMqjZkRoZYZ5TKiVlUBL3SddM6EEgBcnN560PAWcfoHNaJ/3g/WgYXYiKmKcgOL5zIvTM01QobakkmEyYu/TITezohuw6lRVks3CVQTscxxWwC4hILoeI/cuC23O/DZGzCC+gahiE9mBBkNyhR7qZrvSpcVGKbJhCYx8ehpfig3A+d/zCr+KRUHI+RkDMuBEbvs6U3+UKXip6A7jhn0CQtrFwvyplQuj2kNQHv2W43vH37ls3dlqEf8S5wd7dhc7elH0e6wYIx2CByaxxHVAjYYUBryQjt3YAPPd5bzs/P+V//l/+Vy8vHEhSc1pcQ8GlXL8nUQgFzAQKG84vHqC/fiE94lAHZrSTWaeamFcQQtN3tCNqwqCpA3G5JVugkn9I4U4oxJfQqWIJSOYMPLBcrvvf9H1Mv1wzOoUJke9ORWjmkMZTmJhFwQ/KjT+5OKJGbCWCXyv+8n44MhnKeHei577/5v8JRGqG+5fjOg26Avtvy6sVL7LgDNKv1uWQdjDTKism3G0TzkChhBS5Qm4Bq45a1URgjW5ZtW7FcaKzdYYzj5KQRC5oxVNWKpqmoKhkkz549ozJTApXDHxn4rWh2WhZIoz1aB1BubuXOvw6XvrRyxlrMLK7zq/5rAO4/J+r3gScdPPdDrpou/hAhfQwoz77PlqFpoSu/Sz+J2s/GwME04X0UoilVe3Jh0RHIBTeB3P1+z36/RxvD2dkZSim6XgAuiCDUxlA1DauTU1DiuzxYx27f41Es1yecnp7SRHCtlcY6AardMHK72WarofhPi0V9v9sLEB9HhtHmJDvOeYa+Y7PZiOUiRN/a4LKlV3joNQ4YnGWxXNC27RQ4l8BtBEQuAue+HzOIFnaYkSEGzCVgncCqikA293cEhWJNEQuhUuKrWzU1NSlxTEWliwVEJb6CSZhn32KlMhd7Obpks1Osx1OWzXSdLMYJPA9uZHAW70e8l0A377wwbiS3FUR5TtZgo3Ruo4myNALsGHg7LxF5bFlr2XVd3s41KAxpJ0asRSGIldI7ct2NUZnbOz1zDvCKALoIOnWYAnmL9fw+6D6Ye0qruPU9f8n9+Rzy+fQOYZ4YWCxamqaFoGjahkDg9PSUv/iLv2C1Wkk7HTxTKWHYCUG4yhWas7Nzttsd1k70fEWVmbxiY1CoF3AhgW8KF7xYq638HuJ8ybs5IQYBIwpHQOETM1AhtoXYU3ZktK7wKUGJknWntKgfuk9If0zeq4c+yAn0TeCafB35OwjZVUaA29ALg4/wum8kxmIYcHFOpvgUeZ88v6prfvjDH3J6dgY6WvZjaWQ9VbMOPQa432flfuj49mtKNouD+yKoHqyUdHLQmdpOoTIFpbRVocxQDOPcSVO/EpUnZz2//93v+Pf//m+5u7nDJ9nmo0Kkkl1YgdKJH0TmixI5M4V3WpQacX6kXTyhWdT4YJl2vmPZkmKn4n1RDoQIdL1SYGRHx9sxKm0FgiiAqmJy/wo+4Jwt5kyhlEZhUPZI2klN6+Cs3+O5i8sntO2KrncYAmM0EtQmAnlUDiA1WsVcJ6DwVHrapUnGz7SLkHYS05oxMW+l4hc7GPG/KUvme4fUPZkxk355vP0Z+Ce9fA7t3nt850G3UuD8lpNzzfd++FkEwgalnVjcYueFKGBTDyXjjAbW6wUE0GbKNght9IfUVFXLYtEimzVx4oZJU1ZKS3a+I8L0cJvNmBRYkAC3TItoJM0Wk/jk6XsQS1Z8dHrDfw1w/dBxuO165IoPeMqkZU8a9/Gr8uI/W5umBeZDyzotdHFRCp6UGZIwJakhWheT9ct7zxhTiSfACGJlTQB8sVhkn+lxGOX3GAEZE0A4Oz/PVsybmxu6ruPs7IyTkxMAhuh2crfZYv3UNtZ5qnaBdY4Xr95wd3tL33fsu46u62PmO59pBO0oVtaqqiLVYBAXkgjetDa4WOfBikVIa6G9VFoB9QwYmjgfRmtRSqjLxn4Uy42z4m/edbk9nJuSyZDBr54sNGUfxv9MKAZ1tM5oXbE+OWW1XqKjcBZaOnmeKqwikxUjzBVsNV8YUghSALzWOC+JRIIVcNV1e+G1jkrSMIzsdntQsDo75ex8jdFOAle1+IprBVXb5Aycact0ZsFWSoI+meRAKjchMeOk8R7wQejhqlp82PvBM/iJO16C7qISqBRE61WlFYvWsF4YcWVjooTMc6H4MMmcZPFO8+2+/Erdc+8Ppb5FBh1fzLwP0ZpaY0fLYrHCaCPGiMUijgFR7g7VJXmtxmjD+bkosXVtePrsMYmT2nuV3ZfEKh8zifoQ0507rPcxmFFcfYQWFOwBMBZ/Wsm/AOK+I2tpAgMhghMZWwOBwYNFrMM+p0h/n4SMIIoJQMDkGpDaOIHuiSJU3Zd11tH1Hdfvrrh695bN3R3D0Od7AlNir9Lyme4H6IeBV69esT45ISuoYWoPF1vjGNjmgfPv3ZU8qMO3HRPeL8oe7xU3ukJhCdPgTrL9vovOJBvScxLilLpIMHPfD/z2t7/l3//N33J3e0dwMt9NjAPTJipNSly4lC4oPAOE4CYrbiyR1h5Tab7//U9pmooQ/fdl80rlIFwIGYIqVaqR8vv29lYMLtYLJ3sgZ7BVuQCyE+JjkK8mgFME76hjgkFhdSPvEJQzX9xC9DwvxSQ4UChevXrD3e2dKNR1RVMZyWNQ17RNI59j8HplDJWIMMRPHWodJhkeFY1D4ZODZLOCE3f5UrLArAjEX1nhKEdL+v+Y8bIYP+qI8YKDIr3vKIvyATd950F3VWlOTxs+/viCpq4zp29dSwKUtL2dIv8ntVfGoNaG9VoWt/cuOgGgilyyIZLfB8ibbmQgJ4uuEZq2YYjvURGktbSLKlqqfNa050IgWq30ZKE7BNuHn/9pj28Ten/umyfAnX4/rD1OHVUKV1+0U+neUQrQEiCHQObYTv685X3DMGRO3yqm9E7putM7yu1cYAa+0/Pu7jb03SA803VNs24zSBWr3ojve5RSNE2T04Q759jve9my85LWe7PZ8O7dFa/fXvPu6obtdid+4MNA8CMqRuQ9vnyCqWpZQCNIHoaREBSVI28bKx3dRQBtBBS7CDS1NjMu3zIxULZWR79BHxIncJiPVz9ZVEL0gUgCMfVk6os0tlMPqLQwlF0OKGMwdQM6ulUYyZ4WMNE1YQomm1wJBBxlhWUcJGlGDOjs+p59P7Ddbdn2lmHw9MNkkVcmcQMk/+8KbYSLfHV6xunJkqqSgMTkPpS2PFUOBygsSgl4Q/TDTH670xgPSHY4OwoVJCrE8ToSMIxes+scLnTCemGdMDV5YWtSRkNtqLShMVo41a3hZN2gCQQ9geLZzliQQN1kmDiqRR+CnwBK37ccfYiqnbflIyCp6yomp1G07SIv5uAJB9zhE+e3mjQ1AkrXLNoqcg3HlPBoxuhj6j2Mo+wEDaNwOqddHmuj4s0kN5L7gUML5RqFkUoV3ZbsabFKE/iWUz4EOmtx2mTr8Le10X0jwRyiB8QIM8077s3D5JL0+1//hjevXmHHQejzYt/qYtfFNI1kaq0NRptYFUGD1nv2+z3X19fc3Nxw/uhRrmwyVKBUzKz8cH3eZ+k+9P0+/PyeliIbqdTUHqUBJxk8ZiwZ00so16FQ/s4ANg2zae2XpESK16/e8B/+z//I7e0dBKiamsWiparqHDCeQHNV1xgtEGpy2UtzUMpdNxWPL0/46KMn/Pzn3wf62M9i1AshYJ2NYDnE4MLIyhNNvrLOjPz2t79ms9njdS0+0nGyJtcMcTlLO+SB4KIUVo5k2VaJojNZ1iNn/KSEQl3VjGaYGRZma6/3bPed0A0aI5bsKBeTC6KpTExcKOPx7GTJ9z99Bo1GBcmgGfeRSPmcZBNyqoMoFPM+ztl809+AT9ZMuDcP32e8ft9oPAbC0/kPvfah4zsPuo3RPH36SIKlAlS1gqCPTHg/1zgo/SHle08KFNIZMIUQ0EoCcHzM/pUWaaMNxlQRoPgICBVKiU/hMIwM/YA2Og6UQGUqTBVAWcReMJUoFisPUKUnRSBR6/y3Ob5tmMy1X/g2K0Z5H/cEZXkOyFbnZC1N1tYAUxDaaHPbTPzPYj1zTgIWZaeiYrPZ4L1ntVrld5RuEemz0po6Uusppei6LipN8tzE+2wiOE8uJrvdDufk+av1mq7vubm5yUC+aVtOT0+L4D0lVtSuZ7fbs9nt2Wy33FzfsN3tePvuLe/eXnG76Rhi0EpdVXGBF6WuaWr6YcT14rtNEIu2YBqdg10AgnO4ANYLNVkKqux22xlTRtkvs/6MARFzy1DR7zOr5wQyZiO2vK2w9Kh87fRlym4mG6mR+ismtXL4yHYmIGoYhOt56AeGcWS779huttEi30UuaBt90sWkolWMu9AVxjToJoG8aUFLADUAXhuqZkHTtNQxIDt54CYaujn1Xpy/qGixuQ82pO0ipV8cBymYth9GkTVeMzjZ1lfRzccHyS4nCbhGxnFAGc3Z6SluDHz95iXLyvOLX/yMqtJoUUOy5SgtwHimrKaFVSn5Agc1AZCpCuHBhebb1fRiXBRjdT6cQr5WUfhAAxNfOXhvEGu2Zxw91kl7DNbSDYPsAHgZJz5Iwo8MiJXK7w2hfNtUCR/CzMKcpV0CrwUASXacsiV8EN9iYyqmDe8PO0rwUipwaTeitHInuZe/916obLdbGReEmGxKZFrTNMLooiYbZlZyUXn+6iCuCd1ux8sXL1iv15jIApSaSYVph/DQz/bb6vZt370ffKvcLklXnCkeCOgWNh8JwAsU4EpB2n9IRq/kYBiYp6bL61GAEBW13/z6t7x7eyW7iXVFs2jRphZ/f5+yp+qcCVtrYZdKhprJH11havj5Lz7js0/PqWtNCHcMvSHoExQLCDqPpUmiFphAS1C1sKcEmrrGuzsB9tEKIO0kiuZ2t2ccBrrdPiYSEyNPiLz/azcpaISCWvOgb+umYhEWs7Gaky/FuaMgxwJlw4NSWY6rtBMQP++6PU+fPqaua1wQJhe88HznmntQupyX8lwdxPCS2rUQZ9OHB4ZmMgQd/27CI7MxdO8+Vfz/8PGh4Ps7D7plYatIGa8lKyU5IGZmEfDT3z76XwVv8cEDHlOpGcVY13WRzq0iuIAdLfuuy0wDWimqqo6+e7IoJv9QpURDDdkKA3VlMCaglEUpP9EXlhOJ6W8Vg52KL+4dDwmofzr/63/ckYpnI0XR/W09OZIlILFNCLAeczZDSV4CoKK1asqQWFqjRVnyM4GQUnInwDwlP4HlcpkXjgTSk/Va6+g2xEQ5N8Y06Imz2xhDs1gI53VQ3N7dsd1uWSwWXFzI7osPYr3suk62sa3j8z9+ydurK8boM1rWpW0XPHn6BK/ecbfZgIK60qDEEltpSdVe1TWV0tlab0dL3w8MEXikAErvHP0o7007MaUEyEIl+KnD5Asg7urk/ry/uKb2gwlAZ7BRPC7JvrTtme8/+BziM/eR43Yce5wf6LqO280t42Dp+oFh6IXbfJT5HIzGG/F3N8ZQGY2qFqhGUSsdt3tl0olVdVqYFCr7XuYty7h4WB8wVY3RKbFFDCZEFOQjpc9+isdrWbR7COx2e96+fcvjx4/j+A2MQdFbxYj4Lm+3O96+fcvNzbW0yzBgcGijeP7sOeN+x+3tLZvbK/7l//ATASNJ/qV6xWJ4xDVAzk+uFETr0UP2y3KdSZ9nC1HxQQDdTJUiWVLLliJbkBO4jFZjrwQQhADE+AXrGEZPP5KVLfGjlYXeRhCRdxTCvC8lqKxUjWIdDrqn7NEUiFbqJo5jvVneryIF4dSSD7lhwHEZngwCKlo4g58SskzA29+TqcYYnn30nO1mwyJmENR5zJPdKqcuPzCexN9N0+CsGBSur6549PgxRB/28rokD1QWKrFnE1g7AjVSQCsU4yKPww8D5tO5SSlJfSwxKgrZTVYE5Wdibdq9Tn0SZnUqrynnxi9/9St+9etfi2zTWoJ5FfTjkF1aJN7GoJTBu8A49BmIei9ZU1GgDATrWC7XgBEc4nqG/R2d7dBqhdILUEZ2t5xkJQ4hsFqtWbRNxDIxHsND27SiXKvIXJI42wM4O7LZbri9uSFYR2ViPI4RV8nNZsOjJ0+otckZ6oXJJLVtUlQl42TTVMLb7VPbKnGFUVMOiyRPlErzUCz1Os4FWwDy0Ctu9yNVu2DUisYoKjy1ismCsuCZeik6RyISIsplKUrmnk/H4d+HgPl9x6EhSmVlZHrW9JTjz/tQwA3/HYDuEJgyPGZtd5ow1lqhNPMqn5NBmnh7Q2QFCChlcMqhlZGMYKPD6CpGAyeQHinJnMMrUCryy0a/PbFSWyBgzIDW4rPVVJrl0tAuHMYka3rIC1NWMMuOLc4fHu8D1f94wP2hwyNd/r7rxYdyu91mqzFMQC1Zla21hT89OYtgWmDuBW3EQymVgXT6nEB2Or9arfK1hy4jh89M783R+0GCtbbbbT5fN00OxhnHUVxHul4isENgtVrRti3DIEAxKRQyNhX7vuPNu7dsd/scmFK2B0h68idPH9MuG25v7/De4Z3Hu7h17Rz9kCj7ZJfFu8ISGQ56UamYVTCdz2gng5JQmABT4gNtquymksrmvadphOe5jgltkrU/Pb9wOMnvKCFqaZM4Jv7u7u74d//u30m7GCNBa3H3R2sTAxRbVKWpWqH+I/kAR//0vOgrEYtuenF0CSjAlEoL+P0dpWTNV/HC2PXvEa+zZr93rhxvWmvOzk+jcqfoxpHtfmBwGofC+ZGXL1/xu9/9ju12wzDIlu16seTsZMnlo0csm4arq3eA4ic/+hGffPJJUe7jpSwVoLIuIYSCE/iwWhPAmT2orGESsIiFrRxjMiajJZ0EgFUGts6JVVoCGS1dn3Yyyp3EZAGXvsoWbGKCnWQBpXDroVQGi3qGkEGbKgZhAhhHLWRxSKfgUVWeLy54H8iGSUYf2zkqz/lAZrIIgblF0XsBcoWBIYTAyekpTdvgnZsgbdq5EI32eKEK0Jv43bt9z+vXr1mdrKkXy9m95c6YyK7iu6xKpVDGg9fk1kqBo5PCetgeR4ua6xyViRB3rlWkFS3fEzQpMPG+i0sJ+JPcKurnxad6t9vxD//lv7DvO0CAo7WW0TshY6iaKBNhHC273S7yx4vrX4hMS21T84tf/AVaezZ3t/Sdots3XJxfcLp6BM6z7XegdyxWmrpdUYca72tcUGzvNvzqV79ktVzw/Pkzzs/PCcHT95bloubj548ZnWY3DFzv9+z6IbOYnFycUbcNm3dXdLu9gO5gZN50e4bRUi0nRVXHIMcEur2XOZqleZKJEffIJIozMc4tXWq1OsYDhDQypnngBs9vP/+Cm7tLVsuattasFg1ny5bWKCoVUNpjSj59QOFzP6Z1J6RXHo71Y/P5gePDXJ3mj55ZJQ4ONS/0e4/vPOgWK6LLWmDajMguItbiLICKgWJJ2HrZqlCyjZIAXkgaafAxsBJCSLRrlqrWkpFKScrhtqlFowseg59cFRTizoDHKLFUVmby/ZSAq3CvA/5UMP1twv3w+PBr56NjbonnW4D24Tu9ZPgswFsJuOE+lVFyxTgM9AGyNXpmYY19V7pwpPPZZ1dJhsPE55uuKxWBtNNR13V+x3IpmRe992w2G7a7XUyMoDK4b+oGo0x+Tnp3+jv7i3oJxpl8WMt2miwwCsNyscS7wBeff8lut4tgYCpv4oueEOHUnodUkgEmeq8CkCulOD05Ybfb0TQVeM/jy8cEAnXTcn5+zus3r7m5ueHs7CwrE5988gl2HDHGsNlu+fWvf10saipaW1KaZHWvLOl38ucuQZ/443rqpqGqG4IxeG3w0fUjW6dT/+dFQuelO0Q/8wn3FwC0xKJhCjI6FrJX+kGLnEj3vn/8f6jeq7WWxDBVJcBydAw2cLfdM7o9282GL/74R8b9jmAHlBsxGtpGU1ca2++57vfoOE4/ev40l3laeO6/N1kFDdF3MzbMTJ7EB5RKUdmm9wAj0aJEDDyL9vQEghO1nvMwOk8/OLrRsu8k+Mu5gHOTa0dKqx3yS/U0dsMU9Oaz1L+vxJWy6rDHpN7SQBNAK0B3/DvNXXlmgbrf08fH5PJDLhRzl5Ijv72fudBNwHuibSvvMVXFxeVj3rx8GWNUzMw3vSzjVIj033SurmsJLN7tePfuimcftTMasFC8V54/sf9MO2Iz+Dt/HXOQe/yYt6NS8zJOitOkRHnns69vLkEJiBIqUzK+srCMjTSNhRRAGfj1r3/D69dv8D6QAsOTYrZar1ktVoQYjyMZdxN1monySX7a1Zqf/+Vf8vjinJOTJd5ZnLN0uy394NHeY4wk/Xn15iuCMjy6uOTTz74HKL75+hv+8PvPUXjquqJtW8bRcvXuHcNgaeuak3XDk+qEjwNsuoFuGLi927DvOkyo0KcLtI+xP3WNDQG0pu86FicnhMy0lJo6ti9FkHhqx2SkIcZbzXZiAiFMMjUzNmWDoprmm9Zsbjds77Y416OU48c//gH1Jx+hY3Idg0JpYXJKM1EMKj4CfFGuZgpwOXaSrJu56oai/4/jo2O46+iuy/TW49fndjtyQXF850E3ECdLnAFBAuGE1cHJQDEJ/ERhAKgqinEtljGj01ZzIIQRYwKVMWgjwqMyNctlE8efWMdTJ/qgoitILA7kwQmS5CCJ9dR/6qE93GPVO+j049tsE8D7UGB9KPjLZ5RWiz/3KJ+f/KFLC/Qh+FblZITZuTKbYGJuKLdWkzX89PR09u4QQrawa60zy0c6UjbI0tKc3pHeXVrgq6pitVpl94hc9lD4MxdlSs/yMd27tVYUwXGM7hwThdW99vMIP/AwYscYGFoMtPvWuHIJmz9vRj+c7lXQNg0//vGPefXqFX/xs5/z+tUrVsslXbdntV5xeXlJ29R875NPqZuaPvKFu9Fiagka3W62NFWDtePkNvIA2LtnyYo/uixetLaapkFVzcw/Eebz4XDc++K56W2TlWHuIzv7HC1ux/xTJ6WgiJqXlx6vYl7gC9cN7s/jdE6UBY+qDO1iibveY734b4vM8jRthVKeAU9bG1ZNxbKuCM6hjbADfPTsKW0tQHcOjcruUHkBCBB9u8m+kkXJpvsTzkQRkpoU5Cfdlej00iI6pqBPJ8k0hkFcP6x1DM5incf6gAsqJmdJpYtzIUy+1bk/VNETaYGM16YSZzAX5rs+inJtVfn7GRibtVlhfw2HfXegvKaLDvr1EDyXnw8V80Nrdfk5rVMhqFkQ+LH3pHo9urjgzevXjKOTYOnZ0AvH5c1BSyRjwjAM3F5fc3FxQb1YULDsTderZATw8/lJyrd5cE8CXN8Kug/natH3xffpdzJEVEAdEkiP7EBZu5SeTUpDUuqSEjbj51dwe33Hb37zu5gGPcr5iBlMVdEs15Kk725L3w84NCoZfiIYSJ+H3vL/+9//lrateP7skp/++Ec8efKEpl1hB4sbe05ODK/f3fKHz1+gTcXLVzf8/g9fY7Tm7vaWxXLJsm3Y7/e8e/cO5xyv37zm9vaWpm559OiRJLupG86amsv1mo8v1vSjZbvd8+IbDUPHOFi0gWHfY/SCse9QIa2NeppfTOMwkMDyBLZnyhdgx5Gr62u6rkMrRR3jmparlRizqiqP59yvXgLKlRYKS6UcTcxSm5XqMGWOzeBfugKl0q6dlnU1Y65JEc8+EEeHXALohRQJ6fQ8OP7PPT70zu886FYEvB9zp4t1WiHJZhx1LT5PiRdStKO4wamIU0hneT5x6TJ9H+mpQBZAmPw1ZaLqCfgXAChteBw29odYyvJT3gOgHwLf7wPlc0vJZB2Wckndxa3iUC6XS9qfdmitWa/X+R2HILtkykjnxnHMVmsgpi+X7w6vTc84tmWb/LAlwNJlt5FDV5QZyIp/HwYpJT9uddC+CS6QFz0RICGm283c2N7nNN/jMOASNWAClShS5oDAtJVsnXAp5Neq6a2uyIOYFbp7Slr8nW+eyj9aYfX4+c9+znaz4bNPP+M3v/k1548eCb2g81RVzW67wzpH13VsdzuauuHu7o595JIeRjezNIq8+nABVbaogIyUPfD4WD4GjlO2tfycmQI69y7NC0j664GiJneLECbXGUm/nDKplbcWDzmidDzkSiBlkf7dbDu2ux7rAovVirvbG7TRrNcnrFcrxr5n2TT85c9/zm9/+1u2ux0+hOzDXlUaYyYlMSlbmoluDJWCAeNipgo3i2Js5eKm8RNA7E06MzUNo8P5IAGrLvJbDwKoxSVEF8GMcQENIVv+QgHck0qjwhTEmkBt6ZNOEL/qpPQky9v99i3KHv9TKtX3Hk6edV12UaQYIw9dfdDXpaHgULkrf8/feBxw5/J42Z19SL6Xh1KKxXLBarVid3cnO4aVIQXo57cezJ9Uy1D8JdSjI/v9ntvra548e4aoiMR5UYLfGNWkpl286XmJNSP1xTHk/vBxzKhUyoH0tw8x1bl3YGSd9+GgP8P0QyjjHqTE8/Uj8Pkf/8i762uS+4pcpdFa2I2GwUd1VINpMp9+SsQV8Piop44oXl9d8+j8FPfyLTe3d1xcPMLoGjc6grMsKs1+v8cFgxs9zvX0nY3tp6jqFm00Wk3r2GKxyGvdZntHu2jQyqF8YNhLPojKVJyvWp791c+p//pf0A8jr1694Y9ffMX1dofd71HjgFYNKSNN5oPPbXZ8/CXf79TnzlrcMIirWlXTVjVYFwPkA2jJTZF15ihfCYjRVAdub244WTScr1eoSs/G1Mxm6VPhoiKXdJ2px+8NtSTm8nUBjs7xEn8fKHt/yvGngPXvPOhGCSd8AscJw2iF8HVjsmY0A8QJXCfNlakjpqNYbZSwQZSAOQF4GZU+A6Yk4acFTOVHzcvx/uOYkE5CpvyRbZ1A8mfKwj7WIYHH5ELT90OkIQo5SDEleTnmzvHnHtn6mK29YnWp6wqtp6GVksiEELIfdRkomZ5Vso0AMwt1aUE/LEMKlizPHbOmpyO/t/itCBidAg7nCxcRaCc7q/dSV+tGyVAYuYGtC1gXGAbL4LzskKQxq0K0xBU+r0pFhW4CoEkZl2GXhPo0hqdiF4sh6drcAvmTtZbr6xsaXfHVl1+y/WjLm9dv8UoxjCNaK3bbLdvdDmNM7qf5QkcUdmoGSo8t6gUOmvcT8+BKGas+C9FQ9Msh4J4t/Ol5JSDIclfmanYZKSw5JTyYu1ikPirgSKzSFHQ4F+yTsP+wIwTJKrfZdbx+c8d+iD71wM3NLaYS/9rvffYpwXlOlkv6rme72QrjkjZ0fc9213E2nkvmW62K8UtMKZD89gXEJisSXlg9JHNlskBJTYKv8rbxMAiwHmNQ7jBaRgtjdH3wMZnRNG1i0qT4OQPtaEVzB6pZ2kXIQbgqgaaH0PEEpMpTgZDdi5JVe+rX2B7vAa+F8Xx6/gHAK1bqB5XLxF1f9vPxd4bZT7K8TvfIN86L62NRquNHEMat58+e8fu7O+w4orTC5KGu8tifWfHKp8ZypnVht9vx5s0bzh89EpevosRzhUfOhFgGMSrM1zFVQKIPOR7up0PQH+LaIY5T1geMkj20snw+jn85BDCnhEfT42Q0bnc7Pv/ijzjv0XVNCCkQXOOCgaDxVvIf1IsVlZe06Na7xOaA8AcFiQGrDT/86c/4t//z/51FY3j59Ve8fv2Km6tbydWw3+HHAY24eNR1LQHg0yShqWvOz09ZrSV2KDF0KaWyMeqzzz6LTEiSjl6C6x03tze8ePkNy8WKj55/xF/8/Mf87Cc/ZrsfeHN9w3bY03s/BX4KCoZMIRhypsy0th+Oa2MMTy4vURcXGK0ZB2HYqrQWetnR4VTA60i/qhRKV5KHgZhhuDJcX98QrGXxg+/T6BankFgdiO6dMpS1AqUDKiY3UzLB8xiRZjsilSM6T2vLbFQeDE+VNYL3DNSpi4494oOP7zzo1lqxWCRf2hI4zxtdmqxYhBGgc3/6zxfWFAU9O0ccfKTnzLf8pjfJ0xUIwXt6etHzD22TzZ4W/04W3nR4LzzD1lpg8ke2MZGJLjl6tfCWp8QQzo4oJe4VSbAmq++fejwk/tNktNbS9x3Jqq51snZP4Lmu6wy6rbWRw3ei80t/K6VyyugSfKWf0iqdAPi0C2KKLFbzhT0v1qGYMrKaxMk9PSuL73LRj8wfknzDzX68k0jt0Qasl4xpKIPWJvqt+gyd45vj+40wBoTJtzWBJhIwz4A7bY+WECYdBQBjrnUrpXn75i3Xb97irWNzJ/SKuy962e4rFs2cLpoCIqQpFRfy+dI7e20GLkWpyKtJmG9fiptPEGtyVmoeDqadnTsE5SAWmoNry/FzDMRnBTdyYn/QcTjBH7qsmOshCM3Z1fUNu25gtAFUYLy5pW0aLh+dcnnxiPVyJVkTneOXv/ol766uZBu7qlFKc7vtud52/OzHn3FxvsKEtIMn9fL+cAxEpUMprNYwInSbVlxDhsHSDS6mOvdxez1VUyFb0CaOhcj1rHTRFxLmmGbJLKROqVkmx3LkH2vBY81aAsT0fQKok77xfsvw0V3BB66ZKZEh+bhOClw5jhaLxXy+HJHz0/WTrAxhAq2l5XB+vz8YP2F2fYTuLNYr6sWCbr9HVVWkro3PUoWyEybZkw81yYwke/u+5/bmhovHj8l9dWQ+plaUcuhcx3/McWjVPiYH0t/Oe95eXfPu1QsqbTg/O+Pi0TltU0c5HvK4mJQalZVEH5V954Vmb70+4Re/+CuqqmG37/nq6xcxU7AhCI9nZCWLBhwdGTq0PMfnhDSOR2fn/D/+7f/M84+fUxu4vLzg56Nlv++4ud3w7u1btnd34GF7e8tvfv0r+v2eRdvSNg1VbTg/fcovfvGXrFZtnpdN03B9fc1XX33FbidMRx9//DGPnzxhtVpxd3fHu6srrLPsthuurt7Q7bd8/PEn1HWL1jWPTlrqPtBZhw2KPiaOct4RApJuPpD9tst2D8QQyiQv7SjBmkqCMeumpjYqywdhcvHCBKQVxni0atBVTWUqtJ52ea1PSo5CeRVJidKqF+N5fGz7EEE4MkRVHtshAuxyxzNE3fPA5U5GgYyzYj1Nv96HkUrAfezzhxzfedANCO91CHFCzcVHCWRCUmvUdCb/JBkC2RoCc+hyHCynbkwLdgE0VBmMINemgJhDF4/ypwSRJZ/0drsl+BC3ZSRgpOvF8jhR6lFYb1VecGWwy/cCsg0mcrd+G+D+s4B4sSiUTCGHlmiIwWRRYSit1hP4mgdnlJzSs8WpAE3JlSS3oREqJBOTQ8TZlhfPEkwf1v0+yJtuFzeUYqGMT8n+3D5gnfxO9GZ2dJIQRFfs+x5n0xae+KJJkg+w1tH3A2PKkgmFO8MEVSYwMNfmc5BiKGBN0ZdJ0AzWUlEk31AqWjlSP6a+TMMpWbQP+jy1T/y/tDKWgCD78sei+EihUY5965z4KC6XLFYr0Ga2wD8MvuUt6XOa6rGH8hw4dn+ug1J5u3RyMzqQA98yJcpLDi3+h4Ap0z2OntFNCYi0ViyWa9qmZnO7Z+wFDN9tt7y+3TEilrZK1bSLJb5puRsd7253rNdLKsM8IEqpvCtm/YCzISYHstl9wbqA80b86FO8gQ7RgpRSWk+9nCqaF8AQbYcZMIacjvvQ/ad4yux82W6zNj0CXPMuywPA+tg9s/eXYyr1yUE5RM89Bt7jGEsuYcX37WKBHcfZe2fA+D3lykAwaw5xfcsf1dH7Ds9pY1ifnbLZbRmtpdaNPCeoLE9KxfTouI6yWIIqe8lSeXpKVTczYF6WJM8b8U8oL/uz1pLDuh1zLSuvCSGw3+35wx+/4NWLl6gQODlZ8/jyko8//pjnz5+zWrYyMpXJ7k+jFcrV7X7LbruVTKWj5fLycVxvxaL97MljXr1+OymxupSTsnvkouBRSrKTsl7RnCz59Oc/QS0aejcSqFCqwjQ163rJ6vSCTz77PnYc+d1vf8svf/0bbrd7lPfASHBQD5oXX73gd6cr/uIvf8piKdz+TdPQtg11XXN1dcW762tevn7NxcUFf/VXf8XHH3/MD37wg5gB1rHZbLi+vubVq1dcX19TVcIetmo0lYbBK+wwYkeLV0neiyBVIUQwm37nxpdgc2C32XL97h14T2UUi+TT3bbUdROpFafAykQsoZWA9qDEc8BaAd4+CA2nU5LsRmejYgqOJNMl5p26kMReCpYnz9Nj8pg0kgt7xNzNLO5ZhPk0OYoc1IQ109oTv/jWcf6dB91KIdtmTJrOtASUAC9k4Zn/Zv51fmAhQEtwPVmKknSK1yQ6QkJeoBNY1jPLj1iSUorp8nwaBMnVA8gW3gSwldJoM213BzUBmBI0J+aNh4IVFcIznLd2Mkj/gPY+8ul9elzpc1aWI7VtCTySdTptk6Wj7/uZz3YZGHkI0tNz0+/S+q0jgDLRulf27f3j/bqpUmnxOxgLIQHuxAUf0/F6hSNZun10r5Hx6nxg6AexKBDvCxKYlphS7u2lFAvzMReOXM5Y2JkqGotbpsaVJWOaHZI+IlboQCYdipnD8SPbhVOcQGKhydk6m4blYkFVGfq+4/WrN8LOEt/nga7v+fqbb1iu1nzy6aeYxSK/9ZhlegJPkwtBFgeTtsAEyA/Ae9mGUfHIICxE5T0UPuaBLG+mncdSQN8HImUbhpC4e4Mk84juR6OzjNGkVClN3S6xBLbdHmPFZ3ZQmvOPPkUp8YuU/orAVsNucOyGgNGAt+wibaUEEYulfBytGCGUyTtPlTGRwpKsrysVokU6FJYgRVIyJ7maRGcBxEJMgZ4U0dRXqRkKwHfvfAS/KZAydeMM5IU5kD12vO+7LBvCwY5ncUupFByT17lcxY0hSFKatzc3B2OzKFOBRN8reh8sfxr7D+c+UErx6NEj3r55I7ukVSWqcFTA5saKNHeOGx+aRgIqh2Fge3fH+fk5BA1GEhXlehV1LF34UB8e4fEwIHr/EUKIVMCey8tL/u2//X/y7u1bvvziC77++mt++Zvf8l9+9WvWqzWXjy95+uQpFxcXDOPI3d2Gfd8L/avPOXKz/JzoGS0ES6XFB3m5WvLk6VPadhGvC/Sj5W63p+8H9vsOO/R88pMf8fwvf8rqdMU7O+Bub6h1DTGzrYn11ii2tze8fvuOZx9/xOXFBWEcceNIGEb8MKDxvPjqBZ999jGPn17EXWIYhzUXF5eR0c1K5t39ju1+x2azYbFYUFctSmmapuXs7JwXL17y4sVL6rri5OSUt+/eiYEIQzfCEICqRptKWHCkpSE4tPcEHDqurzhLsB479HhrqWsDXmMUODtwdzPIkIm73EobqqqOtLNNDMxvqNuGdlFR1RXKB7756huu24bVomG9aFm0DUZXmEq40pVSGKWptMaY+3hG68TmncpOTjJ3MIJE7mVwfn8sBhVjThQPjOc5blRTi82+f9/xnQfd0oAqC+F8EglgmP6GQCJyn7bxjm0pxytmr0kJRw75nX0Mhist0sYkP10RiuVhrXDPjtEKUgLjZFFIz5kF+SlYtAvKrtbGxEjg++wf6XMKUjTGFIlgBHQfGzTvB9/fBrQnba5caBJDCEg7uxiQ59zkGxaCuJa0bZu/T21SgvGyfqU1vOTqLtsjW9anDskLTrnY3KvHhK3IQC7VLS1OScWOwMy6gHMKH6oYVKboOk/XibW6H0a2ux03dxskMcsUcR0gBgCFmKxJ3t0NQ+YnRhWTOEzg8rD4WkE4OJkXU5WaY6p7Ah0l2JmuL4ROuqMUaNzP7mmMYbFaoZTK6e4l0M9k2ijZcYAQzmjqhj/84XOGcczvds5hx5Ht3S3d9hGni0W2lGYgw/2jDLibzekCWOeF/JjFrAB1pSzI/Z149Ys2UbOxEu9IrmthUmgIcTch5iAKMRtciLtf4+iwTpLxeB+Im69CM6k0Ju5WeV0RVMCHmK0yIuQADM7z+VevePvumpP1CoIXOtNkUUr9nTJvikkf5R02QGUEaCf++AwGih2qEIHbsTWrlJwCmqc+OXB4ugeoQn5EBOne54RmuV0POj2EMIH5DwBo5RUpKCyBYF+AcB3bMyuk0YIXmAeNpcoctkUdAxAP3dxCOYYhJgqRh4gSPVckHlLcvs1qn+buarXiZH3CzdUV4zii6gqjJrejLEPiXeUcL99gYiIway1v3rzh5OREOJx9uEdPWpYxJRJSFPMwS9UClE9NebSPPwSIp7FgnWO0npPVgmcffczzjz7mr/YdX/zxj/z93/993N1dcnu34/Zuh0vMO3Gypp1rH6JMjPMx+bV3XSeJ70Jgt3O8emlZLpe0bUvT1Pz1X/81T59/TG8tNze3fPXiBTsF7HfcDHt0v8IvliyqhpGKvRLnwtYolkGMTIv1itP1imVVc3F+TvCem9dv+M9/93e8/PprFhvNf/r7f+Di8QXPnj2lbRtsKwHNzgeaFtrlitOxz7Kw73vs6OOaGui6jqZp+OEPf8jl5SWr1YqXr17xxy++4Ha7Zxx7MQB4i6kqlK4wkbsbLwl7iMaycRixUSEb+gG8p6kkM7dRTrJGao3Wglmcd5JEx1m6ccvOi5wIQaG04dlHz3j67DHb2xvcODB0Nf2uYldpajNRx+rKUDcNbV2zbBfyuampqoluOASFy3lUxKquExbMmIJygQMmt688RkOaISpTo+ZBm60v0/hVKnCII6fBevw0/PcAupkq6WcA92G/t6khEze33JcD8dRcGPR9H5N/zKPR52BbeuzQknt4KCW+1+W95U8ZDFiCZ3HBaDLwSJZbVVDclTR66UgUeScnJ7RtG63bcJh37k/b9jusV7nMzi2epRU7hMQmMjCONtcrWa1TUMg4jpKyuFA+ykVf6jG10WGA5X3XARWxcUJHc21U/ji0UzKrS0mPhtIMdhRe4QiW+m5gu9+z23Xsdjt2+z273Z6+UNastdFVRNMsFqJUGY0B6naBDeDGEZxM1uwX7iUoKZXuoGqzeujCijVzijjo3tJiC5ENorT4ldYClYJd5jsn0y6My35+KT6gbVvZ3l6vp12IpAjFcmqlQCsuLy+4ub7mxctXWQFJDC92HLi9vuLi8hJLwKnDoNG5L+2kaCdL1WQBnx2HgDtbJuK8K8dHpLZyTBaSJGdV2ZYkmR0KvS0pZSKofaxbtnQH2dmwDpwt6CWdcPkpLfEALlraicI+IIFZEJMBpbJrTagbBhSdl92+wTqCH6iiNVtpGXMKZOs6ag2pPFopjIkWKWQbV4wLaYDFss36IVY1/pF/H7GclutbyOdUVkyy0ufvy+1QPEMpdS9lezm3j+3gHdsxIgL2BDSz9TsBz2I+pbKnF87h4nRoY6Z6HIDlst6+uPMhizVH2jB+Ma/H4ecQQGvOH51zc/UOa0cqo9A6QBB3oUOQPeHvjBxE0YjyeRgGttstu92O07Ozqb3vtQD5/mNllHsmGZTm3AF56IP35jImY4rWEuCntcQtJbpKZ4VxabNFacOPf/zTGOieqCzH7A41C5AnJWEiz7mudywWJ9TVgv1+J4GySIDx0A/0vbCEbLc7vv/DHwpQNZqPnz5mNw50w8hmv2Pz5g17rcU6XrcMTU1YLDhdneBQ9JstYRipKkPbtiyWS07Waz5+9ozKGP6/19c41/PVV9/wu999zvnZBVDFwMsWgwREG2tBBQIeZdI8Frpa78COlrZd0DQ1jx8/pm1bAeZ25KnzDDaw70c6a3n99i23m2tC8KxXJ/zi53/B+fkZQ99xe3vH9btrXr18iet3aKckiU5tkChtj8JhNFw+ueD5s49YrpaslguCEhIFlLDBdHvLzc0GH+Dp5SNevX4DdqRqG4ICG3ccksLKqBi6ni0ThslJ7KqKpqnjzyIzl1VVJTlTlLg4CmxI7lZpPE7+3tMYSL8j8JYLI13wfNrIpXMlk6KM7zu+86A7EDKwLBfRub+0MEqk9OBpu9uYxGwyz2oozyU/5zAKHeYJXkpAePicWVnjuxeLxQwslD/pXYc/AvDCDFQfWrTLNkhlSIBWa0n3Wley6GZY+SeB7WPtXx4ZssX6pkEoWQRT2ZxzwoMeJ4D8bTK4Lmn9HnJ/uQ+s0/vLshXgOQDBQfD3rw3RqhFCznYnoNdjrcNax2glqKQfBrpuoB9HdvuOcbQMfS8AMWae9CFgnYy3MtGHVRqvKxSR0zZhWq2pas1CiQ9t3wtXqY9Ixpjq6GI8CYgpIOuowvBgX5EzTyoUlTGi2DknmR+NnrmJ3HNjCSFSx6U+FkuGMRU6jvM0x3T8Eb+95M8dPxvNarXMdVAIMHVhzEG4eYEt6lKCldl4mIHwBMiOBEsWn2cuK8eAYmmNCyqmc04WMgqwmOopFpbyfPKBDAFc0NGNSKzVLjj60Yp1NAiAsGjZwlUKgs6WFIVYm0z+axoQCkWzXFFXGq80wTmslfHoK1DaYELAK1/Eh8d28CDJvBRK+cm6E8iKErkNpx7weacx5LZL47VkHkltmJgHAvM57F3x+YAVwR88K0ncOXCf7gWyUWL23SHwOwDspYU3WaPTe/I9Ss3OJwXtnkw6BhTT+QLgz6XmdKjZLQ88q/ju8Hf6fP7oEYvFkm63xUaqOTG+JP6duV97rlecC+lcUp6991xfX7NcrdBVfbQPsmGq+JmV+eDzVOaHrdqHz1AJ+IBYXJVCe49T8M3X3/BKidHJWiuA/FCpCQlcy9MOWzjNWzk0ddMSApydP+KjpsFZy+3dLd+8fCEUeU4C4t+8fkPbLli1C7TWPDu/5AeXz2gXLXXTYCrD26srfvO736KGkf6647rr4fFzwvoUPw4Y6+is5cpd0+3EGr+5veX67Tvq5ZKxh27o+Q//4R/o+5j8Dc3p+RmXj59wcnqKMRrre0JwrFdLTFtR1UaYiLwFpairmtHCdrvBO8vQ7dlt7jBGUZuGamE4wbA0F2xOahbLFZ9+9j2+/73vsVoshaVrlJ37vuvp9x1v37zl1cvXvH37jpevXzEMW4JTOOvY3N5SG8N6v0JfnHH2aM3l5SPOzs9ZtGtq07Lbjrx+c43WhqePH6OUZnRWjFr7vcgGJ+wwspaU81E6LAUxJ3ynlLDBmKoS8ojo7nh2dsbp6QoTjQmmMBzMjTlxjExaabxORmFa28oxK8vx3FAwjfKHj+886Pbex2x9c4FtrfgEl4IiAdB0TQLBdX0EKMfJqZCtQsWUoCUl35n5rDFZXQ/LUgZNJgGXAHbpsiKvnQNrSDrV5JVUgv1S0JeuFql8yWJcWtf/sUD7/nH8eWKAUGhdoRQ5iHS1Ws0sUeUWbFKAIFnkU/sms9IkwtNWeRr802Ipux45yCoWxmBQQWc/UefF963rB7p+KEB1T9cPDNHdw3qxNmduWpKwjm4xShFMhUdhEbYHoURSMXJdOFy9in74IaWhV7meWinqqoLFAkKg6zusDXnMlj7uU6sfB9ZiTVMFg3d0ASmUsEOFpjIV69Wa80fnvHn9JjOXTO45zMaZjNM0j8gWaucDVdOyWKyojIlKQS5Z7sdJSUjdGaLQSoKrCEaNyvLU//ePo4ItCz8B34fAPL8olUzNXQrKhwdnMWFBdBCJp3VBj0gWzD65/uSxmhZ7H/37kRTn4yh+n13Pze2Gq9sNPm6zEnfcrBew6aJCp1TcotUP71TZ6COuIkhOyWdK2shkcU3uDUkHCUDQCh1CHKcIOI9+mEZrMbj7QOJlliDJ6ZkhxJiG+Ds1YnLFU/gcm+LctAvm/TSmS4ME3AfdWQokSydMfVfckyzYqU/vWVvvKbJzmZ7fdaDwZbBcjMlj4LdU8rIicfjuNIAOjqNjEWbtkigeD4005bVaG87OztlvNwyD0IDWRvrxgemUlZCyLGnNGYaBm5sbnj59Cs5TLxacnJ3x9u07bq6vMSYp3yZv81fRPaVs3xkwV1GWB1EEppmTKxKVyuJvkp5XyIfY56+HgaaqpCx5Zs7bT9zG4toaStVBDpe7R+4creXV69fw6pXIzKqKbFUK5xXWK1TwNAG2mw22HzBK8Xf//t9nXJCTxGnNZrsBY/BGXJvM8gxPFfFLLwGw+72oRam9lOL86ROCc4xjx26/5R9+8zuaqgYCu1/uWS1XfPK9T7m8vEAbcH7go2fPePL4MVSJY18CE0fropHD4ezAycmSH7af0TYNTVWjI8c7KlL7jhZlDHUY0c7QGENoK0KjCasG51Y8vTzjpz/6Pl038vvPP+fFi6/45usv2Hey67vdbmNswDXqy4CqFOv1kouLx1ycP+H05ALlfSYeWK0XfPTxR+iqorMjdhzpdjvubm7Z3t7h7BjnY7GLJAK9GCpBYqOiguC9z/N3uWzQMamYC9EwFAN1jhpPCZSTJ83oyd8hvj6+VzHhhlKJfej4zoNuiomRBFsSbqWmctzfV0X/6+NMBulIFljvJR3SMQt1sjQna3OyeB9jKckWonzek5JNpCP5VMrlOlPdpbpKwoPJn5uk8UV/2Rzdq6N/eQQ7+oGB9MFHqZdMiPbBC6dXJV/y++wlCWTn++JCNvmCxvTPEczkBb747IuAogS4xZ1D3G7GccQOI0M3sOs6umFgGK1s3XuPS4uhmgCPiubZoKo4E4o+CMiC7j0uCO+oxTOGFIRoCEoy7sXUNoBDqchVGoV88h/UEWjVVUVYLvEhMAw9Ey/v8UPGtyxyasaVpAlqGutJ2GcAe7DAhBComgpTGayX3RaNkgQMWpP8mlUG3wqUny+Esf1MpGacLKLJKhXvTQgvjiEVJsUrhPtAaLfbCw1mU5ejZHaUf6swuQKIRTFZVkVY5q3swzlfgDdC2kSM/MgRWKa+yoI9Lvby7OS7qyTqPlJ8WjvSdR1d3+F9YN+ntOcWH2Bwit1+YHARHsR5G9Sk2Gkl2e8OAd693YeDdgkkpUORrNZxFx5IVMIyHkIgplJW0b1Fxhbao4IEZlbaoIw8R3aBAtZpfJD6uCDzSYLOktJoomVV2JLapsnMA9Z5hkEUXuHznbM3JXlQBlROfa4mi2yhMJXj4egOTdF+pVXq0IBBca4sUzYQZEXr/lzyzomvcFIAkvElPTuEycEvzF1k7ikGFEDxAFCn5wKyiVfMnySfHYHTszNevXgRfWlTBl8TM5HOFYHjQGN6bjIW/eEPf6CqG1Ynp1xfX3N1dcNuvy/cHCclQ+mp3dL6VNU1i7bl7OyMR48eRQKBSQEp+3MCyvHvxKFafEc0M6Rg0VG0uOx2mqyiU7uFyLk9m8qzOpcfkuvpGC3nwziiSBR4shuttcHULdYrjAugY/C+EZljvaxJIJSEdhjpvWXb9dxcbWhXJwQj6YfaSrNsGpqqwlmby6W1ZrloOX/8iJMT8SXfbjbsdzueKMXjx49ZtK3IEG9R2tBbS9AV/WjZb3doZbA2cHV1w3rZsmxOwAbC4DBBUwVDbYS+t+s69vsdt7e33NzesO96rHW0i5anT55wdn7GxcUlTdsyDj3dbs9ut+P6+o43L75me3uDQbFoanxViT+8c3hdob1i2FuGbsPN1Y6Xi3c8f/oxZ6cXNO0KBex3O86GU9pWAi1ZNejzNdUnzwnDSN917LuO25trNptbun5gdIFi4+zenNIRF7m4vuY1MV7mCZEEY1q7iEoaEWc567m9vcEYw8l6RRWTRef5GuVq2jHMx7fAr+8+6FbM+KkF8FZU1dwanH4ScDhmKYZpa7IUysnKlAVScU+awCmy2zlHXdc5IDB9PxVXZVxptI6coDpuT6RyVRhTgTaTH23hEqJLUBMBhNQvvSUtHPeaCvWAz9wHH0nDU0nbO/Ks2SC7twzO7A45I12Yzicw7aOVTwJgFSEIOHZRwRlHyzgODOMQF+6BYRiz8tPHIEQfU8zaCJ7QQiGotILKoHWdfaanBScJ/7j4hpAXtIBskUsQiSRDcAEB2MmSTgT/sYXknEL5gBsGqCtZJHVaJsgLel1VLBYLdrvNbOzMm1juEdcM2aK7vrmJ1ngQ6irphwS667ohhPEekE9jOSUmysBDmymdMWUUwKQ8Hu7MJECRFkQf/OQrGULeCpQ0KmlORoucOmKd15qh7+m7jvP1ChvEOpOCPtM784JcWM/SO6f5Ot1zoCnMTpUjOoE6pQw2JMooFcekAFXrHP04YEeheOx7sWCnrW3nbGbfUVrHhX4a79ZrHPITYhWSrS9ZY6hKpbso9+GczxdEuK00WgU88f2pdmlo5z9FKYw4BRc8Xke5pB3GQFU3Ugzv0MpQ14q7vmPo026EE45io2naKo+5ZLRIHP2pTgFoAqzX4lo0jpa+69nvO/adKMVSZkOUAsVYlPbJDCgFIJPvmWRjCVTj7wRy07hNY/vQKHAMhOY5qVRkOkj9UKwjB0aZQwv34a7KBPDm8nTO3jIHmYdGn1lgaOrT+LiqqjF1zdALJaXxBpRsp5ej/xjoL9sirXHpnU8eP2Z1cooyhvOzR7JehskIJYaPEescSpENIMnauOs6rm9vubq54cnlE05PTyXuoOzXQnHJHNFhKlNRQkyMWcqGMKYdNR+CBAES3bpCaqNJ6TlW83ROm4qmWWB0Cvi37HYd3nm0qam1EUVQ1Xgq9r1jGHaSnAgB/ZXReQcAEMOMClQx0FyFIDzX0Vdc4/GuAu9ZLVeM48Dm7o7dRtP3a4I/xTx6xPnZGWenp1LHqsIGsfhrZVA0DANYp2iaJWf1kqEf2F3d8Ic/fAFu4Ic/+D4fP3lCsNLHw65HG41zlmEc0Frz+OIJnzz/BOssw9BzfXPDzbtrrt9d8fbVWx49Ouf80TnLpqWtaxZ1w2rRstvt2Xe9yMg4dk5PT7k4e0StTd5Fvrq64vrmlqZdonQds92KcnNz9SvaxvD82QWPLs7RjSQNMsGzaBRr3fJ49ZzRPWaz23O72XC36yQg1LosVwkqGzCV0lmB1LrCaAqpm8ZWKQ8EfstOZc/nn3/Of/r7/wQK/uLnP+MnP/1RTl1PMrSlMUZyhkq46eHjOw+6tZoSp0zZDO/zQsvCnFK4yyJcBh6m7Z/DTIilYEuuG+V5uO9PnbfRkkCPmr1SOm693be6U/xNTDjhDwBECa7z81WYL6blcXAqrQ0JSPxpR6nv3X92PqdUHlQiG+VvAdIxG1iyMBRb0D5M4NT7ECPQbWb9SFvxwyifx9Hi7UiIfNJSuQgElUyo5M8ZDFDVEnmd2rxosTIQomy3RAmY6yE200mgR2Usp3kPJV/OvIHSwmqt5e72jrP1mtVyhQ5RGKTFTwloEb/2ibt81hNKURtDUxmauubJk6ecnp2y2W4k0CR1RZY0k8XvWLeX1sA0hpOvdgKLoXwGAh41imBtXrASq0Oqqw8B5aPw0VoCalS6RjJtJhehyU1lar8U4a4AvOWHn35CP1o+/+YF4wHgBjIQn3zwYv1yJ4T4jkn5zpt9BXhJhw/CnuGU0DzueoeNyrW1I/tExRfHqffJx316v4AmCWySRoljQU0CXowsIc/NBCazRZ6kVBQNVIC8LCXiuaTWpPbRRmGCYtkaFk0dFYExKxA+9oFYZTzBG+HLVZpKgVKOulb4ocfULc8vL3n35g2mMYS6Q2GgWqCVoaoriK4LJg1skIxxGQBN7h5pJwINjTG07Qln5yfY0bHvena7Pbt9h7WZp4VU87KPDznAy7EwO8pBFscrad4qRYh+og9ZfNNxb3c0TrjyvDFmWiMOgHfqt1B8hoMt6iPg99DYU/5w4JZY3qMqQ7NYRvBjhfUhG2xS3x8orEXVAvf97D/66CPW6zUFxBc3pFh3U9c06XmFjJlqLXW4vb3l6t0Vr1++wg6Wy8cXeSsm1y2EWWDtsT5QKuAcqNju3nu8MkWQ7LRDdbhrkJWfBxQOkNiapl2gWsWPf/QjTk7W/B//53/g5vZ2qptSBG2ECagSIG6aGGjuXEyS5giDFTyiArpWNG1DUxtMbYQDWVdURrNqhV613+3ouh1aKezYE4bA7c07fv2rDevVitPTk0y2cHp+zsXjxzRNS1UZKlPR9ZY/fvENxhj6fYcdLW/fvmM/Wj56/JQXL97w8sVrTlZLlm2NUpAyKyugMoahH1gul6zXawiapl7ww+8/ZrFcoqoKQogGBhv9pc85P380rZ9ao7SK+Sd6us2O26tb3l3dcn1zR9cN7Ls9J48eszxf4bVhGDxDbwm2x77dcPPmNaeLlqYxeC9Uitu7W/b7Pc7LumK9x3pP0BXN+pRquYTKTNgr/quVQjdVznic5Kz8FXO+TIJKpE/cqf7jH77gb/7mb7m+vsZUmpubG968e8v/+D/+S05O1nHMy2BT5UzPIPzh4zsPumGaQCno0doJAKc05wlQ67jdkwBTeZSuIAlgJ59jIC4QzDIyifZqUG2LWixm96kMtqeAHnmMuve5OJOtN5PTxSSahehdAdFnswBSyZp3XHTKY0ICpnntORT7x0F13qJO2hpZl4sUaGHKmhiSpdpHCrxkbfaZ8cM6x+icRH6PY0wx7RjsiB0do7PZFSJR5gnwky0+rRS6bhH6n9yYzIteWG+yNapol7mRZN5UoWyX6P9HAcTiNnpIi15Wzny+esrfNz3Th8Bu39HUdeHvStaFUcRFIlDXVXZTSkphUtaWbRspmSRlrvd+Vm+VxlGYvz/1ewKf6Xy5E5SekeZUStYj42LykbUHCmoa41rr7E+LKhYzNe1i6DCVRxRWaNuGwdqJSi8KwBACu92G3/3ud3T9AM2CoOcsQ6W/74Nb5LnOEQhFn/TUd+VWvQT0SlCo0po/fv0CrcgAILdn7LxJ2ZhAdFI8kuKWLWoqxjoo8W/GB0lhHHxWjKWcMUFNat8kfx5QnrJlNyrxSRJooAmBJyc1n370EUEp7u5uub25Zbsf6FzKQRAVLWVRBIzyVMajzEgNtM7z/OQZqvuSx2vHvtvS1C2r5oROa7yqCDoxhCjx0kIV5ZoSdMkV0oU+qCyXUrWatqJpK87OTggB9vuO3W7PdrfFWVF0RGkzkjjjACx9G2A+ZknNCptS7wXe2fiRTsQ+TeMgHWV8T2mxzu8+eGb5OcPSJFCLv7ORp6Cb9JmHchqb5RFCoGkbLi8vWbQ1zo1s7u4gDLPg/9IYlI7M2hJZikAMXO1C5uEsFDS9v2jrkO7P7ZmeLe+6uLhkuVjy5edf8PbNG5q6ZrVeyrvzzjOpgWegebfb0fd9jHkJU4Dc6SnL5eKgHQJTV0+rWFK93w+FAsZozk5Pcc7z6tUrXrzwNHXF+dlp3qFLPtBKKYJLfVIR4nqRyi5JZTw+WFwYEXo5R11Du2xpF20EzRJPVtey23N3ewta453sAtV1IzFIXR/LaHj58hWrk5dcXF5KEjaluLp6h7WOs7NzIXLwATuKseDF63e0poLg0KbGBk9dKeraUFUN+IC1ju72jpvIPS9jW+HsCzyB9ekpSivGcWS9XtO2LcvIuuKD5/Zuw67rGIaRd+/ecfXuiru7LUM/iouaBaXEZbZZK06XjxhNTTA9wyCBkbc3O77Z3rDQimVTs24bzs5PQLdYP4ibyb6T/tQGpzS7wcJmQ71YsDxZ0TR13IGrWKwWtKsFXssK7+NOpoxbJhfSrE9pnA18880L/u4//j1X766jK538/OqXv8J7x7/5N/+a1XJJflCYG/m+7fjOg+4ykDIB6wRmEsezUlOylVBMWHUgWPPW5UEwYpms5hAwH7p4HK6Gs+sfqkR5T6C0wc6sWKUYTFayJL5LwRemuzguSiKQfI9WLxghLUxEa930bB/ARd9AG7PoJWA9xkXRhbhlHK2Dw2ixzmVmjzRgA5P/Zk7xqjQqutEkUJ3bNwvuUPyUC9XxWh07H0IUuA+C7une5NfsYyBkUr4OAdvh/eWiLuWMi69Ws2CmVKO08CWBO1Vb5/NNLZb7EohPvacO9ev71xxR/CZe0wOWj1S22FYE4d89DPgtn5XnWIAQU/dGg0HxblFo3717R9/3sosU+etLy5H3nn3XsdlsaBdLXCqLKmIrVOEzfqT/kuKXlKQQvMwfbajqmiq69JSuaOVz9sOYXWOycpIXbnKa+fzWBLCLMZABXhCfQZQSxcQ5lHcoL9y2mugPjcGHqFzE/ldKzXY80/hIZYsqNVpPyqIKnkfLmu8/u+T8ZIH3nvPmEd2i4cWr13xzKxRdKANVSlpRsa46Pm3fcXFyy7jf4nvQ22ugJTiP3fyBuvGsmhVnJz9kzw+4Y4kOlShbiqz8JUh9DAtrFYqxXwYohniv4uRkwXq94NKd4Zxju92x2/cSnJUy1CYNj/n4Phybx8bHbMwfjK/Do+Szz88MudBSbh9ARRevIzI4KaGpDxMw/bajNBiFmERpGlfHQbcCalPx2Sefst/tuLu7AxxDPzKOvSgvUdFISnxVVVPmYyVsOcMw4OM62i6XoDU21rsMGstz5Ej7FtWevvOBtl3w7Nkz4XimZJ8oV7qQNH+stWw24n63Xq+ziykg/sS3d7JeL9qcgXhaVQ+UrSiRS0B+7FBa0S6aTIAVfIhMZLL+oU12/XTO4az4LoeQGNDIRjzxd5fdscpoTk7WfPbZZ6xP1lSRZ1oC6OXe/X5H4ITFqpWd/Eh5OI6SNTKEQN/1dPs9Siv6fuTN6ytxzxvF9dI7x/XNHU8eP2axWArLlDbcdT2344ax73kWHvPppx+xXNYyL0PAWy9c26aCaP12Vn6CD4zDwJvd6+gGq3j36i23mzt2+z2mqsRKPlqsn1yPAEYrCcG0rtGLBaZqaZsFVtUM3lAt1qwWZ7jQMAye3l3R24oxOPb9wOa2493bWxSOcRhwXgyuQnzgJUDVaFTTcPn0KQu/yP3bLlpOTk9YLhfid0/09MzKYxkjoggebPC8ffuOv/mbv+XFixeRMjLhJIsPjt/9/nc8ffaUv/yLn4vLaphkcjnw3wfAv/OgOwGeyVJH1MRUsSj7uAjNAcah5SE97zDZyj0BXgjd6dRcgN5DccX3pGsmmFhcJ38r1PSMBLgL60rpEBHX8axtJ5v0ARzKr0owKqiJ0cDHiBIfJoCSfwIZXCerdD8Ibd4wjIxxERidw8bgRCKQTjHFCbCrPLAVytSYampfsWKntlIz4Z3qkhJhpHpSKAK5PXjoeMgKxP3+Kq5LW/vJDSKBTU+0OhVBYw8rMlKv0tdTaUiUQrrou/z+COwTBZ0CjFbUlZ6N76qqxHcaIKbvnvzG5Hki6ALCOHG8njAx9CRAUe70lNd5jrQj03zMbUd0M4llUFpFK7e0+egs33zzQnzxC6tzUTiSS4sxmqCEL7ucY2nOEuYBbN6LbzIIUKrrFl01tMbQVDr7kOeFXSXcEjhkdD4EZIdK1UP9PhtD5edEz+clor41mu999jFVZXj9+hu6fsCpCq9rYb6J5dMm0i0WqY2VAqMCtQrRV14SUtR1RVtp2mrJaaPYvnvN2y+/YOg7uu2OsetwBNqTEzwVg9cs2xNOz84xBtTda9z139Pt3+JxLJtTfPeWdnlBN9ywqL9AqTu0CyzGP6Db/xd9+BkjELKjBDF5/HHwObVvaf+cRlS+KyqeldZUtaFta86DYhg9+33Pdrtnu90WC2F60ly2v88CPuvTOBiO75hMgDsrorM1RIJMvfMRfKf+j5cdAZ7qyPOnVojz6kDBF+s2hBRBmf4/AN5Kaz56/pwv/vhHfv/737Pf71kuFzl1eCjkrWR0tNl323mhrGzrmrqqODk5Ybvfc3JykoN9y4rPFIj8XVJgy1EQ200ECd47FosFbdPOwXA4GAMgAGi0VKZicbKYAe4QAqvViv1+HxPYNDNZlEdEAbClbRN4Omi7QvlWSfk1UQ0wOq/DTdb2oiSvDKGpEZIENzP6QcBUhratGMeBL77+HHae1cmSk9O1eNYoCWJuGkPwFW1b4U7XBA9jL7zg+65n3/X4xuEDtO2K5eqUvh/yzqfRWsCyqqMio1C6Rps6N6jWhlAram14e7PhzdU/0FSa9XIpP6sVbVNTVzUqbfQZTaVrgnNUdYtSYO3Idruj33f40VJpScKz6zvBEEpiY+q6oa5q2uWCpl3StCv63nK36+Tn7obrly9oTjoW7QrX9Wz2AzYYRmpGZ8XVzVtaram0sG8prVHGijKhFDZasE0tCqTRBo0kGVu2LacnaxpTSZ4DJQp7yLFqgIrJx6Jl7Pb2jv/9b/6WL7/8UpSsYob6IGv4aD0vX77k5z/72ZR4LCmgB+vaQ8d3HnQrrbKFKoQwuXZka6GJADpNnvdbQMq/J+FxYPkKYZYG9PCJcyF8BFhzuASVVonivowCIgAK09XSiVKIgMKr0vyVgGqyWEeWD1QG6C6CaEk/7UVzHRPbQqQzG0b66D+dLNTWTQFkyQSbXD6U1qiqpSp2AHINkyUwAthUJymvnih1itZIoDu3e/Gc+02q3jeOSSDqmAW6XAjI1rIw1ZMJYB9SQAqAug/CDo/yXN22tG3L5LSiKLOhhcI+lgE60aKtpuj/dDjnMHUlltCkMJXvPhh771UM0qGE05QguxccuGIlMD21moB9NVNU0ziReecVEhIXYmAsmqEfJLOZFKwsZGGVFlebxPXuMof5VAZTjBNtDHVMy0zp25/ARfB45zMFZHbloFCeC87VdC55A83BeWzhg4X9oSODby9jKniH7Tu2uw37ty95cnHBxemaWzey6zucGjF1Iz6upkIbacM6GRHwVMqzUJ5agcai/QjO4feBMFq2w8CboWez63DW4624sbR1TVtr2kaxWJzQ7fb0buTReklTVQQ84zhyZwfqpqMxWyoq9sMfaBpLowaCkkQ5jO+o1R2m6hlVG9svyaHsTftg66jD8yHDsmkckcYS4uIV3YO01iyXC5zz7Hbb+Y7TQ+2fHvcACD82Q0qQPauNUvf6XRgrTHppVDLJ1n5VWuXzvQfjvyivj/PQF1lMDxX9Q2U1Hc45fvmrX/Hl559Lpt8Y6EWkntRqcmlUStGEhiQvsyvgIMlfzs7OWK7X4k6Q18nCFSyec760bOscqO6Dj7JrqktWEvxBJzPfdUqLWbn+aB3Z6pW0eQrSDMFn8oHcL8UclXcohP+eIgg1vX6+2yeuqcVOt/JxfEYX0mwZKxWPKBmDpm7EWfT0dM3p6SkouL295u3bbbZqj2OShYJX0loZkJ2s0XlCpAJt2wUKg8bkZHODCnHnronyaXJ9TPlBJKjZyJoNEs8U+19FFjEfFN1g6bot795tZbxG3KMUcQ0SP+9F27BaLlguWrQ21M2Kpl3xSCtOTk/RxrDbd+y6jn3X8+jiMU8i44kxFdc3t3zx5Vd8/eVL3rx9R68Ui8dPaU5X+NM1o5Ig0pNHl6yWNbhLguvZbzdsrt8xbDfsxwFtA0YBXkwyi/WK9ekppqmoFw11LaC8rmtOTtZcXl7Q1DUpWaC4gwLRxUQFnXcWQ4Cu6/m7v/97vvjqCwH9oZBO0cCTWAz2+57BikKQRttst/5bju886DbasF6v5I8k2UA0uFkF08I5aTEzWJzAXFLHUUcaSvywUHGCHofbxZGm96EIP3JfOP5dpvoiTexonQ4TCAhKx+A5majCLS1AeozbUzZmNrTWMVhLP/SRlzpGkltXWDRzxQW0KB2TqBhUHZk+SmF4ZNvEl39HARkQTTLEyVtWO9vCisVCJ3RTPOtQdUlfl766h1dNjzgONhMwKF+SLGVJEIcD0D0teMeDl46+JwLC8/NzVqultGsW1kmBCrk+VVXlxTzHBhwqgIjbk3UOrwIOhzscQ2FyQfk2hQCi24hS2OjqcdCI+Z5DGDVxVod8S3Z0UXk1kzZLVFvBx8DnuOgnpTb+nvj0q9j2o1hMTJ1Ty1fG4J1kNpOEHRWDtdnPNVl9Unkzddi81nkhOqxuLMpceSmHZlLSuD+zZ+1VgiRBjrKD5C3O7lFjx/X+ipu6ZnV6xrpusMFigqc2NXUtAFPSMHvZ6h/3GN+B7XDOEpTHK5FeSmkqbTg9O+Wrl7e8ffMaZZbi2jUOGAUnJwsua8WjRxdcPn7Ofj+yaioCiqE+50b9BGMvqdQ3ePWWs6qj0QHvaoI+Ieg1hDMcj/HqEqhzfwtAjRNdpUZ9wOiRd91CbE8BQy5bcYWSbbCjbGlbxzC6uG2vMjCaFKRSZk+KdUjvK/rl2JHklyQFmuZbGT+QjAIhhOwDnu/3fsrY6ktLtJRGwGg5fqZCHivRZOEO03g8AN25jMfqFkGpIrmRReIA7wlaZ7aXkNa/IIDBRApa7xzb/Z67uztOTs8Y+h7rrPC246P1Wagx+74XRZ2keOvoey5FkVTiUeqmc8aIHFDTLrPJ8VFxKQpT22a3UesY+p6u6zL9W9u2rNcnNHVzrx1KBSUF74c4mTWKy8eXPLq4oG1bdntJ+26d4/T0lOVyyddff83Qd2lJk3Ge4xHi+FaiDAOYyrBYCtCu65pu3/HNy6+5vb1muVzw5Nljnjy/5Obmmn7o87gJObh/iodYNAYf1/O+l7W764bMjqQVNFVFZcTy70Oi7pQ1I/Glp3EZvBNGIO9RqiAzQKFUBTrO4bgbofKYSxSMnrv9Dq63JLZao40EgK5XfNKsubg859nFM1CaxXLJom0ZhpGbmxtevnrJHz//I2/evMV5MFVFqzTjdscXv/wvjO2aulmwqlpOFCy1pzYBU9ecPjrn7OwE7SzD0NHv94xDz9hLkGi9aGmXS3QjCYGquqKqa9q24fz8nGW7iPhCJHfeUY/DXwWxcAck4/Kvf/lrfv0Pv6Lv+lj3Uo4l7AjBw+XlE7Q2jNYKJTVE95VvD9CG/w5AN4qYTUiOyZKtiv8PBFkC3FHIlQ4MycI1e0Yh+LPwzBgvPivM31dmIpolbon/TQElSaAf4Bo1nUuTQVy5hBvZRgu1D0Q/ait0ZeOYeW+HcWS0VizZaeueBM6LtlAao6uCWWXOqlIeJXiZAeuDNp4+q6ITUoKZKEALMFxqjofPOPStzNamI8J0XsKHgfjU9nMOdZW5lucLmie5LBTuJU4spuEemEjv9bEPVa6HNgZdS9IBFTVqHSDhvSS+09Mmvuvy6dPf6Zk2BnA+oFfM2jArQsUTy2BV5wNay0J6z7f7oC+mQxZZF0Thq7OlOxRNI2A7gY4QXyh89uUcSEGc8rdzsiB0w8hoHaZpaHSVmVNevnrFq5cv8c7zs5//jOV6LQFfue1UbrV7o0GVHwL3q1ZGtB9vz5lc4MCaUSgR5XhSebzJIqaCpdYWowLOjexu9lS6plksWFUrGquwfScBVAGIyp5RCJ1fq2lOlpydPaKua+q65ubmlr4fAM92c0vwgdV6xTBarrZbQgjUbU3wcHezoe8NX3z5NZ9+7zPWZ6fUzSn15U8I45ah/4Rr+xo97DnVmr5ZUpk1ur5A6zWYlkGt8VQz0Da1Q2rrUJgz4lfKFM2lc7yEdw7rbJRhEjOSsr6GQNx9iq0fx1lWkmeAU836/HDhO+ZKkPsYUSbL2mQloaxD8b4EtJOSG+4PttnfSSpPen9yyXv/Tynq7snCAlyC+DmP45iV71n9kbZUSY6VctlLe3f7vfgPO48yFaYf0FXNxePH2HFkt93irGexWLE6X6OMLuqrGIaR/X4fk/NoSUefshBHl4yoh8ZgdXHbs+MowD54/JgyQ099vd/vCSHQti0nJ6c0dU2VAtBjwi6fAewEjpwP8V1xfiJJ8D755BOeP3tGyslhlObq+pq72w1X767Z73txkctKdwpaJy0n1HXNer1gsVxIQKiCu7tbvnnxNdvtlvNH5/z0Zz9lsWwIBPp+z2iXNHUlqeOVmfBE7AvrLH03sNvt2G4kQ6WzInNTOSCCa5WMKxo05BipbLSJZFKIr3JQaX2LbR+EClfGlyJpRirJ7TQb/KGvPeACoRu53lzx7mbHYtHiVWpf8VUf4q7JMAwopVis16Ika4PSFWNQNAG6cZDcGmzZaIVaVJhlRaUVRklq+9o0LJqasF7L2hx36n2QBHWhSF1bVRVn52esVyvptej6lddTFdeqoNAx+FEpxedffMnf/93fs91uc3um0ZSwn0Z2ZpfLJU+ePCF7IZTzkg87vvugm0nHJNwXa2VVQ9ZCQ05DnRaC2RZo2VOz3yqDMl3wSsuCEigntaRGDnnyTMGCRG0qMjn4yafM+RB/PC54xgiWR+voigQSyaozpuQvheuH0OakxT/xUWuUqsQHLW6FZTeAaOXQcSmcBcAkuV6AtTwPD3rgQ47794iQP2QeOHzi7P0lcIyW8MNrVdSoVGk9O1C/0isTkA7TiXw+/1AET4ZQ3JOoKaekLuWCX1ZL0h1MJ1JyEClP5PUsUGECddZNSREmy/YcMHjnpiyBua7pd1KedByTMdFN0RYgip2NDBbey/w4dEsp7zguQOSsMYbjrT61a/q2aVt+9KMf8fbtFa9evy4YcFSML5Cyj9azv7rm7u5uygoa6973Q07Asrm74+3bN1R1zbPnzyGkVk4BiZOLgFcp+FKU7ZDbPvVd2Y+HNS53DcLs+0kJSwvnfdBNbIMgQgAVBFBWBmoDWgcUPZUbCbsNVge0dtQqZFYjHwKPn3/M42efMAyWrhvou4G3b94yDD3j2MeAZ7jdbBgGR/fureyMpYx0yqAWa5SuuL665uuvvuHzL77EtBUXjx/xf/3Xf83JxRn4J1Tqe+g6MFZi0UI1OFVhVQANzleFQleqjlHCpjWtaGdQUamKu3CjlcCwgzgJF1wEswcjV8e5FQqLdCGvp/6gfOmDRwnI7ymXB0D9IeAegnAdzzm/P0xGxqd963elbCplWXlV4icPIbDdClCrY6BfHPTT+NNzFxkJ/hvp+17cDQfxE26qmkePLri+vubd27ekHa+2bTk/e4TRQtsru+3ZdEDbVjRNi7ViFBojBWzXDdkKW1cVRhnqqo5BefHu6CYSfMhjKiihpxv7gaEfZB283dA0NYvlQpLD1LXsziphWEmjw+PxYcq9kXYzQgjcXF/TVBV933O32fDFl19GatCQM1GL+0GUKtlwp6iqmtNHksTFOcvN7ZYvvviSfbelbisuHl3w6aefUtcx0Dg4QpCEaScnpzRNg4lc3yhDcJ6u69jtdmw2W8bYByJeFDNRQhp700g53M2b4t4mg8Z8ZM3XAx+S5S9J8xDLndaVKa6keAlBRUPgvmNvba7vrutRCjHuGc1iLclvqroCVeGVxnlQLqBdoPIB5yX3hSSWC0SzO0rJ6HKYaJRMeTECXisCRlRXLT2+XCz46PlzLi8exTkASiVlopw0UVYpYdh69+6Kv/mbv+Hq6mpqp6TgF4pxGsPf/8H3efr0mYy3qcmy8Ufx7ZLgOw+6D2wY98VVFOwCINNAyfAx3SbNkSJWkyk2A7wYnIbK25YZYmdgOg3GdFeywoAsFimduEtbhEA/WoZRuKglHXkv1uqxl++HQYJyopCUbWNQ2pCs1LIYVFBFLTfVPWaB0ykBS2E1TW4NkyhS2acpHbmOlHX+xx3zHoplUereQHzf4JwteAcuKOWd5enDBfRBy9HhohbEEplA9333kkDa3s4lKK3K80Jklov7NZYjheYoIxRRLsRdAKVmEzw9O7kE2ZgNsHSfkrE4/Z76b4LEpRIBRH/IAwCpDhbkoyXnnhUt/V+y4FCeC9BUNc15w/XNDdMIK8GMXK+0Zoxb12JxE1BW17WoLdrgvWMcB3bbrfDRnp2itWHoR6qmoV4sswvJlFSlxFIJCHO8/6aakgEzcBh0KXNtqvC9cRZfnIec0Til2DkB0g2yldrWisZ4KkQWKR/BLUTrFLx5+5ar6w12hMEGASbeY92I845uHNmPnu1+xIcqLoiRfSbAtrNses9Sw9evXuG0ALl+6Lm+uSVg0PUCoxoq09IY8Z9XSJmF3zotgDU+VNHVLTvERW7+yXrrnY0+2ZH5KLrDJapXSCy5UU9CAvnOzk7FfWEYJdFVSMmzQIcgbB54iAnHkqwpDQkTqLzfr/O5NY2LYwaAY1bx8u8yb8Phs3OZ0r3lsIIHJ5hSiQVoUpvTbeUtuW5K/FO32w3ddlvkKCDKoum5+JBZKSSpUxFIWdTx4uIRjx6dUdc1b969ZRhHLi4uWTQtzsO+76Oxp4IUGB8PETGKuq6o6wrvl9lQIWwfjtEPhL6XxC5GR6uszpbrBKK1VjgnRoR2uYqMIZLo5Pbmjmt/HeWRyW4EWgvYC14MHMmKb5K/uQ98/fULNEh2VediCnQtiXSS/AVU9ElPfT2OQ65nCqyv64pnz57y7Nkz1icroXa1ARscBC+Uz0BlGtpmSWUqglf0dmS/u2XoBrbbbZbJU1NG+tg4x3wG21MweBprOiXcYlovkrtJHAZMa2ZCLiF/FxBZE2bb07Ek+TkRvMYyBq2I0Tu42PFNXeVdCB131EXR8QWQ16Cjp7wC4xROS+K54FVkwhKFcFpTPN6F2F+jZFNOddeaGsNiueT584+4vLykSgm/Ei7MkybKmpBaIHBze8Pf/q0wlRxeV843j0crw2ff+x4//4ufUzd1uhSfQXecc2pujDh2fOdBdwkEQxZqhcZXgEgFMRGKn86nQVdgLh8bSBYJFQX45OYRkbkEt7iShzpEa7NEK8uC4umi71U3DJlCL93b9ZJS1UW/U6WT/zTZGg3Jr1oAduYojhbM0td37opwALRTh6sDoJt1jwSuQ3n6TzPSPHDMQGkB+OfCpLj+8MSBW0O5OL/vXTOgU3xXAmr5O5aHcC8Jw5S8JWQhdT+Yifys4w0WWzVu76VI+Km2ExRXafZH6ZOHqiL6bXtUSOmHPdoYghtFCGJIPoplMd7nx1r6SKZrp76fK2HHanZ4bgpki+BTlUI9KoCkcR37NQMoaQuPZIzzkFPYb7dbSarQj9l//NHFY7q+ox+GuEgo2sWS7XbLV199jUIxWsfJ6RlPnn2EaQzolPkxzY8pJUmyUh/ukJRNJgvboaI3gz2ysAUBgWE2fgq1J46bxWqNVY7BaPbDHpRnEaJFSDu08nFsivLv1SSLhn5Ee8dgFbvOMQwW4uLjgqL30FnPYMGpGCiFWCIdYu2vlysWp6f8/P9ykf04h3HAVBXLk1OUqVHao7QhaLEuSSXi/mAA7xUOgw0aGybeb4JkEHVOdiVk+5p4zwScXRozhRwzCppKUiw/uhC3mbdv3uCtleci898lg4RO7e1yuXKPhCkB2occZXBt+n3MCj75gs7Bt9aS7S5de/h9Wa4Ak8X0yASbGwZKA0EqLEeBegLXm7s7sZI6i8JgbcEuFXdMJWjZxjaLuQbyGkq2UC4XC4zW1LUwmVxcPhHFN8DV1TU3t1uMqVgsliwWa6q6FpClklvZ1K6ymyZy0GgD9cG8yq4OMbtlpNgjgDGVcEfvOxI7mdZFFmpTxONEWRuUEtc5QfLCeBH7KhlDCPJ9CoL1IeSd5BACY3Tf9DHDZmWq6Cu9FJrhSpgz6qbBVMKYsdl09L2laeqcXKZtFtSVwVQKFykFd5s9mzuRcdY5kYmFPh8e+nQwZko7VApgTStMyfQm1U2yOcnBuB4mo0y6N/UVcW3KJA5pTsiVYrBUqNjndV2LT7UR9ildmbwmSN+biEc8Co8OoKuAdgmvxZwORqOUJwSNi2NAgZA8jBLoO9oBYwKm1phKA4azszM+++QTHp2dYZSWFT4rJVLuMIE6RD7C0Hf8p//yD/zu8z/g4piY3EqKPlCSNOmzzz7jf/o3/xOnp6e4IG2sM6IoFKEH8E55fOdBNxC3H8ojNSgzUJ3+DkVjh/wMsoVLho/OjeVKq0xMMZ5AdWL5GEab+an3MVLXOhvZPsgWGYCZ24c26PYwrfvcB2sSRPJ94rJOoCa5iaRBmrW4FKGcJk/S5iYbFHM2l1A20z/qOLT8Tj2jZr/f+4zic1anDha9EggeAuzy3DEgfu981j4my68E4ZXAenIJmt8/AefD+h8UKHMqS33IfTjbZfBl+00sHWX55gv5NOZVOfTDVK+HAjjSOMvb4QeWwYf9uKcCluv+zI+6sHqrUJRhVuaQg7xyKypNVUmZTk5PhU5ssSBZ7Ku6ZrlacnF5yW9/91uS1fvN27dYK4kjhmHAWSf8sBgePQWtDEFPLjeUyk9wuQ/KhevQ6p2E9Lw956NVhLt7cKz5PMYCLija03NOLy/xY8dwe8Uw7KgJGHpBx0pjqgrnPX3fs7UjnbWMo8OOHofB+SRTYAwKdAWVoVnW7N0d3joSgV+KrTDGsFqtaJcrlus1ptJoo2LKdY2pW5RWoMUYYdOSE6I/aJwPzgdGD4O3mYc/hBAt2gk8FEAOZnM3y774s14suDg95eLRKW0dM/Q6LxRfoRw5B/66+eH35+JDMun9x/3rZvMuzMdB+S7hWXZH5859mTQfc4fXJcXNF4vWt8roAP2+Y3N7hx3H6NrR471FKZPB5vQul6tsYrryxUK4jTebDUqJb7KOmZ8breg2t9i6RVc1drQxScvIfjeiTU9d1zRNTdM0VHVFXZloraawmEx9NfPIQTOLsYrzLoSAswHQ1M0kq7WRRHXG6JiJUX4ryAaS5BaYEuk556NtQ2UjEKHIjlvIwjRXTiNzS1VVwiQ18/M93jejC9huYNcNXF3fURlDW1csli0oJX7d41jwec/bpRyHSfkL04l5t4fAsXE7//6wnZG2Vgn7uMmIWeKkXBZFUdAM0pO9KClTDkmwqYzJ7q0R/uNT1sdUBsRtBE10yYtVi5nEUTFYmoDFElyg6wZJsONGnBupDCx8RVOvePr4MT/43vdYLZfithMBby5CrEv2WFCxLYPny6+/5re//z3dOMRd55KtK16vZY5/8ukn/PW//GtOT06Spjs991AjLvvtgeO7D7qDAswE4opsIyFMVuhpWzf+pyZA7YMQzTs/pSAfrIvpxsUKvdnu6LqeYbSZcWCMnNQhhOxLjZoAMzHBizGaSifGD8hgJBW5FNyhANyFdTD755EWGpUQUaFBpa3DCM5DpMGZBZVNqYaBbx0A/9hjZj0N0xL50HEoEB70r5xumLTxciF7AGgf/n0PpMcEKjOwhJ9Z6KaySYDPnMHk/gKcFop8bo6f8++yZRSIZTCmQc+BdypRSU2Hi5YgeVYZtFuA53zf/fZNYPt94PpYP8wVlgm8FyeKJ8wrmMA8EHd9XBZIAVgul3kurtZrXAisTtasT045OTdcXF6y3+2EgqxI7dtt9+j4TGU0XkFQFdViia4b4bpSihB3jkRhjUX10cZ30P8PHWV/HHxD2v69/5wjIA6FDZpKN6xOl5yfX2DGPfvrN2z3twx+JIyWcezZ7/eMwbPHMyoIQUvwoqkxi4amaWkXCxZ1RVU3NHVDWzds/vMvcXdbFAGHgGqnYD/0/MOvf8WTZx/xk5/+lLZeSqBYBN2oSrZ3XcBmZSIIA0o0PoQQGH2IMShx5yRZlEhymLiDFynWwiQvYfLbreua8/Nznp4/Yl23VMpiZJMarwKrtuFGKRIlYQmuy3H6vv5Kn48d0/1ZEytmjLr/jMTLfOQ575szR8txIBdkqZL1bBZPcmQeHzt8CNzdbei6bpIJeczKtnwa63UtVlixxK5Yn6wBAdvX19e5Pvv9DhcC3//e93n39jVv3rxB6QpPjTYNAQEoFgd2oB8dph8wqhfWICPJvdq2oWkr6qaKz57mR46WSmtkiFIhr51gKol7SKwnwriULJKpnjKexE86tXmaixMId85H9ydm1HgCbO8rarnvlCIohU++zer9q1tawSV+QZTTbfRzTpzOxHX9QEofPuTA2HP8Xcmmmubg4VpQXqwwaBUwKmCzNhTSDQUSKcZwomJFLNAwKW3iCpICcZN77pGjqOvM+hzHRLRNZ6XJec/YW/pBslu60eFtZM3CoRtN26z47JPv8fFHz1ks2ryWJgVZ67grlg1dsT6xMO+urvjP//APXN/dEhA3JzEuREMcIVmQeP7xc/7Fv/oXPPvoaSxDFnqxnVNfpPGivxV0ffdBNwq8mW1TpolkfUxDnpg7Ang7SgpvJ9R5+72kUBUavZSO3GeXDwHTKdhPwKw2Kn7UqLidlPzlshqlivKp+WJwKPBTAFDSGVVwiNdkAI/4coYgmZNMlSdTAlh52SkEuuS6KbLipUGgxD2lKM3xVv1gS9CHHR+6rXvsvveVpUzSkhalBFA5+K585kPfH4JueUcCTpMPdFoHjrXffWv7NPE8ExZNFokQklUl0evJ9y6mXS4XWxUfJr8kHX2gjBNIYOahFjvQvNPZuKgmnvvy/LHj2/rTxzAq8WnLFZyVYrJ6yP9aa7yLrAFVRaU0tutAa7b7Pav1mn/1r/81n3z6GV3f8//53/43uv0Vta6lfZyn0prLy0s22y2Dt/9/7v4tVpcky/OEfmbml++yL2efW8SJiLxnVVdNVlcXatSaZoQE4gWQEPAGD8wDiEEIBEg8MU9Io3mDQYiHkRohoZEYIcTwgFCPEDy1YGZounu6ma6q7KzMysiMzBMR55x9/27ubhcelpm5+fd9e58TWT1S5njmjr2Pf/65m9tlrf9attZ/8fLjj6lnC84unkJlcMlQ1UZKWEfXjNLiydJVwPWDVJN7BHQf7Lgc4G4Z8Zz4dHgH0ouHDKwC1smWsDMt22pJz0Dfe/pdj7eg9QJdacys4aRtmM8WNPUM09SYuo5GhISghJgIZQeLNzVWiefVEz8HVF0zPznl4tkz6naGTzSWxJyUSMNW5jIAY6hI3AXsIxWptbK1WteSDBeUAp08adHIiv2XXCVaKdqm4tnFBcvFOUHH98ChY8GfaFXT1jWVMei4FuS6uCbK7i/gUjnrPsTbfWwHI32tBCxqMqcPBzmFlxw7SmNs9FqOLzE10vdkVKJjHEV78abT/I/VeiWc2aTwAaGQa9uW5WLBYj6XnY62xRjFZrPh7v6Wy6tLuq7Lz01hG6iSmSX1h8vACFUBBhAQHFzAO80QQ6TEjdljNh1aK0xlaBojCZCzlkqrGI4ifaJDlJoJHEU7S6lYKEqLd7t0fiQ1PELFJH+kj1R5jwgcvUoyVeW43nj13twY50FxlkCUzRGgFk/eO4rcmpDeR4menzwtoYEEn/faMfnXMQEzzv79dhx1AMSQEaXGyqS5H1T8HZPSffo8h64ooSbMRjAR9oiQGXeGxzlz0Obcnzo/M6iQ55WPmE3oEoUiUvJXiCHDImNevnrJZ9/6lOVywe3tiqvLa2ykR10s5rF6aRX5ykcnqDRB5v8/+/FP+PWvX2MHH3ngRwyXHIe6Mjx78ZS/8Sd/g1cfv4o7NOMcmyAsLwXd7CBVVO9u7+OO0PHjtx50O++5vt9k9g7rHINzQhY/DGMJ8k5KoQ7DEEujxjCR7KHW0bMTPWC6Jui4EJSUwVV5W1osnX2ZXYjzyflsIUdrU4WUYRmywkh7tSGMlEkhUtINvWSRt7MFZ8+eS5xv8by0SZPS3XwAhz9Igim9L/v/PtbeDz0/6YM9oPJNwPZD1+5v56bIswRIfamU9gD4sfvuex/3veP7nwU+hIt7H4SV95k+J4nTB2+TQHdMLHN+rJimMdgk/Lwkmei6xfmt8LYXHqPcZ8V7J4/M5JxSk/aWZF/vO471bToS1Zra89yMuzxHxgVZFc55Tk5PmC1POTs7Z3myZLk84eLpM6z3bLuO+1hVMcQQIKM1Rhm2XUfvHLppYniEeN90cinF2OaAiqA7aVLhBlZNhVK98PF6PxYoQ+VLj82H4zsp09dUjDGQeTzC+GM9MqhozOyEZTNjqUTOaa1pjKKuFVVj0NpQ6WoEwEk1R49KUlamCXzvD/6A6+tr7lfrXNmwbmounlzw4uVLFoul1LhJJdUTk00cE2E7GJ0adhgyCLc+oGKiW9NUo+Gm1IGDqwzJ0IhcPVnOefHsgkUzY9sveXdXUXHL7Cm0WranQ+T+MQj1F9ahlYAlHeNex+TYaacfh0+HR2lITcMaRtA29XSPPpbRdBzv9VhoyXSOhIm3V1ovsmwMbTuyK1c8Mtrv00MrqqZGaY33mmY257Nv/ZDGVFSVxCx33Y6721vevnvDdrMRGjcddx4iIDGJ9Uol77Ak9icKQpnHHryElgQlbFkaQ1ANUBGCwQcTo8Vlnum4/sxOY0xPbbZUWtE0hrZtaSLHcgZHqpCd2bucAHbhTY3nRh5mL5+P7qnY7gL8pfvlvt8PA0hBqenyOPhJp8fGCPgma+P9MUn3SCzmKqQE46iTj3whrWs1PRl/yR8ZF49Ppuit6ZukOUOEuNn+D3m8Q5BQsqz/lMpsNCloVRISJVnWawhx50RR4AuSrvKEYCbtmEDvEPCMcy7PeS/Op91ulwsfWWuz1zk9IzgL3vHFF7/i3eUbjNH0w5DMPBkTDYvFgsVizsXFBU+enPHy5UtOlgusdQyD42c/+xk/+clPsNbFIkJFr6vR+Xrx5II/+tFf59WrV5MdEVWMVTlqfdfzZ3/2Y37yFz+l6wbu79c8dPzWg+5d1/NnP/t5LE3eCduHi7yu0SuYrLKU+QwQlEGZCpVLahee6mywHBPTIZLhH4dNeZqX1nIgA7pUECOEAIkNI8WIW5sTNbrdjn7XibGw3WGt57PvfJcnLz7GBlE24+KOXoE4yI5ROU4mpxpDCQ64WrPgP24wfOhRKq4P8So9dpSAMP+OQq4EyJQ/MAXhRVv2waV8KP8JYXrP8btjTLfowem1I0pOhkGZSPhAH0WhGaEXknQHeeLFbbXKmLitFr0JgQzAFSoqMC2hUW6vYuQozfK4lv3xkLGV+K2PjcWxv/fPJbyTr1FJ7MU3VwodGYRGrGtwPvHQx3YqxeLkhPlcvHBSMMJze3eHaVq++uorBh/YWJvXoSHSiK3XYjhbR2ctZyenmJjwpExFwIwc82k8kUIbPkhf+mEQrztphBOQO26oHgNSD3rJy+tgZOEIxDEWwGCqBq1aIoUtdV3T1oam1lQ60k4q8ZAnhSldroW1IIygeXl2wbOXH+eqhiILRKkYI5U++8FlAzOFU1k7CKsIElOdHA+VqWiaRuRPGGPE00oo1X6gcDwgnvxKa05mM56cnnJ6ukCrQLDwdgX//tcrvmtuePXkhORS0EoRtKfS0NYG3RUqLf5H63JNHozQ5PxDO4/jOpFiSSEiqvLb4/VxDNVxQP/QPHl49yi1M96bMJU/7AH1OG9Lp0HZEKUUZ+dn3FzfRGNHqP0qbbi7veX6+orV6h7vZEcBZI6JQ0lBZJbIKyB2gok7pZO8kmx2CHuMgFKLVgNB1SgMqJoQKhLjlo8kBdYGYaAwBqMUXe9Yr3uMUVSVpq4NdVNT1xWzWRONk0jAGuOQE9BDxbjiWEY917vaA8d7kE/eZzJ4R8Zn7+9yVowG2B7o2jfI1PQeE6ifdNvBQ8txLfJnwvj9UFw+OuDiO4XJt4q/ZBc/zbsAoBUiPUDjMuMMZGLb/H5aCZBVWhGCJihxAKQ5kXZHtEnJ66LrdC4KN/bimJCNOAucp4+5crvdhl23i/M+cZPL7suTJxe8evUpPgR+8s/+gtVuzfpujTFEJwzU0WlqvGa9Ep7zt28u0VpxcrLg6cUFz58/p64rPv/5LyJ/OCTnahqblLw/Xyz4wz/8Az797BOpkhwN5OyQSTMjrk/vPVdXN3zxq6/YbD19qAo6zcPjtx5098PAr95dy4B6CbJX0VtVafG+6LwVohG+3hTDesQKHFcJ08kez0SPdGkHl1G08n+x+EoQ573HRVA9DINk28bfibe07zqGvpftYO9jVSQIzmOqmlk7B6Kwi14ksXBFSHoUEn+cYtXGBZAA9/s8wOnab3K8zwv8mwLuY7/3+/TAK33k78c+S1W2yvMT0DTKRFGAiSe40HOPtTt9eWIgjLeMiizELbIoxEPa9lTjTgwqe12DJ7soJAFoZOOQdX44saUAzXGPfXku7Y68L/b14XcVcIYBTHq/8X3TIW0Vqa21wQWFR+OjD0jrKv6oLJZ9COwGy+puxWq75emLF5zYJ0ILZgwhKGqjmTWtqBOjWS5PZUuxaQhK4ywCrL0fd5QSePFpd0gSHCsthbf0QesfBlQfchz0V0gAiwy8SQZwAhFISEcfpPyyqYR+C8hOgPEBce44n2NUtQoEJUbcyN8s0MVGqkHrbaQnlX5JMdjGVFRV/bBBHor49f13La5LwE8peHJ+zifPnlFrhQoWvFAHVv6Gp+GWF2ctdSWmpUymSCWmoa2q6GooMGEQejSV9mkOYkjVRJY/NFb7c3/iRCjeJQFz79VYVj0b3gIK9kO19gH3sTCWsm3vM+AEK+2PfYZPgHj25vM5a7vCecfXb95gu577u7tYxbB0tkzlf9qRKr2PhICJNHzWOogALz1x9O058eIGF91AoFWFUjWy06SjR1wTqFDUMgdJ3lGNsqCtR3UeECA0ayratmI2l/lfxxCTAJFbOVnyPs+LEWeLd1sc1Hst/sC1u9//D5l35W9V/BfGR30jtVhgkpL/Is26YinuzdPxFochKmNLJ7JZS+gXaFIFVIhguDDytE4/CjB4pVJUd34/nQvuyYr1UekZpSPXeZRDXvJ6XIBhF0N+Iy6ybiBMIgsCJydLPnr5Ed/5zneoZwtev/6KdrnEVjVBK7y3DDZ+11kqAm1laCuhPK0AXOD+ds3qbsWvvvh1jIDY0bYz6VU1YgxnHQ7PrJ3xne9/h+/+4HtUdSUVc2O79DgapGoKgs80N1f3DD3U83NUNUPFqqHHjveCbqXUt4B/C/gYMaz+Tgjhf62U+p8D/13gbbz0Xw0h/N34nf8Z8N9BIu//RyGE/3s8/zeB/z0wB/4u8D8O79FkQWlU3WJUUb0vAhZUssrS8phq/7C3PLKnoRjc9Oc4QSPhVrIOozBOgtFZG7OiXQbZfQTWu92OvuukhG68Jnm608xWeYmOv7UxcQYrBuewYUyM3PdiQkys2wOkFG1MgLUs3vChwPhDgYXa+/3Qt/ZjJB8yBOI/jgLjY4D6GGg/6oUPHHxvco9AjKEcx3z0buyBpzQfDni8p0DbE4ikZgehQenQRmPtEIuBJSBeYUzFIahQB/GjU79G2sk5VOz7fZ0U6z754f78eGgeTABLiNuFIWTwSN5NGtdjCEQFnm8iLB19jzLCkVsFRaUCwVswmuXZOcuzczLJi1IENZaPTh0QkKI/dieFYmysbpkenOcH5RyVSo8wJsIkxf2++X9szR3rHxmT5NVPbU2yJIbmKFFSJoLV4MER2G4tw+CpKitlnWszUbIpSa5kvEnhSc5LEZrELuIjzaXRBl1V1G012REjv7f8OToOi52jwotd7vIcA5gJwDlrqbWmVilvwVNpz8cn8PHJOaYy1CrE8tIhf9cYTdvWUuIpr93czMm8mqCRYiwe9jQfju37rk30syH562KfOOeO3vN4G9JOXAHYyrHzI63pOFGPA8XJmSDe3ouLC3abLUPvePf2LSpEm1iNczuEafulkYeBDfHJk9BFOXfYTzoCF4KP8sQRfA/RK6pjqJdSBqiEhSyItR6CESM81b6INpMdOjbbHeFWwsnauqJpKtq6op01NHUVY7zl0bKQdQ4xEOAdeyr2ZYhFw0hVfY8eRwyk7PVK3R0m67u8OuvBIqQlt2PverVvROcVEI70crrv4/8enz1tVch3HddYCGknXI/FqHwg6BD7KuR+yrH+CFhPBlDqhpQgLf+OeiVo8CHKC7lX3w/YSKe8Wq9zEUCF6F8VJO+maRounl7wg+99jydPnqCN4X615fLdJeiG9vQMW7UQHTbOD3S7NcOwY93tWNueylvmCmZaUSHVLYnFkozRtLM5suPnGYZe8BQWU1d863vf4a/94V9DGYXzjlRMdzQ9i/AeJXp6GCxvL68IGKr5KaE9gb8K6AYs8D8NIfwjpdQp8A+VUv+P+Nn/KoTwvygvVkr9C8B/A/gR8Anw/1RK/X4QvqJ/E/hXgP8AAd3/ReDffezhSimqpongk7yWyiOgpifjBFAh2Y1p6o2qVyUi+AnmG8uAJ09y+slhIdttLnGafieALUBkz2sRiF6bqDSLxZAGTyiyxIocUtiMPozRTm0sgfX7jn3vy/uufezYv0v2vFKCwIfveQwoFx9OQHfptX0IgJefHX3W3tge/SmvjcruUMBFMeQP25gU6jhvHGgdC4gwgoRCVo/GVIQ4oRzj8WcMvRHOWR3p4BKAK7suA8i98Z4ozng/H780Au5UcOlQ8ZR9MYZxjV4xFcZ1mdqscg1UsM5zdXOLHQa5RwDino0xBlU1UDVgKmx8vnjA5ZY6el5SrrHzniEBnthAndGZwmYQrfLn5atJ3HZcffkzlf9deslG6s5xDhz0KdNjBFUj6NWx7cF78A6MjrtcKiurPO5BSShO7+k6D9pKAlql87UCrmMYWzTAx/wVyU0xphJgm8LMgijNsdVh0t4RaJDnKEF+a5VA/fj+SokhWHp7R8+47FCq4DE64JQjCkKaSseY4kAFuVBZmvWVUszqitpoOudiUhdZVIvHPbEpHD8eBt9qbz6TFT/FOBc3iv3tDu4nCtw8LDNDyKOapPSjLP/5PnHth2PwMCKmwuZAweJ0yWw+Z+h72QvI9FVJB5LHMn89/kcV8y5daExFiJR7ydx6CKwKaEpXJG+lk90NDCksYbmseXpxQTc4Vqsd2+0O50BF4sxsNCIUmyB/W2vZ7oRvQ2toG0NTVbSLGbNZS9NqYSwyChV8UdchyUPpWzdZs4HEiZ/aDR+mJ7MxyvFx/JAjHOzSRCzwjVzje/c8aI/K5/c186hXxIsdomxI8yQw7gJn3JUMNG327jGabclodCoWfbOWru9w1olXOzopbbFDn8G9Uszahh/+8Pt8+skr2rZFI3kTt1eX9L2lqhf4eonTDQ6hT9UazMk5JjiCs3jbM2zW3G3u2Q09LY7aBHTw1DpQB9m5kjnrqU2F9h7VtLx8+Zw/+uM/ZjafY51DG4j1ScnVOUcpJPzeQbHZ7NhuOnqnUKYlVLNHx/K9oDuE8CXwZfz7Xin158Cnj3zlvwr8H0MIHfBzpdRPgb+llPocOAsh/Ptx0P4t4L/Ge0H3CFLkxN7kCmOWd5oACUEVJSLyuRJMiBJPoSFO4sZ3O/Fc59CQtA2SEjbHQP/kMVIkJTXdhsu/jwpQOVLCRZq5PhbRwYuHKVWbnHhGEsgLU8t4H2CVv4+B7w8JMcjX7v177MmHj0MF9vA9942JxzzcD4Ls/b9Dce/Yhn3ATQbn6uh98z396A0v2+AjbRJIfxodt8qTsEoNCUwW4jAM9MMgnhnG8dkHzLlNfr9Nh2M5FgKaXpvus7/TkGLHleKoJ0uuHU1GH8hUWGknxqVCGCaGdomkJqZe4Zznfr3K1JvpvifLBfOTE6xpcdrgg0Y7Wcsel4clbX+Wq3dfZ5n8SiGy+sQ+n/TWCB9SUpYKAaPj94rrdQQ3eW1O+vRhkJX7ldH4lh8XE4ZsThqTqm76qGxOcY0Ssyrx8MEGrJPQNSmJHrIMapqGpp1lwJ2LbE0QZpqCE8kUlWWK8QV0YacU8zfxHhPv0XUdt7e3PHv2bLqjFgW0tZbBWmbJWFAKE0IuDCZhU0dkgoLKaGZNw3rYPShXRb4fj7U+fiRokPpY5lUZQjPtn0KL+MOwkRCCJHw+chTYV743EYfHQ0o+6DWi0VS24/T8jNVqBX6Ici4qyrzbIutRUybmj/dL2Q0hgK4q4b53KWmOA7k02dGhcCWVMi8a1845NC0vnp9QNTVD59jtBtarLav1ju22l3wDbbBe44PIkgAEL2waHghOxeTOAXW3RWlF3VYsFnPms4Z52zBrmzHcISQ9orNsVFE+JWESJu9VDtZ4WWKv3D/K0/m6fIeHx/Zo6Fr8/gQpvA+EHzxi2tAPm10hr8/86uPEGF+qBCn5nylUKDpGIrWj8+KklFw28Wi7hFe0luqyEfSLAROojGE+n1MZhbM9uyBVILfbjuvbO8lzq2usqgmqJlChlJFKxFWFCQ7vBvqhp21OCMunuM2a7WbFzvc0OmBVYPAdlXcEE1DKo3RAVVAr8MpwfXuHqWvaJobb5VeOhll6Xy/JuzZ4fvXVl9xvd3SqwlU1w4SB7vD4RjHdSqnvAv8p4P8D/EvA/1Ap9S8D/wDxhl8jgPw/KL72q3huiH/vn/9GR8m8kDzE5dwMKgLs4AnK4b3FBztJaByGyH7SD7E8e4wx2sWY6xRC4l2xcENOelMqUq9Rypj9KR4OwfYBbhKB5QM0VUVdN5GpAYKJXo1QgHqSKBu9Jse8OscE5D6gK7/7Icf0PR42Iiavt3d98iplQ+QIODwswf6bg25FMrdGwPTYfcvvHvOmHwJfYpW0Kn4e6fAmEzI+t5inIQT6YYg0gIrS073/nkoVHL7FLQ9mWwQRoycmHFxUxn0nr3qCLgcG0t4Yhzh/QlSsAS8kHFGpmaCpCmib/B/aGM7Ozrm6vskUZSAV5wYfsFJyEK28FFnwkkHukwIpFNk+6E7z2Rev6vf+XRrE8Uvyeir54ovdogIwZL9GadiGaZ+W87mYYfG/cfxCIHiFV2PlygxSEzjKb1i+V/RERYHfD5beDlJ0IxbtGB0RKjsjgtrz8B85HjS2U3ePODRff319jVKK+XxOXdeiVItE7vIeKohjYGctpyHy6MbxVIRcgXOv0/OztNZSZCXDarlpCIfX7wON/WPqQU5AlQd2O4700d7d0/XOuYmxse/1mxgHyVhP5ws5UMrvUs4/dKSEufxWSoys8/NzLt++Y+ct3tlszKfbCbe6jEOqpIfShJCM/jFfxAcVq4x6KvNw3xQaJ869fXkuxmbwHmd7lA5CGVgrWtNwNm9wz04Z+oGrmxv6IbDaeta7DusVOsWGhwLckUJFABvo7cB6M0ginVHUlRTqOVkumM8amlo8ooSKgAMVKz6J5h0hZC6Dntq+b1yMYDSEYzPuw3Si3Pv4lb6cHKkRB8d0dk2N0MlDHgXtpada2jN68KdPi/PIRysk7SUUMsQHoS3tu15oRX3a8UjmR4jlSZVQJ0ZrNBlHWsdqllqMqs12Q0BjLby7uuNua3GmodMVOyW5ApU2GFPRNjVNJTkDipa5kncPztJtt6zv79is7hhwVLWhcz07u4PQpz0WNBJueH+/40//9M/5wfe/y7e//S2MaQqxrEa9EyS00jthdrq+WeFURbU4ZVc37Ez9aN9/MOhWSp0A/w7wPwkh3Cml/k3gX4s9+68B/0vgv81xCfiQZDw6+5RS/woShsL5+XlW5jLkUdFFwJ0UoSfgghNmE9vHIPse5wZ8GEM/VqsVV9d3En/d91jrZSvETUNDxm2VQshoddDiEuA98krF+aSii20ZQClNpRTKe4Ipva7yGXHy+6KNDx0PfV4usg8NOXnsTY4d+0ZIBiOpTXvtP+bhfii0pPz35J4P/B3K6+M82Qe1x8D2/i7BvoCafnf0dI/rU+cukHjx0RdUdqKzLvdHauL+uIyCaQRqsVGTHk+V2BIwLhVD6tOceLsn3B/y8GdgVCqeAowmgUsIhbc5Au7o7VZasVgsctnlDE4iD7AYEz6XhU80YKmT9g2NkgUsHTYbCGP0fNHNk99jRdcEjdP64/AobqSYzp/jR7ymMO7IY6vxXjz3eCdzRGVisQfvl0LitNHMq5nMA632mCMTYDp+l4fW+qHi3b9g7Ib1es3Jycnk/fdDS/aBY2ctHtkmHqF5kq+eHF6190ilYNY2ArFCMoDijkwyLh553+PHCLJ/U9kXQsjrMIXW7BvI8UIxfkKaXQc3eqC/RzCbGFNGo2Dv0tIgDWAqw9n5GQHPYIdcbCQQQa8fxEGgFD4I9a6O6zRtt6e1HFQ0fIPHByXOrT2ZmHu0fI+QQNhYSyPx2C+Cj8Zw7CcVQMd8hsZwspyB0jx91mIdbLqe7bZjvZES694nYymGrEQkEFDgdSwBD/3g2Wx33N7tMFpRG2ibmnbWUteGpjXUlRbavLwDHmfUXkx02v3Zw+OT8QgHpz4Ueh8eh1NiH/DvXy/CbDqXCjwy0cGl4EzvHM9NvNwxBCsxuIXirtlBpHAh0A8SEeC9y4VyrPcxUVxuqyM9pVbCNrKzQ06g1FqzWMzQukYpsMHTO8em6wloVpuOTe+xekZPzRBqXCp4ZgxVVVNVFUpJWmM5n1XV0M4WnJyds9vtuLu9Zr26x+ia2ckJKgy4fgOhQyuH0h6lZDfxLz//nPlizqefvIIQsr2gIxYMKIzSBKN59/U77lY7dL1E1TOkkOPjpLwfBLqVUjUCuP8PIYT/Sxzwr4vP/7fA/y3+81fAt4qvfwa8juc/O3L+4Agh/B3g7wB89uknwai4fS+VUmRhu0THF7DO0g893dDRD71ktCKB+XVjqOuK+XzO+ekpv/r1r/npz36eM7Ml4zZuGyiVC9lAVPlpnqZg2vyrsOIYwciDXV1oCVEsZZy3/NaSVSTGRQwvkTyegFc+eiHCCLzTDwUIeoBCcB9wl0qiXLQPKaT3Af29iw/+TgC4VDilAk/vlH4fA90f4pHev+/knA/TthX99PCrjO0/6t3Yb6f30WMxKlwBd7HPmQL37HkNYeKF3n8vF5NxRzwaCDE8Qa4dgyqmgjKBHImPs95NWnbg5S7fbXTJ5bNJmQrd2v64qOJn7IFEQVa2hUh7p0PAqrGfVRGruw9ZYi2YIy1NCmg8kTFp0ZfjDkARnxcKFH7w/kl5pW44ApYSsJEncDBTMuhO/eTxXta6DyECmhBlzwgqUSqHApQVHlVGAXJh2HvcNwGU++v+oTVuraXve2BKI1cmWaV75P5SiqHrCZzEtnqEh37avtLkSArfaE3bVChvUbpCGKmIO03FN/I4H7a7fJ9xbr4fcD8Eyvfl5b6D4HA3pVz7H2gf7OHrwP54prsV144TnZcff8Szl8/zbq2LIUF919H3HX/8x38day2b1Zrb2xvu7u5xzrLZ7mJCmXi3X378MbNZy89++lMpgT4R54WXPf6IXBejfrDiZW/bltOTBVVVse17FosTNAJJfNr3iAajMSbPo6qCeVtxsqgIF0us9Wx7y3rTs1pt2W4FsEllTJOLX4VQ0NQF0euDA+cUXd/jV53E/xpF2xjapqFtKpq2pq7ESy7zIw1AYWQcDGACqaPMmQDu9w74w/D8QfN7cvGhzju4/sHnThsneunwulGHyCITI87FKADPYB3WW2H3gKhHFN4LQ5UKkrchOQYKHxy77Zr721v6rothg57bWzHem6ZmeXKCrgwWUFXLu9WW3hmsqulVTa8rvNJUqqAqDFCy1aWMIhX7TOuK+WyBMQ1Vs2R1d8fO9cybmlpXYDcov0WpHpXDoSyvv3zNs6dPIoVlXNtKdC7BSFipc6zu16zWG1xzilUGFTTVe1LtPoS9RAH/O+DPQwj/RnH+VZB4b4D/OvBP49//V+DfVkr9G0gi5e8Bfz+E4JRS90qpfxEJT/mXgf/N+54fQmDoOgEMg8X2g2xjdF3MgI1vqBW60tRNxenpktPTE5YnC+bLOfPZjCZWULu5uaYyOlcDhKgIorYoQY383vv39Crpi3RheGAhjSt5/H6AtOkqVrvHuoEmeAiFpzQ9TaWEskLJRxC774FN/fY+UP2NgPSHHHv3myi9AnBPfuK1Jej2xfXp+4/RBx593t45RYqPZ9IvB/eI/w1RqAYOi/McMwLkGXJNAkrphtmBouIdI0AMfkzGzPfYU/jp3ffZEiQWMXnY5LyNVRYfOkIGgNOQrP2+Kt7moE16zNLauza2NVIDJkQoiZdTP4tSSjihScMcchXDMrY6zfNJXxZtKg2iACNF1d47leOdPOEhZpjlcc6AJ16b0OND5Y0ZAch+n6fwkBDfT2fQLYDbqxgypFzc+k580dMePRoylmwEpXIbD7zNSk3A8YceD4WdlDksyai31k4M1jLkIP29sxaLMAikPkk9vN+rpXTUKGpjaCsjLC2FEZu93Q/I2nyXA/B8iITK+bPfB5Prim+GaLCFvf4AJqE9aX0mXHbwvseMHDW9bmzLA/Msqai4rlExgXZRpQ8m+kwpg7U7ZvMZ227Gp+fntG2bSQI2mw2r1QrrLJdXa6mQ7MtQoChnYrJ/6mOF0Fxqbbh4es7Z+Tl1XbNer9nudmhtMFVF8EJHGJzHh8RmpACP1onhSJxhRomMqmpFU9WcLhrCs1MG69lse9brHZttz6aXAnkgNTqSrlTBEFDYSDPptRis1gf6rWO13Uq1S62pjKKuNXVdCRBvqlwwSHYHohzTKf9lnIsTmTSChYncCNmjnIdiMubFhcfndGmFTc6pw38+uuSzpNx7sIrPLsd5LKJlrRNGJAuDizIsu35NTOgudvaUzn3hvVBLWtfhnaVpaurKxJolIxPcbufZ7Tpurm8wTYWZndKcXtCePMXVFb3Skj8UoisiOlC8D7EomhpLJIXp+yk0RlfMZks8mmFzh3UdOEelJKzHBo/yFo2lnbX0/cBgB2aqyWMmVL7yhwsw9I7Lqysx7oLCakPQKfXy4eNDPN3/EvDfAv4jpdQ/juf+VeC/qZT6kziKnwP/PWlc+FOl1P8J+DOE+eR/EEJeYf99RsrAf5f3JFECDH3PL3/xi8wWMuyE59oYw+nJCU+ePOHs7IyLZ085e3LGbNZIlSsVJItbj1ue1lmapmE2b+n7PlppikP/C+PKyAvhkdn8wEcjXg/Fgty/p0LpQD1rRDBFIBX2hH8GqIWi32dKKYGgj/HF6kD5HFNI3+x4H3DP7SzaWnqwc9z6HogumWNUcf4hkPsQqDjwXqd7+fGeD38/5LHJuL8EV48AbhWfpYN4MHUcd2mKHr0GQZL5rLOZsqls8/47JtCTdziy5T2+3m63e5DNZtrHjwOx0itcnsuGY3TyTOyiBCpBKiUqFZP9ICVSHRo3Sri7i1jSwF4Bi73nl8bueI6xTw6/mfsHonDOKjB6ZggoXyaxxkjP3N4RkO/Pmwe9TOX4EekBw5j46JUoLhN5tYMKKB/j67WKnLUP5GHE3zoC7/15sz8HUhLYMUPkIZC9f136ncbROUfXdQc81al96Yy1NuY5xM+Uwqtk+IS9q8tGC4hbzlo2651UqA3JiPsmyZMPv5t488Y59CH3zM4DiA6bsVCXTo6P+J6ECYQ53oJHdhfy8/JNHpB7YYRSRx4wfl0prm+umbUNXd/jnKNtW5RS1HWNMYbZbMaT83O6rmPVd1xcXFApWK/vZSxjgTfrPfNYXt7EBDilhM2mrmuc92zv71kul3zy6ac8ffaM25ub6PhIXsmRQWM02sXTqCeczX4EMUpR1YpZ3fDkpMGhGZxnve1Yr3esNx3bXY8LcRcQ4Qj3ysgaUMlQSaF6wq6kHOjBoujRWmoB1JWOBXsMTV3R1OIZF4e4kDMoZDc967ICtubETVUEvIWs8QtjaPz14ByMwH6CuYuYlzSHH8Ih6shf+YlZfkusfHIEOe8Z+p6u6+n7AYLCB43LYyWSkuzISnf34CVg0FkPfqCqtWCcuqKujBS1ifPAR+rYlF832IFh8FhlWTydY3XLQE0farzSmMiII7n8Mle0D3idSluokYiHlOSZQps06ArTzqHrcX2Ptxs0W4LfUWvHYl7x7NlTPv74Y2btHKUSH3fUvS4aV16x6yx39xupjVA3bCpDMBWNOqx5UB4fwl7y/+L4fPi7j3znXwf+9SPn/wHwR+97Znl0XcfPfvazbE2pAG3d8N3vfY//9N/8m5ycnKCNjoH4SDaqHj0iKHJVpVrXfPTJRyz/Ysnt3T2psLKOXKxyfEMwGia/HjU0H1JPSmtm8/nI133kXgmIl+AvHSk5KytcpTBax2IroyfqGKDKbXtkkux7z48C7dJr9BDYfuAnvUMJvI+B7sfanIRyqaPGdn8zoKQYwXaULtkYmo7OtG0JeEvyXIzbhVHaJ8MJRYhxcPLuo7c6FW5JQFE+dzhvx10AyOAj9YGw3hRK+shrlqFH+2N5LGYzAeF0O40833kfPbQIH6t62BBJ3z5oTqJVTLI/FGCsAIk6C/mQFc8BWEzjlBZ97uey9YEc0KXUyEiQgE26VO11XgG4jxl8D81LmTYq38KFEKvijGsU3AgijSjSBMzLPX0FeYdrnOPy31QLYN8rrsrrJu9WvNoHGLBpTWqtJ2EAi8WCYc/bXX5HQLqlt5ZZPabBpR6QYnAyd47JXK0V89kMtd4xhSSyyn5zl8GHHe/bJQghZKA9MVCZLsE8Bg/Mq6NHvDYQDhgtjs63LHvLiTxenwwmHT3z2+2W2WwGkOVtGufgHd5Z6qri+fNnvHzxgpOTE25vbvizP/2PqIzh937/93n16hXeezabDW/evuWXX3xB8J6L2Yznz55xenrKbDYT6jetxZu+2x4Yx2ld7c+hNH9TIryJ8jBEpa4MKO/RFbSnLRcnLd4LZ/+267lfrdlsO3bdjsGDRP1W5Cw+it1kNRpPygcGF9BDoOodWnnqyrCYtTw5O6Nua+zg6LsNgYG6iYW7AG1U5CaPY5/0zuTdki44PgX253VpUE0+i2E0o+wsvhAvLuXP+PnoXJC+V1gbsC5ExjYr9Ufij/cBF0G59L+wk+hoGLd1hakqvBvwzhKCRQWH8GI7ut2GBXNm8yYC+1ixUsWE6brORpsxFVoZ+t7zbmehnuGUwcVKbMFrvBJZqrzDWY+tDU0lu2J1FbnHVTJtomNFJS98ZHQ3DV7XrHc7/O6GRvUsFobv/eC7fP873+bs9CSv75iuJRJH6bjWFHjF2zeXbDYd6AZtaryp6LWmfo9j4Le+IqX3Xsp2JjwRFPW85tXLj3n+9DnoONm1eIy19nHyI0wmyQQzCrTm41cv+exbn/H69ZdIXLWPwi11U0xazPp6XCSTo+jV8ND5AozJv4uLMqhSWOeoqip64lSxSI8IqPTJHnDNnu141+zv8gGTYsWPei8Pj0dB9SOf7Z9L1Ib77dz/u7yH9z53VFLoB17SCE7H88liH/vnGFD/EJBRfjf/JCs3g+H96ykAelJe0eBJSW8B8Woi1HH36w1d1+2BbOJ7jdR/Ejud+iQc9Yg8Cg/ShIiAtKqqHJ978M7pmbAHXtNT9OQ6KWGtD/sylEkncd4V45GekdSqlA6W844xBEQVbzwqn6lBMlFISvibU/vKnlHpnJK7aRQmw/BCOYXD/j22g/A+L2W6Ycb0YQybUiGVgk8Gl4/6UxV0Z3IDpUp5cMQ4jspBFbHV+kjbEuZLUyHZZ+95g7wGkoJMcsMYk8OZpuNaAlAliruWcvJqjIeQDKtk6O31q0JKyc9mM/CeoBPJ3R5+mczP6T1Se953HIKiQ9kYxg8OPt+X8YdrM82tcUY/1I4QAql8i7DwhGJ2Fu+T+jmUzx/Xw4MyWmuGwdJ1nXik485FKU+bRhi01us1P/zhD3n16hVaa3bdjrMn53z08gX9MPAP/9E/wnvPxdOnKKX40Y9+xPn5OfO2BSWUks5LwmatjcidI++d+lFrLXHASQfGtzYwifBSQNBxF1FH4BmcDKGB2kBTGU4Xp/hwirWOrpe49dVGKOWsDYAhUBGUEZ+1ir0YZMyCl/43KhD8QPCWbrelwuPtDm87wKIMVHXN4uSEFy9eMJvPGOwgst17lDJxjetRdgdxAExl6yPHMT1dyMCxZ9JHfopniuJOKfQihCCx2YNnt7Nse89gRTelpHwRVzoW2JJ1IrJJxfo3EiZUBagrzeAc/dDh3YCJXujgLV235eRkLvdKOj/tDIUAwUeA7HAommbGSdOwaZZ4GlLN4FrFCsJx3jvrcbHgUV6vhhgaFHDxvj4EbCyOo7xHu0C3s/S7AexAVQ28eP6Mb3/7M5anizwvE2tOJtkMZBnWD47bmxUoTV3PcKpGUeN8YND++JjF47cedAPZ3FPRSgo+0LYtVV0JgXml5bcBFSkDlZKNKXTI4MeHQF3X/N4Pvs8vf/65AO+EldKSCMWSTxP7EFOMR+zbUSA+0P7JvyOQCLJAnIVhsFLuWmnZ3s4AugjTSM85AlqTVzKvxdRnavoKCQCU3s6xWY8D6m8CYkMI2Qu3D7rLdu9voyeAVvbVfsz6FHSro33+kJHwIUbDMdAtH6RfKfRkTIIMQmKN3e1QtcFVsvWulcTrJk7s7XbD69dfstl2bLe7GDbi87Xp+aUySoAtAdhj3sWHjoDoJWMSQ4HP3hECezy18oK+UAmTeZOMjzSWQa4LBXXcaBiOhqtRekxuSc8RZ0HcCpZxTFSB47ulOT2CjwRh8pZq0T58TDjODY9AL8aw62gMVCpEpVDEtsfPx5s9DtrKz8qhSPNBmhP7KKTQlhF8e+9xSjohqAQuxuTUdK/0hyoelIEpEsajsue+jOnOLpoDIDh6+fdMl733V7ENyStVzsuH4s1HoQPBe7a7jrNZI8xMWfnHkT3CXpKea5Twj9dG03kv3islc8WHcoZ+s2Mq+x7+PHd+frdRnvgiv2IChAunx4PHvnybPj3Lm4fkVpabYfq96e/pkXcPFQzdLp93TnZaqqri5GTB06dPWcwXfP7zn7NarXj69Cnb7ZbLy0sAXrx4wV9+/nMq03B+fs4nn3xC27acnJzQtq203XmcD2hds91tWK9vWa1WdN2WZxcXuaJs6cEPSlEZw45EZzh6Y9MeSZZZ087EEKagPOJwgmRKmUrRmIrlbMmzc/Fid33PrrPsekkQtk7hYwx4INEoGnJFyiBlwr332DCgQg/BQRhE5g+Krlvjho7nL55zenbGxZMXVKZis+mwztP3lr63OGfj+kxrS96Dg2mR9OODwzodcxXEGolSUqKxVKx4LJUnhedf2jFYi3MBawPOKZyPRblCas+4pn2AyoAywvCRn6I8tt8xdJaL83NUU3F9fc/Q7QjeCeiO7r+u28l6roXSsaqq7GDwUS4oaxmCwyvo6xk7r7HaoBNnu1JoozDKZBzovcdbxxAUwSgGheSDtC2np2d0Xcdmu8U6KfMegiUMHW69wlihmjxZzPns089YLuZEao3RaIm/tRoZSbRWbLs7ru9vsTF8TqGYBylwWIjAo8dvPehOSkGliRB/pEiEY9a2VCYmO+gIZpEFncL5FRCcRwdFrQwfPXvJH/7eX2N1c896s42gafpEOabbBKktB0bm+19g/DOU/0qeQE1d1dSmRukKGwKJhC4wbn0lwBJCEA9QAcZVCIX3Oy7o+GGKGVUJn6pwoECPAegP+b3v6ZryQE+PtMhSUYnyuwegLX6m9p5zAKaLXwdepkfe6aHjEHAXQDH5C9JnMQM7xIXvrePm5oblrKWtG4wx+ESNFiS2bL1es1wuefL0OX/5+eeorsvKWqa2mrQDOBoTDTxkb+TPyv7RWuOdbA0mZJDCq1LghdLT+ZDeX8R44XOLccgBH1mkVAZ8k0cXwiclZMmIGlzQUjAnrdcwFrZJIQfKO+wQty2do66kBLSO4DRVbYUoFI3Q6Y0MRCpXstMJqGqVKayUGnn/JzUg9ubD/jGdSyVSHTXkOK+jEI/hXykMzCupKolL4CLg3NTAfOh4yGAlgfnIIZ0Kd5WHGm8y/vsBGZXeKMX7pmcSz1V1Ld7AUBgse+3sBzuaTCWAyELqAe0UDcW2biY7M9n423uzsk/Kv6dvNq6t9FExq/P3tHx5lKvF5+lnGIZsgD58vF9JlDI4wqXcLuLzH7p3iIM1NZxGGQVQVRW73Q5ijG03DJIw2Dacnp5yenLK2dkpdVNLkqP33Nzc0Pc9/+Sf/BO+/vprrLX8yZ/8CX/9j/+Ys7MTTk7OsxEWQsh0oD5IaMdqveXy6prbu3ucd1I5cr4ErcWxlEB30Z9VTECbvHz6O9s/anIqmeuTHlKylqWgTuk0CaCgNVDPKhatwdPgXKAfHL119INnt+vpuiSLBHiLEeRjRdkBhQVlUYn5PASUC9xcX3J3d0Pd1Jydn3N+esbi5IzlyRkXF88wpsKHQN/3rFdb7lfrmK8jukQRdXUE4ooYkbbfJ/mfAqqzXif1qTh6nA0M1tP3A856BmuxbqAbBHSLt18TMgf3uCQVCm3ELlZKY3RA65HnPNU46AcJ4VnOa2azGcFZhr6D7B2X+w2pInHU/+mnbRpmszl1O0NpQ4fCz2t2pmYILc7LvFRao40wligtSbMm6h0TDVnBP/E9vWd5csqrTz/lyy+/ZLO9jKEyMoZ+2GGCRwdHoxpm9QxDFZ0BoqvGuPlEaqtxXmG94uZ+xarrsXWDmc3wWmPQzE2NaZpHUfdvPegmL5hRYPZdx09/+hd867NXnC8/ozVmBAGouB0SORRiVL14SCTJaznT/N4Pfo+3X7/jz/7sxzh7nDN2FGjFmUcsmHxNISjT5bmYzeRsMg0UlalEiIaA80GssmTdq5Hn1oMs/j3hmp4rQmaspRdIoTMybdQRIfYQsDhWqOYYkC2Vfxn3edCuBKTVXta/EBiPSiwD6j2Quw9GHlD0++/02Llj3y9HvfQ8JYNGuJZDbJ+Ug3XOMfQ9d+s13lmeXFzgvMNo4WdORoT3nvMn51hP3mIvfIZA9EYXgES8VJFXNqKE5IQphXHRbcUHacA1XT9k4BdUiILMZPqlEqT0Be1YHof4mfcpNiKFcal8zXGg47EugS+NR2O9wniplCDKJVKJhZBfrFuvefv6NQw9AWjrmtroCN1DbLMI4KZpODk7xcwaUAlkK5q6po5crh6F15JeFZSKTL/7hnWYgtD3GGllv08Bd5j83o+nFyMk5Z5IrKJXaaynRk+6c2nMlnG4JZNIBtsfuBOSxUFey+ksSWditGG5XAJM7j+fzSYe/PR+ZW9IEShPnUvQJxD7mKd6zFcwdQVdH3cucwM5bmZP++jQ+D/8zrE2JGMfCnlfgMTsBPEOpcSAy36wSfs+/MjgvtxBONKusd2hHLypvI7XaK1x1mKHnqZtCUFK13/rs884O5OY66auUQQ26zV3t3e8fv2ay8tLdrsdwzDw2WefcXFxwatXr/jss29zfXUVdVV0CDnPbrdjs91xdX3Lze09vfVUdUM1W1Apg2kqdKUIxmDqGjf0OdQu8ZkfzTNKv4/sxk3OH1mjk501EpAcZbtWIkUqFWiMwlMBCus81mv6wdF1nr7r6XZbYeGICYJKORQ21mAI0WCXXQPvPN124G234/LtWwIabRrmiyXL5Snz+YLFcsmT8wtm8wUg3xmssLINdqDvuwxSE43wFFNMeaC9T/JB4ZxQ3nW9pesd/eCwFryLnmwH3is8JjpBdCxqFPIcFOcEGOWlkJWSf6Nc/LfILnxg2K7othvs6YL2dIGJLDE+BHLp+L0xdLFIYdd1bNZrGm5RdUuYndA8+xhtlgy6wgUDocKFWHU4yA6Bj2hI6wJ4a40y8m8d5ehXb97y7uo6GyVKKfAON3RoPN4NBD9wdbnh85//nBfPL6jrOq+wLKFUkuMimfrB8fXlFevesa1n6GqGjwVxNEpCSx9Z/r8DoFuOzP2IwjvLzdU7fvqTf8YnHz+nqU8yOCWCTK1Mps8nqmmXFlpV8fHzj/jRH/4Rn//8V6xWqw8SkRET7wGdx785scQnfySvHzkDXLYBZcvd5Xj00XNTKt5SUR7zPCcTRCbl6LFMzd33qJXf3afnS0ep2Mvf+0Lx4F6RrWS0RgNpfy2USTx7bTn2biWwGeGSnPN5gA7H5kO93ukWkvEcvdnITkgoFG8yDkL0d9gQsF6sbBcanI/brElJFwZH8CFWoyx2KlCkctOpPypTSRnwoCT0oOD2KPRtOULxnUZBF4heyaYBrVksT7IwCRALY0zDe3wIUgp6GAR4xwqtBC/bkMFLAr82ODVSp/lJjKg8IdE0LhdLPFLWN4RA8FaStlTICZVJ4KekO7zF71a0AFphrEO5FBssuzdGVWKU+h3OOBhE+LnUjqbBty3NrEVXDVrX04qWSW8rae8+J3H5d2rfZE0fAX5yfawbG2P0vSvzRNLqV3nzzqvEajJWrExhKFrriRGW2pPWTGnofpPQo3SfQ0N2ui6MUsyaNs9fpRBjqfz9wGGdw/mAqjS4D0+ATH09a2dwt0Ibsxd6NLb/2Dt9SB+kLt2/3gefC20kwTkxvDNziRejk0hmrRmrMpbNeqQpBzK2uHxyiyQrQpEuGeVKGbKX5BUEVFXhnOP05JSmaei6bXZubLcbVqt7tps1b9++4eb6jt2uo21bjDF897vf5dvf/jZVVWGtZbvd8vbtO4bO0iwbuq7Hes/r16+5u78TtqIItGtdUzUzSZZWmVkOr0IMX4jv9JDTJ8n50oVbfOcx+T323HRMy35NxZ5zH6vRAKyUxgdoa8NyVrNbB276Nb0fZP5FgC00FqEo1qUoPXLB+ShXDdZ57vqOy8tLoU2sKppmxnxxyny+pG1a6rahaRrm8zknJ8JtP/Q9Qz/EpMYhO0BkwYk321ovCZDWRmq/wDBYBhtwXsLPnBCK5AJk+Oi0UBIbL33t4r0FZCstXmO0J8WjJT4YRUAHz67b0u82+KFj2K6pzTMWs4b1feI4Ob7eJ+OmlMhI63DK4JslrpoDlehOAB/DNuJ3tZYfHyQfBiXvqog7fNELrkzDEJ0SGoNRIo/vb2+ohh3edWAtPnT85Md/wcsXz/lrf/DD6OSMO8AhGWzJRFH4wbJarUEZTD1jayq2WoyYBYGlNo/Kud8J0C3+YJ3/tjg2ux1/+fO/5Hvf+w6//3s/kAQQJJFKpmSx0ILCqxRvJwDh9vqOL37xxQjWHxDewIH34j04++H7yM0KxSZ/G1PRNK0AtSDJZEWNkOwNCHCw3XhM8KiD9o6KNYUR7HuOy/tUVZWV/T64PhaSUgJsGJMhc1Jk+imu3Qf3x8B/+Y4j4C7uRQK+sV/l4vf2z36fTM4zMq4kZeZcVGaB4v1lXJRWYL14OPqBwYkX1VorfPA6E1Tlvnn77i3rXSc0f1EYTpRt7DfxbgvzAEqShY+/zTg/iONrTNzCq6uR2k0pTF5HBdgolZNKXKeBOs6DYRjYbre4YcAFT28ttYmCRWuUV2P8fh5zeSHnHKvVipPTE7Zdj9YQvMOEAUKMs0vtZpxjWoG3HcHuZEyUGB6OEdAqArU2oA2qqpjPapQNKGNyDGs3eAY3sOs72vmC2fIE4s6YV4rM7Zs6hWSchtwfIYQcnjLOmdG4OT7HovEU+0LAUhlvLipM69GIS9vCebmUIC/JqDzO5J2lx46jnsFveOiYkV+ucXlD2cJPceWGcQ6n+WydZzc45rMW7QMEFwFsXIPqUDEnb7tWinnboIKjChoXxrEpRMqD7z0Nm9uHsmK8pam67yGXneX4b9IYyfwWmrgUJz0FdoG9xx1rV/H3/pH6bVJ5+JhMi/Mi+BA9hzZ/XlU1JlY1XsxnLJdLQgjsNp6h6/niF7/k+uaSvpeckvl8zqtXn/LyxUdsNhs+//xznjx5QlVVuQ2bzYa6rrm8uuHt20tu7+45Oz9nvekx1ZzlcomvKoKW2oBeSeEaD3lXKeCxVnYHSp2bdk9Gw/E3n6tlR/r8pyTfEWV2iF7dQJDtpZAJXUXOBokHd37Abe/Rw5Y65xHEcTmADKGQCGJUS0hhQOmKylTMZi2BWD7cOa6vrnhr30ZHoFTNTIwvIwA/Zb5YMo8JkLvdjtX9ml23Y9cP7LoB5zzOER050SAPyQMugDUg4Y0EmbtKRWeA78QQ8wPeOZwV7682AsSNCVS1oWkamroRyj8V6IaezWqFteKRX63XOGs5OVlyeflOGK5UUWOBqf00SlFFrzWmnlGdXsBsSQgVWjUxjtphgmHw0pfOe+Fc12SCCKHtjnHszmNFMUWDWBGo0METrMXuetwwoK0Uw/FIQuZ66Pn7f/8f8vTpU15+9AwfnJgYitGYCiITVrd33N/e4aipTE0bDDZoLDB4cdaVie37x+8E6M4TBQiR19daiT374he/4FuvXjG7aCZel+Tm9162tlfrNV+/fcPXb9/x5vIdv3r9mneXl3QxNu9Bqzl6wBLke7SZH4LGQ7E04+WJemm5PI1CavLqeXWrI+C13LYu26G1xilNpcciBBk4x/mQBJ0xJgOz9POQl7h89jGgfOAJ/oBrHwLcBwZBAiKkEUkNUuOZI+0uAXTZb6WnMBsUemSO8F7i77rdgFJaSs5GWscQPWEaYpa+/JiqRhuD8w7rLNpEkB49vj4yAziSMk/vFI2hOFYSAiLGjovJGpHiIw1nHHeNqSrpHD1W6sreTzVu1ZfbsQHGJMoSYKZbx+tNCDkGfxMC3jqJtY59XAVwKCn/m3YtghcjOQTevPmaL7/8UoorBBGCSkm8rlbR65RkZwTBWmsq4HqzptZx7oKA1uBj+0Sc+uAl5k8Fdn3HopGSwsuTJc+eP6UbOoYhsN7ssHYQL7mKnK55UonifUjNS7yteHeCovDWhXK6HT0mkC+I98gHBd7ncdFKnAISJyvDIUZvYeAeu3cI03F9z1EaEr/JMSZpjgb5brNBa4XRUuWvSkaAWKgS59v3nIc5eu+xIRHq5mlYrF1kLsyamkopbHD5Qlm/4op57H2mHuxSgqvxJ64F7z2mMjR1zbxdxvAKCyQmizEELskPa22ObU7PKw2iY+0BcnLt5LP0/T1dNJGBCWiH0bg1WqONoq4a5os5dV1jrWMYBpxz1FXN/d0d9/f3rFYrbm5ucM7x5Mkpn332LZ49e8rZ2Xmma/vqq6+Yz+ecnp7inGO73XJ7e8vNzQ3GGO7u7gkBTk/PaNs5Lz9aMliHU4oBcEq8qWXJr0D2DUuJ7jTsRR/tU1KWo/TQsa+n9j6lXNQK0EUib6bfjfo9Kd28o+A83XZD321jy6NrpAw1KBuX4/0ORpUQLC4WBFKqQojrFPPWoOYzfFCZF3u73eJ9yLq5rhvaZoYxFSoWAOqtZbBOvLhe/K/4JDtSojzx2YkRRySeCh4dfA7Bda7H+z7SJouHe8yP8zhrCd5i+44NQhNYaU2qTqmiHOiHgdVmQ9O2mKrClQxZanQqjc6/2C6lGFSNWZ5TnTwl6BalGpyXIjjJaBgiC4sJxLBE4eb2OslOn9siYxTDaSN7WPDgdjvc/T2VHQjOSYK/qfBOs9sNXN3c8A/+4X/I3/7bf4uTU8lBMHGypnAoGxT39xuG3uJnM7wxEDSNU0JVHYSs4zEZ+1sPuqX/fLZCIwIHwHYdP//pz3j1/AWLP/oR7azFOkffd2zWG95dXnJ5dcXV9TVv3r7lzdUlq/VaAEISnkyF5f7CmVhnHwKqHzuOOS4ib2bdNBImnPXBgYaaCGW7ByKTMgwhUJkKgiRClGDbGKFuMpVmPzRkH6CWx0Nbeo+B5n1Kw/1nPAa+p69dnE/FbZIClUlReCqn5ZlTUtm+R70M4QgB7OAkwRCFqgRcE4hKp2OwjjpSaQUnVQSVMehYZU3ikUWhLJYLqrrCeoex0aipZKdGay3JS2dnrLY7bm7vhfu6wNLex8SkNDYq2uMaUJqqUE4qJyaZYn2Qv7sPoMcpNYY6lLNMFd/fj1FtmgZrLV3o4juPRW+CAu0d1smPNil3QBLOdrsdSptoNkegqQ11ZYomKxRG5na34/7uDtftaJK3TSlh/VQy/tYOAryCw3thRAjBM5u1/P7v/z5/+Ad/wMn5Kd3Q8+bNFf/wH/1jrLMC8glSciPbcoex3Sp64jJwCymWdwKjORAYe3OXUHg24xwV5h2N9Q7lFdprRqx6HHQ9dkzB5ZE2wOTzx65/6DgGcD7//HPevHnDxx9/zPn5uSSttm0OWUpH3/fiIUaSnnxEOzm8JrWLKVALKHRVUbct/a6byESR2SUTyePvX77H5HME8L148YKz8xOWizm1Uvzyl19wfXOXwTBegP52u+Hq6krimDebvBZDSGw+HMpuacjYngdk3X67Jz9xF8l7Rwiepq5ZLhY0VUXTSNU8sXMD682Grtvy9t07+q6P4ZOBtpnxwx/+gKqqqeuK+bylnUnYkB3EDbDdDZh6xnrb8fbtG66urrDDQFVVDNZyenZK284JaJwTb2bdNGgvtRV6Rh720aKSvrFRbhgOk64n4VFE+ZPsIj/2yYceArJHwzqqimj8JhwRdztSSwNZj67Xa+7v7xkGKaIX0tqPIF1FL2oxYuODJwMpLxCCOAmUBq0NvfcMvcd5ULpGKYMyFXXTkHSac4Htrmez6QhBksV1DDkM2uCVwoYYlhji+0S9mHaBhTkpEHxPiKZPCA4JFUwOuUGolxm/r1SQ5/jYf2luh1inAQlblMJVsv7evXvHYrGgadtctZTCiBpnA3mxBx9gVsPyFF/PcEGjg7ivAwqCzv2cUEmsSRmZv5SUjVcKpXysGiq7iEqJV6dWULsev1vD9pZZ6PE60UxqatXQhAHrLb/68kv+w3/y/+Ozb33G2dk5bTNj1rbUppKdPee5XK3FwasrNkrMscYLk45Xoch+PX781oPuY83PFrCCy+sr/vwn/4xnH71gcJbXr7/k9evXvH33ltV6zRDjnVLohh8xO7LhG5Kj6/jz9z0S7xHij107PihOv/i5MYambop3TguHA8CY7uuLe5dhIJWp4vaiyWwPZYJVmZhRAvXHjocA9/41jwHoR73i77lOTPiyD/c9jNEQsUIBVXr/j3pQ1BheoyIY9iFgncUFoZQKRGA4XxC6LhY3iUmI0gqJYfbiDXDRkMteOyf0ddZGSqE4T4RP3shGpXeS0EGhp5XCVDKGuqqp6gpVKQyNCJNiNyJdT6JUYlQysafymEvISPGVwAQk5ISX/O/p3G6aZjT4BonvRoELjuAC9ODaWTR2JCdBBTF6VPLgpv8pLcpHhexxVpHdxTvHdrPB9h2mNlRqERudQmHi7kRociXJqqqZzeb84Pvf51/8W3+Lly9e4Am8vb7iT3/8Y37xi19hqpblckFqhVLl9vM0BCj3n1ZcPHnCs6dP+NlPfzbuODCNnX/fka+M38lALnqCvQ84L8lChnENPOTFTt64fRCavvOQ8fpQQto3PUII3N/fs9vtuL+/5+LiIhuIk/vGv+0QK69GJgRCrEiLp6wOGBj1VQLdq/UmM6Ck+b8vh8pz7zMmJn0bx2A2m/Hq1SvqWskOhLdoFRj6Lq5VSc4PwdO2LZ999hk//vGPWa/XzOfzvLuk465F6dGDiV99XKdqlP+lR3d0Boh8EMM2hZsp5vMZs1nLrG1pqoo6Uq91XcfN7TU3tzc0Tcvt7TWr+1tOz8747Fu/T9u23N7ecnq6lPXoIwMLssPkvDBd3K3WdIPj8uYerTWL+Zyzkydi1KqaejanH3zOYwneR6peyZkCARWJOUSCMjKcY3AuAurpOE3DS0aDTD4kFxJ7dGyPjPPk04KjOo9GNACTDhE9Ih7+vu9xOTk1HNxuArsncqFcmoG0ryZ6yQKBysj7Whew3uL8gLc65u6IU0cpg6oMtYnMMkHCGH2hi0wgzg9xGgUEMGtCLBKoqVBS1rzfgXIoA3WTdkMVSlURqMaMTC+6zXtLiAW7shMrjLs0OoGw+Nyu63NS92w2E52YcrdCmYswdntAYeoaPT+jUxUEgw462jcpoEdldiQVe13WkZAYBAUmFf0JwmSXIk+8h8HAqbfQb8HuJKRGOYJyKA2VrljWpwxDj9aG9XbHV19/zdX1DVXdYkxNVbUs5gsqY7i6X9MHaFRFg2bjxZzRGCqtJMH/kXn6Ww+6Hzry9PWeX371Jf/2v/N/pu/7WEXJT5LXkpLzySuaB32EKXBcEX0IIH18m2tyMSMqg+SFrhO9XBRSPhVR2QOlWQkrFRMgpueNNrJNGLlQ9Z5gC1HBJxCYeFo/5PhQz0z+99759NmxJM1jIHzy76J8u/T12J0hAruu63KMZeIALftGxwIbhESrJrHK2hjOzs7RtcmJkP39PUpJuVo/DKy3W1Gu0YAJiBfcWsswDNi+J8SKkUBUYJK8oU3KZBahKZ69wND3CJfyKIxCCJEz95R2NsObFI/nZSxjKewEitORDbAMlhM4H99fJYMgrYcIPIHo5VXREzR6o9NDSqNtNpvhnKPf7dhttzhrwXlssHR9T1NVGC0Jjj55eNQINEOI8ZM+FDSdZCYAH6QEsVcKVdXoSqOD8MOK+2wc1yoqDY2mMgY3dPz4z/+UL798wna35cu3b+hs4Pz8nLqZY4TOCBfA5hpMRfhNBsSeuq558uQJp4s5rz56wS9+/pc4FxlQPghwT8GnKMM4Z32IBT5kZ8Mqj3IuhmmMcdohjq2OY86Rp/4mXuu/KuAOQbZQP/3kE7RSPLu4YD6bYVJlPkYjxgPOOwY7MG+ryDefdsOSMZbuLT/OSajQ2+sbrm7v6K0jRMNNq1QU/Dd/h/JQxHL1weF7R3CSi3FxdorRFbqSsubJu933PScnJzx79ozLy0uePHki4XmRpvFD+m6foUYML5dZHaSyX/QmaqiqhnbWSLxv02Aqg+2F5eLN11/x7u1brq4u6WPp9hcvP+LjFy/44fe/n+dS1/dsK6EKVEpJeMJg6QepjNv1vZRQRzM/XbJcLidyNAAWQzNfst7eQKVx8TMXxhFJo5J1VUj6RiRdby2NiTIp9QuBoJX8FN+dANf4j6NzV40GmyKMIbjhyHpJbomsZ8ZHAAxWQlEFQDoem2dj+yks67LdMFYilh5Ku6vGKOrK0DTC5hQQdhHrpDqk8zI+AYXTXX4X2dmshcov97oUifHBZ1rGqorhDtpRIQX4Ar3IcqNo2+jQUVE/hag3AK1Mpt/LhdoiJtltt5GCUvRcGmsQQ1JyHkYdksLNDp1tck+lNaZu0VXFgEGhMyIf7SExIsRxFOPqIw4o51A6XACvXK4PkcKk/N0tTb8DY1HKJ0oUQOTKcnki4Vm9ZbPeYnSFUg7rFLtedr03mx2Xt2us19Rxt9Qoj1PSfyKfDI+J2N8p0F0uOKcUjoD1jt3NzQQgpKMUzRl8H9zv4d75UOX0YYA7Lc4p8FZKrPzBOjAer9WEXaGk6ErbmC5u5Y2eYDJg0SpWcCs8JhMAGnmM98H8b3Ic81YfLK74zvvn98H3o6Cb0YAahtFQCCGw3W6x1mIiIf5Y0W8a715XTfbsv3nzhi+//JLtbsvzlx+zODtHx8IAQSnqdia0jV4yw5Uxmd7PB/God10nXnUnWd8qRAo4I14N6z3GxR8/eldUdDNXklEYLXqVp0VV1dRNC0bH5MHCU6RgLOM7HjpEraZGYZc/SwpJ7P7sjcye9+Tl3vvuCMjTudETJcUtAkM/RGEOLng22w0mgeH4novFko9eai6vLtnudlGoK8nujxn+IkSlAzyBuq3BO4njDQEV47eTEZF2L1IMXxWF3dXdLZu+42p1x3y+4OziAusC69U2Jpfq6AWSmPEQwYLWxDj4iqoykT+2xRhNUynmMVa5Y8jiosDBk7l/sA4ovZjEBL24Zr0wOugQ8g6B31sjSk+L0uT7F/f9j+vYf590KBAqRmP49re+lTl30xrJhl2cazbmPIS9eyVPaDLIrA+sVhu+fnvJ3f2azvs0OIRooPigQJk4U8b7lTLh/fJMDNgQAZFzUlJaBYldDZVms1pxf7vC1A112/Dq1Svu7+/58ssvWa1W/OAHPxD+382GKrKEVFWVjY2JnpGG5TFNISIhPds5vB0E5IVAZRRtu2CxmDObzQQIOMswSKjI3e0tb9+84f72FmstJ8sl3/rWp1w8vaDbdYDiIhaiSY4WFaCuatqqZr3Z8PbdFavtjsEpZm2LqQw+QNO2VE2DqYUFqAw0XO92nMxbMoRMk1CNgLt872zMRlkgvwtAvac290OFkiNgf7IfOrqS/7PQ92mYD4BZKL8yOUIIefdG4vnHR4v8Pa7nk8M3GQzHLlCMu7PiKIoeb1XLToHW1Do6dZTCGIlr3m6FPtA6i3eBECKNq9do3QBavOTexnExmGZOVesY2SE7jtUMwm4QoOtrTFVhEhH3viFCNJSi3iGAiiXWA4r71Srm38i75hobSgwnfNjTQVHX5JhruacP4HRNOztBUVOlpPZomHs0iVFiDDIhGigigPOIqHI4Q0LraALzEBg2W3FsKFnnAQnDreoapcbQMKBTpY4AAQAASURBVKkMrnGDxw4OYySfI6gKD3SDYzN4fDWDekFPjYvkHVIsT8fkVsdDx+8E6E5bsRN7Zn8BpNUREvP1oeBLVf3yLfbu8Rh4fuizg0UWDtZyfn75mTjZQ/Y2Z65kE7NwGYVFElyl4bBvNeoooCRmLm6dh5ABtggqvqFy+rCjBLgHwCOFrxwB2w8B7XyfMnnJOWEHsRJHnLzMWmvm87l42cLoRUr3GIYBpRRtOxMLPCh2Xcdqs6G3A5uuEzYOLWrcxfcQRSy7Jk1do0Kg2+1GeqZhyABp9EuGmPQlTEuVinSJIVK+xTEXz2/cMmb0LgeUbCtWWgwnBQZFomxS5aRIfQyQtt3zWU2i1UOV35O457wzkj1KInjz3EweqjyGAecGAdnDgLNStMY5l1mFQObeZrcF4Pz0lLrSnJ6eMZvNeffubZE8Ju/tg8elBCZF5NqXssqzqkK5Obiei/MFz589palMjBdXVJFPdTabUWmJ+1VNjfeeXdcx9D34wJs373j77h11M+fpkzNOThYx8TImdIUQs+A1xmhMZZjPW4wWytFUxbKkWRyVZx6BR4/9K0K8iUcou0aAfmRdTB+W161CwPs+z/FvIsPe2/5yTRINH6VQRVW5iXdSkcE0gHOeXd8RZvVY6jsuBxf7YrPZ8PXbd1xd3zFYh0dhtXi9gotlnJTJlV1TnySg803kWQaL8XcCv5WS6qkqSNJW3/UwWDabDbc3t5ycnnJ+fs719TXzuQDit2/fslgscll1pWSnIt0+z/icY2Kxdog0qjH8CmjbmmcXTzg9FXq/ZFhaa3n79i1f/OqXfP3119zcXBO85+LJE77znW/z6tUrTpZLqkpzc3PLdrNlPl8I4I5Ucc55VpuOr95c8ubdLbvdDuc8QRuCruid7Oy0TUPTtNI2a9F1PZm7m+2WZYwBlxChIl43Dvw4Rwpdh4yZVox0bhRMIEfmWtZVYu/DHnvU5HsP3ONwvheg8kjBDedcBNzDVI+Rcj7U6C87uPdDCc2FE7D8boj0wE5nOayVRlcmFp4yhGBQytPtwLpYVMv5XBci0BG8yHSUZz6f0bStyEKdnCxSr8RoxepOYpJD8FSVoWlaUkx7koUim3IQfQzriPpHaXFyOU+ldbSxi/FQimdPn2EqzdXVVda9ucZIXB9pV5EgNCRVO8MWIVT7Si4gSbqpOxUBFYqdkkBRmYQsh8SodvhuC7s1yvXS70740HedI1Uw10ZTNTVNnXaYDN4J/pCKnh4fYLO19Daga4Mj6c5ofAQxVKx/PKz7dwJ0J6aHdIjCKTxN5RgVwDR9sG+FJwC6v1gpPv/Q4+ilYfq8o58HxOpUUNeNbBsZg1dH4sdymyMY2n9oVB5pumaFnZTzvpfsGyrfhwRjCaLTv4+C6AfA9v49D+4TvUDWWnzM2HZ+jN1OCs6mkKIY55bYNiSJr0MZzWxxQlVpPArTtgzeCd2dksxxExJNlxR8cIMATNv3ErpiJXxE8gKKypvpBWL/p8UmmdkW5yB4HQG2F+d2EjoUc5IYYy2aCaWEH3lkK1J7omj83uEnMvtKIys1smTEiPsfcR2J9zp54sTocJH71WIHAQvOefF07z0xAbFhsLxdvaPvOp4/u6BtGpyzU8s/COOL8pJEikrMArkrJT5Ww7yd8b3vfIcffP+7nJ0saeo6UyemZB1rhcZw62xM2pT22ThHhn5gGBxtrXn+/CmLxZyqqvPORz+MxSiMkl0LQgQIleHLr9+w7QaEdguSh/xxV/P4YTg4W3i9YihNMCbKhbQGGNd6CBPZlfp7MuL/HI3o/fvuH4rCa8XoFCidGMkxoJH1teuGWNNNTyb9drvjzZu3XN/esvOxSJKqJMwuh5KovEu3Hx5Qvvs36oMQIFIGpoRrjKI2FWgDuhqLPsU1f3N1xemTJ8xmM/q+58WLF3zxxRdst1vats2MJiXXOohx6Z3HeykD7p1DK9ktOL14wtn5mYTnxIqQXddzefWON2/e8Otfv+bm+hofPE+enPOjH/0LvHj+nKcXT8ck4xDYbjas7jcoVbOYn2CHwP1qzd39Pbd3d6x3OwKKqjaYdhllS2Q3SoaCll2eb332KV9+9SW273NSdwiBwXuqqgainIAcSiA7B2l2TGdL2q0MMekvhDH8qIxtl36O5poqEsHjbVXJ3kQJ6ot7MBphx4e9BN5TXbZer4XG1SWmnNHhIQ9SWc4fvfcD5x+60gcPsSy8VorgnVSH1JHZqdJ4b3DDgHfFqwehMxT4aZjNGtrZCe2sRumSXUsAoVLQti1VXdOnnRXv486fjJtgXZWNEVX8pNjtyhh2XSfyPzJGlYcPAl6fPXtGVVW8fv36QF5lByCSUG19TL4NAeU8wUjFZJ2yfaJjQaEyI05iwErHZDzCCAxV9HRjO4zbofyOEHZ4PxDcIAQFEUyGwbGNu0QCujVt27JYLnhy8YzFyRPQddYTGBMxhEcrC6l6ZVC4kAkojx6/9aA7sG+UlsL2oe/IoIa9BTq5PBwHt482pPgzy5cwve/77piapIIkORhTUddN3oJLyXhHsXxhUByA1zAFuRomW0DlPfaVZfq7vOaxv495qve9c9lL99A1e/eZVKgMAe9cLs6S/l3yZy8WC5TSWDuw3e7i1usaKCl7VIwZq2k2GxaLJSiFrmpOTk9pZ3OeXDwVYyfedxgE0N/f3wsP6TDkQYvlTsZdlBAy3RtBFrlXUsTJB4/D4L2EkagQE1DiFrxzNiqYBCREkKR4/JL9YR9w74dQlcZl8iqJIA9SMj16MUqFkYwz2eoOkvhpXYwV7cd+L40lefhEsO23ScWY5NVqBd7x/PkzCQuIP8LRK1n4ySOaS7Cn20bwwtCxrBYsmobWGGoUdUpUiYqqdy4WS9BUXtFUFc5ajNb03jIMO4yRpFjnLFVtaBfzTG+XgHfXdXRdLNxDVP5KoXTFzd2dgMEYU583ZMPoaT08jnjkJv8+bnQe/UnjmnYzyl2NYix+E0/2QyD1WLtFP43hIOUOHCCOtUy5mdaJ9OWuGxiColIVXnt2uy2Xl5esVispvuSFetIrqSyXIatSeYcyuMjYxNgvJcj6Jrt4afxAPJx9L16w63dvGaxjN/SSPB3vF2Ke0GazoWkaNpsNz5494+bmhtVqxWKxkBAN59E+hWLF/BwvjBFGaxZzSeg9PZH40aqqCEhFyHdv3/DFL77g7bu3dLsddVOzXC75kz/567x48Zz5fCHri1jBuGBoWq837Loe5+CrN5fc3tyyWm0IWnaFTD0DbWhnC9Bl4vUIVi0Bby2XV9ecn57x9ZuvScRvCZgnb6hPScU+FSLwUIS55TlQDIMA9SrT9U3mIUTv/Eg2mBwExVQQlZJiidMQxtLpuZT6/liHfb9cad7Lv3e7Hbe3t9GDHKbzKSLPSchEGHeQU+NU/P2+dTjeJyBc2Q6f69BolPIYo6LcUlgnYXziBPE4b0FpmlnLfLGgqhvqqs6VGnP4D6PM1xFE7jYblFJ0Xcdiscj94FU0iKeKZjR+RDll+ZOqEuvCEAkhcHV1TV1LdW2tdXa2HIDvqPmMMVg8oi0deEfyZlexoqUO4JRmgEhVO2XmgliWPoyTJBDwzuKdRfU92A4VLMPQ4cMQ86l8HFcdjUd5L+s93np8Z9ncrXj71SVV07I4OUdXLd5BhcHaADi00SjlwCu8HnD+OMVrOn7rQTccKoBj8rS8JiVEwShc/eE3jt5nv7ce6jz/yIfvW3TyscqLoapr0BqXODYfcaEdu/P+1cfAdv5uoSzf1+b9bbp9sLzPex0isBwNgePfe+hc+o63jq7bkeIeN+t1LPNaSQylkZhbr4QuaOgG1puO9WaLd1Y4TXVktVgs8M5zv9qgdE3TNpyenfKHf/iHaCMlZqV6pM8hK6vViru7O4YYgzzp4xByuwC81jH+QCjtvIrAJP7tvShi7xzB6CycBmsjk07IyWUqA9DS25AytRmNsULAJ5orIIZvyDalUuRVkEW89zm5MXmy+76P4SJW6BDTzqI6HKOpoIv9su/tRBJZ/TBwf3+P956Tk2XkDrboqgYfWCzm0NSymxHnjlGS8Nn3Pbbb0epAW4nXJxktYqwmfSC7B6mHvHc4Lx75zWbFu7dfcXd3TV2LoXN6ekrTtqMnRCmhuIogqus6QHZIrJUYSpTmzZt3ktRcjMXE0C6A7x5MKK/K3VaC0vIesoYqQlboUYF7TzAKwmiMpbEpY4j/KrkZH3L+8X+HDLZGSJH6KdANAzsnc/Lm9pavvvqKwVrJl6ACXSQEx35O/5aqegJMBmeF7SGkMLJ9wJ307sMyOBXFSa303vMXf/EX4nV0DlNV6GrMGcjrQCmGYWC5XLLdbnMs+3K55Prmmt72OdSNQbbLq9pIgZoTSU5czOeYWBLx7u6WX/ziSz7//HMpKDJY2qblk08+4dUnH/H8+TPm8wV13eSCKt67yNEtW99D13N9dc0w9Nzd3nFzvyFoI7khEdhrUzE4x+AkIVXHnSBf+JJHIyZwe3fHxsiOoY07jakfuq4ToDRY0CHnnBANfR/GtRWHMs7ZEI1sQOniyeNhjGFw+yW007qZGlQjiCvWU0LhYhWK4/HBWVA8IYLuFFaSHBSBGMYQ75sNvNiu8j2zQyJds2f4PTwfRZ84ob/ABw1BEhkrrTBKs9vu6Lqx+FGbwHbbxBwiQKUSa6NTKO+nxmacnp7m5PfNZsN8Pmc+n6dmJJc2as9ISQLXAydnZ2w2GzGWnRv5h8J4m7OzJ1TG8O7d2+i8OcRsSa+ZoIS5ioAJEnIVgspzJpK7okOqW6CyMRFdq7m4XGIsCVFHKwIMHf3qDj1s0X7A4bFuiJzpxGTugNGGuqpRWuOso9t1hFhvIgSw247rzVtMu6A9OccEg/VStMcQw4MV4CDoAI/In98B0H2s8eHBd4rrjdGGPz7hp4L3Q7wih635sEW1d6/YQFGyAWN8HuwPacv+US6q1L4SyO7HWx6LiTsK0N8DlI8B7uzd3rvPMS/3/mepc+xgo8dR4s7u7+9RSrHbdfT9ir7rOD89QwcYFFBVUNc4LbFhyQPqvI8JkAYfFN1gGbynjs+2LgJNRkFprWW1WrHZbAQkE6JXJRoTMc47FBynVV2hqyon9kHIVrOkiblCSKRYZlGgIRqDicZSx4SxYB26lm3C5F1IACQZauPYMVr30Vuh4kRIdE/WSxl3NwwxpjQxJYRc0poQhIIv3nR/zCcPLHdHogGQaMAUCId5vGa73bHbbXOYkAoKlOb05ARrDK7v6Po+G4NhsAy7Ld5aaHT2fOM93lmcjY+PwEGFgPMW7x3W9lLW+s0bvvrqNevVLc4Fqqrl+fPnfPLpZ5hKZ6PJey8c0kE8LvP5ghACddXEzyy//OJX3K83BRAOewWsoqRn6mXzJE0zns3TnHHvYt+jPVYiLMGQKP+RlaFYQ7EPjnsQpseh8+Jxr1z5PvvfO/a33EuMhfLwwKbreP3mjRizwyD31hIXWb4L6R7xe3ipCOuDH+kEI1ODSnP9wDQ+Ju/Ldo5wM+E050R113VD0OJx1xRMSURKSz8arXUjrFN1XTNjluOBz8/PWbQN52ennJ2d0s5aTPT6rVf3vH79ml//+gvevXtD13c0dc1nn33Ctz/9Fi+eP+f8/ElM4JIwB+/AOsB5goNd17NZbbi5vubrt5d0uy3/lf/yf4nr2y1ONTjEQREiG0Xa9g6RjSMcmS/lXPAhsN1JMSmtZLcwF8iK3ORuu5Xe01qAl5LwyJC8o9EAz85vLaFCwsw1DR1R0XlgjKGnL+Zk+XsK5h91GiXgnefTiAb2wxxCNPJXq9Vkt3XsGHl2mpvZ2C3Wcvaw+mm/fggmkDUvlUWDAx31QioCprPODtR1w3yxoJnV6EocS16Nd1J5Ru+9QnzObD5neXIiu5BBnFmzWMxmsnuWjefyfhKyUjcNT54+xUZq1yQPVRirUV88fUpdVTx5csGbN1+Lfos318R46/T2zqGsxQ0ObxyVlh1GIREgG3JKSeVjqQYbHRIEahQ2Vhf2sZXC7ObxDOB3tHR419GHHofDJqdZAIiOJgW1bjh78oSmabH9wHa9YX17F+dsADcyn0mVXPBOjAZi9U/lo+R6ZOh/B0B3eUy5HotfEMr3fN9kDwcemQ/95uQuH+Ahmgr7/QcF4YKua4npils1D9vE4z0nQkf0FCFOuAPvcbyoPPUhBsMxsPwYiH7ou8eeMYJ0In2cx9qBoe/FE2MMm7SoreXu7g47DNRaU0eGENmOE+oirxSzpcT8mhjCUdeSpV01Le1sHunuBm6ub+i2O3RVs1gI0BqGgfV6Tdd14uWM1jLBo72P1u8OFBgDwTlCEEo/fEAbj68MVV1R15WwmZhRwARUprEsQXcJ+rVWDH1Ht22Y6TmmqaLGYrKDUM5bFUJMdBRBYkMMzYnx2OL9Fa92Uka5Guc4GBE3xvaUiyM9Rxo5Autjf8d3UETqKGSLzzlHby29tQTrR3AJuWCT9pKQ2vlYgAhp5939is9/+UuGfserly9YLOfCrmAMu6Fnvdmy3qy5ub/n6uaGu9U9w9Ax9B0hOGazlk8+/Yzzs6fiKQkSs+8r6be+t1gnoDtRbqra8PbtW371qy+5v1/jCs/rYU56AaCPr4Q9kBzylQfXT8BGWj/p9LiLlD1pcUzKNfVNvN2PXT/q8tF5sW+Q7cuQbJQUgKe8+7urq7xNnYqSMekb8nkJR/L0dpCQDT1WzQ0I2JCYzThfo2ZIns/913ocAEXjUel435R8rDAqSJxtsUO0Xq9HZ4NSdNbSzuZSaMbJ/P3oo49YLmc4a/n6q6+4vrriiy++4Ob6mm63Y7lc8Omnn/Dqk4/55JNPOVksqKsqehkV4NHK4KRDGIaB65s7rq6uuHz3lpu7ezxg6oZ2ccpn3/k+Z3/+U+53UkVTmJhSOJywSgzeY0KQvIXy7WNn6TyvJDZXuSizYhwwwHq95vz0JNNCpvhgFwa0NmCUxBXnZOVkpHu00QXfdhwvEmYtyAKiTAt6HEdxkk2NvWNjGo4423IIzYEukmet12u2244Rc4/zOwHPg3vEeVcERVLGlk9m16NrMmTSg+BifzqXqX2NMZyenrJcSu6XqQwoYvX6wDR6uDBOyicUxtRssWC720lI1zCw225ZLpc5xLLo8OK+0gcKBdpQty0np6cs5nPatqXb7dis7tlFbvOvv/6a733vezy5uODd5aUQEjhhzlJm7CKR8Ra120A1Z6BBBdn1CgpJrE+JnvFHex3p+cgx3ioylUiIDML+gkZZj+12NL7HBIv1A9Z7cYON1nR20vWDVARtmpaTszOev3zJZtdxdXnFzc0NdtOBG1C2p+u2mGaB9wZFhY5Jm4li8dg8SMfvBOieLC6Rf3/1e5KX1jdux9EM6m/4cEkGiLF5IWSPZbGkP9gAeKgZE1CsHkjEe0CBpt/7xXOOAe3Sy508Asc+Tz8SJoAoMu/xdpACM85RGcnaX2+3DH1P2zRc3t7S7XYC4ALCHBIVnlaa+WIhMdrZ89SIxwqkQpU2oAUI9que6+tb7m5vaedzrq6vs6Cbz+eiQLzDOUmkxNnoYXKxPK5GBS+czzHdQwVJkPQuYGYtdVWBt5gYfxxCqsQW+yKWMzfJwAoSJ2wCeOvYbbagFOfzuYBTFZ9ReBPyGPlAPwx0ndAXdl1feGxkzIMas++TdzhE0H0IvEL+5jFjtATZ7P2d5hkBlAYTK06uNptYcGi815iIqmhNhTagvCdUFbOmwboBZTyD67m6uWSzvuaLL/6S2XyGqrTEOPY+8vJLfLwNgcFbtIHlqVD+nZ4+YbFoGYYd/WAxVctsPicohQsK21ssLoJxx2q14urqitVqnWNEPTp7dHIn7M3v8fULMBAx5b78gpFCMngm25FCLeZzolP2U4WR1WiyvkKYMJj8xjKpOLIH+Mg75jVcekZjeFbaNQnZIBt315InvwREaV2kfzsvIRBS/EPi/3VlqEydOleSz4r55pG8haI7IvCe9sND4XaPSv/C4PCRQtQ5x3qzQylF3Q84pVmcnfHs2QWLWUtNoFuv+cmP/4y+77i5ueHy3TsUcLI84fvf+S6ffvaKjz56Sds2aGOoTBUZPQRsSFKxptvtuL1b8evXX/HV15est7tYbTzQLk6Ex15XGKP4pz/+yYSWsQyDCHFQVdo1o1jHZf8EIsMIgEbFglhlld+u66guLtjGML+maZjXdSxjbvGWmAxnYsVcidFXKV44zfu0C7Rn4Cce69LDuj8bH89DUhmo5fPhcJzT/EvOFsltibNCxesDEvOLKjzbRRuUijkOj6+5Yzq2eJniOrJc8CihzDOBdtbiPaLHAFTCB2mXMbVhXGfHdr5CkDoQ7WzGNoaHrNdrjDYsTpZFLx/K9/y+CtoItisVd5WdY7fZ8O7N11hrubm54fXr1xhT8ezZc3bdjvvVKvJ7K6oq5gZ4j1KWsFujZkscNS4Yoc82cQdYE33sfvS7B/Axxt6iMCRNJ4mlAcSD3nWErsd2Fu2sJGr6sdCPdIoak/m9MJvV2zVVUzH4muXpKadPLng1DNzc3vPm3SXrTcd26GhtH5PgIxWt0mgXWXkemRO/E6C7PP456BQ+BGg/prz2QejRJzxg3YZA5ulNVG+6MhKbpQTqTJKCH1g85f0gWoGFp+DRY3L/By4Je2EjR5995FnFuYm3OxBXkSd4lxOArJXQh7JypHWW+/t7NHCz2XB3d8dutyNYi1FKQjtUjIefzThdnEh8pUnFHER8pNIGeSy0lhCSzQavNbuhlyIIfc+8bWmaJrN32GHADr0AbFQEQDF8JIq6FMqShBEhRLDdCI9o9PbIq/tY4jaC5xijphKSSkI9srOovF0ZAbDzwiDihEkk8/sWjAkBJR6iQsgHpuM0axopNGLtgVgoQcjks1LJFfNxX/mpJBFTAkxVoY1hu9thqkq8NwHxKEYjTRf3D0pRNTXLkzneKQJ9rNjZ03uFd45eAoMJ3qMjuNe1FJVptME0M6q6oqqlEIupNIPtqPSMpm2omxlNM0OrisE6Nt1AHxP01qs1q9U9u12H9SEL+Zw8CB8iOib9KT+jIVN2rI/ea72/TtL3w/ReIznV8XH6pp7u9J10ZKVW3Dd5nkNEszKXZTdl36gHAXY6c/9qEjXmeK3K7+6cY7CyHtL9USoCNZUW77gGiJ7/Sf+MAnB8/0P5d0wmHoAMNfbBcQcFeGWYn85zsaydD5yeX/D8xQtqrVhUGvP8gqo2/L2/9/dwg+XJ+Tl/+Id/wKeffMrZ6Rl1bSBSlSk0OmgqZQg+sO06bu7u+errr3nz5g336zXWgalm1PMTCTdTSrzGKEl+DPDzL17z8aef8dW76zxnNckjKtSjBtn+TtFp2SeaQKaSsAkVx1NrPWFiSTsN4kiQgjubvsdoTR157mdNS1BqEn8egkYHI553J4nlPqQaCkRjMhRVKUM2yMcwrHJuhmw0pKHWSiRFoiXNnulH5kFAYrm3263Ipng2528qxufHGTg6I5Jh+f6KzuWzs0xmf62lnUIpypY7R4MyyZcxJkru30PHz3ySEtEYh9HoTYxDpycn9DG2W0gDVjRNKzurwMhKcrgKJBEeoTaO713XNa5p+OEPfw8I3N/dsdlsqOuajz76SOqQOBf7esdms2WzXmP7HucsYbeidmf01PTKUGupOKy1lpwrFQTUIkXSVDQKg1K4VAguSOx3orHUIeC3O9R2iw8uc4grwESS308//ZR2NmOz3fLu3Tus9yjruF+tmM3n1O0sVyyvZi3PmpbZYsFPf/Y5/XZNMztHmQrrBpwRT3ulFHUo3PlHjt850P1Nj6PC9jfwCP2mHqRS0QRBQNmSV1F46rgnqmPVtSRLklKYJGuEqRdcpf3Uoo0JMKfiCEAsjFVolfz9sZ2T7b29n2PvNW4F+tEDd+y78ZrEU+vtkK3uuq5Sx+DdQLcdeHd5iXWSKLXdbthu1gz9gFGSWFJpEzOjJRauNRXG1NErQS60khVosWXWzGZ8+3vfFa9N33P57h2Xb97G0sijB7oxBtPUaB8989nPOYYTTL28cVS8w9khlkqHpm7QEcgHLzRdKnoHlFbgpgMiAlVijdfrDahIfdh3siXoUmnocndhCsX2PZHp2qQ8hXlA5k05tybzbQ+8JQMjJenu/xQzIxqPEk9+d3ePUjrHySUedO89tTHgnIC5EPBaeJLbekFbz9lurwjBYYzm2cVTvvOd7/Dy5UvW6xWXV+949/YrrLMZjS4XM0xV0/UWbars+bPWYdrI7a00u94KTaBzWK+E99Y7nIJqNsME6L0rjGOOcqS/7wgqVphNxkU5F4kgLnicV2gdMiVl8niVHvPpjcNoqKR/87Bcex8QL8FAvn8874t25DXNKGsmyYYq+t2ydZJCTWSejoZ29GanUAQ1FgArlVX2FqkR6KT7itwRb/iUMXry5kd8Fodp6vmxcYyTyFZqDPmTeS8x0u1CGEB6a6nqhtvbWz796AVVpWU3jMCTs1P+s/+Zv81isRAmpPWa+/s78SouT6jr2G8+0A+O29WaX/7iF/ziV79itdugm5q6aZifnkfmkRofFDaIx93HPiWO0ZurG3a7DlPXMe8k7TqmbovsI96jqEjeX6UEsKbx1KQ+CLnGQjmnUix71TQSchJkjLvBEboBtjuquhau8bQz4dLcdngDhDaPbulzSKA7za9QVE8+2KdVZKOCqa0aQwzKqTRdS9l48yHuoBbJmyrGKKvROEzduG/giuydgu4PWWtp0mV9rmQXS2iDK1SqKm0qfLCMAog4btNkzlQIBlK4Scr/KELDYrO0lrDLk5NTbm+ucdbThY7buztOTk+pmiqCfDP5Xnq3A1EU30GjmM3mNJXG9j27vo/PkzFtjaZtG86fXGAHx+3NDbvdlr7fse0Hhm5LPZvhdY8NmuCE3jcohdMegsZE+GJQUihIQdBO2MOUnNdB6Pu0syhvqUKPYsAzYPEM3kkRwcrw5NkFF08uCAEWiwVffPGF5Dt5z+3dPc18wUynnRMpOjg/mXN2vuTt22vs7o5mXkXGBPBKMShwxhdJ4YfHf+JA94eA4w/1Yn/Y86b/VtFlMI0/K4S6pG8jCiFW1KsrUSWR+zSofKMRYJcKKW5rpXPp1gfKM72Pkly0CT7MF6RbHgLuh995D1jHjiir6al4LsVr+whGu92W4D1NU3N+dsJuu6XbbvDes91uub+/x1rLbDbDDoOEYHgn1rcCjKGzA/72lvvVhpeffMqsqrAZWI/vqIoT6f3EC1qz3W4zeX/TNDRVJU61OFCVURivQQmHt4rWcfYzqJCBaCjmQQiRqcSn4jcRRntLCJoQRPmlbdTJWJEMpsB219ENQ97Shkg/FtwoSNN3pjNlHPfiUGpkBinP7V2Uf6ti/qV/j8V0DsH25DzQ9wO3d7f0XY/WBvF8B7rBZkBuIMcSOuckGUeF6GGztDODrgJPzs/5L/zn/vMoFfj93/89/r1/7//Nl1/doltPlasiBKpGU9cNT54+F47iu3va2Yz57AzvDbt+wIXAbvB0vRWvbFUTtAh46oa2nTE/PcNZx+XbN/Q7YTTZYy/7oCNk1MMIfsYei6dD3gVJQCdxGU9CMHwAndhb9sB1AuCFETVtx4fJRFX8PXn23lGOfV7vQWU/XDqfdsoS/WQC5hJSIbIvJwjHeVO+S2lY5GVdOAnkfMggauwXla/db34ClYWJmZ8vslSjtMZrFXn8dTbctXK4rmM2m6GNYXV/T3CW9f2G7WrF/MmZ5HEQmM9azPOn1HXNi+fPcS5we3vH23eXdF9+zWI2o2ka7u9X/PpXX3F9dcP6foU2hucff8T8LAIgbQhKSzIZKjMhESkMyf3suVlvxGOpNa4fRA6p5H6QIlBuSFVeVZ7TbdPQD0ME5JB2I50VTmKtRwAmlXc9dWXE8xsCLkjiKVHmpToKCegbYzCVofIKVSvcYOPYj0nmKgL0NG+8cjhX7iSqSWVlUHhvR/2XQDqwP2MP5GMU2M5JuMw4k8gzapwnaT4fB9RxCI4Yd48fqbBVOjSKOiblynvGSrTaRCNo6pzZ/1eZWaKU27ti3GvzMbP15OSUvuvZrNd459hstqA05xdPIJD1miyVlCsRkxR1hP3lHLSW1d0dxmjcMEAME0u5AHkHSgHIfNVKM5vNaRcLeg873zGEiiG0eKckl8bEuhiR+EKHkX1NAcpHg0SB06CUp0Wh7IDrd2gGlBpAWQJCguC9kDSAsCIRFKauMXWDs7J7fL9a0c4XzBYnwkYUhO3XmIqXH72QarDbG9qqQTPHBCQxXAn2e0zm/k6B7t/U2/zP837v+0oC22mSiiIYn6dIizTkZLa00IbsJWSyiselQ+Y49ck7yJ6VnyZjAtGElLw+HolPNy3FI17RY9Z7tu4Lhbrv0c7hAiHE7fPRu73dbLB9R9M0KGC9WjHE+OxEQ1RVFaenp7lS2z64UEZzfXNNEiDe2qxUpI/KF03AcTznvWO73bJerxmGgaqqmM/nwu0d7+KFR5CKkBMDkydNfEwKpQrqRSVeE+8jyI50Zmlhp23Q4MVaTn3pQ3q/KODiOQIEJ5yl+7sXk9H+QElfelkzmC4NuAfuV86lQ482WRFmRRkNhD4WFLLW5jGU/qhAaUw1euO0lopsWgWslX5SyoOyaOMxlcO6LX/+43/Mxx9/xP/3H7zh6zdf4OmpKwPBUDc1p2dnnJ2esVp3SAUxePHyY5yDq+t7rNNU7RkuWEm8RRgXTFNT1TVV04jxVde0sxmV1gTn+PL1a+l/4MN6W45yh+mB6tHkGwcgzh8X5EcHie11gcy5n9pQguvSW1Y+txyj/TY93JQxRrVc6/vfPQD38aMEoMudmDRvjDETZ0LZvg8yCia/R0NXHBLkxEpV9BMFFElHigwdQfyYrae0jppVZzYpH8GcjgZRv92yW2+YLReczOaErqe/u+Pm3SXaDZyfLZm3jRRWMpV4DL3CqIqTk3NsUHz95i3/9Md/wf3dPdYLqD05PefV848wVcVsOUdVJlp6MS4+Jo17JW30kdEneVO8V1hn6bZbCatSinY+JwQJP3NO1qKzVkpfG6Glk8KFFhWrr4ToKNDaMGvNCEjTWjXSd7O2YeNs6kQxCAonkI59J8DLgu3xGkK/plvdjjsoKhCCzUmW3rosz1UQMKpjSIM2OsubJHsmQDxStwrYn+59jLBz/K+LIQ95ZRfeZBLIHf0Q470mhqIav/OIPH7fPFcqUNcmlXGIsfXyLlppXMGIcYgMkhiJGiyM7R7bFXIfJD16cfGU4Hz09ju2awkJWZwsyOkkFEE+SnQbnQUfcNZmQOSdw8Y6B6RdYRULz1VVlgO5gm3Sk0ClDLoG1/VYG6jqmkBF8BUOMXa9CngldKqpxgmF00onb78OVASafofxDnFnapSq8FicEiOmqVtA43xg6HtuboSlRBuDcwHrPKvVPef9U+Z1HbdPZJdpMZ/z9OkFX3/5lvXdW9r5E+rKo32DM5Wszf8kgO79CTtRPA8omr8KSH/4u6USO/Jp9sT44ppjFrhQUBmTyk9Xces9irlSqVIA+OJB5eI/1j/pBqUSSq+Q2C1H7HVEKIQphBVscAi4icK7qupIjSUUbgSFDY6h39H3PX3f0VSSfJNKHYcgBSfu7+/z+b7vpcR4VC5KKepKRy7MEJkpFEpXIhAiOCz4OEZBUShYYd3y2cst99YsT5boICEP682GfrdlpgOVjjGXhQwbk8Oi0NUl+IlwIMZrp9ht0BFIiWfIRt67RBeYBKPKRpTco5wwj4GpfTh4DByr6YlM8VeO7f50DvHaUpkYPSq+pLS6rsv9CeQx2z+U1tRKQaQgU1qjjUksv4BHeRc9Ez6GLojyHAaHs4HV/Ya+UzTVnFcfP8M5z+npGUHBu3fXNO2SXedomiU3dxtubu9xDurZOV3vCHjapmLWtpycP+P0/JwmJuCmsJ/ddsuv37zl8uoqh3598JHWTATS2blz7NL4O1FqCWOHzNEqxAI9sSR5CX6zVza1bU8WlNc9JBce+jyOVPbg7Rvj5Y4YEON0fTYggxfKTKV03h7QTOfQ/vvvz5U87x7qd3VwNaVnPFpuk0uzHE1Nid5SYnW9BFZccpxFQDtYKxSeIRCGgWGz5vIry8npKf1ux/r+ju1mxV+u7vl6MeP0dMH5+RnnZ2c8e/YMb+Fmfc/Xby75+t1bbld37IYBpQznzz/CtA3DIJ5G7xxniyWqmeViLOO6jPH/sQRKAmRBi4c5xBLbQSmCdQzW0m22aCWe7FnTCgvTYIXtSHlJgsMTOgFkOoKz3a4TVq2qpjIVdVNHJw0MQ8dms5HiVmgyGbZKoX1JHkp/JjnYdeJ5V1rqn6RQtVRdVoCK7HwpHT2LSIy50UIdal2kPo25LGVV1ISTA+T8oNlsNqFXLecBkA3/ZCgkfJrmeKlvHzO48/x95OKDdVh8NzkkqtqgjZKkci2hIlobKi0Fv0r+iL0Ak+zMy5kocefJZdBcCiKVnX3nF8949+4dw2Dx1nFzfQMBqvO0y1K02Xv63Q7X7cQpkMY+Uh5mVq74rBKrlDlbaUyqKoY1BY8OmnmlsNsd6Du8CTgcAy1QYXQN2kt4Zowp8kEl9SrORS9tsThUv2URLCY6MVI+kUFoLeezJaZq8F5xt9pwv1rhg6fSKS9Mdhm8i46ukJCZjMLHrz5mvdpwe3MP2jADtGkJ1Ghdj06tI8dvP+jeE/yTj/bO/6Zg+0Ovf/iytL2Z7nVckREVWd7IUiYybtRSBQkiI8cIkkIa7PhuOilbpXIs0377c5gHEouUgMtDSq7sgwNwt3eNjywFabGkpmkURoPCS6W/yrBzWzarFV0n2f6V1jRNI1XYvGfXdey6HRCYzRoqU4vy8UJcn7b/ZCcgxH6JucqqYjY/EZaSEFlFVBKcJcgMI+tD9E4Pw5ATwbTRGGXwznF7d8t2s6FWFOXSJ7Iq6/XSak9eXkUJTnQ+r7XKFGgyPk4KS+T+jpAz9/1xEa/U4Wdpq1XFv8vRU/FLR+NdS6OuACjlWtIRHKdKdN65bLBMCkns3xqKxSJtqypDU9WytVzVsmWtDDZEuj4UtTZoHWnaVIhliivwGq0brNP0gweladoFysyw/Y63724JBFww3N+s2e56Vqstm12P84F2NkfXDScn55ycnnHx5JSqqsVzAjhvWW1W7LY73r59y2p1z+Z+g3L+w73bUaflPiwM1uxvjUm15SHxyONZ6dNxHqV1nLRfWYI+hVg85Ol+6O/xOcflqaRlRUXjRxq+BMa9T6EnHhemOz4pITzfc8958J4uzH1Ynjs8Jm684vf0z4MTEVARPdrS5khf6JNXW0GwMibOYe2AHwZ26w3XV5e4oaepG954j7OWuhJvsG8a2rrm4vwZJycL3r55x89+9nOcg9Vqiw1Idci2Ybk8oW1nNLM5uqqRyrqW3VZia69X9ywip3LTNJIgpkTh6yibfBDQrAJ47VFa4WxMo1MmVmB1OGdZbztgx8wYtK5omhlVXeNsz9B3WCeeOWM0RhvZCfJOYrWtVPQTD6z0dU6MJu42JjiS9FH0ECfDwChJYuu2a+67LQ0e5TzeWtlJ1AGlE11ewJgKiJ7sALUy8Z2Fki05Y/Kh9QTkJT11dnbG2dnZdB2k6eNh13WZahVUfj84BNIJkE9m1hHZl9ZjnqmPeL9TY5QWfvgqykWlTJblWimMNmi15z1Nej+2XdazIgQtjhwlIXMWmePyaumdZE17QDUL2tMnrK+u4o4OXN6s0PWMxXwhejAuSmst61hpWIqQulg7QZhfUsKkGIPjustSJRtaOv9OekYoWzXn8wavAi5scYANDudrQnAE1RAq8YL7oHHRp+WCOBCFK9yD7/Chw/uOEAa8t7G4VuI+1ywXC5RSdP3A7c0tzlpJxg0eUwlN4/nFOfPFPOtmiQ2IyZhVxSevXrHbdnRbYbqq2yWYFsx+/MH0+O0H3fF4dHvzPdf/VZ93+NnkX2RfxJGvTDxPqAI4qYkA9ICKZVXjhplY4FqEWBlbqYgC7oF2Cw7Ltnv+0n6IwGPesBC9sqUgmyTW+ERhF99PiSVsjKauK7RSXL75mvXqHgicnZ4x2IGu27HdrAUkWct2u82VAJ1bM9hYSSoEXJD41qapSdT3Co3WFe1sQdsu6LsOfMBUZT9HVVxQR6Vz87YRGkDvUF7iHFWwbO/v6bcCuBujMVqUWwngC3/I3s84EwgpiVW88D4LdEbPoRfw5EtPqArZODqG9PY92+M/Vfp/NDpGEP7w9wsjK35WeiGSMEyxmcmTHaLB9aCHNJ2Lv7TWzNuW58+ecX5+xrxp+Olf/pzVrqOzA7bbopuKWmsZE+uYV5rZbIFWlrbV1K0hmMDy9AJlWnq7Bt0QlGa16dntpJhS3w9stj3b3mF7L9v2Tcvzj17w8uVLFstzTDsXZeMGdrsdq82O9WYjPL2bTU4Ms8OA3ttpONZ3x/r2wACOPzkGEQrtXVw7MZQTIE7glljwQWUu3ZJR5aHxeGw3cNLGbAyGuFsUy+OFEXjbyPU+xDjftmmywReKdfDBRsp7jmz87b1jlm/50yldYGLOyeey3NOEGKedKA19QMCwl12b4L0kTjuLG3YEO8j8WK1Yrzc472iMIthBPH1aPG11XeOt5frqin+6Wkl4UlXRDwMoRTVbSJn4ppE1nry52hDiPo+pKpanDYuTEwZrWa03vH17idZSSGoZK10GFCZ6hZPXXgeh5FPG4VD4FNOrdGSTkRySzg4E59ne3jFbzFkuFrRti/eewUoVVuuFEz1IbEfhQQ7CfqIkZKBp2lylVRLeyOFD2SER5YhRkjdzenJCozwXi4aZNqIHvAfl6fuOfhi4ub7l+vpGGK1iqa+AjBHeYYzi7Owk0ug5rJP48uRpT7tsSZ4lMJ35k5EJJdNLi8FBkp2Pz9998H702nTNexfCeIEx1Sh/lay7ZBxorQ70UFIaSUZ4L8WTnAvYEHeplFCi+sjyIVFU484hkIkH6uVTzlRLH3ekOzvw1eUdL541zNqGykj4X99Zhq5HETAaQpAaEFVT853vfBdtKr5684Zh6AWeqki16VKIU3ROhQKUFnJWazEwTFVhTIMxA1rPkBI4DYoWrxucabC6xmqN80awiBfnRYUD16P8QPADIQLuiTMJmMVCeve3d2w32xwOZaqK+XLB+cU5s3kLyhOCi7t3Io2S3Ds9P+Vb3/qMn//l52zXK5x1tLMlVUMuFnTs+J0A3Q951NJnx/7+Jvf+8M/3gcvUonk8iUlnZSDgW2fhoBSY6HURABWVaMp0KcBx+q3jHV2eTESBR94iS236JnGd6ZrRii7OpR4oPN5aS104owynyyVtXaG14vXr16zv77BDh2wvwWYtHMjJU9H3PdZKXOAY65W8JWKRohOFUwyFCSp6ZHQ2ZIZhwJi4oFQiyE+gMlC+sQkBHbfvTV2Bd6zv7ul34gkyWtMYRRVpigipTDvRe6Opqjorq77v8sxwGRglQ0TFEtZiUAmGkXG2LmAHh3NgTBS2ybuRB3Q8UrGO/DCSACCPs5x9gMdh7346hXYUYDsls6aiRJMEuDjuhdszN0UV/9JB5uXFkyd89NFLnj+/4NnTp3z88Ucslidc369Y//rXuODZbTeE3qDY4HygUoquMXjlOZlXnLRLnj57gleeJ09eUtcV1zcrTCW7IO/e3rBeb2PZdsdgAVVTN3M+evaCpy9fMl8saeoG6zz3d3fc392x3Qgt4BBjzuuqYtnULOfnBBf46quvxGEC7IvOh4wNWRfjNSOAPoLdE3CGPOdDunc0dtMa83trkATC9zx7h48IRz8rx1PuH71EKTY/XuN9qlrqMjuRMYamaWSk9dRrX27Hj5h46un6TY79d8xAP3WsTteFcX5G+RrdWoTIGS1/C2OIdZF320cvrXP4waKHgW5zz+7+lr4TIKi0pmobZpUh9Dt81+FdGItqJMpTpdjEqrZKK84vLmialna5RM/noAxBjYVj8jaaKijwEC/8ualZLpbCXLTdcnN9TdM0zOZzZvM5VUxAToa+ib8V0WRSUgFTQkgUKoV8aUNn1+yGge7uDqWgbWopCd7OGIZewLR3xRxNPSwlunfdQD+4KMtUdujouIuwb7wnGZEAZNvUnLY1y8Zk6WyDwzrHrJ1zcnLK69ev6btB2CYSqFKKT159yqefvooe2LRO4o5RZP9KSerlDmOIOzflbEy5B+McHqeQUolaMenR43NzYj6HkE98mPEp/dHUDVX07ueHhZBpFSGF/jApYCO7rNBbj3WawUEPhFDF/bMRdIt/TPCBjmskkmCjCZjFGYvFGQslgNFbRx8geCHYq/BIfqSiis6dqjYsT2bM5wtefPwJdd1wfb+KuMUzm9W07Qylawmbc07u23dsNlKILtecCAHrA9ZbGAaU6jB6i9IVqApjqkj32qLrGaqe4UxLT0WvDIMRR5ZyFnxPCANoh3aphoCMloT0GrabDVSad5fvWG/WNJWmrmrmiyVPnl4wXy7iLoyE+4ihY5HqPuL8U0rx8uUzgrX89Cc/o99YgrXMF47Hisn81oPurIz2z//HDrD3PytbNP6d/qXe8/0xpiplKAgYrtsmA+PRt4MAsGjNhtLbWngoCx0jE04lj1DhdMzeoSloP9rGQrIc85SaKLesd+BlC9bEyWcIeNtBpeh2A/d3txgzbgN+9dVX3N/f57LbSaEnwyM9Q2WXgwh0ExI3qpZt7YL9BVJio6dKcVhRD3hGcKGKcfK2RwVH20ic3P3NLW4YaJN3W4FRAWMUxlRUVcVs1jKfz2nbGXVdYYxmt9vx5ZdfkrY7lVJ0mw2StKGx3hOcwofIkhEq2a52HqOUUBNZi7WCHKSEezUBYRlIF9K9HLkUAlOOXTm05VjnLbz4o7Wm63v5ieAiX1eluDYy8E5z8n1HpQ0vnz3jRz/6Ed/69rd4/vyJ7HxozZt3l9ze3RGUVMfbOcfgRdiaumHRtvQoVoPF1IZTDEHVVLXmycVzrq+vsU5xt+pYbbZstp0YOHpOs6w5nS2ZL06Yz5fU7RzrAm8vhTO2324I3hK8QyPsOaeLOacnJyzmc4ldrVour2/BumKGfYCRmvqbAnBHL/GxdZvHL54JJTVKEHnt41ZvmT+RvVQRbE12v44a/OMTE4tAkhviTUfkTAgEazNAKRkHjDHomPiczuX3yzIrmYAfCjYeOEL4gN6ObSCxTKTVHbI3SgC2UBEGLcmTslMXjSg/Gi8ujZf3uMExdDu263ts3xG8o2lrZvMlGEPfdVjvGQapvhikY7FWWJCq6LGslJSKXq/v0UZzUgsNnDIVKIOPMlPGzEfcmpwy4lWEQIXw3Ccvcdd1bLZbbm5vaZqGNiaAa10wrCTKvSh3XfQ0Z2pOrdFNjdKatmlw3tE7y+7uBgW0bUs9azFaePGHvo/eY5k9siXfo4hc4dHJkfMzCg93/knzIgJ08YwHIOW8kBOOm7ri/PyM25sbhu426zKB/KCqivvtLuoMYUBSQcU1FPm/QzL+RsNXplecoWE0csr5PFWLKjN+JZ06LjFpVCjmf9Y1k+sO523G/gkAZ3lskPCQeE3K41BxNzYusORtlTLo8obWQ+8CNmgsIVbQlV53iONHoyUeOiTtqcGrhLsx8W4is4yEACpFH5BcAu+ARkI8VGLeMuhqhqdmvXW4zY5uMDgaJCLbjInglZG6DTPDklNmswWr+zusG3JtjGGQmP1xt89JbkUYsIOi360ksVZLlemqXVA3c+qqxVYtVldYFN47etfTu4E6WDwuzovobHCed2/f4S8vGbzsCmlTc3J6yvnFBYvlCVV0Ho5VkWS+qhQQqFIGmefFy6dcv/mKm6tb9OAZ7jt8SjI+cvzWg+7yCO9RMseu+02uedCrPvk7HHymH/xu4ePOnpoRDMtHKm577n916lkc20jWdCFq0hBkEeUW7nm7HgPe5bnUtpL1QqNQFdjeiqAMnrPzM9qm5urqim23Y73y1HXFdrOlMoYuNnQYera7Lnq2B0naiIkwVQR4EyEdLencrtiDipC3VL23qKBx3sbQEh+TL2OMdQQOg7UMVmKQt9stdze3aO9hGFjd3BDsQK0VWvkIuhVPnjzh5cuXmWVFBIJ8f3V/S9d1dJ3wZiuI5eUdd3eSAV1VUpjFdp0YVkbj3SDb0UaLx8x7pGxswLkheiBm0YOjsnd/nF1pDEebJM2nY4C7BNlJGaeKcl3fC8gWd5AwJsznEyaA1H8fcpTAy2jNH/+Nv8Ef/ehHtLOGECy/fv2aP/vzP+enP/tLbtcbVN2K8VGL8j9pZtTtDKM087aiVk62PpslAzVKVfzlr77m9v6e3mmak6c8PdWcWy/JLkqqioUAbnDc3q/Yvruji/Os0ppFBW3bsJzPWC7ntHXFrG7E+6bEEPYOGqUk4z0Ecg3NlBT9AKRMu0D7ewwSokW2jjNIjms6AZIQPWR5HIlJST4Q0pZsEgz7nmuSEi5GIYGUmFOQv6MgKJ2BjCRFB5wdcN5h4pyp6zqCghQ/figb0njnHikcA0UHTL77wccHXJ/WwRi6E4uLGU1QBqe1gDEfsgGec2Oim1wcGmO/Ka3oBysJf5Gbd7cbqGZzKlWBEm//fLGQRMIQciKgDKH0gFEe7SWe+vr6EjNbcPq0pqqlxLUhgisFaXeTCJTSfFEqoI0SVpu4zufGYOqa2TDQdR13d3cMw0DbtsxmM0kcjOPmo/chA+CUlB77drvZoLQk8evKoFQlxadsz2a3QSvJsZi3kvA+DH0cFvEe61htF60xSufkWZ2KvBVyKa2LEAGjC9MhDkHYJ1RQGF2JsVM30r8FbFZAFandJOTSx4R9CNZHMpcx5DHF8Tofy6Ql73EAvGXb9TkBWJEEq7TJR7YQHY0hVazZfaA9mbpMDdBjhmgyQ5QSzmwxnEzEAEIrq2WxSpVDY1DK5jbEYZD5HXtI4KD82AjIJaY+rtvo0U6VQHM4UDSAxqAslSNTdekACqBUjVMzQhAqX+c02lZ0XvP5ry7xATZb0LoF7TG+wagKHZSEQEXnYAC0rglBUekKqoBSFfP5DOcDzrpIvNDjYr0OMSvFoHR+wO8sfbclaDFklanQdYPSNbU2mDrg/ei0krhzj/n/U/cfT7YtWZof9nP3rY4IceOqJzKrsgS6qrqqmwQK6DajMsAMMyiSI0xgNOOA/xzNOCMnJGEkWrBBdFU2idIiszLz5RNXxA11xBbuzsFa7tv3ibgvX3VzkLkz74uII7ZwX778W+pbSl+b5tsojDZVzfrsku35pVB0otGyWDK1G205bxBrRQw15yy/9uu/znT8a4bDEfzAr7Sne7mhfOQT/04e7O8A0Oc7yX+cgm5Tfi6Wr6ZNIQEjVSBWFaKd6anKa53+Pl8oWcDFtXQVynqKj1d5vq8l4C5BeL7e0lUqom6kCNIQJdw3CYD8rd/4AW/fvmF3f8vt7S1NXbNer7NSjl7SPsYhCEg2UjBT10WhjP5zZd6aSZZ6GkWVAZtHkRBGpt7jhpbd7p7qWCmTxpFjYieZPEPfM/qpKHaMVM6x74/YMAkFlpkpmoyB7WZN8J43X3/NbvcglFc6fiVDh1cu0nGaOB6P2hlSO7cBvYJua6FylrXmZXof6I+9VnwHgh/BRMI0YmiTSp69GqUkZBvNPPonRY8Vxkijn0kLH4dhbg1vtYisaVv5vdgcPyYzH5PF0iTQacM4y9n5GVXb8Lc//lt++MM/4quvvuLYH6VAy1Q0VcPl1XNoWoJUflHXtYSWVysaJyqWrmPvLXe7kWgmqnpNVTuJqvjAMB0Z+4kxeA7DgenYa1W9xVUNF21N21Scn23ZrhoqK554pzSQlXrpyPJv1XOmBWnq5SnH/9u0RTxZepKPPXtKngLOT23KIt8CuI0RNhPrKlkHwYvHSr3jvtBOQTm+n7w3xMPjExBn1gdVXVOb+mlv+en9njgLPiY7cf7Ck+8//aXvALbzNY02H4IUPTTiRiUaaXZUpqqlmzKkwk9Uv4nuwQSCNdzeBKZgaEyFYaKua862Z7LGteCwqWu61VrSPCrL2A/iEfZBOseGkSF4ojaS+fDhGqqWq3alIEaK22ORThiy+UTW8Um1J69lBIyrqIyVn13HOI0MQ8/twx0fbj/Q1i3r9TqzA0HULSFiojAFVXUtuslapTWNgCc4L7KgnYL9NIE1bLYbxqHRvUY93c5hKymGjqQ87gTyY56Vkos66fbkibXZu6z7UTFRs/4jG6YxRg6HA5uLC3zKVTY2mStUGLyf11xttB9ATNGEuVYijKOkZVx/kP0qeewLWZFGOR6DVbD10a2VUjMEfZZoTObjNrDQAcnhVFfNzMKS862TZ13z/VMkI49nTMIs7C4KwIlp3xRp8pn2MH270PWJezsZGekcecDNzJKja826mtHVxNHL93H0XmoGDkeJ7MbYQbDE6HnYBfZHj3WWqkIYWipHV4uxNoUKE0cqVbbWgq2km3DTtYQQeff2vRbcpki0Va99Yr3xYjT4CTscRHc7S1NXuMpgmxrnOkKMHI8DwzDip0iMQXVDpOs6nj2/ottu8UZSc0x0xGBVJtLnvdrIc0Q+RpHn7vw5rz6f+NmPfyRRpW85fgVA99PHd8nx/q7vPwVGTz+fse2TJ00/vm1JlgpGcqxsDFR1snAfe7lLIF/cULHxCXinVFyl9+zkeednVG9yCbjjiRlh5pxTa2RjmsYR70fGsef51RUxTPzFn/1pztNu65pxGISPWU5BXVf0o1jj1lnaqiaZ2Wpok/MByS+wgHSFUZGKzLzm8T3c3fF3+72MqRdrNhQtiJN5NFM4RqGOiwjbioJOqayW8fjm66/UGzhbqzklRsG29+L9HjL14KzYUj50Yi4Zx4nKtsQI4zBRVYa+H/QaEkabJkPfH8Vb1ZThZ1G+c4oH2XOdPNnpCD6w2+84HqUgZgo+U2e1bSubcPLUlB7yUzkrwGI8ff9EIDPg1v8Ow8gf/5t/wx//8N/w5u03HPqjyFkQL8wYBRgN0VA5R7fqWG9WdO2a1WpF1zTUdq7e937EBsn9HL1n2O8Y0vMlrm8DtYF109E1DZuuY7NqWbUtVeV0D5Gn0JIz2QDTeokxQx5jIlVlmUYveYC6zr51/T8xLuVYygb5eNPWFau5/3H+F8TTZq3J/N1JrtKsGGXb8CcyempQl7IYQgRjixSjAhAVN3YKpJ/KCwdlK8gbol28/22G3HJs/n5HzPMGIB7dCEUuOhizpKzMKWukVAj5j7VOHApG0Isn8U6rt9HWbDZr1l3HOI70+x2HyVNbyzRO3I13EMWhEKZJZUsYELyfCDFSNQ0hwLEfJA/eCKAS3nVJkJEHSzJqcmdSrbPWBiTkZ8BYbCXtpp3Wl2w2ApT3+wMfbu8AWK9XdF2HcZLylgxJZwxtJ0Bk1bbaT8Fnp0QIHjtO2BbqVnjrnz27oq4bdg97bu7uVIVbrV9Rb7/qQGfIwDvddtaORlN8Co8x5aNlu7TYz/TF1LTk3AeUmE7BLNJADQFBkr+bUiCibiHlfhgx0WpBtmMKEuWMQdIK095KPr9e68RJdXL3j1+RLxV9MhKYloLBum6xrpI8f1OmnT46XR48owOl8RuJbFuIJhC8VWaztCLIRpHoGavG3vKcaaYS1bUYq6ITffbypAhSjTUTMUozMx9GIhXRVHjrGCPq2Xa6NiCOmh9vAtYG6ipQWxjtFqYjMUxUZsosTsZKhKHrGpq24e72HmsdlYtUrpJ0N1OJ+ghzClGIgdoAfmIKI8FELSSWdLOqrqFqOE6BafRMxtCsOrYX5zTbLcHV7Dy5ZsaaqMW8Tq5lIsaGmX3FoFFR0eHNs085/Pw9w2HPt/Fe/cqCbvh2gP1tAPqp737b36cbbtltcvmlp/6UkESyzNJHogpI3bbKZZ9AlZlx5hPHKRnNE86zxTNIbqkuxLTxl3Q+5XMmixwyj7OzlqZyVBb2uyN9f2D3cI81gX/1r77k5uYDTV1RVxXEwND38t3K4qOEK6XQ0c4gNloNF6VnKLXAbLwsRtmUD6ne6RjBTwzjsECFMUqedw7FLRRuUuQyHPKcMV8sccBmT7b+HkLUoquUYzuDi5S6EbTy/2G3Y/ZqSLv6fhgZp4nq0HN2fs7opVFO9KlQaGKIPeM4UDeNbMVqjWNMzv1LG+gwDozjxPFwZBhG8WYr/VX2phiz4EQvAfc8Wo9lLb2WCgmjDn1pCllSB8KFecQQAn/14x/n6I4n4o0hGOF89baie3bJ5etXPLu6YtW11E2Fs+Khdxr5Cd7TH4883N8zHvcMw6AMKuIns9bQNDWrrmPTNJx1HSvtLFrbRF9ZpBUo0LFW1uPcnEOewJpIMFC5iGGC6GdAVMrmR3TOaXLFUu+gnrbFBxbvewX/ictdZNurTOoGmIqOlMnHF8aRUfSRojHJSMzRJOek9bhdqvz5Npa68SnQbMxMj+mcY5omvvrqK66urjIFV3mOPGrfBYD/vQ+R5SkyFxQW956uKwZX0iciW5UWECeUZxEPmnFwtj3nw37P4CU8PdztGAbP1bNnPDs7xx8OeS2MhyPH/gBI9EwiXAL2gnodQ5R5Mq5i9LM3e/ITxjqsQ3VJ8pAGoY8Nc45x9nmX3u9ijYPJaUFt2zJNkXEc2e/37A8fWK1WbDaSEpNYb1bant65SnPInUZ5lH3JabdHE9n1vVAHYhiHSYz5qpJmNUiqTLqn2VET8vxnPZFlVHX8ggR61vpCUznrVZjX0/3Djn7yTJqfLGm3ZhFlihhitKqrZwrdJB8RTftyNXW7Zhhvs46bZX8eb4ys76dSMk9E8uRIey+YmMC06EXnpDOydbODYT7NbGSk82bdawR/iOtA0maME5rVZMaFmFhb5PKJupEishmKvV4MoewCUNdE8VBG58sZbNMSRpUNpc2kGgnW4Y1lio7JGGqdz2SIGSwxOkyAcZR7NWaFqWo8I3UcqcOEs4FKCLdx1nJ5ccHtzR3eT8RgCT5gqpp6c4Ztt6IAhgE/DtqMbaQyAWMmDEF1gwcv9zqZGt+sCV1Dsz6j2Ww4WMdgHVU0GG8YNLJRRUMdE6uTePRTJoFBQHfMcm4wpmX767/D3e6B8OWfnApDPn6lQPe/a5rIL/rsU/nOCWB/9Oxx+WsJyE+/c5rG4eqaummUaikWm0Tuq/HoSErtY3nZT6777BNQr11S5vq8Kb96eR35fF1ZKguHw44333zF7uGeoT8Q/JGubnM7Y2Og748MQ0+MHm8MN7c3mju8fH4Wi1quFhcKrPTWz5t3NhUUoACa0zd/TvI2Y0aJWZGfAAkpnor4nFftM6VRjGGhpOUUqrBIY28wJhKjVY8rWcEPw7BoIhNjzM1jqqpir13jVAxQrYb3I3e3txI10PSPOvGagza82HM49tKEIKIGRjHZhSY1hSczF1iV48jH5ToaI2CZwhhTmVTnygzY9XMBJA9VX/cGTFVhViva7ZbnV8/49LPv8dnn3+Nie5apII02gQkxMkwD9w8PHPZ79ocDcRgxflJWGUvXday7hvP1SmSvqiQXGZsbaVjdRGSzlUpyZ4WKaxpHgo/0fU/Xtdi6IkVWpNmD0EkSPUWBxLcPFkuD5JFHrBDthQyWp9YNXsj6ooIfgEA/joQDi/nMcp3lvpRZyTOsdUM/BQfLvz+uC08f/cOHD1hj6Loug+4U9fHeLwqiT0725DU+dq3TY1mzYEA9rD4KA4l8O7EZyQdtcl4UBv1M+6UgLTVmUQhTVRXPX7ygdob3b9+w3+9hgt2+Zxze0TgLpiJos5cYodU+AcFI91BjJFUkaJ5pMBXd6oz19pwpRKyVgliTojmpdXlhLIWQonPzGIQEYtQjGUngtnReRKwDV4mxvV6vpfhyv+Pm5pa27Vh1HbWzGfBN3lPV1ey8CTHnaTtriX5SphoZv6qRgrhlJE51ogI9A9LVNzVPKaVIPeCBSOUM0acPqBERZ8fHU3IwDQP98Yhv2hy1Sr7cfI1YrgsdPx3jRTTIWrrtlt3uXlh8TFEwmbs6zikpp/cyO3HmSz/egFX2SMBs9roK17l8xZ58tVxDqWmRVRmbx0uSlSprqBzYMVBpsXC0sk6KE4oTTe8lqD0wG6TF5x49hK4/Y6BqoB5hkIL04IX6N9YjGGHw8dEwGXmmoIpxbuyk5L/qOTemxsdGOgXHkSqMRCYqE4nRsd1sWTWtpmqKPu+PBwYc1jWY9SV2c0EdoPET4+6W/niPC1CJyyevE2XpxtYN7dkzpnbNg3F4HHhxZrko0dhgoI6ONohM+MK4DMbiFXBHJNpojESQTCvGgG3apwQB+BUB3R9LCfn/7zWg3DrL0z++UtJQaqHGBLhnT8T80aKoxBgJk9Q1m82GTz/7jLrtxPJeNLAxp2d58ni0mUJWwskb+3jDXyqekwHII2CQAqv3d9fs7m/Z7x84Hg+EceTq6oL/5D/5jxn6gb/6y7/i7v6O/nhkGCWv+dPPPsMDb9+9SahscZcJOOdLL8a9HMG4wJHFF+YGQLH4TpqWk+fLylYp2KIWWpafKxVoMkCW0Q6TOwemsYxxTjUJwROCho1To6MYC2PGMPnA/rDLnodxkk5+KeeSCMM48OHDB9brtbSm3+8BmNTzHvVeMnjOu+U8zrnr3nLIHssmj8c2geiccmNtkSccs0crxkgZdUkA3WlhZrPqOLt6xvd+7dd48clrnl1diccVS2W1c+k4MfZHYYw4SD5+P0o3Ugd01tJ2Net2S9c20kmyqWgqR6OehtT5mUguGhPPsT6vj0yTFMHu9jv2uz1+CqxXHZ988pqqdro2I5jZSIqneCE//eNjOQdPvP74C0+PvSoTAVgBq5527z3WW+V3P6nBQOkfjYIfa8EoE0ZhdH7c2fyL9UxE8spv7+44PzvLnmUPuLpWTmBZHO7U4MjPltbX069/6/UX6xBS507x+CWPcMjynQzCnFZS6GAB2UAUektjBFCmhmPWWZ49f8lme8bDfs/u/p7jwwPGB/qhZ/LiuKgAE2QjDkhEJ+r1nGvZXFywOT9n1a2p2zW267DaSIeY0vtUpmIyEBO1mT5v8iAnB4NRXfmEN98ogEqe7xBEdtZVRdu2DMPA4XCQOdxuaZuGuq7Z7/ecnZ/lecnpOj7S1lK4mQswjRGvqqtADUOQepXKSW54CJ5V13LY75m8Z1JKyog4OTCBaKXQPNek5elNkRqfgfdpyhRAfzzQ1g0i15FTEUr58b/oCESarqNqWqbhqHtE0oGaZx3jk2tnKePftl/rJpxk0M4N4lCZK/WyYTbATr38Mc5sPUkXSZQmUldCcxtCxMUkK+RrJ8dTMOB03Ugtgawb+0Tjrryf5CeJ4CyxbTkOA6vocTESvcc7j7USCZZ4T4qqpueHMpqRs56NFS95rPGxpWJijCM1AYJjU0dW7YrQDzKrJhLjyHS4xU0Tqwhmc4Fp1jhWtOtzzNjz8O5rdoc7KjNR6dpM/1CH2zgFBlup11/Mt1FHhghjTLJk8RipI9Di1SkaJmAyURljoAWaGLW5z8cl8FcCdJfHvw3Y/vbvnG4CT3z/5LOiLJfALG/Wi1NL7tZqtWK73dLpz+12y3qzYbNeUzd1XniL6yWv98mGM5+6BKnq9Th5/3RrzwVUajUbXQipA6bBoxmwTNPIw90t+/09w3FPDIF11zCawG//1m9weXHOfn9gvVnx7v1bDscD0zRxdn7G7//B7/Nnf/kXVJWTwpZkniswjGkQjSkeagb9s+d6HtPSSxHCTPVVjkE6V6mss/IKIb+ex8fMXbHKI0a/OLdEAyLjNEq+oxVfbwhTzvMu825LtonSMPAeAQsmgBELOT1+9utEcnv1FMbPo6FAN+8CC7mZFVrpeEmKJqTvFrJTSkd5jfI9a1JbopivG4DJCOgyxuDqmnaz5uLZM66unvHJ69c8f/GCzfmZFHeSeIMjw+B5eLhjt9sx9D1RGxVJy2NYV07WyapjvVrROEeV0kWMAG3H7BmyRJxB+GgRz9nheGTf99zvHri7+cAwDhqelGdYdyuqSjyUeR2k82lIezYEP6I7yl1S/34KpKdczm9BvcX4B0K0mDiXzp3ql/R7bjyi3uWZqcBkoyxrgF9w7W+9rwT4isLhyXucFupmmYiSEpPA7sccJU+9/rHPP30/ME5eO/gaCOIdFccFGdyUkalZsyggVSM3RNWZVosaAW9EJqrVmrO2Y3N+QdAIU+j73EXXeI8JXsPao0SurGGz2fDs+QvW23OwVpgpnGzs3k9gwBqhUpOUBWbHQaJDVeMLHgNKIBfel8A7/23E7EilHjFKmD55vu/v77m+ueFsu6VuWh4e9qzXAdvWyaQGDMZZDsNA1zSs2lbakHsPZqaqjApMm25FBMb+SJwClTGsakusKy4uL4jGcH97z/39nXb+i5hQyZpJe2YSUStzVHrRF/MfAuPxSLc9PwF0xfjweHmm1xb7ppHoxubsnLsPIynCmYzfVBFZRsCT4WZLpfF4915cVUsSCYinuW4anILu5IwrPc7l3pXmO5VSJuNW8ScpuuAqQ9uCP4LxIGw+NhuVQefVF/eYr2WAqMW9iydJ+iT9bYjWEqqKUFXYcaKNAeMjZvIEN+lzpDojMWxTdus8H8k5lJ7dCgMVhkCLMZ4hekYPve8Zg3RSJXphJLGi90P/QP8h0vkets8J9ZrRdlTVitXqivHhiCdIJCQ5VwKYKWTjxKUC1DyPKW1yNtCNEVAdCHMBp6aPSdqQpKEIm0xQlsFfcdD97+LV/piSn9//e52M5PGkACGiquYcV+ccTSvczpeXz3jx4jnrzUaqletaCpk0LI5NFcdz6NMsLrlc8B+96QKcZu+kEP0+emaAaOLMa6vXNCm86SW8/snrF1yc/zrffPMVMUZePH/OT378I2IM7B4eOByOdG3Lyxcv+OKLLwhGOtXd3t5wcXFB26447I/EGJBQfRqp08FPiGUG1h//N6fenIYLQwGsTzd4C4sUmgS6yyIduaWw8DKk2xy1e6ZzlrZd5XSUGJOnUQveTgyB4BNvrMnAxbn0seS1IAMtTAFwlCh2EUEx6jcqAHeCE/l+i78XqUilDBTGR/l561wuhA3DkD8+ASPqQbaWbr3i6uyMTz/9lGcvX3D16iVnZ2eaUy1bRPCe8Xjk4XBgvz9yPIwMwygACaiUtaZta1Zdy1p/rupaUiN0XNK2kaFkjIvn9ZPn5u6e99c3HPZ7dvs9R+2uZ4ydeYxBawvmzSWlbCQP+SMjXMfqKd9Z0tPJ4yd4qdxWlmP77cB7Ns5iJG/CIkclqJo36iUw+bgiWxhS/5YAPKVHlYbsNE2LBi3JG/pt+voX6fJve38uiJzXmcHMWQwKumW+7SzbRsP6JDBuC8NVwUQeb5QuDIxzQmlW19Rti9X26F7TaoiBMI6S46x6vXIO45ykrLhK6jaEb2em70smVdTwe5rjJ8cuyZbcn13M+VM/l06EsvkIwGazwVrL3d2d6K3KsT8eueiafKlI1I6ZRprojBNXF5esmoa+PzCNwkveaoH2brdjdxCnS1tV+GBZdx2fvb7i2dWFdOwMkf3Dnm+++pr3794L8Mi9XyIxzjIdCsD51HgE75UVhKzsxEx+7Ew4PR6dzhi69Ybdwz1+GJSDOmtbSudPuh9jBHwu1tJ3XFbWzY6e5RqXeykBfYxSBO2sNHeKyswS8oMkR1uU1Lja4ENkHCBYraMpU6rSXmdS8XjUNDwRL1toq+XT6+9Gmaqdw7QdfhK/sAsBPw5CC1g7oT3E5Lsz+t1sIOk6jQq405qM6lHGCFPTGAP70bObamyoaWLU3HXJYcdGGA/sP0zYfmD17BW2tXjjMF1DrBr8NEgnWeNYbzbsxol9VeOJDEa82SnZNaocRR1eoVk0EtUiqq6QImdjrLDlYDQTyVDFFAH8dh33yw+6vyMoPl2c37a5LD9rHi3EUtDk8/LqDPhm69pYl7k0u67l7OyM7dmZMDF0Hev1OheyLRoHKHVbUpJP5V4+AtyltzLG3JYbyF3jxCurdpl/fG6TPHu6EJ12fYS5iMuYyORHnj97zfc+/4yucfTHnqurZ9Jelcjbt2/wPlDXNZ9++gkheH7yk5/w7t1bPvv8c16++kRCVrHI/02KSzfNJ1NAin+nADqqcp6ZCsJHlXPpxU6e/PI65e9Lz7gwoEDKozQ0bcuw2+N9oOukIYUUqaWQasg5xKAAPkr6ibGyOANGPGJhwhhtW+ykwjvGtHfM4fJpmmiahl/7/vc5v7zkRz/6Ebv9XhWzblBZggvPzonYn+axu9LLrXKYGnDUbYt1jnGauLm5ofeBEYN3Buqas8sLLq6uePnyJZ+//oTL8zPaboVtpCjNTxPTOLJ7eODYHzgejozjQJi8ujuk61fXtbR1zaZd0TQVbeNonMUhBZKVAikJ5GmOsz6n0TU4jALg98cj729u+erLt4xTmD1HNlGKJW+4EQ95nPmp0TGXghjZ8DI9JAkAxRldP3F8p7327wF0Mz6KydNEcQ/z+Urwne7uu1xlCcC/2+ckSuNzFCB18ktGYb6HkzX97abA09f6RZ9bPLdujCSubDN/LrWDz7jMPB3VSuMcYlRGkfnupREHAgic6Nwqgmu1SFubeqTDa5dLi5VW7y4xU2mhZgI/zHuMQYzYmBrQRJQ1R/OSVe+XetycrOHyZ/l61nNh7mwakb4C1lo+fPhACIFht2N7tll0kJRzVBgr43i339MPA+u2ZXu2xvsJP07c7m849r3MvfccxpHKGC5enHP17JKzVS3dLYGma3Avrujv7zRv3WSdp1Bf98e5mdMjOYmR/nBcoOe0kh/h6UdnePxqNGDrmtV2y8PtHT5MIIkE+eRPGbVJ1o2CrnmJGhIdX7peMgeMsdR1myllifGklqm4yxN5NdYQ8Nk+C3nc0l4QqV1kVQsO2CHg2huLM2TZjsmbnXWayonuQYkMrXQdzGOs+tJaXNdJlKef6Ig00XOkJ1bSPE7qLtIAm9lDjNGcQO2CbBwh0WdS1Abo09VVw+qT32D35ks43FCHARcCxvqMVYwfCbsP9N6zeW6x6zNMW9Gcbzne98RomIJEtrr1GcE59q6WjcQIE06IyOag4+IweUy0Z6/WDhiCidoiRyIQLUbkRZaq1DI9Oaty/PKD7u9wnG4Q3/l7zGs3b29PAfA4/0vh/cpVtK2A6s12k9NGNtstjXo9KBZrGfLkCcX5lPI0xmQwHdUyTYonb3Bx7iIn3igvDWeMm7185QJWmbfWUuNyNzzJDRPlMEwT09jTOMeqrbnYbjlWjtrBetVyf3/PYZyo6jbnp3322Wd88cXP2WxaunbFcBxoqgoJ2c0esqdAb/l7yYM9e65nEHRqEKXxdCdj92iunwD1j/6RgI56BCIalaiZiu6Z5eYXtPFCWSHvQ2QMEnJ2qV1zjNpgQg2oXGSZHkhhZUS8Ysbxgx/8gNeffMJut6NpGgHd6eNx3pBzO4jSw1UYbGmcDCg3r0RcKu1m571nmCYebm/ZHw4cx4EAdOs1n756xatPP+XVq1dcPrukahqcdTRWwsPDOHB/fcNut8v86DGMGSQ7a+mamq6u2W42dKs1q7oR74EgYukAOo+ApJroM5ooG3Df9zzcPXA4HBijtI1OqT37fmQ/eGl3reckJKCif1oIVvitJUUi5PfLtTdNXpkjTjf1p/749iOefjjN2ZOHPHnpaUryGNXtkr6a7i2HyhWAGjTKldZKYaTrF+Z8Z2ZnwvIeyt+X62ORMgXCAqIFqrMinZ+xNAQ+ppdlzg0plpD+nkfvcerd6QgmD1wkZkq1+eSz7stRn5MbWKaCJTCoz1TozZT9QbRYG3GVw8RqPlGIMPncc8AmnuziGvM6j0v5MLN+E8O6gD7F/f+i41SfxhNgl65Y1TWXl5fc3NxIvcPuwNn5mdxvcU8ZghvDGDz3+wO74xHKqGiCf8ZAtAzjxBgMxra0dYuLnugnPJaxskz9AevqEjbqJbQDqrGP9or0PsDQHyXNLzHQ6P3Nrm950scSV6YaFc/oDJuzC7z3HHY7RKV7cUIpkJr38pjEQvi9dUGVcpXqKcojRLJTIcY4r8MTnZD3+vLZTTp/pBRtMPNTGtnYqzrS2YkpVngDMHPBq4bQyFyJM+adL49ZfGKd6E8bxWFkNhsOYWQ9HtlEi42enR8wyj8+GcekzpaUumJQT3uBg8Trb7FxxkeJJ3wyFW79nO3nG/ztO/r3P6eejtRxxIRJKPwMuBgIx3vuv/k7ti8+Y3XxnM35huFwTxxFpw9DT4WTtesstbM4O9FbmKyVTcKkCJnIvs24I6qGNlQx1Qxp2pCZffrGKAXpt2wUvzKg+ymlvbDmn1icv+gcc6pI+hsebzy68SHE7V234uzsjKurKy4uLthsNrRtWzQjKAF8SapmZoE6EbjT+84A6rSCO0ZRduphkRCvz/RQt7e3QOD8/IKm7hbNZ9LG46wBbT4SVKk6K92V0lYXQ2AaJ3YPOx7u7qT98ThyczxwPPaApa4bmrYDIs5V9P3Aq1ev2Gy2DMPI3d0Dh6N4OqVMOmo6RuG91mc69TinuZqBrM0baAaPpaFCAhFPe8859ZiffHYpFfN8WDvnzJ56+wRwJ7hrtDmBfC/4wJg2pajV3Xq9BCZzrruGVZNXVXvF0LbiEXn39i3GWoZxLIDY/HyLuy432AKY1U3DZrPBKcievGe32wkd3zjiQxDGgrbh+WefcnZ5yaeffcbVyxfCVKFsBSnXfHfoOT4c2O920hQkTqQkKecsq66lqYXOb9W0tLXQ+DWq0CqZUVLxm02eAtACF89hf+RwPPLmzTtubm64vxN6s+12y/binKpxYqAYy+gjY9QccyIEBdNWwpEAJqrMRyMc7yn1pKjwjxGapk62T3p1HuPvBLiXCiWlrSxU0kfA91JGhaaKiBQr6UgtQBEzHZhQj8m7XlNB7ClYi8KyQZLD0/sFcqv50xFQ0N00TT6XFeQxy1r5fE+efX5O+XxqSDID7vQ32TNWwihhb7BqMUSzZEHKiRsnToyn/i3fS4CxAGxR8zmD+Lmwct+JG75rG1zlcKoHkppyLrVzT/cEKY9ingeyHjs17hLozmAkLr3c5eeTvjyNZqWfp8ZZ/j3NZduy3W7nLqR67WzUwzyeGK4/3Ch7TSsUiSp7WZ8qMptC5O31LX/+V3/Hb37vFZ88v6SrVrSVYehHaueUgUVTG9LzpJbwVugx/UcYTFIfhjJql/dXEuApsMEJAD81BmOMGOdoNluGyeOPB916pVCwxFBp9anKJIQ0/qVRSl778/Wi7iHiIDPK9RyL8bYn81juOTlCXYxXmi9ikhsxAioCqzARjWPEMVLh895phdu62PtkjrVyJwmhMXluxPAvQLiOs21a4vaCw32g8QNVDDR+ZAwjznXYqiJGSbWKhcGbk06MQVjA5rQroyBdPPIiUx6L67ZUdUesVxzffkEc7miBoN0xDRFHgOnIw9ufU1vD+uwSri64fnMQR9g4ghmwNtJ4CDYyOvAuiBHhnKYbStVQAaXntaDzWOl+4wlafJycImJ4ftvxKwG6P+YlOQXcT6VnzIeh3K6iCtijXE1VhkmwUvOBy8tLLp9dsT07Y7PZsFqtMhjJXooTCzXzl8blok+qoVSmZb5x+m1OedO20Aqw/TQyTRPTNNJPE7v9nuvrayl2XK1oGqGbC2mBm9nb45yhMTWyUj3BSkvy1hmoK/UyCCD84mdf8PVXP2fVtkIfZQ1tK0UgVVXnTod13XA4HPjH//gfk7bNP/rjH3KvbdEt4kGcJk/iz07pz5EIwT8aozQXwi+dogZPy0J4CliXAPyJc6fNLb1fKshyntI1E9hIinBp5Nk8WynHNcsF5OKX9Lovr1Mo0rRmAUZlMVmt1xz6nt3hUOT/L+U2Rin0SB7H9CwO6FYrmq7jOI7s7+4YxjHn567Wa65evODz732PZ69e0Zxt2J6fCzuBAT9N9H3Phw837B8e2O929McefKC2lSgfp63bq0rysldruk684ZUVCinxRAjYlsrwwugkECZPP4zsdgdubm55f33D/f0Dwzgx+Snzj7e6oS9QcQK2lKBFpla4xGe/qQ9SbR5QNhhtIZ3mwSwE4AQ4Rf1P3ogK+SmEat6klBecVMSUP5LnrAzlL04TY4EMZPMLIeLcDBfKqEsIgWkcmYo18JRndOGkyP99cmUs3ouaRmKs0DqWVJiGZQ7qU4c5eX8GiuKZLqMc0XuGQdqcV3VNs9lgrYK0gHYLFb71kMY4tc02y2umjdxSpJWYZLursZyM+fzD5LnOURM7n7NSnV9VNRh1DKRn0ZOYBF7SvWCK0TSFAD0eo8W9F6D728Z1MbbwSPeVsuDmBwVr2Ww2OfpVOiRI85GMAyTq12shKUQaV0n9Ul1LdNXJXhKM4TBO/PTrN7z5+hs2TcVnr1/wbHtGDBNte8Zx2AMRaUEuFxAHiZemWW3D/X1cGHDpORM/dGPUTJsXZHrk+fN5ZuLpqfL6S19vmpb19oyHyRPGXuXb40rDm2QsyBg7XLGNzDgkljIERIQmMjnLYgjz2Bbr46mcfUOBE5wa8ZALgtMDCPATWsrGBCITEw5DRdQ280Q1TRVTRJhrUvIQSlpoWk8RqT3ITFtRHFIYi2lXTNPE7vBA53vcOGHMAesqqrrFV5bBOGkARALuMbdTl7/t7ARIlDaA0cRCbyRP2tgas72iaVrizVuG26+pwx5jPNYIw44jYKaeu29+znQ4cPn8BdP5Gfc3N+IIG3usjVBFGrWsja8YXQWVpCVi/fygiZgyrzXtoRBTdNZIeowgSlKEynxEF8KvAOh+Kkh0ejyllEpAPauQ8rzza1E9T0a7lAml35rLy2ecX5xzfn7BdntGq16/zHn8BMgrPbSngPtjXpcEuEvPbVrAXhVMP47c391x3O+kM2SY8CFy+/DAbr+naRouLy7YrDfikRmn2XOs5x39hDWS07fqWipXURFxNiqw1VarVroFhhCwpqG2Fbv9nl1/yK1+JwWedV2z2+14+fIl2+0WayvevHnLF1/8nMkH2q5jGkaGUTqmGUUw5fikjc88UjjJHzrPU+kRz5tL+vdxAXkS3JTvlwB8liFNC5km4VOHGdiUsqR/p3z/5MVYcsMm5SVyJvzXMttL77wqVB/46quviMZQdy0mVbunz5lkOKbNVb5s80nEW/T+5oZ3t7dgDKv1mtevXvHy5UtevX7Ns2fP2GiB72jgME0cdjt2Dzv6w5HDYc84jNptT+7JEoXRoGlpqprVqmO1aqnrisrNBYupxfqsPmec4UNgCIHjbs/t3Q2H/YHbuwflHxev4ein3CAkkOZXNtkcatUx9T7MILWc6IyWl222U65+ZbWrmZnnM/Gfw2z8ZmU6owMwNndrK3D7AljKppb8NbMMJyPhtPBwAaIK2Zm/mygS57WSKCuTDJ4a8ItrFmA3hUtPj1kWl15GY0ymwzTOkaI2TVU9qpk4/d5p9AlQJhmyoRKC5/72ntvra6GbG0dcXXN5dcXz16+VWlWBt64hk8Ui5s06L2P5i7JmJht6GXinZZ/5eYTaWBLF5bmKmksgGzrJS7s0UdKuUkoEJEk6gY95fMrjY8XeS0CnUbPC+IHZ4Bf8KcAqRV9PwXfWYVY4u2MahQQECzlORsVmu2W9Xut7AaPew2Ecc+pb5WT/XDUNkw8c+iPv3h/44utv6CrH559+yrOLM/wwQJT6GZHxBFjkn9W85xijFsrKZMt+FpmGQQFradQ9lrkZKp0YnTo+UX+PSBF507ZSWHnviVPEL7gsyLOc9EEgYKLU9pTALM+/em5tVVN3K0AieRGokdbopW7M0lEaTsWaFxwoTZcWohOl4JyY+g1EGjxbJvYEAo4pWjBB7JTkjQ0pSaLYA9VoCEgqSdaAJj27yb5gYyx+dcbDFJm8ZRX2uGFk8h+w0VBdPKe3FdFVMg6YnL6XNXKcF+1iPem8S+qYPn/VgLXY5zW+avDvf04bDtRm1KZ/Mg5h6nm4fsPY77m4vGLqOo79AXH6jVgarGtpbBSlEqPw6LsKrCM6ed68sgujHSIxiP5zqnOSBkkRnG87fulBN2QMwXJHTQOSXjOP3nkkyPozKAgSb6ukR6zXa7ZnZ5yfnXN+ccH5xTmrVSd8pk2DtVUOkZzeyeK6peJLd1ZareZxjmH5mXSeEKN4OB8eOPY94zAwDgPRT9pYyjGFkcPxiDGG9WolXSGJjIM0bvBRQnSTbszGWrpWhFa4ZQEv7dJNDGzP1lTOMIUOS6RtarbrFcFP9Hd3jNNE8FO+v2mauL25kRSDaWLVtljX8LDb8bB7ACMh0L4fpGkOktNmMBirm/hHwHLyFkhr7JmVZEH795F5+Jhn6PQzeUPT+yjPnY4A0l6ek42oBBIkha8bv61yPmdq4byw6RW8nHyZ7EfRTcBPEzibuxNa54qQpMnzIPtRyJ42jAVnqduWy2fPePnyJZ+8fs33v/99Li8vc8fHYRy5u7/n/uGB/fEooHccRB70bhzQOEurIeW2aTjfrGnrJnscJSUmQpibBNRWdKnXtdaPE30/cH19ze3tHeMwMvajyFMUw2ryIVfnex2XmHSiAnABT/PIz2sujcNjD28wszeVxXAbfAw5iBjjDFCN8jgnZGfiDDy3Z1uadsP7m1v6cZzvJKbzL4F3fq0APOn6pSdzabyHAu3p3CagFJcymL5vC/3ySEZL4F2M3nKs4snP+bDWSnRPZdAgIGXdddIU4hes5TTopQfIqOf6cNjz/v17bj/cMB17ghdmFIzh/vaGt998zcvXn/Ds5StwNeKty7hST5bue9bPxsxGiPCXm5mxqXju9Gvipcc8DXRNMdZzWkERVtYUvcW2VIzmQiqNEYrFeDoHJ+MGj2TkiQ8uHAGLqN2JbOR7inMhutXixfTZR1729LrwK0oRfxRnSaN83zFGhnHksN9z83BPZSyNNVydb7l89QqiULdd73bcPjzQNRWVFY9nav4iS9tIhFbTeISKErJjRZA4/eE4O7jTf8zsYV7sv/q/NC0fl3Ko65r1dsvQ9wze44NDCElTotN8hhijgO6gBbfM+1a6HgrErHO4psVYI04o7wlRal9yxDzf72zAB++JVaXGoF4/og3AipSPZCzGlByhxAiMVLEnxoqRhkmZtKw2QIo25vsFcXCM6T4UGMdo80LLO69NaTGB0TnYXHCMDnMMdPFAzcTU3xEONazOwdXK9GGptIFaMEbbxkeM9iAgxpzyK1mpy4UkrDE1WId93hCqhv76S+x0h2UAghY6TkQmDvsJP+2p6hZrJr37yK//xqe8fv0Zf/7nf8v+MOBCRx+kdgtbQVURbaXDral+JubASlL3Se+L7CYzopSyx8evAOh+CloVWVoKdh4prsLjAWlCdQBDZLXasD2XnOzt2Rnb7RlnyjrinMM5K4BCGUZSd6ePpbB8DOjP92Me/zt5LyTFEiN3d3d88803HI9HVl3H2XbLqm0ZB6Hgm4Ln+PBAjDEXxmEEuMCYc+KikTB01zZUdU1dVRjnGL1nHCecgVXXUXUtPkamYWIKMQO7Q99DFCIdiSjZvDj8MID3XJydsek6/DThqlY61YUgDBP9wDROYq9m5T0r9ZwPyaywZFy1kLLYTMoNx5glL3n5+nc9UntsHx7TBOY5faL4c77XYu4T6LbSiS5a8Q7YpIDjzGDgtZV5VuC66YQky0merc2pENYYycWzxWInGWiijJpVx/b8gpevXvL597/P6xcvubq85Gy9FpaCYeRhf+Dm5oabmxtprT4MJDUBkcoYaqU+W3WtFEGuWuraabdHbUqjd5E8rwLEUv2AYRq9XOv+gdu7B/bKfhCye9CAl5QPjBgPPq2FOKut/M+YzFQhn5nrJaSDqweT6stLgZAfoXTkICw9s+esSE+JUbypzODMVY7Nesvz51c0taylycN+v2ccBi1YSnv/0jBbAOPiWukzp3Jk5wWAZHUUQNwo0dCJHOZmTifG4y9eC8s0iMIsefTJ2jli1yljgMlAu6pqnbLHoE8itMIwkM6f87djZBwG3rx7x931B3rtNDgeZ2aKNP73/ZHd7S3D8cir7/961v6x5IxbqNNlFDGt8wgLUH36eVuOJcvzpdF5ypMvP9PKld9nr3MBzsvvJ+Puif3kVNc89d7i/Tzec7SjnP/SWJDvRE1z8DqH4qkVTFfQaWZP3/K/871IhCmEwLHvGaaRaGC9XkukdBy42+/wRDarFcZZnJPQe0A7eMYZFKfzW+cI3ku0MMbCsZDuMdJrikvSWwJ+EukA+dU0ApIioOdXw/4pB5oB6rbh4uoZN+8D/X6XAVYRzxH9na/jidHN76U5TcAsGqyrCcZK2l1rxekwjTCMNMgclDrCoF5t1VNOnQ2LPTDdjymiNGk0Yyr8gypIY5ljDAyh4UAtetJUVKpPUw51wu4eqSUxUVVtYUgY5Dvp/mwMxKojmprjMOK8p/KBxhzwt+/oInhbcawsk3FS0I44NrwaE03S0wqBhN0m5mZFJp7QZQbA1pizK7yxHG6+IU53VByQtjVRjWCPn46EMEi+tvoy9rt3/Gf/2X/Nv/8/+Qf8n/6P/2d2+yNdlK7yk48MMTI4pLOscbLf2aTnUg1Kkr6EbSK5u/i3HL/0oDsrjGIh5TcKsLY4YhHuVyF2rqJpWpqmJcTI977/a7x6/Zq2FQYOp5X4SelaW4Qm7Qz8P+ZxiMVrp2AhP8sp2E60Zmi3wxCJQZqHvHv3jmkaaRvJla0qR3+QPDjvPfvjgd1+r0pTOnyN00SMoyhc5+hWG5q2zfDOGLnONEneXNM0tHVD28r37/d7prHn4fYWP/QQPKu2Zd21xBCprSOgAEk95Bfnl7x88YLteoXBcjgeub4VQNePIyaaXHiYwsKy2Wsu6lTyYZdmy4lCPJljk1/+xSD7o3OmY1bye5efz2BC27yeOplSmkAG3MZibIVxFahHMOV95Y0+RqKfGHvdIEpFauQ/abOW5gESlciKVf9Z52jblouLS54/f8GrT1/z6tNP2V6c07UdBsM0Duzu7vnmq6/Z7XYcDof8rIYEPgOVtgxvqop119K1DU0tedqVBTRP0NrkX0+g14B6lifv6YejcPY+7HjYHzj2I1NMkaWQacJIY2aM8hgrz24aH12zGQwXwDSdK3kg5k6uM5iJRehVPNZm5olN539SL87RFTA4Z3n9+hUXl+dSOGYt0Yt3nlBQGapH6GOAO8teIURlwevp5p9CrzECyXjOkjHLsg/SPMlYK5zZSrN2Crif8pgWAndyPAHq9Bx1VWkR97xmU7QqU5YWvOdpbGY9DZWx4D27+zvefP01/W5HGCWHexiGXDyX9HFUZqZpmnjz5c+5ev4c17ZAKIpg030WTWMUQIvzxC5eU9FT/b40sNKaJs4UgkZv/lTnPKV7kkc8XScFnkW2ZsOkBBCnEbS8lyR5OVU8J9fOBmpyiJgZwp6eM7FJiYd7jrqmovC0wuf5nxvGxJRYn+Udhr6n73uiIfegUISGa2viNLI7Hrl/eGDdNWy7llVVU9dVvvG83JmNSO+9RBi9OHyCSWtA1sXYHyX6V7sFyF4Ag6QVNBUpySDGZOM2zXU0puC/hrptObu8ZOyPhCn1JSxGp1jL2kNnPj/LtWasxVW1sK1YhzUVrWuY+iN+mhhGSWmrKzStxmS5VGoeoSU2lik/a5qtsmak+F5yXhiDMZFNHHAm0PgJ51ccQ0uIBlJBrK2YFICvEW/5aCI+RGyUqHiqmY75eTXNKQp3Nc0Ge/6S/gach5XZsQoH+vv34GrMynCsYaImai68wagunCG9xWCczEXIfMOBwgYUPWMMkYa4PmcyFfv7DVV/TRvvMCZFQmLWowYDVnTV+zdf89/+3/8v/Df/9X/D/Tfv+eEf/zmH3nDoA4dhYh8ChxDpbS1OSCxEK8Bbxz2tQKsAPy1G5aX46PFLD7qBkw0yrdTybxFKTLKQREEYa1mv1lxcXrI9O6PrVjzsdozjyK//4AcLsJ3PVnpJEtWNma90qiTz7S0s0HlTfRocCvhM5we0LXngeNhzc3MjtIMYhmHgbLuhPxyJWoRxOB65ubnF+0DTNDSNdNcbU9OC1YputQFr8WFWwtZYNus169VK7iuKEvEhEsJEDJ79wwP39w+YEIQ72XoMPXVldYE4fAz0gydEy7NnV5yfnTOOA3c3dwRr2e32izbtM1DQZaBKVujZ/LzpZZPaKGn+CfBeyERcAPGPRSBOfy//DvDIwz3n16eNJp17Bjynh7UCHkO02KrCVjU4J4wgpfdMx0Q28SGRupRSkR5G7g2R4WAd1lU0bcdmu+Xq+RW/9us/4LPPP+P87Jy6bjDGMIwDfX/kyzdvubu9oz8e8ZPPYCx5oRv1ZDe1o60tq7ahdRXOGk3/EUolox3fTDTqKlaDKUAIhnGc2Gszmof7Byny9dLaPpCKb1Juu8njCWhDgYKdopy/BBL1X/Zpa8rOrHv1c1roV3LYn+oMg4Dv5HUMWTbnzwDZQCSCs47tdiPh8+DZ73dYAm3XiFfUpXxZpNkUH5c1tRIo88dLeCCPbYrvJRl8WuZilPSucZryd3OayUmNyAJslzqLeHLN8m4e7xpWjaTcKQ8Bx8mYs9ZinFUqN32Gk3seh4F3b95w9+EDYRwYj0f6wyHzMjdNQ911QmlZVYRp4vr6WtLt9jtu37/l4rPPSJG3mSTZZBCenCfO1ThXZe82Wa/Ld2TL0A2/GL+k58vxsie65tSQL4F4MaLpbCSDLzlesrnwhKFWNhwqr5l1XjbST/aY4jV0n/ILwF2CM6trXCOsCfgYOxumJMyf7q0A8yFyOPYMfU9TVbja5fFNX4xEjK3oVpXUJQ0H+sOBs66lvTzXVuh6DfVsJkreoPtZ9ngaSTOMUebXDz1xGGjqBuGElrSCGKPqnVlPGHVvpgyNcn9OM5RMo/S3B5puxcXVc27fvSH4lHSRPJ2ph4DqqKQ3EDrJbLwhvTCcqzBW6nKkrgdc0+HNgJ88cZQUxsakbqLLdT+n/GgnVkoZ1HlPe62Zv5N6FbgYaY3HmZEKQzMZjtESgkPKDy1RWU6iLdBtyqqIBuOiOiVUp0QBmzFGcQ4QoGpw7RnD0dP4ic4dYNxxuP45zVXANS84mirzVlWY3N0xCbExRtJNlEpW3rJZTrJsRTDW4epGvu9rRm8w40RjBgxTxjkkA0b3gOgD/99/80N+9E/+Cf/Rf/CPeP/FN9zsRvpoOBwnPtztuT3sqYNlsh1DrAjRErTlRKqwtlErl5SbXaKuzOP3xPGrAbr1iMXPpG4kbCSK3lqHrWqarmO93XJ5+Yz1ak3TtjRtwzRNPOx2vHghVGgLRVsqzcTVmIDfbNo98v5khVbeaGFllovH6MY7ThOHgkVCmDEix8Oe+7sPWGAaJ47HnsvLS8LkMzepD4Fjf8zUVZKuEKQAtGnpViu61ZpJqdecs1SV0Ldt1msBEMrpTbF5GhMJk+fYDzTdGgeEoec4DIxDwDrxdGFQbuRe6LIwvH3/nofdnl6LrO7u7pNxmkGmQhrdN8Q7573HxICrHE3biMckzuP+1Oa2GOZSNp54/2MAKMKC+7ac+xmwkJV9jnnlb8+AXwCfVQvXUtUNpqqJlcqksVTWLj4folC3hWzNmWxHWuuIVsB7s+o4Oz/nxctXfP797/H8+Qsun13SrddEoD8eeXt9zf7+gYfdA30vreNT8Ys1QgdZV9Jlsqlr6rqmrS2Vk6YJjkBTOSqTNh19zrSJWEdEWrhPx57DXjh9D4eBfhgYxhGQVtMRwxQT+I3zhr2YsQQCFqOZJii/Fop/pfew7C5Jel/TqOZXSw3xWFaMutcykCm+J2w/eg0dk8SM0TVOIhnWKC2hUc+hnvUJAHUKnmDmVU8AI6VsWB7L7IktuQTQ+TMnKTXlZ9NJFmBbr/vE9U5mZHGNci2bKBzsDw8PfPnll6zXa87OzqjrOq+t7GXS6xwPez58/Q37+zsInmkYOB4PTH7CWsdmI5E5Ci78IomIGOHD9TXnr14pVV8yp1Rn6HMJ4HbL5iLpmfN6V1+VIRv96TnT/eaxPZ0ESpDF4nuL7y+wsRi0MromjycFOCxn4FGKiIL1PEPl/aXPl2co9p/kOEgFbNaa4oqzbis9/b6U4QTCCwD+oHShrfZpsG72FOe0omIMHMIA5ZoaEyaGccQRGY4HfC+G1zAeOfYDh75nGAfqpiYGrekhCDgMqYA08NUXP6Vdramallqj2FVdaUddI0CdAnNFUtrz7LEtxq1kC0uFhZvtGTZGbt6/JfhRazvk+56U9qXg1qpjQSlLtXyHygo2ESkuNJJ1UhjIxDQO+H7C2pS/LWOYDbAkh4U+LVNkKGTlVEdIcX+kihFrPVU1UgdP3O+guWSsWobYyThZK89l1diJya+rcT2TJZAQPV7H0WHE+KkqzGrNGAfu+5EYJppqog49491bmrqC7TNG00ohenTChY1R7mv1dFu0/iPmvTEB8mSepUiwRUB8WEVsvCTc93g/UpkdxniSC4tosFFpYqNjf9fzf/u//rf8H/53/3t+5x/8Jj/8H/+SSKSqG7p1zfb+wPsPNzwcd5jgCK6FutGJtcJrEysCleTXa3F4MKcOneXxKwK6i6KE/LfkRzV1k7mzzy4u6NZrmq6j6VrquqXSdrYxRu7v74kxcnV19VGFmZSbCNrTI7fwoi7uUqFlXuUn30MKI24+XLN72DH5KYPRw35Hf9xjreHZ+SV93zMNI/v7Ow73d3JNa5hCEHCKySkG27NzqqbF6EaTmDHarqXVdvRt21K7Cu8nRu+lYCDG2esTBUzXTcfzq0thlvjQS6W1H7EmSut656RZyTjhjOFnP/8SP440Xcdqs+F+98D9bjd74ChBt7ziEj2VeliMq9QjanM1+mn3uMSXnRoBJeVzukl+LB+yfK1qJL99nKaFslqAcN0oXSrMkMo+ovKZSjER5Mw5a7B1jes6TFVlj58tPEqikAO9nyRcZw1R42e2ksr58/MLrl684NUnn/DZ9z7n+fMXNF2L916oIT/ccPjyK46Hg9D36SYkuD3gkJxs5yxNXVE5R105mkY6hVljhbw/Cod1ZYTKL3FBp5TrEGEKsN/vOPYDu/2Bvh801UHTMICQIky6WkTFFTzQguyKRTJvEo/AhjHZEIQZ/qVNJ813Fov5FzJpY7JjIhjpSKFAwKhC1DMb5VhlzpMWYKQhegImeirjqIwDGwjWzR60KE0ZokaSUp7oMsKiz5leK7DbIn3gZDN9SnZPv1uCLVN+7wSsyVg8BuplGsK/7TGOIx8+fJB8/b6n1Y6mmdtanyOEwN39Pe/fvMHv90zHA34chMOfpKc6XFVDaVSFwNAfIfq0yjg8PDD1Pc61Bb+KbHimSJdY6I9kTJ9ENOWbTzteFuN0Mm6ne0du6x3n5l5zqmKSYI0UZr1RpH1QQGBjeJI27iPOh4XBtfiMjpk12n1VUw9MAfj1cM6RG5h5LzKe+dcT4NadN0aGvid4z3q9yuwbOcUhqhc4iu/UKFA3YSIMPfvjnsNux5thgOAZxyNm0i7AGgWSCKTHVlZSK6IlEJSuch6X42HHcb8DrKQ3WHEw1Rr9Xa1WrNZb6rbFqJ5KYx2YG0fN6650AJCNuXaz5SxG7q7fE6chd8vVLSIDb2LysOuchEhVGeqmzimqKT0mRfqMtQq8LeNwZPABJ3wITEHyixuKeTUomwuP9sAn5TOvc8E1loizAcKRm6+/wLXnNNsXNKsrXLUh2JYYLcYZohOPP9ZCDJrbbXO3AK8A2Cvckaiug6YBNvS+J0wTnR+p7Igd9vjrr6kCxNU5oeqYTA1IPVrILP125utHakIkeiq/J8NVxlyAN9YRGk9FSxWvMPcjJniMOciySFH0GMBHjLMwGf7ub3/KH/3RH/GP/+Af8eOf/pR317eAozGWTQs7OzD6e8Zdj/dg6pZuc8Zqe85ExWgCUwxM0eIj+GAfOUpOj1960D1vumlBaNpIt+azTz/j+dVzuq4ThhHlCkVJzmNuWBKZvOfh4YG2bdlsNnImY55QbFoAZwr+2ay7i9zSdG9Za6acvQJUJEXFvEj644GhPxDiSIwTIXiG8ch+/0CYJER7d3tLmCa8DwzHA1UCu2bOC2y6jm695uzsHFfXYnlHoVo6Oz+nqpvcsKeqJD/XGMNxnyia0v3rQpYH5PLZM6xzDKOkP0inS2G0aJqAraQF+hiUTilELp894z/8j/5DIPI3f/u3HKeRDzc3mHiaBylz1zQNx77P1nuMQtWGbjhL75IUgjprmfyUKdJMMa4GHhVBngIZktLR8fDez2HycpOLs5xZY4SqL8KEl+eNZsFmYqU0nVg7bN3Srla4tsE6MQrFoWGzQg4hUMUJU1c407FerXj+/Dnf+973ePX6NVdXV6xWK4KPHI5H3r17z36/42G3Y+j7vCsk8NlU4r2unME5aJ2jrizOStGSyykuulGYVNwpeNQBBGnWM4XIYZg4HAf6YeRw6BmnSTY0k8bJqofhkU2Z16vRnOrSG5c2mrQ2lmHt08/O68bqXGbGBF1ziQotxEh0CYAW13jqKECYFKjGnP6SbQNjZlmK87acQNLsNnv83E/l5uZ4o0nnYfawnYLrJ90jZcg+v5SxOmnDT+ctwTzLr5GuW1zvqSsWGiv/fAr0hRDYbDa5aZIUoDsxYtShECbPu7dvuf7wQXTa8cjQH4jBSxRG00hKYwwk3a7ve/b7ffYqx4hE+ELAujm0P+nkl+wt8nN2oqR7NwkpEfMamocjPjkvp17vp5wCOXVM38/UgjHViojMSJ641zWV4QNJNnKqXTae0v3OMlPquoXRtZjjWQbS2JXfL+81GwJRc75PisdN8Xu6RmItQYG1SfKk5yFKrm/0E9PxyMPNNYf9A3gPMWC8tPH2RupKpP24yTUupuhHbkr3dGEmRsj0n04NmmkaCH7keNjxcH+LtcIa0ioZQdetlP51LtJUiEBIibiLzpaAsbSbM7bGcri9YTzusRFiIg0tdB26/JJsWKUhNrnhi8nXy2WJVpwuFS2ewITQCYYYpZ9AVMPo1BhcyPXS2F5ESfJ9KTqJAfCYeKR/2NE/vCPQEdwGU61omg5Xt5havN5UFbZucK6lbjqqqgGkXNEDo7hr5PwugnEYu8JyTn83QAy00VMxYvsHpuuvYTtQbS4J9ZpowVMXvOWzjhQMEXFGG9+rPMQQ8+cw4LBE6wjW410Nbk30ByomohmznIrMaDFtgHHw/Mt/8f/mt3/w2/z+7/8O/+y/+5dMw8A4BY6HA77f4/s9Do8Ngelw4DDueX6x4uxiS+8Nu95zu+sZ1NkQYo0t5efk+KUH3QDRpdCmgLbLi0v+4Pd+n4vzi6zoczg6FiGleR1kb8zLly+z1xSWwDs37ZB3RHGZWUHn+9H/JCqzEJ4YYPUUiLdBvJ3OGdbdGdYO7HbgvSFGy9u3N4zjkWkQG8/3wqctoUDxvE1+khzfSnKY2vWWzdk5TgGkD4HnL17w4uVLrEsURCnsJd6j1Knu1FOfvLFd13Jxfs5+9yDURj4wTMKXbI3FuEZDaRHXtNTW8urFC/7wD/+Qy8sziIHnr17QbTd8/fXX+GEitYBNoBdrMcoYsvDg8DgXNcUagg/yL/oFoEnAO39nMUc6b4WSTpvsOAqlolGEnYqCEnDKp7ImGw4iM1YqtZVyL5io1dWOum1Zb885uzyn6jqMm9NXXFWpSASsc1wMg9D3nZ/z/Oo5zy4vsNZKV9GbG372k59x2B+YpiBd2rSQ0xZAunJivLRNI6kilaGyUCvDiNy+PK9Vo0qUbszer6GfGBRcH/uRyQfJyVbu1jgP3MIwieV7eZ7SFpLAxAlQM2RP3+lhTj47h7Nj5vpO871grDGzVzCq9jUm+RTLjy3+IhhhSomBXEBlEcAwjT5/MkShQWu7Fk47qRb3UNzA489k91l8tGk+ArInLpL0TFq9k8F2qsAX42O+dp6j7N0qz7Uc96dSJp7+XPF6Ab7S0TQNz549I0bh7LdqINko7ErXb9/SH44wDIx9T98fkRBuLT0PqirLU/K0CqtOj1eK0uT1MtYSiKKT6uTLJctBYh85BcTpN0tQfZSfdjHWJXB50qOsYFp05nLukq5+DMiTAToXZebi3xhzLns51snQmm9hBpvp/Pmm55vPdIynK2wG0GZRNJ7ONb//+N9yGGLW08MgNHSmwMMxRmLwsndNI3f3d+zv75iOR0z0xKBxMBOxFZiQxtAURr0aU7n+R27AhgT+53mVAsZYYHGbwY58OxACTEchCNg/3GOtY71es9lsWa3W0hSIOU87TUTqg5B0k7WWbrWmso4P7ybCNBKDpOctRjwZ5ioPIpeSYjihdS4Y1TdFIbAFV9fi8jOStulUJvQuBLgno0adg+VxCrizjkkGVpw/061WvP7kE969fcs4DNgwEfo9prfYY0PECSuTEcdEHw0BB66i7VZUVYNxNaZuqNsVrmmpammcF6LBuwrjthg/MNyPuGhxxmHxVOOe8T6C99SbiVBvMHaNV5xgjFfyANHlMXdtDgrRNOJhrTYOA4OjdpFQR3w9EOsGM3W4OCrrmtFiSq1zCEY99I5PPv+cv/jrv+af/Ad/yI9/9GP+/E//WurNhpGurhjamn4asMZTGdFRD7dveX51znrdst1UbLeON+8+sNv1OFNjoudjxy896G6ahpcvX3J9fZ0V3+tXr3nx4oXIqrXZg+jjXIgxq1pRbO/fv5cGMpeXiw1vPuYUlrmtR2kpprCy/PRR2AOi/rNpF4xKu9a2OZe8bRtWq5b1umWzaZGWq5InPY4jP/vZF/zz/+5f8pOf/ByD1bbcc86ldOUTq7ytNri6YbXZYp1jnCaquub169dcXl5SVfW8gen6H4cJP46MQ09/7DOwkGIaydVer1asVx1+Gjn2A/3oCbbCrdZ02to7pZc0bUPjKq4uL/jNH/yAVdswDgdCEKrAddfKxmtNztfKSNYYoRRM3mq7tAlPvc7Z51AAiyo1KIpRWRNMOVMkj+gpiCGfK/0yA6acs5jetwYbIgafU3BQBSr6XRTgFGDVrfj088+5uHyGbVtc28hntb2yy7nIojibRgofj4cDu92Ov/vRj9ntHpjGSQGzFCs6I/+MNTRNTdfWArA1faRyVs+tNH42lXck6dWwYpT8VyKM00B/HNjvDwy9RFO8Fjmqnsu/RB3DNJalgTSvGv2vzlX6fJLdNGcGLTDRdbIwmtJrTwDyhTenOFfyJllrcMyhXlDwdXLPJzdc+BblkHQaDZJbCyF5wk6MbOT1YfAcjsOiYKv0DgoQ0sKuE1BUPlPUZ/oYZ/1shCy+Wrw/v2Y+9sYTx6kOfHLsC9CTja3y+SA7PdJnDBCmibubaz68f08cRqZxzPSKGGi6lqquM8NHULDtx0kaf02jFI3r+k6gMxKkcMkaphilS51e0xmbdUkBGbFa4GSV7SA3i6Gcr4+AFU700RPylIGiLT/7eEyNyuYsv8sagEeRusVn5r0srerFvKV7ptCVhfG69GQv53n592N5ycZdvpeo7CKBw+FA09TC9xxSC5PAYbfjePuBcNwTvMcIQ3OmO5X7NGAjLlrivEvIWADGJMeYVogUxkHS1baYt48fiYVGWFui9zw8TOx3O+HkXq3ZbLfUXafpbZFJ9y55XKXHVCeRtZbnrz/jw/u3TP2BECdMnNmgbDSLCOocLDPJf6d6IasrgfsKLK0RAwCTPq+KJzgxtmN+rJOnfCy7aWwWMlvI3NnFJevtlrubD9zd3OKHSTu+HgUD6deCiTTREKLFB4M5PqC9HzHWMRmHcQ22qqmqlqbtMFWLqWrO1iuGeMb4MGmzGTFU4nSEww0Rj+tGTBMIDkxsqLR5nDdGeNCNIdEWT0HWtDVSJ+B0fYshI/shlWOS5hG4WNPou9gJos/MNcYYDseegOHy6hn92POHf/jv85Mf/5T7+wN109CuVzx//YKb+3u++vobDocDeM/D3TW7u8vsxLWdZfXZFQ/7Pf3g+Zn7uO79pQfdiYaoruuCWUA6LqbWtYsw0XLnIcbIw4MwK3z66ae5nTdwokC1+rRUcAulOReYjH5uLBC9hxComoa26yTVxTmcdXSrhs3Zmu3Zls2mY7USer5a82uNkQVaVTX/w3//x1SuEhQXISab3UjBRvJmX1y9YL3ZSopEkFben37+OV23IgL9OGYjZPKRcZykO6X3hGnEe+GwNFbSH+qmptN0iPuHB6Zp5DCO0LSs25ZVW3O+XtFotMFWFXXTsKprzrcb9rsd+7sbKu0y60Pg7uaDWPrJw12OcpSqdKt0iTq4jzazUz2a/kyKL3G55sh9MpoKsFF6HNPP3GiB2UMjOYRFypAqR2eRTTt4aowS85sMksBQ1Y5utSJ68X5UdU0VodYCI+OkC5efppyHfRx6jkfx5BFDDotXCGB21uBqJ15tJ1GIpqmpKlt49NIGbmfPbkhjZPOzjcPIOE4cDkelcZwyPVgiNEwo9tQWmX/Oc1OGs9NHYkzf12rzPA2l8mfeROadvDjREvjkyEWcvWslwHLKKpTLfIzFswTy5uS+0/2mxjdpo0xwJcSAqST3NwS0VbEl4ojRcXN3z273wN39A7v9UZaq3ufHALPkjkpos3zGLJOFIVOCosU4LEZ7eSw0WLGZlOc4vaf0mY95db/LcXruNO5j3/P2m6/pd/eEcWQ8DhyPUvhtjaFtG6qmyWOWajSilw6HQfVpDF7vKyTBEeDixOiOwRONVflXir6CpST9yznSZjYkM/ZJBjQmg9c0NosiTDO/f+ogiDFketl57ubyz/lzac1C4i4px69kUSrlYK4xWB4JuKY9JN9jAtxhBqhzJPbp/PWPzX+WER5hPNq24Xg8sNuPdJUYUCYG+uM9H96/ww4DDSNO6T0xUXO/RVJSlHFGovlji0Pj2/pYS3rZiFl8PstLcbezwTob+ilqNQ6e26Hn/v6WzfaMzYXURllrcupZjCany9koBfC263jx+lM+vHtDv7uXc8fkoS/WciD3gBBOc+VDT8YCWmty8rzJ8556g2TqS+Pm5aDMUrIs1Ch9Sk5O5nf+TebFOIOprERtbVHmmQvE0xrUyAhqfCKsLCJHFhMcZnLgHU11BqFi3EeOU8D7CRMlLSwYAc0ujjB6fJwIU0+7HqANBLeCUOFwaozp+fW6EfAGjAlE43F4nNLRCjd5pHKOBxOZEEcs6Nil51CPObp+/+RP/4wvf/4zPn/1gv/tf/Vf8T/9g9/jT//Hv2CwmtJr4OrqGecXlxyPR66vr7nf7fBhkvolE2gN1NbQnq8IAerqqS4icvzSg+5pmri/v88hMWuMhOTMrJCykjJG83bmjfB4PHJ7e8v5+TkXFxf5vN/m5TEmzAohAwolTg8CvI16YbzmptVauCFcxysuL89ZbVradUNT1zRNRVVri9YQNNUzcnNzy1//5d9w/f4D665jGifGcWSMiXNX7s97T9d1tK14iaYQaFYdVy9fECLsDwfhzw5qhISI90HCJGkj03OaVOTjLKP3HO/u8NPASvPdn2/Fi24MNCbQmEBtwFU19WpFXdW4GDBhInqPxUMQhTr5iaM2LkhUcXLRpPCWwGD588SbVhwZEGIkojH5xRxFTv7F+PhcMalkk1QJIWrUQnN7gxHrva4rXGXw4yAyF4HgKftCW6XXGo4HrseBmw83VHXDSlkYnHPSiGgYiMGrHactjq2hInUGU3BtbeZPryqJQsjmrwDMooBb2R2inT2gSqk0TRMPh73yHgtDDnnTSsUoGr5OUEm9LGme5OfT3j5jDHNylhzJG/zU5lweC8hiHhtW+a0SdOvvJkqDiNwbJ18tJjyFiTMFZ/6eMRiT2DDm+83rJEattUxANahMyDXfvr/mw+0td3c3PDzcCcCxFuukOKp8hKc3t/LvGWikzVksimKzPv1u/uPjnpPveiwB95wn/dT95yumQTsB68mzloyiECOH+3vev33LeDwQx57+cGQcRrz3mT3HVQ5Un+V/iYkJSPFiS1kTk2JZIsTO2tknYsnMEebE624zg4md578wvlJnS/2CTk1p6CzBTLmNGrVyZQiWHuQZsGcTUEU5yWABbgrj5xGAPjlMmiMzS8NTnutsyMTTb+cbeURZmOzgEpjP44/Ms+55MQql6Gq95ng8stvvcNbQGhhvb6n6Xrzb0cteqlNnyvueH6h4pvl6s5lA8gkwp+jMa8G6arHWU0l3CLKHy1iEfM2EI6IacUTwk+fD9Ttubq/ZnF9wcfWSunKiI4zeRZAeF8aAi1C7hpevXvH+TWD/cEeSlZwWHsieXR8CPq/sec3k6SkftgCXxawrM1YF0qpD2UXSwMwg/luPhVzLw1hjWK1W3NUO78f8jD7ouotR0rKijIWwxaX9QufNGqwLGEbquuHyWcM0eHa7PXEaCV6cfdGgEVk1QCOYMBLHI77f0a12uPUFtl4TTcMULSFYMBXGOAXOshcLlplwNmDCgJ9G7XAv+d91Z3k4BCyeXEOttDAxSpqabHsVdd0yTJGv3l7zk599wf/8f/m/4P7tB3729j33zjAADVBVlvPzcy4vL5mCFuHbOc1H2MDEtrLfoq5/6UH3OE0Mw5D/draibaRZC5A93RG00xValCE8tnd3slGen58/AtqLv+XFrHyyR9NazSU0GM0rtopgDNKq2xrD0Pdsuo5XL19xfr6lqg1Vbalq5d0MnjCKpXecPMM4sT8ceff2Hd9885bLZ5ccd0du7+7ox5GYqnRDUF7kQF1LTrWPsgjruuF4PDJO4uMLcQZAMQrjRmpikz0sqvk80m4XoiyIGHl2dUXXtmDFu+6IrC2c1dDWNa5uCMYRJ09qkgAJlKVCIjGEpDo4LvVJHnuytRxP3k2Kn8XnT84SZz0V45LqKX02dzFLQB75PSDg2uu/YERgXF3TtC1t07Bar9luNlQm8ObLnzMedgQCTom1Uwg0gnjnQsBODm9GxmPPcDjkTcU5l5WbeLQtrnLUVYWrHJV1uKambVc0dZO7PjpjqNQTFwMCyjFY4zKwlOZCE33f0w8T/ShebT9OCorKSIPJSjqqdyJvaRlU66+q/E/BdjoeGazFLvkx4J3s1wSSpcv5Y8P3UYhUxy1CboiQvwOJU1BBm2ykJWd2BmZ5q455812cR28+pZR4wMTA23fvBKBaifKkqEQkhZ8fP232eGY6laSr1L5RL536CRYDVp7NKLr6qCd6xnSPrv8IOJ3MYbof8y3nF51KYSCp3kt7to6lCYG7mxturq/xfc90PDINPdM4ACb3QxBQKcxJU9GUKnWeTcaV6Neiq+YslEKN6irMOHuTje6qOZ+7+AnCqiBrR3N1F0bP057c09SQ0wgPCbjlz6T7mwG3KTyVSyCd5GFZEFn2iyjvIc+hTtis57TwMck5M+iOMXIy3XI/RguYKSVzZirJLEDFapn3E40+pLqgGGmbhtpaxv7I7fu32H6PixOGmcEoYcmlbOuzaZ1JjKqLTfGd099M6dmW19u2ln1RjcDkvJj3o3LPiLkjrhTSx6xDx9EzThP9fseHaWJzfk7ddnoul8wvBdJSe1V3DZ9++ilffRk4HnZk2FuoqRiD9kpI8zFH1Gf5Wy7ktD/GNP46N1WxhhJVn4BiQ2olacx3AN/MezZA00oK7/t376SrtJHIbJjmlKE5RhHFuZHTT4yQLKxWuErk/Hu/9or9w47ra8/QW4bBMvSWafKMk3bLnqKCdYsxI2HomaYDdtxRdRtwydtdEW1NP0zc7wcqW2GDcsmbwGQlBTT6gdSwTVJkPGsnpZ7WeKwg8nntKzd4VbdU7QrXtowx8s/++3/D9z77Ab/1+7/P1//8n2OnkZjqONQAF1pZTaXTHhFpXT7SE08cv/SgO4ZZ+caYihNsfvigBYupsEW4o8H7wMPugfuHB87Pz6nrmmEYsmK2zmm+IHljz9X3yUOScw5hGKRrWgghV3OnducRWG/W/NZv/SZr9XYb56WSF0+cPFP0TNPA8dhndghhiDjy8LBjvz9wOB4ZpoFofG5Zap2jamtW6zWb7TmuabBO6OWsnb2bPhTV2IUZHUFDrORF7IzL6S1SZOdxtqJrhefUWYOzsHKWbWPpnCzSEKXzYAgTaCvzWCpTA3HyHHd74iTlaSa9wbzRPemBodyUPgIESnCi73t93rQxxAy0Z1WRimuxjuhkg267LqcDrdeS19c0DV3XsVqtqKuK/cM9BM+XP/2xhDnyoOomEcsiKJc9aX5Uw8NaxmLjt8ZkcHBMRp0CGucsXdvhjKGpKrquFWvZGpq6kdxJV1HXFT5E+uORY98zaoqNV0WSNb5JuZ+qINP8mEgqfCRvAoqs9P6fAtmngO3RHC2sqqcBdTpXjDMElo8/BtyGpCCj5HNOk4554rmOC6Mvhy4zoEmbeolNjW5yMyAxCQ0UoMdj1KtjoLI4nHjsyu2sEORyGBKcKVObFl9Jn4mRFD5Of87ACZJheZpusjxhYdQ+AtRP1a2UxxKUf1uKgd5wXl95xUYxzB/ubtl/uMaMPf54YDgctJlIwJoqc6sL69GU9XbS3cm765zDgHLIa0jfOmxVcdRGT3XXgZNOhwBV5XIql2zgqemYRGQqY4jDmFlQ1mcbmq6TPaIwFGE23gUwpzFMqVjMk5Lm18xro+x6OY/708bqx2yo9JkUQUgAOXn5Jc0iZLmYjZaUOjHr0OW96LuadmaKf6gBWDpRSkFNHYW9LxhNFuhZ5s07q4VqyaVBvtZ3Oswv/rzohNkcQAGoLNs5X7500iSDKR3OibOhVugTC10lxorJtVBxOOJJetplK0UT3iBYrIFPP/2Et2+/4bA/EP00g2U1ZrwykRmn979Ut3k8DfO85ynI1yuMqRglsmzyAyB9A+YRLJJpFob1aepZer1pW15/+glhmjjuD5oKKR0zfTDzfaeJSNsMIpld09CtVhx7yQffbDY553+aPIMaNdJAzRPGiXGSSKyPEeMcxkRcPFKbStJRlA+bWGHiyGF44H63xxlL47Ro26bC6Alj1DDIe8iEcQGnzX4S3aA0WZK9uG5boSo14v1+c3PHP/vXP+R/9U//KS9+9COuf/xjIjA5S6PrP+r6jGlw/57HLz3ohmIRRaGScs5lCxWQxac5z+Pk6SehsLq7vwNjqOuaaZpy5XmIkcpqOL+uqRPVoA7kFCJ+nBi9XMNPkxL9y33krDHnpACx6/j8e58LjZK1VFoMEYMXOrYQmKaR47Hn2Pf0w8g4eQZtfzz5SfJJLdSNtMi1VgyA1WpN13VY55iCBddgmxZb1USM8GiDdEuK5PC3UcoKwRNGKImqispVVAhtnnhfA/td4HyzETrFpmFdWbrKUduIcwGLjOs4jgQvHKxkBayLF3Ix2HAcqVzNMKlwl3OZf1v6l75t81/k5RXAJINqUsrAnD6CNZLzaQ22qmjrmko5yzfbLZeXl2w2G9qVpOykhh6kUHSMNHVF9AP3H67Z3VwvPZsJ4Of7XdIPYiJxmsOhE2kjnDucplqLtKnuMFTaPt6mIdJNraqqXECKMRqqrzCu1mZCspkk30TynhgsLrUVy1jAzAqf+ZdTkPZ0CtA8J1lpJ+X7ETDxVLjc6C2lIZ1xRhoU9R7oG9lYNqfcJCggoNi4E8hIW0LMPxMocwoEE6BM8pzyX0N+3pRjmZ57/jlzmqvsFqAnkGRDniMDOgVt+VdmsBEjyVmTx+RjHIhzhOFkXL/jJvBUWsLpsZzv+QHSyo0xcnd7w/WbN5jgmfojw9CLUZ6gR9Q8bWPwwTMF8XIn3d3WtRi5dY11WhRsLRJOljn0MbLvByY87XqFD1EcCa6iXbcShWNmJbFEjA/4ceD99Xt2H24Yh54QA3VTc/n8Oc9ef0JdtVmH5IZopYlWJAyniKqsnRm6JsBdgu7FGOb/FJ75b2meUcq/iQZnBEDNNJbC5pRyhZfzUwJuV9xPCcZYyoxeJ4M8BXZTSk+JkFrHz2mc+VLCha9yG3ygwmhNTAHgiyGZvzqH5Zc7wbcfi9GNkWkc6VVH2qKpUjKgQwaj5XzmFSf3oXonfccVeil1ykw81TIXZOdWcuqsVysIkeN+D3GmlA0xME2S/uCqRhwIs52f9TRG3CPSBF53sWw4JbabZKii+y5EApMiYmPI6Xe5r5/qG/l9qceXYmCpKmnWUyn2yPS8Tq2FkKRkBvKBmCNZfpqwGLq2AyLT5OWfdim2rqIyFvScJtTUyXhU1qy+3zNNPU1qdlTVwMiqMsSNEIf3w0A0E8ZCZVMnWkPKU0/752yc6azrPVt1aLrK0dR1NtRE3Rr+9M//nO9//hm/9Tu/w8++/JLQ93KCVIwd40xvmAbyCeP6Y8evDOiOUWucQ2QYhqy4k8f50AugPfajFBOGgKsqtmdbEVxrqZomE+c3TSOebFWm4yR5cJP3wo0ZAlMSOt30XeVwVU3XNNSN8Mu2dc35akVtLS4GGiMFceKRE8q36L10nPKjGgfJ6puYJvEyP796TghSER5jzPy1tqrwAQ7HgclISkmsGrzmNxHCrCBAu1xJW96q1k6ECticcxJmzRt5IEwDXdty9ewZz8/P2VSOOnisiVQ2CC9+NIy62DO7RpwF1ZJKPyxQ0Q8TGCevFfI4q7wSehcbQlLqxbzDKcCZjZ6AtNQNSEoBtdAR1rU0SKg0ZWS1WrE5O2OzWXN2fk7bdTntI91B0I08eYNCGJmGHjBcPXvGtN8RhkEKZ+MT+eLl/Wc0iY5BAV4KT0OiVytDVYnuD5g3EDUejDGZQUYaI61Yb7e4qiFtIKKIJbg7K/QZKOX81gT1zXyt8polgPiuQK70VD8C2U+dI2/OsgtlOYnx8T3k88huksLnUZV72lzS9/MYzyOfLigyayUCYIrNP3kNRab13lKHzTRvxdmCKvG8wTL/nWQkyavQmz0eh3L7L8+dZGmxHhCvZN5QEgAqzxd/kYf7uwHu9Pri6jGlloi37bDf8/7de4kyTKMWTI7iQCBFBrx2FdTaCT9p8Xgljbu09gFIOJZkwoQko3FOIWxXK7DiSOlWaynMBOooK3maRo4PO27evOWokSqDFMFZAxx7rr944MPbNzx7+Zqrl6+o2xXBpMZOszyUgxtiSmECjNWiSKf5oksvd5lGsigY1PlSqLcAmh8zeko58CHMKR75ffnpTDH3qgPymimu4SA3CTK6PrwpZE7BvNcmOZmG8KNWAmIIhECiyU2SKrHOeZ9YyFbx/e+mXZbPMp9ImvVU2ocipSPl+TgpiJW3Ne1H0an0rUn1DUn6klOpNBMEJKc90fugjjWojGWzXmOB4bgntd6JUTzdw3Bk1a4QrqVksaSUv1OaU/FIpELZpOtcNafNSKQl5mhgalImXYjnPX7Wqen3uY7j9O+ocmrrlrUT7+/dh2v6voc4p4IuHCP6c/KeD+/eYa3lcDhweXnB4Xhk8gFjnepQh3EWZyusk5QgHzxME7ZKnOaGGCYmP9F2Nb/1m7/FmzdvuL7+wKoBd7Fid+gF+3kv+frZ8E16EZITKkV/dHfMctC0FavVmvWqlTo7NZSIME2Bf/kv/wX/6X/8n/Bbv/3b/Mmf/ql49DBSx1PuSQrAKfXux9aKHr8SoBvIq9RZxzRNvHnzhnEcJR9L0zy8KnfjHJvthmdXV6zXa9bbrXhSqrnoYixCm17dpNM0MWgzkMSMULcNbSve0LqpxROpmsIATeWwIRAOPXY14WqvISwpXLQx4KMnBE/wQfMZ5XervJvJ0xNjpG1bLYAbtGFJ4DhM+GioVi1V0+KswxDxUQXO1TRVTVO3uLqRFJHK4Sqb6eps0o4pGYyIsxWutpy9eM6L8wvW1tKFSQv4dNOM4mky1uGsKdryymlsgm8GAhW3D7cMXukbi70rFsosT2e+lRlcZOXPDDJ8lOIJAd4a+rcOWzlsXUt786aRItOmYb1es1qv6FZrulVH07YaftZCq8x3akh5fj54gua2Bz/i+wNxHLAh8OLZM0x/4O1XX2mBq6KDUjyTWyj/XsqthnAhG0kYCds65g09ATeKs8t+UBTWGC0QcxXHYWKYPNvtGW3bEdU9bjV3vwxX6ony/cmvSSo+riR+IYB74vNPAb8ZjBcjVwAQeLp4bHHu9DNErFteX7xRUpleIHQKR0d+TtmYXFbMFP9N50n/8oZ04i0RQD2nXEg6UwLg8p/ZUCzyzAtAtzBQ0rl0rHJqTbnJLsbu7wNV/l2OGTzkdao/7+/uhBIuBKZh1ILIZGIkqzMoL+5cuNppWpdELnRcsySI3LrCgBqGQT1UlouLC9q2o6pqQtWIDvIBJs/19TXv3r1l6nvqMGGVqs4kIzRCahDi+z3XX/6E+w9vuXr5Cc9efUpV1UwYJhKYnVPXZMjFKE+FzDbRdRZVU6UeSz+ztig262xsJVmTLzNLYtJNIee/QwH+M7B8PGOlAZeNM+a1WXLfJxmPShuazl+eqwTt5ZHBrDWaJpAiTgZMYuFaGqtP3mxxjV90lPdTHtM0LXTOIlWtMJhzuo5JHlJJYRJlJHpS5jONotF5U8nM51PTPBUcInqla1tpCDSNpPQSTGQaBqKfcK4iWnEWlUZaIoBIrqsEhgvnsqRfWYh+1hWSWmRmAG7lnhLudCZFNZ+YhycmJc+xtWzOzum6FfuHO/b7PfuHHVG1XNrzwSgxgOXY9wzDwJ//xV/wGz/4dW5vbzn2A2fnF1RNg7H6dGa+n7qSQsag1MsArqqoYgBjcXXNb/97/x4//rsfs9/tWXUrhr7ncDgyKf7zwyjc/TEitJAav9KaKAn6S9fSiOSwr9YrttstdV2J5k6pmfqZDx8+8Jd/9Vf81m/8Bn/7N3/D4XiU+zOI8ZBtabMYt+8ix78aoFs3G2cl1/r29pbb29v8wAEyeI7G8vzFCz799FO2Z2cCboBeCwSABVdr0NBHChk0XYerq1xtX1e15grOW7coMhXmACFMmFqLDxLVlW4+MYrXYBwmjv3AOE45lBJCYBgHyVu00t79/n7H4bBnHD1YxxQN3lg22zPJQ24EYLq6wqrnva4amqrGuVpZFSB5N5eHWGrJy9nVFZuuYdO1NMbi1OwOJIBg8MEyRUcwDlsF2ViDdp/KC9kQcQzjxI//7mfc3T1I2/SYVNcMXub26TN4kTlUJZL+JeBhDNE6jHGZnWC1Xku0YrWSvOzVKre8T6whVplDFoVVRnO9o1DpJY518VZItX1txHPfdA3byzO2q5Z1U3H4wff4V//q/8XPvvhCeNRxWWEuAHd6ooVC0y00zqqcmFSsAu24/MoSuC+NErzHOa/sNJIjuz27oFMvoFjuGgYvNuYFGFYsLvtM6Ql67OlO75UgcbGpsdyY56D3rJR8umZ6BpMkJ43OY8Cex1Y9ZXm8F5AiqpGrY5h2ZWsyLdTiiGg+r7JEFGZOyvf0KX0KiCathvn5SpwEs8wm4AJgbIWtLCZETBBD7Snj5tRACQqK5lSG+fxlmV15JlP8/TGl/20GzVORifl7s0GTDZHE2mQtbdMwHj3TOObW4QvRDTNjhHQSllqKWXfHPDLJ8zYDHfluqqXZbrc8f/6cqusIxjEFZC94955xv5f25CFgowczEUxQ3voZ3IMYnCZCDJ5pf883Pztwe/2Oqxev2D57QV23+AVV3+zRs8YWuaTLDfdkUPVqS8O1jMLEWRHqm+k7aoBnFpJ5/T+VwjJfU/9TyFRKlUuHjxFTAJzS4I9pYapBkWueTkB7+btF9Is1NkcJyrvLhmKhg8rbLVN4ftHxMcA9Xysufn9qXnyMswU93wVJhSdDJjuH0j4kTQY0BSUZPjYbYSEaRq/7iI5fyJg74seB4bBj5SzWNeJwM8ndYHPOdGIPMRGh8YuS6gNzs50QdLeMsyNKXfhiVDiXjQFA6ogo5u8EgD81pskgtFXF5uKS9dkZd90td7e3TOMoznhrqKxErKyV/hPTNPHu3Tvubm84Ho/ECM5VnNdNBuqGNAUpV9zgjBNK3uJ+ptHzp3/y57lx33q15vd+93f4h7/3e6zXK77+8iv+9E/+lJ//7GcMw8AQA8dR+gIQhZXGjyOVMTisNKmrnEbJOmpXYZU+NhQejYRLvvjiCz59/ZqLszN9FnEeCF2hmq5xTktJ3/2VTy9JoM0guZhJCbsCUBnN9XSV4fLqihevXtN2XQYA0mzGEqZJ2mKDtsmWVIygTAqVtraVtuNzt7tZ5wpKSaHSaZIcxUikM0Jl6MeJpqqJ6t0+Dj0PhyPDOIlRoAs8hVwPh579/iDUS7sH7u8fMEbpCT2MGFarjtV2Iz81x7vptO29lTxtYbUQiz3EQGQu8is74Zk4K6fhcOT++h2X2y3HtpPcditsK6u6wlmb86QtMzsKyo87hTGb1MY67h7u2e175TedAVjILCYJiCfrfC6MC6qAojEY54Tvumlo2o6qEm91pxt2ysN26uGuNb+5DHeVXoQUmo3KBxxDwARPRZDGKiHQNTXrpmO7WrFZdbRNRe2kqLSxEX/esfuD3+PN+3c83O8F2C4O0ZQmpo2p9GfNH1kgEuaUhPmVpxfswkiJ5aasDW6CbHndapOBMGpkpI0/nTmnl2Tlu0zneJSXWmzg5c/0SBTPYIxZgMPl5x4Dz6z4iw39Yxvm/OlyfMkbSSzey8+6UONzVCbCXKRdTNN87TmcGotLR53fbBimjU+jCUaLtEFD60AYjgr2Z4PMlDqFJZgKcWkczSi/GNlkFDDPbaYri1HCoN9hA0jHKfCejbyYN5vCZBQaQCMFyccwsYsi+6V+If0epMCprWvarntkCGW2jJjC//MGdjgc6PseYwzf//73OT874/44cPPhjqEfePv2LWEaM/9+apiRYJNCKszCFETXqkRGYggMDzd89XBP8+Zrnr38hPMXr6Cqc2pRNOKdxJBTwOSSIS/pR+sn/c0MYsp/IWj0wpisF+S9xKyxBNvFZC1XQAEYAAWG87X1xMroFOdzJMBQAunEvazGn6wRlNVkuSYzmI5oZ0d7ovbm0eeJDn0JOH5HES2+d3IP3/V7auSUzWvS6/m9UqfkvUP+iXzKA56fn3N+cSnpE0a6N4f9nrGfCvBeOGX8yHjc0zQ1bVWBnbtop2fKDpCUg666JygPdf6cJJdLehuREO1yHFQ3mGiJIeIJWt/0kfH6qBEnchCMJVpYn1/SrFY8PDxw3O+ZxpFu1VK3bZahqqpIRkxVVYzjpKeR8V2snaSzrfZNKHjzBczOjq1xGLkfBv74X/8Rf/2Xf8Xv/O4/4B/+3j/kv/wv/3P+8s//gj//sz/j/YdrDuPA4L04VVT+bIwYr9EE1c824zC5D5eRptybD4H73QNv373DaRZCWmspYlbu1UnXf5fjlx50A48WprVSHXt2dsZqtcpc3pvNhu3FJa6us4fAQ7YC8V5o4ZxTKiAZ9Ebp24xzVM5QKT8yMeRGM0FpboR1RIoDiIHKCKFQOPacNx2sOukeiXh2mmbFGoerRo7jRBhGYpzAiLf17u6W/X5HjIGzsy3Pn1/xzTdvuD/2TAHqpuXy8pKzzZb1ek3btBmAGisFdNY4DZVZTekQ3uksRFnZqJdqmojTRBgHTAwMIRCnUQwbC7W2f0/wmAhOczOtgtf7hwfAsF5vcLWBYDj6yObiGe3qPbv9QbuEBoS4pwhNm7ngUfLPBTx3XSd5ml1H03bUbSdFGlWdgfWiqFD/TsADyN6hKTEkKGViHSM1UJlI7aBtHKum42y9oWtqurqidsLaIkwjKbdXwOxoLd/7/HN+53d+hx/+8P/DNE6SoqCbWwaTsxlPUnEz0FxujqWX69GCnd3T8/sJGMUZ+Ig3pef+TiIQr7s2s22kVjUZnFGCO7M471Oe7aeOcqP6Rb+Xj5ngYkrOIeOMk43v5BrERM+YDIM0Jqo0OenmZwwm9+VMnOozqk5ARBh8ivEJkgbmNe0rZWHNM2cKoKupJIkNwhqlrZvHMaS5XTROWYKrp4yYcswe/YtqAiw8rOn3NK667r8j4H4KaJdjPwPoqGBP80uFB5U4DcIYc+I9SwZNMhik++1crD4/53zO0+N4PLLf7wG4vLjg+dUVP/nxj7n+cMMonYkw0WPjpLKts64sBkGZPoI20DkdYWkrnTb4CNFzvB/4anfPh7dfc/HiFc9efYKxrdCLUjxPMS+KxbM30aT9hhlQl/J9Cr6TITcXLKaUnjm+kVLMRL3MKQPlsMklZbUt0irStUOZ+iNfsOp8CmkcjCEVTUKKwkmPgacaPMGcRmisAZ/iqKrf8x3OZIRPTMV3Rs+ngDsbHcUgfOupslGnIKust0kGJmSWshSRjgq8Jd3Hczz21E3LxbPnhBiplfZSaDKjpjikW9K9yU+Sf1430ljGVQrWTl0RmhBlBNxJOhN6Lz6zb8x6IYF0ef4QQtFUyWhxdsxrxJzc18d0dvl7xGhdXMfZRcV6s2H38JDlMBX4z8xEKXXH4JVieGaLm+uK0tMaksFR6LHiM87MtSy7hwf++F//MT/8ox/SNg3b9ZqubXj5/Dnf+/xzPvv8MzyBr9++5ac/+4KbDx/o+4GodXohzLosgDgFCuPYGHnm/tjz9t07+uNxjofGqGkmltJbI0sv5nX6bcevBujWIwnHixcvePXqFU3TMAwD19fX0gmybdkfj3jlSZaKeJeFzxo4Ng0GNBUkSMFiLekagUijVo2zlhiVB3kcqaoaY4UtwtoaoiFGz0CgIVKNo+yxriJaS1OvCHjiNErucYiYaabKCiEwDj2rruPy4iIbECEEOceb99BPvHj1iouzc5q6oWs6Ad1NQ+USY4XNxY0BUZghkpWFL66XAGgIQUKMcWKzXtGsV2CseirEMzEECWmlGNkYAmGaGIee25tbJu/ZbrdMxyPbakvwE7vDQcaqaXBtC0RGPzEmEGwA63C1UCCut2esNhuhQ1xvaNtOGDm0pXMC16kI1GjxY4wSagtRaCNBGxB4aQQUUvErkcYYGms5b2rOupZ1V7NqK5q6oq0qqdTWtrKJlcUSCz7YqADMst2c8Y9+/x/y/v17fvyjn5I0RAq/pzzMeTdYSG/+zRSvzCkTH/nayRmShxujZYBKZRdC5O7ulrpueP36NZZUvKJnLjYjeUVy42OhhOExAPwYMDwNNZfr8zQEnb4Z0jZhTsHkxzzbBfCNqpxNxNhI6Xez2fjJNzd7HYtRnTedBLTSReaUkZlTOX0j5k0xqDYOVvymuagYiDZ5peJ8Pk1di1bWZQItp0ZKuofTY76/hPVmurg0NpRjzXIuF+fPQ2Mevffop9YdJF7oxVjq5nc8HDnuD9RhzM2fAjGnK5DkVJdDyvtM4fqFzGWPqBzeew59z363y2vde8+Pf/QjQmKswqmnzMt6NSHLSXnedGYZ8+W4JJCVBRJwGGIY2d994Ob2A8Yanr36BGw183xHowZXnK9kll0s05rO8h9nyrf5n+pi7MKYnufCpEnTaKXMR+qG+9hQTvOYwP9J87i0DtQmkOdwAmj03lJubQgh02+KHgmzsVHKVBQ0nlIMmIymmjwV7zo9fpHG+/bjFBgm0PTRMxqjaaTzl06ZZLKJbmYD2Sh2kLzpiHOynr/+6ksm77l89rzIvY+5OF5STASuWa3yy8Abg2skqqtmEhr/zQZcMuIASWewUfHMrBNnPRrn4m/UaIC5Y646I3KjNWYD8WPpZab4GdP4IfrW1IbLy0ui9/lzifEk71F6+GnUdDQnYmRQ4D2fPKVBZX2qz5IIBGIC9mrAGwT8Dv3A+2OvhmHk6y+/4tOfvOQP/uE/5D/9p/8zrv6Ll+wOB/7upz/hb3/0t/zFX/wF766vZwYaHTlJ6zNZLvwkJBpv3r5FIhl+dvDFgFHcncztme3qFx+/EqA7GfBJaW23W7qu43A4cHN7yzhNWOd42O+Vwkes7jFRvcTkNVBrL+EQeUssdfVWOQ0/VImv2wlINLYS6zSYzFkaouRwxRCwLtAPEz5aalcRo2eKQQr0QhCqLK22TYqtbVtevngh+eNNk4X/bHtO/OY952fnPDu/oKkFaHdtS9t01LWAz4CRNrJa7OiDXHP0I8M4LBpQwBzaSQqhqlq22616rWRxOsQ/ahWYYBOgl1wxj6TWBOD2/p71ek0Evnn7jpubW0LwbM62PBx3TM4Rp5HaWmxdY5qGbr1hqwZG20raSF0L5VCtXuzEo55yJzFGC2XlOXwIDMMggDt5nqLcd02kdoaurtmuOjarjm3XcN5UVFa7RhktpgNcas4QDDFaUkHFDNY8IRpsOm/T8vLFS37+s29UDlIYa4Z2RoX22xRZOhIrQxru0yO/lBRj3oA1/4+ojRciJkTev39PVVU8e3aFq2dPPMV5ZutcntGamRc55s88Dbi/NY/15DP5GQogVn63wAEnrz/hFUx5jLM/ggRCJL/WijemvNc4309+Fn0vEJj8RGNcvgljjKZlJAmweAVz0VgNvS/HIBtCMXkFdT59zEA0b+KSpLVIKTr1Vi7GLY/LDMJK0I0x31nRn45x+ffpWM8eH5M3PWu0GNtIOtbt9TXTMFCZGWBLPcvs4c4hZSvr2lgrhoseGfskBBFg8lJEPhyPpK6ZbdNQVxXjOFCpceVR7ytqgOk5ogy9PsNMIziPZ9T/z6HkUhC9j/TDQD9GgnXc395y9uyK6ORvU5GhUTJCjMpgaQRlAyyNefL8wwJ8ez/Twy3GJN34CcBO0Z55bUIyOOepVRiWaf7mugVrHbMnfdYpwZi5B0VC5ZqSIN5YhUOl0RA0tzUGod5tW3x/oBEzCIiEVHGm85FG75H2eMpi/I5HPPn5bUc2wj528WIghc0qZn1orRWWLCMUd8N45Ksvf0bwnsvnz5mmkXEatSsi+TtyWjPXEYyjjI+xONOKTl/cjc6BiLbKC0hjtRrjBklVTTKvX44JKMX0Q+iD0TlNc22UXrCUqZRKmzXsyTotjS2hBhajTtSnyENdVblOiqIz7OQlul5VtRoW8jxJxq3Kn3s0DmQOf2sMHjLVqzEIMUbU6wcDUTzZP//qa7758mt++M/+Bd979Zrf/d3f5bf/4Pf5w//ifw3/G8dPf/pT/vhf/w/8xV/+Jde3t/TjxDh5GdPCWKicmxszGsmXt0k+gvjJ53VrTyXpo8cvP+jOAqQq1RjuHx7YH4851y9ZlMkCjKp5fbFN20KIZO8w6uCYFWfK867rOtPOuUq85c7WRCzjGDJ4nuIEPlAFMJ2j9wZvhI8WMxGNx0ehIBwnT98PTKN4hnb7Pff3DxyOB4Z+oK4bfAgc9gce9gdWqzXPXrzi4vxCwbbwZ1bq7Z0CRB+YfGAKI5PXa4SJ0Y9ZrSSaMmetUAdqLnxloKkd66alsi6PgSUBUQNBvKnW2cz4EKaJrhXmAR8jVVWx2x/ZbM/4/Pu/xuXFBfvDjr/467/ki2/ecJwm6rbDVjVV19K0XW5n79S4SeNd5rSKoRIyV+iYCrWQ0J1DvNi1tTSVo60rNquWTdeybmuaylI5qCw0RsC4hKdsbheTwLHQITkFnPOyj9EyTYaH/Z5vPlzz9fu3fP32Hd+8vcbYGnyfRVQcUXNlfOn1/aj3Jcnk3wfAJm9NAfjSYxhgGEfevn2LtY6Ly2e4upnPf3ou5u+m5zj9zHdJOTk9vs1rnY5w8ncao9Lzu0hPiMzdIPM+LkDNRGleEYxb3P+pb18fgkhgCpMUTBY3EKOwIMg4aCRJ8Ue0AiQkZWEuvywBdyjuPf0Leu8xbWzx4yA730oJ6uNJ6DeWIJ6lnOWf8709moMC7Jdgewnq5nCv2LyJXFHmbb/b8XB/T2uQInMFuSHM9KWCAGxeT/l6cdbJGAMaMpfQ75QZqYhao9CtONuupcaGmBdtCg4bBRcJSC8BQ5ISXZcRYrG+DSl/3uJVP6eULWMrLp9dSo+HccKYimgCxlQZJFkFp5nms1iTC0MGsve4nNcSJCseynNrdQhTsV46xJteGGzFPFJomuTZTvJgjIVoNTUhvR61a+qczrIwuJyDaIlWnTbaKCcEdeaQJhuMjaw2Z9ze3tLq3C4gVGFUmGQsLafpaSX5HVTOU7L8sdM9fcKPX0SK+SWyaCLYWPCfe7nemzdfM/qJfhgYh16i0FZZpvKJRF69n8BOqsMMras0glvezZx4ASZHra11Gr0XQZHidJMB8aLMyEiQ2iowzOteecIxyajQ7xdRmtLwMGm9FjI9m53Lo6nrGRTrTSS5ng3sOeqSzpD2HU/R0TUB8CTj1mj/piiRGUuOKIj9YkA5j5LH/36a+NHPv+DnX3zBv/x//D8532759NNP+f5v/IB//Mn3+b3Pvs/RT3z9/h1//aO/40c//Skfbm6om4b1ZrPYu7O+SoYLAaLVNwOYqP0yTKbk/Njxyw+6AdLyVW/Cze2t0MOlZiHoxMWQK7XTJKcQjVVvgjVC8ZTyoaPVXO6qyuBPOlNWWKfemRA5jgpwveSJSx6bo7UVbV2x3q5xbVNsvuLd3h+O3O8O3D/s6PuB25tb3r17z7t377m/vxchco62bSVnu+349NNPOXt2JfnNTUPthKJmHHpuP+wZQ6SqW6Kx9JMX+kMsE5HJQrRzlX1qf9xWFdtuRe2sNgYy1JWwDyQAjQq0M9Lm1tWWukzxsJbnF5dE4Ktv3vLl119RNS3f//Xf4PzyUotXA+PY8+qzT3l7e8fPv/6at+/eY12F7Vq6ts0c5KUHMnl/vLaI7sdRGzTInFYYamuoraNpGyl87GpWraSLdI0C7dSVUL02DlmKDgFnM+RR1RBMYamJ5+nQD9zf73j37prrDze8u73jdr/jMA6MHsbJsN6c8XDv8X4sZK5QN4vN8COANSpTRQZQLO4uLfKY5Fs1gLUGjdwvdhZJPzAch4F3799TNw1n57V8x5i5cEVPnbShYsF5VJ64139bwJ0Bxun7kcz5LF7AFL6WSJLJil1G1TmlQbQK/aIR+iwFeMYoBWBMBX1WAct8L7OuUEiZ+ermcQkRgnN468BavOaiSoQnJ8gopp7TKVJRZdqgTIjSWCPMm5MMt851ubGdjG9MHpX0d3I5FLaDzH1cGHhJgORjj+crFN7WMopx+m9uzmRyioGMWIQgvMgWcFKFREoBmYF1afjI80zTJPUbyfOm4+S1X0FQ0J3S4awxdJ1E4qqqemyYxgD42ROo6UaWxDAxV40lQJyWZ3rOoPUt/TAyDr64YwELTSt1M6P3NNbgnOgsV7BZZUAR42J8v+1nsslgBs0m3xc52qJ/zHNpzEKWyvOlR0xyOR8mA3eDxUS78LTHFO9PVIiI7PmFcaZgPGg6n4EYJ6xNRYliXK02G25cxTB5mizrEW+yxOYhns2DxR/zqypG35Ye9bHj24zN+YVyfEpd+oSTRD9gjFXDTyJWAojFKfTh/Rt53VgCTupqNEpbIE6tqRoIVnjoXTNSJZBWGovF91JhLKiRay3Wxqw/E/vGrB7mu5dMxJjPH7WFOcmDr/tCgonJkEz3Mk2TpGvqeklNrZq6oqrmmhhjxMh47Ngp7kdpAGMa7JjiVOn2Zrm36fmLfSuYQDASLXORbDCIM2Y2OoJRRywwYJmM4WDgYb/j3d/8NX/213+F1UZOz14853u/+Rv87ve+z6qq+Zuf/oT7/V4aIhZRCjG61DmhA50jJjoPJvOmh8f6qjh+6UG3IVk/VitjRRASzyuQLZL8eVQIrBKuO0uldHNVSmFwDpyTTfVk08FI6sbkI34amYJhCsIXLYJgwVqc0YI+A6ZxBBMwzhKNFBAejj0PuwPHvmeaPNfvr/mTP/kzqf49HiFG1us1V8+ecXV1xXqzEWaSdkUE+od7bncP9MeeECK3d/c87A5U7YqLq+dcvXjJFKJwflqDcZbGGWEhUcFdtS21tXR1xaqupWjUWfXqS1rBOE7qnU8laFE80FUt/OR1TV03WOvoh5F319fcP+zoVmtevHzJ1atXGURPXpRJ34/s7vcMx4Hzs3Oa9YqoBaxJcSaAnbzZwXthGFElv1LvfFc7urpm1dR0Tc2qq+haR+2k4LEyRgstorIYQOKglq0mzsKRVFM04CXfv++P3N3f8/76mnfXt7y/uWV/6Bkmj48whsgYI4FKpt5ZqmoSoEfKMZ2BdqE6Z4X+lGwX3h/SxstjpbXYBBIdoDUS4lp4QmcvZ98fuX7/jrZd0XarzCWcFFzOX0ueBAoAVlzzu0Htx8fjTW7OVcxFhiHQH48c9jumaaSuW+qqAetIhT9WGXmsC7hKN5sEnqJQVoGkc0Wvz1AZHQcVBmPyuJQ8xLHwxCg6FG+2lfqGxHmRuOp9AjUBEoNALr5KIpYMjAyy0rzNhlQ2zYyO8slQpfeN5pCW3kkwuRg1Ae0kd2Wu6lPz8QjA6DlSBMFakw20lFlZmGliAsXAerVis9kQD/vZ4FAAmSwDo/RmMYoXexxHAlA1DZXmfgY/NziTyQmYGOjalrUyFFkrudN5qGJUufeEOLMReW3lGaxRHSNtpa1NgEJSK1Aatr7v2e/3hTctUYCpbgqR/eFIbPasn73QdvQup73NAzvLwLJDZAmyT0HwLI/pMwnMp5QasSUFDCdRmcdXDbGoELE0vPPMzutZlNAMIOZujWFxb8IEJgaOLe4rRyhM0NJsoNJ0FCuUq9EE6ral3mwYb3tqpSy1ess59eFE/pb3ra+Wa+hEAX1bWtvHjvI7Me8PerVsq5pM3Zqb9y6mWeQr6eecNpLPq0WqMQqPtgJc65zokfRMCoKdlfSz6EdMbBYMYyn1SU4+F9aKbhb59tYrFbqOc9JVulaS7pZhzxaaqLn0gAq8bdYfJu8HOhQcDweGvgdjWK1WOOfYPzywf5jYbNZsNpssR03TUFXV0riHTDEqed3yajbOTTJf0i3JvUVr9Hcx6NOHogkEm5L/Et4NysU933cEvJFc/JRSGp3Fq14Sbv+Jm3dv+euvvmTSOqloDI2zTKXcmHQvxRwVG3MZMU73/ysNujHC85iS6KdxZL1aZY9J2iwSmDNmpgNMIDv9npoZGLXk+9FzHI8M44gx0HUrmrbBmEoa2SBdyqKxRDfTMKGKqzYW6wx15aRleJp8Iw1dnau5vHhGfTjw7s2P+Lsf/R3Re0mJ2G45Ozvj2bNnrFYrjJEc9P3DA/04ctgf2O322uVNOleGaMBWRLunXW9zswmjYae6rWibRhquTJLv/P1Xr2ibGiah7klk+UG9i15zMdE8dYzBOPEcurrBVQ0+wjRMHI873r5/L0Tx1lJXLYP3vH33DqOL0nvPh5sPfPX11+yGgXazwVZVro4fR2mi4bWoUziyU9Ej1M7SNR2rtmHdNqzahlVb01SOykJlUOA1p4skZehizMUYoj3z9qNaSFgp+r5nf3/g7vZeGmq8v2Z/OHAYJgZvmHBaG1DJ4rXSAhhtRmRslBzGps1NdfQqagnLghMfaQGjzczikfN6jVAaYVIhjRzzejcLEJc8kBE05aEMFyfQHwge7u4fcG++4dXr12zcBmNTnt28WeSfBeBOoCKD/VPvxXfxJBWvPwX2op+4u/nAw8O9tAUGhnjA2BpXNWzO17Jh6dRZKiwNJnbgK8JkwASgpt+P3H8Y8D6wWlfYtUE4qGLGUXNTG5NpL9M4Gt3og25iAW3GRIpozWA7NzeKUTdonZe0qUJW0AakUKrIFYwJPJGeSwYkg6NvObKHiNnAW7xPyu19ei6yQaUCkAG3nQ0BeStdIxbSa7JBIV115TOT5q2nbTPp4MyKES1+kg7B4zhK/Y2GoKUZVchAsK4cbbumW68XXSqzvBZe4qB0rd57UB0mwNURrBTbJnahqFaV2HmR3W7PMAw8e/aMl69e8fbdO+5uHogp5TAK29Lbm1ueNSteGDDOZoaGEMUxIWB7LmCd00Y+vuGmTpalDAQtVg9hNpqtlSLHvP4VTGVgb6JSs85ecp2lBXCaJ1//o3qi9HYn2RDDxMzPAbmoNjLLlaxLuU6MUuvgjcdax9XrT/hq98BxGmit0RKzoOmcaVyWjgmYwW8ykheo5u95PJVCVbyrn5nffyqFLxnD83s26+v0usiD6Bnv53qI1JtDuLhD/k6IkaD81snJkjEaMA+R1TFPOkXH0DhtxmSxJmKNRN2z8R3n8Y0nQzcD8IS10wYTZ4al4nxpvflpwhpDVVXc396yWq04OzvTniL3HA4Hzs/Pqetao1VecrPzuIrzM+/3oM6q0nAke4yFechqLxCR55hlQQ7Fx3Ore6TmLBf+6jmD6ixvYs4Xl6aEqvecEwdLUzP5if1uT4yBiopgKigM7EXKUhrnYm9IspTWpw+PKTLT8csPujFSkOQ91hiaqqJxltoaqrqS7ovqQbXWFoBbc+FU0oL39MeecRwZxpHDMNJPnmgMdVOzOdtgWkNoVMSNxRunoMlKJrBuADJpArqbykqaQ9fQVI5pGiUMiaF2NSFM/ORHf8fbb95wcX7Oqm0ZxlFalGtqx+Fw4HA48PDwwOFwYJgm2ahF0xVUOxU+BKrK0rTC3GKrmqqyPLs4Y7PqsDESpoljOAgQNxEzjbKRBm3FnJg+NFcstRa2GLyJhBGM9XAY8NMExnBxccHt3Z2wk9Q1iuCJCIiNMbLf79nt99ze3+Otpdtu8cYwTpPwmU8TYZowMeDUomzVi90pyF63NU3tqHWOnU00YGTPiUzqXFChUqLAR2GUsRCNUD35wP1ux8Nuz9t317z/8IGHu510/vRRogURPA5vpFg0KUHx5M3eGllgWmxbN3Dcnzpj8pGV9wz9H1nBpW5cAJyTk2ZvRBTvZ95ilRFikS+q/5v8xO3tLZvNhq5pcE7AQ/JypJbw8/VPah8oBjg9U+HBy9f7FhC+2Nj1vcNhz4frdxyPewhRwqtRDUE/4kPg3JxhohR9xRgxviIMNZNr8b1jGg0frm+5u7/j/c2Ru91ECBNnlzWffHYpcmIBaxFmCwXCGVkaVeiJwVkUsatqMbQSuMtFZ6iHldmbzQxGMiBJ/P/qUTExMg59Bp4RSXkyOrapuUiGt0nJnExDAldPgYX590JnMBtS5VSm9ZOAWgnWjEkbcrHBZO/RnDvaDwOj1yZZWszsbPJ0Lw2ILFNGPPQphSxRpWGg6VpWqxVd20qjkXS/Wfx0MpB0neATLeikhVbgmloZp+SLkcgUJkmTU/7fGAPRQqPda1+/fs12u+X27o4QAs7UyugTiaaiXm148fpTus1G1k0y3lU+ZgkwufnTcj2k9CajsmH0nxoDRC3OcnlcnLG5eDWPfYzi7YyZRbowltNPU/w9fzd9X2QjGS2xoHYLSzkw4tDILDym8IQihj5R1mypc4yC+LNnNe/PLzh+uIZoaPWcOY0lgeqnwHR+OWbj59/lONVVj6/DyfqYDRzR93NKwZPfNybneAPivBKqF0KIjF75sU2cG2hhSA0vrLHYqmZOpiM7GeQjJu85YnSZwnkYcHGZmpFlPN8k6WnklWjF+MmdWtO5Ddg5lS8WVMnH45HnV1d0XScdu7U7rHOW7faM/njgRtnjrLXUzi140LPMqbwZjNZGFOOen0H+EAjt8n4YF2tNjgDgY47SYbRTtYnz5+Kc7hEweP28pNwW3TqR7IDVesWx7zmqE0gYayRbIhsQ6X7TJJnib8j01X76lQbdwg1dWUtVWy4uzri6usJVtbQ6L7zYyYJMIGTyA+MwMBylPWnyVIzeU7UNr59fcvn8GVVb4y30fmIYA5YGa2ps4r2OxSZpDJW1NLamdRVdXbNuarq6QRr3HKmrjhA8wzjxox//mC9//hUxBqZxpO97xkmKLna7XS4SPB6PUixYeMko5AdSiCqyPdtIjmv0WCNdJS/PNqzbRtJFplHbZBvu9jsaV9FVdR6XFOoKwOila1PymqeisMTg0lYVq67Dxyjt1JtGZ+X/R92fNNuSJOmB2Kdm5u7nnDu9F2+IOXKuKlRiqCoMbGJgo7vZEHBFChcU7iHCJbns5opb/gEKtyQXzUG6IEIIyO4WYbe0sAmgALAJoqqQlVmVmTFkRLwXb7jzmdzdTLlQVTNzv+e+iIJwEemZN969Z3C3QU3105kzKI0pYYgR/TBgM/S5pNo4CoBCighgNM6hW7bomlBCRboGXRPQNR7BkVYWQWZDEio0FSOT9IasdRLA4oYaxojdbofXF5e4vLjE5fU1Lq9usB8iBivjZkCbCRZGkEisnGKFni4/k1q1TKgxlPl5JBa3eBZu1feoGjVQs40DV3XvfJjtO2ZksZsbk9V/3UwImvoR44DXL1+gDR5nD96Ct1hXqgUOFSNULV/sGbOX033CzMZbAw+1/ti5vL6+xsuXLxDTCCBJiTZda2hIwNnpCbxrkRJJ99axxbDzeLUdMOwvsNtFxMFjjEDkiD0zwA59D7x6eQuwx9mDDsuTFstjQtM1oEAStUIRcHqW8hrkqGmMY+kAWHfrm8zLLF55mUq5OPs3/zDQNFKZaBwHiY/UFc1hcDQL8Tm8qhlw1+tszwcMMOu+mWJhgoUMaFfbW1Q3AOIcmMyrAgMmEdl5sSklxjBGuCSNpogMRiLXvhVAZ4DZ7qnyCgwfPI6Pj7BarSqgryFieY4iIHNytYFFHjGqh2nRLdB17WRtcifLGJHIkq8EdDjn4Jhwe3UD76WjHjQGNJIDgsPq+AxvvfcRHrz1lpSLJVfkgHIgs6jZ86A1tgtgFsXW+ITQhs2yOst6mXwCWXAPMjCW+9bnsAbKVWikrllNHxm0o9CwhCEwnDeoVXObpImcVOo9M4tnrToPXvlNUtAt/ILx9P338fHNGrt+J8Ypl/SePss1aS5SnjghEHsxKxD/9uj7TV6f+l9A5E6CKY4OpepLrcyUcRbQKsA7RalNZOuVOGJIAtpEM/RolwuQb8SrEYJ61UyiESxgmImzHKrH4JzRoSpwqVKwmZHgSjFVHQdBQzkTK/BmpCSGOFOmEnMF6B3IC2CO2mHy4cOHqD0kwyDJzl3bImqVjziOaIJYjROX6vhiQEyZ4IkjLLQk8zsziORljgCc5mHlHcrqpiXiM6xUouQvGjWLB1EOqK6oRJQyY7TPsIXTCu4AEdqmAQCMLMp9TT3emVdd6CpZJTrFQIkZwyglId/k7frWg25HhOVC4gAfPXqEt99+G94HUyhl4VNSgSZhGMMwoNfakBY2seg6fPTRh3j41ltYrpY4eXCCxdERXNcgUkKfIi4vr/Hls5fY7CIYHpGlhBQ5iQkPjcRKN+TRuUYstUEaqwRPGIY9rm8Y+/0GN7e3ePb8GX7xi19iv9tgHCUz3zL8ASgoEiEi/4p2ZFHIXNCIAuIE3wacnazQNmIFbhuH5aIFOGJIEXtI051IXlyiJDFl/WhJStJW1upZC8iWOGxyDi54qXISJKSjDcJQIgA0DZLW3WYthbgfeuz3otSMo1QYIUgMVesITevRNZ2A7E7isrsmSNKjViQoVmyrPlC0x3wOq4Yz1jUtJcY4RIxjRL8fsLnZ4PXFJc4vr3B1c4PtXkC/NTqJIETSDH4D2opmpTumtcKpYZiFBZQ9sVf7McIaTWsZDdkr4A7QqK/5cZxYUhhmjsyjACMnDUpNfqt3zMpsCM6FUvkBwvyJpL7xZrvBF19+ga5b4PjkBBl1V9jRKgpwBejr8ZuAMQB3rxWpYvSoPjMMA16/fo2rqytI8LU6BUlCOQSwMk5PH2K5eIi+b7C5Zew3wNgD435EihukKMzaezmXkUYkHiW52UXEPuHVs1vEfcQ7iwXi6ADnsQidVOVxexAVz44aZ8VDxFK/PybOXeDuhHDo33O346Q0WAY/upbeo6GiXKTEkyrGBrxBlK2cd+N+Mfu7WOByKnkFviSG38ZiYQtkEDpfArQrK5fdK++8WcQEgIfQYXV0ipfxOVIUgUrMmvSsX632ncAAS6UL8xA4IrRdi+VygW7RTdZ1elbUiIKqQVmqeh2AtdyqJL8TUUnE3u/Fou4c2HFOFvPscn7D+naN3X4voDwE+HaB1eoYi9MHOHnrEbrjB/BNK9boOULWNUkKaGtgDAVE3rtiECJ14UO8J5yKwM5dTg3EppqGDoRnmQKRE+zKft09jsUIVStpRh9FOa5nV2A4w4BepXzapwyMoyhFMSUcnZ7h9K0HuH7+FQal9ZILaEpunTVQ1vZuaGChiq+L577vrN4LvFF7jCphw1Yyl7JyMld48z2UF8o+Q/hRlFAhsHoUHAsPaBosj0/QLpZaptjDUSihOqrk5nUiAFS8E3WMfm7qlM+5yAUAkINpnjGhtbHfi5yOA1IEoGGurHtmhrjaeCCGEZnjbrfLXrxGu1UTfMYvUBDaNg2C96J85CjzlD2GxUuoPMdyFmSjhMlxMUJA98HowuooUeZtBU9FjZc3pZfY8n/kXJgBz8JaIqxZG2e+xQDYe1EiUcK5mCVRk5xhjzTJSdtpNT1m4SU5Sf/A9a0H3USERddJ/N2TJ3DeYxgHDHHMbsY4jhr3PJayVYoSFk2L9959Fz/+7d/GRx9+CBecMlkHCh7sPUZE7IcBDQWM+4QXr64wmsBtPIKXVuveiZU7aM3a4AmtZ8RxhxeXV3j58oVYshxhvV6j73vs9zvEUcoExhSFWDS2fFTFIIO5FOF9A3ICKE2QilVWfj87WWG17NAED98ESZILDYYoheLNGkRE8IlAHLEfpbQhp8J8k2pnIEJYSElCa2CRSZwYexUOQxzRDwP6vscw9FrwfpQAK2YQJ3TeoV00aJuAhVqwF03Aog1ogsuVUUQTreKyKwZrYFtOUonXNuWDQYhjwna3w9XVDS7OL/Dq9TlubyRcZEx21MXdNIIQ9euJTUN26sZjadgjpCKuZbNkliMPq3ZRi6VRyzU65xBHOdzOMrPZglzuXl8nOGqemz9qwJh0LZQpSnk71lAqWbjsBWCGS1D6AYa+x/XVpXT7dK2OI5XYPyKAXN1kS2MEp6IvK4yVEKZ75mR0vdls8OrlS+0uKPue7RSsgQvksVycIfYneHW+xGYdMQwCSCSWHgASRqhF0Xn4IDHtSAB5looh5EEpYLuJIO7QdQvcbG5wfbXB208fomkDnAMCvFhiUlJAoKEgY1QhZKRdgIq5dw8L35Lwlqkm/07anbaFiw5jP4BT1HdMmxKFysI08pZQ5dLEXcFvShA5qSvrSPNWqr2ivBsVMdX3mBGr7EhJHGMFjM55OHiMMSH4gEikgBGSdM6cFbMCeAw7MEYWWm3bFkdHK61KMlXvjI7zl7lYey3Z2hpwEKTVdNO28BqmJ/xpyMABOhZ2Tuv8i8LqVSjGYUAiYLFscfLgIR69/T5cd4zoWyT4EoKXLLRNFVMDjlyfBY1N174Dzk33y/hu4gK4RagXsJwt0ZVSVdOCKGguh6kknn7HaKR+bU7DNaDP/+aQNdkHYbclvOIO3ZnSqfe3RLQEIDQtPvjOd/FFP2D7+rV0eWUPSNXCzOMzl8z3nhMi23AUE9t6fA0PreZ23+ukjNbmzgoaSMG30S0mSqvyozxWvVNWwB3Ye1jL+6Q5IEmrmoRuiaZdglzQBGEbh0eZHfK6CkBV63JSIF+tgMg19b6q9YBA4s1kYWBRcUXbBPzou9/FD3/4fURmfPrJZzhaHcMR4fLqEpvdDsMglWnGcdAwXDGkJWatV81oglfjoIQYBR/QLBpwSri5ucYwjJKPQShWf0ijQgKqBGuu1q38zTncyYn3GCUnIxu3WI0lXDpH5/01RUo/XTfiStBUn+rTGVrojpohLoGBJBiJNHFztFEQaShbUZStd8z5+TmG7fag7Lfr1wJ0d4sFjo6OsF6vJT64avpS3GXlYggz/uiDD/GXfvxjfOfDD3F2epq7SlkFCikJxtiNe3gQNtiicR6rtsUYpVvlOI7Y73ZYX23QtQ26k1N4ktjtXb/H9dUVLi8kIWzo+xx+YeWoOA0AM3bbjcQNhqA1uSX22twrkSXeyHmo0E95LlGZ9XJxhJOzM7imBUKLdnWM0HUg58VtMoyIUeLBxRXCatFDBoK6qHBaszs0DSiEzIBMexMXrvw+9D3Goc/tXIkTvCcB2V1A10rJvkXboGvEOh68k2Y0as2u9PgJwJ6C7MrVqcVEGSLQd/s9bm7WuNCSi1fXN1jfrkXBcGLNhwu5qQBD6oqMEDANruS7WREzY5NBkArTWgAVkDmly3EcBewmj5EnJznT7Z0v5VkXIfh114SulTEFHybdv8rh5zwvhbRioWMBFy9evsDR8Qm6tgVBmzvZlLWaDQCNM1UQOZtDocr7lYpamF9dXuL1q5cYBjkHGVSxBcAA0REeP36K/U2LLz8dJbEyDGDq4ciDPJBohHNSqUYswpyZukOCZ5mrowDmBsMu4dnzV1g9fB/kHK5vbpGGhHffeQvtStysUIFbz8Q5ym5FLVBSXK4z8FHATIHF5X2La5SVYhDIS1157zz6/R4pKlDRBOEAqcJDroQX6INk7TAFTc6pIutdSSa3z+Tx3Q+2bXwmlnLMqVmKnAfIwzuvhgwBrrc311iEgJETRnPBk31vRvPVS0TAcrnAcrksngEFq1YYaj7mmr7NqmQAfLlcYrFYoB8G3N7eFrAKjc/3AWenp3jr8WMcn5ziT376MzA77PoeDQDvZM2dAtrd+hYvvvgST97+EN1pl0vdGQCqw0bqsTHzne65sm0pz6XMg3Nsfw0M55btQ0BZ2oGX/Y/JmgJNQeYhy/ihcIo3hl5kS2MBSpOwKZ0Zq5yzyxFJacijY7z70Uf4+HaN/UaS6BovZ9VANgMKmnKEP7RDdyEeyioA7uE4md8fmtd91m5WgVDYtEHgArKNRaQJz56vGVf/KBjzlaxjCYBo2iWWqxOQD2DKWR0aZaFlF7OUrKbKhJjUymoykRlaYF1km/UTcARKxTMRQsCDJ49wdnqKByen+Fv/zt/EDz76CKeLDr/40z/Df/5f/lcYHSGdnGRM4kJA1zU5FCrGeYOvJIqqerShWGNze4uT4yOkFHN/jfVmg91+BwDaHEtW18oyH/LiAMW6bKFN5vEnk8skZ4vI5aTmTNd6vxzrnlKuR86sZ6FW27hSIG3ZGYhRaqrHMWKxXOCv/dW/iv1+jz/+wz/E5eVlVurtuyEEHB0d4cmTJ1qZ7s608vXtB90AwNJpL4dmUImTqt0rdlpPT0/xe7/7e/it3/gNnBwd4WixQBuClhAUV1ciYGCJZx73e9xc3eDq9SVev3iFFy9eApCFPH8t9bS98zg7PcVleIlh6LHWsn+5KgEznHeSNGWhIiwtYy2W2xrAJE6iAbPFBgoACW3QBAq17LHUY44MhKbD8vQUfrFC8i1c28GFBuQDQA7jmLQqiByGpMkrOSEGsj6bzQZd2+LxkycCspnR9/sc/mLWpHHskUapLuBYDtYyeLRNh671WHRizV5UoSIWj+3ILHaoE9YzQReLBen7NPlJCVLf/OYW5xeXOD+/wNXVDba7HQZttZsPqx48q+VpLyeSkBizchc8IEIWLFZuK42lhg4FO4ey3svhNKHftp00PpqBsQx81VJUUTIKO/i3u5iRGVarCl7f99liplXfpH4sGzOR/Rv7Hq9fvcDJyTG8D6IUMovFTLsJWhdWpy2k65EbHKoVp4nM4fLebrfDyxcvcHNzBeYR0PJtyMxPwiyapsHDp+9guTzG5nIEswMoAtSD3AhyDPYkJaS8074DBI7F0sCJwaMkMXn2cCkgcsL5+QbtZ6/w5N0zLJenePnVS3gAH330EI6CKkalAgGcuv4h8X7S4MKaNchzS6GqGsBUbtKZFVFfzMIcGl8c1Hokthx51xvoJtLW8ciCwpLwvCf1RolQCpphP+8oV55/P/c3Wre5SZe5kJ9PLgjQtrFAxrxdr9GOI3a3N/BN0CTD+y8DaserJRaLbiLkdLF0DebKawFM0y6OArxPT09xfX2dc2FqJYgYcC5gdXSMo+MTDHAYyCF0HSKk9jbGEctAaNlJ3d84Ylzf4vmnn+L06Q4P334bzrdi9TLFtrYiQ3JfvJahPeQFyeO2PeGJyFcwQHfmWIC2yy7tCTCf09iBv+07h3hZbWk89DfMQkjW22KqeJpHMJfC0/00oETO4fTxY3zwwx/ilz/7KYZdRBcZbaZxQBqKWK0OKPOmTMQMVPKhnkPNkQqPyyLhnjlPXmdTElGB9qkCbo+ypprTMMCZvd0aFsE8LEa7hOAbHB2dYLk6ApPPIY057rhSVrOMLMcSYI2bh5bAJAdoR1ZTkA2MexJZ3AQpULBaLHB6dAzvHP7RP/pHGHY7LBhoxoib62tcp4g1J20kKDthSrzVzvfeo9MSnqvlUu69WEhZYR/E2Ogcrq6uENOI467D2cOHWB2tcHV9jVevXmF7u8Gul2aGniR22jmHsQrRqJN67ccwU3m/2hdMvUR5a2yfSSqDld0ww4JxPlO6yt7JnnHGbHEYsOo6/LXf/V385b/yV/Av/sW/wP/xP/lPMA4Dlsslbm5usF6vsd1ucX5+DkCUijd5Y771oJshXfZyspEzl2dpIGFlAEMIePr0KX7vd34XH77/PlaLBZZNi84HNN5DCjcwYhqx2+9wtb7Fs5cv8PFnn+H8/Ao3mx1evHgl9VsT5/hBR5JU+OL2Fv0gyVAW31SsGmbBqGtUMuLIOR7KWiHHGBVYV4LYeRHoKUq6CZeqGXAevluiPToFhxauXcA1HRJDukSmhNhrx0bT7NVaYc0mRk2IuLq6wocffoilJi9FSDzmbrPFOPSiySftBtcEdO0Ci06SHxsPHC0X6FqP4CQG2ytzcLN/lafqNU3IsvhQQCK0GBIffbve4PLyGq9evcaLFxKOsO8HBYZVnHumDcoM095LpO4osmNlTyKt+lFZGGpcokA5/zlj3PXfuS5pEzDuAXIBFiEOSlITlKsEwQlXmAuQ+4VE/b7RGCBWdouLHbUUZAgeKUnYS4yjzD9J1ranQp+Xl5f4xS9+Ducb6ehaAUZphCRNZrwXxnp8fJy7tPoQYBbNOg4OKHW/OTHW6zWePXuG3W4LUBRLjlZLySeDpUTn07ffATUdLD7Qmt+QltYyI7K3estJAUoUBbOEHli8HxB5FHacGly82uH4+ASLxQmcu8Lr15d4792zbGktiyxCO3FC8B7kAqJaULLLkgR08x3FaW4Fnwtvyp8Tls/wTYPAQBwHIPMC4W1mUJDIGmtY5RTc+Qn4KZabTGyo/TRUjeUADAHDFeHtPFzTakUcUVxt7qYA9L3wv2G/x7Dv4YOfwpSKlgsXJPjgEUIDUQwL6J5bdeV7pfoB1PJdn4GYErquQ9d1AjS0YoIJZ9uzfoh49uwFrtc7HL31CD0cusURvvedd5CY8OLFC2wuzzGmiM4R2gR4MHjY4/z5l+iHAW9/8AFo0UppUyeJ1lKlQToVE1mMeAWI85zUsn2nokThARZGWBsSDOBOuvPdY7GdX/MQk0OhIab1HrK0F8qQvaQKdM+t8XV+kikItdeZQoMn772P0Lb4+U9/gvX6BjtOaJjQOEYLSZo9CKe54tUogMheybZk5sk79/HWu+Ex0ydWqYx3L6qebzSpBpWU72CyXMs96jccE3zbYnV0LHd3JUTwzqmk7OfNz7MrWklfFoNj0tDBcuaR+YAVQQjBY7/d4s9e/Ay77bZUFYkJgSVUlqnmgxp2mj2o8m/PPdquw/X1NT7//HM4QDtKS6M963QtbdP32O2kDPPJ2SmePH2KR289wuZ2g5cvX+L8/FzkroZmdk2D49Uqh7umGLHvJU9s0HBWIsJqtcLDhw/hnMN+L/Hp2VxBlaytrpJsOaUOox7jmXPZvt1usNvu0ISAx0+f4t133sHrFy/wyz/7M7Qh4LsffYRnz57h/fffx+roKPOcvu9Fwdhu8cc/+5NDlATg1wB0AwVM2UGprQASQ9dguVziyePH+O3f+gt49513sWxatE4C4jlGMAE3N2u8ePEcv/ric3z58gVeX17i9eUlbm7X2O16DFwAFYBcihCq+ZiF0zZpnpxCVJJkwJZgI4QbmkYz5GWzS0ycNABxcEhj1IQ2AabQusFNt8TR6QM03UJqZzctjIwcOSyaFs1imcG1jckC/C8vL3FxcYHNZgNHhGHo0ff7zDz73Q6egFXXYLFo0bXiYhKgTQgEgCPGvsdx5xC8xmPXABs0Yxb6DmfyFgGvFtR9P2C/2eH2+gYvXp/j5fkFbm4kDj5FC3swC73LlQIMaAPlQIFIMuudxX8V9lnGJOAkJ+CaVaQ2sui96pJwh2hxv9+p1dE6cBWha6ybqIy/FlYmzObXHHhz9V3TB5zFXKcEeI99L23oV0crAITddo/Ig2B/UNb4s1KSEoZxwOvzc4wpqZInC+st/hXIVTtMqSQitG2DxWKB5WKJbiEhAl3XoQkBTWjhvCh4569f4eXLFxiGXgC01somrb8Uk5yx4+NjvP32O2jaDgM7EAdw6rMiang+WS7CKKiPFADGKHWKbczQtuMMBrsBoekQmg679R7Pv7jG48fHINcArJZxlmRgoDTiYU7wzqMJEq/suYpsNoFIlJ9b790UZE9BzBQnqUeGHELbCbAexvxaMuANtak7gnceXdOAgpt1Qyy0AXDlVZmHtiAD61SNk0hCSJz3gBOFipzWqAfDalCbJZZTAmIEkjSmkfJ69pli/ZU8CYunhqwvA/2+B9DABS2RpwI+qqs6KxOu4vE6x+AcoJUFLL/lQt28x8fHOD09xfe+9z384R/+Ia6vrjFG4TpjjPjg0VMszs7wbujw6PET+KbFGIEPT84w7LZ49vlnuLm6QMMJS5/QIMGlEbevXyA44J3vfAT2wl9c8HBO8nxqJUuUkmloSG1VNZhdNzo6GEpiJSfvgMSy53eUlNl97LX5Z2vACOZcFaYGzvm5M4tjPZ87sk89L+b1nZQdbQiP3n4bCA5/+rOf4ObqCgRGw4RTBCySyBLjm6yeLLqHA+fXDSShgK381BmQIlA+IzX8KlZTEwj1U01xPADmq/nlk89qVNB1z0282MEHcbFzrk7jcjhVfkIFGkvgnfJPFu+49w7BkgyTelJJvNokLlvEOGA/Dmj9CjE6XF1fYXN7qyFA1qnai3dW1x7OZ1kx3W+HlKJ2zF5gsVzg+vpaQjr7XuRfCCAmTbtx6PsRm80a280O290Ot7e3eOeddwFIqc7lcpkBtSU6W9WTtmnguw5HR0dZ2TQMs91ucXNzAwBYrVY4Pj7GVhWJfMwqOrFEU1MpqKIX2zNTjO3bdRW5xWKBD95/H8erI8SU8Af//J/jX/2rf4VxlDK8cRzx2aefyv3IiWxcLnF0fIymbdGoF/rQ9esBul2m0Kx1W9a6NZg5OjqCh8P6Zo3bxRW2dIWbqytcXZxj0S3QNAHPvvwCn3z6Ka5urrEdB0SINTlpElCiIqCkJB8Qx5itEMZoDOzba4VIIwQpFyYMELxv4XwjWjBYYiUNVUBBYTLhJq/HBPTMcIsOR6dnaFcrwDcI7QKktYSJGctFh5PVEdpGSgL2fS8uYK37/fr1a9xcXyOmiK7VrpHjHs++/BWGfY/9ZoMGhL/2e7+DRw/P0DQEIuvwpEmSYHACepfQOqjHoGjlNfQGV9HbueOUlNLZbjZ4/fI1Xr54hYvLK+w3UpO8t4QPu18+PVPgIvH8Q25LG3KIjTKNwkV1dGl2n8o1mhlt9RGeQqdaGNUCZxxHdF2rMbSTT975sqsFVqU05tcOXBMLFBc7D1VLzSxJuU1oQMzYW9KLKnk2IVuBZAxGSoUIfaZYFJiUUzBhwimlMVs7hmGP3XaDG1csrd4HNE2D1XKFo+NjbPdbrNe3ufMYUdJQRQeLTYyR8eDBQzx+/BhN00LqsUoFmBQdmNWjERkxDdpkgHNL3sRiISEYMFHeoG3fxTUa0DQrDAOh32+wue1x247oVkvp1uqQlYH6IpJ4a0cu9xml8ibMK1AiUPObdwDY3at6GJUQmxAagBwoJURNLHZsFKwC3EMSv32J/Kw1x5yLMHuWWX84g2Adp9OEaZLSYLJZXiv0iPI0qiBlVkut1NmUsDkNRbJzFw1AQwBAgob/sXmXZBwxJgyDGBY4RQzmVuYkFaLMexhKBQWbj4PU7aeW4BtJ3Nrv92hCwJMnT3B6eoqUEtbrNRIz3nrrEdi1aJcrnD56jD0DDx49gWsXYK2z75zDYnWEbnWCF8+/xPnLr3CzWaOjiNYBDTNuX36Fq67BO9/5CMkThhBgnqGaJwi/LwD40DVRTuozXlmSSWVL/s6b7je7R/3aNNztLniW362dOBUFv1bovgZwzxUGC3vLz7DxE+HR06f4nZMVfvrTP8GLr77CbozoIDXrwYwGkkdSyjDqGlBtPuFsdLGsBwsdMFrPp/DgmlU8X+vMkROazz4oOzNVF0dUBr/Jvah4/AQjVoqN3U8/HVNEIAeikKtTCTBMaoSrlGeUylpa+TdbuvM4koagOklaRCpdRNebLS4vr+BJegR4Rwhe1HgiCXl18PqslJnERN7p+Cxfan27BsNqi1OOy7ZSzaYsbrc7bDc7RE1IBwjb7RZdt0BiMT4SUQ7JqCMGag9eCEG8aJq3crRawRpsbTcbHB0f49GjR7i+vkbfDxOeO/WGG9XIwiWWMojb7RacUsaSzjkMw4D9XkpLP3jwED4E3K7X2KzX0l20Ohu21lJkYsBmt0d8fS7GhBix3W0P0J9cvxaguzAAcd20bYOua3F0dISjo2Oslktsbze4fH2B5/5LfH58jItXr3BzdSkJb87lzoGjdmGMkHgyiZmmrL0KsDFQUrQoc10CJW7NKpXodirodgKqq4ojpFYRqXBbktViKoe8lCiTFsT7lDAwsOoCqF0ghQapaZBCkwGjuXTiOOJWy/bt93vs9qJhXl1eYr/fghGl05Mi2quLV7g6P8f68hrY9/jtH/0Q750dY9k5lfik8ymhGdZuPhChiIQCZmUxxV2d4BBjQr8fcH5+jucvvpLQlusr7Ld7SZbxHoEcknOITpJVzIpZjBmMYRzQ7/fY73fYbHa5i13TtHj46DGWbSf7RWUP7fuUAZm9XKyVYpWjXHav7PsUkBPRpGxQ1Db1XbfItbkNeLPaEe2Rh0JU5nT9xrCS/BtX/zUtXV7Y9z1Sihi02ZEFFyQyyyNrV8WkhhOXIfxU7zDhYrG9eh6MEYKndYaZMY49YhrRjz1uNjd5TrIVYkWxuuZxlEYR7777Lk5Pz3JN4gQAjrVBk4Jva2bAABwkgQxOftemCdriQIGiKgGSIQ0iD2ZgN2zVsgiQa3B8EuAdwwe9J/kZFhZLkKlsxRple0f6/6Juft3O3feuCWcZBwCWusB1CUt5LrLQL43pjRhqpdToVv/Wdc+py05CIch5wMv6RIiyBWJIlJyEOcTEYinOAARZMEetY57PBJDr+zOsDi4QasBma6ngYZ9KiVSr5S3rTYZc8/oUs4QmETtVepzLFQQ+//xztG2Lp0+fwnuPv/E3/jv4wY9+jP/PH/4E0QfE0EnHPBLexFTipBMRwmqFd7/3fTx48hTnX36J18+fYRwjVt7DpxFfffEFHj15jO5sgWg7UAFOWY8poKZ8lgo/sbUq9DQFt2bdm19fF1Iyv9/8tcm9jGwygBNg9bXfM0vhDHAb0HWqMBhDMW+ZVTcBEY5PTvFXfud38Mknn+CTjz/GfreDVKqWIEPilEvDFt5dMfDZuSrSpxSnu3el6tsAYpl15a3CDE14zJTnCtETmeXceIK+qUN2ej9maCdOiWMGAUmVdgJpaI10gpwOcDYTktKUkrwfcn5H0sNJuZOq8OjT01N0XYfrqyvs9z04MhKPEobrAiLLGDxZ3XQzHLrqzE2zj3a9dO1u2w6Y+MtERnTLBbzzWCtAJepgte3HMWKxIMQk5WubEHD64Azr21vcXN9gjCPaps15EWLksfK3uhpEmjgsYcWb21v0+z2Oj4/VgysGpLn8Tvl3GfPYD6IYbLfZ0m4/oQlYLJdYLpYACNfXt7lCm5XHNIXY1sbIQOxcSru+NPY5dP1agG4T8kSEppFmBs4Rbm5ucXu7wfZ2g4vXF+g1sVHcLyM4FsEgSToqGKBuKbXKWt1WzrF5teYPDdsQK6KEm2iylSYyAcAwMgDpUphSwphGMEgJW9z4TJrcl6TEUkxSRktKballCYQRDmMCEALc0TFotUJ7fIym1SYOKcEFAfKXF5dImgQ5jgPGKBVGNtutdvwbpGWsK9YBxIi0WwO7NRoGThctlo1H4yAMgIyZViW3GKX7oWVRE0SQJ0bcM/pdj1evL/HVy9d4+eo1Li4vcX17g/3Yg0jCdZz3kt0OEXggbbnNrLVRE/r9LisPkswwCiizMopALpelCO9OXUy+84seAwJyVQFKyi8rF3n1lUOgue/3WTNOY5QKFPlBfIe5TwWYUeKbhejXgXG7YopaTjJlIeoq4VASQ1XwMSDtE1xRDNxU+Bvdw+R/BtCUZQzramawYFYjIpC5VW09koMskcc777yHk9MzkCNEJun6Cov1dhjhMCDqHhHINVJpSLTtAixAIEgcuPUCds7DeREcnIBhEFtR04mQCsFhdezhXa9nQS29BrFVwBMINSlRPgWVB6dW5PI+zferBjHTd5i5JFEZ6JE3oJIaOQRN97SOldXVrp4xrf2fw9MMZBPBrNkjOanTy5JIbOrcqG3UU7SQLt1bngrfcZR8gaRWIqCEMKXEGBhol0sQe8RhBKE0dWHjpSmKMEMBbJNLFYE8TzILJ+cp15ZVUwL6vsdv//Zv45133sVnv/oci6NjxKaTpldsNOVhtetK0RkBIydnD/DW2UM8fPQYn/3i59jttmgApL7Hx5/9Ct//rRPANwqCCsiGzr2Oy64t9XXs84RCKsVkEtpR0UkN4uc8YQ60D4FloNSQn35Zj7Mtwj3fnYbBpOrfqRGjjj8HkMH25HyQxOL/4Ac/wMOHD/HVrz7H9VdfYdf36CG5TEGNGBKZZgpY3qaCiY05wcAxV8B4uk5v4qRk59qMMHJHfY/zfY03yprcvYudOxkbZyWRWQyFjYY+GtVbaBihhF8aiVsvw6Tr75S/mVEox9gnOTsSDpayorPf73F7e4uPPvoIzjm8+Oq5YgCGb8SwJs13OIexlVmUCWbPMWsoS+ZVbrJSPgScnJzgxVcvsOt7tJqISUS4XW9w/YtfYLFc4kjzyHb7Pba7nYSJnJzg+voat7e3oH6PEBosui4nUObzDfFKJBbsxClhu99ju9mg6zqUECKlPdsv403KMcc4YrffYrVa4PT0DIvFAsyMm5tbXN1cwUWHyFKS2FnVHjYeVYcpFbp3en/z7nu1/N93/VqA7sSmWUnCzGazwTBI6UAkxs3FFdIYSyUKrpm2XKTRkvIbsnUsG4eINAHC6mfKt1OMGIcBMY2anBAyY/GhkeSayFJ704srZojSkMVuzhmYSRjFkFga77DEhzLE8uLaADQNfNeiXS6wOD7G6ekJzk5OsGhaEDm0zkl5MQLSsMduv5Uasp6wWDbomhWcAz779AI8rtF4jQO11eAkjVO0ukrXCvEF7zMTyAtAapGHeAYSGAMneJYSYv1+xMX5JV59+QLnL85x/uoSl9c32I1RgDQYA0fAq4LirPWqxK4mjRWNGnefxhG3N9fYbjeTovtWC7ze0BiTJhEeANvGeO0PPTg2tfpGPPsBGRssumrtYh3HMVdgSJr4QSoMylAIueOa/SejXNSDuBdg3ydAbRz2r4EzggopolyVJVkIhVpw0mQJy/dABXiacBP5WdyqtRGO6MBPBttlfWNkbaQEtN0C4yg15KXdtgoLkgATBgFemuaALbPfa4lPyvXjhZl7OLSA5ghk9MSMYYiSVEkObdfBG8BMI5gA30oYhZQms5bbZdJmzbcauZRnY1tZwO83UYzuv4xxIwNcA92slhmgVKqXPVRGnptFyG2sx6X2QZa5OK8WTJ8TAGUpnFpbrcOt3MnpdwuAkxFmmlEaGoZReKAmTwEFcMIFPHr8BI/feQdjP+DVi5fY3V7DJRmh5ZykKNzEk+1nvSKyFyUEwgBA2Q2FWrAEVgOVl5eXAICuW+H47AmOQoO1ek1yybXsNXFaaY1zSIdVgXn6wYfwXYeP//iPkfZbEAivX5/j7dtbrLqlHicFAxlcWlJktcOTc6ozM2WmBqgHzrols83btGN2n/r7XwfK63HVZ39aK72i88xza9BdPR9lLlZWsL6/jb2UfotgiAL8+PETPDw9w/XTd/D5J5/g8vIcaRwQmOFJEiw9GA2Qky0dSbWYEKQRWOmMm09ThYhravomwHt6mf6b9bw7xpO7d5k+sfB1T4zghR9H46t6z6wjKN+TKZDWitY61cZ8NBYcpLWi666eqgQ6tRJfXV1hHEf81m/9Fq4uL9HvtyD4vD6EIhPrIMxi2KjopvpXhlLKADvn4UPAvu9xeXUpiY+NeuNJDIzbXY/b3R67fsRquQK5gBRH3K7XYvU+PcXJyQkuLi7k5zLi+PgYZ6dnaJqg4rNS/pzLxtUUJUwt+JD5gyxnEcjm/WWWxjXL1UoMt95h1+/BKeHswSlOH5zi888/x4sXLxBCg6PVCqvVEkHD6KSwo6Ikg0kkIDupJb10F73/+taDblZmbYtmHfcAoR/HwJAGFT76HZoePFkmSxSrrNiecvKHlL0qjmNmERB9v0eMCaFp0HSdlLkZowpnsWCLdYykQUQcxdWhWi45ZcgQC3GCE0BKTizZTUDoWjTLBdqjFRZHR1gcrdB2HdoQ0DmPlpx0d3QEz4zGMZYNow0E5xs0IWC5aNF1DbzGJj33CQ0lLZVYYs9MjJfgOYflagXnHRgxW9eYioaZlB/cbrcYYsI4Jlxf3+JXv/oCP//Zn2F/tUZwDRIceiYMSV3XxNl1ZrF3icWtFlgsAnEYsdtusdeOTsOwl1rjFrrB0G5wygCV2ceUsN1ucRKjJFnpdGbyI+9/oYbye06q1Bfuyr6p0BpHabrRdQs5YGMpc2S0lb+WpWwRXPntbwC07wjQA3Ooha0xca6fo/UDS4y33YO1GhAmQMvuedf6VmxAsJAMkjqpApqmYxUQFjHmZEeHfhjw6tVLrDdrnD14iOXRsSRfKjNjcnBBDjRHoRZPDkxBm4Fo3J8CbE4a/81SUWMYI7zz8KFFaKTufAOHMSYQAkLTIWJQmkSmr8xL9D/mPYDmLdS63oR+ZvtzH+C5/zJLNmVhRs4VCyEI0GRlmzPVxGo7wqwKvoPzQfmSz4oIq6C2xjXF8gNUBJk5pSUu5vAWB1BKku+inqbgg3RtI6fWOADO4cP33sfDd99H8h7EwMnxKV5++TluX71EikPuASDWOgPV6m1UwGs8Y+qeLfOdQ5use7CEfp2fn2O72ePpOz3OHr0tFjPfIDqS0BAKulb6Y2FXpE079GkPHj/FyVtv4eaLX6EFYdjtsV+vcfrkbek4yHXX0vsBsY0tGdCdAZkajBuoGC2RHAXA1jT1TQH3fBzl76rsJaaetxyzneYVetS3QhaaVSzkkxjaStGoLwHeBOZSych3AY/fXeD0rbdw/vIlnj97hvOXL7Dpt3DMCAR0YLRE8BCdsgsODx+8hf1+h5vbWzmvViu+Pjd3Rm9nvSiVpsSSJvoe4q15Lnz39enf0/00TwjISd6R89pUxUDbNEiNAdggSMWzZrPoORdFzGsDO1lDmUFUb4CFlJkH6PLyEsyM737/+/jZT34itqsxwTvWuHKlBf01B5MaP7K9U6VK5HcJKxL56dC0HZ5/9RJX1zdwIcA3jVQr8gGhC2gWC2mQ5L2mFHm44AEWr9f5xRUWiw6PHz/B0dERnj9/niutvf/++1itVpLrkhJGrVYF77GPIxbLDqvFEkM/YBysozdyUxxLhLf5eO9xdHQE5xw2260kRWqO2MOHD/H+++/j88+/wKgx6TJPVSKN/ZLc0wI1ASnl6FXR/DpjzLcedIMhDIBKbK0wKBFCSbXbvBiEcujy5E2wlYYg5JyEexhlVRn0DEnakwB9J+W9mgaAMA5PHp5IW/lKDOR+jBhnAk06HDrNWvbSkKbrsFotsTo+RrdagJ3Ujm2WHUIjoNnqXbcgLMihc0DrhOF0TcCys0Y0AU0TEIKT+r0qwHaU0Opngy/aNDkRbDFFOQTOgzkhBMI49giNz4BbFzoz/TFGPH/+FYYxauv1hMvLK9yutwJ4vEcEMDAhahUJq0EqoMFhZOUmLiGOEq+93W2w2241m3nU5D3OQDJvD5syJCBwTBHb3Qb7/V6yqNXqZnp61m7N8lcldJm0Lnqw6e9Kcsr4zLpnbYD7vsdi0QlTSxHD0OdnsoEiux/ZeL+exA+6jqu52zUX0PeB9Pn3SNVyK9jnCGiaIDXd7whwziCalHAmCSTKpw0kCWaU+YrAZoxREu6ShjgACUgR48i4vbnGfrfHyekZTh88QFgspJZ6kmYfRFYxxPY8gODhXQNPWvUiSjtwEbgEwKNpOngftHyjKyCKIzg5pEjilsx2Yc5hZRm4QSwzBmalNm6p6jIPC/omlu6KA033A6qwaGx7yQ0Q6z+YK6uWRrIn3XsqSoDEhBLIB7jQStgTKFMz6zpmaxaVQREOADjbVw1jYzCg3jUQ4xbSVXJgqW7Tg9BzQrc4wnvvfwjXLDS+MiENI7jvkdKYu+/agWCzldnzqQj7wkPtHNQCjiazm6bZAWDGfrvB559+jOvbW7z74UdYHJ+CnYTWjOSQnFj/zWsCIN8/7ykRjk9OsPEB0DyO9e0tHlUNqYw/1MrbvJZ10n4MNc3U1sRa07e51+d7Xh7SnjEdQxn3HJgfAugT+jTLnFnu1XuXatCdzzpVYyopvTnExkzD1WuT0ocAIPBZFHNi9OMeFFo8evsdPHzyFLfXV3j+7EtcXZzj+voSm/0eAVKatiGHJg3Yv3qNxvtcJjSRgXlRpkktxVMYbGEoJZhi7smrhEN5Lf9eaFOUU8y4QUauSKQJxezgQ4v2+BRoWpDW1OdsLwVgyhgrNavQkDKvJcQEEN5EjnPsvOS+lDHbjJu2xfHJCW5vbrDdbqUaiPeIcQQpeHdNlxOqAWghApWKNC3rifr3fH7lHI4p4er6BucXFxhigiOH0LRSbUGLtQQfNPRPYqydVWkyQ0Fg7IcB29cXOD09wQ9/9Ju4urrE57/6DJ999hmePn2KR48eoWkaOK12FGPEzdUVLuOIJ48fg5gwjiNCaHIHSZhMJsUNxjeV1p33+V4MwsXlFdq2w9mDM5y/PkcIknEQyGtYmm6x7k0uO0wWv+8lbPaOwjq9vv2gW68i4CiH/OXjZLgqHxJ5Mx987+Abj721YldgDQXNSSs3eO8BrSAS4UChyS0/PRFcAlgZxnZIGKqqG9EOvwvyvaZFs+iwWK2wWK3QLTosj1bolkuEptEwFYhVQwWaB9AQ0DpC5xyWIeCobbBsGyzagC54tN4JoPYSw8oepmnASnz1PCIQS9Mar24+CJF553G7HQRx0E2zAAEAAElEQVRMMBCCw6JrMzAXKjLWUhj1fr/D9c0NYmJ4F5CY0I8jhpQwOIeeJT5dEuNiLthN2hDF3PgxJXAfsRt6jP1eq63sqwSdqoub7maajIi1nFnCrmesN2ssl0tRgrh8LwsoY45qdYBNsVDKHWtRERD2QQGOElpyZASJYRhrFo0ptCr3qgXt3WdU36iBM01tfYfev8+qNH+/elWYYGjgfcA47rK1sRZAeXw0EwxQZQTKzhQsSSt2BdwJudEOa2KOKbysuRDDsMX15Yg47vHo6VN07RKRBnj0cGiQ4OGIwQgAeyT26HdSf1w8VJIwKfNoQAg5zyBpvC5DmiwhSa6EHDMdh3p5XI1A9YrWjbICVfiavXrTnh66JGO/JPAkBTvZHMOMSCZQhS/4pNZuPUeWOEzOw7sAqHU7qdKS1DpncYYTtYEwae9dh2jMf7fLE2G/22MYegQ1dBARYiL0ScsrMnC8WGLYD7g6f41nv/oMtzcXiOOQQ8VMiNfhFTqkCb/5JmtJRp+ZIu2/jJT2uHz1JfrdDd794Dt4+M57CK7F4AhjLt2G4hnLWLs8t+sWAkrGEQRCv9th2O+RgorNHG5BkzkVDqpzRXVvqqyIFSCu6amOwZ7EY4slYJLYXd46bNX+JlZxe23e5RlGYzZWi3G1MXE5J/kMVPd3WbEp47IE2hhjDhHMccre4/jBQ/zozCrR3OL25hrrm1ts17fo+z226zU2fQ+KvTSBIX1GXmVRnzxIaDxD0ZQNNmVdbMQoY5+sihqPoMnYVPwsdjZruaT9NgHlM+SB5fExjs4egr2cUQvMMCKx9XLV90A2dmSeUI9LCkMksVToDJPSs5Sw8zg5PcPZgwfoFgv0fY/l6ght49GGgGEchatYaUqjWTtQdjbJThNlZcCR4glFnX3f42q7xa7v830iAJB0anbJMlapep/z30mNOq5pAZ9ws9lh349YLo/wm3/hL+LZsy/x7KvnuLq+wbvvvI2TkxM4Vd6Dd9htezx//lyqtziP46NjtG0rVVK8nnPrPKocgpUOGYTTh2/h4vxcaBLAzWaL4+MjrI6k9J9Tnpp5Uz7ndgQ404NgCVeB/sPXrw3orrU5hrlc7S0lSdW0s4hRQNyEAHZOM3DVVWUMk9XVZclxgMYva74rV7WCmTEwo2cowPZgJ400msUCi9USi6OjDK4XywW6xUJrdJv7UCtccIRjRuslbKQLAYvgsWw8lo0A7WUT0AaP1pEwGP03qOVg1GQIWxkp7S1VUihFtN4h+JArkki4gZTyko5thEW3wGp5JCDcWVIHZXZjwrAfeu1OJaV8JCM6Yh979OxyPjPZoUXVTAGilVMSwDPGAcN+VzpgpiSAbAa4CSiVAozIrVsnAM+M7XqNePZAQw9IrXwoYzExbK1yYVp6ueZW40NXSqMm5AUFG+aCNcCFybjvM4LeF1ryde/Z+9aQof78fOymZEzESSVwmYFhsHruE4hQZNAkZIQm+5GT7YHcKY2Ttbg+LNRtZARtiBEjNtc9HBhvv/2OWEdYGguRSwA7JA4AO4xDkpwN5+GbDj4ENG0D7xr5XJSwpTQpVylrwOxyEo6zesJa87bYScs8RahoFSI41EvrmOerdeeag58ydQMipURWbfF0Sp+AytIMFaSKEY8RTfBonEdw4p5lktjkCG1mwywVl7K2RFPjRDVjsz5mgG3/TnargKoxjnj+7BniZg0aR6mWozv61qNHaL1D3w9omwaXr87x6aefYLu+1S65sVjyK3A6AYXVWtxZ03tet1GSglH7XMr/TdjdXOLjP93gxetzfPi9H2L14C0EL8nbYwW46/uLR4ew3+8xxohGX898KqWSqEUmjN1EWanDRUrIUHnOIcv0/CxPQlEM2N6jYE+/NwXdeaUqRYsNXOMu4M7P1vl4K2M4UxIOh1jxZAyiAAmvGUdJoC3NV6ZjZAs5YjkPxydnWKyO8fDxKDk/KaIfB+x3O+zWG6yvb7C5vcZ+r1WtovhYHSQ0xcHBsVXtoszS3ISiaoVN18/OHgmPsJyAEpSDvB9iTNCzQpy9TOQ8Tk6O8fDRI7RdJx4WELzmM3FiyVVK5YmOyvaK4kwYkdAo+mbNGfBegB1HOzPK13QSpLku5AivLy8x9CNCtwBI4qGbts1eyFyKldTSPVPQMh0BsMZ5YspP4nkbhZc33ucyqwzA+waJRblCYq3gVipWkcawiyFEc7Z0Hbd9j+1+j+OjI7z7/oc4PXuAr54/x6e/+hxvPXyAk+NjNE2Ds7MzdG2H09NjBB+w3e5wc32DzWaNEBq0XQvfiodBF6pgAyfN2JqmxdvvvIc4jnBB4tOZGYujY5VzGlaD2kdSXbpOjijnykg8Oe69fi1At+mBGQSSrZ4wNLKYLhQIYT9EwmD3mx2IvDI3lAwhZfiRtaIIM4ZoVmzk2CDEBHYeaBo03QKt1ohuug7Hpyc4OT3F6ngl2pHTxEhvQp4BThKXxBJH2HmHZRuwCAKsF03AsglYto1Ys71TkO0krpPL3E3jDpX4Nw2TQFiGBi6yJl/q7qvFGeyEGWmR/G65RLdoc2iXaYVZxSFx3Q2DKCySVQwEYvgOGCmi10PvctWTEkVFkLEHMCixuJlHsZhF7SqYs+JtPtU/U5d+Rcz68jiM2KzXaJqmhJhkgqfqX9Ouy7jyp2Zgl4CJS5hI2pp3GtMvADPB2tIay5aQp9mI7xGS9ftzi9UUMFff08HUzXvm97LPaVBHeS8LQ1aLcc1YTVkCKrZUvksAtP4yUtKwDQk/kGdYuaZiGWH9txbU+qEqZpdxe30N7z3OHj1F9kdSAnGQMbDSf+PhqUPwrYZJNQB7DUsh6dliypkJfwXeYmHRmNIk8eDeN3qWZCwW0uKdzJEqpb62Z9V7YfzlkEt/su8MBf1mVfYQeil3c86+I8oxk8sGArOjONfAhQbwUmrTknsSGyjLp1aASz0DKqBPrOXGAww8ljFbmEBU6/QYR3z5+efYvHqNJQ3YxkFreTPIO3znO9/B9vYa69tbvHj2HL/8+S+w36zBUZMmbaImvNVab+txCCDOr2+iGOfFRk3bDI4DLl4+x3azwQff+yEev/u+9jqQEADZAUuwZwQijH2Pi9evigtf6xGnhKrKle65k07D1iQmXyTgpD5Rc1p540xq67H9XYHiqcVWZ6FA17pkHuI1JpMy0AbyPs0VIVPM5lby2oUuPGtqgLDPm1ElVmE50/G7SuFQvsCiFBBLUiW5IDWXtE/FYnGE07O34N4F0tij3+8wDHuM2p9i2O0w7nfAOGK7XuP4aIX9do04DBkQCYAmmDXHwhDANf+WEFHJwZIymJZjZvxNDLmazO0cQiuGt6Zb4MHZKUIQw5xVvwAgiePWNMzKA+n8a1yTAAwxISSWymKmNDiRwzENyEGDpGUXVcGQCr6E/Sie9KbrxJrLnBOYQaXijANKiMmcNquz5JQ/S+is0IDFkNt3uq7DYrnErt9htFClNAKmvHk34ag0eY4AEeaE69tb3G63ODk+xve+/wPcXl/j+VfPsFVr9HK5QNu1ePX6NZgj3n76Dp4+/QE++eQTbDYSstouI1bHx2rFl/4oEp6XQM5jTCxlZJtWS9MCkaNYyVllmcXzASJ7Sxh8xoeCf0iaO705uuTXBXRjyrg1HkzYS5oclLo+rRwkpw0ZpI6v4e3IQCRIab5UdYQjkuzYtoULJZbbtx2WRydYrVbSjW+5QNd1aJtQtceGMilr9wEQJwRiNIHQ+YAuOCyCx6Jp0DUCtrvg0XmfLdmeSkJTgSvFTmIzdzlOST6ZWX4S1wt5LfGn6wYQkKS2NxGkdjcSEkspxCyAK7bjVAgZgJFwDakysdltimavGj+qcUtxLrG8A2JBHIc9xtEaudxtslA/+40EATmY4zhgvV5juVqhbVu4EDLoU4Ip9ZatbjSjYvTl33z4Z0A5xoih73F6dib3YxUiSfsHasx3pQuWp88B/YG/5ZGTL+nIZ9OuzoDlLKQDgvtOuAMzijfImGUtXGVtCJSfPfn+9OYTmirgH4r0xS5g1p96HvWe1DO8vblB4oBhWAHegThpPDcBFJCtzghI7OHZgaNQV0qauMlanSXThq4zC4iNyWNICV2y+t9B93wKqK0ZT31R/YqezTsAZXKZSNdZOmgy6LxdvK2x7A/pGbXqGsJHBFQ1XiyOBrSZJYFKkpy5AtkHhGV+jo7XBC6oyIfKGmuAjJnBMeLVi69w/eIlluMI8IgxjTlO/MMPP8TTJ09wHTx+8fM/xYsvv0LsezGEpHFylmwcBhQnwDFTiP5uB+obX6wCleYvAZzgMWJ3e4mf/8kf4+LVa3zwve9jeXqKSECCNUgROnLMuHr1ClcXF5JECkiJw6ZV4e0A74W/E6qyjFOAa3tQz4KsOlYFTA/ORr9f38fCMO5ar83CPlcCp8AdXEJTDHCn2gMxG8Mh2s782kD3hJbteYXHFU8m5zPjvUkEKOgunRwB9ZZBZbtStZ05e07ipBWyPEK3RGgXwCrh+IGEujVEcMx49sXn+N53v4P9doOf/Ot/jRRHACmPWzoxVmec7D9mfXagxsO1LULwOQ/D+yDyVXMC2m4p9ZldQGjbDGhjVooor7EDV6Ec5fwKG9Z4Y+UHiRl9lKouHSc0Juud8IjEbsKbSn6S8ij9nCeCY1+ek7fOaMVCTMqeHvS6IGn+GJAcKZ5iNE2DruuwWq2kcU4IaLEExVHau1dyozx/+pyJvFIvMjPjZr3GLgQcLZf44Y9+hOurS9zeXGMYB3Rdg9VigfOL1/jlL3+O7333+/gLf+G38G/+zU+w3m4QtwmLoxWcb7TksTRpAwjsVOmUDolwJLH0pGtQK56AhM85IiAhYwqJXFDsp1Rj2O2+61sPuhlTrTrHmnEBd9kumIWWJX6Y1iQx1wMkPGTkpGX7NFkleDRdpy3WA1wIaNoO3XKFxeJI2l23bY4VCk3IrkQpbQbRAsFaaxRovcPCO3ShEVCtQHvZCtju1JLtSRvOGFidbJi5KC0butpUZyLKWspS5hdDHBGRpH2IFwBgnyXyWh0kwntC1xUQDgWQhfHIAY5Ris8bQCOSOHcij5SUIFEqENRXhvEpYhh2GMYeaRwz00ce3QxsfyN5K6Eqm80afX+KbrFQi0EZE2uMOqkWDxTga0rGXMhLCEUZTxwGdOrBUCLEOFgsYiE92x+94Qy7G5gokLNWcCYM557p53GXF+4oCJN7oT4v08/VQs7A2KHv168ZrSe20kicBUmeS7bW1LA6P6aMm8qOxxixud0g8TF8AFJyiFHPMnuAPRgeTEFjtD0SxLoi8dB5FWdzlNcIUiIwpWhS5fAcoS7C6q3apVxbAM3dbq/XiqOdV4lplTqu83COep0tYIi0iyOIiuWUhEdY4rfU2M06cP630MSdjburHEyAaWXZUzCVW4Mz4/LiAlevzxFiRGBSJUcaGD14+Bjf+eg7WHYdXu12UuFjtxUjRhwkaZ1KIw0C5WRu0++y6zrvYGU5QhHQ8506fNGUzqqXNdofPOzx+tmvcHt1gfe/8108/eBDhNDlhmlAxG69xme/+AWG/R6epNkPiNCtlgIYvSTHO1NgYC7z8uCah8xpjSwO4A0GhjsesAP3mdyTyo/d275eK1GZ79Y0O6OPGqiXI6vJilBBVC20yWCzfNYKQ4nvdpNz4szKepjTyQ9JlQ5Y4qjhgBwKxZAyeAo2WUPG9OuJExbHp2i6JU5Pz/D03Vc4f/kCKQ6yPip3LDGuHko2IBHh7OEDPHz8VPMlEqCNaRgAuaDAk7JCRgf4CyMLbDiySmsE8pAXkhoA5OBp19YEBOFJNztpKueaVp/lAYqZX1SHTB/iCh8hKh77uXGnVg5na1DvT60kAVLzm3yAW3YAM7xzeO+99/AP/sE/wKtXr/CP//E/xu16DRd8VtAZUgmkeA6r3gsV7TGQIxFkX6V44qbv0aWA9z/4CB988B4++fjnePXiKwH6bcDFxTk+//wzPHnyGO+9/y5+8ctfInLCMPTq9UcOM41gUFLZZdXxIEFpTmnceFMtbzlTu8lrlLME42O10e/u9a0H3UDZCCI7iFRApjHpSiBaVrwAbP0BI0KANuDgu0ZirldLKQUYGvimRbdYol0s0bZL0djU4uSDlphSQhWHtVhzvYOW9HNYaeKjAG2HLgQF2V7jt122ZGdLyYTx6IZZW1blcZwKIXjvwE6IEapJF4c9Y7fbgTnBuQAXXBasBEIcIkYViM4RmtCh1Rrg1ihFCCunBsiaplRiUR0wslghEpeDWZ/7YqkXV9kw9Bj6PdI4StUJSOmoYsn55rRgKyaWzIh+v8PtzS1Ojk+k+Q6RMrVS7SZTCpeYfzssMC2/EjYGyGNK2O12Er7CmU1jHAadn1kX6gkUi4yEoN8HHabAnPKXpke2to5PAPUbls1AtdOkG5v7DHqDYQmFtZu6PPfg2EifbqB9/sWCUu++WAF9ADk+1jcERxIuYuGOgHHrIApeJdDiqPHkqglodGUlKAilU5zEDRKJV8wTcthWWUBLsElZAIuCy+p2VRdsba2+FwRRbmBhuQa1hfIOCMulyxxqLS7ztUpwWkSqKJKszZzLNKztuoGWHBpQ09QMFJn1Cargy/cdYhpwe3WF3XaryYQSJ8tOGh6dPXqCrunwxa9+hY9/+QttTjYAaURiqe5v3GQCConz0omSXwwDeS73ra0pUlrhJZ9hTPfjbkiQrSeDOWJYX+PTP/0pbq+v8MH3foi2W0n4CDEuz8+xvb6EZ+k/mRgIiyUevvUWfAiI3kvlh2qc89Hae7WFtsS1TzdtbtU2cFx7AQ6Frhz2tEzQVwHcs5jteZhHbVDI/EY3zHgtM8DatryEg2iCr5LY3ItX/+ROzql42uw7c6U1n2NHcJrvkxTYG+8m0vKFTNJh2gwSZLkjJAl1zgMuYHV8gs1mjc1aOg1KMzYo32BkzKvA3ejRADicRIxHERDVkSIkDTGZ70XpDlK/arzWmszI/UjdsOatIUcg1pCM0GAfezw/vxSaSgB8C6cezFRvOwkvyTyK1HtmRhFU9GeyDwWHWOaH8QIbT+6wrXvLRDh78ACLxw1STDg6OsL19TX++l//a/ijP/oj/Mmf/AksMRQkRi8HWbeoe1UbAiYeZ5rJFT07yRHOLy8R2oD/4L//9/Diq2f4l//yX6AdWzRNwO3tLW5vb7BaHmHRddgNowBtL43CGARihksS0QBU0SCGHVEdUVNYMu8GuMI8pvDknTxgBJtfvxagG95LZ0cqBfgzItUlSgAGBsbEGBRgJ6i2qLUy27aBb1s0Xac/C7TdQkH2AqFp4XyQer/eKeCWA+kIGpMthe4DUY69Xmgsdg4V0Z+2smZ7FeL1ATTGMgXZ5fQY32GWGrRxTFgsWpALAI32sWz5UlyFxAk+eCE0ogKqIB0Ah1FKrXECGp0zeTuUmBCOuZuigu4QvCShJmDfR+S8az3fjixWUzVEThij1TsXYVxqJH/9dfhzBlYljpVB2G+3GIdBvAaujMmYil0GQObhJfddMUbJ/l4uy31YGhDYUjnv1Mpj/xaBdxhs59schuP3grkZ6M7W6sOfuzOvSoCawJMtr1TY+x99cA4VxAVQSjvWHyzgxDLyTckRZZIR0WqcXGQgJrGIpKTWCNYuaJQk3nlQAeCQFVcrDWnWbYsnNzDmKGVltwkBTSDjl6VUlp3F/L1CQzXIMTBVK2uWdMkkYWx1ibWpy7+CgRMFpLzPtQCqBecceClFTrxL+Vc3CVGzcc5pwuLyc2iKVm9iArwPWB4d4fzyEtsocY4nXYd3338P6/UtdvseXz1/jo9/+UvstlukcQAnCUEx4FLPtQ4tAUxhggrYCuSYkLdxVXSeb2nnP/MsDXOjesZ2T/NylWwDAKC0x8svP8Pm9gbf/9Fv4fjsDCDg9uoC/WYNQCz1wXk8fPgQRyenQLA6ySXI9j7uUXstufos5d+mQHsOPuc0dPD+97xX38tA92T/K3qclvSrxlt/1v7WH6o2gpQRzi3ldv96rPZ7sbrPPYL5m0r2ElPL7EBkFvuk9ec1NACEoPI+exdigksRjQ8Y+x6rB6douxZvPXqM7b7HbhilZrZVNIGFCsqczIsGskZuwiOEelxlGadMY3ZJwiSqv/OMYN8QjF/z3Go/KgXUGehzDq4JQIpI2nWaEsEly2vjDGwFwOvzMisrPIYrwZN5YK5whEr5qOjBfowkIPvRdUu88/Qpbq6uwMz4p//0n+Krr57jSv/OmIc5g1eTwVmxy0tJ1VpN6QcVQB6Z8fzlK/zf/vP/Ar/zl/8Sfvgbv4lPfvlzNF2Dpm3EUNbvcPbgAc6cBzUt2Et1JzM+uYpmMxaYcMvCO0rPzjK4rPjZBpKZQ4ox4L7rWw+6iRzaoB0AgVI0ngCwtFIfUsIAbQBBDqEJYqX2Ab5t0CwWaNpWamI3LdpuidB2CKGF9xJ/5J20dA9e4qodSScpA9wNSchIF3wu3ycguyrlZxVGvMZlz0C2zgiAsn/WQ88FGFrZP04Ju/0ON7drnL++wMXlJd5+8hTf/e530LRyVyKH0oDGCCUhplHCDqnEsQvhBBAGSA61h/eAd6RtsQlMZt02u6HyWAj4DKEiFwY4CvOQZ0kipSOx/gtjidoQo0eMg9RuPmBtmV6HmfChz9pLPiVs1mtcXV1la5Qjs3bbMTp8CA4BkfoahkHu4azUU+msR3p4m6aV1+JQmmUoEJgq61z/UUY0A9KHrvuE7n1zMmaSLWYAilVnBuq+wVWzI6djpvrf8nSbHgxi5Jh6FKFozSNSTABFsUYlgncNehqRMCIlD8cJ4AhyYuEi9pjmN1TAajKGilFqbf3GBQRIU6kQLK/BBidJy42XuE2L7E6aIGXgN88jzw4ZpMt51HCQewDT/HfO95uBkyocZeL6v2d/TNEsjcFKEvcczOVlYfP8CdAlRRJmsXGe8ODxY1xvtxgBHJ+e4IcfvI+T1RIvnz/Dsy8+x/nLF9ht1ohDDx41XhYJoKT0P52X/BRFQ2jTrGd3aZonAkxscJMqEoVzytjZmX4nWBGGEzVOFjWAZwAJm+tz/Pynf4Tvfu8HOH7wAOcvnoHSIMBAFb3HTx7DhyD0YFRAlRW7vDoZe7HsVq8Dk72ZN9TI66RKVg0M8Abaqve4DieZhGa86TqgAExBOefxzS3lgFSTKlVdaoAnZ8Mewax5GFWIYVGWCsav52hzkaQ99d46VmVC7uEIuZEeJcbnv/oV+u0WJ22jOVMObrnC++99gOevXuL65gpQ5Z7VApFDn1i8OoDUdx8YaFDxuhxHX9a/rm4xOWmzs2s5UEaFFebOAHiuR0tzHSn7y4GzEpW0Ipgpz1YAwDyAeWsNu+qY60IBZmVn2Zg81kzTBujtXpxHhfVuj5PTU8RRmtwxMz799DM8e/ZsIntkT0wJKHkE02WSz6Z8f84rZDSlPhIQgH0/4g/+xb9E23oER1gdHeHHP/4xPvv0U1xfX6PrWpBvwN5jZI2vt8RZjVwiEg9oCY0igFNRIhWiZQUGwjfE0FnzJpMPrszvnutbD7oBYACkE5Hqo5Elsz6ylMfyoUHbrbBYLtB0ncRcN0FcU6FB03bwoUXTdto8Q12/ziF4B+/EEi0WbEZwKOX5vEOnZfwMbHd+askO7p64bOZ8tIT5kypCKnCUHBMDY0zY7XpcXd/g9eUFri4vcX19jWEYwInhfcA777yXXXTlIFeHh4DgpBuch4MnmSPrOKKWdYvjAFACOaDrGrRtBxukZFWzjl1FaEzY3N5qPKZ8juDlfixRUHqWdP5SHjCmEWMsjTH4jYB7Kjwn77wBFFtVl5hG3F5f4/T0FG3XFUbNheGwjvHQdWhczGLR9r62W0g8d4rSZMUFsQb2fY+4jbCYNwIkk5nfNP7753XfdQd8zYRfSmnSPCMLLi4hWnOBKXVFcRc1vOH5ZQqc4wUtDCzTJLOWASuftVKd9nkJEXEIq2PE6yS/Nw4ICeOeEfsBHgHgVsGUxerLKhQXcaEcqsUeS3hYcB5dWKL1A4JP6BqHAElOBGk1gjEiphEWfgmgZKfbWs3XIQPuCkQeAkY12J6vaf6+7g9Na2W/yZtxEHyBp/R8j2J5BzjVAFDjVl3b4J3338PZW2/hwfExQnBSJYmAfr/DuNshjSMQk1YpZo2NlonWKlmBq2QyKv8IMLs7Rz7wV9kbvRff943pmhvgzlsHCc+JHLG9vcAv//QnePrOO9hcX4qkIUYPBpzHg4ePIAG4BKuEUx59V5mp17JeZ+cspGK6B3OAe6c+N0kejf19SDnJz+K6Pb3VgJ95xQxIzZWCO3QiMGdqL5jyyAKsDB7pmSRoSIiedSCPBQoWrQweU1L5qf+7E6qBzMegzWHYQD67Mi5HWikl4fXFBbZXV3j37ASr73wEt9vh+atXePDoMb7/ve/jdr/D9XqN3XaD/W6ryf1l35pugXaxwursAVJoMEyUNZPBU+OJg1iZpVb1dK1ns5n8bc1xGEVZnCpaBVc4QMJZmEGaCEhJVIRY0xsOXBUt1iMhR5qMzpPP1QriZB8AEByclwog/85/92/i9voKn3zyCYKW3ZsogSDFFgbEhaZzmUi9r1G9RRdOdW4D/1ZpCCDnMEYRKJEJf+vv/PfwP/j7K/z+7/++dJaMEv3AQMaPxpdMnhC5ae37qq+BPniSoH2HH6tWYfkENrf7rm896I7MuO5HTSLyoCDW684HLLoWy6MjtN1KLEPBg7yW63MezgfAeTjSRhrOYi0hdTydlr6jYsVuvISNLLtWQHYTsGhES24ciTXbuwyy3xSXzVwYbAbcMJ7D2O973K63OL+4wvnFJa6ub7DdSxgGWCtOV8J+iDFbEhwD7GSTnVq6EwPjGLHf7eUgUonpFcbJcA5IGAEnZd6Wi0XuwilpuTKDXOXDysDFCO+CghQCjQl9P+YDZAxXsJAUr+eUgBTBbD/WTGJ+lXCR+4Tmmy7Whd3td9hsNlgeHcn60UQM6K2LkJvbfg5ZAgEIEykPK50oSep2+xDQQF7nIakiQihsdMa0yq3e+Pz5ddDajRJeYK72VD2FiLKLsn6iAS0LBTr0jK8bT6l8YQlWBrwVXmVAaEAQeYsNcDOA0C4RXSuWPQ80C4cuLDC0DpsrAD0B7EsSoSkQDE1rqCr32JBmf1ByaMjD+wRHEd6lbJGWBXAgJ93csNnBqirMAXGWAqZomPWEpiDZmteAqDQTQaWYcFU1gspa1XvwJi+EKUtudm855+K2z5+dAb/6HhbC4CB5Gvl7ahhwRFgului6DpSklGq/3eCrr55hHPbgOAIcRdG2PdVH1E7Zeo5ljbgchjyuKf3dAZeTnVWwVb2rX5wol3L7qYvYytM5JcjkgN3+Fh//4k8Rhx5E5lV1WJ2eoTs+QSKf+wZkVGkoCdOmSlF7O4BQzbmaB+t5UYBqtCayQi23lZeDZnRUW3/rex5qQ23nv15PA1I25nzfajvKeGW+c7BdKwweyAYNsvuwFTSS5NxBqwwZYKYklWJAqkhXzWusNrispcgTo2OaPX9iSND/RUjvjZQSvvz8c3x8vMKrzz/Hze0am80WH3zv+zg6OkJzfIQxRnDUGuJjREqsFXY1TtsFlbuclbfiUZrKfVmrHGiQV+/QSa5fn0u9ko9eKTQVDTkN0fQkeQhEnOOkJ2tz4Ln1M20MBPGMgwhsnWMPKOviMaK8v8zA+YXEmf/df/ffxX8N4NNPPpnwpcislWakIQ2RhuA5zWGpzgigaS1pHmvNGSwztEwqQfKAkMARuN3s8K/+8I/wN//GX8df/b2/isuLS1xe3WiJRqcJqFrlSu/loGFsThr1gIWfk06wVqhqg13e3zv86Z5Fr65vPeiGc2hOH8B3rYSEtK3UgexaaVTiA8hJvLeU7JGqGs556SRpQFurizgYyJakxi54AdZtwLJrc3WRoEC8qZrSzENGikBQ0JNDQzLN5p+UGP0w4na9w9X1DS6vrnF5dYP1Zot+HHLJswQbZ2EgYKuG4LUEnwIZgiZUWglFgnel6YYxLdIPe0dIjcc49gBHcJKamvkEKSGmyoHrHIFTwn6/R7eUFuhI0oZ9GMcKiKiqoQsgQLiqzarrML2MadvvUzb1RtDH818Z/Tjg+voaR8fHaLoWFBqQpjiUO0/F9sFbV8IkxihArHqadfikLBik9nITWsQYtVtXqVsLVMIMyCEW3+SAvunKoK0asyryOv7yyawEzCwWd5jGgTWn2XtEVSgH1/tWPm23rUGTdUkUhUxzLpzD4ugEYxL65sjwnuF8glt49JuAoa8UJxCISuiTPYMm9EKTdU0sia8pRri25CqaZc1MS84VN2ZJLp1Zkk0wmeABJrGKxhcs+fGNa1uD/grIY/ZMe60G5lY8xQBHVmKSnD1rT1weRdn6Wc/FvCOJGcM4IqlXTWKpUeJFmeGZEfs9vvj4l1hfXALjqI1PIrg6v9KGW5K7NNJ6Mo4yN5N+teKOO58vCyj7Kms/Bz08eaWchwosVUstIXUKvBnwdhgdiTU/RnG1O4cnbz+FCyE3A7LnGd1ktsdVSIfU1CxVOmj6OdRjzXMjzXFgAOmw1buipTnwnV/ZMqol+moAWysIsy9VeyPXnfCYuRVTwwjE66SgTMGx5T6Mmgw52L24AFgAaoGU9QpNk8eeoNZbpdF6rvbcekx5Ds6haaWvwna/x7/+oz/C2O+RnMO43eCLzz7F6uFbaE9PQJ3E/ErOWMxKm8neLN8LB9Izaf+pTDtUwL9853CowRyI52/NFKDMT1DxCmaIki+efnJCM65an7mCBLtPxacmNKBz9ilJonCMk+/mMRlP0kO03+0x9iN++pM/wW9877s4WS5xdXGBQITkvebVlRAe1jAYRpLCFKzeI4eJEcBoZGosKBZrW5MILvTKwMe/+gK/83u/hw+/+x385b/0F/HHf/QTXF9vpAwtaX7AjHtIWJKsq+Ww1c0XiQqd5j1j5PGYvKGDO333+taD7tC2eOv990Fe6l+G0CD4KlHJOTgftIamVgqANtQgaBk/KbIvnR89Fo1H1zRYtPLTWky2NaUhSGw3SaWRKbS2P0o7V6HZ4kYzkD0MEZvdHtfXt3h9cYWLyyvcrjfoVbjlZE/UtUIYBvHs/iCC9wGr1RGCa+AQNa5Ctf4MECSeKMaYq3hMBJq3MUaM4whHAYvFQptkQOF+JRB0wuMwIISAtm3zPc0NB2axuOmIc1EgdXsJJpuzF2OU9vec+X9zJGptCoQZJWz3W1xdX+Ps4UM0TpUwUFWqqBzeWpufCy8TnjFGdBX4ybWgM2AqlSdCE+DHUIXROJTiUH/+642WzvzbYWHLpvnlzxZmVgP0u+z/7lXD6mxJQRFCLuckcP7wDPMZj4KFPkjYD+Ho6ATd8gQxOalCEIGEBJckzIRClIQprlUyS65ieF/i/PLWgDLoLDZwRoo9wNKhtnTZk1mxliaLWk4tA6pDa1+Bcl3ZApQxVWbuUxxrQJXBSXlAEQp2hqvQApmN0O68k+B043iqIOXvFtpKSRpfjdo50vsgVkt9bm5jwWIJe/HiBTYXl/AxIkWNyVXQnRsTKVCxmMcC8nXceemmUBsGTiegppqOjZ0r8HuAdI2iM71XtIH8npPq3CQ80euwvSeE5AC1+ofG45333gOCQ0zqy1PrrO1PHcaRAahTT8kcFNpBmG63hFvo66XBclGS7gNS9e9zhdpZCIIqVn3fV0aYe0A6yQAyf5zdf+4pAUo+gaI43Fxf4+byEh5QjzAQukbyHdoOTvtaSH1uCU80XsQAKEqRgNHq76eYhzsH3harbgAyVe9JXWb5Ts+M6Eib3ABjv8f1qxfA9RUevfcu/GKBSACFMLFossYnktH2hI4yLK7WQ2keZYtLe6R7GAoMS9Pk7/x7vTf6ppCSpVza3WuAOt0jW5M6aZYwA+jMumbqkdBGaPN5VwPGer3G1fU1/v2//bdw8fIcNIygMSKApPmMHq5EAHESPqvlmpMaqBwciF3GKAQIpmCanoEKm5SxCO2Nij0++/wL/F9+/x/iP/y7fwf/4d//e/jB93+A//Zf/n/xsz/7BRBj5tijrQmRVqV0aidLGYmbomOfs3Uki9meyFcd1xtktl3fetDtfMDRw0cZUHuS4vrOe6mBqx4KR1IMnwA4JLVUk5bt81g0UmVEgHaL1gcF1hq/TWbNhjakmOstRujyO7HYonP7axaQvd5scX1zi8urW1xeX+PmZo1d32OMCg9JDn6qAPdkviqsRJsrAh0AGh/gHYEoVa7ZWgeTeLbdbleYbgUOACCOSbqPJUZYBIRFC/JUhGUGYuXqhwFNE6TmN5VyaGLVABxHBQ3FBWil37hKUrH4wOl1ON70Tdd9n2dm7Pd77Pc7ARBJOwzqVVsfbJaHjsjcklPcumIZS2rFEiYpjN05QvANvO+RRodEFs+JiYB705F8E8i250/HWb+eKROs4zSLLrvCDMzaYPtoTOXrny1XCSkp/6raBEDBdL3OlZBnpXn5ITTNCqdnTxHRgbX8ZBqDlP9yASenJ9jvevSuhHlYMyabcWRrnEMTMGlKhtMqHs6P8F4snG3j0YWgTWIANVRk4DS1ZOndKqFH+UyVRLf8OVuaeyxN81htA9151AaGZ+t+F1jJSnzTs0NE07h+HaMplpYL0HUdvAvTueh3drdrnD//Cj4OYgXmexKGqFj+JoqI3bR87O5XTTk0DD77EAsGmqzZ162AGBQEpORwGpJEOUnB4EzHYIfoSGusEx4/eoTl6QkigEHnlC25xn8rjTArUxb/fYgOZiFd8kWlKOcm5QK9yjnr6FjfZ7ouFTCuFwvAOI7YbDaSDN80mebympvCONGS+Q4fzPfPRp6pjDTg++knn+Dq5UsxdkFCOMlJ2bamaxGaFk3b4ujoGEdHx1itVoALopSRNKgiQcvZaxhZzBcl5ng2VxS+bZbxdrHIhjCA8vetyyslAHFEEyNaEHak+QoVeC1gmIsV+oCBqPAE05rKyPJqKw88AGHLnegQVRd+esiaajw3g3C2syfKpfxuc7oLyid0xeLRArRgBU8BZr6JAtExRvz8Fz/Hf/r7v4+//Ju/iatXL/Hq+TNstls0bYvQdbKnet6Ss7hnZHDPiUGcNFyQtTRzafqTeabOb6rS2FAIkR04Jnzx7Cv8V//NP8HRosNv/PAH2G9GvHxxgdcXF3AuqfeOMPD0fFqJxprnHTwbeVcqmihmgK+Vpd9+0O0cjpeLDIaddn0SS0WCRN0xPBK8WbKDx6L10ma90TrZ1vXR4rFBmkBJ2Zo9ZSJG6HLoiuFQRHJiYBhHbLY7XF3f4vX5RQ4XGcaIMSWMMWlFFUjr4EqLvHPk8rOnejFX4KjRqhyS6FURHQojGscRwziWeMCq/ioz0Pd7eK8VXhYdVsdHepdUVUKZHm3nSkt7Iqe1ioEmEDxZBLFYLcwSXLsAp5ZkO7MK1WYLUQPJiVC771JkYLsVY8T1zQ1OTh+gaboCMIESgskW6vBmF212X1aHKLG1AZZ4PzEIMLx3SG5qScjzwJvBtnxKpzMXZLMxTUIoUNaxUIFp6JAyMknCCjyzKnQE1qKu7GqB8ee4MkAp6yZlvOwl1hAAi78zt6DGySbAhRYnbz0Ghza34gZLea44EoYk4q9pWhD5iiIJ0VCyVgthW0AVfLl6CNTSrYpkCEHbH0Oql+hkDCB6BhZNg0BD3rUMjslAP/I48n/NYiKLmZW5eYjI5DxW617vebZszxShLIqT8QdTYe7fv6mSMP1cTVUhhPzjXBCBV4MuFYqvnj/HuFmjzSElh8wG1YhzkK+t4/TtepzflAbvU5TfdMm+sHr0XDZmEElJWHlbIMuQGNE5JHJoQoMPPvgA3gexjJGh94rus6ch5Rh7IspevtpSV9NCvW6mfMUo1Z7sb9mP8vpkHZgzTU3mqrSUrZX6uyWDB+21UHtHJmEsJp8O8EZmnoQs2lmnVPITLIRlv9vBQ7oZJ9K8I+cQ+16e5xyuX79C4wK6RYd2scTy+Birk2O0y5UY2RiInCDCt/CRzPIqmjAeFKPk1Bj2ZJMfxjJsXlApx1JByUM82yDk+cuUjH/QnbWgagD2t9CICKWap8+oMY+/fMaEWG1Eq4KZDKjiLv0bBjb+O/HN091QCZGth+VqPWYDu0kVPns2s3RCJmYsFgscr1Zol0t8+eIrrK8ucXN7i6Hvsd1ssFgu0R2t4NTiQRBjFUEMpRbalgBQStJTYoRUIMtGw5liyGUda1wh5lZCihFfPHuJf/1vforf/NGP8Ju/+UP8yb/5Ga6vb+AowSHCs6S19cmkJ6AR8bIDMsC8lgdBt3m5ywBg9d7fdH3rQbd3hNOuyXWuUxaRUdqre0LrPVZdg5UmP1oYSRd8tmJ7QgbYZsnOISr5aSbALSVQNjhFqZaSEtAPPa6ub3F+fonzyyvc3G7QD9LqdEwpV8uwmMZcWJ1mrNbUveoSplBl5iqIaBjSZrVpQVQJOk0MgIEp+w6VRJTsmtRnxFE+37RibVh2Cy2uLG6Tml6Muex3WxCA4EMFNCP6YQPvRqQIAAFm+cqsIluDpgB7etgPUaglftI97x++TAhsN1vc3t5itTrKDLcwZpZQE661VNxhqPNxktGCCjAiQoxJ24YnBRaAC9bdE4AlRM0HSlSpVnb/N8+0jKUes/1dj7P8IiXsKkHj8sBQuzLfVExsQqI1P6n2MnIpS1Zc6gV8ytqLJSamBHYep4+foF0dCYDODEvKB46jeEqcdUplAOyRwIi2dkSAhkWZmMkgG4CVq3MQ5h7MesJA4xvtwsoq7BguOThOCGZ5NtqdWzpm57gGyyUkYyok5qAyzb9z4B55p2Z0memg6rQ62a/7wKu9XvECA09mTTWPhNC03ks11bHvsb68hEsjmKXVGHAAeKswzr9PfnTbKgWlmmk+QwaQ/v9/cXk+kZQNc+pbTATpnml74NA0DU6OT8EsTTV8FUaV90UH672vaN32avr0DLotU0xfY2b0fZ+B8HK5zBZve91ZOFR1f0DzEmaKfm3wsL9DCJlv2XPr3ydx4zO+WH9uzoeEv5o3S7673e8wjtLHYCRN9DMoqbLJQJXzCX0csFuvcXNxDhccKDTolis8fvIE3WIpyfu6Npb4FisU6lCa4xCkogdYythKci8yLUKVSGbKLpB+GNHBgLmGWloZ3grgGfCmwpQy/RZd7K5B7T6jzpTG75YgBEyWGq0pwJ7fwXg7Z0mbMQ6o5J8UrDPl+LavNY+zs2phb2L1TrkPg4ecnbbr0HiP9XYDTiM++u5HOHvrAX76kz9BHEYMt7eIAPzxESj4vA85N847ONZk21R4HMcokQs0rehDet7mFv9yHqX01G474J/+s/8WT84e4O/9e/8e/s7f/pt4+eIlLm6uwI7QQXN7RqC3MoG2okWAQ2p73we6C6+ee4lw4PN2fftBNxGOGom/A8smNdrlcdmoNbtt0AWHxjs0CrCDgmwHCxeBimSXCSprS1DhAtHeh2GEI4dhHHBzu8F2u8N21+P84gqX1zfY7fZShobNVS4uLasfLue0WvSaISoQz3/rv5a4lEWYjle6xBLaELBou0poVgBqdq+g4Te1a5dh9S+RXcocE5rQZuDBmphhip5p8B5a2ZtEW00AhmGH4AmjJy1WIgyP2YSuBdBoM4M7WrWBxYqpHATjbxa/5jpUbUnnC1xfXeDBgzOsGq3rCrNwFI19/sz57+M46nzUu6F74TXUZhhHJG0z63yjZSgtjlx2Jh/iDCynmfZZIZCHTkDRfFzMpZ5ogfIFfNncbd2IJGSKMZ+bvG/hFMV6Wj4wZT7I20H5+2a9TtosSSxkvi5jrPfK4SBK3289fozV6lj3rQIySitxkNyC/X6PfgeAWzBLgm8ywjSlGFU4WCJkC5wxdyJ4B/FESMCnKtsGPNRhqUpDjEnpn/K5ydM/xEhroJxDC6ZA+s7nMQPlwKQRSpzHaR+giWyNqV4pe2vCo3qbefqC0sBUVlRa1WzYu/Uam80tWlOwcqLwXVUxW1vrv2egG/a7IWzjyYQ7Y/rzemIOfVq5u1i0q3jN7AKrdpp0bVIC+v0IiXKX82a5K4wCvsRCXLwD+YlU6GgyB90cAxNWf3qhlaQA5HASU4psLepz7JzLoX5TsM93m+FU61l/H5jSqHGmYumlyb81TQLQjrKMmBi319fY397CDyMa50BJeQMAyz9yScY2qkV/cJJHFVTx4+SQ+h4361vcnp8jtC1Ozh7g5PQUvpXiCWOUopSs3akZyAm/lOQHABZdC3Ks1VOCtnFHMUIwQInR9wOGybZN12MK8ApATTmbRNbDgHpt0Jiv72QvMKXVux6p+t87GlyWZVJBqfCovFeZN5W7CH+0Jm6Fl0/GwFyszMQlfyWNGrpjxiu5Yoz4/IsvMO63+NXnn+Gv/d7v4jf/4m/jj//oj9H3A8bNGkdtAxckQTZZK2DFZyyTAJxW/GGUfg5KxyY3s/KZ+ffcYk8ASXPDy6tz/P4//Ee4fH2O3/1LfwW/9Vs/wj/5538gyqgXbNVqCc9oXSaNNrICIipM3g2aU0NZ59rLNFcK6utbD7odAQ+WDTyApgnouhZtKCEjYslGsWbDwLURr22wqxaCS0IcxM0IkNSj3u5weXWNFy9f4+LiCuvNDmNkjApMTNRYfJjFqALI0mJCAlRRPAwWVu9XP4yphmTJS46A5WKJEASMJDZLkcE6+TYRYRxHAU0VEQhgFOYjjFbcn13TofFBgYcQe86AtvUHSV3qJDWUmaSaSdt16LoOu22PmvEYUM9W5cSos/Xz3fPa37UITS8+uGaTg8Y1lBZmtO83uLw6R9M28KEBvFcBUasr9vXDAzgEyE3jZgURKY3oB4bz0iTHGFZmgAcArOzLDEi9YQzlJ9tIkYE2Ha7pnF9Xd3DN3k3g5OYU4yj0bdaz2ZyzPLLykfbDSRW4hBQlFEcs61TRu4zXgOnx8RGOTs4UpBjVy/hSTEiRsoU7jQwJI2vA7KFxQVpX3Chb16Mqxi6x2qosOUnA2e8SdpuEo0WACE79sIE6Ej6QrWIV+juUHGPW0BpsG+CuQfed0AIruVnTg70OSP+BGCf7PreGo96luiWxnQEyJW5q0cpNJ0jjTFXRnoICgxmmHAiY2G836MdBQCtjEoJAzBMVEGT0aWupdGUC68Dz6uubAO2735oCkzsegOrHQeiCLLwKkNC6eg6Qai7XV1c4/chJ5YMEDdcVe+tUKdNkX7YwDLHoFhkEJDYPAnC3hCFNwkvqdTADgAFwez+Ddhbv2ziOJbG2rjs8W1cDL3YPe++O0jBZ1zkvZOUHorhvrq7w1aefokkRYRywcIQhMUZmjBV39gA8JP8KLMaqfYwYaJBKY0ErQoHBqUe/22GzvsXLFwFN1+H0wUOcnJxIMqbzkiMFA9sSFyxNyxwWXYMQPDCK/I4ZKCYEKOdh1vAJA6VTVkwo+3dHf7aDZmc7KyuGFOTVqah6M23f/94ciFd7QvfLMFSfTlmhVF/yPZ7kCfh3rCFZHjQSOI1qlU4gVZ7Qtghti912i6vrW/yzf/4H+Dt/+2/jo+9/Bz/76U/lM9tbnCwW0jcE0GI9sjZEkhMFW78kPAZcQHcdplonK9+t7JMACzxOwBfPXuAf/sP/K/7Zf/NPcHJ0jIurS+xjRLPo0C46UGjh4GHKW43hsgJq4zK+nWFaBa2zDKGs9N13fetBd+M93n14glZbkAfnsiXbMqMNaMuhMeBVQkRYCZ+YcjMVAwtjTLhdb/Dy1Wu8fHWO7XaPXT9gHFOud5zDRVCVMLpnvCbXslAg28BC4HOrQT5OswOXFQdOGWRbLUnZ5IjMFFlAECfplhiaRmNbNcQkSmCOVSkAA4tuAe9dYQpsgLaaDzP6YdCOjAJAIidcXF5iv+/FMgh/EDQKU0sVQ68POU/W4I5FJv9WDoEB+/tJmnOx/TExNus10qOIQG0BV/p9Y7j33olZ5waAKTdxADA56ClFxJEx9DSp78llU+/ovDyfg/5tiW53BWBZiwK0hbYt4asWxBYPKiC4wA0TyHUnOADa5U0EJCotn2fPtrHrDHMbZ6liwWVcNP2enEuH0HV4+OgxpGpBBZK1KyuR1JH3njHGCO8cGteCk3aPTBDAk+hOzA4rCLBDZ8yRGUAi7PcR569vcbIMCK6ZWJMywHZO42ANcHMe/2RGpHGSutY5f6J8ICuGtUJUrEfVyigQGKNUFDJ6mIjYmuGjEop3R5bX1NakfF7rtWN6D8z+riJRy43AeP36tXa9Y0QqlYssF6Te9KKwo/IqGKjR51TrVcOIVIGS++DHIeBiQvDOalCxaksohv3IAOt14MrFDU2yur6+hmOWsKMKZKeyiSV+25QLSfdQnUxlUCprSeTyOaoVLNuHCU803mAgg4plm1SpN+D4JsBt965/6vDDwxcpCJ0C7mLtlj0ehgGvXrxA3G613K2EfkYNKxlTBLw0UyMADTiHezo2mMTgCCBZbDzrugE8EjB4iRNer3G1XOL4+BhHJ2cIXSulRlOS+tIqLwGC54TgHeKYQOTzHiWGNtaTknYniw5ePbhGM5l35HW4C1Alq8xQwjREo3hXced7h/blvj244yXJd5NwPYPT9hF75dDZkfM1VRYJBfgeAuAwJd1Jfg2SQ3QjeJTa5gnAfr/H6vgY6/Ua+75H3Ozx8ae/wg9/+AP8/JcfYxwG7Po9FsNe8tKY7kQEEATLkQPYC1FQ4iybDsmtOfC2dRQ54uCbgBGESA43m43ku/U9+qHHZr8FrglNu8DJg0fwoRELfIXNDLcxqBqnREqYYSWvpSkRqtDf0dCq69cAdDs8PV5pTHchtak1GzBwnaxWNkSQF+0JIE4YxhG36zXOLy7xWounr7c7xKiH3AQTaX0A+xcFEB2+KGtwWXDZ2CYCvvrGTLjU964dtI4cvCeMPMKz1zhWswAXBk2QpAeJYfXlwBLBeYeWiuuSiEAeGOKAhGUZmTKmLFxSwnq9npQs2263eP78Ofr9XsvsFOHAbFo+g1PMHQinLrdKS7/3KmEH9T/3fHR66SnY73bYrNdo28UE1B66Xy3o7GfUhNSiOGmSjsYkpjgI4ARjHGQFvXOyBzXgqYUW6lTZyQAm2ny2OldWVAO1ThNZ777nJq7ocYyISfIR6nveJ4zVfldBzQrcmPAgSRwVyx5X7ZwBolQ+O0NUzjm07QKOGqQ4LbcJTVSWAx1zuShzvUujowRrXFAzRkUfk3XIMYzVWMYx4ep8xMVyhOVmSeWZmO83xhLLnE9WbcGws+Q8vAuT9Z9fRDQ5M9Oay3pedG/GGLWBVbmmvO3uVb+XrTDVexo0M9vrw+Oc3AcVu2Lxke13e2xvrhEYmtBuH2L1upXzzHnRa5BXexNoQh5lo/KA7p3z/KrVg8mc9H/OnqQC0TwTurgg8oAaBkgHn61pCph22610RV36PPao65Q08UsqlSipuCktGmhNLN4gEN/hNXfWv7yQXde+5uf2duWdilkJsqP6ZsCdz0rFb2rQOJVJlWfI3q3GfntxhYvzc6ySNEAjjlJVzDEQI0II+M4Pf4gEwtXVFa4uL7Dd7eCTgG+rPGZ5Wy4RiBO80rBUMHEAe5D3GLeMm36Pq8sLhKbFarXC6vhEwLdqd8wMihGOIyIiQB6eTD4npBThOICJMaSoJWWVemZrY68ZOM3gDtWzUL5TbR/e5Mm1U1NXRSFAEw7lmvCBmi9N7qEJgFZlBUBpRV5b2rnId5OFbKHtha5qRJXyvGXygYTvsWekOEpy7CAesEdPn+L89Sv0/Q6bYUSfGMujU2w3G6xWSzjnRTZ6j5RIa3Mj4y17KkGwSZ42xLAqhjDhlcl4puKdOS9mZoRGPNzdyRmevvcOHhwfwYMwDD2++PILnF9dYr/fod1tsDg6gUdAzj6YrHXt0SpywFhX/bkDutmd61sPuj0BR84WQKylZpkyLcQs2ikLcfnhJG28b2/WuLi4xM3NLa5urrVWdpyVH7N7IsddZ+EwxU2AfsasaUBxJs3Xe651zoXcfe/JM2R8lu2dYgQan29o+1tXOnDO3QHcIG0h7AQwAALCF8sFQiPhJWIxQWnhXF0pJTRtK668lPDy1StcX15iHAa1UtazrEJLKkZezv3d+x+y6B5awfs0+Dv30+cM44DLyyscHZ9IiEkGkEYglYKEKeAWQBmxWC7E9cxmtYckkLQthv1WPwdEjCBOiI7AdbZ31pirZxx43rzWslPXt/dW7xcV4C4Mvi75Vv+YZyHvQ726VJLnnCaAyT2dKlAVfec1FcBtzTuYWSv6FHYEtiWW96RsvAF1IEZGigZ+WA8N5cQmToxhjODkEUJAHBnjEAED8/XuU5KynWyipfCEajimKiOxQz86rDdbpIRi0dRKQDJtTUBWek2y6BksF8uKJaXd06o6g0vWIU8FQuKEOI5Io+7XISKu7jvZh8mewCR7EQAVaGITAjDhZspUtaf3Wdjs3gCGvkcaBjRI8CyKZWgCgKSeM7YKgoUn1QobqPovqg6p0+m+Sck4dBk/sOdNRq/C3FmoEZHUAHbm/fPI9ZehfQdYQwat+gWAft9jHHr4ttEzpUlf2mXR1rP2QtRx2YDwT8kP4Ul4SJn7jO9jupf1Z+zMZ1AwB/BcTDH1fQ4piHUFp/kcqL6njYsBqzwhhixZgziMwDAKcCWCowDnI1yMcF66Jq5WKzx8+hTvxIT9bofXr17h+vwcVxeX2A89SEG3cwI0tc8gPKSqDLEA+Jic1PH2AeycyPf9DpvrKwl5XK4QWuluy2OvuWCSX0SO4ZLmGvEIsHQTljCjeRAjJuvFtj5c3mOWfCcBaXfDdEooBGbrWJ5Vy4Z8xVhCh+zzdsaJMgAVrELlX4KWMi7PETAuTzJDh04my8FSyHcqd422Wc8SZV4jnYOlg3CAb1qw9rM4e/gWYhzQdQ0ubm7QHh2hWS7Qta2eLzmrTkvE2rrOa5RnBWemZjhtgJi0qo9VP7GzRsw5p4oArI6Pwd7hxeUVfvbzX2DhPR6eneHDj76Lh+tbfPzJx7i+ugT5gG5xBOj9gWIcc9CqVVwNsKKL/O/XgG27vvWgm0BoiLQlr4Jr/VeEpRK9AYDEWK83uLq6xvXVDS4ur3Bzu5aQkVxdpLgMkhJUXq+aMdUaoNHrTOjdDYu6f+UPCmjcDyQJgCcH7x2Ojo8kSY+TWvsm252vYZDulnXJQCPslArTTimha1u0bQPmlCsW2O2UlYOZ4UKxnu52O3z15TP0250ETSXZo9z6+8CcmU0ocr7vN7umMYZ/XpGcYsR6c4vtdovVcbjz5DyaGaM0K3dK0jXLhK0xBkcChl0IOR5QOiyOgg9N2ZAFmAhGeSrnUmP1Os0tg4e0dxvX3C0tKwS0bVvCRWLCOBbGxNVcc/yohnHUlpx7V5TVByJyLIM+0jUhWEKwEZFSt9Yzh61hZvp6hjR7XM5z0vAnwn47IsUAuzM5EXFy5sTqzSgMOq95tr4CgENKDiolMKpVq3gwqJSQdHJePDkkOC1zVRRYc2XmxicoZ9gWTs5c4RmEEr41jqOEfyX51xkYP6AUcfV7/e+Ehg0sAVkg5u/PwHTeEhSAJat0KMbUzqz8DH2vQEjPMbHQjHPwwSEOEeMQMXJEND2jGn/R/WlCzzYXovo7VL2BP8dVM2JGLnw9OVf2bP3dKc0oXTJby2ppWx0Tw3lSumEAUUG3hXw4OHcXRNtVK8Dz83zfd+4YIKqzb/9mz8YMHE/4gdHl7Nn1ZxLfBZqHVvPOvAxManOk5WKBlhx4HJC8hVA1gEtwiYDg0TYthmFEAtB2Hd5+91288+672G42uLq6wuX5OW6uLtEPexAzAggBUvnEQ70WxieY4VJUphPAHNDCI+4idnGQ/B0Q+qEXtCALoXOyrKyEpvFYnhzh9OxE4lVtX+z81eeLputRlCLzlpR9mgLuitYr5eaQ17E+8xO+fuDsc/U6lQ8KkC0MsVLGgFqevgl5lFnzndcZyPdGTVdqvEkghHaBMY14dXEF17YAJyRyWiKwWP4JJgM05KrMrNqrMkpypIXCpt6IOu570iyMGb5pkUBY73a4Xm+wJcJ2u8P1zS2+9/3v4fs/+BF++fEv0O93aLsFHKvhyTktsVvkSp0PNt8XZPl677Lm61sPugEgsZfERVDR7JIwxb7vsdtsBWRf32B9s8bN7S32wyiudUDbqwOAgWzTDKvVUa2KsgSYget6QAeE2vyaC8v7mOz9TI8UdFMGMxZHxJzgiTIxAMiCO6qWbEKRiHIB+sSM3W6fwd6i69A0AdLKWQRVvl8Vp5kS53JzxiBTjLBELS7ieGI4K8LlTfV8D4GErwvl+WZX5IRxGHFze4NuuQQ5qb4illp90lxY6RzW6w18aEHkJoJT6ENaDC8WEes4lhAIVmDClGProKCmWJ+TeBNm95wKY86WbgPIZi2zgc8FQPBeGpsY4K4s53P6rZOnDMDLs70ZbA5eGbBzsZJR9Z5JJ3teCbE2JVkBKHFWljl/WBuX+BGpByg6eBeQqIF3HsiYksxALkxemX/N68iUG7UUIYnbWbqdkax9LVpYmlGBSttuU1hRAaUJ4Kaq5GgFosiRVnOQTHwCg2NRdHS1JCY846MKcs4V8/r3bAyYKqBzHmJK4qS1HixozPgRlD+42fe43jgAwM31NaJaahnaadZJaTXvPILzCD5KFYgoIU01KBCQiwmosbsboMl0hAMXl9dnrPnwZSBrtq4W011q6Rv9ytoU4S0/Y2QsViu44LBX67J92uqZZ5A2U9hz9RFNXC/gHyi1n6d7Nhl+eWMS537oO4d4mJ27GpzU35sA/7mCVt1zPjagKBPECUgJrmngug67fg8mDRMhiNkajKZdYEwJ1I/Fc0RyVpZa4/nRkydYr9d4/eolXr98ie12A8dAQ4ROiyXk9QA0oZcBDOA4wkUPagPIJTgEMBzS2IM5Svy48idLAnYAFl2Do2WHLngpfkmW/JuJBoZXCeahqcAzjMaVvzGjjhIznnFXAeaDe1IDWou2qz9f709WDKrvEEpN7uzd5HLyTUYTyvhhwJfynSdnsYbeU25SPRu464FzAayFG0z5E54tlW6sj0NZbwZhKnwYBCYzsVqEA1QWmEeJ4P1U0TGZFmNEIkKfGI13SN5hSAkUI+LNDT755FP8+Mc/xoMHj7HerhHjCPLBFr3wK5isKfOdX7Wh5Ouubz3oZhBGdhjV8jAMA3a7HW6ub3F+cYHz80tstzuMoyQHJlKrOAtIT4CGB6A00sBUgMm/8p+6CH1tdPl6Tl+ub+omnX+KTIOUkWimt8jOrm0lExtVdnv1AxRGaTFOcuC1CD3YeL+UqCLCcrlEGsd8OOrjxqYZQ9ypwUtz+s1mg91up0DQXFCqDE20aa4maKOsj/D9l9xm+rlDwGKybrM7SHk/qQu92W4xDD26xRIAtIOXPMJCMOR3uec4RoxjxPJI6nwbAxOmK/HIFBr4bgk3DBj2O83mlmZBuR22zrVo39qMnjkDNgAVmCtzG0dlGkn9O65YVmuFhEjKSbZaTisLSomhQPb7H1wrmfeolUdC8EXtqsZy96fsU4K55Ll0EasYcT47uXunuUWFyRIq6xtFkBOLN5FDExbYpwhGFHAoBXT1qM4A5HRa0nYYdWJRBHEEWWhATALGAWz3OyRyoLDI9CwKmgQWTkNLDHS7CejOybVEGNNQOggmyLMO0OnEoo2712xK+f6H97Ls1+wb1XtppljI52sraCplnQCIwt3vd0K7HMEctUykh9d98s5rXwCCH8Ycoy4WrBpc31Uo7CVz4RYfxQE+UesDX3MV9l4pRWS0wkBVOzpy8fxIUrDlLRCaxUoUWBuncwjegbRrpyWU3rG0AblSjSMnYL+uoEUWrlbOsf1rVjrbz4OfubO35XM1LdLs/Ykigkp+3AO8a2vthAfo/ZmAMUUsT89ws1mjH/ucJBlCgwcnb+Ho9BQMYBgHmFbvSUIc8/nxAUcnJ1gdHePJO+/i1cuX+OrZc2w2a0QGVt5Lgx0gh6zJPxIGaKVlRKmC5l1IXHlEBOC0OZLIKe8cgnNI44C436HV7FdGVHZFVU6XrJbTXpas1b4MiNuVkjzPWK6FqfFMKZtfcxBe83c327s7ClO1XxlOc9l7aXhXPCLm0WQDrvZtxUd3JXQJV6rHmPmFzR3lnMtICCBf4Sidu5ezx0lkqas/r0+ztdXFFplpChHn6WVeDYh3GEBu/OS9FwPk6NDHAQMnHJ+dYXN9jVHX8+r2Fpc3Nzg+O8Wm3+cKb2Dz3Gu+gcq1LEtsX/O4C0L8JsD7Ww+6EzPOr9e4ubnFzfUNrq5vcH19i+1uL0xSd4BBuYZ0qTZSmfyrq7Zm6z8TYZa+AWieaqrVwt8jFOcMTz8w+dNghEWmOgUkzjsslwuZp7rnmbkU8LfxmAWCKJfn4nJiQCgdxbz3aJsG4zDChxIbWzRezmOMKaHR711eXkoIS0pqTTPgVOaJ8m2rrmWcHYfIMoP0MptKkcDklUNEPQfg5U+xMO82G/R9j65byqG68339ASGOI84vLtA0DQAoeNAwHeeFNggAO1ALhNURdsMAlxJA+lk2QSz/5ooCut2+KtdVCzTR0Ee1PHuY98E5Aiv4NlqzpMkQAlrr3qVXjFFihquwkvmVSY+hikBhl/Uq37GmHbhX+Zxa1Wq61sRHIkvyLGxW04+yYieVQxKAiKHf49XLC1BcAuxz3KUZO3ToGXAX3Zkr4AY9I9KoQ7StMWtdzIx+1+Plq1d48OgxfOOQG+8YYJpVKKlBtwHJ7LYHEMcRYxwLTXLhAym/gMOEXK3lhL9UYOubXjWQKgYGyQvwvng67N8iTAsfYrDMZxgAWKUNteBCQt8ckSZEScfc4Bz6cRSLtwEHnU9dVvAQaKCKwrOEnUzo8EUVMZvleeJ9ILNwm2WtZAIVsByz8ijJxwDgcPzWYySzjpsHUZX5mu+YkmVlZG0xvfdwcLmqErF6vbQhmY1PAKStkPKK6rzNwc789ek63E8rB+UQpjQ3B4h1kx373dY5MWMkQlgtsTg+xc3NJfo4wsWEzgUcNy1812np0tr7RqAYcwUgZO8b0LULvP/Bh3jr8ROcv36Nl19+ic12g85B+g7o0iX7AjOYI1x0CEkkv3cebXBogsPYKzCHeBBZTQueCIEZabdDBNAtVqAgdJjUIyp4gjKohIFxAFNuaOsqANCp3DPJZiqeicIJLxXt944yZeE/tRV3und1qVhVcFWO1bQDfaY9x/6m2eu1McVe/rqLMM1nS3BqDyk8J59tMmsxi3KC6brWsxdL/0RITQbF4KzACUvVsw3BNiYbm6ZBm1oMPGKxXGJ1dIT9eo1xv0fXddgOA0ITcHR6ikRcqo5B1jFxAfjkag6lqgERiiWggO83Xd960L1eb/DP/uD/jb7vMY7q/lOtTNwPpAulGpH9W+gLE0kN3GstOVSP9+svOvzrGxjgHVcRipZoB4eojrkE4AhjinDEuXqJfc8YQEzSwWzailwJhAWMjOOYNXSGJR1YOay7oHjf79EPAzq1Bl1dXan71FxHFh8P5EK2ehtHhIgiyIHpQTbmMwHcXJiZAbn6MmZVDur0qtfT/htjxO3NDVaro+I+gtBHdimzrN/F1ZW0uG1bRBBI43rZWWMWuVJKIowV8JIjcEJO/oEBbzOr24ioHF4LOxFBJvss7bibXBWEsqAQJuM10cN5l7vMmTUkxohhGHLcN2c6ml5FuBrzmK3y7Auct7R4M+R1mvzUoQMgcwdK0loILZp2mT0FRmvCqDn/L1ECuwGJG6AHGleY6WwWyA03LBQHDLOM1BRB2uCBHIMo5i5+ACGEgCdPnqBZrtCzvGbJOlQBbu99VXe5eIUmbk0DKlwAZE3LtSyql7qcg+m/9QlGZeW675pY0Wj2uiriTdNkK5CVKJw0SamtcaYwVgpXkkODCGAY9Lx75JA2rzQZUsLIkleBlIRGFbAlqsKB3sBya3ey/XvQFpetf1VVH51P3j+1xAt/LbuTkng9YjQrNYublIFuscTR2SnYe4S6QQ1SLidqnSPrNbJzkDt9grRSTYTZ9qwW9XTf7vK7WsEsL4qBZW5NqpUM1N9jnijltaJ/RzFDoen69zm4r+/hQkBYLHD26C0sjpZYb9YYdzsAjF2MaPoBK+WTxu2J1EqsfEviMuTsOgDkHBZdh3fefQ+P33qE8+fPcPnqJXbbNTwSAskplOIJDO9NDkktSIKUGz47PhZFcD8gMmd92nsJj3JguJgwbrbot3s47+FDg6bt4NsWXdsC5FSBjCBIqNqYJNHTQu3kjJVdE9quQBiZ94RLDofhFj2fmK2x7Z/xl0Ol8UotNzkXk2op1XNqQF0bAagMs9BLfm6FSzA5hmWcQDV2U0YEiNbKsPzX+L32M5g9c8ocTS4Zv63mpSOq/2SUPgCZb+r5DwhoqNVyywnHqyMtNU1SQz5GkLeqcFYO1Oi7PCOHH8+ZVrXvJZTn/utbD7qHccR6sxOApAAvWZc9I9rZpAElVBSCuQMkapPOvxXYNiEFtabNXv+a3w/di8BZS3Q65hJHJm5x7x1AKVu5kzZ1EKEvgkOstFMCJj0Ufd8DzGjaFicnpyAAPogV22Jh7ZAyMOmOZ7/nGGBbXbO4U5qeyBoCE6NmKgVml+dVr0wBRPU3Vz918th0MaHlk+RKKWG330NKg1WhRgaYmLEfR6w3GwwpSfx3aAAfhNZIrbcVEDJ2GnzAcrFEvxkBjY1P+QcKAiXOVzR8uU+qLItN43NdbQHiViOc4R3B6wKRk5JZRBKfXMfLDcMgHRz7IS+CLU2OL7+D+Ch3o6zDXeZrLsrDHRmfmR1D3HLDGNFNmKEIQecbhG4pCo8CaClTlRCZpGkFJ0REJBpVbsZ8PmVYCcmS48oGaDUKA9zT4QmoEKbtgkfTOZCTBCwp0RdEcWlbsAtSGYFEmYEPYPK5Yoz3XuveE5hdTibL5Rh1nebXxIqsayKAo4rpVjrOibX2eUd3tiyD8a/jWTYWKv8wJJkz1wNHAVAZlKXSLRApofUey67DDaQcnClLI0dQZNAgtBGCLy3JnUMbAoICKk5RvXAVrExcD+8N86imoQjhrhpp85gCT6qAr6ss3cRG2yWnIcakAAqq7BKevPM2Ts/OQE0LScgVOiVAQ/2qPavGAUy9WHO6LKDVvBmUx1OmfT/QnVgrbb7lg/WDMm3NvWpzj6S9Xv8+VwRtXvVrzkmHaFoscgO7xXKZc34YQHIOY0xonc/Vs8xzxVoWwhQABiOCJFGS5Dld0+D99z/AWw8f4vmXX+D28hwx9gAhe22apkHXteJFVFHjHGG1WGK1XGK377Hd7THGEQCjW3TwXhADpVHWKjGGfcIIhx0hG/d802KxOsJyuUJoOvimwQjGEBMca94YgFR59azyRQlEUEUrJSRN7tQVMJY4qV2f9xx3r6x8s1GKYRF5jXQtrdxghPCSO4q93Q+zX6qHlgDS6VtFXtsYtWmfysrpuOUOArWKycXV73KB2GXF6gFNvXE2EprROzBfQ1XKoHkEFDTpXz0LZKGIbmKM1Qj52TocAtzTv0su1/3Xtx50MwiDLogB7axNAbM1kOlmQGNvz3fBPnmfwvLnuWi+zfWj7gLu+4C3kYsdRoIkxy26Fg9PTnB8ciLM0yPHlIHMPggBZcpsmqYV8AbAkh2JCOMYBXQToW0aBC9xskaYNo1yoFjAKgByDvvNBpvNppq4xbyZhduOikWKmZsXqHiEnqGKNO+c/rtrkz9aW5NQH84CUIolyw5dwm63xb7vsQxNnqMB5PVuh+vbWzA5tIsVQtcB3kJJaqcXle9CACURo2laRJLqMFa2PKWp58D+slCTpmkQQshgwPZIABAQgur4pB3cDPybtk3CSFOM2O122G63VaKeWUTUSWdrRSW2L5cLs+XLrjNVSiau4Oq8TbZKrdMsosNrTHn+LIvlM7QtXNPks5ufI3VEKuAeAURRcNweKe2QsJLPOwFCucFSdbAzQMnamHyGMugAyAPL4wbtspUmHQlonId3hAhChMN+t8cwRgQnoDtRgHOcrTIMaEJymlq2M60VUFP/W8I7LLxBp2CKn9E1V5UmbBpU7UEG0nSn4kn9rIPhA/qZkjRL2VMCIMc0X7x4gduLcyy7Dg8ePsTRconjRYuXQr2A1qo3L1yMJYnYxJKVonTOIThCSg4xRcRYEoph5SSnBPX1VyUZa55qIlvWb5rk6rQZjoEYq1ZjgHvUucfRwifEMrw6OYHzAQTLyzBdgeVsUekiaSF73vs37ovLvBES16oxpFD9UHV7Za9q0ays1HZNQNBcWa6eR85NFOq5MSO/doBm79Dv7HdAlfUQ4Ijg9WdHPSINRSEhSCJljGhcQKveFkDySeI4YNJErTriAkgl9KfpWnz03e9iv3mC1y+eY79Zo3Fqrfa51gRSiuAR8Lrn3nscLZZYLZbK77TfAhGAlJOeY9TKSSbbIAaQcbfF5voKDPGaNN0CXbeAb1s0bYem6yT0UKFk6VQthRuKVTDlfKux6i5s9lH1gRQWZvKz2u/ZzqGE5xXwXm0WiBUIzm5QeLuFsExuW8Y24dmVDNenZ3u01kGvHl7JezIyyPORfa5grfFqXRF1NulbxSsr8umuMWLq2Z/TrCo9k+9YlR2T5TpiYy8sylPFrHMTp2LxLjiyrJE0fHoTmvxa0E1ECwD/TwCdfv4/Zeb/FRG9BeD/DOC7AD4B8D9h5gv9zv8SwD+AdEv/nzPzf6Gv/1UA/zsASwD/dwD/Cz7EBWZXnAPtA3MyS+SE5sok5DOHJ2jz/LphfKOruH7+LQA3GMvlEou2xdFyiZOjFY66FkeLTiyenvIGly2GzFvjaVKKpYyVmift0KaUsNvtII1KGiz0vgUk2IjUAgzGvu8nCUJiJVONFgymVAiOGJjUTj5QgZjKczJQml3z8UziuWsterKeOgquV6Y4e4Z+j36/FysMSyxiHCNu1mvc7ndAaNAtl+i6ThQWtRDZ6mWwn0ESDF0DMYJjsXjW+A8AXC4BKGP3mvRYYvFIP2eA2uWFMmEm4qGszzCM6Icew36PcRx0OWynjUFZ2JAIkdqdl+MFbYy6nmIxVleezWPOsfWbarMRC7RT0I1yU+8DusUSvluCglclpQLK0PbaVJMByZ0pIo0J3jWAZymVqW7jmk7rERVsa0Sge0gJCBGLU3E9f/XyJb7z/mM0LsADWG82+PLFK/zpr77APjRYHJ8hkSmkci7F+y3PS6nwmeydqIALZu8ZKKyouLJUlT19k2Wr/nD9VwkVKnRkCnTFgaovYCJF6/CBq9ev8eyTj+GGPfZEuH35FR49fIizrsFx12Ez9mJBtHFyqX6SmDWZndUKXBKEvS+NhFKU9tHJlDpTXGbrMb0O0Z/9VsKaTMGvm2U4Lz/14jETUtTY7RgR4yh7atZ4cvBNi5OzM8BLLegYJbjAlHUDw8arvPdw5AXQJ2kIY+GKtSKUooWcWVdP21FU8uuuIpffr/a6tnIfWrp5GEi936m618SjVf2daXf22kS+OQekJOA+BISuQwtgD3HbSylVSLfbxKA4IniPtm3hQpCW2T0B44iIOOlxAAi/lTbvERwlX6Lf79E0DVLXIbAmSOu4YowgVYoiyetOgbdXZdY7ErkHodthHDEMI8ZhVAu9AkIn/TVNU2Y4jEwYdjtsCLC2oy4ELFZHWJ2cYHl0hK7tctv5ERbHbbkuFlpRh8HpPrHajcmAnsv7a4B1fonBwX6v88wqxewAJpEvpCyrirycfpdn/2bGUgFkU/Lqa1L72xTKfIvqXFTfyc9U2WSRmc7kT0XvqD9bA+6DYNyep2Oj6n71WPQsMnj2PZeVlsPJpgBV6/J1gPabWLr3AP59Zr4logbA/4uI/jMA/2MA/yUz/6+J6D8G8B8D+I+I6LcB/E8B/BjAewD+H0T0G8wcAfxvAfzPAPwBBHT/fQD/2ZsezrCwEtyvPBhjMTPBm0D25GvTGx7S7P881xxc3we251hRygFKhZLvfvQRjlcrtM7BEyM4KSHqCdKKmC3Hv3w/cTmUrMCb2RfN0YR+hQsswxcQQSAEOxXs4LKGzjkNX+jL+CeHgJDrMlcQcW554+oUH8hpnO1Z2cc7RH5nj/S5FeY0PwAzg2PC7e0tlkfHYOfR9wMur68xpAS/WKJdrhC6tgBOcrkyh92DoNG8OokUE3brW+zXN4jDIII0E6ohVkmKapsAH+ZVMKaMUQREXUWmAApOUgYwxhF932M/DDImbes71fQLk+Fs9Z4xRRUsoqRQro6SaYTtd5et93kPyM6lJoiZVd5cuwCa0GC1WqHpOpBXAEL2Xakna8KIHBeLPzHgJdTEyvxFLb3nNYzJxkcGrG1+lOUULBwLAOABCgPcghCowcvLc3z+5TNQjPj8V5/hk+fPcbnZgFYnOHvnPcBLeJbE3jOS1hnNgGu2Z3eo8BD/mAByu19R5MquQYW+zdPAuFkNTTi+CaQah6Dq96kglWpvGmOdGEPf4/nnn8PvdugQ4R3AfY+rr3ZYNx4eUvFolLJAaijSUAFo0hlrqUq1GFsyk3cejhyCDxIk5CRxcYyxxv+YelPezL3J5u/s3AiQIqcNjnIsdwmdIUAtmkAcGUOMGMaImKQpmIUERBcQlkdYHJ9i6CN2/Sj1j6vkWdvDYk0XXwg5h+DCJB8A0PMWkcuzTq38XPZ2BrxzBQwDvjWoqg075UX5nSpjSv0MvVedHHnoqsHMvd4TNhe98g9m+BDQQGTxvu+RckK3gJohJZAm5jbdQpqReK+NcZzkzli5RWU6nBJi3yP1W6xvb7Dd7ZDSiGLZFu8hgRUUGSAUwOy9dEKMJHHcUZ9loVAEIMYR+36fq0UJOJZ8lNwoj8SiC+2TwSwGg9gD+80trl6/RGhaLFYrdMsVVkdHWCxXgPdS953FozaqqIx6zkvvLxIvbV7vYvSpNj3L39IjxE7RVGWrX50DbwtrEn5aaGae2VXzjMl1iPbm9IH5Z6r/VhjC2dhQ6NHGY+eBivSd3KeEE1MGvgwD+fK5usKM8Ipq/Lq3ViAhh6XWyrA9zeQeVRb6+ULNcNSh62tBt1qib/XPRn8YwP8QwN/V1//3AP5rAP+Rvv5/YuY9gI+J6OcA/gYRfQLglJn/mU7+/wDgf4SvAd15Hji88fPX7qzBna8cfucbGNzfeN1hgFQRzuRz1Si5kFFwDo8ePsTD01M0zsFxlFqkWvVCALeRnIWE2MHichCTdLhrmqkCkbVgMsKTUl9xTJNyddWCgAHs1TJultm2bbHf73Wewj3K4a8IX066HBVlzDELDcKh5a6Fw0Qmzf6tD6fNsRYQRUHLSAkAYb/fi4U49rjebJC8x+rsFPANyIecQCG21krQQfbJszRtIAbGfsDN5SX2mxtwkrKLWWBmUOjQNAFdkHJXJa7UHPFlPmLutYOtbIbEazCOo5RpTAlJXa3ShdTmXyfYFMBdM6j6KrHDZZzQDmGZ47K60k13ULDsvS9W3aQWfEZ2jQKE0LQ4Oj5Bt1jA+aCqT9LyVTou8gBrHQFiRO9AyauXRmqZO5cwYAtyHRwbE7fwF4uyK6xX3OkMK8eW0gjnCb4l+EVCs2jQhiOM+xH/+k//DH/8sz/FkCL88QmO3v8OFsdncM1ChDJB8iXSlA4OcQmiui57Id7aRW8gqMQTl/uawKl2KL9v90He67In9Wfy52bjmr9uZ4xJlEYBYIy+H7Df7dClBCJGSAw4GVfcD2g8oWsCoDQISEdO6NnOdTdUQaJ6DMpvJMzDwyWHFAVgxFTgbgEC9/D7A+tu/ytVZijH4edmNHZPVaiTJpGOMWIYGUk7aiZItYLeeyzPHmIIHcYxYYhmjeecTFuU5/I7KcArG1WBHlQJdweskfO5CviyWtTlu6z3vg8IA5BwlLkVG1Nauc8iNwdn02dMC8NNAFxFw845NG0rVvC+Lw29IBbemBJ2fY99SnA+oPFBSwh6+BAAZozDgDSMGGOP/WaN/foWw26Dsd+JZd1McZyQeMzAm501YRGFzjsHZg9vlaeUPp2GAnknlZGki3NJrJdmLZIUbzk9YiE1I4eto/DpAAI4gfsdtkOP7fUVLp1D2y1wfHqKk7MHaNoFoiOMkBLIAyXEBFg/FgOXc2WnAO+plVXCIRh3Ykf0XRkeF35hoMF+z7RQPq+Uevc+OATrD101HqilDx0G6jO5PYG5lQFVvnOXJk35rvcjK576Z6KMTBSXlXC0PD9TIKuxCq+dKgGVeNRxTMc4BX+Hr28U001i0vhvAfwQwP+Gmf85Eb3NzM90wM+I6Kl+/H2IJduuz/W1QX+fv/6NLwKq2r/lmvxtC/4GYXT3W0ZSb1ipr73K5kxJq4aMhRHXn7B63Eddh0CUW80QJF4yeI9GY9YKoTCs7kPSs2TxhU5rVdZPYa0TPfSDNgboclk8G4jFljEAaNgJq8VK3KdSFgywNbX5ZA0jgz49C9kKVY/mXgXnG7hm6s+8CWRMnyFCfxxGXF5dYyRCszpCWC0VbEtlEol/031UgeX0mR5AYIBSxHazwcXFhVSKgSUMsVZnkDALgggSH0jPsIFkWbdkTImnB1aS8/5/3P1JkyxJkiaIfSwiqmrm7m9/seTeXVU91d2D7mnccAf+Aq7AAUQgAuF3DBFwwQW3ueGCQ19AMwQiXHEDAYTTFHqrzqzKzMjY4+3ubmaqKsI4MLMIq5qav8hGD1EFNPOFmavpIgsL88csvMjWt7j0zE4QOCpymvpyLDzodoEgTghLoBjq/p25C9SCN8wa3Cj3Wjn0oR+w319hzhnHeQImyWJjmRRCiBi6DrvrK3RdJ5bMOSNnIKQOcSCQZg0AJJiQmZCpgEirrWYCzQSECTONWuZCg5RKrpapwq3tEl+pWV6SyPouEPbdgH5P6PqM/eOI/jogdUAZCDxPoC7hZr/HcHWDNOwk93KQbLwBUjlShuhc1JztZqExY8/0K4ipM7Ocj4cOA6z+qMDUgXfvBnBpTZwdqsSw7KZXi+UEoDNFk1GVmETAbkggAsZp1OImOv4kgrb6TLLl+y4taDNFxKiBv4HEFQMEyoRcZtWLS6W5xaB63rnuD7X5kXFYVnENEHAPFoVgzhlznjBlSWs45yKuJsyYC1CCBM49/eRTTMygOWvasBaUaWkDzV2qBttqwK11wXJ4EyyWo1m4CQ1oSHa5lXIGQoeCwKWBPkhQ3Bp08xrlcKOVtXVzQbfVSLCk7wX/rFmJpKXGh+zIWTJmcSmLVKhQuqAQNPOYFVfSAnXMCNOsmSMKQoqgKDEApD677+/v8OHtG5zu71HmCchzNXAUlFYES80l0OwohZtiXsCgXCqY5VJQcgbNs6bNHRCiAPW+79WVKCMEcX8TV4OgO3U6X6T2YOXnpnyaMavy+cKY72/x+v4Wb7//Dt1uj+vHT3F18xi7vkdPARMVqUFCCnVNSdxY+2t8wh7wnYEiR0/uRw++61oK6p1db1nytPPHb7Rj43y92tHqlpzyvDLr7hfQdnkW95nl+xJfc230/TAgbG4u9W49IeDdW9XtHue3rjrnInHGR9txfvwo0K2uIf+KiJ4C+L8Q0f/ogcsvIdyPId/2AKL/NcQNBdfX1wstaK0NXWzExmCsz5zbG37MZJ4/0xz1F3ey+pIunP550XiCAj0iJPWNCwxZ8EUio2MI2PWdAApu7auWQ32mganCjLghqBmo1SiZdRuwHy70Spmw5f2GWIdOpxOOx+NqzBzwhve+bj6qkjbQk/o54NieVxuvKlbPrvgx82XWsMPhiLgb8eKzz0F9jxKopi8TbCGWpWq5qeCDEQpjPJ3w/t073N/f13FhcM1qEGMUH+aYME8TOGeUQijBhFwTFIATigZ6mFHmWYJIWKy1fOY+4pXJ9Zg0dxQoE2U0cOZ9863qHhdxD1lY4ViCCxmajzom9MMgwUNdB0oF6Hv0RS3B8yylm9XyV0rB3d2dlnPXbGAhYrguuHn8DFYYByTFm1qKzICUE3IH9Dtgyk1ZFMGaII4WWelFdoFCgFSd7oGQMvZXA66uelw/usLjxz26oYC6GeiOEsU/JEQQui6i6xNSN2C324FCEGWHC+Ys48DcxnHrWGev2KQ/Y/5OYfTW7uXRzlsWnN4VParWldVaOFMCHloX3hKk9BhTwLDb43B/iwlAD+NPRdx6AhD6hBAiui5I6lEW5G1ZEgI1WlYZVuNAhJZFeTd6jkm/Z4sxoKrsnivg23028Lq2Pltwsj2kxqRMM6ZJLN1ZIyPldQJoM0VcPXqMx4+fVuAWQmyW9PquIEGWkZAC1X7poNY21rzWrBl7PKAxRZpQMxQBFrjL6AjV9xgAZjWJljrecrO5aQEQf3EIX7pMY9g8v95xEb91Nrxyxn7N0CPujBJMW33pAYRSENTFiFkyLM3TpDxNeU1hlDJhzlncwAIhn0Z8ePsGtx8+YDoeUfIsoFv5Z8uhY7Z3EgUQkjWEmMHUVBnZ5dX5gBoU8oxYRKFJ6EBR5nAYBk0jyQCJdV5EV+OtZowR+as7EpUuSqUPKaAlrjNcMub7W7w53OHtD9+LD/jNDa4ePcbQJWRmTFpBW6rahpYWuSpHbRJk50VLSqlslet4CTMuKfYuHsEk80MsYyGfz2T3al1eeMYW+DYZ2vrUXF3sXYsdFTvvGru4z7eL2g6cycp6Vf1wd1W5KbymcRyHD1nvUfe/MxvAj8Ajf1b2EmZ+S0T/d4gv9rdE9DO1cv8MwHd62Z8A/Mrd9ksAX+n5X26c33rPfwPgvwGAly9etrnGUvh5Tezjes/yc0tzO8sb+cCzDPpqg88Gm+uULYXF4i9GtaQSoP6PAFiDQaDb3M78U8PfSOOjuTHlopbptYXDAF/qYtUs+64Dcwaoq4J8MdDKXMZpAgUJJprGUSoPao7j4ghThAhq28xCQNyCfmildS8HbC0gSIe3RXn/uQc7tGSMa+h7DMOAmdoWUyh2LVfGVQGo5vE9HY+4ff8ep1NTXAwUMxH63RWGYQcG4TRlzJMoTVwYHK17ImxI+yvWL2kDa3EYy2XMmlkhBqBT4e4PmVoPwBtFsg7n2o2hVca0v50qwyx+q4gCpEGIqUNIHUJMAEVJqVfUVYAggb1Bi4HkjJIzpjFj5uwKOQh4pQKU6SS7HqG1tSoODBAHxC4hgdBxknzJ44gy7kBZ8qWT+nWngRGSVLDs+oT94w7DVUC/Jzx5eoPdrkMMQEwy5hwADlGJNaGLAV0X0Hcdur4DQlTwwjWTQU1ntqUOKl37Tz8P5L5XWgQW4/8xBi0Wt6Xl1mh6/b7Fuzfea+fX/K9aW0PAi08+wZfHWxyP90hgJOVLRBbkGyCbAbr7UMw6pvNHy5RZVZEslgtfFX7LX00NrNbMO1mBEgUELovCG5uj5cBQ7WO1FkLHSmIhpNKsZKvIlq3CQDfUZzv1ePb8Jfp+B3GhobrLZ4wupoQQOvUJ1n6rldd2G+0w0B3IytAHza5lJVq0IigX8CwUmKLG45SMFKRSbGatTlwIJ79ulyh5NeceRGBBQzWLzOJ23hxn707habEU1ixMEaXkxTMl41KSoFm9Xqp5RuTpVAMWZW4L5mnCeD+B5xPGuzvMpyPmw0H8u0sBeIYF/lnfCsRNSnYzZB5Y5ZLRhoeVMt5BgrQZyHMGh1nBmaYLjZJGdCyTK1fe4nksOkBSzqrCo4Y1IrGNy3ox/lecwqZuP/mE+3cnfHj7Gt2wx83jx7h+9Bj76ytQDJr1hDBDMyttKP+m2C5ho3O2Y2zymDMDgK0dPofO7OC0KYkyX/6qJQ6rZxUQeNm/bfFePtvaY7jhIfe5rfPWJ6+Qa4cX/TuH6FAeRijqkrPGl8KX1DnFZ1H6SPvWx4/JXvIJgEkB9x7A/wzA/x7Afwfgfwngf6ef/63e8t8B+D8T0f8BEkj5TwD8v5g5E9EHIvqfAPh/AvhfAPg//qhW4jK4pgvft67xAueidsYuqwO1O9bPWLZqSeBrEV1/84TlADcgjKOzUrcG+MAYp7kGXURrXzAd/7xNDRQv388QSzebH24MCGglobmVjax9y0WYofkpXl1fi9vAPCOzuUiI8CAtyy34fsm6TShuj7iz/mF9XFZ/tsCG6/D5Y1gEXopR/PpilB8kWtIJLCg4ELeJeZwxH4+4u71FnqZWlILF/YJSJykaQ8KYA8qsVrTM6EJARkGZM3ItPV0kcr0IaLfI7ALGrPmMx9MJ8zxj6BKud7vGYFfc7XyRC12Z0uBBtxeIbMoAAIQIKW4jgT6giH4YkPodYhILTNZIfCoFkRlEAsiy5ny2AihcxAYtCpcxzALxGc8IKIgESXUIsaRnvTYWRknqE46Ijgu4ZBSM4DyDc4/YZ4Q0IQ0F/QAM+4jdfsBu3+Pm2Q7DFSEly5AyK/9WJh+KBv9JcF2XkqTMRMCcGblMak0yZcjG8Jz21kB7IRhWc+PBtlgFy+I55wfBclGnlDbTxfnn/7k7c3rTOd+kiJeffIoQCV/87m9xPJ0wOCtrKGqdJlVeOlTgCqUlqw6MhoGb7gxZLwZIzYJs/tgggIpkCJEy6gUlBwTlTGJW2uzKcgxYlTwFHrJbMItLyZwxTcUFUGZZ77a4QkC/3+P58xdIUV2NYlwA667rEWMHOdn6OZmf+DxXsGHKBSA7hQbeOnOBKQWcC2bdQbx//wHTKPUEwEDJo2TmAEAx4ubpMzx98Qn60EGyTQv0bF2ntu4vkIUPoPwx7k1LsFQc3QVVJFisuEQgWFVOdedQ8FirIGuGky4GlGkEz8LvpOrpiMOHDyinA8rpiHw6grMEi8sIiB93y1LW5EepiRiVnVecpTyeCVo2VW8JmvaTgbmAeZZiOVF23mRnIwvfgxTACYC6nVEF30TU3sdcU9UK2GMtW8+grGMGSCrNKK5WgQEe7/HuhyPevvoB+5sbfPb5Z9jfXIMD1OWJMJK4fRXl/wt6VzqsMm6187YG3vb9zMBowLvytaDA/OM7eda3M2oyQP8R0G33n92r19WZ3qDXLf7XgLbHHazfHUBfPW9hfafV2C2AvX1Xf5MzbPPw8WMs3T8D8H8i8esOAP41M/9fiej/AeBfE9H/CsAfAfzPtSP/hoj+NYB/C2AG8L9V9xQA+N+gpQz8v+HHBFHiMuD+c46H7qXV7/V9dVJ4efEDx2Iaz8CfWTlN0LVJJkACldAA95wzDscDdlZ6mSzBe1ZB1AQ7ETTxf9vis2czHI4HI8aARzePEENCjKFqxq2PVLfwcilInVh1QNSs3CrQWnVMMnmrmmrrf7NE+Ta1ZbqxlPTfj1vwdoe/kxmy/W0YmQQAnk5HEfikv3m/S0iuaAHNIghO9ydManGBRtXnLAyZY0KiKBbiohlG5ozUJXR9LzmK84Q8HTCrj2skgMw1hVv6uUxqgZsmjNMk2RhSswi2bTEZt2Z/9UykKVgmVC/9E2Ajafw4yFZ5F3r0wx6p68FW4KEUpBDAkvJBfHBzwTyOmKaputlUxkg4a1kNBSJGniX7TYoJhRhZrUzJAqASkAqDYkagGTNpwZxhxO6KMOyAR0+ucP24x9VVj5hIfEIjI6QCBA86yGVNKeqHbEFvMl6WZ9px9mp58Ux5cyv+ghXJjuWuQlkoPpeURnb2JZt3djkVuVHCQoBdsm6vr6vqsFMKaopRKnj2/AV4+sf46u9+i/syI6CAiiiQCc2CHCPUJ0v9ZNViXLf7DaRx4z+STs92cmT3oRavIasQqDm9NWWO+UU7qwg8zbfCDVyVSYBF+WMr6jVjnrKkhcsF88xVzy4K6goROHZ4+dnPcfPkCXIUPmduHDEGreaZFGw1gFJKkZ1AzWAEBdwWHFhKkawqYHDOGO/vcf/+A27fvsXhVoD28XjAeDwhxYgUSYtjFQQNZgUBX3/5Jzx+/hK//st/gu76BlmzBlcuT6tgbgeSPT1eOsKKfj1tyT8fIwI1TKiLGqNSZqj2YPNXb9xc6CyiGwaErmAeT3j19g2OHz5gOh6AeZTy8NVlpVRe1MCT0bgAaiZR1gxfm0+3yZ9Ss2rp3gJFFJKUp5xlzRXOCLloYAIhaA5/1mqUJ6XfSKW6hAYicLA4JhsDl2NjQbN6D8/iduMCfQOkRP3x9j2++P09bh7f4Mmzp7h59AhdTLITS4RJlmhbX1UWiItJKW2tn+28XQDeXFuHFV9xdAW4VLkrPojFajynmzrnVONxsBgbncZV27be4QH41vu2vrf7w8V71xdvA2095d5hPv/t7+U1l44fk73kvwfwP944/wrA//TCPf81gP964/z/G8BD/uCbR5v6P/9YD8DDz1mHBFywRPk7vIXbC2no5Nm56msnj/DEamXEBaxyZZzH8YQPH27Rd0/RdZ3yA7ECGegSfqJWnSKMyfI6G/O1Vs3zLIKhMG5ubs6Ygo1AUV9xKyBACrZTjOi7DrdnI8OVETADrUyBjpgyqEAaAS5ySRj3xanwbfKwzs3EQuN3C7Iy3QYwGOLHdxpPMmdM1ZpZVKMvujU8zxPG0xHj8YT5NAHzLG47pVSrL1KH2HUIsUNMHYgDTtMJlAK6YUCKnaRYm49qURvV9Sdriih2Y9X8FItp5CEgUnS+gsvxNqbIOmcmZMwPeG3p9m4JApAk4DMMUu44ph4cBkCDSg02pxBlh4UIx/sjTvOEXOZqsazuCXqNpVhcMlcVDiXjcPsOiAn7qxuk3bVYmymgszzOmsVlvw/IM+PufQFfZzy6Jtw83mG379D14m5DNEEMDao86DvIMEjQKmNkvr5ci6TUcdMFUqlHxyp/BKCsge76qC4VK5eeh462fetAshdIOqAM1LiNj1m6F4CbWh/9O624i1337OUnKPOMH776Ank6ytymHnMWmGcAmVh3uYKkday7A7AMJroDZq9T5sdFM8NwFqASIbm0Q3Clkux3CSwvNgBsY9HANky5Np5VgKKGCuaiSnRG1tzcxhRZLZ6ZAkqIuH78FJ//6jeg1C/4XtfFRdD5eo3VOJkQNP2rBOVFzfh0mGcc7+5wePcar7/7Du/fvEM+nBCKuExYJqLIDMqzxECwA5dqVSbOePv9NwgM/Oov/wphtwe6viqJ4CoVqoFlzQMeAieeptdl4/1vzLIrmnMGaxWTLcoW/tbozQC4kIEU9nrz6hXefP+djMU8A3kClRbYVyqPI6dM6Dzos5lZs4vIPaSGIYSAlCIYLHPMjICofuqy82VxLSKvGVrzCCF26CLw8vkLdPs9JibcadauaZqQ56nubDAzSs4oc64xDUEIRebXaIk02yYXhCLZmUKlM3HHLPOID+/e4v2H9+j6Do9uHuPpy0+Ruh45aGkWsuB3JwNUJFilZZs3UaqXu2V+jhkuqw7RYq3KdUGUHzj+U/lUk8pe1m/9M/m/PuorHU/aNCCYgqG7gPa/rXu27t8CxH63ctWqjXONbq095ttt476NUs6Pf/AVKYH/NMBNF74vn7d2MjErV4PfZ1rTxiStt5v9+boAKu2050nKW/OpJE3eLwAsl4JpklK4nfl6E/RXZV3k1YTQ8v0aqGCuCeaZgfv7A/KcEYkwaBAlO0ZtRG3ERRTq1uA0jpVBWHAHwDWhPIJ5zAnp5QqVqVopQgCiuaWwCVegOrewXxp/3qwz+w3HxhDsLaUIgy2zZHABokSNlxYIJFXpJszjCfPphDJOIN0CLcwoFEBDh10/IIRYxwhMGEdxTxiGHULqtOQ5I4QekTOmkiW3bNGtb5CWQjf1rp6VHYhgQo5ap2r/CCDzjDFALf98qsMmcAHWgkClEEohhNRj/+gJsOuBJDlCSgnIjEXe6MDiRiJ+mCJgMqsVimyGqWb5ML/ooNPImhYmKICYxiMyE6ac8Xy3Q586SK7lhKQBawSxvIMJV9eS87uLg6wRSe2j1hMbvYyW7FaFvVmRNHez6LSNAYuCo0FucGuXubkQOZp8CKB4GvTjfglw/xieYufXiqW//5J1e20Br2DJPTOEUKtTAmiWt8BIuz3Sr3pcPbrB4XCLq90AZsar777F/bu3iDyjYwlrDTWIrOiWeNaYgAZuL42bgRUh0FhBAAXZ/RC6loI1KnKrQqeYVAGTGAoEeHv3iaK5w7PmfiZbJrVdBUHcE/oBv/jNrxGHHQqJ5T2mhL4fWlCmm2M4fmMZXChGJCL0IPRRcpO/ev0Kv/v7v8ObV6+Awx3CdIJ4PIs7BsDqnsPiB4ylwcfKYwvUCIgccPv6e3wbCb/5L/4pCnWYIf0qxQINlzSxlk3rOVifN/pY05Z0WwPHS5G4h5oZ5Fz2laK2QCcDo87p/f09Xn3/Ld6+egXKGYlnhJzFys1W0RGA8pZMbZemLlVoAC4xEKIEeceI/dUVdrsdhn6HfteDC+N4POJ4uMd0f8R8OkiSAwLMDl+VFjJ/4gKKEYf7ezx6+gxX/Q43QWzSc67RH6J4FDHojOOI8XjCNI7I04zpNGKcRlFMDHATEJUfWtayFE25VsRfMgoYx2PG4f6I4zjj+S9+idD3LSjf84WivI4kZaIA7QWOPeMZlQaIENgqFEvQu+0Uth1LvQfnPMkAc8UMjgY8LVmGrCbZjVfK/Q8pg+18UCDFYqQEVffMLZpe47I1lz0D4L7dG+3grTZ6sC03VQPUpeMfPOh2/PHh6xwTfGgbAlgyNQ+0t960tY186f1bn75tJtwX1if1Z4xJXT1UKMylgJIwvmkcqyJgljkGXHrOAALhoLmcMzcYLQAlSDDgSfwFQ0gIUSysTZNsoElWH2E8ScCL5D0tiCFiGPZgfue0XAYQwIVQgt9W1CdV4gyQLX5quUM9B13NznouLoEf+822yuqidvK+sAlLqgCZEDFD8rmWPOsWeUYZj8jjCXkckSdhqBJg1aHvOiDZdnjUd4vlY55n7HbimkExqrWFQaFDGgBSl5UQJDOB7WgQaeJHVjhBYpFtFdMKiCOsAIn1qt2DBei2vytDA6H5eirwRsBwdY1wfY0crfgNYQ5ihYyQbC08TzieRuQ8aQoSdkAX4BrYFJS2xYKppqJqLU6qJKBkVeoCjscjmDO6QEBIKCEhqasBqxWBKGDXRURKiBS0UKcKxGDKIoAqQHQ16K6Mr0S4JhtmATtbjKIW2TJ6a8R+RoNb634Nvh/iH2vQ46l+S1DCNeWMl/AycMnOLwSEE4S+XfZ3LjNyYcTY4dnLz/CcPtN85wFXj5/ih2++wrdffIHMM4YghbuIgRTEokhFFHeUoukwm4rjD+PQhSVjDzPX2JEqwCmgptpcKJG6N8S2u9YgmoDhZhRgUOWHfi3YbwXADMLjm0e4efRE3EBiAIWklur1PDVi8DuZUVMGdiDsiDAeT/jiiy/w97//Pe7vPgAlo+MZnaaBNfc6Mzss9rsY9Rw0VkZwUAEQkOeMH775Ci9fvsSzn/8C97lgXuWTX9PYwoLt6YO5Bj2v//n7q1U/W5YsCTAvunMQvEJkvKkUZNO91FoaSsF4uMWrb7/F+7dvgHkSkMuSHjHq2M4651LES2oIZG2L8ZWhH3B9c43rqyvEfgDFiJAiarn2lBBiQCHGsL9CiAlTt8N4GHC8+4D5eFB3EsdLqpIDUFbl4Icf8OLTz0GpE8NYTNXXmyiCCyOkDlfDFa4fAWbV5sI4HY843B9wONzjdDgKIC8ZVBiRgaRZV0IINbaoQFxLzVXr/bu32D95iuH5M5X5xreau5c0WytdBrXeawGf9Xye7RArXmKTR8XoiOrIGFVZIRuggXAPRi21ov1b0FQjKHu5e/K5crhuqzxS3VScwafa/B3ovrQO1md92+tLsDJYOKPF5hjqbYFcG8/e3o5/8KD70nHJOtQsBduHDV8D2ecTceldlyxLW+fOwPdacMsD61+BpDqWBK4JMMkZOJ1GpG4AiCr5N+uoIVfCXErNNFLYtsvkt6wWN1iAIIoEclRrhi4rMnYjwrDTQgVWivzq6grXVzciDGGVu4QhFiJ0EIt9QajBVfb4AAI0JZtiy+oDtzUBtR2r2bykBHnAXRTA+kIkRNAcumLRplmzJJQM4iKp+qYT5tMReZpRzMJNEaHvEXoB08bYbEHOc8E0zei6vhaEaEyuuYb0+yswF+TxiJJFwECVHAmK0taTDE5hIBdI6jqdG7aeEtc5NsFkoIRZAnCoqd5CO3p9YQZCxP7mEeYUK8AkJnQMIGdQnoB5EqtNnvURBviMBTPMZxaA5NwmAlFE6nsMfY/b21sQWKrN6XuYswQEpYRu6GVOomQPMUAQFHAT3FgqmKcgoFujIiuzEzAuu0WpM7ZmVkmgyD73QqWr6e3CFgE2QbQFuC8p2WvAbTtFaxq+dNRXXQDcW/fab5YJZOudS2HlUtmt/sZip0vBR+jADAy7G3z2i1+DQsIPX3+Jw3jAAKmWRiwp7oT/iB+uxFQUZC4AC69h5XVBBWXRHPc1F73yJF9wa6FB22kDrmyhhGtO4ZQYEiux3ctsblgQuksdXv7iV+iubrDbX8HKdZPSuPHYCpBp8RJxKQmELgTsYsSH12/w7//Nv8VXX3+NwgUBUmQlQPNLo8kp5VS1Z0Jvxg2WNEjg6iM/5xm//93f4urmGunqBpmD+KYzFnE2Fd4QnQFuO2rFTnIWbqX/ReBlrR2grh/mnqc7geAGukHKh3PjTSgFh9sPeP3Nlzjd3yGweaVz9RmWQibLORJgJ8mMQtdjN/S4urrCk0ePJd5IeU+xsuYMMAeUYuMH5CzZmSh26PcBISScYsL93V1VEKNmlzK+anVn3r17AybC808+Q+x6BVXaUPUPZ7adaxn3QoQQCbt+wO7RYzxncV8cTyfc393h7vYWp/t7HI8HlFJwRb2kBdatadH11V1qnnE6HDDwM2F7WCrnEpFJoCKGnhiiUhoW2cNsjv1h7igGWgvUgFXjxYAC50q4wVeYL4db1sqsxk9LNeuh6qwrY8JaQfCGQejYB2oydtEkahUuHwLfdu1Ze1eKAm8oDVs8mYDaJnMVvnT8pED3Q8IKWINtXkzGOcE0/e0h7epj79+ybNvfi3O8/C2QbfeLz+E4Trg9HDF0CYfDAe/evcft+3co0wm//tWvJO8oZ/c4ZarcLAu1rDO3bRUDWoVz9d0MIWC326OqyJXJt7YGkgqO8zyj74XR5DlrDlkgFPVBIwlUsYLQQqBcrUAMBWShACWgaIZ5IhMgTeBIm8km4aJGvB77BZCyKxVsNaEjYr5VYxRmH3Rc8igR81IFLYviExOo6xE6yWSQuW0lg8T/+HQaUQpjt9shRAWxi1LuAIWIbtghADgURuaT+t/rNiULkzOQyTrV08woJSNlRqyBgKz4xUALFi5EjR4Dgl5nw2gZNB49e4Y49BrEiDofPE+YDkeUeYT4CJhFWdNHkT2/zYV52BUQKCQ8e/kC148e4XQ84v3tHRLqcCnAImSClojfAakDh6iFNcgMOAIAnNJSc4JBv4PVskCmV8guQgwuYKy1kzI064/bbaJGZg/wyCZgPc1dYOyX/rZ/H9s1W29z+ufUT2qWnbXleu0W4H/zrkcedC+FiM2By1xiAXQExH6HT3/5Gzx68hRf/+mPuH/3GnOeUTQrD0iCBs3PGjEiFKouWprER11IxJe1cGhjlK1MTONvkspSYaos7sX8cuVjtZk18NvuYV1n4m4ia0YCKAN+/stf4ZPPf4bUD1UxYYYCINYCP9TKhjsBbIpfHwhdAP70h9/jd//+3+Pw4QO6MjWTjgJhZ3OHl0H2K7lvBhgVgcFWogh44P37d/ji93+Pf/zX/1wCXhXa29pgrvqCVs5Ee7+Th2s6stH3cQl1flayplnANS7A/ilAsjEkjYkZj0fcfngPzrMoI8YbtK+s7DkXyactNCzuP09uHuHq5gb90CF0YnUGBdmEg1wHBkjjp3JmFA2UNtmXLYVj12F38xgzA/e3d2Lxp4DI0iYbKdEVCl69/gEIhE8++xwhJBR2QYGgmjGlENUiUSathdfI7ueu77F/9AgvSgHnjOn+DrdvXuP23RvhZ2gZxayoXM4zpsNBMpNo3IPfVzB6ajuEprksMdF6d6viA/c3Eap/ch17EDQ0ufXHfrc1AMebKvj0RhMhyLXxYI3LHlIQbKypyle7DpVm7Y6aNcgMjos+rpGimyf7bgqqe8FW2+o9iumqm96ZCaAdPwnQ/TDY9sDLT6gHbOtn8Oqaj7/vkoXr0j0LC/fGNQUAShErJzNuj/f4uz/+AdNpxGk8gQqjDxH7oUM/7ORB2mYrye1fwSzFB862NkgCVmQFCogbhp34HgPqVyxPMV9elWu1mlyzbhQ8fnQjAYKAptXxGREcEweW2q9qgELMRV8iC8dKGCzhc/v9Y8fZnV7Z4haMAxQkSDAdMINYUpiNxwPy6Yg5zxhLxswM7hLiMAAxiSUFfgtL/LizKku73U58vLHMAEDUlAqiCMQO/f4KJwDzdBKzjipSgTSkMrAWHdFsKppLOFIW/9lIIKYKOEuF7gpuERyNNqucCcquH3D95AmKBX0xkOcJZZxQxhEoM8iC0Mi8KlV665y1LAaaCix1oJQw5gxKHRAjqOvUii4wIetnoYAcImK/A8eoOwOhPrOCSRgIaIzVwIZcw4vfbfZLMUWGFwzRK3EfA771aR9R8tdgeg3Ct7Y710z/7PuGRaXxkuZrvwW4vQDz7bLzuVyyR7WDNtZcG4Uo6yAGPHr2Elc3j/DVl3/E66++wnE8gAKhp6CJIMVn1gAwE6mL0rLPIQRIKW/UIlNt2EXMZ+sTdHtM6XDBwxX8klYEDAq429Ax5lyQZ8mMUiAuDNePn+Dzn/8CXTcgREmoL0GXBdOsFj4EKfJiglbfV/tAATlP+Pv/8Lf48g9/xHh/Dyq5ZqVo6ou2lxv4rTbChpMqIGctMQ7mmhbY78tyKfj666/w/NPPMDx9LjsI6vNbM2+RpqnT3Q8ulVuA4Cx5aArfWlFc0vP5b2bprjUiSmlzwErzRTiVxLUUdAGyG1qKWqm5xqjMJesnI3Udbq6v8fTZC/Q3N7rbaPoUtYHTdsuEaxyA/V1aUbDFerUdPwYO9/cIJQOUNUvJGjcUvHv3FjePHuH65hECgMwGfxvPWqJdeUYxUAq3vrUYT88MvHuHGKMUAFK+HzgigbQ6MYCckcxdpz7ZxsBhIJI2W2VMm8+2Rpb8pihY9LwuUFP/2rWx0uqCt9jv/pnAgifV6xZgnlZ0hcXz/OF37tb87qw42eoZVYl0/VuA/DqGSzToeac99yHwDQPctX0bHdHjJwG6l8dSEC43WvzAyq+iAa8X0GXAvXjThYn6seeqJojG5rg1Tj34BBRPx4K740mDLQISSVBR1/c1cp5hhL50iTHmUkGyCWcFGikGFE2BBwL6rkeEWKeby4p/prR6HEeUUiqgjDHi5voGXUo4TXPrlxE6M2C+txzEuuGVDuuzKQ0w5WHt76kz1/jJRaXH3l1huo25KgMVlBoaV1/rUmbM04zj8Yg8jZLZJGfMIFDfox92ko8YbrGBatn2wlL+OMaIvpesH8aqGvBuykcBAbFD15OCC0aZRjRYLtczINXIgm5tEyFBsjFQKZKGjKxUuTJ9IiTN18qManWSMaJq4QaAx0+eIKQkbSuy5TmfTiiag5ytpL0xcm4qDddxFNoMXcLQD3jy5AkQAj7c34FixDRnyXQRpRJdropPAFMEhw67x4/BMTmw1ACNB93tpCiNVbkgb7XR9VQkqMozdc/4K7345+r9gsvXILmN4frw1T3rU1Yg5Wy368Jxtl3pnkc2B6v2ry2T9XoVRPbeVpimgQM71lkNVoPiDq4LUpQjrYrY7/D5L36D/XCFV998icPtBwAFPatFliTIDiQ7WCbc6zpSlNAs6ZLdx3YAAWhVvtYu4X5FtuL9WMvggEJsBgAW3iJB6bLeSxYLN4eAtNvhH/3VX+HJixco/YCUOrE+TpMECcJybaeFsK8ZJ7RZXDL+9Iff4/d/9zsJvi6zKtOaYxsMOB5nHNf/XV3taGlE8BexL/DB8tzT6Yi///vf4a//xSPEIQnAIxJrL2k9BvWVN3o1GhDrd/CvEIDvxh8P0G8F3AZm4fmzOiUIEwYVCVk9jSMoBAxJuNfpdJK0jUzIDMwsCjrFiMfPH+Pq8RPsr6/RpQ6AurAFWmSxCGhrrUjePNloEU0O0PZlXQe1ryEghB6Pnz1Hv9vj/ZvXmLIEtFoubssERhSAecZ333yDX/6qQxz2qPsvnp3U/9jOgoJxUwzqP1mn337zLQ6v3yBxRtS1tQCNCqopZ8RS0EMNXurDL2PhgH7lY0srbZXTiglsniyRg7d2hxh07WDBR6wH53jKyTxdF4GWfMrwgcGytv7ttsb/67NXBog1H7f1eMZnaeli8mOOxhfJhFAzkFxA0GuZ4tu0zUfl+AmBbg8JVwPpF9LZcdmtpN2+fedaE1tf+9CE8mabmprKdREauAHqtibJ+cySJzsmscAQ1XWFtkzaAui6DofjUYIeo1le5Zo8zwKgSVP/JYPcOh51NVBtFzOj7/sFIcWUsL+6wu3hWEfS0kJV1xCoRbsYcJTnFaDlTS6VLegrSS07BprX7Gc5tt6KWf2S4ZmabcZ6uSGW0cKl5prOmk5snGdMDIRhELcHCmCE6k4jz1EAAWCeJe/vMOzEfWatDLpxtBR8hACEhNTvwFwwEyHnqW65g9VPElnTNUb1kWdglmCjKr/V5FtUeTJ/TfGjFAubMU0ryhJCQAwRHUke4NPxiDzPgGUMKOIJWBWxLVpnYfKx6zHs97i6foTYJTCAR0+eojBwPI2Y5xkxduIHCla/9YCQOjx58RLXjx6jWqqwZnDG+BQ4BB1/KqiVSsisVk5loeVaN8uckpMKQVvTCsyxZI9eMffg27fRj6nRVAPcqOO+Zr6ed29Z29dZJ/SPpaXIAW0v/LwCsAXI1xaghfLh/t7kaeTWKnRd6hR1XY9PPv8Znj55jG++/BPe//AtylzQcUGnIELAKcuasjljbmgTqAAKrMHNljHIQISlzaMG/H37CzNQLH82Ku/JWRRAW6/CX6Xc9z/567/GL37+C3T7K5yi+AZDM6jkoqkRY9Q85mG1iyUjEsD46ss/4fe//S3y6YTADCpZQTdXZX+d3WN9eMXC00zx4IMBInMhhIxhAV6/+gHv373F08/2KLpWgrpeQHljzXIEl6lGxxXAQlGz/nngs7Bqr/6tlc3aH10MZOtCOTpTEIu7C5IlSJQQpw4p7fHJJy9x/egRMhhIESVERAqSA1xBtTBMG18RKrbmLHONH93lXwaMGSFGPHn2DADw9tUPEGciMRh54A1mTIcDXn33HT75/GdAHNzaNBpGXafNcmvw3NqhY6myoQRCREKnBXNN2a67EMyYpwk8Tkj9DhnmVqg7CMbHaMnN6s6ZW9t2baNNuSMSVbeSwrIbHKDxYYVbZqEqdvmcXjwgRjvIvVfGRA1Ujt8sDA9mZHBGE/vN+Fr16TaZt+JbrPOwpTSe8TljRXWsoLSxxIBrRWDr4BXNbR0/EdDtt+jkWGhE66u5Ed9Stim5cfu+vGdjQlbv+LGa09bh77QluBb4FthgW237qyukmFr+T5K0XHJDE7oMyaLh/bY8MzSQ0KVOwFeMzQJcFyIpAco9koPUt0+qUsaUqh+x9aX2hgGigGgJ2QhamKZZga2kcqkinOqDPEBeEz4W73NjulZwDPhAg6VWZgYuWaqhZbGC5FIwMyN0PVI/NMC9CL5yTJtlF4CIpHKdgZAVkBH43LZsTU4EikhpQKAo263qupGnGfl0kswApphVZqW0zAA0k4wW44b5uJH5/au1lyFpu3xO7TxNON0fpLCNWsSl5DQ3SzebIG1jZ8y4qEK1v3kkcQFEUviHJIhrLgWjbs9ziGAtDoIQ0PU9PvnZz3Dz7PkiAh1YrdMKuN15am0xepcGhno/+8vMB7wqP0sGTJbTt/J475qxBBL1fWgAtwqsM5pd0eoGuN44Vd+x2Lrd+Hd2j/tnitWWoFq/8mx71D3z7Dp2Y6vn6m5IkIDJNOzx+a9+g91uwPdf/gn3hzvsYkGnio7mt3FCX9+lNLakO8Y0zxUkByKt4helkFOlHZZFYnUKNEe3WPYz8qxpQIvmUtaATooRv/jVr/DX//SvEffXmDRtoMR4E6jrtaAKmsKxBhIQoHL/4RZf/P3vMd3fI2kVVdZ4CEBcxRz1bM5BHfvKhT0PQd3pqO83za4wqDDKDLx9/QNe/OxnKCS+xDWGpY6tPDvqODYghpoNZHvuWVmOGCokY8kScNf2wNNJe28Qsyy4zKCSJTOTvk/8loUxhxBx8/gJHj15in63Q+x6AJKKshWSEV5XjLcLOpXn6bD7fPGylkJVesiUAN2tM9ePmRlPnj1DyRm3796CkJG0OrTE/si7Ygi4f/8eb0LCs89/jiLhlyYClM7PmBlUJagjZGN0/egxDu/fg7kgBpJdaZVJ0NziJZC464HE8AINVq4VMBcSWGsTtLXvAeUWfvFW5hBjdecCgMC2gyq81odMepohopo2uD7X807jadZOsjihlZIgX1AlQ1VqbMdhCbyljS6xwKptnqeu+2wgOjjlc7kmDYAvj4XRz5+HBtNiE+vX4ycBupcbjE7ouuMha/WS2BR5uXseAtwfe/5/yrWNyB3ByQ914ogZFAKudgOSRsUEBBCpwGcFQnafgQEHuP3WSwihCuXdfg9KSVMeGfCWsbGWxxAwjZMr2+zarzmq14DJQKIEidpW1pLVBCKkGDFlcwVoYNJs0x66SF/bGQ8g1ous/UHLT2fpiDFgHieUWQJY58JA6sEF6NIgVutiViBtl4EM4R5S6j1nCTANLSsAGquAqRkCajVBBrNWcAMAEXwxJJRSMI4nTKcZeVJLlrqLhK4D51kj47VBZH7SXPOimy+rF36lcBWS5hd3PB00u0nT6jNrCrAyCzBRsM7KdALEJYZJymTv9tfohqFa8Fn7lSEC3MqBd0MPGjqkmLC/vsFwfYWrmxvx+V4wLaWOLZDZFv1CKascwTN9WO7dtgZqlpMlteDSIetIZq+uKffbuSX9AlDFWgn7EXyFlz7bXrBs3VMzfjhBtLXVudW+SyB+qz+VU+n6tq91XIiArsfQdfj8F7/G1dU1vvnTF7h/9xpZ0+RFA6/K4QgiLFm5WAXdOu5cZJ2Zry9KQSylppX0Y08koElAt2Z/YvHfnue5PRPiUpFCwA+vXuO7H37Az351DbD68Op7yYPBimS4rkELJAcX/PHv/g7v374FKdj2LlrElQs0PvefcniwUjGu+b8zqACvvvkav/6LvwKurmHuX9JvsQr73RED26zAzSt6Z/Sg42LKe8krZZTrSmw0UTVge7aM3zTNmMeputLIJeKH3lFA6nd48vQp0m4PhObawwHiRlEBnKTALap4mMHAsnNl3z6jX921aApRg6sMq8NAePr8OeZ5xv2HD26+SvPP12e+e/sW+5vHSDePESC+16bjV+leSFOkMiRIXqihPpYJQ79D6geU8VhluSlFWZUmYiCHgJISWCYTlj/M+K/QSFublXca7bi13Qwq54pfjHHlmkHVlUUbXdeT8cjKg1zKYE8XlYwd/dmTHjoq2N4yINj79D2WmGJ9MFF1USMsY64qfaz4oUeKS5TWxnptoffft9rhj58E6AZQNe7tn9hfVo8KBj3BcFmc+zGA+z/HsSbuxWS5/zaNDkgpou96JXoCBQE/MCCqt5gPpIFu23bh9jKQbu3OOWMYhuoHxmCYf0MxyxGoljWOMS4YMuniTl3CaWrFNWo1Zn1lUAtY4FDPEbhaOEtkMIvTgZ9bY4NimaTlhNrh59v+XAk173bAeo9tS3PJOE0TplIEcLNo8BSSfm8MWYCda1cBxnkGSAq4SDVEGZMWOMh1MDRTnS5wXwpcgPM0zzgeDjgdDs4KJa4/FMTyMGsBBjHyyDuqVdMDkGJCX4tXFL3P5q1qWGIdj1HzwM+awaXkNqYgjQ0QWopdh2G3Q9LiP1kBigllVjo0y1LsE4bUYbfbIfUdUt+DUhJLpVsDlke2zdQKmXClUqwtD9Y2m6ZKGqbMAdpXu0D9cZ3Jcr2LtRYmdVyXrTrjLVvruzFyne/Vu/x3quterLqLHZMVIPJtW4OpNehet9F/33rmJWFyLpS8YkTVBzYMEY9ffobh5hG++/IL/PDVnzDnET0YuieEoGskVyVReICkS81mJK5jryF4YrUl0urzS2Umq8sYl1xjJmBKkwLmZmVnnA4H/Nu/+RsERDz99HNw7MAs6VVpSWTKbizgMYLAiCj46ssv8c2fvkDMMyhnFM4QBYLre9zsr2QTnc3r1tFARusuu34ZvZ4O9zjc3+J6v9dCMo7/M8TX3a8RbQ+boqfzWIGzAxcNODdVy1tH9cRG62MzFMAAi/W99QWQ7E9PPvkUGHZASkCMQIziWkkKZNRiXiwdrfFVbnxvqxlSnoEqv5AdAJER8lzxyckMRAp4/vIluDDG+3swF0REMDECiZ8+OICJ8f23X+PzfkC3vxL+LwNdx14UL2tFkRgccmAPEr81DFc4jiPmkiX9pvH0rJSj5ehHXhpZzO0RK7qqc76hRJ2v8TYuwQxIq2JQFnvrMVOGZkKzc0oDBmxtB8RSBFYa+zOOi6B7da5eC8MDS2694HPSgRX/2wbcpmA1heacf2/x6S2jsD9+GqD7Ahi+JMS2r+MF0Tz0LOBcQG0dPwaobwmvBbPlxcWLa/vYYRxnrfAmw1DKGnCyFnYpYn0dBuvQAniP46kCz2G3E8s3VhBn5R8biDQSvZ2Xoi0Fs1oakh+bioDtWslQm7MGFKlfGGu6QZBa7kFVEMDA9vlIwnEwERhYjz/V32pz/O1Bls7t3R3mAvRX1+DQYTxNECQWtBYFK9hrIM8ET54L5qmgiwkppBahb80j6JZybaQwH7MmW+XLnHE4HKRgUSnYDQNSkuVYStFIdtseEwAt+J8QyYQlV/9/Ubry0t8yl8p8PUAiACkldF2HcRxrHndmbrqc/odJtjZ3V9dATOAYoZWfAbjwUe17iBEpRaTUYdf1EsQVAwqp7zk1Ae+Z3ZKI1nPJKjS53mMCA97as2S9qqMs17Ha78+oy6dAM17hA8QWLfRoxh1rQbA+/M7T+jwtxuPc+vgQ71q4lFDr3aK8+wVwvsVD18B9wa+oBRCCLNakVWFjyO7MPj3GL/7ir9BdXeGHr/6Ew4f36Lig1zzDJtCygTkm5ELIRbKVZA2oy0qQrKAIRartEWyNsgNfcp/Ke3XToho8GGOSSqe6zk+39/gP/59/g3/+LzvcPHuOmDpMEGxXgofNbbapFEQwpvGEL/74exzv79ChIJSMIh7IBuk0qNvR88IowE0JdgJ/BQ8WZ5vKAKujUi8pueB4f8DNCzSgr7tl7altfbC7/4xujeZVtrC7eE2Pnt7WxhlAA6ipgJHVYERS6IrFNU52MsSVsUsJOSWgk2xItQgZcasKbL7abs7FtUBBHtuQUq3KWGOJFLJWQwHrqFLL7w0iICQ8fvESb/l7jLd3YJJkBH6nhjNhzEe8e/0DPvvlr9HFhBlQt6SgCfaauYDRaLbNsADqbhhwuOtwmgtSLuhCREgJhIx5yuAQQEmCzq0o2lLsOnC/AqWe3jZ3sNQ1kbXtgaSSquWTF797GRxzgzSDluwsLfGBgVQB3qUWkTO68pbmOm+rdrbmmetH64/PI9+6LHzMrN1nHFLnu/FHpzyiKR/WpjY66/GkBd1bez0f9QbeS8dPAHQ/MCmrv7d/2xZWD4HlhwD3j9HWtrYctrQzbcmii6S8OYUkIFX90wgQSw5x3S4RzVoIqQbKOSuZLYAa0Q0Rorthp8F4ypjBMGRfPTMYOByPThGQN85ZKtbNVlbZCFit0oULOEh1OQoBZXKR8ErwRCKvA0OK00AJ3HzUNwnWkPTCq2x5RZ1TG5/FpCDEUKvTDVdXQOqQmaovJ8Tl0x6x2YQ8zwiQ0uSWlkyAiIImbrdbuWQDcHOZMM0TDocDDocDuq5D3/foYiuBDQPTsPLaquikqAJHGThnxCSQNxfJDcIOcOfcLOry7GAwFF3fY7fboW5LhgCmCQi6JU4AISKFiNQN6HY7hJQkAApBJk/7bvlqiQgIhJCkfHaKCRQlv7lOLsj1yeSbjdb5smJ3vjHeuotDRncKSpaIpc45sFx7BjjOwIP7bukxW+taizyNbR0Li7DxH2407d+3ZWlZAOGNNvrDB8QJdl2CtyZQUK/x7zaXszWvW1uTFv3z18GUGHsrKl0wGLHf4fNf/hpPnj7DH/7jf8Dx7WtkLYji/aPtCRY4aUFizTJHQJRdEWbSWkaqhFWf6WBwSGJIOMtziWo8wW7Y16wkXAowz7h//x7/4W/+Bv/8X/5LPH3xCYgJE4t1T1haaXSk7S0l45uvvsL712/Esk4FYgHVoHEnd1DJc83nvZuBrTmcKYQ2mh7WGLDwGc0LS2C0FYqpQL0qV9t0tD3PsrYqqC2ldn5L+bMAPL9ODIxHsuJsuQGyKPEyXAIoBqDITsVxHNH3g6uFoNlKWGRFkTRQtYAM3Pt8z7QwPaz+BIGb8kEkE0tF+RAL09fvVosMKeHpi5d4NWeMhyPEQNQhqtOHkiA+vH+L3ZsrPH/5qShtgkPBag1vrWuKiwUixxCB1GO4vsFumjDeEe6mER1n7HYDqBsQMSH0Ha4fPUaInfBx433KSE1uAGLo2lrznie135fjxyq/xY21JW+QfeCsa13Pmexf+3HXz7U12SbLrX1SqbDiiWfAe2UwqN/dM6sxE5Cc66Zk2HX1GZZH2+be83+cufN5S7oZLhqAd/31iscD2BL4SYDu7U48ZPnRKz567SUmVLd7N0Hy5eu3fvPft65pWEE0ykABkQL61CHGiN0woO86hWHK1PUxBBUKXCRH9zqIUjW8AEhJ3jlLKfeuRyCNWHYllP1ozDljnCb0fb8AjofTiLvjCWMRIrRcz2aFNH8vS+vU/EqtszIOKUJSOYVUs200yN3Yd1uEdZl4/L01I1UhYSzHmxmYckYarsApoWhhhZKFUWbmlrprPU8sGT9yzkgxqXITzha/MS9m8YGcNWvMlGeM0xHTNIGZMQwDuq5b+uFqu/M8g3NB7DpECCjOMWKexP2jgKX8djSfNrPyqSWo+pWSME8FyTFF7K/2uLrag0iKR6QUMQwdEIqkVFPhSCFg6Pfodvua0UGERahzIAAM1c2FNT1ZpCDWEmWCVspAlBKqwqCov7/QrGfeBj/UEkOaQcalCaT1WiZPH1yV17PZVAC8ZZ1Yb78+xDurMgAs5s8UDCUELFb4CrD7dG2eN8h4yhjlnM/AsgGcEELdHZk0A80lI4EJoDoMC1DL7b0rnrV+1qZy4I71zhOFDtePnuKf/Jf/Et/96Y94++3XmO4+oOOsWX+a1VZq5SrwRnObq+lr9Jk1yNGULdiHAJ2CIllHtOBUCAGp6zAMA8ZJ16SuTzDw4e1b/P3f/kf8i//qGnG4khzerPmjXZo+Vl56++EDfv93v8N8OiJy0eC25upRx8K40JlC2Laggy0iNEXJ6NfOwXe3QK3PWYG0gEtmDe4GECmanfJBMOCz2/j5lFLvDrgwVYVi6zn6gLP31Z9iBLLyoRgbSCaZH9lkDCJvWNZ2JHHFyOouJIyaEdT90fYU/Hs5uLaRrC9m4xWenwhoRFi5IYnGJGMAQux7PH7xAq+/+w7jNLc86GoMYAbKnPHd119hGAbsbh6jQGsScGxKn/n4K0gWVkWgQEgpYb/fgwAcug7T8Yg8TxgpoesGdP019vsB/f4GJcgYEoKJQzR64wooQwi1X/Kq8729yuNMTjqFHatYErZAWPbuIoJVlAjP57wq8q6pMJ6nv/Hyt2o1drR4BrS3QDcRrAZAvU/Xl8kX23Na7PS597bdg6VCtzZAVGv54rx3HXsYcAM/EdANXAbMH9Mqfuz9l0DxQ8cWQPe/bX339wFA3eow6gwBgWQraZomXTQQxrpAhCxUq1r/PM8LQmBuQR8AcDwewSyacNelVqGs5mWW1vg2xhgxzTPGacI4TciF8frDPe4nSa+XYOvNgjzlfsvu0Kk/+ozcLIf63K7vwaVgmmcUohWhowKIRXXNC3O9EvNnlg+z/BQAIXVASsgIKlzFJYIhoDpwQIiiJJBLnsuFkacZKEDslj63tn1tiolVGZ2mCbOmJJzLDAri1uEtlPJPpjJAC3iME0IA+tSBgpjfQ4qIEHeWLkbsh4QhBskr7FxEWlYBaXeIAkRiIFxd7XFzc40YtahNVOtNiuj6iMNBlIJSpOBNilFSoKGpZZb/14Ra7UMIYLIUiw7osfhAwoRfMWAlzxEvI/M3Xbo1GGBa7tzItyUpeECplmxvhtA5irabAJ+HuN7V2gx70ZIoL+XLhr/jAb5ktGn319avwLIpJd49xL/TSirDXcNYtsVAjf+boIFS6jKyLiyx5lM/enfQFD/f/pUFKQ07/Ow3/wiPnzzBV7/9LfK7HwBCK4oDtHzumnmmunY7cGEQmOq8AYuJtnVIASkmpEDo1DXAeGTUjDqlqE00ZHz/3bf4m7/57/HX/+W/QNzta5ozMXJUtIlxmvHFH/6Aw4dbBMvOYfDa/ABdczwIXBgT3DfS/xrgNtILwd5vckJBksM5BM07TsK/AIgbHS/pS+65YH107bTMGSUvfcatBV7m+aIl+mJlDX4tal9jROh6ScfKGfm+AFkUJIQEUMSUJXA2lCJ1A6LwjWK7sBUcUXXhIyJQJJQ8t791YMz1r1SjDbW2cZBAXtvpURTdZIfIgG53hacvP8WbH77HMY8AA4msOJnOR8l49d23+CQElNhjpoiZZxTNIBMg9RyJxLUmUgPtRAFd16NLqhQeT5LKllnyw8cISgkzB4SisoIa/RsIrLuvutNtcSiLMdvAJKS0Y8YNCsZ/G70RZB6skFF9pvHwlWzeMkJ6TmS8eQtw27Ue3AJNQVykQfXvdP9qIG3tpxs3Wu4EeGxhxr1qC+GV696qra0tNp+XMYo/fhKgey0cfizQvnT9+u+PAeSPXVvPkXJIeQsAPr/m7DkmMEVTrVp0mVEKo+s7iA/1jBhY3Y1tC1WsQkwSkGfPrRqjMrysTLeoL/Vu2GlS/KL+dufCuTDjNI64PxykZHJhzAx8OJ5wd5owFkaoNZ3hCjdopouy0rwVCFrqQ+A8zU8dG+2HB9wgCKNlwOcoXwLs9rdNMSvjZQJS14P6XgONUNsj8ySCM7NYeha+xyy+3HnKCKGBFvPNBlBBzDzPFXDnnB2IjEjdqkqXMt9ogI7FV5QIuL7ao0tB0z9FxLgD8YAUpbDEru8QUPDu7dvFTkQDaowYCUOfMAw99vs9dsOgwZNt3EMkABEI6lZBwDwXrbI3i/JTogDqkGqNvRiTFE1SBs1oQaOqIxo+RkUJ5hNYuGZ9aaWCxR4uTM6KkITzdfMg8ENltrJtaVaVgJyzVj9UCmkIvq7Ci4db31RPrYCLvfch3lT1gKaU2PWeVmqFPxP/GzzEK7hLodBE2dq6bdcYza6PtZvJ1m9nXXKCsgIsNJ5t6zeQKLyPn7/Eh5fv8GE8oownFJ6X6d9k8YNiROrEx7rkovYFFYrUlKdlG6Vk9u7qWsHjjL6LSFZpsogLiORVb0oy1FXuu2++AQP4Z//yvxLlvLR5txfM44jXr19jnidEjTAr4vNgSVIBXlrRZEA8UlqPLRSUA07e1wGxFKs1tsfdG5TnTUTo9ztQiJtAxmSRp5W1gmj8I89lGTu0IS8XilUdn8VHZbAEqe+A3YA+3yB2CScA4/0dODNS30t1WkqYpTgFJPBQxsAUDdJ3MWve6PoiDc4vWcde+IvNReBVm2o/xFhUAaSdd8oxU8D++gbEwA/ff41R+9RTuyoQ4XQ44O7tO1w/eYoQAeYAVQMQGSgqXwpFIYVAIElTVhXpEBKGXtLQyo6l+HwjxrozEx0vgpvPEILkM/caWeuo0NYGcATUA1DXnsU9CfiUgbMgZEKsdRckQL3xr3OO4cba8U271krcLy9v/GfLonwGft07bFesWfDXQ6BAfwNA198Xn9ZnMSit+7e+76KxZuP4hw+6+c8DzWe3/8h7tzTBy8LOX8stKbwC5jbo64lcttOEomDQBjIEvAhQ6/oOtrVnANEqqcj9AVZ1bRkMRsqgpB2FCWVmRJaKlEQWaLQEAgCAIBkzjqcT5pyRmTAzMBXG3eGIu+Oxab0hVB/zKjVZBHueRJiFkBCC+B7nIkx9ntXK7YLVyDWjPq+iZ/vRBIX5NJ7PfalR9roghJugH3YASX5rRlQGndU/JoCLjJcVFIL6rXFhFAUqpkAUtdz7hW7uJAa4JaAwgaLkiTVBsLBYktFQwTxNAhT6DimGak2JqUMksXwFSFBPnwLub+8xjaMoXkUyN5BG8qcYcfPoBldXe6SUlFkXVbxIFTzBwaKAiftJKlEY7Sx+mBmTBEOGCNAMCuKrHVMEwSz86iZSdNxVOTSMsfTfNdJsoDtQVJ87wsJ6Tgu8U4HtJltjVUZlgOs6IGIRxnDWjDruK+pZkdLaYvsgGH0AbHP9T3vH0o1laRliZi1QsbG16Z5JaEWR1KxzuX32XGfAeMjYcLkzbAhb39uApBfqPkONCH0J22YKeHt7h0cvPsE+JfzwzTc43X2oinEdIBIlWRT+CYAI1lwKHt08AiAAu2g+Y4CRYsLjx4/wq3/0jxBTwr//d/8O+XhAIZb1MxvwZgFGEOswZzFYYGZ8/+036P52wK/+4i/B3QCmWAEZs2RgkTryBn9bMSk/FnWY/LiZtdh182x4oYaVIN8DbCeJJLWn+Uez+rpDPjMR0k6q6HJdCx4YLGlpAVC4ucOZa9q6gVvgxBt47LDMIo2nE0JgIHUgIgwAToGQShYXnrnD/uoaJUh6PAHdAJH40gvPVENBBUIQJV0VpwCghIBSoo+117GxqTJHCi9DCKBS3ST9+qg9Utm2f/wI+8M97m/fCosrjK4CewCl4Pb9O6Quob9+hEQJuZDm8VZQaAGbkPzXpPFZBkKh/YqxEyt8VJcrImQAIWeASC3l7T6KUoU1l1JprPrZr0E6lvxmATLDkueCbbyFxuSaoJbtoDKwuaf6gyp74GU7/DUr/urpag26t6vnajM3eC857LPgoau2LOjXxJfy1JoH3Plyn93j3teO5lC5dfyDB91+OP8cC/fWtQ9Za86JcH2O6qexWy/gKzOtf21rUOv3WruEyEL1c2RAghbnWYWEMtj6X1SinMZZguncdgfI/JjE4pez+ATvd3ukKFbMQkV9R6nKbevFpD7dMzNm3f6dMuP2/oBxmhFDqKDUEsKr2iEMTtPXAbYVo1u6YMzjjHnOCwFi49pASQ1XOZ/HamNwgEJvbQaa5XjHkBBjh4yIokXUDXSSpjcEiUtDNEDMNt/NSlRKAc8qUT2QA6qlm5k1SLITVxWVsh5MApCdAhXWJc/I8yTVQruIGBhRwUIKqEWFxD0oYh5PuL29rTsIkqeWdbyVgaJgPB0xHoXGQgzVvcXozzLKSAotGRkwY1aAw2y5tyfU9IgxgucJMfag1InQiknBtrresPqySpQqONSvAqwVcMcQpUiQo+cWSOXn2FZFOFvHXJXRJoxs9j3TXlplPH3wmlzqUXc7/N/1vcvtxNUTzw5WZMm8LB+/9c5mhTq39tvz122zNp23Yrn9uTYwPHQ0oGJtA2qhkSrPG23b+61KZ81qohbI12/eYMoFT372M7x4+hTMAV//4e9E+bXUOWZUIKl82umuSynAkxcv8U//2T9DCBE5z0gpod/tkGJE10kczJwzxpzx+S9/jS//+HucTkcMMaDrBvA0oljwdhBeIj7DqphNwNd/+gIUAj779T8GdUPj+8ySL5yLul1JRUFjXNJDW4dawc/TpikqOA/YkrkzxYPr92YF1dzURQCQuAWqQQGMkBKGm+sa7ga10sgyagVADFiulb7F9zrXS99auPOePn37xcrLSwBLzRLbdT26fsCx6zAXBucJOUQBwF1CDpJZJnEAWBRyJgm0XKxt5dWmiAdEXV/QWgi2W+TWWVVGSA1V4rtOSqPk+uP7bfzxycuXKCg43r3XnUloWSW5djyNeP/2LZ6nHmkgzFAZRqGyL4kRkPHxpdMzlooqKb1UjAApPIZS1Oed6i6yKQZuggAAhWip/K7msV6u/Q2r36uPu2OoxjuJSIJaicFl+czG/8vD72Wj3lW/N0D3+vAW7YrFQPp/gikClUfSytp+SQnQx8SoWGw1Bw8ZVxbY8eJVPwHQbcef61Ly0LGlpWyD7mXVvEtpo/UGa+jZO7a+ry1okh4pGG6qhHi1H3Qr3t7hhTVpEJIF5RhIbIBYSm8HjOOEwkC3G1AAjHlGTG3bpBrsqLmWjNMkjDEksUIUxmmc9A4LglKN0ooAsNG4MOwYxEdaAGbE6Tghz5I/ulmMybL06Se1LB1+fCtosowFbjFgY24I1b2k63pQlAwcJiADQSxZIQjYRBRmVpF/m/sSCFQ0/ZgF/4AXQsy27YdhQErSb1vwpnwsyEUr2JV5Rh5HECSwMQUgESMCSNT05kCEUmZ8eP8Btx8+YJ4nEcBQJafmEpa23d/f13dGiF94BbRmdYtUXT0iherDLeLKqvhB6Umz4JQZ4zTKBnDokLoeqevQ9QNiN0AsdEoDBDBHUCFQXDJSCgFWYpvQ1lwLtVnMrpCA0Ywpamzr1QAKsPbb85+XDgLhnFOufccds18Abq+0rq9tv8k9osisS7af/zMiOT/sPUVe0kDxR3jkloXr4nXVz0Hcz4JKx7r5TGYVawpc+/QOawWkwX/zPOGHb77Bfujx5PETMBPGnDHmglgAy5NgA8a6O0RJAFVICZ///OfYXV2j63vEIJlyvCWslIISZC0+evYMn04TvvvqS5ymUWIXUi/rRi3UkrhO1k8u8vd0POCPv/stSgE+/+WvkYZdTQma81SDH4VXVxi3IgC17DcIrIDg3EpmY14JpZKiAB7vw18PvaaweK6koUff95paNDX5JQ8HoZXLXpd8b4qSxl5s0L1OruuLATLXMn2PV+68/6udT12HlBJyLjge7mrBHbJdyBAQUkLsOqQQ1DOn5eGWTwHd3qXJeAgXSUFYU9CsuInsJLk1TEGVRHkPVm23+ep3A1589hn+9MUJx/EEFKAnodmoyunpdMLh/g43w4BEjKL1L6ySpi+VvlCaSXOG03Jn0Oal5plnboqGgW7rGy2DBS+5fqyVKeHTDrgb/am+sDjBBk5Z45tDQyQVRJiSSfDqwJZlezFvNt7V5RDKD1qawIqKsYEJK+AGbHek0qzxVXvOqk2Vh+jaJnVztB0QIg2fK6hzsB7TH3v8JED3Q4D7IS3ooWu3NPcmONoWNy/IBqg61Rq4y4v1t7M3u/P+xzbZQdMDGosoDNm+Istm0Bz9GxhQEBiCVl4jrTJJ1UI5zROmccL79+/EKhMkTzdMsLv2MFRoQUrKW75RooBZK73dHw4g0i0uGCOFWg9kkQQLICFC1yXkPGOeC07jiDxnNem0iHELijH2yVDrsLO6tJFvQ2pCZ2GZWbMYHaeUOjBFYbAS9gnAlBmTddqvmjex7Rxw0eAY1oIAovYuBJhlIwmBECIt6MCnHjfbCSODy4w8nUCQQL8UgC5I8Y0AgHPBXGTHI5eCaTphHNVaVzVwhqXHEuWrWWvEgiHBaZyLBPeoH6FiBmmnWZ517mIgSf8IqlkewOqLjaAMSHzO56J5xecZcxrRdQPCsNOZjIghIkF912H0nhAp1Z2dapGuFL6cf28982BXMrqRzKsigqZX2JPM0tvAuad8uX8pHPT1i08jKOb2WRk5239MIVxeb233vrKXAbd14pzPmIJtnGCrL0v/wkZ1tPG8Swer9l8/YYWFvOXpnBeurTxUCjhn3L15i9evXuHw7i3+8q/+EkMMmKeM2/fvcRpHJMwIwXb8IkJoqU4JAMWEX/z8l/j8Zz8T/2A0fgX/yRK0xhTQDQOevXiB0/GIH779FqfMGEDoQkJmTfUXAEAAt7CcIiiWJ3zzxR+w2+0kHVzXYy4Z8+lUS71b5idz5ahuKLX3LXi8zsaCD5x/r/Nq4w1VRCmAywSr8Eu16mTADGDYDeiHfkF9wYqBqWLAhRduiNuHqCEN3DYAZ4DIH+eytoFKfz8pqMzZ3Hsihv0VmLTsedYdwr6XGgLDgGTl6hmgkkXZJt1Bk22ApvQ5wxOHJVg+25GqPMJ2wWQnVq4NtaooHFCzHaerqyu8ePkSP3zzDaYyi1VeZWkksa5/uH2Pm6dPRSk03qQyTagsaD5sQk0mrnNfnTW4mZWC9gvUqsxWKzk3Xu6Df0MIi9iNxbp3yneddTJ3x3P5WV9lzNWUbwqQGInl7sDS5Y4rPTfqdm5+nnJWCkk1PtTRcYop3CsAkKN1e6gB7PVzF21cvc+KAy0UF0fL1b6hz6g8uAkXfOz4CYDuh603Dx0PCRi6MBkWlHHp3q3zKutXAy7EJdfbZDWQZICXSKLpTbQVA/kkjHS/v3KERsbeAQXY8jzxpZtzRtRgmONxxPF4wuF4wul0wuu3b3Aaj7rlJoDZrOH2VDu4FJyOE+bMoBgqOJvmGcfjUe9WyxJka8y2ikBUg3uSuh6MxxHH0wnTJFvE0lYtFw4PlL2Ss7RO1O8VVJzPwyKz8kKKBak2CdN/qWrEBvSqb53ea7+L67bkmp2rz6OmrtLtW8sI4Zk41fRVBkz0O5tLSkbJE8o0InDW7UJGF4DIGdNpEh/vPAF5Fv93DQJbHzbua8sMm+WpAmyjMgB+1NUiUSx2IESEGLDvd9Uqy1yqSxCzAHjbxhMr4YTTPAIUUIYdqIwgvkKK1+gCodOdHFQhF5YATgGGg9OV7qztWV13bO3YmjgDrcHzPzfXwUDQ0jq2BW4vHY1XV9XAjSe56xSAO+ucWddsDAgbjD604GMiqsFtizZsEcADbLJZpalWmN3yS1z1tFnDnCVozRvb9Hk0acFr8ozD+w/4+u//Hsf7e/S7Dtf7HsQZr779Grfv3yLPEwqyKJsxqQANWmBD3rHbDfjNr3+N/W4vxZmcEkZOySwW6MUiiPvdFX7+i18jZ8a7Vz8AJaPXDBIxFMwlq6EAAKQsemEJ1BuP9/jjb3+LAMKLTz8FlYLbd28xnQ4okDURLI2rrXUW2gVD8zQ33nI+L202PRdulKR0oms7z7MUK1vNfQwRT589x/5qr65zVSJVoGCVaT0AXc/lwqXC0Yd91vgBd73/Z7LO31ct3kBVogCAQkC/2yFYJpmcQTHi+vpasssoCIfOqcSNONcy49HG64AGGnX+LMh4OeZGU032Gm1XSEjikmkZt+zalBK6FPDZZ58hEPDq669QclafbSAqXxnHE77/7ls8ffmJlHhX4F3XOsyNUXfkqO0OBOaatacGTRpA1TZ4eWNg2xieKQm7vseo8UXndNfGrPbPjZ+v1WH4wHaiFwo/CEQRVjyHabnD4WlF1oTITEtk1uZS6cv6YOcqZnIuHj/CAOtpbk2Lfj7X97bzy/Vjhg4iUjdflzXK9WG9Li8dPwHQffn4McB4PRF2bslQzpmFHZ4w19rR4lgxLPke3DM8oGjEm6IEkZWca/5ZA4K7/R6hG8S3VnLKqdVMGLRV86IgBRvu7+9xf3/A6ThinGbNtQpM04jD/T3AwH6/r/5K1rhmhW3woTFSKSgDCDOZpqlq2YJ5pOxt4QwLvykMJIqIXYf74z0O44jTnKsP3Vy0ulxVQtpnW2cNxNv8KXpZgUoPH90AuyOAEENU7ztRCqjeSRV0VUpQmrCtJGbUTCUm6EPUwMNaul39J6m5nrTmWB5f9XMvBeAZlAVwB7u3zJhPoxYgyrXoDYkkl2IKDgyt+7u9HpowFwtKXikcbSyz0pQ0v6Cw5jhOESF06Ht5b84Z05QxZS0hzxbACxAiygycDhPG+Yh4usf1zSMMT54jIdWiSTUygpo/o9+KX2wBAy21F8Sn1fpWgzGjgO0QaLm+7UrF6HL+3MqyPtZjfOnvxTY92jlzJTF+UHMeO3BtoJtUATFherZtXMGlCifrELzwe6AzemUVIA/wMfvLgAkggcVWeEuuWarFZwYMSKhyKYzj/R2+/upPOH54j3w6geIVAoDT8R7ffvMl8ixuVbKjU8BFAodN5oYYkWfG82fP8OjmRlYsEVDXlI28udrpfWyuFwGpH/CLX/wKyAXvXr8GwBgg7lshyH5eIG8MaKkAD3e3+MPvfovd0OPq5ga3H95imkZY7mUGgwoUmCzdMiw/twcgTZxDydDzifZfBtXVQEQ1SHs9UwUCYJ/ePEJKHQoiiIO6/ZlrGFc+5uWUVHvU8dsAM9Wq6mJADCAKjSg/8MGHvv8OsAQAXYwaO8IgBeACsHMbI/0XYhIFvxQQiWJFVcJst3VLobD2r4tAeRc0o/WgQA2LlJrN99ruizHgxYuXuHvzBqfbD+qCAK3oKNfd39+hu93j6mmSjDJkVnk1Ntjc+rHVsUkhgJQX1PkK3gVviW/qaHAznZmc9rEsvv82X2ZZl5odTQayyhwbH1SJqedsvq1fpPRfA4tb+yrNqxKFwC3ey3Nhj79qHwmS5sX1d4HVqfKA9Tiu8dymwdR+C0HmfTG+dh/a30SIsa3J9XseUgrs+MmC7oesNFug+/KnZU1YAzdqhPWRd9L6N8ds/BS05wmwkaINPaZ5xlzTBku5bCaJRi+2fckM2M4nM3TPTVwdiHA6HvHu3VuQFnwxT2AC4Xh/QJ4LYoySGSMlhBgAA/OupSa0jscjJAe/qLjMRUqG5wyqpsRgkBACLVkCPShg5oI379+Le8ucMc8sZZ655eP1TNpX04MD5GsGu9Z4zWe7zoSfIu1LjAkUEmBMESYQ1Vd19WwiAdzzPGMcJ8xTqSnnpFhJgWyBQ62qWpqa/PvNDzbLdnRR0F4ygALiCVQyqBTdLi0onIHiBJAbhZo3db2mCVVx8HNYf9RzUqjm3CpsQ806zyDNi4sggtHGg1uho5SSlHmnIHnFc8Y8TxrsxgAmEVhTxnQaUcYRmGbsHz/G0+dPxc4Tos/7oDTuFCkHutt8r2hB2xYc2H7oWALD5fEQyN4C2Jd+s09VQ8Tia0DCZa+x1IgAEGK4CLgN6PpnV+ELG6/Lvuet70vaqWO1sjaR+73m7HXAS2+qws/TVL0PAJjAOePNq1d49/YN5vEIyjM6YlDJ+OrLPyGPpxqQCIggntVQEJME7fZdh0dPnuCzzz4Tq/88oWhp6SUvKJV+jM/a3gnFgP3VFX7+q19jnDPuPrwHUHBFhIiAWf1yTWGABtkxCqgw3r95g//47/4d/vFf/QXuPryDpNfI1c8YQAXcHgDZ8wyKxNomGcPVjDlY48bUlLYa/KizRAJBZwK6ocPzZ89RWIBDpAAUS7KilmLNbGHKZnXkag1eNClEcX+wT08j1SprgI6avzgFOqczbylES3NZ77e/7fnVms9tPkNQ7OWl8lJCr5VKD7p9u/VqeLm3aK+OkbSvtCwWMWqGMUbf9/jZL36Bb774I/LxKLNM6pqjdHF3+0GKi+0jwKGCe4IVn3Hyxo0PbKcrhEUZ9GqJXoFn1/jaz3meNzN+MLYBqY1EKcqn1L1ZdhvcGLtntcxn9u7GU8xQ5EXiGkuxBk43nsMX8Jhc1KzKFjtwztfqjLofHgLgCws3XZIhq2txHnDr+3Xe2+Xx0wLdtvY3OvQQ0F5/t7/lXFic85rcR5ujE7uGhwVYBCaYWJHlpkEgMSKkDlNp2UGM7RYSl4A5S8lk2LaNPZFUA1dmnjPjdDwKMCRIn9TMUkrB3eGAjIIyyjbeYhtJUW6tckkAF+A0jnI/t23cD7e3YJbgSGEPQSKkA4sHcpHSy5ECjuNcLUGlWGtN/MgsMqD5xvXdQG0T6XiYRcur2Yu51FRGS2bqjwAKXStXzir2XFlP/zgp114wTQK4SxYlQiypUrueQWrNtkAdav3R6HKxLs3gMkuwpH6KRayAeAZYALeMb3ZWAl4Ut9iku8UJ/0cbhy3+8WOUVSGJpfBaW5IAIFBBn7TKXBcw507yuWvmADAjUAHyCXfvX+H+8B48H/HkxUvsrm80a4lU1hOXAVQBrV+rMrBkbuZGs+T1vm+LLcZFHxtoNYF+rsmcj+ZamMPdV61oTiCaEPWWE2lv2yYmDeDyFsW1Jcv64a11pphUoWzAakM5aM9TdxbT51aKnR8jcY9q7bHneMVHQIBa69UKZwLUqOhwf4/Xr15hGkfELqJQwc3NFV7/8B3ev30jHCHPFaSYxSpbhdoY8ez5czx99gz9MIhyhwzBlitAUe9vrMICchly/c3NDf7yr/4Kv/vtbzHevgMzNBVnkJzILFbNzKoAMEAoCCHi7etX+Pf/5h6ZM5jzwg2g0RFg+/BrmoMplRX0PnDonFlJb2ZgnnPtmQcWmQiPHj/C7voacyat+CpKQC1a4sa2ApqVQms82Wg0BKkuu86ec2YtJZKy20UUH6Mf/z7A9XdrrRnfcQAdgGQh2Vp37cYHFWK/ljz/WirUjv8bQ/HgimL9HoOmcQWjBODm8WO8/ORT/PD1V0CxXYhWOGceT7h7/x43/QAO3XLugGoAWrzb91MbZ/xqYSxZgz333Na3jbF24+vdhQR0SutKjZNBpb/Fs3Sxhzq9+oVUZhvg9WDY53J0PM13X77wmmJgKUEb9dsKsjXVspbZONj6WI8vufG0fq+NBpeO5Ri0e4zjP7x32o6fBuj2wMhrXRtA2j63Bu8chBswMSI/e8WCwL0Ar8+iulFemZcF97WJdxNOQKd+WVkB3swAM1V/YiMqCciTVFGpbkPptioVZZxA0a1HLgyOlndZVNW5ZEx5FrBdGNdX1yLwi7zTB95UDRFFC6MUiSwHYZ4z7m4/qIYeUKSUYIXFoTByBrqhRwZjMv89JpQiNblsrdiWarHBrmNYFvi6KRnQlH5tXmz7dQm4tw5NtQe1OqqLib3IxrwwawXJXBWNGMW1AurnWZiRQkQVt6x+iqVg1pEkAJHFfYRZAp/A3jXCLCECLApX5xNliNzSPMHuWUnxKtW3l/nHaP/howlMbzkqan0y4WVPCxbsFqLuoCRRWuYJ85SlgqXu11AG3r76Doe7Wzx+/gmevfxEitEpCJD+U+XXS0C8BJLyCXUpOXfHaNc2gdAYe3viprB237cFdQta9bzhDMiuBCVRa6uBbgrNgrWeo0uuIKTC0sCuD4yrVh0T2P6ZSkfN4tZAmAcnVgnRlyiv72eTXxrXsXiHzBox43Q44KsvvsDd+/fYxYhnz5/izdtXIGL88MN3AGfZaVM+04SlcgJmBD2f5xml67RgSG5qpX+38sKqlOh4JzK+IX2/utrj17/5Nf7427/FfLgVQwgFwNY1mwVX4xcg8RshEMbTQV38tJ86puxplL2cYCW9LXl07lPf2t3+BQJyLsjZfNedtRvihvHik08Ruk52s1hAMBdLL9gCL233RQbv3LeWyO1uKOg+V7p8D/RREDcdcHS/miuIXbHg6AvarjzFgZimCLRjC/xvHwQi89WWgHDYGqmA8AyiVihXrZ4hSL0EXWeW2QnixIPCBU+fP8f9+3c43n4AcwECoUsRRcd9nk7I84QQ+0U1x0LufctOnvfGrWc/DoudLznhZPj22FWepe0I2s/1OvbDI7uQhnfqf/RPZyDy/IJoMYdkSIGwzODiur3sV6MZ7ZrrC1dZWw0Q7n3e2LLGaww0lx5rA9HKrWSb1ha83n5zQkVoGB89fhKgu87jQnLab8uBesi6vTy3tiidXakC6nyg/d8NcMuyLZ4VhSBuHGbBApACIaSIcRafXasWaSLQ2hXVXUGKmVgu47lqjELC6ttdxPWj9l9dwQpQrbZlzuhSj34YxL9ZiztwONeY5zmrK0kBoli1S8mYp1naoamdyC2ImRlD1yPEDsfTUZ5PaBUf0Viu8ZA2xouRlKudf5mNjYk6D5qbeUvf4EEKLN+2FLUgEssQmKpbDTNjGudaqCdEybYhYy9wuBSulqMYAEJswWWA5iTXLeCSAUwKujVTS83dC32nZD+oI2IE5Bh/dVBQIC69WWZDgPvl/PhxwNszvq2jghj2FugmAEqW/N8gkm4ii6DqB+x6AJqZIGcBMLlknO7v8O3hhGka8fJnP0fqesxwdKFflkDM94Fqnu+tPNZL5dsz12W/NvvrRu9szTtwYgzeCz5j3JfGOWqxpK1UX2smX0qjGQtStndUSjIgUYnIA32/rmorIPyFbbmAiGuRJrG600JorTohwlkBo2XXqAqSIt88jvjuyy/x/ofvsQ+ET589xTQewOMJ4/29rBE2N6a2Y7cYc27uUKwgEqUgEEuMSZHiXOSsddDrjD4pEJICbgE80qmnTx5h/0//Gn//7/4N8uGAGMWqbPxyOYYFmWcQM4JUK1nShQdwbq2iFhpZWddWdLh5rBStnGeUrLtqFfjJBPZdjxstFhQotMp81Ye5gaAKfGBrWAbcr5f1rssiv/1aSbD/kOZSoaXS45WRqry6fm09s7bNnl9pbgV+HN/y72vGMGhGkgAqjEKWccYp0UpHNuQ2P4BYtWOMkpIykO5eigFFqlhKKruYEm5uHuF4dwupIQCEmETFKeIymMcTQr8D0GJymFkCD91sPqhGPKBweIjqr9nCQ7ZbZiA9Gi+qa6i5B9ls+Z0co6IWsABN8sXVMLalqMlcSrYTGO/z88imoNp9695BgD/X/aWFAufxnAfcW/nwtXEVoJvCcckw5fvhY2uqMmTXaKvIhM6F4x886F5aM84H5iHQvXVNO1nFVD11piVyg4LutpYNwv1rWqgSsN8qJtuekvNjlqj5UpPzN+EVQEgkqev6Tkptd3En1lGaXdNC/TbPEzJnxCTvZkat3jbPM06nE+ZS0DNj6Afx7+5i9azxlv2i+Z6ZBTwVJaBJAzMRIkrR90BAZ2ZpM8UOh9OInE2R4OozrdAT5o9lC0yYg1k9uF1ccV0jZg9JHarQW7bmWBdhsSJAoV5XWCtA5gzWILbUdTDgblqr8AUpeVt9MnVXIlihA1iluwyUCYRZQbWUna7sgQ3oSzYKYgPMFs7iGFTts/mGNmt5S6y3dXyc/h9iME0ounudsJO0d4D5wMYgAgqZZTyY6hh3KSB2CSmGOk6HU8aUGSgTPrx9gyfPXqCPve7OcM18IxkBzMpvDLn5+4lrxnbhGN/HCrypMU/SDnoXlMo8L4zsJphYml8WYMXuASA+8F2q2/VmOfPCwd5dDGA6a5T9VnnMCui5JtRPhSlL3qUgG+vqqKG5MtRr3TjaiarwVPXXAwEBJFQY4+GAN99/hzjPeProEXouuP/wDuV4jzkFpKGXvP951uJYFojXrFa7/R77/Q4paJ4kZpQ5I1AGChAjISRxr6lZhbKCKAYoBkREBM2uY4B6zrNUiw0Bz54/x5tvv5GdKaCCeJ/5grVvham5pl0Ail79cKO+BN8k83KRbrGkiQaA7NNRCxGePH6Cly8/QeqSsZdGQ6s5bODZ2uX4gGufWT8/BkII5L30GpiF4dnlDkxVAvS5Na2drUE3BjAAveLz/hDgagKmCgy5L1DNAkrECByQy6ztKE2xXYF1oz9rXwzOJ7yQYHTO4pvOwN3dHcZ5FtfDIvFOc5b0rzIGhDzP6NitaQPertfs5sf6cGn8NwaiZe6qY+DG0o2LVR213N8gAsXQ6MY3CGhtZV4ABYJTHg1/O8Bd52F9kHJ46XC7vfJVm7TlGmjPslomdq0zaNm8UQu5fag95Oh8rdQsFDi9dp3f3j9zaeh4EHP/wwfdbQ5ssa63M5cdt+N8wts9fIGYHQmsX1+PDA/EtT0Kpq19DjE2YUwEBKn0mK0ao4FLaZXLlRkQU8DQD+hSj4CAXCZQEkZXQHUBBwDjNCLrtqsIGCFMBnA6jRinEVwYMUTshx0CJAK7oNQicJYbtHBBLjNKnkFBLO2ZtdBKjOAclfEHFb/aAQo4aUECs/YHtPFjqLJCEhATAtcsAXaNxcmI8V3dDEhPUgOaDaw3QA5uTKttses5SffgsmGwBC0C6PoecIy1sE8HZO/W3lIDHJEhPuwlS3qrPIOyAm9ooRrN5asirzEbtDlnzO03P1ZrynMMycmX1XF5qS+Ffrt6IeDXjyEAdRtUTkqAmc4/BWSKyFqWL0ItqCwp2GYUcJQt/r6LCCmh0IxymsETo8yzBpNmyWoCcqoH1BJUXGM0HkJdIJbA2jO/7b/PxoybMrfx08KH+oy2/Hjpe7DRnmrd9mkl0dacAYzKzI2x+3P+PXACeiVsajvcp73D8tKDtlwYlgJna/wqo6qcz4+YKZMMLhnH4xGn4xE8Tzjc36EcJJHd9dAjBMKQEo7jjFl3l0q1NuquXgjoU4e+6wUc5YzpdEKeZ4Q4wtL6Wcnx0zTheDppDQCoSxjQabA4ESNDeDeI1A2jIJZZjBDjoXYvhiAlxe16QIubuLnQBdhAwlLlp8qztq3aVbE9/6nOR1TFTECSvo/a6DMCKER8+tlnNY2iuN+gWrkX7ir6Yomh8Su6+fZW3qBZHNZtPgMxkN3WNizLdVL5J7z1FBVQG9Dayhu+lt9rQOqt3WWTIVL93dZSQBLAXcQ1hGRhVFnqx+ohwMtEyMcj3r56hVevfkAZRySptAaGumRqQHAJBTmzxAbFpVuEyKYm07b6XtfoKsvJarAUzLd77PqgFafZnTf5FhxNkbAGfY6jbXKvuDAeZ/LDtXPRXjJaoPo3eXoxpVvv8zFd7LB1fSMDIoea45RXnkCOBuozl+PqDSVnbiReGXP0ut75aX10vPKB4x8+6CagWbg84V3WOBY3w7PEBVksWSXZuXYs4bdCIyUGClTTzDSLSGOnNukt4Twjz5LrOBdZlPb8dXCNLZ+h69FTVACs27AMtTA0FWHOWatZKtPV9pTCOByPKFmsQPthQAgBXZfqIoswwcxgFTPmm2uLL5eCu8M9QBGFI6Bl1JkKQKLEZH2WrU4D/QW2jSYBorW0m46SZ6DmUmIj0eCWH52tY8n45bNhBApRUoEFtWxAskJ0XVeFGaCAsioCjuFUwGdwk4GckecRnKXADbJxBQPckt1AfN70OTWYZE1l8q4tVyazNLeNyP9MR1VM1gKrATk7zVAAwiw5vClKNhgKdTyhdCJYg2Wui5ZIjoR5Lq0YEolw4pKBMoPKjBhTBTItJeCaeW0B6dU/oPo6M7CwPAsPpga2yXaazKWpgSmfH/tBAWztqdvx5LalQ80DbGDKAK4AP66gwbur8AYIeeioAsa1tfIVZ92sikpoAngNMrYEflMylpZ+U3YB1KA9BhD7HmEY8ObdW9wd7rAjxn5I6Poew24nY8ISZ6JysRYNIkItv8ylYDwdMY9TrdZHRDWbkIBuxjTPYgwpBaxWRtmRknLZXUqgGFACSdXUKNv8xAVd1yFPI8QVDAACYkjI0TILMWJo4M0DuToGxivYr9FzmllKh23BbHNhY55zqTn6ha8H/YxA7HF18wRzltidzMA8K3g8s8gZWFXAvaLp+jc51yJb23X+Xa+o7RoJZm3vW35f9nz9Tr9uL7l8re9Z7ziZFdIUX3nxuYEBIdTYdyJRRAsToDuZABZ58mtfnIFHlMQZr7/7Doc3b5BKQUwRkYASAM5sKhGg8poLw/JZElapGANqg+o627CybuObBiQ9xzy7ntt8LVJ/ehCp/L7U5ACr+eDl7J25HLlGPEhb3qqiRgAzKBkdydzUm/Xx5uKyNEaQzSmWphMPsLeA99o1zY/9ut1bwHt9nMuIyzLjHz7oBrCdRubS4DQG8ZDLwWJQ6oC3p7adFIvSJbD6ka633paAe8k4owKbOWdJnaf+v17zrIobadWuwigloA9JFmsAAmkqOQXc/n1W4U8CFWQBm3vJeDqJlZsIXdfharcXIcJFa49Zn5WoCSi54PbuDgxCLoxpLrg/HDFn2S4DIjiU1m4EXSgBHCCMPUBcLha2S11KxOqWYoJcxi/o9u1SofXz5AYcngKc5eBsdgk5SzXMbt8jhIiYAihSyyjKLD7HLNZ3n2lUQBJXcEDMKOOIPE3gPAkjLeK7LYp8A9xV+9AGCRBaAu5adGADcP+Y49xGu/p9BZxsrHDGJM4PY/4Z7XLZeo6g1Gnxo6i+uQKq53lGZq77IKRChxUgZRb3qqyBdLfv34BDxBAEpEqw6wYDRFsvpsjK9m846yOFlt+2jYPnE7Ks1NPCeluBnuVEXltDbDz9Q/3vMUZES/8XJeWdWPDl2oAm6IID2QY4JKVkOZuv9ZycbUO7ttU+Mi+ckCqQUH/uRfaPDRrZEiKEBhzqGlxYNiUAsusHPP/8Z3j/7h2OH96CIkCF0Ked8E4WizgxI5GkvWvV+nQnKkssitBg0AJMGlBo71LlpGaLsjWYLXhQjswZYSaUCIRI6EIHBuFeXQPMX5q1wJgoJxFEyr8YoqjouFawgqoyL8ZMwB+a/70yjwq16QGRvJqHnLMGcTfgYQXU4rBD7PcoHNSlhJtiYBkfFnMKtMz8SzD04N9nlNAOD6q3aHPrKO66un7QjCzna/cc6KwtjvaulsZwCdDrfZWR+xR81N5uPMZkPJubjM4eA+PphNNprPTbxSgBrxA3w6BAMhBUAWRxPbH2BqkbUVMQWvxSBZg2xs3Q6MdzSWcryzwv90iFHJbz2nWdjIsrvNTeoTsH2pL20/kOwNlcr4D32nJsfTOZW5/LABcCqSFP5IRcXVdNxRpesmuDY6zpbS0DTm2DA9z+nkoz9m81rlvW7If48mIcPnL8BED3mvCwJAQDZsbgHGhbg3QPxNeDw5C8k44UlBkQEIMC7iXQBtbaoIIzSK7tQPJvsnzPhWsbFxNoYFp/LeKHgtPdQTochNWyAW6fZo8ipqlgykWL2ISqkU/jhNPphABC3/foUqoLrqYiXIyPWBnvDwfcH45A7FAg7Z8zJA9stbRIPwOZ7yR89jwt9mObj3XFSOVFDWQMIQhgq5KI69XamgWo5ApiyZ+pdHDmi6UNKsxIfY9hNyCE1CpnFS0wxKV+1sUGW2gKXgjI84TpdALPmpVE9nJh6rtY17wfI5ZHlboeZG8wpAcPv/DbuPo/tw5vHTqj/Y+es5mgBlYhih7FKP61at1ORZyLcp6RxxGMggwCkLUMtSiDuRQEEN6+fYu37+/x4vOf4dGz5xoM5gYKtlZDBZjmqhFjXIBuGwpRbtoaXgDu9UA58AsIyBnHEaWIFXTTyqTPNgHdqfuIBEmaJR/N+m1M3LXB3LnsX1HAbe/Zsrz4NpxZ8dYCQYGMvdNb75qs0d9oucW6LTicUmht4iX4qWsnBrz47FN0MeDL3/8O9+/fgIYEdAljnjEfTzidJsCCIwHkQBV85Dnjbr7H4XjUnYMkJcFDUIC82Gt24BbVcFK0X9anDNYYroIQJLPHOE84agC6+AJI1VnSBMQWn8NclmuT2y7leoQaoEVVeggNrDsWeXasAY253lg1SVMliAmFpHha2l1JilnNRhUoaNaZAMuD7J+/toAvfqMmRy9ZVoFmhSxE2samBK2BsKcpUzDzBk3TmobcOFxqB9AAsRX6IfUZZnUp3AJ/BsZM+QkcdbwUIVQcJqDTdmGqoseE4WqPw/EeVKRPKUXEIC51kjpXdh4IulPC3FLJlgwOSzDtAW2TPc0q3nb5603wxgAD3+zaaTu2kapz2SJzCKA70Wc00QK0Gy20Mbhs7W1jXsfZyWRjd7bLZ52tiikDMSTFIaVev0j+6WlqlYWkKgtrWql4pY3bAkSv+O2a1s4UOnecK5lbnGF5/ARAtxxrAG1CWH9cgJUtQO2D8NbCiRnqh2yTYBZtWjx7C2gbI5F/rAF2enXRlH3TrL6wgCkIskgItTSqrG5MhdEzMHEBaYGIEHyOVmMMAkSs8qRYhYIDn8DhcAAXRooJiQQc7IcBOc8IyULbGF4hYRY/8NT1OM3C0KacJTiyRBCiAy6EwOLb27RGqbLJ0wjmUa0IDsiukGWggCrSWFtCgFmOSRca1/8ZgwJkC1EVlrPF4ucb6PsOXRKXmbmYVVsFGy+FRQMrjEgiMPN4wni8R8mzuNFoAAexdchEPRwgaIzF5uU/6SAFujrnWKgiHz/WgPsiAGc+swxUpcaaopxQ0qxZvnkFw0kzv4QgJavzhOk0YhpHoBBqGjZFSCEEAeJ5xPfffI1SGFc3j0D9DiYRSdcJkRTqiPrPQPdZdDqLF/gSlFKzirROtfnYAAH2nrVVCU6w2DVD3wv4twJG7noTqFUoMmu2mxbMNY4j/NbvOgf1x+hmzZeq9dCNQRPeDXTDXfcQyHJD20aUHQhpIwdAfEWH1OHnP/scMY949V1CyRMAxjSPGMcJeZ7AWX26wQsf4pwzZoaAhUAImdHFoiXiIeveDQkzLLGHxKEoDYAZkYtmJwH6JLSKwBjHEw7TCVOxok8OlOiarpZzCKC1DCuk1xjQXx+0MhasgfZqP89dZ/UPSPURzX/Npli0J1Hs8MmnnyF1XU1RCwoIkOItNaiNTeFzdORAXqPT0GjCrnF0saQDx88v0I7xlqhl3om2A9EuPdsnHFy8069r/27HFz0P23JF8XzPXK0M+J+BKqWDqgRlkcX76xsc378HpkmwYGFx2+AOJRNKhroXis0smMUbqEYxIqlsXNGy658B6vX4esW/7V45kGtjZaC6FCm+FaLEe7nf/C6b7dzYIq9/u1lQb+9zY5K1zQTdxjh7XuvH2fie4TAmQqSofMEi6OpLwG6c1gVqwmr+NhU243nrHVK3Jtb98t8tyHr7GhmbB1gogJ8I6D5b+DaR7vsW0MZ6wleDL0gIOhEQEBEcgEQjvs3JhAHtJWNlZZZFLXpzBTPKjolQS5GzROWXLD6uVGTreY4B/W4nhKUZIdgyD9iCYtRiJKAgLmssZXmZGeM4IpJ4bYcQEUMSRqiVs3xFQAC6LS/gW6pIZhQE3N8fUDKDOCBCATDLdpClDYMC9tgl7K6ugAOQ8wFZkpCDIFbuOjciSRooYUZRQGMCreVn0eXODe6bRcLeW6fVaEEBOUEZawAYWcsjt7RatFqYZhyS9zNCnjEeD5hOR4AzAosfO7gFSMKNYuMtlzXiS4fjva6fKkoour/OYfGm8N8QgnZ+ffna5aQx+Da/vq8M3Z5MUQJsY5AiOSECISClDgF7dEPG4XCPfDximu/r3bZLQpBYgHma8P133+IFM66eRHBK9d1EUf2jxeIZYkAI54B7yyqsOGLzIPitVDkM9DZ6kM9ATgkg2R6OSdqTYkRwgBtA8xdkbucNcHMT5FbpdGmJXvKtLcuS/9sK5MABaF/JDjoGISxB+ULobBzrbWejAcGkrQ9+RImCrBsquH/3DqcPH9AVABSR5wnzmFEKkLO4dBVG5UNmDStgTLmAo+6K2ZuLhjZy4w2KwRVwCye2gMkK3xhIIclOBInr0el0EreUFMFq5exSwj4lzOOIw91dE+bLMMrFPHvDlskDvxgJEFcfTSFYi3842gD8PFihGS2YxbbiqK6+DKC/usLjZ08ViDQFgIg0UxPXtsl8NTrwNGCVUe0+d8EmTfjfjKd48LNFq2s+5IHd4pkLertsWFjTrDzTGeG4egCfvwdLwCb+3G6duPbJHJSFO4w+XmRRiJh4lESARWImUowaGg8AEmslOwGaYpfR4h+4tdL3x/MD2mBgRK0P5sZWf1uNUeM1ksErqnyvxglgSduurxWQL9q3pO+F4cbVHGD3+9au7loRskOUAkZIETQDNRGBWuuMD9kaMqXO89RLuyNrBcbzW+PPDxkfPL2f09TZ5RePnwToXhA8sBImdPbb2XEGtkPTyjTziCfuxlAb4F4D7QaI7J9q2cWCLaSUsOhE5kenwlCBX84zyjyBNY0PMZCgVSBT1JSBej1BAxIboxaGzJjGEYHUIq28dppmzLP4kROL9phCQt91CFED2Wpv3WIAMI4jptMJFDvkknF/f1A+VOOgq9IQ2AQNgEDYXV3h8ZPH6LuAabzHaRwVcEtFyoxmq5XhDggoKMpkixvnUr8tqKH1v4njCkSNsYkLCVCjnzXDCFOsgl2ytyiTIHuO0kEpyMcTpsMtcp4A1mqSlqLIrAQLkfjjVt56u7MdDd6uu06+6x957haQunTO/fGjOIfoqVwLh1AgsBUXCVH8vU2Qg9HvJHf7RAmnu3sNVm3Wa1144Fwwn064vb1Fd3UDisnl4hbXjS51iHG1zbrq+3mDL58WH3KuNGczGEMDWc063FKphRDQxXQG0NswkgN9DWjUT5exowZa1rRk20GUl/q3Bs8+ONIPkukAFy1nD7xDzhvQEtexy5QiO30dZ7z/4TtgPGEXAuY5Yx4z8mkGZ5bAWhYAKa7IBRwIISQpBJaAGBO6YZAiLdA84hCbpuU7T0kCNLP64heWbedhGJBLwX4YMI9H3N/fou+TrveAF598ghfdDuh7ydCUM7qYcN11+PDuHX77t//hzNByBrx56erXxlvGa0NsV77X5sevWWjMh6RFbBa1xtsYwAzCo0ePMNxcazxFi5Xxcqm2V1Nu2jMAkqJSRjeeZrwCUDGsUxxd35s1swHFnPMZTa3/bQFzMC+yXVXFcfUc/7dd54ZIQK2eW4OxLWALlOrbbIaY+nwVjRV8crPecwno9zvcHu4lEw4FpKJwAsAErQlBARQSMpuDHlR+lIoThKctQaC3wK7dLGHKrca3bOX5t2DJ+jpucp7ATs6Sc97gDWVwOSd2jz8WPAhYxIqdKeaku6T6m9H4Fs0gEHhufHnNu+zaS0aD9XPXfG+9o2jzfAlwr5+xpOGPCGd3/CRAN+AZyMbAU7MCeKYDNMZhsJiEQ7TnELlUTFsvNoDFq2fbM1G3IDNz3RIs1bpgWz7SCxMOFjQl/l+yjRktrJpEY+5TV3PQAyvtHWLRDqQCbZowZ5Z0TwxM0ySVzMaMhIB5Khj6AcMwgEhdK7AUJFrsErcfbjH0A07MmMaM02mCGZnMmmLjUEEiEbq+x+Mnj7Hb70CB0d/tcXc8WsY+6a9DlcQNtta51b6VyqJIlZ+C1VoXIcQahe4YU3E+LLY9eDqeELsBHINkrUABdGuRKYCsSJB+zOOE6f4WIY9SyhzNd7syJS7LJrH9Z6nIbFFXZeq+L1jT73+eY8F46v+Wv699/S48SD4ZYJZ0iXV7MCYgREj1oFiZudAyIccIKXRvDFSDjFQgBEge5VxKVYCJxGKe1I0jpQizhlYxsbFwG1C+PI4GFHxOY6/sbIHZqEpA0gJKYt1ewJtF3mACas7tKkgWwKMBYWvL+rhkvbHPpVXMCRU/X5qXO/jfP6JgbQFwE5KkispaoFk7p3nC7etXON3fIlr7C2OeJkzTJAq1xqC0UheyVru+w/OXn2G3v1aXpYTQiYIT1V85qWU6QwQ4hdBSn2pRrhQ0Jzoz3r15Ay4sln5ihJTw6PETcOqRo/PnVcPH6zdvzkD22irZtsuBVijEg1u03QZgubqNz1VlRiyRJq8qyGCX1YXbnKYu4cWLFwrWuL2XuY6DWO9I+Yq8w9YF4FxqqLXJ00Y7bcDPxmHBsRdHA+GNLnw6yC1L4Zqukyqy/rxZMy3HtL9++Z0bC8Y5uPfvby5qElzMzJLCkp0pZ60g2BiFgJg6XD16hMP9HY73ByBngFjSVAbNJKapLROJGx6C0JpNso1J4bIA3OeKvAFaqjtqNndb+dTXwLCCbhY6u6S8NKwtu0HCP2nhrlf5zirAk4iaKxYuHdoGpb+W1nDbnU6wGumONKpytGVwNaVpfWyOowPsfpdmq91rml7u/vlzRicPKwHATwR0V0C90P50ch1DWGti5spBQNvudUzGcPECeAJKGBBQVTXCxRWtYXJ5zTrCRYlcWW3mFhBjTMMLYAkqaNphhuTFpqCgW8G2VyzsvlwyiKRK2jRl2d5Hcy+Zxxkly/MmTOi6TvJ2clGLioFchvlJBhBSTEAQv7RSCk7HsQozA8/RshDoiIRAePLsKa6ur8EoSF2Hp89egAvj/u4W4ObHWoNZVbM2IeGrHtZxZlM2zF+KFtYMaPvJ6MBZe0QWyQhO84SpZKQuyiKqOrlDZqodccmYjncgnkFk2RJKy0iC1eKrt5fVb8tlvDi9ChZssPvCceEnLyCAC4CqjpfTeDYeucXMLr21lBmFZxFeqQeHhBIIWpe99glECEkKmZiiG5iRgmb2QfPdZzCG/YDQdeAYEbtOCst4izI19cRvW9JCwQZWf5wdItyAwEYHSzDRspFEd32QQODQ8oRfAqe1wI39zU1BWN9SheNGMZEtwL2uGugte/Z7UJOb7eiFFej279hqv/+074sqmWuAr9fkecZ4f4+3r37QXMWSEeQ4SdBi6joxCHCr3VtBt/K9kBJS3yu5hrqNXtsNte4F+3QKR0MOACQIfJomrTIrpshu2IkCHoLs0lS5EHD88B4fbm/r/cwt3qfyGT+v2nrjYWHVn1rt02iXWurIOr86CAL89QnFK5TNGAEGhr7HzfWV7DIaOgcBahwgmXiEem+Ay1vaFDJqrgDsz9l9bgn5c6xGjgZGSgUwa4vl+ljTKxHV1Jzr6zx9et9w//zz9+mceKXBOlBQd0d8jAOo7U7XTjvAveCpei5wROoHPH35Cd68+gF3d7fIuWCveehjjAglg0BIQ4/Yda2QkBnXuGEHof3zLEkiq2xu5NPHYJil+9I4G9/x/vR1XP19+p7qD1/lMmrBsqp0GDVcmOv6bFpfg8U1RISU0hn/8n0IIbSUykHTnuJcuTP6Wxdk8u3cUtT8/Hp85XnaFj9ct9N2fKqC88Dx0wDdnuDdABohmGChttKWWs0CoBmAb883oO3eqEDLft8A2naLLhwuuk2qBCoW7Vb8YUH0+r6qISnrLlDwDp1sQk3ib3/b/aWwvnPGaTzpVnzErD5o0zRjPI018wgHwjD0FaBZ9LZ0oPWjsAlK0dSPp1Es3Zy0zbkpMhAAziFg/+gGT54+UZASEUJE1/WIMeLLP42SCxeohX2M2Vl53TPrqz2fdITYfBcVYLFdxQsGIYFQGXDO2ZxZx2FCDD2IgoItA2w6H2WWKpWnI8J0RIAUu2Hrt5HAAnC7Od04TFD6C87h+kNPWB8bQO8BfNlmyo+w7gw4xlt/WTGo7UdLWsR5mgAtuiSVS1s0edQ1aWuxunGhCOhOGoOQ3WjEiP3VFWLXgzoRVDVDifezBhqgtXFbCFm1dHsgvsFwiTToN7TtVmvvOpASgCte1Ri2Hfa9OMu2nX+IBzNLLmbrx3q8z+bDge3lFvLyJYYlbQh8u/+cwz/XKmnWhgOaa1wXWikoc8YP336HfH/AjkQNHfOM+8MBx2nE559/jndv32G+vwcFcydrSvUwDNj1AyI123AiqjUFLAc7QfgtoMmdVvNsrO10PIJLUYUjIKWI6+sb9H0v7za+rQaT1z+8liBgLAG3rbtSGERLgW+Fs4KlFbT3uzmzctsSjxCqBbvKBuVxBhq9QUO7IlU1AVzv9nj0+LHsBJhCQCbXSp3rlo3LyUz/UJU9WNFFkw1LsG3T7nmFgI1WoETAca53npXNXtGUpee06+yZZu1mFtcfD87sWWuld60QWQdIyTMkycHu13UpGYWloJNVaqxrhZ1sCaGuayICYkSkAfvriNh3ePv6Nca7WxyJgRDR9QOuksR9xNTLbiqCxgcQaqqvQpIdzejd9+sSmF4HWKJJj23DCVfZaMqggfnFve0lDT9BYm+YuK43IsE75+9xipASWgXOKwPC4lo9tq5ru4mAWAVD/apdOxufS89ejKEbpzV4Z2iGlXay/nbp8GvrY5L8JwG6K/E5AG35NkWLdwMYWrEaO5zBAIBLvA4V2uyuct+rxdwDbf2bgeq4ZLnvS5aUU2cWbXsXc2uLm0jSRwXWoiKQ3J+sADgykAmwHLtcZILnPMNSBPb9gEn9yPNcMB5HTJO0JZ8mpK7DkJJGMFNNy+YtLQAwzwXvb28x67vv7g6Y5wzmAJBYyM1KY1lAumHAJ598ImXUK9HLtuaw2+P65gbv3ryGDz0MKlgIVrDG9GkBt7W8CUsFzqKAO/i8hGbRUMRtVqRSIEVrTKigoBR5blRrpQhacRnhUlDmEdPxgNPxAOQZocwgLmDOdQ5NRVpRz8Vja41+TAteo67l9bR6KNe+bzWkWrfPfvP9+fMOUxCJGTxNGE8ndPuCqEG1GQ0EZSItviS7LbFLyKNUOu36HshaARXip4rUIXY7dMMO6HrEpHlsLwHGqmz537xVahvEGhg3iwkga0+KVYQzC3IbS5wBav9p389/r83V70sxxyyuXluVIf27tyzbZq0jtWo3v/PGK/9zHLa2yPrYGtrGpDAOd3d4/+4dbiCWu3E84e379zgcDri6usKjJ08wThOYgFwmvHv3tgLKEAL2u50AVDSw2ilt2fwsdgot7SAZMGzAoswzxsNB3GHUbYmQQJC4FQK0OrDsUh6PJ7x7+xZlmuuOJXS6mt68Um7IgoLRaFH5tP0LISCmiKHvkJLkZz6dJq0MGJbPVD5XFuiYdY0EZAp49uIlhpgkJR0pdFZDSlOwRMqV5tCFKtEYgILAJWBz/1bzv6XnLzgTNYC1Th24PmzXxPL6W058A8NmiZ6mqYJuuw+rd14CdO2aVfsiqUJqO9ISVHs8HuvuFmKs9Gf9lJS4hjnUckwkcUwx4eXnOxwP9xgPt5jHCYyALiSENAAan9Kkh7pFmpsrdL5CWBgYgbZD4vvgFW+bC7/W25g3+pHlcj4nW9Z8M1TWT+MrzJq+klsWv43n+XaV1fl1BpuHrNFtHFoAJey1bm6qJrhqz8d2WrbkilfcaqxPWbqRbtG0H/P/vwHd1WJdiVJD+exvs8KQ2yYAmpLUHlYFB8B1iBYTJLNahcsCaDMqAZuVap7nB4F2feTqnB11Q4RgejC6vkM0H1ZqzF1lDUBA1/W4vz8hZwGuljEFpeBwf8A4zTjlGZgn9P2A6/2V9h2yxaVFTezlkkkAWqRHiO7u9r5q5bK9Gmq2BFFygJtH17i+uZbco27BxZgQI+HFy5eYphF3H25R5kkZv1bYJMDcPAJBs6O4ASMB8CDzUAx1bvxKaNbJgGkqmCVnmK5FAfd5HsHzhNQPiCxAfJ5GzNMR0+mAaTxJEQPLv62g3yjKXhdqkOYSPH3s+NhilGH5UVednblkxdxkyCp5PRPfBJh+1ajcFkaqMIkBlALOWQIf69VaRpuBwhkoGXMuCLHDjAlp2IFSwjyPGMGYAMwUMFxdIVxdAV0vvrwKJD2TbBasLcC9bHMdqbUwMdDtnlctTG4sqjCy7w5sbm1jrr/7savrdq20OUGxeNdaCKKBDGt3bXvwvp5eWLo3XQAlW8eaFqJa/8z/veYbZolRsYxLZZ7w/ddfyk7RLlZwFWNE3/d4/vw5cinY7fcIKeHu9j1iTCgoiCQ5eudxwt3799LmwkgxYj/sAMi7GJIf2gJPzTIZWNO1qtJUwJjmjDyN4hs9zwAxTjzju+OhWlNRWq7pD3d3mE5HsOUBN0FOpkiqNKh+Al6qtC+ioNjmDiEl6f9+v0NKSfjOXNRqXupjbCevfdpWOumKY/T7PT757DNEk2MWpF8BvgJLkufVUBVTHGyHrzAQ9G6nsNh/zXAlRqEN9dzJAL+GtugT9Tnax5WctDnrug5XV1dIKWEcx4VMtQBNDxINJFuM1EO03NZ0S1lqGCAlyWwzz3NTbNV9ctE/yNRTCIgsVnLWomrEESEkDLs9xvEkzyICYkQJkrIPCFI4jJZZhtYguu7m45wXPLyG7Zo2Re182003PgOoQuF9qz1f9W1ioWfZfYdT40J7r8rJKinpHNiulbL1PG3yT/fdGyN0GhUvEB5yKl9bvtf89dK4Vgyo82b4ctE2fY4pgGXd6NXxDx90CwU0LdNlHmkWrTYJC7iwILpGxM2A4axS9huLoOeqHeq1vNTQc7aAyP80oH3xHIS4JUJaGHItMlNBsUzwNGcVfOI3Oeu2HhfgcBwxcsFcMq4IuNoP2O93CpwIIMlPXYihlQRQmBFixPE0gomQp4zTadSS8BEFsSk/kJ2e/f4KP//5z5H6HhxDBS5RWoIcCNfX13j2/AWmccbdPKmSLAEaAag+7SDS7TdWsM1gKipeQtV6bA5NJgL6PnIRyWyMXtpacsbp/h7X+z1CiMgl43S4x3Q6IM8j5nmUlGS12A0q4HZhRKvZWgrdS+yQN75vrckfBYksW8KFRX3JYnAZWD9wjf6nTbkKSWU8xIzpdESZJsTUIweGuZgwA5nFlQRcQCGh3+0xdD26mHA63OM4ZxwLMIeA0Pf41a9+g+7qSnJ/m2Bwzfw4cDwH3DZUZvVvvOMcXOLCGJF2aG1Ru9SWLUWAaLvtjYU1l5hza4y96/w3AVmhgu7WeV0jGwJlrWhcVNhI/O7r7+Y6Y/mKdT0GBqgUvPvhe9y+eY2OCBEBkQIeXd9g6AexZoIwHU9AkXt2ww7Pnz1Xy27BOE443N3jeHsAQJKZozCSrWsDXVEC2Yahx9D31UhgIDCon8ecC8o8y+7jPCtPyZrxQy3QNZNUwTxPzrqCxYI0UBpIg+qrK5XRkl97FhMgoHC/3+F6f4Wh7zXXs/E0Axq2I8eoAZVsxgULhJQ19+TZU1xdXSsIouoyEECYpxH3b95huNrh6uYGgSK845IoE6EZpZhlTLmtWzMxKMe9yJO2+J23wm7uAgEt1kFB+NCLC+I0z0jqC10TDXBz51jTvc8c5BXgS3xtAdZWazmEgN1uV4F7DUxevd86brwiIErmsZwRWFKaltKh73cyL0VqhzJbrA9Vt1XbkfJ5+b1srYTk2rwFTFnn0HiDP7/458bDGyI8yF68/2y3j1F3joUh1fUYiGpxpnVyBjheY2O71Yelv757AkN3cB7mtRWvAYsCUGvD0iU5eIlPbvJ4P87u03ZHArW1vXX8wwfdICBoWi1HWExLAvUaRz14OZgNWHMlDT9ZdYBZLcrgCt48yF77aNuzsSbujwBtD8Cs5Rq2hRQi+q5DVms0WZuV25l1hmLAaRwxK8NIMeL2eIfjNEHcMRgdqf08EFLqgMgomAEqVTk0f/T74xF3hwMYwOFwlLLLIYIRIaWRNRBI6mbi6dOnePTkCdBJdcIQY02/x8xInECBMAx7XN88wjhPmMZTdS1hbj6RJtioyP25VqhsntPLxYq6pWrjWRgIIYIxL2gjAEDJONzeYjodJbByPELcSwRsL3K0Mkz1ajPlhfDGN3/B2QLGjzk+dhWfv9IdZ5ZRnDNjIqeqfIQR+b/bfZ4hFuRJUl6GYDsycu9coCkutSWpw7APoDyj5IwZASNF5EjodgN+8evf4PmLF+LeUVGMApHF0CzVlqWgeXj0Wn8uKCHk1CunbVsFvUvWbX+sI/GtzQ8pC6R99eCtKRzmI6nXKgOQ3erLQZ0mpC8ZBBbvBjbnn4DqSrbIuJQFONo1BMZ4f4tvv/gj0jxh6BJ4npE1ADKRBJTnSSq61h3BUpAoSnGqwuLxSlwVlAgo8hPwLcWHAkjjADIXnMapGlO08XUOqmVcg9iFlloGjBACOjXi5JyBnCsPqOPPMuaLzC9YYJOmnCjYD4EQk6a7jEEVihHj6QSCuLS07FUyDlnBWK3JAFUkbA2DMAwDfvbzX2jAfDNAmWXx26++wesvvwQR4cnLl/jlX/xjxN1edqYMQFaQtjwYLhgdOMtOU2ljRTtbNFctflVGNgDurcYmSzp1ewRz3TWepuliYJ1v1zpA0F/rD4t/WCvN3tr+kKHCvhtHqmvUfM1ZXC84WmEXlmwluvYNnxjWMHepmrbxIv9tPNwMB76v1QgpJ/UdG0q2gWQLNrT51X9VWVXgXO9dPqmCdLsHZLuD8n4ql63G63Ft163no/F9Qtgi1wePqlCu3rcOUvXjfskw4R4iH6u//fW8cX7r+AmAbmM5TiiuFwea5r2GQE3bQ/t0OaqXIBmwHNoeaBvAXbuP/Figvf7NQxc/icSt5Piwk+h9LkVSXRn84+bWAiLM0yzVKAFJlF8It3d3mJSpJzNVhoBuGCDp3CZ4K7Dx9lIgVm4QODPu74/ih02yNeavDSBc7fd4+ckn8t4YW7CbETcA5oyUejx9+kyEUiC8efMK0yRV+Kg4JsOSTUICgFQ4sPh6b+0c1XFk8YWnAnQpSL5otK3aoOCt5Bmn4x2OB1NeGIyizy/qw71+g/bkRwK6Np2Xmc+fyUPOjjPaWb138bl1dwWdledCwF07354nadpIkYYJDXmUjGsuM1ISi2tB1Fzxmo+VJZtCSJL+DTkizzOuniRcPXsOJsLzl5/gyfPnNX2cvNivkvU4bvRqMdaXtJJzRru2DpnQMlC42Fr+iDBZbBGvwIi3Lte2mBKNpSJwGQgrJwx+ns/fUS2Eq3av++ufvRZEFVxC0o9KClLhKUEeJtcHAueMb7/6EuPhDhEMnhmHKWNUY4Avb28Fw7xQDCGAA8FScEbjy4p8TbHWjPvqTlI0lzW3zE+sFfeY231OmeL6UNlNKwXI1NweoKDUXGma4uMG2nznQcpWZbchmXU0ACG23YdAEkMS1f0xq2U0z1kzS7XquNLpoBZD7wogRYIePX6K/fUjNXfI7ET9fRpHvPrhB2CcQLnguz/8Efe3d/gv/tW/Qk4J5vcNWKaf5p4BYOlW5ehW2aTS6iWe0ujIA299irrRyF1ldb+nu5wzDvf3ADXfX/+7T43pQf3a2u2fbddaPnfJxnV8EKxXkOzaZzRAhAZybYxCUDzaADxzi3mqS56WuccXFW8rImkKib5yxQfkanlWsxoT4KqpYrNvdc06HOVT90n/AkJxSIq5elMBa9mwxA8Cn7yAWB5bfI1hgeceH3EdS8nI8+dJTD+GZ/Jw9fkxsH02//rpB2LNV7d4rD9+EqDbxG9dCFsXUVsKnmmUmsKvWbSXD7DBRwXW8zyrNWKZYxTuuR8D2otzCyJb0qQJNrOoAIwUAqgw5mkE+gQTN8tmSyaIcZox5YwQAwCxet/fH4BSkJjRq5WbYsJuJ8UUAvu3y1FAyFyQuSB1CblIRcpcGJmBjAKw5A8PJJ+ffvoprq6va/Bny0tbURqAgBQD0AH7q2s85YJpHvHu3VvJ/R0K1LEbEk4JzKQR8dXNw5i+ClMd/6yCMoZQZXguWaLnK7HY9h4DheqckpZLDibeVnNs40NofrcPzvED5z5+tJ2X81+2jsbszKtg21Kpc0CGXxjVqkF63vGPJRC3wLnmimEggIEWiIuCeT5J/uQuIUtIZVtzbos1Aghdh8IF+5DQ7/cYdnt0/VCvb+t4Q8ui8wF5eLxb25djc/4go6m61l1+4fPHPgxc/bZu68QG13KA+2MHUbNs0sqyvWW5MxB5iU+t83uvlQ8DMqfjEeM4tvzI1hbXptsPH/D9d9+C8wwiYGJx1TgeT8iz1CFIIWLY9WAA8zy76SUxKsRQ6VRozoSuDZPRa63lq+1UkGxGCfvX9JlV/nPnvgbUwF/hf6qC10VBbieNRfkMooQakJbx4wq6QxR+JwGTATf7G/RDD85AzrMUGqvpY1FTsARSLm8Kg82FEkjfD/j088/FjS+o2wkJx4wE3J5OOJ1GdMyIzJiPJ3z1+z/g6tkzvPjlL5G6XsfOrW33b6HIe4Jk+Q8D1Uoup5w8cnRvigizWbxtHcmuplmF13SYkkKRYrn6lzS5plWj9XUBHLuWmTVFbmi7NONYKziuMcUWSPW7qKjXC+84A1aCemsfGBK0X9MBLvjuFgAkgDWpgLbPX1vbwG0niKl69ANV2ZT5uGTRt/dtKdmtk40eAoLsxkAAtacPcuPoVql0ZYWXzvtbB1mBeptPADUuwbd5MdwX/mZd+OYVsfVvPZ7rtq4DgS8bQZaA+8fK/p8M6H5ILnmm4S3bxTSosztCFUhWzMYW5qx+0uBtwrH2rM/J3+2KM/j2kQkReCoLLYLQxSjZRrz0sKeTggYSQYGgW4wMHO4PyNOIDgBIouZBBcOwQwgRBpXIPbdAgzC5SFYBHbfTNGqmE2lhLRACxn63w6PHjzcVIsnyQyiQ4icZDMSE/fUNuqEDE2POMz68fw9w0OwWIsi0VFAVuqSp/7gyNV7Mgc2DWXKkWp5LY2aNglm+LbtNVsEtoPAisl4BtB+zdbamlUYWDwNrs7Rebsfyex2jB5iCB9SA0pe6JHh3ELvGW2tbmrmmFEl7ZeehkAjVPE8oJWPf9whpwMyEwYJqmTXuoSAGUnDeIcQEycGcnMB3ygKv170tZAIucINGi20Xx/dt8Sz7xqZUceUXzad/Ob71zjpN5M/WeV+7nhE1QaAdRA3OrfPjqgIqHayFxIYMPjcGbFm4rP8XBO1aWTD3uePxiDxNAJrbjKVwDKr8ztOEL/7we4z39+hE70cBMOWCqTTXoEyEkHoUTJjL2JYVofIuZs21S6TWceXDCniDbjUzGpAu0MqWJACaiRqfqxWBHelwG8iqGEKUyJlJ83YXyTnvWK+NVyQp6R4DWhrAIG59KQb0XULfd9jv9tjv99gPexQNbD8dJgnoLNBdFGkLrYQUs5T6KsoPZzBunj/F008+AXWdFANi1OqafSCM97egPIPBmLkgF3Gnefv6DR5/9hliSjIuQXztScHnQlnEep3I2WpkMnrxdOWGFSRZsdjRtR3VHdLuMRDqLK3jOJ5ZDW3sPV/6WNnvGCM6Szeq7h7H47FmFjO3I//8ujvk19uyEWe0sH5v5eNeWaBm/Sc0X+42uu7b2Xx4frENFs11yINhX1WT4XjBar2fFdSycahu91x5PSCymGKjE+tftvfU2nFLnrSWMcv5FQUNVOo8rwHvJlhfPKHlOre//ViuDQtrGQ1ccB3UttfdiYuyufXNt+nS8ZMA3R87amoXA9vACmybUBGGVlhAgATPiGXU8qY249S58GI9vwR8/kcHslZgB8vLXKvQFgOjFgqR6nsNTLb72/ZX4QwKkDLlKqCmaZSrAhCQkDii6yL2+z1CAKSSoAUVQfO7NsB9fzjicDwiM+M0jgK4Scp6C2iSjAKfffYZhmHQSF2Xh5YiiEIt4S61R4IEnQDoYl+zmYzjhNP9AWZ5kkRLKhMhzIuDTqgKQ3CoAV0VoFRCkNBMCmaJqz8I41JlpernbnH9mOPPsWL/2GuNmtrWmgkxv4DPlzCRafPr8w/7r8UgljgKzrrlrlnfJ2TVWmSWOEE/8sx5mjCPI4a+B8VOdgSD5eEhUBAfZHFTYcSYQBTRRHDr06X+bh9rGO2BLpl0V4HndsJ4ea3shrV/lf7cG4jIWa0An3h0LbD9tndth+ur7ASt5saucAx+y890/c5LoNv+rmOBRgNrQeSflbO6hUzTwi3EPoV+IojFYv3NN1/j1fffoy/iRlKCjM1UCg7zLO4VISIXxvujWnkV0EqHA0DNzaGWy1Y/3xBl14/BIAVRlp2EdBqzzmUX7imzpQABAABJREFUE0KMWlZeSdQEgZsbMmMEOxecUtDNMw6HA6aTqOREjAgVvGpR1nTzkno0Kt+L4pfcpYih67Df73B1vceu3wMFtRJnnuea/UXSlp6FnUkbZfZqBqB4tcfLX/0a3CWkIPE+DEjpcYqIBBxu7xCKpDjNVDCDMTPw4cMHjKcT9lfXGrgXxC3B8UNAU60CmyuPFith2d6FFVfptmZI4fUKRzUsEBo4NhokVbYYy/SYW2tgyxrpQTyRuKscj0eVfQGUc8sUpm21XVYb+bZ+zIWI4Bbn4l1mcW5VMo3utvi1W9drTMBiaJLny7vPcAMtZ6GOpcZF2VhbGyvgtmtdO7aAKBa/6x31uU4+CLBYNMS+Wp0RP+et31zFxmpkUA07ASA2nidg6CEeqIMgzzBcxljw+nPDxceBd6XHdTYXU2q8rH5ori8cPznQfWnQ2P8zwK2R2iWXWn5dwPZcFws77NUedg6063f9spLbjrjPmeg2u2pCloCalCJA0uYNXaf+eqo+KjiuApIkhdRpPElp5ZDEypGzMq2IiIhEEUPqBWhB+o4gAZg2YlVjBonQGUfx45yzgidISq8o/okvX7zA48ePK+DuUpIqliQSqWryynyDFiAJYBB1CCni5SefIU8Z337zDU6HQ7P8gRGpjS8RgUNj/FS4Grxtvg18l1wQQMg1t7Y+k5rVtoUd/Q8DuC9auS/eoPNqVKKWfUITRHYsF/MGnTlmumXFCCGgiyJ4fdua1cIxYp2AahOqGRYAYhWsGvSVc8Z4OqDMEyIlBIqtUhoTKIqvayTFWJoYc+UwdUG5sHW+/m39N1cm2DCugYElz9gCqov5rZoPLxhtE0AOJKzvde2u/zzgXggBPpsjIloVv/B7NisFjZtgbL8aHTVwcwlsA6gZG3xqtpyzZDJagZgUAlIIkq6OgLv7e3z5hz+C5xngAkZBzoyCAg4JLz79DF3fVzBVBbL6Oocg1W+JxF0tahC2WQpLyXX8SikIJMCaAGR1sQkxoktSIl4UI2B240KB6va4MY1cCkIU94++68QNIMuOzbfffIOvv/4KmGfx7w4kdIuABFEaQyABr5oOsEsRqYvoNTVilzpEMmt7QZ5m5GmuQp0NWFXuvpI3YJj7SL/b49d/8Ze4efxYjEu5gKJkP4lRlIDT8Yh3b986xWmWd8SI65sbDMOg/uZBq3CazqwVM5t6vFxR3FZoXa28vGYbdLjvQE2RV6AVmNV9xCt6RodVDVjRa60YCVOSl21YA25bn6UUnE4n4aeFnALMi74Iv23AWGbBKevKT+T5dqK9v+2YnR9LXrAct4V11lpygecLxJYjVEW/+XUbVvEA38/DGnhfUmgIErNVDPsqTxIrPUDRdtZlPLnI/nRMBMoy5pXDVcOWgnkH6F2Pta1eiVIj28Y4+OdW3R3iJmZ+7ev+fcx4cenvNXj3fL/es/nky8dPAnRftMxgCbQBNXYqkC4lSyo9jYiW+8rm4lgP9FKQ2TX2xT6WC6L+cIYHtoE4wcANKa7WJ5aCzqyRSlGkDKttmFpu3la9K5eC0ziCtXRyYhEEKRCudjv0fZJiO9QANxyRzWXWamLQjCgFIClQYowzhoCnz55VwdinhF0vvprFaYM2FGI5LWBKIBKrkFi/EqSaYcI3X32BcjoicrMfVgZhn5XQl/7PFXigIFKAlCdXJxUy62pjnuQzYmzCvPXU/f8Oys8Z6+p3A2T1zJJRCI/fAJ3GwGApyuKZ8FkALiItOENVcfPA0D7FGiVvCdC1pEBAcjWT+r7q+0vBeDxiPp2Q+istzhKUtMXvlMw6ElT4OTC5yRBXQmk5XotRqN/qUx3g9jNsz1pvJXpLtcnT0obACQ6V0w70NuXOmu2DyM6Z9aJ7Xuit5qoBblryFn298TGZqnMgJKk2+aISZmCHF32BuJVqMZqoQYIxRUSSsjIBAJWCeRzxzR9+j3x3q0JEsrwUZnAgPHvxEjfPnkqMzNSyPiGQlnMOquQBsosW0Pe95gEWMGFWURvvQOLGEULArMCfiBCT5ogvsuYTL4PhAFQLqp03JZxJA69J/Io/+8XP8eFwwOtXPyCSpaXj6uYWqCkjooRE+UeiNHRa2KUURp4yKBdgLuAsxMOqzNraMNhg8qxUehQ6/OTTT/Hpy09kDbGMfdFiMoULZiq4e/8WPJ1ARVzrZhYFpe97vHjxAle73YItFyK12luQudKN0bgfN6zX5zafM2urXbIGftS+AkAFw+s1KUryUub7NerdH0jpB2QBrZpmsdioFoQQa674Skqy/QqbCYJfp6i8EE4BFMC5BHK+z1ug24OzNeheX1fH6gLgNlq3Z7ZdifP9CS9viKjN4QYQXYP/yvtNAdEdUeu7FIGiWgEVIASKeh8jdkEqjOa8sOhL31tFW64qxMpMSf5rAGhpmLA2+rEtEOWaivZ5w+Dk6Wgtb7ay5KwGfvHb/5e6fwm5bVn+BaFfZI4x5/we67XX3vvsc+75l3qv2tBqlAhiW2yULbVnx2ooloiijWqVHYWiGoKPhohQdnyASCEIUtRFsCEiaEnZEa82LP73f577nLMfa+211veYc47MsBERmZE5cszv2+d/hb3H4ltzzvHIkRkZGfGLyMjIXp8XOdU/u3H89EH3AHD77dbZCSnOuiI9ZyTNz7reAQnueztKTCCv1kF3Uqj30K3huVV96Lsrlpn9b3xOYFBmTPOEm+vrRgjYhg0KYbBo+Q8PD6KAEXE6iXeaKCKwrpgnQqSA3W7Cbrcraa3qJKawfYaA9rOmRXw8HmWxnMZvRgXe026Hx+MRu8MBV1dXOOgOcslAi07JhFBTDC45gSgDpmwDYRdnvLi6wWGacf/Dd3jIZ+Qlw3vuQKSx8DKgjWZMogiL56P0Wy57togw4DJmKs0vA+4hyOss4UtH6zEdzXt0h7WRHAj1l/UeuGtVoNTv0U29lz8HtntAZyA4hlgosbb4q2LJrLtHZtNoFdBmsKb4kowludtFkmHv0zYSlcYYyO2VfdN+96uFuO46mbLsDeWqlBrFUtpYBXH9XL9ceG0Qx8nr+NWRp2qtBCo97HcPuMHUix6hk+bEreNkoOAhICOGChasvnWvgVTAjW9jCFHCgSwcIRIiM4JugsM549s//Qnfff01diW3vfDImYHD4Qq3r1/C1gmKA4QlDERBPULQcSzvXwigkhawIKkiQ0kHsczwoW5VTiSebehakhLaQIU2YEBj62o/eJ2icosA7OIBb7/4HO/fv9N12x7USGHWVwEBgYPEujIBHJASa7YpianGkrGcFuSz6SJLzwqpD9dl8lmNWguXvL19gV/84ivJXQ3IbGiWFKdMBOQERsK7775FOh0RNO1pZEmYuptnvHr5ElOQ54umUrnEJOODyHZOIIBCOxaf4UxoOVT7Qr95XWoSw4+/0+nU8P00TToLoeFG3aZz1dANsHUQ9moZ6gxzupmcn6a5tpNzqYuENVJpox+jPszOG8C+JWb4lmQNHfDux3QDvDvaVVm5Bm6NPHFUNh4Kg/uMvkV/DOqxebAbc0YPohKWBJV5rA4sIpVVGSCW8NOzGvTr99RZgTJG2TvSbN5XaV6wv9A8ex4uvIBqGOiTUlddpInaji39fSn7jaenf/eK1s8E3j990K1HBgrgtTAL2WiAy2Y1y1YO7QugyRh32BXsP2gNDFadyC1KKGDKxc+6G+pCCS7pAgMBh90e0zzLKu4oUKO+pi6aJMimLyFOSDng8XTWrYHFMxUMrxKw280Iau33TTQWzznjfD7hvCxYzouAZ4qIFDEHWUA1TRN2hwPevH0rApKCNlOnbEMExajeTbGAg2Uj0b2SxeMN4HzExw/vMAXCPE9YWDbdKApJzQEiMagMsAm4yjb+i9XCzLB9ycpeIYyaYxdd/z0DTD8HcBfjz5W7elfpvfXvZuGNFdEJWsC8c1AB2gr0Arrt+yBmz987FY9cLmPJC7LVb5b0ZmUxlGsIgbCcE/IiY4/m0Hg56tyM3a1jGIDNPFRX+JhWBtQbwF0UVRmh0qXKC9a/W9OH/WfNxVyNjeY5HYdrT9E69nAlgJVH7Wfx+lD1opX7jZe8/QYLA9GxcEGwFy8hxAOIonja9hgv+P4WRaeLpifNAQ5oXn05Hu7v8dvf/BbpLBtdZY25zsxAiPj8yy9BUXb4y5nFGcKiSguEZQ2lC6GEsC2FtyQAqfZJVaZGxEmBhISHW6dXAAbzYZpdop5qK3MUKyr9S7i5fYnD1RXOD3dW2/K/AUnOAEc1fjKQEhACIwfGwgsyERYQQgYejiJTz7qIL2XUxWe2HTmTwnR50+3tS/xz//5/iN3+IDnRScbMkjNCSiWzBmfGx48fgLQgsO03kBFB2M0R14crWeymfY6c1cAgwadkrXL843lkk8suHbUfgTpOArFsuob12GOuY2hSwG3pJlcZShwr2zvKQk1nXNphOeVLXbrrNuCtzv6vzbtv/GQOP+WD7GKo1cgfeVpLfTf0iHmjfbvacrz0rDonoy7Y9M8UOug7/QZTW17uSpc1HXyKQrDqZSUfgWWjPUhoim1y5Pt1BMKrmNZOrcNU21LzdBNrCAnXdXtN39jDRCihQUxOqa55bqTTR3oTI77xjcDYYBodPwvQnQqzc0nrlxbJNLK4DWtGxyUwVaxFPUxp1zFtSr07BgN7fBhQGFh77pfBjQhgIvEuzfOsgJVKvLfFAloJBMb19TWixlM/HI9glp2yyBg4hJICa1kWTPMMsybZDd4s88pldmBJCSHOAKKbZiUcrq7wy1/+Crt5V9RgYlECxbpk8Zxb7B7US04AEtsK94S7Dz/g08ePMA8HcsYCjS91CfxNcIiSqCZMoIAKs3VDArb8pQRi2WzDDI/ay71t9FQ/ro+ed+y7KaqtEg3+SCU2LG9a11Gm5FsPjPduF0DtPNy94J+mqazqFwPrXARj71GytnhPgqxOD2CKChqDtoeQloTHh0fcZslSYjxvxrKUV2nUUm0sqMho5E70pog3l4sEsDE8MJieZUR5sNs9JwrI7TqmY3LkPSLXjzIDVOCh5toeN98D7kr/OptXeHigmH2YEbkCBRirT7UDFL6fS2hSIHUOcwVrWT6//sPv8XD3EVFcr8ickCALsW9fvcTNy5c4plSAYuudFnnABu5JsjUVIqgCzqQL80z2AY0hVzrKbArfX2zPdcAKa1Dl6Wf9uT8c8OrVa3x7fMCSZJOe2ici0xMTIhvgkxGfgpgVOdRFnkgZ52WRjBlmfLB4uxPX8C1vN1xf3+CX/+BXuLq+wcJAOqvXnKDrYlDiZk/HM44PD2ZiaC71hEgTXtzeIgSS3TjnCbC+LACRqnPCiM/VwTMalU/NBJbZAxQYtP7zhqV73mZfjH/TImuvyMkg6gaN6X2TX8A6K0ezY6Wrt+mWMqKU52y2tgfAVtfRTFlLFpMV24tBR+Csod3GcyZvxUioutAD2h7c9gbQ6L2to9I88lRB+kpIVSRs+k66VejpHTp93XovdallTZNS6WFvttebHNaxk22cE8P2E/E80mz3APOVj0F3761uZh9WVGv53hYiP+f4yYNuhi3ykYG1nCVG27zapeFmrW4BGXQKF64vOouphQTkLz2vwlqfoVd78ABBPLMGZTIk3zSFKhTdOnsYaM5gPDw+gkiA78PjI8xil5grKqmhbm5vHQ2qb9AbHzFOIsSPZ5wTg8KEwLFswEAUcXN9KwuFgliyHz99wt3jA65f3OIqXEtlNVWFmyQCQEgMLAwAGbyc8e7bb5HOZ1nJH4LutAawLmJi+Pgpcl4ZyYaRmWQHLBtIBq5ZjZJQp6dWcO1HAu1LwLxXOt7yHd7vBR+txFnzpAC0NcDuwXYB3d3voLGy+/0ezLLj2+PjI87ns3oibXGSbcOr/NGELzjPDhOaJZBK8xACjo+PVVCSLGrLmv4MuY1N9oK8K7G0+6lj3SfcGj3PANhbZfouMmG8BmsoSsnaNDxIwJxl1SmnBvdXkE0VJFl7NjmqAm4D3UYHH0oCcImn7j05ti4kRlkk6OuTFWxTYnx49w5/+ePXoJwUALKAbsqY5h0+++ILJCrppyt40XhbirGOS68cjccKjc3D1c3YqHY3B55knVIoorNuBXc7Q0n6sLZ1BLqLEmbG2y++wIcPP+B4fw/J3i1tmmAGnYS1pcygoEB6yeJQcN2ac8bC6ijSzXsESIoUTqiRrczANM349a9/jTeffYZzlsXhCKThGrrcnVgA6ZLwcP+AZVkkxAVtn+52MwKR7Fas2VrYFjFuADQPMXrPaT+GLo0pA3ojA8cAbuFvV75leSkGYVOmkxNU+8sDO7/z5Fad7f29t9vqXBaBK5Ay0E8XynWtxsiwbejofq/ing1091mksAaJ9Z31uj3Ty6z2zvb+vn61buYZr/c3gBYOSTQ8wirvUDwh9uxlnokFxLfWkZbRgWXrS9860od99LjoKKO9hBixz1RzqU6e/peuE7VhPhcU2E8fdGfG8fGEs3q2m0VQQF2tOhgMm+AbawKawFoB7ecehnSdx6ZPrr/1GIHL9u8sc66YdzNCINkIQSL6Ss1ZmTqdE87nE6bdhPefPshGFGWRiS4SAgGBxMNtaeKc9wxs0zCS1O98POPu/kFqRDVtkves2tTRN998g++//x77mxvcvHgpOcNJYh1JlU/mOhWUIH8zZ3x69x0+vnsni3+ybNiTye2SxowlcaFQ7TE3yHW+yWJcBUw7oWc09sIETwnOelzin74P/Sdv3KeVKXW69P5gwmMAuH3ctpVVhKsCnMnlqmVm3N3daR76pQCx3hMh9dFNLJrxMDYaq5eIgJwle4nOujB0YwgYWOdGKUiftJQryrin50pxrqnbe+VH8sD/XnmJx93Q3NPnkAWtyxEQUelnfVTDPFxdttpZAIkH4bn2L7f3ew+3j89mBVmWHYIINQ2aaxuRzIJQx5uUCUiQRYCZcD6e8Lvf/BbHxwdNACqzbeLpBr784gvsb69xXLJsqGX9TiQzbtApaqOFtscATuXjGtYioKTGZ5IjnNC6SnPbiCV3GTYKndg21nFT1g5gFlYhwuFwhVevXuP74wmcztIX5BQ/CCkzFp1pCxzK+BGjUw0WFlqYZ9s29DLAcIasUULpejVYNYQk58W1w2YqNLRyWXB8uEdOCVHfnBCw6Fqa03nBaTmD5h0CFygtoUJshsoKiq0xiAPGnp5bh0nrFdgmL8fXINTKTiqb+gVxxTfOtC7DATE/g2NH7sbWsN69HO3KJqOFO7dVhh+L/miNaKzAvqTDXJdZZgO4xnBvNEJoMJCjAGpqPaxp550JRNzsfNvLHDm1lrG1rjXum23wIAzBt/9N6GcHSGP1Fdhg7CW3jYSYZHyYnFjpaiJwXQVaygnASg71dO35pudvM5Za3bY+fvKgO2fG/cOxKHg7iofWrJ1nCIXesi3nUcH2XwG3tZC1IPDlbx2qUhSoiDCXlG5ZQbK22/O+AsuUMhAClpRx//AIsC00EKGfQeIxp0k9TAFZdwa0wgQQi4f0tJxx//CI43lBUgOCUIUBIMr848eP+P777/Hu3TvMux1evniJOO9xlGgu3XpejAnFIBbwInlvlwXff/uNermz7jwpgyUSgBCBKN4sWYlu2yTXvjbPFZRmcrPcK4s+qtXb9MUTgPvZHtGmE6uVW4TK6s2XDw8/6/R+9Vx6D90oh235HWo89bIszRbeowVJPT1Yt+KGCTzXRmIGaz53ZvVcEtRrsGBZToiRkIgaY6sWQas/O6zOPRAd0sr6H60c8C8b9XP/vclJ7hSOgd21B1u8mkTWFgN+Mh7NGLYGhECydgFdOSbLGgXm6leUVMvnvu290vLe65QSzqdTWShp6f+ipm70YMuAkI+7tAqxblFuIO2bb77B9999B+KaCSRrnP/hxTXefv45Fqfo2H0PFItBKASUdR4o3rSgi6/JtccAhnnbqIRjlH7KHhD6/kVzVLqN+kHur/s9yN+r12/w6YcPeLxP6olmZBJ5KfAaSJnBnBBJF4smLrwhZWUF3qwzP5oJSGVaVtAti6kDzuczfvu73+Jvfv3P4eblS/XuMpgshFIMHWiY5el4LGAczBp+JCFgp5RwPi+Y4tQk6dRtyxCUz1oovIFLB2BzZbAajd1jFmbgx7w/5+/3gNSPj8KXVI1Ru38N6h3AduU02AGDwzqMqOTErpfcmFvJy44WFJTF2zHfe6H7dxs/FUPTvbN/lyUO8PWrjWNdpEwF0LO/5t4/knEtdnG1Mp5ose7Fw8vNrDKkGX+D927pB7Bk60FX93pPBd61XjLXPpYFVPuzAH6ssKQ/BId1IUmuzjZD4h1+o+MnD7pFsPNqcDZeM/w4ELU+U0MhnlWn8thloPB0eVycXwzD0oxZPZsS+7gAxc9YP8GEc1pwPJ/wcDwKACeF8ETFCMjMCNOkWzBrfKWlzdOB5CAF7u8fZVYhy0RqTd9Ud/f65ptv8O7dO+TM+Oyzz3FzfYslBDzq4q0Scw1CBLDXRUIZErf+7t33eP/999iRrMTPOelCUlkdnUnCR2KIskOmggc/6v0gtb02GOza0nTR5V54JtC+dGQtxwbuRUNLbwruRgNyTfYRH5/rBMxoerxROlkWpHqPts9zW+o8SJVUPLU6U1G9q2bMyXnZgth5ssG4f7jH4+MD4rw3RNSU3dfZXyvfO1pVLyW7/M3ZyVWnULt+HCmsv/YouLy0wy5UUGwCm5klp/1qqnvctgom3A0O+Mtp+6wLxvwW2uaFPx6POCngBlDWhogHxjy9NRMBgWD5cBtvIQOcZIVgyIzTwwP+9IffAemsMDAhQ/c+iAFvv/gKCROWxMiaq9cAEoMKmCmzA6TAAAGgWEOuyHhM1idEQp0xNFlVFEEuYLhhHPYqsaM1bJyqUc9d243eFHB9c4vPPv8cX//hETklWaTObZI23c8WmZOuvxE5HBSoZF1rQgq2M+eSbaUCfq6ZNwLj/v4ev/nNb/AP/9E/wu72BZhlEbO1rcziFNDtQY1IQiI1utMCSglxkdlSikF3wNQFf8aC+l8DJzqwCvRUbYH3FrDtgVSd/dFNbMyz7QDhyIvoy+3Hs90jJse6Dlvt8e3qZdTWvb3B29ejkQ8bdR399sZ//74GgF+QZSuHX28YFZmyrtPIw9sa/ew6WjCG0P3p+tRUzeMFlWM6asV7Od7U3SSa/bJzKMbMEAIMTo54eeSZl4qZM7Tlay7Xt4+fPOgGau5SYKA8zQJGf7pTwN0nXMf3wqIAt42B3T/T3LNx/vK91s1U4nfrlI+KkiIwtM7EWFLGw+NRYrDPCUnzH5dFXlrTECN2+z0yJEe3iXxmOEENnM9nPJ6OWCxEhVvhx8z49OkTiAjH40k8KDpVcwLhSIRjAJZAmBjYAzioIIkMUM54PD3i97/7nWQ+2AdwSpIqzLxYqMA1BglRMAUO1GmwalnKUwmyBbJI3dG0aT1+LAC7dP/QqHOW7pqHUJCDDNR20PZ/lzwAvZBk3Vkx59SA7qe8vlaWCVgyT2gvhKnW38SOKWkGg3OqC+7YA/pxDO2lPmoJygVYZE1ZWLwaQAEhuR/zXlG5dvb07F61cR/KdKuXG7RRZu857hXNpb4oZTd1qwvCrPxpmhrAvSwLFl185q/b4rQ+f3t9VwBzzdkNA93Mulgp489//D3uP35A4ASC7uqbE8454fDiJW5evsI5yZoN1jyBtr25gW4D3LYVdrQsGqU+8sfkp4url9sb3qZUqZj4nVIcDFk2/kEN+xndA0BiajPw6s0b/PDhA+4+fURaFg3hsHUDClrN2NZp7cwM5IwYAxJkRtJ2s5Q0iVln7iS7Sc5uJk/3WDifTvjjH/6A/8A//EeYdhGcGYmq9zOAcT7KxmhwfM5AjUPOtvOyhJVJA6POviggC2L4WNpSMwBNlI6ORg96PToAh+sZGULOKAapbdozCndrPZ2+l9djpzjf0Olwey/XHS6GoLmXrw6g+3Hh69eXUce+VKCXPf29o3OtR389I1na7Wji3z06VnVA24dPAeC1Z77UoIBc0Pr+FZ3JjFwZ532di5wtOtL6xujv+l9vquEoxr59W1DGBZne4ponaGvWwOTLFh0szWahhOlLPH38PED3RmYSwMPVbeU1Eh5VUPQPXLLbaplPHX7Qb95jCr4rmyhgN+/VG8OwRFtloKgAWXKWrdR18SOy3qMLbwIzIqhsGEOBEGIQqxMKmjSjAoNwPC84LQkZsiApkgd+oiiOp5MKAYA44/h4xN3dIx6niId5h8cYkJiw42JvInANTfj2++/w8cN7vJwJMSeknOAP3S1W3hlI8uAa83umh0xZMxEyzrCetsxgLSyyx38c2O6Ppwyu9Rtbq9kEjzUnujjc4WY23SKcrbR0YJTUWrL7aoKFBvR/lwRs+VrADhVF4NtAIcBCnIrg4Qww4fHxhNsbncomAF0E4hB4O8O5F9hW75wlXRozS5o5tP05ShPal7UFuIc06O7zQr0aKG0ZvZG0VY/Rsapjd93aN01TifE3wG3Xp2kq77N7PI09PzW0cjv8sSohiUKRGad3797jz3/4LZCOGsudseSEU1rAIeLNl18CMWI5M5Ys4xyLhjwUxalZX7q1CWSjlc1YNd4ix12Oh5Q+mdUrrQujTEf3RpM/Ci8r+H7K6CMizNOML774AktacH93J6EiEH4IJGkBSdFAUPlsexYkBQkUJ8kGxUCcNJUjQzdgkvU8BA0N4SxrYgDcf/yE3/3mN/j13/z7EOZ9ydNkLvKckuIfnVHo+F8WUurGaQq6mSWPd2QB8hwF6Ht5Y3J77d1zP11VPH83GZDcb09TczR4eTRyJvRGqvSZiYvxmhgD36XOzJWPyDFI90xvhFF37yXvtj9Xjcc18rjUvpFBvuk0IJLsXoO6jABzTyujkZX1VHtGeqPcB4s0MMVLIPJ1tnKGj7d1KnoPVU8646/IVCIDSjBDXhu7FpxaBR8wxMzIlhlnox4ganpva2ag1KtU6WnY/ZMH3U9DYKyAMvtzKyKYQCF377pT5NGOgdEPo7bU51g5bS2gHoby4jo9EoIkmw8ygWnTnjKxK9ONTITzknE6npEWWcBj1pYoTsZunjDtJs04UnfhEoHiUD8T7h8fcTovsIVMAZJ7FsSy2yQYmRdwJg0FITzcPyC/f4/D7UF2rQsBgGywsAAIqtATxBP35z//CUgL5nkC8tIAOgPzMJKoAAskMedJFZx54CuArXDYAFIFg52H4InfzbXu+1Oc2FvHQlaqm98YeNPZjEn/Like/70R0gq0WWM7ywJJi+8EVgK7qeuGwKdBvmxPA1kQJ4IVnB1NpG05ZXBKCBHIlhpO+bkoxA5Y2ni1Ovu6++pXUDDux36nSf/pjZp+FmGLNg2IDtLmVtCuy2vBLJ5mms2jrds8z9jtdqsFj9bGkuN4EpE+Ajs8KJmLHHCGmZ6ZQsDp8RF/97d/i9PxEQFcQrmgmTg+++ItXrx6JdmkWFPWJdkWvm7OFICpLsI22pXcwhxczdQAYzHkJPq4rpOAq5/8mbQjvVZ5pirP8bqfEZgIPZ1CxMtXrxFixJ++/hp3d3cyzkjDRUh0ici+qDMMMq6vrw6Y5xnTNOPD+/e4++EdiAV0ImQEXR9BmuYhQTe+QUZQcP7phx/wzfwn/OLXv8ZEU90pNWecTifXHjW6VZ9M84TrmxsAClYthaMzOmKMoCzrgmK0fUVHrFhl2ErPap+UEFAD3Xp+BBwt9Smb8cAt8PWGbe54WPpExtYITJr+s3oZr/g+b8pzcpXhPJ8mP9xzzDW0p7yvIZP7zXVs+mu9Y2XruCS7AZTZgcLD3oBx9e4dBCu572j9lDwcyZ1yjgFm3UGybI1EVZdDx2ER+mv9UwGv0+u+A1HXCJiVzaRhkA6l+/r19a3rNlrDe6tfPOBf90fV6e3dl4+fPOi+dDTKwz47AL5mI2qsJy84njyqNH9+JV19WtCk4NGJeOOzeTdD5rI1YtCS0kPBa5ZsAeLlPtXtdFXgBJ0ujEEWT+12e8R5kueTRlcbM6sUWwA8nk4lRtFANwhl1T6D1Ji0f8Dx8YjpesEUCHsiTBRhUZ8Wu7gAWMD4eP8JHz7+gBecEVi9sT25nBo1CCW7HJo1K/H3NZOE60k2kpeGdV3xfATk+ePSU6bMRxZzKasBfDLbEGPEpGBt5PHZAsWAbIiUk3i1+3htvlDjXmiuyxbKD4WvkrTUV3nBZYUCs06tB9IMFZKtIlju1CfGjXnHTDj6fmQ39uw+f34Us+7buAm4V7Svuaob+mj16+8KzHsAb/Uu1XyGuFjTXB4kIszzjP1+XzzXPc28UnnKI2cAyT/fOzbY2seM3//mN3j33bcg3VqcCi0INzc3+NWvfiVhPykhZ1m4bR5YihJHDl3E7bPwGFmkzlQGGgvyQSabLckt3VEgtquvCzJxTVET3UT+sBu2HCyOiCAEXF/d4Nd/8zf4+PEjPv7wg6Tsg8TKx2nC1WGP66srAd1RdnkNgTBPEyhE7K9vEGPExw/vwGDZvAwEDlyMOWZGykDOCSFrBhcGfnj3HaZ5xqu3bzHtZhABp3PCcjqVBifX97v9HjcvXuCw30s6wUn5M9UQotLunGUzMzajlkBBqeU2JjGFUf+v/FT4yAHV3hFmNO7juQ3IKrutALcPf2wANa3luZcxxltW1hbg9mN3E1xfAr8DvqljsoLA/l0jANuX+yTwJmqkvS2YHnHyqp5EzRj0913SExfPcTWC6+ZfzghG5R1SQTJ0Lllhg7oBLjSs5AqnKrP06ZJq2fGA/TYnRU+fS0aQ3TPuDyr8+5zjZw26gWrR2feL93bbKgMDZu+u9VbPSHiTux9oF3I0noFSngl6FTaqMjJJjHKcZ912PReG0sySki2A5XuMAafTSfKwlqTwBojFO37WeM7D/qBKTTIwSMit3J8goSqJWWKkqTKt+tlLezSJoDybZTnVbr9DDAGvQ8SRgSMYjwycWJaBPkAylPzxu2+wHB+xC1IywGoh2zbjlb41TEQEqW2QpLaF1CTITnBGaYIaMz/GKNo4DPQ/BdTFkzcw7bzlHEONYbWsJO65EcjuQQYAjdFkLKcau9sL5sab0NXHf/bft+4HoOBRFuTaJgCBrQfrwcSaX55BIRZ+tDzvI8evb0PzBzSDzXvPRh60kYLqlV2vXM1gsntr2MO6P9iUZ+eN87Ra18cacfnYUrzM3HqHfX0GfEnUxn37cuyzl1X9YXROAN795S/4/W9/gwliwBPJ+EoMhBjxy1/9CiFEnJZFsuOkOu0N430F29D8331bxDtqII9h/4hJ1noQFHi3HsnQ0xutXC5AvbzrablAVDe4EBkkki4zg2JE5BkvX73Gy1evwApg7f4YI4LmN7dNwYIKUSZC3O/w9quvkHLCw91HJM6IJNvuEDKmKLQ9ssSAL8sZHDLmeQJzxvt33wNE+OyLt6AQcT4+IKdFsqYAYM5YOGGKEw6HK+wOByQWB03MNd2k7/8yQwLLviQ59Yk1o4wuvrVwF6fpoJK50b+FjlhzvQdMpS5EZafTEGJzX87ZhHtNoReCIhvW9JGtJ9c/X4zpDT73BvhKz3fjGJC+MWPV5MbKK0rmmqKVfIF7xr5vzbb0NOuB53DsKk3Z6DUAq6M698fIM9+XM6pjI6ddGS3o9YC6Lavf+VN4aAy8K10AW8xZ6q/PM7M461DloXm3ufBca3D17Su/6GkDqF562svy8wXdvO3T6y0bPTsUEHLl+UfP9KOBzd1nX+9iAUJ329QjAEAgXO0PmINMqyYQWFlH6m91JpyOJzw+PEIySZnv2dja/gUc9gfs5p3UmyDJCgTDStorlpyo50VSY81zRM5UjBSZNlI4zzX8IJMomzjPuJ1mTCkjRqnDHUQhHZlxygnL4z2++f5bvIkBh5lAWGoe5/LPBFpt48hb0Qgu1IEGSPs21kj9/+UInRDrBVycImhab8tO3f2jZ4EqxLLmWpbdWPMqfKAWMjj1Vxoh/XP73U74UKeqjfcJNq3PWPJZtjQngt+RDXkMuEdpDPvGlHP62Xu1e0Hv6++91v5eW6gn9UMB2iPADej1YPmjxSLs6fOUgSYtqgC+nCFvTNoRdJZqtwKq/fue9G5fOJjrCLJyUs44Ho/45ptvsJ8iOAdJLwfZ/ZeZ8erlS9ze3OC0nJGWVI1m3w8xgGJEiBEIaGjb1DNAZJhxCAOMjKBpvXzeZQ+8n31Q+e8JOlSZ0jyu74zThKCZY2iW2PXsOs72jJimuWQmYs2wkgGE3R5vf/EV/vw14+7TB8yxGqQERowTZuPxxFjyApwz9vuInM64+/QR+8MONzfXOJ9OKOsmNKwsg4EpYDrsQdOMhWRdD7HQUlITwqFYI4/0n/RP0L4K1ctsC21agg5p2PR/x9RFFpALJSlhJi3ILPxRsuDUcAB5Ry4bI8mt1aPsYU8Pfouh0QHQofHuDX1UZ9oKnBWeZNWrFXOYU6Z/39Ao3qDuJtB25TwHUDfPYT2GvK5t5JMaxKOj7e8Mc+yN5HG9f0y/liar2wb3A8yDslhrTRLalkvmn1oHKV55BrRN4yeMjnW9tlBpPX4WoLufInjO/aNzTjW119zZnvFHVnBX8LgOW3Ur5deYc3mvdPwUI+YYxah3lmupv6tkWiSmNyDKRjhkSt1CDQhTnEQ4MeReQsn/nUmXaJJ4YFOWKeQYgsg6aHy2trPmZhbfSIgT4m6H65trzJAV4lOWDR+OBJzASJxAnPHwcId8POJ2nhHoXMAas2Wn0RorqW0L6IQ6iE3wlqlJzaJgFj5Yr627+DLvlM5+uv/KI1QFqmKwQptm10j18hVziKq3ySsDX6bnPdbMA2lJSD4N2zPHwt/3YHkZQgzY7Xd4fHyExHOLt0n6sbYh6vR6zhDwLYWUWQyv3LYyq/Tv7/+2Fk0Oadl5W/z53rPtZaovyzIsFFBCgF8sNPKM+anPRlarcRxc7HzDyww11qYGcHtjbWSgrLyNA3k5chAAtV+8gffNX/6C+7s73FwfgJmwnB6RzgkZspjzq6++AkJAOttmS6zboQuQCjGCg2yEI783AHepW52GFk83inHi8zxbH/q0fcVoaBpVoG4pE4P3jg7qP83wQgCixsvb+6j2cyQSIwNw8erVa8fMmPZ7vH77OR6OR5zSGRMIs3n3AzBpCNHCCZKxMeF8PmJHhHQ64uP795q15CSyOoa62ygRaJoR5hk0TTJzCjMOSDJNZUYOud0pkFF2qow6m9UbIcUhojRZhSj5+0d8Z58d8LSQlrbrqpwHUZnhK/XtgLJ8R1O29Z/J0zL7bON/sKajcfCg8pPnA3bfe5BrBvXquuORnh6NbAJWeqen5yXajpwF/XM9ffprPdaiTpmKCBnjq6wYg/M6bHSLL4bZlLiGG/VH367g7mvBOCr4zqSb9HR6A3UPA715/T6M+2T7eFrG/CxAN/DjQMaQKQr5tonSCxYABdD5EhsF34B510kdk7XMbpaWnQuwDLqALJrKkAVpbIHV1gomBMhWyoKHSLJ4uIQSzAAlW7WeEULUqU4Fut78oIAYCMeccHd/h2U5K6iZAEQpVGOviavQpDCB4oTd9RXm/YxEErv9iTN+IMInMM4sjLwj4P7TJ9wQYea6WEgUdaUuOQ6nAsbX3lCjp3jdNJ0gd73Ez1Gy7ADzus98v5WJMWZdVKfT7QaSCSC0catEZGtKhzuE9Z6PoNLCb929LAtyWgPNf9bHSkhLY3U2gnHY7xACwTbP8TxkNGEQYpgQESRfMXNZac5cU/71OXl9Oe3BpWuz5Xm9oIA2s7tYHZ0irMB77YXyz1t/emVbGWYNfAt/olW43q6T9/bx2UEciqGmA9xKa+f5VV9cNQ3RSlFcclhUMFNOIC0L7j58APMiISFhD+YFp+WEhYGrwwExyuYryBms3m+oUR5DRJwmIAr4rrS9IHsv1O85DhcLq2onsD1c7OT2dkU2LzWgBCI77X4DEIUH+3qzzghNM168eYMwRfzht7/DOS1FRhKLUReIEaPU3eRASrLJTU5nnB5FbsUg7V1gcdFBjXyJoaegmw9VIhUFxZq2kBBACWUzlRCCGEvWZpY1NQQAtsV9I2Yv98tqTBmNy5gbrYdwgEzvLWtW3PUCkDs9S0RlQae9sxmL1k5Ug9OHZfX8ll0ZTXscP8B4r+Drtazx+mjEh5do+RT43iqzf743Wrb0nauVnHfe7q26cOY6ez0C+d33S4vZHatuAvbyXTRs12DVUdzqzpLjHtZHa1AtOKnT1wPd8NcePxvQ7Y8tIdxaMc8s64n7qy7aBgg0uL8X3kXpO8DNIJSwEENuLGmlZEDUTUCkOLk3BpLFiSkDFBGjbMXMucbCyiIUwpIz5t0MEa+yONMiz+R9rJlRGPcPDzidzmCOes0UmDC17HYYSrwuTRHTfsYjGCcwjmB8JOCHADyqn2liYMoZu+MJEzMmW0DJWXdza+k4oqX3cAKO4VkztrANPAzjqy8dT9mscj2UEwKO64CtADwI2CjZGVqhQb7MXiBbG1PGsoiCTZr+j9mmUbe9HM9tz3MO7r6bAbnf7/Hw8NAK7eZ+oVbJMa+AlCHCOJlA5nFbyjsdCGQF62ZI1vet6dCHkfRHAdnFaDQP9Bhw99uq90SSXThHITGePysI9O/wdfXP+wwkzRQ4OqA9Ao894ObeY9UpSntGrsKITMzg8xnpdEJkAdQJCRRl3cfCGfcP9/j973+PabdDnGbkEDVffhQDP04AudkBGz4dnbd4Qe5hbZIL93D3E9WNu0obuIgsbaMrv9gnazDw1DHsY5B6TV15RGVH2AJwfDkAJMUh4+bFK3z+5Rl/+tPXWPICIsZcQGguPG2G3bKchTfmiCmGsktwQgbpbKIt4rR3EfnNOkaGh+gYFWzOBWTgGLaHDioBjZ7U9MeIZmNaGp+HZhz0oND3j4RdtiFGzFwyWbSgW6PTrT+IUGLV0cpdEzJ+fJmX1oCWvcc7R5r2Ufvn39GnfL1En9F4HuIcZvSUHcmv/tgcexvvbx1C9l9r3DSyReV7Thl8oSq1zOAcD61eILKxXGeJLrbPy1tvUAAgYieroXjLr3saGD+1MFT437b7KQPn0vGzBN2XLD7uPu2gje+jexrgccmSf4Jxm7I9wwNVOxj2VRhuKack1EOEggEO2E6SYJyWhLv7B4QQJJuJxvQxzDInzArQr6+uEEl3lGQB3AySbYvV85xSQjonxDDjlOX5ECTXLDiAKCKGqIpU/PLTfgJPEffMOCLjFAjHQDiDkbTSOyLMKSEeHzGnBaAFiZfSLgCIji4GBry1DNQ43pKfWJBq2VCnGjUoAOTHHyNDqhU+BWyTeknLwsigU5bdqxUceIDQC+RlSVh0mj7pAq3+71lHb7VgzZMXBYYD09Y5OWfs93vM84yHh4f1M2zlAmBCjJMqQt30Axk51UWXK+Hq6iWGlQPduRvrYJi3pfd4Wb8MSeKAto/BlzIymNsYT/M0t94UbwRqLC/a/mkVemUEO+djs3uvT+/hW4Fu3zgT/G0XrOo6nvHrZGQB9VZfwkSE/RyRz6y7xZ7BnGCxvSknPD7cg46PmOYZ0+EKeT5oJg6dutexAWeUXvLurcCWgTBfcTgZzT54pNJl7T3hWpYDlqNx8JQh2L5KpqyJOmDF6zR3/rAY8MyMl5+9wcIZ3/7lz7JzJGXMVLeT5hAkO1Dxdj8gRsI8R0xxFk83Q+ULgzQELE4TZAcc0nGJhi5myIpsExoRW8Yq4zmSWVWVs3BFlPUU3iDaoFszJuQh4W/NbNOApI5u/vnQ6Xx7zoz8UicX1pV1zIPJbfTm0hxQ3ZXTh9RgYDCNgC0z14kEatOS+vufK7+LIQCFeloHH2KJbpzQyCkwqHdfH2/kMNAYP+s+M89vDZ+xe73xQebEQ8/3Alw9D7TXzcge64aR8VFnMUh1wmCGwvCBOviM5+v/vcav8RBCf3eja9OljbWeY8z/7EG3N0Q62VKO4m1yqKRRomhoe1GQuEqUuvwYr4nVogB191YCY4qEq/1e0kZFFE9DYQbSsIssm8NIFosM8WBDFzPJWzhn0BRxdbgSIL+I4mQCzumM4/mEMElsNicCWPIqc0oIFEUhM0sGApL4TESxUKdpQpxnnEPACRkLiXBIrH50BiIR9gzcf/cdHr79FtfLCTnKYk1wS4OqXFtQZQI1aRqyGAKmIDvo2QI+RWdNZom2q54JWt2z7TNcQLYHRCFanC8Vz0hfDgEljZMftMwsHuBlwUkBt1c8T4WTjHjuOVw4An3dDY1ABoDb29uSlrLQB55GVflO8+zWIFgIEcr6hC2DOWcfRgSA19Oh/WKeFmxXz6jRohpJ1cvtPcz+08CuB8aNcnJ1FtCd4RWFpyspeDUF3wPuS/1h9SCpvKmrQmcbKY3S3HA8bB1rby+X0DGQxPVeX13j7vEOeZGxnHPGJEHEYBAOhwOING3pwwOmaadgSkOrItXc7KWP1kbW1kyByDB/EkU2+DZ4Bd+2S2JMrX0+qO7HgqHmXqp0Mv7yYE1CNoxf1+X4+5kIt69e4XQ+4+P7dzgvR0nzGgIiIF7XoKtMNQ//8XjCPB+xm6cicwgsDpoQEKYZFCfEOAn9e81mvOwsFvPWFy+2JgM3Z4Ys0KBh6ADTGhCNjsoHbgZpox/6cR+snZ1c6o1doKiC7r2x9BVghhEEjJdFoiMe0rOOj0fXbbbTp0Ns7rFxZrR3cmV0NF5o5iZzCjua0MDoWY/tsaz3IJ6Bmrfd5KSnt7ryaMDQDU2C0tvVinUgE1jWFLjx02InGU9Dmji53l63/qzjzddHsJDplAwJxdVnqKrrFng7Q175onnjAFsMdeoFZfyzAd0roN3ZKg3gbhBtl4+xu7f/fG5dRM+vhcUlAN6/25hbJmaBiQL28+yYodqXlu2EQUiZwBywpIRFp3Msc4D3bDDLwpz9/qD1FcB+zifcPdzjnDNevnoJChOW0wmPmvM70FSEabPwRD2Ac5wEXM0T8hzB0wTL3BeYMUGA/cxAOJ3w/Z//jP3phClkSBoLhq06XlucLb0AzS2uSn8XA2IQkBYA3WraDZunQOXWS/yPRmjLn6Q7E4PDUv9VQd4qf3t/8cZ0YC/nLJ7tRbJBLDk1/P2Ud7t9z/Oa2T/XnxflQyizKcpPh8MBV1dX+Pbbb5v6DUopsxA5Z9kh03yoNs3dtdErUQ+6VePDMj/4ThqFa/T1Kh4n1IwZo/tNUfo/f49XfpYKzwC4U4sVKKN677wi9gq7MVxGfGtgREFOvReqlAAD+5d26t06xnQDYBtakBhOL1+/wuPDB5zvzrJAMMsi76CeysNuxuPjI/L5hON5Qbh5gSk4w6XMAsWVsra6m7wSv6pPtKr97LzIXASby1pjdw/50YXx6bP9XaO+3jpE5bTtCKb0G1zLtV0lhGn9PgAF5Hz29i1yWnD3w4IEdXjEgEipeCEzIOlhlwUpZRBFpAw8Hk84ZYApSk78KHnBpexQwu3YZK6sUJX6mEZy1eKckUt2ojpOSfkxOx424HyJco23uhtrrSHr10M4mutvG8+Clatu8u+xZyy0kri622R3VTe+U0JRHUG/uA13vB7hwZip/Vn1gB9bW/KG1YApvwcGJ1BnE1rW4mJ8WLiN0cTToD8aI6kzWEDVIVTqbOfsGXlgFTbiy2q88A0YczYNoWSNYmfoaDXWw5ihs1NrOWnXsXKZuvcGQj5r1+asfuxQgTfWs4W+NIIz5vqqDRwAoz4fHT8L0F0HJDXe6k2oTBDrh6uHpSfFjwHZfV30y+X7XC19x9UNX+pOiwQBZjEQbq72ABgUY7nbcnQzJGwjMyFzxvm8AERYUpLzWTzglAOICZFky+z9bqeAO2PhBafljCVnXB2uEOMMhAimBZ/uPmFJqSzkzLDFcTIdGOcZ8zQjhIg8RWCegHkCB8JRW3jDtYeuAuH9X/6M86ePeEOMqLlVM3TKDK3QGNM7Iy/nErMYY1Dv9tpT9lymL4cJP/3PAEDVpc67rbtHRo1THZVTy6oKZpomTCFoFoJzUZycsm6/bRkG/lqOvNS8bZAthylEBcDN7QKMXr58uYrlBnQcFONXF9DFgEBASpYOMgA0wbyUvXIw4FWzX5iiCSjQlgQubXluzKtp34uCf4IXmgwzFwC3ZapAz2u2UK2UZaDbZ0VZT0M+5e0uwMIZJRaR6o0hv7HUU2No9B5/+BkLMfEZu8Mebz7/HB9jwOnTB4ASphBLarndFPCQzsjpjIyInJIu2FbQHQkIzrOEVuE3DgIDL/5/olXDpB/8dkx1B8GRfK+gsb7Xg6qtWZdhH5Uy275qDUItq4qQFU+NgPfV9TU+//JLcFpw/PgeNoNnOoIh/DYxI6Uk4SMkiwvPy4IMQgoRu90Oh8NeVljauwuN+/dXOpN1AapBlM9nUPCL8OVaUjLVzcncw55ezRit4yHGCebEwchw9LIcDngb8M+5jpHuOjODitq02RIqBoQ3fmOM69SjNF5sPXqPHSW0kHRviwHw9sYEebqVJq9BsbXVj0wzxmGGgJ3TMTDSIb1OHAJ9rENjVjrN9c9odqN4xMW+6cqvANcMlTWI7X/X2O4NTO0G3PqmxmGi6+bErnKGQWMwO1nQlbYFvP171rJ1W/f89EG3KRlUgdxcxIgYOtA6sfhc5bRZlQ2m7qq7/bx/xg9sCAiPQUD4/rDXzWlYp7Hrtqf2fGYWz/TphKQb2+TMArgdneIUsdvNsqkFMpKm2Lu6vsa82wMhIoFwzhnH01k2siCyISLhHBpKMs2zxnUL2KZpwjkEPBAhBcIVAzsAZwYiM2Ja8P6bb3B1PmNPDBCDdM43O5pUJreYKkYAawaXBZwFovuFN31Gkx8DuD3ohPvujaRA5qmr06FR/7bKNP6KMWKe56KYjsej81KpV9vSODYi/bmHKTv979l2hgcW/ScpwIWEvaSM6+trXF9f409/+tOwJKG9pm8kwjRPkBjpBQbGWYGin5ru/2T7aqC4c2HKpg3LGSmQ/nyfgqr3QNm5Ua5eYO3BKNtCu4MKbzhBy5VfRmmwRmV7Wha+auri9IoBbvcMBt+fc/TKvZZBAEmIWZxmvHrzGYgI39zdA3wGKIJ5wW63A5GmqmMufBOCLAKdpgkgBofq7KjGgjNeGGKYlWFo8pqKEWjZMohIMqUAkH0DNHORVr7JoeyMCPtZMPwAcANj2e7pNTrsieA5pIAh45O2/C2Atdvt8fqzt/jACY+fPpasHREo8c9xmhAgO042UJWEjvPhGtO8Q1LPeFA3D0PETdAUVz5/fgOw2NWVoTQGsgv1Yp3NAVXgRM6g9vSydICrhcFNH1W+8PQrMt3R2RuyRXag6nWjqdwSME31OS8P+plEk0EhCLUCQvO+3N1vhxlFsgOpydDqER4ZuSNO6j3r/px5t8uzA4O+POu3hV/1w5oH4ejmyzJgbPqpqkhuP9Hzc1VJKzDa6Skx7dfU6FhD60g6HgbEq61o+rXyq+nYykkMlFmSGrdt1zuDxNN+dbWlXd/mreOnD7pRAdoQ3hKagaki2/2qnyOF9dSxKYyVO1YewNF97ppNVdW4KWAiIIKdsAmSk5kyEIzpSfMii1JP6aQp2CSt3MLS8pp6UHaR2+9mXO12yJywIMmGNrOk+xPAzVgy43g8Y0nAFHdIiCBIjulZwfY0zxIvSLKoEjEik6wS3xFhZuCQbdMwicH++Okjjh8/4u2ylFCQRMDSJ7SX1umvXAZ7zllT5snOZGULaQ/WNgRN2wVbg8BximrlQGEVGjAKPxh51y38ZreTjYgej0ecjkck27HPGQp16pOdUBjXmYun03GS6UkT8BttNdHmwTXRALCqnDWeZs744osvcHd31xg1BkRzrkLT9MJuv5MUiVTXFpgX34NuT4dc3jdoR4Nl1gC5dBu5KdILtLDnnwLcjeDWl5B7vsYqV3C3Vc8nZzAKAKq8ZVn27f9eSf6zOmz2MOnGS9M0QUIQImiaQZgwH25AccaCE4gzzplxszsgAzhnICEioy4+nWdLdcjIRVM5hefpQar00Mbju8v6RWStB6qmHv1vC881PjCmCsRlgeA2Hca/iaiOTnP+ODBk4HhkDNbvHRDw5UPkYowRNzc32MVf4E8p4Xh/J20GsFMnUpwmzNNUFg+elwWLhklMux0OhyuYTDP61O91RqA6e0j7RkOabDO0pLTWsUu6cZF4MrkYMPA83skT4+nRjqqFFsPeaGnogbfVnbt7wNzk4WbOCCBkinbj6v3ew205wSWumYRv2ckLu68zmAgojphaX6NUpYm11+rfnKPxjJjVZ0WPEECdHmpmHDq9VPa04JGWqfWoKRmh68isLF2M693XtH7eXg9av6HUxcaCjnsmP860LEDkarl0GcCWW7i2zs9gMGsYUgxAqueLsUnkxochEf3OVbeV17j2jjBAKfvC8ZMH3VWttWBaT7rvbspgdfGvA9xbh8/16KuyVXbprEYgkQoD85Tk4jFYzifsdofC6GSQ1DHWbn/Aw8MDjuczTinJVsM0C+xmchs0ZMRASGAgSE5uaBYSpgBkAmfgfBZATzSBEDDFCfN+j2k3I04TpjiBKJZ8rrqSA7dxwsyEXQI4yrbD5/MZiRnvv/8O8eERV2lBCAlMGedCE2fnFuVsglgBmeapFu9FzV2c0rkJTQA68PsE09s7e4C3yhrRA297h47EEpMfI/b7PUAkWy+fz7h/eMDj8SiLYPwiycIk3HqrGpHoXQa4zPf+dN/uwX3U8aAHtyzWDjgzrq+vMU8T3t/fI1qfNyBZ+KUIZCLsr67AISCD3O6EsmhJvNmdsQQPcLZBS/2zc4P2DNo2am+fWnDkfW6BYVtOeVbz3gsd6hqFGPv8223ZK48W2rr6cd7klG1La34NAQ373+u6VGXNZZfJUl6QhWc5L0CIiLsDlscTlrTgnAEOE5gZCwg5RGQizLs99vsDwjQX3m1zHYwMEF9v3w+FMgXEmBAVGuWSDoe5Ao2qfDvaFFm7NrCeOjyo96CmqTWJs6OmEu37A7ppSJun3uKaCRrrOs3g/QGff/kL/PnrPyIfHyTsKqUhaDydzlgSIwfCbpoR57kFQEYDPdF6uP1GZ0BduKxkDNxsmiPvH9OQCv3lmndSxDhtelpt7MijbswP+sEDVq9rCSg7gdr4kbFICA33FUuhGAnsxnPZjAcC+ppuduxFjpeIanhaeYsCS1KeNRnnDYQC2ntZ4GiRG7q7Vmgc/UjHMQCoU6o3igptHO3geNvkcgy6mRvndjVc6WLuT7UHDfQV3B4KZVMxGgk2rbKXHF6Q1Xesj1rYyrB1MiBynVFsaWjGHAOec2ztmcoWcn3aO1yf62j5yYNuO8bAg0rf4QLgLpd/5LHlARmpDhO+DV9YJ2iHm2dbwBoAkowbpCn6IhHmadaNRpKWQxLPzQuYCRRlcdLjx4+4f7gXwcuMoGDZmIeCeMavDwdkm+rVWEsRRwQkEVDnJePrr/8CcSjLtu67wwG7w77EacoKcLUCg2QymWLAbYiIFHTLd40tTwvOKePuhx9wnRaEnBBItrQn5sLSPlZ3RWvzcivonudZpq1RLdkm6b0bRBfHZtM/LZjaAtxmpVsWEiZd/KozAbvdDiDC3cMDjqcTltMJS0rIKZUFeD3TrPhxq7LkP9T7VBEIgHap8Erho/Ww9G3zgJsUKAcCvnj7OT59/NhsZFOEswNtXDZMithfXyMxsIBl5kUeQNLUlL7fRjRo6l7lpPypUH0u4N76854fYAMIuE8K64WWslBUrkuKw1qvfvdEP0vgKt70qf0unjSsjx8nv0wibcctMzOWZdHUiEABVCHoQrqAxEBiYHd1g9PDEfl8AlPEwkCMExLLWBBZcUCYJlH6ypu2yNmMOWiOapDFa9KwsQ0LFzbXL1UbFsVM7s/atuV9GoJGoouKsnhyHW/4cnJmdRbX0L6giyiZuYSUCYCWzDfmySSq8blEhGne4cWrGZmBb/7wOyynR1BiEC2gGDDBysyaKQpIGaBpBhqDrwWHIKrZJYyeUC+mM/AKDXXhWdgwInPONZOGykPWNniwfSm0ATY+rA9qzVf0bwzTHuzIhfY7uXd1/cvQ2SpAtWwFugWgOhlHuhYJUG+tebeD5EX3s6+1/tVD3Ne1rz9cHawML6d8fSyd5Og5r/8yNBWvCVBroxkcA35PKeG8nEu++DF8BoplNiin+IldnUpbHSA3iLyuhRotA/o0ONxdriB+HTZk7R4aw/YudsWTr585QYoLQJ1FvOLnUflbx88CdPdebmvbancsvbv+b4C8tcQvHZemGod1M2HhOsuS+TPQADUiwDLvFaAHAhFjAmEqMcMSy00UpUROsvkNJHYss3iU7x8edac+UgaRwSKL/4A5ROz2O9A8I4NlsSYCmAOYCceHI77+y7f4J3/7d/inf/gDHs8L5sMV9jc3mHY7FSaqTJyAld8BhzCVhT4MWQQOzVxxfrwHH0+YTZBpP0a9e5R3wdM654ykabJCCNjv97r4Ja1At025eWG02dMFyJHzbGyAbvc9Bukf6dqIeZolVj4EPD4+4tP9PR6Px7LQRzb+8QbhSITx6nwBEj50oWHBFnAXM3M06All5AwNCa8QTWAx4/r6BofDAe/fv28Ep+XfZl2wm1lxE8ki22m3xzlnnEBICYgkaaYEINT+4tV4JNOTxd/Q1Fs/vfIA6kr4Eejeypk7MvIaheXHuz2LdrfLxgDRHVW9h9vPwDTdUWRElRV2yAw+13aNQIoro/9udIS9YaCwzbNt5S7LUtYsJOdNFbkVJFMdA2G/x/72FqAsxnycgWnC/uYWx8dH3Lx4gcP1tcSWBQd/WRlEBXUgBgcDMiOja0Uya46CAM87Nm7Y8c0YyNTczI1WaEBOY7A754q1xtd1rSM033MzpqxMLsC7n+2xrCSmM4TXdPOc2xc4v/0cP3z7LZblhEk9buKNdONWCRk1lWPZy8YZ2+3YqTwgddN2sqOe8V8GMuVGTgICyC17Rimt8W7XkJJmzDAXWvn+KTIGa57wvTYynLaeAQIar+xgfHsPdXZjxegsY1hobAlObIO4EAOmaDKm1rIAQKUOgVZsSUDDd55GpQ5kMxAtr5ae686PeNkDbi87e2PEy0yRYwywJFKwHCm1jpXqfYAQwS3G51bn2Ekf5DKSAfac3b0++hHJDW0u4bUxKO7n40o1kEmiEEwmSPlScdl+nusYxDa474+fPOg2sOaPQiSuCqxea5m6L2t0jO5twHp3zxrcdHFmXvnriwVwu1zBCuqCbURDQIgTrm6uYFYkmJGRkJYTOGeEiTRnp8RMA34dv62irhu0HK6vcLi+Row6JQVCzsC79z/gN7/5Pf7u93/ENx8+4iFl0DTj5c0twv4gHvFg04+ADTr/PQaJ+S4ZHFgT0aeMnBYspxNiTpjAmMzggGYvMaEyYE6js22BDkBjRedy3v8BKPT0/TwcXhYZ4BSE/fbCwecpDSTXd/OE3bzDPO2w283gzDieT7i/v8fHT5L1JWVLhygeYC+WNnwGrnIAYB6VjiarexVsdMC7vaXe442HXhCuhDmAzz77DHd3d8UTB5iA8Z/WmwRQxP7qGiFOOC0JZ1CJCySGAG571gneCrlrKEEPkD1w4NKutYC7BLhbmlQee0pAe77yMYK5e84bbMOpzbZk7bAL/PCM+vnnt3wKjYIt5VW+6b3y9mntycxYUkYCEA97XIcX4KsrSReaE16+eYvT6Yjb168x7/agEAEKmpWOZcApXzd1QmuNbrVz5Yn2TApnfJUH1gDHjqy6sYQgmreu0M9516gq4i2w3dfZaJnVgyqb2kgJjdHD9X1Z08clojJ7ZjwfpxlvPv8SU5jw/ttvQXxGpAlE4jABSHesZcRpRpzmdn1Hp4d6cNcQkhlcEyAWSCNgvOPnAvRr3wT3Z4BbxkOl1drwWxvCcO8u7bC2uMPfPza1uoIuHDZuU85lXPfOH3snEYmX222wQ9RyiiONOsI6YDqQR6Pv3jQiqjMRzJLBbGvM+DHvQWE/WzAC6Zby1fdTWahqO2c7h8+4CiMkbe+QcNeK36gD3irvOwYo95vcZKBkuGINNwMAtAadb+slp4tj1NW1TK5vcp2ZaUQNt0kYnjp+8qAb6ABL6QhCf9Jbhs85Vh6L7tPK3FKirQdhLeAIGldNrCvQ2+vRgEaQ+6bdjDCJtyiDgZyR0hE5LRrPLN60AMnpnVPGkjIo6AJHBxp384SUE05pwf3jERQJ33z4AX/7d7/Db/7wJ3x8PCIhIMwzbm4OmHZ7cIxIBsYAMI8ZyABJsOlUshAYjYYigHLGxCxCm6CLqpRpVan3AMWOlBJOp1MReLIRB8n26KnduXEFrmgAbwuYk8+oqf9WIE0e10wyMmMQo6Ti2u/32E07BBLP9sePH/FwfNTFTBafbG00gAkVEJWv/HevGXq1Uz0KnQwrmK0F3L1QqUbSBm+6P2bNq50ybm9ucXNzi9/+9nctyCgxqQImMouoY93O+ebFS3AIOGdRCgEEC4mS/L7W7sGy6EGdRhlAeqUxem7rDxgp/45NBnWw50rWma6+o3SD5sUcCuCnZfLK4N8u5HL4iG+z1cuqtCxLGQu+/Z7uMU4IFARIxwk070GTbLoSeML1fo9rhsoOWU9iCUXI4Bu13napk24VrXxkgHPUjsZw4JZ8MmYJ5uW28acXHThovWGFhuxDs+pYfL4G8Yctaq/A1byGTVo6VtTd8UaFoqhhG3HCq88+B1HA/fvvQZRkDBJwXjKWJQEhYL/bY553QguL+a1EcnRy7/O0YukTCnoXV88zurFSQAec/qOao3/WUDs7RqGAADbGRivTXEU3jwak+zJ7ND6wTD1fEpFmAGtBtumpKhc0htscCGyzNsKcxSbZGOi942CLFgV425hxfUqu7qvyXX+NgDV1Y6KXs14+6hAtWqiCzNr3DVYiKmQevbfMAnB1AFSFVkqp7WRC1tnS2tHs+MQMeHlva/yMaeuNj/4YGSxeD6D0aw1JKe9B3dX0KeD9swDddogwUgELwIl2ud5990djHQ/A9op9B1bPinFNOHaMS+RigAMBoZ3KIrL83FR4jkJEnEOJ/845gZFADFzvrxDnHRiyQC2GCZkZD8cjgIAYZ90UQYDwfrfD9dUBuxhwzhn/n3/v/4vHxwd8/+49Pt4fcUZE3B9wfX2Led5JKAwRcjCPUu9raGkgO6ZRaad4RARwR8iUzJQzkBIyMY6BMbtes7SE5snuQdDxeCwLKOd5Vi83l9ASm6o12vcKrFbWdILLQKIKonh/Q7A1cSCSmDlLezbPM66vr0s2kh/e/YDHh0c8Pj6WxaLGOzboGXUxUhUDdWB6PuupXAH3AGx3hqfne29w1PhQudHa34NZ7+nOCqjBwBdffIk/ff1npCWVLZSZNS47a9YSZmQOSPread7h9tUrJFDJI28tZGYk7+/piHAJJI8EZz/G+rasjDCrCY9DPhoKd8832Wa26uDG/uje1bHu9GcfI+Xo2+ePlFJj2HrgAEhoyX6/L/f0NASAaZqx318hp4x0PgmAywuCZigJACJJylHWGNC+gQIeVIGzgTYCZVGoWnmn0v348QSzrzWbkyh+IKjSlSp08b+VQGPvoAMzFYgSJMe8yx7R9YP/rOOW1btdfILa7rYPbMqNqI3PLUBFK0MkGUvevPkMMS94/PQex+MR+33E+XxGwe+6WVldp0FV9rkaEvvZotZIEdlF9RmCjH9gzGeOblFl5TRNJVY6MzcZm3y8tPGg55Fakx9/bIFWX+dm/Jb21nuZWUIjXd/2cqQaL1XnSRhoJ2vce4btsrKfqH921xrefaZj0cbaU7JGdLrspyAOGJXXtK6/tJvrJxEsFUQPuP33zVm7vo6kMeH2s3i0XZnAigZbM4wj2j5Vp94x4+WjMY9wb3Vs5ZwRnXF/6fhZgG5hgAq07ZwHHgCGWUVKGc8B2t1B9l7mdSdugIVeEZuMpW4wyy5vrn1BlPxu3ukGCAETTdjtZ0xxAkO2WJ9AYCY8PDwCTJimGdMkGUbmOOOw2+Ew74AYsDvs8XA64fsP73E8nZFBmF++wfXhGtN+X+hSgWNjt7oBD5hpF8r40HaGGk1pZkUAsAsRu0BIyJJaEIygboAQNCXioI8sTaCFjlRg0C7E81PjDW1deUE1iJ/yjL6fyOLroUoqYLfb4erqqnzGEHF/d49vv/kWDw8PaHdObHnJps2NQ5vMR76dzzjHK+7WXqEuJzEcuCi/ofyJVWhJD7o5S9YcYuDVq9fgzLi/v5dyNESm7DDJlV/Eyy0LrT7/6iuEeYeFtd5sGzrV+5v6BkKJFnTgeQs02+wIlCI94B7xQS/4R97tfkz6w4y71fULz/hyt8B/6xrYPp4CEn1dPaizMTS7bBamOILKmcPhgHmeN8tklrCuq6srgBknABwDwBPCpLnrDYBk5X2YN5mBMh2tbSaBssw6Y2JtcqnK7LMBSWyJYpxsJ5R3i+FMel0MaAo1/jsrf2dFqL0sL3nYtX6eGtyFq3gQvwb2hOL9hMJu9eaxgRPHt0VQdIaBe5uMX678n7lmx8k561qWiDDvQXFCUBmXTaAZ8ob1T+0j3watfamHAfORfWizOBYmGadJZHSMJXNGdnK8X+wuzRzo062DqKPL4BZf7+YZaVXzXrvu2lzaGQICy0ydl5Ft3XsZsxVTzeU942bVOqzOGa9YuwZyyxbiPgXwhC8DQNv3lTGn+V4zAzllxS7VcWOGlo0lG5YEWXjtucjkzSU51hiZBeEz2Lzbznj1vdzw6pYx7d6zbu/6/q1ZmNGsOqC6kTJk8XQNh53n2Zmx4+PnAbqL4GiPEUmfAtPPAduAEt4NopWQ6BfdDRZuyZ8qnFEZWhdj7KSCNIaIne6AGKKk9iNmWVUMwmNifPp0j+M5YZ73mPcHzPMO+90Oh90BE5GkpQxB4munPXa7G0xX1wj7PUxQNNN+3LI2sN5xTMBOBOkGCbbFM6litJ0mJwZiTuDlDJSFM6KOgm4JvsX45/O5COvdbucylqSVIA+hhtR4IWZCIsR2YU+kqvCI0ADwGKNsBnN1JYs2Q8DxeMI3332DDx8+iFfePLjsgXYLLO2GCrifBlieFy7dX3AImTd7DAQDsQoDbviyXywqHuxqwLx9+xbfff+u6Y/yZ+0mEo82BSQAr1+/xtXLVzha0OyQHi0QlVbS6vwQbDf92hoNl5615y8taBy9H1iD2H7cbo3lkSzo73mW7HnGPdY+q+/5fC79a6EjNr5rjK2U3GdwWdXRtTtqOswAIC8n5Ly4PPaiGGPJ5FJ3iKzGp6MNs27OxQhBw9HUCJBNldZtk6KcMU2abg91DAjwDghhkpRnxEg5SYjeAnBKm4auV+BeTpkRbW/2Rq19J6D1VDv/XNM/9pYyPtVDpmjftoKyTEdWSjC5yglpWXA+nzFPEZltzAbE3Q7Xty90D4V+POhYDKF4B0MBoRrCpu3omW4LyBgQtf0IpnluDAF7tiwczWtPsNRtI/xqdHS62Jfj76H+Ge0/VuHVvs99d7ovEKnRgmaM9OOjOF8LLVsjv3/WroYLINT/tpCrwqNEhb5Wdj+G+/IEKHt6V473zxPpxnokci8tkvY351xz78dWVhZnHRsf5WIE93Tov4/a3X4j3YXXLzmn5noxZjccKlvHVj/1/bxqqy+fbKaDQJnLjND5LAvTQ4wXBf1PH3Q7hm1OD84x2lD6LUH75CvLqyuoIfskKp+XwbYO+jBSvmJNGkAsQGKKmOcdDvOMKcSS+SSweHYCA4kJnx4e8fWfvwXFGVf7A/aHK0zTjHneYTfNCMyYpwCEgGneYxcCECZkIiTTMrqIpxFWZr06QFSt0XpfBpVUSQCqcGDGxMCeGR8eH5FOj9iTnLeV5BSCpKNi9rIUgFiLx+OxTI1bxhJAU2Q5Qd56SyoglXfU/Kk94DZlF4gQScJxpnnCzfU1Xr18iXna4eHhAd98+x0+ffwoO34uqQhuIZOp5J65njfwV4/1J0TKlu9eKZLxhAN1TJqCEpK1JsA2+KkbN/SLRwFgUQMHAF6+fIllWXB3d9/Uy8ZU1opkkGQngQCdF28+Qw7RKa4K0kcCjKwDeNsTsQVyL481R08HtkfCdPS55Qkv4Uu09vxtgfBRnZ57WP+ODu+19oD7qFlz9vt9A5h9e3qvXVXAq7cAnTc0hIBpnsGBwHmy7lM3FyGShETJphbyV64bnfReWWDIYOSujmvw0tYJ9T7jIeV5S902z3ukJcnCXbCCWB/a1II0f36tMyocH4PGNfiTZrYGVvGGQryNrEK/KYMAiakOzTgiqPMkZ9x//IjlvGCeYpWfIQAhYponjeWOsAWRULDJ1BswMqqJqs9QoWntt3Kz9JnxlI0/C/mTdJNtHKx9boGYavivFx63BlB7bILtwe/1s5Ue7bn2CHohENWZmBWI1Dj1ZHHvhKoBAbM2Rw4D8uVdkH0FY7iS++wql4B3S3OovvN7E2gSBlv8mxngpYQOns9nHI/H8p35IFnQyEQhOWeGhidybvp4ZaQAG2O7J4DxgU9EYHyq33kLcK9lmpfvfX1G97T52mn4vKsGlixJJGKYJKOJbAV78fjJg+5L3eSvMfstYasgb8R1h/IuDVbylhlR61El1C2fbcMBOEHqmLNhPkNPbJMnDCJZ8c9BytzHiClMCggZgSEZIFLGh7t7/OGbb/FPfvtb/OYv32B/fYurm1vsdnsJMdGc2haTLNOuIrRPKSER6g5w3eAvQAk2oD3dalSyRmQ2gBuQeM0IYJ8zzjnj4e4TKC2Y9B6C7N5FUAXjtvoGbLOHUwGBu91Ot5s2j11y+W51gAvCBAUudbIFkKHshhaKd4GI69buFDCFiMP+gFcvX+JwuELOjPfvf8B3332Hh/v7JtZ5rZDQgA8up7hcbvhpm9OGdxe2cWC7/1x9J26mfsun/7O+ZgElrELm7du3+Pbb7wtIACrY5uJ5ABIRFiJM0w4vX77C1c1NIwyByksAhkBZ8wyu2tFQoHtmKyOJvc8r8C3Px9Z470FCAduDY6sf1ob1WuBvGhlysXw3jvDA1Y4+7aLP4GPl+wWgZnj23m0rtleO/nUr8BTatIhFYhgGZgkhK9PPvdJSEIcAIIk3r2y2VSvU9J0fHQ0wVvBqdGJAU4xyqZvUoxB41d4yxJp+cff1O+e6sbgNAi8pea2vtdnKAlBSIqKmWLXGLjnj8fGI5XTC7e01jsdTqY+kLY1O/viWdX0I042KDKj2H6ueAbOf0JM0sKHyuC0s71Nkjj6L8afv9nLI0jg2YxeXj9EYcxetMv5kd4vvk7bMvs7U1c2uSd/UWYRaF/cuRsmUNZTTG+9tPvvmuT8bLyPgLXyL4uzzbalyIZTMNzY/zYoxTL96XWthEwgEzqSeXfGGy7tJw1HazYKeNoYGch8+40sd8Ra2CKxlVCU6awnt2NzqR3t+hdM62vZ15co8YNRsMpONQ6ffRsdPHnT7o/WJtOd6W75/4uKAtbs8wxcg454j6CYIpNlIImwoVJCN8l0f3PbUh6heScimNcyglMApI0QCZeDhdMT3797jD3/8Gr/7+k/45sNHfMoM7A+4ffEKV9c32JV0XXXxJhPJ5hbIWMCyOY4OSCSd8NQ6ZlWUjeowQUz+nKYRtOllogLiAOiGCsDpdMLx7hMmzohB8oPPRCU+MXXqgVEzlphwEMEuish7uJvQEnLp/UDYTZaVBBLfSKFmLdN+iUHSHe6nHT578wa3ty/BzPj48SO+/fZb3N/dqXVfUfUolRS735Zr1y8H89yHJ84JkS+vqrZP7zEhbRhpn0OFXiTS9lchaM+Yl8xSLjIz3rx5A2bGw+ND7UvlH4vjTsyIkN0md/sDPvvsLV69egOooCHXp2jquPZIy6cTYtp2Vi+RjJ+w8jhcGsO9l21LYG4dvvyLsYj0tMe9V6hNHY02Sic0lGiBZc65rIi355vtjfV8Hz7iFcala5eOnteLYNO43SIgXL0LuFqBgGrQs8kgXx9XF4JPg7qW9QRaO5JIjREov0I87/V5Nc6BuhGGy0tGA8PXZLg01eraAjNsjHbfNyMgalBnUpqSe5x0Aaflzc4p4f333+N4PGI3SfhMCTMAZCfKGMtux+vq9PqHS3v9Au+CaVqyNgvOLaQkTlNxZIy82vZ61nOWCrENb9PWamxyz099PZ4c/+XmWs6az9f91dfdZFGRl66MCrYG5/xbtA79LLeV65XqCmwTwbJxSJ80CFN5xckRN9Z8Ozk7vBLscR1BJJsXnc+noguYx7ITqIZ+KSMTwAHLkpHSou3aDqnbOlb943iwGfctCQZOFT+WHbboZJ7/PjKc+3H7lD5ungOQdERxThuKXo6fFegG3GCGU1CuA3TxOMoHb0/19sTT24ulVIC2/tVYRl3Gozmxm3vgBsNAkAEqyNg8xrbPgFpKnJFyxvsP9/jTX/6M3/3xj/jLt9/hw8MDFhCwP+Dw4gaH61vs9lfYHa4Q4lQ3XQgiVplRUrWV7efNpQFWL6YCRm5pwWpRhmAe7xYslXR7RntTrCwxwvd3d0iP99gDZXvkiQlM4jmmUJPOJwXVFlYCiPdmt5uknurl7hdQmid3shCSQJimqHHc/YCSzxgC5mmHFze3+OUvfinbnL9/j2+//Rbv3r2TeHHjpQbEtf3Hjn4mFmWWRQe2+2Y8Zb82RdGIFzvhUBcc6uIytIA0RKNFKBlaCuAy/lAvhhky0zTh9evX+Prrr8XToW1P0EWwykdJMx9MVwe8+cUv8eLFS4Rphxz8JhhU3oWLgNR7I3JRLvWeFiSOhFwvJPvfnn6j376MPs5derUewdd90K6RHPFH74Vq5FPX3/Ze20il5cOxB79PW2hK0kKrCrBzdfnRh4FuD9Rcedzc2nmOurZKFEUFXB54+3truexVaSmnfmr4Brc1IQQwVc+kPd4CGZP3DL/YTMCx9e/aIWEOiNJ6zk0f9f1V+a0CqiarsPESq4wEF+Pl06dPkg/95jVyllA7ECFMM3b7veobXWsDlPKt9MwV7JvJF9DzqcGc6lAxsB2j7Mmw3+8RdY1NeQU31GzoZ5+mD+H/3PvHwHFQzkAONLX3xt3AUXIJKNshKTJLFH792wDXo/OiEyEguas3lLbl3q6N5RxIDUPT2Z1sUQDu5Vatj0NITLqsyvSYpwspP0l4SE+r1TjWd5i+Pp/OZfzKOtpQYsH9eixf5tbRyA9Uf3cvz1cbrMFUJ5cfIzkx4oP+t58h7J8ZgfCVwab8l5kxHhVy/GxAd98EbxGVcySAEyYkuWWctWXVK1NbFQ/lVxk84jHtFK0JckJ3XgVbp1g9gCJustLKfQwsyxnf/vABf/zLn/DHr/+Adx8+4LgkYJowX9/i9uoa4XCFuL+SDRHmPSjWqUUm73WFtklWJcsmB8LMBWyDxKNCBA08aCBky2QEFM9+bVOhn15JOeP4cA/KCQGypfikQygDJcTGBpQtArO83PM843C4Eu8NV4+sZTTxdJxCFE/PJGEkMWo/oVWsBCCGiOura/zyq1/i+uoa93f3+O1vfoP37983OcFbPquAu1jd+ukzc2Tqhhi5frcKdOX4uhVecfzY8Iv++bh06vjOgNdUFuDGxhuVmUv4jt+K/e3bt3h8fMTDwyOyAoIMBdrqDRPAHTDf3OL1V19hf/sSHANyCBop4gB34buxwJbmtgDXPJ+2PK73mjgSFUA/9CJ379oCwL0iH97b87YS3cfFjwD86PDXSTu8V7T9/eWvO9ffM6KzN0xRwNYaOGx5c4be2QugqHoAx0p1DZbWtLe1HhslwCvVEthiwNjAr9G2f460boWe3vOF4vst45YgC+UVyBNVeG1vCJpOs25RFsCwLD+adq0zCitNnSeTbdFzlVl10RtwPp0AZuSUsNvtcDonLInBISDMOxyurmXhlu4A6fuEtUzS8VUAmc6Ebo0RCVOLGqoXEXcRk2ZHqaDZHeZ4qZ1cNtHZHGMF43uItObJXqY01dwCva6sNe19tdfgClDw5cZRHhkWjiX78nrjenSQtsniyNmdk7FKBbz39ff6tiy+NflSDM31YfzYzxzbNT+LbGUKoI7DPvT1sTA2u77oDrcWhuR12uWjny+u7/Iz3T2IljpXY2MLWG+B75Fxt+XkGD3f89Il38bPBnQDnsfZ7DgAJnzNSldGdf/g7isCmFrFF1z4BWsuvxKvXTp13Dk96DbpXQVJB5LkIQ3PUKUA8S7+7R//iO+++wsSJ4Rph6sX1zhc32B/fQPMExbWjSp0N8jGGneqoSrZaggEcMktbbUTkgRUVZawjrcTRcCOmUv5JDHXiRnnnLCkBOQFlBMM8IOBTCLoZRMdfRMzzsuCe817HULQdH1TEQ6Lrtr3oNsG+LybMc2TTqGjLDyFowEAzPMOX/3iK3z55ZdI54Tf/N1v8N2335YwkhI+0vMbOwMG7T3MakQYMHf97Svgz5lh5HFAz1N29PwW1bPfg24fsxt1Ctju62no85ubJ/TFy5f449d/0thtjeFmBQAkYDtME65fvMKrz7/AdHUt2RAoNrywAsmd8GrGEVfeq1PcJQlcW477s9/9jpArsl8Q7KMxKw4gJzSJGu92acsFELEFvDeBzUY9i1LBmp98+aOUmf78NAlIMmxQAPwG0OiP8fUWhF8C4759a0MHJZ9z+XM8sg1WuTwvbZGnDfJ6QNjqhtqvJcewq3tZa6P6wcZW+VEKLPC8kRUG+MVg9XJBwPfI6JA6qd7Rh2vZStuccXd3h4eHB+x3e9mYazkhZVlEGSZJFUih7gxs70ilYrrWKeeGtmOwbfqSNSwhIMy6LiauBZzRFF1ZBKwyLI3GQemXpgqt57Z/th+vTV0G55trrj79tVU9gLIHhWz0lausNyFu/TWsi2KJjo/7d4xkv82MBgTksvap1t9oI2E7AbYw0go1p14vn5jRzHK24LIFtgag/Syan02zUCNLemD7WsTiBNw26EdtFjxhRGm7sXFCuL8eHHtn5+iw+9sQ1QvOoU5+XTLiGnlixu3G8bMC3UbQVhG3U/mkaCZwt4K2PNiDaK8I7P5qnY0UG9DGfQ6ZqHx3XhQT5lq3iWRNkSTeY9ydT3h8PCLc3OBqf8DuIOEjcbcDTTMyJC7aBJ0XWiMFWICDysZ6nbQNOr0uI04B2QhwA6DgaC4ebSyLKBkFoKeccTwfkU6PUi651ddaJlP1pWcAj8djWZBxOBywL/nDaxiEAUerU4wRO11BH6MtnGyBGakCORyu8De//jVevniFu093+Nu//Vv88MMP4pEaerfXILu/bu3tr0g/U1Hq1F1k992DgksWt5A+DEF3MT5iXMVZns/nBmj7TSqs/M8+e4u7+wc8Ph5h+Vkri0hc+O5wjZefvcXVi9fgaQcOJPFQCkqooXrbBv+9jpfOy+2AdgNurR99ycyy+G6gWLfGYjNurWz3HgzKIyLdNKnzQA1kwdDT1gHIrqbFwO8F9SrvLrXap/d0x867aXLNsko0IF3pB//5zKMoGXv34PpFcOGAQuFfV+eerlvKWspAAcDeMLFQjXLZgTMDgQUMaSuadhnPeTkNql43x5OlPmTGjIAwy11vQpOJkIlLKQGaF9wrcQVwxdDQ6wCDU8aHDx/w8PiI68MVMsumRtaKaZ5h+ZFlLwMSL7uOY1al5w0F0wND8MPiDQiawtbWxRjwYvesf24LRKHr03W/toB3xEf+uZEh6nnjOVztyx+Bp5VBon2keXdq67qXrfmfXR+0Y2BoUMtN9RqPx5lPgUpEmoJXNaqwksrm9jnmmnZ3FaNd7pM2llzsLimD93bbYtp5nrAk2SXVO3/EYdNtWldEz4W+tts2ZOooL3mva2jAIXaPXxyaUtJdvtezll5W+fePyn3KeTE6fj6gm6wPudm613t3g5OKRUSS8WEdxB5wVyGzDX78J8NlZNi8z5io7mJkG+QQydRVINmoJVIAIWPJGXkK2N3eYL/fY9rtJPdqiOAQuwVrcvTWXlEM6uEwWGRHNiFMAeR2W2vaTEFlrwmx6hmycB0GYcmSmotZ1lUkZhzTgrScsJxPkKlWBkVGBjWLJ6HK56RhJQAwzzN2u50aArkAbfvzU+bTNGG/20nscukLm7qXus7zjFevXuGXX30FTozf/fZ3+Mtf/oL7+3udAl57fMoAUr3pAbcJAzMY7JwZc42iR1X+fkgaiGsoMeA7EaYVdPf5tWMAJo3XNSFo8bEppTIz4L0CvbA9HA747LPP8He//T1StnqaF1F4JMQZNy9e4sXr16BpLznfHVi1BhqQ0gZUXrJ295lHeuzn+o1qJzbi8zme1Z6Gvh5NuZ3CbUCye74aSetnegXYHyOviHxv43xHf6P2W1k9aOjb12QqwSV/y/MOD5TRlbdV9gjMmOLfAt1wcrk/2nL0zUMEZjKamlPsKsvNCOxaUOqjM3ROlhdawPFirWD1nqPluUap9zwHlMXnTW54ZnBOSMcH3D88gogw7WZklgwTJmumeUaG7AJMJEZzyg5MGc+p/jFtUEIorV22CRAJ8DJ5EwfrY/o+GV3zMqDnUzu/NY5H47YZq0rvvh6juq3K3rin51d7T/1jx0OV8bYNbpWh3JZZgLe8dC2bPCg32You9r9vk2EKVVq8tSMb1sB1BGBDqB5uv4GWB90A1KMdMM0SBspOFJIOOiKSUCZWCub2vSPeIbND0Rp443aveWRUbq8D/eZ7BrytzX34Sm+Q9e8YGQ9PHT8L0M2BVSCQCAhUSAn4Pe/tlEgZY+6w6iBX3obyaohqFaEKtK2TXFejWlprhvDKS7YbD5hItl/nHBAnRkAsyehhqQSJNAerAfkBfRRwB0WK/k4jR+99C5aFQIc1a/vKKaIqtIXKqsBIU0hpnUJlxhgjCBOIgJQWIEYwA4m84BDlcE4LHh8fkVOS7CbWbjA415zc5ukGULKaXB0OulDQpwO0LiJcXV3hq6++wssXL/Dxhw/4u3/6G3z69AlJ48wY2BQ8FVALLXvwXa55VnP8YucbpeauBdePvYImdIslA0AUa/o/pbctlLT+NEFif8W76bzbFXQLHV+//gwfPnwUL/eqnrK6N8QJIU4ATci2qRG18aCk1jDZ4Nvie6NJIagSt1c8He2sj4xvfV+MhG7/fQXkOiXeXhoDhEugw4P2xojT8eN5jVjCAohrvOgW6O7f2Zc/klv9uecYKE8BZ7un99hZ+7ycKIZp815PS0DyeaMJJ7F+KjJpQ+lZbUjT3VEnZ/X1aElH5blSQn9PMwbln+mXKg6Ft3sjvDasKwtwMtbRVH9axg6R/+oEyLmMC04Jj3f3OB4fASLsdjssKcl9SrNpt4MqFKlTzqUsOyyxH1uaWpMz0MWUrGlvVZDJ+qWIGGWmi1H3lGDOKx6dBuOr0NLrSbpgMJswdM95mjW8aGVslDUCSYUDLuhQ/z5eWat+HmX7Pe2hS+u53jMCgytjRN8iMIdLFpvRc0SyERpbBhig2ARDOjh5M263xXNT8W4b6DadVLQ4mdNB2xBYt4+3cVkX9RK1cfFGyaHctDa4Duj35ejr/dThZatfv7UsyypePcZY8Mal8kYg/7le758F6Caf7k6FQ+8HCoFQ8zTW5PsACsPU3Jnj7AgrBeuEbK/UCgjCGmj397eePtaMHrKbIisIBwxwBSQax1EV4TEaNAZm3H0Gkv224R6E5Gx2fFWkllWk+rkrsCrtCrIpA1SAT9ClRMQITJh3MyhOSMRYmBHVdLd6LznhfDxhOZ8Blmny/W7GZFax7rjm09qFEDBPM64OV5inSbdvr4Db6Ht1dYVf/vKXCCHg97/9Pf78pz/j4eGhFULdZz1vil7p0zgNeP0MtSB6KAAGg7MBoa4N0fiUjEfV42ThM0TNOwuYZhF+WYWegWujZUp6TQXgfn/Ay5ev8Lvf/c4J5JqNgSFxsjklPB5PuEoZYQ4lE45WRvq/ZAeqHsuhojRwhnXM7jAHN/sZFq6bQ2BgrGx892PHALsJezvXj7MexDX8seH9KG0J1dAvBmvOjQyJ3XOlzIZlaAVqex6yrCQ2BocGg/EYUJXe4H2u8Aqg9dPSiWbnHfbXq+EOV24LdtpX6LMhlDhj3wfgtTeu9dB5WdgDbt4iW/vuQitbPI5Cy3aHybopiaW9K/iwAdwdILDyR8CHCciMTDrStH3JPGxZtq0nZjw+PCCdzphU9t3f35eyd/sdKEZkIixpQT6HMt59uzNQZwOJRJeqgRMoFl1YDJ8oO+qFSe5JWetm4IoDmGUvBds0yWhbaNDpyp7+1nPSm1yMeS8Pfb/2vyvAvLzQzfej0J6LTvclj8ug4m0RPCHnird98zn/Xhenz844B1Z1cG+tIUr+nH2n1nihQCUZwqg9W46F7bZzQ2cPMM3lIbP1ZiRI7cybXWQ9GGBdjAzBSomqdMio2zhZPTzOYUczLydLCGVH06YFG+cAkZs140osOqDf58BkjsWstzJmW0eMadoeP3nQTeR3U2un7+o9BsShn17IVFDm728EhL3InTeyjRZUmedRuwi98LdyApGuAHfhKKigX3JncxFohApoArWCq7Ar14FHVtHOMq8Lg7Teeq2k6AoBnJWalNT7FFy7M8AioP0sgbRN2+MEuQhMxkRqmceIMM/glJAtBwbXFFjL6YTj8RHL6aSAe4fdPBVvypKWmrFkSSCWcJHD/iCr6KmN4QYkXeA8z/j8889xPp7wu9/+Hp8+flxZrZVUNRbT93e5jysIXx2lm9eDr+HMct3/rAq8zOq6zwr+zMNtYVO1P4G6KUrmrMoH4mnIDFn5npEza0qoVIVWCHj7+Rd4/8MHnJaksa6Oz7SszIycMk5LQjJjVytDZItWK3ihfgz0RxHGjnY2ltz4kFs7QIMqZNGVb8prC3y3VRgroH7q1F/vBXtfRlEIIx7ovTskEmBVRtdm9rTQc+TqUUC5yZQBwLH6+zp75T06TA6W9jbPG+A2761rGfWKvjRl/B7r167PysK1EBq6+13i2pmAvr3r/u09zVa25fk3nQJH855PPb37vpI6tc6Zhp6+SL2JyQOVejAzEmfZYCgteLx/AKWE25e3Ak65hpa8uL3FNEnIYeKMvCza3jYYwcIv6/hUYE11nwPYOI4BYZLMR3GqscLLci6L66Y4F/01TZP0Y7++aWP89UcDJoGyGNQD0h4glvHWGZGg9bjqD7vf9Knom3aM1DL8e9F959UzbT0rC/WyowHeA3DojxHQMwOF4ZHHOExy9Onl/Phdte0edJpBa5C5MHRGAdsr+qthKYaLrmlA7a9+/LaOsXEbDD8FIjVcx8eItibr/ZqXgucGszEWhuJD9kY65pKRMzp+8qAb8AKWCjOLABRLUoAhVP57sD32XDVAdkBEDwB855ROMsABtfQ6IWMdaYAbVnunJA1EcTlfyzGg69OTWbhDUViswLAIHazaY++t9EKdYiPIlBDEW8k2MphBiI1xIO/XYgaewUxCCdkOOuD65hY/xO9BzEhpQQBh0nfmLFM8Fj5ypYsnbdVzSpI3dFkWnE9ncGZZKT3v6mAp/SJVnmLE7fUtXrx8gU+fPuG7b77F/ad7Weyp9KqNRmlPD6rLLx7AbWptm56vQnfeE5+cUWX1tupYW3xeXAOyZlyYUcYAkDOKGUEq7DKKZZ5zFZb1XFb+Aq5vbrG/vsWff/8HLGz8y6g8TyZWsTBLv8UIJu/V9/9CadfW0V9pxpNbIFrJX8My/EJc433fj/2zfT22hKAJ4JEwbb2443I8+Gv7bR236aSXDrEB312ot4GMvv7+/Vvt/2sOojodbJ5ea499PEO3aFdVENMr5iIL/Wd5tirNqvTHwIrsZSsYtyH3OyBeGjWgg3/OZHEyHtR+ljLX/diXyOwWu+kXBppF3VBwfToecXp8EGeGmwEASTah3eEg/VSpW/rE3AlFwOghzhLPr/Zs1UcgQB2ZZRatmW0IGeRmYhudZp8bwKSVjVQAsIzxtdHj6TfyehYQO7j3OYfdVYwm9lfa8Zet/aZTUNvVv9P4oWephhZAsyjcy53RWG9AZ1PDiBBy2Yl11cbmHK/6ZFV+qTQ1/S6zUHCE1hpQxSVbRogdddOsbRk1At5tHas8jcVg9r21Lsu3zfjWYrm9U87zlulQC0HxtBmB+TXtt9v48wDdwacZK5LCARn3u1OgQ0KpYPDAulGQA0Xmsy84v17zrH+nCbbmnfrZ7MBG7h3qMZQV4+Z9dgADEEBYBLz8x240NPVWswCwIeLEkwWLse7Wpoq9CgzSbC7tdFwPuNnRUroo4nB1gzhNSOejgGJVA2XxpMYdT7p4cpomgCScYdGQkvNZADdQ0xNZDH3pdwBzmHB9dYWb6xvc3d3hD3/8I9I5tYPAAzqgEan9UGnOb4ybEV81vGQlEEpap9Ijeg6+3xV4Gl9arLqUJdK7BytFAWUuAlc827n5WxbZHWs3TZjijC++/ArvPnzEOadSrvF1ab3+pjDj+uaF5OfVwwzOqqHHRGoEOipgF+xPKz7aAlR9n/i3XQKYa69LO7bNoPUeVF8HH+Kw9R4PCnuZUe5BO1tmn017n2hHD7qL0rzw3NbhjYKnnvdKyGLRbSakypsatjRW+vaZ3TlnsKClr5Vjhhe5c36zIOrur3Xb8h62fMacm/7ox5jXEZ5HfZx281lygXYKudDR7jM5nIthWRZ16xMMxrKcxGFB4lTIOSloD4jzDtNuD+6mvQHUDdnIDNrQePJMI0i2RakzKdCW0JNKCwNcvm8oEOIU1+l0jf+7vmx5YT0m9UKz2VeR0f39zCUvtR8Pz4PY43HM4BpG6IW+7zP9bWF7lpd96yjjS5s44kkGSvrKvn5Ogwzb0PCt1ploewxanfr39Ne2DNIiB6jy88igGo+7VmpHCpt17Cq1areV5o9+o6FLJVs7/Bj2wJuICtj2GVzKWjBmhwPH5T/n+OmDbgMiupBPBraN15YIRajqcxWgoQxwRsu4fvvcgDVTy5/B7DooPOgcAu4CMlwHWd2KGWwwOMh28CrIQpk4oiLMSb8zkpw24dn6CEo9rLFs3kwAhFw3M2ENKwBAwXkRgOr5sLJMOFjbbCrG0dji0DKAm5tbXF/f4P3HHyAx7JCdMlPGw6OkE6QQMGvqvxCkjTln5CSLAvNSc2kWwE2W21z+Ygi4vrnG9fUVPn76hO/efY9lUeU0GH5bg7I6ODYDSkq/Y9TfhSd8d7t7ypl28VhvKJqR1fan9IgBLyJL7dcCbeYaRmLe77RkpCVhv9shUMDLVy8R5xnv//xnDTVKrq7CJxaaRBTx4tUrvH7zGShI7Kh43r2yWdcUTsHYtdVCZhCGYwW1XV7ImkfI079/h3++F4omE8rueh4soPb/EExtHH39LxkA/n773lzTdm2908ZYA+679vfga/T+3ogYGZy9wm/K9bxcypOxOwRIzc/1FPhW33cVrzTwp109GuCd18DX0E/dmRcwQ7jQUhWuxWH7PvF93C+0KsqbCOz3N0CFZYWfnBNEwDc3BoONwuJVBWOeJkzzhLuHh0LPMM3ANCEV2UPViGBrj43OjkcdbaoOtJRvdfdJOzzojnFCjBOmKLHgdq+B7oaeXT9elKuFD9Zj2rK7KCGbT+uj54KdS8dqzHN7rfCv6u2+fX/VO7VsC1UdGeHtuFacQiSzLYDr5yojLsmvQdcMZZeMqdboIK7OtRE47xet+3K9prhkHDRyytyJNr4Hcr35tDbTWNdbOT4xg51blqVxwNj7zMvd17eXW6u6X1AHP3nQTQAixRXgNs+gDoHqKUSnEOVEU54J2RYQreO3DQBZjPhmGQMg1h8ji9ZAtX+mLC4oY98pEWIFIHXsr97TKC4T47Xmuh2PNoLr1WY0UjnHzC4kpRXezXeta2DG1dU1Dvs9QgywOERm4P7xEadlQYB4b25ubmTRJQHLIvHD5yVhOWdd5IniCbdwnWi9QpLSaLfb4cPHD/ju++8lZ2gxHLbpz452Q4/KhWNolEEWkdq5SnmsgApQU1QWnrY2od/UoIZZmOfFAPcoM0nd+Eb+MoB5v8cUIuZpwpvP3uKbb78DEcmW71zjPYt3CQRQwLzf4+bmVhZhhSCx3EPYs6avv9q3/RLg3iB4R5M1H/bXvYA2A3GK68187F4jmtF65OFuytyo/0g5EMY84w/u2+b5kVrjtjE2qOuRJwBI057uE0B570jBkMqH3NHH39uD5tF3T3fq6g/UjY96hVrCXBwNClA1OcVOntUXu8GIIres5V6WlfuLgMXqnf7csizuXCihYAakiUhn69zUu1akMUnceDcz8HQ+YUkLdjvZiyDlJE+T5OdecgaiOoPYFrHB8QQ1/FGNi1p/AxmWYznGWMa7XbeFZwAwTTNiqCnWom7Q1m/M07bJd8UIBPaSwvWbH5vubzS+7Li0cdb2LEhbv4aPnfEocj7oO1Rybo65DQXt3+fqXDAMUBZ8rkosKjq0EptavdF7b63dBtz7ore84PI+jw/kk2xMuTY8Kcc7rfwsWcVogLfV1bsZR0C8zDR0VTK+9/rS+N5vHOfL7UNLfDlWn9H3S8dPHnQDKJvWGFApnrNeAY0AkREErtsHis88qFJmFVyrTkXLaJcARN9R+qV8msAIG8+X+43BCSWnas+wze+CquvQtDbayOVyR02TZ+0uJXn6Whu8knL1lvfoQqu0IFkc2CIpA8/LGcfTEQRCJGAKsmU5M+O4JCxLwvl0xlnjvZkllnu/33cLUTVX9zxht9/jw6cP+P7dO11h3wzr0hIPMPrvPwpwdx6d0ndgVz9Hq41PW2/gSi5PjvitKJ0sCyf7zW484CblX5CmfVKF+PqzNziez3g8HUXI5KweC40LNR0TJSf8vD9g2u2KUpVV8r5uI9OmtmQEMoVGY6HklWopi9Y06UNSeqXr32lZGvy9/lhlyejK8HUb1emSgPX3VQ/KhkyQH3A3lboWT1j33r+Pn80AdF9GMzYcwGkUL42B9hbYHh3mbbpEQ9/HNuPlz2tB5f7K/7YKQC8XcVtDIAx0F+89tWnt7K9/p9cl/t1FLpFABHbp4hgZmQlZZxYr7HaGAusiNf2elzPu7+9wXhZMtzc4L2dkTmBkUIjYH3bVEIcBDQKo5JKAzW+anGZq9ajtd+A3NbEx40F5n9WB0G0JPhij7dipNDK9td3nDVmbGajRLIgHO/6cH9P9u0a86fXASq/qn587FccV46nQqnEb1223Z0tiwoGsat+h7c61T/t7jHd9alK5pz7fP7ca71jT18S+5dNu5O9AZkqZo/n4bbp5Q6G487wxzuv7+/fqDwkTUYeL3+vDdKffIMfOWZlbemXrGOmr0fHTB91EdfHHQPnYd39OOsvyStvBTfxPIyRAq9jb/p7CkP17unoNy+8HvgMLXnCVNyty4eCfd9KrGOGdoHCr6LkfWGhBpxbcXCcq+eubupcBYMrJYqv9dJJZ0QFIC+N8OmFZEiaWlFPn41EVEzARgVOSLCY542TbvJ8XjakSxrdtZduYWUKYAnaHHc7pjB8+fNCpWF+PNSQsIJvq7+ccDY/pH8EMP4DQxiMOn+s+TahyqSgV5e8PVo+KgOo2ZtsrorJY0oEECwNhAGGa8OLVK/zpu+90lzxCsh0ozUMGSNaZaUacd5gPV5jmHcI0qUetrxepkuRVu4fjkQocL3znwYvF6/b9NlLszwJrHThvPFZEblagG0OdIt+SOf07t74bcLH0nHa+9SA5pTJo/0jWbb3/73t4GdG3xYcvlX6z5wZewlE77PvWRjjo3hldqMMWyOr70r7L7ZXOZN5fG29ekQNN3LrPmOJln/02wM4soXIWECgZGmRcKequRjOLrmHIVL0JJLlXqsqcsRyPWI6PCJEwzROO57PeWjPtgAg5syx61PFoWYisJqbZZKbW0gMquNNdbOd5FsOctGbqxdzSa9B6eFlY6T3iTUjdtM3tPZfD+TyfbV1vjKENUL5Ztt3XgcvnzNjYkw3C6PjJUOklbNC3ZVhOdxBVPvMC0/eZldfniq/jot7Xv49Mt1F9pnmVtcvLsxVtPC5R/sS6XZf6zlSjZxLjz0tHaT+jYIN5nhvDAkDxbpedNLUOPnzsEo4bvfc5x08edBMGO9phrQDldyhg2/eMCd8RTcgEk+v8Ie38e13GhSGh/TmqMealPXAMbn/K6Ca9mVrb0LwmVscyEGz6srnP2uue76rYAPDSduhgcveNAPcIIFqbWFLtPDw8QrzewDmdkXOSOGwSBZVzwt3DA5YkXu6cEjhVn3sINbtEkQAkGzZISArhhx/e43Q+F+HPzNVbUNo19uh5wNcfW+C5CCPU3U+pu8c/t3keBJ9Fxni3Fy6Sczc3oNsAgf/07wsabykKXK69evMGd4+PuHs8Il5f45wzzkRYiGFx/SDgsDsI4N7vMe0OmGbxdFfZ6QX0mj59u2t72zUR1gceCNs5gqd19eoamChKnLUOA5r3PNorlYuA+6Inbmzobx0edDOn0v6hN83XkagZg0+9a1Re/4PFzahAEVKXJxSYV8rewPNgyDZ02fIUjtpS+gWdcezuNbp50G2y1LzDDc1CAAapBf09K6AfqMgJD1bYeeFHxoKFXDRjT16mfE2VJt4A8eAHFYjb2QAGp4zldJZNwzR843x+lLzGU0CcIyhUgM31dYWmpc4OXBUAThWMlZm7ILsjw+qElte2+K+/r5xfgUaLZne8YXUrNGEY/L0ExP8aA7PRg0OZvwEWB8+XtLt02btdwB1TAalPHb3hMvYCoyjqsmbA1bHJKtZkxVm9zUrUMsmFdrXv90ZoraO0q+gBVFhd2J6Vz2Hhl2N57L9veb4b+nAnN0atY5utiuXGLQDdf9+q33N47zl64ScPuoFt0G2fqy17PbH0P/JMVq5UryWwobx6IoZ1ijNTBvbdg2o7R+5z1Q5yVl1FjCpITbmw6skaamDK06rdD6/eI1TOUZXSPfCm7llPd79gprfMvbBcVGmFEHRREIvA17hg5ozMwHJasLDkg+YlFcBj4DFOEyiacgDggPiHDx9w93A/HHyGKWxHXLvHvhfFgvUxBo2qmxqgPb730ieAougC2gWGrB6vtQd7KUKsDylZ1XuwsvpwdYXXb97gd3/4PfYvbkEvXuDx7h6cAOZzMdqierineYd5PmC3FwDO1O4m5t7Y0GtLUdfvFWj1xo4Jukrr1jtONoib99Zfnj+tLnY0Xpot71U9ORS6IwB2cdGQq08btjBSIB0w2zhW9LS6dm3pDyu5Au3aVpMnpVy08oAHPFYLLpZYY4zVyyJnfHxqD16TGT/Aqu/99syuApV/3Dgwz6ttrlPe7z77/rMGex6zfipTzD6rkP4mXVdSjSkTvlkcB9yuDchul0l/WLhC1jEfVCIFItw/PCBzxtXVVZEJ1nXTPIGCjEkqSsPRVv8XenZ8a0AXXTpaG9/lnsqfQ1nWyK3nx7S216qhu8W9Xi5cut6UXwzLNXCy98nYCWUHRa8NtvjGHz6PfH9sy46NRg6efxLcGUtmDb1yl3I3xoB2MaynaUu7qi9tPHgZVwwN9P1CXmigZCli0WmlXYpfWkfiGp90zay8iba/Scvqn1sZQ8oPZjRYWBuAZgz0cn+rbpd4/Vl9h58D6HbKdAxm1DW8ofDl8BsGVABggh5wDOCErBcupS5dPfywI2oBN/ly3D39QDbZaaeYndVvg9shSNn8pIYFWAsvWeg9yFiB7RHTOwFL7t7NMtU44MygEMEUsOSM6MGGxq8sOeOk0zi27TtgA0FnE3SjBgpC1xjk+/F0wqe7OySX9mt0qOoEzAJ3f/1Ta94yTuGikO3T7tviyZEgKNeDKUOg7gLJuqlN9SQyc5n+Ep3NRUk0O4WN3qv3hxDw1Vdf4eOnT0hMuH39Gqdpxj4DlEn6KGWAgXl/jbCbMe3E073b74BwWSH6WYgCmC7Qoi9rCBatTaVt2/xp93vAvVW+B5RekPv29L99uUPQduHw95XwH6qg0FrmeZHc96fK7GXPpcNCxlb0VjBXfqKTC1QXAtrtUOPPgOQm4C7ltzKoGiCtUusBeQhB8sM78NcoQzdbQVCAoDmUydVh6z39uKnX2vHVhymZQbAyjkkMDPYZhFwdhgDNGdkZDKQFdz+8w8P9fVkTYzuCEgigiDjN9mSjV3ypdXG8jUnzxIvMCbrxFhxoycBwAZ8HEjR83xqgt8fT46WB4gr+QAaO5TMPy17XoynX1akxvv2Iqxb3sI/651egbvBeO9pUjU+/Y+u3P1+fl9AilCGsQBJuTwOgNQwH5Sh5u6w99XkD7MXQoNYQavjDbTRkdmbTlpHitUsXDJj+GZGTdJG1iMZhZ70ct/FX6pkZgZtR1Dw3ql+DgzZ4wR8/edBtAnUNcAokcufcc81g8WrNgQL7bsqgA5c9oOrTE5bPvrwLn6spzgJqWxANNgscgF1zyrPv6HpnbenQ2qcRvao1PrLU0dASg+frEbSsuNvj9O4sgzkQcg4IsBhEAd2s7UwpIbHuWElARgZFzQcb282FUs54eHhAYuclG9SD9SEGnAXv6j6wSguwLu+r50e5mEdgrL/e31e0HwiMUHZ+RAe46wJJP7OhRk3fWCLA1c+66c2bzxDijA+fvsf+xUvEwzUCZ+ynHXAgTHMCFlmclcOEOEXMO1lAySG4tFTrNpex0LV9CLo7+o+OnoZbStz6qPRLd98IUPdHmenonrNjBLRHwrqvt6+jL3dZFjFEY8utvVHwY0C9FvBs4D32RDvJ6BW6aWK7NwOcyc2uARiV178T67HZA9HR+CmhDxjwUqk71T97t8Zkl+c6p0Aj+7pya+x9LudKeBsw5AGri/SvmxXYMEZW9DFk4ozsx4cHHB8fZSYsEI7nk/AOEWKcEGbZETIXvFi2MkMmbsIeRad16wXIFlhPjaew0HQDUNWDGvptHbXfVqxiJLJvrcyE45vufEO3AS23ZHMx9uzF+hKGOavsr9Vv1ode74/uGR2j2Xl78XP06OjaGLADXrraXlT1WS58PWrbyLOvJ0ofmD4iEiO016UtFrG+VR1X+mW7LSMaNDzLuubHqiYl41LYTtU90tG+L/07V/WgKjvqSqbxuO8/h3hrcPzkQTdMCJt9QwDKIrFWyV8oxBW3BqAmvPuyVoMYa2Dd5OnunhsBifJci7Ahg5Hc+Nm2/Faf3fdeYI0EkqfLSDj5Og4Hpglpd9j5w+EKNze3eEcEkKQNDAREIkQEnJezbs4A5JSRwWUVNiODoBs6xFgNIQ2/OJ/OuLectbqgswjT7vDx3f3VEfAWEFdX/fd913tTtwB3AyCgmQOUdxkmBwiZdedIFxe7Bt25MbiyF9odYPB1Oxyu8Or1G3z37j1o3uPl518gTRNizqBdQA4R+ZyQYgaDEEPENM+Y9juEeRaPBlUFS6v21mwHDT1WdLjskR3RcKTotbltX3XhTvbJ7p4tMGj3jgBz398jsLVWNmtj1e4JRLIomsVkqsOn5Ze+HqPv/yyOLaDQK2MB23AzLtUxYGNu5LVu6LpR9y2v5Lj/1/XMKn/IAW2gymB28qnwhD3T8ZsfP37KOfo0k4PxD9Rpd3tXX/MtWhe6MSR7CTOSLSZPC6Y54nDY4+PHj2CGpEuNExAn5GCLy7WsYj1RCbUxgyEgrsavPKtrNTiAwtqAGvG7jO81X/59eXU9dqp6MY+jeeGLjnLPrHgJKDrMg6sim7px24PPvl3+nRc9su6ZMegGTPoUGbVBjy2ZsG3IqeYnWRtQZ3kJFBgBlzel4a6trjIyzj1w14XDfZ2tGq2pu1Hu4NlL10mrUnITdRb9yKnwlFwdPevxD4AyS0QNP67ftVWP0fHTB90A/OY0ZChKruj1tdVSn13HhZXBNxAWWx1VhJWckPd54W33dc+Myl3VkysPlSvU8NTQojJFktHGc68gi6sDkwnrDbDYCZdeKHllWhSc+x1CwLzbY97tlHkBZgkZCWT1FQ7OYFkwGkjiullWuAcCKEaAgut7iQ1/PJ1kujVqnDfXiLyG+a1PUAWKtFoVndW54wHZkG0MBEMPMAf9a0BbPuUdvm9Lyj8Gkm3dy/Wz93abYi5No1rvkWDnzAhhwq9+9Q9wPJ3xeF7w6he/QDxcIxEAzuCQwJSQKYCj0DhOE+adAG6KURamGajpFIkc1dPdtF//mXHxY45LBkx/rpzvwRX3IhGFR1xBT5Z92Qi4LFx7Ze+eclVux1xfj1G9/r7HRaXbKY7W6PNKad2vW0rzYp0dEPRAdwRsR3XvwXCJw7Z7HUAxp8TWmPbjaMkZCBExUEk1BmhK2WY2qXr/XK3KvbzJAx6gyMAmCFA6L2eAE2IApim6tRuMECVNKsUIjhFEKPKlvJnQ7EAZQqwODLcwNTqvfs5Z04oKfTKvs3w1baQKTLb6aK3rfjzvGp+ZrjJdtwU8Gx2Hdr/IHnjXOdJL72/77hLI758bge3yXImfaWswTInZldsbHOvD6qiLcqG6j3XGI1Mzdn15ZozYWFnRojdUvPy1cwP5K48+L9b5KYOmGM3dta2+siMQNTKgaVf/HpPHA0MKDMRABW9tge2ngPdPHnQToOnPKrPKsRbOIyFngNDKMmBcBMcFBex/N161wT2eGS4B7lKvfgAV2aSMZWCStqeCWP96wN23xRS7nN8GNsaYHvj59wkodUKhlcXF65kgoTE0TeBsnhaCJBaVFFvJdo0kAd9egVGw3Tkl/rDGgctunDFGTf23Fg6lrtaeQotqghOh8dgAGn9HWE3PehqOQHehi01B2TVPH31vzhlLWoTGulq88Z50eaPtUTM6QCTx7YO6qf4GM/DF51+A4oRPHz5hd/sC+9uX4tkGgzlLju4M9ZAJsJ6mCbGkaJwkvCfGIR3kd7+Rj5k4Wu4/g0P41rEZ8bDvGk8U1gJwNf4Gwtd7Op8zdkfe3f7+6s3018jESDMubSwL3wzeOaDPj7RpnnWQM/5kFubpMImnwLZvl4HiAmYdILRnnwJ1/j2+zyzEg9HlYNd3j54b8fg0TbqQs4IUonbh1Rpwl0aW9gZuUyo2joyUYfuPK5tjmma8fPkCV7PwSMqL6DyWafH9bl/CyAowJmsfRF6WNgXdqr0D3PoXALfvQOVJ0Hi8lz9pwEUQtR5za+D9FHj19wzBUXff6PdIp/eG2KWy6vduQbH7bgaWN+q2vNyVr9cS0htzozb1557jUbX3BNL0gkGcWpWnO8Ddjc8tsMyQcI+aER+tJd5hl76vnwPAN1t0gT5bMxGAYEi/zcSIlg2u6YoZYcvRUfHa9j0/edBdlDl5uUlDxb7yKPSlOFBkhY0G2RC0ujJHoHULcPt6eeZrmBACDtn9JvdsL7C9COjbuN5VEwVYGVwZgQrvXfULEKweIzAq728Z1mKzX7x4iZubWxw5gc5nMGdJTRUCkM4CyoMCcWbNxa6pAkPEFGcEBLGzWLzjAhZtASFbZzS0IlKDpQcyAEiNtlBmTdp+jlqHLaC5AuFolVG5XujCyLkaMql4uQV0e7obYm542L0vWCpMtxlC6QMWuhOA16/f4M3bt/jzN99hCRG3r98gTxMyAXnJyEtCTrrQBTVLzDTPmKcJMUSEYAtYQ6FZS4NKP1YmJMe1fy0YHNLaUAn8O1oFVehQ6Cm/niPwTUn2ITor4NiNwX4cofvdeDPrHev314dbxefatKWinkfnEYjY9grllCSNpwLuSn6jY0v/XjlfAlMjGelBylYdR2WO6J4BsMuxa2U0gJGqoUNUwzH8WGt5UOOpQ1gZu9Dnfc3YjQ9fh+YvM5Bz8SHZWJyniN3NNeLtHsgJd3efcD4FLCnr7u4EMIEYCMwVcGsZRssSWhLEoDDDwu954NtQpiQJK77u+ZmocQM0NL58XOLk7UP6fpuvtuqJjfpYz4hDRurE2cUs03qMCmFyddpo+aWczhlzyXAvPCiVLecbPn2SlttYYqvNBrytq8GiU4qud3p0BLhHe5xkN/5Nd41qviWHV/K7l9OD9o147ZKX2e4Nyt9bCRT9syIX0PRP807mMmz64zn99zMA3cokjZd7LeC3AHcRgZ3QtUEzAt3+9whg99fKe54gdg+g7chWNw8aXfsaD8mg3Ab4WT2sLs1A3vbgVcBSNYGn2yWBYMqoDjrC1dU1Pnv7Fl8/3EneWxCmAEyRsMsTzvOMZTnBYlxBBnwjpjhhihMA2cAlazy3LSrUClWaaf19yjCpF7einq3dvZfWvFiXQbb/Hkm89/K7pWQ1YOqGNsws6RHZ4LgAmuJx6UC3GQwhBMSyhmHd/wwg5YwlM16/eoMvfvEVPt4/4JQZN59/ht3NDTIIaUkSL7pkpARwrrvSzfOsm2RMiFGVddn+ttKsp8uWkG3q9wyw1CuqyqsovUfdZ+PF1C9qn6lgru/fGtf2Tptub+LTrWw3HrIaTwS3PbB7x2psMBcw7enh368Vaoz5UR//eLhSn92+KBzl5VJOqcRw6zADNO+7V2DMPiuD0GNZlsvydCM8a1OJdvIPaBei+3oXWYmW5/w77L4Qxajs7xnWmZxR1gO7rg4wzxCZwS8yArwG3iK3GC59sfBiJESIZ/v2+gZg4OP9HRZinDlhlxJCSGIwUwCygD4bp5W3WmPSz+QYnQiaUaeMrdJo2Pgb6YlGTz0DILZPDwDts8zHbrw3INE+vSOgysrLoJQb/ugXTTbg0Kra6ejoxm/5C9S21H5wbe+lMfD3OfpxYeNUgHfr1AnWPmqNx9E4AI3537/T85CXvb0c9uN61HZmWedgOp67a/65lVHbyePStxSwjsi+gB278vv693Xx3y91588CdDuOVSXWKd6RBWyfnlDWEZ2AHTIYBsB6Y4BsWXejc30nDRkOVZn3gHs1MDxz1QtNG0eg+9JRjBNs08LfW2Km3Pndfo/rm1scDtdYcsaEjBCBKQLADsfjA9IirQ1EangQJKwkSjo7KIiyT6MBkSgsa78NMqOTXi/19nRxlJI2MVDiHi+DboIIqeL116IEV3mgndR7wkgGtBkwH5wpZAHebVx36Xu009n1wVbgZWYkJrx89RpffvVLfHp4xA8fPuLms7e4efkKCwhZATcvWbzcmlotxlhA9xQjQqS67Xtp+9aCoLZalaru/AXA3fZBMRfdn7+z7bd1+aTGmwm+Or1HTZ+vwVjUBbuBxmV7xW2zQBbfu902NGC98kYq+acb8IjxMaQ3X4YoF/EFeoUpZeUsGXSEb5NrO8N2MbTdeguPatVySgjMiDFK2k9fZ6KGrltrIrzC8lkWtpwM/rqflcs5g3UmaavNIwOPBnXsdYOvS2Ok6PsK5lZ+srrYQ4wKeKykAlIYiBo6FXSzKs4JxBnXhz2W5Yz75Yy0nJHChOPjETTvsL+5AUVSeRlW7bINxlZtJc1bHFVOUl1yHkwOAyir3as60c9t3bXdV/Z82xfPMyk7LtDHvKFKSkgiNXKoGrvFIHOytl4DQMK/2+BcKaLk6Gts+rIYlaTLP01B2Lv0PnMTbeGPlj6XcU5DpUt4SOlhulrJBGbRvRYq0j85Ggf+fUOjTC5uYhwPikeYyLfDdLreMOSU/jl/vpfTxeN/gZZWVhyA7FI2o45n37/POH4eoJtsxb8A7pHVM3zsAnAcgucBwPbf/bmnBoDd03hhNiy/xnLrlH3/rkZRbdQdXX0rqGnvX3sLvaWqYOcC2DIBXMp29c8pYbfb4epwwMPpEZESpsgawjEhzhE467uDGlI66kOMJg2rMuaMzHWa1YZfIJQ4VLBa7CwCz6dPqvQ244MLmCDShVNUvTseaBNJTFg0MOqFBNrdIVOSbewNEBuEsKk9a5NXvP1iNdNwJVbVK4zSVfocRbz57C2++uWv8PD4iA8fP+Lq9ha3L18js6YkPCdgYUCNAEA8k/M8YzfPmOa5eHoNZHteW6W5dEfhXZe+qYW3K64pfCPlX8qD3Xm7n5BqHoTXc+vxX2JcOw/muhys6O4X1FmZpbb2XfmwzfrBzfR+M/b1/q32tEaJlt+YZ/2DQgO7q/dGrb5nlFkZuPNxmqSuWsUa4xwtgZR4xNV7Ss57PJJZDR91CtTLI2tCL9+2jGG/4NMygfgyPQ0upYO09mj1LvClrs9YFkkXyIwYA3LWurg2+PGfzWguStrkktwT9M9C6gIxMmfMMWJKC06nR5xPC5bEAMl43d/EsjcE0QhktzRc0bfhX/0bGb8+PVu5Z314fdfSzPgOpdwSqkLt81sHaRVWw2VQlQJwBwaYjbkycxEEW3gjYOXZBCGwOHSsT0NL3KIr2Ul7ePBthoGr9CUM8mMNG3vGf3aFlzcb39mYtX0yLtWn0a/9+7DuhlZ+Pa9NKwDt27FRnv/et7+XtWY89fLGrpvMlocDJreYegS8GXX9yBRjyXJy6fh5gG53PAW4t5jmEqDeut8UxVYn64m2Uz1I0uv+ud6qG9Vh6zoVqeja0j0zNiw22uraxM22xipyCYPpwwpsKvinAtgpkChvIlxf3+LFixegdATSERMYMQIxAof9Ho8PDwhTlDzVWcpkohJ/Xt+oXjiwAkNZpBQsgUlOQmYDq/oUO1oZHeqpNrxAjIGWfsE8227BVXb5xWWw6cJElpzaKeVyD2t7tDZrAKTesB6g+P4fCVH7fjhc4c0XX+L12y/www8f8fHTJ1xd3+LF68+QKeJ8XsBLqjvlKQCdoqQH3Olf2SWT3CLNDig1Qsp9kmeJC0elf2tQjABN92RDl0oHT5eRyO/oqd/LQrJ+QZqj7XBckm58pdkfhnJF7wNEiZ1OpyITzMgphpS8rKrnJ2RZGavuDI/aze1Xzz+9cee9xCuQrKFHHqQQSJVKJ+8UiHhQbTGyfdaPwkeuDF/P0eH7y/f2ij/dePL9U0DSINSitNfxpdSl5cuRwZuWBSkllQ8TQs44a5+bwZ0DISWTAdXIKvHc2pOaPwRgIKoDgsXDgF2MOCHgtCQcl7OwSpxwOj7icHMNCpJS0HIoV1plMMcVCCiGHvchAAKEvR4AJGSvRkWsx8yPP9bGsR0jgONBfADKwkVvsPTgfevoDQKTdWYPGeAuNS1fCSCGrYxitOPTDBgiKtdrGa2MGur7jfpuYZznOP162WrfykyQ9qnxfOrWQ/T16DGJB9zsBFSfOeY5xkMvg+xcD7R7OdIb56NjBfq7/uvlfdkQKG47m/rybcxPRG0k9OB4EnQT0QHA/xnAXu//3zLzf4eI/rsA/isAvtFb/9vM/G/rM/8qgP8yZEb9v8nM/wc9/x8H8D8HcAXg3wbw3+KnuMdZt/74awB36wF4Ptgevat0VHe9YUS7PlrpjvWgsPJG9QbQ7MrV12gbcK8tL5/X1jJoiOUvBdc6rVW9r4+vc5uWD2L15YjD1QHnhx3ywpg4YaIMChNmDWtIzEBiBIqaRg9Ykkx9yvZaasCQeAwiCFMIiGT1z8joFj4QoezCQy44gQgSmyy3mLczhrDyQBLJphMecBdAzaxZHdq0apkZKZkPm8Al93gLrLiUkZ1nbQ22e2u9WNTThBcvXuCrX/4S8XCNb999wP3DA25uX+D69gWYJpxOC84MkOYAN0Er+bgnzPNOPNxlwWQFSEaghv/YTfWtvBAdcB3wSa/kVgphMB63QE8LuIvuGBsvcN7p4PIXh7Cp6Pp6jAyEkTIrdWHZMMUAmcXM19zK7EjIQ3r1B9dmN28bSKahx6nnqa3zhTZdmIVv5xYw8rTxKQANpBnNLcc24MaCFFiusyvHA+Wk/CeKXnipgOcYcToe1/JT79/v9ytP8KqNYjnpEHA8qG31qRRBkumkzA4V8MbVi0wEBBL5BgazGQ7VeAwsijIxI9riVQ4gTiAEzBQwB4HlHIQ+V7c32F/tdf8DXVfTh6MBYCSQqvkCVFc96u43RmO7brPM2icBkuYVlsrV3vM0cBwZs1ssvwUsiyxy9B63BI23u5c1K95FDReoMlhmUnO2XV0J5uXf1IFuoelWu5pPrWMBkhfabselayOQ29TVP8vCh4TLW9trIfVa32kO8wBCK7/+YWus+fr6dq34ZdBGL4N6vhqBfE8X3uAaZi76XmbwLshjN44avHhBhtvxHE/3EcB/ipk/EdEM4P9CRP9Yr/2PmPm/3zXuPwLgvwDgPwrgVwD+j0T0H2bmBOB/CuBfBvB/g4DufxHAP8ZTh2pVBlWh8NQjA+D6FOAeemSwZvJRp3qG9ADgOYrdN3PEnAXQbih6377V90bEtsCl9WI567e8V+5r3yPnahiCK9XKYgayhJJcHfY4HXZYThlhkZhFASI7XcykC4KobvzS0DYQwLKJDoMRQ8QcIyIREjI4ARZDx7odjsUNFu+Do1HJoa0p8aLrc29omUfD+KB4sVONz80+/lXvMTBgtCkWI5Eo/5zLYrURoLM+sdjfrNtB2/Xb21u8fv0a19fXSAz85ZvvcErA9c0L7K+uwBRwyowlO+GlfyEE0DRhmmZMUyxe7VVmGgMz+mmgBVp/a6/R9CkuJ0cPA/WmYCqzPX9VenMbcxO/2b9X4lpDyblcaOnuWZdfF5z53/5+dM9bGZZqD6ggz8dw+z7xn3ZtE3g7kP6cw4P5UT1HB5HQyoyw3NHE06xXdj4Uqs8EU8ro6uLHzkrGAgIip6kZo723vgF7ndz276VunG8dcs+4ntB6WkjJZPnsYeE5daMcUgMjQDz1KWeEHMAkW8aL4WByS/RaymK0JwCTer2RGRGEHQUEYiACiBM+f/sWPM2yUU6UOgf1mDd0tPd43YA1H9u9pLq2abejr05ptOnXNqm5fVwyMC/dv/K4Du+VK97R4cvwstbryrKvQvYBQtrF2fOalekcc6ihC2I1jTejWbWbdAZN67pFl0se7+eM7a6wTv60mGNkHAEuN/XoHb1c47XM2QLeo3fbZ8kbvwGkCQCn1DguRpjPfm/RZ0ueIVDt98G4qEnUHB/QZQ/5k6BbPdGf9Oesf5d69j8L4H/DzEcA/5SI/j0A/wki+jsAL5n5/6oN+18C+M/hGaBbqvC0Yvef9v1SB/hjFGs58gqtGBNoIrhaS7J6bHqmG9Wz5l6lblBgaEFdYl6rm8kBO2tGiwGEet9ACLuCqmLjAuQbQ0NDLEx4RFU8+8Me+8MBQWOfA2cEYlzf3GBZEpZzxpIX5MwgLMK0GthozmoWKwYEFM80Ecn6HyfsGOZJzIZzq0AjAlFARECIAXGqqbUAt2hRX8jF00NISUH3kkpISQXc8seQmYii4HoBwXUaPYSAq6sr7HY73NzcIMaI8/ncAPEQAk6nU1HkMUbsdjvsdjswM75/9w4Pp4Ql7nB1c4vd/kq2bs+MxOI5I2haJ1MuUbKSRPVuY8WHLmyiMkszFra8yd7QhONz+wwaLw5glWZtdGwDbgEozSp0bqWDjSeZwegMC2BTknhvb19/f3jhveU5tkWq/VjX6sLU9N/n6Glo3pcGJA7qNupD88KTG+srudW13e7xPMvMsjC1W//Qv3urLtZXkTSdZYwrZ0RfB4NI5AxCXx8QYdIc9JcUvz9WgCNn5GWpGWy0zYw2334P6jMqmDPe48xIBBBnCIl0lixnPDwekSlhHwhBOYQARARkZEQK4EggZCDYmJ7AFJApNDpkPb67trsmVjALFJl66XAq2Wtncr8vGXfPAUKXjuCe84BL2tLWpVS5A5Mj2uiP1TPi+6l0s7HmwZaFnxRoPpBz5sgYAVuiaihcostTNBuB8f4o/IoKKi89Nxr7bYEVb2wZ+30drR6+PiO5MKq7lWGl9ykfe7zXvFfxREZrdPWzziY75F7PFtUw26TwBZZ+Vkw3EUUA/w8A/0EA/xNm/neI6D8D4L9BRP8SgH8XwL/CzO8A/AOIJ9uO3+u5s37vzz958OrLqn7Np30fAe3NgWavGCj7TQCADnD7crtnnqyjK8d/NiBoo879Qd1f18IGcF8spzxcUY28n8qGNQAK4Lbr5s3MLFOwu90e+XxCjgkRLMpmkvNX+2s8LPc44YwQAzKbBzlD2M6sawkt8aEgKbObQvSGgbgmSMGZV+ZTtN0X56oc9VlZMKaKR8F+4lzAdkoSVw6uU+JkkkZ7sABuxwNEMg1tIPv29hb7/R4hBCzLgpwzTqeTlK8CJ+lC1ORSuN0/POB4XgCKQIig/TX2+yvQvEOigMwy/Z5EKxSvRDYFHJ0HciSMPJc44Nb8XnNJ8aR7plkLv+o9NYXlgUgvhPu69OBPlJxTjl1bZJpwvOHN1nHJiB0Z3Ftl2CzFNuB2CnzwrvYZAriCob6cvj7eE5XdOLcx7w07e5eBUxkrvCpfa9HU2ANMD7o9//t+vRQ/bkdTli6m7mXjpaMsXHZ0tFCWfhOcp46RMbVYvDgIlgPb0pj6+/ssLV3BsgYEysO57dOUMvJyRg6MfYyYp1AWuiadSXu4e8D779/jxRdfAlNAiBMoyA6+IAeipAa6B8Kg7YVVPMgTr3nx3D734PV47J9+jh7e4o0VYDZgijW4Npns5Yz3kF8CguWZWlBpW3/e9IS8TWvh7jN84I+SXlf1w2icYaNdW3WWuqzXlo0Nm7ZU0WflzUNgbefW8fQ0uOdph8qoDSPAbZ8ZaNcbWd0H95rBvQW8Wz7q9ApRA7wbfvF9JSK54IYAKgDe+u7S8SzQzRIa8i8Q0WsA/zsi+uchoSL/mrwa/xqA/wGA/xLG4H80Bu386iCifxkShoKr2xfNFMjg3uEA3gLd/tqW8tzy7PkyNit/4RgJHdZ3BN9ZnQDbVBbO0jfl5L0qW+160gouXkQHtvWfLb6pZbbWIaBxlwqcA0koyRJ3yBMQeAGnBUyM3f4K19cJy+mEzBkpA0gJKS0KmFvjxYBzCKGAt5p1wVYcC13YALnWO1LEFAPm3Q7zbkaMUwGmJniYRblx1oVQGsNdslDAyeHSL/KObMKLqMZIazzvfr/Hfr+XbCG7HeZ5xvF4xOl0KrG/BrgBlPcVgEoyjR3mGWHegeIETDM47sAxIiEgWf0RSpYEMwxAKIC7xGwrbZwxr59rvm/AZinQJA86LwCG466UzdVDRJtiYcPQtU9C/U2mREixnnj7YrBMLMPim+MpMDZSaFvltOWR1qtUuJZ5oS7Nd673DuXVRl0MZJf1Bi4WeZpE7PfrVpSKTZesDI0OYDYx8iZXXb36TCL++0guNzHldn6DPv1Rc+ArONgAeVuH7yc/DiodtTahLh5lOLDg2mCcHbRehRs0ZrToGN1LQDbLisA0I6cFiROYAmKcJSNSZiwp48zAkoGPd/e4epMwXUl94hQ1bhx1fJGbOejCnMqhFW34WsE3k0Bvmy2sI63vlY6fdVz2o3sEgrb74AkArkLLA1zju8pnsMb5F7T19iCsyJcKvgs/ryuqAFnDi3Ru0Z6xw6jd7Bpdnt2IW0cF3359w5ZDoq3W2JgxWQICAgeIn9eEi8nPMe1H5Q/rrdf6hbZPAWCPS1aZvFzbDVD755t+cuX0Msm/zxtX3J2/RL+mvqiGKZH1vN2MLbUG4EdmL2Hm90T0fwLwL7KL5Sai/xmAf0t//h7A37jHfg3gj3r+14Pzo/f8GwD+DQB48+VXbMDJhIO+c/NzrfCfFr4ji+mvOfzgJXeur2cPsDPafvLPjupJ9UQFowMl1T9nZXrLf9wQe4+BbSsnr6z35j21SQBL2rEQZ0zzQTw1C4ODZBmY5h2ub67wcP8J5+Us1zVEhRVHN0BN604hIJ3PWJYFp/OClBdJtxUCmBUcO0FCZOEZM+bdTjygAMoaAUbNq22AN0tWEgHb7HaEg7NFikUCw6OWpWKe5+LxnKYJy7Lg8fERRITz+YzT6VQWbPjUY/YOy/e7v5Zc52GeQHECxYgzIpiiLqwV1c5c849yBsDmTVMg6gUQ9WCwSomRUWbePYkatSc0K4QzEL2Cujzmain+HU8efTmDMS/eEGure2MnN9ZFPz8jwPbz5Rc8Petz/hw3tHoO8H/qfPFyMzchD3aNmUv2Fv/OZ8u63gB2iq0B8Gh7uJSv7/Ozg7XPXIiKvc59PlVPr4DLe9Rwje6e59K6p533gJni917uQnsi2aodDnBr2BqRhIMEZkRV3EkKAhMjUQDNOyAtWBYJE2MKEjrCkLCxLLvZpiVhWRJmsiAUrZu2v/aT9ULlXdM1tqNgqN2jgFa+1/4c0KpiuHqiJWIptKf7c/n8KRA4KofdeSeaSuytPXfJ6B15cVd19Nd1vBs9+lpRCE3yglpmS8GVQa/9WZ0na8O11Kcr28ZBW2d5JVFAUFTFlLUvWRbvUvX2DuniyvX9OrrfPgM2aIj1WNs6RgDYNuTqAfQWD/lnAZNNXhKvsdHovQ3tBwbLU8dzspd8AeCsgPsKwH8awH+PiH7JzF/rbf95AP8v/f6/B/C/JqL/IWQh5X8IwP+dmRMRfSSi/ySAfwfAvwTgf/ycShLG03UjMDsC3f29wLpz/PkLtHhOdUXob1hPzCwL7XTgjpi2r3up18gqx3jqZVT3ETNVATXw4NnA9AoIrVdjDKgYilKBEDFNe/Au45TFg6OrHwFkxIlwuN7j8fQATlkzishGG9Pk4LMKkhhl05zHx0c8Hk9YlgQinVJKSRUHSf5ulYDTFDDPmipOlt8LwM+2y6Xk1rZQD9mmvW6yYVkX7E8EoCz+lP0jCBSAvWZkMaV8PB6RUsKyLDgej8UCN1C+LAvO5zPO5zOAmhkhUMS83+Hm9iV2Ny8RwgQEQqKARBNSkzmA1HioQMunI0Pop5dFW1aMUL3dcr4KXDNMYG3kdkczL7zKuBOmMObogDIXEPBjhFTh1aboAeBuPBtc2vdUuf73CsReuH/rnH92Cyw+B+bKc9Zf3RPULtjujfGRcyKGuo7BsFgBWmNoVV/nvhc6u8wkQ+Wrso6B6nUOoUhzZtaQrzb0o3j3RvVw9/XA2MtH44dRbvRavdGshQfaxWxVg34EHronVTYTUVlQbXVJBnJjFMOIqnGARMgg5JyAaQfKCafMyA+PWM4n3c2WRKwGid+mEBFDbMfYCqh2OsZ0B0soTmBLqSjjmwjmZin0D1SB6ngHSvfO4dm1XnaS9EmD2F+rjonnGcjlfk0278FuaRMqsDVZ1rxrqy6uGkFlMIjadtvbVrilGgXVPunkkX9WgWXekicDgFiNJn9PlfvV+FBDi1V3DjKZeLp742WLNgCcnKkzAD2cX43hQXmkesRmlyI0lEwB98hTbbp2C+y7Zq9k8Qh/+Ws98B5hzUvHczzdvwTwvyAJsA0A/k1m/reI6H9FRP+C1vnvAPxXtVH/hIj+TQD/bwALgP86S3gKAPzXUFMG/mM8J3MJMKRMD6xHv/29WrdybmQR+c4fPf9kNRtwsH6mLPhBb+Nud1yxLt2z6Oo9VHgX6j2ix+gc1ApsdokblFmfofJcNiXOhDjNyPOCeJ6QQ9BNbjIQMuIUcHt7DYqE9+/f43j3iEChWKCSKlDKstCS0/mMT3f3WM4LmKpSEONDBYY8IF4nCmK4MSEtfrq9Th0vKTnvYIWW/cBlZk0FqJ5UBbWTLpxLKeHx8RFn9cT7af0QAg6HA3a7XVOeKV7RkRKjubt+if3ta6S4kxhtkmsJARkEyftCYAitskwLlI1MDKEGaqf9BZRX1M05SzaClAoIEOEKZH2vcXXh2Q3hTj2t7G9DedldW0rHH1XRWhhJO9aHU+dPHF4wPxdwX6rjljzpx1YBZ1iPXxnvRvTuuYHRPVRYA5kxa4x0XWgHAFnWZrCmC3VPrLJgAMWD6/sbF+gBcguO3DO+HVGBO2u97blLoGqrrxhYec23eGJL1jObbvD0Bnyo0prmBIJtMe0cG/pwIJFDzFy8zJZNJxMBGmefAKQ8g2NGjhkpn5HSGaez7EOQ1UoKMWB3dYXbFy8R44wcgsiNQM50UmO8b7OBJkV8FZjrKQTd0Xe8e2gZ06hywfWM60MMn6eNrB7PPUrfk5NHftyhA/7WFyFI7j933etrL6v6em/WBaixva5dqzo07xzU7Rk2hN0bgJL9hqjNMFRQvHtv32esF6y+hADdjQnqBwNQ5aE3RhrDvhuDK4NBf/eZsUomLFQMtrW+bER/Zsnuk5mxnM+ygBIoIWm9rva06+tmY9TvLnkJN44w2nMMxv54TvaS/yeA/9jg/H/xwjP/OoB/fXD+3wXwzz+7dnr40JIRsO4Xrly0bjbO/X0Egb1X6urkjZ7rQ0fsfg/oqBss8J3pFYy710/t2r0jBhkxRm+t2bn+c6WcuoHdWppWR1bArtRQpROmGXzW6WWSa4EC4rzDbZxwPp4RMmEKM0LUmMIm07woksdH8XAnDf2wLeTFspatqGX3PEJQJZKZdKfIdW5t82pbGy0uuABrmDITA8A8WCHqwiXOOJ/PeHx8LOEiXqBYuRbfbTGdmRnzPEsZy6LgJ+DN51/i6uVrZJpgEZWZqHgNpTYE2501e9d1yeUVlPQOUGYGgoBu0jh49jza8GQbk2nCdwS4C/AVdFJ5ipzXZzXetKjnAm4rj2rYSM/7fTlbSvPHCMq+jVvHSJ704wtYA4LR88xw/YihYvJGlB+jwdE8UgVdPqWf1cRkySV6jOjp++O5x4iGHsh5ueJ5bnT0DpOmPGC49XlJ2diVP+wjrrvM9eWPZGSN3CXZVwBd/bReRV7rWM62GYmOLbatyIUBkM9ijC8hgnOqu1qGiM+/+BKHwxWWIIuqbWpP0kRbGlbZ45JRU69tGcAFkDVEammo8HzYJ4VwrgzbxNIyF5nh0uPE+v2v08HeyBmVYHzh+ctC8SopxqCx5ZhB2UAxtPw5zTLYnPM/LvGWf38/Pg14l3Gt/ZLdPcZjDSZx8iIXNW5oJdcKBpL0iF7PM7fOtg15sSUfm/PKAH6tycgB2n8fjbuk661M70TXfn+vnfOLuRvadobiVjt6/FkWoD+hG/rjZ7UjZS+4+++jY8vaeeo9o+8/5t7Vm2gNlFdMq/dRJ5V65vHljBTZc+veA+5ega/uce3or/XPkD5gwJuCZA0BBYR5h3wmcNLBH2Sa8/rmBlOIOJ8TKIaSgk/d1kiZcXf/gLv7B92oxnJ7ZxEy+l4BtaKAmAg5A0tKYN2mOeVccoI3ALHEPlt7qGAfuY0L8LPYWEbG+Zzx+Pi4okXZRAPAPM/Fy00hIOVc0ipSjAghIqWMq+tb7A/XQkPOCCCkQMUijyS7cTIYCyT1WOYsHoRWdrR9q+oyMsS7SbnsYGehTs0zMNitHjZkNX5N7XYejE7QWT0aI3QFsFuvtYGPLSBYvSZtOX/NOLgEpkfCdXTP+qhUawBAb6j2T/VldT+Njy4J95ES95/9eQ+gLoHtJ2Vt33eD+ozK8NeKQfeMo3cIlOeNX5zHq8Scd+3u61fLljuYWTe/QtkgowcGdXw7fzK7+7jKy6AKv7Q/hJrvHu4+qycFIETkoMb5knC2VxMw7/Z48eq1pAuEpuJUUBtsdo9Jz1P5KzmPB4fpnowK6urYJCf7jWsG9EMFuJUXJHzNUncO9UrHK70MaSs6mJVyz22N05VcAdQ48ve1QFWeexpMjfS4AW/uL7h+3BqzvYNiBLz7Z3y9vXd5dNR6WU/KwsrKjR2NFSh7XkXRKOv6r57Vz14uesyxBbp9n46cgOT4G7TWRZ5utu/FyKkoSOPHea6LMbphvG8dPwPQPfaOXDrGAvXyuUuK56nzq4E+OHcpjQ2AqhgGQqk/fFlPTak/1e7ngG1rIw/OrwEDN19NaIUYQdOMeXcluaSXDN1TGpwXMGfs9weZ3gwneRcRkE0wiGV7Op3xeDxiSRU8E2qcPJENn4AACfc4n89qCIhXm5nr1tBGw+KJ8YBi3UYD3NM0IcaA87L2iBk9bYDv93vc3NzgcDjIRhlOYFg2kRgmZARM0w5pSUBiyVISGZFmBJ0uIchMwVlpAmaE7LYTV1ro5JAq0VBAgITOWGqxNdgu7SXn/TANHBQka0z5Cog5/kUnkqsMrkLYXyft7wLHB0Ctxg+755yAbcrv2jMy1nvhPhL+/u9JoUrOxOhBduHN+tveMfK0evA6qhNcGdvVGcu06hWsC/y2nt00Xp6hlPpynjQEnqG0LslkImpBt8vL7T13RenDA0MJtWGdQSozRcUv2tavZhxCCc0xsE1s3nuDGDWvd9MOJ2szZGaCANAsM1Fpt0OYJiwgnI4PmGLA9eGAm5cvdIYOkpWIZGaPAjVeZZsJ643Gws8dTYsOUvnB2oTRRjh+9HpjywzM0t8DgDPovdIrq7Fg9UI7biLVhdxeZvTAbgukGohsj7qQ3RsnbLNC9a4VwG8Mdfe3CpxwO1Yy3IYzvnxXDgagbiTz/Izflsyq4w+a7MvTi1Rfu7hvq4u+P8OcN1yelZm1Wsct4N3Tovdy90ZFD579c327TSeP8vBfAvPNUdr+NLYcya/nAm7gZwG65XiO0PbHjyHCSLE8B4Q/97dnjuH79e8S4PZl9OVtdfolgNxbmVtgu7n/KeVY3QYVXECUO2FCpoRpf405A5wYOWsUJMsiIkYAgoSbiIeYkUliuBIAzozT6ayAm8uCK8nPK8IiBCkrEGMBgRap7zklhFDrRkDJECLCY9A/TjDLYBPjYd7tEKcJBEbkPBSIQM1k8uLFi+LhLl496zsVlnEiBLVD0ukk3uWYEGbGlBkcAqZpLuVrBnOdFZHc3MmsdX0/KQiseIPVa22+Ddnqvmmy++6VnRfksqvnpTzU/rxXti1Ap+aZqmTK++2det6Dm+cKx75ftoxee8buGc0kWXn9WPHKFl0bmvLRTgNvjTkexKP16f36YwWcNq7Xd6M1kGj7ft+mRnH17+ie9/QhBXINWBv00XOU5JaHsFfCzS6gq3oLsLbvkhrUdrSlBqAbiGYWo1Uuyzts91FfLyLJCFKm8REAygqCdYdZ5gISzANXcjhrBqUwT7Kpz7zDdV4QouwzcHV10JCSULZ/pxBlwbQuRJeNvkJ1lCjtGz7oaFfOddf6Q047+lQCXCy7Py55u4fvdRUgiAzkjke8vPoxGKB5T6CGTz2IL34KCp1uoDXPuzJHhnXTpsYE7OpzoU2r/ntCvpXzQeSMvZEQkKlmDvPvNuAfQMhkwNug+sD50lawfAaui/3tGIV8/Bh+8Yas3xBryyvuZfjKEGyYeS3vh+3r7n3O8ZMH3TZ4f8wA9r+fUs6jTv5n9bu3OjffLxUetsPu6fNOPkWP/vAM2H9/CnADGHq5m9E5qjdEKAZEUCQwJEf1bppwnCY8fPqIU86SlxakYQ6qSHSjHHAGh6Ar+7N4iUPUtR+s28OjLA7MDPHsEmHhBM6MJSXZClyVpXm3I2ycUW0DVdDqhWoI4jk7XF1JHDYgdeNcUhfZDoQAyqLJ65sb2UVSy2km8WyHRjbyEThnJE5ihOQMpAVnSBaG/W6P3UE21Zkhij1ZmWQCzWhP0NQqRWobq7CBXjLPddvHZdtdeMDkeBlrPmw8EGgVhwfiPeBuGabSrihtd69UayMmdaCMemG7NXae8nA/5yDHN1uHXzdwecyt5Ulfl2K8dfdt1W3r4E7R9M9545m68/+/9t4m1rJkWQ/6InPtvc9PVfXtfv3e8/OzBQZ54pExCIEsWR4BZmIYIJkBMEACIVuCAQPDBA8BCQZMkEBYGAmwLIGFJ+ZngMQEgQ0y2MZ68AALjJ/vvd33dld11Tln77UyGEREZmSuzLX3qdvXXdV3R/epvfdauTIj/yK+iJUZOSIPEnI58qCOjXH9fb8VHtdp2vu+jaqDerD2jhmTBNvAnHS/h3AaTZFbG3uBYAcVidBWcKvzzgNXEnkm+0lY5iLV9QjZ4J4y31GXnhyPRyzzDEwTdod9no/AApoC4n4ve2RAArL1lFmTbUTimUzLApA4FUp7lXb07Wmy0X/CpXkOhM16zfWTLbFZg51t3d0O0dFo9oaD7VHx883ysfKDy9/zqVy48eMBf/nMpdl8dsaI1b/H61iGNQZN6ai8ATHXqeHZ652qLTpg0D/vHSLqs3abQ9eGs9yytiR9Wb3mY1W20w1t/285Edo0PSeKXbdgBX4ZSUqin1ueWrBvvOU5/x5ERNJuZ3L44EE3sG7gls514KV5fpvg+1LAnfkmyrure3lccspSz9AYebf973PkvbMeWOnN4XPCpxy7PgVCCDcgnjHd3eFxtwelhGU+YUlzOSYdUeJ4c8LChEQRiRjgUwaqIU5gIiwzgymBF3ly4QUEwi4EBeOMRDrpSE+2ymsepRZ5g49Vp/1jxrTb4dWrl5imWIdTYjs5kzDPM3a7SZaexIjdfoeb2ztMCtANEOd1Yxaei52Hhm1TpyrMOWmIJAkRluYTjvMjDjd3iLu9eNBYRSATyA4EYpQNk2SCEZVXgkg91iYTVZDaZitRuqWnKf+R6pneuO6B6ZKPV4qKoOuxhOKt8ACvjCcbcpcJ7BHg3pqTvUMVfFlrsEj1FDgjo1rB3p2rjaJr043qe+5ae7/Ii/Vzvq8ukqhtemrBEuWx6PMf9Z/MCRlrfU944WxkPJ1hOD/Trplv8/P9Uo89W+vMzjIpNc4bF6HxuHM7QOefjjddqjZNk3gTFTyc5hlsh2YxY5lnMJMuO4ugGBApSPz+ENRDKzwk5nzwlh2GJFMuH5+jY9H6W40U2z9CZWO071vom8lc4XrwlGdXG3etzeq5m4Fplv8j2WJFFKDcxiT3+RnwtrS98kuPIPPdA+C9eqwkH+lYpTqV/8lqrRGtgbf87tW13quTDYcGiFv6rbYr5dheqUaWZWDNOu/q+Z8NKZCD3a5dLpBDNpZbQ7jnTR4B715dbR4vy1KB7l7evf6UWm3LOlILvHUotJkwj9sf+EhAt9GWm/+5YNt/fw7wvjT9CPi2gyV/FjN3la4FAVuAu/3e+30ufS/vvLZLLnTTeyIiUIyIURRKDISAhIgdCITDzQ341ScAMd58zXhIcmBOIkIKhJQoh8jKIE092LK5SdZhixwjnFLCfJoRXQg/UoVBDMzMeQmJeHr1laxbVsIoa+yYxeN1d3+PTz75BDFStQaNVBgSEZ4eH8GccNjtcHt3K2VHOcwGQI5oIpuuFNTqZqfArB5rmc4p/5kSkVfSiQOWpxP4CMzzgv3hBnHaiaebpK2IxVdhRkXgIvQDkNd8BpJlJduiQQyEKowgaf5soqcdO725YGrCjV2iLODauRTdK8IzuHGluM6B7C0A2861XlnvQyPBz+5+/cA4H//8iEZ3WpBbebD0wZ4sEz3z/LqTG18kiCbPY8K63lU/mtIiIOl6aLTP6Fsce2zkSPDAuaofMxIveU63kaBy/Q0MWv6ZR2Qj2qRHt/0UZFB2qCjoBjDZKZHTpGtSAwIFJA0hGPTwrEXBs/rFdVmKLIuLuwkh7IAgod8sbwN4ttbVR1qA1YQZRLJx0jZxBpLQh3m+uOdKuzpzyvdJq9Ncvw29u4PvPbrEkMzfTVd18h+NPXJj1Bu+bf3HwFYBdS6Q3fXS7qY3zjnJWs6rpsbaQMlyrqnrECtRf3mFyOjSx10DwxnPbkR1uC7Pt04Fe963b69Ner/tWjmoql4fTkQ5ZK9/A+3z6o0DUsyR6+BlCaCHCrmKNXmd06nARwS6+5bhhvI502kr0LsBpHvXLwXqvUHUTpTs6UQZSCPA4KkHuHv327TnnuvlnY2CjtJu605EiNOkp1HK2ucAW38snsEEgGLE/nCLaf+IHSc8POjmIAQAM5CSKmACWOLYylKKAHLLKZZlBoWAFy9f4e72AIIcTAM9rY1J1mLHaO0q3nJ5JSuLTBjiXV7mGXGacH9/j88+/RSHwwEp6dH02lcSW1gs2rDb4V0MiATc3Bxwd3sLIlkOs6j1fTqd8PbdOwQK2OmBFhGEYKdvqqKEgvmoMi+pZhelX+J4n45PWJZZ1qNTwMKEELQ+FEC7nW51ZARmWSevdbWXiEHLy4rSxp71KRG82mKYHHZCpmgX5BePm/OOuvOgHP1NWaDbUKtxUu11NPDfzo+esToC0yPQ7sd4m35k1I6U5yr9KldfwHnBvWkAOCVYLtV1bPmVIBdjQHQO7OS8B+XJve22b9MWPklHcuUrBlEdecKDZ9aDryiM+WYwUipjyr/haGVl+9uMkQaGI3vBchlrChRAAYghYNrtsJumKr6wgO2AHeSQrSWV5WvLMueSgp52G6c9onq6ZeKozGCWk4CnKEtWwACnfOCPTV/fxxZuUpa9Ua7Juf4vhgjnPSqj9ls96/S4B4srunAMaqar370+6WGI/Lszz7cwxMqoZs4bwwv2NrA6liu1DFlVzFLX5Xfyynp6VVKbVkctS06Gtf0SEzsVE9157ea9lecAqAf/Nk995S7BUZsGupPZPjIJEcmyTgfovS7w+dZ4zOkdN25FJ5YKbY7VM43+UYDunnem/X0JUG5/t+B3ROcA+yhdL5+e19qeuhRsAx1F7iZs214j8N3LZ6uMFnD7cq1u0zSJZameZmYVxswSw5aAZUlYFjlhLe4PuHvxEhQJc2IgnJCWWb5TMhetruuGxsiGxN1mCZ/12ctfwg8+/QFuDwec5id8+eWX2EFX64SAKRImWycMWQMpikoODEkau/s0n3D/8iU+//xz3N7c5PWV8kzIgDuShV2Sif70+AA7aVLWjxESA2lZ8PT0hHfv3mFJCVOYkJgQlHc70EJmeJJtXY0wk413usErBAUbC9KSkJZFvfMBHGekOQIxIoARsAcSI+6DREWwccaAwekqWoh+s9Beaw93PSYqwc6yOIVsWUh+1g+eNaAlqj1xBcZwEXyuLLZx5IdkM2Z782cYD/+CefZc2gLbvi76o5NDUWO9OZ3z6D1J5dVwH+a6/guWti/LbJPyiDKXVK9gNGVUybcL62DXgu4ZSMyy/xASjQiUSiFaw5RPltU1momRghjEbOuvNQSHxzvMBbSPlhO1bdaXmQ6kl4rk8boYyNA5FELA/jC5CEixyVMNDV2SRykBk2zIPp2OeRlMzF7yXb1mNRDACYSAiQi2b0SWIgRQEPBt9ZezkRiy7KTZq0EeUrHnrttOz6UMTtm25q3fXI2eKRytyRs+W+V63TtK15a5xVfvd2KZj7UoKJCtNYJLOVQBwNrbXmpYjVv3KZjx/IbzFUuKLYPqgHzL8rG2b/PtAG37XZJso9HRHGwNEp/G1mzbs94w7skerxOqQ//Y9meUSrS8E1FxkHXqas1genZEHwXofg5dAoS3wPal4PuccGjL6in/No827I+/twWcR9fPecBHz4/q0XoujGeL0hFjzGG6GDoPeRH0q7Gkk25sTMxAiAgE3NzdYrefMO0OePPmNY7HIyhGzEcSD3MCltMpRzhJvGBmxjTt8INPXuGzzz7FbpqwzCc8vHsAJ8YUd1gm9boH0teNsgNbXXu5TsuSQIHw+a/8Cj797DOZxMw5li70VWwEUA4fsbrIUe6HwwH7/V4ns7TR6XTC27dvJcIBiQdu4SRgOAQwhfxaWVQOl9eiBABJ3mfBFJ18lxjjpJsn9c6ckLCAl4ApJcxLwrTbYdrv5ZAUltCCREWyMhoFS04okZ1e6JZCJIDtdb8DLXmMdD1HJsXW4NYAtwcNOhArrwl3QktlpdMZp+fCc1o6n76lS94etXm1Xp32vt0jAzOuKvZaU9q2fuU6lDv6VwGIfJvdGxS5UfEEOE9w3T48ANxWxqqPO+kMeLfyjm1895S35a/8E6nyh4BosBidRF5+1WPLlk95xcpsAIZdH8m1dpy0crYnU9v6c/OZxy9zjlYTs0Mi4nCzXwH9Mr6lRcUWV89xlkV72MZtWy5iJ/GxGtNBl80BS10fnbOULGSoegWZsTCLjA4JebkdqdGTn/X1LYtqRmTGgW+70s2d6zYH3P0sA9xvu591ELAeq4ZWNwzgalxaHlyv162e6czDHnZoDWVb158yqKXsVGifK9/bCtVkQJyoIMCVjPGJtU1GMo20f2UusgJOfZtraSy7lhdfRqc+7VuiVja2vJ8D3r0oTosuxzKyiEIxO/7qMud5zgfYte3mz+kwEONS5LGYDUVCHjO14Tymjx5098DzCAT/vMF273fXs91M+BFfvQEzAtbnPGxbaXrptwC51Wuapgw08ytSqwer9yTJH/OCJS1Y2EL8Ufa0TtMOU5zAECD6+PiAeT5hubnF6XjEW7zF8u5Bw2TVu5SJAh4eHvB2WfD4+A7LPIuH2EIHOt5NdJsiYcgE3e/3+KXPP8OLV6+kgv4VGDPSMoOXJB5uO2aeZQ366XgEgfDy5cusCBOA0+mEb775BqfTSfqXUw5lmEBAYHDgDHC9DpOJnOTAdxIjIbBThCzhyBInPT0saX0SmANOy4LT45PE+H16wov7lxL1JOqrZgZAEaxYU46pJnCgrHSLR0sFshc9zCu5Uo19w/AZQYkfqwXDBh4qIe03EzNXrwx7wMd7tXrG6mi+9+6f88RU9R9cY9RgreRLDqjod3JtPCinx1e+1sqGnMClHVVioKyHyRvAvSUvubm/6hNDDQ1/rO1hAJnUaxQggEAUnZz1R4HzTrkYI6YgB0zJnoCpC2jb+hj1Nv21YKGXz6b8dwCfSNZnx2nSE2mdYjeACOu/Mk7EN82gIDJlt/PAI2TegfJWyRuRi4UedPXjzpwyjx+ZcRtc2wHV0d3GYY9s7Bsf3pM4GmdUjYPam5kNyQEZb9gaixv97q9VV5ndoWhlORE1f/rwMP/WOMg8W20Jue9r4J3ZqIB8kXvlGZGx5PAg2/+lOijlDOd4VkF2UI7vZ3bWjWPOf7bZuf5vATcDzXhqfg9kcU+22/i1cd4C+2machq7X2Lsc+Ulz/n3qsRuYzdc/1c/5MI5LfJRg+5LlOr7fh/ltQXo/fetEyOzAmvq0NJzwPaWwtyadJcAbn/dwHZeSkGUAXcWRqyejlSOXAcnLMkEc9mghAQseb1yRJz2ONwQDiSe5MeHd3h8OiKECI6TbkZcJKwXAw+Pj3h8fASnRbxDkI2Fy6JLHkgPnrD1zurlTrpx8+XLl/j8lz/Hbr8HYFFJFNAY//MioDkDW0ZKC55ORzw+PGK/3+P+/l4EDTPmOeHr16/x7t1Dtpw9mGCCHmEPhGWRpRyyFT8LThkbQX1KoUx2FboWJTaAsWTPEwFJXmkzA2k5IZ2OSKcj9vsDdvsd7m7vEXeTvoYW3qICY13LA6hX1JzU+eAdPTbedEXGDd6wJDRjW0M4hhKTuHeIgbW9tX91PLAJ6nY+ZL7RnWstnZvrPSO3Hf/tfKsMBmClhIqiLIDbcEJWanpB3nTY8Ftv3urxM+KzeiYrZVf/wvGaFBiv7g5kYKskDaSsH9d0G2CqAuHN9RaQhSCnzZrx1ipQa8O2Hc8ZGiOQ7e/3gIEHWLY8x97k7HY7iU4SI0Io0SOKoVQMhILHdREbpeZtzHqPghl2BmgYIotseQtDHAHBlWPt0QJwCmVvhsnpqqzG0+1BU28OtOWNqO3f9yEPki+ixjjLlwHRHQ4YWztUY8yX3eGlLgs5klQyZ0ZuPENvfbDZemVbuWdvtSSdlT+Wae3YKYCTHOp3hqALd2mGw6VOCl9OatrYZMGlefm+8nXwwNvuWySTdrOlvYXxz4zyXVcCnaNGHW+Mqo49+uhAd29ibnkcnpNmq6zRvZZGIcfse9mssg3ijbbA9dZkyhalCU25uMqjV1aPiAi73U7AttsNTERZkIseSbLeWNdJs8bBTUkUQeWhUw2RkkTvmBcGhYjdzYSUFvDphN3+BvvDDab9QeqSGCEu4EWjeiQGOCGQDXZdq4giKBMBHBisG4SYAYSAH3z6A3z++ef6GnoBwDne9zzPsqRlWcDzDIk0qJOTZVnJ4+Mj5nnGfrfXo+elXo+Pj3j37p1s6CLAViyS+RAMC7FuaOIkTNo6W0a2qgUA2TMqtVl4INbT8LT9F0766lLDgjGDFsb8xJifHhHjhOPjI+5fvsCUbhD2B+z0dTy4eR3MBTxYEez83eaPywrIbYT0xxAHZ+iQAqMQSxzkArY1bBt3dqK7setGa2nIZuzb95HR26btUZlvpTz7Xn/25+WKVaAos05N7LlzuqcHCAu47qQ1gNsBFpfSCAQ9Bxidk7F5tjr2jO+W52BvZBAQQn3ITEs9ubllwPTat5Wz55wkHuwb4N7tdmUpCG3LdU/iKEAFegQE9cGiii/YeGUFARY+MHXaybedOEuWVT09mOvyiQK4LdJVr73OteNzwbafOxWvWE2Hbjk92WDPC8i2e4N8ysMVeGx7s33c+5NNQ9tSvDKvrRmLw6bwSdVnAdwG0EN+xsquDIROPxTnQPmr8KVGxzFjkYz/4dh13u5ee5hsgobXRF3HLYPXvhtwtu/mvbb7vk2SdwICq/0Ul8xr4xPBdLr2kXv03NKrjwp0t0B7BJy3APWl93plnCMD3Kvjfpv8qHOvpRHIHlHtiVCw6dO/J+A2D9KknpoWyJAWaMco26BeOGVwLSBYy2g9mAlYmOSESRBAEVhY1w8TQAG73QE3t3c4Pj26cH8AOCAtswB3JwygQBcsnopIAYsKhwA5lv3zzz/Hq1eyJEReNQlwBzOW0wlPT084Pj2BlwURkDi6MeaDY+bTKYcCPNwc8kSel4R3Dw9YEoMoIrF6j3UNaTKPti6lYYhHn6I0pAFcIgHdQd9zsja0XtYILnoCJyvglnORwSRe/gAz8hYpL53w9G6WjZ+7HfZ3d3hx/wL7/QHTbo9pvwdRQHIA3Kx3Kdv1OWz9qBgLugg1rwX3oDtQyPcNZNs8MGCfDaZk4yJV4zePzzPgzb733jT1wEYNXHze63WJ8r3+9PdHAM8bKy0xa3jIpIEi2YDW2DjwisbX0+a95TsCNQLGzwCcjpzysqut++pxy6OV04PUNhbYvfGQIeHePmV+dG135y3Hlufa16VHOZ05C9wyjK18qn43Be7eCE4aaWQVjlAeapuiNjxEdCC4umYA3PSHtVu1fITqU1DzUhNXADVjKOW9H56P8oYGQPZ2e6Op4sVXZwBqKoAFVP3p69qjS4zmajbT2ltcjFW3kMKlEVnLrmLe8OiAdfvuZFXrPVe1pM8w7A2Ulz8lC0adnR9zuYhBO7U9UlOvPYxJYgk/KT8lClfJi8sn5Ue68nD1WyvD0Bjrjhcb9r1aoBodJU8b67ZUBCgnXBpW8XVso5vksl26niEL11fMLBHVaM1rtzE69NGA7hXY2wDd535fmvZS0J0BxmAXfFb6FwDuc57sNl2bj48z7RJv5tErw7w0k3q2/QalrCCZM9D2nslFvdtmufoJ4l+fI4mnemF3mqIBd1g6YH844P7+Hg/v3uL4dMzHHotCFrAvr8NJwUQ53tnWKidVEJ+8eoVf+ZXPcXNzAwCY04KUFvFCJwaWBU8PD3h6epLwgQYYff0WWZ9uv+M0Ca8Ano4nPDw8wR8xDabsz0gWSxsQYwEQ4Kr9ODGyMisGhCbXx4IBb4QSP53F67ckCdkrSkfidUubL3ZMG+Z5wXJ8wuPTA45vv8HN3Qvc3Mgbhf3tPUKUkIoIkkfIRoPF8XVKTb3YBrCigm5Y3GNQ8cYTrBWgrwDKscDMEt2GuXR8M07b8alfqhjL2ye32vIdbdj1jAD78dmUPfJ8tveeSzY3gLQCUpeU7dhXvebSwhlx8KBizGfvbquMRoAop3PtX+XnUQQUgBhAsGnh5poNequL8KfLLpqQgD3jx+rbntTn01XP6LKvFnD39Ie/n2Vgkj6M5N4MuuVU2jgZ1LT8Z7CFYkQFk2vafuX6mspYsrZSPkPAlEE/FRnh+4lMDl3m2bfyNu/XiS3DlR7sjzfKw8WP6y0y+WFjzo+9niG7CfCZQE0jl2fXoDbfof7yrHa8lTOV2ihF4vUuh6yM6+1lVa+sVl706lkZrIyyoZJERmfvLup9CufybTEIkRp4bq13a9Cb3PDPMSjrPps2McYKbHsMZn8272w+2AbLtt5doN3Uy6KmVX1eizJtofP0UYDuLcD9s4Bto9bKsbStZ6wdZBlMd6KO9Pgwodly0Rusl3hYAAfIsDHROvlseRBs3XbUkFYZcDtr13u1vZIU5eiWtjjAzbrWOCuGZMtQZI20xddllpMktbkwTRG39/e4ffcCy5zAiyz9mJcFM4kHRs7LKV4cNsVCAELE3f0dPvvkFT775BVi9m4rf8sCaJ6npyfxYi8SQ1tOdrTTG8U4sEmcUsLt7S1inLCweGafno5uHSWV9ldlCg19CBLv/I5sLW/ApErGz22FYhkoiSqSipmvzzZCghdRrhQlIgurNypJaLXEwnNgQJwZCfPpiHdvvsbTw1vEaY8wfYWXr17i9u4ecdqBYxRvdQx6PLZ4wSQKW5TXbCFkYRmo9soJYPBCFMUj34wbmJdbl8n0lJoftVnQ0tqzvZYZPe9xD1hvK/dNxdJQq1B6eVVPU2d+c62QPZBcyaxSMGSJkV0dg6IR2WmEPVB1DowaeMsnizoQZPyVOeG8XK0cUXRp7VTzMlpeUeSNv9erQzX2lJa88ZtzuVt90uYHorzHo/fmszzgZGklJ8XQCAREBZ7WhTYjcntpW+a2AyrAXVpXn3PGVlm2QiVsKZlDZXsvwfvSekajlJHHdPNMO0Fwfv5VQKwtvwV1krDiZcuYXOl1jAHbuTyLhihwtqRd13X1dNb3fUOwWz7XmzJXwBnOCDawaePBtWdp46LaxvV0vADFUdTBSIFoGI4wK0e9b8tDfLQSC8XpN1Ua8M4bhi8Y070xpOKqnPxqFULT7mey//BBN2H1Wq6dAL1GPAfG23ttXr2NKi3o7/Fx1gjANvhtvTU9Pu2evTbkzrN50Ni9Thn+u4HtauDqcgoPtwEoSK5f66xAt1ckusbbPJkZhPt130v9vAFPCgRGAGLAq09+gClOePvmDd4lxjzLFkJZs00IulMZCXnZAwXCJ59+hl/9/HPcTAKcK75TQjqdcHp8wOl4BOuOf7AqPXZrmo1vlMn8ySef4DifMu/H41EZr8EOE7CQnLZZACwwA2AWz9hC5hWGaYgyaPL4IZAD3JKsrBWPKjhjZFmawpRjri5J5VYilamsAEMioczHGQmMx3ff4MWLF9jf3eFwe4ebmxvc7G8BzFIuBTDLGwToOlVDA5Fs6YwZDxZZhcCJsoK1EZiSHhCk40BAiHrCzdtiTdCZf4Ekhjo5gDOKGNTzaq0N3DWoPKvI6hvVXPEg0RPzkgETSCJU2Drlktrqb0rHxiI5gM4oi/5DpyRom65ZvYQq0CKNk7975d3KwujbwdLVLAEg5/CVeV9voC390bb1c8FgK8tZ5YBXxoCMw0saq5Kxrv7TNOHm5qaKzON5KPUgeKFsskXmQ0CS7ce6xwRFuUtGKx4ZFhWq9A25tAKM1ssrqr7L1+S5LkAdtIXnY+sZDyf9MrQV2tbUVtVSxBiMDh1JAEBUjo3vlGV89wyqLIbb9sg49rLJ1ZMZWYbnLP168ss2K7Ki3i3s4Mtqgbc9Y33vh6h441nDB9r72nW+3us7BPUoPddti2YsGFiunjW9qm+5IspbJO/dtrlnc7xtGwPlvuy27WwjJikG8k6Rqs86c3Gr1z580I1tUH0W5A6FXrnWTqbe6XWbwqrDSw9sA2tQ3QPAvYnvd+WWNbDn89wiS+cPKPHfi6eqpPebEfxgrnlznqKUyjrdRtnlV7gOjAOwE57z0ggzvPa3NzjNC+4oIu4PCO/eIS0zjk8PoKCH7qQERGC/2+Hm5oBPXr3EJ69eYQoEpBlpWWRzpIH/ecFyfMR8PMr1JJs+7c219IXWTWBBXif54sWLrOwYdtz7AsDvaldPlBoAgSSqQADktE4VMottNgQ0NGEZNN4Lgrw8RdfdsW3IKesNVQRBsZmGHZN45YnlECICkJaU82cGwBql5bTg7ZsFT49v8Xg44Hj/AqenF5h2O9ze3GEXIyjuJJqMxU0mSNxx26xqPEGVZkZXwn1KZfkRbJwIEyuB1YLYDLg9yN5YVjICDwXQ1XOiVUY9GgFun1kBMy3glnFEVDsTgsZkzrKiwQcEiBGawZ7LU8F3L27DWrnWdejJOq9ceo4Bk6Vbm8bbPFsF7OUKo5Yb7naVZ1vWOdnXymafrpVlekPmTBDDOEfq35CpRCX85c3NTd402fNwt+0gdu9alha+2/Ycg6uR8jewkg02tPNCDOmMnuAAOEo/FD4Gc6LDx0iP+vJXQIYcOO8WRRgZksxFfljJ3bFDZU09N2nrcSpldXGENk5rxNdcDitRpWvrD/btLln4cqq5z6UG9Rgo10fYZ+RQyHkRq5PHjYy2bGc5EEpAg15ZltSMirZM3z9o07gaEUg37tdpPMawurVv5I3akymrOiktyyLrw5WDS2SbY79LHwHopmaw9ZdwXCL0e9d6k78nKLzi2gLcIyt/BLrt+0ixAcUqM3C39s6N8woNP/5e1NMjoylOXfdHVAB3O3Db3cK+fVJKONlRxaxgtFl+kj3kSyqTkGtFwjYtU4abMJB5uL3D7e0dTvML3D49YUkz3r59A9YY4NNuhykE3N8ecHtzEIC4LKDlBMwzlrkA/jTPspRkPulyFyioBUy5USAwSVi+rFS0T3a7HWa3TmyeFyy6Hj33Ojlwl2TjY5j22O33oBAVzEs688SI59oBD/NwsnivGSEPqNy9CshV7OkSD21HKq9tI4vXW9o+FoFNpF42BUDLCQtmLMsRjw/v8M3+NW5u7/B2t8eLl5/g5vYF4uGAEAP2+5148qFxzFHPVwZk6UgTuikbZe6aDR4PVL2A9l4MbySKt30b/PXmyQp0N58bsrPkWVBsPw24mkt5+Yx71islK3gkU0Qe1Lxx9UXeNsDqRlUKVVx9ZdtVwk0554yakZHToywXuLxBGgHcrTxHYLt1YHi+owfFOhb9mxKjnqesbQN7pW0bJ1uDpgWi+beemunT15uR0QxC80b2x3K3nTZ0W31N5IClN91BloeVp/9wM0971OOpp3NzekvDWI3QenwWc+CcQTS6ZvWqcmzGizVJNy8Hdkd81G22DXrblrAaluWF6/FU4PBA9rT1aflrDIaucYGyx6DIp7bemoYAZPnm05QaVi6pntxo8F7Fr8uQbJ+R81ozS6Qee66NFd/W1f56xvtahnA2fi6Vbz364EF3wRSXge2e8Bml772GXpV/BmifA9tG2aoegO6t52Y97ruX7hx4b+tCVDZI2rHdpGu2yyth5410lmNv/TYR5WDzsgFSJx9z5UHygFsALmcvg+c5mSeHDUTaennx4u33EQxZqnETA+Y0YzrscxiuGAL2MWAXAwInYJ4R5hPCSZeO6N8yz/Kn3m0y81uPDstfqRFnRFk5n+Ylr7kGgOPphIUNYrlDZkLAfr/H7f099jc3oDiBQViSRAmhBHCaZRMiAGZtI/Mg62meAYREcnpl0raSQ+pFJPoRmF+lWrsantVXB3ntnENrlAU9AyTRSZKuDV5Oj3g3z5h3Ozy+fYe4u8H9J5/g7v4W8cUL7A/7HM2EE4PtRF0SXsEyLpbEOf55O5Z06GXgD9RAlBqwHQxwF624FtId0FNA1Bp0Wz6XUAFO3H0mC2u2ESXtLACGqmcqhTcAiWsWzTAugME2X8kczLBklV+tQbG6P5JPrczrRYTpU23ZJA17mZ0JSd8kNX3RAj5lqPKqWn+2vLWOEvPKEeSESDv9NelcsJi9MUaRVYPoJV6/mNG33++ztxuArpO28TE2aFpdFVRu5BNhu81Jq+Hm5fEob2g9A7bG1fbJyQVMcTOucwY9hjfBX+86N/LM16f+vgacMuf6wK5b/hle5Hrnvk2+LcPD+sDzvslNKUfaTA4lNvW04pN5PRaaX37Y5fndy6vHB6iswYZB6yYH0mUnZvAbDnN+aUsvZRGAVGSVA79AmfO5Bp2+3AK+JhO8LBsapIPnjaq5gO2+28Jenj540A2cB89G5zqn9VL0rG0vHHv3jEZhAbv8Z2G9Dbb99GW4yA7oC62edeYpNG1ga7XzoTZyswh5FFmVQ//pa5ruhskWSFMNAFoPkV9WklFgWxdwHt2kiJdU+ZiMSymBgwgDChL3OTFjArCPEXsihDSDn57AT09AmmXTphkH8yxH0Ss/GXCrEsninJBDhRh4SswABXAImLVPGAK8j8cTTOhAhQuBEKcJv/yrvw27m1uACAssjrisac2g394gzCek5ZgBsngOZNkLKGDRdpI10ibWTCTIRkkitWtAVVOzgr6qXbVhg4sGQVqPZH4JZhAWpBmY04z56QnH+YjXX0Xc3Bzw6Wef4fbuHnf3L0E6vhIplF+WIrRTWdtva/2FHVNOBtad2tX2zIAgRvkLJXKKjXM/3lvywjelfOQPWqV5iYCu5rG2T0s10NLY6Ta+82Sh9qHKm7zlCIDzJq1kSSM7VvLqMruiys/LkbNOhsZTVN1z/Hk5UcapA9mm8CvgV9fR5Mput9vUEdlbRQAFILA6XZIc+uSjHeSN1g2vvn4A9Gj3qchV2JAsS6ygZmSrtYu3Ut4yAgK6AzVLdpxikKgWgGV2KaBox5PXNT19GFzaqh+lQYblmEG0DeQuIKoN7gw6eQ3GR8/XP8dGhmTr29BKc/Ine9WBqhObZy8FXt4oHD1TpQG2D6zKHBdNUL+bbertnt/kmZCPhsiiqy0/625LY8BbZaw6iopjRSYgsezn8Zvce5z4TZGevFxrsV9rhI4+e8/k3m/FZEdct2VfQh8F6AbOA+7RM/bX84RsxdO+5FovTQ8AV9OgN2nd9/wypPHmVOk3vC8tbxbZIYQgof8c4K5AeZP/6XQab5RslF2+lspAb9dQVWsnU19wMnN3cgcOSCQTNHFCsugZTADLhqOJCPsQsANA8wn89Ij07i2wJBAK4PZ/OZi+AhfzHluvyJHSOoZAeSKKzlMhQfIPp4TTPGvbBhVmUqe42+Pu/h4UAhIFcLIlKZJZiJOsezcvsHoJbJc0geUEocgKvJUbUoNIhZeMGF3rTQXc9ERZPY5lI19QmGtK3wC79KfxAhAlCdk4n/B0fMTp8R0evvkG9y9e4NUnn+DFy1e4e/kCu90ec0pAWgQfJomHzszAYmElOfOYlUtWdpyNAx8GKoQgm1zVUJQuWAPuMh9rgFLGpZY2ECcjKZP7vzNHK3Do5ykh15Hs+QH1wHZf5lHu43apFyDrEb38y/lUeOJy9O37oedFOk+sc8IZzx58e/CieSOZYh4ffrMVJaQHaqz9KRbj07+Ry06EQRsQUQbZBrhzm+gkMYcB1PAEL9nYMrlQ5WlyxocUhZsLgrrUTjOAsN3+rW6qAbe91yLk/R8NMG/z8NQd792UfWr1zai8lXHbPH/J2Bvp7q30BiOLLLJ+8IsjnNxq2Njiq7G9LuMJcKcB8yqPPKVX4327tP4zNj5a0M7+KbVFGi6IwOxwF1jlJGWZabq09iLTUCZutaUfh72lJKt6bYyFGrNJbfXMuiyDsjrZIJubI/rwQTdd1lCtl2vk9Wot+otY6FhJI0vJ85TTQkK2LUvxrpWJrfVo69XUr63vqKzsgbFX74BEIXG76YksRkLONJeZkkTgaGNaegXZru1uvWo9L3cG3A2gzqDcARhTBWY1Jwj4YrupFHQj2kSEPRF2APh0wunhHdLDO9A8IzADSUD2ST3cVjdW7W8+yGRAFbJbO4aASDELXgZjASCxqaMc367X5+ztD1moGLNTiHLUeiQV40GVsh7vrjHNQQoe44QYZemAhGvUzZAoXmtpy4RlPsmngtsAIKmCzwLPAaQCU22JA2tbQmNqi/BjCC8TALCFFQMCElIiLGCAF+xJDY7Hd/jq6QHffP0Vdvs9Xn36KT75pc9x9/Kl1lXDRYIVeCdwBiKF8twi/7sG3KGdwwP50M6ROozcWirm8dcxpNnNEf/d8rsI+LhyWslzqUyqQb3805bv91z4kwar0KYVN9uUZYaLDjDiaUxuKU8G3rVnqVfurMvA9vt9DRyd3O9tfO/xVwwwAiwkKWrHjHm5a9ZLWUTljeF+v18vUbSWVWBkXgQPX3QWgABEe7sU7HkHtEctuUJ4CmaoPp+6B4zr8WhtYfshQsE9zVj0c6fn9HEFnMMkm9QCnypraO2crtCf6zToz7NLScRKZ6OdGkZtj16cr3uihxmGc6unH4E8d7zpQwpuXRyUTehtwFseD+AqV1fP7PIG/P6h/PjAQCr4ogBvQNZ/Bx139fpvdunqdmqph4fOGWJrp8wq0zyOTb+IDj1vLl1iBH74oBvnrZI2rfyhAHaugfJzlNvPArj1QgZ6mS9gc8qOrLMW3PbqnZeQuJjVXjFlT5svD+qJXhbM87LymvU2UK69hqh+t0K6WKHNJIGu4wZv9kllYxMhQgavHMYiMa7DMuP4+ID0+IC4zHLUblowzzNOpxNOjQertCErH1njIAbCFKKz2IElLaBppydJesNc3gyYeLMYEqyGwrSLIBKluEBeJQcWRbeoISLgWxRgiAB0s6RFUYiBQBQrwbUsC+IyA2ze5ASej5hPxwzmYX2oQi3YfIDzzhDJ2wOW9dcWW5uoHMAhRgGLEz0EXTOuYp0k4sq8zDilhHk+4un4hJ9+/TV++Vd/G1790i+BwpTrKptrdZEN1/PL+oXca3bvySwexW1F4vPyU2U9b8bP9kB8T7i3gt7mjf+s1tg3MoTcpwn6Hlur+ZHnYs1jOz+HilxQ4bgBXNoR4LYyzxGrVck5QomNy84rc9SyZ55n7Ha7bnmXAP5+Gtkg3YKdnoebIHLGNrR577ZEzqEM3oXBtvIe9nD2n5K+vbPxUMBGn2cxknW8lW0x8pYMdFF/+jYh+Gg//vt6zORwhp5Xl1epK+dxTiVBnfYiI62mLKrOASonFS4ZG/161POv7dcs5/OY9hxulNXjt5F7W5RrZu2b5U+dv6+27yszyTzo959mkxL72rMW3JgyeTjLeM3avFeH6vm6/xl2WHF5A9SUDnMsyNd6SU47FntGYU+Oj57LbUWk0aNaZ8h6k2cfvI/78iMA3fUk7w1M74khwS3yHNSKotLQ64F2frL0AHePp1WHJ8Yyz6uyQXShaFwD7hEg9/G1YwhwQ7waOAYAfF62sVCEashrE/267tGa7hHo9t5F/5u4BtzcEZCtqPS/QyDswZjMSwwB3ZhnvPvqK/DjO8Q0A2nBnJZ8iM5J+8H49NT2BYVQ3hSEIqiYAvb7A47zrK+cigg7nk4a/ES5TeW5aZIlPdLvulSFQhHasI0nEAAMPeaaAAp+/bIeQw/xtOymHWSTZZKlG8uMFAm02wlgWU4yBhddR60RXiz2egbSBCSkvHErwR2OAlYHhwjbROptJ9YNWUAIco9ZluMkZiynJ5xOR/ytZcb+9hY3t/dOgAro1nNA+gCDlM8mLKC1owlu7oyX3K/V2BzN9T4gtasjI9K+j8q1z9oLKhXz62XzM3CgG02buPp6uWMHS1WwVds3Jc5Lo3ok19UbNqiHl3XnvMmjNmivlT+VL50yfbnTNMkmb5VJ59p8aGAMnjnnl/Wg2AyPGnQXB08rSCpe2cEdYj3nlSpngzmIeMBSxrNMK3ksvLpX+jk/y3vdtkTFWCCda5IwqfGNvOl5zvphvaa/1/YZorTjuHe9bSs0QOYCHe0LDhiX07veAm/pT/ms9DkMEPYMT0nxvjQepzKw+sDOYV/HVRkPyE63luvVPHHf66d7BXL1mwBwAvIJmitDRgZ10frStmZE2ljrycQA5GU13hnY4rce2G6/rxw7A1yZHQ35DdBlqyIuxZQfAegu1DaQ94J5K92sKe99oI0JP6KekLLvtTwtfKXkwGaSgxbys+RA2TPr3fOm2V8G3DFWgLuX1vLzSyyWeQaYEULMmxb8wRHnAHdd/7TiuRKeXKayt7ozr+7T3yMKiOqLjipWZaMgY3k64unrr7C8eY0Di8d35lmPa3ebonpAQD8TZImLhU0Mk5y2mBSTJAam/QFhmpDmWSO9sJSV5ryeG7CoEZy94SEGIAQsRLCj29kWr1t6ByIBynG1ZXxHwHmiZJGSKGg7FAcEUEwI8VZibc8z4rRDWmbQIiftpfkkSa07UtJDbBKI5bh74dnUi2z6lPZxvjozOMhAidQzRkJgRggAMWPWsIw8LxI5hhMWLgd4jOCylKxreG2OW2QILzg7itsEaS0r2nK4/q79Ftz8YG2f/Lsj3M96ppp51xq/Fd/u/lZ+/hmJde5PngQYCRSgb0bUa9k9MFyf2aoC9QH3CFC3v1slVMuRfr1amqYJ3B4ygwHbBBSlvi1niwxK4qlmmZNWV1+f/JZFoz5Nuwk2FMU4bWBPB3x7o4oB9Y4HgBuzg6AG+xoEAAAnyvK558XrtYmUg9wupovs1f563Em4yaSHlz0+PuL49AQQYXKRWlreVkXbvc74b9unJZsTl1DOzz3zHANxzU8RM+1YuARWd+WCL2PLwOg+RpmnFgMw68E1+Xp/nvTmzAokKqCu8U39ZMWnA+CkerI416h+1sX7rjOwVOxnUFU/QonG5YNL+DQjp2RLrVwiKgasbxPH3op6/bXVhy19FKC715j+dWet2Mq6RaO2kT35Tqu8wcNQWOV1kv/0nZ5DWAF5gwzsD9sd1LPQ2vqbYojO8xKd4ZE6AwKwdcBchWwzQRVi1LpxtdGwOi6989cD2Vt1khbLTSneHgfKzfNUv3QmCZlHQc9q03ZJCcvTE55evwbefYNpniFRPhacFHTnQ1h6ba1lLpAY0xQC4rTDbr+TNcz6xsSen/Y3WLhY3gTGwoyn00mWTuRd2r6OBIQIpgDZ0imfZFKKuCh9vRQUcMuacgHDpMg2L12Bvh5XhUqBAUzq+RQgwGAgEqYYEBKDdnttN+n3eZklPnKawUxYIBFoEgX1xDE0eHkeR2JTShzwJIvypJmCAO7IJH3ALLvtE+P0+IT9/oCFk0RuoZKz9i4swlpRmuplUA93Lw53zzsxMlCtK/rzjlbP23jsGZZdj1PHuO8dTW9pel6RoXxqngVqAGveufb5XK7W0c/ZGkiv21TGpypODqjXeqJK3wPcnreevMiWmivP89+2Y5t/j8ojfYOuyF03NjS9zEGJs81gzPNRgQ4hThFTnIAQVNZGxFCM6pKbW7pmpXTx1xicu1Td6wYSTC4Pj5kHYFLKnqMhyK75UrWQ+Usp4eHxUcbM4YB5WXKY2S5Y6dXVeHA1Wz9T99vILJdxUmrpCvAfm3xtUXmmN9dNDhReTH540NnNF+jMIJxtQ6hnGGxLRNags0eNa6HMrTZ3B26zLwhON59rQjN2qchI+VI2HpqTJnvDsR4XdozxcH5DT1w2WYx+Wi+TevKkTVvxjLW8+bbpIwDd6wHZri9shci57z0F68H26KQiz08LtNs/UkBJnVe854Bp+93+8mEgBrabzZGjCZiVnUrTapevRoIwsD3rMowtq7E1LraUbhdwU53W7lBJUZEIakKERthgAdzHb77Buzevgacn7NMJQT1/S1oEUJpBAFSSOJfIAgATEUKcsD8csNsfEFjgcQbcBCBGYJpwOp00L6n7aVnw9HQCW1zuvMlGwCcoaFSUiMSyppuJEFFeLXPewFRi6AZvrKl3nEAOApsAt1ZT71TSrZohCh8shx1FSLxXQwnMCTELHAmpeJpPCjR1nTAvunZ0UT6kThblJBmQI/H6B/00pc0M8JLw8PYt9re3Euow1kufwJA17CwGKuAAgoIcCmOgsB5HWHkuiPrjuKeEeqDbj6NLvBkt0O4B73PPb/Hn3z61YL53rd2k1HtNe44KWO0DhJ7M8tcrZ4QIRzGyOgZFJbMv4q6QPZqN94GRBRSAH6pyI3a8Q9JIO0SEGEmWiAXCFEm93GVhygoqU2kvloGdZcK5+ogjxH1vyDtDAHTW2bdljMdda8CudJAKayuDmTHpaZuagSXerFPtPRyDIO5YKf3xyZAIGSVLD2jHoN6XVebJWM8NnnV5lCt1H6wtqpKkLdP/buey5VcbwzXwfi6NxkIG3qaXTFmf6d+6Hep43tKlpsGt+z0AcMa236iJ9fg3DMTMmE+nsuTQSh5gjp6sOif3ZIxTGeMun0ue36KPAHQLeaXld+H7z94zl+QLrA/Kacn3Yw9UtuFqDDht0QistuRP3ou6sa535DVQBA/XDAuAWHnHZELJEozUDRHY8tbbTNmry+haX+uYgG+Fl2sDKATWjZFP797h3ddfYTk+YQ8G0ixLF3S5R6XgW35UoCwAECZM+z32NzeyHEOjgtgr+QRgZmC/3wNhwsxHBa2yCew0J8wzF3Cs9ZC2MSk7gRGxQCKeeMXDCi6lacqSKElGsMgCBe64/oAJX+vfArJkf4t6KSrQFxXsMkKMcjQ9WNaEJ42CwgykhMenB8ynk3rCpY8khKAdj836Zp3LhksbG0k3SaaEp6dHPD48IBz2wk8IRS9R2exrACEEibZjYdl4Y162fVsbvttAI48FbY9VfoPx7edcT1majGqv9cZim2/7nZS/NnrQ2DtWPNum4FpF59tnW9k3+bvpWcsXuyY/KmdGfsAlV+UOB1x7ZPIJ9tleb/grL68vkPtQ4E8GBmT8BQBxCtjxlNcwT9OEOAXdX1DAnq+/NU1XDmYjXMowWcfoyViU+50xcjqdMM9y6u9oiYcBshX87ozDrnyE6yOUWORigMT83WVShgaty7Q02VAZAt32WgGCfgiMjDMH81Y01uvrtb0GbMfDqL45NuyaOlkZHd68weyv+zpX87Kqa7/eXaPwIkwENTgrtlfUq7fIK16xk3EWDJ+YvmuTjnEEM+Px8RGAzIMQAg6HQ+2ZbuTySA/0gHl1jYp88Px30zZksmREHwHopuFrWmA9iM4NqpFi6ynFul3XSt1+1/kbz30l1j7T8wjZc1bv3TRhUgHbrmGv+XXRAKyMxkDwZWdwlM57q7f+enXZAuO9djDNZVZ21aaWYpnx9O4bHN+9xfz4DnQ6YYcFIS1YkqwhnhU8mrJmoFovzdDwhESgOGF/e4/pcECIE5KC9knZSkRYmIFpwrS/AUiWVwQWj3Ji2aQo6/gDbJ224FOb/ISFCQsCFtk1WLZQqTVN5llGGTO2idC1Tt03UOWqYBv5WvEz5GbM4F3+mCFe5ewlSAhxD5rUIx4I4AVhv8eyzEjqAT/NJzw9PgJLykIJXN6iGLdJx2FKACHh4d0Dbl4ccTjss1/eeKVA4BDAJOA6UMghLu0Qp3PU8xq1c2Ps3SkgJbetjd/OGO/JijbPkaxqeT2Xr9WFgXySamrSA3nUOChQv64dkW8XDz5s+YlXZnK/l4eM8SxutFxbD18wtxlVcG2+VmhDqsD/GpyUssbyps3PhnDweQcgUgDzlNs4Nm8UfZn+kCXmAry7/BlrzJCY2z3jqeidrrxmzrysAIeVDT0We0O/VekHIEKkmuihu7u7quya59KmpW3XbWV59iOQZLPF8cLZMDPPdpGTHoD64i8YSx3qyosh8F77mcd6rgd9++SPM6/KcuNhVJ4H6G3pWyWfA5CSRnIyA4g75de6X/g26JlNA+tLSMQyckav1bVtcJNH9oZnnmccj8dVKFQz5oh1l4uTazZuW17b76tlJX78FqvS8bquf/u9Rx886BYrd7x73gu4nmDZEuh1ej/peqC7Dyr9dVKTfMt70MurzsMdBOI83L12WHtJ1q/GRwA4h4BidvVd82SDfgS0R/W5nARs+15agREAtBzx9M3XeHz7Bjg9aAxuCZWXlhlPCbJxjxkhA1DkiW9bziTCCLDb7XG4u0e8uQXFSd5snU7gxcJ4Beh5NTjsD4gxYmYuh9gw9O1AUiBra9sBJjmghgEsDFk/4cLfFf1KoKDLZRgKxXXMUvme2xYi7t0pzA1odCDMjUVTVIkp7+xnAJxk7kSKAE26RhzgEDCFiMM0gTkhkqyle3x8wHI/IzLj6XgELwvm4xHz01PelOn7T8ZWwtPpKEdqm7hlXaASZIMp+V3iU0RQD7e1wzkaAWw/VrsAoDO/bbz3NFi7kbPNz3731tmOwPeW7LI0aVkKiLX8fL5c+j01KUa+5B7gt+9boQGp6WO1TTbknJXh1BR1m7euX9sWvlbUqVXGe1aQzP5WVpZ+EaFTGR2u3Ng4ObYOUivjjNb9RMX/Lmyx2aqlbtWPzjWXl/c4Wz/5uOKt0XlufI10FaCASW9byMZzOrb9fpFBBWuPzqDgsnzNLynxfXuORgb3Nj861rMx2R+wz9d3fWr7q9bHGqVoZaBVOWDVfpVRvi7PyvBjZu1kKMYkUM/DtuZFV3kH0DqNB+PyvdL+MICf5Z8L6BBsySERbm9vuy0QqLwZ7s1VovogHT8P8ioKS+/yBiNH8VobiB0MNqAPHnSLbj4frupSwD3OR0/7wxpU5xQbDSoAQZVuYz1ugW35bvxbqLqyhKTnWehZmT3vXAHgg7QpgZsB7kF2m35kdHwr1MmOAERmLKcjnt78BMu718DpEZQW3aSnscXTgiO7jWLueVtmsShIpRCwOxxw/+IV4v5GvM1EehJkKuAxyMSkGDEdbsAhYjnNCroBsHq7UwH4gAJuVcAgRowRL1++kmUcGVwadzZ9Q1Xn/N15jtLAA6YvqQuAyGVTBjqiz2xcGq/yO4Jy3HHzPBOF3AYTTYhqFdy+eIl9jMA8SzSUlPD1T3+C0+NTdUSxGQPQtgcxjmnGgRMCEzhAjJCg3netdV5S4k74y3m2gGAwj3sgwiuXHo3GvkdGNhe54aUV6jHGKiTgaJZsybS2Dt7osvuVh8ghWp/lJcDCp/Me0crYy+nW8stAt7/WLwsQZWpHUW3X212sZWX3QaCNizDKO9dNDUBT1H4O+2fa9ugaRmWQ5v6q9gbZPwbMAT1sdQSi6vFl5fox46OstN7KdkyOos9UBkfPyFI+Sb3dvXSXAN92Lhhs8by0vKGTtv31HOqBr3NkY7YU2Xjh35OXLf5avvyyTz8O2mdX9fH1NW4HBtbPpMtXxdbAe0SV/ALV+Xhjh3k1Tg+HQzUve+VXsrF3n+pTaAEHuE1WcHmeSeeCMw5LKT08NK79hw+6lWx9HdC3pi+xqntCRpTGGgh7Ogcyc9lUT4DzYLtMohzyTwH3luerx9saGFuCbJPVoCIrizGY7uXtBfbPMll7XhX/PSiPT0+PeP3ljxCObzGlo25ydDHE04JTw4aJQ3vxKxFHgBAm7A43uH/1UpeLlOUWdtCLQk9Zrw3C/vYWvNshMWGZn0BJo3KwLi1h1ogeBFtgwYCGBUw4HG6wPxw07J9ayBaSzwGQduiugVepm/8jl5Y0fwPfpudN/CXtbxN4zMgnbSXB6dmbK3tfZO21fsBOg4yHCTsAT8cjTkvKnuEIVDGGhR/llLm8xpeCJBRcCKAQ5ZAjjUde1R192gLRrcfm3H6N0sbsL1TP21/ishGxBTMt4LZ8eoLfADpQb/zc4mkIeFQ59GDAVp1b3qN7vd1rd7b6NLzZ3oWzYI4BsbiMgSFrKz577VPyNovD5esGYmukEFkUnuDm/dqYavXKSB4zq+nLqMpwCZ3xmy/q84U3HgAVz4eB33P6qPfsVhpfn0qH0aBOG+VeAsT7/Du05dPqnUpH9IyEDv+jel/CY8WAle7kaQZfw65YmXGda02K1shkCdnIzDk2vKUbAfXMFFGWPb4PR3PpUn2ea6HtQnpx1f7MGZheitHa/Np+NG+3j9s/lovuHfAGQDcyYxlB9lrlWPUVT6jB1XvQRwG6PeD29L6AWz7t+7YA2wLi3Qk8AK6j52OU9dp2CETvQIueMlt7nGrPNumn3UuccozLnF8nrxHI3qpLr25nFYOyR2ybJIWi3mROeHh8h59++QXSw1vc4YRIuomT5ZTPmZOGoavBgv9LLGuGDzc32N3c4HB3BwoTUohl2QcziOQwkTklLNMOJwZ42mG6uQdjAiDxzEkBZmLWjZvWzKTLV+RzUYHz2Wef43C4wczl0IZEkFOoi0RwgrvnTfMbKQuIE76tNc3woyxw5ZmUBWQPkJmBQOodZ4uBrnUqkR20joxilCwJ7x4fsSwL9oQs5BMv4pknQkoLwBIJgq2uCh4Q9DQ/CwfovIPPUooN9QxEf0/aap22N25J+coHh7TGogNDYTBv/Xefvmege4NhVIf6t/X5ezRUYa548m0p2WbygYHf1HWTntm/rYK8dHxUOgJr8OFlYZ4PXEeAAbb1QPmU9D3PcrJx58Cb41LKTdD2r3kYAayeDmh1Ui/8mRl87Vjr1dVV6yLK7fwe87c3F5rM6xNym2dbUH6pYXIp2GQD3ypQnfgeAO8CsrNY3uK/MYSYJUwuAByPRwCyzOdZ80B1Qc/IsnL95/rxtbwr/aP32cY1g6sQs1Z8PSZHbd8D0Myc8V8IIR/StOV0WdVzALar5x1veSSRGp157gqlxnbKsOtCfPThg27uWynA5dZTrdxKxm3EkXznQhBuHZc0tBS4WOU9MOw7e5omTAq4TUi30U56E6KXrwfbLmF1vwXccr8u69zfuTbpAZat54ICbhOkBAGRnBY8vnuHL3/8I6TjE24JmHQCzynhmBZVYlyF0HPTXTzcICxE2B1usLt/gcPNrSylCAExTkDQtfLMusQjIFHArBsfDzf3wLQXkDyf5BAhiMd41o2bAroL4F5Yop2AAj797DP88m/7VfEmExDgN8q41+xsq7l5JSAEFPeVn/feATGLBSb32kwFhK6KzGlWApAIPlKKHBSkgI6kbtZPC0vdn+YTTqe5GIsWDpCTlpuQIKdhLmnJipEgS1hg4DPI6V9+w5rVfUQjw9TTsiwD2cDI3lkMhKUCTxP2QHm7Ane9zN1yDl41XzUve8avlzaF0ps/Fiu/Oo8AqJZO+U8eGAQjqpQwgDTPur6+eInWzcZoPVDs5EgrQzcNhgEIaL2Ul8gTmxs16LKaDdrB+KPSX0HbmN3c6CnoVh635yK0PBbgEFDNe7m7UuBJ96ZYONeW+34bNIai04s9sJNSyp5T26TWI/NVPscTeimdA48jYGVzQSXmkC7zrKKaj+d4HRmaY+Bd5TLIu9xr50IIhJv9vjoRtE3Xo1wnV7dRW357/UpgPWQK+kYXTjb4OTkqv2dIWr1Nzvr13V0AjaZ92nqzvHXN89bkkR4OZ0fA5+QwRCG6KzAq3KFZyl3CcC4Zffigm9YD0T4vnVQ9BdETjL3vvszu4GgmUhYGzeAxXi0Mmr3OJfh6rAdcrw6lLt5TUytLfy9x58hg7uc1AtqtEt0KGcjumS6xHfsKRIYcdqPHkc+nI7768ku8++YbhHnGDREmEo/2nOQz5TKL4GUFldD1yQkExIjD7S3uXr5CnHbANAGkSwUowuLnBmIQR8Rpj90NYZkTpsMB0+0dlhAlWskiO6dDSggsUVJmTm6DpsT7ljCEAZ9//sv41d/+20HTHgsYcCBPGCeUC+eIYLGmLXkGCAwQBYXEBVhXCs0QiUZPGc0hsfLFQy2vlcXUT/meCHHx8gPzkiTKyDRhigExBixpQUTAnBYo2lejQfkxYJfLDoghVgbo5thph9JASM/zjHmeJdRjk9YE/2isW10D3FruThr/mtP6ppVGBhfnt9YAAECgSURBVFhAJQqGL7PdpGxKxIer80YI2ZdOWegAtIuVc6PcmHvebplpPu050D2S3StF2N5317bA2XCcZBDe5FnNiz5QaufHyAiwdtCb+ZMcXxYhStqLQbIIK8/f0qFrYxudPujJ21Eft+3Zer1Hb5CbXCoD9Nsg03TmCAAum+/SXrWxmJ9qUO9oLG3mPzCsWhrduwx4D0uv8s7yRmXAYb/HrBtmL90PYrm2fTcyMt4PfHN+k5r1PuSNqQ87KHNePx0GGxmQzOVUbJ8mxrhyVGwB70CUHRUFswFgrsaT6SLRcYOaOuPIY7V6Tp5vww8fdKMzkC4E20CZBD0Q+RzqKfc8gKju/Jbymm0F3MHANtoJ0AfbI8BdEgHjQYDKy81c757fAtwroE5rwbAqBxiEhHLtoX8RCZMpcgA8z3jzxRd4evMG+ySKKWAB86Je5VS1M4ORNBIGA7A12hQidvs9Dvf32N3egkMEhQjomtuoJy6aRAoICDFgfyCEuMdpnrG7uQVNO8iikAWn0wmn0xF7Tlh4kVjgXCKiLBQAipimHV69+gS/9jt+B8JuhwVJgTHySZCUAOYioX1rrb1adl1VVKN0QgjIJwcCgC3jWJECHScEyxxyIEjHM0HDFto41TY+yVmUAi5CwLTbITJjmiKmKWDiBY+P5TAZCnKwz8Jc4pEHW78dMcWdPBtiBQr8XGJ3rbRLDbLt+7JIX3lPXvuM5dmOcd8m3oPtn7Vrk9vsme834CTz6wA3UO/Gbw+6sby8J73lPfcZsOrrHvAf0RbI6IE9hiyt8qchFtmzLrUnO3wb9/q1Bwie640rXjVkp4ZmWvI2vsrL5E4ea+Bmz/u+izHqibIGQDiPr+PTk7SD9adGMUosx3eP+opcWfYWw/hInn9rm44h7b2DQAHd/jyG3B7ojTFnq6N+M+rLbsdRr73MO60XNG9SsMbbg1brNzJqPfD2958DuFuq5M9A7/bq6ph2/xbjO+vf3hP5Yn03xIibwyEfzNbDPyPQ2TOWRkD3kmsjfi0gA+DrZ4Yl5V/2+3zexbj39QGQHRGj9l+Ne8A56tY6N6gTIO/H8QPNcFKWE74P1zhNeNqs2scAuvueklY4bwlmkVHjJRKtYhjd7wJ3ykPLj8JK6Bng9ko0A5n8TB9c22fxKvny6y9dIYF68Paeaes3BPdNGq9g2lesm0QCzKN6mTklvH39Gg9fv8b8+IgDGCEIlE6JMfOSlycY68w2vbUlCUCYEKY9pttb7O9uEXY7IEZQjAhBNumZueMWA4giBCEigCkhTAfQbgKTrNMNDJyOT7KJk5fi5WY9lZEIIezwg88+x4tPPsXt/Z0AbhaQkp1Zvk/0EqsFZMtLZEgZKLFpXsaLQeoWNPeaP3teyHIpIKQGFA60528BgeX1ZlAQkzJiDwgB4uGedohEmELAfhfBvODx6agecajHw+aKzYedRCiZJkxxN1wPbW3Uo2zoOU+xnaZKRNjtdtjtdtWGmzLPxQBil88IrHjh7q+P1sTmHvEKvwHnKaVsGBBR5XG0fNrNQn2qwesKll8INHrGNHf6I9mJr+pxK8+RjjXu5nXO6zhSnO8DvKuxjbJ0DUDV31vPj/jwfe1PhZR0UqJ/q5hSynsjqJljyBxyt40MMFm5BiiZZTmL5ZaNHyAfItWO1WmacrrcjxVIGI8TabPyZvIS8i28ZVSQS2GbvPv5iWnUyggQZQePyQoDt3WyyxjfGhs9PWifdf5NHg60VTytU7q8609COXl02QCaPfLjKP9+jq7eouzsKUYgwJC31oSy1juX3s+mw48fv+19f90M0FaeVPqxkUs5P7vfGDFkdaN1H1Uyidf9ajp8iz540N1OovPAuH9vNGkupZ5noALcjj+/1tM8XFvxtfVbF+z2QLZnnZlzuLb+M+vX5x4AtmnaPIZKpwHeW7TqsyRHiUcCKDHefP01Xn/xBWJaMBHrOkaS6CDLjAWzs3g17B2TAF7IUgimCXF/i8PdPfa3N8Aka7fDtFPQHRApwE4EZ0C/E4iieKEREaJumtPwcLZoYz49ISiwWDhh0cNxBFhGfPrpp/i13/7rCLsdEsu657ZdrL1S9vA4XvIFqVOWB6hF1cj7VhJgKM1J27UWSiJcivxRqx96MIZxoNeJTNlLPxDJmwMi8XomjWGOdrjpXKAYsdvtJBb3bieH4VARztXY7dRhNGbNe+eBhgfddoqfpK8B2Bbgtmd6nkMPYNq+qYR+A7ht6cuoH1vAP2qLHvVAfzcdlTHmaSVDGmVlSqZ47cbKHqiXNFQe0QGPbZtXvLTpXNuQzpkadDfOkFZ5wwzbvpfQXxo5JnJfg7KDw/9l0MC2BMzlmXmoZcXKM2np2Kl4A+KdMeej9diYa9+Y9HVQXX6lm0w+OYOmx+vFxA4MrqxFnw4qqGkNrqD88PptxTm+bHydwwGX4IR2/lf3dMast7M2qfJ0G/NNVAyPnn726RxzK+B9KQ3bh1FAabZ27Ie9E9W+Iql9Dyf5eozKHxlQ3slhUUY8VvTOEn0gP+PXg2+XR1kvM5WlUG35Mn1tzsuFrWHzwYNuo5UgGtRqC3Q/Z5JVCqIVuKiVMKBelRByjOFAfSU9Atzt/doLUTyZ5dMJzw1Buo5YYhOwr0TafNo0Ahobz7ZTgD2A6L9zEqgcCEjLjNc/+Qm++elPsFMgHvTklyXNmE9HnHjBQsm1AekyFt28SAJSd/sD7l68FMAdI1JA9qROIQp4pHI4DrLBIIfGmBILGqlCSiAEYsxJNrVNzGCNmFLaRDySP/jkB5imKcfthvlemCUqgRkrlTebdc+hleZbcA1nmDrCvQLvvbFt4KHkvvIKYO35jhRVwBNsgyVs0yOAZZ7x9PhUGXDzkrAss0RgsP5BQELAfn/Afn9A2O8x7fdA1LXKVABwVV/tj/pSH3AbuIkxgpnzm6Xdbpc3iq2eb9rBAxX/5wG3b3sP9j3Q8fNeH8hlHI9HHI/HcjBVByR5Xtp6oxkR3HxaeZcAkEDs0tpYdSZeAwJZLRWdFZXntocT2nZseXlfEFDXwUX1CWYXNkZpU1At2wiUD7volWOfMo+XTlzfUp+146IuZ10fZn1TxoxQSeU1AMhcNvOkamfn3PHPz/NcQl66zcDjdmlJHR2E7FnuAswKFJ8B4109DbNCKr3qH+kZY+eA6pCFCwD1c6jnsNLqwI8yu55Pj97gic24smctr96c2gKwkjCnHznXzoFg4QemRKv8FW/mwAE1j6aoLgff9Xjq3yPStx1EWm4zb1wb+/rlZWEDYG/VzNqZzdYoCtfjN+LSBpwtkT59FKB7NMFdis61ddrnWLVd4IkCuNtDa0zp+0gD7YAyxVUPVwCohfVQyfbSDABzC1BcSZV11m6I7LWJDaHUyc/IT+SVlelrw4w0n/B0fMDxm9d4ePMGIS0SKpAZCQnLPGNZZtk0qRPceJAmDPLaVtcU729ucXv3AtPNTY7/HCMhhh1icNEiAMABV+6MGzkcxjCfhBJMaQHSAnBS0O3qz8iA0hxWbNE78smGIY8fJwFym4y8AFU/mIfRUKoOIhN0mZmmP1rAbfUtHrqQb3hFJzzJenkii6ctbRNAOC5PmJdZ6poYMxJ4kQgv81yiulCI2O32ePniFW5ubkG7HWjaaRxUkr61sYp6bnSgTzFeHHCwvRI+frZfc92C6LadZf4Wj+VKEHcE86od3Zyv5r3NH2Ycj8dqPa0ZCy349rytSXpnNQOt/NXldmz567Ujwo9PH6UFgcB5eReVPy4ZjjxSo01faxkoVMsWm6t2z11zNaWsbNdykLjvaLH6sxtd/TbXNyMMlH0YayMMnXFZPNtpYwwZ+OYMxHqGE/Re7uPGWDNnQWjHH1Dx1XOwbAFT12I6llU+ooy11jg1w51047a1Yek7uGuuIaqfXPr1DGeX1+F8Pt86kbUbVp5YO0Qv67VBPSrjwsnKdVHv3wajug9BMcncEkBT1jkX63JtEEn0Q/a3q3LaMvy46hlblsaM7yzjXfYZcywS8aynB+CebevdaRHFAVKJlBhnB2hDHwXo9tQHpmurrU4zpkvSZsCE+qAML/B6ocMqntk8nOsJw9w7HKOGHK1nTy9KfgNjIXEt2HL7gFbr+ob1NmXi0vk2a8H20BPCenQMJ7x9/VOc3r7B/PQELItupgQYC07znNdve/Wa1PrMoXpixN2Le9y/eqVLSHYCuBUkhBA1QonfTMI5P6uyB+RMnE+w1PCoYDDSMmfQnbLhFEAsYcBubm4U9Fn4sKylrfLaBJRPtfLq3qgPtvPdArBFOw9TrikjreYRkrCA8G9VSllsz+gmUdGBpP100iU5MpbSsiAtM+b5hFNawADCtMPucIfbF6/w6pMfYLc/ADECQYwmTmu+q1/GE5dTRtvx2tvU2IuBbX+tFxAqtC1cp9wreS3uSPhe/2Q5gL4smZclrzUH1nPH89LzujQdhgJZsO7PAY/VdY0SVJthlr0BTK7XmaeExEs2eFdzvgGgXZDtrrGWtU15e7TLo5bxZiBZWxR9z3mu9N/+5Bw9dEcLvGvQyjre3bPB16uMgdz/BOWxRLgZ9Y8ZZv63yfaVsYjS7tXSRfvrUC9SycgZNdaFZdSQhXgYGV12j+1XUX4OixfQmQu3wVl0XA28L0c43wYQf045rdMJKCYqd9Ln8aL3FyejVn0C36Y/B+NgQOOxUMa44O5ifMp1Go6NPCttCKEvq8/xYNdDjGuHR82lLBmd5wy8R8veepRBv2ao5jHMo71SxV33R6GPBnT3BMS5ztiikXDt3m8At48n3PtDM4DMlGUVIGteGeXW+v5wQA7awr5XofXcoPGbfXx92zzavwowyEPSLs6a77Y1y2mFxIx3b77GNz/9Cfh0REDCREBUCTwviyzdcHnn2NEMLJDlGfubA+5fvsTN/T3ibqext6PzysqnBoAugk81MTOAJAA4y/bA8pxrD+EdOD09qtfasG4B8IECDvsDCEGVcnkjUjyDEIDLg7GZlTNyeu/99WDLXcTWxC7PUPeqoGLzINT5kz3mhSZB2hZ6MNCsm+kgGyaTxuQ+MUskl2nCze097l98gleffCpebl37nQ8Usn8uACLtHLD+8VFB/Bw04MjMOea1pfFhAAt48YDXt8WAN/dsabRyzz4XB7pbQd8z4HsKd0gNkD8HuAWo1sZeBSxVVq1PyLRDqQAbfD3jYVSuL+e55LOVsvQ6DIw5BAfk/S1yheu5QgVml3bOSB2+35nLEoBiTLeMuTneMcyyx3fQp1u6rDUa/TgjoDtuVvm7z+zE+BkBW12OgmqrJwqQ7DxZgGh+++B4sX5r9SNcrxhgfw9+33f8beXb6zMrq+c1bYFhTguAgm485+Io6wHvUdmbZOCio6MzoGw+z5HYU+zypnpOMQ87qsYeNi/l+1abAmbD1e2JwfjP5ekzcZqqzc8+/5XR2No2K1uHssy0kdxihxF9FKD7UsvnErrU2s/31fvhN0T6tUDd/DLY1gl0Bhw77qp7PRDsnzMF06uLByxgLhsIm3ytTUbAPg8o523wagr+u89X51zekJcSvvryx/jqix8ipiMmLHkDHTN0c6K+0g4CzEyYJ5LXr4kZ02GPV59+isPdHcK005iaAQw9VtwWHZOcOEkEBdfJJIW2XdbeYOhr/mDRrq1fGbwQjo9PGaCXaATSViFGjQVN4g3TxV2VUHG6f+W1UgbJ7fg246z2fLWb1sZgsOe56gFK6ViuJEabznsODITI6fWyNIUoaIzygJki0j5iihKy8fb2Hofbe+xvbhBirMaILmypvVxdftd18nPPH6XuN4z5Zy3eaw+cy9+2oMyGtPFAtGr93vxJSZZK9Q61GIFuuzeWceT+LVe2gHd7qihQK1cD2SlxHn+VEVAqWXmOR2DvfanNaTNrQp4zYkoIEGeSt20GZhiNh7ezhruUXoPoxFgdHFPV2Rkhfulh5ens9EtPrvdAWrfazdgN+nZvBYZ9TxHl+PrZQeLm1Pv04UpOeO3A7q0DFVmpFRazz0/8DT1YGbPo91yPrzWIWjuVes+ewxa9vj1HMu3a5WcE5nptfU83rHQ1Sjt8W2bECHiP2mLNV+nM0v59ud7KyTqk6zaPvWs9HNbiGf9p+34A6ObI8ZiqgHcWC1LXFh+V+eZlbZ8+eNDtweO3CbYtv9HkEzC0PimvVZA+L/1SfQc/n+8W+I6uAagEmgfbFQhuBjqw3aZtWV68ZouU0H8+g23bcgWcHh/x9Zc/xtuvf4KYToi0qLe1eJBsAyJTrHYKLySgm2LE3c0N7u7vcXN7B0xTWResB93YuuNg4NvAsULWCsKS8GcgOSsxraV40BjLcsT89ISoCtZHwSYiAZjTTtIzNzPYeTZRCyEP+Kx85DSqGFGpzk3KE19BZrvEwvORn1FgIfGCi0dh6DVzBmUg2b/AGv887idMUwQmCc84hYhp2mPaHxB3+xwNBmpQaCOsyxnMR3/P5qEtK7HwbVtjuRbO0rLied9oTa7nV9WGrr/yXHFtl8F+B3x5g8GfUHkZ1WqiVTptVqTXMiiisoTEt0/rSaoVmm4EV1fjyOEw5Lhj5I9oE2fTut4oXOfn+zPGwIRL75EB1QCIuY6n3q8z5bT2u8Ki7PMbA7UtwO2f80Db1m57TFDkXWHAns8x4luDHNtt3qOCp53RimZ8y486bzPa8ppY4YDcfLNaUG07V/wOzaaBwXMpXaqnz4HzVR+WG9V8gvfssn8DVWpYAciLuHs+vS+uquRytgZs34HJmzH4NsdECEF1oDwwwjqaXQ5nmgBMNhc65xlsGQ2AnTxZsEyrG1fjR3YSS7jZLPNrHX3JkPvgQTfw/EFxbrKtQGVHmOeNkVNRipX3pwWtK7DN7msN1LZ4XinBgXIEyjjPYLvhBy2Prv6j66OBbp8+5F6VHzMCA4TiVQcnPD4+4Cd/67cwP3yDwDMsBA9Q4s0uJPFHGeUYcrNCEwFhv8fd/Qscbm6w2++BEDVqCYCgB+JQ0NCAAvkzb8arM1uJCBxqz5R5zMhFcCCCHG6xCN/2Oq20h8Vg360EC5GLL0rF++MnswUF8S3MZgh4cHCGsvUN7iwNcDz5Z+RBaJWaZ9ZjkROLQE2lDWIIWEIATRN2NzvQNAEh6nKhAIoSi5sUcK8hUgG1eciwizvsALP99nOzty6va2isQKR7k8HlmUs8XW151bzcEPLGt/02o2HkAR1kBH9cWgsCQ6j7uKQb51ud7qZ/q3ZSpRZgr75rr/xzyfd310qAKu1O1j2AmnO7oOvy81yMJ1OetSdr/Kq7rkthnIwHgiyh6JjMvTxHhm5L+a2I7hsiBQ0ud1TQzRXlvZdULgrwAZxD5TxVoNd106axbok5Sbvkcaxv+Zo8N9vE2ngwX6s5NajDc+Z6L33rCPDfW77HfXvZ3O/y6vTZRSSC7kySGmtcSpm/aspy3uBYrqyfqWS8M1R77as3qp+JWfVNv51Gc7iSneRkX7fabMlUPxOY0qrvL5WFHwHoHk6b+lejBOr1fJqTBxFoX9cXZWgeqBDD6nV1NaFTWnuUmwHbjple57QK3O8099f9NYLbVNjUD0B+xerv9fJsB+oI2Mt3BSpNuQbG8yZKlnCA7958g29ef4X58R3UJw1bU5r7IQt+8WhnPiD4IuwPArhvbxF3k6zdDjbw5fRJClFAd4gSSxv1hG29HxXwVc+DPy7HKkXMeHp8B2LxxiymsHKDkBwOE8TTrVizNn5ybQqQL1Z9PZ6SLVhMa0PhHBngLnXytVHPPYIKX2FJNp+nrAD9eEhcv5Yn44vLaXwEqf+0mxB2E2LUs0YJYCaEuJNNLiZ8CbrGnqDbaleAu0fmzfa/DXRXUTZcHfz3HkDspeuX72fAeq4uPk63S5MNBAVGlZeyWVYymotbnLT1Kh7H0fN9WdAaNpl/Bdv5TxkoS69Qpf+2yBsI57zCnZur+XLOOOjJahn/ay/xpUSwN3XCzzng1zUkmnr4tyL5CPnmGeU+G9HZvnDzwOYbuT95CnAPDD3J8OlKhWEyjsokyHkZD9m4UYvHNmIzyjAzRwg64yy3C+VCh2C4eqZTl5+VzoGs3hwZzkyHH87JgNqIeSY9A3hfSiOHRXFkFRnfyt/24BvpdlrlWelvWPfLgBEv+fmleb055r8X2arjlBRiE9XNzbaQDNVb71FZPfoIQHehutPsGjCaoCWte53BblUulTyzIozraAht+dk71IDhFujWIq2v8D1/l4Bt/0z+vq7wCjyPJlNPAbeUB2ZjxxRhUWobmMFLwtdffInXX38NSicQWwSIIlw82JJ42wqWyRRAwO5wg8PdHXY3N6BJo14o4EaQZQzIx4eHrIw8MDknkD3gru/qyYGPjwi5rwUNS00ErN8cbmVdsQkLAExljOXSLVThig8t2ZSRXXI/2/buekddPWuQYIt8/OalUoBt7kxJPE7yuq8wsSyLCLcl6XpuicUNZsQ4SZSYQAKmFfMklk2pYrhGB9rkrQSDMjBoj+et+6aAVH/0uAGQVRs0bdN+b42RkWeqx0c7Z83wOM0ziGSZUfdAHeeVbDdgj+rdK1+/dYC2yS9CGFSjJwf88fPl+rYc3QJDzyVrk560LGVd+LsDbHt9tmLAPWTrjBkCBu0VMlDmU89A2eQx573u53PGQHvf5oLk2zDvyBczkv9e9g6BdIefauzlT5MnDFDjyrJysm6R/egyjBi2UUZH3tgwaoyMBNEzozbsAa9V+2/U89ycHOnkXl4+T4bIxoBtwH6O3tuIeG6ZeZDozwvqm+dHK3tFMSLJSRU57dqpWedljpVeXxPKoTjGX/sHd2/kgDEyB4m9gW8NnNpwNPklv0d6p0cfBehuK9EqiEqRuleNPbCd8wwSecI6wjzb7SbJ1kPqAXfmxUAZUKVvICpa4O2/e0/eCGxfIgxYJdvFaZtrI/I9YJaeWHuyfntiRkiM5XTC1199hdc//Sl4mRFpVi+3HoqjrxdLCDgNB2gKmAJ2+wNu7+6wO2iIuRj0U45yBwUEitnLjSyUKR98k/mulLP8QxzyOSDVKXGNRTvPJyzzSWpshgPbq1FCjBNub+8Qgq5DJ/PWK6AirrINtPKnw052tPYcGT7nKJfRAj/nUSZCvfuf9TdTni+W1nIkIiSN/sF5w514uREnVZaaN2xssIDxaUKIE0j/5K1G4c149nU2g9dHG5nnOR9Cs9vtqrXcI2NxC3CfA089asG6B632yt/ft76A+z6KG35pfwsL+iqeYMF53L2+UeG/+4guvm5b7QfzYDJn4/JnJQNeHk7ZHPaKt8+PTy+ZkZPJW8/0qHU8pFQbY1sA/pyzx/hc64Y6TVuedwa1hpy9SQJEr7EcoODenOQcYfPY8996DjMvo3q4dHnsKsiuxZkIFJvZZPVr5iibHHb1slMF8yzqgSz7zqznN/D6aHiXtueQaOvaPv0+srflr2fgi4A8B9Y9Ziit/rPw5MkbWpcZDqW9Lyai1XiRslntLFvCiVXjm1Fv8t/Pu3b+VfJc14W3INnqd4kcyH0HAllUL2c0lgx7bVZju3P0EYDu84KO0QwgB7hXYNuDbB8CkMTLPRKIrWfIAJifSHVneD+H/e6D3B7I3vJStO3QWnd0ZpJ4sLLlcRsJZ4DEXiUCpYSJAZoXvPvmG3zz5g0e3n2DsBwRKCGQHdYOcLITGd3SEpLIFwzCtNvh7v4e+8MBFAXIpqhrtaNGIwn2ilU93FRgrGLHjpEGOenS2ha2xMGlgVMSABgJp9MRKS0gtnBqOtJICtvt9jgcbhQBecNP+tp4qRQWPMAxz7hjIvN8KRAzgQT4+NICuM0IWTs5cj2yj58MU4Hd+vOhcKaoGcvjKc/BpPNrwjTtEXc7xGkHUsMEcF6fJiqEzUUbn0SU5900TTgcDtjtdrmO7ZzsgRb/u53bXqCP2tanX4Fkonwwz2ge+XXcI162aAU6mJ3Hs01ja64LVY4Ht+G09fx0yyTLU40wsmVKl1EL9OpCAPIxO5uytzxSRUECYF0Kocq+lWnbnssCcKRNypiy8Wj5tPXq8bZV1nON6a1wgB6WMUvkJywiwWL0zqLz5fXkpQeI9t3kY0nbAfScc6zrfKburQeyALXRA4X3vB59BL638qm4PU9t/z7HcCdIFK98GvJqnmo6FcyjRUk9efwcHrzx18t3/KRjtPo55nMlu0wXFfO6U0/RZb2lg+13T1mXcHF++rbaaqPVPIYbM5WhmFns8m0NY8bDiD4C0D2iYkFl53YDPqvUVNZUxhgxxUnjOdNKwLUTi5mr9dvZChoAbmn0bUHjFWFr0fk0/nOUB1CAtAeOvYFmZUrb4SIrduUNoOLkiADCkvD6pz/BuzevsZyeEJYTiBIiyapzVk9xBbih4JQCmALiboe7ly+x2+0AIvF+B12nHSf5tKgkFBBsHbcHRlTzyirAhFdWxVy8sr5NVBY6Y23B6fiEZZ4R4QC3a7LD/iAGAoXiqYeWFdYAxSZjKcsE0XisbBlFJU3ppXYMUU6QW7yk5eIpFeVIElkx1EKlGk82RzRPAkFdbaXMEBCnHabDAdNunw0o3zseWNvfNE1IKeF4POblI8xyrLt5uO1aSgmn02kjskQNcEdze4uKEdI3iKNtarP5i3pcEdl61TUfPYB2DpgAteezrXcvPw+2e20OEMxa9W/+pI81Pz11rQCrmqeqXAXqmgAjWJPV7grvrcH2JqjwALHhaRtwZ8lU/uN1uz5nvIwL6q/b9nn2+rQrvxv8A2ZEEGiyJWTSJMK71LLio75SMhoAewO0Nvc9bS9zYRNyK6DHQDkgzNezyd+82GdbXXnLZgbXhqjncoULzuXdLa7/Zmg9t9qSeOXs8VTyLJ/Mvfvr57aM1PyczYmz5bekLVhClpVrG1T6QnNRdWcH1HgAnoMHbGTbzqHePMrjbiOrrbYCGMTyRtpOiTXema3cEY9SgXNy4qME3dq8KyXoPWdGLdiWaBNTvgesvVGWZwW4PZgfAHv/bMmjgPD2nl/DbZP2EqDd/vZWXnuvHVhJjQdLmQUb1x6iEQ827yYiYEmY3z3g6598gYfXXwEspzZGWiA70lkD/st64BweUMsnIiBGTLs9Dre3CDHKZkXbFDlNGpHENp5FEMlbCbSbm9xksPWZZcLUs5ktskA1Ua2+8nZkWWYcj09IaUHkBPPlGnRlEG5u73R5ixXk2anbsnhvZExwk37U3m1+7bWcP0SirceHlOqBuXn6yeVDZFeaV4/2HJGu2yYHvorXWgCUgvIgcboPh0N+o8TKjAeCQAGR5tk4nU6VQDUw7kE4M2PW+Ndte7TP+uttW1u4qi1Qt+XlNL4NcPd4adOeK6M3Bnp5XcqztdXpdAJQt7ckKMZQGQdlaDJYTy1dK7E1rwa23Ycbd6U+yEOqR5cCbi6JVmcWdNN3wHkvx54xsTUO7HfPWZPLA7phzVqSPrAxudbubGCVyxgmkjdL54hRlm+0HFBz3d8PRDlEYQu7K7mavV+F2dWhQnafBn3Qk3No23s8PrhJX43k9zWaBtSTM+39NZCuSe0mabsOmGtsykHeLr8NAP4csC3g3AHtzJzP8wzozuBcdbMtt0wJCahkejaUNB3JjdU8s+9bxkWuz5axvs05APdmAlxVNVAAM5BQPPG+n793oFsGabtGbN05PbAdm81ObXo0efcANzMDSdf4ujxGXqbW8ukZCP7554Duth3QaYM2rfdJ5livzxBGBCAkOWHy4c0bfP3jH+L08AacZkQSgBu1FDmpsI4EIEBOJmLc77G7vUfY7yWsHJGEmYsTaIoOcEf1wol32wPuAmYBUymtnhfMLd4sJNQed992psg4IS0JTw8PErmEy6TL3jCQnLKYvfW5pdXxso6SksH9e/lXXH28MMnOB8+jKUFfTmmnFdj2QE51WjIl4OZREXYigPNpXGwenoDdXozam7u7vOyi6OBmGVQDXOd5AUCIbpmXebn98+a59XXwEUF8G43mpeVxDsBu9UE1b2HNtfZ4GeDakjWjMnxZ/lqbpgf6/HXvYMj9kuVT32DhZs010C6PWjGMKjxhF1MR7Cj63r337Q8Gqv7oydQqfdtWrPyfK2cAxNt2XlFH57T9Ute/gJ0sMkEgVfXG6bIkEAExThe1m41TOVu2qcvA2KlarzHKDIrlujQyKNezuQZaj23P3znAJM916qc4MVCzFGwwZFtoXue1Bnxb/IyogM+S1jtLkgFr9m8ibeyeL/Oc/s4yCcNmGPCcfwGNHIDWSfKsjctG4oKdYc/5dNs6ok6mRfhN6VQsEuPgAtnQGrr27HOo7S95I1/6C5CN6x0fr5ur41I/AtDN1W7SEdgGaqE9AtujTqvy7ABtUdRyD004tVrAlDwlIkS/jDzBmonTfrYTqxVm3lseXH6ZPyreSBsjGUS1DA/K8WMoACBmvP7yS7z+6U/Ax7cgnhECI5DszLa6LwkZcBsPDGCaInY3tzjcvUDSDXYAIUSJSEJRo8fokhJbv+0Bd2s4mfcWTXvnNmb1MJtwY3ulXNabS511KUxaMJ+O5vsFm9cejMTifd3vD8JPKNPbwGfmq+1X19YjY22Ltjx05WsB+OsUZFga2dukf2w3KoUYJDJG0MOGiDLYBqCbKoVCCHnddXAnf1k9W8Dtw6ClxIhR33JQyc8DRA+WLQ/vuW1PnBwZqJbPc5RqT8746z1DpvJsN/LinHHdA9mt/LpElgHlTZ5vI1fSCrzkst182hqXhQ+u8svXeZ3+PXD1eTLlrnPblQi1dtHOwsoAzNj7PJgZAezW0LbSeoCn7csyfnvl6XWmLI9KHqMxtAZtxTgEVptJLHFnzGXjETX8Yrb0XubUeq6dO6VC/fZoe656rvou5dbtxeAtw7DinVc6Y5TOyvVG9WgM9MdPAXItbxnbYBsg9vSFL6/9vvXsubHd47uTK0zn+edWbcPljX8+aItlM7c/IdLnIcvhFhBqx02vjqv2dHUNROhg49Xz63ZrTYcCvEUyBoSwDoBh+GGLPnzQzcjrqa3KPe+QV7y2hKQXLaA3IYo1zDksWlHQ9YYt2xS4YpNrUTFSqhXgtjptKOGRgeGBw5Z3he3TKWBy0rgHAHx7OPULSgnL6Yivv/gx3nz1U1A6IfAJIUq7BHkES5Ij3VMqhlJixpIW7PZ73L18iXi4RQpymEqAgZSYN00G5+UmMsDdAx0meNdGUK6n60uvCMzjXVnUmmaZT0BKYkQ4g8GaZn84YJp28qopyIHmwQQ4rd/E5M4+owtGwrwnJNdjBcg7J7lsLDPtmxUnkYayIzEYtF0NcJiB4+dU276kwkY2IUc1QvaYdrvy2lB7x/rft8lO0xWAAveKvAbUbZSSUu/S97326o1rf320tKQH1q1vvAKg9tPx0ct7S3558vn4zy1ee/LB59eLC+7zX5XRoCt5rv7d4zt7hLys1X88eBsDxbWxcQmAymtlWZlnm6tlPrRgGzb/raLK26ZMbfi0vDx491xpis18/Fi353xevo+l/awFS6zjPrt9QJ7HbwvENupIKEsRV2ieS6rVGDTe0UC3DWNhC+Z53oZ9xFx1N/PYyytLdc4Db8un5aH3+Vz6edifK8PPxhNvL8PyBkW5BpxVXFqWH1ttvi5hvtZGUQJsFQCp3phd0IQ6z1aWtfe2+mfE30ruZHlVgHeR/+YgypoOzOcjx33woNuAg1dYni4B25au29AuP7+z38B2JVA7gLsLfLChADdA9ShPu2bX2+gjrbA3bEdNft7LlQVRO2j1YVKtJWHuGOCEt29e44sf/hbmxwcETghYEELCpAo5pYQ5GyjSFraVEkS4vbvD3ctXoMMBiSYwlfCMUC82xage7ilHlWE70p38xChrkFXHljb2QqPYD9XxrSmlakmI6yAQgPn0lJeWEEo9bBTc3tzJwS9RhEEAgYMp8lX3taV0+3nkySh17j1nxoS/L5/5CPImn6zgFXzn+ZLvl7dDXfDo4qbKyYqxAtGWVzZUUqpA9263q5aM+PoJW/WbAukvP0/KnDYv/Kh9usYP6tf5q/nDgHgrKHvWTa60gKMF3OcM/Kodm7k3UhJbyqLNr/d9BJCln9ZLtaReBdiV/La9e7Ixva8As2GsO7DfF6D0qDbCOu3tQCGsHsnmad/TvzUPL5mjpe/RaI12vNdva0z3+HqYvALqcWvPW/v2aQ03LwG19qTJiRZMnQNu/jNnhnp8EaE7xu1Z43xrrHi5Yc+xysSMh1DG8Yovu4a6TS4x9Cpe3bgY8ztoeaLOnoSxUXJ5il5RpaxuPz27oPpmNympUewwi3emeLCd25FND6SC/zqGqNGWQbRlDPjnu3N7bS1CmRNDNAR4z7adZLvVpB886AbQ3YzhPQS20WoskBrQkuqOzNfZrK8mFJkKAN9fz5mUVQHuWQMlvfx6vzNY7AwwkWlrL1zXgnOgvVy05xi2DzwGqXs6nfDNm6/xo9/6m1iOT5gCITBjCuLdTsuCWQG3WdKmbJiAadphd3uL3e0tMO2QggJuqOeNSEIBxgK2zYNqAAxkytGD7QK4zYBo24y4jqmcqr6vu8eUFzOwnE7SFmo9MAP2+pqIcHd3n5fDLCRgw8Iye0OtFmxFOZ4DZJamB6R8HxtwWBl6nbyIyoYor+j9QTNE1J1PvuxJjbdpmhAVjHrO8rhm2UPgjcQQQgbcVifmGrQaeaC9ZWz32qv9bE/r9F7fkq4If2+AjzziLcjq/XlhPjIA/PM+33Nge8tgHwEB/1vkxrheNeCWKxVwauQsZSG5Gn35wwOtb5+24WRvHBljBgos3VYeW1SPYfKTtFyzMqkPokdl+Eg9W/16Ga2jWFDzvf07R6P2JRsTZKvRXfsAw7q3vdkzaDf5sSK8mhsB7kstkVFZA0C45rPTPpKwo8NkjAyNPH2uLbPlZ3W9+b05pvP43WgcRnZgDSBt/tYu6+vJRPk0/rM15eqTXL1LHdr65nGSr5tmqvfdtDLT83KZiUqZ30vG5UcAuusG9Uqz59n2afw137CcgVQtqBY7BMQa3A3QLDiG5Du2UwvmlYWZmvtteiu3B7h7HczN9ZEyNl7ydTawLYM4kC0XYSzzEV/88G/h65/+FMvxCbsQsENAJEYgYEkL5mWpvKqyeZKAQIiHPQ4vXiDu97LOFxFMEfl0QpKwayFOCLYGPx82EnS9txkWNdi2ydQKqwr0OsBd/VHpM1vXl9uTE5aTLC8BbP0ka/KAGCfc3d/JcogQQP50tY4QGwm1oTAdWeNwgJu5/D4DBHy+/i/HqM+gshixvfjSgG6+NaPIADfLa8Ii0gpPXiAa4C4ePYmsQRSqpSZt+7SfLXDupW+FuZch7YEjXsAy6xubec5pfWzwrCDPAOKW/Bwegese2O797gKHofJaEzVzagjYVvqm7xX2IJOoeHmq/MgyHNfr3PVz5HPvtUXv+6WK0ufV43MLLNuzrY4qequAB18Tn11/Pf46/3NkWsy6VsqudVsLdPXLqpwtoL/mx4A39H1hW1Ipr+2fYV1yWw6T5DZsu6aqB9oNw+9HvT5Y64L+s+fQRS89mvHX46d375zhuBrnz+CtnYO9snv6sYdVTM5m8J37SxaTlTfP23KF9JpFIuHGiPBjrqdP8vNNXXt18/HFR/QRgO51bNppmlbAoAXZK/BpIKU6+ljyt9P2crgyfzPTaNiNB3v+dB7gKk3HyhoNyHYCXar0R0DESyNiU8ACHu30yPn4hC9/+EN8/eWXSKcT9kTYx0kwL0u7zWmRMH/Kh2yyI/BuQry5wc3dPab9HghBYbz8yYmSQZZohAK28yt8nWhVfevj93Lrm+HQ1pOX1I8+4x7WUrJRxQwsy4xlluPryxH2VhrhcND43CFoiOPySnO8/nhN5xR124/eYGMI8E7Wh3bN0rsyKqBN9XKssoSkeL6Nr3aM5WemSQ2owpt9rrxVXOJsA8gbZzJQZ0aINATCbRuS4z/oWnpfln+mB5J8OT5+tYDhkIGxhROcnGFhXhPbsFwb5H05lHlz/HlqPfW970NiHXudevbAkecxf5dv58sqOVT5rGXumacHhsXPStLfqMT0lhF2Nr/OtXPztV+ntfyuAXcBjq1eavMelX++LVtQ7YFFv5ytfHN7Nhn0DJ0KGJPM1wLk7Yb79OU0fPW+9+owpjF/dX7Pgb/nn63n4cDQtDvPGGOtrNcEqwbp8tQ+t0EMiMLnHu9khbiv9ZgQwJrgTyP29/3vKqobSMOVqnPAlWqHIrFFJXPPGPitxrL9m41/r9MVuzi57/mzVDmE4Jl5KGV3mkrpgwfdhCKgzLMdY2wcMGuwsALc1Z88xqp0LeavKSFTrjWt7JwVrz3hbqCvTZ14rSxb4TzyzJRqNxZdR8n2FE/lf2B7zrzfCwA5XfLrH3+Bx9evEU8z9mrshABwWjAvJ8xpzicREsmBNikG0G6Pw80tdrrZEBQVbBNgMbht7XYMeV1xCNEqgi7g7liwNn/YKbf8RmBjcmcrmtftuJyO4GURG5rN609YdG357e2dhugKea13Yo1uswm0z3vVRoZX6vSlS1AbdI3gbZU8OdDqAbdZ8/nwAhQrP7+FiLE6EMYEVUr1ATlGBrhbQWae8Tjtcp5Wl1Gb1DwXENIT4iOg7oWrzf0SDSVkgO0P5Knywho4boGTLZ5GAOcc2JEfHYk0eK53PZfNZmyOPaXleoYGA9Bdp/cKCxfU71nUm2IKanpzsAWEo3b3Rq3lJ3XwMUMKaKHmuZVe6BgBLSDgzDetDvhqgaKn5xlp1LLj9hf1827byNpkpWc682/Nj+qYgUHqQWBlfKO0R4+nkSHCTbvzoK5b476lc0ZXW96WoTQoIDN+6TM2I+1wNtZ8/JvsHi7wvJ6rSynJzYemXoTSX6tyNaCCX+LXk9voPAv3ds30k1Yye67lehGIrdOhZLyqHRgF95le8G82a5ltcmB7LJwbTx886AZRVn629nQFuB1Iria1Ai8fVk8uMdKyIOlyktEmFXumw1T1qwb0NcjPs98LEnZLAwbUlntOwK6t/3ry1hakJbKBZGuXF4BPePvNG/zkt/4W5m/eYse6mXIKoEDgtGCZZ8yYsYBVSSggnSL2d3eYDjegOIHChEQRObZJCIgUBGgb0GqBFKwPm/BvnTozM5AYC5unuf4jrMGO9UVlYFmjsEQBmI9HIMlBP8wSwURWr4uIu79/AaKQAeqCJLG9E6/a3doZdP4F5hAooFYcm8C+SCjXlg4crcZ4UaiVVW9p9C+/lYhRLH0U8Fw2xNTKsF3+ZWQG7qRLiqo6N/XzvLdvvKQtSluNgEn7rC0fseVktoPe4oP7pWsG0n0+bf69721/+fv+c2Q4bwl1ZsC8Tu2r1V79Wx6qaw2f28C7GMP9OvRlVoHq2zLvuZTdB0w6V0Wqtu3eGju97/387V8b74AHHz2gmJ8t6AAB4sro9Xf9AKkx1UtTdMlozEg279PC4zcU1eVOe1aQbKCznm1k6eFlbV9ttt+azRUvQ/lwKVvPANyjMVeMqHEeWyC5Kgtrg3bE09a8vmzMKFhw8rblpVdu+VFmS2XcDuQPM6sO0+eoGXOsuEX3UWVdlReX95fNeT6ZbWbrOAjA08MjmBn7/T6nK95v06mm0vvzrsjKPn3woDsQYb/fl0nn7lUKBPUAZAWZBXADnBhLSmD3StkUahupwXeYgXX7ncnAc7ukoLOmpxpkqEHOKt/Oc5ekayfQSJmS8k6kY1kBNy9HvPv6K3z1ox8hvXuHPSCbJidZW51YPINzmrEQl1ctFEC7Hfa399jd3oJI1m3bUhIo2MtLRxRsQ9du5z+SKCDQ10m5f9s6M1sD6huDVIG1bOyMhG/OrgXe4iFY5hOYk4teQuCgGz4RcHt7C4YspUn631pwNYoR6/WYK2PNrmsdDdS3aXoAs1VQ3tMy/hOe8np8N788UPVLUawv1kszSp094I4NqAaQw0HagR7tRleBHX2w7dvOWqvXhr4t/LMeaHuDQbz47RuAGlhuKf0to7cFZlugaUQ1gPRwr5YhPUXTL6MG7a0ScUl0XNRrK9u2KXxJbp7DzNvZWl5ODtPKbwXEPcB9qQy1eeDz5qagnJfLos3NG4Jm6EZsj6NV29h84nKBkTK4fW9Au0G9PEe5+4OxRvn089xOb2mKJLJN2ueXvQA1mB15Ute0nivvZ7y0vPTHXT2m1m39viVXUoEItFF/atKv8uoASgLkuPYLmfRzL1BctevKSUZrD7WNhMwrkTagvnfi5m2C4oXKIPbsejFVyQsJDEABOJ2e8tJC41OAN4DsfKvleo/3EX3woBvUPz65FVz5W9WRcskOtUkpiYfbgWTbwNXzYHUBUZGoGdxlYd2E8vPpfX69ZfajDnuOUB0Jiqqd8gSSUIDEDE4LsBzxzRc/xlc//hH4dMKBIBsaY0AC47ScBKRwEg831FKME6bDAdPtLeL+FkwTbJNkngDN0gbzcnuwbYCbTKk7Icv+Hwemc/9gPYGda2qteI2X+hICEZY5qadb1nKTWvhJs9vtd9jtD2BGBtwS79uPDWlf1k+p0hqU+fGQZUFjlPWA+ZZHaQQUs2FJ+mbICxyXTwt0c3QTBU02j/wbInkGFVjNIN3q25Rh5ZtAKxFD9Gj2sF732rZf244t4GzrY2X4DdPG6y7HF6/rb/O2F8nlUkMZvPbatf1V9ac+0+blZU850NvWtROAtNlWpWxdyuD05xr2cB67weYjArKrB329Swp+iQpuPEsVOh8w1EnbGwNV0jOAsJctu7/zVNT5qsvRn1djeV49gSrQtH5dg/safL8vUCSqx+TqPtZt6QH3VndVeVJt1Oe8/PiEmWxlDJHqEkYeet+qsZEL7sDQc46xrfvtvX7/NNcyqDxPvt39tNl6eqRDPJ/+c3XfniWTH2to6/POb0GjO1zNOTy3ZHeWM/ma1lDLZi5zJs8tdnlw0d1kv62dKuCNrHdub+7w7uEdTvOx2s9TVkOgdqA1zXQJ8P7wQbcjP2G3FJ4B7gyCm062PPJylSY/Dwa6g1PzHAJyl4fl7wFit27fthBx5TYXFQTIxoDECfPxAW+++AJvfvxDUFqwCwqaYsCSFjydjljszQFEH8wMIE548fIV4uEAxH0OA1gDbvdankgAt8VzNhCYl5YEWBjBitS4ka91GydOxehphLdvh/wM/MRGI6HEyz2fTnKDk0EZWCDF29s7EIVyxD2Zp9vscQ+u+v0ifCODbeO7rcdzAXfvWu9PbBIzvjSdS++9vd7ju+iYryL8KPnNkta3PsXKg8EpH6PrQbwBAL+8qNd+pX3gvvOqDu28LuvP6+VkbYhEHy2izWfLOO7JA1MgKyeBgRC7vqFs6/534AVUP0bjMeJyc72fE9XPgLJXiwAECnV694z3hGXeGEAnZveYrA0g5a7EFhX56U5S3JofrfzrzZUtoOpv+fx9X9MAJBkc6M2/uoymr2C94wv3smVdv3O6Y2R8FNA2liHS3p3nseqis3SxEQbZX0FU3nj5lsm9f8F86aVb9QH4ogNy1jKsD9Cfq8urbN7DcPJ9YfJk1DZ5XPrn27nfGwer/MYQ3181ZwdzAlHBWyOHki+zyEiCHUpTizodI35uKfDWjKr8srOTvcFQO39inHBzuMXT0xNOpxP2+33GiUVvyFjxNse4ndb0wYNuAwOj3ysQZutqG2DcgmAvAEeKeSXQNF+vuO35Vuh7EOA9Ar0uGSn0nqD/WcgZdwK4Tye8/vorfP3jH+L05jWmNCPEgDDJRsc5zXg6HcsSHcjAnTkA04Tbl68Qb+/AISJRACgiwh1s4gCMRPqg6jAW73kNNOnSkpra9mzv+UtZCcHmW+2VFAvdP4+iy3QX9DzP4GUu8bkB8bwQAUy4u7vLVnbK4MUBkoafXJbxC9vw0hfYBVjUHvxVXw6AXwu4e8umluxLWgP0NoxgFlgdQ9QD1t1ePMVtuKSeF4PFAVEtKbHnYiwbpUcApf6s816HQSzP+rr6CC4+XKGt3euFIf1ZqGrncrEa8dx8Hxr1ajTVPPWNsh6t7fCBEUH+O8Fze0Ep8uzZdFWpZ3POUHCNy8fPvFffrZfIjFM29XRGbLWBedDOPeBd51+P8wp4/Czj0vHZ8tTSJYCyNQL6adetauOKmWXDfG6PFghv90jvzno+9Pnnzbtb+V3WNhfp8I5xcG4+s/UhOvXvGISBCAuXt+3tc+ecC97QzLqxfXev91uZ6vPoAe0e3vHrDwqKcnOJqTLuDaj3yIP9bMhxmedPT0/5ZOUQAh4eHrAsS3Xwm4S4JcAdZ295+/y3iC4R0t8lEdEbAL/xXfNxpZ+ZPgfwxXfNxJW+Fbr25feDrv34/aFrX34/6NqP3w/6O5j5l3s3PnhPN4DfYOa/77tm4ko/GxHRX7z24/eDrn35/aBrP35/6NqX3w+69uP3n8ZHXF3pSle60pWudKUrXelKV/pW6Aq6r3SlK13pSle60pWudKWfM30MoPvf+64ZuNK3Qtd+/P7QtS+/H3Ttx+8PXfvy+0HXfvye0we/kfJKV7rSla50pStd6UpX+tjpY/B0X+lKV7rSla50pStd6UofNX2woJuI/hEi+g0i+k0i+uPfNT9XOk9E9NeJ6C8T0V8ior+o1z4jov+GiP4P/fzUpf9XtH9/g4j+4e+O819sIqI/SUQ/IqK/4q49u9+I6O/V/v9NIvp36NsILn+lZ9GgL/8EEf1/Oi//EhH9o+7etS8/QCKi30lE/y0R/TUi+qtE9C/q9eu8/Ihoox+vc/IXlXonA33XfwAigP8TwN8FYA/gfwHwe75rvq5/Z/vtrwP4vLn2bwL44/r9jwP4N/T779F+PQD4Xdrf8buuwy/iH4A/AOD3AfgrP0u/AfgfAfyDkDMK/jyAP/Rd1+0X7W/Ql38CwL/cSXvtyw/0D8CvAfh9+v0lgP9d++s6Lz+iv41+vM7JX9C/D9XT/fcD+E1m/r+Y+QjgTwP4w98xT1d6P/rDAP6Ufv9TAP4xd/1PM/MTM//fAH4T0u9X+ttMzPzfAfhJc/lZ/UZEvwbgFTP/9ywa4j9yz1zpbxMN+nJE1778QImZf4uZ/2f9/gbAXwPw67jOy4+KNvpxRNd+/J7Thwq6fx3A/+t+/w1sD9QrfRjEAP5rIvqfiOif02u/ysy/BYgAAvArev3axx82Pbfffl2/t9ev9GHQHyOi/1WXn9iShGtffgRERH8ngL8HwP+A67z8aKnpR+A6J38h6UMF3b21StcwKx8+/X5m/n0A/hCAP0pEf2Aj7bWPP04a9du1Pz9c+ncB/N0Afi+A3wLwb+n1a19+4ERELwD8ZwD+JWZ+vZW0c+3alx8IdfrxOid/QelDBd1/A8DvdL9/B4C/+R3xcqULiZn/pn7+CMCfhSwX+aG+GoN+/kiTX/v4w6bn9tvf0O/t9St9x8TMP2TmhZkTgH8fZRnXtS8/YCKiHQSo/cfM/J/r5eu8/Mio14/XOfmLSx8q6P4LAH43Ef0uItoD+CMA/tx3zNOVNoiI7onopX0H8A8B+CuQfvtnNNk/A+C/0O9/DsAfIaIDEf0uAL8bslHkSh8GPavf9FX3GyL6B3RX/T/tnrnSd0gG0pT+cci8BK59+cGStvt/AOCvMfO/7W5d5+VHRKN+vM7JX1yavmsGesTMMxH9MQD/FSSSyZ9k5r/6HbN1pW36VQB/VqMYTQD+E2b+L4noLwD4M0T0zwL4fwD8EwDAzH+ViP4MgP8NwAzgjzLz8t2w/otNRPSfAviDAD4nor8B4F8D8K/j+f32LwD4DwHcQnbX//m/jdW4EoZ9+QeJ6PdCXkf/dQD/PHDtyw+cfj+AfwrAXyaiv6TX/lVc5+XHRqN+/Cevc/IXk64nUl7pSle60pWudKUrXelKP2f6UJeXXOlKV7rSla50pStd6UrfG7qC7itd6UpXutKVrnSlK13p50xX0H2lK13pSle60pWudKUr/ZzpCrqvdKUrXelKV7rSla50pZ8zXUH3la50pStd6UpXutKVrvRzpivovtKVrnSlK13pSle60pV+znQF3Ve60pWudKUrXelKV7rSz5muoPtKV7rSla50pStd6UpX+jnT/w9CARKW/GeKVgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "<Figure size 1152x1152 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAt0AAAOJCAYAAADBX56nAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9Pa9tTdMuBl3dY8619/OeY4QJjmXsV8KBCSAgADkhASEQmSOQIXFg6SQgJOTA5gdYIgCJlBMgkSDjxMKBhfmQyEA4xRYgy1hwOBYWmAD7fe+15hhdBN3VXV1d/THGnGvf93rOqufZ91xzzP6o/qq+6uoe3Y6I8C3f8i3f8i3f8i3f8i3f8i2fJ/73VuBbvuVbvuVbvuVbvuVbvuXPXb5B97d8y7d8y7d8y7d8y7d8yyfLN+j+lm/5lm/5lm/5lm/5lm/5ZPkG3d/yLd/yLd/yLd/yLd/yLZ8s36D7W77lW77lW77lW77lW77lk+UbdH/Lt3zLt3zLt3zLt3zLt3yy/HLQ7Zz7rzrn/i/OuX/LOffP/+r8v+VbvuVbvuVbvuVbvuVbfrW4X3lOt3NuA/B/BfBfBvB3AfzrAP4bRPRv/jIlvuVbvuVbvuVbvuVbvuVbfrH8aqb7nwDwbxHRv01EHwD+RQD/5C/W4Vu+5Vu+5Vu+5Vu+5Vu+5ZfKrwbd/wiA/4f4/nfTs2/5lm/5lm/5lm/5lm/5lj9buf3i/JzxrNnf4pz72wD+NgC8vb39Z//W3/pbF3KysuqItcVGxpe/99I1t+nMdOA4J3TtpmHlrdM/sZXIKuev24m0kOFq3a6E/ftLqFevBBwhwNpyNhpOznl45+CcG1f16hCZ9TPXhumVycGZvzmRsfzdGQrl3ylmS6A43IkA6tamkU75LwipvlzKN+XvHHx6/st6rczoiTE+jtqOx684KtvWnrdT1e4inpbx0LnWMCPtRmmOxodVBzlkGhch2xACTdrbOQfvfQ6T64swHAe6XpuQriSjNV2VflknaZ6ZnsSjflk7EVJeueydsTy0cecrpZXVNDo61Um54e8yzEvkVfBLpPPv//v/Pv7D/+A/MFP+1aD77wL4S/H9HwXw93QgIvo7AP4OAPzlX/4l/Xf/2X/2dEbuBOju7Wt3znUASHnO+Yz3xrvujKTTkXrzbzJtXa6R7kZuWZ1VqdIxs1pLjIhOY/9YNkIIAYBr6kjqZraDkxa3jTPPu5VRn1hJY62/nBPnXASDnKasF6ELib+1hBCw7wf+6q9/w8fjUenafPI/57BtG+73O97e3rBtG/xg7Uz2Z6vtrHC6nLm8KsxsHBBRNdasdhj1DSJCQHRKjhAQArB/7Dj2HSEEBOGskNnGlP6HDEi2pAcRYfMem/f4cb/j58+fqS79CTtGcFTy6NWFLu/Inug61e2m04yf3Duskpc6fn6Jtc3HFkI7M9rx2roI0Maq7WZtHZawHDiI7w4hQQYeQ8h10y+BzpjrPcDuw7qUozFm9YnxWKg/4eLfgQjHceDxeGBP4yLafZWe6Ee32w1/+tOfsPnouAOoxlIeA87lDNnxBQWzjFr3kOpdA7VZuxGF+G9gq7gNdUqzcduMrZyacnhS+xx0yMg5hPe+ayc4rrZ9/Dlr51XdZborcbVOZ+LrsFf076W1Kitzzf/of/g/6Mb/1aD7Xwfwjzvn/jEA/08A/xSA/+YrM3i2EaSsAKM18ETJaLS/9IzhzCBcLSfl//SNfDc/04se8wgNcAJABQkO48rUV8udO/6QNxjrqPMZAZGr0kv/iuS6gTFBG/XFE3Zbl2t8Gk99XNPS6Kc51pRevrPyzyfHtfqzwPoofRUZjgjO+wSWCXTfAARgF+Cl6wjyhEoRXCQniEIEZIEYNJe/nS5XR888nFz85tCvk5ljcfY3uw3aMZ/ouEvSc3Q/S9byWq1HZeOcy/CPUyjAu2YlpKNcALpIzTkg9R+lAAeodNL1GKy4Q3HFHqO24+z0hxBwHEdOW4Nt+bffNry9vXVtoQaFlfu0StwA5kwwdDYRx3KgkHXtjZtX4Y0CtNv0AhUnJINlFIdkZk8t8mLuWNnz7TPjsDePrtbhK7HdWXml/fmloJuIdufcfxvAvwZgA/A/IaJ/48V5nG6cFaMuO+FscuqyzM41Xuwsv5n09LH1cMIgm7Z5qk9OU8wPxRBOgDEJQ6100L5+CeIA70Ch9dZH0luiWk3jrHMz6nezPvlK9rvwZjnz/BwiH0sf3loiJ+hx+WPa2yaZFkrAe+IcVSkYKT9RF1be1jg5bcTTZMcgadsAT4BDZKHqiXuQjPivdCoZIIQQMjvoWfcYSDiVMi2Z8jWnfMZwr6e57uzqvOaM8edKm88833MMXR2vbTsALo6fCmB28unZfU5Nj98z5EHxHx10UKmbdLqY5dZg3piF4JzD/X7Htm2VvjlMYrcD5raiWwaslNMG21af7wLvs3p1dWoBLoEgt49Im9A4JQOwzX1hFWyv6Yus0zPyCsb795Yzc/ivZrpBRP8qgH/1k/P4tAaZgSv5eXXiGy3hruixlhknfh58V/k2KG8hXycHmTZ8NXCIOwIdvEtRxfKYkXCT3bOAdmaETi8jLrImq07eUFfFEo3ihRCwP3Y8Ho/TIMsl5lfW/wjgKr+LI0z1vCKy/Z9dlpTspPceDg7kPJzzGTxQCAiC+ct9NiEpSmCLnU/Z/4nSFhaizIDfti07TAy+51P/ei3OWLGc+qn6UmBPp3VCpzPj6xWTf91feiFtG6THKrdVSVNTCiouCuBe1vlE2ByHyGznujx24SWc1qz5x8cH9n2v04wJV6y+c2VbmvcezJSz5ScVP04Zop0phpo5JSPRgFRugZLEwyjtXo4jdviS3VG2cwa2dd4r9ny2kvUqsfrein6fgefOEGqvlF8Our+qXFnibDsTG5d6ML8cUONEJ1XgOxPZJ8rLmKKnR7PcKpCDBBxlmTUqxK/gEFwzATYsToqRCzMRq46vGMfVttIT+iyPlxiZNJnpyuN6juxpBAPFGJJp1G2mTYOTsfHP6RI1LSRbrgGWsmMa6Y7k6ljSfYH18gx8yQHeIYDgNiA4B/fjB459x2PfK+Cdy5fVqNdhZL8IvGc8xdu2DSGEeguP1BMS2FF3HMoynWWUZxP8mX79RxdzW4QQJ9qwPGvtuOg9Ku5a3ZhbPwydznIe52RtBTi+D7K3DLcE2/EBvPe43W7Ybrf88iRLiAk2Vtw5J0B3+azczBGZMdkKlP+XbGAIYa0PnyRcBgktZLU+ZnuExxmw/mrp6Tlj4FcIqlfLs6TpTP5sQffZyfYso7ietsMMC/aYbP5tpt85gNwJS+WD2bczLLGr/zOXPmXXBGBm0KEG9yZw5v9m9n5ef2buJ9m2kcHog9bXrsj02zaC1m5+DjiO0H1htZMbnENmeFNGWGp/w0ur6kqrv6TP8zJrj1wvAHgbgHcRcG9bfBEybBFIHMeBQEdyTJD2aqd8SorVNwCZKdy2DUG0pwaDI4fRagXN7PXkit3kz89YYRyNw/Wl8PVJ9FkHreSGKSgz0xLgr3JUm3DsyJWxlOeMC3mvjXlDXyLs+45937ttJcHz7XbD/X6H004kUeM8OPALt1wuZrg1UWPoJdJ06YF+mbeELWD7jN3v/XoNzK7V+5k8V1nuZ2SVcLKeEVE5tcaYp8+AcB33it7r9mRdJ0v+bEH3Z8jI2xwu3aAMfAAgR6b33QPfv5Q5WiCLxzrNgFcNNMaTdWE4HRYmdU5aAXPOpxttMlh1vs65BgSNjPUrVi2uGJO1OBSZbjgcxJXX2feXwHuZKuO+zB4wmCjaMFW9cnBuv0q6zm0bEgDSiS1pDzY5HOGIE3w65cQ5QggRQAQR1colhJD3xTII2LYN27ZFto9Zd9Gvy4ijyLwPysAsHvHqgXQkJmNAfp6dEFdEOwYWyI7Pxqzfa1YKh792f8lA+LSUDtGMhY4G1UqKtD/8qWyWtlFz+2D/LvPkfdxHCLn/9PoGs9yet2I1KwPFaZBvPzkFtHXcrn7jYogIrf3WTkhj09XnipwlfqJq8/AzsLhC+FxZ5V0RPaal/dArHbP8P4v1fgXjfyaNP2vQ/Zlst8xD5tXGN0DoAJde0cGK98zEw/OxZFqmOlVYukbus/irQNH59FJPqr/GcaHCimtb9VlLaT1wALzWeF3pF1W9wu5yceIOiQkvbW9JlQbF9jh3rN1Y1+6KQQzQjTOTlb6nJ/PV8RNxax3ufr8BIBwHZfAMROCdX2cw2H4IYHHslB27IwTcUxyfVgKccFoq6JIYPbOtE0jKQEKxTDOR7Oso3jQ9s+x1PvzZT8sY5E3csRrr0i/nq+yKgok5ffmvG3cCmFbbKX+vHOtaR1lcdhD344ispaEn91UAxXkE4upVTozBNlVxnOO2NNWfCgHy9aGpXCIPPkmI2sM/nXPTozZ75IVFDvX6rtWfzs5pXeJiZOcnxNjs2VXstprfM+Gk/FmD7l8t40a/Bv5HbMUo3rOigfelNBIIaOOnCVOgOD0Y+4O2xNGbW4mJu4tVcAbEvWpV4kyca0yJ/l4mNgnSdN13deLfElOxbdunTlTM5NYqzOvgPON/Lv06r/r7tnkAN2ybx77vOA4+YzfE/xPQdN5WC4AIx+Ez451BQYe54s+MnTplY/b8isyASc9p6tXos0vClsQ6sNzMPkvepq/jf1Yfj+3FXILUY+TcRFBWi2RfZ45RIzzOnKYypEtXfuF93Pz+gu+0O/eXbdtwu98AV/ZuxxSlPWJVyjs8PAf1pGerBryWCENZUV5JXZaX2bx+n9TbYXrjWX72ZNm+d9K35KrdlzZ9lsJnrKgBot5kup0wq2mtyjfoxnPMpLVsJ9PMecDeUjJLxwqn09eDyfJ2V3SsZWy2zIGr5ywqYVs9XEND9JwNqwxVfhdAdkx+dei/DlCfYRcsWU0vGrZexYiLckAIgfKezC77pfLkSxnOSLOkiXay7YWVz7V+Z4yjHCPaoZXpz9pgxtbcbrf6wpycN2W2ivh5rx9SvR1EXpjjvY9AicF4SiuA4AkGeIoyA9tXGB5dH88yUAzTZ7r02v6sGbfZwTWb8Fwehj0TJIUuX5NfWpqKu5vaE0JkXku6VuDOyreMkX3f8f7+HvsnaqAv85WA23kGWxFsNy7Rgu2p9RkUhcOiHeMyDSYc5O/PEE0jaduS27kNY7HcFd+0wFiP8v+VMqMXevKZZE7l5D6R75U6/bMH3aMBZDGVr8pvBmx7AOcK62MBiDNsoBk2MaBPsedqXiGiwiropcsFQ9edzCujJf5GzWD0068B76y8EmRcvZ55JGfZb47TDwQmtSuky0DwOHbFyM51iMDvPMtdOReszsr4POGIzMA6nwYif5sxKlcdcu+9YpYPhMD9MW45ias0FltHVYfe9z2vLDRjQYCHA4Sbc/l4Qoj+z+WOY7FeRbBAsw0WP1syjIM7sz+giq//5vTqsn0qEDHYtFWp6tlgtaVNk4zylfZyqa/ktKXuuY5crsrjOPDx8VG/16LHYPr03sejATdfNYt0ECx9LNFAc61sMjeZRoRdQdqjjvN4tc/PiYNYr5SNcxrHaj4apf8rgXRrc8Rv8rlsp/ggg1wJCUa1OiMdz4rM26oxnepn1uufPej+vcU5d8rqjkDfDBCOmOKpjviVnjDzDzVonS0jAuvlYoA5uBQbVcPkK+MX97DnVFpH4BkgejWdK945G+0IvI95HWcnJ7006Psvw5yRJaBgAA8r7Nmxo+uCw84A9wiYyjD67fz4N19CFEEJg5eOe56rnUH3tm04jqNKm6gs1XOv5xcve+UYOTy98ljpLMU9E1YBJUvm7WwB73F6n810rkjPFjM4NN0J0V9XHMVmnpBxBroREY4Q8P7+nh10Bv1yfHKa3okLcFwhQRKdf4lhlON0tZ3quiywS658jfr2aBVnlqfFohdh9qMF22hDNTZwNkdVBMeFsWvVb/WM6vPVrbAa5PaA+lXsIvOyvjtBLFj3r17pg8/KlwDdz7Itv6cRBVBaVk0GPYZ6Brxl/CJjwLrK4JZ0i0G4tJ3RCRy7nKf9u7WUNmMA4mebR/130bVYjwuOR25fW5feRPjZTg5PcJSdDxvMphqZjhPJUPBcfXVsjdiOxoBi3o9YVsbTCKiPJqdn2G6g3trBEz6z7gd1Th1JzcbP+fKiEEIG4HJJeqSirAs5Gf0KUS7uQuiGPO2HVjakHWM2eNDA6BqIm9ginDef9WpQPAu+l85Zp2kJ2FjOKQiPPZ5UwsdazvK+3e+43W5Z8Ricqm0SM0ZTts3oSD8bLFspt22nnezefFnlZ2ptC+su08jlG4BtkXF1ORCnaQd9/r2uXvyKoFD1rcc3A9yeJkzVrDiJs997gJvzZ/Df7WuT9F4tXwJ0X5EV4/KKDmql0zXeA3DG8c7mG5PrG+UrMuqcmpmeGn1jtj2j68wAjMLwb/pykaFIAM7KirSk0SQiiFXX9MfrnLszgLaejLqB8kSUj+BCYbuX8hF/O+cy+zpivHtMjUxvvAxr5239PZJZHjM2aAa2LFZLpimZ6XKqCfJxa4WnFmnGhPJ3yTByu8W+nbUSzuRkEkPXFH2uDPsa15dtv1dX+kYT8ew5g0NrLA9tTR0wf9p93MgXqmpEh+itwqzKzAFtxmVFXLhyUknn3Q+ZnnMOm/e438bwYsjEi+8B8WSlI/DJPTZYrvU3n+qMqq05Md7aey3A2NLLMV6PU1nfY7hd6ZTLZfdvrecVXDNa7WOd45zncgXHKa/Ol3R4pRvH6YHdq4SHSdacrIfPBtzAFwPdmqn5rDifKQ7IV0BHqTk/ret6J0gHhXVm0td1pienap7LfnFTnGp/rkY17+rYMb15XfSMyaucvia/5nt6ktSVv3tXwLKcyMbOKvIEwoZ6Vr/Sl9HgsmF4LYPcTXlNejZAPrdY8pH0HD8NtvmTgTdvKQkhYD+OuHVAAkbWAe1oI4ovsfGkfk9sovcxtH1qh10XZ+QVfbU3Wtp+M2EnXkAxWKuEsY3maY/AwaiGcsoqGilD43gvBhjEjAH3s/Oa6SzkP2PaxxHihU/WTZlKD+dcvuI9AmgB8jFvuQq0ibSjrSr5z5zkWIZzQK63GnCljiWItV48Xx5Niqw4s9Ky8jtQ34BqESiEssUJRv0w853bbsDEN2lPHOmRWHGzHR04UgCqbVEzAuWV8qVAN3ASPC3EOTuZjJa3VtLhlxPTl+oXqD3OOo8F7TSib9K6NHFSAZjJzK3FO4HPPwWAOjR7rjmvItTVMQfT87CJHPh5f9K+5kxdEAJ6B9S65PURxb4YggTMazoRAbdb2dpwdnmec2ImQrMgzmB9R9ot59vpY72J4KptsCZryXRLkE9ECOnsYhdCxWxnR6WjH7PeRPJkEw/vE4OX+2NHX9axUw4tIwZwebVh8rscPWPHr6d9L7zORUI6/v0cmF/tdzJVNs/GQZhga0VkAyvrWL5npdoqwOOOAKJip/Z9x/vHR37vY9wuLjuC9Q8jHWQYp54X19OJ3+f1TrkMJSynUwDiDHhbstIKEmx3geYioJTvZvTwR6XfSQdDs9uaMWf22mr7qm8rFl7bw/ypwmux5slVsG6tcHUB9yStz5IvB7pZZp6INXBe7b3MOsQ0n4bQGYNmlUOVDMWNnxiCvuf5wibves3fjmHmaqipB9qKgRmJNNJV1hbjaTg84kf7e54U+sDdklcPcDO92hoKgBUnMZ5cj+PA/ngAhHzSxlQc4Fw5um5lMu4o3nwPrLYC4q+SMzqOtihYzIg+FUWz3PI5h73dbiAX2+NAZJwyo+SM8YZ2CwXnfbvdkiPk4r88nuJ19aNO+no4d10CaHoJyBkpDqUE2my7dbiz6Rr9pA5UPeNvLVipgQ5/XlmBkbotiWRSKb0DkoD/se/4q7/+axzp6MpZnm9vb7jdbrXe9YfItnKxxN+GY4yAPMVNi9NzrNWks+ooKrCo/9b5OsdnnnvDuTon1taSkY6VDh180iMFrLBSj16+FuKYAe48Ig3n8iq7LR0IrIwTGV7k/9nyJUH3s2z3Z201WWa7df6VrTnHttQKvCCN5YxYFAC3stXIO/kWv2Sidww0BwGW+FSW1HYVznbIzPIL8fQr+mgPEPBZFwSPIyCtwPRvKJRGdNvixS/cj5nN6RrsVV3lp57AfmcZjeve1pLRM3ZwvPd8jzwcIvB2Oc14mjG3VHuyMaqXy3jbCk/U5ORe1YgxZN0Oy5s+K6DxGatRRp6vSKFltpcx1lCcq/f/9jWw4xbD0axp5jRN0BgTuKRzpd9A5wz2Ed8zCMeB397fsctbTAckV75x0gmLawBuaYPib7WFJpKhaqS9ChIB6yr3okl/k0xbLql/Lzdm5QmEQAARj1sz0cXcOe36RcyRrdVjtMYZ/Zlw5NgR6yyArUUusK4zIFvsW4ljhdMyYsblv9mcEfkHe4VW/v0MQTOSLwm6V6XpPJ1li2cnkx6Ifxbcj5neFYBYpVZAMUmT9qwhV+yEAt5nX/FcWXJqNBi039pkxYaVgc1avRYjLuOtGw6zfQ1WZa6HdXFQ0seJSYvqOPwoUAu4e+yInFy7AEGPMZR2qMIPJoFe+T7DWX6VE26Bbet3zWDeuY1CgCNCcC6CHqLpNdYMonli5hdbD+dA3uftOvAOXkCHDPkE0FLKmls9XuIIDn+7kj51/m6HvgYI+lnsa2u5muBkpGVeibRKSakLtHuW05c1pU6KBv7McPP7BrKvjto+n8c9cMAj2CoOP2CMGfnfbD/ItJUrfTEGGZ/qI/PSeWj923hF78jcOjN81e8W9SAiUHrJeqUNumlGBZoTQ3r9v8pf/t2x91pv/m6BbflEEgazcbkCuEUh8tjs9RUd5+r80tVr0MpfCnRLI5c9mpMTpq7cz2RuTkvGey14G3YKiRMHadRST7bnod5ICVWvdA54N/FXcj/Znna/kcD5ZP7pv7QYdQhWoVpPAueTolwi8GtZcnKVDIHUw9KPJ9fIJI2NVP5NTZjVkqkRXjvEI52kvHIsa1vDn70Jawa4ddo6jfvthls6fzuEgN9++w2P4xAX3Njdip8FimcoOwHaQgjY+AbLxJrXidTbCrR+nP6r4B6pz9emGmXUTXqOpHgyze0sQdPaJVLfS95yHMZ/UaVLQOukjswus004jiO/M9BjNeWz+DJvWbExcmHNmvbPv2SQJ/cZ1/mcKY9z9pG8nOdqDc1yLYC7jWOScbP0hF0GUd7LP7LLvecMuFfCdpRBIMqXp/GWOMsBsBjnnD7qepSg96oj351DZ3PGhCx6RpeVNL4U6AZex3RdZbeGyze/IP9e457CZZXFYTPn0n9fyKhUBGtBDQWM4XUzOlTamE88pqcvWcDTmQPl8IPzqycVqEOpHn1G6ymFwNthpEMUc6BkTENnv6bFMDvn4NN50z2GxEioaCOdZdbHyPePIiPgLZ8Da4BMll+KZLJCCPjx4wfot99wJOYsgNC876HaNaQtAce+w3sfAffbW9rKAuS+ABnNgSiAAlXJxtNQMEaxi1I5ME+ntp7nYshUxAXn8UkdJHM7j1O5o8t5juYVOZYpotImfaJ4NODj8WhOKrHS9d7X20oUI0vga+LZqUhl08wvEcoVUVTbiZPOdwzXL78eNyvzuVPhylNZl/UYkilp58tqp5w+g20A8B7etSz3WcCqQ43i63LycZHOueZ42FH8qt0snRbatJoHjTwsOzqcTwZs/apOMx0ADHHUlwPdZ+UsM3FWGo9ODK7nwMPo9AT5YhzOgddu2BciYKkcAXoURMDlTu/rPlunFbiHPUDPptuGE8w4tWGtZbeFTPKkIKtPG55hejwPZIBbbxcgii9R8mUrBXx0kqNyzqzPbMJ1pkIaR8uYnpVnx/iZFbBefzmzyjLT4Xa74cePH3jsRzzHO5QTBDqRQUT4SFsCNu/h7neE44B3NWuvgTdR7G+6f5BzyYk8ZxvOOL5m/NMxbMkAT6ZdtZseUS3gPbOC0ddDxiGz33NeBWhSd4zoODofS0dmPNkBry83Ke3LLHd+N0CBYxmLWU8JuhkgZv1EHTODC972FB8KNfI6XF0nRll7sur4Vi7NLF2SrZZj1WlpJyGn3eY7088B2BKwtU4/mdkmoXZss2rM2/NR11FLYW63W25rlwrmxe+5fCaRZes4W3mipp/OxQwvnK3aNarzXZ3HZB12t4MN5MuD7meXBK4Chln8y3pZvSJJ8dQLW5L5Qsmg5TSkmRwk/DKpgVjpm88DqbNgu55wSdl2a2vS53NwyxP2y51ENirF4QkUyqkj0K8yiZg8Sae/vfdwfjwRPuNw9hh3TneWV8+xWpXnneVzeQGt0a8Yw+3Avu/YdyDk9irj3rl4W52e+CiBJ2Ysb/c7PB9NyEyVBGkCiHig5ONGnI0lDZTEmbFlOZbnRaayAjKuOQmrK2nI2yWo0U7mX9ukAhRkKO08VSDLeMbpSgDfvkRYALdkuEfjgFnPDMS4vzZlUzp7n8F/7mMkobbSPdXBrE+MQGUD5oxwOp0qfzNcckyJijMD7SSMde7ZmtFFbjOHPX9HXZNX7RoBuZ299xlnDNtYOV4VB7fgMJRVkhJvRSyWO/8WM6jCzv4e6ZgdSKAp70y+NOg+w05+Btv97OR8ZiBU+idSNUYlO0xPUnZ2nTDb9UIg5ZCXFnVegDs/shaEgWRmI+Jo705Qz7WjNBClME4B/W7sE31zpapkepmkhIY+9aUNAg/YoBcAKC533m+33D+uANorMmsjaaxnzM3Z/GQfWWWYWHoAaKUeGNTAiQt1Pj5AfJa3zBuKr026857c44hs+ZYmTgZJuZyKIaX0rNThGShs245fK68xJuNVDxKfVn4N7Km0a/tn3d8skePa0qvXByHAiO24xucfHx95u5mMbzGDt9stv4fgvQcB5jGPMjsOp+jfwhY7/k/94qB28C0y5swqkwTdQ8eiXoNrykVku5OxGPa8PNKz57TouBrY9tLXDsuIxOrZ2KxTcu4bB8iYUzUI5flDlvwsJhuN6GGdDuKeAdsyHwbcRPUpLqvypUH3r2SlPkvGZaiB4SkWJoNaNXkSTYD3i4SSbSWkbSSalUnm1bEHzL8UeLiq39iY2OE14CbWt9JgRRS4dvxsnT2z2JXV/C22S3wp24C5skW44qlnxSsdLB19NrrZlJt6NQy0jCF1NAzfmQlUh3+lTTjDmq+ueI0YNg2qeGWBmbQj3WIZjiOtVlABMZwut0/6HkIAnMPxeGBLZ4P/+PGjdlAwg6lOfc6Ez4FXZZXOIOtt5PIa4VF0bjSvC+Vqd5k7IGHL1vuOhqt6PHKfzmfYnwBx4lvWWz5jwM0vTlo3TmrNt23D/X7Hnff3OgazfLlP3c5N2Y2+zjnxjaAWe9hb6VoRmV/PXhTLVgPG/HpnU+/2CT/cD6w4nP9n4BbT6VoIL+2uNRdVz8REyW4lkX0j8QpR0v09JrBuE1y5l2AW5wrY1nOT6VwstumXBt2vkD8CcG+87tV5okeylIQBaDa3Nr5nmLerkqc/a3BXaKz83Vs61dJbTjS5KTV4umUynIQmDXYodJBchlKYnlPQXULslG1l6asCuuxfObtLsbEEYPajaspO6Y6ugZ4JG2n+WzIg0gmaAVipt2XwX8F2f7bIMgz7hHPx2DAgnhrjHD4+PkBHAMHBU3wBjdlpDWgDU3KpfvO+fHG02+h0BGf8lctglEuDLv60WMEWyjP87x/xpie/7KBU8Tlsyv8E5p4BPW2XXB7rVaxxHiqfOgsxSkSYQIIRTi8+6/7T+zQ1FDdO6m0lI7037/Hjfo8rXi6+BxJY5ziQS9s4V4BTr0EliPGiFc8ArhPSs6l6i50zbHedhn4ZtZ8XfwaidDxrf7ytiLSRz6zAafKpScuVYwZ79WDaAGnPUOaeqzhDP7HIljymLuTRm59HKxRXCBiWLw+6V0Hzp7K6L5IZWKjKQJi/iBhnQJRuX8GoxNTULLoFtM6J7TFYk0QVR5RrJLq9m3alyExYbBGf0qFZ7m5JOn2mPFODtygANtsVsBXpXvGQiag7gUlDVLGmjfrplUqtl9VNsoMRH/DWBEtWHCKZVQH7tRM0XrVQrFFnQunp89nSAMIF8K/7JVCDskNNLN45bM7hcIBHPBtC+qweiC9OoXZyuL2dc9j3HXAO2+2WjxQUhSgM5UR3znP4ncbbrDLwznU3zE7EcpDnXfDj+MvntX1s02vziGzfnF5OjWBRBdq5BLetAbh7NqV2eFqb+P7+3mwr0Wlw33t7e8Pb25v4LVRjkU/BqfKXulU2R9gXV/rbq1uvqkNZPjh4jE/iSCmYQA+mrSEzPB/paeVztbyrLK0Or21nb4tEmQbqfmmtUoxY7p6tbvJTdmhVct+f5DFzqHvPOonFj7XQlXxJ0G2xoPK3s/KZbPcVsC9BnUMLRnLaK/lmJkaE1vgbot5IfT+p88hwWUs0jb7xG2wfekEHAviiF60bEPe3MnB8vt1LRZa6Lr/V80vLxl7qqzGy/VsDuNmRcmUpkKd25+ozulPItmRRnHN5WXkGsGcgMxvhZCivtsESU/xCueq4z9p6xKL4+CDCS+9xB0C3aLZdCNVbcblvJOCcQYZwcPI188KZYrabqD4T2F3Yr5ghJPvQJ+qrTOULbZicau281ZDtenvp78/0K3O8gNsrkgRI9sOVSLkSGRzr9rE++e9qflSrndI+9I4HrPRP/378+IGfP3+IdMpZ0kAE3Dmf1D4zRpC5EYc1nLXiyOo8NCOaNIvzhOs7aeO+Yzv3ebpFbeuC0Fs6Fk7HXRDZjjNiQsaRl9EA4xc2rTSq5wv6QdufWXiV9istue77TyS0lM9IviToBvoToAVu/oiyBlLKPjkZdrVMLXu0OKFhPKBnACL+Tjm7nD+Ntw+M5NRqBsEcHHz1dn8SrfWu0rQkzZqlfHUy/BtPmj2w/6zTWKnU895ddGR4suclZTlJukH/YNBdF3RdB+u5rIcz5f49xrTU89n8R85nL3xe5vUeb+nmv2M/4I4D+5EYXxcBVp7snMs3XKIz+QNpn76YgPmECQbwLJon1ELNQNB/z6Ws3s36w0rdzfIeO4+jdC3G08zB+E3CW0o2IoI1Ud+ClZU2iwFbj9nWrCIRrwfUzjhRPKOfAfdoLDrn8PPHG/70p/IugC6/IyAgVHraTHCKwvWW7XWxozOnnr8vA28Ik54BL1/kM8vL6g9GeUZzYsq3Ok6R23Gu/jAP3ab6O7cFtzF/zlYsZ+Ng9GuOm8mckvaIYADQHPmnS3zF9r4KcGdH2dDrjHxJ0L3KHJ2dyD+TJdN5LefNTIh44JgeWJzQXBO0ZqPMTNFf6p/VbyyPkaQRd8Ym6HTqJU+DEXcpf+Jjsur8+Ppya2KRbLWb6sYMFYeufpAf2diNrkiGCMsG2cr96qCPrGdZwOaTLSg5BzyR6/tXeLLiEzTaX86LnBxGjt2onznn+suiLxrH3T7yZJq9MlpjrPo9/e2dw33bsDmHbfPAxwdCoIxfyNUMsCeq9nzLPPhcZuccbgJ4Z+cMdSvTtN2DUUfrtupZkTQF9+2xjAma9lkBh8+UqAbGNm4n1O3v+aIU1nzAcvJ3aYMkYN73He/v79kOZMAt4jMovN82vL3d7f6f+lWgAFBiTzdeJRk4I6mETAPEOhiX54oQxVOXHCSgs50BOz8LJDpUR3ailIfjSBA8WpVY0X8Wp2LUFZst2zykF7G5L43mb/l5STrg2mTpXV17li6W/EqixloHsnJfyeVLgm6gNiKjMKvymYD78mSdJ41x817y5FSyddxoSF9RJyXdcwbVBNQqRA7p6nxGgDouow/ejO9U99j4jYGIfnmtn06d3ypUWWt3VzlwmQVBYXsoheGiRAIqIoJ6P3ftDFn5j8q30l+lUdZ/j/I4yyKfkakTdmHMZPbS6BeaUdTMJvcpeaEJg284IF8yqQB3NCvl9JodgEs3WMq8GXB7Afj7NqPVuWI9P1nieClQLj09FV//XetewOE62TE/1o1SY7HTa+kk+waP2RX9o8auIjz43+PxyIBb6guUs1Ri/3K43295lVDnVcX1yOf4a1etCpvrMnTH6XR+uNinMl+1lE/vN7HaoNPW60HOmWfdz7RfsemyPeRWQR53mpRwrtwo6bxfPoNf27VhjUl7JfLV0rS3/j0m1oTh6elM65/FXhKxEFZHOyrnYRTny4FuiyU6G5fjy8/PktWJ2AyXUdcaq7gOvlPC3WTjDyODyPXf9ZZ10i8mu6q0qSQ+qmo2uLWxtEG0rEI9oY3bs045vtRZAPfZPuuYpRyFOZMuUT56Lk7iRdvMuBn94upY00DRYmHGKyZ2n7ZY4a8gvTFljbEZU8a//3h7yyDqQLxAB+QjqJF5oB6CPFkDwLHvCGk1g1dbApBvnTNKoj5rnX+l9PLLfoI2q7n+AFmO8n1EcpwH3D2p+0K9+hPbkLLyNaM6TzOy3J597fyMt5Xt+27G53cIGFTe7/Emwm5ZpC2tFOR+W0OXWFQG3e1Wv2vsJdsx6SCJ9GT/YKZaOU9zJ72jowKudVY1UM3f5XyC61jGGm9yrrHsLZwr28eS/k2ZVD78udqfc35ox4F0CGX+RmJVuF9hUUj93Xe5xhZCOwtavhzoZrnCKlnxP4MRm8ll5jvGFn/bA2IMvsukwoxX/kVNAjIvnVZVf2kw10gVaquCnd6QEc3bIfp1xYy4g88cQ8U+CGDHhlYCTTP5iY9zdgVlxs4aGRSWWXzC2UchWnk1+aJMf/u+l9soZ4Y06aMZ2bOyymrrZ1cm5c8CfT029Nm0ZhOeDMPslfyNr+OuJuIABKvvUXuGMDOePgExflm2v8efUOB4zf6W/cG8qmOXbQ5t1mTEvtYptm1nD3xLi2v9aeZQyryIyskWuQ1RgMvZfMvf5RkRpdtN974TK0AkA26LMa3KpsZnra+qO9VeV+1Krb/sZxMXsVGn17az/jRvFyfstRxzTe8iOc7Gfa0HtIFiG/L8j2Lzq/ZloA2jp0unrTPnV2VU8Vh4G5RVR3KrhpW/JAd0bXwGStNg+2wcANUYmKXx5UC3NEr8fUWswaUBymcBbyvvM8BbAh+VigqEfq/UNNcoPzYCHWCgdScdJlt6pY+hw6wd59tM6rD25NqWgRUswL75qei8VHl9pN4tW6cPVAZHtjuD30FaPYBa+UOkWCaS4QlwtUHmZcmenGWdLfZkBrx1PrO0z8jKWOyzqeftRg8oVoDLmFhHzgcD723bIqhycS8reI9nAtxe1Deh9AUH4BAT5e12Q/AODvE88PHqEJcHKGDcJeDdr4eBNVuU1F9f4GNZbWEz4mvp6L6rpUpbAOwqHV15bvSq81xm53HLdLdtw9vbG7bN3vsrgZ0FzpTa5TcIMqHTp0djjdMoRED/hB12MmsAJ/bkd+Y3DehrYts14WXq/GnV2dgxtOcuXScj7CN143qmjs2wAPEIcFvxczzUo0MCfNlfA9ZG0SzMav+fAfYrYNvM+6T9/3KgW4o839YasKOO3/vtVzLeS/l38F6XTRBgcQwmZkBSMzFzxrGdEGgIvGdOTzQeCRhrw84TO/TkttB+E2egrbJBPeW4ffBYBbfKaLWRmIhlmqPSjcGvPV1HwGUxTcnpcuV87hKmXx8rDoZzzpz49di1jP+vHJ+zyV9+P8vWrTgHchLVk33DLFXvC3hgPwDasVM5sUSymDoNfslq3/ecnycH7zeQA4JPZaSSTmwjD+fqvbl1Pcz7jCq1+bTpzRlrx/O69eUmOTXnjNjn8495Gk7SiZSreBVpQfndiRzG+1LHqJ3gUZoSDMs/iKg6qaSTSM7zx48fydGubfSsXLW0c0j1tAtgRQpqvj7SkZc3356v3ZuToPIlGuEAq4yrfWhAoEhnDACcfNG0hq31SsUE/Bplz3mKOWNmm860bQd55HAW0245Z6+05ab+AyeV+wWJsDNpQlzU/8uC7hV2bdSReizbrwTeZ9huYKSbMbENk01dcYRTl+fI/kkbMpk8DEl448IQ9U6iKNnYShKtGsS52OCXFRhEjMg4B4rtJH/sswrd5Bb0tcZAY0QkGCIIsMSQBYhXL2sNYlreOdzv9wS6+em1OrdY6x6LdoWxBmzg/qrx/OyKlZXerPwzMK9BeGSpNwAOFA6EAEAelany4DZ2KFtDKP0d2x1w3uGA2CvKaXA5+C+3zkLFeD1I7tqJner1Lu7t2Z9Qy/5nVlxqcWLoLJySNelbI10i+EPj5derCqxV/TkVKnVKZGwr6dg1730e76wLDNJDJlHKszbWIuich6ucQqL43gGQL3QqW5ia1FNca4tEC2pbO3q+L8nwlv4sHqVOYfXoBZZZfq+eKyfwVSim16Z0MsxMpsAfbZm6Y8uIqyIOt7lM5cR8ruVLgO5ex39mwhvJkrEVOjwjq0aKsaVctrQGeMvsiO8drGR7iXbYWTA5sfPuLPZ0025USCA6d4xKOm2AuX79xFH5HVbeWRzgSNVj/UdTERIC80/M2HcNlO5XPKkvsqKaVcnpxIfxHOcmKT71weAEHIO4m+hz6w5+v3/2n41EA1G9UrKizxV7IZ1DnZ7U52w+HM+Ka7HbWp+eU+Fc3A50u93iLXjJboQQ4IHqrG7I8ZrCHbSDEgDnLSvuJgEO5f7GPTyD+OSAsnPXEz45wYa9OjCJvHTIcgKHxQBeEYmlrbbPz7j+Oo6TbD9z/kLf/mjHmMmN82WJgPvj46NeXeLMycH51Ge8x48fP9I+bgvijKVXD6xH+mM67nO9cJ+iuFoT/UcP77cMuu28a1dOr4LWdkSSDhx+3H/O9C1uu6yp4xfW7X41Aty9/j170b6nlxVrZONWHK/Vurk6Pmc6dHzJ+nflwC/rYoS7Mp98CdCt5cqEK+MCbWWNQWxffgkzPrDOVjmAAr7lf1XMeeISZ3Y8bVMn9SkBrpMPlN4aTMXnTVAjtzP1LwxyroJJ/8lZsOdTknEozwmyP5ZaUNwJrPpu+rABnM8YNJP5TtSaPiqM9XPVA218a5uj26k3rnrhrd+t78861TPmaSYjwH22XVb1GIGXWRxO23uX9uRu+Nh3HPuOwwFHiFsZuK8yaJTlpPRZznIneH+HcwTvExMsgLAayWiZ2p59mdgQaQdE2Szw0WO6+b+rLVSGyTWWe9hO2Wd31UPn4jPthF2ZV2S5JeDWYz5lkONs6dKlclJJraNOH0B9HjxKna2SVnrVJFtmBttcDqA6kUPr1ycx2j4Tj4tt7RkqVrzjDHTLRPa3BmyzLqwfmZ+juTaXI/17JfbgOrd0WJHXEZVt33MxEfW077TqOU2HPzsT9IgP/X2l3r4M6LYm+bNMmU5vRZo8qP7tWT26+TwpLfOdPhWQLstpdt32ZittWGUKCp5UT6j+jwGyjReQXg68Wa8SvRAxtjNWyiv6QZVlOS+8sM71kVgEZu5R8Ptg9F8pVdbGAK3ymT0xir4gGLAYrNXmCjjU4VbApNU/euFWJv0VuerUy7jP6KGdhRVnpp2st8QKArsDHvsOvu6Gku9IaeuJc/wstn8gyi9hcvr3e7rJLs72FcMWQUD5r4aWZ6Rq7/JQhsAMGDkXjzwcDrAFPTJ5Yc0/WOzv1NaGg8u3b7oMBF95prnDcezmedw5/6Scdw732w1vb2/VNr+6zAtEAeq+b/5mOa/xjxwmQJ1wIdo0hh87JtxnWxXK2facQzu2DIduOseXOa4LAgfzyyhtq5wMuG0NJqLGVp6rqGy3WOmBa6OqQN45ealztkvU640zUK+thxV35jRYc8HfN0w3y6pndUZ6yytlqa8AL4d2Yu3FX82vCyqAZotJL51GH1c0pgp4Fy+y6pQy/YVqlLCeqaIqWpq4qPxZx59ONOVYssYAXp9TS+qdNKbgKReolVwnRjtJtqKKoyf28kNhhJ6YlDl9k/WqNCqGXp/R+wpQcAaYj4BrDxBfGY+9OKt2RPYV+YK3FWZU/l6ZRuWQNqoFhygnzzgHwiM6fwCOuPNEABx+F6G2efyC5XEcuN8jOCOf9vzC7ueAsAlGGUeiLCLqlSOnPlGBMDsNW6z+pdnR+HtH/xeNBcefBsgbxYv6ln4n4wQKGXBbfSdWabwR8vb2hrsA3LYz3pfeHBhXSNS+a+HwZ0jmylYjC1DqMlffFV6uQWx6iJYdZ/3qeus7P6ftnpgHXR5PnVNjFLCuVgJknwCqFZ8zIuPIt6eCmqvPjNdFy7gUqtVAxaPeFjMVm+urk/tK3Q2x1CAtp/715EuD7l8hzfJUNZUo/sJoT2uiveQQCGQ745Asdp7PzM4GvUbKfeS56ELLTl7+pmJwJgmt1k8LiK4zajLvV3iwdVqF+eb0LPY5xWrCANf8CauWJevzEGd0Z31RukGdsct7KHsyYxgq3YxJZZbOFaZ5JKO0ZmDY+q7LIG+Gk4DjTBlkmTUwWNUxho/X2/h06Q2fQOPysXGEEJg8AIJLB/5RfZa3PPEiMoVHesFSLPmjpOMcnh6TolRwTrKWxcJUDgJIAbB1x24uBmvqOpePcAwFgh21+ViO9OoY4jzkJ/8dAuGxHybgrsI74O3+Fk8qMV5kr50dW3r9upevtYoxmhmkPY1h+6sBbZY12OZVC3asWpb7vPMTw6V2UKunxa7nB0uimf2R8Fjl1HOd9uZTAV57zrKV46oTOE7FwFO5bc2Zq/qrq4HV15QGZ53Yflb27ytgm+VLge5XTcArLHEPhPHArRiXqoXT74YHbuUt058a3OGvdpo5T6GjBN6O+KcyeVlMR5xMW6Bh6pi8/GTicuqJXIFT42tt6UlmoHQTi6Wvmu6f6Wu1gzYNPfxFGtMIatpJogqfJ9Q63f2IwImvC+8zkyRUIrGXcl6SM6zyzLFaBSLNykdHnxXdVsbgijyTjnbOzoBuKSUcs9+xNzmUSzTiYAwgpCvfOycBcf7OORzHkY+e89sW/7nonJGbj8Gx/vOytWCiOPbPSwvmYz6pPVwbeoksIMP+u7K9w+V8r5eD2ygQYT8O7PtuHg8ox8vtdsOPHz/UcZNrDu+KZdNOJwlW9XxJCensj4EuBZr1nGQNgFtWeTIXqRCzJuN7JrpgbTCnWqs3Q7sp/6Z21aty0p5wSgVawlpP6OMplVs3vVEu7PQ3kP0FWHEEsqW7IMPPxvGXAt1n5AxoGnV4u7MYZt4C3hKAOxl/LN2Gyz1LD/15epkhb6wGJxd/c4PkR2xto68rH/KmSGteH3XUmhnpTbBS4SFCn4oF4s4AxCqtWOkNI+Vk5Yx0geHhKwfRyp9SOL2sy9e/W3rXrlGZhCzwuzq2TN1GzNsnS8XuXwDGvYm8F272u2VbzjokvfR1H3YO8D5deHIc2I+Awx/YHzuOdKqJnEx77cRbTUIIcMcBv214u93SyRIucxAxFdaF9RqqLWK1eY/KrFlul5x+O2zJRUSIv4364UD3WXvF6ArMGsmeZxORWFsgEBBC/Pz4eGDvsNwsfDSgHOf2PNitykon2aedc9MjYHudYQicDKxYfuWrV2ybpdPUjuwSq8xlzekW69wAXuhz42u7bYlll84wsKTS7gJu2N25V3rTFlTcruzN9Vy8zvJT5+++SMDLMZ4lPGa/F0Kt3qZzRr4E6JaFfQXbfaZh7E5f79Wq2UZ9GXkLvGV6Kx5u/WNVkqlRFEHjh0M6r1loyipmVFxnZQHlnhc9Wq5q/BKhl6myLhihw8T30jOnWFNGYPsyA8Ue+IABY/UsZ6KZgHDOjeB8QygGl1luaYQZBDhlxnjylMUfgh/lEDwjVp31JlD+1G34CluxCrSt38+E7YkECGfqtA4b29U5wLkb4pYTQtgCKBCIDhzE/YLjS7sSewf3H9YLIWADsAuWMG45qd3j9f7DeY3LpJtUb91gJq/nijc5KAaWndY6TzIH3xnAXa0+5P+uS48dDEDFcFuAW/fLt7e3BnQbOVZ5u7ohW8feyEeDPX7eLXl3QnMN4i5pNtTERJQusv8KJ5VXUmKMNu9KHbL3HMs0OD/5qcX6nQG12f6dfOX8buXRJ4pWpdRTHUuP0WvtUj3VfVl9ckzpSEXdzmG8JQ3JOp3pXFpfAnQD7aS6Iq+YdGVarMckpGE0LOAdn+VGPA1SRGIJtC15aihvzddeanrmdFdu05jlEZMpy6dV+tUfrWjgVOdX15mdgKX6GlxdaYNTwIdzViyQ1I0QnaDSJkJI12BJV6Y3Z8hKs86WJwtQcuLFKqMME7FA8LPSY6qtiZ2lF/YV+vTkbF1JuWLn1nRpn91uN/z8+QMfH8DH4wGEmHcIPF0HUbe1jgxsIY4VvN9uuMEBfKzgk3Vc2EQN7Io+uZ5IZlfsWq8WzeeUTnAgTs8CWmt9X0sNpgotMxrLMmxtq0ubMtg4jgMfHx/Y932om3Px5ei3tzcTcNd2orO9aQIcdT008aFbtIrUxOcyO5ln6gTRvZuTK8WR6rVNvYWu9B5+7XikrtHXCBXoveowj2wbEEusX8/MTp4BvK877kkfmcOABNGO0MgJPAPMR4C7t21yOW2DjCqZUDVerbir8mVAN7ACeFvpTWBXlyFynDzY2jSWJ00Taa3LGpScRByqKaH5ubrP5Z8pWGYdIBkJ9p51G1kGRE9STb5PYJdRO6561F1WnmS5yicvWeXBf0LfKnmlA3vnU6cJ8YZCwIlbKNdlBoxX457Ji//uObCvAv9nANezwFt+XpG2DgAeU/y7cxF4M7jCccRVEZcW6zvZS73ki6Ob9wjewzdsEIO0y8XpiATcsdfHPObWqjuuA4FCvbLaS7E3ryxJ0rMPMrnv5G9tXogMdwihfxY36r6wbVs+v71SBUB9M20NuOW4akiAiZ00AVeXNHFGx3OD/HuUREyLOqGyHiKaeH24mGhy5TlRtM+VTbMBd1cmg8CqS2a6h/FQnIf4vQbcrQ2sZwlLq35fbnFLG3Zsw87YYyf6hFPP5SrAFfJy1cGpHNOFdEct9ocH3VyhgF1Bn8lYDUX0WWuiHUaQkp30E+UQyVBlY84wZHIHr/hvp15l2a46LKYWrLMreefFVw2qJ567CfI61X5Gv6eEOs4B/wZURmMhudrLX4wX7dbCC3munGXL/+qfR+xGq5el39KKzKBMzzjMo7wl0LoCeIniZSR8Usgz0mOGrvVHeywzSPXeY0v7soEDznlQOKbOChGBBLv08XgAzuGG5Lg5J/rAgpbKMZDa12yjahsn45fElpxMbbsvspMyLS2jEzdG8UQCTZGJSYrEcud99h27DSAz3BbglhkMWcmL/VDaggINhzFSnPKERP69OFoy6OZ2NpwACecqTg2639mpW61Xb0BFtR98JFfsTn21fMzFAn0lTA+LtPvC+zKul2oFgGhqS65ILoExHzxLdNSkQUrTiGdh0pn84UE3gOGywcoE/Gq2uySMc4DOlQjOAaVfuoymTnYVWBPq+YFbPPmc8gB8n0q/VbHNXQLvSSSnKqnn6JTn66q+WogBd6gNMGB3HYvRMMPhbD+JuhxpYs5pG32fn0TgaB8jNhqLMoz1+WpZWXEYgYhenGeAt2RcRums2p6eY3lCK5hgNunGL9UFyWyGOozV69hJ53R5awPdblU/iuDXKSYVSSepT0xVsrvK+qCyn9mvLmAj21Xw78XBiGVr08q5UXoBzs8B8pW2y9kOwp7pcxJwz+J57/H29paueK/P43YQYFOMYWmPnHMFOBokwki0891zIC2Ay0HaLEjFEGOkFKZqYSICKNStXtVBvw41oaP1oeYPV76udwEz31HLDp25er2z+qVm7oxxYDnZTTolfPs3dZ6v6a4y6Dym4oid6I9WOlqvmWN4BWyzfAnQDaC6cOIqywVc8yS76RGqlwytZSGZd3Ijc4SmGPy71tFyuUjGqZ8tMaarzKoxyZyu/wFKHOvR8ZCN4F3wBHRfBOX8XyW9pcHyt9CJnQeDdXkFD+CiQtUkyi9YWcyzNjR8PvdVUHoVcPcY8rMgp9evVlj3q4y3PhHiGdF5P0MQxGTKfXPMKHM+AHDbNiDt8933HXCHagffAi2l3xEC6PHgALgDuDmHzWgTZmq1ngy8WVfb5SwigaNRcjCw538lnpFG+vTOX6rvMQCqVIp/zgB88RdKOoJB3NM+7keq81H+3vsMuNtwdcUQUT4LJKc7ABkrY6QC+J0wBOkoyQkup1KnKeNm/foEW4/UKPm46pfYZ1Tl9+qYVM/MYc++LmsmbYpdGxZYKH/XYxhdQNsXl/tIz5bGS4CeIxp6otyFp9Ptrih2ws/mj5Xa/OODbqKKnWO5WsnWZHY5TQe4NFZHfbcyrhWjC0hqxrnewHk9Q3hWnqqnaznCPiCwnommk6M1b8ufF8C3Vfazy1kN+OZm1+AFzLo4EbieAN0JQ+mcS/tuA3o3osm86/zXXIBVAM5/67i98LptR3m8sk9eWQaVrLGl8xVm0EpjdBSb1Lvv7HCb8u9Fn23b8MahnKtZVIphAwRjCQGNEqhx3iMcBw5xcQ7SCTiuyr9oU/EGFa4ZAe41Z44oXhaj63/kTMrPmNMz9rd9oRypjBpTS1fDEi4CAaAQjwZ8PB5LLPf9fm/6ZhnjIl2pR8fWRV3OnwAG2NCw6M9Pg4FtDR2cft6b2wmBS7bAuHfLYTyTbaKfwWDEz4heOWx0keOw7l5KY217Wem2rnptnX7Mq1t1ekjzC6c9t3Xn7LVwqLqwuy8j27vKwA/rJWtkjHVD/vigW8jKhL0iPQBwZrK9woRQAtwM1LU+fV1qAKZCorm1YSAWWNST9afIGn4zpdb5iYQW8liZxEeAm+uwu0THz4Uhm+llGboKmC/I4/Go9t+qXOJ/E+KpQQnBud710H2dV+XsisvZ/Ffa04p3Ns9R3padscBzrx7ySsQEBOnwZ/QlInjnQMyI3m7Y9z06bXvAcUSHzdWRAarfE+Cj6wLF/d4egLvdAOfgXXwrIwJOX02fEnaNCMVemVelrse6RES2m9+kMQlT94H8VxXGUj3mL/PRACpCjhAI+z7eVsJ9gAH37XZTdqrWKQPuTnrSrsk8dHmtePI0jSit81/6Qp8YGPUJuQIAyD3FheGWNtNyvDQ5sEKkVbmq8FpfMZMPJdsNtO1hOTBmGtM+ir7iSg+IYPrIXqJy90NNGvZt0Gnc1GyNORF3YiMszFP2yM/TpUa/uXwB0O2aAS8nrdFENfp9JKfi1pZxPhEwRs4D3AaRFXhr+AHmXmLceiIs+fwxRFWQIee2IJhcyWmtLLDVWwE5U6e6n1rpN6DIiTY0EAezGnKgu04ZLHGJteTzuk3WpPovT0rnxo9uw9W4PZC4ygj36vmSU3xSB0sfmdZVdr6e/NPpIPIFuEFez7D+DmUftrvd4J3Hgz4ActjDDnHhe+adtKNxEJX94QB+pDQpMd7eOXhHVZ8GSr8ebKmu8jGfxx9FOFE24VBqlpd/L4lYdZMApCsWuIpnxXF2XzAdQw7nXK5hWSYGYfsR8P7xYa4A6/Js26b2cZdr0DlMwV59gCf74bzc8vg9B1Dl2gw0Hv1mQ9aojzDQFI8RtECxBt1dLYhAZNuyCphzll3N53NfXY6ir2zzkcR54MJ4V31uqE+ak9gpIkrvKREhpNVT5zfIdpD1fGVO4Pau++RzoGYl79EqWOOEwEkrkPWb4ZgvALoBEBu7UAG0VzLS1oR1is0ejS8N2oiU/bCB9zyzQZyL4HsF/F5h+a/L2brpyKB9lhkzzVx0gKJmuq2VBDZkRgJmabX6o1rhsKaxq/LVDptmgVomqEmvUX88Nmf962o8qd/KqsVoNWKU5hmxHILVtHS8HkO3AvLPlMElRhpgcLzBBQeHePV7oHy2ENIFlJF9bVix8g7Bse/Ytq0wrjefw+hxEh3M/J+hnm1ZqQJBEpC1JI1VT/1cPR/muWADLLFWO/R3qZke3xw6BMrncc/G0e12qwB3BExjvWR8GWYNcBe7YnEWPYnOmT9h5nVfJ4BCansbqDphV2eAe5wrhxtM96KPzbqHCbZVfraj0AGGg7yc1aEWdWNnJlY1HxMatwE5X/pYHM8jvWdS5h3d52QZ9Pjv4belHEValqZtG9ntQMkLs/SW8gVAd6lMhw1xd5awrAb+nDEL8lnPGJ4F9EOflvXLG8Dr+Enb7rKlBQ6cVfD8W1GIyvj//eU0fu5f/A4wSzMvWGSbTuTazExpsC/UpTYE035kgG9CBDyaAVvnTVqd2BhWt+MRpyrht8snl8xUr4yV+lt+NsBqAUCfMdQvYXgXdLoq5vjtTEiWDsxwjxiYHtt9pW4kOHHeAbcNoHQFfDoLOkiEarQp/x1CAIWQz5CO54IXUKzj0EBPDjoqCrPrBbAAvD1qJHmooTVRK1tOLD1WnlcgYZIWUTyScgVw83nchQQImRE9O7b4LPbeHBrt0riOY72Wlnl+rNWAEOwYRKW0khXLbeVfj5cOLuCyUh/YF93qntTgXW5T9Nvdtg1xIvKVY6p07aQXw0/e6xF9TYN8R/w7wTne8rYBAnBLvHZOapJHO3rWypTWuUnxJIEjHTOd7ghsl7BxnB3HMcQbXwB0l8LHF0E2URkOIJdPp4gfbWktg3GWzR0CeIF/uzdD5kmKP9UwpAggz3uFvQKwPjn5+geZSmcJ6HUg5CpcHAsDSXph+sMya+cJdr+Qe9y4H1kDfYThR8xlXzmZapkcQmBD0HHSKhY2GR/nzbBt+BZsj4DFCNxafX8E0kdg80x+vaXQni5XReezCvSbFRKlk37eYyVX2HZZjy52BmDzAG0gvMEfRwbf/HpavMWxU44EVojK8Xbee8D7Rndp1+XLwvUybn+vrQTOnI5+Estmx09oqGEY23yKw7HSfiv9PbYxqiEnQVasv4CPj8fCthLg7e0G7+PtorEtSz56nI7mNpNtTOF8BimuqmE7vOwiqyBRptCJS1Sfva0dfqGvpZ8eh73m1CtMEOOk1o3Udxt3jMD2mrTn0J9Ob+AY1raq/Oa9Q7nCzeWxGU+XGzvEfRkD7vS0hB7Yw2lOnTmmeVZ9OoEx+vGJAh6Px9Qp/sODbqLYoN6XY5z0AOKhX95mtgfVaMIcsd6tTmXANel2kZQTwJufODCLOjrWbkXMZVOBw5z66VyaKbkOsLkqFtg/O4ik/7UQWmswSPd8WWcgsAtKlYZ6aOsJhcNZJciQIX2EELCHkPbZIvcFOW60MKvQY7ZmMgtzloXtMcWj8bnabj0GesUpH/2mwWtjs07o12OfRqCJdRiddtLLR5UmMqe3LR47F2547DsAwhEAQsj9KUzGL19VzpcH1UvS7a2DnG7ZPT6b1J3i8YpRXanuiLknbcPDS4Qb9WPZRj1HqJ1P2myPI+C3396nxwN673BLbcWnFRVH2jX9Y0Wyrijp+Cb/2GLjNGdQs/cbOw0FCpnZsBMgba76tMZSj4yw+mXJyqr/PtkgQ+RSLPQb6/dezgvuHyc+DFU76eXvAqpL/Z+crsfadcZK0asNx59WG7Xxx+RP6SPps6Fx27lBEm0fH+94PHaMjkwEvgLoRn1koH3sUQ5cxct/68p1NvN4WjcN6BNT4oDMLMeJI2cslJSwyeXmvcqmlXgd8O3E04t5vApss6yWdbzJhNOKIQFbT9E8Vcrp1+d1nEyutS62EbVNf5VJFz3IuMSJUhw7j8cjMt2z9JM2coxZjlePNWpSmoyxV/QnOf56Ol/Je8YEr/420mnUt844FZ/vHKe0vIcLBHIEuDvweOA4Yl7eeyCEDLyz/kqH4zjw22+/5f3dDLylc8DcBJ85QQs9t1SVrJcrZe23F5cpv8a+SNKEvAe2nChSp1//TUTwcLGeAexHwF//9lsG3D3Ztg0/ftyxbfF8/RACts0ndrLWUeqjy67LLP+2XDhmA22hzt9VLgvPWW/5N+WGdy6x7R1gpdntklYNy3tOD6cnxUqzNwfpWf8M9qjbSbSlke5zwvjEVfnVRRFlbpzaMk4tR2boyxrtVOKVfHpj7qyt6wLuvGoTL/OSL6majDjFLV+Ph37Poq/PHx90pxdH+C1sbbg0SwCkypFYfAKChvmfBF0xE1TMMnca3WS6W77CEaiUyLm0ouvktXn39LmQPpWJtwuElJ8/bG+zWhY4Ahr3Hd0Xzbw78bRqdv7iqMHurFCHT5tLEA5hDChuB2DmIvdRAB5lP/eKvvzdcmrPSq//zUCBjmuFX+3bV+yEtDlMDmh2eaT3WWkcfaW3dvrOOvFW341/Rofee+CGDd7FS2/2fY9bTY4jnrqR+icRie0HRY60PSWEgH3fcbvdcL/fm/xrkIXh+IcIo3U/I/HF0bZOrfy0NZ+x3BzG1k3lmdInxFNg3j8+8PF45C03FsPO8yNfzkREGXz3+slMf/3bCqy2SzYTq+64H5YcrH7u0Oo+AralzniVpf0ta+X6l/HZILHf/0Z1PwrbDVOU5EjTOLFjcR+zbC0gt47Uvwngm1PjUdDb7jTGIFmrrJJtf+O0R/3Tt06M9xa0s4YO8dbconevb8i253csomMd4860+eODblBekjyOA/f7vXqxqAsYi/1ankx7k/No4hpOahXOdMmHioicDYZO46rHpifiNqDWZ7EMSmYGZRK7UcACqqsMX52qXbiuJ9ySKJWKXT0y5h3razGvZ50ay6vPjE5HdLH4YhzvpDPq8u+6WtiZzeymKI/Fjl0Vq05GTNIojdFza1zoPM8AkFHfzPuVYQPvXtwruvXaZg7w7HKs2Z/o3G7e4eY9DnfP4Xc+A17mHzOq8pQ6BoqTdrz9VF1N7j3ktpKR5JUwAuA4/0UckiTm2zpso/bW4ax2tGz7qK5lfnE7zo4PccunCdkdvzh5h3M+j13poMn0+fvq1iOZD1S5dO3o/NjcLPX9rGP5Pfpw/X38Tv1twb86rl4p5zAtw30FcPfC9r6vSNGBT9A5ZyersLAdodL/jTGA1sks340TiNRYGs37jcMJa0yF5rf69zWx68mZn3Wfi/rrcST3b1dpT5rjDw+6gVhAfhEsLplt+YatAhL6HdE5D1A5v7MH8K4yvf3Gd0iv/KoIovNcy/KEGGC0A75X5HnQ5bLnqtMd5Ao5ONv85wUapi8c8jJJjABI62mvOHarjOssfLf2dTNXxgvZWLsCU9I7ofGb83FPqAbcnykrDNuz6czCnm0XLdwn9SkjM+A7Sk+nYz2XumubNmLpejILK4GJI2DzDiGVOQD4eDzikYKyLjuOA8UEEY4D7+/v2a6Ti0fdWWBuuAsh76M8V9+xvmIiqzH11sViy2uwqW2CbrcqTQ2MAYQA7Edk0TBwHMt8uJlp8afc5iLPfG/K1xsLliOBvuVlW6rDNOMPpU456wJk4j/rXo7s2LF6jf4SSNV9o7XZujRjTFH+rj9XHSqpx0g0GL5ul8Mk/5iH5QTx3/mcNSpnxlvOZU9sQrPOyRojHM2y2zPpkm5woq81foyZhtRfMtxVPgvzyJcA3SxsNPg0Bj6HVC6jmYxcMqpxdcVm656ZdDn+qMN0RV9P+WT+ZtlKIM6UZ4Xy/RcKA9qlOn/CQTgtF/KyyjEC4Lp/rhgra5JqRHYjQmb+i368Rw0CgLv0//jQOZdAtw0Orhj8K4B2FmfEQlo6XhnrZ/Tm9PXlNSOdVvQ5w8D3APazztPQ6XPMUsejBckB9JGWgXlCTh0u4uI0WcfjTuC8wwE+73cvjotlR0Xe3fY84WRYbGcGNqgBhcynv60kQhKvfwfitpsFB16uBPDKCS+pj8pR5kCAX57UItMdMdw2MIrPguHMmdxhVdYe6ClhGcRxeL6YJgKaMGXkq7Eq5rTiUMXvtR7sQDbuHXqXzbR1w05B0WMUXurZq486SjlBahXE21KvFEQ4VDssOnntUvSeaX3sctX11JM2bowX+/U0uqlPJ6fKuTNiQncnOX74FCYNxnPbZt1t+VKgG2g9dgbf/Da89DSDuPY6G4mQqsM/t6ViRc+SACZ9ruIBTud1VipfhDtVBdDGYjkYywbghI9ROvGvdQqAus1HZRsZ1pmcAd5rIlA3osGgQCjzcL1njclDl57LZf7fU87Ux6yurbRGoP1KOA7ba3utg2x3ncaKszEKPwI3Z2TY51G4N5e2c2ze4e22AXjD/vEodhrGcHexzxER6KC0eEz5VJMjBDjvGxA93Fh1dWau1YrOgiwrUdFXLDGbDo4ByK3yj9pCTuqPxwOHUYdSB3nFu8XIaTstGeMRK/usMPCwUu4DzgLrZBl7eromXsyRv+77nssswfZU99SVWqerzpe3Mo3K1Ka9AraTVe6U+wyJoetUrlBYDmwV1/hLpmvZnj7otqXMRxKYz20656efrUgPcJf65vKV9PkdlH3f83eZBq/KFBe8X69fDnQDwvMWzPe2bRXw1oNVdjgiAgIjjhoR9xjrmUzDrYx5qcoUqLfp9sAKTxgsVbjs7V+flK85Jevpy9NLemDf5SnvuYlXaIAey9ADcnr5cXX5a8ZgXgLlySiGwIwjkNvYldZ2gvGITKO9XWskV9jsz5DZZH52ReFMfmcAt/xcyaOaLCcOxMjJWJWZk1mZKaHftm14g4eHw7HveJDa7+mEueH00n9DCHh/f8dxHHi73+He3uBv/elJtymzd/HhqeIKRerxm+sU4sSSxr6wk7renlW2BpO27zs+Pj4M0Fd/v9/veHt7q1ZYev1A/326r6O3B9yYb5x0QM5TJkRFR5+3Mbd9moFjYbljXH5RVzoZun04j17+5W/5pfQ1GXXmvIycd3uotelcs688VjsvOlb6cm32enKcD4saK87+TGcNitYIv8GvScuRUzufy2Mepc34qNPAd10YNje5e/FY1eoW2Fb+8KDbweUzus3lvlRpvOXEJ+DtvceWALh1BFrNopYj+0YAq4n7xGSmO0YGluw9d5a4dDpwqQ8Iooeyx7WYhpAz7N5lyUnH8mYGYVCd+thA7VC9TFadnaRVFTXp4r2vjrmsgEfPpA2A9dkyukTVHMdR3Y7FwETnwvnGrSX1i0ZX+/oz+v8esuo0rQJaKz35b5aulcZIngXbPYfBDGuEoZTfbfO4eY9H6md7Oqoy6lePYYlzuV4ej8iSb7cbbgk4FXaOkp2jJn9gPIasspWwiqMmfR5Skdo+ynGSvlnZq/FkzTE8uTOjVs8VdrJ6co+3TpY5kf89M4bZyZJpVfYha9hKL7dmHq9+qxnHocqkViVQ6pK3nCJvI2m1shlTW0djFwqQVw7741d/r0GrBp1j0uCM5JTTmGucsEl8w0KJuqmdhbHzkgBpF5SfmnC7eZYRO2+HqFtp+9oJZQY7vsj8/v6OY98BWX95sMe/HUI8zWm74e3tLa889eQPD7q9d3h7exMAon1Ln/8+jiMvTfJS5eY9NiLzJadaXGl+IhOA55BPTmb8fJiOI9UXa8BZefdJV+mnVmdoLnINFqN8lpE7K3nrg3Aa7GphT/v6loxXAMhu2gB4GRpAdhSrvPMcX1pntW1W2kN64fw9gv8CLkCo9phyatEx9XlPt8XQWmB8Vb4K8H42fI9dlMLtIpk4GwCsvZxU2rm9x2Cm/8g+zaRyIDKJATjv8fb2FnVJWySO44g2iqjwCcRTbj3x6rO889XxDvXkN9B1tadVRKbxqauyrrNik64IgxJ5hCL/nTIzX8xyzqV62ZJ+IQGhsme7claM8TxiZy1QnC1IA7h7hesTDEbQSi8G3jGr/kpRBVvTdMnEgQX2RuOx/O0g98VHAqMOX4D2UvGauJFtlYB7DSgupT/4jcvpkzczsSwiXv93eyz6JtxKPt0Q0gEd1EtZ+1ivP73qw+OIbRAdRw4nucJou+ItnN5v+PHjR3aCZ1s0//Cg23mPnz9/Yt/3DLzlMS2tR5petHQOx3Fk4H0jwm3bslECbOANElBIjAc9eK8yxafYGM2kpv/2WKk63eI9k/i728lTufVZtytg6QoAbhMpKrLRrZf2inPxbL6rTKMVvgnnyockv0yTRgCvZOQpo2L/bAOs9dT6s06BeNWA1zq8MJjj8vH2LLOMJ0UDyBmLupLfqwC7zvdqumeZ6RWGewYKhhPOCx3JM3UimW7Wg//d7/f48p3Y/xjtqrBsrmwM4zAMPI/jwM+fPwGkrQ0O8K8rpmIds0LlLxdfPp6NHS3rhEXc/sWAm1l+Q8Eq3fv9jp8/3zIoLWSFawA36zEC2aOy5LzBLxgyo8jOEtrqIUp6zfutOcNV4Uu+hWhs53ztJqyVubRtAfP1eIt9VoJk/tO2Iyam6OX+jE3r9A2ZY3YNFUnZMvuShFFEkal/wkgCG9ll+TySpenfxiq4EasJo9N5PPZ8mVwCIoLMTHGojIHb7YY//elPw9OAtPzxQTeA232D3xzCseE44v7tCMJ3BHZxlcjlusP7yLaIfd9xOWBrOmHpQHmEFxOzALx7y4dWmHOgkXXK9JCqpV4Hl4B7IAo1fiYrPJThHFe/ha3b4Jl93VVb5OpslWnbThpfXQxXGbz6VxG+SkYO9B7LYItzDungCBxHyCA856/a0ot4fLnGrwRvV1ctXtU3m5UIISPn5lnpgaNZHqNy//JxKvLNYNrQYdu2+FIk0stH4QA5H8E4XDqrW+4AzlCh7KUMIe2V3OC9qLuUP6p6cWLszvROORESuO6RMTUIM8vvUPSRvw21iHmzk8HvKPX0ZYb758+fGXDr3884Zissd7RiLq9GmOx1M78F8BLm+RezLdDKgNiebyW47IVrpfQzaSP57wqUieulGYBVtr6bn547FtSaqm04eU1OHW1qpWXvgYTbsU7FiDTwy5wgKsD0lbbpWdunx7D8+/39HR8fH/xDDC/jonYmt23Dz58/u6dW9eQPD7qBMknFLSOEbYub1R+PB/bjgXDwXrYUPsUjFPB9HAf2tOXkloD3Jk4+4Xwso8P9j1DPK11GYzK4Gk+601BNB2HgTwp45zeUhrnOAgjgzV/WvfFnGMOluIZf8RKGXaXHOs3C1WCjDTNygzRLkCOUHPIDZ2CIyjsXP0X/0+U+//F44HEcOMi+HVBKBDNlaXbG1j3DEj8jI6A86w867tm+sxJHMye9MM/0W9n/rup5RkYkQi4LA8xQmLXozPnEDG0Ih8fOfZtP5RC2NUWP31IevKUwOoQAsME5ynkWsC892N4NeXYZ6vHm1HOgb1xVHMX8rQBuZvb1Pu5aqyjxApy3tHXtKFoMgIjsK7N+4SD2gLvylHUZl6UAXofQOCArIvynlJacb23ALf+WTsvKNqsuVNYOjGuqY2GukHbAyLtrGzpgtgO2R1LBagW4S5gIJvlRqBycdqsNA27plNRlkWEmCi6KXcfWOB2mEkN26v3xeODBl1AZcww7ubxNbtvKlpKxnq18CdANlAK5LZ4J67cQQcIDOHy5WphCDb5lFfOgzNtOtg2BCHeq98F1l6WIU8Wgx/MxUe2JITJNa9BenyxfCH6kkaPm4aeICSDIcGpSg646LVelmnM6+pXJzCT4+qg7JU40GaQivkMiWyr0XQNv/nQU31UnoD68X5RFZ+NcuRRHK/2ZDGp3nKHPal0RDRJXGLFX5KVl5qj0bMIsn9Hy8SiPkVOwInW4yIiGdAmHbFuHeIvlj7c7tsPjCATakfa1I45pwZQ4Mc4jYcLbMAhvPzycBxylda0MuDXIaR2TtlxyVfN6P+cVrzMpcJvJvdws4jWXLPyOkn5XROrATH9dzLq/c9uYQJ2BidPpS4fGsD8ktnoSIZ72aDPvVdu01VKludoPq/xRA+6SBrexZHF5jit1l0ucbKGrH6CmOQo41fH7w3wEts3CtWF7SZvRyzgIIb7wV7mbriAVQm1LZNZyRUc6m7YN4dSeIxf6chZwp5Ds4CsbyCtqLQYpbc3151x8x/Dt7Q33+z2nc0a+BOiuvPb03XsPf3fpevgdj7Tnm4gQDl6qi/GrTpYeypdWAlFhv42XUNDEd3lyIPGcjS/IpUkkDXLRYCvlXKmPmo3QOlyXCuhmOzNjfJ6XagCnSdiJ3yo1slqvB9xCo+WQXeDNKU1YyZKjq7PVtqWiBS1GpH42BIBRMfHtcx2rJv9PBPMjmYFpyzkeOQdnpZeGnOw4XM/xGK2MreraS2dlBcNaBZEspdSDV+d8WmHcjgPvj0e6ZdHlcV5vXPDgF8lDAAjRRh98uQ7e4O/p4hABdoo+/bHmqvCAsDLDMtt1Ik9WWZeETbHvcbKvLtqwcnFlSw0DHwme63bXZYou+NgWSAeeql9aIGrb4qwHAO9a57GpA/UZ02z7FedrAUCdv/UCqS4Hg/5oasW2JucQr4jn/HtbSMpnyUeeIDMrsYw7AYwkX7g/J/JMeXbsAADskIh+G1JeEnTHuNZqwcxpL8D89TZej9XrgJv/5ncpotNLhXDLN9xyWfldip/5hUnbDs7L/CVAN0vu5AnlbM7Bu3RM1e2GPb1kGbbyIk4I0VhLYYMl99Lxfu9NHDdosd91Ovp78u4kdSMMSVly3Zp4o4lUd5SRzJe91sQE38CZfr6cz1VWkaV1QBYM2kkZ61m/zMQ6tWaaXySDiZcpTQRORnKcbvySyyonofzVmUXvMcmeGTqjq1iT2kieZU1X0rriZGlW+wx79qvkal56pWfGcp9Jd0W3Olz7rPobpcvfthuIHEL4yACNKE3+wsGWXZnt574f2LYDu3NwtxtcWQLKbLHAFKNSCoBlSwZo3fgC3EkbLT5744gn/HwogIrjSoS8tbLYoBZss049B7peechWRpZGAW5Zh1zHui5aB885nTs7X/E/OQ9R5p7zV8rXty2SyR3N1TFLVQZXvX5XlUHq33aRcyDLijfsV82TsTTEoHBhmfDjcD36jFRYi0ji7+1cKGagYX2cB8tt3LP2v8TRc0EIIb8zUubw5BEnHXns+XSgRzmKElVa8vusT3wp0A2gQbpOGKWNbzRLe7i3bYte3nHE82KDTKZUTn7hMsVhYHznmy5F+GGFEgDHB+9JZNU2usWkWQ2mAbf1ew9Ucf2Yqi6CKu3NadbhWdFGMz3tRxji6TEnYHmmA82GaXE6ccItQau0ico1zgObketWvLAj1VAtFR+mfK3qcEDuz0Sd03oEM+Z93Hs7K2uTxoK8ygnUMnPWzgLZVzoNq6LLcAY0a3DbA7u/lxQGmD8L6eA3jze/5Un+2A8gxDCB4vYoXvVxqG3EcRx4PHZ45+FdSI5jeRmRr6UH1vrASr1Z6UgA0oxAquGrjh8APD4e+bSSHkjP89D9Xm0v6Tev9YPqXwJwrx5XekayBWclE+iJMIb7QPopt2sN8K44j7MVHos9b+dS+ZmMemXXKcc7P8bGe+pbF+gJ2ohKXUv7266KlHEiw0qWW4etHbGkazUWdF2/oo/1Js+VGmq3E7LdkYC7dioL4OZzt/mQgRkh8WfHdLNYcIgNlPc+nlaSwHe+rTIBcT7VQYu83dI5l7ef3O/3CObVW9gty5OYAgKcI5BgYNgxkFeHnhm0PeA9YvHOdoiZThlcLjBELxPV0GuA/9xEC1h1WrefjtesPERkYKbNwNfdfHqZ0T6xorAw5ZxaTj9UYcVkKVXMM4YDnKsMKQPvpn8Yl0d9lrwCfPfrbZ6uE3UySnM177Myc2r136tOwCorPdPDktOOC3dGJ8aFzt/7uB/bAT9+/IBzDr/99W947DscBVAI8BTP8rbYc3Ym98cjrnQCcN7lPu4HZwqWdFx/LOsSTeuAqr802G77nMNj3+OlGyE0AJ3LuKWb7fRlG3Hit8plAZMgfs8lMm1QBP/6dJI+mWMBoFynFYKWNjvWUBArzxawq8tVj29r/PbmujI/tr/pOqy3tpQVEwLiBTPS7qKuh9GQKuE64zk7Qe3LvyNiIe7FVs8S/pCA2wLd/L3Wr/TXGM4bZA1PyLZLYJGKXMpRHej4OVbu13W9c79g56jNS35vMRIRNYA750014L7f7+Ypd1N8NegTXw90J+Ql8ZhsZOdc3p/NQJcZkMN7hC3E4wNDiIM/e7VoOil/5xNPNrHUIMNkofJRd4O5Z2wzvlzkdovJiN2Wfy8x9EYaqyDmc2Ti54ufLbb5dG4a+BBgYO4qjFXX0hlxzmXmiojK5ComyLyHWwGUhgFFPIM7pl+WCL34naRHEgLoOOCAzAR2y+AcvLePzpRlG6XxSxwwla+WVcB5RtdfxRhL2zWqzxmb9wp9rbzPOPDkKAM4COdR9Kz8MiCvRG63G+CKg3qgDIsAaoZ2OA48cpitYaFmNkz38x7wLuymssect9RMEQLynSIOQxTH8fv7O/ajnD5S5UcER4TNe9zvd9zvd6VvUxrANHz1PDYSggW4S/oWcCyMdR0n1ogEJzXgkv07Ovuj841rQGQ5ClnLQZuW5/Vn3Ekgy5RDlr4EMmu46GSvENb5KzApVhuUhmZaVbpGX6wObOi0owbdlpQwHvpmYoDnnxIWkO2p+gGlntBkt2ZfSr9ugW7JT8fzjV6awectXTXDLVJIJBSfaqeB9rKNHQy5rwe6YeMrXSHeOYBPKMnLjhGEb7yPm8H3UV/ZzZ+8BOG9x75tuIklPn2ZiAbfIW0BKF3Hw7t6r5XsIGcZK863F94yPLNOM+1UbGQjenwZ8JYOx0yydqaDMgHrq+LQXgiKQf0QwNfZ6wnyfr/HCbiaoMRh/lyXvFJiScXYiH6DAt+lHMeOfX/EsL6dMjK4A+C8b7aW/Cqw+Uo5ZRAXZAZwn0mTxQIN1jiwnKGretUT1zkdh7JAZjFzRSjldM6JmxX5LO8Qz5tn4Ih23JeXw+KL83DxoooIUiVLFpWSLPeItBiBpaqorh5XlfknQv1SXpTjiC9t7fvepkzppTmihuHu9wlt+2yp4nfIidb2uGxvSkSb2Cn6NEUCg2YJ0Evb+2F8ZDazzu9VDnYBZbWjVuq2DxCtPtR3WGP5PXy1SumyQ6OBv0hbkCNG4qV1xKVrPD4k4WYB7p6dKcFIfed6bcuo+3rLUq+CbSBii9F2x1JnMZ+akbfSjdvS0qU3hj4uYbVbuq9CvkexKqtz0JcE3UCpssoXU4XmYePFMrp8eTKD742Z7xDflg/14OYOTM7lcxoZeOs3WUvm0S0kVyYZ5zz43MvR5HkWQPQ9+/mxYJdAswTfL8K5rFPRp5OweNywGxNFVhybS45Ep6mcc3Ab4NyWjlLrhyMqQHw2uVQOG/+X+HRcwkH8JnqAh2/YETaSDoB3fnib1kp9zML8KhDfjP8OWNHMmRXmis4zENKTKw73WfnVqxFN/s7FK+BRhrAGBNw2B6/U5Pak7ATHY4wdKAQcqUyHC+Ddf9LWO+/gnBhLCehZ7La1wjBswsTkiVRKPojvSWScS5Qn/Udi2aoVAAZP2Qm55XlFpokSo3HwV6VaEUg2fGY3S5H7NnPkNDJ45nm0HFDQu4yI84txz+pS/y7HMpX/VtEph6vHfjnNQp4GInLr6qLbzHpxtY3TlidyMob9RoGe8rhBBtzHcQwPgihzTEm+xiS1jbQkjhn5EmI3ZP4ctSmL1Zfs9k4nGKFtd81uyxNK5O+y7PfbDXfh6GqMZuVh1etsXH5Z0N2THvDOhliAb+6gmvnmvd/cNzL4BuJk4MrJJ9y5b7cb/LZF304A7twbnYusIhV9evrLz+VyNh7ofNBouQyOFliuszrw8pSZ8Avyk0xb8xv4KLO+ManAW5587Tp3HvDkql17snT5mTnxl20qOm0C0ku+5UnsWx5wHgSP0CFJHIDNt79d7QOXnBVcB6pW/p8ZdgTen5VnWPqrdT5y0i+3w8xmiYV1B3EetWOQ6nHbbgDiqVPkAMdvv7sIuIk/Ebdq0HHAO4cQgCMB9vv9jtv9Dk9URmaILum2+aaMvfrgOqm+V+UpLkTNUDrxPE76Hx8f2NM7Rmb9ZrDu8fZ2T+fmF7DCaVYOtzEHlM++7QqUSKThHFFbqKsrI9KhkfpqwK3tQJkHJfliz43j/mrVtSZ05HstlH8L4tr7lfl4JBkXwLIddltVIXS9qt84TQ6n3wOwdC1OodDT6E8lXp1GaVNV1jQGHJNzuYwrtorHTg8L8d81E95zovnSG3kOvtw/z0747XbDmwLcIwJH63aGOPkaoFshlKsTnuyEvK+QgXcIAf444j9E4xf4pUtKHmRSw6lOLk8+2XgvkFRdTGbOeegVf2sS0DrL57aRyTxp/i5+6sZ7ioV0Av+W+eclosGl/kuHWZHeJFUHqnLIBmW2kiB4K1Ociy99RRvODdKmfQlEpf+5bEUDjmOfTkbOpRsDJ/U4+l0DgLMg2mIzrHirk/7K7xoA9MLPWJ6ZzmfEqrcRo6LjnMnjTLye09HoK7/Hh5U5cPk/xUll5js/dQ7bdkshHA5/4LE/wItqAKWX4F01TKONjgDbAfDbBp/ALSWn0zlnjlGrbmtmtK0r4eMK4Mppu6xfoLjq9LHveKT96jo1ZuA533gs2a0C3NKpbnWsv8/6YaDyMv84fEMJmPmdEQvMjFhiyVb3JpaeHqXfNr80+dT7l4vDwv1KXvhUh+uvmFQX9HTKV+KEHMqe9/rx5fzEOvIKSV9sgq4K0cEYAASA7QFu1us6RhuEGIZlPEZEzRn40UzVY4h3K9y2LR504FqGm9O1/r4iXwN0G+JKb5uHhTD+CiTwv3LN/IZ93+GPA0cCBIHSG9dUDKAEGZwGEWE/DmxpeXDzvp4ckPaaE5rOqge1XIrTovNOT5VtGgBKI29ZN9cMKgNvUmNtLa0Rw1ZKqI1v7Y1pxvmqWLGtSa4Gmuc9jl6Zj+OAT7eleiNvS9c8UYUACgdAIQEdG1TzdNBjza7KK9K4km4PHI5kyQkzfrPA66tYb52nBXavkg6reT4VX32S8Rv/Xa0Eprz9BjifXoQPDhSOZAtDusQjBy514AoxshPBJwKFyyIvPWNpQZQqR35sTLzc/p0xz4A7EOXjayULmVOkmgGOL295INE7dRtfI0x0X630uDj2rwLuolMfMNnjuDg/vfEgv4tctRYiPR5fVt5p/gUACuAtoXIu1gBuRDb06iu2xbFsh+wx3+bbd5RlurIfzMkGWU9aZv3B6nO2sNM6s6e9fhLnTn5Z8lAvK8egRQ9+B4TvZ8m2a4FseUa+JOiu2DFmMIxGXYVBGnzfbreq4SII4hd4CAi2AaNEq7CxlW/A5k7CmZJx5I8afBp4W5NGYzBzoQUgrbHpEHw/M+mqOTRnpp+dzyMWynEmMdmSg8zgCcwQWadrE0r1BvmFepT9qHprOlrEWAMWK8RhRF98PB6IzF9H36y3N49D+vtJxkzn9TReLRqQvDq/VQAn827qrSQWwwNl9aX6qeyVdbxKAyCIdJ0juHADiLA/3rHvyEv0hLQ/3AnG26WxkF6wdDkdJkTKS2v5GTCZaA12NwPu8t8YlbePlTbiFVCE0M5FVFZJAVRnAcv6jt9rQKTHa6t7vaVDzlPPytl+V5NIsa7sveoQzzoTFGxH9JxooGw703EKTSy0Ir9kf2r3qddjw7kyz1tORdFBEG4UyhiaFrXj+DUR63LK+cYt3CBapSSJvsGEe67fzQ5mkGOtBtAch7dxMdju2XY+BKPCZ1grv24/k9CapPM1QPcAHOYBosC2/JuwNljloGEP6PF4VC9gOheXm5hZkTrxS5aSweBzwr2P5zQHF2/RjGSGQ1l3rTtQjwmQv3WBtyXE9VA/M4M+O6mLMWn65p8JUqh8WFlYeVftmJRe8d5bGbt5PebSCmdNrvJ3Kw3ub3L/muGjRBDveHXnhrQzvKv3TCzG5zNAYW/89gBIf1Ivf7+S3f9MBhp4vb6r4S6XSTh+ldkptJn4dMm/jOAm200X4Wx0iBFJbUrXw1P9QhkQSZEjpUmEvI2Qz6SvXhpmFAhjTGVXQNRHBbjzU1W6Mg73fcchl7eNMCGEfFpJPHmlAG0G8xxzndmuwXZtD6RjM3K2pS271u+841OSIqMcq7u8/GZoL/KUK7xju9q3xZym7Ms6H+TfNVsdqGzX0Ey9rFd5jDDHzfXc1Ro5Lng7knzrh9o+1ZTQ2UTXbIWEdeQ01qR17LTIfOs91P2+q+u1FQ22W0eJT5njy6a0ThzXe4fb7Z7BNreZh0x7rO/o99Ux8jVAtyG9CcjykcdDVoRTkzf/Y8Y7n3wChxDklakKdISAPe0p5L3e+Rga5xB4uRNxEilsRm3UtT49EGH/FtPTfDrl/EQHQ2FqTwH5gRR97DSsfF6RZ0wzZiurpJdsAawAMgO3DkrKhJrqdDpY/RDEVG0OUScCYEiwwGnJ5eyaUYsJWfVab126Vu8W4JZ//14MunREzoLhrm1RaVTt3wFvfyT5VYD9bF3HhPMTAEDpmg50i9PUfgQcIQJrwgGX9puUcZFSCDEcyKXLcggu7dskigw5Qz9Ce5a9tFxOPZMEj+YvsgNAVK2USseDx69cNfjx40e6dVL2IQm2dW71+JLAQgJuZmGlzMG2lrMOF9eNq2LHfdPa5ozTsHQY9a163Ba73o5/Da6Uc5XCex+P+JMl4fCcF4NyHZ9LYdUygcQPySHpbsTqEzPztqld3jiNaNtWHN6ekBhc1WlAHd169rN+VpygPGfXqSw5BCEE/Pbbb5ndtlYSYhvV20lWnaIVOWtXvyzoBvoDkA1gbgAjzCrznU8m8T7vzQtbwLGXowflMkpmGFC8MHktfT4vPC1xeO/htR6O8y9HDLI+2UmftnMMRCbwlgZETjGWl/hct9Sp6slC5zPNsyl7q3Pz2FU4tZtuiXoVMKYJ/lmGUKol+hbv784TvOxzQGJLEsvAug+KUCbgcZgesH5GVljrM2n1VhFWHZxRuiNZYXA4rTMyY+wtsQDWZ8lq2iMHRgLPKgSP15hRtsHOE9wRGeRAcVm8wuzsnKZJPKTzvgOSHU5bOG7O5a0p3tDRhNRdNtVVvGkIIZ+YUO0pzcalZp9//vyJt7e3it3WoNuqu1jcArgl0NZnNMvtiWf6hMWi9upAP6Nc5GIT1xw26Wjkp+k3G+DZ33t5jQG3/K34MdWdwBnElTRakiGXVesnHYhMso0diZHM7CgNtktazTHDRStzgWzrul7afhLDVDkMCDKOEwMcxyFulqx1lPlG0nNLjm29Dcjq4COH4Qwb3pMvAbrPMlVAYRQqj+ZEOpKFlQ3FDXrbGFCHzILLieQwgLg8O5PZ7/v9DmLWOzOa0gBvgAaW6T+6zZtJl8vMINI0MKV+cuwOqL/S4YgVVdWuWQn2eGU+rWdM5tdp/5A0lALgM1A5Kqedp8v59PRa7s9iouZipARK3xLPuY8x681OldnuTi6brrAmIzXrl4mvyvm6tn+X446PaDsLOFbytZhuy5E8k+Yon7Nsep8hW5Mzer7COZNmItvCZCu993F7h4tA9qAAJ67uruIJfQKAkLZ4EBBZ7sScS37SHvftuGicqfg0g2k+E5gJmgq6i3mAiPDjxw+8vb2JizhKHiOwVNILGRhLggeASNM+jWEsq+F6x/61xMOKg9v7vqr2GfvTY7iVEkiGXOnSEhVm+YSNdkC+wKYO8gyJMbOJ7TO9ErCqz6h96nR7+elPKx8bcMusYl8P1QuTmrSTfS7e6lrfWjvqi5XzPQDfz8iXAN2g3nvigyiom5m/898Ee6LQlS4BhW5YIsKN4o1o+37k60WJCBTiDi2dPhvFcBzxXzpXlo8ZdKwHrA7LDHoppIFnRR1QukxC1kkpnwbR7kQtnwcODHaNA+8dAASA2hMGpH7zPAZGl1BVFn/VRL/FUJ4aaDkflbAVtFM+WQ6921qaLEI61koIT+gljxiJ4zHQuIkbVUv+5yeFFZD5KlllYWYMN6c1kjPl+exyyzysSWGVmVoBJXr8PVu2lZWC7LDBHi2chncO25aYXdzwTh+gEF9glMcPVvET8KbjSAREOcM4OFde9HT5IMMUbcW+1cCNWW55TFmtSgHcvI+7Bscl3cqEDESvGNySQ6HBheUgDksmXq67wrZe7TsxLc4bkPU76u/tvCFXDThM/svUvdKX2t6kgfpS3eRP+9SYoQ5GHuXnlTaZ1f854G39bulbh82/qFT09xpwaxX4OzuWvHVL4yv+no8CvN1wu3UuCZoQKp8lXwN0v0AyWEmG1gH53G3T5zLYO82icLhy3KDHvsetJM577OqoKJ0+d5pj33G736u3aSXognMRPCdtpTlwBPhMrRrlaJhOezDWZaQc7KpBNQ0SMzlQv2WVasa7zfNkfiO9qR1zZyempXzkRM6GZWEytSaY3P9EEvJv2af4V4eW547gZUtndK8Y59Z5nOk9E67rM5PzChDSIEQbW8upWsmv3yf7uj/HYrXpaMb7LLO8Wtev0FsDvjkTBoCovT0Vde9k+/gGgALhOAIead+0k+lUY82VsQHgt48P/CDC/X5P77NHhOuchtHIK6ZR2eqjchK6gJvKVkPeZni/3/Hz58/mha4Koi0w3RKY9/o5t/k5u7ZmE14pPae/7h717xaILc8sR5XnFwl4ocKM9AN6gL0TKZfJGqv23FqXueRtupRPScx+Lb0Zs93WX1ufa6SJDdq5bSXDreNy2ryDIG4LdumiqZXxZM8Rr5YvAbobI7goEphUaaXG90A+K1YCl9HSWA+AO+fitcPeYQtbfPv+2PItZPqlywiYEyNOhEcIFfj23gMU38R34h+XQQ7BfOsgqS7b9B1rh7cKQdTD7204zmZmsNRnvO1RDsC0N9NRfm6DnJQIt0Ez/a0ObK13qdG5MTkn5TWcqGNA/yi/Jm5PF8nQAREwIIIQChLIuhg2aRDZn/bln9mRUT3HaxTnjEhg8KyzY00OM9C3Clh1PH5+ln220unlOQLWZ+vqsyaVKyC95/xI+Fnd4OrKaOe++/b2hscjgtw9hHzrJKNRUXOJaQT2cOB4jy9e/YkIW3qpPbLNPgNkBtvEOrHNAgPxkvIh9nHr/aVctvxSpYsX4Pz48aNhuFfqUTvzzo1fTlxv6344PUYkkzySfnmkvea82W4VXUaEFX/25ub2ivl4/F8Bcba+Vn3Vz+ZH4LY2pV+GNi+gbQsS+b7G7vaaRs+Psz45Ats66ngesR0QDsOnAcndBDp/vmeFGe5IKnUUp3oefqVNdOy9d+RLgG4ptj+swix6NSQqXpoyLSsdT/6LncJj2wK2sOHYjwy+LUMi2bmQwPcmWJAM6jtly2yM4xcnyw/MhoyqpBlchHRTbv94Pe2cTI2V8ICSiS1MDZVrbaYinOGeC3EW+FT6Gem8WrgIq0bNAqTZWRTtES8SYZasnhQZLjhX+pSc3K4AuDOOl5ZXscC99DTYfhbQW/nN+pn1fOQAWPGtOtbs5UjOOpE9NvGq9OzCSv3l1RD1jON5H3C7beJUKVFHaG16HCMAUcAjBNBx4H67YUtbPW4uHueagXfSKzhxhkXl6xYwIF+czIAghSvHzUbAHW+d5PPxi4a5vBlctc6cVUcW8OzWZdOfrHTHK47y73NjqmZrS9R5Gqw7l4PnUnkShXxhtKjJgFX+s/Mkai+jKw5RHa78btjmAeC2WO66DmuAz5/zcVj39rr8vf7T6mLp2uRkOu8aSZX05xLnrIwHhIy2k2jcJc/ebleP1uRpkm0h/pcC3SuA25LafBnpDgz1WWH2ggewDwGbd9gOH1+6lCeeWG/dHkcEUyHgECecMDs5At5pKAh8m9Czw7QSmgkwhbcmxx7TMBQVrGJsHBJQZB5pRqGUIFT/p5MHKr2nqn4a2E75i44sJ8NRvtVvztV7WBkcqCPCcjs56ZqU7VApKczqWwK8Z4B2L82rMorfAwwjEPhqWa2rq/10Jb3VOroC4FfD9ep3qFv6FwxQwxKdx7jlRB4ZVtunlBahrC4m8L3TnlYkE1i+37HxZC3GZMk70QVivEkGrgK1HIbKC/Q/f/7EX/zFX6gLqYLQ9cx4iqe3zNpQptu2gwW6++3UOrZjDdsyyfEgdRj3BVJtIcGxvjgukl46rm0XpXAbqZyHuoz0lRJP2anzb/sWUKOPkb49kM7dbmEO7aRtMchVzmIsFMdsntfIxpIgB6Ucx1G9lKztqbxFXH6WvjC2fVrrV8z7FX7qyJcC3Vdk1P0atq4T58oUyAOKWcVtC+W0E3HqCcVbHqq4+cgnIoS0P1x6cvqw/qq8YtBQAuC8bdeRvSQo4xQHpB300qvXwPsqk1jiAv1at5Tmx+sGpknios4vkYsepHP1moBkfuLSdi/RkqH3MJfeztbHKmv6q+v4DJss40hZAaGr4PhMPfQAzlU5Aw4+W846Sb3feAtHtIkezr3li8zkCR6cp0N8j0G+2F45qgFweADksLu0TO0c/Ga/2M0AgEEBX8phkRJHWg63AbedbgE0/bpZcZZbQBXjxPSstlgH3DZg1zpKRlQc76iAeAGKrd56bsrkU2fOKfpyXvXcte97SqO8RC77kyWyTXqEU6tzAc7FDyt9ztoS5PJ8Vudd52XZNtfJ07Y7HHbmiLT6tfn2+oCVnq4vDaTlb/p0EinyBDh5DHO9ZXJanN9NviTotkzGFABgHZo9C7hzOsLo8K2W3gdsISBshOPw2B/tsgmQOm06b5l/46MJubNVt6vBNlZJATDp7VE6JIV6ULZGrK5p7Wl+3qTdc3s6LXgRwFZJfGp5gEToI7AhXFg6NpPhSUjF45e0+Hn5V7cZwHvf+FyUycQp4koHizAG6VeZ02ccoStgeyRXQeJqGmfC1ADmNWIBh89wlM7UwYoj1wKxsp9TAmC98uMBHGZ6IQP2eCb4BtxugI/bTVwTvg8KKhY8kSrbtlV7uOv8UcLnGw43tHuSob7bDGWvzuIn96FuUGh730t3tXuMxnhMu78fvWo7A2hbYLLEKfvls80ieV17uYrecoRaXdq+12duI/khdZX9sTkrelL2InrVpYmVdZ1L37mXetmAfb6fv5vrRDkiMh1ZjaUkBtJ1KZ0Xy6783nj8y4HuK/iK2Q6CbcRmHWElz57HJvOT20TiYI/e2f544AgBFOore4v3yijZYU+Tw77veHt7q/a0yXicd2GuE+gjwLu079uxt5lOuRBGjY8PHJX7pcsxTeIcoPfj6V4QfQ8VbWTEXy9F70AEfxF4W8IOWZQAdQoxuELPMIr5ufidEgX3aia25zBeZaxXJsfPkmfze0X5V/PQun7mGJhN8BxG2qy1NBiAbxncyAtiwE6izlMwkDx+mByBc3Cbhwe/Al305LT5pS4tbJ/DceC2beoCnKZEJXwC6JY96rHdvfbTgJlBYxwPa6C554TFv/vA10pHgqB6TI6dB0kgrEq8/VIfthrTikcq1gxtayPKSVl9YN2u8JZ5t1710IBRl0nbvl6b2oC7rBSUaBqAWmFth2o0F9bBe0RdKz3Hi8eqdIr4/YieDeSLsiTgrsvarpy0WrfA+/Pn/iJfAnRbPKeGXasT1dkJ7Sy8mwJ4MdjYY7vfb+lFgXTRzsEvxLHBz7ND3DJyAOQcPt7fyxnfikUJ6U1+7z2c92yhE2CqByNR5F89mE0ohnUOva/LjJ1xzinw3WNm54xtliGYf51EcGpnncOAsrNzWpze112Mok/15lCAPaVAbPhjEosATejOIOYMS/MMe31GNDB4BWu7Yi8+C9T/KsD9qrYZAbAVwD3TJYOaZMCqkJFFqPZ2Ashglk/7YSgmQXj8mwACjnCAHHCnBAZQyAvenuKciytLxjXrADIL7gH8+PEjs9w9YTBY5gb7WnEVawgIdRvHKutvS+ylUY9dl+cF1muFuSyg23L04gyj1bJsyCwf1qmUM82e3Pa5DUoZWLeaHV2bx3Xe0rnQ4JXbVo85mY88aEED8xpw184UIA9oKCy0cxyey8Z61v226RO5jVUbADxjNXOALNus7STgln/zaq2lm3MuYaV7Gt+yL6YR3AHbtYu1jBSmctV+fhnQLbvADAhblWHBsldOltLrHU0wukPxP2ZYYseLS5MHg28eMMkwhIi643GDfL38Vm5dgmQGKL6U6Rl4p8rI7I3w6AOFBAITKFvcs/dLmMTauS+fti3qJFBOdlk4BvcJ0Yq4rF88pyW2paPaaAHrdWmbxNh2kvCglLZDzbRwXjOWPzpjYzkDTLts+sIEvhpHM1BX5RX9+rOcjdX6GoUZpiEn1NPazXVYAdwuOZYMdkl4lr5GFukZ0j7st8ygARF4Ix3NimqcxYk6vcoYATYBAa46cST+GvUJSY/3dP10ZZaobDsJIeBv/I2/gb/4i7+I21UAYw6SQPGsg6WZx6KD/OQ25iMR4zPWpM1TMqFStwJwWrDZ+14/l25OLgXSdNVNZ1YvrV1pX3yVYctvHG9eBjLstE6zrq+xndN5yc/5WKHms16RaOuzrvcJUHQexREq5QqIfd/BSn/dVlpl5VUm/cKkJCd5VT+CbalDyH3WEr7nBOjbsbNj79l54UuAbmAdcFdxZOMRGUZvXc7ka00e1t+WYYtMTUAIWwbf+1HejC8NXraGEBHcccSjBnnZJYHs2B8pL50y+AIl4EmuSi9KujZIsBqWSI/895ZUpCizhmJfg3gq4GuS5o7GojYlccGgcNIuo+E6vyHzr1On+vSSmjzqeyKjl3BXZJVx0n9bQP+M9JYor4D1mWjA8ow8W1Yev9Zvz7D5Zn3GH+pwp1IVaQ0A2czRs8o/iy+feVACmLdcRwTAMTMtwDs7wBkMAKB07nac7OOL6+QIFAiPfcdvv/2G/Tia22LlNpH7/Y6/+Tf/Bm63Ldsmq7TWfGD91n4f98sWCHL9DKPldG2G1R6D+rtdJnt/bk+fnp1YZaBj/HYbhQSnq2mzg6Odec1IO2nrDZ1kHhb41ICz5FNpqT5tHFGPl3H5hKbIh/C68iwACMF2XiwnRIuuf8lyM9jW71+w1ICbnQoLs1ilAeBeM6PrckxlkOmXAd0sDfhYiUOC4cT5iYTzmeXXdvZxTpZRZVaCKJ54chwe/vBVx8z/QAlQx0HAHVjue0JaUgtp4slHYrm0jUSU0mIcZkZ6FUTNJpR1kSyNYQjSzyvjo942Q02cVzsTVR/KhpCN+lxhaW71kYH88g6gwAjqM9BHbPdImr4t9LHA6WwyXsljVV7ZTnpStPIYg6HXCw0mjhFoG6apHOazRMaZfCyw1RNrxYfEc+00Wn+Xuw0K6MbHBz7E/tGUCfK4F34xBcKBA4/HB5hJ27YIEN7f3/NteHI8E0VAfqSVx7/5N/9mOSGociJSXRgt6tgmP9mfbMbUOrXEmg17s5ykvfrOtZZYpnI6SN1erd4jscZmf1zWgLvug+dQgFTLdvTaOKM27AFTDZ7j93J+ddkr3gf+K/l39eK4CVdQbuuCoVbTHZWRV5Gs7SSyHm63G97e7uka9zWAz+KSzfxcy9zPeyRfDnRLOWP+8zBj1uOiYVsF3pfTr1iAchal9zXwri7aCbVB4k69qS0nPLd47zNL0+N4JYs4K8vQ0aB5O+k8hvlpr6snk4YyQaLQ9dl2XFEp9kNbzVmuNeDuLEuqhLRx7hmxlfbmvnQVKJ9laM84s6+QtYn9F+UPdtTKNqFRnbf91gJ46vszykL0YQPkzEByNy2UPmaWeSHdbXNw7hYn+fTPubJtBVSXneeIEAIe+44QCI/9gHceH/sD4Yh/Z9AjyI79OLB5jz/96U/4i7/4E3wCCllrJxxlBLPOp2OvY1AtENw4VoJEYUDXOurzkynOOKZ99rgAVhmk1296bLClV/l7zISO9CvPtYNdh5Hfoz5jsD0jJ+r2ckbcdl7WddUvS/ssj6tG9/h3oLof5V7iXFMX1qfOU24lkUd71mUE7vc7fv78UV3hzr/3ytuQIXZ1NHFmfaQXZkUHS7406D4rFeN9chLXzJ5Oowr7xMTc82D5BSG9HBNvYgsIodZHepO857sCfb7s/dVMGuWJqG9Ue6LrtUzGIndng95lAJYmHg0qOe0+2E4/jsC4+P2XgDs2ovFLzJf/rCmWEseou6reieKNlYrZenZrSaP7lOGaj7FTDtdCvq+WFXb2lWKBJz3JrrCMdd3rdud06/BXS8gOWE5DTI5SztQlpyn1Y6ULSEB5BqvPxbIDwI8f8fSQ397fQeGAc4BPS+eJysuRyhwB7BTgHhFQ78cB79L5wH6L+8qpnNe9+Q3/kX/gb+DnjzdskplzBq+ty6DKyrZdnnYRnd0EakDwEHc6DB3oAnCFuw7LeI4uFNEyBx2yFcd3RPT6Ov/WA3OSHCo6zAH3yrjRUutfAPeqzZoys2J8h8B5yG1C7Rg6w/5aeuS/CaB0g1RwkBtNmmMz89QCIK4E1XZJnuhTl6mAbavfOgdsW7wd9n7fmvi6nqzy5+fDWqjrw/pu2a7ZfLY6R/zZgu5eBVmm5izrxgZzBr5l/meBggbf0vjy8mn2Gl2AO0K1L0oOAKK45xtpvzfdbtiIqlNNaqeCJ1EIz/YcMC46uBbk2iTCKWG21fe8XrTZVr/zJFYB2xLpZSy31eEWosiotUPUGon6YpyOEUplaa85ruuhMmhSnyVwVyYCezJcA97PiNbhSvxVR+C03ZiIngyr7/Fh5SD32KR5nceOfpUFNALmPhsM8LqWhOrXo8ATex6D1PZz2zxuN4+3sMEhYD/iEa1OAm5EsEEMchH3cVMIeQsfweEIBEchOrZIF67A4U8/f+Lt/jY8qcQqc9E1lug44p5y5xzu93v5HQV0A+W2S6Ae15KsqfPjz7i+yS9UvoIkUiWL2uauIM+M6ZNW1pjl/jzq19rRik16buzbY4nTlL+V7R5aj9V0S0rIfVnO29GWy1uD2aaN7Y22HyN8op2yPN+7SNpkh6KN2aRT+lU58lj2QcYqEnA3dZFwzdvbHbetJYdWWX09X56RGZvdBfgnx8+fLeiWUnUw6r9QOZtEKyAnmIqeAajiLoIAa8KXz3gg8jO+cOfwAcduv5AgjRYzNnz8Tr50QDE8OS5KR/bOSULohNRGKz+j8kyn120LBYyBzs1kZ9TT2qn2vDYpzWD/OEo2whj3VWnQ5ATaQmfkbUoWWzDrm5WZFI4aJnHPO2nXQGyPeegxTLM8ekaf9bQAA//2rMjJq8mf7Zehf08nW8d1PVccJxnOubKfckXP5vdlzUp6sg/rfsSffEnN7XbDX//2G8IeAWugkmu6sSClAwFz09sRqe0PKsvkzjm8vb2lowHVtghD31HPi9OKyxefdetbOAuSFR/XU0AIRwI4sYXWx1qBM33Qx3227i+6uXtOvgWu+fmZi2WekbZv1o6JzHZlLPS+N7coOFePH6ffXVjLz2SxVbjy3IHIZV4stnA6yyeNCe6Peg4v+ZV0NcPNZeJLpOQFUBwG4LO3N9xv6YZJVx/RCfRtSdHoOthu0jJw3SjcWfkSoPtVTBgxUFgIxzLMV3Zq1VCvZMF67Bt7hwy8vXfY9yMzM3KAZeabJ40E1G63W7wwwPt8DFfLkMQhGVIxXSp6DtUrojl7tgDcMQCvGJ+Sd1uHyRMnF9kqv77/mti6GEbx9YbcBt7WU/ms6n/5P8LbobR9JAEwvhUvq98BoM1LaOnTQ4Bq4UxWepF+7RRNn18V2SdXQdla2z4PeC0ZAfoxsB2nIUXWyQiUBLDz206yOq/Z5HGmniuywQgnnVUJulfz1XlVVmLQRzSjPQId7HTebjc47+Hf3/H4+MBOTACktITjmv8SKlCg6iUw730kMMxzsJ36lKW0RYJuUwZ9y25zl0BRzW7OQNx5h8lmWuP32olsf69ZUiv/2cUyqzbCnt/m42HGevbqRtvzKibb8WrMe2MM9+vd6vuWsAPUOEIU52CXTughFZ4odPpVLBHrrn/j03z07ZIsPB7f7vFlyd6qNR/7J4E396be6HqlnLXlM/kSoBt4HYjNmAtrDdWwJiIdFRApYFfPVbbbktEkX0472bBtRzor9kAIBygAfKxgSOxIEINU7vu+qYslZDkq7zjVA7Pj2R6YhoHrpf5af3HGbwWHmxOAiJKTlm01rOYBC5E6x7P9jNkBUnpZgDvnbx0ePvL5kJaYK0DMW4WcaKnCKOj4PsUlPpM4TQKiIG2+CiCuME89Zn11wnhW9OQ8crJW2/4zGRGrTpk00MzYil5tWmt6ZCdA5NvwqaLP9OyeTGspPwWsRo5D/m3C8sl2f0urfO/O4cM5hEDpXwClGylh9FnnHAihOse7/Ga1m/5buxRaR/Z7XQYaAFsS/rste68vSqAVb/CTF8RoKS/rWTJjUYv+LbFiARfZvu0e3/LpnMPt1l7odYUoueKAzpyT/m9AO6nVY8nOz4t2yhGH+Y7HVTlnXZ6AotNnp4xJNlavfPYcSgGG1VGAfNKPFj7k4X67xZu5VdIKGVSAmwknDueM8l+1ufLvUZ0+gw++DOhmWQXfPcYJWAfco3xl/BpH1uD7jF4yr9nkJb/z3wzAI3t9pFsu42U7FEI85QSIIE39i3vDHbYEvEfgO048yAYkM1vizO+urIBvlGq0gLecAK1qZqPRlcHPMzbjnNQQez5JtMcWNmmoX/MpNjKEWT77WClKjlhvXJ0Fw2b5Eu7PJWnmoedWGWaT4isA/Uvq4UQecuxVZZg4OD2g8GwdUERu/QDKWbOc4WXALcJagBooEy3bnvycqF6W7gAbIB6fGq8FR9pHHe1luQSk7ri13XFVG4UQsD92bF4cVVhpKwtaP6LqJ9fidBTQrevSpbsXeoRMAVwaEFv9g48e1fVWM6P21ifrJA+Zdv1cOit1YR2AdNQiit5nhtNsbrV0lGLNq2fySDE5ZB1PPcmgUjgbFuC+Nn4ryFr/4op+0r7ED5//do4afXqrBfoowN7ebd7a+na/pxN+ap3YBrhOmau6+GSyRsrzeCDKlwPdLGeXlcw0cB18y3xtHNlOUtLIzDypVSZuZNC2bcsDYN8PHPsB6LO+qSzrMePJZ30z+JZLnVrv/F1MMr6pEaOGeuDbOTUL2ZP9vM113U6ACokwWoenpAbNPbEmQ1esUdmCI9hzovIiVTU5OIB7NzNw23ZbesFrWquLjEK/fWjgsZ6XHjtxdWzN4q6mN2Ohz4btOdprk7+2dBbTNUmlApF9yXpCvFRZJ5R/7+YlPiVc0KXoEiBkL3dbwi8qOhfJCXYe5Fhy5Cqm2TkHr2zise94f/8N3r9l21nJxNEsYFvp7Kjq0/WqnD7CrQWI7AsVYFwANKdVWGaZDqfANmP2QiP3RQUyqQby/ZUAfRazDNcfH+cY3zru7Lv1bMYo13/b/V8D7RoXlKAlr/X+XPJu55HahiSyRdmC7GgWdas0ir7xb+uSG713m4XHxf1+x+12S9tZa1LK+qzyVWFfA4PHMusrZ+XLgm4pI/Z7hVl+Jt+qM/LzEuBp4C3jWWINKKkXg+bbLb5o+XjsAHuiKi+esADjyEEBwjUY0HmWybGyIPYIaZ5RU5HPMqElsfTmuTCIpQ3SC1TcZBfyM0GfSoYdFNag9tqlnq5+DFQmnA0d8T5I1kF9cnrcfr0x0mN0RmIb81GEuhBnxuasD8g+aK5unQDG1rhbdfLP2JkR2NaTHJ//4JROPV3Kby21MFLRqsPVfmHBjKpvLNabk8BEpV/l17OJaOvQDCdsJODx22/vYAbbe5/fYYkmKZ1mEiPCeQdPgulODvDHxwPOeby9eWybzyelylki2wjMzlNfGBc5VgFLzbykgBxRAcPHEaoy1/nWdl6CKY5TgGMB5LUdRA5f2kS7UlCAu9+21pg5M49aaff6u6zHc4CX05EOT62LrQNA4mjdolPI3/t6FEeJrG2KnCdR7MkZcIv8U7tIGwOEJk+eLyVpdxwHjtQ/eE6SZeXtJHxpn3el/WUd5TJT3Z94C+0KXfAsVui1+fMYJMqfBehmmYFvObDaqej3kTW2ql+2WVxOn4Gz9xu248DjOLA/HtjVaSdcLxnUiY7PAJzTsli3ihHjyZNyqtNyiqiQZ2ZzWU91/GYOY3DNZbXZw1dI1lVM2FKtqiaoVJF50BohTt4q4r7vCMeRjnjKlASqXZuuLIWb4JoN8aAOKidSiHa29G9GCuV38fRVdR5V7DMnOtzKWOpN8vK3Ff21c9rTU7ZPY/Snudh52qLPT5CfrUiY1PudP7NttYCFCs96yjBP9wdXj6KxjU35ucLM57FCpdxBvAiYnXQJzhDjPx47nIt21nkPEDv6pT1DAlZ5yJp6RXhRAHIBsTEev6zKfUXqVpdPphfDhGoPdbyqvu0PDBoluCKizilI7Vgr9ob1aHuRZUO07eAjDitiZ2B3rLFlpT0D9q19sNNMqTVlQ+NUzfO08iim3U6rgNZCLPV6VR6nTphz55C39BAqQNwf9Q6Byr7tI4T8zpieJzTgjnYg9seck2oz2efziW1oLdSvxHCr+IOIWkWF/FmBbpbVAdmT1XC9vHrw8oxePabpzESvDZpzHre7x3bbcD8CHtuGx75jF4fVy9HIeTG7IdlvyXxb+UmYXQyCVT57X3ZJtIR/fjIGpCHhI8CS8md8AlMkeDoFyOQfJ4oYQsCeTlDQ0SRwq1ksW2p2qr+C0/apzzF7q+n2QKxui9nk15uoVybN1bYe6TpLY+7YtLr3pLUnfYd4yc5wWuo7x6/6S3xY2RirvldscNeech6GHpbmx0H4q7/6KxzpBUrPYBkET8U5Z50LhqydV6IIvD8eDzi/gchhu93yVhTWq5wCNXb6mI3mrBuWuEqjV1dGXwPyCS2bIk9indopdR13tO3IerLOEghazLIeE+VZ33GW4aXM+s55m9VuydG/9+L12kWO9+LU1BNAcVjGdqgtzqh85bT3yHm7nAB36Xq+Lk6O/HvfH3h/POJJaWxjjTbML0ymF5f5Nz84jaWaW9K/FcA9sp2aWDybxkxW8SLwZwq6R1JV6uLAPFOhjRRqwvipbyw0CNJ69SaccZrlmXORrb7fbvEczQTgeI+wzpvT0dfQM6jT+bWGFWiMUBrHAn9PMedLwLfML1NEeLnbXAB9eSbBR2NETpbLmlysFCQzNUtv+Dtqxm4kFlNjJvYCsQBzj4U/W8dnHIwVO2FNtkSUz3t+1pmxHXhAVvZnOUojnbIuQPcFqZc4cotxnePlfMLj8cAjnbJQ2sDBO5fZu8Z5o5JXtslILHYA9iMg0AfenMNNhGNAU2Ko49uSlL6h4xb9tXNT0pv0Q1e2EPTmEFk//H3cPvI31w1vAezx32WvuaVnXaxr9s2aZ0UsEU4+k86Ola4FE23Hqmzbqds69xVVf7aONUjWRBc7MAVsIx2WJfLslCT+7st42Q+8f3xU9kuP6XKgQ/zXEG8dWJTLpz6tec5h3OaNY9gNWcsIY2hy5Ao2/BKge4X10JINBWLjtNv6URrWGAicr/w8owN3MRLpa0A6MkCzclnPZ/pn3VK9kC8vXN4Tg/3YdzyMg+ylvhqI3G63LvAGeKJFAz6zd588+nQLbeUcWHVy1tjWkdXfT83vtn6tkew7XlmRi4CDT1qQceUnO0UW010B44W8tVEm9dmTTJK8CGSvCrdPj+XvOaivAqUaWM/Cvkracpzr6Gech5keVRz12YLGc+l3dRvoUwMsl20egPqdB1e2lxxiPI1sD/8WgMh2u8h0AzEdHofeOeHwj8rdMp3SaW/HbG33R+Jc3IbG4Fq3TuyzLeHTT7u1PZZY7aovdKvtZ5sv9205R1k3cp7pQzFoMVLlu9SJgObAzLb9Y/j+vC6Btpyrtd12CRSvmYbUI7IzVtqT29daicj5AaZtd8opPNLZ20QU926r+Sfjifs9j6eiP5WcDUxS1ZHxTGq+Uima3dalH8Xp9Ucr7bPyJUA3cH3O5ulGviLS4C4GoR3wDdgDn58v62IA7ZGMQOcKcLdYugyalZHkfdq32w23xwMf6RYpCzDIZ4/HAyGEZq+35Z3zydEw9mpnA4AaeK/IeaD0OvRn9Ql+Xr7bvbflJwaSqkh3h+M48oQOox4k6JZ9oNK7Vzb9t4rDx7M1qlrAxMB9r8bhMwdoRbSDPZscrHx7zJ4Vrma1Xif1eI81beXjnF1vV+yblf+VsM9MaGf61HEEvL+/V2cJS/ARtznHJ3TbEMKBwkNY9i3NLyFEeOY99scDYd/zBTqoAHdJa9R3NdBOD1VoO76ZLuuZHcJiVyLITSlSOcJ0fHeDrW/WrNOXRs7oqPtoZ1aW05p35Piz5k05/8Sx0r4IqNMeYYX4HbDahIjyUb5MWDkf7SNRWTUuedrEgHiSdXeuzK/MbNv68UuTsp6VrsThhDMZAh6PB459B3caXd98MknEAq5Km5IT27sERyRUAXNrfl+xLjNS6BUWtwvkB4k/Bbqdc/8OgP8fgAPATkT/OefcfwzA/xzAfwLAvwPgv05E/98U/r8H4J9J4f87RPSvreTjgeoGvovKxnoQnpkGDGcB8VI4KJB/EiCu6jQD6DJcfN4qxwDNeQ+ftp2MztyUe72tlywlcxScw5azrH3qrDcbGsbkxCEkGH8SqvWqPidroMOO9OtWTQBuDq5Xc03DILMl+q1uhwiGvdJrBqJ0jc50cYhj0qkxOe+Ddfsxm9OL+6xcZSlmjJ0OO1tdmgGU0QRzRer82t5V58dx4qd8YU6GtcphiTUmVuPqsMt29oTt5vQ/Pt7x22+/xblB/hNpbtsGfwPeAHx8fMR3KEIEo/k87/QPyfGlkgkeHx/lFsxsD7Z0p0ENSnR58t8i5FmSx/qegRTxyRNl/60lK6DzbJ/VK0CaneZ+WTuKdX3xfCX1mekxIr5qRrjPMI9ILhbnDLIKyCd78Oowz5Xs+NRjB+JvV9VXeopsO9P/XEen1j6l74mOlG4jR5dgW2IBq+5473aNAQrYthj9npR5vkOkqE8ZT5Y7z7kXAHsOO5gvZX758IKFcfAKpvu/SET/b/H9nwfwvyWi/75z7p9P3/8559x/CsA/BeA/DeA/DuB/45z7TxLRMc+CPZ9SmSvmNQ8wRCAC0eCEeBvfqlyZDHvw8Arw5ng6Dcv4rU0+jGzbCdI7h3syCvJmKXkLm9aFgbk8YlD+bTHgsh2bOskDP3065AsvY5u2E8rTYOUynq8Nodle4lNO1JUTNMuF5N+UGbpmUpR0FerJ6ZVypbqK0zUGGmbcCYB71kFd0aGXjgU0u0yj+F2OiWedjj6QuA6IevVxGuR2nj9TdstxWU3n/f0df/Xbb/nmSw24AZTr3W83EMUToN7f33HsB45AcIKIyKAxfZeAhesy2sgDP7afcPBxohb6eqOuNfi+KhJ8BYpbAxhoxdNLajAmy9RL61ldehdAEfH7DeWSlrr0yYowodO5hEUDTv1cPmOQXYDvuVUom+lOf4P5HD4t5makW4N8TS6N6rwAbpedKdn/mnLkDye+2mPnOA68v7+XuzxUXQKoz972nJd6QTp9eleP2WG5KgdM6srlbiLkup7hgWfGUkPW8ufi3PEZ20v+SQD/hfT3/xTA/w7AP5ee/4tE9A7g/+ac+7cA/BMA/vezBBNeBpAKRmXaXoSXTSVHgs3lwZCfn5xMqjSNjnQZxw3St57rpbN1KbWj4+q31eXh95qpqCeWkOPySSe32w3Ytvy2vDYOnAbUxGeoKZgk9opF/EldTcXJTLKvfCKBEqc4eDXMtPptDklz3Znl5u0/0qBq8LfyAqVM91WOpZk22BmwRuTvL6PxJcWazHW4hl1R46pJLzlKmql6Vkq255yJHtjoORo9eaUj0evjZ9N5PB747f0dIVBTVtkzM0OdGGButw98APuRb75s+wMBrv4egS7BHQ7bfsSG2bZMBvGSu5zXniYRVLmzrmn+LM442wjdVq931AEbzLNukdw58PZ2F/qP9zXLea8hdib9L4a19mm3fU2LnvvqdGsMwHjD6sMS8IvUsWJZiQjkih6OyNwrXvL11UqzE+lomQFuHh+F3ebfkPsY50FqzPZWYbiheza2itP5PopzakS5+hQ2KL1LLzk3Vp8F3QTgf+ViD/sfE9HfAfAPEdG/CwBE9O865/5WCvuPAPg/iLh/Nz1byiQap/g9F1A0rPmipEoDsMH366a4lKYa9B5z/VbS63WmEZs2+j2eg90BGiWgMM5lsBHVJ5loIC49bCBOdPfbDW/iBQvu0EGCPeFhdQdPYj7ywBSsx6wuRlLVmdzbcmLzBdX/SROp2MvezRzdtqgzMCZRzofZtjxRbfB+O8VyE4+pixP+itOa3SqRxVlwNmORzzLeV4Ccla+lw2ziZj14PFzJfw4udPi+RZLAYAS8l2yMBiPqsxdWp70K8HM9dnQ7jiMeD3gccGpVSto8Zu+899kGbtuWLv8AgA/sOx/zBjRAW6gbkj1wRPABeDx2ENL2sJRuRTaIv6VeZ4G4Bbg5PZ+3/knoIKX0gYYYyWraupzp91o37x227TYZ3y05Ya2k2nF7Y71+B2eWVioFQigsc5umXVdaD2voRl36Tr0ZT80H/JnjubiXWxKNltVg5+fj46MLuGt2m6/uqsG/LrMF8K02PgO0rTg9W96zPZYwPgEKdnPSRqh0mvwH5vhZ0P2fJ6K/l4D1/9o5938ehLXKaqrmnPvbAP42APxH/8F/MAe0TsDg3zz1X+rKAE8AupH0BvzM+Fu/y7yvgnvNZsrnWnqTZKWPjNfxOgrrksrkHCBY6mggfWa1D3HWt9zrzXnnM75DyFtXcpmkTgugra2gGniP6mYG1Jr6a+0nJB8W44iwKvlsBPkno/vwICUVv+902C+36vIA6L7cOpJslCUQ+GIyK6sFHC25wtSa7OJAL1q0S6til4nU57n0Rqx+L4zFVq3Em+mipalvIxxRtEG//faOfY+AG75+uVg6PQwo2A66FOaWtpoQApyPJ2jsj0d95b0r6RAJH9y5eCcCBRBPvYnt3tBn6hjO9F3nGvBkJUTZ2QI5x7ZAX4bDQJbrrgXjeq9/Sb8HsjU4lu1Up8tzhfebcAgLA1xP/XV/ugK243fflHFWptKnQ/ynNGOnYGWcybai1ElWwDbH0Wk5g4RhOKxvn5ZTjUyJX5Z8PB7N+GV7KY8D5PcAdJhK58mYVT+ctoUrTl5WZSG9mnw7n87Mnj0Fuono76XPf8859y8jbhf5fznn/uHEcv/DAP69FPzvAvhLEf0fBfD3Oun+HQB/BwD+8i//kkCUSUANvJG+EoPESYGN6NNJ5dLEqx90PL2zk85ZsQBlBThyhXS8Q+cAD3g4eIrn1hIKmGDWWwJvBuMScBBRfgmDw8jr5avJzwB7o3KwaPZEP1+p5y4QM8E3x4m/D877X5LYDBMQGKg6tmmUmHOEbZtfjGPmgxNOKpDDTcffAtCt0n4hGF2VkUNjPe/ZDw24J5n+LmVdkVEZRuPqql2Taa4QHfJvdmDqePH7+/sH3t8/MhDsERTbtuHt7c10Vr1zuG0bbj9/AogvV74D+YIxCb4VR511PI4APIrtBID7tg1h2krPaPttbTMZaMfilFse2ajV9WGDzdF2tXpey08FMeFQACbyXFCDO/67OC38GzsexTEY10Xr7GmuU610yDlIzRm6T6KB2xDpjECzDUBzmlRSLQBehNVxQdF2xAjwSU/PeMiVOVuuwHI6+VS3ND/v4tSyUtZSP7fbDW9vb3nujhIg+xDrwiUNQj+ZpimDvrUEqpt2Ss9l/jK8FX+UvqGXjj+Ty5u2nHN/wzn3D/DfAP4rAP5PAP4VAP90CvZPA/hfpL//FQD/lHPuh3PuHwPwjwP4P87yESZhVa+uQY197vxEsOJNW9Jr3CuT64ihncWbgbMUspNA/E8sP+Lyn3e4eY+N/6U9XXzzlDwUv5zVKSedOLgfj0d+K1qeuap9/cYJ6OpZx1ltt1WQNUgB0fwlzV3LVkzXOVQ7SMPRGMDERgD9+nBA49B8isQZUHw9N05G/fOPAEItA74Cpi1jPGXfsWrlfl/RdWE9ewZwy0+ZtsWSV3nGh4Ye8QY9Zu+6gBtxzPz48cM++pTDuHIM5/1+x9vbW9w2l87gLkNZ1oO0CRFsfnx85CMLDyIcRDVjbghZ/6hMa7HMiNsemnYoe6MLwLXeCWnrkBlOGa6pf5Fm/B7U95aEkeRM/Jv1LKeSFGemtatmHan0iFx2QCSgtVhsWd5ST9YcgdS+XP92n7cAN1XxgNgGrJNcidBbQ1LesUYREPK8UrkULu7T560kOZ5Sz4sy7vuO9/f3fASwLg/39R8/flRzuuXcONeSZrJ+u/ICe99tr/iwv96X5jHScfhnIx+rLCu27xmm+x8C8C+nTnED8D8jov+lc+5fB/AvOef+GQD/dwD/taTMv+Gc+5cA/JsAdgD/LVo5uYTarxbbjfSoB9aqNBoP+DnGmWM5tB7ZSorP5H2Gke9NXhLwOV4bjXs2RD4onj0B5HjQRjbCO4cgtptkYxkCjnTyiTQA8kp5ec43UWSANgZzhmFs27W0/KpHvFI3zYRlxywfTQCjPTp9d1XYoPFpMtZSL3vrzriwyErP1vmkg6nq3Vpx+KrSA5ZAewLD7yWapZuFW5XGnlE7zqx6OaNztfKm0jg9lo0J/zgOfHw86rIwEyjCMeCujvcb6A0gs+JyfPE2unKIm5QadHrvM+B5e3uL4EmN6R5LlxJiGNkAQAbKpbxtP7aAZ3zUX6kZt4lNYFgAXY+rcvJFW2f1RpB+/lwH8d6W9oQQ1sUqgz4FZTyXFPhGpIk5WeY6/5rJrvXSVS2zrn7iOlUalfET5/DaRbGdJCKqtpNY7S23k0hntDhZihirVJ3bA9fr2ydlRJ5ZDHap/jZ/q9W7PaGHqzpyGXQT0b8N4D9jPP//APgvdeL8CwD+hYv5ZcNh4RZtQE+li2usWrWUofTg1FZ1OgOen02jN0k6JwA3ULGzVXpOmxKAXNx+Qt4jUH2GtHcu7ntk4K2MLbPdzB7dbjcQn2MaFVtcXk3OQQcArtTNIHV2SZSs9bwr/aE34RUWp+27fAxZbRivyLp3wDVAL8n3NQz3yli44hjMAKHF+qzq84yspnnFKe3ZyNEkJ8Nb8Xus9Wo5RvG1A/Lx8VFvxzLK/3a/4+ePH7jf702bjcaiBnDbtkWH+PGAO8pLaDENwPE1l0mY8WbiwYs0z9gMCaKacsrPQfuXMsYRrecJqz+vzjPlu7BVySE4jiOl6TPjK0Ft+eysYFM7vmYrS1Y/6ZUxxzH+iuFk2FKHPB8VByaoPHQfjp9lRztVp37kwoqYbZ/26U9tp9gpo5zOnlacedunHqfstMkzuPm5HBMzwG0C2F4fNJ+OZXW+kb1vNLb0jN5zInr2b2Zfv8CNlGq5B6lSRA02ALCbUhs+/3ZhImRHgAcC+32re2F70jNoZxigK0ZxlqeVb6wDZmMAR4B3HiTYbu89bmkyYoaWKBoUBmscFkgnndzv+SrZ7F1z/qI/1IP/XB3ZlXI+iinVSBWP3bksTKBilEsbvvzvBQB2qB86hsswhFcA31W5wriOfrcAiM6vN3HpdD6rDp7u+y+UFYAt5VW6M7iNaQIfHw/89ttH0y58sRMAbN53AfdIZFsyIMl3FBBhx4FwVK+wddMKId6OuW0b7pyOKBPHNueupAtvTXG8DUSwewXIcvla8qPMZ2NdZfnlJzLra4e1+gQRKTDXxuVxQ4R0zCNETXA6tU4rotl2y4ni73w8ZGkJ/r3m4BsHC7XtkPv4eyCNbXcF/JT9IfF3ScOEt+KTgDTPHmJbp0xHlluCbb21KH4a2RlpyTR7z2WZetKznVY9mk6yjsd2fUAq6Glc2/geyTKSLwC6ZUemBrTIzjkC3J8pzaT8wnRzmhe9qp7MBr6VpxWmAffJy/Zwkf12W1xmTQw2H0V0HAcCRRY8ULvcyGF40POSbwbgROoyidj6si16g7THirVi9agL9a2cw2Yg8x/VU5sxJiqX4oxekJR1xfFOMdB5nNn8vlUrPfDN+a/Ks337M9I8A5h13f/eAPgz6nNJBCGh9TnVFw3pxeVpMhDh4+OBv/oP/yrm531NzggWjvep6pT0WB+RFAxSeLUuHoO6g7BnJjenq5JmwuHxeOTrwQHk01WG7ZbqmNLfMrzdX2uOr2LG4QD4aLcH5dU2VqbXV9MGhfYYqYEMM+QF0NdpSZ1WAF9v7rMAtxmnyUfWgVNdvjgSFlEUPwnVaTJE1emxrqnrut3KrZzFmYo4yWW1KJGXlAA3r/zMwHb9wmQtnA9n3uulI7CdyyKfYx1DjWxbQ0S58pLnNH2jrnWdy7z1uBvJHx50xz4u2e66Sc4Cbhl+JRxLt0Oh2NDfA/BfZYgs9k6n0ZsYu0tDms1I/3EJgFOgzF7LFygPqs/65rTkvuV93xuvm9JEWsCsO4WJpwyn+O8r27ZirpKxao+7LMAbKO0TQsDH49HUtUyXxTppoA92es/6dVTPLfaJM78b4BPyDLiznBaL4ZB/j4DSjI15hVzJQ8IGPQGuplXlmz59p78t6yXDGYxgFZY/ncO+7/jt/R3M3jrhAMh2lA69lW/vuRZuc073dr8DcPGkEp6siRA6MwUR4dgPkAcefs/pbZ2LlCqtnINP78P0gGfN2tnh4vTagk5NYljzRpWGiC/tVAHMmkho4/Oz+Fnil7C1DnI/ds8ungHmUoKME+JRgRbbG5umzEgWiJdtFMKRn3tftQ6QALRHvRqsmVYuP4P72oGS6RFInE5i1ZccD+V2SQ24qWqD6DNoAmwOtM3fmjKN43Ydb+FQW8A7qHAybe6d2ZaIl0o1mcLxZvOwlj886JYGQrLd6afct56dvqyJxgL0jaEXRpD0c47zAsCxwgytMnFn0+Vw8nP0uz1gAPgIjL3f8kUT+77jse84UueVy13yRUs+8URvOZGeuIPLR0pdBjRVQyoHYhZpjFGzcDtlr9uYSOrvJVG9B1QlnI9bZAORNewwOEM9Me77K45mz4iutE+vP19tW6sPr6alAfdZQzvS58oqgJXvs3aGxD8A5ja5ns7NuDfCnbWJTZ+R+VlhU5p8Ac7j8cjvhJACBs6V48/aflF21Q60AwMdDbKICD/udzgC9m0HjnR7pSvnJudXLKl2eNgmOlfYND4lquRag7sWxLbORf17Haf83h9rFjusyTB9VF6dtqw3eTSepVv9tzU8JAmR7akAQD27ocHmLHx21nL5bbBak4I5RBM2lv1ACEc+mzyerCJPKuF/ZQxZt0wWiVtcZFvnPkU1u23t384OnjiFbNvk3FH6TOk7BmC9ALSzDuK7xlEzO2nZc9/JNx+fOJDKyUSfvJrF78kfHnQTQXROm+2+lG76tKpuBH0sXOUQDappHTCeKM/IM2BhRXps91n9LGNffXexzvx2w3bbsO0bPh5794Id7eEz+50npQS8iQjxLtritca8G+zQ1T1HfNaLm0jdJnLSo64OgeLLL9KD1+yiBNyWFz4VFdxyPE1qapbsCxzPqzJkVyZ6aaB4BfC/2gG3pO/sarZxkP/Ahlnp9p5ZKaw6WdazJi+eFFXYEAI+9gN/9Vd/jY+PjxhPrIZJ+7ZtW3P8mUzeudK1W72ke1IAk1QzvhAe/wE3hBCZzSPEST+k/VvEvrpov2Mv21G2bYO/v+GgI+aT7Fve9DW4HIAdDek8xTx685FLp3eX+NIW6z5Ug9Y2bzsP+wXNPmHUGkIZX96U3Os/1t8jhrLL5BMf7deSGYxLrG4u043/svbVnFZuam7zlySKLGts2nqeZSzCbRfUu1RaN54/+XSSQtYwew7EdmvXY3m+MVvuoq07a2Er+yZ0kr/nv0dzgQrrgXyS0LiP1rrM5A8PuoFytJJtgNPnifY1gYT6rRfPBOnJqPWwmgVAgfOdsmfInmH+5kbvmow8Qw0C7vc7Nr/FS1+OA4f4JxkVOQFIJlxuO5Fpx+88ITh4t1pXNqCYxr1cfbSE8wPFi3EOdbSVVde322uGNvf5aHfHk9rvCaw/S0Zj7ArbfXXsr+QxAt6/VAbgvw427vGj8E1MivPEb38dATfnyZOwlh/pxclWP2ZibTCZQgOQDK/m6eI/7x3+9Kefaesc4f39He/pFKd4Q3E6EUnVDaWygAh0I9z8Buc8nHfYUmn4wpG8K4H7VSoLGz6XCpFh9cDWRwegbIWZtU9NzhTdZTl0+Bp0lnCyDkq9ztnNLriajIMlJzSlQ6yjiieZbQamsjy2Xkhl27BttT3gf3w+G7cabz0x64LrlNNHAY/Hvufjeq0XJvWLkvwv6s7jAGBHSZdLAl39bEXMPlgqqTv+R22nn4y2HZnPBfFgOZkjWcVhXwB0x+VCfWth6RhJeoh4IBbXeFnIBk56WQ543ST4yjStjvWZrFz9N8FvvO3E4zjSSSfilku551szLzxJSeOh83Auerm1V94x6MDgSnYdx4nPa86PkXutoehD8qWsEVOjmZFXiCzds+DxFTLr/xow6zBXV6DavvWc87siZ9N+RqczjH4vnMWF2EDPbsNmwl3I9zgOPPbdAEYlDjv5+qQSaacpMZr9lb8y2dR2s+1P3iNdbR7zONIYpn3PDLdMJ5crAAcFhPBASO/CvP34UYdxzKxS61xInVU9SYBclR0Jqw8AtwSHRZcQ966jfblbArWI5e0xZjkC1NGjW2cTWXOSue3j3/Gq9+zZpHi8mlryl/+stHu/V301b5Ost3bIMhZszxff1Mw4gDxn8jG92oHiuUHeLFnalTOI4SVYtzCCPmFnVXrhdT3Jsk+FnY+JTerpYeHB1XKdsbN/eNDNXiYvv9SDsx4Ml9IXnTlX78yjQWvIclSh8yjPK+zyaDIcgaBRvJ7h+tVgij18B6Ql2cjpbOnCHWbA5bYTqTv3ETYg8pp5OVHUxqX0H8liAMgXMFnVFidL/iKRuQMcO8tPAjCDDQKVk0usCUQaite2X+nxnwksP0teWRejcXsGrF6Vs9zC1bKPnJiZNG7phXqx4oxsXwgBf/VXfwUK9v5eCbh//vxpAIjCUGfGkSS4BsoYQA6nS60BmAyz3Tb8wBv2tH3kOKh6Sc8qL4kxDwfQ7Z7tm/e+7gyTucHUVfwuX7W0HFZdr3GlsVyswvvjue4KyG5cgqH0CA7LrvWAuY43yTGlJb+LGy2rNMopKpZjGIjfOSvvngUSzpxRDl1aotzTMqCuCI/8q1ESfk+KX7Y36oYvdCrzo4Y8thOh9Y5DYu0ODSlDwK2+j0hAqRvPj6icvPrsdTL6T0+/1TJdsfd/eNCN1GEl292d+Doz0iqgLGOuD2DPTnq/Ws4CeZbfi7Hstc3ttsH7cqD/W6D80uWeXgaRg0uDcedc7jMSfMv9ajE/5Eat2ADBZFVed/6vk8moQk1LLUvcDybIM832c9k9fDHMQs/RcYLnhMr+UbwOWL4SoP4eDqKUX+WIZAJCT4SdsDMZ1do5mKQzpzJCJu08cl4KeBNL/J22/vhIZ3FLsC3Sl4Cbt15p0Fw74nEaiCc4xN85nAStFXga9gOCd8Db7Rb1ohuODXjsR7ZnVWgFKHhP7nE/8HZ/S6CPQW0Uea23rUEsVHyZrHYKmKl3abuLvFW4SSc7CaF6vybvSSZ1EcuCtA5MbSPPEgkrYVtwbzg/zomNHv3ZP279O2IYQmKgY50ycCdOj9spNaLGHSX/kHWwHCNRkFjvid1+7DuIGW5RF3yVO78oGetU9uHWcTTB9qBuZ/hjFXtxWCtfc6zwP/lMpiHs5CpG6oV41sn744NuFCAlbzmsgbdAJ0pWB75efuFnVyb0lTyvst1/zqKBmL5ie9s8bvcbjjRRHcZLltbf8pp5zoc/nXPwlh2r/9P+brYbh41mOgP08liFPQeX+O1zWQbOjcULQ3WuH/fHUBNSpfX3Q/9dB1e1jFagTqfB39HpUjGja4D7ScdhBPR6Jbecl1UmisMTlWusNTiTad1uN/z8aZ3HXbTk4KwH76VlgMsMoC0tYNOAgeeuH293vN3v+Pg4EOg93+BrERCMqR0IR9hBHwH3zSMcBO9uICoX4fTmEyLKl7vEfI4mHyAeT8eMIANE1lmznpQYXblNpyeyTeZtXAPuMr+3Y6lX1zIlCbRKWB2qA+Tg4kVv8UHWpfSv2C8CEQLFowTz1kZXjvoLVNdDLqEC2dU4FzrWNcLfoi6UHKiwl9slkQC3rBfeTnK/33Lf1u2i60FuTzSdY6NuRzJsd3asO+F7gNtKv0foyDof6tlV0UhT1fOK/foSoJsHPDOX+bglSVPmwAB1ph0JdGP02lDJjjczEr3JZOwCPC9XGcJXMouvFt0m1uQTJwOC3zxutw33zHzXe76lyD3g3Ifkakk2Jp530Qn4ao6dRQdORpebw2vypq0HIwfu5977yF4A1ZYZTkcuXTKTJ5mKZdE6ZtXbM3pzFOPZLM9n+mJPj18F/lfHUi/Ms3oWGPIEGz1ImyVP7T12ypioWXwJNJxIZ8BJ6sUOJYMZAPmyrTj2bcAdl9Pv1TFoOnV53F0BV4UB7kuECrIKerasZg0dAgE/8QbvHN7TdoDG9oFf0C8bDfa0b50IOEJk0L1zoMHiVgHO1hF7KRdXluCJKO/tblhDMHDtzYBWecuzeZvLeb0Fhv3TVFCxyq7qe3O71baVj9w/UXZq4m8C9KJsEZLvE3E5IwHbdzQyMZTIlM3XZ3YLj89wOkI8EedRDh6oajHNG7fbLR2163PamtCyyl/qoSYcZjbnDBCtnA+lu/x7iV22HM6Ltrayg4N+ckW+BOgGipceTzJxvH0WGqrMqsMaADPg3aSBc96QlqcnXTUIXimmg7E4Mb5aDwt886dzBO/vcH6rTjvRjJFkafg3aRi99wDFl1icF21rTqLc21Sf69VPfmxAGXJANdEXdqUuNCJwofrklmx4q80fUfjoJ6nfpXZTXavHoplRleOai7Ogx2oev0pekf+zK1qjOqzsAa4D8StkwaxuJGizzo3v2TKLtdX6ydttU6QcDkTpRtzy4iQDaZ2vTLW2O+Oa1Lr3QIsWBr+ggNvmQW9vQHpp/OPjIwIwUz/CEShfjhUCwd/uuG0b/Ga3fWtD5ZFwERRGR0bMphEpdgF3TLfWbdQnz0u/r/cd2dJm7JSxhey378wxlg4Gp1X0CZw6xZNq7BfXi/NmuhfOASHE+M7unyYYJQIdIa76iuMApaPD20n4bgvrHHWtiwbMgNGHhqnMRQPtnlbLWES2J3/KuBf65mfOOV8KdDPwCET56CQLdHB4ljPU/ypD54B8EUkT3/Dcrua3Gn9kSF4JlJ8B4Ff16DlKzjncb2U/IV+goy8AkMBbMxL5vG8AG+TV3YYehl75B1eeMQtkGy5+1oNHxAVsfjmMvZ+qUuAU28J1tSYn2udifztrzEbhL7Ehf0Zilecy4GaQ+5xKnyZycuZxzNemA2x34+8ZnIcAf7/j7e3evMuxBC6ybW31OUN8SButLznZthvcBtxvNzweDzgifFRpqhMZKF528rHv2APhRgSHN9yq41HrOsuWpwLOBGO7dl0Wal8GLWGqlFHq1S67mb4QvvqnMPqcbolXzz0xfDsEol4FcJf4hX2etZe868Ge7xhss73v2RbHQFrUYwXJHUAbX5nUSq5pijEdHCit8mqiSQJuPg6QGW6rDFwv8tMKM5PVuBVGQT2eOe4IaFuMcw7v7G11pzHKAonQy2M1ry8BuinuGSkvkgVCcATv2UsnYXTbSllhmSzwOtYJ5o1tKTHOeCnPV8hoEjgDdKzJ6BVhOfyq47M6kW0ecG4DidNKdnE2qZzoiCgDV/nCpTxiMLMVbMRYdyt/4Vw5Prlkoi+nZh0wKdN0KPfiETA8KlCKF+V5ll2VojV24tNyRn41wF3p478nY/7s6pQeE59Rv1dWGFbKZd3odkafQqoWwCTfb0ihUW2GJcLtdsOf/vQjgY6Jk9vJuxdGr4zO0yigG+CX2m4APDwB5H1iL+P53MdxxH3CKPMfEtgNAHAEhBBthAciYw4H8j5uNVGat7qUaUqvJmiWW5dBpsHkwgxs67hVWKGtFaLPRrfhSIZXYG1slyRwklZfl1eOxf544d89KPkkNeBuiViD2SauD6EbUT6dRINtQO7d5lNuooWW5Vph+nuSa+YCprCA9nJc7RADkWRKn+b8bEjvORMOPStxRmYl+wKgm9L/620CzomXTDrG7ywoPBOWG8fsPM6ZYMTS74/Kvl0B36vhV2UpLZcuiCAHTw7+fseWlmoPsddbAnB53KBzLn+XLwUFxRwksiLP7XHSio5eAaA84aMZuTVY5dcsY2K9+pP9OoS4tNysrei8OmzBVSHiAlKVFaGUV24lpTry5TyvFuEzV3l+pVx1EMbL5efkFXWn+7OWJWCPul8dx5FBB6dbmMAYfts2/Pz5E95v8bkDKL9fcW5qJQL4Nj5pF3vkhsXYFVZU7nMmMANKRNi8w+1+QwgHnANCcAiRbUIIBIR0hjQAcmlEhoCPjwdAhPvbG26br+60aMsyeM8j25rehSKy7gqAk+CvvtGwrRsj0/yZ51SxrUODrjJn2m1YOQsTW1AD0fxUpN/vmxHcB5SsaiDr5FamqgeXUlppVuVA7LMZ9xxHvs7d6k/ydBJ5yU3PMe61yRCXkO0Y6TTz+FDj5IxVk20u0/WungWtHQdn0pe6jYD3zFa1zpItXwB0I28h4QFebqgsYcylVtHgQ2NzWa+O6RZsZc9zt5h1/eyPAhhWmOdnpLdkcwpAuGikPQHexUt2whEQKOAIlJfheElO9ws+11TfbKmvic7DWzZunj9HfYzEf0s0XR67LgQb4jz4mCcnqHWHyHLb11o/6dz1Ozr4Bawc7Emw2OiZvR39sJ/GH0Ve7fzwv1dfenRVzozRs4DbGhNE5aQSBh4pNAeM34wLsmrADWgwUpentsMRhNpHqMkwvfGvQUNdrgBQBGjbbYPzwLZFIuDxeOCxH6CQtl1kRq9slSECHmFHoIAAQti2vIcXOH90KJeBy+ycT8M7udmuDEe5cqhXDK2yJ5VBIPiuq8751WlI0cywDEPpb+sUp6wA6vhn7QYRVSqzQ+aSchHKOwG8JeA20pLfxWcIYkttCDgEuy1tOhNG8nbJkkrbn6+UOUVaCCKAtuwsRriZQy6FgbYsc88tGpGAq07+quT0xRzYzvS1fAnQzSI7YGQnfU2zLaYx8vKzdDpBBeT5WSevHuhmPWSa+lkvzIp8Bkh+VZo9h8OalC6zcwl8O+fhyWELQNh8ZIuPA+/y5SuUyUNuOeFJhC8RqMqAdHWPE20vJ1MYjDQ6fYHqL04MXu6TrB+XLxYxHmeVc6TID92N69+fBWe8tWSWDk86ddyTeTHzhzxVjAeSzP9iH52WqzM+f6XIyebV5EFPzjprM6CtSZBVHfhz33f89V//NY7jaAAVg2V2lH/8+JEc0DiM5Pw/L5K+sKavK79HEkLIl8No/XneYn1LmHJ6CE/X8YW8WyIAPPz7AToobqmMIRBchsDCGTtAH4QHHP5EwI8friIPuAJ0X27BDz9jB6ItM7cjp2FdQpbLnsZvBGEp7cpwMpER/xtQqttiagsL3QrbzKwHUNV1jxk/K7GlKDpyVN6D4Dzz307GKMJ13C0DGOtEdptZbn1PA/d1CbhLeQX8Owm2e2M+p1yznVXaVRvosp0h0SBabMGB/73kyozwJUA3Q1xpZPLtgxxmMEHkiVx8ApPG63Sss6J9TqkT66DB9VWwfVZWQIr2qD8DeGijcLbMM8DuNsCRh/fprO9twyNdtKNZb6kLT1pvb2/NsikhGc+YA6QLFr9JKiT/JCyX6A8JYTpVltoAh8SoaAO+tp9yVZ5mxTtypu9YE/MZ4M1pvFpm9fLZoNxm7s7JyNb0wl9ZNRkx2yv1pG0CM79xvAKVg0oAd5YtM708Xuux7Vw5saOnt7QDcjxa9e9cPKJTAk5dX7rO67yp+otcPL6Uwfjb25bT+DgCAsfNYDvAuQjQQAEBHh+PHX7bsG2UCYNt0B5RQtk44iJhYa02aODqvYfzLv5DKVtIRxMGcURhoqHVfCrJCvnXaBXFfJx/9HD5oqARb6nn4NVxxUy3S8kzvKz7Bdfmuk1I3TpvKwkhvSipDgZgQkg6l/Uqg+0ozsbdabsiCaL0verZz9pDHm/GTyspny3PKPTMSTIdko58CdDNwl6U9Ph42XBUwSMwnn+XVEgbcDjSCys3yF+z48q4j9jukVHoORCrIOfs8ssrQY3lCD0jlrPS1gvg/S1flvORlux653wD8bY7adi2bUsGJk42oJCXEylN6mXbh/L4VWcpwJtvDys/OyCfARvCkQKXiylkmfkosGe2HvRA0bUdc/N8hqsarjw/w5AsOdR/ALEBzR9TVvVbdUpWAQ6lsMcR8Hjs2B8HiMoRbEB9Pjbv444gmPtBMesMUs9uuRitLGzbNiRJOK4mL6yy1pxvBE68T3c/DuzYQRQBbSpQfOGbUOwOCO/v7wgh4MePuM3kdr9nIG/NOVw3mlWsz8N2ue75Wb6G3iXmVxFj+Z+wrd7HLTTSpMQT1ss55CmHqmaKzev1m1hrm+u37agf6z7BKxx1HfEfkkUvBr1t1w5QM/SION6lbSVpPtp3HNU2qvJScjmZxAbcuY01eSHklI2U+MW5ahqzbNkpgvOiWLX7rC09o+UEKXV/+TKgO/m+AFwFkuLAPw+4q7RzB0X1yflaYeX3PPQm4P6sbmcY+l/Fjlt5jPQagYvPBBsNcNSToXe4pyW5I+31lm+Es/B3XtLmywZutxu882mbiUsvXrYAlY/AcvFL01d7XEjWgdLRaOmKYX4FU05ynJO8ivkV0oCji83l8KK2dgDo+bL9HoD87ORzVccz8ezJv312hdDQYc6w3ByOEJ3Ox77j/f0Dh9j+ZeXx48ePBLj5Wfm9vAs0zpPDcppWfmdWI2erE7ZT6SJznX5nZwK3A799fMDtiUkua2EV0xZCSERAwI8fPxCcwyHsAhEZQK0AyQLMnfjH6Zd69ZuHPOBACxEh7AGPxwe8dwkg6jptWdmYVLuqV6yl1f5IBFwrs/k3s/PVPQjMtnO+dV5Sp1NDtSL36lNmGHDvCWwHsQor++Ltdqu2PVZ1Kdoi3qZ5DXtYeucxLHTuAW6gvcTobN51zyuyOpOcWb2YhZoRg5zXSn5fBHTXA40NS97fRKmw4tg2q7NNQS4Gw5rGb6Sa6XUm2l5nsFhky7ifXRI+I1dY588GEivprrL6OZyLwPuGCFTpdsP9dovXy4uXLeWLKwAah+922+ILUJw2T/iyByU7G+14Wt5Wv/PNlY2TB4gXxwLI8eQpQXfssXLv+SmD06m/nEafLJmu8uRQrpwAM9TLtX/n8IT6gs8n+vm3RPkVLHuvb/UmqrgtIY6TPRA+PqLT2bZ37H3ee/z48SPvqZYrQbUO8cXAnn5yvPeOOdRAbeakjMC5tCvsZADMWicg7By2zcNtDvBxfD/wgX2P52xHnOmyQ5/HV14heOQ8mBWVZWMM6Fx9KkT83Vc6NvVBaEB300YOuN/fMuCOeavLeXr1ofKt4+q6HwNu3Q66jfT56X3IJ+sn6j8D9dlG8vdsz8pFPkzs7I9HxW7L/sbtJ1+UdaLNKJRyxNVYW5/LwrqIRyMiTdbzyOm8IjOrdSVdE+Bbtqtk0oT9MwLdRfRJJgx+pAcOPNeYet4fNrBzU+AxYpR6hl2z2xxntVxW/F6YXv5X8tXp/CoZsU89xyX+ycc7OTgXjVq43arLB/S+b/7uvcd+7LgdWz6mSZ6RXetR2CRmqs1ek4ClnnzipEy5g+ZlXPDJAfbpASuidc1MCdOCDUNfGI8pQwDJw60oEyNZxbB68q9e4XmFzJjT30t0+1+2oZM26TKj6vtBhI+PD3x8fFRpMeCJoLQG3KI04N7JK1R8ZjE/lypInXrn3I/qw7KRK/WoQTfDtMi0ljO3PTncNsKPt3u89t07PB6IwJudb0qAHcjf932POgjbkJ3zXJ/FNhV9y7sizXyQx7+9950/N79hc4qNbdmspk5qtr36pcprlFIPQOk+roF+7wQWWYaSf9yuNJZ04ovsu0wacP4Jx+wfH/lUHqkDr2DKfy45Ww7xZA9KAOj3PtlohdVe0W1E8pzJ/4rMbHEPE66Sol8IdNeL6fr85Vd3sjUGrw4PEWd1Cu0ZZsvon5VXTuSfzSq+Iu0eeLEGg8XaIIFXh8Is8LYT64XLuIxblq75FjANvp0rW0J8YrmDyNjlqZYfCeZN/It6Exw8vJj6AJffXn+FzEHgBQcs1e+ombt5kv23bs+psTzhsK7IM6C05xR+tljO6RlweVZW7IYFWwLF685/++23rJNOZ9s2vL39zIBbsrfaArvEAhdypj75R+tc4oxf0Jef+f4IQXisxs2gOzkUkcF0xcEGpZW5LQOtm/fY9wc+9h0B0RYx88mcJBGwh4CQrpffti2e53275Vsg+/rp/ejRih1HSGNZEhgFVOa2cKgaN6YV4Fx95rn8nZls58RFZY7T71NgJH6pXC8DwPfmCE2YlLDSUUuWnGSOJWyMSuJ8eJ+MnyaCSpw9rWTK4xelTvrs7ey/OFcOj0wPo2MZJUwdgvOiHRet74xMPCNWa3+GpYzm4uROhg6ZIL51o34h0F2Eh4AE3c2PZ1Gzkb6WGevdDHznajpFPuc4HaaA//7sCblngP4o7NtZGQ3sIdBxzI3FCc57n2+53LYtA2+53SSyFGXC3fcd+37ELScpXnX9tCORV9kvGGo1aiHCfhz5sh4O46qw8Vxaf9KojUTX1Wc7XUtCA5Zrot8M/FxSR4CrmfyRxpNuW4vZq1nlT9TBiQ1Soo5CCPh4f4+6wAbdzjnc77fmZcb0a2YD65/itgzvxUrXBCCM2tlckeowplYcANmpbph6FwEn14EHnxLi4d0G2hzeHcW97gEgjwgeRFqBCDjKqvA9rQx754BtS3VbQHopS8y71KM4M5qo2YrCeea5Q5SBJcQB3JlDC+AGJHjkuiqAt+mvcNW8a8ChpH/UIp4FXjPJGki28dITChXeaphzAPEUcqFJAhRs72U/eXx84PHx0bzE75zL7w5FwO2q/uqcz23H+fPLw4xUzlqbGRFgOYo6rjVOL4noJzmXSbqzFbZePquSx9Q0yT8bppu7Eb9K1m4x+Sy2ewa2e3FZRlr1dB4xJRZDcKnDdUQa0M8ECr8nELHrFRkQ83zhyWFLrPeebgNjZruacEPahxr2fHkT7/muzlB19bRQ9630jevFOcFw94xZnABBrdFuy8dpNbUxrqwXSCSAfn/g/spxclZW8vvV+mk789mAW9qVIPKQORFRPs6z0oPHp+OXyeTeVpQwJSGRMAGIgCmGDbD6/QpD1wMk0m5Wx4sOHMX8spn4x+XRqkSyOb4gucU9JnD+B/zm8fHxgX0/4oUqR9JHOjFUwPu274Bz2IB4tGL0ePLMSgAoX8BVQGcA8pGGm6uZblmGhNjjb7reKK1YS4CHtg+UOG3d2iIICRGkgOjCWOv+7UTn0ceyWqy3dA40u7s5nx3JnCaAvLJCcTvJcRwRcD8eTUnkVe6F7U81JeYPufrAThE/e2a1Ts5rjVOh0pX9/BX2gvtou47Q6x/n8UNlYydhz5ZpRZ8vAbolMCHEFye5K8ul/QakvoDtrn3HK8rXXrj8hGtB5xn2TMbpfb86EH5PcPJ7SVNMQnw31zlsBLh7XOLjPscvKcnVlhACHDmEIzqC+77D+wfeeEk37b0GubLPD7J/F2UYfFAohl5OjFLdzF5xOl2AS8NJ7pXSGM0FB7IbWaSxwrqvjKFf6fC9wsG0JqFemjPWSob5Pca3q4BJLe/v7/jtr/86OcECfTrAIZ4e9PPHPb7ADKi1IiCzo5BE1tyZsByQU+VR/3LOC+n4TtySfmRZmWll8BWZ8A0h3AA4HPser41XurEEIjyOI9crAbj5eD/koaiiFjjGtHxHx64w6KV4xC85B94KUwez5zF2YrgOWrHtXPns1b+c5e0tIzkHF/Ox+pDUk1CvOEpb7YD4ov6+V7eqyjbXLwWX/IvFL2NH6l3rMupxo7YbsdkaE9T6PY8z8rMLca7k05NRWVY27Hx9pltXADFsqC/KkbcJFsbyOel5WlenTis9a/C+cin/994W8KXBu+hDzsVLFzbvEILHscUXs44jRObCOOs7H0EVCO/hHY9tj3sqb1t6sckbR17WTEXs31RNgaDAB/XkcKsrPTG4PvNWu4W24X6mL51iKdjZ6aW1qMOv6G9XjHm9hH0yP07rpF7WOOwtDz8rI1Ar9alDRSC2J0ACRCDKrGFhkOOWEr+VPdkZglgAQekiy2mFvwK4Y7x4Ec8q4NZ1P3qBT4reCgEAt20D7g4eDzwoRCcdQCAgZAe72JW8WhcCtvsNx7bh5jz8tlXb1EKKLaGoNWc1AI2dFwCOeP+2KOsC6BuB2/I3G4l4XnlC8oDRH7JecEDeIsJ1IoPo/FiPeLg4M846/eIEtcSHi94C9n3HR7oNuZxb7kXf9pmcsZ0vST2m89mFHrULYZdpJGfYcauvnrEdnw2cr8bplWHkuq2mwfKHB91OfaabVwEFvHlJ/7NA5plKvyqvWp6ZpXl1YjkjI1ZTe8i/1xaTK+Kcw7bFyf/GV8vvO44j5OMGQwiVMQTEi7/HgWP3+QUZd7sJJk84jQAoIDuQsvNRmihkrelJu0w9rf4k9paPO7UIN4B5mnU3UijJYBGIxH0E5m8rYvW131OeWe69ms8fpew9kdpFMHjgr//6r7E/dsC1F5bwthIGJVbnlSBwhdEb/S2ftWm131erW+YhQdc4v7Y8/D2+O7Kld0k8tm3Hx76D9kOsacVRyvVDFNnrnQLu2w3ufoffNoDkC51l3rOcGHOucWVlV255i9H6d2r0VnxVqGT3ymqdz2eIjtuT933LdWeZR1X/6T/6t16fY8DdqxveTvL+/p7ZbY4nwbY8maQuels+1imk9uJJgzp95IyMVsbOpvd7ze2jfF0JlB7YhMMK5rtib//woBsYA7P6dsoKmUhb84eRVzFJo4GxZsC+HuD91TJyHPh37wHcNvjNYwse++4RjgP7ETL4lhJCwB4ig3QcR7xinhmmbRPhY+c99qMZ+brd6hc2cyCVEsqypBMGZQq8c8kzWyYHFE9/avqdMtsrzuGvkN97Jej3EC6ztZViVhcr21lWhPPn9EKgymHVPcg5h/v9jp8/f8J7PgXDDR25UbdesXvzOlkDkD3RoE4CYglweiRJHQZwbsOPHz9xux2gv/qrWJfsuCenwIl8juOITDTF90IK6CsjWusk9WCwt1jaPos4qa/cV+ARBDMdbVm0ZNYqcQamNdTu6uFc3KiUSfSEvpdsRPqZHZRcN8eR3wWS7wFxet57/Pz5M59jHn/LKTX1I9vg4DxaNV4mV9nrP6JNjdU6tl8zoL3aV0fyhwfd7Anml2rQst36wpJXbs3Quvwq6S39XmH8RhPsSppXgMmZOCvLsb+HrCw5O1cupSGKlxKEEHA/AvY9Mt97c8JONJTHceC3337L57AyAOczdXlitPRyIv98/bvBROiVophAweQdE9T9xRIdsrxxobVI4X9hGz+zunJ1Wfb37M+ybF0mTxMUi/KqsmjnKxDh8bGn68vT+wui6hlw//jxlm6UpGqSlMBbnwKxWoZZm2l7luefRSDZ63/StrQXtMz1FjkAKKd+vL29xVNRPnY470AhlCp1cQIlii+AH4HwQLRjt7xaHMsny15AbFUJ2aGv3PFK3XjaBuVoQ1gjyl+/tKjjxzwpl6XEK+EKmZnSG63YUWHQQe3NpFo0O84sPKfliPLebb7RWILtaPPvuN+3nEpvrjk79p5hpFcd79lK0rN46aWk4GTcP3siyWoY4AuAbjiHLb281vOq2WBJxrtq8Bex3a/w5J4BsM92wHbi+OMAXJar+o2A8bOyCtDkciFtwO0eEI6AxyMu9+bb7niyQDqDew/5Ep7b7YYt3Tg2AhCEaCi2xJADHYA9SqAJWPig5SgscridaIIRGL5quEerPZYD+5XZ7hE4m5XpM8vcG8eyzonijZOPxwPvv73jCEGs0NTn5cfldy/ixnT48hidNoNA7oyjssp+oevPql9KVGjdd+swWlYn7dmqZC63cZ+9BHT3+x3kHAI+ovP+eCB72xlcUh7Ux3Hg4/0djiidtsT1IdNWzjiPJZV/YaLri1oISHuvW4lq1TxjC2rVudAowS3nsvyc6qWxXspGQOgv7v+o09Rx+I/SPg5ASC/a58uJhH7btuVbJblPW/3PsoWyD+gy6zH3SoyyQkBa8a7ilmdtU6Nvm0HVkr3VhGfzteQPD7odENk/sTTDkv1sqi/LKQxubQyvSs+LzjpeYDtm6c8AyKgzj3771QBjBICuxP3VsuLV63aJnwBRZKD95uGPDcd+pNNIAkJiysDsCMWXyPbjAD4+cLvFoamNthQ+co2P8iKkg6nciM8RenMZ21KLEBfqv59w/HnSd5ey+KIg+RUyK/ls3PwR6i6u4gQ89gMfH498NCaAxmhHgBLByYgN5nQz+M7J9Y9UnbGYcgK20qgn6PFYGc0ZskyWPdFh5O9WU2+3G968h/M3fLy/A+EAKB1rShA7nBNTfBw4AHwg1vH97R7zcQ7e8UUvtb56fmVnxOqh7ABR/SSVoX5Wyifqvi1ijisdg+4cnf7jKptWh81bS1Ja3jnzxdVKe3ZgiMB7eR57BNxBAffagdzSsz7AfZbtXpWeU9yTESB/Fb6Q9Xam3N15Jf+hwPaJNK7ka8kfHnQD9ktiJMcOarbbYgFmbPfIIEoPc9XD6+UxA8Qy/2eYP477qgn2DFD+PeSzwfmMAeuFAxLzlAyu3+LybXXLJaWLI2ICcbk9neBQMTudvkPgKx/sbi4niJiQCCOTazD259Xpq5mMlXRHfeSZsfJZfd7SN4KHuVM16zNX8+fnPTu4kicDtoOoOsmBQZ4Eyz9+/MD9fgMQT/GR+ec8XLmzgYiql8murpRYcTnP+ML+OcDdE1lP8iCAGdMo9UnfTJLn7bbB0R2bIzz2B+gIkW1OTr/MJYQQz/s+DjyOA/cfb9j8BucjumaAy/+iXjHv9I01acGv/C51zGx7x57yP8vhUCBdgjS2iZx0dAVqPeu5NT115Wr1uh1awM35EAWEfY9ny++HqJuiH28BZIbbueLEWEBXr9rosuc66NRb+3zChHTynKU7sy2/gjSb5RHx4uts9My2xc9+/C8Duvl85JoRASA6uP73zPIKUAPXlYlkZWnlVzLNfwRGC/hjMNbPyrOgbHPxMoqb9zjSxP14PLA/dhxU+nVvctUgSk/WQLnuwyXgIbWtJrqeA6qeu2Yin3iunyCrDupqeJaZI91L62wfmKV9ZVyMNDgzMev8V4mDWdqr9RYC1YAbsYcx4Lmnk0qAem+uJGEylJD9YeAUj1hvqxyWTS+s79jxk208WzFbCWOz6xxf6Ux5swTutw2bf8PtFi/R+SBg34/ifBf0F7e7ATgCwcHj9iPur48rEzJPnnzl3OhY0cQA17YrXtbDRwiWq+AljJZlDATEk5o6zqchfAkQA3Xm3etjJQ2Qi+iC8E2bld4pTl4VkHGS4/jxeODYd1AocSW7zRek1cx5MPtYVc5lwG39PR/3Z0D0WcD9CrkK6rnduW9boc7aPhlHt5t0+mfyJUD3ll46iG9bq6Um56oabQvd0HeNnJ2onxWrsS2gb/2u9enpOgp7VVY6ac+IaF3PMOdn2uezZDYhropzDjfn4BPj8eE/8PjYgXTVu8xL59djL5u6dc7s9XK6rB5M9G3rv0nplIz69Jkw/Psfxbl8Rq4w92fS6aV1Jv3ZeKuATmfc8tg/EquqXxRmwM0gJcZBuga7BSAOZcIDAOd9E0b3kTN2vN+/GGQWEKfz7UkPvKyALyseUI+VnF6MCOcA77d06gtA4RHZ2RBAcFWbeQAHxXYIISTmlqq9x0UX43ZHke/IbkeHK2558S7eWRD9pZiCPsW9qouYCrQBo+Q0yFpxbAuzLvY2IaBcQ++ceB/AxTbWV9hzGnxJWly1bO11vDn1zQTbo35zBgfIdmhtcnZLm7LL9GZzzqqMnISzcpWQyDkbgFuvJqySBvp3DqPfI1wp95cA3ewtMtvdVEl21G2mOzvhC2yDzpef9wDPs9Jjwq2JYiQzAP5qcLIKwKWMPOUzDsRIp2EZLX9sIlZbPCOcnncO2Db8+PEjvsl+UH6ZUp7luiLZCCTAncGPE2y3YnX6iaGpl77Bv95OK2HYiD0z3n4FG/NZMhtXfyRnI9vd8qD5Xf79/v5hHqHGTHbFZjsN9uo+SUQ5vMzVAgA9pmr2m0xTAjgZbzaB94BVT1bbN6bTC18gaH7BMkTedt+B40jgL8Un54C0ArHvOxyAG3k4J68k789LLha6A0C4vhAvFaMA7zy838zwWfNcT8w4owLSOl6+fIdtIkp35GveNRtN0KekiL3aAqzK9grCcSRxgRmnyYCbnceSTv1CrFn2CeCuw1dQczDPjvualafOV4adyVnb+8w8K50+/uR5sAe6z2IO3Qf4kim2V3Jb86gYf3jQzR1Sst2NQUesZPY6QgjxWviaAq/A+Qrzodlnqc9qh1oNa4UbGewR8/0KAHtGLOM3qs9RGs/mv+IMlIjq+yD4uQlwvSz5YoQjsjT84uTHx8dSvkQRrOelS8QlVu8Kg9XEyf8prJT4pSuVLitFZMv3om0pZ8Fmw/wZ4+P3Bq4jp27Mbtn1keOgbqJXlHKmD1wEKb28CPGWxI9H3P8q0+Q+4r3D7balowF560kLyrIO6cX5Oq2kjtQLbX8wdVTAW4/nno0+Q4qclZ7tr9udp8XWMZbhvPNxy47j8qXzo1PUPFKJ0qUuO4B4WyU7RKZOIp4FFpPGOXS0V/e8nSPWdwlDbcqlrBCmRUm+TbNZ6o9MejxSsQbHkZyIV9THHCuYVv4ShF4IAb/99lsEXfB5Kx6DLz6hpFxfT6ktkB0kWZ8jaec0WQNrhNcZgmQ0h/XIxxV80pMV9nmka/OsJNasTJydO0Y2j7cNTe2ikj886M7ero/G4jgOhH0X+6qih8knQMijAx05wFGySNzbU7wOaF1lifUEMGrMFRA8S+OsZ9mbiD5TJEu/ElbKWZbICqPD9+u0AzJJsiu1bmeMyKi9Kx2pMHNxLogvjgHFi9bp8XfWiYgyQAfES8ccRoAwmT+lQsZzCcREs9pdTnerXLPrMRadVfkp41nt1nO2teFc6W+vAFJnyti1Hb2IVFjBIfUyybckN64bmY8OQQnEfTx2vL8Xh7KUKW6DuN9v1bn3EhjpOLzdUDPjDPy57Jn1GpRPAir5mwThvfLbrO41maU1Yh3taPphZGCdRwZ9e3oB8AglHZ5Tow0i/Pb+jntibm/pLgHJIjrZ15SuxH8Lm6zLKZ2vGB5w+eUTEmVz+djBnp1tTw2J21dy+lQfxRrjahjvUv7x3QPZ5z4+Hnk10jvJbpYbU2+3m1qtqWtn1M7c16z6YdAd1TkDuK+BYCkjDHRVVvHWlXSr1jwJtrUuFvHaizOTPzzoBhABBJBvzAohXrltWRnJdrsEtp2jpn+OgNRocpkB8HlRznlFPd1m+Z/17F4lVwfMKtix6v7/z96fxMyWbOmC0Lds7+3u/+miuXFvZt53M/O9RO/R1QwJMURiwgAJJiCYwKCkkhBSMaxixKikGjEBCakGqKgBTc1gQAkJJMSERkxhhPTyvcq6mTduxIk4zf97s/e2xcBsmS2zbbYbd/9PnHMfK+I/7r4b65tvfbZs2eqyDOOqno5DDKUPCPmyFXjr9AGV+iZ27dM9GO0q1eE4cwBHGCI5ZKfv++SgnbZpwMZMchmLYbrh8m5yXfMuB5Wxj8AUPGupAeg5NrkW5z37z1L7WcOWTiYFF3AyFpJc+5SiwLZumyLMbhXnfL4UlUkHWExyumqp/W9SfvV7M2FowF1S4hPGljkF+Fiut9pkPUnvCkWvdG+tIijAlwgwMJ6J9QqOZVgeYYL5hgeccAfowM+pIHenVXlhdvdlPAn1pssNACdgGAC0SUaazmk2fBkWykW7Cpa6cW2IFLMtadFH009bSE66SNYAt/k0tl9hyGNYbesOu2maVpmUuFAljDmSYJJjBfjiO59uvBKpERVLci2ReG0enmMeW+rnNaVhroi+DNDtRTRJsTeTa0DsMgK4x3F0HZCpWhu6AS1pXPfQvvK4P4XcO93XxrllYri6092Uz8i06A/ddjS7vDW+IusKmXzksJwYrQCTubiIov024NhxIgp24V3Xub8mLs8Hxlt9RriEKVi7Y9MRgLim3PJ+eS2bOAe0r1G6S8+teXbp/dLvtYCzyjAK+/gJ+v9EhWWBbgyws+E9Xy5u8xymZhtNY7Df79G2bbFc87E4PKPBX3ZP3mGObgT1fe1eNgevQt5o8FRqg2vaSE1ZrIWj070GtKxpr6kyofPC6LoGzBYMfzS8f85KuRHAcL68T6cThmEIR5cnLKCwizLOSPqycpB4pdbyZOtxqqS967KR0x61XW0Ep3k7K7OYKmR1z32XdiDstnUuVZK2bvwq/H7vAHeyIZPZ57EM3uYA7BbFri7XKd/3YJrlc67NX0s+1iQQSioOnZ6arCUz83dquHFOvhjQLQWgO1dgs9W0I6A7senKZyV8+sZwL8nT9qkB9T0kn0CvFT34LrEFa9JUvwk38dy9TWSDMeCWTv3pqwQkbIoWMsYtrSO6yZJyEN/HoS+0LTrxBpFMaPH424wnDem7XRIK67oQKLJKuiuHqXRDf1ia/J6r788N6ktMph7LimcW5O/ECJKNRdekc+3EX8qLwyeuPM997w6G4mkZN35DsbaPXJs2omhCBfbeK/yR5xrk6Te1P+xSHKLwiomAjq9Yj1jXU2pK1BwIm0unfK4b49JeI4/L5koHFCOpID6uGfrwFwTC63w+hxW1kE4XoBtjdD58vRBR2K44l1xNJCzN0bKyl4D/hNmOgLvkos+1xwiyOZRQHE8vl96dm+DblU6DMYTdbofdrpv0zVqrWJqv9L3U5jvmiyrzUXksXDeeXUOGlN57LnwyF+5kTlip2CyB7TkCUZ8YvSWfXwzoFiGKnkzSApOlKk4AhywzlcpkrZZZe++XArxfAtBeC3ZLE85SJ8mBwFpGqAaytsq1bHxpsC0BJtksHPgaBRrkxEkBVOxBRimN2hvK4FnvpmnQ+IlRnpOTLUu2kveUW8NN2FQFKEO7QVo3tfiWQPW92sS9wLuMZaV8FfiEIGvzcY90pkxqXF4dhgF93+NyuRQBpYA+DbgDO11QqPUzOn+ieNoMGJXeK6c3gh0N4kqiFRnpg0ChL6s85IBsLRBYSwzNpVeFrFKZmi20rcuNnB9wHoaw+kaFspITFwFXXrIqoBlunZdS2pL+rFOp6mIpT1OgS7MrP+EpVX7M6ru6PgyD807ivbjkilvTGOx2XUFZ1OYFZSW2RBjl7TCGSWC+376BWyQvy7n5d2t67zF+rnljLeu9pBhdiyG+CNCtK1YGMPFkkrCmGfAWrw6iyd67zf7S4HutfA7M+DUM4q3pLtbPWlpqRvTEvTSRTjRyDRRUksI1Zlz8hNY0TZyYQht3O/RlZ7y1FuSZbfnLRTZlDsMQQI68r9NOPmzNDtXy8dxSG8wnAzOuZ3GX4p/7vTW8a0SDNjFz0OAqxK/TUQBfW2ru1jFNtx1rHThzAG0arjHOpMT5MY4rGXpC08AkbxN68tPg1hCFMhFQZlX6NCs6Aa7uS1LOIc3Z83pCYX9wG1WODddxiGhFSudHvk8BZTmsGuCutc9S+ogMui6yxiMzeIxsnl5vC2VuGXa0aBqDbrebAMq61O9ZngczyRU1JkLiJLitMgVTkrIo0ItoH973fXQJp+KSvug2SzZoGjPJr0v3dWODzrsG3bXn7i21OTfvK/r+mrGyJveaV2qlsYbIy+/X8in3SmWRPz+Xrc8edOdp16A7+O0ugB+x8xrHEUQtQj+oFMY1oFDHp8P5/8v18hyDSVETDz85/k7mU0rvu4spwFkbfynayn1rxyJwJuZk4BfAwszoxhGDZ7THccRYOBlLJhPpM33fB4ZRezypsRabwVgozy2wOAtiRVy62jRoW2TIMB2oQzjq3SXQ89zAO5/YcsC0pmRrbGIe3r1IBAlrGNzBIbE+JA8uVV3XeT/15Lz38HoXXyW2KWyii5HEcgOCfbsG3lrCr8J1ed8U3g9pUWHk4EmeFTJICCHtqUVL6vlie38sMfn6d97G5bfbWLkHjAF7+21mBljALKIC5e31iQh2HMGZPb4OX1h2qfslmbRzKT9M+3k692eMdAivFK9J9rZYa9EPA06nU1pGlJ4sKWOm26Q5rYe1qxilPOd7CG4bO/XKRl3uMYbNKZr3jG/L2LQGcM/1E62cb4l76bnPHnQDkenTmdege/IwR+Atz97qo2Ftgd8ycc1pWP+qyKcAMsKGpL/dxWrUfkYVWzHamMYS8CYgnEIJuAlj6N0kJ4xZCRgQUVjSDD5hOZqTjOOIfhjchIm0XWn74HEcw8l/bdsGs5PAgHsgBOhBdYJJVub+xv5XCnVhMF3qP5rBBKbT0xpA8ykkZ3pL92+ROeZmqRxL77mx122cTO87BsiNyS0eHh6Cb3korxI5Gz0nJUZavyEtb6Jg6QmZ49EoXMhrifjJfxu/KlV6TgMSMffKvbTUwq+VfX69xtSVlJN5YVBD2NEOlhlnwCnxo5UAJ88P4+Btv+G8JrURVjhg6tPM8R0p1URRQawnvXoxaQfZ7xRcqfjyrJGsppD781oEEwXA3fd9KCfmuK8meITy464rRvbj4XL/y+u4zGgjXLsWuN9L1ioRufKZy9y4Iu+vGdO24i/9u9a/an2muMJSSGdpbFyTzi8CdEMaPwAbNPLot3uixfuuxZx6MhG33dfM/2sm8Vuer4Uh8qcAwK/JQ43luVapiexFHlF+eX5gY3I20KuWrSgNNXmDhYGLYEWD7kISA9hO7hEF5lpYtKFpwhKpZZ4cMy8bLmVFqG1btCZ12xYnRN+vqDyQrpnMszcWnl8brg89m5RXha2eLw0La4DKHPi5VfLJYUu7n6ujkhK2RkFZy2IxczgaO74fn2ka5++5uJqE6USuFY4a86S/W31fGGj13nS+mCayBDpmgRNi3y6N2zofbuNiGaiU2tOtbUzHPfOULyOCAQEGOPjNrX3f43Q8OrxtRRf3z3vgKXUtDH1kbJ3L3gk4VeOiZptLedRlpRWZOWVR6iRvW85mO16X+pK9BzmJJwTHbrcL9eaalQ35rZZoBYTm7feWPv0pRPe9mpTaWK2/6O9LffkahWbp+pyUxp48rFwhzNuke6Yex5cBupUI6y1Lc8aYsJyeV5AGFE3TwDRmcePRL9Wwl+K/BwD/VMD91njuVQ9rmMrYYXxHKdFi8qy8r8NYySDpuxxei8y67uByomQtXH0qXEnTbtsGTdtgz/uwia3ve5AH36zSzcwYvenJMAwRdOsDHoCwUuSi84WVzKELjOQsyE7Z0DmZA8cxJPfUJuWM45vAEtCeT2sODkrpTMOrM0VL4W+ROWZnKbxpGSNpQ1qE6CiLBzFt47e8cQDGwkQiK4+8DPPy0mxoPlHm92p5cimL+UsUkxngm1wPg8hUtozfa8atpffLY1x5TCm1VwOEUygJAPvxYRhGYHRmIuQPngvjlrU4n89g5rBpW8gEQPUtF1F146mkYwnkTctE29LabKzwHsg5th1HcviN5p6cyNvOwe85SDfXchZXWXIFsdTntBnRNE+3zPMryKArwi29lysqS0qq/p3X85qxqBbeXLpr12vESj5e1OqvBLiX5IsD3VpM04CaBrA2LvsDEOs60ci183znQvN2UChyTeNdYjfWvP85M9/Xpm+uE6x979rnUqZ0RZyIAHApzROQOPkCzxapjZCKCcolHPleuu9BMcG9vtvt0HggrTcH5WETOy8og+8vsjkz2i8ayMncLt46wCiVX3Y+GMrcclYooPS95FZtogrz6maTshrTdo2U+sDWceMeivYaWZo4iuA33gzPyFh7uVwwereXqRJDYROvC4ohpoCaLa6lr8Q2TdLF0eXfmvIPTHcNVBfSUlJe1tZP6bka6FoC3/OKYd27ScrI1T1PyD1x6cjMGMYRZISgyEA8iy2/G2NcXbceoFMKurO85GWxxJjW6j9vQXGNPMYsbUSz23mdNk2Dw+GAXXay5DSd8315DqxphbCUT3etOg3MCGefMV+rQ1jRduS5kiK8FG8OWvX1NelZI9fgtFK/0H2hFHa5/9Tj+DJBty8YQ4TGGIzGuNOuEIGQTNd685hj7Wi2IS919rwCagzItuyUJ49SmvK0bI3ncwbrwHbWb43oeluKezFemaSBBCRsmXxFMUxAHtTJapU8ANFP/eyEG/5x7bxtDYzZo2vbYOstG9zCO2ritMyAtbDjCNu2gfVuvGeI2oAZSiPFzSvEl+Tk2XwCjZ+RLbu9nSzV+dZ+U2NW1zB3tfC2ylJbro0pcxLu63fJjacMt2JyPl+82RJPlJi2bRPTCqAAnigqc2sZXwFRGowJizgXTszCjHtAorDqNCepPlifE/LxLZ+8l0BL7Xue5rl7+ftFZtWPAzqdbduCAfTDAOvdmjLgzFF8T2RrMTJjJGFyKXj4kHDDqZWV9OkyykHd9Ln4bHxESDdBAukc4I5yv8RNokjrw/nddif6NibGUYqnyjtU6iAHcnVWeDvxhMrGydX9GuviLLXhvM5q723J01y618zlc8+ueX8ZWE+xypr8fZmg24to4eRPpxRxnUw8FGQuXmoEWyX8GvCee+daWcXCzqTtGhB+y/vPIVs00jUTVu35W6WkCa+Op5LOUa/IoFwfOeie5JvhmN4sfW6PZANDhNYz5YH1zvKlP/u+B6nNX8J8t02jPAOkTFIaoMdRa8DxTN8s120E6vndIsuttCR2gRbjKU0q5XqdJjhvC8w8a/dZeu+LEVexYACjBc6XHpd+mD7C8BvROgfAsmDWjHtLILIEuNeA7UrEZe82hbkgT4MOe43SswYc6/jmxpdr249WgjSIdXbL7rcxJtg1n85nDH2PcRhUIbn8Wq+AgRgXfwJp17VqA6Ia27Lyy9lfrUzlSpTLqwBiDYRVVhDJDQlPCAcNuEWMMTjs986dqh8zk8A27EMpgekcCGpFIAXg87bipfBKgHtNe9iKb+bCkfqStEk4pf1HtfTdm2yrKTVL6ViL8a5J7xcJukOH9QCi8XbbubCfEbQPYyJnZ7YFfJfklsa5RjSLujb+LWl67gn+3iD3HnKvNOUAeync2sCbM+XWWrc/AZiwa3k8tfqXcGXDo7CHRIAzwTQw7LwtSJ+YnGBpU08SPI6wHL2jGGNguy4sva6RW70H5XkuKV3LaUAwPWHO+hen7ur05B9e3sCq/1IgegvQK7Gt18Y5DD2GoQcFD0BRETOG0XUtmkZWSqbpqk2AS/kpgZYlRm1WOZe2L+CwkqZcIZCVlzmp5XNLW64phKVw5t6rAx5/X4E4It8f2MAyY9e2aAAMRLAjZ3Nv1GqtHTEM7mxLyXsgDZBOwaU6K9Vpmm4JYWpqIhu/2ffrku227udtY+KpqBCSQoN7nS4gnrKQlm+tbEv5mrqGdS3OGIIcJV+TLYrXGqiz1G6WJDfpWsMUXytzSrrUWW4ylMd/a35L6dB5n5MvDnTnYFS8mAxj2b8xEAGNHDgCdktca4p36+RZqujNE7AGT9gy1W+XZTbvPmHr3yKfAygvMZtLktfnFsBdiiMcuczpyYMlaQs2hjrccJ0dC2ytdawNUWjzAsTFw4BWSpk5sf0OYVsLi3igR9/3GP0yrDEGzSyzuKRC1mWJDakO7JXogkLin1mqc1dWpVDqU1mpL9WYy2J8d5Q14V3d79kB7HgATpx4g65ChK5r0XXSboF8C12JldbARDOga/K1tj8LqM7j3BJHeDe7X5sH8mdKwHKpLvJ0LqW3pLDre/G9WG9gsYbmoIBIi+/aFl3buuPRL32sqxwQczwgCQD2+31MJ9HkpEudVvmds9tpWy0rMO4OYUT0Xtb3vfMljnTjX0Nun4E7xt3tNSGSsgiF4eMq4wuJd05pkDxockOXv/uLB2DNSR1wZ79nQ5kPa4to5WVt+LcQEiWFU0S82V2TpqU0rhlX1oT92YNuvWiis6On8cZrzwnoJmmEnIAKB7zXsXMhqApYWsNwXsV4ESU9qAS+rwX0n4KBXgLbS89/almb3hpwuibdrv2SUGkewBRsFyEAMW5q2qqlC6CHn+wkXIlBwpQJTjZduuVhBbw1Q0OEsz88o9vtkg1HOfs9Hbx0yvLEcunBalhVkS6UTHqFxwqTeQlo0+Tbcp1vYb/Cc6tCno9zDVt8EwsvbCmAYRxwuZycVwvocck9agyVTQtmg3ebekvMNen2K+MkTT2UzDHJAcj5dzUpo+NYXxzLZZm3Bf3O0kE4eVy6veZj19LYMAe4gejeD4irbcIWy1hgvJ3zrutCFx7HEaMH6mGsUaadYs7hDkNStvbFcY9CuczVo7tmwzwvYToFwN0bxxFD34P9XhmtGMjJvvt9F46y12WcjmP1PqXLdq7+ErCfjeOO2d4CtidqXnKthpvuKUtE3XMQeHPXtMOMmnnZ0rXS+FF7L7+/Nr+fPegG9CKSEtGUSS1ZzQBQPbC6o4JRCvX+aS8wXjdNeJg2gHtqq/eUJTCdx7lWSVlidGrXS0yEDm+tcpC/s7nsiNzpbgRn8oH4Zwp5IMCx1Bm4mI3TT3oCdHxiXWsXUMmRdTTGs1wMkLf5NsYE4B1sK7OwxLaz94dHmLZFo5SDctmX+12uXIZy4PTunBJcCnFWmQnFNQUtzzFZzbWxtatv9457M8j0YVl2drvOvCAvY/arkE3YQ0CF/E3qhTkwkiC3Ub6WxuSAqgx0yzt5nqMLTJWPymRdHbckHxrkQ7XQCrBdYr9L37fW2RJTr/vj9L4oHdNwh2HwSn/r43FAsfFmavK2mJqw/OfTI9elvYhLQbGdb8jA7cJKR4FcsYjlkuQ65sCflqmPc4cyJxHQ3XUdHsR+26TKTF5OS6Kfk7KYq+s1CtI6IkorJPWnnnNMeS6ibEnZ0vf0fJgrMzUCokagld6Zk7lwavL5g241qAFZA/KasmzsKm2OkMEwX0JnFtvC+wLvGtO0uXHmz98I1KfBTw+buHfYIs8J6PN459JUe3+rVps/W5rs8/sSjwAPIWeSe8AsE1gE+hyZvlScVSOQegnQrLm+4ey94zUGYMgtuQ7DGJZpB79pOS+/YRgwejdhjTf5EoaTfToj6PKahi4znU8Jnyjpmq67zk9YaRHUvQuUZAK4k6FhneJYCmtuMA91uiJN9+6nefhrxEo6mDF4s5KiUkMUTvAz3uvNUnySv0CgqGeFcxwRayIAZ/dyMV/6U96zzOFgKwFJtVWakDYXSEijhBHiU3nIQS1X4srTuiS1NpUDxKXxtgy45wFHq/ZvuLHKMQbGGAdcmwbwwHwYBtffOfUuJG76xATAAV4Do1jeuTZez5P3oKMAvoxVrOpJvLHsdjscDgefp9jJS0B7SYnRoutYnl/DgLr75c2GlZgWr1H2eYusUwCukxJW0J+1eCdzaqGc87BKBN9cvLW4a/c0Dpgbqj9/0I20gDSjAMSMF4+F9/1JNlRKp0gYNKozpFrm2LXShCP3Ss9fJQKwVsRfi2ftoFyTaxrkpwLcc9evDX8WIKA89AlgrB3xPA0lnbAX2yJz4IOWSlVAasJQ53FJWIU5mAxh17XYdS1Gy+j7AcaYYL+bD1psLS7nc3im6zo0XefSQs7MAD5OacuyWqXzl3wPwDvv+ct1vbY1TAHQuje3MCPPAZhrcg2IWyNx3HRK1ul8Lp7gJ/ts5NTJJWYvfz88V2sXlbTJn171TNookLCe8lfze18bQ0vsuaTVApO+nzOoOqy5/KwRrSiUGOG5dNfiLIGTRIGAyy7BoGmcMwPLjLZpcPHzVD/EOTYH3kQUVtCMabDvdkCDqkzLSU6FjFesHZPNkprgQDBzQWiXNfMDXZZ6P8GSlJSt55Xl9lFKxVaC6bnGrRwjzZFgc2lKx5YwkyZ9rvbeNUC7Ft6a6yJfBOjOxXX6ePgNkVuGbJtmciy8Fr2JIel0vB54b5F7d75bO8gWVm5rfEvs7Jrw5mRN/dw7vNUKQzIDLCsbLt60zHOvIRPWFQiMUmC4k4nFh4X6cBzyu0IhykFLYwjwx8x3XRcYq9LBEnpp17QtyBh0rRtqnHeAOBEH5h0516MTAwS3I1IeSbrjYLtWOISr39N55vTZO7e94vWV7+es5lyYW9OwInKM44jT+YxxHCf9W5Srzitb16RJg/u0V8VrCTBXE6yYRUk4CRDV8WxUBiai4tPvG1EqkY4xCUtcIWmSvK+Ua8bXGrgusX+slOIAuCHlBm+m6QC45HewFsM4AkwwZFJTEz/0jcxgHmEMozVNAdwDaX+u93cZa0qnSsJvjGwag323RytmLaHe2A+ludu+uqvPHNBJmkunS86Vf5qf64DfFpljfj8XWUtsRkn9tQN2Uj9AnVGfhDajeJfG3Fp65+r/iwDdaxqH9mIyNTORzsWZiYlfJjMxni0MQ03mwOi9weO1cm92rqZFym95Zgn0l97fmpZnlRq9rSYLAgAuT761gHS71MH6ANAag4NnaOYO65DhJwHfOS20IMWy9hMXc+xrehk3V3Zlgh4Gx44LMBrH0S3rNtng5tNJMTpdAsmDTNM7Ls/zLHWm6lSfYKnETJGaPs2glVB5aQzbOv2t7Q9blOg1YTCctxLtJk4ALZE/cdKfghoUt6tijTUkbSkoP/l4IWnIGVkFJMWDT+iniORNaBcl1k2lg1S4lhlNBtwlneHdArgpMaFrxrqagrAmvNq9EjCZJwpkqtTvyaF0BiB3SvRut3Ms8UC+ndjQVwgUXrf+1NK+74OZSmqTmwLtfBhjdnsKaqdKEgDTUPC9DdNO2onGBnkZlMq8Bqjytlcqu5rkTXpaB/W545p58dOx8fNSY5pzqSuHUpfGX3d+wOaA8tp45tKbp0VE5nCHP+uebr4I0F0aaEU0oGmbpsh2a5+dqc/u65bhaizTdi3t08svkZ4SMwf88pq2rutSva9OX625BASeXpo+lvu6nZaZZmdqk+ykLWdJE4ZcKwNrJegVHqQY06BpDMaxQds2GIYxYb91ecqEKK672rZFJwelkDr0opSuYtmyHxL0YBwDCKxZCHQmn/pWYNdoWnc6SVKJ7MeWz6h/a7mHopoD0FEdnR1ACRDs+MWmfw64FOOJEYbf+YSWtFsVNyg7NdJRlwnYJmPSsNfmX8eppGqnngFvkS3AuJgO3uatpCTXtNMJCy+KFLm2z96TEbwiLN5qxD2gtRZsE14iUaYsR5eCzKl3EymiHCADCKdK5h6WktUNQ3g4HLyZk2zIRUhrzGN6gMvWMr0WbF+ham98PovthnHqXmPcNWNSvgIR277ct/7vOmyRK8U6rhLGy+tbgHZpT2FJvgzQXZAcPMrk3fqjrnMtxA20DEpcB/plLZZB/DoAtgS2S2m9J3P7uQL7z4adnpE15Zayz5R8k2m8GorHcHrZ1GY6ZN65S/UpdqPCtq1hTpPSF5oogNFt7SXGx2ECZQDUECw5P937nTM7uVx6d7om0t38WukdhsEdLd80DoAb4xnslOUK7CY49lGW7KjNpCCwZYBUrglIaHFGOK2zJIK5SYB6pEBDGQgWZ3AMf0MZXgO2rnnu3uOBtRb9MODs7bhz5a9pmgJTOU1fAuLyZ9TnJN8eNBthKmWMAZL9Dfo9AwWKZgBRfj/0VR9uPpcEtrQQni3kswa4ayBhC4grjQUagNakFPcaRlcDDSl3Vw/WbVQEgYwzhRNFm9kCLD7AhQFUG1utdWPGaGEtY7/fTfxz6zxZa3E+n4MnlFK/MsbgxWGv9hWEHCQjd2nOr5EYeXmVynKNuMfL5k31sBn61pcwt2qppXepjYYVYESMB2h1Zfp+qd5qfaqmvE7wY/Zd0iarvdOTU+vj7xcLumtiiIIboxrbPY5jBNwykZIwXO5p5ya/XOhrlyE+NRj+3IDu2nK6RxlNGJkNsuX5uEwqrUNP+ZNUQUCie1f+VYdQoDypxyf9JN80yZJ4LR8lttvf1ClKx6oNxV9XSF3cXdeiaRuMI4MuF5zP58mApfdWtN7WG10HZuMPqIhMRsJKcgT85cTFr6Escu0j0Gfl1zWzyczqQvrgFud+WwDVL7EKpWWyeuCfCQeMVE6eE281DDiXeiv6lDCnybUsTdL+AQDGJOHatXFM8pUxWJVwpD3I81rRKAHuGtlQAtk1WVv/uZK+9O4cgF4CHHPvGSJ3Wq31R8b7/uuAdwtjXuB0ekLfX9xpu2ocAij2b8uwPGIcnjAMAx4eDuHwLg24nVJ/SdqipEmUwa7r8PBwwK5rq4ZhpTzlY3A+ntZAWKkMS+Wlnq4+W35+/vo95FqWeGvYc9fz8h2FINX1QBTGjFJ/u3XlR9pBrb/IWDgxU/Zgu2kavyr9JYNuVcj1R9INK40xGGrABGnBOQYx3k3CBSmgpMJYySDI7xp7WcvLlnhKzy+F8SmUgS0govTsXRSIbWPdelHMqY6qDL8TJOiviDs/uTw/yekTHyWe1VIId/L+JNACcA+0XxZWgZE3AEwDUNOA4H38woEkAUp6EpWJVLOlYk5TikNUkul1B7K3KL0JCKYMW2dtcG7y+NTKtU5PDcjfKTZfT9FdpLC85Mfmnd9g629OQtDlw/qafPe/hR/SbLHEUWh6VdH9Sb6XznFYAkqM6GZOs9s5y62FXMBJOPqzxqzl1+aVofXtrRTOrW1V3tc28sEkxP9LRDBtg641aMwDHp8Y7IFyxMocNOsAdsC4XM4gAna7XdiQqwG3bJjUeRTzvBcvHnDY753p2ooyqc0zWxWRuTimsmw7n13F2ta/Zd5cnZ9r5p2FOOYAt4uSglKHmT4zp0zqsHLZArjl2tTt9BRwl06MzuXzB92ZzC3tBNalaTAotlvekKYjBTgMg1sOLTanyGiUgPc1sqazJylY8UxJ27sXCNgymd+DwbsXaJDVi0mdlVjLmTDWPEO8rWWwPE/ye+q5JIskTPRidbiuZudhykRvUKMqTZ6SX2mfiCThFFC4TWaAefkSdhxhZdPlOAYGw9mEundzz0Jd1wU/vrEulJ9vnTa57+empD/w/HShAdUagF0qF2Dq+WGrXPPuROnYMOHqZ2tpZ4byzz66sjUpM7zz9aRBqY+gmBatdBnfpgMQ95HqOgHStrq2lDQ7muStwFTH/E7TK5N+UDKy8OdEkzuiSNYm+7n6X1PPJcCumbncLeIcgJnLV23+DcRSZrYBONOjw+Gg7Lf9KZJE6bO+gq21OJ1OYW8WEQUPJfmGc2ZnV940DV6/fom9NyeZA3VL4K00ly2V9/q5iybtaF6WAffWsWOx3Zbi2BTDunjKEtuEIQKXbO25vi+p5Cd9Lm0JIcDTlQ3d3ubYbf1Z83oj8vmDbtWg1zDGRM68pFPeFaZBFthuQLWsMtgob5FZk4Vpmpc0QD04Lg2GtfDvxb6tZd/l2edh3K4Rnf8CLb02lIU8XTsgSbi6I0t8Om7yk/VSstcwAZpxJEjbzulruRRjTMPW8Dva24X0avDdEIwB0BiMtkHr+9wwjuiHAZasV0ScNiJ9Vryi7HY7D1ZMYD0BdsoOy7wdvkAyN3WkWC6XtG6LUGz20ufT1p1osLlG9ASilRtmgNkBnfPl4sKLWhaA6MVmrY/ryT01eVprHcDdoKTXRM8T5VUSH34GqvL+l3sJWgS/SumQ61JGOi1bSIw19/P6zgGkPtimJrnZUD5/lMqRs7mpNH5JOI3fXOnGzjgKcQABAABJREFUO+fdgV0jC8qaOCR0lxnn8xnn8zkoLCUmkojw8uVLb44y9Veel0dN5vI6B9iXFNdpHHWlZ0nyXOSK4KowahgCUHA3i0fyuCK+tcx2LlI2OYkjirhW6JM+rMJfowTnz5bqXZS83F47B9s50J4D+Vo+f9CtRAOVOYAhA00j3hQ8q+KfAhCd9AvbHQZMoqpi+SkB5VpQXrsmcu80f16gOsryoFcbUsp5mgtvi0Ijzs4csHTNS9hx6cSybF+LKzlUxl0sAoBC5EAOqjcqHCVJJ2aj2K00HUbWiIjABiDTgP3E2AwDiDzItjZ4QZAxV5udONZ7h6ZpvamNB95qEsOVbXLKhLr4UzClikwpI59rP9gi5f7s2qu1Fhd/0igRQR3eh8a7hisdzFKKY/I7A4nJ6Y4lYKPSuab5Sr5yE6UJW6bSvYVtDulaSMMW382159a+X4pfl4F+VgMI/fycwpKE4QKaDS9c92GLK0FrEUxE9CY5gIL+LGagmpjQYRK5Fe2HB2dOYkzcLLmGqPJPAoF5rpffFoVy7j2Jcyve5sr3PJit7SMXWwizSENsHGPWPU+wVuo2teGWDdE+sJsU8lyBykkiaWv5HhZ5T4PsEtj+kwHdJaa71MG1GA+85ZjiJAwAgIW1FBi1tm1BzUKB3TDH3pN5LoU3B8bvKZ8j0KhKeSz99MF7Jlc2hBhD7ojkrF1X49GTrnTumWeTgSWBxDG90a5cP7tN5ieX8kDJvv+J6YiA6+g2jMCEcLqsLCuP4+jdFLbo2hZt08AYzgZO4cokN1zPWLG412kkGnAk1ytgqXTvOaQWR6191UAZAFi2OJ5OGP3R3i58VzrGmMTeVodX+q7TJmoSq2uByaqAbcrytmYsdfrm1FOPVnaRjZmTvnPDeF2qez136fjy65O8cLQpBaYH8tTqVn/mYeTh6M+tIFPHmccX3vUKyOHwgLbd4fHxEcfjMXH3R97Xt/CquUmOXt5vmga7/R67YNq0Kokqb5FZnXtXs61rxuga+Ep/byRs5p5ZIOfWCqtPyq4nv1f2w7Xxx74h39P+17gvSTsqhZFjvJrSOFdPzJyssurVH90WtTI9N+bV5LMH3czReX4+SMxNMgCCS7KgTScBA4zcMN7XKZXYbs2ubZ/g7iU1Lf6egF7kWrb3ucugJmmnWyA/swaxhk0qBZHi1sq7nt3O39O+44uv0fSIZ39jwniEibsYvQYdMqVNkjgr1fomOAVCLQmW8jFhKf1AJvbbu90umpYMNpmMwQw7juBxhB0GjIM7yrlrU6aBiJYzslKKbfjGJn0fxZunvwJ2LY8HqxQ69ay1FufT2a3AJOl16d/tdsFkQt5ZnS+egogS6GfmwLwlAB1pe89l0pNKk7S8jylQzNOwVRIFtwDUckY7H8tLecoBRS6zjLQKXytYS0z2GlmafxLA7e+7/joGICPPuf7ulToyRcB99qegio90UmVpLZeqGimzrOs6SWkx3QkQXcAaa6/nMiHP/H9LUgt9TZvN21L+xhYC79Z5PuI5hA22a9tm3rYrMfhn5HsK7OU97co2d/8nZiR6nplXqublswfdsvlCF0BO7YvkjUWz3UCKs2Sykom+bVsUj7rLxQcy1yCfC3Q+B7DW4ZbSPDewrmI5n1lKZT3NR84yLIOQNfFMeYBqqG5CUayWhDl3/DuQHmsNqIEmGahLqeCi4pEw33NJz4tp4dklF3qTAT4rB7F91Ut7w+A2YOo8MFuwHTH0F4CboFi7ew5U6Cnz5mb4aZrxfPyzSh07dnDFcDOnEGnQ3fcD+n6Y1BlREzzMaG8gS7v1dTylySofS3M2DYg2x/pAmuoYW2MbJUwgnJIqcawGSXlUSMcbXY73lCXmLpdS/Gvqqfbu3DMT4OjvTcxa4PovEfDwcMDDwwHH4wmX8zmcrQFG8GAUxjpr0V8uGPvemYq6SADo/LM//0DvN5GmQOFTpybtVtHcKGz2VW8sMZpL5eryIulg1V99ey/xfBtla73Jb4Ghxfn9xjStFdeGgAiSy8ppTfT44t7LfWW7XOYnRWqPJHrjbsmMROLRcdbSMiefPeiGAt0yOdcKJL4SO6RMypG18Q2fo4adbKhkgIjjbL1xMsuXDu8hOSieA/ylCWRpUlk76SytLOTP1LTBT8+C37ceakHmYJZ4OtGLr9qcwZsDIznjXQIwKZhVFyl/ILtev1S4IP2ioJyVHkdFkdNRZPkWhkv6rAPfA6zl8CKzxTgyrB2TQ3aMMRMQKBPpFmZClBU9oZfR1nJYugy2KaKcfEwTmT5GgD/4Z9ofZ/u+isItr9pAUuTrKdqOW7fNtTI3jiVp8pMs+z6gD1Oak6JKIgCQpmYqpUl9zRglCi9lrP1awJ0r3nMs4q1gW4c/F+e1gK32TGkOGhWDuN/vQDAwZMDj6PZ0IPZ/ii+668aAvXMEwNmEn85ndLLRWp1i2fgxyuFc2aSZjZW+k3soFsG26/gIsG2mnW9ReNLsCAB034lIUG/1vWtF1/USeL1unNomc/NdSeGWv3n229cwCdDOn5XyjmFroK294eSbw3Nmew3QXupLnz/oRtpYpKBEGxHaP6f/AfilKgoTODPDgmEgPjzjRra+710YofF7GJFMbmXAoUUP2vcC3rVGl2uD+nopDJ2+tfFqmRtk1oL2Wj5ukedaWbhVEiBKbjlUg2e2HEBlbfezXCuV3WK5E6JZi2JS5lrxcj1O4TVnn3MhLMWrmQb5lDIah8xVGEfXn0QE40HhbreLE6b05xnQnKeQk2Vonjys6/QaWVKAdSRzSqxcE6aMKit1iyBQPi3jcuknS/UEApHB3ttxC1u3VvL+mf/WY2VgnAAYv4IBRJaWsF7JKbFlOau3FoTM9bX8Xuk5DR7yd5aAtw6zFI8GJ7U0FFfLNo6ZNdA9t5k2B1PJOGcZo5+XEy8Qkicbzcw08SCr0+fTCSDnvaTxm80bAGOp3nKSIpSBhbRlInLgnZWb4ZV9fKn+othyW7oD0K21u6vDuyUxBVnqa9qso/5Oar8vt6dzT5yVonLjzJA02JY404NtMpNFLCtdW8r58wfdvrPpgUU6oky42u5G/uLr0ejdWouRrduolRWY2PIQNaEmk3KWH2HUXpv8+zTdUkctsRjy7HOk6ZpBek1ct4DwNcAzfaFy/Q4i51RKFEZrbKyfcKJNS8SXby7arnFZceLwb1AbE/Ckn7peGKrMOcaZx1OSUhpKoEb6rPRr2VDZX4awDJiEx87u+3w6wY4jOn9giwNqpAoiG6UrKSwN9ktyj0mPROG/oj8HEk29twTadVs8nU8Yh6mLVbdxco+ua0P67s2G6fHdGOPAj49Du4wriiJZXBlknjQ4mg4wADLpwSm1MbQ0trC/RyjXyxIBsDRezd1fYttq4a25thRGiXHU32uKR1QiCY0C5+M44nw8h1VsGedkrrcKcAMR2GsSQvx5ExH2Dw/o2hZQpma1tp8qHVzMRzr1l+t0PdAOd4ppIlLezWtEF+t5BbMgvZbWanrVd20zcM8eXlPYdNpqZaM/hckW7zYMRzgwezK1SAjwhNnWJp1yqE2JuE3jXoezXF7qZfHZg25D2tXQ9EQgIHX/Jx1YlgjEPssY45emHJOlbWJHawG/YzWamOSAVjUStdw8N0Dem33dAmK3DvyabbqnrE2zlmdlrp8BbNeESZhmUkdW+7bECAOAzq/OtwBOfT0dqBkgLtpTz+qFaiKc3ppuyJwtMs8ileKu1SGpMLkwuOq+rQdBYwzapvUrUwPsOEbQ7yclZuff93K5BA8b4mXDxTG/E/5ezeO29uvayJySNQE1XCbvlxU17xrwfHEH4AATwNF1LbpOFEK7qj8vxVtq8wK4w/2CsunmVNYBFfWn0GYQgTIzTwB3Le3aS0btmQkbWsnrHJhYIyXG7VqWeutYzAwwR0UrByRz8U3yLcTXMLg+er4ASPMm5iMlk1FNoIkrYDuOOJ/PIL+5splh3aflkeZJt8NcwcjTUQ5vWWrvVo5Gm4ytIZwNcecKZAJ4AbdJlNatIpXirCnza/itWt8ohymU1VSBcGND2WWlzLPyqd+RjfzSz0vEZi29c3mZk88edBMR9vv9xOA9Xx7QGRb/vmGzD9KB3XLs2HJ9tBaXvncTtBpkcgmAOyig843vuaUGUK9hj28BCmvBdQ3wi3zqMlyjuRYRaKTVMBlWFCuRn+IY26GfZORZouBSUIemtW9x8uexY21bUABgc2xIxvuG7xq4zQL3mXBmn8+UWUpvunsFdidMjh2haRt03Q7jMCQnXeoju8Xbgfj53u/3QYlhIFG6ReaPDynnxSVzqjBdI7pcWGatSgVUFZpMB1pzKMrFl5Mb99I4ZVJy5b8+HyXQusQWTgCpgIEcLGjmCdO2t8QUC8AoKrJzAMW3R8s8ASjh+Zm85mPNnDI1CXcDKVIbX9eOrWnep5sQw5yZAeTaOK7n4GEYcHx88gy3ydoUo+ta7Pc7jKPF6XROWNCckGCnEWAYBrx//x6XywWvX70q2uTG9Ok/QIN+AWjiRkMfQV/63CJzZV9UGhfCW5uGvO7TMUbV10Ia5+KUMZsLz8o8NIdTSgpOTr4Acgzb9P2QfhW3jEElu+2cmJ1jtq+Rpbr57EE3EAspP5UqHlGcLjkDsQMlrJlUBJwjdr0hyBjjJm5r0Zgyu+FTg+Tsb1U/9wCPa1jqa8IvThAFbXFLWu4hefi6A26J+x5pXRXGiigiaK0vMznlz7vCQwo0ZBITLxE6fRFRAwLpawCamdODBQqS31kDtG+VOTYhDLby212MaSMCGDDkFBL4gfVyuaD3AFwDGu13VTYCNm3rzBd82cpqQ2JyBhRZpnsohWuYqSQhW6OcEK8OiZeA3tD3/hAIzk5gdO1wv99fPSFNAU8qomzqyVLulPwmkNco8na+JT06PrmWM5zhWUzzWxwzM8Ctn50FWwWwUYtni1w7R+TpioAbAFIQJPOvKLj6vVqZjcOA8/GEYRgV4I5L/YfDAYfDwc/3gDENzudzWMHO89V4oGeZQR58y2q1NstL0xE9WBSVZk4Z9bRtxO64VLTXlH3+Rtoby8/UpDSvbk3XLA7R93NNX4men4r3K+mZAu6FdziudIpyp/EfUTyZVdttr0nLVlkK54sB3fq7VIbsNN3v9xOn5nogCIBcBkhfQbIhU54DoE6ojPEHjR/yeolfSeXaQTMfqGe1Sy9Lz68FpGvYmSWZi2tpAlp6Zu7dT8OQu3rPB8Pcr2poHSzwoTKw+FMY9YAlHIyhaN+YtH/o7/Kbo7W4TBISXsYK5ulM0pN9zkleX7KMH8MVX+nX9QMNtpNr8oV8TRgDwwQyB7TK3aD0+XzzVd/3aLsObdfB+EGY2QFOS255Ok+xZTdOEExSn/dRSLXn9MjabBaafk2Tl29A8na15zPYWhiaMuI78QxRAYazySkBSaQ6RA4knLLFENetrswLimsOfF2ESTzynF790O/rEOSe3shVBI/yrmL2JD+h72RgQRMIJZYxZ9knZVYhRra2vTWkyzReUkWdMs4CYvI4amGO44jT6RT8bAv4Fa9hL168wMPDg3rDoGnS0wB1usj3f4YD3I1XEi+XS0hLvh/G1e8YQHVeLkB0JZkDbqsOM9Ok25rVinnRfb7som/LeDx3vTSX676x2KZIHRSk0lXL7RqwvWb1oNRX0weiGYm2gnDtxHg3p21REauG+YzyRYDuXEoaigBwOWRDg28iim4BiYLWFAATR7brdLk4o3oYwERmDXAurKJJgQrkznVW6ihr2O+5+7ewHpKONctPNdam9q5eXlrTAe8tq8pGo2iQqvIULAN6CF3Og94olKcJVFvy4iQyiU8mn0lYLsCQosV6XKinYlpjcu4ipcmhNthKetuWQDayGHKErwAp/dlfLrj0PUi5wGubBkZW0nR+CAqQ5hCrxEVNcrMixwLIOGFO5f1E2fBR5YpeMWYJJ+DYCP7GccTxdMJgbYGNomSS0n10MScVhs0nI/lMsiThM4ONf4po8oz/MmFVcyBfTV8WrxYNgGv9MulDK8bmGmM+x/Dpz/z9KQBF8Xkdj373mrkg9/BROh8jHx/0977vcTqdPBAyIIrgves6vHjxArvdToXpWqRbadmhMQbnywWXywVsHbOdqqgCzh24v1wuYLZKaTQJwC/ViUuuXC+UAYRAQdUUY/scG2mTpZY7dzfvY4T5NpkrT2skPxdiFQEHJIVZmuOrygKmfbSUVmttWO2UMV/y5UxIOjSNcadAX0Ee1KTUH9P5uv7uFwG6a42jNsBIgcskKyD8crmAh0E9D0CdpicVdzwe0bYtup2rMDcZkNeAS+nL03VzllXY9wGgaTjr7TP1+7c22KUwPrXGKXJNGWckogrLfebbtXIYLm0zZ7llwCxNbtPI9M8C+1dK9wyIXVIVrmHZ5iZjfX9OKStJPtgxO5MTpriMqNmPZLkRfuL215qmcZ4Pug7sfQSL31/xfEKFOk5SVqWolvigK9t9vtq2QJEl6gE7V5VyIAl5pUL4q67dBcAiz69KUgUwZkmpvjfaeNpg8fmMLQ5509+z+DSrmT9TSkMt3GKeVoxna9u2ZsLn+uhcX8rTtIb9rIEGLcZM1bK5MCUsZrep+Xw+B4ZaFExrLQ6HAx4eHiZ2tXEMhAdMOzSts8G9XIbgZnDUwDHuWg/zuNPhWhgjnlFiP45lJDHqtKdjXbpKsY6A2iaaN75OgvnFCrCtyZ6QT/VcOq7dmE8u0wNLBA7XxgCkdWKtBSfstsuT8161857tbsuCyL3q/IsA3cA60KcHOfme+188nU6w/mQrIjNxRygMUNs06IceXTh4o5kMDuVELLBzn4swoknCPYO9AsDOLUtuifce4VwXOeJIpbDQHDscVmHcgzEYcsxHzWtCHq0w2bNgufRuxhTm2eDCtW0ynczTyWvbJD73TnzW3dcHZonyPXiPCYNXupnZTVAyeVsL6wH4vutgoNyUcaEcNNtMa8roF2iXEnOI2oPbgu27mCaZxmC36yYbILeMZTlw5Zn2GdoZW29SpYCXUPRZuxGFSDKWpy9vwzodc4C7BBzl+hoAm1/X/T8HwnNjVZVlr6Rvi2wdH11RT5WP8LsStpiTyPkYUZxSfDi8DBt05eAiLY4QY4AIrkkYHPYHNGYIx8GPw+D6ZeicAqr9ipY74wltKy5IDRzT7pQI5rSluPYRgbvOYwDbuNe8LmFU/ZYU3yix2GtZ8BCO8nlfA9U5GL9mbs3nEB1TTeGU52vzZsRpfj+UHZI+1batd//X+vp2s+StdbblfZfG+v0vAnQLjlka/OcGJZlEhmHEOFjAH0dL5DZsaBtwy4xBKncYk5MvNYBP3FtJ3OzbMaXp+XwB+BK/+a+GbAF56gkslZ2ebHU7zkOBukfGhINBmLk4KU3S7YGhPKh1gLWi03HN+5PwCqygZiNqsmVw1/mHLADL5IgInEVhls1WJDva5VVrMSpmXEzVgv9gduzLlBdCjJ+y36EgKtdVHlz7oNikVhX8cvvL7wblYxzDxMvsyqEhwmG/L9rqLsm1ym4AMdRAZ993Brhjw5VyOKN4lYD3WlYyZwGTY8hlsi+8E+Kj1IyjtMIT6jljGXUYOtwaY117v/RsLa/5+7XvpXTkcchJjto1W9/3EyXbmCbswepa76ItRjJt8ortJDIg40CVtVa5YFX1TiljrE0OXF9ulacVJM+6+ougNi8j6StmRVsqSV6ma5W4EL+Ufekd9a5Ov25rRvm9ryTQfaBMvCDrC7V8SRhpTdSHs5IyWZojmYFxtP4UYr9fh6IXIcFl0SOJCcD3uQD3Eltfky8GdAMKlKjf4ZmZgtUDYts26BtxFUgw3qaK/Aaq0Nn8d20LSkRh86Wu6HyzUalDf57sd2mGrzearYxXLYwQ+53L4llZ7gQN6Isz6VFPuCXQ2AbiYUwpUJC/prADP4+Ns0/H3pRNoDYxlaufXC8lpmQTewCE8qvGAYrVFCMJA7P4Y5WJexiG4LFIT1hienG6XMIpjG3TOB/AXqO2frKPhhlc6DpTzxyuHZRT7x70TIB6puDJr1JAlD2UpomZcblcJuyjtLmpT/PrZGmSSu4H4M95cpNnNfO2WifZkF5JWzgVscY2I84niRKp0+T7uswna8a8OTCu310Cb1sYyXy1a6neamy7nisvl8vEPRvgSK/9fu88MmUAe055cM3ala408bZtMIzem9ko5iVWrdrG9MqKonN9uSuDUUmHX/uVATRfQcsH1kXwmZEOJdH1dQ2IyzEQKeUwacfqc0vfWRpx5S9uK94uNdbbfaeigwxjDBqfP43DXH36NFE9PWuVoDWy9d0vAnQja0zhMtQAzDzpFO7VFPBKxViyk+cIbrGHmYO7Nq015oOJAPD8NMy4dOPCLi0p/rLgO/pgSLugbBW5H3i9F6P5OctECfT4mirwQABfifGW5VaZ/JPJJwgnQ51ra2qiL8Z6m9yrrmqAZjF+xDJIAA7ixZjvyBqHZ9kpMnKABsOBTHfQTvR2opVs61nxtm3ReeZbmBRFo8Q0Tvo2T/Q0UfaBNA9pkWRl7V9h3cBQ+j59VYvkNTCx4j3Hl4W4a4tpur0V1YBEQlJgCj5q6ZhrhdcyTyXwVMq7IfGXP63rMOa7ACfM+Zxp4lIat75TY8j1/ZyFX6rr+ZXAeDq0niPlmaZpcDgcJisoaRhL4sgEZ5fd4GB2IMM4nS3G0cLZgJXrny2jvwxgPmIn/vozZSMF2Gq+lr7qx3OmOmjdAuTuOf8nM7YiGSbpuTGeND/OM4jED5TJ0Hi/3s/0HCd2+vK8A9yKGPHtqW0atE3EXml+60rrrTJl4LeX6hcBunMYyKgcZFEA3vlSX9u22O92GPop2wPPXDE5u0E5RloGT+33US+TayfsyfHVbXmn9FrwvUZTvrcEOJApDKV0rGnE92DHP4WUJv1J2mujir9WJTGzeIpslFcsCRGY5vHn00Lp3MitKtMcwJH710qp7ssT3bYw83DiPbim65Gu3rMQnwcA44cKp+Akx8z3vRsD/CZXYb6HYUDvAbhbHm+DkgPKbBITJTuyuGS0eUrsY2lZuIY0VchUOSrgPlNSSb77vg8b2nSZWWtDnpYO0rlFcoZR3QipvWUlJAlSh+X7lcwLczmsAe7AiiolQciZXCx7N4WKkSt5zMjZzaX5YE1f2cqslt5bltR3t7WyX+ISDssRkYOVxENQSebmh5TFjZ/WAo0h59mkaXA8PmEYbBwXJY+sxhp/ZDwD2O92UYFKykKtTiQ5nn7fquDpHnvPeT0hHv13KSwB38A6y/GUfsvuqTJxYar2rMe+UsD+XVFARXHV6c3JTYenLKyNY6usUrpVR28ORKlXEk14THO1XWrz1C319kWAbhENKKSh1Yo0KRI1oBlj0O06tOc2YX30MozxDUmzjaJRlY6iZ+bgwD9hNYY46Oq/kJ8SsKvl/QqGZLtMIdsca3KvSfJesiY9c5ORKFDbFAVXZhMdewb9llwF6l9N1k5yySFX8pu2wu504ntO5a4GZla9i8JEkA2IQemRrgzFfpGakDwGawgAGTSNgWVG2xi0bYNLP+DS98GLhsQxem8ndhzBux26tgW1TX0MspmSOjMB3N538lYR65OZk02kcl2W3YWFvCUNsytaSMHlLWPZUutmRBtjx/rJql7gLBfjraUlpF2N+zUJ+30mh1sheVfPIWs2T5fCWkp3/k7p2jzY1yArdinrgWzf94Bai5I5cOdNs4qs60qwnZNocskdruNWrey4cxuhxRuUJy/06tA4jrBEOHs/3gASUi2WgVaCPKADsMVUYZKfjAxcq2jdIhpwb31v7re+Q4Av4IyYS364X7J/xl2S+pkCWtlzI362pQ7atsXOm/m5bC2NAutlVlna0L/WPvfFgG6tUWltDlkGa41EgxI3IHR+sPD6rWyBVsEJ2Bax1ianYgpA08eMykYsN/AQyMQlEA28Sxra1k5yLSspjT7VXJfjWgr/uVjtNYPT0uRZm+j15JWz0Mt5WcM4pmkhYHJ6qkqk85pBtPlIcvd6CklKLHny/BVxTOObynNMJqlSUU7DhD3M0xQUa19zvvoIjgE1bYOmMWi8CcnoPZoM+mRbZozDgOM4YpDNlm0T3KoRIZi2aJa9rHDcyHKFtppTEWm+xYtEqYzEznaatrJcU7cCAHQfmyNMtshk5QNuQyiIwORqwPg6dnVYfn/VNQW4bSFefyHYLOehaICt382/r5G8HteGUYt/Lg4fevJbvJPIHBo5q+hBQh+zncTn+5G0B2m1SX/NymYuv/v9Hsxuv0IcW2N/1H2fvZ9+aQ/aPMGlR5fASh/aKvy8REN6OZqmXMuc1uZ7uRrmc//sFA6vlzwfVmtbk/tlr0ABcDOHlSGCU0hZ3RcsJSuNIQ5y5ye0bRv2AmQR+OfmFcc5WVPu9wLbIl8M6AYwadikruVMii7+dOjwRvhtA9MY2NGCLYONHEyBEI54MRCgLZ85yyCmJXr3tmtIDHA0PRHgrY8hFVZg4kv2Gi21AEBqwojMTxyEs0K7Yla8J/DO81AK+5oOMcc0ENEy47QBL5XyYJWSpuMnivbcwFwVFKd08Oz9aT+4sooX5d6KlwY2zGq7VEHhFmBcYsj8SxX2LNbBjgwacqBbPDFYazGMI0bPplmOmxKN9/MtY4UxlBU2xc9knJI04eq+tnQ/n8j0e4fDIRzzvlWhnXsu709OwZmW+zVqB0MxZQUJYzN4Mh6yXR+bHiO0D+SSUr6Uj1L5bSFbrgFkW4WzvKX3AMmhgFtp+5E8iuYksh+qljcCoh9m3TeyZ3Takk91X0D+y5cvwx4NB77Td/Tsaq3F+XyGtTaYVcW0utDdd6mjGFdSLjq9WfvW5Rg4W+ZiO6nV76Y6zcfIWpjZs5N7teAn4cmuMDWv6ruqzkqKniYuZa+J3iTZth12bRf2yWESy+0H/t3z2S1hflmgG+kAx0BgwOeWx/MOTPD2QU2Ly+iWm9gyqIndWRqEsNslVsJ9RNDctm0A6wGEswVzNEUxxoRlXW3/LWCvzoptLKeZ8ghlkS0JSjf6HGRLI/6U4eevVZkNdTdxk8fxaOpcRCGUDUdr66L4XAH4JOncEH5NnmtlYy5MveJVvK8+1zJ/eZxSD6C4SqUBbL63YxxHDH0f2D3xkpIwOgWmSAg5AgqoLYNyG5Q8yYu4BywpfuJN4uqNrRsZVtB0bNkcBtQkrsqzxnSxel4K+5bWmq9OLqYTdUWkFHb+/to0lX5PFNJCnLqtlO/H8iOi4J1EPJTosF27b6rmJEm4KFAGM6A/fzcXie9w2MOOzjXgpe8xDmNiZ27Y++QHnM29MaC+B8NtJCakLgHdGBLjCHEr8J+ko6BYBpKgAnRvkahg1tNUfK/yvRh2kd3WbEEqtfh138kxkpCVgoF2ux3apg3eSRzAvmXO/rywxBcFunNGIWFQCoPbnDitvFX+RD3wprj5SrPdJRtbMnGKbyianchEPY4jRjvC2nSS1t8lzcaYsBEzN0EJ8S0w2bcDIL478L43KFu7NLr0/k1p8J/pIFTkMCBKmWZpZpkIpYSVn8gn0/QSry0WzRrR+r0Fv4TkE8DS5Kz7TYmZFMmZmXCfHDxr4JZV5br0azndMl3Vsui9PeLlcokbyNp2siyaTM6uAjCpVwDMNfAisKXc7iQ9coiILgcZYx4eHqpkQomVKpVfXnbV9qOZaZ93rRRtYZPCs4U05eFY9uOrftY/Us0LMgbTGJha+1HpWctgblEENeDVgGXNu2vvlVZu4ycFPVGOVxczJT1mHA57D7avV8CW0h5eBQKIDbOvKK4gwBC63R7UtOi9winzrEU6HthxxJnZuQ1l77FMs6q6bSHtcXMpzesvYaFVPm4VXV5LaRKhhbilfJKwq/WyXTEUMxLx3qXZ7b0/I0BWfDUhOBdm7Zn5tN8mt6xOfFGguyQWCF4f1ogwZYYIu/0Op5PfYBRwe9S4ZVLVu25zgOKaBge6SiYTIm9KYhtYdk7d9SZMDbiFRdBxiNanTVFyVqo0OZYaY6kD1UGW2qWM+bBqci0wfo5ln1zuBzAjyxABxXK8bG3wbCDX9ev6wKVakEspr7IXWXjXst1r20GI58rynmPxamBrzQC9FKeMAxocCjsspmlySEN/6RP3j+wn8dEvmzZdF9jvBJiy2BtTNhFrEFxN5eS79hOeA265Jul88eIFdrvdQhmkm/30PX0tB9v5WCO/hfWXlcbSBkMttTErXMtKoQgo/VhOxkzKdi5uUp+apdwqa4FBScKJtap870IYVMKYAEUA8KaH+fI/ED0s7fd77HZdOEn0OZV3ISJmgSM5MqxBAzocYIHg+lOUL1GCLRzjLWk2RMGVYBjjBNELUK9HW0u0C++K/M7JNYB7a7j6dzoGFN7Lfut5NlkRDJsknehDbbS75Yij6n32OUmimoJaky1p+SJBdwk8yHWg0ABKYXgQu9/v3eTEfpA2wpxHW+2+7ysbQgDOdzVL4sgtiTTGoIEBc7oBM3dBCEzBqtjM5bbgJfC9tQGuAZ9rwl3Lgn2OUltFWCurQKtvD5rh1h5SZICRFRLTtuGgppyNTtOexeG/KCd5ya0i4GYuhl3NykJ5rWHZnqMt1EDJmrhqSqn/pZ4LJC2axsAYQmMaEOIELX0azIBnlQcPdmVPR9gjInGpNrBOKlwZx/Z1uVzCCp7kSbwC5HbcegLMy0XeLY0VutxKSlDO0oaUq99LyluRKVafS2DUgSvahEiKNESh7eZsYH6/Gn5FQcl/z9lEL4WzVcrMJoE5bm7THpfEBK7zCqX27HHP/k1SfyifWhjbgB/HOPqqESXgcDiAxxHH4xFW9jb4fmeAYOo3DAPOcG1GzESNV9by4q0p+UUlS/eTzXkvy9WE04pntoLN5Lk8PoonAEsbSsiLpomHJelxQb2fh1f6viUvq/KxiuVfn45cvjjQnYMHLRP2o/A8AW7g9xPCbtfhfHamIIGJoZTtyVmHZBAuIa8s0tLgmYPv3AWhrmx9wII+jj4fmPNJrKYlPgcAWor3c5I1gLGaB4I7h6ECftLJMLIQ7AGunIBYCBZEhFYxgJrBCHU2jTIJo2geVNNCKe6mf27W4N6TcRGQ3YmRTO4lP9gT4G4yhXHfd12HMdt9H/oz0iXVYRgUWFGTyOyUWBrJ1F0FfiUNegyRuLuuw8PDw2TMiLFIG5umZbICo+p0rj70pmAgBcvV3GbjX5rGct5LcRPiGD6qfTRbZM3EXSzLhfdqE/utRMA1ohUkiXccLc7nE8ZxWhfa97bMlfeWCLgdkM7Z3GzUBeCZa8SVI1ffBCZCt9uBCej71G2mxMXMGPoevWdbxSQwjtQzLGf+hFYy1T3Knr+HhDg496M9FcE+yfs3gOw5kTEvt/8XoN3qVfw8nYU+8JykTUn5nYvv1jR8caBbpMjcFe5Vm48HHKZx/kSPx2NgiyQ06YwCimVDVYhzYbkhZ4J0ZWkf4KJZ69PwZIOBBuGyAdMNivE0TH0iZin+ubTpvDzXIL827CXmqxSuvHdvqYHwKfTh9FshrxKW2P0G2hQpsG5cRMk7uRJZ0vGSdJa5OnU/ZCikYW35bV35uIYJvObZa2WOKS1Grwpf8tcYAgyhYXcscdu2YRl1tBbw/mll4pF7u90ubBoiINkYmKeRgcAmMjOc4f60/2pPK3rMEBB+OByCmUsSPjMQ2Mpp2FvqQsrSVJRHYf7y8XFNmJK6kMpKeZXqNbdfT8Ku5e9KwD0nWyf4e8kcqz4Bn34DrvhKJq/py+ZbpzBKem8DaPN5d4Db8nTUy8mHHJTLVWIGGcJu18IYgjFNPDnTWg/rxYwMwWY9rkoZaKZd1/ecMugzF9M6ycG8rO0TROSVjfRetS0pcA793gKWWZMWlvR48zZ9Dop2FtF1HVpFGK6ZV67tX6vSvUDg3LtffpGg+5aunjMusqHydMomAYqcoUxoopmFZ0JY5BjQlZVT6riy7KIny5IbQgHbJRtwmch1Q65qvRsB7tb3nhs03UMbvyY+x3LKxclT02ezji31GOrNPeieF7vXVempYYUSLBeFgdMnnkERcmmbmhb8KUhpgojXxOzEYPQKsBymM3qmVbeB0+kUNmXKJCRea2qKC8M3p8IkJeA6t+MW7yVff/01DodD2VuJRzBUbdcxr3m+dXqLk6f8ngF9pev5Z9JfKpIzzfkR7DWRFYnJ9Zm4SvHNsXJzjKKU5T3B95qwknHIp0FOLo3sJMOYBm3bYb/fK2Jn7UglVS9zXrg6O65woljq1Qk3eonL2zQMB6GNJkIozq1kGke2EXDpB/e0tf6I9zjPy1zvTmtt/NHz9bFMA1fh57dInoPiM7X+4uOVZxYBMqa1NnUHqO4ttB8Jc1Sr9tocKdhsi0lJwTx2DqOskVuxwNb+NkfWrJEvEnTPiYYcc+A8gG8iNK1jnC6XC4TtzutBm5ikIcQ4HRBaryHpytNAXH5rEJ7bReUbMYkoTOSNWiKrMTzFMilo83Ppzt9b8+yS/JKgPlGkagOsYi/0AQ4lkMCeoYl21vHZpIyZYdTAVEmdpKzKdteu5zI3sK9lNYByGS21maU4PneQXgOe+TNt61xewQPufhiCaZEcFCEK9eXSg8jgsN+78wNI/LXrcvNhgzDauMoFpIBb0jSOY9hM+erVq+CtJM1DysTFDGAycOZjQspWS5t3YTrFVI7itmkcXB6Tc4BaA41zZV66pv8kbC0CuLdMnzWWuPTc3Hh26+St351TYubmJCkb8bqjTZNkFXW326NtOzU2TefHevoA3cLyZJbTbcIrhZqO1zl1oCB3iOS+/wxt0Z06C27BDNi+Dyy3tFtJj+zDaNsGu12XEG5z89+W9qnzVwPetfFW5hbddpfGzuLujY1zdwLy4WzixWxONmrnYLtT3t9qbfEaYudWKY1ppThqfXs+7Pq9Lxp053PDWsAdnvcFJ0fWhmUnZjBbEDVJhWjzDohx7yTmLI0zg26NEdG/pbGKD2DNfud24AASF2GyfJ37/14DrNaCn1rH2RLGXJh5uJ9K8jiLk7oafGZCCo2x7y8BGKmIXFjA5FCe5DEIj8OOrVmbkTTExdRukTlgNPf8XNu4pd18CplnEMUnL2DIgJoGxIyWnQlZ7xXnYRjge6ln9ABmi9P5jHZ0Gy13bQNjyoc05YqZAASdRr1x8uXLl8vKd3ZrbiKf7Y+B6nNwYMIhB0Q0LyVmsTbW1MaLubEp/N7Y1mrhLLX5JVkzNl+7Mjl3j4iCO0ANuEVxbNsOXbdLAPd69T6kvPB86kCAHWMV6mOmFOL7eX4gMDR9UsSdWUXo2taNhNai9yfXMOLmdp0ux9z68IlAZJLUMWdEjHxW2kWepqUazfuBgG2QXrecynOsmkhsjEhCBlO6cQRAcZNt2wYSae38ULv/Keb/NYpSbbVqC9EKfMGgWzdwka1Vo1ll8SowjmPoNEyRlnEu/wwYBs6Dbyq6w86B6JLUKjy/rnf9ihKgwXcOxPVJmE3TwDRNcDhf09pL6VrTSWr5vAeIukUj/tRSA2MgD0CIQ9tlZne8LtzR1enEhsQ+W0yY3Pd5ueeAK+FsWX343Ovo2vTNMSFBgScAZEDkbRY93SYbhoxXhntv8+2IYg9QrUV/GWGbBuNA2O92iavBUj8TwCSgm5nDBqau6/D69evqCasRWNfyOQ+4k/Kg9JmcEU/UxJWTbo39zpW3uTGm1iaJaPN8MQGJWRryZ/PrS2kMv3U4hbTX0lWSfEVUx8nMOJ/PSfsBkHgmSZW1a9hI5YJT4vWAW7OmQVtjZ/4xP28k/G52XV9Ly16uOnORDs6tb+/JNufXXdxMygrOODrzGms5sPaxTYlZUNQl9amTsuID1F0NLkmxbSGtiVvmx/Bu1rckXuvv6XYo7kcd+Sf5F9d/JgDuLWD7lwDat85Xa0ikknwRoLuWqTXZXMPtORDqgPflctExww0aDGsdo9TtOsVwl8O6l9SWTGUDpnxqkF0C4szOdzAoHjMegDilS7CljnJvEPclytaOJZO6TC5aGZIJQFgSIoJpmsR3sbCFGmxLOuqgRSwdr0tzMcQr2bXPFXjfkq4c4OWDdtJ/9CqYn3ubxoAMoe1a7OzOgeNhAIfJy02nQ+8AUH+5YLfbYafAt45nGAacTqfgeQmemTudTiAifPPNN26jZnVycWlzTWr9BLRlsgnsoAJeS8/PxbfmnbkJPAEo+p2Z8POw8kPNbmW5dRrUy0ka1zDqa0G95EHYbZ0ffYy7MSngjsEsjymxzqbX4+ZIHZ4y9MgUljnQr2F2HPtygz6EPVzhDwAaA+x9X+r9YUr+NSKCtS4tQz/4um5AZGFMm4wFjv2ObHeetrVSpGuyduC+lxnXWyUoQkCoH933HIlnMQwjmEWNIDSNCZtO22a9zfa9078kNSV+6/slBX6LfBGge63kWU+We2rvSOfxoFuOaacAiCKfLo2ueDrlHQDpEiuSdvSpFwBt41liwkdr0cv7wxBYt1bZemqb8LWTV0n+VQXos+DFXwp1aOCZncxHKakWmwNulOshTFCIE12VBYxN+uZ62sIw/pJtosTQ5v2pdL/0fi5FRdW9lV43hEYKviF0bYNuGND3Q3CtlSvRp9MJvTpiPqxYNQ0ufY9ePBwBgAdSzIxvv/02+OOeKw8K/0ySO/veWvaVyKP6q7aYpTIHrrewaKV0bklDrvzcRe4AAEp9Xc8V2iQgZ7eJKCh3ETRFSHt9NoUJjQFYBixHryhgb4et0j/9HsPTDTXO7xS+hT9CssISnmUGE4EagwZA23Io/9GO0VSCKLDfYq8cSJKKspWw3FdIEXhjVddcLfn4psE2EMcuye848uRgGyHu2kafIRIPHtpC+HwqguY54tmqXABfEOi+lrWrc4LqGR9u2zbY7XfoLxdYNzKATSQWmYFxGNG1nT8Cfp3Gc03aq+x+xgCUmLecAQ9aqt/QFTyiwO86VnbGYgcuTHrOWl6j7d2TKX9OFnVOybhWknoAQGonvsw5acf1E8NCeco7E5/fCYraJktle00b1t9/KdBdylPeZ0r38mtr8zAH2vNBWkBOOF7eb7jMvZAII9k0DZgoMJW6j56PR/R9j2+++Sb4466Wg2Yk0pzO5qmYlzBAAuLZ2KUpDXEtUz0rRIute80YkQKNbVJrO0vxllYI5tofA4m5Qn6/9rt0nTkCp/ywGyIKJiXTzbaxetdI3k6YXT4ceIU34/ArsABAQEMmnARpHUIPEFoYagHeUz45ZbvTK+W0RWCMQLY1RGiMcUqrTU1ExBxGQGfv90p0bQu390s/q5Xu+8hcWFvnqOR55tTsJfRjmVsYwzAme91kzGrFZpuU8pSZ8/ypSmku2JLfLwZ0A7fR+vrJ4lwDeH+eHQBG3w9gO23QwWc3NUC29L8kS+AzH7TXLt/mcWgGRgBf0zRomdEYEyZ1cWOmN/cJQA+sWuVktCWA+qfQ6W7NA7NjUILSM4zqJgJANkBYbZCbJWiRd/bSJH7X0T6Le829WxWV5243ed/QcS7lowaq5kB96bcGVQYAtS3atgHbDv3Q43LucVbMtzwfDtFCXP4Vpet8PuN8PuP1y5d4+fLlJH55joE4Ufr2R3JDLs0skhfzimgDyxaetUwyP3nnKlEgXxjLXErKwaeSpVUdzTZPNrZSWvKllNfG4XyeyPOtXbnpk0qFsdX223nYa6VW1jYwpsDpfMHj6YiLB/1t12G/22HfdsHbj4BqtweCHXOaAe75co7gr9S/kxVBuDnf0SDxnAtGdIHnugiF56214L7HSYi6JnSkmyQPpUZubQqzpNBNVJOoskhUYYNk38N60zVRzNwmb7H1d+9L3y+NozlJ+Kcm1+TpiwLduVy7dJ0/qbXaeOojwXIENPIpmwgCGNUaXg3NozwZXL0ENcOo1JYXRYwx6MKykQPe4zjCKo8o0un0Mlp+EmZuYlMD//m1W/L9OcsSYHMT7jh5noAw4aihat1+Bd8O0rqgAJzK5ezbq2+rJRA/l7eSzL33qYHPXDrWMoRrRI8LW8KapEF9IwO3ebLp0HkXptr3tmxqIhWO9OPT6QRjDA6e4c7LnZlBua1lkgL9fKHOfLOZL8NbzBDqopUUBsKhJjWptbl7tUQp3y3zjzyrx87knYyFDd8D6FxXsKV6H5TXHB2vnCyZH6q2VbTyn1wHwEzo+wEfPn7Eu48fwMag9QfPAMA4WvRw5hzojAd48L62KbDhHNhU91ka8VycnGl8FSEXOrNsrHR1utvtQMalub9cYI0zhQEBxjPD4ibPti0suZTUyKmlMtPzgFYmc1a+9v4aiXGkc5Srn/icBtujaiuNMTDeI0nTGK+0l+t8iYz7U5Fb5o4vGnRruQfTKuBSvJiw9YOBCk/YCh2vuzcPWO7d+GpMSv5M6Zq8q72giCtCfQqmXNfvtn6jjd6EWUtfbVK61dRgCcz9Eh2/xDZZNbA6JkMG0jKL7Z6ZL5e58vaB3yXtS/Gtlc9FwbrLqkX2/VZTHMEREVK6C6Yh7MwunIp3Pp8xDEM0NaD0UCVDhBcvXjjwRG6DpV6lAvx+D6LIFvtlfN1gcuYr5KA+vCX5fe7VrsA0uh1uReW/qOxnn0upukZZ3JL3uXvC26QLBXEOKYHqPEz9XH4Ut5RZbk6ylK5iWmvKjb8+WsbT6YwPHz5gsBYPL1+C2haGyJlwWAtrGT1GWAYGvyLbNY0bI5126Q64Qay3pMYZcWMhue8BmtfGyux76IcEtMbANDt3fDyPGIYI4tllLrTD8+WCYSB0XZvU0Zq5uZgenpoSrW2Fko/cS4qBmSolKj7AeyPpe8dsq9W14Gvbr8QZU5639Oda+VMF42vkTwZ057J1AhANU7O7tclGbJyKvm9n2O65NJaWwOSZa1m0tc9J5xKQrT/zzV1yvLVmvAV8a08oeTy3Au25PHyOHVhAtPXl1vcDrKdtJOlhwAcSgLSllFLWLYXsORsbX0o+Eqmx9Fvr7jlZ7lvB7j1MYJbCqJXZmnel7cj40jYNzpcLTudz+pwHzo23r2SiwHprt2+kwDZzBCWyLIykL0UQAkSg4WOs5nWuHG4VDSQMEaCY4hKpkZd9DkZkuTwth/umuSRrCBhh81Viys8pYF1qZ7IPQOYqKSs5hlt7w6mFsZTWWnoEkH58OuLpfAaMQbPrYI1xCpP1OWVHRBhPUAggdIdKWRCMY7z9CgvDt3kuKyXxYhxj8/QbonRaJ/eim/8lEIZp3NkdADB4IiqsMiGuIFhycTVNG8bgLDHF8lw1Ti0+odqxxhLIXHSquBPCwBNrl/PZeTdj7Z+9DY4lKDDbt61kfY7z9C8hf7KgO5e5xp5jaw2ASsBYBrR0mbCM0NcCll+qQeq0Sb7FplvY7okrQmvRK3u3xARFNOTsuNfaEv+98/BLST6ByfBLgDPdGQf9NADXWvSpoRFE3NoWFhQSN3tNnrtnOc6F95xt/VoTmbl3bwmvBryzJ5HWBWLfIgL545PbpklAsFaqwuobuyVwAVy73Q5N24JUf5yMaTrbrFJDCq5WiiYHu3PmSmtNMIozO3MAO7dKno5bFcTSHFHLe15GSTi4jmSRcSN4qfKnkYrHDan33Jzkmv4ZFkj8c9Y6I34xVxCl73Q64TIyqO3ARBjYOSEAIxwqJkSNvE/OLy+IAAOCQYtWncpKUkiF9MZn3PhZHQeyzyykYM5CRAF4U9+jHwbXH318wna7laURwAX7/R4Aq2PjV5apL9gt429pNYfgmG23SDCdAzR5JmayelMt+RWQ/X5fMIGqKxNbFIlrZG34z73Sdi/5VwZ0i8wNam4C8tq29ybgTqqaPhc2VHoTjUUm/RmZv63xLoEBvWSrgXjw+S0eUNgtEQ7ZTvjGmHD0a+343OcA4LVO90uVfUhH9plf0/aAAtjngPemQW6eePms5DkHyXuYNJXCvI+U+iIAz/71fulXWC1havVBWaFPqrQxu8NPTN+DxC+/7M0gmphmTPPJk3YzBzC3sv9V84TCe0C6GjlXl/lKW231Rp65ph4noGehfZXK7Zrn5oCyACkxJ9Hstqx8zB2KNs/4q412MkL5+UCevVx6nE5H5yELBGobEMdNiZY5gEP5lM2TjTFuYz8YPFgYNGgZgOFg/w1ITykpLNJG6isAa3q/rDSQIbSmBZuo2A6sjDPYbXZnBoZhxDi61WHndrGFQIk8LVpRDp9ZecscIGCcUciLCs+q/uEuT9umJtD0ke0AEneker5eIxL2lne2hH3P5z4X+VcOdM+Ja7SUTGiO2S1PNHpDZSIpcfXssgTCtgDv/HldHgK+xRaQ2R26M+RHUI8j2NrkEB7xL2wwnQyvBUNLE9RW5vKenVfz1WInD0SvJJJazXTrd7EiPbOMJaVNkCl9RwOYJN3Z5LBWPldWoSSfQgm7vTzcxlthowLYBABjYJoGh/3esd/MGKw7Rr4fBjdRKy8n4zCAB3fAR1g29m5BGdG3rjY7CpO+MIdAICRCCrM2crfVBA1uEOtrDnCXVtLWxPXc7SBXSHT655SWWr/Uv+V57XtbgJU8o223S2U3D7TjNbmsa8axwg54nk49no5Pzh0gCExuVUb8XltrgxtUYfQBB9zJGKBpwIa8LTdhHBjDyNi17MxTjPEssx/LSKUBDGJ3+mu2aOPKIRbaynHNtXmCY7uljC0z4Fd6c1eOqYMFDivFAKqA1N32ORDCC2kd5P2gHI6sEMUj6kPbYI77taz1B3Glvrbn2kdaipxPMVe35zl5jj55ywpoLYw5zDGXhUXQTUT/CwD/NQDfM/O/5q99C+B/C+AfA/hbAP8tZv7J3/sfAfjXAYwA/k1m/j/66/8FAP8+gAcA/wcA/0P+jFQUrXVq0O3Y7ulOddEcx3EMHcxVQnnQCizmyixfM2kvDdprgHeNHdbgWy9TNW2L1peDlAkzY2SG9R3d+I1d5MGCLJWXyuQeAPxamWPGSs+tTY/YBDrQlIIUYxw65gDIw+y2OEFOExae1D8y5nw6KCwxavcG1LeGt6YfLdXl5rJdEca9RLNko2o78KCbiJTbLteHWmPwYAx2iu0Myp4PUICBTLqiDCMowyoRAd0AroFWWGnF2EmZbCnLIshbUTdzbXaOeSdfFppdLAH8PI450K/jK42fmg2cUwpy8DKXV81eCnOZs5fapl8Dv60ERRyn/bNIzRQu/YCn4xmjdQwxgzD6tmsVG56TCcIeG//HxgCte58twxhlQ922aGUzsDMGB3EMMzDC1VxgqjRm1wK8lPLxF8StojGEy+WCxgLDYDHYVNljZm+u4fpYkVAhlyPBCszIOl6MulYjuq6kfI0H3K49u3DFy0rws+1NQmX1Q58RkOQ7pCGeOillDnVlLl2fCtrNxXOPNJTytBYn1GQN0/3vA/ifAfgP1LV/G8D/mZn/XSL6t/3vf4uI/nMA/tsA/vMAfgvg/0RE/4yZRwD/cwD/BoD/Oxzo/q8C+I+uSfRWNiOXJZaXgMQ0wtox6QEadOa+dO8lOsx7gNK1Upt08nTJcwYIJ+RJeWjbb2utA+Ce0SDPuDXefiy6aJzam/pEpD/vkD+dl+cQmcitaielZ9xkKLvCC4d1XJ28MluRp2VtW5prD8/RHm8d1OTdGiv6OUs+gQ/DmPYLInRyciClh3A4W1J3SlzXthPwbdWYdT6fE7ODrmlAoGgCEIDSuvK7VzlrFnQSx0w8JUIhabcVgJvHVAMOmj0uxZMzfnqM3NKOa8C7libxvV1jt+eO5J5TTsIzRBAHfRrMjdYButPphEs/OIbaeLBtbTgp1b2HsPnVfTVBoQx20exY5A4GpjGOtAVjZODCbuUGOz/PwIAY8XRXPTfn5anyZwrjyhy4DViT3FHnRC2MIfTDgH4cE28egVkW/95E4ZA5cb8b/7QClEaZex/RUmubTiH39ePraBwFcEePJK0/QbLNFPYQRh4HBd48FIgQk8XEF9JWCvuasWLpnWvmtaV55rnwwSLoZub/KxH94+zyfx3Af9l//18C+L8A+Lf89f8NM58B/HMi+v8C+C8S0d8CeMPM/zcAIKL/AMB/A1eCbi1bmZWlsBDAkAmTkh1tsJsSeW7QLXHMXdsa5xq2ewuDKN8NAPIDqWbCwXFpiz0Il0l1AHC5XBJbsnxDodRH7PJqgJzJ+9rO9GyATE3ybN2Jn/VH9cC3NvgFFrd45XY/1aV2/lxt/1PLp1DGlkSDIDnMRHZ2Sfo67y/XuQBU/YGlLbH73ho0TYe2bTAMPfremYE5X/HuLTmh8HK54GG/R9e1bomfAQK7A8B8sdzCZm/Nf03RrgFSDWxrY2atz5fyotlLkdwWOh8Hc8A9m79COmrXSu8CccOi+N6WNDZNU9kIF8NZ018lNmYBc5FEGMYRx9MJl0sfjkmXMy3k3IfBg7OJb3j1PZJabn4lD+YtRsd8sz8vA3BtfWB0ILQNwYBgEZlwUOqVJM+h3Av3ZV4p9Pt4STYlykqT+90A2O32GIbI5Lt3Q6kFRUjbS0/LfX0fqo71KkzL1iti7iC20fd1YbZ3aq4t10mqgoSylasacG9I59qxYsuYMseqL5Gqa8N5LrnWpvvPmPnvAYCZ/56IfuOv/yM4Jlvk7/y13n/Pr18leaHedRIgCq64xJ+pW54ZJwO3ZryniUTS83OGeKvMAZ67sUyFiamW3iROSVsGBhlug4xt27DpRvsCl6OsRcnRNuBhaS6cUhbjJYkzS7dO75pyqXXOGsO/VvTblvMJnwGmJM9r2cS1whnApkmqoNIz/T4b9p1B9pwC8Vzg7hbZAoyuLadhGHAW94DkltqlvUT7S8AKE+XHmqiQRoa6bRu0bYOuG3G59BhHv+FytHBHWDsF8Xw+ox96kIn9j4y96/gSkreSIVPZqb47N2nm4/Rcv87HvrUKqh7Ti2xhNjbdWpbMHNqHPkNB2obebzMXxmwcSEE3CBjBGNkx68ej2ywpYTEDg7UOcHtiRdqrSLE8/XjYkNsrBHbHjpuG4BwGMgwsGgA0ApadP+9xHNEY446PNwaNcQn2+qnb4EjOxltztaGOVR5LtRHr0h8gow30fL6cYuOY5P4yQjhq9x4lTL60P7ey28AB4dkqWCSG8hWPaGY0Yhw5zMltF0F/W/BrD0jfSK9N6it7696Y49pnl7DJKgWzMgbUwrxV7r2RstiGZ66XAyH6N+BMUfD1118Xn5kbRNcW9NJzoiHKBCQbKvNKmjIp69niNeksfX9OdnEro5XnJ0xcANA0aDAtK33ypR6cBm9+kgBw2VFNKQsu2rek8P77p6d53PyOyncIg6RtGZiGyr3jhjTNsXm1Ov2lGevniPvaPG3pn/l71yoJ8p6YfgRApeptt9sFG93EGIn0B4X3ksmnaUB7AnMXNmcKk87M3mTAAuSWwtu2BYv5F1FiprBVQWL1zCJThrTe5PkSYN2i5FzbvtbW5xzgrgH5rWkQc5Lz+Zx4J5G2Ib63l9i7NWREhKd+oya7jbqPT08xTHLmSINlDH41mIiSQ9MW80xuX4sBgmkTCG6FkOOKKcHCWsBaxgWErm2xazuXRCven1yQ3jIlMY0IpSBkzSpCJv0tYRtjYIlhqEVj4Ai5oXxwEbNjvV2UBkROYY6Plsi0epry39rEyNn0ExrT+EPs2uixyNdLjDNvq1BleF9SpZTurbI2jC19bc34sYWMWivXgu4/ENFfeJb7LwB876//HYC/VM/9DsDv/fXfFa4XhZn/PQD/HgD87ne/q+amVhFrB+M5ZiUAOcV2c/aOgEZtk+wjVCHcLjrOW13z5J1gibnbMlGsnfSYOWzeCEfP+s0eAr7lu/hDF1MfpwD5QTY/jU7iWp3iuqxZzlsSYreZVOwtIwPvmkjTbnPPdI2UBr25/nCNwrrEymwJa63kIOeWNCzFsfWdpTzVwKus/IgNqAM/jrOQTXEAEK/OJiR+93Sl8eYiZqf3q7BfivYmdOyW+fUBYJ3vq+FUS4kCOorp2BvzEJ/P+2iuEPrZPwXdXFlNnOQ5MvxpUaS21Und+Dhr4GAu3jWrHrcAbh23NifRYefuALcCmmKe1Xe3UbLH0+WM8+UCZoClPEfrvJNYteVuE+BGMGEg8U5Crn2Hk0ethTUGIwxgCIYBYxqMo8VA1tV3AxjjPfF4frvxqFuyp9UI91aIWXKLfM7W5Rye9HkygPN/TxQ2yo/Kjl2LsNAAoWlapTBdr6DrDbR93wclfb8/YL/bo/V7PijhdJYZ9ltlSTG+h8zhlzUK5b3TsFWuBd3/ewD/PQD/rv/836nr/ysi+p/AbaT8pwD+n8w8EtEHIvovAfh/APjvAvifro3sVhbuKoY4A7pGTtPKws2BNxAZp8LWuM2iJ+jShH5N2axlSO8pk8nViz5qVgauUQ1i+k8AuD7K2CgAzhRNg/K47tnZtmi/evd+LpsmqCtlbknul2S2n0vuwdgnYHLN81kbK9XpEjvMzOFAk1yi9wSloCXs9rywgrvCZMmSM1vnX7kfBthhCGOcs7O1GOyIcXQbsHa7XWqjK2lP4orpEtDKOq8LbHdRkV4zfpOYE0jSpm1c11PuISWJc2GsyMfkuWdKYZbeqY1XMg7qw27kucbXSe0shKU06jhKbXUYRpzPFzydzm6joy/hcbTBOwnDbVBssnpb1wd9WxDw7dsHmGHJ23KzOzTHDgzTNGDjmsPIDPAAO1qMrZyQ7IkYcm2eVRycxii63STP9aRSsR0acqsMRJR6DMrCFZB8Op28CZABkYExaVrkVZkbcsVP5sLL5ZJ4Iuq6Dof9HrudcyPqQ1uuApTrqjZv3rpac485Z0sYc/Wat/+5NN5TeVjjMvB/Dbdp8jsi+jsA/2M4sP0fEtG/DuBfAvhv+oT9v4noPwTw/wEwAPgfsPNcAgD/fUSXgf8RNm6ivFel6aWxws3iO+JeB+hhR550Ku2xo/GnxtGKtK4FhHMMhjBBWcCz4f0SsjT4y6ShvaDkDLg+np6IMHhXhNoUhX1Z6UGrJGvq5taOJhNmKc41E/eW9D3HMthSOPcC7bcM7GvLYW19CqslfSoPLfcuUFqnWGSh5bkMWGn3gHKvMQ0eHl6ElSG1kUESvCIm9yJ5uk6zzDCEg2nQjiPIT+TBly+7HA+jZ9a8e1TZiJWSDCpMxOk+WR0UVhllOJCuFLo8cpbHUtmq2vev1RnqwGcWGF75XGorei5aej5vm0tjfj63aPttPa7lJwfWZE1fSpQRiKu5EafT2e0DUNdHfxja6MkE2XezNU7Ab8D3n3J+g/GcsvPXzWDLsGAMo4vfNAxr4mooNw0sMxrL2HWtM/tgx5hbEMTByLJhk2uVJZzBXN4/BLi2ZIwpAu+8Ll0fd+B7v997U7HovSpPTwq2LcZx8GB7BLOzgW+bBvvdDvv9Xm2QlDa5kOMVCuO9yM5PJXP9Ss9Za/v7HGkFXFc+a7yX/Hcqt/4rlef/HQD/TuH6/wvAv7YpdeXwb55YJRz/kvuQ75wO4TKgtG3rgZ/bEcxh50bKaLoOStOZYUa2DIyT9ANhEgsDw/qoV8X7XJ2n1nhlYtGmPdruW5e1APDcBCU/5bEU93MzvXMst14Z+VzkUzPfAQBJ/OFGGRBpWbOseMsqQrHNoNytNYidB4Xqmhr0hQHL26S1Fu0ueiqRuGpK/Ww3pcr44F9qmwYvDgdYr+iKEjCMA8AA2xH9OGLoe7RNA+O9MkjfK/WzHHiIMsNzbDdRckBI0kYq74mbNPLjt5yASETBHl3yOaoyTsBmBqT1/Ul8C4C9lP+lVY88PDE1koORJGxZ9djtdqvHj3wMn0v/YIFTP+B0OmMYnUmlBYIrwEEdviP1n+dvbZqkfrrGoGsb8DDAXkanyHovPGyAgY1Pg8VoAbCFITd+DkDwREJgsG3RNd4UxZtUJd6ms/pICZq0TJJnkCqQun1KeLIapV11lspZ9m3EOEqrFK5NM3NoB+MYzS8bInS7Dg8PD8HsbEsbK9XHvWTNeP0ccc3lX/fFa/DMPfP0RZxIWesod41DvmTAW+INIMmMsKO4KnJp0BsCE9vutZTXBqmxKwnbVMrXjXECz6u51hq1DGZifiKMgWa/ZelOm6CEk/d8feR+wGsddE27Wjsp56fD5c/MMV/PNUjNhfuc7PWsZOwocFu3WcPgTESxWbdIDXCXAJ6AK2Ey9dgh7FnXdeKpLI2j1vYq6dFcsX5Gf2/8yX9yEu8wDKCLMzNgAOTb8jAMgO9rsgrYNg0oLGuneZ6Ui0PI5ZRztL7VjLSUW27GYNlCHRgcxmJm777Uv1sa00u/ryFASte3tP8c4JXY7dw7yZZ+WgLcU1AC9KPF8dLjdLl4N7me9fbM9iAHsWSEwaaVKWglFWgbg7Zt3Omr/RnGm6yQccBZrK8Nw3kuYQux3A7uenUmGCA0IOtWTQlxk2WS54KSNVtu2TtyLayMIQfw+RwQr0u6xWRINkjrMrXeD7r2wy4rCw+HAw77rnwadqnMVxBnt7K3pXCuTcu14S+x3DoNt0ppvFibry8CdItMtM8Zdku/U5KwoFOaAAoDcmBTjYku7/xSlsQzx2zeS4rLHe5GSCsElN8pvl8EiCnJG7j2Ba43XGpXhGL3Jsvh+rAjnZ617WWr6E2hGlzr5eGtk2cuz7EKcUt9X5OWWkw1Ng5IFc+7idTP/UKcFcmPmE/l7UMAVkzfunCLTLy6mBRr0AgigQDAb1b2XiUag6EfgncEUSLBDPYnzhIz0LZo5N0agFVjVHGySqj4lLEIbKM/TEVfd0/SpL+JxwZRUmSczJXmvD3J71vbmD5ue42CLoSC9l6TA+61QKsUR/030A8jHk8nnHq3WVL73R6USZ9RY9b6dGSAx1ctkVOthnHEOPpTHJmjuUljwqZNsnB/bJW9tm8X4+g2rbM74ZKt9QdFGYzkwpM9i0Q+w77NxzouzKvhnrsf9gFkc2vefmTFFYBaqUj3bwAIdSzKq9S//hMyiYjw8uVLPBwOaIKPxHnyJ89HrR08J8FTIkzXyj3ntluU6dozNcDtvtfT/kWBbiBtKGsazRyoKne1soQNfH5At75g3fHdBsyRdS0NjPdu4Hp5i7Lrkw72TJ3qU0qubOXgueu6xAxF/sQPuLyjQbhc138hTFwPwHJG4xZW/XOR51ztKJXClliuYdpKrLqwop+qXmQZOo9T2uhWETyTS43ZDiYnhZeIABhCZ1rngsyb18lqUu7mc7QWxu9paeV4+SzeLaXKAXhHsQFQ6U3rqclJGHsVA5rUZwF06+/5ikSuNK9Le5lNnnue2bmWu1wuCViXVb78BMHVaUFa9i5JMj+4z3Pf4/F4RG9Hd3owe1tqazGONtgt40p22z0vaxeR5GL2ygbgD9kBLnZE07To2gZN17myGS0sASAO5p5hBQMA+boeVVkaNIA/KbM1BoZMANzM4r9Ek3gSalRMGSZsQtbrK/kcWxrTpb4iOVTGAJoo0qSdXCMiHA4HHA4H7Hedt1HXGsQ6WVK88vRfK7UVpDXyXITlPeauWr5Kq0hL8sWBbpFrJ8ccWG0R7TlDnPkzeS8lbAEeYe0AywTipojq7wG6Sh2oBLzvJZ8SiCxJbaIUUC0TljY5yV0RyrP5YTzJ8h4Q7Ga35lxPoiXQnSsN9xgUPlUdPUccc8uC95wE9Hcp/WSVCPNjQpWVX5uYbEI9nU6hPUpedXtcK7mSPZeercoMsxwvH9to13UBIIZNY9Zi9Gz4oJRb6ZuNd/UJ+A1xqLelXCGS39az6gLow/sCUtU19sA7F+PvGQ2aVH4lnhLTXSJS5oC59ihSyqu8K4qMXkkQs505djtf+c3TyepP/mGOIHMYepxOJ5yGHgM7t39ywI0dR/csOY8gUg9X90dmsHfWJ0yx2O5L72uCrXoDGAPLwDAOCHt6pRxVPwrv23gojwVgRHkAgK5D24jbP1E23HeTtBOx62aUjc2ier40VksfZgaYKXieKYE0MSORa3KS5YsXL/Dw8ODnpumm7TwFOQZI7n2GxM8Ex0D1Rdxn1fG5VoJL9fgnBbpLSyNabmlEa9luDeyE7Q5Lnh58a4aViNCE3U9xEMzTfa3iUGSya2XEkV24Vp5LC80lGTi2vutBCxAnLW1+oj2hyJKdVqSSI3KJwoav5kqWSy8R51ICVVtZgU85YP7SitfSGLD4/tz1hbCTVRZ1fX4RcUaYA6OpAXfRNWB4Zdn12/r41yRRoBB5U4DoQUlvVg6uy1Te7DjiYm0AtsZ7WKC2DSfMFtPMMWkBzPpNkGH8zcCDVWOwgENxNVcqG61Eh2eR9lv9bKlM9O+5JfsSG6rbkhADObutjw6XtjCnmNauBdDNArYdwLTs7IlPpxNGMAYAA8cNqE7poOAeMrDlRAkoWiXMcF5IRrC1INOAjEpzCJNhqAGZxrkLHBz4FyuKRBEr1EvwMQ84AG4MWG1ktOPox3elQAKh/RiKGymllzPFX3EXVzxzIZd8tQQgdJ1TImTjpBz+Ni2m6Od7t9vh9evX3jtN7mtb9ZFCcQc8krW3W2QJX80B/LnngBvG0IpcO0dsSjPXVzrWxP9FgG5gfeNZ2wCAbeYlABJgJg7xGbGhW2EIvOs66+MnzUjMpGXu/uT5jOEQ8PClyByI2lovpfD0Ml/uB1wOFdC2cwAmzDf5PxZFC6SKeL6sS6YlItd4LqmV172B8L3Du2XwX1qqDCB4ZdhzT2nwuzp92NBf/ae1FufTKRyjLXEL2MpZ0a3lJwxR7trQBaZTkvPJ+YOU3NfpYOaw0VO8C/V9j16x3uSZUyJy+yv6HkyExteZ9QxjANEqWTKW+gJwwEwUFMCb9qn8qrGQmZ2HkuxeeF79toVJM28HJWCdvxPCK5gX6n6rv5d8LQvY1hvA10o+H7Av/7CJD65WR2vxdDw6EyFw4gaQrQVbp2DBREZ6ae6qpsklzAF9IaM4+vWWuhf2ebSM3o4O/CrFoSQ1ICj1zwDgPYmMHnDv2hY7tDCNCYfoOFY77RUMAdxZ28niXu6bbr6ILofjO1rh1vlIlbXowcRo5UfKdVooRYV2rh0tjXlr2/7adyfPrArp+vCfW7ay3MAXBLqvlXtqfIBnIpoGg9/4ABYTExWfH6j1AQzSUUodVyaTZEmFOXF1hGxgySWfJnW8z9k0q2xQLUG1cCrXitp8pS5L1/NJVBiktm0TAC5p1xtXSAHwxjRoSNmS0hS2yEKpTNQ1/+q15eYtcu37tcnquVnse/fDLPAQ9hyUrF0L965RDArh5oDXEWaudfTD4P3spv1fbHeXjlufTYt+r6rQCoCq95X41Hw8oiwIqBi8mUTf9+GQHekLstKkD3QJ91WYArKTvyRtCCZBNeXEGJOOpQUpgR2dN3km6SN5WWXhaU9FOeOt4xTvJFox1+Wyph0uASVRSA3g/Fx7bxhPpyP6cQTI7Uuy1qL3J5I6UoFmbbfnh/VIAIUNrH5UZDIgYj+WTtuXY7P9nMf6+nS8yoEO60AQy1/sxY1nvQVHd9y6dmUMyDc3y9GVZdww6QKf5FcUQ06aqKQylr+qe9lYOQwD7DhmpjWx3QLwm2lPnvVuE3t6jRXmJI+/VJ66TPPvc+He5ZmZe7W++1wg+xbltvbMXFL/5EG3SE2jK/E+cxJYqaZx9sJqgLMA4IGcHJ0sYVsgnrhVSlsWR2DQ/Z/Jns3TG0B7ZZBcwxhI3FtkMjFp7T2PdCFoyr4vpXnrIKHTpj2adF0XbL/1wQY8WvTUB9DdmtT+OwFIlMYpwL2W7nswv/eSe4U7twS+tOIUnr0iXg18twLtukyntqW+RfCsVCEkABg9I+wmd7f5GkBiTjAXX359duCfucMuoZM76xm8afqMMdj5cXG326H3LK6MkUJE6EPEtJIh9wSA5geuSHwa0IjoMElQ0Ax7XRK9ZFwq1yQ1Pvz8qdrqlS5XOc5dm5PoDd5bCIVaHBqMWmac+wGnS49zfwngMoxvw4DRRuAf2NQrABj5DmiIoLY7ApC9CiZMf87eWu4DgMHoAq0OAjpfHN4HktZOao5ksdm2MEwYfLy2sY5pF7PCwLzHqINiJ4H6jh69kJDH7Xr10yef3TtSF9bPLf3lAkK6OkdeMXCXfL+2Fv2lDyz3bldfARMxWX1pEF96p6RkPrfkad4y1ut3b8UsW2RLPxCywx0cVVxrBPCFgO4aO/dLiDR+Q25X9CAADWpyHUc0uc9uqI5M09MS84l7Ih6wbwUoNfBaasTXLLHXY51PoZ7kVoW44dlSXKWwtA/vePiRt2m07lS20Y7gwaKHxYB+ArrDZGlSX7CTAUaBBQ2uPnV7LpWjrvNbGfQcsJWYFA0ac6Ac2usCQ1OTa0FLWUpxpsynm37j5FycGD2gvPQ92HJQjq1/K/e9fO/xLg1vgau8kU0iY9B616rBd743oRCFVrtD0648Syy/bjO1PgX2tt+erLDWwjtVS8Y0GX8DGEIKlGt9d9Ju3Y8A7EVZqNWVKBRhFcC/l58nkIOkEC9ijVmk/VXCCnbsAZg6JvvSj3h6OqFnp/w4V4AW4+jA4OjLTnya10ghSQj5AijPKa4vMKU9WqeVffxW3XN141c8eLnfW6QKDwkgjlECcJshLRjGAgbs3BF6M5rGK4imaYCmcc9rTixkmcAkSmMkzsjPxUSlNsMhr8MwYBzcyo8QMYfDAU3T4HK5OFtv5QYzlAdRAOqO6DbzHo1yJRPRGYAUyTWE2i0y937O8muZS6VWKn8JLFgcg7xZsfY+M7dW+EWAbi33AYVT2cJ4SwcYxxGkN2uocMZxRNPG4i0NlLkU9Pbk3tpcT8JfYHhulmS0Auo52RbXHNt9reSKRb60LP5SmRlNEw89yo+hl+dlybxphcmhACiEEZHw5ACUa9zB1fIicks9Pkd/kjJ2p8tVwteAXL1XfrQwMN+j7c4nC0vR1EouV2ovlwusjBW+M+s9BDW5dbx7riVZHbZLo4AuJ6Tc3Ykpl7gaHK11tsSqX+l9F0CqGIuZ1oSokGeVV5RwPWcG3Q1ls5sRGBvLKX+61hel32vALePMnP12CXDrsHPCRhRYkJiNMI7nM87nCwbr7buZMNoRgz/ZkOBW/LT/6U2ZLjygyzkAUrjth+xPMXLgP5oVmaAwUbGzFRnSasfzHxTBOMCJyReLdxoADVz7Ed/ehgEiAwM4RwjGgXxxS5i4qKRpWokQN+73g5oHgKZp8fDwgK5r/W+nGl5653ITiGY5Yc6wFn0/whjrvLqoSpi0b0nAHeQ5AXd4BqlSsCXMW+esWxUQAdthT5jq10LC1eSLA923SJXBmHsnf15NBMkph4Fh8Mudnt2YY2/ydMXOXE/RHOPLtfc2gPA5KTJxWRzzXY0Wo56UlQrzFra7ZgKTf9fXqDPJBswcgGswTYM7TMQpYxZ2jOyQ5EI65XMf/z7HuOV5Lj1zV3OTGQawJAmbuPLZPM4t19elqXhVQs7imcY7DIPfZCj3ox33brerpi8FtdOVg1xKdVp+XkDynJq/NHHG/p5itrSfASmjK5sHxTWdsMBSTtqDi14RrK3MVcFunitWwEsB7jklT8p9qd1o14C6zjTg1uYkOeDWZZXnRVJXGjHyZxgEZreicjxd3MmSngEefVouHgTuui6Z/xjZBtUKQTTbJjwTLqsI0T2fDUAbQPCSAnaebcSNYKkZFgG3jrKguIcxVwC4p8Gtf9+w9zbmQS2D0bUtGA78u82+BDYAe//hpJC+Vx0mbKbU9+l0cmDbWoAMiAy63Q77/d7bdnPAEfv9AWR6XKSNFBhgAfGGgKZtQN7neDKex0RsYo5r5XxvKQHmrbNgqR9uHdO3mIsUr7NymCHknMKDARd+6Uy3aM+1ybQk1xQu0VxR+XfIeSPRLJWeFCStc6dTLjHdSZr89XwSKU75HJf2JpNO9lzNlGRNuYVnSpN8GOj8/QltWE7YJH+VdFwDnJY6a2nidpMtAq1iGoPWtsnJceJ5gJlhB4sBDCJnQuCyTmH8Jzibwdxu817a+9p6y8FLfu16YFpuT3N995qYZiAnpr3iPspDPZ65ZxAApZiVBMANRte0CfDJl01LgFt+L6ZwBTByY4VKr2/nJbA1p7BQocgjoNXPUfDOIqZcl74Ppx1KfAFgqBWhHGTrv/x+SHcGXnSJ5MB4lmmWPizhFZ6TegYiABclQruGFEWrZk6SS5KviqIsjK1lYLQjjuczno5Hd4Q7IrCUTa4MoGvdRkIdZt5jNoHt+FRoSqwDZd/2mWDZwo42jAkGpOqHQ5sJ896EMJp8CfFogkZEjlAKrYEZ1s/hABzr3Q8YxhFt06BrO7BhjEQw7HhtQyaE71OZsNGAbH48h8OuAKBtOxwOD8lqhuftICtdXWdgmgaNV0j7vk/mTXeaJoPHEZcL0DLQdVGZlTRcO24X21T2+9ZRlHVflM8rwXKNuNwSRh7WXNuW8mVvlpRvftYmqoAyV5tJ3mcPukMHBhKwuPjeFUCiVKH6TT3dNkRA08A2jbPnQTpIaF/QbZsW86zyIL2ypAAoUF1Mv38m+a3jzcLayhxPOncYQWQiD0FnqaLwlYnjqtydGNV7yqRuKH4wwS1FMjsQ3jb+IAkLyxbjKBvHLMDKbMUjEWt9IP4vHAtRADpblcbn0Pi3yi0rEZviqd6xM3f1lPyc7S5Vkfu+D0vHgOsbxpA/BMQU7Rq3lGGNkZx7VlLpPFvUZfOEHgaBuiIvwJuZHfPdR5ZPs8Pa3lv/5SuHc2y3jrsEyIB595161aUGSjVTL/kSUxKxYZcJum1bdF7RypUGXc6llTf51PmTEzqd7XaPp9MJp37wYNqz22LKYy3I29obv2FSFK8EIOdltXKuFYJCyiotL3fTzZEEY9wJFgGICoOsQLqsFus5RhjEfNO625bsxJA62EylMdENfbjBx7u1sBZOGbAM6jqYRjybUFC41EwX6l18rWsvWLKK0XX7hGQhX0ikS5gomGJJmwhuJH06Gf7QIman1AaQZyd9If8O6KpV80VhDOTJU9eNlKVVqWvDKsmtxFstfSVFM5y8a5WiaLIzPYDJODQnnz3oFglTmWpQCSCe0YBqA/FW0R03FL7/gwLeQATdckpijZkppU+mrXy4m05n20SHJy6LyCXkhlCVSKJJHyiQx6wTNHVcdmsen1OkDl19AjANGng2zgqrefHeCeJEmtd33/e+wyIwHjXwUBtIc1nLAOhJpHhvheSK6FIY9wD4Ef7UUuJ+p1HpMlsHuLXyCCqBWRlk62HIhNz3Q2SuPFJomwb7fYeSSUIehtx/DpmscGBar+OW+DckU09Ue+/ru/eeXQTIANHXvYylAlpzV5z56a6EqTeHBEhUJsolxqtWV5pxFHZb+/7Xx7mv8b+tmfkE5Pvrgd325XK+XHA8nzAywEQObDPCGMRZGck1NxRQUvnMiGRAoTjqq7cxwRp0G9WOw2FJKp+lgKw6oVOA7M6fzklNA7RNJHvIH+cuMJK1u8KUzJqsiMgnR3/xwzg6P+JsXDwQssV9ITiFxo4jxrHP9u8A+/1euX5MN8zHspM0RYVFVkGMMTifz9EkidLVm3G0AGT+aP2707IMczvgibopmsiBNyFVwm8F3HnYQDmdk2dvHPPWxKFXKfJnBGwL4CZyTjOaZMWifKr0mrR/EaA7KRCoATA+AABhyee5JioR6UB6iUE0Ux2zgO6c6Y7JLjeGVYMylyHtFraRss851kunT8dVCtQNTCnjt1qE3fiFZY5B1PUfnjWAYQMQcDqekQK+WK+yDElEweOJuC1cw7rdJW+I+pFMPltDD/qVS5y7WAHzWlYrB7PXSgDapajYf+YSpSes0GavEXWiHbsjtuVoZznYoiGD3U55KqF4+EiJGCiV1ZLCnr+rZXZsIfm4z2qFDiEHOzJpyXfj2Vfx6KD3TegDZ4RVzD0HTfMy7XfSxufKtNY2SwzYJL/sGO7cnCQ/XXINILCF+wSkrheZMYwjPj4+4tRfANPAMtAHllgAtCoSD6hdkAwiIxeDMq4iXkNyT0W9k4wRXkxhrBElgD3gPp/P+PDhA35++xbn8xld17kTGg8H7F48YOe9fzRGsdGI84Z4GJFwJT86Pgr3xVSEYIkwhPZG6EaDrvWMJhswDIgZQ9+jD6eI2lDPu90Ou90ucXdZyG1SSLE55AfjIDk4SUT/dvhDzLBks3EhpkCuAWJnv3bEv9esE8r7xrGlNlaK1OKo9eF8xUrv15J6bZoGXbYX6xZy6YsA3SVJllPkGrYb59fC1lIrTAHdwZOJHwylYehKnPNQUGpIxckBbkAJEzWEmatP2LW8cPbeXINZZOMq74R4auHO3MufuR0GbJMcHCRpUoBHl1uod07t+WUg0CCBmR07jrgDWk/OepPusymRPOOyT+e5AsqfSzWaaYnIW0IKPte2kgjaY/9Zm5vysxpwR/Yr3jdEaLsGbdemhMGM1AZ2aU9r2sXW9hNgCknpxPwG3UQeKJqSIKmGueVbbf/cAKC2DWyoHUcM/iRLvY9iHEfn4s4rsMIq5kxuON4dmLTxCeNZSF/er/WnntglXcLKakVClGlRskpKuJYAPpEKqevCbp/OZ5zOZ1zGAQzj2p03yWA4jxuS63BoV9599BwqYwEvKyFLko8nOqxwvVCW4zDgdDrh48ePeP/zz3h6egqnnQpR8fqrr/DixQu8OBzw4uEB1LZgYwLQDQfVqTyk6efQSEO5IL4zwnse46jEdyA0IPSDeCTpAWvREGG3c2C76zrnflDBWl32CHf81ayStc6jSZjg6z4xUWO1krLz79kkjKT9Sj3MDHNLK19LsgR0VxOBC21tDaBeE6fc06tpGqtpEswQFf2gXytfLOjWsoXdBa6YiGZA+ITtzsIvge5agy7lII/bEgXTEB1eSaOv5aWUd2E852QOAGsXXJpR+ldJpPMSwRkXKhGteX/YO3KJxV7M+QK31uJyuSRLV/mhGVuWsGbFj855OJR9Bmi6FuCFL1dO1jPsbZpKiulUit9Si5uqgeyQCE2fq4dV6wWOWrR2xDD0ge2Ud/RhMKW3a2PYnPlDDbjVni+J+LNO8uQLwJD6gcjA0qSlZCXmBgDHtM60Bc04ymviCQBdh9FatF0XbKTlhEG2Nhxx3o8juq5D17aO+ZR4MmatOuapdMz1rxIIF+b9ElhPhL4rYLu0cpXHq6/lHkR0a5PNp8fTCee+DwfdjOzMHQRwh9JUL3MMNIlP58e50psk9yqp9nw/z+gyYGaMw4DHpyccn57A1uLFixcAgOPxiHEYMHpvIB/evkX/8RH9wwOGly/x8vUrNLsdmq5zeausJsR2AQTgHTEwbNYj2TJGO+LcA/bxCUPvSDUZj3dti/3+gMPDLrg8rDHIwqYjfIZog7j2E9nuZKxgTtpyUFKUZxz3fGpeJ72S4dqVIRk9Z9p59rlGSgTftXPUHDZbGs/mVqRyJS/Ov3FVSntZCtcqhNMt8sWC7glgmGFW711oeSNL/HZz1G0FhIkv5/QEQ0qW+RMgzjMbJv29/G6tM+t0hklFns9YszmwEd5lTp6TTl16dw0Q+tSyZnl3zb1SWMJ4uQ4sByiQH3QJ3a5F2zZhEmxaOZSBA6Mjm69EROtOBoKCDfhm0bSIyovuR2tD121Y3gW2K7d5WmbFM9spq1ajcVC0T/UBYa7ll9PCk58Et8Ix9kPwx00etBrjTmkMG9gqMmGbCmPclomtBBRDkjOlffqufja9x6HMym9PWbx6OvP86HYdJkFjsO+64O1kEOabGWYccbEW4zCg9auO0lfm4teAf26Sr5WbPuxGNswLAZO7A7xG9Cobw40tT8cTjqcTerXJ0DIw+JU12ahYo3QEb7JXEOWcJPmt83vz+FIRzsYdmR/fvXuH/nx2dvuHg3en5+yjj4+POJ/PTqnoB/SW8aHvcT6dcDqdcHj5At3hgGa3w26/D8qXpD4oi7lyTTRpqyGdsmIwjLicz479NgambfGw3+PFwwO6tgH7zdBGAe50fmRMxxa90qXbv/tN5OF7tjquST0NvCUvQINSk9Ox6zGyNJbUarxEPNZW02+VLat4pWslRVuz2bkSI3vzZKOxtB2twJMK59Z+8fmD7oWlAz1ITDQdTIHfcwBw0UzDTld1XYNu2aGcAxoBwLPxbE9YZCpV2eSaWwls1fKoJQFahQ4bJrRCmHm93H9oXy9bVknmntOTZAQPgDCgxtveufrnMDxLucpkLW6jRAO31oaNNbk3B63EbVq5AdJBpZSf2kszzyf9TA944ct9B+eJ4pkDpNLDC0ng2o/qbOT+YcvhMAwHwp00TRtYT1DcCFeTNfU4W28rlMqtk+SmlUROP9cC7vxaAN7kwEfjTw8clClHUFA9UzoOA0zToPPMHxmTMPnMHDxWmJl+M5cumbylT0p/bxTgL5mTLJWDhmaaCGF2Bys9Ho84ns7Ov7Q8y3LoDcLpphl948C13GEftvfGMHJ0dUh+bGGV1mvNS+YkWYnx5fj999/j559+wsPhgBcvXoSxbbfboW0avDgc8P7dOzw9PsFiwMCMxlqcLxcMbPF0OWP/8ICHFy/A4+g2XXqzEyaK7L4qoXxOm85FHngZg9abjjTGoN3tQI3zWtVw4+3Hs5Onpa3ogcDDb3JazkTyeZm9biKrJkQUFDwdT8AcnoRgVpv8JnM2qZmnXi+3XJ97bm07WhrDaqt5+QqS/p0fameIYPTp0pnCn6RnJm3XyGcPuoUF1CxI3sDzSUFXkVWDjkx6Dgtx0ijXFmWtkgEEtjvf/AAg2OyGzu7jr2GZJX5tDgMRIqOQNFj5vrHhLD0t4HrSySUNS+9ncc2B/GtlbWe5lmksMQH+G4C4ISN9P32+aZpgH6iXvsSOU4CGZtRKNuDX5j17a/mJSrhFwF24vi1VOX3q/1nNPAjI2hTpfIo4sodSP/Geu2EMJcqR9MFr2/JakDj3fOmZLZNoiTiYKiu5J5nltHJhvNLKobBQQmBoBVXeH4YBlhn9MIT+0cDbjzNH/8xZ/ktp1OCTiBLbbQ1+cnOSa1jiALyFhQMAa3E6HvH4dMRltGDjAHe60VJ9x/SGg1niJ9srKOOI0+Mjhr5HYwx2cmiLB6hcObBHy5YVw1xGf7jI8ekJP/74I/7whz+gP5/xnghv3rzBN998g8PhEFb4xHRot9/j49MT+vMFDA7AdPTg3Q4D7PkC+/CAcb9D23Wgtg0mJ9SQUzyg2zwFhcegoJsToWlbd2COb/fjOMIa48fi1r1jLYwyUpE4HGsdA5QYCWkfCp+efdfuZLWL0eDLW5W5tPtxHNB1cd+QO8HSVasQ4Awkq/FrlOK5VaHafFOfD5dlTVuaUwbkT9tp65UoMWFLzNE+oXz+oBvA5XKZuGrRn8X3SiC8AjpLgO4aEE4l7ZLipkq9DClMRQms1kSelQGi+IximIOGryaaGnvBumw4btYM4YqSIgoD6kA41wwFSGcJ1ZHHr5i6+5oD3FuZqto7JSmC/5n2lvvrdc+6ATaw3AsDigBzDdBlwpfT/ERz1wBc/8k7OWhI8lHLc8gn6oW+VvI2tiL+7VGsD2n1kz7voQgmtJB6jBl2dIePpHXLaNtOmToorwOgSfu/tahD2BsAdC7XpiHGV1alaulZo8TmbHFDbk/LSBQ2UYZjt30d6I2X0j9Inqe4IqX7RU6g6HFbnhU3dvpdrSjPge1ZkOBLbhRQbC36weJ0OuJ0fAKMARoT2kk+t4UzImKg4Xvjw5S/4+Mj/uEPf8DPb9/izevX+Prrrx0I8fMpRDm5AnAvjbFSnsMw4HI64enpCW3b4lfffovT8YiPHz7g0SsDX3/9NV6/fg2z38M0DfYPDzD7PZr9HsePH2HHMc5xRLDDgNP5gvF8waW/4MWLF+j2+8BMN20bDuJxZj+pypifIcicAVNyCk+oH+8ieLQWbduga4z3CqrQNTy3BvKAntJ6EmA9Lanku2tX8XRkIG6o1QDTGMIwWAAmTNVEAvNNANx5ncyRR3nd3kLq5H3tGpljvcWftpwGLmC7aZpgeiZKfI3AvQYnbJXPHnSL6KUBrbloIF46cl1Lco8iSzYB3IVJcInVIz9YzQFoPYBrtujuy3hEU21WDe6zsegBnaNPVQ2206hSi9gccK/K2xo2Tj271Gm3sjBbgMrcAFV/hhIwvJQOeUb7I26aBofDIVlOlIFFbEulH2i70lK4JabS30hMf7a2xkm5zz1buObSWLsbkrgceB6HBm6VsGM7VS+zTkls5bHfwpmVDANGO8ZDOxjBhVjTpFsV04lWh87qbjEXs4pnXr95vpYkBQMzCnW1/dZB5ar4C+mv9i//p8f8rutwvlyCtxNrbchDsLEHwNkmqQTEqrFKrzDpPz0PSR3nNuRzeZR3dc7cEekIbv760eLx+ITz+QwY40wCWE6ezE1RPOieAGUGWe+XYxxxfHzEjz/8gB9//BEfPn4EEeHN69dgZpzP55A2U8hLDZiVPkVJNTxVQIQManx9PTw8YL/b4WG3w+XhAfuuw7t37zD0PX744x8x9D1evXqFFy9fOpMRY/Dm5Uu8Ohxw9ozv5XLB+XzG+XQCDyP6tnGAeByxu1yCrXfXdei61rG/BjCNbwNguP/Z76mukSxxRGRmXIYBGAbsxW98k/m4JgrhyX+xHHz9IMUL0zYktRxXHrquQ+O9mvRwfsVFrHUqmCb4jPG9hSLWkPqc62f3AMac9adbwk0UTd3evHIth9eEEiNC68vqFlPMLSLj0lIOP3vQLYMrMC1sAElBRi0WkwLOAaBmJPVzQGUCYkaxqrxKSezcXoltdwKuOT3gIWFYfPhLDSHcXQD2OaAvhoHpQFoLKz/jr8aY1kCU3NvS1RgRzOtrtTQsyTWgek355AOJPs5ai2nikdZrw87TLu1bh6NBQe7XWJ/qZ9TAk4SLrN582wqgkrYD77Wi45YVAQUlEIewkGLkrSh9v8K0UemNqRTrQ13KW3JpLBIxTYP9boemaZGr7zkw0vFMx5gU6M/lYYkUuJnByfpjqUM7LFF2ZzjX/zSQlWelvdf6ioBmEdm4GADJ4Da06rDO5zMu3u7bEMUJWRgwY9KxmeMGZ72KJfbGwrTrNK+VwHCzszO3cD6ij8cjnp6eAni1iABdxuNQ1v6bmz+0hwz2D1icn4748Y8/4McffsD79+8xDAMeHh7wF7/9Ld68eYNhGJyHEA/eWrgDnPJ5MZ8vZU5L8kTxS2ntRuY5UqTA2PfofX20TYNd1+H9+/d4Oh7xww8/4OnpCV9//TW+evMGO9kb0TToDgengFwucYWD3WoErAX8+NeMIzoPjuG9nDSNO1zHsd/AAL3LBkm+k9T78VAOrZHvdhwxGr953niA7QG3AalVac+W+zoqzpmqblPA75UiAzTkPfX4Z8ZxDKfeCgkj9elWP6UvTc8S0TGvxcNr59M1DHr+XDFlJSWPs9MigejeLwPaOaNdGpvy9BXH6Xh3HvfM5uZLAN2eUZCCyf9ENPDJC3jVUb8zjYizT90xAzzw4bdtm2zyKQHvuclkjSy9pcFufCmzIVsRt6ST4U4WK71zSz5mZUG5WBfEeqift4MtzJX+XVLs2nZqWjIHJmpx5IqkBtT56X3iTkqel0FIJrvo/g2hnLVyWfKQc43UuJvF98KLlQGeXFhmIZXbc1FnV+UukWcY/VK5m4TdfWMMdp0HY7PaZkktXkrTffrZLSxWCCP9pxp2Oa4077rvaQC+tCokgFMwJpE/4dKbk4wegIf5As4XNPyhZdIvZMNe2Ezln0tOBvQiXjXEj+8mkXlAjwNwDPdl6PHx8RGXyyU8a5mC+Yi/iOhdWi4ZGHJgquHIdB6PJ7x/9wHvf36H9z+/w8ePH8HM+M1vfoPf/qN/hN1uh59//hl/+MMfMAwD3rx543yfEwEzrg5zYiEZk3y/kHGkRIzpz0aUn6ZB5+fN3W6HbrfDw+MjPnz4gNPphO+//x7jMOCrV6+xO+xB3pRnfzjAdC1M2+LxwwechkeAnceR3p7RjyNoGPDCWhhrQdaiHUc0bYvOM6PWGGfDbqJNt1ZykjbIzrUgwT9L5E7P9ANCu2vReDMOAeBMzsNM0TP/DLFUEvJAXvpG2GDpEuvMk1Q9yUbf9P2YNyAqSjrfcySbfje/f5dxpRJGGBukDap2GDZDKrBdar/L40ntWsRT9ZUQuJ65ogg+e9ANTJluIPq/1p1bg1wtcqKZfkZ7gBBZCx5149SgRQYQ8dmdKwb6RLUwqcgM/oyyBUheo7ktAe9Z7FGJr8AzrErLmjTMlUctH0sDirBieZwS5j0Vk5wJlEFG9wN9qIIswQn7XdqAGRRISg+X2FJGk+c2Xk/zKN1KTE4qzyEt52J8d5wYpB1JGeeAzCk1DcJGqdlJa3GaDZ+EablpVuyecktLJZJ/4smH5Qc54QABwLINm+YFUKxNJ8GZLVhmkDF4eHhI/GhrVkzqD0C43rWtX51o0PcDLudLqF89Z+z9psPJit+aPpHMUz6/I+PpdMTj8Rg2/bPXKC3HOo7gW5CTAj4MGDDYjjgfT/j553d49/4DPn54xOV0wul4wuvXr/Hb3/4Wr1+/xvlywb/4F/8CP/74I6y1ePnyJR4eHkB6LMjmVPkueRWWFUQeuLmU6w17+TuT+vOsN/l+0/m5sWtbPDw84OWrV/jpp5/w9PSEH9++xeV0xldff4X9y5cwbQtuDEyzwyvThANMzscTrPfpbS8XoL/ADCP4occoR7S3LeDbQuM3WzbUQLKh28dkvCDhqRFsvCkw7dZ7gWlhGoMW3ksG6dflbfduyTVwrU8TUbhJhmDIYGd2UWn1m4gl3VrhBOBM3QLBEhVRBxajwukjmwD0kmwdT0vKWC2sUAfKTpvV6lUNaKfKnQ5zyljXfqVpo+R+aQUijWG+TL4I0J1ryDIAlpzHl5hw0ZJyNlMAi16CmFuGqCQufkUE3sJol45x1UrA6niULIHcNR2hFEYoH+jpXgit6cD73LJlCWruXWFvZTnaFp5ZnOAXylsD3WC/7d9rb/DXuyS19iogXLPf0vbEA4MMXLI0P/G8sLUvrElvJe1TKbThYrPmJJ1JXDekufYqM4MtwkqWXu2SCSDkskJQb18xClA/Pi/ooJLGa8RhOfXuRkWagAxEcAHB6wmM9SUYOLONa8c2KSFpw+JVREz+jqcT+tPJgR2v1THc0enjMOB8OidslrUjmOPqpLbfLtXXGjDhwJmbB06XCz48Pjr7YHLGCNYrK/l0zqqc9EViiwYWbAe8++lnfP+H73E8nnDpR/z87h12TYvf/e53+PM//3Owtfj+++/xD3/4A/q+x36/x69+9St8/fXX6NrWHa++34Max/laxPGD4JjbhqJZAwBYrw0y+82IBK0xwxKFsx3AKUuv53U5ZXTv2WPjPdR03tzk559/xofHj7gMPV4NA168fOk2SjYNqGnw8tUrNE2DD+Y9nvxGy8a6ePvjEf3lguFwwPhwwP7hIZiGGGtBw4DWuxmk4lgt7VTGxVg3lt3GSvafxhi0DHTUwRLDNG50YNDkrIAJ4F5B7MQUReKl67o4B3mzEgHfMt4zc/QfT/F95nTsCUNWVle3SlWJKVxjl6g4f2WH2Oj5quYtSAibukznthrRt154euprQb4I0J0PcCUQXvrUS+4l1lmDcV1xWouamwAsELx6aC1ITEzyo1sBJOAnKA2UL1rcV1Yz+KUOkd3/FGBb4k2mb84GvtUBKd1TTQb3FlHg8jIkcsyHW3kqb3abk9oEv/ZdDayBqR24tv3WjIF8D+z3agUlmVYXUrh9WL+19pbYFYBAlZN0dB/Wh1IYeMDdNgGUgBDck0lj3s64x17AnKfNH6LBdUVyk2x4T6bnmB2fBtZgXDZYq7Y7QY6cELeljWxpEstp1Aqk1Ec8ECXtA/vdLvrYht/EOAyw8KdhUgOYeL4CW2eK8vDwgIeHh+BVKAfSUPGV0iybHd0pmozj6Yj3jx8c70kCcl05TB3OYtLwCX7uGUd8ePcTfvzxBzw9HXF8OuHxeMS5H/DVm6/wT/76r/Hi4QGn4wm///3v8e7De5Ax+O677/Ddr36FnTeV2R8O4KYBe5MIwG3Mk3nKmOjfw+PsyPTC1ZtchxovBKA7ltaXRabYBQKXyNlcty2atkUvpjY+jJ9/+gmXvsfPP/+ckBlsDKhpsHt4wDddhxcvXuDDTz/jcj6B2HmF4WHA4+NjMBeyzOishRlHx3YzowUwigeXnCUlD5opbooMSp7KK1sLSHuEB9auECZVeq/5VJRLOfm690y/JspS8N3AGHViK6nmpZTRnDO4x8xZnc84nunBYsWgTEj0ib41wnLKbIc7la8RP67NY25yIi8lY9NCIF8E6AbmG2gNhJeY8PxEoilIimFpY/x86SKky0UQpkdGZLxybyUiAnI+JYi9VhhIBlD5zNNemxC1FrkVDuTAe4tU3ysAb70ha0saZQCRdpXvJwCQDBJX5+WOjLOkR3yB5wA87np3IMV6v6Z6SXkZgNdKMQ5Y5WyUfTvnbyfXJgyHKqt6UMnzpbZbatvMYqZjk+eMMWjFM0Ii2aalZFzWbe4G5SNimV9MHJ5Ky50DoKbsQV/md+TR9OZiPc4k5hC+nh4eHrDb7TAMA56ORzwdj7DWBtMSgsHIHIBLYwzevHmDw+GQsIGywqGV+jxuWb6X+cFai34Y8OHxiNPl5FqHcWyjDdrZVLTdrUclwDji4/sP+PDuHR4/vMP5csbpdMH7D+9BpsVf//Vf489+/WuQZfzw9/+AH3/8EcfLBd1+h7/4i7/A69evHbvbdWi7DpbIsdaIoAdAyuyHNESvESBntkBkfN+lALwlzRMwzv6QIu/ZJ3j38MCcyB1c0u33CRssdXYZBnx49w7j5eIY78MBrT/xtTEGbdNg33V4/+EDnh4fYS+XwGxfLhfwB8YwjHh48YD94YDGp82SAbVqU62qAwr/6AtinhFt7Ynh9gwA6MWDjmAIn8VGhXNP4C3erQCAhgGDjf7rtS2+iy7imYkDxWyOXJqHa/PBLAHA6dgoitBobdgUKlYD8ldmtDUIrgPuuTLWCuEWCT2f9e9l+WJA95zMTZolNjwH4Roca3Za+9XW4Lu2pCGDsYAasfHVz0n4NU8X95Da8vVWmSz7SPjq/tKAce2gcgvgBpAM4MgGBVbfw/Xss9aFa6IPy9BxuQkJzq5PxX2NhMkrS1tp0Csxbvm14PHBs3fa+4mYoOQMg/j0lTjmzY3y3M7X6iLgzjS3OSU8+KOdlHnuqqtgb1+opHR8SMtbbOQ1w+cHg9j2Fhp0DfyvFVGE5XtSmLwe4iZjVdauasl38a7vrVVWiJfJlVoZpUvv9XiFTAEQ6q1tW7TeLCiZ9I1B2zahP8jEL3HovhjKKptnJDEjWxxPZzydjrj0Yzg+PKa3XoZGI3prcTmd8NMPP+DDu3cYhh6n0wkfP37EMIz45ptf4S//+q/x8sULPH74gN//y/8YT4+PaLsOv/ruV/jq22/x8OKFc8G32wVzCmHidX9O3KzBbaZn606CPB6fAHaAu+uU60Tj+gHxNDchLGPQwEFWT7Sq7qiAt5gHeQKAiNB9/OhMck4nfLQWl77HwZ9G2e33gSjbPzzgK2+i8vHDB/TnszcXYgyXC07jiMZaGMtANwDDCDwwGnast/H9GVIORlbDfZ1lwNl67Vcu937vAC4XtYIItMbANCZv9qF6l3pRrA+dAH+dAAO37wBEsNkmYEBWOhnE3jyjcf5VwvhxowIwa/5VuKfnG/EKY+R0V0X4JHmfpDELd+U8oRIWXivehu7raa/Vz/zJge5awc0NwiVWrgTCc9Cds+EA0uVkBcD1p1460ZvbasBflu5y2641zX4rmL1Wmzb5RLcwgZcUkXt05hA+1jXuZMmoUL6SriqLnOWzBHb1Oxp052HeezVjYcgpv1PJZ+7bPjHJ8n3hcrmENt00DdpC+0/Lcq6WctVtZWYy1F0fgOPzpVQ4Tk35sEdcpQogeRKkgeUR1vrNgQHPq9UwEKL5BKtZtF7366Hw/GZSiVV/loOpx1hcwZuJZ3p/BWRIwHkhBkrBxNIYVwPhiVJYebf3bgU1Sz6OIwabvjGOI47HIy6XS7APN00bNh26dIrHFW0PLEv6rg99fHzE0+UM07SwZBBtauttgAAHAD2IvVwu+OH7P+Lju3cY+x52HPDh40d8+PAB+8MB/+Sf/DW+/dWvcBkH/Cf/yX+CH//4R4z9gFevX+NXv/4Oh1evQF2L/cMLdOLqEOIn3DGNAjJdm4a3x3ZK7OV0wul0wjAOoW7sMILtiFE8j+z3aEzcaJrUuKwIyzzpgaq7PsaVaVW/bdsCiu3s9nscHh7w4eNHHJ+ecDqdnK/uywWvXr/GYb8PttnilWa32+HD+/d4+vgIHkcQM4a+x/uPH3G8XPDy4QGHhwdYMNpxhGlbZ+bSdWi61nki8aC22B7J9WWCy9fox5HBs7eN9QfoUAOGM3cJK4dYGC2V0jNRYpLWJivqAIw7ut5y3EwpT4EBtm4DpxvnGca4eq8B71LcW0VjH/m0fmVV2pLYnNdY7TysWl1UfqxPa210u9M0/kWA7mtBSw64S6YkORAvmaDktuE5AC+Bb31P+3gV0T67dUPPO+B94do20cBmDcOklY5wLT5YYB2RPLcKgmwA8DUYUAKtMuAstbU8ndIupL7lWggnH8DuqHwAKUtSu59fq6VHA2jAK1ze9VRgJMYRI0Wf4dLGxWY8hhlUm9k4J78J0RY6S3cAxjOSThAufvGbK/cNVDuUySb7HVdH3IYyZ98afdkSEIBAYmPo/434e75VJ/lUeUsmytq7OcFTm6QwVxt1mfTjDLSnjHXaCkv9BCDMrfVI/ZbM/kppKv1Or4t5R7wurtROp1NkAdlBpt1uh703EbqczxiGi6/z6P3HGINud3AHbwTmm+DMK2ScZIyjxTCMOF8GfPj4AcM4wnStMycJ0UaO25VObHMBcAPA4DZJ/vjjj7gcj2Dr/Hl/+PgR/Tjiu9/8Br/7y7/Evtvhh7dv8Q/f/wHn0wmHwwG//Yu/wOs3b5zd8t654xOgDf/JzLCEeKIyEaLnagB2DAB3zBwSGMRVW1kl2O/2aNr6CZ3s61mDcambUHfqPsh5Oen2ewfAPSg+7PcBfD9+/Ij+csGrV6/w8uVLd4iM94xy8CZFh/3erQ6cLxisBQ8DBn+QzmgtRma0w4h216EZR+wJaBpn406ZQujqx6vspPLl78km1FHyNXJojy0MjKGw8bTo9lT3PdVOREx4JvZqkvGGnM9z2rvDuS4X8TPvRzMLDMyBRCEi59ucvD2/ArW10TYH0XMAOf+Tw2z0GCqrqTrM9aKIjo0S23mNw/YxzIS9dVz9IkD33SQrGc5YLQ2YS6y09r2tG5A2Q8kHGmNM2N2s2Xc9iCeTLVKQobV+/fk5ylrQmryDNL93TxOmg4dmweckP0uwphjkYccb6ebcrUNJLiu4xEmaZHI1ugy47Koq1IOwXEDw2cvMExdqsgmTiEJbzneVl+G/j6eYBoe6J3sZC5mncGMSQuEZUr+n8evpiwBnD+SZIDv61S/1XmOMO1yj4pkmtBWV/cj+pVpF0n5ULrYw4eUUbGHTp2/ntZP7l2b9nDCXSSARnG3t3Uss8PqJ2VnbunNBGJfLxdn1CmBkdoDscPCKo0vnuTV4enKnNeq9GtZajHyC6fvk5FeiuJHa2gHn8wVPxyMejye3Ma/tMMKxjLLh1KUuU5w5gm+2FsenJ7z9/nscPz5iHEdczmc8Pj7idDph//IF/uav/zFef/0VjqcT/vnf/nP8/O4dYAxev3mD3/72tzg8PIDaFm3XAd6VpfGtQhhudhRuUHgAD+p8eZ2PR+ffnDlx8jgZ96zF5XyGHUfvWrGDMbJpDymQVPUs7+d1ahUbHMYTY9z4ZIzzye7B9Pv373E+n8P+lBcvXuBwOATg3RiDV199haZt8fHDRxyfHv14xrj0PczxiNFadIcDdnbv/HiTq4Pdbgez61w9QjxDqToMzVvAMbsNzr5SLeBOyRTzvbZxmxnJeYMBee8wpMgBZkxnoLxpp0ou4Jhxt4ETAPnzISzHA57AYJYN2dH0RMpJ14nkKPdkUl0dniQvxU5SN0SErm3RKde1uh3k4c+uSMeLWAd9pwpMcYx8Rpj1RYDutazHUhhEpCktQE9+GfjOv2vb1xL7XfqTeEe/VA9StqaZv2QdV4m1LJnLJGzALyC52czi89lvrVmWJvmqbGC7S88vDRRaak+G4VApUfpdZs7AZx203yw0BZpuAufpAFp8XSmJKsyE8SDHBCbtWk0kMqjLMqEwTRp8p8U+3WAcEz8tqdpAS7Ap2CPF+lRqj+IDSZ8j9cfyH0cmTyZ/4/NommZ25cZy5FGS5LM8kymDIcUc7gMI9qPTlbpk3q2K5IWIYLjiHWMpjIzZkjaXlvDU9Zh/WKkQdSUsPF2YaJekBtIJznf3xR8brvfSyMbK/X6fsNTsgXjbtjifz95eegiKJY8MYyLRIv67u90O4zji8fEDHp+eMDJguhYjKBzxzkDlQBJOiqU/n/H+55/x7ocfwX0POwz4+PiIDx8/wjQNfvtXf4Xv/vzPQMbg7//wB/z4ww8YLj0Ohwf82Z//mdsoudvBtO7wGOchyyuSft6CB7FSfuJtQ/r28ekJ/eWC4ASzAJq1yLzX9xfYcUS365zteLcDI7oapNCeQ+WFeznZRURohLAgin3PGAx+fHnhwbWYAT0+PuJ8PuPh4QGvXr1Ct9tB2PIXr19jdzjgw/sdjo+POB+PIDIYAWAcMHrzmZ1XMsgyDDs2uu3EpSBPleLQp+MFDlo3I1gtsWOcmZ0XEWeR5Nbe3BZObWLDHhzHPqcJ3QJ0mXw35Pyes7UYAb9S4d60mSmVgTtNV2ONWg/UdVXqe3pfkPS54Ofe22uXVkKKRMyKuVvaZ2mMLAHtKutRC3ulrMFCXwToFskH4tVsRzqeBUohhsUTRJLHk5uhiC2g3nwm94pA3N0MA5fskDe+8QXfzhlI0p+Ua3wLjOU1Up28suu6w62dHCcTKcfOUAOk1bC3Au816cPyQKZ/k0+H+BEN90ltvs2Y0FqdzUkog5XtPQBIBYAmgHum/GqmMXJP7mslVAZYzWho94O5chmzxEnYLIypahBzA7EYh6QDc/pMEkcpn2DIVKqfE3/KeRrbpvEHTfgUZAxwBM1lqQNE9Y1QXInTUqrCYhPJOxcXuZ1FdlmnQVZuhBBYlvUEgV6y1269wv0V8UWShd0JhQpwawCg/YLn5ds0DR4eHtC2LU6nE87nM87nCxgW1sQVoL7v3VHq1uIyDhhH5/e5abtwImEpxVmVOBdpw4iP797h3Y9vcTmdMCjAfbqc8fLNG/zVX/0VXr15jeP5jH/4wx/w/uNHsLX4+uuv8KvvvsPh4QH7hwc0XRc2bJJv0NqGVsw4ZBXMwG34fHx0phqUlfPKUd4BPLbg84hx6J09/O7g2N2mDYRFUEiBpCG7lYkY94h0PAuraX6MHYcBX3/9NQ6HA06nEz58+IC+78OY9PLVK7Rho6dBs9/j9TffoOs6/CzzNhEsuaPSeRh8mfn2I2MAHdzBNyCI+b7YcucVqxVoFjMUzYST9wbTOiXMeEBtSJvY+IZBca4BvC22jyqamSTRh3IlgvPIQntcLmcYm45p+UZL49tEyH+phrN2oUnGfGOk9LWDP5RIewqbNw27QhLA5MfQK2mugG8W0iTYbkssXwzo1gB27fJGeFf+UUBRwnS/59+fPh8HaQ08NAuegHEiZzuWNfDRb1IbhyFhBmtL1qLJBa0OZUBYAo5rpQSCar/l+SkYqLNUtXulvCyFBVwB1ldKrQzDb0UzpoNcNCMx/pmJNp/FsVZyM5m1kgwgN5ZLDlD0RCiHNJQO45kC8Ai8a2x3KalFcK3hagVAARmLDyCAY1J14gcLZjfxW3/ARkOR1WyM8bFKX5Qy1jbLetqtS7EvaAYJyDm1m4WBST9G5ZqIgLSaAnNTYorXpjlfBbbVJ/m2dzmfnc1qBrjFI0ZpnNPfd7sduq7Dw8MDTqcTjqczjqdzABbWWjw+PuLj8YjDixd49foVqHHs8tp6s+OI8/GIt9//EU/v36PxJgEfj0c8Hp/QtB1+9zd/g+9+/WsYEH54+9a5ATyfQU2Dr7/6Cn/2m9/g4cULtF0H07a+YZPbJDla2GFM9l8wxaJma3E8n/B0cqYk+oAvvbpREg2XBfAwNAAbPdO/w44o2I4TMYw/Nj0435MBPSO9tKIQ+rgx2HUdrJ83u65zpiDG4Hg84nw+4+npCZe+x8OrV3g4OFv8XduiaxrsXr/Gfr8PKxlgDm727DjidDxi6Hvs9vuwirfbuzQ11EQwLOWkvyeKlvdBTXJYnkE/2rBPpG29lw7TQNwPEryJHSHb47Lc/0h9CasFjcF+71xl9n2fHu4lKx9wq2Bt2Bwu4dR7utSNdj8r7WW32ylXnHW5da5OAyf1sW3UXEviTjDQpli+INCt5VZzkxw8xxuotuRanCUgnp8GaIYhbEDRIFIa6AgkwEQGEO2iSufRDZQ8CU+ygHo2knDW5K2mcNxLaqB57bu3hrEpvkKZ6QFLQLH8Nd6W8F4yx8Ln+de/q5aBBap0pgtkr6ZtI2fA9SZhzYKLKYoxbiJINvNAlXEhY9O2V859kRl3N8LkJ2CZwj34PgXPCFqMo03afRMYbt3itC1qng4Hw8Udm36GQqRTSZZuEaZsXN3SVdQCuMPhGbqsKFu18vdr7WGSEqKrTFfKMlXkp0vHUakJq4lerLUYMpMSMgYHD8w0gFvL7jdN4zbp7Q5ouyPev3+P0+mEx6cnsCF89c03zobaHzBjOe1N0tYcIGMhLjFcenx49w5v//hH2PMZxtsZv3v/Hh/PZ3z3m1/jL//qr9Dt9/jw4QN++vFHHJ+eMIwjmt0O3377Lb795hu8fPnS9TvP2gIOTMs8k2z6VcU79j1OxycM/QVgRitkgSpXBpKD4KpjROFgKVkNkO+tN3lxwG7qPYiIwqCVujJ0rHHispfc/orgWcmbtonppoDvvu8xvniBr968CW1eNll2u51byTidwJeLOyKenYeToXcgVfqLtRbdbocOO7Rdi3LPn4rM2QAC8HaZHp2HE2PALdCQeD8TtC3jYhlrlMq6WC2EZDVd9irIOwGr+LGha1tQNi7rPqjJlVERirLHQZvO5ismS7KmT6aZRqxTAKxNcm6UnKi6FXADXyjo1rLEhAYpzleeTdFj44bKnrNpyrXyJnHdoyYMWSpSnlGICL3fqJMf0KNNF6pxuxur8zHXyEumNTr914gOMzD3d5R7hyeimQH5zUA4ele3RQFp1VULfBplQcO1tbL1+aVlwnDQjnLHOfpleKJoo9k2jfOPK+kmz3YTleby1fHLXeMp7eC9xLMhmtEJK1ZWHQZCQGMIbeP89boZ0L2yNP5wYKzExlNKd76EJ/0N61lT6KVsD/A04Lajc/E29APO5xNAhIM3o5CJtpE8aeUK07J25bjUWtamfNtkG/qhioHgWMrL5YKh78Mzpmmwy9htHcZSPNoDVds61nC36/D4BLeZ7+VLZ7vsSRHLaZm4ppaylHYY8PT0hHc//YTjhw/gYQQPIx6PRzw+PaHpOvyz/+x/Bt999x0ulwv+4e//Hj/9/LNjoo3BV998g2+++w6v37xB5zfCWeUBIqy0GkJjmrC0zz4pox1xfjricj6B2U72c6ypiXXzgPOCNPQ9xqEHGefGb+cPtEFYOVKkEpwZnmzicwqAdUCcOe4V8X/Bp7cC3bJB9vHDB5xOJzx9+ADb987W+/VrdLtdsBF/8eKFA+3dDhcPwPuLs023o8VwvniPNgNevHoJGLjVuqZJGt90TI+jacyHb09EAAysHTEa177apkVjDCy7NtqaFPBNlGIVX0kBMAjV6X779rHf7xPGOwTp3Rz2fhyU/qLPF5EN9HIOiZR1ArTV+LHYOq7AEuk79wPZpfClznKpxcjMs/n+okB3DRxqMFRkuaT+8/f0Ug1T0NJrS401WVqWNX4ZLBxvqsIlcjZ1nTqmW8ITu7SSX3B9VHey5EaRCc/TMSdrgLcOZ5MmOh9xmbmdK9PKNV54ZlVyUGon9fBG73Iqb3tSL6U2GfJ4ZRpLMgfgNw9qBQa8/Ng6BaykgFjbuclmjIP34Nt226jB2whPP2V3KLSd+ZI0gRVTm6lDFtPB1Xl0cA8Q/NHgRnb3U2CDpY8lSliW51BGFONj9Vkru6TtJ40l79PxoZxJT8YwJg/ARjwdj/jxhx/w09u3ePr46Oxhv/0G3/7qO+wPe7zwG8+Ypgz3GgZqcVwoNRWu3UjjLoWfrAiw27R+9uBIpG1b7PzBKcjaz1x6tXKtr43jiKfjE47nM7rDAYeuhYVBPDapkJcsDDsMePf2LX766SeM5zP40qO/OI8np77Ht7/+NX73l79D5z1z/P3f/z2OpxPIGLx48QJff/013nz9NQ4vXzrWWOVLXHsSwYPa1C2mtRan0xlPT48gZuhzVCn7zK8vim6nuYLmNxHCMs52QN9fsD88xEN6PGMZFG64Xmikv7CBx91TN60efBMzGiLs4fK+9xtlT09P+Pmnn/D4+Iinpyeczme8fPUKDx5si/1+1+5AloNf777vAQLOlzP2J2e3z4ZAjWfWQe5AIF1Qk75aBt6AMzEVUsEd2hXxQaPct7o5XnuEYtgrZxAZj2Vu0p7ZgFTJZK/gaFNBbe5zOBwmq/I1Jr7WhtauNK2R6Ui8Xq4B//kKW5qOsnwRoDsHwbVlxiVJlcRskvJU0ITJuYHZ1aCrbRqMTYOBs+U0IjReU8ztw2XZRjqBnkhkwNFs+MRPuEr3xAzlDoz1nKxdgchB9qbukrNwm1JYTosOZw7EBtOJvo+u1LL85u4ga3HOxVWSaro2hFED6deUY2xLhXgU4aEHYyLnA1dO/AvuOEeL3vaT0zD1BCthSE7U13ImJpOAtiePeQh/6jWXziZl1rI01HgWSS2rv5AGionMyasElPuaSjlSCVVnsVJrHL1VvHv3Dn/7t38bPF2wtWjbFm/f/oSn4wkvX73Eb3/3O7S7XbUNbF76zZNdu1cJ0uWLY3lkY5gAgnwjLxBXWAKjWg0/BdgTsEDR7vXS9/j5w4dgS92aBtavQsyVivXs1ziOeHp8xM9//AHnx0fnMePS4/HxEcfjEQ8vX+I/9U//Kb757lc4nU74/e9/j7dv37pzHXY7fPerX+H1mzc4vHiBbneAaZ1tsfiFDgRAk+4NEqDK44jjk7NVdl45fPvjuClvru5zqc0jlHXKnJm0lmG5Bx9d2bT+5Ek5LE6edoCb4FhkAhvZa2HD6kEgOBT5ZNoWnZ8fd22LB7/K8e7dO/z87h1+ePsWP79/HxQY8WLTdh1ev3kDMsDbxuDtTz+5duVt+PtxxNmvoBhqsN8D7S4yyEtdg6XMfCc3XlFgZgw+gLFp0BivchCcW0HvbCbOku7eUrcqXvflJGBZTH+0S2QiCv0JiONj40/5DCeQZoRfkldOVxHl2lpZh00yguJGMjDBmtMYJs8E9Mh+POepGVwuXwTozuUeQHGONZfPfIC/Nl7RLNu2dY1YsTOEODnrBgwgWZKvHdijO0YA24oFNxRt3koD5N0Y62eUNWV/L9Whhtvy9GjRyo1MWk1lkq/FVbxfmuQWwlsqh5qSclv5TVOlWWSCnjDkt4/RqMN1pG2Psc1PTsP0A31oExTzEvLg0EOiRMWJAYl2JSeuusnQAQACQMaFYDywAjlgpZfop8VQYD38pBqXzfMSKzElXATekPXrUIo66lLfdp/Wjvj48SP+9m//Fm/fvnVslfieJmffeb5c0O66LOn3VchrY83c9uCEHPHFEJUiCoD7crkkoEHMDbqui6Z47qVyPSECi9K1vh/w8ekJ7z98ABOhad0hM6MH3NqWXcCgiLUW4zDg7N0APr5/j/F8Afoel9MJT8cjLIDf/tVf4c9/+1uYrsWPb9/iD3/4Ay59DzIGX331Fb777ju8fP0axntGMZ5htcwY7Bjq1GSrSjJPXM5nWG+fbEiIJteu4qrRjaL6PVBWxHW6rFqZ2O92gPi+1xv5BNoI8CbvK1vNi7Iqpvs7GYOGxNtQA2oMuv0e+4cH/ORZ759++glPT0948+YNvvnmWzx494NvvvoKDy9fojsc8OMPP7g6GweMQpoZg9YfAGS61sXJMbWZCpKVUTr/yvPWWgyA96PuV/gYYGI/h/txz7hNqEs1loyzpft+XN3tdnG10X9qrCGy2+3w8PBQOIthJv6Y0crcpa+WwfsaYT0wPIOUzUs49HPyEwizMyecM4f87EG3aIZrK6I6sF+5dFDT4mpSY0lEs8x9xWoAXQpDmGwNtoGpq0IRvQyUg5XAGCJ2hlsUiVsA+y1KzKeQtSlLVh8Ax14ocAiUGYDwDsWNSWtK89aVlyStM/fn4p8+F9nI9FacGFKAn64MpAoLAU3sF1rhlE2Y0q6DktmQQtNuYiY/QUMmJ45pMKTZcZdCbVICzy4ZY5yNMxRgpviRsK/McUnc37CSV6VdcRqMXI5lo8E2SZnHOPLn43slRVomThs2TjVNgxGEgeO+inEc0XQtdp0HEQXFYm1rWzSXKUiYjquPxQk7rBggni6pN4VJGvRmriR9KgxZKZszqxvHEZd+wNuf3+PpfEbTGu+fPboCFC8gpKqaiEDSdocBjx8+4Oeff8b58cmdhHi54CxmDl99hd/+5e/w5quv8PT0hN//x/8S79+/BwDsDwd895vf4M2bN3jx4oX3SmJC4xjZYhgHANNzAeDL6Hw+43Q6ga2FeJY3hgA2aX/OynCN6U2pvufnlrQNW3c8IngcweMI23Xo/KovgpcT1/al7mRzXjzK3K2UGQ++w7gCOJMw+HLxZmKiiGnf3j/88APO5zO+/fZbvHr1Knis+fM//3O8ef0aP/7xj/j48WMwP3t6esKPP/4IELnTPnfpStystlEoRxBh9Hlp4Fq8IyDY+bQGAIp1axYhdxZ+RfTKeA609XfJm7iCXZIEcK+RMK4uvVUmKZ5LZJyQ78n4rS+w9H/yba4unz3oFrkVTNdAbU0SgHIjOJT3BUDrJRsgbk6Y23inO4eEJVICKHnYzmNE1FAb9V1sXnUDy/M9Yf6z9F0zQX8JLHsuydKSUoK05CsWayUBYleAl/sII48mJmVbnkrQPP1dmLAVENdegJjdrnpmDpuOham1oDDZCvtNcLagAuQFk2slx+XWs9syuai4hXFz/cItZ8t4yqpcGHDLvyzXoxISyo+FqYvCPhCjLjAAkKxKcXxfl2ChGmrjG5FbEv7qq6/w9ddfhYNLmB171nUd9g8HPLx4ga++/hoPh4fgqzcJvxCtLsNSWjYp5lyKIXtExTVai957pdCkhQBt+VuOlpNP+S6A++l0xs/vP+IyjN7vtWO3gwJFFFg2AYUEANZivFwwnC94/+E93r1/j/58ge17XI5HPB2PgDH4y7/5G/zqN7+GZcY//OEPjt2+XNC2LX713Xf46ptv8Or1a3XsvHEgn505wAhheaVdR01tHEY8Pj6i915JTDIucaJgidK4tr4WVx7Dyk6plyuzA/ZohQl2ZJytxTD0aLu40TIlC9TmalGmFWDUnqSMiatTZAx2Zuf3i7Todh2+/uZrHJ+O+PDhA96+fYunpyecz2d88803+Pbbb4OP9jdv3uCrN2/wkzdJOZ3PIHLODs6XCwbv8neOSJpTRnNw64Y4P497ztuSARmvKId8lyHoXM3kc7qYY8nhUWKzXdqTJDiCmYPiUjTHmok/K4EVb3Hh1/PMg5NVLnexuqqpRciWvu/x7t07PB2fqvF8MaC7JnlBXc/WpfJcS6uy4UAfLawb/6KNlNJKc0ZcnkkGIGsxKkBeM0VpjAkDnAMX5UFikqbCd4byibxBdHmsledgzEtsZCnemqxZepsVYUzTCJNrOdM0xyzMTQTlfGh4AzDPKRH3HwB1+9ZpZFlyZrdlTdgG2XEfWCBjgEaACHmf4LFP6bIaVf7d4XBuSVrbiQIAk0wwCBOezr8lt+TL8KYGTDDKbjuEjzhRTraBEqWNb6L8KM8OhTJz2G86Hhrjlob/7M/+DE3T4OPHD3j79icYY/Dr777Dd7/+Nbpuh26/d6fu5ZPo3O98osrAay5bVmpqE7qYaogtKhDt7sVzhVbYcrKgpiTosXMYBnx8fML7pyMYhKZrYSk1I0nGCfLYkS14tBj7Hk/vP+D9Tz/hdDqhHwa3UfLxEafzGV99+y3+0V/+Dq9ev8aHDx/w+9//Hh8/fgQR4c1XX+HXv/41Xr16hYNnt6UvWHbKnKx+OP/xLh1ydPs4jC7O8wlsR7fZz99jnjaz2K6mZNPasViUxIjhVQyTuiYI6NelKasyzIRxtMFH9s5vtORQ2LHMgbgp0LL1JifOBAPs+r8Fe2bY+L7QBeKpbdrAav/44494fHzEjz/+iMvlgm+//RYvX7504J8Ib775BuQPShrHES9evHAnXnoAWl5tWl+Ocf5z5SHlxN48qWl3cfyq69+T6yWTKcEbfe8OLxI8ks/B+TUB3drVa2IRUIh/OePysaR033eumVvhKkSuWIa0bod+wOV0xvv37/EP//AP+P7773E5X6rxfhGge+tAvfbZpaVFPVFvZRlr74ipR74pUgb6ucNxaux7bVJsmgZgRsduSWxUh5ZodlybopT+BITneZorkTXAdfKOAlpbpFTO1wJemVRzzFMKrdTWpBxvEc2Y5WkgRN+1suwqIL0mMZ06pG3KTSFUlFsAxdvqS2SA10mpfTtmzh1tHJAH/GDs2zjYbdJiWLB1+xkI8fj20JbhytF4AA9ywNrAAzg/s1lVsswczUUYMW4AMPAmB94aM4AwDsUi9uMJ2FaDuQAiiWIKVuCPky5tr4yMqyq48LVtjTdReMD333+P4/EIay3arvW2mi+S1ZVa/CWJc9H8tDg7joZAYljqp2P/2G0UvJS8k/hDUZaU3SXAPY4Wp9MJ7z8+oh9HZ1tMBH1idgB/6pphwFgL622n3719i6f3HzD2PS7eBObx8RHtfo+/+U//M3zzq19hGAb83d/9Hd6+fYveA8xfffcd3nz1VTBxCGATns31CWmMARPr5gMw43g84vHx0W2S1comIphjkOo7aTlMquWKcXQNfzlbRx7Aj+PofGdb60/4bKPCoFGnKCDGwBLAGMFsMY5R6SQjPcYB8q5r/Vw8hjF7v98HO++PHz+i73u8fv06bLRs2xZfffUVXr9+7VZUWmeSJYcNbZUSeUaiVAFoyAKmCUq+IXHlqcbUmTKOZRmBtsz3mt1umgavX7/G4XAAMwef5TbMG7EdaZ/cshcn5EPla2UJIJj/lWfY8Jj+ebMsjFN59HEqk57oxFqL4/GIn3/6GT+//Sm0m2EYZivliwDdIlsA9VpZw67qjnHrEr+wMWFJ1BsEuiWl1B/s1uWq/Lpegm/hTpqysjmTOdl4pN0BSScjiq7e/n/s/UnMbcmSLgh95r7W2nv/3WmiudHcG3lvdu89ChCoJMSwBgxqgGiEkBjVAEQhBIIBI5iAVFOaAUglFaVSqQaAGCJUJSSQEBKiCpVQVeXLl/ny3bx524g4EXH68/+7WWu5MzA3d3Nfvtbe+z8nbp54mR7xn733arx3s8/Mzc2iNly0jVQPFauXz7sbpXeRjrMCP/O99oYISUuA/xQt/NwzJeCO/e39lET5ZE+8NE9P3RVY1oBPajabMkCA6fo9tp5L4CftI2IuZCh/v9zJkTLilnOYu7xF7WG8hyO1KyMBe4hgEbamQwvEHVwCzEKAua+acM0FUOB8XnfpD2TrmtF1JOIiQ6XWV/pOfS/7K+tXzl/3rTFsv313dxefv7u7wzgO0Z2eK/I+i9qJEHhCqu9Q5kAwPMj9Gdzg9ft95p1EH5Y8pqEvy50C7hGv39zi9m7LNu/WBJMLBP/bPoviyNl7kPMwzsP1Pd68eoVnz55hf3cHcg773Q63IUT8ww8/wGc/+QLdeoWXL1/i2ydPsNvtAIBNGj76CBcXF8lnuj4A6uWAKAFkYAhsVhUEzcPhgO12y2aEQBSgdA8Qyazw8cCwx/F1eFr6frSQ48ha+3Yco5cvysyGfNZIAdBaseSD8GtMEt6JDIyRaI2Jx4lv79evX0dBabfb4erqCjc3N1itVlitVlkE6Tnh9JTezDTEaj6KYoAo2KF3LXs0ofPjWgjAlj/ZUV+tVri4uMAquNMUun95eYmubXF3d8cmfamycQdJwDqAzIvJ+TPomNjwdmmS8wzgru0GsCZGfjuInb2M1W67w8sXL/D06VO8ec1CmvZVPpd+UKBb0vdhUlADK28LtjV4Kb8nwhDKCtq5YRgze8Rym6pWt2Ntkkki25EmMNfygGbNS4ps4ZaacNnClXsaiAvB+D7G6dS0XHZdQ3sO0BDQPclFCSz3bXttuy6vKY5qIafA+XirMjCY3zn67rQC93tNvy7wVsYm9Wt4Jn7mB4YjYWVJNs5vQ2whyRphAaXhfTIw1sTgMLJVL31oEKItKnqQrU2kdeZBQSOX6u6BSbTG0uyB16gAoRIwJW2SUX3rRXNZ7T8dBIjTarXCj370I3RdB+ccrq+v8eDBA/aU5HkruxSas1k0Q49imRWB7WTa6YtP5AfDtf22tRbr4GniHMG2VjfvPXb7Pd7c3uJ2u2Ptok1+tzNxXfFiD8A4DxpHHHZ7PPv2W7x+84aDwPQ9dtstttstVpsN/uCLL/Dg0UPsDwf87je/xcsXzzGOI9arNW4ePcTNgwe4uLrCar1W7ucSkycgutOT+hAA70bstjtst3cBf3LNjpEeodFFZ4SM70O3gjCcX7knngqiQQQ8HofDHhSUHE3bomnbUNWpoCWgJ+dnDs6JDTvXS9No8coBJGFut9tht9uh6zrc3NxwNNKKkCfC9EQIBpZJYFzPFGmW8E/xOtY1DbquDUIxsqigy1n7CLK1KVbbtri5uYk7Q2X/SR+0bYury0vc3d1lmED6TPIXYXW1WsW+OFWx867TXI6Z4gfH2VImjDsfwbb3QXnj2MPWcOjZ09bIB9QvLi4i6G7bdjb/9x90q8HOL7+ddD6rYSyYxrmmC6dqqYUo5O8CLoSfNmSTFoyW61wtAwWz0BpDUoe3giY8gu8jIFyHfc2C9QRCAWJwEkFjeZr8pNp/X2luuZ1XqyUQsWQedG6q1uqM+Z7GvAa+6/kcB0il/vrdpTmNPwKsZCdaAcgGNVAE45xBZg7FKi4H7x1G72SqR+AaXYwRYExyVQb4sD7CvA9mG84BY9Suq6iDApA9QJ6tRx0AciO07yhaOOkgLR/Vb4IPhzN9vBjBOCFpXZBcHk76MWhspJ3WWjx8+BAPHjxQY83UQg6cucDY9V3CVGiQssSsJM9tmk6hpV49K4JtGTmvaRqsAzg9lR5G2lZcd87jbrvFq9tb9M4BTaPaSbpCmRRiPFgLOI548+o1nn7zTdTCH/Z77LZbHPoeH33yCT757DPYtsWzZ8/w5OsnGA4HNG2Lh48f4tHjx1hfbNBtNsF8IsBml84tyByXvuU6OOzutjgc9hjHIXcBeKRLSjo8GRUf1fgnp/LxiUCJslpL+U/FVO8JcGxuIjyoDcARCKZbRfmivBI+JkKxcw5kkCmNrLVR47vdbqNgV2q3S/PBtKMwJ/rOtxBA5klMrjPYtmiDB562bQLd8pNnuUk5XhmGAdvtFvswH8V0Rmu1j+7sGwPbNNhsNhzdVYLiqPLEe1D0aCKKuO955+TYzHmbVO5+JcAdlCzewwvQbho+d7HZYAwmugB7NDP0z4Gm+1yN79KkOmf7/z5JA+9a2aKVG8cRDi6bXyJd8Q8k+lOp5knb8zOpuhWrNHxODqdUgLcG4JJEMi81vcb7aBe5VFfdpu9PO35U9zCb4lAUizLmTLk5zqntnS1vYb6fcq3MI2/FMZ76FirqM1MJJgRcz9WHVP1Z0ONr+byT+wYcxQ2AEy1u2PExlgkjGRA1MMbyc96HZ5hJD0GX7F3QavoUCU5CVHsfLKoDGAOIsbbhgPMCH7xPda+Rp+ygJUGcOiTcLsgZ9XWSzEoq/RzeF9tvAkWTCf2u1mSdKjqSbpAGAOr+qeuahyrRHQHcoqBYr9fouhakmNq5u5G8dnnb/fXtHd5s7+DDXHDw6VyHpsuqaQYAxhHj4YBnT5/ixbPncH0PN3LEz/1uh83FBX72J3+Cy+trvHr9Gt/95jdRG315dYWHHzzG1fU1Lq6uYJomarAFcHvvwJ4wRXj0QSAEDvsDdne3wX1m3tentH1uHHz+4OJ4Te/lc49xe+195a5zlkPV9JGebbbIYTjwwcKh77FardgvueUw9zWvT8YY8XrNmsuwoyPtkHqKhpuIsNlsIvCehDbnF5UwcdzkowaWSf1J/l1w3dkEcy9DBFPmLzwo/NR22vJpjMHl5WXc/dMmD0dxg1rPtmmwCn00DEM8cBnnqk++1r3nsPHi4vAUBWQtxXUsREtNhVJgPCdNZlUphEu/BvNbqYu0UUA3BXxmrEVDBOuTZ61xGODcyK4wZ9IPBnTr5JUkroEQMD+RSoI8R6jfFeCrTTQ9AfUWmK6CgFmRHuPy8vPMa679p7Sk7AfWohGHBiaCFy8A6pm5QD2jczlxERBkOHCBnBiPUv6MRvj7GZPTAfexJ/UYlemkKJQzAtm7SMcJ3DwwK1t9br8HZ1aTvjspHxH4qsKK0ryJMEcyv0QTmExFWHON9AwA2xAEchIRGsvuw4xpcPXgMdr1Bof9AXevX8P1B3g/AOTQIng4McywjXMc/c+xfS/iNjiDguThgkDeIMQKZAIfsFPOMlPvAbzunNIew/vkQUUzn4IW8Pc6mE8YRx3kFIaG3Mbc+3wc5uapBivxfcXEynlwXCBErIuAbQEQAn66rkPbtQm0HBPguaBJuaLdvtvtcRiGAGZVVMkg7MQ8oJi99/DjiLs3b/Dtt9/i7vVrjqJ6OGB7dwcP4PPPP8ePPvsMg3d48u03ePrNt3BBM3v94AFuHj7AVdji95oG+rSra4LAJhpaIsJwOGC726EP2/oy985WVCj+ufzYjJnb4rvlvTrwvk+SsSHv4TzTXzeObFIWIk6mg6eI0q14JQIQBOYUpbVUjhARjwsQ+x0qv7BKAAWEqzKEn14qvxuw4qCxDVZdh7ZlwUEHcyLJLEmwMQ9ZJyKYcjM52I1otKVN5U73XIr+kYIywxiKThSstTHyq+Qgh/qjW2IRfGQX0fsMgMfuOYX/LbGqM9KkLI2X5L4C2bLbH39r8xoxN6H0XMSjgf6VcQPK9IMA3ZNOE+6SSZvx4fBIHfCW+Z3GDKb1eVsgSEQp4mQhzYmWh7dq5IUT8pypq5RXq4P+XuuXjHmGZ6y18ZoHMikQapLGQD7DEMGSNclHuNhjHiMIpwhVtTQF78ffWYSrKj85tFfW/VTTkmPauUUtxEL93h7Qn/dudV5Nvhx5V/O14jXWUCWGSAga7vhsANkBfScwHq6Hi0Q+MhBDBtZ0WK83+PEXP8MnP/1DNO0K3nvs7u7w8rvv8PS7b/DqxTP2cexG1g57wAdzlbQDlMbQk5gDhD70ALyYq3iQE3eCOWEPl6IGiQ94Rnar8HEyNxC2n3jxBAIsazUz8K2fXWaMc4zz2Jyr0qbsPWLXaOHQl2jVRHu2udjAGiNagck0LcuPQgsSIx0dn5m52+5wu9sFG/1QNhKoq9VXNP+H/R7fffMNXr54iaE/wPUcDXO/3eLm5gafff45rh88wKvbW/z2y99hd3eHxljcPHqIRx98gIurK3SrVbTPjnX3HCWSLM9s5xhEWWsBxx5V9uoQKTAVvN42lXmdK3JnvxJDDnffto4EkHj2CKPlTTQ1EV/Zq/WazXSAKRYIa4yMj4GLgBTwJT0XQBTxmhYJTFZktSUzzZvikETHGjJYdR3WqxXPbfhJHSIIrvAe8T4CJA8+bfTnflp/Z1SjFBqEPIuSUJ01k76LtA9AH/i8KFCsFoCkTZU+mU/n8aJTsZuuT0nDhCZpBaPUhO+LsOun1SPCMI7YB7eKc+m9B90e0xC7EQiqQdQgEEgSltzXn3+bSYMimczeD1H4ErAqwXJKJlcDVVVtRFHeqeB7rs6Ta1InsHStvR6UGnCjQMY4jnBjctMkn9rd16lS+blpWcGTi9VzIIHzyQmhPoBzrj3339acLDWjZTVOAfdz6XwGm0JpW+SMoATmZETLrcG12HgHwSf8biSCG7GbMGsNWmPQNh2s3eDzP/gZfvxHfwyyHQR/Xtxc4+L6Gp/8wRfY3W3x6sULPPnqS7x+9RLDYQ8fwm0b4+D8GLarxeDEwzmlLfIJmMMH12XSf0FAzYl56gdTKBXSE5IHMOp1Eie3hxiqEFHmDUmuQeXJzJZinsngZOqzN5ZV0KCaMkPyTCOMTMPk9eRD2CLve/T9wOG2xxEABXOSjl2+BWQgda4xtrgDF54RujOMI3b7Pe62OxxGF4UaQAQY+Sf0oVf9AA/vRmzvtvjmyRO8efWaXQMGjyGttfjpT3+Kjz7+GLu+x69/91s8f/ECbhyx6lZ4/MFj3Dx8iPXFBWzbpnGVOeA9rKUAvDiZYN633++x324zm3YAmalAtf9nUhxTPS7lM+nho/nN5c/51PnUCbnM1MxPLnvP2upxHOC9w+hGtG2Dru1gbRM9FgEIHp58FMaJgiOB4BkHSIF0yCajDhHuM5S11JRiGHi++qjF7toWq7aFtQ2acB6K1wJV+j7xUjnfoAPYtG2Lruviwchqb86slRJw5y1UwnDsO0RFYTRjgQKkRCGCaw8zjjHCraY9Bjn/qM5ZWujesC6zeXyikklrtHXZWnDQO/j6finEZ32VgCZW6xUux8vFwFzvPeguk9aOTEwjCkIKJCYnaaLZVt/PITGnaCiPgpNMM+qzuaM1Gno51PKc3QaceaZ279Q0aR9fVD6I03PiXqhMYpohUqQOCiRmN2VErLmxrtX8fFaRAPecQFN+F7u5mMPCHPu+0/nlBYAX66zhXLhyZO6+Kw3bBJjVvlPSZotGW64RGGKGQMlxK5Tnnwh2AJFHQwattVg1HT789DN8/rM/BNk2U/MIgyRrsbm+wubqCh999hl2d3d4/eI5nn37LV6+fIl+vw2RHWUeMygazRj9c3NQIRWkBXIwh5msuOPyDiHKoA868WkfePAhSz1KBuoQI1EE3gIgpcxjvS++gYXKEOl1JnSnZMr5+JwF+Ipnvffo++TOTNbWxeYieEUQkaOeojICSDsIAXCLq8HbuzvcbXfwxL7XM0VVpCUCv5WZjPfww4hXL17g69/+Dv1+j6Hvsd1uMTiHDz78EF/85Ccw1uK758/x5Ltvcdjt0TYNHj56jIePHuHimrXbPmgBNeBONC/1ozEGfd/j9evXOOz3GU2dU5qcSsM1jdZCXcxffT831esGRNpa3jsjv3r7xDyE7zk3wh1GjEOPcRixWq2Tl60omBOfu+CTpzyzSPGkIHhaS7nQoUDw8YoDwatpoFsG1hKapkXXtWithSUT1zKvWzHDiC2O7RaNtpiRCMgW7z21/lrqy6KqkMMLpVIJQOafXpJo08WMQtxPimA9hOjXMrfb4Mc8o2cL81WhnVk5x898zoprJc2RvwJMVwV5fU8BdAlPbIJyR8ptmgc/cO8lC6lk/BnwgSguKL+mQFsJuI8BuCVt8VIda+9owG2MweDG7H7Udjd2onCYA96l9qhGjOekzFOI+bJ2M03O+s5CWhYCxnNfqslbgX631Ihrf6JZzrX6z9b27VPpD/rdA+15cXA6JseBVS646e7S7053UmrzbLaa8dLyOqHiE9AuzqZqjsAro4Y71Y0ZpCFw0IgMbFsYS2iMhQ1mJSvboGtaPProR/jxH/0pTLua0IcMgHv+x1qDy6srXFxe4uNPP8N+v8fLF8/x9Nvv8OrlCxy2W3jfA34EuaBddYiHtRgIip9XNk+B59DOHoA3WrsCkE9AXTS6JBzZp/oZ0UIpza4PGrOkpy3AiwKwWZCecoxIj7Xsipy3h7E0M4UW66h4Yi/aNA1urq7QNl3mFzu1PCXvPUYFJGM/AOGA1wFv7u5wGAY+nxLecTq3gpaICZDxbEf99Jtv8O3XT9AHe+rdfo/NZoOf/cEf4OGHH2C73eF3v/4Vbu/u4LzH1eUFHj9+jKubG6w3Gw4fr/MPdtqi+SSTDhc653B7e4u7EOAGoT26vfKZtVn1TbaiZ0CEfj4qN9Tv2VThY7rEtIzPhdjnpaU6yriPo0Or7JujAgehv/nwArwhkKE4H4WOSFsJCSAvJaPqJQC/Ed/fXQdLpa02ALVO5bfwxHEco7s/EUQ3mw3W63Xmsvft0hQfpO9yX/oBsW+I2M+3aLxHxcOjvXzQ4msFlaclH06q3Mn8UbVdwHzltVrbMs12td1TpxH64G3iM7nDBAqKD//Po5/uU1Kt29P0QUQesbNnQFvUSuh87qHlW9KMR7dGY+4Hs+97GEPBzu94EokTInVpqexIfWtAawmw6+fK9tQEDfnK3U7wPoHvcjtHuyuUfEpNeDbpKyBcJM/6OJXtql+fS9GGHblQdY4tXS0lBjYPuGNNfQLIXOQx4O3jp37+2HgujfmxlnpRj6onhTFpjF3mLVCQfQn7MJ/FK4kmcj5pGZjLsb9tYzjIjTFojEFn2Qf3uulwefMQn/3xn6JZXwTBm+YbQ0A8UUeyNi3WlxdYX17g408/5fC/L1/i+dPv8PLFM+zuXjOB9iEyZuYnmE+1e/JA0BDJQaTIsBwDax/AtWjMvQ/26Qr8MoDkoDqR4VAePVHWWi05Xza7hGN5Z5AI9Uo7NJeyHDQdUtf6EM7djyOGvsdhv0e3XrPf8HBupNRx+yLP9DNfj6Pz2O72uLu7Q+9csp+WPCoSQTwg59ht6363x1e/+xLPv/sWw/6Aw34PD+DTzz7Dj3/8Yxhr8dWTJ3jy5AmGYcBqvcbjR4/w6OFDXFxcRO22I8o8IhAlP8y6/rvdDm/evMkOT8b+1ARU9YVeS77yzFwqlQXnAO0EFEtakE+oJfpwJvfMheFjTwewyIBwQH/Yo2karNYh6JBI8VIXSqHkxdZeH8gkKAxYkAstqMi4NtaiMTZ68uCAWyauGy46txWWXSsNtDVP3Gw20Q/0fLuXlR065esTga5M540cjgdR9k45N6nYvQaAcRiwd477IXhQYZK6NI7zOCk+UZvfR+b8BHBXaJj0f6kIBJLpaBabpOiDbBdpYZb+cwu6JU204frziNbXF++gmNSabmsp61zgJYMp0pTk4QLxJ0OTPMuJp+usodu71S8st+8UAp4HUMhNUPSnLGDRKOtrpXRprI0+bovCzmkZzumtUjLWOxflbsL5QFyD5JknjuaZ30+PL4/d0vfjpRxPZaum/k4EZPNciUCbtKcSCQcvdtJsxoEgoBpim8zGWLTWorFA01isLi7x+Z/8A3SX1xGkSyNm25EQzeRZMhariw0+utjgwx99jMNuh9cvX+LFs6d49fIlh1ofxmAHPsK7AaMLTggNH8ykAMZZA869YzwDawHk8OKlwsRnRAMs9t/5qhIvGLoBoZ/9lGYxw3Cx75FdF+FOcA+lOqnnlrqvpLnOOezDlvkQts2HYcDFxQWurq/Znjm9oVwzIuj26/RcAEzfD7jb7rDve4zOYUQy3YsBb7x+O8zDkIkfHV49f4Ff/+pXeP3yJfwwAs7h+uoKP/niCzx8+BDPX7zAV0+e4NWbN2i6Fh99/DEePHyIy6srrFarCNo8JRMgrTwQn/PkgXHosb27Y1DvfQjggpPoVxUoLdLfd7OeZZ9YQf575T3hazPf6znUgJZ2SSi7p3yI1oNweXmpykx1F8VUpuEminjfxCEp6hCWjLUWjbVobcPmIyGCcy4UFQehlZJpdA6HwyHyODkYKRrtUnO61Ndz2KD6rDwTJVH1Xspgsisi33X9xDQMQengAfhxxKiVZrodc/VamEY1ReDca0Jv9LMe9Txkl11At1bwndL3pZJvaSn84EH3/UBN/j4wlaSqeQoBDRJN6ZAfyJmM/D6WBLCNNCam6JPkZZvjbuh0OzLQp9t2ggZE8jplUZ/X79Izcko7McIaWBcwLpJ96S9crgFs6tEPw9QMJfhn1Xl7v7wglpKUndvbJ4FAypnvlzqTqP8uZ1I95WWV40JqyCl7JvtKqHZMzZhAHk1ZnLL+Qt4LzSH1J660BBdrRgggaLiFuQogp+iWUjTcjSU0DaG1Ft16jU//4GfY3DyA9vF8BsqYuRwYszFYXVxgdXGBD3/0CfrDAbevX+O7777Dy+fPcdjeYez3MM5CTE1G7zE63s523oG8gyWfDmd61mI7B4h1Nv/5WCUyBKfNUULfwXDgF+4vNQ/0tIrfC/BJNGFMxzRQR+kTeCdODoP1fQ8nmm7v8ejRI6zWa65rNQMP+HhENSolHNJBe+ccdrs9bm/vMDgHbwgjsdZboolOlCSqht57DPs9fveb3+JXv/olaxtHh/V6hS9+9jN88tFHcOOIX/7qV/ju2TPAED76+CM8fvwYm4sLtKsVbNPEueq9h1eHxuMcDn079D12uy2GwyHfvn6H6Zz8qk9OaMLRN064l5I/iSCfArb1XSUIBA5gbcM+vcU9pNeStloUE41u2GEqaKs4auDDjA1W3Yq12nKGJL4viiREYSoKrUGp1CtvF23bRs3wEi+Z2znXdVzuo9RyFN81y6CggddzOpUTOLrS/ur6yfocxzG2l9oWVDlkKLu8Gigf024vAXDdjjmwLUo9TTu1EFErv+zb8rcbHXZ3d9GrTC394EE3UE6E+xGtiUZcdXIp3cVn9Pvqs4RNi6SJcu8dLkqJ4uYKGAcDatju7K2SBuKV23PAfS7VnlkmEolB8zrOF3D4Fu7lBEe2/2qBekqtOBTwloN1+UI63o9LbdcLSsqP5RUBCCo9oUvB8gypXz+LkVZAebVKx+QEyuf1yUnyPk3eyxMlrVUE5YEJig03DFtcil2mMYA1gDWEpjFoG4Ou6fDRZz/Bg48/BZGQPMra9FYpgH8ColzZrVZoVys8/OAD9H2P29ev8fTbb/Dy6VPsdncYxwHkHIgciAZ4z9puMp79fbuezRFC/3lnojZcQDsQ+JMnyK6udLcBuE/Cfa+FXGjgHnTHoQ2lJYqmfQl4CBBJSfKQKpfJA9GcZAiBTca+57DUIQy9aBtR2YHU6zajA+H3oe+x2x2w7w/ovYsHU0fvo3a7rJgWYLz32O92+NVf/wK/+sXfRIHmo48/xk9/9jO0bYvnz57jqy+/xH4YcHF9hY8++ghX19fogo9oAfVSLryP9KcE4tu7O2x3WxA8mlKTlvX2/dNcPrVduDjGWjM7k5/80sL9cZI0J8Qtm06WdaH4b6V3vHqDAGMsNus1j4+1AJk437P5QEJbpm0XmiMTnABYMmhMMCMJGmk+0JgOLqddW1U9n4CeViJJAJ45zarOD3iXgpkvvpULhLL1kcrVQjrgKY9PoRVTBLBwEXDNoBRjWVFx/s3P+jmeKkrQOK7qemZOUsENJf46totfrwAA57HfH/D8+Qt8+ZtfYb/dzT7+zwXo1qkGBE/Vhi+9uyR1TUhAkAxPAdySV4xQqcwngLT1ZJyPBzESdz8jBeZTq8+71K7M9XXOvBODnsrcPiPgWlPLWz6mIGT8o3ooM4BjvV1ULrK5hTZrvlORlp1zaNs2aueXtd3zfX2/HYRj+S/MkzBxST96Avg+O3mAT+fPETQGf/GAU9QmIWq7pXADH31t+3CTzUyCoEVAYwlt0HC3tsXDDz/GB599AZg2SXfvbsrXWpQAPVEA4B0ePn6M/nDAm9ev8PTbb/H6xQvsdluMwwGjG+DGgQ2tjcfoRPvN2nA2UwjBY8T7SVjTovUfnUvBKJAAJXjbLAoH4uaLPK81OVToC8BA5atQ06A0chXmRuo9JGbX9z32hwPGYUAfbFYvNhs8ePAAVISlns5/Uv/mCg7nPe62O2x3O4zOYwT3iYR8T6KFzo1ikBRp7+2r1/jlX/8CT778Et45bC4u8NOf/hQff/wxdvsdfvmLX+D1y1domwaffv4ZuwDcbII7QxPpvRtHPthJFOMRSEnee/T7PbZ3dxxghJILtbyl9XRf2XU2v2z3KO/j4+/qX74yfm9fUyq+z+YYwLYPNMRai27V8oHDENkxbP5PgBm/r2aU3g1RvIwCzWmtxbrr0DY2mkqIhyTJSveF5k9yUFjzo8zemaY7THN8qC6UTtNJu5AnXk7AOJIS/unDuifAwMA6m4FbYfajc/BhV2e1WmVt4byTkqHW9tn6qOrW3hGzF9mNFr4vPHsJr5xmxuMxDCNePnuJp18+gXn6FI0fZt/7QYDuc8HI25icnFJWdZCKz3OSDLBMAG2qAI8YFj62awYcnbIVpRmWqdxPeclTlF07sg5mkvRpWYvjqXxH1nC6nwifJv5aqyBgXFwTarst0VBrLXUNNGviOQkMEMbuhNac2X7pf/380gyr1WH53Yw/1uZUJbt7ra0gYGWMvigoAm+pl2igkIg6ae13eJDBNgXtE6E1hM42sLbF5c0jfPzFH8I060wz972lGXRAAGAI3XqFR6uP8PDxBxiHAW9evcKzZ9/h1cuXuHv9En4Y+JClsxjdiAEONA5wY2LoJnhA4e+swZbDk+Q5iIsLmlZ2lJJAtHgUN6AohJPXIJXn3BTwCIPkazXtt/eItspAOhjWHw4Y1GFJ7z0+ePyYfQurQFvV5EPpPpUrYPswDLjb7bDf9wFsJ812FtuBAInKXO5UutHhxfPn+PK3v8Ob16+xWq3w4aef4Sc/+QmMMfjd736Hr7/+GgDwwePHePTBB7i6ucFqs4YJgI4lFxc9XzQi3Aswchw5cbvd4nA4AKJYodTXoq2btr8geJX0rk1SjqVpefcF2HRS25h0VOEyEoXgfl9vNmi7DsbwvAnyfhLkyYRIjoe4QynmaGQpA2a6Duuuw6rt0DZNDM4lCiLhlRnQROI/Jehr2za63Ss1xDrNCaJz3/V7Wmtf9tbR5PWXmTcKAsFzmOvTNDa+7QCkbTjPQinl8QM0TT9atQVtd/lbInYK3xchp+ZmsYb7TgHc3nu4weHu9Ru8fvEKd8+e4gO8wqYZZ9/9QYBuSXVw+PYE5xjQPgXET8GJqusJdZRJoW2MfFAxjW6A803w1CDMc/r+uWlJsZnyLSVtVN+au/6u07SZWqsQFjA8fPBsYa3ELmTPEKUdlxBEDcBLDXgiDHmgIS6T89Qhd09oxeJd77W23xefc3mdUm5FayKKiBPeftskjEDXOPRw9FXLtRS0nT6TBtxn40EhqEhjgM4SGmvQ2gad7dCuL/HJF3+IZnMVhDP6fUzRmTJyYYOshbEGDz/8EA8//BBjMEF58ewpXj1/itevXgJDD2CEtQ3G0Wdb0j6EwZb5SAIqA+g2ngPwjEENJd4zODB96FoPwKsDQN4XAthUgiAhGhWtXHwxXHYjB5AZ+h790GO/22O1WuPm+hpN205AhZQWTdE8wyYhQc65YAfvsN3vcbvdYvAennj3a5zUNik0YvMis3Q4HHo8e/oUX3/9Nfw44ub6Gh9/+CGur67x6tUr/OY3v8Ht7S0uLy/xySef4ObmBt1mjdV6nQkL4huc3f8pugHefdhvt9jttnBujPb2fH9mMooAJP0jgLyiDPg+03xJ+s470GiX2hz1e7oLECcggOTRar25iFETWVutuRtFwXS7Y7MeFn5GWGOwXq1iNMembdA0NnpAatsWXdOgtU3Q5BI0oNXDoc0WJEqmXqMSyEYreI72yxmp7Ktl0D3vgSgJ3kvCVb1uRAAMZVGrRyB6cQIQo2kyQG+YR5MYrM1oLWr1VLhN1rnsJoh5i2i0xVb7/jsCM3VwvKN+t32F27uX6Nwb/OzyNTbNfBt+EKB7CfSeqgU/BTjrvMp8j241YJ5ILb1bliV23Zkk5VwIC5wktNohTl3fuXTq1FK7QotA9zToPlOXWcZ9j+Q1ThA3R7zhKHo+a5O0mzQTyLQROlCPjIc2TdEukWRsjDHxwOfb7LJUG7V4rU4UjynHJlr8Sk7vEp1GwKBKJAWAy3iyRMG2mFKUSkM+/GmwHVx0GaCx4eCkNWibFt1qjY8//wKbh49BZH8/YPvUFPmKaHg8bNfi5oPHuHn8GOPwM7x59RIvX7zAs+++we2bVzgc9jDq4LBzhqNiOrFNHKNW0Ds2QTEBVLMZith3B7eNoSrBQ2ExJ/RIlVcQ1tQUFEU9d2B++8MOfYjc2Pc9HlzfsPeIADjEOwtVaZk2D2FgK9rtN9stdocDnEd0x5eB1Jn2MD0LwvYwYrfdou97XF5e4qLrcH19Ddf3+MUvfoFvvvkGbdvi008/xaNHj/DgwQN06xUfAhPAFNa/B6JP4lR9j+1uh7vbN3BuzPuv0KYdo4HnTN3aWtYw5qS8fl/APm2bxEte/Z7hmACYLje2Qbfq0DZd8hYT3pc+ds5jGAfs9wcc+j6zo6awBeKdC+C7Q9OyJrRtG7QNeyRJcDB5UBLVbpKLfNSqaq12aa+tAeLU5PJUQFgXdmWco3KjQudP5bZvs5vB/DIJJwQG3mLX7QEcDgflO73jkGBHNN5z62QINEZMd9q2jb7Z4651dnD2vPbMtZEFbULbWKxWK1y0hJ9+dIl/eLlGs+Dm+b0H3VrrW06EY+r/d2FichJYRxrPOW38qfXRvqd1/nEhU+F2pyjnlHRurxxX2ksPHNPGYvLM3PbY0v3F5KcsZpqFXOdPthNv4JyP/SyAWoL1yPNyXde19De+XO/j2oL8/rnE4Sz2Wn/1yOtLIGHO9Eq0VHw7BYnQQLs065nCpmAShGSCYg3QNGxaYg2HeG9Wa3z44y/w8JNPgQi43yfUjaI6uU7Jtg0ePP4ADx5/gM+/+AO8ef0ST799glcvXmB3d8sePxyHvI6HiB1gPGF0jv12jxzbkr0ECbhxwaMJxR0ODswX7JHFwMQfX6O1JNE5h2EM0SUHHPZ7jM7hwYMHuLq4ClrIqbJkiX56AKP32B0OeH17i8M4sI07UfR9LWYnMtfKqRzJQvg0hkPMG2MwDgPGvseL58/x3bff4u72Fg8ePsRHH3+Em5sbXF5cYiWAGywsRDMzAtNjn9rS9z3evHmD3W4HooUAblrhgulKnzXFiv2iNZunxB7FcUD9DgD3lALVBbpSQpi0P6MQ7ImEiLDZXER73DifSCKShjeCKcN+v8f+kOyoxQyRPO9Odu0a15eXrOnuWjRNG3z8h7MioExI5XH2AXAnHiHaVSmj6zoACXQDuQJPYxoJPV9LugdqvVneIHV/qsueBgSszU2+VnenvJRiXh7hcCW7ao10fRgwiEtBYGJyY60FG4jP0xy9m9D3Q/D84qLWXLTaai8izrPMPe2ZbZtrLxHBtg2u1mvsjcePLjrcXK4WnV6896AbQBalsLblf6rEeK5tuH7vFOD8NrKTzp+MAZzL8hucQ+McyFoOgjMDVk8REIBTIciUFfh8zmZl67bUS/39pjnIWusiIZbaRaGACAHj8qeBtsw/bTemNRplGVKrvL9qNZ8XVI62+5T5fSTLdwpRJ5n5eO1YXY10hQbl6hUyYQsxHJpsbYcHjz/C408+A9lO9fkPJBFASivTCAB/9Jjtgm/f4MWzp3jx/BlevXyBfsfgdnS8C2ONZxd5FOYuAtAmgBz3BTMtNjVhf9+ez28CIUz6cor2x5TYmAiqDLYZiOz3OzRti5vLS7RtyztFmNLhKtCOYBoYhhF3ux1ud1sMLpiTINcy6vwIyXd5ljMFnk4+AiNrLbswDC4fH33wAR4+eoTr62vc3NxwQBJlu82abQ+Qh7Hcn6xB5z7Ybre4DdEkbQg1HhuSWgeAsmA5OVg6R9yu6baPr6slgH9KifVUM0nQio9z1yH3OR9oNFitVuz2T3YVJ/XiuX3oe+wPPYaxZwFLB9ByIwwBq9UKV5ebcCiyCYAtmCDAsLCESHq4Nt4BSNGURcMqfEBAn4Ds0vxBeHwE3AixBij3mpLNC4UddYMjvhV+XO4+V3nKzLmBmGf97qn4Ki+K62BsEllG5xjX+LweyeuYh6VKxGllliI+/d3oQGSCsHQ8OmfNlOud7LJ7E2a9xePNBT592OBH1zumGTPpvQfdMjFFO1LTwpSmAMe2bk4B32cD8/RiRmAzBUvY95/LWQB3PA1faFT7YeB3rWWbzQUt8X21/NP3dAtqqc4w352JxXmp1PdoYnb0XUXIxJ+rMQJUGuz3hygAlrsv5YEN+UvaFZ28+pPporfWSs3QXO1zTy/Td+dey8fz1JGqrb3TzLA0/ElcJF6pacfjug7jQgSQgZA47lfWMlpjYG2Dpllhc3WNjz77MahZ5fn+gHB3Lm+JqRTBNoTLBw85quYXP8Xd3S1ePnuOp0+e4M3rl+gPBxYQhxEjOTjfw4G1ScM4YiDWCDnvGFR4cU0KAA5BcYvpKtLYUY9jmL8ja91lDbCme4f1eo2Lq6t0QDzQkRJsRzBSlOmcw6EfsJVANx4BhAGyXlygqSUjF7AWujAdxIQC56KpCiZnbdvi+uoKRISubbEWv84mgWoOb527y3PjiP1uj+12G+gD7zBkYxnpPq+FrK1+mT5l1OAdaOgkT90X5743vVr7DL9OLSPT6DAvbKxF07ZYFV5idNnOB9v5wx77wwGD55lmiQG3cwFAe4dV2+Ly8gKb9QpdY9CFqJHpHA/TfQrAUWR8j3AoeDhEW20AwRSlXfRAMuktCp5t1DzUPVnu/lC9W6eXTsDCyxcW3j13nmjeYADjDYy1MOI+MCTvJQqkg4eLQgsFAVd2EMR0RPrbrCyssWEtFnVMYKyoe7Em3zax7M35Gwt0LX794juMb54vijfvP+gmQtc2EPtbObQiIBzItxzKbepsQhfX77uNek7y6pMXfuUAQwDqovHIfHbL+2FyjuGw39Fy3xL45u/W8snEiXuXM1f22UwlEMk5x3THalnOE+8TQODfAJGHcwOMsZxj6GPZppZ5KME/NEPPQ9cjq41s52kRwWdbbMu1v9c81pqEyns1wXWp3MX5VshsUetFvrwV60GetycT8Gbf3IbEnjN4KrEWDVk0tsPq4gqf/MEfYnWlA+DQDwtw6zQlFIhdZy0ur29weXWDTz7/MXZ3d3j+/BmeffcUr58/x2F/gBstnJdDRQNAjoG3G2EohJwnBtv8hI9zmukshyMXsCxwUcCj9x5udBxqO2yxs0kF4eHDh2ha5aKxkiYaLSStuXMOd7sd7u62sWz1YlJizOWt8itv6K1nqUPUUAb7XmOI5xCF+gjgNwagtDb6wx53t7c47A8AEN0xzqspAqCcgO/86Vp780vaNOVdKViOPH/kqgiH88/WUzaOgd523QqrbsUHVp3D4BwfELYWbDgFvj6y7/fDMARAHg60AjCebYgNgM1qhQdXF1ivVyFEu4kmaYYohiaX+lCY53w+IQmUWqs9sRuOTVCtL/g9iVKueKfWoyf14ckd7RfX4vebmIZ3bQvyHvsiIA1/p4jtxKGEKLh0X0fz2yB4g85rlucC32HLGJP25PDGrvBm2+L51mK7n98vfO9BN4gPSZWaFuf5uwyU2FghABrvc1Aes1OgvPyracbvBVxn3qkxAa5uTnS094zJNss9J8wxCH2/VIJFSfe3Cz3l+XkwuAT6cqvHiSYvA41ag5w0jcmcBOHgB+ezWrEtYBQMC1dR+nCm1ogYk7amuezoxLFSp/P66MSeWUwng+qZ95afF8CgtDtU/I5CD/9m20fxyc2aDmsatE2Hrl3jo89/gotHHwDGxNz/1vjMu0iLdafoScQ2DS5urnFxc43PfvwTbG9v8fzpUzx/+hQvXjzHdnsLCwKRg6ERY3CbRnCAMzAcjx6e+MyIcz7CQa/VsEp+kXneDz1r0Qe2327bFldXV2iaJrohPDkFGj6MI968ucXu0LPyAcAQqiFGd3QGfcm18/EFDb2ZRFgjRu6s2XRjULryvPOyWEHo+x53t7fo9/tgDiBadaV1n4BlMYmZg9rzqbobJMDjSPunu0yV/E+sx6mKi2MvljXidW6wWq9i5Mhx5PnlnI9abzHvOBwOrNUeBh47QzFQFgCQdzBEWK06XG0usF6xF5KubQPQFtO1RHdYkTfCe2AcU8A1UX6JRtwGGl7zhkFxzH38N3vCSzkVMF70CfDucPLve+e5xv8NGECLYqpUKvrRYT+yksAYw6ZdKkJkyCnkd8+6LATfOSsFqOnIw4Oj36Jr8QIrfHW3xsvdDxh0E9i8ZCwYuRWVD5L0kktOaXI7pyZ6CAlcbjEmLWQusWbaBKG58f7bt68KHYkmoDsKG4Vnk2PS8rFrJ9WxIoyksqeA+1geOp93m5b1S3q+CJGt55GeBXjMfZhETdMALs21RBB8ANEMnr1vJoTbORddJZUh6zkfPS+5LqJxn2rGp306e/Ygo+7VRmfvl9dOTeX7+RyZiDko1RRawyNAW4QTK0zVGDSNRddYtNbCUAPbrPDwo0/w6OPPACP2nj9wwH1K0hgySIBkLQPw62t89sUX2O92eP7sKb598gQvnz/D9u4uABn2iOQda6v9CHgKGiiMoFHvgAS6p+IFuHFkwB003MMw4PLyEuu18odegE5fhruM10O+zuHQ93hzd4dh9DBNw+tHyiwbPZOyOVubv4pMCBuRNnrPwN5LtDrbZHN6dA53d3fY3t2x4KIAdpH1TE2r+vdJSjL/Qnspt6HW9cjLP5EAnJCO0u1K+ZMh0HKcJbS2wapbs39ty/b6zns2C7IWbWvDzi+w3+9DICTxdS7RaU3s+4YIq67D5cUam9UGq7blnbHI3xMg1vSeBB8E22HZOecDl21m25/tmqumx4iUIhwSoMW7dH1e013Oj5N3fhf0UGeoqO6V5upXAl45N6XNSqLiNFRUzltM3fxJT8aZVSlwsZZLEOGeyQNEaJsGXddiB4Nnfo3dArR+70G39JC2664+oRdBwfi1NwrnfUYERJPDNls5sJ8ciJMj8EoyxoTovV1rNZgTMxItEY4BvNU04ROp+x3UowbCpsD7e0ozCppZAkSY3QnQdZWxmwfewoSFO4ibsQHeBS14eLFtmhAplOKzkRmIZkQdrBEALuZDpSZctOD8KcQ51fZUUDwBwCGHc1SP7+SgCRQDOuVhRWDlbYK4BuQAGG1j0Vo+PGnbFpfXD/HhZz8GbALc75aw/kCSAMlwEJOswebiAuuLi2SC8vQpvv3mCV48f47d9hZuGNEPI7wxwDgwEPceY3T8za4HZSloH8T90EdwcnV1xdEZNW1QVfOQoZ0XGIdxxH63i6Yc0S+5AlRzqWYONamD1nhr4B0Bt8ehZ6G467rJWYxhGPDq1asUVRAzAvDZNHHm+YKP5dfSblyuW1U5Rmnp+0sl/Fkeo/TdGIO2a9m2erWCd0lRBgqaaGPhPDCMI3Z3Oxz6PoJtsb8WkZ6I7avXbYvLizVWXYeuY6BsSSLZCr9Pfek84J3HOA5w4wivwpdLEBuj3UEWYFnK1hemPJmywZnilKmN/9HOLJ+tpZJvzt86OR3jCbV1LZ/OOYxDipPBJpnAOKRI3DK2Y/A8I2ctAJnO5yhTNNWQMZ/W820wjFgfdE0LurzGZz/5Ao8++BD/v//oP5p95wcAuhPDJiC3vdJPFSBDa/zEH6R8ltpjH0A3+7dNIHdqIy6gTba8U/hXBlq+mNlTonlsgKXeAtbiyd6Qh/N8oFKDuVoZHsjC2J6aatrKY88ULZCnjpYjdZ1NAm4r1GJO+teAeDnlMjNXqrzAv8mr8MFF+eKVIUse0AepEtgwcQ4CCYTLd+2icAhjnIerT2WLIFCmbGzuwW/fFdDO8gRSUBVU5hip9RSuCTNL5jyEhgxWjWVf3IYD4GyubvD5H/4x2osrEUv+TuLtLMU1wDSJPEDGYHN1ic3VJT79yY+x2+7w4ulTfP3ll3j69Cnu7u5AgdkBhk0m3Bg0v4Dz6VCTRHrb7XZou2ROUtJfPQ5jQXPLJHRZPJOMmQbMTUZ1QhYqdGQiXMcvPvepHZJ4RhBNnMqcabK12Gw22O/33A/DANlhjfwGpy27vL4JZSU8OANnvZ+VniPQPjEtg7C8XJohrJHXVPLwUl8g7nKIQLNer9F2LYxJh2h9zIs/+77Hbr/Hoe8hpnfGEMR1oNCGxhA2qxVuri5ZIx1M0CQyKERAkjoHYWpUEQvHcWTzhxBMxVoLkvcriWQMJrcLDfbCZEiCVPFgyU4KQbIoLfs1KfZvkRiKsjN5/eL6ipMBxjMjhnGImEcrOUsb+rK11TSBH8dX4xye0SugymvDTeFabdvi8eNHcA8fREGhln4AoDtP9SkmjDuX+Oc0sjU7LHnOSzAJ72MUtxh8gR9iaRcUT7FTQFaGwja45FlIU6cCGnm2PA0t312h7Z5LZwnMRRmngvVZ4PuOyprQ+mMqrwA0quVOn6xe13Xk+z6YlxQELwh0WWaSny8vJ+2KCGtMaBKjjcBD7c4Mw5BpRpI5yrzEn/epJtinSfWnCojvKjFDTG20hoL5GI+/MYC1weetIVgyaIxFt1rj05/+EdbXN9Ev6t95wD1JlARF6WNjsbm8wObiAp989hnu7u7w5MkTPPn6K3z33Xd48+YNAApKCI/B+WAqNUZNd9/3uL6+wiqYkyyZj+Va6PkRMkSwjQWGEWOIe894JGgCi3Lm1m8EWOp5hu5IMTJIvV8IBPoQV1rfTN83FxtsNmuMo8Nhv2cA3vfsxlWEhBPo/Bzdq4Px85KmOXlvzfvyngPgenei/J0JPhmzYTMKAge5El62CpEfo4BGbLGU+XUhwj7Ya/dDzzuLxoagWPwsge2xjSWsugY3V1e4XG/QBT/PlNXVh7HmuSc0te/7qDkXk4dV26Br2pyvEgvy046Z6cfJ2J8AFKMgdeyxHHxrgeccyncOHjj1GVnfmn/pXVym3TbwPm2VwALObrfLIu5mJl0xj3QGit89q9mLz5aYJLt3RhHe+zhX59IPCHTPQab0i9R3vR0nk5N/lp0qg8/fZbAtchAEJG1kAuWJGRAkOloCDxoslXU4luSZNoRLzg4dqLqVz09SEBKyS8GkRnfBuWBsCSz7gDrntQRnrhTKR1uD2trjU1XB3HPIlBWzDMkHqVsDZyBFNcsyrBVTHuEM+hwFLLkcQjpMiYyAiTcUAQQCunNNeFkHP2nUOYD6+zAfkjwJiDsxJZM3YbyJiN1NWcBaQmuJPZXAomlX+OiLn+Lq8YeInkp+T0LCDyKVwqpck6+e4MkHLyjX+MOrK/z0Zz/Dq5cv8fXXX+Mv/smf4bvvvmWAMgozdBhHBikPHjyAbexZNO1olY2JruHsnjD2A289AwB8jJ6Z2qCaWmgz4zOqXqYALZks73085CzafD6kx4Jx2HYJQqGBMTZ6VRiCtyLRgMPlh6hyfnNs/U2f1TRhqoXQz1GF3s/poedTfKN45agyJasKKxesoeDybxVjICRemAjg6Ebc7ffYHvZsxqcUDGQsey4BwvkOg82qw3q9wqbrsGo7NFboaaLmuqecdxiHMbp9FSDYBneEItCLsFZjI9IH9xOFZNzLfjovt3e1E5nNkHvkWQqqAphj0Cgwb9IeXsQ8NwoKoTOapsFms8n8nuty5GClMWxqJvX3Yb5X15K6FPM7oZnn9kXOu05bYz8M0B07okaQkKTriialhEQCkvMnBBznE0m2rzhvfrpmoqJ/u4LgZvZbinCn/GnyrP6twZQuYwjSnxAynaZScD052bYND2r4U9NclfWbB/1+9n4p9ExMISYVnm9FVYewBLBrN6gQ0mbyK5k0gHjQQxdxLvnKdzIkBzVnQLCWDw8CVATtSZoEIAkBMm+MMcmP6Jl1OuVadr/4nhjeXL9OhUEAIVgLwloBM23Dh6A4iASBTIOHH3+Gx5/+mBH5HIf8u56WuoSggvDwWBhj8fCDx7i+ucY3T77Et99+E2gJgx3nUgAQsccsmds5O3p5fdgdnwGwDsGO2K7zgL4f4ACMjrXuDj7CUAeKIaS1VrtMRugvkB/cUimFpTZR6BvdyNrYIOA21oLAwgYRBbvfBmu3wmazwW63Q69CUmvzQBa0a0E8ctqZlkW+quq9WvLEPH/KxqeawbQ2VE6dhRe1ICR8hDgSYdd2fDjSmEirhY6Y4GGoHwYc+h53ux0O4xAE7bDWiXe1+A/oWov1usN6teKQ7caiJYngrOvt4660d57Hoz+EgCp8yHLVtbCN1rzO0zhCTqvOpzSV/hN5Q2mU5vjpPJ89crCQ8rvVmh2ZFFXNb6HR1s4dBJPIbka2wyXRJlNGMU85/wQgnhPR5eqdJ4lEGltdAO/vw0RyKR3DWWX6QYDuJB/NTK9MdMzBOGsPcym47KAygHAaPx+xgQAgPcA1WysB3TVJEECM9lbThM99z81fOL/ROdjKVsy5yUMAet0aVrcjEyAUpKIIsebrscSQRUsFEQAkvSscVaN5M8KxjHeS84KZkUu+Ewjaa4k8NtXanppoSX1C6hlwsAfu8QYeso3nsi1xIB0CZpOnaZTMJXOAs+sPZISUmZ/4udUcfGZ+aYbmEUN8N4HpNoHxEhlQ02Lz4BE+/ukfgpq20G79fbpfSlTVjSN+/atf4Xe//W0U3rTmynvK3KiJRxlJuVlW+kzX65pettTlmjh+ALZpcNk0DOw8cOh77A49+qEHwm4j+VTQSKz9qioMijqFyiraJWyE4vqmEJ2QTV0c3OgwOACWQGTVzhcf+us61n6L+Y2Yn+SKmXklwzHzm9NneU1JlfLISGxNwEbZf3PFKK4chPtu1XKUwHjWRV6mZLNNhH4YsBPzHOdC2HAbwTaIbWXboNXerFmzvV6Fg41gryWWxCOIEsTCLkUfzEjGYURjG3TrFbsMbFQ5RT/U6OPb7eJEjVbKb+bJU8vJnsuwj37m+Hw5x4REz2ENtgFE85zlSMyYCOl5GxJgBzBxKSjmKrIjFZVdarzuLfC/RToXcAM/FNBdSDXAzNj5RAT5QryTQBQB+XYd1MMVAqQXSya51ReJDpKi6ySaUq9A+RLw0ZNXT2Y96eV7zdxjCYyzrd0UZEfhY2bixjy9zx8jH4SbEjHnERNr/aa1U1QC/zgkebCYWR4wc33u4XJsI/gvMvLeZ1G04BH8RS/b1OsUe+fcVVptlPQDBV/VFq5p4Hy+veecw+g9ep+2U60yRTm6+/BO0vGjjeXOEs8DDwTgw5ouC2tarC+u8ZM//lN0m01ez7/H3ecnNSk9gKHv8Yuf/xx//mf/MQ6HXexS0Vp574N7QOUG03sYa+Iz5ZrQgNtnC0AvBIo+k6OZiD4k7llDZqhD2zYYhi4Cq0F84TsHD4pHLlPu9dhwcc4FQN8PA253O7x+8wYewNXlJTYXm+CbmaInDULwYx7WlCEAhv31ivxnm4ZNKlYrbMKB08PhEEGD8AIN+IFz1t0xSjdzf4F+TsvWY6h5bvGcT55IVus1mtZGT2NOtVN2XiWAUq88kZCYyIUdBrGLXTUtri42uLq8QNfy4TsJmR6mS9RoE3w8GHkIOw0OPHdvbq7RNs1Eq73Ej95puidtOlsxckY55wJurdEWHDD1oT1fx6Xy9Fho5xCyW6T5mX5OP/v7BNxvy2ree9DNp115UOfAbHxWOn6qBi9Scoe1+Gw2gdJkO4U4zpli0AIol8/adk5xAX4cMRBlJgUlEfHe58EaJpUssq18FyKYPar6TVwwldte8e7cOvCITCpdqhxAUO8vCTtZqqq1Ktku5BfZYZL28jYDGbE5NyUBZlrupJ4LSZiZIcDAwhsL712qq/dszzi6GNlNg21tEx7zm2FGswR1pu5LKclTLP2kdaW+GwLIwMKiCf64P//ZH+Pq0WON1/4+3Td5Wb/AYb/Hn//Zf4Jf/uKvcbe95UOT3mO1WsGDd9a8l8iNLoBehyE8xx4mEIFRdGka55OMrZlodIkSnZDdGeN99HgiyRiAwN5rnAOGtmXAPQwYnMNhGKNLVReF+bBuKbmcFUY+DCMO+wMOOw4zP4QyB+ewe/ESePkS61WHy4sLXGw2QQvH7uwimOdMgwvz0CZitQ5Ziy74HD4cDjFS7aHv2Te688hi1MvLFSCe84BSwaGv1xIt3Jt7XkoRQkLINq3AwkXbrdC1HWwj7jpZ0HcqK+dCMBuxeQ/taqyNJkWsFGCzkq5tsVp1aIxB17QcdVaihILZj3Me3gHkR7hxiGC773t0XYfVes3h2dsWzQwofLfKhfPTHD87xeQjPndmE+byrmEO7X0ESG6Maxrtt+1LzXe05lx2b7NdfmWyVYL+d5mWWvQ2rX3vQTcoST+nANV8K6+SRNsiGlvkHeg1EizzoELjWpGujk0+G7KPwZQjlgt+Sr2PGhHdxlRBeRpxG9P7qbudWL/w3fmckAvD0M761QOxHKfKA/LDSPr6FLLrk8aVsfDFZyjWFeCu1p9HTWpOFHhz1j9NWrNTCh7naLnfJp1SQq6BYpvUyP/DHG2b3PRJiKo+YQ4gI6ryvqRjQs+x/qzWfbIVGRgwESwMWjDoNtTio08+x8OPPg6h5O5R2N+nlGRdeuD1yxf4iz//x3jy1VcY+j28G2GNRbNZxfMjQAhxTgSYcLjNejQ+ubocxYe392n7Pu6sTOMKpCS0QtFjIogeSw5SCt3yHjDGozUG1hJ8ONC5Hh2G0WHoh+CZYoTzRnAxGBImGvvm9Rvcbbfsxzkw+oYMGqIoZPTDgKfPX+L5i1e4uLzEZr3BxWqF1hqRAgDvovIhtSD56zdE6FYr1n6Hvtrv9+gPbPqQ94kvlD2hhzJhOPZS7L9T0vmwW7TxFIUXMUfsuhVW600Iy574hBMtMlhQ2+12GA9DMs8jiutb5khjDNqmwXq94l2FwGMNwID64OFHg9WKD9mOzmMcRmAcMQwHHA4HOOfQti1ubm5wcXHBdYFoxJdbfh8+ft9Um/+naGjPBeanlpGZgymeoN0lW2snLkFrdXrbpHfsNZ4Rv92le93ae++iXvHtAjPV0tx4Lo3Oew+6CclmcLaBMyB8SaOsdLF5eVFtl6tL+aSsQzRNCYiypnOoLZA0Mfj5KJtF6mYAz8TLGq2VSZNsGAbW/giBU35GSylUT9qqtqS6iKWek25Oz/HDuTYdPniiCPbGUWYRc5hEcGN/YLqA9RjdB3gvKbhPAq+VfvKYzrtTtQU6z2p9fPH7HqkEwlWtvQLUOultO/nTvlF1nvqvZoqiZShCGdA+tTA7rJvdAch7GM9gywJoQehg0FGDh48+wOd/+EcwMVDC3yPus5LPf3gAcB7fffsN/vzP/mO8evkMQ9/DuQHrVcdmSb0ChIWmlRQIpkB3SqbtnIvu9IQ+WdugPEx4DIiIuYII/J4oASqAwxMTobEGnQdc26IfWvQ92/VKfcagGByNQdc0uL6+QmMt+v0eIMJoDEBs0mREc9t1QIiUeXt3h9dv3sCQweVmg6vLS6w69pzB9NZndNvyKWY4WTvWorEWTcteT0Tz3R969P0QXNP6SItL3TbPeVlhZZ8dE3mXYMDxtSTrTdz+Wdty20LOqXSDfhix3fPuAZxHI/wo5GOMYaE6HEy9vrzE1cUFrDUYhwGjCroEAoZ+xHDg0OHWWnjnQqAyh6Yx2Gw22Gw2mXtH+GDjfQLg1p/vOh0Da+eWewrvWQLopRKsXLPe+wiyS69Y9+2jcwSEEkCXWmwd6FCeL3nVKXx40dxF8jlS11JgyZS9C/m/96AbhAhC4acdUQNES0C8/F7rHJ/BgaRH5EeZ3JMC35mmXL1ZA+MCWr26lgbZ88GQ+KLWhgd7N+UznJAC+GgAJfnOuZNLoErXuOiDgsnm/QPeGlWNZA116JsIXl18QwM5aWut6AyYz2ggciGmAjKrLcrfX0rZM5X5pIWac1KSoI9U8sS6ndIWXa5HTny0SUl5GK78E7/wOihTjdCl/CkWnNbEFHDLd+999BVIgSG3ZNCQxeXVDb74R/8C2s2FqEGPtvnvk0oVwO2GAb/99a/xN7/4Od68egE3DrCNxfXmBtvdDv12C+eCII4wrkFY5vA1SfgXzXQEVBL4IgBvAb7iEky0ykS2uo6OMc255SN0hSwfNG4Mu4TT9t+9c6BxhLGswVt3HYb9Adste88AAQM8HBgsg1hbv7KW2xPAybY/oH89omtbdG2LdcdeNcCOFWBB4ZCnl97KGDlZg9as0K46uNFh7DkaZz/wQVHue6T+zX4JbaoM8OLSmKMVMy8FbbS1Fk3bom0YaHufHAIIL3Kedw92PfvYdqG9jU2HHmVdd22L9XqNy82G+69p0FAIWNRY9IOBtQaH/T7ER+CyXADaPgCvy+AzXSsTtFLtfRPMa7vXR3dti3ePXdN5zpUnnwK2gTBWAWiXyhm5f046VxNfSxp4C24YhiGzLdfRLWuKxnPrI7SsTHqc5jCmrvNSeu9BNwEpgIiyfROBLUao9DmoyIA1phN+DoSzFlaIiX5fS3tJa10SPlKgQAJUlkSzBHWYWSAJ1PBjjTVw1vJ2r9YEBX+Yui2a6WWlK+Yo2pny/vR73u+SP3kF6LzUXRgLN34YBwz9IZoweO+jS6HWJmn6GJAu+6Z2jYiAaZUn6RwCoqXqpXqcnfxRJcxiOibZZ8/yg/k8lHdmtNflPOJXUmCJabRMRegqqEi8mUjRsf7ln5fvBAtC263w6T/4U6wf3AT1OU3y/vt0YgrC/n57i5//s7/C11/9DofDHiCPm5trOOfx4tVr7Pd7eSHSQJlDcUcMCXDJ/XIW6l0351y0txbwDZjqPDonzT1v2FAYrWXXhk3TYHQOnYD/sF3tvGNTCdvgMLJZynboMfgRHPnQwhNYGUIEby1GHw5We7b/HvZ7js5pLYPIzQrrpmWgiSltT65pk8DbdBZd22BwIw6HA3Zi/+xz70lpLFUf6EvMBE/tvcmVWEfDkRm7roOxFv2hx5tbjlradB3aoLl2zmF/OGB3OLB9f+h8I4IzWACxoW8uNhtcX12ha1ko4rMoLmtP17Zomwattej7g3IhByAombrWAvCRr0S+L3Rupg/eBojXFEDnvnOfsk5VrizVq8QEwmdrhyHn8vh9pbndVBEGxKS2xG86YOAxYaYqtM/ck3L0QWipl1bAHdudl/Teg25AGpcrpbXCy/uE/hIYn5qk1LYD9PVsEIG41SeMxieqpn4DGcvx/DsBkAJyF9sWpQb6WD8YY2DCQaFSwEh+ZvM89ZZMGeKeXV7Ou/mpTaSYh08R4xJscnDOwzlmbi9evsDz58+x3+3gRoemsVh1K7Rdh6vLS1xcXODi4iI60Zc6lxpt3Z65RemDJm4JlJ2qWdBl6IMbNS33nEb++0pzY1V9tvhUL2XAqSRUek5o864ocBFYQychlBXAstHWFZH5yZqa25kgeMA7eE9sH0oGZFv86Cdf4NEnn8LHwBUnd9PfJ5U8S8V49fwp/vqf/gWePvuOAWdjcHHzELvdDi9evMQheAzwnl3ysex8PnAQeq0ZpqzvsWkwjCOGkQ/4ymGpZIIyPVcwt+NVKZnnk+EK+KDUaIyF9wautYBf4RBcyg1BezoMA4yzsF2DduywPRzYvIZC0LPIE8LakAPxoW8dgG3f4+5wAO7usOla9ie9XqNrGpDwC1HquGD37sViHYBhb0Qru0G3XvMuwX6PQwDgkQ756TKQ3w40M1q+eJLSQOl8jEHbdVlQEzc6kLFYX7QgYwFDGMYRu0OwS/eOlV/WBkGDTcMsERoyWK9WuLm+xma9RtuEZwgguHCIMtVHtK/7/R6H/RbDMLCSxhqMAx+aNcZgpMQrxnFMvuPB42VUS9/FMbt3omiZyedY3ueWXYJRDRaXdsDfFc86pb7ntikTrIo2Cb4pAbcGxzEfnaeuT1E3oX9aqw7Vf9qBxbnp/QfdShN3ElgK/2SnyWNWU4A7pw3XoDteU0Bd5z3NQ1zoTesgo0vqeUM5AZybkESswTEGYfsxn4QlIOSPpEmutSXVd67M5UUpkxGTvnIYBj5Rvtvt8PrVK+zutrxzEca06zo8ePgQjx4/xqOHD3F1fa38u06B4FzK6q4I+NuQkLKvdF20hiAWe6Y24veR0rmBQkAAcglW3cueK4iW1k4b8vDWxMiso/fBO8oIR4SRQh4C3ANTFtFMkgAZ8eHrnIN3fPDuw88+w4//9E9BTRNk2fv5Qf87mXz64gF4N+Db3/0Wf/1X/xS77S0sOVxdXcBYi2fPX+DNm7vk+SMLTBHCm2d51mlUpu32QZBie6HsPQHWrWMBfXQjxpG1x3onhYjiszJvZe5GKlzkTYAEvmNbcDVhyCMEBCKsgjbVey53v9+j73s03mIcHbqmxWEYsD8MGJxnYBl6M/IWAkYojb+1MRrlth+wH0bsDj1WXYeua9E1bahDio0gLeEzQwhglOtuG4vGbLBarXDY72PfuGGIwHuy0xDbO+VT+XUPwEQ6YEPQo67rYMO5idDVIGPRrhoAhNF5vLm7w74/MAgJ7hSFppNn2/uLVYfLiw0u1hdYdx2s5eiU1ojLPgQBhNs9jmMUgg4hmM16vcKDBw/QdV3kcbvdDtvtNoItIAF1ay1M24ICk6SCXtwXVC7R9eo6OMLHT8nn3N1YnbSNtuSVTLpoQs9/r0mt3VNSub51O7QdugbgJa+e8LGsOrL+2GRK+q4MxiPudiXPt+H37z/oBu7VSAOoDe3lvMukQbf8BqaBb/Tz2bs+acUF1PK9rGT1b1GXmcUgg8/bKAl0S900QCRFfEWTYEwOeRLgzt8tJ/IEdOn6eW02kPpLgOnlxQWGvkdjDN4Yi/1uF0MlH3Y7PP32W+y3W+y3W/zIOTx8+BDG2rA/PB2fpTlARGxrbkTfdb+kx7tWXtM0SVAqyj+W3jWhm5PWo8g3U54vxrCa92xdee4Ryba7Ojjpeds9upsq5qUcntKRVB0YELkQ+s97j6bt8OM/+mM0601oDzPnYuPo70F4LWnA7YH+sMVXv/w5fvvrv8F+d4BpLB48eIRhHPHkm2+w2x2CsFMoF2RtB0Tn5orJfkW/TMnMTI2SBiSsbQOsN0ALBrdB861twPXBLlHCxJ0aH+YiUkVlt0t2ZLIahmoaCj62QbAGaM0GfrPB6BwOhz36ccBhaLBqR/TDiMMwYBiCT3DvcupNAIJ2FdYCPgihAPbDgF3fo9myucaqbbFq+EClNSauQxINPYT8MyDnJhtsLi4SIAgh5zGOGEen1i/T83LZzpJM4oA06/Uaq9UqjY16gIh3NIe+x263x74fQNaEA7F8oNZ4D0uANQbrboXry0tcXKzR2YbjCFAYFxMcDwXBwnvAjSMOoT3DOKJrGmxWK6wfPkDbNnGuaA3jer2OvrhlByCC7nGE7brgX/1+7uRqirhZhdOR9489q3GNl+coee45tY5a4yupaZoUgn0h1YSEe/OpuXbqR+6Xc8orCOOSROutQXjpUGJazVQLF1zpil9wE0yrsgjPquzy/XPTew+6mQjlYK8mFU46ITCKjJD4+jvlZEv3glYw2ODJKfpji2qqScbktzBEBK04EYUJW4eLosmwhu26x9Flh21KgMwEU4NgyUXaKX0gYDy1QYe6r0mS0k/hpVngQ0RYr9cgImzWa9xcXuHly5c4HA5spygEcxhwe3uLFy9fYHO5QUcr9mQxQzSPar89ULp3PDdJW2Uh6iTMvyZNf1+papahNDk5tJnNZAYold8rZS1nm+4Hsy4ZN4PCO0oYd9FmWiI0jcVoEiAfvMMXf/SHuHn8eFJ+WCKntffvYvLywaD59tUL/PU//XO8ev4thqFHt1nhwcOHeP78OZ4/f4FhGLNtVHgBboH+RfoV8tUAIRSZNK4FXZ5cUfcKDZT3PmhBbbQBl/UnXpokRe23gHDkdJlI0WM1UYgEjANELtbZEODJw3mCJQZ17TigHUf0wf1g21j0AfD2Q4/BsWkMkAK/WLAA6kOHRZrpPUYAru+xPxyii7yuYxDeNQ1ak7TOevw0ghZ62DQN2q6DGwaMvURdHDB68SVS9rU2hRTQ0mC9uYhmGbHcwIeIKAggHMyGg4MlLaMHYDzQGAq22nww8mK9Cr7a2a+2HMOQDyIEcx7HvtEDfbXW4vLyEl2XXNPV6LzuA7H1Fv/f3nNEVb/fw4dzQ6Zp4InuBb7jnFlIb6vpnmAZvjjdyfF6jaUzN3FnyvkYsK2MvVCWdY4i66x6V76Xz7xLLinty+zUwfNLHwiNpjRc8WxHzwXHFCBiv+7NFBIfU2Cdm9570A0ggkfZPzMKPJSTM04ssM9QuVZgzjB3A5j300mYb0UUZg6kpFJZCpWJPAe4lz9r0zJpQ+QX08YxAksmZhwYxRAfMhFJI58sZf5e5THVSNVMU1w4RCRMYboljSyftm2D/SJg37wJhyht0q4Yg261wubiImq4jEmS7JyHg0XTlwIk1EyLqu8VZeh2Ral35uDEucRrrk7H6gWEObAwV2pl1WdXcGN5pOqqpifVUQvKIsTx60mLOgwDtvs92sai61r4MNestRj8ADfsYY1FkqBFQ1YRTOvDX7tVT2e/8B4mEeIB+HHEi++e4Bd/9RfY3r0G4HFz8wC2bfC7332J3W4PiVgqwvuU/uRKgnJN1RL52hw7IUWwh6jdtTYIZGPaLhcf1wCDbxItuNC8cvDKsaTyUtDCUuArHgAMLDVorMWqbdH3DfZ9OEhoDRrTsk268RhGZG7zIuw1FOe5BIvxAUyN4Oifd4cDGkNYN6z9XnUd2qaJO5IJvE+7S7a7265DG+zS+77Hvt8jP/CVBBEQC7XrzSaY8YkNLD8gde8HFjT6Qx93n8gYkJijeI+usVivOlxtNrhYr7FZdUF7T1mZwneFlo4Smj0ILCx8dCFiJL+Q9Dl1kCipbdtILyTi5ziODLyDu8oxmM3oMOX3STX6fo6m+6QyILCkzhd4OAVoj/CQ3UMLakzsN60IWuSR30OqlaAF9bl7WR5HtmqiIjYonZwxcMPASjw5TNk0yfRLhDHv2dWkL2yzjYGt+CFfatPbpB8E6I6JmBTlcDhpXIEEfj2mvoILdqK0c8UDRNnDNYlbkZbsepxelA7fML86zZtKTWOuW8AgxqAZDRwRnGcXSiM8RmvQeqM2KgWkTCf9Eoil4jlfEBwbtlAFQLnRwRvWvLNmJw8Za4wBrM22jMegrXjw4AGatgU1DVarVvmKzvvpFOCdjU1BsI8R8EkeBajWC3VOa3I2UTsR/C/WU43qKeZUs/l8D/S4RvAnYyg2eM6hDwfFRufwT/7sz/D8u+/w4Y8+x6PHH+LmwUN0qxX7Tybd0qQJygtPwTHUU/U0lUNPeOk9Sj598R4Y+z1++zc/x1e/+zWGfg9rCVdXN9jve3z9uy8xiFZQ0RcfwJ0Pig3+rk7qg6DdMZW8ktdc+g5aFkKrzHbyg+mYtWk7WbTeYl6AYcBhv4+2l8ZYNA0H76nvDolswvpxD60wCbuD7O8uBGcZsd9u8eb2Fg6800jGYN22cDDonUM/BD/gIx9wd2CQPYLn++iJNd0+HcYU2jl6j7u7Ld6MA9w44GK9xqOHD9GuWga5UdIJtSXdFla2NF0HeI+m67Byq0hjo69rMM2+uLyMUSBT/3Meo/c4DAPuDmzbTiBYYtd9oj20BHRdh83FBquObeIv12t0jYBtUZAp5RA4nHd/6DG6Idrcrldr5TkjPEn5wjtVqBfB3jmXQsAH/iN9IIctZZ4c3S0tyinT97WzOeVxgHe5VpsIIENorABFinPhlLp/X0nz3bnkT3hmkqf6zl8S5jPEglsS5pKXNO0xyXsfdlWbbB4IeF9SX/2dBN1Vm6MMViNDDV7u++J9lWcNiItELvSefDwKNH1W5+XVQTvJCIrAE5hoKldRCSucArrzthvDtnIi6QPJG4k2+yjrnC3CyEw1z660kJIf8fiYys97dh3oPdtGOmHgcfuGQXh/OOD1m9e4225DGwxrZvZ7tqFqGiYuzmEchwx0lwR20pbiuayeQRt/zsIptQSlwHHvrcqlm7rvNViV22+b/1ukSHyyAiooF4nRAtPooppYlrsH+z1rXjebDZtQuRHffPM1nr98ia7t2NXYzUM8+uAj3Dx8hMurKzRdB4m+ORGJC0rt/Yn9o9+rN/H9Skmqh4fH7vY1fvnP/hJPv/0a3o9Yr9e4ub7Gd999h+cvXjET8nwwULyTpKz4v+i1JJuTRfNPmJDa1O0Yo5XuZnqZo3o9h8Q9atM0EYCPykwNAAZrYQNj1bafiXYkuqubQ+BDowDg4HA49Li9vcXhcMB6tYLzHl3XYb1ewxiDw8ARMPuggR969gXuHB8KHEMfWgJGz55FhiAMCqgn70HGwA0WQw+8vrvD7W6HzWaNq4tLrFasBYZRvCjyGREreXITAdY0MMGv9jgMsZV621z4ChFF84zdfo8h1KUNByPhPcg7NNai21zgYr3BxWaNrluhMZYBvxWaHIS3UC/ywDCMSTiCR9u1cezYNC5UemYPrjpPFE0ueYHQZtkRkbkh88Q5F0HXEvCuXaspzObS3P1zQHAE2cqMVIQL2+SKn1M17ouly5oTXhkl6ClmODlPXZfw/qlwO+br66okzT+MMei6DgC7E5R5rWeVUWeJtPcRYHpWpVqPd5jef9BNUxA0YbBQgxCuetFa5FwlvSVzbFJe4dJPHg7v62njhZnUgGCQ+GN9fB6FMc7fYNriKTFOr96pgW54D0sGrW0CygmTRx30rC7EE4jBpD9qhKlczIZYQPEhhA8BIANvUt0JwIMHD2GMxTAM0RcrATgMA0xYDCNxO2yTxlyIZelK7GiiqJgL23alELKs1PQ+uSaSVHMVdI4W/dgTUyjAb2XzkGdeviNxtOQ5AiwCaTk3PE7JVT8vWhf+eQKBDuM7jnwg6vr6OoADH23+h34H40ds/QDXH/DmxXMYa7DebHB5/QA3Dx7i6sEDrDcXaNoWoLTNamI1TmjHKc1fmix/GykAbu8BuAEvn36LX//in+H29UuQd3jw4AGcc/jNb36D3X6PPth+Ou/gfNI6ec8Ckmi+fXlaFRlPBrzSqh1lpDltXNR+F/e1NjbVg783wfOI1oBHoOUc+t0uBnYxygOBNg+LQjmSsEhEGJ24rDvA+xRXYLPZ5OAVBm1L6JzD6Fp456OWlYWAEfuhRx/MYwbnYeEweDFDCaCTCLYj2NaiW6/QDwP2IWBPYy0uLja4uLzEqk3eJ3hu5/70NQg1xsB0XQIglX7v+xG3t7fYbrcszKwl0EzQILYrrLouBP5Zo+s6NDb3CpIEFVG28KFL7eKwaRp0q3YSStyjDqhOSdrcQ88tEbSaYLYiXmmElgsAt9ZGs5O53dDv25ykzENrs4WXGwpAUfq90mE1BVR5v3xNK3NkHRAQhc7wYi78Vuo9N361HjlFtCL1V8tH4yEdRVk03OvgapN98CtgXgjuOq9qpzz+ijIAAQAASURBVH6P6f0H3SiAr76GFL1xCfCkxaSv1SdwuKkLyQtVDInC4ZvFvQnkUnl6V5cHpf1ObfKUA/CsPVpgIBNAZU6EtXmK1hwv2npVBIhjoLLmG1sTRe89urbD1dUVR3Pbbpkgj6yJM0HT6b3H2qxgLGEce4yjyQ5VsZTfRF/QmbaCkiYo9pVcSDITIISeqIqrdNLCi+wkLPXDu0JlBQkNf0XwgqoqtpJXGfyo+p1ijqlMzt9P3pqvM+kOLQi9QHsK2j+nbS+HIfpqB0TYCfoH77EfHIa+x9D2WHdrNG2DHUbsd3d49u3XMLbBerXC9cMHuHrwAJfXNwwgmhZETd6CrDvyFsulqXCgvggN+FsA3n7yg+mAG/b4+td/g69/+2scDjtYY/Dw4SO8fPUKL168YC8PgUnJVrXMKhdoj8voxfHGGQTgqBjzMea/2LZZgLNcF6EBAra6rmP3c0Gz6RzPHQhYDWZt0UxMMV6xORbtrPee/WyvV7yrqMAQAFjLdbPGwHvLCpPWxH4encfGOfZ64jyG0WG332E39GyS4j2b7hEgQJeaBl1j4VcdxmHEMIy4vbvDdnuHrm05sEzXobU2YiIBIEIL9d8c7eYD9MDFxQU2G/YQJIcfG0NomxarbsWuDsOugdAiEU5kzct6PoQDndw3NoSLl0Ov07kxV79TlRhTnpr/NsZgvWYzFjFtFOCtTU60Kz1dJ12Xd5GynXoF7JNJZRq/LghMJuzk1dpYq9tSfWs6hMXWVXDLZJ0u5Sn8f6mMon4U3quC9iA4afMhIooClvbTLcKWU0pRySNzBrGwRr6v9N6Dbr3AgQAHKpN3knySo+uPzGteljs/05XCBEaseGC8FyHLMYGAimd8+kvAWvKj4oaCSJEIC3AXEK414OxKNoVoR3xWt7/U5pbEKNZdvUpB/xpkAhC5qJEly+F/97tt9GByfXWFH338MQBgd3cXmWXXXYAk7LITf6PBm8g4wjY2npC3Vpz8K+m1qPukz7PWzqfyECWQh05P/VGfQ+XUouJ+1odFDWsEco58pbKOMKnZOz7TLkyfq+mkaqB6XkNBJEDNR6AtzK8NYaGBQBQlb9H2eA/n2C+r2O82Ifz2arWCNcDQO7x+PuD1i+8AIjRti/XmAjePPsbl9Q269RrGJK1WaS8LQu7TWbdC5JtCUM6FuWlfvMuUzbTwD3mPfnuH3/zir/Dtky/h3IjLiw1W6zW++eYbvHr9moGi98HUIQmSkcR4sOJA1f40ca4QcGNFT99CPsbA9RxL879OkxiAJiZcemDq+z64/Rs4UJf3fPAvCPIalPE2foPVpoOxDWAA5x3gXfQBLmUq4gcDgrFtOGfDDH1UJgLjOGLdBS8obsThwAF6DsPAJgTehXkY7JTbBm3TwHk2Fdne3mK/2+Hm+hrXV5doGj5bY4hgrM12CkqTPNltRKDI1iJqhEXL2Rh2ZbjqGvatnblGTeCFwTb37RA8ughoFABkQ92YHJM4NcrG7pw5UvKjU96R92IE5LaNuyEy1nIAVfqiZo5031Sj8eXutT77JHXIzCjzDN+qPot1nbleBfYoUZBWaiyv/yW8RZVn9G6zDvleuvTT+QB8yBZAdFkrzDiL7ErhgHBVoXu/NpyS3nvQDeRzbToVk0ZEY8AYDrYg1GkRH3cpV2qEaxrrrF6UnuNSc1OVUwaLy0B8Py8jN2dRLwUNnQGCdjyfuCYSQI+pG8CybgLOY2/PacXD7xL0jwHBGHg0GECeJfmVcWjGAQ1GmK7Bw4c32GxWMDBojcHd3R1rTA4HXFxcoFutVFvS0mafzg4ODqPjrSO9eEofnTVGpIaL24zpYitNS+YFkSlMmZtbE+haEWZqyUy06DVtTN6i+9BoNdsT0zj5neVrzrMG2w1D3PprmgbrVTdZZyPAwAUOLri1tB7wJh2SGYYB+8MejbVo2+AFobXoVi3gPHa3Pe5evwTZFm3XobEdLq9vcHVzg/XFFWzTAmQTbvKY+AGfa9C703+dnryAbQDwDq+ef4df/tVf4s2rFzAGuL6+Rj/0+NWvf500vT5EVvNpXUc6gKTp5ry1IHKkhSL7k/aXjQm9YzJyfCL6oszc5M0rhYaf0NVyN0fnoaNcNgFY94cDHzQMGkYcDjgEl4RJOyoBYtIuYVKApC9aLCACLAEGFj64KGuthW8E/I9oB4N+DALn2qMf2Q/4EATKwY3BRIbtq8kYdIyQcbVmE4+ubblLKe+nuRGLdMsLV0n9Z4lgQDGE/SqsIdlBKMcjamYDcJXQ223bRlvp+Cxxn1CRxynpXWgdMzqv5kIE3xLpUykAdETUufrUzDdO0TrXvHyxgJfMnoAQPC4v4HujNzXFyVKKgNv7jGfOq5/Uu3M0RdGO0mxE3pEdqnJs5jTxYuetdzak76PpjrUg52IgJRFg75OOKxBS+sGBbknT8ctBRhwWnzTO08xKmS3Pf277an7LTknlqgSVYc6UJmUGoJMhQMXMfH3xl+YhvM2vAJOYqYSFEgmqk6NTyEC5PCfeSHJADl25CZD1QSs6eoDg8PLVK7x6/i2Mc1g3LeB6PLq+xOWDB7i8uQERMyZrNjDGYLvd4nA4wBiDy6srtcAU6BbtDU2BsPc+CytdSsKayGkoL/WWRtak7aoPz+oarUH46bXJ/AFAqiZEqs3qX6jvvphR/M5pTEHndC9So8o6Bry99zGMs5gyCLMGEZzzEg8p1nf0bF/MVgAe3gDGc3hp5zkoxzgSBsMuzrbbHcg4GMPbs3zobYOucxj2Azxt8fzuJZ59Y9A2HbrNBS5vHuLy+gZtt4ZtOsTAKnqOy7+CR9M0ydv59jhhPnlEqOTHPb758rf49S9+jv1uh9Wqw9XVZfC9/TwTqtmbRml2xk1xXttv81gSUaYNqoIfSh8MuCdVnayf4+2bAc7qC2XPyZmP/Hsck5JOUopu2Qbm3fc9a51VUAxp/zCwH/mGlOckyvZHoOcEkQTcoWhyI7RS6mhtwy4QXRuicLLHnrENXhbWq6BRB/p+wO6w55DmxqIxRtkfz/MtaW9VexfpCQNtQ6zd7poGm2DPTQSQ4TMjWokkmvq+5xgL8ICxBpvVZkIXp4dU8/NMZVpaNotKrrLdxW8dkdfFr0nzbYmiJxx4difnxhFDoEs117C1NLcDrAGkBoNlCPZSkVMKKaUge2o9dH4lLS6fmVyfaXMUpOW3yrs2K2d3x6UYdX0oomiWILumQCtT3NWhtFuvPZro3S8AQIgVsZTnXN3vm9570M2ui6aTz+UPRSlegwC5VFqr8hefuRecTkS5k0/ZkqAd1ZTnGc4Ti6w+mpuTKLIzID4RCmo4D5GVIiD2fPGJmivUNS4oAd0mSYa5Rjx8d6VAg8CHHJwfsdvt8Z/8xZ9h+/IlLozBpm1xsVmhWa3hrcHd/oCubbHu1tisL7AKgXS2uy32+z2bHWw2GbPgriQ+vEn5X6ofJosMSHbZ4zhmhC8jdOEf7/IdgWEYElifLPxyMZaCnSTxNlCfBTJ75+aIPjwZocdk/s2Al4V5qms0R1hk9ooIuATUa9cl0qAPp8pF+GGCSgEEao0+P+O8524zxEIiMeg1PoX85bEUl44Akcc47rDfH3D75g4UTq6vVh3WK7bPhesxuj3u3jzHtyA07Qrri0tsLq6wvrjGan0B23YcgEXRlSWIQHODJ+kYzZ57N9AR74HD9g2+/NVf4euvfof+0OP6+hpd1+HLL7/EdruNzCTOXQi4Vmvcz4PiUgv3rhiNntilIK8fOTWzWrXq13IgMQYXg/v9HvvDAbZpcHV1BWtttAM9HPgApYD0zPQggG8NiCwB7EVH+cInmTWFrTXYFKTxDCSGgb2fiD25CKUNEbrGgv1+FIqF0JlUti82czqRNH0zxnBQnrZFYw27njMUgbamBVKvoU9BbJpVsNU2NvE1zYomgtEU+JX1ysaMkolTEhbyZ5eoXr5LMk9TBVgbY5KP7zAW4lVLR0OtgeRypzj2mTpIqgP6aK8ZNQC5BLjPSabSZ3OpBNGnPquvJWjiq/1NQPCKxDhEFqvzbG4oQq+2zebszvc1XvJoOXStBaAMeIfntDvgufLfRXrvQTcodYAGHIYKIkv58mLG7rNZ4gHlCrQgWpWOnZqXzA+6fvaYNFZp4kRilGAK9appEJAuJXEDqW2kr2iCqrAsAH0SXgo0CHpXbwqm7WO4dcmL2YsG5R6vXz3F4eUTPPQjrgbCFQzaHujJ4va7De6oY//c6zU+/PgjfPr5j3F5eQki4OWbV9gddlhvNspDQeqPmuak1GpL0gRRtNYi/eptVHnfGAMXPA5wy3iBdqtu4qopFaMJQ3wifk7EPkrfmQYpUHcKYcFkBkyfOUNLtPROXFHZXOIxXmKkUYDzHn4cGTyGm7Zhe/ycGwcdv1cuOEV4chzsigLodsTTz1BOQI0hEBkYAmu9QwCQwbApypvbW3YdFUxSVqsVn3j3I3bDDvvXL+BB8NRitbnA5fU1NlfX6FZrNE0HmCYuVj3M8TDxAjYvby3CeJ9/8c7hzcun+OVf/QVevXoO7z0ePHiA3W6HJ0+eRHOSXKMdPJIEwd07BcJxfP68U8AdPnknDdXGy+HMpfqoZROuybc6/ZbPcWQ3fjGEOoCbBw+i7acw59IPuPZ2ET2hyOHAKPArM7YJOEbMvwQP3ofDmNYwnbUE14jLO9aCk3NsBiQEvuBpGThQ3R3Bm0/mCuJucRUOOBI8rxd5UHWqnK+RSKBt26JruxBEJO/n2o5wTaN5Kt0RoF0F2er6sd27Y0kEf7H/H0JQoP3hkAHncRhgJcJlAQg1gCvDkE/8Qat6L2rQcwnm7LVKVOOOlXeKsrIyTgSbcr7OA9N6lnMyYoekzZbDw6XyTLflbZPk0TRNdghTKxRPMVk5NR17/v0H3QDyJZQDnbyBpcQonNEnwE1pkvATU3AW8yiAfB38nicNzWmSqtuBC+/XJkbUJwTCLCYUGiAIbRXwIjyQCNHtX94m+S0M0ycGXoBZExj8CLYh7bzDx9jiU7zGf/ZP/hQ/+ehHOLx6he12h69ev8EvX9/iy90a/dBjfHgD5j+EtmUCt9vtMN6MsMRu5GKTiaYdJBJ2BXiXi1n8m2sNuHbTFE+5h4NTPkh5xhJGN4CQGC2iFiqRFy0saT6cZpM65Fs0o+KwMm/m7J3z0n3eP/UdWTHS3tENcJ7jgxEhunLj3Yq54ZwCb52z92xe5DyHoyYSbTC7CvVEIAd4IyYTbBfuiLXuPfXYHwxu77YcaMJwRMDNeo1utYG1Hoe7Abvb56zNtA269QbryxtsLq+w3mzQtB3IWLB+3uSxPXwQSUqEnX/Nr3ndDwmyub7Ht1//Br/5m7/Cfn+H9XqNVbfB8+fP8fr16wnQznZ4hGn71K/cl/mBySVGoW/5sh1H0UDY3fFIZjkLL+XmG9MCXKyAfMpORP6sZqr64BwA1mw3TREkJtEJMU3SAnr88x6kBPa2bVn4K92Q6TbNBtMCxIGK82xjauUciuMzJf04oB8cDgNHIBTjswRylMIAiN5ERDHBc5vryYeOTdi9yfmIdyHIWrCjHYYBRBT9amsN7SmJKAnPQJ12HNt9O/f5ylI7Si81jWnaBrZhryt32y0fEO17OOIdkiH0g+6LsTBPskGgL22PhTedUn9Zs2Ub5tJkznmvzrTNvHMkzzI/SRM6LbRZKey0UFTuammNcrlm3qVGuRRyZHwEeE/oZPHuKQHw7quU+AGC7uIO0ewESoMv0nPxO16bmmvkHVpzncPXoTWTRyZPDZyX2nG5RmEC1wWBPM/p9VL4UMSH8qfE+1lkxIoI8UNTRobwnq5buudZAT6OuKAB//Bii//SP/oIH//Rj/HzJ1vsrMfqeoOfXRl88MEO5ss9vtxbwI3xj10CUnItqDTCWX8rRiOyBuBCo0QAyfuu1GqLtqME4bvdNmj5k6ZsHEeMdgRCIKB0UFP3qwYFDGt8EGys6vxySaftxAXwM3vn+02LxHAGVIaWw/m0bct5advUgtkAKDozXvNRw0f5HwXtqAvwyzOQceG288G7QwRYDsYS28pKiGsCBho51PfdHQgG1jDz7VYNu01brbC/67F9/QrPQKDgEu3i8hrryytsLq/QdpsAaIyiCbodFITdJMhODlvr/nAO++0tfvvLn+O7J19idAdcXV3CGIMnT77Gfn+YPRTto4ZMoksiCtgi2sU4AyjoXaCpFPJwsR0apk+TL+7GPANtiZpuyWomTRj7/KMTmqrXsAbbAiDbtuVgNIoO6L4rBXTtBzzTaIa+ORwOGCmZSpVb1LWdt6xvEOYtASDlwtB49ibSWnSjQ9sPGMcB/cBRMj0Y8LiYjShdZE4TbDgU2rUcTC0pLQQE8mFPF4CjnIVpmgbraOOdm+7VlEOz4yUArOBRZT73BVs1jTrXyU++Ic74MsKBrEHHQgJ4LK8vL9H3PXa7HSt/nAtnSPKIh+IaMXNDCV47kTQKnyrqeQo9P+WZqeJmfnnVALp+T+gPFfd87XlKgns0HfE60q16rvL3fYDtuSRl6PWsD2pqIV3cFC/tmpdpqV/L9N6DbgXjkAiLgOjQYQVUKfEPkdbKECZjrPj8qRMhA1leNMoCnNRzxeTLip25V0qMc2lWwx45d03217dI9RFxO0omVmz4anCog2iUjAsYsMKAnzwg/Gf+9DH+g1/9Jf4fP9/j8Ap40LT4k48v8OGFx3/+x8Ddb19jONzi9YsX2Fxfg2yD7d022l4n0wET619CW2HoFOrMvlOWF0hNI+69DwyUIG4Vh+EA54YE0JW9dxYJNGB81t5qN12np1MdtiW2cn7S79ZnyD1SUW0HZFuuHFmbooYxauYAiEYsjqnPtdwOyKLDJk1eANlBy82jzp4GxUWZeCTx3kWtOmvDGXgDiikY7n8ihxEj+qHHds+gvWmCFqxdoevYi8SwH/Fyd4enT74EGYt2tcJ6c4HLmxtcXD9Au1rBmDZURtEGjTu9nOVQTNoDfhzw9MlX+M3f/By3b17BWODi8gJ3d3d49eoVxjH3hjD9AxxR4bmEkpY0oPAqE1nU4Byfn7U8v0+BUTNOHSRH6IZ41ogMtwbU1HyrgbnMRMCLRxj2Ty0C+TAMkyA8+hzIsqYzKRIyP8IArDVYUQOgwTg69t89jhiDC1UPsLkfPB+4FE8+TQtjTbDvVcIVsameHByUHQDx7FHTak93QMv6h+eKaxTaVPb1sXQqEOP1XJZc1kvEQcEOPv7Ld2v8kWJftG3LJieVOaGjngpNm9RB3lP33+V6mIDuU/p3pg4ZTyjwSbkmNL3RdEjm/pzQeR+QvaTIPOVdPW9FyVaudQ20y8Obx4D3OVrv9x50AwSnpoewL/5LA+rU0pHlpCf43ARDyCcx8+ngLndoAPFaUaTKzcFvITHqsmoSZFkfXwgXc3WtrKi5aZ60D/zQRJPh5WhbmWESXnITAL5nTIutMXi8WaPdvsQlDRj3Fi/fdNg6gHyPD/70An/8qMdfffsKf/P8Kf7m9QHd5RWa9Rr92OOTH382iWLG5Tn4oBVisMaV14CM+8EHger4gTANkr1nTxsC5OUQ5Wq1YoJiDR8qKPseDlKs5KnBZQzaHDhFWa/UzgpTO5NQHXte1sT9AtoDc2Q7A0Cji/Z7JgBuExhUYoF5jnP5Qc1T2V2I4wUl+IBgYEQW5r53Pvo+JuiT7YjvEAHkNJMAyAE08vd+GEGGcIc9iN7ErcquXWG1ZnOE/rBDv9/ixbNv4T2w3qyxWl/i4voKm8trrNZX7CGFT3tGLbdm//Aeh+0Wv/xn/xTffPU7DMMubO83ePr0KQ6HfQi+YqJ3IRdNvRToBuCdMEbE/pK+r/bxbMpFvHou56elck9hYkno5zb3/YD+wD6jQUheKvThtfDGMfBT7qAScm8YJgiDPphuaHteHbhjHMcMhJeu+KQs3e4yRLm8KwoBH9wZeh/8ZAfg3FiLruXohVM74iSUiGAiWr3VapVpaSXvuV3YrO6or9vfZ6q5jMyjqk7VC/kOz7QFeqdENNptGEcXBB5ZayJsieeaWdor/PtcWl7Nqq4cPK4sTGM692S5g635VAm0dZ6ZY4JCkTVXt1P52jmg9ti7ojyjIOCKxrv80z7bj+Vb65+59N6Dbu89BsdAkkAYoYA3ibYIiFpG8AFAIM1tDzbX4OCRiWV4TYE1aC6IzVEA42d8IvvJF7XlxJejHrkA11pDcLQeCoxnzCUWGwpbaMYka49IIJKOUYrzHGFMgctscRIAMuhtgyd3B/Rjgy8+vsA/+KjBP34F0NigM6yP/uKTD3H582+waddYPfgQzgC2XePm00/x4KNH0aOLqmmoW6iVaA8mc9zDB3vSiVAQkrYpizoIDw5mEbQ/8MA4jLi5ueHT+tBjkTNGBtPIBCggRfvLpH2pu9RfVDYVbcn3uf1WZzn3z4s/2SfxMA4R5NqmgQ2uxSipp+5XTtaXOeFzAcr6EOfck4TM1mPF7xGx2zSmHT6CcM005HkiBigeQ2yDOfTY0h70hrWRcavZNhw1cztyMKjn34TIaC1W6ytcX9/g4voGF5dXaLt1EEQI3g94+fwpfv6Xf4HXL56zqZUlDMOA27tbDGPQ3nqe2+Fr/OM8+Lv44BYtd2hJtpugP6tjqehKFWjPDOGEHqj9GxZqca9JlylRVP2HQZlHeHbNZxuLpplqbGXdaQGkps2qvac/Q+FxrmjAKppv75NZGpA0o/KZsjm+FnR9TIiESQDaJkTC9NKW/HnJW0djFGCvzSLyZuVawDn6831RpXdB76b6LF/8zpMAJb1rIeCs67qoLDBBGJODudrjiXcu7YotATbNr1VlT1ZEoJiP75A/1OhCTZvNxeZzf0o3Kfu8Tz1Off9cUF56KRHhSnvEEmGrtj7ks/b9WHrvQbdzHtvDAGPCKWyloaLAaIjANlQ8AyMo1+BcPHFk4DHhLIiJimYuEbQf6Us5He6Lh3X+6aJaNITyMDp0wcygFFgopFOvno8MKWoG8yyTQzpdzHQy6/fVcZs68VVcUDRDJH7RqcXYrPFLeoD/8DdP8McfP8e//A8+w09v1rg7tNjQgD/55ArPbt9gtzP44MMf4ZM/+ocga0GNBbUWo/F8KHPiNzgBb6kGSdRN0cYF9BHHNABanTLTEBbNouQrwFAI6Wa9jmObNKQiDIaSSXY98nJqi1PPlVIzIEBc3D4tMb5jaVabccq7i5Ikj4PY/aZ7PoTLHsER9igeLspmoJqzc/Nwsc0CDIrnPdi/txE1dxDupMYA4nZvFJRC3Q1NibGeHy4Z0IIIcGYEkQE5wjgSCAMO+57nAFEE4nwwuIVzB+xub/Hiu68BMDhsV2tcXF1hvbnE7e1rPPnqdzjst/DOw5CBHzz6cPBHg2xAQLdmkkLFxE5Z30ecdyXw1qMqPzyK9TN5qD4mqX8E2JogT/rs/rlJaKGu9zAMOBx6jCOv47Zp0TQtm4ZlwvGRfFV9KQhpxytEEcCXSXvEELAi4Kzve3jvMw18DZzMMXq9c5bawAeE9XrSWlgB3HOR/KZNm2oqz6E/pzy5nF9tnpxL//K1WgIivS7GMfWRjM1qtYouIie0GoAJu3bSvxF4q/xrgE2X/VY0/S2A9qygXawv712iG7I2Kr7L6xpsIB/HU+u7TCPeRuNd5lNq6LX23kfFRgLeel3pPgFQ9M3y2L73oHsYRzx//gpNy4zbWANrTHANJpJW+iP4cDAlge8M2GpmH64agA+lAIioWCVKL2ASbCekpExSk1F/FmBYsztXvKEf1ZrrDHAXADzVVW/n5BAptbj+Xvm+JhfjzHuSufch9wg6DWDXeNJ8jv/ndw+xHV7hj65e4F/8/CPY1sLRBZ6+2eP//Zdf4enwGJ0xMBcrBt3EnikMMcsvt1tToeqX8rwi/eOR7Dcj8A1gBKGa4oWEiWkKjKF9eovGoxjRgL5jB6Y+nOlfXf+a5kCuSx4+zu/plnQsc6aslKbzRLGjytunJhZStA26Bxhwh/DKQIokloHYU0tYYPYs4PkImAAZVwLIZW2MAAyyFuvl8YFMXmlMOEVWk9WXbP5CMaBgf0LxnbStP1Bat0Tsn1noFvcF4G+BZ0/ZfIW3rRlgwxGIzGT+arAQDy9J/SlouuGDljtnorJQfXYt7yfZltea4LdLXlcxzpRzeKeuq3McSIa122wCFs1IjA1nEWuajHp+Sm+QeIaiubVUguSMPfCN7L7YBWs3dFq410BmzkvIqcKD0BVx9ycgkqNsNpngW9KJOXqQCbdybU5gO1LXo+2oLtB3AzBl18V7l2n+ue8N1usViExd4KnU2wDomgaNtdG1oLhaFCEnuhnU5j5CWN66dW+XNH1lgC00Rr4j9seS8ADMyQA5+pipxUn1PDed846sOzlIjEzRN2IcB0RlH/IdqxK4z0XH1em9B93ee2z3e/id3soLh1TCZLDWREAungpsAOGWKGrIQYidoqdB0lSHjq12XDBBIKAGG7yiZhN2xRQ9e15+ySYUg8QEltNzwfYzLPxSSq5NLs0MqHhGA/lpC6fvS4qGFd5H7aAA26j11aTZAw+uH8P+9B9h++YW//7+Bf76zRaPhx59v8fu8AbfPN/hdvwQr5oLfPLwMahr+d1AeIkYTHNxuQaSi1ECzgRgMOgQ36CxvpO/MbYhCRx5n3ZdpzQ+ykVZGHQ99rqf4/cZJlpuQZZ164PmRRhz2ukJ81n1fymQzZWra1jenTLhBQIizNGrE+xiH6dsWjWIOKYdSfekfF3YtC5ycLKss/es+eOHXLZWiAhGL81SOxvAttaGp/mt1yavVwr0JeXhZttJw5hfp2ADHICSG8HRAIkwOs/OfKoiEo/96Blci4AApZVygjuFJgUwnvVWJtTkmvEoSUsWSdaI//qUUcqz0q9FoeVG0GQMavcETB76HsPo4JwP0SU7GEvZGB9juJnwG1oj3qIyvjBTp1o+FNo2dx9A5FloGgwuhboGkJmj1Ji67o9afZz3EWj3fQ8idn0YfUWHeaqpNKm/mn90p54u+ci5aVmQ8MVnLZX04Hgq504tOmTudWTqQjLuoGUANaevlthTzBiC7OjdBbHpb+Q8SyHY3Se9C22vDqLFu2Yua1cCkdolZ+oT+a5qdUbpicZwv5b3qZBLkqJBVmwhtxwpJ/2OCs0ifwKbCHrH0ZFBSjnnHYAUKMlmyhPdN6nuS1P0vQfd8Mjc9ADAqNSumQYtAHKiAMiDVlxAedOIWyeK5+CIUvheCxNsPGveYicsK9Uh/NUYk3yNJgWT5lEMCpGRoCCV68Oik3dnCHB6P++jY4mACKhr86aE1jG+IiW/sbrMm5sbXF9fw7mgxTsc8NV+j8PY4257h629w35/wKZZ4/Enn4AoHIKMBgEIW8XzjutjXeN1bacNyJ68aIHk3nQrLRESYVbjOKJtW2X3WGpNwNr9IFQpUlId6wiOS2YteWowUABwANFbQsyrmPsRAGbgIXgFz6cjazGyukxn+OysySSKZC4TfZ2HeZnZixYM//SUgPR06KeaFPZSQql9SGCTRJsr3yMF5n/SliFSH6pySUB+QLiOPMjzwU1Z/wQU9ZwK0ulO8AXvg/BCJvhZRpBnAliQ33HOcXJx6vGVELQzLX3Pgons9E013wUN8ZjeL74IDJ/Mb6Fvis5xf1J8I9KIGVpYq5sHu7TrhwGHwwHOI/iclkBVJXDLgcGxFIelIiiV28dZPefqX2lPlkcA99Hkqm3juhaPJBo4azeEeotbyvLec0CX/R7DMKBpGlxcXLBrRE3L43cf26r11yVF8kLXRNlU9pfuw0VAXU9Twfo+oG3+vSh8qoOj0p+y85YrL2rjXPLQpR0aD2sJxjRo2zaOoT6oR+MYfbGLEkXqOi273qb7pHJNTQE2VR0WaBRQE0ak3cfhxZxQNaXf0+fK70vjoNtZez8lFwil+KZPNvmADWdBBqU8AhDwifyFnU2pT+Qxtfbk6b0H3aNzuNvuI4g2lNzGsbYoHTokIrAAN6JHDkw04SoBuVyzxkSplYE5RRLEgIlUf2rGNDeZkNe1MlMSQ0+3vb6RMbv5hTnZMi20NqemEjhL3rVytd9prxai1prIokbTwHYr2Ktr1qxIIBrn0HvHAlHchVD5QtwxpvrFRZ8JOfJeIp7eew6AgcSgpD1zZh26rWLbp/uiJDixnUIISMbPx9tl3+mtWRmnrF3I565OEka91N6UwFu2M20gDlOQxOYIMr+LkVdgZFIFnUUEc9p/saVwcFLbRCIX2ubIrRDUGsD2M/05eVK0UyF/kgnJ5CKMkWJ0HnCUtz8BwzSORlQYIsQRi51iT0s+9dykhnE9FwIKIdiSs7CUADYY0JMBEduTa0BdCotAWINZjyFt2i0w7BzEpXdnn1f3a2tIvmtFA7/jpfsmz2vB3XsWs4cAQMVFnjGE9WpdmGCI72WVzwy9OpZOVWwUM6Wel/rMxALhR+q6AdsI26bB6DjsunMuChpAvqUt5mbiR5qIfZBfXl6iaZZYukwurpma4VBVm2nJ8ro7pd+Xtt7vM141mu0VLdLXY8h3rayQfIKQrnI+8r0E6CVtoliePmjpAn10oR5xPAvwrfN+G612fWeX89MKkblxydlULoxMhaajtVmsZ5n07qK+Vj57tH8KAV8fcoZPMRzEBEx46OgcaCxjTOQ23YwJXVg4p+Ot9x50O+dwe3ubALNyvxQBhoCNzGVNAi4C8nLQnAOpDJBHUG7RWAbmWjo1xAczuQyAwmGhNBlLIh1XJKqTLwBITajDiwD5TNfgPSYMRrelTOm96YKuJev9xGPIMvhmQk76XzKqlS4nSJ4/rQku/6yFPC2MqNxSdwLTVNE14hmrgxmfu8LYva9q/fTvrJ0ZCmS7Ld0m76UPPLtpM4iHfMt+i0E5Qn0oy3uJ8cs8bTJtYU5MPbxjs4NRoqSBAZ2xhTsnD9VHAvpTJy6RED0f5E97RkAIlV1GRYuAW42bXHubNMvsC9lInsiEwgIIzmlJWaBXGRKiaYf4czcZ/MvfhWjevItaliTIG3hZM87HqIIAYkRUEcpq7Y5jUNTbKSEARbuqbbwnfz/GCMtsNUCrCQ+i9RXb2KZpsV6t0LQNyu3uHEjWy6jV6RSQN/vMAqM32WPRYDFWb+mQJgGwxqDpOoAInfI5LmHpdZ2cc1itVsle+5gwCh/X27wYkZ6t1rFK/0sQOs37Hpj6rCTAVgBVqdEG5vueILtEBcFAXm+vaHreVrHlpYyO6AO1fd/HnQxRkrhQT1H4gTSfvz/Ylv7QwV8AZPgpYZ/6+8eLf7v6Hc29VgF9TYFpKq55/XygiyKMAQl/WFP3JU4B2Gn+KnXSCi4fsBIF8K7T0nR/70G39x67/T5OyAi2TbLf1qBZA++aHWwGygPSJQAjjSAQu8JDAuJl3la2hwSIkxzgJBjyMCHAhhHQj/QJJCYYdQwRpOvt/QQSSwJJ6U34GHlxmsqJGJmP3K8x8HA9KgZ13fwpjEoAZdqu4w4WVGOiP3WZ2ICHVe0gIISTT69LeHmEMfMI47tUFamrL4QTIPrJ1m2vfQeYGCcopY/eTjUsUqyXsSzoRpa31EGDgxmwJ1K/D/wtAnaIjCF9w73uPDD6sJsgp7FdqJUX8xQTwrCn9SBjLPnPAeLJduXoIkHTwSJiO/MGpXdn8j+WNJhB0f98SfdpKs3LvBTPJrLiKvSdUmYpfy9AFvDkY1TWKFCBAXNtbXkAzrsQ2a4g8PJMYBICfjXgrgHX2BeVPvAARseHonQ/LWnQRHSUebjEViOlUkypbPMpqdQeiU2sMLf1ZpMfAKRpmZGUBNBT9m35/dR66bbMCeM1YSjOvyN5Lwknck8H19lutxOzEzk06ZxLh/YKgaPMu/xdqyeB0pyZeSbNzJrpl0yj++06nDp/tOaSKLjrEwxwZjmRZcwUnWhxub61dy2A+yQ3iRQBwDgX/erHQ7XGwCmzk1P7S4NB+dOevgBMMJGuU8il2hf3o8zvONX4YXm9ENolUqz36TyX8MhMu4+8heV6l2vyvHZ6IOcwvGelIVUOmS6l9x50syLIxM4bxW+WnkAIC8KYsB0bQK/WTivQrCd2BoxLUE4u+62Ji35W8m0aG7TioWxKmng2VzGCj4KmnFIglUwfUqpt1CXKfsxKxqXkpXPWEmINhGtSXd96SsJADRDEvDVBMyaCRl0fAUAEbb+e18FRrR5yqLFSsC4/dlACYCJL6MUl4GsisSbZANHUZSZpO0j5Ll1Q0wZmwkCFIJZaV6KiTzNCqjo39J+1Fgiu+qQ/InGKrpGSWyhdbmPEa0zRSFVPF7bCx9HBuwC4m7qbrLLdeb+p7GffnM8vr14hxMiQyGSlNE41MOHhs4OWIA0tEIAWxXrreS6/UwQ6xPI9PNOurJVqfB2i9yQSYO85nH1kHD69WwO75Rq2hqIbM62liVnxS6Ev5Poy2DkGtuVefOYIgJB85PCZ9z4dWJrV3vpsLSSgrXcap0x0dkckpFPATqmZvw+gXKhA/Cpger/fo+97AMBqtcL19TWIKNpwy58c8NKHvaZ1y8d+Hkzz3XhfgW9J+djXTcLSWMjv0/uqpH06CfCR+5nd+xGwPbdm9Fou6XI2b6LAjsRPKEU/zvUqqSbiYYeVFB6jH3n3IgBvMwxowzM1t6Vl/cvdRcE02k1hrb/za3OAu5ZOE4LeVaKiPnOab6FrUehAAMuCz8IOwtzO+FK7pU/lTGFWjvS7zLfKWM2lo6CbiP4tAP9lAN947//T4dr/AsB/F8C34bH/mff+3w33/qcA/jtgL3P/I+/9/y1c/xcB/NsANgD+XQD/Y3+COEugzOepV6tbMzvvPTA6tq+MDXdgqBRAtDYfCSA4dz2YNNsayMsgAohabdC0g4kQDlNMbfD09wjYkSaIoWB/G1ud8uQv+WEX8hU71NqvYqIxAHAK4s6BZplMCbwmIj1BYpUcKnkWRFi/ShHKqPsBZCQNRMk09SEOKj5zTacTlBWSkRJFWyVve937gCh8GPTUCTpXM5gvZcAIgTDwU0sAvATT8jkHUKtMiUI5UO8pjZvOzxi2gfE+ae11RL3BuVhGlPijBBKIfnBzx8THZAR/Lk1Bbv7LAzCqr+aI2CzhyJimzCivAHeqhQeC0FuCZAGigtuTtiRSnDBPpqJg0R7HJiVSAHuQIDVXgpdC+Nyvv7rmi2vczGOkk2ANMwU+cGki4wDArh3j3OeVXWPyWWvUnJvO4bTuvBo/6fhydwRIJgGiqSWieHA5CsJQgs2E3p5+YPJtAXf5/tzz8/mk+ThbZ89mb8MwYLfboe97GGOw2Wwm2sqL9RoAczgxQdEHMHU0zhKAx+8VT166LkKvF/a8is+3E2hq72i+X9JIbSohvFRqMdfHNQAb35H7lbGOs1vz3HQRwbp3KnhojCL1bgjkALNaoR+GGGRHTIhkzMox1ztBArRz7ys1TDInYpVjV6Yohhx57t2m2g7RVFGkhHqv7KuNQaOxW3i/NvePCc2lwORkR0J5wNFa7wzUH5nrp2i6/20A/zsA/05x/X/jvf9fFhX9TwH4bwH4FwB8BuD/TkR/6nlP+18H8K8C+PfBoPtfBvDvHS2dEA+O6IU3T0TLaxT82QLkXQykUNQ7aaQtH6akCMpNdFGYgfKigyXHfkinW6OJCVHMhygd3tR/TfhjwB+AJonZikTOyxf8tPWaiEz7gf/1GH3+fm0pJoMKbkP0VFIr7YQJfIw5VgE9pQ/RZs2XMalVfFm2/HUVvHoxIy8BrOlixIbbTYpWoC5sJ0qgzkiqMrDBJcdrPl0vtwXlXf2+MQalrpTrF+rhFXCT9VGR7jMmSSmPCJhljRXERUCaJD4cFCJ4NYQgbWbu9iZJE0PJp6jXHIufS/OiZ7Lxi/NLZ64FLgHcFBilTwBb96lu15ImzsOH/uM8ZOcrk+JI1AL5fJAkfsN9lrd+IjFFH/xWTtdBmMs+DwJBRDAB5LF7wlGBcERlg/4TzdL8WibdGr2osn4Xe1NtRiIgMZYVyqt0S0ZPpiAqgX99/1SGOKcJnX1P04kjs5ZX79QHtAebSRyUb21rLS4vL2O5E/qghBId0lr+DodDBsC7rpu670yS7WxfUBTM58XLtxFmlpIGWZo+1cak5E21co/tDEX6v8CvprlSGIu0Q5atWFJvVYQGay264O1kt9vhcDjkSjrKg7YYY9Aoj1pzmus6SF5WERx//h2lUmDHFIvIWNQAtqSMZ6k5UUWF585RTV+8h7GWlVHhdnTxGXikDeeYTjE0OQq6vff/LyL66Ql5AcB/FcD/yXu/B/A3RPRzAP8FIvolgBvv/f8nNOTfAfBfwymgG/kiq2lM8lQPaVtLehDFCyENYlpSHspM2nFrTWY2ws8E0xGlENQMyyj/vUQIwJricxp0lyCf/dE2aIxF5NuqXzz4mhwx0hbVpaTKE9woKTCBwZBNuqHezlkZJgSklkjlUxK4GkOdWxbGe7gTmWa1HqThCSeHXJMWNe0x/5J5S/8mQO40qRDAQslQqDb35kCLccnEZe45YdDhR6gXRc0MkVdOUwo79qxDEi8oSVTUGgBAEaraI/dU4r3HMA5xJ2p07ALPFsKRXr8lc5TrpdbpXSSvv5C6VkhfHoheTdJ7xQVVqdr46blUepUxJnld0s/nGuFpfjKHEqTIK1Kthy/ogtSswoyShhBw5Dh0vHInpjU6NXOF2txON1W/BKWHC1p/MYkgSl4eJpo671X7sai9LHoAgBaaZQ3mdLDoiRPyPS+VYIiy8pPQ1vd98D3OHKg8E1EFG1CtCGtNvydCsg9a83EccXd3F5/hP3aPa6Mgluo6TVJnP3P/7VM55/QZkajxDe1NTVfffRI456bJMeWP5F/Sbf17EYzHwxjxHzBnmdJxnYwhdF0DYzbY7w9x9xBhx1Hs9dfrNWxjAVqy+55r3/c7bkf58kK/6bVdguwy1RSekzxPwAhLz2iaEx6Oc0CvMXEz6Izhs1NKYbBEqt7Gpvt/SET/CoD/EMD/xHv/HMDnYE22pN+Ga334Xl6vJiL6V8FacVxeXU0Y+JyWg38vR06qXZ9+AnI4oiYdm4oWSA5UiqeIeMCyMGPhdyftRU+EhpQtEt+IoNwYG8B3G2zHw8ELQgzoYUVQ0BrMEoB7oVu6TzVQP2bVqV7KcsGEMSxKl2H34tjykBwNTYnhqWkqgCD4Rhctd60eU3EggvMIHtN1dtfminym/stli17akjTSEW2H0imbj/ypbMVjLX0iWgE9ej8Zda4NqRqTyljfL4UjdU8qI/UX7xKy/Q0APmgD9Lvl4edFsIYJxj2ajj5LE5EyK0t/6r7Nvgl2nSlCdoKqgNvUtZvlQivnSrYD4CNUmy1bZmScL+GaBq8pCeMKAqWRnZr81L4wlzJ66lTzKH+uCBbF83gc2Nf26MYIto+FIw+EOLZFM8G55IseOQ4Wl2dPjXcwvUxC+dJ8zTVz0hyPw+GA/X7P29PGROGj9u4EZKjPWt+J0gbgwF46/PzQ9+gPB4DYjV5jk/23VYDG+2Q3r/nFkra4VuelPtFafA20RTsvfLXMb54/Sb5SzvSJ6c5Iuq7rVd6bew9qHpT1yJ/wxUxJc1J2fdh22KPtWMHGBy3jBiJHSgbrQnSdklD5/QDr1IaiBM2/T1DC1VIEr4reaFwl+R0D2t93EjBtvOfB8OwZLAJvoVVhl2Ip3Rd0/+sA/jXwGPxrAP5XAP7bqNOeOZo0O0O89/8GgH8DAD786GMPHO/s/D4t3JuUNdGeL0nDmjjM1SPXgAdAbpN/8NyrCuIzoyFYbTMu+QEAjWBt+iGVA4CMD0Dfog1/1vLWkw3lJp/jCiRyJgl0CGajBCbLIZrT3Oq2Z30x20v152spTp4l5jyTXymxZoS1qnNdyDsrh9+Xc9ByT0NudgWY3s4AkGQCJPd5M5qUpbmZgKJcD3/C3P30OQr2L4LxTWhctWv1RR8iIOpgAt7j+vo6C8Qhbfczf2MoM2osZEwKIU7mYh301AWDe6UTMijZGakbWkRN/SKg1MaDPPGVOQUAytWGOMPkvSXYyP1VzP+ZcrLvIkxQKk0OI8mYafO+CJC8w77v4V3QAIW2kqHkC917OJei84nGXCK8LiUfmFikVT7fSVpqV9Y3M3Mo3I0g+G1SnLOLyh3eih76Efv9Hs452KZBu1pVz0FoAFgTTLwaL03fXMUAjYgDfsU1GOyId7s9CPvoU3/VtmjbVkqYrdMpqdQOl/XXQDuaWIp5EVc6m5PZu7UCK5NiOvamuD/FCacIDeUuxly3ZOA9KlDUuZmw4yO0cLVaxeihWtiVw5aDG2F6wLsR1oTzM0b42PF6LyVKEuHyc6fmV/zWgr/GT/p7qdDM6vZ7TLOCWfg0rKVg00DBgz4clA+7vks05V6g23v/RFXwfw/g/xp+/hbAT9SjPwbwZbj+48r1k1JN8lx4uvhcls7LvGug+xgQKu8xMKm3IwHy3IzEGOKomSrEKINuBKbmo+mKIFG+n4AWH8Y0MCbkAQ5t2jQNA3AyUUturJkx/pdruVSucNFsX07uVa6dvB0VkkQAzMlc/XuNiGbS+CTvpEWT2pbzIeYFNbMineMvqudS3hUCHvNVYFzKF6FHe0/JQHX41Elqz/gkgW4fQHXUHARw4YEAklLegjnIpG1Qorp2NLq4Clrcy8vLTEOnmX+quo+f8Q/shUhAlNZuAGHLe2HOlX1QI/Blug/ZjnVfyF/GRfoGoCj0GsNeDWL7Qj1q82vOy8cxoKPJOxXAvHxT/HiXorGAE6q8U45PAuCAtRy0Z5Roiv0hA1jSJwKoVgFg1tb+3C7WOUCvpBOnvx978Gh9YlHZfgjFNZr1fxAchqHHbrdHP/QgMLjqVqu4zmr1rGn2srEAsjWTtzm1KeWbxq8NdsRx3AIIHw4HtAF4W5vOHnE+DvWVVfTLjOJDg2yZaza498tMBsp8Stpfoec5Fc5KR0bs4tN+RopGUobMzJs6IFsStvhzVOAZSCHoRQCVvyhcEyvS5G8cR7hh4HMXbsToHbw3IB9AqvThKUSzUsdjSfO/+O58ptlumd4p03RE+oGbW5/LNfB9Fk24R1rKP/IodY4CmJ4/SDEdpuleoJuIPvXefxV+/tcB/OPw/f8C4P9ARP9r8EHKPwHw//Xej0T0moj+iwD+AwD/CoD/7Rnlzd47ZQBO0ZCWmgWdd7nQlrS98rsGzNMkBLxPgQ70oittumPEJGMiM2fNuLzngwkLRxgc4UE0MFgHrz9Dh7ho+JCGCZIy5WFp5Z7Y0XHlZNM6tH22FxHYzyLAOVdqFeai7eUYuEjdps8XBS6WP5k/LOVMmGgGutXZjVgXeBgk11Gx3kXZc4C+Boci41QCUWh4uucBUS1GAyHv4TxV56HQguRxPAlWUO/rK1JvOfhmwnZ4LSCHAIISSENd0+uh/CQghroH0nwrGVNeY0zHGTOpwFfHNOnyaI3KeB+0/+MY6kwcWTVotx2QaX1j8VH4oum1amXn66rnqAgx0zeX6WQ136OMhz3WkAGMNWh8kx3gE822HlsR1sq5Uc4D+b6kLHk3qQRNaUZxUcdEutxSW77r0OPimcVai6ur68l6qK0TnaqKhMr1uTpGgYpyaCr0vm3bODbiPWMM0T+jwqbiSSMrbUZAEaClBfWu62J8ixo9PNa+qAkvr8NnwNsHOsk8TK6RerrC27N+q4Hr5aTndlK+hYiUAQy3bTsJyhKVKjPtFhwAa6MgKyYpRMFNoJRf6b93AVIjl5jJa4pxcg32MVOyU9f29w24Ty1L2qkFRr2el9IpLgP/jwD+JQAfEtFvAfzPAfxLRPSfA6/uXwL474VC/5yI/s8A/gmAAcD/wEs0DuC/j+Qy8N/DiYcoT6hf9pv76XziXANjxySvOa1tjWHo58vf+vnSdEWD8ZrbQQ75zdu7bWNVwBMmOYbAhzi5JFhyMCMFYJ4AF4HzYW17w/6WRQgIIJ3rUbf7FaIOKrUOdd2b1sZM+jb/kJtJuZwJ85pocsb3Zc7Ze1rrUNSF1D/pYKVohyt1L8qoA73sV3YvPp1pMSheKsEyc9ryGc5JvsfIWgoMliOly9WaCpmL1RTquLR2ys9M4AUyrymiYctD3VsIIPfqvVjOwrok1XdHE5HuvJhY2xQi4IWtRfZKFHzsUmDgMl5eVl/Ry6qe0zkxB/XDq5W7JXgv75vyWZzHxATI5LXkevqg8R4HJvcSJVHAnAYJwoQF0MW8KvNhUiLlB45ja+4NyKu9mLVwOQmdYK2/cy7aahNRBlo1uAJOE/j09WM8pdQWT6/rdaHXoIMxFk2zCUDRwbkRzo3YbrfwPvlOLw++6rrJp4x13/fxna7roiKnZqe91Pbsnq9Rx1wRkfdXaqsWrlJReiVR9pjmMXrk5taMNrvTtLJpmphhtYVz16VlRPEZ7fFMR+Ecx5HXUoEPTk014Uf3XPlMos/5QV8ps6zDkhAwxw+O1fH7SFVFECUFlvS5TuJJRh9CX0r0+5Qc7pM+/Phj/1/5b/w3T2pMemb59OjbpnMmxSnPnqKFKjUi5ffSBaF2Rdg24UAnktQcgQpFaAYgEEQB7AFgWwW8ecvRRm08A3/WzltiwGGIMFnvJTDKW5l/p7SAZeHXNSyAVwR10ou+9t7CxCg0D4TcA0hqVKL8UsP7rqOMWEm5R4gPqTqC6hrtGiijUHUP9iQRV0sJ1Lyf2E0KwdHzsOxb8TeflXkmGJK2qdoA0EKpZrC+vh6Q5kxNa02g6AZQ2jaXJsKI95mZjSUK68EGcxIAhf98DuKUcqoBpdQm+awfqpurW7m2snqreS20cQI1tfAl86eqJMgFOedHuNFhGMa4C2KbFKWt3NmQfpM+jEy68Cctfbm0eglBwPFTN7Bvk/J2U/EJsBs9FrScZ1MpHdwHwCQEOaDWGdXNt4TGLAFpGZu5tcbrNN9FLZ9JcxKYzssEtbwfs90LWftil6+VQNoNZGNMdj8pU5JZzFw6No6yfjVtqKWcHurfS3TaFDtR6v0K6Ba6q+ey5r3H07KAdwxPSNki1BLx7lqpoMtKmOtfP+WfVXv64tCj5Cltr/GuU9fmMb73blKNqiCWW7ZNm8ZIHef4nz5E/2/+m/8Wvvrqq2pB739ESswP2pzE5H0F9B15Z+mZufqckldNQxGJa1FeqV2v/ZbPJS1J6V3FGraTtWExWmvQBJBgRXMdgPZIyf0cHMv4ZDxocCAEsxWiCKyTxt1Em/Sm8EMOIGngQwckDTFfSKDWI4d8qk8nwN1nxLDS+5MrUobur7L/fOBDlDFaFloEFPvIqOrMrVaLGqDOgKJJdfOelFlJMX84o6TjqcwxFxmHz7RDiu/nGsPsdeK+jfMNoOCzXs+92vwci2uZtmRBo5OVLtKBrk+c29LnogVPZUdtuCqztCFmwD1/+KmWdHvFbMA7FyLeWhjbZOOhM2dZSgSEdCuOndfb4iUAV3WYXEnXl+5D1UcCAWnPOGU7JZ9S41Pri3EcgsmRh7VN1Gb6YpBL5QCgbHx9cGvnHIb9Ps7b0qyhmkLAsHcJuKdJ97AGpFzvw+GAMfoatyAz3QHSOzHZrKZ0rkTuOQUQ9bqutVCvv+zZiiCq65LPrxIcpfviMctai/V6jXEcY4TMvu+zA9TOOXRti4vNhq9X6iuenyL9lbIo9ioWZvFMPyQ+UgN63EdFLfzCbmiGyXI6UQIxXVZ5ODjPPxcApgXOtKyGHYp6y9hE/+x9jzHQJ96lLkyDfP2Mk6ZbMkLiHraqBSfKhOSyznqcc2VC9vS0Hu8ccNfm1BS/aU12ia9KgUJf1+/Lc8fa8IMA3UAd6M6DX6DWsfqdU8qaSyVxm7s/l99c7kuDKvnWCMYSY/TeY4RPSDKUbo06WGkMbNOgCYAcxCArl+oQtN95FE8BEwQHE2zJ2aSlPCiaO/wXO/XIIIyQYAabkZBq4Iv8+FICcccWc0EAZ4mjYlRewKYCxUTRK0lioqkGc2Sl1Eh5IIsmnN5XFL9gFEDSPPgKHYl25uF6OIqYZeQV+Cal7pzTaJbaIqlL0gbQpM3e+/hwRsiF4CtAIBlr4BRZUAHQ9S5W0tahmiLR9D4CopS/B3nKIteW2WT9oWjMOI7RRreVaH+mANyTvDiL7FyNp5wdiUCnwVYlv7q2O59FS+ReR42E+jYHsmvzQm9pD8MIaxu07RFwXEmRriBptSXfvu8zzbGJyoJcE16ConcFvufoLpA0m2JCYoyJB0QBiuOci4yBNlBaLxrepucoE8yh7pfiGCE/75CEOo8YM6LSH9la8Dl90O2VT1GwIIxB0zToDwcMfQ9jLRCEj8ZaEIBxGOKYZsqfUOcSBJe22EtpcXwLegoP1Zd5O+c1qqkPdf3EbEgHB4uKJxOC2QFB2JQ5WV+JCZskesbP19u2pP2VvpU1AjAIF823G8foR1rWDu9k189T6MOu2n2jXns1IS/rwXitpGDLPPq+a3dOKVnUqqhjPbKlvjYvsB6vR00Y0em9B93CkGtAt7x2bEtjTgI5FTyXz5+b3+Q5JMJ20vNHJ/r0WQGQ/Fy6P4weRGJnqZggBVMUY6IbMAHJsgA1k40EVb3PhzrYVy4FYiiBheIzJo/MmUfpFC26ELecQWmoRAXnovxHrRdn+1Y/wa71plqI+FycA8jWdI2NZeNL83bFaXySb9wMbMb80vNJqyigNgFeXwsUFUp2CoB7TxkolOeittz7aaRLUGZFIXxGtKXynhMNwsLaNCLMqPaZ4rkSlHOLa5HylteJ9I53ubeO+hokwLts63wcx4kWtiDp89osX6stuH8r9ayC+MnvMOPkw8eaq/szLyNnjXOAOwrv0ayGmXzXrWAC2MoKPSNl9D0I4m3TxD7QrtX6vo/vlSHOS5r8rgC4JBn/w4E9tLRti1XwQML1lwZV5l6UdgPgieNNGVj0Ppn38YWZLs3yz8vSYPtYHywrrUIxhTmB8x5t0+Bis0ETxklAnhZKjTFobMPa/2B2iEjTQ9v9cl2r11Sn1EWG+GB8ZlY5sJBEaPfOsSBhLZrGsIhAFHcbcx0O77zqauflTLlYAvqL1VlMehxNMO0R3+wcNXiMBZQ70Hpde/VMzXa/LGs+nd+Yc3BQ+V7tdwn+0xwGpO/LMmtAW99bKpdzpTAlltvx3oPuBK6WG5J3YF2qPXdQl8F4ubjOyvrEMqbP1QZ/nniqd+Yq6HmbPmoo/dS4g0Q6BhBD2Zvkc1zMVrquDS4PiyAooY5kHAhiB84u40AInlgQwXjSkLM9uWjgrU3Bg6Q+JH7NkYg5xX8BwLMr05mU9Yr0F4RHHmNavFWvuRR5oAg+qGdjeFaAQT4s+dgGOBTzTm2SV3RYegrPal/L+lnylLWntOMmNejMqDwHAtA1EoIW2joleCi0qQQjQFyARgHKPXwQANJc9R4I5rqVlLSBPmrJfA5+K2t9Iqz7BLrHYrtYzFQQQL3WurJWk6PCORBcFGxL5jrtN5mzNT2MXKvZUcZ+k3K0IM01hv5I18tln022Gc38PNgeRwdrhSHbDNjU0pwyoNo+pLbL+hZ/4USUednQNuECNIzS5tUO+Z6imCl5hIDIw+EQgWTXdfFgXJV26/yBYsUWdSqvk76WwLcG5VzutF1zv09N0naZn3JQ2EfTmSYLPa7L2Ww2sV9lrYzjiP5wgBtt0JDbqEzJGkYJrKhGID0mdeL1alQPleOlei67puFXDGKSFZe8jWjFBMBnDZqmYZ/MScRNOUa5PyiK4i5Wfj4nq5HQyCis5QGI4pMTADmfynktSgHt7UTaKNUYHR96FjeRpxzAPB1HvYUUgdOE57piJYxUwZ8EcJOK5nmqcHpihdP3nNVO0g8AdKvOUUxfT+j5iTC9f8oEPj3piV4r+7igMJeOSf7nanSixFpORAEXPpEnE1RygR4w+Qi/x8EBSFKxgFMC2423bcMh6+P2e9hmjFHSGCSLWzUQBwSyFPIJ6C8S4gDKjSU0epvMJMBvrIka+cYYWC5GSkr1BJARA5qO0PmCmZDXUNcqrCrzFaCo543MT/18wRwKY9lcz5v6TQAlZ+6UFjqVNZlLNi/Oe4qMRpRLAsaz94rvWjOfrqW15335notCn26z9ymuYM5Yhf3qXgvMS7AoEcreBhJz1QCdgCy0r9SNwV06SDaOYwJ+3klPc92cQ8n8SwBA0ijUZkdK2gRB95NT76dPgmw3sCCRCzxQedQA5gT8F2NYBvDouhZENq7LuIDOoKlVmldjnuq79uWb9Yl2yRa8hsjz8SB5xa2lroueE0QU8zwcDthutwCA1WrFIbiPRJor803eQqYtKwPblN+nsyR/UvI8VUO8WNfwjkTWE488xhi0XRdtt0/RSnfheTeIy0gOFsXjROxiUnYzw/xhIUvxeSiTPFkPnu/HI8lB9uSpPr+uPJQs6n2imT7twuk2pJ1ayunEBKjX+hKx/kkdUNTKly/kMP4+KV+3dfqcXQt0mIP22RgQ6RjgXsr3vKSxUY1fzNT7SB14vo3ZfT1njQlYZ65WlFtUnNzOeLaofkC6TD8o0J1dQ52haKav319iPu+iPvfJq17v+aSFh1MlQL0tL0Bs2kMy9dUVyvsY+h3vQIGYRpCEoDE89OgPU5MVgCc9B+ZplPcTg7axE7tQ0boI0SUKZghmSL/DQTaxBzcUXB62rFVpTZM08Ubs2cQztU9Ev2jzpHMWEhVklSKgnWMBxfsTTdV84YbKrT6Fv7I6CDiVUSe2Y/alpgbxvh5m5mM+gG71tPdIhxj5Xa/vQc2XKLTlDDFt8QnDs/DeTN+vSUSxcgoYhmdKUuqnr0SAAeT9XhajvTHs9/vok3wcR9zebvmAkffRvKFtW7RBC1iWHQo7We8jgrC2H9X3pg1U/e3LVs+8G+pUu6dP4Esgj6ZpYW0TwHYUCerIY668+6RCsNcgGUjguqy7aOflwJ8I6VpY1wBDNIB932O73Ua/2hcXF1G7O2lTpe3eIwBXx8GxiNIaTQixEFROB1xECtDr+XumoqAcmzGYH/gwp1fB80hOv3NQHOsdi855jmkaCPXwCAdnwaDIewfvCDAm7MClrHLPWvkYiceWSEM8wsIvzzpp4Jnuxx1qIEX0lDLkM5SjAaBqWRrGVEL8rAG1mkya84xlDDCn5NBlp+sSrCr3uGGIYNsu9quYSskz4spTdo3OwRjVnauSNhWpnq3YWet3KY5ZqcCZTzxAS95j5hSwi30t8yirpOr/oPWJFGuB/P0gQHdMMloL0ghlzyjAWTAZreFIIOJtq1dOiHzx1wBVlI7PkawWyq9p/Se/VYXEvnBugdUFHhOJdJp46T7rAdnUgsFUAlrsAeUA0UQDHDWztexqTJhcbmYSDqtEDyhi8+1gjEtEE0AMDBRAuTWsbe+siYFLmhBql1QZRCn6JYDADNQJ9UkHppRFn1RaKCDNgNI0RPdvAvq5twLSIDubGzxnpZ18uzLGmkN4M9HWlCkD1EQ5c/CI3lTqxCq/VxJe77kPhGhprXIE2z4RtUlZGaEr1lXqkiqt0xqreG3S9kRA5ZAgAFxfX8M2TVZH7SJut9vh9vaWxzHYQtqGd3sEiJ8DiTKiHj9qDCBcz7tD35aGSSfUr4ekwXYWdCMIxrxg1Xqv5LEEGo4pKqozU9Z0/Dk9aKiTCEHe+6idLQG4Bq0CMJxz2O128J7NhzgiY9JqZ9qvasmqyoZgETwYCJik6do/f0t76jK2zOcs/hHXoAOB+CB94eZQaC0LWKkOgBa3dTsSHRDaJH1mbROe4MOX7IsfEPRM8RwPRXCdCxeeaXVQEDhdps9BtfcpEmysIWN8nsueOVFc02GSMUuU9tX48QyBqSlT4p2CjkKtnSpTyWlb/gVI4NRP/tgsTlz6qjNXRfXEFGsYBwxhpwhANKHSa+PYPJ2fc8fm4jzATesNsV2S2DykfpYnpcpObrgeLlSqo+oDNTRePyLzK3eoW9stWVJIvP+gu1L3Jc01IKAaELW/JhMBT0AIiAAGijNTD9C5hHF+EpIaRS1pRU0IUHw/v+zyvZOIsAZ9S48h4hrOm4rDb/rhUhDKCEwBuDxhdA59XzAVBOBsbdRWd23LQXvErEQ0XaRPZecMyRj2X7qDjwcyxWOL5J3bg/IBIGPCVqjKM247Zo0OTCOUaYImSx+XJJJHUw/KXDQl6NbtzzqxHCU5tAEArkIkKNWBPOAJpfeKMPOzXJ1P/liYcQlHUq+SrKVoAJIPeQRSodzQb4E/poyCQMb/J9CrZLnIGHON03Rup/Yvz/maWBy15iq4RduyeZQvgR4lM6fVaoWLiwsGdiqi32G/x+2bNzyngEmAkFktjAZnOe6eb81MeydXZ8Ct9G2KRGgiYE0aXp5DOVsK5S8kyfsYLSt9wuuk10FkhkcUFKUWWEzdtGZPfE/XnhMgHkE25d5l4pxH4YmDEOZ7so/W8+YkOjsj2NY02zXlyly/aJoLz9pciXLMbZ7OSRI5ixDbJAA8AdQEbLUpH4WBIwq2+fKfbp+a45FaiekWqeBsAZCnKJbyySZgJfB0gR4RyU5Doi2pPxINjteUgiDWjMIF8uJ9tRAz5udhzh0LYJld8qpslXshfIv3Fxd2U4QmSp/mh4qVVp5UJkjmnS21MNYogdtnYepL18OxNUexSVKylak2R0sN85KbQubFC4fVK3nqZ3TNyU/HL3I/V89PbMazunEFQ/1MjhEq6f0H3UAItDAnZdYJVI25hoezq7woNaRMkroMSW3+1I9E3S8lwlAcNDkrjymxzhdHwSj1IpqQkkr+6i8ClbnFN7nuZRcwpLSVpIcjAiy5CQDjABkXQ7vorlAIsDUGFDRcjU1+ZZOLJJ4/DcnC9RhCyG4GFpQRFjGBkfz4sCjioU59cDTNMgMbOynZAkqvCtwxlPpZWyaXBK3eq+X4MfEJhjVp3DUI0N8i8BfCkjs7TAqltEUmz6f3EP9hppUsU33WWId0gdlpDexxvjnBTZ8Uwbh3Skir4MwSUKAE6FhI4Vk3jhiHAUDSmEapRoGcCTEP49VYi2aziZed8xhGh3Fkv7liuiCR45qmQRO04lHDmDKdVrpstxZUVFtEcp9rs97lS9EHmZFIvYRpc95+WraeTHOz9QSB/xTqScX3cyiubqu0V5ucrFareChSe6gRTX8EHsZkhzp1u/N2cr8Yr9ZbpR1Z+4o5pTXxpWJpEXgrAJaZRqjvArSbpkHaLUSkV1NyHhY/iVtYZGwy0i/kblHlWQHyInzEMsNV3h3iDHUfGJjg6Yp3JdOuiwKTMHzmYiR4N7JpYxAMLIF3G5C02fpP2iZUMNHOZM6QJD1fbXMkhkcmpNcvJ/Qcv/r0JZUn5M/7GJ0XyMGoKIpYAeJjtrrkpbpx3wPkLZwheG8i6E6fLl8Hxbws8ytbXu2Pyrv6mmi1j/nFruWvBbn4jnoy8bvspTxHX1wvlBVx7sr8DetHdsuJguJsAU79IEC3433/3EVZhobrLYzrJr4ANQoaYAthCo9UgEtpSsSgaYoAyoly6pYfT2Zd4v3S8fILJoEkYBQ5FZ/pV7WGtc6LuRIfzowDaLJXaiCqVnfWKAJRN+Z9GgeZ/BE8M1FqGw5p30S3hHxwU7bNRZvCWVD0hsKaFX6HAugWUxQN7CXAUGcsH/hkhA6Q5Cn9lmwV+XNiMV3XJqgt/TKl52UbGNmzvnhWtlKFcEzzw+SwZtn/odsTeM8KUaTJB2EASSuRETUpvwDaVUBt0jPpUJT+FCEAweOKy4CnK4hxVo8AUon4UBGATMMrtKNkNtlvlYckPlPAB4uFYRIRXDB1GJ3D/nDAGGyIDRl0q479Xjfp4NoE6HlRBMys8wV6o8Gn9mhgbatMSVIfJVY+T2PnkvRPdSdy5vskj1obuCGz75Q0Qx8GdeMIMgYXmw1sJWIkpG+Uv/BS8xcPgxPzjbydHhwlc5knLNV9TqM4B7gpXUQUOMW2PdyyTYNOtTdRCx8BNTDt75i7lIfUNJkRSfmkdvsiHdbLjBUgIAVWREgxAMEGemxgqAHBwrmRD+ATaxCtkR2LADxhANPAu5EjowZ+4ILpCv/xLhQf6Axr1vsovCsdM+TweAbUpF+pNNPwxRpJz+drsQDcUHNUXy4EA+99XJ8a+MZx18DuqJ1zSpnLRZ8EJk8E8W3AfsmnIc9rO3R6Dc3t0si1OesE/VubdRH0Us+FkWo5PnshXtLfa0JuXs9Qtioj4gqwICke3DTQjuufEhaZS+896PYAehqDlK20b2FERLnDKQx+wdi9DzaiXhZ63Ya77KeoAdD1mQHZ82Yl851fvpt+l3WZAqo6aJrbXpT8q7VYuIcMvGhpzxRAPXpBKkrVsHBaX6AWPbRkPvXtwYKwefY97QRRjQNwGEDYx/y1jbi1JgY4aaxF2zYcijoQFn7WgZxyaShgvJD8rTFojYlmB8ZakLXRBt2G8nzU9jC1s8nNioghiZnJIjYi5ui2V+Zq7Gthp/ncJQILApHFFAMUM6poSXUkn0DY4phktUsALQFb/b3I1msmLlqp/GHned3GNZLejkxDCKRDeM7XCavMDQFuCVQz56ciGlkaDWbYLBQU6x/FfJ3BgxIW3TYNbNCuXlxeBj+6vLU7DAOcd7i7u4vMLu66KNMHrd2qpTmmp719eM8RB+WcA4gjSVapR+i3mmnAUiq1rnItm81UowyBZuOkYrL89e8Itp1D0zR8QDBorrOpr0CDMQZNeH+9WsUof6IhBxBtZoWe6PbW+uDc+ut+nnuf1F+c38qForiA4/qaqInW8hvSR/6p7pX9r58zhBQdN2rDk022IcCTj0A7D6oWtLUktLaBIRv6toUhMZUwWK1XePDwEa6vr9F1K7x8+RKvX73CfreDG3u4ccA4Dgy8nfylgDbWMZ9hUxSCd9wuF2gAu/4U6unjnHRg2pLmsdDWQHiijcg8XyZ5XsYZ+XpgbbbPaKr0jy2UAPkAKfqH+6UkFFFEm/F8k2EhZBxzIT3tCKe5JXVOQj2PQV6W8MtKL/nKtXhP9W0Nt5WgfPL6lC7M3dMcNAFqZPNVQDe3KdVY7w5OjOiL9N6DbhiCb23AVmGKeM+M1vkEEuLAUcAIBHIsnXphUiKtykKCvJOnHCwWS6rQjNSuz5l4zAH2pOVOgCpp32u105882HPSZtKSpTLz+mExEU3nEIPllL+YCig4F2tWz3NOuJD7dYf8/M78Iip/Z5oDAM4BGEcAY8iTA12IhtoE94PiV1Y+xU94E0G7hzHBhIKC1xRiBhK1SSa4SSQ+INo2DR8WNWKyQsp3LcEb1vL42OkSIlrIomjQSp+ugVgW4MWDmYY4aVS9qb76/LIv7iOf+4nLz8+hNI+5b7jGKhefzxOtWfeOMt/jgFe2tHxDgLXWSJCXbWwfn/WqLTz+7DMcUKA6zIvRC8Cx8Norj5/OJ/05STXe63N4XL5pyIAszykxdcAGmV/dw+GA7W4XzV+M3mlR5xLm6iVaM+3Xms1Ikg2oL56fy+dtkwDJbPZ6n/2eK2WqnJiOhzYTARAPRVoFPHUegBYVVZ1Eu2UM1iHUNpA8PzAY8RFcJDDiI1PW7T2WSvpd+16uYh+08lJGFixI2iPyMmmEpkGgXBY6Q6iTCHU/9A8h8AIB3MRW3cYg0Mqg7KJ0OM8aG7TZJpqMsLtXC0MWtmmwXl/i5sFDPHr8Aa5vbnB5dYWmbSOh+bF3GPsB27s7PH/2FC+fPcXt69fY73fo+wHODXBuxOgCGHfEY0UE57i+3juQ83Bx1xTwxPbgEWeA6Sqfc8mFxSBr6K6ZH9v4GINrF4C2eHQJHDwTSOZ21koe+zYpVy6kcih0gfcWRA7OEcYxeTMiUmceFI9NpiE6bHppE67MKk+oW35tciX7WHq3zKjEdKLN1jvlgqOzHWWlNMgFVLUjSctte+9Bt20aPPzRh0EbNLJ9p3Pw4wg/jOG6i1oqxAkQpEGXtpfJ8EE3tbmWpXjVIyr3hFZVn5/R0sylJU0I0XRSCbhankTCpgz0UOdliYYzlZW/v5z7sUkU21B7f6HutTZLqdO+midGc2lRQy7fIyAPEvrQZ3mkrb3gjjB4pGiaJgYCagKobowBkQ/aEVmISHbiYo8uRCnkaUMeTdsk0B/MVYi0Gy0CxUWtZqWUVfQrybgdYwqKWGSjKMRJ5ScFpH4UIUCxg2BakhM3GYv6GEm+JOuPL/DzSvtuvI+HG2WtU9RSOcBb8UyeQBrCtrGf2nhKi6NmNVouBS2Y1/MIgTZMNbgR40dgP+32qjaz7INwT2+zNm0bbTvFXELAeK/s0MX0SfumroFtsVNOI1Mfm3PSfQB51nfI6ccSWJ3TaicNvmGtdtMkDW+RxyTnoiye0jnIB9JhtbalAEzSLgV7vBnDNn0yRYuCxkx7ju2GxrvFvNVjyvWSvMI6klWkCUMECSr5VE4OJMJS9mLGx9+ZXLAtAgUaBYI6+8LmfMYAMMRg2oonqeCdKmq1DZq2xcXFFR4+/oCB9sNHaLs2hFjPRiQ0w4JWBtddh+uHD+G++ANs7+7w4tkzfPvtN7h78wb73RbD2MONPYZhjDtKeqcHGOEdCxyGPJznfsuUPEjLWpRLcj2rmigGfOqnCGl9neY02pRCCZKlQkuu6154W9i9CN8VKxANtbUI8QqGQIdyrbM2t5yb64nfn0dvjtGWuZ29aflhLWmAbZSJaXgGJIqBQgCl6WyU/GT1EP3/qfuzLlmSJM8P+4mqmbnHdpdcK2vr6pme6ZnhAPwAPAT5wi+Ar8pXnsNDvgE4BDEgcIbEdE/3VHVlZmXdzHvjxuKLmarwQXQzc/OIyJpqINsy47q7mZqami4ifxGVZbG2Vo6fPOgWL3TXF6AxbcNgEzuqaa4yCNdkyxYMiE9TIOS/qBzGiRgiQjRHi5YYzwQmKZOuSLPPTQ6dI/N2scwX8JwTP2XbRH72Yghn4Gd+Jd/VXG+jsxSSeua+9fNLxphbtNTCnFsYz2l5zl9+Gni/5DjZ1ltpYt0qNwAuOid0VUsI45jCHabDJXBk2vCcltoiAhSA7l0h6kUblJwyvVAYNGQnTldAuNVfAX7XedMgNZk5TbvU7NrIjBxQ086XjqjlZvbi0nDZXEYrs5F6n2r7HC1EavaMmTlG6zYKWrZl8/fcWsUlYBwTuxNNZTSPp5XMGvE5I3N1DJvxFc1ip5amtTtITqsWqWR9JG8/N9ocKAw0R6kg2YHWrp0D7me1xjo/t6rxBMRbqLUcFzyXD1ptL9fSpec6V7MJyqkN/Un7zhxP7T49VdeSVlTtXfpNTYr0VL15TPI7Q4oSk51geTmdAFKEpRXgndtCUt7QbKkD4ImqdJ0vGRynydJvB1VLwQ1IcsDOTP50vdbvFdxKAdqtQOGb3Y12JzMLv7a0G56U6j4L+l19bgbrhfWUeR5nER00TinNeODy6pJhM6Sslb4oI8r7OkfnOrzvkknTwNXVDdc3r3j19i03r16zvbw0s6szIOd0vDK6UXzfcfXqFVevXvHVr37FYb/nww8/8O67b7m9vWX3+FgyqkqYCNOERtsHtBTxEZWISERiFehb1i9CsqnUKnyrzqLaaIq80gpHmb/kqFRPxY+uL0eqI/V1u36egHR1JbU0dVGHnLLB0s+qK07rVWgQsXleNdv67NqftU9rK+f+eefpw/m65vhk7VrZdc58UlLghXIu88HlOmzW94rQPhuBIhS7Gfl4ivT85EE3IsjQVwkSIygOocPhC27IE9wmeYyRKUTGbC8ZIofRFhwh4GKEEExjXlLe5tXU4OgWlyw1LCymdwE4WgB7LVOlR23WhjSV2T2zpXKi7X6ajyyhcSXETXfW0mrl1uu0xjvJoGlZ86L0Ew176Rbr0+V/HOBe3FaJlS5AKBlwpaWjjQZwsbCX2goFxslinYoeao2pjW3q5Nb50uzIHZu+w/u8TStlAWcCIVK91LNDkfdC19X6eu8ZWkbnq91ZJgYxz6MyKYt42bQ59VILplOZkm9L2jlVurPE2K0nKYwpL6I5A5DZ06sGqT1HowXODMiV9SiiZi9aAHm+UaAFynkRMgfKlflku84MqGs7nYppukl2oIt5kOeOSwJBTESjvHsG+VRnux/DUCp1yaHr2vc0kNhqafq+L9kU8/Zvm22zNbsQV01TngJkz7fx6fNLurEU4ttPXZRfVAwY8M3hDfM7Zk2vc26WJOml2vIWdKQT5dPVG4qiZu29nEDvO1SVzVCFohwxZZomjsUmvIYrLVFyUj15nWZnTtVYwvqdahJrr4lIsa/On/l8rrycbtpdgXa9Vq1jbF1HheNx4vaH99x/vGMaRx7vHzge9ly9esW//S/+C7abC7rksNn5JBB4j/MDne/YDFuub25488mnvPnkMy6urubvXlB+07injoKI53zOe8/F1RUXV1d8+fOfczwcuPt4y7fffMvt+/c83N8z+YkQRpgmEzxjIErAqRDIiXzysM9Fwpb+t0flDW1M6QSyi2CeeenKy2lTR35OArUm3ORQpv08y6pIU3PujRZ1nK652bm5hmDWjixkCokPdT3OZUE9ze2ywxSZptg4HJs9fjuumZafNOZcu84cy7XbguP2fKvJlgS4886XGrs9VSAu6lg7Tk83Gm6pq+rc8dMH3Zg2UJPWS5BiIuJEZuYfMP/uI0iMjFMkToFhaxPBo3RxMpOUkBwvQpibsKhCVMb9yHQcMSlwMeAkAiXNs4ViXlCY+knL8pkm6FoZtVSiyg9J4ZAfFM/N15VjWXK+GJeA/ORoAGvLMF/CoNeY2ktMQXK550C3Zr3lmeYvt4ZO2tI8VxbaB9dcy/ecaOeW4EI1aU+yOdNcC9c+PxOmznt854ojZ+e7FEPcF9AsTtI2bGUuzlfnKBGhlxyZxUxUuuQc2iVTFe980aC7PI/UNMLitEzcU4Jj7+iW0RhyQ7J2UDKtqeClJdiCX/RfS5QWAzijyRU82/wr1dd0ztKel8KMdVY+p6hoAXGaQ8V7sO4KlWcKKZarEBPAlzS+2WQt22kqlF0Ssx9vNeNzQa44+9rTarnc1kbwmft0tECrjkEGdzldvXNuFg6vna8xgW8DdRMxnvpPLCMl/Njjqbjb9c3Xj9nMaOZMjJFprBrkHPu8OAmKrC33lac9/z6t1nuNjlUhcX6+fJe8mqr5R3mHRBOmaWLSaovtvE+7FlMRJvp+oO83KRvokpE3QLkA7QSgZd4uma3f6v9gPHRJd2v4v7KcA+x3D3z37dd0znH38Q6i0nnPZ28/4dXNKy6vri38ZTKN67qOi8tr3nz6Ga9ev+X61SuGzdaczNvKVwfg/KWz5TIxaMi+7zouOs/26pLPvvwZ+8dH3n33He/++Efef/+O3eMDkxPCJMQoFioy5TxYCoBLZcupAF751nIX6GQGNieq0JkAudo63h/2vP/hA/v9nmma2G63vH37dh7doxGoqjIpE0Cbw0thv9CBWEOFZljgJCErqZrhk6Eo08vMiOilmLDlpGLL3Bdrw9aQwJP+aj9b86rSnqafsxBq9SXhM5klzTXd9dmlwjM042Vge4mjXk4nf/qgW0DFNtC9gOAS6K6JSGA+kSFNYgceLA6lcxAMdPfeGVBBKTGFW4EvWpihEg4jRDTZjk9j1bJoiGiYiGEqYJ0YzZSgSHeZuWt9oSxhpYcW2aiAYDtTmLO0BMAW0Nw3eO04ZW35OWtM7wwEmpdZkSZnT1zTHr3wWC+/1MJLe8WeecZTWDmj5VphmEUUWQDyta3fIgTlBd7clwFQ3VasgKxVoeZt8XEcK2ClarW9s8gqOZpK6zjX950xSkn2k+I4SjU3MbBk8y/HGTdHUGOIQ9+bZlwcnXd0vcf5RT+VSZIn6jwzZ5EPXZqYS+Il83GzvprlkIP5KNR+SkcRfKKjJOEpIDdrrOcEOn/Py6aGNKwmH6vCUqmqmtMUjU8aOqcN4NJm/rVMtxE2Zkw6A+fUJjOZSYm7Uj/bJluz2ya17e3R+OgRNYe2S9prES4uLqp2G0of5flrjmtSCH+MNHO22idn8N5mqCsMLvfxYr2sHaVv8u/mvnx+DZgA5igYAlPajcwAdkgaX1WdO0eut6D5fq6lenr9CU0bmck35fKSkaWAWqq0PhyGgWEYAIoW3HYmsoPmRNd1XF1dNSZBLW9o65a5Ym2lyackMBbemUMeFjifniMJvOdITuNh5OOHD/yrv/5reu/5//y7f8d0nOi6nlc3r7i4uGKzueLi8oo3b97w+s0bbl694vL6hq4fGnrwZwDaP/r+pJhzcHF1xa/+8i/5xa9/zcPHW77/43d8/fvf8f7d9+z2O0yrlvh+oi+iOhMil/Qjg7pV7XfTtrJSGtO3VGEF3Om/qDYvHnePHA9HNpsNr169suy4swQ49UEtBc5meEvBIMRQsAukXTLvcL6an0pz33M8XFXxYvd75wgpAVUIgWkcCVMwvuSXSXbmSry1o8xLEbxkJ9wmRX2bX4PFCk7/2Fw+5eHPHevltFlL5wI9LEW19eOnD7pJA6DJM7rpaIETTXeevlEhoIQ0iWNmLEGhc5aq2UWc+IbASgPAsxZMSwSIMmkUA9yqEJOJikbjYCFAY1uZtRo56HzeJsqa9KQ+N4AQ8zMshFfxgtf5UGZgkN91SXFK+L4W0FtH5rc819Hnr60Qm7VxqsVXQP+P1prJyfcZwGq1NPaA07uXzxQ5SYcuNCYUL2ln0jCW+haMf1n/mnnKEqhZfGAlBANQe44n4NWJ2Xr7LjtemgPn0HVmI+6qM5URq3lYQ0kgvXOOTiyzYjd0dL0rUVZa2/Ts7Ol8BvKLbkj/FEAglfi3hNAhEJOGRilxt2faxBZ4tf3nGoALZsuZBQLqVmer1W4/63cpNGA5NoomIJxPZrOSRAdqWPjyrBLHNQP6RsiaPVezkLA4lxIaZdBta9WjMt/J0qXaWCpD1RgZxyOqYtvOCYzGpj+sm3P/ZYBYR8elHAgWutNRXyMWm802NXyZ69k0gtP18iQAIQthMu+r/Keadh8NeAhG83MUkrYN57aFWaGJ68cK2H7hUUF22UNZtMXG2I5Y5iBQ+EEOwWa7Eh7QmV3+8XgsgkYbAhD+FFpqbarKioaHZlAoFnHE3smAzm6349277/nNX/yG11fXfPP737PtB+gGXNfz+u1bfvEXv+Hnv/qN2WZvt7ZzmHlQ8+//tocUgch7z83bN9y8fsUvfvUr3r/7I//v//a/5fvvd0kDPBGTYJ+FxOUOd9GurhxaidHqrs9TZmbOOS62FwzDQIzK7nEHwMXFRdkxWRv7Wl/eAa50qeU33hmNlzzwM+VUHq0fB04zPhNxqFOcOAJSdnNcnAvurU9EC5yRua9SAd3ZXMXVduYmP6cIPHdu/cjCxvrY1F3yFZyR2l/e64mn/JMA3YgB1ClGHBTm4mQp42SzDkGDgZmAabonzMxEcDgX6X1H77w5shETE61SmIg77Vwx5ph35GWpNVXFpT9JTDE2fyF/JoIbx4kwpox1idDmSAMaIzl28RI4GlaX4mwGFAamIrNkQi51X+6itsXtUlsKLstDZeW+M5N5vkU+P54D5k3J8qRMpNrtXWPQtWtOJnoBGqe11uQn9apvyj61SItmfIXxt2WeWnRRq6jk2nfSCnKWxDLGyBQj0zHCEbKZUbbp9SkSSgbhXV/tQPtkA5gzanYi+PzsPUk603LduWwjLrjOMww9XZciQviulBMSmCeiarH0tSGW7QhUuq6nGbvWANgJaK4abLJADLZCMoNM69JAcZ0RGfA4smlHWy8ppXJ6QrruEsNUshCbzU6s/gKntMb7lWR+Iiqz+ucmJVLNULQKgKppV07mUYjUPLUqaG+08SLCddcRYgumU5cyn/utxllVZ6HXS82NLJSZZO1zytwMxWG9Ju/Ia2KZOrp97gyoLGinJmBfEoKQfCJah8FWSFussbl2rqUxy5V4CjKsuucZ83In7+k78gjUzJ8tCPLeMwxDYy5g8KwFVm1ElsPhUPp3ZtvtKnhOg/Bki8ysJBtoagXdzdj5lCDs7uNH7u8e+Mtf/3PevH6NF+GLLyIf3r1HY+Ti8pL/w3/1X/GXf/1vkG445Sz/yFj7HPdY3fVuryfOqgK+80XJYJJ3Mr0i8dlEm5YC3nOA+xxvs/W0XsYEUVuYgrLdbLn7eDcb8zWlQf4s2CEJV22c7xPt+ElCQKGQv1zuKf68Qq8zLfPOIWmXJs/h/Iy8pvPvZduyX0YF4tTp9Aygfm4Nn9NgV5rwNN9vRIXFtbau5+f+Tx50q1rUiDgFjrs9GiauL6+4vLw0EJk1l4lvxyl5jWtiiGQbzEjQZLeNIl7AdQxO6VC8y7E4pTL2wphyh2e0nbTumXxJZXgGuhOgooLzzNRMC58k0WSOog0Yn6ZACBNTiExjZURTqFtDY1AOIdkQl/WhZcwlP0vS+7PAOIs+Fk2JDkplpffLhyzqeRaYrizYl0il86NO4gpy7Q3KgmxKrWoAnqh9BgoaJpoJz1rrTkxKVo5se7Zk0toQpQJSFu1egu32XAvGsyBnxNb+xjGyZ7T5KaYZL5FSGnvvnCTEZ5tv75JDZ54tY9nKs77QFFlFzO48/fW9aeC2ySG06zq8w8IeNqxJAHHVlagduzq+pedRlZmQtw666/0G0uY22Xm7R6kgmCSIttuveYu0KqcqExM19qWeEqsXxbTPCeg7zN47C1JO65op5i2ar2fhMV1PiF4L/UrtauFLAfyxgFFNoyRF6eBmS7YNENoKMDNhOM5NRM4fUiSZYqu5mJshBKaGhrXPEkk2yxk0LzSEJfV6CCi2Nvq+N0fDvI6ofhLNg2fhAJ/SHs7epimX37+NQLEo/AxunO8oUFpjx9Q4mUGOdJQzQ9Y6lu3LR9d1J3Qg91cGYNa/rgjCbb/bPeVVCjAXMdDpMtiWZGaQwN14OPJw/8B22PBf/tt/wc3Na16nKCN95/jZl1/x//sf/h3dpufNJ28R7+pD/lc6dPGZj1MlpTYftqs8HvY83H1kd3fHH775mj/84VseHu7J4QLFia0Ptd1H1XnUEZFKn06VA6dtrNeb5ui5N6hrZ7PZ8PnnnxeTpDYN/PyFjRbltda2c+07CZbPBdBFy59YSpKVAJVonuAC5z3SdWy3G/LcLyZhi7LSrGPn5jwxKxmeUuK9RGCu7OZUCIfn65jbt5/pnBfKmj990I1FHtEpchwnjvsD280lU6i2lVlmj0H5ePfA425PiGqOKNsNIo4QQcW2XscQOI7BttAF6IwR+jTZLA4vqAYylq0mJmYVl01dnAg9UtieFzEJugGLnoaVZiK4YCAZSEp6ZzNFgZBtyUNgDJEQA2NQ3h8O3B+OjOMxxR+1MEhRzR49JNAgCaS4RnBooCz1o5WCm+taXTeXpjxPHWcX88lpmbeldEklSjJr3+miaQH3DMCulG7bt9TI14V+Wp823GsJlNfqXrZl9rsBHu02Wmn3E+BhqUlZasgLYU5/MSphGlE9wq4SKWMuZmblvaUrb2M9D2k7W8S0QU4EmQSxjUOcJkLksMRAPm+Dm5Z96HyKX+7ovLDZdHRdnYF1SIWc2a30ShEAq0CU562mf6oyRk/GqH5S60yRT1TbyAQk8Cyze+xzbhOZFEEFzLfMs2jOCjMqjUtxvk2LHRLTtbLZtptSn8yefTr2Zc7aj9Qu1/Tj/B3MTEarad1Kpdr09yloaCjFYp20JV3X0ec5J1WYySYiJZNdok2WHCTSJRvQEnmkTe4i1Wjj3HoIWYNGFTBa5v/0NnwF3Xl3pmXIQgMuWrqQn9XUE9NF26EMRfh4eHhgu91yeXk5b8+MlNV6nlJWaCP05JCRZa3HyBhqmMhWM5qbX/pnJqg0uxJYApn9bkfXdfzrf/Nv+fWvfsMnn33O1c0rs80GoiiHxwf++Hd/zyTVh+F/iyMLn9DyphZkpzmskTge2T/c88O7d/zh699ze/uBcTwwHkYOo8W7T+QAnDO/LCfIYocamO+8PMUHcjvzPHqinOZvUmnjsBkYhr4AXM1zrFUUpSY4cXOHj1kvtZ/52wvHTUvLmlOngkY7v6XRZFdek8B4W655B6jvMl/P5wFxe++yjWu/T4VoTR4OT/Pztq3PFjr/9HL85EE3iG1ViKM79gQ50nddis1thDnEyDgFvv/+Ax/ef2SajLD3mw2v37zm8vIaVW8L0Bmj0kRkLImOKwymlbDSbCeqMiamalltM0C28iNm7C8idOm7T2U8lgnPS3X8zNFNnFIyeBXpL9VL9sDFsnEGYFRh0shunLg/eIappwuXZtsZo8UkDwEJk4VEjIpLmbckmM15THHNjVFUj+fYSKD21rU9QAlD9YIoo+X+SkxyJSdnqCLNYtTPSKTza3NY/dxWU9ECPVPelbbWa8vtxXPPWKt3qfFu32ip/SuE6Mwzzj1zCcKNn6daG6ZRzJ0SKArHoz17V60PW9u7HPYwh2XzKTLKxvtE6C0ooSAgI2XLkKTxduCdsOk9/dBbDPK+T1ryjr53dF0mxq4Kt0n7W3qiJMjREiUm96Jq/qykei7TVoFXda5JLgpUzQAvRzmp9c3MQNBii5T9PoyC5Hs1u2mUBRATsvWa21qjnERtGqFGIzJznY9v1WIqmYYkRoYBqDL2RSKRUvfazkneim4FwNm1PAZ5fq5o8or2nrlQadKamTaVHZoYGXc79odDiZmbtbkxxrLmWrvPeR8s+6QBIAnYxMZWuo1Nnt+v/SxgOgkLLRaerTLVqtmkUp0szGRzQVTTDpJptLuhK2vE9Bfz9s8hwDNMf2Xd53WGtwnZCt0lapLYrpd3Nbyk88ZTotq6U1V8N/DpJ5/x67/4S37+y19yfX2D8x05/nBueQQuL664GrbsdZrF7v5zHC+qTeuXlm/aKRN8NCrTeODh9pa7Dz/www/fc//xIw+P9xwOB6YwFbOfECJT8vtq/xQDkObIZ/3dZoptQ6muzbPcntzmOS/UQkOWL6bUed2sTtwSVBehTcj6rNMVutZ1lVecVJjpUdOnp0JDpQvlv7TmWyVSBtgJOlA8CiRrjuvv5fyuNOnkFco7z3bnz5Zt3m7FVtszF5x+zGxuuPrsxHN1/BMA3WBg2Fv2KGeRGMRZiCVFGaeJu7sHHh92xCio+iS1B1Qf6Lx5gttkMKRrWe0ETeHMsodz2UaIkYCmWMDZi9kmm23C2/aTKga6E7guoDtJbnlyeWoIHocNthfj3x6KhBs1E33FJ1AeMQ16SC2OXqEX1PsSYNiLbW13EYbM3FXpNJqmvdGslcxcU2CaRnSc6AQkBnMGjUoMsYCPqNkZjsWCfGaWk+WWZho+oc2Z33heO1CLtox5ufgkBdfQkxtFDIy8BDTPYT1z5vyUluMMoF/TGJ5cb0DMUiP/nGBRG66F8LXmLqo1oUpIOyimnQszsJWBxPF4LM9qw8htu47ed+CEvusZUvzYEuXCCTKZFtaLsNsfyr0i1b7cdTBshO12k+zRe3pnYK1P4ROFvF5t/Vb4M++HVuvRdANZ898KQFmo1sytEniMSctcs05WW+5aH0UgmJVJs01dZlRSgW/T/+U7ifearUhzrcj7pa2m/W7efKHxAqlhFKngsNAzTYoFzdp3KXXPnt04T+a+sSmpnKzIdI9r/l1ezwnLapSOyNXlJRfbbRmPEEIRApchNk+crxqgXNqpyv39Pb/77W/58P490zQxDANffPEFv/jFL4rtdJnDCwF6tqYSAG+6vzwvH61fTm5j2SVqwJfnqaOF9g34XzmWO3Kza807ZKF4eUSNZf1P08TxaE6x/TAwjUfGaeS//q//a371y1/j+w1JFdQ0rfZHB2y2l3SqDCmC10v4wLNH++rPVlcFrbyANATGw4H9/R0ff/ieu9tb7m4/cDgeOI5HxhAsp0IJ15gFQQhqOzBt/zsRwmx9mWwjkpRgFvanOvxmwJn+Zn5Dcjq+SwF5Oa/zuZkAvdoPDe1rAHPBz23HljrOzzPSPbOSkpXoCdO4uhsl6eGzz6bta62eacWNkJ49WqCcn9GijzV31rW18hyvbsfp3FFlvTVsUkWeM8u4HP8kQHe1hRSGfoNzlt4322orjmkyu2ebIS45MirTqDw+7rm5vrbEIS6miUNSxlhmQO+U3lkCBKegztnWkipRjKH5xPizfWYkOWpigFwwjXSvSkj1uCQFhhx9haoB78SiggZsIFwCithbWGxgEtZNUr3GwE4nu+Yk2Z1n8xbXbFHbQrF6K2MWUoSCvO8NDApbLwxEeo34STkcj4ximTzv9yPTFNEYOO6PxBAsIyjtQpgJ9eWzvU56jxPt7dqgiySM34KrWsvyTsmBatNTazisBcgtROlp8HpW8n5h+ZdqwU/KZo1BU+bcPc9ud4HFLC0Ergp5GZSJGOFamqjEOHf6zRqekBzo9tPEPhGqnKy5AG5v2rSu6+iHnj5l0hz6/rTdosiDInJv67vEGDfgvd1sGPoO13X4vmfTO4bOtOK5u7zzBVDOj/SWoouoJ/VqQpSlT10G3Q1hzeU0aTzbx7TMs9UeI1k7bFryQtQ1m8lo+R7cnCm3QJ4EkOOS+VDnZPsrd23UzDy1YWzWdlcEjEYwyO1PTtitg29+aO6TVhNHEUhyEFMpbc8AJ/fPzc3NTCMIBniyqV77/jXub3XEWgJwMLvpx8dHbm9vS/bDvu/59LPP+OTTTxHnzP49CbIa40wTl59Xxi+VbWaP9eeKiUGbGTLPH23qe+6YQ5L6tLX75wLWM/Uu6EVOGaQxctgdORwO9MPADx8+8MMPP/CrX/2S//h3f88wXPDJ20/o+wHfDRTBIAm6uVbfW/SLaZo4jEkoz68A8HwTz7e9vPD8S/uvMeGJ6bjj/uMt9x8/8uH777n/eMvxcGCazKQpTJM5n8dI0JjycMSipW6F0HNtKWs1n5NK64SaAC3PjWxOBZQdD+dciY+fy+XY7MtY1qt8JLG2eZe0s9NaG1uY3QjsQHLybgzGTAqbD1nLW9LvItBJ1Vybf8aM+67yIymSQK23zuPyVGBpQtrQ4yz1t+185ngpL14UekHNtWxpaSGDcx56ToCGfyKgG83R+BSPJE9wZ2YlYeJ4GDkcR2MgIoh2pj6KgWkM3N89cHFxadvdYsDbJcZi4Bc6UTqBjRggVmB0wiGa/ig0HW022kbEAlULlMOMTVRdgc/EXox56owJGmDPIChrvosDpkHv3AWmpUYLUJ+ojDUmqpdJ7EzqltKNkOtuttkVk8wvO8cWYZPOH2JgRAkqTFEJU+B4OPDw8Y7D4yMyBQuZmBhv3pKz/ohF25eWUCGc2cGscb8AqRuFuZ2OuUNdmQ5lQs+JTsZPhlvXCZlIq5E7JaZnf1OZ4Usl6WfrXIDu566/pOzyyJnB8tHOgZL1ctFfSxCZiUibbjxOExoyM0sxhtViwcYwNWOY/CWczGzGt5tNSaZR7XhBXWRyineRHSP39ztriwjiPZ1TNn0KmZhCqW03m8TA3ELbKClmPubImXPHpzVY5qM0JicxMQoh24UUMJV3itpoJm0/zYG3HT5StOYZeJfrBcBXME7WwJHoReKtLg1e1tALNf18nQR1jHOUJat/4QSWKs1KBPJzCo0C9YnuRJnNmdnWd0xKj0ZIyEvzeDwyjmOK0tEX7diaichSAC67IU02TWAGWspcHEceHh7wzvHVz37G5599xuNux9u3b03DnU1MViI4ZLOYmeBVZgh1RygJnMvIIbm97We+2+bD4j2bd6xPydfnv9t7ngMN+daMW1rQXp2tU3xm59heXvLu3TvGceRf/st/yatX1/zxuz9w2O14+/ot11dXvP3kU25uXnNxdU3XD2anqxnUBR7HA4cpJY4rE69pxEuPlfdu0WXpF42Mhz37x0f2Dw/c/vCOjx/e8/B4X3ZQpgS0s19TFiyDVrMbLe9Q+XYWsts+X0LafC3bAC8VI21CmLyrk4MgFPohYrt5SfmQ61k+ZzlH648MYgsXLfM2smJfn9al8fsaqQYSeZNMBaXwiXkoyQaEixRavsZ7RNb2dZZRQVrttzbTRGgyM8wcLV8EmBfHj9V0FzTxBFC264kCqpZwqktl1XIerR0/fdCtwKRmqxdNltsdDnjvURFChMMUOIwhbQ07LANcThmtxKCI6xoAWLd+ohqQH4ANwpBBsIBTA+iHBCihTkYHBgK0MqGQ6otN0+ff7VkOKRppESkmJUBKAARe0+CkSaoJWGdmMKkW8xqXZFj7rgl617YmwbQ6DCXiqECwVYRzjqscvxlnGtHOM9FEgulHQqfc+CvkZkBCsORA0Z4ZQmCcLB75FMfkgKKFCObvFVTkqAS2MJNir4D0gEfFpXOVSGVCPaPXRSBuGXj9Xb9nUDVfFCIKOgcny+MpIlD6tjbnSQ3G8txLtNlPMfrlu+dzOYnADJHN3qeC77V2ttud7bks3cQcPi6Zq+TECFMGRjniTowck7MSqny839mzG2bVdR19+hxS3Oku2Y6Lc4gzor/bj2UOW3QWb9/F6tkMfUmXvBnMqdN7SuKhyvDAYiinjtG2H0NyCKraoYwpMrisQp6QHS8zsMz0wjktdCAD6DzP7bskzXMm6EbDomprkk0GtUtwm8ez1VlJTh5EbVs9TMeX25lBZ1u3+Xuke9xiVjV1q2ujxrTzxeIKb7dbzBk9r2ptBMDUh5qVCpXZ5yOPUxa8c/SD8hcjMc2Vjx8/cvv+Ax8+fuTy8gIXlRgDpnQ0QLCMKy7NX+kdrVr2DJTaxECz+08E1WZAgKZbztCNMkqz+/7Uo3SzzEFAFmD6vmeaJn7729/S9z1/+Zd/Sdc5s3EeR+I4snu4Z7vdcvvxA1eX12wvLtkMG65ubri4uCBMB/72f/qf+OaP3xFR7h/usDVku4vGdzNzaxt3Kmgs+8LeIYHitKO2e3jg4+177j/ecvv+Bx4fHxmn0QIH5DlQQvIGphCLIJjn8tK5vD4n7QgVgXfx2ZSrn6zM9/lfzgibr+foY6jt/sxMnWAmdJ4TtOoaqoOd23rSqzOskud4mrMu4QEx3FD5Q1pfeR0mOtg2I+9olnOFjJ6Zv9LC7dqGem+JoVKpl0jznB8PuE+a8II6asvbcZiPbat4ghpNqX3r2bx44nk/fdCNMaZxTJnJ0tbMZrNBxTGpMk2RkGy5C5oEKGA5T6QUqi3ZYsecBENdAblCLPShc1YmIEySgGOjpfUJ6LlkziKk7dLMdJtBmbRqvH1ZCDUUWfaAjySnrGZS2mFlJrHPgKBS4/9mBzQngov1XlFOHTBq96AoGxyvnWcQm6ReTTvei7XMngfiHKFz+M5AeecFL11eIqh2JWZx1FCSEmXCZslfIlOIBYSbNgmmqTom5XumkPt8AVRy+xN1SJgkd1Pz2QAEZrRt8SOVmAHXFvBWcCIr9y61dbmW50D32vkWaC+34pflZ6BcWmLdbA/KuWfXa204pHPb2svvBRCpIinDXkuk8u+aGKpuzx8Oh5rVVZUpKsfpCIfjDND45MTkncMlrXifwh3WaCuCSEyCgyIyIbsJJ/vU0oj3ydQqmaxcX16WbeFhsHCHOXGQS4IrdEUbVnpE0opxKaFVE287JkBp5SszyYC2rBGUIJSdJhETlqUw8zT20jp0puuSfD5EimC9mgEzzYACrAVaJ9O1udAeeectphbTjDUOJDah6VRRqRpJhaKQ00aYmAOZdj7NhTrzp2z8GMTVviTTOM2EDbrOQqr1HTpN7HcDOgWOxz2b7oIpBqbJtHjepZjMySk4w5iZc1xay0tg9OcAAPOj6Cpp9wPbY+2Z5zRoBkDzbkrdkfPep1jeFvf7H/7hH/De86tf/coUPtEAmGrkcDwyhcB+v+fu7s6E1s2Gi4sLrq5uuLjYcnh85N/9u/+ef7j9AdcJf/jDP/Bvpv8S3w82n9Wn+ZL58BrYngNZVM10MWmyb9//wN3HWx53j+x3D6Y1DnM6sgyfOvtMvDebJ5Y1lJ7VWFYWYH4KrhdtLHWd0rnleC2VJV3XMejcZEphtgOzpPVlfeXvC4CX+61tY8nOKpWGtMlmyM/MMbpzVscG5K4JvXnMZuxxWW6FtOSaZTYHEj1o+NJS3F7yopfu+Dx55DY2Rxa2WmVgpgEnvIzza2/2jBcc/wRAtzBFA63HYBE6GCe67QUg9huxTNUqoA6n3uh82lreDJuk4QKLgiBJK2621gagu5RIJoIEojMiJgIuGnMJSgqab+Tau+oMaQlHBLMuVYJUrXd2vCxDorFIc0jWuxsICqTYv1howmStmsC/cgQmzfHHczi/NGmjWhik3QEvws3lFX3vqpYhTbwcsgtJ7e+khDpUbIc9L3bTrmuSjAHUwsQ56LSa0egStIpLgCO9cn71RLQyc1NNSTyDI8QU4i4B8nGKHKZQPMxNgx7S1k4WGjLtEdRVoJKDrCuOmDV5au0Sqc5UFSxkx9p2cdcxUqpt/Gzxp/ew6TcnHOdMQWazewWYt1vs7e+1e2fnhWfvm11v2nkO3LfMZ1l3e709WmKVk30s7dzaLbklMM+mCZAjE01wPM7qbcOnFS150m7n35bkQy16j4BMAb8fub/boaoJtCuus/o2w8C267kYBoa+N9OE9M45fGJkIttAO8EildgblTUgGYgvcYZ1dolQYkBbgEiOZoCCqCvzOuYNbclFtIxdEQwz88iPEZDcLqlOnnmS5HVTx2Jd+JsB5XxOMAmmsW3J5nKqSTufJeO8xqntzvMoxpjAXtotiXVOqMYCDHJYuyzAVKGkvo+IsN30fPXzL3jYPfLD999zdXNBv+m4ur7GuS7tuqQd0+SsmeeaqnJ9fU03DCWOdumDP8OxCp6Xv/Mzz6ynZT1Zg5rPl/ngpKbdLuNqc+Drr79mmiZ+85vfFMGmTEu1CF0xRoJz+GSfvNvtuL29xbnvjIeq8v37H7h7vKfrHP/jv/vv+eJnX/Llz3/OzavXDMN1Sf2eKYwkAcyItjltH/d7Dvs9j/f33D/csXt45OPHWw6HvZmvaUghcE9B9hJot4Jn+z1/zoTRxAcK/5gJgw3Ayr+18hqa9XdubM/RxSwAee+JqqZAVC0+D64B3y4pGxrJ4CydLeOf/+xEA7jb62mOCM19mnBB2qnRU+f+HAv8qfdGGtA/K11B/axwXt/PxEN7Sul07tDyz3IcE7iO9fuJWUi99R/t+CcAuiHGqcaqHkec90yJo0WEiDNQOk1INAAuUXBJW9V1Pb7zBAJRnVk9qzBNwh6zu3YiXOLonAFQCJaSWZURiDgCyog5V6oaOO5E6EWIInTOQgbmUDZmT5YJQbafNMY0NeBaim7Myjgxu/JQ6oGRyKQQVNirMmraRsOEiwzpY1SmceT2/p7BeXrnEkE3UH04HLl/eCBME5fbLTeXF/jeYHNMWi2zFbfDIrgU+dRMr5MmxdW3qtJuPgoBaM/letLJPNE7h6pPAETKPYoQ1DTead0whSmZLmiNnxpt8RyTZtyiIaTdDJQxhmJvDmJhvKSkO0rj4xJgkHIeiUVogmwDV23683s2Ys/s3WeagxVw/ZLvLUHNo5zBTzmvlSgutRrLQyT/uULuzgH6/LkE3GvlntMCeO+bdtayGYC1dWSzFE3CYU6LnRNETWnrOagSjo0jF7XPMxMbek/XC8MwWEQU17PperNHjga8dbK9nMeHIyRa0HmLM56ZpWn9BroOus5bJjuXoqtIdWIiCXxa1o1WhV967TzD6lauFOBbQ7C5qheSJLYrOJ3NtAQI0ng3/R3LLv+pHjUD9Hz/bNeiGeM2GsrMflzqw0QrXcvzvgKsupY0902eV86Toz85cSbcx1gEZCUWAG7v0bydmGOptdXo6PG443B45Oqi4/N/8ZcMm57Hxx3v3+25un7F9uIS31fzlNYx+LvvvuP6+hrf92y3W7bbbUlIsmZWsuynZdfkd169vgQRub5FuVMNawVec63l0gSNdjHY/THy7t07Hh8f+c1vflPifKfKK+iM5ruUx2FJS46qxDBx//jAw+6RvnN88/XX/O3f/C98vH3PdnvJpr9ke3HB9urKQPhmi0YYj0fub295vLtjv9tx93DPbr+z6FmqCWRnH4FYvi/BdgbJy+8sPkvvNQC7DIxW/6tZP6ffxRQsLu59Ziyf2oVoDydm2x21MUeLsTh+ZpqTze7OPVMyuHaufOY3qSCblTlSTU6lFjIc0vAzOz/nLeX0aWecnoMikK9fmdOyc8e5taaLz3zEmIUyVgW2ZzXW/8jHPwnQ7ZwS41QAkjgDTQb8hK6zMEZhejQbvhBB7XrX9QzDQAgWhSSQTD2CclRBHBw7ZR+U7RAZeui80jdzZVJljJF9ShFr2w8RInjxHMU0DF2MbJyjT+3KmmOBklY6iJmgGCBVvBq47rC/ASk25SEx41GVUYVDjOxD4BgmjhqYEhNzCB2WYawfBsIwWvKJvjdAOk3ECGOIfLi95fHRPLx3/Y7hM49sLzhi4Q4FJZg+LzF8LWDPZeSrxkYlb7eTiX3LKARkDvry2iln68pO3tWtdG0fEYhdMp4RM2EpRLUQTvucQmRqCHEIpiV92B8YpyltI1WNiBG7JGxgmUpjZlTpLyBJ85+ZkMNsvyW33K5L/kVDtDKTNCBigDBpFDIhlCx0LchPIWJ5ImpKRrMCxhtCkonvDJAXopXGjTaizfPahKfANlQQ0hKzVe1eEm6W+oQKyO1wyWwg3VSuZYEqM6msJcqa8tZkJUdZOR7TKAoW3UKFwfeFsfV9T991xeTAQsqZJtW7qQHx2f4xlHfzvqPzPf3Q03U9m75j23V03raNo1OLmjKbFJp203JHQVkRqnUN5WGT5KcCiCgapYJX1Vqn2JrL3Wh41B4qmn1CNdVrhClFKuQ0VfrTAHx2LT8nt6c90nvn+V1AoGba4Ugm3URR26lSh2o0RUosuvtKdpiDUAH2x0f+l//hv0Hu3vHa97x3jkN3yc/+6t+wubzi9vaWaYpc39ykvqmC1PF45NWrV3z11VcEVcajRfd4fHggqpoZkvdstlubJ2nOzF4zryNOwfNZYRuKVru9Z6mhzaABmEVLOb9G8xjUWBXjOHJ7e8sXX3xhZpntODX3xeREoDTZPtNnsWXNGtoQCGFEnDAdR95//z2q39P5DYjNt743B1pwxUbbIofk92rClFJNlPJO7ExLvRRCFp92Pt8/n4o6/3F6f9Pf+XfhRVmQXDz/ue+ztp45D4nWqdJ5D10303x3yRSqDFXTnjw2Bryrw2LhQ7lc+T0HwCLzeZdpwhoPLtdXjh97flHqVDHXHosEZUBVXFLHLfMEkAK429Tzy93af+zjOVD/TwB0mzmD846+94TQ4SxgpjnZOaEbei5vOpCeh9sHjgfTeOPylkdHmACX7KJjhKDoZHqSg3McpsjVZWSYAr5Lk0ZM4xLUHMFGjUTmiWU8MWnGTWPTO2HjPIPzDL5Ofp/umcC8qdPEcZgtqRehd6bxydkjM9mcUPYo9yHw8TiyGwOTRKbE8DqXvY7tWVMIDBeXdH1PZlghRu4eHvl4v2McLRa3hInH3YEpCpMKo2RzkVbvnofBAIEIdEQGUXwm1OmomqClRA6Q46pUwDXfwqKA+/qPNhFjdVZ/TGCi1g/adzM4Z4R8Q+A6bSVVTXgWnsKUvkcYg5m0VNvyFMElxgJWJAGC7OCZCVzV8tUXqskLKwPzC9DMrA/m1m/LPspbhrmcOLcopyn9ewbgQHFEzW3VViqYgfeXHHPtej239nupLTemVqPZzOqtiKoy+nQ+2zN2TTKVfKxuN8cmjrIq0zSm0HOBGCKHlOKZcYL93szI0ozPtuI+RUMpCYFS5s6uc2UMVUdEJkQOiFAjIXVmg+46A0m9d/Tes9kMCTRJEbo0CYGGh/OEjmV3SZBirqJKtWdWLeELC/5uppNqo5uWHMkkCwBS1ngWw8z8zc7k3bfZ+KSyUdt1uLKO0xhWNVv+kNnlfMHswTWFDMzjabb1BsKrEIJ4MuvV4oCpPDzc8zP9gf/jv/qEcPMa9g/8v/7uPbu7B3aPIw+7Pff3j+wed8XBU0To+o79bk/fmdNuL8LFZlPep+ykTRO73Y6PHz6w3++LKdPV1RWbzYbNZlM1knLaHycseCYI16MNzQlVk90m+Tmr9WvXX25HAlvv3r2j6zpev369dmNpY3X6r5F9ctxyy/hYkxiN04QQ8ceRx4dHnO9SpA4TVJ1zTNNoAldsQDQU0L3UXs/AVH6ndo41bdXa9FRH7e0l5lkD761D/6xc7cGTvj33WZ/cnMs08FzZ/CypdteIMAw9IhYL24srzsOt5jofAuW8NCfzuLc0vv3M7VsTEKuwsZyiem7algf9uQDtjF8U+q4pN8oyckgs5qZtG5bKqD9n+9rjT9Ga/xMA3aBR8OLpugHvk0SjNV62ioN+QDaBye8Yiaa1nYRpUh4/PrLpt7jOI0ScBrL2aBwjh2nieBSiOrYXSqeAM3vm2P6n2TYyL6QEi9XKeo10KvQx0ItjEzy9dwzO0WWnK5J9tmaJ3Ow5vQi9AilueCYtUU3LvouOj2Pk7hgYozEkU/gbaBe1rSFbiZZAKIpLGncDk7v9kTHAFEwM0KBM6tiHyKbrOaLFdCJrZAXTvDsxJycPRZCwv+rxnI+sAZ+zm7ygT1fu85rVupVcakrAMQN6OyInS0Ay+DUttVA15a1mw8xUKPOqgvRgMeCjMqk5gU5BGKOWCB0hmkY8U7rSJpECVJSUvVFcfX2RedSThSas7YsCjpvz7fcWVLfMue2fgoOygLao+7ljuUU5P3RR1i3KZ2GJapIwvwFdUPXCsNbONe0Q5qY0MVpsXkhgsQ0flrTimSCP48h4HEFNi3cYJ/Q4UiBwmWf2HMuimSKr9D3D0FuyLkiCsyKTQ2VM7TQBuhMbG+ctmZDzroA1y8yYwHjWUqW5QaI5WnaRtPpQQCMYN2YC6R9ptOaNkqv2fQJT1d9ESx9biLiFQKUVqOe+z0e72/HcXFqC9tSUBLpd0VqdagnrjoAmwSeq0kvH//mvv+K33z/w3/7t9/yf/uKaf/PpG/6f37/j4eIV16/f8Mnbt4Rp4uHxkQ8fPqCq9H3P7e0tr169Yve4s3Ed+lON8mbD1dWVPa9xBj4cDnz48GEWUrDrOq6uLi2CSq4jv2AT4SfP2bxTo6qzuM5ra/LZfi3/UADsYX/g/v6ezz//fDaWs7rKNKmA0Rx261i4pkTfD2hKqjUB37/7ns320krIaEs4CIJDmohQSs32mEFvAdpJ8CxmgC0+LO9W500Bx1rn0VkwvLyeX7kB8pTfNGthRdPafM6eoi0ySL/z+zXvmdlYFkyKttrVvSRTnLTmIucVIznc62zsOQXaT5qG0NARad5/KUufnX4vB93PgdSiPEk+XCFWXnxuXH9M/bOyLzj3p4Dq546fPuhWCEclTALBo9GBdkxTBO9Qcjp4Z3aCzuyQ0YCPjhgi+4cD41Vkc7mh9+AYUa8EhDAmZ66DYy8R75xJVE6JEqBTixoAkJ6jjRlFzAKAaImVOQEHVXYa6dSxFccmg84MeIpWKRA0MiFpe882YyMg0WzojlPk4QgPh8BxSrbFCh6XQhC6lHZeiDGY5t17DtOUCDscxonjaLbxmeCo7zg6z91xQh304g0YSLIr15Q4SC2WQ6dwpcIgngQzydtasFyjyTmsHLmMrK76lzKYDDDzv/NyZ+zKpP1siUny5E5b3VmUqPaurYBFCtFo1ksh5mgsSghwDOZzEBXGEAjR6gzBwPmEJgMWA2K5DYX4N4RLqQ6yrUf60pFT8jmqc5y4xu4790kDwEuqjAVoXwpCS2KzRrwrA8ph6Nb6fa5psGgXNapQOxnWtgJ1VqLps8X5Npycc46uAeHlvCq+65KDlp3bbLcp7JiW5BkhgaAc8zeHJVNVjuPE4XAs/ZXBgHOO3jmLIZ6S+XRdh+8s2orT5IzsBOdGE0oedkXL631OuOLofHIG7bviGFqiaKhA4/zUCitl54cMgGtH5e7O/Tkb3QLuU1+KlOcUcNP0+doaawH/Gpua3dNo+Z7SSJ2A7ozGJL+lvU2Ujg17tv7AJh7p9IbYOz7/1Vf8+vNfMWwucN4VJyoDzhOHvZmRTNPE+w/viTHiuo7tZmAYNvR9z2azoe8trlWek6bp7ri+vgYqIJgmi898OBy4u/uYnEWt/MXFBcfjkYeHB/q+5/Lyku12WyKEtEms/uRDms/UbcejRQS6ubk5EYjOAYpSLgP0JPg5FGJkfHykF8cxHJhQHh8eLFxn5wg6EaLtMFkUkZqxsiqd9GRsi+Yy2g6DSqUHRs9q1A3K+arhXGrMrdipcKe6qppJ75kL5Y+lhrzygvyclj5p7qumHaaUi8wdspv1LI0GW6Ss3VZpsSqApU8zOZzz2VbRkr9JS6/OrNIlvV65uDjVTrh1/nEOGJcdh5nJoGmu8yadkqPL/fmBb2nLufP/iM/8yYNujRCOEEbLLkl0xPSHJIelqMl50iKXOHXIqEjAzEg6RYJjPER87xHf2+QmIn1PPE4cd3vud8q4d9y8vcQPzrLAxWjA20pDAQxp0lC3wTOgU4WJwKTCRCSI56gWgq8XRy++gKmgUupzCWwfNWnBw8RxHJlGZXeI7EdLVCPJ7lSiadcsxJ/DSbI/P1rWyGkccV1nQDBGphgS3LdMmnSO+zjhDweOLtJFl4OOpAxUmOmLE7bAJQbABxy21bu0Rm61XfOELLYsM7hrtQsVKp+CtieAtz5fbu36KrhPp6pjYdM4qva4bfQJFkiEWDMYj5EQHWM04H0IgeMULAJPAudJh5ninFdirgiTJBOa/DwcyGlkBSHb20rJTlpxiSRBMWmDMSfhk+6SrMM6r7FYP1dwH3UOtMcaYW/NcE6J9dJUZa3GvHbW/N7L/NMaL/+kDpESkg9VxHsDY74yy7L9vdgGb9N/t3bkIVjGuzAp4eERRRHnEZdjjVuEu2EwG/Ku780J01lIRBmNdphmNDnNJiadQ91lO8/tUB04JYe2m83ZPF6xASF1vmj7TYx2teNio1IBRmzG3q+MTwvmTGBsRktXZkYj8OV5l5OHRW2jPC2AGUlgzQ6aagqC8TDx774L/F/+2c/43/2sZ3RX/N/+7lsuv/qcy6srzMRKTVZx6f7e0XvhYjvws6++YntxmZy0J6ZxYn848Ph4TwgGmHxypB2Gga7r6fuuyZBp/en9wGYz8OrVjfVbDAWET9PEZrPh8vISlGK2VOZ70YS24Ggxbxdg8vlDZynKl/W09S0BcPsclxb63d0tHz984Juvv+aw31kirBj527/9W9798J63n33CF19+ztX1jUXpiDUhleZ6F4J1PqqG28xJySCsaDhDKdtmBc3a4qJ0aPpu7Z0g08SMnFeEeM1a6/zsDO7rmiilmzla3jHXJ2kXWhzOtUmVpMyZdihnu5NS7bBrFJrFkdjpKd+cU8Y2JOy83MuFvLaPTxrB+bllcldSaqTIY/l7u6NVX6jWrI1Q9ec4nqrqHxNkL4+fPOiOGnm435WQcbbl6ogBQEyjGCMygR6VgZ5j9LA/4oPDq0c08nj7yNQ5QnIMtBjAgCav4WkijIHHu8DD7YG3b16xvbkg9oHQHYkueXQ72+pVZ85QOWFN1V83ofUEi5ktgYnqDCVEfCrlGy1nhzBgZiZBI4cQeJwi0xTZT5FxsijeWbPdO0tk0yUzksLCkpZuPB7pnGNUOMRIwBWQ5LzgNj1T58yJMmlvnZKAt3HLzildSHasicBI0uC0+00t8FoS+RW41t7UELsFAVFZrsP6jk9oAU6etqKlnbW7JXzNA1ssuQTdNTxSggLSzgEQfNqB6UCkhHdUTQk4mtCIOW75lLTlYwjs1cxZslNQSPeRYtNrsq+3FNoJdKf2VuOfRlss9ax17RyILd/xlPkLc0dZynuvQ4Snj9Yx7/T+qqk9a8JABd8nIJBTOJ/vizEWLVMBAfmZJPMJzTbGimaNeZr7vutm2rQMxmOMSIy25R4mo1eJeY9TsN0Ajdw/7kk8FSE79PnkNJUdO/tiquCcMpknSHkzn17MCbgUh7lzye48Z/nsXHGwyvkJGpzRdE6KlqBaMme2GvSiWLdOTOcawJHOt6DRNUxUiw/BkvFX6E8S3uxZrVPpugCWmXVM9V5ev+Y/ffwN/9fv9lw5x/cPex6v/oKfXb9GugywhJzARRKjDxYwvSRi8t6x0R7dws31dXlWTmc/jiO7h8eSbTBqxDtvEU8uLnBikXhccqTNwPrm5maW7tt0ObHsOoaUf0LEFCqS+tH/GbTfWds+77s6b9tz+cjRMBDbSVNV/vDNN/z27/6jge3jEY3mnBwVjocD3797x+3tB377n37L9uKKf/nXf82rV6/S1GjqbwBqi6hac40WQJPoe3ac3u12JY163gXyXWdO0s6tz5flO2r7W0/K5dDyQvUnyUJ87bO5ICpiZpi5vcVs5AyfymC5nMr0WRqel88tQfcMqNeydknIse2XxWsdEU5o7jPHWWEw+WIku/3iB5GTFJUY2JkjUWhRZa7nwwa+ZPr/55iUPKngeU7InWv+XtyGnzzo1qh8/HAHSVrshoEYHSGk0H+GZkBNk9f7Ho9jHCNxCqb1BsIhMgWYnACOgDElp94iZ2iHxpE4BR4Pgbjf8eY4MNx0TD2ojwgOdRHtAtIF1CviajIdW6wCrqZMdSJ4hRx1O2COipYJMzlNOtvyH8SxEWEjYuYmaaGOAabJNG6dE7MTHzxD5y3EYYohPGlgirFoo8I00WkyhVB7Z00N7b0v266dr/2ozRaeACRtkhdvQEcV64nEazPEe2LOrdqiPXHtaUYzt1/7zwXdWVuQqxStmbeaIrTkxgBsJiEV3rVAVbCIFzYPMqNJFr6FyHSFKWUtdwZGYwHdphkYg/A4ijl7hshhUo4aS1bSSA7M7GobWmabyY0kzWUBm0WMoeooq0PNHKS3Wpx5n5w7CpNa9H02NaFA3fk1u3dJ1xqQ3WhXV597pnXtfJkBD5fqV+oW8QKYaAIwpU8araxTLU6fnaadjnxvE4NcU7a8/IygMO4nFLMrd6lfTctta3uzbWy/+wrIvQhMUxL1J0TMlMB7G0sr5+m8AXEBi9KSAUq71rNQYieAFKNfFSSZFmQhuGDqvApqb6vqTDNebluA7ga313PUOZkB91NjnAHRJ599wptPb7AkSY7PgzeQLRGtM3/GcVUbJ9ne03c+gX8TiKvwCsMwrM6HnO57v99z9/EjANuLLVeba7P1b+yzc6/aq8nMQS77CrXP0OSXMANhaV7kLIIFmGkz28tDMAu/BrTmdrTf2/UwM3ko2l4Yx5G7j7ccjgeLaz4FBCXLozEoqiliVoRXX9ycREk50YA2wnOeB7m4zs5V4NN1XQLyUoShEALj8Wi+MalPfBJ4crn8rFNTpTnkzoJADtuZ+V+5r5mL3lUTEO99EdLb8c3f89F+N/eNWMewjEUpXPiIlWmyJde3SOVbcGh/T/NEx5OXF0/RPD+j8XsSv8qhXUOwmOqtE3BL72Nqk65X/ycff5p2+ul7lnXK8p6V29slV4TJJ9r2kwfdTjxxMluf4eqCq6tXdJsNOY6t4hGviSkB+4lNiGiYkDARUlzbzaZDfPKqzmoVNU06KRC/iGnAJTqmg/L+jx/Z7Db4rUN6IYd3ll7wW2G4EKQHTdoixbbvPWJJN6QmzTGon4Gs/aOa38LMOAZn0U+yxDz4jo2Hg490vTlLbvqebd+x7R2bLmXkI6WGj8rkhX7o6WO0cEOCbXN3Ar4j+glVGLqBwff03nPVbxk6D4wEnZI5tuKi4KOFI9xeOTpnIQ2dmP15keLTWD23kJ/SfrdMYLlF95I6n2TOZwifnaiM3bW8a/WetOUnS7MaZihCEqi1Ma8a2Tb04KKBzXPsGdsZYDbCNYo5rToVNMAhTBzCRAjKcYocRtvNmKZYbOFqiEtrrpmuWMKgqJJTrywOLTGmq4PNstzcZjpJD7M+a8nO7J1PNAhLiCzlnZ8ikq02rDxTlxB+0epWy922M7c9mmDURlcAiob83NzM50tYzZRIBFXwvjDvUmfJilvPzZ6ZfscpcLx7KOdFwDufhGWPc0k73ltUJ+/MtraYRB2slzyugBJJZiriBdfZdwuD52d96SUWTlJwNpw4VNncavplVWhdrr3UX1kAghXhq5arNWX6oE2CMaGTPmn9BDr7DAvQtgR+XVcj03S9T8OvnOjdGnqNZsdTpe87Li62vH51QwiRYwKBTqQAERGHuBShwrmUI2D+Srb974rw0hg3pL5v5ohGdKrO0iIWMjbTnAImVdFgfGmaJvb7fUlN3oLC/Hs5lwsApTq3aUzJ6WLEOS3YQon03cBme8Hl5RVffvklwzCsro+ynsp8TuNfbJK0CD9VKVDb2R5Z023CawLhMbI/HMoY9n1vtLhZ9975IuBlQNmC7hiN8uQQrd6ZzWUeu6rBdokfuETX5+1s6ZuksS6fIogsY3DPhUwbW6v/lGO2PjTtPU0427M88ZxKol7Nfi/FCiDOo4QshdA2cVeuY15nfeafAW+fzCdYe99T3nHqwt/y2dSnuig3A9Bz09L04LJWlm1aO37yoFtRYrAFdXnpuLq8QX3HFCNj1BQLy8qKRjgGxo8PdONott7Oc/nqglef3hD7jslJiUaS0qBBVHSaiMeIGdM64lE5HA5wjKg6ZBTwSnQRF5XNxWCxsXVKizpaRBFJwDuFK/QJRDsSYckAKG27iCS7bCcM3jM4Z1ko89Zlb/bYlrTHs+k7Lvue684zJMk4qnKMkT3Kth/YbUYkRLTr0CyN957L19fs7nbsHvfo0KG+w0lHLxsuux7FM8Y9h/2Bb377DdN9QI6RN8PAl//6n/HqumerE10DxlpJvT3OrfeXAu+n7vsx11af25aX2tZz7Wl/V63VKYFMX2bnFJrY3+3Dap+JzPuxaCzadonQpX1+hyC944rOhE7nko14cjyJdv84TRZ5JZk6xKCMIfAYI8dJOQaLypJHU7UCfAP5Blxy+5Yjl7UerLy7kViXErucdGyNUbw6dpKElyXgojDqJUPO10gMsSXKLeAqwLwtA0YDsqpZdQawi0ZykcRn9tz8PRFgUS1mFqWexMxRxeFnAK/U0dyTNeIl9XUG45qcc6dQQvgJCTCmtd55h/Peoq10fYr+ZEw+Z6pDIEoyL3EOxEKM5ggafYqo4p0rfyKcrJMMmcswNd2zNrxVI1d3laLUdz9/ZPown3Yu/ztbx4pP0Tda0NYCPZ/C0IqQIsfM5/gapZoB0gZ0eG9CWc2QaACZBJjHUAMxVlvwtFubAFu7e1gFHUnmjLUX8jwkOf9OBcjmnTGbZ9nuH8yE5an43ueAQoyRjx8/IiJcXl7y+PCQ5mSiRU7YbC/44osvQIxX3T8+WuKqEOi6jpsmPnreTSmPK/O96WolKcW0hOctwiDM+n2pCVdNCa9iZEo7EXm9mKNyx6YfVnYgqkDqnce5ec4DyMJR5VFqX6rNdBb6GnCdX2rJK5brou5wNWNT7lvXTD/N99b5XUtmrB+Tc3+K1BUKXYnFnl5bjN5iUZvN9r2kwLU+mdHlRXt+3PFj7LpPoX57tC0o86YpI5yug/Xf83dZiwn+1PGTB91OhJvra25vHwjHQKcdU7CkChIBcQnARqZj4Pi4JxyOdNHiv/Xbgc8/e8vV1ZbJOUZRy7JYHDOyvdGGLjhkMsfNeFCmzYUlVQlKTGZQvosMF5HtVnH9EXUT6imA24nQSYrNK5alUkTQCFFDcT6JUYohgBdPl8BxThl/JDFw57nsB6KPpg33HRed49IJAzatgpjeZ8pM3XnUJ21mXgBOkMHTXQz4MKG9S8l3OsLkCOLo/MDglCiR40Pg7g+P6C6w4yPXUfjV51f84tMLhstMiM4Az/I79fAz8/Ac8XgpmH6JNvwcs0ktXBDg9XKzLdkVbcJqO2RuU53PzT/bU7IoUp+T9Cnptxn2tFEPlOzpTwKsHap9SoxSnxlQJoXjFDmOwZIIBbPDm6L5DtxOkbsUJlGJ1WilEG1fQv/NRC6tLEzmnKcp0yCmZ44MsArpToxtQQrTvyt6jCcIYQs47DlSbN2VU7CegbdzrmgfC9aUuoV9btdmmSHUtZqi3I7cP1Rw4ZLWXFTN9peUUCi9eSmXtnfHMXA8jrV3NAlNzkDE0PWm5e2TxrzrcM6jhAI0SruSfa89MyXs8B7vxGKWp611SQ5jeTxM+xopbE0zoCQJlz69d3b2zGvUxL5mlNZGbrbW1i1C63yf1dCA8Gyy45zgfdWEyuKeOv+qsJDPlWvqGbp5/OcciUExx7EQYw1fGSbCSB1f5+Ygz0lZQy7FaNcUTcYlm101W7gaAjM5gMQpOfe6UObr3d1diZayNNuZ7RA1764xctw98v0fv4MwMU0jzlks++12yxdffM719Q339/cAfPLZp7z57DMuLi4QEe7v79ntdnjv+eSTT3DOlXCLu8OBcZyYgim+8rNbTX37mcu02sS2zDzilOGGrOXWIggls6y0DmeRoWRhU50FOtcqWiqaLu2loe0LsO2kbTG1f6X53YwBs5KVftq1ufJCZpUIS8LXkrx2dyEkJcwUphKtqe3PU0op852tltRrI2ynd1s7Mnc6f6zfV+s/f+9TbOTHmp+sAexTE6l1R3Jri5ycWzt+8qDbu46vvvwK794xHpXd/Z5+c4GPDokUg/0YJqbDHheUwXnzjgV0UsJ+5Hi/J3hPTEwD35EH0xzbAsfxyHSc0KMj7mE6WkINjYBzOC+oVzZ9x+AD4nzSfqulXaZ1sDOTkQ6XMsJZIpk4Je9dVdQ7enE46QDHMTomTPsTo6UzJSo90PmO3nk2zrMBNkkpFzDQXRyE8kL13uzCo22GTlhSIN97Lm8uca5DozAdA3ePO/rLDgaH6zvGvRImx3EUet0Qwp6///vfc/v7iav//T/n6pefmGKpSfRSj7nNtV1fGdhnCc+i+Mq1ZwHvE+VOtN0sgHFTfk2YeCnoXnve8lwmSjNQv1avVNaPVM2LNGQtZ0HNLfQuJWbKZxIqFwQGB9Tseln7ESJ8ezjwH3YfmcJoMa8jENPWmoLEyX5He6iqsyg6BZik+ECS4w6IhaFLHRjnXME+zgpfqe3plljesM4to4ctiG4IYFvZQmtWjhQxQTJR1YL2Cxiw27IZQBqXWdlz7Z9rWJ8iyAXwtLXl+1Pbs71tASIZtKSt9ph28IrjV6OVnULkOO2TY5gNpogroLOYW3QdXdfjfY0Q0ToDmgOmVgDjHJ3vy5b/4D2dT/bH5NmYwHl6uZmWSRRVs2OvTmqN+rPBLzNh6VyvL8Y4l5sJQWBChEh5j9zv7sxcrPdr3emhbjlr9sJDivOd8Rez548ZGCeQrMWhOiYTwZhAX57vauH4nLPxTJE7MhRxyWRyKdDltobkoPndd9+x2Wy4vroyf6IE9PO41j6pMam++8M3/P53/4CgvHn9ml/88hf8i7/6K26ur9kMAzFGfv/113R9z1dffcXVqxv6zaZE9Lm8vOTLL7/keDzy93//9/R9z6tXr7i+vjat+W7H+w8fs0uW7Tyf7e+5+182eSnlaIBjFn7TOPquo0+CYXZONYVFoeKNEmlBb5vfhUfM+MQcRLfXqtLhFJSVu9f4UVkrC74641kWVIFEszM9UDBBT3PW0JqTYErCWIGxJ4Cy9uWPPU6UHU9ePV/y+Zpf0JYz9HXt/DkAfQq28/eXteEpPPJPAHQLn1xfEw4Tv//6jzzePXAZHKqOaVLGw2R2ZmFEpgNxPyJR0SmAClEjjz88cjw4gnTgzfZRvEvZ0Ay0TyEwxZHpOBKPEQmWPEY1bdk6j/Mdvt/gpccxJe10B9h2zETVdOkE0Rkgtm3O5HASbZs/5MnvelRT5voQiDHg1FLkTtE07M6p2W93FufXJyAPQnQU7fhBlAdgJ8roHS4l9IlqqcuziWY/dGj06OjY3Ql3H3fcs+PywnNxLRyme7YXG27eOuLtAbfD7AO3ZkPqnQcXT8C0MYrqyDeP052PueT/tAb6/Lm18y8pdwq2pREATsHY+r0VuKULq+/S3nOuDVLunZddK9+ap1StoZbf7WcG8TMtTXrXWnbRf8k5KGpkE0Zivyd0R4PP0eGiRQ1ymJ9CHCNxsl2bPjouo7DFJfMUxyQwRdtTmtShmlIvKcm5yTTKeeM9Uk1dTsahvLRp3YuL3GKKCRRtdR7PFJ0rbYlnwJZ6aUUzXbXW2FBTtRzJ+iTtHlBBcC6rc8Lc1tluQ7bHiaYkgXltvktTV35AbBiEpJeamc6kOloTFqVqY72anS5osrSzWNP7/TGVrVpD7yy6is8mK71vzCQEJx4nU4m+4ZzQ+WxK4emTM6f3fdEuO2emeDYlskt2DjeqrdSRxpUZ8M79dWKik/tSKji1/qlgWkRozTwy6Ja6TOp46LyemT6wTKTctFxKyk7QpBGvgsY8LlYua8FVc/rqvLNUTYo0QtDANE7mxBiiZTb1vmrDoQLWxdzqvOf6+prb21v2+z1vXr2yuRNj8TmYQt31dWiy+e/4/NPPeLi7Y7vd8Otf/RLfWdZJjxCmifcfPvD4+Ij3nt9//XtuHt/wi1/+soxFjJEffviB9+/f8+HDB7z3fPvtt6VfP/n0U/phm0Z4HQBpcz7P8XItC5i51xMtLfbzzV+mr0VRkeZHVZ7UmVTmVp40zVywa20r629Xvueyc0r2NG+TUq7eq7PrZY2IGP9O7z/lDMtRi3lIMQ1ZPO/k94/UBq8dBcQ3b/K/1vFU+88B5/bcc2WWx3x8z5gVPXP85EG3E+G673kctmxcjwSFSSFGjvd7xv2IhkicJpj2hP2OMAYkRpxaJsjp/oiOB4JMBHHFeSwmFJqlwkjIKQmROBbMGMTscl3n2Yw9nfa4cMS5yEXaqh3jkUOcSt2SbaKkAQghnQsBDaaBPupEkIlOLdSWF8V52zI8qqJiIcK8OLbOFrWKtcml7c2AMmrkGAIPMbAXYXKOIU62nRmNwBMlmcE4FMdhpxzvA+HOczgeefSPXFzDp19ecfPlNeEt7N/f84e/+3umfeSI0G03aYuzcsAZ4WgImR2nMvA5orX++2mpcVnmJaB9DXhn5lVB+DpAsnNUiNCqOYpdqRQgYLS7bp/qos4Z0Mq/Ux2n4LglzLWOou8rtwp554PMYLSte+7s2balMCYndETGZIylkmK8Z6chzaEvlV7gxju+cMJbFQLCiGdS5RAOqAqPrufuCA+7IzEqm2GD7wcmEUbSfHKe0SXQrlpCZVlbK2lXVaIoISXGKkSwmWsVxJUBy/i1drc2Y9L0gWruo8ZutwAwAyq+Idha7qtAquw+NKB+zU58qQFfCgCrjCC9iGvvX5YTM+BoGW8GLTP3rQxeGg1hbktm6po0teFohm/6CJJDDSZNeN8P9F2fnAYdfd9bxtw0ft458j6IE4fzlldg6DoLsecdQ9KSl9jldTnVeS5akkRBsSgtfVbfvw5ZTsRUNlqoO5Jd1xUTDAuxuB4xJWYaUS7VXjXA2J4rXWu0UsWUEZpsaLX2bxYPNWXDnWIkNLbZsTFJGfrOfA+yE24ITEmTKVC010A1OxOhc47PP/2Ur7/+mo8fP/L69Wu6rmvmWApX2AhZnXc8Hh4JYWQYrgkxQjJtQmAMEx8f7vnh9kOJRf6rX/+ar37+c+uv1OasSV86IYcYGaeJfrBOiou515qLtJrrDM5nQtcJwJbZn8sAW+bC1BwoVd41p7vlaqpDSj2zOdfSh/RzGS+7BWz13IwCc+4IbfKu5NCawXaeT3GFVDx1/KmA+ykg/2MAd338uXacoX/P1jvf8XhJ+ZccNvbVjM7WzGkoglPBbH785EG3iOXQu3t/hx4D282Aj44QxbTR04ROCYVOAqMSJ7Vo1iI4BRcCMo6WrU9d2p6tHaOAV00+mTEx1VZDFi0usnoGp3STIIcOYaIbPIN4YpzwI3ifQG2MyYZ7YiwrPjF/TLPi0vZQjuHc+Y7t0NN3jkkD8XgwzYdRCsQLwcEx2dhmP/cYLaHOx2nkIQZUlK2DISXNmUQ4iGXNNBeunnhwHO8mph2EvRIPgUkskov/cuD162twyt2g/PabietXN/zmL37B5aevUT8lItQ6eCRpAEDWPavzeK4M8qzkTKO8APA/Wpt95tzJ7wxRl0R0tXyjQZ4x+voep+d1BnLP3V+YcGmVfc4I2+LelolURmNljZ5kbkPhHiX9vKxp6a03HFIET00+x6JmbhVjREJAFC5wfI7yVizspagjxMjxeIDHR3COTnpuv7vl8cMdUSNjf8EwbKDrbFtdI67rGfsN6ju86/C9peTuB3N82otpwyPQKSmGta99o03/53duwJDOnO2MiZdkLCKleITSf3m3LGu682OyxU2ek5oEhIjislPmmeMpwN3+XjvqrsdyZdg7LLfoMyBfavGbAgWIL0F3294lGAdK0osQlXHcg+5KW0oGPl9jkGcwXsIfesfBjQV8Op+15JYXwHmzGR9Sanaf6upcBtymRDCnZqpgNe8VvKvrxzVrBYRhGErcZ5HI0kE6LwCXPSpWQHfu57LjQDPtNMfnz5FprKFlJwUSILe56FUs+Zua+U/JnhoTgtfkxEgWiCI14UhSPjXzIYPQrut4dXPDD99/z2YYuLy44PbDB24/3vL2zetkc233ZPn27uMdIsLFxQXjOJa/x8dHPnz4wMP9Pb/89a+JMfL3f/d3Rr/SS2UNdIyRcRwZBkssFJMAq6qpzxOgTCZRrTAyE0KbOdXSvb7v5wC7iXNedxFlxpOyTXxdArk+Vj/zOIswe36+9zxPyiNRr6vKyfOgCvpZ0LW8JOZvE5JwNTVa/Vrhqbz93PGcmcVLlFxrj5TF5wtbw7x/dHFtUXrR9ufMQV5yPIcX5mOcaUATDepHPe2fAOhG4eP7e/74zfccj8JFr/hB0RBhCmbapAbMFc9xsi1vj6BiUR0MIExpyyUFQktgpG5ZRhwGOgVNjkvJvk4VBIaNg7Dj/oMivXD51hOu4HGcUO3wPmefEpBI1Ikj5oiZgZPiUhxvG64QsqQPEiOXG1+0Qp0LTGEEJ0RnTpGTUAiXixWEIJbg4lJBup7LruNKzM72OAY+jiO7aHGBNTgeP0b0UZC9wnEkHkYgcJCJu7sdn331FvFH+gv48tef88svv+TXn7ymkyOiASGHT2qZjzQz8PwiXv4uy+6k3NJOcQWonty2LmVWrWfz0S4sXYDYFyzE5feWQZwsZGm2r594n7mUnMGynCzsJfOZfWd+/7I9zcistlWSABWPkUEExVk8cE0Rf0JEQ8SpMiBcifIqfc8RgaZj4PH+gawt+nj7gYf37/BToHeOblIk7oudYQyBo8JRHWOKviLi8F1v2Rs7T7fZMlxs4eKCINB5syOOvkd8Z47BVE1z0HmUk9lrJoCezUXK91q6fLhix12suc0UJ8YK3pMJmRPTwrc7JUsm0J5rv5+YmSyOFoSs/baXcEUbvwTwS+B9FogvjnOCwFKbtHyXvIM4ThNylJn208Czo88JTrw3kwmxWOJ5t8WcCz22w6L4zhKD5cyeThybYcB7V+KPOydoyecaccIMTLc7QEMS6LIJgpO2/5VqvlXng33PZSrIy1Re0twpc08tAlZSkTT9RirkGm1lMjVB07kcqk2LrW7WCudoNhWkYllRVYtdNTGWCCA5+si333zDF198gfeeLz7/gk3vOR72FtM9gdgpTNw/3KdQkvDu3TtijLx69YqrqysOhwMfPnxgt9vx6tUr/tW//tdcXV0xZdCfxnkcR3a7HVdXV+bEmV7ZzCAs4ZBlX57vLAoUH4JWY53pdgbAVfGT5guUxD5ltEvZaqY1F6A4+b7kAdUMZQnQT+Nxt0fVluddBTOms7WQM9qavXVNh76wV8/ju/KMH4m3z4LWP9exbOFz9Wdhozlz5vxpnS/VZD8Fql+ixFs/1+yM/8hR+MmD7hgj//E//D2Ptwc6f83D+yOHDhBhGkNO1YdqNAAexWyxXdU6hGkyDYPkdDSV0WZiZXZ0EzFMCBHRHDjNAK50PeEIdx8n7nbw9vO3XF58hsZQc8VJh6ojRgPd4jv2uzsedjvEC11vaaFV0lZrVMIUTTkVQXphwHPhOo5hsmyWKRJPENhPkeAodpCitu07aeSgSoLCbMXxqhu47jqcCmMHyg45Hpic8rgfOd5H4qMzG/hxQoI9bDqMvH93y+c/f8PNJz3Xr6/4q+vfsO09IqMBbiU5xbXwjUSJ0rnMpBpZcAm118B3uZe5M5M219dB7TowBWpGvaa1xo7r42Z1yukCq3fJ/GxhBJpKyOxh0vTJ2kJf15w0z5wR+WZxr2hY1rT0LQhfe6eTe/Oh2JxIjMpjwJgQcTFNShW8mh03CAdV3Bg47kd2+wPed3TDwN3jjm/f3bI7THRic7RzZr0dscgOxIBEpY+WTEoV0+7ts88CROfwm42FZlM1m3HfEZxjRJi8x2+2XGw2bC4vGIYe+g3ReYvik4ZGRZLzliNgyVyEbBKUI5lY9B8zo9ESBUhQcmbDHF8ZFJ+EX3U23lkxWSTKhPolE5zE9LVdLssA2MznzNI0pQzVCvheYxprGvYl4D4nWOb7l9r55TPPAfP2e9aCTqopu2GsazuBnWJrnZL7VJvytIO5OyTlhN2Ty/edx/uOYehNQ+6ycObovJTQgLbITagjAftsYlJfCCCe9ommNp4sN2lAdxbfkk9NEed80XpnzWYG3KpptzVHK0ma8ZCXW7RryQIygfYMutUE5U6LPa9pyCvIH4aBy4sN3377Hb///T/w1VdfsRm2QDZbEHyMPOz37Pd7gAKWP/30U7z3bDabAqQB7u7u6PueN2/eICIcj8cyHiEEfvjhB0SEm5sbus6y81ZhJM2FqCa0Mp/vM+21VOpbaGSmk2Uc2igkK+C60PnZbem71HPSPCM/VWu7AMRZf+cEOS1ItPGz7zX9eSyZTSuwrgLV8lie+c8F13/uY0YZWgHhmfteCvrXNNhP3XOO/hX+9wRdm923fNbyXBEKl6qr821bHj950H08jtx+eERDB+qJ6phGkrbak1y6U2pytcQ0jZZKMNu3rNKuKYwpBC8mtYQmDXd1TTSptGhBnHLzasubL1/z+rMrpFfCCCH2FvdbrA5NxHQMkR9uD0RRNtee6EBcJCTmKwjTJMR9wEeQa08vHZ06DlM0h84oBFHGaOA82zzaO1iM1uL9HpVOLNb3xrqFgCDO00lHp6NpA+MBPSi6i7jDiJsmnAZUR6bjgYcf7jk+fI58+sb6a+iILiIacNnXvInLOZvEGdmgIG42IfPRYMp67gWgobnYPG4OzFsgvATxLY3WhsgKFSzNW9mA7cRHW01MuVY+G/MA6nOaKVdAeMXH0mjJToH5HHQvtPhnAXV9lqyUawFOwjinhyr9FIguJCYSkRgKt/eaDJWcZxOFSeFxGvFjgBDw/YA4z/3jju9/+MDDw95MMsRAwyEciSmjZkwAOxbNXopTkM5nhuZVCPuAdK7YM2/FgQqHMPFwHFFg8g7ZDNB7pOs4ug7pezaXG6TvcUPPsOnpXI92Zn4VtCNIj0pMsZON1liYtrRVnsEWFv6TzNTTtaz1NkacbCwz/pJY4xPH1Ocpx3qJ6tJo5kss5jxmL2Sia4D8Jcezu1E6N385d89LmOqMoTZa2wJUtCY7YRwJydHPpeQy4hx9Mlnpu+QYn2OJlxCGNrd92lXsOsfFZqBLJitd3zH0vYXKVBij0ku2I48VtGVThGa9GtiiCOuz/tAcCCerCU7DWEZcFUYW715jI9c/1/6OSRWUNN85yZImzXjOYJvrQmt4S8Ponl/+8uf88MOGb775PT9sNrx985qLiwsD1NPE3d0d79+/5927d/R9X0INxhh58+YNmyT4/uIXvwDg7u6eaXrH69dWD8Dj4yPv379nu93y2WefFfv0DLpb+ua8K9ktl4qDAr7TOZGadn2m3KDSs7m/UVOvtL/n47YE+8sxtUG1+ZBmcWpPTkbT+D+EyOF4rBkbG8Ent8xI2mKtnPle7jm7lp/glc8cT/LZFz7tPwdoP2UWsqYMaHfVsilROjFfiyvnlnX9Yxy17vPP+MmD7mkKqA70bqCnp5e+SPsanZmAoEXCPegEOqFiqc9FLeJG2XjOWrRGyyA5NXPFWQloeRDFDXBx4/n5b77kk6/e4gZvmrVJub/fsz/scX3H5eUWHByPE+Mxcvew5w/vHnjzxRu2fkD9EfXWjhgi0JsAcZzoo9AHh1PHOEX2h5HpGIoTSM4seMCyDY5JaJiSNsNFxUXYeIv5HSUSLK87GgKH/d6IsAhd33E83BH2niEE+hgQAqoTQoA40buIE7UY4NIRNWn/NQdumjsmFT1EJnhtP7ZHAuQv2dY5SR3elGkX25mKTk5lYq8r5apWY1529l2a7zpvz7Ltq5ry5lkzZrA4uQa+l/eXW2avsvL8BaqeMTzy+FRClomaUxBbZAiCi8GAdwLAAlyI8HqKXAC7KfD97S1vtlf0vmPcj9w/3HH/8MCH23tCsGdFjRaDPu1O2RZ5IqZFOrFFamMVk1CshCgWIWiyOIi2uWDvt+0dvesYpyOqEz5YXHtRi5s/HSLdQcAL9J7uYsPF5RXDpQdn2sjJbdDBdsNUO4I4xjhAFEYVRrqiAVeUkUjEWV8JBEJJeZzFzUaHW6NspC5XMedpFdOalXCPBThrHTPmTOd0jp2eW9OAr5mTLLXfy+Opa089f+33UlOuYrsJDZSpZbOdb/pun3bf/jgix2Oh45BswZPdtyvxxA2Md13Hw+MBJyQHT4uwcvvhg/kfTJHtdmBIYLwfOoZ+oO87LFBI1ar7tEuzXI9QxymbKOaXUjtJnQfJPCSZkhSNtSNFw6nCyAx0Z/4VQZ0WrbglxsHmjkuadGcCAlkTDqgKXef52c++5M3bN3x4/57379/z/fffg8hMwDmOE4fjyPbikqvrV2y3G7z3PDw84HzP1fUrhqHn7Sef8XB/x93dHX/84x8tfGRK2X5xcVG0vM5ZwqZ2blQNdrNdX+haBsrS0LylTbQUOugW50/Ku3k9a3N0CbpZKFLa3RqzvTbhcExZG9dMrtpDm88Zf9PzXiBPgtqXydQnoPUlx5+j7DmN9XN1LwUhaHhdmjPnwnouKjq7a+Bmxc7VVen37OyZ8S31PdGknzzobrVeMTsoqTFcY9wGGMVNKCPECSeWOUdEwSmSbK3RlJA90aNYQjmZ00Kljh5F8Q4uX3l+9Zdf8sUvP8NtHCO2zR0n5eFhx/fff8/lxZbXb9+w2W5QDXgdef/tO96/36GxIxw9optETEdMCxZ5vNsx3kbcfqR3jstP3tI7z5hMS66GAQVGDYyqTChHVQ5RGUUtiknSqHQKWwxg+JyCmgjquH944Pv3P3D19jW4if39jt39A324MhMCbRgEZm/ZDwO7EIhlFwECDqcW19aIY7Z0zbfO9b6rgLhE1TiPl+3a06B8Bi6euPdkwa5cX9a0DnRXhAc9vf4UMS+fYs9aniuYM/+bgFfeJl3WUxzInmjrUnO0dr7hURWQpZBiLjF+iRTHSsGie9/EyKsI4hzHGHjY7dFD5OH2nuNu5HA8Mk4haXeT66+k5CCRGYOaAbusEcru+I1GMJAyLyYnYU0RiDqBrhec7zgeRqZpBBydOIuxL8lPI0VgGIaADxNytChAnQsMvqP3llgK34GzSCwxwhR7Ju1Nc6gDY/TsojClfLNRHQTlqB1RXRJWbSyjCDEKJcJyGYsEOlQLOF+Mku2+rVw5dyzH/inm9hyA/1/jkEVUi7YVumC8BnoTZE3b9nlnJAOhbCu8BD8ZfDsnxY687zz7gwGm27t77h/sOc7XMIJ91zMMHX3fMQwDm2HgYrNh6B19J3ReZolswAS9nObM1pYWSUuz5J5At4omc6oKTubfY4qU06yXaLkhNGWTncyuyYTQGIkJiJcdFE7XGs5xcXHB5eUlv/j5zwtwJM2Z43FkGLZ8vL/n7dtPipmJOUZOKXRkTzavuLm54erqsoxFXs85cslaVJEWRFnPnaeZ8/Onnzmb5zkALSJmEvJEvWX2FbJj/Z+dGU2LHZimWDM2MrvF5mEzj1dXX6vdXbv+n3E8B36fK/dj622vveQZLU1a5VdwOj/OHSuA+k85nqR9c6b8snueOX7yoBshxZs24jrGCdHsIAnohMhE4AAciGFCUygzIdI7R98NiHQgHR4BsS23EAJhihXkJK25mBqE4XLgX//bf83rzy4Yw8jdx0f8ZY8bHLvjPbvDI69fv+LTt2+LkwjOIVGYdoofNwwo+qiMD5EBD25CCUyHwPTxCA+OrRfeXg28vblgcGLxtDvHZjPgvWci8DgeuY1HRg3Vsz21u0PYOGEjju3QGyNI5h/TNPHDDz/Q9QPdMKBy5Lg/wBSRaUKi9ZMmfZpzjs55DiFy1EAIlvb9FY7JC1EcENKkk0pdWq1csxhOJ2djSlHun0H3M/fZln2aEmfKUK8vFvKJE0oDxp/SGJ4Shnyfntz7YuC9Vn/eKVi5pqm9y/c2UFLvbrjYWYx2Asqauuu4VXCgqkjQos11ovQINwpv1LTdO1UOx5HxcOTDfsfj/Z4waooRTwIAmkyTSPGKK1iCBmwkQOKyhqllUAlYZVtq16U432Fi0mjmAUkomKbAGAI+acWdA+kF75XO0vjBcWSKIG7CdVoS/oi3v25jES1CUHosgVV0tp0f4pFNFHDXqBuYcIxR2R8iITgmeo7ag+8RvyHSExCCCFE8QToDaknDleQrKKtjNqDld8u0XmLbWMa5YXT/2PaeP+bI9KI91jTvLViDpNUWX/ZpCshpBLRsUhGmyQD5NJljZzha2aSBPRz2HMaRvjfb76HvzS68t3jYXddbmEOX8zU4C+PaCdtNzzAMbLdbri4NmPbesR06A4FEkADeWimqxZnEQglKGfasUKrjY9rrqunOZiU5pKDYOY/lpoikBM1mhtJE2TQRINmEF7OeMghadglyv/Vdx+eff85ut+Nv/uZv+PTTT/nlL39ZgPfl5WXtbxJtSHWQ1m3XdSW6iFKjj6hIAdi5iSJtmNXzwNmUNqkvM+1r6qv3zzXikhdYSyOxUI35PUJo0qDHCrTLuOT3XVljZU3m37IwcVyWP3P+Rx2ayeN/HoB+CT1ohcHn6mvfe21tr2mx833n+PHJM/nT+rAV9Gbi1nPP/DPqJH7yoNsJeDla/FHNRMkVzQHSESXYtTiaJllDUihZSCLvHEgHzoM0abPVwughyTYraY3zBPvyq6+4uH7Nd3/8ng+37xGvfPHrzxE1p5TrG8GLM0/u21vTBvTC93/8nocPI3K8pHPKdBt48Hs2X13TbRzOT7y+HKBTDv0DF0Q+f33Bq0ulc0eGXpGhp3OKd0fUKVd9jwbH3WFvgkKy/RM1W9fBdWy6jsF7C/8lFnUiEnjz9i3D5RVHUcZD5PH+EeIEbDDAlpNR2HeJJowcpkiQaHHAUaJ00FkUleJEVO47PZ4Cs5CIbUIcpzVI82/+JhRYKHmLqRKeTA+lBPg9efiT7TsB1g1RX5aXpi0nWuN0TiWZDlBDjuVymrXUC7XNGthvhYglUdIMxGYvkls4f+2iUT/TB5l25jo9IBrpEPoUSaCLE9sYuQmRK98jaqBGxoAeA48PO8KkJcSgmYJZJKCcjTDbnao2z2w0eblbWs23tcuS7SQDELzGtGOV0mq7qlXz3pvjUpyQIPhB8Hi8OLzzaFSm44hOpiE32c/WFUFwvcP1EOOIThMRSwrVeZhiIBwm9BhRPRClY1LzwdCHkXCA6Qjj1BHpCCqI7ywxzOYK9/nPob9KUSVoBsRikyv1XDErgUZcrcfSXOQcgF07XqIJ/zGmJT/mKPWeWYPLmOb52ioQ53TdzN5rsylfY8wpwVOs6MOB8CHifI8KHKfIYTyA7pNJi+JdT+dT+Mp+oEsxyLvOtOXOCc73eP+DhUR00HeezTDQd47NtuPiYsPQezaDRW1xkkIeajKtSbynBVJGH6WMQxEonCBRcC6BayAKqKToJwrRJXBf5FiLQR7TenRaw/SR+1WkOF6GEPHe8+WXX3I4HPjmm2+4vb3l9evXaOJ/IQT6vjdg7Wq8bKh0KtebLZ8zjXQNPcu0fDmOhQ6kgoJWlXaeA+2/7b0iNGmTCq3JJjpgoQxzdugS7aUVRjivqV5bE8t8mv+ogDsfLcL9ERr0lwDvp+yt23N5F6MVmrIyZ3nvOYUUzM09zpV56XHurtn5M7jlz/LAJyr+yYPuofdsNpExHoEOtANxqHQ4dYmgTIh6s7CUCXUBe2sDkyEEyMk9XJ0IWRPSSuslja8qP/zxe+4fH7l7/EiUkS9//jkiYpJwQhUfbj9wf/uR4zTxi1/+go0O3N5+ZDoOdJPZkqtGeHTIoWfoBzoXuMBxceW4vLniVe+4HITOHxKIBZdcQp0zTUkURyeNNBgix/2eOAWGiwtEfCJ4ifBEI3Z9PyCvNuZwOU5MR0cMwtCDDxNOfcqcViXZEGA6RHTyBBfwCch67UDBu4CXFPqoEM91uf5FwPtH3dMQa2g0RdluMQsRGaTMaknPbIjmM+17SntdtBlrhGEJqLW9t0KofG72dgvm4dK5ZQ/PNAZtu9r2Nucy88t6gva57T2mjYt0UdlGIxIXztMBfgxca+TC92iAjx/v+PDwyCSejXgm8Rw0EDTaLoomzVQUcHm9zW0fl1qU3HUn15LmXJCU2TUkYdwR4gQE+kGKacAxmqaqS2uj6z2qZkYWg5kgiBPUJe2crYLqkIeF9NQpEOKIuh7fe0tsNSrT4ch43DFNMAYljJZAJkzecgVEsfeOiuJxvscd90xvP0H6LaaCl6K2kSyMIYX5VziijQ9F5a9L4LwGOs9pjltQ+xRz+8cA3aniJ9f6st3ntGSnYOv0KDTeuRJSrkcZ+p7j4cDV1ZU5AQrFdCVrPmMwH5zDeGQ/jimLJ0WAdd5baMuupx/65ORptuHOIsTS+Q7nYdN7hs6z2fRcbDo2w1DCHw59ChfrciIYMxMsmUwrckQkJ19rhC0x34SYY8ubR6e9e9Jym+1D6tc0z9CUat53RZOuSTi+vLzk1atXfPPNN/zhD38gxliilVxfX+O8nPS/Y30szgKuBQ2ba64rrSLJaGr/pNuMzwvUAAPkqCE1UkgG1e0fZOXU80dbpjrKPlFo9uL12gzSL8rr7OTaPH5KQF7coZVezJ7dPn4BqpfjtSbInwi9kEIlt+JP/Rabcs2NpWHt+R8DgTNVXL+4bMt/3nH+OWd+PzOhfvKgu+s8r14PfJiOjWZUUwYvTdkoI1OcCONEiAElkDxSAGUKERGLvoFIYtQQg6BRLNGObYBZOUxLeX//iByOSC9cv77h008/s2QzYUScMI7m6e2c8Ob1a26uXzGNgWnSlFCD5MzlGR8m7v74QM8V3cbhLz3XVz0XA3ivTC4yuo4M+C3yuKOzpO+MYkYgRMUFZZoi4+5APBzotpdIjBCUSYxtewRCJMTAQZVDjBxDJMSRY9wRY6CPHYERI2q2WxADKJHpEJDgmaJP2QIdgx9wKTChFA1uO8eaxXSG+a2el7kObwks23LLQ2efthQzWGmXdAWhsSzuClIzeJ6vo3PMfdn21d+FIVQg3RKkGfEqDKTpg4VgUrQIzXN08bv93h4toLatXSGHQlulGyKgkT5CHz0eZTuOXEyRG9/TiTHwD/eP3H54YH84In3P26trOnX8cf8+pUPP/gKk9ZasmhsV9xJYFzbbJBGZlU2fZl5WowFYFMOACxYWLqYwaDEo4jwxwHgMBrpVkBDpesV3QIAoydlalSCRjhQVIlqyrWkMRIFpHG2rPigaJ8I0WWbXQ7QYyUHR4NHoUJVssYbk6CVhIrPeVoiaAUzr/gq4U2HJfSe5zvMOkPMdjNMkPO0zn9J2LwXk2Tz5Ew5t6zmzrs4JBy3oXtN4L7/PntvslmjuYwTfO7phMIE0OV8un53/Yg5tmLJEHqdpZpKwPxx4eHwkxpC0vh7vJTlyerquY+h6us4xdD19Z/tlziezvs7KDcl+/GK7YbsZ6LquZJuskTkm82fItuN1sxKnlqAKretLsEyGOC3p6dUJObtlPgegaVdZUXy0dv+zf/bP+M1vfsOHDx949+4dm80mRdKa08casu/8mK6NW6ZRFXg3JLSAKBMsCo0qY2uRu+JYwbW2wNoKrc+FM5P67O4QVdnSHtaHp+W1/PMsFjutsFUSpYeftEsbcJzLa/URyb+Lhl9ZHZ8sSMzGwRn9OQu6SfPNrY8tSvUVW84HVvpjceLPJezL2g89ff4JK39B3WWU5tLDk8dPHnQ75/jFL39ODH/k8X4qzhAxKtEClTA6ZZqOhHiAOIIGxEUE20bOyDAnxrH/kz1cDqmEZaXM2kAVIMWJ3Vxu+NWvfsHbT1+zHx847g9sb67pu9HA9s0Nw2bAecd0OHA4TChdkiwFokPGyP79gdugbDbQf34J11tAmDQwqaCxZ3/Yc3v7ke124Opiy2Uv9GJxhscwcZwi0xSRAFvpcB3c9BsGl2xOgxBixJNCKzlv7xMtCcF0nJh2B6b9gYvRgEZgMovTRHj3MXD/8Mj18S10ngkIXrC4zB6QlJDH+nFlydVvqxNQmvNzpi6SiUcDKeW8/L8GLqpW5ByUb++rmvFMkWYg94XAYO3aahlp3jWrbpatS06yrTmKZUmc97UunqOpbPOx2r5c9yoTSIDbAUyRrcAmBrbOc+k7NgnsT9k8I4AGiHFiuLomjlPauqYkrsoOSbkt7S5T7Q0o2l2pjKKUaAE3eUu4Ol8pps2bJqXrKUQ1Z+objxDGgIgSB2HoU/ZIcWYyFRQS857iRNQR35sNbpwS8I4j9nTbhg/TiE4BDZEwKuEIhqkTQBMzW7Ox1pI4KCdKSoElTsZpCaQz01U9nUfPHefMTuZDvh7q71mm95Iyy2fVh86ev2zPWhvPge72+nP3Qwb+NkFUYDMMNRW8cyf1ZEEhmz7ZSWXbnAeKhnycJkJIcZlHCx33uD8Qwn2il0bTnaNk6Ow6c0zsO7MZN82zAXYngvcdvvNstxszWelTHHLvcCkGubqaPdn6OtNRA+VOxAQGXThmpt9lHyzLuRnEp/lRzAicZRZ1zp0F3Wv9f3ZM0iVbyznZjO2Q2Q6sFYiYki3EmPo6MoWaBr00voxR+zBWf6xzh/OHQvHDOLlw+qCV+usaP1d/BdxFDCphjU9vSDHCVQm0yglNPLBd27Zes79MZYHzXdSZ1loMeCfiswDd9Rmrx1PXaPjb7AZeNBjCsqfru7y0gnMt+zEkTWZYxo4ndBjAPwHQDcKr16/45V90POwm7veREDrGA0wHZdqPBDkixz1RHnGMeAmYPbeQvckRQaMjqgfUiEUj9cWU3dFpcvQQZ7G3Cbz55Io3n98wuYm7/QOW7SzSdY5Xr28YNmbTNsUjkaT5CEc6AoqlopfgiLvA43FH2HrunSN8coMMHSLewvqNI//ff/83fLy746//+l8weOUoDrwQBB6PE3fjyDEEOlUuhw2vrm94c3mNqpm9HKaJaZwYk8133/e4zZbjYTTCv59wR4eOE4FHhghCoJeAogQ1IeDj/S0Xu0/ZXm5Rp3hxZA264IozzGykXjhbZSEaLqVnJ+tLqt1en4HPVlOa7s1k48klL7lMC2TmZhdt+54DB2sgu4Kk01WeAWbWWuY2ZLLRAm+RuZ1cqWNNsyRt3O/1t5/xoxnAS0KHKp1GOolce+HS2TyO0cy19oeR2/e3JmAmL/7Hjw9mM+09YcoeSnFed9Y+qRatS2YatVS1541N+RznOmgN7ymiybHNJQ2X2c+TtMwqFuVhPE4GXkTwEojOoRMEZ7tDrlNclxNWRDMP8ZISPEZ0sl20mBiiakSDAX1RS/0egkMmV+xmEZmFKbNshOYcJ+KB9XnVzuVzpiNS+OApYG7LtedOwLyeJstpzy+PMi/1VNv43Nqftf2J5yzbvqbFznbDy3vaunKZtf4r/0ptg4W0kxnoLs9J62kG7HLfMVcIqCp9u3uTNMk2NwNTDLYbejggYgqS4+FA3MVyv4FsV+KQd0kD3/ddybiZTajEWQzyHGHFkgn19L6n73o6J8lsxFkCKudAY2O2YqOa51N+kwJ4k4lKnidOkubeW6Ki1qSj0M0zgl7t/0oTJdPcdCXvbE1q4NriXOedhryDrE8Qtjkvkeb7OUBndFXRlWurj2jqfbLcUpB9QdkWIM+vZdXg8sZ1v4yqeJqvDZcEo1m5RRvWFUrt2qHp0PPHko+eNH3542Swnqj72RIvKXDmth+ButfmeDHdOnP85EF3VOUwjXQXPVeXW3xUxqDoCI8f93z/9UeCPqLxEeGIuIDTJN0DXYpaAj0RS7ADKUSerTYD5WpqDxFMOywdXQ+vPrnkq198RrdVHqcD7+9/4Pr6kshI1COPDw+E24mLy0s22wtUQ5LSI0og7/tpJiBHRUflh3jH29cDF8NbhsET1fPb//j3/P63f+CLLz+n9xvCJBw7S/2+jyMfDkcOIqhzqINN1/Pm6obedxyPk2kB9kfCONL3G8RbjPJxChzHwH5/4Hi/Jx4nfAyI7hEx+2zbqgRR88zXcKRzzp4lSo9pX2wPrXUKfH4Mz03iHze5l49qiUkbBaPZ7lolzg3x0LmUKokRV8Ii82vlTj0hZmvvtLblvfrKGSRnStIQyxktWnlmZvyy/L1C8GTRiTMNeXtOa3udQud8ui1yOBx5eNzx8LDncDgyTbF0s04jfWcxeo+HcVaxEwOiGbxU0J00jq1Wm8rks+anJJYpGjqLQmhOYclkKKZYxQPJAQ1yhliR7GirTGPEgiwIThTViUEc4icD0xi4DpMUjRtaTVO0zSYXFY2BqtHPmGwOMgvciGrxzzEn7GUSyqUpyNqxxijXrtW5fDrpXqLJXmXm9pD1ubV8/srhFu/21C7Rmh368jnn1sRaPefaNgwDDw8PFCGJCu5FJIV+bFZZIyQue6hoQtsENQnsqSo9Ed2CXl9DWQc17nNMJisxma3sDodqQ970oXNm/+28o+87i7zSGTvP2TU739H7jr7zBsz7PoVLzIKLW4xjehvRDLkpzuLY2nFEOpeSDkmdD6VbSmnmygSk0TKkctHAtbb21pptyrV28wkIk7MI1oQHLT/yXZmOJEnr5D5dPqI+6UWHzv+ZXdGV7xpZPZZ+FtUU5vSGkzVgP4xXZtC98j5P8eMnNdM/gl8vn7k8TkZgNlB/Ilo+88A/pd3PKdjmj1ngCJn/Xh4/fdAdI7vxAN4R3IQMnk48HJX9ux+4vf098WGPjxOOMSV2bqRF7XFyiWpv9tU+SyLJ0UDN2UrUYnk7ETo6BId3wqefvuXV6wtGObI73LPbP/DmkysOxwf+/f/8P/Ph/QeGrufLr77ii69+bhkmpwA6WOID84JDo3I8Hi3kWjcQx8CH9x/4/MtrnIP3Hx74h999zxQG/PY1DwH248TGR3qU3XjkOE0WFk2ETgR8z2NUpmkkHo7mtDVGfBTeXF0TiIwoxxjR3tNdXtiWvwSEg6WTtxQ6RmCTuU3XDVxfbLi6uuTgHGjAI0QVgpssqor2RBlXRixDjDNUJZd6YlYuNQm1rM6J+EzHxPwuaYHyU89cI1wL7RVJG55BuszrW9cMrAGD9nm19gySM09SmbfnnNQ8A1/zVV+AfH0iSSuuz/eNiGXNi3lHyFJRH49H7u4f+Pjhjv1+ZJwCMRiTv7qxyDzS9Xzc75B9SHG+KdzYKSUZTgYhkbmGKXfvbOublhnZ3Mq7UkQh23lqVJxTOnGMatYcUbEdrRQqRBy4AGEKxYfRnM+ULkS8d8m2KN2Uohu14dZyxIMYlTApMYj5QkTLbqhqgCbbAWciLBa6pTC37MRVqNUCHBbBo9nJ+TFHNiESmUHGoiF/6ngKlJ9fn6eM+9QGdQ62X8rkc71Lbfdza0/VnGWdrJiNpHfcbDbpnJr2FldBSwZuSybc9MUJzNJsP1vndgumShp4zeYT4HJM+mEA1WRCEVJ2yRSHPESmsYY/PE5jrSNGXNpVsQRBXbIF9/Te0/mcVdl8HrKNucUi75Kpiilpus5j8bdzH9lbCkLne8AEaJ9X66wDaj8Vp+f07jH5GFkovlicVfOEWptTWr7r6bUVoWxpkhbzvXnSluvt03T2MXuThYDZ2oMvjzUoP1cmtGt9Xl99qNbmrOzSzIqKCe7L66W/fgTWfAnIfMl9J9efOL9K0eS8QNXeK8sTzefL+P7ztKfl12uHq7Ldjzp++qA7aboVIXoB6XAO7u/v+Pabf2A8PiLTHqcRT7RoH8k+OoYt6nqcDETtKrOQiaIdVS023EZsPbgO13V0g9BfeHwPYxTuP+5xYvFbfRe5+/ie/d1Hgu/55njAi+P65hNisPrN3k3LYhPn6HrhzdsLfD+xGXocPdNRef/DBw6HEddvcH7gMCmdRPQ4MQULYzUgXItLsX7NrvbxcCREkCnSiWM7bCCaZtp3zrTtU0A7QaJnf9ijx0c6GXFJ+IjkCSSIeKIeUQJjnJjUMwh0KE4iUUqOwNkxk/rWqGi++tQCyAy5nly5d37ONJOCpoxxGcicAwVP/V5WvzAyaRtWmvYUyH7u3Pmyi2stSFp57uJlXnauXpxfbhlaikAyYY6EHz/e8cfv3qVkETndtGfoe958/hk/hDuOY+CokYjQe4dDicGcmcdWGMbEjdAwwbVWLjXHZEZeqomokyQoJJMAsTj+4yQGgjuSW3KOsR2ZJovdbUYemvhydkwDc7hND5fMJJRsfjJNFlZtGmEalRDMfK3YWJK2zLOMkdNHO6F33rblkxAXWWG+nJ8nQE0c9MRRQYk07dfZeL/UtKQduewc9dw8f+44p1lbFTBEi6lO1kRXcFEZpMZsemRUQFrg3DxTkjIEYLMd8J1jHMcSf/opDfxJe1kH3hl0F5EnC5oqZW7Zbwtda2uucvIogvP2BNVI9IrzHVkz3gpkWTOeyx7Gkf3hQOJqReizJEFSAHfJ4tl1SbNv0Si8TzG2MdMVAdvFGrYcJ2V/mOj67Uw70QLpabKdoBgsx0YIKRynaMmyXHuv0c7W6mZ9uQTep9fW525xQsxjMlepzp5Xm9TM77zbthzbFxxLgbkI0QDNTlh5VtuYtm1n5p6I1L2KZwDiS9blswD6R6LLds0tjyWPnl/4kSj2BHTP1/zJxTNtmpfU8tk+Yl7waY32ueOnD7pDZH8IIJ0lWXYTXefQreKvhPgw4o4jLmBh7FSI0RFDh3dbRC9Q7RIYKyq2tNWdt36zg6VDxeyVVaDb9FxdXzKGifuHIw8fAm/ffs7lxSX3D+/QaYRxNGA8joS7O+72ATkekOhxbo9LkVRUI30nXF1uuHl1wcWl5/rVBi8bvn//jj9+931y2tzSDR3jcSJG5fi45+PtO6Zxz89+/WuGfstRhDFpN0KMjBE6Naet8XCwWN3e4TyMRFyEy83A4f6Wb3/3W7rjkUEsBbWldc8gOoVgjMLhcGC326HDls5bWDbTVhrBjMQVQrnGftK1M5L64sSJA2Oucc0OLYObZV224FaI2RO/TbOVGIC9jB1ag+wZ89LVhfs04J69YvNpjGR+z+LeAvYl8+0nBYpz77rOtFpWU9QrKZGGMiD4MPH4OHLY7Xi4f0xgu4JhQbnYbokxcu9g75TJ2VzsO0cnyjSa4Chku9U0dqfcbNZZxZaxNC1Bx3TCYxFRvHNoZ8KoqiL9wPS4Z4ravJ6W8c11x+jSFnkGQQZmnUBKEzh7bpYLsxNXmJQwYVrukH1GUri2+hbk0G8Cq1ns2pFpgcPJ2GYlmDYnVsqtMfJzZivLc08B7tyPwvp8z2VbkPOcicyyjflvbZ2W/2ZrtgHvShLA2mcmkE3VCFYtVn1+3/eEEE4EgacEn3xuOZXLjkXW8KZ+U0BjMoUqoNx2g9Sdvn+lgeZMqMSUiTmabTZVAHLeWyCAvLAyGE8+GJmSTjEyBWU/HetY0sRaTppvEaHvLLGN8wbUU05ZHvdH/uHrP/Dzr1yJpx7jRJhGi32tlY4a/WpQ0ZyclfFzJwCm0gLry8pv1nwVTr/PauLcrzpm83n71BHjyi5uEa7mdZy0lSJmAJzu2KyFQOH83Dt37SkA/lz9LxHCX1ip1fEntqOM/0o5txQyZF7ONQ+dzQWbRLPrlFaeb+mL8Et77eyVfwKgO0wT+4cd/eYK1Bsj1UC/7fC9Q7wiPuS9LIi2NeZch5crnFwQ1eySK7NLgxkzU0jaEufAdeZklTThvb9kOox8/90f0Ul4dfWKoROmccc0PuDCnkE6+hD5/nd/B3QwDTh5BQNEBtAe6CzGrx54vJ+4efUJN1cX3N/d890fvqPrPJ9evebi9Q2IMu0PRIGvf/f33L1/x3bwfPXZL3h9dcljVMYYmWIOHaGMuz3bTU/vLcyUcx0TEcXjpbOMlTi4f8SPR0ssQkSkTVsbUwpjJe5H4jHgNxaqKpEQPJoSvWSQPetR+/dPlJjl3CJ7BlhW8F3tMFeWyEk1J0RrGTMQA2ozl9EFkH4eeJ++winwbu6X7IQh5VNTYQF8G5d3pS/Wrp3VNEjzvS2fdkC2Xc8wKdFD8JEwPSDi0BhSyE5AI/f392yvtugFuM4TRHEEvJqzl4HwFtwvQWIzlxI4KUJW1sxqAlMNXYyqFgYbYw5BHW9/9mu++su/Yvrtf+Lr23/PgEViyQ5EeW4Um+wEdqyra4p6VM3PQaXsWEFKZCLeTK00pflWWwExasY7S6RamKlpM80Rs4H7Z8HvjAEykxsKQzyrnX5me3pWZjlnzpSdtWdtcud7ZcXB95n3m9VxAqCk+WvAs2sBuGn+dMFAq+Nl1ZRnsJePi4uL5Ezpnlw/P0ZjWABx8+4qUpLzZGBcdkPa+PWSxzama6b0EMynZ5nNlaQlb81WQBGn+NKX0WLSZ4CY1p2qRb5QVXSa2I9jfZaqmaN4sxGXGNnvRx4f3pm/R2dmLJIMvK1JkqKMZeEz0zJH45taQHQeoxMHeqlO7dl+/GmzpxoONj+XZg08N2aaxqTUd+57yWpVhWBt3rQFzq3T70xA03a3JhdYtGm9obPrfw4NdnnWC4DljwXgM/H3CRqz5P0tDVk7nmyXJpMoXb5S40T6I9/jx7z3c2V/8qBbQyR83HH19g0BD1Hpguf2+/e8/8MP6G6in0A1JKbUgQsGUFwHPgAjJYMliuhkzimawxJhNn/O4buOqIJOQtg5Pv7hwN3xjm+/u+fi7cD1q56+PxKmRzTs6N2EF8UTcMcRUU+vA6qm4cNf4uQa7y7wvWX563rliy839P2R3/3uP/Hx9gO//Mtf8OrtayaNfP3tt+x2e6bDkft3H4j7I/v7wLv/9A0bdw39BtSh08Q4Be5u79g9PND97GdsBs/RKe4QCSIcJkV9T6fQ7QKb3YHLEHEptNQSAjlRNgr9CNt+y9R1bFCuHVx15nTpmh2CuqykMDPKGc78SKfWFvlpobPlM+BWDez2B2MAJc7u+n1PrQdZELT8T7v0m81K2tdtQcRpO0+fcRYgzwD3ol25PcLqvc8fGcQnrS2zXqrvlT6c8/i0+3E8HlG17HzHmOITYzGBw2Rb5EGF/eHAeNgz6ERUxxidmV4k3CkqKa11ZvyNJpuacC7rJhtWV9qo6S0kMWkTBASc5/Lzn/Fee8bLV4wqbEUSEc6AOwOupOUWqOAgVkVhATWC84o6Tcl9FMtq61OdinNZC6cmiRTOmtqblomiJapJjW07H8O1qBv2u86jJ7XSDRA/d7QAv2pTmQOOFly/ECjna/pEGffEOllqB+s76GydnWO4GYSUXzJfK+cEZBHBe89+vz/7jOV7L7WBzYXaj+f6sABj+x3L78YJWgw4WKr3aDuLyXlRFVOExGoTrjn5TdaUazVVyb4FJfFbA2BTAQocTEKAxdm33xFT8oRwhGDOjvePj3z4279lMwy8urnBdZ3FEU+Jgfq+t6ybOTV8El4JKXB97i5XBWInpkuvAhUlSkvGz8/RPKUF5cs1dH5NqGZzsBf4Tyy9n8nzLtOWc7xHqoJr6cTfrMOWMiyfdMKj7ORpe841nZZjz8s9BZD/lKPS3DPXV573YzTKZ5soSZMty9PN7tHqED9N137U8UT5nz7ojqAPe7pJCLLBRaU7KB++/oFwf6QPggsuxZiOaArz59yI6yacC0RNCIO0L55MI4y1WzY68d7+JG9ieqYjfPsP33G3f88hOC4/MUA/6QOPu/c4Il7AZ41XhkwyAo/mnKnXdLKh856+i1xsHX/xF5/z6k3Phw8f+e6P36L0vLq54up6YIoTr683fHj3HbvHR+K4J44HiMp3v/2G8eC5ePU5Y9zysDvw4e49+8M94pXebXn75oqbVxd0QZimju++vmV/mNA4cv/uD7iDImEqmkUTVFqmYeHPhiB0B9Ctw3mLSXsBiCSAkYvPlu4MKq6MZqxllguCBRFa3PnUonTi2O8eubq6TvoU6rudAdzParOEVaIwb6EhoSXwnn8/BUjPAe+TcqT+KarOP50olrtOGFjzXVOM4aRJ3u32fPjwgc4PvHr1it3uSNQpMR/Bdz37EI3ZPiqDWri9oIFxP3IctcTWNa1deocCDppH57Y5c/rSgmMbdlGxQ9KQeUtFD/zw9e/obu74h7/7j/SSTEW0Ao2sxXcITlIw8bybkRJqqYaSpt4crU1zp06axDhmJ+4Fogg+hR4kDZE275N3YhRHUOVCBAsZmMvMBQOaPopF85leXRJNTCu4Zu47BautFnx9C76OudNmc1xkRhNWs/ap1nW2Nrfzs+qozc4vy7ffl20u7XUNIFuA+3a91VjPFBB0Fqg39YUQ6k7ZSvnn1lwVjteFibYPcvki+KgmYbSCP8uwDDEKTqvGtNhzSzYhiaYKjotxXxFi1sweTt6jaZ+Jo9UsTNSB8+yOI/vHHfvDSFTh8vrSdorFgRyLKUoWaDrf431v2ui0tiUJRZ23MIheLJiBJKHUeXvnzvuSFOjc3LGXIoHz0/derpHlkfv9aZqfuJeb/aIqZxYVrNRTsgvPykn5yLRwFhRzBWi/hP4/O1/Xmvsj+cpT66ImSnpZPed+r90uK5393NjNzy/nwXPl/3zHTx50E5XxYaQPAm4gOEHvHwgfHrmIAjHgsS1bh4AbzZxEI8oDMXrQAUhZtgpocRjb8IBDnH2aNsAW/jRN3H08oA62G8/nn35iNs0hcnzY4dS0cVaTtQFIQeojDmHggqEb2Fwow6Xym998xhc/u2A8HPnD73/g8DBxcX3F1cUrOu9QJl6/usTJkf3De3Tc4aYjnQq62/Hwwy1ebjhMcNgHwiPE6Oi3pilQQJzF/j7sd9zffmTaw/h4ZH834kKfXMVyGtwW0NgynFTY+i3xoHQHwQ8O+rTlWcIFntvmO7d4kqpOIZOU5d0zp5dawUldS8JrBFPoitC0ft/i9JP11ndZIbxi1LGV4p+qoyUQa8Si1WKuHw1RRhp1yEKL8BLi1hbUBoRJW0IsykBUi/vbdVxcXKJRGI8j43GyGa8QROmGwXaJpsDgO4ZP3vJ6c0nYB7759jse9ruMe6tWu9kKb8+DojmSkJO0IxUJ+VpppmRkzhgjY0r5/v3vf8th+jtEha2AT2A7r1NxCYC7VIWYVrEG7U/9KqBBiBpAIxKtokhKDZ+Adwn9pVCz3TTzRjPyaxSgrDGV08ErYKGdZ3myqJ7eMVtqp+vwKQ35yfFEmWJzXB83B7GL5uQJ/iQjXVk/a6BpBoqlNUtI9yYTsaWA/RyIzpkol+YlT4K85vxzpjwiUtO5p/HLE8JRYz2Va4s2Lk2J2lTmLmu9XdOOrD3Pz0gmKWsCmAkwsc6b2DyrINlUramvcd4TUY7TyMNux/b6is53ZX3GxA9FLVLQcQyo7tNOkQFy54Tr62uj29agsi6zkJwTFtnOULOA8lEE2jRfis/EusZaVWfh+lyyW1nO5acEtefOvfT8aplnwOZTdb/o+Sf15rkANIqAtfrW1mwRIs49a5aoqZ4vwrgwu5LZY6EnZ2TD5/rgOVv0PwVM/7kA+E8edCvK3d0DH//4gc8urwkoH759z/Aw8jo6Droc8MyMAjHuEIY0lDahjNFLoSPG3JNGTGpIMxVB1BODQ6cB50e2olzIQJw27H4Y4ehwwSembhviZvXcgfaI9ngPvQvc3PT85q++5Ge//JTIkW++/o4//P4jcdzC5OiAbWexFG6ut3z1s894uH3P40MEDfgo6Dgy7R45POyYtCMcAqLQOUt88Phwh3dHttuOEEa++8N3fPnlKzq2/OF3f2B/O0G0UGWxcQgkCQkFnniH375iHB3d40iIDu07KKmC80qZ7+E8S6RycT2Bi1SC+qcTsTaZxXP3PXX9KcJYNXmVCZwH3OWuFzHvpw7N6Y8z2cxzOPXpUhf50mesARsQpjFwHI/EwaMoYQrc3z9y2I8p/XrWYirHMOH2By56i2Ti3rxh63qGK89+PHK32zGNZm8pQkEYsQCPDFBTjTGWUGZoZDwek0ArKRtc1gpbJBLZ9sirKx7ffY+PkY1zdJLjCAdEUqSStJUtIngB5xTvbd7HuHBgVJcEAzHTlXQ+qmm6LdOlEgNMUYjBys3i6Wodsar5btddM55nxm/VqTBrpaXaTbf2z43Jabm2Vs+JBvbcnGm14FQGnEtXxV+2vz1lsEsAOXvHlTLn2iWS7Lglg2vhZP2tAO6nQLdpVqsj4VP98WNBVntkp8MMVDIoNtzYgGSRFAKwOtm1TpY1DKWU38XMpNXyzv6iKWUSf8tg1XaIlZnJRLJhETHH+dkSFaUbet68fUsIgYf7e0tiYxmfLHtlen52ALU5kFOTpzj3RLxKcvI0JRHNWBX/i6yBnklRzWxMNDBfjU0flV2A5n4hhY/MY9CMX/uc5ZxZCoM/FtC9SHgDnptFz/Oap58xv67Lk6Uds2exArrLUpufXz71qb7Ic321pUYQzsGBZ48/B0D+c4Hs5fGTB90AOkXe/f5bjvsDIUZuf/iecXdEIvQzopMWGIoF5p1QJmCyesiDbf+Iy0kGfNnKNsJncUQFSUx3QzwI462gnw787d98y4evD/TTBqeCJAcOScBbtCfELciGbvD87Fef8q/+i99w9apjf9zxu9/9kb/5D79j9xjRsOW4D+we77h6fUMXJ77++h/45j/9J46PD2gMSHq3EHaEnUfcD7hOOE7K0d0R5Ugclbv7icvLt3iUbe/5F//8L7i8GvA4vvz8gn/Pjv949y0hejoJiJr+UApVdah29P6S7fCaEHv6Q9qKv8T6NCfRWSyVNQ2v9XUrSac71+byS4jYYoGeasUSkVBJ7s3nQUX9vh495Gwb8nc5T3hfAtrXzj2B2cmweq4xSMJTqUPbG2rpGWJqQEW+NNN02xFC5PE48mE8EnZ70+5mza5aayzOtbC7u2M67Hjtb/CDJ6A8xANH54kEfCfl/rwb1IKI3MTShKRh897W5rR4NwPRAg4mVf7lv/wrrj79hP/m//7/wMdA7z19CsId1WxjxVnIM3MMwzJQ+qz5zow6b/+6AmAMr9izo1rm2ilACJaGPkSLBx6iFIFddD5emoUkBGKiEe1gtzsOy6GX6sZbnR7nDLGOf1Eqt1XPx7rtYzk1G1ndfj/HGJkDhZcC0jmAmjN2Vj7bZ7ls3ytZU7YA1FL78jmg3Z7Ltsfn1udyTb9UYFkrF6EITqWt1PdRVUtK1qyPXH+rrRap2nOVCrpLYp5Z362ALDLgnr9DsYtuiufdsCxs95sNN69eIc7x6uaG4WI7d1LLgl4B+C2JsTVgGuyOZCRVxq6A7ubZyzFmca3svjTj2t7Xgm4pz0n9TQWVa3PvuTqXx0sA+RzANmvg7J0vqz9f/zECY7km62tZsPlqZebnoZ3jCxPRF7bhTwW3L1lzz9d9RpX+7LU//fjJg25RIEYePtzyeHdn5iFhMsCoEdGI05jkaEnmI0nCTgvJBsEcSZQ2jq7FKzUCkye+lmuos8gIckBD5Lvf37F/OPC7331EHwY8HZ4DXiYK4dD819ENG65eXfHP/sVv6IeBu7s9/+Fv/46//7uvmUbF+wHvtnhRxkNAQ+Ddt1/zP/53/x0P9w/EyTi6aErSoSDhkbD/CN2Gi80Fn33xKZvXW0IMdL3ns0/f8Omnr1OGMqXrFCcj/iry9pMe143EMSUXKe+byaAQ6en8DcIFU/RsVBimDq+KuLFu/xU3tzXwuQas1ybwQlPe1rCooILDOdAWFUKIeOnofW+2j5l5rC24M2ClXJpth50nwBnGPAc42msv0Xac3Dv7XKmnkr4FkDtja5c0CKiWFPK1T9MuTwo/OUXl7viI3j8wHkdCmGbZ4mzOgGgg/v/J+5dYW7I13w/6fWNExJxzrb32zvd51KmHr7nGvr5uICSERAeJDj3ogOjwkCxZQkiARMOGviW3LCEaSJaQwBIILIEEDSwESDSQAAusK5vrur5V5Tp1zqlzMk9m7tx7veacETHGR+Mbr4g559pr56NulhmZa6+5YkaMGM/v+3/f+B7HyMObW64+vLE08DEyhoh4YfdiS4iPzIeApaM2h8J82BJK22zsvbf4OJayPQmzkrRxku1vZwtdCHz9+e+4+/L3XMWQUr3nrKRJg+0s6U3X2Zp1PiIuIi4sxqXYcSd8YjJ8a0urTFOKzR2cge4EKqp2uZ2x1WdNplkLMHM6PfmL/Nk1zF6hRDDRNIdAEZwLxpFG65nm+MThr7yq7qsWUF5iXsXuuCnvzTgLwKvPPwXOhXpKgUiOYLrQqp+rJ//d/rR1n9NsPgXWn+rrc8egaLobLeza3nr9k69nMxFYmtrUuN2JKidhMa+HU4vly+Wpu/I6dM7x4uVLXtzc1LWUBYTcv/RLVFamLQ0AVpDEVM4pcurYr3nKSmg5A4jPznf+kQw0m+tPrI22TetrZwW81bidgO1z98t6BM7Xsf586d4nhd2Vgkby+Mu6/VLG69x7131/VxuLYPeO04KnynP6/u5KfhhA/ZzyowfdBjYDLqVvzwpMybaeGpO0HutCcZkg1fgHmsBEJgvedfjONNyCS5nrJIGOJpQglKP9h7uRw8MDOgoumv20JbALCRQ4kGDAXyLOQ9d7bm/veP1m4u3tHb/57WuOBwH15q2d7PGOB7h9PfIf/sO/ZH9/IM6BGGYkaeuyICAocZ6Aic9++jP+8O/8jNHNPBz2xBhw4uh8TycOCSNCpPNK13nm+YDqBGKRJ4wAZWadDsa1p+tvQL3Z46Vj9ALWaAlr+ceuLRb7Csw2hHZxi0ayBiUDEs2eaFLwTylLbZ39xFk57A+EMdBvesjhIVcaXFn/bvuTPpc+rLQ/7ecFwW1+L5xf3rOc0xAkVlN+n33uYn3nmWwb5i33PoO5vA5AEJfMSsKMBjM1mee5DKkBZhuvnNFuuNpYzOEQzOzDd3Rdz83NC8ZxZjo8mhZO129jgT6NqQt97wnBL/svKfoKwtXVDoDHt285KAzOI8m8w5G0op0gLuC9WLIoTRlrRVB1WFTAfMyfhUgzOTEwmmZWLR73PEWmSU2zHV3yXcv3pfUq+di+zpFiMoPPwFmqDNnObQkntwYyGZixeriZ13M2208xt6fuf8rRzq3alsv6uXNMv9gu51xBhakvN2oFAMWqOAlfyaxCKELjU3v0XYC7BQFt/y+1/1LfLpWL963mbw2813W011vgnf8GGlOKtJJdju5kPzGevu/cu/Nd8RlmFG272pa3tFbEnI5tbEHLZzsdcumk2XvBO7EEPiK4lEkzJ+1ZvE/SCVAWPNPeyLFRLoFOoRHe2nqeeKb9vb5+aX/JmXvP1bNo2xPfvas9y/vPvyvTmXZH5cbmeZL2QvPcelUWbi4r+L7g9fXftdLttPnn+qMXvs4qH22+aHmyNvz7TLWXXvc3VH78oFsVYcK4XkdGWqrpXFdmIICExPs8xOQNjUfVmx2zekyXa0C37wf6YUN2nsw2cYlalWNwSF7gYu8cxyMERWQ2Bq+Q7cVzEcxedLvrGQbP3d0DD4+PvH79hsf7iRDs+DxaAGFUhdu3j7x+/TlffvGaeQrEOKE6V8ChoHjQQAgjvgvMxyMP39zzMD6yH0cDSQ8z84PFZp3GR1693PDTn35IDI98+bsvUnIGY3Z1xxjRinQ4t2PYvEScx+V44EFAehNipN1i75YWzxGADHAVodUsV6KQIjM0wBsyk5IKqBMT3u/3fPHFF/zi53+I956YMguetLDRJNT25GPGdh9W7cq67ct5bq7ntl4geM8tLVHN7qaXCPj71HeuLAF3c79zTPPE8Thy7TzDbsf97UMy46r2kOIE33n6oefmgxvEk6KURKKC67oUIg/63qfhrPOSW+aoGrl8res9Xe/xczoOTuvFOdOSd4NntxsSfQAXITjPPOXQhpaRVbxC0nSLswx5qnnfWjIbJJIiFUOmA+lz9nTQCPMcLRlOzDG5c1zg1PLynGtCvku5nAWzImpUnpcwmCwoSauBbsHGiXq8mbt3mT2sQfG5+1sgcRYE1pvPtuHc32tNX2bwGTSX9y3usU+xfabBCm3klnPvyp8vAe51O733J4LIc0DOu75vx/QpYaa995yWe32tBd4ijT21s2RM6yQurjFZyZrnXHf7WZs631eQO1vUzLvMXDP/tnqdd3RdT9c5+g7LkikWF9wnB0qLitK8v/RL281j7Uzva9t/bj2s+/Su/lwE17Kkz+X66p6n3rFeo0WbtLjn/O9L5eJe0DVHaRQGT41HoW0s2tmeei3b3/D5xZpfQPTFdVlfvrRVpP1SqeGgqWT1ewbVZ2b+yZc89fofP+hOjLr+gDHDnIw8OVahaSFmsV5AOkQ3aEzRS4QCFIZhoOt7opptpgYtjl2mZcnxcq3KqObQGMPRnDVkBm3ilCTwmqMLOyd0nUcE7u/vub9/4PFxT5jnRNgiITjcxrTTX/zuK96+/WuODw8W7jDJ7C71KwNvAUQPxPEN9689D3dvOEwTcyKiXbel99d03RYl4vs33P9xQNwtv//8KzSkNLyuxkvNciPqEN/T9X0yG0imLXkazhCD95jE1eeswa3QsmW8pV2FC9fniqCQyhyCCVTOLbh2gUMnDL8lLrUtnPv3uZoPQJ4gXk8RtHrP+vuGPF4g7u37z5VnO8utvg9zIEwz3Xbg6uUVX/7uNTFmzaJDnHB1vWOztZj0rz74kNdvXuO95zgHpmBx620/RoahY7vr2d8dU7+WmuDaZaHve4ZhsLBhifF6tZTyXZdSu2vkcNjjse87cQybnmHTmXZeI85Xu02I5gCpJCIdk5aMSrcX2pL0rxqFyc6TiiShLjP82naryzU7JO+XGq0npMuxXahJ8Fsz9rIPVC/uvOYwrwD3c2Wt1VzP9/qe9vv1GmpbfrHkvVwWdaEyVn8eszQfeUtL+0y6kP/KttDS1L/ux1pjeApoToFXBtwi1aHyUl2Xu3v5uxO749T+ECttfQrUreeudaTM9RtNT0lzSKtupRFvSwbgZ9sLNUpO04d1P9dg/exaap45ZwbSdR390Fn2Wi90zvZCSWaVohCSeSAg4gsPVV22Rc6M4zvp8ar/Tz2/uM6pedNz37m+992ge7V+7cPFdi2EkOa+k9PYJtvW0+u71HaxXZeuva+iqD549iPQ8PXc/Pd+xfu3afGEnr36rPLjB91Aprya42yrbbaYYnJLcu6rXDztVPUQe6AHieAU3xtz7ja92X1GkolKqBsYxbLT5Wx3kUhAw0SMM8pE0IiTmOY7/+tAO2JUnFN675mOE3MYeXx4YB4PizTAOh+Ik0dlYBwPPNzdQ0pakzNwCaT0JEkiFRCdcLInTA/EKUJ0SDSnUJkd9BCDY447jo8zf/GPvmSKvyHMEc8GxwQaaLXWxvRMm2/ExIQMCHjp8E5xOuOSOcjzxcnLx2bley4QQVkda53lEY09Y1SLEXfurieAd/vW9uolhnu2PyeA+QKBv/j59Jq2X5R3SB3+xf11Lk3B8O0IncmdWhi5F8fhcFyYGFnmVkG8R8U02iqOx/2Rfug4BkvaxBQtvvUc6Zzn6uqKx4dDEvzOh6dyIohGwjQxJbOPfuhwo5m2DF1nUVUUmAJBI0HNZTr2Hdvthn5w+SAkRUpwxGixtzNKNtBfhfaqf67jWTCJGlhXXdLabIKmFS3WmNZ6Cnay1ZRqBgtL56/lPFg7F4DbkHmqTDiFv+/QUMup5u9SuQSiUtffzWxFlqCtXGrBYvNdoom4VR2rTX9JT5bfv95zlzSb679F5CQN/HPBwlO04RzQbK+nP07m7RKYbfuUrxcAnSKerE1P1lryc0D8RCPMas6fAM6XTkbWNHf9vHN2IuS9Sz8p4pBk5ifkDFalz3m8VOyUirquY4yLPbIGp8ZLSfu/AtLFei7rNq3KUseyJ/n6OlLPou9n6f/6zvba+dXtGppk9ypSHOKbMa6Mc1n/RY3x8xRo3xo0f4fyrjfW+frBm3KpBd/65T960F1lPsX0RBEhOVCW76uGug6DReZFnCWpEQGnuL7HDT3Sm60YQROQzFw6DaYayLX0AAHiBDrjBdQp06RUNVNqhQgiASc9Q+dBlXkcuX84cBhHRAwThmj90ChM04G+F3I690XHF7s4XzQBYGZC4ojTwWKHq+BiB/SE6EE8MVruyMPjzHGc8bIFHZO0m8xmUp2ZJPl+APHMU7Dx0kh0lvbbxXaLP8W8LwHP85v8OdqHtexfGZb99P2wDPdVQNW5Vl16/+XvLv2dr0mJZlLgcDOFlcjrxXqWk50JcQYrZxbD6nOj5X8eLeV0RCoYCsHCgN3d3TPe3VVNkkjRRO6PB8bZ028GXr95w/44sh+PzCEwzsFOTBzMcWIOgYDih475mDTgsuqJmhNk54QYZqYxppj3KdIQgveOeAjsdjssE6USQwCM6R6Pe5wH31na6igODXMK8RfJ6dzb5dP+LiVdiMEGVbO8n2eyAb/F20LS4D1BkDPAPAfOzs7Q2fWWQVEaRnleNI1zQOkpYLX+XO5bveddQL88I5zscTPDWe7/dwm4a0FlDULfR9jNpes6YgKti3EROenvufLU9XOgNIO2lsxfAtitiUnb3wWgjrFoup/ScMNlDfg54H3u+6cA94mA0a6JdgxyH8TMSLyrgLsIZ05O5lpJQFcoCYPyGIhIcU4tDt8rUJ135qU1035ucXi9vuRnrdLD5QamZ3I+o9OlsRSsJN+vLc+q37lCL5LiTc/NTt1HT5VTtvP0Mz8k4H7fuutIn7/+N1rei88uy48edBuYTdFBFEggWN0MOoMYgAWMFxKrJ78I+XRXfId0nn7Y4PsOcRbpRBzmwOEdYQxkB0IDPtleKW9qA6hzGKlJYux7AxCGSl1yopzGPYhatjy1hjiRmkODSAwTMXZoOOIkLnB3y7orQ4uozERGnI4mCKiBGwvpN4IOaHRWH3tC3BPmka5TcAeEo4H8FPHFimlLb6FAAAEAAElEQVTpRXsLgRYm3NyjzlmcZK7o3YBjtv6qPVuiSgDLMHrntsKZlZoIWbv/RKrddgth2hqTohBFORwOfPzJx6vnM0hcPnsJRK+Fgndq8lZ/V7eO5m1ZM6wGnwt4XlW9rHc5fuvv1n3JwkgRN/S0/qf6dOnmOM3IODMeHgkHE9RC0t6omilWmCIuBGZVHo9H5mlCNTKFmXGcGTYRvJljqFr66L7vCVNMofPWQNHiaQvY+kqnKqrBhGrnmMNsezefyIDFbVZAtGSus6glFq97jGZu0s5vdurKQ7aQVzLIiflqzXG6hiSJfaJtb3T9/clELPaJpGuXgLdr5tn+zjv3MpB8SqPdfrfWvuZrl2ybc8+eAqJl/0oDFtK6XwKoNqaGLOjH8wDE5T3a/n4aWDVA8Bn1vs89ud6TubEvCvA+d19xNFzZbeeSNaxZZaLO2Slquv4u4N32v9V+F+Cc72O5Hjjz98V+5tMa6vjmdZH3WHJrsohDea6EArhP2sv5cV60S2QRclGoByiZBufMl2tQn+sRWa+H+kzTw4ZvJTpfiXPZJJfaLg0vMDaqCwpTnykjt2jPpbLmZScVPvnc86//kOWpN37n1shzqMs7yhN89l3lRw+6Tat9IOKICErESSAyIwQsBnfW1EoSL3OSGp82L/i+o98M9Nse5wVlJsyBmOy5wTa6EZ/EhTUYkNWApYOeLHygPKJyJDLhs625VttyJBDDyPFwnz53OOlAfHKizNxeCWHi4WFmmvZYenrBjqkp++ZUC6eoxCSMREQiZlITUUngIkdziYEQ7sDdozrh3IzYYXzRkmXtvtLhfU8/eEIn+I3H+YGuy4lGkqazqF+lARhr1Xwzhyeg8pQgLOV7K2VWV5u+shJl/7jnzZs3XO+uGceRfpeXtDHxdswyRfw2RORdTLfdgy6dmpR/M4OU8/08V97HWWkNBL9rERF0DoTHI/2sSLSceVFsXUGKSZ2ArcpM0MA8zcQYmaZADIEQQAaPdIIQCUTowHUOnSKoJJ+FzIAdXlxikGan753Zj0eNTLP5LvS+I86xwFzVtE6c2ebi7bPzDt/BFOpayMJa2YLNnCTcDqQkG4jpr/JmLBJcwyzTv2Wlif1lQGPpRKmS17SZ7ZT3Fu1YAwAbYJK/y7GdoxOLEtNkwVnj9XOa1XPlXY59TbfayqsAcOadUEFhjsbShIcvNKQF5EUgzfWcada7gO5zgPGl+7z3hBDOjtdT73jO9cUYN8DQsNT6PG45d+cAriThNxdHGmep2u/WUfJcabXk7TufA7BzuWQ6c67t7X3a0OIYJyAgridrt08A5gW6XevXsl3spEKJsY3IotVsJT+XwHbVIpdabXtfFNDatbpyVG2aLiLkYDFZuFqexJe35Q/WjzML/5R/nqtpdculr5Yb+fKNfwPlu7z9Ij37DnW+XwPe8aYnOvejB922oUZQR0juhS6BXJdMTVwGgZojT0tKQeuMwYvDdZ5uO+A7Dy4Spsg4Tcyjad00mCZdHOmIKhKZQSMxJsCtI5E9kT3IEcQiHmQtuM2DMekYZogjIpZlUqSz386hIdl0qhLVnM5imPF9j8qGac4Z+FKRus2y1tSW1wwczekkgQ2V3oQNFZSRGB9QvcPLHieThTcEhKxSTMkm1ONcz3b3Aukd3XVP//IKL7BzkU2fCKt6JDthLhZeRjFQCdOytFqB5Qyv7iv3l4NnWj4sULStv/rVr/jmzTfEOfK4f+TF1XWGPElIyGTqDON6R3kOg221GKapq72S8qkB3kUf3jzX/puVgt8CcGf5xzTfa+FmTbgv1CcmeI5h5nEcGaLZykfV4viFpiglqvius3TpUZlnZZ4t3rzZhEc7Ao4QRYlijovihTgr2YnWJURmKb1zeDD7CWoRR7JSqPcWTd5srJOHlbdoDV3a+96Znbn3DuctQkIzGXlBlND6xaQMrUlGyCwwg8f0d1Zn5fnRmHxLch2lqgXwNkqVQHezrqvMugIaahGIWpvuFeQwe/lGOm8Z8Tnb4Nq8JSC/tA7aus6tpEuraK0Vr5uiahGWYOPMs8/kyGtN5SXg/ZS2G8y8pDVPu/T8pfdcunZaFLcA4eWfJwEuXAa5l/5u236iyV6tt6wZPxE6ngDUzylr4W9tjmKmYVXLnQFtaX/Thza0X21naeZCiHMuBTeTbHudt63VG5s6LwNsVp9XtJ6GDlCjbeWGrd2LTimwLC4+BaQX4635/U+Ub4Fof0iN9tma5UnR4Vu/528MeOd3vue4/S0A3TRMziHRnJoEXTKiYoud/oxdSroR8L5n2A70w4B0YjaesxImS+Os2hAjoGSz1ImoE1FNO4xEvHjQgVldAoIWRk9RxHkLWZiSYESJiE4IzlJEO8GLRwkNUyaloHZ88vFHHMMdX351a2HUGl6lQrJjrwRLCETZMxPx2tMhOD8g4oghEsLINL8F3uDc0YQUVURz4DIt+17wDN2Wq+trGByy7fAvBoSJPipDF83xVBJgXNiz08xENYGodtWX9LsZYS4mmzbnpVDpmrDULcQQORwOPD48Mh9nPvv0Mz77+FN7VqyHy/yL7yqXhIUliGiB8rr6swKELCF/FQnS7zI8ktZeA+BO0Va51OCo8ng1iGoYSIvG81i+g1Ac9gfGebaESTESw1wiI4CFK+t6Swf9+s0bNEZCCOaM1mq3olrkH1HEmzDgnBBbZuhsNFxaVpI01YhFUbHn07pTTJOVBO1ht+PVJ5/wzVdfI9OEdx4RZRh6fCdEtf0vbkJijtGdBk7U3q2KqlsA2DLWiTZY+q2UlZIcKdxWWIak2jykalFWMljPQSyjWt8WAmQzHyegK6vwyp+SgFB9+hxOO6lvwaRPNZDtM88pLSg7VzS3vbxx+XdzEVOsvBvUXmwDFUyd+/s5wDuPQ4zRTksu3P+utpwHqO0FTujdus3tGrho533GWbJNmpNtu7O2d31tDdLb557ThtyOc/evx+GSOROZniT+nr+qADzzGxpBtaGpi32RgXcN5+OcK+vTuQrqJfO8M6Dv4hppaG1L/0vOrsI78o3a3txowGlqOQOcn7MHy3u+HWT9vsH1+yuIfrj3nmGXqxueD8l/KCHkRw+6ne94+fFP6IYtzvfc3r3h9ddfWkQPqQtbEvPJYAt1iHicg81uw+56i+s9MQYmDYQQm/GXxDwhh9c3DXYgxCPKlGzPhK7r8WyZR2g1NxTeaM+mmAlYJsyAYPGLEQ85XrjGkiZ32G74+c//gM+//KukWUpCxeoYo0A1iahMRJQpBkLsmOcO74V+iChH5vDAHG7x7oDFOjfNW2b0Nk4RpKP3A9fXO4bBMTrYXO1Q5+g0xUz1HgocBhJwJ4/3yXJfES85tyHWf2UAfhbW1mupzq7v+OlPf8pf/fKvcDi2u225T0UXFZxjMs9lqgumk8EfLAOEJASsZ5hq8dFt2n6qm2R5JQFlJRP0NbCTZrwoL822gUgF9osGFcS+bueyLyEG5hhx253ZaIdQBF7rp3K13XL/+Mg42doKDSgXgGiRS0wgxRx+Rc15WZJpScsMvUe82U26Lvk+BHDeE9XStKMWy1ekQ9yAdht2L17xzTe3uKB0ArNGpnlmnAOCJrOBmJhtZvCpLWLa7eSOkfZwnaOQgLKles9hRavglI3KWlKA5meUKJIAu5lUBI0pyyYLofpSWYgBBXCfAznLeW41gXkN5Xe1zot2InF6qF3B+rlV2r5XTteRlgYtO3Kmb4v9fgF4nwN05/bzue/WdV0C3FmYQXUx5t/lROz8vXCOTl4qbWg/14xHtuE+d2++/1yc7ppA5/x72/edU5W8y3HyKdOUkzlzdlZNsa+2l7WZR9t+L88hNInBtbTAu8iqeZMVVXel/el1J0LFiZDWjMHJuDX0vIDus/edfexvvHxbIPm+z32X7n0XsLugl+crt9/vcVrzfZcfPejuup5f/NE/zSeffsZhPPCP/tE/JOuOnCa7zgQClEhQARy939BvBrbXrxiurnCdJeeIaolnxEWcTwQqm3GXbHnZvCSkja0pEIol1VEUGXvKFJe5S89qtq22kIZKRKOF6LMoDB3OGbCJ0do+DAPX19d0r31xLsmOnMVWPBXTm432HhyqHZEeCVfo1OFFET8zzW8RHhDJ2kdjv1r+S+2PEd87rq52qJpw0PUDk4iBbufNfKVBaqd4YYFwl2xFmjvWjLX5cMLcz/BzGoKYj0VVle12y8cff1xuqQzjtJLnMdLTVkoDoE/uLX2UJRpvBiprTLL995PE/NnlDKBuP+qZ+1h8cVIUmKaZwzix6TdMUZmiJrVtXpHK7e1dWvGJyacllsUS1QjBQKdEqR3H4ZIpTtFmOVdDh3WSgHbE97a/QlDbj1GYpWN2G7ruioDn67ePzHhzyNIAEeZpIjLjyKHEGpOoAqydAW6iWYXFYFrsZBISFOYYSclva9jAPL8rs4sk6djplSbKoZpMS2xwAnZq0EmmLKbhzyYttaqMGi7M0Qm4YbHWyuTr6Vy3+7Bo+5r6woIhaetHyuniz181YmSz/9cCedWQr6p5QgBea+PPgfOnrj1H0+1SUpZ37cKnNPJP7eGG16/A5/lnz9lEr+fpKeT2PsLHU+UpB9PnnpZc1ISv+5JxcWp7q6TI/S/vYdW/pKharC9ZRrCS8txyFT8pkJV1e3p/W++C/r9jaJ+al++rPL0WfziweXZs/obLs975T0rq4W8B6Abh+sUrrl+8QB6V/eMDpn/KDpQ1YY5BUw/ao77HDUI/XIN0zCmD3DzPhBwi0CUHDGklpKy/Sg6UhVk7sw11jhCOqB7tK9dEQUhahigmEFjEhBRykBTeL3Zp97sEzGeynn06HBj3B5yqxcVOrLrE6QbskFoqM1WAgKrg2CPylq4L9BvH43iL6EgGSUZ0cty/DKBs/c1h5u3tLew97sZxHQI+Cj6A73yxu11i0SVzPQtw1/+eBa1rRvbUeqjP5B/vU7Ij3yViXchrbpy1dXFq4Mr13KZyBrBq6Bogn2kNDXm+KFzk8cljdQK4n9NvrW85TzzX19q/9VnvAJjmwDgGvpnvkGhabkkCYt4rUUPpD1Lblt5UE5lgyaVUI84lDJey5tU5dHSdo+uEofeIF0K00xRJTsFz8ut4GOHLwyMvb14wuI6RGaIH53B+pk8x91VjAtXJ4VMttKCStWrazHCTKIfmp4Bo0CiL7zMw1lJDFru1mJNkcVnz3+rwaRlmExspgkwFKGe2ib0jvfNUi9gApEzP2oad1HQeLF1y3muGaXH/iWav+b7GYliDmqrVXF5fvW7VpvV3a031c0Dmpd8Lx8M8L08A7NP3NJ1PfazXWV1vwV197pyWeDEGqwrPgd6n2lrAbGvuwdod8LTuS+86Nz+XPp+rv9Vm5/GuYQPr+JnpmS2+lsI46v4jg/S8d2ywqvKlrJHL/KUdk6Ikoc7W5fXQ7NYLDnbvs5aeU/5JaWnPlYv793uq9zlrO5fLaop8wzvveOc7vmv58YNuEcQJsyqHceLx8XF9A2tiJ3i6bmDYbEA6QlSYTHOdc3zkKAJm9pVZYmLUag6ORcuNIMXYVJjDHvzY7K8KiG2jR5QZpUtPK0ggtk6M6kBnhAmRmePxyG8//y13d3cJkCWwkOpvLGnqdS0qejqvfPbpFa9e9Ww2jqvrF/x7//6Ru2mEmIQHKSySCg4BUQIzh2kPccvuKjLePrC53uBjoHOWoVJFweXU1+tpqkRRVteyVNMOV353XdtLJn46tw1TX2FUyZkLc0inZG8Pq4xhZQybF6+Ad71PKEBcqOlzL+3F1MecfGHRk/UGLox2dSJwUqfa+leL7PHcIu24CUW4ypNT3rOmP+mxGJXD8cgclRiSaZUmRyGyCEcxjS7BPZr5F8131bk2oZSitcoM0HvL3mqpoIVu6MhOi6oeDY4QlSDCLD3RCdE7/PApu+1LtrsN8/FION5x0FsmeQs60hERnclmJFGd2YcnjVhOblV7VT1FKuBeJ8aR0hdIIDjWoVQsakFUyypQaU2y6Y4WuaRo9gosbTR5IjjVBcCua+Ey07gMlqUymzxXLfhaaBwLXGyWyBNA/ORd51b1+vh+2ebnljXIfs615/zOn50/n7DpXUJB/XpFq85AgHVVa2VvMZFs56j98sz7L4HbYm6SzL5iI+Su4aKufrKmuQiYpb3nHTGfA8rXvzMZ1ESDJe+J9FxOEOcKvdTF3ivjUhrHgr619vSZ1pS/11xste7rc8txPV3H1aPjpD3vKMv3P/+577N857eux+fsLd/tLe9FI95d2Xdqy/dRfvSgW4DjNPHwuOdXf/UrpnEyAJIz2mnZtWkbmZ1YN3T0/TXOm0wcUhY4jZb0I2vlLIYwhhxU0umzmYNosX8zG2wnHRogjA4JV4jfA+OqwYk752PrZNMNDpEZZQTdInQIA6oWmWWaZr766kvGcY/zWSOXtMtaCc7puwQk8vKDgX/27/+CV69e8emnnzFH5c/+6t/ldv9ojJslrmypkxGnGSXQCcgYGO+OcIh0OnOcOrqfby0UngpRlhqHS/Llwjl11fhC7HVJ5E4mv2hPF2fcZG3/NE2AsN1uy7Vcb40ok18v5Q8pAIvK6RZkF4sA04Szs7c3zKX04hzMyMJa29v69tUoNAOQgVUNXRkLqH0OAdK2m9SoFVLrTvUtjZagFfWCwqSBLjaabWyP+M5MP+ZoPgkGDEzz5Jsxqn2sTdC8ZFNMbe+Ervd0vcd3Fm0I1xNCOs8Sx14D+zkyBziGjjF6cFvG8Qbtfs7W/YL+Zc80P7Dfv0bntxBfM8bXRL2n4wAyc/3yisN+b6YncaTXGUmCdVQxbXl0htGTA2g+q1Ic4l0B4tkJTDXZhCdBTcUAd2z6qmJvCQlITwoDzsL+IUmgpabePvO7ABhZgYU8yuc0ky04akDbc5hYlUObfXF5k7YS5mKPLNf2uwFs/lzfaicC565noOacWybGOgOq3/W+dY+4UMflOtc0UJvf62fW4Lk6w9o0rU/lpISLvNSPckLS/JQQkw2AhmrbvQbaBeCnhlwC85eipVzSvK/b2GqQRVyKMuLIU7gAys3fS1Mcaf7OwryW9qQnyv0VdDfzvqjvdEwvXasnIvaO58C456z7Z4i09bX2cL2YlQDveN/Zet7jmcuVZS5xDviuhdH//y4/etAdYuT3v/sC/d0X/P7zz9NZWNp0FqGUFCTQGKN4xHV0vUdcn5ig2XVqDMRo8b2dKGMMzJPF6iZ6iudWynypJfGL7VgBxunIHI5k7ZlI1YaXkjajMb4URztptlUOiG5BHA6PF88UIqoThziiMiESUAmIds1OzO85vzU3m4Gr6x276y03H9zwzZu3zClaw9oZ88wooxwI8RadtvjDJ8S7yOQCez1w7PqkMZamp5liPZdUnCst4c40JB1Lt4RNV89oboESp4jHM/ghgSVJQlKo4RUlxQVevbaak8jJl88ipAW0VpdF2ubKSQqTdCSaAVRWzST4m6+rQphrkibncM4nE4nauHNRARasOcsU5YOcUZjVvmuqR7Hj9hAjTpWQMJV3jm7o2F1d8fDwUDJB5hEzcHmBCWkzXqkPdnLi8H2XTLc6VDxTEMZJeBw99wfh9gDHEWI0d2Bzch65ffyC8RA5HrZ8+OEndNsBt/2EqB/j+KcIcULDLY7PiXLHJ3/8KSEcefPmDXe3X3J8fEs/P+KZLeWTGhAWDUhK/mSmItGiqjhBxUHIp2FN9IUEArKddiQB7zyeud0CU1QG8tKuQmSZG6kOmidQ7gyYMbC0EqBEyIYDStqmDdhJk12AfmsrW82FTqawPJ/brok2Lm4o958y4adMDnJpw7hp+rvuqcU5zpPg+X1KfvZSMprLwOxyAprm7tXf7Ry2tK8VnvL18ycMSy3yck/n8TnR7Oe3XzAhajXgyz6elkvA+9J3T9Vppj0k0J3bmtt+ri5bgQa2tdxn359vf6vhX9tpV+EQziU9SWxpScll/eHd5V0g97uD3vqO96kp893n3fvdgfO7qrh0oPYjUFKvyuUGPeUd8qMH3XGOfPP71xYre5zpnU/AWcpxtxUjPqaR7BF1ltNGo5mKxIkYA2Ee0TgjEhnHiTgLop7M5mIKFQgBD+A82YEuzEfm+Z7II85NINmufF1aQKpoOmiOpoNHZMK7AUQsBX0G1BmsY5Eeaqg3vTi/mcAqgqr9IJ6HxwOPj0fMIjw5nLYKqQWwtUgtMRyZ4wM+7pndiDghiIWb6roe5Fi0BRUwtEH5zsGEC+1+Smt2+anSW8Ac5uZA3w3stjuLzd5K3DFt1IXGPfe+Mrfal3OAW9K46cWNtCR0GSxIAZemV3d4qCcsWQufCX3z5MPDPfPDPVvf0Q0Dru/RfoOTITfn6dIArHVv9Ekzlco0pzkQ1GIKq1q7o0ZmHTmMYwKdmpzPtADF/JZzuo3FGIpYRJPOJTAraNcj22tEPdFF3K6nv4q8iopGB1EYXHLoFYd2nmEj/OwnwtWVQrfhEDr2h5HxAMfjQKfXXPuPePv2c37zeuLFBxs++Tt/gH7xVzx+9deEbz5HFY54JvF0PiCzgeWgRQ8OGsF5vPdEgkVmCem7PG5CY74mJfHOMtGVWuhN8trIH5faugyZM/AqM6SaNOPV9tsAf13PtViiEDIwW81JAfhrIFwko+UMSlN/Fb8bMfw9meJFjaIs37kAkM19zxX3nwPMszZU42yOrReeOX1euFBl04P6+zkmOjkIpYiFqFwqNC8B5kwXjY85rX1ozVS0/XsN+myjU+hn+54G2b8LXF8C420p5lnlpNpoSOa1BSDL6fhqsz7rd43ZyiWBQqSkaj8FvKQFfn5+VsuSOu/vuei/B0T53Dufbt9lQe7bl1P+/W3q/PGB63Pl2zfyxw+648zx/jZR9ECnZjFNAgNFAhXIdtmd3+H9lhhJR8SjAWmdCNOBOOesjWpQqACGiDChcTJb0AZUaozMHAjxDnEHcGNhuEsWAabZThETJMUZVlD1iO6JcsD7G3CeOCUNm/M4MXgs6lIs7bbWtogRBzXbUBGP9z0Rx6TwcAz85S9/y3EfIHbgpuWzpRSVIylNQDmWDOMR8YL3ExoH5nnC9TOdd2Sb6CQjLID8so3pU8Mgn7cJ3RPIMunioqJBOT6MdNLhtCcGJedBEc1ZBZNdnySL49zoBTNswzOuGdFy3EQaMJV7XTRV6dnWhlqbpxVyrI+CtSUpV0TKu8LxyHQ4MPQ9qpFxmhmuHK7LEXNqxZk5N7qkkz7Ur2QBYC6NryolO1/yPy5vdGEpZGbtbVkLydTiBMPlVkkkp1OusXOF3fU12w8+wQ3XqGy5GQZmmZmDxdIPMYBGOq21Bg/9dsdnnzk+/NRDp6h0qPTmBxKUh8eZt1/BX/w7t1z3L9n2H/Cb13f8/qt7Prn+iOPdPRoch+j47A9+wfW246/+7B/Te4dTJT4eUELKcNkhnaNTi/GfT9eUbE6SqUgdl0XKyyzAaTwzQy3DqsBb2stYZr3q6aEF5K9utO+lCj+ufWMS4nNkkfy2WoPkpl7a0k17vx3zWQDZcq3+XTS/5+pfaXBzeSo83bl7123wOU71+j2rv3/IkoFmoRtpmNt9ezZyzQWwk82M1qY5p2niEyjXto66HopZGkt692RIwNKX1brM4BhSRtsUAlS1caRcroPlO1aLkvNzvC5C8vFZgef6t57cnweiCABPvuEZ5Qnt9prlycmHprwTu79fS9+1tJ+/9N994xMcqpTnnB/9cOWH3ec/etBtXkqPCAZASDGvgUQVfB2jhGI6NzB0W4L4AnTQQAwT4/hgIfKcS8w/FMISo9lci8yYiYk5RYpEVGeiHkCmhiEs92v11zctnqYaJJmqqBqQUdeDe4nica5j6LeVeGZTA7KNuhGZCtpY7Ub72WyuUO2Y5w1/+R99wy//8jXEXdKsBrLdbS1LBq9prJ2Yvl+ZkvMaiPPkMGpPs1nHWlNQ4UN2all1otDQ2pcWyLeb3WUuoMLhYc+Xv/2GL3+9R6YPuP9m4rgfSxpgoBztF2SKYCFn0ji7PGPVrcYtpYjaRKkE0iW7dmufLN4l+YWRomU0MBbTGJo2KachxjnEZzBmkTr0OMI4MYWIxIj2kRg2iFrcZ8lmIkJKAFUHqxC0tSCwLueIdmbwqswhEGKKpZ1nRi2MXq7XiVbHvmymkKvJ9qErpuLSJSeCEztBefHyA24+/oSjdOxDMtk6Hgt1UrBTqjDRio+qQhxH7h++Ybh2bK93+KHDeY/zwjAo263jxdWO17efIG7Dqw+vmENHP/wRfZx4dfOK3/7mlxzf3vHVw8zcbXAffMrh8IhHmA4zaLBMmE5wXtBoNsTRjtLsdElrWzXtYSGrARyanKdFAldu5tVOCOLKIZZGLacH5vCtaS4MpFfNoEvp322ggyohJoCf1lueB3MAFUr2vMXWa+KqFHSV1ndz61J7rWU/qdRds3Bse8fyWmux7ZQk0UlxhUZpak+LkYrmlrTv8n48gwgkVfJuIdNKSIlj0Dou7clMpuV2etDWtwaBzyntadP5WNN5TqQi3BNzsmy73fS4liLsW/vasVsD4mJac6KFbddIfi6bsyw5wSU77gL6S5WnJnFzSGZ4kjyypNbhsXmOZV2cH+unbMxzcWmPyLmVeoFW5isFcH8fwPtCuVTv2evfGSSf6esPizVPXnTpdd9elP8+y3dswROP/+hBt4GUBC3UGHLRJxWClIGaR6TH+8GSbGD2zEJkHo887t8wzfcWx5oeFzegW1SCOVTKiLojVlkljCqBKEdimKj2xqYZrraTUvhXdvSwjaoG9LJDWvSIj6gEVATX92wHh0jP/vENSiRKyoDZuKZBJqDJhKQUh7BB48BXvz9wOMJXr48cHl4y9B8yxi8TEGgS29AwvPxXYnwaFWVCmYkSiU5xLuJch6OHFCZuWTLwzH/K6ls9s6GbPmVUe1LxkmiGORDmwBe/+YK/+vPP2b9RmHd0vufuq8Cf/oO/5Bd//DM+/cmHuMETJSQtbONQqe6kXgPLDbNfE3apWkCXso06LEqFfS2lIg3RnOxy9sPkbBgTRHEpcEX9kFzpnDNTqHnieNwTjkf80BM7j0Q1c6P0kqyxz1b+edxyGzO4XTPF07Jm1FavRdR0BbwXwLHE12eEMKVENlnXn/pqZlCJofqe6xcfsPvgY45+YAyOwxxADojDTjDEEWJknkfGKRDVxt6EDkeYJ97KHRF4+eFLrm9e0G83ODE/BI/QbRz/9J/8lLf3B8QrVy9u+OjlFeP9HYN3XH34Ib/85a95OE588eaRl68+44/+2U+5e/0Vv/2zf4wPduIWXLI79QJOSrbNZcyeOrYZmBSNskS8gz/8g0/49A8+AC9mPpBXlKTsACkxUT55DyEWwKPJ6VpTUPRpjhxma0eIc4rOIqhGwpxijBtKTs5zdZ3n+ONWb6ahGYRkgbFMrYGysu6yY3FdeOuZrzjmNFJEfm6J6bWsE1syl+jBcl0VILk4Xqlgr4XNi+XYtNN7SzbTruVTQC2r786Vp5n1qcZ9aT5RHZ3TOzII5xTYPqu0mzjV4URKDHkkO2nKqm2rnd2A5aVW+XJ/W2Gs3HWGDi0031LbIUmwW8wxK0B/5u/6qkqXXdplzwGWyxOQpUD5XcHg9wlsvw/76u/chudcf892frud9X2WH/ZNP3rQDaApXrZK+lzC+cGSECf25gLjvCdyJDol8shxfsth+poQH03vFDuc7ujcFc7v7IgLJcZkaiE5VXo2EzHHxxJWTDEtsgrgCwCBFGs0EQtLHZ21xyA+MhOZ9AgiBExT03cd6iAGI0DeJWJ4LjU1mekZvHLS89vf3vHFF58T5SW4HZ4eVYvwYuHHOKknl7rEXHlB1IBES+7TDZLsULMAoCfP6+Kv0/rljIMKSLVrlkutS01SJYTIl198xX/w//3HTHcDAx8ydNd0XYdE5e7rI//h7a857kf+8D/xM0uwUlJ+W8eqoKHQOOk4DIBcZGp5ThsWkoNWlCNwTffkKmISDLU6nGW9ejZFcNGEQklaqzBPzPPE8fiIxgFweIRtBm5Z63SCWL5taRlpaW7zTepj5tutNgutky/N9ydCV+PApCTtq8P3A7tXH3DE83iYOUzRgHWMdF1H3+UU04FxHDkcRkLMgN0SNm02G/b7A0GV/eHA7u0dL16+4MXNNdthS993HKcjMHF91fM4HhnHwOZqx8effYR38NFnH/HzP/kFt4+P/OqXv+LLL3/PX3/xBbdffc1mdw1HJYwHnHfkaH8unZQVTWWW6kqm0CRMFaffPJbJ9yQlB/KurAhbMijeQ485dsci6OQPvgEZdmlSi8ikJT65UCIbqZZ5CSGUdoSgyYE7YzzTuo/jWLTrBsZt38UYiSGarXuMzOlaUCn3Z4CvGeiTMXTzOa2EKOnkoFljBvKj5QTIy/uMjW27PitAawSGlchXOYO9aWFoIdYG87cwB/t6YnmuZBv+S9TKNsOzcMZSxijtMeBt9L1onxvAfapVztsu225X2qAayz02Fo05mMtC13I95XeUZjaa4yXAFbJJ3qWwgE0lJ90vtDeZLGanyRPQTaUhZypZ1Hc+pOGpWclTgLX9xj051++q7z0FpPco69OCfxKlCEk/QN3nTq/+ZstT7/9u8/qjB902sZABU3XXWieFzVQlMMU9Or5FnSdqYAx3TNMdkT0qByIRpEfFtNsS9zi3wUufNGgpG6Vo0nLb3yEGYsjMTCBa0pgclk0xHjGoMHhjfFEt86R1xOw/xanZmUfPNE9GbByozAQEYQB8aocxNSfSaC+T41kCrUpgnCN+hiAzzh2YGZmn0fqKr+nBm3FFqzlAYXB+IsoDIXZ0fkgASHDetEF1k1dNTIu9zq9Vt3jkZIYrX3lyOYcQ+Is/+wsOjwd67bETkBkvPZ1sidEzHe/4za9+x4efveTm4xdpDrPQIXWlSGH/qW3pJMKtGyiZalt0Dql0vklMSK3UlZTnKg7RegrSdjevlRhDMkWxlR3jjHTCGCem+5njGNjFa24++LCM3Zl4OakdVSuzcARrvssDLWeeaxlWjEm7ms1E1hPTauQWYysX5rmWqBBxXL/6kCAdX7255TFAUGGaZ2KIeG+a6qiKxsDhcGCegxF55wyUbzYGAtOJUTcrD/d7pilw3B+5ur5m2G2Z40TXbwDFx8gUJsZRebl7RddZu68Gz/blNZ9++s/zcPd3uH37wK9/9WvGuzfcf/UF+9uA7zqijqm7ixFEVQqusLlNu0qo3ynFbCQPkC/AoolX0lTtJQPnBG4ax81MFwci6qJp3UUwM5YkpKX3KqC+0syoSkinNlbyd32zVmpbNa0PxeK4Zw1/NgvO6yVr0GM2idFIjCHZDyfBIipztLnNoDJGJQYt7wBNIVuz0JK/yxFyBIftLzNLSWKdtJC5fspJwQzcVQt3QVMc6MYRj1XEFGjuh9PNsCpy9mPzZKYH1QRrYaLTzHnZy4VGZmCtizqzqYhL/ddcv9harAYa6fWt5KJQnG5znY35iIijmNpouz5b599lT2XVpwLWV2MhmKBnYNshOXZ+C7iTIFL6rEW0WdLeLHBQaXO9v353hsIv/qgwP6/8p2d9yRPfXZ579ztt1P8JANP2jd/2/T8GDf27yw8nMP3oQbdzjqvtpjn2jw1TyKjHfkUcs/cML2Hz0oP3hCh0x4F5vkKjJ8YtYZ6IAbzr8V2PF493PjlsCdOcwxBajNNk4WxxdmMH0xZCR+FoiQpEDeQoBJFkn+jtsx0jeksB72GU0Y5/xTI+HvTI5EZmB4JPDpWBkBw6q1FDdp6sjDeKhTl0LtK5CWEkxJHoJoI6lB6La75cSOUvVSCATHg54uQeLx7VK0KMqI6YLXs8T7ayvIMuqF1zuldJ3oo+Z7JcLp0wrKrdGY9HHh/ukTjSuQeUwDHeMR83eNnZ3XIkPM7sHw7cfPjS2iDZtc0aVZiUPUCWGgrDO2mDXYsFqBeeSTYlKvxAAG/zJC1ohQJiqy1mhBhSFMwEvOLMdtPRf/Ix235L5wec93hvWtNip05mzO34t2NaXkoUWYio0uyfEywNyZxjLiBqHfkmO8ZK0o7XecpsaqknXLPkCMSuY+86/oN//OdMUZB+y3a34Xg8st/vyeZbIQQQYZomYgj4pN3ebLbgO65ubni4f+Cbb/6arvNGL66uePHiBdvdlhevXrK73vDw8A13Dw989vOfs+k6HJGoE+RoKCmRjhPPi+sNL652fPbTjwnjyOH2Db/6j/6cL371l+xvD7gQmxj+BqqLrjotjpLdUm3eLRKKlmu25CRFfzFfiAKrM0gm7QyxDLoFYDTAlHyKJWb6FJM0V2Y2AayYzUEaINQYiKDZOyC9I5/m5U2rUCzutISNso6WdaFutQaWoLeRzWw/AXPBcEKJvpT6Z8Jf/m1a+WA43oBlsoNH1HIvpJpiDAX0hWitqDp+LeFPacZCUbxRarzFHrU2SA4e3SxgloY0YuE2qAuiCTvIskRAY4pmv9oYLdirZoyU08C8xqrNeRVGytSlvRlcSO4rDifZBKp5odT+V8IhtWd5sswj3ejY2cgeLfBOV5rbWgfOtp31tYqGGcQhaZVq84x9SGaiaS/ZaUBduXXjVRO8ZZjJLLgIbXSgto25LzZi54qUsa3PrClb4Qzna8jzefGOy+USUD25fumkNn99qX4utyvzTTjt7bvKDwWwf0jg/t4mXO9ZfvSg2zvHzYsdRpTTNiv0c+lMEhB0e8Uf/71/ipuf/oRRTOMS5tGO2dSi7k7jxBSMyRTQBGgUnPTobAhLEKIGjnHkcdwzzkejQdNEnKbC2LIGOa+DaRot3XyMTNPE4XBAJ6XrtnTdlhAUtEPUTAdElBgDbu6Q44DOWHvF47KjqADJra0wxFScDGgUlCO9mxGBECeCC+n41y9gUPt8sRXFjna9aIoVPiNuwktEupAAd74vMVfJ1qwtGb28GepdZ+45+1gipEI6yrcj8BgmgkTEjUR8ckzd4X0PqswhcjjMhCAmTKlFkSmMQZo2uNqDBQlda4PzuCFUIHGuz0ljLbUObe+KxmRUk+13AuUiGcBaZjy33SDOp7RsyX441kQhkBhJE6Fi0QqlJMfQlOTFupXi1GiadVmyCgEDlM8iavXcCYRiySPLe9Z/xRj46s1b/ur1Ww5RUekQd2R48IjA/nhMGlNbp+I9IZo5g5tnpmli2Gz5oz/+Yx72j3z55Vc8PDzQdY7tdss333xTkiYNmw1XVxs7rHCOD19+wEeffkY/eIZOSOmxEk3xxbxMnWWV7beOzr3gn/nn/i6ffnTNP/wH/4C7r79OJmOp33lNtNIYOTXWU2w4A4sMhJQcS72ObIq13eC6ogFNWse6DnMslTPvyZrTDO5PQtG1DdKSvTBfzPujedVienP7MmDMZlAZQC+ATHqHRbBZt1cXH10RD3wZjYXNrQji6h7M/zpn8xJCyi7caGM1RWuKjQAsIuxvX/KTz15wfX3FHM1BVTCb+qBq5jVFYrKemjJeQUyx0o6JvUtrivm096JUUN6Ob+12Ic7We6GcANTxreNeJ6ROTDYxEWRpWpjrkWrbnYGr5rEu3dBqpZR5RkHCFQA3DUlz0nxObVmYmzSKCGcEh+J/VdZQtvEuQ5204bmtlaam85flwFPvLe2QfL25a3EiKE3f2x7keVk/k1bbE/TuXLkEzb8XIJmEqXM1vYsOnXv/2XaevPKHA8D/JMq7+vNdQfmPHnQDJdtYBl65ZBvcVnvjdwMffPQSt/EEIqKebrO1+zGA3KtWRxJskDMBFhJDogKmFygfyYd1Q2ojvdfWgNjfAWFO2sJ5HDkcDoRJ6bst3g0lFTViJhtOIMQR1KKmeFW8KhYI2DQuzsFxHJnDlDQ45lQYoyXeEd2gc4cGRYMSwkSIHxDikWkeLc55es4SBbXamiScBHPe7N2GLvbIbNbqrz7Y0PlE2Bq8Lw00WJCuxZp9jwV6uptLDRKVYRjYXu24fXPLHGd8iHjxDJ1FIokExDmGYcNmNyCOZNNd4UtmylqqP5nF8t6qmcgwZ23SBO0gtqYB2tyz0Aw7SfPVmLxIYnhiADTi0BAgmiOoFyV0AZc05XUdsiKwuZViXgZpnZczf8xMqRIVb+1JgqckP4JLRLsdk5PrDeiqEOjMfQBEXJjYOofve+4m5TAeOI4mZDvf2ZG2mkkX02R7wHu6rsM7xzRP/Ok/+kccxyNePM6ZNny/P+C9p+97AKZx5HayZFYhBH71y79iGDZ8+tnHNu5lPBWNVu/06Bh2HXSOqLOZoXnl5tU1f/THv+Af37/lME4Xene63peOz0+VjDhsUa2P7c/VU9cwS2BTnkkmE9XLOf2qMHrtzKd6alNZmtW2s31PaowsLtRbzwna1SF9DVxqFWvnPqcrUNcoTTJwaH8yqM+ADsFsxjXvFGugc45PP7jisw+vubl5kYQqKYAvm2zkk4s87iEq5nOkybk1KQZiZAohbddqnjOHOWnvHTFYAqrke53GXktEmpg1+aqNaaB5B4UCnnVBvfKsZiErk61MAorRRlkXtnG1KPQNtBXhoopQZUKzAJBjxWf6VsZlMfdSADMNiJdEn7LZiJPYrDkp49sC7/ZkYPUa1kHi61LVlM9DyaFK67ph9fm8S3TtOYuF+l2w5jk6+jTNPC2XOOtT9Xyf8Pg/3uYll8tz2v/UHT9+0C2Ccx1r1YqacgHRxmlChL7v8V3HFALRZU2ffV2TV9SNlxdi62ihYoStBU4tv0EEzZFvZXlHSWihnr7z+E1Pd7WzCAQ5fHchAhHnrR1etkakBDbOsfGezuVoF2I2xUl3lrUnIRiAjgpTcMxBUlId01pnpy9UU8i1mAiYEELKnZeBrZrDlHOOzndIEDZ4PnMdn11dkdGllhGpc0H5ljI3zQSm99Qrz4mpuiiJ6Q3DwB/+yZ/w9u0d0z7ZAUYI80wIivQzvu/4+MMP+eizV6iPRAl1nqTAjHpU2ICWZVlD2eZKRexnOt/8yhgqf5WYnKTIJcardRGW3ESbDpEZLy4BhDQGqkiKWmG80aLiuGbANQH4iJZjYRdmikeeCMElswZvPgm5v+It66ULAQmWHKqADqnzmveMls9545AX98WiDjrX8dG2Byc8RsekM2OMRBW8dIjrihZNoQjEJOHYAw+Pj+j+gO98VoIyTYGHhwcAbm5u2G63SRMKXddxc3PDeNhz3D8yjS/AddROghKYx8BXX+zZXu348Cc9zgXM9CIQUW5eveCTzz7hrx9/DXMdjdbu1upaCXINywsl1vmSDdZU3wnsaH26GWCqw9hybM9Ft6j3Lg0M2vm0o/ilo15u3bIFbd1LMNyioZzcpH3iFBLJigaccT5cA3stlbcdXACpZRQMxef9Ld7s4yXB/CJ05OeDObVqwBFxLsWMTo9nTa8iFeClL514o7WNaFGF9wok8zfm9JodUPPJgyt03eztzTnW7Oc1RbCBkE7JjP4baNeo6WRVmaOZJ82hS/xBCclULIrxoKhpNavxuRzVxkE9wRHjISWvQFreqkt+mNeRYuZ3RSlQ+lXXXR6GmMA3IjXEal4DeYKyAFcAdwX/WbmRWe/ylKksi+TXslrTZ0B3bZqkU4VTQF33cK3/hyhnOdEzNdDNA98buC71rGhCbsNz3/M3DbTXjsA/pvKjB92C4JxbDFyVqCVtSmMYLoGUWSPBwUSNgtoSw0uso72qqy8XrK8FF4sNmomCkGOfeBFc5+m8SxEAkqa5OBolCZzqGDmI0IvgReikHgmbVaQ3oUAc4hyT2NFncKA+RTtQLIMfNjamQegzNgGgl+y40jpXRbzzdl2FXhydCtH5FB86x+FeJ0hpf58CivMe4Ge27IJDywLkqQjSOf7wT/6I3fUVv/rlr7j9+jXxMLF/3BPnQO/g4598zH/yn/u7DBvP7GIF2lqJuM1hBv5PA+5l+5rJbgS92vwTlFAjBeRL+Z1FkGpHwhwpo1j89qJdTwkkCigKkTiPxGks9qtFy5wiP5Rj87LOUqa79H1Ic+LSOnDiEd8jXWc51+eZ7JyVOe4Sa2gZV7PBLHCO1mlpPax5PXqn4JRBYNM5/Axzcj7N8cxNU+lKX0KMEKxdMSpzGBk2Aw6Lm53tvYsTaJ2YUpf3nsf7O95+07G73ll4wb5DvJlM9X3P1c2RcbpD5xvo0qzmPYvywUcf8PXvv+ZxesSpI+Twehlqp3ErPg45kkkqsY0oIZDzXpYWL8B3vrSW7M4zknOa7vKuPEMZCGXBM9GdNZLILc6ngpcY5wlIubB95NyntUb95Fkp/cjaz/W3WUNazA8oVln1HUXBsrLrzcgN6DrL3ovE8ryTuqaLcbW6Mh8uKUZsHjMYzPshG2+s5kTq7OVoI0IsQlZREiXiZT5BKVeCdgmYL+/XpHyaFWLIgmpyag25HQaw5zmB8agpCk2+HpNZjSl0wjyZOZxqClNptuEhGMCf5pg0/SYkSIyF9mSSv1a20ApX6Xuz94845xE8zuW1tuTUma+Wd5DHnQr2KaIU2vKpZpGe13I34tEZxUE5rWyuPZXbN7dj0YOVILp455n2PFVaSvCDFln6A73v+94XbF9SHLTlfUH09wH4v8/x/tGDboTCeGM+31tJcpoZhphT4tR7jgJj3fvNqK2G7ZzEmzU1eh4qaqon1yv5KE7q84oUSbswYkm2htGONysAV0gOkp1zDN6x67wB45QsIACzmENQVCWKMjslRPuu8OSsQSjaUwtLuJBUE2PI2K823DMDEiNdYlHRQXCRERgkKRVbRtQM7clAnXzZojZd/tl+avvC8rPvPZ/+7DMU5c8eH4iu4/rlK8ZxpveOf+Ff+Pu8vHmRmGejTZP6WlIf8tHnScnjs/hOi1anVimX4OViEFp8Xu0GZT04KDaX5rCbEuGIEfdAUgDFCHFGxhGZR1xMmVMLo6iOX9mERdPaKraPSkHQBsK12DXHGBmnqWgMm26ctNWmZd2PNbOsY5XD5NlRf7ToLk7oO0uKkbXuIYRigrUksGZXO+lEjJalMqboFX3XgULf94gIXdehwDRNhDhxHAXvHfv9I19++SWP+3s++ugjXn7wis3VFW7Tmy29E159tEU14p0BbUI6Fo9mHtR1npubF4yPI3MMiIRmkpsJv1DOrRczX5ByUrYGyxmsnJH17PlMs8rftQ1rRrYAGgmsFGOzC02/DLifAuPvb6ZU18+SCLR9X9exiMSxUAFUoKard0qWUrWOT9/3zPPcPJ9ukdVZV7EV1iw7NyBRljS1+SRlzzUCliR/gNK5pp70yZXLSdtNio6UgLWNlvGFTqNptEk+BSJo4fJmg96nBE/a1GGhbWszsqCbHYZNC29vsohcatli076YQ2AOc9K8WzvnMBcyn4F7CDFFJIrMISCqDIOjc4HepYy7spqrNA4xhfW1hHUrcGaq7TQn1vYco6YqJM6D7fY967lrzWeeaxKyPjF66v4F5XxH+1Lti3/P3VWNY7+/0jqRnr7v29X3bb57zvc/VMmcbi1MvW/58YNupDiP1aM4PdNpR8QRvWfvhDkNjcc03ivFV6p59UW+LtIqshdFaQd9xRhbkA/FAaUEa3IZooglWQkCs4XUsvgCHu/tpxfHRsBFC9c0ZzyqyhxNuz2rEhJ1lezRX7Zb1uw2TlBSN0jVsp3rJViKeRjJMC4l62g2nznO6aLePLKFHBT1wBnbTa3tW7ciO+Wt35NPB8I04hVe3Lzgn/47f5f/6C//ink80vc9zstCDSGr+nLnF8rDRd9POkQmZbmhhThnge9syfEhcritZtB1URFZmwwWPcTimtt3QQ1s9xmIzhPMIxJms/tOM2xutq6OFSREkMJGNozKxiNLEdaWoMFiyI8TMcSCLcoaaReRaglLWO2iz5eWfWbgHXEGnHWGOOMIZlOtM6IpJF07TimUY0TROTStUsZpNAaetNmdt7j5MQSOxwP7/aNd7zqurq6Y55n7uwcO+wMPD3s++vgjrj94SbfdIGLJZ+7ubnlxfW1C5nyEYHGq88nbbrel3/SM41zGyOIvaDltolkvWbtZjXlWJa2NGCPzNDFOE845NpshxciXhlQ1BOdMOQe4z2qQ7IaiRc7Ki9O2fTsW807m2fx7IreR9nxuQp7vqAtQkxUyIQScd8UcT5t6z7ZetBGArXRd14DupizoREutXLP1l7wg04fqb1Ttwxf9TOvbhr4VMJafK61SvNMEXLMGXopDZwrvbfHe1eq0V2SeGZNjp6nns3u8GUym/VVObZQcGcZOxLJfSHJtlWwiA7H35Fjvud1mk74aytxm8rMB72DoHL4cxTagN49ltBOy7BC7WNNnEqudLL3FachlcNuOfXt/ixneBfmeB55rfZeefeqBdTsWw/xdEOG5V7YKO06X8PdR97pc0nZ/f6Yi76rnhwP2fwtAd9VwZ6l+QQQb5iZANwyAOWgE4Mjl4b0ouZ2cl9YHYiFd0gAlLczKmC/pnpymuwoJzkk5uhz6HhRzmgmmLfMuMb1kq12IpZciDIhKBU0W9Ng0EbkpaTAyU2klMxu67Nj3xNhIPhwVunxU3rBB0x7EAmgL816wygrpM+BYDO0zpGfjM4ppecx+UVCmw4Hee17sdjbm4um6oaRy1mjOp+VIszDF2qZLpxknzDH3t2H2rR8BZQxWY1hfVMa9ooAMfjVTevLkiTMzi4iYE1AUCGab6Z0g84TGUJLvlDECzFoz8XMhgXeHuBSRJA++rsfAxlgQ5nlmGi37qioLIdeYeIFAZJEyksyI0rqscksWA1tzHgNJD4cDj3NgVMfWd6hz7Cc7+l4wOsn1LifLOZciV+QVJmiMZd9pAhaqME0zh/3RMqs6RwiBcRoZp5Hj8cAnIfDyow9gGACYU/ZTJxCmCadmQ2spq6EfOna7DYfHR9BIVEfUlFUU27s5Dbu1Ry0MqIhpzx2YIJvHxNoZ58jhYM7XXdclp9BuRY5OVuyZa+nOMxru83bfZHHthJnX2k/fUYXPc4qQJTgos5TasY6FnR3/sjCwwOFqc5rNI8yso4ZBDCkalRNvzuXOALh1zJ0m22iWUv5qGAYOh6OBTiHFvG65C+V9NoYBU07YOjvHMhagItM+bahkIuGFaJeRyvs0CwdalB4xP1+AfeI7kuJLST7F0xr5JB3TRWeB+UKq22W+mvpMA+YzPHbeZs5R146TMmPlmqZY6GXEkqYjg357MNOaTA9SXgOHKUuQcm8ehWLnnQ7pYuGqmdasgHMzis2kmS/NmXlZ8JpmHhfgMtFoWV8r1Z/bG+8H3C6D9TUzWn546kRpWZJQ9i3KmZVZvvm2WvV3abvPnaKdUx68/4uffl7eccvZ9fUe5W8B6BYjbBmUlN/pu7wMRFLkigGzuVuFueLMID21VhY3L8FrhqAFuSI1PBuUEE2Gh+37mI4ozVksaQsSYd+k+N2iSh8dPoLOgXEymzpxDuk82kli6KluzU42yfGGbEJgDKl4zS+6kshYIuDn1m+2QBVA5ojXgCclkXAO8WZvviROxlFqCLqGIFEdZ+qtUhvWzEMFathcx0gMMy5a73ye9+NEGCceH4789je/YzqMbPreYhXPEc3Z99I7IynWuTcmKT7bSlcQXt5/5ngwH8Pn7yuIdyk7YX2uAEtIzpMVeljoyrSKhArIBVQDQe0UQx1MEUsBn7IBximYvaNmTW9lUpJCFGgG0Kkd9o5kwiRShEVpIjdUbZqZtNgxcM5uGFPCpvUayUu/WfeoAYps21RU5Q3wy8+rIL5DojnDXu+ukRnmMNoplbZaYSkCgBNJGk2P+Ay6zazEe8/xcEhx+AN9Z0ZS3nd4D+M489u//pyPP/mQ3W5DiDPjcWQcA+McCFF59eEr+r5js9lwHI9EUab9nvl44LC/I+rEPE2oRrwH79KYpgQ42ZbWPovRoUSmMkCRsiZpor5o87zivV/skfpcXnc2Mt+X4kckzyqZgJX5yozuTES80raECxd7Ln3bvmUFcFZY80zlZb0IyUG8ocGatanVdjeRjMoaNC4AdyFBumxm1ppP08SchduUDEzIZlHSVHy5nAXfmXjo0ja9jbxV+lDe0gi3GWMXOrR8ieboLGqCupaTKC2VJs5gyoic70I1eUBShYIsDSkF9Ft9eeQBVwF7tD8bvGwvKxFX2s9S10tqOMUIKO2D/J1oA5JJSZGaLqXuFjrUjrY9X4ymqrY2aa5PQ1i2o7/+lO/LsPy0PNsW+xn31XtOuPeT9y/MrLR99sLGfWZpm3yaNOpMpXryYV3je47D866Xtz6DKD5ZRYaUFwbsDGx5r/K3AHQD5GMkqlwlLfA1adf5DucHHJ4uEZmU8qEyP0hAIQP4+o6TQWxpVgIzmZEWzbazRhSnDamTXpZ9y3QBjVIIeIfQO8fOCVsRBhFkVsI0MU+jReXwDpHetBxOmWJkHyJzNMaebfFKemZVRDzOQqMkUJgBWAbL7nRPaI3u4hxGVENEw4TTgBcstFTSlrikORUR1DmCM+dOS/gRiylKgZxaiWolvFVSNnqvuBQqMcwWD11jYEoxm52zcHLzODHPgTdvb5m+/JrO9fibV0yPR2SOOF9turPznjiHRI84S2wUnYKvkY2zNqON+FqvJWbXShoaQY8WMzxpomp2PCzNdbdBUzSO+pPj0spS+4IyHY8cDg/sdtbPmDa/BpA5j20+acngttppa9Ge1jlNWSVMKBNjgGa0lKJaSLYnFkbgEIUZj1JNJ7KTb4UEcHIk8GwAaGtyM3S4AWYcMw6ZJ6rYGFMsaYfz3jTYCXj2fW/a6gJAkytaiuUtVK0fWgF5CIFpHLm/e0hA0nwqpsm02tM0gxrwnqeJ3/3ut/zJH/6cYbPl8PjA4+GAMHN4eGA+HgnZ2TTRp5jmNmOZnDhmARRjFcDKsGm1jQXYbAb6oU/0ZU2VzoO+helQw4Tb6/nvixq6BYBpTqE01d8Coub5vAzWAnfzFlhdWQKYRBllsbrOYHGjXb6EFdGzfV5UueivrfOnGO48z8So7PcH+q6j6xydFzpvwvWaSTxnyZ/O+LKcAJkMkPU59ef+V3aWNfTl9HPVlrD4WxoEknksC1QimSauxzg9n4XGqLkdWTBI6yPFTD+dK+ukUH9XU4YaQMBsz82GshgOZU0oDaBv+giUJDuL7wr/W57Jru9RKmi/tGD+RmyL3+MVVTsMNOsBqqD/bdu8NrFJ1bI+30oQ4x3rtu7y923P8wD1M+p8Rz0Zq53SoPr52exuVX70oLswKydlJNrjJE3ADxGi7+h2V2iKlVqsqTXDOdJiLCkBqEOnBUhnGJSBdmaKISohQAi2qkUE7ywWrPNixCUzJ5e1oTkgV14wlkp8jpSQfoqanahzXKswETg4GFEzFojg5hlJkR2mEBmDxXe1sbDkN+WoP5ozmhEuj+8E35kTZwtEdbVpWiHGkoSAixEXAsSZKJo0Kj7dnxia5YhHvNqPI9t2GOBtNr+BkrDQTuXIIk7Vehwny9QYgjnyZG2MKjOBiOOwP+DEMUXl+uqG8TCaA888oc7ikduxpQ2ygVufpKRYNlVOYpMllzIe4sqaMy13ijJQmLoS5iPj8Z7IlIBvEiASOB+GHYPzWDbQytwyo7OazN0nZ3fUYBDUS07woUgAiQLzDM43puHJQbJVQTa24DbemXkkIJWaH2nWniThDWUWx36amRTTNGlpMVmTvmQEFQAti5av663VfnQaZx7GiWOYmaIQvWfGp7GwKbfTFaHzHuk6E1acw/vOshkmjbx3jilOJe7xbrthM2xMW49CMKGo7z2d9/TeM48zQXPWzSlFa5hL3OBht+Gzn3xqiXlQ3j7c88tf/hV/9+/8CU582teCE4eUbI4FXZcRWIMeoKQ+Rynp0mOyMXDe0XU5Ak0yaZlnum5JqvV0Ip4s738kewYony2J/ZRlsAY6Gclzql0+86EC7tOjZfMHWAL6GOsInwoTldadK1UoAcr+yOMqHMeR4xgZ+o6r7dDU9RTLreYey+49Pf7t/VXQfTdzl/LP+fUgq3nPdxVl9gKcUTNCanuClWdmCZprG9J1liYB7ec1kK+tafqR21Y7VUiaAuqEIMv3LMVDWdanlbtJw9uX5y0r0Cjtey+AdmMKtc/LrryznF+O2nz57YDl2hzjfWzLn1NOZu9MlbL6/XR979+m79qPdn8/6/783rYNZ669T/nRg24A6bwBDM2e0Y3xgmRHSwN5c4x4taP9Ga2pu8sGNFk5L5ilw0pe87bwlZw0xgDuGOB4jIQoQIcTR+eEzitdb1ENnHeIU9CZHO3bNESxbM4YJSX+skYEBRVHJ44dwuDVQrcNPeMciJK1F8IhRMZ5ZoqZoVv0iazJd95AWQiRabIoERaQSfA+aSVcJaGtdW4ZUqqGzGssCVMidqToxHTBWXNuPYxF2CkELxFvpIJVjdHskYOBac1gV815zmnA6ZS85rURgJKTjmbvd/C+5+XLK169/IAvfvc53gnTNOI7h6vuqziX7KOxU4FsW11sM1WRkm0ubWyxpEMkYGpJ51rGpmicGQ97vPfJVjgBjMQlnFroxZhkBil1V93WgohEIQbrW9WgZs2UuTrFhG4iDu+yhrU0Cc2Gj3lBq0E/adJrF2aTjm8lrYO8Tky4M+HNFyNALXb+rc+Csymx7SfVdbSepmhD42wfVKAW6RPInMXjcWZLrcIx2Zd3TnDeopHYqY1P60CR0eKP2wlUTImiYLPZ0jmHd7YKuk6LI+XQmenIOI887h+Z5xknwm67hRh589VXdCL87I//APVw//CIqvL6zQO3b4+8+eqWOE1Mx8gcXVrzbqnhPlMKVFNlGqeMU0FNuxqmaMl/Btdot+sajTHik6eZhXgLOOeLXfO6tNrtEAIhhAVwf5p5PZ+d5LVT4VyLqqvOWzHQ3H7XmqDZiVJ9Xk6yNlawWBPDtCC7trsVMNrxyfHRnWtM4xLNj9HM9KYxmD+IeHxnCZo0hcdzneByMNg8vqsWLhwnc9vk8oieO3Uwutxs6lXJtvcZNK9H6WkBKzlNpuGOWvQjdnCHNNlWa/sUTY7CKwFOWgGhkTbt4cWGqJTztO/573PLslVkFNvqcrxibW5weoNfz9W/fsfpPaQ+tqt6KS2mVZ82sJyp51L9dumCgmL1movPv2f5ITXyazD6w72pLe+rQKilDsUTLT2zf77Pfv0tAN0C3mxmDTg4A2zYxshZ/UI0DVLvPcSUcTKdz1mIpWo2EDFgA61Unt6VQFY22YgqHEdlHAPHOTJHQelMg4sjiGOKQq8wqNBjCWosBrNYeKiG9mS7uBzpIKiFAhRVBoWNgHeeYTOw8545xz4VYQIOj49MWTsocupIloinONNw5680WrhBw5NGpmyM8mZxhZBlDbxdT9rWMhsJxEkHLmmQvUOdS/5EmUhTf58cYWewSwWGmm1hhdjY8gXNcyYpNZDNpzhBvGe72xDixGbTGdgW8EjJfZEdT9OBQUo7nPvjKslMQLgQKMm2hg3hzZ6qqU8xmG310A/stlt8ClMXoznpiSRQltZq3fENk2jWn8MjUTjuR3bXZoec2y6+Q/sNsawrl9hnjkCQ5yuLUlLaak5U0ow5KKGA8Gy/b1utY9hYCvqglnXRF82O/WQHWxNkhWpaI3nAgWpmUyJFqGmuncB28HTDFeIsRvaIsFdBjxN6CMTRxk86oU9x7vOJluZwgdEiTeT42zlhVJgn+s3GQGw6MbDMr7auLKtr5P7xgWMyI8hJPCRG3rx+zbAd6HYDXddxfX3NeJyJMfLy5Utuvxl5fHwkjFNKM55PcLQuda17cl2G5Oydv4uqHKeRLnb0Q0fxxWgAd4yxAMh5npmmiWFota/nS4yR4/HINE3sdju6rjvRgJ2CtPXfT7CcAijlbHfPacMW72m0iSv4w5I+GyFwzsw8YqLXUuLXV2fKc0y5TSbmEz/JW1LEM40Tx8OR169f89lnnxE1stn0liFVOBm30qZm7JbjWAejgMynhqJ5ap2Ial2WQEeoidzOr7fykBHj9DELB5VS6xPPOzEwvgagtc+J7hRlQTb9OK1PWI6VJGbTgra1o6PiUAfORYvYVYD1ssWN7FUF23RjG5d++ZCevDOvy8VYNyctJ+N01vOu0uCTb1bA/6QP36L8jZi7tO975rVz5am1lifu3LfnRN3Vl5dLWRfvaOW5E453VH1axeUnfvygOwGTbJebN3ZzQpu03wYEve8IWmNZF6iQALpJ9xlsGBNvqaII1ZQkKlOIHI4z45jsiqXDiH0CPE4QTSHKgCiK94pXBxJRn96NgRtHNVOQqIg3gOjUwGgHdKL4DradmSYolvzuAeHGX/MmBA7HyTTkQSFnXcQAic6RGMBJZ2CNRFdiGoBkliCSAFcCM5n4pbwllv1PIx7TUjkgpH6Togeok+R67ko0CcUIVDFpyPMINupdbx7xpWGQbWIBy+5QgHiay5ATiggyB9R55njkm7ffEMYJDZHdRx/TbXe4jSTJIzOxFGHApd8p2gAqZrYhkmLxatPWFGWGhrEWLVayzZ4VHwUXZjRMFhlAU6pnDThJumNNMahzXyWLM835QlqoZmM8ldfFqEh0yNAhmw0k055iLyyWOEdW3EfLP6lD6urXqkgB3cnhKo+JCKG/Y3JmTx7VTIqcVk1lnlUlO1g1AEkMhOd5X5CvQog0+Rl4DrMJKOp7RoSH45HD0bJhDn1n2lwRfHJ6VbUTrHGa0BDovGmu+75HVTkc9mWtdJ0zgAXFr0HTwByOR6ZxWgL2eWZShT3c397xqvuQ3/7ur7m6uub+9g7vO96+fcs3X79m//gIwaKNhFiFdCX7RTSTUCSs3P16epDX6DiZecxutwWXhMOEDB8fHxmGgd1uB5DS3e8RSfHIdWmr3Wq5Y4wcDgfmeS627U8y57pIyjqrXzX24ReruGzRvS4XwydmWe1CO0WknHhmoJ3vjbFm2s2gWMlRT2YOh0OpJ4RQ9lrf9xyPI1999RV/9md/xk8++4zrn3xC33dJaPOXIYLqk2P61HNnrl4YMG3IkLZ3v1cp47LSQj/v2adfanU/D56cjFcRgOo6rqA3Kxe08qlmPBb1tk08qzY/g+ZkvWLPr8mi2ZY1HP9uRaA4+35bwA2X1lPznifWaBaSntOrS8vg/UfkqfaurcWfUZ7RgEqK3zFWz1zH36b8+EG3YtpPSeYTitkQp+KQlFgj4KUjRmEKkiJHZGCQnA1THRmIR7I0myRtteeiWgzscQo8PB552O+N+fsuqUfsOFtcMMCMYwqW5S+i9L3QeYzhR0XFGEMULcfvFvsUXHKqDKpMCeBEse/6PASJyDiFzsPV9ZZ7jZYRLCgxqB2zBwPhGtQcDrv8vqw5E4jZwcy0jqigUfF9h3cu4XEz+4ga0ZiBiiSteNGLNps4Mf00XzGdMNg4aw0nlzTzTmukDUn1ZGMQA2q9vSV/n8CDIRTFTTPiOmKEcZxwatq/7dWOzYtrXGcxp83xzrTNZn+fBQy32HLFXEkbXZEkwJsAdrb1NXu+iFPwMTCFI3EWDocRpr5Zmya9uWQSVWzHBbKKLddL6qOqGghI3yXdka1zl7JUSle1YblFUjhCWdvQkhVpgF4CO+Kq6Q4WhizLZZPCrPnebL6iNYJLAq9RtOyh7MGQxZKqispNSGA8jcGkylcP9zyMgSAOP9g9c0pzjZh2u+v6woijwnGaOUxHYjBzDBMcrW3eO15cX+GdsBmGJlNgFp5sndw/PLA/HIghNGDcUmk7lDDB3e0td3d3vH7zJl2HwcPd7R3jOJkJQpTkP1HTdRudyTJjY86T5j3GyHg8gtoatHZ7rq62RWixk6oqJBUNfrJfJ4FNc/qLCxOKzHizrbP5FuQwiHNxQr1YGgXEuuSzn7jI9Jf+yUC5cQtcCn7LOuX0UnNBz72evK5qyD5SzGlZ/EDGlNWpOD8zDMNi3FSVzWbDixcv2AwmhL18+ZKPPv6Ivh9McHOS0rzbT3LVXXRu7SR40qXnFqWcumRH4HNgqjqM6rNfcP5UQ74N/j6pN7cp7/zz73qq1PFr14ZkpVjSMmdH8vU73u99VUlQZUxt1l4LP5cL+CyOf+Zby6ve8/7nlu+i6c5j8SzQfUZIeZ+Seey3gNXlvQ2HOfv92Yl67/f8MMD7xw+6SY5HURcDXRwa0hR2ztP5gRCFOaTMjfk4KR+vyynwtnqkeIorEFSYY+RwHHl42DPHSD/0ZCc10+4ZCMxgQ9ShUXBB0hF61j5V20XDrgZ4DXsoAWEWOKA8ijJJOsrDTGKKs4goQWASJXhwmx6YkyOW9W8aJ/aPB8IcGYYt243De0W8Tyl2sTjXqaMRA+HzcYI4cXV9Tbfpjak603D3qslM2QbIp3WowdL+qnOUkI7Og8TV5rf5UamOptnUIBPVcrQvdUNmQSjNNs6XIIYG2sXjXccf/Oyn7DYbfv2rX9IPA90wIB5inJFkbKzJ7t0cQVuCYWZGRahNKCGnNS+RRjQ2BCKaIKWRGA7M8S2dKCI9kRc4HTAjI28INqdpL0zFhismGx6VUIE+EFIWt3EMuCGiAVwQNGV/i87Zs3VoCvguwtAJOWvHsmqBQlr3uWFRlaDKcRw5HEf6BluZOVQC6okJljj0Wk9v8mlUPkmRJMHk1hnulgKCVTuL7kJPh/DRroMrCPOE71NYR5IjKkkoicp2M9Bh8bZtEkNKjNPReYf3mVrYT4wwz5H7hwce9/sUak5TTPAUYjSdbrkmAsp8ODLPkwl+Evn6sMcTU1g2208asx9uG22hzoJpwFcTkH4USzKy3W4rPSqnBeC7jpcvX5pGPjkF73Y7NimRz3kArQVIOefYbrfJ78AtNN1nwVymsjUzUVo+7TMtSivfVIGyfOMWjqRuIRKmiluQv9zyZ0peU1LWVdd5RBxd50vfjGZGi9DTgLJhGArYnqapxEK/uroqYT83mw2ffPIJnc/O4ukn0eKT0db63fuWDBQvgkVt72su5K+bE41L9ZR2aaUJq1qwcc1rri7Mc0C24WTngS91GRS76+ZVz4FZJ6AuzfVCaGs09i1Ib1flc0BZfYdQiWG2105/pbHPb7okWD13BRSBsb32nnXkZ75raQHspXd/32YrrdDUlmdFJuH9BIRvVX4oqSiVvxWgWwutbkMgpY2hMWl6hb6n2O0pdkQbEUQjgi8aO6TagiOk+J9LphinwP7ukTgFOufoVFLqXUdwUtvVkDKNlgTDJROT7KBS3km2Uc6ov4KkEeWA8oCjw5nGLYGiWWCPcAQOMTDnKA7OsnjFBLyG7YB4z+PDIw/7PXd3I32/oeu33Nzc0DtPnBWfomzEEJmnmePeHBc7v8W5nhnrqxelL3Fw15bD0bSjUSyzpuvAB+rxn51KZH2tZROzn5nMON1SKhVJoezMjIUE0B3LkIc2jorvzeZ2GDa8eHFjKcDB6hVHeyBsNtA5akkFfTb+DdlOuzlH2SATb7W1ppgTm2hgmkemaWSzS8IYIxGP0JVEQGEOZdXmPtj7XApz6VFnAG2OgcPhyPEYCBGmhnUElfRjgmPL0KoTWr60dCxqQ4SVy4vjs2acsNCTQQ3qgp1ItBF9nNgaN203ti+yM69mJ7em9oy2EzATgV6EF5uBwzyaOVgM+L5jN2y4ud4wxz1TUFQ7Zu0JOKYQ6Loju27g+voaL8I4jqYFj5GogaiCkbUGdKeseuM4pqg+Nl4STZjLpzeSwmhGjewfHxnHkZhSVXfO4RRCipVuzssZ6KS+2yfaHAFaxjAScSlKTV5T9Y7sKG2CqSZNt9B3ndmcl9OPdD++aHHPgoAs8KuUJDt1rZSVswDJJ6YBsvh1dr3UK+dZYGGOZYu36zR/oQ3Xv8zxhHQKOU0E1ZLkqO9dEiqkhOCU8t/yvSJSs/4mrb9rkigNw5Cu+6RVzYZUZZAqjWtBQgbeC5lCS70/FCevfk21eW1/C5Bphnmt2l4+U+2215FIcjW5XPYHkOYeyou1XSVn1OtZ0F2/I1ebZE5LWBVPn80APGqm8otvKYqexTOFwrcNXtbdLuBljRf/frJk/njh65NETquSqYYJN62QW79/VjPyj1zavT9caQWkcu19wH1q8/tHZXpO3az44/db/haAbsGOYtPgFiAHEIkhWOiwKRCiY5M0YVFc0Y6noGyNhEUCFAaytGUEYot+f/dIOI7JKc9AqFPT3EjyyMuQWVRKRJBsrqEBoou2v3wGfLHAKMNJETvah1kDB4TXYne+UEGS82NE2AvcoxyAoFYXTvGdWgIZBJxn8B3OXQFH7t6OHB8eETkyTxPXwxXhGNBJ6bxP2dvA/NGEeYxM/UwEBi9sRHDREZIQoC6WUIKmCEuQQgRiRENCVIlIZf1kljEK2JBMEl2ZYsma3wLMkrOgeKKrNrki1v/jfERFeXt3y93tHcdpJopnnGMKPUijaa2ENWvtF6whnTyQhIJ8rxYmmiPEgBDKfpzUsx89/TQw+AHcAOoJMRLFQjzK3GTOyytaBElp2V1aS9EZmNB5ZuN6Zj+AdwydQKga+tZlqkKdVrhoAF194WJHLcjUmePpbBerSjkVCgUY1b0iSTjJJlyqjqi6CPmVB12apSGY7f/V1rGbjkzHY+a4oIGuEz58+RHihP0hsh8FdR3jHBl6x+7qip989hkfvHpZgO+vf/MbPv/9V4QwE73DqydHz4hJ+JmmKQnkZefinYFalzIYWijmSJhHOi+8fHHFw+NDOlGKuJRtUjQQZwtNqWWgsqY7OXK3g1r4viaTCFJiD6FQI8nZaitb9a6d26xRPwXbS+ZzHoQvvo4mqLTPxTTHBYSIjUemk6kiaMN9lgacXsqvqq63TdvXbWwBtyy/yNr1LBAexhEA7309jcq2aMQCflvAXRQBzhXHVBOKI3hnkYfSu0IIhVYpiWYsaMJpZ/Np6enQPw0K1qDhPIg4B1HWr5B333e23nNXM49aarHb9uUTSlZrMNt1L3VYWpZQKwOsgX17+nnSJgHvUtjIpo/S/EDlM217FkW1CT4gpR3PGbcWnLbAuJDZdzxfROzvwRSpYhlZXHtXHU9TieeXdwHkd4Lh70l7/l208JfbKO+/ld6j/OhBt0L1VlYaJ+FIjIH94wOHw9FiWfsNgyo6BxCYMVMSYuu5TALa9qGJUmXfR2WaJw77AzGkY3OcMams88hny0LSXKkxT8m6FTGb72zjphVkQUyh1aTEQY4RjkG5FzvWDggPWPrpEALDduAokQcmDsxMLhKcEn1MdrUJFCUtG66nHxz9IPgOwjzzcHvLw3iHmwQfHQ6H8z1dv8E7T7/xxDkQg4Um65wwqMNFjzmPBjRa7O8TxY0aUCje3QldGb+WJqRdJU+aQigWc5MMg9O8xBQeT5Bap7NEKbMqh3GCoLzd3zMdRrzr+PiTTzkeJ4tJ7tORqcv7W8sJoilClmGxjNGkVOktKZeYtOSmavGa3GGjJ8rAw4NFm4lxg/ieGGGaR/rO4657+nT8vSyJwQdlDKMxARGmeWbT9XQS2afj/a2qCXxF859PHuoRe3aqzGMc129q+gpZYGovLKlLDr1XNVQWgrPad1vxabqyc3BdDqmteSlI9mE1DW5Ox7rpHB+/fMF8+wDDwHa35Xqz4ebmhp989hGbbcf9w5GHKdJvrnF+QFzHzc1LXlxf0XXe0rgfJr5+/TWd9zwcj2ZeIuB8slOPaqnDvcfFWOJ2ixeur7d0vUshBkkafGUaR0uM0vd88smHHMeR6TjSC0wPD8QpEtJ+idH2cAolnxwpNTl+JgCeTgMQYZ6nPEqAEkJMpiCCHzKdWB1xl3/SsmxsldubltMqCZCuGZP9PY4jx3FEsegcFo4xaZJjYBg2bLeblSbsVEgrML38I41Qlnuahd7c69SPFWfT0okWRiUZUilCVjaVyaEgT4ToVV8XrU373efwk831cbTINFe7XTE9U2cJedoWVZ+L3P/zb1zWfw702Nicgu+TZqfrl8xRngkcmzY3tZ7cs/j7LPheXm/vW8sl1TzmvE10rrDl0Urj5E8L9kuli2dP+3cKyFrSXjTw5b53g7e1Fr5953uVM0D5vR4/V9dizT/z2Xfd+x0A7XOefZ/avy9hYfH+S218rhT1LVvzTtAtIn8I/JvATzEzpH9DVf/HIvIR8L8B/gT4JfBfVdVv0jP/Q+BfxE62/7uq+n9K1//TwP8c2AH/R+C/p884H8ixnAkhaYoCx+OBw/HAcTwgCp0f6Dc7fLdljh0k+1MRZ8ff2PBEILjMAJPmxSUCKkqcZ+7e3jEf5yR1AyESphm6nJgkx4xWsg1zdnasGknT/BHN/ji73xQJO4GSDMeCwiEaUB+JuKAcHx4B5YVYcpujUw4RjjgmgckZuEcgaGA6jBA9oh1RHLubazrfQ4xMj0cObx45HI/EMZmYSGQ+HHFe8G5nWQ/Vp6NrS7nu1CGuT2Nkx7oFeDcCoRMpzpLqlgy3ODMVUJ0mQxpALZbNUvOgJ6SmzoHzFovd2VhOQRnnQC8du90VL17ccHg40A8Dc4xIio9dtNOS7NhpvQCaZtD8wVJxpGpRcWusXYsZ71RR8Tw8jmw2V+yuNgg9qmY7HOdA30W2Gzuqtnoru7u/v+fr33+NF88w9PSbgW7T8+L6hmnsieJxUcwRU+MiZXiuKWuUWqBS6EUmwrKGNSwpWHNsnI9lNQQ7uSAmp9gKEIWceS5FBUmabU+FHpKzy9EAb2cg2Hmh7z2b3cBmu+HDrsfvdtweItfXL9ltN/S9/VzvtuyuXvIBHtcPdP1ggmJnYxpCIAbl4eERJxbaLUwjsetQ70A9MSq3t/eM08TLV6/48KOP+Prrr+mdx3uH7zogmsmMU7wIIYBoYDv0DJuerrddupEND7e3JtSHjK41Dzg5LGN1oKzjXax/0imVV4cojGFivz8yh0jXdbzsrpLryClZtLGtiKZ1plOwGO8JDEk6NcoOlfmkqE67RYD58quvEOf44NUH5vchwuFw4OHhgQ8++IDtZpNOLlbA5iyvycg4xxKPuK5rFIkrkEaiw4vqk561QaiK8YCQNKtXV1d2KpBOkJzlNV+YQNQVmK60fY9QHSGrmVAGjcfjkTlYcq3OSYos1dRxYpqRT/Dy23K9q9FRyn5ss01eBtx5vFbfJ751+s0pEF4XXXxKFFqk+Djkb/Iye6q+BsOiIiVj7Ll3nhm6dcPtdzpZuQT8i8+DVjreCoX52lNjUHH7+wGmc889+Z4n7nsezH9ee9LLTq89ozzLjnol+Hyf5blz8H0B7We/7Nl9fS+EDjxP0z0D/wNV/XdF5Ab4/4jI/xn4bwH/V1X910TkXwH+FeBfFpG/B/zXgH8e+DnwfxGRf0ZVA/A/Bf4l4P+Jge7/IvBvv6tTklRJGiNzcoA5HvfmzS+Ood/QDVuG3TX4gagGAQQjlooWDbkIKaJIRlGawEsOLaUcjyMxJD2rqGlLo0AQ1GsTr1ktHncGJc602AFKuOISZyWFjytH7S4mgCrgLZZwTt8b1CIp7GcD/l2YGboBUccGLXXgTJs/A+IjQcz2WnVmjkLnN/jOIeoZXvQM0jMfv2acRhwB0QlRD3gOD9BvBjMRiQ6VGdQh0lnYw05Q6RLgXpJuSLHPE2DOJhpOGwa4kO5t7F12rJR0mpCip2QwnscjI7fEygqQGLYbfvHTn/P2zVvG44Qfelznkc4h3pNDoEjRGiZGXDhKmv/SxjO6IrHvMui0JDe+7Mvt1TUffPQpm80W5zp8CExzZBoPjFNI7U4CQAIlqvC73/6Ov/7lX/OLn/8BQzcQZ0W94mVAHPRRGAVmpuQQVjMZSkZxVi0Z1eWZWTDDSxqQc0RFLQqIzgl0SzU/cFCiAVXmk4F1BteKd+Cd4p3Z2PrO0fWeYfAMG8dm09N1nmHj6QYLaTk64eF3b/DOs9tdc3W1oet7hu0W6Qc2dKjziLdwjznWTQiBh4cHfve7z/nm9Rvu7+4Is1mwh2D7ZJ6DgagUMs57z9Vux/Vuh2AabbPzjsXJc7fpefVix9X1hhBnDoc983jkeH9ketzjlZTkKWVLzWNfMWcaTq3rNwtGQjFFy1h2nifmEJnnie2mZ7Md6vKTsgwroCAn7Qp2OrUC3V0yl8kA/9wRu6qZmN28eGGRUaaZKc5stls2w4bD4cA4jnaqIo3JFcv2nNkslYbGyNbn+NaSEl7ZvOV2lvrWwKmx1ZiTOUimFevsnKVd6R8tG1nLAGrIGlgt0WAykMsCSdaaz7NlOu2HLrUtRZqhTm7ROEs7Eu9m1LYmmr4uAPySgZ//roXLmXqdgrsnHTRP6m6ul3+fBhF5LE1AsjYXsCvrJV813esxyvNuSpt0AtzeJs3al7pCRKTwl0V9q3vXmvi8Fs+B+vz8cizO33fp7/OlNvRce9915Ycs72r/wnzlPYSUH8TW+nssT/Ulr+H3Kyeb6GJ5J+hW1d8Bv0uf70TkT4E/AP5LwH8+3fa/AP5vwL+crv+vVfUI/KWI/DnwnxGRXwIvVfX/ASAi/ybwX+YdoFsVs9s+HBgPR47HIyFGvHNs+y1939MPA3QDpPTQunhe0+Y3AukSQTbpvPEgTjaZcYpoSEfQOFzCbplRLQhUBikKWftrx8kWAhBmxAV8N1mqeCdYUhnFe7PX7JwwOGHjHIMIG/F0KsyWAQbnPTvf0XuPonhVi8rhjHSPkpq+G7jyzpjnGIgSUZ0IODw9zvV439ENA+7K0UWsr7OaMDPO3N/e4zrPh8Mr00qilhyiH5DOgwQMgi4dUjSdHCzNGvJ92eN/tYrFFr6j0W7nSAxZK3KCFapWyomj73rGccb7jpcvX7HZbOiGHu8tvldMQDASKTIWFBBvBLpp9eLIkgUItyZK+Uox289xHFGypsjCumkMdhRp6MjAq6SVqeZwm2Mn7/d7rq6vmcPMcf8IkmzhX26J6lHJtsaurrkkDJ7aicAZBenT9KNot5SUko4wTQa6XTVxMFCZQH8CKRGLqONFUO8tM2vnGHqLJtF1Fl2i6/uUsVVwvSBeTBPdebq+48Y5Xj4c2e42fPTxSzabDcNmQJ1PNtZKzm4kSRMWY+T+7oEvvviSz3/3Oa9fv+Hh4aFEqDDbXIvEMgV70LueoR94cX2NFwu/aRFmzDyEtF46ETovoAEJExuBwzgi48ggBh6DmvAtKVJJLDTmZEps9DLB0QYYYQDceaFLOyrGYOA0ZU0suG4xZWZiNB1HjsejXRNhngIhRHa7XdGQDpt+ERaxagstNvXVbpfMiYQQLXxh3/V0H35o5jgZcK/A/2W+Yn3IIJlYJi1pkUfGaQIcwwCK9bfrezrviSk04jD0iHPm1JsA8imQamC6IS2QlEQrzDZHaqYhMUamebYTPO85pnjdu91uEfVkGIZVIpxkIhQTaF8pEBaa6CYM0gL4rVpb5r4Zs6dsu08ATJUwFve0gPt5pYjm79SQv7Nk2tDW0+yFFgyfvCfTaQ2IeKqIl+BxtuN2WswFnVLMUS6N61mbbvK81JVc7P3X9733IJwrDej/XupblnPjue7zOS376oGzc/9Dm5f8x7a8o+vvZdMtIn8C/KeA/xfwkwTIUdXfichn6bY/wDTZufwmXZvS5/X1J4tq5M3tLfPhgETTPm83GzabTSWWzjED0zybSYJgofFSNIIMuLMpgytaTRsdi61rf83zzDxZ6l8VLSnHLbeJInjQbDJhyE4A9VnTlTUqZl4ibsL7Ge8TcEo0u/PQO6F3wtZ5rsSxE8dGHB3C1A/IZmNZF/vBwlwlYORU6KAmYxELjyh+oNsM+Dki+yPTMTGs6Ahq2S193yOzw6cgcIGIS2MVDjO3X73ho5sbi5Hso/XLGbCuWtuWLFJCMWIjkpKoxEoAk5ZDEopVSI6oktEscwbemgStpFUtzpipdlUxG1jgeBz53ee/R2M0G+oUGtE05DU5TqmgENsqdJ3TepwUgayhbqub55kMAEOyE45J+5htaWMM1q3sHKdKmC1qTCbIGVS41P8owDSj6pgF+riMiywlDnoFb/nfChVYBPjXk+8SmisAMBaEp2FKZtfS1CtF8KjDmU5onKPvO4bO0Xuh67BsmjkXkeSTIBDvcL2n3wwMmw39MOAFPtOOfnjB9c013lkFcwTmmObJhBeJtgbHaebh/p5vXr/m9vaW4/FoUTpSspgQzMj6OM6EoIhEHvZ73r55g/eO3mF7V7XJyDknozTP0PeEcWR//4COMzJGeifgHSFqAtoWpzufQhSLE1Jym7aU+RITxNLf4oXtZltOb2w9RLy0K38h6aPB6JOIFGfCoErXdex2lqVynud6inQB6Hjv2Ww2UOZa0v+OvvdLk5QMahuhe9Wy8vc8WwzxqpGuYDDHF5/myOPjwb6TyDAMbIahxCcP0XK5tvHGoSaPav0kcju9t2vjNDGOI4fDgWmyTJOIAewXL15YNKqUTKkI4Olnt9mw2245Ho8MQ28JkBNNIu1p51xVsmC03otrxsXGqZUNloJKHo88pfXGtTnJefBti+zSHLT3VkXF8vtqZ33y4Mml9XsuAfSz8uZzSmYShbA0p3OrfVTXNPWw8pmlFUzKun6igu8OOpOPVbNfvlt9lLwO8PyxPtHOrz4bj/yPH0j+sQL/Z4NuEXkB/G+B/76q3j7RoXNfrAXS9vq5d/1LmBkK2+2Ow/6RwXmGwTLP5ePTRRsUtpst3iedkWYpeVFv89J0rJUfT0w0TIEwzxCxeMoxeUznZDbOEZ1LjoupY0mjUrWM9ahfUxZIEYsbm0G3w2J5dyL0kpzSxKDqjNmddzuL3TulbkyKRZ+VLABYWL8hvTygzE6hU7qrgSgzx7uJMCkhGjOPqhzHiWMwe+2OFDJLgWh23Pv7e7Zug24hOIc6xcJs1OmN0hATqYAsA5jCHspxqiS6atRSIogXoiOlo2+Pl40hxKjFBKVokUSYg8UmP44T02EihsDNixcWFs05opjjXwbc7TzneU+KzbOLslzXmuinLZr6lTMIGui2aCUxRvb7R0Tg5uamEN/MjDUJBHMIiDRrWISsEcwgH+c4amDAxgJNKdlLe0Jaa6V2sktomQWtY2B7whBEno9cmVlM2ao1TX11hAUDkR3CkMOtdR2dBxdjk/ApEpIplnMC4hHnzWdg8PSDpx96+qFns9nSbzZ0/UDvOl6+vCJoiuji7aQozMoUQYg4521/xsAcIuM4Wazl4xHFWQKYxJCj2n6NWGQjjRZiczoeORx7tsMAzrJJlujvrvZVMHB4d3vLdDygx5niQdqsBcn7XCORSFSXAmsuGWO7fCQTgEZI6rpuAbrz6dzJC3MdCWA6Z6A5m5dA3isQQkfUWISiwrSl7jIc9H3HAvBA2mt+dX+6Teo4rU2XcktzOD6fkhfl9eic4DpPPCYFRwhM00jXe7xv4tVLa8SWwkHGgPeWzGaapkb7bADQBI5tEThyJs5xHLm5eUnXea6urmy8EnA3kpcUK/kHCxsozllm006TYBUxY3AFb1kqo1okDE3CVha0pPnXaAXL8c1jmee6+b26pW7j5j4plbIQvs/Wk9BpXnFG2+zkJTT7f2lrb9fXINrByUlyAeDC4pTtnDB2rn1ZiNfmuyLfpbaulSU1XMHTwPPdoGu5D9/v2efcn04kOS+knL///HurEFLNeCRr+r8FuDzt7/s+8e7yYzcxuVR+aLD+LNAtIj0GuP+Xqvq/S5e/EJGfJS33z4Dfp+u/Af6wefwXwG/T9V+cuX5SVPXfAP4NgFcvP9TtZsuL7Q7fEPuWSQnG2F9sr+mlYwoUTXXFwUa8C4gAUEk2umnTp8QxEnPYNNs0TpP7XNfhfGeZI7PEjJYwUhIlRZdLx2EqED1x7okSLeU7UuKNgmndhZQJMAFuSNn+UqSOqBYaMWhkjgZEJrXQeVENbKuSMp9X+3VTzwv7xwPxeGRgQJyn2wzoMaBHO4aP6ahcxTL+3T0+susCk3q6qyvT4LIO51QJZKsdMeIZCwXW1DCnYElIlHEaEXEMu00CJRkAJlIalOlwYH888urVDVJsP+2+PPfb7ZY/+cM/4asvvyxtCCGYnb2rBL3OeKOlzY2V88ShEH2teL9ZoAWgtunFNdnZTuNE3w/J5jCfh5KAhCXpGcdjClOXxQFBc7xgSTaO3lsUji4JfMnEorRRwbJtujSKimvEC8jAMN+vVVOy6pNLjN0DhJlNAmMZZHmgQ2tGuBgsuoxYv0wzmU+Aku21d7jO0W06NlsD28Mw0A8D/WaD7zvwHSrm1IhKcmiMhFkJwZyFsyAxB+U4JrOcxwO//e0X3N3eW/u9azSHZkowJo3rQtubeLjGyEw0cy2BGn0H5jBx+/bAfDiaA/UcShhES4ajNWqRRCMYmmcgtWE1xJrpgcNCQ6ZJmMPM48M+yVi2loZhoOtPSXPee6bdXgLfdgWrasrUWxPhLMFzcp5rgG2tQdL/ZxjPM3mRaZz7ajZWBI1A530Cx+aQnIUWkWpCZfMhRaucY4zn/QUwTWafn2OQ598iwvX1NTEGdrtdieW9zsZZgLfaHi67RoSu79kMA33vQaOZuCQn99yWGNNuTog67+12kNYCF4utd6p9bm6p9zx/2E/rakFs6V9+yRmQ3/C1fK/Rv7QDtQo5wPJzeU82pVp3qjr25nryWIKWE6KsfClUsVm3KoLPAqQAEpukdnKuS6Vt689FE51omPC8cX4fQLbYVd9Faw7Vv6kd+yfauBaiflgYebkdl8pzAPmPVVP9XctzopcI8D8D/lRV//Xmq/8D8N8E/rX0+3/fXP9fici/jjlS/l3g31HVICJ3IvKfxcxT/hvA/+Rd7++7jlcvP4BgWec0bdoyaQpKxHeO3vd4FdwccNGsdSURjuRimHuVFq0QSFpRl4j60ZisHe4mTaKkUGnRtGOBJqFOQm/5PRae0EBMh2l0mU3rhBfw5jAnCnjlKKBeGVMyHcHAkUYzQ5iS/WjEjpBVlVktRGBIBKf0IR95B4hBkOgtq2UI6DhznCc6Om6uX7J9OfD1F18xP45mdhkt0ErXeza7K3DKw90d/sNd2bSlu3CyizWq2UmmGMSd5VxnOh6ZjhMOs8EWEe7v7y3t8maDZYtMdagwzYGH48T9OBFdhx4jVxrpnOC9xUufpoCqsN3seHF9w9dfvma327LptxajfZ5srJO6VqpHZ25tWtssjuva7xbanHPMMQl+9Qi9gpuu682EKSatjJiOKDOjmGzB8/35fUVrIYKocKWOzcbTTRZdgzix5tSqNn4Ghl2jsahs2zVMtihZtZo4WB8Fp8qcgHfvPEVM0AonLV61mTMF8eaXkLikz8AUzBZdOvp+YOjtdzc4fN+b/W7X2clAYpZhnokqyKY3cEO0LR+dxbGfRw7HI7f3t9y+vePt2zvuHx4ZR0uOZUJhBqIwh5lxnJLTXtJmhmACbDRBUOOMAr23uOFOLB59nGbCNKHTnCInWf8cMBMJcbZY+ZpHtT1HWa+kBMa1WVPJB0JRXOe5ublZPGmAs6yIk7VXbZttQosY3DJaWdZXzYgyyVov6jMwW9Zv17Pc+wSoCSkWsoFbdRZZRgV879mkP2Jag/OczIHIwNvGK8dV32w2OGfmehkk5xPPnOjGIq+4FCoUE1i9hQT03jMMw8JhsibWMVty58xZsisx26sdfIiRcRwtrGQy57HR0GX/tb1KiXFfv8vKntPxk/pHoQWaa3s3PrlcLoAbJYNsSRlV7eQuLSnWp8SnGvkKs1vaoieIO99iOvIQZ2IIaX7cCbDK87sEx7UvmeeuhQgBltmG29fXs0DJ8l+6qQRYODNGy6bJybXE+hcPr2Ua4cx45O6cvrHW1W6ptl91KzdjICfzfA6vypnKT4Xu9y9PQeNTKlN/f5dl/be5PEfT/Z8D/uvAvy8i/yBd+x9hYPvfEpF/EfgV8F8BUNV/KCL/FvAfYJFP/jtqkUsA/tvUkIH/Nu+MXIIRUnGErOXTNQGopgveOebjkXmcmYKmTHeVOcYmKHdOxhKd/ViQXhgfH5FgjprEBDuCoi6axgtjIAY0TNPlcBZSL2lAUUmaJrWU5TECLjlfKTEowUeci4zO0blojosi9egwKHNIwKMAs5TKPDGsHP83YD9abEylpA+fDweOdyPhPuLGiLqIfHhN13V0riPoSFbWeYEX2y0f3tzQdTPbQW33RotKIUJyCExzU3QM1p43X37Fw/0DnXNskkNSznrpSCG+VBmPIy+3V/hZEW9HtMc5cJgCt4cjDwgHHJ06OMwwRa62PU6FmcB0nMxeOTp+//uvORwjm03PcR+4v/2ayMQwdLje4XuP7xybwVJhZ5AiOWD3BYpxckrbfkcC69ECU4Ypgk9rLNl3xzgnYKspvKCUSCMajcHlaBms6naqEGCYAt12Y75+GohxOrlfCIyHkcN+z83LV/TdtkmQU3mCiIH9mABEmCfTpjsbE+c7XGcZPQl2slIcA9Paq2ETLaKEJDQqXujF1ReJoXBXNJA9zmeA1OGys1Rar3OcOewfiQrbjafzHSmoD3GOPB5GXn/zlvv7PW9vb/nmm1sOxwmgADfjxb400EyQlM12y2c/+Qn39/fEELh+8ZIwjUxzpPee7XZDnI6QDEPCHIjzhIQZdLJIRyikxFg2t1pSvwfNGT9tj9dZrAxNqQFD7U4t5mmgNgcZt2lrx+wTP82gpoLtBYhP67HU2JoiSBNdqQF3xSRFpTF/qILjWUnzWaV0xJyFp4ndbke/sbT12dQkpGgyqsrbt2+5uroqazPbYvd9z8uXL810KNEPVWW73UEWBtMaNj7hETHfCkc25dISL70tOUlOFshCGvM2Skpbsha9zk/jpJfmI5usZTOTMq6XyUxpVygPNLC9DmW5dyHIvQdsUSjapwoKzT9mGuei9R+GAd+55rn6jrVpyRJ4t286D6lMIeHRDLaT4FmF5QXSPAXPkiNdLes/J+iurzcoGLMZr6fe+fpTADm/f/E3nN0nzVY625JnlcUjlwF1Ocn8jpr07wqAz739Up3nVs1znvs+S0aCl971Q7bhOdFL/u9cHp//woVn/lXgXz1z/f8N/P33aWAmrka4qsxabPCSd3svHeM04Y5HplmZozI3GddEfSPpyWLUBcy+OIXOMhvnZE4R7RjZxYgLEWG2LHEuHY26FP8iA50Y8eJw0TTNOE3abwNbqoDGlJ5emGNkEnBz1hAmwlgctKzFOVZuzGMCkDTbikv3ChqFGE17IRE2my17HZkfZvzoiAKP7kAXHD6qJSxXq9GLo8fhQqTvHNvtLjGDmGlVAV82iolRpbl43O95+/oNEpW+69hut/UoMTHMOM1MxyM//+yz5MCpzOPE669f8/s3t2g/0O1u6H3Ptu+QGHnzeIv/+BX9i41pniZBtOeb17ccDkc0hTb83e++oHeRfutAe3p6RBTve5tPrdE40kRQoNHFXZYFuwqlxDoNGtMx98wckoZNzOb08PDIRx+84mUBN0p2ENKU0W+33SVHtmz6kE9xTHM9jzNz6BCNbIgWOtMtgd3jwyP//r/37zGOI3//7/3zfPbxp7huIGaTl3Tfw/0Df/qnf2rh0OYRCTNXV1d89NEnZle9u+H65iVd13E8HNEYLcR8Zu5qMawlCU7SjKf3DteZiZfFVjfbevHeYq8nzWU+OM5gW5z1eR5HVAPbTY8wJsHTMY8j37x55Pevb3l798j9w57buwfGYyjPq5rTndAMDQaktrsdn/3kJ1xfX/Pq1Suur6/5/PPPOYwzf/Dzn6FhZjw8EidwIRAITMcDXqNp8DsPEhmnQIzBAGqOzZ2E/6B1T0qKC590AAWktI5sJSy1qgmOSg3FqDWcHRLZuE3yaajPJFKTQoRrQWQtIMjgdRxHiwQzWAjCDLAUNeHHOeZ5KiYbXdc1kTsKFKpbYcUF6jF22h0NSLy7u+P3v/89n3zyyUJzicI0TuwPB7766qsCpF+8eFG00K9evSoAaxlJBLI9e80qqQl0K0oWBJdij0aLc++kRnBpTbsy8JZFn6wjrTmEYuFcNdjMWtvrHGeguFQGF4+Wk9Kaf1Sn6BWYLGsn2Y4nRGcnUKd1rT8vxiLRvES6iBFCmFENdH1fTTdInKaZz8jTZXHKou3op2up3mpSQhUGZXXfGkA26Oh9sWVZw5JbVAVLgWoa+iQwXgphVXV3CsThdPyfbtt3L+frebo/he8BSwj8/cLNb9PH70MIeM478hpYl/W7v2/b9B9/Rkqt4ZrESQKkWmKpjuPEPCsv/GAe81Et3JlRwsIUtCE6edtkbbckZ6P9Yc9xNscrLxbSz4mY3WeIIMHsIDXZADrTpmQj7YgRHK/QicNjocQidnSfYoyBZpvAgl4RkRSxA3K+Z1MqS5ERFClRVkiaQtQRo0OjQxPYRhO80Ug/bLh++QHjV28K3d0/jEyHERcDzGo+kprsQBXC/sA8eeKVR26EEM2PMuV4Se/PDM4I1hxm9g8PHA57nArj8cjj4yPOOWP8fU+YZ/YPj4gqr1+/ZrvbMYaZL776ii+/fsMhCL7f4aYNw+DRLvB4PPJw/8B22LHbvrRTj8mBDhwOj7x48YrH/Z7iGJiOH7WZ+7SS8oIiwyGhMgi4QCCEJOotN15UZZ5GQoTjFEEmC5fnTONmU5c0mBqKOQEKYTJHL+c9b968wXWWOt55TzcYCL++2tJrz/EwcoMmLZWddJRoGwr7+wfu37xFQ+A3f/EXfHq9Y3N1zRTr2lRVDm/f4OaRn3z4IdM08cVf/9oEHOcQdXjnMQfC2ZxCnaOk1tZEoFJGUFUzWcpRBGKMhChsthv8YIskRbxMAFSZw4wPFNCuGgy0CHSivLq2mPIW7TGARlyMvHn9mm9ev+XhGLh/PDLNMQmaCimSzRxSRA2X3GfTfun6nm+++Yavv/7aImakDK991/GbX4/0Thn6Hk9knvZ4EQbfodNofhxqAMVBOp3QlBSH1EetWWqbvZxXWBGQy9KxwRynifE4stkNqCpznNEIU4ptbeC3gpN1yWt7ngPHw8HMLYYBlwDNPM8losuHH35I3/coZgf99vbWwlReXXFzc8PDwwP7/b44P15dXbHb7ajmBc9kxuqae8z2+ebmBu+9rXWRAlxRE8p/9rOf0fUdQo48Yolvqp8DZY21/Z6mqfQzxphMQUxAsj2fFAnR7h3H0UC3M4fbDJSytrt5mY1Vek9WJkimJQmQH1Ns9+1uSxsyPN+T51kzPUp9zv0p966HsB3jjOabe/PYtU9eAtuL046mdk0VZU8A5xzSC4hP2XqNSbSmMe9jWd7aeK/b2pYMetrP0rZbTtedtb+66r8LnC0BN0nkp9RQepTbsZYAlj0jOymXZ+V8C9Y21T9cqQLE+7+vbXsLPr8vUeAdsP8dbf4+WvG+I3JxrX6bU4QnHvnRg25IOEoES8UeOBwtQU4IM1HVYlD3G8T1RsAlx02mgUuSaLFJ0koCkR5LuuGE4zhaAg0SWEn22aYHMocfzfF8VXDqjJn4nAi7EpzMYBQazfBKm6GuasIS6DZEDi7llM5aJ0s+0wB1BdMaemtnEDQ4iGbYIjQRJ26u2W8fjEHj8eLROTBOIQkJRsriPHN4eOCwcciwZcQRXjoexj2vXu4S1dKmL3l07ZRgnkbTcA9buuxwlEwa3r55w+PjA14cL65f8Pb2LXTCl19/wzgpUTu83zB0N2z6a7puYAqR46T4bsc8efYPgWHjOB4jqp4PPvyYP/6jP+LP/uwf47yFrUOPNG44iWmnY+0UK1s0chL2TKDBmA1RrX1dLkoDqIdDIB5jih0v7LxlSjwezQa5HgknhzG1jH/3d/fsbx+5eXHD1Y3F6Y4I7jgivsMNHj/NdFsDujOO2UmNKKKgMXD/9i06TRCVN6+/5pd/8ee8uL7mMEV++os/ZNhsmOaZw/6Br37/Bb/+1V8xTzN9dAx+x+9/+wVffX3gT/6Zf4o/uNqCmkaw7zomNRvohd15XpNOStbLrKEUZ3tBFMQpc5iYJlDtULWY2ygEP+GjL9pWl5NDJakwBIs3jUZevdzx+VdfcTyMKeGNSzHooXOWGZR5xk57qlMeIrx582YRg5kEKOZp5PAwop3Dxw2bTc+o8HjYMzhHT2ToDAwSzQnYNINaBPkQcyg5gZQ8xQZJkzmQLI7jsy5NFR5uH7j75o6h/xjpHCHOqFo0j77rkv1x1Y+ubbVtHiIxzNzfmyPpi5sbNtttuW+73RYNd2sykRMEbTZ2apTjUj88PJgT8DSVcKxP6ZzOgkbNew6ur1+w2+1WoQOt/bvdtvin1D1GaePCZn31rqzFBwsZut/v+fBDx9XVrmkIZf9N42ja8mTDfTgc6Pu+aLDb4pPNdozRfHCSqV525M2gcE6OlevThtLmAt6qoK+LG86Mo5y5Vu7PvKzyknN1nGi4ywBaPywee94GrQ29fX9+TivgXs7L8l4ROY3AwwrayaKT626ffX85Yyy/ZPVUe+/qm+IXcb6ISNXKvwNXVY7SvEO1CNnn6r5YTh6oQtX7A7zl3Jx93UVw+/0B7G9TfnBHyQsCbsvb10XX9z1Rvq1Y9bcCdJfYruPE8XgsDjbOeXzn6fqhRLgQknbaSdEMG2zy6SgpVSpJE5iAWYyRaRybfWqmIxpjyl4pKcmJHTG79F1Ui4CQzdYFLBuiVJs7m7yIOEXcDBKYUVBvGSFVCQ6LQ6w1kkRUV6ObUEMzQWqjOsuSGYQ4wTylGN7ZIxP7fn48whwQjfS+Y9sPeAf385xsjw2gawiMh8Dt64huD2h3ze2XB95+8Rv+3t/7u/Qvtmmtpn7lkwNV9g+PzOPM4DtLPpI0ovf39+wPe97cvSXMM69e3sAArw9v+PzXX6KhZ7P5FO9f4vyAyAZHxzwr948HA7PacXcbOOzv2e567u9nYMuLq1cIHZ0fzA7YmQCSi4PkHJcYS8wxhpMmCm3maKnLLqxGodqe1Psz+NxuN7j+CgWGvmPrHLe3t2Z2UY6ww2LujocjXjyd83S+5+XNB7ius3CQvidKRz8ILjp2rkddNJv9pJnbHw5Mx5F5v+eXf/7n6DiaY9ik/PrXv2YzbLh++Yqf/eIPzfnw9pbPP/+c29tbpmmyxEJuY6cGc4A4m0kFEIiEebZ2J212W1oTh4wtRCQdzkQ0qjk196bRPh6Pljkx9gnEBpwH7TDHiJ60V51pk2NknAPjdGQaZ2KYcar03tMPG8IMDw97pjjixYEonWAhCruOw3g0Xpg1k0lD3yVHOTvRiXhLy0SYR7Q3O/JDMvfqvUlgGrREKzFzhmwLrTUpbcN1y9bMAKnq2koRoPMd280OSf4hm25ARSwhjOQoEZyl+llzaTbxFagWraxIcRwMISzMM5zzvHz5ElWl73uAotltnRKrkHV6wnOpKLpIJZ5765w/MSlof5cBahjkiZDRPHM8Hrm/f0jtBu/6kokzJz7TUqWwu7oqfcwmKbneHNYwv1OgOFiqUiIggbMQlDEuxjmD8KwJFjgxwcvtaadyQcJJDv4mSSVgqRWvY+tofWpSzCvLWNU3ZDlAk7CoUE5qcmtbWaEVqss7NQUPaNty8d11PvP4ruFuXdeXdaqXwGGrCKnWJ2c2Rxvfe/X+1IiTa5L49CXx8lJ72zl8Dng8C/yav5ot8L2X1vegvvxkJN5Ry/vA0eapvxGN/9Pl20acyX+fK+8SY556448edMcQ+eabNyUKQbbHy4563nW4bkO/2VmMZmosa/EpWx6aoiA0xCUaMZOsUXIwjhMa8nCaSluTw11rQ07LCEJAxyllkEue8ZLqlORMSdI6d4BA1M4cyFQQTaHZQiRhiBL3O5MaVUnHfaupTqnpCQ6dYXw8MnQe6ZNpQMSuP4xMh6NFpfCe/v/H3Z9uSZIcWZrgR8yyqNrm7uFYAktWZWd3VU2fOXPmDeYNZl66f8wDzOkz3VOVWQsSQCACEeFuiy4izEzzg4hZRNXUfAkEUIESwMLNdJGFhYX50uVLl0JANRNcON67NV1KEyUJ6TgTemH/fuJ3f/yamB55/+2f2Y5fIiqW/EgxtkRNK7rb7W2gBna7XSunPE0TpSjjMHL79gv+p3/6R0IfuT8+8nR8QssGnX7BdBghKHMp7KaJwzRznD2QkcDuONMPwm2IzCVSNHI4zPz+979nt9ux3bwCbGk+iHrREyGqeNVAXCCvrVCNVAYF2ozyfFA+HziWySWXwjBes9neUDBbv+iAZrPZLrIR9VUKv6+KstluCMVkARI7JPSUHJkmq64aNZBFUBkIXSa4LrWW0h76jvffPLDfPdJbSAlaKEWInQUgDw8P/Jff/c6Cot2uLcujBekKUzog2jHlB969/4bf6q+oRUdKyasxWghSAV5tMgOG1dJtMw6MfddeC0HIeeYwTQx9IadCngvdEBmGDlVzC5FgO4xqDjz7/cw3337L02FCYmS/N4Y7EChJkaRW2MZ9lDVnIoU+9hzTTE7JkqBXzyI1cCazHTvGLrDpI8MgHI8HjvOBNE8LdPIAgqKLLaeaBrb+vDSXfGiKqQC5SjmsnSB6Ya2CgWcc8Jgl4QvDt1iBl1ev7kwCUxl9grt7CE50nwD5YRgugqUKtisD3HUdITog+ZRJS23lZ5rmBvQPLn0Zhv7keNM0sTsc6Lq+SV+CLBKTysLWvqiKBe8ui7m6ujIJV1H6zlxJ0myae88LPvE+X/87z/OpA4mDcRFpyZTH45Hr62sbz8XaugJeoTC6E0pdzbPnWl6Yaeu4oucvnTWfPiNmDZBXgOzWrlpZZZNsASYNq4jUAWRRyNkCIURcv21zV+0Pp8GAgpQGuM0pxuohqCeHr0FzzT2oq7R1n8fDgeL9p+97LyAG4zie9iM51dOuZTeXmrEF+BiZkcU9bldj+Hk3ldV/P7RVwuWTsJmsOJjP2E7kFBf28bFdrtvuh+HY58HZx89AXnjvY/ta7eEFGclfwnL/tYD8S4HX5+7jY9tPHnTXUtt1cq8Pc/3bnBFG+n4ACV4AxhONqGGx0ERqPqHZIOYMUO/sddW2rtgJw77OeNcl9dWPJelkKIJIJAzizIQ46FM2QRh6ZXslJJTHQyYVB4MrplVKWArtgMP1hTFbbzWRJrTvKpJ98szmvJLmDFNi9+6ROGdGGRkRyNmLTUQ634fmZAEEAlHQksmHI1elMHaRb7/5lu12w6vXd6YwEWP5BZOW3N+/N0tAXZKVaiJUCIGr6y3/8z/9W37+i5+TpHAtb5h0Zp4D3/9py/wdzHlCJJFToUgk9LVAR0/usGBCM0NJzHnm4d0TRRND3zH0vU3cXURJTHOm6wpdgag2QK+XRy9FpO1eyDLYqEq7C8vnBHwSk/o9/0oRIY4j16/uSKqkkul1xYipLX1L8KTWaQ/v36Hhivc7SOWK7Y2wnYG+50qtX9l8ascJXYBZ2e12VjK7WyrkIWZZOKXE//Ef/xO73Y7bmxuSy3yCBAfGNvKHCKE3CUtlguaUmeeEVkMSt9OLYQHdCzCyyXM+TmQvdKKlJycoyV7LKZFTTxkKWXvbRzC/epVCVFAJzPORb7975Pv3T9zvJvaHxP6YmEphSooQ6EK3PNLFVpk6BJ0ncobgz3kuSkozIskS6GImSCalmW6IpBLIUyHlZE+qCFEikULQYpKtao/o0pJSFreScyeH8wH7Q4P3MAxNWlMdHCpSyimbdrzuV8JFMCBihaP6YWjHqumKqkLT8qzPyZ/LCpYuTXym3V+egY9Njov8wGRcVhxqzzAMpJzZ9D2lKDEuk+88zxz3B3JvcpbZPbTHcaT3iqLiALKUwrt37/jjH//I27dvnaUfiKFbgRhzQFonF87zzMPDAzFGrrzUexCh8+TeVgV2lTxYcmYYBh4fH/niiy9OrtOSQa3wloBX8Fy1QyVITtpleXc1pDz7XmOQWYBiBcVFjXjKOdsznC0YHoaBnOw+xjGe7KAC55QzKdXci0VPX/sA3h4nQVglFbBnqGRbAa4Be22vlFIbb+rrpRQzM1hp8p+3Re0tq79PAOVJhsTK4cmTjX3sEs9tubSa9KHtLK5ZncOF1y59zv/TQgb5MEN+adWm7mP9xdNF+A8/c0YEffAjL3wRPr2lPvezHzjsX4vCX22nAeRffzvvw5+z/eRBtwQrdlDZk3USTNd1dLFHYkcpymF/RIIlWtnSckSluDQjU4q4zzDNcYQYmIr5x171W4g2wBUvI24fNoARs9D5A18T9+xttcImwRIOtVSWFXqBbQi83o5stpldgcNszJ8Z6amz27R9WqIYrShBGwpl9ZdiuvISMXQUuBo7gnYwK5qUMiXS7kjIhW3o6ApIVoqas3fnrKtk04fSfFo7q0oYCuPQ0amy30386+/+QN93XF2PhK52OyFlW7rsug5NpYFtVUuoqm4MVvDDS3IEQYiQYT8/csxejdCzXBaWBlQPtlqQlXIs/PLulq57Q4mKdELfWVEVwWz15lxIaaLreka/16GxRFCHzJMxaD14aj3u2hbsdBJt7zXmR5d9hEDo+osZ/6UU0jwTu+hJgFadcref+fZ9IYtwFzqmVLi67jhMB7oAV1757vHpkd3jDsmZw+FI1fyrVxFUtaAvZZPnaIFUpGmrJXbEPpBDJAwDm+tr3gxbhu0WlUgqytPhSBVLLZevgDHYQQCNFohigUXOpmkvpZBSpgtezEeVTCZLJEuGEJhnrEplVJRETta+j08Tf/7+nnePR/ZHOCZhyh2HOZFKAkmMEjyntJBLtnwENdlHREj+zAQKIhYUBYVYYOiUsQvcXY2MXWBKmaf5aG5DYr76Q1A6QKoPd12WL+ZcYTakDvCWrtMSJ+ukrnrKbqpUCzsr5NN1bge4/pQstpq2qrY+wnPgwqov19+sX+qJheCye3FP67UlnG010XE9xn4y91NJDLcBnOcZiZHkGuouBmIclvMIkazK/vGRw35PPwxstlsQpeuu2ueOxyN//ONXTNPEr371K+7u7mghcAVjYquI1fPZgslCP3S8fv3KEmc9wNHqouKyr+rd3VYxRZBoq1M1aa6sL38Vx7RcDS3OCtfQvCZQnjWRXriXuvytrdMspEXKmf3hwOE4tXGmavJj17X+tJZ8rXetvvpgz/HyU1eLX7qz1UkHtcBWWMB2JVFqTkCzs/X7X1dS6rH6vm+B+YfA9ocSTE0h6u/7kCvr78Bno9DWHqurvoS8XwJWpwG3PH/H+8D5ddV+BaeHUy4e/tk5276Wz3466/tC1Pd3uH1q4uil5vycq/8UUP1DAoqfPOgOITIO4/JgrQY0Y7uDOzTAcT9ZcmSIBoLtybRl2+KWS7ok0KgIksSY1WMglsB22JBLZs4zWc3JBJd9BAy8STEnk1YHIAIYc022ZemoyqCBHhhD4CpG0EguwlSSlx82bsQ0fCaFOM3okPY0VoBYH1qtzHjpkBIsOdLkw0jxwhKHI3o8UqaJkmfTx+aM1MInJRnrrQV1hwFL4DIrqVkPTBzJZSZrZpr2vPvulqenjp//8i0hmktHSqYL77ve2epT5mKaJlKamOeJaZ6YUuJAhi4QCfSyY8AcE4z1C6R0REIPKhQSQ5oYi7lq9MMtV5sRjZE4dJQyM017UvL7RiLlZMA9K5qq5aLr6pHnT5QCTXZSbRTtjdNBvU50lTk0YGZFx4GizCnx/bvv2fz8Z94GJsWptzalmZRm6jrFfnfkaZ9Ih0AYB/Mjn5SHh5nx9cxN15FiQEpg93Tg3Xf3jJ0lJ870iBqLZ4m5PccCJQhzVuYpMc33xpBJJHYDRFtxydKhceCYHnna7TlOR97v9uwPB+sj7ne8xBb28NXk1DbL6+KMoCLmzZ7VqkuKy0iKWlGMWSjBkilTyORJySVTVHnYHfn2/on7p0wugdANZsmpuckuju4sIg5UskJSPNgw8BhQCIWrTrjbbBAtdB2M1x3XXWQIVkFz3u/pSmboO7oo5pdfAasJuL0YV7vME1ayoF5wKy6vSQVqy0BVe05NHCy5LMzj2SbBCkAdjxZQxS5yRhxSgz5W57McZz0hndNpurCjVRrhOuXwzJpvfQ0fnqoq4FJVxnFks9024Jqz37vVFmLk7tUr+162gmeh6xjHnhgWjfXhcGQcR375y182DXfN56kstap54o/jyDgMLRgJAnQmo6vn1+QQJ99fnLDAVlZ3+31zRVkahHZetWVsyLD7WNST0dvQ8vJkvA7GlbqKsvQ19Y5m1xkYxpEQw5Jc689UPf8GSP2/9V9poE+eOcKs72xoIEZW1Yy9bkSMdCHQ+3FOEl3rz2pl8xwMrcHmD2IGz5jkSz4bCs/mnIu7WgHt9b8noOKTzqki3pPTXFYpeP7EfExeIvKxp+ylU7k0kflvPwl8/aGT+KFc8dn9/sQ9fupdPg8Of+ztJw+67dGIDsdOF3Utkjddp8QCvU2+ZHFDOxsobGDzbPNVXUoE1Gg7xCP6qo8rJZPr5On2fiWLnYOaR7fNt4IGaVNvlEBUY9ZCEFs2R7hP9vv9vjDtAaK7NQBqE21QYywbi6Vywl7IivmOCrhbCSVQigP2UtBckOIMYFHKPPtka5URa5EWKdnAYF61iSplnnjKwrVMTPJEJ15KWwO//2//yvXtFW9/9gUShVxys9CKGijFKmvWCW6eZ96/f8dxOvDHP/6R777/lldvXjNJIQwdXddze5sYhifyvOXhKZExVjTEjk4CTw9PfP/1V9y4nr7rBoZuRPqBzXbjE+fMnA9kjty8uqLvAmk2FqqoWTeKF3QJFXif97U2E9WJQhv4Pn3ETeeYvKBE7WcigLO98zw3S7OFFTMAvj8cAJs4kch+d+TwmJHcE+OG/f0jSkb1wOuff0G46imizEWZp8zu6YBsr5Cu5/aLt2zGkX7c0Pcjw9Bxc3NFP255ezhy//jE/bt33H//DmLHsWQLLjdbpPeiNV3HlBPfv3vH/+f/+3+a1WNlz8WewVYhUSuTp600en2YSi5MpRBQS1ys/lwKJTsQCqAJ8nFiSsEZ65miyuE487Q78niAEHv66IlrXp4dDR7g0O6LrW+43laUHqUXZbvpeX09ct0LURJdAAmFIMVZPOF6GBiCyTe66H2/+nB7UqAF6/psAlN3J6la/iUAWfrIpU1VCbU4SAvcVvvXRVJnq0QdJi9aGLO6+OanueqZi8OGwmLZ6Mc4Ho88Pe3oYuTq6pqcM+/fv0dEePXqFcPodnqfKFpddNF+XUEIoTPCI5t87Xg8rhh76yfDMNBVoOZdpM50i45befXqFTc3N+05KqWw2x0opbSkz1KM1UaErAXR4P1VCMGCi+k4k+bUmP5cCr0L3utdqgzy1XbLt99++6xIzgngXgPvdv+0lTBXb5TnJNhafrK0YS2oVRN27aPOFA8Dfe1bZ4SqqruPVL1BHYvqOdSjnqxenOyizY/1lXr7rf8E15RbIFqDhfX1l/X1r9lccBciS+atjXFyCfrhfAGp13Xyked98zws/OA+/d/wkc990vYCeexT9/OPr8H6Bd7nZJ8/wnb58j4enLy8v+VZ+LQT/dj+PzPY+cD2qWD6cz/z15DG/ORBN3B6b2q/dUCXsMG43wxsJThGVgOTxj20ZJQ2IfoAb9jBZq7SWDxzNYhBkGyMGKIGiHMtt+5IonN3ihLQYCOVOUPYRDmpWDn6ObN7zGQKczbwGwEvr+OMt4NmBwTB6cUKBPXk4oOvZUdU3aM7Y9KOrJANWHR+yUFtxUDKsuRfdaTL4O8Tp2BML0LJM8eyg1iIoQMNzCWxQznuD2xjJGDhQyeRlFNbtu2HjseHe77/7s/cv3/HMHZ89cff8fNf/Jxf/ebnbDvclzzRd4Gb64HdDu53E8QbNrcDhEAHfPvf/ky5v7eHPQhdHIiyJ3sb1TLGEjL0hW7sKEPnVS4TmUyQSOhx3+WXHqQ6cbE0iveR1k7OHKVcQCJ9P1ifWQGvYRh5dfeKeU6kYk4Z4gLplKxseRc7ShHmWdjtMyVlIh0BYTe73V7Z8fDNDT+7e0uIM0FmpnnicffAze01/9M//jv+nSefIRGVaMEiSuw67oaBX8bI/vGJ//f/9r+RA6Z57yK7aebxcKRI4Gm3Y7u95n635+vvvueYUgv4SgPaCwsXVaxaZJs41J1hlkmyaqFRd0SRgISC5AyTlX0XKRRx+7Vc+P7hid1hJhXT9tZJvpXkdjaw3ReqlZegIRNFGaNwO/bcbHo2ndJT6FCsk4iDIcu3GPpAH6O7bhQfA5xxLDRZieUbnwLvhc1atLLPGRIfU6hp2fYfyzvxGpWqzLPLc2JHtwra5nlm3AyYbGgFdIqS5sycEkcH51WnWwFqreZYQbQBu9S01QZizWl8GAbm+Ug/RAe98tKM/fyJWQUO7T4BEJsdoUk2tOmgLbH89Bh1PFpryS3J1FYz5zk5I+zMvHpioYgnbAuqPdJ3dCG2xg6xYxwjfV9aMINYG0dPtO1CIIlZzcZhoF+5rVQJWQtmVuCynfkKQCv1siqzWSev5brOAfc8JbcZNWeuru+N3W5J+bSxZWl3bbr0bnW+7bw9F8Tw7hp0azu3Um/g+nsnR1mOU6s712uQEFolz2oLW/tAlTBZkLRju90SXMrzoW3Nhtsz+vy6XwogPnc7hXvnV/3hc/zY+y34ffFDfuzzD3ziZX3oFD4HR//QdvyU7/0tWfYfHxb/dbe/D9DdeujpoENZkkWG8RatemU1jfXJks2aSvKRsS0tSaFyny26ptFEDsSKFQwpNs1qrkZO9iNqLhUxKmPs6kl7cGBAy5bKQamJMmo2hK7DNd1xPcYpA1Sc5a6fRY15NqZbfJ29wJzNtzhls3wrhUA0gBtq5TVt7RFcRK3O6MWgSOiInRLmjJZEEatGiDs3pGlm/7hjs93YBJaSVzbzQTkoqpmnx3vStOfXv/w5T7t7UjoSgtJFdRu8QsGuP2sGycROSArEiAo87nZMXkHRViWEolZFLWlZBk+pE3Vkzpk0JcbjSLd7YjN09HFDX0s5L2hx6ROsdtT6iwceu10b7FWsgE3OSi7C027PZhuIQ78AiRCYUyb45K4E70fuMzxPTHMCjcyzEMJIjBNROko3kPsrZIKhH9AcSbMybjqEBKJIhGEz8rTfm2Y7Z6ZUrfYmUk588fYtsevICI8PD+zmRAodVzc35JI4HI9kEY6lsJsTYSscCuymieRssgWu1ldMUmXPTVBLApVWHLPY0+JFpqQCV4tqSQCSyVIswVEyISS6kNGgpALffveO98eJKfUUailvO4codo2aF3a0jvvixxgDXI8dt0PPGIUYClKgSCGJOQOFGtj6cx/Uwa8qOS+6WlVXiZV62+pza+2S/TMO0Wk5Hsvj6p+9PB0UigXpPhaJB4LNC1hMO3s47mxPK4bVgI55Re8PB47uQ/309NRkEqPrao0RDm2fFQTnbLaNSODu7hagAaU1qPm0SdkClpPvYbkv9D3ZZR01EIihhkmrPai6+ccZs+L32fTa9t2cDHQv/ut2/6UWKLNpAanWoQ3zCvvDgXfv3tH3veUJhYC4VWK1Faw5KIvdYrUH9NHegbXlM7hTVmXtZcXmnDDT63lruWaAnHJLiJ7n2fq5M9wn7PGqWerrdTUkBCvEJt729RmJIq1g0nIOsvyltIqMz6G3Swy9oFS9j3jfFAfc8zxbEBWjOeis+lDXddze3jaQ/lmbB1SyvvD6cvjhMMvu2ckd8Uv+RPnLSTMu84YtDp0FCJf2uPrIpcfreSbG3+v293Edf4skz/Pt7wJ0W5KY/RiRZsxVKQVNIAX6EC0RcKlEU1P22kPW1FaynnxlxbCEBoZlnRUFDl6hFrTxqbj9xFCIsZhFnYTGCIoaYMYnguD8dtbSjpcJBrbVdNpB8cIj0kZbaZOS+4trBdsYQkgKDrTJGeaZeX9gejKP7lgbRaTZzoFfdzBfc4AuqNu4CbEPRCJBk7O9Ju+gQB86ovHmlhCYLLM+FwN+8zzz9PTEz9++5R//8Tf8n//p/+DxaeZ4ODAd98QhgBSfygQpBU2F/QNM3QibAY2RHDqyQOhMQ589UaoLQh/qwGxA18qOR8bNyDB2XF3dMI5bYoCSTCrQdbEFHusBTirzKHXi8uAqFf71d/+Vw850zsPmmt/8w7+B0JFmY6mGsdAriEsSpv2B+3fvudqOz9idXCy5bDomYhiJceT6KqK9QBYOeU8fAr0mbrbXbotpFpBalC5Gbq6uuL+/5+HhCcQnuth5sNQjXQ8SmFNhLgoSuXv9BSH2HPNMIfDz3/wDN3evKCkxvXtARZjmeQEFtY9q8TZxWQOGaizxTi3fAeiclSSExaLP2e6khaxW8KkPhQ4hdpkSEiEIKYFqoOsG+mI6YC0zUXqKZiSZZWIMQiomNhOpx1XGLnLdd9wOwuBe9x7/WbDpAB6XqSwgtpxotlH1JX6zZMvFHBxyLbSlULXjxS0gC7SkxQKLSVIdu/z1yrDXYGb1ADrYXeQIIQZiH9mELVULmnNmcglEBTWx6xidWRw3mwaaK6MsIaBiia9mI9ifsLSq2grX/DDAvWa6WQHPhcXNLjOpTO4wDIgKpWR3ErHANGtpLGkLqJYmMneSGNhsNzbWeNKmDa2L3IQVk3y+9X3P69evWwBSAesabIMFxofDgXEcFuDnCTziF10Z93qtz7dzrlPP/q0rDsrhcCC6BGNdnv60LbW9Vm0210mgReoKXp3fFtB/6U7afHgJcC+n3s5UpAVLoQZnwRyP+q47cXJZ9/118uZ5f7rYu+pD9tL77bvyvHk/YXtJB/y5W0Ujz158BrhPj6Krz9Yuc7Kfcy5oRdz9vW2fA2Y/9/I+NZHyp7r9XYButAIkhVKrhTmDkmwZrUoqcAbCQs814DE2ZQU37bEo9WPGzoIlWxbN4BpgY5gMcEisSUy+3BYyZK+CqRGi+PJnZa4twTKKSV2Uuuzu4E+No6jMw6KFwZ45d8WI3omLVsbbP58UzZkyF8qcYJ7RaaYcJ6b9gWl/RKdELGDWaKulL9duhhVbJx6AiDpz7R+2c7XWyylRslryphYeH594etzZe3lZxs3HTBciIkeKHgA1719nF0Wd6faDlJJBN8YwZoh9xzhuefXqFfvDA3k62IpDLGinSHQHlNi7TzpcXV3xs5+9ZbMZbdk1W6ubB6/3FV8NwdlLr398Yk/l4Q1SEnm/Q6eZLOYUY8mFwtD3vLq9pesH5snKTeeceXp8Ik0zbAZneBZHgnky15HpmBEP2IbY0TkZnqZ35OmeQMdxn9nthJTvDECpMqfZ7boC/dBzdXPrjLIB3lIK8/EIumRBHHMhidBdXyPzREoz4+YakUjszOsjxJ7d/tDY1Lms/DgqW+h9NKNEMe1+UIiiFMTsyYJZAFaiL0oALRynGRFhDjBEoVcD6qWYq9C232DOZ0fKbubNzRv6GAgMgLDZbJjnmW++f0f2VYQuBIYuctV3bEOh1wx13pbVaauxzuvS1sgCZlSxhLhWCKcCblrCc6b+uMQM99VuD6rbrOniPtQ0sH4mxfvYOrFQWAKBUizgFVG2mxFlJLh0pOjiJ70GitWfe53IVqAB0HacF8D0Gihf1P2ezG1rwOgBSKlJlJyAq5QSu90OBa6vr+n7nnmezcM/Dux3ewToR3O32B129F3H3d2dAe+T49mJCLTVo1p06epqi0j0cdUs7oTTc8nZqpRWq1mT0Z0B3AAlm7zm6urKV6hYAqti+Svq2vJzffdpG31qwGLfvbq6anKNqldfKkUq+/3eGOUQWqVRQU6CKAsE25DugcJCLMjZMdHn516lERWwCwuDrZiX/jqJshagWoMgXb1W97kGqR+DSue68Itf+AGY++R8fEWysuifBeAcXMvJ3xc+so5a6rnKsw995CLOkfnqedbPu/6f8nYZn3/4GXoJ1H8oifansv0dgO5CKQcDgFoHPWM68lzQHOm76N66CbQzBssfrFInCCyRsXV+cXZGluXqWk2suPWc7S9TYVitTmkQw5XPRmNBsWX/vus9Yne2VG3AFj8+GKtqa5U2IAWH3Vq0lSIXoBZzWYY548lZg3SscmGZE/PTjsPDI0GVIUQGAlmVlIslOKo7sYi4NGDRoVob2ICpFKLMFnh4NcXi1yxeLGH39MR0fEWIgekwewKlFyxxj/D5OHlFtOTJVLbkSAUYzkJqbfds2fqwLIuKwC9+8Uu+2T/x8Oev6LXQ4QGRdEgXIQZCiFxtr/nVr37FZrttQYqqaXNztKTbaZpAs/WZOng76Kr/A0sComSm3d708SGY7KVY5cZ5yhye9nyT/kwucJytMEtdoZinmd3TwbyjkxfXQDkcEse5LA4XaeKYEwwDBZglWz8MyjwfeXx64uHxnuubazQnpsORp8cnVI7cvhq56Qb2hwNdb0llx3lGQ2CKwkGVEgLadxxy4Xg4Mu135JTY7/+V7TDQ14quEtjv9yARFyDZPfKciPUWAA1CLNoShuy5NEayUJOCC8UdTFIyqFrEHDnECz4VLV5BNhAKjAobMrp/pITA2y9ee4A2kUKB2y3Hw5FQlK4Cb7Gk4QVkGLrWNtBGy9tYscn+yLpee/HhLvV3t26rn2khyApQ16CmsoVZTj+Df8bm9gJWwqgF7fURLqVwOB6NeY4dsVsV9nGg0zmINi22BXCH/Z6sStf1PD4+2JXGSIwdd3e3J5UgL2phVVsbfRgDVGpuGXcWhtueq9mTisdxdDBoDRtCZV2l6dTpA0/7PYf93qpwhkDRxO3NzaIbrj+y+KVXMFdK4fvvv2eeZzab35hkJiUO85E5zpRiSZPb7fYkQOncq9sY8srALveogs5xs+E4TeDXVgmOUjJaliqtl5JgkRpksSRmn21rXFCDgSoJqda4a2eVKh26ubk5uafr358fQ08PVF9r/34IhPj5hyX7pTq+VICdXHZSV1DALB7nlBg3m3ZutQ+3cO0D4KdKUKyw2eU+afMl1MoEnwI8Xz6mz+xy6iR0Ofg8O9KnYDh5/mvDH/r8My/t9xk/r7SZSuHzz/1/4O2nBK5f2n7yoFtVmQ6PZhWlxg7WZShVQXRA2BoQz8lzEavzwuLpqi7roEW5/i9YYZka9aLG8paEYKAbT0qBOvjEdg5SDDiWXAiDLNUoiy7783MCDHgr7i4iHrWLA9HckgIpahaEuC8yy8TZIFzBmNxjgmkmJHMtSfPMZmPOILmLKJMBfQeX68fYtKT26AZx+yjqcnFGNbUcNPcFIEjk3fv3XN3ecn1zA9D8W+c5mQYTCBItATPYcoKIfS6XbLp1qcmUNnDk4sENQk4JtBA0EyRw/eYL7t99Z5UN6UxwW+D65pbYD4Su4/buFeNmBAzMVTYniFJKZDomyqzECF0IJwVELNixEuhPDw989dVXHPc75v0jJU+EGNAQ6aJ9JycDaSF05sKy2ZKOE9knI8TsIedkcgH8SHMKqPT0Yw9FmFKiEEiYd/GsmexL2VnnVuXvm2++4/f/7f/H/XffmhtDidw/Jd497RnHgdu7O8QtHEMXTdIU3PpQAtmLlgSB2A+Mw4arqxsHMcpugncPR6YSSeol6VlN1OtnEjwzsOYlGJx0s0WUYvkVxbhgY7udPROvjIeSxVdYvOJfEOG67xk7u44uQN49gJpkpCCMCn00n++g5l0S/Nkqlf2pjJwz3FVWEsNyFRWTNMCdcXbbqvdpcy9ZWO7mn3/205Roejp5r1tMaqDPMvbUxsypeBl2d2dx6VxLTKygpYJOL1602+0tOPVrsPEhuGRkHdCfbnUEUN/3ej1wDUDqvS+5aoulnXaVYKwZxHWZdQP/gePxyGYcSa4PtsqEkc1mY8myXvk0+nmvE0J7L4ZWqc16v6reehiGVvHwcDg4G2wMcN9HpmkyVtjH+cqWx1Wy36pHW79Vpe877h+e+PnPft5Kwts9w1aTdHG1qcG0yQxDjS8aC1xXnM7DmYqDGhvv9zhWmY/f7xgj19fXLUH9JaAtq50+A1l6CZwuic8VvJ1qnf17xSRYs+vc6+pAzR/o+77d85QSye/xswv9xG3dUm0F5+wzNk/Vef2lQPEDx1BzY8HtOaGSTS9vy1NU2X5t5/jSMS5tLynb1zj8U7cKuz/2vb93Ocb/aNtPHnSXktkfnpw5KTaBgkd7xlaGqCgZzcl9cmvx9Trc+dKyLEuLwAnrWxnPgjHpuSQHwS5LAEQ88i8+cToDU4vbdCEuID5IQwGKUqQ0gEIRH5R9OZnqJ20Jl7ayrw5wxQCUWAEYQ6sGpoLTbzon5v0BnROb2NOPW4a+R48zEyZ9QZbCQGtfVpvQbUelmJd0jAEJ2RJxQgQxtjuvfJt3ux1/+MMf+PLXv24AImcDyHXyNADQO8tpbRhFzKIw4rOTD/iq5CwglkSHKqJ2T7Nm0pwdLHZsx0iZj2ie2Qxb4jjQDQNX262FVj6RV12paRIjOTrXGMzxRFfWaFkzX//5K/71X/4ju3fv0ZTs3MQ9thHoOsarzNN+z/4YKYxsrl6Dl7JO3ZHD4xPHeUc3bAldz+EAOS+D3uEYGTc/A8xBIwTT6XbjSMoFScUcF/qevh8YNj2PD0/8y3/6Fx7efwVkT+LskEl4PMy8+eLOnC/GkX4zQgx2jT6xqirH4wREuz+xox+ukLih6zpSsva6unrFr74c+dff/Vcm3cMS3vlTtGZstIFcW9gRQjYbSjDQWpOGzT3cYwAxjbcmWzmJQdBgZdZjsFyBDo/IUCjJ2cRlAhZdJRciZD+zE+argQl3Kwn2XMnqnldQXZp224oKValHKkpGHHDr6SRfAT72mfPXz1cHbLPWW1dBFBH6oW+rTDVQ1At7qEAsxI5YTJYQPNjdOKsLBohxNjLGSNebL/+S6Lhqo/PX6nX4lnNmnrIHShY0d118ZqlXK0quwex5GXADY0LO9dbOFnSqJboWZ3brvUlefTG6Nr2y6yLC3d1dk4tUMFjHnZS88qgXIIoh2hgYIyFI08X7JGJtXmVGIlxtr/juO3NLCmENch1c1xtd73vri74GquoBIc3t6LRHnFGgsvxqvvYLxAti0qqLKxUXtnXyZb3H51r7Ou4vPXgFIHX9fNScByMjatBXNfF1q/d7u91aP/TzbytNfwXAV7Ny/tLttPfX4O7yfutnZd1eL+337L118LDkap2+f3H7kZru7xN4v3S+H38OfsrbTx50qxaKzkChZjeqLzD5FGP+sCg5z2hQVCNFI9VyV3HxqdOrGsTzYirTvTxKRVNjGEtde3aUH9AmQXFc6IDbloU3Q48tzlsZabDOHp3pylQttg+CQZuHreZiuuxsDG4F3EaWOFseVgOql30nKTIZ083Tgetxy+3VLRoCu/nJALyza5UFtMF0GQQa6CbbJCURYbagIqsHHg58xBiN/e6JOc2M203TV9rgvjDyhEAW4XCw6xxCpMwz6TiZhV+s/i/BHBnmTGE2Xf50xFJMM2k+cnh6ZLu94vXtNaQj0w7G6yu6zQiyVEpDcCcVmqVWLRHfrMqUJmUx5nXmP/3z/8nv//Wf6dORQStAtIBnmq1qpJZAicp//OffkfSa/VE5fv0e6Z2NyxNpmiwhrNsiIfAv//kPLaPfgMTM1fUr6xvQlqAzFpCMYvZqMZjWP6XE03c7vvrTAwhc324RClfjFXc3d+yfdtzeblFspafvb8z5xahRA6VF2e9nJAcKHSkKRxIlH3h194qrzYaUEiEYc2iJatq+D+bMoyyTSXXzqHBC1HTe3jmt/b2vVr+Kzt/WgrF4Uh0hfILHmdlQVx7amw7yFyZPWwvac2z9uI0aVJBZAYc/7pTVeL2WllQAXvXT6+TAqustSnUdbPIShVOJlI8UH9pqSW38WYniwMdZ/5ZRsAJQFXCvtdsiWFBavFBKsaA3iJiNW1aKFtPtr8B1a4IzkHVpy8ls33ZPVnzqi7dfEOPm5DM1IXOtka5bBcY18Afzp48ilBzp8ow6o4uafjnnzGazQUWYUyKt2XSL6dhsNlYHASXEjn7oTpJBF4MLA/JWsbSuqpyBIpcCagEJRhRkrxTbxSVAMqwULPdkff31Pz622J/12anQfN1enP1d2phVx81KjFSo/lJC4qWdtj5blhWT0wTa+oSsXlv1rXpOtaOEENlsTBp1Us307Jjn97799QnBQtvfWeNcBq/SmOkfAiOX8ePydhqgrF5vO+AvclB5abs0ajw7T5UTsujFL5yf3k8Yb7+8WvA3PpG/0faTB90AItks7aSALgumRc12TsGXskGTOw+QFtsvMY2wxOAr7pYBbhjck/EAW/4t7gDi0hJ7wpaO7g+blso4F4TI1WbkarMhxOjFOhxNVUi7njx9OLYCG8aIa1J0NnmIz8Z+bh4VV8ZEjf0n+br3XNBphsNMedxzOCauNluGq627OOgJG1NpOGlyl4zKjBVjscOUKGRRkkbMK2KmJh4WrG1BPbEoM03HpYJe7Bpw6fqBVArTZF6uooHd4wN9TGw20RNTI3HYQhzIx0TJHZTZghCdmdKB3e6RkrPZT8VIlEIZBq5vrpqjQ12WnqaJNJuNZF2GjjFyOBzQqXCMhWEwy7BIoJSZ//pf/oXf/5d/oQ+TubcQqJXgknuzH9JMmjNhs+H+UckcUQkcHh4scTaEVixnM45M82QV5GRPyplh7Iz5m2eCL5tP/nuMgcPhyLDZECLNeeNp9wQCh+nI0xH+/X/4D/y7f/9vyGos3nbs2D89Mc8z3337PYdjJuxG+nGk32wbOCxaOByOkIROCp0E0qEwdxlmW44PMXqJdnNlyFrTBA1GpsrcVba5dskVA26uHHbylZ2uXU4wKVHVgUu04jmd96mo0qpOmgrEMx10YTjrVFmfJVe4rICoH038SfOAuQJqgrRzAj0B282pxMF2bsDEW6AsAUKTk9B25ddc/6xX3EYw/4yABAvgfHyobVg/cv7d9YQU1DXYAhpM590cP07cR7yyrJyC7Uvb0hrr69EFSGLjVIx9a9M1GEkpmRVgY7i1Hb+e26mUw1dgIogEQhxcEmi2jcejjSWj+1S3oEnEHUtMFy4ixC6017quYxzHBjQ349jY7Ko5XreprXAq1ZVEFaZpBmoAf8YMSuEchK2ay1Zq6q1btfl5H1m+swqonN2u/V9LMYtYMda8+H3/2L1cH0JVW/XOKrE5aYM1va7PMZmtQkWkrwB0ceFZH2sN1Nt3V39farOTPt2Od/7EfJhFXj6v7bPnePODmK2el7z8wfNzWh//c1Hsx1YpXn5/dZwqDT079DlY1xd+D6u//wfFs5+9vRRg/TW3vwvQbaXtVo4d9qKDQH9uanGOXCizJQ/mvCROxg3OQlsj23hb2RcD1VbgJlPyjObJjyEGtKVOicUHQM+6ksLQdWz6gS7ENpHXT1eGzX7qoNlgi4GRYpKBOvhVljuG4FZS2iqWURSZ3YM7K8wZmWfS7sDhaUfuOqbbg7XQPNN5Z8oOZhZcVEG3QMiYm3JNPDVXjeqrTPIJQUqb/GqyT+y6Nn7Z64lczOUjF2Uce+b5wZKXivD0mAlMTAexynzDwFAEMxWJtkqBmo9wVvbTgWmaePPmDdvtlvl4bIzQw+MDpRRubm4IITBNk2k7p9yY981mwzgO3D+8h/nI0EeGvufXv7Gl8IeHd/z+X39HHwLbsCF0HXEYubm7482bL/jm2z+x+/Yrpmlktw/oMSG+8tKPI4fDgRB7bre35GxJgYTIlIoncgnpeKQfDNhGoO+sCmSB5m0bB7UE0BAX79/DHgIc5smSLDN8/+5oTFzJvNOZ3cMD7++/ZT/t6Pst16++cGmJNCZTFXLx1Rc1d3RRswd8eHggRrcaDIH9/p5pSo25tUl1YaDqI7ie9OrmubmN31sHmurPnJWft+dhI+vJvCBlYa9ETCWrnkzc2OUVGRaowL5QK0TWU7KJuaaEBvdvlqpoctbYA3R1xxJ1t5LiLiTUH7EkyRbErJImWYPwD+lCL0/hxa/1VLlawdgZ21NlB6r0feTu9no5njN/cuE41bHo0hlV9vwcsNQtRtOa933HZjt4sR48wDZA3VaZ2g60SRBqEuP6eqrEJzTf/RrsGEA+BdnJng/Xritre8NA3wXGcTAJiioPj4/0fU/2hMQ1QGrXKEaFiM8p1XFpfzhyOBy5ubnleDyyKg4Jfj4nQaDqqninXG5DXb96HoxZO1ZZjKqNDWvGvJJJy+4u38v1+5WAqLKbdQLkybHbE3yh1/oq65oll5WjS/XoFpEW1FxipV86x/VnP5ToKHK6nxosherjX/e5+n359lkA4H9HqavI6yDm5bTM53KQeh//+kDtQ/ft/Hd/4eS8LoVaS5v9OOf/t01e/Osc68e4hk8F7n8HoFvQ0qGkNnTKArWJIRJCtAlUCzlDSebfjVqFSIlKqIDVix0ErZpXzK1ErbBOZvbiK9XlOzSrvOY5KDadBy0IgbyfOHY7NpsNJbjF17pLS33YcWs7Z7h8si0iSAyIRqfmIQruRW0T0yEnSnJKJSVn4wuk6mOsDDFAVnbv3iM5o2km1M8mt2DIoNkTfloxQ7N/g2Ke3QhoIZeJOSdn35epqyV5+YDeSp2rlTPOyYKV4B68Kc+mCS3ANHM82jJv7GzSzsncSHIZUTo/h0QMlly62WwMwPpgWSfraUrkPPOrL7/kizdvuL9/aOxOtfyys86EKKA9IsGSoArMKfOf/8t/YX/Ys+ki2vVsbu+4e/OWu9evGTcj4eaa/s1rdv/8O/aP77jqB7q+I5dA7HvkONN3A8Ngmuw6yY3j6AxTYNxkhmGk7we6rjQbrt7bUFE6VXutH+wW58KwNYlKeveOrMJ//t1XfPt+ou82RAmMw0CejzwdJuY58evf3jDe3CBdpAR7PkSFrEDsKHP2ZFWXGOky2JScYU7MKZtlJpZDISxaZntW7N8AlpfgbaztvQoYahBZgbc2mcmsBno6EToJ7mKi7mNvILdiJfXnTut5aOFkbGue1w561syFu5oIuiQNygpqqNsBlgroK7g3M8cGwqmOJVpNh/zf5VjLOV2Gt82DyAHcApKhsseq2p4pf7l5R594N1cpQDhzXfDrenH6aOze808sHPXpv8H7coypFdJadrdUoTRcoieXb8/cORivMiUWrY8HPZWVvbq6amAjul2diElXxsGcioLYamUMwccDa5vr6+u24lXHpQpsGVxeVtN9szb/8GyCf/78528bEEdX1VBxBtr7TJVv1FyDGgyeK42rX/2HAFolMFRX7dduxCqFr642ySnUappyXWQlOWdi17VqlWexG0ZifQB21QTD5QVML584utNOZd/XfueXtrXF4jo5+EVZAUsffGl7ztxzsV/Xz+rZ39W5qg00nIL4Zb8X9unf+SFA7S9jVF8KjU+3y+f8/Nifev7/vbTgl87vv9OpfNL2qe35dwC6AWoiUPK/DdTVziUirjsujaFDalEIbCJT24vZj0mbjIsPJpYwlyg6oXlCNBsqlQq4XfNZy0Q6wyaakTwzHw8cn3YMPmH4KVKBTycGpO1ybCIvPqiGELHKxWIgWj1hsSglmVQiHb1wSXHQPVsxGpISc+FqM7KVwHw4wjSTn3bWDqmgs0lRQhGkCKVYRlu1dLN5yCbEIEqUjOpkCYlaVgPRkmxU2/37d+/YHw5N/15U0ezuEqLc37/jeHzPdEw2KasyHdQ03SXSBXNXMbePLYFCKAeiKJvtyGG7IUh0UO6JPSVT0kxJM6AcDnse7u8RDQQieCJenRhyMYu+Li4smkpgP0989c03PO127GNg1w0c6TjS8d3DjqvbG+K2I4UN3faGHO6RfoDYW/Jb7JHQEbwwzfbq1tq0KNc3o1cDdHAQg9sE2j23ynbqya2KxEBBmXJCQgeCseGqhNARuxGJI8fZHE9QCPs9IhOH44yEjre/+i2y3ZpsJ4gDtkCWwOb2lsf8SJmCM3imf++8oJCqEvvAGK7Y7e/RnFcAYpnUl7/Oh/66ulPfqwC6hq4WYFb4Oasyl0AfPUNDwZJ5LcG03b82+S9/n0u16laXv9vgp9qCBPFHtqzerxaBququQfVnYdYzK4bbf28FcD5rApCTX+3eS0sKzTnz+PjI9uqK3uUAOVu1wiqduMR6nfhvfGDQ/xCIaSDowjmrllZa3gLsTAhd+16TjjzTmZ6yakvIftp72nH92a6vtf13nSeG2vWlnHl8eGhMetd1BJcNVuZdRJimiSqxqEx8TY6tTHsphf1hb6tjKbHbHSil8NVXX/Hw8MA0z4ybvjH02vrkOkhaa+99XKxj/0nQubRB7cvr9l/roU8CzvbCajsDy2upSt1f1/fL/VyN1/b55e9ysRN/GDz0vipW4+vzfnlpyb5WJa1yv3MJyqnG/mVwuJYb/SXbS8+uXPjjOYj9CSO/v8L2t2WyP7wtp/LDzmk9tpxNWH+z7acPujVC6UCSTdsr81MFk5VIaFybOuAIvnRokgi3iPJpIKgizmQXYC6ZVCZyOVJIDtqB5hYaQYJ790J1ULHy3i7HyIUyJeitXHxwtk+1EENwVtMnchEjeUK0YMAHbAmRIka7lVLIxfytS67yEwPizFbmPSQr8y65ECmIRRVMx4lJXXOeipXwVoM8QiRgiX9FZmKQVuFMxJ1NSrH9a0I1kdUTJFeA2+KDzDfff+fL69IqdiIQOkVL4vt370jzjuk4GYgrVkkyRDX3lVpJJSiJRClH5nnm/W6HvIuUrPT9aIFICIRimvs8z8zTEUX55us/kefMMGys3bQmtNngWjJe9bCgEgh99Ak4MyVldyhQZrousZ+U7x6t+mToI8PViMbI998/MBchaWGIgX4wJwbz/+0pRTnOs03QpZByanZa+8OO66stipLSbCsiGGsUu66x87YycDTVUgjcv3+gHwaGvuf1F18wXt3Q9wMhWCW4zSYwz0+kNHN9e8P13SvmPJE1m0a6WFBJH9m+uoYQ0SeYjrYsLMCvfvELckq8e/cOsETeVPwZUBpAOQd7NXmy9oVnkMuDivq81Pfr05vVGO8526TW4e48ocqUluIg9ZuNyVuB/zZWtj8cIdXAl4WBdYdO68tUxpLGVuL9pca29ruxZFmFVC0D9fR6FtO11bBV26G97+fiTGlZefCrFvb7I/Oc2ZTFWacyhDVnobbHSzrE8GNPjp7j0ncRJZ6Aq8oeNwZ+WT9oLVAKDayHGJb3FFKysudVntLyMk6CogWEF8/dqdU3s+dydF1HyjMpZZOZOKAzV55k1V+niZubG+7u7trKgegqwbLrGMaRu7vXfPnLX3E4HPjf//f/nW+++QYJP2O73bZJOkhwqqa6PK3aS02yglTZiZzIT/D3PtjkL7G17Ri1by19rnYDrcd0CcV5kHzaXU7fP+1LqzlWl6M3hxjL/HWtufXjD7Gh6+DsHDAva9beQh9i388a5ISM/+y+/zxIvAymf9xn6lLg/Olf9n/b93/Ec/tbgs9LTf832i6ukMBpkPvszR93++mDbgKmxnarAX88pVrki2v9qmk1gnsBArYcGARidN5O3L5PS/NFPs5H5nJEdQavtGczc8QoaPFjanPyQAQtdSk4UL3H8jSbNWEFIsH49GKHpmg0nWoQun6xuDKwq5DN81tzboBbnZ03OUkhzwlSIngVTinGuAfNZEPspENCncE0BJFRDSuaTghqbVi17dUf+HgsbGZFglJiJgOoXZN9tJDIjJstcbNhnqxKYsBWELpgVRsPhwnSTJ4mLzKhpmeOg8l+JJgcpcxo6MmdkvLEcb9nnidC6Imhb0vAIQQ6lJCTM92J0Fs54lQyoSQLgtrSvf2bijKnTMqQrUQlKQN9R+i3TNyTSyHMcNRMX2a6DkIpPB4zh1yY50zsNiCBaZ7IWRgGm/yncCRPypwznbtIzCmhoVhyZUkopbE9pWRSdktKtb9DDBSdSTkbI54h62T9KhSu+pFxhKGHXBJ9S7g0Hew0T3z11VfcfXELwZdxg61s9CHyb3/7W6QEutwTJJBy4o9/+CPv3r3n6eGJ3W7n4GVPSvMCoVZL488ni+VvPZ35V58w9FpqUIYxhhlhLlbAx4B5IARnvcXAvjGMyzmswYEBXzkZNFty8LP/+m8+LIguDiAWGLhTREs6NjhcZSaNAW/7W5ar1/D/5Mp9leXSXGb33QJysyiEEDuub26REJuPuSUj93ZcHwdqxcJauOSkBHdjAU9OY9UKLzOE54Ba65fFAoB5WgrKVEeS+lm7OD3BLXVc2+12DMPQbO9UIRcD3NM0NcDd5GoO0quUoQJvRIhRFncWzycZx5GNDEa2+H2oUiFW/3799deA2dqN42g5M10kdHFhrR1BX11vuL27Zk4H5nkCXNtciq8MrRxN1J5Dh9QtWK1vLqy1rNrnOegSH/+fvdNWICyYrP2vse8XAdhLABKWROLn59KetdU9XJx8PAj03JCs6nOlNPchMCKmgvN1wuO5s8nJOdUz1vUzvgD/i5s7kNU07pc+eZ582nDrs8+t312f3EfO4wdsn8Mcf0yG82kRytnxeX5Fyyj/t9lOjn8J8H70S3+lc/Htr9kWfwegW4yxDfgkoJjGo6v8mLFGHW1QMiCzDn6VXGYfANWWMoGimTkdmdORUiaUbECzsCyZqidYtp7qwLU4yJeASDFmPStpmik+KbRJrgsG9EUhZnMsCR2mmlDmozGLec6mE1dakQzJzjAXNW12KYhrbUWUqNn+1uwFfZQYAnmunsO5gWywQbexbKpImJB4QNxHvKg2u0MN2VnM6mMhxAhvf/6Wf/OP/5Y3P/85R+Bht+O7P3/Ln/7wlSk7uo48mR48aCGpohKcNTWZRc4G3sucmMtEHDZoLKTZNIMSorkihIiWQs4TaUrmeCGZnGdKsTLzfR/dutyCIQmhFZkAsx3LBUL2YwchE8lJ2V6/4W2ISBC62FlFwOhJYsFkKFMxjefT45Mljma7NyXPSGdJuHOxBMWEIu41Xoq1X+jNqUSdubTkMAVcA18MfGVNy5K6WhGflCaUwmG/Z/c0WdVIhM1my+b6hrvXb2zZNvaMw4BgAGn3dOT9u/cM3cDTw85cUyRyNV5zOBy5v7/n4f4BIXA4Zg7TRMkzOR9BM52PhOoFcM4JuroaZAGhw98KYhunuQzlgeB+2k72iTI565sI5FDYCMRiVSuDB3cVtFew4V13DSNt/yqsVfzL8LGaZnUB3PVVK4RTQbWsNLvL2berkAX4nP6sgO/q+MuEqSefqSyjqlv7qflRm4NFaaXVo3tK12uoIEhUTSp3xhrK+lpPzmg57qds62+0ioNOK3axI1ZBrJyGGqKLhaSdr1WAXbsL5VXwsC4ABMYcV21wAXMict/uzh1SwJ5v89H3+UCWIkAViNZVgqurK1SVm5sbW2HyBMDqrBJchnX6miVn1lL2Dw9/ous6Xr96zd3tbesDFc49Y5DXLalrNk1PbsFJYKDP3qblGBSTrLX77dKjnC0X6aQA0Bl8WhyEVuCxgepVH15dQ31+cylMc2ptWYOgarXZDx3QgVoF4qfdExICw9g/k5A8YxhfAp568gTxUp99lrT5oX36e+dA7/y9Z9aOcPbctm/wsRWLv+rmMdXLodULX/sg2P/EFYYfcVuPVh8bmX6Uc/vITl4KyH7s7e8CdCvmaIEUAhGRDtHO/pWORd29JEe1YhqNwRWaC4NYotiUjkzz3oCpJIOWXthG3WKslnAnVK7Ohd1ebQ/Jdg6lWHEehUKg+GRikwrkhtW9RD2JnAxAlVysgEzOKMZeq0tCYgUKACWjORM1O1JIlGQSFMleHMhHRCkRKTZJoYUgBgBLiRT1Ij9SQCZUpuYEYTpTyKKUkA0AqSWrDuPAP/zb3/K//l//L2yvrzhgEpT+7pqbV3fE0HP/3fc8PT3w8HiPlMwQhUwg9gOiMGvhkJWZgmiADKlkbsaONCemQyLGjr4frRBHzIRojPE8H5eJTgqI0g+9V/LLSIBh6Ildb4GPYsBFIrnsfZwMXhWz8Iev/0iIkdevX5tJDW6TBcbiiOWtdsG8aqOzXUFsQsmlOPMvlYgy/TahrVCoKrv9jsPhYAUmKDYpBXh62jFn0zmWUiDA9fU1b968YU6Jr/70J3LOvP7iDe/efct03DsLKoi8Z3Nzh0rg8emRfuj5bfiSMh+Y5on/+t/+K/vdniiRNCVPLDM2d55nc0kp2Swe6dgMA8iAFmH/eKgC6WVCPmOwvT7TCvxefnZpT+fyCS81RAGSN1xXhCRYbgF2vJp053/6uSwgdplGxVdjziBmRWGrfYizhBKc4XbAbUmTlc2uLLfH6PrylFBh/rMJ+mySXybIhVEupTDNMwVjr4M4wYCttoUYLBnRwX5txQq+wqpMdz2Xj5FoH1vaXsOdeg1djMRNbKCkkoLa/qj7Pm3/rrPKk/W4OWcOhwPDMDQ2dGHMq3TDAmdc/2vVXRf7QdtvAOk8gdKnbH/+sgNugGEYGniuBEj17q/zQkrL59e6477v27NYZWK3tzf+ueQ5GVZJs++XhmsJg7UR5DKoOGfia/s8ux/VYafZTILEyPF4JKVEF3u6Tlsl4Xqg2jJN4uU3qDHdnkuiq3NotPzSAy72FxF3XSK0j6eUmY4T43ZzWvzp2bc/vn0wwdP32p4F+MhnLx6gHecEiK6eWa2fe/EAy4rS58pFftA5/w+8nY9hn7Zd+uTHe9sP6Y+fctzzvIMPbX8HoBtfRu8IskGCIhoRCQTt6cKISG8+3mqf1RIWttZLTZPVgUKmaCJpYkpHkjPcQQxAgxhA9xxKDWLL1moO1VXOIiih+u9V9nzOtuwV/G8RNEayqBXkYfkRjEEXEcgFSdkTF31wLe4cUSe6WiQkJ/I8U6YJPU50qnTBdNglG3Ock1JSRym97UGSS0iCOcGUHgkZQkIlQVErx+4Ao+a7Fw3AYDKPYeTm7oZXr98Suh4NVt2wl46egKTAq1evoSj7w47kPufS9eyLMsQO1WJBhLtU2D0ziUU/z1ZqPihj19N1mRAKb1/fsdkMPD0+8rQTptn8srMUkmZKybx7/45clJvbO754+9YqWCq8fvOG66trnh6erG2KUCh0fW9yjlLYbDZc320tMZJASZnd7olUfbadXY3RrbHqQC20hMXxeoPESC7FEibTzJQmk2zMiYenR46HAyUnChl9ULRkc0wgEH3JXEWZ54nYReZ55vHpiVIyT4edFc/wfIYYAl3fc3V7zSEdkRhIJfPHP/yBaffewUOiDxE8WW+IsRVX6jz4LCLEYDgv9jCOGyg9x8fvXDd9yluvIM6JbOHUKs/zKVjerzKfyraFC9NOBmaFUlyP6pZgDTwovpzsZ6OsjmJPVF0Ma+NGPV9Hh0WWAlfijihFa2ko6/sZWewC1QpaNZfNE5R5AYysXl2/q1XyIf5clbzIJrQCo/MEsQVYt/2H0C4wrgDCIg1ZBxg/fFo/CVzwfi6thXmpDZ4d0bXV6y3n3BIeG0N74fxjCGafx6Iljt4WVsb9rIS7g8l5njkej03eEIL472tXGCXGQBejO16ZbGLd/gJoKfRdx93tLQ+PVisgeuGpVv8gaFvBUl0BsXZ2yyrQ6sF5vslppdLKctdzqgFDKZbz03cjfWfl1nMqzMVY6H7o6LrQ+pQB9rIcR1tHPFlxMMmSB7QuqRBv6yox6fu+EQm1DUqxHKZxHOj6L8yZ6cO1odqxz4FKXP9dyQxOn6u6cnTK2l4Kaz5y/E+BdyKteNmHP/aBoPyF+33JKYUXXntx38tofOmsPmNPP63txxm5Lm1y4beXP/lDz0OWwf7i9ncAuhWVyX+vD2FEykCQK6Jszd9ZAqrBQbfprVUxhlrEEDTFy7vPJE2kMqOaEckmzxAlBzM3i1psEHB5hvpgpZ75YXUgDD5I8ZLLdEgoSIiuORNmzaadFsGkFfZ60wVK1XJn11xoA/F4sqeoDZxpmtg9PTId9sRcGIs4yPdJSw14K57cWXzwleAMniWlahko4UBYPATdhjw61SdeXe4K6YpdbOiY5sS//v4PJE3807/7X9inmUMyT+dv/vQ19/fviSL0/dBAfgmBLHB0LXMMIGITniCUuZCzEp8e2VxdE2JgThP7QyYgbHvh8AS7/Y7kWun7e/OSLiXz/f37psU9TDNP+z1d7JlL4U9ff00fI2kq6CxswsAYO7789S/ZXl3xP/3T/0wuCYk+kbh24dXdLVoyMRgAy8WB2S9+yVdffcX+cEBCYM6WzCVdYRwHNttrvvvuO/aHHQ+7R3YPO+Y5sTvsbWLzRMHZk8AQbZXNuqFjTolC4f7xngL0Y0cpgc1mw+54NMYtZ4ZxtOCjZPYP7xnHDdN+x/unBwadje0PQoyFohlxqRKAamGMPqF3wYGMSX+6kpjyXDneUxaMU0B5PqQU8ElKTz5roK15iCxM7epTCmQtTMUcfqKouf0E1yxLBe0LA7UeEGtSZzifylQ9eXI1mbfzrypg1xmryUsSiq032eeKPeYekPJsP/b7KatXXy8Ciy+ng0sWW8B129YqleZS4qBk1Yacfb5un6IPXSejrs/zIi2u+uzeCjS9/Ckb+tEjUwFSCCu3kQuobM30mj2gVZKt8poqOzkejy05UsRKpN/e3lqyp0dn0Ss6pmQrOsNoycdVJlFKbs5WAX8GdDmP4mA7Z8u1kRi52mxa4mf0gF2Lj43t3izhZrv+GlTVdjy75qWNqxVqbeZFtmL/mjTusJ9AZ/phbP3pcLT2uL259qI+nBxpmqYm8wliq5bmRLM403R9z9B3K/bW5s2+71p1znm2wkSqJmErxSqRbq+urJJnCLY6zKID/yynkXMJiNAq08rZ56KYoOjlEPjDx/noR072+8Nh4Kcco24XofMqCHu+qeOFS3teRulPHTc+FBOefOhvsf2VjvNZ4dl6EvsRt78D0F0gHBCZvUcIlB4tAyEOBOkA815GxSrHZaEUtxkM2Z8xKxOf8sHKvGOApKhxWeLyC3wSpslTHLCoM+Hqk7izpiIFNIEGIgGRbgHCIUB2DWJbOrYAwRxDnPVTcYeR4iyBW8mVJZlyOh447HdM+4PZubn/smYD2+0BJKAENM6efCUU9Ypsist0TENaNCLF5DkqCS1ikpQCEgObq1siezsHlMNxYnfYsd/veToc+eb9O3bTkZwLh/2TFdAYRw77fZvepykxJVtJUBSJPUU6MoZkskSOKZH3ByYgdD2H45HjNDP0A7/76isIQmhMiGkYAVJdXs7GVh0n89sd+pG5FPLjI30MjN2Gvtswk/jNb3/Lr//p37K52vL+4Z7puEN1ttUDzYv3bwxEZ1uOc+L9/T27w57puCMIpHlv1fiGga/+8K33Fdg97ZjmycGLudhcDZESOmIfiUPHfr/j5vqad+/fs73astvvGW+umB8f2dxs0VzMh3vsEGDc9OQyEzuQvmMYIn0sXEU4zJkuH+mCcv3mFTdjR9dF5jSBBLpgEqPkmnK7K5aDYLr1jizRbA9FeNjv+O5bSJWZo3UdYF397PLo3ADnCSy1XZkOeTWJioFer/tqUh61wjPWP82rvuLWc9cQYJGdUA0O19OlPcPrc66TaGUfi0qTlSRWPtxebKdI80Tyc5C2hxP1uizge633rHPbUhDmucvIudSg7uM0/XRhPS9OwC9MDEsiqrTAK0po7bne97KjKknQk+/XZm0rdBdOYX1mIQS6PjbQjSxl4pf9rr5fmU1/7mKMiEtK6rbZbKz4jQP0ZhPo59d3kS6alze+nz5awZna7qUEui541U6aRrmtPrCA73pOXdcxTVM7z8pKr4GyfVHavW5X96E4pT0mNTlSV/1h+VDrRyFwnCbS8dgCgGEcGMeewQsLnd8Rc14R5jkRROk6ms5enACqrHgLiPyWixMwmhKPj48tOOy6nq7r2WxMTtKC4mbd66D7REL0EfSykru04PgciFMD0gq5fwAg1ua1dYExP9v+QsB18Tn5C1ahlp3wMihcP6+fucuPddVnb/6Q9vGD/LCz/Au2T+wupyHL+Vde6i/6/KUXtp886FYKhAkryS5QApoHhB5RA9y47k01U0pAtRZUKA1gGpNycEu2RLJi7Y3TKuRl8MPdQlQWmqtO7cF/V2c6JDnTBpNCCFZBzagUk8HgbK8SQCz7PXjynopYTmaxFPimAS/JNMA5czwcOOx2lJQoJZnVnrNzGZOloH5uasDA/LU3UG4QKbQqhwim5QYpI5q2aDxAmA1s554gwnYboNuT5mLyFVGOxwPH456H3T1/+v5b0+B2lvB4c32FiJUs301HskAM0Ty8PZARhDkpYS4mSUHIBQiRpMr+OMOUmXPm9uaON1980aQWQ9dxe3NNF619/vjHP5g1ZAjM88z3379jOhRub17x5oufEbuB6Wga8C52RIm8ffuW3/7mH+jHwQo8lELsTIpksiEBzGIxiC3hI8qmE+Tmii4olMQ0J/787bd8+913THMiBLMuQ4CciRirr8VYu+urLRkldwIkbq4GomTurgZiJ/RXI11Urt7c0kdLDg51GdX77s3rG7o+MA5W8KKPkU56tNwZUyWw7dybXsQTTm0YTXNimmbSPJuvPLaKYG4Ngdn7hIgwe5EklQrQnz+R8IFxXVbSkosDtDiDvPBXdZCzpEmTN0n9vpqHd2ifYcUsLoC7ntOaA6/zXUvso+Z1SCOIKrRNuCe3eE4GC+g27puVxGUlOYEFZIuddyWFw6q9KqiqS/h2fgbkp+NEzpm7u7sGhC4P9MurF10NKlBefaYmwKWUycXAxjiMxC68SPipupQh5wbEJGSDObVAzoX7fzJpG4I8qTDpeglrx5W04USjLqt7uQqyxEFz7PtTmVc7DftklbM0aU4F2zYhmFsJNanb9x0ClNMgILpuugY5lWk3TXgADcQgDtxrQKLPgpmTib4+EuvP6OmHmnRDacdWVVLOHI8zj4+PLufolsTPKC1QWW+1fftuoLsenq1ahRgN6K5er7Ujqg1mvacxBG6ur5vPffCidFWHXyUoOSWm+djuaRdjk4l9yibn7XfxM0tC6cep2edbG0cuHZzL5/qpcq1n+PeF438u2Hwx2P4B28VAYMWof9a5fQhrysVfX4wV/pbbS/fg0nXYtPXpZ7vMbJe3nzzoXoy6atKQPcJWnTA4uWuPUXH7rWWMs4TCQoE4k4v9aOPW3GnCP6uKe1ErbeRzBwqt3sFaDJALztEBCMVnbHV5iU0gPslIMICKS0t8iS905tOd1a0BKejY08XOsvOzAaXD7pE0TRYhexW0kqtBlssHKJZoqerEdwF5QnRrKwPCCTOH2gAbdEDL6C9sER1BLfnvmL7nahD6EMgpczxa0ml0xur27o4vf/0b+r5jHDoOx6Mtb4qwe3jg/v4e3r3juN/ZgCFmC5aykksCVa6urnnz9pbN9hoRK7Yj00wcRu7vHxAtXF1tefOznzH0PTknjsc9r1698ja2fnG9vaVo5De//jdc39yx3x/51//yO+7fv6eLM7/4xc95fXeHUHh6vCdEIUZzgbDAClCx2C6orzJkSi4cjkcOx6O5KRx37Hd7NB252Y6UzeClsj2YWjEznZjgAcESXL1Qk5OmCNf1VkBwFtCBcNdFuijG8ovQdUoXzTO5CwEpUJKYW05Woiqxslq+1CuoWzVmbG3htFJqBStdg65CFJMcqaPSc/aj/fspY5AsR8GPcHLsFXDKrPTTukwCInXRfjVMVuZ2dSClAmRt+69MWLsGCZZf4T77ixTGQEPyc2ihuFQ2W2r3WD1BzpVJOWGzKyCpSX9mDdozjpYYvN1u+NnbNzaOOIs/DAN939P13Qlz2tjCVVDRrvjCsvMJO6PmjJRSclmElXNPyao1jmFTlRFnm11hLlaVN1QWWSFTCG41qtWLev19B0Hn97ZN8g1Q2Xk9PDxwOBy4urri+vq6XUuVPqgugU3w5yPU/Ymc3Gtd9Zm6jxNXiuUUnvVDk/yYO2zx4jnX19fc39+frEKICIfDwb8V2IwbYKnEWAOz+nw/vyntgDU+audQj5FSJntlWzDg3BxfVBk9MXUJULynr+7Dorn2n1V7rE9LPQiiadL9/j9DHtoqk+bqu76SSKnnjZRiDjQxRy8IFj1IO3venwWV63PyNmxBiT6rwAm0FbMfvH0mgP2URLlzsPUhcP05R/+xwPZ6f58s+VltH7qWDwFYW5NYj9YfPsZ6voEX2upDTfKRA5wt4n7Srn/MAOHvAHQLiCIyQxkgbRE6AiMQmxyglu01IK1Y0mOg6ZvzRC4mIVgqMZalhdUG0lpAo41WgKElH8WKoFSduKH04v7ghWTgRxUhLqCbtPL4tWtSAjOrZTkUiYJ5YB/I80SZZ6bpSJoOLZFSilpVSY2trLZKXY7zgtXi7IU8IXGL5lt8cd8HfJ8YQ0RjT9Y7pNwhRL/4maTKOGwIYzIP6y5yfXXDOFg1xu3VFV/++tde6KOw3W75+S9/4XIGmzzu37/j2z9/y3ff/dkK0cyz21wZmL25ueHf/bt/z93tK0Ls0QLH45F5nnh6fOQ//6d/puTE69s78jwjfc98nCizQgpIjK3y2tDBPBf+/Odveff9e46HmePhyNgPbMaR2+sb05ELDINZDM7TgXTcIWVuBW20JCjZCu8Us/PbHfbMs3loS85c9ZHt3a2tKAgGlJ9F9UqHOczbn3aPzCWjuCWkOlhcnDJCEGLf0feRvg/EPvgyMsSgLelSipIn42PzVIil8b0GXdvEawFEUE8o5rQASe2NVW4hzkEv3PJSkVSXi/vgKGSDsGBVY5etKruffbYtaWuTliCwFdPcLgDG97fWMdrD6jrsBcUsMGjRkSNe3l0sTrf2N2Y6++sGtj1R22VhlvRnrjhdFxnHDeMwMm4G+iEwjiPX11dcXV2xvdoyjhu6rmPoB4bNSO9a5jqd5JyZ0oxS6KSjHwZjTJvW2axCFyB0oY3P35AKH58D774fkGASvK4TL7xVmtf3xU1My2xEw+LbvWam6zjy4mR8cXI/Dd+urq6IMZJSavKNcRw94bLzcu/hZJ/4/VxfZ33vpKAQ5UTKs57MZfVH/dWAbqEgbLebBv6r9jmE4Ocobf/UWge1P4nnNaxZ09Wt0tUxzzezM0xNN12L/3RuIZqLSQYRaUnRJn0M5gTlF1KKklN2vbZ6Imp8di8UWkXU5WcVkMgC5quVYjjrd1V7XrIVt5IQCGM4QaB1hagFRyztc3lbW23iwd0Z6JXlpXOQ9inbjwtjT/f5sSHynMD4oduPyX7/Redx4bXnZ/Vcr/8p+2xY5cX9Xj64zSHywxv5g+f3l7X5Tx50CxHJV8ARzSNSNsAG6DECwxtWS2OzghhYMJ9fUBKpge7qAqGNlWnasFABh5K1ELQma9TF5mCDnIMeG/jqVG9SE9eKIJKJ7h5h6pHSSn4bSxYoakFB8Mx6KeYpbYy22QEyFzo1SzzDUgJEJHY2GTozYIBbqMuFKhlIEHdQtqCxBQkEpUTzj5Y+Ui0QLRs9QUhsrwKvX10R2CECXQxcXV3x5vVrtttN01JO0wxB2MTAprKrxSpkvr675Xq74eZmw+Puiel4ZLd/omhhHEZ++eWvePvFa3JW8jyR5sw8TaRk1Savr7akeeZ4OPD+u8L+8clAe7JjGJiqOlGhSEBIdGPH9XbL65sbtsPI0BvLF8WuL82K5sT+8YE07chpppSE5GRu0lrDIFuFEM0EUfoAncRWJlx9WUXXM4D3H1RaoRegTWqhFJInNhb/bgWSihKJlkQYzTHFJktnUVmWm5tPvMPN2e0ug5hndStZXdRXQKpF2Nmk6U+IeOUjW+QpDhzKCScoy5ecVf7Apgu7sebXziec4IWk7IP2S/I/i7MSRcTdRpYTMMa+PXkG1uskXFlO/4ldx7gxIKyWVsF22LLZXsE4MG42XG23XG1GA8rjltD1DMOG3lnozWhMdIydA+QqF6Gx01UTvLCKshTJqteUM8fpSNJkLkmrzwdZ2kgIHjDhpMOyo+L3P67AqNODHnAsEo7GiLtdpOp63Pv4dgrjbZ85ZyLxpBrjMkk+DwjaeaxejrHj1atX7f267Xa7RRoCTS9cJTfZvb1jY3krbcFqXxWY10l77Z7DKVpj+fpa5tJ19vxUAJw8+blqoS0hVJzgKG1criDhUsBRz2yZc5ZzWgNfoK2MNOeSYlkHbV+lWM5Qu4y6H5ineWHkxeVaeaU/97asxysKOeW2l7I69+CkVgXKYSV5qcezt2S51/6/Fd9ApiZVLgF5reyMnPbFFsAsM/PJ7WLVfp8CPC+xupf66dKKH37lh4D8v/VWg+QX3/9bgPU2dJyOIZ+zna9xLG3/kXuOkzzCRy3VP2nV9kfcfvKgGyJaXiEcUY0U3CIwBIp4sZNUPIJemJul+p16wmQyaCKpLS+vh0BdD4L+wFtyekYJ1HQerfv2SUS1uHODFanJIpj7cESLZdRbwZnSeLdQ1Z6u+80uuwg+oVPLyqeCpgLJS6arn2fo6IaNFUgoLqsp0R1IrASJtUSHFvcWDy4ZCIpGIY6R7ioiMSMpkFOBWQmqbAKMzMjxkb5PjMNAF2EjBQ5PpHREug6NfZvg9/PE8f17ckrMKVmFSGeWNc3cDCP9zTUqry0JZzBQU9JMnjPzXJiOVqVuOk7kKXF3feuVOTNlThxmqzhZmTdVLx0ehdB3dLFn6Af6GBm6+qN0Uek7iGSrkKkZzROaJvJ8pDjDLW4LCctSq6jS+Tqt+8KYDGL1JBczdfcOssCU8+XuxtJhbLOFhrTXGn1TJyFVY7aiOdxkaJOelGIWhC4DWC8NG2vuLG6xALJoAfHnRCoMWbHYPvvlMhPEvMlpIac+A4+nUIdnY2oQ9dUZzj/ZgBQAEQewp8+fiKAxMHvJe6tcGKyAUb+A6K7vGYaOq6sNV1dbhr7nanvl77u//NCz2W6JXWfHi4EgwTzK144R4KtjceFXTiQKJ4KG5UeW6zrdTsGtqgVFdm+Lg2xZNZ/fMw+Wqqd0Sz6suQKqbmFYweUCkKptXfUgFwkUL1JTXYnMOYgGfOq5Le1gz1hKyce5xSO66og/BtpbkFk14O0NJy5UTz4nspSVPx6PDIPJtlo8xtKL1t9Zb4vsQU9kOqW2XrZQLYZqj8ezpebKbtff379/z9XV1UkJ8+rCIhVQrACze3dcXr6v1/yBdosxEOMCuP2LpmePS/GeEE1PvVhHVmmlBQGV5e7HkaIwpeyBOw3El7LcgxrsmHvOqs9pldwsQPVcj15BcpXCAIsNobfnNE2oWrEiX3RqeSv1/vrg9MmAUM6+v+4Tn5K0udpTa+flv8/fXb8guh67P3MT+SAgfv7xnwaj/VPZbNj8cKsvMH81n67fP19yWn3A+tKlPX7gYJ/2IvB3ALqVSNG3ZHXGVQaQDYotuaXZGD4Rr1aGEnyJsCZJ2sKzMb/GAON3xYFznVaLTyU+aYlEVDvL7i426VWWQNpgUyfn0tiYkoW5rI6jQC2y417ASvKlPGO7RaBXjKHM4mxuZTXFQDVWpKXEniyBOSiqHbVUtRTTW1pyi0+ekiEeAUteKwHCGBlvO8abHtXCcWcAvyB0ZN5I5PV2ZLM9uobYZTw5E1MywJcSRSayGiA8eDLnwv4aCKhLmzEIoWS6oSN2Ll3IR2u/uSCzElIhFqHTCESKJAjzIsnwdUoFtzCzhCYr6LPoDIWafGeCBnGvdsHAqqiyCB4Vymz+51qo5opLB1RM6O0Jt7pM1OtErzWIgOeP3MIqWeVKWyXB+h3OlIlzRM5ORTBZSNGVhIg6E9rqiWu2jVleuS9gsqpcV1jErneV5ug/2v4owFQmC84cjDXrvDVuWr3eXl4xXUEcPPi7QYSu73ypPDIMI5vthqHv2Ww3jKMxzONgMo1xGOm7aJ/ZbtiOI0NnRZBa2fBVxbsgQhf0LBGvuAWkT/AhtvZY2MXlfolIS5zLuZgNmqyDgdqqsATqp9t6HmiDti4h/XK8lR2g1HOtDGIxKUE2ba+IVamsevFLP/X827+rAKyOV9GT3lrJ9Y9MWiafECcLFtnGafDYGmbVFna+JpNIbDZbVBcAZkx5Yb/fMwxDk29Uz+7tdsvxeGx96ZmMRCywKCu2fj1BWpssHt6qvgpWCodDla+Y01S7V2L3SD0gmKfcZDS73Y5Xr141IDoMS0Li8qwvQfd6OfxFoFQD89UzU8+963weWwHu2roxSAskzys+rs+pgv6u5n+4U5bJik4rgrZwT5ciQef7LroEzxVYp2RjTk2ULaW4NNAtBeeZ7dVV04HvvShSDcQElpwArfeAZ9fz0iYXgNT59z9FtxyUxRzhQ8c7+7tZkerHEw+f47e/VwD9ofOWZ399djDyN9xOSJ6L73/m/j7hlbr95EG3rd/eQhk9W7rHGFzF3ErM27i5PUi1z3PtNgWVPYUDijOltUtozcR3ba6DOHUgXggEiUAg+/q1iDjT6edXJ9EavgstAQsMCGvNDisOFkVRiaAdotGXQYRUDAxaNUMWUF6CBwGBrusZr68pXSDNEzInO78SKGS/RgNpUQtKQYKaRaIIJULcdAyvRsKmZ54S0/5IIiAUogoRZTMErsaOKKYjtklHCM56GL4rzq4Xonqp4ga6bd2hE4gOiqNCV4RYIuYPntAMZbYfssshdAGfZvjmDjK6Bon+0IhPNKUQ3TtXS6GETMqA9wctkRILfbT7k8tMmiZySpScmwQDqX7WDjqVJidZyoNXVokWYJTqg73qurEN/PXV4gGgAz8JVEO6OvsoCwtY/DhV7lKDSlVPvM22umLVS2swsJqNFAPkFC9vbv9WIGZBxALCC8pTnsk91Hoa5r8biT7Rx67+dGw2I+M4+r8Gmq+uDCRfX19ztTFAbaC6a8A7xmiuBqsgqbZTS0StVn4iLXmuDWMOWtYrBzZxVtAjIMZ4Ho5HY+57+PpPX/O0e0JL4dXr1xwOB/74xz9ydXXNr3/9a/74xz+2AiT/4X/9X80lo8bUZ4GY+msvL01eGsx1CfRXoEDVXB8Ip+Cri52NeVEu7u9FVs+ZODtUTe6shdIrMJXlNJ9dgxKDIETz2feS48vlL8G1HWQF/vwOFDU5yzRNrSDOOFoxl6qRBsvhOB6PvHnzpjHIOVuyp2CuGerfQevFVSCoDSymeQYRuhgY+t4+V5azKmUBlfXYLfjQVRjk92aeZ16/fs27d+8Yx3EJADxwSCmt+t8iuaiA/xw0XmIrL31mWS3RZ58xWU1o7XkJmINJtnpfNQi1iJD4ClNYn8ciMxGR5kN+butYWeq6PmYuVkeCRG5ubtt3p2ki5dzaxiSVSoiRu5b4Xh+oNcW4QJ/qud9kKpe7PjUwEe8HdZ+fCmfX40dt+8tA/8UT+CxQeb6Hj53nSwFFOX/9vwsL/lI7XRiL/t63l5pWzn6vXfATesVPH3QjxPGakEfXdQYPM83OKmNMa5TSKlrZAyUUDWQyWSZjkzSuGmvFVomzpsX5RbUJx9eibUC2OuGo2wA6h0pN6mplEQKWpFnzWtT/Uyep4qBHV2ytBAPh9KCBnOYF1K0mAwmBftgw3tyiYweHPeXpSCrBdNFanK0JoJlaSY5gIDyMke56gDEw9RbhlwglilXeFAPJXVRCnAlS6MR0fLYciDFuWu3khKBVYwpSClXfaANibYBgxUsUSlbA/LAV02impKQcyAWrRVQ8eavEpkNdD5Ing0xjHEIjrg2EZ0wFWZxpLARMFSkKOU+UPJPz5MmTlcnWNvECzU3DyHFnuivS9tWOir7Xz6e0fqWrFzwu84HSGOga8KlfSyZJREJ0Zlfoo0939ZyystjYuSQBT6P12K91mxBaH6yFnWLX0Q890e0eG5juO36tyv9N/u/EoSf0HeNmy2bcGnAeeisJ3kdiH9wX2A4V3GUlSp0oK5iu3XfRYEultlgmjFKUlAspu1ZZhVyMUVNV+r7j4eGR/X5PKZnXr19zPByaO8cvf/lL+qE/aev7+3v+5T//C9fX13z55Ze8e/+Oh4cHYoxstlvu7+/59ttvAauUuNvt+Pbbb/niiy8+zJTJh6bij2z6XFdfnTlEVm1UwWztG/XQq3N6/ntdPfFzFHEJgTPUZ7Z4HzlRIxBqLoBi457nDfilLO2gS0Bh996uaS05qFsFvesEyjXgq9rp6PkM9ZQPxyMSHFTLAggPhwPZC1X1fW8VK7vogUEtiLNIRqZpopTSgoDz+1yfib7v+e67706ClCbv4jxwomHfc9YWVoHKR7ZL7He9H+Z7HkwGuFqNQpf7LmABbowmPWze4+p+AKcDRJUq5Zx5enpqbVK3Kg0p2QaP6IFg35tPt1UGNclN8Kq8a4lObaO1POd80/W/3pDPmqr2r9ZOjTq7uK+XtrYSehJzfv7TvMCITwO9l0aSzwLeLxznbwu4n89ndhJ/w1P47G092l66Cx+/9xdnAf3hl/2TB90SAnGzJR0n1As2UgpFpckoKrNbKvOKAU8r8VwoMtjgK6mxVMsyYEAdbIsOCB2470SgW5gQT5yUIGjwAjeN/1KDdBWsCUgxXauBHUuSxBUNVsCmM9ZeIjEMSDcyxtHAx2RL47b/YqWMewMKcTsSxw1sOkZV5kNGOyV4ZUjRguSAMCNiyY/DeMteYfzFFwyvr7h/ukfGnuDq8mHsmQ+z+V73HdkZ7oAN7h7D+nl7uOETzwJSnVGuyI6FLSlajDVTQdQYfrLr8R105xTIKVByQJNLJooFSsbSun1bLQRUn/2CVUFTWqETRcgiSIAuQohibKF7UNuI7axykyA5u1InztZLnNV2aUYFlCqnsdQaViwDOVAZWnEdpShZTF5SCifXZsvAmRAU6QLj1YbN2NFHO3XzTc6kVOh6AQpSeu8fPV3f048DijpA7uj7zsF1R+y65oYQHJgE1zcvk2Kwgjmo68DtXraJSVwJLp43sGLK/TL93+fcjvizWruTTcj27+//9V+5vzcLubdvf8br16/5/e9/T9d1vH37BfPc8c///J/Mk7zruLq64g9/+APX11c8PDxyfXPNlV41Jh21Ut/T8cgXX3xhSZRqFQ2rnZ+INNAXQiClxC9/+csTeUPt+cAZq/2xgXpZ7Tp5XaQxoy+BkNq/jTWtfX4BYOds4QnpUp2LcBs87LmozV5lIsGtK3V9fScTuDo48UTwbJULg2vsPc5uQcT5VVTwjO9DHICHYBVWK3t8d3fH9fX1UuRGpIHvCsRV7Ln+7rvvOBwP/OIXP+fqautgutq/LrKI7M+xCBTNTEcrrFYDtHme2Ww2rcjWqikRWQruVM/veZ6bjKK2U5VnmH93DSDlNBC5cP/P2dUPvX++iWgLCOreVzF/uwDBVioQWuGb2odOLA7PzqVeL23MW3T59lm7N10/ILJBJKzmYBx0myyqFKtiuQ5u6jFPrts74HkA04iWen4X22NFsr3Yahe/+Hx/Kyz5KXhSLxAtJ4d44fe6zxfC+U8C4i1IOe8ruvrUjw6EL/Tlk5PywJ6Xr+1vvb0c3j2/mg/1s0uv/yXX+ZMH3SEGwtgTVNGpEDKAAcKohU5sSa8ygQlxEGNAqWhEuQU6kL0BreDsRwXIWlnmHhgQNohGhNhKSxdRSshosEScLprsJJVcyR0H56Et6yLJULYDR4qYtRNemTL2xDjQj1uGYaTvOqbjzKF6/zqw77qO169fE2JgIjejlK4EsgZKstc6IoJp+ITIMI5cvbpFtldMXaD7xS3xasN2sMk3lELoO2LOdMfZgLREdJNMUiAR8UDlVCe5Sv9TbVXIcBBlDKcP7GITlMnmgrVFDqj2lBwoBfPtTkLOQsmuG6xy6xLIuWq6q0VXbqA4iGmfqfIeo/hwt2lLPtRFFx2cAUQElUghml66gXD/nO+/AuLGl6uSZVmWrQ4b+Wzhz5zWtBXwCcEcb0S9V6nSA9L1xKGn661c9bjdMI5bhnFrso2hMxeTaAlwCK7phBDUKmeuAALAS5rdT0syqqmijQtDJAO1X3vsovV98c98ePpZcVTPpqq6XH9/f880Tbx58wVgTPXbt19wOBzoOqvkudls2O2eLNDoIt9//71pgvt+JU2x/e92O375y1/Sxch+b7aP2+3WAIbLHX77m99wfX1DCIHf/va3zib2DaTXicQv+YPbp7Butd/knJlTInadFSkRdTKhejRXFEgD6c2ub3V/L9/J6sJBW4I3oR0O5tdnZ9OHNZk0EF1BhfiKxWG/J+fM7d0rk1vllYSgFGc+Y1vhi155UwgUjUzzTEqpBUWWyFjYhPHknIEWjNQAIXtS4NB39N01Q9e1ZPbRwfA8z8u+W/+2Eu+bMTTZUGVgu65roDl4G2nN+xD7bsGcOzRnpO9b66aUOB4OBO8jsAKK7lZVn4eLIVXtV5/IUj4LhuoK2hpty/Oj1bHY3nESakWSVPJYMHb/xsvI1+MABIkM/UCJlkbeud97c9RBnD0vHugYGRbEKh1n91tvZFSDjdrMSa0Lnp77ecB7/r69JMvc+0K7XRzrTljzBT6drBzV75+exXonz6Qe6+9+yvYp48VL20XW+68Ctm3Pp/8+f2cZri7D0fNv/rWB+QtUxsX3n+Un/cD9f+r2kwfdBKUbFUomZ0WyweDoletwMFQjcSvfXL0ZzInANK0jqh2WtDb7xFIz/d3zWzsCvQ8YJjNRrDhECJ0NpAFib4lcOSklpZOl3dJAZ3b2u4XyVE/XOlhZcqWBW02Zw3RkmmZynv2BV78O2D89MafEVBJ8/86XizNkm6jFkwDdNdaSplSZj0c0CCFuGCjElBirGEYgkNE+Mo8jkOkobAYvQuH/09VgVCfj6oRRB/66v/ohc7yw645YkmpJQshizjMYq52LkLMBawPaZSnNXcR/aP7qkEEylYmjTZIVJio5m84dgez9pKi1i6l5bOLxxQcDEfVSZHHsqANrs9+rYMXdEcST06Sz/hC6aFrcvqPvewMJQ8emi/TdUgJ7GC3AkmB2dtIFT160gCmIL7OvXD2ez6k+Ka1e+xw93UufXSeCnn6kOqRgAdgJcGM5x/P9XXh3vUIEFiTkXHh4eOD6+gYRoe+tkMzt7S3v37/nzZs3/OxnP+Pdu3cMw8A0Tdzc3DAMgwWkzsat2chhGHj79m2TM/zP//RPjbFcByml2P2/vb217563zafMZZ8x2SnGuKecubm9JYgBh4LJJRp4pDQ70eVcDaqEGE/8oNcnWyUZjb0Fc2wJ6mC1hpFLW4E0eVYLphVSmnn3/j337+9588UbT0g8IHIa3OWcTQ7iB7S41i3tsp4w7NX9xHbiAb0usg0RQaLpyav+O+fMq1e3jYWu552SkQKVAV67ftTiR5U97/ueKkmpv5diYyZBVs9YldMIQ9+TUmJsAAxPDu9aP6ljR1E9KbgEVtX2L5EFPP/cGgCtEnKRk3eNTBJCnUOU5vNZ3LmkZCW4e5CtLtT+4DvQer0dUDxQnAmxX/mf23i4HNaCPQjMLg1rahYtraJr23/to2pUGlJloTYHRM/NqFC9XZx3skZ21f5+9kw8l+mctu0n3oblO5/38ZMz/tzv1uZ5zmjr6Yf+Jts6uDvfat/T1g8/sIe/OuB+afsYEP9bbT990C0g152xoLOgyVgU41Dq4Ar1lmdxDS64nKHDfBQGpDKZzjjbAB8QogNI04xnEYQO1AtaBNhsNty+vqmSb6YpMT0ekFCax7U9HMUntQpbHZD6cYsW8+8W+306HJkOc1sCbAwTS7GPeZV4VAf4ha1yEIjJWWJwllZhmmeO9/fI4wPEQPrzN2jXQ4zmShKt1bQIkno0QwiJqMkGTr+OBm/beL/iKuuLugwste2rOkElULSDEOz3OKD0C9jO5rudq1e4Ktmri5ZiUiFzURD3WK9e6A6QJNOJBVQGrqFgZatD7OmGaExxJ0jIBrL7jGimD4IEkx9JMAYsdpGus+I7ccXMGajuTNPsE7w5aQSIxqpV/WJNXLOwrbTeACdzAkoNULztpJaW9kl1zb6033/4sHWuGb20NYZnBSrOPrHs79L3nx/15Nf1RGgrJQaQf/3r33B3d8c4Dtzf37PdbpnnmTdv3nB7e0vXdfzDP/zD0u7y3Mljve+7uztgKQ1ePZar00LTFncdx+NEPwyM7qIBNGZURJaEtMsN9qwlPjSY16bfbDYOQE+ZtqenpxZE3N3dNSC5JDCeTrrP78bqlVXQtj7DU+kAvookzd4058zhcCDlTNf13N7dgQTmlFa2cgsDX8rJiSwrBFWW4AB69Yn2ubUUC07BspWgDxx3u9YHQpNMqLljqCU+CpysdrRJXuSk3/cr1roUK23WVcen9oiZRGXcbJ5p0kMI9H1/UmTqPO+kNsbiD7K0+6XfP7Q9l4NcAuLeZoa2V2O1u2xlZZ4Tuag5mLizj63lLrlONubm9l2Qlth69IrDfV/9w5fD16NXqCiiDEO3kuX4HOikmKxyOlrSfJ3OROkT5AE6tOVLra/avh6pj0Nr+xpx8jLQ/ig5sZ7f2hWd/r0+zudsn/qN5yPKh/axyMf0/JMVK38GIXN5+1DYoCefu5Qg/FPeTILHB6fVj7z9WdtPHnRLF+nubimHREkZKYUgka5AKBlVsSS4ZxOfF1cQG1TMTcMe+iAGeutSrQrmeJFs4qE4Qy5WVVIiDJstN3d3qAgpFdK0R9NESWqSkgq6BbSWlpeOhZGwc4yuj636P22LG+CIxCesZYBtAFs82FgD7rp/KQ2oqQPS6DNtULMh1KeJ5GFAFh+cUUQ6ggwIkSAZ7ZK9X8QrKlb96Vq7+ezx9mNX8Li8UgokUYKvLBSysdnZGM7sy565JCteVByEihV/QRISEqqZEDMSrCBMiMFY5S5yvdkyDAPDEHywj3RDZDMO9ntfCHFVWS0EOi8DHytIDnVZ3rTNIYgxYM5EnroLrPro+t/GiC16eKEGN7n1SaCBkJwSWZV+rBOUQ/QXB6tlEv6xBrSLAGD92kmk8MLrrFjsE1z44alGUb788ku+/PJL36Vd+y9+8YsG6kSkaXAra1qvP7tjQtd1zTmhVjesbTzPc7vO+lM1w7d3dxymieM8W7KeSxsqKzsMg7O6LzXPekI6RSILB1S/Y78Nw2DVVFfgxRj+vl3XKUitn/FgrpwGRIvOu6w+u2jHKyjEr7220ziOBraLafhzLhyOR54eHy3htjPL1MGBdgWg0zQxDH3TSY/jSFs9BCcd8DGpnHqz11b6IHm2gJouxkU+JOZmk/16QwjkeWbvgcpJwZ1VMFY/23Vdk2StEz3bqpJPI3XlrouBw+HAzd0d9cms+zqXfVj4XNFre+qfXdrnJL9d0l+vGumF79j5LEja/kpzbvkKobeVNpM95lb1M+fMYT+hasFq33fkkpiTVRMOsaMmyzu8dgBdyS5vF63Py4Lm25yw8h9VFZf+qDmf5GzVgV/dMgw9fQyNVVffXf12OHsgPwhUT8bKVRaCd8R18ut6P+dg/4duNWH1U8718g44/cYLfegk7P7ME/9gv3wez59dgPd3fc52L0TIsy/9d9+WMPGF5vJh6Mc865886CYE+tsrwuOe+bCjC0rsIGqALOhMK02bzwYac7XoUCxhETBgFYO7NUQk2KSSDkcOjzsD8RIQidTEMrMqHDjubLI6Hmd2jwfSQTwJU80rnKrFBg022SwMUzA9sQbz3ZY1RGU18dYJw36axlDOgW+1t6v7sL/NbTsvO8NZdwXVQOVfTTZSP1YQZiBQpHCYA/ukDBjTIOLLkA1CLP9demOVwvjgIsvxRRJRkq1QhIJ0hS72aAlE9WVZgRAB1tnx5psbY2CzHQgBhjHY/Y9CP5h8o+sisQvEbmGJTf7hWep+H0XrpG1XEkVbsitnE6gFTbbciawHSftcA0Rq9n1BlWhLBxynI6CN5amOCU9PT6R55urKSoYfjkdyztw/PqAIr968Yntz/eKjcM4Q19c+xF6fg/LPWepef/clgH/p9ZeSCJcvnfYhEfPxVi1M09H8qV2GZc4UuSXWVQB+OBxQ1xLP80wIgZubmwaujZULxK4zS0hoZc8baIeWqLfZbEgptbLkl1YYPjQn1ffW7J8Bjfrr6f2qXsX1o+b2AX1vRWGy54qsg7wmA1GoeRUVNFYQWHXVa1BYx6BUGcvDgYeHB7bbLV+8eYMQ2B9M2vbu/XsOhwM/+9nPGMfxxD4u59y8zPu+ayB2ng2Q4WDrGTZwcqNb6afX7Vpbof21wkOKEqO0+4Iz6O2eipwEYefbohOHfojEzpl1CW0Iq/aGUWrNhPUzruagU9xpCFqQV1TbKorW++2DhXjiQzulF2f1zwPhpztbZJWn+1ozn56AjkCw1TvwXKlYk6eXMUXVEs9rIaX6ft93DP3gNRbMaQqvkhvBpSwGoouKZd00xthXUNy//Xg8MifLaUg5k1P2vAM7ry4GQt/z5rVSgp6tFqxsAVfn3V5YotAXAeIakBpB9Bx81QCV9d+fuC3X/WHwfn56l3Ct/XFG9OjZr5dObtWnPjdh99Km56C//vUMeH9oJ/afnyrz/bc6q5886JYgSN8RhkjsB2ISYqeEMpMOBjAlVLs8m+6DmGbYdNmdM86W/EEX6MaRzXZry2TB9LgH7pl2R49GLUmyDl45KY/v9zzd25J0TuajXc266wNjS5u2XJwthc+AsQaqzMTGggrYhIbScZAtGZGE6ZYXGcX6Z3mEVz8ejpmrSFmYJIEgxUF2BirD7yyMlCbZULVS6rMMTFpM7x0KEoMfuyYi1v062yE2WEoIEAKx73xQt+TAvh8Z+g19NxC7ntgNdF2/yDCCOwZ0wZME3VGjumoEO08JGQkJif7gNrbF9dpLr1nHAt4WHrSgSNWHaw1Sqq7Y/G9LyQ4UOiS4xMhXBWxuLcyzeXwfDwf2j48MMfL27VsOxyPffPMN19dX7pDQ0/cDf/7zN6RpQkSYjwf6GJgOB6Z5oqREiB0lGctfc1bPE66W3IHTIf3zJ+3T7WPfb9rVi8uGywRfWe414F5rxOukaH1mATaVzVZVHh7MwWQczB1h7wl8w2CSk77v2Ww2jclerz4YeHcN7mZDrMmQw2BMeN/bk6ZqWnoR9wuPiLtqVKDxKcHM+euX9KPqFqGrb67+rftfzfpYgBijNFBR951TZp5TqyRYAXd1dKn/hihst5ulXVY/UawATU0oBVsFeHx8BAmM49hkOWt9+cPDA99++y23t7dcX19bka5VUqKdj3rgXMPTk/AcoLHVJ+3WPnHWvxyISy3wotYeoqadzqpN5lUZ7nWQ8iwYXK9U6SoY8v5XVzMqgC+lEGJkerI+WIsWoSaHq9rydra1doA1BrWCqY1Pl6f0UyZ76RstEf0Fhnv98hognuwbljFLIPYdY71+MVJimU+sfSxB2zT2VZPfxYEgBbO2rU5dS69SxOpNFEjF+ukhWSn6agU6zbNXwSyU1fQHNfHSXsvZgoO5wKyBoxqZ1vkKB6onj9PJPW509TLOeHNVZ98TtvW8153HRT90VD3fx/qJ/6R9nt9b//YSwtRE/voZvXj/2z7+wvnhQ5voaVt+yrY+n58KALd5YfXHX3H76YNuhF4j2zgybN3GKmXKNJHKRI8VxzmBoCruEtIBPVq8oS92iwABAABJREFUWEJQonRcbW642l4Row1epRTybC4j1ok6FhrY7kQuDtKKSVCCLJPi4gPtT7fUAauyP67VrgknYpBeQ7JKgcHsSKzqXEG8eqCWzLOYWStvUV0GKrfsKvJgO9dWJKhQgrZjVxAbgrjcwlirvutBBoZu4M31yJvryNVG6PqAxGCltIeeoTf5RoihFV9YiqZUiYa7daxlGzWJNNQlX6hlqxewUtvH5TgokJZ2Q52ttKGsug2QPURS0wfbPTGXAfWBXn2C3m42PDw++BL7RMmJYRjYum/zOI68f/eefhi4uX3F1bUzz+IrA2JSmJQSu6cnnu7v0ZSgH0AtQa7rOnLK5DkRhpHpcCTPs3tZhzYBzo8zc0puwxaJPrFYiWHrR6cMni4Dgi5D+CUA+KHXn7GyXB4Iz0H/ST9s7y+v6SogOP9eZWRU7XPTdGSep2cSipRSc++oTiL9MHgf69heX7MZR/rB2nsYBisi49Uqza7Mi4eE4AybPgPT1Y6PFXNWr6wVXjm52lVbeSNW7XM7lmvFW//LmeTSi3GzuRgWVh/thQFaJlZx8KXOxJrd3bKKVdsuxNj2Pc8zYxifzYI1wKh5B/X+zXPmeDS97p++/oZf/uIXvHr1qoHOaZp4//49pRS+/PLLJvGpbF4QaYy4gbWl0c4TZk9/W/2usJbFrNGQrNf9z1YfKrxeJ1fW984DoGfAxO9RlZgsvtIWKOWcmXNhmhO7w8HYfL/fNWnzfBVizXCeXsiHV34W4F1fWap/rt9v+7rA6pfzz2klCeoNUYI7yhRd9/gqvKQFNbV9QNwqVxAxy9ek5oKjBdI8k7LJMtNkLPY0zWQtTE3j7/28SR+X15a2qeGV7ViK+fVnVdLqkrr61LRTXPUH8CBHVgOcP2cL2qbek8qet5WB9X5OWufzthdXDT97n3Lxc6qL24a/Ys/q6pVw4dn/S7eLe9ClWX/oES4RFX/rrd6T1kP+ohjl41/+yYNunRLzn76jPyYGgGgT85z2oAmRZRJq2fcqqHagPZYM2fkAWQgaycfM4/TooMzKEs/TTCmdW2StHpHijDf43FiXSPHM+6qlPo2ctdS9mC65fqJ620rIEAoSs11DyCDmtxJUjSkPqe7NQLTYMWMQuiG6XAO6PphFV1yA9NXVNZvtSAzCOPZsxtHA5WbLdjsSY6DvAuPYMwwjMfYgwRzEVRmiEm3d0IKBsBTJac+HT1zSAhBrs0sPUHMyAJtgq6WWvsgB+fcqKKkMlTgYtT93uz379/eMIqiDhLfuy/zw/v1JElSMESmFP3/9NV3fk3OyEuIxkubEfrcnOoM3z8lAeRrIJRP7HrrowNsAeE4zxStaTsF08AnoxpEym096KcowjBACGRBnDjVE5mLXFaMHI1USUCwDtaw09Ho+WjfgvJKanD/wz5ae292wT7edngGUcwaXhR1cbqJt66IjlV26NLGoqCdviQdAgRA2zizWnVdXEXOsCTHSDUMrH311fe2SHXcqWQcFUifkQKRrk3ObgFafW19jCLV6YvFrMBazfqZqv5PLVir7WXXRKSWrvnl1xTRN7Ha7lrBZWegQI/0KRAWkMap1n0oNBpbGtXNbnrl+6I1hpkpM1McSMQlcEKL/BHfjaI47yDOQaJKWwtX1lhgjd7d39K6dzmorbNvthpubm3Zua8mBN2vrEHXlY333198ptV+fdqFV31Ja0SQ7Sb9GIKyPJWazWO/Zeher47br9L5pn1kHN0vSM6vgTxEr1JSslP27d+8WO8mV682zca4GalLZ30Blu18M4FZMd2MuVVn81i9tq/apL5X6t6wIntKC3NN4Q/1ZVayYWmyfLW55aGSItUMpyuF44HicmXMmleyyEK9CjOD2Ow3m54UaaW1T8fAaKq8dYGpUrmWdt1GlmLVdoDnWKksf4byBK7hek2M2BgRoz1/BxojlVq4dYRaA+/xefBg+vwQmP8byLsBvFYhY9AlqZEyu912Xsdue5/axegAb97Ck4BaEXLye9UnIybksn5dnH7tE4PyQ7SX54t9q+/GP/HL7/uRB97w/8v1//K+EygKWTK+FmA90xdwHigR3uRDMC3pEyhbwkvEavYofpDwzHRO+N8DBykkFvbr+FU4+B3XpXx1wG1jWYI9mobLT2cH4TAgzhGwSj1BAMiGqM8jYa7UAThTGIdJ1QpCeoY+MY892O1iZ7U3Pdrsx7+bOKrONQ8/guuauM11oF4W+N1arJl2GOvH4AFT9qk/7uXu3tiQo/N8KFl7azgeSi9MLrfKMyHo4ubidntflR6KUwmG347jbkVoyrek95+Ll4HNuul5d6YKT/0uMhNgjXgVymhK73Z6rqw3j0NtqCNZexRuwaGE6HsnJimakGKHrSCLQd8TeHqt+MxpQD8KbL94yOwjbbDYggVev35jfMcbgd+PgE5O1kwFGMadJPWur+t7J4HkOlk8nhmVSXxdbWd+75zdAwEvc+8RaNfBnWxuUq+Rnta+6IlNXjyrgW/S2FRQIQ79xNsdeG8fYwFbXSRvoDdjgk8rZJFKxm79UwW89dp2wSinMKTE320/barGcCjT3+z2ml+5WntTdsj8H2DURcv3dE0nDWXtVkF8L0CztaFspJpuSWHXVtnyfUuJwOFKrtY5jz83NDV2IzXVoec4WkYdIDXqW9uu6SMmFYRz8+tQT5sJJIZblXp09i7IA5cubrMaZ1XjzDLAuTig1oKjstIgQZUV++HnUEvGrRn15qqtNgngRqoU9qPup363FfACuPdCr99UOc7n/P7Oa9Ouyw5+Dlvr76np1Af6l6PMmWn+zsABsB+yWtO5srz9TWizBMWd1Ny/fg5Mgswpptvkrp8RhTu2ZSFmZJivIlXMxUquC2SqdqSfpAHZpmnMt9gs9xAPhCqjrM1NLyOvqY6uPXwS16+D90tFeSmo9uTMr/C4iToBdOu/LF3RJctZCvA8A8NPNxzSf0ppDK3bPG0kA1FlpzXbU2LTF21ibBb3cBh+7htU77fzsc8tjvP7972l7cWXir3gxP3nQTSnwtKcqlaNX9AtBKSGiJaClp5TOyoeXHtEeoUfoMG/upYqeSMSHXlScZRZtg95ppwyomg5aMSZaQoGQiVGJXSF2hb6HrlMD053S95bwN24GhnFk3HQMg8lNNtue7cZAdIwd4zAwDiNd7OiCSTdiFFJOPrFUhrkmYNmk4MYa9jAJjdmqAUMd6ttkhw/SDmZk9UQurND5hCrL8HUh+r28nTPdl0DhMjB+vG+fRdcr1kaAsetIAofDjq7rGIYBEWVOM4+7XWNHj15CWoHOpQmzZ8orwpRmun4ga+H21Suur7cocEypgcjKWWnJDF1kePUaAbJioDlGbq9vQJXu5pZQl/OBay+RDIu/8TgMZOJS3MHlEOvBEr/ecoqIL7bteeXCej/PGew2Pq9Ytvq5CmRPwDhCLY7TAtLlsP6hFe3B88FszdqcyGXqf71PllUfhep97GzNiv2rDHdODqjtgkz6M2diiAxbk0LcPzzw/v17NpvNCQiuYLkmIlq1TrOTi3EZGvthoO96L+iC5SM4EN6oMX3VkxgJZsvmxWPSbJ7Qr169esbKru/iulx6lS5Upm9pUzxgTByPE0WVECJjpRBrI16CeFL7w/qZ80+JBT4pJyREZ9QXX/malNwCr/VV1AFida6nE3Adb2RVeOUyOCletry4tKCC9bhiqutFnUOr2m/lhX2fjCI16BCfCcyDtgEjVaWLEel7uhi5ub427b/IKRBc7//sGauiQ/v/6d1YwGFtnwqacQC+cqA5Pe3a1MaENp7BEhtzsdwmu//12RZyUaYM85zRnMnZK3OmwiFlchGoXurQJFm2KuthWwW9dZbRej7LGZ65Rp600XLdq76hy0pVXAV1QYxAU42gZmlp96ecHK+CdPw8z4MyO8ELQJsPAcvT8z7rdtbPa+B6gnLPvn82pl7ql+v9n/6uKIV37x/5+uvvEQl0nUkQQ99TQmCzGdiOHTEsBMWJa0hl9Ff7Lyuya0HqZycgp8Vi6uflrCfWOfH0+8u88VPRan9o+1Af+NB7f+m1/eRBt6BEzQixYYEiYpnYAiIdWjZIjtSn09ieyUJFmUEKMSoFmxiDJ09aUl72rOzevZgLXacOpgvDIPR9oB/EWefIZuwZh86ZZWUcO4Y+EKOzzF2g66u3c/BkLZ9EfUm0l0gXAtHZqDqoaBtD+hax0gZy+0/QxUbQw4eX22+1fFd3te4zpw8WF8PV5yD6Y53u5Qje3pblYj5jW85PQV37TiGpkkOgG0ZK1zMhzGpMcxw60yEGhU6QLnJ1fUXKiX5j7J50wRI+t2OznrOkogjBi+z45CnFmLHNdgvU6ozO5oFZrLECtDlbApGzreuHeUoJGQzkCILmkwwjGl0hoOG8rc5dLerPaYs1hqj2g+I5Ac4orZfVz3WhFaA2uzytvi/L5yrbWoOtBhjCqmedICNtgU57yfdXwWf9e56TF0lafPDnNHN1tWW73ZBS5uH+kTkl+r4zECrCfren73te93ctQTZlqxkaxJa0Q4wMnmhZihqQdoazH1324kVz+nHTXFLmeWaaE/m4WBH2XdeSxCpwrs9MyTMEZ66EtvzbdLmyMFffffc9IsIXX3wBVECy4Gn1nYhEuq5v7Hop6kVLMLlWuPyM1jHDbp2fXymkZOc8jqMHDPmE2bZg41NAiq5Y26WPnDipvPDIV7CXyyUuznM/WGQHBsbD8u3Vji9Nitb1Tm3jKmASdPU4qVeStSqNIWe7vykhXWdgRi6PuHo+uPph1D2/16NtVeGu763W6rcVQFVgtNpt8T5gQ8Uq2b8UUoE5F3IqTCl5sndhOs7s58yUltVA3N7QBY1AzbvRdh4Nul8aWurLuuqnF9rk0vYS+LRW9QCoqD9/4kC3Nl0N7rwdZSVRaftdJ0J7EHpy75fzeBagrXB0e++MrGgBiCqneo6Xr/UkGLhw7affAQgcE3z3eCRpzdlQL6SlfPnlz+iG3nKYqDD4dKuj7CKvWjpS+/yFKKk6Oq6D1curLnZkoSYKr6iVC/f4vwcQ/1hwBZdv34fO9PI+P4VAtO0nD7qRjPTvYRW3mcdyRwzGWEo/gQghKLEPxC7QDR2bTWDYdHS90A/OPo8dwziy2XYMI3R9oevNSio6S91F6LzUeyedV8Vy0IUnpATrnao14WnRaor1QhsMXI4iqv5E276iKs3az8GVUtrdbiVyV095vadh9STYsPJpd9ui08uffQlwP99D29OHjvLCe/LC7x//9KU3VQ0obm9vubq9pfPl8GGzQeaJblh8htErqxoZAv3GGNC160Vd6q+Ae52AJWqOCepMqgVP5mscfOZUZ4litOCvstqVSa3uB8auFpdsKNvrqxMypmgNjBZ5Ap3ZTNZVC6CBW4e7nLJRq80nrFwyu6dds+w6HI/MXpnvyy+/dOZWF7YbY3T7PhqQMx+6NnanktntdhyPR7d8lAZau65js9mc6F+rdMCWqm25evJKg8YUJ/N9nhO5ZAeDSugWlwwBL9ZizE8uyqyFjPmt4xPwuLVjZ7WgYNhs+dkwtrarSZkiQppnlNxWQeZ59oqLwuPTE33fc3d3h5TC/ng8qWZYA4WsLjwKgcFXN2Jn/3bR9NYifnNXQXD2Sc0KQ5lP8Xa7NQCPeURX/XrJavkLhyOH/dGcXDxPQ8QC/b7vIQafBJeecB4ye09Di7GfORVCNCcnc0+SNuHGxo7VVRBoXa0FwDa25bwU8RIxW8c/ff01r1+/5os3b1qipZEMCxhRKmtp1QefFdERk9+UnHn37h3TNDGOI29evTLy5FPGvwp+VuzqGqhIJT9qYOhoeD0WnGvul12vWlV11f5Li7frXIHFepx6rLqX4MDb5JL2IywJc0WE4zGT0kzJhd3xyJwKudSCRsVLVziUVcssKivv9DVwLX4PT0fuVcDeXl/GhvUYs8Ygnwu22v2obV7lay4PDKzduHTpc+fn4Ei5StfaGbe+evrZk3wW9e+2j50C6WUKtn7eZD0vRSOrdqjj6brfXWqTEzJmmnh6PLDbJ44ZdmqGvuoYZBDQODCrV+3ErG8v7lva5bmlo/dCeRmQthXSFryc3uNlv/6iWAXnNQH16SHYf9/teSWENsQ9e+3l7fOCiZ886B5G4d/8Lxv6zhL+uq5jM265ublhu9kyjr0z0YFhCPR9IPTGZAXBJui+DloW6dsAbwDXqjhKK7fcuLyaUKlh9WzpwowglBDsfX8IvbwAEiaz5BNLpGnD2+phaBrrulVA5S+vVaBt0P/rNPEP3O+HwPVfd6sPhYhwe3tHkOASAalzNDGORNmcDHQnE65TiFEEzfnkM7ksueCKL/37JIB/v7KDQUAqSBB3xfBxvDI29v3KgC55AqGLVDlCa8s6sfuPAiXXifEyo1G/195v/2ob8L/++mu++fprd5wxpnQYerph5Gl/aMCntk2MkasroesHVITDNDHPc7t286s3n/Gr62uT8Tjjm3PmcDySdjs7BzX3kH4Y6GMgxg7VmZIy01QTFK3Xm8TAJTXY/el6SyAE6FEk9qRsAGTcGJhe39eSM7koT087398S9CS3H6xyj6Oz11v39G4rUtDs6KqetwYSC/tfZRdVByytIqKI62crw1b7w5radJZ7Tpk///nPlm+gsN8fuLm94fpqCx7EKerHjfTjyJu3b1vf7LrIMI7NX1zaOHW66eq3eo1BAhosgBRdJRauupUgK/RS9+1gosEUbVUsp3lm69U23759S3BpVe3XdTysYGixc1vu46XntlZGVFVCjCRVYrX6u/xUnD0iy6cWZlaX++fnoy3yteJoUF2fpN23Gigrbuy6GgNAW0C1XtUzSeMi3bB7sDy3dk5VWgFahHkuzPNs3tbzRC7KMSnHOZMLvgK0gAeRYMmQWseBeo6LN33NFTnvF/X903eXe33Wmqu21JN/z7cPaZfrLem6jp+9ec3Qd5Sc2D3eoyUh2tFJIbZ90Zj1c8JpOQ/8WStL32W5d6z+NPKi2g3XHdWACGqOSostV/29xgjPmqWeXD0XlvY5lyFd2oZhYB4yj4/fk1MiKUyqJN/PTOZhf2R7NdCRCaUWd7LLC7WwW81Axc67um8JujrvhQSwdlnPMNouZz161PHs0vjiLXfSHJ+6vRSQfO73P/nz9Re58Pp50PWR7XNO+ScPul+/vuX/9f/8f1gBlBA8WShgiYoZkRkJmRAKLUO5DVx2eeJJOlpco6hCddAQgViRbh2M2r+uKSvgxboRsUWbnKEUIc2ZEDpiDMxlphsyMVbt2UpLuJ4EW4C4HvhOO+r5Pfwx4O2lfdTX1pPcD9vT32irD2YNS3w0jmLShqKZkgtBjS0CTmQdqku1wj6axCc76K5sbFsWj1aVtDg7DbWUeD2NCvTsjgVf4pC1FMSZu+yoNoqYl3kMJisJYcmwr+CR5cFXNZ1mdb1ZgxPAKnrm5OekJz/GOI/0fc8//MM/8G//8R8RjDWsAObh4YFpntlsRsZxY8VVfFILwYr6pJR5d/+eeZoZNxturq/ZXl9zfXMDDoZyzkzzzNPTE/u9yTuur69bNUf8vLMDmpKF2A30XpyqSlmsrRMUK84k3l655KbfTmVC9wdCEM+NiBwOB/aHAyEEDodjSwA0fa7d467vUb/2XIqtZDkbH2rhlhi58esyP+oFYJvmu2vXYv8us0+VGMnJgH35WWkTlP7/qfvzJ0lyJL8T/QCww68486jMqu6uvobDm28fyZUnKxTZv/494ZKUJWemZ3qmr+murivPuPywC8D7QQEYzNwjq2pmyK22lEiPcDc3gwEKxVcVql+Ftum4uxUOcju4NBeXdQ1lGFfnub+/Z7CO/aFJz6JQ9KXGuQWaklF6JtA2tGXuwRH9p7Wm7zpAZMaouKMRQ5Hi82Xf9CNrRTzXGDFM6sUiGR7aFAS2VVyo1Kv0uDuYAz2Yzj8gscpE+ajrGpA4e48wWY2lxr/jkYFPH2N/iDIXgIVSDCHcJt4ihmdF5Bb2iIhe0PQsaSjiWISiMWhJ8vaE8CkkaXGwdK3QQsZ556wAeGtj4TXN4FQWhjOCyPhMEhGsohUdWpen1GanR294Ljl+Jit+/F7+d/7eqVCNDx9jUnQEo2dnZyjADh3N3iSd6wgJxaEPfRq3E8mm4XkjUFTKJwajEWRF73P+ZnYNGA0fP54X6RLi16KOVrMva3RkDpY+n5W7TLIqVhnZ46RjvVnz8sVHvHr391jrGYAhGsve8Zvf/Z7bmw0//dHHlEbml/j4BKMor4ViUWV7Lp7g9AnnEseerM+CrAZDRUeQfnoQMxmb93F85KlR9G3m6WNy9E8RnvKYjfQo4PpWIi0Y4Ns273sPugujeHpeBI+LFHoBKQs+glrhgHZe4THBAyCFcVQATT4kW6VO9g7vBvCOAYfRRQgNULRtj7UyWboukvoPKAUXV+c457m/24Er2D4cqOuKxaKgKJxsxzOWf4fvDlH/VwHuDx6nhE19J0n88OW/xQQ8PUFOackQ79t39H0rY+1DhTnvE6iOgCl6y1RVSchEBrjJ7uGD0tJGkm5jzKYKlGwpni54tVQIX4nUfyp4Mo0Coyq6vqftewF+raW/62m7js1mw/n5uUhMzNr3Xu6tNV6pAEwDeA1AcBgGdocDXddJGEAEJwFMipe2QmvFfn9gt99LmeXwfLHE+WazCUwVGjs4ttsdbduGz0vQsFmfYS5M2G0yDMPAdrtju33AOc9qtaSuF6xXG842F+naskjaEBqxm2g4h8Lp0YDwIJ6dfpClQCnxjlcVw2DZ7XaJJ9k5J/zXASCqEDLivRS+idzNxhjKclRzEUTHsuSxnxJgDuOXZG4WXpDL7ZH4Zl6lbPpPHG0iX+M1hZ6y5yqEX8S48KIokvHmg4wVRQHKUtdSQl4bafuyLqki8IxrZlw4Z9NFTRoujgdtFMYonO1RRXh+H8MvRv9VdoX0wN6PiXdp3rgQHoENwEkqy1oLeCkqU1dliAONoHecg3awaQ5570aDLABwE8Ysxud/q8Xu5G7hqM8EbKrJJ7HfhTMaTKopkCXHxd+VluihcA3nI1uIjElvLdZCb0eqybbvEkuIdZ5+kLCzSfIsEsIYqg4lTvGRazudmAw8P307/KImb+TsPj47OQeUgglne2uzv7+zd9HHochBXtw9c5RGoZVJ4V7jPnHUGUEHA3GX+ege+f9eJZgc57jPnjOG8eSVUgkl01z83KmUrBg95TEkZ7yjz2RMXELaT8HqsdE7DkvyrjPKkOzAE/JuVAL81nucdbSdw6tK6GuVQ/ngSESmvvUKQtha1w3c3T3gnSQJ18uauiqp65IY3qN1DtIlZEXIGjyZagkgfJ5aKc/t085+lLeAgTIP/z8IPCcD5sRH3/F6/3j08o87vvegWyM8JKNJOU5F6T2ZnDJBDM4ZdrsOZ6Esa0DT9x3D0LFaL9BaSSXBQ0vftCil8XhWK0NRCj/wq1c3dO2AMRVdK4vcYDuUhvOra5q24eFhj3IFzUFAXtd6FkvD+eVFmNiOVKZ9bg0fHVNwngvFPwXg/ocf82mVvz523rc/vhXwnnm9Tm1lxnjrIZQVxrkAdKae3whUfVTcKqOd82GrVwXgZYwUXSlKUIoi9+TE812o9Bm2E+P2eVysrZNQlcHD1199xd///u/p+wGlY+lqONts+PGPf4znIX0vAr3lcsmiDhzfzoWwC0c/WOzQ0g8DXSt84JvNWSpcYkNIxWAHbm/v8UDTCu3dcrlkvV5jjEnlrIeQdOWceKBBsVisWa3WrDY11lm22x1N07LbHcKiJQCprJbUi5rlcklZlAy9o2s7mrbl9nbLYHuUlljpYRjEQ+nHpLmYuzDYAWMKoevDs14tJXQi9EdRFJLoFwCp917AdxwHpYLhULBej55zkZWMDSKCaDUCpxz0J7mbCuH4/fSpGt9Jf6pxJqfvjB7G+H4EG9Z7+mFgv9+jgLKuJS9huUic3LFqn1eK9WZN1/VSGCg9C1RlSVkU5C52hxiekmeSLXihqSmbJHxWVSXWZkmzk2MCwyY95JzUOGj7Icwz8IEOsh/aVCXTD4RKs9L3kQUkyrwP3ty+78WTbwpUjCkI8xGlqBYLtJIkZxMMzO9yPL7g+tk4RVDm065JpOMT3JWPu8YhyW4uzPl+cDTdwNBb+q7HOkvfW4YEFGNuh4T2eBXKq3mdwEUs+jY2PA8lyT1I4ZTwu4syk3Ql09dJR6jMwApxv+HkbwLX8/Cfk7169D3FlCVrpApM8djh96HvBfAlLRHhHqm9aVWazNExUVv6TGffD+DQC2aP4YQ67vSG0JwYYTQ4YafqnbAiRQdPBPA68MfLjlF8P/B/I4BVEmnVCFz9GD6auw09khTtref2fstXr98L9S2gnHidhyADCsXXX71Ge/jk5QuquqQqNGVZ4JHcit12x5s377m9u+dwaEBpClOG/gKlpTCeFBYzlGVJXRbUdcF6WXN9dUFdipwLW1rIV8j03ajxQieQh0wxGjppbJjIbBqzb+GAS/p6/tl3NPzGm84uPn9/dv9vQjnfthnfe9DtHLSDUOPIoDoRAO+TC8kBVil663n/7o67mweWi3OMsXjnadsDSns2mzXD0HN7c0+z7zCqoihUoJe75fLyAq0Nd/c78UZhUcpQ4rE4FnWFw9HbPiQFeRZLSWQ67Hccmp6PPj4HssU52QpTL8p8mZfJ+b+iR7/lccos/3/oiAB3vvUMpEU8SrxROmSaxhUmUi4qdFFQlyVlvQClKLVJ3jVN9GAH0DFWEyAuFDFcJS0ySpRk24et4OipszbEFY8Ugboo+Jf/6l9Th9hbay0PD1vwwpyhtJHQKaMxWrycstgbuqbjYbvFOUdVVRgtzDiLcsFqsUpe8N46DocDw9BTVZWUTF9KtcDlaoWzEiLVdZZ+OEgSpBOO5tVqLZUFlYDi+Iy7Q8v+sGe3P3A4NDRNQ9u2HA4N++Bl94Hvehgsz58+Y7FYsF6vw5A41pslTdMAiqUKBV+0oQ8eTeGoF490VRQoo6grSVaMhWaASTVESbSUuPI8Bnm5nCbCQlToo0xMDDklXLxHR4olGEN6CFfQwV0nL6MHMYM/430yxR5PdUTH1oiGrLOYYiUeJ6NCwaRYslsu0HUdfT9MwqG896wWNQJeJksb82ViHk+aJzzNY7nje48mXieQIsWDnHUoJbHbWkPTHPCIMdS2LXVdi0xpHXYUxRiKxrKEPDm6rhcPflVhimz3JrTNGIP2EtIRi3VNTYIsDGQ2ro+psxgC4CersAxPPww0h0NorwQ5COe1ZxgCz3vv6DpLO4hnf+iHVLXRJVgCsdCL/CFhkC6A/eh9jc6k2DduMoYhxyPbKVGMO1dRpJIDgSx/5UR/zMdz7JBjIH/UZ/O+/dbAZy6jI/Dt+gFrB4YQWjMMg8w/laBcap6az7+jNoQJl4yVJB3J6WKdxw8AA84pGZMQumMD0UvTDjzsG7ZNy6FpUGTOH+cplPDkP33yhM3ZMkYlgY/AW+aImgBveRodgD+IESwOAM3twwN/99vP2HeefR+rcvpooSbj9tA0/NUv/pq/+eXfUtcV19fXXJ2f4b1ju9uxOxxoukGYbpSiLCvWyyqtVR7wXR/WO1knTdAJ5+sl1WqNxaD9QGk0hdECvLP1NqEZFYydzGNP2D2IwDuOospkQJFTZBzP0XHufINYfeCYfDfaqrObTe7/Pxn3fO9Bt3We3hnQkr2ucBjtR8J4JYrcO0lA+uwPn3Nx/oTm0DH0jSh45anqAu+hbXv2+4b9rmG9NAxu4P7hlsurcxarBdY6dvstZVmzXm1E8fkOrR3rVRWy2iyFEQUs80CA/WJVyDvRIIgLbVp7MwUxe84pLPhfezxuZX6b1swX9n90c2bXC5ZyTFzL3o93d95jlaJQkjzpZ+A8LdppKzoDZAE4TBqvfOYdjepiOjrxa/vDga++/pq4/R8T75bLZYhnLnDWsdmcQ1jEBTg5jBHKwtVqRRW8uMMw0AXOZ2Mc/eApi4KL8yuqWsI12rZlt9vT2DaFUsTQlrJesNysqesKrTQueA+bthc6u7AQ9dbSh6TF/f2ON+9uRfa3HfvdnkPT8PBwz6HdcWjawOs7pMVQnj+w9iRjRfPFF68oioJPPvmEs80ZV9dXrFVFXUvFxLKSOHl0QRlAqVYOE8CSdV6YUQ6HFGrjsvjrPFxIxmHsd60N/eAE2E1CQXIQOn4vLtzzDHalSFvNSQoyG8yFxcRn14lHLMQTE0p9MA4ibWSURRU0r9aK5XqF8zZ43rJrxkI3SgUjrAgJp3mfj1U8g2SenEenDmELyXcB8s9yw+X4mvn80lrje8ftwz0enxhVnB+fN5VPz0J7FKQwJeedxK4ODmVMYro5O99QlVWQ21DsysSiXySkqrJ2+Yi3Ziv1YwDNE8JpgmGdGydd59gfOu4fDjga2q7n0PT0FobBZYwgMS46c6kI8pDxw0tBGZ+71XwKlxhD2uKnI6PHXKWOht7ojY7PnQBP8NpCDrojbB+5mMMFBRwdjfI3g+kPecDz379pjRmGgS++/hJnB4zSLMpiLJCTKAyB2bjGnca5YeEnwJCwFp9Izg3AW7mwy+AV1okzpWt7tts9h7anHSzOh8qqKAlhRJhkVpsLFqs1XulExBjlz/lxjULF6pcKTXCySbKOgHCtUV5xd3fPbnegV3UIc8kTb+V6ca3wwehFKXprud8dxIj1HlUsKI1HuZD74z2Hrk/9EFmSZEkMSdTBKHhoen732Rc423B5tuYHL56xUCVFcGgFk46R2yj+FskDR0wT6TJHgyPqzCD7jIZIHNVTOueDGu4RMT0Su7jUnz79cW+2evQW3+gBnx/ff9Btbdj6sdhhQCtHGUsCB7eAw0qnOE9harwTFgStTfAWueAl6qXogZKkO208h8MevOXp9RVaeVCOZa05P1+FLdcBraVYRl0qnG1RfsAY2TYizO1qYTi/2KAys+14ME4Nm3p01P6J8es3HkfOjv/JDfi2lxclxaTiW+zJaLHHWGblPSqM8anDz17jpJ8AMheVRrTiRzUinjlL30uBid3hQFFUKBVkJNC4GWPoOsv+sBMu50oAth2GUN68ZrFap/s/7HY0hwalFavVOsXoKqXxSjN4qc46BJq9IZQXrxYLymohpcnxNE3Dw67h7bt79rsD+/2B5nBgv9+HUs6dhInsd7R9E8JLbChK4sXjk/WW0qPXLG2rqwpjQrx7KD+emUNYq/jjH7/GmDdszjb8sz/7GZ988gKlpBKo9RaMpe97jNEUWhKPvHP0zjL4UPAmAmPn0KGwTZSHGK+dYrQDdZzSUwq506Ahp417zACOxlZ8L4YTkXZd4sLX933a1YgL4Tw/AAixzJXsTITnKArRGxK2IHeWYlei2RwqJLYplstFMLyCvMcfnZWs+4DWyT+JSefocTFn0hvRQD317VnfKsUwWA77PWVdhWJUDYtFzaE58Jvf/IYf/ehHEoN/fj5pk/dewmWUAq8Dm4vsYKzXa6qyDv3lQWnqqgoe7kiKmBtS4zWj5zgHXrLoq6SzI/Wb9Yp+EE/rMAjneSwk83B3x5t3W1bntyhT4NHYAMw8xQQJjGMYwK2K9QJ9omvLZe0xL/S4ixErwWbjlrniYnx5nCM+q+ZJpLEk+HZnRmQC3Rk4nddNzUHqKX36IQ/6d/GEx4q01jq0LiSczisGB05phtAPE49oGuBH7pH1dRyRmBOQnyux4zoy+woO9ArlwA2O5tByaDoaOwgjTcw1CAb1Zr3Ce/jq61d07YGuawDHpz/6IZv1OiTThv4Pu9mR511yEsY+dCGm5fLqis3re252Pc6JDFlIcfzj3MnHwHH/8MCwdJRVCaYEpdEeShQVordUMPq8dzTDILu8wXhPhdmAtuu5u7thuTRcP7nG6yKw4iDOlrgqxCXSh/hvJKPTR7FS+cazDxSkox6Pz+MgS0GZDWy0MR+VoGyJnh3/GA/50bUmOvC0UfBtYNP3HnQD4KQUbRzYnBwibs2JejGcb87xXhgkIu+rtQNGe0rj6bqeyjjqQjF0BzQD55sVQ3egKqHvGtbrBRfnq+BBNwIujGyLehey9JeA8snDd3HxEfVCEp1igtLxkb8XhyiK2eND9b8A/5K37Z9SUE8dE9H9ljc7BY6iYp1Y1R9wtcedify+cYFzzgaPFKkDlIrgRIdF2tO2Le9vbujaluVqxWKxYrlcj4ta2Cbt9wdJWkRzeXVNWZa8e/+Ou7t7FLBYLlnUC0wRYsdNydmFFGEpqwo7WJq2wQ6Rpm9IPMgxdn273dK0Hf3guLm94eHhgd3uQNcNgf1gSFuhgRYcFzjCdSF89jFMRjwdBmVU8qLG3QFSv45Z/xF0tm3H0PUJgLqMlzyCY4Dzy3M0kpCM1piyDDGbFT7SXRlDaTTaG5x3ySuqgzc3elCjh2QEOCrZrlNvSO5xZPLJ+JdoeukjHzyuwoEc+8/FMIhAmQgZxVwQFJX/hMI70YPpnKM5HARklyXahOcNDAI6lXmXRG78mAwl+d+Rjo4UchJlXUmsXYTnwsSUPWcEnvN5IQUmZcfQE2Ks/dhnj0B15kcEbh7Har1gtdrggc3ZBu8db9684eXLl1xeXoo8BHacNHbGYLynbTvapsOYkmEYUErLbo2Ru8TlOT6/i4AzM6MTtzV6ZA7xpKRB52yIt5ZiSW030HY93eAYIvVe2Ir3zqPxtIPCqhqvKqwXpiHnR10ylSaVdkT0eHvwPoHd0+B6BMXJGPQu7Go4gYQRZEY9432SS++lMmvXtmL8eYe3NvgLlISNGZPa45RO7dFk4CeTkRxwz9v92PFdQkwye0088Gp+BhJuEtpoPWmsVditS/KaaH2jzM+Mm9n/Kp3q8dbR7hpev3nD3e0duwehGW3bnof7Bw5NK/kKWjN4j1fC6IT3uGGAsJsjoRUtzvdorfg//o//xP/+H/+j3CfPRdLiHdeEHbPcCAigtl5uqJYL1F5CP8YY8/G5tIr5DIG1yzqpL6ANqijQJoxnNDQ9ySklvWAonUukAvMdO++EXOLlJz/k6slz+kB56zzJ2BcdNcaqS12juIaS7i2bcxJoJQXKGCclYxsflZ44h8NwZy/j5/P3/qmPHGTMWvBd8dL3HnRrrfB2SOEkKn9wr4hbd8orsJa6CguZVhRGBrRtHevNGkWPdw2LhaEoarRWGLMISVrC3lBVNT/84Q/RKpZAHuMa42tZlgFwS4O08kJZqIXzM7fMpnRF+YLmJwJ0Kp771LL3T3X8gzKI/zH3O26AvH4bZc7jCv2b4hUTqPaSuIdS9F2XQi2UUol/uq6FB16F9mnReFgrAOxwkDjoYRjYnJ2xXC5puy7EUQ8hkc9gipJ6ucSYEuel+Ml2f2CwUNVLNps1y9UqeWojYG37nvvtjraV2Ondfk/fWYZ+4NAcaJuWbhho+yElVlrnsMPAfrcLIRmSOOQJDAdhRTPaoBH6M7RisVykwkEC3nRSpDaERDRtlxIgI5Buh2Es1x25ieMCmo1zbgCJB7AAJUC6KAtMWaT+LkwR6BbJHHshDjKBWSZgbSofwloU2TC8uC9Hzm2vQkVQT28HWttjbYfzUhhm6IdQjCN6pBReuQCMFUZFb7pQlkYvc+q3jBJx4hn0Egoz9D1N21KUlVBHejM+L2MRJWcj64en0EoqTKqIHE/P2bnHL4NJxETh+bcmiZXBiFGKUJFwOpemtzw9x7quw3nHxcUFeCirGmM0gxv4yU9+kvILFCEHI4OrOhRTOhwO7A87Li+vQBUcmpYovjp5A1OrxufyEqpiEcBtvew2dL0TjuuhpwvJjGIEE3YlhF0EkLAApaaP56FUKu2YOj+CVU/mKZ6NS2yXi+XTGUFyOivTWcko9tnuS/qJYMSjnKdrG5r9nu1ux36/Z7ffpR1c2RlidEJ5n0DO06dP+cEPfyjsPkpCuFIVR0iynMvHtw3NmZ/z7YD6FLAcAe4AbntrA8iT78Q9Nwm5UcffyTzBucETHVyRuU8jOTrWeW7ev+P/+s//hS8//1J0hHXhs7BTpUYZQUk+ClEf4YmMIhqhL3a+o64XXF9fSMgYcQ7L4QJ3dnw/AlaJ4Rc50RpUURJS/hPoBiZhQDK/xzA3H9o/6uGgy0Kfj+MRALMaGYGOxtx7FqsVZ5sLDs2AwdMrYVQpQw0UIOVWaKMonAr84BICLPXWXOgvl3Hbq5RcKgZqJDSIgzaVkjjPXPhcT09L546MPI8gp8zS+wehn1y283snffrtsNqfBOhG20RjFT0zo+8Ded8rqrLk4lwjxfNGsLw5W6aiFpuzDZszj48TIkzAWOK6LMrJ/fMFyqcJLO/HSnPCF076LFqtIBZ6rFSZE8/PFc3/Ggg8tv/xhTWe903H9Dq54B2flQOpEWzHUz/kIcmV6fi3XCtuyaVFyjm8l+0yG8BhjIsUPmsrhTpCTHBUNMMwJIo77z1t1yewOQxRaSgp/75aJVkSho5biqLg+vpaEiSdo2k79oeGwR6CEhX2EYso77c3d2z/+AXbhzv6XuIGiyB3Qy9ebKGSG0JOgqJrO1k0gT4VGtHyXINjsB4VQz2SXEpfR2+x1po6KGbrLIe2Ee+5HRJvd992yUhJ1GRBbIS+cASY83FUCAd+xC/ee5SH5WrNcrXGSFFL8fSmnag4sHGOjAtGyp1mfF8lMCOy5pTCorEDODswtJ1U3Gyk6uZuu6ULoNdah6lKnjx7wqISUFuYQtphQlXaRPsYF8WpFztuj04M8QgKI3dylE8c1g0476iXK6xX7A4DwuQlYUp2sPRDL6DMFGA0BkVZKjbLkroIoFMdb//7o194VL/k4xTHisnfaiyBfdIgf2yOyvvr9RprLcYIk4pSoHUh4Xx6nksxaoXYr7HwkDg0NKvNCqVDAjORAUHhXAC+TmjT+mGg7cVz3fdDCBGReWsD80RazVXcuRm5IyQGV8FEruR18HAYLFYZhgCAI9j2j/THaGjKpIkx3BMvJaNeE7DlRi97bFl4o20atg9b3r5+xcP9XUp+nnvJcz55GEH+4Bxv377l+vqazfm5FP5RKmAhYcWZA4hTgPvber2/q3dcrg+nVsC+Fx2OOf4092ZPdwsiFCb7PPC9BJDnPAyD5c3bNwK4v/wKNwgziTGSzO7TWi2FmJQWPREBs/ORyWSUBaUshYFnzy558vQKH9IjPQRZlsqy3gfu8WCAitETcxEUh8Oeh4d7yaNBpWJHcfWWUJhgOMadOCRIxtkBHSr2ijEq2MZHVJoJWUxSjyEmk6JYWnM4NPzyl7+mrivqqqQqDFVZUJXyd11V1IuFsCeVBYUGo8Eoj/GeyrtAZTuiUaVH3R2NoGjERiNCjOkkGONIh/dGFBPfjP/LBUexm8sx8ayToP2bDkV27X8EYPveg26Je4xKWxbDWJ0vHV4mUlVVVKUaB3i2eIxeIQW+SOBC5qTLPBCj5amUsAj0fU/fD8EDLkpuvV5gCoVUtBpjOEcF4MHLpDJFzowR2pc94/+8Yy5e/xBxe+TK39JLfWrjKPV95u2ZfBaApQ0eyvh713WJxQOYnNf3Ut0wLz8e2U28D/R91qZ7xMVER0YFxGt3e3tHYSTMY72pksc0JTqG4jpFUXB5eclisaQsCw4HSbQaQuGLpm25ubnh69dveX9zz93dA23XMfS98L4H4rblcsX5+WWQRdlCF9AthZZAKPf0ELyi3skCoMRzbfs+UJvFRMMhJfSNoSmBUSUzQvLtaR/dikmjKdBm4lXIzLTgbYoARP6TmTDu7igltHhFVQvPsFYo7TFaDBkXgJ7yHqeYzA0TaOekvHjP0IghJH3ciWHTNDzs9nSDpxsCiA1hLUVZBidXjP+u0LVhebZivTljvdBoEyjKAqiLbBgCEnOjNIDu2Dwf2WvGz72XEI++6wG5p3MDXd/hHFgMTQ+26xhcz2AHhj7sVgSZpBjQhaHShrKHoWu5OFtQlcGQiW3IgJXWGmJhjHH5H///0PSerCJzb9HjRwQ30lea1WoV/lZpYYztHLeNVZCbWHdGZYBFQIIxAS4pCdkbLCm/Yugdbd/TtpZuEPo9kWPh0Y66VuRJBQo+McqSZ/TI0xUNRxnLyI/sQ09aPJ11WKUY0EehO3l/zGOF4+8RWOeHQ4XmjiEt8zAT7z1vv37F3//mN3Rtg7XDxNDLeeh1AIpFMNDlyeS5m7albVu++uorfrpeMy2WEu6XJR4/Nt4f8nR/91CUKXKJCdkTjz+kvI5YGOzUMhkhV1xPwl+jXsra4wEd5KlpGv7yL/6KL7/8CjtYjDEs6pqyrsALM4h1AyjJ1THBOI87fMqJQRgNMKMVF5fnfPLxUz79yY9ZLED5HkWB91p2TEOYbMQhipHaNNLxoSyvXr3i9atXOF3ilISpEWpOxHFV3scU3pRwDoKNlFKia5XCRJmOHaJMwrNKQVGURC78aaiL9GEXEugPjRQnjPHZEaQbLYXedHhdVCU//PgZ15ebxDCn/ejNDo7vqEjTjNLkOxnRsMi1WfheNpbzQ8XYrkcOP/ltPO+7gPB07gdu9U3S/70H3SlRKB0+CdDoTUA8FU7AsssKKqQFMSVRyEI+DALgotezLEq00gzWMtjoTdUoZQDNfnfAI9sreEdVFdSLUmIp1UCKu4xHGBCtQxz6hIruhCfq/7Hjw4I6OXMiTcexiPn2aDyUIm19aj3y6kYwKGPgsu8GpaZkErdtlwqhdF3Hfr+XuOeyTAo6WuxxvJNCyMI3drsdwzAIw0dZJq9aBNM2xEgPw0BhCs7OztBac/fwIMwL4fz1ej0WU1GSnLM/NDxsdzzs9uwOB25v79jv99w/3HN7c8vN7QP7Rp4zLY5BweiQyLM9NAkky7Vl58VmnokheO97J97pVI79sKcPsXkSaz3hJpiOoR4V60mwcMJgTarRz2QlYCzvozKSz4bsLB2EQOjRFEZJWI/1nsFbvBUjoWmEDq9tO9q2o+sH7rcPdG0nHuyg/GN/mLLEo0LxnxJtKsrKUCiVjGVgjAGO7dBlSHZViVdXIEoAYglsj/NURYCZvZ/3UezLvh94eNhireXs7CwYTg7rC1qn6S3ETGuHxiKe2q5r6buWwTtWqyV6vebd2xv2d6/5Zz//lGfPrmXHL4L/MG6JWzjqwMnQxJXthIfb5885/fBEPZ0Tp0XQTwIlc/mZnBkKlKgJ2AZrJSzIeeFAHgZHN3j6oROA3fchQVBkzHqRG09GxeejXgrjmA2f1G7IdFR89AhMfQQ6x88duYb7waJNgdLmG/slP+ae6CmgYaLrTnmupfKqpe06FD7pvAi0i6IQYBXvNxt7FYpG1aE2wf39Pbc3N1xeX5GTtCnAO2G2yHd0vs3zTX8fgfOpc46PKdSZA+/YT1LNN+x0hLEf2+ekWJ53k3EW+TjeSVUgdI/O8+UXX/HHz75IdRPKusZUlbAnBQpLYi5XCIGLu6oprC7qBQXPXpzxL//Vj1jUUNcdzeEt2HM0K6DE+yxvQiWm9WCoOggF15y11FUFeAl3kZOSQSv5IQ1d09A2DXboRI4I9LWHhr7rUIUkpBI84Ano+qinPUorlot6DKUJzxblIT6nUtL2IZMPFZwbMO6kKmBrNJvNmouLC9kdCsAbl8//kX0uSoEkjCskInj06sfxnP7CTM/EcZ6flH824pRodMw/m8yJ07f44P2jXf9Ns+d7D7rF4g3bOHFCxopnLk5MmUguKDKlnWx3hDCAthVwXVcVSknVva7raJoGF+L8et1SFhVeFRK/Fxdi70E5rB8wWoCQMYqqMhjt0NoybkOPi3Qy2ZSwEaiQHv2hATmlpP5nx15/2+vHpkV+5JydIRfo+HkEw1prDocDWkuJ6KrKLepYxnz0PsdFKC/jnU9uuUY1KS8ePysT48foCYpe8LIsU/tj6Mh2uw28wlrYRaqKarlEeU3b9+z3e/q+5/r6mvVKEmuHYaBpGmGs8J7b23v+/g+fBc+IT55Wabfm8uoKU1S8fvdOKkcW4jEAMQwKLeXgi7JKXvxhGKTgSIipFqNAKNSsdSGuOibXTePT0r1z75oawVd8Ox+z/EgFZbIfiBhtumcRwVNUUFPTeFQ+wzBwd3dHF4pU9UPLw8MDbdfSdQNN24oHyCkG60FpnAkhH9F4KhfoSgcu2axSJ2FyKZ08wQLyk38kgLOwYCLJfBqXwr7UKQAaFyYlC8H4VPGzaZ8rpXDW8fDwACC86E5CHFoLrdc4L+XW37x+w83tLQ8P93Rdi/aOwkjZ+ZcvX/L7r1/x8HDP+cpwdrZJHtH4TDmAcxC8lGOfx/fHJLnj55usTz6JyPRzMkM7OgsAlYVnRNd4cnIn3QfeSwKydQJ2IFCdBYOx7aAN8daxHLoLHsvBu0wHk1ZJh0rPNzGPTmD+GFoWn8NFw2nmLVPep+vP+8hFg+YDxykv9/i+HscgsFOM4C1/dUc69fLqitV6zdA1LBeSdB0unB7UH91vfHYIIWWLBc3hwLu3b6UwVl3hs9maO0uSwZ/YYUZqzfmO5UQ/4GGSE/DhTps6ZoL8+vEz76WSorUOyiLJ/3TkRsCfJsDsjHz85Vk0t3e3/Jf/9t84tI3kZBiN09ANPbYX+RTHjTAheQeHTpwihDXOR0BqACx4TVUucfaAwuOGlm3zHs0BrVcoUzEE+lbnRZcXpuTiIlQi9grvDd5DWZRCSeyC4eelwJrob0s/dNze39EeDmgkTMQEBqOY3L7YnOFD4T+ldGBM8SmhPop8URqUJcmijKQ4Jj1+fGalR8daBN5xEKxNf2vvuDu07HpPqRV1oSiUp0A4zZUKru4j8ZA3XHJwBMdClInoDAqn+tn3vhnqzu6WG8JH18rh9+kjV5cTWf4W9/7+g24vBROk8pkVRT6jNRNvtSQwau0xKIbeYnQRvChDUm5ay9JlhyF1kLMWo1Uq7x3dd1pZUBIrXFVOrq2hrgpWK09ZWolR1SZZrzDqbxHs0V77nw2g/9HHB1cX+azrOgGrASjngNgkfl2XvMGjIlfps3kRjonFrPXk97Is07Xn25iRQSPfko0e7xRmEDzUZSmsCA8PDymGe7VaSQIVklzVdR1D06DD4lEUBcvlEoDdfp9CNuLi6IC77QP3Dw9EntW8/dJGz/psxYvKcHNzy36/C2EQIncxprfrJdZa2uLHofBT/SSeTlKYk2DhUa5cWPA8Pnn9lFaYQrz6Xdel3YDYR4vFIvVvURTc398fjX3kvZ1LSPTZ5EpoMju959e//jWvX7+WXQ5TSOl3rUMSokHpGl3K71WMS41x6Go0AhSMYQPpzQDKvEtUfB9yiEQQIWBbJYP59DEuLCq6ROfXy4yXsip58fJFMJA8231L0zusd1gc2+2O3/3ud7x9+5au7bBOHAGXZ2esFzUvnj3l/uY9fddxdX7GP/9nP06x/rlxMz7LCLKVInEC54vJMVDyxxfJXqOBMi46IR0vB6oJHQn8HoigQa4vIR+EOGtL00ry79AP2MFjoxczFqQJ7qE4rikmNwPS0Ss9a27mGZ2O1zg+TATipIxGGZp9kL6W6bHxrQ/r8vmOX3Qa4VwKJ0kl3Z3DR5pMpov41ZNrvv78C5zzmNQ+P1tb5jcff1FAUUhc/cPDAzc3Nzx59oxQ33tsa3yu4IWMNRyncvc46ObEzEvjp+JY5p9nV036W6XXKE/WhqqcMvmDPvQTr/q4g53fYx7zLdd1duDXv/kN727e40KytfOOtm3wHgpVsFyuUUqFndg2OUM8gFZ4LbtMP/3Jj/nBD17ycH+Lsz3bB1gtz9isnlIXBW13oG0PlAuoK8VysWDpK6FD7C2f/f73/O63v+bZs6d8/PHHFEUpBZe6lpcfPaW30A2eu8OB2/0+5Pp4ymXNk+dPOTxseXh/g+17MLLz4Zxlf9hz5p8g3gIZZx283l4jTkvnkyEc9WA0rOJekmwxueCd9yEunQDC5zsich/l4NWbt/SDY7NesqwNy7rgYrNiUxUUKuT1eKnNME47F+ZZhq69T0WDcpk6LfVz7TiO/fzvb5y78rgcr3axGZkhPrvU+N3Hjz8B0C2vCWBFarekfDwkpgEBIxECOG9DnJ4LVFUe5yTRRhuoTIGzkpxTVRJyIImPcr2YKKl1AZSgHIVWQmsWab+ip+zEOD6mpL8t+P7Qed8cNzc5m2S7nVyVvv0RqwDm/J55aEn0Mufen7gtegpsx+TFU+Ep0VudP3PXdaIonWO32x1R08VDa52q4EUPuDGGy8tLvBfqv4ftlm4YgjypENe3oNBFal9+73HrVSU+4SEkOw4245UmGx+vKEzFsjbcujtef/0msGSoyaIl26lR4YQ4Y6WOWG08hOQnOT//fLFYUFcV+/2O9WqJRnN5eYHDs9lsAHj77h1t2/L8+XMOhwNXV1fUdc3Q9yxXK37xi19kzyDXdZFBQ5HiXmNb4hGLLCSQmn2utGZzdi7xtabARq90prgn1Q+z92MCUXw/uWjiW94nhoFY0ObUrEnX9tEDrOM68Q3HHEw8fpjCUClhRWjbHkzJ4WFH03d0Xc+rr77m/uYdDB1+aNFAZWrKQmHw3Lx7C95TGsPzJ9eslnXyPom6G589/hqWR3muIEIRiMt5Y2Lr8XNksHwCEHOUKnsCzo/nEwGR8wzW03RS0GnXyHPGWGybe5l9fotjCOf9GBIgP9k53o9sLzn4V8eyOOLN8d4ZBh1lIx/4fL2erd1a6+TVPBmONTvmDoDJe84nwJOD7ujlnn83ervfvXmDtY7C+xQbqwIoic9xaq2Ifam1oSwKmqbl7du3bM7PqRbLyTNN6h04j9fjXlE06vQHQffjx+jBHt+bdH/Um7Pnd9YH6kaSUeTinYOCioA8yliUZ69yx8Uos+/e3/C3f/sr7BD4pMNneCjrirPVBo3szh4OsqMp/aKTl1fYNxTPX77kpz/7GWebFctljR16uq5l6LpUpMu5La9evacdXlMvVnzyyQ84v7jk3dv3fP7FF2zvJZn+yZMn9H3P7e0du+0e52FZLzjfLHl6fcZhsDTDwH5/4H67ZX9wMBT4VUXb9pRliVMKp6DveskBMDGsJEtk9iN9ZdK/PkzOUIeATP5y0oGY2xSdSz4CoHCtaPj2Xc+bN2959WrA2oZnTy/553/2Z5SBTa4I4U3iVAmXUAHkxrjsyQ7aaFAlZ0AGike/ZjZ5M6MsP74V9vKPQfjsOtm5J3794PG9B93RIyVxQDIoUX7SIISFRmuNUcLgAIAfArDTgXtYEqfqKhbaEPHLqcU8AfPM7q9U5Ezxk8+CG+Y7PM8UyM2PSezRtwTER8p9Bly/JcaX737D51rrxJecCpNkmfM5kJqD8ejtjhM5hlJED3Jsu7WW5XLJarWaPJML3uiyLFMcdozVj3GOsV1530y3TkeAvVwupSpiWLy0jqRzOnWEhDOFyoihtHsMiemHQZIYhyH03XxZIkx+hQ+xgnYI8Ztk2gZC2EdcRP3ouIkXycYnKreoHSIOfnJ9zdXVFXjP5fkFfdiVWG9WrAJF4XKxZL1asd3veHJ1LWNiLcoUDG3Hoqo5qAM2KGBpljoh46cX+cnvPsStFwUqemyFB2/ikY39TPaey2Q/gff4eT5HspbksXmnZP7UNMi/f6SQ/alrj+dOt8gDYAlxtq6qUNrSWwGmRVHgrKUsC2FxCTtoq8pwvlrgnRRjKYqC64sLri/PiZRieR+Mca3jE8VwC0JRD6EzHcE5cSRHzq4RhCfvoYRyWO9SCBJe0Vsn1Ut7x2AdbScFZKyTIjKDdQxe6PesH73tctdxl8JmOkklOR9lfW78j9p5/P6kI9J3YmjCaQjokwcv3DkDeFP5i93pJ5eJBv543nEuS/5Zfs7x+T7JyTx5fH6NeJRVxebsnLv37ymGAlVkMpps1JkBwRQQKwVlVUpRr65je3/PdVXhtU59l5/vkETB+bUdfjKHvi3onj/fCNBOr3Xe+xRmpIHCCyNG9ML6CLjSuIfEy8k1crAfdoKs51e/+jW73Z7EgKYkXM2YgrJa4U3BbrvjsG8YnEIZqeybPApKpYTrX/36d3z96hWrVc1Pf/xDfvzjT1muzujNwNC21LXGq4Jf/N3vaNqesqr5+usbtNHCUtVbzi8uKYuSd+/eUZYld3d3vH37Fmsd5+fnbNYbiqKiKkuWdcWT1Tn2ekPbDbx/f8sr5bm5uQMFTScJ9bbv8EOPLiUfLYJomW0nVpWss8Y5CjjHw/09Dw8PeO8pjEl5TVVVYcpSkngzPeyRWhA4j/MDOI/RhrIUukqHhFKJkS13UuQ6I2oilQy9XMtHvTXJoEuPlOmU3Bo7euB/3PFN68g3Hd970C2HRWtPVUVO4dHLDGTAOw5Wtn0ck03Cf0aZlIDk4yZaXNgC6E7Kl/iakxSOh8ql5RuODwHox5TvN70/3Z48QW+WvL95IxOM+HYNnx1lWbLZbCZJi7lijsVbYnsiOI5e68gyEg2dyAQS/4axlPZcEcdz4/sx9CNy/c7bMvdKReAeQ2OKojiRJZ2EgZiU65zDDRLr56xnCNcQo0Hiw4n0dyprQ6rZIGPWDcMoTV6Exwe5dfjkpZwadlNg8KGF7u7+nh99+ikFmmHoqeuaN2/ecHZ+hgpJwlpr3t/coLTmzZu3aG2kTHxzEF7ubpBCIdFjFNvxHTRW3j4FYzxhvEowcj4EXGZpybOxnIazRI2Xxk/li7tPQN2rcdkRbCqZ9fG7fjLH83nyzXPFB2tIrqPoe8vN7QP94PBKUS1qmr6lqksuzq4wWmP7nk9/8AOqsuTXv/619AmEokBgjM4MC5+YYSLdWASTcTlKYCSBmmn7xm5WeBcNYknAigVjur4XcDY42q7HOhiC4QBSGTWGhYxFYkYvV+yt2A8n+2oyTnF9VIlKb9ruOHePh0Gpb9CrmQ4fF8VjwD1BqrMm66DDHpPV6bWid9WH38dcpPgMCeRmQFzAuJpcMx5Gy27V7bt39H2P0lUAI6kDghH2ofkp9LbGGCnu9e4d52dnlItFyF8ax2Bsa2RLiUmXinH2xMtmfcHIrPFNx7HBczzm3vtUL8BTBRzlk6d77LqQ1xGybT1qZIfJ2uocvL+54bM//jGw3ajx+9qgTIlziq6zWDSYMjFfRUzh8YlK0Ct4OLRQGKrlgl/99vd89eoN69UaO0jhnEpLCOFgNd5r+s7ibEPcLS3KOszzAq10CoVcrVa0bctut6WqShbLGqUcbjjQtZLvVCrDxx894Wef/gitDLvdnj989jmv399yt9szHPbUdSlh9sKxSfQYRx3svU+7g0QZiu/5abK28h5vHaYAZR1Yh1cD3jswBqNN0rvyGvBBYTg0B16/fsWz6ytUJc+KH9eC1M9KgZZ1NzqfXJKV6eScrDE5Dgx66ORsCPoq5vB8k6yeAtKPzbPvgue/96BbrHRFWRYJaI+DAORcugHl5EBajrxzAz2XGsFNGlIVLT4/LsQ+/j7aYmk0vqGn59tm8b35NmX+Y0ORDpD4LJuYPzhit5CkCUlC01qzXC7x3rNcjrzkj7QsPfe3PXIvdd9LpSxjCqqqTFfy3qey2Eqp5JGOYDf2RR7vnXun89dICZgfMTY7tmf+ejwhskUwvCp8SGQU5WnIQ1p8UkZpi9M5BtsnLmvxcvsERNpuCFzAOlTnCt7JSOWmIqCOi1fYVUlLQoTZQQoVydYngZlcfk4ZUHLObr9ne7/l1ZdfsVwshK7Oez7/8muskyqLu90uee6O4uEJa5cawVMEosdA5cNHAuth0ubeNHmk01v1k21mOJonQrMVWhXnV1zwszvngNtniFPraRhSnM5jb55QtafeOjGnQRb3brC8fnvH/W7AOqgX4sFSCgpjuLg44/mTp7jBslku+d3vfsfQD+iqAue52265bK5ZrhRloVDOT2+ufaDbFXnRIVEqUmsqpVKhINDCdYxJuyz90IvcWsvQCwXfYD29VcHgEodELEEf7AkxVmLFRwAMHo9NAEdlfTj26DgeWXxu1rWhEyda2mf9KuMe50OcNaNh8ZiDQmVje2oY03dyesho+ca/tT4y9qNeOD5ysD3GmU+/G5JFXchDmj3nUduAs7NzNpsNu+027OgFXZLJdZqfE2s0XQytJNyu70UH3N7e8uz5c5KhpLL5NGmHRZiUdJiP08fN4U0cwfl8PvVMjx15iKEUFvM4p7CMoRBJUvI+8x6h7oUYCJPrTmsdn/3xjxyaFl2UaG0k9wKFw6C8sAsNHoypqZc13ksCsHU2PKtAegd4A08+esH/+X/+J378w0+4v33H1199yZs3bzl0Bw67Pe1hj/I+FP/Sgb9eJWNRa83F+RnX1xehunGdWLSkzZbr62t+8IMf0LQSWx5fD03LV19/iVaG66trXr74mCdP/g394LjfHnh3f0cz9PROuOglRCoayCrtJMzXuvk83KzXrBYLysLgAuObKQqRmugcG0JxQKXGWhFGoZXBFFJL4quvXlEXBYvrK6yT9S0skWFeyjqjAsuJwqG8FB6MEz0y8sioqiSDOeoePfqncCBJn32DjUqAfSc02T/++JMA3UUxLqSpI0ccFTow2LiZ1+GD1w3/+ZmQnWIyGBVxjI8cFWg8HluE8yP3UMcqiPEYBkvT9om5IwLWCFbjdvEYPiHFU/rBgrfpunVdp+TDf8ojTsquaxMfdll6jNEYM3rXI0d2npgX479zRpH4LGNp7/HIQ1Hi4pZv805CWRiBXTKSwghNxiBi2qT0BKb58N4ILEIql/eTkubWSvVC4fr29INn8J7eOoypJO41KK2oPJL3m/E1xk76AFQiaBy1QGQAGHddJs+RP1L8TtAi3sGvf/1rbNtxF/pLaY2Vjgn9NFvcw2vEdRHT5/PCq+jFyr/kx/kojRm72Y/et/hjncNrMwKvGSCL98yP6bwc53XCSjOAML/WHHgrZCcmXXmukPnux6l53zQtt/cP9IPwqDtvOewPXF1ccXV5xvXlZQhlMnz+1dd89sWXwh9vCpQxaGV4OAz88Acv+NmPX1KXMU8FUGoE3OFvdAjrkMkg1HpWKPj6wdJ1PW3raAcbDKtQqMl7IGyde8O4u+EDyFJxJhHYpUO4Rr4noKJT6ht70sfxmqnGtFBGmQu3THKSgP8poDsFw9P3mQBqvAAQfYK5QwUvS1ys47WqqkrgZK6nHgP62Rkyz/P2xZ9Zu08B7vS+1pxfXXH38ADDgNYVSvtJoajJc8z7J7zGHcFhGLi9veXy6gpdFOTxlCeBsXeBmEQMp+ka++F15pQX+zg0a2ZYZ5242x/4u3ev2N9vOVuvefrkCednm+CsiXKRi1RIwgyyG+PnD02L8/Dzn/+csqwZrOfN2/e8ev0OhxZqGy9ECz4r5uTNFOxbr/Degtb863/7b/nJz3/OoipYbZY8/+gFfT9wOEjRtPu7O4ZWCo796m//li8/+4LCGJYLqQa8Xtd8+umnPH9+HZxqntVqxXq95tWrV3z11Ve8efOG9WbD5dUVL16+xHvPu/fvubu/o+87Hu4eeP36a8BxtjlHqYJSay7WNVWvGbyiHxz7NlZkVYToj5M4JYJxF8bDDoNUQe17jFZUhRTCidS/skYPOAsooQTWBShTYrSE0nlnsY6w6yfVXa0HnMoYpEI4SVozwjwcoVdIpo56cNw5HZ9h6mARXeJBjd9LmissrqfA9wjcszVt/JRT+u27rB3ff9CNcGOr1AG5LyUHK0FTq3E5yAzd8Pdc24eXCZoIHqLMgI4FF5SeKsQICucxyXloRAS/MZFQa528DUab5Hnr+tFDHMNCcs/v1KMr3lIBsQupAhUqKs6p9P4pjrk1/FhoSf6cUbFGj3U8L3pXk2ffjgZD8mJlz5vTD8bXSIdWZPeRiTEqkVwJh6eYKft4L3KH0dSQYjrOg5OiMr0TpWGtwzvFcrmmGwaarhOvYsh0VyqAXhvLqreJuSHdRpDBpF0T71D280i+blIuXinarsOoMb4xT0SUOMjx7+gd9tk1ci2UDBqmi2QER1rlOxSBdmrmlfUI84u6uWW5WVPWC2FO4DRgniy6PtoTIxoK3TVRtkde7TCw6VrZZz4mC8XrTx+Zfwj0HueGGGpdH2O5I72mpihriqrCWcWrV++oqopD2/Hq7Vv2XqPLEnRBvVxKufi65mbXsGsGlC7HAhNqlFnnfaLf6zrJMXBOyi177+idQULoJOnJp13BsGDG500CEPtCjbLhx8VHJ5/U4zH3OSzOe/IU+Jr23/j6WB9/6O+8LTo752iJ9OM6MMpLTCYVp0t+5bgTF50hp7zS+cWP3597Y+OhkF0vx/hxpr8yPabwrDZrdGHoh4GqKDCyGI0AI8r42EEn3XllWdI0Ddvtlpv377l++mysZsXUHhqv6YVnOTqdJsD4kQH7wPGYJzz/3IeF11nLYd/y69/+jv3DlqIQGs3nz5/z8cuXPH36ROiolcEhOzWDtRwOLU3bsN/vpDrwYCmKkrMz2Snte8eTq0u6tuWwb0VfKIShIyqe0MVWSa0N66ErS5ZPnvLso2ecv3zOwfZoK/jA6IqyLimqFZuLKxTw+tUr/ut//r94d3uH9QrtFXZwaG/Z3e345S/+GvNv/yUfvXxGWeq0hldVxWazYbvf89kf/8gf/vgZP//Zz/npT3/Kz3/2M+q6BjRtI/Srb9684Y9//ByQnKcqFP7qg09u6DoGBz4wkHhUYH3y6GjshHVUJBMx4IeBu5v39G1HoYUJZ7FYUgXq3qIognfbZGDZBQ91yA/REuc9hMrJJtzbKyY1TFRwNKXEWQXKa8F0Ye3TeV5KBOInnTZxsYy7oLOFXcWwpPl6leOHTClOFMlUqxz5HL7h+N6DbgCDIX9In+zY/HGzwQjvRIXhTijsXNlNPwvwzceQiBFI5uXavPeh3HQzyfCN9829vhEs5l7ewpQoNVLMKe1SSMjcW5xT5s2BuFJSenUeXnHKC3j6mCyNj58V7rtYLNKzTsoOZwUeIlCOcdp93yc6waZpRu9nqPA4f6a4uOX3jq8R9KfFT0093MdPkS/uj/dAsmojOGOMmfcenJPte+vE02i9pw+lpnUCkdB3Qwrr8N5PXptQOTJ/Jpguto8C7vDZkScr4VOV5oR8xwc8FTjtTw5vAObZpUagLYcO1H4gACTuwlRVRVlV1HVNXZUoBbc3t7x+/SZV/Yx3uLm54WG75+mzZ1w/K0GVJ4DP8aj4zMhI7VdM6JxOfT/xdUvnTsZ07E1P3O2Id5nIXC430TVyGmfhA7+0D0aZtU6qJoYQJOMdVSngbdfLTpGxQp1Xn1/x5OwKY4rUOh+sis4rtocBdAFekuDaUNAr8sR3/RDkWnjNtVYYbUL5dZLHSCVgNUHXsYvSZ/F3HfZhoyx5r8nTl5Ich2vlYO8Ydsr7SQ/H8cuwqOfYYJtc41vosjjG4wiTnkHl75245rhww6mBjnkoR+ES0QJK1xnnsxgSH2hrtCC/6fmUoq5rzs7Pef/2nRTwUmUARhFDxF8Ejfjsmiq7jimkfkXf99zd3XFxeSllzo0JIXDTvom6PsbWKh/X1Xhdl9/hRNMff75TczfX71K0RfMv/sW/4Mc//jFfffkVX335BV988SVffvVX/OKvf8nF+TlPnz3j2dOnlFXJw8OW/aGhCwn68vyRr1oFOXRY29N1e5S3aDVQVhVXV1dcXl1RFKXUZLCOfdOxOxw47A887HZUZxv+/D/8e6rrM3Z1wdvtPVtdoCjwSvISNBIL7fqOV2/esD4/48/+/M9hGBi6DtcKNS3Wcng48Oqrr/nBD1+yOVtLgb7Bcn5+zosXL7DO07QNu/0e54Wxy3spJiUOO0VV1VRVze3tLU3TcHFxQdu23D084JWhs5pm8PiilKR2HcJcQBC5tyhvQ46Lx9sBN1j6tmVoGnF6VgVGieHdNXvadi/XEItHvNpFERIsK0wh68NiWbNYlhRac397y+Fhy2pZs15UrBY1ZRGYzUqprGpQFEaHvBadvOBBfHNtzaiTT2qc8Tv+2JFFnCqPeLsnV0vzaLIqnPjt27ls/iRAd4BA499JYeWeBTWZxFEXTjpERe7NLmwzy/fkmrH6klRChMjOEdk/pl4M8XAPicNzzuQRkyLifVPRES/luheLEYA771GZd3sOniPYjEVplsulXDtaio+M9CkvQv7MsXc/9Fver0qpVMUx9kHbtvT9NHEy0vUppei6jq7rkscIRmPCez/ps7lxMmdFSc8UlX5Y1XIja3KcmpAxbGPizRu3zAVgSyU65wsG6+l6y+EgW5Rt24WyuFKF8tD2UpEvmOZKC71aPwyTbel+GOhDImWeHzBSVvmjGRsBU4yxJrZ1PoTpWpIdPj9iNcajrsneF/qmUU6j0ViUJYuQsHp1dTUtPx0NwsBvv1wssdbx+s2bzPvrgnwobt+/4/r6Cq2LQA+nUhseBd4zsBuB09FingOB/Fq5x5txrAVEhKTEmVKO/SMLdZCWhBcFTIk3RqXt65wObhgcdghx/04Sb1GSFLcfJIykRwnnuBF5seQJW3K/h33LX/zNr7i8PKcqClItAjXudsn81JIw7jyEWgTWS5yl6C8pYR6Nw/EZx23coyPv9gi+Uz5B6D+mRurcBZLL7HwX5NR4e5+V/D7VpqPxmYLppJdCu2z03mWykVNbJuARv6uOpgkgcfh936dduxyQxqeIhYhGrul8nRrb/Nizy/x9hNEEUFrz5Pqa23cCugetKDBonfe7Sjov7//JQykJ6ev7nu12y/bhgYuLC5FffWwwTZ4z6OvpHBu1KUx18KnEyvnuVHwv1/H5HO0Gi0ezWK746c9+xqc//gn39/f85V/8BXe3d1xcXqB0wes37wWoxyQ8P4YUhKDEZBzb3vL6zRv2u53oZG/p+5bb23c0zS6EPGpefvwx//t//P/gQwLqq7dveb/d4oaOw/sb3m0fUJs159USdMlBaTqUFLpSGt82DCgur65YPH3G06sr6qqi3+/5/W9+y1/9xf/ADR3d0PD0+VP+/J//M87OVyzQdP0QeLkVZb1ksVpjbY82RpJLXZPmdsQgL1684PLykrOzM4Zh4Fe/+TW3dw/02wNu6LFuQLsCZUK+VzCivOtDZSrH0PX0Xcdhu+Ow34OHUiswBq0cEoSmMKbAhMqZdrAh/6znsNvhfail4GC13vDTn/2Ybt9gm5bFcontO7q9ZmdUagdKUVQlZSEsLVVVU1cVVTUWOdRa6EuT3sOj1ZgMKkbPCMuTG0pN5S6XMZHDMHdmzpUMWk6ucepI1330jPH4kwDd1koMcb61Fxd0iMBUJ87T3DNMNpmttez3e7pQMjtfjEfwJ8kTAvZ00ldzr4j3kgQo2zycBI+5ZyQqlfg9q8bniN9PYQwZjd4oGCNHdVVVAegTFOqpJMJ/yOFnr9Nr5kwpzsUy7n2KO4/PGbfHgETNF48Ywx0NidFjf/yTWjWR/hB/HGML80XNe/B6sripzHsT0er4lOLBabs+hIBY2rZnf2jY7fbsDwf2hwOHw4GmaWVc4hj1A4NzFGUlJcWLYGyVJaWXCFgp0RuTMUN1NfTUM5i6OXpf4wIUFjI1hoicBtvpYdOzRT9zBAIKIC6WoW91Jp9RVgU8SrW1aGBVdZ0KCeUVPyNw0YQ6G0Bdl7x88RHv372jGwYCH4Uk4Aw9zX6H+9GnVEUZDIHpA+WyHr30OV1hjCufe8iSZzt4HlW4llYqVRtM80xJvKcNMcom6Gh/wkDLIUgOanz6yTiXvQ9JX6I/hsGGdSwkL2pJBuudgO94aUnkGg2HuJehtEIVJcooBgxKGfGcD52EVhWFVOtUwnWLcyH3xAd2EdAuFPQyRRqtyOak8Om58/2T1A1qCmTnADIfsyib0a8IWZhI0tVT3R1BHGpkSMhDoVR2X6Icz7xV6SfezGdJVHGOzUBvDtbzIDwVvpgbdPEwRTFJOs7blV6z6+bvP3bM7xGLkzz2XQ8h2W5Js98yDAqjBeSrwAaRvLnMJDkaReGzsqrQhwN933Nzc8PZ2Rkqzv/YnuMGT6513L7Y+OBkQp08b2zS8aep72IhGqXoewmfsk5IA/b7PbuHLdfXTzk7uxCgbS2tDzHLgQIz3xGMzhSRd0VvPaiS6yfP2W63dG2LtQN9bxmGPUN/xzD0vAs1DdZnGxSKyydP+MGzJ2yblkPT0dzd8fb1a260wZQVtl7QlyWL9Rm+XuAOB/q2ZeEdphIn1GK55OLsjGW94IsvvuDdm1fsDi1/88u/48XLj6nKpVAba9lRdF5jQm5OP8QcKo3yHut6nIW+Fwfi5eUlm82Gs7Mz2rbl8vyC9XrNRw7aXnI67h4eePX2NU3fU5iCf/bzn/OTT3+Mc5aHhwfubu959+YNb18rCuXompaqMMFiHVDeAp7NpuLFxy+5uLhks15R1yW9bbFOcpyGHrYPB+7uHnj29JrdYc/dw5YiYGyLp7MeNQxpHRqGngbFNomcyhyYBVXYYa2qeix6V4TETaUkflxHJ0uQRaay75MxppKBT3Q+eAhBfFP5TLkTUwz4QXn+gPB/70G3c479fj9RclN+5mICcPPYaRiVslISnxRjOn3mqTnFM52/lx/54iMVC0fPYA5KI23eKUPBOol/nRoNU+Mgbo0lIvrwDEVRpOtXpZkol3/MkUDFZOnIrx3Bfdzy8Wl8vB9jt51zssUUQkRykD1fONOVjzydU4WZv+/zd70LHr/xO57Qt57kdbIusqpYun6g63varqdpZbu+aeXH2oG+7RK4jlucw2CD15oA2DTWFDhkS85GgAdoY6hr0Syugb7vAlOBn4RqTIy4ZI3PJrM6+mU2XuNnSkcwLFUcF4tQWMV70BpTmCOPUn644KWVRuhQMdJQJEVXBUMgPGuoUBZtGq0FQC0WFabQ0PvkPHBuGMFn31PN2j73RI/AewRwAqLGhR2mwCoBrdyjMQPcEy9coqyCaVFxaVf0hBOoHXPvh4ATQWjOq8BRrXE4BqSKXNf3WBs84QqsU2L4KJ14sJVS4oGOBms2zgpQRUlRLkBBH6j7+l6870qJl8cpjzBMxEUjGB1WPi+Q+gRiqHq088SUDxVXpnBHH4xFkZsps0ZMsIrfm8zZqe0b5Ij0/XnhFzuR/XEP8yhNMnOMRCMv9tCkaBLz+TRqsvhZNDijvCTZyc495WCJzzuXUeL1g4xFCsrHjolRc6LdOeCeA/r4uykKnjx9ymd//0CveoxRFLoQb59yeMawvMn9MqM09oMJ3vvtdsvhcGC5Xod45ukKEJ8/rpWndIef/z4H72EuPgbokwHkkR1DFeYfnrvbO37dNtghgGqXVUdN62pc58f1Im/TGF4n75qixBgJs3jx8hOM1rRty5dffcl+v2cYJBa5bVq+/vIrrq+u0CgKDz/44Q95cnXNcrWiqiusc/zqN79hu9/j+p7bu1va5Qbz9LkwY/UDnbcS+rHb8fr1a7YPD+Jlx1OvNvR9wxdfvOH/+//7L6xXa5yTdfPJs2dcXl2xXC3x3jLYhsWiZr1aUxaGAhiw0Cu0LiiKkq5r2e+k6nLb7On7jqqqWRaaZVWwLs84X4pT8urJUz799FPONmcYpSQ/pO/p2o6h63l42PLm1Wve39zyxRdfcnd/g7fCMd40B969eUN7ONBsVlxcrtmcr3j69ILN5oK6WuGt4c2bW9pu4Jl+QqheSNN1PGy39MFDb4cBpcAozQhvxxGM7EE5hjBaS6hUqM+xXq+5urqkrosgT555acipIy9KSbbGMIbskgHv+PdErpLuO4Fnjt6ZHn8SoHu32yfvNZCqEEZgHb0QJ7maGZVXDHsogudi7vFL38kGN1eCU15sOTcaAdE7nSvKPM5Zri+gKKZyzUF+/A6MceR5Vcblcplt7+tk4f1Djse/9fgnkTdY2ikgMoab5Dzbj3utw+/Z3wAxRdl5Tx7+kS/2olBlkujIP+CFDcRa8SS3bce+aWjbPoHpQwh/GazDhgV/rP0xLjIuWMCmKMX7aIW3eACcRvi6IwBRHqem3qnokdVKgVbUVZUMvlwu5sU2Huvz+F1p3+i9j7KS7yzkf2utKXTBi5cv2G63wWB1QisX9qI9012eaABKYZOxfD0o6noZQoO0xHPG1TEiLdFWEXuExvvwSC6B1GhEWmfTOKannxu28VPvU7XJCZhQo3zEm8bzJ9eJwDs7nB3QSHqh8gKUvM9SBONjoUOiUfSHjp6+xN3uJfQoN972u4a3N7eBk90EAyZwWod4b4g7PDF8bfr8aVy8p+uGMXbXOQRajRB0sngoNQJ6Lc+vtMJ4n4Cw1PkI3jI1By5iQOTe6Lh7aN1UD6pgeGkF2oghMaQkaWnHqd2qOejOenYUoMyrmr/OE8RPeZ7nfZj/rrK/J+cr2RHxnJBF75MXOP6dDInxpARu8/YetYlpP+T3iFPJp/53wagbqVYVcHZ2JsxWfcegB5Ef7TNgMH22o93A0L7oFIlJlUVZYr3i8sk1w2D54osvsHbAmIKiMMnjGH/myf7xMFm+TXzm3ADiqG2h/xTE8JoIuJT3DG1L2xwojRmNxawv874SY3nypECgpfOjUeu852G7pWlblBcKWaU1fT9gncI6hbeyg9d1PQ/bLYXStPs9rz7/Ij2bCd7Wtm3phgGzKDl0HVfPDez2WGWwQ8++2TEcDmAthTF4RJZX5+csNxuc7WmaPa/e31HebylNIXr7N7/joxcf8eyj56zXS/rhwGa94pOPPybuboiDSdF1A846jNLYYcAo+NEPPsZowzLsVioj+t9ZS9O2wrw1tPjWYCqpjOt1CbUwjl2eL3nx7Iqhd7x+847PP/+Mz//4e+4eHui7Phlt7WHP+/dvQHnK2nB+fs752TXPn77EuwKsFCZSGq6fPWG1WdN7JxWd24799oH7m1uaw0H0ow8MYlFcTsxJ6xy262i9JK8PQ8/Z2YqqFCxhCYV1VKRPjbMj3+mOvwRdGmQu5r9EbBA95uKDmRp1cSd1fjxufv8JgO6JFe1Hb28ONpQiAdH83PnveRGVxBXNsXchB9Hx3ImyzRaqqBCn7+dWknjjx0Q92RKOhw4gOsU8RxCuJD7YqFDlTumwYIpQjWIy7ZtvfUxO9dnLqWuo4NkefU1KHS+C0bCI34kL0eitDuWkQ0nekbaIBKxdULwuLWwCqoXdRbzUfdfRhfjqfdNIYQ8noFo8YKGDtFjWSmkoxkS1tAin2SceQO8k+c2iGDwMXgkVoFI4r7FCtJb9aJzPC2fEXQ+Rx0UocW/tQNM0E4/f0eHlmpJTELiktQ7Poke5CIZOHk4V+370wHnqRc39wz3W2bH3w3XzrbK4FZfCUNI1SNXGTFI0PiVSTVB26HNZCF2S3wi4Y/usdWy3OzYXl6jHEhEYF+kEvLMxS60L3TgvDx69mbknM1eQLizMzoUtRacS0A4npXngvcJaT9f1oQJpT9937Hb7FDLUhNAk5x2D07S9Z996Bh/AdPRuK4lp1mEsC2NGmsZH5m7sh9FEUajI8+6P7IlMthw48FrjrGKIcqUUSltc4SkLRWm0VIlzXgDHoBmc7EwMzoaEs5FtSGvRZVEHL+oqJWx6p4T/ux1/VBgPVPTmj4ntPnvGuBBOxjjIWNoFUOrIWPXZdeYe3twonTsDJtcI39EqDv3xumGHYaLfXdA16ZpET20EClNjIT3TbH2Y/4whOPKFGAMfdaLE0krxlLvbTuTOSfVIacdxf8yP2A6Zj7Kj+uWXX3Jzc8N6c85uv2ewjrv7e7qQtCsy4MKuzbjzACTHUKxU+OT6ms1mQx7Wl49N1O1KKQkjSciKSV8oFUrXacUQaXMj+InyFPst/USAPZWFUdsl4UCHxH7nBPxpNVbndKE4mC4qlC4ZBi8MHEjMuJAqeGxw5vhwnXa3Z9+03N39lsUXr1BVBcpTGc2yKllWlQDNmGjuPYtFzdn5JS/PPmazXjP0PdsH8VSfn59L6A8il8aU9NbhlMQ2N4eD8Purku12T3PY8eL5EwyGoW1xg8UUCkpwznJ4eMDage12y26342G7lfV0GLg4v+Dq6pLLy0sur65wXkgPDvsDDw87vv76Na+//pqh7ymUxtQ11lmcdajCUJhS8rc8vN7fcvN2z8PNgadPPmKxXKNMGWLF9ywXCxZ1waJSqHXF8+tz9A9fMjQdXdez3T1wd3fDfr+naQfRSTNZSjtgSpKDc9wQK2II70U+J7IclrhmhTyX29s7uq7j/OyM5aKUuZR0R7xGTiI4vUcSLUZg/tjxvQfdWikWi8XJpDrCBMwT8449COMg5SXIgSMPBghFXdM0KTxksVgkhT+9/rgVIUogi4nzMUGwCNtYBrKYb6LSCiBqrHzFeM30hHFLcNYvnHjzuxxZkZVTHsH4jMe/x4UxRUvJ3yljXs7x4lIVRZgWFJfOsX70UPfDQN9LwmXbdYmlISaOdn2fFJV1PniskT41RkI2jGbCBnPkTc+eJCp3otVMYJ4gcJgK13GsvCftlmf13odkrBCuNPRURZmho7g9FUNNaoah5+HhfuzvWV/HssLGFLz46CP6oWd3OIQK3aHQQ+jPMaY/etmzCR+VRAD9aUdGSaiIyoykJF9hgfMe/DDgwjUi2BnnR/SEj4BbwEYMNwm7OC5bYLNxEENiYHt/j/7kE1arJdt9M1kQ8+37PHk0GQMqLD8h8TR/3nRm/v6sDdLXBofGeiUx0AIDg3HkaPuWruvpe6Ed6zqh8hQjfAhGlhjCHtm1kjvpsRR64GMXzKBCu1UwVOX8CLjVqSmWPXn+uQ5hP2LY5MZf6J/UlhAa4qQve69QyoB2KO8odUGpFMZb8I6iqDhYS9Pt6AaFd1baXmjKOno3DUVRTnNXmIZp1JRsNiolzzaHhv2h4dC0DE6Av+z0TR8+FvLxQY5cGOsoB1E25h7rOH9zoBnN/nyncu5xn+8uksmbOD6ma0jcpcmdK2RtTPo8a89cMycwyfGRg01r7aifkgz7YGfK3/VihVf3DNZROItyGqXcBAznBuup+0UGHJA17/r6CecXl5iyRGnDs6dPE4CN6+ZgZS6gpHBbLIQW9fTd/T33Dw88uX7C1eWVrJ0hlyR/HuekANzooZ7rxNER4L0hejYzLkhJ4iauJWMISa7XTxlY0jmKsqypa0tVltR1zcN2y+HQgNYUlZEL6wKnCjqrxLnTtQIyFZiAO4rAGORBNsWUYlGV1GUpzholYRtNKywh2kNZFNRVzd39PYfdlt32nv1uzXB9xdlmw9XVlciBMXTWgpedCXSJtdC0jro2rDYX2GFgvz3w6s1bvv78c27eveNHn3zCZrGgb3pa17C736EU9EOP9471as3T62eAhF3u93vhFb+5o2s6tvcPXF1fsahrFucXbJYrLjZrPn7xXPRi0zB4qTVS1wsuzs+5WG1o2w5lCna7HV+/eoVHY8oF/aDwgzjMHu6/5IvPPuP6asPzZ1csVisoC5T3lLanVJ5qVXO1ekHTdtw9bNk1LXe7PU03TEPckLU87h73/UBVSR5MmsYqhn5F857gIJK/+87x6utX/I+/+Avu7u54/vwp/9v/9u+4uDif7OyroM/jcpNkKezSy2lh7p+2d9PxvQfdSo3VCacUdUKZExXIvFRvXlglHlGBQPCMp2uN8Ys5/V+cVOIJCUo5bEUJa0P4PYKOoGBUaqcQCI1Vl8Izhf9UUBxBQ4bFgsnZR+tw+v7U8PhuR+aFSP9lMN/H66ug7McMX59AdPROx99doNQL29IBaAuolvLS8aftxKKNJaettXgbipbEThg7SRbrImzLhfe0ViEpbPSOpTjdvKcSaMwAJKMX1gWFngrhOCmAk0pcJ8A99ldcQPbNgW5/YFEv02TMx0hkSKft2ONwmwCijaEuhW7p5YsXfP3mFYe2yax7NRnzD413BBNjCIC0Oi6c0fOYgElMsHTuyEuUFklIVRGVlnMN4JXHeeGBjgEa06qppIV1sD3WDljbsV5W/OTTH/G7P/yR2/3hGBjMvJOjgouy7ke5VbkSVOm8UwY33nOoS/bNgLMDbdPSDT19F0OQhGHGOh+rSo+w1sdqjLLrhY2f+dSGRCnqCSbpKJtaZemKPmyh59Z1eoLpezHcJ4ZzGBSFVlycLfHO0fVtSnz1XnZopP8dTjmcUmARz6OyKOPxaKw2vHjxjMP9A8r1KNXBwtNRo80ybEcbvI56amxXjCmPIpmPn0M84rUpWS5rLty5APCmZbvd0bQdymVluOOTK3n2FDueyV4a2QjMThhUc+dJ2i3MgPcciKUE8Eze8rGIR1x3UhJ5Jltx1yf/RgT+p68WH2Hu5R5DF/E+VBCcnh+Per3Co+isQ/cD2kihpQi88+OoHeHz3JDYbDZcXV0GykCfDIn4o7VGFwUlNauJ/po+Wdd1vH//joe7B7pDy4sXL1gsF6FaaubwctP5efycErakUr8HCr6Qfa1UNG6jDo8POjO4T1w/XIGqrnFecXVxwU9/+hN+//vf8/d/+GzCZKSMYQBKbSjqBbqoQqK5xJY772gH2W2UcuieojRUdUVRKHEEGY02FYuyZLNaooHb9+85HCx2EAdTc9jx5eefgfKcbTYpJ6peLHn6/CPOzy9kTtU1Whu+/Oo1797d0xwO9F1P27S8+voNl9fPMKbkb3/1O9aLBetVLdVLvZO8opDPtt8duLu75+zsjKoqGXrLZn3Oy5fnmLIEpbB2YH/oqaqSqlqwWKx4cv0U67w8l5ZKt23bctjteffmPXe3W968fU8/iJdclxVPXvwAVxgG7zjsBrzt6Zstt+/f8u7Lr1hWJWBxdqA57Ng+PAjbFZohhPBZFMVyTb05Q5UlupCohrj+F4CpSyhUiBQJO2pETBDXTU8qP4/sGr5/+5b/9t/+b7744gs8Xvjrb2749//h/82PfvRD2SxH1rqosqMDLMEkT4DxUUGeFLt0fO9Bt8R07ygCB+QYEzstTjOfYNNqjtmWPaMXJIYwwFjoQ1cVZUZRox8B1syV28wLE1WvAMX4js8+VdOzJsosLs5M/86PhPIio8Nc7eeAOv8k3jHGM7t0DQ9Ce+YjSA2e6ghEg5fZ2VCZ0blUACQmJ3Z9HwCMeLAl8zzGQ0dPxBjbrZRCmxJdlmOrI+CfNV8hkyoS9x91RXpj2k3zQ2C0eFrk2UammLQIBrA9VuCbXsh7Tz9Y8eJZO4KzhE1CSI4X72asEponxQLUZcmqrsPWvXhN4oKYnloJ8D51nAxLmAERGd9skQuevZxObRJ3nhsHauRGT9dM1w/9G6/tRRbqusZDoOMi9LVA0K5ruXn/nru7e5wy+KpO281pfE54qeJzjQsqKYkzev0He5y8rJSiKItgQBccup6/+93vU5sVkQ0n95hG42p8w0UZiDIczlc6JDsD3stWiULiEjVaflcqoxzMwl8moDuOFGFe5GMZvOTeUyjPuvD86Nk5682Gruu4v7vj7v6BXWvpXZZ7EC6ulac2DlP01NqywnNeVFwUFWX1QD80GCyres1BV3TahGI6klgZmznO2ei9HNsschQ9STEJ1aMNLExJXZdcXp4zDJbDoWG323E4NCFp2YMyKOVT/O0peT515B7tJJ+Mhljaap7JVK6vJ1H7RzcPYVnhHp6sMFDqAJXul18nfy8eE2jvs93XQKk4eoAfB45GS9zsZr1GKSeJefv9hFDg1M5wYmtwDhfqI3gvVRDRJugwnUQy30WY65RpKKEcVVXz0Ucv0f4VN+/e8/7de548uZaY/6R/omE6ziUgMZPEHWajJQRrtVpxdrYJOyvTHvVkc9F7jnv79OGB9WpFVVZYa/nVr37NMPRcXZ7TDy6BfVMUsrMUGJ0KM+5G5LpU5rvF+gGvxBOutWe5rlkspYhMWQjzk7OW88sLbm9vQCt0UeCtZ7FcSuja/sButweEqOH163dcXj9hs16jjWG327HbbVksllycX2BMIQXb+oHX795TmwLlnOxslobCespSStBrpfEhVLNpHri7uwsYyeCd44+ffU5RVSzXK4ZhEHaQqqQoCs7Pz6mqit1ux912S9t2bLc7bt6/l/j4Q8cweJyVUExjDKt1iSrXFOtz2SFwFc39LbvG8/D+PZUbWBSGZVlwebGhqhco0+O6A/v9gSEwmzhtaPoHHg4Npq5ZblYsV8sxz6AuWW5WUOjgCApSHMRtRDwjvlIobu/u+au//AVfffk1fW+DzhLWmv/6X/8rRWH4+OOXgfkrhk9OHXu5QU929Q8d33vQHYU8gpU4KUHW/pwBJD/yLcQ8wXL+k383XWPmjZxf/4Ndmn8vKILRCopmUUrpSMB5jHweAXB+tyMCJhX/U8SEtWnrsphWrxh1hMK7MYHQoyRkIyR5RWo76xy9tYGFQcB17qWW6ndeYj/dmOwYF2aR9rBAh12FSZ9Ozhv7igRvVQI58+OUMTFZnPwj7xMXkmksYFSq0QibA/APXWtiJ6XHU+mxtBrDnyJLSYpFC1VExSCUa6dCTOmi+WvsutGDfeqYbJ3nz+3HsJEoEGOi6nQxi9cZ35ewDjHMwjmRKzA8/G6/59Wr15P75e2JdJiHw4Hlao2uavoJiM/mRuz/iXHlgyHoRvafFNNuKENflmWZGdnRaInPC003jP2QXTvvl9QPGcCeP5f3PuT8hB0E68BZjA/xzxo8ka/d4IInMfaHhFOMFqMAwHxsI0tJmBXKsdCKHz274qPLM7TW9BRsrs5Z4/j8zXt6N6CUeKlVYTCmoCoVz/RrPj57j+GeZjtg2ord69cs6nMe3v8OY+7RRnF99hGu+mfcuuf01Ggfkm+zOZ33a34oPIaMCzs8W3QqOJwAgHLFZrPE++ApOzRs9y1N2+GtH/VfEI1TBuc8ZOTU72kMGWX52CBl4jEfR0I+8T4k7mudJelND++97ChwesZOddMoO9Ex5EJdbpGtLHzlxPMU2vDsyRMWVcX93V2gMhVDRoZHJyNIKUVZjuxePq6BYR5659BFQb1aMXifiuMomFQnPIpR9QnPzB8UBVxfX1MEyrvBWpSzaQzGdVDOj+xkXdexWCy4uLhIbe/7nsPhgNJ7LsLOS66Tcj0R+yrH3o95ugGKskAXhpG4aAEgIWSANmNdCTv02EFCsWS3TvixY06NDyFnynvqxZKPP37Jk6dPKesqUPwZ8AglbddyMB5TPZUxsA47OPqhZ+iHJA/b7ZZYwG+73dM0fah229P1HXf3O9p2CIm1FVqbUJm2YWhb7nc7fvzpD1lt1tRVIU4B53FqoFAGbwp8YJUaejH68HDY7dltd6EvLLv9nu1uh/NSvM95Qv5UZCnyKaEcVWCqmqJcsKgWFNWCfe9ZqppqXePNkrZ1dO6BwyDx6d3g2DctD/cHFA4fdkQjTWTvLE6B0wpXGM6vr6mXi2SwlWXB2dma9XqdqlVn0pGmXPROg0oy9xd/8Zf85je/pW3bka0qfP/d+/f89d/8DddPrlktl2ntkyt4cuWno/xFHfABuYM/AdANuZU9eq7jcTqZb7RA5tUcw0mT70yslJnyjAvv/HsTXZP9PwFCKjsvMxTmTcjxkydy90YPzNxjMkpGuqOShLuoq2XhCoklgQrORoaKwDLQDwNtJyC67bowmYeMDSQkiUQgrcVnNAKQ+HAGtGStT/tYjwZFpp3zXhp5MhPEnvXskakx7fETwu2nFsvkvPF1DrDF++0ybvST181epbx7XEw8aJ/C5Cf8v+HVha09hXi+tZLKW0VgoYn9PIIDHcp5y7dEBnIvbkzqPN3OeM/QQHRRpEVuDjjmoDu+Hz1xJmTcR3aZRFnnIxCX79/f3XNz816Aynx7PPtbh7LBedhV7pmOW/kJlPiRgQAtSVBlWVNqTWWkOI9PshK/n0va9NliqNi8zz60LX3SePMRIIZ7WIfrOp5eXvDkyRN2D3e8v3lLby1Wl3hlsGh8oFo0Wo1ljYlGmqdU4tEWEGspCkNdGOqiYmFAtXt++8u/pmsauralbxq8tVBVrDYbbnZ7inrB+fqK1XqNsjvsuz+wO/wWpfeURc1qc8HQvUEV59T6dxTlLaiWsqsx5Y5W/ScstcSsqyCBKvZyLuE+a728HMu/SK8sVvKpNvL+qliyXC65uFI0bc/hIGEo+/1edqT81CVx6ph7sSfvBUPulEcKmFW0nYLzeGrfDcTk79wREONK8+OolRNAmBn7s13a6b/pd+P3AeHL15pffvYZN7e3krBdl5ydnYXnicBZ9LgLBdwGK8nmxhgWpSRjKmNw3rNcLpMDRoU+T8+j4uozjruHlG+cZpIojADeJGRlYsiGy0y0vFeBrQLW63UqqBaPWAcjT+Z9TAqmwHtcTaae+UwusuVLAg1EzxZFlhMU21JIRUsfdVJmFRaFoapLikLz+Zefcfdwy0f+Gav1kqIQEzQ6WoqyoKo0i7qQNcc6upB0vNvt6cshFNhyFNWCtu0YhkA3q4QW0GFwXjEMAeQWteTqBCpQb6BYaJy1/Ob3f0S5gUVVslzUrJYrVssFVVFSGAUuuANNGSpKehZLhXee/WFP33Z4aymNwWGEsMA6HFEHF1RlxWq9plwsWNQrrFW8v73nfrfntr3n3tSY1lIv1xResdu3DE6higW9tzRdg2sbFgoKrUM1ygpVDGhvKJXCF5oBjzeyjhXBa2+0oSwKzjYbFmUp60pwDoT9dER5BU7u8PcwWP76b37J3/7t39G0bTZHgyGhhR/t5vaO/f7AarVK61cKd8wMP8HyomuUegyzjMf3HnRro9lsVhl9ng6qgRPKYTq5mCvFHBRG8BgVQjxltOHD34TJd7x4Hx/5AnoMy8f3PWpCjRfarFRI6FFR/QmAyJ43FJ1L3iDnvYR4RC/1YCWrOoZ49IMA65ClPISJY5M3Nzxf8EoTwbOpKcrgmci9SsR7Z57MrH8hPsP0OErMy37Ps+4TOH+0q08Do1wh+8mpY1hL+Guy6LkQmzcPS5hfe3445zBFgV4uKcoQ5xsNDJ9NxggXfOQ5FvChlUqVHOfXVWEsYnZ/WkCixJzw1h31UqZItJHwqDjm886dgnBZgmCaQ5HmixrHLnrmnNco72jaZnrN2Ia4kxCerShF7diQjOWz7yTjDZGZsq7RsbhLkNM4E6WammNIjGFxfueUiqHnclAFM6/lCDQiAAqPerJfJz/ygAzewTDQ7rccbt5w/8UfePb8KRd1ybZpaboeX1QURQHBE22UQ0I/NeAwWGrlqHAY5VG2BdvjeiQRyVru2o6H/YGuG7CDAIGyLFgUhoqB2pZsqoJD06C6A8VqgVFCNbhvLMZY4IauvcMsNE3fsV47vOpxXqHo0e09RdmgjEXpkfWH9NvoEmDy/lTv+fSfGsFkSKYedbgPjoC4o6moa6mY2Pd9JpsR5c30SPY6B97OSWjPtAjOMTj3j3yWX38yD4JRHNsTnSaZD3e8ts91W+i9GALkRt2UG3Fjb6YLpV/f37zn9devuL29ldvrOC/GJP3YXlOA8mW68xBoULumoa5rrq+ucICJxU+Y676gM5I2U8TS4+l5Y/hdWJjG2HcmvRHXkdwJFR0k3kuScN5LsXK0tUMqQJf0+xx8e5nz3pMlocYvSF5OXE/zgmypp1UcygBCk/0YdV6ki5O+Ukqoh6+uLikKw/3DHTc3NygFy8UyJV2Lr2pelyHEpA8SY220YVEbvJWY+L7v6JxHK0NRVFL/gDEMyRjDYrFEqRjjLbpOWGUyB1nY0XYodo1ld9ih3+8R7CF6W6pZi84ty4Lloma5qKmqEq0My/UFm/Mr1ps1q82arrfs9ge2+z1lVfPs2XMury6pqor9vuHvf/8HXr36ki+/fE1rLSxX6GcGc75GLTfQWdb+klVtuLragOsYugPb+1ua+3uawx7fd9KuEINe1BXrzRnrRU25KGWHIuzcrFYrngZPdEzshujMk0E0PoSGKMk6stby29/8jl/+7d9yaJuZvAc6YSeGW99Z2UmyY7p8PscnADsZ+UyVwInjew+6jdasV8sM90Wlq0YLg2xCyocZUB4XgnzCo1zISA2JGGNXnmjFCA6nxwk/R74VOhsA0TERUEeLSY3k/QGwOi8Z/pKI6JKy7AfxUI+sH5au74Siq+/o+iFN5kzrJKWsdKyyWaBKYVyZWPQzcA0ZVU/eG0EDeeXGrk7nTS3Bx3pqcj0fFmHPVBkenRkvexpsjt8IHRr5N30OvH1SvpMwkllyz7T50zbFhXS5XlN44YcXX4mKen5CJaSNEZYV4kKVhTjlC1PwwAzO4bAiA7Ol3Hs/UeQnQYQfvXrWObAS6zvrxOl3sieVv9XkffG2MAE+CayG/rWDTZeeL65xOz0qwMEOIUO/oAysGEWgKNzt9yilWK/XOO/prSUl8+agWzrtyLsgToe5Z3P0XFp/PJejzI4s7scgKu/fJCvpVZKV+qGlGva4rufr/TvKesFis2FjCjyOylSUpUGbQAfqhZLODh1m2KNdi3M9vbMhREWHeaqp6gUXmzP++PlndLZAqYq2E/7fstA8f36FWix48ckLdvuexXJFaRTWlrTVD2n2Jbp/x0p9DfqeTdmDKhh8iVUVWl8zsGLgp1i1RPsiFCvJe2AEn8RFJv8sOA0i4nYoVNJxIyDqh45+kG3trh/oB5ti8/NdEu+nt9Dej+P/gR3LeLjsXA2JUuzU5z58NveI+zDHc4PM588f1hoP6Fl/hLMnMhNDCERsfLru3OD3cKIyp/Aww0jXB8IG5UPuxZHcI88VSQEO1rLdbtHGUFQVzaFhVZSiz0PbmqYR3uQwXnHTwHvF0A9E8Fho2fmK4QkxDNT5MYQuhtiJ3vITur/4EwuQHfZ7Bivx5mXwyK+WyyMP42jwhgqsYSDje+ebDS9evuTs7Ix+6Hnz+g27/Z6qqri8uuT9+/e8f/9uVIXKM4Z7ZrolSJsxhmqxZLPZsF6vaQ4Nb9+94eb2PUVhePr0CR+9fMrN7fsQRtdTliVzTKCAwlRoJKyksx1t06T8BgmZE9yjS5Nk3bkYVqsnNI3Ctx5WCy81AOIq5/D4oDvAY4OFExCU5FLgUQ4Ow8D9vgceQtSg7MaWpeHJkyc8f1GyWq+5eHLGRz9Yslyu0Epzc3PDm7ef8fnnn/P69Ru6TkKBF6ZmQPH+iy84fP0G6hW1LtkUBRvtqQtPWUC1qHlSP8c8eYKzPV3b0LUNfdsytK3UvFgs0cuKojCYsqCopFLy2dmazXqNmVWd9irKhuTSKMQIwcPrr9/wl//9L3i4e5Bnz/DjOFdFzM7PL9hszqV4Tyo+F5PiszUmG9sPwJN0fO9BN4yJO/EYMXIGWZKHMQjSdBkO/4feRBbJdK1seVWZFZ/up8ZfJlDQx/aN348Dljc24JLkpXYebKBgA+iHyJrhx7CPtqXrBwHTIYY6eqhzkE4a9BjDXkgcWQTYkeFjvkDNfjjxOv19/v0RnuQ5nM67o7NHrHZiezcogdNb+xPugllrT7Urp/QaJ8Zk6xE/cnq68XXKdhOz+KdjKVR1ocSxkkQfA2LMeIWOPKARc6hJBCN5bPOp5kc5Grebj49pCIpi1p14IgOEEipEjxhhmXdnvpU+v4L8SPa4JyoXnwBG5Ab3Pgs58tIPxmip6OaZ/DgXfryi7YQpxALVYom3AhYOfc9XX37Fdrvl+vqKTz/9VMr6Op+Sm2K4Td51sa/HcYqVSo9lbW60He8azEBPBAjxfjOwED1r8TPxWPeURpJrXf/A4WZHUZSs1isWusJ3Pd51DN5jvLTXKCiNpqw1RVVydvaM5XJFWZY0TcPt7S3Weu7vb+naFlPVVIslTdvQ9gO9E8rCvhu4eXfL27f3YDRPnz9jdbam3LyA1QW2feDQ/QD6G4reY6oKbdYUxRm+OEebmkHXWL8Iei9ZkDNB9Cf0ihJ4F8CZGFoS5y76a0iJk3YSWqGw3hFLeMcxisBqvkuRRuoRozMf1/w9n4/lKa/2RA6Orxkukq5/Kg7cZWtP+tZ8juZGG9k84cQuWzghvj/Yge1uB37cFYp398QiXyMpWrya9QKo27alC5UAt7s9C+ux9j1lVWOKgt12S9d21PWCy/MriXtWOsm/cwh/86FJhvjI0FSk7X08yZvvvB3j4kNSvu1DImdYix8eOrwXcLteb6jrClNI/YpUX8BDng4n4D4kUmdOE6016/WaT16+zGoNaD7//HO22x23t/e0bYuA6dzZFn6C0W5MwXq1ZLVasFwtUQb2+x2ff/EZd3cPrFYLfvyTH7NaLdBa0fUN682KruvGgmLKjHjCyy5H07SJzafveqKPLP7ku/bJ6NTiydchzFOMK7lo9HB7SPUA4j/nPLhoKMtP3GVPGMKJvo8nRTZS7xyuaXk4vOLVuztMYbBO8leMNig8Tdumuib1YklRBwefKbBeUXuoHXTNAU9Hp+BQGsp1GSh/xeNutITQLeoK7zbESpXWWiweayDEW6KVYrPZcH52RmGKZJjGELhI4xfHVWpLaN7dvud//Pf/wZs3b8ahjjIIWbK7FJN7/vw5RVESnQjRtE4gO18/05ocZenx408AdCc4m/0v78ZIv8TcEba6koSnBTpfUEV9KB8SrbwKGe4ZgFGha31UZHNwo5gAHq+CcvEpwWAIINoGho/eWYbB0fZSua7rJXEiLkx9KD0+WGEFScmJEMBzqF6ny8SmEkF3BCTCXRqsMcaJGB89LioTwH3Ki/Wdx2YKfCdL0YnFD8a2xN+P7+6TAhqB0Xzxz8MCBLyMHsjxnjnolsqS7ghwyzlzecnulCbXKF4wo4KD4MkdF1MV+iCWls+vF8dMgIZPC1JKppoi8iC6OvCHS4GEmRqQ7zmCLNnJsx89U/YDUyXi8SkXYjw/i5UL38zb+dFHH3F9/ZRf/+a3uMhc4kl8584rtCnY7ffc39/Tdl2K63fe03c93ksyaXNoePvmDXf3d7z85BOWqxXeyjax0mERVnlLyLwPOfjig30QxzzugszHfvoVH0J+MnDko66Q8dM+sPtgKQpFYcBg0cphhg6/B6UthQqLTWhXUVZ8+mf/Auc0292erhu4vfmatmkYhlYK1Th42Hf0w8Ch38G+DUlNYoy4ckGxWNF2PW/evOHtzQ386u+oljV/9uc/45//+c9gc4H2zykLiyuRipWqxKoyJHa6wDNuwrPPkt+ixGXzK8q/RwqZ2JB03fdSJU9AY8idCLkIo8SqBIJVzG3woIbRmBsdGpnxkxlLpwD0OH7T5MlThueHzhuGIbEofPfDJwCXy0zc0UrP5Mf1ZiqLsX/HQwqiCL+2VioApFGPTjWxfGatOHFGvnnJRbm8uMQDu92OV1+/YrFcUBQFl5dXlGWV1gwbgAtKwuFWyzV1vaDvuxQG0h1avG/E+10UFGos+lbqYvQUBj2m4rMqj/eWoR9SlcOH7Y7dbs9iUbMM7B+qLCWfQ43VecWBYpMOV6FPvPccDgfevnkDwH6/59WrV1JJcQghR8FBkOjuk63gwWiWS/FqOztwe7flj3/8gqbbozScn2/46U9/Emp4iEyLXCvqekFdLyiKEqUMMbipazp2+x3bhy1d1+JtdLrl7sFsHVEZAI9zLBSoG+VU1jwenZ9h5yiCecY1dPwfco9+MhAUUlzLe/puoLV7yqoIBQilHdpoTFlQL2pq76U/TYHH4FAM1qOsR1tP7XzQUx4d6wyogVhvwKEYvNQgEF1nhYnEqPDMgPIYbfjo+Uc8ffqERVUEgobMhAhjGQtdRY3Rtg1/+Zd/yR/+8Ifp/GCce3Eeam14+uwJP/npTzGmiBMJFIkVZcznUKm/nSIwgvHB408CdPtcEiApYpUSewKYyTgZ8bmHJnq1Axz1QmsD4xIbAe4ISuNiLCLhnQ8VigjhHi4kJwoMGayjCYmJTdfRNF0I+ejoByko0LZd4hRVKiYehu2f5LUwYAp0oScJXyoD1/P49SQAKj6zJGMm4Bn7kKwPmQPu7zge6Zhe5FRy0bdarqKWifdIi+1o3My3X8dz46KeeyAzI2MOujPP9vgdN7veKYAWPo8N9KMHdv7QyqvAZa3QZgT7+YIRFcLEWMAz2CHE7Weel/B65O2Tu6XvxphFMeZsBkSnuzRq8v3j49iTF+5DBN/Zex4UmtVySau7ZB/EtkVw7ryX6mHO0XVd2Eq2iZ2orCoISq/vW5yzNE3Dfitbnra3WOdZrjeYssraM22jHDKeMaEyLkLzQ7z1ec/MrqZIEyWXrymQj0pXQWFokXjK2noWylFXUBWaSofYwDhWqJSo2HU9v/n1r3FWM1gdEsw8zg4MtqcbLPuu5+HQ01tQRvj/Y2EQO3hudy3V+pz9YcuubymWJdY5CUHrB5SpMBq0LqmMp9CgQ8XVqCNkh8BgvXh4bFxgQx+KV06YSCQUQWQugu0hcPPnRZJiOIEJYOfsfENRFDw8bOnj7l3s3zBYQ9zu92oyInmYwTflNhwB8mggquk56brJyaEm4+tmxnI8n9m58XnTL4+rECAGAkCSu/SdXLbkL60Uzjrubm6Trg/aMd1HeQ9ai9EXjIW+l7joGEcej8ViwZMnVygtnuRuGFgslqxXaxSK5tDhXAid0wVjYryMv3c+FOoqKcsyGdjeS9iEtZa+66BtAQkzjjt9RptQmVVytLxHqPqUYbksgbF4z6G5FWM2sbJINciRncijtGLoe8mNCI/41Vev+M2vfpMYRrSWNXYs1hYxg9RoUEoFBq9+QtlqncRRn5+f8cknLzk/P6OqS/wAfTMATnKDlcRhL+qaIvCmd21H07S0h5bD/pB2GGSsZAx9kASd/p9IUZIxPdu5G3dqR/06gu9R+NIaQ0bUEm+hPCMF3rhuJ5lSCh/zBFTI5FCKsqykCE0Mf4vhjkQMJW2IdbiFY1241a0TVifZ+fQ4DSa0L9IPWzswuD6FiQjpgFBGP3t6zbNnTwMF4qyfTr0qoaP85V//kl/93a+ETSf7PF+PnZI+ffLkKf/m3/wbNpu1wMU4Dx14nYWkJHWSGUEqQYNHjz8R0K2PEKJCiZLxDjCh9xRJB/msQ9XoMfFZDHWyBolc1CPTR+SgtnYIWbs28TIfgqc6hn14FH0/JG+194hlH0FysPKFiza+p0EJbRihFCkZqJ6D1xh7PSakBKWbwFE2IdOrn/wdOu74vW/q/9nClF97KnSns8sjlDn5Wbz2N9w7/n4KEI+e6qnn1Qfpn4KlkbEkUilGflz5zje1eHpoPR0nj0/bVGPylciD2IGesAMvPMheqqxElhCpOKiQ8mbjwhLbFrcS530T/845tYGTSa3xiqeeLimkCZhQs5+gXdIeUdjyVCqFF8U+lNABUjJwFZJ/rJW5FOfLcllxfn7Ju/fvsK5noTTaCCB4++49d7f3DINUaXv+kWZ9XqKMLAg+zYG45TrduRjH9DgcZ6q38wUs9kEAMxwbdhNvt5ft6PrsnM7AsN+C6zAMrJRC63FvQup4Bu8/gRffgds3OKvZN46mG/CDxboO6z2D1zTO07QW6+NyJsAt8thUyyXLs3M210/56Ic/Ah2oQJ3l/OICTCHeQm1AC82dQ8viG3SnhABpem/ovVSAjbzR1nn6Xn4frMQVx2RAG/ogviZQqDUGSUBbrxZcXJyz2Ww4HA50+73sHOhQVjv0pei10N/IXJiD4dOhUSfkWWVyOzMk598/5QWfe7/nryevNbPB5yA+GRcc67JTmllar2gPBw67ncSYKs8wSBXdmHRt4/rjbHIixF0YT5TjEKsbCr8NzlEYw+b8nPV6g0bRNC1ffv0G56Qw3XK5pqwWIYREnETOj7tsuRGAMphqajTIM4xODmstgxemDjHyFG3T0g99Vp1XwkKkkm7ogWxtjPeTOhqKoqhCQjKTkK9YwM5DKsEe29B1HdZ5YcIwhrJUQE1RFsljr7WmKEuM1rTtwM3NA2UplYbX6zXL5YK6KClLYfHq+o6u6bi/vwnPNIjx7OLYjk6v3MBKbsGJjOdiMeaueEZdP8qgJ4ZFSvd4PA7UBGqH0OYpPBVHYBzHTO4E8aLQmKKgrEpMoSh0KPoTknhdQgDB6xyYrbSJ5QHBhnXRhLh+YjE9K87MYbD0rWXoe7quAeUoKy1l7I1huVjyycsXPHv6jMqY0XkxmYPTeeOBwVn+8Nkf+Ou/+1sOXRv6NY6BH4ckyNXV1SX/4T/+R15+/BKUxzqLUnoskDNanvKdI4M7YrHHddOfAOhWCKgeAYzIqiKJag6wfWT3GGOOfchstnHCB091P9jgSZLwjqYNFRMDN3XTdjRtI1zVAZDL9cYkTm1i2IfGVDUmDSBEFoUItGP70qFV2iJPikSpFKgfreG0aETr0wdrdDLhptc+Cbj/CY604HwLQDq2Zfp66no5CDwFrOfexfzzY5q/8PRuCpBEJkbWFu99SgDKrzsFm/OH8ZOOni6ucUim34sx1ZP+yAwCGUpZqSNgEQV23G/5on/qiMlLEw9fUNZHRtzpC5x6M8jxFHrn30nyncXGi+pRFIUkUZmi4PLykqIsqRcL3O0dSmvqquajly9om5ambRNN2B8//zwZEQcvxYjQBWdXPSulpaBHMmjjHAtP6uyoMxLgPgYDc89lfoygGoSi8ZSsxdhVJ4ZVUbJ5+oJCe+xhx3D/no4eowYKD8p5lJat96Zp2HYd+2GgGyx9b0MsvsGH7fkBg9Mq0HoZljXs39+Bd3gltIsxZLMsS7zSrDYbqkUtCxbSDcaUITTN4xWIjy6KoQpxsfJ8vYPO2ZTA7YJSFaYkH3Sw9Omkh6MHKIIfpajKkqdn51yen7FZ10Sg6Y0RLxmZLvHZFVXs+Fy3Py7z+ZjNcx5y4B3nwaPgGSZ6KD/mVY9P7rql62fvzXRV2mVz3wz840WdtTzc3dN3XUi4G4iVELUuQnfFZxKg5RFKOxO8hMvlkvv7e/GAD1I90qOoq4puv8X1HdrUOA992zNYT9f27HY9xlRUVUEZCr3EUAOtVLC9cy2vMl0Yn0sHmkhPmZ7L42wAXh4JG/PiuY781kUhCdZlWYiDI67t2U5lDAEaQsEfrVTS/UlSY2OCt72qKjabzeh9D4XJolMj6eFkIIXxA9rB0Q0HHnZNKuJTV1JIpu87Bhs5t6Os5OvJsaGWxxXPkWPuRIpXyOdDLr/S5Ig5LGLcxyJvU4fDBBamgVIC1H3OVyNK3wqKwsQaAGmdi3u2CXYHg0hk0IQtsmgo+LC/49yAtRrnLM46+q6naTrsYBlsh8JRWc16veTi8pwf/fCHXF1chl2E7CHwWduZjJfDc393x9/95tfcPtwF2mOScZ93rVeey6tL/t2/+3d89NHzZOCkKyeGOZKRSW4gjQPGNx1/GqDbF6kYRirCkiwdOcXauCiIRzr93lvavqfrxMrt+oHtdkfXC32eV16I6QebFiEXJpxOYR+FRH2UWkruJvSRhXWcaLfyAgYSK1xod4yMdbmgZnaSSsKk0ihHLuWkQKJy8X40Av4XHx8C3qcWpA/FXsbv+Ox1Akzzc078fXS/AKjz7eE56IYRPEzVGcyV49RDNbYtuyHex9jHcTbLAixeKOV92J0ZPTER9EdDZojV6dJVj4+kpLMmz8OOpsrYT+n/sufKX0/dJ3++CdTOsFE0GmO/Rqo27z3aaNbrDYemRYUKbGjN+uyMq95ydX2dwPJ2u6Wuaow22N7iegG6Fo8qDNZ7Vqs15WIFRYGXWtGgTNhV8oEG2uOtyuKJPxwu9HgfqDTGp+UsLmSZBwrN4BRVVbO6XlNeP2HY3dHcvaXvFGoY6NuOrtsLPRieRsvWskeKVui6oqqXLBYLirqCoqAoSuqyZH+35fXNNgyHeIdDdWw+/+pLbg8Hfqx/xsv1RqjgQruEF92A8ylkBB+S2kKcr+SkePpBaBijvk1Roz6GRMRdPNEB4+7XSDNpjGGz2fDk8orLxYpCQ0E/9lRhqIuSpu0m8iaXCrH736AvHhu7KPvRUBzPGXXlsdf68SC4U/Hc8/mVL77T5viEcJLOSbrEcerU+aT3eLq24/7+QcKOJodK8cwuUcrVrNcrNpt1qty3D3kUEZgCvHv3jqfPnlNXFV/+/W+F11tF46xC9mYU3g6oHtp+wBw6tJLwEG3EE17VZeCqzvpcOjlzDk1gXmi6QhkolPRxGSpEOly6TtydTFV9J3LhJjpMeP1DP3vSDhWZHORqbGJsKRV2BX2q1BvbeOpIwM55ei+Yg0MzrvXZd3MIe/JaH3SkqDTnwsnTVeroeyEURXmpAeADV3h4RvJWeB+cfkGLKw9eHJSSTEgatlTEqcgNiKw3AghPLQ1jHqvuqki7GNY/Zwle7QNt24m+H+Ji5jDGU1drXjx/yQ9+ICw0CvDWY8MujtZZFEFuJoS/26bhl7/8W774+mus8+FcHWgwwxKOxyvPxeUZ//rf/it+/LNPKUwR1lePYmSQ8agQYoI4TDPdl3RhMj8eP773oNs5x932kJISU4Khk60I56Wsadv17A8H2q6nH6wQy4cqi5EZJLKF+GiNaS1rttKoMgTl6ymonigKdbwQTLfQstfADaq8G4G0pFqLeGgTwkqmseUiNj7JsQ+UhnYONONiofUHB/nbLlyPHXNP4GPg5dts9c69SvPPXKZAfQSo2bU/5AGfA0gv1tMMMI9c2Smkz3/zJJm1VCx14kSM14ekWCeKV961sVS8zyph+nHcnfcMccvNjdc7FXc/9cSfNm5iGegYr/jo03zDeEZw4LxCT9hkdLxZun40DLXWUooYLbRkZYXuhb1g37Qsl0uev3jJ/+vf/0fOLy757//9v/OH3/2OrukotBjYeM9mvWa5XPLu5oaLq2sW6w1nV9dUi5V4d4OHO1bbc0p4Z4WiTOHsgO0HOOGdzvvq8f4Iz0MuR+mbj/SbKOPBegYDaEOjaw5Gqv613Z6+0ygW6HpFsSjYLBcs6gWLxRJtCkxZgjZoJV5srxQ+ZEP1fo8vSrq+l4UQEn9wtVpx9fQpF1eXYDQ2umU82EEIKKP8xWIPE756J7t/XXBWACMtWfJojuPuEa+RVgoTvJuFMVyerbm6fII2S/Hcex/L7KS+LJSiLsuQ/E0C9uJIyb1ImRcw9foxQHlcxk/NkWMPtwyeYvTYxvE8UVDqEZA07lIxMdbSn36uj0S/4yIgCV/Nnineq+kaur4L8012VwfrqaqK9XrNZrViuVyGCrearmu5vbvh3ft3NE2TdoySMaJV2DofDXVZ9iQcQji3DRJxa/DKYwcp7oSyKCRkQzcSS62MpihHvueqLCiMSlSpco/ggfdjsplCREoKZnnKItQniDBHkdUyiJAuvqrJOERKQufj7ul0+z/dMO/lDIjG4YvfOM1Ef+K9TB/bdIuRNzq2+Riuyvvj2B/L6nQP+LgNAmLHNWc8W6OVk7ywEAevEBYq54PDLAPcEfM4Z6dkRQFMR+PaBQ7rvFXzVqe9KxWr2RLms9CqxsrEbdvStq1QYHqFdmNO3nK55gcvf8DlxQX3d3tu3t8xdB3eWRZ1xfn5OcvlgrIsA1PMSFcJUln07//+9/z2t7/jcGiEbUVlYWqhpVpr1udn/Kt/9S/52c9+TlGY1AZGc4Q4zNZ57OC52d1z8/6W/W6Pc5aqLNmcrWX3BOFhf+z43oPubhj47KvXtH1H23aSKd31ISlBPBRdYEqI2cAxXlppyaYlxRZFsC2Ki1BZ70jRTv5SR7/lYDBa02lyB8ucIKCyjejw1jL0khhmrePyyTMWZ2cTHuwUqe1H29h5AhjL+IOD4vRhwdLZdu6k5R8AW98GjM8Xmn+KIwfxKYUtLkLBAiVblI4Xr3FL7ZT30Qck64NrabrIRS5TdXTN6ajLVHvMi57+VqOSmMbWRaUjVrH3Hhd4iGPiG15j0Qw+TGYPRhdgikD155PCS61S4yKT7px7a2b9Ahmn6HcYm/kRuY19uF8OCpIvRyF5b+Q/kpyklObi8orlas3mbCMVCC8uAUXbdTxst9w9PODD9r1SQknV2YF+t8OqYKSaQrhlVQzZkjCMcadHEROglTYYVaDUgHMN3nYiD5lN9GiIwEyebDQIfd6PPvVtBBKRC1YFcN4PkiiEqVieP0GfXydjoTSG0niKUoCJUcI7lEIYojGjdDJmnPc8eVmzvLjg3fubxIijjWG9WvHk6VPOzy8oqlKqyeImuzyemAgZHRgusVkkEIgwzFSVSYZb8mLN+i5cGKMkbntRV1xfX3C52eBtzdvdGffbBz6+aFmfaYwW0O2UR3lHVQRWC5dmXFgQ9aTN014P9/8WprLIUtgZPTFP8t/Te1F3ZM+Z2DFO6Mwjh0C8TswjUqMOyZ0Kk7aQAe4078f7e+8p6wpVGLAOlOblJx9zeX6eCmy1TcP9/T2v37ymaxvatsUTGCWUmgJucSEnp0HXdaNexuN9D94GL2gh4Fv1oCq8NzhvsF7m3eAEgAOoVubtftdhlKIsFHVVUi+Em74odOaZhEQdoiJoDuNqQphJQDxSxCWGfLgA6uawDwjmW64XffhvLkEReKV1O3pmibIVdnjyRN5TDhAyoOunsjWX0QmTXf5m+jXc3ScoPjk/jlD+QHEMVXbxKGdahwqbVipRi/5TaAUxgTK2XYdxcVrhpeJ9kmVZq+Paw5g3NFuf8oa6APTxcfdT8FAE2pLk22e4xgvziZO18ub2hr/6xT1VXSQvu9Ghcqh3lFXJYrHg7OyMi4tzPnr+jOfPnwISKvf61Rt+8YtfCB+9LibrZJJ/D8vFgj//8z/n5z/7mRQum8hAwGSRChh5/t///jP+x1/8FfcPD0SaUwBjFGUhoV63d/fH/RKO7z3o3h8afvGrv0uxzzostqIItKAaI6VQTVqMBVwnoXhEP/tHPInx0xGLjwopcJyF0AU3AdWxalTMvO66jqZpaJuGruno2462aamqBRfXz1Ah1nycL+N2dbyrzdg2JoA1LIg5CIUpqJ0f/xiv94eu+22/O2nHHBDnZKXypRkoPv06LnYQldGpz6OnW953eKcypSDTbOz7x4BY7umMQGH83AfqNpXtxysvMX/BBhAlGWJonfPY4E5JBlZvj/pr/HNaGOektw6OZOH4OR4/pn1HWlUSZ/PMCNWhEpqHZOxaB85JwrL2UFYVZxeXLBbimdBK0XQtdqc4vLvhYbunDVVVCfO89B7f9cmLfeg6NmVFWVUYU8gW4ARwh7CWYCx1nU2hE27o0yKuvHALn4rnnT9/3s8nuy0ApBxUWe8xQRZs6DutCgFMsfy70ZRlSV1qqlLK2Oe7Bfk4qpBM6yL3roezK8/TFx8Ti8kkQKUjcPf0VhK8nZNwpcFahqFP+S5K6VBaWlPXCxk7H5I61XQGBBsgtSkeGmEvWFYVl5sNl+cbykKjvOehhb95f+DVu3dcLws8dfhGBFGeujIUWtMHQJur69HHFOZplLvHdPkcPE/eHyX2McAN/jQo4rvpvAiCoj7Kdc9IBTq2LZw1BWijZZGOxWLBcrHkoRuC4espq5Ldw5abm/fc3d0xDH0obOKT929EgzOu/vBRaQqhMp3pNUJ75bBgB5SSYkqaAlSJQ2J7vQ/J304zONlF1FrRD4q2tehdizFgCvGER294UelgJouREsPyRudYMMTCvEl6JhfICE4f23mY9eO8i/384/DGyOpBcnBML5/LVYTHAbincZ3fVFYgnYHVfLVJlanTeyr1j8/u/6gbxWeYRoHSRpIZgwxGNjQf2usJzsjY10phFHhd4AYSIFYq0ANqCa9NbfHBeZk9h6xjagztHBxDiERou5ZDsz/CMs45zs7O+PjjH3J2ds4fPvuMz7/4nKbt0X0nYFtBoTSlAqM0fTcw9Fu2Dzu+/vJrfvub33JxfsbV1TVXV5d88cXn3N/fB6MhOlfJco4URWn46U9/ys9//jOqupZ55T1SJElnRokiht3sd3s+//wrdvuezlU4NP0gz1P0nto4tBrz/04d33vQrbSiWG1SVTbB0gFwh8kJxyI4Kr54IT8/AXCz7NNsKuZKM6eWC8A68ZMG/tO+60IZ117e64QT1VnZcFIeVKzaVWuqqk5hBkR+WjUKuULw/aSIRCaoj3l6/zHHN13nQ0vPN4WfHN0nAzVzo+LIezR77+Q5mVaa90v6OwKkQBcRwfZj7T6+DkShis+QL5sueBzS4h3WhrIopdx5AGPxYlFxyd/iJbIRgGQe5Xk/T9hJ/OkFR7wDdrJSHM2RWV8eHZHVJa44GTCa4W9AvMsxDjQyasiOkxnL9HrZOu6tY/ewZbvbU61WvPzhD3EeTCHMHFppFlVJYQqst9SLhfADLxaSYGjBuiHRfznvAgONgDQbQnVUiE0sdPDHqePn/VDI0zcbKeHZ04KWyXU0WLRCB2aVEHJO3w9oCsqiwJhSGEViJbV0cQAdFLhLY6m0R6HR0ZlECBmxMl6Roz1yvoMwqyhdUgdGhlxmRs+jAJq4S5SaEMFO9OAlLzeURcEnL1+yqSoMFu96cGD8nmta1hc956tV8GLmBoUUAyp0DC4hgEKZQ1IWXCfqz2mfcBpIzeT55E7GCSNrBOYRlE77JXdwzO911CepkccAMOq6bzaGj++jteby8pLddodXirvbOw77Pdu7e4a+l3yJMD9PibMKW/1Tg0PYJPq+P2lUipZx4kXFgbdAB0pjVCnGJFrCF1RkW6oAia0eCNS8SsI4Te/YH1oUDcbsWdQFVV1QL2QelIUga0ceF555eyPWDnZYgLhZl43A96TyfOSYG1tJp45XOyF208TEb2eYRVAe58JUx7vJWenCEwNhvNLU+RE/97OGaqMoQpG86DxIP4xyoFWkdRRQ7Yi5OXIpbaQyrg4Ugp4Q8uojJWgA3M5j7SCG/2BpAlVi3/cMtsf5ENIU1pR6UfPs6TM+/fTHnF1ccne/xSvFYnOJLwocDjv0tENH17Vob6m0Y1EWlFpTKE8B9J3l3btbbt7fpjlcV4tUF8CF9cApqaFgTMFHHz/n5//856zPNhJqFef0ZDRM6m2lFPt9y/ahwZRrlqsFnSoBI2QcXY+zLdr1Gf3j8fH9B93KUNTrzOqUw6eVgASQmUxAMqAdJ242gVUOvHxavKJytNZi+14Wr7AV0vd92h5p25Y+AG5rR4J+71yogJRPijhogdJMa9mWC9WWlB+3/fKF4hQglT6ZAu458Jp7cvL38uNDgGK08qb9nnfvt7neSWAXwWq2CJ0EyTPQM/fu5uenalKPAPbR2xTA8gRI588Wtl1P0MOdAvyRss0kxR09E9GDIyuEUFWNvWlMLJyQ+VOUCd7L0Kjo2skQrs+8Cx/q93lYQT5+oyxMPSZzGUtyRiwKkAPvMfxBKtbJ+30/hNPCYqFU4K7vcUDpFUYZjHJYPNVywfVikbwvQCpdnINDAZbQtF0AtIohhEqkhTE+c3o+CVQIpAipPyOcPAJlj6ybp2Q49sFj56c+jwucImxVhz9Q9INnu+tpWkmAE0YIMz6P9zg3JJlI27veYx1BN9nQHyKvWktBkqquw1Zy8IupbKSDsTnnuY2GaVKjc1A+O5RS4iW1lipQ/OElWXlVOf7NR1LtsioJ5TKk50QFasrCUJcFD23HKN9kZ2Wq/ZEdiQ+1z2UG7OS7jEOd685kcGSyMXd4fNMxcmZlD3Oi3bLshEE5UfHTp5PG7602K1arFduHB/a7Pbudw/hIwzZu049tzQ2ILFl01qycl1pl/49/BU8hEaxZcEOYZ3HX2Qi9n+oFaHvhe4cC74Ri0LlQ2EZ51ODo+wF2AuxKY6iqgipUJazrkqos0EaHyq0KHwulJFA8dWDIjwptnCecTp9w0tPRUTJXlERt/s3HtM+zu82dfY9c7bTJdVKEwvvTFTk3DPL3lVJicKt8HSPopZgkLXp9TLYXznHvR252FXVJtrPpolEc13FUYNexdF3P7rCnaZpEx0uSI0dVlpydn/PjT3/ER8+fY0xBbwfevX1H2znq9RVDucSagkIbahxl3zD0DUN34L5tUENL7R0rrShV2BPUsWS7p6qrwFQSog+GXnSUVjx78Zx/9W//DZvzM/qhl6AJSM8/zgMfjDwJu7m5uePQ9BT1BuozVFmjTEmhNIUDryz4AfUX//n0wPEnALqj6Z7wtZ99BjKJfSZ2yqW/VVz58hcvoMrOQkJs2ILtup42hIVEgB2ttbHMuJ82xud2qzpSfI7AounFrBycQ1krA6qmoFvaeAxA060eUebfNU77seMk0J4YEccT/Jval32Y+u1DoPZDQPfkvTKg8E3XjE/h/ewa4Tre+wnzyfhd8RzmXmRRIZFRW02xgRrBp05AeTTAcjAdX2PxCCmOMnm0dM5jJc7jaw6WY8XH0fDLFis1AwFhZFV0J0XvrQvbbTFOj6ztasxD2DUNb9+9T2AT51DaUxhDUVWosoayxOuCwROAtUqg1HtSyIRzjv7/z92fxNq2pHme0M/MVrf3Ps1tX+PvuXs0Hh6REUFUAsoSIqvmzIBZMaAGIAohECAxokZIpZpBIcSgpERIqCQQQgIVCGUJwbAkMousqiQzMhpvwl+4+2tue7rdrcbsY/CZ2bK9zz733ucRIHfWe+eefdZejbXf9//6CAaUieoeT5riIKpNLzpSjkaeCxW0TL4kK2kLQJnA5mzGzVypWF/3A25zJuQsFOucSTBI0L1tnMFImc5w/pX8qyfvETz1GDQQziY2ajSoNvjsg+29FgiC6E7iLFXVUBsT8xmT+1WumcRI5GAQ8pTrldZgJaUSnIH+NGlObnVZOASxQYRxHKlsp1XkIrh21lJZg7GBOrq96IrRsXUGKmfpmkpz+hbadsUAgqYKKPfIhx9J8IMj2pjW+8G1Ev1cZ0vjARg/pTEv7j1onZDl5DTe94Q2mYWK5Cpw+PS0WA8ei60qzh9dsN1sdIwjb0xClPIlZsE4AW6Y9zSz4Gdifurk06204X4/TdHOvLlNerYmk0Mc4h2uEj795COqpmW93rNeR//yBMCx0cUJpgDJ5SjEKqbOTNywp64UiLdtQ7fs6BYtdW0xlaaZnAWxCJrjMzXbTunsAUiivXPO6vfxyvfz03lfvevaQ3Cs1ych+Nuu6offcwjA89m8bo8sOZkFSwyHNZlXzazhfpxYHlOZl2dAeeEwDEyj1i0Z4+9s3c0EJsXrWD779FN++7e/z9nZWd77N7e33N3e4lyDr84Q1zEaLcxkrcG4M+o2UIWJ4Ed8v2e/WTPstzQy0piAc5ZKRD9bG1mVw1nB1A02eLqu4Y/+5E94+vy5WgONxJgatcYWduQomGhSDO+F6+tbzexkakLV4W1LMA7rKl2blcYKxvyYJ49ff9ANeaFk9X8yoxHhrASVMNQowqHUr0TJh9lVIwU0ZjA9qOliGPWzuotoGeOkBUhS4CmjwcwWZCa6xbeSYY6CH+scPqjvJwnDpBaXgJKk1Qr3NugpreTJcSt+f6i25vgoxJnT37+DIcUP98jCsYb7FFA+VQnuJNiUw79Li8V9hjePxTFQzeeLtpXXpupmEINXY7/uWZbNzFRDCOz3fVyRRoHE0WyWACcUYDs9rjwSeHuXmfr+fEf/6nuNhSRkpOuSBcl7dVGoomBogkJSa5UsxdCafI+IBmT145AD/3ScDJeXF0jd4V1NEIvzYOI4pBlWNxFtUIjPk6OsBbaY6iBSgO7jHReFBzGIUX96i6bQ0rUs+T5XAP6Cjc6c5eC5xVgZjcZP+zoXIwke78E5jzFgjGZlOH2kcUq+klYL0EyRicXMMzYG4yYNdnKtM9EmfHIdcMwwT/iwz3htXpEGrSSY/jSGN2/esFwuc17jdD4p8XZ9T5CzCCZUE+lM5HeGA3tOwvkGNUt3TUNlLVPaMUnAOqHZ/nDf6rgu87BIBscn3WpIdOP03jy2QN5/U1qB0Sp0jwcc0/UPpcPzk1Nbz8/PuGpbLSVeCMyzUWxWUDnSHMwCmJJLk9eHsVX2SeUUHymFtNweOVgzSgGii5cPdK3h+ceX+PGMcQjsdgPr9Y71Zsd+v2cKgpcKL4YQAzLjwOCjNcd7Q8/EdjfC9QbjDO2iYbnoWDQ1y2VHXVc4U4FJlh6ThewEbHMfMHHfzBbA1KXS1eNA2x1PZJWFlFbDcsYf5oH312zEA3JiFbxrfSdB7Z1L58T6zIJj+b3JC2Z+ZRSkIjhPoCTNeEZckT+moltjdKH1fkIkWvzj/rXWqrUpuj4lYN+1Nc5Zgh/Z7TY4WzGOnjdXN+zHCV8tmFyNNxVYdd9wVUPb1FTGQBg1H3o9IItLwn5Pv75jPeyoraetDJMfqLwGBKu/esAYcDXgHK/evGW5WnG2Wml++DwKkvGa0XKUWn3VGV69ec3rq2sGMfTOMVYVYioChuVixbOnT2kbjVn6J2374Cz9RoDuSmbikdZISIskAm6d8En9PFMw4zQxDj5nPNFiNz39XsH1NEa/6+CzeRbIWk4w2dz78HaQvBmPT6eWmmKRC7EqnzGI99GfO5pcsZSuAyJyL1Xg8SY+Bljf1o3kgR6d/PzQcfDGNBYJaB+B3hIMhwfA7X2t9HtAd2znsda7vOZdmvNT7TvoXxxTLVmcNEr6Y0yZsjGmY5L5nhAC4zCQgixFzH1mfyRovGu+dNwOBbNjcJiIXbo+aTBOXZsIzCwWRVPrzAcRCfgIzp3Yg/AIU2i927bj/PyC29u7g7ETYxmEmLYlaDnw+IwgkoF+fl9iZEW+cmNSdqKyXbN4nd5lY59TB7Kb9zxaqeG5/0kTzjvWz71dJQIZxMcX5YD9ojJoTB1agpfD+Y0m29hH7wP9NGiAY0zXN2uB0+8InMzDdOmUwH0MHKUchzhO0zjx4sULnjx5QlVViEgRj3Aa+A7jyCTQkHIKoy5zNsTAvsNBL4FAVWtREmIGkxOeFsWtJSI6PErBsRyqA8z4jnE6fk46770/yA6Vg8s45EdJIEtrVoqmnqYns9/ww+2SKNzpVSno9fzigu12k1Nr5nmM7QuJPhnU1E4C2klAju0yNtayGFRYODVOx/wmCeZFy+dUcII4RwiTBgdbg2ssXd1xsWoJ4YL1esPdesvgLbebnv0wAtFFLQZklsK8j1pqGYVh7Fnf9ZqVw1kqV7PoOlarjq6pqesKTAw8jpnvczsTmk4LrFgfx6sq4c4MwplpksmfP0wAPEnLTUlv85X3aPMs0h088PDUvQX+0AYqLzmeQea1GJjxSnq/Ia+pafKqpBynbIlMFsUDYh1lnLRPNC5ijo8IEtjtd7FKKNyte15frfGmYbQ1vbGMxlIZh7OOpq5yilFDRdt1uf9+HNis1qxvbxj7La7WokCD72HqsUzUCNYEnIFp8vziF1+xWa/5O3/nD3h0eUG22KZxMYk3WiRoifrb9Y7d4HGLc6RdMrgaYytqHO1iSbNY4KzFJZr/wPFrD7otUKNaKyUwKtWqlDUwjAOTH2Jk/pS1T8F73rx5y83tOrqGTDFXt2ggd0lc4xpLzECjfE8TYziUdE8ecn9TzhvZ4IzFSkCwUcuWPKsikYgbIBw88j4ATZ8fYobvAuIfcrwPrN8jG0cANpXjLdsJc27gh8Dwg1rqE206dZ++5GE3k3v9KDWChVbrISHgeMwPAH+6l9kb0PuQs7MUl93rQ6okWb4/j3RxfYj5dYPMxTVM8azkNiWpPQ/MT35/uv8e8dZvE5CU3P7CXx3ye6qqYrFYHDzf2mzAjAA7sixvCsJU6p5jHzk8jsHibOs6uIiQwGYE81nDU3LX+wiaQirJjDYcvfP+PRFgy/z8EFQzrRUeQ/QpM4jYA0Kcm2ESvIj6RwNN3eTy1lmFmYWEh5H2h+zzB10l4q273e7AwgTkin0HWu7C2jgFH4tPFMw7g2QpAM/hEjPG0MQAOttPeAzJxacEtCmVmk7P+zTeaV4K4Pp+ip2/P/ZzT8JTuXdKV5VcLyF9d/TAe44jkbk/ZJk87d6RJ58gwup8xfnukt1uS0h7PfPGCSHQLTrCMGpQrchBKfWACoXO1NiqitWWQ+HTO7fncIDmXZqE/4N4JlGFknGz0G8Tz3P6vK6rgZa6XfJcHMPo2fUDm82OzbZnnLTQnUlAHA3OjmIHRgzBm6gJ92x3G97ebKkM1A6arlGA1tU0taOunSq4RTWdWVI9lHsLwJjAtkmDcDgEGRm8bzU9fJxmq0d44Yg/lPs20eDygYddUkE+02qTEjWU7zaU2hPJm1aiYGZ0rAXGaWQ/DDG+IUQeE2aFoNEgTM3CVCmw3e/Z74foWiS0bcNi0em6QRhDYDeOWC/sB8/ddmA0DYOpGaRhItUGsLiUi9uCVU/ySINUSdnUDd1yxcXjJ2zWa26v3tCPA127oF4KYdzi/Q7DCCatA8/V1TV/9bOf8Sd//MdoXEJKN6n9Eaz+5xybzcCLb15DtcBUC4ypoiW1omo6lstznK0wCI5DWn98/NqDbhFh2Glyfz+pM/ww9vRTAtoeLFSV00jodsnl+Tl1XfPi5Stub2/ygtLkIWoYt4VYfwCaEnOeG5CvmeXT8t+5nff9KCNDjQwkPdraBPQl8qRZGxlswcw5ZPwUYC9p09KRc+oWfXlIi3Pqu1PXvPc4AYZLLXAa14cAdVmk432g+31Cx8FnkRy8cewr/5CrzbtAebzi4Nogoj759WyaCgk4YfPlBwDdmEy0TlksyiIl5borMBcpG0Ue/pkfz/dI8hPOEPcAlJ/qV3l/AvTJnUY1UOW8pJ1gD4C3MZq2s1wXqu21WAFPIEQGkEzf89gdteqIMZZMJxCF5KOtmrjKrEEswHbR2/vi8Ox+UM7bYYNKOqD3STEBEjf4vPxTEDSROUje5zamwEpvT+szuwLI7LuOMeVyOhiP8vff1rHdbrOlJAUiJtB98H7mOfCTZ/QBcRYtPy05ODxdyz02FNOAWUvtLIQJY6vsJ5/fcgyQuE/HDvduGpf79zykmDi2PJV/pwqOx2nOyuvTykh79V3HfH1B94vjtI83mX8gsFwu+d73v8fkp1xNdPI+VvgbWC4X/N2/+y/xxc9+hh8nXr56BcBmu2W33+EHTRBwsVjw8aef8Itf/IJ9EOxR4KkvtPo5T7YIIWj2rikE2rbl/PKSrm0Zo0uaBkrbaIEmj4q1Jq8jawJ15Vg0NZdnNeHJimEUtv3IdtOz2e7ZbgemMIGoCV+14Ua1jxlAG0IAj4LxzbAnYjWaytLUFU1d03aVFuypXMzSocA0ry9jMihNwKsUxPNAUPxdLNOHj9MQ/X27dl7i7+NLh025f/9s2bjnpCo2r9o0TyJz5qtxDExTYAoTvuBbugxMvkcd45KCI7Df77m7uWG/3WY6sl5LpiOLRccwDniEdrlivZ9Y7yaCXdI7x2AqJqPZUow1MbOTifMdaSmp9op2XjDUrub87BLnWm5ub+n3G7BC05xhfIXxWww9hgkVRuDq6oq3b9/w7NkTbJUURDEXvGiNBEJgu9lwd7dmP1mkUmHQaeUyKteAWIKPQvt7aPKvPegeh5G//usv5tR71uBqR9VULFcLzs5WnJ8vWayWdIuOpmmonWO/31NXDueslnuPBDn5Gc5r+ogjJ6JoTi/0ElafAm6HRDS5WoRYj01f7oO6tLhktiRhgxkghAK0Fpz8ADQ+BBwP2vuAZushJvTBxwOAu2xzBmnFdySwXfwuweKvArrL3yaaxZKb1n2tcXE+E5sEbuf/OGjDzE7TuJnYF2dKMCFoJLzk9SMiOud+LlRSAqbjPqagtTyOEJ8FELC2zhlzDvqTWxhbEjVPp8j7aQI+j5+IaJU5U/rFHh5BkuPUXHntlCCR75e5T5ItOTOQTfhy1uqVriWHgBvMYdGKol/ZdSGNijlcfxm8UACchLZP+PuX4xUeGgzmLZqyBIQQEBvdEYxXEBKDRnNnY4OMOQSkh77YqMYnrbsjbfO7hMWH9vdDgifAMAwHIDMVzzkWXnPrjKYO6/2EUOuY5kG+r+8p90oSOJZdw816U4p/iGj8QPDvARsnaC6kubg/RvKOcZkhe34AEjXA5d5Nz8mCYrHODcd78YTUUNzHEU3Iq/6e0EfeE8naUdU1VV0f7BWAtqn55psX1E2DiHDx6JLHjx/nuez7nvV6jYjw8tUrLS6HguxS05/STqYy88aoNcs5x/nlGReXlzRNo8/bbPAhsFqtENFcyj75eRd90fgEjcMCH/P8K192jaGtGx6tWoJc0o9T9Affsx8n1tueaSKmJo3jh8WK6j9HLMHqnjcI06jaVGNG3J0G9laVoY6VM7tWXVKSEGxzPnAbtaoAqSjSzKdMplhpbg44QJ52KTUH94TA00siLZeDtThLAeRuH7ysuP2A36enJJqa9n0pNEYrSRDN0jZ5/CRMXmKRNrLGWZBotZW85rKyUIJal/EEP6qAc7ZS8B6DK330/V6vN6w3G168fAVVTXv+hMXlc+gcIxUj6mpkYrpJSTRVmAv7GNXGl44cNsLlqmpYnp3TW0MYtvhpwMXUgV48EiYkDDSNWu/6YZi1CCFq+oOA0XoeRgxv3lyx7wcmsyBYh3daL8aKoTYxh3ksIfcuPgG/AaC773tub2958vgxjx494vLRIx49ecRytdAN47TQAlHAMFFi3RO4vLzkxYsXuSiEiblyHxQLM+aVkws6fVWQxvlUflTSds5fzMzE4ipDu1hknptA2QwICiASmb8pQCwcJq3P2u5SU/Y3OI5B+knQLoU5qwDTEtuWzO0JVJ8C0AcpFovz5TXv0z6XZu58xdE9D90r9/6SVCryYKz1GYe+50nKRgJWtPiADQq4klSXBaj4mHEaT7ajPFKFwIP+H1HYxDgf6EgeFx8Og8JOCVkPae6yVp4kiMygUocnMX+bX58YVHJrKQWGWME8wSy90hCLXMDMFMjKpeM9ddjB4p7c5uKzdgqTEmJFM2mQQPLAT31O2V1Ovof7APxdRxov1RBrMFgyg4pN62tm2VE+zG2/Dx0TL7gPeBMoLrXJRjhIDVjO74NuJQ8c0zRly5n3/kB7c2odjeMEizo3etZYa8HwmcIdHsbA2WKBNVdxX2k+jG9Lx75N3975HH0YArhYXCnRl+SCkYqMFC/P+sxSKZN+H7fseL6Puck9RYKUTz5xHAlt+36gcqrlXW82nJ2dRSFmrk7ZdR3TOLDZbDg/W1FdnNHvd+z3O6ZhyHSm6TouI7iuqoqmaVhvNiBqTfP7PU3T8L3vfY+PPvoIjOH1q5eaWefEuiuVGGoFJn8GLTqPUaBXt5ZV0/H4YoHH0I8T223PZrNnvesZhjHSFgVnwdQKEGd5Nk+qF2EUwXoww4QxqWqmpa4ddV1T146uqWmbmsbqStSmhqzEUZ4WstIm4QGdBnPwzoMVUWABdSU77c8vBb6Y+zCvokNFyIk9dbAPihVWAG4tZGSyQJVTIQ9jFHItXmY6JZFOayq+TMEjUQ8EAhImrBXqWOzLdg0WLQyX9nKqbdIPE/0wMIWAn4Rl1WHqBb3UjKZmwmGocKj2eDLJ/S66lkRXKWvm0UzDEcREvuQwdYuTEb9b44ctVnYY2WPNxLKtef78Kc+fP+fJk6c4W6mcTVLSxREMMIyeu82efT/hzmq2VUVfVTS2osJSW4PNDNIcZHo7dfzag24M/NEf/iG/G8t0GmsVaFtRM4OVDLaTtds4y2VzyUefPudnP/+CzX6fF3samPzwdJSA+6GjwOIPXZW2x6lhN8bgqopusSgo77xoZG7lDGbT+46AaHoexmTfaSnPF/ed0kCe7N4RcTzFqEuhIK3MY3BdAuvjtmctYPo+zH7Jp/p43F5zfE503FK+0Ic04g+eO273CaZ3fBiZo88lxOqWrlhTUXOQUFXwCbTfFy5yJ+KPjwUEgsww5bjPiQjOE3G/f9PkD4Syh0CXOViHh8/R2AndZ6lkczDHY0wOlkvVDg+fP0MuEVRrEcdobn6C47MWMa3m47WcPyeCm8cyCRky7wmiJt5EFicF2D0aPHP0jg9ZO6U7WWJOGisa4ksCyRJgjJ+zrRhleqrhs4iNVeGSBUBma0ra46kg1zH4tqW1DHNI3h5o+0N9K91JqqKITtu2D9CM+WX90CMsMnAOZZCpvuBAWCotEk2tRZDGEGMFJF03h9T9rUDqAyH2sO/pKEFyAtquzFT0zheY4oLymfM6PVjP+YXvtloKzNkuHlIiFPQ6hICpLPv9HtBUjyXNVc2muhBICJydrXj27BlPnzzBOcef/Yt/zpvXr/it7/8W3/v+96nrmpvbW/b7PT/5yU/oh4FHl5c8ffqUy4sLra7attR1zeg9dV0/TDuNORiP8lxIYDwBz5ShNJIf18CyWfD0YkEARh9Yb7Zstnt2/cC+3zIFA6Jp5lKWH4kaSAF8IgICE8LotWiPsyPWQtdUnK88brXEWdiu7xAZsU4rgGJjoR9XRcWZPs9g8r493oLHI3EEFfNxEBR+cvAKQaxcC+aEUJYCUk2kjUIsWCMMo2ccJ6ZBBathmmIhLY1JUUuKEERdFCtrtOx6W2vmkjAhXpNXmFgzfhx2SAh0jy5UABI5UHAYY1guFqxWKw0OdzVOHK/WO/rmDG9rgnEIDnV7iYV2JBD8yDR5ptoRqoqmstSOaDH1lI6KIWI8I0bLv1ct22liWN9RsaGrhe9+7xP+4Ic/4NnjRyQxKYREa+bMN6rLdWzv1rx+dYWxDcY2WNcwxgQKyyoVcXMF/X4nivz1B93OOj56/lE0WwVcFSu7OcFaif7RYU7nagFrqUzNb/3O9/mLH/2I65tr9Q+SMh1bJOdlHs20W8oRO17LJ84fbIR40cxs5gemHM8alGQPN4py2EPAHaWnk9piZqgWAILkSPVSuDYcAu+HQMxBH08Aj3dpkg401ycA9ruqTWZgUfy+r2WeXSUkoTfDwXM+pA+nrrk/tocCxQyW08/8hwT1byQYQsolWoDrEDx9P3B7cxuBd/LH1jUh4pmz1QizRj0B60LYOAbFx31JZ4xWDzPW3GPwB4xADoFMEjhAQdMshEQQyH2BSOevDIiMPm1FrEECcnqXGgONaDDN7DEa4w3TPUUPD4S8NBZFj0/Or8S8+BEDOZndTcqgtPlZxRi8Y73cf02xZoT5s4ljJoIXMEGwWXhRQG5LH+n0ymIflO2K8k52+Tm+7hg0ZvoT+2+KMTw9XnN/jn2431mNMb/AaBYCgRqLMeEobd7pwEEglpbWfMyb9Q5cqjosB515CHa/S4N/SuFQ7oMHgXA8n5QJqf9STLIx5gDEpxG5v1rvt0mzY2ll1sBsjrbFNWWD5hpvcviGU3s4tT0Iu90Oa212D5rpc6CqKpaLCzabDRcXF/zhH/4hTdNwfX0N1vLpZ5/impp/9s//ObvdjidPn9J1Hb/7gx/w6NEjFl2Xq1kOo/p322i1dM7p2FsL8d3l2jJG3U+SK6AGlmqqxUN+q2tgppCQUsABVFZoLjseX7SEmGpzP4ysN3v2vacfeoI3CBViHEFsdm1LvCSI+oSrcBXYixbFu7t+iwkjftqDTGAmnHM0i47HT57y9MljfFBXnaHvMcYSQmq8gk5jE101SXI6XGenjlP75GB9H9IGTZmcgj4SlC/WgQjBC+Mw0Q+e3d4zeFXKhJACI0Gi/7LOW7JAzFZkkQnvoa40m9u+H5imHiNBc2CLZ9/vETmncg4rh0o3XQNaPyV4VU6IMSyWF4R6xc41IA6iiFQZE+ODIvgOk+bLTuXZRaidiylsfZ5TL54peBCP9YGpn+i3A36awIysHp3xve9+h0ePLzJ9zFnFkpKGZCVVVnZ1dcs4TtR1Q3A1zlQEMQzxGisple7xXJ0+fu1BN0DbdrjKRQnJ4Kz6hmkkqu7UkPxoY+dDEB5dXvJ3fv+HvH31is16l5YjWYtS0PV8yMmPehSS5qldc7SvEpUgbXAvHuNT5TgNA8glb819MC0qeh4Cw0Q0MkBPAC1+LrVJMvtdHTOgEpSeNgFy8tp7fS6A9THoLoOxYJZ4D557wGDua4FDZFB62ESHH2zjQ39/yLkMPEuQkn7i6RAEfCAMA77vaZwm+3fGxEw0Rt0VCXzzzQuurm/ohzG6jajrjWo13b02WGtV46CDddjOey2/f6R809a5mNlkBtJEInf8vFSW93jZ5vWW5hKZLSpHTIA4PoYIDI8bZrWqXOnKEZjXpr5TgzdN1FKXbhNprafnGhHEBHwGnWQQlPxDDVAZZcw2a5IpgOg8xB8ioGVYle8pvpGk4VbDpsTiRUE05acVYQraZme0rSECkFNAP/W5HAOrj89CaoIrOkcctC0/Jw1afvwR7Trk3ohoLnC4v1dPDseMXhl7BV9VVWblLsHz/SP1wxrDqltwfbdRn8u461Khk3e6VrznKHBxcS6xaPRLKQawWAsBda1Jmtv0k6t8vuvF5XOP21T8d3ieg3tEktY30ed0h47IcfCxMYZpGjHGMI6aOWK5XOa0h845lssFjx8/4uLigv12x9dff82zZ88IIfDll1/y+vVrfv/3f59/+p/+E66ubjg7O+e3P/2Uy8tL2rZltVrp+vVaVhtT4cPE3d2a9XrNZrdm0TScr1Y4a+JeCNntgxTwLyn4LpanJ1o54gZVvhTpbnQvSOk/055P+mtBc/C7ytC4mrOuJgRhmCb6cWLfT+z7gXESvNfqmJLdEGKgeJrT4Jn8xORHLCNGJgXdoq4X47Rn6HcM/ZbLR5ecX1zwyUfPGUfP5APD4Ol7zSOdLcAh0ad5XRzPfKZzaSkeziyH3EjHSfJYoQW5xIIYRj8xjgPDMDGMk2Ya8eC9anS9xKJbmNxvfZ6CR1cJJmbyUHojiPfsxi1m0cWqqD13NzcEP2HQImghBL766kuNq6trmqbRYl9RCxzEaEpCE/B+YEvAVw37YNkbp2A2Wiat06BbGzPW+OgzPg4jOMtkYbTqm395eUlVVdzc3KrLk6gWnjDhtxvsMOAQFm3DJx9/zPNnzyOPUOuoTWJdqgxODP63hjFMXN3d0E8TUtVgLLUYlhgmMVBVmKbCE3Cc9g44Pn79QbcI2+0WZ5/RNE4Bt9FFIcZkVb4GgOgCT4xoUbX8znd/m6+/9xU/+fFPGMYp+hvDIcm8H/CTyduHoJ35puKpB1yJ2YBuaeuWytYqZceNlJh0ubXK6pf3NC1JgyhgxRwy2JDAuWQCdpzZpPx8T4t+BELua4MPi7McuH8UzLrMeHCsVT54durTyevCPJwHY3r43OM+HX8+Pu6BbSlcS4T8WYTovpZMsgHxnv1ux/b2hsoamrqJY6LjblD/tWma+Pzzz7m5u+N2s4EiIKnU6ifBJ7nblGOpHx7sRv4uBe0kbdI4Tnn+kzCWQaudhaAy77iQCpmYDGIlBCVNmnIasRZjZ1/uGfTqj/c+zlJ0KxHHGIQQ9yvx+qzzjw+Yhp4wjvhpxBoNqLJ23pcqSES/VOugUlqQYakY9SVMoNomAWAuhW4ks/X7+/29AhmcRqvFtRIIYg6EEwkhpzFU5ioELOF9oLZ4bunTbYwG9yX6ANzLLHLQwiMmXmZ8Kbuc5r3rOsZR4w/S+9qi0EMKWzg+phAYfYDaRWGgeIlIwdzvt9MaQ9M0WFNWGS0beX/PH1vFHh5LmeeuaEMeV0m0UjVW6bv03HEcM0jMP7nx87yeeO2Dx3E/k5XnZMGU4mEH/ybhNf52zuUiJTZqoK1zdF3LxcU55+cXnJ+d0XWdBg5ax5tXr9lut3zxxRf82Z/9GdvtlkePHvGv/qv/CtPU09QtVVVnel/X6rMfgrAfBu7WW65v7ri+uWHfDzRtQ9etqJoqgmuDtX5WIOmgUbkq96QcwUQbDxVEkvWOthidyO4jmIu028zzY6zQ1YamqjlbVARpmaZAP2qGlb73bHcT4xi0bH3Mx4yJiqLgCYxopguPMVEYDIGxF1588xVv3ryk6xZcXl6yXK5Yri5YnV3y+PGTmIta1NJ5u2G32+Enr/yDeekkjXJaohmXF7OfaGzCKZI0wAKIxXt1GRnGkWnQ/nk/MUwTwzhGZYfT7CWi2T+U3hv1AHAhKiailcoFrNHUkwatqeD9yL7fgoycrToqq4IdIRYljAGxqYJ3oh3JTa2pG7qupW2XVE2rI9vWTFVDb1pCaBDrsFYVq8ZacJou0lpLbbSt6tgQ6WhQAef2ds3n3/2ctlvwxRdfaBFECQq6pz02TBgfYPRUxmGCPitVLrepKJZJ1SeVb3hvuNtuuVpvGKzFLZZIVSEYWlvTVBVVU+OdY0Lpv4tONe+Cjb/2oHvynp/++C/5zidPOV88wjllW+pWH1TKQk1T2T9HIBj95tmTp/zxH/4Rb19f8eWXXzGX3y6P08TuXgXX4+9Paaig2EDHDENLfCdAEwT1WSr0Hsn8FbHeScB9H5TaI81J8V6ZCdlDfShB9DEoLvtZMv7jktDvujflqE4grtSilowsHN0/9/lwdO/JTCfm40O0lwdt5jDwM9JXHd/0t+g10zSx63tu7u64vLxUc1ZQk2kCQsMwsFh0LBYd13fraJqZQWJqlg/Kfp3RiHwVjkzudvYRNGW7D3/n6wWMsUxTYIyBcHnOohnfxt9pPlO53mkc57EwSXZTQcIS/f208syJMZX4bhNNlqmPBk8sae+KNIrouOZpDcKbl9+wv72F6EPb1lWMSdUS3dZViFhc5VitVnSrJaZyapbG4JylbRv1vzUGHzMQCDILEgctPhjAd66Vw3V1HwBmMC3KCUNmqCaOoccYHctgIBhRH8I4N6XGO+V9pgAePhb7SkG25bwmYfqDjiO0fQxUbQTYZcBdCrqbczjPc10eIQSGYUTaZvbljIDpfZofAFe5A1CcFKMPduUAmD18DZijvTPfp36nxXdmvqYUhr33Oh8cWkzi1e/t2/FxT+hL1p3iifOYybxPinZl0316lrXsdztcXeGsZQKePn3Kp598RNu2dG2LtdDvd1xf3/DNN9/w8uVLQghsNhuePXvGH/zBH1DXNY8ePeby8oma5HMXDcMwcHt3x/X1Lde3a3b7AVe31E3Hsj3DVk7LYDvAVlSVIQwjcpznvByHsgRksuwUPKX0/T8+BOV8ikFN0jWR1qgYFcKDgDOGqja0lUVMTVgJUzBMAYY+0A8T++2WcewhhFi8y4OZFIhLtDoYyRanaQjcDQPr9R3GqAa9bhYKwBcruuWCi/MLBeOrM5Lf9zjGqtfjyH6/x09jdgcUcyig2CxqaEaNgNIg7yUWNvL0/cQwBRUgvCEEw+S1wm+QlMbLxTiYGJQoOvbGgDMBa0OktUbt78ZHbKXXj1PPfn2DdB2Ne05TO2zKTpP2OffpQsrGNQwD/WaNs7eEZkl1+Yz67JzJNkzGEiTmvRaJqfoMeK2Y5UV5qzOCWIMz6lbi6hYjQj9O/OSnP8M6xxQEYywWT9+ra5AJI/iB/XbHz376V3z2nY9ZLj+Ky1r5uxFBo2UVPBNTIr69ueFms+cuWIxrkapBjNUlLiqUl240Ac1o9q7j1x50iwhf/vLn/PyL7/Dk8k9U9a+7FQSVLEzcfCSgopKKs4aqcXzvs+/zvc9/wcsXb5i8pyBVD7+Xw8s+hHEksHy/D+QHdV2HcxWTD1oON0noxuTUYJnoPgAKDsEiUfhwBwQnXZe1Y/fA+n2gfewGUjLfA03bETBOeaVPAekSaL+rIM5xvwqEQLITlGC0GNiTYPv4uaeOWdg5alsoIpjLfmDwIqrVmzzDpMTYh4ANVn3hQvIF00wH4zTNGT1yw8jgaYqaNBMDf7yYKHjJAXM/7kIJ/hIwt9ZS1TXGOZrK0XRtth5kVfQRY7NVRTVNTFWlVVyHIc+nDRYbYqBKfJ33PgdgUcyVrhMFv48fP+b2bsMweowExE+IMfi8vqNbQZxTgxDGPW7cxRSMFjOOsY1BzcveaYS5F4Kd8AwY58DA6D3WOqRtqduGuu2wdZs1ZHnpxJ/IOw/WycEaSaCUYxP+KcCdYg6UAWkqwzDPl6hmO81+sDb7kJbWpyDqhpLnJ6+52eLlCmEp/f4QbfncVk72Mx3WGBpX4cyhgOiqCgWvp2wE8VHAOKUsJ6eveait1hjqSsGiyGwFSRroe+0uzn1Y/5WQSzG+6X51XdDVqM+DlJlBRONkFFikLFEyP+I4Ufx9Xc49IVVlTMnr/yStP56r+L1IStlW0CoC1llk8HRdy2p1hgTP2A/UzrHbbtluNuz3O968ec319TW7bZ8FqfPzc37/93+fs7OzLNj94he/YH23ZrVYMo2qLb29veXLr79CBGxVUy9WrNozXNVgXY2Pqfo0Lb+6UxEVCSbNZTFfiW7MY/5h6/j+AB8NfwLaIQFB0YwoHK0pq+5nwUFbOZa14boXZJzwaEl5jEdtEgr+RGYOdJB2zwewTsFpv+XtbsvL6QUGcHVD0yxZLFd07YKmbaibhq7r6LqOs7NzfFAN+DSNmtVjUk01mGgls4yjAuxhGplGH4MiPdOoOCIEi5c5U1SIAN+Iut7YkCht1NiLKgKoiPgj/h33r827Qtu139wRpoFxr4GNZ8sWmzTD9wTRcinPAn4QwfmYPrldMboObIMV5cVWLD5oaCQi6ituNXYvIGDVkjjFd7qYy9sahxgdI8TiEJw1bDd3sN1gfI9MEyGMvHr1hn/6n/4zHj36V1gsWwTQZNQqiCSrqEWL2u02W4ZxomnOGFzNxjomLC2wMtBUtVoISIHv7xfD3wu6jTHfBf494BNdffwDEflfGGP+J8B/C3gVL/03ReQfxnv+x8B/M/bnvy8i/7d4/j8P/G+ABfAPgf+BvAfNCsLV9TU//slP+N53P+ej509x1sX0X6o1TjHKyYbuMSRL02634+df/Jyvv/6mINAPb3DJb41/f0tFRimlHiB30d8pE8A0eSaIvugzsioBZan5SM8+ZjLznxJLEM8A2mDAcpCGrjxc1Hwea8+OmflDoH0GqXPFxdyPIyD9vgqUh5/jj8wzkRhMNm7LIcM70KQcM9YjID77ER9mUvE+EPwstJhS3RbTFIloEMp+GFWjGkL0mQRjnJrF4rFer3n99orb9Sbmik+MJzJcEYIPOFuBMeq/jgYgGTkq4x71OvNYaPusU6BdVRXuyPpgzHxtur6cU9DuVc7RNI3m8I057oMPqsGfAFeBFuzK/U2Fc8o2rddr+n6grrUyl7UCMuCYNIduGteoCzVGSwPjA9N+g/W9Qhs7ZxxQm2/QJFLOEazFOUPTVBEwzaB132sJdTcMLM8uqLouCrNkQf0hjFSCgeyqdix5F+vs+ClBiusDhORAIOS+iojGaBhHKi6Ri0yUwFtflIVw4IM02gfg7gQY/SCNc6QJB+5jpDiZxGBtKcPkOdgOIyM2lnVXf6Qgik1nf/TjNyrDrp1l0dSst/vM+BIomzPTnO7zQ5a8U3hcInIyJAEwgW6JZHpWEuh4aBaQ+++J6+IBVjKP3dF5juYm0S0SuzhUusz0Vcdhim5jSRlS101+xsX5uQryk7DbbnntJ370ozcMw54QPE3T8Mknn/L7v/8Ji27Bn//5n7NarVgsFllbN00Tr1+/ZrftefXyDev1GmMsi+UKVy3olktM3eCdjaDaMhEVBXFdVMT83kdjTaRNzrn4voLfcCgIf5sjWebSqrGqgSBxD8n/mNmFJ+IGtXZ4pmFH6NdUfiLqOx/MtxxFuIMzEgRj1OWtbhvcqlbh2sM49rx5vWWaNBCwajTbS9dpXZHkK991S5p6Qdfq+Nzdrdlsduz7gV0/Mk1abMuHqMkX1bonvqGUMlkVEj1KKf0G5dFhQvyE92PUsAf9MT7S1Zq6aWJGIQPBs9tsVGsMjNOkwbfn57Rtg/fzery31mVWhAJ4WynIXl7gzi4JpgapsdTqk4+6+qj7tvJGzRRjsCZQSXQLsTFLj8lVG+LeVZ92CRNhu0dGTxh6quj+EoJaqX/2V1/w9NkT/t7f+89BXLPpnyT/Ggy+n3j78jVTCBhX0eCYgiUY9VCYvLpcNXVNhY3+53GFvGMtf4imewL+RyLynxhjzoH/2Bjzf4/f/c9F5H9aXmyM+UPgXwP+CPgO8P8wxvxQRDzw7wL/BvCPUND9XwL+g3e+XdQc881XX/H1L7/k6eUl9cLp4MexMjLnON73PW/evuWXX3/Fi1evefHmNS9fvWKz3Wru4hLYHh+FlPKu/f8hzCtt8uOH7XY7Ju+pbGE2PH5nAtwPgNyyHRKzljjrNJhPZg2YsSYmS0gEus5MFQ6BxinmdVoDPfuS5sqJHwCkH+rH8ec8EDJ/mMeF+e8CdJf3lyD6+LMxOk5EraxkcCX4ybPb75nGMAPY6OohEWgQNFhm8go26zZKyn6K/ouanj+Nv/ceH3wG4gdkOo61tU7NWiamSRIlNOqjIJmgGGMjqI6BR0fuIqX2syxwkbS1pxQRaYUaq6EkzrnMEIe+V0EEg/o1OlV4hxDTS8Vxjbmvh6Hnpz/9KbvdXoMG4zucUx9wazSrYvKxtlGzX1nDsN9ivZpYc5tiMYOUukNEmat1lmEcGMNEbSqquuaTTz6mXbTsdpq14Pr2VjWARsvCp30mWQDmwcMag5FASkaVRupDtny+Oq5NiaBz0jogaoI2c1nxkMtvR4bxAce31Wx/6PWn3pP2ZlVV3N3dEUSoq4q60ip/JmapiDeoydxPNNbFQhVAOeYHWDMNaNSsWcuia7m9uwMX831Hup6cQB7qy31lRAk67NyX1Box1G3FKmp7r69v9K6QQK4CXBFl0mN0vTpoe0Erj9t1QM+OaPYxTU/X3afrPmdHUhHUUDlL5RqapqZbLBBRn+FxHKmqiv1+z83NDev1mru7uxgEWvHJx5/y9NljHj16TF3XWOO4ubllnCaePFH/491ux83NDVdXV3RdR9t03N7esTo7p207mral6ZYEDFMUCD3EfM5z/wNR25ospIVgYuAgM04p+H/IKj3mT6XrSQbeEei7onhW+k4S8I5rJF0/7nu2mzskqP+2Pjs5bR5iAnO0jouJRcQrAJ4CIUyAjanoLIuuwRinLqVB6Pd7NpsNWfCwlrZpaeoWYyqssUwxI8sUAqPEQESxENI4BDKszW6qkYaKx0aBVdBMJZPvsfjsWlLV2k8Ti1BJ8Ax9YNjv2VurtBtRrXtyLxPh9u6Os7Mz2q5ju9vdm6O0htM4g2gKXFsjzYLzy2dItQDbIuK0XxiSQ8skKjhVCEZU0HDWxgKk0UJoUxCuPj8rXwXCOOHv7qiGPVNQDuasg6piGPds+54/+/MfcXl5yW/91vcUF8XEBklxCZbdMLLZbME5hqpSoSpYWqPKUmft7I73Ldbxe0G3iHwNfB0/3xlj/hz47B23/JeB/72I9MDPjDE/Af5lY8wXwIWI/D/j5Px7wH+F94FugBDY3N3xZ//iX/Ds8WO+9/3vIiKM48h2t+Pq7Vtevn7Nm7dveXt1xeu3b7i+u6Mfx9lPF3KgInBvdA4A0bfhsKeOAzBYAiBDVSnRExFyLeij96d7RdR1IYGcUmtsraVyFQarZhZM1BzOeXZdZXPk8KFZbwao95p+DIDjUfotle3LouFRu8t3PCQ0nOpvHowMsBO4Loh7MQ4ikjWvuYR60c4EftNcjGFSc7FRs7mzFgmBcZzY7QeMVWNk8mc0zmGrKqZAUqIWBOqm0VyhqG+dBvgZXAz8cM7x0UcfEYzh57/8Ent7F2Pl0zzoeiy10wKax9oaXOU09ZJzR+Vw7eFaiS4jQiFsnULX6XKOPqe1EYEEqAtU8F61aqL5uicvec2Osey08w7rNAVeCJ4hFtUQY+d0gMZomilrI+hW8AkGP02sb9fsbq9pXZW1NdaYHCTpRctbBwmMXvNUu6jZ//53P+eP/viP+eSTTxALt7d3/Is//xHb3Y4uattz9/NeTJrNw3HIYB8y4Jovezc5PbmuZT4fQsAbsCnnM2nblMDz5IPznNwHlvfbkFt7ZOn5VYF3uv/u7o4//dM/ZbFY8Omnn7JaLnP6wtKyo+5JY/S1j/YM0Z+k5U5a8YJiqPuNsbRtF9eOUKbSzLj9HX05RVeyhUg3ByLCo8ePefzkERfnK2pn2a7X3F5f45MQH12Fpmni+vqamxsF5AnYZvD+jraU2r38uxBOjtt9+BO12sHHNHaG1WrJou3UBcc5BE2RO/QDPoy8evUN2+0ugzjnLB9//AlPnz4lBKFtGxbLmFZvnLAGNts94BiD4a9/8SUvX75kv99RVxXWVTx6vOTxkye07ZLRe4bR41wVi4Kl9a7uG3k+Yxc9mkNbEi2SAmAXllQb18g8jrNw+614sMQ0p3NOJP1f0m5PYz/PiYmB5+MwcHtzo77VweegTKXHxZ4qIOTx88p2pPlzzLm8h2mkH/aIxCBwU2GcCq9Ju+qnwHY3sNnsEVGQaKwDVyFWXUcmzUWKZtcQcgujkiAFBfowgvFI8KiGV3mZs+oqo5YkybUtrNPUzHMBHe2bWgFUMWTJDlbsdjtevHyptL1pNPC6oAOJF0nSlBAxgDGY1TmhW+FxES/nkjfz+6PAHlCAKhIYRRjjmjHRed+alEJQ6ZBx0IrH9Dv89oZ62uLspE9yipc6Onb7LevNhj/7yx+x3e95+vwZbdOxaBe0TRNxFbxZbxmmgK0aJmsZBJzEpB0mWffR38amhf7e5fqtfLqNMb8F/GeBfwz8feC/Z4z514F/gmrDr1BA/o+K234Zz43x8/H5D3gvTMHzyy+/5Mc/+yu8g1evX/Pll1/y8sVLrm9vGIaRyU8ZpGqZ6vwE3Y7vUHIdb/KHifj779WTMyHJn40CGg2YSAGTUgRI3Aem/uhcCm5yzlG5OpflbYpiFumalCe0bOe7iNlDgPv4fNlOUzzz1LtOvfOh95AYX/4zaaLzmQxiEsADDvqcAjxLppg2fwLGQYQxlqfd9YMSx6alNZZ+GPAxl3oGtKIlcrVM7jQHj5ikJQ9MJmBMiLeYrEFwmDmtEkX+U6O5muu6pqobbFXhKkew0KDA9NBVJIW0xDHhcC3nMTAFk4lDqpDxPgPJ67l4T+lnvN/vCXGMA0q8ZYTKulnI8QFjzb3y9cIsi1mjGYcOAEgImtZsv0ck0CxakEZ7mHLvi+AQWlmAqE9zVTc8e/KUf/nv/T1+7wc/oGtb7rZr/vInP+Uv/vLH9P3ExeUFlYuZgWxq0wy44xTMDTTQtS3f++53uL664sWLF8wc2jxIM951SNz3Cbzr+In6LAZwboZlD9HpBFDLC461qx8CTn5VJUISaG9vbwG4u7vjO9/5zrxGIKZvNLmt46TmZmuSYGEQq0zJiO4LpXWHgHQYJ65ubiHOkGbYSUKTZOD2kHb5XUe60hrD48ePefL4kerVQkzhiDANo8YFMFv9Pv30UwBevnyZMzJ473Pau+M5OBDNCmVEKVpZFJTOSoMYD+BVG4noemiamuVqSVvXNFWtYDjGgNzcbXj1+qUK4cB2u6FuGn7vsx9wcXHB+m6NsYZu0WRryn7fU1UTEmDywturG27WO/7sL35CVVV0Xcvl44+0ynNV0XQrJrlGJs8oaoHTfMRO89DHOa8i9PNxndtIM6fIh5XWFWsKzUSUCj3NcxnXeThcr6fWrpz4dOqCg1sPS7VmRdZut1fA7f3B0w7s4VGiyHQjwd2HMJagc4m6nDS1wTnDFIQpTHg/EbxForCp6252E0zBx5rPOsxpI0P8OzXJxFg2q+vVGYt4dZURmcAJVeVoO4dzVsG+iQnyRDOTiFdNtogv3AbnOK1UesaYPAJ4H1jfrbFutp5nL4K47hPdSrQ3WYvr5TmDbQhUuJCyLmnGkLg6yKQxKrgwOh8e0aI3kV+FqN1OtSEGUf/1Ztxhpz3j1GPMhNgJYwPOOjq30Ow6wOQDVzc37Iaeum5xrsbamrZRf/vXb67YTIGqdixwjHk8HNYo/lIPA3dPkfOu44NBtzHmDPg/Av9DEbk1xvy7wL8VR+rfAv5nwH+D02obecf5U+/6N1A3FNq6Vt9nEbbTyD/6T/5j/sP/1z+O4OeEmS7+1vQ4Bdk279nIf5vMK4v9h3pFG80RgqaHS5kMVJs4b/NSG1D2rzzvrMsgyxVAKd0TQshvPyRuf7PjGEiH+YvY7YfdSY7vvf95vv/wnTqeCWwPw/AgyLZWI5sRYqT4yDhopPj5xSWL5QoxUHvPru9Veq3UnN1vtwzjyHK5VHNabNc0qAl3GAYFoWGKRC/55jucFYILhbSuvsESAtMQ/elIWjDtY9dphS5b10xWGVsubBmfk+cQ8vgmSm/zeijWRsFwJAqaCTYqKDg01Zd+6/rRYK2WfF6tVvhpYrfd0u/36sIVpqi5GXDWUjk1n4YwB1NOWppSwZMQCwPZojMhglCvZQ2cw5gGF7MR6XVKhA3Rz9ipNcdikTDxkx//BW/fvKSqa27u7rjZbDQw6bxT4mk0eHWUlIVGtWEKDNJ+0Tm5vLxktVzy+OIc/BhBt0TT+YFo88CuKNdqGuso6EvMrBQEbwImWkWSRSphM+Fb0JcPPL7N895FEx8/eqSFfkLgfLWibpqDbDxpbQY0S4HIMguFQR3cCdYQsvZRrw1e6IeRq7s1r6+u2fV99ndXsOZIImIan29DwyQBdci+vOM4qk/rsMcZ9SV//uQxrm6xznG32XB1dUXf92w2Gz7//HNevHjBZrOhrmuN33CHsRv5fRyukPv0LeCDx0+Trn0/IcEreHUGU1Xq2tE1NE1LHTXru+2Wt29f8/LFS96+ec1+v6PtOr77+Xdpu46/+yd/ki2aPgS26zXLxYKmrmOGC3VT8B6GcVQf4WGkXiy5fBxdTiK984Axjrpb4SW6bRp1gUscxchhgLECPlP0X/MqT5OnsrYozhT10M7OVVdNEoITEZJ53gp+lsfUpKxe87qTKEAXK+UQQJf4OfGtENjv92w2W7w/bfXN/bv3LImKivTtLLyT6K6oMs0a9WFvG0drnLq7iWYXmaIAroGRE6MfGYd53VpbYV2tNBlwRkBiURtjwDqqymGdAm9nhDAG2I+IqEa7brTwlBZvCXncwGZLA6EmhirGDqoSZX13p/NfDGCaLwmCCf5AWZPilARyWlPVr6h11tQNrqqZbEV2g8Gg2u60cjTtXlKSzJa+1O5iPxlLiJr7yhrqIAxTz3h3h91tcGZEjLrvYef92DRaPdVi2W13CpxtrRU4BfrBc3Vzx6uXb9h5Sy1Kk6wEJiN4o9nGjKkYB09babC1LXnqO44PAt3GmBoF3P9bEfk/xU6/KL7/XwH/1/jnL4HvFrd/DnwVz39+4vy9Q0T+AfAPAM6WC9E4XjUFbYa+UCmcdt5Pmu18DjnceSfv+ds58qOOgHdqZwiqPRLnZgV4XLBJW5mIUYgawTKoSaOywUpAbNrcQYtwlEGR1mj+7iPi9b4F8S6N/0Paa2FO95fyTJ9yK3k36Nbr1eSkQY0+zIV1xnGk73sAmqbJ+T+Pn6k5QWNxhGHgFz//BdfX14i1/PD3/4BmtYpFNwCrftkhqCZ7CkEzNaR3Rn/Ovu/VbSKEGOgW8yMbi5fAGDQq28UCBSKx8EMEyNYaJGkWUBWgtZamabFVNQMSY7M5Vri/eTNoLjXUB9+ZzNgS8yKtq8zcjkF38XyTY7B1bCNareuaft/Hiw3DOLLebBR0W4s4dQd4/vwj9vs937x8EZlgLOoyeaSyM4M0gojBOEvXtYz7yCyAlMbKMPt/pj2hWgULzrLe75murjg7O6NedHx8fs7V1W30Y42pA8lF2HVtoD7hzqlVoa4q6rqhrischsZZurbBwOwGhDb6QFt3sEeKNcy8zxPDUSFSg2TVxzz5wh+6FASx6oNZvCPPf1xHx/v3Ibr1benZKc1i+l05h3GOx48fY4yhrusDwJnANVHQV013OS7JJStqQ1Gt/3bb8+btNa/fvmU/aS54zcsbGbUIccZKWHOvne8F4VmTob+maYquUyM+Vsi7vb5GbIWtHIvlis8//5yvv/6a6+truq7j448/5tWrV5ydnam1Je4Lc/SK1K7045P2OioMpknLZ6fA9rpy1FXNarXKgXUhBIaxZ71e8803V7x5/Zrb6yuGfuBsteLjj5/z6aefqpVoGDlbrVh0XXahUyFXaJuWMHrevnmj6f0GT1U32QfVupq6Rl0cstVVjyGWBp8Xvc5h6vBMAQ+GtoglUReIbKk7Wo/K22bangBs0o6mz8eAO9+fgC0zvJbi2SW/P747PXOaJu5u7+hj7Eq5TI5dSw7uh6LI2PFv/WjSi0UIkjTeBldZKhddqTqHYDC2wtqavvfsI5/x3kffYi1sY63HUEdBbUTEg7PUdUfdxhgtE33/rcFUWrxNvMGaBZWr0aw7h6kbJc6Ucaq9TRRM44dqbm/vGMaRqqgDkIvdFfOa5jEwK38OLEFB/bVdd0btOqLTShTGArGsDGmvmygZiGh8ALGdRJIQEmmI7RU0x34jHtMPDH1PZcCKx8uEwVBXNc7VJK25c9FVK8A0TNDOAakYGEdhN3j2YhHXIa5jlGSFAMEy+sDtdkcIQmUd1kBT16r0e8fxIdlLDPC/Bv5cRP6d4vynov7eAP9V4E/j5/8L8L8zxvw7aCDl7wH/kYh4Y8ydMea/gLqn/OvA//J97wdylGohyMZDcmqb+YwuqEO5Vd7BNA+Ph767R9zl/oZO7z/4TnRZqB929I9yWtwjVW896FLRjpMgN8T1XrQ1aw0KQnWiLuDfSNN9DJRP/V2mkft2mm4F6xIFjGma6IcpuzD0fY/3ntVqpUzfzCWNS83+MAyqxWwadXnwnn4c2A8DOMd+GDRlZHQx0fuEaRyZxlErS1rLGF1XxlErSU6JoaGAAUkASqtSuZDMw3NgT1oIGqTiS7leHU2MxVQOnEWsySa8OFH3IvkjeSP5us5PU6Ca7tOrDuc7aaLIoP7QqpLmjKDazHEcGfsBP6lWznsfi6LY/J5pmjToTYSz5ZKqqnj8+AkvX34DYdZbmEjkgsymStI4WkvbdSzbFuNH2kr47NNPePzoAiIDSaDAOUfXLUDAdS3eGIa+Z7fbawDQfuD29pbdfuTs7IynT7SCnvroz7DN2FTm3FLXjq6tFZZH/1nxM+UQQYWDzF/eQzfkPqtWOTRoQaG0/o/Wfro331A+M2mW4ueD7/6/fCTdhgqIDcTPiemmufWpaQL9ODJOE5VLfrZzt7yoIPz67RWvXr9l32vMzWQcYpWbRiMyJmb0SbS07O+3sdyVQgwk0C0x1azFx+C3cexhMOw2W2xVcXF+zm6nftIfffQRP/vZz7i7u6NpmpjpyM+gMr0nzW0IeD9FAKU+pclc39QVjy4fa/aHrsuARkS4ubnhiy++4MXLb3j79g3eT5wtV3zns8/49OOPeXR5SVU5hr7nm29eYIzRzCNekADeC/thVC3dm5tIvzxYh1iHHz2TDDSNujF0bcs4DDQxo1a5otabjboN+BCzCTELo3Gy05Is70vQyZi4Vny6b56MGfBJTLdWzGUhueY5L5XJxcuO5/be5wJKl3wnhMB2u2W72z2o4X6XcKvKi/esvUwzNH2oj/Eo1mi1RWPINEgVCwAVowUfLMGrIs37QJAhamEFjNC2GkhbNU1UEkUPaKNxI9tNzTj0yossNG2T9CVxLCXStjlhg+aJTyDaMY5jdMG5LwCJCMvViqfPnnJ9fcXd3V0atEzLDnz4RUG2qxu9JgSsi4A/K0X02b6gGRidbxvXRBLIE61JVl6MgmUZB2S3xox7jExIGJmmHj9MbLfzGFW1o44CaNe2NFXATxO2crk2xW4/sh8mvHGEuEatmT0TlF0ahtFzG/YK8o3Fmj3OWt03Dxwfoun++8B/Hfjnxph/Gs/9m8B/zRjzd+NofQH8t+OE/AtjzP8B+DM088l/VzRzCcB/hzll4H/AhwRRcrAPDzbkjMELwscshWftp7m/ccrvP6gNctCKuWHAw8MbL4t+aimDiDHq+O8PZPX77brXvhkp5c1S5nwt3U+OCdcHMaij9x2D41J7XZ7P54rPpXb+QQEivUN00Wct1DQxedUUjeOI956qqg5SH4YQtIpdTG/W9z3DOIJ1uLZTcFpVEKtFddHUGtK4hZhuKWq9xmFgv9vlIjE+jm3ZjwQYkzSegKSIR6whBAUOJo5FiNruOd2baj0TIbPOgJ2zjaT83DOcPj4ensPs5xavS0A8MbQM0NO/IjGiPWig4uTVBD1OGhvhNXvpqUT/qb2b7Zbtdsuzx495/OgSYySmRpRMEFN8hRaBim2LqT1TQRCL+gA/ffSYH/7gBzx78ojVsjswmeuP+v4OwbPt+zwaw27HGMHrOPRsN4ZHj845vzijbTuNXEcDXvf7XdQeJbrgs4vWfhj45uUrFYokMQUKSv/QnBzSn3T2eJ3fEzpJwH7+MAONQwGqfM7fhpvYqSO/uwS40Y3rYN+aQtAjUjABwTKME6MPdK7K1M1gGMaJ6+vXvH79hs04MUpKOaf+weoXbrPv5wG1PUGXPtRyFzFG1p6q9llo4numoGZqScFeITD1PbciXFxc5CqNy+WSzWaTS04fFypK7QpRAPdh0lgOA1XlOD+75PzinOVySeUcEgL9vuft2ze8fPmCr77+muura8ZpZLVa8cMf/h7Pnz/n8eUjFl2nayOC/fX6inEMrFbnIBV36y1XNzfcrdestxtGL9TNgqpd0XSRWsVsDymWBAwfPX+OqyyvXr3KmZAEcr7uuq4Zpz0hmLmCqknpPFOfjwAzosHgaKXE6oiWJXqUlTSVOdxbiXUZKNKOzCA2ArHDZHTzOry/7zjcV6gL1GazUYEom5ujIGHI9Cm969Sq+jDkkPZ5pIE+Wp4NSDAxI4hQVQZwjCNMU7L2pswdGqdmrGZqOl+uqJuaqq6Q2E7VvKv7nrNazGq3Xis9HMcI8HWvYYjxErO0lLFDHAZrLHX0uc81JJj3nIjGRC26ju6TTxiGgf1+H4dx3gt5/AlMos+oEHWpMj4K7hZXpAJOAtpBfYWSdx0MvGQiYRFsmAjjjlp68DuCDIhXV5sU34MI+2lgtxsQ7mJWIEfXdpxdXvDo0TPqxQq1hnhV8Iho7kdj0bJT2poghlG07sJkjFZKB5yPZesfOD4ke8l/mHt9ePzDd9zzbwP/9onz/wT44/e98+iurEE48c0MWU9IwOkvkftn3/fK8qOJBEBOX/LwY7SBWVtUVTVVrXl6NIPGu59zrOFJRCWDW8iBBPaI+ZRg+56bwtHGeOjzOzXVxe8kKcvRPaeeewp0+3FiHLUoSyq1DqrNrqqKxWKJSKDvB3b7Pbvtjt12qxk+YuCJsVZdNYyj6pbqf4mhXS559uwZ55ePWF1cRE2UbqhxGNltt9xcXzNGM2Mi2l4HKv+tSyAxHbJmIFXlmizU4qKEFUvJWs3iMcX4gwykIp/RqPBjoU0J4mkskeB++svMzzIpPZdyp4P7JQUORVelKTANYyx8Mcyp0mT2bdQsItwDm+V6qirHNIy8ffsWxHN5eRkDt1L/kl9idC0pxtJIFFwmTz/1tEZonKOrHbW11JjsXuIlMIwawOqcxYZAbS3e2uhLGhjGPSKeuo5aIwk0bUvbddR1pUBHhBBUg5lAUwjqYy22oh89m12PRs+bwheV9wDvU8cMYE8J1RIOhdTjfZHW2TzXcxt+VS33uwDqKW1eSWsOaEYgp3ckAVrUUDx5w66fWLQtWC1H/vbtG65vrnP1No+NIE7BWwZi8flBVMAKUhaBmcHat/LrRtdZ6l8qU/3mzSvu1humoCnZ0rimn77vqZsmv+/y8pKkjW7aJgf85UqCQVT4DirELbqW5eKC8/MzmraJpuxA3+/46tVrfvmLX/DyxUt2uy11XXF2dsbv/d7v8P3vf4+maakqvb6ymkkhePXj3UY/5H6Y6MdbfvnlC+5u1xr83dRUzQIJQtMtsTFWRedmHhHNYSG8fvuWj58/wxrDvkj9Zq1l2O9pqhrvt4hLap24NiSmqkv0sKSPkV+HyDiT8FRCZFNYMNLfWTNKxMEHPNsU1RTJ9Pd4ng/4dv4+KjHM7FZyfX2dc69LopWRmUrCrwmEcuKZ5jQPPXaHOdaWK/31qpgWi8FjTKUWNqcZoKZpZBpDrkIbDFR1w+rsjKquqasm42VjJI9vWSi3a1uSRnmIVuKk6EuqmIPxTm0tfgIqcKcqu7PLhD5hv9/z8uUrLi7OD4Lvy8Pk9QDOqpAxEhRkiydKOOpcYkDVkJbRaJJaXygzTATf5ZwYIbrhaMEeP/Qw7iGM+DDi/aDB/1HDbUQ1LRat8xK88kXGwGY/sL654+tfvqDplnTLc/wk1O2ZFuSZAs5q5U7NXDLhg8Ukf/WU+ADFY++i0L/2FSnL4z6zmaXoxBhLRpW+eZBGPwjUD88/xOPex/xEkqSsDbDW4aoqB1jNYv37j0TYykPXYeHX+4HM6KF2fyvgnaLTju5/CFjfe6eASGDsB8axxznHMAyMw0Bdaxqi7XbL5eUj/Tt4BWi7PdtdT98PMJDzbreLjsZV9MPI3XrD2dk5VeX4/LPPsMYQjFa70kCvWMp9t+P29pbtdosUmVAywBHJZdqNMQSn/tTWGNQaLllTp64wHvEekSr3WzOlRA09KWA2ZOCZ5y8B/OIngZGkwTYF8xCROZCyGNYkJGg59tmXdIwge5p0HE2QA2J9T1AqmEp2Jyjao4Kko6rBDwOvX79BRMd3HEfVnKHFe85WKxgGBq8puRDN2Y337PdbjJ84WzQ0zmKC+tlKCDFfdjJAxkRSMduDj4Fo+37H1dvXvHr9CpGJqrK0XcPlo0fKZGL/nNPy8UmQSxaMIVaAc67m6uqa7U5TdiWgd6hYmTUradTv7yTJ27qcx2OAre5NyepBIciGmXlHAaqc27gY7731Q44PAeuntN2n7hdkzqqQbkEtG7thZB8st7e3vHr1irv1HcZp4JECBokZhrUfIfY9xM8asCsREE9x7Zl7TXrI53f+nrzviMD77du3vH39Ghs8zhpNB+rcQX/TvCVt7zAMOY5kHEdevnrJxcWFWi3jWDljWK0WrFaXrM604ExTVYTg2W43fPXlC7742Re8ePEN4zhQVw2ffPwxn332h3z00TNWZyvNooTLVWyDn2Y6NHmurq7ZrNcEH3j1+g2TGKq6pVqtaKyjqmsd20FTuJW+96Wontb26Ce++eaFFnSpKrUUou4X6/Waj58/jxlVABuQrPWMwn9WIpgZGCXQFoSU3rQUHIXkonSfLyThraRopfIo/Z18fg8W3r25L9fG7E6RYnQO6F3qUdJwF+vg+JkPvO6grQ98m+kyHozT+B+tGAmVtfjJs91so2xtqOqK5WpF3bW5+q76brt5zCXJCyaPSdt1XFxc6FoJgZubG548eTLznKzGJwvNJeAWY6iahqfPn/Pm9WtNICClfUP7ujo74+NPPokBqZquMikG5/GPa0Q03d4YglaZFC3ag8R4prhSLEHdGAvLQ1oTaS3FLO9ArGthPEY80+YO0+8IvgcCY5jwYQJiRizRqpdVXeEqTWjRb3f4cYoWGXXr2d+t2W8H6uU5nRhCcASvqQ0dKUMYOCuR32sHkzUoZaJ76PiNAN2nOjCD7Dno4dR1hyERJ5jVvC4OiPr9DfdwW063OT1HzSkKXjRXJKYwM33Q05J2QA42/oHG+eDih9p0X0t0fO8x+Co1oMfaUHN0z7F2+yEtt0Tpue/7mP9WU0ilYMW721v6fa8ZWqK7RrAWW9eIq5CqolmdqXY/AhhXNWAdXrQcdYis3XtP7z0+ZQOJxGC327Fer3PhC4kaGmKKLT+OMQI7+m86rf5mnVNf7EgYjSVqwGP6r5Iwi7o0hAyyIvs3mmVlmjyuqrCVPdAwIDPhSvNltfHzuBurvm6iDEXT0Xkmr77oYRqZvMdPPqcNyxKkSNQ0k7UmB/NWrDlz8M45INOqeh1n1B/djyNXV1fZD94EwXhN87daLhmswe/3EKt3Wgz9tmfqeypLBJtq2hbvY7W0uY0m7iPvR8ZpZL/bcHV9zddffcn19RvGcQAcZ2eXfP/7v83ibAXM6zYJWc452rYFUYBYVw3eB968ueIXv/xKC3sw769wINEc6L3yp2AMsaJR/ipAQXmONV4z8J7XZBp/BePHeziRqbSuvo3WOr3jHTccaCIp2vXQM3JFwSR8xDYNIfD6+pq3sUiLMQaquig0FPdLWouQmZQGmYcDrWwaoxROqW3QDBDpmncfPpZ51kvjFse6Wl3C4vOytjPt0SiQLRYL7u7uWJ2dsdtu6RYL1ps1Nzc3nJ+f8/jykrPVgsvLC7qupaoq/DSx3Wz465cv+fnPf86bNy/Z7jT7yfNnz/id3/5tnj97zqOLS5qmRpjycEwj2ODwU2AclRbe3dzy8tVrbu7W/NHv/5Dvf/93eHO91UqQtoo0R9eMCms+VzfN2sYT8yhBmMRHQVPmVLRVpSkSrcFPHjFhtkQQi9sk/yxifEqUD23S/MdxlqP9k9ztTJG5Z55Hic8x99t6LBTlfZROPrwO0vXqmrPOipeD9WPS+Om5XH014/tkbYF7m/MDD0EtOGIEMxmqKuQ9n6zV1mmOpuVySbtosZVTq5ItZ3EWTaKymNSqJNScXVzEkvITQ98zDgPdYqEKqINWpeD+hDFMHouz83P6vufm+lrpctSemziWbddxfnHJ848+5vWb16rQCfn2QiEUlQmjBx8YmehsTWVjBjciThK1HRuT0saS96MKFcKE0ZoHSLaWinjE97Syx4SePgx4mRiJVVFJixEqCbjKsVgsWJ6dYdEYrtu3V+x3fVb6+GgV9tNEBbjIPk1AB9wIRCUQlRY9w5CB97tg4q896M44If1hjvfXu6VLOL0fP/gR6ZL3aH7gBGOL850uaxo1M1ozS20Pvu8dz1TB6mFBo5Qk3mX+Ko9jf+3yXH5q+f0D43FP0x03DSKx6IMGGY3DSAjqDjBNE9vtlrqquL691SpQIXC2WFLFkq9WBAkqKVdNQ9e2WjzGaqXGKuYLbboFbbegco7b22vWNzcM48jZ+QXOaYDIfq+5WZO5WwFQwIaA+MAwaBS5cwqkJLqdBEYInhAqTOVoF63m+ZWAcfM8+YKbaIowfzBO1qiGo9/usMbSug4bs9mo5iJEAj8D+OQnnrK6ZOHAe8Yx5VjVCpiStNhhzpRRztmB28QDDOQgPiC1pbSqxGpzSUliDQQ/set7Ru81INH4WJVTGVhVVeo/jQHvNeBSVOPZDwPfvHxJ8BOff/oxjx+d0yw66rohALd3d+z7PTd3t9zcrbm+u2Xf75mmEe9Hqsrw5MlTPvnkc41SFy0jrGkcNZf6PozYKsSAWUdVt1xvrvnqy695/fotk1cbRMq0UdKch0ZKEnG6J/wmDWvMKXNKOD46P3+WWTgyRXDur6jhftdx8MTUjmR1eYhWSNozMjPF4p7NbqdrpwgSzPQiojMfBd0QNB/xFCamccKYMmNNslQUmvEDkPbuITmgffnf6DMeNXppuJ3ReQpR+AkS2O12CqJ9wDrHME3Ui44nT1VrOOz31FXF0yePMQZev3rF2zdv+PLLL7l6+5bddkfXNXz0yXP+M5/9EZ9/9hkX5+c0qSAWJrrlqRVOgmEaJ25u73j9+g1XV294+/aKIQSquqFennH2+CnPPv4UV9eIWHIlANEAAQAASURBVKa0/JJSyGjavxAzLR1jxAMh2mpw9FyWnaz8SOvOWoONY6K5tyf8ZGJVwFTsRUG0sbFoi0nFTuRg5NOEmQjwdB1ZpVcuCg4PcMVTvCvtzwOlmznFF/XzMAys1xu8T+06fpc5UNLl9mdlSXrnfavz8fjeaztJJI9WvFj8SNOp6jrWVLVVrr+BNdE/Pgaec9wnc29+Qa1FVVXRdB1+uwXRtJN1VeGaRnlpFtQScYvgOwuhWoRsdX5OXWueeETYrNds7m4Zx5Gvv/6azz77jPOLC9puybTZqGIkhJjSuLCvmEDotzDu8VIzuRorUZgwgBENoozT4kSLAcXsoZrjpMjzH6KgbLGYADIOhHGgkREnI1MsdOSZ6as1RosMeQ2krduW5WKlwvPz59zernnz5i13t3eMg0emEdfvWPoBwRJMBQg2BHLwZpwFYy3eRkWqeTe6+7UH3RBTxKTjAwByeRyT3fdefwJIf6h2+/QD9b3WptL1UZqPGohy6x/rbo7fLXkuJTPG9/Xl2K/slKb7FFg+pQE/9fzyGcfnckBIJDTiJ03V5dVbq6k12GqzXlM5h58mNpsN4zAg3rOLzE+CRuDXdc2z589p61r946uKOgVTiijRj0FfhMBuu+PFy1f4ELi5WwOaerCpa5qmyZrhadINi/cYrxrryibtl8Ro8+jmIGoidGKpK0dlgCCaWs1YvAg1MyMgeJxVd4oJjcTWcrWaAjMItItOCySImtMUtEf/61yWFvzk2e97xsgYx2GM62YGxJK0gZGxUQhTSftQrrFM8cujZMzFPVl7kQl1HB9roFI/uZvb2+wKky5KmRvSGNnYnq5pED+pedAJ+2HLi9c9NzcvadsaF+coeMGPPjJpze09Bi1vvFg0VO2Spm65vDxnCuouYsZAE8t8C4bRR9ciYwnes9/tubq+4vbmVq+PbZW0nssBOLEH7u+jhCsTuMwDRJxOJchWDm5Kfvap0MnxkQE35Lb9KsepvZ8bfnRdIWccnhfJQpQusOTHOAtm2f2JeY0lt5HU9hACo/f4WL0vVVyt2yZnyAkIUjDtdCQwd0oDenDd8fyQZrdYv8XaP1Y2TDFt3vbla5q2YTcMmKbl+aefcrbsaJ2lQvj6q6/5j/7xP2a9vuPtG7W4LLoFn3/nMz7//DM+/ewTFos2ChJOU4uVjcLiJ+H65o4XL1+rj/Z6m4u51d2SVV3H1HKWb169ZbU8I+XbVwV31icC5OwJCbCULmh5L0v0oxWo65pT1swpZi/a7XuauqZuW+pKBYNpnAjWgEnFgjR3uTijJbUT7zKGYA0mSGSFJn+XBdYEAFOHOM2njnkZoJYomYUOij0486LZZWbWcitAn99arGOZObMCKoXi/gP23jutySfan+JHrLW42tHSkNPCJgEijoqiB227pBoCD0idgoL4fr9Hpom+77m7W/P48WOsmzNgabPMwY+es5jKcH55ibu8zFbly4sLrt60bLea3ebnP/+5Zot6+pSzszPuNmvu7u6YfKCO1Z3VahCYhh0MW4KpmaioRe1XWq8EMIEQgbUJSVhRzfxkRAG2wm2IVR1s8DAMhO0eP+i6xIeoHAtZgDQRcAcD1inwXq/vaJqaIdQ09ZJnH3/M048/Zrvb8ebtNS9evaX3A3bsCVLhZQQT50rmuDxrwKHVwTUo3N6jW+XxGwG6f/Xj/UD7fUzsIRCa31BqAvM9xb1J8je6eY2rcl7uxKQzvSjATSjuz1qvo56dAsyleS6ZYsuKmMcMqySyB4C5APzH4FoB9f1zub1BfyQC5hQNn6oWJjMmCHd3a/Z9jzOGu7s7ttst0zhiQqAqiUHl6FZnNE0by7dXBYCUbL5O58Lk2fV7vDHYpmYIns16jQlCfXmpwY3RD9vHghlWYvCf6mLBpEpZsaBKoRhAvGqSbHQNiL6OQYJGLgeDiVUVDVEgCJHxR0TnfcAku1UK5goxyDEB62nU9FGxWphPPmSgwXjzYjjI/Vw5R9s0+BgwGAfngBiYeK5YzIfr+kjTnQJmZpO1xGssdVVpBHvUaIcwwxwRwcRCEVlZ6RzdoqOqBOghDBjj8Xj64AhesIPPa81YwTnVfjYWzpoOW6kgphZRSxCPnwaa5lwLIHRaKMcHw34Y2Y0TXrTY0e3dHbvdjj7E6qJRy4W8PxvR/UNiv9J+T53M3xKQLGwcaH4Prjqam+JzBtzF3v02AYXpnvKZ5d2lCxREbWlsZ0qZqfho1oZZO+f2BeKcJ5P/DHimmCXHl25pRoNsjQNSNhsSzDkaE5kBZRYqOS0vnupr+c78d6H0uC9ggGCp2gWXTzRN6WIcubq55tmz57S1o3HQWcPF+YoXL75W15O24/d+8Lv88Pd+yONHj2nbJqbF135bHJVUGNHS4Fc3t7x49ZoXL19wc3vDOAVctaDqVpiqUlN1dOFQ7Z5wdbdh7wPL83Nubu+07Xl/66/KqgLDlqfNIY+yWTBXenycAtE5FzWmNTvZs+l7pO+prLpI1k1DVTdMIVWmnZBgENFcFGKN+rs6XVPWJK2tNqqqqsjWkpvATMuzYFXMmTFz6fNAyEqQLNTGMcjk+YB3qbC42WxirEuhVMgSUHq/OfhXSXWsliiHFsuHjgMeS7lD0oq2GOOy1TsFOWIN1qUc9VkvfnB/gqH63LnIUBpXEye7qirNyNR1bNdrda+La3SxWpJ894qRyEcJvMtqayoY1Hz08cdcnJ1xdfWWIcZenZ+f8/jxYz42MI4T+33Pbr9nfXvHfrtlnEamcY/rN9h6wRT2YKEODcZFTXHU6jsjWHx0MYmCfJHtzcY1ElIVhmki7DaIHxXAxz3jcPjgefr0KR99/BGTD7x8+ZLNZoMNAb/r6bZb6rZDjOAJGOfoVis+aRf048TrNzc0uy31ssP7gcmCj0UJK2PprKGqUgIFokCZJ/rk8f83oPtvpI3+W3hOaUrTv8ngSmKRGvXXOizjemrBpyfJMVc5kuJPF6Axh4THkDMNlG86BaQPteqHnw/cT8p7Ymfz34XbQ5gGreBmLcvFgt1+p1H4Euh3PXd3d9yu11jr2E8Tu+2G/W6HFQ1MQpT4ewQ/jHQrQ1c1Mf0VRZVRk32ecx+d4clHzzl//IhxHNlsNlrkZt9HUKTm18oAdYU4E/3HAzM0zTNVBP9EpkTATyOI+oQ1TaOZNIKWfVd8avLYzG0zeYGkEtCb9Yaq1ZSGw9DnNIk++oOnapaSNTAcCEUPaf1SwYzjI6+vUmudehzPJR/DEnTfB3mzL+xut+NuvaZpulh4ZMqmemNtzh4S2SRYwTUV52eXBL9mGALGwmq54nd+63f47PPPOD8/55e/+DkvX37Nze01GPWHrKuKs7MV+8FHsK2aC+/1GTYWdJmmwHa/YxgnvBgmUdeIafLYuqYBeh8I4xDBS1xX90bs/nHMWNX7X+faFXMyM3Ml6ojJLj8hlHsvL4tCsJuFpfQeRB6c73IOH2pz+f2xdleOzpU0wURGMwPg5Lc4PyulLw0hZLcqH6I2qKooy6eb8l3mSKCI/yQwpdfZyGJP9dmcAN8PuwDEBmcBMAEhjAEXBWwfqJqaquvYbrcYa+n7ge16w+LxhbqjGKGyhj/54z+k/rv/EgBXb99yffWW4AMXF5csV0tVMAiMY+B2c8urF6/46U9/ytXdHdSOuutYLM856xaIqQk4FQ4lqCBT0N0hBP7sRz/VkuxVxTTGIO3E7I0W4yr9fE0cz7SfRSQW+YpDkYLi5XB0p2mkXSzY7ffZ5coHYRpGdv2AMYamVT/2vF7Q9KDeBIKvcXWlbluJ7EUB1UXLJsQ6E7GirblH36LAYmJqybxASLJuke2kYJFSXCbCNGla2BKgi1Hwpn7Os9X5nlY98b4MbN8v7B7szYKnm3i/qyqMrbSOQHSpSoA5EaFDITS+OwsMUZlTAO4ZnutvYy3n5+eM/aAa76BuegFYrJZasyAHaOaW5z/K8cu9CXPq47PVitu7uzxeiW+4tqHrFlway3p1x3azYRj2DOPA1qv/tbc1QSqm4AhMiJhYJC7EmpRgxeBE50kkEGLhNM2OKDhx2DBh/IQLI44BYcAbzxg8U/CIgW614MnTp1jrOL+44Ec/+hFDP2AM3NytqbsFi9WZ1tSIkqhrK548e8z1zTXD7oauW1F5wTi1pk9AsOqmZutKK6+i8Rjvzl3yGwy6/6Yg+9vef+ry2WE+EYr5OglzdH9akNlXMb5fzX+F9gVikNGh1J7bUPyc0tCkfmXNXWZuoWjjoQb7gLEW3+XnnfD1ToQpMVki2CYIEjzBe8ahZ+z3WGNYnp+zWi3YbTf4SbW4t7e37Pueuq5o6prtZkRjJzQgQYwBZ7m5u2W/HwjG8vjJM5xNmTILMSISqwxz4rzUda35u2NGjaZucEG0WqFoGn4HOSDIGrCS8u7qRs+vsCaTs4QPvJ+wRn3dnFUmrGnDtJqjjcwolKCKmSwKME2eu80Gtvq8BMBCDOLkiAGkDj8kIKXhCCFEF4z7TOLYOpPNz/G3jQDrnk93cX8CT+IDt9FCISGWbBdhFGGcop/oOOaS1t77GKyoXEVNj0K3dNSN4Y/+zg/54Q9+j0ePL/DTyF/8xUvGsKbq5vFzlaHpGuq2Yrk648uvvsZVjuXyHEPDOHmmMDCEkV2v6RqNqzWlJAaJMQDtmePi6TN26w2vvvlGtdGc3lfvO0pmfvL7OE+SALdIXhfZ2iS6h4yVmNXgBLg+IWzdb8u7aVv+vtj/KRNPCTjK39nCpZtzZvSFQJ6sMbmp1lJVLqcqu7dOy/6ZQ1E3djU1k5SxIj9BJO/zku7mZ2Oilm7OqHDwztg+jCXEgkkSaYCxDvH7OegWWN/eYoPn6vVrnpyvsK7K9P3y4hwQ2mbBsyfP6PuBq5sbfvHlV4QgtI1WyH3x4hWvX71le7dl8hMXjx/z+PlTXEopaKL2LjoPB5+yIUVAHAJeYDuMVMZgm0ZdIbxX4FxUprcGCF4tq7HfdSxfP47JLS3R6zHmrrfq6mNUiPHjwKJrWduoKpLkChByjEk/DOz7PvM3V8UgS+PxQ83kDKOP7kjEALkwuyn54DGTmRUABW3R+bKqnIiB4FpALQLgLCGXtHBeAaT9FWC320cBBg7vIBlaECSupwcoQLz9AzD3O48qFv1KeGDmzZovPrX/EP6mT6XqJrlapDOzYJBsOHXdcHH5iLfja7z3DP3AHWuqpqFp6zzXCeVnK6YQBSFAJKbx1fS+PgRu0JoIEhVD0zgezBtGMNYRwqTumK5iWde0BvZ+opc9o9T40KI5S3QefCo+Q4xLMBHpRCEZE70ALNQmUEtg6veYMGIZCcZDSooZfA7s9cFHvipUdRtT0Ar7fuD65obl2QXLukm+n1jg0eUFjy7PuX57w7S9wlXniIBzNWLUnXKSid70uIXFCTgLp0sTFvP/qy2b/x8e72FmH/SIX+H+Y831/aOMUD1kF/ffJ7nAS13H3KlpsR8DovSdaMYOCg1UAmr52lIaFynAddIYzOzGFGXBD/t41KuCESaA8BBIr5L/tKjJT0QJ+ND3bLcbqphxZJpGbm9uAInBLOpbd3GuOT77vme5XLJLuWKNait98Lx6+YIQoO1W2aXlVEaamfTMZKjve7bbLbvdDhGh61rNgmI0SnoKWgRGNesx33lB5oTkUjJL8gkQK1nT6OWqipUezdy6NEah+B1EWxdQv+3k8840HYCYeS7nc8m/7V1rstSkHDCOY+B+BKANsxYsAe8S2JUgO7kKhRBy+i3NOiP5PmstTV3jnALH4L0y5ATmvRC8xVoBM4EJ2EqrlH3z4uc4O/Hxx895+fIlU+hx1tA1NdY6lqslT54+Zegnxgm22x2PHj2halqur9ds1mtce4FYLSEcggLuqqqoFwtcXdG2LXXTUNe1Cny3d7x5/Zowjrxv1z889qIBZw9dEDdvSkeo2mDNZmDFRI+sAvAezUHe+8U17wSxDzUj0rW8yos9nenMkUBXPtdgM0MsAXcaNOditoUTyOTeGiw1aEdDRVyL2u8ZPAvJt7WEG3Kw74GDFJvEgCw1l88CplRu3tdoNhvjA1YgDCPrYaRrWs2j3XUMdcPNm9e8XS3ZdTWPH51TO0fl6hi3YEAs1tY07YKmXfCLX37JNy9eRvca6Lolz773fSpX0SxaXK0Bc1jtgQNMTKGj7iWWVJkXo5Y0AfppZOo9iFp+WucIforZkiYM4McJrKMiZXtIwcs+Tn3AGEvXLrLgk7J2WKufV8sFb2K6NUdUPhg3r80ktKE0bRx6zcUygN/d8Sa7roDgFYxh1CLqNWNRSgZhmf2nS+35HFgb90bKnGLm6rJZqCsEsFLQ2u12B1xjdptQUJ4yIZZr6JgGZity4a55ao2fUoKUZ1xlqSoT+YoudWtsLOKVCvYk95nDF80c8PAQIbo4HjnHWcNyuUQePdEsJCEwDiPr61vOLs9xy5h+MPI+kwchEIZJAz4nPycTCCEWdtrFgdO2ee8ZhkEDauO8WJtKvesgW+NizYZA369xlcPYGgkVgsPYiDesEHCRPpjYX4tEOGtSeVPrqcc99TQo/45uOwFLhVPNuHM4VxMCeJm4ub1lv99jrYsWx4ndbs92t6FbLbUSrmj+bmsMz549Y3u3YX33lm7hqZuADS3ONVqtUoSxFwZjsV2bA7JPamnj8esPuilAxwMg8W8Cyj/k3tOXzOmYZm2L5OuVGKlfr2aWVOLhnAPnYp7KI+BMYmwz8D5gTiZuxaMGle+NlxWuFxGIi7k3VuXnY2KTtF+ZqWZNFxFUVblCWkCQANM40Pd7zYMaAu1ioZHPdZ035Xq9ZppGVkvNmTwMQ37vNE0xIwk4Z5DgGQeNcK9bHb/EMDP5MTOESAQjjdUwDLmEPEBV16qhQgH53WaHCxNLJ8r0zCHjTgQlSctJo5bpSPxgjKbWqppKzbAxc0Ays0tk6kFSe2cf2vywE/M5N6MAYsW5YzOoMaZUdkXAUVbEjM8vnnOsZczPOQLaaSyHYcjazKz9PAZYUesFEjU6mgvZxjE0JpoKmcB4dQmJpXZDECpXs7nr2e8C4iuePrlgtVphjGOxWvL27RVeLMbWWGtY7/bcvn7FdtdT1QvMJHjjqSvHYtnSnV1ydvGIRSxXr0KXpo18++Y1v/zi5wTvORyldx8GorYP1U4fMfrjI89/3CsxAc2R1ttkpVZaAnNNitmn+uSYw8m9fZq+SV6LyV0qpdY6Bt3pGWKYfXeL56bqhsCs3zlq2mnyKe/8/l67c/8pfs+gJA9TcUtK36UCsQVnZ3FDUhiFCs8+Vqa1Pmjg2X7Hvh9oUDqy327Yb7WKYb/ZcL5acH5xRtc2fPLJJ3Rdx93djtevvuLF69dc316zG7TQ0tnlY5qlMvT1esPNfkfbdjyuzqDSYmnJTUBEMC7GQKB8QNNzqgLGhUAIKry6mB2oHzXYsXKWpm3p2o7RupgKcJ7bIblwGKUJ/V413HVV4axTQTSWDPchsI9uJUlxk4WhuP5CbJ+QXEMgTMJu2IMVwiTUdrbyzgKPruOmbXXujMEEoYrXBfEHMSylv3my44b0TmNomiZbJA72QFwUKSYma77NKXfL+fPxzirdJ8o1a05I6Kf2W5RzMxhtmlqLfDkTXasDzhgqW2GZYrrbcl0XyhfSfo3cQGIVUWY31jTGEpmhMbA6P6efPOu7NRIC6+1Ogx2rmrrWYjrBmGj01SD/YbvFSIjWP90wEiTzuBRImPttDi36+bfV4ELF8kJrDUsjjH6j1h3jMXSINDhTg0tCuyH5Jfkym4YAou8fxh2LaaBKWCWo1d1iccZR1R1dtwTj2O22XF3f4IOP2VUsRrQkfAYOWXBTQfL84pyPP/mEv/7ir9nv77R/tccw4myNkwYvnv12IoSR5XKpz3uH5uY3AnTDfSbyIVqdh57xYdedGrVZW6y0p8goKweXRd1Luj5Q1w1N0yDGag7IKOLaw9vyTwJYIYJvE7lNKa0LyghV0pdZ25qb/n6d3Ww2nq9OTDWEiA5KRmzAmiS5QtXUhOC42W5Y392qZsJaTFVptUhjMljz04i1sOg6DezY95GXhExY27bBWkk6H4xx1HXH+cWFai0j00itPezhbJxLX6Tc38ZoIR3rLLvdNlZRDFSOrCUrn2WiCsYUxFKY/atNnHQlyDb76VqK9IvJ09ckxhel9ixEmZNTlE18xZdJ033gNlSA8cTQ7vWhHJ3y72IfJWEwaZc0M4qW9p2mKQstR0M9r8VCe2qtpWtbTAgMk5/9qyPxr41mOnCo334y5xtbqYAqFZiGYRJ8AGsr6m7Fdu+Z/MjV7ZYgMEyezXbNfj9wt+0ZJ68ZbZoF3dkFZxePuLg4Z7lowVTqzx0Cm7tbdrsdNzfXXF9ds93uCMOI/VAycgyupfQdTsz8OHrdxJUp6f9462HwaxaGjkFvsa7fpYCguObU5/KcIBhJxUuSUD23N7cvxGJEsX1zMO19ESUz4Adbdv8wzILEqfsO13CSSGbgffydSe0wKTgtuUvY6CKR+qT020jAimrzpmlk3O25vnrLdr2mspb11VvGYaByVoVva9ltDJfn5zx5/JRpHPln/+xPmSbPbj8xeUGcw1aWxcUlddvSNB2uabHWcXZ5qS5ld2u+ef1acyqfnbFanSm9jBX2FBhrYHWwRqv2WS0e5X1gEoOtNGWfNxbjNFNDv97ijNEy91jOlmda6XDomaYxg6O6iiF5QRh9YBLo93uMifE0kc6a6HaTIl2CRP9xM0+ATbzMGFxdIUbo+x3j1NMYg4/FaIwFY9WKN40eDSicfYErLM5Gd5KYtz8BIEN0QbGJ180Wo7quef78eaZfuhokL4tp8vR9T+Fdkun6wRpLt5jDcF44JQTqdZkenBCCD6/Xzjinwd/O1VjjijaAcxZnLEiY90J+x4wKlCVbgkTPbmPxogXgTFr7koRzpT4Gw+LiCTfbkWHoMRjG3Yi9WvPkcR15dcK4wnazYep7pc+i+ao1WFZwMY3mpNrFxIBIOgibeWaKC5rdFROvWdQVC2sJDExiaJEYB9Qg0iBVjZhK61cGgw0mAu9A8mfHj0gY8LJnEq0+6cVH9yNV5LSN4q5h9Nzerul3+4TMMMZwtjrj0ZPHnF9c4JxVa5e1edyNMTx+8pj13ZqXL9+wlTvaTrB1BzaAUx38JMJuu2P0gfOzs3cuhd8Y0A0PM5C/7Wee/i6zxPjd4bWzEABZQjUJzlmcq+naRQZaLvp2l44gggKjUDzcijDX5Ttuq2SzWGY6Zv75kH4mLXZ6Qjp3qOEOmfClThoR6srRNA13t7fc3lzT7/c0Tc1quWJ9d8fN9RVKJFSjvdvtMoCbphB9wmOuXomWAButA6KZKqqqpetWWGMZ+4HFSv2nfdI+AJgZsCQoUFtD6xwyDrkgg7OWYb9jc3ONE6+aIReJgz0ErSHmQ0nagywJH4xRtHIkkBLAVLPmMA1tCOSy30n18C4Sre+zeQ2luXYJWCcid481lPcfzXM8b0yMbHczwQ8h0Pc9m81m1mSHcO8Zx0+cYxagqWseP7rk2ZOnXF6cs9ls+PMf/ZgpaDCjxPSOHvDDSG3grK1o65qmFrquwtSGxWpBt7xkvV4TqLDVgn4Qxgl2u579vmcYRja7iWEK+EkQW3H55DnPn3/Eo8dPqZolxjmCH+n3ezbbPXfbLbvtTrPjTFrpL3iPDT5bpe718H0WhwIwB8gZdMQUFeKO5oDyvryjC+Cd3ykxLahkZpba8D5QfXK2jjTYk8TCDhTBaZIKLKnWNwShrlV4FlXVRfnqCKwwn/tVqPG7FCmSOm/sye/LqosKykyuxigRDIa8D0O2Phmv+XbDuCeMPUPfq+l5t6MfBurKgZ+QcYjuLGpZMSg4/fkXf803X38dC2Yps67bjsXZGa5rMS65jTiwjpRzAaMWt8dPnvDoyRPN8LDecHPzNW3bcrFaseg6jTvJoTiR1kmEv+IxDrzRwDMwmBDURcFpcZ5hmhiGkddv3rJcLli0He1igUigHwYNYjQ2BoaRa6IorImurbGKbwzX0QwqkX8lH2wt6OLmz8bQdR2VgfPG8Hi1IAwjfb/HOsMw7rVIzd2GV6/esF6vIcTS2ZE8qitD4Px8xcXlBcbA5CeMdWoxiy4roHPatm12ZzhQEChDBYxalmJGpVkyS8qzI8tRoVA4VH0crNp3fXnQhHRYYyO4dQdrOQkwKtQZLVd+IN3P1jDvDd4LY4Ags0AUJOaetzHov1DnJXcvY4XL599h6PcxYH/gZjfizZZHjy6onMUZnexhPxCmKfJjzSplq4pnT5/y3e//Fr/45ZdsNmt89JsGzcaVsm6lqrLGCMhU4IwYvGqN1kqoamzVUdkB5xqMNFhpEdMQqhbvJkbrmILDpDkUoZKAFQXdyISEKbu+pGEzBrqmoa5qdv2e6+vrOG+CMZo96+LxI5ZnC4yFIL5Qts2TW9cVn3/+GeMw8eb1FWH0NIuRtjvDoMHF1kKwMPR7rsNEOKWoisevPeh+iIj/KmD7wwE2lLspuRGk1hz7Uh8ywgTeZv2pMaolsZXG37uIlOegnkJLUzyvlMQzo09/p0qpZYvf2a4HO36v/9mNhOi/HDSPsbOqPemalouzJZVTf+w3r14yjT3jsKepHdM48Pr1Ky0HHgN3UiGaRBxnwUT7YTNTNSDqu5gk4wyEQ1Dii41aUlNg4VkkSb8dGqVfVepP3G+3bO/uqETU7cVZKqspipJwkCipjZrftlWfTgVrYx6fIJIZhRjNAepF/XNNJPbKaC3jqAVsiG0xrpjLI3A2J2SJY1Ew3cM5PvZiPb0O0njbqpqDH0Wyv/sUUwoeZDqJ2rCDZ1Jqd/XtTqDrOr77+ec8fnLJxx895/GTx3z80Uf88qtv+NHPvsA4w37oGccedjt1axBomwovloU3PFucszw7Z7HqcE3Fs2efsN3+HGtbgky8uVpzc7dm6MeYV10QKqxruXzyiOcff8rqQtMEisBms9GUgJs1/X6rFUqDmtEXVcVidcHZYsXX37wgbHuCmBic++4j7YuDRXb0dwbjhxs2a3TTc0RUaDEhVb+b/f8loeAEzE+AzbJND50rgXZIqRGjNiwXgUlBbSktYBRQ66aZ19EJQH2wOn4FwJ31dqXAX4JpZkp6KFzOHt5JxNYCLcQqiUoYNSjRIF77NMZAKgmqtTOjx++3bO+uGXdbdXMzhqquaRYLTT+22+Yc7iZYRu8xUXi3xkSadstiteLs/IKm66hWS0xVo/EgLmrakwZyDoMzMZdv1y20Kuq5Cjp36zVv376lbhqWq5VmB4l1CLSvNmfHMd4TjLoFhBCtp95r/63FicbQ7MeRXd9jnKFrG9q2w7TC0PeEEYha5VnhG2KOrYo3b95mYUHfH/lWFGxsotFpjae2WYNxhratsQ4WjWbn8HT4IHTtgqbpeP36DW/fvNVKpDFnPSI8urzkd37vB3RtQ+K9ab0Sn5+y/6TGpaDs5NtNufbTnjtYZrNCo1zRx3x1jpQ6Wqf35eoTR8IAWta9adqZz8WXZTdFUpYWmIOVZzThfaAfwXvLgODFImoDIUShTgLZJy0r4CS6dxhRvrZqqc5iC4IWhNsH1bI7CdhgGCeDE4sEzTy0XC5ZLlc8fvqMJ08+4u31neauDxN141RQrGoMLhZ6CkzjxG63ZbvZMEYrS+m2OgUVDo0ZsHYLxmGMo6oatRDVHbbpoOqYbMNIRW8NHqMBO35AwogwYU2IcWXJiqX9H/qB66srNvs9t3e3yvOdpes6Lh494uziXPFBcvUxAky6dwtn/27R8IPf/S2G7Ya7uw29nzDe0y6WNNWE4BmlZgyOyTtC+A0G3fDtAfb7rn8/+C45JlDopOJF73zeDKTmzWWdaoUhSvWntERyqAUttV/aLClalklcbs6HjtMB84ccoJiOZArSzeHRAi8p0ALwA/0eTNvy5vUrbX58xna75c2bN2y328zMk/ahDIaxyVlVUAKuPYkbxhR9TOOjVeucS6BdsEnDHfuRwI5Bmeuw31I7Q+0sm7s1u/UaZzSQxRpwVrXmKcC1aRoWiwWLRUddV1lz8vbtW7xXWNY0TQSrsZx59LUMUdvpKqeIZpqgcnivAUN+GMFqgQxrZ3/pZA7Mc1PMQ47XSdcdzN0RKI7E21qbNdnJp26atFJk32s6whCvs87RLhaEaVL3nwS8T2jK760hYLVc8oPf/V3+6I/+iKfPHnN+vgQ0T+tP/+qvGKaRgGGYJnbTxBQEbEXbdjhj2avfDftJCLZGTMPZ2SWYmmESdoPndr1ltx8ZJgdVRbtoOKtbFstzum5J3XQELG+uN2y3b+h3W2QaolZQ/bqXi5azxZKzsxV1paZdCYYXX32jEfp5IeaRv2fJmr+ZBaP72un5mtJadQC4y+sE9UEsNLGlpjvt9TIjyLFW+Ph8OYfhiC4IxOwPPoPt9CzrHFX0u6V4R04lWLT9/avjBE08XlNyQFEfPNStiizcarL7COqsBVMhEXSHKASHCLpSKjpl9PN8BS+EYWDcbRj2WwgT1hmabkHddkzeM04Dk58gCioWYfITflSLXOUclVMgs99vMRa6s5UWgKoc2AoiIDLRYnEIulVbYK1gqlnB0DQNwXt2ux3XNze53HbTtuqWEDPBzC5vKbBU58UZ1XoHY3CidKhqGjAG70f2Q89mt6VyjqaptTAX4KcpZjWRGXxLYL3d5iDPRLOTy5g1JgfOlaA7Tlx050grJ7qMYFDXREPXNTx6dMn126tYOVAnOoiAtWz3PYP3YDQQ1AokbVOIFpC8hqKASl6+iYMkkJ4KwhwCdd3PhmQwMWbOiDNL0pL9wMt1nWptHGvLD6zecVysM1SuirErNr+XRAMIWaDRpZEdVEmCpxfDGIRJYEIY8zsoLG0GKxaJaxYxzO5uBmfmAH51VXTY2jAKjAEsAecFsR3i+0jLDNgWT8V+gNc3W263gSk0CA6LYdJSjMrXKoPF0nSWtlvibMUw7GNxM9WGj+OUU+JqIbgRVX1Y/Lhn2Mbg0qrGNR2uXdBUHVXd4V3NiALbwQ+MYcSGEZFJBbeU9ldgu9mw3m01uBcDxrFYrnj85LFW22xarTydonkFMH4e2EinvEy0XcVn3/mYn/34p0joCduR/bDBVA3d8py2XdLQMEp1D1OVx28E6H7o+BCQ+e202/H8wb9HYHumSCfvzYA7ob/0lASoU/qsdFnxznf1xhhi8YH5qlIDnyX5Iy15uq48fwokZA0F4IwlIAyxAmDlLN/5zqe8ffNamcH6VsGlwH63o6qcMnPvGcbZF3iK6QFFyEAwRzUn4SISM5OFFBsZbCQ2EvBhxIgDE7BGCEH9tMVq+XBrDJOfGEbNxaquEltub25ydor9Zk0V/SStCTirKQW/+93vchZ9sELwjKPmNL27vWEYBoaYnQPRgjNdzNs7DANVVdO0bTTFB5qmobIGwkTdtrimRiRAmABPCDD5gcYVY1BoPYpEbAfzXroLHc4rmVkn//k0vznwcVQNg7EW45y2K5bnTs8a3mEKO14naZYAHj96xH/x7/99Li7OqSrLq9cv+fGPf8Rf/uVf8vLtVWQUgqsburbFuoqmXahfY1WxaCxVmKBaENyCkZqr9cBXb/+KfT9hmjMun15yHsiM2KPmPO811WJ/dUs/agEXYwzLpmLRNSy7lrNlR9e1NM5RF6nTBMvkhdY5XNEniQxATvgrz2OuwpU53qwieSMd+Ccbo0Vx8hgWblGiXv9TymUdg8cy4w2BEDWQs9E0rpAw06Yyk0g+jMJ2jUNIQb2C92NeM3U9B/Glth7TlySUl/v1HuiOtO1Dae09jeFDR6l+JWocjYs0VhmoN7FURhBCkW4sqTRlHgUS5LXW4A2RdmiO9XEaCb2jWSw1w4cxKhxa9Zs2cd40GDYiOyNq8gb2+x2vXr3ged2xqKoI4uZ3ktucJid9Fk0RCTnS2lnLwlqqpmEcR/Z9z9XVFSJC27Z0i46u7bL7TBJCrHFI9Pu2cX7HmJGnck6LkFApTfUTu37PdqclRtq6YrFoZyWJmCzYO6djkGlWouFF8ZI05GmNgNLwICk6hygEqn+uNQ5ndF/aQumSnmOtVXeYaBHwPmZ4kujq4lPKWhPdLnxMCxfdAqMihOCZxiFWQE2xSybv09ROib68tmDMxzz0+AiiSuXEP/Pvcr+QBKoq+nJrvnqFt6kGugJxNydlUe10Wj3GgJT1KFWz7YWcYjLFOklcY6V7REgTY2BitsRHOTCC77mvFod3HdMUqBBMMJipxg8Vu6s9r26+ou9HROoo9Fpc2yBicTHlrpH4YlMhov2tnAUbaNoaBHWTSRmwRg0gtUYzJGE0WFamgdGPsN8QoibcVrX+2JqlA19HvmctBGESjzNz+stEfA06Pu1yxeriMVXdRCuGJWUcUbqUZy7vW12/wtOPnrG72/Dmm5cgHj96/NSzHra4pqVplrhmhSni/Y6P3yjQ/TfXYH/AOyBvbtLnwwcBmaYXRwGKCuar+1uT4ScClZWURv30cmbOE4wrzI8+PEwhAJzqx4n+HgDv2JdkcssBLRjqytH3AxIm/Djy0Scf8Z1PP+aXP/+CN29eM/Q9Z+fnVE7NMuM4YI3gHIT9pBoNE906UunvSKydVa1CxtiZ1MbRTt2yiYx5dV0Jgd1+y9XVG0SE7WbLOPTstjskBMZhYJxU0pUY/OWspe+3jPs9jY19tMn3MDIihDevX3N7c6MuEMX4pZ/EiHq0uEDSCidCuttus/uMyKTBGzHn7dCPjOMUNXAemUSZox8xVRUJXl5RHIheBeAufzQCvsEaR/CBMZb53e/3GXjZAmTbaHJ/MNgnMZ9CI/quI/ksu6gpe3P1ln/6T/9jfvyTn2gudu/xYhDX0K3OuXj0hClOuqscbdOyWq5YNg3OKsgYbcMwBvwwYKsGt1jGlKmC73t2fY/3A70f6fdbjA9qDnU1F21LWy9YLlouzlbUlWr8qmjWd5jsD6/g0IBVn16LakFV85NAZjKvPzxc5uDvKFQXtCHtzZSBqPhmHuNII4JX7udjgJ8W30v+1lq9Vh2fdH2EcASw02Hm4DIfpDC/61FVjqpqT66Dk3EAqV8F0D6+SuaLTw3Vw8cHXD+Lo+TA81gZQ4G2iFZ/jVEvM63WvZTynOvajy5+zhGsZZpG9lOgxWGtxxrL5eUlTdsyjiOT9zTW0jQti9WKtm0gePr9nnGYopIhMKB5i621+Mnz+vVrvtMtqeo2CgnKDEKkrTlEzsxDkASqQNL2xnmvai2lXdXUiwXTpL7RVzfXiA8sF0u6rtNCK8YhRG2wU8VFZQyL5VIVBHUVcb4qUlxwOavUNI6IMSxXKwzqNlO5mu1Os5fYugKjrnIYk7M5WTuP87HSyDBrXytlNmniD+ZfYqXaNNeJL223WybvobKqwbXugFdZS7QSxftrcNEqY6zMvE0CY99jr28Z9oP6EjPH/kTxILqDBbwxGcSeXqP3+XPeHZHvZwBu1EJQVRV11eJcVIzkMu/pFdr7nCULYcaKkSZFQK4FTlXzra/1ml4v0orSuXXGjDMNygmSsoRgYlMiNsEQLISqQYYBw4TDMoToN+4tYRRCaFRUENj3E/0YYtXgoAq2ytE1FY0FsZ0G1dbpPWCdxVaGqqlYrFbc3txyd7vGWaupZq2LKQCj4CBKEz2CmUZcrPZc1xW1s7ja4roFZxcrJu/Z70fGYcL7lAtGcLbi8dMnnD96jLiaSSyIQ4KbrfgEBI+xmk4zCxASqYxr+ejz3+H6ds+w3ZACOwkev9+w2+8w9pYQXVFPHb8BoPu++RZ+dQB+rO09Gbzz4DPnDXZK0WWi5kJQDa0SEIs3aiJzzh5mnIi79FSIZPo2tyvxnMxHzL3iGYnhzhrPEtwe9v2AQCYwZwyV1fZoEZuBaep59uwpP/7RX/LlL3/BNE20bYt4zxSCpqeSgKsstdTIVglE3ahGqqyQSXzH/Hcq6DoPookUK2X8ULAaCNPIq6+/5vU33+j3EVhLiAU55LBqGAjTqOdcpLA2VrLUIjyCnwZ+/td/TcpCk83PKYeyTyXsfWTEyfM3EUmtqpb8okPw+MliGsM4jIy1p+8HvNdWBQkYL4wMDMOgfrMkIqzPzWszajuTVjL5Tab2re829HvNCjN5j6BasDZpsqNFpQTbx4wxM76jn+PFaIpTiaSLCC9evuTf//f/z1zfXLHZbBhDwMTI+tEYfIAhwGgMTdeyOluyWCzpugVd29E4l7UROtYDNmjw1m63ZYjpJ/005byptYHzqqVb1Cy7jlXXsuwa6pQK0ICg11oxxZoqrT+SFKVYZ9WFKnU8AroHDzkEB/NQzgA1jdPxUCdhV33/VWOvQTsBYnR+og85naRRxj5JOKRRx9aquC5S4RMwGDu7GB0KdsXcvkdwTy5LIsIwjrSFr/dDri4PPGz++P6rD55tjGqm0/oMkoLiNOBpdufLvSIZ1Y3T3L3WGhXSgGAcPTu0tLhFxNE2llXXUdUN0rbs17dRcyps1xtub64VlPlJwYZRDaMXDTxNeeiHcVQhrtCKz6sOBdRmhlNe5kDy7JKU6bOB5EMuKuC3bUsQH9MYDqyvrqiqirPVMqZEdRkwWoHlakU/DFSp8IcSzwhIVdNYVTW1Uy352XJJ2y7UkvL2rfrCGwV0IWqLkjYV1F2hxJwCucCURCFJkAOXrHJeS05UrqP9fs+uH7Ax64xBgaKkctug/stJORIVZZkDZCsHhGAxronCte7BKrnrlgvSiLp8mIfW9sOY4ghtx7YQ3f0aqrrWoNqouT9yximeruNpIt+MPVArTpQWAoEgLtI6gXmEyNFYxiK2XHnlHolumKmvOixpEDDGEmxNMJUmAECty0EmxFYE4xiNIYhRACkW8SBeYBLsCMYErBupnYHQMRmPhInaTphY0D1hmspVnF+cc3V1jQ8OF4TKQd1UmLpTJYmXzKe9qCe7RQijpr0MBiaT4igcVV0xuZpp0oBO13Usz89oz88ITcs+WEYMxqOWbywWi0iFxguFiBVUWK+A5KYjTYt99ClX269wMlERsKIKHGfAeomL8/TxGwC69XgXiE7HQ9qa9517CHCfymig54/+Lq6Xwq1El6uAeFxTq8YgbSptcb7OHDxnDjg46Ft03nuoTwqGmFVEJr3rhEtJoV1IP5VzNJXFTwP9fstuu2GzvuNf/On/m1cvXyHBs+w6nLNMwwAG6sox+YlxGtntd4D6PKYNYmWuzlQGAWq/T5iqIRKEWFiFVCRKCOMQNYpp1FKATCjmoRDSzEzcEzlKZqQgkqOsy5ywyf8zxOdmBaZRFxkFh6rfmLzn5uZG+2kt3gdGM7He7DRo1NVstjsFwMkFQJSADfs9i8WCuqrSpGbTrXMuls02TJNWEev3vQL5cWKKqZvymEbC1Ua/zwTu1Eoyj/A9QTGum1TYYg4jnelzmr25Tppe44G7/Z7bL77I6RQ94K1TbZ6rsN2Sx59/xmff/S6rsxVN7ahcBSa5Gel6VXegNfv1mnGILjFeK4YaO5d9X7YtZ23Lqk0uI44qlQZmni/dKkYLMfgYnJVS3aEZf7Rwj8fIQDLx3luHJ/ZZ2rcmju2xK1eek/mPfE5EYnqvuL7j4rJBR9RMNieNSb7UoCAjpeyb+5o045Ij9rUiYBWtSmphOmzGfdB96khCUKlNf/v2LaP3PH/69J57UgYoRX8/5Hgf7c7XEQsdiYb4UdCzpGU9tuSkAD9X6Tho8Y9ooXGW1WLFerGiv7smeAVzX3/9gvPzCy4vzrhYnrHd3AEQJs+w3zP5SRmwi4U3JOaqxiDGMfmArRzBxCqMJmbTMAbrqkL5oe8LQTX1pdGiXHJSCIApIM5GP/a6blh0ktPhrTc7YMvZ2RldF61bolmyqromiFC7hpyZIfERp/UWjAQGH7jd7bD7XrX446Cg3ylYjE42eQVZm2FInv9yjZIUJ9lWM8+ogZzRqQzwTvR6mibuNlu6plVaisElhFgM0CynFPnu40DO69LSLs7g+haJGSpKfpmEcl1Hkt9x31Wz2D9Hy1XirVkzmhRZcfyzMFQoQEzxDk39mwJSC1CcBQ5JqeZVmMzF7uIzDbnWBIXbTxkEq+8Ome+m0Znxdppfg6kbxNXKt8KEeI/3GpfkjcWbigHLKFBFEK0ZbVSQRSxWYPABY2pMfYZnYpKROoxUeGobMEbB7Wq1om1b9rs+vlOfadoFZnmJsS2mH2EckGFkCAO1mXDGRxCfNNqe4DUlpW+WsFxhuyXN6pyxqrmy6gJTBRjRVIuVGJpoAvCgK824nDrSGtQFieQHb7DPPudi8YjNbst6t2HabTH9lmocaYM8iB3hNwR0vwsk/02embTB+ve8GR58ekkQZSY+BevQxR43XSZOxtB2Hda57KucVnowyddtPhJoKjfl8ffxbbkvZFpREAmZAw0P7jVHYFfU17mpLH7sefPmFS9efEO/2+EcjEPH2XKB91rFb5omtruNVhSzhpvNmvVmrXm0k3yuqo7ZxJtbXLjXxHPH/p6ZeBMFhghKY2eY9Rlz8Ey6N2kU567JrBUXzXGbAEUJ2NO1JmpnrAX1RUstCgfpqJLbyRQJa6kl72VQP3Bjubm5mQFXotcS2O+2GGu5uLigijnNm+hjO3nPbr1m32t6vLQm8zilwYnrqPT5TnMs5WVHxzH00gIFGtwblauz8qe8L2lq9Q+VAa1hBIJ1NMsF7dkZF48v+eyT7/DRx5/y5MlTuqbR6PCg1dZ8ECY/cnO7ZbPdsN/tGIcBO004oKkcTdewXLScL1rOuo62qXHW4VDwkbLXGCOaeSTOZwKXU5jwUVAB4exsRZFfU3PN+0nvOwbckjRIpwbviPFzf/zTuVOH5nJP7CFCmKCipfeezW4ffWgTMJjHXZuWhIv/D3d/8ixbkqR3Yj8zO5MPd3pDvBgysjKrMqtQA4BCgRCAQm6bvSA3ZHMDLrhs4f/FBRcUbrigUATSYDfR0g20NCFAV6GqgMrMyozMiIw33dGnM5hZL1TNjrnf+yKy0FxE9Ql54dfdj59jxwbVT9VUP5XRtc7OyvqJe5be/ack21OytO97rq+vOT8/l9oCMTJOkoo0ef8IJJ1c8Mnn/tC9Tr87AjjqTQtR2Du8OT63XJ3y+Qw2jE0Jd7MdEDDqpYZuseDT733Gzduam9sbpkNP8J67uw37zVaLhDiGQao4Oiue7BQykZafjxZcjakaXLPk/NkLsJUYVsn4UbCY2p04/WNMr6VhnMBiPFrD5fgadahEZ6hqaNuW1XrNfrdjvz9wUIO+qxusNXSLBf0w0LStxGFzrCvqxoCG6Yin0OBsRetqiMpbrE6QGcwJ6I6TJ/uUYzyap8bo7p4zoujifGdrxBExTf7JeWGA3XZDdXYmccsIXJxX8PF8SoZX2sU9lpmRquuo2pbxsBOK0KP5W6yR8hlO5vdvtKOTx0q8zVVVUdW1MFyV38d5YpriNeNn5sTIBIwdUDtLbwLOBxwOn4F86Q7Q82My3MrVf0xHeIwEVHsbQ7QO0y6IXry4MQbC5MFOYCsclgrwRtoZNZ7cIDTHEJkMs+FvW6xppPBRnKjDQGCktgEXLbVruDw75+3+bR4LP43stw8QHdXFAs4uqIxjGSKh3zNubxj7HTVi8GDR6Gxla7GOerlmWq7Z2RqPhJIQxIAMUZhQLIYmWlw0atwnp5XFWyO7DAR8FGAvYYsNdnWFXV2yMLLLHfyAP/Tsdnumt3/xwfnx3QfdkW8U1un4zb3c6S+ts5Rdw/l25VX1wwKQa3seA+5ZuBulU2qqmm6x4OrqGR9/8hnYOWnwqSd61N5CEcWTv923Ktkk406VGTItI4k5FkNkc3/P6809u+09/aFnmgYInn/wD/+EP/j93+enP/0Zv/zlL9luN/TDgWkaaJuWH/34R/wP/+5PlVvVnjxD6pDT/i0FdDo/lV84EaaxKGahW12zxyg+ek0gO6TXMNNQlefOMYnm0T0DlpSQM1835EIxvnjWBN7LoiExRsYx8P79DZiIjzBOmrKRFGoUppfEM5uAU6r2lTzQybP0eKyT4fZ47orAIFkg+bNHVyiEvShUKx5VtV4S+M7XQwTyBBhrpJpZ23B+dcWLTz/hs+99xuWzZ7RdK9y7OJx1RO/Z7Xum/kB/OHA47HNYjCFSW8u6ruhWEpfdtQ2NszSNo8ZQJUVkAnPRJKugR/mDQ8SPstuy3W7Z7bYM/URT1Tx7dslqtcxAoBzz01Crsh8/dDypetOcPP3+Sbk0A4KQ+jkZbV5KZUd/vG7THHB2LrOs1UaO7vMULpjlx7fL0RAj2/1ewySKqqmJBzlIoRwLJwZ1erZvv8dT5z4Z5qe8vCGFCcVQSCxlJzGa0FfsMOY4UJBt+oAyQyiXsYKDplvy6tPPOH/xkv12y+buDj+IJ60fenywVAYJUwri1Rau6tQlltX5BWdXV7TdgrZbYptOY6DJ4SVSRV0BXfLGpl0Z5jmYdIuIR3OUi2+0zRlfaYW/GCWBzAG1Urtlzv1q4OLsjKZp2Gy2jOMoSWyQPZMBCXNadV2ef0YNHuvSmdJOa0wO4wp+oqosrqnY7Xf4MCcBp4JKVI4QHNGlEXtKrs87jEey2VgpZKLXtJC9AaWcO11vTzmpIsK4sliuGIeeiFdmG+lQSQg9BaDH8zSFwnwYdhf7tgqEq6qSqpuFEXjUsjjnDJUAP2ESuWNBY2uisOxUErrnpL6Q5J8cGQ8c7RCDhjTFlOBpnpAEJ05EA6apGYYKMww00WC8zg8jHmpLJMbEjBLzdXJ/aChVqgwbrCPEiik2eDrGOFLFiSmACxVtu6TW2H01T/HDnjiOVDHQnD8ndmdQd9TNkm59xXR/w/31a2IcaGPQuQYYl9dcmCKj8tqLw1GSWFNibzTQRwnHCggQD1H1YbBMJOMi0hOpMbRRNLPw5IMxFbFuiM0azgFlqnvq+O6D7r/B8e0C/3jJPLU4j87VQXhSSRcWNYC1jqZtOT8/Z7lcsVwtWa3WLFdLlsulEPg7W9xnVh6l1+joHsbMC6VYkKex3Kee3dxWFRJyfszCSyxp4Z8NIdAPB7abW4bDnuAHutYR64a2qfnk41fUdc1yucA5y+FwYNAKYz/68Y949clHxD8LGnoRdcswq4oj4H+0IPPnCYTOXvn5n5R/LT8vB6rkX00KIwHsR0K8oCssRzyEY4EPwoQyjgMQhV5OYzkTxVHUR7QhSMZ02b6ocZpReWOteHtm06JQpDHmGNxEJxlP/iUBnudmeiadnyXYw5gMtk9XQvnkWbjGeSaWtGPZ2wEMiIcpGs3AX3RcPbvi+YsXfPTyBS9evOD88oKqrsUQjOK566eJfb9juxVPdlCvso3CHNNVwk6wbBvOlkuauqKyBqf6I8X+u6J9iZ9YBGZk7Ecethu2h57bm2v6/iDJV9rftaukIFXyAs3TMivauVLoSSeddlb63enHBRCIR17ED4BzIHmrQzRS7ruILX001yFzQ8/GUVJzx0btb+pt/9CR7pkYL3wIEq+sxmClc6KUT+UcOp1XTx1PgaIP/WYKnslrNUzlv7cRvInFVnoqWKAK1cz+b1mnkSLAjVSkJqo8NFVD4yqqtmN9ecXU90yHA9MgBpwfB2wMhHGUBOowiUOlqXn27Dnr8wtMVSuDUC3hQ8r3nwzDXEMvgWpBvMUkeqyHxGlfjF8hB0zxXdpl0zc454ThpOu4vr7m/c0t5+szrKvY73vqttXpInPMOKFe2/U9i7al6xaMw0DyuOeWWYeraxplbzIBzOhZLBqoDevzS87Oz9nt91y/f89+u4NpwnpX0PWdrBs1hJ7epYlMw0D0HutmtqsSZJdOgW+b6cbAcn3GfrdjGg5ZRogOoEheLn+jxkdaX4+ueiwcjIa6JcPJVZKsaqyVRODiF6U+TwZIMjYsISd3iwNkNrichaYV9qUxRE361NwoozuWcmEmUwJvZTGJEWEAemy8HD2VsXgbiXVNHB02IhSU3hMYiS5xhOuzYyUyR3fy03BmI1mdOpOxqmsM1rQMTAwxMvQe3xuwNdYrpzeiD3wYGR/eCyf4uSd050TXEUxN3V1QmweGcSJUUg3b1RVx8lQ+yPwhUilTzFwOTK4fELkSQO4FBBOytztGCQmUXAxDjcFlZpmIjRZvYu5bMZO+2Tz7nw3ofnKL6giM/o0vqDyjOj3VQ6JrQaxnZZFYdAtW6zXPXzzn8vKSuq5zyEBOgtOCMPGkMM4RGCqsXRslRrZUUmmBlgsmfR5SXOgTAD1ajUVKtnhUYKKxU21l+a0/+D3CNPL161/z/Nkz/DTy5vXXHA57Hu7v8NPE5cUFfpp4/fo1JgbxKG63vProY7bbX+CniZiraT3B/xAT5Dwpf/3BfxozeQKik/f69HNQIWPmkI8c030i5OTfzCFeGj1CeTiwXC6R+EKh+7NWmSTCHDso42GUZgsFchoTq9RFUTVlOX5GDSqvSVgp7tgYI8YDArZOQV7emtQ5WbjC5vkeo1r081wuQxSMXjuXJLYWrzH6ERiBwQDWUrUNF+dnvHr1io9efczli+ecX17Q1DWV1TjPIDGvu75nu9lyOEg1vFKR1M5SNzWLtmbZNSyaWgp1KN8vUb2nxY6HifHoGYKxbHcb3r275fbuThhbhoFRx9/askiH0ZLSs8GZFXdM8qCQD2UnPza/54/TuH9AEX8ozOP4mI3KEowlIIiOz+nc1V/O9zy5zannuJzT39ia4vsYpXBS+jt54ibvsRrLnebXh677m3q7v/m8NFZFWJZ+Jl5Pk+f8aex6Bt76mkBZVGAucryIIbYOZyPEgKtrFsuVlFsPXmVa0JjWSdZELZUprbVSelurTgZth4h6ASKCwmYgnR04uRNKg6UY/7/BaxrjME9snHNcXV2x2Wx4d/2exWLBbn9gFdZUVSLK1D5zjhAjm/2Bro08v7iEIMmaIYpDZbVacTgceFD2JgMsu5a6bnh5ueKTT1/S1GJ8jMPn3N3c8dWXXwpzSCSDyOyIMSl2ey44ll7nv6XfTTV759MKKIH3o+Mpow5wdU27XDBOg1JuBnIq5wfWPupYMba40weW95FBoE6KUs+fAtvyMlJNMWbu9chJThfqMDMR4wyhlbC6QxBMEZSr3phkz5V4RcFgnGffIwM9w0iyzyw4h2lbwjAQpx4XJuI0aeOV+tBk15448aCgLWQ2Fo2uFWPxZpbyhgpHZAgjY2jZ+4YuBGqN9TY2UhkgeobNHf2hp7sa6c5eEB34ymAWS/y4E4dOgFW7wHeWhwiDs4xEBqIYL9FIyDlpDyEUaagmtwoj30SMJG0qV72w8Qhry2hidlaFIv4+8aN/6PhbCbpPhfU3KbnSg/noO07B6/ybiMnZ2iJATS4oUjcN69Wa84vznACwWCyOwgRSiIlVb0zaXkqW/W/6bMSI1rDNaCFXJ9PrBB91y+dYScsCNMQoyUNJwgu4kS6J0eMwfPzyOU1dYeLE2dmZMJk46A87vv66x3vP5eUFi0XHMPR8/fXXvH3zht/9vb/DerVWD7fGyiZAUbCClM/31L9TEJ0ASQLnPnmwy4FiBtjpucvo3G+7j1SNknuFGGiaVtlKJmI0dJ1s1RpjcU6VQJSlGHRcPEa3myPRCZWVD5FpGjEmcaQK31P0ZcaUegWUceLFy5f88Ic/5P7hgV988YV4bI3lqdk7exe0b0/m09FvCsMjzd26aXAam7/d7djs9/Qx4q2D2rE6P+N7L15y+eI5H7/8iJfPruiaFtfWYA1+8ozDwMNux263ydzowXvVrpaqqlkuO7qmEQ9a3Ui4iDPUVsbJWRFeCVwLKdkMuGOEUQv3bPcHtocDX335mu22F0EpLnExZJNn3Og/O7NcJM/TXPQJqUzoJTo3A4JUbOkJWfHtMPpvdn4+KxbqNx59c3zmieH4lAg5asMJ4DaPiMXTacdrM60PY4Q6LlWETV6/dO28Fn/D40kDoLzAE88z8zeTqnkTswdKgIKAhVi0b05g40QeJmP/6PYxGaEp4TJinMw/B7gozEghU4/JvadxEvBnpVCMUUrMGfTLQ2VYVwzx3JpkUKRzngbUp5+Vx6lTJu/0aR+sz84AqdI6+Yndbs/Z2frkmhoa52AC3t7esKgbFl1HbQzTOHD9/ppxGLIcnrxn5z3nXctyueJitcQKhQW1Bbts2S5abvpDfkaT5zuZ67ushHuq+6ZhYBpH2rabe64wYo76ofh7XsMmv4tEsJHF6kx4ofuDOkBmQ0VsosIEKtplUg6XmedMuqkx5X2lX6uqlurDhef5yUXLrMMiUedRFKPAFNfMzyTyra2AGMDD3oBXZi6jawA1LENun1wh5ZRoQ0kjc7oUBWyCqWrMckl/P7AIkSYGhjgw2gpXGTBO6GETbNUQ2kzxmcK/jCTjimGqOSH6m2AguobmxfeZqBnv3sC4o4oeGzzGeoyJWDxx2jPefI3zge7qFbFqaC9W9P090QcigXHyNIsFC1cRqwofDc57Jo2BT74/Y8S5aZOxQdpdTUadYTSJG8bhkNASUzD2kM8VJ+mpMfXU8bcOdJ8u0N/Ek5POLzOvH2Hb4vOolnlEKMXatmWxXLJer1mv16xWK80S72Yqt3SFLHRNVgRPCczHlibZKk2xg6ee3BSjLGXVB0AKvFijXNhlvCeK9aylslKBMWrso9GEAymcOGCNo2samrri8vycpqmYppGmchz6A9bWNI0YFOfn51xeXnJzc8vFxSVhCsQpYK0hRAFdWfg/9QwfAMLyL3mPpU+ONvu0L+0JsH7Uh/rjxyD+JITlBM6GaKibln6zIcZYlKuft3BlbpRGQZTt7zCBMVRRdhaEFcXnyqMBjsJu8p21HavVOb/z27+dDYzsvTqaoEWLjzyf0ibHDGxk7K1WnRO6Kucc3nuGceR+s2F/OLAfejxQNy0vXr3i488+4+Wrj3h2dUXTdVhnqUyFRSgQH27v2W23wqE7jgQ/iucFYUlo65q2qlgtFiwXSgtonQh5Y4TH1UhcuxFngm5/AtHINvf+wHaz5f7+QeLbrdUKioEpRraDZ6+sYTaRIpgUOhWFY9ZIRbbKiAGUqdtM2qYV5T9NnvAhaqe/AaI8NYySIfRh4Zs88KgXSDkF1HizH5jhUc+XYjUyP3OlRU6EffJ0k2Tk6UOZ4vV4fQJ57qO/r6sqG3HfdnxIHpt8j0TbqfePj7djYwYG5Wepr1LLTT4hhwLYAmifghwzr50sCxLgDSH/Nu1iJbBSuQpTzeMaI0RXHe2qSRtmnaRQfuZYL4yOeNKmBCSf2tn4Jv12Ktv0B/m5o7WYGIV/2xiur6+5v7+XYmA29/7xXNXf95Nn3G7TjYjeZ0dIgqgxGrb9SLQN1rYsKsBPROsluS1MxGmEek5/TPdzGWhyZOgdG4GBoe9p12dFd5k8BoXWFu/qESY4WcLaJ1XbcnZ5yd3NDWHo8dFg8RwfhjIQUHaR1amVIZa2xpS/IbcrN0fX4JHBetKmcvwyaM130P8b5gRQI8C7IdA5z0RFtCl0SnV7AsFq1KelJBzmM8ngaZMyEDGJP91A2zItl/S7wCJOrGJkE0aGUOGaFmMtk+5RSin3uY9isRatMXiUwhOTHYIY8NFgbEX38vuYs2fsXn+B391Sx4EqylwSuzYS/cDh5mumqefi5Wc0iwXDesXhricizgLreqyN2DHiKiuOTzdysEHDAFPgovSb0X6I+ROZ63VMOcAhRymkUXEqj5IR5pj3978JeP+tAN1HAquYIR/yGMdHs2gG0cDRdC7Pi2hyjnV0bcdyteLq6oqrq6sMsqu6zl6Uo3sdKe9kac5tLAXqqVA1pSA2aneqdztVevTeZ6/fze0Nh8Oepq65unqOQRRwMgAS+K6cka1DNHPflAuR7MHp/cTN+/d0XcNwODD0kX4YpCKVrWm6pSoW+b33gd/+7d+maTrev3/Pze2NJF+OEzk8ogS9qZ9OgHbqv/k8sYyTIkrbyEf9JT965KHLc+OJ+2ZPA6UgLq5pZyUAUkq7BB1H44ooMqOJUD5KYiVGEogMaFKpHD5VUyxBlnobjBElsl6vubu7BWOFlzqIVy0nyJSAu3wW/S71T1VVrM/OaBcLjHqR9vs911pO2muIgG0azl99xA+eP+fy2TNeffIJi+VCi2zIcxwOB/b3O/ptz367Y+h7QpgysLDG0LU1XdfRNg3LrqOpGxpraIyyRCClqHUFAgq4dSCm0euWtYDsd+/e83D/wDhNrFdr1mdrlmcr6QJdT1OITCEqpZZcRwoeFaOkRnOISLXHSN4eLNdd17bcPmxOjJtvAstHJxZ/zpDRFJ9lGUGa0sdXzpz6Su9mdF2kMA6jhl3eOTPJi+tk7gVJ7gUJJyjlTWmAqfY/bnNyCvB4HSVZUtd1Bu5Apiacr/lkbxxdL/WJZc4nMcwGlyx5mykrU9uC9ocl+bJLM2HeDqZ45rSTcQq659CieQ3O7VcQEiMm8coYk3n6Uz9U1ijdp2w512nMjnp07uM81HHGMWlMMq1d0c5cGfVE3pVOhDJkqByvo75+Qic6TbCcpomqqvJ5ycGTmDSMAqPdbs/mYcOi62iaSsqXp9+gNIAK1HeHnv/w0y84bLb84LOPuDpb0dQtljozvlgT8ZpwNntVUlIfmU2qDJURvYiwGpnZK5pngEkzK6oBG2Z5H/OwFkbn3OdV09EsVxyC1H8gRlyUcAZVFtkITDNvnu5FPxeYIrUn6ZpQzJ+0W1TSrpajdLzDlObxqdVAYWzI/ZyLtGYiSPkvPI5Rk4WFuo/sBEt9lb20MT/qkcH7lLFiTIVbnTOEwKHfsmCi8Z7gRywT1B2YmilKTPlMz0qmUQwKZWcMom1MY2s0nto1VOtndFXL4e1X9PdvsGEHNkVgR0yMVGZierhhZyznLz/m+bNz3vZbxv0O4z12HLDOUNtIDIaDBe8COIetHMYG4U3PDo7k755N+Ril7FAMEW8M3sT5DB1vG9282E0pq542lOFvCeiGYyB9KlhOQfbRJMoq/7EwSh4JYwxGeY7X6zXPnj3j7OKS1WrFYrGQJLcChD3lPRXO1jL+kELyPg268+AW15SStoFhGJnGQYvUSInzwzByd3/HZrNh0bY0qxV13eAnP4OqFMpCJNQVNZEYA9F6zSR3uFq2RBOADtPAn/3Zv6NyltVigQ+BqqlpmpqqbvDes9lsOD8/5+7ujo8++oiPP/6YcQzsdnu++vW/koRAY4khMk5et2ODKrTkuQpHiqLoHAUVBRvDo3HVPvqAB/up86EQIEWfP/Vd2kWwzrFYLKiqikPfH8Wenyo74cGePeKz94wjpR9OFuARQIuR+/v7nOV+9/CQExdTK2N537kzjsCec4666xi95/btW8ZpkoS4GGmahqtnz3j16hWfff45zfmaeinV7JLAPxx67u/v2dzds9/t6Q8H/DhRWa3WZQxdW9E0tYDsxYLFoqVSxVqZVOnTiGciP6GGU1mIfqLvB7a7A3d391zf3PLwsNVqk0Fpl7S6X0hGWNIQs/JLfZy2ThN5Rf48RqYYxeABTa5MAzOPgxh+BTqiVIiz9iljcfMYpnbonLMUoK68Ygm+P+A8SLMhRqPGQjiiZ7OaSJkU+aAlrdF5VuYvPN4BjGVr5ruZWVadAm/xoM9tTAwrp4AwAaX5mseOiCPva5zp3iwC4Md+YL/fE4l0qxX1YqnAwkAUiW2lTjspK0W8eHLJElwLgJMCF0dr3aRzme15YjGvTP5ekaWMpxoerqpkF4+03svnFQV8JPMz9H4si44A5RO64fS8UuaUCZNHDoVSLxZjYBBjJn/vHMvVanZYBGljLOan0bGu6pq6rumHgf1hJ5BOwWNd11pSXtghxgh3uwN/8dNf8JOf/IyL1YJPXj5n1XW03QXWbrOhnsYtxijr3EC36LDW6hp9LMuncSh0qYKdtGNYgEl0T2FexU/LXBAmk+VqTfCefrPFJ/RJyBBM4byGI0VitDgSP/2JUVscEYO1lVxN16sxZs6H+IajxAc5tjvJIDjOcUHmszORRfRMZsTHCkyd2UKMJh9HM+/OotWicz+aEmqKVzcl44thrCxfzhKXZ+xCJI57Kj/S9j3BWlzVENsGbx3RVIW8m3s/pphnlQWpaF6cV2TGaB4w9QL78jPM6ozh/ZfU/R2EHozMGxMjFZ7+/prrQ8/zV5/w/Nklb74+MAWPmUZsAFzAOWgl1hDrK0Iw4AzResnMTspBkzyTbHBIrpyNs4EYDEXCKNqeZDikMMfH86I8/taA7nQ8BtxZRerrE4ovn6s2rLFYrVrUdR0XF5dcXl1xdrbm7PycRbfE6ZZ8ukbpoc1eguStTfeJxR0Lz0EZc/wk6NZrT14qH+52Ozb394zDQSnqPP00cXN3j/ees/Wa8/OLnGnufciCGMQD5sNErQkwrfKEziWphd/X4KgqofGx1rFaLjEhsNnsGPwgil7bZa3lyy+/ZL/f8yd/8ie0TUuMIz/72c+4f3iQEAZbsd8d6PuRSFSqrFm4J2WXstmPw25ShKYcyfI/DRMxsRzRb54b6bMjsJPOKZRaehXDwVApk8hUxBsm4JBGOKilbnLii1wz5HPmhSj31duG+RrqemG33fLFfo+ta+q2JeZywBwlfcUssGKOOU3qYd/37N68wRjhhH/2/DmfffopH716xbNnz1itVlRVRQD2wbPd73l9fcN+u9XCOwN+mrSeUsSEQFc7Vt2Ctm5pG4nRrquKqrIzu4iZGUeyTtR2+RDxfmA49Nzf3/HwcM9+L4U8JLRD56pPJcsV4EWA2XhMvoOUwJof+4kjogA86rZ+CBIaYQrQovPLB2HKtmmPcB5J/TOAgUA1UybmGxUAKKakHEHiOTQoAZoTIHzqyZzBU5y9bYonSiBbxr+eypNTT+d8n6fXS8wTcH7m9JtEDZjRaIzUbk5STeeWr4+vP/djVGeEQZTldrfj+u07mXuatNl2HS8//pjzqytMVWeQIMbHfJ0ZWJ5OgGMPt+wOlDJmft7IDMBjTIZLGSrAUXiZL5+x6Ov8gHr/2TvK3L7i5SnADY9B91NHCcSzsfdorOdeeTTHgErLvsfSoCueJUFYqRB4rpMkyA6Ml7DGvu/ZjKOs/bqia1oaa+mHkTgcuLl74Muv33C2WvLZJx/jTQXB44M5qsQJKsu1/5M1nYYpPd44DLIOrc0exjR1T2W70f+ORifJTFOOjewKLpZrxn7E90H41mMkl84szk36K6b1SdHv0tk6v8V5V3eLXEgN3YmqjSR2hyfG+dhwMvOcMSl8IekChacFGq+M7LquzISLE1saIjWeKBSDiSozebyjFYNb2w0ztWX5XJJIOCdjGiLUC0IXGb1hNe1pph5z2NCPI9WLhmg7cJZgtUBXFH1XGg9yMYMUNkrrcXam5N0AW2HqBWZdYeuWw+tfUh9uaK2Upk9iwUTP1G948+XPubh6zuXZmtv7O0Y/YuIEscfRUdlW5lEMDCFKeJirwEaijTo3I5FkmRcyMTLrWyMzbNbHknsl8yBo2Nb/LED3LNieeqBTL3Ye35gU+Sxc227B2dk55xfnnJ9fSDLkckXT1so6UpMT2E4EGTB7gZAFXXpC5SfmW/8dtV1B7d39fabj894TphFjDHVd4XA87PZM08RisWCxWGCtls6eYuZ2noJ4uyNQVY62kgxjj05+P+K9pzlb0S46vHe04wB1zXoltG3bzQPDNDH6iVH5rkOM7Hc77u/vqauKv/7pT7m/vScay/XNda6e1/e9JKn4Ub1D8ryu9Lg8OnTBxVSd7Rhsl6P+SM1+g6I6BSLWSlxXunbJ3Z3GeUqf57lTAOQ8XmroGTROrMYY8U4S1XBGBXASWLHYWmX+M3lQPQICqxgwQchXrXVakXPetBZPP8TkCbWW6CxV03B+ccGrj17x6qOP+N73vsezZ89omoZhlDHfbrbc3d+z2+04jAPDOObkXIMWXrCGdtHS1DV15VguFqy6Tmis0iOrVjRBFFBtHc5KUQEfYVDF/PCw4f37aw59jx8mwiSebIxlCjFTQeb8hTRHkweuHN8CIGZBHQukn8YGNEBgBoeJEtAHGZyUNJa8ZAapnFaOtMFgrGHRCcf+Zj/w/vZW130RbnEEvE/iUp8ARKee7nlNBPVCpXbH/MinsiUdyZj/0D3y33q1x2slnrzOR9d1+GmSkCvEsGqbRsa/eO7yyMApvZcGzMA2Rsah5/b6hpubG/abDfjAOE7EGNlvN9zdXLM+P+fjz77H4vwyg6gcRWzK+3F0rxTjbp0rQHeSt9ILZR+kULxH4/REX4dwDJYTMMp9cdK19hEwP5ZHTx3f9j2QddIRSDvRKbNRIq9J1iWWJkmoT8bJE/dQwyoVxBHQFDNTV9M0+ODZ7w9sdyJTKmM4X3Y8v7wUL3gUtuOv3r2jtpaudhBlHmXDMsncaZzneJznDapjp3HET5MApLkXSLH4p2ZlHm1j5rDNU8MX0ePdosOPa+6nkTAlY9/PppNaIRF1tlkDweRN7+wsUvs0GB2Pqsa1LV53G/0ohaWautYd5tNOj4VXnFkGJIPEMEudLHzMrGsiGBOo4kCMFSY6fJQ4a3FyOSlPrr8zRvJcJiNeZZv73ma7I6AyLO88R0IMhIXFRcd+AwRPGwYa1zNurmF9BdYRbcWE7H7KhrpGzUetvqtyLdHvzuOZHk8f0lVyf1dRfVIxvmsxu3d07DB4rRIZwHh8mLi9+TVtu8CZOen5/PKM/+X/6p/ws599wS9+/mtcXOCiYKUwTcSqJhbVYkMySKxMRlNUPcUEcdAk4yeB9GIGBp9k/4fX8ncedCfAIW9mYZK+S501nzNbVjGCs46rq+esz85YrTQRcr1itVpLEqKVctTyT0IcMoVMIZCP2vNIaRZC08yWdinU5/bqNRXcjcPAmzevubm5wVrHernk4vycfr8jhAkfAoeh59D3khRZVRn4D6qwfJDiyNY5mq6l0i3AqqpybKIB2qqWEsF1xWGQ0JXReypj2B0OjKNlGIV1ozImC+DoPVPf09U1V1dXdBrr6SpHrxnt425HnAKTn/IjZ7CrfRZOSm/mBZeA8NF3hREzD/NRf3/bUSqfFIefgPUjjyMQiiINTynANPZZtNsanFOLNyh/p1FwqqXRtZwtMHu7deL6mAxjmSdlefAQY2ZFSf0R1UvgFgvWFxc8e/GC733+Oa8+esXV+TnnqxXWWIZhYLPbs39/zbt37xiGgWEYiMHn2Gepbuao60pjslu6tqZua43DVGCXTdo479og3hPnLN4HNpsttw9bbu8f2G53Gpce5wUaE4uIKEpfeJ44XVuGzFQxr50Ewi0+pgp4FNA6jbfcL8uMqGEfIc7XYFZgYngl4AKuktCZFy9esFwuhDfcOaq7B25vbzLAiknAUMoC8vtHHu14bEScypCojT2ae8X10nEUYgBHibcfBN7aT0/juSPpqn1oaOoar8xLebfOudk4OXkeQIywk7FICUl+mri/veX27TsOeymM1O/3wnYT58JSANeHPfvNA7/zB3+EW64fhWaVMj+1N3mqUxhOWk9P7aiVu4/5esW14vHlHxk85e6B0QdNhqB88DgXJF3v1Pv8Ta+nx2xAMb+ezC+9Se6pOUFdeBUS4J7NU5SfOvVEmlt58uV7J09pPwz0Qy8gsm1ZrpYae33g3d0t6+WSRdsg1Rh1nam8NFGSz3RGSm5CiJojA6lgUNoZiUCcJqZxpOsW81rJ1LNzKESWysZh1DtvTJkUa2ZAX4zl8vyMSOT2/XvBCzGVtp/7NhmuCXjH6Ji7/jhB1hb0ka5pMNYx9j29st3UCJPYrNf0vxjzTrS1htPczjTX8hsjIBkSAwdU0WPinorAGDr2sWFUtpDSyAymyK8w5P436v2IKAFgBpjyuYkR6wL2fMEwBtzeU/tIYwbi7pYuBOKV42AqemcZnWRypJCwlADqYsz82D7R78ZyNyw5KLWPA9Au4fkn9FUNu/c0YYujF/CNxqoD47Cds7Qj7DYD6xX8X/7zf8r/7f/6f+ev/sOvWAQYg4QgDhMMEUYbQcu/p3UV1BQwseh3IO+GWBBiwVmnnJ7y1PGdB93AkWQ8Als60VMGP4hyaJuGrluAEev8d378u6zXa2FyUNB66n3OxVPMhwF3ec8jIG6OvVtHHhQQj2TySMRZiI1jz/v379jtttR1ReUcq9WCaRqIUZJLhmHg/v5BilQ4N1eFGwZd6Iam7VivVjmGLy1Q7yOmstR1Q1NJPK6tLIdhYO89+92G3cMDcRqprOVstaJ2BmdkkQZjxCs59dR1w+XFJS+urnB1xThNPOz2PGw2Ur0uWbAk5aYcuWr8SAiBPwYn2s48tifv02fleHzb8aShlAyTEHK1xyfnkyqeDN5OFO78O6FBss5hnMT7iyehmD9oCMM45BCRrM7yLVMsG0QNeUqe7Rz/am0uuvTyo4948fIVrz79mPOrS9q2xWCYxonDbsdf//XPpRjN4cA0TrnNEgMXqKxUrWsrR9e2LNo6e7UrTXhKMXOpoBLRUQws0yRzcrPZst3t2G53HIaRUWOwc/XQqN4L1eUxM8CIpZEVIDPYybyyOg9C8h4Xo0PqxZgU3tyhVqv4JUUh5yXgcGq42SPqzdV6yWff+0S49fXZox8l9lSvY3IjHgOkHEJl9JnVYHpK9pbzXDw+ksTjdWfJnkz1FOqRQPc0TRnslWDw1JBMSv03OcpdpUq500VOadx2erYQZFfHFjJTFXJ5XwleMxx2O67fvuHu5oY4jgx9L9VItax84ou3xggvdAhsHh5499VXfPY7v4Pul816NC0ufbYku611M7Ao5Dtw5PEuky31wfVix3I/9enpDuXRbgYp/CXB4GPInubu6e/Tb8u4+dMxKI9TnZff67ikuZD/5fv4vEZSrQjJiUmM+OVl5vNjis8C0hLy3rPb7USeVOLQET2nLBeNw48jN/cP3JvIetGxampWuTKfEVBNmvpGQ/NSCW25dyq5TQJ9fmQ87FmdnecdsTDbPZBN8Bn4wAzYMsFRPlt3v9Kctpbl2ZlUyn24l5wKyCWU8oBENGxNwtxsYn8pB8sYrKtxVS36z1qqtsbYCj/0jD5CnKB2YpDYYs6pt8FgcMYRE+TTKXU0JzQPQT4/Xv8NHktPbwOV9+z8kpEKlGzBWIexDm+hBpZyOQYiJojRITKpEHXpDxXsPkTqs+dMPtL3EesDDT3s7/DWYS8kRGN0jVSBjCkEjiJXSdru7LxjFCGHHKV/RsM1IkCzJJ6/oHcLxs17Wn9NZbZ5iEgFx7DioI8BP3r+6//vf8E//OM/5H//v/vf8P/8f/y/ud+M7PrI7uDZjgO7GOhDzaC9HozN1TRTOw2I8yYVQGI2Wjwx20ixkA0fOv52gG49ZgGYWCZCFtxN03B+fsHFxWWmSHr//j0vP/qIly9f5hi9U69HEtyJPztFDjzpleAI/6dGPSkkk5BP/1kj7I+z92Hi5uaGcRxZtC373V64jKuKYb/PPMKbzYbNdoc1hsVigXMuK6y6rlmu11R1iw8R4zXeHEPbtJyv11RVpXRPaglOgYnANPbc3T0wDr3EKlWW/aHH15bKSdsDjtGPHIaJrpWtdlc57jdb+gCj9/T9UHggIAFtUo9FDaGZJsSrZbKQF4HpNF7vA8fJBH4KfD+luI7+NnO/H3nQ81yQqmR68odaogreiUCyDlvXmKoi6tzKNFiq/EwI4H0pvudrKUBPzDLRyHZ4dBVt17Far7m8uuKTTz/l8+9/ztWzZzR1g8EwTiOHw57b99fc3tyy3+8Jk89JpsZISI+1VgB15ehqS9tULLQYjlOF6XSnJ4uRoH2gDBnBwzR5drs9292W7WZH3x/UgJlDQwKabCbouQDe83GaiEaxroL2RQLcMo+Pey3qRYNqoeyFiEfqFhtNprvyIT66TnmtVEClbVql3zQM/QE/DTS1o6oaXKX0UgVD0fEOxPygp7ti2RAvfvdtc/j082Q0yuXm6z3FsHMKCsvjsfH4pEQDvXYZQ+6sw08Th8NBwzgsJAdGukopJ73n/u6ON69f44cDfhjpdzuJ0UWAfb1YUKsjxFnL/d0du90OGyM3797w8fc+IVV1tMoaFCJaNOoYcJfOlGPQLUpyxqkn4RhFfz41NqeAufwsGyPHv5iNydSOYq6U4xRPdveKm1KcmD9LeinGqIbhfK5Rg+1kFEn1G07DIo2RpNS0y1gaknk+6/njOLHb7nDW0LYNuRqoti85vKqqwa0q/Diw2e44bCP28px2tcx+wKixnkHrHURg8lN2yEQTCUgxstTuYb/Deo9z1exk00TgFJ4WSl9jQkUIuM7MMMwxw6mnjALv88srjJ/Ybe4xCr4SoLcpvSFI2W9jLYS5CFIyfEANVife7ogEq5iqxgF+HDUJ2tMZS2WsGpHHBl0K7ZnLhM2G0XxuMt51Dus/S6SW9HEqDFU09CEyBKnLGLEEDT/xFoIJuDgbs0LlR1LdmmOTcsZSUI9nNAbXrhjGkSp4WiYWbmSzeQcxsHrxKb2pGQvGj7TjkWdpmtM6nnmQku4oaixIlEnE0GFijZ8Mw85jGHFmn0c0ee3FEWAgGG7eX/P/+ef/jH/6f/in/NGPf5t//5MvWJ1ZhgkeNgeuH3Zsxz2tbRlo8TiJvDTJCeSwsaC91O4OSDgKJu1s5+Z/4/G3BHQbUkkXayzOVdi6pmk7uuWS84sLzs8vqOuaVrmz379/T1XXvHjxIidEPgLcRq9rkidy7rIPbffNi8DM77OwLoWlAL1Bywf3fU+l3uZxGNhs7ugPO2pXs9/tAMOzy0t2my3j0IN6fnr1/hjlWbbWUjcttXKH26qmHyYwkhzSNg2r5YqubTFoTJzG86W0T0Ok7yeisazPLvDDgB979ocDhz5QVQ7nZBKNw0g/jiwWS+7uHxiGnoftDlPXQmE4jiL80mRHl1UUr4CtaqLyVjsDbbMQrvE4EbFHCvIUmDzl+fk2cPJorEwCYMeAfd7t0BuYFG6ggJlZwBkK74iQnFNVNa5uwDmoHE5jsBN1G2pomHGUmO30HHkhG6yrMFq2eXVxzosXL/nks0959fHHnF9csFguMdbSDwNvr685bHbstlsOh72E8YhNrx4D4WN3laOphXmmrhy1szgrhFKVszRWt08N6gkO4CPGOpkZAfrDwOHQs93u2O56xnHS3QxROM4YPIZpXi2kLeF5jRj9vBif4wHLACDHdOs/owZI9ranWaWJjUduqydtJJPblZJ5j5yRoF70dDlZ/TbK1m5TWUyjBTmSUmNWAOmmpYw49VrO/aB/J/B1Ms9/08OUrydKOv8NGQgetUHv+Te5X7pX9vA4+OKLL/DeS4hZ11EVTozUNTFGpnHk7v077t+9J0zC597vDwyjVD3tugXL5RLU+3oMXmVQD/s9u4cNdnWmia4CvBP3vSzPmVXj1CN95PjInx3rgNxHTxji5XdlPye5kWUU6bnTsJg81wKPwWkpp0olfdru0mudx6MA+vOhuSSFNz9GkWVilMlOldrY+neyQk485AquUiZyjJGh79k8PEg8d1XhnBVPMzPAMdoG+SzQWEu1XGCCFNHqa8fUH5j6A4et6Ld+7DkMoxhxzlG3uosiMDc7QYwx3N1IYR5bNdRNS9PKv7quca6iMjNDVlS5nUxttR2kv090dtQ5BYG6qrl8/hKA/eauFDszraL+1gbheo7RYhIgRzzU1lWYIz+5dparsNEQmBjGXovnSSyxKXJcMEa9tPo8pR5M6+QJo50Y53h8oDYB5yYaINw/YO05oVkz0jEFq+wzBu8g2Nlwkh2uIssYdazEwERitzYSVtm1hLBitxuIYWTlIo0JDIc7wm1F99xi6qXoiYiWl4FgrOpDkxiyyTHSOv0MomqFIl3DNq3DVhW+BbNaYeIVfj9gCVgzYLIJJs4YizKiTfBv/n9/yj/5B/+Yv/8P/pCvvn6N3/XY1tK0S5armuvrO24f7oljwJoaU3fgNL/PCB1jjA1ek1JT/3gRkKJPVW+JvP2wrP3bAbqNo6lauq5jvV5zfnHBcr2m7jrqpqFpW+ESVctxHEe22y3L5VKEOx8C3CaviRwA8EFF/pQFowLwiZKfIQb6/Z7r6/eMCTibyDD07Hcb/DiyWq0wTcs0DMQQePPrr3LcWFDQPfkJ6xxVXXNxeUnbLXMFNKPei7qpaZqGtuvouk4SNjBMw8DofeaNTuDBIiDh8vIZq2XH9ds37IcDwzRCmDCjoa5rAf59zxgit/f3vHv/HjA8f/GCYRq5f3gQWr0Ulzf3irxqDPowDNLDxoJ1TD5oSdjH27elUpPKkMdKD44B9oeARIgSK9p2HSFGxnF85OGSOG8VpE7aEILEnifxnwC3CGoB3aayuLajajuiM0IrZlJMqZPpEKII5oMImGitMp5IONBqvebFy5e8+vhjXn3yCS8/ekm3WBBiZLffc3t7x69//TWHQy+e5ckLsLeiJJy11EYK4NSVE1YRZ6nrirpyWCthQpI8E6mteHwqVZRBaaQCRrcJ92x2e/p+ZL8/KFf4LA6DES+8IXmWBHTPnA3HK+QU7JXFK54aseyFY/YwzPHjMquiAi1LLJacersVGBoFP1EnoiHiCXidQzMlWAIdAWM8lkhlK4wJ2NqJ543EipAUgkTsp1CSo/kXy7moyr1EY7GIKT8F5zGWjKRZ4Z6GjDzyVJ9+r2N9tFaY2/CUWCsu9cEjxsjD/T3TNPHw8ECbAE+QEtnzjWC33fL++pr93R1hv9Oqgj0xSDnxbrHAufqIyzdVZR2GwyyHQ2Bzd8t6uaaCPBcBCFEcKUdhgrqOk6fw5IFOAXl6PTVcymc+/Y09MjJmJqt5xyGZ1srlr3I2hTmVczvCHHP+gTaGcOwHz98/MhhmL29eIydthdTlVvIrtBhZqqyrJxZgVHJchr5nsehkvDNoTd7wiCFI+e0o4WAmenx/YH/Ys9ttGXY7bJBEtziNanhKm31af9bg1AEjHvCUrDgbLLuHezCJUhMp3FXVVHVN27Qs12u6xYqqrjHMcj3nxpCybfRz0o6srmljMK7i/NkLfIwMuy0mTJm5QmMg9LfpEfSaMWKdoakkRHR24FEIO9kdMsaJPgqBOv9egXcUT3NiMjVJpjxhCB4Z2+X6L4C3MRFrRvb3X7HZfkG7ek61ek7TXhCrpcjzaMEpB7Wum+gTphFZF4zBm5S4KY4May1UNXQLQhx42A5MHhqrrCEP7zHGUJ09JzZLBteRKjsGhceJ3lN0VK7dqjuiamhE0T2J3lBc3pbYVTjOcWHA9KMES5lJIbySJIS01g39duSf/xf/Jf/nf/p/4nd+53P+zZ/+JXECjKNzgc6NNH7D2B+Y+glvKqp2ydnlM2zd0XspzjYGKw4nnwwBqWIbTRBkpZ3/Tf6N7zzoNsbw8cef8Nknn7FarWjaVop4KFdoomiZd34j+/2evu959erV0RbssSfD5POzB+QpA1LOyAkbmY8sU94YiHO6T1J8MXj6w47gR2KcCHEi+on9fsPQH4gBDrsdw26fi8n0h72AXWszBZmrapply3p9RrdcSlt08a9XKxbLlXLJaon6WooSTNPIOMwcp1lIqjBq2paLq0u293eaiBkZpwk/DQL6dUL1k3gEw+Sp64bf//3f50c//hFv373hJz/7GQ+7LWG3fxTPbIzF1jVOaepS30/KrnKqGNL4OOcIIeL9JNvbpcGQwEs5ox8pzBm8u6oihpA5YNM98tjqOOa2VA7vgxZyUKWnyXYEsKYiVgaqmmaxoF0tsFWFdcfVK3Pc+ORwwwHXtzT1mqvLK773+ff49NNPubq6YrVaEUJgv++5ub5lu/2S3X7H4XCQBKPUn0aSb1oF1JWTwkdtJcwhzoo322rym9W4M0vMINSpce4njw/Qj57doReQPQyMw8RUhjDkwgXzOni0MJi9PEeKoOzf8ii8fiatrQQI0m+NKbYIE0xNMd/pGvHock8dycsUFI/7OMfJJ4Mgh+Oc+NqPY2PJivV0rpUeSxCHR4RMYfP48WfP4uPjJNaY+Zbza5z76OhhiyS7U89Ycc436IEZgBSGUmpXVAP22bNngOyo1XUta16TtImRh7s7Xr9+zTiM+GFgPAjjkjVQty11VeU5lTzzwXumcWS33eYQtNTP0ziRhjxGsvGX5koKGUwJ8CrIs7F82r/zsx7vpJ2+njoDHnmfM4id7w9pp2cOr9NSO3JtS3LHMleuLOVfmuvzGB6FqhWyNZ09P9fTIzuHjhwbbLNXu2BwUv1wOpcSa4k5uXEszw+B6ANTf2C/eWB7fyuVKImY4Ik+EIyEbFRGTYRCD8/T1OCUcD+eOLISSLbF/JymET+N9Ic9Dw93QtfXtCwWUj16sVhQuyrry5TIn4l+jdwnJvBgRLavr15wqBp297cQJmL0wvms4D39PEbNlzFW+aydJFIaQ8BmTuc0SpiAcUJJG7xnikqSYRLNb6QyNhtjKaDjdO0+BbiBXH0yAW5h9jBUNhLGe/a3G8LtVwSWBNdRVR110+HqGm8CwVlMVWOrlrruaNsF1lXZwTIhaYvGBKlsCdA2WHtGHwb2hwnwNBhcHPD37wnjhDt7RtUFJtcRTKPjPycyS6uttlvAd67saI3I1eT9tw4XA95aJmuJVQf9kooBtZCwYV6PQTdHvY/88ouv+O//+3/NP/j7f8wXX/yK11+/w/vI7tAz7reM/RaCx0VP8D39tGfZGT756AdEW7MbAnfbkc12gAjBVLhQEZ0jIsZUDC6H53zo+M6D7rbt+OO//8c0dSPeDWOkelnUculxFlYgQubu7o6mabi4uHjymsfiC+ayDfIuC1gKVRwSl3C63yysEjBM2fNVXeEqw2pZ0XVw6PcYE9nttmw2PcPQE7zBD7LlX4qXYdDEO2uEhaRpWZ1f0HYLIjBOE3Xb8vnnn9N2iyILX0Gvkbi5OAwFG0d6cJPjfFfLBU1ds9PYs2HyjCGAsTRVjakaQgy4psbQsOo6/vD3f5/f/u0fUjlYrhc8e/GC99c33N3eZQWSfInRynbQaWnzFHd4Gl+fOnoaZwYRKBelUhudGE6KFY4A2KwkA9M00+KV54sSV4PLmjyczlppezSS/Jdi8H3ER4utKpbrNWcXl3TrFbau8hZ5Mn6SdyICn/hPWXYLri4vuDy/oGkadrsd24cNX3/1a7abLePotWrlXBDEOYmtd85K8mPTCH2kNVQVVNaIgIYifGb2sZiIJkZKouWuHznse/aHgXGatOBp4VnQ+ZFe09Z5LPo0DUhSy7Od+jjM4REALOb4qQcuxph5UJNxa8sBRRWb1a29qMKYGXw+teUajXi5fBpvkwpOSAEqH2J+5GEc8SFiCTmBU+aKgjhrs0ewNBaOQgAK/FI+9FNG4qO2ZqChIQsnoCMWPzXFj5JRPX80A8cnwfdpe3KzHgPQGGfw6pyj6zo+/vhjcvVbhIlg6g+8e/OW3WZDHAZ833M4HPBhwlaVVPGtqhxKZFRmjtMkRZj8hPcCuAU3R4iGfhw1SakwupjpEh8Z7fqanKTHBv3ThtBxH8wA+5F8OgHFp+eVhYJk+YssdCYBvpKK9GipMQP1eeKUQJ9iDZVj8gGorXOpoEblOP7/SCfkKx3Pm+xPipFp8lS1mx1KqM6LERsDu4d79g8P9DsBLSamUkKCKhNnM6m4durXGDG2EtCbQhwSFZ4aWek1PfvcQyVVmwDo4Cf6XvKV7u9uaJqGxUKYyrquUzpDAf+ZU8qYIyPWAbGuWV5cEols7+80vMHn6rqyPos1cjIfMMmMNzNUMCBJ6erZtw4sM5NImq9R9GbeGYyzCRk5kbNP/J1YW1L9G4zh5auPicB2s8FPI9HfE4cN1eSwQ02I4qgBmKJhwLJDdteruhW6xqrBNR1Nu6BqW+q6xdQVUzBE11LbKzbjgSlMugsbqeII+3vGEHDeY7o1wa2YjCUa5TQxYlBZA0HjplOYUCri44yBaKWIUYhUscJVMNUTU+UwVcs0LahT/1iPOEKjyNRgGKfAb/3gh+z6Az56/t7f+0P+2a//Of1O8qFqa7i4OOP67g4mLxVKo2f/cM14eM7F1RVd61itHDf3E++v75m8wdgaE2uwNdE6fHQEnDLgPH1850F3XdcsF8usDBIDRaKgyW4QFczb7ZaHhwdevXpF0zRHiyIdspgVwBVwIPv1CsUjpX8lkSlqbLQ1BoJs8VdVRbNa0bYNTdvQdS3LZcd63dF1FVZpZarKcX9/z1/8+V/yz/7Zf8lhN2TBmDLqpXCB3EtI9jvaxYK2lcqBUwhcvXjOixcSipBaHIMkGPlJykL7YaDvD4zDmIuxCN2gsFasFguqyrHdPIiVFw2m6Vi0QhvXaXXEpm1o6oauqfn+Z5/x8vlzoh857A/4KEEGlTMZKHJkzMwhIsSYw2HgaYB0NC56JOWekrqyJighXIxHb9ORqujJRR+DvMh8OdkoChIXWQhjZ+fiN8FHonVcPHvOp9/7HnXb4VoRPBijRWN0x0GteGclqWboe7abDb/64pcc9rtcEMRpQo7DUBExCrK7RUujcfXOWn116s2WKW9NkSAU1WsWUzynFFLph4Hdbs/hMBCmSIhpx6Z0NJmii8wM4j4wRiQDyRjm0JLHAC8pyfKz8vNHIil5KbNhlUY6Sn9aqXRpC8WTOKQ5Wd/pnkefqAYPmMxrb5zVOM959ygquou6kzWOntu7jYREZSD+GHDHUpGn/tV+ykZYYUx8KCwqx9RmwP7EUJx4uJ466UNK+en7Hnvfy7FLwMsYc1RCXNaWMI3cvn9Hv92BMlz0hwMxRqqmom7boyJjCQj23uOHQRPoUiyxAMSQ3FpWtmunGMC4PN7W2hzrGrXvIwFjnMpSjuZEAqHz083HUyEn+RmNoeyVtCzMycRKIR7pyLteCgZjcb0ymfu0HfPHBfj+gIc+A+ATI0mub46ue9Tab7A6jsNtBHhXVcXhsKcONU1VaZCtgO1pOHB/e4PfPYD3WDyJd25mWRMQZYVfDUws+KVTyI3DmPJZZg+/GOSzTJn7/LTx5IQ8qQcAw9DLLsrmgaZpWa1WrNZn1JoYPfmoiXCGGKRQUIyRCgHD51fPsVXNw821ylWhXky7cFbztgyGmPg0C3V0HNc7x3in+gyGMM8NsRqkt1LRA2Dm7i+M/aLo09GcMEWOQbpjFGrfV598St/vef/mDf2+Bx9xTBjjc89GAnVEvPTREr3BBI3iNhZvHd7UDK7Cupq6bnFNR7TiHLw4P6O/H8VRZZDC9HEkDhv8NmLDSOwmQiWMHw4JCU7JljFzpAchAjSpIA04E1J2AlGNUlspNaExWBwuNlQGjBmJxmMLtpwYI19+/Zof/+6PuL695bd/5wf88Iff59/9+b+ntg3ONFwurnj+8iW/fvOG29tbCe8dD9y8/5rLiyVt1WCtob5acbFq2PcDk5fZ7UNk8gPjJCEo1jyZIg38LQDdMYacQCiGzuyBFok2T8lpmri9vc2l3E8FaHHVY5BB4U3QiStxV1HLUyvzhfdYYLFc0rYtXdNgjaFpapbrBevzNavVkuWypesq6iZl1cv9Ly8v+flffyFgDMQaCxIvBfIoIUry5XJVsVyt6RZLaQ/w8WefcnX5DGst4zhlijHvI6P3TOOEnzzBj4Rpyt4Xp6EWTdNQNzX7/oDfTVKF0Fras3NWleNs0bJsq5zwVTWNJGa2Dc5a3r97qwl50kf7w57tZpO99VEp21JPJ/YDp8qaJxRb4chJI5HPTW0XZZVG/QQ8FMo3/T6i3q6i+mOM5J2RRAuVFrAoc7BRvBnO2KN2OAyuMti6wRnYPtyzDJEGaK2l1pyCGCOMkySk7g8clB5tHAeSV9JaKwRORqz7upHwFJe92sKdnVhe0vOb5P1KdFGaXW3USzZOI/0w0h+kOM0wTsIRHkG4a+3cX6aECLlLZ6Gt3p/01dHKmYdAhGCcf0v5niKEhA8feW0W688qsHdGDBgJd5n7z4bknT9GQaXHSb41mlCDauQZWEcj1GeStGVEyUQBedv9nuvra7bbLZvtjtGHzEYwz6fZQM+ARz+zaV4b8j0TME79ka5xukUcCyPxm47T3z313Ted85seAvCO5acB8J7r9+95uHlPGHqmYaQ/SHEsgxQCqdsG65w6LpSyc5pkuzg5MWKQvxN8Noa0Nd7UtfSfJpKDsARYawlWYoDT+ItRn+bDyUOYtHktrc+Qtpgv+fmKuZimetmFs9dbzojFgkisWvP7+dyU7GmtPQLeT82Bo6bD7Ol8AjALw0NZtbds+WNjorzONwFwPYGqkpDFw+HAZKzkCxmI44G7m3f02y1tnKjilNdo0gE6czL4S5ao0XWRhIuZB4QUqla2TXGmMNdkea9Jc3E+KWmBDGrNXGjtcJg4HLbc39+yvrigW6+pXZ1Dz1LccIxRkrhDJCirSV1X3Lx9nXcjxSs7Gw0hRmE2CV52h2PE5NYkWZRhcDG4GX3kMXLOUTnRSiZIGEc2olRufZNATbvJ88xTXhcrTh1PJNq5fYaozhpFGWm3NOcbKMBVvm+DxUSL8RVNtWBhPcMYGHeBcRqJfgIjYNebiDWeavIQJ7zvcdOBxdIz1udAg4lO4vlFumNwmXlqJBBNxBiPMRL2QQhELc2OgegMezxj9DTIGrTG5fkQ5LIYY7i7veW/+hf/NWeLlv/tf/qf8I/+0T/g/vU77g4jo5VQRGsin3/+OZ999hkPDw9c395KiGwMOBOokArMTedYtYucYyBhvzD5wOADP32iBlI6vvOgGzjawjstCKFuDbz33N3dMU0TH3/8ceYRfcrST0remByola+TAO4Uhbg9be/FIF7krmmEHUITOM7Pzzg/X9EsKppWQgCaymFtlAnipQRufzjw5Ze/5t//5V8pH/eSw6FnmsTTA0mAylJZLpbUtcQ/BSKXz57RtC37w0EmdNAiIxr24r20L4YAUb3CKT7Miodzezhw93CHiYHLiwvOLy+5rCq1JIXjs7WRylpq3UaqMJIYMU2YMGFtTIQXwl6ihRIE1GpiSOpzHavTuPoZOJNFk347K18AHYOsREz6zRP/ToS0fJ7GU72bkCsnRmOER7Wu6ZoKgsaz6wVMjDl+NKqlH/zEbvPAfrfDunc0bUfTdbJ97lymecyi1IixM4Nsg1NObKeFaZqqwrpUMCFhCOUltgXoTILRQPTy936/Z7/fM44j4zjpVrKdn9/M/R1z/yZvdu5y6aknDNTHaycJ8qdDSEjLKBbLimOjiuI3R/fRf7mfTMnIoNfM8AMR/I/aLLG9qQ8Duk6CegB1S1rmS9A1JHNju9vxi1/+kt1+w3bzwDSNYnBVFbaqM6D+VqDCMX1ZWhvpGSIQbRqfDwPi3wQw/+bAOyLczPN3p4fB5LkAT4xr+iZGhmHg+s0btpsHGAfG/kB/6PGTOEeE+112gPwkuRmTFy5mr6F4KFAxZVwxmqJTANkUL62NEro65zKXOEYL9+iuVFo7JVIW46vom2/qT9J8mm9Z/uJ4rqckylmmPQ5J0bVSyMHS433kpUy6rWyPSXZALO2BDCZD8Nm5Unrzk+E8t+zptpdhMdnYCDOIh0hdVxi74LDbsdkcqJ3F9lvYbmn8hKSW+SMQ7cwsm7VJQqGa/i5sl9IrnmSTKQnZUWO7qvKziW01x6bHYAqKS02GT8ngKrhijBwOO7a7DXXXcfHsJeuzc1UtIq+JRikJwQXxYtbn5zgi7968JkzDHI6S2q/VboPKmkyBF0V35xk8D8/spGA2PlK4o6sc1lgmLawm17JlD53ozSeOPP+jAml1Dq4W3I8DIXrRaREgaIEd0ZZBjYZE14mJM/h1suNKnLh6dkFdOx7udvixx8YJ70emKKwe1kgFVGvBMuL9gB/2uMOW5fKcanEOtsVTMQVl2jEOY5QUI6ZaDeKRd3j8dIAQtNBSoGsiVS300dZJQrrobEnCR8cyGkPVdFjXMHjDv/2zv+Cf/mf/R/4X//BP+G/+5X/HZKC3Bhd1F9kJ892Lly/xhcMkrWdrijmeFZ0hVg6PkBp86PhbALqPE16SUCo9MCFG+sOBh4cHlsslXdfl86FQICq1InPiFhwnxESNG41hynFrgigDfhzx1nLoe148f87HH31E29bYGqraijcU8dz4wTOEIJR7w8jd3QOvX79hmjxXl1c8PGw59AOBkIWqCFJpp6ubHGvbapjMYX8gVcwUj78K6sBc6jfqFnZKVDBS6TD4QIweHzzr5ZLLy0uss8rREWkNnFU1q8ZKMqdrBPBOk8ayxiwpZ0EWc3UtWbwfAgmFhR9n8Jy+e/KIMzBPR95xKzwhUYVpZAaWiV0jxfMKn6aAbKsUfYnpZbVacbZccn/zjvevvyZMvcRD68VjTEkdMgeC91jjmBiZ+pH9ZiNz0Wl2OmSgbK2jqoXSrFYu4sosqGvZqjWIR6VyurUZogJzq15eyWGIXnZxDoMkPh7GkWmamLQiKWoUzKmCFEVELFEprGZvXrYxdX0ch/18k3dsHrNvEPrqVTam1DNpPI/XZA5VUJCQ16W1JN/VDPh0wINKdKNGWpoPVgVsulv2/s0gLrdE75/C1A7DwO7tG4yRUKi6bbNREb7hUfU2jwyLtEbSTsRxOMjpBebmzeN5egKPr3PUhrlfnzKWPgQc029yE6KscNnWl/dpZVlgv9/z/p14OEPfS7Z/wU6SwsFCDIQxMk5jUZtAQgOT08MCNoPumEGA0XFt2/aoY416t421mrzs5thrY3DGIIRtMqeDzr88fqmP5KFP+qMwAucZlPuj7Kv0WgLup7zmc9jJcd+n3x47Ch6HjuQ5mkGwcOMb5jCdMrTFKGJNSaW2eN4ss+doY/1uBnFRnUs5FlzfR0RHLhZLQj2yvb3GP9xhvLBGzJI3X7TEl+nqeYLN9KnlOcdGUkzPk+ginWWx6HLfWo2LLo2ied6LHjXGyE61l35KjqlxnJhCZP9wix96luu1EDMYDaWIYjhjFLoZQ3N1iTPw9u3XGhKVDMF5KnnvCT7k+WaKORVJ68gIOJsfLcuPpMtSTg/DvCvLDCPzqKUY7yMn5MlR9okxhsurK5yz3N3eUTtHmCYxjKO496SmvXrCYxQdlO6ngHS1XjOMA+eXK55dXvGmjuz3FeM40R96xtEzTSOTn5j8pCQEYiyHOOAPPcYfaPxeignZigoLpmb0hofNDj9FalMpA4l6523EhJEQR63PABZPE0eC9TjUADRkkByjcKVXrqKqO+p2RSDy11+947/7N3/GH/74x1z99GdsXr/GYPDWUumaz+xBijFPLPE8a5NhnARmkkEfOr7zoDsJGPT1ODRBrNthHLm5vSWEwGq1kskfQlYA+oP8mjyNpYckeZQnH8QDPY5ybxV64zhKIlCMfP/7n/PJq1dCEVQZjNNYNi/UZKOXstu7Q8/QT/TDwDCObDY7trsdD7sN+36PjxPWadsC1HVD27asz86ou6VmY9dUdQMYvHo1ZEtsTphJQiqDBLWarSYzplL3Jk4MYeLs7EwVpCTrNdawqi3L2lBZiNFIDOvkwU+aGBPzth1IUZX9dsd4GFQxl0qssACPRvLE4ucxAEi/P/0+RrK3MSQBRUpYERvdZ2FpQIvWVHXN+XpN23Usl0tWqxXL5TLTlzV1TfSe9WrBcNjxcP3uCLChc6B02RgjFQHNOMxzS7e6DVAlj1b2vpFDJmKM4glUCq5F21LXjkikqupcNbWuKqxzGioy5kQ/mYMavGGMLG9F0KYQyzH/3zCn0Me5vQU4+CawfXQYsrDXnnjkbX1k6BYCKJDt3nxO+ifg12SgkcZ8NtZiNrCFE34G5MVsyWwt6bCp6ltyJ+l9rZHEHI3SVM5ogzOp1AZZ0RRNKPr2pH1Hz6zfmdRXj0FwzOtXRymWa+HDKP+p/v5gaEIxBuX5H7xmnN9H7eP0SxsjU7/n4d1b4n5PHHqG/Z5pHCBOMveSARUCfZiydzsnESqAcyp/nZN8hQRsKuX+P+wPgKVZrPDRCgiwhqathR8/sQWpkZbYqO00sVcZ2y06zi7PsXXNFGWL3sR4xAsv7VUnQFG6wxRegTSOqT8TYD5eK8noPV470v+pT48Lc5XnoE4DSPNF3iUWpBJgyzVKlS7GfRnKktoS4Gj95MeaG6VyTk6MmlydCQPK81AZ5uw8N4yCNG3HN81b6aN4tGY+IGX0GRIwT+MQiMFLqGI2zufY7lM8lEreW2uhTjZMCnZJhowYeTEIl3xkNqRk7adxMVLTYr0EXkhRu35QQ2UesxC8hk9F6SeSK6g09JnXSUTo5ij1ZZFDBhiV+XleGCuhInqdOGdMpoF+BMRLuWSt5fzigvXZGVM/sNts6A8HBqX+zTk/6ZJmNkCtkbW7Wiy1WJbgrba9I8ZA00gI66iGzegnorITTePE5Eflsg6YaHDUVCYAIzKnB2pjGM2O+/0Dw+RpXC31AGTrl0jAGol9z75/47HO42zy0MsDZF1hHK6SonMRwFjGEPhv//W/5ZNPP+d3/+iP+PLtW+I0MVXQ6I5HMh6PZOaJrD2VvbNj68Nr4TsPujFIkZHCezB5zzR5hsmLh2q3Y3fYs16vATnfOkdAhHFTVTgFMq6qCjAdGabAFEamyTOqV7csaSwWqaFeLTlrO55dnHNxeYGzhtpa2fIIEbSEbtAEtsPhwGEYGEfPME0Mw8gwDsQoCZhNUwNkw6BtWxaLBVVdMwUI1Ni6wdYtGAnU96PE6AblWgXU82OSAY3T6mx1XVEZizPiaXUWwiRE8udnZ6y6jlVdsawEeNc2YI1s1fXDyDgG2f4tvTxZ3oug91OAINU2p6CqIhnzuf+yn+UImKexfOr9HJs4g5IAeGyOyU4ebEzh/aocbV0Ld/tiwXq95uz8nPPzM7puIXSTzqkwmUGCiRHnDLuHOw6bB0J/yB6nGMnJqKfbs2nLFxLrhngoJ8jeJumOOYHOAr1+76zljkJhaGKuc3OZZeccddPgqhpsJdvreSMwm9hIKYAEBkTozJ6vGVw8Wl4F+H7q/SOQ9i26tVynZVvkJT7y1ubQkuI+siZmIJNNiAwIzNyUR+2bDQJrZkCXDKn0Epl3leZwkDlWPCnAiOaRKAZJECNHRcbZGBTlrLcxZLSWlGoyLoTy1xRfPAb3pSyPRdtLBfqbhJ+Ur6efH3WbXPBDF6I/HHj39deMhz1hGhn6PX4aC9AloQ5iDEV88JLUXThAFl1H27bKV2wy1aZhBrHT4cDEgapyVE3DAOAszaKl6xpq47C5mZLQ53vZ5bx//55xvxOQbw23i5YXn3zG8vwK4yot1SwhSNKnun3O7LgAcWgQS2NG5qJNtJwnrCnZmNN++NA4nL4/Co/ixGATL4Pk7YRQzI85ZjfJh/JaZIkzj12x2vIZCVR7P+nzGojpXkXMefplajOGMPlMT1fGGKd5//Qsiidt+fDx5DkhMBwOBA3lS2NQhuwYM8sck1Bt2YJoQDm80+9czLaH6p0pP0vQz6Rwjex4WQzr5YptiPhRaOqSjMBLuKXrlqA7LQa5pS+AN+qIyBrBMFcvVXEYgldjTBtnLB4t6BVRrmzyPEhyVYbpVIanXhUFbowm/tuUeCw1QYy12BTGGEMWB5KcKmu4bVtZ19NEXdUslytCEIabyQemEInG4WpL1IJ+lXPYNlInA9LLDsrm4VYLBrZ0nRBDWGs5WxjwFQ+bgajVh5xWT06sNVHH2qLMK0lem2Mj2ik26tqGtIOWVNLDwwP/zb/6l/yv//E/4dWnn7L/4hdUU1ALPmGZD8/YDzo7PvgLOb7zoDsGiSFM1v6hl8qJ/TDSjxOjAvJuuaBtWwEuWjCnrsVz6CotHxsCY4iEyeO9l+TDKEwPmRNaBVml4K1u1CvpHMum4bzrYJxoFoaaKPzHJhCi/D54iQ0OYRIuTj8xjiPBB4Zh4vzsgtVyjfc+l1Su1BiIxjIME70P2KbC1S3BVgRjZ5AQDcK/abFOflc1jqoW9owmbfGamfNUOnJiCoaryyuuLi64aFs6pcWpLFgnWdiT5DYJWLGAxrzGqNvBzN7ByUdGH2YA8nj0nnh/HC6Uv4kpbIWcnJA8NSEifWBNjs8yTiovyhjJv07Lp6/Wa5arFav1KtNMJmEnoA3URhbvxHBg3O9YLBZcnp/zcOMJ45gBxJNtVfdQajO6mGePlaf02paRn1npMgtNYGY+MWTF4qoK54SmsOuWyocuQjhVPkvettTH8lbBuJmTyCLfIChOwPYTJzwJ/D50LTgBjyVYj8fXyPfO40RuewKloFy2PpnS5DGYwwLyU859YZNn0uavQpy3z4X2TJKJEtGZtCNmYCwGTiTm8U5FT+Qhc3JuBJ8U7QlwTu1N3voS1Jx6mmFm37Hl56Y0Zn6z4zcB3NKOQnEl0BnnkIN3b98KnWkIsvsySFyoBnKJDAieiG7lax8bY1gsFnTK0z17ggpwaea2pbjcupbCJ945VrWwONXWUCNAKQTPbrvl4f0Nm5trwjThTNRYTwGJ0+bAr/7qgXZ9zotXn3B29QyqRiOQjRSIyiBRQCcncztRVQrAm73cx2tAPWxpQOWH+bvSqIrzH/mclAczhxiGrI+S9DA69okkKkaZ2wlglxKgvM8cfxyFTzuZBiHMoSQ6xt82qwzJWSUJ52lloLPA5DlUzqvixydt/NDx1PPAnJhfhhQlIHv0mf4we61N+mexydueuz8+uSYMMzOSFBDzmCBsGl3TYNdr9tsNk9fdTh23cehppwnnaqyROSZtUWDMPN+SmI75nbQr7Uzn3QYDMUqxrqDA0liDCwIqEwh/1I/FY8n8mWWr7JQ6mk6qWkcM24d7/DSpzDsOkMgFp4zh3fU1+92O9dk6X/z+YUPdtAJ11SttjRPKyEoN8WnChEBVJ4KEyDQNuMryw9/+LZy1/PznP8dPI5frmrZe0g9jxmtME8ZKpIJNiteIIZVXWyyMDIMwtnUL1usltTPYGLI3PxL5+c9/zvOLC/7wj/6IN2/esN/v9ZqSPF9WEU50tvPu1H8c8P7Og27vPb/61a8khlXBsVB+SZxu27Y8e/6c84tzusVCysBXlXg/jWGKWtkQZivLi1d79F6sUWOwdUWnsb6NFnVxRYc6I57tOI7EvsdOE1UlE8cqfZ6PIYeAeB80hiwxSIjwTgVRvPfUdU3f98pEYhj9xDB6TNMKJV1dK+VgilmtqOqGtmqErqeucZVYlS7Fpc8aTNzBRhR35RzNasGLy0vOmpYFkTp68QYaXdAhxRs64Uz2ko1delZQr88wwbubOymRmoBsligzWAXN9CYtiGOu41icHTD4oDHoKIOGTclsFa6uaXSM6qam6xYslksWiwXtopPKpBqW4bRqZ4yz9R+0AIFXZhdiwA8HwijjuWwbvv+9z/hqGnj//p229ynxXzxjASQp/zwBVukbAWfHoDsdxhdAXRWFdQ5XNQxTYLn0nJ2d4apGzjdFSIkK5xPsVl699H8Viug4DvUUUB+FTOQrFZ8/IXRSyFP6TYGzjs554ocFOkHxioj/001s88HfG92yjRgczhjxIqlhKNuR820EKCi4iVaov/Lto4L03Jz8d2C+RspeT+cYbWgKLUnzoewzuZYA/vR3IAF4VdQZZD9+1P+Y45sMpexCK94nENj3PUPfC7CYPH4cJUk8zjGgaW6LkywwhUBV17J7p7uLuU8MytMroVLOzIDbKy3r2fkZi+WCtunwriFYYXMIw8B+u+X169fsthvqGHBMOBIVnZq3UbaZqxgZN7d8vd9w++6cjz79nNX5Fd5aRiTEaA57OF0fxx7VxChU9uVpj5ZG9JN9nF+Nzm+dC8HnXYEMvnXOPBX+lWTnqWGf2paAQTmOc0iTmQ2esl1PzJFsQDPL8H6cWGjb5/6YO+DJWfYNU+9vcpTc409u7ZtkVMwNOpZzTkWlANeSqjAxdsjcsUqDC5KcPguCoBVR66Yl9vPOgDUQ/MQ49lRti9GcnIRFIC2xI0lMPF33VsCiXFf1ZDLWSeEmKazQyhWsFQetPsMj2VyIVUMxzsZQ1Q3PXrxktVpx2O+4v7tjHMcsD8RDLHLUqeG82+/5+S++YLla8nB/z7t3b1mfXbBYrZTSE8W9hlSAzinDVzLkrYHGyc7V/cOGzz//nO//4Ae8e/uWru2oq5r7+3v2u50ys02Mw8joPT56onrMo4bApFwOjNCMOudY6I5327ZqcClFoj6+n0b+8i//ku9/9hmffPwxP/vrvxYyijyfbAb3NkZluSnWVzkPf0NB/Z0H3dM0cXNzk98HNGkwQNN1vHjxgucvX1DXNdFahmmSzk/xtCCCKQT1FMt1XF3TLJdUtYSd1FVNpV5Rc5RuLANkgei1NHiUalghaJlthIEkBM84jvSHQUJLpqBJmVrtUakPvffsdntub2+ZJo/3kWAdY4SqaTnXbdi2EdotV1cYV1FVDXVVU7sa62qsszrhnpBoRrZvQbJs111LWzkaW2EDRCT+PNqgVIWWKVimCFQe46XtYrFqX6gFHG3F67e/5quvvmYYxmJBJy/yjFISuJ43oRPATkAD9V5bsA6qCuuknG7TNCyWS+q2pV0s6BYLKXPfttStxD6bZGwUlFzJKpc8UKFSJEZimEjFG2qCeM5ax+L8iovlgkVT0VWWnz+74L/9V/+S27t7MO4YUCcPT0J/T3V9Ut8qLFPvzMRoxfX0vOIGhTECxgcqNdImNRbWZ+dUTat0eDOiPZKxR4LBaGL+rLRPFfnj6XMSxhDjkRGahHc4ETxzHKScZYq/n7pH/k3yHDCDczHQ0h5BzAxxZMAgRpnsgBSe+uJWXrv3KL5S54l4nNOoIF6pWUQceScTYElpaHNBIQlrskjRLlNc79uOcl0kkVP+8qmeM2b2bJ7Ga/7mOxCPz0nrVP4IuY+DlzjVrm0JA2z3u5klIhZTNxoN/xGPadu2WvJ95s4KxZMkuVxOWnFAjAB88vEnLBZLvKvw3rDb7Xn75jX7u3vCOOJDoAris47Wk2akNQnIyr0SGA+TZ39/zRe7DeuzS65efMTi4grr6ryjlltn5jmSysrPXtFHnXr09zx3Y37NHkvp5PT0pL2TqLz6ZQEdIMetP7qpSQZ3Sjh8IoQKsic7tS0BeWJaDQIqRN/FbMg+NT9S7HzlVLZSgPz8RGn+PfF7mCf0/5+O093H8kjOjTnvJAHq2WARwoFj+ZP4+ZOxFWPAWkeMSbc4xkkICYx+F5TIQEKCPON+S1NXVIslla3IewiFAYPKElNMDaEnTomUArqzwR+lzkL2qYWQ8xOkzEwQvRejsneofND7FjbR49HRvqsXC+qupV0uubm+Zr/baj9J2GpyaFb6b5omfvJXP2GaRoZhZGe3NF2Hq+pjOWUkzwzAJuomXVvofHn79j1v37ynrhxN2/DyxRl//+/+XX784x8xjRN/9e//A//Dv/k33FxfM2rOyDhNBC87lmM/YLSipzUW20gYUte11FUtVLtKHxtUL6f1sN1t+eWvfsV6taJSR212ABmd6Qq8S4PFnKzNbHCbDznq5PjOg+7kAUnAqrIWP3lWqwUvP3rF+eVl5vCevJdJ6D02Csm9tVYSJ2upvEQU3mhX11rhz84FFSKzhWZSoqZcd5wmxijVpIa6IUxS3hYgRM/kR7b7A/thYPJpKczen3Gc2G53bDYb9vsDm81GkjOJjBhG76GqOVutWCwXLBcdi04893VbY1yFs5VwfBsnIDWC1xg0gCMKsjgLExMjt++viWFiOD+nrWopdGENrTMsmpqYwkhQMOXFyrbGScLZJBRDRoXM7f0WH8XiLmPfcvKOLib5/7x1H4y0U7bI1HvdNDStlKSt65au62i7jrZrMyVf4hmv6joXrIFZ4aRn9SEQJy8cwEqf2MQgpPkx0NaORduxahvWywVdU1NXTplFIo5I86Mf8NXXX3Hzp/9upj54UlqlL45mrHqgcmBK/jR7p/KZTy/MJDDl1TNNc+Z90N2Uq6vnVPUcWnK0HVgof1Q5p3i2D3nOjp7oWwB5EuZZcZXfFcr/qe4qAdGTADHfe+6NdDc5vQQ5p3+Yo7/Lq4cQMI6jfkkVOctzS8AdVWErI7BMBWMyFWMy9CJGmACCcGn6dCXVrqcx7KX3MHukjkDZyZEUdHrEoyn5Nws3eerIQCl7Qo+BUwiBrq4x1rDf3Mt8SsgBxegxYAKaH+FYdl3m1s7PmvqgGKfU9mEY2O/3hBB4dnXFJ598AkTev33Lfrtnu9my2TxoDK5ARmei5KGkfsCQQkTmcZbnssj6j2Ngc/2Wzd0Ny7MLnn/yGYuzC4JxRGXE8cmzx7H3uAwLw8zxxOl+CfiWgDuos+fYrk7fzwmSs2f22HMW9fVkxPSjeW2XACB5Esu+PzrS+dYJ9I4z3V7a7PiQ8WcwWFvNFROP1t6Td9NP9dp/g6n6yL750HknaybL3SihZLN+gLzTGqM4mPK8j7nmxWynGKrK8fHHLzFaTh5gf5BiZ6VHNBu8weOHnvGwp6kbYUVhZiCJ86rND2XyOGssN0VxIKUiDxruFmMRipeKTuni8omz3c7nzLp4BsCPjmyMS76YbVouX37EUutwHPZ7nLW0XSe5ciHMbG+QC+9Fragcoxi6uRBYWo/6epzcfjy2Jkb8MPHVF7/i9Ve/5t/+23/L7/3e7/I7P/whH7/6iL/88z/ny6++YnvY0U8j/TQpDamG2URy8ikmFarTnR2PhOVkiSEAfBwn3rx9y8V6LaxZqRBfDBgtyZPlVSzkrcru05C/b5vi33nQbazlxYsXrNdrnHM8PDzgvefi8pJmsRSQNQxKMSZHsFI6u3KO2jqhABpHrK00flq8t5X+k9Upnl8fvMZfe6VmE09EIl7rDVQhcrVcwHKBDwGspa5blqbCVgOHcYRhZJpmLtbtdst2u2UcR7qu5fnzK/b7PV99/ZowRaKxXJydc3EhMd+LbkHT1GKpNTURTRZEODwDkslbbn3HMMecRh+yl4ppYhp71qsFfQhS4c1HXIAxeA7TOCuUGIQ7Nwh35267ZX/oWS2XNG2Hc5Zh9LhmwfriivfXtzAMEiNvxLOYt0hBvdgIv2ctoDmFhbSdVNus2pamaTO4TswdTsfQaUx9Bic60b0aQ0Gp/GIImBDoMNQGagdtY+mahnW3ZNUtaOuKujKqsLUoDmBSj8bIouv4wz/4A16/fc+vfvUlBo1PgxPk83h5lUDbGD2rAKBP4/ZiEVOMp76X2FhRGof9nnEYqOuaq6tnlOREKagiC7AM8B4r76diuE/BYb5uIVROBczpkcMlzNHt8Lql8SFPbLmlPgPJhABi9gRl9ZHHIeWwl4lIJhdYsAhdlAjfkA2zOTl79lofA/DCs23kPkb2b3MsrVFPGRFRwNYQgwj/ch6cHmXvxeLf/H5O4j0KSYnkOBtzeqFvOR4BkxKgxXg0R9OFo1EKS2vpxwEXiwQ6bV8CeOkaRFN4CU+hm5nHL41xlF3AzWaTk64++/RTrt+9483bd/T9SGI6dnHCKMWqwWBNyCE4YtSH4xj4sodjgowy4mGaeHh/YPdwS3d2wctPP2d5ccUc6pYHIM+/NJ9n7/cMjuXFHHFcz0A9vc7XSgmLkKjJ5jmVm1+CeXM6a9Ip9mhtzmEv8hT5ZwqS8tirF1cAv+A3DwI0TtY7xuT8lhCFJpaYDGjDPOHTevT8Tz2eAtwlgMx9Do/m2iz/5l+WBvu8k5iAbYTE663vU/6IhDsZPvv8+9R1gw+ezlgOh4N4u63VPJMCfBMZx4Fh6GmsxdSS5j4DbzDaZ+J9jdiUGGgTSEx5JyZNmxxulI60i2GtzVZ58ijn3YsTI5/4WH4fyx75sXOGpltSNQ2Lvqff7/O1qrrOjtDgQ2F0JD0cSXlnxsherDMmVxaV5PaT8S3mcaXzjRh5/euv+fqrX/Mv/qt/Qde2LHWH+weffY/f/d0fc/Xsit3Q87Of/4KvvvqK29tbRnV8juMkMjn1erSZ9UX6QdoyTCPXNzf0fa+scNojIYIRfJcHoTDon5buj2Xt6fGdB91NU6vXQ7JNp2liuVwyTp79wz2TZtXWdT2DMoTa5iEVLJkmpaeqqZpa+IC1xDZIVqwPUgkyAE3TYm2DdTWYihS76BCS1L6qc9JAXddUrmL0E8YEjHUYk+LOZeGIgo989NFLzs7OBMA2De+vr4nG8dXba1yz4NXLj2iblrbt6JqWNiUfWUlhNMZmtUGc48B8iLnwRObrTluLQUC0sYZutaJqGlFiZvbEj4krV1+j9/hxYrvZsNlsqJuGYHtaDAvnuN/teNhtGadAu1iwGw4Ea5T/1Es2vLUYpeVbrs9YrtYsVkuWyzUL9V4bTXBLbB2Vgmyj8dhl6MI4aVa5Pl8C2gQBy7UxNNayalsuuoZV17LoKrraSZVHWwnANsparV6dZHMlD2wfZefjk1ev+Ht/9w/ZPGy4v9uItyJhLBXgT6ePHsOtZOGX3uFvO5LwSywKGOUmsT4L43dv31JXNRcXF2R/nHo3jsHAHGsMChhSu+CRAH7qs28LYXgcthBnMPqEACrBQfm7GVOqUDYSl5tDBZw7adsMdk4BqOE0uSiBn1BcTwoJmWhnJUzMOzHRQMApxjd5DswlyEVxRq8eTf1Nevw07keGygcEsjEpzhbdYj4G5GUoyTftQJxe8/TzU7CdwkQMqqjVUBEPnICR7cMDjCPeK+d29DkZ9PgfyjNfzQDp0Vya/wghMEwT++02G0HWWt6+fYvhrc5cC8YRNWHTmrnf5+cxEs+dbeHj531qZ8VgZCu533N72LPb7fjdP/p72KYTOWuTlxAFlvorXWPlDk9ZOMkU/RGOALiGDuhTmQTGU6fMj6RrOI1fAihl7sW8opNhZrQ/T8vMp+vEiOTGZGApnOmkBMoQs+eSkPiRjo0yjPBld13HYXOPTa4oE2bWHu3dpyRdGqL/mCOevCbD4PQuR/dIwj3bTo+BeXqTQkpTonowUbGWYbN94Jdf/JyPP/keddvgp0nyxGLQOOJjFhUp8BQYhwGMFd7munli3Sbgl8xBlS26o4y1koOW5jpkPZKBX6IWtDYbigFNNExAvjAKn5Tf5d9mZscRZqGKxcKyaJp8XlVVM/d+LHZHQmQcR+qmQXKh1E1vkjwntz2FRhUrNd+f1J8xZuMkhiAVb/d7YvC8f/eOL7/4gs8//Yx/9Cd/wn/2n/ynrC7Oub674xe//AV//ud/zk9+8lMetlvBR+qxkNw1vU/BDnR3d8c4DPTjmBldVBhruyKYufBcNvbK0Sx05Ddp+u886JZ4qsjd/T3b7ZZoDPu+J9pR+YpF0I9aqTFrLo4nJ8zxmMaleL2Zos1WDusqmrYFpGy2sPZ4SXLB4yZRNjvbsu8nFmdSzdGHER8luN8Hqb7mJ58zxA2wWq5YLoQf2hrHNE4itAJYW/H82TOpQlnVEg+ZEjqdlh/QmKQYlcUhBoYwMYzDETUXJMChcYnO4Yyl64QD3BkrRgeFl1dZGky0CuaBWmJUozH0w8A4TVxWFfdv3vD6zVuGYWSxXLC+OGc7DkQ/YWPA1jWmbqi7BcuzNavlirbtxKNdV0JSn+gbTyrJpTGa1ICIMeaKdiGoByYGnDSPyhq6tmHZtawXHauu4ayt6ZwoDQHZskHkjMLPCDFYQsgsn6pPRSmaCCYKwdOyW7Jartk8HGTmpBWXj8eJVfM3x0fk2/0/pdJNr7Pil+ThnLTWD7x+/VqSc9fnwt36pEqbPbLih5orX5ZbjR/yfD8Fmr8N/MFxf+SY2W/wAMzbqaHYGp9XcPZ+J++JJszkUJgnnj2ZRZMf8Tpv0udGBai8U42bBKtxRTXPon2IIVSyj6CesVzK3IgCNDEebW3PbXrcl5T9o5qoNET0xA/23Tf16VH7n3iveE7G3840ixgxWu5v79htNnRIuB5q7KYEawqQabE5iTkp1CMZXDyXnzzTKGXjgxfA7axltVwIO4ZJ1WAjIU6phwrPcXLuRWZ++hmIZn5n/SzE1BoNCQyyrXzoJ7yxTNEyHA7UtsIbC5XDaPGwHDNd/DsyXorxS/O3DHlL1RFDiEQ770xlsz2vz+PdGlPO7xMAPg+lgAkh4ynBtlQCTKOQ+iQYI97I9BzJULc25xUksJoMB0Darc6bxXLJNukkESTZYE3PVcKqci7MqPnpOfubHkeSJMajy36DlNG+eewEicx9LdggghFKXO89m80dX/5y4rPv/xYQGMcBQhC9cjpORry+3o8waPiZguiMPov7Kh7MeWcxIru+zjEFn3ez0Tlvk7coCuFANpyyvoj4nIcgzoA0b1MV13Tk2WjmsMC0W5muaaLJ8eIxRtmJNkarX0f9reAFMUYUrOq8TvMkhV+leXfkgS8OH4JWY9Y1kPgRYyRGq7S5sNsf+Kuf/IRf/fRnvFiu+K3PPuN3/+AP+N2/83v847//DzlMA//hL/6cf/2v/zVf/OpX3G22HIZRyS1kp9zpsxhgfzjM7UmyMYJyRcr8T1TAqv+emsZ/6z3d4zjyxa9+lXkijZHBRWOOZSMjZuFny8FlXhDZg6aKpXIVtRYpEXqqBuskrAEqvNfkxxDFexs8zkcaY5jOK6l9FCPGSyJPwDNp1n4/DFIQp+/Z7/fc3T/w8PDA0A9M3uckhN1uz4Tl1Ucf8ez5CxaLJYtOvNtSkVCYPNC48sEH2TbxgcFLoZsQcxS1wAcjHJytVkB0xlA5w6Jt6KzLSYYW5frESEltxNORWFCCD+weHlhcPWMYRzCWYZzAOH77d37E8xcvaNuGr379JT/9xS/4+vqaaCyuqrF1TaXJoF3XCeWilUqXycgBsqU8aZnotO0/TZN6X4ImPULtLE3taGvZYlovOpZdTVNZamtwNlIZaDQuOyUZJkiVjkSp70pvGAY/WQ6HgTe313z17i2v373j3c0thz5gXUWYJMFLhJ2IpNOQi7yF/A1i//i8x9+l6yVFKABUDaE4A2sfArvdjtevX/OxcSzXazLvcIxHce/yjAm0yq2/qQT5N4Hp3D4eC5fjLfUZkCStm3sme1jn0IRkLJsYizU8gwVDJPqIM47JpJ0abW9U06kMGjXidRZGoen4O1IydlIMNveJMYZgtSotc7GIBKpCjGKMpnuHqEweoixzjC0pq+Pbj3TteYfi8fecnsMMZD60m5COEgCm98k7l+Sk1YQ6kSEqVyfPzfU1YRoxlSOZN6Vnuyh9mpteApkZHSbw6fFeQEtKDDYEKldxcX6mRaMoes5glKQ0gfYM7gQpAeIcKAsmnZgsuXESOjgwjpPGyxoWqxWXL54zjiM2eImJTQ9TDEl2ZnA81/OcTq8FWE0c27qkidkQkwumhF4ZkzkG3iqlWhqveVxnzHS61uR3BpDEv6CyQwDm3AhJvg8ZAFnrgMTcE4WrOSTKx6mIO5c+bbsFpm6Y+ok6zgZ9ZqRLUiqmfovHE+OJocmd/C3HqcHzyNvI6Ztjx0Lqw9PPJLku/cxgccpuMofk7A87fvXLX7BYruj7vTiwnMkUvXm66PgbPwGS0G+qWneZj58zYZTUU2nMkiPQhJgNKgMzX3qqVaAXTLtjWR6kiZKqhRmTd/AS8JYx0+uUOyTp96BGrbZPxznRHCdgmobWFP9Sn8XoIRotjCb39KT5XYRTaZusFU9/jBFntfiVKdnTyGMiMhamCO8PezY/+Ql/9ZOfsPx/1Vycn/PZ977Hy1cf8Y9+8CP+0d/5Q/oY+Otf/pK//MlP+eWXX+KnicViMYddFW2fXzUjLViSw0vqdmgSa5HsbFQGyXs+eHznQbf3wghS1/X8YYykogwJUKUBMEZpIo2RQVNParQWbJWzbxP3tlSmrGQ7B8PoI8M0Mvm5AEvE4ExN21Z0lWOxWoF6cwICHIZx5O7+gd2+52GzYegHvvrqa25ubrm+vqbv+1wEZ7VasVqueP78BevLK5brNXXdUlcWh8FPA9vNjs1uj6kaqqYlYjmMk8aYWiYTCZZsEYpHV0ohr7uORdNQWUflpB9a5fEWw00msVPQ7YzJ3uda+8dZx8cvP2K3P/CTn/01+/7AR68+5qNXH9Mtl1hrmaaR9fmaT3/rB7y+ueGLX/6K/aHHta1kQTfN7M1Owi1tSynAHkahAErFACpgaS2NszSupmtqll3Noq3pmoquqWhqS23QMJHkAZf9CZfmwRHUNgJIMUr7JB6Ffd+z2ex59+6a99c33Nzfc7vbsRt6Rh+ZAlTNgrYd2XsPUXzVybvz1JG8A+WRlMPsSTJzcch0fgHkUA+fjJGZPR3zFcWTgmG73/P++j1N29LYCqKZt8aZhUeaIwq/Z+F40tZvA9wfOr7Nus/KIEhIkDFa4EkLMCVFEIzB5IqD4bitIMAkKamIGIzm2NOZhHtUjygmxeQdg9pgDL5yRBzBIonWxEzflzxL2WOpQDNzdBMlub0wIsBgjEYhmxlQaSc91XF5DHJ4i6DZnDx56nEHeZQUSvsoRrMAfRTfP+Wxzdvj2gJQp456rYjCWmPjTGFnlb4vdWaKuY7IfadxpC4SrQBikO12r57yTI8HtE3DaiUhd6ezTxSepLJKqomfk0rtHDOaqtBlKkkd8qRQR3WEjMOkw6BGnWqOqm6YvKeJGsZUVCzOZ+s6DSf9+1TIjvybZ245RMmLnSgITfbeHSdmnv6usE1JQOuor3IM7czfX4a6YCRG2BqHsbLmQjGueheZV5m+Ue6RkudiiNiqol2t6A87XCSnmmUbLI16sdxyiM4JKk5zuCyyk/roqeMpQ/8bz4klUE9hOKVxdmzYJOkovzG5KqsPIvv7w55hOMi1nMMZqZBpXJGlrc4EP02kHeqxP2CrSs7LgJgCFKcxmNemgHmPNeCNwYSY12a6VzS6GuLJfNDri6oy82fWEozJHORJN3mtHJn6Ie2eV87Rtso5rtdPOt1PBYlD1N7TZzfOzuIuSq/mnTVSF9js80h9EjBEG3PV5cSaM8uqGfOFZOhYw4QYFL0x7A1sNg98/Rd/jv3TP8VOE01d8+p7n7F+/owfvHgJw8jXN9dEpaDOdJGF8ZSncvpDY6hMrsERCEGN1qMdrG/Whd950A3HsZxlTFMahKQIpLywleQ7jQ+udKIHo2Eaes15kRnGgBSyiZEpGLzGeKJWF9bhrMRWm8oSnWQTp+3H0Xt2+55hECorP3n+6q9+yhe/+EK9KiNNXXN1dcVHH33Eer2WEuRNi61rKT/+7h3b7QY/efp+4O5hw+gji/UFH736mOX6TLddHMZAVVmNgbaaLOZYLRbUztE5JyDbOZyVbVunZPvCmCKHhGBIf7WNJDOKMSKZ2vcPG75+8w6s5fzikmcvXtImHk7E4OhHz+3NHe/fvsdgePbsGbGucnYziMAex3EOg/GeGBK7SKSzlqZydHVFVwvQXjQVXVvTNY6mFi5fZ5J3XgpkSFiMyx4VzeXWAS5sb2+JQWLO7+5vub274+2797y/fWCzO9CPk9ALRhhjxFNhrMyzqkIokFThJGMvx3zpcerBSEcJqpMGNcnrXK7NU+Cdn0Me2ASePGIIPNzfs+gWPHshPObJexBRA/S0LcUaMPObp2/ANyu2D4FtSVuU7jJEhv7AfrfjsNtiraOpO5zGORoXkcAXcdVUzpF3Y7XlKaEvBgveaEKXwVSklPWsuJJuj0kfAbHohRxvawVsR22ryIeolFEKXiNHoDrm6VV4hUg3zJ2cu7M0/QR3nBg5pPmgBrzSJMYYdSv5GLAfefr0et8URpK3zBNYzoB7lqHSOzGDIoUdOGu5OD9nM04Qxtmrm4CBIH7xrhqIXpgEvCYkJUrPaRwIfspKW/rSU1cVy+WSrkuVYmdfk/hV0k6I0LFGH+a6AcYQrcXaZNTHnERpVBdMwTNoxeLJe+q6Ya5yOq+/wzBwc3dHtT5nZVOooSuMkdmAK0Hs6Q5Cfrbc7ymMSdp7FCtryF5v0WFODajCaIxlPDpHhv58zzJ8TBBMKoJSyt/yFWOwriIiDgt3ek0F4tnvblQAxUAwAjhWF5dsb95r2JYaEcyhJGnFlamzudszGDvB4MXxbUb8b/KbWHx+tIuIimOK3ZHC6IgKsOZwE1dcdd5ZjsETmAFskrtaw05kQAxSkMVPGcCHBBz13sk2Ew7peQ1kbvgo8sZogZ1Mh5h5GPUZ4ixfTJw99yl5KemsaIShJ8mCAEzDIIwsMUry5GJBDIH7+zvqquLi4hynzCXGSH2U7Tge93mkCHP15BA+NXiyVx2VeWluzJEoOVEcoxEqCvKiOkJM6ltSSJPsg6VQWWdkhzNqzp5taoz3bMeJdz//OcNPfiLPYCUHbKpcTp4s8zTyc2XdfaTu8zNExY6mqgVnRvGMf9PxnQfdeTBizKEPTvmnrQLKBK6z59oWsXfAOE3shol+HPHe0zQN3bKjbhoJHUEspaAAO3kJMGjxGEvtDM5ZFm1N5UxWlFBhjadrlzTdki9/9RVf/vJLbq9vWHQdtXO0V1dcXl6yXq+pqgrvPXe3t/TDwP5wYLfbc9gfMjANAbAV0Tj6KfLRJ58wqcB0lZQFb7uGxjni5JmmkfPlkk9efSQeqOBVCCaA4fFTUC+TeJktJAJOjK2wVYOPhvEwEs3I7e0dN7e3RMDVDbaquHt44H67zZU+t9stb96+5d3tLa5tWJ6dEa0uYi0VOymriABsYURpjdF47I6urVm2DYu2YdHWwi5ijTKLRPHIFP7O5A/KFdGKMBGZJ2rBYxjGiYeHBx5uN9xc3/D+5ob7+weGKdB7mKLFSxqm0hlGAj4LQ9Fhlrppsa7O3s4SqB4XaTH5JRmGInNmpoYEfGcMfpKkqHPdJPFpxbhI15mFXAKGgclPvH33DusqXrx4QV03WkBB25EAYLq+MfN2aCloTtbet3qRnvj8CPABENhtHri9uZaKZFEE58ABY2va5YLFuhNlhIYFmQYTWvAtIYjgngjsd5aHm4rtfsBVhrOLGmuL8UAFbuortJ+tzQJ6flajPLfiVUnea/FMFby7kXnc4gy2EyhK44aTOPDglRPeJKMnba2mqZpki4IAc7wnk/pwxtrHALrcUjdPfJ+OnAykCsrY9Jk8SE7JNnM6cLmnYIigoXLeICE0J7H2af5KISqDR+gSQ4y5aqXTECmhQtMQNudYLlY0XUfTNEXbFRzoWIQI0Qe8lwTt4KVcbozKo5yUXNTdTDNXboyRDLgXiwU/+PRTfIx8+auvmMYwz5Vo2PUDw2bLFUhoiXOZDSskA0x7PK3P01Cq0yPvCJjCg3aUWBmznrI5RyHJgvk8MlVcmmsJXJsjYPihIxkIZYJlGd9bJsQePZfezDqn9K7KVewNwUbWFxdsLp9zuH4LIBLUiBMlz90MvNP7YvrE+XWecX8zoP1NwPwIXBfrRh9L+lABaDpRvleWI21g3uEoHiQEL/o/CuDyGgpK4ezwwYDxRGsFZB2NkyZco4l5MRl1MvayTkz+52IkhFKeJwSowDqW+3yytrNqNHOio/InZPl4FPKhlJHr9ZqHhwfGvme9XnN5ccl2u+Ht27esVytWqxXGSIXOtOOTwkWlXUJ0IDt9hU4rxwQwBEn2tKfSjyMmlqS/TNG/jrQjqDIWk1enDyEXEnLM85zKEZzF0NAfDgyHHuuExS5Ulbya2clRGmmzrJ0/T/3V9z273S7HoXcLCaf9prn53QfdaGhE8tw6V4Bvpx2XhJBMgv4wMo7yrx9H9uOEj1DVFd2io1o4TGuZnPBSBuPwRjKxbRTLVSajTP7KCNf3oqkkNrptQL23dW204mPN23fv+Ouf/owYI69evuTQ94QYcyjLMAxslBFkt9uJQkvJjxpHJ8LBiqC0lsVyQfCSlGGrmuWi5eryUqiIYmDse3oCy8bhxx4bZdGFGJk0bjUl8fjgiVPy1MpCD4CxI+Hugeg9i9WKpmm4325xyjCCBetcznYfhoH7+3tu7u44jAPdaol3jj54/Kie7EkK0Thjcjx2V7csmppF17BsG7q6onaWyoKT26hnNmQPrYqQLLOSsDMqpJKyCl5iRre7HXf3D7y/ueX9zS339xuGXugbpygJVFJSw+EVEMX8T8MHIAtjiV8Tov1pPFYiJfiWIwnq9F0B0JiF//zb4wV+dM2s6PWKVgB+qTxDDOrtDwxDz+3tDavlAreW7HfrZqk1xwvPd36ksMv3HwDcHwLiR3GW+rmfJt69f8du84D3I5VJVHJynp96ukWHi5XqkIkYLHGsmfqaOFWEyfDwMHBzc8/DduL2YaAfJrCe4B1XzxdSgVKLOEXjc5nko2dXjtv0nM5Vss7ihA+z0psBCBlkZ6BV9I1R+eNSIjAQp4lhOBC90HLaYvwtx46AR/09D/s3CuxZuRagvwjfssYIPVwRDzx7Xcnn6Cd6zTlyM3ujoijWYRwl5yJ4jHq5rDW68yJXyYaiMdmwS/2YQhSiETm4Wq3o2laTLU+ABMU4hDkGfPRTrlTpKieMTqkfVM7ZGLE2Zk7gEAPWGlarFWdnZ5yfn9OPoyRLizUt97IGV3VcvnzFxdVzXFNT7kIVdhfp4wyU4myEpD4GCsBks7cvELHpb+/lufO4zQpe1ref51kpcFJvmbLP5jmUwpIUT8r1lPYuzRUpupKAcVBwpLHEaR4rcInqnLHFupi9eXD56iN+eX9PnAbAKLgcMwjE5FE6nrgywfLjxJOv/qccRw6MwgA4AtzZeymNinHuxRl4p3bLuRYxxowB7zWuVyag6EWvpdtB5JFVQK3ntVpqnUhOvZERSJ5xXUs6hhJakkJHRS8GbY8FzSt5QhYjj2ajPIOJSqsJ4KPo02REoOssBg6HA9Zazs7OsNZye3ubP2vblrquOOz39IcDi8WCuqroT4yZVGwseK/hGoE52bbQ4YY8/6TRGgtWyhN9mqAA3CZAbMCTimCpcU56HA39MilnLYXdzjSFBkPXthgMh1EIIqwRIyjtmJUx4/PiP57OIQS22y0PDw/s93uRTzax4jmGof/gHP3Og+6qcpyvV1LQJrNd6OSNst04TJ5xGBj7gWGQBJ22bSUOy1pevnzG1fNnnF2eM5nAGAO7Q88wRqxpiMbhoiY8qKfUGKispTYVjatpq4pl07BsairtVD/J4E1+4ub2jn/3Z3/OdrPFe89+vxfexzDXYZumiXEcGZTXOurCN/osSdeGCJ5I5SxnZysEJkZqZzlbLjhfdrRO7L19ZbG1Y4qRh92eRV3jmLfQNeSUKQhvZUgWqlq6GENVRdqqEsaUpiHEyOrsjLSlkxZ3iIFhlEpQ/dAzKhH/FMQbFYPHxUhnDW1X09YLDRWRkJGuqWgqJ7sGhrxwZMnFvKtRQtDZzpSOiRHhzI5SbfJw6Lm9f+Dt23c8PGy4u9+w7wfGIAlvIegWkCZzpCpewRhCtLqlXwCZ5HpJSjdBf+swtsKEieyJmk/T1pryKvrXBxRK0uCG4lfHYDwphAK1S+JVmCvNZUvcRPb7LW/fvKauKhbLohwvM+jOW5Al3jPHd01HCQCfAtyPvH0xZk/w4XDgzZs37PZbEWRaj9CDAhHPcrVgvTojxooQYBorpt5xu4Xb1w8c9h4/WbwXOqwRr1urln5/4Osvb5gOgeV5xfqypVtWWFupIe4xTimiZNLkjhQwmMBIkiMxf/ekF1OVb4q1nD2ZszfMOEdTt0xmlHhHLTmcAK5VwZ4MsBzeU3Z8abx8wIt5DBDm15yAanj026xnMTNX7ckRCsVnjAFbAVay/aeAU3mbubGTvFLPVloXqU3z3ITlcsnZ2Vn2ikXI2+3psY1BWV/EQTBNXqntJL64aRu6rpXclOI+fd8zTcKe5JSVSnZMxCAf9j13N3fUyuC02w0CKl1F1XU8f/U9nr/6hKYVusAEpspQoBSTKhFmMzAuwVwKqbNWwyG1MI+EKxzPJXXp5I8jsVjXsyxM3rU0prMRlfptBuzAsVzQexvdLTsa29NRz4VWonj541yW3MSYdzms6hQDnD97zvr5DXdff40NRnIxzGxkZlF6Uul17gee/vw/4nhKNj26XQm8FUMIiUAKu4mzoVMuyjRecd6d8H4SxhEFmlOYsKSK1g7XNFpHJIresFJkLq3ByCyS8u4c85xOcgU0rrmIe9YHFEKJpGEi2SkzeC+saNEQg5dKzCrbknc7YSlrxUERvGe322GM0CCX82gcRqyFrusYx5HtZoOJkbqq9ZyQ2yRJhtqPHBulSe/kdZVRrRS3EWVl5+9JaYxo78hOqPpQmMO/Cu2doAJJvhTyN0relxg1ljbWjH5SmuViolhwuYLpvC4THXNyZPYFjpumCVc7lstVLnf/oeM7D7qtensjIuwmPxJ6KYk9jaNUivSTBO+rgPr41St++IMfsDpb0S0XLM9XuKaB2so29TDw9s17vn59w+hlYCcFZ65y4lW3Fmcsja1orKN2jkVd09QV4NnuNoQosYrv3r/nF198wbt3b/GTeNhLUA0iDCcvPMspa99aR/KgleAyBOE9XS1bVouGpjI4C4uupq4kgTGFcAyTF+VohRpw9IGx8HD7SYr9xBBkK90gnrCqpnYOV0lFxtY5nLOyPQx4a5W9ZdKkx5GDbhmP40gMXoSrgYU1VJWlrZsZZLeVeLIrR2W1GA0KsnM28myh5mUWiwVnVHFG5QCfAv1hYLfZcXt7z/ubW+4eNuwOPVOQQkEpNtdD4jzQ51blBDlJIxkkemNdKKoMDdnrNvnA5CPiHTOF3DveEp3vwMlf83Gk8I6E+wyws0UdbOFdE2UgnipH3w+z90kF8jSO3NzeUNUVn3/+W6IINTA6hcvKPSJoyIpJmj21rTA20tN9yMOdxk47Ixt69/f3vHv3jmkaMbrlDFK8JF21Wyy4vPiI4FfstpH9xjD0AT8GwjQQvPCpWmUHwEYmhBvXm0Cwkd3G83bc8kl9gblsGKdIZWvqqsbaAcwoT5KYbJJSBQ1bUIGqmOjUwEjAtwS3p/905BDFYnGVJFZ5IHpV1HnsFZAoK4Ix6pE/mj/Sl+XnuR3FNRLIM0kh610y48WJCZU56Ys1lyaaURBgonh+5f6O5eoc694IV7AG6AdlUErTqFTmtjBGUz9XdcVi0dEtWjE4Ytm+Yk7FGcAkZhkfBHSHGMAaqkbYj9J1kgNj1ASwqJ9bG3FRQwOtIfjAzfU1tnIEAlXX0J1d0J2ds7i4YrG+wjadeKMVbJZkN2kNCJ1bSqIMpMTFqpp3Xud5YfHKCZ+24eXRTQY0KT42HeFkjeUwEKtxAcVRnnpqKGbq2MIIS+dlOZPnnFFQeXzxo3mb5kaURHcfQg5LuXr5kt3dHeN2Q+UjdVpnJiXXFuEFecwLg8Ych4fN7fzw8SGA/cFQH1CPawFsmZ0clhQfXPzmAwYvGKpKrhWmOWwnhiCUsFbyqNrlksX6XMNVwaoBm2Luc9G4o+dI46oGtzVyfkroMTaPpY0OCbXSTDX9O0yjJHtOIz5IdcdWd4YSnZ+PMe94iBPH5zjn6+vrHKJrrcRuSzhvwcjjA9ZYurZVp5wa20Ycc5zMzfyMZadnZRdB+d4V/chYZQPRMu88qGGp15e49blmJIX+yqo1zuPqgVFnZASiNUSF4bIDrqGw1kn14hK7KWYbhoHD4SChc87RNVKsp21bjDNcXFywWCyE3eUDx3cedMcQ2W43uk02Cb+rJuTFqJaNWjzPrp7xuz/+Mb//d36Ps/UaTxCrpXbgHMEZBj+yP/SYEfq9535z0AkjHorKilB3Bhrd4nFA5QAGHu7vePfuDbe3N5n6r+97CWcZDvhpYhgGZOFYrJsVxIxoQla+MZK9G1GfN8ZI29ZcXpxJqXpX0XQdddsRMRy0BP00ibFhncMFwIuySlyxKUs7cV7buqZddLiqwuQFLCthiFI+fZzEkz3oM03ToF5sjQOPgdYamraSiplNTdtUtLUkQjaVU6ofEdqWqJ7OJ5L6sjQWOJ4FcQLFPnI4DNw/bHj//prr6xvu7u4lXMQHgpljdSdjmEwC2Qlcy9wIlgwGYvldtsQLQVx4EuQl0o8TuVoJMxALoQDEzPJkvtg3z+1jjxVHEjgBsgQwppiKhxitgJa21gI2ZtgE0UhRo/t7Lq6u1CsZiMcXV8/WfNOj8QCOzQn97EPeJH2dpon3795xd3eL90G9MwkIJuHsWC7X2Lji+s2C3b1hGL3SuhpSEZRgBFw7azCVsjsEXTcxYLwB4wiTYfMw8sn313jT8+7tDevVgmdXK6oq4lzA4TQZSTN2FPhMul6E9e/Ey3TiUTwes6NZPHecES+2qwydMYzTSBhTEY3j/reWOQFRnQUpU/90fhx5U43klmSPrikn2ocnXNnqPH6kaRox2KzkjZXwJD+Ikq6qilGZGHxM5ab1l7G4dyTv2mGgaRoWC6EONZhEnnHcqNSQBBg1JjQlXCdQU1UVTV1TNw1D33M4SA5MCjGTjQhh1vAhgcZIhXgnCRE/jlTW0q2WPP/oJWeXL5lsS3C1zAEfCDZgjYa+FPM9ZKNAPrO2oq4rCT2zM7DN5wcpInQMiB8DxBIgp7vl8JQMuh1oyGH67Yd2nU7nTQkccreXQqq4b54jxuST8m6MIsIUMxu9xzrH5dUzzG/9Fl/99Kf4fo+dHMZ5oR/M4yszrEBCJezO5+QmHbkv/mYA/PTzLBnN7PmfdU26wyz/C8uXHI6Wjeq5xS6xkGB1N1WMMqyhrhqabiVA27qcX2MVQJYiRAwazTGIiN725U5H1J1ZFKgrHI3iySZaybdAAG/lLD/6wQ/5kz/+Y66eXfLll7/m/ftrLi4uuL2942HzwO4goQ8hCJYahoFh7InIDuU0TVRO2hm06qY1hkW3wFnDoarZ7raEoOGCWrAqhKBGsc7dktHjZIFEnU/iOEjGuppAarTKeSm9XUcy9ws5dvtIIhuJWHA6vLOGm+djwgiBmJMoxWCRvMGJiV7XS2Xn6rohBJqmYblccnd3J9XRQ6BT2sGu6+iaLu8kfOj4zoPuyU/c397NgqsQEWn5XF5c8sd/94/40e/8iBfPntE2DSjgtla2vaIxDGHkMCIZ2D7SWEdXWdmSNob+cGBzJwlfF+fntIsV3k8cNLP39vaGh/t7DoeDKD2tzOT9hPcTFqHL2uv3rq6pTSUxTpqpnqoMOgU9IfosCAISq2WsZXV2RrdcgauxbUe9WOLqBoxl9MJ1G7wUcZFtLqHSSsT2IJPLOUfTSPl1U1XCyBJj3rIVC054yMdhUKYBLamuXqO2cgKy68QoUtPWLoeKVFbpGQ26pROOF0L6WxHvLG5t1sIRgw+Rfhi5u3vg7u6ed++vubu7Z7PdMWQ6I0u0DmzaDjUEAyMqmCi8QLrQRefG2ZVgNNM+A0IVAsY8EuISiuDpmoZtvy8vPgtrY4rP0+/mv78t2empI3khai25m2JagyalGTOD4LLN0Xv22y3v3r1ltV7TaeJuMhjA4OpKWh+T9zS1v7jOSXseAbaT5z3s97x+/TWH/Z4QvILMmJUdCqdXZ2ecn7/kF/9hT/+gz1H1YKKAHRuI1uOsoTZzDHQymcQnErCaABunmv+Ruj9rtiQ50gPBT83M3c85d4slMyMTmQCqUKi9WMXupgw3aZGRaYo0Z+M8jIzM35t+pwgf+mWGPc0ZkRHpJruquTSLBVYBBSCRS2RGxI27ndXdzXQeVNXM3M+5kVnsl4QDkffec3wxN1NT/XS/u9ni9ZtbPP1gBR8avPzyNWh0eP5eB/IxW2Trl3DeSSWMVOooF5Dj3rFm5TthxiVHwmaKQXAe6JzDSE6VcGipLkbQZwUSa4vgfcrA0+5dP8c5kjJ8Wk6RSNylFiOPii8+elAB+dIURULUJA5cw6fI8hwIm909MIzovEc/DqUUSw4wrQmiPJpACE3A+fmZVDChI7u2XMKzCyFGhxgj4mhuX2k3vVyKt/P67VspZZiHIsrH+fkZnj57hu99/Al+9fkXePP2BsOQMMSIACA4RoD0LOBxwPVXL3HYjnj24hM0odXgJ7F0i/Gt5B7IWDnvSSs5W+iEMx0UazOyElHvlaKwV8mS9l32XLgJDSZmqfaE6XhqGp3/PlXoOQOHKTnQ0ZpMK9xQ5g3GB1EpCVaf+tkHH2B7f4/rL75AGhOYHYKP6q0xw1ixZRoYmlZdVcWFazqeWSKOvqu/OuaF8qgC7w1a12cQ1XbUmeeS6jN58isRgb0HayM1MsXVNzi7eILQLKRMscUHmwC0En8gJBbjlDGPpMDdVevCHNUyLnJOALsgcK8lDZ1zuHhyhfeePcPlxTl+/KMf4/d//Nt4dnaG8Xe3+H/98/83fvXqa4wQxbJrWsA5tG2DptE9r14Zy1VxzkJTNM9M3YHjMOD+7g7Pnj0Fqwzd9wfcP9xjGAZ45zV0h3On8Jrey9xSpv/sMWQD2VqjfsbKWE8q58vcJS5eGbuf3IWPKMVowZaDU8IwDoij+MX/+L/4O/jhD3+If/dv/y3+6i//EnEYjuTBarWS3JTFQhLGxzF3Ro9jfCcLBn4NQLeZ9K2piyjn8lYhBPzWb/0W/s5//p/j/WfPsVousWo7KaOn9O5IKh8cxgHj4YD1eo0317e4fn2Dl59/ibv7Oyy6Bfa7HW5ub9Efesngvb4GQcDEbrdDHMeJexTeiSVLXTOOADjCfr8Xq7C6dGJlrQE0+c07uOAk3ARGgAI6EzksV2dYnF+CQweEDr5dACS1YyMz4iAW/0ywJCA3d8ojaZv+8PCATz75JMdpD8OAIY6lSooKtxh7cBSN0jtC5wPaRYeuDVh0HssuoGsC2sZXlUUsuaGqisCVPbUC1/ZpHVcoTAc4HAbc3d3j5uYW129vcHt3j/3+gGEYs4VeDq3hCUvUyo9BhDCkCQ6orIbMnJNJLNaLoSDdDCxEE2uQHSb0m0ZqlycuSTZmFcrrMDFXv9tCUx813M3CUefPBN9yucxWCRP+gCbHCoqCgzY2YcL64R63N2/xQfth7uppIQ0xjnC5nKa4PesQBhsT6VxBx1MP2GIcOTGuX7/Gzc01hvEAIt0LRFUDHqHLJ8+e4OLqPXAMSFFqxpMbAacKlWOw19hQjZ1EUo9CSmpNSkKrycOxhNoMo8dnv3oNaj/CcnkGYI0vPv8KXfchVu0C0tUWIuWdKu7EWsVHJJnXLrU5Bj6L0mP1Yw6ImWvQo/RNcnUgwsiMpA2fZI1KTX04l8NbiEp5T6fVkux5Qa3bFseYMAct76YvKJgWIWQWtyDy23uAfA7BEuU/4fb+HhhHDNsNhv0O3WqBOgRpNi2wmM22aXF2vspVporSzRmwVBo4skqlRpU6TGIcR1xdXcF7j/v7+4m1l0BgB1VyGnjfIJHD280WKTSAlz29OfQIY8IyOFF4EsOlEdu3b7Hf9Xjv4+/j7MkVoMp5UhdWGRNyp81SIatY8QycW91x249HU6Qsos7JAEosOFWA196xPON40h9T0ObnGE+pf9aDyiaQGeDPwMjmgUsQpNP9zUTwyyW+/+Mf4zAMuPnqJUZO6CJJ+3Mi1OnqYhm1SStKoH1Uj96s1PomyN+emItaqZgoGFbNiuv9fHyeednAM6+FgfnJwyw8UhLnQMpaELBYnmF1diHVwLISqnfIG8F+1ZhjBrRaqljLWcLLvPMFgMLkqcty1jlC6wO6psGibbVvBePP/vRP8d//838OHxNWTBj3e+ziiHtO6E32MdSTSlmhYk5oui7nTnRti7ZpxMPUBG3Uk7BcLrHZbhBCwPnFBZ49fwYQ4frNNe7v7rHZrNH3gzbm8zkHY4zTKIV6DcQ42JR9NFljnSCer4NaoPVPX39WERVRWYVMUSxcZxxHHPYHjFrW+XK1wn/9j/4R/st/8A/w//hv/hv87K/+CpeXl4gx4vb2FrvdDm/fvpVGWs6hbVs0bYug4Tp938NHfxJL2PGdB92AlXJRrVSZwnK5xB/+wR/g93739/D04hLLtsMyNGi9F9BNDOaI/eGAu80ar2/e4tMvPsdnX3yJ9XqPu4cNbu7uMKqLUjqjCaGvb25wl6SZg1kerEalHQJ2yt+JE8ZBiKpp21xqKUa1ZBNB4gAJwXlxISXAa8H1yJIgRk2LZnmBsDgDhwa+67QUFsGTwziM4KilmbKJTtzaowL8h4eH3CL8yZMn6LoOICnp1R8OOOz24CRF98EJXXBYnC2w6FosWqsoQrg8X8K7pLWxOYNs1S+UcZj7EapbikXTGJ2BZa9CaIgJm+0ON7f3eHt9IwmQ2kwoppSZfWnbXFkosiAUxp3jtKlsKIK4u6yGcG0bAct7WAKpdY96VwyhVKgJWg2DBKhIlLjG0jI4lc1fQ68juHZCmOoHk+/tBhaW1DSN1GgdE3zw8BzE04FR3fkWpynMiZN4XL788gu8vb3VHIMkSkNiYYTa/AMkjZEuLi7QdV2OT5M4amn4UNeUzY5Zlrl59epr3Lx9C1CEowSQgPt6vZwLeO+95zi7uEKkgDiIDcJZjW1nTRJILU+mQbGGGbBW30lau1lA68gJKQ0AOwwHwvVXa3zv++/hfHWFr28/x/phiw+eL6H5dIUOSPav817KbpKsKOV6I0VhrNdOyGVuBZ+Bq/ydUpqTEp+jKjv2naBUiQn2lfIn9ci99hooMcK1m78kFhUqo4r65uLK7HC2Q+AcyDfw2izLLGl2XWIGotAepYT9rvbwGESuLYdcRkAOoWnyDNqYGdNQCvllaumaHwZizy8u0Gtzsdw9LoNcQkzA7d0DHjY7xNAhkgdCgxcvPsTZxSXuH9Z4/dVLbLcbNDGhA6ElgBAxbtb46le/xAfp+7hQ8MDmfXQOQcP7ZA1mYDRbqi0WXZWGozeZnl/Pg5RbrCpw1Wv3CLg8BiVT4D19MrIL3gw8p+55KqSqHu8E4Gv5wFLj2qFZrvC7f/hH+HS5xBe/+iUOcUBIQENAS0DjpiCEykMm4JorumFFWXzquhPH3NrPGXBNleLaNJKHAVMay9OEV5wC+qq6kuQRmDLN5LBcraSDMQSr1DJByvdpsESWn9Nlz3OdTEmS/SkLiWw0sHkvShLw1cuX+Pl6Ix2dVb5RAhqShkimYKlo1GRywOrgA0BQi+1XX32N/nBQwN3AE6ENASF4tOrh3223OdTr6fNn+N73vodnT5/h4f4BL1++lPCvmAAnsqdbdvDBZ2PaMAw5NHe73aLve4QQ8PTpU5yfnyNqcuc4jrleN2DYAGapyGpUNhxlXiaUlZIZxewy+WW/22O73cIR4b3nz/Hi/ffReI+f/Pmfg5zD+0+f4muttvTBixd5rr33uLu7w71GPQzjiM1uh/3hgMPhgKDz89jxawG6DfgGrbBxeXmJT773MX77Rz/G5eocrfcgZgyHAxoi7A4jbt6+xq9+9Sl++cUXuL6TboMP6y32uwMOMSKyWSTEpSKB7yTuhjQts1QzShsPiLVurDBcSwAKQZrLMKnrWS1AVqM3eG8BghKTBa2swYDzAauLS5xdXEiiY9upJVKOJgScdQsE77PGCCC3Tl+v17i+vpZYoxixXC4wDD0kOUEK4MdxkI6ViyUWC6mL3RrQJsBRQhwGEBircByPTRVTrNgGLDEvgaWhkGrk/TBis91id7fG9c0Nvr6+wf3DGof+IAmeJhDyBrIOjLZJKG8oJgJ5Epe8ca08hmK1lDxBzsYUWURjlZUb84QFaBLHmRL6fo+zs3PkTit5Fuy2lqBTvp3HVr7rOBKe+t9cL1StpBEST9Y0DfrDgP2+r8q2iZlEQI8yoCRNStZ7yVkg1m5ypGXdWNy+EnutSp3mHyyXS7RNi+VqiUW3wHK5xGKxQBMatG0HJmC33eDlyy+x2WxUaMgEW3JZSnLvEAJevHiB8/MLJPJgDhiTAUB16CbxRiFGRBUppIhdQqHsfDukJjPTiNA1CN0SkRlvX2/RNms0bUJoF9Lmm6URE1dmNKOn1gfxkrDGR2blTd7jOCygrNBkzSZApT7HSfKoDwgG6BUoJjgkFuVBelwIPbdBYoUpFICZrZhsdGbJSsVqZ2PnrGxWQEYBo/ce8EHAvvYjiFmRNboRK5GLCTSOYNZqR67ah0o7pryCrS2KehaHUZSntoEjCZmzEClGFcbjC9DL5b2IAHVJMwA4h7v7eyAlLBYLPH36FD/84Q+x3W7x53/+5xiHqFWaHBbdEh99/APs4HH59BmWqxUiO1x1Z3jy/H083N4IINzv0LmEhUuyz/odXn/2KbrWY/X0qYTJBvEses3xMcqR9y8gut7DtvYEaGUJ5ORL+X2a4OhmFvNvOmqwXx+nwldsQDbfiRTcVsAkX1OHlFT3nCsJUMBt3Ujt3oB4AtxigR/+zu8gBYdf/eoX2PU9PANncDhjB8eSF2TWbq720ylOWTh7ofSJEaWak8lVPInSngBpY5Cs81PuNFNiH+HdpkRaoqgDCiB0TuST/m6Jj0WtYH1+8Rgk/d6+s5E2jdAGJwuDdGAnnkUHCf3Yxx5IDRpHuLvb4vbmWkCumLHhdZ8PEAWT4GUf63wVBdYUSqBtO5ytzvDw8CDV19TTS95LJZbIiDqOh4cNaL3Bbn/ATiMCnlw+gXlmAcEmB73HoKA6qOW8XS5xrnW/QYRxGHKS4vX1NZqmwfn5ucScq4fXDs5rqbjA3gllP0zAeV5X8V7v93vs93uEEPDhRx/i6ZMnQEz4y5/+FD/96U/hQ8B2IwrM3e0tbm9vEVNCaNqcq0JE6BYLXLYd3vMBLlgTR8a//J/+5Un6AX4NQDcRaX3XFa6urvD06RN48ojDiDevXiMdeuw3G1y/eY39douLiwvs9zt89tmneH19jd3hgD5FERJJamwm2/TKgBwgVT5U8tTuP8vyNYBbYvhiXkwzOIN87l5IYE10stN0myXV1Fi0WKmnzRgcYXl2huX5BahtQaGBaxeSiMGM4BzOVmfomkaC/TXU4KDa1du3b3Fzc4O+P8A70lbujLvbN7i/vYdjYH13i9/50W/iR7/xA6yWDchbLWGNw1bLQD9KjduGkBnxlDVaUqGAB1SAZRgH7HY73N7c4uuXX+PtzR02my3SMGBgxggpu2U4rfygjCNiSrrhJYEzNA2abiFd1JyfAe4pHMuavPnrMgOefm+/m6u+pjfbtOM4wDmpCxzH4UjYTeh0di3lMU6Px+5Rz0eZb3MFSjteBxLLwqHPlXDqMZfqB/pGMWXlxeg1ssUGEjiZJUgyxiVBE9jttuj3O+y2a2X4Sk8+4PLyCi44bDYbrU6i93BWcUMExTgmdIsVXrx4IQyYpN06kUOKDCSpnioW+4gYB7BWhJB4Wi1RRj5bzm3NCZJPERqga5cAOtzerzEmxsNtjyfPOlxcXKBtWzjHJRYZ5TbeB3hNfJzQhNG7CgKjLa4E9KMei7KS1Z8auuMdWrRAihK3TNrxjytA7wDnDYyi2N0zep7Sev0864JXK2GkIWl5TokEbJMoLSlJ902LP7ZkKE4Mz0mVFal65HyQJEq1tEfIO4iCWBrJmNIXx4SeRjhIXs6oXWgZyPXNA6TPAgCtCy1LFcgJ/6t5LzMWiwXOz8/hvcfLly9xOBzw3vsfou1WYNfi/OoKh8i4ePoc7eosNzsLaqF6tliiO7vAV19+jvXbawxDj46AhWNw2uHVp7/ED7sGqyfP0HuP5H0GqrbexutPgd/6mFrCK9qiqtTkLFb029zT7lN/NgeINX3a7y4ngs8UuQqA19cd/ZMvABSZWEI4iuIXHOG3f+/3cP7kAn/9s5/h/u4ODow2meFGjE25MmM2hQCTkjEVVHU54r4oh/M50UtsBvKYzEgsRlJ9d6VhA7uSNFueP51O0s90BMwFrOo7WzhgJPFsJ7B2jrbQEwPaKb+zPZlRlApAbDvjGNF1Oi/E4MhaVUhrb+vIhxhxfb3Gm/QGHEeAE0IQsA1mJC8l8izQkjgCya7OxJI9xUyE/aFHvL7BMIxoqq7euVwzEZqmxfrhAbvtTsNr5PrV2RniuSSngwjdogP2wFo7XdbhWUZrXj16TveaI5IctBDEAr7Z4OnTpxjUqBhjBbyNvrkEDTFKn5LEjO12i6HvNQG9hLocDqKKnJ2dYbFcYrffY7fZqsFxJgf0WSkxdrs91pst0rV4B4YxSvnBbiFeaC/Vmn6tLd3OEc7PV7mpAjHh1devsNts8PWXL8Ex4vb6DQ77nV5BSGnUSZcmFaWaxbRBp1NhntSIaTGJzFp3UZmLJK5JsiCRZPRySpKdTFKSSlxGwuQJRuwW95pyAw4ZlyZNKOA+xAT4Bp1rwW2H1LSITQtWy6MD0DYN0jhip2WyDocDDr1omOv1A9YPD4hWoo1kY8ZxwOuvH/Dm5dcYtzucNQ1e/PEf4NmqgRfDPjK5srECiUFtnIfVFKnsCvIjCdBOcBgjoz8MuL9/wMuvXuLr169xf3eL3W4vhOc8ghMXavSibwMAmDPQlHgvqQLTH/bY7fbo+wFapwznF5d40i606xxlSwn0esA2B+X3qNk3qlNrcPVNAu5wOGC5XGhjnL66n1ktUKyPlbW8TNWUQdjx+LOLOlDbapi1PGQ/SAJsShXA5vI/kpCLsmLT5htyQ7W2UBFqMCuXxonL71SVtNIwD2bc3t9khSKDRUrZoiNCg3Fx8QQvXnwIH6S7XyJztSaNpfcapIOsCDityKEJEjp2B+npRmJXItJScFLRgeGlYtBwkGeRQ7fqsFgC3ULKcnpNEKzn1xRi6/aZl40KrQs/pzwnp48S4498nwr06J/EpJ0OSWtRyzzAaNmaMijQz+oAM2qtoQ5fsLGbZVseJNYtkJOKTQookjQhkLhPZzwpiSGisACx4gJA5OxyjjHCN43Uzzb+BWDU98uNpIzUFHj3g3SQjHHUMnyCvFxKYglUBCtbxQAIacSRWN8YyJ6ZzWaD9XqdK5f86Ec/wn/1j/4xfvHpl3j59g5+ucToAharVugtV2JRYEEBqydP8YOzc+zu7/HVrz7F5vYGnBgtAXG9xquXL/FbT56W5LqZRdvmsv7sKI66uramqXmSIubXnQDd7wq/sXvPwyrKHzYaU1Vtj0/PrfnR3MJdA2tbi2k8ezlfwk1k3T7++BNcXl7iL//yL3Hz6hX6OCr4Y3hIN0Lj0cUyP3mz6k8Dm3KSxP3b+00umd2j+rtiy0wWcFWH5Vmo0/SG2WiW95etKQrgI8rlioM267P8I4Dg2VQI2+u1PDCFwniFdntMMTcBdBQLPVHhK13X4fLyEs45fPXll+gPe+lQ7SKc83BJ2r07nXljgZlH6f5Lef5FAU/DiOAbeOdhIbGmeLVdh3axwOH6Gn3fY7VcSugKKFeWI0fY7XdgZrRdi2eL57h5e5PDRwDk0p8pJfDAwDDm2ZBCbOKFSinh1atXOD8/x6LrBFeo9lUvN0PDTZNEF8RReqVIftgg8euqdPngpRv2YoHFYon1elsqtOl9s/fRfjJn74x5MiRUWFBSZCmjmDhiu9tOkr3nx3cedAOEw6HHer3FcvEAx4S7m1sgJbxOryRxTEw1FVAR4pSyMKYbQgW2MjtCEW2VNhPjKBY8cI55ttg7I5KYgBA6kHMSL8siMJ3zUkmEhJCl1qx2hmSxKgnTlp2X4DACiC6gOz9DuLxAOD/DYrlCCI2MTTXE/tDj1e4VRq0BLoJMmOJ2u8Y47EFIubMjdNvHYQ8a9qDhgOWixfmiQ+cdQJoNr6Ypcedq2SMFA/ZrBmYgpD5h2Pe4vbnHy69e4+vXb3Bze4eH9Rq7YQ9GyklHkkxqAk9ivGMmakI/HLDf7bA/iEtp6AdwTjyVdZQYRgOKBXBXYgYW+2d/63Bh8ZYTkIxiLeH8/rOMaD36vpe2t0AVCqNR6yfk4BR4cxnbu6j7JACfCutaAGbXoF3vRGlMeWxqsbTM+Ao0mqDI982f6ZK76rm2R6j8TRrDjnydWGKsVXVKQBwZF5dP8MGLDxHaRhQGOC0EyPBwiCAM6KWuLTEIAc4xnNNkT1epexRAaEGwNt8SBmMhLCmJwtZ2TY7d7hYOy5VH09n7a0+yXO/WQKIAPEt48iokM7+oaGq6RvP1Og2KTCiTvScRpKqs7Gvisl6k/4MClwTOIWnFMlVxuDwES7b06tImSFKkB6cS/2iVfShZcxurE+1yRzYLexO2J6DcCl+RAnsDnkNiUNtiubzAYbdHihHWABXQhEQr+8dmtKj4Sd6EnIVa1sftP/p3HccNANvtFs+fP8fv/M7v4le/+gz9SDi7eorovTZPgkBMLf2XN74qJW3ncfZiiadPnuKLT3+J159/Jnw+Mb568wYX19e4/OAj8QioxayAyynotvFlb9MJGihekykotrk4CuOojjlw/yYAPp8rew7oNNAnO9fGMHnXmAFnBtxUShnac2zslC3AYlq5urrCH//xH+PNq1d486vPsLm51SYyhMBCWxngmLFgwtuNl+q+zApA/s/f6CCU3gz2r4ZtpOfUgJ7nxKjyLI+xSqokAI0jNI7QKzjL4Td6bcr7XUKyIpxa8sv6moeHqMy5gb1sL0+SmHh3d4dnz57hN3/rt/Aff/ITDEMvdeo9A63AOwm+MiNaWfcyy9PfGaL0gh1cbVQgwtn5mSQV3t2pZ0vGN4wRv/rsC3zx8iUuLi6knHI/YL1eI4SA5+89R0oJb9++xXa3BSCdIReLRTZuynQqv9IkaEmcj7h+8waLhRjAsrHBFqimRWhBCTD6oQc54MOPXuBsJZWU9vs93t7eYLffSSgQpPFd0Eo8STuSF9KQtSfntB641GPnJLI3aDI6aWWpJoT8+2PHdx50x5Rwe3snQfUPa7EYVUxCBGYNbcz94hR0+8JwjLGTWj90g4m8kVbro7oXQtvk5EnSpDORE07qfpNDTAlDLBuSE0ttcKgVmxlRLUkRTonUwzUe1DRwCyG69myFs4tzXJ2f42y5hCePQA4NEYIDHEeM/UbrdxK6zqNrz7Q16xbXX6/heESjNbLBpg0zBk5AigjOYXV2jrPV2cT6mZVeiAVr5IQIFibIMo8xJtzePeDrz7/C9ZevcHtzj7u7B2z7URQJ6HWUpKQZG1uxbS5jshq8PI7Y73bYrKXMkAFK4mQFtFFwNKG3erwozCKLJyrnZ9lqf9pmxAxoo1Yk6oQVBbTOqVbuEYLE4IvmytlaUA5xPWbmbKi+Hkg9lhPWrHcJ0iMXNYoWnsEaWWgH69pD51saEeV4/Ky523O5Eub2z+bEeJmGOjizgGucf/5e4vvGyOL6I4cYGdvdDuchaC11FXZOFC9yALsRiE3pjkjiNbJufmaZkBoIjVg9yQAFpGHRICDdeY/l8gzDKEmVMY2gQNoMRc63mtjFeGFWR5uwKm4XhW5sDf5TjnIdV4pMSYjkxNr4Qj7zQG5icxTUxaJG5/KCGfiIZdus20yEERCLtV4DIF8n4VRyd2dlN0n+YyF32bsH5PrYSUFljGJJOr98gg++/0N0XYf72zu8ff0afNiBcn5LzH0EiBje3vsE8JsoqqYcwEBp+csA5W63wzAMCKHBixffx3J5hRQTDhD+7BhCK6T+RueEfoFcJcQRwZ+1+OHv/h7GlHD3+WfoAPSHAW++foXL914gN8yagFFMeMWcPrLVtwKm+agtZ3puaZwj19UAHigKx/x+c89Z/bN6YPVI87xW816N1/4WuVqCL0zZKt1ONSxm9qTaii+WSNm/i8UK3/v4E3zw9D28+uJLfPn5Z9hu1iCO8JykChYzWhACOI/POUK3WCLGiEFD+2S8FWxURnfEkk8CcjUUpPm3Fm1NRca8gx/bUXatrYXcVbota7Wsar3tjrnyEABSz3vSTy1MRUA/5ahNb/08bJ1YDYopYbfb4dNPP8Uf//Ef43sff4zPfvlLkbvW5jKr8/qelQiY0w0Z2NQ1BxmuEsNj07QYFTgf+gPiMIDpLHuSmAi7w4DIGwkDcxISOYwj7u7usVwu8OLFC+x2O7x58wav3rxG0zS4urzC5cVFXlIGw7MYLsl7sBMeH9VQQaAJ/dUqUcHJhIXGlTvvsd5Kp/AmBHz44kPc3t3i1atXIPLqMbhQ/CQyw/LDakwh3xEcJaTKQwFIbg6bQvYN9POdB92sZaMAAeCkCCrHIaFOGUJFYIWJO2fnJmHErhJrJAJm0M5mgATHh9DItLJMNmmVEUeEMQFjGiX716ywAJC0kD0jJ0pFIiAEeK2J2SwXaM5W6M7OsFyt0C0XaEJA4xw68mhJNOWGxA23bDy6Bmg0QXPRBiwWTXbT3OCAhiIokBa0NxAqoHf0XjpIwWkG8QJsotiVjZV0UzMBfYzod3t4H7Dd7PD25g4//cuf4vUXX4Ei4F2DgQkHbZYhCVWcLdBeBb5jwLMKfI44HA4543kYtCY4W8k7hvVTYAX7+iLo+wH7/Q5t19lHE+FcjjmxF2FyVBO2VtMqYOycaNiHwx6r1UosqjyqMnbCTlCy28rNvoFnTzYlH8ecE5Qxz6xcJ4+crItKoBrAkfGJMJzGj05jOSvGa4qDAUSCdBCl2rqtgSJJBHSMEWMkQGMJ15s19oc9NpsNnjx9jtC2cMFr8rIIE98A44jc2Eey68Vb5H2AV2s3mJCS7qUYcegHMBOapkNoOgWzTpWPEW17BnIJIx8kDpKAHPtuUwZp8GIAEkR5Gc1fYGfXbvdvtZ7vOiqhJrV4EwAP1nhRa1s+J1hj7ilJVzXng8ZFCrAEitAT3lPRPYryWofOZCBQfeSk5II2dtEYzKiVm3R+EhOunjzF93/zx8BiCWZguVjhYrXC15/9Ev1mkwG35cGE/CqULWNwmtzHlbDXQVOuXVypPzPAOQwDvvj8c9zd7fDh934Di8sr4ZFOuuqOcGAnVicfpD25KT9mfWQArmnx4uPv4/bll8AwwDFj97AGJYYLGgaI2vo7zduo91EuNzj/rqaPCnBb12D7ex7uUdcHfkxpn4+h/mxGesqaSnw2myVxbgSwn7lajJuM2+YOzJPx2HM9BbB6YckleBcQzht8/8c/xrMPX+Dt69d4+cXnuLt5izQOEj5JjE5pxZGEZFy0C3Rdi4f7exwGqW6VDQtG1TQdc4ZBakiR70snR6LCsk2tk3PLRsj7pbrnZO9U6mDiosj4pgV5SQL2TkIpHU0DNM04QyhbXHIlCkhPKWFM1vG0jNEUcnVe5rKv2+0Wr1+/xu/89m/jzatX2O+2Ak7HCK/jgfLJMlmFLjO3I01kJouJFl7i9A18aLDe7PDVV6+QQAhtB98EOC89SXzXYYxavhga0OQEyIIZ232P3b7H+fkZPvnk+3j79hqvXr3CF19+gd2zZ3jxwQuExsOzRgco/+hVEby8vAQxcNgfVAkroLjmcxY6uVhISKqV+zscDkiakP3RRx/h/fffx5s31zBvuoFm8QpaqJGGZUGMveQcPEv4kFUrgnrwxWqZEMJx5k19fPdBN2vJF6hrRt6xWNtgOygjJ71OHDkgtawxa8BFAkXOdYCTNmQZI4N8q7WLxS1JDAQNGYkcERNjSAmHUdq0J90oDFKLngf5IOEVbYvV2Qqr8zMsz87gmgB4j7DoEJoGXmO/PEnTho4ICwI6D3SB0DXSTn3ZSoUR6X7m5DpVGhIDG09oG3GMa0iu/i5lgh7GEktHGtPJKcIFV5RhO3TDPTys8fWrV+K+jwl9P2K722M7jHCQ9rMjEwZ2Oc5JLi1d8qIsAigl9OOgsdo7HA77HB7DXNXrtPXOKymsgMFIscd6s8Hy7AytWVTYxotc+g/5Tjy7V/0pUDc9mFyK4j5OKUknPaIMIuRxhYVmuFyB3nm4yDf9DSK42d+ohNgceB+Bv8qKIt/pauuAFl2XS0jZfcrv09kh+x7IJTolJ4+U5oS4GKoMJw0hYOk0aRaRlCKGIeH25i0O+z0ur57i7MkVfAhIjNxRkwoEALNTNt3AU1CwLV0jJUdDFIcmrEDOw/kAaGKmIwInRvABcZQScgkRYK/JwVStsRwpW85kHUvr4Zp66nn95qOezXrNzHoPi4W1E52U8UwVUHCqrFMSvpXyDBGSU+ttaOBc0FKHZcxmATul99VgswZqZklNKYEdaxMvh8gSUyq8xIEZOIziDn/v/Re4unwifDBGjGOPw8MDoiY/xziCY6z2dFEKahpjFI8VsQr3vMemc1kmroJCKWF9d4Nf7A744Hsf4/3vfSwWMfIYyWN04h1xzkKjrLxbtbosCZpd1wHjCGLGfrfDcNhLDL4aBEzpqedzEqrF0/AQ1s+yVXimNNT3yetTWYvrlvL1vU9ZJ6d7evqzfqawFs5gOVXAph6PycYyHqslP1NAK8Bdl3M0DwwqZaUfE8YEtMsVPvr+D/D+Rx/h5voN3r55g7dv32DzcC/yhROCIwQi7N7eYtG22olWMh2SdbdloR7iutBnrRAABpAnnl3ja4Zc8+clpd48Ahb7bcpyTc8GzqWKjxgBV+eX8MsVEBrdMzObrFnSQVLWFmKUAiwUtpgQc5k7kkR6+U7umQ0Fzks5TQ05dd6j6TrsdlsQpCxqYGQvmIFvkftyH6/Jnnmc+s4WiafGd0QW7+X93R2GcURiyTMj59W4IQbJRsNijTeRejqdk+R1Tgm392u0TYPn77/A8/c/wMsvv8CrV6+w3+/x0Ucf4ezsDM45RBIZsN7vcXt3g/12g4uLCxx2B7RtK3sEtTJhgMbBumQiRvUEulyqcN/3eHP9Fk+fPtFqc177wDgUD2hRiixLSpyisnaeCexSTspNooEJLjULxSPHdx50AyiaLZF1DK++mDKCpvHSoXC/B8MWmjU+SCZDXM0BBIfICewCnEMuWeUTQCxx2IMC7ZKQSYgkXREpNHBNh2bRoVsusTqXLkXdconFainan4amCMhkJU4gEKF10rVuGQJWbYNV22DRaLdH79B5h9Y7CXFwkNa6KjaYJZGJY4/WO9uHWpGC1FLoMY5mQYtYLqRxkOkplsMNVIKQGdvtBpvNVurTOo8hJgxjFLc1xOOQ4JBIyg1YfeVcy1oWBDwOGFLEeNirJ6EXlzNbvGANiwtwKKBWXTgpYrvboD/0WHSLXPs0M9csxAu0LmKdqk+nNoxpkpICLyIMwz4negCSSMYpFbI7ehryHNb3PGWpPvV9DZwB5BJIXN1zcv4jBylgt3khcmjbTj04EUS+OhfT35WXT7QQKvcVa6QKUc1riKm4xlHFj7OpO0zY7zZS+SUNePL8fZADejeCeICjFsLdPQBpdDOOhMPuIJ6SEECB4H2L1ivQZLO6EpgdpFyd0D2SUYzCKrWQzAE3QDlGP8d4gjEHKrD5qNZuMteYrW2ZsvydKMk+N7qJWr3E5t2qgwDACGHmlKS5l2Mq2o9zCrStayRl0Mo6H1a2MydnVWuawe6Jf5P4ZCLZb+u1rKXmtICBgYFEHvt+RNu0aILD9uEBX335Em9ef4VxOOQk80w+Gmd+ZI2txpPncbYPpitms1sBJQBAxNCv8dVnf43t+haf/OaPsbh4KrktjhQQWAiBAa5qnYjgg7RzH3VPJ07o9weEtoP0QDA5Q0fvwvU7zWjCgLe91yk+cAowm+LNs3+nFed3g+5TPKPOEbFx5jHaerniHZsDdb1J9d4VmNWZtU7NYrBIuUkckcrZpsXzDz7Eex+8QIwDHtZrHLZbrB/u0R8O2GzW2G03WPc9KDEaAjyR6q06VhYPhnhIDa4aKD81tvyy9ou9gf4s1Yzso2k+RbWuIJjXjomxXC5w/uQJ/GKluScasc7C4mrY7pi1pLAqLNUI6rFnD70mQQOcDWWsQNm3LT786CNcXlxgu9shhAYXV0+w7FowM4ZRihnkBFrt6WG5OnU4BGUhABAxHCftTA2kGHF/f4/NdptLhUZmqYIEqGXeEqShvMnyWUhDNkQJDYslxhjx9vYebdvgw4++j6fP3scvfvFz/OKXn+LZs6f48MULNE2DcRzRtQ0I2qhwu0OMEWfLFbpuITXEm1ASs6l4KgAx1I7DgLPLJxgZ2O+2YHLox4h+TLi4ugIz5zLPEcjW/iPFlUpOCzvSUCX1jernUd2R75LUvwage/7ynJOQ7DCrFTmCaxqp9ThGeB+AyOBo5f1IS9RI/GjUkllRha7EX0sG68iMnsWdyz6AfQOGaJLL1QqL8zOszs6wWC3RLRZoF500MfHSWpnVFeaQ4GJEQ4QmENrgsQgeyxCwbEKxZgefkzAa1fS9xh6yI4yIKACSpewbAMcJHoxGw02kQoIK+BE55Nk7h/PzSzRNC6uSYJDUyNRBQEA/9ACxVoPwIDegTwcceNQUGQJRmmxYabsKfWeAo7SWj8MB/eGQ280Ls7cU1ylQMXdWbs1eKABxGLHfbqWup1lgULTRDKWVEYIgCRdUM7SKivgYZDn1iAzDAYuFWLlZrbkW7weYQKtgwCOg+Miq/cgxH58xKgPQNZivf5661sSPzd7hcKiYeBWLPUGHNn4DPwUwmPXRklPA1hlSK2IoWOXyeL2lhKEQA2mMuLse0DiHq2dPJc4cQFB/aWQF3YkklIyBJnRwoUFoA5rQguCREjBGEXYCNtVKwzJWBksXWmedOTWc4EQtZLFEJQVgKiArXcMsGJOZreb/FOim6p89wxqrZIGr9XZlwmWtSMcakXBICZGBrmlAJAnJrKEkSS2OUUFQqndPtZ6m9hjv9HMr5CkQqNcNnHD/9i1u3rzBCgP6/QER4v5eLBZ4/733MPY74R9jxKe//AVub65z19Ok5cIyDVOdeKfK+ezZ3/6weM6pou7AQBpw/+Zr/MXDGh98/AN89IPfxGLZIpKTMqV6Ms22o3MOKY7YH/bZ6giWkENmUeSYbB8iVy2Y11A3ukj1fn/HO07opgbbeq8pqD0G23Y60fHn+Xv9WXfK5FkPisJHKVcmyffT95nnlOS9hvJ8U9DMep7rsufrXUmYE0atXoAEjxYXl0+wXJ3j6tlzNZBFDHFEv9tjv9lifX+L3WaNsT9gHEYgjdJczpHUNmKoJ0dkblGslFerpR9EuYCTCQ/WKjmxVq4Yao1mDaMDJCVRvOWcO7g6LJcLPHnvOZarc8AHjEqlkjwOqOsNJu2kxKaaJoi0GpWAMQZpbW41noUwk3EuE7GFozERNvs9tvsD2Hm40GBkkflN62FVnwxks83DjAYLnQkOQCJwIiAlOBZQ650DB7FYS+hWA5DHGCOQRsBL3ho5Jxil6m/B0L8VlMeU0G93OPQDLs7P8Tu/9we4ub7Gq1dfYbf9JZ4+faJeqAWeP3+OtmlwcX6GGBMe7td4eFij73s0TYNm0cE3Td4YYoRgWDWnmBKePn0OPHkGBhCaBilFNF0nBhhr6AYrSqDK0GxfiTdSCrg5zdMDsyhSCryzrHzk+DUA3YABCNLkPvlECDhVv3vnsTv0GIYI70Q7MqsSQFmTiWMEE2HQRjijClhyJK1OQUDToemkpIxrGoSmxfJshcurS6zOztAtOq2BK61gs5VRQbtzDh4JDRGWbcCiCeiCRxc8lk3AQoF26x1aJ6VnvGqvMLCAAoBMbIsGKYdzHg0cGufRhiZbVewfsThUvfNwzDg7Xwkj8RpCIBUtqzsjt4sPPmizlIhuQUguYiSWzVzp/+BCiJ4Bz5IEwSlhGA4Y+x7jOKjVo7JElGXN9onpf+ulF6a53+9w2O/RLZeVdl4f4voxyc4qpB+Ljba3ruMSRTlIokCRA/NQwiGoXMX1C7zjmFu3jr57BKgbaKl/BwwsVkJwdr3NIGnNWamlPRPOVM6cWzlsdUSxFcGTYFq+2lcZMMcpoySQICs+AlQk3lw+Synh+s0buBAQsQIoCC2acqThJRKDGBD8AhI64gEOSOyQIrKF3RQLtjlQYekcIbG4YVMkEHkN79CSdspYJeE4wTS0Wnmqlas57RxZFlFCZIxRW4iVABin99Y5o3IvcT+L4uDIaV0XteiFFhQc2DntK0C5MkcGCzWsyPi7jCWP1ZW6uEZTbOuke9X2wNubG3z9q1+hGw7oMSBpdabEwNNnz/DxJx/jlz/7Kd6+eYPXX73G3du3QByQdN/UdCzPntKeAZ+Th/Gv6a8nj8KxynsTgPGwxeef/hybzRYf//A3cfH8fYCAUelUnedS0YFE3bp58wZ9f0CrgDD4koArfFTHrV6LGpRmzxIgWnueA5rQ0Rzg1Hu4pjvjR3iU7uwedZzy9P6T5Ej93RoTWRz3/Do3Uybqa6ceHplrVOtDVCpNPBayInuz5OnYtRwjxKrK0qkZWnUpNGjAWLRLXF4+w4sXHyGOPYbhgKTlZQ+7PcbDHjz02K038I7QNgHr27diMKhyBmStZpST2a9YbCXUSxVVkp4ealaAJVq6IN5f37RYrc7QdlrOeNGKEcq5vPIe9Zrr5tXn5bBYZsABKTL6FNFY8qJ6DUOQkqdjgTFABbwNdI96X9+1oNErXVoztBnotneveVm14chwCKUcPmPfhRDyenvvsVytAAD9cBC+PEZYHhG81/DEEtBVZJkJJaAfR1zf3qJrW1w+fYonT57g1auvcHN7i0XX4ez8DG3bYrfb4vWbVzg/P8MPv/9DXKwv8Plnn0s53XHA+dUVXNDmX1oTRkK8PBInDFHLMJLXxmkyIgsnBqR6iY04irpSE3Lmqx5Acob5ZvvkKG53evwagG7O5bMkTls/pXoZNe4siSD1qklagkIkYGQR/IgCuNmJQEPTgEJAaFptbBOwWIoVe7laolss0S06ian2lZuGzKImC+SQ4IklZCQUgL1oGiwaL581Hp13aJzLcWvzRAvRsKdCFVy6LbIxhYJf0bYS713HfwJC8CLMGc4xUpK4ZCuJMw/3dyRNeKQLlejqcNqutR+QqtieLOPtaUqIFhYxDD2G/oA4DtkCdmwR/mbQKmeJ5Wm/P2C73aJpGjhtTVvSaKkaEGf32ymLdqGa4iWx47Dfo22a3EwiMeeKNsWiYzzocUt2BrHfYOk2S9P8s+x6zNLptO48F+AiX1Qp4NIC18ZeX3fqdxk7YII1Z8zbMLL8YkA7k1ngTVFKisJTXk4SIW/eXoNdRKIzuEBIg62VA6hRgSWdK8EEjh6JPcBqMNJykvVcSMlEEx4OwygWOjEwSWWP+g1ry3g1wCmQ08O5UlbU/pX5piwcTfG0Nu5zIJTXkQook/KlLiesyT4VTxc5SegxQZCS5aQUdzRBqyjQNJjKcj5I7w+qdvoMjOV9yYzNwwPefPEF/L5H4IjIAqQjA2fn5/jtH/8YXdtguVzi53/91xh2PaBNdMDHQMtA4hQ4Gt+pFAb8TQ4bPyao3OjdUQLHHjdff4mHuzt8+MkP8L0f/ABt2yFRyAF1psyOuz1efvYZxjECkP3SGWCwvgskYYcSPuemzzXAUr03YJCbJp+VsU6pbB4LftqgkJ8wVaArf0xW0Kt1ZS4VUjKNmCu+GvOpZ9UA/VgDKmtozzqyoGc5Uzwd9TOZExIx2KUMb2z8ADRXB1pul0AuIHQCKJvFCmeXAmAa5/Bwd4uxP+D3f/d38Wf/8n8QZZBjzkkBpGwmKrrhvJtkPI1vELqFJH47NaZ5SeyGk1yL0DSST0IOLjTaL0DrYWf+R8oPlMc4AcnsGEg0BdzMCCwlVeOYsE+MkCI6FOWdnFicE9S4oby8FBosioVT4J/nD+X9oTLRUeEb9bWoPgNYPL9K31Y/2zknFUeurnLOk4KhXCI54xA3p9Xp7+JJciqHxQB69/CArmnw4qPv4YMXL3Bz/QbjMCB4h7PVEmN/wM3bt+j3B/zJn/xnABiffvYZxj6i7Q9YNQ2kEZjTNh/aE0EDr9OoIU4ulRKnMz7F0ERQ1ZOyvpYNYMUK7kGVUerb4ZnvPOhmWLkrc6sDmbBRaWo6MxHAAIk/HCHuUtNYJdFggdB1cE0DFyThsVussFyeaYxQi6ZtJFYoBAmxAPJkk1oRPYDAQOscFgqwM9AOYskW67Yr4SJUQHrWJsvdj8pSObL4c7GG1QwZTs7f93uZGwXY4hoRCxojYYw9QNKparXstIGFWZzk2Tl9g4FhEIu006YSRIQQxNUNHgHdsK4aeSWCQCy1zofhgBjngPsRt8s3SF2CKFyHfo/1Zo3Lq6t8iVPgXVw6nOc1iwUTKsxFSFabhPQ+KUbEcczau4UJlUTE47HLcmg8+AROyOn1WIyG89ffBMir3ye1YevPZ0oFZ4b+yA1nIOjUKaW6AysD4iys8izIopwaUSVo7ZMCIvp9DzQJIIcQCP0o3zAcpEul/EvkxQ2bPGISAZ2rn8xerrgS5QVjGvMc1NbB+i0l87z6RBlwrts+c7PP58usxTlml1zZ3/MmKLPZkc/UIiYSIJexk3Aydc2q18Z2TrWEhR9UL+BmzyQqfiwo+IK+n1m47Tjs93jz6hXG/R4LXe+YpHKMbxr86Ec/xuX5OdYP99g8PGA47HOsfkojgARH9dpTyfWgkpxXx92aFVJm49RxiuJJvQaPnc4gRDgGxt0an//1X+Hh5ho/+NGPcfHe+0jsMDJASEgx4svPPsX927dAShhJeOr5YoG2k/rBqUpotPmcgG4c78E8GFME32FcODJEVPv81P60x1N2bRQAYwCbK6tzPUaTH7lXRT32Ga0WpVRplm08RYGTGO0KQOn9vfezzypjzex9KaOYkg5p9AlA9gakzjQ0hlZknDMkBCaCbxdwzmGxOsNHn/wAwzDisNsCHDNgKju+CtsD8tjatsOL730Pvu0QoWFFpCUQdc+Kl0RkssuKrUyySR7WzWm8hwkakl1wSgHEyluT0Na+32Pc7AAfsOxajOwAF0zLLACQpOt1jr23WHxb0/zOKPRa8UiqNlGtEBVzgtFDlOokiw4XRBj7AVdXV/gn/+Sf4O/8nb+Df/pP/yl+8pOfoKVGQnFhZRALf5Q9fooXIvMg6c4rV43M2Oz2OF8u8Xf//j+Ac4yf/Id/j/5wwPPnz7FYtHh7c4MvvvgMn3zyfbx68xqb3Q790GOpmMloOrJ0QBU5pv0/KsxAFYAuAHyOamxO9O8kparz2lX0XObz8eM7D7oFJeQqiBNBaFbOEYSBOTegsTJ2CQTXdFguOnSrFdrFQpIbmxZNt0C3WKLtlgihhfcO3mnik1YIIUDrQjI8GF6tUAa0V12LRRPQBocuBCyCRxscWufQeKeWbCgEni+GbnhLfqqU35RE73fOSzKQdqQCbM/K5ktRyvCRo9x5jXRzgoExDRjjqJvRoWsXVQkhY6jlvybgAY1HDUGAl1Z3sTrJ+Q2oWOqdEnBKEX2/zxZuq/k6AdzfALKBmogVUEHig7frNXbbLa6urjIzEfeXMaUiUBwqcG3vVgFus06KYsc5tMSqNYBLg4+p7Kw3pakgxkQfeTkukdYThWG2WR8NhamE5uTz+QZ/FMjb+Kyawjvukb+wK41xGqR6F4yYP9GGJd4K56FthSUEMCa1pjNAyQEQ+kwmrVjCSaACptYnshJeOKeuvbB/MKNxLneSzWMi6fo2VeBFyU0VwGIF0CdQu15DYAvV0tbmdeOQuTeBkUCszRR0L5WIRxmXCc+sBehZbj4GsrdRgabWchO6ACa0ZYAMRwnBpMrQHtv1GodhBKtEIP8gAAEAAElEQVSljV0AXIBrAy4un2Bz/4D/+JO/wMPdXQbckhBtdjDW9y/AUOQXo94jjOk+sPFN5isvlgJMXWdGAQ5ySg2bym9E0Fb2Ax6uX+OvNmt89MPfxAcffV9aQTugH3rcfP0VfBrBPIqxgxyePHuKxXKB6LxYvGHPPj7yuukalxKAFdlULztfGzNITOpgVzwsP2eiUE3lSF7flHKoUA246+tzLDqm9DG5K0uYpHUEnml3k3HV6zYPUam9myIb5uEqQheki+3UQpnfw1KMyVmaUvZ2Z9DKsjdCCBIy5AN80+L88kpKv2qn6qKqm6zgzCuNHosXTUNRVdayhRGokpzgigfM7k7F4GKfQfmmkSwRwGygW77PBgmV4Y33oDTidrvH3WYn37pGMAhzaXJFpOF5pSqJ0UamVLIQQeVFBsLZ8JMhxkLHNh9JVQihG4emCfjogxcYDxJD/cUXX+Af/sN/iD/6oz/Cz372M6Shh9PxiQVY88rUgjjhXyZ/AclBy0dpHAYi7McRP/3rn+NP/uSP8H/9v/3f8T/9q/8Rn3/2KzztxDAKMIaxx8X5OYZx1PhyAoWQFR+XNCzInpuU4+Z9ZNhgureKvCirCWXJE28nnea37zq+86CbiLQLkTIpSKjIkNSKDan3mt3xvkHTtvBtg9C1CK20LW26BdpuibZboGk6eN9oopMIS+8gjT8g1UU8xJrdBJIa2sGh8z4nPrZBQkVyXLYXS5fFZddMTBZM0wwzyFZQQfae8jOmEft9j+AbrJqgXQL1H5ECTPkkcgJ5c4OJ5cw2IpJHSgeJR9aufG3bVULd4pLlMDAS1Xoh1TtI6xkzxtHexKx5+q4EBd4SvjIOA8Zx0OTDhMTG/N9NkI8TbIk/jQAoRYnlOz9HILEKmuY6AZI2qd9yIzBL2/dp0h1nS72wEJISSVxct7aeYjg4BmdU3Wvyt47tcWvW9EoBhcexoPPzDADMhyJKhLrIqyF80zEHFbVgtlbORcwURmYRtCazUxRBTg5wgQDHOb8ocgIiw7HRMECS8i9eKiKQKxYLY5hZQFqMo7r+gxO3X3AObeNzFQB732x1UWCfoacKDLMEzq3VZZ1dVUrRHQOm2frZ31TVO87uYP1+nsA2XRxCnunyElnpIN2TJlTncbj2mYUKOfsvKw05wtn5ObrVCg/bLUZmdE2D9957judPn+LTT3+Ju/t7fPXlF7i7uUUcRqQ4AjwKOKMCLqbvXoBHfiWbdkDLik29ZkCh60Jr8p/CQ2TN51ZkAQu20FL6UJTdhGEf8auf/Uccdlv88Dd+BNc06LcbPNzdIA09iCIcAe3qHO+9/0JyD8R9CJWsePSgysJYAe8MiOWl8rvNY0DnNHTq/nXN7sm9q3vVoNu+q+ltfv96vjMvqSywBbDLW5T5pqxVnMp5mB9s3uZHprDwMQPgAvRYwX+iJAmtXFlM9WaeGRhGTdiWjsxd2+Ly6gpRy81JeKYrChqXpEtAxpUg/Tgis4Iii/0v4aQ6C1n+FpXXvpuCNAKpsaTmufK703NTRb/eayM/eEn0ixK6xcxSQz9xNr6AKBvOs+TJAL+MKCsC5T+FkRXMnc/LaCN/7dR45fDee+9hv92hPxzw6tUr/LN/9s+w20k1EdlnNKklTiRx7ammCTM+mZKie3tCN64kth7GEX/6P/8bfP75F/jBDz7B7d0dhn6Hq/AEcYxYb9ZYLDq89/778E2H5KSZDkiqPzHJ4taGFFudeo5kWlzx8mZPAJd5q2WEqXBqyDAiYf5m8P2dB90MoFcWIEBbwFcC4H2DtmvQhBau0VCR1RLQOr5Nt0Cj1l3vNVzEOQTvEbzEVXsnsczWRcoTpFxfcOiaIKEijdffBWA3zuUqI95Z8XQ55ixNCJggtQ71d/3JLIBj6HvcPzzg5uYON29vEGPE7//+72G1OoPZwkg1U6Z8V7EEpBHOC8iwJDsiERgyMg8ijyYIMHHOXFRmgS6pqJbnwcxwvjCPFI29SGiN0zkjcfqBEMFay3oY+lyDu278cHplT8uyU+czpJ51HEfc3LzFcrXCxeWFhpcUi6Ewy+kx0UwfeY6B7q7rKlQA9P0ggoyA0AQ0TYN+6FWIyIYsrtdHxs8VK6ZHzqnGevQZUMIeaqF56lwDYjTVwCcCd47pjm+Sn3vqZ34t6PqplyGHTthjWBOUk1m5pOkxuQBASuDBHRCHHg4tEic4GjN4F8bPMFgmzZtKbeqjWWJhtE0ICC4gOELbegQn+zqHaTGhCQLGHQMjJN4zN6ex2soo7Jnrv510fhRv1LSByWNWbpmvEvpUW6dO/UP1zPo+WXio8m2u23ni3Jy+JsDKALqBbhBC1+HZhy+wHQdQSvjk44/x4tlT8HBAaAJ+8YufY79eIw494tjnzpMgjRWu9gDVc2HkkMfOR/NkI50K/zJXU4qzI4FZQJoJedg4wFko2veOJF771Re/xLDf4jd+67fw8PYNxv0GLjESCbi7OjvD+cVFpficXotqYgG20pM8mWcD24qLJiEf9u5Z2cKUfmzwp2iqXl8D23UM99SaUoC3nW9rVIP1PFfkjmjHnp0Bo+7DvG75XYFpoFBpoFWs3pVFlgrdZLpmniaLs1T7Kcm+wotNiSQAt6/f4Mtf/QrPry7gY0LrpSvpi/c/gA8tXl2/xuGwF8UfrF1SqdAGCKCA6AJ6kNSuzkwM1ZiRuZFdZzRrlGt2tCkot9+qZcm3n+UdOenj7OEgZeKr+PyooUOKgU7KA7I9bU/kMhanKgIjh3VkOqrXdWaNY0iJPSaHZ8+f4+31NQhA3/f47LPPtCRt2Wvi2Kp4gW3qPEZTUqEVTopsy7Wxla8lAJ4YL79+ha++fomua+Cdx5/8Z38LY9/jpz/9KWJMcMEBISCCMNagmgDvSfsPaP6AVlRhBTw2hXmebM0rxVOmTQ2aFV8gxyDvpOKMeUrS8f6pj+886E4AHqLUsnU+oG0XOF8u0S2X8E2ADwHkHeAdfGgRmhah6RBCq0zLSWUQ5xC8hHsEBwTHCAQ0Dmi9h/eENhAWTSnh12m4SOdLOb/H4rIzj4CB7AKwTXQziyV5fxhw/7DG9dtb3NzeYP1wj/1+n5nS0ydPEEKrzEUeZIA7b3MSSx6086RX5m2AJMakJfoGkItwPuBstYJTS62ppAacTGj0+z3GvodbdspvrBLEqAwRubKFc8rgU8IYR4zaGKOu1fs44DbLx1SwnjzftGHdCMPQY7tZ4+LiXMr3ELLV1XR7E752T4tpnD+jdvPGGKWcZPXd0PdyjiM0bYvFcolxnRCTZN0XOPXI+Ou/3wV0Z8eRBduYEnNWNKx7oFnXpMGIHCbaa2uaxdi+axyPAex8r8yg7H9U3tEuUrAcc9w0IWk8ZtMtQU0nIVTeo+k8XAD6XQJzD/BSlEUFx2K5LJZzU1bL3lMRp1YwB4fWd+h8j+D3aHxC450IUicKZgQwDr0w4fyiUxBsr5Mtrhn4uMm5Bs5OWRJRRleA5wx0HwHvU2uiYGh6f+UJRtcV2DqttMqNLEFYhLnxAJnQ88tL/PBHP0LjPc6aRoRXEsX+sNsgxUGUfA07YCqUT3XoGZX48tI4q3oZ8Mm5qgF3gYY2dntnVN+o8My8lxQMzZ4JzY/hhDH1uP76c3Ds8bDeAGmQfA4wBiZcPH2Gpu2gAX6wZiQVx5iCpwpo51CROoQjr8d0TU4pWXN6sPOO1nKmWB1Zz2dgzM6pzz1xV+Sa7Jk3H19rIKp4JygbbCT3I5UqO8qTpMma8QhZs+w5JF/2kt5/4icwXqflBpnFYp2Yc1naQ9/j5uYGdNjD7fZYDgM2128wOo/3XnyIq+fPsT7ssdttpSNyL50JU0yIaUTjAxaLFZbnlwjLFUayHozaTC6vZL2PkQuIWMLzqaMAb32nTKvT+9Ueg6KEoShwLDHmSRMPiTmHbhifqu8x90DYWtmeZCBbaGvgfcQ7SE4OocF2f8Dv/c7v4h/8vb+Hf/Nv/k1u4GQyiJlzmUTm0lHTgQqvqPkc1Ya+oiTYvLBeFyH8xYElzJWB1fkF/o//+3+MP/1X/wr/4l/8CxwOI/oo5QgTU44vJwfBSOQh3ccp0xAZ8ifjnSYPzDBZj0jn1f7S98rKmFOFRRX4dwnZ7zzoJu9x9f4HWC6XWCzP4EIjligF2o4cnDZxsbq2wXtNSgK8Wrm8YwRiDRXxaLUu9qJtsOyk6+OiMUt2VS+7KuVn2ck1GQNKOFaChs1Cp3iUxVq63u5we3uP67e3uL27x25/wBhHJc7c8whEhDFKG9jEDF/tVqddlsxCtd8dEAdJGpNWzcq0FKQ6BySMACI8SVvUos9VP1TbdACQJMHIe616kIBxTBijNNmpKvLphrfqBxFIEcwR4OPWwvbA8vH8+9PW6OlMy3vHOGKz3WB/OOCsCaqDaBw2QQFYLSYLcEV1n/nhva/iuaHW+0GYhJOEMhcCmrZFShG55FwWVDPBWo/70Tc78a4nBK0rXwKwmDuNg2S5xlHtypsyXbPsTCwOj8zD/CgUo8yJDRjZDafhA6z7wcCdWKUA9g5ueYF+lJKMzAmLhXSWdORweBAlEqwhPFlpgrgINUHGl9crb1oQGxw76fTqEhwl9WKZa1FovTWPBqSklgV6HIGd+U8+AbLn/6p5NVBMRKVufHXeKfA5X5+6219+54mVsuJIFRjLz6ieQ84BUcpn2dpZfergA86WKzAL/+lTxOsvv8Bm/YA0DlqlRC1GFmKVn6HwopoToUkL/ckjPPm+s7dHDb1PaYqpor5qVo4+kUeVhKnkBNS9ef2VhJPlDoeEFDo8ef99JJLaxjKNCgGT0QGKsqOKS4qlBJ9YrnX9jL9mmU4oyZWQhCyOme+cAuIZcJ0A2XOreX3+dCb1Gq2hPp8pqkAjc1bXTysUFeDMu58lGlfAtoQUcjIakQnw2YpacrEAKd1p7x5jzHWP8YiRxAZPum9HTiBtZLbbbvFv/vW/Bo097l6/xpYBch5PXrzA+eUFmrMzXKp8k86ppVkPQAB5AE4LEpmgK2reKao99ekxFU6/g97emvzautn9SBG3LIsCVWbpGBs5V9zyj9CArabte0ugLhZwwVWRCNDyjhMPCArYt1y0lBiHQ4+XX77Ef/n3/x6aEPCnf/Zn+TyQVYxKpT45pJKcszKKFtpIRTnO85HnjSZ/W1Uq0iRtkyV/+bOf448+/wIffvQRPvn4E/z8r38Bx4wG0oXWwHwCMs1mTMQAs3k6ir+iNrbkn1z/MVvLCU/Tt3EJ34C5v/ugOzQtPvjkE23l6bUFtNfqAuKqtgQmb3HGEDBoILv1TmKwg8eilYY0i67Fsm0qa3dVZWQWMmL1slEThIJrJFtEBdmJMYwRm+0et3cPuL27x939GuvNRtq1sgiMpMjOo8SqmmAGObRNKy4mSppFjdykIemYBLjwRCDLPRyahpBYQHCKUqu5ycXja2GmWdCqAe/3Ug0lqMWXAez7PgPLCYxkc9fFEktoAuboMMBdgX77Jn/+7kOs/QKot7sdNps1QtPAt00WVBmo2R0r5i1/ToWX/cwVSqr3NPAtITUOVnEi+IAYgnoSoA0AUKxM+ixbFf4W7/aNBxV6nFoxplapmVOsfO6mXODR8Bb5MtPjZLXq57AI0Lw1MpiqLKBZaAvNNm2H0C0xHMTynpJGTTpCt2hwWJeQEuLibpZHE6xjKAFZwZw4kwCMY0QcACRJfp2Uz7PBEiREBEBdWeExy6Pd3hKs5uCITgDiMlFmtTpt0S7A5wSAh8b7usralZUYrrqk8mSuTACagLUxp5RyE5shjnAUtNIEKYhS+mXApYg3X3+N1198Ae57aTCWpJJxUbnKeqUytfm9auVi8ln5C48fltxUX63zWyvUM4veDDoo8Nd3I1UwdP5j8NrERXjX+cW5dKgzujfwZXSjm0GqTFnCYlE2DDwazevM6IgoW9Fgt7VzqneYK2F1iN4cdOeZyQBNaFEME3FCLyVco1ICZ0tgxpz53NZ/5/lV+nJ6oTcaA4NSQq8dnQnymYPQVTYKEGlCtTXMUQuphVLMnzsbVwZpzsE3rWACJHz+5ZfA2Gu+U8DbN6+w6w9oLy/RXlwAwQPegagBqecLpJVQuPC7Ui3KaFAmqxg/jMwqvvytZJhdzAVwowxD1lJphAjF4qA3cARojpHt6/nczHmNq+fQaI1ZPKWQggx6cb7PxFij5+y2e+x3e/zkz/8C3/vwBfbrNXgc0YaQQ16YBHhbg5+EBJekOAWxA/kSQkS6HxOX8WUZToKxbIasfroVqH1794CfffoZ/u5/8bfxD/7B30dwHr/85WfYHwblUISBSBsfQpu1FT+wqfR+4qGrf63W0uixoonJelJZV4Y7krXz4zsPup13CMszWXy1Ynvvtf40ZYu2g8Rle0j4SBcCFo2Tsn1Nh0Ub0DVBwLWXCiRiyZZESasyciwKSvA9M2WLdgYTCRjGiN3+gPuHDW5u7vD29g7r9QaHYch1K7WeQqkTC5l8j1rDEyHVth26tkMgB0IUDZeEgUWtBEDsctmzaXc0qdYAkiYDKUaMY5SuTa1k9zotHC8kXIC0dStbna0yKGKQtkGPkKQKK5wkbyEAIKHazyeP2mo0ZebvJlBWxq1P09lyiHHE/f092m6BpfcIxBNhVW5P7xyYWXFijBNAYDJW/nSw7GZmsQiOPsC5UdzvYkP7Fm9z+vgmy98cbJ94iQIOoOUP9fMsYL/lWCau3Qx49TPjMBOGpPRLFdPUvcF6i8SiPF8+eQ9C9WSOEYmVDw6+8WA3gKibAX5XADZq5gZhgqz7VoWVI0ZiqRvtnZP4bmteRVJG0wBoWd/MNYvlBgUk2t40lzhmQq1em/p62PW1AJyvxQyY2t/1HAiwq+Ni331MwG01vhgjhmEQBRME14TqHUpokiPCfrvD25cvQcMAp0I0soBuC3szsFBpXoUsSAWuZJyiiKvyM8MLOt4DmZxrjY+mVPDYu3P1e55zw81s/0jyXNQqCzA++PBDdKslBpi3sMyfKbNybVkLotIwp4zd9oINwoZeeGYB4VPAcQpE1efUn+V31nc0a3Y/DJmfPbbvpwaG0/c/Rceg4sk97Pd489VX6A97LJoGGEe0nfS98G2LpuvgnMhsA+oTkJM02T4pDzYFAZh09qxDYtj+1nM4JTjvYR7mkVlDEtQzzQmHzQO2uy3Ohh5X772HkUhip82raUujjgA6muMpMpjQKtXGFfnvKfBt5GziKCf5PrJAtRIpBgdUOH1qWCl7mGCeClMC63PmypdLSQoRGJDRzycKj147jiNefvUSf/S7v4OLs3PcvH4DFxMwjGjJIZHk2yVnHtdkMauInJCiNEAiODhWRcxKimJGZzqLAmZLRDwzIal3Y7M/4L////x/8eb1K/wf/tH/Fv/n/8v/CT/5X/4j/of/8U9x8/CQO18ClLGX8G+nFnarPy9rccR/YEYLzvRAZZD17GP6Kx1/Pju++6DbeSxXF/CW46QAW+LKWBvSENrgsGi8Am2fY7Pb0GhMN6QVu4MkUGYhPV10E+ismq9sDlKALZaNcYzY7va4u1/j9u4Bd/drPKw32O33GDT+HCRg3ZI+59swK8ooyRemIEk1FemiB1fAFABAKzwkAFvNHA5No52wTDjIvcZxkCcQabnEUPPZI+bAAIZhQNeWdqpSPlEqs0Bbzju7llkTCFSQJdvU9saWPFoE5TFomL1f/U0GfcfXJE7Y7XfohwFdTOCqk7dtUgKpQsDZ7f6Y4JKGQDP2afs2r5aGcniPEBqJ9ybp2vktsNDkeDfQnq1LDTzybJREM0nWFiYuDbWcJodVIPBvqA3kFePyAdtgsqvvmK7tHFaFLjHA5HFx9T6a9gIDi5oZY0CMAm7aZonF+RJ3b/ZAFIVSqIjy/Av/duoJUuArE5mBsScH7xO8i/CB4B2jawPCLNkxQUoGuprZ1qDYGH9eI1f+WwFyedXTC39k2a6sTvU5Ns+PAXiZ+FMc5PQzbQ3y+PLClIQ7IkLbtmibrrw/Sx1bAOAY8earrzFuNvAa5kaTu1ZCsvqzvGcZE4Mnc6+/1KM+CTwqspuBmm9+/6IUuTwetUMgMKv7l5GclIZ1zmHZBLz43keIjjAmiSN1kAo9ppTINLKCpjoJ0lXfVWARpeZ9PT9m6bPzcxUttfrWBoBT1uYyc/nDDEYPhwN2u122IuPE84+s6aqJzMdfrqvAW/X53f09fvnzX4DigECEAClGwN7BBY+gFujlconz83NcXFyiXSyBEAAnXUE5cs4RohQRWfprmNJjyt1kXFy8PYkZ3gc475FGmXUGSUWkGcD044gFCD059NUOyYq1s0u4dPrNz50TqcUFl32R1TO9Jk2ouJ5P+WgamjXHIceH8Ypkya6TtXIVzRelaa7E1X+T95NutI8JMTt/s9ngn/93/x2+/OUvsQoer796iYf1GgxgsVoheC+NCKEeF0IOQzKliqLE/DuWcBmnlUbq8QpPMOFyPCdJi1Js9z3+l7/4CZ5cnOEf/1f/O/zot34TX37xGuu/+AtNkk8gJunZwrX3jybVbFDth8fksqswjHnNjmWAWenfLW+/+6CbCIvgQYhwSHCQBMg2eCwasWbnNuvaat1K+AXn4EEa020JkFP3rs2OMC3V4pNtdtkOMY7Y7Xvc3T9o8uM9Ntsd+n5EVDfamERkcdW1TJhCmr7QRGhzZVkUnSrAVXHpxfJoC5o1XwDjMCBqXelJjV6Guk1HYbxdi+X5Cm3bKoM2t9pMy4TENTPUes4ESlrdxWtHS3gFYIyKDvPGLf+AKbM5Zug1mHxMyJw67D0PhwPu7u6wOruAT2nS3dOqvBgzmYzkhPXI6nOXtYG2M7bN6RBjQtPICeSklGWUWoooG3I2ThzzDvn72Ksyffc6bMQYZaW8AFZxW6wnzuhX4+ydxDabi24uaP8mRw3cWAG1jMeJClatHUFVLiLEyEhwOL96iub8ApEInIoCk5gxDIzDYcT5VYD3HaIlUep+iEajDrnEnE0nkVTtkUYR8pM5ZRDDiLKPnBboIo3hZKD1AY33GFMBvga4c6KqWY9wvK42L1SNZeKSzVbBqQDMsFX/TsxH61L2sdHt6bjNxz6bA25ThCzxSWKIfVY6LIQhMUDM2D6s8fDmNVwcIGUBS1iJ0HRFp4og7H0LqDudLFmPea4M/qfSZ/3esiasiVPFnm5FBzwgY+METoRIYuC4evYcV5dXBexlfst525lFVu5VFDarVlA3iynvNrViy1JIl1/j2wa4x1GS1U82nclzfTxfNd+1joH20+5n59ex4xYig+qcU1Z0+4hU4ZbxCN30Qw8aekQA0RG8eRydQ/I9yHv0mw3ur6/Reo/QduhWS6zOL7A8PxdjEImsi1obXIakspEr/qN8kCEe3Jg0cS5F3WvIgMfCXhIXZTlpHGggh0ikBoFiRYcqaJy72UDrhds+L9birKvydD9MvAMZTpf3yF9XCvJkvlE8IHlMdov8LAt3QA7DI6JseKtJhWb7qxiy9DNHcApiE2a11VEkjg8BV0+e4NnVJZJ32A4DNocDtrsdOCUc9nucnZ/DLToNA3ZV3L8aMVSBF0wVQTFKWLC2lke1d4zn22QUmW3v4ZGYsN70+Hf/4S/xe7/9O/jbf/AH+PrL1/j5X/8C+/GgmJHhE7CPuXsDSjR58UY9Brqn61kWgqgsqnl5a2b2Lk72nQfdBGDpExpH6HzAog1YaTy2dHuU8n6Nd2hIATYVgG3hJ+aCLndVkALShZXMU6nLzOjHiPV6i+u3N7i+ucPDwwaHXsJFRk4St6TCOUFj1WyDzKwLc9BFqg0LPNIvSduoE7BYdFKZhGK+ArCtRnnHOGXWXhNHy6HW56S1P5mw6BaS1ARjnMdAdBxH9PsdGh/gVWhFTtjvtyAMcCSJg0ZeJeZK1QBrOnB0PAakM9z5VmB7cqUKis16g/6wR9s2gjwrYVLAIR7V4u1ezKxMqwBCkMxfjDEnvdo75gZKWlmD2Wp5z45Hdt9jgLvMQ6U9nwDccq2ASKExoQtmFsVPz2QlPrb3fGQOJsOsBB3nv81yzbkyTcUn85EMLLNk168uLnH+5BnYBaUXYVjkxK089MBq5RU4q1cJHomQvURExYvjUARN6fBWrMhNcLmfiSOH4IN4x0jpk8ULYL0vkTjHUso7nZBWR5NFBcDgEcBtc1cD0Xz59DNbG7nohMXxROjUOwGqIIc8BgMVRFZ/X4VsmhkEWIDU+v4WqT/AaU4I86grMTsfUzBYz4XRpX1t/NeEnEnkb7Lu/Y0PFYaK+3SdKLuymVmNGdUYKeDs7BKOGowsdOjzrdRIoXzPe+sLoDyUp0C1tmLLvXmigAzDkOOtvfc5z6bve4zjOClBWdOB0fd83WtLpT2zbdvpdVX44UQRYhzR2gSY1byIte04ARIDLZ16h/6ARg1OYwIilTCQkWgio2KMSMOAfrvB+uatxFaHBldPnuLJk6cIbSu9F5IoeFIRhbLHi0wRsndjBhLnPC5OUimFnJMcBLYwNwKx5Hv0MYFCRY8AmCy0osyt8SprzGfTYEqmlS6cH4+GAM1+O96/QisTmVydImDTgLDR35TnCIypwuDAR+OYnM8sFl9PVRfiAo4BSdZ0zsGFgNC22O732Nzf4cMP3sPv/+0/xn/8D/8Br1+9Bg4jIoClc6CFExpx0CR1eT9mB0o88axYFRprX18Uw+PE9omnGgTAgyPj00+/xH/73/4/cblc4U/+9t/C5599iX/37/89EhIaKhEEBwPe2jHInBQZeE8w4uk5y+OByUa10Kay3+YAfH5850F34wnff3aOZSOA2yzZwRECAcFANjTNzSYPLrsUC2g1wCpkGceo1gVgvdni/mGN/aHHw3qLm9t7bHcHycZlEzmcwURdp3SmTuZfJfmxEsAoYIth7WXlGsdmaQPOl2fwVCKu7Qr7PbPClLJVo9ybJqIxRmGOwQcNWbFOX0p4KEzCk5RWI7LwFgLHCEZE0wQpGcZlNnUUsEoTbLV7v8UxZQaW7vs4oWZCZimabwJ+HA+4vX2L1dlKOxZq8AtzNWMFfJxiiubSdS7ALGOACEUfAjAMYDDGOKDvgVYTN0viVDXQCvAIMDRgYrOVH1poYi5I8zgzgdgbZEEx0cB1LJYwM58zAwYxRikzhQqI1eO26+xztqcagxRmnFIUGtEXY30fUFEIU2IsVis8ff6e1uWWOL5chzVFpOQRR4kX3Ky3SMmBuQWzQ3TQRk9lbJXdEk4z9yzWPivYHuBY5t0ur3cQVLmu559Vg5irPJN1rcGyNTR5ZA2z5RcnQDmQgVliPrIu0eQ+tpb2DMp/oz63vogtIlHBiCpeWUGbAHoV0La9YsLD7S3GOErjkUrZm7xf9c6m/yCD7fk7Ty+c//03O7K4K5/Ue8H+Zs40AWgInwMoh4xl4gYD2B96cAKIpBpSnQRtVmuvq1Pyeux9pkBK6KN+9wJ8nXM59IOIMgAHkNunA1OFyPa3d2ZUKDRjSvDxvi+W9yOwXZ1zak7noN8SbA1oPqzvsb25wfr2DssQwH2PBChvqSrFKMCyJPXROTTBITgPlzwoEobDHm82a7z+4kssVitcPX2KxWqFZrkUw1RKea+Z7CFmUJJ/4KT1+BvsNgmRPTycJvaaTJLdEIcR/RgROhS6l9WZgNgyR4WlyY6q9t4J6+acFvN9js6anzv/yZMLGMhl/oxL5BWj8n053/iOhD5m7vcIAHcK2J3K/hjH3JTHutgCYlhc3z/g+tXX+Orrl7i5vcHv/+HvY+CEr7/6GuNwQNxusGxbOC88NSee20xrmWELRRUblsx+0rCq2msDKjlrJ2YQ5BoAI/7sf/632K/X+Id/93+DT77/PfzlT/8S2/stEERGNwQkR6o86/24RBqYLKn+rAC2yhplbrVHHeZdpqni+67jOw+62+Dx8dNzbUgDqS6imzoX+sobyFzdZZEs1CFXPiBJENzt9livt3j15hpv3rzFerNDP4qV2yIozbaTM3NhhD6FnTqEzJwBVM7Y8n3902J/soDQxfSOsOg6gMwVIzFa8iyXNxpB4q8zAZB1pYOWsKqfTVh2ywKWGaVagb6HFajf7w/olosMQBiMxWIB7y1UgeTtbLNUIK40aJiCy/nxmFV7/mmeq9rikmdPJiEh4WF9i+32SsJMQlMkooGtueWwum8dDjMHJFbbmiHWsX7o4RxLW3FTSmw9SLwXImOrTTfffzPhWD9z0uBiYskoIGaaNFvG6TQsqH5gof3isuYYjyycBprLmlVMXakgsda1jVaLGMpQj6YVACE0LZ48fQ7nGzC7TC+2icYxgtAhhFFomAmePBI3kEThEn9ngPF4Mo2h6/9IlMz1w4gnTwi08shqpSYiEwipaicvlUeqOTt6gizA1ApDeb/VNDq3dpMrSYQ2n/Zd1Pjqes0JKHGetUDm6v0r75KBSYAzXRWhZfdxCE5KudktC80xzAAhMZQJ4BHb7QYDJzSQ2NZkNMlW2hSlsgLJm2X+A6tqQdP3ObV833Dk/XF06THwnnyrwyJokr2fgyHO629keX93jzSOcE5ryrMYQVj3m51n8br1mpHGhRtCE4U/Tuhh8j4VELXP7TwLMfE5LAqVcl/xDqMfNkD8jvmoQHfN8zCjk0ITZf7BbEsMMOPQH/D1Z58hbrdw44gFAT0BzAkjSx6JKS0egNffmRmjKv7eDdLR2PsiLxNhPRzw8HAHFwIWqxWePH2G5WolPN2RhopIiUZiibeX+SEsFi32CkDHmDKYchCvltUQNz5nstLWVWcKtheISm5hNZPVftflnvDqYy9B7fXKO3qmAJ1Ysers+bpO16jgjpqHaVMyRv55as9M95aXRi8KvDkOiClmeZGSGO+argOcx/4Q8fNf/hLOe/z+3/pDvL27wX63QzxsEMYVQiOt2JOxLJUppoyyV56VJNwvK5EVTzSZlcNnZ0ojKVBOIGz2A/7sX/9b/OJnP8PV+TkA4GG7BbUB3WKB0C5AoYVHMbAAGlsOuY/9zDKcC+CueXg2wHBZH1HOLRfg8QRZ4NcAdAdHuGrc1JoNmwyzMor2UrJ8KW9IYXARwzBitz/g+u0NXr2+xt39GmNkDONYEraICtCGgO3H7LYTGCiUr3+XzXJEJJhuPDuyW4NlybU6ncRYUnU/hRAWZxZjlJra6o7Jbs0EABF93yNFRnAei65D7sRk4+B6C6slNEZYG1YmYH844Pr6GoPWAzcBb/HDgDHxVP1eM4wpk3jXXNa/53a377jKVmfoe+x3O5ydXUzmWN5vJkSqn/Xn4xixWDjJWaPyvbO5UKvLOAADOXhf4sFyDF4Fwk4+x/6dUFTmR90MRRgPJoCPiLJglvhl1TDg8j1jxTDNcuCVdvI4THGon62za/SR2AAiK+g2cp9fq8DLBVxcPUO3WEqBJzYBbr8DPpBWHgDGOGLRdriLqvwR4JIoyKWYLT+KtWpByJFwf7fBw2XEs3MP70L+zniGUwFuijjX96HZZ86Jpc1VtZSr809aOTPgNhBKWbJHrZST42yrf2WgM4hpf0/QZ/UZjOkX1+ZJy/uMJxnJ1M9frzfY7bYiCDWUKrE1CamEPdnuK5ZN8SxWVtVacagO5uIpdN9kGbL5sHmfvT9NfitrIu5qkuYYRICbAqYcz6wfHPoeh90O55dPRHnT56U52OXKg+ZQKjA4I8/TiWv1PizrUQbE1fk2/gw0DPwCueqOAW6TK/NjbuF+bI7LlpqCvOLGl7ki5fdvr99i+3CPdhyRWMryRieNsFKKSPASEsIMxwkBZiiTPSfyS/b5qPHxzl5xFEDkYsBm6LHfbLBcavz32XkpGGDeAdJcHJJKZJJAmCT/Q5MqE6ccptaGgNC0FVnV8rnMm4Fn6YEg+zexlO7NoW15zhIKGR0zp6lXSe/Hx/kOp9bI1kUU3KT7VWT8NN/r+JmMjBurda53yomxktCypwByhDGNkrSpHtI4jtI46+ICtzc3SAPjsy9f4rd/53fx9L0P8Plnn4GT5Fr5toMLLYzt17zAVQyHPYMipMKN0nOqDRKAxH6fAN5Qfu6DtX5vwN4LfokRBMZhu8N2twM5j4vLp+jOzgXvVfya2QoRVsYYOI2QmfL3SUgRFWNPnneuZ/z08Z0H3QRgQXXZKYkZTbkJjVEfCRBMDOmQGLHdbXFze4s31ze4vXvAZrfHMJa2CqyakoWBMDQ2O2s/pw+7Rn6fnTUXivYXVS4JTDVhAcAivLxziBwx1iWfdAexIRY9P8WIEMKEsTIRQuMqC2dE07Rgxxg5wsNPumKlajz7wx6DNoMBCaN5/fo17u/vFXQ7rUldVA4htChdKFXgT7DBbH6OgWgN3Hjy4+QxmVbZ0QmM9cMDLi6foPMhn2bjeBczrDc5KZ0lnZkEBoWAEALG4SBAI4qHgTmJKYSrmqknQHaqX8asS5XArOmgZirGZEo86hTU1e5pqzU8xkoQG4OfMXLnnJSKYoYlK07ADEOUDjbFU89NZo1IYC7Jd3mWjb6J4FyA9w2QpNlEeX+yLEuApJCmxMiKkpHSADiJn9UWOPkyudaYHBUgNkFSsi93u4ib1wPef5LUWmX1duRtrfEUkYF885xMQYrTd6kB9/woY5FJnFvDpZC/gO1xHHNZtKN7VL/PgXxNTwZCa8Bfu76ha5mT/8tHR2A+f1GBhtvra/iYpBIFTIEgiX3X+4oOYX/U71Dd7MQzqTp3yiMeP04phNND+wxA5APbeDW2kFUBIhBK6JuGiKQShhZjxG6zwUXi3N03h2+whSNpsx8Y4J5Z32DnjrDSlLV1efJetu/nb1PTjsmhCnQboKpulM85BbRrWqp5ntHtxJMBXVeYhwxAZVyJhx7XX32N2A/qBYlwThrQiWeK8cGLF3j/o4+w2e7w9voa93e32B56BKTSsI6rpGWwFkhA6XQ5jIAPYE7oOeKw3eLGv0bXLbA6O8NiuZL63NrpxHkBZlIPJSJoYiZDkv+ZRZaOcUS0Z1U8y+bnFIXZvDlN0p4gWaU/k4PvElx578Ksz5z5jd3FEj7zmsHYMavyB9gmlGZ2ZogouymTGRdsktR6QoqhjvgCoJWuTGmVbsHBObBT2ehHkBswjgMunz4FvMf64Q7sAx52eyxW52gXSywWCywWC+nBkBJczuVBrn0uc6HKKhHIF1biiHLTn6jJsvY7NOfB0TGfbroWKTo8efE9PDk/w7Jp4B3h4f4en37xGfaHA3bbDULbwrcdmJ2l8glwZ8sfqNZMs68nlEG2RtW6AplXyhocG07q49cCdIu5whVthFExBfkZhxHb7Q5v397g5vYOD+s11pstDsOoWcpqsawBtzL/idajz2V9uLFG5YHlO5wC3FPhOTmM0Z2ydJBpmZKwIDWyE0KgahIEznJ1rXXerAE3QZJ94qhtWDVEYrlaCsBR8BGZ66Fl5hKaJocq7Pd7fPXyJfr9AVCXHmURx/lfEU6YECl4Nj8njqmYFit5DZi/6WAASAmb7Rbr9QOapoVl0hk/yoKr+mm/m6u3aRuQt7Jp1vQCCCEgBI9xkM8iEgBph20xh9aCfcJ2VZjbe+QKEZMQEmjzFgPZPjMiK2Vm46y1/8yE8n1lT2QgX72fhZ54V7oaFoB0ekGYDUDoe9h4K46uuyiTgZWpYtF5EUepv10mu8SWM7OC0KRxhB6HgyhuRdwUGhPF02X6mgy92pMMKzXWYLPbIsZi9bd9bLGnTstyumjuRgfMQkjEk9BgDmBsDuvP2Ornz0DOGAekoYq/PTHlRiNznpHsPjaxlTCun1HvoXy+CljA+NQMhR8NQu7T7/cIYAXdYgSg0CClCCnUk3IpzbxPqZ6P6dzUPFVxTh7n/9ojc5pKCTMFlZwpUR652ygUACehk8jJsluQUsJhv8NoTWVSqT6V1ENYl5jMAt+5rPjW3iWjH5naEzz/6F2mxwSozwD4fD+ynQOgpt/6OGVlp+re02fbR7LCmb/FBBojMEatx+xAvgGNEc4xnBcZ9+z5c1w9B158/DE26zVu377F3du3uLu9BccRBG0KBwE7ktQsnwkbScAYhcdGLy3go0cfI8b9Dhvv0S6XaBcLON9gIIB4VH4UNRRMDCKSbBnhQwPfhuyRmCiHJ5TbWok1L1Gel5kCU4frnVKuMrCt1wOYWLxzkd1qbXLtdRITBNvfnsCpGiHZc8oezzpAEcaz7T9logTkuPEsBFRhtSRHFwJClApo73/4ET76+GMwR9ys1+g54fzpU3RtC0dOjAuw2H7KAJc1Wd6sAoWX2ZjKcz0RHPNkf1nXS8NTNk/dcoU49HjY7/Grzz5H6g+4WK3wvY8+wh/+4d/CL37xC1y/vQb5gIurAAqWrGkYsITF8WRmCn0UuTqdW7L1tH/fwNu+86BbYnaCAgESw5H0m8XhcMDtzR1ub+9wd/8gtbIPPcYYqxjs4kpIEwFQmJT8Uk1qTXx6JPtzBrwn93jkb3teZnInDoLEc7dNg9VqVWJas1AtRJqFxOFQYv9qAacUPgxDLoW3XCzgPakVpn4JYyjyz4eQ73/9+g3u3t4gDQMomRvNa21qTIRCbZ2x2fmmAJHy7iZQvtXpkzmzJw1Dj/XDGucXV6Kho6gFhREVRln/2+/32oGzuOft8M7BB+mEypp8x7GubTrbaJUgNMtXXR8ZqAVjASzzqgXjOB7F/GYGToTgPbquA1gUqHGUJkjJqupUwiBpGJKFopQuerZ+JyaXC4g1mSJMCZp0I7NvycB51lgUZAYUnJWb23wZCGSOiNGBOCK2SelWmWEGs8gxiUf0VDQcfWevF3gkMMZkAjjfJCth0Dl3TFqv2edzbT1Oteamah/n+ERoLKS6flk9bYkTYhrFJY1i9TQamBzv+HuuhH4jY8+y1wSTejROXlKtT0oY+75U7gCDHMF7Bx9Ilc8RwxCBGBGtGs1k2AZ2Cz+aGBts7mbPno//XV9PRk8oipief7xuukZgVf5IQbcI8JiAmAht12kzMyufp7RK1vHYzykQACbKMIDshbKjVnYfC3GrF8cAdbaYMWcAZt+foiNC8ZDZuOrzT4PLU3NKk/eC/iMinK3OcLd+AEOSnQkKvBPDecJyuRS5Q1IjfHV2htXZGT76+GNsNhvc393h5s0brB/uMIwjfJLwk0DisTTaE6wsnY4RR5BzSFHKAgMe4y4hDgewKj3DYV8KJygANct0CA6LRYur58+kCZcv2h9XtClzyIWeJuyR4JzPykhtRDEj2WT9ZvM8MfZUc29miVP8IOnPev/b/hF+V92r6pFRbCM5pRIGpK0nSD2W+cH157aHIXSdtBSgPElCMO7WG4AT2uVKxuCdJCynIh8kRKeQuZnvMv6o+QiVOYc+1+bYaDkbnyqvLYWAfhiw7Q/gfkCMaxwOn+Jhs8UPfvibSMzY7HYYxwGtD2UNiGC9fU25LYiaKn5leIILrvhPMB5850E3QBhGYBhGbLdbrO8ecHN7h+1mi816i33fY9TkR2mxDoBctirlKiM1c6onsvwHwDHBAdWG+RuCwulbPPa5EJ2HJXeIhUniyVKJGayHUBGe87Xrm7K1cxwHjGMpTbVcLgDmbLUpm1HdxuRE4Oi7xhjx+vVrHPb7KjueMjiu+UoBAQXqlrjudx9mDZ4yKnp0vubXAsKcKEmznP1+h5VzIG0MMXfHzgH3OEYc+gEXl8usSYM5J9g5T1gszzCMEf1hJ1o2SRKP03d0sySknAgCC80ogHsaegBYObHaSpatZTgmOUfa2KRty7NiyjVo67mcWGJZgOAwjiDy8N6dJMrM1LRebrbO2r2BXE4xh6fkvWVeEABc1cGtPmNN2PU+gekATg4utCAENAFIg+IMmNCplE7TcFAsvBmKk8VpO5Ba3CQ3MGU6kTVhrSXn1CVo3iCXgfgR6AYdATl9XUQoMGEAum6ZvlS0COicguVvY+mdA6rM+E8IdUy+m4YWOU38tXsW+i8Xk3PotwfstlsETnCJwaRWbUfiKWlIG42NGAbCYGE6bDzkNAg34G1KJo7OOh4/MCXPU6BRtTwAc8UImtxYr1dR+FJKQhdJrN4xMeAaLFdLVdaqZ5HLHRVr5cGEft/3UvnIui5iNo7ZmLN3wu5lPzPNoCh2R/MyBdz1PWvamnvzaDLxM9qpnz1TCLLirmucUkJ3fobDK6k+1EDCRRIR4Bwa34CcR9+PgC/8xzvZZ2dnZ1iuzvDs/ffxcH+P119/hdubGxwOBwQitETovPolFNUkaCdDjtJePg1AE9CgAVECwSu4G+FIOqBKyIqWfU1AEzy6rkHXBBDUW5lDVlEqjCmYLBVvajBe9i9zqT5U8/W51Xt+TOaXTJYWeprfs1rg6Z/6me2txIxEnBWCml+TKmzVlUUhn9xx6jE7GjsZaBertVW6BnnAm2JYPZeE/8lsWEjIVJs2BYD1d3DK/LZgE6rmXBqrZW9pJS9HZkQGDinBdx22hwOIHdD3+PLlSzx99gwfvPgIn33xOVIckThKV2+byzzPVEJ/TvCorPTUczP7/dfe0t33A37yk7/C27e3WK83CiSRNcHIVfIjKYjjspEAA9lA0V7KryUBrZ68b6+9/E2E6PQazozFQUofUgKCc1h0nVrRdPOzRRlX1k7WerApSWwblIdDgI501xIA0DYNGh8wDqMwGrVUmwWoMHzWpDGHYRiwfnjIFle5t0aeTZi7wmYdrjWKmM/oqSNDdJ5uxsk5tRXixBxnIU1O4rb2OyyWCwQKEwXKFIXpP8J2u0PXLUCqqEnzCy3NRVJ1g0KLsFihTwnxsAcY6h61CTdFo0qYUsBtQM7GX8BbEWoxphwTbxUxvFmbqjkI3qNrWzRNM7WapQicSMgs86WMnSXz34dSybUo+HziX/UdCuBOSYQWV/tmkqTDcn9rK8H5aZRpDZRAJJbGtu0QRwnfYRrhXAOG9Ignrak6lwgGNCqMloWJ4wTSRk4xRs3zIIxjxHq/wWJ1roqS3sf5o9CSArpdCSug0rESREgplqRIRgZxp6wfGXwefTMDl3LySbA2PybrTfPPGSAJLTNaq4FpHZPP+r0kXltr7hGgCJckBIAIcBRAGv7mvYMfR7Hoa4iTKZD1HNk7qzibvf+UPvNnj7ODE5M3teAbrxfgzSDNqKdqf8Y0IiatVCVRCGhWS7D3qmRqJSn1cJkSU/+rvVBzhY3Ug2LzbuXl8hqozKlhTt5jtqY1ULazZsCYqnnOM1md8400M3tuDfjqcBQr/RaZ4ZoW7fkFNvd3cCnCAwjeYXV5haunT9GeraSnQaW4hDw/MjchNHjy9Bkurp5gs9ngq5df4ubNG2z7HiCH1gHWkdC2v2MASdqJA6JUNV6aYwXHCE44jrFkqwYGIgTv4MEYdlssvENDTuCgo/xuklwHVZNLKdhs9yTM5lg87tMpptxV9JTlu1a4bBUszMQBE/qar19RAguz40wYeu8K3th3JYtBLcszbJRv9g0Hz/7ZULS+jtBzxsp6lmcgsRpQyu6n6qbC2ikPOGMJfQ5xhbFAAIoBS7y2Arq99+hHhzGNWJydSbWV/V5kahzx+u1bfPTRRxKGgoSEJA2ytA2p5X1YTxcL7cvjmKkohTLK/H/b2fzOg+7tboef/uyXGqtZNoluMSRirT5SQEI+JhpMhbttMmcay7c7TAPLd/yWl00XxSzcdRIQwGjagNAGJJBYUtmUiErLYs6xhwbSuH4Os9TZdkJQbdPk2GPn/UmqIKJJGSvr9mjNgkSoFkv3XFDWlQtqq6/de8rsK6mahUiZ3TlB56tmAHxyRwbiOGK33eLq8grstXkB6yzPAHdi4OHhAdvdDucXF+KmAkBeBG2qQSUR/GIBGkekQw9PydiDrk+xaCeNtSaCADkUsG3vIAJ71Dg1U4IkRtJRzbBFcHvvEUJA2zRZwQJEMI5juc901k/P/bQ4C524oszzVCGqhYKBG+2CSsZtHUAeznuQ13CdvEdoomRJzW5G4gF3tw8IxKC0nOyoHCeujLxOKDXxaKFg4haOYv1iB2noYuUjCSkm3N3eoU8Rq4srUQhMsaIp0J5auaeeCZsH6/g6sWxx/eup1Tg+5iDoFGB/5/X2nImgFiHifaloJKdU3Qnzf+RHSgnD0IuymFQJpAgateyeEwuilcczWhzGEYPuHSh4mFTVpWK3qhe3di4/RoentRTK0zS1blfrV68XFwAn8aAKtlks3PIPuDy7hNMEvUCFBhJP27JPSpoxZ+FsOQLVEAu/kVafBXRpXCsVLjK5gPM6VvRRgW1b5zldnjq+CXjPO1HOc07sHuwckiOk4LG6vMJh6LE/7IAY0cSEQA7Je2ktzoyk9aGJgEE9feJR4izDCITzs3P86Me/jc1H3xPL99dfI44DOu8KHTE0AVmt7i4hxITADEdiJOnagJ0nxJgQoxQD8Bpm6AA05EDjiHG7hUuMpl2APKTaBSTZUMJPzT/lNO+7whYkg6nBs3NQYDkDpa7ytnN5ZxDl5NUa1NWKz9HcK/bJe0kbS3EqIXd2xZGRiitPo/3N02vsqwndVN+X+9TPsZAMVXozH5abJcMsjrOCYGtRnOBl/FOjjI2H1FNayXs2vix3tMZLKSW0bYuRI0YesVytcNhukYYBPEa4tsHmsMfi7Axjinm8MGygObJW9ah0PtH3fWSfZelWydlfe0s3M2NgmiY9UtaJYPRooMOsCLDPoQtYAQ255tsLN6o2jFDE8fff9DuqIZQ4Luj2Lu9BTtxiY4xoA9TFNXX9WMOBGGMOM4ABEKtFmhj9oc+Z+C5I1z/rSjnfdgmM3eGg4ROE7WaDw+GgQNxll1ueTC1hBJ5E7ebdWr96eVqaPnVu3dH3gH7G9SeVNae+h2xkyjSw2+2w3W1x2bSoF6pmaGNK2O/3eNhusVitkEhieuE92Hn1mJTrIjGg8dAuBCD2xQrCVtHDlD5dXeJc9qtYx6Iya+RudClZu3lVoDiVqhnegzxl0G3hR+bWtpj9YhyraAmFbsWKH/N+mbib5wcrQ5WFyStgjD+Xijyic6Fk5wLabgXnatCtrkbW8CeIUGYn8edxlBAdn/d2qTBUPSQb/0wsonrvDLwBOE/qatZYa7328uoKCB5OFQKrgJC8A2mFEl/9A1lt+in91JVnqKJXG4sJW9IydTQLtZq78m3dHluTU58eg/X6d5p0O5RqO8fVLSxHQc12ookqOJV9LYB0GEYBDUmStL1WNgjaPCooME1apotY+RAI8RE8fTzkCSKv+PjxxbKmx+8zrfgj9yhx3OJRiqPFX0PAUmI4F/DsvfdATQPyufuD7tkpCMp0oPNse9ziuDlZHel6bC7zPnmjabWZyRueANJs6H02X0fWtQwEp2EK87AGwpSe7ThVvrQ2FjjvEdoWq4tz+OCxP+xx2G2RxgHsHLb9AN9GNI16UwyGZZGh8eEGJKl0jz5bneHsN36E3bP3cP3qK9xdv0HsD2g9ch0jqziUK9JoIpwnh9ViAffkCbbbHfphVKsrowlBaYHhUgKGEbv+AVtaw/sA3zQIbYem66TKF0kAitCfJARa+GpKVQGCrEWWOZ3IaRbfNAHZ+FOv9WM4wRTjuiGMyT9WMCO0lYoonhLGVHYaWMVJ6JLHZN9R/syUwsmgSylfwwMzPp0hPgm/B7SQUD1E/c8x9Hcw23xWNLL8qC7WG9TKfQgBzAxPAQ1aAIyu7aRDOcRwMGgFInI+34PzTeVIrFVqq6T4UwejhB+R/vfbQsrvPugGYdRQi3mYcNYO5xfNz+Pqs2+PtWe3NLBefTab5cdCTSZakH3PPCHZfK1ziCnCuQYgsQaCBHybfdXqJhMRQmjKoNiyv8V9HNVyfX5+jrZp1L2ngp6Buq6YWXQshm8YixXPrJoGiITRcLXhaw2vhsP1JGStKKu9x4DbXmNmIcCpZTv9qcVYMhISW3ZyAUtjjNjsdtjt9whdB9e0QAhI3uei+cZoJql75NB1C6TDHhyHYq1N6ongQh9ZgaLiPSAy8DwtPxcjK6CWjqCZkXgtBekoWxdJla2+73E4HHR9qooKNr0nhfZU6JqQyPOdAeUjK0i2bKxlnKRUV4K4fslJ9Q/fdPBNl5Vjp7QiVkFCREJERKII0AjyAHS9oG7libqlm5eIc+KiWUNskAXECOMLnUNoZGAMAROBPLpWlSrnBeR7j8Y3iC4A5KT8mVV6UaESdd6sdFUGqY8cU0ukxnTPlL/qDxC0PY0Fss6Akgnc+TOmPOZ4PHWnQxvP1IIvQiiNo7wzEZaLDsFLFztms/lppY8Rgh7YZ8snoVRQSt6LUpliAbXVXH0j262xTP6gckkfSTRLRD4BuL1ToAVIxIHWa1bvREylszBSwvJ8ifc//FB6GcCDmXKCllODhYEhm1NJvirzWq+ZvURRbm3/IdPrHHIYkKllQZ6JmQUtg7Dq9yzeZuM54q8nPnssDnn+Xl7D26yqTdO1WK1WQIqZ543M8IkRgtCUU8QltiDd21aqkcrY7fqLiwucLTvcXV3hzVcvcdg8IHJE4yTZ0nmHRdtKqVxYiAcj+IDLiwucrc6wP/ToxxExDmiaBm0b4ByDEEFRvDExJgwAxh1hB2hcv0PTLbBcnaFrF2gXS6FvTkIzOt8WpwwipNzNUsZhK+ockKKsrJUvtPmf7+d3eSNqj029iZgVACsP8ZDa8nZNpldkcavzTDjiXxUArSE06XALNybl5RUeygOSC7KNmLiC0Mfwq8CA2tqt4+AyajPo1HNR5sv2y/RVjHcTVYDfSQt4qxZWcUbQ5K11budLovLsmE8VeUsCriZ3P3X8GoBucfFMVSVCtpLaR/k/1TmYvf4joPhbHVSI4uTXJ+596ve8vFQa/XgnjORs0eHDD18gNMGqJEqHrwxEGGaBAk+7liU2IpUN2/dSxcV7j7ZpcmJRoRoDLnLnGCP2+724apix2WwwDMPkfS0koEgQgsTvyguZRbFOQJlYWYDJgtRrY6UC86dmLcTp80k/cNWGIQJSGvHwcI+rJ0/kbxTh048jbu8fcBhHNG2LbrmCCyEz/xImUahK3lYkuCdxqx92ynh0Ggpj0rXRW8QUpZxR1ykgKLRQ4tJyVJwk01p9YVDZ6Cq4+8MB2+1W1yXPQn53qyFccwwLhbD5mwv1icVrjrLtRagA8gRIiFJWJGWsznn4pkWz6LRwr4V2yQymPDtWOi+KMkQj2O2R0jmYHRJZMo1XJcGgvgmLGQE5A7Z6HgHNwmN1vhB3eJKkqs43kgMCwthHPDxsIN0axcNhoNsp7Yk1m7R6S8oJxvO5q39O1lanz0B3Pc/2zylwLc0idD5n95uDpKlAPs3gbd0NhFk9f2bGOAx4uL/D9cuX4KHH5cUlnj17hlXwWLYBmw2r8pPEvc5WwSap1X4EMbIC6Umq6bBzSOykepTG0rt6k+TBfRv+S0dAI4NYKrzGwkmyQuHsFKcVHSTpL2bQXazdnIR2ukWLdiWhTZJgSUXBAuAcT4wSjqQMp7MhVmvkoOPgiipZvATCN1V2nagclD0QmVfKvFnlkpNyK8+FdQR9nEbnFvOajub3r63k9nvwHkmf44lAO0IPQoq6N0nCQIaUQBzRhBZNaDRMBxjHAXEcsxGEbTpg26UYMi6vrnB+tsLm/hbXr76G5wRv3kNZKClFxwxOskasHqqL1aooM6zxuxDZwAkaglL6SoAoh6/u9jusb27BRHDeo227bAnvFku0XVe87lU+2UgmwyjvHeechi0q0E4lNEW8s+aXpKwITyFMkYg5HhsCHk3MGAlJHsK0LGEJZxIOqk865hinQCZm8jlfJx3B68+rJ1ZblrL4AmbvVSniElNd9toUtfHR1QVHncJbOqIjHGgydXpH80CYx8S+MAUwj50qb0H9uZU3ztCGVS7incd3HnQDmKzYlBBOnXs6Tvs/CWi/a0gnmNJjwHti5dZ/zjk8ubrCoutwsVrifLnAIgScrxbSutY7MI1yE6bctUsoh3Icb74x84TAD4e+KhfYoQkhA/JMVQYV1erTa8iKha+INd2GwAKI5C+5vhKe9azbO58wskxVlkeoU15xar0p35QnUvkV1vhCOmLtJbbaSVmjmBIO+wNu1w+IzqM7O0O3WEh5RLYYMsqg0Cps5A3FLCUT44jU9yKsGbmroYxMq5rAKpQA0iTGq+u5YOHaJW7hKKQgLHdns3UZo1ToGeTfVDhWDrYTFgGghArY/aiyjMtzONddLrW0q1uCtJ6xJhvBwTcB5Fwep3OEtlug6Vag0CjoRh5PkltL+/WYl0zW0wkg4p4QWo/EUmLPkZ+BzxkDJwDEmdHq8AGXEJYR7ZnHw2aNm9tbfPT+FRoEbPc7fHl9jZ99+hle7w44f/4e2HkBaJpwCCtzBVUyuQArqhk3T2M7565+zm9e1hw83SNTIWsWyFQ+nV5SzqyendeJ9ZeKJxTr/xT094cDvvrlp+jvbhGQ8Pb+Fts3X+P5s2d4/+oC+9s3iGyVV1CAnSlNSTxhzAkhBCnzpuBbPHQChFNkwKzmZk011vGoYJrx6cwHCm07slAjqgA3abt3l+fDlIUYRQHOZTg5SjQNCPAOy/NLtN1Cy26OSCweDpvrWopbKAmAXJXIOad9Fgx0kSZp6t5TgF8mYLKYigmKPMlAufI0Gr28S54b4JmHL02a3+gz63NquTUPpam/M+8qeQ/XNGiZwQeg17Fa6BglBsYEcglNAJqmQQSBvcxTimN+v2Ryy/it8tkYB+z3Oxx2ezRNC+IRLsUsZ8wjCwCJUqZRT1pfn8Tm6r3TbpiMyAmHfsA4SGUvpFTWzWlX3yKhMfaEcb8TTGGhLE2D1fkFVhcXWJ6dgXzAmBI8CxhORNkSbPSZgypVSyOiSYKgGXvy04+wStnUZX0o8ylZH+R75pC1qsxetmWdvOtjdEUZW0w+nfG6fG5B3Md3nctzpT8JV5m+V/5XyRBgqiTax1lhy2MqCkRduc66bTLUUMd6dTXVdl+urp0oKcYKajxS32IyTY/jzV8L0D19Fzr6++ic2fEYCJ5/922PkxbsmeAtQyual3Xc8t7hvefP8cn3vocuBGkMQIxALDFITsqZHZXdUwDo1I2R1JXrLPC/2sRm5bJyf865nPkN1cZN0Nt85ERLANvtNp9riCcLv9LKqQysApITq6kKv6INTn8C0z3NOF7LuWUvu5yc0YK+C0TA7HZ7rDcbLM8uMKYR680G6+0WfrFA2y3QLpcKGtWCSpKZn/VtZu2QxjlGuj8csLu/xXjYaTm/SnnRmG4CwweNv3aV25uo0MLsf3n4aqJjBsYoHUnHcUA/DNKdFHNwV4NsQJpHHdNzSlZ1WNaNnK1RDbRF0eCKweiMa1iTJpX6Ajoy7HcOy6V0IvOhBbuq0xfUEsTISTfOEdg6Bjqx+EVmhMYhauMVcwka3RCQq1DIQyvGChZrVoog7+B8hOsS/DKAR8LPf/UpLs879Jstfv6rT/FmvUYKLVbvvYBvlhi0ZKAYXGweFLjYTM+U6Vq2PBoKkOe8fE5KU/l7tXiaYif3M29JLWzKs05bPEvzF7s3VdfWNeJjTLi5fovtzQ3OOKJxDKQRaTfg+sstYhzReo/DGFX5hChqKLHOVoptJAYUyIYQJAmZtLwgAiIxXCLEFHOzDNVrqtd7F+e2yTYwi2xltU6t5u2rO7cSoP0cJIF2HBKGJB1bR9YwAWYwOcSmxeLJUyQ47A89xgjlCSUJWlpCF8t68VJp91t97wJyFOymlEMAbF0yiK/oCyhl3TJArnjeRN7kX+Q3R4Ve63tmnj4D2HZtDc7rZxTvyTFdk0xANhD4pkEDAZrDMIBj1LrMGr40Djlp0DUtGBKq4xwhuJTrcOexp4Q0DBgPW/TbDdabjda5TyCSePDIcl1wpJXqGATJOXBO6kjHGOFJ2pxYkzELfwMYwziIt5AVVpGDpwhroCeyTOmdUHglCP1wwGG7xu2bV2jaTrowrpY4O7/EcrkEk1RUGxMQtY71iKRAHBOeYjDb1tD2MVfA0RadDSTquvCEfuZ4lyb0kz2SBhCzhb1Iz9xpNlPZDNEfUcT02flURga4Ews6VaFTFS+Q15rxAB3fNJ0xDx7Zu04lrtrelWa/s5vybjEAVQB9MpByLUPourKBT+aivDvlYeUf3+DJ+7UA3UdAG8h1Ix97vcfA9FGM2//aoeFoHeqnTX4lCJNchIAXz59j1bYIBIAjPDMQI1yQJCXUliYUq7EIBGHcloA3fyXmaWertm3FahqTWGloNjZo9YK+x3K1kni9pkHTNBiGQU9XhlB2NjK12g8qDERaz77b1XK0pic+P55aeW7tZuJqDHbx4dCDQo/1bofdOGL55Erav7ogbnCUWqOZgSk9OWZICwZCihHrh3s83N2Bxx7MURQeA93MABy8D1i0Xko/kjJ7oqyMQHVseQzl5DoDygSxDB72e4mntzKRKVUVambgr2JqOaq5UiqzUIUtkwgTq+Zin5uMF0ajTNh7eOcRk5RWglZWAcxSQIDzWGpb5qaVpD2pWqBJiIAKLoZjAUUJ0mDCxQjnExKNSJQwogfRALAHsXoc8vpEUDLrpry35CeIc5dTAnmG7wihiQgLj3a1gI8j3u7u8f/7s3+LFEfQYoHVR9/H8uIKvl2C1SrqSIB7ed4x0U6ASSbYjIYziMmuSJ3QudVxStOV4MtgmpVmyilzIHXqOKX053dJ0E6qEM+J5gOIVVKqQMBpHChGtI0HJ49+ULCuFV7M+2QWo5SSWDArAS/Z/5CERC8ERSOpZ0hd7VwgwkzenXyneq9nRdbAVD7HZZ4nN0zZIj/EEUNMEOOmxqhDYmDHbgl/9RTbMWEY5XsGS3x/vn8B9RYS5L1Uh5ooZvW+qyyxgj/K97O3FHDIpagaV//eZeXORo6Uban5+YUIKhB/ZBSik7/XY7PDe49xHIvyqM8OIQgQdw4YhuwptZbaQ4wYDwfQMCKEgMbyKRqxlqcYEYcB4zhiv91hv3lAv9ti7PfSFIdTno3EY47NVw1I5JqG8fng4b3ydx7ByjvF2yiJ6RYK1fd9sdwnBqzmtxlyyMpgVuuUk70J4Ih42GHX77G9v8Wtf4VuucTF1ROcnV8iNK3QV3IYAQywXscV8K74eVaeQBlsljXVePEZ8K5lgnwzBeIGvo2vcLlhtbaW+DjlSvX39VE/vU4QnSuDANn/q+FU3sJqb9TPZxh24WqG9MwJCSsOwAyX2DNrJGzyqsJS5R3Mm4dC2/Zu83c63oD6cb5qvgInj18L0H0KjAH4Rg3s8TtMgdvf5JhOc/3wKeqbCGgD3Pqv8R5tCJIYAikUSxoe0TYhF5kXRk5gkvhXrf4Mi8sE85EgZoh143A4QKzihMViCe8CNLDQYGo5nDBuq95AwKQ0XU28+Z3VMkpa0gdUrO1pcs0xWDgGNrN1qL6bCLVTh067WdeJpGPWZr3Bfkxw3QIXT5+BmkYsGSRuOWm4UN2GOVu2PQNelZDbuztsNxuAIxyshrEANOcDgg8AM0KVoOHIcr8pg9q8KVnCMZIK5jFZrKjcexIygKlSObe4FqGQqTEfk26WWqWBFHibJc6pFSrq+KQcp0NoGyyXK4QQcOh7uChdCKURT4QHoWkadIsFukUHZsZ+v0OMAMMhdEuEbpUbDHkIcJMkTQICgdiBIoEcg/0ecUgILgEcJA6SNFmNlUmyJcFInDA7gmsI3hO8D+gWAd2K0S4Szp86NGdemiMsWngirBYdmqWMy4cAOJ+7akYeEUfA6uHXdHd0cKlQwDP+k9dnZnE8Fft9RMaT/Xa8P06FsdgzT31ertTrU/nEaYWegRmlxo8Idk+MrvVwroNzmpfgFHfbM6iiOH1XK1/pWbw9Tiu3wDmEIHQ3RglJIWhDmr/BUbuUDQgbGM5hHRbqlRgxWoOwQYDfGLUevtB7ZAKFBudPnqJdnqEfRqSkIQrKB0t3x1IBxz7zCjTrsB0A2nY8ZToxQGFzVVv+kn4WQAgKyUSCOEQqgUYGutMECUxpqk56P4rPRkXPFW1OQ1qUd8pLYBodLDk/g4Jjh0J33nttNiUx0IMCb9gdSBRs0n4ELgT44OCCR0NilT7s97h9e439ZoPYH8AxAjxKUi7LWASCyRx5bZJSvAKmBDJIQyClJ4EYSFyMaBoxpMARQtMgDAP2+73Og5ZshSj0YkGtLZgsMd5m92RT8jQriwgYE/qHAW8eHnDtA7qzc5xfPsHi/BxNCGhAGJEw6rwYpLTwljqc8pSllCF7UJK86i9O76OCrcv5hismwLNW6CqDzZR66nvyVCpNiMseOfecTE+y75MqgqdknKLgybwwT6v+VBdNxmue1iIVDTQXA1iO54YpOhU/51La0HbLFOvVz65nRj6g00uSj18r0D0/3gWZ599NSenk0r1zBKSgKWtS1Y1lsdL0rtVmIOhCEsFDyiRRKh2cJFKW0ASHNvgpAdn/qpaUKUl3wZMmdlbQ3ff5o8VyqYT5yFuzVjtQMDkMAzabTa5+QkSTZFYHZ8WQYAQ8uTdl+/Mjz6tBSf1LrRTVt6OTv8tl06cQZH7Wmy1ePHmO5eWluBydvkMFODOAUsBNzPDMSMOI9XqN+/v7nHAj4Axi+XWErlsgNB04AWN/kBAKJqmzzcqaKrCV2EAvwCwgO8WUFRBWi44jsppF9XSemBdSoGbx2mUuzLVdg+6UypxbYmDSWqtJCqrCuYDQNOg6CRUh59B0Hg6MBQMcBXQHXQcGY7fbZQsYs+h17nDA5dMGoQswM4IIM2WyzsElj6ZpMXaMlAI4QW1BCV6bQXN5OzBJ3IlrAN8CLiSEFrh6coHFosHV0zN0C8A3ERx6wPeyq7oFGu/hW4fQtOi6BZq2Ld1XU0QcSyz7ET1NgMmxMnhMrZX6XZ//mHBkudswjgjeS0JiZTnGI2M6CnmZAa3q5OkYiLFarcDeY4gRAwgBVl9bcjgoSM1p7wjjOEgJPKqbR6C4XfX+UlovZlr2VZUe5xwoyO8xRVlLVGU2c1K3zeyp95i+e12tJF+noVLWMGMYpHlPHEcZXxJQFRkYQHChxXvP34f3jVayK/HANLFyS/1p56QRzFG1EpQ9ZwA5Vzep5z6XMYQq8QRyBM8JnSqUAjEJIxMGBSXm6QJKHG9hl8W6VoeL1LSSq5NwuXiuFIoBt/K2ZIW+nGNrm0hjp7X0muMSdta2bS5pynFE1vZY6GPsEzACyROGccRuvcb97Q2G/QFxHBDHQct+cB6nQRrz/Dpy2hhPv1V0VRs5DKrHFIE4KmchaQxG0tU3xoi+H8ApIZJINabioQSRVGaCdHxMhLwWZAnfNG2iJQruiMPDLXbre/imw2K5wvnVEyzPz8DeYUiMUdeWNR/AQvumYSMzwEsKvLUEZi0xj7aLAWiik7xqzirsz2SW6JpeqmMCuHl6n9oA8JiBKPNR3WPZA1PRbd5XM2MCzd6lHnt5nj4rM4x6nFP8lyhlBYfLqVCWVID2DPxP3ms2IFZaedfxawG6gTIhpwTcqXPra+ZETNU575qe+rx8J8YxxRpx14RTj0E1JwNh3jlh3khgjnDMOYGugCO1lFKSfypUaiKsS1jVn/tcqURdpBA0ZNaaDGQycUNDGtSKPoprzhh+LofH0Mxlu05s77Khqo1zQrs9/nsOJuZlq75ZLapDKcpNBUA5ks6e3kuCDJnliTXRhw0YJZtMcIzohxGb9Rq7zSYDbkn4kbrkFFosV1KHehzFGp7GhECM5CAWWGeiU8WFJVKxgmROIjDUKiYx2wmND6CgSVpGBfV8Y8rEZBWnSXL2r25yYevqnMtCKWmDjsQE8kFqOmtt8MgOlAhB2zd7sFomkK3dY4wYU9R28aVqjiMPjgOII5wjRBSPjQlOJLGK+YbQMJBSQOQD0K/AI4FTAAWA3IjgEnyb4HyE94TFWYvVVYt2BazOWpyfLbXUn1hkQQyWzD4wSQOXJjg0jdStdiHkKiys4EwS/k67Bh8DywY4ixCbgluu5v/dYSEGWHkSLpEVqJPXzAXadKynlNSaN61WKzx98QLXX38JHyMaAJ1ZkRRYOOdA6nUbSSs9cMU/i0TK42WjD5b9EkLI9asN0BIRIknxtUKjCQkFYD3G02v39HwerDZ4ShHDOGIcJIY7JqnLb4mNbLkTLuDs8hKXV09BJMm0EoZgHgcWT1ZoReFwTjtcugxkc4nVo/lXvmvWZ303r/HQSKJ0W+6O5eZ0QXhVIsnb4cgY8/vL2pg8qZ/3GHU9Rn/zeODJPGfePeU1gHQ+TtxMFHqne7umW9Y4+zj0iEMPpKTWP+FLh0OP/dBj2G0w7vcY9jvEodfE0wjLtq6HnXRea+gTsyGpoIOY/xZTVmLZ30wjmBw8ZI2JCE1oNHk2IkHm2kIOi1Jp4XiajElGi9KR2DnJrRLPi8X2+1JhZdhivd/i4fYtFqszrM4vcXZ1ifPlElBD0AhCBDCy/JR3L3tNTdwouR5THmFresoLZvfIShYVWWhrW1PRREmsnvG4NKajL0+DbvsO1dPkg7zjTvCvdx6VcpR58Rzw8uP3y6ZBLoDecIzJVqoY0ilen0G9yTdVtt8FX34tQDc98vOxc4+/p9PfVxqVfvDIM46Z1kTrmgnc6T0KWzBQ6skhBAPDsrwxJvQpoV20lfDhDLhJk5pYN56VA5y4lvX7UTV4glaWaFv9vW6dUgbJQC5D59RVuDo/1/KB4opNqhjYHpNYONU3UFxUtaZrrr+J6nLE8GkyJH5sBU8ACbtzvty6vJFDCF4Ada2oJGhik8xTDhXhiDhGjPse++0Wh510WjPzJzMjkUPTdSDnMUaPNCSp+RulhBg7QuQRaRxhyXCqNlWhHQJeRshzo7o4vXM4W3Q5htTm8XEmROUdbE4fAdzyNyPH5TIQGRjh0LUdFt0SPjQAkTQPYI39dzJ3DkmT0YbsDUGy+MTapV1HLEapO54JxiGq29aBEYjAkDJ9DUl9Z+IBiQ9IYwfnRoQlg3yPbknolg7L1QLL1QLdWcDZZQPfMJzzkCZNYomVwTCgNb29c7mJiyOHmIA4jGVuU6rA8XRr1ALtFNM+ssAYAGLrVhmPrnnsIOfQ2NrXwjNbWypwOec1J0D1ZFyz8RIcusUS3//hbwCccPfVlziwli8lAEzqZ7BW6A5w0ukvRaUnu6cMXsGQ0IMljIFLqUqnoTxFqUABF0hIycFZ4xG2GxxN+AREEGypScN5BPzENIqFe0gYFFCNMVV7RYCHCwFPnjzFcrXK5eHMgu2chE+F0MISnE3JiCmh11CLunpJXZIxxaiJ8Wr9TAmcRsR9j812g91mg+16LaBMky1T7DOoahcLvPfie1hdPoFyjawQZvBU0UAGBRUdzjtNPualqemq/HOT74Q6PJgSYiKAx5x4DHCOR67XB84htB3Ye+kKqM2ThqHHYbPGsN2AhwPS4YA0HACOOQ7ceGeJGTZ4JCtv9FeHaUCBMbOGA+n5DEJiJ1geESExkpY0ZQiPSC4hJiv7J70FPMTK7ZWXCFeTE0hlltCg5gFpCKgZ1szy77xHCAROjGG7xtvtBjdvX+Pp8+d4/t5zLJadVAtLhAFAT8CY6hpGpmi6DCg5qSemWuOad0z4AJf1ybygWiuo/E6ZfyPjojnN1OrN/DAPD1WGg0I/1V14ek19b0fTjf9teXAx9BlPMpo4vk8+34A28akNUY2YMkaz3gTZ6n1kTKE8n+86fq1A99/0OEkcJ76nPHkzInvHg2sXyARok21Me9o0UYEANNo4wEAKA9gPPfr+gOVykc8jc8PamWRnM4ZhmGTSU34cwdysAKNpW5ytzmCd+RhVgg9J1zArp2Qao1MXt3MO41hKQdVqhJPHaNIbskKBbH2Yz3rl0qzn79Ft/O4jKzHQagjJMLK8o5TYGzVmldTSrBuMOFs54zhINvv+gMN2jzgM0qxFrTljjJLFHBqxCid5x2GIIEdou0468wHoD1vEyEhx1LhuhsuSXl4zgRGRVAANiMwS/uC9djCkXP/XppGzwNG/GRn8zAE3qrm10BJmSNKRc3A+oAktWr9A13bi3lSm6ymAUpKSXnEAI6KPIwZtOJTpsqLFwox58jPFEbE/wGlTJiZ5vwAPDgTPUk3HxwRyIwYHRIpIbkDXAqsLwmLV4erpCotlQNN6kEsgB7gQtfKJNWpS5ql7igi5Fbg11MlWtFQokfIcpaO5eyft1UpltQam7NSNaR6zPsm6VjyIKFu3RDaVvfaY1Wg+3gnwfkQp8L4BmBFCg0++/wOkvsfu+rXwhZQQHKEh0vr3Wp/ey9ySSzlUycBRju4grnttyXmQSh7eMdiV0plmLHCUxP2PWMC6zUptEsuskiZz7SCeGgtrSSlijCOGftRazGLpFiullr0kIJLD+eWz/z93fxJzy5KsC0KfuUfEWn+7u7NPl5nn5nt5m/eqHhIICTFEwIAZCAnECAYllYSQqGFVjRiVVEyYIIRUI4oBgickRAnxhARSCSEVhUDiQd2qd7vMvHlOnm73+2/WWhHhbgzMzN08Vqx/73thkIc459+ri8Ybc7PPzK3Bp1/+HF3XYXY+2zFKELllRTEObVZ8cUkYS/BisPR0Vk48yY4Mcca4u8PNm/e4e/sG9zc3mA97TNOE8XAAOGPouhJcSmCYkZ0BvPjhB3z286/w+Ve/RECU9VNGSP2/2Vi5tLLuODxMy2FBG+X7BjDVay2nOavSRaBScdOeUYLSVf7Z/IWux7aL4DTjzctXeP/6jWSAGvegnBF0t8x2YrMC7DL1JAG4slbtd/ktk3etk1iaPgjdBmYAnSh1QYQDJ+FYKc+1WmwQt6FI0tb7ccIMUr9elgrBWfhItnXINXSuKIAE2G5tIAgfZamCaYoZkcS3cJrw+sUPuHv/FhfXV3j85DG2Z+foKIIpiNt2Zol7AbmA3Vzymps7lC2QNcDd7D7UlSWN9QZHJjEcKTZo5XN7+G+b5x0pbsd05DH3Ki+z3+yvFENrn7n6fED79HdDi7KDtADoBqr1GTZm9lpGvZxH9fEO55w6fhKg+2OPteHmk7+z++7UMLWTcUro0fJzIS6ZQB8QAwcELOAq5Yy7+3vkaULfd+hiBJEgyWJXcuXg9UES9OcYrbka5JQxjgeklNHFDtvNtvS5riX1U5NvkTMXf0YwS1ldXYgtsKrAmlDLjvvFVLRe+aIhxgUEaeZidQZOCAg/frUBbLUnMM0j5nkuC52zMG9xtUilOt00jhj3e4yHETzNBXCnLC4g3MkWc+g6iYCnDmkWId8PPfphIwVWOCFwQjrI9nriWYKHjAygFgVCKahg5Ywt04n5LB6PTCjvWSXM0nUE9htUCGnwZM4iWPrNFjRIyWOEAZksdEv9JDmgY7FUTGnCfBgxcZbgNxXoXpmq6qCbU7N4AZgOOxwOI7rNBheXj9BtJKtAT+LHGInAOWBDhKvLiMMu4XBP6DvG4+sBm/MO/dDLVnAQYCZKYSx9Za4+tIUJEi0C/2pcRMO89R5Z/x6ivw9tdxoI9NvuD51b3qMF18t15Mf2Q204svosLF9GL1YSPgSg22zxi3/wK3xLAbdvXyLnGdu+kzap4mje9RawyMTixKt9tjZW2yKU7anyD9k5QdYt+yDp97oQxIJLAbbrFJJ+LvErQk22yyfIV+eTpUoowMXFKfmASbcurIWZgRQC0A/48pe/xHB5hax0bdbqYejcmGWN1Wh3kYo/OSBBcn0PCgHjPOP+/g63r1/h9tULvH39Boe7PTpOkvZONYsAyaohPs8WXCnKAQUJBM/jDj/87rfYdj2uPnmOsD1DDrHSOtcKxeAqnzzoPr3FTw1d+1dTPgzI2V+SXIqrtGyFwoJ9x5U3m3y7efMWL374AfmwQ8hJlPqUa/sd/WeEGg8DFBkFW6shIHFW3hlAUV3HtJtzSlovgYDQgXjWTDusGU0ccCZC1w84327x7LPPMYFwyJJWMKWMaRqRU8J4GLXA0ow0zchzLnSvDBdAzSEfg/BHcR2lBnyHEEAZmMY93rwe8ebta2yGDZ4++xTbx08wqYHEFO5QUIq4B+ZSpbrKVj9/qzzBxrLQRwW0ZXfVQUjjj2Wu6xWnaUjlGQGocQ92fnuPNaNEs3NHdX5sZ2F5/vJaL3/8s7xy6PtSldh6jo0FN8/RXYaqXbX3MtmtvOLYAt4eP3nQvRRF66KJcTxU0MV+PPnlrMXgLbdz/d3KZz4WlDbJti0mpabN/cIKTQjRdF2E7e6ZH3HZGi1Lg0q2EWNKZvUEBUwpY7fbI6WEYRhK1geRkVzuab5H3prmy5ZXwFwGoDwfEIZjDFEqbMlpgYAYhaxzAois4AjXFbE2H4txX85JGX/XKKscWHgfcrECTOOMwzghhyj5edMsVrGckeZZrOHjAelwAKYZlMRtIoHAXY9hGBC7ThedCu7EGOcJ/TCgGwaE2LssHVuknDDlWVKlIagg0Gwm5Psmi7mLUggGbku3DocxIBRwaEqeB9webJvkkgIfUqZ4e36F4eICue/Fss3iaoFcnXkIUrQizZMEhmpp9sxZDSMMs4rYRmQ+nkjJABMJaZ6QecI4T6DY4dHFuZTnpoBMplhaBoqIzRYITyL6bkBU65NV59Qb6998xPiISMG5KhDaKWOg2a1/z2jBfLTGTwGUJR367XsPuj/GUr52eN7ykGXbzl2et7Q6mTAImmEDqJZMcSGTAlxDt8FXf/wnuLv7DDFI9qT721t8//tvkPb36EDoIekzJcBQCl9nrn78SyHTCMZiBcqSISZwTVtqFrag86BubHY3A1oMlrzbDITASJlQjBFAAd05Z8xZKmEaRrc3mcXfN1PE888+x/XjJ8jqchWDBAB2XSyk5deUATTWsSXd2dqAMISISAG73R6//uu/xHfff4e8u0c/HYDM6ChqoXB1qMkAKNndtAIqYJYazjrOHID5gG9/+9f4h0PE9dmXGJX/14InLf0ut+OXoGiN1v1fpemWriXri+wSiR7bPjOr+xxQ+VNgiLV/PODF65d49cMPmMcRHWcEnkEpScXQMjKkOlV1HykGEyENgCGFuboe/dBj2GxxdnaGTT9g2G4RQsA0jdjvdjjc7zDe38uuEwVU8WTgXfvPGSESxnHE3e0dnjz/FBsKyCFILEBRLLLulonsGA8jpsOINE2YxklSvY4jZlNAuJQiQAziptIFAWZJlS9LK5mZcHd/h/3hG3xGAd2Tx8iG84wHGi1DXPSYJNuQxSKazDvFQwqwNplh1TwLAqowlcq7Mg2FdI/WuqMjn/2sAF+iQhdrtLd2CPZwbJ5QMsfY8zz9Ld97vFXOVNxQQLX7Pri2eNDuxw8GrCF4BkRVyXRtDlkKY51CosBPEHSXTgJHE7B2VK9GAyvy/uR9P3C/tS385e/LylAEQFFE9fWiAOZZtj/BiF2HcRzVigrU4El4ygEhYk4H7A8HhChg0ru6AJKaK2nFOAkMWrQRXLISiWVcqtQFIs15HCWDRezBmMrYCWOUzCUlihupBkIYYydSQCUcSL5DsYItBsy1i5Zrem0C4G9TPhUGLRZein2Noo99KarAGrSUpwPSuMc8CuNMszKfrkPXDwh9pwsyFppIs6RiDLHDsN1KUYxggFzKoMecgXlCypJ+TYSQ5XoRZpnV91Ai3iutiLBTpYp17Ow6m2cFJQ3g5irC5TfNTpIB6nqx6A0DrFqzBGupcsQMpBnpcMBofqri/F5Iyvy1pViK+UMK7AkhAoEwz0nK2Os8c57BCEiZcRgPCCTuShw6QCt1yn2EVvoYECkiUixADJRAWnXSGHgVIga2Nfit8sYlwZSxXVvaDblRBYlAC1SWzN3/+fNPk+3D560JzOX1pyyTy++w+L0AbfcdQ1wlCAHD9hznl1eY5hEhELZXj7G9vMI3v/k17t68Rg7AJgjyiRTQk7ijJfVXNt9qPzYNoNPtp6RrTyztwQl84xcoeZkrXWckvX8gUsNBbkSanVu8UlU59POTSZRQ7no8efYcZEGeISIEKWblZYP0ITQEQipog+7YDCBQSvj2d7/DX//N3+Dd2zfgnBA5SQVF2NqR+3pOJ3yhfkfmr2sSi8X6f9hN+O53v8WTZ8/QdYMoHIyStnTNhkFER761WNDfkja8pRyA8+G3HRxdQ2bWduMk59i6l75FAGm/w7s3r/D6xY/I4wEhZ03VmpVXWPEsNSCoESeBNJZIaKWLHS4vL3B5dYVh2IBDROhqBcnQdVpRUtK4DptzEPXo+i0O97c43N0gZy2Gw7nspLCC2JyAnBPevH6FfnuG7cUlAggdSWrNxAwr2MLMiEOP882ZlqQXS3RKCfvdHvv9Drv7e+x3O8yjFjZTty2QZHwhUp97ll2amWzMGe/evMEnj65BqpjaHJPKdiNRImgdBQlKDlo8zK/zBVGIMqTfZ6pzJeBbgjXL6f5So1rm4mJjir3x5WLBJ0u+wCXWYnksrdWet+mtFUNUQwEgfGQNdK9hMAPZLX+n9r1XTG0twOk3aHlsUSi1bc33xleN/T4AI38SoHvNevQwNK7nVEb6YV8b/6w1i/Zae46EMh+fG10RBVYCTZIjDTMDmQPu7/aSjq0fwG7azZGf1TKUwaVi4abvXfS8sN+kllyon1wIWsCgsGez2tStYGMeBMusEvHo+hH6rhdrLZIAQUgqK6sKJzLJgvpkrNW+CwRGzgSQPceB5TJ+VNqzMnTr84OWCcj92rmSoChCzrMAbY5gjYrnlCSq/rCXiPk5qa8fwF2PuBlAneT0LuNC0sd5PoAZ2BrgdgsWqgeHYcAWl9jf3YDnSfz6AHXlYQkoLJzUijsAU5J57FwuUXAW5lgASAWQ1dLtmZC5UgC2/X59cYk4DBI8BJGXIQExM3gaQWnGPB7EvxwL5gexplTLbtX2QQH9MODs7BzjYY9p2qlFx4SvZARIFLE9P0PoOiD2yKErAaNmZZAgPkvVxaJwEkm2CA0fJ5C6jHBhxsXv1pSRwvyAmq3HueyEYy7QMlQ7cUFzjrH7V//9x+yUHR1UnngEnr1xwQSbgVUTcoXRLwG9A9mnhRK7vsrORwi9iHUKuLh6jJ//wz/BD7//Gu9fvkDOIwZi9CB0DHQUQCQp1pDFHSAxicmtcBdLM2iWaWmrFVAx5U0a5V6WrJQzLIOEF4nVFmGKRP2WuSqmmcVthWLEk08/x+Wz59ieXSD2fVFCrapsEzsRPE3IaySgC1LgbN7t8Dd/8Zf4za9/jVFTtEYS9xH1aNcR8L3RZ1EFzdJeo1Nd01zH6/WrF/jmt3+DL3/5K3TUYWbL8W01ASpYbyzcHnSTzc0x6PZ0Uf+ygnuumV+Yi3XWeDqDAdKYCT0HOWOaJrz47lvcv3sDTpK/vQRIsli3TXFPXNOsGvDmEHF2font2RmuLi+xGTYgisWnWdLbUjFUpCRtShKaAAYh9AO251eIscPdzXtM4yjKm6Z2NTkIXfvzPOP777/F51/+DNvzS/HNh/F3MQTYTkwgS5kt7Q3DgG2/wdn1FZ6yBNMe9nvc393h/u4O+9sb7MYDmBOGoUcxzikNSP0NuSZPM9B1hTYyahZZqYshfSgK5WJ9r+5wkOwi2T1DkAJGpONnVu/lfY54iwOyRfZ5ABtCpWnwmkZ4hN28olD5ngFspzwu0vuRu8bvPq6131u4Pc/1a6UW/6KTcQ/Q62XXr65ZaxhDZP1D+PQnAbqXR9shBi8n9ug4BsnN/T5CYD5k2fava8GwUjYcmFl8vHaHA97f3SPNCW/fvcPNzXtMu3s8vr5E6PoFMBXtkpViMtqt7eY5+qyU57LlutlsETqpFkjKIJeCDlzLvtt24TzPYgnKyQYJVkXeiEZcncgFoso4hijprsjy/uoSMbAoC48UMHJZTBVi1LE9BUJK8/WfovO4bCXCjHQL0Sw204i83yFPsqswZwmwwjAg9D1ILSjCWHUxQiy5+/0B5+fn6PpeixoEEebWYJJAtbCRHYPx/g6Zp+KGUUthy44FBQJSRs6EcRIwIskiRChoVj/XH/mrNGcjQqbYuzmUQhTnV1eYNPd7pxdRTpgOYumXQhRZlSMDYsZcPX2p4AGBKWA4O8enn30OCgGvXr4A3++UYcl85AykAFCMOL8Qus4hqgXOBwBXwF0AMsExMwPSraXXGLVVZW1pxvxkKw2FUP39/HHED6hl5Etr99p7f68PAfHyGA+G0D7Tt9t+W/Z9CbiZuQQoMtrsFY0lxt/XAUoBbDVdHhFhe3mNr/74z/Dm0RP8+N032N/dIHFCIKBDVWay5julxdgkexaJG0m2bXU2S61fzRoUqdCsLnJu+uDnmrTtAaQBfHYfdYvIUoQnQ1KxXV4/wle//AfYnJ0XSzAIyEljW3JCSlwzmTCpq1IVxh0BmwDcvn2N/+if/3PcvHoDmg8YmlwaBh+BGjXTqARlnA0oW4+YUdehnc8Zv/vtb/H46ScYrh+rxU/4VFD+mQFXqr4FJ56e1gC3Fepq6JcrH4G7R9aMPyi0ymV8WBkUcQKnGbu7W4yHPcBZCsGpopdVmbDc/LOgZACE0EdcXl3j4voKw3ajcyEFeHLRt1gqnmrTcskBmpAstsIUhBDQbbY4J8K7N28xTSMiAiLE2m5AUhQz4HDY4/e//xq/+OqXODu/AKtbA6ssMdJkpcUsX4mLDInJCSSGn7NhwPn1tVh8pwnj7Q1e/vAdpnHveF5Qy7CsiemwB08zwpaEJ5MVxPNKpg278sEiV2w5t/NrximzQFd6YPiqxoQorniUF2tO1qHsWjmpsEJPlbcAhICk6R/XjJhLQ4M/Cp8z+L1g0wV4r/BB/9oolb7d+tnnZDfe6d1N/Hj6cbBsTLJjl2GF7TjbmJ3m/T8h0H2kMsm3jeBbA88uFc6pO69oiv77U0D76DNXYvDnZACUc4ns/uHVa/z4+hUmTczfIWCIAdvted3qKwC5oikD45Yf1hiGItuSwolgmRSAy8srdBQQra0m1opyIAFDElgo1pWcM7abDS7PzvAaKKmchMmrzZsAoAou664JxuKPq59FmzaL10JRIgHLy+Mh0NKcZ33RTCoiC7IwZku4lRPGwwHTfoc8T5L2ywo9bDdAN+giD3XhgQCW+RjHUVK79ZoPxZhMaauMD1FApog4bNFnxn5/Dy7VDlGquUGrKiLL82Y2kJDFFYMA6qgEbMnUB2WKbndAhcEScAPA9eMnIE0X2QHIc8I8juBpAs+SSxtqkbPsE3oTGMgWACauACDC2fk5DtMsNBHEl5o184pgKp1nCkgUQLEHDQM4it96Y7mQkWwBNwo5O4DCDVAXUJ8aZlsswVWClO89GS23MusYtp/XmLituSW4Xrtu+axTTNyDrgIp2fnaLwSaKRv+ecu2JueL6p/d9n1dMFh7JPUaIfQdnn/xc1w8eoTf/+bXuH31EsQJmwD0CkIsp4QB7CaHM1plwSrqWnYgzzdMKWXTugxpFNqWdhMZwBSXFKslAAjIlqxEGSkxJDKBgKHHl1/9Ec4uLjROQ1wCZjs3S+pPUEBH1WJXwEwRzMB33/4ev/6Lf4G79zcScMr2lOoyUmz45R/5K3pyubeBm1oUSVihDYy8Hw8H/PY3v8av/qV/gtANkuEomPFCAVGoClnW3U6bT1nDjvYcHVvw1xH9ahtsPmtRLW6ANwUNpFXQHZA1P3bCEAiRIlKaAVWAzHgwswDuxJIT/fz8HI8fPRGg2vcoyrfxYgVfxksBzaqSVc6zJBEoPv6FNwTEfoPLx4/x7v07zOOkOy1cCn0RREkMBKR5wts3rySQux9AOdTxoOpfbPRQJsrkNaABunJVDAGcM/bj5BSaBNZYoMCkvt6CE2KSbOMzq284FOQrLZA+TuYdiBQqhSke8HyiKOKOTxjOKPJS+2B78tUFh8s9CW2l6kJPIRwBVTsCBU1HWNvi5aY/loYBb2BY0uYaX7U+nTJKrgFw8/tepitcPsMbSQJRqVhbjRxGazppDxwfBN1EtAXwfwaw0fP/18z8PyCipwD+VwB+CeC3AP6bzPxGr/k3AfwrEAXwv8/M/wf9/j8L4H8G4AzA/x7Av8Zrpuejw1nh3HflXeFkrWVqed6DT1gIy1O/PXRNhQTaHic0EiD5jYkw3t+JewbETYPVojlst4ty0ApYF99kX7SlBC6IVSbEgJxm5Dyj6yK6UOv7ZVntpZKstTfrdqBPQTj0A87PRQmw7bp6jYBoiQ7XSI6yOKX/Geo3hjo/TnUoCkM7Zi1AWFtkdq5Z1UwwshUWYGOOLEAQUpHusD+If/c8YZpnjMzg2KEbNoh9LxHzCy3dsi/M84x5TthuzxDUd5D8nwODCQSmiBAH9BtZjGMGcprK2DAACgE5mxuOKGRWFiflGYEyQhaLDAdJF5YhzDIqc7dCNY2Cp2Cm7wdcXF6BQeiYJU/uOILHUa4pwEytcG4uAL+GxPd6czbg4uoKFxcXuDvswRAfxDlNQn1B0nPNGrAGisjocHFxhW57pr6ADmDLpMo4FyAgTIvdvmvJ7EJGd3UtLK3RlTHixFEFScsnPK0dX7xWBGVJn7ma4eooLhj5KctOURwMbC+Y/dKK5K/xPtIFHK084+i5BU36r9T6ZUFLlm4xEDbnV/jqH/4JXl1e4s0P32M/7UWZ41xzfOsNLeUoqxJmzyJSgGFjhjquDAUWbH7+2mYQGh9iPa8GN5vSKQrrPGsqzslSBAYgBnz581/gy5//Aji7APUbBADjKBmOxCBqubZjCQgz8EKkYIQZ716/wl/9J/8J7m/fI6QMyjOgyqs00IpieZWxpYuwNvaOfg2My/dQ3prw44/f4+mnn+HxF18iBwF2gUV+IEQEzT/tg3o9eKkKFReklRd07GnBt22Znafeo7qLFGbPku0kZcYmRGw6YEbGNM9IIMwMzBzErYQIV4+vcX59JSXT+w2sIA1RkL6pi5lhGWYqPJPJBfjlCrbNDcT6jBgxnJ3j2WaL92/fYHd7iwApTCcucTU/PcC4efsWQz/g2fNPQeU/z/NtdOpa5aJk1tEzF5ibm1u8fPkScZrQE4E0C1NRgUldXjID84yBxSUqa3CxBe+hrAfPDyo/1ZsV+Wo804ClxV2V6qnRFBnP11DoeWmA9Apobbd8Divn+3v4z9a+NYu038kr9zclwdOrteMhcO3bofNhvKphh7b+qCJNwum2NzyZNX4N+SNk0MdZug8A/ovMfEtEPYD/CxH9MwD/dQD/J2b+t4no3wDwbwD414noXwLw3wLwLwP4EsD/kYj+lJkTgP8pgH8VwP8VArr/KwD+2Yca0ABu09YWZ9SfTwPuh/D9cvI/Fnj7347Etk5usVyQgO/AxgwqCJtTEqsmaR/JtinrtiVYmGTsOhGyzPB6ZyAq5Y8B0TL7TjOlePbPVNplRCw+stW3Kmfg8upKAlRYC8XY4q48u1hRJKVbFTKmBxUFXbVoA19sgsf8NE1+roytB1WtJQaOucm4VeWAioIiKZ5mcJoxpxmHlIC+R7fZInZSBNsSMxEk84cNE2fG4TCCiNBF842vffeHKRlyiJW332zBYKQpgHMqSTgkED6JDz4FzWUt7dWuFO1FlAcUJa0oZmzRS+bTVguSdF0nQUsAxvGAeZTUV6TW9MxVCTOLhw0kq1IFANRFbDZnOL+4RL/ZIBNhszkDk9DsOM+SvzzUnMMzpCrb9vIKn3z2mQQFNUJCxw8ogIqJq/88+W13hqVuK7YjXoy9AjrQkoRsTct68lup3jpsJLVmvbbczHIfC6aqD/bAf8nIy1lLkG1/zbXSsWYXYAVwW3vsOq8ol2uAZs0sAfua5Uh6Q806LMsTIgi3Fxf4+Ve/xPXVNX789hvs371CxwEDSUZkiwGQCQkluM6AmM1TtfahuIJYxL9Zzki3lo2HlLHT+eLMha9KkLSkt5yTFcRJkODmiC9//jP8o3/8j7G5uEDqN5gpIgDYbDaIsQMziksJUWytXir0AwP7+1v8xX/857i/fQ/KSVzv1MoNt4ZMQTx1GCd1HFXWt/J9AeVqaDIgm4GURnz33e/x+LPP0XVSTIVId8Io6rqtfxb3UCyIWJ/3NbrIWazGpSrviqLZzom4TtbFpNm1slrdHV5kIuRI6DZbXF5d4tknz8EBUtE3BoAiohpBzEBk41s9902OCH9oFOi2VwVoEQFD3+OTzz7H9/M3mA87BC3wYOl3JTOP9Ondq1dSQOzqEazaJNm9YDzHGxDItbC2JDODug4JQBcjuiBVo7konHofKfeM6XDAeZZ4rGQ7xGw7MXB3t7UO2ELxFm5TwMSNpCoM0DVm80JBn1ECK8tNm/k1GjFgSkTwJkLANc+Bz8q3Fzt/RMVdxQNcryhaXBWIVtPj2rMIaBRC395yrj1oqbAYX0ddg02fFu2y3z3/Jk1JKvdvfcuXxwdBt1qib/Vjr38M4L8K4L+g3/+7AP59AP+6fv+/ZOYDgN8Q0V8D+M8R0W8BXDPzf6Ad+J8D+K/ho0D3QyC4rMqFcDMt7+PBs//9owzwJ87zELzIU9fS2jq5PuWMLkZcXFwI8bGlS/NMrF47TZMsppWtZmGSwvAshyxT3fRcNB6AEOs8z+jU91vaTTi/uIAxtox2kcj1NUgqWSNLfk2UbbXCjIg1ywHB3FyqZK/z6I9TWivrP+WVl1dK/3JK4HnWimhZAleJMAwbhNgruKzAxQN5AlSIz9hsNnW8DTygbktJJmkqygmYNeNCh77fIoauKoxzlnRTORmuRmYtEx0yKCmjcmAO5d8WZImVWrIHmCUqhICUZoyHA9L+gDRrPmDR2rQsfYIVFbGxM7Eh1iJIefjNBhfX1wghyvY/i8KUMmNOGVNKwmK6TorqEBBjh8dPn+LZZ58jDMMR6NOJdcxWgXGZgQpCRXnLMNchvRSmqFFDNwQgLmbQA1tuAHsV2CiCu7SiARr+GjT3lvasb62uAXCvoHOuSRfbio1OMNl8uHSEXqCsjWsRJwvAfcrC3hwl+NmEi1tzFIAQcf7oCX62GfDy2wGvv/8OKU3YRBEmuvEu/wQVtEZP8GPOkkc+JRzGSSu7Chgwo0LUnN76cGuFpPw0vmS5k2cptMMltZuA8u35Bf7kz/4Un3zyCSZEjJCqrKKHBVAXUHzLTWFBoUABZERASvj6b/8W71+/RpclJ7+5cADZyBElW9PiOKaPY35c1gPq+i+AUvnJ3bt3mA47bDbbUtXTALynXwsyXrojraW1rFZROcTVsE2D2VzHXpp4GtW5zhlpHNFRHQ8yhUrfn52d4cmz5+g3G8R+AIgwU0aItgZCyVYh8ocREGQ8tAaBgcSaZlKUfWLWaqEys1mhYdK29F2H5599jpfff6/+1cL1icW9RCy2oti9/P57fNFvEM8u1YFIeh5ANRbZDEl1RAskNgVzu91i2J6B9ztQYEmZ2ukuGlDcbmInKRGre1gGs9vVYaesVeapNTVqezzw5KadMp7mHlFdcMQlUGhO8xXC38MBTK9suAf4c2o81AdwlAH3RnlpeVepFKvAO3OL9YwGADRjYL8dGSAWrjf+1d/Tt/zIwAa0BgU2WoT9cvL4KJ9ukr2Q/weAPwbwP2Hm/5CIPmPm77SB3xHRp3r6zyCWbDu+0e8mfb/8/gPHh4BzFbDHzK4VUs1Ww5pEPLr3B1r2gXObCTXCd98b4AqQ/LjbYSgLWRZEUg3VAY4QpOjLsi3SoMaSRCFge3aOZM9ltUF7RUDPH8exgG4PYJnkPjCrlS50LotdFiuRc3NgXUia5N8s6nY9s0v5xQD7Blk/lamY5unBUO20LazW+YhZchBLikBgnpKAw9gBFEFIkg5ROueuI1PVIPhUiokYEDAGIBH0QX3JuQRxkea9tgVYqkGiZtmQYjxSLRMJYPVz7fqIGALSYZbeUxVqkteVtIqpbrtyLuNljMhXQkw5Y7e7Q4yd3CtI/tDMCVIuW/MHsLpGKEMS/kGIw4Czi0sMmy2YxHWHGWDLZc6s6S4JFDtsLy7QBSkxvr28wOb8HLHvy31bSq3rQpgglTVi4IGWc647IsLwq9CXVwdgyGdndQJlhVEv/7zP49raLsVgVoBsvfdpntBYYOSiUjAmuKh/f7692rOXW69LwfRQJoO1vvvzqtXGALfxHieAQkQcIjbDgM2wwcXlNb7/5m+x29+hR0IPjYdgAGoBFkCj65yzVofU0i6MAr4zs/C3nNF1HbJauuBAIYMxO+CV9P2shgi7J4jEGjzP+Ku//mtcPv0E/VYq80agAHPPi9XUJfnA4fIsZ8aPP77At7/7Wl37cv1TjT8ozCr9PSFfjmgCDuQ3QMadY1lBtMrli2+/xS+uH+lpUmRIwBkDVIF2HTbbzaptWtt9AZuFW3fMCsa259c7NLsBur3OuoWXs1btZK3foDcKREAkbOOA88ePsb04l53PGNDFTtLeWRAoMyyeJklqE+FZ2dZCW6egih4q66n4tBeXJqHjxIx+2ODJs2d48cMPmFISBQGAOAgmdV9kpGnC6xc/4tmXW4SuK8lfTQ4an5ZkMxaLIdUr/dwyE87PL3E3HjBzQk+agUnHnRGAQMgxYo4SD8Oaxz4H48viw01sDzXMrbLSKUCndyaoFLqSGAvHZ/JiJ5klC8/Rfbwyb0DbgVSPcYx/PHSU8x0vLfS5CBo3gN62k8vcs+IFQtsOS6oAdRszqjS6Z1MKPVkv2rg8WsXGge8He/uRoJvFNeQ/TUSPAfxviOifPHD6avse+P74BkT/KsQNBRfnF8u2uPf1cS0PscFY344gWgPo/787llu5qM3U1tWvjNY2wyC/ZSD0FhAARb0ofUgqfMd5xtbdz+4ZYixb0JF6DJuhABMZLi7b9yVI8DCiDVSjsrD6vseYGYxcypM3We+UyZEWgyHXZLLAhtRabGr/FVg5K1aFUmizIRTLDxoG48eU3T1CIHHfIMZuPADdAIo90mFCiAOKTU4FdJkvd7OUM+aU0cUeIfgiOYTK4ORcHz+RVSDXQDFJR7U/HLC7v5etTI3K19AihE7LSKsAt307SYvLBXwQkbNUZ83SINvrzC6lnJhqAGSEENXnd9ZcyVJAxLrP2g9JZxmxPTtD6AfEftDMOcpQ7Hw3h7Hr0XcdzjYb9MOAOPQIXSdlsRfgtC65lh2YJczeG1MtQISonl/WQp0szgBpHnCzQZS8z37dLRj1kXBywNsfp/jF6jo/8Sz/auvGrNvL65bPa6w0XuABzedTRoUjK42zWq4pD+1Oio/wF8q3rA/D+SWefbnB5vIS3/7tb3D35hUSz7DVFXSFl1B2Nqs3lywTngAlQE8AJChpMRzNnOtAt1yr+fYl7Uh1U4ELuiWAU8bLH17gz/+f/xx/9i//p9CdXYJDrECWXD5ksjni4p8bwdjdvsPf/OW/QNrv0KtbSYK53HHpghgI1uVNM8f2PeoqUJ2zMiD5XxUJ5SMsFty7m3fi3kIKNAqktMwLxsuNtqn0q/DspVLr3stSV2vtko4cqKlXBa1IOuszbYXbmhZeZPzpybNn6K6uwH0vhbBiBHU9umCp83Lxzy5gmq1tubhlWAOsidZDglV0tlaSBovKx5yBmYDN+Tmefvop3r54iXmewQAiAkKYEWBGjYC7uzvElz/i2RdfgkiUnAKuYaTJxQhTfJsdn2QGNtst7kOPaUrYKIunGKVIUDYpLT7vY50tAd5FA6pEY3zR4G07h7xY406ZJpJCZaGVopaLvSpbEgSZWHzfHSHoenF8xxkkvDL7MUfh8/a6+PNYQ2YEjbKwxhf9UBGRtN/kiOOVx630WMTx7gfav8wU9aEL/k7ZS5j5LRH9+xBf7B+I6Au1cn8B4Ec97RsAv3CX/RzAt/r9z1e+X3vOvwPg3wGAZ8+esXXIv7ZHZTCngLZ9XhOga5aw5e9r9/P3WjKn1Xuxm2T3ex8imCHBP2o9LDlP66VFs5/nud06NKACIGvQH4gQuojNdluuLyjfdcMYIRdBLO2KClpzzuof6f3HIEyxbB0CsYtAqukRSbVoogjJu2zCrLbX85GjeXVcnRevZdtuVY8TDB9iwDTPuN+P6DdniJsNpiRWk76PFejXCWnukRmYxhlgQt/1sORF7OawLM+CWsUmWC3K4rYzjiP2e6kQ2kepfmdbZSnNanWDBlWqBToryFbAIRHssp2OAjhccFOudOitBiEEDKrQHcax+M82JdyNKceIzfYc/UYKUAjgNjAG5+1EoAB0G6nYuekGyekeNVBH7xsJJeVhYfzlvYceCl0KY8RqXwq4KPRgfaig3VHB6rwCx0zytFWoCtS143iNH/Ob5fkV3NaofMuf6/nMqWuDWWqIHP1x4+dNxdLZCqKHFAefJaB5pp1TBD2c0I2IQ8D10+cYtmf4/vff4PX3v8d82GEgYFCArjBadEAQciakTEgZSAzdOSGn8FDN3JAbZgWGABQJMFN3A7uHnCKFlroeFES8UWa8+PY7bPstvvrjP8FwdoFMUZ/tgNFi7gQrJvz4/Xd49+YVMM/oeAZYwKUMieWttl0uNDTs71fXWn1ehcvWc/1MqP0syE4AzX53QE5Z05uigClqALfcbQ38VytkK1eXricPKXJeXtprygwmybyRs7gwIEvd4uSUiJRmbGJE7gRsiw+/FI0JLNlMxN0iObB9vE4LLyIraVKVEAvQFpRtgJYBYhdwTxjOLnD1lPH2xQuJpwkB4A6gSa5gBlLGzbs3ePT0Kc4ur5BI6lVAC5mJ24pwVLZUWp5sodb3vkcYNpjmGfs54YwCur5DCEAepaBaN0SJM8pAjgvKdICupLx0VPPQIeda7n5RhCyY0/ZAKHKRY9oZBJYCUc3utNywgGtphnPZ0Ff7xtbYGh7z7TtlTLARKLyIaymfo0Dg0i7vmtbGyggtHEsIsvdLRXPl8OvmoX6tHR+TveQ5gEkB9xmA/zKA/yGAfw/AfwfAv62v/1u95N8D8L8gov8RJJDyTwD835g5EdENEf3nAfyHAP7bAP7HH3r+soPHnfILEEe/LwegpNqr/XtQGH3oWDIee78Oug0YVfwbSECdTb1YMhk5ZLUoO81LCSqlpJH2rcVCz9Lto4ChE0tCzqyJ/lEYgoFwIsI0TeJGUcCQgvukKZ1SloAjAGbmZmZkylIRsBMQ24wtCUOiQIidEmfObmvMGlHB4tFc1Z9PzKmwiwU8KeBkSgnDdou42SKFiDQnAEHrBnn03AZqMkPcKOaEvuu0ipiCEwcCvRnD+z/OecY8T9gf9ri/vwczY7vdYrPZoLMsAgACM+bZWZ8AdF1EmjXtlZ4DAroQpaCSMsUl6C7Ch7RiKAixizg7O0OMseZdDzMQWGw0zABJGevY9eg2Z+iGAZZ/HBRhrIg1q0SxuEdC1Kp+IWoeXSLNBKDboJWNFbo/fXiATUWoMDn692YeHH88dZxiimuC3APZ9hvrw7FwKDsBQIFw7TNPu6OwCVBrx0qXjJ4NcNt59oTgzvNCylvIl21aWodWAfeyjza39STpdojYXlzjj371x7i6vsLvf/03SPt7JJ5B2YR13a0yH1xLHWeBa5wZHAnEEkBmdAxAt6/1TupelVUTLBbBKCD0/PIKYGDW3R+kBMaEb377WxAIf/qP/jH6YYuRgYlZs2CsCEpm3Nzc4Pe/+xp5miX/9MLC3aIrLvPTzJ+b78rRqZxfzsEaDbqdAh2zcRqRUgb1st5b+jqtXB1Z3AvG4gK6DfDb85vz9QEenHh6DV1EyhFMYjUubh45lHSRALCfRpzljGA5jUOow5H1TxPCsLkBAWUcLPbewtWIQoVRVEcxkO4kkpsrnbuSbQXA5vIS1znj7YuXkmecojZJvOYzxDjyw3ff4Gdf/RKb80sB2+rSL0pPBGDxS/Kc2g5C6HoMmzNcPHqEewDTYY95mrEhSPXnYQARcHl9hX6zFSUEVVaU9c6Vhpa7ZGtzvpy/wkU5gzm2/s1gQJ2VmLXGBglABwdXjwMFd5TRDi2vlweyKlLqorbCY/znZdXc8n5xz9re4/4aXZLKw5rHvOINtnO5vdY/u6TY1PvV4kQPg/CPOT7G0v0FgH+XRC0KAP4pM//viOg/APBPiehfAfA7AP8NffifE9E/BfAfA5gB/PeY2WI+/ruoKQP/GT4iiNJ36JTl+mPOe+g6YB08L48PWcIfug8rgzUBREGzi4QOMUqVvvOzM0n5Z/W6HAgmsOT6zhnjNGmVyXJzeSYEFO73e4AJQz+gjx26QLDKglVY1Hbt9vvilgKguLC8u7vDbkqY1JISlHitFyWNGollwW+DkfpLR2JQR8hpFutpNsuQD+5cAG+SaO0PH67SZ5kA+WdKCX2/QRg2mDUFlWQMkSj5lC2XOJqFDI3inmfNAhI7ZQZOaOn52QmreZ5L3t9xOmCaR03d10smEQeatNwCUspI04QYNTcwMThGKW6kLpWZGUMnebApc/nOb9FLcyTjg1U83Wy3uLy8RN93EuBEhGHokYkRRkiqNM1+0nc9NttzKcwUgmZvqUy0ZPDTPMAIAeikZHvU87L2SWQ2OT9KlKwmVgiCqGYz8UwumH+9cXuihtE38wwURrqeI7ZuTS9Bp70WkFEIZ51xLte0FR+pLfIQGEtiPAI8/n5BAYfPrV2EAipgMxqaUyrCt+kyLbf8FyDc9X2Z8WStr2ufPRg8UpKJQN2A55//DGdn5/jx67/FzcsXwJzQiyOmFjexUt9CE0bLhY6LAkRARs1eUTinvGfjESEK7XBWd52ILnYqNOfiamfL/LtvvsHl+QV+8ctfIWjmD7FqZ01FWF2b8jzjd7/5DW7fvUXIs5WG0vZl36xyjSknbmAKOCHlTQRRIsxqR1TYloBPQHeVZOdLdkNQAGWaZ+Q0qwJfUwECFUSfnENHD8wsCn52tRPYnCbqOXZdkZuM4nttdxb+EIAYwXOUXYYYkGZxM4IBGQJm3T0dwIjKL5JlsDFrO6s/OBVDdSV4HTAzKhcrrsXUFNAlKRURsmaMslzjKKDYMptsrq5wPk64ffsWlMWlQ1iQBLAyM3a3t3jx/bf47MtfIMWIhCC7LQglsI4t1R6cO4cCwM1mA6JH6GLEuNtJMD0z5m5A6Dtshh6b83OgGyTVJdV6pjbsBrijZqZhozl2YNIUc2+osrVjfML4axNLYplbck3DCKvWYI1oQTPpeR4c2xo1I16BMY5elsrEKaPEEejW55X+LWjUCg01xhH9vvD7wvJrsKsH/P65SyNLmYUjkL3gs8s2u+Njspf8vwD8Z1a+fwXgv3Timn8LwL+18v3/HcBD/uArN8MRAS3u+dGf18C2Pz4kiJZbasv7nRJY7IjS/ORkG1D8enNOSLOCCNKFu0iwrhurBWwdpQqDTHRKCfMkQqbrImK089Q3sLkCQpBRtpl2ux2mlDBOM2ZmvHp/iwNLVo7oFo3QsfQ/pYRuEIv6PM0gC7wgYTy9lrydxhGzatE2EiZ0rFJWadtyrtnr1Iv2159RbHAEyVvbD0hqgZWgv4DQSdUt5OzUBwGUIrGAPDPSlIq/oc2l3341C7OkaJSdgpSSZiRhxC6g7/tm0QalgahtTtMEZMZm26PvIhgJuYuI6BBiQBcjtn2H7dAhcpYxnOejnLmA5rPWjDfbTY+rqwsMfWdTjL6PCF1AHIQmDoeDBORSRNf1FQiwaCaEUK2bFIrlmQx0w5QHs/Sq2GEdx8ziDqM0F0KQsu5OgVkC7lK6XP9d6kO2Eoz521oSwWPCRleLmsMqQGzvUflC9Xdtycu5VqAFsAVcuddKlVQUUy9M7NwjHkMVDNRHO5rRz5JRQvycaWHhYv8MeVDJXgG07jSnjod2AxqrvFPaDeA0OwdEOL9+hK/+9M/w+vIaP/7NX2gudxXmbNZtDTZTRTGXgUWZdw7tWBVhbu/V4h1DRBcIXQjogpW7zqochZrVhxjjYY+//Iu/AFPAZz//SkA7GLC0kvqslDPevniB77/7DkhJQbKBG9mJWsIBWy8tj2WXhqzyvVaFUH6qfNVwQdl1gx8TWRk5syji7QPh8iqsyjPPv1KSv+Vuj2RIyke079eSKRA2GdVFIQIxot9ukfOEmRn5sJcgPYoa5yMgm1kUG7u6AqnaXgPPzMJDEgBWJaquE113wRRtG2s9h1Es5varwK9K16CI6ydPwcy4v7kBOEsqTL2/6BmEu5sb3Lx5he3VI8wUMUu2bzDMlYqRicUgQZoC2KrhUsB2s0Xf9Ri3Z5gOY+HBFqyfKWJOQNRNDD+F1t8udrLTrdlH/M4XwxVgc0dV6lQRMAOQxUzoHATL7gNL0eeK8K3xD65tLLpR+aS5wSvxFX5R5W44ArfFGNESbrmr/Xn3EjLlBjZuuvPr7l0KD1LL1wKOg9OX/G9NmfGGwVYfOY0xgZ9ARcqiyX3MuR8QKg9qUycA89r5MM29tLAS3hqjK9aBUklQryeAkJESEHoJepzTBKKEyNUHjQtIqED3VF8tGCJnxtANGPoBZODHpJVbCERiPbu9uwPI/CwZh0y43e+xn2YFEOruUronfbCsWUSEGDuklNUvGWUFzvMsTI7qiC2Bt1XrbAAScxHyx7CoMkwDXSAFXyGg255JwBTUL1kBQ9VuBYgHyNYRqUktayYEsKS+A1rXERt3D7Ytm4xZs0Mkl/pKF7YVedEGp3nCNI3YbAdsNj0oABkZm82AzdAjEqGPhE3fYdNH7O9usZsn8ce2XM1qBQsUMAwRm80WZ2dbbDcbdT9CGWlA82AjluBasRZKYGaaRuQ0gyzDSyBkTT0ZO7HG0iLwxnKOW+0ScozZwABTHRcrAW+gOwSrUCmgu5CnzbWncYf0rPJqOSdIKV4BWEljFFAU1+KXXm6ztnYM8dVzyy9uHk+B7aNbuZEHjoGv9T/N1av4mM+sCM8GiC4UC71/UV64FsFYHr4da98fdYl0vdpnE6C6NsitbVBAtznDxZNn6C6uEcY9Drudqv1qI1aQSwR0vSrmk2Vlku3/gNBOhFPHpnnEMGxwcXmJ+7tb5CC56WMgIEmwsGELKzCCJJmBxsMef/UX/wIcCJ///CvdarfxhNBAyri7vcVhv0fMSfiQBUgL7FYap6KE2U4Pa79Mg2BHO0Vwk1kQxRggw1Etc5xyQ6UKrzEDCEOPYbuVtUvtXNr0rdGsvTcZYqkBT829XR+12FGrQLoZMY0gEGIEeGAMl5ealanH/dvXyCMQO/FrRuwwJ3H/sT0yKd7TBjJbFcbAtXqiZLOYK58hp4QthYTjRSG2YxGwGBcihNjh6SefShzO7lbmllhK2NuYMOP927fo+wHdcIYcxEUpscUwCW1kMDJF4WtBvmfSYngMxNCDNgFdL3IlMYAocTQppWMw6gLkqYuyhlIqIJq0v6z065dNBY4VkIJcBhr9raQPhLQZ2dw3C4MvAZMNnXilawVHmZLjx7/8Zu1f+fOH8XrZ9amZa/xUy63WMd0av1sqbd7qf2QwXeHNhseW/ZVfTh9/8KDbhIodD1mqm6tODcaJ1/X3VF7ZWXiELOFGdn1Cm7aQXSDs07QroWUqAA8sFgzxLZMFXK4NAVM6tELOhB8MgBLmBPDM6EInZbotRdcKMYMI+8MBU0qgEDGxgO79nPH+9h7jNGOInfQ/Wrq8uo2Tc0aaZ2hBXcnIwWKNT3nGtJ8xTXOp6megqggkqCi3VdNwc+fHtzLHmR0MMOHGQNcNiF2vFogAKWkturEVAijFVuxxCsxykqBEAxk+PaMH3ga653kGEaHvO/FtJxJgf8REKujnLC4osQsY+iipyYjRU0AXrSCA7OBuhghOM3b3d9UqlTOgBYuIGduzDa6ur6UNmirLcmaHGA2ayRYbRAGIkdB3UYJ304wpq/tHnMUiRZMA8G5ARCcWDxCYkySXYGikJCvo5upSwjUVpmXoCCVYqmY1qSXhbWzEKpUVvLSrSyc5256PCfyFpdUsecziG+qYYAHcR0ugujWR3nN5FH7CvEqLTVu1+URtm5aMv9ATtakA/WHjaL/Z5vXJ9rlx+FhjxdphXK/0ygUelyJGBmAcMLBCMUQBN/f3mELEL3/1J3j/6jVeff8tMGVd93Y/2f3oukEUfrWATinh/OIK5xfnmMs6E2DW9z3Otlt8/sUXeP7Z5/j669/hu2++wTyPQtsE8GS8RuJZUmLMOSGSZCQZ9/f4zV//JZgITz77HJLFRH3rSZTjKJNU0scVqiuWunZ8l3jPvNdsTo54Lxso57ImfClroY+qEBAkWJQ2A6jrNVd5UT9Frqh138uH5fowpb3urpwGJ0vwXt+jBACX6obuz3JAz4cO4XAAdxExRGzPzjFlUVmmWfheMKt6CDD3HVPw5XmhrClmRgrOlcT1i8ksn0Ax4Cjt2i7vslR4oXdSBYYCHj37BD9+P2LMI0LOCLG6WHDOGPd73Lx9g+snAd2wxazyhNVKnKHuSkoDoT5Eqojq8wJVn2orHJch7jdICZ0aKmyGfLCznzmGs24vcM2RsgRh2whUC/HBQHj1SoetI9ZKtyS0CPWRbsbOUdCq0dG1c5W2PgS4Pf26+yyVCz+XFbu19yjfUX2+uRKVaz7AN+t93S6B+sA/DLfl+AmA7g8fH3IxsWONkRx/V18BD/gcoP7AvU/9Zm0rmqvq+QHAPE8gC14IBpNcPyiIFVZTG5lLRiXpoLQyYBoz8szYbjZgzpjEsQ7HNCEWoP04ykI3f8sMjNOEu93eWYDIFQeQ78SyIxHmUKAqID+UzBzznHQbMyFzKsLbbsvsxvho3qgw2zJ+7s3RLOtN+34AU0SmAIb4fBKy5BOPBHBAYAG30RYut3TALH7dZEWK0ForzVIUYxCrR68D3NCTjhPVwEXOGfM0gsDo+w59JETKiFCLisgeDbCNIM64uXmPcZyKMIEFVCqPJWKM4x7TiBIg2mmQY6VLieaWgBYRWtGDM2tbEkBEFMUy041I0wEhDqAoigWFXn1plUmygrLMUlmONa2TgkkQgYIIXViACi1AZqk0wUUQVADLlWCcglvAnlNsTDBZcCl0Sqqyt36Qmzu7f0NaCxBbBP4RDdoKYd11qgL+pKLvBMAa/7C2+/HwoLdRS0woOyDU9vPUKNR1bf8SuLQN4NU2miWrXKM7dOPhgJcvXuDqyVNcP3uO84trvH39RnZTOKFUU4UuvRjRbwZgnjHPGXGzxa/+9M/w5OlT2Bb3ZruVGIlY02sephlPPv0MN3f3ePviRyAztl2PniLG6SDtZ7GaJ667cAHA/e0t/vZv/goUIy4ePwOsOBgDnGaEnMWtzsBxoUE3ZizrSXhI3bkTZVDXpwyUXOF+K1Zq1dACCDGEQjdWiMpkgcJQnF9dSe5mpQzb/SCS8bcgsKUL2rrxah1UN/O7mG9zeyF3z6KAqYLd9T2GYYPDfg9mxu7uBpEIExM4DhK7QlDzlSjjIQTMLEqOBRdDQbdKGzAzAmKRFzlVvlqAtmy9FgBexgGquhDq/Rf9zgD6szM8++wzvPrxexzmGciMnsRz2/p8d3uLfhhwHjt0ISAhI5NlxTIZJzNk+eftMM5EgbRYHEtsDNXiLylnUM4IMRZXMVEM6lx7jJLJqKPS2tpcmqwlQN2ZlJKVBsua53ofUVRQnVMXwJQcoj565uLPj3cLut0JK0fZ6Sg3NgWtHYs1el0envalCFdsn6UD0irRD8cBVh2uKjGnjp8U6F4VSCsA2xjDQwxkCbZt2xuo4mcNuhchUzQn4NQIt4JRDmFKmhVCGXpmqZLVd526IVRrnrubbJkG0Ty7fgBrNlzLLIEQwMQYxwlx6BGHHnPOCEyILl2QHZmsiMpOwDyxbP1lYJxTBZ0QIKbYrAgL0a6r5tsFKUVMXcSUZg34YcnGor7OwQFp4soEDEjUcTXrY52MyjBOUzSFIGNDQcfHNmbF0mp2hYBQADdblcwsGqtUdJRiHcGQDirwMitR3/diXY5V8FUpWz+CdWs6JczjCKQZfQzoAtAFRkeMSITOAKUykvu7W+zub7Hb3RcaK/nOFZyGEIo/OTNL+eQQkKJspcv/SuORQAGIoRNRp5YqhhYZ4QwuSpEAnZQmzAdCRofQSYrAfthgGDaacaMv4J8JQI7F15TMV87cbkIsNF0AM/w6UyuXtilb5GuZIyiDPgbcq+XQ/Wf3Zp2PLD+3c+7vWymiXsxu0tnmm9vrV0HrYhv5qF3uD8wP0r714ySuXjsf1WfTgF3haW6saDFu5XsU9CXZPZKktHz/6hWm/Q7Pf/YlYojYzwnjnGouYEv6pRKbgwKwKIrZs+fP8ejJE3TDUBTIMsea4jQB4EAIfY/PfvZzpJTw/vVrUAa2FNHHQdLO5YwQGBw1naem5SRm3L59g7/68/8If/yP/wkuHz0BdZ2wZnXf0o2jMj46Mk5IcFEKXUkF2M5NGa+jcZdZNXZRaKDAy/oQ+UZyaeQAXFxeIKUZCBZvEtw1wiOyA5vNc1UuSlYHKkDKu74EzbAUThBSEXlc6daDbrsfIK4pgOyeZq0KzETV9aLr0GmwuSjwGZlTc0+LHpHnmaphMmIWwF2UgXYhL62jpDsBElHP1olyP+jr1ePH2I8HvHn5soSrdAhAYAQSpfb29hZnl9foImG2daAKQtZBEnINBfAW4MvcjKO99SlBwdV1rGSNcn1hPZ/8/dDSmsdCrZGjPdvubLvFfn4tYtXcfHRgyysBIG4NC54G2J3nFYJifCSCZZlxLS+POYZ4YsiSLUIqedsLgF8JFF+OQwyxprMNwSkO6lJjlZuVfpbYZIkxbQcF8MbQ9eMnBbr/Lscpq9Ix8K4WtyNvJTfIzb2BOhFyojvPC08CUW4mp2QdsUwUer/YB9nyCQGgVAkfAjgyqlUyMzBnsYyaRWPWcso3726wO+yQkJWZ9U4xqP3I7rqsQYYcOmQmJDAO44hxGiWdHKmmm3ULj4DAWf0Su9IvIsKUZ4zjJJZZ9Q2RvNCAlbCFWS3KK1em6ca3zlvRT+rUHCk7RvwRIYprSdDo7yKSYiwavM58FRwIyJQBRLHOl8wsdcvT/iyThDFUryizSuQKzRiSZiwhzwcgz4hBAmX6AHTEkhUmM6Y8i6/3PCPnhGkaRbgW2lIB74C00Ee1pjKxlkF2UeNUwZ+AbygjlzGKKtPmWfOAM8CcQFEFiBrWMwicZknBNo2g2GNzdo7IA6gfQKFHD0LnrNghBHShd8y1boXW7Lotg2ZmSdnIde0wGyBBYZKkOwLK9d0640Ludo2RiLfawj3beOrSulHfG+PVVh4p1HXBimLWBkba69LCIxVd14UVoPzBCwz3xApMlgz+tNX86GAB3vW5XLZbazATH4Hu0h8bHAAhZ+xub/HmxQu8ePUCTx9d4/riHB2A+5sb3N/fAWmUnR1Nayr+95pdJALIjMurC/zqV3+MzXa7SuNmvU0svt8UI7bn53j+6ecYDxMOt7cIARgggWyybZ810C4pfSv3ZcLh7hbf/u1v8Ef/sMP55ZXwuGnGuN8B0DWBVICyJxRxjcuVPxk92tvlnNVhLxTjFUjJACUKOtzcMkh27roOm4tzqbirDyFQCQRnZnW9rS4q63RgNFkBt6czr8QurdnV8NHKRwMwsks4Fw2wGwZsL66kJkGSPN1d32PoB3S9BAUGlZ3QHVd2PvMochUNeJN2VsViDXRXjGltND4kADrnVCzeDc+KAc+fP8d42ONwc4PJppxFphNkd/Hu7gZXT56iA8BBjGBECro5IJhyoeu9uL/Z6LEBXVdUx41/LadenRnI9a2LUXZddayXhoal8dH4Z+GbeseiyEBlGPtrNKYHXFJrLl0+xLXQGwU876wKKLlx9mMuz+DFtVTeyuNMxutOJqHuhiz7bu/Z7c37dVZ2YJ0cVeVZ7oWCCRvZaYJCn3kKIz50/GRA90Od+tBvSwBu4PhDwmntezr6bXlPFNIrC0TPlTzJoW51qYU1Bsbl1TVilHzdEiBTAWpm3dohKpkOUprBDBwOE/b7A/b7Aw7jiNvbO9zd34EyI3Y95pTQDYNj4GbRAsBi+dnvR2TL/qBbm/e7e6SUxe9Mx0rKgQuo0xI4xdrd9z0O4x77w0GLsMi95yzFDqpbiS3NCktL7ic9fD5Pb0Esv/vvy+KSl2C5pR2wLluKbt4s/6VOEGyblxkl/Z/d2Ka2BEoGXZQhwHCJARZxJWEBMmo55zwjpwlIEyIYkQK6wOgpI48T9tOINE9gDQCb5rlmI1nQ4UlaV6bEQClaJFOu805AyBAXk5SRSOaTItD3HTYx1JSRqVb8m+ckLlDEgFqV5jxhnoKUmOcZSAMGukLfB/ShR2d+iqpE+pR+fg48pLD6QMWfVce/8LVS5tTGHnUeTCgXmrCgHrde3T9r4DHn4+3E+r4dZirCQLeyyzleEBkzDsXyb4weQa3/+ptZSZYB0q3i6drd4oqjvnjQtLR0rh3FosgVXJ9KK3hkxNDVnLNk1/nxm2/w/sULJE64+OwTdAG4v3mLH7/9BjlNyPMMpgTEiBBF/AR1hwCL0vzFF1/g6eMnSCFqcJfQRO1TTZsp+pWM49WjJ/hFiPjbX/8ah909mAg9osQVgGRdkPinAlJWXOBXwNuXL8CZ8Sd/9o/QbbeYDzvcvHsjmaWU55XIHmd+Ex9wtgFpQQ7X7ys3Nx7s3KfYAQEAaU6lDHuBtiTXnm3P8PjJE/R9j5nV4cHonKq1d+m3fKTUlaj6pVxcscy6exqAEkC3IjtJLI/FnSJnxK7D2fm57E4ojW+2W2y3Ww3Ele9M9ohcDKXfzZpd0J+PhahKqO9zmwnD0r8a4CUiNTRUIBU0k8gwdPjqqz/C17/5Naa7OzFwlfmStr598xoIEWfXj5BAyKZMkrxKKt3Y1HdgVkMLix+3B3M25iFG3fmuwX0evNrQBCL02y126sZT5tiNQcMuiHR/XOfKzjVSddczoaaL1eBKidmoMsYNbLG2k8ca3NKg9a/IAUd7prOWPuRWYbDumwGk0KKbd68o2v09hZpi6OnD2kpkmY9EtkeqrnpNX30jF8B7zTiyPH4yoPvUsWQYy9+OAcvCaV4Pbs7B0SSWe6xMrk2cMAn9niqWtO9D16m/li1c+W0IEefnl0iA+LQVbVKemU2IK40eDnsJTpwzDqNltJB73d/dIc0zzgbNYhENNKNaagwc6GvOubhHiGaXcdgfpJ/aDg4Ak/hqS1im/JYhlowpJ9ztdjjME6aUkRJrYFQdo2r/dQvMxtPNgZswtDPkgLob6/IRpDl6a1EXfwdS4StUYN+FAraZUXy1/WILHUmRnBgkOwKqYFLtRZ/PMoLMrlR7AuUJlKS0MBEQkJCnCbv9LKXqlQEHFepdZ6bzxYhQO0pLIWNzKgA26fhRGQlJzWYKjoCWQJBt9Cx5X+2PaFCLVcKcGNPMGOdJn69FjnLGPDFS2mE/HtDfb/Dk8TNsrjrEfkCMtlWqmUWoZgEons9s0egVdLPLn22uP4URxlCsE41C7ccEVEnjGBPUseKlbzSOx3PlN3afl+4j1ge49lmaRNvJWv55YGM0Vxi3CaayTuioT8vD+rgWLFber1wQVKGxWIDKNVQo2XWO5wYQiBnTNOLVix/x9vVL5N09EiQYjMD48Yfvsd/dyvrQPs7qL20pOQOJNS10HZ5/8onrcit0FWfDMsCVNJcAECMurx7hF1/9El//9jcYD3sQAYO1NQgdMlFxH8MswWE8AW9evMDXmy1++at/gHF/j/3uHswzLOeKABAuhYzK8CmzN87qRXk9/O6XgfC64+Gpbpqmo7lhBjIxHl9cYtNvtCBZlCJCBaxWV5dmemFZgzx4aOVYU+GYqEn15uk8caWDqmtUWchQ+tHPmUjS7oWAnBI646kxFl9nAiSFK+WmUJTE7LWd8evVW+Xl/NC0V86vhhEbjcaCzCz1LzTPO4CSZYkI2J6d4eknn+CH+3uknBFL0SYLIk24ef8Ow9k5aAgASyyMlKI3/kSFHxjorbuOse4CcptD34DpKcNg2VHQMTdDkXc1MRma3ftq+KoSVRN8wd6YpKm4CNqvToGN8eiFa4fekwvvEVeeJU5txqT53oPbSsuVR9bP5WzmxX3WsaC9EhEWRFFGwtIMWtu6rjty01pixNI5344HePRPAHR/nCV6zXp1/LpivXHMZakRnXjokcCqpOdIxhg0FAz2AzhETBoQZ6yXACAGUN+BkcEsPtLMZt3mQuSW5/n25gbjNCtYtGSeAZwy7u93AAJCjBiGvlgazWJkLbQsCNM4Y5wk6j+rQJlTwm63r0uTCBYAZ9lLkgpQYuBut8OcE+Y0Y5oyUhbrvJRZFihpDNrL0cpPbUTrNv+RZQaVEawCdD0jxh6SgstS9MG4VwPM/JFSxjiOGEfxQTdGntkEgZYotqGQ4WiOAAZYLNU5zWqpZbEE84yQE0h9QyWgNDnGtGQ8y/FxPaQ6Vsej4K21x9q2+ez6bbSk288G+DyTN6bT9wFbIqS8wTzPmKdJi7lkME8AR+TxHmkc8S5lHPb3ePzsKYbuCqHbAARU2y9rnua628IwQLUCYlUAUNCtwGLhrozveO0vXv0YrIHolYE+9d1yC5vLuFbVSyzbVlyDNIbDssaIb3IBto4/dV1XlD73UAmu4wralk07tvK0a6a8rljKQFTTWdIyPy47eeIVCBRQTiqkD/c7vHrxI3b7HUKawAHYdBFvXr7A21cvQSyBaFmV0sSMPE2ICjRiF3B1fY1Hjx9jGAahMdlGWwg5BnN1RQOoxEBAFYYnT59inmd8/bvfYT+PiETYAFL6PWt6TyJpDzNSEhgyc8LXv/2tpDAOwDwdQMjabhT+WCySbuwFsFVabovHLIBjO33NuC4tyuaSlwIwEfD46VP0/QaZNdWmPpVZCn5l00ZsvgwG8fLJdd1QCIgGuhf04deXKcTtd5UnG/Nm9yS/8yJZMKhRNMt4Ltb9KV5t3/lx8vzKAHi7Tr0jWwWIls0rGjbQ30rGJVWknj57hrzf625IAtSAEZQepvGA2/fvcPbkKUBdGWoCHfWFdZyKj7a+L3UQiJqdQRv3Uwdz1nisdpwqDqk+4R4B5Kw9DtZWfQ638390PwPMEJwi+KD6pxNRCYStLo8V3hNkN9iPTzu5D/TXwMGiXeS+r+L+GP8Vfksrz3WP8B88P/R072lw7beHUPdPAHS3xxrQPgW4/WcfKKlfAjgF3laeuRBiBrRbKCsgAUQSgEeyXRr7HggB0zyLVVPPJaAsljRPiLp9UywI9lmfkDJjGiU3dM6M6hUr99gfDhjnESknTAexVIeoQtKURqp9lu0U2/KrW7bTOOF+d6e+aEEBd1A3A7Uy5YwQOyQGDqNYZrIpAdBtXKfOMLWQsAym6RRevfbj3nylWvupSaMoTI+Vl5TE4sr4ggkyWSSlguQ4a4l4sbyJtQXg4HKsslUCFMGUdWtBhEYSF5I8g1lAtzAkBtiyNci2aeaMxFLj2ECwjhDWqNFrzsfLmD+4wJfDfXRfoABu+/6IIVm+7kgYQofUR+Qsqa2S/snwJqTDLW6me0zjPdL0Ca4eP8VwdqHbkQnJMAFXamAY2CifSrtgTJ0WDBGV0dUt7yrw7dyg0mAJlteOJRMt41QUA+c779ouU+DAKNVxlHHriquNfbccZ/+8AlCMkZNsNwci9RU/rSzA+m9DJyfClM4lDYh7S/XfPrLiwKzQrdBCsZeJO9bLFz/i9uZGLLDoMPQRnCf88N0PonanqaTfY21TRgbmBI6M7dk5nn/yCYazM82pnTBrJg4LxrMBL0qjHzM2a56s4c8+/xwgwje/+y3ydACDC5iyLW8DGlmLDYQQwAn4+re/Rjd0SFnWKXF1B3DUWRVCGC1WymC23bDj+VkK6OCA1jQlna5QAK0EHhLCZoPrZ0/AHDAlklgMthiObAurAuGiMS1pW3pPBBfkfLzrckRX2s5kvK/0TYht2dU1BbfSj4690YLfwjeQuARYi3YVEIt23dg92h2JFdcTtwYjmbIssqMLGgmkgPKTTz/FeH+Pw/0duOQWF56TkHF/e4vh/AIhDmDLK66yNhrA1HYZ8G54gCkPOMGDsQ6CTTcr68rGxSkk5dryTLkDcy7K2dqc2YXkQYPdjBSwOzcla09pofLOFqdxuUfrSa73tAwxKtuMsorCrX0z7GRr0vdBcEpNzWjPXs752hg37S/99XzP2l3vuWb4eej4SYDuh6zYpzTh4/dGbAa6Kgi18/z2MS2uZ6rbNEUAw93HzlWfLiIgBsLQ9wJkc5bqXAxI9gxtigq0qOW6kXUig8B6IrdlyCgVCU3aS2ldsVKPWfNhzwn92TnOz88RNT3cqXFNGkiZU5IKcUzizz3NIOo0C4htAaNYVDqKCF2PcZpgtR19iqt6cAX6bGXbtTMOZ3t47efMYJS3JcLNm7tMAycZPRiwjC56D5t7BtQiPyHpuMRACEMEadrFpJPah9g8M89JWGzhG4zIM1it2dBy50IUJgQTZAdDYEpWwdjMA2w4eIGf7fPHL+jl0awR+rBglMp9VM6tPIg177XsolAvWVImTQuZZwtQywgEpHGHl99/h9v3N3jy/DNcPX4iQrFxMKEyFKeEPMxapD7uzfZrw/CMPVehYn01F5bVYwGy7X25rwPcjXuJF2auvQZeg7rCiGU7al7c01YsdnRBer0H9lEzdqyP0fH7ssXsBEUVuH4s5YGrQkPPF3pY7hIq2JsmvPjuW7z+8UfQnPD86WMcDneY04z3795iv7tDpCiVBzVriLsF2IQ/uOb8LyneEhC0WIgbN87tfBARYpD820YLTMCnn32K6bDD22+/xjRnxKgZdJSdBhbXAmmFWL0jSVxLmqyWqj7DAVoZXx0DMiWrVbgqIrU5XQdRVTmjYggwlyq7zv67uLzC+eWV7jJKITOoa0TWTBzkfaELvXIB3p5OihLoqpd6ILHc0QHULS+Eip2oHRPPZ8u1i+eugrwF+DSZ0CjWK4cFRgYt5kU6VwJ6SRS9letthK2/4lYXyveBbe7F5aXbbPDs+XN8//Wu0IEowgzKokBOhwM223PJKmNtYJbEA+6ZfpzXjodAXOHJdbDL+X69GxjNXAM0IxFQ+CcZkGl4cCO+7V6Ayzlv8tjoXFpVgHD514Ry0FgRBQ+osUrWDfj7lpoaOvZQ+l2OkRtHG5flmJVS99aXZl2211v//at/zrLqb0UocJ/cfY++qccfPOhegl97f0rYrH5XiGdtKDzcq9Ntv/jvK+BWslIiksCoKNkejKGRRhYDmNQaKIzRV94LogU7QB9Dj9ZhRVoi7co4HA4ifEMUSzihpIea51SquvV9j6HfoMQxaNlA3z/OGdM4aVBmBpFUdJsOozAqisgc3eISl5EAwrA5wzSPmFMteFMWmjJ8CgDlCqyqIKh/zFUcWchIddUhWPhS5ckK4hfgnlSRCSxZXRLILRTZdk1ZcpZbxa+ax7rmVJYtT3GKoUggdowYKFk1cs5AnkGYAJ41w4GCbRtpFuuuAUzB0Cbk2Y0Zl++aGS+AeyGYVphQue4D68J/f3QXB/w4u4p4RMhJ3GwQZTufkzDELnboYoewlcJC8zzByjznNOPu5p0G1mY8fv5p4xNalSrXhMVnAdxtsNTp/nq+enzemlLddp/XX48H8MG2xBjR9V0JnG6EoXu2367XL2o0vrPmEFAtma41IrzIjWK9u8hVUkBd/8xFygfqHh2lfxWsm79rsfMzAznj9u1bvPj970HThM8eP8LVZsA3L79H6ALGIGuaWWo4StCiy9xQhwVd19XxyBkh2+rPTVrFyoDVHUoGQgKjdds6K5gPAfjqq5/jsiP8/jd/U3Lhc5By4stdBeaMmRM6A0wn6ANuJLQXC+CtwJXW6czutbYO5zlpyfK67hmS1eTx4yeStzmEwvM5eT/tAiUd/7AnuFVH67sufo00YMS9IVJYT6b4+DNat47l+BVlRGmc2x/LOWvXewW7tZpDFRYBd4FySU9rwNsrq0vrb1DA3XWdZmuC8HDOmi5WU8GFgLPzcynVPtt61Wq9SJgh7khDmoGuV/6uoFvzzNd9zWNF5GOOda7v17wDw6ggmrWfIUYnQ6iwE6vtUObOrN9c3UfYEXN152plTZ03AiyVsFsznqIqrluuKxP0AGvO/yIZFW8tadPm8eRh4NuBbj9GS2Vw6brkf6tjp66wNgxuDXq8tHb8wYNuERrtNt1D2wPH3y0+sxLvQjDz4tXeL/+kQaiT6LeKC+AWgZYIWhym5qcN7h6BJMhk6CK6GDF0G0TqkfiAmj6HtM3yeZwOoE7cPpgd4M4CyMdxAhIjhg4xROTEUpp3hQjMmkRgCcQAIzNht98jhIiJoyZuoiIECLJ4RwX4tnCDay+DSko/oT+5lkvwhQFuaKQ6CgF7OOrntGXETiCZlu/OEXcYaTODMee5FBWiGLDZbITps1xvViJoEZtgFSVZAGbQjCTEmuOXE5AndRvRQCtOZY4qNxMLmmCBdgxM5Ni/ufSMQCXg6bQ1pNDG2rdrgPDU9Z4/EJqCEd73OoQo6Qi1Elwg3enJulPQRcQ+oItidZxSxv0hgRNj3u+xu7vF1eOnoK4T5arIXiqBwqZQiXXCdozk9aFsGoUfNNlMUMawKHsmuBdjIvyAYNYpu9aEGBwAs3Xurdp2TQgB/dCLddvySp+YA4JVz3OKDlfqLiBjIbisqXYXIgG2yV9bzuMyHtbe4Npt/VkVLgq6fREbGy1mCZJEznj14kfM93c4iwHbQJjvbsD7e+Q+gmNA33XYHybMKaHkmGejfylkdXa+xcXZeRGeOSXEOMv+GkOKRoWAnERpzsnApnQ2xAjKQbKjEGHmjDlljJMYD/phwNn5OfJhX9xQMqkyZ3EMBXwnVINKHeyGLirVrE2Km2M69VMzVzLMdf6MTv0Zw7DBl198ibOzC/H/TrZGRVGp8wfX3houV2SoA9jmS3yygUYPxtbKUuLmr/DPZpzqPWoOYxQgXPrv6K/h4W79sd3XAfW6BJRHlPtrhhsW5S1DA2VNQVv2DXV9RBsj1jSpSKAsrkX3uz3ev3lTg6KVb6UkgJQZWs14Lhk/iktEMRS1NGXj0fCwNd5NJ1x+ylwaX5KRsXuUdJGkCqDjV5YNzQbYO/vVZto8VU7JTmBUPrNGPypbuO2rvBpKcP0okl92zOUwv3HnqmpGCX1u8dan6pqzHLulcrlsz/L85W/r92wBuz2/XnZ6Tf3hg+4CPNotl9MWPU8gKIToDxGk1Hy9BNuAMGavpxEFkGZksNya8INemBmQOCPNWdOvCdI3qGiC0tL2DMOAvt+gC71kvKCsFqHqrkEAwJLKzybcLDoMycu62+3AnEEZONtuEYNmogi56W6xAiBjmsZSdj5nxpRmHEbJwcwzQUIEDTwwQEHAuYJYW0ClqIqBMZLlIFaIDC4eMVoyl9ktSKoWNJJn+tksi7VibfnsFobcn8v9NaOvFn3haskoaceE8WSXKcOsQ6Foq5JRhDKD8yQuOLPkqaacABKlhbWwjI0RFc2O1SpEKsw1iMT3AUuftBZkrW81PgTE9YwPgG4D+2TMcXGC+PcLzYMCmAJmBHAGzEmEMkseQgaAhC4Q+hjQDxEhR8wcMB6SFEhKCSEnIEd0QQp9MFxmHlV6fIsNDFng5BIYFtCAylyNIbq7ACpk1tY4YIrXeuW+xaAWUNRY3kmUkq7vWv9YOIFpz8q1qp0lQD+9db4Qtis8b83qU4E2Hwmch4RK/d3NxZIwFDSbK8R+v8ecZvDMeJcnbIhxcbZFAmPoJZPQ/bxvqiMagAoawNfFDlCeMkGyd4z7A6ys9jxLNqE5Z+wOB3GxS0mUG5L4iy4GqegbCBOzGEMUbEVkbIcNDtOkGVVkjXchgimhhK1S5Y1Hfa4koEDA0dCJ5Wi8fu0w0BtVEQK0n9aOoO56Wgfx+uoa19ePQGQugWh255i5UaZMofXWVVtP9t5vvxsQNhoq5wBFQZL7cgF0njazS+9mxgw4erPsGg0/RwXe/t61D9WyfaQA21osSoW7B4CQZUcDWYrtWG5nkzRrIMz3lnUieJ5x+/oNXr16if3uHh3EQIWcxQ1Jc7RnqAxNjMgZ4krJRVYLm6XajxM0sfzzFtfSVuZm7CrwDiWvv/EgcReU8cpgTcZAItNUsctAjatCS7PeIk+gEhtWq6Cu4DALKGE1vjlDR7G+MzeudqxZTtZcSXTkAKo1satCgMqPXTvq2nS4zMUs+P4t6W459v67ts+trAF09/GU/NDjJwC6jQiOB8WdAcBDpwomeHGOB+FVt2vOKEyIPdB2ljZb/HATT9AtDrU+zCkhzbkATOjvSx5sW08XwwaUMpgYMShhMTX5MGs5WUsTRepewpimGeM4gjOjDxGDlkvuomThCGx9ElAoFgBxQ2GVDpkz9oeDFGeB+nJTEIUTuRTGAcS6iaxLQCPss1XSJChQN+01gEiivo0gaaE/4+jbJRFANfIVrd/wgSop0zyDtbCLFDqIKmRQFrwoKrmAXqb6dFJwTMSglDS/8CSR6ykLWIK6jnAGcaqaOwNUTR2lf57VemeAo+VpTG19FB48lsDKD51/NYFYCNcdpoIQADJ/ZOoEwOj8WZpDuPtRll5mytgfshTyAClNZOR5BPIkxZQoFitdHY92pa4JoObPncNH59fxgCmmRdFr172Bx1Nl0wE0eeMNLBIRYgyqzMUWaCuQEnqwsKvK4M2vf81Hu3nugs5NwJS+Wb+dUFuOg3cjwKnrl4Bc//UjUS2QaIDPxdUj/Pj99xhvb3GLhMuNZLs5Oz9H33W6EyfrpAThubbqzZHmGbvdfVGeQcLj0lQLVc0pYdbygKyBzzFIzEqAuPN1XUQOkp61HwZ5hio6IXaY5kmuZ0agKEGuKSGnJMp2QJk3Un5eV6sF6UHXObUIxcZQAe1Da3hJ4zmzFuVKJb0b244dOmzOLhHigGnOSAzdOWiXsAFvA0eVra4BI9d2P+8OsBy130jghHK6VOTYfVf6uqRnO3cB5lfHzK3DZp067YYAsWwDwqdJsgdV8Fnv5RVkwIFbVEX85v17vH/xI3iacBYDukBATkgpInBq3a4Y4MSWGgRRd6RDCApS5c+nY1z2b209Nv0lB+qO1jAau4W5TwbyFm71LyfW3RUh5nYnvJVAp6y+a7zSjBDK4uxb/VdkgXH8xOxS98o/7MC/pxR5lMxT4YMOgxUZ4J5oSiXbn37vM9z4fqwZMvwYLDHncvm7QVj5sh4/CdDtj0qMS6DtzzkS4fUHFLkh78lr3OpvLXnJEJyPdn0WjgQhkWypBwiInqaEKaUWcC/yQmZAc3YTKBMii+9Z6BLEvcCIt3A6vUdAoA4zkjAXFheTcRwxTzOQGf3QYbvdYjP0ch3LokoKbmzbCwi4u7uX7CNRBOTd3T3mxEiJAI7KwJJ2VJ8PtTwQQap6MTLPZcUzqBT+ocL9GRBPSmUOuiCY0bjSuBcDoB8+qAD/wzhh6Lboe93i72ShNhU9s/jZZVTgR9pWXfvClOYZ8+EghW3EtCTlblm37ZWJiGW7IP+mWTZ3HoTbcdy3JQz3jNcR9Sm9xNOqsxLx4rfmiY6ZMCToRz5p3rTQoes2iF2n4FNs1HNKkiNWl5e5QcwJYE7IxJhmYM4Cmna7W7x7+xrbyyfozy+qemXZbpo+tNYJs4gurVMF9DhLkHzVCoachJDIA0ZITnYLTF76uDbjChSl29rTdbGk/4MJb9c2E8bencXu5Yv/LPnCqaP0eymQte9WyCG4PlA43rpeBnKuCs7lFw5sNX8Arp89xaO3z/HD7h7jPGOXEuJWFBFmlqxAWUKxiYAcgLJ9rMBmGmcwM2KIQuZZ6EuyC6pF1fxOSQ0Hqikzp5J7Hykj5RkcGAEDul4s4Yd5xN3dHRJnK0SAlLQaYSCAImC5uI0/oWDrQjOtjKm8yssQv0Q/xLv82GddJ7ZLp5xaqmnGiO7sAkwdssXIKEsxQAVH97YGPHRam/PV/sCBYOuHKR+LP394FxJrBPvUl6g0XFwCVsB7aZvjX/Uct77MVUKV/aUFs8gnBWIhRnD2KEkMWKHE9YjiQ5yKlVvSowp/6IjQBxIjFkHkQNZEBwznmpIkONfJfcuIFbjufnnQaNjDqG45F37d+/nxvKximGqEsJoLKPevwFuAq6wvQptrYU1dPFaEWoC6VMSOsZIuEs0oJpEB2SUlKE+q/y75MFHJImRguly7EI+r/NK9X7Nul2f4LDiLMWiB+boy8qHjJwK6fUcNYC+Btp82dnYaWvymTK18JeI/aNYRBBIB684v1zoAbOBMMhJIyqGsgYmTVvGzNrS+nbJIibUaFQPT3b3k5g0kriAw26iBNYBCRBpnTNOMKRkop+IisdvtwJnRxQ5D32PoehFiXAP3iuBQRpET4+27d6AQMSvzGueElAOybm3aroEEKsp/RuRiCGfM8wTkqYym/SuWf7F+UiCEHMr4GdAm6yf8RijgWIObB1JeVRc4UXDXESgQzs7PEHuxcsn4iNDOGuVfqtkp3chcmq8ygJwx7vdI06gMNBVXALN2SZBNLgRypPSdsNYsmVL7o/XC7uMA9weONcC99uyHzmP7h9RuzywMkgIoRFFCQwcKhMiMQZnXNO6Rpqn6fCIhJ7FkWD7vlBJ+/P4HbC7u8ckXP8P2/FyZ7zEzt2IeIVZgW/IIu762QL1evfbeTC9+e3OeJYtNAc/L8SS9hzLqrpOS1bWAUDm5llZ27SrmHgdUslpVi1VyMR/LY1XJaE+oZgWnqFj7xWWXmnstrWjHh60v9z5zs+7s/XC2xS//+I/x6PIcv//bX4PyhLDZIgEYdztMhxF51nSBMHoza2LG/jDicJhK0aM+9gUoWCo/P6NZO2tDlVnsX9Huq0Cip4gQBBSlNOEwTxXoZZTqiBGxjKsYMFj9vvnBVVdADkwG1Hmw6+p3KzReQJD0M6VcgpfrvhgBEDeZy8dPkKxWAovpg0iAo1UThruKqA7S2vyX70/QA7n+GNezKoxL4G3Xm/JadmYdePf3tY43CsqC9pcg2q4pcR5QZhO48Ruup9a2KUvTXbtQ1qM0pTJwRnXZyeo+sjk7w/0wgMZRZoYIQ98JZEwMcCoucoFE+SVHnDlkEFfFqMEjDgy2LnR1t66s77KmnYLBVZYxc6ly6xVFzyuXbjpFtauMVM+1INCVebNueI3OzZfMtyDg0i67Z5l7oX/JJGQ7G3JDRr2v0Z4fr+j6u6STpSz7GHpfU/geAt7l/kV2ngi2fIB5/DRAN9UMAKeANmAkBDQ+wU5QGcMClO1rOWZywq/eQ++50OCEDbKxQyVAsejMc8KUsvqPttu5IinMHSMrIGH0mTETEPreMQHLda3PDAE5k7h9MDCnjBAk2t/Kwu93e8SgpbmJcH5+LgSdMyhyscYAxXNL/M0ZoBiRxgmZCeMo2SfAUQF2Ujgsmrrl7GWCgrCAxEncUTjZoEl/Hc2SChrpvy2wuvBJJWnNvakKCwig1i3Az63JGmPCsYvo+wiKpJ4g1feQ2ZQPLtYW05YD6ajPEw77XSmMIVNSc6UXRlX6+fBxCnyvHsqwjfEuYONHP2tpLaLFOUTHMKA0oTxTqk4WAR4DqBPgjah+uEEEWHd2BqSE3d29KmAAZ/E7BUjzvcv87m5v8eN3v8eTZ59ge3ENxL4owCX9lwPcUS1FSwutdqZlrvDLzRg8qlXICXrA0vpJ5gIrDGL9NXcjEJU2DH2PvusKoOVybn2+yaICSkyAM2OaJszzXJ7rQffSsmfz6D8vFTZrqy+0Uf90Ni0o2AD5g2C7GVp9oyLTCTpfJbSjgOHsDJvPPsN0f4vD7haBxV1nnCSAOSWNh+BcXCdsXuY0gxHQcQYoIGWgZykIBIa42FlTUPTAQsPmBRpY4gw6CugDIfYRFGXs7/f3OKRUlZI6wKUEOVgzrQBlC76Zk6Wu4/7MYmnfyyuXMVqOeAGNUKCfjUZkvG0rHBAXk8vrR3j0+HFTF0IUYaBE7dm9uAWxLfAg5cNUecASlCzpQPtX6Gdp0XZ9sgw0QF1zWKy5cl9HT6eOpRuAvFYjC6lsWLv3sj+ioKgBQfvkJUpxQdO1askPQuiwOT/HOE1y3yzKct/3mAFwJuQ8y7jmqhRUQOt834OjjwXAs9flb1Bajy7ziP0uCqL8ZZ2jrusKGIfrITOXysf6xWIOlnNfUfWqGwZV2lrOo+d9cG2za1kzTkYSPJGTJSGoQNaYqfErq2AK1gxILjDW2rBGx358PRa0a07tNC6D5I/HpjxBl/9CWXrg+GmAblRwtMoYioBtVLP6qkyeIBNuQNsznCKQHZPwQNt8dt0mkGhzyjBTFiAtQsXCJI3Jq69SmpFyksj7nNExY8yMcHWB2IkFUQIwkubprgBMwDUjpYwYY7HKgFmBsmr8FNDFHpEkIwoFdYJghnfjkDGQ4J3D4QCGFGbY7fZAJkQD/iwMPnKrmBARNmdnCDFgnvdIMzSK3YCyWkfUhCDWy1zG17KbMCCVGhsIrm1EO58V1uiCZ5sdwCp3muIiwhTVasEVtVMRHAb4GSEn5HGPw/4enGYEA9qU1WfW9goqLRQlplmYrYWgfPuAgCH/WkpdVtHi7/2xxxrg/tBdKuCuZzIkewXFAFKgnWMERbEahRCgNUBB3Qbjbo/p7gZzMv89UoWGCvC+v71DzoznXQ/aBKBTYUjVwt33fXUpWQQlWv+OlbDlG+tX+97o1yzXdg0DpRR6AWgUinW767r6O8z655j5EnC44EHzGR+GQbabV+ZqfUt9AaDQgm0Puq3rNWtJC7rWeKe//3LErB+NElGGOADE6JmRxgNefvstwjRhA4khkYJTGTlDXDlY0o3WPTcJ4JrVSIHQlf4kBT1gLunJCLKLZcs4EJWAbeEnBCbJVBF78dUGE1KakTij2wwa3C1W8U2M2HQd3rx6Jfn3uYaLe2WuzkElJOOC5MfC5gXGH0iV9haYVHqxMfV5to0byWsGMFPAk88+RVQwVYCytW8Fd7IT/s38qyXUW/w8ITaWwqUs5RqUC1RjxilaWrNc2/cGes06+xBOWdKtKSbVamqA+dj6butJ5GXWQmfuabZOgTIPzT2gSkzoMLHIgZ6hqQkBjhEzAFg5Bwql0iO5Z9gOAIpBrfbNFyWiojw5AIl6DhYAMbpxtvdZlc9QSbnYvghm6DIFtp0jH9di5L6kCTMy2O6Ov1c1CrS0viy8Zt9lBb0UO3VFkjiqwqWd/KIQSh/XDBFeGfQ0s6bM2NV2zSm6Xyp9cg805y75q5+3U8dPA3QvF55+5/hgOa+5xgQ9kRBsaAVUq+uiAkJmxzz1ds0rFUBn+bdli8nguLNkZMacJesFJy1so4E/4nohmTWGrlNrrmqCxYIhbbRtr2kSN46Uc/ELH8dR/VNlW5VYhLsACsmRy81yg/pLMva7vXCWGLE/3JeKaMb+CUGZXBUqDEboOlw9ukaMAeAJrw47JFYrkpaULwqKaauQymq2qL2Wnf0gP5jg1txW3FfEEpRGUm0uzxPQAVkjyCVxlC7iEJp7Ewh5GnG4v0UedxCrtkW5V9BhlhFTBEq2llbpXW/yykmEJe26F158eeJ+D1molpq9+8EBtHZdrT3NaDvatSEAIULyxAcQCYAMRNie9ehDj/e7HVI+iL+e0QTZipK52u122O8P2AxbAAMCqRtJ16F3YLhajY7BqO/OCTwJALBCMFnXTGG6en/jJ4FMyBlAsRy+ogC0FhTUfjl6Llus3AIBE/6l1PYJ4fGQBfBYSCtrX7Yr1PNPAe7ls5fWImauJb8X51UQSegA3L9/h+nuFgOABMI0M9JhRp5ZMzgxEjS9qXAziRXoB1xsJC3pdruVnRSqaQ0DpDKgpV+0VJ9JlZnMjM1mU4Dbpu/w+vVLdMQInRQNOzu/wD94+gnysAVCxDRNQquxk7bf3WF6f7AeAlwt3UcArTECYAHC/TzJvWgBfo2O7b2UlXdZSGDXiSKRGIjbDc4fP5Ygdg0MrA+V+yu7FiBPXmaRAk3UAkcOgDR0UUAaHy2mSh9Vkat9dQrayuvydzsMsBHQgKIlePbPXwzwB20Qdl9xBYsAVTo3SykDmgPfWuN2z0IAYsRmu8Vt7DCOo9aBALpIpSBjIkJioAtSlyN684UqVjlnqXBMdezXsgq1c9Ou+TVGd6yoo1EmTIaV+8L5bysfsp63YNVhHvd9cH2QRB1Kg0veTFyUoxhjA7yXc23KI5JgHqHZFig/9H7ZxrXXo/PR0tUp4N3yu3IG/r85fjKgG4Dbdis8xk5wLyaIqjXbQLtigOOjWeguonZx/6APZkb1D7bCg8ooi/BVn8GUUilsIdkuxB9YrO7S1qEfZKGygm0HkbV5osHGiHmcMI2TWHiIkOYkRUnGjDwzOADzlHB1eSmAmOYGaLCNELPca5rQDwP2KWMcJwXdWnZZK2mYfLHCHSEEXF5d4fziAswJ55eXePP+nRaVkeCmkkzf5sRZj/xil7gKKm2q9u52/I+XjIJt+AWi6cbGCX3XAySAm4O6r1CQ+afqB8g5Y9zdA+MegSWYqoYyZZ1vU0DcINbZ9l8uyMprBrXlH4HTV47TQGz5mWw8labM7EFu/awzsCP4IEpLnsAsgIdiBwqdAm8Jtgxc79H1HRCoKYIjAEp6Tizra0oSnGspCWOMiOYz7fy32QmPJRatYvvhUZQMRHqxA5GiB1BpoxdwJWAyxCJoFjet75mb9H/HwKGCrxBk3S6DzIDWergUBsv2rZ0DspCUYwF06lhTZAyUFOG9IryYxT/9bn+L1y9+ECVV+d6cEqZxRFK/2KwWxMqHxN3t+tE1Hj3+BLHvxZLVdYiadpEgriKW8YRJgwZDjTcQSymh1/PG/R7bYQsgQxPsY3N2js35BeYQgRgxbDYAM0Jm3Lx5g/vdrqyJ7MdkIWjNmlrGtU5t5Y+ASoGCtBegU0EdC3guZpoClKgq3Qr6rq+vcXl+Dvuhch3HJ5XH+jNa0GbtaOfRA6xCK1SVUJFrdQxC0MQcK1vyJSe0o6V19xAdqxDQLda4Zduw4OblWqhtVV7gTfxL3uBArSm7QcVaSgnzVH38i8Lpb0MkAdIA+u0G54+ucfP6Ne7nGZQYGwRJUxksE1MWwN31WmVajFWgqkjnnMGRy26Db6NRh4nHCs4dIA5h2c3jNekiIrNTmtvdMlbvgACYCyVatytvsT0GrCT+6qhU5+exfiW98m50RhPeZ9rGwSpBm8K7xsOW91l+78dkTTZaO5fjeMrQ4a99UBFsT37wXn/4oJuUySwAg0IKAGpTsO90sTQdJ9uKbG5bgV8BVSfgENcXSYGlYLsoyLVCWPZgu2E44rNX0t9CA82I0Q8DgrqBVN/rShyzFoLgzMia9zv0QVxaslSinKcZnDLmnMBdJ4Bbi6xUH0gBn6xm5RhkGz/d75ABHMYR85TAiJImUIVup9zWQPP27AyPnz5B13VIGdieXeCzzz7H65cvMI0j8sRg9QUXH8PKbO0egVlzNZMGL0IGRxUfZmEHxRrJBb+XuZDPLNiYZOAYwH48IJ5vJU8rA0EKRCszUf9wTfc3H/bgaY+IDKKsClKqIswv7EIODy/Qhvd4XK538YzqYw+T2bRE7c2hgpVNsYE5p9a0d3Rq42vtW4nmT3kGgUWR6QZVXkSJKUqUCREFOxRE0YokVqFIjJQVxjMjDhtszLrZdeh6CaDrnK+zt+IYACBDOTaWRA/yuAI8OFTlS8fS7i/ZSLoGzFr+ZF+5ccl0TcFW53XFqLnM/5IOQjC/29z+uLi3FzZtWjP37NL2dgzMqu/vtQas157djjdXfgon+IFiHZymCbcvX2E8jAgMzDljnGfc7/dIzNhst3j37p3WE3DP0/vFrkfULDDC49uJy9Y2Vf7Z+2bqoBpvSDljv98DIASKAGXErsewPRdfY813LZcGcBrx6tXrpl25LLIWpDSNtjXkdL0WMLU+9l55bJUx5VdsfNZ1HQrAifDo+lpokVmXtPJzywSla0Bc76tyWOVhuam0w7W5WPP9kkLlUERqFS1rEY7OQkMvSzoqbXD0VJQ5o4MFcMk5l3X4IRBUA/C8XKgc2sBepzEYRAQwI7NmLDLl2621spPj7oIQEGKPi6tHCCHg1YsfcZMzJso47zqEvkOXJc9832+KAmkORqJIiczlAEj0UzzaOTO6ajCO8iCjJd9euPN8+4HqTun5RDPmqDRr8XJVcV8YZrwrj5snIlKbFJf2tUWQfNeq77QH20uXEAughvrfiwFvpf0nGP5DQHv5XXYNLPO9oLkl0K6gHTAUQHDBvSvPXzv+8EF3YSqV6EwnM4Ef7Hc/OSgGA72L/bBg/2xAoDmrAdpFacsakZthieJEwy1VJzOWvm5Fq2J/TxEo5gPOnKt7Clu+69pcyxwwHsR61PW9OEBogYRxP2KeE/KcMacJ1+dbnG02UpErAMW2x9WfEiyBnOM0I6nCcHe7QyoJRyVneHBMEwAQCI+fPMGw2ehC6xFCxNPNgMPhgPdv3yLNE8AGuAHLWx3Y/KNJNW1Wqz+KcmV9zhDABgSwr4pDKmqCzQsVNM8spcenNMvWbRTf9Ar8NX0iJ6R5Qhr3SPsdIs8ixFgK3ayHGR5/11rC2jkujTUB+9C9TqzTDwme9hYGuOv9isBzQrXFNWvtouYzIwFqudyciwCJJG5CgPgSEqB+fhBLpCq+lGbEKIVL0IALiQfohgFhGBD6oQZNhgrkycaACKopNn0z3mBfL7tTxCdBsmMYjRlwWljC/HjEBaP3r0CNp/C/fWi6cjZltO6m2bWnLDXeGrZsj50bQu38KQv3h0FMC7xLwKXTICwfOGcGUsb9zQ1ev3iJiyB84qDFa+73O5yfnePxs2d4+fo1YhfAZoSA+Hd3FHBxfi47CZB5iUpbATW3sK38BNkhtBzHRnOAgMdpljoFRg2BAs7OznB2dlbobuYKfm9ubnF3e6tzSM49EBq82Y4HwGY8BxGanM/1ECXIFMfYRZUXztLJXmgb6rar5cgg8RUOAY8ePxbgqDyMVHYQScnzEGyHVZUFk5cVVaHEiZi/bFEa7Bp7fqvAyjLxwKO6EniXAU9DS+Bh422GKAsklu5VZdIDxYcslP67Ri4VviBjFEJEDF1RSnNmpDxjHA/iYuTdtOTC8hyjx9r3DsP2DN3QI2w2uHnzBvO4xz4EDF2Pvj/Htu/QdT1AEaw7L2wGkOLlLQ6XZlhrsh05ul6uew+InSQ8CfLMcu7HzF9X+mjzYM/TSM+seIhMfHG970NHC7rXXYQ8jfhzGuNJoU1TXMpNHnz+kv78q//ezjPgbQoY18XZHOvgmwwSmuT9KMAN/CRAtxFH3SIrA7jY5irDon0Py9+KllcFiQ1ZGXRU7FT4oX7B4o4tFmaX43eNwJr2sAPR0OliSakUiDB0vVZODIucr2YZQwnWDLFD7IB5mqQdU8J+fxBr9zwB44zAjEhBhDwVRKqvMjiZgbv7e4zzhMSMaUq4v9shJ3Gv4JAEHIcgFdu0T4+ePsGjR9cCusi2IAlEEZdXV7i/v8d42It1i0REBAO7gGy9MYEoF2K1aCC2IjtltCQPeQPKSayossAzcoIU+lEGkXNG5CRpxApDZ7HUKyhPhz0Oux3SdADlBGIp/9xwGMeiih832qNZjCv8YB3ouO8aAefPfQikr4Mq46qr37v2Lhl1e/4CqCmdImfZwcgJHTMiEWYdFWJCtqgdsKRY1EBLTjO6YUAMUdyfIFuwMwWcDVvEzRliv0HQnZka+e96TWIxx1HA1ULgFIbtGK0CEc/sS5+du8bqeKwIjyNlerHuAR8w1/Si/MY2rieAxBrQbu5ZQJ/PDd488O912Bj5LDEmqEv/XQXEPM94+eJlyXWdUsL7m/e4ub0FM+PJs6cYNgMePX2CYRBf68No8SLAdrNBHzuQKiBEhIFI3OyUL1pqsAyAklBPIHIWWgswzzjc3wPqysfMoE4Ywu7+voAuqWwJTCnjzcuXGPf7pkCWjLVcx6ECjzpG3GR/qVjIdkTERWIYOvR9j66PSIlxOIzqtw0AqQIOmC93ta5mADMYiQIuL6/w6OqRpic11xWUM71ylJz4L7PH2siSbYbaVLlVJy3HKVzjeZ2n0eTcpNYUPTNEzbNksrHvQwgSVKz3MGBugHj5bLv3w8VzAPMFtvkgsvUm7lB7nXOftagAphCKcmmgD2xBvQLkr64HbLcXOOzvcNjdY0wSSwTqEIL8WZaualyydskuDKmjvU+Kewq4NeAbqMbHZuZaSG18Zg2w+3myNQRywYZQ9xM2+q8GyeUe6SnAb69pxYXOflvuklSlqX5Y4rnywYwmrr/L9izB9/K35fNLGkLmo3FqOHz5zqVO/jsePwnQTRQb4il/eihNwL3Ud2WBOveRIkQFULEXiA5oyxwo40+1IMhHAW33nT2s+Y2gUdAB/abXbSSo76JdIi2OXYc5SdVJwUBc/CXnacJuf8AhZ0zzhAsGLjZbbDZDXTggmEclmYbGkFSBCpoP44hxmpVhKJN2QCcEQtd3ePL0CUIn6YuIxHdXrJTA1fU15nkGc8b9zZ2U39WxzVAih+W0bbykmykjt8C9GmQMh4jQdRHMhDGnar1U8ck5YTrsMAzCADMz0jxhHg8Yxx3mcY+cZi1LXjOqm0LUMEI6BlbLY00IPKyTO0B74tclI12C5+PXh5nM8jg6x59r8sbaCdmh4HkC+o27iwiSDLUapBk8jQixA4WI2G/Rb7eYDyMmzhhBmImQux6bx4+BYUDoOi1QURuxtCx4Brs6IG7U7HwbD6LaV7un+VWX67x17QFLTfOsBwS/XLuYP1TgTHh4fjyo8c8ikh0e7wZDK2NzrAycPgodsGSSiFrUhrO6WmWZ+5JtIAsoeff6JW7fvMJVJzuPBGCz2SClhGEY0PcDpnnG9fU1pmlE3w1SWdJK0wN4//YtCKFU5twOG3QxlngZ1poJlsEmxojIanEOlloyiFvLOAGsRYeUX7999VpceUBihEiizh8OE27vbsFmRWlJTXmP5hW3XVX9Q6Epm0cg6HZ4jAIkt9sNzs62YE44HCbho5zL/WVutH4Cu11Wp78zCM8//xzDMAAg9ROWmQ6APE//MqMYNYgliB1cJR7Byn9bT6r4bKytxQj1ML0YaDbaaS3eKnNMKTU6QhvYeH5+jmEQGbXb7Zp7+/vZOih06dbnUhHw1wCyC13kCDNCDNhut9jv9w0vIO17q5xzVcxzLBnHAjNoI8HVm7NzkcmcxcBDJFmdUCvuWgXppUJtRORHfG30G8W79LHOIStY8ZZjoy4P4tndrzwfOv9Hri76ooawoOgyUCxtseQMQNsHfx/vSrI2Ty0+Qh33UwctdqBOn+kuOaaLNV5eaMu1k+sJzXcEMeiVGBBrm5cjDxx/+KCbqERcYzFh3iID946wsEqBhcHCAWplDpY7uwXbVUNPyXy0V4C2NOQ00K5fKiNdLDDiAkDJtVPabynJ9L36VM8pY9YsKF2I2O8nHOaEWS22m9jh4uJCmYluB1JC5qR+f6R+egFzShjnGSDC/f1etfkOWcu/myYcwOhiwCeffIInz54BnfqkhVDcCzInBNri6voah/0e93f3aoUWnTBYJUsoqAMhKnMCibW6lrO2jLkFRsNruEIKoc4pZ9gWHjMjjSPm/R7YboEQMB0O2O9ukecJaR6R0wxxsst1VphQ8nL7GfUanVFZYXYrU714/XsowvUOD1y8BN7L7+V9y2zXLN3NtU0oBBdgwQzkeca422HYXBThrOSElC1VlShGsd/g/ILQEwGcsb/b45AyDiBwF/Ds+Wd4/PxThL5Xhg+lCX3yB0CjCJj2uyOrkQPwqxaQNUVEHt4yYZwG2Ha/ehyD7PbcZRtQtnQbAcniJ2jrxK6xYLClz+up9p2yoq8dZjW36wpgSkmr/gmwi8zY39/hx99/g5BmsRYC6Poej7prnG23WiRsBJjLjtP11TUu8gWYJNh5Oky4f38Dm7WcM+5Z3HosnzITAV3EZhiwGWRHJJk1ygEY23ksAXIsbjzmO08koJtYLFrTPINSWkvxXGgn0JKOdAzNxkVSnMYAoQHui4tzbPoBgQKmOYGzAGHbwiymAfYcQvYDhe+LdXR7foanz54BIE2bqNyJCMQZ7398CeaM6ydPsDk709SJKmUUOzQyx0C5doodpyNUl4o16GdQaKkMG6g6UpJR3a/MctjFiOHsrGSeMRA9TdOq9dornb5Y0pI3nAJVvk3+mq7ristRoSFl6F6ZUBQo8i8EcBRLuQDvCO46dLnHZqtjw4Yx6vhnruvOcv2vZeUoWpxb69ZuGys/NWs8Z20MzQWQ9BmE6koi9ISS/m/JF7IbAi7XQeOhhF59Fcsl1fj584fNxXEfbOe03mi5O7n0RFjy2KWMO2WEWrbHv7qbHckIf4bn181vH2Hs+MMH3agLHqgEtDwMcNn5ZkGoYLsC3zLAVnihnMslEHKe87qPtp3v27cy0EfXHLUXJXfxZhgQuoiUR4SgWQCU6BmSS5tCxDTPmOZZ3ExCBCfg7n6HOUtI4qB3ZYh1XEp3T0jIMmSO8WdmvHn3rhSQub+7B4UIcAQhFmUnkvhi98OAZ598gn4YwFEYCEo0NQPoJSduyji/uMLVowPubt9jHEeAbJuYEK3fbhy4rDT9U4nBvroOc7O1Jgn3JRUU81xESIDkUJ3HA27fvVUhr1XxnBuJVA3jIpCEQvLqhK3ZWYHTwPDDy+7vdzykRS8Z3oeueRB8O+BtW9+SinGG5YCOUQR3zhKbIMyZAIrohy2GTnKvjuOIFHtkDR56/tln+OKrP0I3DCCqgULNCi174C0r/5AVYY3xeyv3qT4XQSAfjkD332X8PgjQCah5tKXfVTiYoHE0R6zb5BY0ufI8J5xOCZE10N0IJv0z/mcAAyk3mSmQZvz4+68x3d5gGwNoZkycquUzZeRpwpQPshtXLEgZgaGl2K1cPYoE5UBA1oB2BsR9IoBSQh5HjHPCTM4P1IMHrsVACjCDxGcUsBUiOhKQyEmCqKnwAZUfqFZ4uDmx12DW5YLKCVELRlkeZlEoRvFJV7cKCbyvO6aWStOebMZ22zGIFPH8s89xdnEp6QsNGOnO0s3NDb7+9W+Q9weEzYCf/fKP8OzLLzVwvBqQikx04KPQjaMfJqpVFD3NVEIpYGIJeFuf7DZI0tOlgVsKAZPuGBMRpmk6ckMoCuaKi9XyvOVhSpDdc209rIHBI7BGC5BlfERT/jIzOARJyCugQp9hfa6JC0pfyn3W23/Mt33fqfKFBf5YHh4vsftsxgaZi9B00IPGog4uQau1jxmUTS44nLMA0zaP9Zx6btYdZi6rAMUgd+pYjtea8nUKcHs6OkVLzVqpPxw9k3G8k/AQnS6PnwTobiZy5XcPpAU4G+OpgrwFyXInZt3OUitJSpYGMDf3+1igbW0pDArtwi15qxV8EhhdF9B3HeZ5Qh+trbX9xReQpQhOzqxRzRH3u3tJecUMyuLHzSDEoUfXD9oGZX76ZHFZJEnrlQSMj4cJ4zirtcSlPtT2xhDw6aef4uLyEqWKpy3CwhzEArDZbPH02Se6tUZ49+4tcp7BmRFK6Ly2hoFUmBsDCOpPp5/d4PmtnMxi6bTgOMEuTv/NGWkasUsj6joy6Z41mHIRBGS9/QjE/LFg+xT/+FhQvtSsy/vFQjcG3SgH1J5vzL6Ohf9NLgjuvKKSsEFvifwHMvo+IFNA5oix2uiEzoL4c0eOyClhiBFPzy8k3+3ZOT5RC7e4Gvi2sHspbL8dj6Nxd4gILcMHWkZ7JKDZ3Mm4CsyPYJg2ZsusFMs2tsKH26Yu7rWmJNkuFQU/x0KjXikoz1tpw4P319cS1EaErD61Zn0Mi/sCwPt3b/H6xY+gnMDEmKcZd3cjpnFCypISVdotleZsh64AjhCQA2pQolv9lkKVydY7owfENSMDVsI7oy14xWYBJguXhoJas/5qLI4zroBrdpbAjER+bgyYoO5EOsAtIFu/i+bPLZl3uhjR9RJkOB1UpqhcqcVX5BnWdsHgtn4J280Gj588BWKHhFB+s/69ff0G+90O54kxjrf46//3nyNl4OnPfoZMGbZ7a4APVIOF7dEFP7m5takmm0RPp0Z9VBVYycZTgXFKGQYOjQ7XeBURYToc2hSN7rdlxp6lhfuUQmnvu77HsNlgHEdM49goGMvrln20MSHXj+YIsgNl7jyBtVaH4x9rwK/6TMsTPLBtwbhfqy3v1k7UHxd9KsaDE8C5zYLk5IWyp6x8iplLwLK/R3kSkRSiWmGXa8DbHlJ2eNi5JJEZbHR3zx0fArTKDZvz18Z+ea3R8JKejngjVZ/8h46Gxxp4f+D4SYDuZiLdIPjFxCwaZ7FwAwuZbYNf/cYs1V7KNR/z0cR+AGw3nx+YoOUvpKd3ISJNI4gTuPgROmJyC+5+vxfQq3VU7+/uMU0TYhbh1IWoKfzOS/5QaWTVIFktK3POEpCoVoE5JaQimAQ8RQJiIFycn+OTTz6RUqzWFzJBZ6qE5jWOhNwzHj1+AgRgP+6x3+0Kr7DXAGAmY+SQkuMmnTkXq1PW8U9cS7eb5TylGdAgSgOHluVCih+YQmD2f3EpWdV0j9jhiTn+wFHOfBCYfxxob5GzvqwCbpuTytRN+JWtw4WHVk01V7dYjfl7yJuJSmqoOU3IeUYXI9D1yByKAmnWTEU16Ki2oxs22JydoR82oBDbIh/W3rJguUr4DxwGLAo9NuPigWrlITaXRldgFsuVnucFr78f3OfGYtjwjBVloZIgrNraUjAsD3MNM3Dk270E2w/tsq0JXP+dv89uv8d4OBQLpChQoVSXJSLkecbvv/ka02GPSGK1ziwZS6ZRXN5iCBh6ybd+P07grBZH7Uxw80w2ez6PqjRO21n9bcVNrboy2Na4t3prDCQM+bMFaMNAvDwgsxQzYRWqbCkhIXy3gj9ZP5FiUfADiatEjAEhEoauQ+wizrbnONueKaCcsD8cJHuUGnOscR6CGJe3v0wy98+eP8fF9bWkntO85EwBkQJSmnF/f4+kNMtzwu7+Hr/+i79Ef3WFzcUlQog1F7S6ARaaA+BjYzyQ8sYiT5lLxcvWlQy9vA+BkDOVDC2e/ozGvJsIEZWgV295XhZ/KrJ9sets19l52+22JDeYxhGhpKGk4lO+PMru1hr49kAXizUlg1hBdghqyKnnNC4b/kaL9+y+WwJ9v9ZpMT9evmQ3JmvWX3vv/+o41l43OJqOr7c1JHnll5zy+PDPqn76VfGVOaTmWWv89qH7gyHuaDi+x/LaJd9cejEcpVrFMQ17pXOtbQ+1146fBOi2wzOJAq71tQjRejZEmCtjYzj/bEvxx4VmTgkxXvuO29+XT33wNxKiDZAUWQHA2XbjwJK/rgKqBIC6KNuzCEhzwu5+JxmoCQixl5LVPWEYtuXytf5YsYlZC1nMOeMwz8jqfkIkhQuCWj+fPn2KrutKcQsDaOYmkqnkIABTRuwHXHQR3RCROOGH777DQYF3NquS9akAIxW+rOKYqGEmJnwBzZiifTDBXRwhSnEh3Y4tjEpE79o26trxdwHa7Zy137X0sKCx1QVKR+8Ft522Gi2/s1fLNU0LxgagEViABVTJn0EBL5Alq0PGuN+jiwGb7RZMnfhph5oSMKUk2/DECDHqjguJEqhqE5V+0WLw7PPDY+8hbjNaDSM8Ru5SOKLyC3kOt887YtTrzNte26AvoHFKdO8q4HY4nM3P9ji39prwXfv8IavfKYDvU5xO04RRg8uaXOUxiiuFzu33P3yPty9fIKZZ0GcA5syYMmP2YAiEoRuQWKrUuhUuqzAJz8pRt54bhsoCcEGgIEXqdE8Bk/L6BOE5BAJ1QQ0uGaVKLBwgUqNAcmM2A8haKCsHVtqm4u4XoMF7lpGExKIt1u6AvovoYxBf8+2Ai4tLbIctAgUcDgeMaY80juBk/CaD3VouXYUYirIMMQ45Y3NxjsdffIFheyY+wKqsMAh9jMjjDml3j4iMBKl2jEDY7+5xf3uL4ewMCOryQjUIFY4GbC5o0R5oewrAI2pWkcmvCN1tJELNblFp01xpjKItX7aB7nmei/vHEtgtXUrW/Lg9bfd9X7KQ9H2PcRzFwj3P9ToDZyYPGcWow4DmQK9rxrsxngJRHoes9WMJvNldU8+336VxNTJp8SwdUyJI4P9iXmBK6IpcqQpkG3ztLoVZoKvuawYwKgRSFDZWdxrUoEbfTunWMc8xJdqMZPX3On5rfMorCETU0AMxF3uiLx62NCy049gGdpbnaOukzw8D5+N+nf597fhJge6jAWQjGpTiKPKb/S4Rxz7Qxio2cV01x/f237enNSsnm1VOD1q5rvmNqGF0BGHoXYxQe4a7n9tGJmhfEnJOiFG2blOeBXCHgEgRfYw4Gzbouw6BGClNYMqFhoz9i78j4/3NLZJG/ksO4VgjtkmAwqPrR3j69CkQAjKJq0kks564KGxjwiEWkLjtzvEJnuOw3+PVlNxWn7CgCkCM8cgYSaGgALKt6bLATJFiEWgxlsvkn1wAizAJLiC8ncSHj78r4C7XfeS9hWdV4FmF2onFWjtYv1oAqiXQCkToYkCMQSmLj89xaaKE8dozFBgza85ifQYDh8NO7t11YCkphDlIGkhmIMROLYSWtsvAtqd6P++rnT35nrFYX14oGBDTr2Ual0y3tRQHciCkEUbHLin+Om+FQ3PtMUMmnT8TXGvzsOZn6p+7fG1olOu4rNGFv7cJLQPb0zRJxg+0iliM0eXQZry/ucHvfvtb8DQhIpXsIjMTDilhzoxeC5Ecckba7zAHAnTHjYIEkUkBpFBSdMU+gnMuhUCy7sD1mrfd/JSNRURIysqu32hZeRcE6EBHsaTpfYCaQjbNM/b7Pd6/f698D6IkkgR8R5IiT4GgGUIEgMdO2j/0EX3ssNlscH5+hrPtFhEB8yRWVstwBbOIoVFhC2AyOQVIqRvEiM9+8Qv0V5cAUPksCB1JGsI3L++R5gnEjISMmTImADwn3N7e4fGnnxagXeezkoooFTjmhex3WCsfWB5FgSJCYIK3IQey/P258DmjJytS01SuRAuYTq23pfXWu58Ybe/3ewX3/VGb6w3NCKNxU8UAoBlGlE2162c5TMfgf/Xzki9bfwCAlgC48gmVjFVJdcBjnd/Yr+7VFCY63uFq21l3k+0Gxp8IKoeNdwEAZ00VjBKvYek7y04idFd5MW6iyCmgJckkU/i/upic4oFUsJ0o9DWlsEsfuhiTJfBeA+6Lhwj20HFbG89Tx1JufOj4yYDuInDsj+v7kns6c3GVECtOWlRnOrrpyWfYG/++vjR6Zvnm1FEJ2T8MJbJ/6DuQVmO0u2ZICXM5lcHI2O3uC3PMLO4xINnm7HLEEDtshl6qAkKUDbNyVuVCNOVxmjCOB8zTjMPhINqrbrNGTX+17Xt89vnn4lbCjBgiNp1W3CIqr2WNhYCg+W3FHxK4uLzGF1/8DDkxXr14Kan6OIEE4oNIrY4mnAIDTAK0td0lx4gKKOYMpoBM5jPqQDxVS7zz8PzgHMnY/N3B9uo1XKmk/d7RT3H5aemi6lzLq48Fz5pmX4RcDKLMkQJqtIzItp8rXXM5z9LdsbXTVEKWrBTzYQ8+Ez/tQAJSBKMHVZpYlbZQAPexEvqhFfPQ5zoO3jJBizOXrh8GuO23wixZu2mCg7m5G/u1s7h/w/BtSo+A97F7nJ87SytmV3qAVvpg/G7RNqE1bubeg2177rJKnfFKccOCuJPFmvs7hlB24nJK+O7rr7G7u8OZKr2JMzgDKURcP36K88vLMnaSmo9LGyQAMZZ7910HUlc1ELRUvNAMFIgK6CYkQUFiZe46DF3UDTGxXicGrApXAXVu3BgS7BhDQD/0ksEkJezu7/Db3/4G7969E+MbATFYpiVCJKBmJxHQPXQd+q5D1wUMfY+h7xFDlOwk0NigMUn/TVEAAPUtZ3Kuj0VRUoth6PCzn/8Cn3/xpboGZiBJZdxAQYwo84T3b9+q8YKLnEOI6DdbPH78SLJKxSBB7hp4K0XOGJL/xEBmS8d+/ZTVquP80OHXsd05K6+wnUoLpjMLd0qSq7xYbR29mkJoFsma3/xYSS3gnWWexnGUexTC8q/1HqwFawzZFlas6fGYWsuwHNVCamtwaUk9WoPu+sIrnGK4VIbKqzbZFMqiKDh+tDQKGFAkoBQKXPtr5ZXtvCmPYufeEyDYQavoEiRbGHEGBQZRp/nLWyOE7MxorBU8vzUKEdBNynQtANmnElpTvqBDJzNHZWrXxr0Zb3eP5Q6hB+LLsTQe4jHikQxbAeL/fwO62f0V4eMqKWdzk9AE/HVAj4H20aAsgbb/uvAeN3mrZ6OAxvY8IzMqDKxu4TCQJQVXpwyEjeupTzO4LjSxWFYGNo4jppxFWGZxB+lCwBA7XF6cawcc8aP6NmYAU5oAyG7AfhyljyRbklEjrc/OzrDdbjFnqYK5HQYp/Q6GpRQsfl4kmnHWsUBQQbeR/nexR6SANy9/AM2pVKJkQIG7artuAE2jbbRVna9MMkZZS7ab0b2EiZDZd3UWPrAYTm3XP3Tuyg/NvK8fSzGF5pPXstvv9f1C6EQF1g3YMtAUpbgQLDUlqSWYqLTCFJamsidQQJUVbAJE6eGUsL+/x+X1U4QuaHo3pXKqAAlEDrSvM6jaQQ8g3XCujI/9G3RQWmvSxzFZz5DN+mQZ6StYWzmPfdaROhd2nrf4lD4TFm1cCgm1spX5qL1nhrPMy49H1hyH5b0i5g8D19YPQIAuOCBQp4AzgDpCH0SJiizzjZTw6vvv8e6777DRPMVZwS6DMZyd4fnnnwEhIE0z5jkjRcmdL0WsHPgnFciaWQlsvv0aWF7GT9ZxF7vCF61fOUbZARMtUviIBz5ujgXIuwwbNn4x4vz6Gl/8/Oe42e2Qx4O0k4pWLG0gCU4PFEr2k1h4pJSvB4u7RCf+eprPWcF0Ada2tKoCLO4ARn+E84sL/PznP8MQO2QmUGZwkroMCQkUMtI0YX97g5Bn5TUiI2Ls8fjxIzy6uq7p5bCollcUPwHfMJ6K9jhepxU0VczoAcsxrytrRNfMPIsfuqUJtOfEIMqBtdmv2fKXbe1I9G0LIFVEqqQoazHo+Om6WsImv07L2qwMtkmrZzNnsWBVBB1bnU+BuKPxLb+t88YleBQWfhxoeAT4bfDdPdbu7Q0RltSAbSIVaBelAZY+kLVKrNIQiXFrmqajPqidHEWroZqTvuHxhDpfCwC97GPh32RPkMN4C6+M23I8l65Kx7x0HbBrU4WeqZ0z//qxGOInAbpFczaCZ7GM5Aq2vX8icNzpo8/yZQF9yx8ruKfj6/ynh3BEs9iPQXtgRuCMs+0G2+1WS5GSA25crAYg2c7Z7+71PWO3H5WpRESuQDkGwtn5FhQjSCQS6h0rM0spY5pmjNOMwzgBpKWLNSBSLCYRt/f3uH78GGdnZ1LMANC8scIwRWEQn7rMjJlnZLUQhSiLY3s94NHFJW7fvsZ48wYjJ3ByAMiGqFkoKBq7j/pnzqXEbq0MLqNdAM3KbB2Jko8E4R/63WjJ6WinD8fIPDgX0Lc4FX5B1/c1L3AsgquArQX4JqJSAVqsjPUpLQhtmZutpay5y4FYmGLOGYfDoWRFMLcAGQsFkWRMixQclZFSYV/Hw/fXjxNzO560eGPry89TRnvRkmEfM1su7Svbow50Aw/TgWe4SyZcm2v/2XkLhq3E7x9j1MSZGuPCmiD32UdkvVUUJOs8Nf6zllvZhJRltQghIHaa0rOk7mPc393hm9/8Bjwe0GljMhgzZyB2eKSuZ5KrHZr9yfqggYoQV7SgytjIQKfAlEDF5xhk28Um7M0QIb9lCB80NaXoi7wYF70mKFK0QELW+4jLBuPq0WNsz86wmyeUUEtbkO65gQICiw1cAuiCpMqcBT5zmpAzYR5HpHFGnjULFre1d1hlStZaCYklcq3fbPDll19iu9miRDxoUZksBeEx54z9zQ3ubt+DckJUS3IAIxJwfXWFzTAgwa1tA2xkXTIYbmqm45QP0HlrrbTP8kdKe6zz5S28/o5lV0XPiTGi73vJdBRjcclZ7sgolVdwxQxLZsOOSTADMfSgslfhajB4TWoBjI+spPZaLA2kNLZUCurtTX4d3e/EuBo4tjVYvl/hh8bjiEiszCeAOrtdA0vDuua20wBDGxbtRDHaaDwXa8dlOHSubTRZg4yjZKlaA6pl7K3MNhtfKK2xp6tCobtjppw29OauIDm/8lTJmV9EDSoIbpWMVu6tKkYroH35fk2R8a9ryqw//uBBNwOacskK1ejfWg7tBzSNJTiiox/tZQ2yfQSgKieVaYdfQvbcSIzA0IIzUYCsAukY7Ux/nfrgpSQBI7HDnBn7cQJR1K1HPVsBTz8MYFih0loUqDQvM1KeS47UnMU/miiiU9/wEILk5n7+HOfnFyrcSap8BZLzY1QirWVqI8m2sFR716I4IeP9m1cYDzvEPqJLXUn7JVjbW6WNmdfFJH0jwG3vZ0jglBfSBdzAxEFd1M00nRAwHwTa7jyjJ1r89lHXA6WdAMpCJ/exMm/5zlsxDShF/Vv67HnmaYFGBUhrfIMXIF7Q5fKXwVmcs2v6KHnGeJiQU0YcoBkurF8kzHkpEKB0XTp42n/Zzm9WQQH1fHSi0YwzUso3jdBueUNpH5scZgX63IxDYe7N2B4LV99G6L1MGBOhVJtdzmlpVyNUFMgxI69UUfZCROZYYygCyVox16AFLRuNFKs31/ZIJg4tUmTtYXGX+P033+Dm5j06MFizlZgS/PjJE1xcXWGfsoBwdROR3TQDK9LZSKaQCU+bFYBZWsK6Amqe7AoN7T+z+lER/GYprvNaVySF1vLvla0MiT948vQZDvf34KxGDGWSzAI0Mksueo6SnUOAgQRgzpTASWBx4IA0zjhMk+ShzkkVENKqmFzbjLoj2HU9/uirX+L66SeYZwbFBKaApOMPNaYQgPc37zGNB0mhyBnIs+wIBML59gwxBFiuGE9X5v4iAYILLuR42IeO5Y5OoUk36gaEAqnS9AB4MT42z3NJL3kqcNIfKSXJE/3A/a0tBmyLxdi10UD2MTg18KT3YB3uDHC232ROSUtIryrdKhM9+PPP9ee3PNOkGQrNeyC35AH+aJ7h++nGp46vAQeUdRJ0J0cUBlSEXZosX5pk7WLE6PKs+1Sq/lntM7klGFv3lh4VqFtBMMjiXWpC2f0qEp6Vr9qko33+qh/3Yvy9srSKIbk11PpxPaU8rR1/+KA7M/b7Ud1HUjN4awR3dL1+d5Q0aAVoN5+PkZo7Y2XyGCjWt/qtfxQMCkaSzCWdAlvrSyBZ1ExcFqUx0K6TTBAxTkj7PQ7TBCAgWMo8gvjyUWgWJfs/RrGwhEA4GOhGAIVOgog0cCeEgKdPn+Hq6roI6DklTDkh9F3R4k04ydohABp8pWm5MoCQZrx8+QLzNKELUs1rZgbPc03n5Ia0WkkIRKlk1rClnaH5gBEUwIlqEuw+BaT9/QD3UrNuXh9Q7I7uCZRxMZAOrAPucpAEIJolGzi2bps1Iy6ExdKK1HUdmLkEzDVW7JVdIWPsYk2S/DptdnlhbvM447Db4frySjMvOKuzK/rRLJna4aNxKuNBNTCLHjgfWKznXNvt++KPhmfYb1TbuBQSBCvmUWxLC+C89I/UlgarsMkF1AvWtDla7Y5br24rFnVe/eEr9RWFy8aebW65OX/NOhNj51J2uap2GgT4/u1bvPj+O7WwiSKWcgYHIPQ9njx/Dg4BJAEh4rNsw6vBfOoHBILFWqjCpeuUzeJamsvCw+qI1u+BEtdRBGNF3wVggbm4PS2Vo+WEPXn8BK9e/IhpN2NmLhQvjyStYokatJ/FCJRI2pxMGchA0vSzrHmba7rTZS9EURg2G3z6/DM8fvIECYQpJU3ukIQPaL9MSbq7eQ+ooSKz7FYSGJu+w+XlBeZpAvoOls+8GJkUkCyk5bES63/9AJ9cAg5v4TawuLgQXrElQORB3wvgVv/gKkdsjghFuXL8y567VKgacHUKQOn3tlvn/4rUXePzvMJXioFohc5O4BSg7g5gQaNebgOFA8AHuHqQ5997S73NRdvtFZ6lsqT6gTs8bPyRAdBy3tUFlo6LEX0IdKp2306zrWlVDqu2o77mbBhGPggfCUoemor0iGSrtbz5djEvjWICNDSwVAAf6pvdx4yJp44/eNCdc8Zuf6idd51+CGQ392hOqITcAqrTw3QSYMmqaSbsoftY6quAuujmnMDgEmHPJqXBVQAjY5xmTNOIEAN2+50GMVg/VFBRLIUB6hYYV+1P/yRwK0gp5t0B5loSOJRyr3034PzsHFHzKu/3e7x5+xbcRTx6/Bhdp4wqeIYlCydDBM3MjMgZu3dvcX/zHsSMjkgyEqh/HwNATpKuEGU9ChDgXECo+PZVP++yOliD9hodFHUmHgBiH3usXUVE1X90+Zu/9kENuAo+EzYSgV+3/P2fB+GlSp2B8CBpubbbrShIswTITtNUApiOt9ay8bWmvdl9R66DDE0pxxnzJNvegQISa1VAGPDTs00gB4PVZq88PV6njmMQXTMvPwS2P3TPNR7apNdCFWb2XWn3kcJEBWR7kP5wn2wr1St6VVisCc5l5gY7SjVJzrAgwCUQsOsFdLvflDfklEGZMR0O+OZvf4dpv9cqrxLYnVisr0+fPUW3GTClGjAngxVEKGraOhCKj7+hewKKq4d9L+00lwcZk+pnr6NyBHgqnTLQEK3N2zIVYx13ed1spZjXj9+NyGnWfOBAp6ImoBoqukzI6i+ckygnZfhYgktnZsw5l0I81iZTg7Lrw5MnT/DFF58DIWDKCRl+V4mVDjLyOEnGlft7vZ2tJ+usZAfJKYFjAKJqB1zp1tq4nO+lFXbteGhNFXa9pLNFK8v86DlJZUoYR5VHa3eu91u6nZRiPyvAqNzB5IvvC1ExIwRHg+auUp64AN1rYJWZV9eipzMTUwZu7fclT/EA8EOWft+exoIuXzTnnNoNKM9DVT7kq2O3DAI19/PPBTSwUmldprhmqVntB+uu1wJ4Gx35sW93VOpONsrUBdUH2rbKN+JmZFbyAuL1GY3C6Mdt0dzl+miUm8XcATjiy8vjDx50m3bDQA24W57zAIGu/9Jul//dDjp+L9TywPPq2Qa4AYADYXt2JsIpBjBldz07oUI4jAeEGMCYcbfbWZ0XeXQIQIjiotJ3UqKdqGaHZQVDCokjIvKUsLvfY5wSQF217JFsWXtL683NDb7//ntMKeHp8+cACDOJ1SogljHIqiaAxSodANA44sV33yKNI4JZKCAE2kUhztnUaZHGYj0ogEgt/6rqsuUSL6DEmJp9rszk7wvGHjoaUXCCqRTmUU5bP08sJMKWiVCs2Wtg+8hqR1Si7Ae1agPAbrcrFQXNlWC5vSbtsbLNLRAW/lVFpe3daCsBMNI0aqBmh5nURxU6P6ixF/asaiuuc7NEu8v5KmN54jsvDNeuXVon1sDyGsZYZaTUtrkRSAqsKVDZkSGnqZSRXBGAta2+/OQFnwABAABJREFUvblYz8RqfNwPTxulZLvOsSlXIa4rCH63pIyTyE6Js1CN+eUPL/D65UtArdym/CfO2G7P8cnnn2MEY2aoj7IqQYFAXFOPcuACbNjRbjCQre9lZ9l2CZzoNFDNqItefZOlVe0k2i6FUFstMgRQe6+q1eDRo8d4/+YtDve3ZedN2AyDmZBJQOIEZUNZMjmY4gtINqmcWQuMmXU8F+GewZi1O5bKfZ7Fxa/rRVHNnEsOS+YEEXdiOR8PB8y6W8Us7jszYtll3I8HhO22BKgTWOeuWklbUM1lcI/WkhvL5eF/t/EzINOunfo8D449z2Soq4i7vtxTFfj6mHaeS+pBaq3ZXqmxtq0dBfS6e9h9ATQBuSd594JPn5I35Z0+x+JgSNeEnb+mFLbH4vMC7Em7FlcswPmRckWs2UhUsnF73fKma/ezpmSV42Xz2tOV9bcB0aFm0QKK7GfmstSPlZ3Kk0HcpCc0PlroDzUe0OigyO+iaCzk0AmaWe6o+Aw3HmSX568JFz3+4EE3gKawQUlgjo8T0tycb9854f/3OApbf2Bg164CaiBCERbqGyYguT2KjGEp7MNE2O0PkirQWCnJvRJL1uTQRUnzo//ZPQQQUwHX05xwt9tjSlwqC5oAJBIGMk0Tvv/+e/z444+YpgnPPnmOy8srJIqYENCBEMpoiPDudOGKCw1wc/Met+/fI3AG/X+4+3df25JlbxD6ReYYY8611n7V69R53PYQBo2BhMQfgNVYYGJhgGgLgYEFDkjtgrAQUuMgLIyWcFC3kDAQQgIk8NHHx3f7nnvqPOpdu/Z6zDlHZmBERGZkjhxzrX2+i1TVWbX2nHM88hkZ8YvIyMicihAPBNm5zgQEEVTmM3q9B/2FuoyMK+OxB7j/HiBuFgXW8gvj231h/FOYLxBCdJbHOATae2EB7c9OYrPP0eltvZW7WClIVEGvKBhjyhCXAtlIBvVxzUhpxbqeldEW0d2MT29lbeqvz9jz+7Ooinhibo+N7gTcSxQsX3b/bA+yQTpbgvUXREBpz7S6NykPr0KrF6D2fQu8uSqS5DdXEUjBbD/2xuQtWtN6uRSLGqBuJ9F4VCgKQ8U0nQDUTelg2eD99PiAP3/1J6T1gqh8xFxLEAi/+fK3CCGCU/VVLiLN+EfQFS0jJpLVNVmRa2ncIoeQmx2hCD+/udXPNW+UGKSKdGyygpu8bEyAeVnw9t07fPP0qHG7hajlNE4F3pDNjIFEwUw5K2CAAklVblkOrUkw95LqZlIPZJI59/333wMM/P4P/wA6HORUw5xrm7MpveKKsa4XkIKS4pYXhAM/nU84pCQHvTCrMiCb9eW0X6Ux3zU7qYBY1089sPN5XONNHqwUy28HvPfHryrwIx5f6Nfq2eV5lQ94oNTdY91obAqTz8uXb+O/tf6O53+5BjRh/TbtQeVpmw32/nm7JjfKNXJ9kXeU/W25VYmRdvvxVsPXoC49L5MykyCDTpHo5UFv4BDColJvuL5vVhJMoStg3XO/tn7EbhwawN++4Xmz8WH5Y2fga41eu6D9mfSLB91mwQHGhNw/u3edVOgUN4aXlG1fHEH/vUl8vh1TUNl+OCwipMzchLqp0MrLzDhdzng6nSXSCFtUE5skFcgvhwPmZRYrN1loPVUUsjBkZuByWfF0OuOSqhVTNiWGYg17eHjA/f09np6ecFiOeP3qDaZpwYdAOFPAWeVZABCYcOACSUAMrOsZX/3pT1gvZyyRkXOSgzCYEEnipDJlcGAQ5Aj7CqBaZmUKgfRfB1qcuC5Xd6wFzwHtoYWi3lT3C6cAXkuOL9RQhrU916za8uzAwu2uM0s4LnZ+2t5f27dpBErJpKfrvEYpKJyJxV8XAJiQecWHDz/j85QAivBWc0BAVCOkd5Si0RwkVWQYFQhWS4gTrjuge298R37Nm7JLPTHoc3Ydhmap2K8KGW36ajxnHOj1TC6Ao1qmbBXE/PTNfciULDuVz+pEMCuya7c7KKr4xapViVJCyAykjK//8mc8fHgPKqcFCOC+cMard5/gePcG5xUaQQplPOykOtehFXDrH/tJUYRXqEqL3FCXeIPy5mrBFUMDgwla+zbn3Gzq8jwlN/OBEKcZn37+Oe4/fMD79z8VQJsBbZNNA0JClkNz1DBh84RJXFB0uoDZ3nd+7mBdnWQ9j4Dx7XffYZpmfPmHP2AKM9ac5bRMVYBIM3t6fASrVZibNpEaSMSfPK6rtDtCNscyw1xNyLfFKgoHhvsuJSrzsdIV6hyEA+cObJqslY1x1Rpoc9q7HowU8wKauzElTzdWv+45+z0Cmb0V0oD3kIy4nX/N+66dFsTgGsDvv/t2moLTG0ZGn31eVH8ApLFpOmCJrt57datl6LwrO9PF4ECsCmj3fFOfAsLZyYNxmb3CIbLG+LvN/XaekoVAJhSJXxQOguztKVFnAK341XYbPewZbQSb5eb50tYuH+77fif94kG3T3sNGQGlZiI2k3mby3DCfATQthyvPWskYtoTkxzakDO7iWGEZu8IC8kAzpcVD49POJ8vuKwMdtZpNcgAxBrhJOh8IYXwuTB9aPmPTydcckaykwThYl4yI6UVP/zwg55YxzjOBCTGmhjnGPAhAOcgAvPAhIPWw06SRE74/ptv8MMP3+H1EkAGuKE7250SEoiQQ0CARTRRRo7KLIIe28yUnPUDZSJu0OMg/T2Wbe6/97RmjH+Qt5cRsbHstZZtbxECxlbinkFm3bCVBqG2Ru3tBVyZDca83T3r91B8cX1PkFgDs0SrIGo37flajgSOfd8DovaXNBazHXRUSu+EU/+eT9f6rxei/rqQ9UBA7ihDJQ70xoXnOtiW373wa5eBzVffH6Odcy5gm4hwOBwwz3MBQJ6utnlnZK6bngLEBZhUSf/xpx/x9V++AqULImTlKbGcfptjxKdffomMgJR0dUp9m22AGFRD8wHlKPJIbX10+1kBDBaNAMUG5XwvofO8qjTWHDQ/XZ9fNdawAw+qoMzzgk8++wxP5xPOT0/yPuTI+Qr9UZSLpKFYc85yOFSQjZAEFao2d6JqCVkMEwm2fC6gJhDh+++/x7Is+O3v/wFg4GKQQ/lyVvcSA8dmOQepJVM3zrLSBYgQmQGOCJN1lbkXWj+1fWcGhZZaoDLE0as96+dcN/+MbkXxqWX6PSj9880YqaLSaK5wPMxVu7mvSsI14D00Yjh68ApIn/xckgNkCERj9xP//Eix8G0q5Q542CjnEV/trcql3E5p2qtfXx+5YTXgQj8+iw3Q9Pk4edGX0xo3rH+Mx1b8k+0ZkCiNxZizs/+g1FcxOMQYVNjEQGkyWtntAwjwbtkoNfLyY9OvCnTDEdCIOK9CKgZsOsog8vXnr+RnYuGlyZ4VY5m2QUHlYVkQQwTY2Lv5c+qSJcS9Zs0SV/vp6Yy0yhYBDkqMAAJnxEBYs/j9RQ0BlkvHqMWbxNr/8PSErAH/CQYEpdXMCSkTHk8nEewsp309PDwgTDNON29wWmaciXSlXYExE2IWZ4Xz+Yyv/vwnRGbMBEA3eNXOFeZqjD1QiQAqY8VcOi5AlgM522a9rJ1ZD/9pxq2zEvw96SVveuY8ZHhWf6Jiidzz0d5YUAYbc6TpsmIgYTSThnDjzd8eg62/q5ZvjJGI9NAU1DBY1FodoXG7L5cL8prFoqbhIW3j1kjI7DGoVugIWaSsp6k6wOuf95b8kXVoDxSP+mD0PFHLnJm5bLryStOoHXu/+3sl/8G9nHOxapuF26zplu/xeJQ4xz0NbZSrro/R9RUDAQKO1tMJf/njf4rzwweJ/6yW7ktacckZ7z77HIfbW6yJsapLSk5ySh2sNUHmaq9QVhpW4V2ibVdrY0YNj2f7d0C2yY3A9Sy6NnUgxM9FHxu6eQVOkSMCKOD16zc4nU745ttvJOY2FxdrZI2OROYGo+TODOHDAGiWONHn0xNmBWUB6u9O6q6ivt/MwrMDTeCU8be//BVTmPHu8y+0PtorLGDarOoSljFX4A1R6I/LosaSpC4n0v7ILHt8AgOBNxE7pJgO7O31lZWpzxclswfhqMC7p3BCOw/L2Nh423WjWQV6QwDtvhcap7Gy25dlYtEDMvjvrh19HrUtyjuRm3m1x9f793vAvVfO2KDT3t8D38WQNpgDPQjlrs19noUky0FFEtI3m4W5KL+b6m7BLlE50K7sa+IBACaHtgrP3DeYGIaysc16WCK59309gJYX7Ne7vlPVibYvX5p+NaB7ODn6a5vRlgFr+oPrm3ta2r90qks+XH4XpUx98uQZjVtNVYlIKihTYlwuCafTGWBjOtK+wBlTICzLhMPhoMc5C2hvrTrKIhLw84d7UULKqWtAOfsBup0rryCW46CRgR9/+Am3y4KQX2EmAodoYYGxAshJQHFixk8/v8eHn9/jDWWEzEg5tePFpUqF4Zo1BCCYfkpslhEfSk3eHAGWvyf15PFcLqXcDjh5hiFCp8bVttjndu+aFWTDHPWUO9soV08YFMVkxLRrFbd0LZd0wFHB5Oa9oCdaNr1i4E42QSF64dIpDH3/+Do6AZ65WjeMmfqT9XqB2INu/9n2//iExr6d25WFLTAAbaOG1LJR3AaeS9do1Opyc3ODeZ7L5qzR2HhXk8adyARlLbCU2y/Zer4ZifBPX32Fb7/9BgIxofxCxvnm1Sv85ne/LXMxpYw1iWtThCjAdmKk3xDc0DTD7Nuljqz/5Fwt+wYYnbhVyy75hhVWbjwDpFep5Q1D0OL6yvpgXg74zW++xDTP+Oabr3E5ncGckQnlJN9AARMFzFPEFCdMU8ThsODmeMA8H5DWhG/++mek85PGPJbt5sxZLXcEpCybX1OSfiMCcsY3f/srlsOC2zefiH83AFIDRk4lAnfhBQAQpojj7a2smnKW+NVdHP6gShwoI/txIYZ3krMNjabs9L3WgES/sjZQ+m3MzUrIqrhT7oCXjoFXIsq4i46yYcjVWKCAias/7h4v9HO8rBjkzgpqbXOgu5S3l6oo21X6n8vjqpHIAV8G5MAnVwbrWJU2DOSKL3+o8Ow8s1t3Bd6kB9XL+QBs5kxVlJzMYGzyMfxCxf2jGgSAPt63yCk2oiBbSNoqJp4ODFP4w8G23bulc6+A+H6qrxuk1xnajRvzdUnwqwPdgDFrLt9Hz0BNET2Ison1XNoD8iNY39dJXqPmGWFodYJABcVyOCiIts1ZVHwBV2RcckJixuPTE06nM9KaigCy/wLkmHgKhMPxBiA50EEOsuHCGIgIKwLO+YzTumosXamXWW9MZ6+blmQi5Zzx9PiId/MEEOGOImYEJDBWQjnl7kQAc8Zfv/safDljWYJuTNF6aB852xgAWU4kFl/JEgyObaNkcG/oiD4zhB8LwA0AXnvLXB2a5K9RBbAU9NCREDDFWEJC1kevLbtpr2QW95GUNy4kwmyf7wdfnvs1fMaYheiCursbXMKmuSM+RBkkyPgEPQWO6m70a9XqBXSNOED2QGVrnUAa+az7NvYgugDuHYG4AYZaDXLz1ADaGHCLladvwl66JnxDCMWC7Z8dKRbXrLjW3s0c6JQXMBcL2PfffIs///GfgLRiIo2CS7L5epqmcmLi6XLRQ1+4OYkuBgJCXc2xlZ1GCHYdxJnBQQCcTJ1uLwJ047lTboQjsW9KGR9us++a3iplPTCH1pNCxLt3n+Dm5gbv37/H0+NDOe0vxIhlmXF3e4d5nhRQC9+MQeKeA4QvY8DXf/kK6XKWdSFSPhq5uFvIia8ZSEmjoESkyxlf/+Uv+IIJN69fIUZRei+nE6DL5InV0k2yYfb21Su8efNa3LFSklXBLk6w9b+dxMmsexAoQ3xWdb4UFlUBxagfvYW77cKxn3Z1v1JZ0wPuLEpeJip9bfHISRUps272Y74Bzd14Wx38XO/5j8lnfVE+utaPwGkBuSa8urKuvTfqt6vJ+srqxdwElejz88m3Zd9C3NZjD6CWPMtcFARi4Y1RgDdKqSMjUwWxftTavqkRYbSPgeL2Z2dz2uF4TXsbGSkGil4hadrV1GCbV33HVl1Q2rq3CnFNDPxqQPce0LbUEAQqP/Ba8OYdn/+AGMdsBw0o8M+2j9iSjIAjYR5ULCYJQJgnxBCVKYv2aGH35MRGhUAkFuDT6aS+0EoAUAs1y/PrmnBzPGKeZuScAMoSCkxbm0FYOWnECYnHHEOdJBosqwDuwPVglJQy5sMRFAJupxkE4JEZZwZ+1jo/QXbLn54e8PX33+EtGJNIzRoCCNWqwdYWsoVjkpi18JOvTlIPiYUh04jnDNOLFK1n7o8mUyNcYgRFs4Y6Syta+tyzMABKUyrUUsq4nC9X/bX79u/l++KkTG6apuri0QAm6fOUEzKvmMMBSeMrBxKLKe/oAr2wKxaBzlrj5zl3bd+zZI1AtLcCe3/SFpgP+iygbLIaCYxNHbhX7cdpZJmBAg0fptPzopfQ7R44335Hw7QYEq4znc/4x//vv8bl6RFzhAYBFYsqM+Pdu3d48/o1ThohJyUum54B7Std0UEkhCgKp81dE56yMZaUf5rylmC2iB50E2lEpyt90AMjhlsKH6Smb9HBS1IFkiOm5YDPPv9C+HZKhW+ZLy/UKBCg14xvEnDz5g0+54xv//ZXXM5PAIBAEdBNmMtEQGacIfR9vpwxTRPmacb5fMJ3336N30wBx5sbgDPOj/cCSiE7dFKWw3Pmwy0ONzfgELCmFTHOoCDuZx5k2WqbuBIZfQUJe0ZZXPc0uozxKushkwXXxsDfsb6t1vSqtEYS10MD/Ubr67qKb7rWtYQDhNEEG/rWa2jztvHb4Qv9OQeburv5TO56lTGdYquKAINlJdaV1T/fYw/P20aypFes+3slb6Lig78HlD+G/+8B0uGzAAjtClvP29r1rPpM25eGPcbj5j85j4wLVP+lHaMEKg081ya8QPkRUaW17hjqCEOO0q8DdLPfP7r3SDP1nTbyMsG1SQo2GoLeyWc3d9O+qR6OEAAkkqWSaZpwsxzEb5CCxgnQCe0UbwLj/sO9hArMNfasaP9iIc8ApnnGYTnogTarWlVYNyCSbgoSorikVSwpkOONs2qTJjiIzecSxn0Q5gnH5YA7hmygCoQzxPoifxlIF3z7w3fI5xNeHxbEoMdGw4EubWM5vl4FAROV8JCbVQNldFCNU0IcjZWiv2u8n0lE7eEG/jqpNh2mCMSgR15XhkA77zR5ab9kH/YvZbUqPkf9/3KJAbHozTOezueyQdfqWLbm5iwxgtX3OyjolpHp8uTWB3QLnGnzrH3vQx/aZ9+fvWAdWbrkOzS6CorV0Z6xZEchYwDKPZDXLqnz38vlwsBbWhDGnuEFT9SNkuZScg1EvyQZr9q+tVVeLuuKH7/+GsgJt4cZWIXfcGacmTHPM377298iuc2bGlSmlkUEinIYDsXQbEJtlNIQNCSf1MXqISfJynMecPlurWBl3BcFPNu7V/j11X4Dmmg0ekGUP5+3ljmVlRSlbQgvvHvzFufLim+//hsu6YJJ+QJY5sw0SUtWJHBmXM4nTDGAEHE5n/DTDz8gBtL431ndBQFxUxHQPB0OoGkGh4gEgGyTLOuUzWgUHmK1lGZCCCybMYICbetfgpqGjHO1aWOlteuuDz0wHAGtPr8Yo2wG7ea+pXoCpZWkgN3zWFXcC/h24L93Ldm0ydXfZLbN1aatRVnj0gx29TEZsaeo+/L6tAfO+2d6BcA/NbLm2jhg8Fy7ckBA2TC4g3PsPTCgB6Jt5PSm/ts+bPnbjhDv8qPQuglXuSllSCjPvOEPNdIY676xnb7tWv288aq+0Shsjvb20q8CdH8shMoOcG8mubsy0jbtej8wtgzlLsgH1aX0HgwYuCRwDYKPCuDMNxCky/eqrXmhBCI98AIgpnqKlt6TPUw6YTQ2psRWFsbLJWa35BhjwHoWa8k0BT0Rk6DxS+SpkqdcD2FCiBMOt7c4LossX7II5icCzgAuzGDOCDnjx/c/4S5GHAKD+aLIpMatLfYTawbXPh9ZdWVMc510LCcDifVobxQHyYMiuM03z71GdaOpg0+Nj69Y+SQusS37eTGzC7qtfTljXRVwJ1165uuA66WGjD3tu7/OiiCPh4O2VcGl7iinav8BBWCeJgSQHIAXjJHWkGw9eG7KaUtWJt6OfQ/SiaiJSNELNsu76Wt4K/c2Mozvh+I+QuSOEZf6jWiyMlvbqOT6FnbiWtiUlcu7hBgkcsY0TRuLjBcEIzAyare3oMNdkz/J1CtBjw8P+Obrv+EQCce7W6TzCevpAWsWP8jPP/scNzc3eDifa2hKVvZHsrqDGOthE4F2rYrNeDf92F7zbSGydT33qsvaeCz0LEk28PUc4GYupz/6mnrgXegP0N3CXJ4R67Y76My6nW0/TMKrt29xulzww/ffIWfZUC7HkGVdCbDDwRJAspIJEGYKOD0+4MfvUVxCYgxgPb2YiEBxAs0TwjwBMdRVSmZRAHIAq9Vb78CiQoHUSADUDaudJdCDUE+De2Bw9Jvcb/lrFUrLq9BLrqeb9tbbxqrq8uytm6VNcrHO50G5vq2sbS205vZTbHgFd8of6Tj1Sln3ngdnVib193YUgxGv2+v3vbRRmFxZTBYT3BnaBu+wyv2ex4/qa/O6ys+ttVpWC7bK9KZt9YCTFmN5MJdNrg9WhmErRRXk+/WwqlBt27GfBuNcru6nXwXovpauW4HGzR/DcSfgurzNcuTv7dWh0TadSFCoIv9x3eAVYpBNhsGYigprlucmCuAQkBKDaAKRnDbHbIoAAXLmDC6XhMPhINEPyqbIWnqggBwJ5/WCh/t7rOsFOQcAEWDTAjPAtjQofroUIsI84ebuVt4nwoUZPyDjJyLcIyMTYyIgpgvw+ITXBCCvkHCFjJQFlBchp5ynEKkDAgBKnF3TrG3joKkPvVb9HMN5CUAVAU/O8s71lE7hjgpG66mdFaihhD3zYLvk65mmfnKup0YWsJ2vM7Pn6j/6/tyzReGBMLfDzQFPT08yRIX0uSjxDKPNqYAbGU55hlV42gaWURoycwWGdjACd2DXz8dhdBeXVxH0g2gx/XOACH7zpeYmz3E9y/tFDaOGiQNbd5dyh2WOm++zPyXSA83ary2Q6Q0HTd7PCPDKN+THw4cPSOczKEi4UULCZY24XM5gAuZlxuV8FheLJFZZZAIhgELAFCdgCtXKvQMKar91Ne5/jgBH/xi3Pd3kQ9KuPvxdX8YeuNkoNyROF+x4DhGVEKD6MMqGRILMiQDMhyN++wcJA/j999/jwgwi80YlEEUEEkCdIfwxpVV8UHNCWs+yN4QYkeRkTLLDxQKBgp78GSwO+kCJJoBZVkh7+dbMIWY16oSxkMN4bPz1ls7b7zIPwrDf/RyE638/j3tjDIkGLc93oTr9OJU9GNgaAzbt8DWn6hbllTizcpfV5o63lHnsesDP667jNv2wp9j36SUA29OnP6lzzwAkbW9nW1+nqrDzdjy6d+RSdbcczjl2ShIGFvgmX6nhpq1Q912NDASwhLNFz8tbcM9gjZfkxv4jFZl+bP8zC7pHmmpNPeTZ/tqDMwY+RuWNOtK042tJAIpZwzsCDwEUdMMjcw1Bpc9GXb5/vCRcLglxmhDSipQYFntbgAnJ8b8RmKZZmGcgZBJfRDatk0RLXS8rHh9PGl43FDCVywQKCCEqYBFmHpcZORI+cEYixgMB7wPwQIyLdsEBhHg+4zUYC2cQJ1nyyRJ9w49D6QWuVnhLdTnRGF9WYUMgzWe4qXFn/LZpTBtVGApDbSykVK2fgQxwkzBkKOBG92cA24CfgfmcseaE9bKKwpW3YHuP8ew04aOTt7RYecyM5XAAs/hZjpP2UYgIpO5AIN0sKzG8+2XHTdls7lMK0vXPaAFs9dsKJSI7jGZ/6hVf+g5oWzf2QtkfLDOu69av3FVKQGAHNP0Rwb2Vze6N4mkXwO0aWJS0ovVwbQz3vVSfZVemBxQGuCll8PkM4gRkxppWUMhgyrjoHPzLX/6C+XDAtCyY5gU5RDBNCkoi5Lx5NMqNzKFnj45qxgToNt/6vnaKKlD5o0lVdm97kNQL3OfScO5Boya4/iZnPS3jwjX6hTymsR2I8MVvf4en8wUPH34WXknQuOUuYpO63uSccT6fEAJhniMmmtQqDqxgUJbNkkY71hfm+IWi/ff9qmCfzQedKq2JkLDDEzb9Ufv8YxNpnPZq5R6NR5kzjuZ7oGe+3tVaLGNgh5WJgm2y2ivaOl3ANWqY5lnkt113SrKVWeZ9Od0MKhvqno+RAcArxz0vNzzBrr39cyPMMVJmR33p+Y1PIz7RGCMKf9weCNPWDcgpVyvzTj0sr3azeqtQlef1Zn99o6wQN/zWZImYaHL5bYp5iY7S9FltS7F+N9Jwq0T4tKl7U792pWCUfjWge4+ANoT0zG/urjX57EnxouVqnh/ByCvT89oWANRT5ORIYZEepQp6+ELKGY9P5xK7OOWMxFlJTMB0JAH2h+UgPt1R3S6U+TJDw3uJC0te9ZCaMIOSMDumAHCGWF+ibAoMYtEKc0RYJlwC4ZQTzsQ4B8KJCEl9DGcARwLO9w+Yn54Q04pMK5hTUSQIxYGl6e9q5ZS/lFIRDjEEJN2VH9jidPOQ0e2nflx31LQCGISph1AZU4jVWhMCNczN10GiPjgAZX8QN6HLZS3W7d594sXWbbo6p6WFI8sKBn1lAE3LfvXqlS5zu7zKP5IyowCPctR1ttUMgvfp7i0hbXthRomyaa88N9hUB5gftlCTB2xFyVEQ056KaXTWguI+BGDff/KZNxZ3Xx+jGftuQng/NngVYL2/KVABtj68W6+XpAIsGqCuQFH7aZknLDGC8hk5JwQkAFmWczMh54T1csK6njEvR+BwBDSCEVk7I6tbyXZelHp0f1XQVwWh9BE3L8sGxgHd2kvGX5wjxLObzJrVih2QUt6rQ7xRdkZW26IcQT31pgm/+d3v8Le/Eh5+fg9wKiHPoo4FBQkdmHPG5XIBAMzzjGmSg4UEqKO4Dc7LjHlZRPExBUc7wpQQZqkAxWp0IYZGiSI9JZl0VVWr7Mai0DxR09aR5dPa3oA4yH6FHpgO+9i6uBsLPz4WhUJWPUW58DQeEMC6klCVPm2w5mPyp6ymeXC7qb+Op/EPF3llpCz7Pint2WlvAd5A4wrVGCy8nNtRWDZ9eGX+ZWzHqH1e+2pQ81JnIl1UITkUK9TxknwYXuG+VufyjmjHu/hL+konoZuL1k9Zqw6Ywa6U7v4dY8VRidcA917aAu/9934VoJuNqwIy17CneRfO2HX3Tr4vK7zUwTPn5wbDyre6ej9fOXgCuD0uSnSsFnH1u7M2EmFNQnAMIKVVwAiJICqwhEU4zsuM4+EoByhkOV495YSn8xmXnHA4HgAKWC8ZFCaslxUECx+l9VPNlEk21E0hYlkWYJrwQEAKhNWEXJb6RgALEcLpjO/+/GfcPtyDQkYO5pfcjo599wqP9WfSMGQhBMxRorPUg+x5d2L+PWkrbGWZiqjG2C5/Fo9ax7HPw4PungGmlMFJhOnqYuha2dc2Sn6cgveyRAR3WEIFQofDAdM04cOHD+0LXshCQPI0zwqYzMoAtXa7ZexOONunWfRkXjtrUiGKSjANQGuq1C7p2ebI+tcuZ/p8zAe/D//n21jqqsjFP1MthQqsQwWzeyBe+n0HnJNbjt4Z75FSts8H98u2A4wMNN/e3OCnZUJ6Ogsg0WXZJUZkks3eh8OC8+WC8+MjKETM8w2i9WEMQGh95XsAslUqvZLhEa1jFJ2hw5T03upmJFN8mstBG62l+7mVl6a+9p5TfirW9oYCx9MambsFYNOy4N1nn0no1fv3mCAbu8I0IdoeGWaQGhxSSnh8fMRhmYEpAqjbGyMBcZqBEBHijBBjjVVelokULHMGsymAlWKYZcUNLH1mfMj6LQ/mzUtozdM1kcbbd/2xt2enAGuI3LEQtBvrr9EXC+bz79qqbPOM9oVRE7nyRhbLoaECVGiAaEvrDUBXBbEH3rvKGSpt+1SUZYiCVK65frhqcXXPtjTb8U2riyt5u3bW5uflpFcwheZ0RaGcfLOb1TCN52vFdR4HulohSYxk3RdUZXXZWwPPK2v793juXl+OaKTggp28+vTLB92CPt2PwX2g0S48O+fusZ1cxkUPJs6zYNszGHeNiDDBmCYhRsJhnoUpUoQsf1lThewTA8wBmYHzeS2bNjN0CT8DlGUzZSDCHCfMy6wgnbGmhMfLE+4fH3E4HjHFGSsD5/MFDw9PYtmKk64syuQRX0FCiBJNYYoTaJ6xLhN4msBBN+3kjEkFQSTgyMCH77/D5ef3OCAjkFoIwQaXh8tlfnJJxI4VgRnzFDCFgEisW6QkSgoc4b8ckBJa85lec5daQGagLDow5+hpNOlIQ+a55cmkkUjSZUVKGTkxErd+zh9juWyKvdL0PUZMBh6oqoNFISLCp59+isfHxw2dt+BOJM9hWUSY6ca6rCDUBMhIQBSLi4/IYtd95HbaAlTffl8/29C2Z73xn37TqwfGXDuh1scpArzJJwJcD/CxvK0+vfVvJHAN1Pl+CkRqaGqVob83ek0/9pIfKQhjIBBuXt3h7u0bfEgXJE6IWdq3REYOjJsb2SOSL2eslwScTzi8alcJSEMsBhJXNZPD/ZjbsrA2rxhoCa2SYvRAcLRTb27GzHwz2ZRyZucn2vbFS+dbeUrHRE4AbipZgDcAhHhdcE/ThNevXwOc8V26YH16kFCxunKmO+IFsOkej3VdQSEgI+ByvuB0XpGksxHjJH1ezgAIhT+JMlulnxkxDCyVPmaJtS5yp109TAp6gQoy+z7d61ebD2bAgZv/m2ddX3swSDaPrE19WUpjKVm0G5Uw1M5HYpYzK+wwMVfWhk/aH2ofNfUiKquffiVrk5e1q+uTPdrzONKUL6tLr/xtwPkVAL6n2PTtdepanbxdGfbZ8LauAQXAUj2waiQvx/VvH2tkO/svA7lf6EL+kQhIocqGnT4xTGLyY1PcoP2W+vEv1wfv9+mXD7oBSLeYLWNwi4PNyuaypZfDmp3UTb7mFtpBtVRCxeugRCNu/X6YI5bZ+XRCoLZBVQPWGYQ1yca0nDLWJIflsAb8Jqbi0jAvMyLVCCZrFsY9LwuOxxsQidXhwhn39x/EQkfiU57V4h1ilBBm84wYJiBGpDkCs1hczmCciXEAcKNGlQBCOIuV+yYnLCTWfLAqDjtjUaxK1ua0AjnJ5qJgp2pW4GFWkr2l+91EpoLJdw807dOWx8vmthAlhnnPvJxgMKZoJ/DN0yRxd89nXC4XXC4XcZVJ0srMLdB9ttqlfVtGuP+sPg/vfsEdQwvNOOSci5X76elpk3ddaaoRbuZ5wppXEc5MgPr59oDb8rcxNAAm92xe+/4dt6kH3l7Yjdx5/HsecO/G6zVh0luFQAVYAtDDfwRIjKy7IwHoU18/zz+YZd6TGhkYLG43w5yup73ye2sPM/D6zVtMkfD+22+RnxKCbn5a1wuOy4SHh0fwegFyltUxQlFepjiBQ11SJqpKRyOkmyGuopAAjZzRWo4Z4u5WbJSFV7S83VI2IE8VePqxGAnO3X4aKGxG28HxkeYVBXxNX3dyY5omvH7zFpwSvvvbn7GeTwik1kYFCByjCGUiTPMsCh4EXCZmJAoIccLNzRHTsjTAyZpmUJUKQKmGgzrubrUpSJx45np6ZOYqvwoIHACytp+8MuZPvmxBt1agfC0RYLrxaJR1tODcAFZxV+S2nSNlwCuwtT/c80TNhsO+jTFEl38rA3o6GtFoD8L99dK+nuaIwKFQnVzvlPpRnpuytU7keGDPC6u44DJmo/Fuym5EIzWiqozBbq1qfkSyJ4E8E9hWDOZStO0/0qh1clKm8QBRFENVaJya53mvr++ozp5/jA1CZA8+a9z/lYBur0r1HWKxJauJnzbPfGRpL0BFPZDsyywTqJuUkSQSRiTCPE2YZokYkHMGSGIfVz1SAMX5fMHpdMb5chHGqxwxcCytDiFgWRbMMYI5IbGA8zjPOMwLwjwjB8KagdP5IhbqMCGp5TKQHIgigFtCmIEiQpwAtXA/BsIaAmYQblmA9ZwZcyT8+MP3uNzf43MFzVCrkz8brdoyXQvNPz0npPUiS56osXKZ03BJckPsO6m5X5iBTN7CPDtXkhhjG2u7B3H2PUjEixgjGMD5fMb5dBLrth3VXgCHAu6rte2Tp/stA7wO8Iwxtv1ARVpArQIiiL788kvc39+XqDGWstZfYbwoWSFgXiZRkghgCmpYcwJyALyKldsYE8Hsk0OgDGzHt7E6XXnO59P/Ads5np1lzws42+xchLQK95HgumbdlhGxOiu4Ke+15foF3pfQy0v4VVNHFUQyAAHH2zscjgc83T/i4fFRjkgJEYwVh8MNfv75voAwUeBE0SxH1RODA9UID1xDvFUrvReSGmHQWa0y1Wc88JaVwKoMgd2eNgOCpX3yvXfu6YHXs/3UgY1KF95T060aEamLUeuz3gN+QObO7atX4PQF3n/7DdbzCQx1qwhq9IgRx5sbTBqKkdlBTgqI81IOKrPwk6SBuXO2KCBQRcgB76KIy+9Sr8xgytUVo4CT1v1JO7DtK/30QHuj2I76vygKLkJJ109+PmXARRBRHSBzOcTK59MDskJjyttMuQ2woaayKdXq1NAEUFYxzXqqDvFD3mXv9MnThJ+PDY2YfDHe43mcz2xnHHpeNLLs1nfqH3NVRix/2smnkSGjdroZXHF5x8eDKQ+bW88khtFuvxLoFTMD3OxeM9nNzohbB9HXv82nqbcbq6HscTxpL/1KQDcqYNKfjJYBbr99PPAeMWSbAMaMrmlvTdmOAZSwc2BMpIBDj7u1Q0YQsjJwyYlJdmFLuRLDOHHCZc3IIERh06XcOUbcHhbESGKBJAZNAXOYQTHCIktcLhmn0wUxLmpNEjeKOIlrSpxmTPMCClHKV8Z/gey4XwAcMzAFPVkzrUgJ+PG7bzE/PeHIGUQM5izHwzeAgpsJafCCWVwx0rqCmYvlmIga/99RjObNGOxebwa0iSfswVPQDU29+wFZ3lSt2/OyIIaA0/mMp6cnpHW7SVK8WlQg7xBOpamWqms/1W/93VY7by3aVeB6AAqNksMFHL169QrLsuDbb79tosJkuI09rNZxAkIMWJa5HLrE2aBzRspcgEC/UTQbk3VtaZSYq2Bb29O0pf4evT+yRO8BsHKIgs/L3g/toNl7I6v5xqLn20KD+vh3JQMBOSWPfxvzQVtfmf8Xca8h2TxN0wTKhJwj4nJEpkmO6OKEFQE0L7gwsIKQIOFDp2nCsiywUGDF+aWEm9sKal8XEVy11cIbqXpE9IKL0QAyZhS/WXm3Ak8P5Pf6Ye/aaCx7IVvBSh99wZg3A5wlKlFfHosL0bIsiG/fATnj22++BqcLiEUYBwCkq2ZRedAlJZwusqpEccLx9lYs04BjCApGIPM2wrvFmbqgf1xtAaJ/qRNgztr1bPrYpv7aEeVS9d2uoS99f+6tMPR9zrzdLEvU7oliqoodiJT3JHFrsh6gKhOB1jfdPgV8o0T1KsqI0lVVZCrYjbqpv1llJXOf3PbTiJZ6RcL6zysDDTDv+rPwFpVDVs6Ix+0p/n61mBCQScPhltW1+i8Ghp46OBVc9/OjKqE2KD5PazvrxlTNjBlt1J2dVH1wtzIGrGdlEKByuPQLVT4lcraGkgSoep9SheXXgPfou2/uNa796wDdrl2lk3ZG5+8VUUOm4DRrm/i7yU3Q3E0E0wzFZ5NASAqmJU5z1NPJAgAwyWZJJaw4zWAw7u/vcV4TLpl1yTEUZhoDkDlJvFdOQJQJGwOpJSCAWcoGEx4ezpjiAZdVlhWnZcFyPCBME6Y4lR3xDMCw/SFGvAkRswLuc844c0ZeLzidL3j46Sd8erkgICHGjDPBnWtWdV2i1i8MsINhVmTdZFhjF7eAe7Sk9pLkAbcH2X1Yt+Gymwl2ZbrzsmBeFlz0dL77+3s8PD5K/bxF3oHLtjJ2zykfREUTb17ySvhAIPnvfn3Erg3dH4Kndfn87NNP8f7HH3UDTLU6VcAMcEVEQieHg0TCUUAk/rTyXubqDtQcMALDlFoftUa0bamt6Ic5uPHrwXk/30YbGnvAvbECKXMuSlcj8OrGTwMm1yzbGxpVsObraCCb+npcsZS0Qri8AWDfbakCDrchlARVhTDJSbU5IUwL4nzE+bKKHywIiDMuGcgUwYERpxnzcsCyLMjWpqJAw9ELKk0zNDzabrOkSlC5q2iwnGQLuWHKL0pptc/6vhkpWc8lsYCi0GafVOWvRhQ7Dh7tvgVzn2oBjrSJIC5KPM149fYdMoDvv/6rGi+kzBhC4TtZY/lfUhIDBhHm5dBa8eDnAZroPfKnqxrajwK6c6VvMSO7UajylZU+jVbLgULUWrd9+MseaLMRhI2fn7sDgLgL3N275XeIcpCY3asMsymPlRd4gGt1K1MCKKFt7RA6z0/q6qsH1UL/tu2sriShsRT3/KoB9Tu8zMpHl48vo+TT5dHsAun4S0pJ2jSHMrfIP1A6X2T3CHwWaTCQS0IH0HGhrcgDb0E7Oaja1aFJyvOEnDofc6tLtLlpjXDjod8qRTnrN9c6wRkEr1q2B+m5HTi/fNCt7StCCnCD8i8DvHvG3Avj8p1KZTwuqoPgGFIV3gI0zZoDMCJkI4ycQifgG3oAAyPLKWIkkQESAx8+fMDT6YQ1rVCPSytZitXNf4dlRoKFItMlOshGTMri8/TNtz/gm2++l02YccLheMTh5saFdoooIX8IegAD4TZGHEmOjb/kjBAYnMQyff/hZ+DpCTc5gSgbskJghvlXAVtiLUIqJaTLpQgosaLRBrhZHp7JFB67kxQXNMxzBEgbsKZjV9qhbiTmSvJ0PuP+8RHr5SLW7awnvzmwfTVRndjl0zEGmf/F8aIwdA+oR/3p74/aJSVJziYQ3rx6hXma8OPjY8PgZaOuMR1b+hW6mw9HIE5Y2U4iVcbKEtLSjq7uAXdTS+1b22LrhlQ/68iWdrjvfTuB/agCG4DdCNwKQm3svXCtocU8yK3v9iCjr58XUx53Fms5tiQzIqEto69KUPvZKlW2ijSi/1VjqzMCLplB84L55g7n8wk5XcABSBSQKSgAD7h9/apEzjClUJBxBaoy5UKhNbFQluFsxrppNDkatjZzkptFco+TtG9LEyX7K9a/PvW00gCfsrG6um5Ye5KLTJSTRI6yulnzzW0txgnhQPjs89/gfDrhw/ffYs0ZCQlzDIgcyztrEh4qCkFAmOeW73UA0fbq1I5VPmKKkM5/b1RCziDdGNz3hazGUqU0R99+VbJVCMcydQTSRtf3rm3v6x6IDohKu+R3VKUn6TtennjgxmBQYAQ9JUz2cohsDRTKxmnvMkWo65OMfvXjet09vzCrbKm/k3M9DTb9jDomNkZEpOd+7BsD1nXVFS8gUxgaFK1N/WQVejYZMlAWmjZ6zuSSKpDo+qzc27EXV2kyprXh/Hf90CoAZi6g5jmr9zWGszceL0m/fNCtydNO76peIIy34jyb3z7Qvvqe+yQtq7iSWNnKhEOoGnOgoLvgGROAKUxyQiSr1kmqW+VV4yBLOWtOOK8XnC6XeggACCABxxEAiHFze4P5eJDjuEmtHQhImbCeVnzz3ff4V//0z/hXf/wTfn58AMUJd3evMB2PEpNb0Wn9RPk9hYjJWf4CIJM6qaX78R5TlgNs7OTGaJriC/rUfKCZJWzdPM8gIqR0aYA3IOGkvPKzO9Iqd8qBNs6qPQJnwX1OoR7oME8TlnlBmCLWdcVP79/j6XTCxQ6PYS6hq+xsiSu1qtq96dw+qsrmtAGCj7riFbzNRCfJO/Tt6vwC4axWBMIXX/wGHz58aJh+aRezxHZni81N4BBxuL2TvQVJDlEhjmWJP+lplMXPrpuT0j8mbKzqrBsUXT0HwJr634P2vQRwj8DXSHA0ArmA7Lpzvc97m992PNn1iR/PUT51PEaAu32uty5mdRUAUE4GNZcQ6zdTcpEz1sTgEDDdHHHLb/D4MzBNEac14+7NO6T3P2KeIl6/eYs4Two+vTBT5QsERi6boLVSQwRSSVIFVxHgIhn7LhHWdk3N9uEX/TNbNxGbA3J33MujMUlJrXfNKkoFCH38fbtGRN6LVMGx8PBPP/sClDMe3v8E5gRQKCtNJEtTRS8PQfztxUzj+7LyL+tb+Wr1MPrQONabdgZkqvs5ZDy6vQXkwL3tfWkOeEI5EbCWWedVAZmuz5sefA6YD98TevMyvwebPV/z7TaloslThGpxn4olBn2rdEgZtVZDxaH/PZrvuoraP5s3Bou2jELD/TW0/d3zHNuLIfdyaYf1ss3BOn3b/q0ta0ek8l7ImBiw5vLR9Iqfy01LS7YWIKOhwqZufRop3HpDeMomitlWsWj2oZD4/ttY9PJH+udl2NHSrwZ02xBZKt6vI8K8kssGbGsee/c3IMeYei/89RrrKZIFyJmQYyCw2H9CICyHBYebpZBdzhmZL0jpLIfTzFHdFURoxiAWa1k2CXoiloLiGDDN4utny/zMhJ8+POCP//wV/vGf/oSvf/wJ95cEjhF3r99gOh6BaS7146r+OUBkYfDE79vmAgGgzFK/lMDnC2bmskk062g1GvtO/xbXEhVMBgxyTrK5MqXiJ22Wh+ctIFDFhxorTA/SPNAOqqhMk8QlP8wHLMsBBOB0OuHx8RH39/d4Op+LCwVxnfzV5/QFWi9VVmMXuH+gfBD65vbWBGuz90fes/qajz0zcHt7i3me8fDwUPKrggjgzAq4xTbGFBCnGTd3d1gz45ISUmYENiatriWMYjmyhhiLHrWlr6MJiucA9+i9PdB8LTXxsllO4+wt9CbAvNuKCeyeR1ReUVq5W/bz9Wvf9TJ2pDy0eaoAdBY17zpl80PmGGNlBk8T5psbTFOUkxAZuHn9BnERxfNweweKMywiQKkHsfjJcvVdlXHkst5alD03PlcFl2uDgcAS2cXLyYa/OOsf3JdR9kTNzCsi/YpBxlze/LjbcvpWSZNcjZbEUq4raah0cri9w+df/h7fI+Lxw/viPyxtqftaKE6Y5wXFyg7ADDw2DlTRtqu3A92Kn8p8BMoej+BokZnLfcuPgLIKOGmUqxir/JA25w3wrpFttnzLD9we2PbjM5pJNFwvalPhhzkjuXnTb/j1fRgbxUpWoeUhkbFGVwS/EXK//v21wpPlR6NcwGjIKQTPzfeiTF4py77XPVMSPSqjjjd7dxOt27ZcmdteUWoBr55qaYrJYPCIde2fat81/ViU8LZ8ky17Slp/rR0bahQ8m5sEw1baNttYqq+WPSTbZnx0+lWA7mrZdkQJbE0he++PgDYG03QHcMN/UmtNtOeCcrJ+gx5gEUuoEBHFiPkwy4alIJskc1qR1rOA3EVisGYGZgoIIJzOF50Mcjw7gvTDPEUs84w1J3x4eMD94xPWyxn//NVX+Md/+go/fHjAhQk0zTi+usV8OICmCUl3vrup6Npd2y9L7g7AaT8RVw1wYsY5JRAYiaCUKn0ZNkty7XhcLpcCcqZJYoMb8DGwbZa6nnFsJgDZEFWAYZvGzDpjGwVluCReum2QWZYFh8NBLNsUsF5WvH//Ho+PjzhZfRyZZLXubcio69FqY9iGE6pd0QPvbiy6tm6BHjqm1/aDMexi2WHG7373O/z0009IqVommVF9UlmEdIYBFHEtOdzcimvJmpWms2y6tGfZLBddTwzA8QgI+s/SdhorEkPA3oGHUfJlNyDagSYTvv65foNtPx4fm65byv1z43dG7fRW+ZxlLt3c3Gx83M1KGYKE/guI4BBB0yx9HoQm52XGcnMr/T8dAIpQPCVWU6Iy50v/q1A0qs++T3fa70EFqfWpxi2XqwQDPBUktaDbgcZeULIT4PpKu2Xq+ST5Z6S0IqsV2viH+cwX+jO80SkXZWY4ml0OR3zxu9/h+78F8OUBnBMYQCKW+NxJzi64ubmt9F7mTTevWk6x6Re2Y9IB3T9AZa+H77eSg6t/cbVT4wi7vI1Xb2m6Kn27CqZoLVf73o/U1flmbXC8oNCCAW93fay8V8OWPxyrjKNKTxHrtsIzAMROTr0EHNb8a7+PlMA98N3zT+7Grl+la/gGCrU4jIXSl6XOJqu6KjTzmwGw9kmZb20e5Xs5OVtNqTbQW73M5T0G3HtK/DXe4/uBFMcxqO5lMMVfKxEGfXtNAejTrwB0Fw+0spxmBGnf+zRiHPbsS9nrhnivCPviAxxQrNz2LpHG6M4EBCGqECMQgGlesKYVMYpGe5wXOf0xRCSWaCGJCY9PJ6TMskN8mvQEsoA5TjjeHHGcZ9zME775/gf8+eu/4v7hHu9/fsApEzAvON7eYTkcZcc7EXKoDLcsC/tZBuGBQeseIEzIGHVgRoSA7hmQE9WQcSaWcIiQfClIzOvVXDG6MUop4XQ6FavR8XhUK/eqlu7KxA00748XAKrxg4moWIz8OEk7haKmKepRyxNubm5wPB4RQ8T79+/x808/awjAM5Lb0GWylHWJy3zbjLA8zGyVO+75TqHrFoq3yo8H214JNKFdnukEx8iNhpklPFjKePf2E5yeLvjpx59U4EmN5YCi6tOd9Vh3VlD/+t07hHnBBVBrv3jtS9h4Lpb0qnHsW6N7JaEdzPbZa4AbEHoyC2tvgW6z3r7fuwN4wRe68n3qhfYmNYDx5WkkOH2ZPpUoOQ5gWF8QievWPM/CV9CGYivzJEYcjkes64rTk6xogAJCBOI8QVV9MMS323y02RF9zVeulqhFXL/DCbG+LVQmDJdnCUp3KoiJqKwuBcRyrelul2/9lPs+Mg9UwGcT8vB1oQ0t1HLqPCmX1KUK3IIzATgCOEgb2dCWa38MAdNywCeffoIPPyQ8fHiPGAXcFVCLgDAvG+WPun6Qfi+Favs9uGqXyiONFck6MJJV0IhN8zQ188Hz6dH+G183orFx4aXpY4BrAYyu9aX/FXjXcerzqivJzDVmfNs/1Uo6bJMH3FfqHvTZjcJIVBWIHZBtn8y1Jpv+9mAcpJFvspyU3OFhy0WOVncbl5kBvyEXA1oZtA3GJxhFkS59Z3MbDshruXtlMNe/ppwXpj0FxmjXR+AR4A1AI85RCGWVy8IEj3jzc/X5xYNumzC9B52/P3yvA+XPTXRjil6Q1putq8gYCFTg59+PIaBGHBMFwpYoY4xgZkSKOBxm9WUOyJnLaWWn9YLT0xkhTJgoYppmTFFib98cDuL6MUeEZcaPHz7gdDnjsiZMr95iPt5gOd5Iud7ColRbGYGfSIDterJTpWwziRc7tiFhAuEQAi4ErODCKBgWZWUrBC2ZlTulJDHG5xlA9Ys0Szcz18ngGUoZHrHUlBjbat0ObmxiAdzSrwa0D4eD/M0LTk9nfP3D1/jpx/cajYSbfmsVbfkVFHwru9vQVU93TrTDQXagf9cBbi/4DWyXdtux19RuJByGy1ML9xQnfPHFF/jL375xdbflTOciAg0bqP3+6s1bvPn0M1yYJb47S32SgYIRUCE7Mp1KW/o6jhK58RttfvXl2JztQxT2+Y3Aut8z4AWwBwdD4DDgExtQPmzZtp0vvW6CwVytbI70/WhA2laP/ErHKF+zXt7c3oKYsQYCcgQoI06i4AcKsndBCUYWrnS82dGjWkztZL2coZvTsrhosvMVhTeQGHeUO0LnXGM0UaUhW9qPsV2hgIsgNOpPZi4Wuwp9qdSnUZCsLEe3zdxlA69UFQRTyB3vL9mSi2rQ0ybEvY100hmAijHifBGDRYgTpmVBnBcxuoQgETmMBvWz8PdO8pVxH4y/uBbQpl7MLKcC2+FfhwOmeRY5CZSITau6AI5WfrZKy3WQ2tehvU3tcwVcbwGnrfTYSBuQZBb3z8CE7OZE48teuq2bzwMALH3OhU6uge/yvOcd7j2ft6/X6JwKdM9Lbbd+4c07DWCVlZm0aoSdaLy2rZNtJBf6zqoAV3eePcNDr7jayo+XZ7nOIFRpZ2O5bcceb99LL1kh8PRihsBGEeuUEWYJu0qKB/vDlF5St1886AbqcPTpudAsnvVczd9N9s3kc5PjKqghwKKUbBlMnY6yJMey+x+EQ5yxTHostWqSkcRjkplwOl3w4f4RCBOW5YjlcMA8LzguByzTIlblKeCUGWleEKYFd8sR4XgAwqRAyseNNonXbl4ycGmMrJy8xy6iCaP4bFvfT8zgywX5cpZDcZiLj5YHQpY1q1BJKeFyuWx8uQ1Y+HjXZTwKcG6ZWIi64UWFQ1Q3ErnPdSUCYt07Hg64e/UKx8MRU5QNkt9/9z1++P5HPJ2eCsNtFBWg+92yWE9nNLjmUwu8/Wf9KYK6E1jd79IuUp90R5N9RIFyWA+AV69e47ImnNzpkwZcPNPIREgUkECgacK7L7/ESkEPpXA0M0i1bKrWjAHo9eV7AW1h+/YUiJ5Zjo5K7/Ns67VVBkdljH6XOl6p179U8oIi51zmzDzPDdAxYdGGNUMTcWHUd15hm2LE4eaIKQbk9QI5AMQrSdxEliv91oMQUgUPjBAYcrJAgAQ2kuu+XYXmHDipYDEU/+daj4gYJNpS4lUBdwLnjue78e/nJ6ttzf6z61aP5h2icq2rXflejTzKF5ycKAq09Zm1ncRyT9AAsMRIFznNllnGS1zrZHX0cHtbDsWxmO9FTWEu7oIMXWlEVcrNJutUyfJeD95sHA1YlMhNzihS+Eq3cXSk3P49c2JPmS2Khc+TKrSWZvTKpfJLmAW38piihFGnlBLU6IIyVtZfPpV3bDwl+xpzfNCO5rMrv8+7f3cPNJYeoLCZQ3V+qUukumvmlIvhy2TwNLcrpH61qBxqhrQZ1+fA8IgGRPFhNaqyUqmbewWqvAxw90qL/+zr6q8Z3+x5ktGa6bBi2BO8kNaEaW7nUJv26/mrAN1Aq/948LOnXb5MF3KAvpsIzYQIEn1kb4lbHhprfBlkh1eV3dBMhGmZcVgWzJMc3U4BICZEyCcx8GFN+Orrb/Hdj+9xvLnD8fYO87xgmmbM84JIAVMgzJMcfjMRgXRn+2rMKdvOGaeJG9EBhcjtt//GTLLxxwCc69cAxpEZDynh9HiPkBOCizhVfMf8gQsmEphxOp1UuEjEkmVZICC93TzZBLjXqpEKj0AGuMMGcMvjXMLABRJQcTwe8frVa7y6uxOw/f0P+Omnn3B6OosbTC6syoHKDlyyiTDeBhy5kgojaeQBlWvkBmGj9Nn3ck1PsJPOFjegEAoDKdZPZSQXjYMeQsBnn32Gv339TRkTm0sMAdoWj/gC4Kzs8N3rN5hvbiTslvWBA909MC2WAqZNW/aAann3BQLbM0fPLEfC2n8+ZwUv49QNk39u2M6u7Jcq+4WndeX17bINx3a4TV+fvk57Vm1XAvx8tOdjnEATa1xjbgClkaq86sIpSoVreczOQidAQAK2PZOYPfJFYZxkK4Qy3+dpBiEIj2BGdm4d3LeZKsysAMgAt3B/L6xHytPetYaMikwiAcSABZYX9qvWbNZzCkj7zvIiAqYQ8PTwgMf7B4gRX0ORkgKDaQJFNc4Ul5AiwVq6JgUxbONWaZtcfQEF0U3/SLJDkMrJo92c899Himp1cQvDeTdKe/3elIF+vlTJRMpEm67w+FxvBBJLt2/XBkSCNVqNyTPra6fatdi/5N3U/VobITRrh/8w2kgZ15Si9rvSWcPHGMzJjVEAQWPwq2x9enoqCnvOGTd0A5pR8gKcksWiZFmZNr57dRyltl8qDzKZY/W23hkD7jr6G2XJJV+f/pnRfPfuiV2lhc+kLG5g06J5kM6tl1vfgV8Z6LbPCri5uS6JCtjwaU8AVZaFBmyXwQgEioRABjypAGizSNpEL8TuBAexMV21HBMBUfyhDxQRSY4cD6pF5sS4f3zE1999j//Pn77Cv/7rX3HKjFdv3uF4I9EmpihRR2KQqCUm+DMD57TKJhGIFcVVsPRT1Vh9/xhhWtfJJplohyxoH5ov55yBxMDp9ITL4wNmYkSIlT4SSpxrs2xZvsxcwIMtky+LHjsPNGDbJkCMUcYkmGIDzHES0Elq+dLDgKQtUp5tap0pYpkXvHn9Gq9evQYR4eef7/HDDz/g5/fvZSNndkCnIbwWdjt2K2Vxa/XaTwY8eXvVEWEv4D0DN9BtcXjNX93Hly7AO8gmrwxIHHS1ir579w45iy+9V1oTCxMxzZ5BWImAGPHq9hU+/fxziYFZuqQCsp5xtWCwCsoBW0TZK9AJ603vDeavX0XZe75/z1vEe99YP09K7TtA3oMLX14Letpy/a8ytlYnoAFB8rP1jzXa9L76PWDw+xnsHfvcChwD3O652jEK2IYqJwzCGWAwkF3gCMvqmpiGJA4/k1oVN8DG9bWrAzWlGXCU+uYksbtTdn621vfGi90Y+LGsv3v6qO4I5FbqRp99DYsllGvtDYAzzIpdW0nEMB9hKE8Fo6z+PZ1OeP3qBoABYpnby3JQUN/OLWa127dagKgVpMYTNwFLXP1Gauq/VOeFWbh7evLfDRz6/ulpdNNXz6Rrio/+KIqDu9jlYbQ/zhtAOehnVDeZ31555GYMR3Xe4xHk8m6fqZTYzwP7bidk9oqh0DwqjReykJwMJIMJaTU6kGAMfgXZ+IzlK5vsJ4AtxG50K9IB2Q5wUlnTtHMHY/X93lxHVQglMWx/0VVFzU7sBjZlj0C45eOBda8wbgx87j0orayZMU9S88zQzbZabzxn6JD0qwDdDbBmD388AAc88H0pARiYhH/PqF43RpqrRQWfIk/I52UT2M8gjVsr2Ys1ElEm8wTI4TJJIpWczxd8/9NP+Mtf/4Z//vNf8PUPP+DDmnCZZty8fou7u9c4Hm8Q5xmy+1z5PAU9bp2xci7+twS0/jdU/fAK0+YNNih9YAqCbcgKvu/VupQ44+HDB/DljImAQIwJhAnC1FOBo1TGKueM8/lclrQsYolYdXLZQGnMoAC5IBtLDVDOUywuFVZH42Ok1yMFzHHG29dv8Omnn4GI8PDwgG+/+Qbvf/4Zl/O5grByAMxWMBjFmVsNY6u0vCgVob5zewDoTMlorpv/eqgRNfpNozJGAn4McE/ThM8//xx//vNfRBip4M2A+GiD1T9by54iPnn3KT755FMcbl4h94JNKtWA5abuDUCwF2w5v9JpD7rRXQO2APKahXsv7S1/746D85X27evHyNfPXagg7kr9TAkGm9+k0lqnUFjd62mtVIUk0BxS4tvxvMV7kIJsmoQHsy55EGt1LmWw2ysSAMotXXtwYUDVK3/+ezAa6XhsyhnM2flIy8Sv5cBxnM4g018pjWlDIHrwIs/4sHRS00Zh6QCCtJV1U6qTL/o66Ym/xLmIm4f7B/z0448AgHmaNYqQvCo8Tza1FteF0pkGHi0nq5/NDTXClNpx41Zhn0H5vvFks3Bb+4B230YPvMdzeTvHrgJvJ7+uzZm9/LbAeMzTS1HNs4P6Uc1zaG2WQWyuFeXD3kPbz827eoiUH6++Rr5ft3ymtrccGuxU12maCshe1ypXN+3Q5PlOiWKVgLMdXkfVfc0rV9Y/L+U1FRn0xob62a+olDc/kp2N5Mo23w4XDninXUvK23NOshlaJ3Vo6rVfyV8V6Cb33Ri0KPHFnjB8f6gxjwSiKuUWgaT+1eD/ZJPQGAM0NBHaiSpl2eTSdwNAQeJZc07IINw/PuKPX32Lf/7qK/z1m2/x04d7nJmBZcH8+i1u715hOdxgPtxgWhaxnjAXK4kIbSFSi/cZoBOa60lm1Q/b9RJVpt4SiW7QCRoXW8s0y4BNhstlxdPP7xHSigka7QRitbdzKE1TN+vXuq44n8/Fgn08HhAjiRB1EUsMKBbLrbqHxBgwxSAbvEJl7HV8pc9jiLi7vcNvPvsCb16/wf2HD/jmm2/w3Xff4Xw+yzKZBzUqRHu6M1Bq3+3TlbgZ952f28c7BjWykASn3BUaNHca92nWbmhfJ9ePFnLxk08+wf39Pe7vH5SOxP0pKdgWhiKVpCnik8++wCeffY55PoDjhCpAK+MageX6SY7atOfK/NE2h+37I6vF0Mr2AquZB+UeODd5OEBU5ja1SsRLQb0l6vMENu2yuZRzLqtS26XUOt+sTqPrvQ//xyx3NolII1/03r+u3zvwfE1xMeuPWQwphGazY9Mn+m8DUro8GRpxZFO7AKZ2wz1338jiD1Mb+xjKo0G2vle6ovB+tvBnFk2EK+juwUEdA92jApQIFS5jUUgY0iICzucTHh8ecDgsiNOCp8dHaV+Q6DJlxQ+hWPl8Qystq3uF8YR+fKpO4cA2IahCN00T5mUBOjelsjLh5o/wqFC+k8oNm0Mkp77Vd4jGityA9zXj3htCXPnD68/MVyLSk52r8lY2WjblXY8esse3vBLC9WJbt0LGVMN+D4A9ASV8YFMX/74K+nKWEtsqs7ZN55w/NbUoByE0n9Y2kfEXNZIlqb7unco543Q6lSAIo83co+TnZKMGDvhdv1egdqF3NRqXOQLMTZ92fHIkX/pnRvzbDjcEgEyKgcJ12vtVgG5JFRQJ2BYqNfbvd9BvUnmWCqMByYE1IMjGP2NAgwgJwnixIVLLr3xHL+SDq5fWlWUCPJ3P+H//m3+Dv/71K/zw0494PF/AMWI63uDV7R2m4w2wHBDnA+K0IExTAfcCX+pkZi2gRBthKYfJACNBlJKsyytQwZdhmz/b7pLj44W+K1Eycz0OmBmX8xnpckZgERoRJSR+KbcAC2asKclx9uuKEILz5Zal1XVdy59NOAOT8zRhnuUwhhirdbtf+g4g3Bxu8Nmnn+GLz7/A08Mj/vmPf8S3335b/NdKn3nqcrRVP7UtpvmDka+AZo8v+/zJ3e9BmAevAJqNoCK/Kt35v1kPqAiuHrbZ7nK5NGG8DocD3r17h3/+058cw1BlTOubmJBYYga//eIL3H36WYnpXpWbDmB3oLRhkPDXrVc1H7aVozGD8lf3AOQ1y8pIIPbPlmcUDJRn3Pf+3ZESMMpTPrf+3j3gL4DtSn49fVgyWp4m2VTYRuZ4vp9GgmaUrrV39Gx9B8N+NDeT8Ey+hceR8PdGTO8AswJy2Lke2tzWSUgIgLqgwfi0LVUX7lrzNdrn8kQo/DNzjXLU18MKZfKU7+hI2wEm5CQbm0mFNoWAp/NFtqCGCcvNHeI0g+JU3LyIqKy8lelV+lP7VgHwcKwAXUEUV4E4RUzzJH79Ru/agX6eNO3zILrnBz6PMo5Vhmzq4+lkWGNNjbHELo2Bkv8+ArRBVzDMqFQMRA7U+7d6xZpN1u4okYVruv6wvpBnuv4bzNUA2WvTH5RTkDpq3xmfNb7vZYCtnMhnu7HasE9vvW6xkFtZ1X0lICo+4U3dun4u311/jma+B9u9ex2gwQJs/l4p6xrf9M81fGOHF/VtGxlF7F5GgiCh/fQrAN2OCVIFmsIHdSB4J/SYMYFADeCm4JYZqYIDT3w1i60VrimrZ/4e2BubtQ1v5isYIn4+nfHVN1/j/vED4jRhefsKx9s7HG7vMB+PWAFkRCDKaZDGuNXU0BJsYRDO+g6NHYsK+m2JlMDITphIFkZ4qO/ov0ZkSSfCmjPOOSHlFUgX2Wqn89/i+DJpSCC19KzMeDydSlzu4/GoB3bUOK8GuM2v28Zinmcs81ys27FYuFuLcyDCJ598in/4wz9gmRf87a9/wx//+EectcwygXsK0wvZ3fXMXCiwnEeG2mstDZR3TN665+WxFmzb957GqptI5dP9ZlH7NCbQKy29Be7169d4eDzhfF5ljFjG2hRYJkKIE443d3jz6ec4vn4DjhOyuVY17djxgx60q+0Es9Kpdc3PO33E3JgKc8N+6vtzj7l6EFAAGVe3hg243uEFlkZMelQHUxr7a96SU7tmX3no8/GCwvvxm4LL9eWryoHP39edMRaIe4Kpb59dM5/YBnxwa7EfgZhyGlwg2KYJASeGMNo+8/PLxrcAPJ9vqacAbYQqlMshVxYOjQALiWmU4qnRwp0V0Mt2UBTVyD5Wpq4cEOp8EB4t/4KAy+WMH3/6SfndQeZxSoBGaonzAlAsq48FUDBr3bm4FxhvHI1t7WvrOQYCIUyx8Ndy+ranCe3TJi+TfQMZuZf8ePgx799rxtK/34EdGlzzefgy+vulvq5yBAKzGma4jvmI9r3M9IpI3+fls2tbkc6kxrQroE8Mf21M/iqvm1opsK4rndvx4CIzTK70gNvPTwtyAKDdg6U0VPYmNEYWHn7f1tb1ycAYMVKmqsKxT2f2/CgUrOVT+/Z5wD26v/dOH0awT78C0A3nK+OgjXJxE+IORhu3GAIaCtbR9mA7OXohuxHI7vn2e6kQSuhA9VeRA2OAiIBIjDUnPJxXrNOEV59+juVwxHJzg7gcEKYZCBEhoyzFeyFaGF8HGqQGJIAFdiCFA9xEgBIgZzuBMMImoE1g0mPmfX+uKWHNcuQ3Q+IyP+YVl9OjWLpJPXMYSGRCCLJTHwJm/UE48zyXg3DkdLfqBmGgG9AwZrqDPk7GGBzzslaTMI4vf/MlvvzNl8gp4x//zT/ir3/9K9bLZRMKr3Sn+zejMoDa3VyYo79n5fegepu3AxsDoQJ33Z4p0Vacn3rx2Y6xHExhyTal+tWBPq7r8XjEu3ef4J/++U9q1a5MH8rQp3nB608+xetPPgUtN3LanjjNd/XetrVvV1ktgqfdQZv9e67PPeDeA3+jfvSf1jb7GwnwUtfBZsq+fiOBO6rPXh39ePTfDSDu5bHHf7x/d42PXyq4ye+5tGnzM88+d50UwHoFhpk3IQb79w0At5C3BX519qOCacu30E+dqT1diGua8kyikp99d+JBeRlKvcyNz0CnKa2sxgcLTVcilBCp4oCq8Gk/MBjIGY+PT/jw8wedizPO50vpgRAjQpxK/xAFjdqiConyelI/luLBTVvAU79zyctWDn2YTmCrkDG2NOLzpO79mq4rar2M9Qqxf7PwBA+ybSx2QNGo7d4K2vJ1W0tx9edtX2wUBqAA76acnT7qnyED+1dmnKxTx2JQI+2c0Vj4cy7G9W7jbBvwtoPi+tCzh+MBh+OCtGr4SrcBPUPO4yClcSP0XbBsvav4oE8bg8ROv42lbs2j+rGvw2hPvk96Pj9SVHtFcfT8S9MvHnQL85OJICzYA0lodJCKxDYgm6g+S9gwhf5ZS8Zgir/TzuAbsK75oWy+ZP0dETAbQ8kJiQA6zLh9JYezGNBGkGOYmQgcBfN4bb4hGFLrORuwM65emb9px/YOheCAe1BbjU1jZdbWWVp55oxLklfMbeSSEta0gpOcHImc9KAGCQyWC2QnBdwrHtW1Q3bhW7QSLhPDW7mBatk9HA6YFHBHjZBgS0uAbBS5vb3F73//exwPR3z9t6/x9ddf4/379xI1wYScG7OGaWtT7VIRjPrdW7/NwuaZtbHonsH6a0PQ7a75EHmttUFPqlMXEs/sLNJBb9X2h70IzUiIwMcntXIziiAhAlgVlrgc8OrNWyzHGySK4jcbKmgt/zn6933q61/aaqa3wuAcZrIKYJ99XgPcIyBahKC73vspGj8hqm1rxq0TYs8x1OvPtxabkQXH53Pd0rVtdwGyUvDVev5Lpb6e43rXVZoeqBGR7hOROo+EoKRrKq3mixY0lbFkryrvAEQz1JDy8J4OUHkBrI0FeFdwb/PYh06zMjLk1MkSck3zKatuOcv9dMHP798LTw+EeVnw888/FzAZJ9lszxCABCJkbiNQ9D7jpPKhmqTElcLAHcEsm46vdGBiD2h0HdrMtTHA30+78vcF9HztGXrmmdq2ai3uAf2onBbw183SNq4bi6qrywYg6z8GvL2RwSsG8q6EiAVCOZjKk2KfRhuxfapGHZKDsW5umuhHHnQHlh3R0xRL7HJrme0fs4hazKhuMFeAN6zNtJ371xT6EY/uk1nxzYg3snaHEArWuJaPr88ej37RPHHpFw+6GSQ7wDUJ+GXYqYmkB8qMhTAA57PcL9GOPk1zNmYKBUWhG2wJAWiQaysM5Y/1KHVhanJsdgRRxhQOmKcJiJMeMR+K/52U3TK+ZmCtVHYT2hAhUJhJtWaQHhyhC6LUgkYQ1fCCljsBIDn1LFAAB5tRjDBFHCIhnyNkKdjcSRzTgDy+skQruZzPIAiIPCwLYhDmn1Nq3EtM856mCTfHGyzzjKCRX6xfLE2TnKz4xRdf4HI641//q3+Nb7/9FknzIaJmqae3kPQAuwHeQGN5IAe4S7/1vweCm3wG7nmhKU83NQpJ0MJIN62YwueXDNe0Iie/07xauVOqy5CHwxHH4y2++urPtTWEYtEhCqAgy9ZMAZkikiqMJRKO0kV9Zx/4us4uf4Vuu42JI/a0sWL5/hyAz/5eqcOeACdnjdvJz7/nBUbDWA2YeauctVnvRapWl009LH8DoF3y9drzsfQb2LzrUylnpy9L33QgUeZBFf2mWBVtyfIjssnj2kRN9iaYbc54PmbhQY02ev7W51lUeMdvS//tCrk6biG4vIGyubBpt42b3iu8wbW7UCzVlQWjp6EwZh1/1z5bdbPTYUPOoMsZD/f3SDnjsBwAIqxJYj8xEeZlBmLd4plzEp/ynOs1bVe3TlvduBAK6C5zJQRQJMRJDj9jrjwxcwKnWm8fOtDGwrd45JawTa2yNgLoG+Dd08QOiPaycSPfuuQBt41qyV/hRQWWV5Kh5a4entZHqcEaqNPRstqosORludXfgfbNvNnWpy9bvlf/7NbCbR3h62q4S37V+a2uh1zWV2TfU9UemrI3/VKGtV2h3ZtTo3b07TXQbeeAAGKksr0vfjP9HuAfGUVGZfX3/RzYS7940O2BDvx3BQ5kJycCjiihbhLo7jlCMqHvJ7l7rtH27N0uNJVmtrFUlnpAQuwEXaoPFj8aGiOU6sliHpCIBrsF3KQadeBWgwagwB16iJxnfiZQACDJHCiMWGA4M3SJdgBsQqy74AG1ngAUMpBuQDGAY0BixgUoS8dE4tuULgK4c0oIRFhmOYFTLPNtxJIS/ixEHJcjDssBMZiiVWAu7PTJL7/8Eq/uXuGbv32Dr//6N7x//77xYfMKgE8Gpj1fyIzmafbvFVlb+8DoxmrlD+XwQLwHgQTRrUaAW47b1n1Sdg8toGa0R51XC3fdLJNzZSCff/EF7u8f8HQ6u7qZtUwVpcxYzxc8nS6Id9KWrIpUoUt/1Ldr0wasFnDT2iFH88r6pBGYQAUpvjz3/Ahw70X18MuUZW6+0CI3YsqsQKyx6nHnW8ptpJ8mP73fg2ADff289xbIjWLhko8W6z/776VIX657LutcqNSqYJTRWtYcsC759WW4+cJunIxfeiHrx8tARcmDrQsMENRyr8jl8n7hhfYWkdK4tbD61AaqBpcGeFth1CofZGPWjTPpEpoYOcQljyC07S3dACOfL7g8nUA54+Zw1DjkUrc4TZgPh7Lidj6fAbKNnJ5HWb0qH29WzZycLBbNGBGmoKfxEVJOyKvFXA/IXC2Bttrm5WUPlDegXEFzg8EGcneUj1eSvOI+ShtFnXlTxt7z+jjYZDvMZ3jdAP5NHZQmGX4gWuDdR/q5lnz/hRA0NGZVjK37DZD2of/8KtGIT/h+dQ0o8rcAXSJIENlqBITzb/d8UTSFAOJQ+lzmTlXfA6qngO8f13sNH9AmFHrr+fCeUuOfMxr3YNuue5nho7psMCKw6Uffh9v+3D4/Sr940A0V/HANFSHsQTehhENVK+0eIzDKNUADOLDt8vcDo57Zm9imcO/4jW0AytHFoCAbawCYq4fVgckOd+msBBgBbrRao/7Drr0GTZvwXMygRABlAUJEsF3PMinE8l0UC2+xUn9XbxlUuzZiCDiFgPlwxLomMCdk3QAVdOLmnPD09CQh+tYVh+NRrNxqtUk5Y00Za1qxXlZwljCCh+WAw+HgGE0dK9nIMeP161c4LAu++uc/4ZtvvsWqWu1mIpYe9b/dfb6y8cFltZl8aO/Vi86FQS1NzkDW0Jj0q/wJ7XClUc3OW0nlT4VE2YkOB7hzAzJv7+5wONzgT199BbZT4SiUg4uMoWXOyEk2yArYrnMquHbYfCttHjAYh8navmsAQLV8etBAqKslRVB3FogXg+W+fAdCRvn0luweLPvPIsy735YjaV/14NqDcAbUZcC11b53vM6A4kjZ6NvgKl3KGSY3p4qg9H6UbHnWulcR2Qo4Kv+MimmVp/KHyqd8/ccbLGvfuAY2Zfh3rIz+sAtCBf8+Pw8WjFbh+qPMFVTlvJcBXdeWk22ZnXHD1VFO0cygnHF6esJ6PmGZJtzeHHH/+FjyPx6PuD3eyPyF7K8RcZiN08CgjSgPzggUurCXqO2jKSColVv0AzGArEnPT4gTQhCw4kGL799C965P+1ULKK8xGi9gmFowugegcm5dFSzPayDcesTPK1QtsXmqnTIteGdXQ68YNg8BQ9rfrN6Uqm9lyF5LCHpCMNshaVuAN4rw4YF63672/TrvGnCqzWZzFCVTTPbycj3FEvcs+Vbt9I+13RRef48AdR1W3EHd/cGc98k2fHrjSB+ZzpKdHWLW/tG+vr7e/feRfNpLv3zQjdrxRCgMxU4kqoB7LJTL4AwYRBmM7p1GG1KbsCLbobAr/sa+DPnSArJyv4KPEiPVljwsX5u0mXWZ0lsLfF5VgJC7z0FcSiTmblYrFQEUIbESoRPEfLhCYZAm5L0yQESlDwMYITLmwwHLzS3S0yN4TUjEevqa1GVd13r8eJRYs8syg4KEyFqTaNiXk4S3IxDmqZ6C1qgAJIfj3ByOePv2DcIU8Md/+iM+/PxBAHdDMjrmQBF2PrVAaGS96C71YGc00QnFSmI1r0pDm49p8IFUqbGQlL5uzFUZIGX6dlhB5g3QLoCbIW4pIeLzL36L73++x1MSlshAseSxAioGIbFu/Jqmsms5KJKyuCXVnaoCbqlmt3zZdKGsSsDo3K2YbMaDJaJOD5h9B+4JaKtHP2b2uRcKy94bWVFG+XpQRm6utGB7v369gtGXUeriLUE7fO25ZO1ogYfe6+sG557SgCmXDxn2HAOeKvxa4VwEKHVRobq2eMWHiMqBQX29Cdux9m22z6Kw9HO1o6XmmnvPrH7eIMOsp2t27zX5QwCxr3Th29xaJxlyzPvTwz14XTHPkwCttIJA4ECYDweEGJAIJd63t2haPSwMY+mDzoXK+It1IospsfCWlJIqAtVMQYRm3jQybSBHd5MSRTkBshuLPhUDQ2dwcNVvnn1ZYljEJhT1Xq77HHPOEqUrMcyFta/btm0tjx+1pz7eWWltwnSpyBxmmHFN6LINpTcqq6f5EV+r9+q7tufKqtXWhzfPt3nVviIAEaQbjtvnxqsGA95dJ03BYZbXEPYP+L/NYzsgqH/e/vwp2N4o81I+25f33Hu/fNBNQIw9U6zA1V+37/XdKkCCI/JeOPYCWn6T+w8FdG4Au2NunlJLPGsYkbCDL9W3LqjlsULMujRZ30Td8KedshHCYkbRZ9z7BF17DqDMxrWd8GqtFuz6pukP/TOxmRmYpgNub+/w9OMPWFmWUWcFT1ljcnPOCESYNOxfUFBnh7es6yq7ohUs2iZLcuMUtM+OhwWv7u4ABr766s+y2Si7Sej7f+dzeP/KHPGC2B71dGiARJ613rE+bJmxj0pSltutv9FaEf1hKWCGuIDm8ml+236n+romLHHChIg3b95hOhzx49dfq5LjJIO3O5H08M3daxyPt0oPRqe9iHPzi2t+GyFibQc1/ef3RewKDX3ZwE4PavfSyOJhtHvt4JhmSfNKfiOm2otkTxtASzd2n3faUJdVRwrdGNw8BziKkOvfc/X2gHBjYee+hSOh3SoeObd92z/vblZg25WbmREMgPflKT9pgO224a4Ng4NwgCZvX7aVY+Cj98cnnTO+5/0ssdUocC5XzZLHOdeoJuX5jMt6AZCxLJO427Fy+jDhcHMHNiCk85a57sthglNovZFE+qEYYKDGkiAW7hDbKCVt90mL4hTKCYRFafKK647v6pAuC9+o8wRw0LdXdE1J7fJ6CcTe4xO6o0nzrPXZWIqbQ1lys0KxzZSbKdJbmX2dyd0vPPMKQC6KTnnZsA81z/SGg76nRspnP+fa+qMwiY1Rpevbvb4mImhsNJR5MFA+9owl3MgnbIw1hoWsqn3+/XfbOGmKhZedAJprIzzZKy29IuNlw68edBOAGNsTkxoB6n6T3HQve0uzA91oo5HUjrWYxBVgVcv69vlrWlE/RS3HYp0nBd9UULEyJCovZ7CCberysaYYMRvx2WYb0dIDZLmRSa2zARrX1TE05y7AQAlFCGXkhbE2Qsk2B0V88u4TfPfnr3DJWZY9tb6n00mECRHiNOF4OCAqo68hAjPSmopF1wC3rQBEBX6BCMfDAa9e3SHnjG+++1ZOVVRFYy/tAe3C0J9JG8BNsvlRAEM7Bp5BeqEiPrkKQIsLlAhImFJXuFwLvpgrGCpH8nbRSZhFvq8XWU2IMWKaZ3z+xRf45vvvRHunEsQMFQgYTRPm5YDPP/8Ch8MBOViYS0/TWyZi9ONBuFdm++97FoDCvGqnN/evMbKNALMsnGXbAEkBhU449YKqZ6y1SuPNMaPne9Dd3SzP+HJ9Xg3AafJD8+5zqe+X0VwoOY2A/o6Qrre5pVV3vX9vw5vNOGDvO/4KV69eYQEAUuEIVT73AZbx+Bq20HiYr3fh7W6uW/+b5cueF4GsSnOvLBhfLYCuV2u0/goo5QnhoymtoBBwPB5r6E/lo2GekchcEa3PZJW3yrS2z0bzpbjtECNEOd03OONGbZ+0fZ5mxDAhhFjjOOuJmM3YuDH1fb+XNvRs73ZyyYC3PTNSIK9Ze3fpogen3acpYxb4oPb1uDxfpb1yPa0Xs8ygPc31xgxn8wTVWKfjWfdA9DzMG4V6UN2D9i7aCev4MjfRRSx//9l/L+/aPVx3BdpTCEo53bOuIWUhYoO1tH0eQJvhxcIoWrk96B7l05c/kjvPyTmffvGgG9RZW4Hmu9/EOHoXg3t+s0wRkNgKS882TXC8aPmhZ0hSqkDujrnLONskseU3aAxLoyjbF1xTryUy181CBu5l71vVBwMqoK4E4wQe89YNx3437i8EQsYUI26OR8zzhMslwKw75/WC+6cngIFIhMPhgNvbWwQ9COeyJvm7rEhJdvFbeMAYY3FDCNon0xRxvDnisl7w7Xff4fHpqbaf0Gwg3+r59fdzlkGfvJD2oKHEYHc0Uu75d60PLR5weZ5gEXf8WDb8JNctXntuJA3DZEaYJllJAOGTTz7B6XLBw8OjaPhrhp0wyqihH5lEkN7cvcKsUWIQqFHyXIeUuqJvO9DQtPRX+7sZiwagtH2G3fzGz1ndpK8r2C71M+FRCy+0sMfse2tV/72vpy+rzKlBvr4fAVTfet/HHZMnorr61JW7R899Xc0qVBK3I8zde9Y/I1vypkyvwLv7Hsg17gnazmpJrLy4f9+DA3Rjk33Ftz3Q8X4FuW5TatboIdfGetRuIggIC45+DJSzlCTgUdvLgG1+drmBIGH+LmnF0/kkxqUpijue8tHDMsspuD3YRE+7Mt9Km0Mo+4UMCHhXwQKi3ZyxOM3WH1NcmneDM8DsytraWQ1N9TTRjVShz54vXLOybvj7Drgcle3zb2Soy9d6ld3V0Zwz+hqV0QOzrP0SSJS0YvgbtEduBKUtbp6z/LxC2NetsputUeI563XpDNpioL1+KE+N8tpJlk8gc3Xca8t2Tja8FahnmnT8w4C30XxPY3urbT1P2JNVnn+07+33wy8edBMAivVYzVGH9IPC9eHhYJVNjsasRlYpy8vl8dLlg20jBgMJVDVZx6h4ldgDHkz2GnppaLvUWewsVJfm7bO8oi2vWbgJaJ8qoEbgMzMXUHW+XFQbFqFzAePp6QlggXkTySZNgHG5yKbJy2XF+XRGuqzi9gBUwG3CAlVDXY5HJM749ttv8Hg6tVa6UV/ZJ6m47Zjrc6koG127RYi1YBMdaGjpEiWKTqlQ95yvNUEBN4v7TWvRduDbmKYJ9xAwqzV3OSx49fYN/vbd96IoMcDURTpgSIiUGBHnA+bDQSIZxFDCc/ZKXmPScf3UM++W6WwZ+whwu4f2LXZ7886e631PS7V58zkUF52Q3mtj3x7/u4aiwqZfgFZwwTH5Ub4Nw/dtHdR9L10D5ibK80CYFMXKAyD72wEsozb454ZAFo4fDzdQdn0DNAqnWbEHFYDtUSk97wEPVTDvrWEjWdK3i7hujmY9IRBMevpuBjMhd+6BxiAbQMcMcMbDh5+xrhcsEqYJl/UC2dweMM06J1nyjrZZkgHSqBHCC4sUK9POWk5E5RAlf3rptfYKD3aRtZQXPgfWbOiMNxmxbvOvzxY6eoauGtrs0i59eUD9DP8vfAkefBPAfVygQZlM6EMH9vO4LwdExdWlf7apK5Hu3jV51OWDdkNy2976/LW6UQdYrbUEqq5QfT7DOT568PrYCX9jRJK9RfZcfQeFNvoIVa61yElcrvxGbOsX2yRq+MLLVavDSI71fdUrOCMc+pL0iwfdviNHQLsus3mdtNJE3xFBLY1bmFlTAXWunGvLBkNGZMKSqNFofalEJCeIUa2wEeEo1eWfKohlbo3bMKjo0MK1145RPOPyHgmrX9eEy+lcQmHldEFeV4mtDT2dbV3x9PCIs56emNak8bnlHR8n1EKkEQAEwnSYEKeIn97/iKfzedgvo3bXQ29eBrY3TFJBrAggG6+6KWzvvQ2Nyi+3gqECrau1MS7Z1IEN4DaAUECP0SVVhTQz4/Xbt3g8nXBeV+RpwpqAxAHqmSjgmwjTNCNOC6bjEfPhBnGaQdGfLOb7bsu89xiTAW6v1JHLyws2cu/4ebOXf69s7c3NPcHsy2/yHQC9awBs75rVI6U2Ikf53pXVU8EeLZX7g/aU35saVWBTHrgiE3orUAlTqZYkv7GxV5z6MfHfvRDca08TIQm17zcWT/2dmcuGwj1BXvgWWiEJx8/8huh+BZNILcY2B+VmcVUSiSPnFLCC+qKk9IodA3akOKHyJV5XnB8fAWZMyyLRnLKeRBYksghgVkB9h2wlyoNmwHa+ECKIonkNCp9Ql7NJD9khCOBn196+/1zVC68ZAch2vKH1HYHgKy59O4rwKFWgu53H9v062K5z/pry75XizVzr8hfapI0c3sMLPb8ZKfxSBTFcZcMSpgyjpdly+NImb2lvX8a2nJYXFndU1DaZCY+oVdSF3N08xXhc/O/hmJCGUXZ51VvPgFmWZ1a3EdSXacC7GPWU11y6iGd7fNfXp+Elroz/bIFutBqONC7U5bQi3A3kMGzndZuo+Q+wCbNTqGPOjT/nlYllgtUz+8Z3HHWAEAAOW+Ykg5ubJUSZKNiAba4vtRPL56d/ZVI7AIPSe7VsL3BGy4nsfnMGHh8fkRODOCDlC3iVnfd2oA1SwoUTns4XrDnLwTXqUmLdaVYYWRa1YQ2Y5gnzPOPh4QH3Dw+dhdfjCGEGnnW3Fov9tAuWG6CtvweTcgQOy3ei6q7j80YFRGbFEqCT1He7jc3d71a38QnmRK/5LIcDXr99i3/66k/AckReFpyfTlgpq1VFyp7ijOlwRJwXzIcbTMsBQQ9pQsdEbYz6dpH/XT4J5kZVaAUowK2Mjfu9B7pNWOwhxb2Y295K69vg7zfzoWtHX6eXMFTjERW4ubq0hTfMuy/32vVhWwY/iiW05jh6elOe5T+yZBcgOYgmYTkTBvSP6ivp+ZDxK1DrvmDAvygoUljpNzuQhnIWpfgK6PbhVwGo5badryUe9oAGiaofaJM30PhvN5Za5moZtL4rfcTgDGRiRL24Xlak9QIiYJonrGlF4iTnIsxRwvlxBR11a+amRl0bVNY4VxKTZ7aKWJRhz0V7Ot+h+9YS2dKzfW+ttfKP30DqpugG5PZl7KW9Oeyvt8obpMUjoD14z7evf2b7HCTE3fVzUXbTBmyidJvszXL0ZOPko23Yu30IzqafYV3d+yPXOV18xAuPd/y4yaMwHJEZ9oOqK+w1/tq3s2J8N+aVSId8su8z4zW2adLzoD0Z3R8336eeDvfo/WPSLx50t2BFhHqHAspzRhUFiNUcAFRfbqCbTFTBMuCAxQ6g6oG1z8dK698tk1MBXW9yNuEgg8wKunUy6BFPHZ03qbcK+UnqP5v+6lIDuDtCGzNSICfGNE1I6YyUsh7Oo8BLEfRlXSUGdJZ40JxS7aNAsqEnRlCswsGA+Pl8xk/v32N1k6hpt2uL17M96Cbue6ttb/tbI9524zuihb3P8r2xllfmZZsiW8tikpPmmBrAvbVMtMLVj89vfvtbfLi/RybCq88/w0PKQGaJhnNZNYOAeLhBmGZM8wHz4YhlOYCmWHwOLU+rr5VXGLzrm42y0lHWNQEH/6dleQDQQMeSf8tEGwWzAzz+2mi+9HXvY7r6e029u3Z4f9msh5bYY/3coUFdNv3ivou1CwC1p6v2qeTOHX8wwGvnTHfXtaAak7p5RJeNPfAdKDGkeYzaQkRIOTdjAjeW0zQhWHQZuwfXBgX7RfE0/uTq1NSl59tqRWuBqRPaPk//XpCVOrvWKCMpAc4C3s/Vvo/UFl54uhwwxjidTjhfLggxYjkekC4nGUMSGg8xlDf7uVDaZr+1TQRHr1qN6vbkXX1oOGabMl4AKEbPtNfYLvpflW46QDkC3HsAbvdayVeVDGbA7VLox2rEy5vwjgNQ3JdfaNi985zSstcOoXW9Vu82KnTPq7zF2/LywLtmqWsuSjc9cGfmRsEjIivQMxZH/x4bCb3ujd8+PbFOxY6/ykvP02E3Pl6Bt98Npsn5Wfm+X1RtSy8fXpJ+8aAbRdi7zWdXhKCzu5TnK5PSJzwBOKG/EcJdp/aH44TBIF0dxPLb1ZYZdtSb1EsANzSmaI8jjMn7qX+NQXmmBmW28vyWeXhlo0+9ZUsrIhM0RCQFkiUONIug58y4pFSWp3MS1xIiAdZMsoEoqv8iQeJxhyAuER/u73FeL6W+vRAEUHzK7cS8a6DG91cRwLDJXXeujwH5WJHqn2mfhwIJjSTjopB464KdzMkMeQZVmPuxAbBRigDg7bt3OB6P+NOf/4zjq9eYjreY1wuOl4QLIlKUo6NjWDAdjrKKcDhgORxB01QOpRn1FSko8Yx+DLhreg7kjvqsn6/y3dUFrYDwee+lPaC6Haexkn2NofbPMzMulwvKHDNA2gHvdhvtft4lXzxP04BTNDdt5h63bZVxKQ1QSzmU9xgYHx3C0eS1YxHSHw0gtnaZohIscoAfB3s1u6POO8W7ASjuczMu+rzRjoXUC6FaxvZ8nXu3m6S8bGT1v0aHwrP1ICpmPD084Kcff8R6WRFIQNBqcx0BIc5yGjBY43NXeVbnoYLKjhdJm+Qk5CnOIOebXWP/t8839GnRfro58Dxwehn48NKngCpU2vUbBPs+9J8lPy+jN7JPSpG8A/pQk77dfR/6PPvnuKPpSkNtXTdt7/J8PglSdiMPD759fP2+33w9S15caacUr/d9tJ4yb7o2k8oy4Q9c+ERpW89nrvGF7pqioLa/uJUBzb3+BqMZF6MlK6OvCzFq/G+t90iuj+hu3xD2fPrlg24AgSLyQCD3v5k94G7vU50NFcDsCNgR4DbGYO/0gHv0ORIQWgnUMXOgGMojcp2Y/UB7ATyyQDflNHXa1o/rbGna9pxVQWsNBrAcjwAR1nVFJEKmgJAzIglBn9e1ADpOCavTMDMyAgnY7peAMsvR5KfTCcopmvptrEkEtD1c6zkEx6hZkr9OWx/hl4Ky5pmmyIAMSGxttfptQTcX1xIBKY4BEdUNvfpnDI4BzPOCzz//At//8BMQZ9y8+xQ8RczM4MMNKMxASqBMyEH8OuOyqFtJRAaXuOBQsFgtvWHbdtdW3+56VPB1oGptGvVnpdP2HYu2UMbXGOFuSa1yOmKkI5A1GlcPRvy7vu0FkOlBULD+7PLwtbjGy7rKXmnl9TSymG0AivIHzuICwbmcUN4I3uadl5Y9eGc0z66BaRgAoArOTKmxdrH7bMbceNugXDlopK6q9WPaj4eFGzO3FG/pHvFi3w/MrKtO4k62Xi44n56write3d0gJT2vIEuI3DgtEkBA255RD2oz56zG17oVewCEXqc4qfXbWTOlUpu+btvs+E03dh+bape4eaP/MO8DX6tX/7vNY6B0+Gf1Si6KExoLts/Xz+9xO1rLeA+6az32wZl97mGD3fnVdIvjJTZFgvJtDg09+jK8sWeTtc3VnJHs+o6Bo8gedhW4wvOfV9ZcDtnc/1CMaXtvbfLt+H3PX9rnlTdwdYexgHEeC1k5e/P6mtzYS7940E3WOdgywb03gAEYsh8DP+WXAKzeyu0HZjSZvDAG3AAViza5uXmFUWOrYTWCZbcbar/1bbMSG5DqyhoJyb6mxpBfv36DeT7gMQQgyUwJFEvEkqx1yVkWWY05MNUJUI5dLiGSCJkz7h8ecElJLbv7AKtnoV4AN2Pv+wEsGyQHY20Ttu+3PcBN8Me9U5mvJpCz/q3rWsOLdaDbBHrx0QZrCLI24oL3HRaBFfD551/g8emM+9MZrz/7HMvdK5zAiJEwHQI4RqRzkhNKSU7ompcDpmUBptgCemBj9YPFk/d91NCFgrby/XraZ1Qt4CY/Pv0YvwR0v7AOW6E5fr4vf1N/ZsRpUmlk86ktry9/VMaoDn8P7C7zmHnoa8qeFnXzrp3O9jFlj8bHl+F5xlDJ6RSULnP5CEE2ZRdrcFc/zaNXbjww8xbt/pp3J+ppYQRiLG8Psa6BNdWixVUoJ6ynEzityGnFzc0R4IyUs67yRYQpguMkEYZC1zcKSEBeYYhFRjY0HWRdhTNrnO1xHTc8EJ2Cs/OO/35dH2vlYH1Phy44IOcUmJEiMxwL/7vhDSZrt3n07e4Btb+2134vK3o+ZjWwk0T30pCX7JbNpa+J5LwIO2kzg9zvcZ+NMEkF0lzmks2zaaCI5GwHBrX1MgXqWjstXXvOKxPP5bNpQ9fWvXcpEJBGONEo31YY9w0OH2OA8OkXD7oBNOBxNAnrY1umCJKQVBvQPBiQhmE5kLH3LnXv9PXYXUphJX65ou1rn9mzcif3XGGKo34gsYjsAkX97P2GvYAZAp4CLAlxmjEvxxKaTyJzRETFnzknMEk4LVCWzaMsLicCekn8nkMEKJSoHgxGShnnyyqTI1SmWa0XsN5r+sCf+FdsQrydXHIAzz7oHl1r+g9uNQRbekqoS9GZ0fhxe6bWjDU7mlGJHmi79C3vyd+nn32KV6/f4G/ffof55g43795hDRPAGRwImTIyEziI1SyEgGlZEJcZNEWxpqnSM/JphlnJBrRfYcdGpm3S3nwb3icogGif9wzWgzl732ijqcpAOPs2Dse2E3zX+E0z17vyN4Kd6rx/XjXRPF743Oa9ps5trxQQCBclJ1crWM9j7W3fF9eikjTJ8Q+LBy2X2z0Cvm4j39TNnNR7tg+h9DlQVm2sz5tY024MWHlYnCbYSbmFN7i54E+uKz3igGlr2nB97PuMleehxgiPgbDMEUTA5XJBZkYMwKyRRhCCbGFSFwPXpSAK23YhNJsnYxTjB5HsIwnRRYigylNH/Yv249lUDEl/V6r1GPVfbfcYaA+vN3Tc5nUNZPdl7qWRvGjzru3q39sDhH3eV5U4e1bdREzVzOUAvOom4mUNUd0k2fM2cjRhySIFoXtnZPTwTRqB/L029NeaccF23OyZkXFww//R9qeXHxi011LQsv0+p1G99xSma+mXD7rJGvM8qOX6SkMoGEyK/rv9Nqbrj3H3oKqALIwnUJ9nP7Elz876w62VpgEVTqiMiIn8d99G2i7dNkSLNizdpr5oXWg86RGJddpCXE3zJBvxUsbMqh3qaXEMRoZ9b4+JroeZRAREFV0ZmYE1JUxTLBZymyA9Y7BIvQLu4ZbK5M9OEyv9r+MrezY/EnAPgDZZZ6FWK6vVSqzXKBbrotD04+yAto0oExAHy++sN9O64u7Va3zy6Wf46cM9Vgp489nnwLSIEpQYWf8kXBmBgpwOauHDYhRXkxDHIdvqvPM0XuciFev2y9LV/qUC33W+MgzOeKBqwt3PjUawWO0cOOvL8hsf94D2NcG3BzT3V4hqXRpwOGLStO3Tvxd4+xxMxrSX3SpL3lcuXgJ8fD2tz22M+n7vaaBXnvoy7XrZENj5lxfeWObRFrD34UgZKOB0mqJ1B4jQgO7eAKG9iUKDIDvzstSnUaizbGb2y3GBAu7ubnCYPkNeTyAinM8ZRLISOM0z5jiJq56fe6RWUxJFuMTdhhzX7kG4xSU2azepUg9VZo3+hoC7T0PiGc2Dvw94e6Aq7L2lt5E1079HXV4eUBVoqIPu+e223V4ySwpOrjCN6WrUb9LHUqg/hRLY7kvZ6/c9wNo/Y/RmCyJMQijy/ljJgLXJzSPhwx1+gUbNcXikud+NyQggvyRdBeZd/f0c61MB+u73Xn0pEMzFfyNnd2jQ37PrfRSZ59IvH3QD6CfyHti2J32Ukn4DGJ753hCeA1f+2WvkdG0JogjdQT4bwD2w4Pict6dqoioX1AKl/rPE1O6s3AandsGI/SaUDU7H4wFv332C0/0HnO8/gPMKwKxYGQwlyLxqvSWfEAgxRMQwYQpyHDFYwEFS0FoYhnAHaZ8DWuTqVfqYak8VL8iuLSKYtmDM7m1AGjqgXe5DGbv5CnI5vCaxHWQjzHdk+fJMRZQ856Zin00iyNk5GfPhiN/94Q84XVb8/PiEm3efIB6PctpkZomFvmZ9HsUCNi0L5lmte6RL0zEqSdbIBlvg3Xf2xwvXTWv83Gv+IchqEEqf2dzxArrpT39PHxjNbbMAjujbMuZBvgVIOhBWX9lajLwPrecrHoyOwPWoV/8e0N3WDwByIy85i1/xqhGF7IjHRtArTYLa+eA3XA1BgbXVvdMA300Dt30xakf5HQKQUsGxRZklavz+QVRCn5pi7vu/1oesyqqQh6atpPOzHGZigNvRm06fln8LU1C/0crDA8lpk7fLHQLdYL1ckNaLRGkh4ZpgATqBgcCoB30BYCbhn+XAm1hWxHrrN6xuQWmQUQ7s8v21nQ/C14idAtUM2d4Kxx4VF+m3+66KgIYGt/OqnXfjfEjHqdZIGoKiXI727UhRGj2s2kGKAQ8h1LC1wKaf26ZWg8y11aDnwOleX/g+8CmQbpYN2peoh+eYAnG1PGxHr1l5Gsx5rxSN6u+fGdXbyiyGxi7fvTQyBhjv3apPO/UMpIcPbessL6F0yL5RZVi73Tu/CtD9HOEBlVA84LZl8wLAu0nWf28B1faaL6e/bnXzRLapK1WLHdWXCpjYA9y+nuXPQKjmWxBKeWZ8ZO/Gump1GQjJPvmTPLOKgADCu7ef4P0P3+H8+AAgYiIg6lLm8XDA09Mj5LyQ7KpJCCHq7nr1SWMRKDlDfijXauSo1REoEQRsic3utzFGtysRHnT3be1Dxfnj6K2r7ZNZohEwi0U5Wag/MNbcjmEBWu74abh7hYFDVxV0fP1ziTMuibHMC377+z8gI+DHD++xvHqNu08+BaYJa0pYLyvyJSElc+WRCBHzPGOZZ0xxQgwqrHWzFpW+3iodRjfX0ksYUkO/pZyWwbXvkb8FxSKlV23VpMqDfSG8ASSoY9PMRf0zxTRqdA2737dtVKbkkUu5HnRXneXfXml5ear0VhRt899WpVGqRyAEB6qznFC6wyt7BeQaT93jl1I7DIWtf75fkcsdHxvWQcduw8O7754n9aEDfZ2MLvThuhfFcXRWwwErAFcNDqjsrNIjIBvOpwlvX79GCIT70xkXXrFwxnRZwUzgCaL8hLqhuvVBJ53PdQWnhJFjBiGj2vfN+lnbVrjl30GT4zm3mVnu93MqpFKD8aPBGz0N9rTjPwk1ghFhq4j7Z/syeoumuZz2MqJm6WA+Ual4PxeeA5PP1a1vZz9finWeKg0GrvvSmHnjMuu/h67sRlb5OYdqCNnjg/3vUbvNqIKdtu7VYWRVZ2aNDkUlVOf1fPb7+hrm9IpX//xzY/urAN0vBdyl84yguut9Z4wAtn3uAc9Rd14jCMtvY41zWlcPuDdlOqFd6mC/h3Xe1r3UQWaiVbYC7gHQ6tstQtlbPRgUAo43N7i9e4Wnnz8gpDMCZcQITBSxLBNOZ2P3tb66cCrhwhAUcNc+zLAT01qloLTfQClQakTUjrtsALQrxpgCYqDiwzl0q4D6Urvf0v8teClxx1mObU8qAIp1Gw5s26dTqnxd/eEgBVx2jDUz4XC4we//8AdM84Jvv/8eHGd88vnnQJyRUkY6J+Q1iXuJrhaEqJsn7VS6GIoF0OjqGjgqo82qMnZC+3oyK2KlyyHgduNn74zL3rBRvdRa5QuINJBCYsFsNsha33blGOD2FrHST11dCy16wJ6F1uZ5bvrTC7txu5tmuY8t9Oi7gbtrLU8quK8oh8hrXaI1Bd5oXy1j5Sh1ouKHXJQH41uuDXs8pAcpPZ9rlFO918Ri9/PG5p8qDn3veD67FwrQ9/tenb3MqXM9lboSke5HCQAljQAk896EvdSrqt0M21DHGqub1P0kYwqE28NBoj2lFWu6YD1dsAI43N5hPt6CKIN0VbBv17CtZpll278iClbdmG0nM7t5U/4Zy7rnkqdBKpvl/Sh9TK7bfRt2vc7zLWAq3ztwCGr3Ivh8KyCs1LSVJ8Ck4y43lMs37bPnuVqbd2jOJ48R9urX39tVFoDNijAHUloYM+8eAxX63cEk9ozVYwS4dwF2zwe4zpdCQI7X9v0wAt02B6yMwue7um/yUGG7G1qQZcYbHyh91JHySxQpS78K0A3sA26gE1oDELoHtv1z1965pm2OhIh/Z08L1Ieu5t8QEhyz7+q+FRztM/D1KxK4WocB9Qe7cpxWBR5w8p/ALDGmb29f4edpAihhDoQpEiIx5mVGnOSQGwpqFUoVcsZpaokXelAMUKKWWF0DAIlp5qG2CTvX3qbe8owIJBFMsrmoG28FeubP6Y9qNzZk1jUTwikp6Ebd4GrgRkAQN4zJDvnwfcpoAfcGkJRrwPHmFr/7h38H0zTju++/B0LAJ599DoozVgbymsEadszKDiFgVsA9z7Pz8+wUuSuAu2FwI1IdMLYKnFtg4MtqUwuYPaHV/qicrl4bMzoPRCzc4EgwDNvJ1VWh75cRbMg5Y13XZs7P86HduOfn3049av2M9or2NWyjIQlPb007mna5z8xlmZ0BhOIbrNVjiZXvLeAAkG38StFUBWbXV6UtTnjuKnPuew8gLYUQasg+Czuq/Vnq59q9B7jHfN3NAV8vzS+lJC4gOYsyPmldDIQTKdh2c1/5hWAvM3gYD4d5O+jStoC3SMASA0454eHDz8hJIlKsa8LbZUHgKKaKfgMltSTVAoYKOMepnBcvDxGjuHYpX2zG6llw0Sp7lQ+Mx3/XyDTID/RyyN7MZSubqNRJppWqRezktBqGSAuz+e7lMAodMbg6OfkWVMVlp6+u9eFzWOLas1p6IQijOwqECFmxS3o4nSeaTX2c7LJ8itHOlzOo43PJ01CvIPnyCx2wGCv2+JuV28/tTT+4T9vLYu0wud/XE2hlnh0nHwZzo39vL/1qQHef9rRF+xwB0pc8O9Kc9UJDcP0gPgfMr13zk6kIacdJe3gxqnu9XsFO0154AKdlqd26MKS2lk39Sr3MahxCmZjLcsDrV6/w9O4tTg8/IfIqLiaUcTwecH8f9dTKJPlmQiZSHzmvXTMyq9WIICAZQAx1YubCNHVS6rhk9BOvZfYmpCQkV9tv3oVkmqYCgFNKWqYD2yybzlLmslESrv+YUA4CKsBbAbdtABsxiFH8VPs9TRPeffoZPv/y9zitCd9+9z1CmPDm7TvE5QbnS0JKKzjZMfLyXgwBcZowL4u6lbhIJWgj9DS0ZAy3MB3r/07nGqRKizYGLwvH52mY2aALyudzjIzcn1m0fPzlInhd3/bWpKYu1EaxaOar+8w543K5YF3XQmOi3KjCSBWI5Vr4sM8s19rHJth9qU23bBI7Wu2vNXRGUlJQF4y6ymJApSpBvp4mePslaN9XXsHxJ9vtGidsHjowae+WpO4YZoVntTyP+tE2El4D3UTVX5ucYtErL6Zgr1pWUIHLzEjrWsKBZgJyIEiseulGce3g6jKqdJ0BMJP4ayuBEAgIEUuYkNMFp7RivSSEacK6npHziokOCEHc8ryiI1mb321nBFLg3wI36/J+iV6VMsWMHoI8N+/3k8HWkbo6BpJWnhkl+ru1zfVZUGvc6ud2VQJRZQ5X32276fP0/NHXq4RYfaZX9jDHKD3H3/wzfZ8NeesoP6oH6OxtRCz5DvqzzA0BE8ohrgB3VKxjdR4BZ0+rI2xT+NIOrbRN9MoGDcnOtyulJJGC9vrB8kXFEZV/ohzeU+TllTG29MsH3fwyguzB9XOA2/68RaUnhJ64Q6f9afUqKH6BtleIcFDvUg//vjKHUTtfArj7SBlQQUBkT7XAvmcibTkFxZY3xUIeMcWI5TCD1wWUCRFZ4pHwhEmPNF5TUovypBFKdLmmCwlogHoKAbMKRVlOTmCEEuPb6lK6Z9MXpFYKcWOJavHsXUoMgHqBn5IcWAO2I9rbjadJD7Ix1tNCxCq8Pdge0bFd91ZgY4oxRtzd3eHzzz/H208/x/fvP+Cnn+8xzQtevX6NaTninDIuWQW8KydQAE0R87Jg0o2TxV9VLfkhhOaADXK0RiOmCGtvl4iaqxW4thZmz/9Gyocvq+2rsTJSx7qWGdV1xlsCA23r3Cu69tkDtf4d6spPKRULbIwRy7KUsHh9e7jLay9VGVTV7QHlDK2y6K75ew0vowAKQJymYb36vH3ytOrfK5vyFCAz6j6QMnd8A1H9bYtSrEoSA3pCDyp9af5yki01J1RWEFXHYW8cN22lzsrlFBSzhk0xlvnD3ALCYiCxucWMNBh3oR0xEIgLEyOoD0JkieY8EyGRhArkkHFzPOL4+g3mKSIGIAZdketWArgA6L1NbYO+YA+6K2aQa4RMthq6Z9PbTx9j+Wxq2YE9Kf3jAb8pZ6O62GZ+U2kzQQ38rBvPPU11dSs/jPMH+Jk9ajc5+jVlht29lwDJER4ZlbOXGBkWqvi5OWE4wddRG6d51Z8BLTAf4bBR/iPwbZn69tpf5rpnaq+tHqTLWNWZN+q7AqABOx5j22+FGaOseDBz+zyb4jfOo0+/fNA9SHuE5gdpT2ja53DpF62AaX141B/TE54X3FfqOqzj4F7Z6KB5X2vvSKmwxwprEAnXAO5xXQsUai7tEpLlJagTYMbxMOP29ga8PoJXRkwJEYQwMQ7HGzyezgiUAApIZP6YrB4tyu1113hGxgRgDgFzCNqMhJTNR1uW9Qo8MGZaqi6ALxIp4A7Fn3ejbNlkssmtJ0PK6ZEM5qSgm0tfZlZrlU1mGcyWFlhOrlvXtZRpPr42ZmZpm+dZlvxcvQ6HA96+fYu7uzsQEb77/gf89HjCcrjB8eYWYZpxycCFGYlRfPiKxT9GxMk2TXYWPzjacX9mvfAgbcvktgy2kEyhSQUxVMeGm7c9KbXCxMrsaZrZrK9jAUVUIzqAti4KzTxzZfSM+jmh5PMwwO3ddvqNNbYy9HGgYWCeufbUjjJX6jDgb1LXdmWv6YdBXvW92sbYbVQcWYhG5ZcxJ1nVC9PUzFFG6y5i4LVQ4YCnAu0y8Yj31u9jYFAAB8thViklhBCwLAssClFZlna8JEOMMoBTuDmUNhhEZwCJGWvKCFk2UhIbfQMzBWSKcjT8NOHdu7c4vHqNlSIQI2xfa7MQXuYYD/vHp2a+kc0nG3clJQOX6nJCNJ6/Pc2MxnjU988lzw9qDUfP1Rr1ivgIANr3XtqJMU0DA1jkEvJPEGo0IqsXgYhL1KkRGG6whZP5tdbb9FIA3n/fycwBZAceaTvvm9dQleHhfM4VdBpXfmmd2+ptDTubunB19UtoI6mMsJAvjyAEncHNePiyCiYIoYy7DX1DU2gVJeunUqq+zC/okV8d6P5YwD0CBhvB2AmF4QS2e/IQKodCA8R7AT6qX4mwQlQnBdwgDhjUHtPyUIjcb+4AdwMIB5PMbpY7JU5y7Rd7NudUNFICMMcAjhOWw4J0PGJ9EjAu1rSAt2/e4HJZkS8S7SPnBHKVJYK514FZQmwFEqBM6muakvaQjSu7UyqZEcBNdBUisZRTlDi8HhwYwOZsvQ7YqV7mpy3Wywxm88OuQpP9zFTh3QslhgCS29tbHI9HHI9HHA4HMDNOpxOYa8iylBIul0sZD9v0GELA+/c/43RZceKI5eYWx5s7hGnGqsA/2dgYbRKJv/Zk4cRGdAj4490dwTTMdstw2+Xengl5EOJUv2cB5978K8puyWcsfsVC6hQLbwVkHs4nX9/++0vqab9Hrgzlfvn35YBjr6zRPVO0KsjTMeziWFvyvM90oj55UDASiKZc2G9Sdwv/jlfye/5T3qOqGDGJW5cHJcZf0NWj8N/OVYtIrGFxmprx8G16Llk913WVTZOu3V5g9/3RjLtMLo2LLQo8KDtBLvU+Xy5Yz0/IEVjIYiwLrQTlu4GA9XLCku+AaQJNExAimAKyA4+lXwdjOQJYdSx6Hq/VRz9nB/IIrczqx7evg30f0fXoeq8AevnjyyiYVi7u1qN95zrAa0C5NrR5lhhlC6oDYL4FJouKoa4D29s+3u+L/vo1wNwnP3fI8eSRslTqTlR4yiiZ6H6Or++BYavPBnt1747KtXd6fjvCfHU8edPWfm5rwwuPERhBciz9Hi/eVLEC72vpVwW69zRXYLtD/trzW+az1bqagcN2UqEfRLgJtcN0fLKYrx54e0D8EkFhQsre66H0iLD3Miqsw2SHWZCdxsfgJmJAAa/MyCtjihPmeUE+X0ATISADnBAj47jc4HJIeHx4EMsQy2EQOa2wZrOFgGNZRrUNC1lPlyE3EKTSgTQeamV9Uq8pKNheNGKHMT9tIiuOZgmAK8pAShIBpAhcFiFZhkVKEgVBx98tUZkQXpYFd3d3uLu7w83NDYhINmOp5cwLcPsdYyyb8Z5OJzydL5jmBQgTMN9gWY6Iy4IUIjITEst+VLbNQNBxUtBZLJIGAhp62jKfEaDsKA3smHZPp43VgEIDkBowtVtGvdZauUyqDpgw1bjb3k/f6MG/0TPdkUDo6/HcHNwArkEaKR67YJAriNjNrxdSzJulVwOOABrh1AojrgX2bXD0XA7ecFZo3+7i38rPu7tYPr5eUfcZbMHO9T7NXplSGmdsLfH7Y9OU1vBKibMvvCKo4i84v9174Zenm5wVdHPOSLZSl5OWo/OICWnNwGUFx4DDPInbQWaNhCTlff/dDwiHW8yvF1CI4iZGsZnXMr/qRvHRiguZo3bTfg9kOwvdFWW1VyP31Mqe7uyar9e162WemLxuam3v1fZ4Wd3n6ZP55Pccrs/UwKdUyst6VplJm3d8e8q+hx2w7xW1Z2W0y3eDT3bAplSTnSFFXJjI5XOtHF/n0b0yg3hrZLyWelzi+X0GyimqGyVp8P5z7oA9xvPXfb03oNw+HUEFuMhE1EsYe+75Vc1fDejeA9J9h+99vwYqRgKiIexrFesIwtd3I8j1sxEYXfv6774cG2wi0liUDuh3dfef10GBoVjLh+qnMn7PFGpepGH+BFhnzpimGdO0IE0rQBdQXpETg+KEm7tXWC8rLucTKAcw1IpsG4DqepUAerfsk9NaXD4S18gFMm65MGUCIZL4bs/LjPmwYJ4m2PKfAWhWRSJnaESR6iqQ9TlRYoTNV95odeQi4A3gTtOEw+GAw+GASa1ty7LgfD7j4eGh+Ifan42PCfGcGRQiwjQhxAnTvCDECYgTOC7IMSJTANQin0GlHQa8QASU0yUr4OaKrXZppG2fPWTzKAgt6M0Rc2vnpSlPzpqwI5r35uX+zKtjTUFWQ2LYZ/jX6jpKL5kzcr+P1dtD/Q4cX6lX3+/7lpUWmJjffQMYS2SdVH3au30rvty+pAJcuud8Pk1+nteitbJ7Ydb3pwfdfRhFK/8aMCigyfHolwr++ozkbUvW1m+iaChIpVBAfgMWlDcFFhcD89M1sI0QxMWLbeOk8h9iJA6gaQLHCWnNyCDEOAtAymesWeL8X5hxSgmPjydMr6mUOUXnh9/NvcatqgcR3bhAbZ+j/t9LNovz4Ll+rHvf/5E127/bX9887z5FatVxJIItzhoxNEasrqIwRdEVujtHrNTa7tZVxNfN1kT9+1uOsG0PiMqR471i4es06sMx2BQeFRQIZmSbWM34NEYOD9q1TuW3A6fbvqmcz7d3VPfRn8tww3t8Hp4n9PXueZyv66g/N/XvcKWvQ3bGPPIe+TRQOPc0UJd++aCbtgD7Y74D2wHzaY+pv1Rr698Zvaewtpl8I7B8TbsDV4thwH5ZfX16rXj84BZsm1DzzHqbik1BdtRPM8J0wDQn1QgzZJeK+ETe3B7x4f5npMsFzDVcT065+lQBZWOlWMQZa1pxuVxwSSvAWS3sqjAomAzGZAJhnicsi0TrCApOJYyeAtZcXUgKSNGTJEkQv/QG1zaKEKsnOlMImOYZy7KU5WxzFXl4eCgAyNxGvBuJt3YTiUV+Otzi9u4N5mVRgT0hUZS/Avwluq9txGIGLISiypkGBLY2X/ljrnTT7FmApzkF990o27OF7nxZG3pUsUhVaSl3rgCpYeqAHQUXQ/2F87TnC3uMfdPGQT7yrH+vqeb2Ptp89/K+Nsv8PBwZDLwQssNtRm4vL7Go9XKjcc3qN/AZHftGm4DW78aDLPqI5VPKolapv1ZHm1f2rIHLnpZ9ek7JaiO9mIJax2polNE/hADKuc4F5R3ELJu3UUGqng+GRGKIoOWAlBNWzrjkjBjEkJEZaukGMhNO5zPeiCCsVmlT+kob64/SL6oQiDKA4hLRKM6EYsCxC16Zsbbu9eAIoO1FK9oD2f7eRik0Bafre992mJXboSurkwdc10D/teuuRrBeL93twTsR4gCoAlxoaq88Zq4W+B3wuFf/Ub9atSQCGJeNojDl5AoyLLTzgr7p+Wpxq+nqM+JTHpeVvKnSeQihrqxTPSvAp837XbnSUll5ytjSVg/U+/tNWdDqtaht20nP8NhfPujWNALW14B2D7jt+79kfcr37rcxIB8i7JpWtRGKPeB2743iSb6kjqPfwtAgS48AwCgnLFo7eOddbZbPHBQiluUIpIRLXpF4LdYIChnzYcbN7RHpfgUliRsqIJg1CgogBzhUi83p6QkPD484X1Ywq2DqmHAkDRk4MWKcMEU54hwcJMqIbo5kzsV9xKzamXOxYhV3jNoom2U1jG0gLCFgORxKn5zP5wKmLXwckWyQPOhz67rifD47y7YcXDNNM+Jyg7tPPkWIB2QiOciABHS32wd1mRusEVFERDKkfv4o6ML42DfJxtnRGOlSuFr2ijghPMuUPOh+gYI/zMena4DJA6w4EOpeQI2uj/LrwetL6zRq0/A69oH09v0tv3KVGPOw7prxIduQGIvFU+cVAygbkLdpxG8K0HYuIJs+MbAAVB/WEMrx55YmjSBUxsrXfSDwroG0AuS1XvM8D/PpAX2fx8hq5qPP1J7xUE9+N7Tk5kIB38yyudLc5ILF91aXvDjLoVb5gsfLiryuWFMStzFdyZF9MRHzvFQ3HJuTXsZBwUUHlv1cz2qjJQCxzPO2v+zQMIvI0s5rK89hzUbs9fLM99t4rPs0mrs0mF9tzr08NtVEZYn1k/vrgdE1xbQZfQLKCiD8RTTzVPLztGxt2rZ5Yz3WeZN9fno/d31omMDqWP5KmfacrC6XaywGGFvlGfEX8m3rUj+Ge2ca+DaOsNgIMBvdZe0HvzJsWKofq2uyw+L6B5Wd6Mr0fGJPqRhZ+Gsd6vjY5zWo+asA3dQN6B7A9qkf3FGn7XXyS+pjKXTEArQT+5qiMKov1QsDhhiGgHvUhp4Y9yz8xNvNDeWZ7vmt9sfF0iHVjQhR3CMkvqwCRJKlrWWZ8PbdG0zLhB+++x6UZdMQg8HutEeziAGE+4dHPD4+qfsEI2fpw0jVPsPE4BBKrG2GRiFJq1qyLcY2I6mrih1/3S9R+caX0IREsjlR3RimaSpWbPsrp9a5iCQWPm5kUTahuhxvcfvmU9B8gxVRZbpslEoqIGVBSxUUqLYv3VGsUkS1fmW8TOCygPSseeWGFquvtpeT3NGVp1/vL+4VtJ7O9kDOs0K35LGdO/08GtXPl7cHuPtwYtfy6ZO0YwsO++++X8b5uFZav3dzsPSHgVo3V4Mr04RupKqU1MwrDTg5DHiLXddHcH1gp5dqTs8qV2bt9X0SbHWif3bDU65fb/Ls6HHEG58ztLgpouVueWYZEx1zKrCura/nIcxi6bb+tTkX9dnEjBwzeDoir4RLvuCSMlIS3pABQKOmvH33Keb5IP7hhT5DjVTk5rBvtylA/SmEzNCoG7KiZWPr205EQxcS12IYozC/Vw80zRJfu/95BXcvsdGNk5GjHDZzv5TraBk9MN0HYG3eJScXJUvH1j9XlMpSk04ejwFZL7Nr/fW3fu/DFlsdPA+wvywqR8enCjoBUONO7wHvUT1H1/x8bOQct+O+h0v6sQPqSuxqUcCw3aPi27aLqXzb5MYuf9+jib0yJE/dpPpCuv4VgO5xCKjnwOve771ro7yee6bKrhZs+8nSM+Om7vaum2B7ZY52448I5BoR979Hn42VuyPOFjx6rVWnvvoRhxgRYpQlVeEIIA4AMg7HGzAI58cT8iUjTgI0uWzsEsZmcbzP50tx/TDiDiEgU93gZWGbQAGZBXBzF1u7HGLBrc9ps1xOpG0BQLkAq3J4CCQ/76PtY3db/8QYcTgcSohAZi7xkJkIWCV2993da3zym9+C5gMSkyhA6kNqe81FtRCOn+DjcTvIRGbNEeacckYMEv+XMgNcrRk8oENWohWGBHBDxVuBRCJZx2AJvUDUfNj0ifC80FQBEnT5owryMeh+ybzde7YXdr37RJ8McNv3IhAV2DTM3X32wqi8ooAJLs96aIubw6jzs7xvzzAjUl2S3QL/Cjxeamjo+7lVtSt1jMCnf78o0g6MegA4RCDl1j4I8GC7r2+hT63n2GAgRRuP8HXfAwryoXOOCexXBa0OXVsLSFZrnSm+PE2AKU4EpAuQQsKqfCdDXEzevX6Dt59+ihCixu8ORSGSpfwgsb4L/+MiT3bpeEd+WEQjg7Z783Qv+fnTg0tTbD5iqm7AErlM9+jPeEctGGpcaQHvc/xjr+82SiPauNsAVInZVzJ6WrxWlp+z2TWiAO0BJjJQSUA9mKnwVpkVFXbLdX+aaimf/abBtv4+beZ0l9rV3W1f9N9744zJbmZGBCQqWc8fB6B4yDdUSbwKojse6fHbcKx0bPyda2T+iwfdnnnsAW3g47XnTTnPcIO9SXpN6Dy3s7ZYITCemPb5HNh4DiT0v6+B7lEdroF2ki8FODCRWrsjaJoRAaTzGZxXgCIAiXLy5u1bPD08yYnwIZRT2gBCBuGyJjw+vlfQrZZqKQVByzXAnXONr7qmunxeNkaC66QgA6kRMo8q8BQXiwqqQGIFsugYa6rW7UYgMJeIJ7aB8ng8ikUc1WdS8ppwCSuO04S7V2/FQnVZQWGCuNZIOKrIlZkniB9oQmWEZoUyIWnQSOqkURUyQ3fSFEE6THYmNauSBPUZJVEEjA72fDVhAKAhEk+XZP83QmMk/KFtMr99+311Hr0gjZhxz3g/zlrKsE12xNWqaNZHfaJBGpt8mOo+AlTAvbca0AjqQdvGfaNzE+M8r73rlaDmmV6x6IFnx7v8u4y9/hyn3Wd1bpp/v9886MFiP9b9NRadtI7BAGba/JbDRdzcYuMbQEPjvu0OBLLOXTBjInVJiRNyjFgpADnjonwkQNxcXr1+g2lexCmIxN0E6kYme08IAdUCbsqG1qhpcxkL6x9SQAqbmyiGAeHE1petEu7HYPi92F/HAQqsf/xve6vPvwf+vRLo3+np0CzORq0G/E1tJDc2cIB8L404jbW0sXYTFUPG3vwvCkTH90bWWUv+wJ+i4O1ggvKODqzRqADrGoFshF8EgLdjXmRNp6g17erpj2gDuF+ibFiefq9Fscg7pdMr9r7frNxRH2rmV5UEK9/Xrzea9oo5IGBebIfXCekXD7ot7QmHEVP1965plS8BrR+rEfdge5OH/R4Mms/D/+2Cna6te9d6oD0C3l0FKmC4kj98nvINIDl6PE0HLEvCU7oHQhYrbgI4p+L7nTNwSbm8a8u2meVgmcenMy7rijXphCVzZTELIyMhYwoRiQgXDZOWExWgDc2PSJfdIYJzA64aPCHvhSBHek/TJIwq7SsxzFzict/e3mKeZ8kl52LdjdMEzowQZxBFIDPS6SItnxg0LZhJNr2Q+lauVhvOsrTIztJqAkWFJ9RaLgKkKhtyOnVdFm0AiGOvbJInhOKqIvHQt0DKi8qt4NuZMy6PXpBuysCYL46Edg+oRwrrXj79cyNg1idqBNm2og3g6+Z6/6C/1betz6+vhAd440c0igFMoc2bPr3GDz3A2eU9LwDc19KeYt8WsQUf5EC3d3+x+tZP6v7VOVTkuYBZ3x6vUjBr3O6cBd66WL6yeiOTULhXLqTvLWPeBZHXtYJajU2OdECcF1CMOFMAc8JhnvH69WvMxyNSzqA4IwaqczOabIgIHArou7qiOuh3AUqOlzTPKD4ZwU2lbZNnY4Xm5WNayrT7Wob1XQmxO3puJ41AV491g29b6Ou1dSMalUFat5anaS1LRStVkXuoKjwtD9urv3cHGfGsDR4JMvcNYEsgX4HeJjPg6mCGtEwtJCdseXTXESUfhscErYy8Zunugay3eNtfjLH8+XdGwHuUbx2Hbk/GDn4a8bE92rU2V645Tr980E3Pa0Sj79euAdcB9whIX3vG59UvT18D3GOBPgbb1wjkJYB7BLx3k3KlrWVu+9tfEcETkZFB04JpYRwycMoA5wsYCcwJWY/OpTghwnyrE1b1O05g5DXjfLmYQUm0b93+nyEafmZhIgQUq0zKWWM2t30aQyjgYQRqeiYhUVBmzMsiAp1Ts2zcj/HhcBDAfXfXLi/LA+5Po0GwHGOd0xMyRVDOiMzgVaJORJo0WL9ulWRo+DFGIjO0kdoxQwEYppQwSUxR3T7jDg5CYfbeZ7PIBs/MQUOa9rRgrNbK9X1C2mYvIHug2APtKsjrWOyB5l7Y7AHua0z4Y5XaOv+MxsaAhFGBw9U8ua3XsB4jpdx971NPm1WRbOfF6HnbnOeBYit+0V6nK2PfNKG9vyd8r/Fr3z/ej7scstMJal9TXZAHc8aaWJTfYG4ZlTatq0xpJZ2v2jmbOokqY20MZjYQFhpQlAM7VChOInKjyoF1XcE5I0xRoiHd3Qr/CoxlnhGXAxAkekxU9xLb2Br1ADGEiFDqvAOS0c0JV/9rtO8VryZx6+LQzPOBIuxe2+TWKHd2zd0P9cEmTw9WPQ9gohJO0/Li+mLXwLa/iNp6eOBtcsLHZ+/7sm8vzJBRGVrT0r7X+zY1967wttH8IrJt9lAFUUoICMgWcXowuYlI6KlhxGPM48vzwLuvf49BrgH4Eb7pn29k7A6YZx5b2PfK8deenQ/Mo66Te+DhdUu/fNDt0nOA85rQtPt7hPOS3/21/rsX3h7gerAzqndfvybWKtrJNszXpT1CfxZo+zz6+u197+oOEEIEEORUxcOygI8HfAgRT/c/I60XJCcAiSJCkBiiObO4mahf9poSiIK4XWAFsriKkFrsVhYoORGQOAN5Lb7MUxBBGkisTHY0uKo9m7b6NhMRpnnCojG3pV1iGYsxglmWmk0QE5GGQ7zFze0tiKj4n9lR8UAFMdJ98j3lBM5ApgzOCTifESDW9eONWL+msoQsyogsYbFVuEgJY/qFQUEAEauwDkQaKkpa7I+tLuQJFZ6F3mxlYAxaaU9wuAvXZmRZGqXWGvgSwF2fHQChZwC3Z6wfu4pUxm8PcPtyXP2Gc28E4nbqMlIs+nevJTZh3z3myyvgERUWiOAelKW052lObpqwhobrvG706JWZEYDYuwdsXYI2/FFBFTNciFCuoM0l75dp4yxTzdytGFxN5KUNQfujzncCBTn8y56zjceTRpUx3nS5XHDRqEY0zzjiVsrgDBAjzDOC7g2RjeqxnA1AROLjDXVvg0VgMkBS442Tq7P/s3qABnMFLQgeKl4d8BuNkRuc8XX/CDYkWsrZ0AWqL/IesPb8EKhKombiP8qrffmhAHHpJ9Z3WL8Qtn7dffnj5K9XoGZt8QDctxvYxkDvY273ZbddXxUv3xjPr2yPSC4U/TJ81DX+Wdyxl8c1cG77MHyUoT2F24C3p59dsGz1LHN+nw+Tyl0xatX+fQnG+uWD7gbv8fD7c+nfFmxf+91Pgr5ujXZq93fq14OAnti8QLHPPaF+DWzv9V3J19WR6s3hO6V+6rIxBUKMBwS1ZyPfSIzYnJHSBfmckdcVmVj+QkbO4sfNFMGULFM5YhpATqwh8gRsJjByThoDV0IIZuICImEWvaK4CFssR5+7NpY/BRFv3r7F8bi0TIwzMgHzPJdwg5P6eccQsNzcYlLB6Dd9iOzUuLWs46VgmbO4iWQQUl6RE+kJaCQKxHpCPBxwPN4gTItWMgtuYoCyAnBoaDaWNqvIL7RkvtEGuPtjiVGEEumSYmWwntFu514/J8q30ucGqI12vLAjohLdodDQJq/xnL8GOp+b6/6axZ/eS9t58oyQ6d4RoeaEaScMPCO4Bvx9LciP0SDfYTnNtfa3NwiQq+u15IWzgOxaJ5t7JpSugbGitBnhous/zaPMZ1+HF1qu/D2/adJbx4G62Yvc876m9acB2eoaYOAocHVpk82N4m5SjChq6Y5RDrgBywZr89XNKQl4z8JjAhFCnEVxjhEhSGQoLb6MQUoJa1qd/DClz+SD44Eg2H6NQHWe25kIbad5KIhmYnr6ubYPopFVgNJYC/BG6TnF0vKLGG8CbL47OdmAx50yWhpEec++2HqG15n71QVWfjtSFurvjo8OyLfJteNxLwHBe5jJ6Ic1BBa5+e/7yqKLFUXb1aMvezSaL8Fpfb1H7/SWbe/v7U913pMDPSDfU5JKnUz5ep7l60mVWefL821+FnQT0RHA/wXAQZ//j5j5f0JE/1MA/10A3+ij/2Nm/o/1nf8RgP8OZA/Yf5+Z/496/b8M4H8D4AbAfwzgf8Afg5417VmJn7v2/w+w3X/fBdz+eQd6NpaHgYXb53sNQO9Zua+9P7rXh2h6LlEICHESgUJAVBk6ESEnxs3tLYCMhISf39eDaHJQ4MkMUACRCT2J4gGSk92Qg4BRkmWx82UFJzkAJIPVdUSsulkBYaSgsWYlzi25fjUG7YXMze0t3rx5g8NhQc6pCmcdl5Rs4jOmSLi9OWJZZnE9CZMIYRaL0/l8RqBYNtgRiRMMZYtKIIA5w8bHNqQKM19XAl8ywroirSvmw1HdRUijLKv1OzAQgMAEgetycmQISkcgRMhSYcM8NnNFwhNae6EgHCNLpZLuFki27haecTfWJVRBHYuwbgEOMKbd0Xx87m+Urt1/qYLac+Pd53Z4Q1+Xvbx2gUkDdNv8dstzQM2XW55TweoB/V5y3Aw+qnVRtOyhAeCutEF1D4Ja4bd1Jg2N6dwHHF3s8TPfD41124TuKMoLqtDsc3XqfNMG/91CMooCX69HdS+JUU+cDYQYYukbq2NKCWldwYn0pFU51RIEhBgxTTMoWFhRPUxFIxmFGBFDRIzjMxyIxdWM0MdUdsBbx24fFDqf1WfmzzVA7Z99yZkTo5lFXulReWrh9PLgef+efVoePY3u0atPdkS87ynw9vm+P66vBhhd77d1o/hom70FdgvyZdUExVhChY+TaCEyFkSbDaFWLQLUzZJdTduaW80a7PEMPbwUt/m2+Xlv1+tJstt8RtZ/L5FGfLKMZemymlejnFu7tY8Cu4gxO+kllu4TgP8qM38gohnA/5WI/hO9979g5v9Z19D/AoD/JoB/F8DvAfyfiOg/z3IE4f8KwL8P4P8OAd3/HoD/BB+RNtaSFwLlEZB9KSGM3u1/94S+CwA6wH3Nst2n5yzU/vtz167l4QH3HvOx+sYYxVoTJyVmBlhiasrJall8r+OM5XCDw/GCDMbl6UkolOXUKS4lBwWXStC6VCoxtsUP7c3rtzgcFtzeHPD+5591IojwpiAnPFYlRmOHh1jWCTNYhBsRbu/u8PbtW7x+9QpgRkoXAb/WPiIQagi+AEaYJhyPEhJQTqgkpJyxriseHh5wWROWOGEKEVOIcoZkGVsAYBWC0mSCKQDGqEz4JVzOT0jrBQgRCQAjYpomEEU5dGMmAd2ZEIhLuEZQ0N7s8Lb7DFohOwijoTvlJpXBKCdi+U5mNcdofnRKJiqtB79Js9BXR+9WjNKh44EbWrR8gXEM19Hznn6BrRWkL8fXsTzn5nH/fpOXe26Q+fb5Ln2MTeIa0Cl9Etpr3NXvJWBpQ0/X3u/ATPMJKhuGEzMktKVaiAclmoWr5hdk8ce0BB4rTXZ6q/Xzc1Fq9sC80T46V4BREqVYypqmCfM8Cw9p+DwQpwgKhLQmxCkixYi0rshZVvwsXGmYZsR5Fj4GgNQUl9cVIQqfizGU2tWVQeGNAswUaGF7mAkbI0IPOh3t923s5N+eAchfI1Igg6rgNDRDY4vpiAdopuNnX2owcvn2wLv/7EFcAd7FWLVbpVrecH5RGRszwrQ1rDx0ONf05b4viagFolQrx02etZzg7lktyuZNydRl1WEGWHW6FfZnFJgROB5hDZuz3k+7YBAL6+v6wCzf1xQoquTdHjxk3bLDvxkKX1y9e0VjLz0LutUS/UF/zvp3Ldf/OoD/HTOfAPwjEf1rAP8VIvpPAbxh5v+bNux/C+C/gReA7l6rGaVrYHpPAL80n+eA/eieB9SjfHdB+SA9Z337WCv4tbz04u6znsinaRK/Kt2QxDmpqwOKtSiljMQAhQnL8QZ3yOAAZASsl7MEvY9i9cmCsvWYcwAanuuSgRAnvH7zBp9+8glevboDOOP9zz9henoSgQoSwB2r5S1SKIf12MRZc8aaVkzzhC+//BKv7u40qgk00gcBOnkjKTBlQuKMp9MT1nXF7e1tOWKbGWANJfjw8IDz5QKigJwyMpOERGS1xpO5elQrullZiLgcAEQFGWVwZqScwbSqNT9izUmE0zRjBoBJ6jnNc82TIdZv456FxhRgB7GIM3VAoCEBLt8JvGFeDfgy4INqRfA0HZy1T0u4yrSlDb58uOVyV4fu79rhUc8dif4xAJetYhjPv2tAWmu1C9g2gh+dECw8pes/QpH8vi4yPcnL1m1bRjX05fc80N4dgBPfDhPUPbgBAOJ6OEeAHHlelO/N2JC6ZFVhywqmoZY7ZgK4HuJT8AtbP7RK2Z5hYpdXujawtUOfN7cycuXMc8Q0T4VP1jpXugYFxCi8izNjnjLWdUJKa1PnOM2IatiwPhQ3c0KIvcLMMugs/ANcN1PnzAWwe8DtoJTy03ac+34w0NX347XEqIDb849ecbP7wMvn5MgY5+fg1Zn4jKJ5Tf57izczV3WRtjTcg/q9po36lGhQz0H+e3mV/lSLhj0ZmDRMrD5vWaPrMw/wr9Sz54VlbB2t7OEdf7/nn37e2/2c83CTf5/HKD+pm4Jr4w+wAAWqxGj9LbZ332YvA/r2X0sv8ukmogjg/wXgPwfgf8nM/w8i+q8B+O8R0X8LwP8TwP+QmX8A8AeIJdvSn/TaRb/31/+u9BIg7Af37wHO1777a34iXdsEWerk6tbnvweUP9aC/ZJ7e7/99aLVq8XG/sxHERDiy8rckTOIM5gzVmaNSCJANs4z7qbXmJcD5vkD7u8/4LJeEC4RKQgA55SR6ayHxDASS8i9ZZnx6aef4ebmiJwZj/f3eLx/RAwRrCc4yqYgAJy1j4NOrLoExcx4/eY1Pv/iCznKXQEe10YDLHF0q/MDA5lxPp1ARLi5uak+ZpCIKY+Pj3h6eoJZIzKJsoHMYMpgBZwUDJRKOYEkHgtTRiSYk0gpV2z7QeONy1J7TkkAfM6gzEiXC25vbxGNCYFBOSkoIDWc134wq5b5uAsootIecU9z1lvXP8zswAsMwzsAuJ1zRFRoxvvRytMowKX/c0803zzAfulcfcl882lv/owYvG3UqXlWmUsebcKPAwAOu+UPQa4JkaYztB7lqwHRJrMe01xNHmQ/C0hK/tvnuyqWegr5WZ0UqEJXlxgALNKQboDyKyxu3EOIQ17LDjVyea+lgS2djXnrsP02uB1Q55xlH0oImKcJyzJhmqchyKj10gOwiIHAYDlNrFjJbfO2bCrXtipdBQqgabuBzngdnPWaWZR3AEAgCQUanIsFDEhvGrttf9OOcf/5ujTXdeztnv/kHVoTsG6TaZsKULwGeBp+Xl4oeTbvDsD6c7ylvOOAd1mjcwC8xQu1v3vAucmfqtHBwGIDJGtG+31g5ZSWqWxHBd6Fb/V9ci2/RpF0PByDNStXv2sGkhE/8XzWfq/rqiu/VK5ZviklXC6X4vM95Kk+mTJSJkTlqh0b18fbPSAtDW2aVtKLQDeLa8h/iYjeAfjfE9F/EeIq8h9o9v8BgP85gP/2qC0YKE7XqkZE/z7EDQW3r97Yteaz/969/2Kw3YPm0XN7YNt/92C7v1eA9pV27AmA/trHWK/3Pl+SerBtR5oXxm/CHxBhw3LKInLCygk5y2EuzGisYSFMmGfC8ZaBEHE6P+GQM9J6wdPjI57OKzIIFKMATd20GOOEp9MJ5/MZl9MT1vVcLDpWDingqMdNU2FCq068Tz79BJ98+gmCCTPToAFwWpHSisAsAg1A5oyc5Rjay1nA7c3NjfYRkFPG/f09Hh4eaudl2SQaKCFTdcMQq4hGQYC64hCDkMumJnAo1hOJ1iLuMLZEDs6ikDABfMbpfAGIcH56xO3NHe7u7jDNshRtmyezbVg02gwEsaZXxEYgPc6ZSn0LvbyEbEqfhzIfjPbNymc+8dZ3BlyMrvuj2RurkBUzLHrfPcvfa4Hx843y9SBFuo2VY/OM3Q+w1QWUDa49BL2uDHsrTX+S26jmHuoS+b6rcpj6cd1LAx62l/jac0RltaIcjw3oBmCluSLh2+V6IgJxBJFaZjX/eVrKfoAQIsopilpO637SWrQrDY756kt466atXmHX/OM0YV4WzMtUMZADcUZBpH4x9jsQg4PRp8zP4QFrxKUsZnG7y7r6FUNo5pE/bImZ3Ym2uqGR/MpAoWqt6xakeLr39NSD/lE/tjTVXivK5KCf2ffx9gGROzvvjn536k+Tt9GoyWqTdU2lrySyx3T+s63aeITdVt9dlhdrv9bngquHr8WGL+woju04AGrXVWDmTC7U8hLfJy/FDx50e9rYUyieMzz4ZwxAWzJD2jzPjQwpm5N1r0RV1DugX5Tz8kXzNxntnnM0a+3bpYgrpPJR0UuY+Uci+j8D+PfY+XIT0f8awP9Bf/4JwL/jXvsHAH/W6/8wuD4q5z8E8B8CwKe/+Z3jaWMgvXfvpSB6dO85oG3pKtjuPkdlPQe298D3KPlJ91KgPbpv1swYYzkcxgSxVyIAKNCWv2yfXA5sU3AFAYmZsbK4kVCYEKcFNzpZ1ssFzIQYPyDEqQDaQALUcs74cP8ApIRAegIlIO4X1aYADgTEqJY02Vi5poTDsuA3X36J29tbAb0e8OUMTkksyGmFWBVyAd3ruuLx6RFpTXh190r6AyLgH5+e8NNPPwHQ6CPaN0EVgBwk2gFlOyVL2ZwxN5ZIB3I9FMZqmA0QsRzAboOG1C1lRk469VPCw7piPT8hhoDbu1dYDgcsx4NENkH+/7X3L7G2LUubGPRFjjEfa629z7n/q/7/ulwFBaqO5Ua5QMjIkuUGAkzHuIFkGrYbSFhWWYIGjcIdu2PJRsINaCCBsCgQxioJLEpIxaOBRAfZLlBhV7lUUDYl/Nd/677Pa++91pxjZNCIjMzIzMgxxzrn3rp73zvjnLXnnGPkyIx8RXwRIzNSTuEkZEErOaGy8JnMuFGNkBFv8yaHKK8N1ZPPgi5XScZaWWdXjy/b/hYodR4DVYpWOTvCc+QhGSreDWFfzzX7yTZRA1Rayg3dgZc8T9XgI9/wv0V2vhdAJjdKnrUiv0Ut+NlyUmzlAeXN5LeHBwU8Ov4pjaWQ6qRrN0cyt6uLkbFtO1deuZ2AQqkFOxQCDqEcpjXNMzTMoKaxAD3Pb1a+CeLZD7nfOrCdy5W3KbKcRd4ErOoFZMblehXw0MwRy3OMUd6UNUaL8iLzrgffLfCuvK1NOaP+9gD3t6Has7hvTLrAD0B9EnGFsUq4V1v2VlkQwzJoX6HAW52LLQjmPGeR09jrql/a+pf+QtFn6OWSllnamor1K9UvjqC0X1KA9kZFG7JzyQYpIPu5Q37cKsOCaKCEELRrvhVs27rvlbGc5hWIjIMgtUUWs5Tns2KNvfXaE73k9wBcE+B+APBfAvCvEdH3mfkHKdk/CeCvpe9/CcC/SUT/OmQj5Z8G8O8y80pEXxPRPwzg3wHwzwD4H9/kUAVvI3wSb933PWkG9cyf/aTwAXi7lKTKB/URrV4eW2Dbu+bxlIU5l9daoXl+q1yvXrrxZ57nfOwqYD3IEG9u1EgkBXSzAm42fEVOADZtrlwZawSmwxEAJNxVYFl2cjpjer5gZZZNQ1MEr1GifayxHI0exYNsvSByGEwABwYH2ZA5IeD88IA/+IPfx/l8Tsc5p6PiWU6+vF4usnlpWUAckxctbUqKEZfLC67XKwDgeDzm9rsuK7559w7LsmKa5gSFdfEII6rBBWRBGCNLBAIIEM2AkpK/IU1s9fqBdb9pOjoaJSyhnBaUpj0DFBnL84qFApbrFefzGeflEeF0xuF0xiEY71mY5MnImeNVx0CnlNL8E3e8/IUS41cVRKAJZEA3JcuCSgukDV5lralu+MoC0fTnHhrJhc4A7hRWn1erwy3gLjhyrOizsAaKpmnLgBiKnEJMWR7d9MYw6etR85IVMFmFfJsKyPVBrJWHr1WYPeBOpW3kk+8QYZqCLMGi4qkabYL0wPOtdvX+9P7Ws210o2rDZDIMQKUvOo9kQzJXJPiYbSs1PNry5RNQR6qCuyWFNAVQHYjFhlftTxlTsWrPPeNG7+Z6DHTlUF+19W5+b42x9p4Fxy6vjv7NvHCRfZpJcUpA5Jh9rmSQPb8bJnfOLwIpSo9sak1ZVIZ8AdjydAsQfePrNnl9QEnxiINIYaMuBVHDgFGWT5iFFDunv+YXALTRq3BjfHl1ULAdM87gKkRgi5va8KB18eN53dYBZNZ2o66+vqlzfd4b7bTH0/19AH+BZF13APAXmfn/QET/KyL6Myn7vw3gn0uM/3Ui+osA/kPIKdZ/jmV5CgD88yghA/8ydkYu8Y62bX+/BmyPQLQVSLcA+mjtds5rUE5Lez3ZIystKwst+8bzo8mqYHuya7a1TXImqTwz8BV0E5f41PqZTwVjnQjAysCq0UHSqYyiPAigCQ8PT3j58AHXl+cS8m8OArw5JqCtB9lqjSESK8jhOgskLvhpnvDbv/Pb+K3f+h6Ox2OatGuZ8+uKy8sLXp6fsVyvCMwpTJfwTkRYlwXLunSvaQHg+eUFz88vCcCmgFwxbVhSncvi/WVWa5tgxZkCVgXO4oAQAZ0nOhECzYicPPcJtMrx7iyecAqJA+EtXl/w7vqCb95/g+lwxMPTEx4fnnA4nXA8HnGggJV0naO0HTGlTSOyptS0blbgHAR8B0qRXRIID9DfAAKlY6Vl+xYRlc21imY5ynp3Bd5liA3nn52j+ud5PUfgsR7/lIF1Adf7DF57Led2Y65r2uLVjy6vmpaoLCuxgJuIzNg3eRvlUPNzA5ZQ3c9eXbZkRqtAb8q8tNxG9wxYAKmGes4LkPlf7P6qvVpPawswNgGc6XyO9ZKUW84KHcPMYtxbJ4W+BcsGUKN923HULaowuoO59J03hqs1rlSiL3QbhrU9nI3ErUFQ9F9ffx17XbvofcPbaExrSnu78ONk7uTV5XsjfWkj84a25QeALmMqHmVbs6YP0m9i7tctN0/bO0TI/arZeeOtr7M+0+/7apNmsNjoqypPAkhjySf9K6O1vDWW/i6eB9FFpWKdAaS/VS5wgaPKi7attlk1Fi3/hhRAWyANyNISxSq23dpTKFuMprx4bSPvpUudcyQxrbZB4MpvWc41HsOW9kQv+fcB/EPO9X9645l/BcC/4lz/KwD+wdtsWaobbKSMb32/dX8L2NvrVtmP8hPcMebXG6x7LNd20quQzYDFCKAtANHSNMkRxHaDpHq1ZcIAzBFxLYNZwXVkcy3xFGPMI1Ti40ZgjVijhAaLMaaDY1K8bsirPQoBD48PuLy8wYf3HxCXBdN8AABESBgtncZM6g2m5MUJ4ABwEOh5Pp/x/T/4fbx98yTgOa5Y4wrEdAh9jLgmwH29XtNGnZAnnBoUy7pkK/twPACknmbg/fsPWGPiB0CJnCD14QJpJT43QZa/JHFHkHB/yTmZQ58xFWElx90n44PE631AkPDlTJjSDhgFzGBGjEsSeoTlsuC6XHC9POPy/gNO57OctvnwhPl4xPF4zLF/SSAykNqzeKhJQHnQ2OcKuiHCWucEqAhcbQkjiWLqbwHaDeItg7VXomb8W5A9CrdZA9mRwu49m4UFA6odQKJ9OoCiQ9CqBkVkWWak4ErT2PzbddxVXgY8aKhJ7aYegPbAb0Qjb9qWHFUFD/iv4Ute2hN1yxVDTI0grninNDksC55BZHndMhpy+3IZmxxjYvC2zFYjSMsMRBlsH9IBWTUJsClgqx4PlsSIyT/cNAqG2vFBoPyWyJ7U1+o4uyfH1mevw2mLOvBtxkgHWNG2c4J8XL5XeY8AngV2DT+urm+At5d+BHgbBrBFXd5ABrD1HLX59jWx2YyNwZ5bLccD3vk3A7qpHkgxpgfyghLIzHH1R/2B0rfBYy7dm8wYrOQqlTwYEuPe41+Xv1p9oHNyFLN7lzOB0DnEGGwawBoXpaluYSxLH/+JlPAbbOv3HqHRCaNBh4wU+h6gf6uTt7xp3fPG2hqBAkCxbq9kPNJXopP+KZixgoCLZ7tfe1tblJWFyQK4Y1JoMXnEZf20eje5gAYwpokQ6IDHN2/w/PyMy3zAcrlgWa5YibASSXSUIF6bqGCXkI48B44PD/jt732O3377BufTqeJJyl7k6OWXF6xpZzNHluPWKav54s1P3IUQ8ObNm3TkazoEJy05EdBtQAhzOswGQCCsAGKasxMLODEH2OZn7ZHGAFI/CEeM9KouJE85EwJN0gcxZgDPUSKnxCjGTML4II64PH/Aen3By4cDvvryKxzPZ3z2+Wc4Hk8IpxMoTJhDQJgOaRmPvBWISDHO8ytzWcOt/CkIz1aaGkYRIKrffgAAVhkTZfwA6hnRNrSKo/XSWcDte7l7gzgbAGVY53GxF2T4irShzaxkNKlS6ryco3K0ftrcHg/fDif5slWYcBV292mMMAVbhScqw8HMj4KXWk8rZdmBpk+9drF52Pp499uysjxQLxXGTdiCdv19OBzw+PiI4/E4bEupVfEYZodFlADjRHJ2pRgsBXFo+2VQqaACarhxbuuaWZi2k1qVOVPeTPWgF7vmgg/JehYAdBFHXqejb5fEzNUpitUpgxuYwY7n/D2VNwLedq56cgAmL68mypn91wPFW3XW5mzHoxGduby2jl5bVGOeBfDKm05Z5uS1k+2WVjZUxi9Qjdu273UcKtu68ZGA8tZOPwPlCCV6/LuNptbKAJ1fW9GtLE+2DnqsOxKekLqYedk0tEYGs8a46PRxP370oNsKhy2Py+i3m2cj0Ns1P9ohHthun/fKJZNPm2/7fTRRq0DwKR07z9rnt872qgZWsg5trG09wdDWynutUykw1MosJiUmCs1eX8uAXGO+Jwylto4EUECkiMPpiO/99u/gmy+/wof373B5tyJSSF5sxjQHCROoYDPFuT2fz/iD738fb89HzCzrtRX0MzN4jVhenjPgzpOTirK3gCOpOKzrijdv3mCaZ9nwCWC5LhImESFNztJyMRA4BIQpWeMQqLUm1MQoGw/ZhCUqxwqnV4ZMINYoI/VE1iHLYGASYRnSu78VAoJWOYVa1mqzREnhyFgusn775fk9rs/vcH58xPHxEQ8Pj3h68xYTVjDHFB0i8R1CinpCUI9qyEfvqFkgdYlMCVDUnlvpbl2PXsaPbbsKUFqQbcYtNYDbS6+/7di33xV067URsKsVYkNU5ksus4FBehqcvpEhQg7VlizkJtOy1p9If2veNm1bDpA3CDf5bVEFbbQ97PctwJ2eD00fWDBYcZkKipwMbnvIBYwh1NWuztvyVViv+bTX1POVwa7ej71frwUJ7Rix4+58PndL8ToQlQwOO96KPE1AkYxnOv/b91tW7lzeKirgywZQ/UQzJ4zeMv3nGwuFBxm9zbIGw9OIcj8287Lmr81xNOf8NmnHSsYLprwupwYsluvlfserMRRdGlxvgWidZb2Uw8vfto/ao22+I5ZuUQ3W1UDTlqbMcMu/BdN1frdlaGewO88r8CYg7yMKqQNy3HpzGM40TXnjpC3bAu+Rwa7pNB8ZN80Y2IKUBnirUXBL5n70oFvpFrh2LTmn89tlIXtjRY4Ad28R1320pST8iV/Wberr+FFeQwEwSG8PKLGvZ6YwJZBXnm0Bd6WsEmBaKy8yV5viVMFlD7mCXwO4q/ViXCzMMM04nIDT4xPm0xnzwyM+fPiAuFxwXS4AGNdlBZgxTzMezke8ffOEz96+xcPxAKwLOK7Ji52U7RoRr1cslxc5jTIbBVTzQhI3OyooBDDPMx4eHnBZrllKXa7XHDu7anOiFPZL6oUYQfMhAVjxIqxUXpsjez4BtZEJAROQQ4qBqBwUk3g0Gk3+owTKCJjnALAc/74wgyInA4Hzw5TW4V9enrGuV7w8v8Pz8YSXD+9xOB7x+PgGx+MJx9MDDtMBkcRbVwBhSGvVLUDU5uFswHGM+e1ANma6V+O+YtRPC3Ys6PbnZA+6svchz7l+N/toLt2aY5ZX79m84tOwl+tkxlw7AYNTn5Rr9Qq2KE4ubV8pOXvPl5NWmdraDj1Ug99jopxxlg3sh0G0/LT8es6GkQxtnwGKTNOxCCAbcxrS0JOt9rsu3Tgejzifz9X4bHmoxg633jDTNvbbxlhqf1sDJ/ddo7ssKfDOf1Ta25Z9q0fbMVLnX5c30pdFEjmZltTuzdGcbB1fGfBrDg6vxfkzrsMWYNtD1XzU5zN/8qPkVwyR/eUW08Mz/EYGZHUPnHRMY9rbuSSMJnzCADeYoBvXxYDuxoDO88G8zW8eOI2jqXbi6FxSoFs5A5m7Om45YIgohyL0Vj3cpKympe+ihm4b0CcBurdA7q30+tsTjmPBVH/3nhkqWqThtiG8N4UGEdZm8FT5D4D3lsDWo9qnaZLXwBrnlmSTnzeYrXeoHcTMjGVdsKqXOLI78Nd1lXXgav1xozDBsn65Mg4lzFaYZrz57DOAGcfLA96si8TpfvkgJ0fOM+YQcD4ecD6fcJqCCI1lAdYVcV2wLmsOB7gsC9brBXEVsA5dA228OQq4IbcBFm/S6XSSurAsGwEzrpdr9l7Wof4E4IRpwnw4YT4eMc+HchQ1JJxgNq4oQl9wswJnSJSXACMAqN1AJ0CmLD6RPCgoOE7Hw7MsAylDQ9akCw+MiEUiz1xXfLjKGvfD6Yx3X32Fh4dHPD59jtPjY1r/fcA8TTI+01hlVr6FxwiIwUBU1m9rn3egg+sxqwgyXVOQrX82ms6tudvPO+Wj9Hm+X1p0SEU596mquSEX8nU15lp+FSyN+K9+Z0tL888pABiDjIF8vFopqePXzuNOQZunrKzzQvTtImMQVPIBjWzLfePLVg9wj9Lae0S69Iny6yFeU0xr4y1jIBuHI0BPVA55sqdMqqHjle8Bb8vbhLQ0JxCqM6lR8q2bya9/BTLkRgd22nbJ4GcIjBURIsuULWrrZvOze5y0vTPQZT8fwzHQjhdNW7Lx62dyUBmac2Tu06Du70pWbUgIEsYz/wr0R6C9Bt/izJATiet6aH4AquUzfZ6cROf2fNjCHpz6Ws1egoY6rMF57jwCmCPMK9pcO6J04FUzVovDAV1Iy/bgNBg+CDJH2o2Umq+3B6bFLkPMxnUkFHsC5Yi6sgiypyxS5Sj16OMH3c4gbAfjCJS3oNmbjFVRzbMe6G7TeeyOgPGmN80MHNeWvQHeLUfKXz49Ul+bQAb6pEKQjRBk7jzbraKz8S9VQMRYALZSBdrT+t2Od6QdzBlw69ZC2WQWppAt0OlwRJgnhMOM85vHnMccAs5TWou9XoHrFdP1irAuKea2xN5erlcJCagbPDkJepGKiOC0saP2XItsESB5Wcv67jVGvCxLDrFEWZiTrPN88wanx0dM8wERlDeKBhDisiIgnUIHBsclbaxTgZaipIDkEBxKm09T/qKbVRmKsNblMaqgJVRTeimsCh0JjAPpFE4VqhLzXDUf8YLl5QNwvWJ9ecE3X36D+eEBT2/f4unNE96+eYPpcECYpJ3WvMIkGR6x7P9WY6wyyBLfIrTVbJkqUJtBnr6NMW9nNI2Oc28+t8BEfkd0028ngBx5R9o0xadG2YgrbzSatFTWLbZGRCdf0kFNVidXcoL1YyNagUO3vD+2bbfeCDa1q37FZBwyx8oIixZ1IbVdAxrR9KPdIKUe55Eu0KVhIZActEWUT63lpNx1PWj7WrofO1ydxns4HGojhKSmFq5YforyNzoJ4vAIVMKTtkuTCvA2Y6YBEi2/0LZrgKPnLMrzDL2OSxl3gL8q4waN9GY/bsYgpQbGlNO2RqKfr3Nvy2CjrWptg+7cNgZwt+UPwbf2kSnJ5d1wQEmv1OX3INdybg1pny/K807Ta8i/DkgmcE72XnrWZJ4kIee0ozHQts8WRrPyPS9bbA2UDsD3z48Mglu0lS8F7ZfxmP74QTd8BTdK41n+WwcpbFnn7fWtDmk9V57HJN/TMoDSPc1AsGVtgXdrxemf3SCpViXsfVs21/Ev23A7CrZtuqzwuYQ2a09B06Ud5kSXug7VoBTFHJDi8fIKELDGVQbwJBsEESaAGYEZh2nCMQQc4gpeLogf3ouXO8rpbOu6Yl0WrMnLrYBb8aX6IKX9WJYsBDLjInGWNmyK8JHry7LKYRTJ+tbFFAzgzdvP8Fu/+3tp/TmSVzjVMb12ImY57j5GrMsLmJcssBhyaMUq5oc0TRQTJY8IqYD0YwIvOo4iCpiWcIJmswpJr09cwkzN4geHrPg2Y4pXxBVY4oJrXLBcL/jipz/G559/jqe3b/HZ59/D+fyIOQRgChKdJaZDOtKmGKT+1yg1nFFjDVCsQrNjmEKQY7WT0Qgzjm3aer6UvIpwVQOS3HlFQDf3R1619llbtgI9Tp6eLT1Npj7dtea7oFbKc63lwYIwG0YuA3s3z55sftoH9nXryGlQ52F4FldYNsytbIkdmNJnEp/GOLd1XNe18kopdb/1WYKEuESvAyqZhiIPLcC1OkRjcFflJ8NKPYA1170BSBTyfozANuZ4z7+N6wxwBzBs3T0AkTlp5ov7Z/L1PIYuIHd42SI3H9TTxOpDMs8NaTAO9vAlBlMsA6WCy54MuD3+c96vfuI2ztF2KoCYssSpU/S8bPWtTVdrZZUfnL3sUccaUZZJGtPbesCR5C1CQDARwHW8ee3i8XhLLrcgvE1/U+ZB9Lo5n1me3baxXLK6a6vfPwnQvUWthWKFZftnn2m/jzprdB/wQHCr7H2wrd+tQqnzQfd7lIaobDLTDp/sq08jVAuHhYtlMaDU4d3zfrd1a73i6jnKwBU1KWg3B2JV0Ev6UC5ElTIky0dmIhwo4BQItK7A9Yr4/h34ckmhAJN3W5eUJF50ZzRxWi+fTiBjYkxA2tmvYfKEGylbfgs7cv16vSaZQgCFqmNPDw84HsXDLadvKgymLI/iGgGawOuCyDMCZL238MeAxiHnFAoxLnItRkTIemyGbMIMyaMqtg3nZTGV8LSAlBjJSZ08baVuE6RTOLdClFCBYKyXF4AjvvjJj/HNl1/g3Zdf4unNW7xNIDxMAStLLHWklxss/+RINcXLrbqyABf1z1uwl5dDmXHOZj62c14za6Pq3MSKTT63wGXrxezua910fN8ABjcBJJWNeB5/Ov/asKfMKXoNEj87yfaBt8n8NtVtb/lWw7DNRTc8E/XrKi0Q1rB8HtCs+VOZx3kDMMfaSLGn1ll5rKT1Px6P1X6YrFOCzlkpT8dePoWSdSwWHikZAYCAbss7kvMBADiBwbaeo/Yf6bfiEFAZlN4M2vmDfsy1Y60rdw/Yts/cAFSermQgn5fAXPfQaO61+Y6ISOcnNREIbF9QNqRHNAKBt64N+TKl2Vq0T2f5yfXb2Vt5I/NSSsr8WSXM1VMAdMmi6Bh9U8X2+Qz/E+5Q3kiXFxHI8qrgHbcNvb3tl7m+YXx15ZFgjUCFy9xMAxr1863x98mAbm+yjoC197nVEK8B5C0/HV9s161maVue25lPK2hHCiaEgIM5AS1Up6GVUF4mMwCyfux6XTLgtnlWHqmN5SZteqAJG4jeWyG+XK7axH6r2iO75CkviTkQ4QhCiBJne3n/DnS9YOIIUsC9LLimk9k65ZH+xBMspYYQMNGUjpwXWsFp3fIEzuEEBc1eruKZtl5kmaAB8zSJZ2BKmxmjeKwJJGH8mAE96jkETPMRlCK4TIFS+DCAoRu7AGapV1yu0n7rigkCzte4Cu6PBair0CQSHtolDkSyXjxpW9kpToSJrWcN5nRIzrvH13XBy/WCy4cP+PJnP8Xx4Yzv/c7v4u33fguPb9+Kzy8ZGjlEJMd8vPyI5BAdA7bN26l2DI88QqPxaZVLfsbktQk6TNo277Z8C2IMs009m+87gTejeIxbg9d6vy1IVjkg/d8e4dGTlukB7j0ApzVyyvjl7E0eWUAM4PLyghACTqdTybdpWxuNwJPLNfjWcc95Dtj7Kh+2yqpPmUzAweoaFfGg/NkpY6RuDmlOQvGGr3fKU9p+qS2N0LLJtzyDhTcB3Lr/JBsAjW7UvrpJCpgMcOrI5O31V543W2U09csGjE2GOoLOOLtm7MmDw7bUlhPgyFvY+ybZdhh5ZfX+XuANm8ZgBtqRVgB78l9Xdc7mjik0DV6zcbKYJmqYOHxSGsPQ+UR5LA6NuYZaB4cn4/eSpyc6jJj+JMkN1N3kq9/tUluPPgnQ7TVu8YhADass8PaAbU9w7/Fwex2vadZ1yQfIqFDLdbhRxxGw96wp/dM1hlRumnYxYKJV0uuKde2PSbVrtu1vr863/sCcFVIG5Do9W8BtqkioT6sKAA4EzKB0EmLAFBnx8oL44R3C9YIQo0QrWRZcF4nDvXqv4ZUHqpdcTNOUY5QDwMqyuXE+nLCsawJ9IowiRyzLYgQX5bzloAw5Qc+GPAoISV6tRSASgTCB5uSHIiobXMOEvEaaAWZZMoN0uA9zBK1XLNcXrFFWb4tnrChpeZTq9iUCUcQKWTJDxHmTWXUYUvZXKGArgk/mGCQM5ML48G7B8/MzvvjyS/yx7/99ePrscwnnyGIUxLgCvGbB68/HkDf4tpsnVQjC9JlHtwWyD7i1Xdp8MuDeAPRV7h54tvKk4UTnZnud3fZBFYJTyc7PFtzkvww8t1RxqYPKD3vAyhaNFJ+MkQhmc7Km80yWw0Bn/KPh+JbHcAjwyFfela4oScsBUAl0y1iU8UmmHM+O1KZWA4PI7KVIXmapF0M92X5dgHyKbdT2NFDMTGxKIKEeeq1e8w6UKnkoWdCwZdS0bZaZduvSg+3WACZzD0R5c3CTU6lzyvfb4OAKH2QOGl7ZlJQMOAOtqvTemLSgmZ20W7gE7OjJLI+8UszzWq8030aGndqk9Y5B62JQ64bM5QS8LSDNyVJNmU0PySeBstOFVG+iGBjj2vjUglz7/ZaX2ZPf+ra3woumbTyc6OkFG5Z0S059MqC79XRUgBuUO3PLUz3qrJY80N52VhHcqcGNx1gsppSuGQS3FEcGqI23wdY/x9dWr49JUyvcBGLNwNADYYASPlEFrY112YJty9Mu0C0p80zyXinnaZntApUEJOewgHHSSZv+AhMu33yNl6++wCEuCHHFGhfZKLmuuC5LBtwjYcjM2bsbpoB5nkCTWRfNhPl4lLXETT8s64olqiVLJk8gzOmVcwgG2Kctk5SWhFgDgGS1HAUWpThNsqM7TCATEQVgTJjz0pO4LsBKmOYJEzPWRZafrOsKrCwbSNNYnIjSkeycBSNDNtMydP2xqoa09Cb1QUxgRb3vKoemkDZ0ksRcXq7P+PqLK07nMx4enyRKRJ4bEvNbyvEjyU+EbHTYsIBs518zZqo+7cZdT7kpk7xoMjBvLEpeXrjOPWSB3MgDVxnFDZNW/hRe6vChYOXVHic/AEoQA2zL/aXPektKcpHefBpc6+SjaeOueCIgxdnfcpTY/Ns0I6UIlOVGZO6PAKV6u0KSsYfDAWHSMZk5qIxtMu0gnwlsEwNprslJUT6/fiWF9/YU4Mxn42GkNDk9pxFVOhK5joq3NN73mt4OXq/XyvCtwZoPGj1jc+RIsp/Q9pOLmmi7bcxztk9tGSOw6eeiOsjyRoYxzfg2e7c4v81LYwShRC0ZPZmld2tobZRZNItfriYg5rwMlNncSPq6k6WEvGeqAt6EdGCcGqC9DCYUnNCOsy2nX51NvR9jZGxXLFPRTZ6xPpYtTdVTOm/PiaWPH3RzEYZWCJQ6jSf4TcFm0nnCCrBg0HY8oGv1MkBNa4ZV4IB8K/zbAu4cNi2tK5ymqZsqFnBrfvb1c0ybG/U1PlHZBDkKE2jz2Rr47V+ZpJu6vlJYOvnV6xqQNjAqcF8WfHj/HtcvfobpcgERY+UF17SsZF3XHG6xa1vzuTKLYg0BYZ7TMegJcDLAxDiezni5LikmtCyvWGPE5XqR9WyU1r6ogCFILO608VI2QQYYVV+EdvZUQfpiIsxUwKZ6pdQIKGA9ibIQQOEo6+viijlM6aTOiDBDQLiORwWPzEngMQJiBrSyOVTG66rjPBsTIkErcB4AYkJIkUcCMbAyFl4Rryt4WYHA+W0BK9jKgliPmEeJwUrNgTfpT8d0q3A8L4NPnheknh/tZ2tYbuevfThe5uZ5+W7lZT8B9WivSMMWqtkopLliy83AgOs6V63htVF6r0E+yNri3yqmbCTkeNhNKQMwFIgQDgdRvhuKzeV7U86bfPQgLiYwi/NiWZecJMvZacJ8OKTN6LoGWvnlGgFx3SYMfcPH2eutTgMPUHkITupf2nNZlty/GUz0T+U/dbfoKbHFCdM7ZRiyDAwccV0WvHv3DjFGzNOEw/GIQ/L0K18V/x4gqTjpDchRD417sL5byvPB/xaN0vqXt7kCamyQ8wIqR9se5179tHwSxypnmdtsDK0xbxmEy4NVWUN+9DjKEd+iTPRm/sgGSipRR2ZXCiPPo62pLXo/ve1OAs+TQa0DdMvoap/NZWmbwM7v11E7rono1wB0E6o1nkCvzLzvezxTWckPrfYiKK3XpvKG6RINonx6Ehp+9niIPCusBdtzaoe8rjE913avPQAi2nBYXOJRMqOK7DHaJGkVaAtERn+pqKax05RM4LF4itgmgSqNCXq0Oaf151e8fPM11m++wXR5QYgRK1asccU1LuVgnq6liwCILCcxMhGmacbxdMI8BVlDTQpwAZomYDpguSx5aQkzY4krXi5X5LWRGUimV8ghADQhUkCE/IksS+MoyDOBS5SREErMdI1BLQYAlWPutZ0oPUUBMW3S0objQAhhRmCSdeIJHDBHxFXWfse4giOBEbFweiuDkDbbMbh6H0EZpJc3DWpcpNjfzGLAgAEOWK5XLJcLaJ4FdBOltfNFGWfAnaEBZUPVAu5bCt71mFUKuVGGGYA0YyPNE38M+zLEM9CtHLEgZQvAenlyVY9awVjFoFl5QN971qOcL9TTIxOBI6FdAz7yKrX3euNbZzVyP1dlW1lZrIpNkEZqsaEAyS1AZ3GBPEuYMOFwOIAhzgYCEKaA4+Eo/Tkn50a75rfkWpXCSXNX5o2tW/uEthn7/aakzpDW66yAGdbbWAFqBd5pLDrGSdFnBW8taXkenc8IKVJMyOm5G9MtZaDnjMnST7WO8Axr2w6UwaBpI9T98m0Ak8nMx7CsflkLLpW3b1+c7zk1gJtkzw2zOjw89spVC3sBuG/Xq+/MacO9Grgly9sGbxosNg0jGYmJk6zrbZIybq3tOqLJRMAaLrlzgPcIfLcyvZKZPDZhNsc6+dGkbtFHD7oJ1MVk9UD2CDh7INwqyS0loMK0VSrt0gvxNqEK9q6Dd8tT1H63vyfj0Z7NmmOPZ0v2KHZwObWJqBxQsK4xg+2RYrZGhZfulvXpjeIC/oFRUB1CsXZDSr8+v+D9V1/g+v49DnHBFNcUyWPFsi7JC2jLtsJZ/omQcISYJhyPRxxP6VU2r9ZphUjA4XjCCtlMGQDohsWXy4LrEoEU5YRZlboIRlkvHhB5wopy8mRes01SMyKScE+E7KlMaAC1d7wmBeqMgBjX5ClOa8hznHOS6CRWgGYwIyH81vWKdV3ALMfCI66IHOWE0cwDS7QYlGUmBThruCo2a42By/MLnj98wOHhQZ6xyxQYYpSqcEy9TcnYmPQ4bQdwu2MIZS4q5SVnqJWHBSpaiQpgvxJwt8b/6K/l+6ZQdpRGu1Gy5aXmiSpN1u7ZGHv6Gl5RlKpXj606tc6I7F1GrWQ9IAD9NNfLZt6OayQ7algna6zksYYECCbCjBmRV6kxM6YpYJrE0x0mwmwiVaLhX3IE2PyHNKfz5uU81uqny7iTXNqxR0R5qYeC7n5cqVeRDDd9G9hPW37/vaxh1+Ulx+PRyCbkeaJ5euNd04/KLuXW/HipiGqwa/u7qvlOwD10gIFgNwmW62g6nR2wXY/s3Ncbc82CQW072w8VVlFnh1OWz0Fd1ojKMxZ4G0eOIVcmqjBlnVM1sC5fFNimcZ770H+jpUBW2+h6vQJAPqK9redeoNvmr89mbGk8MnscJbYfJUKZ5nmbh48edEtb9CC7/e4+6gDx1isFeEKogNqRF8fmR9SXdQtse51JRHm9tkTUaJfUkJtHAbMFRKAtg8VjHCNXUT1G+bXGhTfx2ntbVNIknyn7/UcQsE2IWJcrLi/PeP7qK1zev8PEEYGTImL5W2JZv2wM9jz6ZR0ZEEPAdDjicD5jPp4k4bqIF5pkyizMcmT74Vgtj1gjY4kSXlGVPTNlVRtzrSYwZgHcabOihufT4Lx61C5A6UAeBd4ht05uM21jrROQwp7pL91Eac4qE+svHXoha6spyBpV9VcjhfCLKdb4NZ1EyeuCGBcwI4F6wgpK4F76bFK+gByNhRlAZMR1wYd378DTBDrKUgEERR1U8UegtIZ7lrc489x5eW+NpXYudmOpA5M5g5ugW6mN4OHJlJFn2z7XGv2u4wDpbYwTdacr13o38xUDkJqyW2Xfpql4Mt1Vt4cASQUBKmoyYPYo4wXCZs9SMcg6A7ptA5LxuIdsmwTUbQ0QZp4zuNPlJHnjpFHCeZykxrHGQHaw6PcMQ3S+Oxursl3Tj2VOY+B6vSLG2EXzsbVTLgg9EB6RB7rleYlFvixL1kFVG+RiKQOgihvqx19bXtUAMLZWGdGmy3vdWsb6YF7sBOBb1I7BVvf5wBuw0Fc3Mnp5j2RVm28Zd6aIVwJvN7/8W+vEqQ9Sy3rzcJhpJSxyOdWcgL6VaOvdYyQt83q9YlmWPBfO57OECzVP7ZEAHqivHJdAWqGwI7NRvlz0tNzbfvbjB92mNV4DvkeAuwev9Wf6NQTavfIcT/QR8G6VqQq3aZpwMAfabG1kYS5rdbUCzD54yJ4nLmHH7D372zvO3avPXrDdtEg1U4aAiSOulw/48PWXWJ8/IF5fcOAVgSWCxyUylgS8Sder67NmsgsYZiBMOJwfcXh4wDQfAJBEJeEEdECILJ+n0xnTfMCyXCH4lBEYWFbGsnAC2wV4MhcVsEYWbzoTmFL89DSf9TeniA4h8Vp7umtBUgHu1Nd5rRuKEiSVGZSUfQiQ6OMECgzrPScKCPNB+AEwBWA+ijGyLte0cZRlbed1SZ5tAuvbBT2gI/GhhhxHxnJd8P75Gce3bzFVdSAgEHgK4DBlbzqFSU4avbEGrh0vltq5seXNZQMYM28GdLfpPQVpwWtw3j55/I4At2eoa3QhC+Lys41BpiB4CHgbPizvHqDv26DOQ6JpSLnZOWFEUIazTBkU5/439d/k1RbMbMa1fbaFextECrz7Ta0hQDzb4ZD708bhHvPLlWFvikqfKpNN+lYXILWLo1u0b1T+Hw4HWQrT6RMpo9WFewF3zY808+l06sJ22ryr+g4Mx1vl9bpWZWT6ZHVs1GWxGWg3TLghuW2TBenoxoj3Lvf8zFay0XzT3/4BWOXZEQ97gHfJw5nrVr/vyMeW25atRqDqK3m3q3ODk55OZZlxb5e7qtE5z3MXpUn1UmvYbDtTS5r8lyqvEsWYfibXXo7b3+I9J4CLU26LPnrQ7fG/ZS26eTQCtDJSBuBxC3Sq1TYC3FtWsv0ewpSEvqzr1TXbto7eBKkAtwOQvfpxjNkia+unfx7gvgW+vxU1j2dPG4DAEcv7r/H8zVdYXt6BliumuAIcgXXFJa54WUv9BTSXSa6+qDUVE6YZp/Mjjk9PoPkoADlGxMsFtMaEWOVgF5pl6QmFgDWy7KpM3lyJIoAsLDKYSP0TAaxMmOYDmMRTJt5mljVpLAKH0tGWFlDZKB3IQJtzdAH1RsSsqotlLvUWMC1NS4hclq9kh2BMUUcwpzXWnNaJpHGHAwiMQ5ClK4fTGccw4fLyjHVZ5a3Dh/dYXy65A/V4e2GE5fTK5YqICOKYDRrkjZJp3TARaAoSfcV41G6NKg9gWwCpf558yHyyCPxq2UYzR4moWipmy7eyZBTp4xY4GQEZZtmDoWNaKYPFBHiRPtgArhEI8YwJy4dvNPhKxrZTJ9cYZkxv9+QIdJSSc8JUN3tN/+EKKHhjIx8FTWWTe+7j9FvTqNPjFmjNfoMkUz3PWbrdQTDPKBwZkvMsqtlGEcnOE5POfh8ZgNbQGhtYCXJQOYDI48u52Bsopi228EelU7JPtDxZ9GzJf6+5tddTy6mjSA2gXH7hrBiZe8oVo8GbA97cr/Wx6BjvsKubhaJuF6+c1+jtvQCekw7IaqAZg/pmtLwMUN2le4XSZQeHHA4HxBhxOp3yfLC8EYBpB/BuZVX71kh1ZX6eU82oGDkjh2PfprdH6EcPur2O3yMQ9lj7twC3R1kAhGIpbYFsLx97utmUYzP7XoX2+a1NjfKjrkMGIlwA0haw9kC28rM1afffc4QRy9HuiBEf3n2J5Zufgy8fQOuCkILUxnVFjAsukUpYocKctA0E/MrhO7JO+OntZzieH4FpzuA3Jq+tAjBOwvZ4fgBPMyII65LWTCfQva71Rk2mYN0PIDDevH2Lw/GIRYFmBYg4hVIKMJi5E8TVaV/cRtJI5YUiZDVviXCCXF6R+2lJFdLiEgW3RJjCBBAQA4EQZCkMibD/7POzrOd+fASI8OHdO/z0+UXWcCeBxLYX0rNrWhseWDz6oElcihJLMYOhaZ4RmlfYo7E0mu/tvGuBRUve+OZkvNl8df2g9a7YPPOJmd5bKEcOVaCsKavlrUsDI8KJUGuHcft4ZXg8+e0ItMBb2skYnIN27g1/qyJv8EZU9YVbHxTeypVeblb1AyGrZjPfvb6wbeKNSwVptr9KOSmdArX84KC+G8Cs5WfYHk59W55vzYucrsnPK2f0217vIeu2fqj4wDZk6VrQ1Mv73DLwbKEqE/VCm/w2iM+wE4AXq6bOq+WJWZYvjkIFv4ZujZe9xghVn4ALxTnpAx6Ph+67U7ydS/q7XeI0qof4scbypXXIqEFDRKnPWTauJiMvz1dWF17Pp8238CNBCm5ZKx896G5p1AmWamVW5lI0xwB7dMsazJOY+g61eYzKEMAxmUgkfvQU7/ktoK14THOJ3ADzVwDuUfkj2m9Bi2SztjtBN1QKqP7y5z/F5auf4xhfMGvsDk7HNceIJaboI1zlKs8nizcyEKYDpsMBj09vcHx8BIU5rXsmQKN2EHK0hCsDcT4gnB8QwwysK+KygqKUv8aIlVnCCWqYkwxiZR0uE+Hp6Q2mtHwiJGQdlUm+bSxy4l+VQGdYsHm7UuVnvONQ/GuEWOKPDRAQLwplGaNG5BS0ONmUeJjO0v4gvFyvYiChTCrO444ha1dj5pGJkjd9Agddwy1hFUPz+nrfaOvbrh27Pog334FubgBFeetmTq8spSHgNt8tCLKnKI4MhRbIVkCbkgeQqbS7TQN/bHmkyxWgcgF927P5x5MzI8dCxQOrMYjOEHkt1XVjbKEyInOCaXpOQnyqwjcgtDzUAVYr3+s5yulkyBpw5/vNuCqAk2VOgfJstQ6S1hBqDaKRI8R+9wDzCIj7jVfnuwWsc95+TvvK20Ed70C3udYD3lvfx4zql5DBZA2mMwd7MrnpLVaeFGhfr1e8vLzkE1CB25ugmwwrZ47L3c6+8MC5eqYzNtVxy1bz+EaPU4JylPlqHRxrip5jeXHnaMO3l66rtwLuoDqRgbQEJuNuTzg6VPKmm30OfEKge2TJe+mUpDFq78wWefc7C8wIS6vNR2C7KPMpbxibmo06e8p3PWHGIlNqATcz5yUGtwC3B+xH9dsyLuoKQN8mJZCtlmXZY7esV/zspz/Fh6++xImvmEkAt24qu8aIFVE82Arx2JxwB8lnJcJ8OuH08IDz4yNoPiCmtcMcUugrJkxRNh5GEC5MuDLj4eEJmI6S13oFr2sKV4jyl8qKJAfo6ObLyMDT0xN++3d/FwghvapEWd5h2qi8UvM8aYCuGYcC22QYUEa31kJHUg66Ui5x2MmXZuMISWhDkAAAWZ4TCgDPgIOwsmwifb5c8HK54MhpiQxRgtnIZa+RJbIMG7ClIFaXYjjroFvv2B4azTNv/uff6OUAa8MDVXzwNl+gPZirvOXKc8HkpfXyvG21d6SOUJKBurafrQFR17evIgMEM7/jxL48cDxaLTAtVHuA9wCHXZ44261Gy+X2hu115RE5IaEfcyMDSn8XMC35WIPKFtIuWRIg1ESgYIBj2Yg8Akq3dIp9ZmQ0EJXoX8zceVJznihOCG9keH2s7dhSlcNgzFuwlflVWdf04R7gunV9q289KvrVgDoDrL4t2bI7/phxmCY8M+NyueB8PldAdDzHeho5d9ryX+1kY4WV+hZWepqaOSi+nEa+b4xhJRttyZ4fcsvRWslHNG1r6psvJEBCFLKeSkgRNhqLhLstdZMq+PKJq/m+TZ8E6HYFXHO/B4N6t/fitkowpzQDwbun0sR6SjxQbDtdo5FI2L+yZtCOoS0AuwW2taL2foRzwMdO0O2V2bXBDX57Knv5JyBbxRob+uX5Pb764gu8+/JLnAJwTKfhLBxxXVcsti5qQOVcEwgGYQVA8wHHpzc4nh9Ah4NED5lmUJjTZBADJNIEYEIMsv6ZDidM5wfEMMma8mVJofCk3GsUPrRc3Xi5JjD+8OYN/v4/+ScxH09YWfzcMN7nAp30WwQaodtb4uUe8rjUsIDJS41YMFDyMHfZWGWsYN0A8BRLJr2eM6/I1bBgxmVd8Xy5AJQ2h05BLKYYEULEgjVt0A1YY0whlJABBxElQCvP65ywc20Ui7UaSd6cRB3LeCvtLcPbehdbz4td73vLw6eyquXHA7HKO4CqTYAWW5Y+zLLHlLfFS0UxYjWHrXQDpim4km8Gr73G+eEqww2Hw8izpayhsFel6cqs5FR5VVz1XwNWRzyVfiuNY8eIUtlo7OVpx58AlxhFFkzOmGrLb8FjC7hHAJxZQqPlKE+DOaA12wvuLH2bZ7o5ikG/QmXVdro9fI30+4i3Xp76U2Zfmo02IsJ8OOB0POLlcun6+xboHC2vGPb1DVnoPGFKk0/RxwV4c8JGIekYMvNkBLztd+t4sMDb7rtwjT+V204dVWtGnV9EybudjIOu3dRnT2k5KLLcaHn2idCecdDSRw+6VQhsDTpfwY7vjZ7bk6YC3LCTs1YaGvNUd4EHUFOPbY9yXZfGK4BaoVRKnOuTIz3Avee3rastu0rvtl5NAhEFZE/MoHTCITHj66++xJc/+xni5YonCpghJ6Nd0rrg6hhuIC04SRNZZpDwECYcjgc8fv49TIcjwjwDIbU7BQSawMQgTsotzDien7AuC1ZmnN5+Bp6PsqExRlyucqQ8sQDIZV1lM2XiIYKwkgD9p8+e8Mf/xJ/E09u3WBW8Zu2Q3jKwuYZeadjWkv85pwNs1AULuJGFQ9Vn6T8m5DGnfdl5XtO/FnCrp52IEImw8pr6gTDPB8xgzIdZno4L1oKvs+CLDDnGHer50KUrE+Zpzmv1bHsMx8+GERyjGEjLsriAW5SAD3ir/BtgbdONjsO25egzesCRBdzK5yjevV7z2oRGjWPASNtOW1QZOaq8RsowKQ6NEZ1Z4bosT2ZU3wegZ4u3UboMejs8nxZ0Wflq5JQJqFm8lg5I3ZJ92n/qyeMmje3jnCd0XBQglqV/luVGjzTtaj/RptmY13Y5k+W/zW9EHrDx7o/l2Hbee6jN1xqZ+doAlL5mLrQ87cEHzRAbclg0fX2VuVytZQ3hqEu/sL2UtgOeXTkl3Z467aMGVzES8JYZZp07Mk16/FDllq7Zk7DtnNTNk1vj0Tpj1TDz6pvXfZM6ghw9zEjYpLyZyrrY6m+VQx4/BqOM6KMH3cDtSWS9Bzow9nT2Vl4d0L1hIet99eLZkEvBWH1bYHsLcMvvArc8MB4dcJGtNWcg3gLcW+nVlrsl3uTsRsYMiWLNYDBHvP/qa7z7yU8xLwtCOmadEHHlVQ5pafiNOsG1VCLQNGOaZxwfH3F6egSmQ1rOMBXww3Lao3qcAxFoJhwf5BCImQKm4wlMuvwk4vLyDKwLAkUs8ZpjdkfIEhamCfN8wuPpAX/w/e/j8e1brFTeKlBhXCZyBbhLG1YgKN2rRooBV5SAcXWSJ/vjkeWBnJNVyjYervZgQDIKc1qJxEKk67IDwjxjPhwxEzDPE6YJuFwIl+sVSCBfD9VJhcrYnybQNCFMM+b5kDcO1wzXRsZo7NnvepqqerjVS9zPoXpe2Lb3/ux8txueq/lvDM7Ky0p1XH0FO1aptMtIAFRl+PKl35xmJd4eagF33Ubeb87tnOs/EJut8dGCQJjrHj8tn3tlduXdRTNu4AO3Nl3Vfw5p3yngDmlvCKsMFuawLgsulwtC2oQr3j4dB1rWuN21Ty0XVUhYrS9ELhDqKAzW0NPr1tDLBkNTbt/e6rX0dUFLI0BEqV30lwIwzqEkNVU9J/cARzj9N+LzlgHRptVPT1/WcgmwE8JCkI3WQtbg7lyifCDRavprlxEhCd36DJ8ZypuWbaNzkMYlxIFmZl/Fi/5qjb+2v9rAELbONmrP6PlWduclp7YPs8Vb0gY5UU44pXbmmc4U8CR+MwdfeVjsVot+EqBb6dYA8YDo6PlbgqRNryCnszBtRybl33vGqOkk+bzFc7leXcwe4B60t5FNeq9PO2g8wN22Qf5DrfCx0dakAz2B7QkRAcCH5w/4+ic/wfXDMyZeoSsVODIWXrHGclJmMTHKNCZVZtMR8/kBh8cHzKcjME3ANIGmsuM5gBD0mGWoopoQp4CJIiSyhvwREWakTZPXC47E4LSsRDdRavi7pzef4Xd///s4PTxiPh5T6Dxpg2Beqcmf/I7G7UFW0TQCSxeQKAytwIsjsH2FRJXQ88Zszk3bKf3lO4mtgAnTJK+nD4cDDkSYJ8LhMMkbAAgwFw95DczCNOUoJfPhiCnMKXa5A6q7EdTcT+2pIFY9sPMsnnMNc6btsWXQtvG1qw2dXDZUtuHacn4o4K0C66atlVf1xFtebJqRF70nGx1Dr+yjVlFV46UxIEo79wf0SP/2AMSrm/1k+OPQptsGgu0zDeAmqo5ybg0jPw8feHtyr/LCUVmjzZouyQjSzclNzzBywCHXKLH9GlFO4rVAvDMgbN0d4G37cksntnymhLuBKogqPv2M5S5B91cBuHW4kSMj9I2FnX+APxa3xtAuoOmkrUGfgy+A5OQa598CR82eudRpnmeEHeBNycrzdi57afeOh8wjAF3rbMcqJw+T0TbZyBzJnC3gPFo+rEtNvDHW6TZ4PYOBoZY4T2EMWXNInspKJrn94WOmW/Txg27TprVHpU/qgUf73B5yrd1qYBWqvNmNku7KZTtce7Bd89iDKzaz0zUKuHj49bv1G1gFYn/XbdoPopiWebC5VnNpuHY9HvJ6dQbhw4f3+OJHPwQ/P2MmzgCMmbGuC5YoMZ4t4JZ1xbqpgcAIoPmE48MTzk+PoMMBHACaZ4T5IN5JCiKg82Ti1OwBkQlImwanWbywuiUkEHBZrpAD4MWIWTjmUxcjE46nE77//b8PT599Lmu6i/pNfZO+Ask6rtuTMi+iSsuxuHVkFzTAQjKoeqdra31QPWK6nlr7pv2tACIDbi1PN/km3jiuiGuERjQBBYlbHotwsuvt53lGmCYcDkfMh4P0yzSVg4JKgwxr4hp9BgDpvFPQfTweAdSvKrU0O8aB3kPYAu42XZ4HJi5zbtMGQFn+l2XB9Xqt1pu3aSvwdcMAGdEIIBU+0+8WDLbzHWXOqyc3x3/fYKptB6+OI1635E/O2/Amho3fjtkgsOn1fro2cpqYFmjkaOGvXcKkslSdIAq6ZalLG90GpQyuebGbZpvGKQ867dsabHZ8eobnHjKiV4rd8cwWQBf8Yoxx+1mVY9pqqwy+9fJ+TK/BAa/Og8xYri939en1bPpsntMx0RrqVbEO6NTnbhuvezYtG8OwwCEDrLlSXHnpBtdD2uNfx6gdz62sbvmLSG/PHZnb1sfm5RloWS6SjFEyc7PNQ6sZVbfn+fV64P3xg272BinDq9stENmmVeqUXlZ+zqtSIG8Gm6a0jKERhhUfjGz5ygDzAUXhY8ALc7a2vIHFXNZzl/sJdjfApW0rrw0lvxwPo2qrYozI7HKVqk4oAIgrvvnmG3zxkx+BLxccIOumCOJRW9YrlnXBSmmzoqxVyAPcrqUO04yHpzc4PT1hmmfEEEAzYZqOOEyTLJSgNDk0/J2eIpniDItgSsYRyZpzYZtxXSQsHtJ6bmvMEAc8Pj7h/PCgMw8JbkqbGNAdOebwfzqTi3PH+K5E+1aCWsdd1zf5n54kuekH0xd5XCloNmkCSIwUNWgUdAeJ7B0AXK+XtMZdxt+6rohYsS5ragNJGREwzweczw84nx8wn06g+QAOIXPGZj6QjpNSgSTQe8GcvV1pyYcKa/Vya4SGOjoDp5jnNeBuj7dWwKZAyFsf3h5KYtu36QSs64oPHz5Ua3ytchkBe8/wrsYKSvdTM2ZsHVuWQn59mgYkA6opPTlIqU81RGX+TBl6RoPbpuiH61gm15utqjJsZYhA5ISIM9n6esDUYYOYdX12UagtMNc0Vs7m6ce+Rz+aqC+6CEvHfWeINPXuDBodw+YZorKcROfCmk421TbZRyor07fRWG+ZVYYbMD2SWTK+ylIrW9/8UGW09OOi4npgzOn3LcOgTf8aavO21bdGVdyRv1dHbn7fqsde8sC7h51ENgonbA1bouI7gp0jzQAwPI/GoieD2uesjAZRWZ9t0rDio+QoJKJqeZznLEklZUMi82T/tfxB5KMvs/fRxw+60XaSbwG1117TGJ2Sz16e+qhnACl6Q1mD2VpcVUc0LBRjoV3SQdWnB4wV1I14tgAxX4ds5Mveq2aQ2MnVgu2icnqiZvJ19/VLXHF9eY+X91/j+d03iNcLZuUJK9a4Jg/3msF1EfrltSUTYToc8PDwIKdLPjyCpgmcQi9O04RAc4qNXYSBbocoK8/kSlS+Q/FDUJp167oI6IiM1bQnsyi7h4cHBAo53Bc0xxhh+68SPWxF0bYAbURhvsKmQ3KtXMOyLBFhsPmlC2xaYatrVNPikhzWDyAEgNd8HC+pIRZXxPWK6+WKJUroRYSAaTrgzdMbPD4+4XB6QDjIhtZV+Wlc/+2sLu1lXt03gFvXbuvyEvu2yVOuAobsWj4LYIoA7lWF6RPmXmCjVyY6x2pvu23r/lXqEERAx22/rKQ10kb5ULAAQOuiOrSe90QExPKGJ/sTU8Mwt+CzyI92uU5fj1tUamj5rGaN3qAaPNcKcewtt6V01ytZCnDUcapl93XvgX2oxram8cAgm0+gHnedgm+MGnuoR3usPdB7u2+Rm0bjpFHIc1HboEtPBJiFafJWsa5D1b72N9Wjg9QjTgrKK9zt0l4QugX0vOtWntxqx2xQwxhMVl6gMnnbYVLnhSKzNhP6jNxusA1q62oNVli+tCy9auUoFwcW0kfpbh+7VUZ6a8Q0/LRypp1DrPsY0u92yUo/Xnp5pj1ZxmpZPWAYQ0ttPUf00YPuapJqYwyA4xaNOrwuS5cKIAs4ayVZL5kqcDs5OGk0BcjZGtT8WRRaw1nNQwO0C4DnTllWzzjto9ZbC166eps8I3NnlVeDaI8gYMZMhJfnd/jm5z/F+vIBfF0kigkAkKzLXdZFQs1BgLWG9mGYTRGBcDyf8dn3vof5dAJSCEBO1m7QjZNUomWUKSN9IzLA1IEATJCIJlBhIn0Wrxek0y9yXHBdLzpNM07HE8DquYi5T1rFTaY8D9C1irEaJ0QWh9g7Tk52CBZgUiqqj3nPlbWpEfrKbjLH0stJnNfrkrNZ14i4LFjXBdd1EQMmBBzPDzg+vMHv/M7v4XR+RDgcgSn1ST6kazx2pI+KseeNWd2gzMwV2AaKJ9qCXQtSONUv6GmeWXiHmgfTNm1bjbwwWu41bezMbbuhMG563rzvDk8tlWtpbFMxwwo/5e1NtbEzAKxveHR3gWPMeN9dwL1LNpft0fWzSckRgyCeWwLS2NRHy6hS2btVdjZVGlCg4E/lc61gCd764zZ/GVf963GP7HI9AN0zVtu1gHu07pUT4LKyfK9u9CnJPZ0fJqqR8qqGqzIs+sY3szw5Vw4y+G70GiPjF1EW0IPz9ntJm8xnA8pXRxe3homX327aAb69vN3fdq6kr1WdnXxtYlbLKamuXhZtY7Iub08GK4eU3tAauTaaL9tUy5Ksi2AvqxzSfQot/B+3/0cPugGt0PZkHpHrTewmRv+MAu4WaFfKJaGdDA5E+rs8FYvJL3cEtrMnSlvAGazZM23SalONjpX1yrCDqgXaLdyzr5py3iyvTicAl/fv8OVPfoLrh28QeMUExhzE2yqnS6ZQdGkicvKYMJEszQBAU8Cbzz/H+fERx4cHgAI4/yXAFAgg8c6iaqM0XphA0UTV0IMYg3ogdHlBMgReLphSQzAX/zDAskZ5PmTFkv+z7SAWROajH2u6IQudACv/VvAPIyr9pxUbzQX76s/ykmSYUaQ5PQjMEcsak+Ei8WXWKMbIAsZCBA4z5tMJj28+x9Obz/H27WcSsSQJWvGZUh6Xo3jc7ebg1pNYAejW4OSy5npZFnOgQsiv2ut8biskU0BqkfpeO3/WZoOnlRP6vY31bes74KT71fLh8Z29a1S3k/2uwNICamvoyOvZcVl76DWAoS2iwg2UvE9UWoDMbOkdAb0hUCXJYCKZJklExsgp3jybPNR8UWCf3iBRWYOq4EplySagamWmM57yGEE/9nN602BsPhnI439U5h6qDKssKRllq7jckbT2t7Qd6+pbBnIDAwKInDI4P1l+v3bUjebUHkNoT76jsvK8M9dLX9U8BSJwAJYl7uLHRz23aavPrSG9J52BtVAppPKdzVzyeCjP67PtvY1+Q92eCqrtM16dddloxj6NfqudBvqsZTG1eh626gRUFxVVc0BYs8tNtvv1EwDdVqTsnzSjTrklgHStdhuf183PeNVEIHMeiB44GJEFxh7o0BHBXhrzCebqdMqKN/iDuw3Zo+lae42bT6vFBGxL2sCMy4f3+NHf+U8QLx8wY8EEThsmgTXF4AaQYjmr+iQ56RHp2OZ5wtNnn+HN559jOhyAMKX15QFMU14CAePpJjPBtTsyj0hANySjisrmwcQMrpcreFkyWNTlGZzWxMra4TlPwDIcdWyOhbN8lySUJ3YPuHM/7hDI2ciqgIXzShumz7kFlZR48l6fy7Mhv0kgxEBYMSGGgPks0UlOpzPO5ycczw/SV1RAdjuOWv7bMu2nBagKWO1hMko2LJqNK21Bo3rlrOAt46MG1vXAIXNSnw+gFOzrGtpW8W7F+h4pPsrzom5DT3Eotcef61fbrnm+R5uGsiFYt0nPq0ceALG5uM8MvvvEoKCjqbRMBdJc5a8zmKprGXAbo1XHjtahGiu5YdR0j3072/psjBU46Wya6prdLxT0LF/7XJJpKv8hMjVqpbby3kHdCMh6gcx/yoedxyh8Gczl68DxeN6ibwOgv43x8VqyhpIF3Vq+HV8jTPNtDA5TSNUXFW8bIPsW+M5p0hthGXppBFD/5qZzGmqd0yC2ILXVYxVf6Nt0y2iwuiMbnkT5qAxP37QGpuApiyVaLzdnQ7yVfXvG5ScAum+TbfxRpT3AXSnH4C8n8QRj+lJ+Kzox9/cO4pavEei2dbSDIJff8oR+8N9qDwUYWVQwoGAYLY+sGLaotbgu+OJnP8PXP/sx+PpBwgSmJRx68hqYsUYZtKzHsDIjkhyrzlPA6eEBj4+PeHh8QpgPOR1TACCAO0ziyQw5TBfysoy0dc3UCwKcDbgMrdogxsvzh1R/Wc9dKizW82E+YA6zRO2o5GkNL1uhkMdZYHO/rD2vQPENUsFnAVTrzbVcKUWOTbz4Qf6oxw8xMAUxROM0gQLhdJiAeQZNE+YgJ61O8wnTQaKUZJ1r8iQqm3pfoxSIqDo4xkYRaY1VK/g8b0bXjvm73xbFICvz1cZO1vvtkhZbvsoRNeT3UstSC7bbOlG6lu05FMNJqRjYCh+bt3dUvEQyifYpkYrvcWN2/OZvRdiY5CVFaTeuB5ZTtir3wgeX8rkvR50k7cE2TgVMW5Y3RyPFf8u48pS/vWf1j67d1mVfaiJqdeyczbpFMrbVzHrkVWR1ZM6/GePdQ/rml6EhU6VsZRb9AEZtVI6ImV29/IsiD0vs0eXNRdGlVeQfq0/6cTMqawsob9YDw2nS0cggHI1pjugAAEbtSURBVAHbYv2V3VKqx/RZoHfolf0IqID3kA/NJ10/JNnkgvMNo5ZSf1Q8dmlbPSDONo5lLBeje6jChvLZ0icEup1JWinWbbDtWjVUvFDTXK8RtUKlBcBZoFnAmy/5gtW7NgLd7TVCOSihAtuWD2A4gEfWYMeb852dqatb7/Lba45YlxVf/PRH+PDFz4D1msA4Cs9coqFE48UT4CmAG/Mk0UEeH3E8nkCzrC+OBMjSkgmUTpqk9nUrm/y0DpTWLFPpewXpxAaAEoNjxOX5g3DGyZOdsbX8dzgcy0mLQGXt5jY10o4SEtI5n1uV0rr1VMZrRao3Ruy91sNSDMII5h74KejI3ggO0NArHBOQCQE0TZimGfNR4qKHrFjk8JxpnlPd2rHU9LfDt12DZ4W0fevkHSzTUg96bSN8SwVG6v1ojNyNsi1wajd7AuM5WPIqxfRGBKWIJHV67WgZgv2cr2RC+swbwbXv0xsjMmV7n23e3wYE5Ufs3Mj3fNnOA+DtgVzzkHmkfCvzyM9jg/MMGiTvsuk7F9nogde0UXWo2sYz7QjSOaPf23moW70b6XCTivEJqIfT5SfXmUBswqnmDdScZaGk1SVxxlBIv5g5nzqsYLxyBqgBotdqhseWtKnTXlkwAoejMVfPMuFT/QO3532RNfrW+jUAOhUyXMZnedjixUtTGySW58KjnQce1slG8Y1K2ba03+2cGOGatl+Kx7sp0imfbZsTIVIVFLgyRLJc5iJt98zzTwB01yLCE8Z5GUAzMbIHKgmK1nuiS0mmaUKY/F2uFcCxk74Dyz3nbQd4ebbe6KFnusk3f3bAfz/w7sCbHbTclprqwEBII5AAIEZ8ePce33z1FV7efQnwCoWjGbhrOSRh/yIVwJpPSA8Tzo9POD8+CaibZQkDAxJyLkwIJCEaKR1mY8Gc5XU06ANJRGoRhMjyngAsyxXrJa3nTlOMoA4/AZfHwwkhLbNAKK+sus6ngiN0+XDh6fXgJNcw93tEu1GkCJzk+WcFXiRGBcvSn27Mpbrqb42ljWThx3UFWDaR0ukB05zAdygbXimI1zuk/gKkX/OSAO4FU90myHWxgt3zELdeZM2vvd4azbeBT+0hbRXGuq55WVSgFtgno0RPLTRLSdoDdraUfeVdQl3Htl7t6YYjw0/7uj1mWcEAQqg8qNpLtqxvC6oBOBIkFw+QPw5sndz6bdDQ+WK/27aJyOu4t4w5tyw1nE2me8FRW46NP1+9bS0P1EgHZU2+3tY6tWOXUgIyeanc8mpbjevqjtYuAmYDMpryRC+V9KWNDEBL/X/LqLBLuzzDzwKy1wDTvYB7D0i231VnCEArTUOEFIaymBm3OHgV0P6W9FrDo52HnVGe5Pw6uF89R/311tmoBpcNzezVYUumVp/6DMq4ZDBC2yNs7hOyg8zmW/KkKiyk56i09AmA7kKeUCzewgJE82uN7NvoX/eGqT89slW4mpcF2y34NtzB2HiFPyMEXwu2VWB6AiVbjh347zt8C3BbsgPTK1f4kfqHBOLeffMOP/nRj7BeXjBhAbH6sRngcsgGUIRRNIAbCJiPR5weH3E4nxEOM3gK4AQGJJ52OjVS1253yqAWCoVh5K6QZ/TwCotKABDj8vICXhcAEcwxR8EX1gmH6YjT8QRKccAZlD3oyK2WwCarR4ea+wqGteCxYB0BHdue1ZsZJKCWYpwzYgb/nK6okhbhL5utImKKUpCWa8QAiqucsreuiHGV19vzIXn6qQSCSXMsBPGAQ5cmhAA5Ej6A2Sqhepzbeafg2sYWtgDEC3lp+95+fz3g9vPS5zUyifKpMkTvAwLEdTPv1n6QPYBb+hPV2A2h5BMCXG9j9pI1cqWNF27bqc7A5Bvs0itfcY7arMnSvZ+hv6eMN/LdAolbTOSVDWk+yzzyI8wA2/3U/h7JV89AHOWnS8S6Q5QUvBqjtc+reOs9Z02vlXJGvcPAlFF4B2BlXVd8DTOk/hZ0soo+cY9R8V5XdWnrxagOD9uiCky1em3H86+hXcCzaZOKKv6KktpytL2aR+f5IcBu1NhrDA37W407sGy7j+ldx3COb8x1T6ZrGXGAnbZ47OYjUqQ0xSYZ19VrzffVXXBaUCM4z1ufPgHQrbvo69lnrWfAB9uANMoUjOdgCpiCeLZHmyStskoXKrANbsPq1UOcqEwkzc/muwdsl3o6LWKBexOdZJR261onREzZAs/Kq8mJgZkZcZEDb372059ief6AmVaEfISNbo8swkfBtpwqSQAR5sMR54cHnM5nYJrA0wRM4kkVkC3gLdAEmgJAUzEItM8c4SfGQfJDcdAj3+qa5eEj/Xq5PEM1hfa1mmwgwvl8xuF4hLpqcj3UprfzLNjV4lok5bb8buLUX7cstoPtuVKKNhElgQg2wEB5T4nWZckbhGX8iycbeU18Sa/RZ8I0Y5oPCJOcCqqAGwq4HUPTHnKTy15XLAncHo9HHI/HnAaox23ljXOEtwee2mf3UAasXCJW+F4bDWzXHzN/C8i1VBm/JPIk2Jjy6d8yBfr2sZtLdemQ5r2Hj/bN4BZtGTQK2JoWg/Vy7QHaOudtuL29dYFKI8cYscpY/0b1ueVl0x6yoNt+evlkvdQsbbSV5xQxZY1yHkAfOrCe934L1OCTzacHxnN7AE7/yZPMhldHt6lx08opoDl91/BgjTTrrAlw+ESzfn8AdIdGx4D2jKt2bld9iuSYYNtGtvQC1L6LJtii1+Xb60U3lWmXNlkVM55leVrWR2TwWs5L/rHLBsvjvZymlC8nWdYaV+0ze4xezac3gko9GnPSclPkRb6VeLjR+J8A6K4HrPX0AUnARQV3tWBTYTaldcAKtLc8UBbMVh1iAJkvQC1P/XTyALf93Pqu5bQKFewJw7rMdpOXl3dVTqqKnVz5mHQGJma8pOUkH95/A355xhFr2jAZE9Bl5Hi3WvcU5i9CQPXj4yNODw8SDSQIGM+RSMKcAbduliSaCoxVOY9mMiV0TzmkXzpmvu2Nqn4R67pgTQfAVMYVkDwzQTZ1TrJmGcG8VjaKJSsOKqBblU9UrxI1c/wVlEFzAxDUyCjuUQsCUp/nZpINYboJ3YrQzkBLyoKBBLoJ0ZgN0mUB0+GI+XDEdDiCwiQbXlN9K+MVZV7Os4geG4lEQ50dDgecTqdqvOqBM7kdgE6QusaIA9S3PBg2bWUkmLXlNu/2+S1lfIt8EDqqL3fjyMoYNV5sfaROOWfjbdT8zEzZxbYL2Zx+0bTluVueLY+IJQqSGHs1OPbAbc0noBuQLTBuyxzJYI/fzpkhD1XPb/W/HSvupn0Adu8hJxCHWN6kFdC5LVS0pzJI8Bny73nxtBVUa18YHtt0nZxOZVWa3eRh5WgloVoQZtLtNWhrFvY9t6cfzS8AslxBOWerb4y1U5Yn9fPoNc4Crx4tAtnCHTLIHLPMkS8javuNktFByRslhkj7fAHGo03MnkNUcQ8bp2ibZo/c1Te8PfBuKnbjIhEltbxP1n8CoBvIdhLXg6YDCagF2TRNeQmJFWyt18fmaYFX9gSasnyF7Q/INt9h7byJ4KRp/3T9lNalpeL5rzK6IWwSVCMVCITAYrkemPH89df46qc/wXJ5Bq9XTFgRQkyvkwBdnsHMxcuZXKRMAqrPT084PjzIZEveb5om0JTWBk+yjES83Lpp0oCdxCaZC2UfdQHDGsooy7lsQKH0KVYsyxWX64vwjdKudl3t4+NjWuZCVf6iyLz9AIquC9BpheAtpe/2TgLWfh9S9dX62gPXYyQDbzhjOs8hySgr7Mwfl3RhwuF4xHw8YprnHEdV61sB13RPT5V8eXmprisYPxwOmdcYI67XK5ZlqdrJA7kt4N0GYi3VILYFrFPavKuNZ+dsbtcB8NZ0e2irfvq7A3uGlzZ0YXmWjOVFmPQe0q1Ur1y2PUzKK3e43MAD3L588uq6SSJoMy8tT6M2Ltdl7Gbw2vDhP+PTpuNiUJ92vlvA3eWf/o0whjUzpsn3+bbl5Pm6mbKUpenbcZuYrblSMIUCvLOTCm3b1Fx4xlX+RJEZm2OB5C1jlvhsId/AaDL19O7fIjufLP89n+247O/33/pfWzxo2Zb26o+WXF5VwUK98fvmQpYzeppcy3OSKSwoXKfzsI5t3drysox20u8x4gFGYEJ0qkdEsn+L1wpjtfKmyP79ffBJgG67hgfoD3wBerBtAbeXRil3HKfjz83ax/x3AzAXBa1gqF4/qaC7nTDt4NnqtA5w32gzTZcPIkAt/kZlWdHFkNd6EwjL9YKvfv5TvPv5T7FeLxCfdUQI4uFWYRljrA46yRsRpwnhcMThdMbhdAJDFmaEtJwk6Pr6BLhDXr8d3Ekllakgdp7v8o9Y7xE1QAIAnWXMjMgRy3LF9eVF4GUC3rkdQZjDjOPxlPnIMgnoxlL5LblEYx0QbgPALXDieTxk7BbQVO6VzXjBPFOP/2YMpHalQBl4a4WlL6Uge0DBNB9wOp9xOBxks6Dy2ixvsAavgkOgXpeuc9YKNz1wxvLuGdB93Uq92qOxfZDlA9rcbgZwt/ct6PYMAAsQtwzsLaBtP73nmTkvz7H17UD3oP6kEwh2vNX59w8BxQCrLpY8qZu+VR3buo8ol95o6i0jpL02MnS3nm3Hy0hW57mZeBzVxzcQS3vbxyRLzV/mkex9mLp6dHwDeQfLFmiq2pXS+QV27GVdQ/5zVoeZ33rN1meXccXc6Cg/rbzXdsYx0J2orPze0plVPo6s2OpTz/jrrjd9sdcosvlYWbLVnm2+bR4+ea3UGzMu7wxEJh1GAAQ3rWY5VJkjlAcoIcpmWe5H6db8rOaytsmgVlv5FcMCOaKKihgF3pHX/ilmEBVZoJhkzxj7BEB37+FVaoWXjUaiG54stb+rzVkN4I4xAbDm1bjerzjkImC8QWEHB5rBP/LUtM+2+WXL3RHwUcGO4XtyFLY/CYvyCMlgXZ+f8eWPf4Tnr36OuLwgEMufihFmREYNuKVg4W+acXp6QjieZb02ERDEox1SvGcKBWgHmkAQTzccwcLt0d1GLhAluMv6mfo2/SauFXDkiOV6xXK94mAmf8KyYADH0xlhEu8r58mtXm5fKDP3r/9fS52QSJ3uKViVOCI2KdkcuoSg5NeOl6j5DgCtthsDeS4EEKZZALIC7gLQ69f3yqtdmrGuBUDocyGE6ph3nZue11bXg9s28sCS5mNPifRjZfcAativubl8sE9Elbe/5ecW2Pby26qnzVvTaf/ZyC9sLEXbDqosdIlU3SbjAUzmfmvE1XyP69t+fw2NwOQto/Y15XrysXJ8+NbEZnm9wdiA2aTsZSt0EUI6F8qc8cBRX/dAgK4Jr+qyAwC34xzGaWCvunquy6nJi8obNAv1WqC6aXia5/b2u0e3DDFLN41D3ob3nN+A4lVvI0YA1MM4Ixkx5hcYAe5SnxtcEpKeJYi5VzviPMOBYjrsLC6wb9YU12zVwRofWvwt8gzorhKKHyAyhogQIAEH1Cgu9VBuixxFuTSkjx90c/FsW2FnBZf1atulJMMsLYhvArgzmzXTupHMUXh2co0UqoJ5AYYtINu2Om1dLYAwzeIDbhjAC7XW5Ltd3z1uHPkgZkwEfPjqa/z8xz/C9fkbUHyRpSTEOVZ3TMBVTgsvayYjM8IUcDyfcX56AzocsSYQHZInO0wad1vXy6qXuwDuSkHnSVFei5sGqyohfYsCumHAeB5PshTmenlJUVdSnUw7MgMP5wfoseIZyAJylHxjaG316YhGgrLuFmPMpC8y5yl/p1R2xWNyPagAAaVNPtklUYPZ4nmWxtWXxjpPpN4Bx+MRh/THqf3V2+ABbjWEdY6VcrgCiPbZdh13O7db8NYa5y1A8tLnxnSAt6Yj6eQOHCi1m+BsT7ayq6UR4B7zuj3ePPlnZZUH6O33Nu0YXA48baaKUlb/6Kju++eNGni1wQkLEPSeAZt5LMC8IbtR9rD+g7ps1aA1akfEzAABwYBljdr0rYiQ97mYQiqdVBkFtzJDDThUz43niG/EWj1VleAASZFTLS8iS261isotBVW30no87Hnm1vhtMVmlsb6FzTDiUeUV4Hv9R6RyvM2rbZNbbdQaHlaGt2CZo7xpphTOV+WnK1uq/FHfJ+sGaO41zw7bLT2fXZqUdDwHYBXPdo35ZItvJSfraeXSRw+6VYkrWWCgYNvGNfWUiuuxSK+9FQRYYJujNqCfoyOPmv2dB1WbVhIMn2l5tX/VwSDypc5bfzdgIQMGR2nn7wqOFMwyg5crvvrqS3zx4x8iLheEuCBQRAgpTjeAZZXXR1FPmFSwFCMoEB6ennB6egOeDog0yfpsogysaVJDaa5AN5LVWPejTirq2qrpIXCsAZguGKn7JMFwZqzXixgRnJQ1F8BNIJwfHtPhMCFPbglBXYygNiSbZW0PqN4SaDU4BMBmnTiXulVKrJ0PRMJ0qOdHCCUEXrtRMDKDUr2maUqH4xTA3UdRQB6rynO/zKsGhBaIaDvWc7Iey56h6YFQT2ZsPWPLtqCoAhGoqeW9pS3j2gMho/p5NPIetQZJPZ7GwLuAu3psebxQnp9NXbjMzwK4W1XY1/nbk4ILapBMKZPTRFaMSChGqNLW3PTGmt8u9RuwNsfRGLZFV3nruEfZqJ3l4y6/XtkAr+UrUPZ4G31WbdPw2n4fAZ4eVteUn+PakPPngu3bXhffLqMHRZ58doHd4Ldfmj9v6Aaf35ZafXGrTnuNyfJMafehgSmVq2S2kl1e28ppooAYVxBK6Exbh1uGsQXee6itezYSrLzKoiXpe7M8RnCD6jhuePUapqaPHnQrWQVnwba9NwLclWJKn7pOVA5GiPmAhGIVo3q91g9gQBu8XDPleOAc/cD3ntXPNjZxrpvJNzK7r7MrvtOfC/bTPT0UhZixXF7wox/8Hbz/6ksETmu3KWImuR9jxJLWa8mwM/UjwvF8wsPTEw4Pj1inGaAZYskq+AvANIuXO51yqAolW7nZk6YKspkUXt80YK0yXIoZW3qXIOvOlitkBXQ5fUo9ZdM843w+p02UIU1ATstjqWvTphcG10sfjcCYGmiWTDXr66ZatkSdL3luGPCp1/LhUOaeChF7MIXMu4D5cJD0Zr5xSrc2Y1YjkfQH+GieZaZZ49L2od5XT98oesgIcGsd7Vix37U8AFiWpSrD61Uy7dEDKM59YJ8d9XGrmPYo91aeDcePqae+pbGvcCtgRX07elTxHdpaIoPZogS5zPlfENUgwLvWGL1cDiVpNzx7NDKQPWPY/uZcpt4vPBE5c7ExmPTThjFU/aa09fZ2RB78y7/ZvBUjqjgPdnwMxoRrUJrCyjjQXH0jhtr0Lb/OPClAn906dnyltJ4B8BoQbMfBNnD1lxdqW7fjmGgDVOYc9/OXy4LRz1tGSgLMmzrrxm2boPVuW4PSA/8hhByFrrRpX+AW8CaivKR2xOfIICll1fO2nfdt/7cYELT9dg/4REC3AoJ2vbZVAm7IJQs0tWHyIABiXLGuJqQe9+t0x53cgx9vQClF59rWb3ughead0xgmPKOgMjhizIaGtENKA04BCFi81wCwLnj/zdf42U9+jK+//AIzifCdmDEHAHHFNQHuzGdSNBGyKfL08IDDwwPC4YAYDuBQ1mdzAn4CtucK8KkHJ3vIyIJtqiYRwdkUwrXSyp/ci2XK5ighrgt4XbPxIVlxLvd0PONwPCFMEgqPiEHBVzj1tdcBjd6r1Hikct51WW0e9rsCY+vFtoo7hP5Nkc07EOVQefPhgGC8ENpKRfkJc9bj3wJuudd7hy3AVsBt6yHpfQ9w2/6tkVp5rZv+YS7ry1ugU5VFtapu29kq4DzmnPGx5VEc0V7AM2qbYqiPwa8YTUMWOl7zHHUTArDgZpBuj5dtSEWM1ZcdEDs2ah3A6OSxj7S2XF3T8kp7udCwuu6BlJHHb18bbqdRv7mn97Z+uyXl+xElRDN1ebc0kpYt2G7vVXPffrK9sk2v6+f+mdf1xWu1gn3QGEVO3ygPdvx4PHvzoXIWNLb0qJ1vUZH39TW/vVM/NzYlAyAq+tvOiRFJiGDujIhdY5kTrmu52xiDmp/+rvThgD560E0kIcZs6L/RH2BBWL08w1KMjOv1WqXdPxlsysHAtmuvWdcT12naZ6r0Dc+d8HGMi46HxthQwK3bVzTKByFtiIwRX33xc/z4h38X1w/vMTPjOB8QwJgDgXnFdVmw2gma8o1ECIcZxzdvcDyfJfQfBURMgG6ITMCaplmA3DRhykuFUppc11SCgm1bX2fSqnFRLxky7Wj0f9uW63IFxxVBgWQ2zuSfh8dH2SgYJnD27o3XDptOyvUZ9XV736aL5UclbN18nLFSwGqojFYpr7wx2ooCQiFgmue09l7SqTEYqZRLyQJVvjRfBbC6mZGZ01uN+gTY3IfOuLf5ee1kn7Gf7drm/kRLqYtG+7AbOXP5wkQHGlqZo9dkrFG1T8QD1qPv9rfnjRnJM1t3j6QvCTAnMN4yYDw+K+ANALQFxrajK3wbKgqNq7q4aYYK/vU0Ajjlfm8Mt3PQPsPZsPQNM41h/514Vn630jj94tXVfragzh1PWYZzWhpT179yCmk+jWHr8bQ1jGxXt3XeYzC8lto+e81Ya3Ctm082tGANxZLu2/D6WrnRcw1p6Kb4agzkmN/+HByWR4QQkJ+1xnGufWq4Vq62fxIxLLs5a/5bfiueGOXE6Y2WSM95B/vYEkf0CYDuIAdllAvdxiXXk8XW64b0GRHXpGiZ61OUSvYYTInq11AhetadyXFrkLdK1bP0R4rMUzbMXMfyzvlqKKcUX3u54v1XX+LHP/gjXJ+fMTHjOM+YQwB4ReQVy7pgSc/L3JBDKuI8IxxPOD0+4Hh+kOgkoJTzlD3blA8oMmA7yBppplCES/5DJWW1W8R2ED4ykIqp3Ucg2LRZyGMlAgxcLy95w2wGkbKIBISApzdP4uFNSyFYY39zv/znNeSBTv2MQHeP5QvMRckD9WjNip56D7ddouF6kaisX1MP9zTL8e51m5Z1e5m/xM8hLT+xXhcbNrB9IzVqP8un5OeDAO95C3Rym+Zj7WPmXa8D9ZHztRIpYGALQGceHAXnAXTv+5DSmL9ltHntkP8km13lSRv4/JU80SnfEV+/cGJ/LOinBzK88V5AvKUeErWgrXwvIFq/eKC7B5sqw6ie06Pq7khT+qzUya5cH+XhGZAjHkYyq84P0Da0wMk6IfRXJT8MP/azyb0CSCM+hddehmrZ6tH8RZEP4jYnR3777D1fkqW2sGWZPNLDVR5dUbtqoHlXmmSYnz9vboP70X2RTzpmUPR1ehvJxoDjAHPycnm+5RGwy+YYQAR0iSuQIwG1vEuQXwHeW2d9j3DnHgPsEwDdSYGKppRX5gkEdMLCAVycBHTUGLarBDuf0vrcVEhT6vbg68tgoPFuWZDtdd5eQWo/PdoCIlQnzHkFZjBWEFZcLy/42Y9/jA8//zno5YIzy+l78yRhf9a4YolXLFzWaEUQOAA4HHE6PWA+ncpphEhHgEO82yHFlaV8GmgC3wZg6zrQDLqDU19Buhl86F9eGjACv2aMBNsiBFnPfbkI6OZ01Hf2zMjGpceHRxBNkDsRkWMOyTjuQ/UE9sLhVr8roMfGp+fFaj1rGTAa8N3OF1V2RFReM5MsKZnMmyVrZLT11jqpp1i9dDXg5pTflA0trYcngAE4XvjtNvHawIJtPTRGwwfaDaTKdwu42/nXAq/sjWqMD0+JjoCNd60yJEwsetvjHtgeA+Q0r3ictuc3dHlsPaPyxjPk9tJwfhSkAVW+UiZy2fbT428kQ3VsK0jVcrSMrMD7nE3V6qdt2d6ckz4Vx4K5k8FoC/K3+O/J5piu3DDWumtGLmg+EUhvA0s9/LFUA8WtdjdSIOc5Gm/DfAbi9Ns4Qr4NjU5StDVsyRrAt4wYm5PVKRZTjEaG1Re3WqMyZpKs2EzfPFuMPoLukfPm86i+4hCq86+eVTDOnCtUyZ6u/WstKR7zmNqvrHS4BbxhZLzXPzbi1l766EE3kJqvAQ3VpGzAtgDtJBhiREzK1jtkw1LfcP1w7mJ7208nr8h8c8C3z9wSNp7C1e+jAUBIWJYFYBIWXC/P+Nnf/SE+/PznCMuKAwFhDghTAJMsvVjWBQvScgIk63MKOJzPOD48IhyOQJgATMm7LZ5rAdcknu8Q8h+FtK6bUMC2Ad3sCVfmvMkiGgFt+6Ftg9RQeSJbJSCvpwHmFetyzYAbHAvIJMLpeMTheAKQvPqIWDm6J1jVbZ1FZFMN39qvxoqTpnvGgFatU6esujFeK+MsqJgxaZ5EJma69JcF3CWEH1ee5DaKUFuv+TBjmmpQK/UsBxG1/PfRRnrD0m178ywzV2Bb+Vc+1RjRpWua72jJTfvdCuMR4N4DtkcCnRlZu7UG1shYGSruJBf3UB4/GMjbjiNT32GKb0/WfSBhQJvoPRtjwX46CTLAlHIKUNJ4ynbZg4Keqo656AQYm/K9+WChUIk6pQZFgvw7dMFeRW/h3x5DsMtf5ZPm4xi6HXW2lyfXU0Kq5aVn8HoFvAboVONzvx24MTdH4LGfAR6be4CwzcUC7obBXMCWQX2LKocDIF7ibglXidCTeWt1Uz5OvvCyR25r/rZvTCnmxbeZjWb+ZojNnIByuVjZEwGY5oD1vegFCZLgbfQ3ZiH1zpWSrrRfFWFuows+etAtjZ2AWnVjC3AnD1tSsjGtJwXKpkwvCoJtuHSnamgF8QxUyxlaqvjZUJCb9d4jDJ0y7bM6/PMG0QQsERdc3n+DL370Qzx/+RXmGHEICaxMEsNjWeTo7QURMUd7k6gj88MDjo9PCNMBnNdtC9jOxpF6NNMyEv2r1uUjWbiVcjeTjVkRovQpF083AOPl9ie0CA+FwHaCyIaLZZU3H0jxurXVROEC5/MDQpgS4BbQLeVbIZNKYvOd6sla9VH6zGLJXMt13BBSIxDUGpL1/oc6DGDOJwFMu/45zw0z7i1gbXkhIhdw6/0SnaaA2qjr75ORE5plLy21gPbWibQt32VZCVdr2dvlLhbw7wHLWs4oTZvvrXk/9nptP7dtHBSACtQArORewtLpnFTp4fVpUc4+xFbD9RdCnP6xh2c0Bpj3qXyMsowpI8sna1kmH6t+vbYrT6Tx3vS1z0NjSRVEgeQPcH3rvyjyeKthbyEVa7Y92nxG32+pOQNrZCyl6FUW7FTpNwzK70ojwLqV96aTa8MIVr202wpunzWfI77aZ9y8BrK2FFKMBjVFR+WpXJ9CilTmgO0Wo+TyKQViSJLIGhjFWVCZjnnOqKyR521d80RCXqYCgFdGCITj8YAPzx9wuUqwBMsnkCIFpeft/N4yhvd6vT960A2g8yAAqKy7CnDrRi8F3Mb6GG3IUrDtglm93k4w89uzhi3Aek09vwt1ClLBNtI6bGZgXXB59zV++kd/iMv79zgAmCdCmAIQCNd1wbKuWOMqAJNSXSjgcH7AfD5jOj2AwwFsNkmCBGwGA7oltnXZhEcGzIQETqujGLIc4gK4YfoYrYF1o23NpCY2kyOVv1wu4HWRdkpttUK87RyBx8cnACUiRaSYQHFitlHDI0VbDIYyLjLYRhkjFnwD47EzGictaJSxXu+o5lR/L+2UNriCkmc/zSF9Q6RjPQSJ122BelYyJl1RPFFW8LD1mJdTIltQ6hkrFgx1xmVTD1vO2hjc0zRVJ2iG4O8RsUpzz7zMfBlZNTKQcn9V9avzyo2Z08qWZ70xYqnLCwAz1Upa+TKMqIwNzZzMz7WypUxWubVHdrXD+RYo0/S8b17sAdwtOzqXb8vp1BLcVyM/e8Nga0ou+b4Ce408rx4/Pg8O4E7AxVuGgiS7LOdbNaNmbG2BWEIz55DmL0lJozy26Gbb0Db/rwHfrUPOPrNX72+B86p8oArhqsBUZU4L4O0I0/TV74HBVK4V2Seq2MnNkVuRVwHPKc+88X6w/yljOypmn6zF9kdaNbcYWd5mvSqMgGDj1Je8RDcAh+MJyxpxvV5wPBwxTQKF6wPZFMabdt/QC3vH6ccPumlskWWgzVwiBjSdbMEFgG5iWCvNKUSEjgPIWyWgwd8rC8+rzncE1nuJ0j/MwBQItDKW5YIPX/4cX/zdHyA+v8ccAqaJMM0zGMDL5QXLuuQJG0FYASxMeHh8g/ObN8DhAKYZjEm8yOYwm8pLmtZzq8ebQsBE6TTKdPpU2x7SbDEr2XK9LC1xJy5qazQ/Z8CETSzgPeLy8pJCKnIBwSTinkLAw8ODHG+fvNwrNKZzEhC60zr/U5SiwQvldEv9cwyyPYZEC0xtXa2yz2vmuSzHUZFmQWUb1UTbKqZ5ZAGrlhlCwOl0rLwUWs8Ryfq+cqy79TqXA5PK3PHAldc+HugvZdYhN7WO7VrxfAKq06Z6zfu+ZRC1HsQMxLOycIz7pm7ynay8rxp5JGE6+dLj9/4Z6+k2m41Mpg1f5TnNfb9Uuw1m6gT1mKhO5d0BbPaBGl+263islHzHXj0+WqNtyFcu2UoKufNtNYSno4ioAmpE4zHt8mlAjXI5eqLOq4V5LseSrh1u9u7AyPByrtOpnPSL3EPbxospqRljo/SWPRvgYC9Zx0aVL/oqKehEIy+9/Lr8q3Y0gLV6D4EM9osDo3ZoWnneyzZ0c6WSkZYn1lnR1sUZxwr2sw4xoyk9vq4rQgg4n84gEJ6fn/Hw8Jj1gzpr5nlb3u91yLT08YPuRCMFrGt92QDjUae2+SlY7k57BIbg3QMEniLYA7jbQb53knvkCSdGWscdGd98/RV+9uMf4vnLLzAtF1lOMhHCPGFFxOUq67dznRLg5jDh/PiE05s34HkGB1m7PcEsC0mgO7eRs5xEo2kQTQgo0UraunvAs3iKS/vkAd+0WfE6oQOE6uWgBLoXPf6dZZskUwo3BMI8H3A4HMEKuhWMo0x27oRA/mX4Vtutr1Our3zpx05rMJiyWvDdetii8YBoW7fpvZCBkblbWw4Ug2o+yKbDymhowLLNTy5x5+2YpvEa8NGYUMCgfd8uEfEEo42AYt90lfbo94qMqQAjjzwwQ869TmkOxgZy/dvn1XzbQzXPKuMqvtIFaQdNfduY+vaUFCjzJgAioLQBeh1QpW36b1MhtuOEfYjo5eEBHB1T+7zcNfWYsJYpAjzr8r8tbekfC3iqtm2fGeQ1KLEvT7s932IQpqRCyCZGTuyQ8uzp45b1bfjv3x2Ntdbor8sbj71sRG+Us5cyx9oGW+moeMNHQN/juzY62XRD4/Nu5LHUh6tua09r9owHqq6rfOtlsjUa5WM0DinxwXncKa3risvlgtPphIeHBzw/P+PDhw+YpgnH4xHzPON6vQo4T29+Xf6bsWDbbIs+ftDNqDZAClDmAlK49kSPlL/tuPYAlZxWMqheibTPto37Wmt4T6doPbby9cBKucb5g9cVX335Bf7uH/0hLu/e4cQr5gCEiYAAWU6yLHJ0OwRsRwCYJswPDzg8PmE6HsFhAoeQQOlUXiEpuCUymyXNulkDuOV7qKOIoO6zLW+v13ZkJhcDyVPttKdlFTKmri8vUMEuuciKMmbG+fyQorHY1ZUWrjh9o2Mi2QJGVLt1YxhvBJc66L22573x3HrX2vHZgoAtsJrb0Ckzx7FOa9ztfft8W57WWT3cRP0acCvEWiWq81CWswi4sRshq7japs5t/u2plKXc3jAnVfgoRsNNUvlh+wjo8t0yvl5Dt5T/Zn6NQVC/TTSOh9YIdMoa8ZSv7XhunGHOuAJfPsDaYzT1hhwAM8PrcHbdHCQqeseZd144zN1V3QC6DGVq00bp8npNm7dGjcmsbnsnX7+cGg5WDpL0llCNPMrODNQVNM+4ud9sX81/mEMuYo9eHs1diwW2jb5to32zbBSdQOZ7OYGxb6sWkGftReTOS9sGHojUN2IVXw3WKpiqRK/aklVsnrX1AqW8szGmf2ZFgokJ7lPBBpJc5u00TbhcLnj37h3O53M+xO1yuWBZFhwOhwy8AQJNZY9TW2e31Bvz7qMH3bqOl4jAkfOrbw9s20/P62QHQXXaI5BDznne7Vu0F3Bb/vZ+9/LKyl0SI3oCgxl8veLrL7/Aj//oD3F9fsaR5KCbtNS3HA7CLGEAWUD38eERx6cn0OkInibEIKdJMsm6Ul2PrVrATpyQ1nHnpQtGGSngVgHb9kXbBlW7qkw2wiCD5TRL2YGqNo8QguwN4Yjr5UWO/U6/tRAVbo+PjxnkWbSePYCtgFNB1gm/8eu1TohjF7wbAu49z7XpR4DbpquOiaex0Clhn5rNe6aPvWghbdtYnhSot15qr952zIzS1+Nq1HY8+L7RtlLQJvh7jbG9naik7euEXH7xrvW8qBwhIllDuRPQmQzkQ/1Se8ZyiwI2KOfXjKNbsnHrnrZTtECSezADorzHQ9nOPJhPC7TbMWZ59sboVj2qNDpPlZedeiIlqAzAW+QZ+nvbe/S9zV95sfoC5rfEUzYcN/LUNew2jDClshvi29GmbvqWpONtr3FWAKmMz+jd6x6qjblqTBvwXfHVAO5cVTsluYbfzGycONvnV+S+Nn8lig9yn5f5qDwUx0tu/yy3an1mjakK6yU+Hx4e8P79e7x//x4PDw84HA4Z+2kM72ma5NkVoHkazlvfCB2Pj48edIsjUr3a6E4drJI6QEivDxfyp9+xSWOF6WsmOteJ9lXRESqeEMuCXYUxs7sLmiCe3K+/+AI//eEPsL684BCAQyDMSIqSGcu6ypplJqwgIMw4Pjzi8bO3oMMBSyBESmuSqaz3tBslYHgLjZd70rXFQALcxcut7bx1wEwWbo2ytgpJlTtDFn/07ZfKD+pPkdQvH57BMQU5lJmd13MDhIeHR4CshSv11o2lVXur8Mj1KBb2aAhkkGsBQNOHdtq2in0f4PbXKLchkqIKWPTjToWPepR7j04tZDpPRipDvdIWDI/msAXd8zwnT0S/pGYk1HX+bnmm5PmRwNyetz2YHBt6Hm/fncbKrL9YkldjxqT3PFjbJe2/7z+xr32Yy5xux4VXVyvvR+NQ55s6LPbyb3EHm3ZsI2Ft1amdO7eeUcdCHl98q/Vaput+Tpe+E3VjhzyZyx2T1bg398ZtMa5pBn035lIR3ab+/KoWlPIc/VwX7QNyz8Bim/4m/42MM2OhMhK38jL4oDV6FLy3hqSPo9Sl1eMOmz47U6yHudEplYHa6q9KbzNsLeVQv84shO3Pnv+iKyJzjnASQsDj4yO++eYbXC6XvLTEvpGtopFElnDHpm8zB9wvP96ijx90A2CznGQYZYT7Ts6gon2GOYNtK9AtQLCCtPVUtOV1vIzq4QxCdgauLdf+hXIjf3aTPNXvqy+/wE9++APElw84BMYUkrUfGSunCBIsnusVhPn0gKfPPsN8PmMNwBoIK5IHPFmZMoDN8hAF1CZSyZSWDgQiOYCIFewWDzcz5016bdt7xgansgg6z00wfhJN1Ar/2uNogAYYcY14fn6WzFQ/EMn6awKmac7xubnJz/ZuXUZ9YEHpz9uTMKegalVjVi4qJCvvQJuHGQceGCei6hAYy6Pu8rZjPi8nGUT8qc2CHty3/JxOp8FBBPVvneP6nK6xK4LXKPsUvpOAasnLFkm7qLfET1OycuRMM/ZzvlsZumX0iry/XxRsJXeaZ0aGVzGG6nFKzTPl5DaHP6vovytiy6Xr57jPKkfLjbby6r9lkN165Z0uDvPzDN69Ctfm0ea5pU8U9mgPbtVvL3VzUHlpeVUejDxugbdH3tUih50+S46Tm0Yvs5u3LaPlgMrNTay7NS7q9jLzc6vv3Lm9H/b3bYTK6WZbK48TWwf4rWmdZpV8cdIVvao5IhusRXcT4lpjGVFVPRhVQKuOHq+eUlKSXY6dRAhDR4EHvLO5Y+ppPd6XywXn8xnH4xHX6zWf5xBCOuq9MdaGY36HHPhEQHd/El6+NwCtLjg2n63nBOjByqa3pKFbnhcvnxHZQalguwXquXONxakW6fXlip//+MeI1xcB3CAQNIxiCqXIgHhyZ5yfnvD2t34bdDjgGleJzQ3kTYUZtFICzmay5GUk84zD4YgwiYd70rQNcGjX099qS84TPdnZZc5DN3hoW1hh2/YhUXpDAMa6Lri8PKdQgTEDC11iczomgKjxRjPQlY27HY9JAAlYrCc4sz9uWuC0NRYU0NmDOizZ8eABbwXc1lttn7MAQ8eeAnSNRlOMI+2PMXkC1q6pruYyG08Ll+VdyrOOaSLKb02y+XND2d0EVoM2TFe6Z0fd9Row2grlTUCpgp76+20/j3gpwLtWtBWoTMXIh6PhDPBur92GSGj4g4b/Bbcedk5VtmNNv6Pu03Z+2/7z5Hphuwbd6s3ScWZQQK5bCT2GHPbU7onwnChbbWE9Yy2f7vOcAGkGjPuAtcztBixtPdsALw8wvYo2kTHKmKo/kE0MM8b2ZuuywFwfcpRV5m3Dz7vWz/fXtRNvlrqTGsBt8/4uedq+9+RNpWtMecxlA/6yrvDfOqPKT2W6d2J3NadA8GI9CjLaPxeYZUkOxZjCHAPz8YDpZcL1es06cp5nXC6XKiJdYmTX4LulDz560M3oPRO3Brc2Vk7bgO7Wu6rkeQj30Cj97klo0lURJeD3cWulVhQjvvzZT/H8zdc4TsAEWWMVlwVYF4AZkQmggOPpEQ9vPsPx8QlxCrjEiBVsNiOKxC5t0sYzFnB2mA/i4dYQhMkzGlcL8IS3UfhFv90L4NSWUKtaBGcrFApAs/2fNzjFCI6M5XrFulwFYHDaTJPgRmTg4eEJRFMBJzv6VwVOb2iNx8CecWZVZTY9kjJq27GAgAAblcOuT1PAULWd2VhZebinKZc5GsstkNbfbQjDtr1g5qVeb8GQgm5COaY+g6EBUNmac7fmaQW+3OfTrUE+W/3ZjovXeiS3PCvbZfZGVSVXzOO3RmOnRI2S3q2MNhSX4EkqQ6MxyNp+3nKKeGlbo5+IKl0BMiZHAmpWxrbOEK/s9rsdn/Z7ayC3fFaGiv773RAVvIZ3nR4b9zzy5LaAZhWfLVoiUIrFXLhSUOUZnjU/W0aVx5Pvquj53UulXH3Wlnk7n5yqoP/t9K2MM6XuyasCx0BxXmwYCrfGsDVwJYIckFeZMxDbdd3ZsGpkERXo7NWx6H+ktyMmhTmZVvV+U4uqSSrgzSxv4QPh/PCAd+/e5U2USPO8DgNtubpNW6r9owfd9vXirQHiCj4LulE8HUqeR9R+toJ8BNi/C1XgKIRdQq+zRNPfel3w1RdfIKRNk8SMuCyIgoDTMwHnhyd89lu/BzoecSVggYjADLalECBBHvVwazQSooB5kvW2Gv5tmkhCFFbtlb6vcgphS30dizgpk0gEcquMmGEioSSvWaMQ6yUN4r+/XEp8bvW1rUjGCICHR7OeO7VBtaHX9H/eBGp43zM2CApCZCOs2y6OYq8FS20A6Wd34I2+IktUReUxsbrtumv16AHo+q01auyf9QAO90Vwv1TM5kFE1dIWq7gt4G4aZ9MwqMaSEZ4eCGqf1U/ekLl7DChXTt18al95/u80fxvQbb/rkgULUSqeNsbmPvWzQaz1N4a5yVUNzFbmep7l3tjtx8m6rvnVsRdppBi4Zawp6Xiulh4SKo/eL0ovdP1FsgwwDX6zzGT72f5eUYVDPpOh042nNplzzU2gx4I7S5ioveZ4Mwum8gF3nZ+vw+G2lx1zt/vMK88+O5IvNu86j2Yeuvn3hplS3GiHllpToM23OqPEGrru277+bWpEenO+MRcBgKnV3360K1OocQ4UeQZ9V+DMP1MNc91mWe8Rocg4zDMOxwOu64LDumI+zKBpynMt88HYDpaykz5+0J3o1uDyBJ40VK/UlbxDNYB+gNtnvaOwq7Q7+bUWYwY7CvIM+LiRSRnoEAV1uVwQlwvOhxkT0jHYcQGS5Ukh4PHpLT777T8Gng9YmLFAYlFTGshZUSvoVo8PlcNt5lnC6sxmc5xu0JR2YsTVKMxVlnF4XiIQwHmjo1PnbAPUkzNAo2XkaVjALJpnlC9mPL+k9dzp5bEN8RfCjOPpDE7KNSZgoorOrh3OoDELoe3uqrsuCSYjWFrvAprrWWBQailq/5oDcpz41ZXAtIDb9qMF3A2IafuvXSZkPdRVPR3QPZqT+orPO2yhpZzHRhtvPW/v9YrzF0ceMPMMq4Yp0S0V8GfxVDlzojxm275fN9l7UaWs4qioGC+81BXacvrvpDJ5WfO0Y2IwRjzyjDfvvlTFnx85CZUmIPSHfmge0aQbGVJWHr0WkBfZBWRH8CvGZju+bjmtLM8e4LNgfAQG61z0kyAhAhNQMjIrp94xjrb4r+Ta7azSc0AB37WM3ZkDgNoLLFSZayllm2fthd3mcxsLdCOiwQWqY/I4p5rn1pG0RS1uyfI/9vWxadMCVzMctp0c0Dq140zlIWl9eqeOAm7hrTa+rJywb7mO8wEf1ojruiDM6S23Lj0DJXyy3SZ76ZMA3VsCVH+PLEULugF/wit5YHvrd6UMJYGbzssbMBEdQn1YzOh5O/ky+Et1DCCAV8TrC86HCbSuWJcFy7qYjQCMx8cnfP47vws+HLEwcGXGasoQPV/HpdT2migg0JS82wLSZj3NEAwNFRRjBEc5iTCXHZtXppQ8h0FAbSACqRmpyixZsm37EckmOgpFmZVNODXPuU1jROSIhVd8eHlO6WMSWPJtjcDj4wOm+YAQzBpkiEED0zdtDPeBOuj6rhPQOmZsXhsTOHu+zBhuvXDtKY3ZqreKiagAbfVuNyA+12Jjftl71TpwrzW0rk0EIivEK287pbcqe0DGrTbbuNcbJWq+jZ+/aRBXrHH3fZ9R7l1HMoDH/KiSS4nrdLe5zfxVCssyQ22kGy4TYHezUH6uZO0DSivHPXS2V+ERUdqUK+SNU2ug6JjUT3u9fSaDb1OFltN6rFHXZLfH1OuMQR1Duh488zuYy6LHageCO/Z38uutxi641FsH3ZgrVjZultSUsimTbboC0DIHO8fSLXvZ8sKmHrsY+640qEMHaAfP1gBe03N29FiapglrjFiXK/T0x17PF+BdymcwMSJFBPhBK7L+Tr91WUyRSzrzWr1ZloQsy5Ln/Ki/lL/DYa5CBmajQktojJf2+b1j55MA3cDrvQSwghqohOYvorzO0mdZK9RbvT3ZGNa3hGE7CCtKgDYAmBCxrFesl2dMFLHygjWuYF6hFl4gwtPbz0HzAQsDq/IMjWNKaWAVpWoPt5mCbJa0h5MUIyCCuYCpuJp1zsyVoFYPnGIC9U7kVzemmvko90ZgaMzt/OYhSdAWWGq7rrxipRWX9YpluUKOm5faM+T0zQiJzz0dDgjTlPzgKYURzl0/kcN49Xs7nrKlfkLbfCj/KfjWfrCxtNu661+7zroy+pr+3AKH9l42yCYxxkbjufJsDwD3NOma8gkhyFIlMobXML+BMXzr2mvuSyIPSGxQo8BuAe627Qtmrjct3QLcMj7yKvhXARYpLSIvNeMSZcDmU8N5O2HZLZD0Xraotx0afQrsBtwjBWhBt9cXrWe4niuNvKceAufeNnbKCHjr26ryHNtH6/TO9S09413b4+WWuQiAQnZ6qG5Q0AH7+QrKxjwAu9TEnXfGCGPzrwcVR/PWXtXZU41fZ4x44HtLLuhw2U6j/UqIatA6FqrHz2sM+6xp9hoNhcH+uYFF0WEeCOg+pmuXyzVHMPHAc0BARLM5EUhhGyiXSWacyXOO4RWR0o8cYUX3Lss1OdG0eu2YTzosTNC39TH2YQBt2lfjUUOfBOjeUvz63VP2IwD2mnL0+p7nvHKVSPlQgENj9e0BbZu3en6YZU3SBEaMC9bLB1xf3mFdL4hxAafIHJr+cDzjeH7EioAVso5ZBzOBktdZKEDXblOOvT2F+thwtfrE07zm1zkS+7soEd0AkfvBEyYuGC3AEkAOoJ9wCNAoOVAxFmrQGWXdGYCXywUcVxBHBJbJLsCaEGjCw8Mj5llOqLqyGBORgal5QVgJRAO6e8FZbD8LvP0x3XpeKD+f27z5CyFUnmqlbsOqgnQdf8krPc8zYEB4zU8NbEeGg8bSHs2xChw3QLk2Gsis4x4DxnY+ev3yGsHYz9dewb9axG4A7Fu87QESI7BVFI7/Nu8WadvKGypU8zLPraZMVjBtWqn6ZZW4Gdt7+CBu59O+Om0B77aM6k2HJDIebqpixCvaVpi8pZuy88Ljh9WhAOR1z9A29sd2vr8xGLv28TDtjnlRtdOgyW1UF5j57OVlgdTt2USVeM8Wzl5+tcw07toxlFNR7FgZAfEt2a0OjVuU3genZ3o1+G3m6x45V+BnT3pNl5y0ALPlzeNR35YeDkc8P79guS7dc/rderV9ToTjjBMSVmrnqOiSYlBZuSX9MeXU+ga+lVGa3r5VBcj05faY9oykPXPrkwDdLXkWqSUVckD9CnGPtf+ae1U6W74ZoKEROFtgwlLb0dVvRbareGtjvGK5PuPdV1/iw7uvEZcrqlOhGGAmnB/fANMkXt10nRpmAtLmREI6BCcdeBNmTNPc8cFIR3VzzKAxmsmbIUACfDKRgLJpxvf+cmqvYL7ndmDOFilyKRnZVuBPQyTK6yzg8vIMXlcEjuVQnCTkp3nG6XTGNM9yjSPWBNrtBG8FUBZczVBpQerI08nm2ZJGq1wvJSiet1C1KQPdhsfsuSOJKBPSBsnqoBqzrMTjrb3WCtHJAfyjuqqXu20j6+Ue7bO4SQ0YbHk1VweP2z7lYTpjQY15MXXvPGaK1r4DjWSDlS3fqg1RFJHwDjk8aqB0bvI5+GzTdMCyMdByeaaeI+NqZBh6+XtjtN0XUedj+pC289saR7Xc6AFlvZHTAvXXDRzlgb/FsyUP/7rWzO5xsbK+5qF8L8uePF5T3s0csQDc80C7fW3HwBYYSkeJ33KsNQ8lw6g24F4750ZydRcHr3AqAON5Vv22f6adh04AM9cIQJgDHh/OeCY5Tr2Vf7o8Rc8F6NusblM1gBmD+nKG3FDgrYfbTBPnucxpAJXPcYQzdTvu6Q5P1uzpx08SdCt5E1B/h+baaFLd8pi3f205OS3KAM2D0AhvLxbliNpOzOUKspJIIOsKihHL9QXL9QPef/0Fvv75z8HrFbq+mmJMyyLkRMiHp7eyMVDWwdTtQFQAN0T5hBBAU0AI4uWuJiDLYI+s8TmR/hovpraLhjXRz/wxEtA2ekhzLzc4UOKPUBH6KOBBAEQEk7TJ9eUZWFcEBe7q6WbgeDjhdDqDKGCNbLz1BHUvddAuGQF9H1bcDj0oUhV/B7bNjFCWJXlLSK7LIst4glkOQMWLbKOBTMbLLfHIfS/H1rhXwG03o40EjgVRbR4WuLtrbB2jpePFecajIoDL7/a+Fc7pqpuXsYr68jd40eCHsml5B4Bv8hl5nNq5qdf2KGaWyQwAZs7U7b4fFNSGqV4pZVX/yLguLBsDVgy0ymkhlXo1D+14jrGgut5QbueZtrXKIgYrSHOsp2oep/StjOOEKm8tVSpSTX/1z4z6pnaOOHk7YGFLF3pleKBtRL3x4uvuMY3ndJcPcz4xcWScsQjILt8RpnBKrnjw05vNheQD3720Zw7emus5NN/Ws027qZ69Bbx1XoYQcDqdAMh66pavPH41exd4C0UAUyoDzdisv0e1FLAsC4goRShKJZLG4i/8tsBb6xJSG7Q4cETfxrnxSYNuT2jkhjN0y8PtCZtbA7hVBBZkkxm4IYTha522u7aEnGzkA9Y1xdxmxnJ5wTfffIH3X3+B5d07BF4TEI6guMqa75XBK+Pt529xenjAVYFx4sG+OtTj3QUkC+AWT3fazdtY9hEKtut2zJ4iKkAYTXuZjJx6UwbcnVBN1i1IbdLEA5D7XYFDjBGgmC3ruK64vrwAzAj5aZ2vhNP5hPlwkIgv5l4guQ9KkxXNpMxCwf6V+nTeXvM7al8MjEIdW5XnzRgjWt889lN+ml6XfmhEkergm+T5tv3XfrcCqurbAfjfInvXGgTdkhJtzw2BtjVHtwSh3BobBz7XA4WzkYffn92MH2L6rixHNgzlhTFE9iqPAkhjt0l4vydH5kh+zi+ppG144mTAr8uCy/WKiWQZlJZLQF5iptc8MEI6XyueRU7o5u4s5wEwheQcEOeEGoJevWPmW+UBihDtDGttk35TbPGp+dS1s2bAsWq3PUq/HcG9R74v81tgCX/Mpeu1DCmpLW8ljfaXtZAVsPmGd3PByVfLNM+zSdPkaXFA/6lt2I67kRxktGt0GhxZ5fEaD7bld4us/kwcbabdAzTbMahPhElOElbPc4sLvBNwKx4NMWu0pjT/zJvS4owkADHvPVvXNQFvzkvDKuCffrehQ/X8CtWfyLX6bmu4u3r+IjP7ZRARfQ3gb/6q+bjTd6bfBfCTXzUTd/qF0L0vfz3o3o+/PnTvy18Puvfjrwf9p5j597wbn4Kn+28y83/+V83Enb4bEdFfuffjrwfd+/LXg+79+OtD97789aB7P/760+0tt3e6053udKc73elOd7rTnb4T3UH3ne50pzvd6U53utOd7vRLpk8BdP9Pf9UM3OkXQvd+/PWhe1/+etC9H3996N6Xvx5078dfc/roN1Le6U53utOd7nSnO93pTp86fQqe7jvd6U53utOd7nSnO93pk6aPFnQT0X+ViP4mEf0tIvrzv2p+7nSbiOhvE9F/QER/lYj+Srr220T0fyGi/0/6/C2T/r+f+vdvEtF/5VfH+W82EdG/QUQ/IqK/Zq69ut+I6D+X+v9vEdH/iL7NyQF3+k406Mt/mYj+TpqXf5WI/mvm3r0vP0Iioj9BRP9XIvobRPTXiei/k67f5+UnRBv9eJ+Tv6nUHoLxMfxBDiL6jwD8ZwAcAfy/APwDv2q+7n83++1vA/jd5tr/AMCfT9//PIB/LX3/B1K/ngD8qdTf06+6Dr+JfwD+UQB/FsBf+y79BuDfBfBfhJwa8ZcB/OO/6rr9pv0N+vJfBvDfc9Le+/Ij/QPwfQB/Nn1/C+D/nfrrPi8/ob+NfrzPyd/Qv4/V0/1fAPC3mPk/ZuYLgH8LwD/xK+bpTt+O/gkAfyF9/wsA/uvm+r/FzC/M/P8F8Lcg/X6nv8fEzP83AD9rLr+q34jo+wA+Y+b/O4uG+F+aZ+7094gGfTmie19+pMTMP2Dm/2f6/jWAvwHgj+M+Lz8p2ujHEd378decPlbQ/ccB/Cfm9x9ie6De6eMgBvB/JqL/BxH9t9O132fmHwAigAD8sXT93scfN7223/54+t5ev9PHQf8CEf37afmJLkm49+UnQET0nwbwDwH4d3Cfl58sNf0I3OfkbyR9rKDbW6t0D7Py8dM/wsx/FsA/DuDPEdE/upH23sefJo367d6fHy/9TwD8ZwH8GQA/APA/TNfvffmRExG9AfC/BfDfZeavtpI61+59+ZGQ04/3OfkbSh8r6P5DAH/C/P77AfzRr4iXO+0kZv6j9PkjAP82ZLnID9OrMaTPH6Xk9z7+uOm1/faH6Xt7/U6/YmLmHzLzyswRwP8MZRnXvS8/YiKiAwSo/a+Z+X+XLt/n5SdGXj/e5+RvLn2soPvfA/CniehPEdERwD8F4C/9inm60wYR0RMRvdXvAP7LAP4apN/+2ZTsnwXwv0/f/xKAf4qITkT0pwD8achGkTt9HPSqfkuvur8mon847ar/Z8wzd/oVkoK0RP8kZF4C9778aCm1+/8cwN9g5n/d3LrPy0+IRv14n5O/uTT/qhnwiJkXIvoXAPyfIJFM/g1m/uu/YrbutE2/D+DfTlGMZgD/JjP/H4no3wPwF4novwXg/wfgvwEAzPzXiegvAvgPASwA/hwzr78a1n+ziYj+NwD+MQC/S0R/COBfAvCv4vX99s8D+F8AeIDsrv/Lfw+rcScM+/IfI6I/A3kd/bcB/HPAvS8/cvpHAPzTAP4DIvqr6dq/iPu8/NRo1I//zfuc/M2k+4mUd7rTne50pzvd6U53utMvmT7W5SV3utOd7nSnO93pTne6068N3UH3ne50pzvd6U53utOd7vRLpjvovtOd7nSnO93pTne6051+yXQH3Xe6053udKc73elOd7rTL5nuoPtOd7rTne50pzvd6U53+iXTHXTf6U53utOd7nSnO93pTr9kuoPuO93pTne6053udKc73emXTHfQfac73elOd7rTne50pzv9kun/D0q/m6aLHjVEAAAAAElFTkSuQmCC\n", + "text/plain": [ + "<Figure size 1152x1152 with 1 Axes>" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib inline\n", + "import cv2\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "raw_im = cv2.imread(\"/home/dengnc/dvs/data/__captured/dalab1/raw_images/1/image001.png\")\n", + "im_size = raw_im.shape[:-1][::-1]\n", + "print(\"Image size is\", im_size)\n", + "\n", + "plt.figure()\n", + "plt.imshow(raw_im)\n", + "\n", + "K = np.array([\n", + " [1369.757446, 0, 1838.643555],\n", + " [ 0, 1369.757446, 1524.068604],\n", + " [ 0, 0, 1]\n", + "])\n", + "newK = np.array([\n", + " [1369.26, 0, 1900],\n", + " [0, 1369.26, 1500],\n", + " [0, 0, 1]\n", + "])\n", + "D = np.array([[-0.044752], [-0.006285], [0.000000], [0.000000]])\n", + "\n", + "map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, None, K, im_size, cv2.CV_16SC2)\n", + "undistorted_im = cv2.remap(raw_im, map1, map2, interpolation=cv2.INTER_LINEAR,\n", + " borderMode=cv2.BORDER_CONSTANT)\n", + "undistorted_im = cv2.rotate(undistorted_im, cv2.ROTATE_90_COUNTERCLOCKWISE)\n", + "plt.figure(figsize=(16,16))\n", + "plt.imshow(undistorted_im)\n", + "\n", + "map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, None, newK, im_size, cv2.CV_16SC2)\n", + "undistorted_im = cv2.remap(raw_im, map1, map2, interpolation=cv2.INTER_LINEAR,\n", + " borderMode=cv2.BORDER_CONSTANT)\n", + "undistorted_im = cv2.rotate(undistorted_im, cv2.ROTATE_90_COUNTERCLOCKWISE)\n", + "plt.figure(figsize=(16,16))\n", + "plt.imshow(undistorted_im)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "interpreter": { + "hash": "65406b00395a48e1d89cf658ae895e7869e05878f5469716b06a752a3915211c" + }, + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebook/test_image_filter.ipynb b/notebook/test/image_filter.ipynb similarity index 78% rename from notebook/test_image_filter.ipynb rename to notebook/test/image_filter.ipynb index 7dce2ab..09fc61f 100644 --- a/notebook/test_image_filter.ipynb +++ b/notebook/test/image_filter.ipynb @@ -6,28 +6,17 @@ "metadata": {}, "outputs": [], "source": [ - "# 图åƒåŽ»å™ªå¹³æ»‘滤波\n", - "# 使用opencv的自带函数实现,与自编写作比较\n", - "# 产生椒ç›å™ªå£°ï¼Œé«˜æ–¯å™ªå£°ç‰\n", - "# 使用ä¸å€¼æ»¤æ³¢ï¼Œå¹³å‡æ»¤æ³¢ï¼Œé«˜æ–¯æ»¤æ³¢ï¼Œæ–¹æ¡†æ»¤æ³¢\n", - "import sys\n", - "import os\n", - "rootdir = os.path.abspath(sys.path[0] + '/../')\n", - "sys.path.append(rootdir)\n", - "\n", - "import numpy as np\n", - "import math\n", "import cv2\n", - "import matplotlib.pyplot as plt\n", - "import torch.nn.functional as nn_f\n", - "import torch\n", - "from loss.perc_loss import *\n", + "\n", + "from common import *\n", + "from utils import math\n", + "from loss import *\n", "\n", "loss = VGGPerceptualLoss().to('cuda')\n", "\n", "def psnr(input, gt):\n", " input, gt = torch.from_numpy(input / 255).permute(2, 0, 1)[None, :].to('cuda', torch.float32), torch.from_numpy(gt / 255).permute(2, 0, 1)[None, :].to('cuda', torch.float32)\n", - " rmse = math.sqrt(nn_f.mse_loss(input, gt))\n", + " rmse = math.sqrt(mse_loss(input, gt))\n", " #diff = target / 255 - ref / 255\n", " #rmse = math.sqrt(np.mean(diff ** 2.))\n", " #return rmse\n", @@ -35,8 +24,8 @@ "\n", "\n", "for i in range(3):\n", - " image_gt = cv2.imread(os.path.join (rootdir, 'data/gas_fovea_2020.12.31/train/view_%04d.png' % i))\n", - " image = cv2.imread(os.path.join (rootdir, 'data/gas_fovea_2020.12.31/new_fovea_rgb@nmsl-rgb_e10_fc128x4_d1-50_s32/output/model-epoch_300/train/out_view_%04d.png' % i))\n", + " image_gt = cv2.imread(rootdir / 'data/gas_fovea_2020.12.31/train/view_%04d.png' % i)\n", + " image = cv2.imread(rootdir / 'data/gas_fovea_2020.12.31/new_fovea_rgb@nmsl-rgb_e10_fc128x4_d1-50_s32/output/model-epoch_300/train/out_view_%04d.png' % i)\n", " plt.figure(facecolor='white', figsize=(10,4))\n", " plt.subplot(2, 3, 1)\n", " plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))\n", @@ -112,4 +101,4 @@ }, "nbformat": 4, "nbformat_minor": 2 -} \ No newline at end of file +} diff --git a/notebook/test_data_loader.ipynb b/notebook/test/load_dataset.ipynb similarity index 74% rename from notebook/test_data_loader.ipynb rename to notebook/test/load_dataset.ipynb index 6d30850..4b09f84 100644 --- a/notebook/test_data_loader.ipynb +++ b/notebook/test/load_dataset.ipynb @@ -6,29 +6,18 @@ "metadata": {}, "outputs": [], "source": [ - "import sys\n", - "import os\n", - "import torch\n", + "%matplotlib inline\n", "import time\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "rootdir = os.path.abspath('../')\n", - "sys.path.append(rootdir)\n", "\n", + "from common import *\n", "from utils import img\n", "from utils import sphere\n", "from utils import device\n", "from utils import misc\n", "from utils.mem_profiler import *\n", - "from data.dataset_factory import DatasetFactory\n", - "from data.loader import DataLoader\n", - "\n", - "# Select device\n", - "torch.cuda.set_device(0)\n", - "print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n", + "from data import Dataset, RaysLoader\n", "\n", - "MemProfiler.enable = True\n" + "MemProfiler.enable = False" ] }, { @@ -57,27 +46,28 @@ "#DATA_DESC_FILE = f'{rootdir}/data/__nerf/horns/images_4.json'\n", "#DATA_DESC_FILE = f'{rootdir}/data/__new/city_fovea_r360x80_t5.0/train1.json'\n", "#DATA_DESC_FILE = f'{rootdir}/data/__captured/room/train.json'\n", - "DATA_DESC_FILE = f'{rootdir}/data/__pano/stones_fovea_t1.0/train.json'\n", + "DATA_DESC_FILE = f'{rootdir}/data/__captured/bedroom/images4_train.json'\n", "\n", "MemProfiler.print_memory_stats('Start')\n", "\n", - "dataset = DatasetFactory.load(DATA_DESC_FILE)\n", + "dataset = Dataset(DATA_DESC_FILE)\n", "res = dataset.res\n", - "data_loader = DataLoader(dataset, res[0] * res[1], chunk_max_items=6e8)\n", + "data_loader = RaysLoader(dataset, res[0] * res[1], device=torch.device(\"cuda\"))\n", "\n", "MemProfiler.print_memory_stats('After dataset loaded')\n", "\n", "fig = plt.figure(figsize=(12, 6))\n", "i = 0\n", - "for indices, rays_o, rays_d, extras in data_loader:\n", + "for data in data_loader:\n", " if i >= 4:\n", " break\n", " plt.subplot(2, 2, i + 1)\n", - " img.plot(extras['colors'].view(1, res[0], res[1], 3))\n", + " img.plot(data['color'].view(1, res[0], res[1], 3))\n", " MemProfiler.print_memory_stats(f'After view {i} is plotted')\n", " i += 1\n", " time.sleep(1)\n", "\n", + "#plt.show()\n", "MemProfiler.print_memory_stats(f'After all views are plotted')" ] }, @@ -88,23 +78,23 @@ "outputs": [], "source": [ "selector = torch.arange(res[0] * res[1]).reshape(res[0], res[1])\n", - "selector = selector[1024-512:1024+512:10, 2048-512:2048+512:5].flatten()\n", + "selector = selector[::3, ::3].flatten()\n", "idx_range = [0, 4, 20, 24, 62, 100, 104, 120, 124]\n", - "for r in torch.arange(3, 3.5, 0.1):\n", + "for r in torch.arange(11, 50, 5):\n", " p = None\n", " centers = None\n", " pixels = None\n", " idx = 0\n", " MemProfiler.print_memory_stats(f'Before iter')\n", - " for indices, rays_o, rays_d, extras in data_loader:\n", + " for data in data_loader:\n", " if idx > max(idx_range):\n", " break\n", " if idx not in idx_range:\n", " idx += 1\n", " continue\n", - " colors = extras['colors'][selector]\n", - " rays_o = rays_o[selector]\n", - " rays_d = rays_d[selector]\n", + " colors = data['color'][selector]\n", + " rays_o = data['rays_o'][selector]\n", + " rays_d = data['rays_d'][selector]\n", " r = torch.tensor([[r]], device=device.default())\n", " p_ = misc.torch2np(sphere.ray_sphere_intersect(rays_o, rays_d, r)[0].view(-1, 3))\n", " p = p_ if p is None else np.concatenate((p, p_), axis=0)\n", @@ -118,7 +108,6 @@ " plt.ylabel('z')\n", " plt.title('r = %f' % r)\n", " ax.scatter([0], [0], [0], color=\"k\", s=10)\n", - " print(p.shape, pixels.shape)\n", " ax.scatter(p[:, 0], p[:, 2], p[:, 1], color=pixels, s=0.5)\n", " ax.view_init(elev=0, azim=-90)\n" ] @@ -126,10 +115,10 @@ ], "metadata": { "interpreter": { - "hash": "82066b63b621a9e3d15e3b7c11ca76da6238eff3834294910d715044bd0561e5" + "hash": "65406b00395a48e1d89cf658ae895e7869e05878f5469716b06a752a3915211c" }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.8.12 ('base')", "language": "python", "name": "python3" }, @@ -143,7 +132,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.8.12" } }, "nbformat": 4, diff --git a/notebook/test/sphere.ipynb b/notebook/test/sphere.ipynb new file mode 100644 index 0000000..4f9fc66 --- /dev/null +++ b/notebook/test/sphere.ipynb @@ -0,0 +1,142 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Test Ray-Sphere Intersection & Cartesian-Spherical Conversion" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "tensor([[ 0.0000, -0.3536, 0.3536]])\n", + "tensor(0.5000)\n", + "tensor([[ 0.0000, -45.0000]])\n", + "torch.Size([1, 3])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoQAAAJ8CAYAAABndrA7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eXgc2Xnmib6x5QYkVi4ACZLgTlZRVUWyNqKkVluSJZXdasl2d9tSS7Lb0kz7yj3dvp7uGfm2x1f2uK3x47FaHrtLltrX8taWLdnarbVUJUuqUqlKJQIkuBMkuIAg1sSSe0Scc/848cWSewIJIBM4v+epIglkRpyIXOKNb3k/hXPOIZFIJBKJRCLZsqgbvQCJRCKRSCQSycYiBaFEIpFIJBLJFkcKQolEIpFIJJItjhSEEolEIpFIJFscKQglEolEIpFItjhSEEokEolEIpFscaQglEgkEolEItniSEEokUgkEolEssWRglAikUgkEolkiyMFoUQikUgkEskWRwpCiUQikUgkki2OFIQSiUQikUgkWxwpCCUSiUQikUi2OFIQSiQSiUQikWxxpCCUSCQSiUQi2eJIQSiRSCQSiUSyxZGCUCKRSCQSiWSLIwWhRCKRSCQSyRZHCkKJRCKRSCSSLY4UhBKJRCKRSCRbHCkIJRKJRCKRSLY4UhBKJBKJRCKRbHGkIJRIJBKJRCLZ4khBKJFIJBKJRLLFkYJQIpFIJBKJZIsjBaFEIpFIJBLJFkcKQolEIpFIJJItjhSEEolEIpFIJFscKQglEolEIpFItjhSEEokEolEIpFscaQglEgkEolEItniSEEokUgkEolEssWRglAikUgkEolkiyMFoUQikUgkEskWRwpCiUQikUgkki2OFIQSiUQikUgkWxwpCCUSiUQikUi2OFIQSiQSiUQikWxxpCCUSCQSiUQi2eJIQSiRSCQSiUSyxZGCUCKRSCQSiWSLIwWhRCKRSCQSyRZHCkKJRCKRSCSSLY4UhBKJRCKRSCRbHCkIJRKJRCKRSLY4UhBKJBKJRCKRbHGkIJRIJBKJRCLZ4khBKJFIJBKJRLLFkYJQIpFIJBKJZIsjBaFEIpFIJBLJFkcKQolEIpFIJJItjhSEEolEIpFIJFscKQglEolEIpFItjhSEEokEolEIpFscaQglEgkEolEItniSEEokUgkEolEssXRN3oBEolkY+CcwzRNZLNZ6LoOXdehaRpUVYWiKBu9PIlEIpGsIwrnnG/0IiQSyfrCGEM+n4dt28jlcq4AVBQFqqrCMAxomgZd16EoihSIEolEssmRglAi2UJwzmHbNkzTBOcciqIgn89DVVVwzsE5B2PM/Z2iKK4wpAiiFIgSiUSy+ZCCUCLZIlCK2LZtACIayDl3BWGpx9ciEEs9VyKRSCSthawhlEi2ABQVZIwFagQr3Q+SACTBRwLRsiyYphkQiJRilgJRIpFIWhMpCCWSTQwJOMuyAGBVDSPVBCJt3x89lAJRIpFIWgOZMpZINimMMTcqCKBk7R81lzRCtJVLMUuBKJFIJM2PFIQSySaDRFmpFHEhjRSE5dbh/4opFIjUxSyRSCSSjUUKQolkE1GqcaSS4FpLQVhqbSQQS0UQ/V3MEolEIllfpCCUSDYJFBW0bbvmWsH1FISFlBKIqqoWNalIgSiRSCRrjxSEEkmLQ96ClmVVTREXspGCsBC/QLx9+zYikQj6+vqKahClQJRIJJLGI7uMJZIWpjBF3Mpj58jCBgCy2WzAJ5GmqZTqYm7V45VIJJJmQgpCiaRFKectuJkggUiJDIpoSoEokUgkjUUKQomkxfB7C3LON60Y9EPH5xeI9F8ul0M+nwdQ2gdxs58biUQiaQRSEEokLQRjDJZlbYoUcSWqHZO/e1rTtCKB6I8gUoOKruub9nxJJBLJapGCUCJpAfzegn7Lls1MPf1ulQRiNpt1H0MC0T+HebOfR4lEIqkFKQglkianXm9BSe0CkSKHUiBKJJKtjhSEEkkTwxjD3Nwc7t27h6NHj66JWGlGAUQdxo3cXimByBiTAlEikUggBaFE0pT4vQUzmQxmZmZw7NixNdsX0JzCcK2oJBBzuRyy2SxUVS1qUpECUSKRbFakIJRImozCFDEJlq3EeouuwjQ8CUTbtmHbdlmbGykQJRLJZkEKQomkiSCfPb+3oKqqW04QAvU1lTQaEog0wcUvEC3Lcn9fmGKW9Z0SiaRVkYJQImkCSGxQF7E/8tToejpJ/ZQTiJZlwTRNKRAlEknLIwWhRLLBVPMW3IqCsNlFVD0CkXwQKcUskUgkzYgUhBLJBlGrt+BaCsJmFl6tJIKrCUSg9BQVKRAlEkmzIAWhRLIB+MfPAZW9Bdc6QtjMorBVKScQTdOsOGZPCkSJRLJRSEEokawzFBW0bTsgGsohU8atTymBSO8DiiAqiiIFokQi2TCkIJRI1gl/l6q/i7gaW1EQAq2VMq4Xqi8k/AIxk8lgbGwMR44cQSgUcgWiruubTihLJJLmQQpCiWQdKPQWrMe/bqsKwq2EXyAyxjA1NYUjR464KWaKLhY2qUiBKJFIGoUUhBLJGlPKW7AetqIg3IrHTNBx+1PG/giiXyAWppilQJRIJCtFCkKJZI2o5C1YD2RMTZ3IjV7j8vIyYrEYdL25vg62qiAshT+CSOeFbjTKTVGRAlEikdRDc10BJJJNwmpSxIXQ8xotCPP5PM6fP4+5uTlwztHR0YHu7m50d3ejs7NTNjRsMJW6zgFIgSiRSBqKFIQSSYOhqOBKU8SF+AVho0gkEhgZGUFHRweGhoZgWRYWFhaQSCRw7949WJaFzs5OVyDG4/F1FYhbWbjU+zpXEoi5XK6izc1WPs8SiSSIFIQSSYMo9BZshBgEGisIOee4ceMGbty4gSNHjmDPnj0wTROGYSAWi2HXrl3gnCOdTiORSCCRSOD27dvgnKOrq8sViO3t7WsuJrZ6yni1EWUSfVRuwDkvEojUoKLresPerxKJpDWRglAiaQBU8M8YA1DZaLpeGiUIc7kczp07h0wmgyeeeAIdHR0lt6koCtra2tDW1oaBgQFwzpFMJl2BePPmTaiq6grEnp4eRKNRKSYaRKOFsP+9WCgQs9ms+xgSiBRBlAJRItlaSEEokawCf/dno1LEhTRCEM7NzeHcuXPo7u7GyZMn62ogURQF8Xgc8Xgce/fuBWMMy8vLSCQSmJmZwfXr12EYhhs97OrqQjQaXfFaaZ+StUEKRIlEUgopCCWSFdLIxpFKrEYQMsYwNjaG8fFxHDt2DAMDA0VrrNfiRVVVdHZ2orOzE4ODg7BtG0tLS2794eXLlxGJRFyB2N3djVAoVPfat3LKeD2FV60CkVLLUiBKJJsTKQglkhXgHz+31hfGlQrCbDaLkZER5PN5PPnkk4jH42uxPGia5go/ALAsC4uLi2794YULF9DW1haIIBqGsSZr2QxstBAuJxCpSSWbzUJV1aImFSkQJZLWRgpCiaQOVjp+bjXQ9qk+sRZmZmZw7tw57NixA6dPn15Xj0Fd19Hb24ve3l4AgGmabgfzjRs3kEqlEI/HAxY3heuTwqJ5KKyHJYFo2zZs2y5rcyMFokTSWkhBKJHUyHqliEtRa1qXMYZr167h9u3beOCBB7B79+51WF1lDMPA9u3bsX37dgCiuYUaVK5cuYJcLhfwQOzo6ACw8ZGyjaSZhRQJRP8UlVICkVLM/jnMzXxcEslWRwpCiaQGGu0tWC80raQSmUwGw8PDYIzhzJkzaG9vX6fV1Uc4HEZfXx/6+voAiHWTQCQPxFAoBF3Xsbi4uO4eiBtNqwnhcgLRsiyYpun+vrAGUQpEiaS5kIJQIqmA31twNePnVku1COHU1BRGR0fR19eHY8eOuSbFrUA0GkU0Gg14IF6/fh3JZBIjIyMb4oG40bTy8dUjEMkH0T+3WSKRbAxSEEokZWCMwbKsDUkRF1JOEDLGcOXKFUxMTODBBx9Ef3//BqyucZAHItUVPvDAAxU9ELu7uxGLxVpaQG12ahWIhVNUpECUSNYXKQglkgL83oI0P3ijBUcpQZhOpzE8PAwAGBoaQiwW24CVrS21eCDquh6wuFmtB+JG02op43opJxBN03SnqDDGYNs2Ojs7pUCUSNYJKQglEh+FjSPNIAZpHX6hMDk5iQsXLmD37t04evToprtYljvnlTwQJycnceXKFYTD4YBADIfD67z61dMM77n1opRAnJmZwfj4OE6ePCkjiBLJOiEFoUTisJ7egvVCgtC2bVy+fBn379/Ha17zGuzcuXOjl7Zm1BIpq+SBeOfOHVy8eFF6ILYY9LlTFAWGYQQi9qZpur/zC0TqYpZIJCtHCkLJlodzjnw+j6mpKWzbtq3pxCAgLoDpdBoXL16EpmkYGhpqaGqUUuPNwkrX0ggPxI1ms6eMa4EauABvSor/dyQQ8/m8G10s1cUskUhqp7m+CSWSdYZSxOl0GmfPnsWb3/zmpryQ2LaNCxcuYN++fTh8+LBMl9VIKQ9EEohXr15FNpst8kBshg7tZnwPrieVblDqEYj+Luatfk4lkmpIQSjZsjDGkM/nXW/BZsSyLFy6dAn5fB6HDh3CoUOHNnpJ68ZaRMrC4TB27tzpptozmYwrEC9cuADLstDZ2ekKxK3mgdgs1BOx9gtEes+UEoiFNYhSIEokQaQglGw5qBaPuogpmgCgqcTh8vIyhoeHEQqF0NbW5k7w2Aqs18WaPBD7+/tdD0SyuLlz5w4YY+vugShTxisvYfDPYKbtAN7NX7kxe1IgSiRSEEq2GOW8Beli0AwXY8457t69i8uXL2NwcBAHDx7ESy+91BRr28yQB2JbWxsGBgbAOS/yQFQUJdDBvFYeiFtdnDSqprWSQMzlcq7NjRSIEokUhJItQjVvQYoKMsY2aokARIp4dHQUiUQCp06dcpsjap1lvJnY6OPdih6IzQJjbE2FNok+8kDknEuBKNnySEEo2fT4x88Bpb0FmyFCuLi4iJGREUSjUQwNDQX887aaIGzGi2+hByJjzLW4aaQH4lZ6ncuxXl3v/u+CUgLRn2I2DMMViM3oRCCRrBYpCCWbGr+3oN/8thC6MGxEhJBzjtu3b+Pq1as4cOAADhw4UFKwroVQaBbj7VZEVdWqHoixWCwgEGv1QNzqr8lG2SBVEojZbNZ9jBSIks2IFISSTQk1jliW5TaKVPvCVlV13QWhaZoYHR3FwsICHn30UVdcFLLVIoRA60XKKnkg3rx5E6Ojo2hvbw+YZDebB2Kz0Cy+mLUKxEIPRCkQJa2I/DaSbDoKx8/V+uW83qJrYWEBIyMjaG9vx1NPPYVQKNQ0a9toNsPFtNADMZ/Puw0q165dQzabLTLJJtGx1WkWQVhIOYHIGHMFoqqqRTWIUiBKWgEpCCWbikJvwXq+hNcrQsg5x/j4OK5fv45Dhw5hcHCw6jq3miDcjIRCoYAHYjabdQXipUuXYJomOjo6EI1GXZHRLBZI602zCsJCyglE27Zh2zay2awUiJKWQQpCyaaglLdgvV+46yG68vk8zp8/j2QyicceewxdXV1Ns7ZmY7MfbyQSQX9/v+uBmMlkkEgkMDU1hXw+j+9+97vr7oHYLLSKICyEBCIJ+UKBWNik4p/D3IrHK9lcSEEoaXlWmiIuZK0jhPPz8xgZGUFXVxeGhoZqbjBY67U144WoGde0liiKglgs5v538eJFPPzwwxvigdgMtKogLKSSQLQsy/19qTnMm+H4Ja2FFISSloaigitJEReyVl3GnHPcuHEDN27cwNGjR7Fnz56mil42aySuWde1Hqiqivb2drS3t2PPnj1gjCGZTGJ+fn5LeCBSlH+zUU4gWpYF0zQDAtE/h3kzngtJ8yEFoaQlKfQWbERNjqqqDRchuVwO586dQyaTwRNPPLHi8XNbMWW8VSn1Oquqio6ODnR0dKypB2KzsFkFYSHVBGIul8PCwgIGBgakQJSsOVIQSloO8hakaF6j0iuNTsvOzc1hZGQEvb29OHny5KosRraaINzq6bJaLJL8Hoi2bbsWN6v1QGwGNkvKuF4KBeLi4iLu3r2Lvr4+mKYJoPQUFSkQJY1ACkJJy+AfP9eIFHEhjRJdjDGMjY1hfHwcx48fx+7du1e9zq0mCIGtnTKuF03TNpUH4lYVhIVQpJReK4ogmqaJfD7vCkgpECWNoHm/ESQSH41qHKlEIyKE2WwWIyMjyOfzePLJJxGPxxuytq0oCLcqjXidV+qB2CxIQSgoTJ2XSjHTTTJFEAsFInUxSyTVkIJQ0vT4x8+tpX/XaptKZmZmcO7cOezYsQOnT59uaARmqwnCrX4Ba/Tx1+qBSAKxo6NjQ6NMjLEt/x4Aqp8HakAh/AKxVATR38UskRQiBaGkaVnJ+LnVsNKmEsYYrl27htu3b+OBBx7A7t27G762rSYIAZkyXkvKeSAmEgncvXsXjLEN9UCUEUJBvebktQhEVVWLupjluZYAUhBKmpT1SBEXspIIYSaTwfDwMBhjOHPmDNrb25tmbfVsW9I8rLcQ9nsg7t69G5xzpFKpDfVAlIJQsNppNbUKxMIaRHnutyZSEEqajkZ6C9ZDvRHCqakpjI6Ooq+vD8eOHVvTGqy1FITNyFa/IG3k8SuKUtIDMZFIYHZ2tqQHYiQSaeiapSAUNHp8oV8g0ncdjfv0T1GRAnFrIgWhpGnwewuudPzcaqhVdDHGcOXKFUxMTODBBx9Ef3//uqxtq6VQt9rxNit+D8R9+/aBMYalpSUkEgncv39/TTwQpSAUrOU8a/8MZkAKRIkUhJImgTEGy7LWNUVcSC0RwlQqhZGREQDA0NAQYrHYeixtTUyziWb8cm/GNa0XzS6EVVVFV1cXurq6sH//fti27Zpk3717t8gDsaurC6FQqK59SEEoWM/zUEog0n+5XA75fB5AaR9E+VptDqQglGwo/poW+vLbqC+XarYzk5OTuHDhAnbv3o2jR4+uaxfmVowQbmVa6QKraRp6enrQ09MDALAsCwsLC5ifn8fNmzeRSqXq9kCUglCwlhHCavi/izVNKxKI/ggiNajour4hN/OSxiAFoWTDKGwc2eiB7uVSxrZt49KlS5iamsJDDz2EHTt2bMjatpog3GrHu1nQdR3btm3Dtm3bAKzMA1EKQsFGCsJCKgnEbDbrPoYEIkUQpUBsHaQglGwI6+UtWA+l0rLJZBLDw8PQdR1DQ0OIRqMbsra1FIT0pd5MNMP7YaNottditVTzQMzn8+js7Ax4IEpBKGCMNZVhuJ9aBSJFDqVAbH6kIJSsK+vtLVgPqqq60UoAmJiYwMWLF7F3714cPnx4Q+/Ut2KEcCvTLJ+JtaAWD0RAzAKPxWKIx+Ob+nxUgjHWMjOoywlExpgrEFVVLapBbKZrwFZHCkLJurER3oL1QKLLsixcunQJ09PTeOSRR9zxX82wtq3EVjteYisddzkPxJGREdfjE0DAJLutra2pvjfWklaOlFYSiLlcDtlsVgrEJkMKQsm6QF8CG2EnUyuqqiKXy+H73/8+QqEQnnrqKUQikY1eFoCtJwib8f0hWXvIA9EwDAwODqK3txfLy8tIJBKYm5vD2NgYNE0LWNxEo9FN+35pphrC1VJYI04C0bZt2LZdtkllo2vLtxJSEErWFPrA379/H5cvX8ZrX/vapvxwc86xtLSEmZkZHDhwAIcOHWqqdW41QbjVaab33kbgdxwo54E4NTWFq1evIhQKueKwp6dn1R6IzcRmEoSF0OtLx+cXiJZlub8vrEGUAnHtkIJQsmb4vQWpg7cZP8iWZWF0dBRzc3Po6urC4cOHN3pJRVSzxNmMbFUBvFWP20+5VGklD8SJiQlcvnwZ0Wh0VR6IzcRmFoSFlBOIlmXBNE0oioKZmRn09vYiFosFUsySxiAFoaThlPIW1HW9KQXN4uIiRkZGEI1GsX//fiwvL2/0kkqy1SKEzXjjIFk/ar15LOeBmEgkMD4+jmQyWbcHYjOxlQRhIaUE4rVr19wSAX8EkVLMUiCujtb5ZEhaAv/4OSD4oW4mQcg5x+3bt3H16lUcPHgQ+/fvx507d5pqjX7WShCaponR0VGkUik35dbV1dW0Vhdbha0uiFfaTFHKA5EE4vXr15HJZKp6IDYTrdxU0mgoyxQKhWAYRlEEESg9RUUKxNqRglDSMPzegv47O6C5Up4kghYXF/Hoo4+iu7sbQHOtsZC1EIRLS0sYHh5GNBrFwMAAFhcXceXKFeRyOdcXrqenB/F4fEO+VLdSRNTPVj1uP40SQqFQCDt27HDN5GvxQGwmAbGVI4SFUOaJBHy5FLNpmhXH7MnzWR4pCCWrphZvwWYRWwsLCxgeHkY8HsfQ0FCgvqiZ07KNXBvnHHfv3sXly5dx4MAB7Nu3D6ZpYteuXQFfuPn5edy5cwecc1ccdnd3IxaLrXnUQkZFtjZrFRmr5oFo23bA4majPRClIPSg60e581FKIFKQgiKIVL5EApG6mCUCKQglq6JWb0GaArJRKRDOOcbHx3H9+nUcOnQIg4ODTStaS9EoQWjbNi5cuIDZ2VmcOnUKvb29gWMu5QuXTCYxPz+PmZkZXL9+Hbquu+Jws3V1NgMyTbg+56CcByIJxFu3bgHYWA9EKQg96BpTa4qf6gsJv0DM5/OugCSB6O9i3qpIQShZMYwx5PP5miaO0JfaRoxiyufzOH/+PJLJJB577DF0dXWVfNxmjxDSGD7DMDA0NFSTx6KiKIjH44jH49i3b1+gq/Pu3bu4dOkS2traAvWHjSrab9bXQrL2bIQoJg/E9vZ27NmzB5zzDfdAlILQwz/zfiXUIhBVVS1qUtlKAlEKQkndUIqYuohrMZqmLzXbttdVEM7Pz2NkZARdXV0YGhqqOAZqM0cIJycnMTo6WnYMX61fev6uzoMHD8I0TTeicu3aNWSzWXR0dASK9ldyQdtKX8Kl2OrH3wxR0no9ELu7uxtuZE/frxIvmNCo90WtArGwBnGj35driRSEkrpY6fg5f4RwPeCc48aNG7hx4waOHj2KPXv2VF3nZowQMsZw+fJl3Lt3Dw8//LBbXN8oDMMoKtqfn593feEYY27Kraenp66UW7O+FmvNVj1uP80gCAupxQMxEokEBOJqPRCb1bt1I7Bte03FsV8g0meQsmD+KSqbWSBKQSipGYoK1pIiLmQ9BWEul8O5c+eQyWTwxBNPoKOjo6bnbbYIIc2C5ZxjaGgIsVhsjVbnEYlEsGvXLrdBJZVKuQLx5s2bUFU1UH/YLKMBJc1FMwrCQip5IN66dQsXLlxwyynIA7FShqIUMmXssZ7lRv4ZzMDWEYhSEEqqUugtuNJZxJqmrbngmp2dxblz59Db24uTJ0/WVc/WzIKw3rXNzMzg3Llz6Ovrw7FjxzbEa81fk7V371435TY/P4/JyUlcuXIFkUjEFYjd3d3uBbOVv1QbwVY+frr4tpoQquSBODY2hnQ6jXg87r7fa/FAlILQY60jhJUoJRDpv1wuF7C5eeGFF6DrOt785jdvyFpXgxSEkopQTQWJkdXMkVxLwcUYw9jYGMbHx3H8+HHs3r277nVuhpQxufnfunULDz74IHbt2rUOq6sNf8oN8CIq8/PzuHnzJkZHR90LpmEYTSvO15pmfQ+uF3T8rS6KCz0Qc7lcXR6I1WxWthob0ZBYDv91UNO0gED8/Oc/j7a2NikIJZsHf4HtSlLEpVgrQZjNZjEyMgLTNPHkk08iHo+vaDvNHCGsRRDmcjmMjIwgl8ut6jysF4URFbpgzs/P4969ezBNE2fPnnUjKhvtCSdZHzaLICwkHA6jr68PfX194JwHTLInJiZgWVbA4oZKPKQgFGxkhLAafoGYSqUaXqu9XkhBKClipY0j1VgLwUWp0R07duD48eOrsjxp5QghdVN3d3fj1KlTLTWvlfBfMBcWFnD+/Hls374d8/PzGB8fh6IoAYPstbb82Eg263HVwmYVhH4URUE0GkU0GnXrbdPpdMADkc7DvXv30Nvbu+4eiM3GejtUrJRUKoX29vaNXsaKaL2rhmRN8Y+fa5QQJBopCBljuHbtGm7fvt2w1GgrRgg557h58ybGxsZq7qZuBeiOe2BgAAMDA2CMuZ5wZPkRDocDAnG1HZ3NQrPelKwXW0EQFqIoCtra2tDW1oaBgQFwzt2bvEQigfHxcaiquq4eiM1GM6WMK5FOp6UglLQ2tYyfWy2NElzpdBojIyNgjOHMmTMN+/DR8PRmpJQgNE0T58+fx9LSEh5//HF0dnZu0OoaT6kpMp2dnejs7MTg4CBs2y7q6Gxvbw8YZLfCxaMcW+lCX8hWFISF0BQVAHj44Yddk+z5+fl180BsNpo5ZewnlUqhra1to5exIqQglKxZiriQRgjCqakpnD9/Hrt27cLRo0cbetH3z8BstotRoSBcXFzE8PAw2tvbi2YybwU0TUNvby96e3sBiI5OSrdduXIFuVzOLdjv6elBPB5viYuJRApCwn9jriiKe0O0Xh6IzUarRAhlyljSsqzGW7BeViMIGWO4cuUKJiYmcOLECfT19TV4dRs7Xq8aJAg557hz5w6uXLmCgwcPYv/+/Zv2wllP6jQUCmHnzp3YuXMnAOHBSP6Hd+7cAefcvVD29PQgFos17Xnb6iljv6PBVqbSlJL18EBsNlohQkjeq1IQSloKv7dgrePnVstKBWEqlcLIyAgArKnBMh1/M16QSRCeO3cOc3NzOHXqlBsd24ys9r0YjUaxe/du7N69G5xzJJNJzM/PY3Z2FmNjY9B1PWCQHQ6HG7TyxrCVxVAzRug3gnqmlNTqgegXiM1201sNxlhLNMtJQShpKRhjsCxrzVPEhaxEEE5OTuLChQvYvXs3jh49uqZ3iOs9Xq8e0uk0AGGxMzQ0tOnrhRqJoiiIx+OIx+PYt28fbNt2DbInJiZw6dIlxGKxgEF2K1x4NitSEApWY0pdyQORSioaMXN8PbFtuyXS4LKGUNIS+L0F6Ut3Pb946xGEtm3j0qVLmJqawkMPPbQuvk50LppNEN67dw8XLlwAAJw+fXrLiJW1itRqmuZeCAHRnEMG2WNjY8hkMkUTJdbzYtmMEer1RApCQSOnlPgtnQBRUkEC8d69e7AsK1Bz297e3nQCsRlLeQqhlHGze8CWY2tcWSRFjSPrLQYBIQhp/5VIJpMYHh6GrusYGhpCNBpdh9U1X8qYMYbLly9jcnISJ06ccNPmW4H1fG8ahoHt27dj+/btAEQUluoP6WLprz9cDz+4rSyIpCAUrOXYukoeiLdv3w7U3HZ3dzeFB2Ir1BDmcjnYti0FoaR5WUtvwXqoJUI4MTGBixcvYu/evTh8+PC6fgGQSG6GCGE6ncbw8DAA4MyZM26qpFnEaqvCGANjcP7j4Jwi5+JnonFHQySyDTt3bsP27RzpdArz84u4fn0GmcwYIhEVO3b0oLe31/WDayRb/TWWglBQqamkkZTyQEwmk+7UoBs3bjSFB2IrGFOnUikAkCljSfOxHt6C9VBJEFqWhYsXL2J2dhaPPPKIG61Zb1RV3fAL8vT0NM6fP4/+/n4cO3YsEFnd6LWtJ5WONZtlSKdtZDL0J0cmYyOdZsjlxM+yWY5cjiGXs5HLcWSzHJwzANy3fQWcA+JjUWp/4vOiKByK0g3L6kAul0Mmk0E+PwbbziES0dHREUNHRxs6OtrQ1haCYagIhxWEwyoMA4jFNHR0GOjqEv+Fw819YdtIpCAU1NNU0kj8Nbd79+4NmMJPT0/j2rVrMAxj3T0QWyFlnEwmAx6SrYYUhJuU9fIWrIdygnB5eRnDw8MIh8Mb3jCxkdNKGGO4fv06bt26VTR9pdnS2WuNaXLMzQEXL6YxN2dhaclGIiH+TCZt5PM2VFWBongd2IoiIn0AnMgffGIPUFU4v1ec6IsQgx7lPh/cfT7nKkKhKEIhERW0bYZcLotEIoN79+ZgmvcRieiIRKKIRiOIRiNQVRWqymHb3H39dB1ob9cRjxtobxdiMR7X0dVlYHHRhK5vjde5FFIQCtYyZVwPpUzhN8IDsRVSxtRh3KrvXykINyGMMeTz+aaICvpRVRWWZbn/5pzj7t27uHz5MgYHB3Ho0KENX+tGzTPO5XIYHh5GPp8vOX1lMwrCRCKP2Vkh9BYXbSws2FhctLC0xLC0lMO9ewYuXZqHoqi+CB53Ur0KGPO/VxQACjRNiDT3p76HMMZ9P1egqoBtVz+fJCRtW0QK/cJR01TEYjE3IsC5hVQqg0wmi+npOTBmIxyOIBKJoK0tCsMwoChAPg8sLNhYWrJBglNRhGCcm1uAZZn45jcvIx7XsW1bCNu2hdHXF8GOHRH09oY2/HOylkhBKGgWQVjIRnkgtkKEMJVKNbXHaTWkINxEUIqYuoibSQwC4oskn88DEF8io6OjSCQSTeWptxERQppZ2tPTU7aLuNUF4eyshXv3TExOiv8SCQvJpO17f3I34se5AkAFYyo41yCuidwn3hSUeluL978CTVMBcDcl7AkuehydTwZdF2LP/7tCiq9B3Pd6wN2HEI4a4vF2xOPt4JwjnzeRzWaRTmewtLQEReEIh8Nob48gFIpA1w3fsQhRy7nqHL+CxUUL8/N53LiRhGVRdFFFb28Ivb0h7NgRwc6dEfT3R9De3trGw8R61c41O80qCAsp9EA0TdNtUGmkB2KrRAhbtX4QkIJw07BR3oL1QGJrcXERIyMjiEajGBoaaipT4PVsKuGc4+bNmxgbG8PRo0exZ8+eiq/ZRkUv64FzjtlZG3fv5jE5aWJqysLMjIV8XkT3FMW70Ok62fzAifi5W/EJM+85hqECYM7jaX9+kSz+pEZ2ES2kdC8PRA4JTQtGDssdE+1CVRXn8f7nMCgKXMHmJxTSEQoJgQiIz2gmk0IymUQ2OwvDMBAOi9RyOBx1L5ScK85xKAA0cC7WqmnCOmp2NovZ2SyuXFly9xWNqujpCaO3N4z+/igGB9vQ09M8n61akRFCQasKY8Mw1sQDsRUihMlksik6sleKFIQtzkZ7C9aDoihIJpN4+eWXm3bs2no1leTzeZw/fx7JZBKPP/44Ojs7a1rbWonVlb4O6TTDtWs5TEyYmJ62MDtrwTS9Zg1AiDZdF2JOiBzNiQRypwaQBAB3H0/pYUUBTJO5ohAQKVxFodSwt+7CY7BtBarKneJ86iJHUXRRbM8f8aPUsLtl97Olqrzg+eJYq4lKXRfrMQwDhtGFjo5Ot/4wk8kikVhAPj+NUEikgzVNgabZUBTN7YYGANMEFEUFY2IdFD0VnaE2ksk0bt9O4+zZBFQViMcN9PeHsXdvO/bvb8P27etj4bQapCAUbFRTSaOpxwOxu7u77NzxVogQptPplp1SAkhB2NLQ+LkLFy6gv78fnZ2dTfsFYpom7t27h1Qqhccee8w1BW421iNlvLi4iLNnzyIej2NoaKiu+pq1Equ03WrvH8tiuHXLwthYHnfuCBFYXIenQFFECthf9ye270XlvIYPxU3LBqN/vKSAo5dHUVQnTWsDUAOPpYYSkULWYFm2I0KLj0lVFRTbY3rdxV5amCKZ3kY0zR/JI3FL55EXNbv49wkoiMWiiMWi4LwLAEM2K8RhNmvh+vVbiETCiEQiiEajCIXCTmOL+I/+DqjOvllAIALA0lIeS0t5XL2aBGMMsZiO3btj2LevDfv3t2PnzuYTiFIQClolZVwvtXggdnV1uQKxvb3dnePeChHCVu0wBqQgbFn83oLz8/Po6elp2i/RhYUFDA8PwzAM906wWVnLtCznHHfu3MGVK1dWFCHdKEucqSkL167lcPOmiXv3hAD0RBFFpUVaVogr8vVjbiSrFP6fF4oqVVWcqJpddI68iB53BKTmCMPic0MiUNPKR/EqvQR0PKV/J9LE/vVx7kVGhVjkUBQ18BxxzrzOZRH9FB3M0WgM2WweoZCNzs5OZDIZZLNZLC0tA+BuejkajULTDCetaLtRVcsS+wVUkJYQrwODqiowTYaxsSXcuLGE559XEI1q6OuLYs+eGA4dasfOnRtf/yQFoWCzCkI/lTwQE4kEbt686XY5AyL9TFH0ZqSV5xgDUhC2HKW8BTVNq2kCyHrDOcf4+DiuX7+Ow4cPwzAM3L17d6OXVZG1ihBSJHd+fh6nT592O/TqYb1qCFMphqtXcxgfz+P2bQvptCdehKhSnAYQBlXVHIsj7nb9ci46eIVAFNsk0+fy1i4e1EHMGBzLFrEtyxLiTrw8wfNg24CulxZvJLjKUd/LHVx/uQsT1S8W/p5sb1RVgWEoyOcZNI2ifcyJnIpjMAwdhhFHR0ccnAOWlUc2m0Emk8bCQgKKArS1RREKCZGo67pzrBSVFfsUkRU10BwjoqcMySTD9esmrl9fwnPPcXR3h3HkSBzHj3dhz56NubBtllTpatkKgrCQch6Is7OzmJ2dxY9+9CPoul5kkt0sSEEoWTfKeQtqmtYU0zX8+GvkHnvsMXR1deH+/ftNt85C1kJ0JZNJnD171vVZXGkTzVoKwlTKxoULJkZH85ictH1RMw5NIwFBKUrmWLZ4Fi/+6zfVBfqjfgBF6orTukGhKESkpgkTadqvbYs0NEXdChE1hSj7e4CifcVig1LXpU5tufPtNZcU429mKbFFaJriNqAExarqpII191iFSBTHLuoPDcTjHbBtjnw+h0wmi2RSXDANw0A0GkUkImxuRLc1NUr5U+2Kc46Z29UtOruBhYU8Xn55Di+/PIeuLgMHDsTxwANdGBxcv1FcMkIoaIUU6VpD0cFQKITbt2/jda97HZaWlpBIJDA5OYkrV64gHA4HRkuuhQdircguY8m6UMlbsNYZwesF2ah0dXUFauQ20vS5Vhq9xnv37uHChQvYt28fDh06tKo7/kYLQtNkGB3N4cKFLK5fz7oRLX/9n2WJxg36GYmgSm+38ulbpWQ0jpojxBQRxa0jJJFCUOctra3Utuj3tH8SsIAQRIah+rqBFbdG0DOt9jeW0NqC00yoIcZ5NIK+hLzsufH8DLlPCHrNNOL5dBwqbFvYzwhxzAPvS01TXONrRemCZdnIZrPIZNJIJOZh2xbC4TBiMSEOw2HP7N2r09SgaQoUxQZguc0siiKE6cKCiVdfncfwcAJtbRoOHerA8eNd2L9/bY13pSAUyEipBzWUaJrmij9AZF7IJPvOnTu4ePHimngg1koqlaqpQbBZkYKwyanFW7BZIoScc9y4cQM3btwoaaOylQShbdu4fPky7t+/37BRfI0QhIwxXLtm4vz5HMbGcshkxLFyzhwbGPF6UTTNMERHK6WDy3XqikYGIbAsy3YfWx6aFMJ9AkV19u2lPUkc+CeOOGcDhsFd4UjnxS/mSGj5U8yWBafzmNYM93mF51akpwsfA+g6L4gAippK6iSmdfr/pFpEr9GGfifEK9U4kmD0Y9v0uqhOtNaCEKaqu61IRIOmiQYV0ZltO+nlDBYWlsEYc5pTIohEok4dFpw1aa4oNk0bJKBFRFeFonBkMhyjo/MYHZ1HOKzjwIF2PPBAFw4e7Gi4aJGCULAVU8blKGc5o+s6ent7XR9b0zRdk+wbN24glUoFPBA7OztL+rw2inQ6jd27d6/Z9tcaKQibmFrHzzVDDWEul8O5c+eQyWTwxBNPoKOjo+gxzRbJLEUjRFc6ncbw8DAURcHQ0FDDalxWs7Y7d/I4ezaL69dNZDK2G/XSdRExY0x1UpNw0sHidSJx4k+pll6C4j6OIkx+QeRPQYt0sicEyZBaPJaEoOJ2JPu7lAEvkkfP13XuijX/+sTvigUWCVf/cVDUrpDCY1VVxelYDj7YMLxOZX+XtEgf+9fgF4OUAmewLE/0kgYQfyrwGne4k7YXF0YRjRTnSwhdT2wahgbDIINsUcIhIogZLCwsAFAdcSgaVMJhA7bNwLkGXffsrPw3R4xRc46J0dEEzp2bR2dnCI880oNHH92OaLQxlxMpCAVSEHrUajljGAa2b9/u3oBX80Ds6OhoaFqefAhbFSkImxSKCtYyfm6jhdbs7CzOnTuH3t5enDx5suwd2EZ1ydbDaiOE09PTOHfuHHbt2oVjx4419Au9XkGYTtt45ZUszp3LYWnJSzmKiFNgyyDhEQoB+byNWpo/CvGniklAksgxDE/AkdgTaWLu1Al6gkxVue/nQWsaitp556SUEbUXzfTqCj3PQhKh/pScSJcG072l6grF2oq7ngs/fnQspT6W1FlsWUAu53Vp03NEZzYHGV77t+EX0Jwr0DTdWRNzsgml6ytDIQPhcAidnR0AOHK5nDNBJYlEYg6GoaO9PQrDCCMSiULThHG4eB2Y0+DjvVZ0zpaX8/jud6fwwgtTOHKkE489tn3VzShSEAqkIPRYqSl1ozwQayWdTktBKGkc5C1IM39rmTiyUSljxhjGxsYwPj6O48ePY/fu3RXX2gyRzGqsNAonUrHXcPv2bZw4cQL9/f0btrZbt/J4+eUcrl/PO9Gnattl0DQhQkwzmKIt3F2pizU1i1BDCIlLUeJAke6ye3ePjRpOKOVM2y4UVySIilOrXsMECUMSa57Qp7WJLl/PY5A7EUmKblIKmqKXYnvimOh5/lpAd8VlGlu85/mbO0gYkwgUYpFqBkucLcUT0eLf5OcoTpJhBAVbUEB7awqHwwiHw+jsJIPsHDKZDJLJBeRywiA7Eok6nnEhVyyLjm/4jl+BbduwbeDy5QVcvryI7dsjOH26Fw891ANdr/8iLgWhQApCj0aZUlfyQLxz5w4YY0UeiPW8F2WXsaRhkLcgibtap46oqurOCF4vstksRkZGYJomnnzyScTj1bsQ13Ms3EpZSYTQfy7OnDmzZl8IlSKspskwPJzD2bM5xyxaTNXw62/y7/NHooSXnl+oeF+6pXZFkSxPMFG6lur9ACF+RGSJ9leL7QwJDmEyTd3Gxevwmj8UJ73piR4vqqhCVYUA1LRgmpa8Ai3LX89HUTf3kQVj7ejfinuOSMj5RZw/gkbnSzyuuKGGBLOuC3/AYCd36fNE0UVxvrxjoTVyrgOwnageK3iu4j5OnEfxRE1TfQbZwug7kxH1h7OzM2CMIRwOo60tgmg0XDB/2W8eLiKa09MpfP3rGfzjP07i+PFuPPbYdvT2RlArUhAK5HnwsG274R3XtXog+gViLBar+JpIQShZNf7xc7WkiAtZ7wjhzMwMzp07hx07duCBBx6o+YNKYquZv+jqjRDOzc1hZGQE27Ztw+nTp9e0YLmUoJ6ZsfDyy1lcvpxHMsncdCY1XOi68PTzR6YAOCJJcY2V/bWCBDUa0M8oJelFyICgcKJIGwlRtSBl6kXEaHv+2j/np+6+GVPclLGIHgYjXv50KkUGyYBZrFVEzGiUnif6PGHqTRqhrma/aA2+D+hceXWWXtOKpqmBdYnzxmBZrCBFz90IJ6XQLYuj+C3HC84VAtYxdD4Loc5lUQvI3Yi82F9xpBDwpqa4W1U0tLe3o729zVmfiUwm66TblqCqHJFIyDXJFgKRPjdi27ZtI5Wy8cMfTmFkZAZ798bxyCO9OHasu+pnv5m/H9YTGSH0WI85xuU8EBOJBGZmZnD9+vWKHogUcawlOFILzzzzDH7v934Pk5OTePDBB/HRj34Ur3vd66o+74UXXsDrX/96nDhxAsPDw3XtUwrCDabWxpFKrFcqljGGq1ev4s6dO3jwwQexa9euup5PH+hm/sKvNULo76g+duwYBgYG1vyY6KLLGMPFiyZ+9KMs7tyxnXSj4l48OEfZFK0QV9y1XiERRX/3H4JlsYIIlD/K5CHsYri73UrngaJgzmrop+6+KUrnRSCp3i+4HU9UebYx/lQqCVRR+6a4wpP+TRY7ohnDE6V++xk/oj7RE5E0X5lzDl1XXXFIJtDi32QbI84P50IcFlryMOaPvHpd0MFzVQ3uimJRU8ycdLfmpHuZ79z6n+eJeGq2obSwWI8CwwghEjHQ3d0BxjhMM490Oo1sVljcKIqYsBKNhp0JKkERI6ajLOL69QX09IRw4kQvHn98J6LR0nYg5Kaw1ZGC0GMjzgV5IHZ2dmJwcBC2bZf0QHz22WfR39+PN7/5zQ1rKvnbv/1b/Mqv/AqeeeYZPPXUU/j4xz+Op59+GhcvXsTevXvLPm9xcRHvfe978cY3vhFTU1N171cKwg3EP35uJUKQWA87l3Q6jZGRETDGMDQ0tKI3PX2gm/mLrpa0tt90u1xH9VqQTit44QUT9+4tYnHRdnzqAM8qJiiK/NCF3ra5L+pG6T5/utfDMEqJPxJtVPsHiC5g5qRwved4p5E7oqfc+1sJPJYsVigy6DWTBB9PwoX2TSKQaglJsJHgIrHHGE01CYpQ/7kUx0oRQ892R/zcO1f+6ShUP+nvKBZduaqzfdXperZc8eZPMXtiNrgO2hY11/g/OkFbHOpCVgLnyrIU5zvCCuzHO9/Ff6fzK+ZE0365KxDj8RA6OrrAOUM+n0Y6ncby8hLm52cRCukwjKjTvRwOGGQnEia++937+OEPp3HwYDsef7wfu3YFIyrNfMO4njTz9+R6sxYp43op54H4hS98AX/8x3+M//Sf/hM6OzvxR3/0R5iensbrX//6FU2kAoCPfOQjeN/73of3v//9AICPfvSj+PrXv46Pfexj+PCHP1z2ef/23/5bvOtd74Kmafj85z9f936lINwASo2fW80X4FpHCKempnD+/Hns2rULR48eXfEH0y8Im5VqHds0l7mjoyNgur2WTEyYeOGFDJ5/Pob2doa2Noo+eYi0rZcyJjHiT/eKrlQvfUzpSsC7oaj3fRgOM2SzXiNKaTzxSJsvXJffooXwImTBlKtId3NX3IkUabChhCKbVGNIxywEGU018f5O4qwwZS7OreIILZraIoSi113sTR+hGctCCCq+4yFjbwDQnbS66Ob2i1chcr3Z0NTI4hfM1T7qpUzBhSim+sL6m6bofJNoFOsTEdBIpB3RaBts24JtM2SzWeTzaczPz4Ix22lgiSESCSMUCkNVFWQyDBcvLjlNKGE8+mgfHnywF7quSUHoIAWhR6OaShoJeSD+7u/+LgDg/v37eOyxx2AYBn79138dly9fxiOPPII3vOENeOMb34i3vvWtNW03n8/j1VdfxQc/+MHAz9/85jfjxRdfLPu8T37ykxgbG8Nf/dVf4bd/+7dXdkwrepZkxTQiRVzIWtnOMMZw+fJl3Lt3DydOnHBb91dKqwhCs0S+lXOO27dv4+rVqzh06BAGBwfX/KJ19WoO3/9+DnfvWo74UUqKAYqSUYesJ/gUN11Y+Dx/DdzKEI0juZyNWk4DReGKtYjX6ECpYn8kLBghFP6JQnh5WyBTZ68pQ/FN/PBHBLlPCHLYtuKKQm8Un+8IeTByR1FFmj1MUTSaoEIRTdv2C0hq4AhOQhHRVB0Ac9LXXmexSO+qRQKs7CvhE1DkVyjS1qzoeZxrUFXb3W7wd2J/3ntIQaURff7PMec0e5nBMNrAWAzbtinI5fLIZLLIZjNYXFyAosDnfxiDpumYmsrhy1++iW996zYefng7entziMXkpUmmzj3Wo4ZwtcTjcSwuLuL3fu/3sHPnTty/fx/PP/88nnvuOTzzzDM1C8LZ2VnYto2dO3cGfk7bLMW1a9fwwQ9+EN/97ndXVccuP3XrSD3egvWwFk0lqVQKIyMjIHPlWCy26m1S13QzC8JSTSWWZWF0dBSJRAKPPvqomzJYCxhjOHs2j5dfzmN+noNz2xUT/jQt1fJpmmia4Fx1hY1Xi8Ygms+L32dUo1cJilgBxePbaJ4xRcS853hRRr+Q8E5p+U7jYKcwRdj80UVvqoeicKdzN+i955/4QcdJUUHahmV5jTFUQyjEIUXfvIgndQhTBFZVhVA1TRFtJJsevxCk1Gqws9hL9dJrKeyANKfG0BNvFCX0rn+K+3pQut4vVv3fI8E6ypKn2d1n9ZtIzxCbXvfgvrw/Rd0qA/k5imi1inBYzF/u6IiDc4583kQ2m0EqlcHcXAKqKjqc4/EogDB+8INJzM7OYd++NhjGDuzf31VljZsXObrOw7btdR1BtxJSqRQAuF3GfX19eOc734l3vvOdK9pesb1X6ci5bdt417vehd/8zd/EkSNHVrQvQgrCdcDvLVhu/NxqaHTKeHJyEhcuXMDu3btx9OjRht6lNvv4usL1LS8vY3h4GJFIBENDQwiHw2uy33ye4eWX8/jhD/NYWGCOkTMZAgtxoOuKI1RE0wJFuqjLV0SXvMaEcv6DZAlD0SsPEh50sVdcERpMfXKnc5mEV/nawFI/I2FDkUAAPsEB99+qyp1oHIeisECtHHUM6zoZVvu7pkn8cacJQtRLCuHnHbeXAqY6Sjo/XnRQwNw6RCFIAZq2outwO4mFkTOdP+47v8EaRKqzpKgpYypU1QDnOXj1lDxwzoNUF/PlJq94v1ed90/l7w1qvvE+E+X3TftjTHXELL1mDNT0JLqTQ+js7ARjnv/h3NwSTDMHTdOgacCNGyb+8i8vYMeONpw+3YdHHtkOw2juCFGjkSljj1aIECaTSWiahkikdoulUmzbtg2aphVFA6enp4uihoC4Rv3whz/E2bNn8e/+3b8DQOVDHLqu4xvf+Abe8IY31LRvKQjXGMYYLMtqaIq4kEbO37106RKmpqbw0EMPYceOHQ1YXZBmF4T+i9/ExAQuXryIwcFBHDp0aE3u1peXbbz4Yg4jIxbSaQ5VZQiHvdo5ipYBlDL2BAl1CvtRVQYaYUY1hP5IDgk4v0AR21aL7kCLD1esj14+y6J91Qftwy8MKQVLAtSLdHn7o2MQ10jPFFr8F4xieTWKfjNlbyIICW0SeBRtLGWz46V9vcii8G+k6KDqpuX985lpTeJ4hSeiuDksOKvO43VdA2MWNI1B11WEQl5tJKXE/Tq1VJTX/3tdV3zvkVKG4jQb2XbfG6t/i3vzpcWNqumcPyHqxboB6sAmo2CAMig5zM7OwTQt3LlzG9PTYVy/fg9f/Wo7Xve6fXjtawe2jDCUgtCjGWsIC6EpJatdZygUwunTp/HNb34TP/VTP+X+/Jvf/Cbe/va3Fz2+o6MD58+fD/zsmWeewXPPPYe/+7u/w/79+2vetxSEa4TfW5AutGsV/m9EhDCZTGJ4eBi6rjd0/m4hzS4IaX2jo6OYmprCI4884s7FbCTT0xZeeCGPCxdMJ23J3ckZuVzx+4Tq6eBMAPH7BvojUZZFYq/0ey3YOVob5C+n67ygu7fQzNlvG+OlnP0CTWyv2BOPZhh726N/W1BV3fdc7tTsFQocasQIpvw5p/MWhISa10xC6TmKPvJABFWIQBKUXuSWjsFbinfMJOIo9ScinV4Di1+oi+imCk3T3bR1Pl/+c0INKqWmxpAQFe8FOhflvntUN8UrzktwjB6tcyWfW9sGdN2AZZmB0gLxmvgj1OJYRHQwhkgkDV1X0dYWRz6fRiqVxOTkJD71qQl8/evtGBoawOtffwAdHR2bNqVKRu/NLoLWi1aJEDZqbN2v/uqv4j3veQ8effRRnDlzBp/4xCdw+/Zt/NIv/RIA4Nd+7dcwMTGBv/iLv4Cqqjhx4kTg+Tt27EAkEin6eTWkIFwDChtH1lIMAqsXWRQJ27dvHw4dOrSmX0IbPXe5GqZpYn5+Hu3t7WsijBcWbHzta1lcuWK5kSZNE2lPy2K+yJ1nYGzbVC9HPnGUxvNq0Wj+b/kLv4CiNKV/5zdD9qc/FacOT1zQRfSrcAoGPcd7jDd5pJZ6xWDzgkh9C4EbvA54zRPiz2D3Mv3OL1xp+/7GluIUteoIN9VJNXsiler/hN+i6nyevWiXP3LoOyI36kl4TSX+KCZ3O7+pg1ms20tnAzQ/ubg+sFTHsJeK9mpA6Tml6pAYU91jLW9bVFy/SueGBGwpRBOOAc4tkF8mnTP/c8SNjQpNU9zualF/KIyCGbOQy5nI57N47rlb+Md/vIaTJ7vwyCO70NPTU2QS3OrQ6yoFoaAVIoSpVKphgvBnf/ZnMTc3h9/6rd/C5OQkTpw4ga985SvYt28fAFHWdfv27Ybsy48UhA2mUd6C9UARwnrtGizLwsWLFzE7O7tmkbBCmjlCODU1hRs3biAUCuGJJ55o6BeQZTF85zt5/OAHeeTzzJlsIS7S4bDo1gVUN2VJDQmqyt2aM3o/iZFrHlQT6FnOlIY6i71mEKqFAzKZLHRdh2FQhCq4fepY9b+9/HVq/o5Y//5KERRxJIZEStUTbdwViLQdr+YwuB+/yCMx4zW/UM2iF1GlaBU9nkSrGA1IJt0sEOmEO+mk2LPRn0am5/gbRPziWqzBq9Wk34lzSKJYRbCjXCn4MygqxbEFo7Deueau+PIaRBRHAHvNL6qqgfPyQ6/F608TYPznv/Rr7j9GIUy1wE1FIaI0QqTdLctGOKw5lkGa06yiIxoVTSo0CeL69Tzu3ZvGgw8uIBYzEYlE0N3d7QrEZm9CqMRKbaA2K83gQ1gNEoSNes0+8IEP4AMf+EDJ3/3Zn/1Zxed+6EMfwoc+9KG69ykFYYNotLdgPdAHpZ6wOjVLhMNhDA0NrboQtlYqzePdKGgCy927dzEwMIDl5eWGisGLF01885s5LC5azntChWUJ0RAKceTzNO3Cu9CLujYRvfHrZ8sKimkhUArFoF/0kZihmjulKGo1PT2FTCYDxjgMQ0c0GkEsFkMsFnFSncwd/yaETzBl7f0Z9D30exN6qcygOPKvw49IJxZ68AGFUSUvRU0p1MJUOk3gCEYG/dFMMnIW0VeGbDYH284hEokCMCBmMqvwi03/cflT4oUf+XI/L4Xfh9HfZUzni86f2J7i+135jXu2MZ6opNpMgNLZ4ueGQdFRqnVkgf2pammPQz9Bg3EP0XSjQ1VNiBRxpe2IKGU+bzvnhUogNGiaCsuynNc3BMtSMDLCsX//dpw82QlNy+LmzZsYHR1FPB53BWJnZ2fTCwo/3vSg5o6KrRetkDJuZIRwo5CCsAGshbdgPfj9/ap9aDjnuHv3Li5fvoz9+/fj4MGD677WZkoZZ7NZDA8Pw7IsnDlzBktLS1hcXGzItqenbXz1q1lMTFiOjYr35S66Z21XAAjRUmhmHKRYbNg+o2TaTqHoU5z9KUViMp83cf/+fYTDGvbuHQAgIoWpVBqzs7NgzEI0GkIkEkEkEkU4HAKJvmCUq1jglUpdF7/PuNsAQxEsL03tTcgoR7AOLxi1o+ib/98USaN9e4KZ+yJ5GkKhKBQl6ooWkUb2hF+hMPJucLztBw81mO711ld83oQXohIQhwVH7ZYSFJ6LoPBDiXUU41kEwfkzuFORwqX3mGciXi+i9AEIhQzk88Lns3D8oP9Y/OsWwpRqD1XougFApKApXT82tojx8WWcOLEd//SfPoJQCEgkEkgkErh06RJM00RnZ6crEOPxeFNH36QgDNIqKWOynGlVpCBcJYwx5PP5dY8K+iERWM2rye+nd+rUKfT29q7XEl2aKWU8OzuLc+fOYfv27XjggQegaRqSyeSqI5j5PMNzz+UwPGzBNLnbJQyIC51hiBQsYzTztrwIJERaWNQA0vQN0YhQ25q8miSRNkwmk7h/fxrxeAe2besB1Y+1t8fQ1hYD56KeMp9PI5lMI5FYAgBEo1HEYmGEwxEYRvWvDxJh/nSqvzaRGiMKo1xUp0cm0PQzfz2dOK6guKKInZdGB0iMeZ9N2o5ngu33+KPHiEYTT2SLv3vR2GDUUXGOhyHo2Uj7Lx8V89LMilsy4I8So2D0X/mPjzguqvGjCKqoyfOfq9LfUYVG1ELEBU3NxWvBoOsaqHFG1LjWVq6SzQKGoTrvf+98kDj0Ry/do1KoBpvBs9NQoaq271yIz9LIyBQuXpzFY4/14fWv34O+vj5wzpHJZDA/P49EIuHWXtEYsp6eHkSj0aYSiNSI1Exr2khaIULYyKaSjUIKwhVCKWLqIt4oMQh4X5iVhNbi4iJGRkYQjUbX1E+vGs0gCDnnGBsbw82bN3H8+HEMDAy4v1utcfbZs3k8/3we6TSNUBM/FxM3xLZFFCg4h7jCal2bGRGZUp1Gi+ojzGi/JH7gzBxOJOaxuLiEvr4diMXa3OgSpVYJXdcRCrWjra0djHHk83lkMmksLS0jl5uDYeiIRCJob48iEgm7X9h0zP6xc5XWWigWhfjRQGbbfmFFf1I9nBe9Ku5cdp/FSXR6zxXix7Na8TdveFErJRBVFI8RJQ9BUeo1iPj3R0K0sL6SoozOv9y1ewbk9P3iPcb/HBJi/nPtoZQQjMWRWX83cXAbKoBKbywhfE0zuBMRSVTctZdLC4tj0AHkAz8PPlZxG0y8Oc/c/e5QFOoyVwFYoNpbeh+Ypo0XX5zAtWsJ/PRPH8H27W1OCUQMAwMD4JxjeXkZ8/PzmJmZwbVr1xAKhdzaw56eHoRCoQrnYO2RHcZBZIRwfZCCcAWsh7dgvZSznuGc49atW7h27RoOHjyI/fv3b+ha12KqSj3k83mcO3cO6XQaTzzxBDo6OgK/X2mN4717Fr761Tzu3LFdw2hATLMQjSB08fUucuUgyxMvgiYmapBAEXVepc+hN8XD6zqm9CNjDPfv34dlMezaNYBQKOQKIfF/hovaFzGjXkI3248D/LWIs363Hi8WCyMeD4OxTlgWQyaTRTqdxezsPEzTRiQSRiQSRSwWQSgULpmuJBFCDQpefVzwcSJix6Bp3K2lo9o2+r0ntin6icD2NE2IG3/Dh/fScviFpFirCn+DBkX+PGHnvS4ipe0JRapdFF3CXrTLb9xN3eGeAPfOvbcm73He1BWvq5we58fvnUidxJVvNErXcdLvhPj0C1Uv+ifeu6U6lTkKI35BWx5PLApDb2FHUwpvhJ8XqSQ7oeL6TQ2MiYY6cUOiQNdV5PM2ZmbS+JM/OYc3vGEvnnhit3eEioKOjg50dHRgcHAQtm1jcXER8/PzuHPnDi5evIi2tjZXIHZ1da1qHNhKkFNKgrRChJB8CFsZKQjrYD29BeullCDM5/MYHR3F0tLSmo9cq5WNjBAuLCxgeHgYnZ2dOHPmTMn0+koihN/7Xh7PP2869Uzc8V9TAkJO17l7MS0FiQBA1JBRJ7EwQKYOXMW58Hnmxp7PHwtcKIVo8WbqZjJZ3L8/hUgkgr6+7UV32zks4x/C/yuu699ALzuMeX0MXGHoYQcwaL8Wg/brsJc9gQjaHJGqulEXoAemaSGTySCTyWBpaRGcA21tojklGo1A13Vf9AuB80BdvsG5vyrIUscfIfQ3y9D2vEYMr4mCxAeJOm/SiBDpZEtjWcw18CYB4nV6B30XSZRpGqWg/aKKjK2pE1kIWG/N4rFkZu1P71J0kYQlRQc9QaQUbDco+MpFBGnNmiYiepXSxf7ninPqj2gGRa54b1XeSrEtUTBdT4JdpICDzw2m9xFYjxDkHJTmFzdJOhTF9tU/qtB1FYAozfjGN8YxNraAt73tEOLx4syIpmno6elBT08PAFEqkUgkMD8/j2vXriGbzaKjo8N9TDweX/NolTSl9qAygWYXhMlkckPKsBqJFIQ14h8/B6CpxCBQLLRI/MTjcQwNDW14CoTYCEHoj5IePnwY+/btK/va1RMhzGRsfPazeVy7xpwoFdW8UW2f2Ieuc0d4BEfAiVSw4gqgEisviPYo0DQbAEM4TM/jzgWz9PEoCpBILGB+fg7d3T3o6uqEXxQoCseschV/H/qfkVRm8FPZP8Fh9uPIYhF3jO/hBr6D69q38CPjL6ByA7v5KQxaT2GQvRY72QNQoQHgCId1hMNxdHfHYdsc2WwemUwGi4vLmJ6ec7qXxVSKcDjsphipi9mygnWU9Pmi80kRQUq/UkqNxJmIgPpT60GhSIJQVRXXeoemkHgRRdqOFwmk7ZGnolen6DVK0KxkqpUUkUyxbxqrJ14fb3skTj2Dba/ujzEb4bDurJUFUsQARSGDU1FK4Z0rSnNzV9x6jwnWJ9K5L/wMFNf7eU08tZQuFH/mVagq3cSq7vhF2m25r1bxOnjfIV4q3ROX4nf+pgwFN28u4r//9xE8/fR+HD9e2V7LMAzs2LHDndSUyWRcgXj37l0wxtDV1eVGEBtpNUJIQejRKg02qVTK9QlsVaQgrAG/t6C4gDXfG9PvRTg+Po7r169XFT8bwXoLQsuycP78eSwsLNQUJa11fTdvWvjc53JYWuJOfaCwJjELsmAimufNGxbRKMXtJq2EmJMrLni6rsAwOPJ5C5blbyYpvw3OOebmZrC8nERfX79TOM9BXnQAcIF/FV8xfhUdfDfek/4iepUDAIAIOnHUfhqH2VvATY6EMo5x7XsY176LHxgfx3eVjyDKu7HPPoN99muxn70WHbzfXZNIH4fR3d0F22bIZrPIZjNYWJiFadoIhSJuejkSMVwB4BdLnIsUYFCMkBAjTzw6V14qVpxv0VhCEUYShfTRpUkjZN7s1S76G0vg1rHRmvx/emLQn5oXf6f9iP0r7nuB6gTpPPmNxr3Us+IKXFWl+jhP+FGkLhjF89ctchQ26YjHKK549v0UgN+QnEocKt0UFdcH+tO65fbvh+Z0i3UzX9RRgT9aXgryxAT8EWIFwpZGRAX9+wEAVdWQyZj43Oeu4dq1BN761gMIhWq7/NGNzK5du8C5aMhKJBKYm5vD2NgYdF0P+B82wsJLCkIPf2lWMyNTxpucjfQWrBdVVZHL5fDqq68ilUrh8ccfR2dn50Yvq4j1FITLy8s4e/YsotEonnrqqZqipKWiI3445/j2t/P47ndNcA6EQgy2rSCfL/6yEtErhlBIdRpMFJ8ILP8+os5Qzpk7rSKfR5F1TSVM08LU1H1oGsfevXvc+a9CSClgsPCP+u/iB8bHcNx+G96S+13oPBZYlhfNUrAdB9BrD+Kk+a/BFBOT6ghuat/DuPo9fCP06256eb/9Wgzar8WA/RiiWrtzLCo0TXQvA72B9PLi4iI0jSEajSAcFiLRn8pnTIFh+MfAeeuj64M/verNJQYoCkvihmb7knjxRwX9gtHfGEHvhcLmCyoL8JobuNMAo7jRRyFuvH/7bwBIHFKdqOic9VLW3oQV/1xruqHw0uWEt2bxWE/geSKx3HdXoVCk9C5FTwunl5SqIwwKVG//FFEt95HSNM3JunhRX2+tSlHkkNZLKf3gIVF0n4zfaZsKGLPdOtHR0Vncu5fCT/zEAezdW993pKIoiMfF9JS9e/eCMYbFxUUkEglMTEzg8uXLiEajgfrDlRhky6YSj2YOxPiRPoSbmI32FqwXxhguX76M3t5eDA0NNa1L/3oJwrt37+LSpUt1ey1WWl8yKVLEN29aCIWEuCglBL2LMYfoCubwRtKVw7vYi3UA+XzwOZqGoghkqe1ksxlMT99HW1s7tm3rBXXrEmnM4QvGL+O2+n28wfwNPGa/HxwczBcpomiNv3OXUoUaDAywRzHAHsXr8CvIYAG31O/jlv4CrunP4lVKL7NTQiCy12InHoACca50XUNXlz+9nEUmk8Hycgqzs/PQdR3t7SKaKSZXaNB1BsuyXZNiYXfinWuqC6T6M5q7zLn4HaV9qcmHMbL/8aKOqkoi3muI8EftaJtU8yfEKtx1kNcj56qb6qYUtN9GppQ4BGxnLVT36UUZqWbQayzx1wgWi0NaN42U8yJv3g1PKc9CQrz/g5NSvCgrCeTKpRWFkUi/QA02yqjumrxJKAzCDFycS1qDXxxyTl37haltxZkHbTmvvQqyAhLPFTf2s7Np/PVfX8Djj/fjx35scMXf7aqquvY1Bw4cgGmaWFhYQCKRwNjYGDKZTJFBdi3CRjaVeLRCQwkgu4w3LYwxTE9PO4a8kab+YHLOcePGDSSTSfT39+Ohhx5q6vWqqgqzuqpZMbZt4+LFi5iensbJkyexbdu2up5frqnk+nULX/hCFvm8GPslolKFz6UUIwCIyKGoHyy3t2BNl6hTBShtVvRozktehEUkT0Rz5udFtKK3dzs6OztAo9iISWUEnwv9T7CQw8+Zn8I+NgRFYYDmRXLouKp9B9NFvh1dOGY/jWP5p8HhpZdvqt/D940/xndCv48o78Igewr72VPYZ4vuZWcrbnp527ZOAByplBCIiqJgamoC4XAYbW1RtLVFwLkOakoR51sILNP0avAUhcM0Pf89Eo/0HK9TmYSFX6BxNz3rT9F6EUpP3Nk2g2l6ZQG2Td3JZC1E6WAhVLxGIA4SalRjKM63qKf0ppR4VjnFXdLBDmaKhhZGUWn9VGNHzTycB2dEB59TLBb9kUpF4TAMFZZlVxSWpZ8fbJQRa1Zhmpbve8t7ncigXLy//bW03ujEwo+EbSvujZ0Ql2T7RP6HzHmNNXz/+5OYmEji7W8/jI6O1ad6DcPA9u3b3TGg2WzWrT+8cOECLMsK1B+2t7eX/L6WKWOPVrCcAaQg3HT4vQVHR0dx9OjRph6YnsvlcO7cOWQyGTc90cxiEFjbCGEqlcLw8DA0TcNTTz21oloeSllRxIIxhm9/28RLL5mwbcW52HC385cQ0QpRM0YiUKQrS+3Du8ADCDSgACRAgtsXKWTF93yypeHOBVXcxORyWezatRvhcNiNihEj2t/gG/p/xg5+HP/C/gQ61X7YnPu2EyzmL4xqkrjxpwGLRDEU9PD96LH24xTeDa5auKcM44b6PYxrL+Ar+n8GDI5edhCD7LU4wJ7CHnYaIcTcxotIJIpIJIqFhSXs3r0DuZyFVCqLubklKApDNGogFosiFBKj5SgtSmlgSnOqKmCaXlrRLx4oRQz4bUxKN2j4j1mkieG+D6h5hdLHlAIW9Z9eZDiYPhXrpZICz2uRonnMObe2+3km8UPd637hR8KwsGHJ/xj/8XrvseJj1TQGz96n9HeJ6P72Ut7UpV2Y2q0GmVprmgqyqfG2oRQ9lsSkeO+TQFBBc6eDKXRhIUSd5vR8fxMRNaHcvbuET35yBE8/fRBHjtR3A1mNSCSC/v5+9Pf3g3OOVCrlTlC5efNmIMJIBtnieKUgJFohQsg5RzqdloJws1CYIt5ov7xq0JSN3t5enDx5EqOjo0W2M83IWo2uu3//PkZHRzEwMIAjR46s+MuUnifMazk+97kc7txhjg0MTdzwLpaeQBDPF2lOcfEJXoC5k5L0OmDLFd4L65qgQFRVvx+ff76xgnw+j/v370PXdezZsweqSgbR4gppIYdn9d/AsP4/cIq9G280PwSNR+Bp1dJXcc9Tj/vWXP7cUXSOLEpEzaOBXfxR7FYexevMX0EGCdzSXsK49j1c076JV/U/h8oNDLBTGLSfwqA9hJ38OHRNdVKcBuLxGOJxEe20rDySyQyWl9PI5RLQNA2xWNStP9Q01T3XfssavxgMzgxGkWijY/dH0+jv4ryLk08pXmpuIUFDTUNeDZ4nvkgE+iNufpsb2i41vVD9IQlDqoekekKAhBLNmSZ7Iu/46AbCsqrNEIa7Hap/LKwfJLz0fLAD2avPrG16iX8Eomez4z+2UtEzkWKn9fq7sCmNLN67OhgzAzc5/mkytC3bZlhezuPzn7+Khx6ax5vffGhNxJiiKGhvb0d7ezv27NkDxphrkH3//n1cvXoV4XAYPT09FdPxWw0ZIVw/pCAE3Kigv3GknNHzRsMYw/Xr13Hr1i0cP34cu3fvdtfbzAKWWKnxczkYY7hy5QomJiZw4sQJ9PX1rWp7dIG6fNnE179uY2nJ3zHppfpICBZGAMkjkFJamqa4DQS1dBYDnijxd8eKYy1ueEkmk5iZmUZHRxd6e7vhv4ByzpDSJvH32v+MKeUinjZ/Dw/b7yx11PCaD7xUMTVJeM0C3uxhv8CiTl0hAoujbN4FmaNd68YD3EsvL2jjuKF8B+Pqi0562etejnccQzveil7sddO6hhFGd3cYQBc4t5HJZJDNppFIJGCaM87s5ajzn6ij9Z9DIRQ9oeIXC8H0o3ee/YbIQnR5EzP8j/PbtwRFIAk8rwPWL0r9NXFB8eK9Bv5GFbFWfz2hv76uuKzA77mo61RXR1Gy4HEGO3RJoAX9Hb3zFTx+b81eWtiLyFWqN/Q8Nmm9dGyewCv3XBqdJ8bpBa1rFOh68HucvuO97mNxDIwB+byNH/1oCpOTy3jHOx5Ad/faZodUVUVnZyc6Ozuxf/9+WJbl1h9OTU0hn8/jlVdeCdQfNnukbC1ohQghIAVhy1PoLehvHNF1vekEYTabxcjICEzTxJNPPol4PO7+rlkFbCGNjBBms1kMDw/Dtm2cOXOmYR1er74axw9/mIdlCQ8zQswQ9gynCxGpYu40FHBXINUiAgmqQaNaRL9o8Ed+OOeYn5/D0tIyduzY6R47paMVBbhufx9f0D8AHSG8O/9Z9PNHKu7Xi0AK4UF1bCJSRHVXheKQUq1efVfxtj1blUCjART08v3otvfice3dMM08JpRzGNdewE31BVze9VW8onwE29hB7LOfwn7+FAbYowgh5ggqFbFYO2KxdvT0cHBuIpVKI51OY3FxCYpiu+IwGo06ndZKQAyWE4eFAiQogMXxwxnj5m+2oKgZbYsiykLQeWUAXmeztyP6WeG1zx9NLCeQvPo+Ep6Fr4Lnz5jPe6KPXmOxVsXpQqdj9Y7JM+32TLz9c4/L4Y2e87qnC9fm+T56j/XOkydKy6W5Aa95RDyWrJ2EnY2uK87NlPg9CWO/IPY3vNy7l8InP/kq3vrWw3jggZ0Vj6+R6LqObdu2Ydu2bQiFQlhcXMSOHTuQSCRw6dIlmKaJzs5OVyDG4/GmLxFqBK0QIWSMyZRxK0PegoVfIkSzCazp6WmcP38eO3fuxPHjx4vumNYqFdtoGlVDODs7i5GRkbLnYyUkEhb+7u8sXLkSx+CgZ78hiuhFh2/54CaHqjKn69RrcqgVigYqCnenlJR4lHNxtjA1NQXbtjEwsBvhMPn4CfFpM44fGZ/As8ZvYy97Em83n0EMpRz0vTQ29fmQGKA0MeCJBrLwALy0plh78XpFSlM8z6uRK3wcd2svbVuBijD28Mewhz2G1+E/4PrEOWR33cad8Eu4qn0Trxp/AY0bGGCnMWgPYVB5Cjv4MSigubcG2ts70dbWCU1jyOfTSKUySKWSmJubRzisIhSKIRqNIhKJIBRSA2n72gPX3Nc8RKbWlC6mc8fdYye8977iPo8aiPwlAIVdy/7zS/OxqUawcM3i/eFZ1IjoV/l6QK8TmUPXbWddJJLoBtkv/D3RRun5aqMYAU9Qe6UVlG73IkDe90KhnUywbtWLOvrPjT/F70VJxfhCDZxb7v6C5xvOMYv9CgGvIpvl+PznL+LmzQW85S2Hnckn64eIeOro6+tDX18fxLShDObn55FIJHD79m0AKKo/3IwC0bbtpo8QptNpcM6lIGw1/OPnKnkLNosgZIzh6tWruHPnDh588EHs2rWr5OM8P6/mZrWCkHOO69evY3x8HMePH8fAwEBD1nXpkoUvfSmHbNZLcYk5uiK6kM+XvugpCmAY4vH5vOqmh2uBonJ0ERcRonL1fOJPxmzcuXMXsVgEu3f3QVHUQHQujzS+avwqLmlfxBPWL+H11gehuh9zIeh0nbtRThJ2wijYiy769ysaB3hVEUj7ILFE6yp+rPcYz1TYQzTQAIbVhT354zih/DPRvazewE31BdzUXsSLxh/jH0MfQYz3YJCdwT5rCIPKEOJ8J4QwEN6HnZ0xCDtOE9lsDtlsBouLCczM5BGJhBEOC4EYChlu9JeOO9hgA5DgIHGjqsyNfJIdjRcxU1xx6M1M9kSQX8gJq5RgBBFQQVM5StXp+VPgpYRhYUqZzmk50StGK9I2FdBEl8L0MwkyIVwpSspdY3CarFINf9TRi2xS9LOSZ2LQ+oZS5X6zaj/UWe3v5KebEPq9f1/+19kwDJw9exeTk0t4xzsewLZt6+cxV9hUoiiKOypyYGAAosZZ1B/OzMzg+vXrMAzD7V7u6elpmulUq6UVUsapVAoApCBsJerxFmwGQZhOpzEyMgLGGIaGhiqmRFslQriaWsd8Po+RkRFkMpmilPlKYYzhW9+y8NJLNmhaghBqQlSIxoTiq6jo+BQXtnze862rBX/qLBgN5CiXgmOMIZfLwDQz6O3djo6OTnjTHQTzyg18zng/FpTbeEf+Y3gAbwNUL21JF9N8vrZ1Uu0bY0rFz4oQBEI4lhN5dHyFQjBYw8cDYsePrinosQ+ghx3Eaeu9sJHHhDKM28YLuKG8iIuhrwAKxzZ2SFjbWEPYo5yCgShExElHJKIjEmlDVxfAmIlkUkxPWVqahqJwRCIRxGKUXtadFKMaSJ/CnYvMHRsTfw1eMLVMaX5/cwRj3nQSfxc3NaUU3hB4dYueSbQfvzD0/7sQaoqiSHRwygl3IpHePgtnBxda8HjngznPEdsXqVtPKNYKdS1TvWRt+EWsCl0HTNNG8XuPUsi2U8MsjkHXFedGuvikic81h66HMD29jD/901fxlrccwcMPr65GuVaqdRkrioKOjg50dHRgcHAQtm1jcXER8/PzuHPnDi5evIi2traAQbaut+blvhVSxqlUCoZhIBwunpXdSrTmO2QF+MfP1WIyvdERN+qa3bVrF44ePVr1DqmVmkpWss5EIoHh4WF0d3fj5MmTDflySyZtfPrTFu7eJX826pBVYVnCdFhExrwLm983UKRZveiZqK0K2sUQdCEGqPu2eD3BWcfe8xSFYWpqBslkGroeRkdHV9Fzr6vfxJeM/wVt2IZfMP8B2/ghMEeo+T31yuM1i5BY9a+FRKH/taOOYkr5ip/VJgTd33D6ffkuZq/uzFfSAQODymPYm38Mr8WvIO10L9/SXsBl9et4JfLnbnr5AB/CXvMMduCIa46taTo6OtrR0dHu1BLnkExmsbycwszMPAxDRyQSQTTqdS/TGDvC89Xz1lU46YbEnD9tS0K+0ApGCEQO8in0w9xpJsE1+H8v9u8XfP7z7DXG0HkWUT0Gzm2U+zoM1vB5s5X9CJHoHQhFESmlbJqlPxPBbXg1iRRJJd/AWvDPiy5VZ0nzpf0lQoBIyRuGBsuyS773hI2UAdu28MUvXsT4+Dx+8iePrXkKud5JJZqmoaenBz09PQAA0zRd/8Nr164hm82io6PDFYgdHR1NL7KIVokQxmKxlk/Zb3pBuNLxc5qmIZfLrcMKg9i2jStXruDevXt1dc02Q0SzFuoVhJxz3Lp1C9euXWvobObxcQuf/ayFVAoQI+IU2DbZuajOzzwxqKpeeq7QN9A7tuIGEn80sFpziV9IUDo5kxH1gqpqobe3B0tLy8HtawzfUX8f39P+Kw7bb8FPmh9Fuy7SFqW6oMuhKNxJGyolL4yAsLsRKW7hj2dZwQaAEkdUMTUMCN+7wmYT/5oUhZUQs7xITMXQjQfY0zhmvRVQRLT0pvo9jOsv4nvaMzB1kV7eZz+J/WwI++wnEccOZz8KIpEIDCMCoAu2bSOXywW6l4U5dgThcBShUMgVUP5aQnGOUCQcvZ8Fjg62zZ1ZyL4j44ovIhsUyGRnQw0/pYRhsAHFE4beNBD/tqhEwKsFLPfRougkzVb2PhfFn2cSiH6fR8NQ3H2W348QxGTr5NVLUi1k6bURZM/jF7Fe6lsITH+dopj97jdiV0re0Jkmh65r0HUb589P4t69Zfz0Tz+AnTtXn6Eox2pFkGEY2LFjB3bsEO/xTCbjCsS7d++CMRYwyG5ra2taMdMKEcJkMtnyY+uATS4IVzN+biMEViqVwsjICBRFwdDQEGKxWM3PbZWUcT2CkAzCFxcX8dhjj6Grq6sha3jhBRPPP287Fzlxk1AonKiTkmr8xL8pNeZ/nL/Q3rtAe9YtpaOBxXCnbtF73vJyGvfvT6G9vR07d/ZjaSkJ8iPknCPNEviS+u8xpj6P11v/O57i/84NQ5ZKg5WC9meaZLZcfn1UjC8mtVTymKsuBCk9TA0QpdZVuuatWAyK7Ynf0Zp62AH08v14Au9Gzs7jnjqCce1F3FRfxKXQVwAA29ghDNpD2G+fwT6chIqYs2/NqdeKoKdHgWmayGREejmRWIKiAJFICNFoFLFYBJqmFTR+oEjMCV/CwnFu5FfIA93OVJNYKooY3IdnCF2KoDBEgQgTTVD+51IHcWWLGO4TUGUfFkDUq1JqmSayeLWUwjbGs8wJ3hh5tZB+a6Ny+/F3PtO2KRoKaKAUt/855EtIn3O/ryGtgbqqFUXB/Hwan/zkj/DjP34Ip0/vru0k1EmjjamjUVEKsWvXLnDOkUwmkUgkMDc3h7GxMei67tYednd3r8jUf61gjDV9PeRmsJwBNrEgLOUtWA/rLQgnJydx4cKFFRsrb7aU8dLSEoaHhxGLxTA0NNSQL4RczsbnP2/j0iWKjHgmwn7EW8WGohhuTVu5WcQ0jYRqvzzj6freb6IxhZ7HkUgksLCQwPbt29DZ2QFNY+7F0LY5ppWL+Gzo/cgqC/g5+68waP1T91JXy1uHUsm1vMWpppJS5F6TSeHrWF0IUr0hpS2L18pB83xLdSWXrjGkqTLB1C2NkNMRwl72GPayx/BP8O+RUeYxrv4A49r3cVn7Gn5o/AU0HnLMsc9g0D6DHfwIVIWiWwYMw0BHRxyKwpDN5pFOp5BKpXzdy1G3e1mkSouFbilRKH6uOOeEF9xwKE50sZSNTLC+EKgsDClKR40ihWLQv71qQtO/XWpAEf8uH2F0j8jZrt/aiIzERSq9/Ab8DU2FdZDeY0rX+/ptc0rVYpIQZYw70UwvuuhsBYqigTEbZCP01a9ewfj4PN7+9geg641Naa7lpBJFURCPxxGPx7F3714wxrC4KEZeTkxM4PLly4hGo65A7OrqgmEYa7KWWmiFCGEqlWrqKGutbDpB6PcWpBTHSl6k9fIhtG0bly5dwtTUFB566CE3xF8vmylCePfuXVy6dAkHDhzAgQMHGvIhu3/fxmc+Y2JuTnGEoDeyzY+miY5LgCIb1fYtUq2aBogKg9rXSvVeXpRETFGYnZ1CPp/D7t27EAqF3SgHnYeL2mfxFf0/oZcfxM/l/wZdfG9gu+Uu5LQ/xmpLJYtoSenH07xYUVNWXQiK7VFUsNz+uLP+Ur8tPbcWKJWO9WrmivehIMp7cNx+GsdtYY49p4zhpvp93NJfwovGx/CPof8qupftJ4W9jf0k2iFm06qqgnA4jHDYcM4Dg2lmkUpRetlCOCyih+3tEWhaKNBw5PkPBtclzqc3RzsYcVRc0VTq3FWrLxTbo5sa5nTCV4oC1iY0/func1NOqJXZkxu5FN2+9J7j0HXVEWTFNYuFad7CesFK/oicUzmI6kYlaZuesGXO543qTcU6hDF6CKaZh22LMpNLl6aRSpn4uZ97CKFQ4y6n6zm6zj8+78CBA7Asyx2vNzY2hkwmg3g8HjDIXk+B1io1hDJl3GQwxmBZ1opSxIWsR4QwmUxieHgYuq5jaGhoVXOTN0OE0LZtXLx4ETMzMzh58iS2bWvMXNGzZy189auW0w1MokR1OokF/qYPMatVRFQq4TVCKM5Isdrea35hRlYzqsqRy+UxOXkfum5g164B0Ag6wLmYa3m8uv0juGx8Gg/aP4O3mr/rdNFWJljHWNMS3cd7naelojGK47tYWQiWS/OKbRRO7iidXhZrKH5+qYgbICKupUSvuBHw/RsKtuMQttmH8Jj9HljIY0Idxrj2fYxrL+KiLtLL29lhDNpncICfwS6chIGQs39hbxOLRcEYYJqWk15O4969JQDcMcaOuN3LlCYujDpTarRUVzt1cHt1rYWlC9XrC3WdI59ngccV+hwWr4fGOVYWkWKNhQbarGw9qh8y0hapXfEzIQRtJzqtulHF4FoV3/MUVxhTLWLpfdH7lVLJ/sYV73n+RhkxF1mc43xepC+FKBTruXNnEX/5l8N45zsfQizWmNRmvU0ljUTXdWzfvh3bt4uboFwu5/ofXrhwAZZloauryxWI7e3taxoZa6UIYauzKQSh31uQPKxW+wZda0E4MTGBixcvYt++fTh0aPWzM1utqaTQayyVSuHs2bMwDANDQ0MNq2H5ylfyePllLz0FUIqOu3NhRfrUf5HVKlpmiPo2/8zU2rwH/cLMqw8T+1lYWMbMzAw6O7vQ09MN/wVf1zmW2Az+vu19uKf9CD9u/hecsn8eShkBRmun/VlWLV3GXiML+Q36xWBhetdrsNHg1aMVr8Ozrim3V7/Jc3H3aiUxWDiGzr/N0h8FHhC53na8ZiAdIexjj2Mfexw/Zv97LLM53NJexrj2Ii5pX8Ur6l9AM0IYYCex3z6DQftJbOeHQWLCMHQYhte9bNs5LC9n3fSyrmtOPZewuKEolO+oARTbzxAiWuhFbks/JthQAVCdIit6nH92dzn8RtVAqSafUmvgoLo/+nepr2QhIr0Xy7K8BhCK9NHv6Zi87SnOz70IsX96TulrgL+swNuOqiowTVay3MI/plDMhBZd6rZtuanmqall/OVfnsW73vUI4vHVW48U+iNuJOFwGP39/ejv7xe1y+m0KxDHx8cDEUYyyG4krWBMnUwmZQ1hM1DYONIIMQisncCyLAsXL17E7OwsHnnkEfcubLU0agLIWuO/ANHrRBY7K62fLMfXvmbi5Ze5K3TExUdxBIDXwAGIDlrnb+76CqHtUBqZRFGpiE6p55EQ9E+y4JxjYWEWCwuL2LGjD21tXiMRrfmW/So+F3o/OGd4w+0/wumd/7zi/ryLcK1CkLu1kKW7fYMiiuYK+x4BxjRHGFPKs3xU0L9dWmfp4+Buc0Wp5xZHjGh9pbdZ7ueVIrtt6MUD9tN4wJdeHtdexE3t+/ie8cf4duijaOO92Gc/gf32k9hnP4F2bHPWqEDXI+jtDYOxTtg2Qy6XdTo+FzAzM4NQKOQIxBhCoZBb4+aZVReviW5GdL14kon/MbZNNzu2m6oufhydm/LpZoLes54ZdrFxdfFzxJ/l0sl0w1DqeSQA/TWA/pR6UGwq7vMAOLYwxTcGpWoUqWRD04SPovAyLHwM1V4qbq0j2eJQNHFuLoM///NX8a53PYKentobAkuxninjelAUBW1tbWhra8OePXvAGHMNsqempnD16lWEw2HXAqerq2vV9d+tkDLeDGPrgBYXhPV6C9bDWvgQLi8vY3h4GOFwuKFRMKC1IoSA98V+5coVTExM4DWveQ127mzc3NBnnzXx0ku2rw7Ku6D5p4n4I1Oen2CwIcAvBP1vCYpglUrhie15KSzqaPaElDDKvX9/CoCJgYEBGEbIfR4AWDbHWe3P8azxf2AXP4Wnl/8Q6bxZ5oi500nJa7aaAUT0UdQIBm1JSuHVO5ZLMSoQE0KYK34rbatSp7KYrFHp81z6nFP6UUTYiiOOpa6xJF6Lt1WYelSwA4fQrxzC4+a7YSGHu+oIxtXv46b6UkF6+UkMWk9igD+CEI9AREJVd9oEINLL2WwG2WwGU1NTADjC4Qhs2wZjrGwTilgzpZCLJ5/QMQnDaU/EVXpta00jA0GRJ/ZbPS9caIfj1f0VRi2D//bvS/yb9uWlsBVFgReJprnZXh2hv86wWu2kZTGf4C117NypQdSgqpqzTeb8zsbSUg5/9Vdn8c53Pozt21cuEJpVEBaiqio6OzvR2dmJ/fv3w7Is1yB7fHzcjZz5DbLrFXetkjKuxxWkWWlJQbhSb8F6aKTA4pzjzp07uHLlCvbv34+DBw82fL3lUrHNBn2w0+k0Lly4AM553RY71fjOdyx873u2E0HxW5IAhsEgOnVFas4PicDgTGuvprCQwoghoetwGyC8uiYE9pfLZTE5OYVoNIL+/p0Q3nOUxgJMZPB143/HqPZpnLbehzdY/19Y4EiyyUBzhWfoqzjdzuXrp/xoGncugLSmSilyStNV3qYX8aNifFYi6uSliL0pHsVr81KA/mNS3OP1rF28kWz0OgNwBbh/bVQiUEi5iz9QvmuVMQYVBvayR7EXj+Kf4H9BCnO4pf0A49oPcFH7Kl4x/hI6D2OAncQB/iQG7SewnR9yU/3hsIFIxICqdsC2OXK5HDKZLBYW0lhYmMfS0hKi0Sja2qIwjHDJTlbPzNovnlhRipYxIBSq/hoKkUk3bbVH/+h1qAUShkL0BwWg+KwU35iUF4aAiAR6tX+eUKX9edYz9FqXWys1b1EEtpQvofi9OMe6zgPZGcYYksk8/sf/GMa//Jevwe7dnbWdlAJaRRAWous6ent70dsrZqfn83k3vXz58mXk83l0dna6EcR4PF71etUKEcJUKtWwbN9G0nKCcDXegvWgaZpbm7iaD6ZlWRgdHUUikcCpU6fcD0qjoQ9Ms3946Fy+/PLL6Ovrw/Hjxxu63u9/38Lzz1uOGBQXSyoIF+8dUSRevK6grYWiMJTqXvXj71IkcUjCo/zFkWNpaQlzc/Po7u5BV1cHyAKH9rWg3MbnjPdhTrmOf5b/I5xg/wIAYCEHMW9YTJgQwii4xmofBa+pprbPjD/9XO1xhQLCtlXnAu0JQ7pYF36k/HWKVBcobvz89ijcsb8pLdIqpajLdeiKfZc7qvICshRt6MVr8DQeyIv08qwyhnHtJYxrP8B3tI/hOV2klwftJ9z/2tDrRgJ1XUdHRxyp1DLa2tqh65prKMxYHoYRdtPLIppMUV2aJ0znq/T7gMbXlXqt/NA5rCWNLB5PEXaq5676FOdzw5zUq9eAIs5t+bKfysKQHkONSt5ccn/amQyqy4tCJRD5L2dY7VkdiWuEZ13DkMlY+Ju/GcY73nECBw/W/52/kU0ljSQUCqGvrw99fX3gnAcMsm/fvg0ARfWHha99K0QIk8kkDhw4sNHLWDUtJQgZY8jn82sWFfRDo9FW82ZcXFzEyMiI66W3lnMOSVQ1cwEu5xzXr18HANdSppG8/LKNb32Lpmg4TQJ68AJVLg3pmS5Tmq6yGKRtmyZFXrz0XDk455iZmUE6nUZfXx/a2qLuhYouTjfVf8QXjF9CmMfxnvyXsJOfcJ9PETWyEKknNVxNCJYaR0aNC+UaHMQxwREi/n0Fo46cq05ktvTUEUJEWyunkcu/JoWvc/nf+SlnZUO/K4XYVunXmiLCiqJgOz+E7dYhPGaJ9PKENoybqhCIF5z08g5KL9tPYJ/+CGCHQM0LhenlXC6NdFqYY1N6ua0tgra2KFRVc+oOqSPYX+cXPE5RW1i+/pCoxfwaCHbMezWGlSOG4j3Dnf14TV+m6RlAV6IWYUjpXNHcpLnng6aolIsAekbV3vrENJfi/dA6bduCrovXgDJYuZyGz3zmPH76px/AkSP12Yk1U1NJo1AU7z29e/ducM7d+sOZmRlcv34dhmEEDLLD4XDTBzkAMQlGpow3gNV4C9aDX2DVa8rpH7d28OBB7N+/f83XW1ib12zkcjmcO3cO2WwWqqo2PLw+PMzw3HOWb6wc+baJ9wtZdpRCRPWYE6lQnAaTypERVSWzZoZ83qsLLIdpmrh//z5UVcXAwAAiEd0n6Dg4OF7S/gjf0T+M/ez1eJv5DKLoDmzDrS201DLG0KWOzWsYqbS+wmMLduN6z6MoHgkFr2bPu0gXezty5PPC2JeMqcVF00sNetM0vH0F/06PLycWy0cHS5lEFx5rvdAM50JExKt4LTrCovGEPwFmcqQwh3HtZVccvuykl/fwk+juPIbDymvRhhNuell0L3cgHu8AYCOfzyOdTiOZTGJ2ds7tXo5ExPQUkR71C3Py31QC6ySRVA6K2pUzdC4FiVERoSsWhqK2kRUJbnr9RS1sbQSFYWnhTyleepw/Akhj+/zPo65jf3TUi2AH9yNKPajxRQQPyJ/Tsmzouoq/+7tR/MzPnMDRo7WLwlZNGdeDoijo6OhAR0cHBgcHYdu2W394584dXLx4EW1tbe7Pw+FwQ2bYrwWyy3gDoA/beiC+FOo3e87n8xgdHcXS0hIeffRRdHd3V39SA1jpeteDRCKB4eFhdHd34+TJk/jOd77TUOE6Omrja1+zkc2KCwkZIItomupcaMpHl0S0QnV/743LKkbTRA2caXKnEaP6xSudTmNqagrxeDt27twWiO6pKpBhy/gH4z/gqvYVDFn/b7zW+o9Q4d0RU22hSHeLn9m2UjGlR0LQtmsx16b9cN+xc1f0KYp38fYiTtwXFSqP16hD6/L75XFf80OlrQSNuUsdayk7Ge/3lRtcVsJK7+9ExBVoY7140H4aD9peevmm9hJuaT/ASM9f40fqn6GNbcMge9xJLz+KuLoNNNs5FArBMELo7OzydS9nsbCwgJkZE+FwCG1tEYRCEYTDYUcUB+sq6TgMQ/V18dJveNG6qQ6v+D1XXAtK7yNPGPo7dYvFoH8/ZNIt/l3bC0cejnR5KPc88XPmPNZrNik0sxbHWBwFpscHz4PqdtiL7zUOw9BgmhxkrP35z1/Ee98bQX9/R43Hs/kFYSGaprm1hYC4iZ6fn8eFCxcwPj6OK1euoKOjw40gdnR0NM05SqVSiMfjG72MVdNSgnC9qbexJJFIYGRkBB0dHQ0bt1YPzWY9wznH+Pg4rl+/jiNHjmDv3r2ucG3UOq9csfGlL9nI5aibUggVwwBM0ysu96JkHlR3ZllBweBvTnCOxIkCiJ/l8wBQy4xijkRiAQsLCfT1bUcsFi8SUHPKVXwm9AtIKVP4mfyf4zB7S8H6/BYvwUiXMNdmRZEMSuHWKgQBBl2H24BD0RN/XV+wVlKI4WqiqNzINXevjLzyKHrl1aBR3SdQOfon1lTazJmoNFKtklBc6e9E1Kh8mtrrzHVuYOCllx+33o07kzeQ3n4bk9FhjGsvF6SXn8B+/jh2s4dgKCFHcJXuXs5k0lheXoJtA+FwBO3tUTfK4gl8wDSpXlYIJTFTO5i29erw6OaztokkhcIQsKt2+lL0VaR6y08dKUVxB3TherzzTzXAlE4GxBoplS7S8MUvYrAeUXHOjfBodI4Cpmk5wwIU5xzb+MxnzuMXf/E02turu0tsRUFYiGEYrjh84oknkM/n3frDiYkJMMbQ1dXlppc3cnRcOp2WxtQbQaX0T6OpVRByznHz5k2MjY3h8OHD2Ldv34a8MZvJesY0TZw/fx5LS0t47LHH0NXV5f6uUYLw1i0bf//3DPk81SBxd8KIEHl+oeQ9z+sOLt1xqCiq+1wvlUl1WV4arrLYsTE1NQ3bzmFgYDcMI1y0n8vql/AV/d+jgw/g5/NfQw8/6P6O5v0W+v3RvunvfvEhUsq8ihDkTvRFPE9VGUwTTjSDQ9PI5y14vggSqJXe3qXqCktBr4G4SNMF3BvTRuur9Fap1iBRTZRW+iop1wUNeO+JWtPwwX2W8xh0OuEVA3vNkzhmvBbcBJKYwy3tFV96+a9EepmdxH77cQzaj6OX7y9IL4tZtWKUZw6pVAbJZAozMzPQdd2duxyNRh0/Pe4T4OXTw57xM00Hqe1zTDca1E1f/jXzUsz+SH25MXbl8BpjvOim2GbBpJoS6WSqw6xWNgJ41kni5i34vWbbtpMC12DbwNJSFp/+9Dm8972nqqY+N0tTyWrxXhvVaaiKYteuXeCcI5VKYX5+HvPz8xgbG4Ou64H6w0baulWC1iJTxpucWrwI8/k8zp07h1QqhccffxydnZ3rtLpimkUQLi4uYnh4GO3t7SUjpY0QhPPzNj7zGYZ8nr4wxMVGGPEGLzj+ZgSqm/LX7xVCnbEkAqnJJHgM8F3cgs/P5/OYnp50RtDtLfpiZ7DwHf3DeEn/QzzA3o635j+CENp8+y43dq34Z9Sl6aXE/SKFuxdwugh7Xm2iy1JEOytDTQmA11FaiVrEIJ3b0td3EgIqbFtzC/o9UU6vWXWrk2pvs5XeW5K9SbntVxOMIi3qiW/OveYK8RqpznMZ2tGLB+234kH7reDgmFHGMK79AOPay/hH44/xXOj/QbubXn4c++xH0YYeZ9sKDCOC3t4IOO+EadquObZIL88gHA679YfhcAiGUb6hyv+5otfC+3iXj+aJz6DYaKkUrUep11RxPodew0ytMCZmF1PtXyU9KdZjg9LJ1FhVLQAhmlcUt3s5+DvuzLc2YNscExPL+OxnL+Bf/auHK2yPS0HoUM5jWFEUtLe3o729HXv37gVjDIuLi0gkEpiYmMDly5cRjUZdgdjV1VV3L0A9SEG4BagmsObn5zEyMoKuri4MDQ2t6RuuFjY6Zcw5x927d3H58mW3i7jUHf1q15nNMnz60wzpNHe/6EVkiWrrgl/g9L1KKS//z/3LIPsXQHS7irRY5W7jwgtbOi1G0MXjXW66w08ac/ii8W9xS/0efsz8EJ7kv+RKUjFOr/z+vIYAT0iJqKjq1P/ZbjpPiArvAu4/TjLmrvXeQdeBXK62urnKncB0HNw9jvJ4xsN+OxLxbxFhU1WyKiHT4eLIZqV9VEtFVxOLlc6H/3XwhDn3CWt/Q4fiPqdw/4XWRwoU7OCHsMM6hMetfw0TWdzTz+GG8hLGtVcw6qaXj7jRw93sIcAOQddFiUEsFkUsJsaLWZaNTCaDTCaLpaUpAJRejiASiUDTjIpROarRFSlO/02Y52UobtaCbwqq+Sucuyxey9L789cJ1up7SLWT9F7ye4SWx0snk/djtfQ4CfpS1wxFAfJ5E5qmQdc1XLs2h2efvYo3velImeP0prFsdWp1+fCPzztw4AAsy0IikUAikcDY2BjS6XSg/rCzs7OhglsKwg2iGVLGnHOMjY3h5s2bOHr0KPbs2dMUH96NjBD6R/JV81tcjSBkjOEzn2GYmfG8xfyzcGksXfHzirdFL5k385e7/xYRt/KvKV3s/amoublZLC4mi0bQEfeVEXw29G9gIoOfNT+DQfY6KCqHqnnTQirhb+ygqCClyoVIVAFYZRs0KBVbz1vEs4Kp/tjaZjqTbU71/ZZqVgAAsv8QgkqBPyJKkTuAufuh16jRXxuemKNJJ956vaYm7orzYsqPp6PzLW5wygsSAxHssx7HfvVxMJO56eWb2ss4r/8DfuCkl/eyU9jPHsd+7TR62KB7WnVdQzzejni83YkY55HJZLC8nMHs7DwMQ0U4HPOll8vbf1DDDNm9ACTavUh1sVel+D7g3PMhrHadrtzgUhnbJu/D6iLP88K0EQ7rbjai2uPLWfXYtg3ObRiGjpdfvoNt29rwyCO7Sxyflybd6qzUckbXdWzfvt11s8jlcq5B9oULF2BZFrq6ulyB2N7evuJruG2LmypZQ7jJ0XW9SGDlcjmMjIwgm83iiSeeQEdHbV1j68FGRQiTySSGh4dhGEZNI/lWs84vf5nhzh3mRvs8A2ratr+wXPxZTiCJVJIXTaN0Ledq1ZuO4O8t3L07DcYYBgb2wDCKP1bntE/h6/r/hh38AfxU/k/Rgd0+4Vnr0QsRGAoxMEYXQ28d4vvMGx3nW60rPGrdF6XLxAW7fC2d9/jaxGC1qBxQW5SxVBqfokF0cyAiQcGLqhAn3n5IxFHUyP8n/ec9t/hPzpmv1q3wHNU6Mq5yLaI3laX8diil2mb5u5cZZpQx3NRexrj2Mr6tfwzfUvJo59sxaD+KQfsxDNqPIoYu5/wB4XAI4XAIXV2dENNTssjny6eXi8ohXLEGALbboBEcBUkNK4rTmUs3Np6gKp9S9rbh90mspb7Qfw5p7F8pH8LguWdOhM8CoMAwNORy3kjM4PZVmKbpiuJSxyDWakPXdXz961fR1RXF4GAwkyAFoUejTKnD4TD6+/vR398PzjnS6bQrEMfHxwMRRjLIrpVUKgUAsst4s1MYcZudncW5c+fQ29uLU6eqFwavNxsRIZycnMTo6Cj27t2Lw4cP1xzeX4kgfOEFGxcu0KQKxYnqBcWgZYkveFFM7m/CQOBxwkPQ+xnVFoqGieqdjeICzJFK5TA1dQ+RSBQ7dvQXXZQs5PAt/ddxVv9zPGy9Bz9u/RcYSsQVaLWIKFE7JewsFIUhny9vFi2OQYWuM2eUndcdWiuF0c9qFBbql6NcNKxwW945KXehLj8/mqAaz+LtKwFBV4vhcoXVuhf/So+pLKaLo4Slx+WJ6TTVhKOImrmrww5+GDusw3jC+tew1Rxu46zjf/gyRvWvAgB2siOOOHwMu9kJ6KCZ2oqbXu7u7oFlWUinKb08DTjm2IXdyxQdJVFUeH6oRi54DhS3Y7qeQA1FFTWNJoUU78s7h8HfC0GpVuyY9j7P4ubLNC0YhgpVVUpOzFFVErPMFenF85nFtK1QyMBnP3sev/ALj6GnJ+b7vUwZE2thSq0oCtra2tDW1oY9e/aAMeYaZE9NTeHq1asIh8Nuc0p3d3dFxxAShDJlvAGs54eEBBZjDNevX8etW7dw/Phx7N69uyk/rOspCBljuHz5Mu7du4eHH34YO3bUbrq6Er/Ey5cZnn+e+QykSzV6UGOJqKsDgl2mFAH025B4P/O2VWw7E0RYpDDMzy9hfn4e27Z1Ix4vbiZaxiQ+F/pFTCnn8bT5ETxsvzvQ1FJaTJDFDQkWEaXQdaqTK22nUYhlqdB1u+ZpJnQhr0W0+Z9Tay1XtW7f4Darbav66L1a0tf12JmUo1oJi4iwlq+LA+AKd3pMqa8WT1xUXnOlFLOBsEgbs8cBE1jGDO4YP8QN5WWc17+CHxj/AwaPYA97xBWIvXwfFNC4QR1dXV73MqWX0+k0ZmdnoWk6otEQYjEhEMWNTPVReZ7AF6UnohFGhWmymjuL/fWFwcYXf91m8RuCIsqVIpLFHoXMcTPQ4J8yRJunqKL4O/e9bl45gaqqyOdNMKbhb/7mLH7xFx9DJBJy1rQ+wxdagfUYW6eqKjo7O9HZ2Yn9+/fDtm0sLCxgfn4et27dwoULF9De3u4KxK6uroBITaVSCIfDDekheOaZZ/B7v/d7mJycxIMPPoiPfvSjeN3rXlfysZ/97GfxsY99DMPDw8jlcnjwwQfxoQ99CG95y1tKPr4WWk4QrieapiGXy+GVV16BaZo4c+ZMU98FrFfKOJPJYHh4GJxzDA0N1T2yh+Z+1srkJMMXviCK1kWKGCiMlAhzY5rKofp+Lv4k+wlKJwK8jLWLiBpwXlpJiYYMjvv3Z5BOZ9Df349IJApFsQNC5rbyIj4fej80hPCv81/EgHIKSpHY8l8gxE9E1DCYBiY7Ha+ppHx00Nseh2Vp0DTm1ttVggyia51xXMn3r5BaxWCtNYjVooNAbaK2fJdz7VR7PtU0VloPpT2r1ToWToQpB81GrnYO4tiOB8yncUJ9GlbOwow6hnHtFYxrP8Q/Gh/Hc6E/RDvbjv1MiMN99mnE7C532+FwGOFwGKoqvA8tK4NkMon5+QRMM49wOOzWHra1RZzvpuonnHM40TfuNIiJ9HIt4jDYrEKP51XPh3gvlBvTVyrSLBpyFEVBKKTBNJnv8+dFCQH/Dah/HB5zt5FK5fDpTw/j3e9+1P0Ol2JQsBGjWDVNQ29vr1sH7/c/vHz5MvL5PNrb2/GlL30Jb3jDG9De3o5YLLbq1+xv//Zv8Su/8it45pln8NRTT+HjH/84nn76aVy8eBF79+4tevx3vvMd/PiP/zh+53d+B11dXfjkJz+Jt73tbfjBD36AkydPrmgNUhBWIJfLYWZmBrt27cLx48ebfp7iekQIZ2ZmcO7cOfT19eHYsWMrOif1RAiTSYa//VsRGWRMTBQphTfWrVDcFY8nowhguSaOUlYTJLKyWQszM5PgXMHAwIBbNiAMbcUIule0j+N5/Texh53BO6yPI65uL7oYibS1WEe5jl9qFimM8lUS017tnzg22xajuUTUtPTzSHB6XoaVqU24eY8lr8FKlKpBLPUFW0t0sLYUdm2NMlW3UoMuFpG/aiUIlc2s/duq5fiqNaME9w0Yuo6d9mHstA7jCetdMJHFXfWcU3/4Cs7rXwG4gp3siBCI/DHswQkozICiiHnemhZ257V73csZTE+L9LKoPRQi0TBKdy/7u8k9ccddAUUemtXEIaWDxY1L+Ru8wn1T+ll8P9UiXjnyeRHV1HUVti1EX7H9jBcZFILP+3sux3D//hL+4R8u4m1vOwFpSu3RDHOMQ6EQdu7ciZ07d4Jzjkwmgxs3bmB4eBh/8id/AsYY2tra8N/+23/Dj//4j+PIkSMrEocf+chH8L73vQ/vf//7AQAf/ehH8fWvfx0f+9jH8OEPf7jo8R/96EcD//6d3/kdfOELX8CXvvQlKQgbCWMMV69exfT0NDo7O3HixImNXlJNrGWE0J82f/DBB7Fr164Vb6vWdVoWw6c+xbCwwB1vtNIfMpFuK45uCU9CFqglEx555bclCKZlaYrG8rIYQdfVFUdXV0/gQ2/bKvJYwteM/xUXtc/icesDeCP/dSiKXpSypmkc5aI9IirIygjW8uLC6/AM/pxz0Xijaczdt/ObmgRWcB+Vx8QFj6OS12DQPqdcqtj/M7H26tFBrwRgNfWBlcUerb2Wjxudg+ri0b/m0sfoNStUjyLVGlH0Hut9Lg1EgullZRa31FdwU3sF5/Qv4yXjr2DwKPayR3CAn8Ze8xR6sMc1xw52L3Pk8yYymQxSqQwWFhIAPKNhMsd2z0LguBQ3pcs5g1dfB8f3jztp4dLiknMFhsFL1vuVPxfcyWLUXhIh/AZtaBo1vPAiX0LqvqbuaC+1LD5Tly7dR29vGx54oFsKQodmE8eKoiAWi+HEiRP44he/CMuy8IlPfAJ/+Id/iM9//vP4j//xP2L79u1405ve5P63c+fOqtvN5/N49dVX8cEPfjDw8ze/+c148cUXa1ob1UKWsjurlZYThGsdSk+n0xgZGQFjDIODg0in02u6v0ayVhFC6qzO5XINSZvXKgj//u8ZJibE5BHTLJ1uEpYxSiCKRpERy6JxWd48YMuq3gggLt7M2Zb4sp6fT2BhYQHbt29HV1d7UbRtHjfwufDPI4FxvMP67ziBt8OyxeWdbnDFRcB7Tqk1ULNI+ehl6Z+LdZKgKP0YihaKtDcrqp2shpe6rv7YWlLKtJ1aI47BRqHyrJMrlUstYk+kjas3KtVy7WMMTjSq+oFSN20t9ZKUNgWKo9Bxvg0n7Kdxwulenlau45bxCm4oL+M57eOwdRNxth2D7DQG7dMYtE8hClFXqyhKQfcyg2nmkEql3O7lUChUsbOzVI0gfdeROBQ3haXFYW21jMH9CR9CFaZp1fS6+Btq/BZP/uVQdzQ1m9Cf4ibVxPe+dx2atq+pRNBGshEp43rQdR39/f3o6+vDs88+i0wmgxdffBHPPvssPvrRj2JsbAy/8Ru/UXU7s7OzsG27SDzu3LkT9+/fr2ktv//7v49UKoV/9a/+1YqOBWhBQbiW3L9/H6Ojo9i1axeOHj2KiYkJLC8vb/SyakYUKtcweqIOyHy7p6enYZ3VtQjCZ5+1cfmyP4VZ/CVP83cpqiK+Qwvr1YqjYNXTlyqofsk0GaampmGaJnbvHkAoFCq6qFxXv4EvGf8WMb4N/8b+Gnrso2Bq/QbQtdTalRIf4jzQQVU+OM4VNz1ZvO3yz6W11XY/VpvXoIiy1SYGvc7UagsgUVD5UbUcR+1d1tW9UWuxl/H2W33H4man+jn2olVVN+nsW9xUVGqy0DUVO+1D2Jk/hMfxTthaBneUYdxQfohx7VWc178GcAV97DAG2aMYtE9jN3sAGkTRvaap0DTRvcwYh2VZyGSyToo5DcY4pqamEAqFEY3608uKK5oLI3eeOFRc8UZOANTlK/5d3Wqm8NwJc2pWk5ikznVVVWFZttsAVwhFIb0OZA5V1ZHL2fjGNy7j1KnmsTPbSNajqWS1JJNJ14MwGo3ijW98I974xjfiwx/+cF218kDxdzDZMFXjU5/6FD70oQ/hC1/4Ql0NnoVIQQjxprty5Qru3buHEydOoK+vD0BpH8JmRgxTb0zK2D+fudHm29VGAp49a+PFF7nbkVsqOiiaRxRXqAhRFPzweY0aheuu/CHVdbHfTMbE/fuTMIwQBgZ2Q1XFVZU+5BwML2j/N75n/C4O22/FO/AMolocJqvt4uGtsx5rGC+tWM1nsdy+yJoGoDrFykK00KKnEsI0u7Y0JaXQK08LEccqGoCqv/+8cXKVz38t39O1pXlrb0wRN0LVawkp7VhtnyJaWkskVpwTw6jtdRFpWl4UWRSva6HHJRBCFIPWE9ivPA5YHEuYxbj6Ksa1H2JE/we8ZPw1DB7BXvaIEz18FD18AIwpTlOGAV3XEY+3Y2lpGcvLy4hGw1heTiORmIeqaohGI256GdCc9SiOz6F/Nd6EGzIo9+Olxmv/fAoRqjoR8sL9FcKd53DHggZOJFAr2ielumlOM4nxdNrE88/fxj/5JxnE47X74W1GmqGGsBqpVKqsKXWt18xt27ZB07SiaOD09HTVlPPf/u3f4n3vex8+85nP4E1velNtiy5DywnCRqeMU6kURkZGoChKUcdss8wGrpWV2LmUwjRNnDt3Dslkck3mM1eKEI6P2/jKV7jrMRgOsxK1gV6KmLpjC0WR3xy2kEoXeRHVU2BZNiYm7rpu9iRIqaA/iwV8yfh/YUz9Jn6M/X9whv0HMFtDHvVZt9Dc31p1PDW8kOiq5waUIpbByIqIvJhmGul0GpFIDIahu5+zWjuEveOp/dhrrUesHB2kTm1Kh9PPaZJL8Hi9msVSnaTFjUTl6hq9ySSeh6W3Ph54rD9K4K+bLIc3B7k61QycC7dba00hiUjxPqMO9GoiW3TpdmAbXmO/Ba+x3wIOhillDOOaiB5+2/gE7NB/QwfbgX3sNPbbp7HXOom43uluX9M0dHR0or29A7bNnNnLWSwuLjrp5bAjDiOIxSJA2ZnWzI3A0etl28wVoqU7iiudP+7zOyz9vMJZz8LnUIzuU9ViUShuzryIrKZpzs2ohc99bgTvfvfjTR8hW0vIxLuZacTYulAohNOnT+Ob3/wmfuqnfsr9+Te/+U28/e1vL/u8T33qU/jFX/xFfOpTn8JP/uRPrmoNQAsKwkZy7949XLhwAXv27MGRI0eKPnitJggbESFcXFzE8PAw2tvb12w+czlBOD9v4zOfoTSr+MLO5TwhQF/qlCamsWqFUK1Z4cWYKF+7J7a9tJSEaZro7+9DLBa881MUYAoX8LnQzyODBH7O/hQGrTcF4hCMaSi0oSmE7GTqz/CL5pB635alxCCxtLSI2dk5hMNhLCwsQFEURKMxtLVFEApFYRi1XZBqmTBCVEoVk4jXNBEFCoe92k/ASxf6xZUYfeZPFxdHh4IURp1LvU/Kp57FxV48J5+n51ZLG3MAzBVOJEr80M9CIdVppKicKifRVut5r7VLmW46hCdedTHo3z5AHdMcClT08cPosw7jSeudyCODu+p53NQovfxVIAT0saM4oJ3GNuMY4tgHEuiapiIWi7k36pZlIZsV6eWZmRlwzhGJhNHWFkUoFIZhhHyRZ+/19/+dosiMkY1V7TYv1NTkt5UpOAPwv1b0XhXfebazn1K2W6pjscNBBuR37izgueeu4E1vOl7T2jYjrR4hrIdf/dVfxXve8x48+uijOHPmDD7xiU/g9u3b+KVf+iUAwK/92q9hYmICf/EXfwFAiMH3vve9+IM/+AM8+eSTbnQxGo2uOIizJQWhbdu4dOkSpqamKpoqt6IgXOl6Oee4c+cOrly5goMHD2L//v1r1sBTShBmszb++q85Mhm6qAChEEMu54lBzskgt/wFrbhrNhj5KRUhEZYsCizLwtTUFGzbQigUKikGL2qfwZfVX0EvP4R3sU8jbu0vWgNZVzDGSq4z6IlYO54noYLyN83Fka5yUT7OOWZnZ5FKpdDf3w/DCIFzjmw2C8sSfnL5/AyiUWEnEotFEQqFSr4vamkMoRF4VHxPF+XCqBlFUciU2zRLv96FywgKo/ICRgii2mrIym/Hf+FXoCis6jYVRYE3d7t0BysJ23yeQ9Ns3za5L9odFBwi4lVLN6zinOtK66XoMwu8nmLdpXdQar9evV7wlyFEcYA9jv3sMbzEP4Xvhv4Uu9kJtPNtOKt9GZnev4beHcEgP4lB+xT22afQwwd83cs62tvb0d7udS9nsxkkkxnkcl56ORIxEIlEnfo/3xlQvGPTdRVk+F3NIzF4jOQSUOrGtrgGDIBTi6g6EUrbKUfy0s/iu0I8RhjTi9fqRz+6g717e3DkSPVO1c1IK9QQNkoQ/uzP/izm5ubwW7/1W5icnMSJEyfwla98Bfv27QMgpoLdvn3bffzHP/5xWJaFX/7lX8Yv//Ivuz//+Z//efzZn/3ZitbQcoJwtSKF5u7quo6hoaGKnW2tJghXmjK2LAsXLlzA/Pw8Tp8+vaq29Voo9UX6uc9xzM3B/SIU6xIXXX/TRKUUZikLleKLlV8ccrfzOJvN4v79+4jFYujq6sL8/LzvcQBTTHxT+Q38UPtjnLD/JX6C/d9Q7fJfAratONEHb3+Fnoj1pHupS5pEcTkKhUG582VZNqam7oNzjt27B6DrmlPrpKCjIwLbjqCzU7w3LCuJpaUU7t9fBKC46bpoNAZd19zIoFhjUERRkb0/PUfdyv7zUg5hlVPbOSrcb7nt1tIEEtxm8YYKv4eqmU8TjNEYwgp75F65Q+mRdqXWLqJLInUe/Bx5wtNLoVP00V8KQZHAUsdRT7pZoDhG8cUpbRsWvhH6A5zXv4qn8u/FkPUeMQ0FDGOpYYzrr2Ku8zKeMz4OFrLQwXa43cv77EcQRYezZq97ubOz00kvZ2CaKSe9POvc2MUQiYQQDkfcKHMwgqg62RW7jEj2zn3hjYu/BrBUiYH3ufBSzqJBxXKEqPdYmmhCUVYAyOVsfOUrF7FzZwc6O7dePWGzdxkDcG+oG8EHPvABfOADHyj5u0KR9+1vf7sh+/TTcoJwpXDOMTExgUuXLmHfvn04dOhQ1TuPas0PzcZKUsbJZBJnz55FOBzG0NCQayy7lhQKwnPnREexv/6MonbUPAJnskjw5QgWvJdqOiiMnniTC0RkhTGOhYVFJBJz6OnpRWdnBzKZrJMqExfKJXsanw/9IiaUl/FW9rt4xPo3AK9+12pZqpPe5b4GF+/3td7cUESRrDcqpya934tzWPyIXC6LyckpxGJRbN++PSCQCgWkrusIhboQDndA05iTrksjlVrG/PwswmEDkUgE4XDUueCWEk/+vxcKjsrHU48YLDYfXxsqpZKrP7eysKL3hKIoFcYblnyma7fkF3/F2+dOF70oPQBsp/O8erpf3OTUZnZNx+D5bYrn5JDEF8L/J26rI/iJ3P+GE/abfUegojd/EB2pPeiLboeppDHORzCu/Qjj2qs4p38V4Ar62RFXIO5ix6E5lzFVVdDeHgVjYfT09CKXy/vSy4vgnCMcDrvNKaJ7WURlbVuc53BYRT5f/OIEZxp7UA2gqC0svnmhmyR/pJCsZiiDQA0nVB4gopfe+yCTMfG5z43gve/devWEzeZDWIp0Ot3UE8zqYUsIQsuycPHiRczOzuLkyZPYtm1bTc8TBb68Jd6UQP0RQqqhrFUgNwq/IEylGL7xDV7URco5g66r7pxXoNTEDkqjlvftE/vzhJjYlvDsY4xhZmYGmUwG/f27EImIAnXxJS46hSeUV/C58C+Ag+Hd9hewhz8Ju47QHuf1zRQupFgE19ZZWk4MLi0tY25uBt3dvejqCtaZCPGquOfVm6nMnZo/BaFQFJFIBD09HKZpObNss1hcnAHAEQ5HEIvFnAtu8OuFRHZhk0e501nfRJRikVXO16+esXulKBV9rCfaWykVXehZR+e/Fmy7+rQT0bhgO68nd8UaRRWFtQsreYwiml6b3U1wn0Ksztv38feR/4xlZQb/Mvd/YR97pMSjubsOzY7isPokDppPACawpExjXBXi8Kz+JXzf+GsYPIp99iPYZ5/CIeUUOqw+KE6XtOhe1tDR0Q7bZm56OZPJIJFIOOnlqJNijkLXVeTztpuyLRz5WKmBh7qyS72fCyPS/iYSETm3ne/EYJSQHmNZNu7eXcCzz17Bm9+8teoJWyVC2IiUcTPQcoKw3pTx0tISRkZG3AiYuOjXBr0RW6GOAag9QsgYw6VLl3D//v2KNZRrhV8QfvnLom7QLwZ1nYNzTwxSCq0QUXCsVBSDfrzaPQWmmcf9+1NQVRV79gxA07TAhc6yGc5qn8Q39Q9iFz+Fn2F/iqjVV0tgsOBYxbg9VWVFF9FqI+ioXrDw59X0QSkxKOoF55BMJtHX1x8olRBjt4S1jF88l0qTiZ+LC7awCok7F1wgl8sjnU4jlUpibm4OhmG40ZhwOIxQqDitWqu1S3WKN7JWUcJSgq4+gUQiu9QClaLH1pOqLTUVhRpERJNI8H3ozT0u7pwVgtRbjydgaq1Z9Jhg1/DZ6H+Gxg28O/v/oJfvK/PIYFqcjkdRgA62Aw/Zb8VD9lvBYGNKHXPsbX6E50Mfx7cUCx36DgyyU9hvn8I++2HE1DiobjUcNhAOG+js7IBtc+RyOWQyGV/3cgjRaMwph4j4Gn9q8y6kZpDCc1PqZaYOZHHOadSdaDgRN6UqyLpGvAcUvPLKLezd241jx/pqP/EtTis0lSSTSRkhbHb8TRL79+/HwYMH6xaTfkG4Ft22jaaWmsd0Oo3h4WEoioIzZ84EbHbWCxKEo6MM16/zgsggQBG8clEugPzzqo2gEyiKl4IGOFKpNKanpxCPd6C3t9dNVVMqzEIWL/f9Jm4aX8Rp+/14k/1/QmEhd1u1ICJsfkFH6WP/Y0pvjGoNywndShdiEnZ+GLMxOXkfjDEMDOxGOGy4UQuK/pkmcyMXtRwjRROdFQMAIpEwYrEwGOuCZTE3XTc3NwfGLIRCojElEqHmlPLHQhfVWkVHuRGAtT62HLUL1toaSwBRB1p+0khpEV47JFaZ+1r6G0RKHUupqB9FJotvWhQ3gibsnjhKiXE/Y+pL+GL4t9DL9uFfmv8FUd5V9rHU9BL8mVLUEaxCQz87gn52BK/lP4uMncId9TzGtR/hpnYW5/SvQeEq+thhHOCnMGg/jD77qJte1jQFsRjZ1nQ779c0MpksZmZmwBhDJBJBe3sUoVD52cve+QrOV/aL+HLvH6/0QHGFoW1bTlpfXHtIFNK2v/zlUezcGUd39+aISFWjFYIxqVQK8Xh8o5fREFpSEFYrCjdNExcuXEAikcCpU6fQ29u7ov2oqtowb7/1oNpap6encf78efT39+PYsWMb9kFTVRXpNPCDH3CYZvBLNhwGTFMpajwIPp++gGvfp2WJi+PcXAKLizSCLl5URL+IO/j79ndjTrmKf249gwftny2ItlTfF4nBoNBVYNsqdJ1VTB9TSrXcsVVKN5ZqIBGR0ElEImFs394HgEx5uW9/lQ+quC6Ku+cz+Dh6TURDTUdHG+LxGGybgzETyWQGmUwWicQCVFXMshUX3DD8s2zFcVZcUsFj64tW1TbxpNL+yv28csNPrdsufD1EyrVyjR+l4/0faW8KRi37rK0UAT7jZxFBY76/K6B50ySMzupfwLPGH+KQfQb/LP+fYSDipOxLv2ZeI0zhGr2Rb0GzbOE1GEIUB9njOOjMXhbp5bO4qf0Ir2pfxgv6pxDiUey1H8J+dhL77JPo5v2+7mXV172MQPdyPp8AoKCtLYZIJIJYLApADbwPRCbDu0Eis3yaWeylwksfL3Vk00P8Vk8UTVZVBdmsic9+dgS/8AtPNH3krBG0QoQwnU5vSGBlLWhJQVgJ8tFra2trSJNEK3UaU81jYTqKMYZr167h9u3bOHHiRMM6olaKqqp48cUOFAZdyaRZ1ASWfq43z7b6xcuL0qkATNy/P4VcLo99+3ZD00JFHoY31efxReN/gsHb8Kbbf4IH+n6ipktk8NioeLx0OtCyVCdaWRx9Ka4XLHlUJS+kImJKqWYRUVleXsbMzAy6u7vR1dVVvCUFKHdhLsRfj1fLOKWgOGTg3EBPjwGgA6bJkc3mkMmkkUgkkMvl3WJ/0RFq1BXF86e5C44Qxe+TesVg7Y+tR8SKmdCl1lKuy1WB3zvRLwCpk9t/I8G54ppKE5VeZ6+ruXZPPrE9mhHMfO9nDigc3zY+gZf1T+O0+TP4MfOXoIIm/ZAPY6n3HvfVTpY6D+JPqvMtJ3o7+A48ZL8FD9lvAVcY7ivXMK6exS39LL6l/XewkI1OtgOD9kkMspPYZz+MCETar1R62TRzyOfTWFhYwPT0NCKRiFMKEUE4HHGFMSHqLanLWpynSt9ZluW3pWFumpheV7/v4eTkIr7xjUt4+ukTZbe3WWj2CCHnXEYImxHOOW7duoVr16411EevlQQhfXD87u7ZbBYjIyMwTRNnzpxpilqHa9dU3L4dw9693s+8kWpwDFqL8XcSV5/h6kXpcrk8pqcnEIkY7gi6QNQPHC9pf4Dv6L+NQfZP8bb8H2Eylar7uLx6x0rvO8Xpng52JHop7erH5bctUVXAMIRvnehYFJYy8/PzWFpaws6dO0vevXrnp9ZjExc0Eamq53NFhtjec1RVQSwWRXt7BLreg2w2j2Qy41r/KApDJBKDbdtgrPoC65kXWp/lTLn9lRZ/9TaW+D0JSzyiYNs0hYWXFIDF26dt+BdVeYHkzVdrFzGts/C4LSWHfzD+L1zTXsAb8/8Op8yfgqYpoNQomTt79XbF+6t2LkV6vrZ1aoruppfPWD8LS0tjnJ/DuHYW49pZjBhfh8JV9LPDGGQnMWifRD87Ekgva1oEbW0xdHXZyOc9c+xkchmMMYRCol42EokgFDJ8tYci1U2vWfnjoXGBqiP2NdB0EyESgyVMr756Bw8/PIBdu7pqOgetCDV0NnuEUDaVbDCFX+r5fB6jo6NYWlrCo48+6owaawytZD1DHxy6k5ybm8PIyAi2bduG06dPN8UIoGyW4bnnDKcAW0AdrZW+4IO2Mv4i7GIo+mDbCpaWlpFITKOjoxs7dnQU1dflsIx/MH4ZV7UvY8j+VfwT+4OwbABI1nVcXkqvNrFk2yoMg4FsSOppjNE0z8pDUThyOf92bUxOTsKyLAwMDJStfa2Uki8FWfCsZEJKueeIEYGAqhqIx0U0RlFstzklm01jfn4eyWTKTdUVWttUmnhSKspUPppY+zbKdSnXqzNLp2nFa6qq3I360vGJ6Ts2an2P+aNMta5P+ObVPg5P7Ic5DRIMKSTw2fD/gVn1Jt6R/00ctocAhcSQt02aOiTEj3+N3NlW6X2Jc+/ZxJTyOSymIBJvx3BEfRKHTJFeXnTSy+PaWfxI/zJeNP4GIR7DPvshVyB2837nWIFQSIeux9De3ua8Pjmk0xmkUjR7WXWbUyKRKBRFg2GUH9fpR5RXkNOBAsZsJyjBXJ9QEvrf/vZ1vOtdj1bdZqtC56sVBKGMEDYJiUQCIyMj6OjowNDQEEKhUEO334oRQsuycOfOHdy4cQPHjh3DwMBAQ6KljeCrXwWSSc03ixgwDAX5vOfVV0ihx6AQQ9XEIDA/P4Pl5WXs2NGHWCwGVRW1PMScchWfNd6DZWUS/8L6Sxy2f8KJ/ojXu1wkqBCv+aW+c1x4wS53PBSdY0yIH9Nkjn1IUGzl83lMT09C1w0MDAyUTbVUatapvN760q00Y7qWc0jCS1VVGEYEnZ0RpNN5dHbGoOuqIw6nwRh3ojAxp0FFLyvwSouKRrQ0l07/CYFXSzeqZ78jvABVJ7LsCbdSk2zE4+uL4JHopGatWl6LUp3KlY6F6h4T2h182vggLCWPd2b/K/r4kZLPUQoEIueiZo7mWlMpQyHCUsd/I+lF4OqLatJnT4jYTr4DD9tvwcP2W3zdy2dxUzuLbxmfcNLLO7GfncQgHsFe+yHE1Hb39dJ1A/G4hvb2dqiqilQq4+tenkUoZKCtTQhEwwiV9OoMro0jFNKhaSosy3ZEoepY0AChkAbTtHDjxgwmJhLYvbtxAZBmgl7rZk4ZW5aFXC4nI4QbDeccN2/exNjYGA4fPox9+/atiehpJUFIaYrz588jm83i8ccfX/FMw7VgbIxhZIQHxq4ZhjcLlr7r6WWkbtvCFGW5l5nq90zTxvT0fViWmMJBUTIxH1l0gl5Rv4x/MD6ADr4b77OfRad12L0E0fuoVK1c4UWylDVMLYhOQmp2Cc4nFrVhiltLFLzYKe5+/W/LZDKFmZlp9PZ2oqOjq+x+a6tTLEbTihuAqkHHWOVRgX/5BSS9n9va2tHWRsX+ecf7MINEYh6hkIpIJIpYTNjbUP0Zzfgt5V25VojRY9wRVEpRJNGL9vkbEIICr9r5qmxZU2pNcIQFq0kMetQmboWosnFHHcHnQr+Bdt6Ln8v+Pjp5fdYopklm8cJ/lFKnJBzFTWFpw2hRq1dbBM6PeHjQEsrfvXzG+lnkkMYdbdSNIA473cvCHPsRHOSPYKd1ACo0RxgzxGIRtLe3gTEGy7Id78MslpZmADAYhuHUykbd9LIf6q73l1mIKKwQ98IrUYjZ73znOt75zsfqOu5Wga67zSwIk0mRSZIRwg0kn89jeHgYqVRqzUVPKwnCxcVF9651aGio6axynntOFKCTsNB1jnxepED8hroUoSglBstB9Xu5XBb37k0iFmtDX9/2wJct5wqgMnxb+S94Sf8ojtn/HP+M/QF0u6Nga15quvCCWDzVY+ViMGjboiEUYsjnxcWpXNRQpBOD9jVzc/NYWlrEjh07EI+3lb0wCoFUvyLyjrOeWr3aTaWD+6m0Tbijyrq6OsGYuNim0xnMzi7ANGfdYn9Rz6UXPR8ojkRXEkritfLeD/6LtH8WsWeXorqNXeW36d9G0W9R6TyLZhG17PujFKLjtb6ufIrWVtuPogCj6rP4Wuj3MMBeg7fnPoQ2rd21h6kH2xZ1lZxzWJblinuarVxOCNNEFJoAUmKVFffLmOq894qPNYwYDtmP45D9OFRbRYLfw7g6jHHtLF7Vv4QXlb9B2Ihhr/0aDLKHMGg/gm7eB8YsKIrqpJepe5nBNE3k8zmkUsky5tgaAL99jSd0KZ0OeCJ/bGwWd+8mMDCw+aKE1FDSLNmtUqScWvNmqM1vBC0pCC9fvuzOIl5r0SOGkDe3IOSc4/bt27h69So0TcPhw4ebTgxeucIxMSGiABQRy+VotmfxRTkomIKUskEBhCCem5tHb28POjo6UHghSPE5fF5/H24p/4g3WL+JJ9gvg5dIPfsjhCX2DmC1YpBSTeJizRhzfBDhfAGykhdvihx6xtEMU1NTME0Tu3cPIBQq/5r7x4fVg+jSpoaG2qndCiaYJq0Hw1ChqjG3acY0TWQyWaTTGSwuLkDTgHDYE4j0XqsnShhs/CjfEbzSa1axyXMti6tPnANw6vKsui6u1UoaODhe0P4S3zX+fzhhvQVvyf8qNBhOY1j9YzQBEdGNxTT3hpAx21deori1xn5rG0Lst/70Me2Xunwr0cl3uullqDYmcRU31WGM6yP4lvanYCEbXWwnBu2HMcgewT77BKJq3BXYihJCKBRCR0eHEz3MIpvNYnFxyU0v01QVEsF+ocs5c+3FRMOJhe985zre9a7NFyVshYaSdDrtfLc09zprpSUF4YkTJ+pKm6yGZo8QWpaF0dFRJBIJnD59GqOjo6vuolwLvvc9EnkiWlFoHeNPE3Neyc+NBy5QqsqhKAz37s0gk8li165+hMPF02juK8P4nPFu5JHGu9jfYa/9+gqF6+JPUadXsHe+OjFI1jpeFDC4CEpjicf5ZzCLY6dzk8+buH+/uF6w1DFRjdfK3hb1z+2tZ+Tc/5+9846T46zv/3tmtl+/06ncndqpuku2ZFlyLxhT3DDGNAeSQCC0UPIjtFACARIIIfQSShIIodgG29jYxnK3cVWzJDedunS93+7t7sw8vz+efXZmdmd3Z+9OsmT8fb1s3e7OPPNMe57P8/l+v5+v4wKvHhAWWjgcJhwOU19fl4u1TDE+nnRVopDC2fG41D4M4omqPlGk+n5LkJ8PWJD/L3PNlUu6mvdcxtpVm0GsFinF52Vhcmfk39gWup1zMn/JevOteU0/2UcxRXAmWXkZ2mDiBeFeDUS35I6aCxTL6AZ2wWJYHZ3DIO51TQNhwzxy7uXstZhGij3athyDuIXN4TvRhE6bvYyF1iqWsJo59hJ0jJzQtk4iEc/pGjblAeLAwACjo6OMjQ0RiUSJx2WGs2GEcuEQ0pWv64JQyKCrq5/9+4eYP/+lxRIe65IzIF3GiUTimGYxq7HjEhCGQqGjlvl7LAPCsbExNm/enC/LF41Gj8n+PvOM4NAh4QEKQugewKXKYimh5FLSLe4KAOGwYHIyw6FDPei6kS9BV2hbjZ9zR+hDzBYncb31U+rs+blYwnK9LmZhVMB7tbIruq5c4hbZrHuA00oyMKapKkI47iLlSs9k0gwNDVJf30BLS7P3aEUZsVNz34IS/a1+v2qASnXMmNfKnZOuky+Z50y2KZLJCUZHRwFybuV4Ltjffyj0G+fLJVzIxIjqkm+82cbBgHvQpA9ney0XQ1vdwsCRr3HiCScZ43fRz7Bf38prM5/kRPNi332rZ+xELvHLzlVPMTBNq+Rk6wWHWn7Ro5h2t6s1qDni134Pl3sBW1ieTiNkxVkZWsey7FrIwrDWwx59C3uMLTwZvpWHtV8SDSdYaJ/KQus0Flun0azPzZ9HKGRQW1vDyMgwDQ2N1NREGB0dI5WaZHh4GF2HWCyRl7cRwsh5W3QeeOB53vzmMwOf5/FgxwNDOD4+/pJJKIHjFBAeTTsWARbAwYMH2bFjB4sWLWLp0qW+MSfHij3wgBMXKJMwlMq/MwmqJABZsq7yZK/rNsPDSXp7e6mvr6e5ubnYhUSGP4Y+xqbQjzjVvJ7X6l/BtqKSg9DKu93kBOM9ZjVuTSkbofTiRA7QFa92y/VD1TvVdQe8ZjIZMpkMc+bMKRm3okBmtVqD3ja8+wWdUyvFARaaaldlmFaxZ8WJ3qvzaFBfX0NtbSIXa5rO68g5dZcdsWEp71HKSv+mEmGqAV3uChVBgfFU6gmDqmZU3fjgjicc0bq5IfoxxrUB3pD+KotYjU3pGx4UFMoYYFUKT8/vG5TVdMY8x62sXK3VsjfuDGTv9VVjLL5jrJPgIt+/RjGHVdalrLIuldnLRhe7tc3sNrbwx/APERGbRnsui+3TWGSdxgLrZKLU5K93KBSioaGehoZ6bFuKY09MJD21l2trawiHo3R12S85lvB4YAgnJiaora19mSH8czHDMEi7hd5eZLMsi507d9LT08OqVatobW31/H6sAdhnnhH09KjYQZFnyNwuL1VxoXK2rsjHFfX2DjEyMkpra6svMBrjEL+NvI1ubTOXZf+DM3gbWIrpkBNqZfkVFS+osjvL907TRN5d5c6YLixjF9QcCR2ZydnX141pZqmvrw8UxFyt1qAa1EqJBVc2/8D8SvuUA5Gl+uFmiktZKRZN02Td5VgsSlNTI5Zlk0pNkkol6e8fwLatfHJKbW0cXTcKBvxK4KY6V6mMjfOyuEEmGKX9V41NRWcQ5LXuDT3Lr8MfJySivGXyW7SIhaBXbqccKJTzve3qjzeMws8FXN4ct7Jta0SjBtls9Qtkvwxkp/3S7TkC095rrGPQLlYwz1rGBvNa0kyw39jBbl0CxE2hO3Lu5eU0Ny9mRWgdNZzo7K9r+XhYJ3t5knR6kvHxcfr6LH72swne8pYzaW5upqam5rgHKZZlHfMM4UupbB0cp4DwaD7oxxLASiaTbN68GU3T2LBhA/F4vGibY6328n33qQLtwuMuLczWrSRpoty1QpgcPNhNNmvS3t7uqzu5T3uI30Xejk6It2Rup0M7A1sUy4DIMnL+tYVV/4JUEDEM5dK1i7adKhh075vNynhBwwhRU1NLJGKUBDtyPw1dL18z2c+Uy01Jp3h/q7x/texgruUpubOnMgSU2scwdGprE3n2UNWxlckpA2haqCAT9EiwFg5THBSLl4rv8zdno+B1ix17wXiIW8L/RKtYzNWTX6SGplxbwdqRLmAviDcMG9P0xqj6tTfVZBEhBOm0IByWSgayreoYw8IMZOnFKL+Pynp2l5srtCg1LLXWssRci2HoDIrD7DW2sNvYwjNN97DNuJ2oqGGhdVIue/k0GsXsXJiNfP5qa2uor6/LaRUKhocn2LlzL9FoF6FQiObm5vx/M63PezTMtu1jniEcHx9/yWQYw3EKCI+mHSuAsKenh23bttHe3s6KFStKvihTze47ErZzp6C3V+TkTrz9VYDLL96qsPsqQzaTmaS7+zDhcNRXeFkgeML4HhtDn2S+vYErsz+hTm/N63r5uWctSy8RT6jlMmz9Jg87NyjLiaJUFmqw5BP/3xUQTSYn6Onppb6+jubmZvr7B3LX0qmJXGiG4a1eUo2Fw/6gzpvc4nMWVYhQu80wIJt16iR72yzd2FQypoOAIClt49SxBZtkUgoNDw0Nk832EY9HiUajJBIJXx25qZijT5jvSaC+BmcjvVI31QCsp0I3cnf4myyzzuG12U8S1qIuuZ1gbajYW+UpkJU3gj8vElBWz2yC45JXYLBahlRlIEsPR+mYxkJTrufyjKIEPs36PBrNuZxmvpK9+7uw541zKLadPcZW7gr/2HEvW6fKCiraSUREHFXpRdd16uoa6O+P8qY3rWFkZITBwUH279/Pjh07qK2tzYPDhoaGY555g+ODIXwpla2DlwFhRXuxAaFt2zz//PPs27ePU045hblzywu+vtj9ddu99yr2zC/ZQc/FyhSLB7szkBXrNDExQm/vgEt42TsoZ5jgD+G/Y4fxa84038cF5ucI6SHfY7ut1OSo3MmF6j2KDSznwqrGTezXNyUePTw8xNDQUM4tXlewn5ZLPFETrMjvW62AtDJ1L0olUpSzYCLUxSaBetktfI8lhJZjjcuxXd5sUYdldj6rPvj3TS5mlGyN0sdLpyeZmBhndHQYTdNIJBJ5YWzDUIH+/u16n0fhUkvQphT/G1wfspAd1/IJXKXMxuKe8Hd5Mvxr1mav44Lsu9HQ0fIxdFpV91zGBouybu5SvynWTWXMV2MK/DmVPxT7b+QWP+XbU8cOh6v3TqkM6Ep9dkpxamAbzOcEFpsnco51LZNign3GdnbrkkHclMtebreXs9CU+ofzxBJCusG+fYMcODDEggUtNDU1sWTJEjKZDENDQwwODrJz506y2SyNjY15gHisupePh6SSZDL5MkP452Qvpg7h5OQkW7ZsIZvNsn79+kAP3rGSVLJjh8MO+l0+CZrs3IRWXBFBCjBLIeWhoT5GRiaYO3cutbXxIvA2pHVxY/itDGt7uDLzY06wr8lP/EHmDpnI4jBcMp5LR8UbgnIViXwGY6lJpNqYwUKmQrrPBb29vUxOTtLW1uaR0fEm4yjwrIChTTYLUy1ZLSetcgkT/tezOpkZd3si71rzm490XXiqtoC8XuGwfKbk/S19gwsZJbWPssoxoQp0ivznSCRMLBbJCYCLfHLK0NAIPT0y0F+5l6PRymXKVOKRiqNV520YWn5fp3KFv7uztCBz6XNVYLrU9csyyS3hz7Mr9DCXZD7I6ebV+d9sWzJmweJq1fvgMM9SXNm/v/Kcyyf0TCWZBlSSipO5bFlK50/VgC/VqMDJfK42Kcep11zZ1AJB/q1pMvkuKhIss9ayzJLZy0NaN3uMbew1tvJ45FYe0n5NVNSwyDqZJdppJO6Z5O/edlW+1Ugkwpw5c5gzZw5CCJJJWSN8cHCQ3bt3YxhGHhw2NTXlMvNffDtekkpeZghfZPtziCEcGBhgy5YtzJo1izVr1gReKR0rDOF990n3Yzar+UrISFehIB4vrkusMnTTaZO+vsNYlkZHR4dLbNsZuHfpd3Jz+B0kxCz+IvNHWsWJeSaoGpCi4gkl+6flnzHJ1nndqKVYqaklkGj5iVnX5TkfPtyNrstzNozCahv+k7gEDJKZUgCtOgFmUdGF53fsSqBMWeGEqMIF5K7CdzJWGnPuBY7KIA1iXvAnArCRQU0lQ2m5zOQYStomlZLu5b6+HoTAUzmllLSNmvOkPqWMB7MsJcHiPR+5UPLLVq9eA7GU8PQEg/zM/iAj4iCvS/8zS+0NRftKcFW6DKLsosidi/c3ycr7A6tK56AycIMm0xReFyWabVlWPiO8sGZu4fWQ75MoyiIObpqvpqm/Se9DOOwv2A/QJObSZM5ltfkKNMPmELvo0jazx9jK7foPuW3gB/znDxZx6ZJXcPGiizmn4xzqo/W59jRqamqoqalh/vz52LZ9zLqXjweG8OUYwj8zO9oASwhBV1cXXV1dnHDCCbS3t1cFgI+FpJKnnxYMDEi2yW+ikpVF9NzfXuCmBt90OklvbzfRaC1z585ClWxSJrB5yPgKD4a+xFL7Ml6b/R4xGqcEBkHto+WZSckIWoFLvU03mxik++Hw4R5qa2uZNaul6JxzW/sCIpVRLEGUhooxlAC3/PGnKrSt9nVq9zrno/qoQGbxBFoYL+d/nUu5Xau1o7GGDIUM6upqqaurRddbSKXSJJMpxsfHXdI28ZLSNirmrJSpn/w8AIXJJfI9UG3JzF2/61YoED+g7eEXxkfI2pO033ktSy8qBoPKpNve+zzKfhRm5hZbqUSRIKEHQWLznPaK3xfJcBpFgNQtXaP6JrOMlZ6hM7ZUn6mt5d+TcgsatcAyTRPDCOXmnzIudktnYWQl8zJLOdt8PZNMsM94moH489y15y5+uOWHhPQQZ847k4sWXsRFCy9i9ZzVGLoEWrqu09TUlHcvZ7PZPHuo3MsNDQ20tLQcdffy8RJD2NzcXHnD48ReBoQV7GgCwkwmw9atW0kmk6xbty5Xfq06MwyDTCZzBHoX3B54wBnwCscO+VkCFlmaSf2ikk8EIyMjjIz00tQ0p+gaCAGTDHNL+F3s0u/gXPMTbLD+XsY2TQOUSR00DTAAq+yE5jeeS0A21dg9jaGhIfr7B2lpmVX1fffLlNY0JeOj5dyR3sonznaOu7fcQK+ScvQimRGRd3mWknjxM7ebuRp2a6ruwqkwaDC1feTxNKJRmXziSNukmJycLJK2kexh2OOensIR8WYSO/F48t7Zedele6GhslYty2a3eIqbwp+gUZ/L663vsC26K8Ax1SJK5Njc4D32E8p2kr/Km6pdXE64uvyxy4FKVa7RFdeXq9jjJNNM7ZlScdOlrpPyFKhjZjIW4bBBNlt6Dspk7DzQjFHDCnst+vA6rrtuLTSPsXHvRjbu2cg3nvgGX3j4CzRGG7lw4YVcuOBCLlp0EQvqF+TbCofDFd3LTU1NeQbxSLqXbds+5rOjk8nkyy7jF9uOtsv4aFRFGR4eZvPmzTQ0NLB+/fop1yJ+sV3GTz8tGByUg71yG7lNASd1Dx13jYyd6+vrJZ1OMXfuAmKxaNGA26tt54bIm0lqA1yb/TVL7Ffkf6sEBkut6CMRuZ/zu15WmLhwMA8iTVPKhLDp6+thZCTJvHnziMWKpYTcVhhDWFp42gEIskyenNi8rKGcfErFeLqTMBSYdF9D5WYOFh81FStmU0r1t2JLUwSEfkNNkHYKt5HSNjXU1krhYVl3WWUvD6HrBjU1ceLxSMnjljPJWvkDDSX3ogSzC92tpglbtd9zR+yrzE6ewJtDXyFs13DiieUne8MQubjGqehPSivUUqxGV1HFBJaP6SuTNFOCaZQubaWN6IQHFG4jx7Di+OeSPcmDydJxkMXKCw4oNM1SD37hOyK9RI88sou3vOUsOhs7ecdp7yBrZXmy+0kJEPdu5IN3fxBb2CxtWspFCy/i4oUXc878c6iLyAS2cu7lAwcOsHPnTmpqavLgsLGxcUYZveMlhrCurq7yhseJHZeA8GiaYRgojbkj8XAKIdi3bx/PPfccS5cuZdGiRdMCvC92UskDDzjxa86AKs/HzaLJycnOuxcnJ7P09PRgGDodHfPR9VAR2Nmh/4bbQ++lUXTy9swNNInOXFvBmMFCd42Kt5OEamFsnJSjKd2WmjimDgZNM0tf32GEgI6OdkKhyosA9zlI95o/K1MKOLlZQ8Ow8i5dJ+NWuJIY3Mctbmuq6w5Nq+xSLGVTZ+ymtp9/W0EqkZR2g2saRCJhIhEpbWNZgnR6knQ6xeDgMAC9vb3E47LObSQSDdj/Uscsw/wiuFf8gMdrfsbS0Yu4MvRJDBFCABs33s21116b31aOgSoUQD738l3Xcgx7kD56TTF9CtS56xIHsUpC25Xcun6gUIZBePeTgNfOxS+CcsHrevUyXwpM+oNCNdc410BJ5pSTCpIJKCJHBsh9d+/uY/fufhYvngVA2AhzVvtZnNV+Fp/Y8AmGJ4e5f//9bNy7kTu67uAHm39ASA+xbt46Llok3curZq8q614eGhpiYGCAZ555Ju9eVgBxuhU8jocYwpeTSo4Rq7a4+1RNPZBHYrVimiZPP/00Q0NDrFmzhqampmm3+WIyhFu32vT1kU8iUXF5UAzYpPtRBtBPTDgl6Fpbm1Al3pSArkWWe0P/yOOhb3OSdR2XZb9OGEcdXoKfygOPelxkULgNlBPE1rEsvWTgvJQWKRaiDmqTkyl6ew8Ri9UwZ87sqp5lp8JLufjA0oDEMNQko6NEw+UEZ5dl/LyxnnZRMlBQmypbxxRFrCFY4ov/fv79qGRS+87N9JQ2w9BIJOLU1iZoaGhg//7d1NTUMDmZ9tRdjscTxOMxQiH/SbI0S+jfX4ssN5mfo6v+Ps6aeDsXRP8K21KLDfn+yUlZLRRELs5Wgjgn+xpAVtOZqvtWun8VK1ddG7at5VUA3CbveWWA6QaFkvUuHaOpytnJescqQ1yNJ5X67XXp+4FC+S6643G1/LWXlVMKSx26z0NK6bif9Ucf7coDwkJrjDVyxbIruGLZFTJ2fbgrzx5+/fGv8/mHPk9TrIkLFlyQjz+cXz8/v384HGb27NnMnj07715W8jZ79uyZtnv5ZYbw6NtxCwiPlrkB4VTduH42NjbGpk2biMfjnH322TMWK/FiMoQPPSRw64UpU7pxblNyNAMDg4yOjtDaOpvGxloP+LJtmAz1coP+Ng5qf+KS7FdYK96FcA2sQSoHKFPARw2o5QCNymY1TW+lAmWRCExOTg0QjY6OMjTUS2PjLBoa6vOMQ5CJUE1uQauCqIxtUOX37JzMjsPSyX81bFvPxxs63zum+ilBx1RX/sFBXeFEHqRc3dGxYPdJAoXqWxdCo6amNlfDVtZdnpxMMTo6Sn+/krZJ5KRtYrjnzEo1upVNMsZNkU9yILqVV45/nNP0V2O7NPl0HdauXZV/Xpy23ZnllutcdcJhjUxmaotR03QWIlMhlfyEqyVoC3YDZCyll2Fzm5sVlmOHBICqNnTQmstuk+15QaHymviZYgnLZTnLsnnO5717+zl8eJh58xrL9kXTNJY0LWFJ0xLeueqdeffy3XvvZuPejfzdH/8OW9gsa1omweGiizi341xqI7X5/ZV7uaOjA9u2GR0dZXBwkIMHD07JvXy8JJW8XLruz8h0XZ/xzN2DBw+yY8cOFi1axNKlS2c0JvLFYgi3brXp6XFiA91uyEL3pVrlJpOjgEZ7ewexWLiIiTuoPcZvjbdiY/GmzO+ZLzag6eQBYTnZC7cpUKTYL8fVWv66q0FaAijyGcdSMifYxOttT9Df308yOcacOfOIxdwsZ1DwII9bakKQVQtACAt/8KVRrsaxdPUrhlZNLm4WQ0fTrCKAH9T8gGzwhJIpHbKqYwRsLeB2U3lGnBgzkM9uPB4lHpfJKaZpMzmppG36EEIQjcbywthChEom+Cgb0Q7zP/b7MbUJ3pj9D+brp+V0LCUzlc1K9nd8PFlmbHKzXRJIqbhUJecCwSvKyLAPIzduVH+jpyNcLccDxY6XcgH7tSmwbQu3yH658y0le6Tut21TlCRTyKYr2ZtCN7lM0JPXXi541YLW5uGHX+Caa9YEuBKOud3Ln9zwSYYmh7h/n3Qv3951O9/f/H3Ceph1bevy7OFps0/zuJcbGxtpbGyks7Mz714eHBwM7F4+1l3GQoiXGcJjxY6WyxhmDmRZlsXOnTvp6elh9erVzJrlT+VPx14s2ZlHH/WydU6Mndedq+uQSk2STE4QDhu0tfmXoNts/Ji7Qn/PPHEG11j/TULM82wTNHbPDeTU8WWSROV4Q7d4rmlqeXAkJ47qnj3LMunu7kYIO6cvODW2WU6YtoetkMyKyLmw7HwCQSkwErzcmJZnD0EJJttTjh0Ef4Yv6Gs8ndf9KA0VHqse13jZLT8LhbzJKZlMhmQyxcTEBAMDg4TDIWpqJHMopW10z7kf1nfyf9qHMUSUt5vfp0VbgIVy/6u4OMmG7dz5DCeddJJvP0otYJSHQj1jSsRajQflAZNyhU5vgVxNSIKMfbTyi8OpScrYebdzOKyXyQgu5wWQCV/ptNfFXVh3Wp2bZBL1XMyl+k0J5mv5ecC2Bc8+201//yizZlWvWqGsKdbElcuv5MrlVyKEYNfwrrx7+WuPfY1/euifaI41O+7lRRfRUdeR37/QvZxKpfLZy3v27EHXdU/t5Wg0ety4jF+OIfwzs5kAhMlkkk2bNmEYBhs2bCAeL59NOlV7MWoZ9/YKDh0C92AnGQ4by3JeaF2H4eFRBgb6iESiuUoO3jg9k0luDb+TZ4ybWG2+k0vMfyFihHFf/SC6eTKzspgJ03UIosrjlzigBuNqK3Ok05McPtxNIhFnzpwWhChe9QZ19RmGnQfacoK1fa+FilEqBH9+EjVBTcZqSdeySqhRjIwQlRMtZNxh8ffKBekfuyjy/1ZT+1a1622jensxgKQ6bqVz1TSIRiNEoxGgAcuymZycJJVKMTAwgGkqaZsoNTVxuiIPcmvkn5llLeFa619IWI1YBSBFsYSVFg2l+lYIqPR8mTvnvBTYdVzPTpsyc3jqgFCVNAz2Lglf2RrlSXD3LQhAlO8iRKNGketcXZfS/ZZ9dkoZSvMDt/JdUTGPOqoOtvu6m6adXyiCxiOP7OLyy1dXPIcgpmkaS5uWsrRpKX+z6m/IWlme6H6Cu/dI9/IH/vgBbGGzvHl5nj08p+Mcj3tZlntMlHUvZzIZxsfHj+nay8lk8mWG8M/Npis909PTw7Zt22hvb2fFihVHdNXzYriMn3qq2C1sGIJMxn2egp6eXsbHk8ydO49UKoVlmTntQbnFCPu5KfIWerQtADxv3IpFhqXiUhZpFxAR9bnSbqUHVqXl5ncJHFax8uBeOCk6blbpDguF/HX9Cm1sbJT+/n6amppoaWkoA2RL98spaWYjhHQJOfFK5a9FYabwdB4NJzGoMAbTCRNw4g+L40ZLgQh5z0qXA5THrj5+UJ37TMceBgWlhaLPwcxh1qqdAw1Dp6YmQU1NAsNoIpvNkkwmmZiY4CHrv9ne8SvmDq7mCuvTRON1UnLTxyQggssvf23pXpY5rUJWy21O/J3TjgMQRe74GuFwtSyd9/iV6jTLspn+CSfOYtCdKBLc9Z1OW7lYXCd7utIzo5JiDEPDyxD6b+/Wj1Qua/c+yvWursHTTx/i/PNXUF8/8/FuYSPM+vb1rG9fz6fO/hSDqcF89vLvX/g939v0PcJ6mLPazspnL582+zR0TRUn8Hcvb9++nX379rFr1y5P7eXpZi/PlGUyGTKZzMuVSo4FOx7K19m2zXPPPceBAwc4+eSTmTt37hHondeOdlKJbQt27PBLMnAYI9OUkjJCiHwJusnJSdySKXv0e/hd+O1ERC1vzfyRrDbOLv1OuvQ72Kr/F7oIMV9sYIl9KZ3aK2gRK9AKwJCKT/MbRCULqSaqIAkcen4wlZOY84sQsq1wWLqj/eLphBAMDPQzNjaeq8Ecq0IwWwkIk8vsFPmJtNxkW3QGemGQ/dTZQdWvshImHle85mERlVutlFVy871Y478/QxNsX3nfgiUL+Ry5ouvSEZp2Jw6p0AENTTOora/lT40/ZnvkBk4YfC3rk3/FeCrFUN8Y0ag7OSXqiv+VgOq+++7j0ksvLXns0v2qppKIAxAVsycB4lTAtGOqEopte+s/yz/LC88r03Uj57YMIjPkmOMel7G2lZJb5EJNzi+m6WXKy70XMp5Qd8nUOKysfBedtizL5k9/6uLSS08OfiJTtOZ4M1ctv4qrll+FEIIXhl9g4x7pXv63R/+Nzz34OeleXngBFy+8mAsXXujrXt6xYwerV69G07SK7uUXwyYmJgBeBoR/bjYVQDg5OcnmzZuxLIv169cftTiDo80QPvMMpNNeUKSEcAFSKVmCLpGoZdYspwSd0iG0heBR4+vcF/oMi+wLuSL7Y+K0gIBF9oVczJcY1nazO3QnL3AH9xv/zMbQp6gX81livYJO+1IWcx4REiXZL2+8YbDsT7fbqZS8ixCS1SpMlLBti+7ubizLoqOjg1gsVJGZUwkcKs7Kr56qrOxQvh1vm+7YzdKJJEFMucmrqaThZhFlLJtyiTmJPs5kV+zedrvtp7PGmelklKDtVZtpXAz+nElegT51bDnhK3d9cf+EAMtI88vsP3CwdhOvyHyE1bErISa3kcLYk7ns5RGAfNUUmZxiMDY26ttPeZ/Kn9RUYvFU/Kt6/sNhmbk7FaZQ1SiWgEnuX8pFXO4cQiE5Xk1tSNVy7427bnLxubjHFz9mvWTrrvfH0Xx1mHYVX6xYyk2b9nPuuUtztbePjmmaxrKmZSxrWsa7Vr+LrJXl8cOP57OX33fn+xAIVjSvcNzL888hEUpg2zahUIhoNFrSvfzMM8+QSCSOmDh2ORsfHwd4OYbwz82qBVn9/f1s3bqV1tZWTjzxxKMa/yCFU4+ckHahbdqErwvXtgXDw8MMDalybA2e30MhjdHJCX4bfivPGr9jvfn3nGv+I7qPH6uJxTSZ72KN/jekzRT7tAfYpd/JLv0ONoV+jCEiLLDPoVN7BUvsS2kWS/L7+kmkBJmo1OBdTt5Fxs2JXBayLHeVTmfo7j5MLBZj7ty5hEJ6WUCgHg2lW1eqTrE3WSfYBOmNzwriJi+dqKX2V/FK1TL0DtvqBO+7TemvSaCoJnCb0gK+R8f8jltdX6phdNW/glBIZr4qvUcZb1fQcplbMM4Av+RDDMX2cVXyn1muneP5PRwOEw6Hqa+vQwhBOp0mlUoxNjZGf/8AkUiYuro6kskksVjMM5ZI5q3y+VTDZjvg39k+mxX5aigqAzkoOFRAXGkzyjASu+rnVr7bGlA9IpSuWx2wcyygXRTjLUNt3BdToGl64DnHHU8o//ZeH9NU76ogmzX505/2cOGFK6s+l5mysBFmQ8cGNnRs4B/P/kcGUgPSvbxnI7e+cCvf3fTdvHt5kbWIuv46zmg7o6J7eXBwkGeffZZ0On3U3MvJZJJEInHMJ75UY8ctIDwWXcZCCHbt2sXu3bs54YQT6OjoqLjPTJsCn0cDEI6PC/bu9U7uMibQpre3m3R6kra2dqJR74o0FBIMaC9wW9tfktJ7eV3mFyy3Ly95HBWfaFkasVCMTvNilmmXYGW/zCC7cuDwLu4NfYa7tY/TZHfSab+CpfalLORsdOE9ftAJvVJGrVcOQmNiYpy+vh4aGqSavzvhovB81AThleMprkRQ6K6Wruxg/Vf7SbAabB8/0zS5v8NQlY/3K94/CMMnJy13VrNlGTnZJ4ehUY+0+/UvjJ/yC8KfqlWTsepvbrbG3Senb0ouxbLsvMtXZrVruXe4ug70sYtf6B/EiOi8Lfs9WrVlZbfXNI1YLEYsFqOpqQnLskilUqxYcSIDA/3YtlfaJhoNliFfrevYnTmvTOoLOnXPJZNuAFqgdpUUjK5PnWJWQHIqz5Hj1tdy74GVuyZqbCgum6ekYwozxEuZiic0TQshJKumytxpmsPO27bNk0/u5ZxzlhIOHxtTf0u8hauXX83Vy6+W7uWhF7h7793cvftufn3o1/zPL/+HlngLFyxw3Mvtde35/aeSvTxTNj4+Tk1NzTERzzhTdmw8Fce4hUKhioAwk8mwdetWkskk69ato75+6in+0zG3kHYodGRv71NPUZSkkclkOHz4MIZh0N4+H8Pw9kHTBDvEzdzS9E4S5hzelrmPFrG85DEKhaeF0FwAR6OZpTRbS1lrvYcM4+zV76dL/yPPG7/nydD3CYk4C+3zWGK/gk77FTSKhYEGWV33ytX4mTNBiJzA9ihz5syjri6Ri99xsqEVIFAxgUGt0F0dNIPS2V+jfK3XYH0oTE6pZm4sX1GlvBUepzrXsciD7+pIeuegqrase9B3i327++hkirrBjQbYeRevn6nr6TevVDvXdInHuDH8MRLZWVyf/hYt4dlkqrz4hmFQW1vLHXfcwbXXXk0qJdlDKW0zQDQaJhKJkkjEiUajJSVywElQqfS8eF3f7hg6LxBTrmBwyt75MYcSADrvmgzvqP49KK52Uj0otG0IhzWXW1j2IxLRyWa97Uk5GbUgEhU9DMpk7KGsC63iHt0Zx8r1PTmZYdOmfZx5ZmfV53GkTdM0ljUvY1nzMt628m3c/9D91KyoYeO+jWzcs5H3PvteBIKVLSvz7uWzO86mJlyT379c9vJMu5dfapIz8DIgDGSVGMKhoSG2bNlCQ0MD69evn9GKJtWa45I78oklTz/tnbCSyXF6evpoaqqloaG5yLVkY/Jg6PM8bHyFJenXsubAP9HSXhoMFjJLMh5HBZ0XD8wRallmv5pl9qsxEHRbz9Cl38Uu/U7+GPoYtvb3tNgrJDjkYubb6zHwrxATbBLTsG2T7u4eTNOko6OdcDiSk84QuaQKIFcdpXIcofdzKXd1NUxFKCQCyeyU6VVRH6oFhFPNFs33YMq7azlgPhU3b/n+lH69nAUABAewTmygt6PVZCo/Zf+OjTX/xuyJk7hO/ypRUTMtZlglCcViUaLRKI2NjViWRTabZmJigsHBQbJZk1gsmk9OiUQinjFBZZAXMmHec1RhAt6wAqcfWt61WgjMVSk5la2skkakAoAb2HtrJgc1VRVEsZ2WZVUN0oWQYt/uWsSaBtlsBl0P5c7L2dYxLe9Kr3RM+bvcyHFDO8+i+7rt3t1/TAJCt9m2TSwc45z553DO/HP49NmfZiA1wH377mPj3o3c/PzNfOep7xAxIqxvW5/XPjyl9ZSq3MtKHLulpaVq97IChC8zhMeAHQsuYyEEe/fu5fnnn2fZsmUsXLjwRX84ZI3dI59Ysm+foK9PFbUXDA4OMj4+wty5s6mtrclpxjmjW4oBbom8nd3aPVyQ/QInj/8NQ/ZgWXDhuAqFS2BaJSmUBliGIbBMjVZOoNU6gXXWB5hkhD36vXTpd7Hd+DWPhb5FRNSyyL6AJfYldFqXUEcboMBc+UkMJBva23uIUChCR4cjsC331/KuqmpcvIoRkS7E4m2qeb40LVgll3Lmf52riQ2bOqBTbGi1+oOFbRSWUqzGgkzG5fcPHj/oBo/uWMtKmcoCwd3mt3mq/hesnLiM1+gfx8gN7fIZnFpSzqpVp+Vdneo8DMPAMGLEYtL1ls2apFIpkskUIyPDaJrmSU5ROnnlwJhkwdwPmV9MskYoZJRsw6k2It3uyjnivvwq87i6EnNOX1St4GrHVqVpaFlOzWVVztOdcKJcyO4sY5XYEgTIqnhCUKymns+yzmSsfMhCd7d/stCxZH6i1C3xFl634nW8bsXrEELw/NDz3L3nbu7Zdw//+ui/8pkHP8Os+CzpXl50MRcuuJC2urb8/uXcy3v37s27l1X95VisfPLNywzhn6kZhkE6nfZ8Z5om27ZtY2RkhDVr1tDU1PQi9a7Yjka1kqeecla+MqPWpK1tvosddRT0u7VN3BR5MxnGuS57C4vsC0lqE2WBghKrlgM9eRcxSMZADq7FYKWwMoqyGA2stK9kpX0lwhT0G1t5njvpMv7IH0IfRoRtWu2TWMYlLM6+ghqWl+3f+Pg4fX19NDXV09jYiCoZZ9syeF3tq/oig+MrT8wqAFxWIyk+j2oAVjVg1N9Kge7gCCmou7jUdZEl1QIfzsemt39QwfAyLUxjXxVqoJdkWU0y/CH8ZXYk7mDd2F9xnvFXLjkm1fepnYOKQ5MSNsql6zB5AOFwiHC4jvr6OmTd5ckcOBylr6+PaDSaB4fRaLjsvXDLPPmZEowudg/LfinQFAo5bmUJrhSzp+Uy9aeepCQZ5+qkvdxub9OESESQzXoTSWRGdCgfQ5j/RTjyMUEWFxJ8Kze5lUtikYuCUMjANC3GxiYZGUnS0HDs1uCtVLZO0zSWNy9nefNy/vb0vyVjZXjs0GNs3LuRu/fezQ133IBAcELLCR73ciKcyO9f6F4eGxtjYGCAQ4cO8eyzz+bdy01NMia8sD8qhvClZC8DwgBWyLiNjY2xadMm4vE4GzZsIBLxdzu+WHakq5UIIdi5UyOTkRU4otEo7e0dOSDq3g626T/jjvAHmCVO4M2ZO2hgAaCy70pltKpi9/4gypFa8A7uQSqYAGhozOVUWq1T2GB9hBRD7NY30mXcxSb9Zzwc/Q+is+uZl1zPSfrldNoXU8NsdXQGB4cYGRmhtbWVxsaanFyGnWMx/LX+VL9CIcoKWkv3TrnzCDa5TzeRBEqzsNVJiUzPXVyNzI2fVV+GzM/KM3SVLFhCQvXtTzLK/1ofYjD2ApenP8cJxiWe3xUzqDLDqz3G008/zcqVK3JtaXlgUhq8Qzwey8uamKZFKiUrp4yO9qLrNpFILA8Qw2E1wQrPv+VBo/POq3eleKzzsnogwaB6FiRzFlR+pvi+Ta28nTTD0Hxjk2VspJVfABT+VqovblN9ks+aHCdMU4JCJ3ZZfr9v3wCnnHLsAsJqy9ZFjIjjXj5Hupfv3XcvG/ds5LfP/ZZvP/VtIkaEDe0buGjhRVy48MIi93JDQwMNDQ159/Lw8DCDg4M899xzefeyYRiMjY2xfv16JiYmZkyD8Dvf+Q5f+cpXOHz4MCeddBJf//rXOffcc0tuf9999/HhD3+Y7du309bWxkc/+lHe/e53T7sfxy0gfLFcxgcOHGDnzp0sXryYJUuWvOguYj870gzh4cPQ1zfK0FAfDQ3NNDU15CYMZxuLDHfpH+VJ4wecZv8Fr8h8nRAOBV9uQFUSJNK14+c+kv+qGD0VuF4sjh3M4jRxkriGk62rsbKCw9omdpi/Z3fobn4ffj9ogrn2KjqtS2jsO5368eUsWNCWixdU4E4LJPysmM5SYEvXBdlsuRYqA8LCIPupTF4q+7Xc75We/WrYzOLgfcBHm7Bam+kqJVOxYNfBu4H30hbf82HtED8T7yMdGeUNk//BAlaV60HOZTv1a2lZWtVsbShkUFdXQ12dqrucZnIyyfj4OAMDA4TD4RyAlMkpQW61iuXTdQvTtH374x/qIfKxgKATDjuZuKWPVfodcNj7yp1Wz7B8Fi3Ia6EWN67G7cJ3Vo515d3VCiS7AauKs3TiC+X3Bw4Mccop8yv2/cWySgxhJWuJt3DNimu4ZsU1CCF4bvC5fO3lLz/yZT79wKeZFZ/FhQsvzDOI82rn5fcPh8O0trbS2toKSImZoaEh7rzzTj7+8Y8TCoVYuXIloVCI/fv3M3/+1K/lL3/5Sz74wQ/yne98h7PPPpvvf//7vOpVr2LHjh0sWLCgaPvdu3fz6le/mne+85387Gc/46GHHuI973kPra2tXHPNNVPuB4AmpjvivkgmhCAzvWj5wHbw4EH2799PTU0Nvb29nHbaacyaNeuoHHsq9tBDD7Fs2TJmz55deeMqzbIsfvWrPdxxh0Fb22wikXgRMzehH+LG0Js5rD3FK62vcarpdmNJS6fTHDp0iM5Ob9avqmxRCVjJY8odw2HJhlX3JHtdX4UAbWxsjLGxMRrawuzWN/K8didd+t1kjTHioplO+yI6rUvotC+iRm/MA5pq+iCzX53qKnJys8uCoMnJSXp6eli4cGHJbZQmovNZZhpWMqVlJuNQy0vuFF4/P3Pfo2Dm7ePAwCBg0dLSUroXeaZIfvYCSpG7Fv4AwetSVd+5Tf4uhIV7YSIBnhuMeBNJ1P1TfZOi4E7ygx/xoWr+mqbF/v37WbRokSfRQNOcczggnubG6EeJUMMbMv9GM8WThmzTAR2lNC7LWTKZIpFwaq7LsAdREO9XnalrZ1k2qdQk6bTMXrZtm2g0yuTkJO3tbYTD4aIFh6aJfMKEXAj63VeNINnEtg2RiOYJ7yixZclf5CK4fJKJcrNLl6/3uhXWeQb1zENzc1NOoUEULO5KJwxKeRvhAo1uvUMjF7soP7e1NfBXf1WagXqxrbu7m4MHD3LGGWfMeNtpM81jhx/LA8TNPZsRCE5sOZGLFl3Eazpfw9nzzy65fyaT4YEHHuB73/semzZtYmBggOXLl3PppZdy6aWXcv7551flSl63bh2nn3463/3ud/PfnXDCCVx11VV86UtfKtr+H/7hH7j55pvZuXNn/rt3v/vdbNmyhUceeSTwcf3suGUIj6aZpsnoqAzEPfvssysGm77YdqQYwlQqxaZNm9izp4X29oVEo3IF5x6492sP8tvwW9ExuN68k3ZxJrYPy+fEyjlATrmIg3S9UPbDW40kiDmsix9bp9x8NbSyeOy11PWv5ZzaL5CetYddxt3s0v/I9shv0IROmziDpeIiFpsXM4eT0Qjm6hBCyvZomkpE8QaelzrvchO7BNPe34MyL+Pj4xhGiFgsWpFVC8K8VctKuuVXJChV99ZdOswt6+Iwio70S+G5+7kUnba8/5b63fu3ugfuPpUyeT6OK9RPYkYlbrjLkLljxiSolMzOdnsjt8U+R+PkQt6if4MEjSWP7e1H9bFzjz76Jy688ML8ZxW3Ox1T2b4AtbUJ6utraW6WdZfHxyeYnJzk0CEpW6XYw5qaWN5lLZk5DVWHuPB+B60Mo+J9lU6gbLMwi7l8WzLJpHzCh3R72vgJW/u9x44It5bTLPQuWpQ3wv+Z0zxg3R3raNsWhhHKqTRAT88YpmkecWmyqZplWUesoEM0FOXc+edy7vxz+cw5n6E/2S/dy3s38t/b/pvbd93Ok3/5ZN6dXGiRSISLL76Y2267jRNOOIHPfOYz3HPPPdx55528//3vZ//+/Tz00EOsXbu2Yl8ymQxPPvkkH/vYxzzfX3rppTz88MO++zzyyCNFJSVf+cpX8qMf/YhsNjstlZNj82k4hqy7u5vnnnsOXdc588wzjwtV8iORZTwwMMDmzZtzdXmXkU7LQPdwWLo4BfCk8R02hj5Gh1jPlZn/pt6YXTIgqLCMk5z8RWC3r6qC4NQoVqxWNQkPkk0oXYnEZnR0kP7+IWbPbqW2tg7EXDrMszifTzLGYbqMu9kduotHtG9zX/RfqBGz6bQuYol9EYvs84nREOBcyMVKSo3F8m7h8nVV/dzWlUph2bagt7eHycnJ3ARJXog4FosTChUPzJWSLcqBDwX4nMWAcLEXCvDJ2C/bLg2Og8XETd8BUuzyrdb9Xtye93cVK6uyZB2WWFXa0A14zPglG0PfZOH4WVwb/iK6Ha3Ql0I3dHUueMVWKVOVe6ZrMj7YDXg1IpEItbUwNjZKR8cCJidTZDIphocH6e3NEotFicXiJBLxnLSNkqIp7E/w/nmzn4UnzjCoyczl0qBQMXp+l13K6Xhdx+6kEuWydvqk5V3mfixtoXaqGlfU8yYBoJG7ZoIDB4ZZtOjY9HRN12Vcjc1KzOL1K1/PgbEDjGZGectJbynyaPnZxMQEs2fPprGxkauvvpqrr74agF27dgUuStHf349lWcyZM8fz/Zw5c+ju7vbdp7u723d70zTp7+9n3rx5vvsFseMWEB7p2D3btnn22Wc5ePAgnZ2d7N+//7gAgzCzSSVCCHbv3s2uXbs44YQTaG5uZ2TEyewzTciS4g/h97Ld+D/Wmh/gIvsL6FqorFyIG1BIod/qwJwKlHfvY1l6WTmaQivHchmGIJvNMDRk0t7e7qtwX8c8VtlvYVXmzZhikgP643Tpd7NLv5ttof9DEwYdYi1LrIvptC+hVaz0HWgU4FCMoa679QsL3WalgZhkSYu/LzfBZbMm3d3dGIZOe7usAGBZacbHVaZoP5FIJFelIkE0GsFdY7jQlMs5HHbYTzXxK9DnAD7vNfCr1HIsRLRMtwvVaAkWbqfrYGNxU+pL7Kz/Pesyb+U842/QbLfQspZ7H/UC8Gp5Yj1lqcVg5duEELS0NHu+k5ItWtXAstDUgkACJS8YAunKDYViCCErp8i6y1LaRtZdltI2iUScRCKaH5clqK6uX97MZSfOsJTWaak2Sl0TqRZQup3CBBX3/VJC0yoRxkmmE74gtHih4ZWs0XXnWIahsX//wDELCKtNKpmOCSH40iNf4st/+jL/cNY/8In1nwj0jiSTSV/X8JIlS3y2Lm/F2pvlY7T9tvf7vlo7bgEhVL/iDWqpVIotW7ZgWRYbNmzANE327Nkz48c5UjZTLmO3tM6ZZ55JQ0MDO3Y4GX6hEPRk9nBj5I0MaS9wRea/ONF+Q47RsDFNLe/OLQQ2zrtu59yc1T3IQkj1/8IEjFJyNH4mY7u8fdI0Gd/Y29uPEDB//nx0vfRKVVUjiYZiLDTPZqF9NhfyaUbYT5exkV363TwU+hr3av9MnWjLgcOLWWSfS4Sa/HHd/XXKt2m5QdyJM8ydfYlrUvpd8JPKmJycpLu7m5qaWmbNasntb2MYMZqbY0BTLlM0RSqVZHS0BzkZx6itlaXOQqGQB+Qpxi+bLWZFKo1VhdvPzKs9/YVjNckxpc0dq1hs3nvjbJchyQ3ax9lf+zgXjn2ItYZf0LhKfnAeIgk0vLFnoBEO6xUr8Chbt26d57Pj7p7+uOuwc1Z+kaPrNqrmsNucusv12LYgnZ4klZpkZGSU/v404XCIeDxBTU2ccDjs0fELYoU1lzWNPGuo3PiVrTgOVS5yqzu+Gwi4F17SlexULfEDoX73pLDrElzKhdfhwyMBzuvFsaPFEAoh+PQDn+Y/nvgPPnfO5/jQmR8KvO/ExAR1dXXTOv6sWbMwDKOIDezt7S1iAZXNnTvXd/tQKFQ23jqIHdeA8EhYX18fW7duZc6cOZxwwgkYhsHExATmdDU8jqLNBEM4Pj7Opk2biMViHmmdfftAAhXBjuwd3Bz5SxKihesz9zFbnAyQj4VT5j936HlR66lM2nJff+YlCCiUDKCKY1TB6lKstLu7h3g8TiaTLgsGpcSMw764rYH5rLbexmrrbZhMsl//E7v0u+nSN7I59D8YIsJ8+yyWiItZYl9IE0s97KFayUvZEC3fZ288nfd8yp1vIRs6OjrGwEA/LS0t+TKLShDb3b7MFK2loaEOsJmcTDM+nmR4eIR0updoNEI8nsi58qI5pm/6mb1ODejpA49jwcqxqqVsnH5+Lt5HMt7L65JfZXl4feD32lvzWQFGd8ykllsAab7Mmmma3HnnXVx11ZVFbUu5p5lYjOsYhgU5DcEg7J6uO8LXasGSySQZH5+gr28My7KIxeIuaZvKU5xiBN1AVFUokddbo1KVEunKdRhuwyi85pWOL8N8vMyQd18pMu0whe57ILOLi58Nx8WsfhP5e97Tc+wCwqPBENrC5v9t/H/8cMsP+dcL/5V3r65OtmUmhKkjkQhnnHEGd911V97lDHDXXXdx5ZXF7x7A+vXrueWWWzzf3XnnnaxZs2baVdJeBoQ5E0LwwgsvsGfPHk488cS8+wxw6TjZx4XbeLoMYXd3N9u2bWPhwoUsW7bMQ0MfPAiWbfOg/iXuC3+BJfaruDz7I2Ku4HbD8GYJ27ZWxBKGQmpisbHtqT2G5eajcqBQMW5Olq/8PDw8wtDQILNmzSIcDtPT01OyfclkuI9Xui8hYiy2L2CxfQHweYa03TlweDf3Gl/k7tBnaLAXsMS+mCX2xSyw1xPTEhROCJal5a6Z0jN0YoQqTaYO0yDjQcfGxpg7d25uYnWfk8jXPVUuNHDaj0SiNDdHkZNxlmQymdOZc1x5tbVRotFE2Rq35foI/pm4U7GZ8CDMBENYro3CJBOAXnbxv9r7EJrNm1LfY662nGo0GUvFwrkrCBUCFiFUWUjFTJc7n6kDQrVoUNU6VDKHo5MX3EIhg1ColpqaGoQQpNNpkskU4+MTDAwM5thDJYwdwzD82y8lei1NuBI8NEpVMHJqK8tY0HKC4oVmmnZuseeNASzqSV5CRsuxwE4iUun7oXn+lmDLYHQ0zfBwksbGY0+P0LbtI5rwYtkWH7jrA/xs+8/4xiXf4O2nvr3qNmZKh/DDH/4w119/PWvWrGH9+vX84Ac/YN++fXldwY9//OMcPHiQ//7v/wZkRvG3vvUtPvzhD/POd76TRx55hB/96Ef84he/mHZfjmtAOFMu43Q6zdatW0mlUpx11llFNLCiro9mXMN0bKpJJbZt8/zzz7N//35OPfXUIsratgV7e0a4KfzXPK/dxjnmpzjb+pgnq1YKxZZndhRQ03WbdFrKxlQzESjR5Uq3wg8Uqpi2UEjLy5EIIejt7SOVStHW1kY0GiOdniwLApSr2HtewcpiNYnFrLHewZniHaSzE+zVH6ZLv5sXjLt4KvQTQiLGQrGBTmRySqNY6NpbTgQqPk/K9FTWP1RJC93dPViWqrsczklVKHZQyqMEZdXC4RD19apKhZyMU6kUQ0MjZDL9+SoVbvawUh+VzcxrNjPhJDPhyi4X+1lYa/lwfCuPxb9BPNXCm7VvUpcTRZ8JtlNlM/s9pw4ok0DtxBNPzMccqmxXtY1tV5eA4TDHKpveLXbtJBdNLQZKyzNk0WiEaDRCU1MDliWYnJThDgMDAzn2MJbLXk7kpG2cVpTQvWTl/dg2eW1kbJ+/jI/c32HtAp+BK5GkEvBUz5Fy/arElFLvjBODqJJnnAXKvn39NDb6yxa9mGZZ1hEr+JC1srzrD+/ipudu4vuXfZ83nvjGqtsQQpSMIazWrrvuOgYGBvinf/onDh8+zMknn8xtt92WlxY7fPgw+6RrDoDFixdz22238aEPfYhvf/vbtLW18Y1vfGPaGoRwnAPCmbChoSE2b95MU1MTq1ev9l2VuAHhdCnZo2GGYZAtr25cZOl0mi1btpDJZDjrrLN8Vz737tjOf2pvJKn1c232RpZYlxVtU8pdqJgtCaRURqnKmgsmFSHbd+L+glRgKASFqpKIqouczZocOnQITdOYP78jp/2l+uY/2bldxQW9w09eopRpmiBMgqX2JSy1L+EV5hcZ0J5nl76RLv1u7g59jru0T9FsL2GJLcHhXG1Nfn8Zt6cC/Z1EH9suBi3pdJbu7oNEIhHa2ztyEzuuyUuQzVY3IbtdZNKVF6OmJoZtN2Calos9lJJNKjFF1bj1MzdbNt0AafWMTddmgiEst7+7/U38lgcXfp321Cpez78SFc6EI6VjZqIvlV3xki0MuYCKl23VdS3nObHLABe3eoB3YaYWKApsKj3Aqd9yHcPwup0NQ6OmJkFNTQIhyCenyEXLMLqu59jDBPF4LMfu6Tl3b7lEEDvvZnZ0HkEqFijNwervk0owUQxt+TFRxXI7YJgyclfuxDWQVWTCYYMDB4Y49dRjDxAeqRjCtJnmr277K27vup2fvuanXLnc3y0bxMbHx6cdQ6jsPe95D+95z3t8f/vpT39a9N3555/PU089NSPHdtufLSAUQrBnzx5eeOEFli9fzoIFC0pOQLqu51ZjR7Y+8ExZtS7j4eFhNm/eTGNjI6effrovKP7Nzt/wjtveRT2LeVv6IVq0Th/JVlFyIBQCIhEbpSUu33Udr8BvZSvcNgiYlKDQJhQSpNMOgEylknR391BXl6ClpQVNczOd8nyKj186Vq8attpX+xCNWWI5s6zlrLPejWmM0yXuZ5e+kWeMW3g89EPC4QSt81czql9Op30RLfq8PACU7TkuZQWWJyaSHDp0mMbGOpqampHZpv79qWYS89tWuSNDIaOIPZQ1bkc8NW4L2UP1r1ONZurop9Q9rNaOfKKzhkDwYPgHPJL4KR2Hz+WNDV9E9xmeg3pFygOaynGe2WyWHTt2snjxotxxneugQhRs27nfjudE1eGmCAS6ze3iNE2RX8xMD8BryMxr/0z+SCRMJBKmoaEey3KSU4aHh+jrM3PPZCznQjXKjkvumD2Z3OZQ9KWygIOYZYmcWzvIdZCMpQTVRtnnQt4rZ3yTSgY6hw8PV93Ho2FHwhuXyqZ46y1v5f799/O/V/wvl3UWExrV2EzEEB5r9mcJCLPZLE8//TQjIyOsXbuWxsbGivuEQqHjBhAGTSoRQnDgwAGeeeYZli5dmquO4B2ITNvkU/d+iq8/9nXW11zHBePfRoha8IlncjQBi83N7Mnt1AClJoHKk5xffd7KbisnESObddxWIyMjDA4O0tLSQnNzfVHmZakkAD9XsbKgbrSgLE+UWpbbl7HcvgxhCvq0nbyg/ZEdxu3cGf4kQrNotVfQGbqIJdaFtIs1hPVwvn3LEgwPDzM8PMCcOa3U19eVqKMaXKrHe77ez6VkPxR7KGvcNpHNmnmmZnR0FE3T8m682tpYvq3p2sxkB88UQ1j6GTdJ82vz4+xNPMg5qb+lbfg89Ab/obmS/qM8Fsjs/XKgonw7QRdqCqDKWGAnSUyJa5cah7wAU3Nl1lY+ZnFfHUZPhstUHvsMQ8vJ1sjklGzWIpWSjPa+fcPouiAadZJT/LQ4lYJCNmvlz8ERgp4asJXX0ijLuhaehxRx1is+o4W6jVK37tgUqJ5pYerxzDhv/N0beeLwE/z66l9zwYILptWechnPVC3jY8WOraegSpuKS2l0dJTNmzeTSCQ82bOV7EiIPR8pC8IQWpbFjh076Ovr4/TTT/dNV++d6OWtv3srD+1/iK9e/FUyD7yXSQGlCgZ6x35nta/rTmH1UMgBH4qlkJ/LswOlQEulOD95riKf1CKEzeBgL2Njk8ybN49YLF4iG7CYiSntKnYfszIgLKUXWGjuw2tozBYnMstayZw9r2He4mYORO/neXEPTxu/4dHQd4mKOhbZ59FpX0CneT6T/TJDfu7c9vx56rqVB8VO9nLlUoFBzMmsLG/hcIhwuJg9HB4eZmAgSzRqEI3GZ+B9q64yR+BWp9CmipErfMZTjPAL8/0M1LzAq8c/y3LzIg5zqGQ7Qa6vzJAt/5xKgOrPpgHEYnHOO+8813HdB3YzejIW2HurHICmQkKUG9Wd7eo2GUYyNYZQnq+daweCLjDdFg4bhMN1NDY2YJom2WyaiYkJRkdH6e+XWpxOcko05zJ3quComEKVSKJpem7xWB1LqDwsQZlg+Y4ITNMiEgmVJQJMU+Szp0HJ6wj27Ruis7O1qn4eaZtJl/FIeoTX3/R6dvTv4MbX3ciGjg3TbjOdTmOa5oy5jI8VO64BYTXmZsM6Ozvp7OysClAahnHcSM9UYghVCTpN09iwYYNvKb7HDj3Gm256E6Zt8oc3/YFVTefwtdu0kpmOflqD4AWD0pScCMiYFyWaWt71Wwq0+O+jKpjI46oKJqZp5vWbFi7sQNdDuUmqmAXySj9ogVm0ShO2HIQrt1O6LdmvGqOBE8XlLDdfizAFPdrT7NI3ssu4h9tDH4WwoKl1Octnv4IQl9AmVoMtM0iVzqGuixxoFlNiZuT5eKUvqrVC9tC2TVKpMcbGZDKAug9qMq52kpgphnAmrPAZH+Igvwp/gLQ+ynWT32KBvoq0KF+fPVgcYeUOV4rdTacn2bFjJ2eeuQZNE7n/yCWEeCsKyXjQckygU9PatiEUUoDNAW7yPutTutaF43jQ5C5/kzGAslJPDMuS9aVlcsokfX19aJrtAYhuaRvbtvMueeUKry4Mw87FJlZmpt0lLoOER6hr7L5XlmVx8ODgMQcIZ8plPJAa4HU3vo7dw7v53TW/Y828NZV3CmATExMALzOEx6NZlsX27dvp7+8vyYZVsuOJISzX1/7+frZs2cLcuXM54YQTfF+6H23+ER+660OsnrOa/736f2mva2fbNpEDZUq/rHwf1O9yQFPuIFlv2HEZO6CnXHvlGDUViK4GTsU6yu2dgPjJSakvmEjEaW1tzbur5aBaXCVDidsqXbByrmK3yYG89Oo+KDvo9EPPrZadayhBtYlphpDcocZccSpzrVNZm/pb9vQ+Q3/jU/Q1PskW4+c8qn2bmGik0z6fpeJCFpnnkaAl5+J2gLasH2znr2Glkneyf851m/ok7FgoFKKurp6amnqGhoaYnJxE13WGh4cLYg8T+RJm5Wwm3L3FoGn657lfbOXXoQ8SziZ4m/FjGrR216+VzmmmBPlLMWkCy8oyMjKQZ9ndrHfhNa9mWHQSnxxGTcUkyvewehBQeC3KS8iUa8fLhKp2QiGD2tpaamtr0XVBMplicnKSiYkJBgYGCIfDHmkbVYfYMDQ0zcCygr/wKlkFcGUGF5t870zPftmsdB2bZml3v1Ov2QGShw4NBe7f0bKZYAj7kn1c8Zsr6J7o5vdv+D2ntJ4yQ72TgFDTNBKJY0+yZzp2XAPCIAzf+Pg4mzdvJhwOl2TDgtjxBAj9qlIIIejq6qKrq6tIZ1HZpDnJB+/8ID/d+lPedfq7+MrFXyFiSJf6/v3gZsvc5scO+mnjKZbPNOXfcmJzym/5J3FUntCVC9QNMN19GxoaZWBggObmZhoaGnCAooasRVra1SmEdBUHL6tXqsYqHvAVxFSVEjfDIvskcm5w7/YTE+P09vbQ2tjB8tpTwfxLbNPisLaZXcZGuvR7uNn4HRgabWIVndaFLONcZnMqGjpCaNi2W/hWAVB5b/zckA4QD+YurmROtRNpbvV9bwkzFXsYL8keTiXT088KK8lM1dRE/KyxkVvDn6FhYhFvMb5F3HK7nSp3uHIcYbAbIQGPe9HjxOMJAXV10qVfufKHVmUShey/ArYqg1nXcWlgBrNCEOd8X94l7meSmfPeaHfsp3zG7Vxd5SiNjQ1Yls3kpExOGRgYwDTNXA3wGLFYnGg0TCgUqsK75Dz/3lrLheb9TpW5o0J1FSk75F38HouJJdNlCA+NHeLy31zOWGaM299wOytbVs5g75yEkiNdQvdo23ENCCvZ4cOHefrpp1mwYAHLli2b1gN2PAHCwr6apsnWrVsZGxtj3bp1+coUbts3so833fQmnu57mh+8+gf8xal/4fn98GFvlqHb/CddbzxQoatUMWnKSl3aIIyaAmCFjJYQNj09fYyNTeREmP1Xc5al5SYjkS+F53YZVxsgXopZCyIsrNhXlcUp2/NuowCsg38EQ0NDDA8P0do6x+PG0DFoF2fQbp7Befw/JrRedun30KXfw+OhH/Kg9jUSRgud9vksNs9noX02CRryx3XORZUhlMdT4Ftdm2pEk8tZ4QLA/be3hJmaiFN59lBOwrE8e3ikqpRMVR5FIHjA/DGPxL/PCvMVvMb4R0JECQrglLkFyf2sklyJ0p4Exdo72oDKampqOeOMM3LtVe5f0HekVOKRVHGwyWbVQkQy+JXjcf3PVz6rwRJMXHuVaEfHtk3fvhiG7pK2acY0TdLpFOPjSYaGhtB1nZoaJ/awEuulwLgyJaDv/k4lkrhNJcHJMBk7r5XobdtZlLpZ5omJY0+gejoM4d6RvVz+m8uxbIvb33A7S5qqry1cycbHx18GhMeL2bbNM888w6FDhzjttNOYPXv2tNs8ngChO6lkbGyMTZs2kUgkWL9+vW8SzT177uH6311PIpzgnuvv4fS5p3t+tyxBb6/z2T0ZyVWz96WQCWve+KRCYKfAhdcVVRjHVxkMStaxeKC2LJO+vkOYJnR0dFTUj5TuUz0Xb+jug4UQ1WlP+k1Q5UrLKQ1Bv8lSaZO5A8G9gMmmt7ePyckUbW0dRKPRsn2rEbNZJa7l1Oy1YKTZZz9Fl3Evu/R7eDp6I1pEp90+nU7rfDqt82kVK/Ml9RwG1nu/1TpLncP0M3IrAy5d10kkEnmXjZs9HBkZyWnMRXPsYbTqqimlTDJmU9gPk9vFl9lW/ztOG30jl4b+LsfKTgVcqiSNUhfaeVZUXxUL515ogAqNKG5neHiIrVu3cuGFFwTqUdBECMVClm5DuUPt/Hfy3gmXu9NtpS+eH5gq3X//jGg5vlglr5OnJ5pMmAqFaqmtrcstWqRY+8jIMOl0hmg0mi+tF416xdpLPQsy69gZPPzmIeVpkdfPv0KKu5yhuyqKpsGBAwPHFCCcKkP4wtALXPGbKwjrYW6/7nYW1B8ZjcWXouQMHOeA0A+dp1IpNm/ejBCCDRs2zJiP/3gChCqpRDGkixYtYunSpUXXSwjB1x/7Op+895NcsPAC/vuK/2ZWYlZRe4cOQToN7sG3MGZPmVyBqpg3Z1DyX8Ub6Lq7fqjXpVrOVafcmSqrUMUCggyI7+4+RCwWp719Nm79rXKmmBfJwGnouhSxnooWeTkQ5z4/lelX7tFyuwgNw3HhmmaW7u4eNE2CXkdUO1jfdBFigVjHAnMdF/APDIv9dGn3szt0H4+Ev8v9kX+j1p7DYvs8lljns9DaQJTirDpd1z2gXCYs4EpEqA4oOuxVcKRUyB6m05MkkxM59jCdq1AhRYgjkXCVIKww+aE6xJshyS/tD9Ed38zFEx/ljJBTUaDapAP3foUVeGSIgQRTkmnSirUufeL//K6F40YOHosXRN2gMmhUQusiD5Ac8WctBxKc7N3KEk+l4/DcVsg0yvHEzl2f4ILg7nAduWhR0jbNWFaGiYkUmcwkPT1SrD0ej+dY7TiapufGNe8NkYsQVaKu+JwV2Fe7qWoz5ZKG3CUMQbqNTz55fuUTPAomhb9F1Qzhzv6dXHHDFTREG7jl9bcwr3beEerhyy7j48L6+vrYunUrc+fOZeXKlTOqY3Q86RDquk42m2X79u0lGdKx9Bjvvv3d3PDMDfy/9f+Pz577WQzd/3rt3+8FfspdqZJE3KZ0yNxVREqxY5qm5TPxpPvR+c1Pc9A5P7ki9nNTjY2N0t/fx6xZjdTVNVFNDJEQqmqCk4E79XqtTtUSNzsq3XXFTE0587ra5cCfTqfp7+8nkUi4kmSCmTzP4utXL9o41bqOVfZ1mKQ5qD/JLuM+uox72Rb6NboI0WGvybOHLWKpTGkpcBc7IND/2qtEhVJg0QtCqr/+aiKOxyVbKmsuT+SlbXTdyP0uJ+Nq2MNqx/8xrY+fWe9mItrN1cl/Z6m2rqi9So+YmuzdjB/gAQdCqAWNk0UexBTIKmTH4vE4CxcuCtSGMtOsnK1eSTPUSUDzB3KF4LAw5q94++qyjtXYUjheuesGl7Ny4DMSieQWbXXMnq2RTMqQh/Hx8XxyCsh3W9fjnthN5VExTavoGvvFDKrYQ10vpTghPOD80KGRsud1NE31t5r5e0vvFq664Sraatv47TW/pTVxZLOmX2YIj2ETQvDCCy+wZ88eTjrpJNra2mb8GMcLQ5hOp3n66acRQrB+/Xrfh/a5gee47qbr2D+6n/+7+v+4asVVZdscGvK6hmWlC1HE6LlBXCVZC/CbDFWweWnGTK3cCyc804TBwT5GR8eZN28usdjUmGHFAEnQFsq5V4JlGLvN7Y5Rk5J02U0tsE1quUkdRCGgt7eX5uYWGhudJJmgJhNSygfch4iy0N7AQnsDF2U/zrC2jy7jfrqMe3kw/HXujfwL9XY7ndb5LON82llLhGDXvFRyimSLRT4LXUkHKRBUzaVzP1uy5nI99fXuChUphoaGyGZNYrHoNNjD0tbD89wQ/SBm1uT67E+Zoy3LhSAU9tUL+EIhqZvpDSHQ8qDPsZmJ2/QzJRZezfMqs9RLJ5coCZpS5mW5goBlgZRpMXL7+B+3Um11OZ7ZLomsUlb+wagEGN3Zz7YtiMWiJBIxbLsRy7KZmBhnYGCQgYGBXPJKPLdwiREKhdH1UoC7+Ev1nFiWlWex3NdTqRbI84fe3tGy53Y0zc2wBrHHDz/ONTdeQ2djJze+7kaa481HsnuAE0P4UrPjGhBqmpavwZtOpznrrLOOmFCkYRikpd/0mLXh4WE2bdqUy6SVq/xCu/m5m/nrW/+atro2HnrbQ6xoWVGx3bEx8Isby2Y1z2el+6dMTnDlYuf0HNOHx+VbylXs1hZ0m21bdHd3I4RJR0cH0agx5YQC5UpRLIuUw9BcE3QwtKAkXcJhO+dun+7kLWOcBgaGEEIwa9YsGhoap9aSBlKPLHifGsUCTjffyunmW8kyyX79Ubpy7OFm/X8xQhEW2Gey2DqPTus8msWiKfRJXjfTJH/dbdt/UaEAlPuz42JU2dnyN8WkKZYlkZC6h5rWnKuakpwieyjy7vFcL/L9et5+iBtDH6U+08bbtW9TZ7Qi3XhOiUDllnXXnpbhA25Xr1YSBPgBpqAVLtzm5zYeGRmhq2sXc+dWF39dfgFY3l1cGENXzt2rsovd1UFUtRAZa+jdthRLKAREIpDN2hWZ2vJZv8FMgU8F0izLzlUZkTGxAwMDdHR0kM1mmZxM5aVtIhE9VzklmnsunRMsxQCqvpYC1s6iVWNyMkNf3yitrcUJh0fbFIgNAggfOvAQ1950LafMPoVfX/Vr6qNHp/8TExMvOQ1COM4B4fj4OA8//DBNTU0la/DOlB3LDKEQgv379/Pss8+ybNky2tra2LhxYy7mRL5Ulm3xTw/+E//y8L9w1fKr+OFrfkhdNBh4Hh0tHuil2889ixQDNemaLO0adQ9USv7FMES+3rFzLNm+nws5nU7T09NNJBJl7ty5OWA5HYpHIxyGTMY7Oak2QyFvlQ8/k/21MQwVezl9E8Li0KFustksum5MWT4JJCgqV0qtkoWJ0WmfT6d9Ppr1KQbEbnbp97I7dD/3hb/CxsgXabQXsiQHDufbZ+ayacub30KgXAJCuQnc/buf+1rdW7+ay6nUBMPDA2SzFvF4lJqaGNFojHA4UgRqvJOtBIhbjN9yR/TLzB1fxRtDXyNCAue03AH//uURg1qhdqZsq/oG/WIF3WxdNSaFs/2BX6V4P7mLG+iUrrnsrk7i7rMT+6jYOnlMqZ/qzeBV40o1+pmqDrif0kKwcqHymVOgUgJaVUEEVMJQNBohGo1QX9+Aptkkk8l8ckpvbybHaieIx+Vz6YedHJUCkZ8HlMyPX5bygQODxwwgDAIGN+7dyJt+9ybWta3jF1f+gprw0WPsksnkywzhsWaJRIKVK1cyd+7cIx7ceawCQrfo9hlnnEFzc3N+YLIsi1AoxGBqkLfd/Dbu3nM3X7jgC3xk3Uequl7j4+WZMTe75zYhymcJSwbAnXii5ZImHPMLonb6NUZfXx+NjU00NTXmGILpaY1Ihkm5jYsnNiV4HQoVSt2omsl2fiCeKSmWbNakt/cgoZBOR0c7+/cfmHJsIziTQrFVDxJ1DZrtxcwSi1mbfjsZJthrPEqXfh/PGX/kyfD/EBIxFtpn5WIPz6VBdFToX1VdmJa53wNZNSWeZ9az2SzJZIpUaoL+/iF03aC2VooPx2LFmcsCmzvNr7Ml8X+syr6eS0IfRj+KQ2z5zOPyVpgs09o6i6amhin3oxBkVXIXSxM+41KpKijlYxFlbKGWl56RbnmHcZTjip0Dd8GvmWIJi2P2jIrxjMr8AKg7EcTbrjymyqjXdXKLFqXHKWP/1HMbi8XzWo4SCCoXtXKtu8Gn9/k/fHiY1asDXogjaEEkZ27fdTvX33o9Fy64kP+5/H+Ihaa+QJ6KjY+Pv8wQHmum6zrz5h25TCK3HYuAMJlMsnnzZnRd94huS/V/qVW1pWcLhFWXEwABAABJREFU1914HWOZMW5+w81csviSqo5hmoJUyu97x5XlF9MHajArnaWoFP2VSYbIyTAsFS8IgoGBAUZHx5g9e05+pTYT4si67oDYci4upeUVCsn+SVefs62KO3SXl5qKTU6m6Ok5TCJRy5w5La5V/9Tac+IzBaVcSdVY4fWOUMMy6yKWWRchsoIB7QV2GffTZdzH3eF/5q6ISYu9hE7rPDqt8+mwT8dASiG5GT1lU+3fTIDKcDhMQ0MYXa8jm7VIp9NMTiYZGhrMxR7Gcu7lBFrY4kbrE+yte4D1o3/LOaG35+V6KvS0oN/VsVXu/adzP2WdbweQjYyMMjDQx4oVlUNKCs00i7Ong1VX8QNKxfu6M48rtWdZFm7pGvk+Wjh1vKdS0cTvvlYzNyhG1nsOpukV6XfGP8dsG6LRSC4utg5d15mYSJJKTTIyMkJfXx+RSDQnjh0nkXCYeUeaxjlfVWMa4PDhYyOxpBJDeNNzN/HXt/01r1nyGn706h/liyccTZuYmMiHZr2U7LgGhEcz5ftYA4Qqo3revHmsXLmy6AXSdZ3/2/F/fPjeD3NCywnc8eY7WNiwsOrjDA4Wf6ekT5RkjJ+LVsqpqALw/m0XT2CqfJVMLJAi0X7xgj2Ypkl7e3teVzForeFyJicaeW7uGJ1SJlkGR7DZAZJucDN11+zo6CgDA/20tjZRW9uQmxxFEZtTjTluWS0ga1O+LefeFvdJQ2OWWMYscxnrzL8mzRh7jIfpMu5nR+hWHg//hLBIsMg6WwJE+xzqmANMtV8if17ydVAxfcXhDNWYfN51wuE4tbUxoDmve5hKTdA7tp/72r7EcO1uLh3+NKuir0UJA8v4QCcxpvB5mA5wdaRDVNLA9MZDN3OkBL+nYspl6wYzQUCXG5AWtucFhNW52mUyho1l2YRCeu4dKF3erXI/i+cDy/Lveykr1BdVz4t6t8NhnWzW373iPo4QuGqBN2KaFqmUTJoaHe0BIJGIEo3Gqa2t8VHLUAt7QW/vaMl7cDStHEP4ix2/4G/v+Ftev+L1fO+y7xHSXxwIk0wmfat9He92XANCCLrynL4dK4AwSAm6jJXhB/t/wC1P3sL1p1zPNy79BvFwcYJJEBse9o+/UnE0pVzCCiCVy/CTg2A297cDLJUcTSFgzGQydHcfJhyO0NHRju6SyXEDnXIi0OVMysM4mdSa5p81qFg/9zFUjJIEIHa+ncKBP4gJIRnQsbGxXMa04w6RQHXqA3bhxFrIMFVjbqYhyPlFqWOF9UpWWK9EYNOrPZPLXL6POyOfQWg2s+0VdFrnscQ+hxptcU7+p3Sbxcd1snOdyTYoo+RvSiZItqXq1Mr6tpnaIf7AR8noSV7T96/UDi9kt7nXxR7GfUXR3a5Bed1VmIL6O0i/NE/YxXTHQSldJK9TOKwTi01tzAAlgSPyiR5Bkl38YvPA+w4pce0gpt5HVYkFJAunvp9KvWN3n5RNPdFE3nP5vFr562UYkMmYJRd+MvNeJSN5gW0oZFBXV0NdXQ1CQCaTZnJykvHxMQYHB4lGQ0QiEkBGozFkrLOT4NLdPcy8eU1TOJeZs1IM4U+2/oQP/vGD/MXJf8HXL/l6SZm0o2ETExMvuTrG8BIAhEfLjgUdwmw2y7Zt28qWoDs0dog3//bNPNH3BF8+98v83Ya/m9aKb2iolKi0dJEqlqzQFNNWScbByQQV+RhClRCggr6F0JiYmKC3t4eGhkaam5twT5qFANAJrg9+3pJhdPZRshdu8wOC3nN23FAq9kdOcsEZPcmA9mJZWTo6OojHDQ/oduQ4qp/ICl3q0wUQhftXxS4IjTmcwDz7RM62303GGOIF8RC79PvZEvoNf9J+SGR2HfOSp3OS9goWW2dTQ7Foeum+uT/NHOPhPueD+lZ+E/4w+mScv7J/RlNdO6JWloqUsYeyfJlhGMTjCRIJWZ1C3Qd5vVR7CtQ5fytBZOccFCBynk13Is5076f72Zg3bx6trXOm0ZqWZ71kTGHw/cqZXzJJoalxwy0MX3wM57oH0RcsNMUSmqY15cWG0jYE28MkO1Ix/nHMKglIejRKX1hNg2g0SiQSpbm5kUzGJJNJkUwm6e9X0jZR6uoShMNRwuEw3d2jxwQgLGQIv/3Ut/n4vR/nXavexb9c+C/oVeiuHgl7Ocv4z9xebIYwSAm6h/Y/xFt++xZ0TeffTvk3rllxzbTp/xGfsBIl3Az+K3qvbl/pODoVBK+YRgfYOdnJmgZDQwMMD4/Q2jq7xEvoBX8SWJaucuJnktF0n4yW1w5UJfaCtCdL3ymmU+SzkoNYNpvh8OFuwuEw7e0dGIZWVJZPCVNPZfIvDJ6X0jhTj7sslCuRwfZud6jDxHiP6wAhtX1Uq2OldRkruQwbi15jB9uzd7En9BC3RT8FwFzrJDrtc+m0zmWufRI6pRmCI+U1UO7Kp+0/cHv0c7SJU3id9hXiufrPmiZ1Dxsa6mhoqMvrHiaTKQYGBrAsi1gsTDyeoKYmjmEYRe+Qul7e5B9/JlfXjTxLJISNW86mWlPC7LYt6OrazeDgEGeccXrlHUuYAjPBAVPpRZyScSq9sBJ5sFjpcGpcUc+eVGPQ8tcuqEllhOrBpKfXnjhLG8nQuscy4ZssJENrgh1D05zMZlk5JUFTk6x0JMMeJunrG8AwDPbubaSjI0FTU9MRVe0oZ4Uu43977N/43IOf40NrP8Rnz/nsi+7ShpcB4TFrR9NlbFYqrHuELEgJuu8++V0+uvGjnNV+Fj+/6ufs2rJrRgBsoeSMAhDKjVNNvdBi0/Kr4kL3s3TXmvT29pLJTNLR0U44XCxdIsWwiweIavpTyA7mWshNvHaVshTuv7V8VnIkIvKlsPwslUrS3d1DfX09LS3NqBjN4u2D6XMV7aX5Az83OyInRBuZ2Vne3KysEt5WiwTZluOmCxY/5uoTBm3iVBLjCzkp+Wbq5hrsNh6my3iAJ0M/5+Hw94iLJhZbZ9NpnctiawNxGt2tVTzeVE0geFj7KQ/WfodFo+fxutAXCVE6qN0wtHz5MiFk7GE6Pc74eJLh4UEMQ8/Jh0j2sNqxzDRtpKiyA8YVg+RmwmSMW+X2JCsp8iBpOqbqgwfNvnW8AqX75jemOcx98GsXCoXIyiDlXF9FbvHnXwe4lE0XEILjupZxjd4LoICrX/JLNcAom7VxCgWIXCxlmEgkTDgcYnIyQzo9STgcZteuXaRSqdxY1EJzczN1dXVHDYgpl7EQgi88/AW+8uhX+MT6T/APZ/3DMQEG4WXZmT97Mwwjv9qdyoQ8FbNtm2effZaDBw+WLEGXzCZ53x/ex/9u/1/ev+b9fPHCLxI2wuzWd097oAIYGSmOH1QDmHKLumPv3LGAykrNcWrl66c9ODmZprv7MIYRoqNjPqGQlEwodE+Xdt8GB6qF7KAENgLbrk68uVxFk0xGsYaqVrITXzk8PMLQ0CCzZrXmhdVlUk7pY1ULwEuJfXs19GQNUVkeS88Bi+J91PfKvanAnzwn27VddX30N0ENszjZuoKTrSuwMTmkb6PLeIAu4wF2hG5FEzrz7FPotHLsISsKbtvMAEQbk1uyn+PZuttZm/wLLgi9N2AmsTRNg0gkTDzeSF1dA2CTTEoXnmIPw+EwlmWTzWZ9Yw8LTcX3Fl5rJWPiPb5KstHy96s4y1nG/DU0NE5L61JZOKxVocUpigBRYd/cCxj5vk0tXtg0iwWblSagqqPrrvLh3x9BNjvduE0t9/5IzUT/pBpVXcgLCoOO71J30MZN+BUuPAxDCmMvW7aY5cvbSKVSDA4OMjg4yN69e9F1nebm5jxA9PNQzZSpOfaT93+Sbz35LT5/7uf5u7V/d8SOV60JIV5mCP/cTVHYQUUzp2vpdJrNmzeTzWZLlqDrGu7ijTe+kecHn+e/rvgvrjvxOk9/Z4IhlFVKHFNZm+7qCsUMYqGLsFTrGqFQtggMJpMT9PT00NRUR2NjS74NWb7Nab988ohGuSopzvk47KCmqXJ8jmhsdcCrfNxiKKRjmrYLPAv6+noZG0vR1taWC/Im91tpNlGIUtpsZXpW4kTkuTtuPWdClt9J1sZhnJRbzTSdEmxqDnOY46q6hsoud8+FpZ4ZnRAd9mo67NWcl/0AY1oPu/WH6DIe4LHwT3gw8i1qxCw6rbPptM5hkXUWMTG96kVCQJoJ/s/6O3pqtnLR2D+wxrhmWm2CU3NZsocyRnh0dJRsNsuBAwcJh0Me9rBU1RS3dEgpU2EG7hjF3C+5e+vE/BqGBK4zUQteknDB4nll3/y3U8kkSrzeNKeuKqCSXCQLVfygqeonUr6rNMOt2MHpVS+xc0lKipn0P38JCu38dgoYl6vm4vTTQAjLMwbIsAJVKcp2JbTIex6Px2lvb6e9vR3btnOKBwPs37+fHTt2UFdXR3NzM83NzTQ0NMzonJg1s3x151e5Yd8NfPWir/I3q/5mxtqeKRsfHz9iVdFeTDvuAeHRopDdgDDIyn06NjQ0xObNm2lubuaMM87wjeW4s+tO3nbz22iKNXH/X9zPKbNP8fw+lUBpPyucE+RqUw5ckg2z8zF7tl0Yh6fMP47QKUWXb52hoSGGh4dpbW2ltrYON/BRmmSqSkqlCcFhQEo/I4odlIyX8PRHTgbBshEl+Cz/LLqBsm3bHDzYjRA28+e3E42GUCXN1HHLWfmSal4r5S5W7J6M55MTQjis58XAbVtKdUh3lnP+KqbSz6Uoy3BV99z5v8LBXJx1Yg6nWq/jVOt1WGQ5oG9id+h+dukPsC30O3QRot0+LQ8QZ4klVbF6AGP08qvoBxgSB7gu8w0WGmdWtX8QU+xhIpFgcjLFvHltTE5K+ZD+/v5cAkCMeFwCSO8YVDnRorS5s3YdN39PTw+ZTJqmpsZpnJVipvQq3LnF90bWd9bIZs187Nx0hn3FDFa6ZApAu12thb+D0iStrg9CCCIRnWxWCmjLd98uO59Jl7nIZQU74QGVF62lNEedRCYFNMPh4kWArus0NjbS2NjIkiVLyGQyDA7KmstPP/00tm3T1NSUZw/9SqYGNcu2+Oymz3Lr/lv59qXf5vqTr59yW0fSksnkywzhn7O5xZ6PlAkh2LdvH8899xzLli1j4cKFRQOELWz+5eF/4Z8e+CdeueSV/OTyn9AUK84KmymGUGFR74DizvBVwExQnJhR2pTLUcUN2rZNb28v6fQkbW3tRKNRV/vula08vmHYvtnNbhOifHKJkhMpVdReuXOCDPZ+zGihKXAp3eHdRKNRWlvnout6flIxDCVbU7odNTEENX93sQMGlWafYv/UtpqmEwo5siaSBRGorEiV4EJe+08r6Zquvn/VM7QGYRbaZ7LYXMsF9ocY0Q7RZTxEl/4gD4d/wH2Rb1Bnz5Hg0D6HhdaZRCgvHdHNc/wf70I3Q1xv/4Q52jLsqkSI/czJGC55LoZOTU2CmpoEQrTkdQ+TySSDg4Me9rCmJspMucUla2ZhWU5tX+kVyJXArEK/T+lUBtXidL9r6rlUrm3T1Fz9CZ61X9wnL3gOwu4pCaNQyHAx6Y6Ujnz2q1uA67oo0hmUmcPlL66Mtbbz1Uik0kP5OHrFLhaflztmUV5TGZpT3iKRCHPnzmXu3LkIIRgfH2dgYICenh6ee+454vF43r3c2NgYmGnOWlne+Yd3ctuB2/jnM/75mAWDymX8cgzhn7kdSekZVYJuYGCANWvW0NRUDPJGJkf461v/mltfuJVPnfMpPnH2J0qm30th2On3NRx2GLbCWqDS5EBi21pRFqvbPEkDusokAxBks9lcvKDB/PnzPfqCpSYTJXo99brFgkhEkE5XHsQlK1Gu4kpwEJRKJTl0qJvGxsaieyzZV3l93CyIX2JJNTGS3slCxX7auXgp+a0Ed6XcVfJ7NVnoupWPN1TtOxma2hTcxqWu69TurdqtQbSx2ryW1VyLSYr9+lN0GQ/SZTzElvCNGCJMh316nj1sFgvR0Dg4doihySFS9V3cX/dFatJzeav2fWqZFcTzWdHUNS89iRfH7UYiMgGgoaEey7I97OHAgEU4HHHpHk59WFfP8oIF8z39dbO+jragyIGKYAuhyskaNqGQQNflgsN57r0VjYIw/0FNCstXzspWQFKyaSoL3PldjRGVkoJUoppfMqT0DlQ+p0JgKpP7/AcgyYS6q0HpRfsWtl2NaZpGXV0ddXV1LFq0CNM0GRoaYnBwkGeffZZMJkNDQ0OePaypqfE9x7SZ5u2/fzt37r6Tf171z7x64aur6sfRtFQqhW3bL7uM/9ztSEnPJJNJNm3ahGEYrF+/3jeYe0ffDt5w4xvoS/Zx4+tv5NVLy78wsrbmzLqMDYNcELXzQjur9vIDoQIw0h2qpBXkJHHgwAHq6mppaWkpCipXGayFZeFM010JpTST5JcFrZJGMpny16ew1nIpC+IudtzhQzn5HP/VpWQ0CwGBBHHKzSXHU6XvVsmV7QTgO2yLnQdv6toEz65UepHywZDtKJeyyDFLSjJIK5mY4mmxxGGn7hYsbtAQURbb61lsr+fi7P9jUNvHbuMhuoyHuD/8Le6JfI1Gu4PI8CJ6u3WIjcP8TTROnMhfR76HYU3dDVbUu2mSeYXsoWVlGR8fZWJCMjXhcDhf27Zc7KF/3yRLNzQ0iBBakfiuE4uoTsKb0SwZRC2fyOAwfqVZPefZlHGzhcOWtyKO87xWWxLSr1ycSiAJOlaqmMLCZ9OdrFPKVNk8uX3xw63YvkqmjiHf//IyO5GI4cmmLjyuaUphavV9JDI9SBAKhWhtbaW1tRUhRJ7RHhwcpKuri3A4nGcPm5qaCIfDJLNJ3nLzW3jowEP84spfMG983lFL3JyKTUxMALzsMj4W7WiXr5tp6RlVgq6trY0VK1b4vgi/2fkb3nXbu1jcuJiH3/4wS5qWVGx3phhCNyBUsXtuU6t1ySxoJWVgyFcQkWBQ1wVjYxPYtkVr62xfkW33vu7JxLsy1/KuVv/TdZJL3Ekjsp/lz92rVVaa5VDgqpQJId3hk5OTtLV1UFMTxTT9740fsHbka5R7qlLdZifOSNO8cZFy4nPAoHPcYG64wslZ7qflQwskoLByxxQ5d5sCd/4AsTxAmhlXaOH5NYsFNJsLOMN8E1lS7NOfYKt9J8/HN8JpueLdqQTDhyJ01WxiWfOGGekHkItLK1fSMfiYptjDlpZGLKvBxR4mXbGH8UDsoQQ08rkcGRlG1yvHSjvviBPTJl2f3qQPFVai3hO5wFFSTJqnPbcVMlzO91N3G0/X3MDSzbiVYu2FEIRCmgcM+gFQCXTLM3TuMUgm2Rj5BJjiNouZw8K+KSCrQK5fDOFUTdM0ampqqKmpYf78+ViWxcjICAMDA+zevZvt27cTSoT4zLOfYfvwdn511a+4YOEFbNmyZUYSmo6UTUxMYBjGjGThH2t23APCo2kzyRAKIdi1axe7d+/mpJNOoq2trWgb0zb5x3v/kX9/7N+59oRr+d6rvkdNJFjcgmF4V4ZTNfVeahpF2cDONjpSVNUtMF04qSm3olxF9/b2Mj6eArQKYNBxoypXZOEtUK5WmaRSvL+MJZQslorVC3Ybi113hVbJbW2aWbq7e9A06OjowDBCJZkNJS9RHlzKLGMZUyUBuGIM1EQj3W1OsojcT21XDAZBbh/MdVY+GF9mKoYAO39MBRjc8jQOe+gXhiBtBgjuQBYmzhL7XMb7ank+thVi+6G/DQwTlm3hJv0DNI+20GmdzdKaV9Jmn1ZWezCITadsmttU+TIFyL3soSz3mEqlfNnDWCzmYaTc75amhacsTOyIpzvJTzJERII403SLt7uft+Jn311f2W1ygVcdKCzFAgZ3aatjO8xnIRgrzPpVCzj3vFGKSXTez+BmmlaZ7PPiDOnCz+59DUOfUUBYaIZh5DOTAXpGerj2t9fy/MjzfG7J5zD2GWwf304qlTqisfrTNVW27lhmMadqLwPCKmymAGE2m2Xr1q1MTExw1lln+cYi9CX7eOtv38qD+x/kKxd/hfeteV9VzIFhGExOTk67r6GQSnYQZLP+x/eObU4ihvt7BdZs2+Tw4UOAzrx5czlw4ABB4oHU4F+OWTFNJ3bN2Ua5d5zOBJGjkcf0xk75xRKWY7fS6UkOHz5MIpGgtbU17w6XALU4mN2t51ipX/I8nD5ItsB2nb+T4FHo4iv1GAVxGweZNNW1d7uM1WSnSnQp9tCpE1zMHkrwW/FwRea3TyV3XpIhnpz3VTAOwbZzoL9D/mBkOXnoMMw/zLZld/FE5GbCRpSF9jo67bPptDdQL6ov8VbqXa5WmFqFEvgxZpoG0WiEaDRCY6NkD2VlChl7KIRNNOqwh+7p4IQTTsjH8lVr6r2Ri0m1MJBVVeT4GWQcyX9b8hiFoSTlrDLgC8qQF7fjrnSisu/lv6AkXQq39zO5nV6yr26Phbs/6vq6wajDYha2UyrjWNqRBIRuG0gNcO0t17JnfA+/f8PvWTV7FWNjYwwMDNDX18cLL7xAd3d33r0809I207Hx8fGXpLsYXgKA8Gi7jKcLCFUJupqaGtavX+8rYfPE4Sd4401vJGNmuP1Nt3PegvOqPs5MuoxlgkPpChbFA6TXdazrUl4mlUrR13eYmpoEzc2teUAUhJlSsYBBpGY0TQJQVZ1B1VwGKC3BUmyyWopd8J3zdzlwOj4+Rl9fH01NTTQ2NlI4CU41jsydieyU6ZKNuZlKdc+8gKty2+V/D3bt/GOspGtZMc6KOZSgQ4liq/unB44/DGrlJsFBbR+/ib6fjDbBiXvez47+7vxvZ84+h4sXrkA8/gRdt27n0dkDtC7r5vCKZ7ir/UGEbjPLXkKntYFO62za7VMxAgyr040jdM5Ly1+3Su+RYejU1tZQW1uTZw+TSTd7aOTYwwTPPfcc9fUJOjs7A/bEqTikaRrZrFcFQHoYrNwz6WgfqphD1UZh98vF9lXK6nessixPEJZQxez5XWK1n6pNLMcGv6oqpbOaJYgOUQqcltMcdModqmfLLnk+cm5wxl61jRD6UZlPeyZ6uPI3V9Kb7OW2N9zGya0nA9DQ0EBDQwN9fX0sWrQIgIGBAbZv345lWTQ1NeUZxsLY1qNpL9UMY3gJAMKjadMFhIcOHWL79u0sXryYJUuW+L58P97yYz545wdZPWc1P7/q53TUd0y5rzORVBIOq0G+9MzsxKE435mmctMCCEZGRhgcHKC5uYXGxjpk1QE1EAVJINAIh4srmviZmiD9yqvJUnSV21DnVTgwu1lC6ZItdo0PDAwyOjrCnDlzSCT8Bw6Zle1OyvF3d6s2lbvNslRFEKdfSvDa277DDkrWwQHFblHxwnMrdy+CSsqoCb/c8yddy6petHNu6nwl2LVz/bJzrrdg6LCax/6Avpmboh8mLhp56+R/0TinndUJmWXcFGuiva4NoYP9mlez6IILWLZlE2LTJh54cJxoLMO8JX2Mrk3ydMctPBb7HyKihsXWOjqts1lsrZeZyb7nH7yP5c25kaXcq6WOr9hDaABsxseTOfawj/7+fiyrgdHRUeLxhE/soQMAlVSROnYpPT3nuXBAiKbpBSyXe1FT/nxk2csgGqHBnokgLuhK90257wvfR1B9qNQRpxxo8f7lwLHIvR8WqqZz0AQVeSydSOTIM3AHxw5y+W8uZyIzwR+u+wPLm5cXbWNZFpFIhKamJubMmYOSthkcHKS3t5fnn3+eWCyWz1xubGw8qnWXk8kkiUTiqJJRR8teBoRV2FQBoSpBd+jQIVatWkVra2vRNmkzzYfu+hA/3vJj3rn6nXz14q8SDRXX7g1qMyc743Y5+r8AhiF/KxyvbFvWGj50qJdkMsm8eW3U1MQgX5nCYQaCWNDJTrlqVMyhAjJy/+BxR+XcjH5spW1budrLGdrb24lEyt8/90pdZU4XHqNUnVZ3v/w1/BSg0nOTdqGQt8jL/gjh3DsZ/F7q+gSntYKOlQ4I8CampNNphodHqKuL58GCTHjQyoJDR2i7cn92GndwW+QztNmncnX6q8SQsaztdW201xXH9FKTwDrnbOwz17Hh2WfJPP44Q9sjmNthjraUOSeH2bs+S9ecZ7k98gXQBHPslXRa6+m0zmaefRI67uxs//5XYzMRhwjyetbWJqitdXQPdV0nmZxgYGCQcDhMTU2cmpp4/rn2JhfJfyUDVm7cKXz/3OBQjrEqySHIgjYIiAu6MFYhJ6VCDsq1I4TySthks9L1Kqv5uBdu5cGrArjyOniZxCA6h5Zl546bLQs+VZfcbcpx8sgCwj0je7j815cjENx+3e10NvqzzzLe1HFdu6VtFi5ciGmaDA8PMzAwwHPPPUc6naaxsTHvXi4lbTNT9rLL+Bi2o4nSp6JDODk5yZYtWzBNk/Xr1/tS3ftH9/Omm97Ett5tfP/V3+dtp75t2n2dSdkZ6e5RA2/x9ZaJIsX7WpaMFzRNjY6Ojtwqzi18LNtS8TblTGbLaj7VTYr76x5I1SVQ4EeuwKcHCG1b6jO6YyqllmI3hqHT0dHh0VIsZW5JHDfgDoUcMVw/1rCwX44MhxOvZRgOGCxxdrn74GZkHJDoJ+VTzeMUbFt/QfBUapLe3h4aGhppbm5AVUxxElMk+FbPjxsgBhkOBIJHQz/l/sg3Ocl8DZdlPo1BsOpDQggI6YiTTiB80gnMPngI7YknSD37LE9sM7l6m8bqmjVo69/KrtPG6Yo/zqbQDTwS/gkxUc9i66yc7uFa4jT6HqO6Mc25flMXbJbZqOqwmgYtLU3EYlHq6mJkMmau5nKK7u5ehBBEo7Fc7GEiH3cm70sl12zpcUQ981IKRi4STNMqOzZUqhIiQU+wMVs9R4Uu3UqueAkivZ6HbFaJWTugqxLWd5euK15cB3mhnHG0XMUgJ+HMfQ5aXl/xSNjzQ89z+a8vJxaKccvrb2F+/fyS21YqDxsKhZg1axazZkn2XUnbDAwMsGfPHgzDyLOHzc3NM15Z7KVaxxheAoDwaFq1DKEqQdfS0sJJJ53km0p/7957uf531xMLxbjn+ns4fe7pL0pfS5lkCOXfpVw4ykXrHugnJ1P09h4mFouzYMEsbNvIMXVarn8qO7eymKvcXiWl+P8uB/NiJk2ZZSm9s+oyCktnwDqTbyqVpLu7h9raWmbNKtZSLG2aC8hpeTBbWdnID5R7k0eCueG9Ztsa6bRsX4YBKKkh9z0OZiqWqfxkXdzmyMgoQ0MDtLS0UlcnB11N0/KCuUqvTp6myB9HsYeSrfbvD4BFlrsiX2Zr6CY2ZP+Gs7PvqljKrjBpygO62tsQ7VewZHScZZs3wabN3D8xzuQfn+C8e0KccvK5mGe8n8Ozu+kyHqbLeJidoTtBaMyzT5Tsob2eufYKtBIxuqWs8Pq5n8ngJiVR1DkqwP3ccy8wZ85sEon5aJqelw9xxx6OjzvsYTwep7Y2QTgcruiqLKchKBMnyJ2HyAEVHdO0fJ8lPzYtf2YBAGqh+Q2ZcnFd/IN8R/wXNUAeDCpwE4zxlP8q5lyyhpXZQQmiIZ22c9WFSo9dykXsblPGXR8ZhnBH/w6u+M0VNMebufmam5lbO7fs9oUMYSVLJBIkEgk6OjqwbZvh4WEGBwfZu3cv27dvp76+Ps8e1tfXT5tEejmG8GUD5MCQljNmWXOXoFu+fDkLFiwoegiFEPzHY//BJ+79BOcvOJ//ufJ/mJXwjzeais1kUomSTvAfkJ1EA1XGbnR0lMHBPhobm2hsbMjFC3onMNU1GT9UeaBUq2eZPetNbpADc/nYQLc8TCQiyoJLp13/CVbFJuo6DA+PMjDQnxtsGiqeh9dErj27LOtZ3K/i70zTzru75L9TG/QUS6JAl7pmChg6iQO4wJj/5CNjmUqfl/s8hJAB5OPj48ydOy+v8VXYrow99LpdveyhyCcTFVZiSDPOzdF/YK/+OK9Of46TrcurvTyUBFz1tdjnnQvr13PZzp1MPvY49mA/T23ZTGjLZk5asICONZdybue7SYYG2KU9RJfxMI+Hf8FD2n+SEE10WuuZF11No14cV+Vv3nssE3JKh3aAw5SrBYSMR7WL7pOKAyyMZ3PHHjY1eTOX+/p6sSyLWCyeq7mcKFH5Qsa6FZpiyaVr1Z3drxJRFIgp7Kv/+coaytWPge7sZcVGe4/nuIfLrWUdD0jQeD53KTnlplbJKeX3VzqHKhO5EugJhw1P6bxs1qq6SkkQ29yzmStvuJL5dfP57TW/rTjHqazsqeoQ6rrukbZJp9N59lAqWpD/vaWlJV8itRp7GRAew3asZRlblsXTTz/N4OBgyRJ045lx3n3bu/nNM7/h78/6ez573mcJ6TN7K2YyqQRK1+r1JhoI+vr6GR8fZ968OcRi0j0uXZiFkiqKzalcr7bw2G6g5kg7lG/DPVFmMhKghkIin0jhv08pQCMn1P7+AUZGRpk7dy7xeDVZb6ryiBSNrtajUegyVpOkzM610bTK16NaUy6mcgyt+k9ZUHedEDY9PX1ksxna29uKXDylXPeFJfWUKLZbuFdlPI9qvfwm+j7G9G6uTX+LhfaZFfs1JQuHEKeeQvSUU9D27WPVE0/yzK7neWDfPs7dt49UXQP1Z67hlJMv5ZToq7CwOKRvo8t4hC7jEZ5uuA2tXqfdPiUXe7ieVrHUl8UsvCZuMC+Bu3xPlBwK+DNgfuPEihUriEajnkQQP3Myl2sRws6xh8l8fdtIJEIsFiORSBCNRvNtlXPDljqWFyw4MYZuqRdnW6icwOFvchFkI8cob7tqARsk7MRdE1yV+CvnDSlMqpGJcJXZQXcFFJDvQ6X6zH7JcDMNCB899Civv+n1LG1ayo2vu5GmWPFcWGhuwe+ZsGg0yrx585g3bx5CiBxZMcihQ4d49tlnSSQSnuSUIMd92WX8sgGVAaEqQRcKhdiwYYPv6uP5wee57sbr2De6j19c9QuuXnn1EenrTDGEoZDDJCgXoHtMU+OXZVkcOnQYyxIsXNhGYZUDuar2gkKVWFKJISxkPRRrIcFoMDdMoXi0rP4hcuco2cPisdofAGezgu7uHizLZMGCDgwjKKIT+QlGTSiyPVnZoRoQp7Z1Vx5R8jrTXSP5zT+V1hZ+LKETalB6W9M06e7uRtd12trafUV2g5ToA8Ue6oCMn1JAqFd/hpuiH0AnxBsnfswssQRbq7besvecKncGxMIFsHABK4dGOHHTU0xs3co9YyNw911cet99xE47CU4/g/lNq5lvr+b87Hs4nNzNc/b9DDTv4JHwf3F/5HvU2rPotNfTaW1gobWGKAmkW1+xwiLvapXyUIpBDxKK4Q/a+/v7aGmZRTweCxSbqMJJHPaw0cMe9vb2AXaePayri+H3fkm3ZTlW2V0lRAIYJ57U2a+QZazW5Fhve9pwKi0FN3d9YwWCyyUUFbLmld7lQtFrtZ9THrRUCI3zvWJEw+GZcxk/sP8B3vDbN3Da7NP41VW/oj5aH2g/dS5HIsFF07S8tM3ixYvJZrMMDQ0xMDDAzp07yWazeWmblpYW4vG476JlfHyclpaWGe/fsWAvCUBYaeU1U1YOEPb29rJ161ba29tLlqC79flb+atb/4q5NXN58C8eZOWslUe0rzMpO6NYPicZwbF0Ok13dzexWIz29lklsvTcUjTqJdNy8Uvl3YrFzKSWYxyDnZ+ffp48HzkQmqZ/+Tu/YvXZbJqDB3sIh0O0t7fn4oQqPXsiHx9YeO0U8+YXzF6pTW8ZOuXa1aqetPzMG5dVHVhVpiadUo/h5OQk3d3dJBIJZs1qyQXCO78rUDMVgCvZUtgdeoDfRf4fLWIxV6f+nYRoQSWzKM1Kdf1KzUHec5/ChWhqwL7oQuJnn8Pl258m9fijREeGuf3Jx5j/5JOcsLgTbe1a7AULqLNbWTH+Ctrq/wLTzHBQ38ou/RF26Y+wNXQLugjRYZ8qAaK5jhZ7UQF7WG0cof+2PT29JBK1NDVVDj8oxcb56x5K9nBoqI9QyFtz2S01FMTc1UFkOImVf2enO/QpXULLEnn38FTW16FQiEzGqRhVniH0sqaVQi4kGDQ9+0g2Uo0ppfd3JxG5t58J++OeP/Lm372Z9R3r+cUVvyARDu49kf3SjooIdTgcZvbs2cyePRshBBMTEwwODtLf388LL7xANBrNs4dNTU15aZtkMsmCBQtmvD9DQ0N84AMf4Oabbwbgiiuu4Jvf/GZOx7bYstksn/rUp7jtttvo6uqioaGBSy65hC9/+cu+lc+C2EsCEB4t8wOEQgheeOEF9uzZU7IEnWVbfP7Bz/Plh7/Mlcuv5Iev+WHgFdN0+xpE9Ll8O94JsXA8Gx4eo6+vPy/AbBiWb7WNfFC/5QWFlWqSyvg6reA76WoNmhxSyt3tfCdy8XJu5hGkO9uZWWTySDf19fW0tDRDTmqnlM6ZSsqQWbL+fVOxkdVONul0mnR6Mu/WUzZTCyP3+ZSuE13eJMj2Z/eSySS9vYdpbGykoaERd73mglZyz47t65Z2sygq0UTZJuNX3BX+Ekvt87k8+yXCegx0xXg7pfz8S+pVf76F5170byIMa1dTd+Zp2C/s4jWPPsKWvXt4dvdztO1+nnDTLKKnnsp4W5t0gxJmvn0G8zmDC3gfw9pBuow/0WX8iQdDP+Te8Lept+fSaZ1Fp3UWC+zTiYl44D6WS7rQdd2VDFE+01Yuiso/IN7Yw0YsyyKVmsg9B32Qq7udTKYIhcJVuS9V3KiT7RxMsqZ8m3KxVi5RLYil0/7JMCWOimJNHamlYq8MqDHH8rknTgytjCsuHl9lWIEaP51KKjNRpeT3L/yet/3+bVy08CL++7X/TSxUXb3fahNKZso0TaO2tpba2loWLFiAZVkMDQ0xODjIrl27+OUvf8kTTzzBBRdckC9dN9P25je/mQMHDvCHP/wBgL/5m7/h+uuv55ZbbvHdPplM8tRTT/GP//iPnHbaaQwNDfHBD36QK664gieeeGJKfXgZEFZhhYAwSAm6wdQgb7/l7fxx9x/5/Pmf5+/P+vujEveoBvPpAsJIxJsI4mTWweBgP6OjYzkB5kQ+i1i6P4sD3pV5QWE5aZRidkLVJHbcTeUHaz93sdN2sW6aAoaGITwZq8PDI4yM9DFr1uyi++znUpPu8eCJLvJzZZZQCEFNTU1O5qYHcLLs4vF4Tuy5Wrax2Bz2bLpWnEAgM4n7mTWrNVAsjtKPLJc5qcwwNAQW94b+g8fCP+UM8y1clP0IOtIVqc4pFNJQbJoKxJfg32FDdd2Jn3PKBMp9HJCEa+J2A3Pvv57z0UAs6sRYspgTe/vRn3ySvm1Pc+/QANH77uGySBRWrcY+fTXUO89ao2jndPMaTjevwdIz7OXJXOzhn9gc/i2GiLDAXkWntY5Oax1NoryofTkGav36szyfdV0v4+qs/lkzDIO6Ooc9lF6GwySTKUZGRohEIh72MFhShoZp2rnqSpVj7/zbcKozuWMvp2JqXAhaYs+dDOIuI1noPZDPa/HAos5ZjtE6um6XPXZhfGix+Hh1dsOzN/CO297BFcuu4Iev+iERo/p635UkZ46WGYbhkbaZNWsWv/vd79i4cSOPPfYY999/P9u3b+eyyy7jFa94RX67qdrOnTv5wx/+wJ/+9CfWrVsHwA9/+EPWr1/Ps88+y4oVK4r2aWho4K677vJ8981vfpMzzzyTffv2TYnFfEkAwqPlMnbrEI6OjrJp0yZqa2tLlqDb0rOF6268jtH0KL97w+94xeJXHPE+KlOrrOm+YDKG0PksV8w2hw/3YNtZOjo68ueu3LuFjJKcNL0DugKFmqZi+bxxgnI/b81hR2NQZe9VBlGV6hbLuLviidGyNGxbgpn+/l7Gx5PMm9dONFq84lUZx8qtHkw6xq8v/myAMuUijkTCOQV/m3Q6TTKZYnh4mN7eXuLxSA4cxgiHI1MGdV45j6m/W4V6iSqTuK1tXkXhblcrRW26AYJbj9DSJ7k59Eme0f7IJdmPssZ6CyIP8twMTH7v3N8asjSYBIay0ovDIsrYPC3HGun5fdUk7pRGLOy7UzLQXU9aZfnS0ox96StoOfc8rty2jcnHHyM7Mc5vH/sTpz72KMuXr4A1ZyDa2z2vh2FH6OQsOu2zEFnBoLaf3Tn28N7w97g78k2a7I48OJxvn0aI4BmVDz30ECtWrMhPdKXiOOXzOrXnQwEdTYNEQsYqtrbOQtZhl7qHvb29AMTjMeJxuegpxR7aNkQiEhTKbHslv1IZGCogqDKds1krf25TWVC7K/UI4Z9V7dOL/HPtTRpzknBkiIn/+bjHMDWOmKa31J4Euc7f6t0SYnoM4c+3/5z33vle3rDyDXznld+ZcpLki8UQVrKlS5fykY98hI985CNcdNFFXHrppQgh+MpXvsJb3/pWzjjjDC677DI+/elPT6lqyiOPPEJDQ0MeDAKcddZZNDQ08PDDD/sCQj8bGRlB07SSbuZK9pIAhEfLFEOoStB1dnbS2dnpO2D879P/y3v/8F5WtKzgD2/6A4saFx3VvqpJy7KsaQlzqmdbDTCpVJqenm7C4VhO98kBmwqsSWDjsIQSlBVfIwUKZcJJscvQncGsgGghaFTukdJzUjHQLDZ/t7UQgkzGAjIsWiQTZUqRDrJesxUYCErm0u97f0FZv3hBTdOJxeLEYnGam5sxzQwTE0mSyQmGhwfQdYN4PJEHiMH1EdUx5b/TyU1S+wph09urMonbicWMMsyFct2qfdXzpMqbFQJN+XeSQW4IvZ8+7Tlel/l3ltkXIHL3VcUKVjI/WRvpVrMBG1VBQ7mW1T6lGUG/c1R9chhyrSYBZ63DPHElkzt38rrnnmfrwQP0P/cMqeeeYU7rHCJr1yBWngAFiRcaGi1iAS3mAtaYb8DUx9mtPUWX/ieeMx7gyfANhEWMBfbqnHv5TOrteWXZr2w2W/I37/XSkRqQ1Zv7mrmf71DIyLvvVNWaVCrF6Ogo/f39efYwkYgXhUx4dRkVw+avI6hMVQNyV0zxY+qqOS/3PmqMKmVullm9397nW3NpIfrH8xYyooWi7eo39/nIf1U2tU40OrV54j+3/CcfvvvD/OUpf8m/X/Lv6FWOM247VhjCcjY5OckZZ5zB6173Or74xS/S09PDnXfemU8onYp1d3cze/bsou9nz55Nd3e3zx7+/frYxz7Gm9/8ZurrpxaS9jIgrMJk0fYsO3fuLFmCLmtl+YeN/8B3nvwObz35rXzzld8kHg4e1zNTpuu6JyNvqlZf77B34+Pj9PX10tLSRH19E261exnT4iSLKCFp9bmUCWGgaRaq5rF7W7Va1/VypfPUAFp8nv4JKcWmAsjdg3gmk6G/vw9N03LJI/J8lBvZ0eeT/TZNUZWr1q9UXam++IFBP4vFQoRC9TQ01COETTIpwWFfXz9CWMRiCRIJpQ9X+dVXrMl0AKGc7GwOHTqErhuuTGJVn9hx/UsmRE2O3lmvUoD9gLab30TeQ1ZL8ab0j5gnTvLpS3WeBDcoUEOlZZkeoAjOc6om33LmjjdVDI37fE1bY6JjAfVrz+S0nl5CTz3Fnu3buK2vh/m33cr6e+6BM1aROW01dsI/CzKq1bDMOptl1tmIrKBf202X8ShdxqPcHf4Gd0UsZtmLcjWX19Fhn1xUqWXOnDnEYs64Veo9ms74otpU5RL9smo1TSMWixGLxWhqasI0rTx72NPjZQ9l2T2tiNWTgF7LuU/tPOBTi0yvN8P7nE2l+kth5na5WFpwA2Oln1m8sFCxzX7vgFuQvrBNoAAouvupeRbqU3EZf+vJb/GJ+z7B367+W758wZenHQ51rDKEylTyiTtsaM6cOVx//fVcf/31Rdt/9rOf5XOf+1zZNh9//HEA32sXlKHOZrO88Y1vxLZtvvOd71TcvpS9JADh0YjJm5ycZNu2bQCsW7fON/bp8Phh3vLbt/D4ocf5xqXf4J2r33lU+lbKZqJaSWOjRjgs6O0dYHh4lNmz51Jfn8C2vVVLChMrZEkpyRKWE8uVrigleOywhCoRRMlqlJvHS7mOS4EuP3Mnt0xMTNDb20tNTS3JZBIp0OsFgpomiERkZQB1bk4puMoTSHlcIttwBvrKYBC8pa80TaeuroaamgRCyOzoZDLF2Ng4/f0DRCLhXOxhTY5l8W9TTtYVT8fXhBBksxl6ew8Tj8eZNas1/70CQtMJ2Fe2X3+SGyMfoEa08sbM92kQ7dNu08/kxO6whyo5RZ6Lkrlx2EM/cFjovitrc2ZjvuoyOs4/nwWbt2BveordE+M8+uCDrHroEZasXAlr10LbPNQzJ5OtXMdDo1V00mp2ss58E2nG2WM8yW7jUXaE7uLx8C8JiziLrDXSvWyfSZ1oZfbsOR7ZLBUj6QYelesWVzYF0pxjlN++FHs4Pj5Gf38fkUiU2too0WjMwx6qOFEZY6uRzZpFz7Xf8avFu3I8K04kCeI2VhqLhaBPMeIqA7fQ/BQlCllJxRKqzaSHwlnQ2LZdNUP4r3/6V77w8Bf4yJkf4dNnf3pG5rrjgSGsRofwfe97H2984xvLbrNo0SK2bt1KT09P0W99fX3MmTOn7P7ZbJY3vOEN7N69m40bN06ZHYSXCCA80jY4OMiWLVtobm5mdHTUV1/wkQOP8ObfvhmAO998J+s71h/tbhbZVAOr3WZZJiMjBxkbE7S3txOJRLAsVcvX2U5KwLgHBC3v8i3XBTXJWJZGKGTn99U0kR8Ig5A6fvNSaVbRb1s5OfX3DzE8PERr62zC4RDJ5ES+Mokyw5CTSzqtXIyq4oMWaJL0inkXm8pcdmR1KoNBuV/hNk7SRCQSJRKJ0tjYiGlapFIpkskJursPAxqJRIKamjixWMKjBVgtYJP1UOU9GxuboK+vl6amRurrGwrioqpqtqTtMH7PbeF/pMM+nasyXyNG6QoC5UMLqjN3NrLXtez8rcChmz30Ht//nhbd6kQce8NZsG4t7c8+xxWPP8rWnh7Ezp1s27mTlfPmEV6zBrF8BbrhAFEFgpQ4N0CUWlZY57PCOh+BRa+2K8ce/ok7I19DaDaz7SVoqTmcGXstK8JnomP4Xr+ZkDfSdbeIcvD3VfZHsofRaAyZVWuRSiVJp5MMD8vJVcYdxqipSeQlouT7pefBvDI/EWhVZSnI81pOJkndg9LxwU6coBuYuoX3/RJ7nEVJ4bXxhp+4tRDV7/KzkteCSCQYEBNC8PmHPs9XH/sqn9rwKT561kcD7RfELMs6phlCkNm9QQGhOzGlnK1fv56RkREee+wxzjxTiuY/+uijjIyMsGHDhpL7KTD4/PPPc88990xbH/FlQFjGhBDs3buX559/nhUrVtDe3s7hw4c9cXlCCL7/1Pf5+7v/nnVt6/j5VT+vWKvxaNl0GcLx8XGeeuopamvnk0h0AM6L6mb9vO5ix1QsYXlA6HKXmTqRiJ0rDF9530IrBMClsov9TLo1+5icTNLW1kY0GiWdTnsGcDnIemUoZOC2ci2qmKXyQLyw9F6hOa7I4AKthaBVtuMPgkIhg7q6WurqFMsySTKZYnBwmGy2j1gsmmcPpZ6fv6tV1xX760xoqg8yk3gwl0lcUxD3V72uYZGOJIJHQj/kgfA3Odm8gsuyn8UgxFSrU5Q3zfWv3+Sr7n9l9lAKJjuTcLFLqMyFMQzEiSdgnLiS1YcOoT3xBPFnnuGWw4dZfcstdNbeA6efjnXaKYh4YfKTt4yfZJt05ohlzDGXsd58KylG2G08QZfxKM8ufIhbog9zp6hlsbWWTmsdS1lLjAbAmzQxddPIZGzPszEVlkm5aEMhnbo6yR62tFg5aaYkY2MjOfYwQiLhZC6rRAopz1Xa/S1jbyufayUx7Eqi1EqHU9VAdiqQaCX3L6c36154qvadJDor/wwq4BiNVs4KFkLwsXs/xnc3fZcvnv9F3nfG+yruU40d6y5j27aPSOm6E044gcsuu4x3vvOdfP/73wek7MxrX/taT0LJypUr+dKXvsTVV1+NaZq8/vWv56mnnuLWW2/Fsqx8vGFzczORSPVZ3i8JQHgk3LKmabJ9+/aiEnTSfSjfslQ2xfvueB8/f/rnvG/N+/jShV8iHLhqxZG36VQr6enpYevWrSxcuJBTT13I00/jcb+apuaqPFJqEtMIhyGTKX0cldnpblfXTVRySjUmXcfSvesHkEqZqpahaRoLF85HSqWoiUDkBlPp2ioHZNx1fyVr6F+Wz+3aLf5NVZrQcpNVUOTkv10lwWvJsjiJKdlsNhd7mGRoaAjD0KitTeQm0lieWVGZuEW9EDAwMOiqSRzN9cNxuwdlXNzmcXWR5Y7w59kWuolzsu9lg/kuNCpXe5lKPJjXgu3rxx6qbG31DCmwrvrslVUpPZ7lr11bG/YVV7DkwgtZtnkz2ubNPDU+zp777+eMBx9i4ckrsc44A1pb8+OjW4BYSY6oOGPbFsS1Bk60LuZE62LW9PaQndXH3ugTdOmPclv0ywDMtZbTaa9jqX0Ws1mSZw+nYupcDEMnm53aOKVpepGLVrL2GroeIRaL0NDQiGma+aopo6OjgJZPTInH44TDoZLAKmhd8ErJJ+U0VxWbCxIERqMGmYwcB93n5W3Pnx10tVr0WWXRy/29/Y5Gy8MBW9h86I8f4ifbfsLXLv4a7zjtHWW3n4od6y7jZDKJEMJXYm669vOf/5wPfOADXHrppYAUpv7Wt77l2ebZZ59lZGQEgAMHDuRFrFetWuXZ7p577uGCCy6oug8vCUA40zYxMcGmTZsIh8NFJeiU9Mzu4d288cY38tzgc/zk8p/wppPe9CL22N+mUq1ECMGuXbvYvXs3p5xyCnPnzqW7Wwq0uk2NTc5A5j9o+iWLeK2wLq9GNKqRzarqHtWBffdEG8T9lE6nOXz4MIlEIpckpICFYm6s3HlUU0FBwzBCgIVa7DrZ0pUC9J0EhWoAcanbXC2oDofDNDQ0UF/fQChkMTEhK0v09PQghCw9VlNTQzyeyJUZc/dB0NPTi2lmczWJneFluq5a5QKbFCP8NvIR9umP89rMFznJutyzzUy5hIvNcedVY+56yyqEQSXPSNbJXTVlCvJZdXXY554LZ61n1TM7OeHxx9nf38/E1s08t3UrJ3XMJ7R2LaJzCRiahwlzu0wVQAQ5Bgz0DbC0YRnz9ZM5h7czwSC7jcfpMv7Ek6GbeFj7H+KigcXWGjqtM1lsrSFOdbFLKsFDHlNdr+D7y3fUaUOFK0jGz3uvQqEQdXV11NXV5cI90qRSSUZGRujr6ycaDVNbW0s0GiUSiRQkpVR+toIwpsoVXNiO0rRU7RgGOTBYvL/bKo3v3hrMep6hVmOZ0xe5XSRSGg6Ytsl77ngPv3rmV3z3ld/lLSe9pcyZTt2OdYZwYmIC4IjUMm5ubuZnP/tZ2W3c48OiRYuqHy8q2MuAsMBUCbqOjg6WL19etFoxDIM/7vkj7934Xhpjjdx3/X2cOufUF6m35a1al7FpmmzdupWxsTGP0HZzs//2QmhEIoJ0uvQo7mTY+f9eWB5OJYKocS4UsjHN4CtGlU2o6hSXM5U13dTU7NFtUhNzKASaZlVc+fuZcs24WTE5xxRL5xQnjzi/BRG1reSCri772ZHNEAJisQSxWII5cwSp1CQTE0lGR8fo61MuuBoSiTiGYdDT04NhGLS1tVFYk1gGuauYxqkNYmP6IX4Z+lvGtB6uy/yABfbaKluYjidBY7oMo3zW9fwiQcanaWSzUtJGCIFpmjnXu9I99LKHJZ/FcAhxyilETj6ZpQcOYDzxJ2LPv8BNB/bz6gP7idU1EFpzBqw6FbuEDJW77X379rF0aWeeYa7RmjnZeiWniksRlsV+8TRdxmN0GY+xI3Q3mtBps1ey2DqTTutM5oglaJR+b92Z9FLM3omXDWpOtroE1e6SmE4t5+L2dF3LZSbHciybxcREisnJFENDw+g6RKMOe2gYRlmmvRr3uV87oZBOOp1FVUZx2HDNFYfqBYRBYqvdQFaNMd5ja57wlljMHw5krAzvuO0d3PLCLfznq/6T1698faBznYodDwxhKBTyzSN4KdjLgDBn7hJ0J598MvPmzSvaxhY2vzz0S376p59yaeel/PSKn9IUa3oRehvMqkkqmZiY4KmnniIWi7F+/XpP/MGsWfgOsLZNRSZPJluUW2E7gFDG59noupN9KOsf2zn3a9DJwvYVm3bbwMAgo6MjzJkzt6gMkYzjgXTaGUynFpbgAAh1G3RdVjEB6R5X8WVq+8LDVBKrzvW4bC8sq3QGp1vOQmb9en/LH0FoRCIRIhFZesw0bVIp6Vru7h7GtgXhcJja2jrfa1VJeqOSdWs7uCH8HgwR4a3pnzFLdPoeo7wdMfowkBWKO8tqEqpqisHIyDDj42O0tMzCyTJX994BkmVN0xDz5yMWdbB8cIiVT21C37KFO8dGmLhnIxseuJfWU07DPv10aCmx0oP8s+Bo82m5/srSlB2cTId9Mudl/4oxrZ/d+uN0GY/xWPhXPBj5KTWimU5rLZ3WmSyyziDqSfYpBlBuse/K19HJjHW3WXwpSldXUWYYUgeyvr6W+vraPHuYyUzm2MM+otFoLuGqmD1Ui6egVjgcO6BPxZs6vzlZx+4sbK3o+1KmWHWVmOKOW/UzvxjCSXOSt936Nu7eezc/u/xnvGbpawKf61TMtu0pxb4dLRsfH6empuaIhKkdC/aSAITTvTmZTIatW7eSTCZLlqAbTY/yjlvfwc37buYDp32AL1/25WkJcB4NC8oQ9vX1sWXLlpKsqEqScjN9hQOXnztNupOdv/3GIRn4bOX+drJ1Qa6cTVPkGITiUm/lrHQ2n01vbw+ZTDafNV3YHyFkpREn1i2Y+7n4WN57oK6Ho0NnIbOpy4PdUlUilAVxj7t1/Bw3djEILOy/+2931qIK4Nd1g2QySV1dHbquMzw8RF9fH/F4LCeInSjrigpiL+j3cnPk75kllnJN+hvUMLUyUUfOnTw9E0IwODjI2NhYLu4ylr/O8r4rYWwN07RyiT5y31JsihBAQwP2hRdgn72BS7bvIPX4o4wND7Nr01OkNj3FiYsWoa1di1i0qAhNv/rVr8r/rd5tIew8W+kWvq9jFqdar+JU61VYZDmgb8+zh9tCd6ALg3b7JDpz7OFsrZNC2VD3OOFnauGiBKQVuClnld8bP2DqsIdNTc1kMhmSyRSpVJLh4UFAzwu9V4o99DO321i5aw1Dylf5CcerBbI6V11XlViCx7MqMKgyeN0Zx+o5C4dD1NV5Wa9kNsmbbn4Tjxx4hP+78v+4ZNElgc9zqnasM4QKEL5U7SUBCKdjqgRdXV1dyRJ0O/t38oYb30DvRC9fPOWLXHfqdcc8GITKDKEQgt27d7Nr1y5OOukk2trafLcLhTTicUEy6XWZuQc2J8EE1+/OircUSyhBhqpEothG+ZsblCng4nccb3vO/oWMlKz/241hGHR0tKPrXspFlZ1T4EoCJ68MRLWmXKWy3JqT6OKs+h1JGZmlrOXP12mjNKCW51u+c+6yV0LYAUF1sUtKaUYqU5nEra0ykxigpaWZbNbMJaakGBgYJBwO5SqmSJalmvH+KeMX/DH8RZbZF/Ga9JeJaOVcNZWC+o89RCiEoLe3l0wmTXt7u6sMpLxIUj/cQAg7t3iQiU4K3JcSxfYsMCIR7NWriJ+xitiu3cx6/HF27NnNLXv2cPWePYw3NpFYuwb7pJNk8XLgzjvv4vzzz/ewRraN6/lVzKHuGmcEBmEW2qtYaK/iwuzfMKJ102U8Tpf+GA+Hf8Z9kf+kzm6V4NA+k4XWKiLE8zF/3uQQN3vtvDsqWa4SEVDeo1As5lxotm3nYmrD1NfXoWmtJJNJUilZb3lgoJ9wWFVNSeTYw7JNuvpvu2Ie5bUrxeCrMVb+rgViB5WFQgaZjJVnF90mQ2vk3/Pnt3hi98YyY1x707Vs6d3CDa+7gXPnnxvoeNO1Yz2GsBrJmePR/qwB4cGDB9mxY0fZEnQ3PnMj7/z9O1nUuIiH3vYQw13D0xZjPVpWjiE0TZOnn36a4eFhzjzzTBoaGsq21dAAExPOACoHGG/ZuUIGrzCbtLT+nju43f29lvvPkV6QIFGCNr/kDMNw6ghLwWvJjKVSKbq7u6mtrWPWrBafwVHJyXizPVUlkumYAoSORIvt+U2Z+9rJeCIHHJZiO0rVapZuJQUYRS6mMXjGpF+Wtmk64NYvk1hZOByioUFWTFHXPplM0tfXh6ZJeQsZn1W6YorA5p7QV3k8/F+szb6NC8yPoGtGjkX2vx9H0oszE20XVtNRMhGWZTJvXnvJGr3y+FLYWCWnlBbF1ovAoTx2LjZt8SJYvIgTBwY5+amnSG/bxl3DQxh33cV5991H/WmrsE9fTXPqMGy7G7O1ndBCGSOtZFX8K+kA6HkAp96ZBjGX1eblrOZyTDIcDG3jBe1RuozH2BL+PYYI02GfzKLMGuKxdjR9IUbeJVz8DDrnWfmGlCsZFzScRrntDUMu3OJxGVeo2LXx8SSpVJLR0REkexjPb1MYR+tcL7VYtVzflWf5lUZioXZipb5ns1aB+Ldzzu7Y1OXLnbJpQ5NDXHPjNTw3+By/vea3rGtz6useaTvWGcKJiQkSicTLLuNj2aq9ObZt88wzz3D48GFWr17tKxxp2iafvu/TfO3Rr3HtCdfyvVd9j5pIDZv2bjruAWEymczXXVy/fn2gANmGBo0DBxy3roxPkStcpyqJ417yM1WRxAsS5URXyHgoc9yutus7yYj4sYV+xx4dHWVgoJ+Wlhbq673AV56HXQJUafljTceUtIZpehNUyj23QjhsnHIJ+5WRK2Q5HFalOLbJyzRUb5JltDl8uMc3k9jPdF2jpiaRr5hi2xlGR8cYHR3PZXdG8/WWVcWULClujXyM5/WNvCLzSU633uzpQ6kJsdL8rp7bF8u8lXyydHf3EInozJnT5usudJs7O720KDY4Wct2XvpIhlsU1MhuacZ+xSUY557Lldu2Mvb4E0TGx/jT449x4t7H2NALPNsNbCO5agv6JdfnFzSl74HIL2AUGJKgTG4b1qIsNE9nIadzcfZvGdQO0qU/xu7Q4zwY+ynW0iyP2HNZYq2h01rLfE4hjHdsqlTC0G2qWkwh8Ku2wopSUlB6hzITWMe2i2MPk8kUw8MjrmdbJqe42UPp7vYe3+2O9zMJxPVcnHWw8kuGEUIIy6Nl6K1Ukj9DVqyQMfP9yX6uuuEq9o/t55Zrb2H1nNVBL9OM2LEuTD0+Pv4yQ/hSssnJSTZv3oxt26xfv74ooQCgL9nH9b+7ngf2PcC/XvSvvH/t+11uvemXgzta5jcYDgwMsHnzZubNm8fKlSsDr8bmzhVs3+6o9is3r3Msrcil6zdBF07ImkbFjGDLKnb/CuHUFlZ6f4VSLUJAb28/yeQoc+fOIx731pRW8YJ+/XSy/WTGciQyBUkQzzl4436qWcQocKgAmSPV4QSJK/eTH6vitOPUjZ2KmWaWnp4edB3fTOJKpmkQiYRpbGzIJaZYrsSUEXl+tWk2zvkUg3oXr8t8k6X2BVW1P53fj6S5JWUymQzd3d3E43Fmz24OFNtYOrbOGZfASbaQbVp59lDTbJS0jQd4xKLYa9dSc/oZaLu7WL3pHmp2D3mOkdh8mMyKTYiFq3LHqNxXr+SJgfICyHFDbjNLtNFsXcka60omMmNsHbuH8bl7ecF4jKfCtxISERbYp9JpraHTWkOjaKs64794vFFxmFU1A0hwGw4bLqbOMXfsITSRzcpnW+oeDqNpOolEjERC1l1W72tB78oeXzKjwfsrwavXK6DYY3dVnTlz6qmrS9A93s0VN1zBYGqQ299wOyfOOjH4wWbIjnWX8ZEQpT6W7M8KEA4ODrJ582ZaW1s58cQTfR+8Jw8/yXU3XUfaTHPbG2/j/IXne35XOoTHgxmGQTqdBuREoaqunHDCCXR0dFTV1sqVsHGjyLEU7uxHaaoqiRKstizNF2gVsoTyFgjP735WKgZRtqeKwntj9Lq7e3LuuPlEIiHPvrruZHH6mRp43f9OFQ/K1b0KGp86qFTMiwJ0hiFyGdhOgkglC/roFm6XTqfp7u4mkUgwZ86sqgLpC02yKyJXMUVqwwkhOJR5ht/Vvp8sac7v+hI12gpGEiO5xBRVGWjKhwWmdx+nYypcYnJShi7U1zfkxe6DVMGohhVT45oUnraxLAfAqHq2To3fHEA0dMTSpTC6CwoAoQDs+/5IaPEY9qpVWLW1gYGJvN52vvpGKKSRzRYDspCI0TZ+Ggsyr+ESTTCo7WeX8QRdxhNsDP+QP0a+R7PdkQeHHfbJhKhcBMD9mBaWbZuKSXBdwLb6WDhsEA7XUV9fl3PdTjI2NsHw8Ag9Pf0kEmEikViePQyiZOAs3kXF48ttbY/Wo9vkMyKvx5Ils9k/up/Lf3M5k+Ykt7/hdpY1Lyvb/pGy48Fl/DIgPMatcnCxtwTd/2fvvePsOOtz8Wfa6dv7rtpKu+pdLpK75SLbsjEGY8BgfiQEEpJguBDuTUi4EEJCksuFJJACuSQkpFAcY5BlW8ZF7lVaSbZky6tite1n6+kz876/P955p52Zc+astNJK0ffzsSWdM+WdOTPzPvN8v8/znTt3ruc6P9z7Q3z28c9idfNq/Odd/4k51cWg6XxkCHVdx/79+5FMJnHppZc6PPeCRlOTiPp6HcmkvdC5+C1Z12GKQ7QymQ2L3aPG+v6mzdxf0MsLjINFXsOoqir6+/uhKAo6OjqMVAuvnxEgy169l4v2CMBiduxdUCoJtk8KrjAuZ4dTLpjCko+POLrAMFDM0/fegBwofxxuX8N0mvUkrq2tRU1NLaajuLaPER4t4E5Ir+PBmvtRRZvx0cK/ItrUZHZMcQpTYohEQp7ptWBM2/SYXjbu0wPz6XQKw8PDaGhoQFVVtfF58HqwyoOlGMNh2WSouUCDb5P9Z0tFN7QB2OvYigwdalaE/NJLoC+/DLJ0KXDJWuht3iI0+3XISxeY16JdiMLap9mOEKwsgl23DXQeGrR5uEx7H/LI4Li8F4fF1/C29BxeVx6CQiOYr69lAJFcgmra5HPerOvEq1dxpSEIEnRdtYk0Sv8uPK0fCoXR0MDaCaqqikIhi6mpFCYnGTOuKIoh+PJOmdqzPaV8XY1RAmAvAX5jZACU/T3SnsetP70VAgQ89sHHsKBmQdnzMFNxPjCEF1PG53Fw8cTY2JgvGMpreXz+ic/jB3t+gN9Y+xv4vzf+X4Rl77o6O+s220OSJBQKBbzyyisQRRGbNm1CJOLucRo8Fi4UkEwKppDBm63joM6/SJqBK+456PQhLAU2vFLHPJgKWUAul8bg4AASiVpHo29CYHTWIEaK2n8/dqaRbZuW3b/3cVqdR/hD+XTYKUmywC9vz2cPi7V1Cnv4eeXHxNPPfiDDbhw9MTFhKonj8YRxXMFYEq+wd2XgsV/ahkeUP8JccinuKnwbYVQBClBTU4OamhoQQmzClCFQqpvKTiZM4RPIzFF/QQGAX0xMjCOZTKKpqdnFMJS+V4DptfoDrGvN7iXIUpX2a5qY/6aUAh0rkF6zB/G9A3wrmFrbDmXeZSC7dkE8dQrSW29Bemsf1LY50DdsAF2yGKIiGS9dHHRa42Agz34AXBDDavz4S5PzfFgRojEs1jehW9sECoph4SiOGOzhr0J/ByoQNJEFWKhfgk79EnSQZUZfa75/0ayrPJ3g6mBn2Yz3fcRV/fZ9csGNosgIhaoQj8dBCEUul8Xk5BQ0LY/jx08gHA6ZqvxQKFRkfO1W+7tDUUSoKn8bLx4bLymQZRGZWBK/9sz/QjwUx7a7t6GjqmPa5+dMxEWG8NzGBQMIvSY43oIuFAoVtaDjcXLyJD788w9j39A+/P2tf49fW/NrJfdzPjGE2WwWyWQSHR0dWL58+WnfaIsXA7t2cUah9MTI0pv+voFWKtYOCMuPwUuYYuwRo6PjGBsbRWNjM2prE+byPIIq9OzKXXexfzkwBdgmV/BJz+49WDlLyIAgtQE6Gjj1yesgrWOzFMya5r0NzqYmk6NIp9OmN549yk1K/mGJjwgleFH+BzyvfBertPdhi/q/IXmkAUVRRDweRzweN2pH8wa7MuUo3q+qikCWg1l/VBoc7FQa3GMwnZ7yPI8Avx5K73s6wdWxXqy6vaUeHydnD4UbP4r04n3A6ADEplYIHauhCwBduhToH4C863WIB/ZB6T8O+eHj0J+ugr5uPfS1a4FYtGhfpdurEeOeEA2TaC/nAOt+ESCgmS5Es7YQG7V7kMMU3pX24Ij0Gt6Qn8ArygMI0Rg69XVYqF+KTn0DalA3rZcX9/nix8GeCcR2Dzpf+Nj9qrtKVJzsJBcAiaKAWCwGzUinNDTUGy8/WUO5zERZkQjrJc4sZ/yvQ1m2g0HvZxX3dx0SjuGn4l9iTqQNv7z7l2iJt0z/BJ2hOB8YQtbi9MKMCwYQuqNcCzoAeObYM/joLz6KsBzGUx99ChvaNpTd7vkACCmlOHHiBI4fP45oNIoVK1ZUJGLwi4ULYfgROlkke7C0KBeL+PsGMtWe4HhgBZtv+baslC+zQRlCKpVBe3s7wuGIzYuQAVjOqrG6qmD1dkBxgTz/zG99CwyysbIibuoCpsFAoRsI2kZgS9lXqrBn63NvQwYO+dgZu6tpOgYGhqBpGtrb2z29OdmYKmfMTGAsqnhE/ArelB/C1er92KR9CkKAYxEEIBIJG2OqM4QpWWQyafT1jQFgEyw3D3bf96fD8lWKB5nH4DAKhTza29shy941b+VuzdMpMQjattDNHkqda6HP001ww2puAdrSiMJtt0K/7loIPa9D3LMHYjoN+fnnQF98Cfry5SCXbACa2aQZhN1kzwpi3Keicb8QcCeDUscfQRWW6ldjqX41KAgGxMM4Ir6GI9LreDT014BA0UoWoVPcgIX6BrSRboioFHA4QZW3dRNXfRcLTuDRmYUdt1j07FMUBYqioLq62ki155FKpQ3Ddw2RCHv5iccjkGXZ8Vz3aqHn9awiBOgXj+Bnyl9gfmI+HrlnOxqiDTjXwbwmZz9D2NnZea6HMWNxwQFCSil6e3tx7NgxrFq1Cq2trZ7L/M1rf4MvPf0lXDPvGvzrnf+Kplgw1D/bASEhBAcOHMDQ0BAWLVpkeL+dGcpEkkTMmUNw8KCVvvQfBwMrXqDQKSqxHrZBMzqECKa4ghAd/f2DEAQdHR1zimxQdJ2JXJixr2CCsVJsj30cXgCC28i4J1qvhzEL7xS3X/C6o1KXGVcLTlcxbGzFSLVbn+i6ioGBU5BlCXPntpmMhNckWKl9Bz8POUziIflzOCnswh2Fv8By/faKRm0fCxOmJFBVlQAhOvL5LNLpLEZHR6GqqtExJY5YLGZcG2cHDOq6jsHBQVBK0dbWVkaRXRqkTlfdzq6h4OuKIr/2YIp+uH+ls/aQgEQiEK64Ati4EfLBtyHt2g1xcADym/uAN/eBzJ0HXLoBWuciQAr2/BEE1teZG3DzWtnAL28Q0Ua60Ua6caV2LzKYwDGlB4eEV9EjP4qXlJ8iQqsM9nADOvV1iKGm5Da5Kto+BvdziteXOl8G+fr+XVWc3qK0qC5WliWIYgThsFV7aLGHYwBEsyNQzGBmvaymnPsUcVI4iJ+G/g+aaAce+eDsAIOAdZ3PZoYwk8lcTBmfDyEIAvL5PPbu3YtcLodNmzb5Fn9+5vHP4P/1/D985pLP4BubvwFZDH4aZjMgdFvqTE1NYXBw8Izuo6sLOHy49EOaEEBRrDSYGxQ6U6hsMmRvssGBq64DmlZAX18/wuEI2ttbPdPTTNzCwKldeGK9TQuu5Z1AzC89zNlGyz/Rqhd042+vc2Wl86wvrR6t5Y9fFKlh0j19Oxye3uLHm8/nMTjYj2g0Ynhz2tPCFNzj0L2NoO8bogiM0VP4Wei3kBaGcU/+/2EevaTicXszRgy4cFNgwN4xJY1kMmn0Wo4hEokgEolU9KJUiTpZ0zSjI46MtraW0/qNvLwngwZLB7uVXZwlZ3/ndacMBDpLG+wiED5HWybYFKJIoFMB6tJlUJcug9TXB2l3D6TedyCeOAacOAa5phZk3XqQVSuBqH/9Mj89XPXMBRGnI8SKCzVYWrgWy4RrAVHDKRzEEWkXjki78Jb8LEAFtJFuLNQ3YCHZgFayCAKcF7ifEIX7ijIbJ8vnzw3ug3YVsQQgLBhYdCqE7eyhILC62nQ6g7GxMQwPDyASiSISiZiqfFbHaJ1bURRwhL6Bn4e/jVbSif/R8nU0Vc0OMAhYLUxnMyC86EN4nsTExAR27dqFmpoabNq0ybcDAgA0RNhN8P2e7+PQ2CFs7d6KrV1b0ZZoK7uf2QoIx8fH0dPTg4aGBqxYsQKSxHrMnumxLlsG7NgBMOBDfEEc+9wCXFYnEzhAkCCIZpq5kqGm02kMDQ2irq7WVzXNJlPrYc2FJ6LIJ8Vihq04Fe5vtG0JPPzBIF/OK3gnFVZ8HgwIWuO0gFgQywq/YCpvgkwmjeHhYdTX16CqqsbzONxsIsANiHltlbWc17EMiG/ip/KnodAoPpr/TzSLndNmON0AzQuwOTumEGSzOeRyGQwNDYFSaghT4ohGoyW7hFQShUIB/f39iMViaGxsNAFO6Z66Z2TXHttlymJZdoo9glxnsuydarY6ofDSEGKyh6SjA3p7O4SpaxDe0wPs2wdxYhzizqdAn38e+soVIBsuARrqPPZoL38QbPcVZ+kqUwjbW/oBgAgZHWQpOshSXK1+BCmM4qi0G0ekXXhN+QVeEP4TMVrDwKG+AQv0tYhL1SXS7bwVpVfZBn/J9U4VW2N0H78VDCD6Hx/zNYwZLzYsxZ5KpQxj7HGIooRYjJlih8MhSJKEw+Je/Fz5K8wlS3Fn7nNY0T27Up/8XM3mlDHv236hxgUDCA8dOoR58+ahs7Oz7OT4x9f+MT62+mPY3rsd23q34f4d9+N3H/tdXNp2KbZ2b8Ud3XdgeeNyz+3MRh/CkydP4q233kJ3dzfmz59vjpv3/DyTkUiIaG7WMTjInfv9awl5Szseug6EQtRhlcLrcxh4C1ITRzE2Nobx8XE0NbUYXQK8jGL9HtYMBHGls6IAquoct2N0Amf/PEZisChWr+DiZbxawNm3zRWXlRJIFjPJJ+/pAStCKNLpKYyMJNHU1ITq6lhF27KUzcVh2Y8AveJTeEj6AproYrw//13EUI/p1CBa23aqnMsxeEyYEkNVVRz19fVmV4nJyQkMDw8b7fRitp60XpN8aUCSzWYxODhoeAzWBgbpfiKtUilfPmc6d8FfKth1r6rUZJ2tYwgyHpQAQlZwcGhnDwmhEOtqkb/mGtCNGyG//TbkXbshjo5A3tMD7OkBWbCQqZM7FwBmmtQOgISie86ujGXG0qWPxc3sua+NBOqxSr8Rq/QboUNDn3jQUC7vwpvyUxCoiHayFIsEBhCb6ALAYNSDpeLLn2v7s4YBQPajBmVEWT9k/mIporq6GtXVDMTm83lksxmMjY2jUMhjuLEXzzb/Oxaoq/E+8lnIkoLFi4vLqc5l8PrB2dwWjreuu1DjggGEGzZsqOgNclHdItx/2f24/7L7kcwmsePwDjzc+zC++fI38dVnv4oFNQtwe/ftuL37dlw550ooEisIn00Mob0F3/r16x02K0DwdEWlsWiRgMFBUkLxC0MNWswiMusWS33M62Y0jZb116KUYGhoCLlcDu3tHQiHwzbgaU+9lm9cz8YimCBVVb3rGP0eTgwIWZOUf39d7/pB7oVopciC9Wc1tuAY53RTx0yMk3QpiSu7tlnK2NuChoPFXdKP8KT0DSymN2Jr/htQwFKHLCVGTNDonkTt6Uz3d35ped7Wzd5K0Q62WE2X6Egt67qGTIYJU/r7mS9cPB43rD+4MIWa27fvn/+ZSqUxNDSMpqYGVFdXm/sLpmynjr/bGThub8KPh/sGlr6tBbM2dzqZ6ul2s+GCEAZWJSAagb56DfRVqyAcPw55925IR45AfJf9R+rqQdavB1m50hynxXYX75+zhtxXtFRPa/dzr5S6X4KMuWQF5pIVuFb9/zApjOCIyFLLLyk/w7OhH6GKNhi1h+sxn6xBGMVqant4CTz8xspfLHldcLAey7y/Mv+9rHUkSTTZQUkCdqvP4Jn4v2FeehXWH38v+pUBtLbWgpAcNC1aMpt2NmO2C0oopUin0xcZwvMhTuetoiHagHtX3ot7V96LvJbHM8efwcO9D+PnB3+O777+XdSGa7Fl0Rbc0X0Hrmy90rQIOJeRz+exZ88eaJrm24JvJhhCgHUtef55lnr1C/6gcwofqPHgEsyaQv67MXZB8gWYvPerIABz5syBJFmXLu+8wM1WS7FWXlEosPUVRYeqOlPEXjWE7gc2IYLvBOD+yC4Y4cfOQW3Qn8p9juyp2qC3ASEEg4ND0DQV7e3tiESUabOMfhY0BDqeVv4Sr8v/gsvUT+AG+j9AXMAuqDBGEBgQ4EIDDpqs39rq5WsHQl5F/s70JGutlkgkkEgkQClFNptDJpPB6GgSg4MaotEoEokQIpGoqbi2NksxMTGJsbFRtLQ0IxaLG9chNc8Nr11lim4RFjPKQRuFvXOOlZr3Amblf2CeHraWD8K883WDsYMAPGt2eaqZXdvMBB6QQBcuhLZgAbSxMcg9PRDfeAPi2CjEJ58Afe45RJYug7Kw0ybW8meP+XniHobu1Ks/Y12ekaYUqEYj1upbsFa/GURUcRz7jdrD3dgnPwGRyphDlmERWY9ObS0a6ByHQp6DumDgTjDHHPwFnnqCXq/YK+7Ejvj/w0r9StwifhJ0rgBAxdy5CRw6dAi5XA61tcyztaGhAbFY7JwxdLPdcga48I2pBXo6DVpnUWiadsbBD6UUPYM9eLj3YTzc+zD2De2DIipYHl+O/+/y/w+3d9+OeTXzzug+g8TExAR6enpQW1uLlStX+r7hZbNZPPPMM9iyZcsZv8m/+U0dqkqQz4ueaVH7my+fkNhy1uUmyyxde/jwEXR2zjcfBu70Xz6fM+uympqa4PYGlCRe6M5NY6fDbgCSpJu1jlxQ0dfXh0QiYbI+drNp+zm1Kw2dYX9zR0nw4+4Q4heSRDy3U277PCzRg4Tm5mZIkmSCaUHQfSdUv+CAzH6JqchiW+iLOCQ+hZvUL2Od/mGIYnFq3+2TZwkeWDCGzNtHz36u/c5J8VgpBMG7S419v/zvqqoinc4gk5lELpezdUyJIhyOIJkcQzqdQktLKyKRYp9TqyNEqd+dWbvw4xJtaVT28lAJe1zMTlXym/r5FvqFfdusZq58OpdSCuTzEN54A9Lu3RDHx9i4AaiLuqBfsgHC/DmgAcsJuGE0f0nwu//t59l7XJbnITfOd8e4MIAjUg+OSLtwXHwTmlBANWnCQn09Furr0CmshqSHbPsszRSye5ZgeHgYsqygrq625LHanzMMQPEX6uJj3i0/jidC/4K16g24Sf0YBIjmtfXBD16ORYtajE5ASSSTSYyPjyMUCpngsK6u7qwCtNHRURw8eBCbNm06a/usJLhjwCuvvIKVK1ee6+HMSFwwgFDX9Rln7o5NHMO2g9vwo1d/hP2Z/dCIhrUta7G1aytu774da1vWzvjbVV9fH/bv349FixaVrZcsFAp46qmncNNNN53xG/uhhwjeesti1NxXkVPdxlu/FdfeiCJFb+8RzJs337SMsR7qAlKpKQwPD6Ours4Qj3ixEsRQMhNH6rjScK8vihT9/f2IROJmxwwvMGgt73xrZ8dNbZ+Xr48Momb1O06eii4FjOw9ibnowdoupn0P8YkNANIYwX+FP40R4TDuLHwbi8i1ACyRA/u7YKS5iY3Rq+y3s5+roIDQGkdFu4IkEaiqZnZMYYIt1mmntrYWiUSVpzClVA2qcxknULFAFk9zO4FiqWN1gzpJ0isQbFV2Yvh5t+xVKn+byO/fD/H11xAfHLD6lTTWIb/+EujLlkFQlCJ1e3Hw1pblDtT/e1mWQIgWuMyGSHm8S9/AEakHh6VdmBCHIFEF88gKLDTSy7WktSQzyZ8NIyPDkKTSgNACtIJZZuHHRL4iP4xnQv+Jy/TbcG3+QyaDKYoColEFn/3slqL0rK7rGB8fNwHi2WYPR0ZGcOTIEVx22WUzto/TCU3TUF9fj6NHj2LBggXnejgzEhcBYYVBCMHjjz+OdZvW4dm+Z7Gtdxt2HN6BifwEOqo6WN1h1+24Zt41vu3vprvfd955BydPnsSaNWsCuaVrmoYnnngCmzdvRigUKrt8JXHgAMGDD+qGVYVQxh6DOh5m7nj33XfQ0bEAimJ/swaGh5OYnJxAS0sLYjF/7ydZJmaqi4Ga6aY+iU3dyMY5MDCAaDSM2tpqg63yBoM87MDIYi6Dj4enGkvdlaUmeA4gvIL1JB42ehLXFB0HY84qB0vWfglGhMN4IPQp6EIBd+e/hxa63BizAED3PB9uIB007LY9lbwMsHq86QAfNkZdJxgcHICu64jFYsjlcsjn8wiHw0XClGAgBXADlSDCArtox6q3LK5ZDAqWK/eVtLZdKbPIY2pqCiMjI2htbUE0nYb4+i6I+9+EpOVAAJBIFPrq1dDWrgOqErD8CZ1hpWmZsbpXr2vA+VJircuupUJBC1xywdczu5eIAkbICRyRe3BE6sFJ8QB0QUMdacMish4LtLWYR5ZDRqhoG4IA9PUNIBIJo6amxnNfzD7LYl9lWYKmqY5jBwAKihflB/FC6EFsUt+La/QPgJrqXcZWLlvWhve///Kyx3e22cPBwUGcOHECl1xSuRXV2YiJiQnMnTsXIyMjRfX6F0pcMDWEZyu4CiohJ/CBZR/AB5Z9AKqu4vkTz+Ph3oexrXcbvrf7e6gKVeHmhTfj9u7bsWXhFtRH66e9z0Kh4PBXDGqMyW/YmRCWdHdbptJWPaAfkBGMdKH3tpha0eoRSggxOmXk0dHRgVCoNLC2pxUZUyhMCxTy8fHWTmxsAvL5AgoFAkkSIcvsc7+WfLzfMUvrELC+zsGDd1WxW/Z47cN//WJ/Q0opJicnMTY2ZvQk9r5+GMMzvR7FlAIn5FfxX/Lvopq24oPqf6BabDXVoexPfxHA2YxyNjClQtM09Pf3Q5YVzJnTapYvaJrFHk5MTIDbglRVsdRypcxK0Ho39yll155gnvPg26Il06n+67FtT+cZw/pkj6Gjo43d49EoyC1bQK69BvrevRB3vw5xagLiq69Afu016IuXQFu/DlpbuylCEgTBVrdoGWr7iXnsvz0Djez6LBT0iq9DLpbj22wQ5qBBm4NLtTtQQBbHpDdxRNyNg9IreD2yHQoNYx5ZabKHNbQJrDRFt4lp3PuwHBgs9wgGem1LGf+neFb5CV5RtuHqwj24ktzFjg+WCA4AOjuDtajjLzdz586FrusYGxtDMpnEO++8g0Kh4GAPo9HoabOHuq7P6hrCTCYDABdrCM+HIIRAtfuHzGA8+eSTuPTSSx1qQh6UUrw5/CYe7n0Y2w9tx+v9r0MSJFw590rc0X0HtnZvxcLahYH3NTU1hd27d6OqqgqrV6+uWBG2Y8cOXHXVVTPirv6jH+k4doyYAglB8J9oZZka9jDF3x07dhitrVw1rOLUqSFIkojW1hbj4e4/BkFg9T6a5lyoUqaQp3d58G1OTaUwPj5udL2Iml0BQiHF8E4sVsYyxnJ6k6S1f+/ULxtn+e3y9e1K4paWFs9eutY6XDlOK2Q1gf3yz7Fd+iPMI5fhvYW/QhgJ1zKlWTnWSSbwLo1tWuC1EoZwOoykolCk0xn09w8a6fYG3wnQLkzJ5dJQVQ2RSNRQfsaKuumwY7Fq8ezp4krDfZ6ZWIqxS7wHtldMl+ETRSaWqWRdSpl11OTkFDo62iDLiue4RGigB9+B+PrrEE+eMD8nrW0MGHYvgWBL0zvrL73r9yzvRP6Cwpef3r0apPyAgmIYJ3BU3o0j0m6cFN8GFQgayByj9nANpFO1qI7XoLraUrBa2YLiHbhLESgInlR+hN3K49hc+CguI1vNGkMGtATDpkbE/fffjHjc/zlQLiilhuhqFMlkEmNjYwiHw6fNHp48eRKjo6NYvXr1tMc2k3Ho0CFs3LgR2Wx2VquhTycuAsJpxM6dO7FmzRrU1dWVXfbU1Ck8cugRPNz7MJ4+9jQKegErmlaYdYeXtF0CUfC+uAYGBvDGG2+gs7MTixYtmtYb2BNPPIHLL798RqTyL72k4/HHeXN6ljr2Ywk52PACaidOHEVTUysopRgYGEBNTQJ1dU3GA96qJ/QKBgS8H+aVgEJnfSOv/aPg5tOqqhrWJBlks1koioJ4PGYAxDAsax2uGKQmOzbd8AKFQdN/LPWtY3BwCLquoaWlxbMncfG2uUl4aYDGn/c6IXhe+lu8oHwHq7UP4FbyFUAvngy86kftMd20sSVYCl4nZ0/rBw1VzeDUqT7U1NSgtja4x6AgUOTzBZM9zGaZMIWzL8xY2JnKnG5nDr/jsgzauTUMTO9Oy0ZnehY1bNvBS3UopRgZGUE2m0VbW5snOLa2bQOaA4OQdu2CcGA/BM5kxuPQ1q6FunoNEIs56lN5hEKSmUK2WvBp5li4Unk6wYRNldo0URSENN6V9uGItAdHpN1IC+NQSBhzCyvQLVyChWQdaoT6IpaTW+ewcVv3CwHB46EfYJ/0DG5Wfw1r1M3GcVFDJEPMY5w3rwEf+9jV0zpev7Czh8lksog9DOrbd/z4cUxOTs5awcaePXtw5513IplMnjMl9kzHRUA4jXjuueewbNkyo71X8EgVUnji6BPY1rsNjx56FKO5UbTGW3Fb1224vft2XD//ekSVKOz9mFevXo2WlmAUv1c8/fTTWLdunW83j9OJ8XGCv/5r9kBkIIilUfi8Xlz0DwC83si67E6efBfRaByTk5NoaGhAdXWNMUlyA2l/02pmFVOqwD6Y8tY+Pv4gtlo/OdfXdYJsNmMCRACIx6NIJFjbKECCKOpmOm26dxhPF9lxUlAmTFU1DA0NQBQlNDc3BXpjt86BN0Bjv68lkNFRwGPKl/Gm/BCuVb+Ay7VPQhJFz9RjOUAYRHzhFbzMYCYBYSqVwtjYIGpr66fxYuXcj64T5HJcmJIF75gSj4cRicQgyyK8+mSXC0vU4aXILhat8JAkEYJAjR7CFe3S3CegBbrGKaUYGhpCoaCitbUVoZBckjX2VPqm0xD27IW8exeETJqlQ0UJZNky6OvXQ29uNvfFnANgZC6IyR4yNpp6MojBg93blbLpvE6T/8YUBCPyMeye2onBqncwqBwGFSiayXws1Ndiob4W7aQbAhUdjQBMUA8dj4S+h7ekF3Fr4TexUr/aUVPIOyExjz8B1167DFdeuXiax1w+OHtorz2MRCImOKytrfV9Fh09ehS5XA7Lli2bsfGdTjz//PP41Kc+hePHj1+wgPBiDeE0QpKkaQlYEqEE3rvkvXjvkvdCIxpeOvkSth9i3VL+ae8/IabEsHn+ZqwOrcba+Fps3rT5tOsVZsqLEABqa0U0NhKMjbG+upxN8xKYWM99wWFozW01Jicn0draZpgFWwXyjOXjxfnObTIWrvTDmLeHC1KgbweD7IHvXXslSaLNtw5Q1SymplIYGRmHqg4jFgsbtWNxKIoybfaFA2InS1B+Q7lcHoODg4jFomhubgy8b/v5pRQ2Gw82+VjpcQE5TODnoc/glLgbdxS+heX6VgAwLDsqr9Gz2KpKlcasdd5MvdZadW4tUJTK0mxenpqSJCIejyMej4O5r7COKRMTExgaGjE7psTjUSiKV8cU7+BMkFeUOjesZSJnWZkBd5BOIIDlORhEXcx8LwdBCEFbWxvCYaXsc8nzcOJx0CuvgHbFRuDAASZCGeiHtP9NSPvfBJkzB7h0A/TuLmg6s8NiAFAAb7HH0tzTB4M8I8LukcquWdb/2Oq2IkBEK+3EylEZV5G7IVcTHMYeHJH2YK/8FF5WfoEwjWMhWY1ObS06sQZx1IC9kGnYFvouDkm7cad6PxbrlzlqRwE2Tk3TzXrT5cvbp3XMQYObusfjccybNw+appnK5YMHD6JQKKCurg719fVF7OFsN6bOZDKIx+MXLBgELiBAeDZ/pDPRrUQWZVw972pcPe9qfOP6b+Bg8iAe3P8gHnjzAWyf2g4A2Ni/EXd034Hbu27H4obpvdXNVLcSHitXAs8+y/7OHpDUTJ/aGUJ32pcxiRoGBgZBCDULk91h2clw82eY22Y1MuXHyBikUiCFsVd2MGgZZvubTnObF0EIo6EhjIYGnlrOYHJyCtnsKCIRGfF4DNFoDIpSubgAsDe6L29e7VQS15rHVy7snTBkWTDtcvg5s497QjiJn4U+hbSQxIcKP8Qc4lQFerVi8+rY4vxeCMzmOvfFx1fJOsG2m0yOIp1OobW1DbFYCKpa2T1f7rcWBCASCSMSCUOSqpHPa8jn2cvFxMS4IUyx6lbd/puVjcX7uLlKGbBYU2YAbgEov+2ZoKYMKNI0HYODAxBFEW1tbYHbf3r1SWfXp8SukxUroC9fAdJ3CsquVyG89TZw8hhw8jhQVQ1hwwbQNWtAw2GzZlCSRIiiDlXlL/SCWZoSJFgmxG7zUtn9zMGz/dpgL1zsRSqsx7EcV2K5fiUICAbEIzgq78FhYQ/eCv89AKBVX4hOuhonhYPoE3vx3sLn0E02gILC3bKP/6ayLKGuLo66urMriJBlGY2NjWhsbHSwhyMjIzh06JCDPZztopJ0Oj0jtfizKS4YQHg240y3rxMEAfWkHpepl+Hum+5GdXs1Hjv8GLYf2o4/ee5P8KWnv4Tu+m4mSunaio0dGyGJwW6cmWQIAWDDBhEvvGCl67jfIAcVFsvmfHAWCgUMDg5AkmSEQiGIJY6HgUGnxYYosvRmUKzrzxTyDhH882JbGXZMzjQeT5G7U1qKoqC6ugY1NVW21HIG4+ODEASKRCKOSCSGSCQW+G2YdTIRS9YkUgpMTk4UKYm9VMdewdPBmmaldr1a4vUJ+/Bf4d9CiMZxX/4nqKcLPMfrdb6CHGelwUFLJQxhWREApRgaGkahUEB7e7vJ8lYelawjQJYlhMPViMftHVPSGB1NYmhIRyQSQSwWRywWddSD8pejklsXilk8v9Q0s3CyXgT4C5EleqE2IFg6mCp7AKGQgubmZmNbwZ9H7muXgUG2PnsmUJA5bSh03AlcfwPE3bsh7t0LcWoS4s6nQZ9/HmTlSggbNgCNDeY2VZV5ivJ7n2c3rH7CxWMpBoPBrmseFsgu/j087XAgYg660V7owpW4G2mM46i0D4ekXXhF+iUEiHhf/gvoJKtNE29e+8teVrnlEXuh7OqafunRmQgv9pDXHr799tvI5/OIRqMmSPQiCM5lpFKpC1phDFwEhNOKMwkIKaU4fPgwjh49ipUrV6KtrQ0A8PE1H8fH13wcGTWDp999Gtt6t+Hf3vg3fOuVb6Ex2ohbu27F7V2348bOGxEP+b+1zDRDmEiIWLiQ4J13rC4bzHrFSpm5U2fZbAYDAwOorq5BU1M9Tp48GSDlxB7+TDFpTViVHFrxWKyUMy/Y9gt2TPaOCP7pal7350wtUxQKOaRSaSSTo9B1ltKNRmOIROJlBR+s5zJrs+cOS0mcMXoSh4vW9QOFbKzMIsetQuV/5wDgHfEJbAt9AS1kGd5X+DvE4G+l5P5dgrFy0xNUlPrdKg0mxBkEpTDYLKt7TqVRaRrbbRXD+9FSSk3mOZ1OI5kcMURNceMaKp/Kdo+f7av8AC1waJkh85o8+zJeUSioGBjoRzQarbje2jZycGAtSSIo1SHL1HgZdO24KgFy7TUgV1wB4cABpk4eGYa0pwfSnh5gwQJoGy4BXbwQ4XDItHvh1z9gnX92TBZ76AUG2XLBfmR3BxUOCPlLJSuZKEah9nXiqEW3fgn2yU9BRgh35T+P+WSFbR/W+LglGPuc3VPLls1surjSkGUZTU1NaGpqAqUU+/btAwAMDQ2ht7cX0WgUDQ0NqK+vL1l7eLbiIkN4HsX5ljIG2NvzG2+8gcnJSWzcuNGzYD2mxLC1eyu2dm8FoQSv9b2Gbb3bsP3QdvzojR8hLIWxecFm3N59O27rug1tibYZGWupWL9exNGjOvJ56zP+sHMGxfj4BMbGRtHY2IiqqmrwPr5BBAWUMkAUDhMUCmySqnTSZX2HLZUlQM1JrlxwoGvVXXmHF5skCALC4Sii0SgIoSgUVGQyaUxNsQk+HA4hGo0jEokjHA57jsdee2kdDzGVxIzN8r6l+SXAlYes0Ly0pyFbnrGTr+CHeFL5BpboW3C7+peQUdobkk+gHDgE/Z2mV0fozUL7hV00ZA/OZimKjJaWFldar/JUdqXvYbxtmjsEQUAoFEIoFEJtbS10XUcul0U6nTHAKzHa6cUQjUY9O6a462F5/V9lx8T+ZOlN67ni5bWZz+fR3z+A6uoq1NXVwTLprvzlVBAARRGgqlqw86rIoGtWQ1+9GuT4cYi7dkHufRv6u+9CfvddCHU1UNevh7R2NXRZNrwbRRtbyK4PO3uoKBI0jRQxh+yclL72eP2icz1qOAEQx7958Oeifb0sUvhZ+M8xJg7gg4UvoY0sMr9jYNACztxqhoPBqqoIOjrKu2Kcq+CMc11dHebOnVvEHqqqirq6Oofv4dkOXkN4IccFAwgB77TITETQGphSkU6n0dPTg3A4jE2bNgXqJCIKIi7vuByXd1yOr1/3dRweO2z2Wf7Mjs/gdx77HVzadinrltJ9O5Y3Lp/xlDEALF4sIhp1AkJeF8MfoMxuYhjpdBrt7e0Ihy1WQ9clBAUBzMaDpaQFQYeqVl5X5bRz4D2Wg+2bvclXzv5Y+2Zv7KGQglCo1pjgiaE6TWNioh+SBBMc2mvHGKtjKZ9VVTPT7u3t7SVT0DyF5A9mvQ+IQMcT4jewS/5XXK5+Etdqn4eA4KluLk4Jer6mQ2Zb4pvgy7POudagCoUC+vsHEItFi1r6AZWzkH6K39LjCracJEmIxxOIxxMQRZhq94mJCQwPDyMcDpuWSEyY4t6PGFg4Yg/+WwIMyFAqeJYyZLNZDA4Oora21nQ34HWwAfdkmrvD6HKUz1fWRQQAIAB0/jzQzgUojI1B2LUL4t59EMfGID/5BOhzzyG0ZiUK6zYAdbUmKGGMINs3dzngwgyeWrazh/baZnfY+ywDVtkLq38WTQ9XN6jk55VHGhP4aeTPkBJG8aHcH6JdXAgdetE+7M97+/leuLC5wpN39sNeQ+hmDxkznixiD7ly+WyIUf47pIwvGNsZgD3Uz8bhHDx4ELquY/ny5dNaf3h4GHv37sWcOXOwePHiM3IxJ7NJVnfYux2PH30cqUIKC2oWYGPdRmxZsAV3X3o3FKl0WvJ04qmndLz0EoHd+UeSGEtYKBCcOtUPSglaWlqL0qODgwMIh8Oor68pO7Hb7UsUhbesC84UWvWC1ht5MEBIHWrhUtYldvsW/+Ng9XrFqTyKXC6HdDqDbDYDQlREIlFEo3HEYhHTxJdPuvF4DA0NpUySmfCF19r5pY5FUS869wVksC30BRwWd2KL9hWs0e5BpUX0jFHVK7ovK7WFYYBTq2hsdgNnfi5LeQyGQhSFQiW1b5Udg3WeAq9iAgv7cDVNN3stZ7NZSJJkdEyJIBQKGyCmOPVZLixPu+IBUsrOj6YRpFIpDA8PoaGh0cx4sBf1UvujBpgRAHCfTXZQDGxN305MkkRomu0cFVQIb7wB8fVXIY6PsmVAoC5dDv097ym6hEx7mCL20FqGme4XvzQ4WspRyxPQfeyAgKNHD2POnA4oilL0+0wJo/hJ+E+RF9L4YO4P0UjnmlkOdm6Lt28BTzbQD33ocnR1tU77PJ6N2LVrFzo6OtDaWnqcmqaZptijo6PQNM2hXJ4p9vB//a//BVEU8d3vfndGtj8b4oJiCM9WSJKEglcxV5mglOLo0aM4fPgwVqxYgfb2M1fT0RBtwEdWfgQfWfkR5LQcnj3O+iw/dOAh/PjdH+PzL38eWxZtwe1dt+PmhTejOlzcZeV04tJLBbz0kjOlSQiQzRYwPHwCshxHc3ObZ52MNWEIKGfRYgcW3POQeYr5t5OzlrcXbvMWccHqqJjFjfUZrymcDtPC12dF3879C4KAaJSlliltMGrH0kinJzE6OohQKAxZVpDJZEwlsd/uGchwglNNK/Y2BIr/ncIw/iv8mxgVjuLuwvewkFwzLRVwpa37phPcUqOSn4G3G2MAZhiNjU2oqvJ/+5/pipTpsM6MhXR+JssSqqurUF1dZROmZDA8nISqqojHowiHo0XClHJRKsXMgAcwOTmF0dEkWlpaDD/O4lSoNXZqZnS4KMi6trhLgQBuRzSdF31RdIFBAAgpoBvWg6xfA3L0CMTXXweOHoUUUeB+fPAWcZw5dLOHbLwM0BGiO9hDRWEpdbuC2QuEi6JkE9kINkcB9smEMIyfhP8UOlR8OPcV1NM249yw7/3MzO2MbCgko7OzqeLzd7YjqMpYlmU0Nzejubn5rLKHmUymLFg93+MiIJxGTMeHUNM0vPnmmxgfH8dll13m28T8TEREjuDmhTfj5oU347fm/BbemXoH+wr7sP3Qdvx4/4+hiAqunX8tbu+6HVu7t2Ju9dzT3mdVlYjOTh2HDlmfpVIZjIz0o66uFvX1tdA07xuTP/j5WzYHh+5w18/xFA5/GIoiNXy3itdlD2NLOcnXLzfZ8F7NXowfA3VSESisRPlcSgEsCDBTy/X1NSgUVCSTSaRSaQgCkEqNg5ACYrE4wuGYyRYwRtCbpeTAww5A3O23hoVePBD6JIig4yP5/0AzZUaxXqrjckEphaKIFVm2WH2kA+/FANeBdwEAGB8fx/j4OFpaWsp2U5hBXRaAymug7QKUUtvkwhSgAYVCDtlsGul0CslkEqGQYtralOq3HCTdy7zmRg0wGLUBIS5WoqY4w6oDLFWHy8cyvRKNImbQfUyyAH3hQvbfSBJQZEfNq93qyXtsAngXUS4w40BRFGHUO7LaR02jRewhD7u1D3+O8V2OCQP4SfhPIUDEvfmvGr2PjbNC2Rg4IHW3LGTjZ39fuDCYMf25DpZGr2ycgiCYwr358+c72MMDBw5A13VH7WGp1p3l4qKo5DyLs1VDWKlQI5PJoKenB7IsY9OmTQiHSxfkn8mQZRlLqpfgruV34SvXfAXHJo5he+92PHzoYfzek7+Hz/3qc1jbspbVHXbdjjUta6Yt0Fm/XkRvLyu8TibHMD4+hra2FsTjCWgagaIQn5o/q+DdaVniTsF4F5TzN3NKqWFizR6SlpCCg0GhaILg4Mhv0pHl0sILBuokx1t9JVEOFFrjJBgbG0Mul0NHRwdCoRCy2SxyOcb+aNogqqoiprBAEPzZHw6EWRcNZ7vBd8UX8VDoM6im7bg794+ohvVGbE9DVXKNBCm8t4fd6iTY8gCrCQy2PPcYnJiYNEySz/z9WCmArHR5dl1W9qyLRkMIhRTU1DBhCmunl8XAwBAAalw7zPOQT8z8vvILSoGxsVGkUpNoa2tHOBwyPqcGM8PubV0PVqfLQjDT4XwMlYTdDaDUPkxAatjRaBqBLDNxCQOxQXfMTb0tVpHd05pZQsOeUYJ5bBZApKYhuJ3JGhFO4ifhP0UYMXww/4eoopain2UsLEZQFJ1ZFUEQUChoJqt59dVLAh7HuY0zYUztZg9TKfbyMzAwgHfeeQexWMyhXK5kf+l0+oKvIbygAOHZikoAYTKZxJ49e9DW1oalS5eedSd2URQdLf3m18zHb1/y2/jtS34bE7kJ7DiyAw8fehjfee07+PrzX8ec6jkmc3jtvGsRksqLXXgsWSKiulpHb+8gcrkc2ts7EI2GTAsHTaOGybTzHLgL8Hk61U3Clpo0uYktSx0D7EHLOxV4g0H7du3MGY9y7dbs69t7olb6TlIOFOo6QTI5iEJBM33xAJgdLRoa6lAoFJBOpzE+nsLAAGN/4vEYqqpiCIfDIMSZXuRtx+yMxBvSg3hM+SPMJ5twZ+GvEUbxw497IlYGRqgxSVfCLFaweQS3/6CUYGhoGJqWR3t7R8leutPZPluW7SconrDXegXdfqUAUhCcLQUlSXJ028nnc4YwZRzDw8OIRMKIRqNIJOJm3arXOKy+xO0IhyWHvQp/7jDWWjJe8sq9+Hi1TQyuPJ9O2z9zL4J1j1QCQi11rwRCNEMQQiHLisGG8lIVKz3O9iMa+yGmSliSBAwK7+KnkT9DgtbintyXEEetuS9WKyiB+xnyukHeuxhg9yfzWQTWrp2PlpaZy0adyZgOQ1gqBEFAVVUVqqqqsGDBAqiqaiqXp8Me/ncQlVwEhNOIIICQUopjx46ht7cXS5cuxdy5p5+WnU6UGmtNpAb3LL8H9yy/BwW9gOdPPI/tvayV3j/s/gdUhaqwZeEWbO3eilsW3YK6SGnbgnw+D0V5B6pajXnz5gKQzBo/gNf8UUN0YYFCL1sGzvRZvXWD9AwVDHDGgBzrcUwMAOOzhmA9oDkoEwQGBlnKKdjMwFk3pkQOtIojGFguBoWqqmJgYBChkFikJLbsbZhqWVGYqlPTuCF2GidPToB1vGDgMR6PQhQlE1RIkggKFc/Jf4MXlb/FWu1DuEn93xBLPBoqTc1aACY4S8hKAIIz/jz1Vur3sjwGKdrbOypiOStZlk3SgRev2AnAMhwOFgxkUfPv7hAEIBKJIBKJoL6+HpqmIZPJIJfL4uTJcUOYEjXYw4jJbg0PD0FV8+joaDM8+nQwWydnHRy3V2H3hwhd1zzPJyvPKAZ0wdv3VQIGi7c5fTApGMwiMQGf+Y0gmCDHWXtIQCkBb9/Jn2394iH8NPznqCXNuCf/B4jCaUUmSTIIYQwkuw6cL6F2QUo4rOD665dO43jOTcx06zpFUQKxhw0NDaipqSkaSyaTuQgIz6c4W16E5QChruvYv38/kskkLrnkEtTVnTv/p6CKwpAUwuYFm7F5wWZ888Zv4s3hN5nfYe92/Nq2X4MkSLhq7lW4vZuxhwtrFzrWn5iYwO7du7F+fRNGRztgN4HmYgQGCAWIohMUMqFJ8Uxl992rpJ6MsV7EfAtn1g7ewhOLUbRscgShMjBo7pkKjmL5SoK3pbMXh/OexPF4DM3NdaZAg/d4tqfVeU9fgDEEVVUJVFUx9oelBjMYGUlicJAgGo0aADEGImp4LPQHeEP4Ja7XvohL1d+AEAC0VXqMDHAHZwl5DVqw5S1Fqt+QGLAegKIoaGlp9jQZLhWVHGulXU1KdfTxXz542HsOB2HaZFlGbW0NdD2B5mYgn88ik0ljbGzY7JiiaQzUtba2m+lSnur3q93jAhLWlai4LZ69C4lzvdLjZQxkZWDOyZYXrx88C0QRCsnQ9bzxHPH//Zy1h5KZUUgmRxAKKTghvoWHwt9EI5mL92X+J8JCHHaHJ6cAhTrGy1lmdkmzz6++ejFisbNXnnQ6wZnUs1Xr6MUe8trD/fv3Q9d11NfXI5lMYsGCBViwYMGM1RCOjY3h/vvvxy9/+UsAwHve8x585zvfMS2bysVv/uZv4vvf/z6+/e1v43Of+9xpjeWCAoRnK0r5EOZyOezevRuCIGDTpk2nVcR6JmI6xtSCIGBV8yqsal6FL135JZyaOoVHDj2Ch3sfxh/u/EN88ckvYkXTCmzt2oo7uu9AO9pxYP8BdHV1YcGCBZic1PHyy9YT1xJvsH9zc2jGAAolwAVXERNPYFC8irMfsZ1xYypGti3GSHIg5dyIvaZwusEYmco7bgBW3+XJSaZ+raurQ3V1DQSB11PZewxbg/QTyAgCbB0vGqCqBWQyGUxNTaFv9F28tOCPkcQBbM38H6zAe4z6Jt6azFLwenUeCVL7yJflx1aOxXOfiyDBx8n92NxRKDCTZMuiR6w4JT2Twe1DggQ755XczxaLVG4XzFOPv7hZvn/hcAThcAS1tQ3I53MYHBwyWa2BgX6j13IM8bhSUsjBg7NoliDLMlP2Xr7UtqZnsm2/tryYQV0nZZ+drBuTiEJBxfQM1UUMDTGWtTAniYci30KrvgjvzX4BCg2DGAyiIAjGMbKxMD/R4nHJsgzuCdnQkMBlly0sWma2htVh5dyIX9iLYgtaWloc7OG3vvUt/PznP8f8+fMRjUZx5MgRqKpakUK/XNx77704efIkHnvsMQDApz71Kdx3333Ytm1b2XUfeughvPLKK2fMseSC8iHUNK1i8DOdmJycxGuvvYYbbrjB8fnY2Bh6enrQ1NSEFStWnPV6Qa/o6+vDiRMncPnll5+R7U3lp/DE0Sfw8KGH8eihRzGaG0W9Uo9bF96Ku1fdjevmXweJhvCd7xBMTVmdPVga17ktrtJLJieQz6fR3Ox9UTPg6GXZYGdL7D2JrXpBP6sUNi4BvCey/XNLaTidYn9i+gtWWhsGsMlycnIC4+NjaGy0ehKLIps4yzGXlgig9H7HheP4qfIJZIUxbB76U1SNdUMUBWNyjyMaDcNtEeQshgc4AOf1m34higRWnVVlYgi3etIr+PXhBVCZx+AAampqUWeaDzvBUbEVkTs4o03N2kBKBRPYuGtP2ffBLhw7g+/lBemOSrYNOMEOOwZisq98W9xAHLBeZrz2oWk6+vv7EQqF0NzcDEKIyT7nclkAmuGZyRhozhwGGSNjHEsdszdzOB0wyEMUCbjq2S+8RDWcnbe/gLBrPNh++Yvb4OAgVFVFbm4/Hgp/C/PIctxV+AJkysAGL4Owv1xylpdS4rgX2TlkZSeqquPeezee897FlYSqqnjuuedw7bXXzjpF9NDQEH75y1/im9/8JrLZLHRdx0033YRbb70Vt95662mBsbfeegvLly/Hyy+/bM7RL7/8MjZt2oS3334bS5b4C4JOnTqFyy+/HDt27MDWrVvxuc997iJDaI9zmTI+fvw4Dh48iCVLlmDu3LlnbSzlYjomtKWiKlyFu5behTu67sDuPbvxav+rOKIcwY5jO/DvD/w7YkoMN3XehNVLb0XmtZuRoE2g1LsbiKZZ5tVBJkIGsLy+dTKD9lPvJ9jgwhNB4Cleq9bJvkw5lXHRSGwTa6VMIevmkkQmk0ZrazsikZANbFBYXQ1K79+y1fHeb5+wB/8V/hTCtBofKzyA+tp5INUU+XwWqVQKIyPDIERHJMLSytFoDLIsGSyrc5u8zo8DDM7WMZDBxmE//kpZQu4XWOp4eToagNEukQG1qakpDA8PO0ySnUX9bnDtvR+r9ot4LmsxlNa3bjDEjtvr4nUy6aUiKBjkvwNnE/n8ythw1mHE75q2M1H2YH2JB8y+xJzVSyTiqKqqAqUEhUIGqVTa6JgygkgkZL5gKIq3MIXbw8iy7AsKvc/L9FvhAZYIrNzLBgdv7GWIMVnsueUEokFpFe5dOjAwAEIIJuccx/bw32ARWYf3FO6HDMUk/lmLSV53zVKqTEDCW2/yumWWqmcvTwRLlrSeV2AQgHnNzQYSxR3Nzc34xCc+gS996Ut47bXXkMvl8Oijj+IHP/gBPvWpT+HDH/4w/u3f/m1a237ppZdQU1PjIGw2btyImpoavPjii76AkBCC++67D1/84hexYsUKz2WmExcUIDxbwVRexARaBw4cwNDQEDZs2ID6+voya5/dmIlextxGJxQK4VNbPoVQKARKKQ4mD+LhQ6yV3tff+TQQEdBBLsdiehuW4TZUoatoWxbI0VCqhoozMoxhsn/OawWLwaB9H37pTQ5QWPqHOjqtMIBo7ypSHsS4Jxi+73KgUNcJhoYGoes6OjrmGACMH29lHSwsUFi80kFxBx4OfR6tZBXeV/h7RFEHagAjBgDj0DQCVc0jnc5icnISw8MjCIfDpjBFUcLmeeYpbm/Qxv3nLAYOYL6EmkZswKyUEMQOtgQHK8LTY3Ygz1nZiQnGsjY3txo+fM5g4w9ug1OOcbWr1JltiedSJkNp3y5nusvVZdrrae2CDc5yWX8KBrskOrbHz6H/9r3T0blcHgMDg7a+xPbjFsBr1qLRCEKhEOrr68yOKel0BmNjXJjC+y1HDLGFZQ/DGTegPOi1q2unE5zZ8xJxFe+LIhSSUCio5rXoV+sYZL+FgorBwUEAwOicXjwa/jssI5twW+F3ILlaQlIqGOliwUxhs5cv6wWYK5NVVTWZ382bl1U8tnMdXFAyW4gUd2iahlwuh+rqaqxcuRKXXHIJvvzlLyOZTKKvr2/a2x0YGEBzc3FbwebmZgwMDPiu9xd/8ReQZRn333//tPftFRcB4TSCU9qZTAZvvvkmCCHYtGnTOWm4XS7ONEM4OjqKnp6eIhsdQRCwtHEpljYuxe9t/D0Mpgfx413b8YMXHsazwp/hKeHLqA91o5vcim59K9rppRAhARCMBx9/C7aYJR7WM4I9wJklDU/hlUv3seDAzJ1yta+jqhYTYBefcLEHT0eXCvep5qxmqXo7VdUwMDAAWbZ6ErNJj9cyBavVswcDJ0xoQilAQfGa/E94Wv5zLNO34jb1LyAjDDfQYedXhCCEEQqFUVdXC03Tkc2yyX18fMyY3OPm5F6uQ4w1d1LjHLnTwLQI5EiSaEu5M8si7g9nD/dvLgisSD+dTjt88bxiJnxLyymG7SpUe3kCZ5MlyQJ5HCxxkMe2W65No2Bs2+u+Ly148HpOZLM5DA4Ooq6uDjU1zu5G7Bqzq2qt7ft1TBkZGYGu64jHo4hEWGpZNmpHOKD2eonlTDtng6f7TLOD0FLggzPeuk6Qz1tpWz8GNch+Gcs6CFEUMNjxJnaEvo9V+nXYSn6Lvc7a0tP8OAXBLR5hLxGyLJn/JoQagApYv34+amoiUFXVBFizkXVzx9kUlEwnUqkUAJiZBh5cleyOr371q/jjP/7jktt87bXXAHhfh6WyKLt27cJf//Vfm1qFMxkXFCA8myljAHj11VfR2NiIFStWzNqL+UwyhCdPnsRbb72FJUuWYN68eSWXbYm34LPX/DoWp+/D869kcEx6Gr3idrwh/Sdekf8GMdqIRfot6Ca3olm4DJpmWZOwidIvlSeYNXqWtUVpMMiDpYCLla4sxWlNzFyVzMdhZ7L4ZO0d/jO1HyBlSuIBxONxR09iiwUQjIfldEGhAAIVTypfx27537BR/S1co30eAriRbjGI1XVnz2NZlkxFHqUEmUwO2WwGw8PDoFRHNBpDIhFDOBw1J6py47J6xLLJntdGcaWkfRK02oUBFni0fnNR5L+djpGRYeTzecyd2+5R+G1Ntnwb/Njdv6n93/Z9sX9bf9qZQXauqDlGBt78U8LsO8scnGUd3IBXNMQeXKkf5BrwBrp+q/q1l0unM7a+xAnXOsGBmb1jCqUN0HUVqVTaKE/gHVPiRseUsAG83ClkniGYHhi0X3M8vDZjvw75fvlvabd58dq+3+eyLCKfVzEw0A9JknFqzut4MvRDrNO24Cb1E5BkERp08wWFuQjIKC5T4C8R/O+c6WQvT1VVYWzevNJkT+3PfQ4OZytAnGnLmdONTCYDAIFtZ373d38XH/rQh0ous2DBAuzbt89kjO0xPDyMlhbvtP9zzz2HoaEhxxys6zq+8IUv4K/+6q/w7rvvBhqjV1xQgPBsBaeI58yZg+7u7llLcwNnBhASQnDw4EH09fVh/fr1nm9EfrF5s4S33opCmdyKlcqtyOR09Au70Cs9gl7xEbwh/xuk+ghaw5djjfQ+LNJvRlxvNRXIXGlsBX9YExPcVXL6vdLHXnWClMIwxmbAkPdNZsbM3nWF5UQoHJByUJhOp21K4mpwH0NeA2ffrh+gLBd5msEvQ5/FEfEZ3FL4U6zRPxhoPbtZtz0EQUQ8HjMUu0zBy5jDSajqMBQlhHicTe5edWN8UgeImYr3qk30H4sdoPMxAYWCbjxYCVpa2iCKclkA7RQllQpq+89ZJ1o8Vvtv579te/9u+2fudZjowwJ4bEKXwFvCee2jUuGOlzBjaiqFZHIETU3NiMeL2/pNJ/PAwb8gKKitZZ6Zuk6QyWSQzWbMFBlLLTNTbGNNsHKB6YFBC/y7/Q3txyMUsXHu5Upjce/sgSSJyOcLpuXR0fYX8Uzo33GZ+h5cp90HAcVm2KGQAl3XPa9Nvowd3HJR0DXXLEE0atnMcFDIjbGtzi/CrGMPZztDmE6nEYlEAo+xsbERjY2NZZfbtGkTJiYm8Oqrr+Kyyy4DALzyyiuYmJjAFVdc4bnOfffdhxtvvNHx2ZYtW3Dffffh137t1wKNzy8uAsIKghCCt99+G/39/ZAkCa2trbMaDAKnnzJWVRV79uxBPp/Hpk2byvZ8dUc4LGLzZhHbtlEQIkCRRHTol6FDuwzX4asYFQ7jLf0XOCg+jEel/wEqE7STDejSb8US6VY0kOW2rVlgEBDBvQ4rTfvxukXuO1go6CV/R0uAApM1tCbdyn5/ln4WMT4+hrGxcceEa6UQvbfJQCFPeZXf7xQG8V/h38CYcAwfUH+ABdpVRZv220ypOkT7uuFw2Gj9VgdN05DNMmHB2NgYZFlGPM4Mj5khNgfVunG8IridTrkoJS4pFFT09Q2Y1hGMRSp/TQS9dUuzwlbwGr4g27X7X9rX917WaUDsxfzwCb+0D2DpbfMYH58wejy3Ihotts3yaytYLpXtda9Kkt0zkyKfLyCTSWN8fBxDQ6xjSiIRQyIRhSCIgX8zc6/GCl7PCF7KYQdL7rDscIJlIaz9AoCAQqHAlNnhEN5pfxovKg/gCvUDuEq7x9PvU1EkaJrmey7ZM8sCg8xCiaCjow4bNnQ6lhVF0QR8HBRygOi+huzLnouY7QxhKpVCPB4/4/P9smXLcMstt+CTn/wkvve97wFgtjO33367Q1CydOlSfOMb38Bdd93lmaZWFAWtra0lVclB4oIChDMJzgqFAnp6eqCqKjZt2oRXX331jIs1ZiK4AKYSZSePdDqNXbt2IR6PY+PGjWatT6Wxdq2MXbtUnDplFUHzU1dPF2FD4dPoGLgLbYuq8Q7dgUPyo3hJ/jaeFb6OWroAi+ktWKTeig59I0SIsFo+WT1C/foc+wUvTGc2IsHOiz2dDNiZRr5+edRAKcXw8Ahyuayjj64oBjPD5m3y3CyiO4aFt/Gz0CcAAB/J/wTNdBkEMZhK1RqrBcSCnCJuaMxSyxT5fAbZbArDw0MYGqKmHQlTLTOmlIGE8tvWNM6QOT8vFPIYGupDNBpDQ0OjrTbszNUGVuIRGFRR7s3+eH0mmF59/tuxpzcFGwvttYZ1vbpZM0qZddbk5JRxbRbXX5bq5uH3O/Lfo7yKWkAkEkYkEkZ9fT1UVUMulzFa6iVBqWCyh6xfd+nfxW+sHHcwf1O/Y7F3TWH70fVS3XOK65ILhQIGBvoRjkTwZttjeE35Ja5VP4KN2l2u42Z/8tSy3wshB5n234yluCVs2VJaacrBFp8P2PFY7KFm9Ak9V+whU8PPXoaQA8KZiH//93/H/fffj5tvvhkAM6b+7ne/61jm4MGDmJiYmJH92+OCAoQzFZOTk9i9ezdqa2uxYcMGyLI8I+rdmQj7G2IlN9zIyAj27NmDuXPnYvHixacNtm+7TcI//RMrhi4UiAMUctuXCKnHKvphrCp8GETM4SiewSHxMRwQH8Kr4X9AhNZioX4juvXb0EmuRxjV5sN0uhYxlnijsvU4a8hqxljf5XKnyK4kbmtrh6LIoJSYbON02uR5zU1HxefwUOh3UEvn4e78D1CFFsd69v7F5cLqXRwUSFIjFQxEImzyrq2tN3otZ2yWJEy1nEjEIEly2WNnqlRnKjSTyWBoaAgNDdVIJGptLwnBQFlQYtleI1h6jMG252eX4gdkg2/XyRx5s1+cMXMCUEqBkZFhZLM5tLe3IRQqNt4t19rNy4+SdyGajnYnEglBUWRUVVVDEAjS6SlkMlmMjCSh65rRSi9mCFOsZxuv23N38uAlAvx0+F1z/KWiWMDE2/L5Pyy4+KRQUNHf349YPIKe1l+gR9mBGwu/jg36bUXrUMqYQdZ/2P/HVhSmdnatjdWrOzB3bvAyHj4n2OcG+3/ngj3k/Zhna2QymRlhCAGgvr6+rG1NuSzY6dQN2uMiICwTfX192L9/PxYuXIiFCxeaF8T5Agg5CAz6Bmbvwbx8+XJ0dHSckXG0tYlYs0bEvn0s/cLetpk5NLeu4K3fCAFEEsFi6SYs0m7EjeTPMSDuxRH5Mbwj7sAB+QGIVMF8cjW69FvQRbagGh2GMWtwcMdtOLih63Ta1WkaYxlDIXYMfopbfyXx9JSufBW3z+E+6afYofwRFpCr8J7C3yAMtxhAMFN+QQ/VLTJxB59sdd0y+ebMH/N5BMLhEMLhEOrra12WJGMIhSSEw1HE43FEIsWG2Dzs/ZCnpphfYmNjI+rq4iaDaC1XHkgFPe3nqiqkVPcOd3h1aeG/Fxem8K4/TLRhT0NTDA0No1AooL293VMYNJ0+v3xMlZ4/L0AHCIjFEojH4yCEmh13UqkpjIyMIBQKmeAwFouY6/IsAFPiugdSfAGUY8StjIDXumzMqsrSxPGqGF5t+SnekHZiS+E3sVa/qWgdLkxSVa2kkTcDqMWq8UhExubNyz3XCRpeqWUODs8WezjbGcKZals32+IiIPQJSikOHjyIkydPYu3atWhqanJ8f74AQn7jBhkrIcT0VLz00ksD91IMGjfeKOKttzToOoWuM4803iateBJnnoCSRCBAQDtdh3Z1Ha4W/gATwgn0CjvQKz2KJ5Uv4VfC/0QLWY0u/RZ067eiTVoJj85ORcHc/vnD1jpX0+lDrKowQCE1jYD5BGT1JI6joaHe9lJhTdqlBCP+wxEssEYInpO/hZeUv8Va7V7cpH4Vos/tzVLBYkXpY5Yqd46FiW2oMdkWj80vbVtsScIMsYeGWEs0nlpm3S6czI8oihgdHTNq3FoQi8WKjoMB1PLp2zNtOROMmfQH1vbhlKprK9qiULoUgDPajIniVia6OebBwUEQQtHW1g5ZLp7o/VoCeo+FG5WLFb102Nf3EnfYrW0EAQiFQgiFQqit5bZIWWSzWQwN9QMA4vEYwuEIolF+DXmxl5agw0oRl2fPvV6OOGDmbRKrauJ4vvlHOCi9hNvVz2CFfo1rK9SoFyRmTW3plDuKrgdFEXHVVYsRj5+59qj21DLfJ/NBpTPKHs52UUkqlQqsMD6f44IChGeKzi0UCti7dy9yuRw2bdrk+WYgSZL55jSbg7/NlZtceI2krusz5qkYiYjYvFnG449r4C3POEvGVZzsoWiJRygVjXZwFiCppnNxmfRJbCh8CnlhHIfFJ3BIfAyvyX+PF5S/RBXpQLd4C7q0WzCPXgEJxbVQgoCihz/f93TUvIBTrMK3lc2mMTw8hLq6BlRX15jLsrSqJWbhghG7T51zXN4hCAIKJI9HQ/8TB6Rf4jr1D3CZ9hueBevubTJQWFlfXKuXMvEAgfbt00CiEWZJEkNVVQKapiOfzxs1YxMYHh5GJBIxwaGiKBgZGcXU1JSj/tILfAatIwyWDg4mKAgCMEspm51gW4JXv1qvdYL6KfJUKLu22fb7+/shiiLa2lodpt/WOErVI3rHdNjE8uvxOkTBvGf4McuyhLq6atTVVUFVdeTzOWQyWYyPTxjClKhpe6MoIdt9bSm3+fMgSPA+6GwMQCgkGvWOOQwMDKCqNo5nm/8Jh8RduLPweSwhGx3rMxshEarKakP59eB1jvln9uXYuRLQ1FQ14/2KSwlT7M0ZTtfWZraLSnjK+EKPCwoQAsEfjn4xNTWF3bt3o6qqCps2bfIVUpwvDCFQfqz8mGtqarBq1aoZfVPbsEFGT4+O/n4NhEhG3RF/2POUq1NJzNSAVs0fwAu8KSK0Gsv192O5/n7oagEnxJdwSHoMveKj2B35AUI0gYX6Degmt2KhfgMiqAXAU5peoMHOFhLPuqhSYa/vGxsbx/j4OJqaWhCPxww2lO3XC3CyZ6u7Vq50/VUWY3gw9JsYEPfhLvVv0a3eEhjIsvrAYKIR/qxmbFOwyV7XCUIhdh7LBROYCIhEmCqZiQpUZDJMVDA6OmpOGE1NDQiF7CDfS0Ea7BngLxKoLIL6RJYG9/blgp3jSuo7GRPOngOqqqK/fwDhsILW1haXOIWF3cQ5SLCuHiIKhekZN5c7Ds7oWfcYE2MBrB0cXyYSYabXXJjCryGmfJdstYcR8FZylbz8MYGeaLBarIcw75ldVVeFJ5v+AcfF/Xhf4X9iEdlgX9MsEeElDl5qc9dRGy9XVhaFi5duumn5jNS0+YUfe3gmbG1mO0N4MWX83zAGBgbwxhtvYMGCBejq6ip5s51PgLAUQzg4OIh9+/ahs7MTixYtOisPmK1bFfzwh8QoohbBGRg2CYqGB6Hoejvmx2L9nQFFNpHpugAJISwg12IBuRY34M8wLOxn4FB6FNvk34JAJcwlm9Ct34LF9GZUY77vGPmkU4khtF3UMDw8jELBqSS2fgINoshBRHExvtNz0H9/Y8IxPBD6NWSFCXwo/5/ooOsMJXFwgGPvouLHULjZCT4ZBrlUWEuy8ulbth9nGltRFNTU1CCRSJi9X8PhEEZHkxgeHjEVy1VVYcDV9ot7F5YLdxrcO85MatnyHiwdQWsHLbYv6L6ZSparX1lf4iabUp+DMqe1SdBgLd0qz5p4Wd/4HwMxQZX1cuh/rhRFRk1NNWpqqsFM1bPIZlnHFEEgUBTFVC7LcrGQxn8s1nM1l2NgsLoxgR3130W/2Iu7C3+ABWS1uTzv1849A4Ptw3pZ4X9y4Lx69VzMn99UavUZj0ptbfjfveJ8qCG8mDL+bxKUUvT29uLYsWNYvXq1r0O4PWRZPm8AoRd4pZTiyJEjOHLkCFatWoXW1tazNp62NhGrVkno6dHMOj5KWdqFmRk7U3R2DzrOFtoPh1vB2FvOCRDQTFeiWVuJTeoXkJH78A4eR6/0KHYqX8OTwh+hiSxDN70Zi8gWtNE1ZvcOHqxdWHD2h3XY0DE0NARdJ2ht7UA4bBkkszSt1cPXYgmsOkoODjlLKQi6p53OKXE3/iv0SURpDe7LP4g6Ot/cRynvNXdYSmsnKORWPl5MJlte9GSV/M5LkGAsgfO3VVXVNPVtb28zQaOVWh5HMplFKBRFPM4AYijEDLGD/W7BU8ulvw+WLi73yAjKwPJUd1AwyI8xl8uhr68f1dXVjr7EbL9MMDEdYMdSrgSVzOkcUAV5WWD3CK9XpbZrPNjvx7YjIh6Po7o6AV2n0LQ8UqkUpqaKhSnhcNj35Zh3S6GUIJ3OYGRkCFVNcTxS91cYFo/jA4U/xFzDP5ULruy1ivbw83N01/jyFytd1xGLhXHTTacnJDnTUY49LCdMIYS4WP/ZFRdrCM/TqDRlrKoq9u3bh3Q6jY0bNxb1KvSL840htI9V13W8+eabGBsbw+WXX47q6uoSa89M3HCDjIMHNUxNMVARiYRw8mQfotGw4TMWt1lfOB/6DCyxP+2tx3gamXl1WQ9zQRAQ1ztwifRxrM1/HLqcwmH6FHqlx9Aj/StejPw1ErQFi/Sb0K3fgvnkSsiIOPZnMWX+x6TrGvr6+iHLDLyw825nZ4jntWmpZxmwtTOHrK2b02PxbfERbA99Hq1kNd5X+D6iRhqcB1f3BgFEfDycKWQ+kay+0V6v5TVmNkE57Uv8ws3++QUDxWzC56a+7rZ+bGKPmqllQvKYmmJpwWRyFIoiIxaLo6oqbr5g+I+r7JAC1RkGAYz2a9J7GSFwr9xKrYAoBbLZLIaH+1FXV4uamhrPJS1mWjTusdLpVDugZP8uf0K5irgUu8lwBTXOG2fNixXI/OUk2LmgRu03O6ZQKIzaWtkmTGHXkL1jClO+sw4VvAaT74sp3UdQ3RrFw7X/B2PCID6Y/99op90A7H2PJc/Uu7uelJ9D92/L7kvuDCDiyiu7z6iQZCbCzR6Ws7U5H2oI6+rqzvUwZjwuOEBYSaRSKfT09CAajWLTpk0evU/9Q5IkFAqFGRzdmQu7GWkul0NPTw8EQcCmTZtshflnN6JREddeK2P79jx0HejoaIWqUqTTGeRyaYyOjkKWQ4jHY6iqikKWQ44HKu9SwoUO/GHKwZUoctGKtRLrMEIhkiiW0NuxhNwOgRRwnL6GXnEHeqUd2Cv/GxQaQye5Fl36LVik34AYGoxt+QtOcrkchof7EI0mHOAF4JMWH0Pp8+JmDmHrkKLpFK/K38dO5c+xXLsTt6p/ARnevx9jN8uBQrcQgxtkB/NE5KCQpRxL74OLTMpN3GzClzA1xVTHtbUMvHjXW3JGSzHTgoQQZLNZpNMZI81MDUFBHNFotKS1R4lRlfyWpZ1LLxMMwNGSJtQ8ggIgxjSxP3mbxObmRsRi3rVQ9u1azLEE3l/XHW4w6P67X/AUsXWcLJXN72MGGopPAu957WWvEyT1b9ng8BcLawV3v27GQGcxOjoKVVURj8cQiTDVsqIoSKWmMDo6iqrWCH5R++dICWP4cP6raKGdZr2tqurm7+71m/J7xzwLlPj8tvw5IKKpqQqXXz6zQpIzHUFsbfhcyl9AZhs4vJgyvsBjaGgI+/btm7bx8vnIEE5MTGD37t1obGzEihUrzulNRynF2rUiDhwQcPgwA2+hkABZrkJNTTVkWcfYWAbZbBZ9ffYep6zex24ZEQoBbmzOAYO9JzL7nP2d1yKKkDGXbMJcsgnXa19BUngHh6TH0Ss+jkeUz0FQBHSQS9BFbkG3fjPq9UVFamA+2TY21iORKGZbBYGabAhLBXlPsO6w0uMUBBqeDH0Vu6X/wJX67+JK9X8UpbiLw0p5e4FYPomyj+0egjwdV3aInulm9/c8GINbXvE+Pj6JZHIYDQ2Nvoy9xQw5BymKLC0Yj8dBKZDPZ01BwdDQkGFpEzVVy0GPsdTjoVRbvUqCpSLLPVOC1duxcbGxT01NIpkcRVNTE6qqYp7PLXaNFLOBvObNzeh5gcHy4xHMa589eii4uteZNvZWO+u65nvflGKgeYq3ODXt/aMKgmgKUxoaGqBpGlKpNDKZNEZHx8CdBKItwM9r/xQFIYN783+MRjrHuF+Z1yp77vqfIPd94Fe3yZhBBh63bDm3z+3TDa/U8rvvvotUKoVFixZ5soez4XjT6XTg7OH5HP/tAKG9dm7lypVoa2ub1nbOJ0AoSRLGxsZw4MABdHV1YcGCBWdVnWYPPiHwN8Q77gjhBz9QMTXFUmo8PUqpiNraBBKJOAShEdlsGul0FqOjSQwN6YhGmZEx8xkTzO4Y7sMqri901iLaQ4CARroEjdoSbMRnkMIQDktP4JC0A8/Lf4mdytdQT7rQrW9BF7kZc4T1GB+dMpTEzaiujngygPYaIm5JEzTlRymQRwq/DN2Pd8XncWvhz7EO90CjFIJITTbCXn/oDv8eyBRW/2TnPoHgHVzYuQzWM7tU+y9KgYmJcYyPTxhinNJpsXK7EwT2EmGpljVkMmlkMlkjtawgkYghGo0iHI4ESh9PJxjrW1r8IQhBhSTB0tPcU298fNz0bGRWUtS1LGwslh9AspT3vB+xlz0S355XyDKzOOICpaB1pZYtU+n6RNbjt1i85NcVJkjwFx1JkkwGemyMeWCS6gwerP4WiE5w69DnEA3XgEQ1ABK4sXrplz7rpdAvhW615GRgcOXKdnR2Nk/rWGZrHD9+HMeOHcOGDRuQSCRMYQq/xs51Sz0eF1XG52mUAjqapuGNN97A5OTkadfOnS8+hNz4d3R0FOvWrSsy2D7bY3F7V1VXC9i8meLRR1Xk8xYo5CkjZosCRCKsfyml9VBV1gZtcpJ51UWjIUSjcSQS3qyPvb5QFFmbOYC3uxMMFpGlH+2RQDPW6PdijX4vVGTwrvgceqUdeEP+MV4R/hYRvQ7tsSuwovo9UMQbfFS6xSa7nBUJIv5ICQP4SfgTGBeO4wOFf8ICchV0WB1O7BiCAV/OhDoBorsHMqsxJI4OH+6oVFDjxf65D40dcrEQgFIgmUwinU4brdNCZQFpkNo++/dMcVqDmpoaEEKRzWaQTqcxMTEIgNeMMYDoLHi3gLf3OEqfnyA9joP0dA6aKubgYnR0FKlUyuXZ6F42OGBi50E0/16OEeYAThBQ8bOSlw7YU+jlBCT2S4+vMx3mlotw7OtSymykJicnEJ0j4MHEtyBDwQcyfwhZjmJ8fBKDg8NGL2ZWosCEKd77YPeKBt6xyO11yV6aCLhXaygk46abSvcrPt/i3XffxdGjR7FhwwbHXHy2TbGDRCaTuZgyvpAik8lg9+7dCIVC2LRp02krms4HhlDTNOzbtw+5XA5z584952CQ39yA035gzRoZb79NcOiQBk2DCQqtlCebDPgkxLsU1NXVQtM0pNMZZLMpjI5y1oeJUtysj5VGJiBENOukuPCDjdN7/Api6CZb0E22QM0VcGDiKRyPPo2BmpewTfpNyDSCBfQqLKI3oUu/CQk0o1ztGds/9S2wHxLewgPKrwMU+Gj+Z2iiS1zHIjgYEEspyoK1jeOWPlabQEnSwTtXlAtehxjEqJuDwnLedbyTBV+OtU4bQqGgob2d9Xjm2+MCE79w12F5jd9rG6IoIB6PG/V0lmp5dHQMqjqEaDRi1h0y1bL3yeLnvPTx+n8HWP6A5dPSQSxrWOp3ZCSJbJbZHtmfdfax8BeToGF/ObBeLlh9G+/4w/ZBDRaQM2WVtrwTjPPqPiflx8rLOYL5UHqzpe7UOQODY5iamkJojo4HEl9HBHF8KP81JKQaSHVAVVU1RBGYnEwZwpR+cNN1Zo/kfMlgL2RWStkJpNn9Fg7LKBQYkL766i5UVZ35ZgHnKvzAoD3Olil2kEilUhcZwgslRkZGsHfvXrS3t2PJkiVn5KKZ7YAwk8mgp6cHoVAILS0tvgbbZyPsNzK/ed2xdauM73+fIJulpnpYkoiRSgNk2TtFKMvMZ6y+vgqqagkKpqb6QaloPJDjiMUiEATRmAQBgJgTDxsj+9MyhfaenZkNyiCa5bVYVXszxIKIUeEIDkmP47D8GB5X/gA7Qv8LbWQdlpCbsVC7EY3o9u0cwsAAL6q3VIdHxGfwi9DvoJ4uwPvy/4gqeFshWYCtGJRwwGn7BLLMmA9FCQ4G2D5KpxV58PSxBfb8lqOQZQn5vIrBwUEIAtDe3uYQfXCWqBQQ0jSuLPcPXrfpFZyx9DbETmN0NGm8ZLDv3S8Z5Zi9IN6D5dPAwZwTOBh09iX2vu8rcWPgx2gZI7M/2cuMAFXVjdpcS9xhqXkD7YKPKpD/pu/agmVcXWnwMgb3NU4pNZjrDKSOHB5IfB1VtAH35P834qg17lndvMYsYQpFLpczhCn2lwxmjRSPhwwfVnbcHNzweycUklEoqAAENDYmsHHjosoPapZGEDDojpk0xS4XlNL/NjWEAj3TDT3Pcei6bqYnKKV49913cejQISxfvhwdHR1nbD9jY2PYu3cvrrvuujO2zTMVo6Oj6OnpQVtbG5YuXYq3334boihi6dKlZ30sdmaQv8X5xd69Gn75y4Jp18Jr3CjlaRX/np8s7evcb6GQQyrFrCQ0TUM0GkVVFetxKsvsweL2L2SfeVvM8NZUiUSxkpiNgSBFRnFYfBKHpMdxRNwJVciglsxHF7kR3fpNmEMu9e0xzPe9R/oP7JD/CAvJdbhL/2tIesx3eft6PB3sFWySdjIniuL2OBQcE7/3PoJNuFZtov9Lk6qqGBxkHoPNzc2e1wal5UGXLOslU99edWR8u3aVulMwwf6haRqy2QxyuRSmptIAYDI+TJhSGrCWM5ku/t5b8FEOvEuSgEJBw+DgICilaG1t9TT6ZedSC/QbCgKgKBZA4xYw9mCgXbAdAxdyVcoKlhdbiaKfZ6GTKQ9aN8jqjjXflw5KKUZGRpDNZiHOS+GByNdRT9vxgfyXEQUDB4oiQtPUsueT16/mcllkMlnIsoBoNG6WKTAVPqs1lWXJAXI+8pHLsWhReW/c8yGmAwbLhZs9tF9DZyK1TCnFggULsGPHDlx66aVnYsizNi5YhtDutXfZZZf5+m5NN2YrQ3jy5Em89dZbWLJkCebNmwfg3I3VTu37MYP2WLNGxsGDBG+/rRsPdcF8MLKaOW9jarYv578FQUA4zJSCQD3yeRXpdBqTk5PIZoeMHrms1icUksHBJyEWy2AV0AtIpZjnWF1dXclrKUrrsUK7G2vwfuTyGRyXXsIh6Vd4W9qG1+UfIEJrsEjfjC79JnSSaxGGVZdCQfCM9H/wsvJ32KB/DJsLX4EsiiCBjZO5erp4eVac7vycELc1Df+emmCJt/hzM0TlLidL3eyd8rU8BhNobKz33Y5fzaHzOIrrCZmim39AzeuHnSfq+Dtn8ZyTOk+NyojFEqiqiqOujvVaTqfTGBsbx9DQMOJxdg0lEjEbG8eAkz2t5RXsnJYGLkHuXQ4G+/sHIEmsLzEXNtjDv4+yZfvCGT7OkhcK5dlNziCzkg4Buq6WXKd4/MEFVs5/M5aZsUXWl4w1DlKTKRj3gDcYHBoahqblQOaO4b8i30Az6cTdhT9EGDFjfQl2y6tSIcsy6uvroGk1EEVqqJYzGB4eRjJJEA5HEI1GkUgwoMmvi+XL2y+CwTJxuqbYQeK/C0N4QQLCbDaL3bt3Q5blGfPam22AkBCCgwcPoq+vD+vXr0dDQ4P53dn2TPQSjwRVNW/dKuP4cR2ZDDVBIRd9KIolpODG1PaCc6+HMwdK0SirOxTFGhQKLCWYTrOasXBYNN/Ww+EIJMmyqKFUwNTUOJLJcTQ3NwWuI9F1ipAYQTc2Y2HhOtwsfB0DwpvolR7HIekJ7Jd/DomGMI9sQrd+E+brV+M55Zt4W3oYmwtfxiX6JyAKolHvGJzEt7eiAyxLmVKTll35y8+XvT2gHYzx9GwoJBr1eVY9Y/F27cIA6/tMJlvkMViqFR5nT7xuN8bmCpBlmOO3akOd6XL3el5/99i7bTkrtdzQ0IBCoYBsNoOpqRSGh0cQCilGeQLrdGFNVJaYx15fWc5mxt572C9EUUAup2JgoB+hUAjNzU2eYJBdE7pZmmBn/Nw1d9Z4g113bDERrJNIcPEIB5HBezHb624l33UFwd/Cxb5vlrko/o4xg0PQtDyy7UP4RfQv0UGW4H2FP0AIEYii5JleLhX2mllmjRQz+psLyOVYmUsqlcbw8CjCYdZvedGiVrznPavLb/w8iJkCg15RqSl2OXBYKBRQKBQuAsLzMcbGxvDqq6+itbUVy5Ytm7EiU272XK7o/WyEqqrYs2cP8vk8Nm3ahFjMmWJ0dyqZySglHgkS8biIW25R8OCDBZNl4qBEVQFBICZQZIXszj7HfodpiVMoZFlGdXU1qquZkXGhkMbkZAYDA4OOQvBYLIKxsVFMTWUxZ04bQqFwIDaAsxOcWeN2Ha3aKrTR1bhG+z2MC8dxSHwSh6Rf4QnlqyAhDQIVsVS/HfPIJvNcugFekOAiGabWLjXZ2m14qCE4KV1byLttWMwiMQCGs+0dZ9/coJB3d2hsbERVVcI8Tpa2879GOXBh5sTOz/jEzI/BK4J3s3BGqVo7Jm5i/ZZ1XTf75A4MDEAQBCQSMUNxGrWBNNEABXz7/v555WoLBQHI5fJmN5fGxgaT6bOHKApQVQbU2L3CfPK8otLzxEVLVro2yIuyM8UbNNi9xF7Syq3rR7xyJbyfjY0oUvT19UPXCdIdffhl5JuYT1bjvYUvIixGi1hdSsuxt1abO2sdanzHrq1QKIxoNAZdZ8ulUlOQJB2dnSJeeuklNDY2orGxEQ0NDee0Fny6cTbBoDuCmGIDpdnDdJqVivx3UBlfcDWEU1NTGBoawpw5c2Z0P6qq4sknn8SNN954Tm/SdDqNXbt2IR6PY82aNZ5jOXbsGJLJJNavXz+jY7HbA1TCCnrFT36Sx8GDfJJhnzFmkBiCBAGaJhg1TMyDkAkmSm9XkogJtHhY3ocEuRxLCbK6QxWiKBpMVjUEQSqZBmVjY/vwAlUcOBXVJmICR6Sn8bb4CI5JL6IgTKGadKCL3IjF5EbM0S+DLIQgigik9uX7Yp0P/CdPv1ova53y+ynuOuEeg24CoLGxUYyPT6ClpcWom+KTo2ADvt7jYSlh6gNWddu4vR9npc4DUyr7mxoz8FB8rvy2SSmQz+eQSqWRzbL6VVaiEEc8zlLLbhbXEm4UjG0XAysLSLLrj/clrqqqMtpqCUXj8Pa7LGbxuNVK0NmAb7vYO4/3HPZmCjkrWOm0w15WCDStErDqFFW5fQrZc8O6PlVVw8AAsyAabz+M7ZG/Rhe5FHeqn4cihn2uHyb8cIf1kuNeRwCg2a4rEdxsnN+zsVgIH/vYJjQ2VmF8fBwjIyMYGRkx26dxgHg+qF7PJRgsF25bG7/awxMnTmDFihVQVfW8BOSVxAUHCAkhUNXKalimu5/HH38c1113HSKRc9NXcmRkBHv27CnbbeXEiRMYGBiY0YLYIEriSiKbJfjnfy5gZIS/TVtAir9tMzaLvc2VE1Xw4J0EnAIJ50pMSdwPSZIRiYSRzWaRzxcQiYRRVRVDLJZAKBQqAp8MCAKC4J2K4lFqrDoKOCG+ylLL4hOYFE8hRKuwUL8W3eRGdNHrEaZVZY9TEOwPOG/1Zqnif878BElX+x0PB4SUAsnkCLLZDFpaWkpYPlEzXc9V5Yz146lgdhyq6twRB518vN7XnlM44j7WUl0uKgWE9vUAGCUK7CUjl8sjGg0hHI4YfXJDBnvIGVYNsiwati3ErG10nluWZhwYGChZ0+oPkDXXcsFZQX+QyYLVKTLAo2mq+VtwQVkQ83K//ZW7r9zBVde8ztC9riQRMBabMYYDAwMQRREjHW/h0dDfYpl+Fd5DPgfq0UaPHSv1TPmzY/a+ptj1TVyMKi+tYQKde+65FAsXFhtQZzIZExyOjo4iGo2a4LCuru6sefIFjdkMBt1hF6bYBT0A0Nvbi82bNyOVSs26c3ym44IDhExdenbq5Xbs2IGrrrrqrL+pUUpx7Ngx9Pb2BlJP9/X14cSJE7j88stnZDyVikeCRiql44c/VDE6yi5RRaFQVcEBdngNGfPYYyCnlAeu1VqKTzaceWSAk020g0VKYk1TkclkkU6nkcvlEApJqKqKIxRKGAa0AkSRGHVswSY9S7Ti/T0FxYh0AO8Iv8Ih6QkMiG9ApDLmkMuwmN6IheoNqMNc5zoU5jjcwcZopYSDqEH9LG28RutmYBhA0zA4OARVVdHa2oJIJOSzT8FI6XMA5H1SrBQuH5MAUWQpUF5ryLvBeJn92tuAsX7X1vj5OOy75qCKsb/Etk1qjsUCmtRcn4FYJkiyb1/TdNMaKZvNQBBEs5VeLBYzWG7i2D9AbUpfIJvNYHBwEI2NTWba3R1eXTuscdiv/+BgMIiROjtuztiydnOVtGs0R2mMzc4mVgoIGQh1i6m4wIgajLMOTSPmC+DAnD14PPQ9rNVvws3qb0Kg/u1RGMPofNiwlLRdoGWFGwyyUgpi+47i9ttXY82aeWWPTdM0jI6OYmRkBMPDw9B1HQ0NDSZAPFc96nmcT2DQK+zs4R/8wR/g+9//PjKZzDk/rzMdFwHhacSTTz6JSy+99Kxe8IQQHDhwAENDQ1i/fj1qa2vLrjM4OIjDhw/jiiuuOKNj4Q95DrDK2cpMJyYndfzzP6uYmGATbygEz2JyuwAF8G5jx8ZYXPdDKRAOUySTU0gmR1BXV19SSUwIMbpcsEldUQBZjhnsYaSiSYtPUH6pTg4sAGAS/TgsPYle6QkcF1+CLhTQRJagS78J3foNaCEroQSY4LmApHyNIR9D0HQidbBNhGjo72cGvS0tLabHoL1OkYsc7OOwauf8QSEHdiw08LQdA2neNXLlLGC8wmpfRj3GWHl62n5+WBehHDKZjJFa1hGNKjZwaIERDuYnJ8cxPJxEU1Mz4nFvO6LStYcMEFaaIg7KItpZM+sFpNJz7p1WdrLepcbAGDrWWcVyKQDc1xkx0sQDUBQZx9tfxVOhf8YGbStuUH+9bK9wWabQtPLgmp0H7phg705iXUOyLOCKKxbhuusqtwajlGJqasoEh1NTU6iqqkJjY6PRv7rqrNa5n+9gkAelFH//93+PP/mTP8EvfvELXDcLLebOdFwEhKcRO3fuxJo1a4z6nZmPQqGAnp4e6LqOdevWGb1Jy8fw8DAOHjyIq6666oyNxS0emQkwyGN8XMe//AsDhcw3kHqyVqzWUHCpj93jBtiE6PxsamoUo6PjaGtrQSgUDXwsvO4wm00jl5uCqhYQDsfNPsv2Sb30dmDURToVuXZAaI88UjgqPotD0hM4Ij2NrDCOBG1Bl349uvQbMJ9sggz/t1lKgUgEyOdZ2ixIBO1YIkkCstkCBgf7EArJnh6DXj2U7VEOFDpBtAUIAf+aQCul7LU/b/GIHyAsLb4pBWT92VZNU5FKTZqpZa5ajsejCIfDmJiYwNjYGNrbWxEOhz0AUxCQV5lPoCWKCLS4wbpyb09iMNZWmUepKJVqZVHefod3NGJjYT6KhUKxT6AgAKrKrI/C4TAOtz+DZ5X/wOXqXbhWu8/XSN55rLqtRMEvRcxBIjVqFQXDa9ACj6GQhGXLWnHnnevK7jNIFAoFExyOjo5CFEUTHNbX189oHdyFBAZ/8IMf4Mtf/jK2b99+RufO2RwXHCAEgHw+f1b289xzz2HZsmVobGyc8X1NTU1h9+7dqKmpwapVq+BlOusXo6OjeOONN3DttdeekbGcSfFI0Egmdfzrv6qYmqIGC+gtMODKY2407cW+2ZkGShlgzuUyaG1tQSgUNovMKxVmU6pD13PIZlNIpdLI51WEQlY6MFi7RGfnES//QHcQaOiTX0ev+ATeEX6FcfE4FBpDJ7kKXfoNWKRfhxiKvf64UbU9jVwunPY03pHP5zE0NIBYLIb6+jpX3SJMgFEuHV0KwPHULfsdnYCQrecNXP28+PxYWm53ExQQlmIHSymWrRQvS0FqGmOhM5k0stmscUxAfX09qqsTEATRTH3yUo1iL0Vn8HNOSPka60pqSK112EtNoaC6hCYCCNFKPidYzWG5DiXFNyQTb4gOL0peikEIZ9+L1yNEw6lTJxGJRvB22xN4Uf4ZrlI/hCu0ewKCQVa6wmsQ3eE+f8y8m5eTWOp+SRIxd24tPvrRjTNSn0YIwfj4OIaHh02T7bq6OjQ1NaGxsbHIkeJ04kICgz/60Y/wxS9+Edu2bftvwQzyuAgITyNefPFFLFq0CC0tM2scOjg4iH379qGzsxOLFi2qGICNj4+jp6cH119//WmP5UyLRyqJ4WEdP/qRinSaAwriCdpkmRpMgWBjKCy2kE/uuk4wODgIQghaW1ugKJJjQnWvVy6YwlIFIdYkODWVQi6XZd0OxJDRPzdm1h2W2hYDCeXrpnj6l1IKCoox6TAOCr/CIelJ9Al7IUBAB1mPLnIDuvUbUU8X2M6DvRYzGACw2Mxi0JXJZDA0NIja2jrU1dUAYN1QmEikmO30r3Xj3/v3CrYYNycgtLbrx9h4dQPxS/dxIOVOGXuDYj+BSqmUazHb6YyRkWGkUhnEYlHkcjnoOkEkEkE8ztoyRiIKdL109xGLPbRqCL2i0rpCvm2L+aI+57cYmLF9VeLnai3HfhOrNtEyrneXkrA6RnsUCioGB08hFo9hb8s2vCb/EtepH8Pl2l0Bx8E6lBCil72WnJZK1PG9JIloaIjj4x/fhEgkyMvi6QcXpgwPD2NsbMwUpjQ1NaG2tnbaoPRCAoP/+Z//ic997nN46KGHcOONN57rIZ3VuCABYaFQqKiAebrxyiuvYO7cuWhvb5+R7VNKceTIERw5cgSrVq1Ca2vrtLYzNTWFV1555bQv7pkSj1QSQ0OMKSwUOJghHmweV6YKpj2NnfWTJIpcrmDUDiloaWEpTXf7O4A/0AUDzJQ+XlFk4MTOHPE6KlXVDGCYQTqdhdVnOebyqfPaJvG1ugGcQhnn5wIm9EEclp7GIelJvCu+AE3Io54sRLd+I5ZgM1q01RBhr1WzjrtcuFOUvI6Jix0YQCYQBG8bnuJ9en9fytqGAY1i6w8/lrBSwOYNCCurHSzFDLqZSUFwAruBgUGoqoq2tlbIsgxKWaqTGaunoWkFyHII0WgU1dVxSJLsOGYnIOHMlDcA4729gz47rRSoBdj9lLdWEAPASdMQmmi2ejzLxqn0tcVrSlkUCsxBoKY2jpfrf4I9yg7cWPgkNui3BRoDL43hWQb7sVqg1FlGw0pc2HLcB1GSRMRiIfz6r1+JmppgpT9nOrgwhbOHhBDU19eb7GGwjMaFAwYB4IEHHsCnP/1p/OxnP8NttwW7Ji6kuAgITyNef/11NDc3my3izmTYW++tX7/+tG60TCaD5557Dlu2bJnW+mdDPFJJDAzo+NGPCsjluOdZcScLe0qPT1xMdALkchmcOjWARKIKDQ315mTmBQjtUa5lmxcgdK4vGD13KfL5nClMUVWCaDTqWXfIgC03fy423GUMqH+xPWfzCKHI0zSOiS+iV3oSh6WnkBFGEaMNWKRfh259MxaQK6EgaqxTSRoZGB0dx/j4OFpaWhCNRkEphaIwIMzU38W2N17nx//c+Xswslour3H51xIGZSq9AGHptHNwQGgBXXu6mwNCir6+AVDK+xI7Xxj4KqqqG6nljMFCi0gkWMvGaDTiEDCwKAaE1v1RCRD0BtClACFjnxgwnZ79DB8ft+QJth4X0RQKBQwODiAaj+OVlh/hTWknblV/G6v18i/KHIjyFo+CQGB11yk22uZ2MnYRGwfCABCJyPjoRy9Ha2tNBWdh5oILUzg45MIUDg79hCkXEhj8xS9+gd/4jd/Af/zHf+DOO+8818M5J3EREJ5G9PT0oLa2Fp2dnWd0u7lcDj09PRAEAevWrTttqXsul8POnTuxZcuWioHc2RSPVBKnTun4yU8KSKWo8bbOPrdAGzUmbmsdQWBG3kNDw2hsrEMi4XyABelLajGNFG5WSpIoKNXKpl1ZHRf31qNQVRW5HGN8slnVMDGOGallxcFoudm0oAIBXj/GwT2BjkF5Dw7iCfRKT2FUPAKZhrGAXGHWHSbQZAAx/zo/SoFkMolsNm14DIZhdcogRWMv5UXHwWspUFjKmNodfkpgL+BWCSD0Godf+z3OCHltl5UWuL/RABCcOtUHUZTR2trsYI95zZzXb8JUy1lkMhnk8xmoqopIJIp4PGa8aLCe3dO3nbFEEf5sdXHKmO+H/RSl+zt7BU/Pus2Dg4YgUKhqASdP9qGqNoEXmv8Zb4sv4Hb1c1iuX11mXaHomFmdMquhLhbdCA622XndsHMQiSi4995L0d5eW/GxnK3I5/Om52EymYQsy6alDRemXEhgcPv27fj4xz+Of/mXf8Hdd999rodzzuKCBISqqlb80JlO7Nu3D7FYDF1dXWdsmxMTE9i9ezcaGxuxYsWKM1JoPN2uKueyXjBInDih48c/ziOXAwix1LkMxDg7l1BKMT4+jomJCbS1tSAej4C3v7Mm18oK6N2pavbw1wJtx2LunKBF13Xkcmmk01mk0znIsoR4PIpYLG7UHfJ9MeWmX31dqbBsZ6xU7qhwFL3SUzgkPoVT4m5QULTTNejSN2MxuQGNWAR3ppVSavMYbEUopBg+kPbUqrc5bym2sBxTWPydZjJW7mvUiyUs1ZnEHcyvTnBM7F5A0wtkllL9WipqZxCSw6lTvC9xsTq7VPqZf89EVcRILaeQTmeQz+cRDoeNaylsvGSW3pZ9rOV6A/NwA0I3YOJ1seX3x03IdbA+5SxlXGlIkoh0Oo2BgQFU1yWws+l7OCzuwnsKn8cSo0Wk9xiKgaC1TS5Mc5ZCWB6E/N8wj5WD4mg0hA996FK0t88OZjBIEEIwNjZmAsRsNotolNWzrlq1Cs3NxSba51P86le/wkc+8hH84z/+Iz784Q+f6+Gc07gICE8jDhw4AEmSsGTJkjOyvb6+Puzfvx9dXV1YsGDBGQNguq7jV7/6FTZv3hy4LmS2g0EeR49q+MlPCtB1Zy2RXW2o69RQEucM4BKyKZWt+kJNc3ZECRJ2xo6JXAh4C7ugwb343JMPIQT5fAbpdMqoOxQMIQH3qUPFKmF7KAqMwnjn5xmM4rD0DA5JT+Go+DxUIYNaMg/dZDO69RvQQdaBaAIGBwchCEBLSytEUTTSzMRWi0bgBQgBN9Pq9b2/RUsxKGSiEm9FeTF4YyCvzMmBpVpl++Q9k/1q7PyYSPe+LbGSOzRNxalTJxCPx9DQ0OgYYxB1t5dqm9fZFQqqqVrO5VIAJPNaikb9bZaCqX/ty1Pz/Hqtx46/uHaQGzMzw/BiIObFPPoFe16xazGTyWJoaADVDQn8quE7OCnux/u030entq7EMYgl7yd2nzsFLl5t6rgHIltHQjQq48MfvgxtbecPGPSKd955BydOnEAikcDU1BRisZjJHp6OMOVcxM6dO3HPPffg7/7u73DffffN2nnubMVFQHgacfDgQei6juXLl5/Wdiil6O3txfHjx7FmzRo0NTWdoRFa29+xYweuvfbaQN6Fs0E8UkkcParhgQcKyOWK64oEQcepUwMghKK1tcXFkPI+poIJDBWFolAoTgeXC1YaRGC1OZtOastid5znnKXs8/m8WS+mqjpisQii0Sii0TgURTJT5EFvaQvk8ML3YuGKhjyOiS/jkPQkDklPISUMI0Jr0Dp1KRbkrsGaxG0IIw7eIcR9Tsql+UqxhaXEJk5GjquMBU/A5sXeeTN6zn3Z/83PlRdD6b39YkbNDwxSSqFpBZw61Y/q6hjq6uod56OUQpmnkEtdb1wYxQCXDkI00xA7nc6AUh3RKGOheQ1r8A411rFJkghJomVbh3J2mwt8GPAXzZpKr3uvHCDkDJxdyc7KQ4ZQ25LAY7XfRr/4Dt5f+CN0YpVHeYBggF+9BDgGGONrpb2tl5/iZfl4JUk0wODl5z0YdKeJNU1DMpk02UNCiKNjSlAC4lzE888/j/e///349re/jU984hOzfp47G3FBAkJN0yqwMph+HDp0CNlsFqtWrZr2NjRNw759+5BKpbB+/XokEt6tqE43fvWrX2HTpk0ltz/bxCOVxJEjKn7+8wJSKQtMsZ7EA4hEmDkypc43V/amzy5/9lLL1uMTdyllr1dIEjEmX4p8Pjir4r0ta0J22+vwusNslpkYFwp5KEoEsVgCsVjMtLAol062MxiApYj2AwIUBMe1PdiX34b+6lcwFjoMiSqYTzYahtjXowotjjUoJSXrAvl+i1uMOc+FF9NmgVDr5Hgxi6xej3qALOczwg28ggBCbsJsf4qy66c4HeuXCs/ns+jvHzA65MTAr8NSgBgIxhpaPn3UTGHaVbdMtZxHOs1eNLhqmVvaKEqo5DXE08k8LewnKhFFq06TjZmn34WSQNBa37v2kLHrxYB8aiqFkZFh1LTEsb32LzEiHscHCl/BHLIc7ppT63cvpeJn31ulGsS3lpMdFzFBciQi4d57Lzww6A5KKSYnJ01wODU1herqahMcnu2OKaXi5Zdfxl133YU/+7M/w2//9m/PmnGd67gICE8jjh49iomJCaxdu3Za62cyGfT09CAUCmHNmjUz+jZVrs0eN7jlD93zCQzyOHJEw4MPZpHJALlcHgMDg0YLp1pTVGG/LBhQcBrmWr1wRVsqORgw5KDB3q3BbkMxnZAkZnHB1Mn2zy0GQtN0ZDJpU0wgSSEjrRxHLBb1BQ1uQMjDEg84JzvmMTiE2tpa1NTUYlw4gcPykzgkPY3jwmuggo5WsgJd+vXo1jejiS6GAFpymzwssYR3mtEPVDKQ46wt8wJebhbPEknZlykPCN0MpD/7WB4MUgpks2kMDg4ZE2YCpdLf7u2VEnfYgaD9t2f9d4s7OfFaP1XVkMlYqmVJkswSBZ5aZmpZ9nLlfungTB6/dwAUjYEtx/4M0vmGheXjx4EW23bx9Ts1NYVkMomqlii21f4ZJoQh3JP/Y7TRbkddn5UOL94/H7997LwNHz8uv5mTlaOwbUYiMu699/xPE09HQFJKmNLQ0IBKmiucydi1axfuuOMOfPWrX8VnP/vZ826em8m4CAhPI44fP47h4WFs2LCh4nVHR0fR09ODtrY2LF26dMbrLkq12bPXC7I39vOnBsQdhw+r+OEPB3HqVBJ1dU2oqWEPL9Z31G7AzJZnzIPzFpBlXkfIzK0BLlQpDQy5RQybuKjj80psPdzB+zPb08F2dtMerM9yFuk0A4iiCCQSrJVeJBIDIYI5gfsBQmvclh0J8xhMmsCFAQ6LLcthHO8qz+Md4SkcFp9DQUihmrSjm1yHLv06zCWXQIJiYyH9J2I/IYZf6lSStKI6SLdq2IsldItL3Nu3gzJLVOIcmHsbXgylH3ibmppEMunsS0yp5lmPxr4rrwq2xEp+YhYKQdBNRq/U9iglyGRyxstGFpTqpjVSJBK12SNRsw6W27F4K7YFs6yBt7YLFowF5myil8E5j4mJSYyNjSLRGsYvav4UGWEcH8x/Dc20E4C9k5F3v2vrmi/+XhSJJxvpXIal5gUBCIdlfOQj/z3BoDvswpTh4WHk83nU1dWZpthB27Cebuzduxdbt27F7//+7+OLX/ziRTDoiouA8DTi1KlTOHnyJC6//PKK1jt58iTeeustLFmyZEY8DL3i2WefxYoVK9DQ0OD4/HwRjwQJbuT98sun0Nu7GIoSB29hZ/UE9lIiu2vJqI1BEozJi9Wo8fX8WC5r4ioWlvCOCkBlrKG9fR1Pr+p66VZgfH/5fB6pVBrZbAaapiEWi6K2NoFwOOZrteLcBut0k0qNo7GxxXxw+/UippRCkFW8i9fQKz6FXvEpTIkDCNMqLNSvQhe5Dgv1qxAVakyQ5hV+nn4coDoPXfM4FgFuG6Firzjnv7lqnG/bApGCAcrdqtJitbJbBeyXwh4bY76Nra0tiEQitnWLTbb5WP1AnvN4Sv+e7JzotvrOkoub4xVFwQSH2SwrU4hEwohGmaUNTy2zFy/7ORFsYy997ryCUopwWDTUxqWXHx+fwPj4GOJtITxU/TUUhCzuVf8UdXqHyZgKgnt89mO0UsPO77jBPXMQ8DpnHFwzyyWKSETBhz986UUw6BPpdNpkD8fGxs6KMOXNN9/Ebbfdhs9+9rP4oz/6o/N6rpupuCABoa7rxs07szEwMIAjR47giiuuCLQ8IQQHDx5EX18f1q5dWwTOZjJeeOEFdHd3OywCLiQwSAjBgQMHMDY2hrVr12JoKIIHHsiAUgGFAgdzTuNpiy0sZn7cwhCL3WDb8ut1zDsYlFMaWymp8iIQO0AFuDBBN9gI70nMHbzukAsJ8vk8IhEFNTUxRCLc75Db4PB1gJGREWQyGbS1cXW2ENgPThAoBFFHn/4WDss70Ss9jUHxLYhUxlyyAV369VhMr0cNbfdhsxjb4t5XcW2dBY7doMMu0OGKW+brZ6Ufee2sG1TaGUNZhimA4OediTSoCfhKpZztnyWTSUxNTaGtrQ2hUAi8mwhjESs3jQ4CBC1AxGpr2bXnX+fKAQ5nkdlxWAp8VqbAvDNzuSxkWUY0GkNVVRThcAi8E4kf4A8CCHkaWxTLC0rGxsYwOTmJWIeABxN/DArgQ4Wvo1HsAP+dmGrc2QrSYgyd9xBPi1PKhC/MdN77Jcgy/2YtJLnP4EUwGCxUVcXo6OiMClPeeust3HbbbfjUpz6Fr33ta+f1XDeTcREQnkYMDw/j7bffxtVXlzY3BdhFv2fPHuTzeaxfv/6MNhUPEi+99BI6OzvR2tpqToDnk5K4VBQKBezduxeEEKxdu9Y08j58WMVPf5oBAOi6aBgBF7egY1YzTuDhBmFW8MJylk52M4Y8lRtUacxZQ0EobQDNOzywscEhDOCgASi3DSt43WE6nUI2m0E4rCAWY4rlSISZSw8ODkPTmMegLCsmGGDt6IxR6eXqK616Mk2jmBIHcEjciUPSThwTXwERNDSRxVhMr8ci9Xq00mUQYDditvdNtrbqTP2zujsLKFrnXZatdmKEkKJ0rB8Tyb6z+uyyulCLUbMzf/z881pNSzBRrFoeGhpCNptDW1sbFMVqM2eN2e5b518naNVklq7BcwNKu+jD6i9MTWDEXnYE40XRd7OOoJQik8kin88ik5mEphFEo1bdob3zjjWu4haCHLRS6lTaczsn730Do6NJpFJpRDoIHkh8FQoN4V7tz1AD9vLrbDmom8fo1/aOATzr/mcvQXrR88BKuVOjrpCBwY985CIYnG7YhSnDw8NIpVKmMKWpqQmJRKLiuaq3txe33HIL7rvvPvz5n//5eV0SNdNxERCeRoyNjWHv3r247rrrSi6XTqexa9cuxONxrFmzpiJz6DMVr776Kjo6OtDe3n7ei0fskU6nsWfPHiQSCaxcubKoUJmDQlUFQiERmubV/o2a/ml2EUk5UMfSv1ZLPNYnmRgThD874h8MHHoJUeyMo1/vYvu43JOqXwiCDl3ndYcZZLMZg5EBJEk2e+jy8SmK22sQYGDMTynqBq5W3WEeKRwVX8AhaScOS88iJ0wiQZvRpV+LLv16zCeXQUbYWNebLWRMk5Vm5fuwjr+YQbOndb3UxtZ5dDKEvB8tP8d8m1yVboFFmACBAzZBAPr7B6Bpmml/xMbOlrOfr1Lp4SBAkCuwgeJrXRSZNyQXxzBQpIPbvpSyXfHaDwNw1Hat6cjl8qYwpVAoIBIJGwKnGBRFMffNau046HN3/LAfczEY4/tPJpPIZNKQ2wt4MPHHiNJqfDD/dSRQb97PdlEIO3bv+9pvDFwk5mafGXvIe50TQ0AyuzuQBInZ1IEkl8shmUxieHgYo6OjpjClqakJ9fX1ZYUpR44cwa233or3v//9+Na3vnURDJaJCxIQMrVcaS+sMxGTk5N47bXXcMMNN/guMzIygj179mDu3LlYvHjxOQNfu3btQlNTE9rb280H2/l+c3BA3t7eju7ubt9zaweFisIe4ppW3BuWdTuxJt2gqVFeUM+BIU8tutPQlYTFqjG20g5OywFC53YEBwgrHrtTAFAoqOjv74cosvVUVUM4HEEiwSZ0XgPpDM6UCTaGh6cXi4vz+SRqB746VJwS96BXehqHxKcxLp6EQqPoJFehW78OC/WrEUOdJ6Mny8Rkaez1hU4lsWC77q3UsNuk2gkWLdAXDgvI5zVze1ZanRpAwilgsYNDgKCv7xQIAVpbWyGKgqd3IF/W65rjDLDfSwZnmvn54SCUb4uzl/w65/tjx+sNuLz3w0Ag4Pey5LwuNU03BU721HI8HkM8HjWY8VIvLpzVKx4HFyfIc7P4aeQrqKZN+GD+TxADY+estDSv3fVmGkv5PHqtx42reStIgCIUkvDRj152EQzOYHBhCu+3zIUpvN+yW5hy7Ngx3HLLLdi6dSu++93vnvfz3dmIi4DwNCKdTuOFF17AzTffXPQdpRTHjh1Db28vli9fjo6OjhkfT6no6elBdXU15s6de96niAGgv78fBw4cwJIlSzBnzpyyyx8+rOInP8kYAItAUSTk83CcB6++wKEQoKrBiu95OplP2orCzJ7Lp1VLBZt4RJGgUCA25rIy43XGlohFVhp2tXI+z6x64vEEGhrqAcBof5ZBLsf+U5Sw6VEXCim+++NAVBBUsBaBggG+7HVa9lS3xS5SUIwIh3FYYnWHfeI+CFTEHLIOXeR6dJPrUE/nmwwQTxk77XWoA9C528g5FcQWS2gHB/Y+xIoCqCpPH1uAsph9dNZgsr7E/ZAkEe3tLeb3zscuZ5iLO7twhosDVy4qYufKOjZdD3KNUiiKYKqALeastNqcHydjw0spbC2w6Re5HFPAp1J2Q+yY8bJRzPa4bYU4qB0ZGUEulwNpn8CDsT9BPe3APfmvIQLLZzUcFg2BITtf9vpBp/+hf7BzbXkKWu4E7PeSJEBRLoLBsx2sTCFjgsPx8XFs374dhUIBd9xxB5YtW4atW7fihhtuwPe+972LYDBgXASEpxG5XA47d+7Eli1bHBMdFzgMDQ1h/fr1qK2tnfGxlApKKd5++22cOnUKjY2NaG5uRkNDwzlJXZ9ucCXx8ePHsWrVKjQ2NgZe1w4KmVEuBSGiaS3DTaWdzAdjAKy6wfK3C+9awuo0rdZ4nDmbDji0exv6MR2VBAdsoqhDVanR4msQdXV1qKnxrn/StDyy2azRLYV71MURj8cQDkc8axeZSMKyG/F73DAWlPlEOp/dAjLiCHqFZ3AQT+Fd8RVoQh4NZCEW0+uwUL0OHVgGgTIw4QRo1AHqWN2fmz1zMml2QMjZQi5GYfW21jVgF624hS5MvKGhv5/3JW4y6hepUXeqGdeFJXCxwAdxMK1WXaL9OpXMushS15OT0SNGXaLbmLmYceY1jOVAoHM7zhcV+zbcKXBKKQqFnMkestRyxASHXEjAfQ15OzpNIxgaYv2z1Y4R/Dz6dbSQRbi78BWEEXOIROzgnJ9zdl6DKZwZ82/VWXNWkNcbSxJQVRXBhz60Ac3NsxtAlYvzCQx6haqqeOihh/Czn/0Mzz//PAqFAlpaWvC1r30Nt91221kVcJ7PcUECQvawKTZfPdOhqiqefPJJ3HjjjSa4KhQK6Onpga7rWLdu3VnzV/IKu3hE13WkUikMDw9jeHgY2WwW9fX1aG5uRlNT06xuMcTDriRet27dtLq6HD5cwE9+kjVBISE6wmEZ+TzAwQFPHfOwp2udYgbv4NvgwJABC6enIQCTuQgSdpELE8EQEzhN19+Qb2tiYhLJ5IjhBxb3BHZumxlCdBMcZrMZUEoRicQQjzMzbKbkLU5JW50lvH3g2L44qCuuF8zTDI5JL+EdgdUdZoQxxGk9FpGrsZhch056KcJizBR8MGbHqrmzUs6CC/wx5tQNCJmqWIQgaAYjxAGmk6mzUs1sG5lMHgMD/YhGo2htbXEweJb9kJvppSXtYHhpQjn7GQ40nbV9/Nx6scvMioZ9L5rHXenUwOsm+XkvVcPK6xd5MAV81rC1yUJRFMTjMVRXs7pDXq83MDDIrr2OPvwi8g3MISvwfvUPERYjjhIEt4qZv+hVdkzEvBa5v6B9+x0dtfjgB9cjFpv9z85Scb6DQXsMDQ3htttuQ2dnJ9auXYtHH30U+/btw8aNG7F161bccccdWLly5bke5qyNi4DwNIIQgscffxzXXXcdIpEIpqamsHv3btTU1GDVqlXnzIkdgAkE/cQjvM/n0NAQpqamUFNTg+bmZjQ3N59TEOsXfkri6cShQwwUcjaKt/WSJBGq6pWS9a4HLGX3wUGkXQwiihxACA7mEAjaDYWzbcXtwTjjBwQHiEzRN4axsXG0tLQgGo2Y9ZPWmJzH470dgnw+b3S3SEPTdITDEcTjcSQSYQiC933AgBb1qSHjth9WNwrGOHHWh0LVNfRLb+CQtBO94k6Miscg0zAWkMvRpV+DxfQaREm9MX57ilgwmTfO3PKWdPYaQg5sOFNk9yG02EMrFc2PIZvNYmBgEHV11aitrfcQI9hTwIwBk2Vu01IshisluODniotCynkLegFCDk6ZktZ/Xa/gqVcWeuBrj51bbz9AAEilMgY4TIEQplouFPIQRRGpjmPYFvlLdNL1eJ/2+xB0Ge6XC/4SwKx2SBErWiooZQI0prSmptrb+k7C0qUteM97ikVs51scO3YMR44cuSDAYDKZxNatW9Hd3Y0f//jHUBRW0nLq1Ck88sgjePjhh6EoCh544IFzPNLZGxcB4WnGjh07cNVVVyGVSmHfvn3o7OzEokWLzmmNHvcXDCoeyeVyGB4extDQEMbGxpBIJNDU1ITm5uZpyfzPdJRTEk8n3n1Xxc9/nsPUFDEAFvucqWhZis3pSecPiLyUwXzCc/ch5sF8zSzm0A52/NhHC1x6F9rboxxApJRiZCSJbDaN1tZmT4bYDg6DggXmd1hAJpM1wGEWshwy2UOvukMrtejtqcjZGfabOLuCMIClgRCKpPAuDkvPoVd6BqeEfaCgaKcr0a1fiy79GjQJC8ExiMX8wGSALFbRYrl4OpjXWnJ2z0r9UxM0UkqRTmcxNDSAxsYGJBLWBOulHGbpTUu0YNXyWa3hSgkurPZx/myr+7dRFCs97qwlFaDr5Z0ZSqWBvbr++AX3QQScjKZ7fUHQkE5nMTw8DEopjle9jpc7/hWduUtwh/oFRBSnfZe9VtZieoP6ZgpGaphAljlTazepF6EoAq64YiGuuaYr0HHO5riQwODY2BjuuOMOzJkzBw888IBvxstdx3wxnHFBAkKAFcifjXjiiSfQ3t6OU6dOYdWqVWhtbT0r+/ULe4p4OuIRVVUxMjKCoaEhjIyMIBwOm+Cwtrb2rN9MQZXE04l0WseDD2Zx5IhupJT4NwShkIhCwUrp+vsSWsEneItFIsYDiMDtfehcrxgcSpKVxuTr2sGlnxWHX9gBoqYRDAwMGhYorVCU0ueU7UY3lcf8syA+dZQWMDWVRiaTRi6Xg6LIRneLKCKRaFF62gJ5znQnZ7Y4a8hrxACrpZg9zZkTx9ErPodD4rM4Kr4EVcihjsxFF7kGXfo16NDXQJEUcKNpzhJbgISBPf4dE5VoNuDoVCNrGkEmk8HIyBDq6xtRVVVlAmo7yLUMzt0CGH6N8bZyxb8JB05BagfZuadG/SB/YSEQRW9/wVKAkNfvlUsDu02fSwVnx+3G3l6haQUMDg5AUSQMtL6Bx0LfQXfuClzW/xHksyoURTaY6ASi0bBhl8RLEsor8rlYBLCOjbGDmo1JZeUFsizijjtWYPnytmAHOYvjQgKDExMTuPPOO9HQ0ICf//znZuefi1F5XASEpxG6ruPJJ5+ELMu45JJLzvmNxZnBM2U2res6RkdHMTQ0hOHhYQiCgKampsAeUKcblSqJpxOUUjz1VA6vvFIwJifrO1FkRfiMbBaMtlxBmAaL1WJsA0FQW8xicEhNIMZSX2y5Uma9pULTdAwODkIUBbS3txq1fnoAZse7TZ0FEr2989ixU2N5gkyGqUyZ3yEQj8cRDseMukPn9WqlI4nhj+fcNp/IOUPI1+FAmi9TIDm8K7yKQ/Kz6BWfQVpIIkJrsEi/Et3kWizQNyKMuJk2ZmyeVeun69RQjBOjztAChfw8pNNTGB5OoqmpCVVVCVPYwIGgF4tsATZetqA7wAu3tOFimFJPav5bCIJoHL/f8n6eixYgtKeBy9Ur2kYAr2uEjY2/4PBjJQ4Gzyu4uvjUqZOQZQWn2l/Hr0L/gDXaFtxc+DQkUQZAkU5nkEqlkMlkAQDxeMxQLkcNprBUX+Xia5a1yVPNz7l4p7o6jHvuWXfeG04DFxYYnJqawl133YVYLIZt27bNynKn8ykuWEBYKBQqLoquJHK5HHp6ejA1NYVVq1ahre3cvjXyesGZ6jxCCMH4+LiZWlZV1TQIbWxsNOs1zkTYlcSrV68+Kwqx3l4Vv/hFFqpKYBeo8w4VsszUyEHTczwkiaUA/VifUiEIFNwAl3VFoWY6E6CGUjX4NlVVxcDAAEKhMJqbm2zsG0tFWxYnTjWwX72XV7hBomWXU7xcPp9DOs0MjHVdRSwWMwCis7uFxbSKxhi5lQ/7ntVmcnWpVe/JBSJcaUsIBQXBoHQAB/EMDknPYlg8BIkqmE8vRZd2Dbr0q1ErtZiAkDN63KvPEp9YauPx8QmMjo6io6MN4XDUTDOyfdoVwtRk27yAVihEUSioJtAtBQLtqVt7nWX5cKuJ+e/FgHdwAOgMLtCyp2zZMRRvj6Xi3T2grZcoQihUVcPgYB8URcG7bS/g6dA/4VL9TtyofxJezjb8esrlspiaSkFVVcTjYUQiUcMQWzbG6WQDeTBrJ5juFOzFgtVudnTU4J571qGq6vxnni4kMJhOp/H+978fgiBg+/bt0xIZXgxnXASE04iJiQns3r0bjY2NmJycRFdXF1paWmZkX+WCTz6cWTgbnUcopUilUqYoJZ1OOxTLpyP4IIRg//79GB8fn7aSeLoxMaHjgQcyGBnRkcvZuyhQo0Cdiwn8O0m4g4Ep3fQntOr6KhsbN6emlFmz8O3aU8Espeedfsvl8hgcHDA8Bhscy9i9CK39CSZAdNfuVRLs3Ok20FE8TlZ3qJq9cfP5PKLRsGGGHYUoSh7HJJggQpIICgV7RxTO/lj+cQxAU8MQ2lKPTkp9eEd4Br3iMzgh9oAKOtrIcnSTa7BIvwaN+iJIoghFYeeIpSQtJnFwcBjZbBotLW0IhZSi2j97HaZfv1x+bExgUvC8rni6GOAvf8FroTiwZWbgurENgNc/As6avkqCXyeSxFLqQcbFFevWdeu8l1SVmaPH4yG80/oUnpX/DRvVD+Aa7WMQSryM2Y9BVVXkcmmkUinkcnmEQgqiUXY9hcNhY4yC0YGGd97Rjd9EMl8sli9vwXvfu+q8tOhyBweD69ev97WWOl8im83iAx/4APL5PB577DFUVVWd6yFdEHEREFYYfX192L9/P7q6urBgwQK8+uqrmDt3Ltrb28/4vspFpeKRmYpMJmOmlScmJlBdXW2Cw3g8Hng7Z1JJPN1gyvE8du/OGylkZw0bpQSKwvsic6ABTxDGg4FBHXYvOcCqowJQdhvWtnhXDksNzeZAC2y5a/3S6TQGB4d8PQa9AKE9OENojZeLPMoD41JCAzuYJQRmXZymaTZwmIYkyYjHY0gk4ohGoyZI5aCSA3Y76OS1aRxwcasYLiKxp315SjaHSRyRXkSv+AwOiy+iIKRRQ9vQTa7BUlyNNnUtJMhgHWQIRkdHkE5n0dHRjlBIMQGfZQ9jscL2Y+XjK06vM5CvaZqZKmbLBjNGt9g5J+i0H7ufcbTbVshj67ZUslAESlk5RWlAyXwv2X92AM9DEFhJQ19fH2LxCN5sfhgvKz/D1epHcYX2oQDHDtuzkNdkMqCazWaNdnpZCAJFIhFHJBJFNBqFJElgLf24VyYby1VXLcT113eX3O/5EhcSGMzlcvjwhz+M8fFxPP744+f98cymuGABIasDOT3zXntQStHb24vjx49jzZo1aGpqAgC8/vrraG5uxrx5887YvoKO53TEIzMV+Xze9DpMJpOIxWImOKyurvYdZzqdRk9PD6qqqs6Ykvh0Yv/+Ah55JIN8nhsDCzbgQW2sjmgTJsBz4mYgjUAUvRXHbBkGUqzifW+AaLcNsQrmqTlRs7SpteLUVArJ5AgaGxtRXV1lbp/Xs3FAVb5jQ6n0JTVBiB2Isom1MnbRyXhS6Dr3p8sgnc4AgNEphf3HgbGlnOXAsrgWzgJFTiGJBXDZMpRSEEHFu9iFXukZHBKfxaQwiDBNYCHZhG79KiQGFkFSI2hpaTGV03zf9pSpu27Q+NQEovbfWBQZm0pI+VIA7ufIzxNX6JZar5TAwi7EcKaRBXPbpcdTDPytFwhaJKLh+7H7HubzBfT39yNRlcCelp/idfmXuF79BC7T7iq5b/f4OSPsPlbe5YXVsTJwqGkFxOMRRKMxRCIstVxVFcFtty3FkiXnJutzpuNCAoOFQgEf/ehH0dfXhyeeeAL19fXnekgXVFwEhAFC0zTs27cPqVQK69evd6Qxe3p6UFtbi87OzjOyryBxpsUjMxWapmFkZMRsLyRJkul1WFtbazKao6Oj2Lt3L+bMmYOurq5Zczyjozr+678y6OvTjNQSbCkmwLIc4epiLv4oZvzY37WK6rP4thjQsGxOePG+VYvlDTjGx8cwMTGJ5uZWRCLexdYslWjZ2di9B91jmd79xMbLwY9921zE4/dz87Q4T3kKApDP55DJZJBKpaHrOqLRCBIJplgWRclclo3Z3kHE6uVrXV9cRU5t/+bLW+OiIBgWD+IgnsE74nMYFA9CoBLmkXXoJtdgMb0KtWgHV+FysOY+Ln6O/YAbNxznaV03aJyOWbRz+05AaAF5C1S7U8lBgwFCYisLKB4rS98LBnPHjaPZ8vl8Hv39/aiuqcJrLf+OPdKjuLnw21in3xb42AB2bzL2111CUMyAst9Yw8TEFNLpLAqFHFaubMaWLcvR0dGKmpqaWfMsmm5cSGBQVVV8/OMfx+HDh/HUU09V1KXqYgSLi4CwTGQyGfT09CAUCmHNmjVF/kb79u1DLBZDV9fZ8aWaafHITAUhxKFYppSisbERsizj5MmTWLp06YwpiU8nNI3gkUey2LOn4Ch8d4NCFtQwEbasY+ysIWt/p3nafpQLe3pZEAhUlbN7Xm3HmMdgJpNBW1srQqGQCVoBmOOztk0dohELvFnsmihW3j/ZCtZr2CssdWxx+zfG8vB13X2QrbrDXG4KmUwe4XAYsVgUiUQcoVDIE5R5BWdN7SyhUzErQFEI8nkVp071Ixcew0TL2+iVnscxYReIoKGJdKGbXI1F2lVoJUshiaJ5zBabXHocokiMtCsx0+eVhAWc7WbRXtsvBnylGGC/4Nckm0J0kwXkwhkvBtOqS7Uil2NG3jV1VXih8Z9xQHoat6r3Y5V+Y4l9W/ZEbvDJGW/OCDqV3TDLCLgpOgA0NyewZctiRCLsJXZkZASiKJrCufr6+vOujvBCAoOapuGTn/wk3njjDezcuRPNzc3nekgXZFywgJA1Na+wct8Vo6Oj6OnpQVtbG5YuXepZo3fgwAFIkoQlS5ac1r7KxbkQj8xUUEoxPj6O3t5eTExMQBAEs8dyY2PjrGyjd/CgiscfT2NsjJrMneWF555gqXGtCCYDxhgKQJb1QNY1pYKn5xgrIkDXVVg1hKy9l67raG1t8Z3EnGIHwM8yxL68fRnrVrDYNn4O7H8ygFB5Bwy+T86W2ffBu33wy1+SWCqJ1YilkclkIcus7jAej/taUdi3YaXSCQjRkU6nUVUVB0vDCwBUHD9+EpFI2JiMDGYLaRzGS+iVnsMh8UXkhSkkaCO69KvRpV+N+WQDZAS7nt0MofNceIM8alOEl3uU+5UGsPR5qWcldbGt1pjYdtnz1i0OKd6/WPRMzmazGBwcRHVdFZ5t+ge8I76I29UvYLl+bdEYufejXZBktSLkYwK4Z6b9cy5M4obiXOykKBKuuKITV1/d6Xi+210VRkZGkMvlUFdXZ9puzXavuwsJDOq6jk9/+tN47bXXsHPnznPu6HEhx0VA6BMnT57EW2+9hSVLlpSsDzx48CB0Xcfy5cunva9y4RaPnM9gEGA3+IEDBzA+Po61a9dCEARTsZxKpVBbW2vWHc4mXyldJ3jhhTxeeCEHVeUTOLciKe6wAfC0r2jWDjI/Ng26zifw6f2O9u4LnCXUdR2DgwMQRRFtba3mBMfr2Eq59EsScaZJqWACOutYyteS+Y2VM2/l2DJ3ypJSq56Os048Tc+PjZmK2/ssE2SzzO8wk8mAUiAWiyIeT5h9lnnasngc1NwGB2D5fB5DQ6cQjUbR2NjkXNocJ4UODcexB4fl59ErPocJsQ8hGkMnuRzd+tVYRK5AFLXmPvixWOCGGICQmNfGmXw8+4mH7PV3gFWqwM8Tr79kf3qLYcq1hvN6ceJitJqGKjzV8B0cFXfhLu330aVvNK5dd+2h17iJ49+sfZ7VrpMbedtZei5e6eysx9aty1FfX174lk6nzdroiYkJxONxExyWqo0+F3EhgUFCCD7zmc/gueeew9NPP425c+ee6yFd0HERELqCEIKDBw+ir68Pa9euLeuBd+jQIWSzWaxatWq6Qy0Z50u9YNDgSmJKKdasWVOkJM5ms+aDl7fR43WH8Xh8Vhz/5KSORx/N4uBB1Zg4icE4WF1F3MHUlQI0TYCiUBQKuskcWjVi9lrB0uGe3Akp4NSpviKPQXdY9XXs3xbbo3vWD3IQZrGcTlVzkJAkvWKbHWvd8qlqy9pGhJvEJ4Qim80ZfXEz0DTNMC6OIx6PQZZlGyiz1xKyNDWvbautTaC2ttaxbTuY4/syfz8BGBGO4JD0HHrF59An7odARcyha9CtX41uchVq9DmO34kpXa3+46cT9pcN6/dzCj/4b8p8HBlosvfsDRpBOpRwqx4evJd6bVM1Hm/4vzgp7Mf71P+NhWQ9gnhecraRMYfUYN9hKLQlTzEPMwfXEYuFcP31XVi3bnolKrybExfO2VPLDQ0N51QQd6GBwS984QvYsWMHdu7ciQULFpzrIV3wccECQl1n9g2VhKqq2LNnD/L5PNavX49YLFZ2naNHj2JiYgJr166d5kj940IDg5UqiQuFgtlGL5lMIhKJmG30ZkPB95EjBezYkcXICFMecwEE64fqzf4xP0Fu2+G1VWd6zg9I2ev+mMdgPxKJOOrr6wPVzbmD99F1ij8shopPsKJoMZN8nEwlytOXXmKJ0rY2pYKnje1jsqcuGetZrGRmbJG1DFe05vN50ww7n88hHI6YqmVurs5rz9LpLP7/9s48vok6//+vSdL7PlPK0XIVSrnachUEVBAohSYVFNcVV3RdWU/U76qsX130u4rX/sRViyheuCvr0oYCyi0FkUsoLVe5b0rbJL3bNOfM74/pZ5K06d0cTT7Px4OHOExmPpmmmde8j9e7rKwMERFhCA8PaUqrMjAbVJNrx/+XNMlY2v7w24E6ToVL4gO4JN6Pa6KjMDF6RLDxTeJwGmK5JHhJzLYwlt/K1pFbYWuLfzdfD1ufO0AkMtdymj0a27ObaZu2rGwI5kgevzYSbQuJCsJPoe+gXHQJC/VvIB6j2z0Wfzx+uo458o2mcXOszdF6xCScYTgMHx6FOXMS4e/fM2UplqlllUoFnU6H8PBwQSA6MrXsbmJw+fLlyMvLQ35+vsNq9D0dKgibaGhoQEFBAQICAjBmzJgOFxDfuHEDKpUKqampXV2qTXpr80hrdLeT2GQyoaKiQmhKEYlEgjgMDw93mgcjy7I4ckSH/fu1MBjILFqzpQa/9pYpUt66hm0SK0yrkUXz/uabvlmImFBXp4FKxXsMhoWFdOiG2hodjfTYOoc50mjZ3UveExlf1/Z7bP5VZI5mtmZdw08v4TtkzZ3SRBiR5gHS/UvGxPEm4yLodAbodI2or+ejh15eXsK0FJY1orxciaioKAQGBoJhzF205rnHaFqfeY6ypW0OL+bNgppcFwPTiKvMb7jA/IJL4gNoZKrhz4VhKDsFg42TEc+Ogxc6KiTMHdjmzxj5TJmbLVrWY5Jt3YtGNvcfNKfzGQsBT9LOHGpr61BRUYFgaQB+DH0LFcxN3K//O/qyie3MHWYgFvPHNhiMTf9v/p03Nx+1RCxmEBbmi3vuScDQoVE29+kJ+BGGDUL0sKamBoGBgcI0J3umlt1NDP7tb3/D+vXrkZ+fb/f6fIoZKggBqNVqFBUVoX///khISOjUL21JSQlu3bqFiRMndnWpVrhT8wjh9u3bOHv2LIYPH46+fft2+3jkqZyIQ6PRaDVGzxndgBqNCTt3NuLMGT34mcPNOxuJR6BZGJEmAjLblWFErUbZmsMwQGNjDZRKNSIjo+DnF9AkxrozVaRjkby2b9yt7c9HiKzFIidEF3lxwghirvnNndQhEvFDRB5pECANPuZGGXOdHvEeZFlOGGFnPq7Zj7G+vqEpetgAgIWPjx+Cg4MQGBgALy9ApzM2TToxzzg2NxhxFueChRAzT3yxVX9p4owoExc3zVnejwrmBiScDwZy45HA3oHBpjQEiyNATJYBkjkgRsodLTFo+TNrz0qIRB5ba2jh92EFUdl8LcRbk5yjpqYWVVWVCIrxxeaQ/0Mto8Ii3VuI4YbaFKz8GkVNKWG26f+J6bdZfLb2EMQwgJeXBCkpfXDXXYOF8XWOgmQ4yB+JRGLVtdxTqWV3EoMcx+Gtt97Cl19+iT179iApKcnZS/Io3FYQsiwrzKVsDY7jcP36dVy8eBFJSUldmjZSVlaGK1euYPLkyV1dqtV6iNm02YOs94pBjuNw+fJl3Lx5024ziTmOQ11dndCUotFoEBERIRR8O3raya1bRuzY0YDycoPNbmJLcWg0cvDyInV5Jqv6Pt7w2rY45DgOVVVVqKmpQUyMufGG1IRZ+xRaNz603QXacWsZy6aW9vc1R6IsTaxbNpjwIpGkZYmtiNm+xJyyJU0OIhE/fsxgsI5u8vViZsFjnmvMj3Djo4SM1Tg7kYiBWl2FmppqREWFQ6czNM1ZNsLPzwuBgfycZR8fLxiNHMjUDRIBJuKSf0+MReTQPMtYLBYJETReTPFr5edSm1CBm7go+hUXRAdwizkNAIhlR2AoOwVDTFMQwQ2wGt9mKdrM19v6+gK2Jom0/DlbNhF15Gfbmogz/wzM6ejq6mpUV1cjqI83Nga/AS1Th0W6txDFDWxan7kxhRf55ghsaxNbSEdx86USITpwYDhmzRqGqKiOT0uyFyzLoqqqSuhaJqnl7n5PuZsYfP/99/HJJ59gz549GD16tLOX5HF4rCBkWRbFxcVQKpVISUlpUTDeUVQqFc6dO4epU6d2caU8lvWCpDuuN2MymXDmzBnU1NQ4dCYxqU9SKpWora1FSEiIkFruSE1oT3H8eCN+/bUR1dXt11eJxRwMBmtRSCATI/iuZF5EWHoM+vl52YzqdVSwWdflcWAYEwC+w5PAiw7rekI+amO0mphhnSY2izY+ukXEXLtLanOtDMMKwstcy8gJtZv8usxpUt4X0rIbm1+bWCwSTIyJIXNFRQU0mjrExMTCz88HJhMHiYSBRqOHVluHurp6GI1aSCS+CAriR595e3s1RXYto45M0xpY4dpZppUtIefn34M50gYA9WwVrkgO4aL4AK6JjsHAaBHG9sUQ0xQMZaegL5sEEToW9bJsKOE/Ty0/a52lrXF1pHOZ44CqqirU1tYiIFaCjUGvw8Do8IDuHURwfFMHf334a82y/DGtfQVFLcQg/zrW4jNJxDaD8HA/TJ8+EImJMd16f/aCpJZJ3WFtbS2CgoKE6GFQUFCHfjbuJgb/+c9/4v3338euXbt6vATLFtnZ2Xj//fdRWlqKpKQkrFq1qkP38QMHDmD69OkYOXIkioqK7L5OR+KRglCv16OwsBAmkwnJycndsjapqqrCiRMncOedd3b5GO7WPKLX64VflLFjxzrNV5CM0VMqlaisrERAQIBgZ9PRL93unZ/Fnj0NOH680WqcXEu4pjo4cpMzpxit18hBqSyHXs8iJiYGEolXi85RAv+yjkfxCJ1pADFHttrfl19nx9ZgjnTykNeRaBg/AtAcieOFnvUUGDKrmFxLEhUEIKR9zSlHFpWVFdBoGtG3bx+IRBKLlDDT5PnIn9NoNEKna0RtbT202kZ4eXk1dS37IyDA3+pnYV6DtVjkj8mCzFXmr4/t1CeJ/hkZHa4zx3FB9Csuig6ggamEHxeMwaY0DDFNxkB2PLzR1gOPSTieLeuYrtDaZ4/4GnIcXztcX18P31gOiqDXwYDBg4b3EIY+gGAETmoAW8IL9+bilWu6diZIJHzalWU5+Pt7ISWlL6ZOjRe29wZIapl0LUskEqH8pbXUsruJwdWrV+Pvf/87duzY0WPlV23xww8/YPHixcjOzsaUKVOwZs0arF27FsXFxW3azNXU1CAlJQVDhgxBeXk5FYS9hdYEYV1dHQoKChAaGopRo0Z1u46jtrYWR48exYwZM7r0encTg6STODg4GElJSU6fSUywtIpQq9Xw8vISxKHlGD17UFqqx88/1+PGDSOMxtbsYABzGo80m5jtaljWhNu3ywAwkEp5w2lSf8ff4HtGFHa2BpE3JTa1Kwr5dLQ5mtO8E7d1EWwNSQcSQcC/Nz4axzcaMFaCltTvWQpDywgiy7JQKpXQ6w3o06cPfHwkVkKQpKzFYv48vJDk08xGowkaTSO0Wg3q6hoA8HOWAwP56CGJqkokIqv0teXbI6lmkQjQ6zsmrjmwKGXO4aL4AC6LD0Alugox54V4LgVD2TswxDQZgVykUBtpKTYtaxG7Q+s1f6Q8gEFlZQUaGjTwijUgx+81eMMXvzO8gxAmWoj4tSaE+Z+VyGYJA19mYfYAFYtFGDw4ArNnD0VoqOv4lnYFy9SySqWCXq8XSmAiIyPh4+PjdmLwyy+/xGuvvYatW7diypQpDjnvxIkTkZKSgtWrVwvbEhMTIZfLsXLlylZf98ADD2Do0KEQi8XIy8ujgrC3wHEc9Hq91bby8nKcPHkSAwcOxODBg3tEfDU0NODAgQOYNWtWp9fnbs0jrjqTuDkmkwmVlZVC9BCAVceyvURscbEGe/bUo6GBg9EoavL9s6z94gQhaGm2bDAYUVZW2uQxGC2IBjJGj/TQsCzTopu3s6KwK00pbYlC0uhB6hMtR/l1DM7KQqaljx6fYvTyQotuV4nEbNvD1+qZo41iMQO93ojy8nKIREBUlBRisbhJ6JgFIdmX75Q2CVNSAAiRPvJ3jYaYYTfCZDLA15ePHPr7B0AiEVt45rW8vqTpw7JLmW+csT1b2pIqpgSXRAdxSXwAN0UnwTEmxLDDMNR0B4aYpiBWMggca47GkXR+8+tsWZ9pWTJgeU3N6235PkQicx2gWq1GY2MjvPtrscHvNfhzoVikewuBiGj2mtYj3JbnIzOXGYZYy/D7REQEYNasIRg82P3m2nIch/r6euFBtra2Fj4+PtDr9RgxYgRiYmJc9ju2I3Ach3Xr1uGll17Cli1bupVl6wx6vR7+/v7YsGEDsrKyhO3PPfccioqKsG/fPpuv+/rrr5GdnY1Dhw7h73//u1sKwt41nLGLcByHK1eu4MqVKxg1ahRiYnqutkQsFjc97Xas24+sh3SXAu4hBnu6k9ieiMVioZg7MTFR6Fg+f/688EROxugRb7qeYMQIfyQk+OLAgQYcPFgPiUTUFCFhwDfEkwgXC5OJgVgshkajQWlpGYKCglp4DJIbqV5vvkGTiBRfm8aAZRkAIhtRGMu6P5Ku5j+HEol5OgU5H6kbJK8jN2v+c8s1pejMjSOWUTmSnu2YzmwuAK0NjYW9OCLUmCahZT2xwmTirDwcLW1ixGIGOp0BZWVlkEjEiI6OBhltZlknaXkuhiG/33wdJ4n+8ZMweFHj5+cHPz9fcByg1xvQ0NCAhoZ6VFSo4evrK6SWvby8BBNtc0rZHD1t3sDdnkgM4/pivOk+jDfdh0bU4or4CC6JDuCIZD32e32JEC4GQ8CnlvuzoyGGBLYEn7VgbBvL6R/8Z44RhJpKpYLBoIOoXz1+8HsdIZwU9+vegj+so1nNzarJeyXn52sHIVxffhY4n2r38hJj6tSBmDSpf6+vt24NhmEQFBSEoKAgDBw4EJcvX8a1a9cQEhKCs2fP4tKlS1Zdy73pOnAch/Xr1+Mvf/kLNm3a5DAxCPAPKyaTCVKp1Gq7VCpFWVmZzddcvHgRr7zyCvbv39/rZlp3Bvd9Z02YTCacPn0aVVVVmDhxIoKDg3v0+CSaxNeztH85m4+h602/xLaw7CTuyGQXV4NhmCYPvzAkJCSgvr4eSqUS169fx5kzZxAWFiaklnvCZFYiEWH69CAkJ/th5846FBc3CsXwDMN/FkhHbG2tBv1mlGIAAGOfSURBVCpVOcLDwxEcHNTmcVnW0syas7jR8qKFPwcHvd76pm8tfMwRMdYqomRJ822WETsRSCNFy/WRfa1tSczm1mYrkbZqGIlYtH6PpNNXJIg68oBmKWj5NQI6nR6lpaXw8fGBVBoN0slNOoabvy/eZsa8ZtKowgteszgkhtUiEQMvLwkiIsLAcaEwGPi6w7q6elRVVUEiEcPPLwCBgf7w8fEV0uccx7QQe+T9WIpEaysYzsrmxg/BSDLdgyTTPTAa9LglPoELol9wQfQrCiQb4cMFYJBpIoawaRhsmgAfdKXZy3KEIQsfH9LBzaK8vJyfEtW3Cgq/FYjkBuA+3f/Bt9l5bNvgMEIZhKW1Dkl788bvwMiRUsycOQRBQa49T7gnuX79Om7cuIFx48YhJCQEJpNJSC2fPXsWBoMBERERgkB0xXnwluTm5mLZsmXYsGFDl8utuostA3NbgRmTyYQHH3wQb7zxBhISEhy1PKfgtiljgC8ALSwsBMMwSE5OtosFCcuy2LlzJ+688852BYO71QuSTuLa2lqMHTvWYZ3EjqKxsVGws6mpqUFQUJDVGL2e4Pp1HXbsqENZmUEQhSYT7zGoVlcgPDy6KeXYvvdfe75ygNn7kDyI2Gp26Y6XIX8O22sVifhOY0vh2rHjmUWgLfiUNAuDwbxmvrYMQoQJ4EWhwaBHaWkZAgL8ERkZIURGzes2N6tYfjV6efHWNgTS4ELORcQuEWn8elteQ4bhZ/gSz0OAn7McGMhHF/nIoeX77dg14uvxSCSRWPJwEGYjg4OSuYSL4oO4JD6IctEliDgx+rNjMNQ0BUPYNIRw0vZO03SdeE9IXgSTJigOZWXlYFkT9H3LsdH3TcSwCVigXwFvzt9C+JOmGqMQQQZIupltIYZJF7bJxCImJgjp6Qno3z+0Q+t0F9qrGSSpZVJ3WFdXh+DgYKHukDdWd517zaZNm/DHP/4R69evR2ZmpsPP39mUcXV1NcLCwqxKiUhWUCwWY+fOnbj77rsdtn574raC0GAw4Oeff0ZkZCSSkpLsGonbsWMH7rjjjjZFgruJQVfpJHYUer3eqmPZz89PqDvsiQkEBQUNyM+vR0ODCdXV1airq4NUGg0fH38hQsIwfD1hW+firUDa/pXmo05msWKep8ynmPmvhO5NsCCikD+2+Zi26sWaQ5o/AOvUpPU+pFmDGE5bv2/LFDGJROr1WpSVlSI4OBihoWHNIoLkNbbX5+3NQa83p8TJ1BOyXrPPovk1RACRVKolZDyeRqNtMsOuhdFohK+vnzBKTyyWNHlWWkcB24OkXfkbFppqH83/xnFAnUiJi6KDuCg6iOtMEVjGiGh2MBK4KRjKTka0aQhETSUE5igoK9gIkYYccj3Ky8sBcND0vYmNXm+hPzcK9+pfgxd8m10T/nNAtvHR1pYekk1XFhzHISoqAGlpAzB6dJ8OvX93oisNJMRdQa1Wo6KiAt7e3kKJTFhYmFOzUj/99BMeeeQRrFu3DgsWLHDaOiZOnIjU1FRkZ2cL20aMGAGZTNaiqYRY1FmSnZ2NPXv2ICcnBwMHDuyxAIGzcVtBCPBNJI6Yefvzzz9j/PjxNtPRJJXkTmPoXLWT2FEYjUZhjJ5arRZqEqOjo7v1hdvYaMC6dedQUKBBdHQMvL0lkEjETQ8TpKjeXIhPBAePuSlALObFEZkAYgvSkGHbw5A0tZgniZBojmVXrGV0jUAEFdmXPwcxh27d0sZSBLYVOSRirLmdC+liJmbWzVPhOl0jysrKERYWJnwnEKFDxDAvVoRXwdJTUSQygQw+MnfvMi0iqZbNKObraRZozSFdsiaTockIuwENDQ3Q6fTw8fFGQEBAU92ht9Bxzn8ebDWbME0C0CxAO2I2rkM9rooLcEl8EJdFh6Fl6hHERWKIKQ1DTGkYwI6FmPMSmoPI9xmf3mdRVlYGkYhBbd/L2Oz9Dgax4yDT/xUSNH9I5ASzalIXaT2BhBfPXl78709EhB/uuCMeI0ZEt7l+d6UnuoktG+jUajWMRqNV17IjH+R37dqFBx98EGvXrsXvfvc7h53XFsR25rPPPkNaWho+//xzfPHFFzhz5gzi4uKwfPlylJSUYN26dTZfv2LFCtpU0tsICwvr8FN1dxCLxTZTZM2bR9xBDJJO4v79+/dYp3ZvQyKRQCqVQiqVCjYRSqUSZ86cgclkQmRkpNCU0lGxbDQacfbsKYwercO8eaNw5IgB58/roNezTebVZNoFA5OJNy7n5yY3FzEtxRuAFuKR/7UQCd3MZoEH4RjWIoZYxVjWALbdKMILBgYikbgptdiye9U8isy2ODUfyywEWxM4rUX4NJoGKJVKREZGISgo0KpBhlwrWw0OpCaQ/7tZwJBtxCLH8juGN7O2tksx12a2tFHhryEvrnx9veHr643Q0FAYjUY0NmrQ0NDYRt2hWUDz6XFWmJrS/NyWWDapABx82UAMN03DcNM0mGDELdFpPrUsOohCyRZ4c34YyI7HMC4NA43j4Mvx9axGowllZaUQiyWo7FuMn7w/wDDTHZhneKmpccUa4lspkYibsiXmxiDyMMN3fAdg2rR4JCS4X+dwR+kpaxnLBjoy1UmlUuHGjRsoLi4WUstRUVEICAiw2/f53r178fvf/x6rV6/GAw88YJdzdIZFixahoqICb775JkpLSzFy5Ehs3boVcXFxAIDS0lLcuHHDyat0PG4dIdTr9Q4RhPv370diYiIiI81fYO7WPALwc5vPnTvXKzqJnQHHcaitrRXqDrVaLcLDw4WmlNaexolRulgsxpgxY4TO5ro6E44cqceJE1o0NrJCnRXAiwsi4GwJKb5+rKMpRutIHkEiYdtNP/Pnsu6SN1vLWItHXnwaBBHYkRpCEjlsTQTyYk4k2JE0f1+1tTWoqKi0mlTT3KuQ39b2ekQi4g3ZMvrHTxey3p8Xf3zNZHN4YWQZxbOuueR/HmbxyHEsNJpGaDQaq7rDgIAABAT4Cc1Ilg8A/DJZAKzFNrOtUUfgwEHNXMNF0UFclhzCbdE5MJwI/dgkDDJMQEjZYISjL8r6FGK790cYaZqBdMPzEKHlQxARrOYHC9KIwoF0jPftG4SpU+MxeHB4xxbopjjKZ1Cr1QqWNpWVlfDx8RGaUnoytbx//34sXLgQH374IR577DGPDCL0FtxaEBoMhm4Vx3eUgwcPYvDgwUIbu7vVC3Ich0uXLuHWrVsYM2YMwsM9+wu7ozQ0NAjisK6uDqGhoUJqmUzH0Wg0OH78OEJCQlqtdTUaWRQUaHD0qAbV1UZ4efF+g2QMm0TCNNXIkSgij6UZdEfgP6Zmz0I+imY71dkRxGKRRT0YsZ8xCRHB9o5LLHjaWi8/85m12VBTXV2F6uoaxMRIhYYvcu7mv5O2DJv5WkuyFlZI09oaP2drncSSpvW182KyrbSuuaPZHP3Vahuh1TZCo6mH0WiEn59vkzjk6w4tTc2NRqMQSWw+/YWMyWwLvuOchUjEodqkwmXxEVwUHcI1USFYkRHBrBS1onKMNWZgluEpMLD+/PLr4ODlxUeHDQbrn7tIxCA+PhR33DEA8fFhba7FE3CW6bRlalmlUoFlWaFruTup5cOHDyMrKwtvv/02nnzyyV5/L3R3qCDsAY4cOYL+/fsjNjbWKjLoDv6Clp3EycnJblM862i0Wq3QlFJVVYXAwEAEBwejvLwcsbGxSEhI6NBn5dy5Rhw+3ICSEn3TDV1kIVy4phFtnJDK5SOFnVuruQ6N61ANGn8e8lknNWatHZtELvnUKh8pNAm1iqQJxbJj2PZxRFZRtuaNMpWVatTV1aNPnz5WNzNLkWfexli91ta+pG6ztUhia6KQ/Exb+5rlp6CwgqFz838jUT/egw8gli/8uRjo9fqmukMNdDodfHx8hKYUHx9JB6KBZusfYQsHQVCSNC7pJjYYDCgtvQ2vABHqoq7juugk4tmxGMKmgRFmVZOoH4mGGmx+HhISIjB16gD07es44ePKuMoEEpLpINHD+vp6YSZ8ZGRkh1PLx44dQ2ZmJt544w08++yzvf5e6AlQQdgDHDt2DNHR0ejXr59bNY94WiexozAYDLhy5Qpu3LgBhmHg6+trNUavI5+b0lI9Dhyox6VLWiEySFJvfGTPBIC3MOHTzEybTSbNIWlko5GFWGzuDrYUD20Jv9awFcnjRQ/fvcpPbyH/YuklyICYQ/NRPrNwMX+D8SK2vFwJnU6HmJgYK2NxW6li83Zb00PM+4tEJov32vIYlgLKFsQ+pfn75jEK9YW2uqqbN2CQlDJgHQE21x1qoNNpIBIx8PPjR+n5+PgIqeW2IA1DlsclDwV6Pe/fGBAQiIiI8BafU3M9KP/Z4ddnLXS9vCQYOjQcU6b0R58+bXtrehKuIgZtQR5m1Wq1kFomdYetjf0sKipCRkYG/vrXv+J//ud/ev290FNwa0FoNBrb9W7rCQoLCxESEoL+/fsDcI/JI/X19SgqKvLYTmJ7cuvWLVy4cAFJSUmIjIxEZWUllEolVCoVGIYRvmw7MkavttaI335rQFGRBhpNy1FiDMM2pSX5xghzI4j580kEF0/LcXpiMQe93tgj751fF2cRebJuBCFvt7knnbmWsLWvK74TuKysHAaDAX36xEAi8RLeX/NUMfnWIwKIiGXev48RIlzm8/H1b3xED4LIJtEwy2iiuU7P3Knc+vo5MIwJHMcIayHvvXm6uDUsBSLLkhm/bNMYPQ0aGvg5y/7+/ggICICfn1+Lm7j53Nbdy6S+kYjBoKAghIWFCdfR0iPSbMfDWkxv4h9K+vYNwqhR0Rg5Mho+Pm7dy9hpXFkMNsdkMqGiokIQiCzLIigoCAUFBbj33nsRFRWF06dPY+7cuVi2bBleffXVXn8v9CSoIOwmHMfh1KlT0Gg0iIuLQ2RkZK9vIKmoqMDJkyc9upPYHjSf6hIWZl0zxbIsqqurhdSywWAQirzbG6NnMLA4frwBp05pUFJiaCbq+JQnH7FhBcsUElVsLhBtIZHwN/zWZha3BxFlJBpoOXe4Nczj2lp6/DWH40woK7sNjuMglcZALLb0CTSLvJavI/WSLf+ttQhha40k/H4im76D5mMS0WWu6+N9+Lim6C6p2Wu7frIt+OvGCvWOJhMHnU7XJA7rYTSa4OvL1x0GBfFzlnkR2nLRDGNCY6MWZWXlCAkJRmRkuCCcrYU8/74tn1+CgnyQlBSF5GQpwsP9u/Re3J3eJAabQ1LLhYWFePbZZ3Ht2jWMGDECKpUK9957Lz755BN67+hlUEHYDYitTH19PUpKSoSbOGkc6IztiKtAOokTExMRGxvr7OW4DSzL4uzZs6isrERycnK7U10sLSKUSiUaGhqsOpbbmrpTVWXAqVONuHBBi/Jyg5X5src3B4PBZBV1IgKR1PHZEoi8uOAjWRIJETFtrZ8XP/wxrdOgfANH22KHRNSIoDGPd2NbpKk5zoSSktvw9hYhKiq6xU2otVSx+d9aa+gwv45hWKtrZsuD0Py6lvYylpBrws/k5d+frUggn4ZmbE7xaIvmdZ/mUgL+/7VaXVNquQGNjbpmfodeFtE/DhpNI8rLSxEaGmbTZ5XYxojFDAwGE7y8xEhICMfYsVIMGkSbRNqiN4tBW+zZswcrVqxAdXU1bt26hbi4OMyfPx/z58/HlClT3HoGsLvg1oLQZDLBaOy5VJcltjqJyU28vLxcsB2JiIiAVCptN8LjbGgnsf0wGo04efIkdDodkpOTuzQTWaPRCGnlmpoaBAcHC+KwrUafykoDTp3S4Pz5RqhURpCxZt7egF5vaiFCCOYmESKKGKtpIETwWU4fIWnH9vwJgbZNqsnIuda+mUjEj6910+Pmzdvw9vZBTEykjffDgE/32lZTHReELadptCX6bIlCy45r0nTGccZOTW/hvR1bF4dEuLd+DJEQ3eOvnwkNDXzdoVargZeXBIGBvJ2N0WhEWVk5IiIiBMFijraa0+ISCYPY2ECMGSNFUlIUvLx610OwM3A3MXjlyhXMmTMHCxcuxP/7f/8PGo0Gu3fvxpYtW/Djjz/CYDBg/fr1mD17trOXSmkDKgi7AGkcaat5hOM4K9uR+vp6IcITHR3tUg0atJPYfuh0OhQWFsLLywujR4/ukYcCMppKpVKhoqIC/v7+wucqKCio1TSNWs2Lw3PnGqFWGyGRkIgbicKZ6wktO5cBYiHD728yWadfeXHDtYgEtgVJlfKvN0cDeXHUfiiMYfi5xCUlpQgI8EdERERTFIx4/5GGF7YdYdm68LQWda1lGswvJhE9cyMMQOr6WjsHw5hteDoDbwdD6gXN25vPoSY+jWQd5vMyws+bXHeW5aDR8A0ptbV1YFkWPj4+CA0Nhb+/HyQSsVUkMyLCF6NGRWH0aClCQzv/kOOpuJsYvH79OubMmYOMjAx88sknLUqmWJbF0aNHMXDgQERHe+bUmd4CFYSdgBi7kjR0Z5pHSIRHqVSitrYWoaGhwk28KxGjnoJ2EtsPMuKvLY/B7mI0GqFWq4Uxel5eXkLJQmsdgACgVJrFYXW1XrB8aa+JgWE4wfS6+eefZc02KWT6RluIRCzMc3o79n75xgUGDQ2NQl2buTObg+UMZhLhs7SmsW5UsZxEYulFyB/L3GTCR93IHGBzEw7X9L4B0lzSnLYiiZai2Bx169zXMRF25p+b+XhkFBzp/jXX/gGw0SnN15WaUFfXgPLy8qbPD1Bf3wC93oCgoAAMGhSJUaP6YeTIaMTEtF32QGmJu4nBkpISzJ49GzNmzMCaNWt6ff28p+PWgpBlWRgMhh45Vk9OHtFqtYI4rK6uRlBQEKRSqdU0BUdQX1+PwsJChIaGYsSIEb2u3tGVqa6uRlFREfr27YshQ4Y4pLiaZVmrjmWO44QxenwEzfbPt7xcj1OnNLh0SdOUVjZPOrH97UD8CVv+IzFc5rtkeQFlNJKxdWg6NtmvY5NQLF/HcWbD77CwcISEBDfbh/gFttWRzNP+dBJLi5zWDKbbjoqSzltbolAiQQv/QfIeu/K17O3NWAhX4hvYsdpD/nqZUFdXh8pKNaKjoxEYGIjwcF/ExYUgJsYbQUEGVFdXoKamBkFBQVYlC7R5oH3cTQyWlZVhzpw5SEtLw1dffUXvH24AFYQdgDSPmEymHvcX1Ov1QuNARUUFAgIChMhhYGCg3b5oaSex/VCpVDh16hSGDBmCAQMGOGUNHMehpqZGePDQ6XSIiIgQbuKtpa61WhMuX9bixg0dbt7UQaXif39sRfw6YlpN/PnIH4YxW5vwtYat1/dZHoMXT7yVikqlQmRkJIKCWvrYicXE/64jX2ttn5tvHCEpaNsp49bmJ7dcV8tIYdsTShib0VrLbm1+P5Hw/cSyRivh3fJ1jPB3AEK0k/hNNjTUoaamEuPGDcHo0X0xdGi4zVQw+c4iJQsd8aXzdNxNDCqVSsydOxdjx47FunXraMOIm0AFYTs4cgydwWCwSv8Rw+Lo6GgEBwf32Llv3bqF8+fP005iO2DpMUhGGTobW/WsYWFhQmq5rZIFrdaEa9e0uHZNh5ISLVQqIwwGszgknoLENJrQdt2c+Y9IZILBwArj1aw9EdFkrM0fq6amFlVVlW1G0n18OOh07du1tBcdJGvhOFb4b3eOBdjqTLYWmebrQrwLuaZJHyaL622u7+SbSxghpd3Zb3KJhO8Ojoz0gb+/HkAF7rlnnNVM9vaw9KVTqVQAIFglRUREUKEA9xODFRUVyMjIQEJCAtavX+/SzZKUzuHWgpDjOOj1+i6/viPNI/bCZDJZiUOJRIKoqChIpdIOT7NoDu0kth/teQy6Eo2NjUJUurq6GoGBgcKDR3vpP72exdWrjbh+XYubN3VQKg1NNbWdn1pCEIuJibHZ387sQchf2+rqalRX16BPnxj4+/vZSIMyTd59xmY1crYbvkjNXlt0VBCaTa/N0TfL9Vk3fRAPQ06oGSSj/GyttflYOf77yNrHsKNikGEYSCQiRET4ICYmAAMHBmPo0DCUld3C1atXkZycjNDQ0PYP1AokKk0+W1qtFuHh4UL0sC2rJHfF3cRgVVUV5s+fj/79+2PDhg205tzNoIKwldd1tXnEHljWhimVSpBpFtHR0QgPD+9QisZkMuH06dOoq6ujncQ9TGc9Bl0JvV4vPHhUVFRYjdELCQlp93NvMLC4fl2Ha9cacfNmI1QqPbTazipDTphxTD7KZPwZx3FQqytQX1+PmJgYeHvbFhVktBu/XCKwWkImjZBmEz5tam4QsW4cAcxpZXM0jxepEF5DfP46aiRNjMJJVNFso0Mig+3VEXIQiUSQSNCUveCaRKb1z0okYhAe7gup1A99+gSif/9AxMYGCqbdHMfhypUruHnzJlJSUmz6DHYHkt4nVkmeVnfobmKwpqYGmZmZiIyMRF5enkcKfHeHCkIbr7FsHnG2GGwOmWZBxKHJZBLEYWuNAzqdDkVFRRCJRBgzZgx9qutBesJj0FUg6T/SlCISiTr94MGyLMrK9Lh1S4vych3KynRQqw0wGJpHwDir9Ccfhbc2neY4DiqVGjqdVphLzKdIzUKMWMdYTtpor7aRjKrrGKzN+cvNIb6CrQlRsl6RiIGXF9/AQTqsO1JH2RzzmkiTG4OwMF9ERnpDKvVHbGwABgwIga+v7ZQtx3G4ePEiSktLkZqaaveHGE+rO3Q3MVhXV4esrCz4+/tjy5Yt8PPzc/aSKHaACsJm+zuqXrAnIKODiBG2TqdDZGSkYIQtkUisOontZX3iqVh6DI4ZM8at6qVsPXhYjtHrzHs1GlmUlDSipESHsjItKitNqKzUQ6+3FoAMw0f2iNArKyuHyWRCTIzU5vlIvR2JjvF1jCTKZwQganqw45pEJyc0gXT0d1sk4usjWxOYZiFobgQhkT7y7+aIIll3S5NrMlawPWFIzL/Dw30QGemLPn38ERPjj379gloVf7bWfO7cOajVaqSkpDg8W2AymYSMh1qtFrrh3aXu0N3EYENDAxYsWACRSISffvqJZpfcGLcWhAB/0+4IvU0MNofjONTX1ws38IaGBgQFBaG+vh79+/fH0KFDe917cmUc4THoKpAHD1IbptFoEBERIUQPuxJx5jgOVVUGlJXpoFTqUFGhQ0WFEdXVBjQ2GlBWVgqOYyCVSltEvTvi2WfLFoe3gLHsCia/D3z00tJf0Px3FmIxB4OBa2Ex05rvID/vubXJKK2LS2LVQ2oK+fQ2g4gIH0RF+SEmxhexsUHo08e/y9NAOI5DcXExqqqqkJqa6vRIj2XdoUqlgkajEQz8IyMje13E3d3EYGNjI+677z7o9Xps27bNZmc/xX1we0Go1+vbLR53ZvOIvbh8+TKuXr0KHx8f6HQ6hIWFCY0DtPajezjDY9CVILVhxGQ9JCREqA3rro+mVqvF3r0FaGiQICwsHpWVelRU6FFVxfsjEjFn+Stty9jaVpqXrx3sXH2jOXrX8ZnoZlsXW5YxvI2N5UfG21uEgAAJgoK8EBTkjZAQb4SGeiMmxg9SqX+PPWywLIvTp0+jvr4eKSkpLim2bNUdkgcPV687dDcxqNVq8bvf/Q7V1dXYuXOnW7wnStt4tCB0teaRnoB0EpeUlGD06NEIDw8XukrLy8uFObjECNvZEYLehlKpxOnTpzF06FD079/f2ctxOjqdTqg5rKys7JaPZmNjIwoKCgSj9OZCSKMxoqbGgLo6I+rr+T91dUY0NBih0ZjQ0GBEQ4OpyRaHs4q2mY2qSTcz09S0ApCoIMcxTWlrNPn58VNRWNYElrVsNDE3pJibUsyTT/jtbJMxN9sk9LwQECBBcLAPQkK8EBLig7Awb4SF+XQ41dsdWJbFyZMn0djYiNTU1F5RR9yb6g7dTQzq9Xo89NBDKC0txa5du6gjhYfgsYLQbObKRwzcQQx2pJOYzMFVKpWorKy0shzpTd2xzoB4DI4cOZLO5LQB8dFUqVTCGD0SOQwLC2vz96uurg7Hjx+HVCrFsGHDuvW7aDKxqKvjxWJtrQH19QaYTCyMRv7fTCauyduQ/6/JxG9nWb77mDeh57fzTSssvLxEwh8fH/6/3t5iq797e/P/Rrb7+krg5yd2+veKyWTCiRMnYDAYkJKS0it941y57tDdxKDBYMAjjzyCK1eu4Oeff+6ULyWld+P2gtBgMLRIHVnWC/Jdi67zpNlVutJJbDAYrKak+Pn5CeIwKCjI6TcyV4F4DN66dQtjx47tllebp0Bu4OTzBcCqY9myLrC6uhqFhYWIi4vDwIED6eeuBzEajSgqKgLHcUhOTu71DRuAa9UdupsYNBqN+OMf/4gzZ84gPz+fPvh6GB4nCHt784gteqKT2Gg0oqKiAuXl5VCr1fD29hbEYUf86NwVlmWFIvze5jHoKhBjaZJa1uv1whg9hmFQXFxMU/B2wGAwoLCwEGKxGGPHjnXbWbPOqjt0NzFoMpnw5z//GUePHsXevXvRp08fZy+J4mA8ShC6oxgkM4kHDBiAQYMG9ch7skzPKJVKiEQiQRyGhYW5RUS1IxCPQb1ej+TkZNqM0wNYdsPfvn0bWq0WgYGB6NevH6Kiolyy0aE3otfrcfz4cfj4+GD06NFuKwab46i6Q3cTgyzL4plnnsH+/fuRn59PH848FI8QhMRo2t06iclM4hEjRtjtaY5lWVRVVQnikOM4KyNsdxWH7uwx6ArcvHkTFy9exLBhw2A0GqFUKoWGJ8voDqXz6HQ6FBQUICAgAKNGjXLb39H2sCxbUKlUYFlWEIfdqTt0RzH44osvYufOncjPz0d8fLyzl0RxEh4hCC2jhO7QPEKmDNy+fRtjxoxx2NxcUrtDjLANBoNghO3swu6epKGhAcePH0dYWJjNbldK1yHj0m7cuNFidi6J7pCGJz8/P0EcBgcH9/rfW0eg1WpRUFCAkJAQ+tm1oLW6QyIQOxqZvnHjBi5fvuxWYnD58uXIy8vD3r17MXjwYIecNzs7G++//z5KS0uRlJSEVatWYerUqTb3VSgUWL16NYqKiqDT6ZCUlIQVK1Zg9uzZDlmrJ+HWgpDjOHzwwQeYMWMGhg4d6hZpE9JJXF9fj7FjxzotisJxHOrq6qBUKlFeXg6tVivUhUVFRfXKTkaAegzaE47jcP78eZSXl7c7Lo3UtJKuUrFYLIhDTypb6AwajQYFBQWIiIhAYmIi/ey2QWt1h1FRUa3aJbmjGHz99dfxn//8B3v37kVCQoJDzvvDDz9g8eLFyM7OxpQpU7BmzRqsXbsWxcXFGDBgQIv9ly1bhtjYWNx1110IDQ3F119/jQ8++ABHjhxBcnKyQ9bsKbi1IKypqcFDDz2EXbt2YfDgwZDJZMjKykJiYmKvvKG48kxiyykp9fX1QtdfVydZOAPqMWg/WJbFmTNnUFNT0+kJGc3LFixTf5GRkW7xoNddGhoaUFBQAKlUioSEBCoGO4Fer4darRbcFmzVHbqbGOQ4Dn//+9/x1VdfIT8/HyNGjHDYuSdOnIiUlBSsXr1a2JaYmAi5XI6VK1d26BhJSUlYtGgRXn/9dXst0yNxa0FIqK6uxpYtW6BQKLBjxw7069dPEIejR4/uFeKQdBL3hjSmRqMRbt5kkgUxwnbVpgFS00Y9Bnsek8mEkydPQqvVIiUlpVvNOWSMHvl8abVa4eEjKiqq1zx89CTEwzE2NpZGtbuJrbpDf39/1NfXIzk52S0MmjmOw3vvvYdPP/0Ue/bswejRox12br1eD39/f2zYsAFZWVnC9ueeew5FRUXYt29fu8dgWRbx8fF46aWX8PTTT9tzuR6HRwhCS+rq6rB161bk5uZi27ZtiIyMhEwmg1wux7hx41xSaKnVapw6dapHO4kdhVarFerCqqqqEBQUJEQOXaFpgHoM2heDwYCioiIAwNixY3u8lKChoUEQh3V1dQgNDRXEoSdM4ampqUFhYaHw3UDpOTiOw4ULF3Dz5k1hBGhX6g5dCY7j8NFHH+GDDz7Arl27kJqa6tDz3759G3379sWBAwcwefJkYfvbb7+Nb7/9FufPn2/3GO+//z7eeecdnD17lj689zDu0QXQCYKCgrBo0SIsWrQIGo0G27dvR25uLuRyOYKDg5GZmQmZTIZJkya5RCrKEZ3E9sTX1xf9+/dH//79rZoGLl++3K0xZz2Bpcfg+PHjXUKguhM6nQ7Hjx+Hr6+v3axPAgICMHDgQAwcONDq4ePChQsIDAwU6g6d8fmyN8TQe9CgQYiLi3P2ctyOmzdv4vbt2xg/fjxCQkKEusOysjKcP3++Q3WHrgTHcUIzx/bt2x0uBi1pfq34sY/tX7/169djxYoV2LRpExWDdsDjIoStodVqsWvXLuTm5mLz5s3w8fHB/PnzkZWVhSlTpji8g9ZZncSOgow5I00DPj4+QlrZER2l1GPQvmg0Ghw/frzVucT2xtbni0QOQ0NDXf7m3R6VlZUoKiqi9a52or2aQVJ3SMY0uvKcZYC/n6xduxavv/46tm7diilTpjhlHd1JGf/www9YsmQJNmzYgIyMDEcs1+OggtAGer0e+fn5yMnJwaZNmwAAGRkZyMrKwrRp0+xep2TZSZycnAx/f3+7ns/ZmEwmoaNUpVJBLBZbGWH39M2beAx6e3tj9OjRbmOX4yqQmraYmBiXaHAgny9SF8YwjJUfnavdvNtDpVLh1KlTGD58OGJjY529HLejsw0k9vI77Ck4jsO6devw0ksvYcuWLbjzzjudup6JEyciNTUV2dnZwrYRI0ZAJpO12lSyfv16PProo1i/fj3kcrmDVup5UEHYDkajEb/88gtycnKQl5cHrVaLjIwMyOVy3HXXXT1eR+LKncSOgGVZqykpAARxGB4e3u2bN/UYtC+uPpeYZVlUV1cLqWXipUmM1l3dLqm8vBynT59GUlISYmJinL0ct6O73cQ95XfYU3Ach++//x7PP/88Nm3ahBkzZjj0/LYgtjOfffYZ0tLS8Pnnn+OLL77AmTNnEBcXh+XLl6OkpATr1q0DwIvBhx9+GB999BHuvfde4Th+fn5u0fHtSlBB2AlMJhMOHDiA3NxcbNy4ETU1NUhPT4dcLsfMmTO7Hcmrq6tDUVERFStNcBxnZTdiMpmspqR0tiaNeAz269cPgwcPdjmx0ttRq9U4efJkr0ljWnppqlQqNDQ0WHUsu1oZQWlpKc6ePYtRo0YhKirK2ctxO+xhLdMVv8OeZMOGDXjqqaewYcMGpKen2/VcnSE7OxvvvfceSktLMXLkSHz44YeYNm0aAOCRRx7BtWvXsHfvXgDAnXfeaTOV/Ic//AHffPONA1ft/lBB2EVYlsVvv/2GnJwcbNy4EeXl5Zg9ezZkMhnmzJnTpumuLUgnsatGVpyNpd1IeXk5dDqdENmJiopqNy1DPQbtS2lpKYqLi3t15IrYJZGbd3BwsBCddnbZxq1bt3DhwgWMGTMGERERTl2LO+IIn0FH1x3m5eXh8ccfx/r165GZmdmjx6a4J1QQ9gAsy6KwsBA5OTlQKBS4efMmZs6cCZlMhrlz57bbJHHz5k1cuHCh13YSOxqO46yMsBsaGqympDRPs1OPQftCru/o0aMRGRnp7OX0CDqdTojsVFRUwN/fXxCHQUFBDn1gu3HjBi5duoTk5GS3ay5zBZxhOm2r7tCydKG7dYc//vgjlixZgnXr1mHBggU9tGqKu0MFYQ/DcRxOnz6NDRs2YOPGjbhw4QLuvvtuyGQyzJs3z6pJwmg0YuXKlZg0aRLGjx9PPfC6SHMvurCwMEEc3rx5EyUlJdRj0A60NZfYnTAajVYdy15eXkLpgr07Sq9evYpr1665zYQMV8MVJpD0dN3hjh07sHjxYqxduxYPPPCAnVZNcUeoILQjHMfh3LlzQlr59OnTmDZtGuRyOaZPn46nnnoKV69exdatWx02VNzdaWxshEqlQnl5Oaqrq8EwDAYMGID+/ft7hFGxo+jMXGJ3wrLpSaVSgeM4q8hOT3ktErF98+ZNpKamIigoqEeOSzHjCmLQFt2pO8zPz8eiRYuQnZ2NxYsX09IjSqeggtBBkIkYubm5+M9//oPz58+jb9++eOSRR7Bo0SL06dOH/vL2EEajESdOnIBOp0NsbCwqKytRWVmJwMBAKyNsStfozlxid4JEdkh0mtS1kpt3VzuWiQdpaWmpR4ltR+KqYrA5zesOvb29rfw0LaPT+/fvx8KFC7Fq1So8+uij9H5C6TRUEDqYkydPIiMjAxMnTsSECROwefNmHDlyBBMmTBCmpPTv35/+MneR1jwGDQaDYDVSUVEBPz8/p9WE9WbIXGKdTkcNvS3gOM6qdKG+vh5hYWFCarmjaT+SVVCr1UhJSaHTc+xAbxGDzWled/jaa68hIiIC8+fPR//+/bF48WK88847+POf/0y/zyhdggpCB7Jt2zYsWrQIL7/8Mv7617+CYRhwHIfbt29DoVBAoVDg119/RXJyMmQyGWQyGe047gQd9Rg0Go2oqKhAeXm5UBMWHR0NqVSKkJAQer1bwd5zid0JUrqgVCpRXV0tpP3IDG9bnzGO44RRip4cebUnvVUMNofjOOzduxcKhQK7d+/GrVu3MHToUDzzzDOQyWTo16+fs5dI6YVQQeggDhw4gNmzZ7dZ6MtxHMrLy5GXlweFQoG9e/ciKSlJEIeuMPXBVemqxyB56iY1YQzDWE1J8XQvSIIj5hK7KyTtR6LTvr6+QtqPPICwLCtMJ0pJSXG4gbEn4C5i0JKioiJkZGTgT3/6E6Kjo7F582YcOHAAY8eORWZmJuRyOUaPHu3sZVJ6CVQQOgiWZXH27FkkJSV1aH+O41BZWSmIw927d2Po0KGQyWTIyspCYmIiFYdNEI/BhISEbj0ZsyxrZYTNcZwQ1QkPD/dYEeTsucTuRPMxjSKRCFFRUaivr4fRaMS4ceM8bjqRI3BHMXj69Gmkp6fjhRdeEDJOAO9pu3XrVmzatAl6vR5btmxx8kopvQUqCHsBpHh98+bNUCgU2LlzJ/r37w+ZTCY8AXrqTZp4tPW0xyC55uXl5VYjzqRSqUvMJ3UUrjaX2J1gWRYVFRU4d+4cdDqdIA57youOwuOOYvDs2bNIT0/H0qVL8cYbb7T6e8lxHP2dpXQYKgh7IXV1dfjpp5+Qm5uLbdu2ITo6GpmZmcjKykJqaqpHiEOO43Dp0iWHeAxajjhTKpVobGy0MsJ211o6V59L3NsxGo0oKioCx3EYO3YsNBqNUHfY2NgoeNFFR0fTqGEXcUcxeOHCBaSnp+MPf/gD3n77bY/4vqc4BioIezkNDQ3Yvn07cnNz8dNPPyEkJESoHZk4caJbpjlZlkVxcTGqq6uRnJzs8E5Myykp9fX1Lj3/tquoVCqcOnWKjvqzEwaDAYWFhRCLxRg7dmyL31PiRadUKlFbW4uQkBDhM+bsMXq9BXcUg1euXMGcOXNw33334R//+AcVg5QehQpCN6KxsRG7du2CQqHA5s2b4evri/nz5yMrKwuTJ092ixQU8Rg0GAwuYXvS2NgopJXJjVsqlSIqKqrXdom6w1xiV0av1+P48ePw8fHpUIOOTqcTag4rKysREBBg5adJI7ctcUcxeP36dcyZMwfz5s3Dxx9/TMUgpcehgtBN0ev12LNnD3Jzc5GXlweGYTBv3jxkZWVh6tSpvTIFpdVqUVhYKNxIXU3garVaIapTVVWFoKAg4cbdW/zkSE3mmDFjEBER4ezluB06nQ4FBQUICAjAqFGjOn1TNxgMVkbFxDKJjNGj4tA9xWBJSQlmz56NmTNn4rPPPqNikGIXqCD0AIxGI/bt24ecnBzk5eVBp9Nh3rx5kMlkuPvuu50eZesI9fX1KCwsRHh4OBITE13+C1Gv11sZYbt6VMdyVBqd+2wftFotCgoKEBIS0iPd2s0tkwB4fFe8O4rBsrIyzJ49G1OmTMGXX37pkT9XimOggtDDMJlMOHDggDBfua6uDunp6ZDJZJg5c6ZL1idVVVWhqKgI/fv375THoKtgNBoFcahWq+Hj4wOpVIro6GgEBwc7/f2QucRKpRIpKSl0VJod0Gg0KCgoQEREhF0soziOQ3V1tSAO9Xq90PgUGRnpto1PlrijGFQqlUhPT0dKSgq+/fZbl8uKUNwLKgg9GJZlceTIEUEcqlQqzJo1C3K5HLNnz3YJYVBeXo4zZ85022PQVWjuQycWi62MsB0tDslc4traWqSkpPTaukdXpqGhAQUFBZBKpQ6x7uE4zqrxqaGhAWFhYUJTijuaXrujGFSr1cjIyMCwYcOwfv16jxD1FOdCBSEFAC8Mjh8/jpycHCgUCty6dQszZ86EXC5Henq6UyJZpJ5t1KhRiIqKcui5HQHLskLKT6lUAoAgDsPDw+2eFjeZTDhx4gT0er1LNOi4I3V1dSgoKOj0BJ2epLGxUfiM1dTUIDg42GqMXm/HHcVgVVUV5s2bhwEDBmDDhg29suab0vuggpDSAjJGi4jDS5cu4e6774ZMJkNGRobdI1mWHoPJyclu8yXfFhzHWU1JMZlMVibFPV03RGxPGIahc4ntRE1NDQoLCzFgwAAMGjTI2csBYF3bWllZCT8/P+Fz5grlC53FHcVgTU0NMjMzERUVhY0bN9IHNYrDoIKQ0iYcx+HcuXOCODxz5gymT58OuVyOefPmITIyskdvIiSFWVNT4xSPQVeA4zjU1tZCqVSivLwcOp0OkZGRQsqvu3VEZC6xn58fRo0aRYvU7QAx9R40aBDi4uKcvRybGI1GoXxBrVYL5QtRUVG9Yo63O4rBuro6yOVyBAYGYvPmzbSEg+JQqCCkdBgSucvNzYVCoUBhYSGmTJkCmUyGzMxMxMTEdEscGgwGnDx50mU8Bl0BW/VgllNSOptKonOJ7U9lZSWKiop6lal38zneLMsiKioKUVFRiIyMdLmHBncUgw0NDViwYAFEIhF++uknj3wYpjgXKggpXYLjOFy/fl0Qh7/99hsmTpyIzMxMyGQy9OvXr1Pi0NU9Bl2FhoYG4aZdV1eH0NBQwQi7vWYBOpfY/pAJL8OHD0dsbKyzl9MlLCPUSqUSWq0WERERgkB0dj2bO4rBxsZG3HfffdDr9di2bRuCgoKcvSSKB0IFIaXbcByHkpISKBQKKBQKHDhwAMnJyZDL5ZDJZIiPj29TfPQ2j0FXQavVCjft6upqBAcHC00pze2DiHVPfHx8uz8PStcoLy/H6dOnMXLkSEilUmcvp8eor68X6g7JQwiJUDs6pemOYlCr1eJ3v/sdampqsGPHDrd5X5TeBxWElB6F4ziUl5dj48aNUCgU2LdvH5KSkgRxOHToUCsxsn37dty8eRN33303Bg0aRIVKF9Hr9YI4rKysRGBgoCAONRoNTp8+7TbWPa4IGfc3evRot+yIJzSfxkM+Z1FRUXY3XHdHMajX6/HQQw+htLQUu3fvRlhYmLOXRPFgqCCk2A2O41BRUYFNmzYhNzcXP//8MxISEiCTySCXy/Hbb7/hxRdfxBtvvIGnn37a2ct1G8h4s/LycqjVanAch+joaAwcOBBBQUFUdPcwt27dwoULFzxu3J/BYIBKpRLG6Pn4+AgPISEhIT36OXNHMWgwGPCHP/wBV69exZ49ezzqs0NxTaggpDgEjuNQU1ODzZs3Izc3F9u3bwfDMFi0aBGWLl3apbmulLa5ceMGLl68iLi4ODQ2NkKlUtHZtz0M8cpMTk726OgOMVwnApFhGKsxet353XZHMWg0GvHHP/4RZ86cQX5+PqKjox1y3uzsbLz//vsoLS1FUlISVq1ahalTp7a6/759+/DCCy/gzJkziI2NxUsvvYSlS5c6ZK0Ux0MFIcWhsCyLV155BV999RWee+45nDhxAtu3b4dUKkVmZiaysrKQkpJCxWE3sJxLbOnj2Hz2LcMwVlNS6DXvHFevXsW1a9fcSqj0BCzLorq6WkgtGwwGwTYpMjKyUw1j7igGTSYT/vznP+PYsWPYu3cvYmJiHHLeH374AYsXL0Z2djamTJmCNWvWYO3atSguLsaAAQNa7H/16lWMHDkSjz/+OJ544gkcOHAATz75JNavX48FCxY4ZM0Ux0IFYTepqqrCs88+i82bNwMAMjMz8fHHHyM0NLRDr3/iiSfw+eef48MPP8SyZcvst1AXQK/XY8mSJTh8+DC2b9+OoUOHAuA7Z7dt24bc3Fxs3boVoaGhyMzMhFwux4QJE1zO8sKV6ehcYnLTLi8vh1KpBMdxVhEdes1bx1Jwp6am0o7QNuA4DnV1dcJDSENDA8LDw4W6w7aspdxVDD7zzDP49ddfsXfvXofW9E6cOBEpKSlYvXq1sC0xMRFyuRwrV65ssf/LL7+MzZs34+zZs8K2pUuX4sSJEzh06JBD1kxxLNTbo5s8+OCDuHXrFrZv3w4A+NOf/oTFixdjy5Yt7b42Ly8PR44c6bX2FJ2B4zgsXLgQpaWlOHjwoFUXZkBAABYuXIiFCxeisbERO3fuhEKhwH333Qc/Pz/Mnz8fcrkckydPpnY0bWA5l3j8+PFtdoCKRCKEh4cjPDwcw4cPR01NDZRKJc6dO9etiI67w3EcLl68iNLSUowbN84l5n27MgzDIDg4GMHBwRgyZAg0Gg2USiVKS0tx7ty5Vjvj3VEMsiyLF198Efv27UN+fr5DxaBer0dBQQFeeeUVq+2zZs3CwYMHbb7m0KFDmDVrltW22bNn48svv4TBYKDTjdwQ+k3fDc6ePYvt27fj8OHDmDhxIgDgiy++QFpaGs6fP49hw4a1+tqSkhI8/fTT2LFjBzIyMhy1ZKfBMAxefvlljBkzps2bqJ+fH2QyGWQyGfR6PXbv3g2FQoHFixeDYRhBHE6bNo1+IVlgOZd4/PjxnfKKYxgGoaGhCA0NxdChQ4WIzpUrV3DmzBkrI2xPvuZkao9arca4ceOocXAX8Pf3F6yPdDqdkFa+dOkSAgICEBUVBZZlcevWLaSmprqVGHzllVewfft25OfnIz4+3qHnV6vVMJlMLeyQpFIpysrKbL6mrKzM5v5GoxFqtRp9+vSx23opzoEKwm5w6NAhhISECGIQACZNmoSQkBAcPHiwVUHIsiwWL16Mv/zlL0hKSnLUcp3OlClTOrW/t7c35s6di7lz52L16tX45ZdfsGHDBvzpT3+CXq/HvHnzIJPJcNddd3n0VBMyl1gkEmHcuHHdiug1j+iQKSk3btxAcXExwsLCBCNsT7rmHMehuLgYVVVVGDduHB0p1gP4+PigX79+6NevnyAyrl27hrq6Onh7e6O0tBQmkwmhoaG9ur6VZVm8/vrrUCgU2Lt3LwYPHuy0tTRvIuM4rs3GMlv729pOcQ+oIOwGZWVlNrvDoqOjW33qAoB3330XEokEzz77rD2X51Z4eXlhxowZmDFjBj799FP8+uuvyMnJwXPPPYe6ujrMnTsXMpkMM2fO9KibNZnwYq+5xIGBgQgMDMSgQYPQ2Nhole4LCQkR0n3ufM1ZlsXp06dRX1+PcePGtTsRhtJ5JBIJ9Ho9GhsbMW7cOJhMJiiVSpw6dQocxwklDBEREb2qvpXjOLz11lv497//jfz8fCQkJDhlHWT8YPP7klKpbNVEPSYmxub+EomEWuS4Kb33scuOrFixAgzDtPnn2LFjAGw/KbX11FVQUICPPvoI33zzDX3K6iJisRjTp0/Hxx9/jOvXr2Pr1q2IiYnB8uXLER8fj4cffhgKhQINDQ3OXqpd0Wg0OHbsGIKDgzF69Gi73yj9/PwQFxeH8ePHY+rUqYiJiYFarcaBAwdw5MgRXL161e2uOcuyOHnyJBoaGqgYtCOWNYNhYWGIjIzEiBEjMG3aNIwdOxbe3t64cOEC9u7dixMnTuD27dswGAzOXnabcByH9957D2vXrsXu3bsxYsQIp63F29sbqamp2LVrl9X2Xbt2YfLkyTZfk5aW1mL/nTt3Yty4cR5dOuLO0C5jG6jVaqjV6jb3iY+Px/fff48XXngB1dXVVv8WGhqKDz/8EEuWLGnxulWrVuGFF16wSoGYTCaIRCL0798f165d64m34JGwLIuCggLk5ORg48aNKCkpwcyZMyGXy5Geno7g4GBnL7HHcKW5xHq9XqgFq6iogL+/P6RSKaKjo+0+vcKekLpMg8GAlJQUehO0Ex1tIOE4zmqWd319PcLCwoTueFcS6xzH4aOPPsIHH3yA3bt3IyUlxdlLEmxnPvvsM6SlpeHzzz/HF198gTNnziAuLg7Lly9HSUkJ1q1bB8BsO/PEE0/g8ccfx6FDh7B06VJqO+PGUEHYDc6ePYsRI0bgyJEjmDBhAgDgyJEjmDRpEs6dO2ezhrCiogKlpaVW22bPno3FixdjyZIlbTaiUDoOiezk5uZCoVDg8uXLmDFjBmQyGTIyMnq1KbMrzyUmtWBKpRJqtRre3t52m15hT4xGI4qKisBxHJKTk2mntZ3oTjcxMVsns7yDgoKE5qeAgACnfdY4jkN2djbefvtt7NixQ7g3uALZ2dl47733UFpaipEjR+LDDz/EtGnTAACPPPIIrl27hr179wr779u3D88//7xgTP3yyy9TY2o3hgrCbpKeno7bt29jzZo1AHjbmbi4OCvbmeHDh2PlypXIysqyeYz4+HgsW7bM7X0InQXHcTh79ixycnKgUChQXFyMO++8EzKZDPPmzUNkZGSvESoqlQqnTp3qFXOJyfQK4kEnFoutpqS4aqMAadIRi8UYO3Zsr6pZ6030pLWMXq8XHkQqKirg6+sriENHPohwHIe1a9fi9ddfx7Zt21pNx1IorggVhN2ksrKyhTH1J598YmVMzTAMvv76azzyyCM2j0EFoePgOA6XLl0SxGFRURHuuOMOyGQyZGZmQiqVuqw4LC0tRXFxMUaOHNlqIbirwrIsqqqqUF5eDpVKJRhhS6XSbo8260n0ej2OHz8OHx8fh9Rleir29Bls/iAiEokcMpGH4zh8++23eOWVV7BlyxZMnz7dLuehUOwFFYQUj4XjOFy7dg25ubnYuHEjfvvtN0yaNAmZmZmQyWTo27evy4hDMjN3zJgxvb7Dj+M4VFdXC7VgRqPRygjbWSJMp9OhoKAAgYGBGDlypMuIVHfDkabT5EGEpJZNJpNVx3JPlQJwHCfUlG/atAl33313jxyXQnEkVBBSKOC/0G/dugWFQgGFQoGDBw8iJSUFcrkcMpkMcXFxThGHHMfh8uXLuHXrltVcYneB4zjU1tYK4lCr1VqJQ0c1cmi1WhQUFCAkJAQjRoygYtBOOHMCCfmsEXHY2NhoNUavM2buzdmwYQOeeuop5OTkYM6cOT24agrFcVBBSKE0g+M4lJWVYePGjVAoFNi3bx9GjRoliMMhQ4Y4RBySyRgqlarNucTuAukiJfOVydxbYoTdnRt2W2g0GhQUFCAiIgKJiYkuExV2N1xtHB3pWFapVKitre2yr2ZeXh4ef/xx/Oc//8H8+fPtuGIKxb5QQUihtAHHcaioqMCmTZuQk5ODPXv2YNiwYcJ4PXsJCGKGXFdXh5SUFLc2fm4NMvdWqVSitrYWoaGhwg27pyxGGhoaUFBQAKlU6nT7HnfG1cRgc7RaLVQqFVQqFSorKxEQECB81tqyTvrxxx+xZMkSfPfdd7j33nsdvGoKpWehgpBC6SCk9m3z5s3Izc3Frl27EB8fj8zMTGRlZfVY3ZnlXOKUlBS7RcZ6E1qtVhCH1dXVCA4OFm7Y/v7+XTpmXV0dCgoK0K9fPwwePJiKQTvh6mKwOQaDAWq1GiqVSrBOioqKAsMwGDRokFB3uGPHDjz00EP46quvsGjRIiev2nW4du0aBg4c2GL79OnTrSxtKK4HFYQUShepra3Fjz/+iNzcXGzfvh19+vQRxGFycnKXxKHlXOKxY8dS/zsb6PV6QRySaA4xwu6o/1xNTQ2OHz+OuLg4DBo0yAGr9kx6mxhsjslkQmVlJZRKJZ577jkUFxdj+vTpGDNmDP7xj3/gs88+w0MPPUQfJiwwmUxQqVTC/5eVlWHmzJl48skn8eabbzpxZZT2oIKQQukB6uvrsW3bNigUCvz0008IDw/H/PnzkZWVhfHjx3eoc9bec4ndERLNIUbYxH8uOjoawcHBNm/U1dXVKCwsxKBBgxAXF+eEVXsGvV0MNsdoNGL37t1Yt24d9uzZA71eL/yOz50718pqjMKj1Wpx5513IioqCps2baLNWi4OFYQUSg/T2NiIHTt2QKFQYMuWLfD390dmZibkcjnS0tJsRv2USiXOnz+P8PBwJCYm0i/OLmAymQRxqFKp4OXlZWWEzTAMKioqcOLEiV5h7N2bcTcxSDh06BCysrLwzjvvYPLkydi0aRM2btyI4uJi3HXXXZDL5Xj00Ufh4+Pj7KW6BL///e9RVFSEw4cPIygoyNnLobQDFYQUih3RarX4+eefoVAosGnTJojFYsyfPx9yuRxTp06Fl5cXDh06hPvuuw+ffvopMjMzafqpB2BZ1sqcmGEYBAUFoaqqCsOHD0ffvn2dvUS3xV3F4LFjx5CZmYk333wTzzzzjNXv6dWrV5GXl4c9e/YgLy+PRvcB/P3vf8eHH36I3377DYMHD3b2cigdgApCCsVBGAwG7Nu3Dzk5OcjLy4PBYMD06dOxY8cOPP7443j77bedvUS3hGVZXL16FVeuXBGis1FRUYI5Mb159xzuKgaLioqQkZGBV199FS+++CJ9aGuH3Nxc/O53v8O2bdswY8YMZy+H0kGoIKRQnIDRaMR7772HFStWYMiQIbh9+zbmzp0LuVyOGTNmeKTNjL0gI/9Gjx6NyMhI1NTUCE0per3eygibNvF0HXcVg6dPn0Z6ejpefPFFLF++nIrBdjh9+jQmTpyIF154AU899ZSw3dvbG+Hh4U5cGaU9qCCkUJzAd999h6VLl2LdunWQy+U4fPiwMEKvoqICs2fPhlwux6xZsxAQEODs5fZabt26hQsXLtgc+cdxHOrr6wUjbDK5ghhhO2pKijvgrmLw7NmzSE9Px5///GesWLGCisEO8M0332DJkiUttlPbGdeHCkJKt6iqqsKzzz6LzZs3AwAyMzPx8ccft9pxZzAY8L//+7/YunUrrly5gpCQEMycORPvvPMOYmNjHbhy5/HRRx/htddeg0KhwMyZM63+jWVZHDt2TBCHJSUluOeeeyCXyzFnzhwEBwc7adW9DyJSxo4di7CwsHb3J5MrysvLUV9fj7CwMKEphTYJtI67isELFy4gPT0df/jDH7By5UoqBiluDxWElG6Rnp6OW7du4fPPPwcA/OlPf0J8fDy2bNlic/+amhosXLgQjz/+OMaMGYOqqiosW7YMRqMRx44dc+TSnUJdXR3uvvtufPrpp5gwYUKb+7Isi5MnTyInJwcKhQJXrlzBzJkzIZPJkJGRgZCQEHqTaoWrV6/i2rVrXRYpjY2NQlq5pqamy2PN3B13FYNXrlzBnDlzcP/99+ODDz6gXf8Uj4AKQkqXOXv2LEaMGIHDhw9j4sSJAIDDhw8jLS0N586dw7Bhwzp0nKNHj2LChAm4fv06BgwYYM8luwQcx3VayHEch+LiYkEcnj17FnfddRdkMhnmzZuHiIgIKg7BX6fLly/j1q1bSE1N7RGrC51OJ4jDqqoqBAYGWhlheyruKgavX7+OOXPmYP78+fjnP/9JxSDFY6CCkNJlvvrqK7zwwguorq622h4aGooPP/zQZh2JLXbv3o1Zs2YJI8kobcNxHC5evCiIwxMnTmDq1KmQyWSYP38+pFKpR4pDcl1KS0uRmpqKwMDAHj+HwWCASqVCeXk5Kisr4efnh+joaEil0jZn3rob7ioGS0pKMGvWLMyaNQurV6+mYpDiUVBBSOkyb7/9Nr755htcuHDBantCQgKWLFmC5cuXt3sMrVaLO+64A8OHD8e//vUvey3VbeE4DlevXhVqDo8ePYpJkyZBJpNBJpMhNjbWI0QKx3E4d+4c1Go1UlNTuzzfuDMYjUarKSne3t5CWtmd0/nuKgbLysowe/Zs3HHHHVi7di21I6J4HPTxh9IC0k3X1h9S72frptfRlKjBYMADDzwAlmWRnZ3d4+/DE2AYBoMGDcJf/vIXHDhwAFeuXMHChQuxZcsWJCYmYsaMGfjoo49w/fp1uOuzH0mnV1RUYNy4cQ4RgwAgkUgQExOD0aNHY/r06UhISIBer0dhYSH279+Pc+fOobKyEizLOmQ9jsBdxaBSqURGRgYmTJiAL774gopBikdCI4SUFqjVaqjV6jb3iY+Px/fff9/llLHBYMD999+PK1euYM+ePS0sQSjdg+M4lJWVYePGjcjNzcUvv/yC0aNHQy6XQyaTYfDgwW4RwWJZFqdPn0Z9fT1SUlLg6+vr7CWBZVlUVVWhvLwcKpUKHMdZGWH31jQkEYPJycluNbdXrVYjIyMDw4cPx/fff0/thigeCxWElC5DmkqOHDkidMweOXIEkyZNarOphIjBixcvIj8/H1FRUY5ctsfBcRzUajXy8vKQm5uL/Px8DBs2TBCHw4cP75XikHRhNzY2IjU1Fd7e3s5eUgs4jkN1dbXQlGI0Gq2MsHtLJMpdxWBVVRXmzZuHuLg4/Pe//3XJzxCF4iioIKR0i/T0dNy+fRtr1qwBwNvOxMXFWdnODB8+HCtXrkRWVhaMRiMWLFiA48eP48cff4RUKhX2Cw8Pp1/IdobjOFRVVWHz5s3Izc3Frl27MGjQIGRmZiIrKwtJSUm9IoJlMplw4sQJGAwGpKSk9IqoDsdxqK2tFcShVqu1Eoeu+h7cVQzW1NQITVgKhYJ6TVI8HioIKd2isrKyhTH1J598YnXjYBgGX3/9NR555BFcu3YNAwcOtHms/Px83HnnnQ5YNYVQU1ODH3/8EQqFAtu3b0efPn0gk8mQlZWFsWPHuqQ4NBqNKCwsBAAkJyf3ynFzHMehoaFBmJLS0NCA8PBwoSnFVR6Mbt68iUuXLrmdGKyrq4NcLkdQUBA2b97sEqUGFIqzoYKQQqEAAOrr67F161YoFAps3boV4eHhyMzMhFwux/jx410ivWkwGFBYWAixWIyxY8e6xJp6Ao1GI0QOa2trERoaKohDZ4kVdxWDDQ0NWLBgAcRiMX788UeP9pKkUCyhgpBCobRAo9Fg586dyM3NFW6aRBympaU5RYjp9XocP34cPj4+GD16tNuIweZotVpBHBJvTiIOHdVB7a5isLGxEQsXLoTBYMC2bdt6xLicQnEXqCCkUChtotVq8fPPPyM3NxebN2+GRCLB/PnzIZfLcccddzik9k2n06GgoACBgYEYOXKkS6ay7YFerxfEYWVlJQICAgQj7ICAALs0A7mrGNRqtXjggQdQW1uLHTt2uJVtDoXSE1BBSKFQOozBYMDevXuRk5ODvLw8mEwmzJ8/HzKZDHfeeaddat8aGxtRUFCA0NBQjBgxwmPEYHMMBoOVEbavr68QOQwODu4RceiuYlCn0+Ghhx5CeXk5du3ahbCwMGcviUJxOaggpFAoXcJoNOLXX3/Fhg0bkJeXB41Gg7lz50Imk2HmzJk9Uvum0WhQUFCAiIgIJCYm9kp7HHtgMpmsxKFEIhHEYWhoaJeuk7uKQYPBgIcffhjXrl1zuudpVVVViya8jz/+uNXrbTAY8L//+7/YunUrrly5gpCQEMycORPvvPMOYmNjHbhyiidABSGFQuk2JpMJhw4dEkboVVZWYs6cOZDL5bjnnnu6VLjf0NCAgoICSKVSJCQkUDHYCizLorKyUjDCZhgGUVFRkEqlCAsL61BE1V3FoNFoxGOPPYazZ89iz549iI6Odup60tPTcevWLXz++ecAeJuu+Ph4K5suS2pqarBw4UI8/vjjGDNmDKqqqrBs2TIYjUZhWhSF0lNQQUihUHoUlmVx9OhRQRzevn0bs2bNgkwmQ3p6eocK+evq6lBQUIB+/fq5zVQVR8CyrJURtslkspqSYqsRx13FoMlkwtKlS3H8+HHk5+cjJibGqeshRv6HDx/GxIkTAQCHDx9GWlpam0b+zTl69CgmTJiA69evY8CAAfZcMsXDoIKQQqHYDZZlceLECeTk5EChUODatWuYOXMmMjMzkZGRgZCQkBZi78yZMygvL0d8fDwGDRrkpJX3fjiOQ01NjSAO9Xq9lRG2RCJxazH47LPP4tdff8XevXvRt29fZy8JX331VZdHfVqye/duzJo1S+hAp1B6Cs+szqZQKA5BJBIhOTkZb731FoqLi3H06FGkpqbik08+wcCBA7FgwQJ8++23qKioAMdx2LFjB+68807U1NRQMdhNGIZBaGgoEhISMGXKFIwfPx7+/v64cuUK9u3bh0OHDuHChQsYNWqUW4lBlmXx4osvYt++fdi9e7dLiEEAKCsrs5myjo6ORllZWYeOodVq8corr+DBBx+kYpDS41BBSKFQHALDMBg5ciRWrFiBoqIinDx5EtOmTcOXX36JQYMG4Z577sGDDz6I5557DnK53NnLdSsYhkFQUBCGDBmCyZMnIy4uDhqNBr6+vigqKkJBQQFu3rwJnU7n7KV2C5Zl8corr2D79u3YvXs34uLi7H7OFStWgGGYNv+Qej9bpQ8cx3WoJMJgMOCBBx4Ay7LIzs7u8fdBodCUMYVCcSocx+HLL7/EU089hZEjR+LkyZNIS0uDTCZDZmYmYmNjaQ1hD9I8TdzY2CiklWtqahASEiJ0LPv5+Tl7uR2GZVm89tpr+O9//4v8/HwkJCQ45LxqtRpqtbrNfeLj4/H99993OWVsMBhw//3348qVK07vlKa4L1QQUigUp5Kbm4uHH34Y33zzDRYuXIibN29CoVBAoVDg4MGDGD9+PGQyGWQyGQYMGEDFYTdor2ZQp9MJ4rCqqgqBgYGQSqWIjo526RFvHMfh//7v//DNN98gPz8fiYmJzl5SC0hTyZEjRzBhwgQAwJEjRzBp0qQ2m0qIGLx48SLy8/MRFRXlyGVTPAgqCCmULpCdnY33338fpaWlSEpKwqpVqzB16tRW99+3bx9eeOEFnDlzBrGxsXjppZewdOlSB67YNfnXv/6FpUuX4j//+Q/mzZtn9W8cx6G0tBQbN25Ebm4u9u/fjzFjxgjikHYfd47ONpAYDAaoVCoolUpUVFTAz89PmJISGBjoMtee4zi8++67WL16Nfbs2YNRo0Y5e0mtkp6ejtu3b2PNmjUAeNuZuLg4K9uZ4cOHY+XKlcjKyoLRaMSCBQtw/Phx/Pjjj5BKpcJ+4eHhdjGCp3guVBBSKJ3khx9+wOLFi5GdnY0pU6ZgzZo1WLt2LYqLi23aQFy9ehUjR47E448/jieeeAIHDhzAk08+ifXr12PBggVOeAeuAcuymDt3Lv7nf/4HM2fObHNfjuOgVqsFcUiiQDKZDHK5HMOGDXMZgeKKdLeb2Gg0Whlhe3t7C2llW53ijoLjOKxatQr/+Mc/8PPPPyM5Odkp6+golZWVLYypP/nkE6ufCcMw+Prrr/HII4/g2rVrGDhwoM1j5efn484773TAqimeAhWEFEonmThxIlJSUrB69WphW2JiIuRyOVauXNli/5dffhmbN2/G2bNnhW1Lly7FiRMncOjQIYes2VXpaEF989dUVVVh06ZNUCgU2LVrFwYPHozMzExkZWV59Hg7W/S0tYzJZLIywhaLxVZTUhx17TmOw6effoqVK1dix44dQhqWQqF0DSoIKZROoNfr4e/vjw0bNiArK0vY/txzz6GoqAj79u1r8Zpp06YhOTkZH330kbBt48aNuP/++6HRaODl5eWQtbsrNTU12LJlCxQKBbZv346+fftCLpdDLpdjzJgxHi0O7e0zyLIsqqqqhLpDjuOsjLDtde05jsMXX3yBv/3tb9i2bRsmT55sl/NQKJ6ExNkLoFB6E2q1GiaTyaqWBwCkUmmrXmJlZWU29ydpuD59+thtvZ5ASEgIHnroITz00EOoq6vD1q1boVAoMGfOHERGRiIzMxNyuRzjx4/3KHHoCNNpkUiEiIgIREREYPjw4cKUlHPnzsFgMAjiMDIy0uaUlK7AcRy+/fZbvP766/jxxx+pGKRQeggqCCmULtA8zdle6tPW/ra2U7pHUFAQFi1ahEWLFkGj0WDHjh3Izc1FVlYWgoKCkJmZCZlMhrS0tB4TKK6IMyaQMAyDsLAwhIWFISEhAXV1dSgvL8elS5dw+vRpqykpXY2KcxyH77//Hi+//DI2bdqEadOm9fC7oFA8FyoIKZROQCIdzaOBSqWyRRSQEBMTY3N/iURC/cTsiL+/P7KyspCVlQWtVovdu3cjNzcXv/vd7+Dt7Y158+YhKysLU6ZMcau0vSuMo2MYBsHBwQgODsaQIUPQ0NAApVKJ69ev48yZMwgPDxfqDjvaKctxHDZs2IDnn38eOTk5uPvuu+38LigUz8Jz8icUSg/g7e2N1NRU7Nq1y2r7rl27Wk1dpaWltdh/586dGDdunFsJEVfG19cX8+bNw9dff42ysjJ8++23YBgGS5YswZAhQ/Dkk09i165d0Ov1zl5qt3AFMdgchmEQGBiIQYMGYdKkSZg8eTLCw8Nx+/Zt/PLLLzh27Bhu3LgBrVbb5nE2bdqEp59+Gv/5z38wZ84cB62eQvEcaFMJhdJJiO3MZ599hrS0NHz++ef44osvcObMGcTFxWH58uUoKSnBunXrAJhtZ5544gk8/vjjOHToEJYuXerxtjOugNFoxP79+5GTk4O8vDxoNBpkZGRAJpNhxowZ8PX1dfYSO4wrisH20Gq1QkNKdXU1goKCIJVK4evri5iYGGG/H3/8EUuWLMG//vUvq2YuCoXSc1BBSKF0gezsbLz33nsoLS3FyJEj8eGHHwr1TMQ/bO/evcL++/btw/PPPy8YU7/88svUmNrFMJlMOHjwIHJzc7Fx40ZUV1djzpw5kMvluOeee+Dv7+/sJbZKbxSDzdHr9YIR9qJFi+Dj44PZs2cjISEBr776Kr766issWrTI2cukUNwWKggpFAqlGSzL4rfffhPEYVlZGWbNmgWZTIY5c+YgKCjI2UsUcAcx2By1Wo3c3Fz897//xdGjRxEVFYU//OEPWLBgAcaNG0ebsSgUO0AFIYVCobQBy7IoKipCTk4OFAoFrl+/jpkzZ0Imk2Hu3LlOndThjmKQ8Msvv+C+++7De++9B6lUCoVCgS1btiAkJAT33nsv7r33Xtxxxx0eZSVEodgTKggpFAqlg3Ach9OnTyMnJwcbN27E+fPncdddd0EulyMjIwPh4eEOE4fuLAYPHTqErKwsvPvuu1i6dKlwTfV6Pfbs2YPc3FwcPHgQJ06cgERCzTIolJ6ACkIKhULpAhzH4fz588jNzYVCocCpU6cwdepUyOVyzJ8/H1FRUXYTh+4sBo8ePQqZTIY333wTzzzzTKvXsCtjDykUSutQQUihUCjdhOM4XLlyRRCHBQUFSEtLg1wuR2ZmJvr06dNj4sWdxWBhYSHmzZuHV199FS+++CIVfBSKA6GCkEKhUHoQjuNw48YNKBQKKBQKHDp0CBMmTIBMJoNMJkP//v27LHTcWQyeOnUKc+fOxYsvvojly5dTMUihOBgqCCkUCsVOcByH27dvY+PGjcjNzcWvv/6KsWPHCuJw0KBBHRY+7iwGi4uLMXfuXDz55JP429/+RsUgheIEqCCkUCgUB8BxHJRKJfLy8pCbm4u9e/dixIgRkMlkkMvlSEhIaFUI3bhxA5cvX3ZLMXjhwgWkp6fjkUcewdtvv03FIIXiJKggpFAoFAfDcRwqKyuxadMmKBQK7N69G4MHD4ZMJkNWVhYSExMFO5V3330XBQUF+Pzzz91ODF6+fBnp6elYtGgR3n//fWohQ6E4ESoIKRQKxclUV1djy5YtUCgU2LFjB/r16weZTAadTocvv/wS69evx8yZM529zB7l2rVrSE9Px/z58/HPf/6TikEKxclQQUihUCguRF1dHbZu3Yp3330Xp06dwsiRIzF9+nTI5XKMGzfOLYRTSUkJZs2ahVmzZmH16tVu8Z4olN4O/S2kUFpBpVIhJiYGb7/9trDtyJEj8Pb2xs6dO524Moo7ExQUhIqKCly+fBk7d+7Ea6+9BpVKBblcjhEjRuCll17CgQMHYDKZnL3ULlFaWoq5c+firrvuQnZ2NhWDFIqLQH8TKZRWiIqKwldffYUVK1bg2LFjqK+vx0MPPYQnn3wSs2bNcvbyXIrs7GwMHDgQvr6+SE1Nxf79+1vdV6FQ4J577kFUVBSCg4ORlpaGHTt2OHC1rk12djaWL1+O7du346677sK9996Lf//73ygrK8Onn36K+vp6LFq0CAkJCVi2bBn27dsHo9Ho7GV3CKVSiXnz5mHChAn44osvIBaLnb0kCoXSBE0ZUyjt8NRTT2H37t0YP348Tpw4gaNHj8LX19fZy3IZfvjhByxevBjZ2dmYMmUK1qxZg7Vr16K4uBgDBgxosf+yZcsQGxuLu+66C6Ghofj666/xwQcf4MiRI0hOTnbCO3AdfvrpJzz44IPYvn070tLSWt1Pr9cjPz8fOTk52LRpEwAgIyMDWVlZmDZtGry9vR215A6jVquRkZGBxMREfP/993TkHIXiYlBBSKG0Q2NjI0aOHImbN2/i2LFjGD16tLOX5FJMnDgRKSkpWL16tbAtMTERcrkcK1eu7NAxkpKSsGjRIrz++uv2WmavQKfT4eLFixg5cmSHX2M0GvHLL78gJycHeXl50Gq1yMjIgFwux1133eUSDy9VVVWYN28e4uLi8N///tclBSuF4unQlDGF0g5XrlzB7du3wbIsrl+/7uzluBR6vR4FBQUtUuizZs3CwYMHO3QMlmVRV1eH8PBweyyxV+Hj49MpMQgAEokEd999N7Kzs3Hz5k3k5eUhPDwczz//PAYOHIhHH30UmzdvhkajsdOq26ampgYymQyxsbH44YcfqBikUFwUKggplDbQ6/X4/e9/j0WLFuHvf/87HnvsMZSXlzt7WS6DWq2GyWSCVCq12i6VSlFWVtahY/zjH/9AQ0MD7r//fnss0aMQi8WYNm0aPvroI1y7dk2wsHn11VcRHx+PxYsXIycnB/X19Q5ZT11dHbKyshAeHo7c3Fz4+Pg45LwUCqXzUEFIobTBq6++ipqaGvzzn//ESy+9hMTERDz22GPOXpbL0Xy6BMdxHZo4sX79eqxYsQI//PADoqOj7bU8j0QkEmHSpEn44IMPcPHiRezbtw8JCQl46623EB8fjwceeADr169HTU0N7FE51NDQgIULF8LPzw95eXkukbqmUCitQwUhhdIKe/fuxapVq/Ddd98hODgYIpEI3333HX799VerejlPJjIyEmKxuEU0UKlUtogaNueHH37AY489hv/+979uZ7rsaohEIqSmpmLlypU4d+4cjhw5grFjx2LVqlWIj4/HwoULsW7dOlRWVvaIOGxsbBQivlu2bIG/v3+3j0mhUOwLbSqhUCjdYuLEiUhNTUV2drawjczoba2pZP369Xj00Uexfv16yOVyB62U0hyO43Du3Dnk5ORg48aNOH36NKZNmwa5XI558+YhKiqq07OFtVotHnjgAdTV1WH79u0ICQmx0+opFEpPQiOEFAqlW7zwwgtYu3YtvvrqK5w9exbPP/88bty4gaVLlwIAli9fjocffljYf/369Xj44Yfxj3/8A5MmTUJZWRnKyspQU1PjrLfgsTAMg8TERLz22msoKChAcXEx7rnnHnz33XcYOnQo5s6di88++wy3b9/uUORQp9Nh8eLFqKysxNatW50qBquqqrB48WKEhIQgJCQEixcvRnV1dYdf/8QTT4BhGKxatcpua6RQXAkqCCkUSrdYtGgRVq1ahTfffBNjx47FL7/8gq1btyIuLg4AP5nixo0bwv5r1qyB0WjEU089hT59+gh/nnvuOWe9BQp4cThkyBC8/PLLOHz4MC5dugSZTAaFQoHExETMmjULH3/8MW7cuGFTHBoMBjzyyCMoKSnBjh07EBYW5oR3YebBBx9EUVERtm/fju3bt6OoqAiLFy/u0Gvz8vJw5MgRxMbG2nmVFIrrQFPGFAqFQmkVjuNw+/ZtKBQKKBQK/Prrr0hOToZMJoNMJsPAgQNhMpnw2GOP4ezZs8jPz0dUVJRT13z27FmMGDEChw8fxsSJEwEAhw8fRlpaGs6dO4dhw4a1+tqSkhJMnDgRO3bsQEZGBpYtW4Zly5Y5aOUUivOgEUIKhUKhtArDMOjbty+eeeYZ7NmzBzdv3sSjjz6Kffv2ISUlBZMnT8a0adNw4sQJ7N692+liEAAOHTqEkJAQQQwCwKRJkxASEtKmPybLsli8eDH+8pe/ICkpyRFLpVBcBioIKRQKhdIhGIZBTEwMli5dih07dqC0tBR//OMfoVKpsHXrVsTExDh7iQCAsrIymzZG0dHRbfpjvvvuu5BIJHj22WftuTwKxSWhgpBCoVAonYZhGEREROCZZ55BSUkJhgwZYvdzrlixAgzDtPnn2LFjwvqa05Y/ZkFBAT766CN88803ne6splDcATpdnEKhUCi9gqeffhoPPPBAm/vEx8fj5MmTNicKqVSqVv0x9+/fD6VSiQEDBgjbTCYTXnzxRaxatQrXrl3r1topFFeHNpVQKBQKxa0gTSVHjhzBhAkTAABHjhzBpEmTWm0qqaioQGlpqdW22bNnY/HixViyZEmbjSgUijtAI4QUCoVCcSsSExMxZ84cPP7441izZg0A4E9/+hPmzZtnJeyGDx+OlStXIisrCxEREYiIiLA6jpeXF2JiYqgYpHgEtIaQQqFQKG7Hv//9b4waNQqzZs3CrFmzMHr0aHz33XdW+5w/f54aolMoTdCUMYVCoVAoFIqHQyOEFAqFQqFQKB4OFYQUCoVCoVAoHg4VhBQKhUKhUCgeDhWEFAqF0sNkZ2dj4MCB8PX1RWpqKvbv39+h1x04cAASiQRjx4617wIpFAqlGVQQUigUSg/yww8/YNmyZXj11VdRWFiIqVOnIj09HTdu3GjzdTU1NXj44YcxY8YMB62UQqFQzNAuYwqFQulBJk6ciJSUFKxevVrYlpiYCLlcjpUrV7b6ugceeABDhw6FWCxGXl4eioqKHLBaCoVC4aERQgqFQukh9Ho9CgoKMGvWLKvts2bNwsGDB1t93ddff43Lly/jb3/7m72XSKFQKDahk0ooFAqlh1Cr1TCZTC3m5UqlUpSVldl8zcWLF/HKK69g//79kEjoVzKFQnEONEJIoVAoPQzDMFb/z3Fci20AYDKZ8OCDD+KNN95AQkKCo5ZHoVAoLaCPoxQKhdJDREZGQiwWt4gGKpXKFlFDAKirq8OxY8dQWFiIp59+GgDAsiw4joNEIsHOnTtx9913O2TtFArFs6ERQgqFQukhvL29kZqail27dllt37VrFyZPntxi/+DgYJw6dQpFRUXCn6VLl2LYsGEoKirCxIkTHbV0CoXi4dAIIYVCofQgL7zwAhYvXoxx48YhLS0Nn3/+OW7cuIGlS5cCAJYvX46SkhKsW7cOIpEII0eOtHp9dHQ0fH19W2ynUCgUe0IFIYVCofQgixYtQkVFBd58802UlpZi5MiR2Lp1K+Li4gAApaWl7XoSUigUiqOhPoQUCoVCoVAoHg6tIaRQKBQKhULxcKggpFAoFAqFQvFwqCCkUCgUCoVC8XCoIKRQKBQKhULxcKggpFAoFAqFQvFwqCCkUCgUCoVC8XCoIKRQKBQKhULxcKggpFAoFAqFQvFwqCCkUCgUCoVC8XCoIKRQKBQKhULxcKggpFAoFAqFQvFwqCCkUCgUCoVC8XCoIKRQKBQKhULxcKggpFAoFAqFQvFwqCCkUCgUCoVC8XCoIKRQKBQKhULxcKggpFAoFAqFQvFwqCCkUCgUCoVC8XCoIKRQKBQKhULxcKggpFAoFAqFQvFwqCCkUCgUCoVC8XCoIKRQKBQKhULxcKggpFAoFAqFQvFwqCCkUCgUCoVC8XCoIKRQKBQKhULxcKggpFAoFAqFQvFwqCCkUCgUCoVC8XCoIKRQKBQKhULxcP4/pRNGAJmFSCMAAAAASUVORK5CYII=", + "text/plain": [ + "<Figure size 800x800 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from common import *\n", + "from utils import sphere\n", + "from utils import math\n", + "\n", + "\n", + "def PlotSphere(ax, r):\n", + " u, v = np.mgrid[0:2 * math.pi:50j, 0:math.pi:20j]\n", + " x = np.cos(u) * np.sin(v) * r\n", + " y = np.sin(u) * np.sin(v) * r\n", + " z = np.cos(v) * r\n", + " ax.plot_surface(x, y, z, rstride=1, cstride=1,\n", + " color='b', linewidth=0.5, alpha=0.3)\n", + "\n", + "\n", + "def PlotPlane(ax, r):\n", + " # 二元函数定义域平é¢\n", + " x = np.linspace(-r, r, 3)\n", + " y = np.linspace(-r, r, 3)\n", + " X, Y = np.meshgrid(x, y)\n", + " ax.plot_wireframe(X, Y, X * 0, color='g', linewidth=1)\n", + "\n", + "\n", + "p = torch.tensor([[0.0, 0.0, 0.0]])\n", + "v = torch.tensor([[0.0, -1.0, 1.0]])\n", + "r = torch.tensor([[0.5]])\n", + "v = v / torch.norm(v) * r * 2\n", + "p_on_sphere_ = sphere.ray_sphere_intersect(p, v, r)[0][0]\n", + "print(p_on_sphere_)\n", + "print(p_on_sphere_.norm())\n", + "spher_coord = sphere.cartesian2spherical(p_on_sphere_)\n", + "print(spher_coord[..., 1:3].rad2deg())\n", + "p_on_sphere = sphere.spherical2cartesian(spher_coord)\n", + "print(p_on_sphere_.size())\n", + "\n", + "fig = plt.figure(figsize=(8, 8))\n", + "ax = fig.gca(projection='3d')\n", + "plt.xlabel('x')\n", + "plt.ylabel('z')\n", + "\n", + "PlotPlane(ax, r.item())\n", + "PlotSphere(ax, r[0, 0].item())\n", + "\n", + "ax.scatter([0], [0], [0], color=\"g\", s=10) # Center\n", + "ax.scatter([p_on_sphere[0, 0].item()],\n", + " [p_on_sphere[0, 2].item()],\n", + " [p_on_sphere[0, 1].item()],\n", + " color=\"r\", s=10) # Ray position\n", + "ax.scatter([p_on_sphere_[0, 0].item()],\n", + " [p_on_sphere_[0, 2].item()],\n", + " [p_on_sphere_[0, 1].item()],\n", + " color=\"y\", s=10) # Ray position\n", + "\n", + "p_ = p + v\n", + "ax.plot([p[0, 0].item(), p_[0, 0].item()],\n", + " [p[0, 2].item(), p_[0, 2].item()],\n", + " [p[0, 1].item(), p_[0, 1].item()],\n", + " color=\"r\")\n", + "\n", + "ax.plot([p_on_sphere_[0, 0].item(), p_on_sphere_[0, 0].item()],\n", + " [p_on_sphere_[0, 2].item(), p_on_sphere_[0, 2].item()],\n", + " [0, p_on_sphere_[0, 1].item()], color=\"k\", linestyle='--', linewidth=0.5)\n", + "\n", + "ax.plot([p_on_sphere_[0, 0].item(), 0],\n", + " [p_on_sphere_[0, 2].item(), 0],\n", + " [0, 0],\n", + " linewidth=0.5, linestyle=\"--\", color=\"k\")\n", + "\n", + "ax.plot([p_on_sphere_[0, 0].item(), 0],\n", + " [p_on_sphere_[0, 2].item(), 0],\n", + " [p_on_sphere_[0, 1], 0],\n", + " linewidth=0.5, linestyle=\"--\", color=\"k\")\n", + "\n", + "ax.set_xlim(-r.item(), r.item())\n", + "ax.set_ylim(-r.item(), r.item())\n", + "ax.set_zlim(-r.item(), r.item())\n", + "\n", + "plt.show()\n" + ] + } + ], + "metadata": { + "interpreter": { + "hash": "65406b00395a48e1d89cf658ae895e7869e05878f5469716b06a752a3915211c" + }, + "kernelspec": { + "display_name": "Python 3.8.12 ('base')", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebook/test_eccv.ipynb b/notebook/test/test_eccv.ipynb similarity index 99% rename from notebook/test_eccv.ipynb rename to notebook/test/test_eccv.ipynb index 2aa812a..19abdb7 100644 --- a/notebook/test_eccv.ipynb +++ b/notebook/test/test_eccv.ipynb @@ -80,7 +80,7 @@ "\n", "images = img.load_seq(f'{datadir}/img%02d.png', 16, permute=False)\n", "res=(int(p[0, 0]), int(p[0, 1]))\n", - "cam = CameraParam({\"fy\":-p[0, 2], \"fx\": p[0, 2], \"cx\":res[1]//2, \"cy\":res[0]//2}, res)\n", + "cam = Camera({\"fy\":-p[0, 2], \"fx\": p[0, 2], \"cx\":res[1]//2, \"cy\":res[0]//2}, res)\n", "views = Trans(torch.tensor(t, dtype=torch.float), torch.tensor(r, dtype=torch.float))\n", "_rays_o, _rays_d = cam.get_global_rays(views, flatten=True)\n", "_patches = images.flatten(1, 2)\n", diff --git a/notebook/test_foveation.ipynb b/notebook/test/test_foveation.ipynb similarity index 61% rename from notebook/test_foveation.ipynb rename to notebook/test/test_foveation.ipynb index 677c639..3ecdacf 100644 --- a/notebook/test_foveation.ipynb +++ b/notebook/test/test_foveation.ipynb @@ -6,29 +6,28 @@ "metadata": {}, "outputs": [], "source": [ + "%matplotlib inline\n", "import sys\n", "import os\n", "import struct\n", "import torch\n", - "import torch.nn as nn\n", "import matplotlib.pyplot as plt\n", "\n", "rootdir = os.path.abspath(sys.path[0] + '/../')\n", "sys.path.append(rootdir)\n", - "torch.cuda.set_device(0)\n", - "print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n", - "torch.autograd.set_grad_enabled(False)\n", + "torch.set_grad_enabled(False)\n", "\n", "from utils import img\n", - "from utils import device\n", "from utils.view import *\n", "from components.foveation import Foveation\n", "\n", + "\n", "def gen_mask_file(layer_mask, filename):\n", " indices = torch.arange(layer_mask.size(0) * layer_mask.size(1),\n", " device=layer_mask.device).view_as(layer_mask)\n", - " indices = indices[layer_mask>=0]\n", - " inverseIndices = torch.ones(layer_mask.size(0) * layer_mask.size(1), device=layer_mask.device, dtype=torch.long) * -1\n", + " indices = indices[layer_mask >= 0]\n", + " inverseIndices = torch.ones(layer_mask.size(0) * layer_mask.size(1),\n", + " device=layer_mask.device, dtype=torch.long) * -1\n", " inverseIndices[indices] = torch.arange(indices.size(0), device=layer_mask.device)\n", " with open(filename, 'wb') as fp:\n", " fp.write(indices.size(0).to_bytes(4, 'little'))\n", @@ -36,32 +35,46 @@ " fp.write(inverseIndices.size(0).to_bytes(4, 'little'))\n", " fp.write(struct.pack(f\"<{inverseIndices.size(0)}i\", *inverseIndices))\n", "\n", + "\n", "foveation = Foveation([20, 45, 110], [(256, 256), (256, 256), (256, 230)], (1600, 1440))\n", - "layers_mask = foveation.get_layers_mask()\n", + "layers_mask = foveation.get_layers_mask(gaze=(0, 0))\n", + "\n", "plt.figure(figsize=(12, 4))\n", "for i, mask in enumerate(layers_mask):\n", " colored_mask = torch.zeros(mask.size(0), mask.size(1), 3, device=mask.device)\n", - " c = torch.tensor([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]], device=mask.device)\n", + " c = torch.tensor([\n", + " [1, 1, 1, 1, 1, 1],\n", + " [1, 1, 1, 1, 1, 1],\n", + " [1, 1, 1, 0, 0, 0]\n", + " ], device=mask.device)\n", " for bi in range(3):\n", " region = torch.logical_and(mask >= bi, mask < bi + 1)\n", - " colored_mask[region] = c[bi] + (c[-1] - c[bi]) * (mask[region][..., None] - bi)\n", + " colored_mask[region] = c[bi, :3] + (c[bi, 3:] - c[bi, :3]) * (mask[region][..., None] - bi)\n", " plt.subplot(1, len(layers_mask), i + 1)\n", " img.plot(colored_mask)\n", + " img.save(colored_mask, f\"blend_{i}.png\")\n", " n_skipped = torch.sum(mask < 0)\n", " n_tot = len(mask.flatten())\n", - " print (f\"Layer {i}: {n_skipped}({n_skipped / n_tot * 100:.2f}%) pixels are masked as skipped, {n_tot - n_skipped} pixels need to be inferred\")\n", + " print(f\"Layer {i}: {n_skipped}({n_skipped / n_tot * 100:.2f}%) pixels are masked as skipped, \"\n", + " f\"{n_tot - n_skipped}({(n_tot - n_skipped) / n_tot * 100:.2f}%) pixels need to be inferred\")\n", "\n", - "gen_mask_file(layers_mask[0], 'fovea.mask')\n", - "gen_mask_file(layers_mask[1], 'mid.mask')" + "plt.figure(figsize=(12, 4))\n", + "for i, mask in enumerate(layers_mask):\n", + " binary_mask = (mask >= 0).float().expand(3, -1, -1)\n", + " plt.subplot(1, len(layers_mask), i + 1)\n", + " img.plot(binary_mask)\n", + " img.save(binary_mask, f\"mask_{i}.png\")\n", + "#gen_mask_file(layers_mask[0], 'fovea.mask')\n", + "#gen_mask_file(layers_mask[1], 'mid.mask')\n" ] } ], "metadata": { "interpreter": { - "hash": "82066b63b621a9e3d15e3b7c11ca76da6238eff3834294910d715044bd0561e5" + "hash": "65406b00395a48e1d89cf658ae895e7869e05878f5469716b06a752a3915211c" }, "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3.8.12 ('base')", "language": "python", "name": "python3" }, @@ -75,7 +88,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.5" + "version": "3.8.12" }, "metadata": { "interpreter": { diff --git a/notebook/test_mono_gen.ipynb b/notebook/test/test_mono_gen.ipynb similarity index 92% rename from notebook/test_mono_gen.ipynb rename to notebook/test/test_mono_gen.ipynb index 545ee19..a19723c 100644 --- a/notebook/test_mono_gen.ipynb +++ b/notebook/test/test_mono_gen.ipynb @@ -25,18 +25,11 @@ } ], "source": [ - "import sys\n", - "import os\n", - "import torch\n", + "from common import *\n", "import torch.nn as nn\n", "\n", - "rootdir = os.path.abspath(sys.path[0] + '/../')\n", - "sys.path.append(rootdir)\n", - "torch.cuda.set_device(0)\n", - "print(\"Set CUDA:%d as current device.\" % torch.cuda.current_device())\n", "torch.autograd.set_grad_enabled(False)\n", "\n", - "from configs.spherical_view_syn import SphericalViewSynConfig\n", "from utils import netio\n", "from utils import img\n", "from utils import device\n", diff --git a/notebook/test_mono_view.ipynb b/notebook/test/test_mono_view.ipynb similarity index 99% rename from notebook/test_mono_view.ipynb rename to notebook/test/test_mono_view.ipynb index 323287e..3f83e31 100644 --- a/notebook/test_mono_view.ipynb +++ b/notebook/test/test_mono_view.ipynb @@ -137,7 +137,7 @@ "test_view = views.get(*view_coord)\n", "\n", "cams = [\n", - " view.CameraParam({\n", + " view.Camera({\n", " \"fov\": fov_list[i],\n", " \"cx\": 0.5,\n", " \"cy\": 0.5,\n", @@ -147,7 +147,7 @@ "]\n", "fovea_cam, mid_cam, periph_cam = cams[0], cams[1], cams[2]\n", "#guide_cam = ref_dataset.cam_params\n", - "vr_cam = view.CameraParam({\n", + "vr_cam = view.Camera({\n", " 'fov': fov_list[-1],\n", " 'cx': 0.5,\n", " 'cy': 0.5,\n", diff --git a/notebook/test_refinement.ipynb b/notebook/test/test_refinement.ipynb similarity index 99% rename from notebook/test_refinement.ipynb rename to notebook/test/test_refinement.ipynb index b86b0f8..d911fca 100644 --- a/notebook/test_refinement.ipynb +++ b/notebook/test/test_refinement.ipynb @@ -63,7 +63,7 @@ " view_dataset.samples)\n", "ref_indices = torch.arange(ref_dataset.n_views, device=device.default()).view(\n", " ref_dataset.samples)\n", - "cam_params = view.CameraParam({\n", + "cam_params = view.Camera({\n", " \"fov\": 20,\n", " \"cx\": 0.5,\n", " \"cy\": 0.5,\n", @@ -76,7 +76,7 @@ "netio.load(model_path, net)\n", "print('Net loaded.')\n", "\n", - "vr_cam = view.CameraParam({\n", + "vr_cam = view.Camera({\n", " 'fov': 110,\n", " 'cx': 0.5,\n", " 'cy': 0.5,\n", diff --git a/notebook/test_voxel.ipynb b/notebook/test/voxel.ipynb similarity index 92% rename from notebook/test_voxel.ipynb rename to notebook/test/voxel.ipynb index 99ebe24..f598453 100644 --- a/notebook/test_voxel.ipynb +++ b/notebook/test/voxel.ipynb @@ -6,13 +6,7 @@ "metadata": {}, "outputs": [], "source": [ - "import torch\n", - "import sys\n", - "import os\n", - "\n", - "rootdir = os.path.abspath(sys.path[0] + '/../')\n", - "sys.path.append(rootdir)\n", - "\n", + "from common import *\n", "from utils.voxels import *\n", "\n", "bbox, steps = torch.tensor([[-2, -3.14159, 1], [2, 3.14159, 0]]), torch.tensor([2, 3, 3])\n", @@ -94,7 +88,7 @@ "voxel_indices_of_new_corner = voxel_indices_in_grid[to_flat_indices(to_grid_coords(new_corners, bbox, steps).min(steps - 1), steps) + 1]\n", "print(voxel_indices_of_new_corner)\n", "p_of_new_corners = (new_corners - voxels[voxel_indices_of_new_corner]) / voxel_size + .5\n", - "print(((new_corners - trilinear_interp(p_of_new_corners, emb(corner_indices[voxel_indices_of_new_corner]))) > 1e-6).sum())" + "print(((new_corners - linear_interp(p_of_new_corners, emb(corner_indices[voxel_indices_of_new_corner]))) > 1e-6).sum())" ] } ], diff --git a/notebook/test_lf_syn.ipynb b/notebook/test_lf_syn.ipynb deleted file mode 100644 index 418bf92..0000000 --- a/notebook/test_lf_syn.ipynb +++ /dev/null @@ -1,134 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import torch\n", - "import matplotlib.pyplot as plt\n", - "from data.lf_syn import LightFieldSynDataset\n", - "from utils import img\n", - "from utils import math\n", - "from nets.trans_unet import LatentSpaceTransformer\n", - "\n", - "device = torch.device(\"cuda:2\")\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Test data loader" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "DATA_DIR = '../data/lf_syn_2020.12.23'\n", - "TRAIN_DATA_DESC_FILE = DATA_DIR + '/train.json'\n", - "\n", - "train_dataset = LightFieldSynDataset(TRAIN_DATA_DESC_FILE)\n", - "train_data_loader = torch.utils.data.DataLoader(\n", - " dataset=train_dataset,\n", - " batch_size=3,\n", - " num_workers=8,\n", - " pin_memory=True,\n", - " shuffle=True,\n", - " drop_last=False)\n", - "print(len(train_data_loader))\n", - "\n", - "print(train_dataset.cam_params)\n", - "print(train_dataset.sparse_view_positions)\n", - "print(train_dataset.diopter_of_layers)\n", - "plt.figure()\n", - "img.plot(train_dataset.sparse_view_images[0])\n", - "plt.figure()\n", - "img.plot(train_dataset.sparse_view_depths[0] / 255 * 10)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Test disparity wrapper" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "\n", - "\n", - "transformer = LatentSpaceTransformer(train_dataset.sparse_view_images.size()[2],\n", - " train_dataset.cam_params,\n", - " train_dataset.diopter_of_layers,\n", - " train_dataset.sparse_view_positions)\n", - "novel_views = torch.stack([\n", - " train_dataset.view_positions[13],\n", - " train_dataset.view_positions[30],\n", - " train_dataset.view_positions[57],\n", - "], dim=0)\n", - "trans_images = transformer(train_dataset.sparse_view_images.to(device),\n", - " train_dataset.sparse_view_depths.to(device),\n", - " novel_views)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "mask = (torch.sum(trans_images[0], 1) > math.tiny).to(dtype=torch.float)\n", - "blended = torch.sum(trans_images[0], 0)\n", - "weight = torch.sum(mask, 0)\n", - "blended = blended / weight.unsqueeze(0)\n", - "\n", - "plt.figure(figsize=(6, 6))\n", - "img.plot(train_dataset.view_images[13])\n", - "plt.figure(figsize=(6, 6))\n", - "img.plot(blended)\n", - "plt.figure(figsize=(12, 6))\n", - "plt.subplot(2, 4, 1)\n", - "img.plot(train_dataset.sparse_view_images[0])\n", - "plt.subplot(2, 4, 2)\n", - "img.plot(train_dataset.sparse_view_images[1])\n", - "plt.subplot(2, 4, 3)\n", - "img.plot(train_dataset.sparse_view_images[2])\n", - "plt.subplot(2, 4, 4)\n", - "img.plot(train_dataset.sparse_view_images[3])\n", - "\n", - "plt.subplot(2, 4, 5)\n", - "img.plot(trans_images[0, 0])\n", - "plt.subplot(2, 4, 6)\n", - "img.plot(trans_images[0, 1])\n", - "plt.subplot(2, 4, 7)\n", - "img.plot(trans_images[0, 2])\n", - "plt.subplot(2, 4, 8)\n", - "img.plot(trans_images[0, 3])\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.7.9 64-bit ('pytorch': conda)", - "name": "python379jvsc74a57bd0660ca2a75467d3af74a68fcc6f40bc78ab96b99ff17d2f100b5ca821fbb183f2" - }, - "language_info": { - "name": "python", - "version": "" - }, - "orig_nbformat": 2 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/notebook/test_sphere.ipynb b/notebook/test_sphere.ipynb deleted file mode 100644 index 09f8f61..0000000 --- a/notebook/test_sphere.ipynb +++ /dev/null @@ -1,154 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Test Ray-Sphere Intersection & Cartesian-Spherical Conversion" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tensor([[ 0.0000, -0.3536, 0.3536]])\n", - "tensor(0.5000)\n", - "tensor([[ 90., 135.]])\n", - "tensor([[1.0000, 0.7071]])\n", - "tensor([[-4.3711e-08, -7.0711e-01]])\n", - "torch.Size([1, 3])\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAN0CAYAAAD8kGq7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9d5AkWX7fCX5dhEydJbMyS/VUT3W1qO6SI0GCMwOCC4AAuKARQ1sSBLhYHgnQKI60A+/WbO/WKI5c497RCNwu78gdkAABQs4MAEIMBhgMRmF6BGa6srTMEtklsiojZQgP9/fujxc/f+4eHiozdPw+ZmVVlRnh/vy5h8f7+k98DSklGIZhGIZhGIZhmMHD7PUAGIZhGIZhGIZhmJ3Bgo5hGIZhGIZhGGZAYUHHMAzDMAzDMAwzoLCgYxiGYRiGYRiGGVBY0DEMwzAMwzAMwwwoLOgYhmEYhmEYhmEGFLvB79nTgGEYhmEYhmEYprcYtX7BETqGYRiGYRiGYZgBhQUdwzAMwzAMwzDMgMKCjmEYhmEYhmEYZkBhQccwDMMwDMMwDDOgsKBjGIZhGIZhGIYZUFjQMQzDMAzDMAzDDCgs6BiGYRiGYRiGYQYUFnQMwzAMwzAMwzADCgs6hmEYhmEYhmGYAYUFHcMwDMMwDMMwzIDCgo5hGIZhGIZhGGZAYUHHMAzDMAzDMAwzoLCgYxiGYRiGYRiGGVBY0DEMwzAMwzAMwwwoLOgYhmEYhmEYhmEGFBZ0DMMwDMMwDMMwAwoLOoZhGIZhGIZhmAGFBR3DMAzDMAzDMMyAwoKOYRiGYRiGYRhmQGFBxzAMwzAMwzAMM6CwoGMYhmEYhmEYhhlQWNAxDMMwDMMwDMMMKCzoGIZhGIZhGIZhBhQWdAzDMAzDMAzDMAMKCzqGYRiGYRiGYZgBhQUdwzAMwzAMwzDMgMKCjmEYhmEYhmEYZkBhQccwDMMwDMMwDDOgsKBjGIZhGIZhGIYZUFjQMQzDMAzDMAzDDCgs6BiGYRiGYRiGYQYUFnQMwzAMwzAMwzADCgs6hmEYhmEYhmGYAYUFHcMwDMMwDMMwzIDCgo5hGIZhGIZhGGZAYUHHMAzDMAzDMAwzoLCgYxiGYRiGYRiGGVBY0DEMwzAMwzAMwwwoLOgYhmEYhmEYhmEGFBZ0DMMwDMMwDMMwAwoLOoZhGIZhGIZhmAGFBR3DMAzDMAzDMMyAwoKOYRiGYRiGYRhmQGFBxzAMwzAMwzAMM6CwoGMYhmEYhmEYhhlQWNAxDMMwDMMwDMMMKCzoGIZhGIZhGIZhBhQWdAzDMAzDMAzDMAMKCzqGYRiGYRiGYZgBhQUdwzAMwzAMwzDMgMKCjmEYhmEYhmEYZkBhQccwDMMwDMMwDDOgsKBjGIZhGIZhGIYZUFjQMQzDMAzDMAzDDCgs6BiGYRiGYRiGYQYUFnQMwzAMwzAMwzADCgs6hmEYhmEYhmGYAYUFHcMwDMMwDMMwzIDCgo5hGIZhGIZhGGZAYUHHMAzDMAzDMAwzoLCgYxiGYRiGYRiGGVBY0DEMwzAMwzAMwwwoLOgYhmEYhmEYhmEGFBZ0DMMwDMMwDMMwAwoLOoZhGIZhGIZhmAGFBR3DMEwfIKWElLLXw2AYhmEYZsCwez0AhmGYUUdKiVKphEKhANu2kUgkYNs2LMuCYRi9Hh7DMAzDMH2M0eCJMD8uZhiG6SCu66JcLkNKiXK5DAAQQvhCzrIsFngMwzAMw9RcALCgYxiG6QFSSriuC9d1YRiGL+iCgo3SMFngMQzDMMzIw4KOYRimXxBCoFwu+0LNMAz/Z/UEWpzAs23b/8MCj2EYhmGGlppf8FxDxzAM0yWklPA8z0+tNM3W+lKR+KP30fZc1/VfE6zBM02TBR7DMAzDDDks6BiGYboApVR6nucLs7jXtCLAotuJCjzDMEIRPBZ4DMMwDDN8cMolwzBMhxFCwHEcX7DFiapmUi5bhVI06T7PAo9hGIZhBhauoWMYhuk20cYnjerjHMfpqMBigccwDMMwAwsLOoZhmG5CAi3Y+KSZ13dTUFGDFYIEXiKRgGVZLPAYhmEYpn9gQccwDNMtqPFJvRTLKL0QdHFjiAo8arBi23bTx8IwDMMwTNthQccwDNNpWkmxjHtvrwVdFBJ49D1hmiYSiYQfwWOBxzAMwzBdgwUdwzBMJ4nzlmuFfhR0Qei7IhjBM02zKkWTYRiGYZiOwIKOYRimE0S95XYatep3QReFBR7DMAzDdBUWdAzDMO2mGW+5VrY1SIIuSi2BJ4TA2NgYCzyGYRiG2R01Fwj87cowDLMDhBAolUptEXPDAM2BZVm+eJNS4pvf/Ca2t7exsbGBjY0NFAoFPzWVYRiGYZjdY/d6AAzDMINEMMXSMAyOOtWABB6JPPK/K5VKKJVKAHSTlWAXTYZhGIZhWoMFHcMwTJO06i3HaKLzFSfwLMvy6+9Y4DEMwzBMc7CgYxiGaQIhBBzHaclbjqlNnMATQqBYLPo/I4Fn27Zvk8AwDMMwTBgWdAzDMHWIestximVnYIHHMAzDMDuDBR3DMEwNOMWyd9QSeIVCwf85CzyGYRiGYUHHMAxTRbu85Zj2QeeAIqQs8BiGYRhGwYKOYRgmQDTFkkVBf9KMwKPumSzwGIZhmGGGBR3DMEwFIYTvkcZibrCIE3ie58F1Xf81tm37ETzTNPn8MgzDMEMBCzqGYUYeap/veZ5vis0MNnE1eEGBR/54LPAYhmGYQYcFHcMwI42UEuVyGdevX8e+ffuwd+/eXg+J6QDNCLxgiiYLPIZhGGZQYEHHMMzIEvSW46jcaBEn8FzXDTXCYYHHMAzDDAIs6BiGGTnivOUMw4CUstdDY3pEnMArl8tVAi+RSPhpuSzwGIZhmH6ABR3DMCNFLW+5fhB0LBD6B6qxI+IEXtAigQUewzAM0ytY0DEMMzJEU+qCC/B+EHRM/xIn8BzHQalUAgCYpukLPNu2uUsqwzAM0zVY0DEMM/Q04y3Hgo5phXoCj9J4gymaLPAYhmGYTsGCjmGYoaZZbznTNFnQMTsmKPDoOnIcB47jAECVwOMmPAzDMEy7YEHHMMxQQm3pKcWy0QK6HyJ0UkqO4gwBdA5Z4DEMwzDdgAUdwzBDBzWw8Dyv6VQ3wzAghOjC6JhRI07gUYpmUOBFm6wwDMMwTDOwoGMYZqgIesu1UrfUDxE6ZjSIs0iQUqJUKsU2WWGBxzAMw9SDBR3DMENBnLdcK7Cg6xycSlqfZgSeZVl+eiZ10WQYhmEYgAUdwzBDQC1vuVbodcoljZnFDxMn8IQQKBaL/s9I4FEEj68ZhmGY0YUFHcMwAw01Pmk1xTJKP0To+mEMTP/RSOC5rotisYi9e/eywGMYhhlBWNAxDDOQ7DbFMgqLqc5A88oCo31EBV4+n8ejR48wPj7u/4wjeAzDMKMDCzqGYQaOZr3lWoF96JhBxjTNUBdNIQQKhUKowyYLPIZhmOGEBR3DMAND1FuuXWKOtsWCjhkG6HNBUes4gWfbtv+HBR7DMMxgw4KOYZiBYCfecq3Q66YowwoL5d4TJ/DowUhQ4FEEzzRNFngMwzADBAs6hmH6np16y7VCPwiPfD6PZDIJ2+ZbM9M8rdYo1hJ4ruv622KBxzAMMzjwqoFhmL4lGknopLlyLwWdEAK3bt3C6uoqhBCwLAvT09OYmZnB1NQUm0ozHSWuiyYJPPp9MEWTBR7DMEx/wYKOYZi+pB3ecq3QK0FXKBRw6dIl7Nu3D2fPngUAlMtlrK2t4dmzZ7h16xYSiQRmZmYwOzuL8fHxgRJ4/RD5HAXa+fmIE3iu64ZqV1ngMQzD9A8s6BiG6Tu6kWIZpRfC4+nTp7h9+zZeffVVzMzM+MecTCaxf/9+7N+/HwBQKpWQy+WwvLyMzc1NpNNpzMzMYGZmBmNjY7yYHnE6fd3GCbxyuVwl8BKJBCzLYoHHMAzTZVjQMQzTN7TbW64VuinohBC4ceMGCoUCLly4gGQyWff1qVQKBw8exMGDByGlRLFYRC6Xw/3797G1tYWxsTFf4GUyGV5MMx3FMAzfIgGIF3hBiwQWeAzDMJ2FBR3DMH1Bt1Mso3RL0G1vb2NxcREHDx7EK6+8EjrOZsZgGAYymQwymQwOHToEKSXy+TxyuRzu3LmDfD6PiYkJX+Cl0+lOH1LD8XLKZefppWCKE3iO46BUKvmfZRJ4tm335PPNMAwzzLCgYximp3TSW64VuiE8Hj9+jLt37+L111/H1NRUW7ZpGAbGxsYwNjaGhYUFSCmxtbWFXC6HGzduoFQqYXJy0hd4jaKBzODRb4K5WYFHKZos8BiGYXYHCzqGYXpGNMWyl4s60zQ7tjD2PA/Xrl2D67q4ePEiEolER/YDqMX0xMQEJiYmcOTIEQghsLm5idXVVSwvL8PzPExNTWFmZgbT09MdHQvDAGGBR58xx3HgOA4A9dmL1uAxDMMwzcOCjmGYniCEQLlc7lmKZZRORei2trawuLiI+fl5HD58uOvHaZompqamMDU1hePHj8PzPKyvryOXy+HBgweQUvoWCdPT06HISjvglMvO06oPXS+hcbLAYxiGaR8s6BiG6SrRFMt+WawZhgEhRFu3uby8jPv37+P111/H5ORkW7e9UyzLwuzsLGZnZwEArutibW0Nq6uruHv3LkzT9NMz2QOP6TTNCrxokxWGYRhGw4KOYZiuQd3wPM/ri6hckHZGklzXxbVr1yClxMWLF2Hb/XurtW0be/fuxd69ewEoD7xcLlflgTczM4OJiYmWF9P9dI6Z/idO4EkpUSqVUCqVALDAYxiGidK/qwyGYYaKXnjLtUK7BN3m5iYWFxdx5MgRzM/P991xNiKRSMR64L377rvY3NxEKpXyBd74+HhTx8cpl51lkFIuWyXOAy8q8CzL8tMzqYsmwzDMKMGCjmGYjtJLb7lW2K2gk1Li0aNHePToEU6fPo3x8fE2jq53BD3wAKBQKPj1d1tbW8hms77Ay2azvJhmOkqcwBNCoFgs+j8jgUcRPL4mGYYZdljQMQzTMXrtLdcKuxF0ruvi8uXLsG0bFy9ebHtjkX6ilgfe3bt3kc/nMT4+zibnTNdggccwDMOCjmGYDuG6bs+95Vphp4JufX0dV65cwbFjx3Do0KEOjKx/qeeBd/PmTZRKJZTLZTx79gz79+9HKpXq9ZCHkmFOuWwVFngMw4wiLOgYhmkr/eQt1wqtCjopJR48eIB3330Xb775JsbGxjo4usEgzgPvW9/6FkqlEq5evQrXddkDj+kqtQReoVAINWBhgccwzCDDgo5hmLbRb95yrdCKoCuXy7h8+TJSqVRbUywHab6awTRNJJNJzM/PI5PJwPM8bGxsxHrgTU1N9XU3UGY4oPsS1fLGCTzbtv0/LPAYhhkE+NuTYZhd06/ecq1gmmZTgm5tbQ1XrlzBe97zHr9RSLsY9oWjZVl+fR0Q9sC7d+8eDMPwfz85OTnUtYjthFMud06cwKN7WVDgURdNFngMw/QjLOgYhtkV/ewt1wqNInRSSiwtLeHp06c4c+YMstls28cwau3963ng3b59G7Zt78oDj2FapZbAc13Xf43ruhgbG0MymYRpmgN7z2MYZnhgQccwzI7pd2+5VqklqBzHweLiIsbGxnDx4kUWFi3QSiprJzzwRoFRexDQTeJq8K5du4aTJ08imUzCMIxQiiYLPIZhegELOoZhWmZQvOVaodYibHV1FdeuXcPLL7/sCw2mO7AHXvOM8rF3E3pAQfV1dC8MdvRlgccwTLdhQccwTEsMkrfcbpBS4u7du3j+/DnOnj2LTCbTtf0O65zullY98BimEwQ/o3ERvHK5XCXwqAaPBR7DMJ2ABR3DME3jOA7K5bK/KBnWhUmpVMKlS5cwNTWFCxcuDEUEslfsxrC90XYbeeBNTEz4Am+YPfA45bK71HvoYhhGqJlPnMALWiSwwGMYph2woGMYpiGUVvTgwQN4nodjx471ekgd48WLF7h+/TpOnjzpN+tg+p84D7zNzU3kcrmR8MBjUdA9Womixwk8x3FQKpX8h2Ik8GzbHuoHZQzDdA4WdAzD1CXoLWeaZqjb2zAhhECxWMTdu3dx7tw5pNPpXg+J2QWmaWJqagpTU1M4duwYe+AxbWM3adH1BB6grttEIuGnaLLAYximGfgbjGGYWKLecrQQEUL0eGTtp1gs4tKlSzAMA+fPn+cFVBvpVMplq8R54K2vryOXyw28B14/zO+o0a57RFDg0Xl0HAeO4wBQAi9ag8cwDBOFBR3DMFXU8pbrl8V5O1lZWcHNmzdx6tQpXL9+ncXciGDbNvbs2YM9e/YAUB54a2trWFlZGUgPPL5uBx86hyzwGIZpFRZ0DMOEqOctZ5rm0ETohBC4desWNjc3ceHCBSSTyV4PiRflPSSRSGDfvn3Yt28fgMHywBu2hyz9TrfmmwUewzDNwoKOYRgA4RTLWt5ypmkOxeIxn89jcXER+/btw7lz5/pqcT5sDGpUd9A88Hq9f6bzxAk8qsELCrxoF02GYYYfFnQMwzTtLWcYxsBH6J4+fYrbt2/j1Vdf9eupGKYR7IHHEP0inuM88KSUKJVKfpMVy7L86B110WQYZvhgQccwI069FMsogxyhE0Lgxo0bKBQKfZNiyQwm/eaBN6ifSaa9xAk86t5LkMCjCB4LPIYZDljQMcyIQt5yruvWTLGMMqgRuu3tbSwuLuLgwYN45ZVXeBHTRQY15bIVmvHAm5yc9AVeJzzw+JpmorDAY5jRgQUdw4wgzaZYRhnEpiiPHz/GvXv38Nprr2Fqaqrh63fjMcUwQH0PvIcPH0JKGTI5Zw88phuwwGOY4YW/RRhmhIjzlmvlC3uQoi2e5+HatWtwXRcXLlxoKipCx8eLmPbBc1nfA29paQmGYYRMzlv1wBuUzyTTX9QSeIVCIdSAhQUew/Q/LOgYZkSIplju5It5UCJ0W1tbWFxcxPz8PA4fPtz0sQ6SYB0keE7D1PLAe/78Oe7cueMLwNnZ2aY98HihzewW+l6g640FHsMMDizoGGYEEEKgXC63nGIZZRCaoiwvL+P+/ft44403MDEx0dJ7WdAxvSDOA29tbQ2PHz/GjRs3+toDjxlemhF4tm37f1jgMUzvYEHHMENMNMVyt55E/dwUxXVdXL16FQBw8eLFHdUlDYJgHTR4gdc6qVQKBw4cwIEDBwAoD7y1tTU8fPgQm5ubVR54fM0y3SBO4HmeB9d1/deQyblt2zBNkz//DNMlWNAxzJAipUS5XIbnebuKygXpV8GzubmJxcVFHDlyBAsLCzveTq8jdMO6+OnHa2aQIA+8ubk5SCl9k/N79+5he3sbpmkim81iz5497IHXYfha1sTV4AUFnmEYoQgeCzyG6Rws6BhmCGnFW64V+i1CJ6XEo0eP8OjRI5w+fRrj4+O72l6/HR/DRDEMA9lsFtlsFvPz85BS+ubmt27dQrFY7KoH3qjBTZNqEyfwXNcNNeFigccwnYEFHcMMETvxlmuFfmqK4rouLl++DNu2cfHixZY7A8bR6wjdMMJz2lkMw0AqlUI6ncb8/DyEENja2sLq6mrXPPBGCRZ0zcMCj2G6Bws6hhkSduot1wr9sjhfX1/HlStXcOzYMRw6dKht2+2X42OYVqHPu2mamJycxOTkJI4dOwYhhG+R8PDhQwghfIsE9sBrHRZ0OydO4JXL5SqBl0gkYFkWCzyGaQG+kzPMEEBRuXanWEbp9ZerlBIPHjzAu+++izfffBNjY2Nt3T4LOmbYME0z5IHneR7W1tba5oE3arCgax+GYYSutziBRw1WbNvu6Hcbwww6LOgYZoDpdIplP1Eul3H58mWkUim8733v68ixsqBrPzynnacVkWFZVlMeeDMzM5icnBzqe8pOYEHXOeIEnuM4KJVKWF9fRyKR8NOGySKBzwXDKFjQMcyA0i5vuUFgbW0NV65cwXve8x4cPHiwY/th8cGMGlEPPMdxkMvl8OTJE9y8eRPJZNIXeBMTE0N9n2kGFnTdIyjwNjc3kclkMDY2hlKp5D/AjKZoMsyowoKOYQaMdnvL9TNSSiwtLeHZs2c4c+YMstlsR/fHgo4ZdZLJZMgDr1gsIpfL4dGjR/6imgTe2NjYyIkbFnS9QUoJ0zR9gUf3acdx4DgOALDAY0YaFnQMM0B0wluuX3EcB4uLixgbG8OFCxe68uXMgq798Jx2nk6KjHQ6jbm5uSoPvKWlJWxvb2N8fNwXeOl0eqjvSQALul4hhAh9B9A5YIHHMAoWdAwzIHTKW64fWV1dxbVr1/Dyyy9j//79XdtvvxqnM0w/EOeBt729jVwuNzIeeCzoekNU0EWJE3hUgxcUeNRkhQUeM2ywoGOYPmeUGp+QSfKLFy9w7tw5pNPpru6/H6JJvFhkBgXDMDA+Po7x8XEcPny4ygOvXC5jamrKt0hIJpO9HvKuoZplprs0EnRR4iwSpJQolUoolUoAwgKPumgyzKDCgo5h+phueMv1C6VSCZcuXcLU1BTOnz/fE+FqGEbfGKcPC/0gkoedfoka1fPAe/ToETzPG3gPPKrlYrpLq4IuSjMCz7IsPz2TBR4zaAze3ZRhRgRqfNKPKZbtXkA+f/4cN27cwMmTJ7F37962bbdVWHwwTPsYRg+8fhHPo0a75z1O4AkhUCwW/Z+RwKMUTT7vTD/Dgo5h+ox+T7Ek0dOOLzchBO7cuYO1tTWcP3++5zU3LOiYQWRQRMYweOANylwPG7uN0DWCBR4z6LCgY5g+YhC85UzTbMuXa7FYxKVLl7Bnzx6cP3++L461HwTdsC0Y+2FOmf5kED3whu3zOSh0WtBFYYHHDBos6BimD4h6y/WrmAPas0BfWVnBzZs3cerUKczOzrZpZLunH8RHv553huk09Tzwtra2kE6ne+6Bx4KuN3Rb0EWpJfAKhUKowyYLPKZXsKBjmB4zaN5yFKHbCUII3Lx5E9vb27hw4ULfdb3rtaDr93PP9CfDKjIaeeCNjY35Ai+TyXRlDoZ1rvudXgu6KPRdTWOKE3jUPZMFHtMNWNAxTA8ZRG+5nYqefD6PxcVF7N+/HydPnuzLY2UfuvbTa5HMDAf1PPBu376NYrFYZXLeCVjQ9YZ+n/c4ged5HlzX9V9DJue2bcM0zb4+HmbwYEHHMD0gmGLZj41P6rGTCN3Tp09x+/ZtvPrqq37Hu36ExQfDDAZRDzwpJTY3N5HL5XD9+nU4jtMRD7x+FxbDSr9F6BoRl6IZFHiGYYRSNFngMbuFBR3DdJlB95ZrRdAJIXD9+nUUi8W+TLGMgwUdM2iwyFALZPLAO3r0KIQQ2NjYaLsHHs917xjkeW9G4AVTNFngMa3Cgo5husggplhGaTaKtb29jUuXLmFubg6nTp0aiGPllMv2w1FPpheYponp6WlMT0/j+PHj8DzPNzlfWloCAD89sxUPPBZ0TDuIE3iu64Yao7HAY1qBBR3DdIF+95ZrhWYidI8fP8a9e/fw2muvYWpqqksj2z2GYey44QvDMP2LZVmYnZ31u+q6rou1tTW8ePGiJQ88FnRMJ4gTeOVyuUrgJRIJWJbFAo+pggUdw3SYQU+xjFIv4uJ5Hq5duwbXdXHhwgUkEokuj253sKBrPxyh6zwsMlrHtm3s3bsXe/fuBaA88NbW1vD06dO6Hng810w3oBo7Ik7gBS0SWOAxLOgYpkMMkrdcK9SK0G1tbWFxcRELCwtYWFgYyGNl8cEwo0kymcT+/fuxf/9+ALU98FzXbTo9k2HaRZzAcxwHpVIJgPpeJoFn2/bQrDeY5mFBxzAdIJpiOUw31rg6s+XlZdy/fx9vvPEGJiYmejSy3cOCjmEYoLYH3vPnz1EqlbCxsdF1DzyGIeoJPFpzJBIJP0Vz2NYhTDUs6BimzQghUC6XhybFMkowLdF1XVy9ehUAcPHixR13jusXWNC1H57TzsNpgJ0l6IFHcz01NdV1DzyGqUVQ4NH91nEcOI4DQD2IjdbgMcPFYK++GKaPiKZYDusNkyJ0m5ubWFxcxNGjRzE/P9/rYbUFFh8Mw9RDSgnLshp64E1OTvoCbxDsWvoZejjKNAfNFQu80YIFHcO0ASkl8vk87t69i5dffnnov3yePXuGzc1NnD59GuPj470eTttg2wKGYeoRFw2t54G3vLwMz/NCJueD1iyq13AEenfECTxK0QwKvGiTFWawYEHHMLuEvOWEEMjlckP9xeO6Lp4+fYpEIoGLFy8OXXMAjtC1H57TzsML3u7RzFzX88B78OABpJQhk/Nhu4+2GyEEC4w2EmeRIKVEqVSKbbLCAm8wYEHHMDsk2vjEtu2hbnm/vr6OK1euYGJiAnv27BnKRQjbFjAMU4+diOdaHnirq6u4e/cuLMvyBd7U1BQvniOwoOssjQRePp8HAMzOzsKyLL+LJtNfsKBjmB1Qy1tuGCMRUkrcv38fjx8/xptvvokXL14MrejhaBLDMPVoRzS0lgfes2fPcOvWLSQSCczOzmJmZgbj4+MjL2ZY0HWXqMDb3NyE67rIZrP+zyzLCkXwWOD1HhZ0DNMiFJWjL3a6kQ3jDa1cLuPy5ctIpVJ43/veB9M0kcvlWNAxTcNz2nk45bJ7dGKuox54pVLJr7/b3Nz0PfBmZmYwNjY2cueaBV1vEUL4wg1QnwEhBIrFov8aFni9hwUdwzRJNMVy2L9g1tbWcOXKFZw4cQIHDhzwfz7MaYm9FB9SSjx48ABLS0sYGxvzn9Bns1n+cmSYPqEb4jmVSuHgwYM4ePAgpJS+yfn9+/extbWFsbGxkfLA4wcWvYUEHRGXoskCr/ewoGOYJhh2b7kgUkosLS3h2bNnOHPmTCjNAlDF0izo2ovrurh8+TJs28aFCxfgOA5yuRzu3r2LfD6PiYkJX+ClUqmuj4/pf4b5ntRPdFtcGIaBTCaDTCaDQ4cO+R2VyQOvUChgYmJiqD3wOELXWzzPq1szX0vgFQqFUIdNFnidhQUdw9RhVLzlCMdxsLi4iLGxMVy4cCH2eIc5ha4Xxxb08zt06BAcx/FNjOfn532Pq9XVVVy9ehWu62Jqagqzs7OYnp7uezP3YY7o9gvD+nnsR3odLTIMA2NjYxgbG8PCwsJIeOCxoOstQoiWmqCRwKNzFifwbNv2/7DAaw/9vRJgmB4ipUS5XIbneUMflQOA1dVVXLt2DS+//LJfyxEHR+jax/LyMu7fv4833ngDExMTsfsOelwdO3bMb4G+urqKpaUlGIaBmZkZzM7OYnJykhc+DNNBei3oooyCBx4Lut7ied6u5j9O4NGD8qDAowieaZp99RkbFFjQMUwM5C0XbXwyjEgpcffuXbx48QLnzp1rmLLDEbrd43kerl27Btd1cfHixar6hHpEW6CXy2Xkcjk8ffoUN2/eRCqV8gXeKDZQGEX6TWQMM/0+18PogceCrrc0SrlslVoCz3Vd//fBFE0WeM3Bgo5hArSj8Um/f+EHKZVKuHTpEqanp3H+/PmmjpcjdLsjn8/jnXfewaFDh3DkyJFdXyuJRCLUIa9QKCCXy2FpaQnb29sYHx/3BV4v6muG+QEAM3pQHfWgUM8D7969e36Ev5898AbpO3UY6bSgjqvBiwq8YIomC7x4WNAxTIVa3nKtQGJnEJ56Pn/+HDdu3MDJkyd9P6RmGGZBZ5pmR8XH06dPcfv2bbz22muYnp7uyD6iDRS2trZC9TWUfjUzMzOQ6VcM00uklH0pepqlngfe7du3Ydu2/wCoXzzwOELXW9odoWtEnMBzXdfvZcACLx4WdAwD+Pncu02xHARBJ4TA7du3sb6+jvPnz7fcNXGYIy6dOjYhBG7duoWtrS1cuHCha40KDMPAxMQEJiYmcOTIEQgh/PSrhw8fQkoZejrfz9ctUxuOYHSPYZvrQfDAY0HXW3q9pokTeOVyuUrgJRIJWJY1sgKPBR0z0rTbW67fo1fFYhGXLl3Cnj17cP78+V1FIYeRTnRkDM752bNnG855JxeMpmn6izNApV/lcjk8f/4cd+7cgW3bvj3CxMREW8YxzA8AmNFj2ARdlKAHHqBTuHvpgceCrrfstilKu6EaOyJO4AUtEkZF4LGgY0aWTnjLWZbVt2Ln2bNnuHXrFk6dOuXXU+yEYV6gt/vYXrx4gevXr+OVV17Bnj172rbddmHbNvbt24d9+/YBUE/nV1dX8ejRI2xubiKbzfoCbxQMjBmmEcMu6KLU8sC7c+cOCoWCX6PbSQ+8qLE10136XVDHCTzHcVAqlfy1HQk827aHttEdf0KYkSPqLdfOD7dhGPA8ry3bahdCCNy8eRPb29ttSfcb9ghdOwRdq51D+4VUKoW5uTnMzc35i7fV1VXcvn0bxWIxZHA+DP5Ww8KoiYxeMspzHeeBRzW6N27cQKlU6ogH3ijPeb8wSPPfrMCjFM1hEXgs6JiRIppi2e4PcaebarRKPp/H4uIi9u/fj5MnT3IKXQPacWxkzj4+Pt5059B+JLh4O3z4MIQQvsH58vIyhBAhg/NaNRbDfL0woweLC01cjW7wHtEuD7x+jxAx/U1Q4NF3keM4cBwHgFq3UQ2eEKLlvgL9Ags6ZmTohrecZVl9E6F78uQJ7ty5g1dffdWvmWoHHKGrzdraGq5cudLQnL3e/mkM/bZoNE0TU1NTmJqa8v2tqP353bt3YVmW3x1vYmKCF2BdhAVz9+jHz2a/EHePaIcHHgs6pl3QZ7eWwPvO7/xOfPvb3+7V8HYFCzpm6AmmWLaj8Uk9+kHsCCFw/fp1lEolXLx4se2t6fvhGDvFTiOsUko8ePAAjx8/xpkzZ5DNZjswuv7Csizs2bPHrw10HAe5XA7vvvuu3x1vdnYWUsqhvV76CRYZ3YEFXfM08sAjE/RGHngs6JhOERR4juMMtJUPCzpmqGmHt1wr9FrsbG9vY3FxEXNzczh16lRHjneYU+h2cmyu6+Ly5ctIJBK4cOHCyLb+TyaTOHDgAA4cOAAppd8d78mTJygWiygUCn4Eb1BTWhiGBd3OiXrglctl5HK5Kg886rJLIo4FXe8Y1u/6OLa3tzE2NtbrYewYFnTM0NKNFMsovRR0jx8/xr179/Daa69hamqqY/vptWjtNK18gW1ubmJxcRHHjh3DoUOHOjiqwcIwDGSzWWSzWSQSCWxvb2PPnj3I5XK4evUqXNcN1d9xB7vdMUqLrl7Dgq59JBKJWA88ivKnUinMzMzAcRye8x4xSmKabDkGFf4WZYaOdnvLtUIvxI7nebh27Rpc18XFixc7vjge9ghdsywvL+P+/fs4ffo0xsfHOziqwYbmdHJyEpOTkzh69GiotmZpaQmGYYQMzkdlAdFOeMHbHVjQdY5aHngbGxu4evVqyCIhm83yeegCoyTotre3B/q7nAUdM1R0O8UySrcF3dbWFhYXF7GwsICFhYWuHO8wC7pmIAHteV5XBPQwEq2tCaZe3bp1y38yPzs7i7GxMV64MX0DC7ruQR54uVwOR48ehWEYyOVyuHv3LvL5fEjgZTKZXg93KPE8b2TKCDjlkmH6gE56y7VCNwUdRYjeeOMNTExMdGWfwGhHAvL5PN555x3Mz8/j8OHDIz0X7SSaekVP5u/fv4+trS1/4TY7Ozswnn7dZJQfsPQC/tx3FyEELMtCJpOJ9cC7efMmSqUSJiYmfIHHdbrtgeZ+FOAIHcP0mE57y7VCNwSd67q4evUqAHCEqIs8ffoUt2/fxuuvv97RGsVhYycRXXoyf+jQIUgpsb29jdXVVd+8mLytZmZmBrorWTthkcEMK3Fpf7U88KJ1urv1wBt1PM8bmZRLrqFjmB4ihEC5XO5ZimUU0zT9KGEnoCYcR48exfz8fMf2w2iEELh58yby+XxHbCCY+hiGgfHxcYyPj/sLN6q/e/jwIaSUofq7UXmazDCjQjN1XEEPvGPHjsHzPGxsbMR64E1NTfGD0CbhCN3gwFc0M5BEUyz75QlSpyJ0Uko8fPgQy8vL3ISjixSLRbzzzjvYt28fTp482fMHBoz6jJGAA7S31fPnz3Hnzh3Yto3Z2Vm/9fkonDNOuWSGmZ3ULVqWVXWfoAdB9+7dCzVimpycHBnR0iqjFKGjusxBhQUdM3BIKVEul+F5Xl9E5YJ0QtCRz5lt27h48SJ/8XSJ58+f48aNGzh16pTfvINpnU430Yl6W5VKJayuruLRo0fY3NxENpv1BV4mk+mr+0U7GdbjYph2dFq0bRt79uzBnj17AKhGTGtra1hZWanrgTfqjFJTlK2tLb+OexBhQccMFL3wlmsF0zTheV7btre+vo4rV67g+PHjmJuba9t2mdpIKXH79m3kcjmcP3++68X1o95FdLekUinMzc1hbm4OUkrk83msrq7i9u3bKBaLmJiY8AVeMpns9XAZhmlAJzqLJhIJ7Nu3D/v27QNQ2wNvZmYG4+PjfbfW6BajZlvANXQM02F66S3XCu2K0Ekpcf/+fTx58gRvvvnmQN9kBgnHcZDP5yGEwLlz5/r2OmOawzAMjI2NYWxsDIcPH/YbJ6yurmJ5eRme52F6eto3OB/UJ9HcSp8Zdjp9fdfywHvw4AG2traQzWZH0gNvlCJ0XEPHMB2m195yrWBZ1q6jK47j4PLly0in07h48SKLii5B3dGSySTe+9739no4Q0M/RRyDjROOHz8Oz/OwtraG1dVV3L1716+7mZ2d5bQrhhlhop128/n8SHrgjVKEjmvoGKaDUFSuX1Mso+w25ZJExYkTJ3DgwIE2jqz9DEtUIBgNPXv2LL71rW/1ekhMl7AsK1RX4zhOKO0qnU77Am+UnsozDKMJRvpHzQPP87yR6ezMKZcM0wEGJcUyyk5TLqWUuHfvHlZWVnDmzBlks9kOjK59mKY5FIKuXC7j8uXLSKVSHA1lkEwmceDAARw4cABSSj/tip7K06Jtdna2rxZtw/BZZJhBYZQ88DjlcnBgQcf0Hf3mLdcKOxF0juNgcXER4+PjuHDhwkCICsMwBj4VY2NjA5cvX45tOMML5PbRTymXrWAYBrLZLNLpNA4cUA1W1tfXsbm5XrVom5mZYV8rhhlRhtkDb9C/51tha2sLExMTvR7Gjhmcq4oZevrVW64VWhV0q6uruHbtGt773vf63bYGgU757XWLR48e4cGDB7GefiRAWND1H6WSwPa2h0JBIJ/3UChIFAoe8nmBUkmgUFA/K5UEHEfAdVX6s+dJCCEhpQRdtlLSHwnSm/pngNag6h+Ggcr7PSQSE7AsQIgSSqUHcN3rsG0D09PjmJkZx/T0OFIpC4mEgVTK9P+o/1v+/9Np9bdl7e5eN4iCmWGGlWHywBslY3HKwhhUWNAxfUE/e8u1QrNCR0qJu3fv4sWLFzh37hzS6XQXRtc+KOVy0PA8D1evXoWUEhcvXox9UjqoEaVBxHEEXrxwsbpaxvq6i3xeCTEl0CSKRbci0JRIE4LElQFAQt0mDNDtgk4b/Z9EnHqNRPxpbXSvMSrbFgAMmKYN15VwXQBIw7LSsO1peJ6Hp0+LuH9/FcXiu7BtC+l0BplMumKPIP1xGYYSlnQ8mYyJsTEbExMWxsdtTEwkMDVlY2oqgampBKanE0gk6ou+Qb1nDhJ8X+g+wzDng+yBN2rG4v1e7lIPFnRMz+l3b7lWaEbQlUolXLp0CdPT0zh//vxA3iwp5XKQ2N7exqVLl7CwsICFhYWa1xkLuvYhhEAu52FpycXq6ibW1z3kch42NtSfQkEAkDBNEjcSpqnOS1CkSal+LiVFygDAqCHQENieeh1tb6enNSgGo9uhaJ5hWMhkxpDJqKL6ctlFoVDA6uoGPK8Ey0pUBF4GiYQNw5D+Z99x1AOtXM6pRBCrxWcqZWF8nASfjcnJBCYmLExPJ/DihQvHERjgUp2BgCP33WcY5zzOA29tbQ2PHz/GjRs3+soDb5Rq6AY9GsmCjukZg9r4pB6NBN3z589x48YNnDx5Env37u3iyNrLoEXonjx5gjt37uD111/H1NRU3deyoGuNrS0XL154yOVc5HIu1tY8rK+rP1tbHvL5IvL5Mvbs2fCFGS1QbBu+gFHzbiD+42PA81BJc6x/bmqdOiHqRenqE74mVHSwEYmEjURiAjMzE3BdAccpo1gs4MWLF/A8F6lUGul0GplMurKIMGAYwheret9KoLquwNqawNqa4wtbdbwSjx9v4qtfvY102sbYmI2ZmQT27k1i//405ubS2LMnORT3114zjOKi3xmFGq5UKuU3YwKUB97a2hoePnyIzc3NnnrgDbrIaZZh+GyzoGN6wiB5y7VCLTEghMDt27exvr6O8+fP91WHvJ0wKBE6IQRu3LiBQqGAixcvNtVtjAVdPIWCwPKyg8ePy3jyxMXz52Vsbnpw3fi5UkLEhG2bME3Dj7BJqf42TYlyWadNNoMQtB1Z8xzVE331onQ6NZMibhLB6J4eg4okNjNmy1L1e4ZhIJVKIpVKYmpqCkIIlEoOisUCNjY2AADpdKoi8FL+/VCLORkYg96vaSJ0/ywWPRSLAi9eOLh7dzsU9ZydTWLfvhT27k3h4ME0DhxIY3o62fAYGM0wLPoGjVEQdFHIA29ubq7nHnijlHI56J9vFnRM16HGJ8OQYhkl7liKxSIuXbqEPXv24Pz580NxvIPQFKVQKODSpUvYv38/XnnllabnvdfRx364PvJ5Jd7efVeJt6dPXWxseJFURkKNV4kLnYJIl4fnAZ5nQAgDqgZNwrZVTVxzx6qFlq5BM5BIKLEkZTRiJgLvC4/T86QvsgD4kS69bd0AJbiN6DFTg5SgCNRjU3/btgHXVemk1XNlwrbTyGbTlbkSKBaLyOcLWFvLwbKMSu1dGqlUCrWmSc+xCc8zYZom6GG6SukELMuE47h4/ryE589Lofcnkxb27k1i794U9u9Xf+bmMshkeGkQx6Av+AaRURR0QXrtgTdKEbpBh+/aTNcYxhTLRjx79gy3bt3CqVOnMDs72+vhtI1+j2KtrKzg5s2bO5r3fj+2drO15WJ52cXychlPnpSxsuJiczMs1pVgUY08guIFqBZwtdFz6roGbNuCaUpfLOlOk/r/QlBNnYx0ngQcB7AsA56nhaF6r6whgIJNVKLCrTZxUb24TqjBTpmWJeE4zT/wME0gm00jm03BNA0/PXN7ewOrqyUkk8lK9C4Dy6qOMgeFZbCLp3rwYsCyrIoY12JXSgOu6+HJkzyePCmEjlelbaZw4EAS+/encPToOGZmBjuroB2olOHh/97qJ0Zd0EVpxgNvcnLSF3i79cCjLKphx3Gcgc+cYkHHdIVB9pbbCUII3Lx5E9vb27hw4UKly93w0K8ROiklbt++jbW1tR2ntg5KOulO2NhQ4u3dd8t49qyMZ89cbG9HxY0By1LRNIryeJ6AlDoSpbpHxu2Bou4ysC0tBlXNnJ5bT7kKwLLC9gEENUiphaqrM/33NnNfUUJHN1iJEhVwqu6OXi8r86CaucSlXVqW9COAraAih2pubdvG5OQEhBiDlKorXrFYxMqKqr9LJlPIZDLIZtOwLBuWJWHb8KOBhkHRS4pGGhUxbvlzZVnSP1Z1TvSxbGyUsbFRxv37entTUwkcPJjG0aNjOH58HHv3DlZn3nbAEbruw3Nen6gHnhDCt0h49OgRhBAhk/OdeOCNwvxvb29jbGys18PYFSzomI4S9ZYbFTH39a9/Hfv378fJkyeH8nj7MYoV7R6603nvx2PbKfm8wO3bJdy7V8b9+w7W172YeYkTJRRlCneKVGIIlQg7CTFACA+ep6NkQQ83ISiygUo0rXqcStgZftqm67b2VNiyDAghK/VzSoxGI3/+iPzIVXMNUmjb6r10jBYAERKFpkndNQ1Ylt6w9rqrVfOnoowkbqMYBpBMJpBMJioiT9UfFwoFPH26ASE8AB7y+S2kUpmICKbFsLZ2oHPnurRYNiGl6Qtv5bUXFnhSAmtrZaytlXHz5iaEEBgbS2B+PoOjR8fx0ktj2Levs7U8/cCoRCv6CY7QtYZpmjU98JaWlmAYRsjkfBTSKZtha2uLBR3D1IJSLP/0T/8Ur7322q5D/4PAkydPkM/ncfHiRUxPT/d6OB2j3yJ0lG7SDoP2QRZ0riuwtOTi7t1SxSrAhevqxXn8YlRbBajFk1rAu66O+KjfqXRGilYBCIgQ04/mUapkVCgqsVN//PR70zQDAtBA2LIgnH6p/NwosiorY6p//hp1ygxT+7XhZinB44sXzVSnp6OYtUWl52m/vSCmaSCdTmFsLFWJ3nl4/Pgx8vkScrl1GIbhp2cmkymYZvV+hFDbUX/TuTIq5051G1UCj0QMRflkZVwmCgUPN29u4OZN1dQlk7ExP5/FkSMqgjc3N3wCj6NF3YcF3e6o5YH3/Plz3LlzB7ZtY3p6GrOzs33ngddNtre3MT4+3uth7AoWdExHCHrLua7bV4v/TuB5Hm7cuIFSqYSxsbGhFnNA/wg6KSWWlpbw7NkznD17ti0dv/pB0LWycHz61MXNmyUsLZWxvOz6jTiiPmxBqCZOHasWSvFNT4Lvqz0mKQ1f4KmUPp2yCdSOzgUJpgyqU2BW3tv4fNRKoaz32mZOc7OXOaVMNtovNYahqGTl3QB0YxkV2ZR+eiugO15SGqVOVzX9p/Iq8uahWCxic3MLjvMClmUjk0lX/O8S/hyp7ptB/z+1D4q6KoxKBI/2Lyqfe1k5DhO2rc6t47i4d28D9+5t4vOfl0ilbBw6lMHhw1kcPz6OQ4e62269E7Cg6z4s6NpL1APPcRzkcrmaHnijQj6f5wgdwwQJplhS4xPLsuA1WukMMGRYfejQIZw6dQpf/epXh/5LqB9ET7lcxuXLl5FOp3HhwoW2zXc/HFs9trYEbt0q4e7dMu7fLyOf14rDtnVDEFUHR9ACXP07LCaMSvORndV+xaGiZbRtFW2zbYoCylDqZjDiFieeqOatmahauSxh20ZTx6EigI2PRQmr8CK+utaPrAWatTKotS/6F0XMZKVrpYqyCiEaClfbtjA+Pobx8bFKpLWMQqGIXG4N5XIZqVQC2ayqv0skEiiXRWTfoSMNjE1WIqdW5dqScF0PjkMCnrahNlQolHHnThl37mzgj/9YddRcWMji1KkpnDo1jVRq8FK9WNB1n2H/Lu01yWQy5IFXLBaRy+V8D7xSqYRHjx71xAOvm2xtbQ28gGVBx7SNWt5y/RLN6QTvvvsulpaW8Nprr/mG1XS8w/wl1OtzurGxgcuXL+Oll17CwYMH27rtfhN0ruvh7l0X9+45uH/fxeqqCHSCNHzhVi4LuK4JMu8GVDqdYUi/Xqq2gDF8vzT1PlS2T10od/cl7royIEQM3yuu2dRHIZRArVdbRz923XDdWy2aPcVx+4t7b3Nirt45iG6PrkUzILYsP1Kn0ihlRSDHd/Y0DCCVSiCdTmB6WtXflUoOCoUinjx5DiE8ZLNpJJPKA8+yat+zguJbz60ZqB0UlX8bVd6EUgKlkoc7dzZx584mPvOZZRw5Mo6TJydx6tT0wNgksKDrPjzn3SWdTmNubg5zc3N+yYxhGLh3756fltgtD7xuwjV0DFMhmGIZbXwyjBE6z/Nw7do1uK6LixcvhjpH9VrsdINeiR4pJR49eoRHjx7h9OnTHXmi1g+CTnVJLePKFQe3bjlw3egrjErKpITnCd/AW0XfqJZNolxuLg1R2QdooaI/rgaiPnMACb1G26SGHuTlpn9HEUISds1MN3W0bGQa3mwqpaoFqy9Wa9X9hZuhNCMeZSU1sfG41GsNv0tl9LmQSrkE6NwogWf6UTM6fi2+wu8ng/Pp6Ul4nkSpVESpVMD6+joAIJNJI53OIJVKNewyCgRrB01YlqxE8nTDFfWa8PyUyxJ37mzi7t0t/P7vP8b8fAYnT07htdemMTbWv7XWLC66z7A/HO1nhBBIJpOYn5/H/Pw8pJTY3t5GLpfDrVu3UCwWO+qB1024ho4ZeZrxlhs2gbO1tYXFxUUsLCxgYWGh6gt+2I43jl4co+d5uHLlCgDg4sWLHevO1UtB9/Chg29+M48bN4rY2oqLRoWNqqlpiFr06MYblHLYzNozaLRdj/Dp1hvWdW86UhRsEOI4tXzhlDCREk2LHWp+AlQbwQb3QTV89Y5LCSGjrjDV9gvV79VjajR3zYs5JYTC467VHCUyInie6ddGqu2IBu9Rc5TNZjA2lqlETAUKhQK2t7exuroKy7J8gZdMJkPHTRYW4Xk3/PRZ2zYhpYCUotJghdJIVVdPSil1XYmlpW08fJjHH/zBuzh0KItXXpnCq69OY3Kyv+xeWNB1HxZ0vSNqKm4YBsbHxzE+Po7Dhw9DCIGtrS2srq52xAOvm+TzeRZ0zOhSK8UyyjBF6JaXl3H//n288cYbmJiYiH3NKAi6bnu1kYg+fPgw5ufnO7qo6ragW1lx8e1vl3DjRhGrqx5cVwQEmkqfDDbHoCYWhqEiXBRF0q3xm58b6iS5c/T+XJdsSWi7MlLHF49h6GYqSlyGW+ZX7dEXDJQmSlE5ERC7Slgkk7IS3ayuJ6T9KSFaLQgNg+r+ghFELayogYjnRa+X4HukPxeNzotlUR1edH7ixaluNqMN39XYaT6tSsotKrV3ta9pJYBVp9Lx8TFMTIxVUiddFAp5bG6uwXEcJBJJpFLUYMWuEwk1Kl1SLSirB1H5DjAC+zMqKZ7UXVP9/PHjAh4/zuMP/uAxDh3K4L3vncLrr09jerr3T/9Z0HUfFnS9w/O8unNvmiYmJycxOTnZMQ+8brG1tYW5ubleD2NX9O/sMn2N67pNe8tZljXwAsd1XVy9ehUAqlIso4yCoDNNs2si/fHjx7h37x5ef/11TE5Odnx/pml2XNBtbQl8+9tFXL1awrNnbqDmSAk4qpESQvuH6boww0+rE0I3H1EYgYYjQZEiQRER+ltF8uJ86Rqj0j2DFgVBQaFTAlVTj3oCWS+QaXuWZfrCjnzfaLuUSqjGrqOLevMy9DdFB6v3TzWIjdM9a0X5LAsolep37gw3XtFedCR8SRSSmNEPw8MRuWAqqbaGgL+tWihPPkDV3slKam1Y+JL41N5z2pDcMExks+PIZschpeqIVywW8OLFC3ieh1QqhXQ6g0wmvv6OGqlQZJVq7aiLp/LQ02MhewpqRLOyUsDTp3l88YtPsH9/GidOTOKNN2YwO9sbU3MWdN2HBV3viEboGhH1wPM8D2trawPhgccROmbkiKZYNvPl1s3FfyfY3NzE4uIijh49ivn5+YavHxVBR4K+UwghcP36dZRKJVy4cKFr6Rudij46jsDiYgmLiyUsL5cr6YYClmUimaQOkCoS47r6s6U/OiJg5F1v/Fr8BH4a87eucQqnz0kEBYVKo5MARMiQO04IBbtXBiNflqXSKlVjFl1TR7VW9F5CpRkq4Rg91uAtR4k6o+K1F5eiSv+Pj/pJadQQfPT72movWFMYB6Wehn8WjRQC8R+j6v3atvIZ9DzDbz5S2WolUktNS7RgJ9S6SUfuKHoYFlT1o9OqwYqqv5uamqo0WCmhWCxgY2MDgPSjd6lUyo/OalEnKte8WRH5XmRf4SY5KtKoD+Lx4zweP87ji198iqNHx3D+/F688sp0VwUWC7ruw3PeOxpF6BphWVZdDzzLsnwBODk52VPhzl0umZFCCIFyudwwxTLKoKZcSinx8OFDLC8vt9SAYxQEXafTEguFAi5duoQDBw7g1KlTXf1Cb+exKVHq4PJlB3fvOn5qpNoPAJhVDU9ILNEhG4asdEdsvkNiI6J+c2GBFhZ/FI0TwqwszoMpoLqejUQERdFUNIjGLf0oJL2/UX0XjYkiUrVOCYm6oOF5dDsqZbH2XMT9jrqCxl169S0PDBhGOLoY2XJFhDaucVRRNdU1kiKxwTmm7am0S+H/X9XtqZo1JcCNyrh1BEyJWbtybamoGXVIbab7qGkaFX+7NGZmVES1VCqiUMgjl1uFaZpIpzN+F02KMGtLCwvU2Cf+fhkVeLISBZS4f38L9+9vYXIygbfe2oPz5/cim+38Ax8WF92HI3S9w/O8tkbRanngPXnyBDdv3kQymfQF3sTERFc/axyhY0aCoLccgJZvroMocMrlMq5cuYJEItFyA45BPN5W6eQxrqys4ObNm3j11Vf91I1u0g5Bt77u4u23S3jnnRIKBSXIqDNk89MmfdPm6i6XO0envdUnmdTpkyQwg4JUCSUt4qKQwXn0O5l2LaVRidrVbyxCrw+mJkYhMVerK6WKasV35qx1qiniFff6aM0doX5WW8yZZjCdMX6/JPjU9WIEmqKo39WCahfpOlMCWtZ8nzoGJYRN04Jtk5WE8Ov+6o2RxKXet4lEIouJiSwAoFx2USwWsbW1AcdxYNs2xsYySKXSsG27Mr9GZTvq/Gi/vepUWCUEZeV9KrK9tVXGF77wBF/60lOcPDmFixf34fDhzi3KWNB1HxZ0vaPTc1/LA+/Ro0fY3NxEJpPxBd7Y2FhHP3vb29tsW8AMN6r1edmvtdnJB8qyLJRKpQ6MrjOsr6/jypUrOH78+I6KZEdB0HUiQielxO3bt7G+vo4LFy4gmexNh7vdHNvt2w6+/vUibt9WDz9Ul79aaXW19o9KaqWs8vNqBzrCHqzHozRK6qIp4TjxYwv+O3iZU42U+rdsKEKpDi743npdKUlYktVBMIWShInn1e4oqeq41PvUOHVqYu3mLcEaPunPm9p+dZMSNYdx25J1DcXVMZAgpWhio3ut9hukDqOtRHB1nab623V1ZNa2JVSTGaMyt+o36hyQ0NOiK+7jYpoWstkxZLNjlc+Ai2Ixj+3tVTiOi2QyiUwmg3Q6Ddu24HkGDMOCaQr/GlXbMfzPJIl/ZV+hDdENw8SNG2u4dm0NBw6kcfbsXrz55ixsu701Oizoug8Lut7R7ghdI4IeeFJKFAoFv/6OBFfQA6+dn8Xt7e2aje4GBRZ0TE3qecu1wqA0RZFS4v79+3jy5AnefPPNHT+tGQVB1+5jLJVKuHTpEmZmZnDu3LmeLppaFXTFosA3v1nEt75Vwuqq57+/mbQ1tYjXi3KATLip9XxwHqjuLX47QLh5Bv1NUTD1M88XI8G0R0p909Gy1udfN0PRdXSmKX0h1sx7lVE6ib3qN2kRaQTsFnS9H6XzWZYIRKD0e+j3YZ898uELH3O1CbjhpyQGt03G2vqcaTN27SlXW8xRFFOd99rzro5V+vVwKtpbXX/YCDoGqpkkIag/zgYcx6ocpxfbBTX6fdDoWjcMIJm0kUxOQspJGIZEsVhCoVDE5uYKhBB+cxUVwUvAMJSwo66u0WNQ6ZciZFIvJbCyUsRnPrOMP/qjx3j99RmcP78Pe/e2p4kKC7ruw4Kud/Ry7g3DQDabRTabrfLAu337dts98NiHjhlKmvGWa4VBaIriOA4uX76MTCaDixcv7uqYWdC1xurqKq5du4aTJ09i7969bdnmbmhW0L37bhlvv13CzZsOHEdACEpfq17gknALpieq9MFwVEn9TjdIiRld3cU7RYkALYiCkTYSIuH3UHTO8F+jO20Go3cNpyS0HyXSDAhhVvaja++olqrq6AJRP4ra1UrJpNo5HanS5uieZ8RGxKi9f1w6X/UxaKFIBI3NSdRQiqMWYyTQUUkj1BE0LZS1MGzUrZLq6OgcxQmc+ujaM9pftGYyftdmZY5lJdKsaz+1RUbkHYFGLeE6v+DxqG2n02mk0ykAU77BeaGgUq5U/V0aY2MZJJN21fGqcywq86/99tQ1q9I2HcfDt7/9HN/+9gscPjyOs2f37LqJCouL7qMeQPCc9wLP8/rGaqCWB14ul8O1a9fgOE7IIqHVDB8WdMzQ0ay3XCv0e1OUXC6Hq1ev4sSJE34u924YBUHXjpRLKSWWlpbw7NkznDt3Dul0b1qRR6l3bK4rcOmSg299q4SnTz2Uy5R2pj4nFBmyLJ2qpkVG9fbUYhmh1Erq7NhoDRP8vfaoq/f6aBRKxkShdOQpGsWi5ihhURofzfM8WTX+YARIp2fG17UB0YgfiVwREMay0gWRIoFhkahtDaLH15w4jb/1yap/x3nE0XuDtgHqOKjmUNQ5bul3saSoE22/Vl1fdN/BRjJRo/JWoq9KYBsgT7toV8woWnhT5FAtxtV1E2zIEoxAS9/gPJvNAJiB63ooFovY2NhEqeQgmTQrFglpJBKJQERaAjB9waxFJH0e1Hjv3l3DgwcbmJxM4fXXp3H+/D6MjbWe0s0Ruu4TTL9lugtZk/QjQQ+8o0ePQgiBjY0NvwbP8zzfIqEZD7xCoYBMJtOl0XcGFnSMD0XldptiGaVfBY6UEvfu3cPKygrOnj3btg/zoKSY7obdntNyuYzFxUVkMhlcuHChr57AxvnQra66ePvtIq5fd7C1pbsfUi2Weh9QLhtoZsGsOleiqkaOhEn1mNTfwahHq9MfXGzrrpnNf8bjukhSNC8o9Ch1tPF4gGg0Kxix0vuI1stVG3W7Lvn0hd8bJ+pILAdfG2/IXi3Swu+JS8sMp79Gf64ibIDq8EgiW1RSCNV8UKS2Xj0hjU8JYwPBMpdaDw9ahVJzqYZN1RpaUPMStIGQdf9N1wTNMT3EoO1So51gPV4iYcG2xzA+PgZVz+lWBN4GSqUikkkl7jKZDGzbqqTZ1r4nqWtGIJcr4ItfLODtt5/i5Zcnce7cPhw5MtX0nLCg6z4cFe0dgzT3pmlienoa09PTOH78ODzP803O79+/DwB1PfDUPbi1esHf+73fw9//+38fnufhx3/8x/FP/sk/iX3d17/+dbz//e/HL//yL+Mv/+W/vLMDbAIWdEzbUyyj9GOEznEcLC4uYnx8vO2CYhBSTHfLbiJ06+vruHz5Mt7znvfg4MGDbR7Z7tENGCRu3HDwzW8W8PChB9eliIJOnaTTbFlAudxM7Zn0a36iTUNUel64M2Qzkbd6+yJon0psyUrL/N0vTCnqErwUggKPIjy031rzQ2mS6t+y4qsWrO+iHSjBEzRep/fQGKIRONcNp6LGobYTHl90zqNWBYZRbYVQq8smiffgnCvxqjpMkhBR94249E8VxaLmLUHhuzs7C4q6Bq0kdBqp9h3U869EmQHPcxEWb4j5d+3fUepoUOxR7SVFtdWYDCSTCSQSNoDxSr1hCYXCNl68WIHnCaRSqvZufDyNxp9B5Ql55Qo1UUnhzTf34a239sO2638PsKDrPoMkKoaNVo3F+wnLsjA7O4vZ2VkAKmCxtraGFy9e4ObNm/if/qf/CWfPnsVHP/pRfPjDH275c+15Hn7yJ38Sn/3sZ7GwsIALFy7g+7//+/Hqq69Wve6nfuqn8N3f/d1tO7ZasKAbcXbqLdcK/Raxopqt9773vb4fSjvphul2r9lJhC7o6/fWW2/1bYvgfF7gnXcknj1bx9qa5zfrqEWj7owERSaCr9VZIOGaJNWeXTcXCS6Ew8JEC5rg79Vi2Az8TAQEiT4W3ZUSge0YIQHVKqreKtwZUdcXUnv6YG1ctBmJEoBKIMOPPgUvNxJyuiFGUASj0ogkWPMVTRWtFl/VUbvwcYVFU3VzGprf4M9JSIatB7TY9TxqhGJWXmNWonauXzdH41XNXIS//Wbv1SQGKaJH2wumu0YNvjXVdYRqLgwYRgKG4TXV/Kc+tA/dcROgqK0ZGK+u9bPtNKanU5iYcOF5qkygVCrgyZM1mKaBZDKFVEoZnOu6vmqEAN59t4Tnz5fxhS88xOuv78P58wcwOxufrcH1XN2HBV3v2K2xeD9h2zb27t2LvXv34uWXX8bP/uzP4vd///fxC7/wC/ipn/op5PN5/Ot//a/xkY98BG+99VZDIfu1r30NJ06cwEsvvQQA+PjHP47f+I3fqBJ0P/3TP40f+qEfwte//vWOHRvBgm5E2a23XCv0S8RKSok7d+5gdXW1ozVb/Zpi2k7i0hLr4bourl69CtM0W/b16xbvvuviy1/exp/+qYTjSExPN05JjGuAEvwdNesAdKt7irIos21qoqJT2ChaVd3hsh7h34fX+hJSeiGxEhQ/8dsxQq8jAaK3p9vIR/cdFFfhMRn+sYX3R+JVgqwadMRIj5Eil8F0S0pPDFoV0GtUFCmYGhiG0ldJ5ISjZ1pUANVpm6q+Tf+f6uiiYi46v0EhV/0AjZqfGJBSNQJRNWA6jZfmJSrAKP03uDlKZaRGNPTa6HjqUc+LTglyE7Yt4brejh8G1o+c6gkMCjy6jgwjAdt2YVkpZDIpANNwXQHXLWF7ewtra6uwLAuZjPK/SySSVcdjGCq67roGvvnNFXz960/w0ktTuHDhIE6cmImMlSN03YZFdO/otm1BN5mfn8eP/diP4cd+7McghMAHP/hBHDhwAD/90z+Nb33rW3jppZfwkY98BB/5yEfw6quvVn3ul5eXcfjwYf//CwsLePvtt6te86lPfQqf+9znWNAxnaEd3nKt0A8ROmqLPz09jfPnz3dcwPb6eDuNSotq7hi3trZw6dIlHDlyBAsLCx0eWevcuuXgT/6kiIcPvUr6mgnPc+tG3VTkRfiRItUwhESI4UdUdIqlep9qUEFboffWFh27RdXq7dyYPFjXFNhq5G8tVIKpjepv6UfkGo2zXCZhortbBhudBJuqBC0LTNPwXxeMlqrGLEZg7oMC3KgIweq0STqeIGHxpiNx2pZAVv0+LKBlZZwULdSpipSi6rrhRjRKsFDDFy8wN7pZStC2YPeRsvh5oP3V+r3nmbBtA1K6lUhs66Kn2Xtm8DU0j4Zhw7YlSiUXpgnYtgnbziCbzUIIiXLZRaFQwNraOhynhHQ6iUwmi3Q6BctKhLbnugZs28bS0ibu3FnD7GwaZ84cwJkz+5FO2yzoegA3RekdoxIdLZVKmJycxI/8yI/gR37kR/yH/5/73OfwT//pP8XVq1dx/vx5fOITn/DfE9/BN3yd/oN/8A/wr/7Vv+qaKGZBN2K0y1uuFXodoXv+/Dlu3LiBV155BXv27On4/kZB0DUboXv33XextLSEN954o69MO4UQuHSpjK9+tYTVVQHH8WDbpl/XVA/d7VFHC9RCFtDRJpViWS6LSqOUeKJ1We3EslTkpN0G8HHoNM/o8RiQ0gSly0UjfSoKpZvM0LaC3S3jxB2ljlY3EtGdIIN1ZiRKqHmG6wq/VovqxqIRTJq2YKQtHCGkKKB+X/R80lpIm4Xr7ZCJeLxtgQykmprQnnCyI+KN6uho3+F/B+cjXLeoz4cSVurhhPQjgzr6Gb9fipLqlNTmj4sENdX7WZYJashD14tlGbBtC5OTE5icnIDq4lxGsVjAysoqPM9FOp1CNpvxG6y4rqobMgwD6+sO/vAP7+MLX3iE117bg7k5FwsL/dn1b1gZFVHRjwxzhC7I1tZWqATEMAycOHECJ06cwN/6W38L1JE7yMLCAh4+fOj//9GjRzh06FDoNd/4xjfw8Y9/HIBah/7O7/wObNvGD/7gD3bkOFjQjQidbnxSj14JHCEEbt++jfX1dZw/f75r7XdHQdA1itAJIXD9+nWUSiVcvHixb7xsHEfga18r4ZvfLGN9neqRVEpPsONkuMlH0PxbpWcF0waVeFP/JrNn21Zpm800SdkptGim9u8kfNQxqXOTTAZFSxDd1KY6CtfMuOOpJzTCzVNkpVaMOh5qIRatY6sn7qhBSrBJCjXUCEbOaHGvxKM2+5YSvigjwRKM+kWOoCIidD0aHS9FYYPpoWo+9LuVwJGVn0cjgzpSR8ccvMbUPq1KtNML/JwezOm/deQ3XAcZPN9BAa5/Vqt5SdAiIxiVDV8jVAuoG+Cg6hqrhY4EUi23/rnefvDf1em+VLepUndVqiqdX328BlKpJFKpJKampiCEQKlUQrFYRC63AUAilVL+d+PjaUhpwbLUA8lvf/sZPv/5dRw9OoWPftTCqVN7OHLUBVjQ9Y5BborSClFBF8UwDBw/fjz0swsXLuDWrVu4d+8e5ufn8Uu/9Ev4xV/8xdBr7t275//7R3/0R/F93/d9HRNzAAu6kaAT3nKt0IsvvWKxiEuXLmHPnj04f/58V8cwCoKu3jHm83lcunQJBw8exKlTp/pi0bO1JfAnf1LCO+842N5WNWC2Xd2kBNCNNmjRTyJBdSr0/NdQbVJ00a4iY0AjUVS7/k6JHYpwxC1qdct/HeHRHTeF/28dpYobS63xUdocLaiDURYZ+hmNV4+v2qtO/V+bP5Pw0AbdqDoPdOw6hTJYO2bAtmmhTm3/UTmn+rhJKFqWAdeVlfRIOmfqternSvxIqVM5g1HE6nRO6f9bpVLqFEx1XehzYllBA3EttqLNaKpTNKtr69TPSEyKUOomCTItShF6f+xZbvJjGfTEawwJz9abpbiuRDC62gxa0AbrPU2QwThdG3q+zdCDBdM0kcmo6NzMjGo6UyoVsb2dx4sXOdi28r/LZNLIZFIwDIl3393GJz95CxMT9/HWW/tx4cIBZLOte9oxzdMP3yGjyDA1RanH9vZ2y03abNvGz/zMz+C7v/u74Xke/ubf/Jt47bXX8O/+3b8DAPztv/23OzHU+mPq+h6ZrkKNT7qZYtlrnj17hlu3buHUqVN+y9puMiqCLi6Vj+b+1VdfxczMTMw7u8uLFy6+9KUSrl51USqpn6lFt/AFhBIBRkW4SQhhwnVVPY1CIpGg4nwd5YlCUaJaKZQ6VZMW9QJRsab+qFbxwS6H8dur/pkSc/pN9Zpa1CMoFILjqycMKYUw7vcq7dKsCFXhix9awHteWDBQS/twjSIdk6o5pONU51OJpXJZR3jI0y8YYVIWBkoUlcs6shZNnaTjVgKPGtfAPyfUiMV1vUpKJKDOvQEphS/4VaQtXF9Hx1d9bmVIhKrX6fnVr7eQTALlsheYq/6BmroYhgcpm78PtiYcFfSQIRr9VVFWC1KWoXz6jMq1IPz3qXtYOJXXskxks1lks1kAqplTsVjE5uYWVlZeAJDIZgXS6SQ2NyW++MVH+MpX3sUrr8zi4sWDmJ/vn7Ryhtkto1Izms/nMT4+3vL7vud7vgff8z3fE/pZLSH3H//jf9zJ0FqCBd2Q0ssUy14hhMDNmzexvb2NCxcuIJnszVPTURB00ZRLSm/d2Njo6dwT9++X8ZWvOLh92w0t1JNJUVlMq2iHlEakYYhOe6NUPimBcrn2+STxQO+zbVrUUodBLdR0ZEAJinZimsKvDaN9dPoy1Gl+5KOnoaiUuk7UH9VIJvQq/+/gnFPERc9duGEIpS+SeCPxrdMyDbiuEn4qKkfplTrip735tDgMiywtBoN/09hcVwaihOphGRmNU5orRfZ0GmV4jqjpCUVS6RoKG85XCxztrScqwlj40UC1XTUHtD06/urzF/5/MA0z8hs0m3mlt6FMyPWDisZCbSe1dLVQQj0BIVyUyzQ3wk/vVOdXgMzZ1f7DC1jbtjE+Po6xsTFYloFnz1YgBLC6uoZSqYhsVnXPfOedMi5fXsGJEzP46EcPY//+1heHDNOPjIKga5RyOSiwoBtCuuEt129Qmt+BAwdw8uTJnh7zqAg6olQq4Z133sHs7CzOnTvX07m/etXBV7/q4MGDsOmxZRlIJIBi0Qj8vBoVOTL9xbtK/6o+l9SMQ71HBqJ5oa3V2IuuMWoXpikqHmV6n/UuQRKb+v9avAbrqkggBX9G7w+m95HI0XVbuvEHCR3bFr5oUePTKYj0ei3cwnMXTFGkOjuydaDomIpq6Q6QQXGnakEo4kmplQKWZVZEXTg6RPNB46X0WP23CcvSdVkqhZREBIkowxdnKkqkhZbeT3VENyhsKcUyWPemXmPA88izTvo1eWHBGBXYWmDqqF/wepGoLeh2dl8zDAtShlusUq2g3i/8Y4yeh92ihLgNIVw/Wq3Te4PXrm7kQtdJ8PqkNNpEwkIioZqoAECplEc+X8DW1rOK0FvFlSuPcebMIXzsY8cxNcUNVBim39ne3t5RhK7fYEE3RES95fpNzHUqfP/kyRPcuXMHr732Gqanp9u+/VYZBUFHkEn7yZMnsXfv3p6MwfM8/OmflvH222U8f07zrhbZqhGGWsQWi7UXiXoRrhbmKq1Pdy3UBt9k8EwpWqISTWn+uqbmDztHBkSWrkcLNtXQNV7VaZPBtE9AL6IpooRKl8LgfDQ1Khn/WpWGKGOsE4zAIl4LOi0etd9dOJVT/1s3pAkvwil6R9vRc2NUFu863VOnfep0Tb24V/shMUfb1s0+KPKjfy6lWbn2wsIumBIYPH9hQ/mosK1f/yaEBaA5T4qoqTiNJQylKwbn2aj6fbOoZj1KUBG1xBpFUIFwyqmK1O5c4Klt2ADc2HuzOvfBc+D5wpfSiCly57oS6bTOdkmlsshkMhBCdSB1nCJKpSI+97mr+MIXruP8+YP483/+ZezbNzMSWTIMM4hsbW2xoGP6h2iKZT8JOUAtJtot6DzPw40bN/xOiolEovGbusAoCDopJUqlEm7dutVRk/ZG3LlTxu/+bjEg5HRjCtelSICITW+kxaPyntOLV3pin0hI/5qNqw1T6XWtLXBJLDWCmm2of+vFLUWYgpdXMLVSR3Dgv0eJGelvK9jqncSDHlM4wtYKtRfd0hfI1cepxxnz29Df9NroulinZZKYC6aCGv4x0+9oTHou1E9IRABa+CFg2k3RsuA2KTpI26Y6zOC5U8JOho5TH29cFI3GXz1PJHjp2lXC1PSFbVyELXhNUBqrjoiFX1xP9KmxqTkJihMS0rXu7eqBigVlkl4bPTa6h3qh8aufh68FOn+NPlLqWJWwbBQBDH4e6AGBZanrQ6XHGgBMUKRdCAOWZQPw/AYrU1NUArCFy5e/ipdfTuLMmb3Yv38vZmZmMDY21nff0QwzqnCEjukbeuEt1yqWZbW1Y9L29jYuXbqEQ4cO9U0nRaIfjNQ7ieM4WFxchJQSFy5c6MmT57U1gc98pojr18uVxZqOlFAKWyIBlMsu1OILQKA1vIqy0dbUQo0aXpCAc91wSloQJeZaNwRXzRn0tRGM1JAwUBE/s6nImBaVensAQovncNfAnQs2vT2dYqn3WR3NoYWxZYlASqbeTvC4a6X6RaOLFLnSKaO6Ri16LqiGLCyGaINaGOgoZngepRRQXRGlL950XZp6rWppL/1joHNIxxPuFqqFWPDYwoLL8P9dT6RQXRxAEdDm/Az1NkkwysrxhiO28e+j5jBBW4DgAw39GdRjpAciJlQdZXORtlrNfOpF9yjSHBR76j3Ba0wJL3Vum/0AUDqtV4nielDPDnWaq5p7C6Yp/Hu/aZpIpbIYGxvHs2cSn/98EadPr2Fubt1fQM7OzmJmZqZnD8QYphbd8C/tF/L5fE8a6LUbFnQDTDDFst8bn7RT5JBZ9WuvvYapqam2bLOd9NpIvZOsr6/j8uXLOHHiBEqlUtevOdcV+MIXHHztaw6KRRlIqzRDC9pUSqJUUsKIUqdUJ0X1e9OUobQuIYICSjeqiENFxJoVc5ReZ1T+TWmE4UU57RcANjY2sL29jUwmg3Q6g2QyEVrcUkqlEicikF5phGrUgMaiLSrOdBon/V4v2LXw0KIF0C3748UvHWs07VDPz04I1woGa6EavT4YudPngkSp57kVsSJgmgkoEWIExH44XTN8PDIkjKKCrfExNfe66Ot1U49Wo8XwX9/8rdlAuPYxbHERFM10jZqmCcNQXU4B4XcerbsXo7VMBx3pjZvs8PVhmjYsq36jo1qoa98MdRhNJk3/2pfSrDy00Tcj1ZwHKJUMfOMbW9izJ4M/9+dO4ODBJFZXV3H9+nU4joPp6WnMzMxgZmamb3w7e80oiYp+Y1RMxYGd2Rb0I3zXGFB67S3XKu0QOZ7n4dq1a3Bdt6/MqqP0+7nYCVJKPHz4EMvLyzhz5gyy2Szu3LnT1TFcvVrG7/9+CRsb6jqybZVWGbysDAOwbeG3pCfRFKyjqhZwYUzTiHQZDP5ONUmJiheKEEZTCMnDDlDRuXK5XqqXxMrKCgBgdnYWxWIJa2tr8DwHqVTSF3gqamRUGqHQ/tWCntLxaJ/6WqS0ufACPhi9Cv4dOLKqccZd39FaPdonjVEJaC0gwxG5aI1WPME5J2EVt2+dWqjr3oLvC4oR5edmgGr1bNtEuSwrCxmKKoWjZ3r8Oo1c/a3S8MJzuROR1ZiocFe2EOGoYzRSpQX1zscTd2uLWlyErwMSgF7ltcIXgJZl+Q8QVJQrrqkPCdXdox+iSBiGBSXadcQ12uGyxlZC/9P3Cm1+7boqBdMwvFDXWTK3f/Ysj1/7tZtYWJjARz5yFG+9dRSe52FjYwOrq6u4f/8+DMPA9PQ0ZmdnMTU11dcPazsJm4r3jlExFQeUoJuYGHzLkf5cETN1GYQUyyiUcrlTtra2sLi4iIWFBSwsLAzEMQ8LruviypUrsCwLFy9e7PpNfmVF4Hd+p4j798v+9R41Ygbg17yp3wm/WyUqNWe6Tq4eanEW7NZIKN84HYWhBSJFoBpd3vWiDeVyGU+fPsP09AQmJycghEAqlcDEhHpq6DgOCoUCNjefQgiJbDaNVCqFdDodiMzpxiDVNX/t/7xQGiLViQWFlV6Mm5VUtXopgc0u2HWkRf8dranSYq7yqsDrKKoabJhiRN5nQvmXich7tTAKplyqa0s3U9FzQ+MNRgCDEVASesG/aTz0PqoPqxYa1XVy4chgVFRF5zHaaTIoxurVw+02YEJdL6VUHn5RtAefFse1Hq7sBimBRCLhNxBT+9aR2PqpndVzE4wmql+bEMIKNdXRDxnUw83799fxn/7TZbzyyiy+8zsPY3Z2xvfuLJfLWFtb8309k8mkn545Pj4+Mt9/LOh6x6iYigMcoWN6wCB7y+20UYiUEsvLy3jw4AHeeOONoXiKMkhsbW3h0qVLOHr0KObn57u6b8cR+NznHHzjG47fyTBOFBgGkEoJOI6oREnUgjAs4JpbAFmWAcfR6YRBfznDkE2KwrjtVgsaqp/L5/NYWXmBvXv3Ip1OQwi1iLVtZYisohkpJJMpGMY0PE/AdQvY2trGixc5WJaJTCZbSc9s9y1de70FRVNcGmUrH2/9MAoggRNeo+r6rGhqo95/sFtk9fjCTU5IoBkh8ULvo+NRdXLBaJuK0qn3Gf5+6f0UdVSvNSJjoHMXjaaR7QIdVFA8VP8s2pGU/kvNPdQ8ikD9ZKOooNHwXEWjfHrsNLadfQ5UtDbc2TO4T/UwQj1UAXRDH9tWn2tVKyjqis5mcRyJRMLyhaXatj632ug8fK5q1fYFm60IocaYSOgoLx23egBgQnkyCly9+hw3bqzirbf248/+2cPIZpNIJBLYt28f9u3bBwAoFovI5XJ48OCB75lFAi+TyexqHvoZFnS9Y9QidNwUhekag5ZiGWUnETrXdXH16lUYhtHXKZbDCtUq1hPSnbKi+Na3HHzucyUUCgBgVOrhwpgmYNsSrivhONTCnWh9TKr9Pxk1k+eYWkxYltixmKNIg26vT95hQC63hkIhj0OH5pBMWqAUNUoNDY8PlbGYsO00UinVSKFcdlEoFLG+vgbHcZBK2X56pm3X/0Km9Ldg7RdBUbb42rf6NV/a9FtWOgTqzo8kdujfwTTFwMgqvyfjZ51Wqmv3dM1gVNSRcKOGKfrfesFOQk5tQ4kU1XAlKmaM0PhI+AWjOEJo4+2gPx7NAwnBuHkMilJ6f63Xhs8FCQglJoOdTqu3SV1NG1/Derw1XwGK8qnX632ExxifrttK+r1Kw6yud1MdJw0/okkeeq1AzVqk9KquZbo2SODRZ6Setog2cjFNbVivDeglLMv054euI88T+OY3n+Dq1Rf4nu95CadOhS1g0uk05ubmMDc3Bykltre3kcvlcPPmTZRKJUxOTvoCr1+6PbcDFnS9Y9QidMMQLOAV8gDgum7fess1S6sRuo2NDVy+fLknkaFRx/M8XL9+HeVyua6Q7oQVxePHLn73dx0sL4tA5Ce8UlPD0Z396tW8NQOlUapGCdRgRVsVkM9bK0R91XRnS3ogI/D06VMkEknMzR2CslkIjarueIOL10TCRiIxjsnJcRiGRLFYRD5fxObmCoQQyGTSyGYzyGRSME3Tf29QWO2mX5Fa7OpIZjB6p1LPjFBDGnoPEaxvDIq26vHpxbVhqOtAR7ui2yEBpesm4xb8lAJH49EiNpjeGY7YKvFgBq59fU+mRTtFd0gwaoFDY9Tip3ruwwON2leQ2KNj1BYN+nVxaZfqPEX2VFe4xUNRq+pxV6d2xkV31XxSNL0+QV/AIDqSR2MyQ9eUvhbrCz3V1CQJxynVvY+RuKP7DKVyByO29N2sosGho4DnqYZIlPYbfNgQfNhZKJTxa792A2+9lcNf+AsvIZGofiBjGAbGx8cxPj6Ow4cPQwiBjY0N5HI5PHr0CEKIUP3dIEdZOvXAkGnMKDVFyefzHKFjOku/e8u1QrMRumDzjdOnTw/Fh2yQyOfzuHTpEubm5nDkyJG615z299o9hYKHP/iDMt55x4PrUmOPaiFHwkdKFZ3TJuCtfTaoO6ZaqKm/HQfQdVPBxaKITfUMb0+bcwe7+KkoIvzxCQGUSmU8e/YM09PTTV3fDrYBAEmMVbYpQ+MJpi8mEgZMM4VsNgUpp+C6AsViCdvbBbx4sVZJz4zvntkIZUGgozIkVNTiPj4VTY1XzYtO46sWbVpYhM85iRDaNkXQtMAyYFnUVl5H7IJdTYPG45TWpzoRkp+a9K85FTGhbeuGOqqTqvb1Cwo0anYRfMBA0UDqAAqETcqDNY7BWkS69oICtLZnnRqDmlM6N7LutVq7EVBQBJFIqXVxGFVjqfW6eMFoVBaK2si+3pibuc9EHxZSZIGinbrGU/sw0vGVyxKJhB1b0xc/HmqoFHzAYFQe3MgaDy8NeJ4J21YdMNXhWJXrUcC2LZTLnv8ZeeedZ3jwYBM/8AMnsLAwWXc8pmlienoa09PTOH78OFzXxdraGl68eIE7d+7Atm3MzMxgdnYWExMTA7WO4Ahd7xiluWdjcaajCCFQLpcHNsUySjOCrlwu48qVK0gkEj1pvtFuBu3pIhXgv/baa5ienm74elq47PY8Xb9exm/8RgmFglrc2bZu9Q1oQaQW80blZ2oRHu5a2Gi8Ov1NCDMQEQubfQcXkCrVstb2dB0T/TFNA7atIzNKwOlj2draxtraGvbv349kMtlwzJesX8E3E59AzriPOfEmjovvwHvwIRzAa4C0/CgUoBbOrhtetJumiWw2g2xW1dlUp2emKgIvHUnPlH6qI207GmXT8xU38rAtBG2jlmjT/9b7pDS66D51dEQLZ6pVo30oIUfdE9VYXFdWahKNgM2Djrho8UfCj8SAEXjIAP99qstq+Dhp/GQ4T5YZ6uGcjrIFa9SUeAumderIcNAgXR2XCPw+XHcW9CPUUbH6JtpErWgbCc1gg5adpDNXo9NF9ZiNShTL2FEKZZA4QUVzTFFYXdtowDAsGIbXxD6rXxCM0tH1rYRb+BjoYZRtq+9C8opUAlE1cVJZAmpecrkCfu7nLuNDH1rAd3zHQtOLa9u2sXfvXuzdq9I2S6WSH73b3NxENpv1BV4mk+nr76hREhX9xihF6IrF4lB4QbKg6zOC3nIAhuZm1ijlcn19HVeuXMHx48cxNzfXxZF1hk6kI3YKIQRu3bqFra0tXLhwoSmhAew+QieEwO//voO33/ag6pJkZeFLKZAqkqGEl55HqpsjUVcbtbACUOl8Gf9ZUgIyelzVqZbBlLVgRIqe0FOEJkgw9evFixdwXReHDh1q+Ll2UcLnEv8zHlpv44fc/y8mxBzu420sWV/Eb1j/CAU7h6PeB3Hc+w4cw4cwIdVnpjrdK0wwPVNFJUsoFIp48eIZhJDIZNJIpTJIJlMVQRQ+ljgoJS5oCxHs+imlFbtQpqgmzQ9FPaLRR9M0Qb6AuruprByP7nhKETglqCiypoSo52mBFzxf1KwmGJ2qjM4/x/R7EmyeRwt2tX/XJW86+GOU0oBtBw3sw+JObdPw90XjVoKDBFwwEkjzYfgPErSherX4iYrnYASZ0gebuTcF55q2C2jhGzx3rdzr4l5L8xIdM9V57rQRCr03eBxKhBv+dQKorpdCuP5Y4q5Zusbq70v9m8ZL805zpB4OWL6gUzYo/sgqDyYoIizxhS88xL17a/j+738Zs7OtN0BJpVI4ePAgDh48CCkl8vk8crkc7ty5g0KhgImJCV/gNXvv7xYs6HrHqM39MBwrC7o+QkqJcrkMz/OGIioXpFaETkqJ+/fv48mTJ3jrrbeQzWZ7MLr2QwK2328SxWIRly5dwp49e3D27NmWrrmddi4FgNVVD7/2ayW8+y5FSGRlvuBHuMpltegKQmLONBEr5igKB6iFvOvWPx7TlJVoYPB1agFmWVSDpRaDwXquZmwK1PYBx/Hw9OkTZLNZ7N27p+qYghiGxJb5GL+e/D9hTBzAXy/+BlJQxdrvwUfxHvFRoOxhw1jGkvkl3LX+GJ9P/ktk5V4c8z6Mo+6HcAQXkETtz1EwvS6dTiGVSgGYgucJlEol5PMFrK6u+dG9WumZ4VTIep0TDb9GEdCiR70vLJjpb/qj0mG1yAtG4pQVAi2Uw2mgNDYSCFT3VUvMhSN2up5PXZdaDNIYVGqlTgGNpmoGjzH4EEA11qkWdyQuaL6orjMo8NS+9YMDHW0SlXmpHdkiEafn2vDnSHdxbPzZV4JE+iKFxksptTqiG2edER5PI4JjpocFVH8YnZdWiAo82i5dH8F90rGEx9ucEFaiTfgPheihh2qKQg8bvMj7VJRQdfVUDVSEAB492sQnPnEJH/3oUZw5c7DlY9bHbmBsbAxjY2NYWFiAEAJbW1tYXV3FlStX4Lqub3A+PT3d80Zkg/AdOqyMSoRuUB68NwMLuj5hEL3lWsE0zZDnD6C8tS5fvoxMJoOLFy8O1Y17N2KnW7x48QLXr1/HK6+8gj179rT8/p0e45UrZfzWb5VQLAaFk0QioRbwSshVY1lKzFFESI9DL9hrReHioUWd3p/ywQJs24NqK14dJWmFQiGPp09XsHfvHmQy1SKLBCiJhCXjq/gt++/ibPnH8D7378CI7FfdHyQm5SGc9v4KTnt/BQIenppXcN/6Er6e/P/ht8y/hzlxGse8D+Ml+WEcxClAaiP1WqfMsuqnZ6bTCWSzGaRSGZimHRIwcZAoUefFgpRRr67gPIQFWXTBTwt6lULpz4a/6A7WnFkWKtcJRbFIbOqUW/VAQIsQap4S7r5JkaTgdQc/cikEKtcs1dbpNFsSjMGU0WA6pn4gEB+5Cz8wIIFHx0Jpibr7anB7lKqp5qW2cgpeB1JSCmLjmragqPJHWBWhDn+m6Hy3Ih7DUJQrGC0Mpk3W8zlsDG3XthFK+yS0uGu+Xpc6dPpH4M8RbdesiDqBcOqp+hldE+p6NeA4Hn77t+/g9u01fO/3voRsdvfRNNM0MTk5icnJSRw7dgye52FtbQ25XA5LS0swTRMzM8ofb3Jysuvf0cO02B40VG3naEiEYbnORuNs9TGD7C3XCtEIXS6Xw9WrV3HixAkcOHCghyPrDP0s6KSUuHv3Ll68eIFz587tOHe81ZRL1xX4vd8r4xvfKEMtPAUsS1bS2GoLOUCJObUQkiEBQSJuJ1NNEQ1aFKoUSxX5U9Gf3dzgJdbXN7C1tYGDB+eQSKhbbTCCGBSgEhJft/4D3rb/N3xf+d/gSPlDsV8wcd85JiwckqdxBKfxIffvoCg38cD4Gu6ZX8Jv2v9nFIwcjnkfwjHvwzgmPoQJ2cwTfolUykY6PQ4px+F5Eo5TRj5fwPr6CwghkE6r+ruxsZQeSyD6p7pb6i0KYVaEgE57pFS0WrV5WiSFr7OgUCORQGmQJIpIPNF+SFxS2mFUCNC41b9lSFQFx6LSN+Hvi+ql6BjodyTsgvVUwXRMEntaCNVOywynsKLyuRGxAiNcj4eA6K39WdWpgtUpxlpEBl/f/Gc/rj6PolWNxkXUStmNbjuYphmsL20W9eCB5lWN1bJMX4TR+QzWFdaCHtTUaxjkugbI0FxFV/UGVRSY0jFNP2Xz1q1V/Pt/v4nv/d734MSJ2ZaOrxGWZWHPnj3+Az7HcbC2toYnT57g5s2bSKVSvj3C2NhYxxfBHKHrHZ7nVbI3hpthEXMAC7qeMujecq1Agk5KiXv37mFlZQVnz54dWlPUfhV0juNgcXER4+PjOH/+/K6+LFs5xpUVD5/8ZAmPH6sFi2Wp1SlFF+ph28qnybKMivH3zlKt9Lgp2qLNmMN1eq3bFASRUmJlZQWWBczPH/KbZqgFfPV8O8jjdxP/GKvGPfxI6bcwhXl4qBVu0B0RSZgERYEQEgmM4z34CN7jfQQoA+vGMpbML+Ou9QX8UfJfYlzuU+LO+zAOiwtIIAOKXul0wajNgIFUKolUKgmVnilRKhVRKBSwsfEcpmkilaL0zFTsAlY3+UDV4jUIdYxUKYrR3yEkAIOiIxq5owUw7VcLrqA/WFjQBUbr/4sW2yTkgqJO7TdsKh0UfMEUPvUzeoBB2w6+Jhjlqi3u1N+iEjU0K9G76mgzHUewKQ0Z1TfTdESPJRypIhP4Zuvw4giKsfC4EHtd1BNF1WPWqaCUiku/a+aYwz55MvBvI9B4p1FaZvDYat8n1fxZ8Dy38lDC9D8batzqXAshKmNTaZybmw5+/ddv4PTpffiu73qpkqLZfpLJJPbv34/9+/cDAAqFAlZXV7G0tOSbMZPA60RTCRZ0vWNUjMULhcLQlPqwoOsRFJUb1hTLKJRy+c1vfhMTExO4cOHCUN+oqX6in1hbW8OVK1fw8ssv+1/Qu6HZp/Tf+lYZn/mMg2JRpYjZtgHHaSzkACXm6Em7lAYcp3WLAjVW6T+5p4Uy2RREoUXbTnDdMlZWnmBiYgozMxMol+unguWMe/hk4sdxULyJv1b+pC+uouiURBXNDPqOaeKvtyk5jze9v4I3A+mZ98wv4e3Ev8Nv+umZKoK33zsFA2bDxbNtG0gmMxgby0DKaZTLLorFItbXN+A4DpLJJDKZDDKZDJJJyxddlNpomiL0+aBbAdXFRaE0SnXsupZO1UBq4ab3o429SSipdFrp17/RMdK+dZORcKMcy4o209DRGiWk9HvUYl/X6IVTLIPptWGRSWI6mDpaS9xRSp6uB5SV1GCdgkgpp0GC+4vW6antNVMbpuvOgnV4rda0RVMRow8P6FjDwr25jp1BoiJO1/np7rTB4yZhXWNrlfRIMrs3Q8K4lrhzXVH3nqKuFSXqyK8y2CyIvkvU59+r/N6E43j4xjee4NGjTXzf953A3FznjZEzmQzm5+cxPz8PKaVff3f9+nU4joOpqSnMzs5ienq6LQbnLOh6x6gYi29tbbGgY3bGqKRYRtna2sLTp09x+vRp7Nu3r9fD6Tjhp7y9RUqJBw8e4PHjxzhz5kzbbl6NInTlssB//a8lXLrkwTAkUikTpVKwe19tVJRG+ilqlSNBK2KOFv5U76NTKo3KIj1+W619JKUfXdjaymNlZRX79x9AKpWCNhOP57b5B/idxD/Cd7j/GG95f62qXo4ejurOjgAt7qPzR4v/emty0wQsw8K8PI059zQ+6P4EStjCQ+ttLJlfxm+m/iFKxjqOeh/Cce/DOCo+hAl5oLJ9fZzUkCOYAkjdMycmdPdMxylgZUV1z3RdF/l8AalUqtIUwqikroWjRSSKAC3Cy2XhCzlULCZUe3clLKnBhWVJlMt6DkhoBE3Cg2W8wehcUDwA1fYPwc6FqlGK4c8pfQaoqQZFTuncqaieehBBAkP5xlGTFNo2eQnq9wYfekgp/G1RGmewE2sw6kVdMNXcxl8U4ZRSw48kxwnq6veG54W2p/3eatdqVl5dd9skZOnzRYJ8N5Hz8LZpzgw/6kh1kIZhVu7ftQ+AulEHt1FL3GlxVls0e54By7LheeopgrbToGMPi1khPL9T55Mn2/j5n7+MP/NnjuD975/fxey0hmEYmJiYwMTEBI4ePQohBNbX17G6uooHDx4AQMjgfCdrHRZ0vWNUInQUaR4GWNB1ESEEHj9+jGQyOXAGnztFSok7d+5gZWUFs7OzIyHmgP5JuXRdF5cvX0YikcCFCxfaeoOuF6F78sTFr/+6g+fPBRIJFZErlYxK5KP2oixYBxW0JWhsUUBIf4FGUFdKfTpqp1Qahqy7oCWRQYtWaomfy+VQKBQxP38Ipmn5QiVONEoIfMn+f+OS9Uv4IecTmJfnAFBzF51qWNv/zqgaY5zI09GIcJpikBTGccL7KE54H62kZz7Ckvll3LH+CJ9L/gtMyAM4Lj6Mo96HsOBRemat/ejFt22nkMmkMDU1DSEElpffRbGYRy73AratzM1TqQwymURsfRwQjNaFG2yolEd9DigNNU7Q6miXXljT/4NdGKPzRymtNI6w32FQhIU7XGoxipCo06mm/h78SCFth4SgihzrFFWdbigqHmV6H1rY6ahZ8Ngpikh2C7UfiERr9OqnQOp5CI8nrqaNoqfB6GM9QVdrXIDhf/Z261MXpLrRihG5vuqjxJ1O81Qpljr6R+LONM269z7XVa8JWo/obpw0Lln1O/XQQ+Jzn1vCw4fr+It/8b1Ip7u/tAs2UAGUr+za2prvb5pMJn17hPHx8abWP2RbwnSfUYrQjY2N9XoYbYEFXRcIesutr68jm81icnKy18PqOMViEYuLi5iensbp06dx8+bNXg+pa/SDoNvc3MTi4iKOHTuGQ4cOtX37tY7x61938Id/WK4sikx/garS46oXNCp9Ti3cgmlu9O9aFgXhsdCiG9C1ZbUjcLU7PUb3pQUcQAIuuKAXePr0KZLJJObm5gJ1TuHoClHEGn4r8ffgGNv4G6XfxqS5D4Yp/W03c8nUahCh0wyjzTaaZ0rO4yx+GGfcH4breHhqXsY980v4k8T/jmfJv1cxN/8QjosPY497ElZlAUr7jDSypdEBMLB37wyAGTiOV+meuYGVFQfJZAITEymk0ylYlh07ByQY1TnV8xrtJBmdD4IeFATfF3wPCUIibDSv29oD1SJOCMNP5dTvrxZ6qgGP7lJJ2wqOJzhmFcmWlWhytcG9lPrhCHk4xtefqbkDgtG/6jHo441PgVQPBXSUqZkUyGCElIh7+NAM1BQpGIGlNOp23WoNA35aN4nkuAcotQlH7tR5JeN3ZUdAvnPVD2AMAMquICp4tddf/LUqpQvLsnDzZg4/+7Pfxvd938s4fHhqh7PQHhKJBPbt2+c/xC0Wi8jlcnjw4IG/iA4anMcxSp0W+41RsS3I5/McoWOaI+otZ9t236TidZLnz5/jxo0bfkv8UqnUc4HTTXot6JaXl3H//n2cPn26Yzer6DE6jsBv/mYJ1655MAwzJIzIZy64GA8ulKMiKpgmVytCoOugpC8o6nlfBd9X+9RQjZ2sLMaMmtt0nBKePVvB9PR01RzH1bg9M67ik4n/AS/Lj+Fj4n+EYSaaGm/VCKUWjdp4We1vZ5ecDKQ/6iiWCQsHvTcwJ3R65gPrbSyZX8KnE38fpeQmXpIfwuHyB3Dc+xDGEV+XqSKPOiJm2zYmJig9U8J1nUpzlVV4notUKl2J4KVhWUrsx9WEUcv3aI2UmqPg/uNqyurPezR4EIzY6e1rUaRS5sLpisEmKrQNatQSHSMZXFMKqYqSqciPtiPQacNBVPSZIqPV0ccgwQifZcmQ2KPUvrjIiW7iEqyv3HmIjI5ReU5SxLzxOTEMHcFSDyz02Ftp+FJ/P4YfKZNS+B1KLUvX9jWXXaMjd+qhlRk6Vu3ZF4wkU+pl9ZMROj9Uf6mua91QjRqnrK2V8Mu/fAXvf/8CPvzhIzufiDaTTqcxNzeHubk5SCmxvb2NXC6HmzdvolQqYXJy0q+/I4NzTrnsHaOScskROqYp4rzlahlsDwtCCNy+fRvr6+s4f/683/a2n2rKukGvBJ3nebh27Ro8z8PFixc7+nQzmHK5vOzi058uIZeTIVGg0GlD6n06Ihd3SehohxZqep/haBylPTZPfJSQmk5QAwshzLrb3draxNraOvbv3+8vPoKEIxcS1+xP4bPW/wPf5f3POOX+pZhn8M1BIk6lotVPD/X3LoPilzzEyNgYlRq3WvvTc5DCON4rPoJX8FF4ZYk14xEe2Co984+S/xIT8kClucqHsCDOI22l/EhpvMCQlTrBJCYnk5icVN0zy+UCCoVtbGysArCQTqcrzVWSvrCihW3Q4DpOzAFkDh9+kFAtiurPYTQSRQv8IK4bjMDp/QRr9ei9JL6CQpPSIlVETlaJUPU+LSriUmyDTVTUuGsfU7jTJlkr1O4+Stuj2i3DkEgktLdasyLKMERgvMFUxdrG6MFjrBWhDp4juk+Q5cVOyhvINy64fRWdra6ZawaqydNdXPXvguJOpeJaoAYoQVQNZ7Drqrq2tbBT+3Fd4CtfeYgHD3L4wR881RbPunZiGAbGx8cxPj6Ow4cPQwiBjY0N5HI5PHr0CEIITE9Po1QqDU3DikFjVFIuuYaOqUu9xieWZcGhHLQho1AoYHFxEXv27MH58+dDX6LDLmSj9ELQ5fN5vPPOO5ifn8fhw4c7XqNJx/jVrzr4/OddlMtGjAjSwiEutbJ6myRSjMBCWFYWUTo6EbYZaJ7o4pqacOjGI/W3KaXEixfP4boeDh06FPuFR1FDywKEUcZn8c9x2/wDfNz5JeyXr7Y8ZiBca0ULubAk1HVUQdQxiUD6HkWUglGcxsdMptOuSwtqA9PyMGa9j+O0UN0zn5iXsWR+GX+S/N/xzLiGOfEWjnkfwnH5IUiEO/BRdEg3EqGfG7BtZW6uFr0utrfzfvfMVCqBTCaLdDoN29ZPj+PFnL7eglSLAulfn7XnoPp9anEfFBEULa2OvgXNzmkMdB51HSBF5JRgiqaFBverI0b10izhC956FgN0HeiIWe2ul1o4Ue2WF/idqh+j1Nhw+/3gfMTfF4PRrNqCqbnPfDDdmBq+UNprMyjhVG/blOpKaavNd99V509UzqEZK+6UHYUXKxjVg4xgqrH0RaaaW8NPHb1/fx3/4T98E9///a/g2LGZpsbXC0zTxPT0NKanp3H8+HG4rou1tTXcu3cPd+7cwfLysp+eOSr9B3rNqERHWdAxNWnkLTeswoYKn0+dOoXZ2Wqz01ZNqAedbgu6p0+f4vbt23j99dcxNdWd2gnHMfHZzwLPn7v+4jyKbaMSdYhLrQyjom6UjiQrKWjqd+ohCbATERfeRzAaFx4PdcOsheu6ePbsKbLZMezdu7dqLNQ237IMlMvAureCTyf/DlJyDD/q/DbSmG55rDqVNPgbFXWKdjqMq8sBgiIuvMhtjD5vtOiv9T4TFhZwGgviND5Y/AmUsIkH1tewZH4Zn079fRSPb+AlfAdeEh/EMfFBZL345kh6oUr7S2BsbBKTk5MwDBf5fBmFQgErK88hhEA2q2rvUqm0v7gmouJdbS++Zqw6Xlr9s+raper6KrJliL43aEAejFQr8SdC0TVCzYGscRxU56aug1oEuyVqMRb/+rA/XjNRqOo6L9fVA9Wt+g3/j2kKuG7cfAe3ExR32iAeCIu+VgimZgY///VQ9/D6L9ICsbkIoxpDMIJL0UrDj5LqDqo2TFNUCWBdnxtOAdYPwozAfBnY2irjl37pEt7//iP4s3/22ECIIdu2sXfvXuRyOezduxfZbBa5XA7Ly8vY3NxEJpMJ1d8NwjENGqPSkIYFHRMLNT6p5y03bIJOCIGbN29ie3sbFy5ciE0/A5pdQA4P3RJ0zc5/u3nwoIxf+ZUENjZMTE3VEnMUPaiOksRBETjL0jVh0dbtO4Xqj6i5QKunplhUImLv3r2hAn7Vfl5HBFR0ReIR/hSfTv1tnPY+jg+7/xAGmvtiJNNzisJQd0aCFpAU2VKRo7ioqDapDtZwNT8GFY2Lioxarw+KMABIYQIvex/Fy5Xumdeffh3Owh3cND+Hzyb+BSblnIreeR/EvDgHW6Z88VgtlCmVzEYyaSOTScMwANf14DgFbG/nsbqag2layGSo/i4RO/a4hXz84r521CsIdcAM2wuEzcuDr1WRTn0N0hiFkJWHH9E9GP774tNrjYoPX/3aUC32g7V+tc+rtjQwKlHI1j3gwkbvdN16oAcSai5MP3007oGfti4JRqVbHwtBn5mgmTx1P62OsrW2mA2KzbgHB0EsK2yLQKmuwbpisrHQIi24wbCZfXQctB0SiJZl4EtfuouHD9fxgz94ChMTqZaOrVdQlCiVSuHgwYM4ePAgpJS+wfmdO3eQz+cxMTHhG5xTmQfDNMP29vbQdF9nQdcGWvGWs20bbnP91/uefD6PxcVF7N+/HydPnhw50VaPbtQMFotFvPPOO9i3b19X5/+LXyzhC1/wsL5uwzS9mIiH9LsKNtv0QzUhoTbtjVqsN09woatbt9d+bVyEa319HVtbWzh4cA6JhO1H4gCK8gUW8xD4Bn4OX0z+r/ie8v+KE+JjTYxRhrpTUsoULXBrLV5d14RpqgVyVMS1FomD/35VJ1Q/GkeQzULw+OOwLIkJ9xDmy+dxGj8MARdPzMu4Z34ZX078b1gxr+NQJT3zmPwQ9sn3hjz5gmJGzRGNz0Y2m0Umk4VhqHvw1lYB6+vrcF0Htk3m5ulKLak2IW84GzFTrq6h6utSLZzDr1UijOr3dP0VWRVEI2UUHYt2ywxuj8RVNFqr/pgQgmrn6nd9pG01G1EKfoaDqYutiCp6UOO6MtAIBQD0wVJEgB6Gksgj2wYdbTRhmsIXYbu57wWjgSR2KZWxkY9kvW3SHx0dD4+z3raFEBBCdcS0LKvSVE2NUQlBdc5VWmj8g8PgcamMAQnbTmFp6QU+8Ylv4nu/9704cWLvjo6vm8Sl/RmGgWw2i2w2i4WFBUgpsbm5idXVVVy9ehWu62J6ehozMzOYnp7mLplMXba3t7kpCqMQQqBcLtdMsYwyLBG6J0+e4M6dO3jttdcwPT3d6+H0HaZpohzfw70tRLuIdoNCQeBTn3Jw6xYtrMILRxWtMuC69GS48TYNA0gmVVG/46gv7nqm382gavV0w5RgpKDR+4JIKbCysgLDMLCwcCjgLxUfcSyjgM8m/q94bLyDv+58GjPyeIMxyho1hbpFeaPx6sWxsQMR13o0LtiJkVICa49PBlIJA/uEjUPiLRwSb+E7xE+iKDdw3/wa7plfxqdTfw9lI49j3gdx1P0g3mN8AJnY9EzylTN9cWQYSYyPJzA9PQEpAcdxUCjk8fy5Ts9MJrO+uTnRbLQ2WAMaRAkOWal7kr4gcN1qMUr7C9ogBFHdMmXNBxoq2kKCIO73QDgKVxtqZGLb1ZYJNWYgFNmiNPpmMumVv6OHYCMU/VBEBkRcXE0gCVVK3Qx2ijT9BzbtSOkPnlvDUIIqmEbaCmERakTmi1Ja4y8+MqxX6erq9aoRiqg8pFIRPs8Tfppy7WNSAlBKIJFIYXOziF/5lct43/sO48/9ueN9nVbXTB2XYRiYnFRp2ceOHYPneb7B+dLSEoL+eJOTk319vEz32d7exsTEROMXDgAs6HZI0FsOQFNiDhh8Qed5Hm7cuIFSqYSLFy8iQcZGTIhOpVySUfvq6irOnTuHdDrd9n3Esbzs4dOfLmNlhaJBqCymPZDZtucpq4JmTMBNUy0ky2XAcYIpa811bqy1TV0bV52G2Oh8BD++Ugo8fvwIU1NTmJiYhBBG3Rq+NeMhPpX4cezBS/jrzm8hCd2ZjaKE6t+61s11a5us17uV0PY8DyiXTSQSrc4XRfOaj8ZRQxWdrlbv9dL386u1WdqeEEASk3jZ+xhe9j4GlIGc8QBL5pdxO/EH+EPzX2Cqkp55zPsg5sVZJJD2hVV0++RZqCxiUpiYSGFiYgZCCJRKBRQKBayv52Caph+9S6USoUWeTn0LzosM7QPQDSmo82Q0YhV+b3igcd0vCc8LLvarJ1BF+QxfGMRBaYq6bi+eoODW10TNl/uoJjtq/5QmXEuEqsibqBIdwcYt9bzetFWDDLyXrDYokidCdYLtKNcO18c1Fsj1CKaU6hTqxtvTtXXqJKn1g/QFPfncNcaoXBMCqVQSjuPgK1+5j0eP1vEDP/Aqpqe78z3SKjtpzGFZFmZnZ/1afsdxsLa2hidPnuDmzZtIpVJ+eubY2BhnFo04HKEbcaIplq3cEAZZ0G1vb+PSpUs4dOgQTp06taMbYfMePoNNJwSd4zi4dOkSJicncf78+a49afza18r4oz/yUChIPz1QLSqp0YAZWBTWFinq94YvahzHqPxMp5nV94irJiiW6hlzN7ddlfaZz+fhumXs37+AVCrV8H33zD/Gf038Pbzf/bu4KP8mDFMbMQcjGKruq/lji0K1ObRYJzyvdke8ILoWqrloHKCFF9BcF1DqXlmvayRdQ7XmdUYexh75cZwpfRwCLh5Xumd+OfH/wTPzBhbkGRx1P4jjxoew3zgRWheraEVc7bKJTEalZwKq/q5QKCCX24DjlJFMJpBOK4GXSCRQ3SCHhG80EqQiRpRKGSdadJpcGJ1+WT0Htfzq9O+V+EomJRynlhAK18HV63SpxqMjZ3GR1VoEUzJpDoJjtu36D2mi6YGNRKUSiAjdXynqqSK1BgxDNEyxbgY612TvYVlmzdq1ZqH3UvfY+GZGmmDnYM/z/HRMSn1VDy8MOI7X8LvVMAw4jkQikYDrunj4cA2f+MQ38L3fexInT/ZfHVE7GnMkk0ns378f+/crn0z1uc9haWnJb4hBAq9bD0j7nd2mMg8S3BRlhInzlmuFQRV07777LpaWlvD6669jcnJyR9sgkTMKZpWWZbVV0K2treHKlSt4+eWX/S+mTuO6Ar/1Wy4WFz2/fog8sNTCy4Lr6mNUQq92ChE1JomLnhHNfpyCNWfN+NDVExBBUbiykkOxWIJtJ5BK1W8wIyHxVetn8E37E/hL3r/DYfF+SCkgQX5Ver+7+cgHI0KqCUrVEUBKq4aoq+5U2ayQU6mV9YWc7tgXn14ZdyzRBirR8QbPlQkb8+ItzIu38CH3J+GYG7iHt3Hf+go+mfov8IwSjnofwDHvg3hJvg8ZL74uKCrQbNvCxMQ4pqfH4LqA45RRLBbw/PkLCCGQyaSQTqcr5ubB6F38qKPdGIO4rowVewD86yTu2lT1dxLRpivBfaq0TqPh54YaYzSqr6Mxqe0jcEzNfDCNwHvJrkBWPNKaeDuijUWMqtoz9bvqVN84gWfbhu/TRnVprRA9L7p2UKdQ7rTOTh+HAepyWjtKGfavDR4riR3HEUgkrKZrG8tlXd+Xzzv41V+9jAsX5vGxj50IXe+9phPCQkXmMzh06BCklNja2kIul8P169fhOA6mpqZ8g/NRzUAaFcsCgFMuR5JgimWjxif16JXh9E5pp1E1iZxREHTtOs9SSty/fx9PnjzBmTNnumay+vy5h1/9VRdPn1IDEDI8VqmVQPXCKq6GhZ5A68V+dHGmo3PqNbX9nKLRuOaRsQsvvWA1UC4LrKw8hW0ncOjQQTx6tFxzW6ZpoGxu4jfNf4hNPMaPlP4rJnEIMCjKQGNsYYjRvUi9nWYiiyoyYUJKaoNOabCtjSMo5JqL4um2+o0jhI2ifPUjd4YBpOQETsrvwknxXUAZWLfu467xZdy0fh9/YP1zTMl5HPM+UOmeeQY2UqAIWvy6UImhVCqJVCqJqakpeJ6A4xSRzxeQy63BNE2k02lks8rcPOwPpzeq0wJrCZB4YUTNUOJELqU21vKko3o9nfYZP3d6fNrfrlHNGaXXqu87I/azWbspB0XiBWxbN/JoFt3h1YwVyo1scOIEnmWZFSN0iXK5+bEEj5HERfBc646mO4naUbQuWNNoVNYbMrA/E1J6Vddw9BilpHtk4yiilDakLPvpvV//+iM8erSBH/zBU9izpz9S0DotLAzDwMTEBCYmJnDkyBEIIfz6uwcPHkBK6dsjTE1NjYzI8TxvJNZpgGruxxG6EaKRt1wrDFIYe2trC4uLi1hYWMDCwsKux06dH0fhqVc7uly6rovLly8jmUzi4sWLXfsyuXLFxW//tot8nho0UCpldbcxWjToRg66KQktousJg2DLeJUWVv26YG1ca0IOlbGFG1nolDL181KphJWVFczMTGNsLOMfAwnRoJAUAliRt/BJ87/HYfF+/EX3Z2AjBctSAsp147sUNgvtqzVrBUoLM5FICD8a12xaJbATIadTbhsdrxKXjSJD2q6h1u9VNCM8rmlxGGfkx3He+mGUHZWeec/6Cr6Y+BmsmLewIM7gJfkBHCl/AHvliVD3TCBehKr0zIxvT+G6LorFIjY2NlAqOchkbCQS2Ur9nR3aVlzTFPU7A7Vq5qhzZy1BRp5ztTpg0nWqonCNrz8lvmXD+rrg9rXHWfQY4t+vrCy8KqHSavMSsi0AEBCijQVd9XhU/Zjj6J/Ztunfn5pLoawlyHW6aKv1e9EHDcGmMcoQXR+zasoU/wFR51/4aackhIK1e1FUHWICruuArEEeP97A//F/fBN/4S+8F6dPH2z+QDpEtyNFwQYqAFAul7G2toaVlRXcvn0biUTCF3jj4+MDtZ5rhVF58A6odS4LuhFhtymWg4iUEsvLy3jw4AHeeOONtoWj252G2M/sNkK3ubmJxcVFHDt2DIcOHWrjyGojhMBnP+vh7bc9f3FIXfDiWtPTZ4HEXDANktYQjVraBxcb0YWHjnTVro1rDlG1PWJraxNra+vYv39/Jfri+bVNKiKpFj70nhvm7+AziX+CP+v+3/CW+GFYvgii5gw7G2FYtNZKraxxdELXrrmuVRl3sxNG3SKbF3KUTqejbfUjJfVTLNUYSEDXopZQopo2z5Oh9MwP4ydQxIYyN7e+gm+kfhEuyjguPoBj3gdw1Hs/xrAH5JNYNaLA/Nu2jfHxcYyPj1fqp8vI5/N48eIFpPSQTCYq3nfpyuIz/kBcN77OjqC05lq+i9QB03Vr18J5nhGqc60F1ddRqqhKi2x87nWzldrnXzUx8SI/0+/VfoOtfViCdba2baBUav4zEgeli9NDG9WlVKdWkhem6+pOkvX2p+sV1f+bEYnUsbLWd0XwmA3DRKPPtYrqkaiUlbq/2vemclkgmUygXHb82jzHcfEbv3EV9++v4b/5b16GbfduYd/rmvtEIoF9+/b5PmXFYhG5XA4PHjzA1tYWxsbGQgbnw4LneSMTjXQcp2v+vZ2GBV0NWvGWGyZc18XVq1dhGMauUyyjdMObrV/YjaB79OgRHjx4gNOnT3ftydHmpkqxfPAAUE/idQpR/cMQfnG/6wIUfG2urk1HbejfwQjVTqJx1QQbuejtSSn9dvaHDh3yn9ZTNzvVhVLANC0ABgQ8fMH+X3DV+jQ+7v0cDsq3IOTumpwAWsi5bmvNYILvD0YxAOqS2Oj600KumWYnAEV1mkuvDHaxrLdtWjTXF3PxkVt6n7peqn+fxiROio/hvd5HISGxZjzEkvUV3LA+i88m/wWm5DyOex/EMe8DlfRM/aUeV6dFP08kkpiasjE1NQVANdEpFIp+eubYWAqplErPDC5GG6Ve0mtqiUyARJ32sQt2YtRzEjQjr53CTPOnHmCYoA6RjQiKs1TKQLmsz58SE7Xv8cEobJz5ejMIQeLYaHrM9aCxq6iEOkdBk28V9RKod96i4wP0+BodYzPjp88RRdJqvUfdw5SlgcooUu+jrqDBh23q9er8kT+u5wn//e+88y6Wl9fxQz/0Gvbt610Eo58eoqfTaczNzWFubg5SSmxvbyOXy+HWrVsoFouYnJz0I3yDLBJGKUI3TOt7FnQxtDPFst4++ulGBQAbGxu4fPkyjh49ivn5+bZvf1AbwuyEnQg6z/Nw9epVCCHaLqbrcfeui1//dRfb2+p6pEYMrmtWLAjiFw9qeKISIaK0zOavaX35SyQS8L3Q2iPkaHxG1Zhc18WzZ08xPp7F9PRMqJGAHpN+Tx6r+M3kTwCQ+DHnd5GRs7HPyVvp0BnsJLgTIRduWFGNSuFTNXVhsRRskgI0m5JZq+mJMjeufm0zc6HS8uqLuagQj/99/X14HmDAwIw8ghn3CM7g4/BQxhPrMu6ZX8EXEz+N5+YdzIu3cMz7II57H8Ae+R4YdRbwFDE0TRPZbAbZbAbADFzXg+PksbGxiVLJQTJpI53OVrpn2g1r3ajhRtR4PPwabZNQr+MiReDqp7Iq6DyQyG8mnTEo7NQ1IFq65+mIVm0/tmbGTFGxZj3xahEUSkpYe/421edVopU1bri5TP10zGY7Z1KaO1kfxL1HiXh9/ai0RSX0lbAzq8bieab/naUb0Rh4/nwbP/dz38IP//AbWFiYbv7gRwDDMPzI/eHDhyGE8A3Ol5eXIYQIGZwPkkAalQhdvO/l4MKCLoLrui17y7VKv3V7lFLi4cOHWF5e7mhUaNAawuyGVo+VLCHm5+dx+PDhron9P/7jMv74jz1oPzKKtpl+elcc5CFH0bnWRRg1TKA6NqBZcVGPYIRPdQAMd+EsFgtYWVnB7OweZDLZqgWRNstWC9tn1iX8uv0/4JT3A/gz7v8FZp1bZjPfC9QkptGlEazhizs+1228PyGMShoZRVFbq5FT1BZneiGvaS7FstqUPg69wN7pdVF7HxYSOIK3MF8+gw/jJ1HEBu5bb2PJ/BN8M/ULEHBxTLwfx7wP4pj3PmQxW3MfQWzbgm1PYHx8HJ4n/e6ZL168gOd5SKdTlfq8VCWFrhoSdfVsBtS5Vf+ud6+gRbwSoI3TKqnGrdn6OkI9AJL+57mVdEo6xzTGnUAPJ+hBiUpL3dGmAOhaNkoRpSYr6uGPavSi91sfipjStuIEs7oWGj/spChvo/Okvn+C6eyqhpDq/KgLKAk7da9JQEqnEmWVle2bKBTK+KVfuoQf+qHXcPz4nsYHPKKYpompqSlMTU3h+PHjcF0Xa2trWF1dxd27d2Hbth+9m5iY6GvBNEpNUYD+igLvBhZ0FXbjLdcqFKnqhw9MuVzGlStXkEgkcPHixY6OiSN08Tx58gR37tzB66+/Xknj6jzFoodPftLFzZsALZjJINh1Df9LPQo1RVBROQOq+UZrnxWVZqjsC1St3u5Me2mbFDEIds3UYxZYXd3A9vYWDhyYqxn9pHo0y5K4bP8KPm//C3x3+f+JV8T3NRxDLYFFIkzXqe0MmvtgIwUyVq49JqPShlzsoElK/Qhi8BapF5eN99GMmKtste62KPpWi8aNM/S205jESe+7cNL7LsiyRM54gPvWl3Hd+j38fvKfYUYexjHvA5X0zLdgSpVbXPucx3XPlCiViigUilhfXwNgIJ3OIJtNV6Vn0oK73vGpWrvqCGncWOjz2kydZ9C/rtFnk0zDlfgMmpSbLYszarxC0cedEEx3rBfBboQf2Q1E7WibwQ6a1D2zmSgonQfaFgB/3pq3dgin8Naa79p1mrIi7CxfzJGQFgIV0/FSZfuopGAaKBbL+NVfvYIf+IFXcPJkd2xzBh3btrF3717s3ausVBzHwerqKt59911sbm4inU77/nfZbLavRMWo2BYM23GyoIM6qeVyuaMplkH6Rdisr6/jypUrOH78OObm5jq+P26KEkYIgRs3bqBQKODixYtd6/755InAL/9yGbmcvs51eqL6P9XEESRI1AJALSZdt7VOczp6ZkDKYPOInYu5oJAjtFmvWmgKIbCysgLTNHHo0KGan2/1LMOAMFx8ZeZ/wTP7T/HfOb+OvfK9TY4m+tS9PT501OkuvilI/TQznbJoVVIcoymY8dtslMq409cHF8q10NHE+o1UqPFDvXHVF7s13gcDs/Io9niHccb9q/BQxmNzEfesP8EXEv8WL8y7mPfewnHxARwXH8SsPFrVPTPOe86yjFB6ppQetreD6ZlBc3M7UAdXZxpAEbh6r1FQ9LnxNjXhtM3whOk0y7i0v/ppgfXHqZu11E4prr/NYJMfqjls9lalIszhe7d6kCIrD0h0VIy6Z1LUXYm7xumTccKzmbTL+GPQ0Vzy3Kt3X9avQcVSgppGKdNxqqfTxy4rtXYePvWpa/je7/XwxhudXy8MG8lkEgcPHsTBgwchpUShUPCjd/l8HhMTE77AS6VSPR1rvwQcOk0+n8fYWH9YdLSDkRZ0QW85AF1T6r0WdEFvs7feeqtr3mbcFEVTLBbxzjvvYP/+/XjllVe69nTu8WMP/+k/lVEsUlROp/cF7QMo1TLYuVKLPNU0pZXW4aorXjDiQLUqZHfQ2vGHUxelb5LrecKPGJqmAccp4enTZ5icnMTk5GTstrS3HbCJx/h08sdhWRP47/KfxniiVqpdNdpkW8/V7oSc9NO1alM9b9SFMBpdUwt6E6ZZy2RZC7NmLkfqDthMiiXQnJgDGkem1LZ0emD8Z6c54djMdWchgQVxFgviLL4DP4kC1nX3zMQvQEgPx8X7K90zLyKLmYaChLY8Oam7ZzqOG5ueOTaWrjwAqTkbfrOUxtcb1f41rl8kgvV1ACoCUjZM4dSiJa6Ws/E+qz3wwr9v9pYZ7D7ZTJMS3XRGE4yIq/RJo/IZ06+Lirtm0jLDwpPq9mq/vt7njFI56TwB9WsTKQKnHtKZfqdTIUwEPS3VtnWjmN/+7esoFl1cuHC49kCZuhiGgWw2i2w2i4WFBUgp/fq7q1evwnXdkMF5t+rpiWGLXNVia2ura+vfbjCygk6Zi5bheV5XonJBeinoHMfB5cuXkclkuuptBvReyHaTetfT8+fPcePGDZw6dQqzs80Lht3y7JmHX/gF1xdzQbNiqmOhroOAFgV0iVBzEVoINCPoqCFAtBskTU+jphdRqF06jYvGqBdWeluFwjaePXuO/fv3IZVKV20rGt17YPwJfjP5t3HO/e9xIvffIjnZml2HblSyu+6XZBfRnLCKjwrW/pgZEMKqpD3qBRvZHlCn0YZ7lRKJhOqQ14woalbMNRPpIzN66uAXR2NxU9seILCn2J9mMIWT3nfhVXwXhCvwQi5hyfoTXLV+F59J/nPMiMM4Lt6P4+IDmMPrFXPzuONQ+5BSfZZSqQRSqQSmpiZD6Zlra+uwLCCZzPjm5uH7i/SFhnqQ0LjhlqrBa655jX4PYJoCliUQfTBT/31UI9e8PYK/dRn0wNPCbidf17pJSSOxXW9CgvdAEnY64kXsJC2zVFJpl438+ughSi20kK5zGJHtUUdMqt20LAvKfkJWvQ4w8dnP3kax6OE7vuNYczvZAcPUrKIRhmH4Dx2PHTsGz/N8g/OlpSUYhuHbI0xOTnZ83eZ53kB36WyW7e3tofGgA0ZU0PXaW65XwiaXy+Hq1as4ceIEDhw40PX9j1KELg4pJW7fvo21tTWcP3++q2kVL154+M//2cXWlvp/0Pg7GKlQka+wL1i0SyQZgNer39LCol60RVY9Ca8FCTkSHGqxUWuBJLG6mkO5XMT8/CEo64Hw2IIppRIS37D+Pb5q/zS+r/zTOC6+E8/xFM2lgqrooKqDaepQakI1jORp1wzBW5dqYmM0tdilaJ1lCURtD5rZp1r4Nfd69eCg8bhokd3ofkyRQaB2hC7YTCXuNSq9LX7bcf+m/wcjQ6YJSM/AXuMY9njHcM77OFynjHfNRSxZX8Xn7X+LF8l7WBBv4Zj3fhz3PoBZeSyUnlmrVi6cnqkWWKVS3jc3D6Zn6ogMKqKOsgPqz6OUht/YptHrqfOtfvAD6LTX5qCuoGrfrS/WozV2rZqLE/XSMbVoqYZST8M/06mYccIOCEfuKBoGVN+7yCKBRKuOiIbPTTR6VgvVDdOsPABpfD3QvtQpMmGaNgzDq4qOUvTmi1+8i1KpjI997OWG290J/dgJvFtYloXZ2Vn/gW+5XEYul8OTJ09w8+ZNpFIpPz1zbGys7fM0KimXLOgGmH7xlrNtu6vCRkqJe/fuYWVlBWfPnu2ZAaZlWXAcpyf77jWO4+DSpUuYnJzE+fPnu/pFtb4u8J//s4eNjbDQAsggmsScrCyU4AuLOGhxQIu6KCpq1qihQ+MoCgkv7Xsm0ajroRAenj59hlQqhbm5uaonzCTkSHw52MbvJf4xXhi38ded38a0PFLZjtHgCTf5OlEKW73X1sc0ZaVzZevXBC3I1SK1OTFHqLkl/z3RVGdAag/feH6C+2i86KYHC/S5qLZCCF8zVB8XVycXNFam9zZbpxncVnTb9G/6Wy2Yww8lLNg4LM5g3j2DDxt/B461hiXj67hnfRXfSPwCJCSOe+/Hcfl+HBMXkZEzgbpU2n71MVmWhbGxCYyNTUCIYPfMVQhRhucJ5POFykMiE9QNsXEUkh6SmKgl0IJNT8JzYbTQ4CY8dzv1oNPjVWKsXG4t4hclagZuGKLOPam2wGhG2NHrSDDWE3fqZzrrIDhfrRyu+qzqCGczEVKqP1aC0og9VyTqvva1hyiVPHzP95xs+3faqKT9NUMikcD+/fuxf79qSFMoFJDL5bC0tOSLEorgpdPV2SitMipzT+bww8LICLpueMs1i2VZoaLjTlIqlbC4uIiJiQlcuHChpx/SUWqKEoQio+9973uxb9++ru57a0vg53/eRS4nA801dDSOWoyTp5yq2ar92QibOIefkOtmKc2OLn5BR55PFEFQzU30PmtRKpXw7NkzzM7uwdhYFsEFvVp4hseWM5bwycSP4YB8HX/N+U0koB90qFqS6n2pNDWjals7uZ1oi4jmatDiME2Jcrn1/asaKPVvJQbNSmON6sW7ek3zXSwJ2ybhp2ouldGy9MUACQh1DZH4UOesVuS1uu6rWsQ201yiPbf/2h0Z6TabEtN41foYTjofg4TEqnEfS9ZXcdn8Hfxu8p9hVhzFMfE+vCTeh4PeG7CN+DQnOmbTVOcuk0kinU5iZmYK5XIJz5+/gOMUsbGxBsBEKpXC2FgGqVSyKVFH8xqsC6PusPXScFWX2p10tAR2moZJ4yWvRarD3c13uk5TFA2un8bRYy3s6j/MiBd3BuizEUSfExVZr58WqqHaRyFkJZVSbb+ZzAj1gEf4GQhqe/p9atFv4dKlxygWy/hLf+m1tq4vRkVU7ARlfZLBoUOHIKXE1tYWcrkcrl+/DsdxQvV3O2m21k+2Wp1ke3ubBd2gQVG5XqVYRulWyuXq6iquXbvWEyERx6ilXEopsbS0hKdPn/YkMprPKzH3/LkAGSHr1EpZSc+iSAdQLjfz5RmMeBmVInzyRmvtcxVthhKsiQvXkDTe7ubmJtbX13Hw4EH/C0wtkiTirBXumH+A3078A3zY/Uc44/1oVZdC9X79dFqJL9XZc7eXMAk5VWu3s3tRsPNlK7czSleNOwa1tjQr51OEIgKUYhlMd6QaLEBHleic2TYJXvV/dU6Di8jwg4Bm6iiba/rRXBpgM6+hKFfj19THr92CgT3yGPa4x3CuYm5O6Zmfs/8tcsn7WBBncMx7H4557w91z6TdkLiS0gOgU3MNw8D09AwA9X1XLBaxvr6BctlBOp1AKqXSM2074W8n2lhE1eHJQA1ncxE09TBiZ3YDlCKqtrOz9En6nKrt7TxiF6wNVAbr4WuplWeRuja3OVuWoLijyFjw80TQ+Wktwhl9UEJdZBt/VgzDghBu5Voxq86xEB5M08KNGyv4lV+5hL/8l9+AbbdHCKjvFhZ0jTAMAxMTE5iYmMCRI0cghMD6+jpyuRwePHgAKaXvfzc1NdWUUBsVY/Ht7W1MTLRWK9/PDLWg65cUyyidFnRSSty5cwerq6s4d+5cW0Lw7WCUmqKUy2UUCgXk8/meREaLRYGf/3kPz56JyuJaL3LUgk34vlTNPrGNfpmrhb5oMSpH7w3X7SmjcolWM3KllHj+/AWEcHHo0CF/npXgEVVCQULgy9b/C+/Yv4D/1vlZLMgLtUYYECdKeO02qN4OIQeEG4e0nmJZfxGnHnhJSGkikZCgiJ2utwxGi6prIINpss2PqfHrlHF14+NtJjoHNLs4b09TBinjUxMtJHBYnMVhcRbfgZ9AXubwIPF13DPfxtfs/wwAOCbej+Pe+3DUu4AMpgPbow6G1RNi2zbGx3X3zHK5jFIpj2fPXsDzXKTTaf+Pan6hxqevD532GhetrYXnkZBvTVTRvLSahhncRbCjphJHrZ07VResT5ASvEYlKk3NTXZmVt6KsNP7D4u78HkI2yY0upbJQiM8JlmJyNafc71fCSFcWJbt1/nReFS9lYnbt1fxi7/4Dj7+8dNIJne/tKRsKqY1TNP0BRyg1iJra2t4/vw57ty5A9u2/fq88fHx2DkelRo6ti0YEPopxTJKJ2vJisUiFhcXMT09jfPnz/eNiAVaM9seZDY2NnD58mUkEgmcOnWq69ee46iauWfPVAfXoHhQQkpWmjFob6pmTku0A6YQJoQwW2qMQEgpkUqpBYPryqYiNFFc18XTp88wNjaG6ek9AAy/eQo9uQ9SxDp+K/F3UTI28DdKn8E4ahvkquiTgOeZsG2B3S7uVfrh7oRc0NSdaDYaZdsyJAL1NSn91ygvrPA2Pc+EacrK+KNiMBrBItuD5o6R7DGa+XxQxCTu2Oo1Muk0zd7OmhlX1pjBq+K7cLL8McCATs+0fwe/l/znmBVHK/YI78Mh8QaSlh2oL621XwPJZBLJZBLT0xLlskCxWEKxWMD6uuqemU6nkEplkEqlIudCXw/BxiuVLSPYyp7OA0Xc4qJLjWhV+MRtnh441PLOq72t6qcKlD5JY6JupDtlZ8JO3a/JvkHd28LCMy6aGERF3KsfdNDxUQQ+ToirWkUL6sGOByFcmKYZ8q9T21Gpqg8e5PDzP/8t/NW/+iay2d11SeSUy/aQSCSwb98+P0urVCphdXUVDx8+xObmJsbGxvz6O8oiGpW539ra4qYog4Auru+/i7JTkSpqh//KK69gz549bd/+bhmFCN2jR4/w8OFDnD59GpcvX+56py7XJTFH0algSiNFXKhAPlpLVxu1UBf+wmKn0SqVVilQLguUSo3r4mpRKBTw/Plz7N27F5lMxm8qQeOKfuyfGdfwqcTfxEvio/hI+f8OC7XrCmyb0s/UuFy38SKs1uKV0td2I+R0k5q4fYYXYbSwpgUt1Q8G31trsR1ctFNKrlqs67lQQlfGzAW1wG/uOKlLaXNirvkFcDONXUiAtAPdmKX+Tl2XvN/qv04Iw0879tMzXZWeuWxewpL1Nv4o8W+waj7AYXEGL5nvx4I4C4nGixLPM5BImDCMFCYm0hBColxW6Zmbm1t4/vwFEgnbr89JJBIQQtaI4kSFfPheQxkAO2l8opoMxacchkZQZ9Mk7NS46j+wqu3LGB5Tux4MNxJ28celH6jYtoFyWXe6JKFWr+lJPc9G/TCHjMmjaZ7hBzfqoayEZdmVMVG0Tr3u8eMN/OIvfht/42+cRSKx8yXmqIiKbkMNw+bm5iClRD6fx+rqKm7duoVisYjJyUnk8/mRePi+vb2Nubm5Xg+jbQytoAN0jU+/0W5hI4TA7du3sbGx0fV2+K0wzBE6z/Nw9epVSClx8eJFWJbl1wx260vJ8wT+y3/x8PSphOOEv7hJ8Oi6MP27Zj4iqqW+Wtjv5NJVT4nVE33VWbH51vxhJNbWNvwbcSqlbmHRMQXXLVfNT+Gzif8RHyv/U7wmfqjuGA1Dm6frRYxRER+1n4JHF0FBC4KdoptUxJ0jWWlioq+t4GeLIidUZ9cKUQEYHpPhL/BIrFIdZfONXWQLoqpx7RERbPRSj2a87lqhmWtZe5813p4Sf+H5sZDAEXEOR8Q5/Bn8BPJYw33ra1iy3sZXsz8HsSDxHnwQx7z34ah3HhlMRbaq0+5UCrFa+MelZxYKqnum57lIpZS5+fh4PXNzA0JUH5jnAYmECdVpUddvNQNF2RulBDazHarvixN2ZJDeDGS7oOrPRFPNZhptT3eRDEbddFQuirqneAh2oaQomxJltW0hlJ1FfYFMxuTRiJ9lWVCNaGicEp5XhmnS95yojEl9xz95solPfeoq/spfOd36xPjzwIKu0xiGgbGxMYyNjeHw4cMQQvgG59evX4eUEtPT05iZmcH09PTQpWGybcEA0a+Crp22BYVCAYuLi9izZw/OnTvXV6mlUYY1Qre9vY1Lly5hYWEBCwsLoehwtwSsEAK/+qseHjyQFbNngmpjDCQS1XYCzbQd1x5wrV5bslKnJytCSS1AqONhq3UuQgisrDyDadqYn5+rEqZBDAPwUMbn7X+GW+bv4ePOr+KAfK3ma8nDTf8svEhXQthErXbkRDuEnNpOMCpHi3G1TVrwqfMWPnn08W/Fky5Is6JILSSNSuMZ1aCjGfNwKXW31ebG07z46vdnRXQuG3dKNECeb7Xu51lM45T353HK+/MouyU82F5Ebs9NXLb/K34v+c+wRxzHMXER75HvwyH5OqRrhrrTKlEX3n4wPXNqagpCCJRKJRQKlJ6pfp/JZCPpmbU/EMpWQF8T6noB9IOI2l6UdP3XMgJvpaYtLOyCn6FWLhpt4K48HLWFy26IGqerY1I2EnHQfMWnY+poXbUQjqZIxxOMBNLx0f0smuKshLyBRMJGuez5IkwIgZs3V/CHf3gTH/3oe5ufjNA4WNB1G9M0MTU1hUQigbNnzyJocH737l3fH29mZgYTExMDf37y+TwLOmZ3tEvYPHv2DLdu3cKrr77qF8D2M8Mo6J48eYK7d+/i9ddfx+TkZOh33RJ0Ukp86lMCt25Jf3Gg9g+oL2NVQ1UuVy8m6xXVU1SvtoF3zRH56Xsk5oICZycpb+VyGU+fPsXMzCSmpibhuvUX+pvyKT6Z/FtIyAx+1PkM0pWGElFIXERTIuOiLp5nwLZNuG71ZFDHx1ba+sdhGAKJhIlyWS2+qE6pleiGEmWtiTnqCNrax5PSL+lL3fAFba00N4o4Nrv9Zl/byjXV7md8zW/PaFqgBlMvG2/VwETpMF4WZ3He/WEI08GyuYi7eBuftf4NcuZDHLHO4pi4gGPe+zAjD1eu5frRL9M0/fRLQNWslkoFbG1t4vnz5/j/s/fecXZc9dn4M+3W7btabVFZdclVlrTCvdsQEjAJYEyzARtiSgIhBRJqCm9CILwp8JIQCEn40cG23LEtGRtj44q9kiVZvUvb+60z5/z+OHOm3Zm5M3PvlVa7+3w+/lh7750zZ+o5z/k+3+erKAqSySTS6aThVOkG/g7hJJIRy9Kbg0v+uFzSLGdhyjCt91WUtUvrtmah9KBwShFNGWYUh04n7KUJ/KLkpfJXTsJY/qJJDJmBiUkAgy5y2/MHWXulUTpz/4VCEYoi69fXJHW/+c0xNDensGHDolDngh/nTF6gnu3gEfzW1lYjhadQKGBkZAQnTpzA5OQkEomEQfBSqdRZd73m69DNo2JUWoeOrX7twfT0NHp7exGLVZZ8fLowmySXhBC89tpryOVy6O3tda31crqO9/77VezYAVhX/838DJ7Q7/aidZ80mGUI+N/BJytmIXBvgww2oQi2WgwA09MZjI4Oo6OjHbIcL5u/d1x4AVvkD+I87WZcrv4ZRJTKROwRMHdYzQc4VFXQnfx43ykURdAJZvjBjPcDYGRO05ipDYsEUlt0oxxM17nw/bCapgTfBiWupLx2IDfNkCQ2cXbL5SuHMFHccISufJRMbxVB7lG232BthnkdWJ1FffauO1TyaA2BSHT3TGzAVeqHkcEoDksvMHmm/D2IkNBDXodl2mYskzYipjX47cCALMuQ5XrU1dWDUoJCgcszh1EsFhGPJ5BMcvdMO8EzDVNMwuYEjzhZ/2Y10Mz8PFYfyypRDP4eMc4YpXoE27TvD7YdwAqwWz8TbKYxlRM7wThP3nm77vcak1jb3TH5MXIJpZXgBQWTdPLC897RVFVlhimiKKJYJIai4ZFH9qKxMYkVK8Ll9c9H6GYeYrEYOjo60NHRAUopstmsEb3LZDKor683CN5MTf2xYl5yeRZhpq4WVBKpymQy6Ovrw8KFC7FmzZoZe4xuEEVxRkpgwyKbzaKvrw/t7e1Yu3at5zU4HYTu179W8dJLjAxwx0ouReRSJdMZrTSvznobskk3j1jxYyg/CWWSRehulWZkz4tY+BUqtoNiZGQEqppHZ2e3bxSA/ZriZel/8Sv5y/id4tewitzo0Vda1qSER5ncoKpmJIrlqJU3uwA4eTMjbzzyaS0wHhV8+yivg7BEi+2Plu0vi1wA7L4TdUc+0chF9Jv8hqtpFqz2nPHrCnOf3MAlb0H2HUTmzOAmvaTGIgDLR2X3HyGCcX6dz3oKzVin3YB12g2goBgWDuGQ9Cy2y/fjIfFLaKPLsFTbjGXaZnSScyGVmRZwYhOPM3mmKDZAVTWbPBMwix+z33DCw89X+feK3RjFvMCqSiHLov6e00pMO/z7TvXFC2I8v+YzWW5b7+eLyx0rzfkz9yUYY4ddPhl04cCeh8ck4zx3MuiChrU//N0ugVLiOa6xUjEEsZiCQoG7LBNs2fIqbr11A9ragk+e5wndzIYgCEilUkilUli0aBEopUb+3c6dO6Gqqq3AuSzPPLrBSehswcw7w3MAUQndqVOnsH//fpx77rloamqqfsfmURaDg4PYs2dPIJlrrQndrl0atm6l+qRP0CMhgi5PMkmVLLsTGLuhBP+992/ctmf7MWuEBbGtZ6vFgm/0gRANg4P9UJQE2tu7fNsDABU5PCJ/GifEl/De4v1oJj0lv/GSV3ocnec3oigY15ZP0O3gjnH6Xz6mEKzweaVkLrzEkiM4ubBvw++xIGCRRgJKRQvB4+QG4OUwnMXJg/cneJQlCJGIglqsq/HzoSiCfg/x+8jMhXPulxAmu/MiFQIEtNFlaFOXYZN6C1QweeYR+Vlsjf0zxoTjWKxdhB6yGT3aZjTTRUZxc3vfTNMeHvlJJlmEDmDEIZfLYnJyEoVCAbJsdc+U9X6aKoIw4HJAVmSbLWaxz/0LlPPInNMEhZtFMYmr333kv3Bj5tf5O06GhVWKacqvg8KUY1Iq6mZd1FU2Hgy8uLj39oLAJPKxmAxVZec9kynipz/djve9byOSyWCKonlCd3ZBEAQ0NDSgoaEBPT09tvy7Q4cOQRAEozxCQ0PDjLi209PT85LLeVSGsBN9TdPw2muvIZ/PY/Pmza7yvnnUFpRS7Nu3D2NjY4GdRGtJ6E6eJLj3XmJImfjEnE+yrE6NbpMUa6FmL/c91nZpZM+UK5qTC57vU47MWd0Q3fbLJgM5nDw5iJaWVqTTqbLnYhxHcXfsA2imy3Br4UEkxDoQS45OEHllKdydCzk5ZgRahCQR4xzyqBKbdPsTDNM8JUyfHD2sQGJp5hCF2y6I8YkTZr3D0j7wybT+iR5B5bIxk9T4IUxfws2vg8otw+Xl8cUXc1sz6maeE3Phg8l7GfFx739pbldQ4iojhqVkI5bkN+Bq+SOY0IZ1eeZz+I38P5CgoEfbjB6yGUu1jUjAlGdyAqMopfeRLIuoq0ujri4NSmFxzxyGpmmGPDOVSugLLdGID18oYe8fZtDB+mYneJzMeb2Pzfeon3QyuFSX1+PzyiUtB7f98zqRjLCHa9Qqx2QmJoKeUx0ObNGPGGobv8WXYlGFIJiGKcPDWfzkJ6/gve/dGGgyP0/ozgyqpaLiBiotLS0A2DtgdHQUp06dwp49exCPxw2Cl06nz4jabF5yOY+KEebG5Q6K3d3dZ6RI9TxYIc6+vj6jWHvQa1ArQjc5SfCjH2koFLgMhk+yuazG7J+XCQMfJxkJc9+Psy0eTbHLNKlODoMNvPZTZ5dKyTIwOjqB8fEJdHR0BFq4OCQ+gfuUj+B16sfQq90JwTHp5dGrsOCSNuvfbGVbMAgcd3+Lx6luBhCsbR6Vq+TWqERi6Wda4r8drx0XbhvezyAmB3wiayV5DDzqyb83r0+Q2nNREGZew54/vwk/a4wbe7ASHtwwhFpyD02Y56q8mYrzvLIIeHApKpPGUdRLLThHuxHnaDfq8syDOCg9hz75PjwY+xIWkGXoIa9Dj7YZneQcSJDB6lqKekTKrW0gFlMQiylobGwAIbREnplOJxGPJ3R5ZvBJvGm6xA1KzJIH1hxYRjrLu+uai2KlpMlPcunVFnRnzSALE27H5fINeHmCqGMLIUQ/F6JOyqNM4AU9x9G/H5Qyw5R4XEE+r+H48Uncd99O3HTTeWX3MG+KcmZQq/OuKAra29vR3t4OgKWujI6O4tChQwax4gQvkUhUff9uYLm/Mz/XLyhmNaE7218GJ06cwKFDh1wdFOdxejA6OoqdO3di9erVWLBgQahta0HoVJXg+9/XkMnAkBxpmmCs8NvlhO7ROXu9NW+wbamn1IcV4BZDye/4hJz9m/2fT1ZPnhwEIQRdXV1lJ3UUFM9KX8fz8n/gzcX/wFJyeUnfgkQMvftp/pvX4AN4/pOd1KqqqEfuah+VY+1Eb8NKJMIhymq+GXkKCu9ojTUfz/yMR6at5jHW/ZmGJdZJvmD87TdGuJ8j/qE1EmTdr2n4w0iafSJvWs4LYE6PguOY3OFfmNxdEsnIS3DZH8955ESQyTOXo01djl71FqjI47i4HYek5/BY7GsYF05gibYBy+hmLFV70Sp1B3rfOeWZmkaQzWaRyUxhaChnuGfy4uZleg379eW5d+Z5lyRSIjE0i4QLJX3m6oPSaJ1pUhQuIst+H8aAhZNT56ISy/3j7YTJx7S1rveLlWCJxSSb2sIPPDrPa99xUudF5nm/8/ki4nEZ+byGnTv70dqawuWXL/fdFyFkRuZdzXZomnZa6s3xZ7yrqwuUUkxNTWF0dBS7d+9GoVBAY2Mjmpub0dzcXDNV2tnOEZyYf1pmIDRNw65du6BpGjZv3jzrXmpnw8obpRSHDh3CwMAANmzYYFh3h0EtCN3PfkYxPMwHduir4+514txW9VnESrQRK/e+A3wC4ySFdvLoXS/JDc6JkCQB+byK/v4BpNNpNDU1lm0jjyk8qPwxJoQTuC3/CzSg29Y3WabI5wN3yRXMUIZCUXi5B+9j5OeC27KXfk8rImFWWKV0YR+hKBJLBoqgEj4rwpUosJpfhDkw9nt/kurenpnjaCdlvB3rMZttOyNhsBAHa6056//d4VdHsbSvfoXJ3ffDpIje+XRe8IruyYhjKdmEpWQTrip+BNMYMdwzfx3/LmTEsIxsRo+2CUu0DUggmNmAJDF5JpBGSwugqgVMT+csxc2t7pnOiWbpsZkW/oAoaq7PpFMuaBI8K+nmREzUo1rs31Hq25pkWbARM/9tRFCqWf4unYASUlqYPAjY2KTpEncNlALxuIxCwb8dpk5g54NLP9nCoj9ZZe9IAlmWoGkEv/rVQbS2prFu3ULPbeYll2cG7Nqe3gLigiCgvr4e9fX1WLJkCQghGB8fx+joKI4ePQpKqUHuGhsbq9K/cpLhsxGziymcZXAjNlNTU9i+fTsWL16M7u7uGU98wsIcDE7vCyMMisUitm/fjmQyid7e3siDiiRJVSV0jzyiYc8eAuZoCdilWKX3iXOAZYSDHYvfe4wZpBDXCTwnhFaEeSnySTvvSy43hcHBYSxY0BZIZjEs7MVdyvuxmLwObyp+EzKYXILlXrFIhr2wenDwW5LJkZh5QpA8E374bqSOG6aEJ3N2OSo3uYl6O0VbyefOfeH7b5Va6p+gXLkAtp9wZC5cPp+77K00osf/XX7ibo/W2K9Z2d7QcL9nxjelx+DXRRbZixKRLS/ZTIPJM8+jN0AjBEPCQRySnsMr8n14MPZ/0EaWo4f0YpnWi06yDmLA6YYsx9DSEoOm1bvKM+3ume5tsOfOjN6Wd7A0J3cssiwaLpvcZdSssRjuutn3Y5LEsDJMt9p9AI+W8ahwpG5BEIBCgeW8ybJkOFS6/5Z9bo3KmW6h3uMBI7E88ingvvteRWNjAl1d7ot484TuzEDTtDN+3kVRNAgcwEpijI6OYmhoCPv374csy0Z+Xl1dXUXz5Nk0x57VhG4mXygnsaGU4vjx4zhy5AjOP//8WWWlagV3+JyphG58fBw7duzAihUr0NHRUVFbLD+hOoXUX3yR4OmnNcRiQKHA7msut3SDs0g0Ixrmb90m99a8Ou/vRMfnYVarKSglugMcMDY2hmx2Ep2dHYGi0K+JD+AXyp/jKvWvcKH2HuNz7tDJJaRhHA+5rImVH2CfyzKTtkUhQKrKI6akKlE5q8mN2+ssSLQ7ipEJRxQyF0VqCYQnq0xSGHwnYaOMYSfHYfsflGxY4RYd8jvPrH2rvDMY2C6CERcuz1xAl2OBIc/M4YS8HQeE5/Bo7J8xLpzEEu0ivbh5L5ppt2+bTMbNlATW4uaapiGbNd0zFUVCIpEw3DMB00zHfA/41XQrBT/H/Pec4AECYrHy6oYgsObXBXlfcXmjFzhRZBFZ0xwmLCilKBZVyDI7XvdzxuXGgiHr5X1g0Xx3ZQqL7pkyYEEQ8eMfv4zbb38dGhpKF/PmCd2ZwUxccJdlGQsWLDDSXvL5PEZGRnD06FFMTk4ilUoZ9e+SyWSguf9MnodGxawmdDMZVmKjqip27twJQRBmpcTSiplaXJxSimPHjuHYsWNYv359VaxsqxWhO3CA4IEHCBIJIJezkqvy+T9uuXXOSSQ3+eAW4s7v/Ygjl7sFASMHrOjs4OAARFFGR8ciSJJ7NJCDQMOv5H/Aq9LP8fbC99FJL3L0u+To4TWh4cYubqYkPJpm5hZGXYUXIsmynLAen9f4VM6ooRIy51wUCL5dFHIWJYI4s+QyUS532ELPpt2/9bPypjDsvRu+g1HvYxkJLC5uwjJ5E7QixTRGcEh6AYek5/G08t9QaAI9Wi96SC+WahsQR6nTHO+vlYhLkoS6ujrU1dWBlUsp6O6ZI9C0IlKpGGKx0uLm3MEyiNTR7RywvFkWsY/HzUWkSl/vdqWFN+kOUiuSG5xwd0+/61buknIJp6JIUFV75M+ZE2p/BwmG4Yrb2MdTBdi1oxAEDT/+8W/xvvf1GoTc3M/MT82YjZgJEbpyiMfj6OzsRGdnJ1hZjAxGRkawb98+5HI5W4HzWMy9TMZsK1kAzBO6MwZO6CYmJrBjxw4sXboU3d3+q5azAZUUVa8VnIS6Wqs2oiiiGFX/p2NoiOCnPyUQRYpcjucq8FV3r/1yRzeUjTTxybdVtskJXbkC4ey3QWRp1DC7yOfzGBjoR1NTE+rq6vXvRXjJibIYwRblD0FB8L78I0ihzUZ03MoemOeGyXvMcgLUM6LDTE1sLUWaoLOixQIoZbmFjBSFb4hvVy4C5TffMd1PQ+/eKBwedlsvAln9iRmvrxV80he2C9EIWrhJfjQZbPjJrhsRDLov9ox7kw2v55+XNZAkIK214FztRpyru2cOCQdwUHoeL8tb8EDsS2gnKwyC10nW2uSZrGA6J3iCrX1FUaAoMhoa6gEwc5VczirPTCCZTOmTOkHPh4u6UMMXvAQ9H4z1iUezorYL8Osi2hY2rJGvMDlypqzTm8ByuWe5W6hY1CCKglHb0I3EujldepE6Jo3nDqIEqipgeHgad921HTffvN7W1/kI3ZnB2Ra5EgQB6XQa6XQaixcvBiHEKHB+/PhxEELQ1NSE+vp6pFIpQ/02NTUVidA9/PDD+PjHPw5N03DHHXfg05/+tO3773//+/jyl78MAKirq8M3v/lNXHjhhZUfaADMakI3k1d3RFHEsWPHMDQ0hAsuuGBW1cLwQ7XzyiqFNWdx0aJFVW270mhkNkvwgx+wVWFRpBYThfKTfLdcN7Nf5oqru7ySm6GUf35MZz93MIt+JrHM53m+XLvNKpgXxXbOC08Jfbhb+QDWkjfhKvUzECF7FkC39h0wJyy8LpzeW89jdTp+ljsuNzhlrdDLGvD6V0EJgiRRFIvmRNYfwSS3YcBLU4R/fQabJDoRpa/Weoa1Qlg5JN8mDPj5CueaKESSwqqqYHv2w/TRtPsvPcBy/efGTXxhg8kzV2CBugKbdffMY+J2HJKex6Oxr2FcOIWl2gYs1fPvmmiXI0fL3j4jQewh5+6Zzc3cPTOHqakp5PN5SJKMVCqJZDKBWEyORNhN8xyTrLJ3DTFMaCohd4RYyxwwyWuUiDeTaPJcPXfSzfPuyveJ6lEbAbIs6pG18gt5PPfQ+TsrOeVy9wMHhvHYY3twww1rLNvPE7ozgbP9vIuiiMbGRjQ2NmLZsmVQVdVIpfmzP/szpFIpXHrppbjgggtCEzpN0/DRj34Ujz76KBYtWoTe3l68+c1vxjnnnGP8ZtmyZXjiiSfQ3NyMhx56CB/60Ifw7LPPVvswXTGrCd1MRbFYxPj4OCilVY0InQ0QRa7xP/M4efIkDh48WLOyEJXWCvrhDynGxwHuNOlF0Oz75JML79/KMpDPu0/OJImbeASNergP7CyKxmvAUV0SldNLEpTe707p2XbxR9im/DVeX/wy1pI3gxfu9iq1wMcfTuKCwJ9IBI/QcQJtJ3Mm2DkoX9qARzJZO9FNF1iUMNLmkfcLRIsAAdEiYRxhCFRY6WC0foW/dlFyLe1lD/zNZoyeGYYe4fLp+P7MfCnntuWPmZdWcXs2ZcTRQzahh2wCih/GFIZxWHpRl2d+FwpNokfrxTLSi8XqRUjLdUbtQUkintEr5p6ZQl1dSpf4qchmcxgeHoWmFZFMxhGLsfw7qzwzDLgagA3hJrG0OmKGJXfW/DrmIhx9vDSlqqXSXu50GQSmTFLTjVNEw0TFr74fj/Cyf5vfW8dG9s4u4oUXjqK1NY0NGxbpfT+7icXZirMtQlcOsiyjtbUVV111FZ5//nkcP34cDz/8MH7+85/jxRdfxFve8hZcf/31uP7667FmzRrfQNBzzz2HlStXYvlyVnLjlltuwZYtW2yE7tJLLzX+ffHFF+PYsWO1OzgH5gndaQZfKUin01i6dOmsenCCYCZILgkh2L17N/L5PHp7e2tW46QSQnfvvRTHj5vOa0HIHAAoCpDPu/+Wr5LzXDl7XzlxFIwoVzC4rdibET5CNJw6NYBkMo4FC7o8JzeslIIGlRawVf4cDolP4l2Fu7GArjVWqO1kjkUs2bbUMnEJ0OMAZQSC5g6x8yZ4kjlLi7phirmab2+H5+9VFnWqlMxFiUoB7JyWl2iWNhwld850JAxLSsLup/bGLgAn/OFNS8KUPbBvF76UAWCSFOZuaPY1KFEmxBqJ996mDq02eeagcACHpOfwW/lu3B/7O7STlVgu9aJH24iF2iqIKP9uNOWZChoaTPfMQiGL/v5xAIJeGiGJeDxu1KCzgstc3Q6XqQwEPT+Xy92JIVFk5C68HFeWK8/FZf2DJ+kKCx5V4yYnjFB7l6+xOnuahNeM5rMIsARNU/Hoo7vR1JTE8uWt84TuDGG2n/fu7m7cfvvtWL16Ne6//3588pOfxGOPPYbPfvaz2LNnDzZs2IDrrrsO1113Hbq6umzbHj9+HIsXLzb+XrRokW/07Tvf+Q5+53d+p2bH4sSsJnQzSXJJKcXhw4dx6tQpXHTRRTh+/PgZJzZnAmfaFCWbzeKVV15BR0cH1q1bV9N7JOqx/upXGnbsoLrkzj9/xdwXGxzdIm+8phy/3ZzzAy6LNHM3gvfV6b7GolBs0pPP5zAwMIjW1hakUmn9OLwxLfbj59L7kaJtuLXwC6SlhhJ5JY/Usfw59xVhP3DCU95gACgXdTDr/wWfJPFonTW3zszfC38vWm/fIMYJ3ohWa45v6+xLLcFzQ8MhiiFI6E0iRxvZZDvcNvaad+G2c4vYBN02Sm07DmYYBAS12BcgoJ2uQLu6ApvVd0IV8jguvYIDeB4PK1/DZGwAS7T16NE2oodsRBPtDNQPa3HzpqZmEKJhejqL6ekpjIwMQ5IUQ54py7IhTxQEf4MiSksdNZ3kjskygz1rfKGkGmTMbsBSKbHjUTlNJ7983PHKp3QWIac2gsdyjglUVcU99/Th1lt7501RzhBmW4TOC9PT06ivr8fKlSuxcuVK3HnnndA0Db/97W/x2GOP4bbbbsMVV1yBz3/+88Y23tLlUjz++OP4zne+g6eeeqpmx+DErCZ0MwWFQgE7duxAMpnE5s2bIYrijIhUnQmcyeMeHBzEnj17cM455xj1TWqJKIRu506CJ5/kg7gZNfPfD5tIsCiP/bfuxa55cj8nR+Y2YSf13FGNR714hGliYgITExPo6OiAoihlIz9HhWewRb4DG9T341LycT1Xg+/DakUejXRwCaiXZDMsOHGNBp5bx2oKVhqVA6LXmTO3r6TGXdRrEq3PUSSKlZFV7+vjdk9H21cUma1gRKnDgudIRiGgTkIYth1eEiEssZAkCmgylqqbsBSbABWYFgZxSHoRB6UX8FTsvxGjaSzTyd0SbT3iKJ8jwyJFEhob61BXl3aVZ8bjcRSLxUCkyhmts4LdG6bUkJVmcL9f2KKPKeGstNac2T/o5lrRXxhc2m4WYyf6eFdu32YRcp5XzOWcfLzMZvP46U9fxoYNyVkdKZqpIITMaqd1junp6RLvCkmSsGnTJmzatKnE7ARgEbmjR48afx87dqwkigcAfX19uOOOO/DQQw+htbW1+p33wKy/atWwD68Eo6Oj2LlzJ1atWoX29nbjc16uYK7hTJiiEEKwb98+TExMoLe319PGttoIS+hOnCC47z6CYhG6gxof/L0nbWZJAXt+FoseeRMYNllwk2xFiWSwukeaxgbmoaFBUMqkDXzA95r0UVC8KH0LT8v/F79X/H9YLV4FDUxeaVqDVxJ5gi5zDEcCBEH0nDiV5stFjawJUFXRMFaISm6ibstRiYFK0LIIbtc/KqGwmnMElUVGHwKiXNvw5IxJ4rgRRnDwXLJoiJZPB9hJXdRcQ1WlkOXykUJu6e9mCJUirTiX3oDzxRugFTQMCgdxUHoBL8lbcH/sH7CQrECPtgk9ZCM6yGqI8I48WI/JTZ45PDyMkZFhjI+LiMfjZeSZPFonwCvHj93/xJAkWskdMybSbG1zIhy0dp0f+LmM2pZZhJ39bUbpODHzbtNqcGOtY2d9pkdHp/Doo6ewfv15ofs2j8owVyJ0mUwmtBlhb28v9u7di4MHD6K7uxs/+tGP8IMf/MD2myNHjuAP/uAP8L3vfQ+rV6+uZpfLYtYTujMFSikOHjyIwcFBbNiwwSiMyjFXI3Sn2xQln8+jr68Pzc3N2Lhx42mVcIQhdBMTBD/+MUE2S/XC2wJiMWoUEXeD1VWRG1I45ZWlfWITDa9uhZmMCgL0CRmTWBaLKgYG+lFXV4fGxgZYJ19uxXiLyOAh5U8wJLyGWwu/QKu4GJQKUBTm7FnpbWIas0Tb1q2As1vENMqCkdkvk1RzEh7cjIVNoCpZr6rUDTNKnhnfNmpUL7zcMlpULyqiuieyfKSw2wmAbqUfFlHz8Di4y2P0+0ewtOGWXwmwd5mfkRAAvQC2LEto15g883XqO1A03DNfxC9iX8OkMISl2kWGPLORdrgekyiKhksu64egO2PG0NTUiFhMwdTUtEWeyd0zkxZ5ptmeIIiu0TrncVjJHVvQc4+isZw8ThQrGc8ES1vsXRIV7Pwz2SSTYYq+Cz08j5Llc5qunHzMJAQ4dWoKDz64C7//++sj92se4TETC4vXAlNTU6GVWrIs4+tf/zpe//rXQ9M0fOADH8C5556Lf//3fwcA3Hnnnfibv/kbDA8P4yMf+YixzQsvvFD1/rv277TsZY4hn89j+/btqK+vR29vr6tsQJIkFAqFM9C7MwtJkiquzRYUIyMj2LVrF9asWYO2trbTsk8rghK6YpHgRz8iGB/npQkE3Urfe4C1W+Qzkwh3eaW1P1ZppheCDepc3kkIi4Bns1kMDQ1hwYIFSCQSZbcfFQ7iLuU2tNNz8T7tAcTlFIpFvuobRX7m1r9KJ/HOiGflhYS9SaY5sWbX0X9f3H6+MplltFpzHJIEBH+F2XcSNTpnJWYsx8b6rTWPp3R/1t+a7nsUVimbORl3ygmtn5v/Zt+LlnatBxXuAKPe9yy6E+154SZIUe8jJh2Olo9X2gbrhPmMlG+T51m5kUMFcSwjm7CMbAKKf4hJYQiHxZdwSHoRv4p9F3GaNqJ3S7QLDXmm1WXSTsLYvkRRRF1d2iHP5MXNVSN6l0wmIElSoGidFczpVtOPzzR6sl4jTjwrjdSZxdYZ8Qy6AOnM6+ZFzXmNOUKIsdjgDVbPLx6XUCjwF6JZk1TTCHbuPIXu7sPYvHlplMObRwScDYXFq4Hp6WmbwUlQvPGNb8Qb3/hG22d33nmn8e9vf/vb+Pa3v11x/6Jg1hO60y25HB4exu7du7F69WosWLDA83dzOUJXa8mlNTq6cePGQASjFghyrJRS3HUXxYkT0C2g2QAYi1Hk825tcldF8zNWk8o/P4wZn3jLCM3++H/P2+JRKkEApqenoGkauro6IUnlXyn7xcfwgPIxXE7+FL30AyBERNEipyJEgFl8NjwqiTqZMN3sOMGquEWBS6n896uqwNjYFDQtr8u6EjbplT26FY0E8Daikjlu1hB129LHwszHMe313Y6Llhjx2IvSU8f/GdykgaZsjJZ8ZvaVuBAtavmeT26t7fI+mfeQk1CWRtR4pJ3Y5GzW7nhFQ82aZdHA3CejR3q5MqCS1zojY8yiX1VJ4ONxnkdnzTsr6mkbztNuxHnajaAgGBAO4JD0Il6S78b9sb/HQrISPdpGLCObsJCsAoikqyWIxd3SuVBgdc9sMOSZuVwWExPjAIBkMmnIM5nbpXe0jt3bmu1vk3AJBnFiYwX/rBIJpilzpJQGeu/aFz5Kv7Man7A2Jb3P7u2pqpUIlpZAePzxPejubkR3d1OkI5xHOMwVyaVbDt3ZjllP6E4XKKXYv38/RkZGApGIuUroan3cxWIR27dvRyqV8oyOni4EyRd85BGCXbuoMWDzn3tJkOxySWqs3vpNxhghMc+Dn6zSq3gw27+94DghBJOTU5AkCZ2dXb6yL0opKAieUb6Gl8Tv4g8K38VS8XWehi9RVv6ZA2Z1jE+4E19l5icmuHys3KSXEIqBgX7Isox4PIVMJoexsRGIooRkMo26ujhE0SyzES3SVekCV/ntnQRGklgE2XQpNQkEL6Buz8sp3Yd1Imy2HexYarWm53X+uWulMypo/tu5EfubLbx4ddb6bPI6ZdC3ExGLscUALhcM4xLICEt0CR+PjkWV0bLnlr3Pgi4ylEZoeV94dM37eASIWEhXYqG6Updn5nBM3I6D0ou4P/b3mBSGsEJ7HXq0jVgubUI9aQ8kL7a6ZzY3N0PTNGSzuRJ5Zjqd1HPmnASRlNwn/Ce8XAeLYIq6qYhgIVFaxSkFjHjxXD7v3D9vsIgfd7DkBJXJWN234CTOXHyXALCXOKWAqhLcfffLuOOOS5FInJ7897mM2V62gCOTyYQuLD7TMU/oqoBcLoft27ejqakJvb29gV6qsizPWUJXqwgdr/G3YsUKdHSU5kecbpSL0L34ooZnnuEDtCklc4sImeYnDGatN3+5lVmo2oRXl9gkyP3eZXb/JpksFAoYGOjX5UUJ33teFIG8MIYtykeQE8bw/sJjaJQ6yhIvTRMhilqgSSKLUnr3Pyx4NO10krlisYj+/gE0NTUgna6DphGk0ykALSgWVeTzUxgcHIaqaojHWUHkVCoG7jQaDNHLE3CSZiXa1rZ4/S2gNLqkaWxipihCyXUPOndwy4MLpsCohM2Vu/4ehCHibWOWIihtwP6MUdt51zSWd1oqhbOSOlOOygkfB6+VFlU6aRaYDnZvcYk4M/QxjXWseVTBzr3XwpQQSpKoIIFlpBcKktglb8VlxfciTVtwUHoBv5K+izitQ0fbOqyWL8NybICCYKoPSZJc5ZmDgyMgpIhEIo5YjMkzFcWtv+7HSIhmEDl2/qxlAMLcfKVtc5MlVp6i9GIGWUSyOmAyIkr0/kqe14RH/pwRQEoppqcLuOeePtxyy6YQxzaPKJiP0J29mPWErtYmGENDQ3jttdewdu3aUPakczVCVwtTFEopjh49iuPHj2P9+vUzZtXF71gPHFDxwAPs307SJYr2QdSeL1eaP+U1QDpJIAcjPcEnbs4o1dTUFMbGRtHevhC5XM5zQs2JTD/dibvk92I5uR5v1b4LSVBCRNHEklVrKzgZtpY4qBRc1hqU9Pjtk5urlJsAZbMZDA0No729HfF4vOScxmIyZLkR6XQjRJEgl8thejqL8fFRCAKTdSWTKcRiio8cihrE1w9c3mmVRmoa1c8LhT0Fllq282+X5XpFz2t0u8+CRN6i5utVgkpcNaPmRrHza963/LjN81YqR+VRPFbvUoCimNeHGfQEifKZRJE7NHofPzUk0V7k0auAuVtbfjALmQc7l7ulX+Kx2NfxxvxfYDnZDAAWeeZ+9BV/id+m78FD4pfRTlYa5REWkpW+7pkcbvLMQiGPfD6LgYExUKrZ5Jlu7pn29kx5JouoCGDvy+DyWS/jErZYyKN19qix//Nkvbeg9407W5rROue71Sq1pBRQFPvLpFgkOHx4FE8/fQCXXro82MHNIxLmSoRuampqntDNg8Fqhb9p0ybE4/FQ289VQlftCJ2qqnj11VchSRI2b948o1aWvKIHhQLBvffyiYudrAkCbBNmp/mJM3rnNbh6kTkOt5V0pxMlNz7h+6eUYmRkBIVCAV1dXRBFCfl8vsQ4QJIEY5V3l3gXHol9CtcV/xbrxbdDowLCzFX98um4xMv6GFWaL8td+5wRDH94S1SdkSo3jI2NIZPJoKury/X+5ZNSU3olIh5PIZFIQpKakM8XkclkMT4+jkKhgHg8jmQygUQiCVk22+Nkjo3V5j0F8HuB/9td7suNQ8odtxcqc5p0L48QhKxVkkddvn3vaMPpgxnRY4s1waM0Zh0xCujmSuz/1nxGUxJu2dK2na03tDQnj8m1mawyyD0QpIB5EEde1hd2TryuCQXFc/KP8ZK8BTfnvox2usK+H4hYSFfhvLF6tMduhxDP4xB5BYekl/BQ7KuYEkawVNuAZdoG9JCNaKDt7jtyQBQFJBIJJBJxNDc3QFVVZDJZTE9PO9wz45BlxXfhyGr9Lwii/qyVH2f981Xt0TpGsP0XsHj9VHvf7AYzVsMUZ44o7xOXzVqhaQS/+tV+LF7cjMWLm8se2zyiYa5E6DKZDOrr6890N6qKeUIXAdlsFn19fWhra4tshT9X69BVM0I3NTWFvr4+LF26FN3d3VVps5rwui9+8QuKsTF30qUoFIVCqfkJl1g6bxnnhNOUb/rfk+WkUc6+EaLh1Kl+JJMJdHZ2gE/o2CESMCkfG6A1jYJAxePyF7FHfAC3FH6ORfI5KBaj5ufY8+mcElUrTPOC8LCbvYSTMbq1RYj/xJ5SioGBQYiiiM7OTp/3iNdkS9BlqTE0NSloaqpHsUihqgXddW8AlFIkkwmk00lQGrNEHsOfpFKL+uBtMPMGAgSIZATbt9luObJWY5GGKxghil7jLUyfnYdfiXSSueAKlkm3uQ9vB09iiRCZ31NKjPpkpbmP5eEsYB4VTMLHI1f2tgg0PKr8K05Ku/Ge/L+innobmbFtBcgkhRX0dVipbQYpApPCEA7p7plPxP4LSVrPSiNoG7GEXIgYkp5tsvcm1SNUEhoaWHFzgEmws9ksRkbGoKpFxGJxPRKf0A1k3NvjcsxYTNYNZvzPn9OExAkerZMk0SD83m25P5PWguKAKbVlqSfEtmjFF8HMiLO50ESphnvueQW3334pUqn5fLpaYK5E6OYll2chqi25HBgYwN69e3HOOeeErmFhxVyO0FXjuE+cOIFDhw7h/PPPP6tWWfbvJ3j5ZZ5rYr83+Sqm0/zEz6LeajnO38HlyJwXuFzKSQjz+RwGBgbR2tqCVMopZxUMsxQ+8E5jEFuU2yEhhvcXtyItNqHSShWaJkKSNGPy6nULRSFzXiQ4aFulE+ryZI7X7Kuvb0BDg/v9y6+Fd86jYPkNW/EWBIJkMoZYTEFjYwM0jaBQyGJsbBL5fAGyLOuTwiQUJfjr363UQhCTCOf20ecJ3hGEqNtWB35R8OCyXVuLghDYqdVtIq6q/B0Sft+sTV5fsvxv+STcqrrg0lwW4bdKOsM7aVaT1LG+mQQhj2ncG/9bAALemfu/iCNVth0zSm7Wg6snbThfuxHn6/LMfmE/Dkkv4gXl57hP/Ht0kFVG7buFZIVFnkkhScR2bPx4CbEWN68DIUChkEc2m8XExAQAapRGYC64pf0sFlU955URMe6OGRX8vJWr7ekW1eYLSVa1BXtvqXrun/k7/kx7LdaMj2exZcsreOc7eyMfyzz8cTrr9Z4pTE9Pz5j0nGph1hO6aoEQgtdeew2ZTAa9vb2IxSpbHTod9v0zEZVKLgkh2LVrF4rFIjZv3gxZPntu4WKR4MEHuV18aSTJJG72fDm/02XNU+COZ0HgVvNKFAkIEW2D9cTEBCYmJtDR0QFFsbsrShIjL4WCOVE7IbyAe2Lvx3naLbiSfAqiIOkRh8oKYOs9BCtc63dc4XZikuDSz6NILoNMxHnNvvb2BYjHvc0V2LUX9H+b14vdI9Rwh7Tnt5iF3iWJ6tcojWQyDUr5qn8Gw8PD0DQNiQQzV+GW6u5wv3amiYX/8bLfVnLxvc9pkAhdJfddJfOaSrYlxKzH5b+PUjt9RqAqK93BpXNB5Kzs/+a7yno/ssiqeRyU0hJ3x3L5gtUidTAKkAsYIwP4Wfwz6NLOwQ3FPwqUA+d01TRJCs8HFCBARAddhQ51FS5Wb0EBWcM988HYV5ARRrFEuwg92gasxAakNXvePX+mnMcrikAiEdflmeycsjzaaYyMjECSZN1dMwlFUWzEU1UJJEkwFq4qnXaUux5+UlhrrToO5tYJSBIzijNJt2iJ0pllQARBwIEDw/jVr/bhiitWVnYw85iz0DTNNqeZDTh7ZsNnEJlMBn19fVi4cCHWrl1bldWLubAC4oZKJJf8OnR2dmLJkiVn3Tl85BFgdJRHwOzfsckTgabx2XFpvpwbCKGBa8xZ4ZRpyjJQLNoLJA8NDYJSoLu72zjXbPXdrHtHqWhMqF+W/gdPyl/CG4r/jHXCG6ARwZiSVkrmuByS5Yd4k7owkksvGZ/eEsJGdoKQufHxcUxNTaGzs8uW32aFKAqQZQ35vFljqjTfMYhhAs8f4lFUClFUEIs1orGxEZpGkM+zVf/R0VFIkmSJ3pmTQr/zFJTMMYISDf7XqTxOtyFKNcANZMpNvr1uA/asRF9EMZ8jH+t/gervDaJLrd36Yb9+nIC7kXBeZw0oJXnVqHXH93GC7MNdic9gQ/Et2KzeDCGELNaNrLBzzfP07G3FkMRyspmZrBSBSWEQB8UXcVh+EU+K30GSNmKZTvAWk/MNeSavy8fJjhOSJCKdTukuuHyhJofRUas8kxE87oRpLWzOo2Jeyg+/4+fXxiu3udw9xwyW7Ava7H2lGrlbTPZn3gtM2cMLzzOC99RT+7FoUTOWLQtuRjePeQCmGdRsw6wndJVetFOnTmH//v0499xz0dTUVJ1OzWFEjdBxqevZeh0OHTKllm5W+KwsAJv0euXLOWFKBcNPlrnTpSSVDuqmHLAODQ0NYFI+RljccvhU5PGg/Mc4IT6P9xQeQLu0smyuXxhYXTbZhEnUpUqlvw0aVbPmy7kjjJEGLUvmKKUYHByEIAjo6jJr9vGcE5O4UYgiQT7PVuHdalUFhfUYuSST7ZObXIiQpCRSKTaJLBZVg9ypqop4PIZ0OolYLAlJ8upDeeJb6bjpdx3KXyJqs1APv+9ImwGoDvmoRC5aiRkMh1U2yopEmws6TMZX/rwyg4vyZTucRI8XurYSyiDt+OGA+CwejH8Z1xf+GOfiKqiUREhzLL0urNtiScTciXq6AOvpjbggf71FnvkSnlPuwr3il9FBVhkEb6G2ApIol81bA2CRZ9Y75JmTsMozk8kEBIGVuWCLBrzmXLAjt0Z+eV6c042UES//Z858Ju2LDty1ky1GmOMar21nFh9n/77vvu24/fZLkE6HM6WbxzxmI6mb9YQuKjRNw2uvvYZ8Po/NmzfPutDsmULYSQYhBHv37sXU1FRVpK5nAqpKcO+9bFB2I3OSxJwtuUSOyZbKt6soQKEQ/YWkKNQwKuGmVtw+f8GCBUgkEkY+DIvIle5rUjyB+xZ8AG3CCtxWfAQJsa4qhb05GIl05rYJek6dO6nzQ1DTmDDveUlyWvnboaoa+vtPoaGhDk1NTTby5jQoCRKVdfTU9VM/yZ0p6bWSegpFkaEo9fqkkCKfzyOXm8bo6DgEAUgkUkilkojFYsb5KUfU2b0T5njsKJd3VX7/QBRjEvv2fvAjm9GNUQDoERT/SQd3H3X7iSkHjLR7SxvsGDXNr+i5P6KcCzMaZCd5smyNwvsbeljxsnwffq38D34//zfoJudBgxkFC3eNvPfH5ZJeJRfYO0uPNNnkme9AAVkcFXfgkPQSHoh/FRlhHD1kPXq0i9BD1qOetAXqXTl5pixL+kJNwojE8wWecoutTnWN6UZqnkMeaQ0ihWby4FISzBYQ7eePS0etv52YyOLuu1/Bu98drP7vPPxR6QLQPM4s5gmdC6anp9HX14fu7m6sW7eupi+K2bhKUC3kcjn09fWhtbUVGzZsOGvP06OPUkxNwdXl0erYKElAPh+szSD1xPy35yugpuvY2Niobp/fiVhMBres1nta0sYh8QncW/+HOG/i/bgu9edgOSrR+2QFz8nxJl6c1FFHLke5yW/w8xZkbGORVbd9sahbLpfF4OAgWlvbkEgkfK3EWQmLsAOqm3QtTBSDXzNO7HmUREA6HUcyySaFqqohl8thYmIC+XwesVgMqVQKqVTc1xGNTxaBaNGuSsw92PaV5l5VFiWLaowCMBJUzro/SBuUlqvnZtvCkFWzCJy12Hkl/ajMfZOD5YiaKgYmSbRH8pzkgILgCeXb2Cs9hXfl/gXN1HREDluAPAhMuaS9TSuZc0MMSawgvVhBeoEiMCEM4rD0WxwUX8Ivle8iRRsZudMuwmJyHmKBi5s75ZmqHr0bRy6XRzyeMKJ3iiKj1NGUwUvyyuSwkh5dM3Mqgzy3ppulk0xSEEIgyxJUlUftzMge/z+lFAcPDuOJJ/bi6qtXBzof8/DGXHG4LBaLszJIM0/oHODuieedd54uN6sdRFGcJ3QeGB4exu7du0MXbJ9pGByM45VX2ATZDaIIFIvUiNIFAa9dx1zkwoNHvdhkmxGi/v6TkCQFixZ1AfAu+guA1W2S/g3Pyd/E70x/Ay3T54ImykW8gkdm+XGVl3MJekkDUnaiyCOfQclBELkbl6CKIgzTAe4mRwjFxMQEJicn0d7eUdZRspxUKyjY5MisIxYW7JwLhlMnI3iAokiQ5TTq6pi5SqFQQCaTxcDABAghurkKd9zj+3avHRcGlZp71BpBchlrCW5u5LWf8o6VpQTOOq828yjdiXGY46ueuQk7bv6ecEbyWM6VCFEUUKA53C//A6aFEbwn929IorGkLV6A3Mv8p3Tf5X/DC2mbJif+ZM4NDXQBLtBej/PVG0BBcErYjyPyb3V55j+ik6xCj8YieAvpcggINhHnkXiAuevm8zlkMqZ7ZjyeQH19GooSd5jA+B0v1UmdmecWZgFA04gl0seJmwhrwXFrP3h0jxvVPPXUASxZ0oLly4NFMefhjrlC6Kanp5FKlXe1Pdsw6wldULKkaRp27doFTdNOm3sir0V3NsoIawVKKQ4cOIDh4WFs3LgRiUSwVciZCFUleOqpZtTVuU+wZdkc8INMfJ1ywbDyCCZjgSUfDdC0Ak6eHEBrawPS6bqy0YQ8JvGg8keYEI7htsIjSAsLMKyNh+qHH8xi3MFniqb80v18WHPwqoVYzHR4ZJMNu5Pf0NAQKKW2fDkv8Ml0tEiUvW1ZJoHymvzAV+jZ/WFvi+ffSVIM8XgMotiIYlHVJV0ZjIwwc5VUKoW6ujhEsbJV0MqNgCsjD0Fy9GoJVeUOoe7XNIh7qL3YODXKXfgROCe8yFjYd5CqmosrlUMwJvdW8BIJk9oo7op/Dg10IW4pfgWyGDMiQk6wAuQ8d6safWNtEkKgKGwsiAKDvEBEJ12FzuIqXCrdjKw2rcszf4v74/+ErDCBpdp6ln9H1qOeBic2LEIXByGN0DSKXI7l3uXzg4jF4kb9O0URfN9lJvnyLuLufZyC4YCpqoz8ckJcLGqQZckgdWYOnWZca4Biy5Y+fOxjV4YqxzIPO+ZKUfGpqalZV4MOmAOELggmJyexY8cOLF682OboV2vM1Vp0XigUCti+fTvq6uqwadOms36l6Je/BCYnY0ilSlfQueSRFZdnx+k3CLJTYa60h514cAmjldhMTU1jYmIYHR1tkOVY2UnWsLAXdyu3optsxk3aN6GICeRIsWq6e7N+W/jnz0rqrJO8apE5dv54NISgUPDqh4ZTp04hna5DU1NpNMCt3XASSTvsK9dm5LUSeMlI2f7sjQsCi97FYinU16egqoCmFZHJZDAwMKKXRohD07TQZkiVGmAAlTtcVm7oUun+BZ1Ief7Cb+9GtJTlZpKSsgJhjo8bKQXffynYs1mZjJWDtePe1ohwFD+L/xXWalfjiuL7IUAEscjLTbMhsz4bI3XcwKUa7zRqRPG9HCHLtuDSDU0DklIaKzSrPHMAh8SXcUB6EY/H/gtp2oQe7SIs0y7CojLyTP6MsXp1mqs8c2pqDJlMFvE4I3eJRMLVpZctcplOzWHBykqIyOeJJUIHaJoKSZItpI7JMa1GOtPTeTzzzEFceeWq0PudBwMhZE4QutlYVByY44SOUorjx4/jyJEjZ6RA9VwmdE6p6fj4OHbs2IGVK1di4cKFZ7Bn1cGJEwTPPccmDqpKYZVrswkDrzMl6p/5FZDmuTD2z8LcOtZ8NEopRkaGoWlFdHR0Ix4XUCz6Tzb2iA/gYeVPcKX6GWzErSAUYPOTyp30AE68WHtRoWmiEaEynUKjtyeKzMWNUqJHUc0JWulvBWSzrAB7W1srkslk2fbNPMHIXXSgOvLtMJI40yGV7VcUAVmOIZGQAbDC5tlsHtnsMIaGhvTC5gkkkylbaQQ3VGNdrfJbs7yxgx/s0bGIPShDgPi7lM3DeISbXxtqtOGsoxa+H27EJPwJ5rXFWBSm8miyU5J3TNyOLfG/xuWF9+NC7XdLtiktnUANEsKjlkym6n5sQe4p9j43y6uwPLPgBi5mX71JnZn7R9FA23GBdiMu0G4EgYZ+cT8OiS/jWeXn2KLLM5fp+XftdJlNnskvAY+QWdUCXJ4pinUghKBYLGBqKovJyQlQCleptVVuGuX5Y2UNmNkKX9xjslpNl3VyST7RjVPM5+O55w7j4ot7EIvNvvyo0wEW9Ty7F9KDIJPJzLqi4sAcIHReA4aqqnj11VchiuIZK1A9VwkdP25ZZsYbR48exfHjx3HRRRfNCl0zIQT33ssdKO1mAmyg4/IScyDykk4xeVLw2mpOOM1FVFXF8HA/YrEkWlsXAvBvm0DDU/I/YIf0I7yt8EMskTbYCE2Yum9ecHOyjApVZaTOrXZbOXDHNU7gGInjOSH+5GtiYhJjY2Po6FgYONm6GmSOnXuqm+RUfg6D1NKzwstd0SQwEpLJFOLxaTQ1NUKWRWQyGUxMjKJQKEJR4kbtO2dh88qjJJWVLKgWok5sOViOFy9pIRiTZdY2uz957qYXGBmrPH+N5YxWvojDcvsqNUnh0RqTLO2UtmFb7Bv43fxfYhnZFKgVXtfM+jelQCwmoFhk5hz2e8ifXLPFqVKySgiPtlZFb6oTp1L5vQgJnWQ1OslqXKLejDwyhjzzvvhXkBOmsFS7UHfPvAj1aC1p05nTy8sJKIqC1tY4KG2CqhLkclldas2Lmyd1cxVFJ2TRop08aup033SSOlWliMVEFIusf7lcEc88cxBXXTVvkBIFcyVCNzU1NU/ozlY4DRkmJiawY8cO9PT0oKur64z1a64SOu5opaoqduzYAVmWsXnz5lnzInniCeDUKV4KgEV4ADYJM23pBRuJc5tzMsvx6JNRJ5krFLIYGBhES0urjTirKq+jZt9XFiO4V/kQNBTxvsJWNEgLSqJTnAAF6Ysbqp3fZso2Rb3tcsYmjFSzaIZ3GQQv8kUpxfDwMCgtoqurK/DqZlji5AUemalOW/6kwA1u8lj3/gj6ZFFGOt2AdLoBhFAUCgVksxlMTU1AEGCL3nG3Tf8+l/uu8ghQpWDRqEB7sxVqt9bp4rJcZ66laUBTHkHKIJQDX5Di42klpDtq1IrDOqZrhOI55Yd4SdqCd+S+ggV0eeR+sYUAoFAwTYFEUTBs9P0IOnfd9TrH3AEzOKnzv1a8H37nMY4UVpLNWKkXNx8XBnBI/C0OSC/g8dh/oY426+6Z67GYnAeFxkEINUxKnM8zjzzGYhIkKW1MjM06lqy4eTIZRyyWQCqVCB314XnU7N63f0eIpvsPMNJcLBLb8T///BFccslyxGJzYnpbVcyVCN18Dt0sgDUadMEFF5zxCyrL8pwkdJIkYWJiAnv27MHSpUvR3d1dfqOzBMPDFE89xSaibPIkWvK5uJMll6Z4T2QY8fNLQPfvh+lgyVY5JyfHMD4+hYULO0oiSGzyYd/XKaEPdyu3YQ15E67RPgdJkD3qowV7+TsnQMxYo7pkzsy5YudeVQU9ckUtEx9zQkpIeQLjF5kjhODUqX6kUkm0trYFnqRVi4Cx/lWeZ2ZtKzyBKd0guJupYNTLApp1eWYWY2NTUNUcJElBMplEKpWwGR1wR0LAGsEu3Wc1CmuXNyoKcv+a0RrnXMmUrLJ3hv1aWhd87AtA1t+4TXrdUI0yCICZJxU2J9KrragRTH5tNah4JPbP6Bf34NbCN5CmLRX3i4O56EI36jDVFjxKyfvNnh0S6FkMR+qCnBjBMK0Jck0aaTsu1F6PC7XX6/LMAzgkvoTfKD/DFvEf0UVW6+6Z69EhLgelpS8rJvnX9MivBE2z17Fk798CpqYy6O+fgCBQxGJuTrgeR02J5dyKhokPBzfv4GMoux/NKN3TTx+YL2MQAXPFFCWTyZzx+X8tMGcIXbFYxI4dOxCPx2dMNGiuRujy+Tx2796NCy+88LTnLdYav/ylOQlgzpXc6YyTFz6QeU/Ey5E5Nonzzsvhdt6sxhLBqVODAODpuMjdDEWRgBABO8QfY6vyWdxY/EecJ7wFBN4Ekjs0loPT/tpp0FIpTHdM+74YqWOlDfL50kLe/qDwKoydz+cxMDCI1taWUDJhdl8E2385ssBLFFQjj5GT1vDBm1KTlKjzfEkSUVfHSiOIIkU2W0A2m8XAwDAoJYjHE0ilkrYJIXfktPaDSxJFkZgugULpvWGF8zvr37ywtvNY2fm3O/rxSb5JUgQQIhlR7GjmJtyF0Y1wh7tg1TMk4f+vLC+PIXyeIT/HeUxjS/yLEKHgXbl/QQxJnWxUnp/HoWnsHcL3y96/5jlUFCF0/UhO6lRVq0o/zfII4cxXREjooqvRqa405ZnSDhwSf4t7419FXphCD7kQPeqFWEouQL2DLLP9arpMUzTOuyAIiMfjUJQYgCZoGkGx6C3PdJ4Ddn2t+XGl9y2TX7I8Qu6EyedTL7xwBJdcsgzx+HwuXRjMpbIF84TuLMXY2BheffVVLF++HB0dHWe6OwZ42YK5Al4aolAo4IILLph1ZG5oiGLnTm5CwHPjBCNSZpWnOU1Q+ARFFMsbeTB5iftvzFV8AZpWwPHjA6ivr9NrKpaZNIoFPCJ+HgfFbXhXYQs6pXUeUTnr/oLl0Jk5P2wCWI18Lw4rmeN/cyJNCJO48mhd0ImXn/vk1NRU6Hw51q9whiPlwN0oqzP+VmNi7h3NDNM2N6yIxxXE4wqamhqgaRT5fA7T09PGhDCVSqKuLlkyAbHeC5UGkdhz6td5p9TNOvHnfWCRnUon7u4Rx3D3E8+RqnQBwN0gJXpbYYt7i6KAcQzg5/G/Qrd2Hq4v/hFEsEXa6uTn2aGqTA7rLHQvigTFovnODSMhZeYrUtVIHW+zkusSRwortc1YqTF55oR4EgeFl7FffgHbxO+ijragR7sQy7QLsYicAwVxfUtqECxeF5DX6ASg1wVk8kxNo4Y8c2xsDIVCUXfPTCCRSOrulUQniYIeraOuUWFOQHiNUX7sPJduPkoXDnMlQjc1NYUFCxac6W5UHXOC0A0MDGD9+vUzznBjLkXoMpkMXnnllUB1uc5WPPkkjAk2H3fYgEZd7d6tYJOaYETHy0CFR+ZEUcDk5DSGhobR3r4A8Xj5Wn6TOIl7xPchRVtwW+Ex1MkNZcmcpfflf0FN4uU/QQ4H3qZpDMKiEG4TGlaMnUUD/Cb6nMy55YcND4+gWCzNlys3P2YTwepNMFmEk5OwyqIuleXz2fdbjdeZc9IMMDlZKpVEKsXcQ4vFIrLZHIaHR1AoFJBIMHOVeDxpy3WqHJVHtHjEooqX3wIuAwx+sJWatHBwBUI17mursUkQ9It78DPlL7FJfRt61bdDcBx/NYuYA3yRQNTHbP5i1Eoksmb/BeM+9js95Uld+JvY6YBZDl73gyRRNGjtuBA34kLtRkDUcBL7cFB8Bc8oP0e/+FV0GcXNL0Q7XQoYKgnRJm/n++GEE7DLMwuFAjKZLCYnB4ycRZZHa/aHF4x3vttNUqeBnXdG/F588QguvrgHicR8nd+gmEsRumXLlp3pblQdc4LQrVmzpip6/2pDkiQUvApazSL09/dj3759OPfcc9HU1ITdu3fPyOtRCQYHKXbt4qOPOQpJkuBKjJwSxDBRK7dxXxSpHt2jGB4eRTabRVdXV6DVtqPCM9gSez8uUj+AK/AJQBRDkLlgkCSWPxilxpwXBMFMhmcrwoKxL6/bi30u6uYppRI2Tryc2/N8uWQygY6O0rIa5Qgiz3WqDqhN6lapFX0lE3Lr9fTPDQzeySAlORRFgaIoEMUGqKqGfD6HTCaLsbFxCIKAZDKJdDoBWfYvjXC6UA0S5S6JDX9wTIpduYsoi54IRjSlUvDFsHLnab/4DB6M/QNuLPwJ1mhX+rZXLVJnlZiyXN1yxbOpZVGPSQedhjbWfjK5YPXGRC8HTNeeunzNxhIHySQSusU16FRX4VL1bcgjgyPSqzgkvox74/+EvJBBj3ah8V+aNusqJHv0nzs88+vC5ZnxeBxcnjk6yhZqTpw4AVGkeq5tErGYoucKOuWXptSTkRIB2WwRzzxzANdcszbSOZyL0DQtlOrkbMV8Dt08qo7ZHqEjhGDv3r2YmppCb28vYjG2UjYbj/uJJ2BITPhArigAIZIRObPCOiCFXRBzkgdZ5q5sBAMDA1AUBZ2dneVzsEDxovQtPC1/Bb9b/AZW4Xrjm2qikoLhpaC64xyBqhKoKj95ZttBJs4sZ1CAIBBYo6luk65CoYCBgQE0N7cYBXeDoly5gyhwRtQqIQp+RcSDwDpZLEcQghLHcMfDFjKYOyaLRKuqpsu5RpHPq4jHY56lEU4XuGNlpW2UErFobVajPwC7VtWSN5rRZu98ut/K9+Bp5X/x9uLfo0MrP1GvHqmjei4lzzXldUTLwxop8yJ3ZlTN3malizV8n2HIO+ubO0m3GuLEkcIqrRerNFbcfEzoxyHxFeyTnse22HdRT1uwjFyEHlyAbu1cKDAjZX7SUEkSoSgKEokE0uk6aBpbrBkfH0ehUEA8HjNyaa3FzXm/YSnF89JLx3DJJcvno3QBMVfKFkxPT8+XLThbMVMlfrOR2HDkcjn09fWhtbUVGzZssF2DajmkzRQMDFC89pppLw4AsRirQ8eSxkvzXvjh89IEwcsg2uv6xGIUhQJFoVDEwMAAmpqaAq08FZHBw8onMCjsxK2FR9EiLAWXhlpdBCsFL4dgGktEA5PvUGNypKoUlLpPzoMSRx6tY3Xr3Mnc9PQ0RkdH0d6+sGyxWrcojFch8nLwemdVuxB55bXeTPfG6jzSYftUep5kWUJ9fRr19SlQChQKeWQyWUxMTACAQe7i8XiVDD3Ko3rRWTciRhHUbZZDVashSWX9YMqC6kkb3fLpKAh+qfwH9ktP4925r6NF6AZBsAehUlInCBSiqOkRfZ4jbXVWDH4iS8mdtcZa6dhYuZy1vAOmUw7Mpevex+A+hjfRhViv3Yj1enHzU+J+HJb68LT8M/THvoJusgZL9fy7BbTHILGaVio3ZQYvbCxSFAUNDbIuz2QLbLlcFhMTTJ7J8u9SiMfjkCSzb6IoIJMpzEfpQmCulC2YN0WZR9UxW8sWDA8PY/fu3Vi7di1aW1tLvp9tRPaJJ/ggB70+D0WhwF6KbCXXPijz3zGyw34XpOaWfVsAICgWBUxNTWNsbCwQ6QCAMeEg7lLeiwX0HLy38AhiQgosr4xLdISq1EmzunVGiwhQSJJdAmlG0aq3SKNpom6kYj9mVVUxMTERuL4cK1FhTnKikjnv9qtBwExUpxZeqczYDUEX1apFDK2ullzO1dzcpJdGyGFychJDQ8OIxRQkEiw3z7raz1F+Ph006lgd0sNqnJnviqjzfVY2pLLIlfWaVssgBTDfb/zeLCKPB2JfQkYYx7tz30ASDaGVpqrqL8V2B9XvR6Kfd2exbYAVuY523KwtzTD84GYiVrJ0uh0wmfS/PEktV7pChIQushqLsAaXFN+GPKaZPFN6BffIX0VRyBrkbrl8IZJao2OfxCgNYS1kz57nGOLxGJqbm1Asasjns8hmMxgdHYEkSUinU3o0XoEsS/NRuhCYSxG6eUI3j6pithEbSikOHDiA4eFhbNy4EYmEuxnHbDrugQGK3bu52yCFogDFojn5ZwOkfdLE3SwJsZpqBM+fYxJORhaGh4ehqsGLWh8QH8P9yp24VP1zbNQ+BFHgduj2CaemschVtOhSaVmC4BNPll/BSByx5RWauWjlJhvBJ6nWen2ApJMcFadODQAQ0NHREXhSZf1ZNWvNme275+BEmU8KAq1KlIYb0gQpeRC2vEUl8DZ6EFFXl0JdHY/eFZHLZTE4OARCCBKJhOG2V82F6mo6XVojWJUEcCqNrJVKBqsVpWULQZJEMUlGcXf8M2ikXbg5/xXIhmwvXL95jjIjdeW2NYmc/XhK8wWjlAoo7RuXYPIIoGgYpVTTSMlL1mndhSCQUAqHcmob3nYcaazSNmOVthkAMCEN4IDwMvZKz+Ex6TtooG26e+Z6dJO14CU//BYCCaF6cfOUYXhXLKrI5bIYGRmBqhIoioJ0OoUnn9yDG288L9BxzWXMpQjdbHNZB+YIoZuXXNYehUIB27dvR11dHTZt2uT7UhBFEUVWYfusx+OPs/9zUxLmsmh+7zcghR2r2cIZW6EvFDT09w8glUqirW0hypYkAMHT0j/ht/J38PuF72ExvcSS3+VetFhVRb02XfA+Wtt09sAPTFLJyK9JgAXb925uoR69CGRC4dbXXK6I/v5+tLY2wq2gbhCEqTUXvE1SVYLIy0dU3k713QRPF9hqPyuN0NholkbIZrMYHR2FJElIpVitLFmWKxpHqul06eWQGwWVXTvndsHzyspBEIAhHMXPEp/COu06XF78gM3JMkqkmkeq/N4NbEGn9J3HTYjc7gFGlMLlqXn30TR54gt/TDZZHeMZk4SZ0k9+PtixhzuGqEXm69UF2Ci/AesLr9flmftwSHoFv1Z+ggHxEBa0Lccy7UKsFjehHYs922HlJMwIHi9uXl/fAEopisUipqezePjhF5FOT2Hhwja0tLSgsbFxTkSiwmKulC2Yj9DNo+qYLXXoeJ2/VatWob29vezvJUlCLpc7DT2rLfr7WXQOMG3uS8sTlNp6mxEhE2w7r8GUGhGfWAyYmMhjcHAQbW2tSCbLm3TkMI77lTuRFYZxW/5x1KPThcx47Tv4Kr492lUevK6T2wTK+bvgZI73pbydOpNEmm2yfLkRtLe3IxaLY2RkAtYC1kFQTTLHJpFC2bw5HiULHkn0LmofFl7OfR6/Lvs9l7ZViihtlJZGYKv9w8Oj0LQi4nEzehfFXKV65QKskaLKGmTPVLii3t5tVY/cHxVfwZb4F3CV+kGcV/idknu7koLmbkXa2QKHP6HxW6SslnOos5+sbbMmWzXad3PAZItpUaWj3lFKr/tdEBhJFUUBIBK6yBp0kTW4TLgZOTqFHdPPYKB+L+6OfQVFIYel6vlYRi7EUu181KHJ0g6XVtvf9/xcxeMxw4xtaiqNNWuaMDQ0hP3790NRFLS0tKClpQXpdHrGLvyfTsyVsgWZTGbGlTGrBuYJ3RnE2R6ho5TiyJEjOHnyJC666KLAD8hsMUV5/HGTbADuZQf4iiuHLNtJhBXMDltwfAa9bVbEdmRkAuPjk+jo6ISilH98B4VduEt5N5aRa/H7xf+BhJix8muXM7oTIEIEvc/+++H99CZd5uSTu34ySZP/IMpllmFr15Wb/EiStYA7xejoKLLZnC5dlfR9C4ZMiblB+pMXN3ltJeAT9nKTONMdMGi71SuhIMvVk9lVU7JXDamaosiIxepRX18HQijy+Tyy2SzGxycgCEAikUJ9fRKSJAWaDFbLWRJgE+hqTO6jFPX2A4/2V3L6d0qPYlvs6/i9/OfQQzZBkp3PlVAx6TdJHV8sK1+GoNw+TfOR6r0DWARK1N+VrL+yLBkmTlFhdcAEKn8ncNdKVSWhrg0/JkmSwMvIJIQ6LM1eiPPkK5ESYhgix3FY6mPyzNh30Ujb0KNdgB7tAnSTtVD0Mc2t/2ZBcopXXz2JK69cg7a2NgDMuG1kZASHDh0yJHic4HESONcwVyJ07DmaffRn9h2RC2bqysvZTGxUVcWOHTugKAp6e3tDvQTOdiILAKdOUezZQ40oEzdBccJqlCFJ/oMmIyHm3zzfg026CE6dGoQkCYGLs+8S78Ijyp/h2uKXcD55p63dMIFhVfXPpwsS8REEqhND62/LkznWdnWfX+68CQCEaBgYGISiyOjs7NBNbJz9E3TyRz2JHZtQVLPWnLWv1WuPLRpUrz1uPFILKaHPLw35G3MgLN3Q/MyNRNlJh5Vo2Y9DMHKKRBGQ5STSaRa9U1VVJ3djyOfzutMei+6xBQGzIWdxaR55rQT8fuMLHpXa20fpk3f0xW4OFLg9UDwjfw998gN4R+7/YgFdDqBU0li9+43Z3Ad5vngUyL89wWKOVQ2yzWSRzHlYNK43I5/UGHOj74stWCUSQD5f+UvBWoqAn6pg0ndeO040xjtmzMW2baYdaCWdWK/eAAINJ8X9OCS+gl8rP8WAeATdZDV6tAuwQlyPFrVbl+ZazWsIRFFCPq/h6af347rr1gEAEokEurq60NXVBUopJicnMTIygh07dkDTNDQ3N885eeZciNCZuaqzD3OC0M1UzFSiWQ6Tk5PYvn07enp60NXVFXp7thp3dhJZjl/+kq9u+0sMmb7fJCY8D84fVHeI1P+iBRw5MoCGhgY0NzeUlcYQqPil/EW8Jm7BOwp3o4NeaHxnbTcMmBNkqTSSlSMQPCeEfFAmJJpZSVQy57WdtWh1scjy5ZqaGlFX554gbX/xm8TOWZic5efUgngG+21QOVY1BzLuChp0rlO6a3YurVGCUnJmElDmAMi24STEa/JsfuZ2vM7PvKXO7L4ubUsURaTTadTXp6FpGgqFgl4rawKUEiSTSSQSrDQCPyZ2HNRGm8YsvgABAABJREFUxvgzYz46ZXJhqenyyqLqlb9H2eQ5fJTO615ipCZcpEqDikdiX8WAuB/vyf0/1MHujmzNfauE0JmycKLLJIMtqoaRePrL54NDFE1izMYas34dJ0GAmZ8Zhdgx2TmpqpxTls1IXZj3DT8edtwU1lIc/DkRIaGbrEY3WY3L1Lcjx90zxT78XPoKVKWApdr56FEvwFJ6LuqEZgC8YLaM3/72KC65ZAVSKXsEThAENDQ0oKGhAT09PVBVFWNjY3NOnjkXCB3HbLyG84RuHqFw/PhxHD58GBdccEHkpFJee+ZsxcmTrO6cLDNHSzdDEROm9bLTMMX11wKbpHLSlc9PYWBgFO3tCxCPu7uGWpHBEO5R3gcJCt5XeAJJtBjf+ck9yzsUwphMl7YnGBMtDjb5MFe/w7w7qxOZKz3R5gRDQDabwdDQsO959Z6QCIa0TJLYhL/aqbDhXSjLTyKrH+2z3s88ambpkeX8sUg2iziY9wqX3gY7h26ROK/nyXk/1g5sIYOXRgCgl0bIYnp6GiMjI5BlWa99l4Asi/oEnPfTGRkMNgFmBMc8l6LIcqysZIeTv2ConhyU7Tt4e3lM4Z745yEjhnfm/gUxeEn3o+X7McMPgMuXrdG24Hl/4aLv1VDfOIkrz31zyiPNiAPPs2P9DdI+s6nn0vJq5XjaSV347TX92Hleovd9nEAaq7XNWK1tBorACE7hiLwde+Rn8Vj8v9BI29GjnY8e7QIsIWuh5iQ8/fR+XH/9Ot8+yLKMtra2OSnPnI1EZ65gThC6+Ru0cmiahl27dkHTNGzevLki/fHZLrnk0Tk20ABs8PQiSgJEUTMm0myQ97ofeS4e+2t8fBjT03l0d5t5XX4D7knhRdwduw3najfjCvUzEGGGTvzIXFCwAuhs4l1aY46A2f7DcGmzHVnAiYK3S2Y4OK23TZIIjI2NIpPJoKurE5LkfR8zmVO5fbDzynLJOEGpqOuolgOlHeEd7IwtLaTBBHEQBv63exssQsv+7XZs1shppfBfYAnbVqlVveMXcE6eWWmENOrq0mBOe0yeOTw8DEJU3VwliXg8AUmKfqFlWUSxSIznzYtAmIsx9twzfq3YtsGMhKzb+p1nRqLK2/mPkpP4HvkjLC1swJtin7K9s7zaDAOeH+f3TKqqGf3y23cYmO6P4QqPlwOPzDIpcMm3BmFlEVf2mRsYUdLAxy5OoKqVX8si95K+j3DghimyzI1TRKiqalsI8UILOtCqdWC9ej0gUhzHHhyU+vCU8hMMikexiK7Bb19ej+a1d2BD9wWB54Ze8sxXX30VqqrOSXnm2YpCoWAsvs02zAlCN9NRjZyKWiKTyeCVV15Bd3c3Fi9eXHFfz+bcwZMnWe5cPM6Kh5s13NyhKFbiU0o0OFjdNvZvQjQMDw9AFGPo7OwMdL5fkf4HT8h/gzcU/wWrye/ZvnO6Oboh6CCuqiIURXXU2hOM6IvfpLyc6UW1yBxQKs1i55diYGAAoijp57UyaYk14sWunQBFkSAIBFY5ZlhEITflbpEguXPWCROPrlm3sZJ03l7QV0GQCHC1UK0cK2t73vDfkSAIiMUUxGKsNIIgaJietpdGYNG7JBRFCUXkwyyS8Hws7214jTbREeVzzzcJ0s9yROkE3YWfx/8SPcevxQXZmyAuLT8RZtGfcrls/D0SLCJtlpPwJ3RRSB1zstaqOr6zd5voQerMyBtgOnNayx6w6+sVDq8eqSOERq7RRynR3zEsV1BRZL2dILJyftwU3WQNuskaXA4uz9yOQ9IO3HLPOyAoBNcuvRbXLr0W1yy9BgtSCwL1zSnP1DQNo6Ojc06eebZiampqVjpcAvOE7oyD68Vn6kPf39+Pffv24bzzzkNjY2NV2jybI3SPP84GxGJRNKQ8XofCcjVEY0LjPtGkkGXBIATFYhaDgwNoaGgJJGlVkcej8p/jmPgbvLvwMFrpKtv3rH/l762gt58sUxSLslEXTZIYASkWWVF1/31416mqJpkz22STSVmmyGZVDAz0o76eDcTBtge8JhDcIc8JQrgcU9BNcMKZkESVRfpNwHiuG3fDtKdIUJukyWuCWGtEnUCeqf5GhSiKJaUROLlTVRXxeFwvbl6+NAIzy+DnIPpB8/ucSXzdo1lsksz2Y55fez0zt3a9on47Ctvwi+RX8MbCp7C88VIgxNDiFU00y5tEe4Z4KoDbWMyi5uHPMZcfRomOl48Yip7vIQ6T2Fnz7DSHZNP+72q6sWpaNFLH72mmqtB0p2ERqhrswhJCoSgSCDGJawJprMPFWF3oRUpO4A1vXYKnB36Fe/bcgz/d9qdY2rCUEbyea3Fx18VIyOVTHAA2nwkiz2xubp61kaGzCVNTU7OyBh0wT+jOOHgtupmmwyaEYM+ePchkMti8eTOUcrP1EDhbTVFOnqTYt4+6lhdwg1lM2CR09u/Zf6rKvp+amsTk5DDa2joD3Q8TOIa7Y+9FA12MWwtbEYfd2COMAUqQuQqXbbJ+i5Bl1Wb9XwmqTeYAdv5lmWJyMouhoWEsWNCGRCIZanuvuRKLerptw/5PKSfSLPLBcsTKRXOq40DJ7yt+70kSUCzyb933EWayWs06dry9mWw6Vs18POdx8kLIDQ31emmEAnK5LCYmxiEIIhKJBFKpJGKxuEsf3B0+KwHL9fXKP2X75OSOv8N5jjCPeLNoFvvOLUftqcL38du6n+JtmX/EUvl8HDxxGIoiYdGiRYH66EbkKPWXVQYBM/SQXMlHJddf0wT9HATvYBgzkSBSWR6hFQRSNiLJJbr+6QHlwZ+bKKSOLYSZ5JrV4pNCyYLzeQ2ybDd74Zvmcnkc36HhjhvuwB0X3oGiVsSLp17E1sNb8be//lvsGtqFi7svxrVLr8V1S6/D2ta1keWZU1NTGB4exs6dOw15ZnNzM5qammaUPHO2Oj86kclk5gnd2YyZGv0CZma0KpfL4ZVXXsGCBQuwZs2aqp+/s9UUZds2PpERbRN3N5jW+OYAZC98ygYpStn3LL+mgK6uxaC0vBTwsPgk7lXuwGb1o9is/bFu1WwiqpulF5iro6C3S3QiJ0GSCLgpSjmUP1fVhSRRDA6OYWpqCp2dHZDlKIsSpZ32K+HgdozsVjejdjxnyYkoUktrtI078ZnyMLb4YJK56qBcoXM3+EU7K8mfc3cfrO7EhDvVVgN+ZiGiKCCZjCOZjKO5uQmqqunkbgL5fAGxWMyQZ8oyt6yvTr84mEzSX0bOYH7PCYKb4yaXvkkSRVFTcV/+KziiPI935/4fWmTmkKwoinE8QcCJApOIVk7krFBV6lFLrrK8Vl6jLmikLmiUjOe9BXOp1Iy8V2vZAzdwuWjUYuMle9ZoqONnZlP2E84XDoLW4GNE317w3Zo3un37MVx22UqkUjEokoKLuy/Gxd0X4zOXfgajuVE8eeRJbDu8Df/x2/9AQSvg2h5dnrnkGrSl2gIdhyAIqK+vR319vSHPHBsbw8jICA4cOABZltHa2joj5JlzxeFyenoa6XT6THejJpgThA4Il/B9OjHTCN3Q0BBee+01rFu3Di0tLeU3iICZTLC9cPw4xYEDVM9PYISJy3ucq5hWmaP1vuNOZIzAsH9rmob+/n6k00k0Nnbpq6PeERBCKZ6V/hXPyV/Hm4rfQg+5uuQ31TBAcbYHcHMBRlI5NE2ELAezT3c+frWQWZptE5w82Q9CoNftCz9Qucu6/MmMv4kKz6csjdoFK95u5rdomnkvmv0t3R+/56qH0uM/08F2p2R9Br7mDXBHzyDXRJYl1NXVoa6uDpRCL42QweDgICglSKdTiMUUANHcBN3AzW/KD0nBTjKP4hEpi/+v8ClIaQ0f0v4bScGUPTc01Acy2TIllRooFUKTpCDg5NTMO2QwpYjRoarBC4+HKSPAFgVL+2yFM9/OWvaAO6Q69xeWhJXu0/63tU5dOXgdBzNJEXwXRux9sL/DrXm/mUwev/71Xtxww7kl2zUnmnHT6ptw0+qbQCnFgbED2HZ4G+567S58cusn0dPYY+TfXdx1MeJyMCmlJElobW1Faysry5HP5zEyMoLDhw8bUkCef3e65Zlzpaj41NTUPKGbR20wUwgdpRT79+/H6OgoNm3aNK/1duDxx6lR4Bbgq4Wltcec0SZ7Iro1R0pALpfD4OAgWltbUVeX8nUBBIACpvCg/FGMCQdxa34rGrG45DdBDFCCghdNZxElO5GzghAxUC0y+4SidmRO04ro7z+FhoY6vb5c1H04t6NVkxtao3ai6Jxs2e8Bk7xR229sPXOR9fKoajVR7dIHlFbWHpuwOVfyK+xUDWHKsMNuB8TjMcTjTIqtaQTFYhZTUxnkclPIZnPQNE03V6lsWGfPZGVyOyumMYIfkk8iTRbgZvXvIEEBsSwA9ff3o76+DnV15iSL5+aJomnyYd7LguV31cv34rBKDk0SV/nCCC887ke8zN+Gb98ZjWKfwVAFeIF9xwt7A9bzWW3SHJQk+qVksDY4kS3XLy4RNvMjrYXvX375qB6l857vCIKAFc0rsKJ5BT64/oMoakW8cOoFbD20FX/91F/jtZHXcHHXxbi2h8kz17QEVzXF43F0dnais7PTkGeOjIwY8sympia0tLScFnkmK2ExNwjdvORyHjXBTCB0hUIBfX19aGhowMaNG+dE2D0Mjh+nOHTILmN0e1/71U7jUTd2qSnGxycwNTWJjo4OJJOKLTrDzA7seUUjwl7cpbwbXWQT3lN8GDJKE7YrkS5a9yVJLOLGpXvlSYEIVRWQSAhl88S4612tyFwul8Xw8ABaWhYglUoGihz6wTphCEJmopA9tmrP8v3YPcT2w53pgswN+O+cUYVqw8swg8uhfHro2p9q1b5y9qea8HPNjLIvrzy1MJAkEYqSRiKRxPi4AEGQDOm2pmmGsUrU0ggsklL5iewnB/Aj8RO4SHgzrkzeDkpICS/i0QizUDZ0QyGA3zcswm6XzfF/R3VS9IMzn64aRbdNlHeSjHoPm0Y51ELmvM8NK6/Aj5HJVxXFLrWsPqnzb49xCu97lh0fG6MYCfXul1Viya+nNQKdzxfx7LMHcM01/nXprFAkBZd0X4JLui/BZy/7LEayI3jy6JN4/PDj+OZL34RKVCN6d/WSqyPJM5cuXeoqz+TRu7q6uqornTRNmxNzv/kculmAmSq5lGX5jBK60dFR7Ny5E6tWrUJ7e/sZ68dMxuOPU8OCm8NN8uElVWISK2rkmQwODkIQBHR1denOXfbfU2onj3vFB/CQ8jFcqX4OF2rvh+CyIh3UqMUPnMjxgTYoQWSTcl6PjZERr0eN/7YWZG5iYgLT0+Nob++EoigWGVK09qwEKUxkym+fvPgzvx8ADYVCSQvGb83CuuH2W+1IGuuPe74SN8mJEimpRv05+7ym+u/4GThsALBOVgXE4zJSqSQaGxtACMuDZu6ZY4azZiKRRCwWrDQCX3jyjsqXJ1AHyPO4L/FFXDz5Abwu/lYAvD6a/YRmsxlIkgBJShn3unlPON+x7F7j97qmEd3Btfrju5V4MKlsddo15Zt+RCT6sfD3Hnte/dth9TPNv9nzyGrnWWWYYeSiHH7vQT/5ZTD5PtXr02mQZcmzX6bknKU5uJXRYLl0qxCLRZsOtyRb8JbVb8FbVr+FKZ3G9mPb4W342Ws/wyce+wSWNy03CN7rul5XsTzzyJEjNZFnzufQnf2YM4RupuJMRegopTh8+DBOnTqFDRs2IJkM7v43l3DsGMGBA6XlCZz5SV7kh78fKRVQLBbQ399v1LDxq8umaQIIVDwl/x/skH6AtxV+gi7ay/fu2Ac18iiigMuaVNXsTLg8PHNyoqqiJUfQbV8UhUJ1yRylFENDQxBFFR0d9ny5yggdl8v6W4N7gZ1Xbr3tXnDdb5JIiCknFEVqrOp73TPWSWItXil+fS1XY9AL1ZiDW69x1H5ERZT+14IgWudhogikUgmkUiyKXyxqyGazGB8fQ7FY1M1VUkgmE76lERiZKf2cG+74RQiey9+Np5L/gZtyf4MV8c3G51b1AZddT09PIB6PBb5nncWqRVE0JJLWemvVgPlOr25pISaPFDyJcWXkVDAWEcvDq5QMf1eZ59aUiwbrRbnfuckvmStmsAeYlyZQVeLrnG19J3DXVSumpwt4/vmDuOyyVS5bh4MgCFjZvBIrm1fiQ+s/hKJWxPMnn8fWw1vxhae+gD0je3BJ9yWGe+bqltUzRp45l3LoOjs7z3Q3aoJ5QneGwcsWnE6oqort27cjHo9j8+bNZ2RVhidlz/QVoV/+kkW+SuVkphOcF5mzSl+y2WkMDAyjvX0B4vGEkSflNfnM0BHcF7sdRWRxW/4JpGGNnppEkjt5RRn/zTw2++eShFB5eDw3hIPZdLMB19ovFr3zrkUXBZqm6jk4KdTXt8IZUaisppJJpoJMNjkxZv3iuXbe+/Zzy3TCmsPIamKZxM10XOX3I6lBBJTXKfP6vvx5Lp2kUlv/o8KvNEitEWXBIKihQ/l2SiWIblAUCYpSh4YGZq6Sz+eRzbLSCACQTCZdSyN45afxd45rn0DxaP7/YV/9Nrw79w0sFFfYvuURav5u0DRg8eKlkcvimPl1XKpnzXPmdveV3RSyzHOuqntzsT6LVS08zt4LnHwFedeWuw+JLssUDQl+0DIjQaKmTvll2AUZTgpVVYUsy66kzjkGmM+feZ+89NJhXHzx8qoTGkVScOmiS3Hpokvxucs+Z8gztx3ehm+8+A0QSozad1cvuRqtydZA7dZCnjlXCN285HIeNcPpjtBNTk5i+/btWLZs2RldpWDa95lN6E6cINi3TyiJzlnfjX65YJywqaqKsbExdHd3QRQlfTvvKEq/0Ie7lXdjDf1dXFX8W4gljymf2MMYZMPBXBnlfeDjYJQ8PDfS5CR13Kylmpc7n89hYGAQCxa0IJFIefQtevuM8Gqe14k7AgJmBA4AZLn8hJ05XEbrFyPwJrkz840Y0atVCYjqSzirE02rtZS+kiivG8I4XfrD7BSL5paPIgkCkEjEkUiw0giaRnRyN4l8fhixmGJE72RZKnn3+UFDET8vfhFD0gG8t/AfqBdb9UUO05mVSyqt74GDBw+io6MTra3lXZX95HhcFm+d1DPTIXPiHuVeMQlN9e8zVnjcnrMWVT7KxiKTHDrNQNwRbD+sxA70CT+tODfZCqv8ki+AhnlvUyro26uQpFJS51RFEEIhSWaqi6oSjI1l8dJLR9Dbu6zi4/GDU565b2wfth3ahp/s+gk+/ujHsaJ5hU2eGZOC1Seuhjxzps/HqoXp6el5Qne2Y6Za5UuShEJpEk1NcOzYMRw5cgQXXHDBGb+hOZENYld9pvDii2xi7lyN5tE1dkt5maAAqspKEgBAZ2e3MbD4kaYd4o+wVfkUbih+FeeQt7uWMLC6IIadEPP3tZsk0s21MwjYhLe0I5om6E6ZZsQorGzHC5OTExgfn0BX10LIsuxjWhE9GsKuoQDr+GfmtVFd4lV6vsrX8OJRUP/fBHtnCTZZmCybkrhqErty91mU12v1rPZrmx/t188o+43qdGnfr7NfQiTSIUki6urSqKtLg1KgUCgim81gcHAIhBCk03HEYgkkEgmDGLn1PYdJfL/4J2hKteIPyXeg0KQlSg1jO/5/a35qIpEI7Mzpl8vG3ovOe6FU5swnrWHywXgkqRZwRqnCvx+pIXN3vjP8iqWz78PlxLGSEUAsJqFY9Gf6QSN5APT8NkZIKXWPqvrlyfF7kxCtxCjFec+wouXm+WBjlIgXXjiITZt6TttcURAErGpehVXNq/CHF/0hClrBkGd+7snPYe/oXlzafSmTZ/Zch1XNq2oqz5wrEbr5HLp51AynI0KnaRp27twJSik2b948I0iUn+Z9JkBVKXbvpq4r1Pyd6lUiQBSBXC6PgYEBNDc3Y3R0zJhkeJEmDUVsk/8SB8RH8c7CA2in51l+797HMKePOcfB04WSfS+gWIwyy/Re1WOTANFWZ60SQsec/IagaRq6uzsNh0jv30fbD492QbdO523ZCxm777fcJIndN9UnIIIAFIvcdMWM4nKJJouSBHPNtMLLDMWKcufZbSJSGw5W/UZrk/NWmWugfYIKsLypyvoqCEA8riAeb0RTUyM0jSCfzyOXm8bo6AgkiRmvpNNJI1IjCAImxBP4Pv4EC3Pn46bipyFCYkUPfG40JmNnhK+xsTGQqUOQ+5ZH0/ydHa3fCRYyAHjdP+zZr/wce4Etfnnn1HmBnRPiG0Xl5Xbc30tRFiRYXqZJjL3yAMO3ywuHu79bvRtkLpYs6sYjTfx4nUSfL0g475OhoWm8+upxnHfeonAdrxJiUgyXLboMly26DJ+/7PMYzg7jiSNP4PHDj+PfXvw3AMA1S66pmTxT07TI0uezCfMRunnUDLUmdNPT0+jr68OiRYuwaNGiGROp5FKQmYpXXwUyGa9JCZvou5E5SQLGxycxNjaG9vZ2xGJxjI1xQscNMuzbTeEUfhp7KyaFk7hY/RPEaaPxHZuAmyudfIIePJJGDXcyr4gQz6WLyq95TowTVpmeqgpGPaQwRXOtIETDqVP9SKWSaG1t03Py/M9DFDmqKApQFGpMAsL2tZy7Zq2iSUx+aT+3TGZmzb/jBit8pbr8fVSbV0Z18udKWq2t+nLGwO3+qlZuHockMXfM+noWbSsWC8jlchgfH0I+X4SixDGWOoT76r6Ay3AbNiduDnkMrL/Hjx/HsmXLypK6oGQq3HvM+XxbCR41fsPIqwj2HFU/nw4w88GCXkP2zg5qIFJaKqFScsrqlgn6mORGosMcCywRRq8orH97vCQBV0/YSV1pFN/5tyAAzzyz/4wROidak634gzV/gD9Y8wdMnjm6D1sPb8WPd/0Yf/zoH2Nl80pct/Q6XLv0Wmzu2lyxPPPYsWMoFAqYmJg4Y8XNTwcymQzq6+vPdDdqgjlD6GYKkXGilmULTp06hf379+O8885DY2Nj+Q1OI2Z6hO63v/U2LZEkd6dGUaQ4dWoIhGjo6jLz5VghUyaHcxKQY8JvsCV2K85T34U2uhYHpMfwjPxVpGk7VpDXYzm5EUuFiwFN0fcRXBbpJ6+0Hw/0/LZoo7tbDp3buWPkVIAohr/f83kW8WxtbUEqlQ7swhlkwuI0MxEEgnzeXqMpLLxkgMywJFKTZfZHdelW+d86CzRzksfyVwTHpK+cGUoYmA3Xyo2yFm3O0KGjBOUWEsKC3RcAk/JSUCqjvr4OolgHVdXwSv4RPNHwb9h0/H1YrF2OseQYkskkYrFYQBMG9s7p6uqq+sQxem06k+CxnDHRJnFn+VreEsZKYBYe97+AbCzxdhL2ht0kxavMThjwUgBuUseg9yJ7T5rnnBf/dvllgLbMsYgRTrFEDWHNPef3Ce/3qVMT2Lv3FFat6ijf8dMIQRCwqmUVVrWswp0X3YmCVsBzJ57DtsPb8JknP4P9o/tx6aJLDffMlc0rQ8szC4UCEokEUqnUGStufjowNTU1L7mcR21QiwgdIQSvvfYastksNm/ePCPD6DM5Qjc2RnHsGOC9Cuv2eRFHj/YjnU6jqanN9hseVWMOjwwUFC9J38Kv5X/A7xb/HSvI6wEA55JbQKDhlPAS9ku/wOPyZzEq7EePeDVW0hvRo96ABqED5Qa3oCYWVtloJZNh58Dt5QzJZH8SJEnTDVPKDzpTUyzi2dGxEIoS090hg8+yS8mD3W3POQmxSiqjl4IojUJ6LRB4IYjJhbk/sxBz2CgNl2Ja71kexTMnR/7EJmyOXa2ifmENFQK1WoOoX6XRNHsemxnRCCvl5PlH9rxcM1rPn2FJsn//q8L38FLqJ3h7/stY1H4eVFXVSyNMoFDIIx6PI5lMIplM+k4CBUHAyMhIwAlWuJy3qEoAs29cTsjIkyybtdmqWWjba99u950gUD0nOXybTplhtZQCTHUhWoxT/It9OyHLgo0gszIE0cw5eH06bgSjabwtd6JpXkNTnvn00/tnHKFzIibFcPniy3H54svx+ctNeea2w9vwL8//C0RBxDVLr8G1S6/FVUuuCiTP5Dl0Z7K4+enA9PT0fIRuHrVBtQldNptFX18f2tvbsXbt2hn7wJ2p+ntB8OKL3pNvln7I5JMcxWIWp04Noq2tDclkqduiIHA5jf57ZPEL5ePoF/rw3sJWNNPltt+LkNBFe9Gl9uIKfBbT6Mch+RHsFR7F1vhn0UiXYAW5Acu1G9BFN9lcMM3C3eWPkxUvt94f/N/hBnpRFGw17MqRSeZ0JxgOeN4RR4rh4REUiwUj4umVt+gHPlll58a9Hpy179XJ9XOT4wYvUxByb1WMojHwa2ISB2qJ2Oh7pdEXAWpBkmr1qvMrfRGGdFvBIsH290g14FVqADCfA+t9zZ7FUvMK5yExF00CAoL7C/+A/vpXcVv+W2gRuwEwpQmfCFJKUSgUkMlkMTExAABIJhNG9M7qpKdpAqanpwIeW7ibrRoSVJMUUpuZBovUlVc/RNsf4FZygC3alM9n9QOvw6ZpwQ1LgoDLRbnckZFHIdBCj6apsD4HZnpCNLMjlk9nRlG5/NLrWeVROk5KjxwZweHDQ1i6tC30vs8UnPLMvaN7sfXQVvxw5w/xR4/+EVY1r8K1PSx619vZ6yrPZBFN++LL6S5ufjqQzWZnbd3lOUPoZjKxqVYdusHBQezZswfr1q1DS0t5C+gziXKJ62cSfX3eE06Wi2DeS5OTo5iYmEZnZydk2T0SygY6tso9JhzCXQqTV95a2AYF7nb7VjRIC3Ge9l6ch/dAoypOSs9in/AIHlH+DBPCMSwj12IlvRHLyfVIkmCJ0n6GLuEvizlxChIZNCeTLCpk1mMz+0MIcwiNx+Po6OgAy20Jl+fHCQibwJZf1bYat/Dto04InRMRK1GsNqznvJqTNHvupqBH8tx/x/5vlzOV5niZv6/mo2/NuzndOXRRx5VKnS69ZHlsIk31BRNTxsbLBURfoAA0KYcfFz+NrDCJW4v/joTovsotCALi8TjicV4agRU2n5ycRKFQgKIoSCSSSCYTUBQF69atQyxW/cmgVVIXHeYil/Vas6gU+zyKa2Y58EgTK6Iu6O+P6tSr4+7DLIpVeV8BcwGUjx/m35zUuZ8bqwOyo8XIhA7gBFO0kTpZFvWFlNLfOo/l6af3n1WEzgpBELC6ZTVWt6zGhzd8GHk1j+dOMnnmXz3xV9g/uh+XLbrMKI/A5ZmapqFc2QKne+b09DRGRkawa9cuFIvFs0aeOZP7VgnmDKGbqahGpIpSin379mFsbAybNm06K1ZKZmqEbv9+islJr9w5s5YSIQQjIwOgVEJXV5eH5h96jTBWmPaA+BjuVz6IS9U/x0btwxACrM7zAZJNTgCqyVhML0G3dgmuwhcwgeM4rDyG14T78Ijy52ihq7BCuwEryI3ooOshuDhQ+uXhRRngTdew4GTQKodSVdEwTKFUQKFQwMBAP5qbm5FO1+n7MHO8yoG9q6lRZy9IaR33uoDRV/jZpMY6IYlODP0ncXYCXU1C41cr0dYD/Zo4rw2/JwSBXRNRpMbf1Xz0z5QRCrs20beP6nRpPafsb6pLIrnklD1b1TzHkxjC94sfw+LEObil+BVICC7jlyQJdXV1qKurA6UUxWIR2WwWw8PD0DSCvXv3YsOG85FON3hK7aLmXKoq9HqY4bcFzIUZU85sghcG56SBUmpMFKtB7pi0UwKlRd1AqJqL0kw+Wm2DJmuEmL2v2blx5tcB5nha2gY1CKFZny782OS8/1WV2/K75Tbb+7dv3wBOnRpDR0dTuJ3OQMTlOK5YfAWuWHwFvnD5FzCcHcYvj/wS2w5twz8//88QBRHXLr0Wq+XVeEvrW9CIYH4LgiAYz/WSJUugaRrGx8dt8szm5ma0trbOGHkmuyfP0IBxGjBP6M4wKo1U5fN59PX1oampCZs2bZoRD00QzNQI3UsveUus+AQ1ny9iePgkUqkmNDQ0eLZlFB0XgGdj/4RXlO/gLYXvYQm9PHB/rJJETRMgy9QYNEURaKRdOL94K87HrdBQwFHxGRwQH8UDykeQEYaxnFyHFdqNWEauRQJNluR+9/1Feddx4hIm8lK6SspWZHO5CQwNjaG9fSFisZhxDvwKuAPmJJfVhrN/F0T2IwjEheRWNuHhESNn5C/49uX37xYRrVYeWdhJqbO/1midpomglJWYkCT7b3hf+e+t96j1v3LHdLpffdXN1zOJu1PWyv5PbZEPwLw+hLDJa63mKYM4gB/Ln8TK7LV4Y+yjqCjeJQiIxWKIxWJobGSlEYaGhpDPFzA5eQqSJCGZZMYMsiwb5yTqeWbbiaA0fHSL3Xea5b4u3d6aq8eINDG2FUXRyNONAkZ4NJ3k1sKEhZ2X6rcrGOZSZt4lgShKhnyVmc94lTswz7WqVpKvaM3to/pCkgZFKY3OcKmo9X576qn9eNvbNkbY78xGa7IVb13zVrx1zVtBKcWekT3YengrtuzYgr9/9e+xpnWNYa7S29kLRQq2eCNJkiG/BNjcdHR0FEePHsXk5CTS6bTxfSKRqOUhlsXZMk8OizlD6GbqBaykX6Ojo9i5cydWr16NBQsWVLFXtcdMjNDlchT797tPjNjgKiCXm8Lw8BAWLFiAWMxbh80lUXlMYGvbncjLw7gt/yTq0RW4P3yfVjBSp7lGOSTE0EOuQg+5Ctfi7zAmHMYB8THskH6Mh5SPo52ei5X0eixTb0Q7zneNEEYjdIAgaBVGBCiGh0eRy+WxaFGXPtnQj0ty5voxmHLK8qUF/BYQ/OSnlcgkmawuihtdULhHYaqx8h6mKHCw9ux5WxxhZIBW4mf9v0mAKKzyT2e7pcYulY0JVkku+7dQ0jcTZmco5SYkpvEMOw/sN17Pkd9QYf2OvTOqc/H2FJ/B/Ykv4HrtE7gg+UbIElCo4ntbkkS0tragpaUdisIWy7LZLEZGRqCqqmGukk5HnwDySE9YYuWscel1/rmEsXQxgxhyV+6WWa4PlBJDysnfG6pKjfzf6kEwcqaqPQ5TygqPO1NJCNHASz/4R//NQuHWHN4o4IYt/BjN582ufGAKGMkWwdm9+yRGRqbQ0jI7a5YB7PyuaV2DNa1rcJl0GZatWoaXh17GtsPb8OlffhoHxg7g8sWXG/LMFU0rAs9ZebpER0eHTZ65e/duFItFNDY2oqWlBc3NzadNAjmbo3PAHCJ0swmUUhw6dAgDAwPYsGHDWZngKUkS8vn8me6GDS+/DBQK7rlalAIjIyMoFjNYuLALiYTkO9mXJOCUtht3xW5BR+YSvCn3XdQlvaN5TngNeDw/JsjkpIkuxQbtdmzQboeKHI4rv8Ye+gjuVm6DKuSwXLseK8gN6CFXI44G/TjDTwaDOmpaYX2vEkIwMDAARVHQ1cXy5Xi7glDqaGmVVAaF1xjkn9tW2cSYTRJqZYTifd6rkUsWVG4Zfr/UhViFa9stN4/n75jyT/c2SnpjkU1a92H+VgBALJMYq5uo+X+vvln27tKf6kRI3CYp1bgHXlDvxtPp/8Sbpv8Gq5SLAdSmLMSRI0f1PFkJiqJAURQ0NDSAEFbYPJvNYmJiDACQSCSRSvHSCMH3YRKzMCcl2A44mffOEzPJnSnLdC8iznLKnDldPJ9MC9yn8uCLB7QmahlOYp15f5QSQ0nhva09GspUDtGJJ5eusnxEs5yBcww1n2tTJt/XdxxXX70m0n7PNhBCkFSSuHLJlbhyyZX44hVfxFBmiMkzD2/D1577GmRRNsjdVUuuQnOiOVDbfvLMgwcPGvLMlpYW1NfX1ywAk8/nz8r5clDME7qzDMViETt27EAikUBvb2/ZJNaZipkoudyxw2vCouH48UEkEjF0dHSC1erynhhIEsUOcg9+Efs4rlG/hEUTvwshHjznxFz5t77UqJFzIIqiThSCT07iUhxLi9dhKa7DDfgyRoT92C8+gpel/8YDykfQQS7CCnIjVpAb0C6uBgk4djLyG97cgRPHYrGA/v5+NDU1oa6u3vK9+Ttm7mBGu6Jadjthla+5o7JBpdIIXzl49d3PlTEImEQyyvbl91ur+nNAdLmw2/b2tkTL8269Jyo9z7XbNmp+HgBQUPwi9694LfEo3pn/OtoV04WX56RW8xquWLFcHw/si2miKCKZTCKRSEAQGqGqBLkcL41QQDwe079PQpbLj4PhyxiYB1kulzWoAYtTlskjd4Cm5z2698/MJ6s8wsDluxyaBt0wpLoPJmvXXrOPyZTNCJn7bWxG6My2KiOe1pxmQTDz6az3A6UUiiKhWDT3cfz4aKT9nY3gZQusaEu14W1r34a3rX0bKKV4beQ1bD28Fd/b8T189JGPYk2LLs/suQ6bOjZFlmcWCgWjuHkt5ZlTU1NIpcob0Z2tmDOEbqZKLjmC2F9PTExgx44dWL58ub6iefZipkku+/spTpxg5986ZuTzeQwN9aOpqQ319SnwFXrPSyUW8ZjwReyW7sI7ClvQQS/CqDASavLmzBdjOWQ8YsJzC3jZgfLtuUk3W+gKtGgfRq/2YRQwjSPir7BffBQ/ib0NALBCuAHLyQ1YSq5ADH41ovh9G9ZSHMhkMhgeHkZ7e3uJkQ+XUjL5ID8n0SczXgXi/c4f70P0fRJUOun3gl9UtNLIDDOoqayNUnAJVS0kL95RuVqi8iElegPO+9LZl6iW/RqK+Gn+s8jVD+L2wv+gTrC75vJnspr39PHjx9He3q7/Vdo2dwmWZRF1dWnU1aVBKVAo5JHJ5DA5OQBKqe6cmUQ8Hnc1QjJdF8v3nUV97ZP9cuOzpoVz1eS5u8z0g1ntE6J53sdc2lmp4Yrzfc3l+5W4SjphlQ9bz4ksw2Yiw81Z7OcacD4b5RffyvbIOD5rPp3TzEzTNNv4fvLkeCU7PatQ7h4XBAFrW9dibetafHTDR5FX8/jNid/g8cOP41OPfwoHxw/i8kWXG/XvwsgzY7FYIHlmU1MTZDk6beGlFmYr5gyhm8nwq5ECsAft2LFjOHbsGC644IJZcUPOtAjdSy/xVVBTajY5OYnJyTG0t3cikVBsjoluk+kMBrBFvg0ClfG+wlNIgk2G2KARbKB0ki9eMNq6Py5ZY0Yi/rlObOLv/1KNIY2V5A1YSd4Aqn4Vo9Ju7MUjeF76Ju5TPoRu0ovl5AasIDegha4oadua7xYMFGNjY8jlptHdzerLWSGKTKpYLJq5cexWEQyyEWXeYZ04BDUqiTrB4YSr0uLGXvDvV6W5YbVjRrUhXRS1IM3B9lsZok6iyxmymFbxwe+FHCbwQ/JJiEjg3cX/B0Wwr4yzftJIbfthejpjjH2sLEz5/E1BgFEaAWDmKrlcHtPTUxgZGYEsy0btO0Uxpzl+dfqs4DXVwoLlu5W/piaZs+Z8EgthZkWxnXOCoP33g3d9uOoQdS4t5V1npE7Q1RXOgZOCFf+WjOPlskw3RF0I5s6vTGpp5tOxSDax3H92eWcuV8Dg4AQWLAieLnE2I0zgIy7HcdWSq3DVkqvwxSu+iMHMoCHP/Kdn/wkxKWbIM69ccmVV5JmHDh2CKIpG9C6sPDOTySCd9lugPrsxpwhdNVegqglei467+lmhaRpeffVVAMDmzZtnTf2MmRSh0zSK7dt5BIENRkNDQyCEoLu7G4Ig+ljas+1OCi/g7ti7ca72DlyhfgEizOtkuqCVn9BavzdXY93yb/gA5Z3r5FeewAsCBLTRdWgha/A67Y+QxwQOiU9gv/gono39KxSawnJyPVbhenSrl0JBEgjhBkkIweDgACRJRldXl0VexaNwbKJTLLpvzwgkI2Rhnf2s1yEImaukThifDNZCYljOTbQSAsnz0aKh/L1Wi9dvrV/pXu1XYzyJkqtYjsxxsIWWYP0bIcfxfeFjOCd2Na4RP2Z7f5ntmZHQIEWjg2L9+gtL9hP2vEqSiHQ6iXQ6CUqBYlFFNpsxSiMkEnE9epdALBZeXhi0REV5Ew+qvxNIicTXXLxixFkQSqNX/FirLY/kfajGuMxIk71/qgooins+MZeh8kgsu79Ex29MKXiUxWBze/uCFSGaTuCo5beC7Rk7fHhkzhC6SrAgtQBvX/t2vH3t20Epxe7h3dh6eCv+Z8f/4MO/+DDWta0z3DM3dmw8I/LM6enpeUI3j9rC6yU6NTWF7du3Y/HixTqxmNmy0TCYSYTutdeATIb9u1gs4sSJfv0l0QhCRNsAwC8BG3TY5PcV6b/xhPx5vL74b1hDbnLZg7nqGCyaZiVq7tfcXP0UXKNNfF9R5ps8AkgpEEcD1pA3YQ15E6hKMSC8ioPSI3hK/BoG4h/AYnIpenANmqWNWIiFvu0Wi0X09/ejsbER9fX1el0yaqntV56sAKxfqmoSu6B5anyQFgSCIPXsrC6GYWCVQ4Yl1EHAiW8tUIncsnxUgtSMfFXDBMSv7dohfFTE6XjoZakflCweo6/irvhfYP3kzbhSuM1nv1ZyUT3Z5csvv4IrrjBLuThz6cJCEIBYTEYs1oDGxgZoGkU+n0M2m8Xo6JhO/uKIx5NQFMXj+jo/LC+5tKKUdHD7feJ6XCyq5/yC1+a0u3RaI17R4L2dsyB3FLidJia19L9n+OIldy+2wioh5iUiwpB+/lPGE+3bOvPpmHGNef1OnBgF0BN4X/NgpHhd2zqsa1uHj238GHJqDs+eeBbbDm/Dnz/+5zg0fgiXLzLdM5c3LT8t8sx5yeU8ag43cnPy5EkcPHgQ5513nm+ts7MVM0lyefgw+382m8PQ0ADa2tqQTCYhCP65SpqQxy/kP8NR6dd4T/FRtBB3NyxRFMqSDlO+yPX95XptDnCqKpT0s1zdtrKtuwyYAgR04Dx0knNxsfonyGIUh8RfYq/0CH7d+RWkhTasIDdgObkei8nFkGBGnLPZLIaGhtDevgCJRMIweHHuo1xemxWc2LEJQHmSw5L03UsUuCPaZNs+0aouywhynKwf0SRjlcgty8vkahdKqyWh82p3Boo9bAiSR9dX+AUeTX4Vbyp+HqsTVwRum8mJaaCFkXJoa2t1+dQ6ga9snJAkAakUc8cEgGJRQz7PyB0rjRDT8+8SRmFz5z7d8rr8wOT7gh5RYiTBjyQx6Z/7d9wVkhM7wIw0RV2w8wMrxh5dKu7sExuL2E7LL+RSqKqGRMI+NbU/3wJ4CYigHNu6vdUghX9n5jubC6F8AfDEibFgO5mHJxJywpBn/vUVf43BzCAeP/w4th3ehq88+xUk5IQpz1x8JZoSTYHaLSfP3LdvH7Zv3443vOENuOSSSzA9PR2a0D388MP4+Mc/Dk3TcMcdd+DTn/607XtKKT7+8Y/jwQcfRCqVwn//939jw4YNofZRLcwpQjeTJZf8JUcIwe7du5HP59Hb2wtFCe6OeDZhJkXojh8HxsbGkclMobOzE7IsG6vbzgGDOwhO4Bjukd+FetKN9xWfgEL8SLfb6qu1TXNVOqjkrbR4tpl74maCEhZeUkEr4UqiGevI72O19mac6j8Fsbsf+8XH8KT8dxgW9mIpuQIryPVoHX0dxKl6dHd3QVHY6i8jVU5Xu2gW/2Z+HQCP2my87+FyUMJLLgXBftJqIbcM1qeIphgV1hL0ywWuVaSLR8trBa9+V0N2GGU4CkpeTXlZ6QFQUPyq8L/oq/sZ3pH9v1gknReyD4Je36vy8TSRKLURt0fpqjtmK4oERalDY2MdikVWGiGXy2JiYhyCICCZTCKZjOulEaIb7jBSV1qGwP235X9jtftnTscyCoViBOVOOSdOPp5EyyG2kmG20Gj+raokAFmkFrLFjUyc+wjrzMneh9bzZ59/cCkn7y812h8enkY+X0Q8hFP12YbTPS9ekFqAm9fdjJvX3QxKKXYN78K2w9vw3b7v4s6H78Q5becY7pkbOzZCFoNRFac8c8mSJZicnMQ3vvENfOxjH8PChQvR3d2NI0eOYMmSJWXb0zQNH/3oR/Hoo49i0aJF6O3txZvf/Gacc845xm8eeugh7N27F3v37sWzzz6LD3/4w3j22WejnZgKMacI3UwFJzfZbBZ9fX1YuHAh1q1bN6sklk7MlAhdPq9i+/ZBqKqCRYvMnC4WnXOf4B4Wn8R9yvuwmXwEF5NPghD/2WS5XCxJYgO6V76cd7vmRIMROeZeVimZ4+2V9tM9eiYILHrXSTegU9uAy7W/QAZDOCBuxc7iAzje9kU0ti3CcnI9VmjXoxu9EPVXDyfI1ShkzSWqklRKjLlLWhiHvrBRH69obrXudR6dC5bLE779KPUEHXv1JXPVWL9hNbns7VrdUN3NOpwyQaFkwmj80nK97RPaUqkhX6Th/XE7dNYG/8K+H36PBs2Js7Qa6DNm+lBab4tAw5b8l3BMeRnvyX0LzVJnwP062qnS6/vYsWNYtqzH5ZvKpJflwCNRyWQcyWQczc1NUFWCQiGLiYlJ5PN5xGKsNIKfUYcVzK2SLeAxGblple+9DQK3z0EIa19RJH0/wZ01g7/ToiwKmduwRVF7v8yx0IyIOWGOg0yOL8sSgNLxIagBDYfVIVTTSmWbhGgQRUmP/InGfUcpxdGjw1i58ux2FveDW8mC0wVBEHBO2zk4p+0cQ575zPFn8Pjhx/GnW/8UhycO44pFV+DaHlOeGRTt7e344Ac/iA9+8IMghOAf//EfsWvXLvzhH/4h+vv7cfnll+PGG2/EVVddhfr6+pLtn3vuOaxcuRLLl7N93nLLLdiyZYuN0G3ZsgW33norBEHAxRdfjLGxMZw8eRKdnUHfq9XDPKGbAZBlGSMjI+jv78c555yD5uZgbkBnM2ZChG56ehqPProbsdgqNDc3GJIwLydLCorfCP+KZ5Sv4U3F/8JK8RqoAcgTz49wG7BZjTUzyhQGbrWmqrUI4Bwj/Sf7pYRVKTahZfAyvLHhDUhJKZwQXsIB6TE8pvwVxoWj6CFXYYV2A1bQa5FCWyipZTlwQivLZm5elLyzMPXc/Fazq2WMwiO4QRCFHFdjldZPBWH/2KwvaG6LktV40zGPR0rczgErQG8SF6/jKP3e75itiyWlbUDvO/H4ndc2pbBG0cwFDsD5PjA/MwlsuciO8x4uIIsfFv4MsbSID6n/izii55NQGsyRshzWrVvr+jkhAhSldoSO5dPa71dZFhGL1SGVSoFSikKhiGw2i0KhgP7+AT16x0sjWK8PNSJP1ncypULZSJLVeTEsikVqjCFBZNZhjJ64xDNMPh3vgyQBqqq6jkem+YqfakXQ2+NEiztFCyW/Cf6OLh0rnc+/SWyYUQv/zdGjo7Oa0DFTmplhuJeQE7hm6TW4Zuk1+Bv8DQamB/D4ESbP/PJvvgxZkPFP1/0T3rjijaHaFUURqVQKN910E2677Tbkcjk8/fTTeOSRR/C3f/u3SCaTuOGGG/Ce97wHS5cuBcBKqixevNhoY9GiRSXRN7ffHD9+fJ7Q1RozMeJFKcXo6CiKxSJ6e3tdnS5nI850hG5gYAB79+5FIrHeqGtkJk6X5lkVMIWHlA9jTNyPW/NPohFLQAVqFNb2Bx9E7ZMrUWSRqeA5Xf5gCfTuJinh2wL4AMqjW15wThrz+SwGBwfQ1rbAkFMtopuxSN2MK/FXmMRJHJC2YZ/0CzwmfgYt6MFy7TqsEK5HB73Q1WEvCvh5VRRikLlwpC74dfEjpNHIFTA6OgpJkpBMpqAoUqi+R8ltiv44shVtFhEqlbVSCsgyQaFAbdsEldOVe29z0ne6Ua28Peskmx+Ht1MitUUauHGPJLF3qjNqz63wBUHAFIbwA3wcjWQx3qb+HaSQw78bWahGGsPBg4fQ1tbm+l01cvT8YBbsthcRB9ixxeMxxOMxZLNZtLW1oVDI6yYMw5AkBel0Aul0EqIolSyucVS7xpsVJikl+vufGhPzapRLYbmS4cZqFplzJ3Mcfnl6lJKSwuKA9RwKlt8GXxx2HgPLb7RfFy5rNckNe5cdPz5Wtv2zGZrGSfPMQ3u6He9Y9w68Y907sH1gO276+U0Yy41FastatiCRSODaa6/FtddeC4DNCbdu3Yrp6Wnj927PrPO+DvKb04U5RehmGvL5PPr6+iCKIpYsWTJnyBxw5m54Sin27duHiYkJ9Pb24uc/VxzJ0qWTiBFhH+5S3oFOsgm3aVsBJAwTE1kuPxHmg4b1wTeNPKKfB6vpgTVvTlWrQeoEQ65VLrrFB0FRpBgfH8fExCQ6Oro8C4DWoxMXau/Ghdq7QYQCTkrPYg8ew0PKJzElDGA5uQbLteuwnFyNJFoqOQgIAjsfPLeQO1wGyWsJmkNSaoRiR9h5nKZpOHWqH6kUs2AfHh4CoEJRmLFDaXTAbZ/hdhpE2mbKHa0yJVN+aD5Hp3ehhk30ouUMVoJqzc8rJYZcuul23rkFfj/djx+Jn8Bm+W24THo/oL/jOAko9zr2+k01atIVCgXP71S1drUcOaynzZtIM2KTTqeRTqchCASqqmJqKoOBgUFomoZEImGURuDmJQyC7zui0ufFasDCSwAA/Hl11lkLfx65q2aQbdliqIZy9wOPNjPlinOCjJLt2b4J3GqeBnHmFMXSUjW8LIRbbTx+DpmcW0R//4Tv8ZztYOP3zCR0HC+degk333MzvnLtV/DWNW+N1Iafy2V7ezve+c532j5btGgRjh49avx97NgxdHV1hf7N6cI8oTtDGBkZwa5du7BmzRrkcrkzLj+cCygUCujr60NjYyM2bNgAQRBw8qQpsyQEiMUo8nlzMNkrPoCHlA/jCvXzWK/dzoiTpc1gl80uuZQkNgGuNNfNrHVWSgyrQerKuXwysFVOQSDo7x8ApRRdXV1gxdTLIybJWEIvR7d2Ca7B5zCOYzggbcMuaQt+ofwFFtC1LHpHrsNCeh4EhBt0rJEzdhwiZBmQJK0kzy4qypm5hNlHPl/AwMAA2tpaEY/HQSlFY2M9CNGQy+Vs0YFUKmlE79wQLjfLLje2RpOtdt5RiUetIy2nm8wB4eRr5dqpVf8FQcBB4Xncq3wRl03eiU3xN4M4TDH4PWJO6KwREGq5j9z6KOiT6ej9P/98d0MWvpgEiLC/dasLq7TQKyfLqt7g50SSZDQ2stIIhFDkcmZpBCbvSiKRSCIWU6Bp7jXlGEGp/NhY+3bCxhcRuYENc8oMl6vH+uieB+r2O0bmgsEs4u10FC01VjLL/riTOjNlwVv27ga/PDzzelFkswUMDIyjvb0x2MGdZTiTOXRB8Jvjv8G77n0X/u2Gf8PvrvzdyO2Edbns7e3F3r17cfDgQXR3d+NHP/oRfvCDH9h+8+Y3vxlf//rXccstt+DZZ59FY2PjGZFbAvOE7rSDUopDhw5hYGAAGzduRCKRwMmTJ31XKedROcbHx7Fjxw6sWrUK7e3t+mcUPLrOXvgU+Tz7m4LgKflL6JP+B28t/BTd9HVGW6JokjE2sPtH2qwTP07mqjPB5XlI7qiU1Iki9SzwDZimMYVCEcWiivr6GBobGxF0tV6SuNuleQyNWISLtFtxkXYrVORxVPwNDojbcK/yEeSFCSzXrsUKci16yFVIwH9wdVuVBXg0Q9D74F1oPIhMKmjuX5Aow9TUNMbGRtHRsRCKohirxJLEJrWpVMrI7SkWi8hmcxgeHtKjA6XRO+dExZzc8XwtM5LHVvet5LO6BKOWERZThnW6SV119heWFIaJvv4m/xM8nfoW3lr4ByyNX+T723KRIifZN00jKjv3r7zSZ6tDZ+7P3E+to3RMWsgjWs5vKUSR+EaxRdFeGkFVVWQyWYyPj6FYLCIWiyOdTiIej9mid1EKy3vB28GX6jl65fP5vECp/zVg0k8SWhnATZ7sebN2Qudc8GBmRAKc0ku//nnd29w4yLmgbu0Du/9EHD48PE/ozgCeOPIE3vfA+/Cfv/OfuL7n+oraCkvoZFnG17/+dbz+9a+Hpmn4wAc+gHPPPRf//u//DgC488478cY3vhEPPvggVq5ciVQqhe9+97sV9bESzClCd6Zz6IrFIrZv345kMone3l5jRXQmGITMZhw7dgxHjx7F+vXrDf00ABw6ZK5OM3cyoFAQkMMo7lM+gIIwhfflf420o2C206683BjGcxxYvhx3tazOsSkKbBFFJ9xq1AWBn5EHLz6taUA+n8PAwKC+Wt0UuH17AXH31WsZcSwjV2EZuQrX4a8xKhzCAXEr+qQf4UHlT7CQno8V2nVYTq7HAroWQomJhNfgbv6bE3EejeQmKhzlJihBJzDlojCjo6PI5fLo6uqySV/cooiCICAWiyEWi1kKJ2eN6J0sK0ink0inE5BlGZRSWA1DnOeZ5XIGOowAcMt9YYSrVnlu/HTVKo3uDKTn+cI9Z8PxG1A8UvhnHKh7ErcV/xOtKG/R7QcWweIvEev+uQGRoDv1ukdY/LBwYbvr5/Z3UO0JOyOm5sMmCNSQSoYlQbIso6GhHg0N9aCUIp8vIJvNYHJyHJpGkUwmjPII1YSf9NB0neRSw7DOmu7ts2vNZZbhrxGLuNlzGEudbJ1b8Q/MH/r1z69skFt0mY1HGgRBMp632VyPbqZKLh85+AjufPhO/O/v/S+uWBy8TqYXMpmMq5ulH974xjfijW+0G7Dceeedxr8FQcA3vvGNivtWDcwpQncmwSNEK1asQEeH3S1pntDVBoQQ7Nq1C6qqore3tySnyyJ7hiBQFApAv9CHu5VbsIr8Hq4ufgkS7LVnOCmz70fwjdKxfDmi/646ZQXMvpQfRDUtHKljq638ePhqKDXyNHg7ExMTmJycQEdHJ/r7T4bqO4tsea/CuqGZ9mCjdjs2arejiAyOiE9jv7gVP1duBRE0ndxdhx5yBZJSyvd4nQSSUtNERZapHgXz71PlNv8scjU4OABZltHZWeqixp06vcBMEATU1aVQX5+CplEUCgVks1kMDAzqRXrN6J3bRLuaBb/djTOq1rwnallj1DvHrToHFibCxfN8/c6pigJ+VvgrjAnHcWvhv5AWmiEIWoV5el4bm+Y2VqMWNjcUjG2ZFbx7p4NEBti7M1jua1QwCaBgMauyKymiLggLgoBEIo5EIg6gCYRoyGQymJycxNDQIGKxGBKJBFKplG7RHx083815ntg1MP7S5ayCLecuePt20iQImu/1LQceAbPmrVkl+/7usdQmwXQzoAniDlxqjMP+z599QuiszqObiRG6+/beh09s/QR+eNMP8bqu15XfIACmp6dti/qzDfOErsaglOLYsWM4duxYSYSIY64SOj6Y1GJlKJfL4ZVXXsHChQuxdOlS18HmxAn2fyZbpHhV/DEeU/4CNxS/inPIO1zbZXbMYXrCiZB7tKUShLHD56SO173yb9ckKmzQZ3/zSQKlBENDwyCEhMqX4zCllibCSlAVpLCCXI8V5HpQ/B+MCPuwX9yKl6T/wv3KR9FFN2I5mDyzha4sid75yXPMoufEmDw7zxmTJwafXLodX7Goor+/H42Njaivd5eBOF3deN95Pgm7TnbSx6N3zc2NKBZV5PM8924EsiwjmUzaJo+qWj3SZZ0IcVij4LVArQljrSN0phFH+QMp96rM0HF8X/tjtKY6cbv6XShIACiNgoTvo/9JYPXWnOYbbpEPwCnZPHHiJFasWBGgD7XMNWRqB5YDRnXiXIsbS4AsS6irS6OhoQ6aRlAoFJDLZTE4OAhCCBIJVhohkShvfuQGTSstJ8FKI5TmqnHTD6/r5QamMhF1W3+zXEglz7dpSGZvhzu1+l0KHhE23z3O+nKlxitO8Bqm/Bzw9pj7I4vSDQ1NIZcrIJGYfeZ1My1C99PdP8Vf/vIv8fPf/znWL1xftXanpqZCR+jOJswpQne6JZeqqmLnzp0QRRGbN2/2XAGRZXlOEjpJkmryIhkeHsbu3buxbt06tLS4uySqKkV/v76CLBbwED6N/fLDeGfhIbRT9yR9QfCO2hDCB1HrPUYhy2wbNuhwF7JKj9AeHQrqkscS5/ngW75d5gppj0hqGiMhqVQaTU3B8+U47FJLE5XkyQgQ0EpXoVVbhc3anVClSRygT+GAuBXPx74FkcpYQZixyhJyCRSkAp0vlk/DHBR51I5HV8PWzXMeVy6Xw+DgEBYsaEMikXDdhuVb8mLdZgTE2pbfK41LkMzcO+i5d2zySClBKhVHPB7MOTMITBt1+6SslqhW+YAo+60WnDJuv306j5Wf6zHhOH4g/hEW5TbhTfKnQxsIeYFPsssdL3NCdP+Om6qUlqoQcP7550KSSuvqlRREJ+7S7ErAnjGqKw9EUCroucG1jAQKxpgnCDBKIzQ2Nhry6Ww2g9HREUiSrJsfJaAoSpmWTbDC2FqgOQ8zS4GeX1ee2PF7UBSJ5Z0EfXwL3EXXPvNFB97vYO6anLyaOW+myQ0CRw/dTWusz5yAw4eHsWbNmTG8qCVmUoTuezu+h7/79d/h3rfdi3Pazim/QQjkcjnP8XY2YE4RutOJqakp9PX1YcmSJVi0aJHvb+dqhI4nI3vZ24eFm+GMF44eZatyGfEU7pHfDYU04H2FXyOBJp/+ek8c2YBoj97xv5l9tAZChLISuiBwkqIwifVsMuFO6njEjxvEcKMAPsDzfLm2tlYkk6lIfXdKLe37r3yyJgiAQuqwmr4Bq8kbQFWKQWE3Dohb8Rv569gi/CEWkdcxgidcgya61K818GM3o3Zs0hJlwsdlRZOTUxgfH0dHRwcURbZ8LxgTIiaRUo3V9mpAEIBYTEEspui5dwSFQsaI3imKUjXpl4nKZall91BjNjeTcui8yOtR2octwl/iSnwIG5NvK/m+kmMIalkfza2TYvfu13DxxaakismITcdNuzS68iid+X6zL4qZz7r/u74aYG2XDgSSJBgLMACL4mezWQwPj0LTVMTjcV0+nYQkeZMUq4OkXW7pDvZOYz9i47J3VIwboFjdRxkhr+yEceklixry3OagDNEeWePulWHenfZzZG6nqppR4/H48dFZSegIIVWbh1WCb738Lfzz8/+M+2++H6uaV1W9fe74Oltx5q/gLMTJkydx8OBBnH/++YHCu5IkQa20EvRZiGoSWVVVsWPHDsRiMZvhjBeOHAGOCc9gi/IerNc+gEtV/xVtRqIE3xVIa4FxRlzYoMCIkmD5TeUTEvtpC9cmjyY6J4f8M544b/3t5OQkxsY4CQm+UmyFLJdKLa2ohvOnM3ImQEA7XYd2bR0u1j6GHMZxSPwV9otb8XTsnxGnDVhOrsEKch0Wk9dBhtWkoLQ/jJQTYyWfk+ug0ZXh4WEUi0UsWtSlT1qpEZmwk/QgBevLw68osCSJSCRSSCZZ9I5Jv3J69I5a6mqFi95ZI3SnJ3+utpPv0xEBDEqG3M7n/viTeL7uP3Hj9KdxrnKt63Ys0hv1OIJdRFWtzuKDs2YaIydmBIepHMLtxxqJ44+D81yaOYBCWSONSsHeH+VzAhVFhqIwcxVCKPL5PLLZLMbGxiEIgm6skkQsFis5Hl7Djy2UBT8WVlhbNP5tBRvLiOX55uqT6uSwekWfA24NSvn9w/M3w80vzDmJeTJFEQZ5Pn58NFR7Zws0TUM8Xl2DnrD41xf+Fd9+5dt48OYH0dPYU/X2nbWAZyPmFKGrteSSEILdu3cjn89j8+bNgVc85nKErhpFiHk0tKenJ1BBR0opvrf7P3BX7Eu4Cd/CMvIGl7VSZ19Ni2UvsIkH1bX37hPaSt8nbkYcUdqk1B6pi8cpCgW7dIV9RzA2NoxcrljiwOjSKrwmfzwPzw+Vypy8yhRYkUAj1pLfw1ryexApwQmyHfvFrXhK/iqGhD1YTC7BCnItlmvXokHoco1i2uvaCcbnPG/F/ZamOHXqJBRFQWvrQgDOyZz9vHFnyFo6+1lt2O3SLxa9M+vesegdnzyGid5xElHLd+/pyXFz+/z0Tw5s9u6geDz3n3i56Wd4e+ZrWKy4S8U5mLNhlD4H24Y5xYbfx+rVq32/N3OF7QWzedkNr+vAn0lVdUbiXHsPa8RM02hNo3TsWvD9BtuJKAq6OyZTnqiqhmw2i/HxcRQKBcTjceMZlSTRkD9HAR+XeX4dd4F2zlOikGs/UApb5DF820yazuSD4d+h7FhLP1dVDbLMCoyHdXE9G8BI/JmRXFJK8eXffBk/2f0TPHTzQ+iu767p/mbbtbNiThG6WiKTyaCvrw8dHR1Yt25dqJumWsTmbEM1iGx/fz/27duH888/Hw0NDWV/ny1m8Ue/+CM8OvoyblMfR6O2ErTMqrJX3pfXb62kwln0m+UeRDNH8VphN/NSwr2ouDunJGmupQ8IUXHq1ABSqQQ6OlrKtC/4DnRuxc/d2vCz3S6HsNEBASI66Pno0M7HZdonkMEIDopP4IC0DU/KX0aatqO9ZTM04SZ0002QoOh5I6VtmYVt+cSWLwJQ5HJF9PefQktLsyGl8oPVlKa28D5fkiQinU4hnTajd2buHTUmjsw503sPp2PsZISx9vupJcISBwIVWwpfwlDdbtx08mvoaFobYB+1XSAAoikQXn11J6644jJHO97vABbdspYSECxyZS4x9I7EucGZw8jrNUZ9F5UHO0eVOHfKsoT6+jrU19cZzyh3z6QUSCYTSCQSSKejR154NC4WE1Eslr6U2CJmZYXlnWAGXrzN8Oefq0wUBYYZWVAwQimW3DPsnS4iny+iv38CHR2Nofs1k8HMX06/FJFSii8+9UX84sAv8PDND6M97V7CpFr7ms1kDpgndFXBwMAA9u7di3POOQfNzc2ht5/tN5kXuClKFFBKsXfvXkxOTmLz5s2BZICHxg7hlrtvwbL61Xh37gnUxVIouBQ2Le0nfKWCHLwQNydsXqUMol5uv4l+UFMFE3zFlRq5fdZjLBTyGBgYQHNzC9LptCeR4fA7pnJSS1uvIsouo5QQcP4+hRacS34f55LfB4GGk8LLeJluwTblbzEqHMIyejmWaVdjBa5BnaM2IcCuO88DZHJbAdlsFiMjA+joaIeiJHVXOP9++RUwDgu/dspFnDms0bumpkZoGkE2m8Xk5CSGh4ddondmo7NBeHA6CGMYslVABj9S/xRFFHCr+m2MalOBxpCo0aZwbq7hJapdXaXlOspNvrhbL5toUzDHV3OnfHJqjeyV6XnJJywPq/pROi79ZMSjernD/BkFoD+jOWQyrDZlLCYhHufmKsGnfdxUpFhUdbLDFmGtl4YZR4WraVcO7LxEd4VmNWVVyLJkSNuDwut6q6oGSimOHBmadYTuTEToCCX41OOfwrMnnsUDNz+A1mRrTfeXzWaRTCZruo8zjTlF6KpNnAgh2LdvHyYmJtDb24tYbPbZ2dYS3BQlLAqFAvr6+tDU1IQNGzYEuq6PHnwUd9x/B/7s4j/DZdJHce8O0Yjo+A8a9sm118ueTcLZJJ7nolUjB8rafpi6auXaopQROGbcIuj/ZjXyJienMDY2ivb2hcY9XS7Hx8ylcH4ejmhFndhEnXR5RcdFSOimG0FHFmJR6m8wjUEckrdhr7gNj8t/h0a6GCvItVhJr0U3LgLVBBBivQYCJibGMTk5iY6ORZAkGZQCsZigk2j3HDm3Ooe1QCU19CRJRF1dGnV1aY/oXUKPDpjvw1otWjG5XTULo5fidEUZg0TZx2k//j/yUSxNrMfr1b+ABBnAVMB9hHeJZKQp3MMVVtrpHANYH/3OA7vebEGKuN7H1meaSzTZ5+x+Kf196We1itKJotMFlss9q3ejsWc0pZdG0KCqBWQy0xgeHoKmEUt+bMLTXIW5fZonl41pmnFeTFkmy2+s/nmKtuArCCynnikkmOkay4cMdk9SCiiKiELBKS9lfZqNBcZPd4ROIxo+8dgnsGt4F+59271oSjTVfJ9TU1OzugYdMMcIXTWRz+fR19eH5uZmbNy4cc5G2SpBFMklL9C+evVqLFiwoOzvKaX4ym++gm+++E1876bv4colV+K++9jKa7EYpI8oKxW0kjmAO0l6FxCPIksqd3sFGfdMh0aAE08reVBVAaOjQygWC3q+nLliV37C6T4YBJNaWhF+0lkJOQm6ClwnLMC56ttxvngzQFUcoS9gn7AND0l/iUnhJJaLV2G5di2Wk6uQpM0YGhoGpaV1+lSVT3xMx0wmERP0Y7HnAVZDJuJGWquV/+UdvZvAyEgOshxHMpmo2fvRjKDU9v07E2SdA9iHH0t/jLXZ38H14kdKaisGQdhjcJKPIGDPe3CC0t8/WCaPjoIHD7hjIy9zEgTWPDsuqeMwnwv3Y+RRumrCWjPN7JNUdULEzhWLnClKDC0tMWgaL42QQzabxejoKCRJMiLsXOniJHOOlvVSALz0ggBVVSFJ1a2zqqokYjqKucDDyZ2iiKH65vZbfj5PnRoL2Z+Zj9NZtkAlKu58+E6cnDqJe956D+pi7jVYq43p6WnU1Z2efZ0pzDlCVw03ppGREezatQtr1qxBW1tblXo2NzS+VoR9WR87dgxHjx7FRRddFCgXaSI/gTvuvwP90/146ranjGTbY8e4uYUQWt5WapJhJ3MAd4t0u47sd2FlSUEIi39b1FJbyereZZItQjT09w8gHo9jwYIuffXbbMGsAeW+B7Z6a5/8hJFa2tsKTnjZfkPvwkD5bdkxKQpBoaDfK0TCIrwOi/A6XI2/xARO4oD0OPZID+ER5bNoyC9BT9NVODf2OwC1LzqYEQJrFIKTOzPaVGvXxlql7JrRuxQEQUMux/J6pqenjWfdzL2r5ruutrlhp+O17Pd87S4+iQcTX8Trtb/AuYkbI+8jbB6dk3wEhVmsujwuvPACxyfUWOzgJhXuUbjw4zlr0zzJLAdMAIzyCNTxe6HqY7LbealFqQRnMXEmYxQBEKRSSaRSTH7GSyOMjrLSCImEjHg8iUQiYSO/TlBK9LFMsjhLVvZisR+/u0GJH7gLpxVRjFvYWOY2P6EYH88ik8kjlTqzrpDVxOkqLF7QCrj9wdsxVZjCT3//p0gp0cofRcH09PR8hG4eJiilOHjwIAYHB8vWOQsLXn9lLhG6oBE6Qgh27twJQohvgXYrdg3twjvuegeuXno1vnfT9xCX2cu3WKQYGuL22jyR3n2SUy66ZE687b/hTojOunTWVf6gteOCGrJ4kUTuZGl1ZAQASTIjiDxfrqmp2VjBYoM/m+Bw4uFHtJwTq7BSS+exBEWlBiJu+2K5cKbZDKXcAdT9XmhAJ9Zr78I52bfi5MBxZBccwIn0M7hf/CSywiiWk6uxQrsGy8iVSNAm14k7N6jhBJj3gR2b976j4HSYrrC5gYB4PG78l81moSgKJicnMTQ0hFiM1dRKJBKRayDxe/50OF3W+tXs9Xw9r/0Uz6S/jbdkvozl8saK9mHNPQuGGp9YANu39+GKKy41CByrgRasg9GdO/n27P/c/IMRGKGE9FVrrsvu19IXOnOkFF2/qyYYCbY/L7w0QlNTPTRNQy6XRzabwfg4K43Aa1O6lUZgig9Vr0NXeeF3FlE02+ER1aDRS0JKX2yMmGkVGdBYoaoER44MY+3a8o7aZwtOR4Qup+bw3vveC1mU8aObfmTMyU4X5gndPAwUCgVs374d6XQ6UJ2zsOC16OZSHl4QU5RsNotXXnkFnZ2dWLJkSaCB/u7dd+OPH/ljfOnqL+HWC261fXfkiHNCw8lKmEkhNaRIzm2sMkZuOsH25yTswVbKnRI8P9gnN1QnlO4ySd7v6elpjI6OoL29HbGY/QXLiJxgRNo4uXBrjx2W1ZQgrNTSvt8g1yNMQXUvMNdREdYafPa6ckKgY2HmAyPobO9GLLYca9XrcS0+hzHhCA6Ij2OHdBceUj6FdroOq+i16KFXo52us8nmGCHmEVPoOXmCnqNiRn6tEs0gKCWPtZ+kM6mTnTgIgoC6ujrU1dXpJNnqysecM82J48xa2HLvTm3PIwXBg7mvYl/8Cbwr9x9YGOupghuyELhQOO9FFPgb7tgllIqiGP1hbpXBr33UdwyHsxwCj9IRQo3yHOycV+d+9It4chlpNZ5Pv2LigiCBENV2ntk7jskzk8k4kkk2FqgqQS6Xxfj4BAqFvGURJglZFo0oFlso4OesiErOl7nICr0PfMHb/95nKhS3b+xy2+Dk0L5Qya8LpQTHjo3MKkJX6wjddHEa79ryLjQnm/Gfb/hPKFK0WraVYGpqal5yOdsQRXLJ87ZWrlyJhQtL3e2qgblYi04URRR9EtmGh4exe/fuwO6hKlHxhSe+gJ/u+im23LwFGzo2lPzmyBGntMWdoPgVduZ5T17RHX4Z2QDCyICT8AS5BZ1FsoOCSzTZtqXHwAgaMDo6gmw2V5Iv54SqipAkYsgu3W5T63Nljf5FhSSJUFX/gbfSIsZ8/BIE4rNyWyqpdX4/NjaOTCaDrq5OiKL9ldpEl2CDdhs2aLehiCyOis/igPQ47lbuhCrksFy7GivINVhGL0OMeA82LAplLgbw8hfM4MZeNsEPtZZzOvdlhT2Ca0bvALZCnM1mMTExgXzenDiymlre9ya/B2p9TO7nLXwurB+s7avI46fFT6NQN4Y7iv8f0qL3+8/NjMgPYX4blT8KgmCReVNjUYLJJ+0R4uXLl0XbiY5KSp2wyJKbOsOM0rF8MQmyLKJYrNTN0f9+qVZpCafc0gpOVvk5Y2Od+3HJcqkBkn0RhpVGiMfjuskZgaLIriUOgoDdy3ZXyiDnm6liNNff8svLagvSkAZipnEbrzMKACdPjgfa/mwBpbRmhG4iP4G33/N2LG9ajq/f8HVIPnONWiKTycwTurkMSimOHj2K48ePB87bioq5SOi8jplSikOHDoWStg5lhvDeLe+FIAh4+n1Poy3lntt4/DiLWpUbJPzMMpgM0j1K5dyG1dRhg5RVusMmCd4T0SgTb5NAev9GECiKRYL+/gEoioKurk4EIQKaJkIUqadsha88h6nZ54dybUQ1QuETS+Y0yT7zk5KKIvGUO1JKMDg4CEEQ0dnZYTM/cYOCJJaTq7GcXIXr8XmMCIewX3wcL0s/wAPin6KDXIAVhBG8VrrSty1zcuyU+/I8TWpEOtnngp4Xcnpq3LH7JMzvJdfo3cT/z953x9lxlWc/027d3ovqqli9rVaSe8GAwQYbG2yMDabEEEiAhJLARwsQCCQYko8Qki/UAAEM7rZsY+MuW7Ily6q22lqyLGl731tn5nx/nHum3Zm5M/fOXcnafX4//7TevXfmzMyZc85znvd93rExADjt6t1UkGBmlpTEKP5X/WuElGq8T/4xJC640H7AL2nwe+Ekl3fGFDdieteA/AX6yy+/otWhKya/vZRn42WcpRsmzFhFX/j6CQ3Vj+M+sNGNmmCLdduBpgRwUFXF87mspREIIVp+7NDQEERRRDQaQyQSQSQiFnUNuhpmNXFyJu50s8t5Tmdklf7HeXxuLFVBj4ow9pPBwXHP1zSdMZQcwrV3Xou1LWtx22W3gS8wR5YTMwrdNIYsy9i3bx8EQfCct1UKpiOhs0s6lmUZe/bsQSQSwfr16z3tGu04tQM33nUjrl92Pb5+0dddd4B6ejiT+mYsPssGbJ4njmYeogjHBb7TYpmFzdGQEdY2znVx7XfhbZcMbgdFyeDkyT7U1FSjoqLS+wlAryOTAURRgSxbnwtdJBrzwEpBoUvxu4gTBH1hZncsJwLvdB5FkdHT04PKykpUVVX7a0yugHqdMh91ynx0KR+GzE/gVTyLbv4J3B76IAAOHfIlmC9fhLlkE0LwtplkNFqhNtv0/1iY3VSEWwKlLrJ19a62tjZPvQuHw5orH3M6ZOcrF9ezX/gHey8JIRgkx/Bb7q+xQnorLuE/Ac7BPbYUeK0/yHKPnKAvktm9Idpmjz6WFj7XrFmztO/Qemb+HiLduPAfeeOFYOU+mSMC5hwxluvFCpkXajd9BwufjZ7HvyGI1lqXcEu9LczUpPg+LAgC4vE44vE4CCHIZrO5uptDIERBKCShoiIOUQy5mqtYWu/4WRp6mf+cWfkKO1jXGCyHsDBp1jc97PpWMplBf/84Ghv9zaHTCf2JflxzxzW4eM7F+NZF3zrtYfQzOXRnIbx0qomJCezevRtz585Fe3v7FLRqehI66zWz+z5v3jy0tXmLT//Frl/gK09+BT986w9xzTnXuH52YIAgkTCHUxLC5S04nBb3NKxDhRO3d5ob6e6i3YLDfqfcL5mjoU00z8NNuUomJzAwMIimpmYt1M0/OBAi2BimUDUrCDLHzuO0I0uLoBc+glGNK3Q/qbpmPhctWJx/Pel0Gn19vWhoaEA0Wqxqrz97QSCAEsMiXI5F6uUgMsEAdwhH+MexXfo57hc+g1nqOsxXLkKHcgnqyDzPZ8nvx3q5BIAtaou8BBcEYT7A4Kbe8byKcJg69oXDU5+XESROcLtxZ+hz6Bx/P87nbvb5be/vndF0wh16Pq6RmOmKVX4+mHV+9eJYm0olAbAwweL6TTHmKN5zCc2hwsZx3EzueDDnx1JQqkGKW7gl21hkIdrFlQVgfUCBnoPOIRQKIRQKobqali/JZpOYmEggkxkGx/G5+pQxSJLkoqY5h/4xhY0Zp7DfuYfbWk+ku1e6l4rQH6KiEFsyfvz44Ayhc8CpiVN45x/fiasXXY0vnfel007mAErovJS6eiNj2hG6Qjh58iSOHj2KlStXorJy6l7W6Uro2GTS09OD7u5uz/c9Lafx2Uc/i6ePP41H3vcIljQsKfidY8fs6xcZd0Pd1DmWb8fcD83X4k4aCKF5aObf2X/Wz9inn9eoOFpzvghGRkaQTk+ivb0tL8/LLwjRJzfm5ElNMAikQNfU9mGt7iGljJD7C/10qjtkxcQELbre0tICSSrewMi4kLTmAnLg0EgWo0FeiPXKR5Dlx3FMeBZHhCexTfxvSIhigXIxOpRLMFvdABGFyTkL96XmBU65ocSkuBTvHkmVGpqXoS/4goBVvVPVLBIJqt5R04aQpt55VwW8nDf/XgQZhrkzfR8ej92Ga5RvoiNyfnAHdoAT0TISN/YeAfYbA17gxbxnYGAw91PxN7S4qdPbNdBQcja+cqZcKiPYXKYTD2L7dy8opiSDG5ipkrVNxbrn0rnb+aYLAg9RjOfSJWidulQqheHhYc38zf49db9eWmbCmP/nvnlkd89ZiCatnScUJPU0hDj/9z09Z1ceXVB4bew1vOMP78AHVn4An93w2dPdHA2JRGJGoZsuUBQFr7zyCrLZLDZs2FC0jXaxEEVx2hE6nuchyzIOHDiAiYkJdHV1aYVN3fD62Ot4393vQ2tFK57+wNOoCld5Ot/rr9N/3eZVJ3XOqArZlQgoPO9yyGaBUEhffNiRL6+5YWyCtn6WWkfr16CqKvr7+yBJPJqaWgvmeXmBbn3NQZapCQolxcGGoNlN1E5GMUb78WIMWay5K8zMxvAJDA8PIZVKFzSR8XY+Fvpb+HmHUYnFyluxWHkrCAj6uJfRLTyJZ6UfoZ//JGarG9ChXIwO5WJUk1mOxylUc9FOcTF+16uqR/tf8PW7rGCJ/My0AVCRTqc1ggcA0WgMsVjU1nLd37m8/c73cUHwlPzf2FNxJ96b+jFmh5ZAcVjUBhcuSwAYIw30Yt3G5xqM22LhPLU1a1bnPlvK+ZwVfSd4J1jmMbqQesYIA6CX7/B3Pu1M8Ety7cItKelRbN9H5vLrv22FJyk9741AFEXE43FUVVUhm5Vz4ZnWHNlo7vm5XzPbwKTX5RaqYX//mBsndTS2P5fd5o3RpZoQoLf37CB0RsWzVBwZPoKr77gan1j3CXxi3ScCOWZQmMmhOwth13ETiQR2797tyxo/aLCyBdMJiqJgcHAQc+bMwbp16zzd9yePPYkP3vdB/NX6v8JnN37W17MaGmLGJfZhQZQg2atCVvt/YzkBL8XJjWUOzPl6utrl1VBED5txUlrov9lsFr29vaiqqkJNTYWn3XJv4HLXz/JlOAACeF7N7V4Hdx4jyWL1/RioxbnVdKH4c1OyyxYq+vNmpFgURbS2ejOR8XY+LucI6uM74NBMlqFZXoZz5Y8jiREcFZ5Bt/AUtkj/F1FSp5G7WWonBDADg1ILsHtX9di9czMWCgLWQsxm9a4mZ7lO62llMlmEw8Wrd3akpFTHUBUy7kp/DafEvXh/5heoFlrgvph1WnwS02eMEWs6CWchkvTZyDIHjtND5oyfpZ93N5rwg0LhkC+9tAsXXHB+UflzRvgZ34wuloXAxmz9PO6mWeY2AeyZsFBCP+f1S7aM9v4sr5qpfc7n4fKusRCYWUjhz+mKJguXlCQBgsAjEgmjtpa6U6ZSKS1HFgDGxycQjTrXp6TKv/vA6ZYDqr8yJOdkSfL6vxE08oM3vWt9faOYqoLc5URQ13Bg8ACuvuNq/P2mv8eHVn0ogJYFi8nJyRlCd7ajr68Phw4dwvLly1FTU3Pa2jHdQi5HR0c185OFC90d/QC6uPjhCz/Ebdtuw0+v+ikun3+573NOTNgbkRh3U+0t+fNJinHA9za5c9qi2qj+GCcRLzXnjPlyTlAUIJlMYGBgAE1NjYjHI0WVP3CDeSHNFom0KK8gENfQPj8wTsosNFY3+AiWLejqnO4eSQjByZMnUV1dhcpKb0qwV+hug8XfpyhqsFS5CkuVq0Cgooffi27+STwlfQ9D/KuYo2zKlUa4CFVohjVPsFQ45VGZFQp6T3le1cxp6HeDDVu0hqhRy3WWewdkMrp6RwsmRz2rd0ErdGlM4nfypxGOR3Cr/BuEUeF6TOZQajQiYaBW7FR100PCreBM/7KcLyeFwkvum1cUctWMx2Ml5c/p5/ETpujnnbMjtvk5t24w1rszu2S6f09R8jcu3KD3De8GSExJ8zqe+lVCWTkDBmPBcFVVIYqCprKn00mMjU1AURT09w+AEIJwOJLLkQ2b0iVK2kxR9Vw6lk9nvH7jZg0hJFfywNy3MhkVvb0jaG2tK74hZwCCKCq+p38Prr3zWnzjwm/gxmU3BtSyYDFD6M5iqKqKQ4cOaaF+p7ugtyAIyGQyp7UNU4Xjx4/j9ddfx+rVq/HKK68U/PxkZhJ/+eBf4vDQYTz5/icxr2ZeUeedmLDfhWS7k3Y7vE7FStkixVhI3A10MqAThqJwWu4Zmx+81JzT6zq5rQJoXbRUahxtbW250JLSSIMd2D1hBJktAAlhLm2lFRdnYIsSSWIkMUjjFTNY2CVbeKVSSWSzWbS2tiEajZbhfMU72dmBA49WdRVa1VU4X/4kJjGIo8LTOCI8gSdD/4Iq0oIO5SJ0KBejTV0NvkzDv55zpKsgigKoKl8w/9Go9hlDPNm/RldaPwoZtVwvpN7FEI1GbNW7UtU4HQTjXB9+g0+gXl6Edyv/CJ4TtWvlOOoUq32asH5p/n8jWKikIAT3XhgjB0pFIVdNaoAVzItgrBvmBj+GI0zVNMKPSkfvpd4mPdfOGIHgRKz9GKSw+cg+vNINXtVN786gOtj8YK5DiRyRspI9mn5SU1ONmppqKApBOp3USiMIgoiKClr3LhKRXMeTwu3Ur5mSGn1TwdhW+nsZsDjOchzw+utvfEJXqkK3/dR23HDPDfjeZd/Duxa/K8CWBYtEIjGlvhinA9OO0HEch1Qqhd27d6O+vt5zqF+5MR0UOkVR8PLLL0NVVWzYsEELwXDDkeEjuP7O67GuZR0eu/kxRKXiFtZjY5Rc2CezA+EwkIv20EAVO3s1jOWReVHVADah6f/Pdl7pRKq6Lgyc8uWsIITk6qJxaGmZBRpOUjqpcmhVLgdHb7jZ/c34meLboF87CzEt77sqCEA2C4yPj2F0dAySJCESKdYR1B105z24hbMVcdRjuXINlivXAHwGJ7Ab3cKTeDT0LYxxJzBXOQ8LlIswX7kQcdjXbfQPe5LqRTnxotgZiRXHERPRYUTIaTg3kkRB4BEOV6C6mjpnptNpJJMJ9PePgOO4XGhmDKGQBFZXzehUS+cM44OzKgfERETZv6fUV3C7+Cls4m/Gxsj7wREOxHTP7NWsQuShmDnMXYULbqehkKvmoUOH0draHMi5vNUY9R5uCRg3KPKOhNIUb6aicQbHxfx7xMi6U9gqITTHW1X918Yzwkt4px8lzwzONqRWUVRtHKQbXOb5VhA4xGIxrQawqmYxMTGJwcEhKIqMSISGUYfDEcuGRmGFmeWOsdBiel12946RPOv7TnDq1IjH6z9zUYpC99yJ53DTvTfhR2/5Ed624G0BtyxYzJQtOAsxOjqKnTt3YsmSJaivrz/dzdFwthO6ZDKJXbt2oa2tDbNnz9YGUrfJYfPhzfjY5o/hqxd+FX+x5i9KIt7Dw255RPaLDRZK6AQn9c4enGlCMO66SxIlEXYolC/HkM1m0dfXh8rKCq0uGjVyKR8BMqqT1vwCBpbATksAeNsJZk6ViqJAUbgc2Z6aTRdVVTE4OIBsNou2tjacOnWybOdiLpBTURuOKCLauXWYRdbiwuzfYJzrxav8MzgsPI4/h76NWnUuOlSq3rWoK8CjuAnemE8asEeOBms+E4OiFHsvOUhSBJIUQVUVzelJJhMYHh7JqXdhVFSEEQpFXBY+hc97GFuwOfo1XDTxaawLvcPlk8Er6nYoZ35jPpwX2PPnzw3MmIHmpfovYVAMvDhR0jGv0CRBoCiKFoZINzbMD4duiNkTfcAYEuj7MgxtLV+fo6STt30uNPKClQYw54AaQQmbgKqqKlRVVUFVCbLZFCYmJjE8PAKe57Uc2Wg04uG+5+d32o3H7FmY7y39n7PBGIWFnPrF48cex4c3fxg/fftPcdncy8rQsmAxMTExo9CdbYjH4+js7MzZ6Z45OJsJ3cDAAA4cOIBly5ahtrZW+73TBK4SFd965lv4xe5f4A/X/QGb2jeV3IbhYUYS8s9Jc1CsvytM1qwmHe6fzZ/4FYWGEjrlmHjJlwOAVCqF/v5+NDY2mvp1uXO1vTjYMbD7TovA2hunMMVFUZhTJbWLnrpIZAWvv96DWCyE+vqW3Pn9GwZ4gVc306DPxZ5XJWnGKuU6rFKug4IMTvA70S08hYdCX8YkN4D5yoXoUC7CfOV8RFHrfgID3IwF3igQRQGVlZWorKzU1Lt0ehLDw6MW9U7w3C+2pH6DbbGf4T2Z72N2aLXrZ/2GOxrd9/zAbQEf9CaDfTkVirGxUcyaFVy9V1U1mhvZ/d3vtTmrfoUInShynt9zXSWyz7Ozhicy0xMAYMXNSwEllM7rkGLCLY1wIqWAPm6wEFMraCSMbOrnPM8hEokgHKbpMnQjJoXR0VEMDQ1AFKWCJkhWRZeGHwqaKygdL50J38DAOGRZnnJX9CChKIrvkMuHuh/Cxx/+OH79jl/j/FnlL7MSBLLZ7GlPrSo33ri9sEiIonjGkTng7CR0hBC8+uqrGBgYwPr16z0Vsx5ODeND930IE5kJbLllC1oqWgJpCyV09gsKu3Ama+iHHfw9LvuJX1U5U84Mg7d8OboYGh+fQGtrq2lSEQSCTCbI3B9r+0guF5CHLNPddS/9lxJgDqJISQYr7E4nbJ3IGc8jyyznsHwMIZvNor//JKqqalFdXWlYOAVnDmEEqz2nl4AI/BQOsCmgjhDmqBsxR92IS7Kfxxh3Et3CU3hF2Iw/hf4BjeqiXFHzi9BMloKD8+Rv3cWmO+7lL2FQLlDzlAhisRCqq2s19W50dATZbBqhUBixWAyRSNh20Uig4qHsbThasQUfyPwMDfxcD+csx5U4nSt/XKIbGEF3SGcTlpGR4UDPxHJhnQmOv2uzy6FjYHVNnc5VLMnKz7NTtXqfdG5QTNEORnfLUqDXNLWbk4oNtzQfw85QhZVbsAv/cy+7oBdHpxsxcVRWxgHQ1JpkMmkqjUDDM8MmAmkNNTWqxdaNXT1Mmd4fRSE4cWIEc+cGFbI+9fAbcnnPwXvwmcc+g9uvuR1drV1lbFmwYGVuzmZMO0J3pi4szrY6dLIsay6W69ev9/Qi7enbgxvuvAFXLrwS377025CE4KpU0zHd/tkbjUl0wxL3fsI+66VkAUAnfVk2P1+Oo5OFojD7es4QQuN+PEIIBgb6QQg1Fcjv1yw3w5tpi3/Q4+smFf7eK1mm1xoKqUinWWio+RhGBZTlGpYjFC2ZTGJwcAANDU2IRMI5Im1cxAW9uDU+X1ZPqXyMzu+xq0gb1sjvxRq8FzLSeJ3fjiPCU7gv/FlkuEl05NS7ecr5CMMthIXL5Z2V1n4nnA4FkKl3FRWVIETJ5d4lMTrKcu9iiEajCIUkKFwav898HhNcP27J/gIxvsbjWcqziWAHu5ICLPQtaDjl7K1evWbKzlVMiHOxCr1RQSseuvIWDvM5Ypc/Dga5KURJV/4EFARhlGUCQcjfQGVkkebR6Q6U7rltDNa/0WcfiYRzpRFqoCgqkskUxsfHMTAwiFBI0lxuJclKILncBqWa9/x0VVvvXydODL+hCZ0fU5Tfv/x7fPmpL+Oua+/CqqZVZW5ZcAi6Ru6ZimlH6M5UnE116CYmJrB7927Mnz8/V7erMH6373f43KOfw21vvg03LLsh8DaNjbkraux9pyTCy8vPdvC8LhDyF7bG3T9V5SFJBNls4WPJsoze3l5UVFSguroK1gnNWBahHHsExuOrKpdzhvRqF06vm5JZFek0l8t7ySeeRrJMjQHsczBKAVM4Z81qAQx5Y+xcdEHhnNdRDKy5l4Vs3UuBdaHndzErIox56vmYp56PN2W/iGHuGLqFp7BbvAMPhr6EZnVZru7dRahXF4JYHA2DXGgypYT1H5Zryfo/DdktjvDrKoz5X90EJd+QheOAaDSCWCwCjquDoshIJpOYmBjFmDyIh2u/hqbIXNyg/hwhPqYdi50rqDpvrH3FYCrXOU7GSC++uBMXXnhBoOeSZXu7/+IXdm7hqazmYnluJi0DQ5DJqCCERkVQ63+9PwV5buZKarxV3stBuIO53+abyegRC3o5Ax7uhcOhfcdcKiW//pwg8KioiKGiIgZawiSLVCqJ/v4BqKqKeDyCUCiMSCSSWwOYXS/1cxHTvwDe8MYoXhW6X+75Jb797Ldx73X3YmnD0iloWfA4UwWdoDBD6M4QnC0hlz09Peju7sbKlSs9JaDKqozPPvJZPHjkQTx444NY2bSyLO0aG7NfvFBiwWl5RjQs0x1GIuZ1MU4nHPMkZtz8EwRK5oxkyQ7pdAp9ff1oaKhHNBqz/YzxuDQkxZuK6B3mECSWa1AIjBTpO65cro1MsSOaamlH8IJcfFKFcxCEKGhra81bwOgL93IoTNYQt/Ktqu3qLpaCWjIXnfL70Sm/H1kk8Rr/PLqFJ3Fn+ONQoVD1Tr0Ic5VNCIGGPukucfp1MpJcqO9Qgwj2PaI9J+YkaQx/8uteaHM2h3/pz/aPiWht5DgesVgcqfggNnOfw6yxc3HBxMfQlxoGx40iFosiEonmnDOJhfgyUmpXMB0AVM30QlWDI4JTvXFtJQY8z6OqKtj6juw81vpnQHHvWrHvp5c6c05gGwg0n9j4e/1d0t+dUvt9PlgemX7eYAgdYB+mqv9MDNcu2z5DO9DSDt4GOo4DwmEJ4bCE6uoqKApBJpPC5OQEhoeHcrl3kZwDrnWzRH/32O14oxujeFHo/nPnf+KH23+IB65/AAtrC9cNPtNwNhSA94JpR+jOVIbuxTL4TAar6zc5OYmuri5IUuFwyZ6JHnxuz+fQWt+KLR/cgtqId/MFv5ictF+8GG39RZGRLvc+YnS/9PrIrA5kRuLGCnEDRnJpZx4whrGxMbS0tDjeX+ps6a1NxcCubWyH1GmXWCdy7O9O+Sj6/bBzGPXiKucFqqqgp6cXsVgMNTX1tvcsyEWzEXblJ2geYbA16fRjBxN2ZgcJUSxQL8YC9WKQLMGIcASH8CReFH+DB0J/jzayGgvUC9GhXIg436qFE9M26O3zet3WsTtf4SofO/Haxlfl7bg7/Pe4DJ/E6oprtN/LsoJEIomRkWHIsoxwOIxoNIpIJJJzNmQLdSuJ1Vqg/WS8Zp7nIQicdgx2P70apbAc1qkidnYhng0N5QlXozm6+n0opd8XupVUpdPH8WLr+FFCT3LGUfbnZbl07FkLQnDvtPEczMirVDMUO9Cx3rgRYyaqbKNEUWitOpqn7Xw8Fk1Bj+2vrYJAjY7icaqiZzJZJJNJ9PX1IZPJf1c5zqzcDQ1NIpOREQq9MZfTiqK4moX84Pkf4Od7fo7N12/G3Oq5U9iy4JBIJLTSF2cz3pg98CzEmUo0vSCdTmP37t2oq6vD2rVrPV3L1hNbcdPdN+HN9W/Gv13zbwiHylPrCwBSKd0gxAkch4KTBvuckdCw8gOF5pB8ImJMumahZCwxnDOVHKBqEg0NaW9vd7y/Tq6blAjZO0v6Rz7RIoTLWUqbFxRsAV/MWkCWec19lC7MAHaPSlGcMpkM+vp6UVtbp9WksQ/jpDX03Gt1+YeTe6rdQjcI2Bd1Lu2aWLkFcxgih0ZuPmrledig3II0JvGasBXdwtPYJv0CgiihjduA5fybMVvtgoRSjanyCXc5bdetsFNu95AH8VjsNlwx+VUslS42/U0UBVRVVaCqqgKqCq3u3ejoaE7Zo4YNkiTZXJfz2KWqKhSF5KkYTL2xOgbSMYhoZjz6tdipJcHDOhaoqoru7m60t7eV4Wy0vpvRCbI4eHUR1Q2H/JyLWfazfLlC4xs1RtHHC/YvKx0TTGikrnrZOTQHAUrUFFN/I0TNlbjRf8dInZviScP2mapYfFt5nockiZCkSgBx8DyHyclkLk+WutzG49QESZJCWr8YGZlEU1N10ec9nXAqW0AIwbef+zbuPHAnHrr+IbRVluMdnRpMTEyc9TXogGlK6IIMH5juGBkZwb59+7B48WI0NjYW/DwhBP+987/xzWe+if96+3+hebQZpMx1uIaG6GLP7ZGzRSnb8XSaVJnrohFedkeNIZdsUU8JnJEg6QttWeZyYZgqenp6EIvFUVNTDSuZMrfDiTxxjkTCD9zCQY116PIVOb+g90RV2S43MdSxK/KQABKJSQwNDaGpqVnbkaRmNPafD0oRNML5WMHn0ZUSast2yq1RKvSZ6kqQ5VvaT2HEsUh5ExYpl4NAwcnsfryi/hlbpZ/iXv7zmKWuzZmrXIgaMtt3++xVpfKNI9aFpPH8BAR/Tv4Ye2N348bMj9EsLXI9Fs8D0WgY0SjdxGLq3fCwUb0La4qAnYmEF1Clzv2LdCHMwxhmyvKzyrHJaFUECVHR0dER+HnsUGytOzeXS/PxrWHlhcHy4/yOlXQcphb7LF+MmoowU5vSDaRobTteUwODhiwDkiRoZmHMXdVuY4aSDndSV+p4raoEksTlQv7pfKmqBJFIBNFoJNdmBakULY2QTmc09c5LzbszFXZlCwgh+OrTX8WjRx/Fg9c/iKZ402lqXTBIJBKoqKg43c0oO6YloZtB6SCE4Pjx4zhx4gTWrl3rSc5OZpP41J8+hRd7XsQT738CC2oXYOfOnWUPNR0a0u3hrWDhbmZnQ/sJnOV3WWEMH3GCOWmbHt+6ULBa2CcSGQwM9KCurtExX46B591DLYOZj50XNqrKgePUks0B7BU4zhSeKghANusnRJFgZGQUiUQCbW1t4Hm6G0kNT5y/5dRnioVb7bl8Z83S4bzw0cObmNKW/3ddyfF6XKccMxCgQV2EVWNNaAx/CimM4ajwHLqFp/Gc9P8QJpUauZuldkJE4VpBdoTudOzRKZBxT/YfMFR5BB/K/hrVnP+FT756l0IyOYGREVosuaIiinA4YqveFQs9D4iOfUabfKZIsf/Y2EYX06U3gKnRPE9D6QYGBsqk0LFxiXMNCS8EttnnDfllQezAaoyWsslml3fPTJwAlkNob/fvBWxDx1r/LTiYxztao1RxVaPdSB0hQCgkIpPJFtcaYh4bGYzlGkRRQDweN5irZJBIJHDw4AG8/rqEuro61NXVoaqq6g2Ts2VV6FSi4vOPfR7be7bjgfc8gLpo3WlsXTCYmJiYIXQzmHqUa2c0SCiKgv379wMANmzY4Mkh6ejIUdx4141YWLcQT73/KcRDVP6eCjOYkRH7sCWOI6B14FiYIwdZZuUI7KyV89U5wBuBYYSOhWza7/rqFvYTE+MYGRlFc3MbIhHRUxiOG6w5Hn7hps6xguD0PKWtqu1y54yg944DoGi5h26hdoQQ9Pf3geN4tLa2mt4tLyUdqPLo8yIc4F7biwvcxdMcygRDWCzbwXdS2oohss4E27qwiaAKS5S3YonyVhCo6OVeRrfwNJ6R/h0DfDfmKF05c5ULUUXs61A6LejKN3Tmb9qkMYHfyp8GUTm8X/4JwlzpIT1UvaN17wgBslkZ2axZvYvFYgiH7eveFQP6DukmG7p6Zg5900mevhlSjBpi3AAjhGByciKIy3AEDRkszSzH69qchbfbgRne0HqbJTRHOx4PQpzJltEIoljVitV5K1/IpaqNS+ban/YoROpKGT+N7TESYbu+w2oqhsNhhEIhdHWtgyjyGB4eRk9PDw4ePIhoNIr6+nrU1dWdkbWPGYwKnaIq+NQjn8Kh4UO49933ojr8xgwjtWJiYmImh+5sxZkacskGzjOZ0CUSCezevRttbW2YPXu2p7Y++uqj+Mj9H8HnNn0Of73+r03fmQozmPFx+9+b87PMO/yU/OSbctjDi201l8uVcJ90ZJlgaGgQ2Ww2pybxUBSYcuqscFN+goMd0SK5mn2qYXezeJWpkGLGwFzS2DXT/YR8wqkoMnp6elFZWYGqqvyJyQv5DK6kgJdnZDwXXUyrqpJbJPK2IZC2ZyJ0t1sPb2Nqm37soE0U3Iw1zLl2lr+BRwtZjhZ5Oc6T/xIJDOOo8Cy6hafxdOj/ooI0okO5EPOVC9CuroEAZ7Mleg6uAHEOBqOkB78iH8OCSBfeLH8efMBTKZujJElEOFyJWCwOVSVIp9NIJBIYHh6GIAiIRqMaKS9+2vC+aLffAGD9Us8Dc5vHmPLNQiBXrSpvPStV9WZ25QSvIZcAcnUXrU6egDE/LojpnRDkyIfgOn/qUSHFve+0X5V3vcTy1+n5CpceoaTO/nqoOUqxRda5HOnmTHM/zZM3r1OMyjXHcZAkAaIooqmpCU1NTSCEIJFIYGhoCK+88gqy2SxqampQV1eHmpoaX4W8yw1WtiCrZPGxhz6G/kQ/7rz2TlSEzh5Fa3Jyckahm8HUgtWic3McOp0YGBjAgQMHsHz5ctTU1BT8PCEE39v6PfzHjv/Ar67+FS6ac1HeZ6ZGoWM7bda/mFUr2gw6eVvJQaFyAoWMUXTHMNVRUWLuixUVYdTXm5UJmlOXH/Lpx6GO5aP5XdjYXTsNGyVazT4a0lRarTgnBdQePAB6M+g9YfXJKBFPpdLo6+tDQ0MDotGowzUVPktQRhtueZn6ubSfNHVEFAUtHJOGxwF04cFp9vbM/p+pZOy7hTYYgoRbjqafDaoYarFMuRLLlCuhQkEPvxdHhKfxuPQ9jPDHMU/ZhA7lQizE+Yii3uZcxV6Bd/RyB/B74ZNYkbwGl3IfA1eGYvd218HzHKJRPZ8nm6V17xRFwcmTJ0tS75ihUnEknxjGFtZ+u5BNZknP5dQQGbKcxd69+7Bp08YizusNtB35NcW8wg9ZpioTIwbw8B4WBz1PzhsYyS5EAI1gZUDoGBP8BhAlEnQTk5FGr+egZU/MSh0jXcbNPj9gpNX+/hj7tvVaOIiimPe7eDyOeDyO2bNnQ1EUjIyMYGhoCN3d3ZAkSVPvYrHYad3EV1UVWZLFRx/4KFJyCrdfczuiUv6c+UZGIpHwVEbrjY4ZQncG4UytRUcIQXd3N4aGhrB+/XqEw4UdKcfSY7j1gVtxauIUnv7A05hVNcv2c1Nxzc6HJ3lEjNlN55ujFNo1dFdy6AJcdiSFmQwlILW1dbn4fLvdR+QUMf13XsIGDa3wRCxcj8ABPK/akDYuRyaAYlU6s0GMl89af0fbMTk5gdHRIbS2NkMU7fuq1x1npi6VjsLnY4tipnRSVY4+c0BX2vT/VKgqyxPSQxu9OHMGv8h0Pl6xpJiHgDZ1NdrU1bgQf40JDOBV4Rl0C0/jceFfUE1moUO5AB3KBWhVV4CHUHY14eXsY3gw8g1cha9gceTSsp3HCKfrYW584+PjaG1tRSqVQjKZNKl3sVjUUwkZSkJYvwqu3da2s5BNQQAI4ZHNwtPmYIktQemmQ4X7MAvtZGplueY1Ok6o2s9eyRbddKOEk5IeP/l1QUUqUFAVTt9MNb63VmdWJzDyZi0xUxyZo6GVLILGLq9YV+nM95uGjLpDEATU19ejvp5uQqVSKQwODqK7uxvJZBJVVVWor69HbW1tHjksNxKZBD788IcRlaL433f+L8IOc+YbGZOTkzMhl2crztSQxjOR0GWzWezZswexWAydnZ2eEn0PDB7A9XdejwtnX4j/eef/uA4QUxFyKYp0Qreui4yKnN4eI8FjyeWFJ4lCEyp1qrP/zMTEBEZGhtHU1IRQKJwjk/YKkizrRNPJpMUNfte6xnYwRzY7BU7fYS1OpSukgOaDgyjqDmkMw8PDSKVSaGmZlavRRX/PSLr1mgqeRTMZKCWU1Ov52EKC7VjreTcACx0DdEMdAXRhR3IhWIq2YPa2+ApukebuIEs8kcxCqEADVirXYKVyDQifxuvYjW7hGfwp9C1McH2Yp2zCAvVCzJM3IYbaks5lh+fV32Fr/Ce4NnEbOkLroaKcY7U5z6wQeJ5DLEYJHKCrd4ODQ1AUJefUF3VU7ygx4Mvq1sfCf2lfZSGXPGpqqso6DzAVp3iy7/7u03eUaKGD7F33Ez3hB6JofU5+3y2iERR9fLN8gpiVKr1/lP6M6Lxl3oVkhyXEXzF2VvKBOoXqbfO7lhIEAYSomimLW1/R8+E5LYrCLyKRCNrb29He3g5VVTE2NobBwUEcO3YMPM9r5iqVlZVlXa9OZCbwd7v+DguaF+D/ve3/QeTPTkowY4oygynHmUboxsfHsWfPHsyfPx+tra2evnP3gbvxyYc/iW9e/E18cPUHC35+Kq7ZboOaGnnkh2YY5ytmjmKXT2dzRMc8OkbA8kkOweDgEDKZjMl9EXDP3WJKHZ2A/A32xZijcByB7gTq9Bl94VmcSuefMBmVSVVV0d/fD1EUTX3VuLgSxfzQsMLgDCFHvpqngYYVuX+GhuLSnERR1Ms1EGJP2tkkzxYTlEyruYWG/qyMRZWtCDKMyu3elMVQARJmq+swW12Hi7OfwjjXi27+GRwQH8WfpH9CvTqPqnfqBWhRl4BD8QYiBCrunvwWXg0/g5szv0CdaB9tECRKXTcz9a6qqhKqSgqqd6rKNr7KD5Zvy/McstksXn/9JFpa9HeW9VU7pcQvjBt0xdZ6ZGHNRjAjKGYMQ8MGrefm8+oDlgoWtm9EsXb9LMSRhmGa1Vm7HDUWzl0KwdDzne3+xvI4/c5pJI9sFlfUXX+GdmScmocIBiWxeEJnBM/zqKmp0ZTqTCaDoaEhvP766xgfH0dFRYUWnhlkOs5oehTvvuvdaA434/9dcfaSOYAqdF7XsG9knL1P8A2IM4nQnTp1Cq+++ipWrlzpKfZYURV87amv4fb9t+Pu99yNztZOT+eZGoUu/3c05McubI/a77MwMVoOwNsEY5dHR0MkSa4N+nFUVUFvbx/C4TBaW1tgncQKES+q0Nm7cRaC1/mY51miulpwp9mowPhV6SgBKW6RIAg8UqkMent7UF1d7dhXqSrAHPpYXTtvJI0ZAxSrMDmTJuaex8gYM+nxv5BlhXUB+txkWdXyZthCzJj0n/tWUddjdx2nG5WkGauV67CWXIeMmsIJfieOCFvwQOjLSHFj6FDOR4dyPuYpmxBBlefjZpHCH+XPQa6YwF9kf4cYqst4FTrY+1bM+21FvnqXRTKZylPvKiqmJnfbWCdNkiTMmzfP9Hfr+6I58JVgwU+/DxSntBMtDJAVvVZV80aLKPJ5c7f+LgensBgt9I0oVn1kYZjMBdeNRNPPFJ+LSCMjnDszi6IoZIrifHydQNsZmbiBzkHGz+o52vpn2PxhDvP0EnLpB6FQCC0tLWhpaQEhBBMTExgcHMTevXuhqipqa2tRV1eH6urqoksjDCYHce2d16KrtQvvqXgPROHspgIzdejOYsyEXDpDVVUcPHgQiUQCXV1dnvIvBhID+MC9HwAhBM9+8Fk0xBo8n28qrtloKKXvvOkGE1awcDcGbwqdM5mz/o3ly9XU1LoOMnQRYT8hsXptLMfKex6dN3MUnic5MuuVlJnvmR+Vzp8ZihmJRBJ9ff1obGzwZA1N8/84rV30OpHLRcv/PLuuYuvE5Yd36rXfaPiqTpbZsCSKxSkJRvA8r5kysBArRu7YsZkLZqnwQjqYKVBQcDuUiBDmqhsxV92Iy7KfwQh3Aq8KW7BXvB8Phb6JJnWRlnvXSBY5mpokMIzfqH+JmNyEm8l/geP0sbDcUwjdRCg+zNcNkiRBkqQ89W50tB8cJyIWiyIajUKSyrs8IIRDJpNGf38/GhqcDW6MNfKoARCfi05wfw60r5tD+JjdvB+wsZAQxXHjyemYlOiVv98rCjNhKe64bDxiubhO9eCog6e/eoS0XWqOLDqPAyzEvJj1GXvO5qgDb8ehBM28BnFqo6KoWsgy+4gklc+xkuM4VFZWorKyEvPmzYMsyxgeHkZfXx8OHTqESCSiqXd25l926E/0451/fCcun3c5vnHhN7B9+/aytf9MweTkJOLx0svKnOmYloTuTMXpJnTpdBq7du1CfX091q5d62lgfbHnRbz3zvfi+mXX4x8u+gffsr0gCMhmiysE6hWiqBM5ffHslhNRnBpjXNQy9y7ATAgnJycxPDyk5cu5ge2W2s0t7HcsH4UWZfU2oRPCOZJAaligQlVVXySRhiba5Vy4N4jmnfg5j47x8TGMjo6hvb0FvMd+ZyUeqqqrdCwPBjCGarK+UJwaylQ4FpJKcz0YyTfaYBu/U0q+mVnVpe3ntE0NY2gmXcAx4wrdOdMvvJUJCJaYOOe35P+uhrRjrXw91srXI4sUjvM70C1swd3hz0FGBh0qVe/mKhsRRhyHho7g5cmt6J7zc6wLXYsL+Y9DIIA6hUpksQtbv2DqXUVFDBxXjVQqa8i9kwvm3hUDvXgzfY7pdNrHdwG2ycUW8EwxsfYJmrdsPYKXd4tZ51MSIssqOE5wfB6UpDjN28HlqdLz2A9AOhELItqFOCqBhPgjqTTdQL83hfIKi+nzRiXOON/Q4vWFN5JEkUc2643QGUkjm5+Dei+8QBRFNDY2orGxEYSQ3Ls6iIMHDyKdTqOmpgb19fWOpRFOjp/EO/74Dlx3znX44rlfPGPFjaAxk0M3gymHKIqQi13dloiRkRHs27cP55xzDhoavClsv9z9S3z5iS/j/77l/+JdS95V1HnZbmA5IUm6rbq+YHfe/bYqTbT4uJewQE4L5WT21QA7J4EsKxgdHc3Ll3M7His0boRdKKYsQ8v38xK+aOfKSY9LtGP5gfO84K4yFKfOEQwOslp9rRBFwZOZQ6FnaFRhaVimXkMq91t4W5wxFY7mu9iRQGcyV2pxXHejHGNoJq35RHJ1BFXYlUUICsEuHJzvT6ENDQkRSuDU80Gyn8cw9xq6hWfwkvhHPBD6KmrSHRggaZD5x8AdWYfWyreCq8uvbVdGI83TAmpUwZly7xRFRTqdNuTela7eWclPPB7D4sWLi263NfeLhes5bSSxGnj5z08vHm7cdGH91q37upEUWQ5OzS1EhoKZRjmDqsnZkkg6hrrX9aO5ZZyFzLFjFxqDvSvTdH5WTJ/XFUbdzdMJtE32ay4WgprfRtY32Hg6dYTOCI7jEIvFEIvFtNIIo6OjmnumKIqaehePx/Ha2Gt4xx/fgQ+v+jD+putvTkubTxdmQi7PYpypuxKnQ6EjhOD48eM4efIk1q1b50m2zygZfPbRz+LJY0/ikfc9giUNS4o+/1Rcs3VhKooE2azbpKL/zJqmKF6dGJnbFgvpA7JZgr6+PgBAa2sLvNoy07bYES97pYjZ9ntpp3FhQ++PTjwEQQ1kceAll86NWNsfU0Fvby/C4TBaWmjuIQsVKpzn5/k0IISDLAOE8LldaYCFLtq3l+TMTHQVjiqd1uPmh1jaoXjDEu/foQse5gTKa6odM15ge0usnpgTwfOahzg1JMj7Q+bAoY7MRZ08F+vlm5BBAv87+UWQti2AIoHM242nBr4JLvM+zItcABGFQ3qDRBDOoF6hGz3oz0kQeBfnTF29i0QinvOerO/p2NgEXnvtNaxcuSKQ6zC+Myzny6pasZBN5pDI3mvnfuycB8cUbycwBadU5YzVhPP2ueL7jNXlmY5j+Wodnbed22NV5gB9HCncBu+18uzaRguP02MUmsdo3VLHv8L+/dPD73n+9BE6KwRB0NwxAVoaYWhoCEePHsXBwYP4wr4v4KMrP4q/WvNX2nfKWeLlTMJMYfEZTDkEQUAmk5my8ymKgn379oHneXR1ddlK9FacGD+B9931PjTHm/HMLc+gKuzdYMAOU2GKQtMAdVMIQQAKRXkKApdTV3QDicKDH9HyANhHFSWDkyf7UFNTDVnO+iJzAFuU6DuFdCfd/TuKwuVKDOSXajCCFeL2midXDNxy6UTRnzqXzWbR29tjk3tIVSdrCQMrSiGptJ30vlrzGplJQv59NF+3VzJHP1tcO/2+Soqi91m628zlzk8XLcai5lRtsJI7om0OuCHIdYMX8u4XBAQ7xN9ivPZlCC++Hcp4HHx0HIJyAtvav4/7Zn0Vs9QV6BAvQ4dyPuoxJ9gG2IC+6+VfcLH+S8/pPM4Fod5ZyYYgSKitLW0OsQMdMxUtDJ0tuikJIVoJFi/kx815kRIK94FlKtfMdANKLmrTWq9TZ/wdq/fmzUWSnlbNu69USfM2OHm9X27HlGVFc8102jTWzXmccvry76Hu0MrnNr/Km0NXCiKRCNra2jAaGsX/efb/4DPrP4O3NLwFu3fvBgDU1dWhtrb2NLdyajBD6GYw5ZhKhS6RSGDXrl2YNWsWZs+e7ek7T7/2ND5w7wfw8c6P43ObPgfeJzmxw1RcM8uhY5BlFfBgY26dEwuFXjIDDKZKTU5OYmhoEE1NTQiHIxgZGUExxhrGEgbMDKUQFEUnr/afJ9rkZL6GYNQ5BrdcOj8LnWQygYGBQTQ1NSIczldKCi18KXn0fj4GZhaggz4/RnQEwRiqZQ7ZNPYTP2SOHst/qJbfchT69/IX8Sz3zljU3Kje6bUJdTMDN0wdofN/IgVZ/Cn0T+jjX8EH079BT+sYjsaOYl71PCwitVC2b8eLtz+P5LwenFq1GdsW/ASSWJlzzjwPs9W1EFGuYrzlZwOsIDbgvc/lq3dZJBKF1DsOVudAnucRiXgzc/AKPXSYtRW587JQQQE8z+o2ejme89+8EMJiywroMIZBuoPZ6BejCLq9V0ZjGmauZFUeqbpnP3k45eTZwbop6gS70gp6W/T77ewUrbrm2Nkd2/p5VSUQxTNDobPDrr5dePdd78Y/XvSPuGHpDdrvs9kshoaGcOLECSQSCezdu1cLzwyHz87C4jOE7izFdA+57O/vx8GDB7F8+XKt9okbCCH49+3/ju9t/R5+ctVP8Ob5bw6sLSw0opyQJGMYkTdViBKRfPLF1C8rqTMSLUWhOYmp1CTa29u1fDljQVI/oKGL/p0PqctbvgsmW/jTcJrSHRU9tgbmPAfvxb3HxkYxPj6OtrZWCA72yoRwruFGxbu/cVo+naIwIqP3V2M/YIonDWPVCaRbvpzzef0/82It7r3U53JW77zl3lEF0H/b/MLvc05jHPeE/x48RNyY+glCiKGyrhGL6hZonxHe+hZsuuwikJ278ep921CVmMCS+SkcOX8cz879b/SHuzFbXYsO5Tx0KOejmgRT78hOISgHjA61bvUv3SBJEqqrJVRXVzmqdxUV0Tyb9UQigcHBQTQ0NAZwJdDCKGnpGdpH9Y0WYlChmKMj3biQZcU1bNSu79LxxtsgVmwNPPpdf+91sWOAl3nYGILJxm9WP9ONRPols4UMXhipLHwczqCoGQuPc6Y8d4ez5BFxO2J+poRcWvHCqRfw3nvei+9f9n1cvfhq098kSUJzczNqamqQzWYxb948DA4OYv/+/ZBlGbW1taivry+pNMKZBFmWz0qiasW0JHRnKspN6Agh6O7uxtDQELq6ujwVqZzMTOLjD30cBwcP4sn3P4l5NfMCbdNUmaLoCxYVhBQeoOguof1gn59YrzusEaKir68fksSjtbXVdC62cCpuYcvlVB//3zSbnJjDjJjdNSWwwapzDHa5dF5KQRCiYmBgEISoaGtr8xCuar8Y9RKmmv8damzCyK9xceGUE8NyGAF6fVS9UnOLD/8lAuzyJ90wVfkQRvWOLmaMNe/0PsSeF+t7xdaXyj+/89/83IIx7hT+GP40Zivr8Kbs58C7TYeRMNQN6zG3cx3mdXcj9fxzUH59Apfxy1C1+u147Tygu3Y3tkj/jSip0dS7WepqCChc+sUOU7fvaFQcSj+ak3rX3z8AWVZM6l1lZQVCoVDRYbTU2EdXTtjYpoeoO43hLHcOoIYofK5/kjzjjiBqyRU/rnpX5xjohpL3XDo/OXfWEEyamuBeX85rW2guNL3QQjX8vNbDYwXsjYehRiiKbYSKFVYCp8/z+u/ORIVuy+tb8P773o//eOt/4IqOKxw/pygKRFFERUUFKioqMHfuXMiyjJGREVNpBJabF4vFpvAqgsN0yRWcIXRnEMpJ6LLZLPbs2YN4PI7Ozk5Puy5Hho/ghjtvwJrmNXj85scRlYINjQGmRqETRX2h4j1533kAIMSs0rGwxmxWRm9vD6qqqlBbW2mzI8tCm/xPAIoCSBIpmPvnBEqqiEMSOF3IlHMBaRxPOa5wqQJVVdDT04tYLJpTkb2oqvalBagq66mV2gKF2VLTYrfm56gTN/s+wnHUCEc3muBziptu3uLlNWcFxr3NRcWRfUAv6Fvs87eqd3p4Jn0QbHEWXPhg6cfp4V7GneG/RZd8M9bLNznWotPOyE4p8CCLFiJ6zkJc0NMH/sUdePGlvcjsVPCOOUuhrr8ZpxakcST0LJ6SfoQh/hjmKl3oUM7DfPU8VBLvStRUrUGs5wk6R5GqdyFUVVVAVQnS6RQSiQSGh4cxPj4ORVFQUbHQo/Mv22yhP7McUH2s9aY0AdZQcKOzpU7umIumHbHwqs6Zz+dvriu+sLz3zSBR9N8uVVUNJlCFvuutLXbKl3PEhfcOqhN02g4WHeIlDNT62M2EjhLFMy2H7rFjj+Ejmz+Cn1/5c1wy5xLXzzJyboQoimhoaNDczhOJBIaGhnD48GGkUilUV1drpRFE8cynENOFzAEzhO6MQrkI3fj4OPbs2YOOjo6cM2BhPHj4QXx080fxlQu+glvX3lq2MNWpUOjYmEMLnHq7DjqROn9WUTiIIlNvaD2YgYEBQ44XC2c0HpPLhawUeyXFu97RSYx+11qzTlWBUIignH48VAFk4S/uLpys8HptbS3icX9x73bF2N1MDXKf0Ip5W0k4q3FlPh4t/u1kJsNximnCZ7AL02V/Z6TKCq+1pQqVK3AD29EvZuKzu18s7FIvag4kEhMA2PjG5cLdTs/O9mH+KTwY/ge8NfMlLFbeVPyBmhqgXvFWrLnoIvC7dqN3+3bsu/MurKuowoXrO3HB6g9iMjyBo8JWHBGexROhH6KKtORCM89Dm7rCVRU01kAsJ1RVtSgYwZNJRkwEgdPUO0KAEycIhoYGMTAwiGyW5t7FYlGEw3ruHcfp7wkLtXPq63SM8dYmZxdRYxQDl+un1nfX+3mKh3dyaoVxvHWDF5XKClbKRZapi28kIiKdlh03hFgJAS8wf84p4sLfWEXHJH1u0NcbhdtkPI2VkDPl70wKSXzwyIP4qz/9Ff73nf+Lc9vPLfh5RVEKmuGx0gizZs2CqqpaaYSjR49qzpr19fWIx+NnbDoTcOamWgWJaUnoztQHW446dKdOncKrr76KVatWeUoKVYmKb2/5Nn6+6+e4/drbce6swoNCKZiKvEEpF/HEQu+8WtzTZjkvqGSZmoiMjIxicnISra2t2o6VHi6nf78UG3Kep+qc38WWtSQBazcNUzKWZSi+bX6gm4zY39NEYhJDQ94Kr9vB2pXoc3QK29HNPpzJmf19ceqyethX4RBL64YBUx7oPdL/mwoUk+PD8gWd/86BEA6jo8PIZDJoamrQzGFomJa+sJqqhdFO8XY8K/4E16X/DW3qSh/fdHk/YlGo525E44YuXHrwILjt2/H0E4+j7qmnsXz1aixfdy6W178dKmSc5PehW9iCR0PfwxjXg3nKRqreKecijjrTYb2aQ5QCuz5qtylSrnM3Njagvr4OkUgEhMhIpVKYnJzEyMgQJElEOBxFJBL1pIIYi457AVPf3dcDejghIwbM3dAvnGvg2aN4dY7Cy3xDN7K8n0QQmJkMCy2n7r5OapcfVZIQc6grLQwejIJMN+F4ZLOy4XeFD0KLh7tvqojimaHQ3XXwLnzusc/hD+/6AzpbOj19xwuhM4LnedTW1mrumOl0WiuNMDk5icrKSs1cRZKKCzUPGn6v8Y2MaUnogFJdp8qDIMmNqqo4cOAAUqkUNmzY4EkaH0mN4EP3fQij6VFsuWULWiq8qXmlYCqeA0sVZKTIj5phVdmM4HkVvb29IETI5XjRQV83IeFM5yrlWtmkYldo3Al0MlRtJz+95hzLOSnOeMUPdCXQbnIkGBkZQSKR9FF43Q4cRJHPOZmyvECrcQlMSf2FkX9P7FzeWLihFzJnexaS39eoikd36t0U41LfoWK+btwQsD8mQX//AHieR3Nzc24hxuX+Zf2OGlRQ1cWbele4rfkLWQIVT0j/hiPC07gp/TPUkFleLtERtqqGwIMsXQKydAnOP9UDvLAdr760E6/v3IENc+chtGEDZs1bjVnqalyU/QTGuT68yj+Hw8LT+HPoNtSqc9ChUvWuRV0KHoLJsKQcoETeem3BnoM9W7t3YmBgAOl0EosWLciF7kYQi0VACE0TYJEPqqogEoka1Lv8Y9HQQe/zJzVS4gu+O4z0MXVQVw6LCaH0WpOutHpygLei5l7JHCWXam5D1HxQI5E2Ejiq/nm/P1ZyzQi01ZSkmPvCNpBEUYAsy7lNpcK5iUzZswstpZuFyhlB6H67/7f46tNfxd3X3Y2Vjd43quxCLv0gHA6jtbU15xdAMD4+jsHBQbz++usAoJmrVFVVnTYhZXJyEvF4/LSce6oxbQndmYigarKl02ns2rULDQ0NWLJkiacXaW/fXtxw1w24ouMKfOey70ASpmZ3ZSpecrY5o4ftFP5OocegqlmcOHEKlZWVqK2tNi2KjAoUPRdb5BdH6CgBYcni3pQ05spYCNS1U4UgGBWj4hcShXKx7O4rISr6+/vBcbzvwuv25zAaGgDW3Dg/cFtQG3/Pcm3offTdZEfQ56NfE3PSpOdkJjvFlSswIuhFvCwr6OvrRTxegepqvc4YC+3UNz/oy8kKNBvVO2ZM5Fe9s+7gZ5HEA6GvIMmN4qbUzxFFdcnXV1AlaG0B3nkV5k5cilk7dkDdvRtP/OF2LKqswqxNm6AuX47KUBNWKVdjlXI1FGRxgt+NbmELHgr9Iya5IcxXNmGhei7mqhsCabMd7MYjqiQFF+rJNsWY06keZkwQiUQQCklQFP0dBehnQiEJoZDROTOVKwUzBFGUEI1SgqcvqP2PW16VaeOYxsgA/T49txNhtcKbKsgIVGmEjubtOhNIut5wJ8C0mYXHTXYeWVYhivRnt7ICdrC7L1bX1WIVa92Fk+bS6TXoCoMReOf6jKc35PLnu3+O7279Lu5/9/04p/4cX98NUr3iOA5VVVWoqqrC/Pnzkc1mMTw8jJMnT+KVV15BPB7XwjOn0nFyYmJihtDNYOoRBLkZHh7G/v37sWTJEtTX13v6zu/3/x6ffeSz+JfL/wU3Lr+x5DacaWAKnTFnzC2U0rhAthvDU6kkBgf7UF/fiEgkkstXgOFf/bhmo47iCJ0gqKZSC275W/Tv0BSqQjCGJNKaahyy2WJVRD6362k/wdFwHd05EgAURUZPTw8qKytRVRXMopXlj+jGNWoJyqPzO8nqSzFVneaOqYGTI+PxjE6a9Jz6hoWxzxaz6AkqvC+TyaKvrxd1dfWa0yGD0wKaqjM6uQPM6h0L8/IyRBo3TiYxhDvDf4NaMgfvSX8bIgo7+9rBel88v8cVcQgXXwTh/PNxycsvI/XCC9j/yJ+QfvxxrF6zBujsBKqrIEDCHLUTc9ROXJL9FEa5U+gWnsV+4RE8JH0XjeoCdCjnokM5F01kcUETF6+wW3BTAl1KjpjRWZDk3ndi2y+NZN1NgabOmTSXx6je9fdT9S4Wo66Z4XDYl5tqIaddwJyDa7X31+uz8bm+rcLdUKuwERghpatzDM4KOleQhFrDK93AnitT8nQrfz+Ezs6ERH+f6Vyl+l4nGTc3aX/z9XVTG8y/p/9/OhW6H734I/z4xR/jgfc8gAW1Cwp/wYJSFTo3SJKEpqYmNDU1gRCibcYYSyPU1dWhpqamrOH2iURiWtSgA6YxoTsTQy5LASEEr732Gk6dOoV169YhGi3sSJlVsvjSE1/CfYfuw+b3bsaq5lVT0NKph26KohuVuC1YjKFk1ryHsbExTE6OorlZz5djKgkLiXQ+bnF9zmrk4mRnryerez+H0QFSUTjIMhAKUcLot6mFJ1p2QNr+dJqanzQ01CMaDcoO2ajGKSWTK2vIj+lMRM+vYJdOyUqwqrPTgoL9zc4kwqqGAM7GKww87y/k2649qVRKMwcqJgcS0PuRnXpH/9X7ESMfdhjkXsUd4U9jmfI2nJ/9y5JIUMlkVxRAVq5AeMUKLD1xAuPPPYeJ7duxe/sLWDW/A5UbN4HMnqV1nWrSirXyu7CevAtpJYnj/EvoFp7DveGvIYMEOtRN6FDOxTylq8RrcrqowpEArGQA62dGgw32L1PInYaG8fFxABzq6+tAbeu9tduq3mWzKUxMMPVOzKl3sYKLbS/P1Gxb7/gprf2CIHguWm4HP+qRt+Plq3Tu85RzeKUTmAJrht8Xxl65ZJtA1C3Y332hZE4f0+hYSTRXXs8tyyNzOhk6XflZtz1/G36191fYfP1mzKmaU9Qxpiq/jOM4rTTCnDlzoCgKRkZGMDAwgCNHjiAUCmnqXTQaDTRya0ahm8EbCoqiYN++feB5Hl1dXZ5e0N7JXtx0902IS3E8+8FnURupnYKWnh6w3Fy6MKZlA/yMF4JAbegHBgZAiILW1lZYSw+oKudYtJyqdHSh77/Aar4dvVER1D/nL1+BwW7HXFFoO0WR5H72czz7D1tJcjI5gcHBYbS0NEOSilNNLGfOladQoYd3eQtPdYPTotdYc40l7lOTkPKEELuFhrkRPftj2RM9f30zP8xzfHwCY2NjaGlpCdTO2qzeGRVXo2W9mdy9xu/AveG/x8WZT2Gl8s6S2xDY3h8HkFntqHjPu4HRcWzYvh3pPbvx4u/+F401tZh97rkgS5aAC4naMxERxnx1I+arG/GmLDDMvY5u4TnsFu/D5tC3UNs+D0vFS9ChnIsG0uGZuLqRVLvFOVXddMLG+pjbvaFmGc6bBI2NTYZzcr7qpzHwPI9IJIZIhDpnZjIZpFIp9Pf3gxCi1b1zUu/cwhKNbaObKl7C2NXctdCIBet7xTYUnd7boMv4WM299OLqZngNr7QDfUfpfTReg5+Nc2MdOiNoLqB/kksNW2TTMRVFdzQulB5gbJd1HmHhpBzHQZKmNjeMEIJ/fPYfce+he/Hg9Q+itaK16GPR8hNTTwMEQUB9fb0WRZZMJvNKI9TV1aG2trbk9s0QuhmcVvgpZJpIJLBr1y7Mnj0bs2Z5S/TfdmIb3nf3+3DLqlvw5Qu+DL7EnKUgEETxVicwQqcolFzRnDTX1sCosmSzCk6e7MnFgNc7fpfjAFG0J3UAm8T9td3plhjJitd8Obtj2wkyLGSRJdV7NZFxK8ughyERDA8PI5NJl2h+wsDy1lRTrTmeZ+Sq1JV4/gNgZI7lRVKyqtqS76DgfFz/+XNun+d5YuqnTqqekQwQgtwzzaCtzT0HslRiRBdSPERRz2PSi5rTBds+YTMek27DO9Pfxlx1Y2knLCeqKyG+6VKIF12IdXv34tTWbeh/cDN6Hn0UK9atBTrXAVVxWPtwLZmFTvk96JTfgyxS2Dn8CEabDuDO8N9BhUpDM9VzMVfpRAj+lG+m8tP3nmik0qi+MXgbrt0feH9/L0RRQizWljum/3fWSBo5DgiHQwiHQ5p6x5wzBwcHEQqFEI1GEY1GDQpweeYdRkB4XjARO7bxYLdBE7Q6px+Xh15sPf899BNe6QR2H42Ol0ZDmcLft49uoPMqD1n2PrjSDU7762EpF17q0NFj8aDjrP5ZdlxVVSFJU7eMJoTgS099CU++9iQ2X78ZjTHvdS3tcKY4QEajUbS3t6O9vR2sNMLQ0BCOHTsGnuc19a6iosJ3H52cnJwJuZzB6YEeL1640/b39+PgwYNYsWIFqqsL5x8RQvCTl36Cbzz9Dfzn2/4TVy66MogmlwxmBlOugUUU9Z1lQnTS5bRDbcyrSKfT6O/vy9VZieYGdftnQxeUnC2powqetx1e8zHtJzmmDNFdyOIWAG4FtxkZYuF8LPfAnbA45SQyC35qfiKKApqbW0q05SZa2QEn5UpVYXK8LPpMhk5Cnz9ThOj1lrnqhga/oVN+QcOLeduQXauqBxBtl7u/vx88L2hOloXOUQqMx2fEUcshJAqeE3+C3eKduD75n2hQF0CBmXifkZBEkLVr0LJmDbijxyBsfQ6Jbc/i5W3bsGThQsQ3dQFt9rvwEiJoT3RiQ/YdIFmCIe4YuoXn8KL4B9wf+jra1eWYr5yLDmUT6jEXvCE8Uq8VaM0vNtq1Fw89V9n9M8b8mWIIv9uYKgg84vEY4vGYpt7R3DuzeheJiI5zLiGkqLGbwUjsALqIdnoPypUFwsL0rTmAbDPQT3il8znsw029K//EVkGlc5D3e0/nG/tBWRT53AaF4ute5zt7Krl/jfmC5YVKVHz2sc9iZ89O3Pfu+1AXrSv8pULHLOO6q1hYSyNkMhkMDg7itddew8TEBCorK1FXV4e6ujqEQoWje2Zy6KYBzvRadG4dlRCCI0eOYHh4GF1dXZ46dUpO4VMPfwrbT23H4zc/joV1C4NsdklgSeLlHFiMKhObz+wIitGwY3x8HKOjo2hubkE4LDqSKytk2Z7UAYUtss1tdi/AXQqZA9wXDzR5XycQjNjRMgf2pRycwhMFgSCZlNHb24Pq6mpUVlYaz+S31Vq4ixORMyqPpZIto8ulrgLkT+BewrbKgSAJHT2evXJgPQc15qFOlhUVcVRXV5ty9ozhTGZ1pzzjroIsHgp9AwP8YXxQ/g0iXC0gkJzCqOaIPz1/qeTOa6iWb3AAmT8XtfPngh8dxqqtz+P1fXshHX4ZQn0j2s7dBHLOEkAwEiBKvDiOgOeARsxFE5mLTfJ7kSKTOMrtwBH+WbwQ/i1ESDljlU2YpaxDSHWeN4oNfzRCFAurTU1NjaZx3z4XyxlenBoZjOpdTU21pt5NTExgZCQFQRDz1DtAVyhLfeZGAxWmRFot+YsljYWg5+GycwFsUyYoUEJX/H1yml/peF8o55OCntv5HjL3TXo+auDlds9ZSQYjaTO+FzzPeaqRWCoUVcFfP/LX6B7pxr3vvhdV4arCX/JyXEWZkvqfpSAUCuWVRhgaGsLevXuhqqqpNILdtcyULZjBaUOhWnTZbBa7d+9GRUUF1q9f74mYHhs9hhvvuhELahfgqQ88hYrQmbVbQWvzKGUtRClJevgYm3js5gZG8gYHB6Eoci4skAfPO6tZDObi3Xakzl84kbN1OMkdG0UvupzCLY2wK8KuO2Lq91I/pv31JRJJ9PYOoLGRuoIysOfgjXQR026yG4yhj1SRLV6lY9dEF42c4/s2FQZLipJPJoI+r9fDpdMZ9PT0oq6uTnMedP8ua7SurDoNXXq/su/7VqQwhrtDn4WEKG5M/xRRIQaFo8oc5Qp0I0UPzVQN99I/wZuKvUCurgahK96MjksvAr97J45s3YqJ++/G649EsKSrC9y6dVAj1PjKGBZphIQYFuFCLFIuBMkS9HNH0C08h63Sr9EX/hpmqas0gldD2sp/UTY4efIkKisr0dLSDCAYIukVRvWO5wmSyZRJvWPkzq64dWmgfZHOK7ppR8nGOwUgigKy2Wwg4ZV2kCR/dQCtsCPN9L2lP3sL3czPWWQw5vgxFLrntLahOa/QeN8IIQiFyruMzipZ3PrQrRhKDuHOa+9EXAqOnJwpIZdeYSyNMG/ePMiyjOHhYfT09ODgwYOIRqPIZrOoqqrCwoVUtJiYmNDUPr8YGhrCDTfcgKNHj2LevHm4/fbb8451/PhxfOADH0BPTw94nsdHP/pRfPrTny75WovBDKE7w+BG6MbHx7Fnzx4sWLAAzc3Nno7356N/xofv+zA+s/Ez+FTXp85IZTLIgupOkCQglTL+RoWq0th448JRURScOtWLWCyKhgb9HuuJ0U75cfkW2FZSR3cDC7BCA5zUOUbmAD000i+85ns5FcJlZI/VXdN3gM1tSSTGMDQ0ipaWVttcg8Lt13Pk/BUCNz7T4hdLHMchmUxgcBCIxeKIRsO2Ch3HMQfV8i5ErXkf5SiRUEiNoAns/UU6WXJ5GwHOICbVj/1MVWL68wg5idulv8ZcdSMuVz4HXhC0PLC8oxHOEErMCJ5qCCvmwMxV8uthOVwN53yvnFz/jDlb+Q6KLDcn97dQCGRDF+atWw+uuxv1zz2LI89sgfTsVjSccw6iGzfZn9zaFnBoIgvRJC/EJvn9yPDj6OaeR7ewFc9Jv0SYVKJD2UTVO3UVRISKymczXouX/KTq6mrTJg/gJ4+OK4lAGKEo+epdMpnE+Pg40uk0Bgf7EY3G8tS7UkBvD90ooptV5Rs72PPguGDCK+1QKjGlmzzmsdVY4sFLuSE3R2I2j9FwYtZmtUB/01MPGMwhqwLC4fJtRKflND74wAchqzJuv+Z2RMRI4S/5QDnLFkwFRFFEY2MjGhsbQQhBIpHAI488gh/96EcYGhrChg0bEIvFcP755xd1/O985zt405vehC984Qv4zne+g+985zv47ne/m9eG2267DevWrcP4+Dg6Ozvx5je/GcuWLQviEn1h2hK6M5HYAM7k5uTJkzh69ChWrVrlKR6YEILbtt2GH23/Ef7nnf+Di+deXI7mBoKgCqq7wWqUxMxRaIgZ/V06ncbAQC9qa+sRi+lmAoys0fpu9senoZr5fcpI6mjNMufcPSMEQbUldNa8NxoaWT4ioZd4sFsg62RJFOlEa5xQBweHoCgpTeW0g51jJwO9b36IHFNY8xfjxYREUqdPAe3ts5BKpZBITGJoaBCSJCEWY4s7UbsOvwpsMTDnkPkvLeEFbuU1xsfHMTY2jpaW1qJ3dumizctD5fKUP+q8Sn8+xe3DneFPY2P2Q1iv3ASSOyolQ3opCfp9Y14yp21G5D6hbdjoOWUEet07loNrXEzqz5q1sXBYnt0f7b9AF9+5T3AcwBOQhR1oWNiBhoEhpLdtxd79L2Ppy/uB2npwF18EsmAh4NGOPYIqLFEuwxLlMhCo6OUOoVt4Ds9IP8EAfxRzlLVYSDZhnroBVaSp8AEt8FqiRbYZUL2alLASNEHAqgwKAo+Kijiqqipw/Hga1dU1SCSM6p3unFnKWkIQBGSz+rjENtCCWp6w3GeAhRuWJzTceO+8KGl2cyANgTT+f/6mAF0rEMv39E0/JxiJId2E4bXzuSnCxuvQzW2M5ihAOFyeZXQim8BN996EilAFfnnVLxESgnCDNuONptC5geM4xONxXHPNNbjmmmswMTGBP/3pT/j5z3+Oxx57DL/73e/w1re+FVdccQXOOeccT+/tPffcgyeeeAIAcMstt+CSSy7JI3QsHBQAKisrsXTpUpw4cWKG0M0gn9CpqooDBw4gnU5jw4YNnixcx9Pj+Ojmj+L1sdfx9Aeexqwqb+6XpwtTodCxXX0GZo7CFg80j2IEzc0teaGfjHBQ10f/1vSM1LEcCW87mPZkjk7G5r+5kS7bI3sItzR/3n0BTggrGM6IrYre3j5EIhLq61tsr8VyBrDFMVNgFEUtGOJqB1rYO/98zETG676B0fyE5zlDUWOCbDaLRCKBvr4+EEIQi+mLO2aJXS6we8KUoXIROus1EAIMDw8hk8mira25pEWs1zBRM6lii2662D7EPY4HxK/hbfLXsEi9NNfFjAQ3n+y6nZepc6wf0vdMzx9lqp++L5F/LLtbYqf26d/nTP/qfbNAPbaGOoSvfDs6L70MeOklHHt+G47ffRekeAWa13cBq1YBUXfl1BRCBh4t5By0yOfgPPmDSGAErwrP41XxOTwZ+X+oIA3oUDaiQ9mENnU5BA/LBmO+lhtGRkbycsCZOunWx/waZXiDeUPGaOrC1DugGoqiIJlMY3x8AgMDQwiFpFxhc//qnarSUEU2/7FQTGrsUfz16SZW5g2xcjh6Wo1WvESN2PUN+p7pG3/2LpT5xxZF977A6lia22zMs3Ym0HRjhUXYILcpa25zJBI80RrPjOO9d78XbZVt+PFbfwyRL89S/Y2u0LmhoqIC1157LbZt24avfvWrWLhwIR5++GF86UtfwuHDh7Fp0yZcccUVuOyyyxxNBXt7ezWy1trair6+PtdzHj16FDt37sTGjafHXXmG0J1hMJKbVCqF3bt3o7GxEUuWLPG0iDoweADX33k9Lpx9IX7xjl8gLBZX3HcqMRUKnV3OHAsvGxwcRDabxaxZ+fXlAGY8Qhd8Tk6PhRYvlNQBqRRxVaUAShrtzFrsyFzuG6wV7o3Iwc3d0g6sEGthosIjlZIxPj6AurpaVFbGPZ3HmEwvy0pRRM54LLf2uSXM68dwNj/hOA6hUAihUAg1NTVQFAWZzCTGxsaQyWQQiYRyu/exskyUdKHG5ybi4EMugfzQYUJU9PcPQBBENDc3QxCKq1VFj8UUEM4xZ4blhHEWksYcTZ/Hb7BV/Bnenf4hWskKkLx+XzzLdSpqTtuhmjZP2LNwv143Ikks/1LQ43Paz8yIiCmNrMg6F4sA521C9ZzZaJ+YRM9zz+H5Jx/Hyi3PgF+yFOGNG4F6p9wR53sUQw2WK2/BMvnNIFwWPfwrOCJsw2PSjzDCn8Q8pRMdyibMVzagAvW2x/A6ns+bN882d7pQiZdC9e2KAXOCZOMpzZ/KP4cgCKioiKGigm7wZDJZJBJJjI/7V++oCqVYfkc0ckN/9t6f2cYDzRVjfUifX3VzEc+H9ND+/M0fP/XnDN80jQd2fcjafi8le4zqnN5G/UTGMdUIqxpI32XruYLPoRtJjeDdd70byxqW4V8v/9eylpU6mxQ6J7CyBXPmzMGtt96KW2+9FdlsFtu2bcPDDz+MD33oQ2hubs4bh771rW/5Os/ExASuu+46/Ou//iuqqoIxrfGLaUvozvSQy+HhYezfvx9LlizRii8Wwj0H7sFfP/zX+MbF38CHVn+ozC0NDlOh0LHC3kbIsoq+vl5EImHU1zebctP075kXuNYirQxe1i+0wDgjZc6THU1aN7fdrVwCOz91Hiw8iRaX31B411WWs5icnEBzczPC4TAIUXNhqu7vGiPbpfYBOrm736NC4TXG+nLezikgHo8jGq0AIQTpdArJ5CRGRkbB87ym7JXD8KdcxhHGcD/qZNmHeDyO6mo6SRW6NYRQ+3Ej1zGqHfQx+w8rU6HgMeFf0M09h5vTv0A1aXdof3DGJXpRcyvRVDWTFRbCWQ4Cz9xczYtWPeyT5wFe5MEtW4rWZUvR1nMKiee24qW9e7Fw726EZ81B5caNIPPna3tVXp0hOY4Dz4loU5ejTV2OC/FhTGAQrwrPo1vYhsdCP0INadPUu1Z1CXgIWiSCF3R3d6O9vR21tTWm3zvl7hrujKfj+wWr10aIt3pwHMfZqHcpz+odLdZuf62sf4li4TBJRuSMYY+5FkJRzAYohe+tdzjVzXNyy7UDI3+0hmk+Cc0/Np8LH/U2ZzBDKzd4CXMlRDUpdjzPB16DbjA5iHfd8S5sat+E717y3bKvU89mhY7Brg6dJEm44IILcMEFF+Cb3/ym43ebm5tx6tQptLa24tSpU2hqsg8/z2azuO6663DTTTfh2muvDbT9fjBtCd2ZCp7n0dvbi1QqhXXr1iEajRb8jqIq+NpTX8Pv9/8ed73nLqxvXT8FLQ0OU0HoqqqAkyf13b1MJoO+vj40NNSioqICsuxEdKy/5PLUKnrMwgMvx9Fi3TSk0HmnlE7KbNIw/78baNije6HpwrXk7FGoptvY2BhSqRRqa+sQDodN5IqF/1iLVNMQFt06u/Sacd6MFOwNM/yTOQC50Ch2nRwikSji8WguZFRGIpHAwAB1TKV/iyESiZQ0UbO+Uy5Rm4U5ptMZ9PX1oq6uHrGYdRwiucWo/hs9VI6paU7H96/KZ5HEfaEvIMON4+b0LxCB8w4oe6+CXgsxR0zBkKdG1TKSCzuWtc8EuUiyG1uYeknJnkHNaGpG+OqrsXFiEsJLL2Hf9heQveN2LKupRbirC+qKlUBY1KIECsE6XlSgHiuVt2Gl8jYokHGS34duYSv+FLoNE9wA5ikbsJBswtzsesRgH8ZkhCiKRSgEXKB5ZmbQ8HKak+V/w4Sqd3FUVMRN6t3YGA3VikajiMWiCIVC2jvAnqXdGE9D/PTQb3NoI9sMc1bMjWqv8XtBgIbu2z8HL2Gzent0pdquDl3+sUmuZI9c8PhO44zRGAXIH5PsjJvYu21EUAY5ANA72Yur/3g1rui4Al+74GtTJjqcqeJGUCilsPg73/lO/PKXv8QXvvAF/PKXv8TVV1+d9xlCCD7ykY9g6dKl+MxnPlNqc0vCDKE7gyDLMnp6esBxHDZs2OBpUTCYHMQH7vkAFKLg2Q8+i8ZY4xS0NFhMRchlba0+aE1MTGJkZBhNTU25nVV70EVz/kTLiu6yhZbXvDrmpsWKjzNTESOMtec4rpjQNvewwkKEzw12JJQQYGBgAISoqKysNPRZc6iK7orJQk65PAtpmqNYTKiO87OyghUyNi+MiiNzgL1bKL0OulhlFsuEqEgmU5icnMTgoL2xilfQYzsb9ASBdDqFvr5+NDU1IRpl7wh7NvT5lKIQ+rnNkxjAHeFPol7twDXZ74JHYbXTqylHsWD9hJERFhrHCJ6+QVW6elfUdVTEoVxwPpZs2gTulVcwsHUr9j/yKDqffArhFcsgdHaBq6sBM31h5DD/uTgr8wJEzFZXY7a6GhdnP4Yxrg+v8s/jFfEJPBz9ARrUuZivbECHugkt6iJwNuHszc0tiEbznfvs8mAZKEnxeiP8wWpRXwqM6l1tra7ejY1R58xIJIRIhJZGkKT8sEC7trEwTDrnqAU27+zVM7+1/uxgzW/N/7seMuoHujmN2xzGgZDCZRfcnFaNxij65/W20pBeoyGKWXWmf1MRCgWzcXNi/ATe8cd34IalN+DvNv7dWU+yphKTk5OW2rfe8YUvfAHXX389fvrTn2LOnDn4wx/+AICaFP7FX/wFNm/ejC1btuBXv/oVVq5ciTVr1gAAvv3tb+Ptb397UJfgGdOW0J1pL8zk5CR2796NqqqqXO2bwgPFzp6deO9d78V1S67DNy7+RtkSZ8uNqVDoaOkQgqGhYaRSGc150Zjjkp+35hTCZ86l85rLZAxFojl1ap55gLn2nP+FRaHQy1LWuFa3SFVV0dNDSzzU1NRgZGREa7NdkVh6r7ncYkSxDZGkk6z/vkCJlf932mh+UtyYYG+OYXWT4zjeYKwCZLMZg7EK3bmPx2MIhcKeFltBj1/UKY4HxxGMjY1jdHQULS0tEEXBoEbTf2n48tRggOvGH0OfwArlapwv/yU4j6F25TKMcT6frsyx8cSo3umW7oXVu/ycJOdnXVCJFAWQFctRv3wZLjxxEtj+Ara+uBM1L+7Eko4FQFcXyJzZ2kGMKoRdbTs3VJEmrFHfgdXpKyEjgxP8HhwRtuGB0LeR4sbRoWxAh7IR85T1iIAusI4dO4qOjo68kGSnPCy7nLMgQQiHcFhENhv8bolRveN5HslkIqfejYHnCcLhiKbe2b3fTMlTVZr3VGzJGtYHS9lEpXlp7s/BT9glgFxeqvO7QcNPOc2ts5BTrr2pirF95jmfhoobVVP2expuaRxTWH26IPLnjo4exTv/+E78xeq/wKfWf6rk483AjFIKi9fX1+PPf/5z3u/b2tqwefNmAMAFF1xQ1s1DP3hjMoCzDH19fTh06BBWrFiBdDqN0dHRgt/51Z5f4YuPfRH/9tZ/w3VLrpuCVpYPPM/b2lcHiepqBf39fRDFEFpbW0x/IwQIhYBMxvwdt51ao1rl9V22kjdZ5hEKqchk9NBEmm9GSlTS7Cf6YsMtzcemE3UqRcPxamvrEI/TEg8cx2nhMHY77GaXTmM4JgGzmldVUlTopR9+Q01YOGSzCkojc85E3m0hw3GwGKuoSCYTGB0dQyaTRjgc1tQ7p8V/KTkweo4b7Scsv43l7mazWbS0tGp/z/9+0afW4KVvH+Ofx72hz+PS7GexQnmnbVucEPx+nZ8w3Hz1jhmZMPWO1dyyqnd0UUvyFpQlXw/HAbPawc9px6aRMfA7d+LQizvwevcRXNDQALFzPbBsGYgk2ixOWF/R2+j0LNiYKCKEuWon5qqduCz7CYxwJ9EtbMNe8WE8FPoemtSF6FA2onLWAoQcoiTsxqtymKEY4abqBAlVVRAOhxEOh1FbW5NT7xIYGxtDOp1BOBzK1b2LQBSFXLSGmtsQ0xUspzIH5Y568XJsp3xzJ7BNJaZ2W8dkLwYo+rG8tDG/XfpmjP47RiLNn6djY6mGIoeGD+HqP16Nv+36W9y65taSjjUDe6iqWpYc9jMRM4TuNIIQgsOHD2N0dBRdXV0IhUIYHBx0VasySgafe/RzePzY43jkpkewtGHpFLa4PBAEARkrmwoQExMTOHZsLyoqliEer8hbTNIwPPPEU1h1Y0qTn1ym/B3nbJaDJKnIZvmc+2RpZA7IV9K0s3PB7CIlkwn09w+iqanJZDnOQkqt7ed5tpC1V+2YsiaK9Ht+lTZKhL1/nhAV2SwzDyg+ZMa9DhzLtSz8IGnNqwpUVFSAEBrumEgkMDIy4mqs4rX+IA0vYvUPifafdXe6r68foiiiqakpRzTyDWSCqn1XyLhkr3AvHpduwzsz/4K56oYizlCceuEO74tTU0s0YxVjNABzzrRT76z3vJQ226CqEurFF2HBeedi4b79SL7wArY8/BA6Hn8Mc9aug7p2LVBFFTRG9u3GIzMRZQ6A9ve8hrRhnfwurJPfhSzSOM6/hG5hG3Y0340nJYIOdSM6lI2Yq3QiDLpBZKdAlXsnnCkv5YSdKY0gCKiurjTk3mWQSiUwMDAKRVERjdIxIBSSTETHrsyBFzLjJ8ctv/3eDGPYdXnffCI5IxjkIgPo93QTIsMnCzyiQuocYD9v6yodmx9gagc7L+uHpdSg2z+wH++64134yvlfwc0rbi76OMXiTFGVygm/LrFvdExbQne6Qy4zmQz27NmDyspKdHZ2mnZ1nQjdifETuOnum9AYa8QzH3gG1ZHCSedvBJQz5LKvry9Xc2Qlnn8+7phnlZ8AXfjYzG7fKwGhjmD54VSqyufIDNEMU0qFopSn4PjIyAgSiQTa29tsyBANKWXjJzND8TqhMzdMjiMIhThks97Ig58yDHr7uJJrxtnlzxlRzMKQ44BIJIJIhOYVWY1VqKlCDOFwKGfOkR+SRusBcrk26GF/TmBurxUVFaiq0nMNyjlEMpKZF1IHgi3if2KvcA9uTP8cDaRD+5u/Mg3lmMRLvyFOZRF0oq3kFqK8Rqrp9+wXsawve4WpT0oSyJrViKxehYtfew14YTt2btuK9Lat2HTOEqjrO8G1t+dFFuSuxIbs66qFqpodAY2QEKYETt2IqhfORfvKWpyqeAkviffigdA/oVVdgg5lExaoG1CHWeA0Nd+7e2YxMJPr8oTsujmMsqgGQeAQiYQQDkuorq6GLCtIpZIYHR1FJmNW72jopV7mQFVVT2SGbjj5J69+yJx/6Mq0LCuaU67d/GGf76nDSxtZ6RErzEXSdeJjnNfY74oNuXyp9yW8+653458u+Se8Z8l7ijpGqZgODpcMp3u9P1WYtoTudGJsbAx79uzBwoUL0dzcbPqbE7l5+rWnccu9t+Bj6z6Gz5/7+bLWJplqlCM8hBCC7u5uDA0NYf369QiFQqiqUjE+bp9QT3PPiEYqCpUJoOAgCKoPRcleNaDhmwShkIp0OriBx7jDTXcaSzkWQX9/HziOR2tra16SODsHVdigucQVQ5gI4ZDJ0FAXRsDcuofXrmMlm7qVfnH33C5P0Px3zuBSWhysxiqJRArJ5AQGB5OQJAnxeAQVFXFtcabnbHk7fiYj55ws6/KcLKl9u5nYBRG2qx/LTKgVZPGQ9A8Y5Lvx/vSvEUdDCUcvh0IXPKzqnSCw0G/V8Bx5rRZdaedyICkcBzJ3LjB3LlYPj0Ddvh0De/Zg74FXsLqhEfWb1kNefA5QwNFP30BiigZv2FiwD9NctnQZolIU7fJCrJffjQySOCa8iG5+G24P3QEefC73bgPmYS0EEnwRZwbjBo/VMCMIUPLu/PLwPDPWMd8nURQMCj5V71juHQBtkycUkuCn3zMC7hXG0iNewQyiCoGGjuqKIVWrnTcDdfMUu9QCb+sJu00lOtewXGHO9LzYxoaxb4RC/kMut53chhvvuRH/dvm/4R2L3uH7+0FhuhC66ULmgGlO6Ip11CsFJ06cwLFjx7BmzRrbRE0roSOE4Efbf4R/fu6f8dOrfoo3d7x5Kps7JQhaoZNlGXv27EE0GkVnZ6c2aNXUABMTbt/Ua2e5uawZoSicZ+XAub9xCIWAdBpanTqv53cDVRBp6GUhNckNiiKjp6cXlZUVqKqiqrBdWCfH8RCEbO5cpb9XtL1cLgyGTvbWa9CJmTuMEzwb3/VrKK6t3p5RcMSC43jE4zHU1tKyCKlUBqnUJE6ePAXAuLALeVpEJZMpDA6y0Fn7HIN8Vbk842UKo7gr9BmEUYEb0z+DhMLlWqYa5TZaYYYk1PRUAHUxZCFDei06pox7sXg3wpNJRW0N+DdfjrqLLsRFe/dC3bEDW+6/D7WhR7BkQxfU1WuAXM6sEU7W+cbf6YYruqPm/v37sHr1GggCJWohRLFIOR+LlPNBsgRDwqs4zG3F89IfcC//LcxSl2sEr9ahDmGxsK/1FxzyjUS4XKg/Kz/B2aruRlDnTD33zqreRaNhhMMRxOOxggtZv3uoksT7nqdZjmjh8EfVEAJKNBdkt7qhToTUz+YwJZL6Nek1/+w2LPPPFQ77y816+vjTuOX+W/BfV/wX3jz/9K7lpkNR8Ww2e9ZfoxHTmtBNJVRVxSuvvIJMJoMNGzY4WpWLoqgZhExmJvGJhz6BVwZewZMfeBLza+ZPZZOnDEEqdIlEArt27cLcuXPR1tZm+lttLYfjx+0nB6PbpR/4WeQ5ETpGgIxmIka1sBSw4xaLdDqdq9fXkFcT0frIRBFIp5XAclAo4aKLUL3Wm17agf69cLilHZljkOXiLO69hsayXLFSiQCbkxRF1WqPSVIIkiShoqIaqqogkTCGZRmNVfL70fj4BMbHx9HS0gpRdO4glDyUJxyaPZZR7gT+EPoE5qvn4dLs58DjzJyAp2Lvz9xXee25M6t2PVeNbnj4aZOvPh4OA52d4NeuxfmvdWPi2a04/swzOLFlC9aeswTSho1Ai15kl7p7uo/h1jGW4zjEYjGIomBr/MKBQxPmo16ei/PIjUgoYzgqvIhu4XlslX6HEIlq5G62ugoiilfvrMSBPobgQjzpZpRiCKOlap2xhiXg7mhqB6N6x/McEokkkskETp0aA8dxiMdjCIfDts6ZegSBl/bTMMigxQ5mhMI2LmhtS31zgOYIOpG6/Mb4XUtYXwlG6iVJQDabzTsfzT3WTWjcxk4rHj36KG598Fb84spf4OI5F3v+XrkwHRS6Uhwu34iYIXRTgFQqhV27dqGpqQlLly513TljatWR4SN4753vxcqmlXj8/Y8jJuXvip4tCEqhGxgYwIEDB7BixQpUV+fnF9bWui+AVJUDx6m5WmneBjpV1U1VCis2Tn9noYBs8awXIFdVu/wVP2A74v6/OTExgZGREbS0tNi6RDGFi4YykhzxKqWt+WCummxCJ4Tm2nEcckqGcyiaNcTSDnqen9+WeX8ozInO85E1F0q9LpYe1mtd3NBdfY4jqKyMo7IynjNWSRuMVQTEYtHc4lnUnCxbW1sK7uLTWoHEsOD0fBkerhM4ye3FXeFPYVP2I+hUbnL9vB9Tn3KQL52Yl4/ZObWb9gchZzCkhzEmEpMGlYGVTrBz7ysy9JfnocxfgMi8+WgfGETD888Dr7yMZ155Gec0NaPp3HNBFi4EJwm+7jkLX2tsbAbHCWBOmlRxJ1r+HSGcZvIRRhznKBfiHOVCEBD0cUfQLWzDs9Kv0M8fxWxlFTpUSvCqSXPBNhhaY0sCqBNu6SFb1G4fGlHR54n84xbKDXODoqiIRMKIRMKoraUELJlMYmJiAslkKi/3DmAbNl7CE7miTbXoGG7ft43mJ0yttJJatilp/b7d8fwWnDceQyeD5lBL42ettfUiEW8K3QOHH8AnH/kkfnf177CxbaP3BpYR00Ghm5iYKLqo+BsR05rQTUXI5dDQEF5++WUsWbIE9fX1BT/P8zyeHXgW//r8v+L/nP9/8LF1HzvrY4BLVegIITh69Cj6+/uxfv16hMNh28/V1dF/qZGJ/bEEgRIGY4FvJ5jD/Yp7RswRkuacmV3B6ERIXOrheQMlP8616ewwPDyEVCqt1etzPrbumkgJaPDvk167zvg7XaHgOJp7ZHTM9ELmGOwKpheCn+7qhSxSZzf92EYXSuP7b+cyaf1/aqxCF3ZALbJZ3VglnU5BkiTU1tbCa581LmKCHC4P8Y/hodDXcEXmH7BIvTS4A5+FMOfD0vdxYmIMicREjhQxRzfV0N90YxU7QyavYLlTXEM9wm9/G3Dppbhg1y4M79iBQ/fcDTUSwaKuLnBrVgNRf6Gyhw8fRkNDQ54KQ/PvqOOnIKh58wMHDs1kIZrlhThXvglJjOGosAPdwvPYIv0PYqQG85UudCgbMEtdDsGlGL2TSkUVRV+Xk3dcWoKCM5RhKTSn+K8Rx9RN6zgnigIqKysAVIDjOCSTqVxphFFwHKfVvhRF3nWN4Wbk4gUs7NJuU0uW1VzUBSWgdveHNo2qpWaHT7t2+ltHGI1R2HfZXOLcDv2PXkxR7jhwB/7+8b/HHdfegbXNa321r5ygBjpnN6FLJBIzhG4GpYMQgmPHjqG3txednZ2aa50bVKLin7b8E3588Me4/frbcd6s86agpacfpSh0iqJg7969kCQJ69evdyUfDZrHgl3svTUcpbAJgXFxrTte+mk90SYR9j2rOyUL2SslBJORHy+kRVVV9Pf3QxQFtLa2un5WL7Ogh0OWQ72gSmB+H2F5gVS10z4NnjcaqZRmWGP7ySKs++3LSOg711SFK+7cRoc7O0iSiHi8ApOTk6itrYUoSkgkEhgaGoIkSbnQzJhj+JCeexVMyQIA2C78Ctukn+EG+T/RpAZfeqWcG3XlOrT7+2k0biAYHh5CNiujpaUFRrdZPRyTwGiswnF80SFWLPdNa1s0AmzaiNquDag7cgj9zz2L5NNPYf+WZ7By6TKEN24EGgpvXgLA3LlzHHMBWX+WJA40esFZgYmiCkuVS7FUuRQqFPTyh3BEeB5PSj/BMP865ipr0aFswHy1C5XEbLbjdExF4TRC5hW64m/c3PLXYfzu31KyXijclSAajeTUu9qcepfA8PAIstkUQqEwotEootFormi3jiDSIaz9ms2XgNkJ2enajaGZZrBxm/OtzrHz0f7HaaowDS1175MMNTXu4Xy/2fcbfP2Zr+Pu6+7GisYV/hpXZiiKMi1CLmOxsze6zYoZQlcGyLKMffv2QRRFdHV1eXppRlIj+PB9H8ZIegQ/XvvjaUPmgOIJXTKZxEsvvYTZs2dj1qxZBT/PFDq2OLVb7NPwSRp+WUils+7s+l/kEy0cxRiuac27YoSFKmD+8iyMNeF022/772ezMnp7e1BdXY3Kykrbz9BjAoCuBLBC3bTgreem+QINuyls0EHt0unP1EGQ5L7vfs8oKfKmYhRjMMOIJy0pALB6S36P46QmuC06M5ks+vr6TE6W8XgUhADZbAaJRAJ9fb0AoO3aS1LIsHPtfm4/UKHgMemfcYzfipvTv0Ed3wbFQ8iXX5Qz8KJ8hM45YoQpdISo6O8fgCAIuXqBnOUYdK6xM1YpVNTcd9sEDmTxYjQsXgz09GD5tq0Ye3k/+vftRXNrGxrOOxdkfgfgYt4yMjLiOnazPqe/l3pIqdMCnoeAVnUJWtUluAAfwCSG8aqwHd3C83gi9N+oIk1a7t0sLAPnECpvp3o5fU5/p81jg9cxxQg/7xgzD/HSTuaAKwg8RBGorKxEZWUlOE5FMplEIkELm3MccuQuhmg0HAiho3Oa3odEkc8pbuaoDrdxTFHUPFLH7m8x91k/hoBsVs49b2cCn6+A8ujoaHQ87k92/QS3bbsN97/nfiyuW1xU28qJmZDLsw/TmtCVI5RxcnISu3fvxpw5c9De7s2Fa2/fXtxw1w24ouMKfOey7+CFbS8E3q4zGcWESrBQ1uXLl6OmpsbTd0SRQ0UFwcgI56imMUIHMLWscOil9bteLsXoBElzE/RzEGJflJqRP/pdb20ydnFamoG3Db1MpZLo7x9AY2MDIhHnsCl6ffkXSCfs/KLIQcJaaDh/19doKMEWffoNYOTOKS9Rz48qRP4Kf8YIuuBjxLK0OoNOfUuWdYc4I9ycLDkOCIVCCIVCqKmpgSzThd3IiNlYJRZjxiqlPdsMErgv9HfIIomb0r9CBFW+TSD8wM5ooxSU3+XS+W9UxVXQ29uHWCxmmyNsf0xmrKLmHBTNRc1lWfZN7qxtJoQALc2IXn01ookEGl7ciUM7toO/4w4MxeNYsGEjsGolNVqxYHh4pOA5jPec5djRn43kzllViaMWK5Q3Y4XyZqhQcJJ/Gd3C83g09O8Y4/owT1lH1TtlPeKoNX1XVXnb56KTONVxY6ZYkuHnnXCqpeYEev9U05zLcVxe7ctkMomxsVEMDNBxIBqNIhKJan2oGDCln4ZwK75VdLphSPJ+B5SmIrLcTWuNPeu6xKokz57d4EiI/n3Hv+O/dv4XNl+/+Yw1s5supigzhG4GRaGvrw+HDh3CypUrUVVV5ek7t++/HZ955DP45zf9M9634n3a741GBGc7rInGbiCE4LXXXkNPT4/nUFYjqqqAkRHAGmJnPL2RmLHnYNc85zmk0IKfoJB7mlNhcHZOWv+u8GBsva92jpDj4+MYHR1FS0srJMl5SKAk2L7dPK/mTGXKG+rGQhfN+YswLU6cYCR3rAwCfcbW4ztfAz1v4feShgjRPmYOp/RHBq1w6nNUjeRMSrdXJ0sGUeQdjVUkiUcsFkI4HLM1yCmECfTjjvBfoUFdhGuy34eQcyQsZ2ikkxFDsZgKl0snMPW8pqYa8bi/BQoby5yLmrOcTdZ3uDyC52QRn6fcxWLgLjgfizdtAnfgAFLPPYuBxx/DwFNPYcHKFZC6NgC1NdrH16xZ49JuTmuf02utkzuWc6e6kigeAmapKzBLXYFLlI9glPThVf4FHBaew59D/4FadRY61C4sUDagRV2ct3nD6msyhd0J7J4WC7sQ7bxrKaHIt246Q7RwfAZRFFFRUYGqqkooiop0Oo1kkjrosty7aJTWvfNrQMKiFGhOYbF552aTrFJy8DmOQzar5I5VOGzViEWL7I13/nnrP+O3+3+LB294ELMqC0cOnS5MB4VuhtDNwDcIITh8+DBGR0fR1dWFUKiwfXJWyeJLT3wJ9x26D5vfuxmrmldpf2MD7XQhdF6hKAr2798PjuM8h7JaUVPD4bXX8h3f2KLBuLini3H70EsroWBg4YduKoxXy3s9HNPub1zOLIBz3NE1hluaf69PiIODg8hmswXNT2gOnzvRoQVXufxFXoBgrpccp+bCGIl2Lj/vi5GUcRzJ2cJDI3hOhyoUbkmNEKhiZrewLKXundPzZGCFwAH4crK0g9VYhZZFGMPAwAAURdFCM8PhSMHj93OHcUfoE1ilXItz5Y+BM6nR3tvkv0+VriqajlZmhc5pUZrJZHKlQ+pc1XMnODu8mouaA2b1TnfOtK9551R7DgAgCiDLl6F1+TLgxElEtm3DwZd2oemllyDOmYO6c88FmTMHL730Ei688AKHlpuVuEJql76pw2vh5c59hm5+VHINWKW8DauUt0FBFq/z+9AtPI/NoduQ5EYwN9uJ5qrFqBMuRUipMBgVuTbFUM+sOBTqZ6WQOf0cLARTANt4YqDukwp4nkM0GkE0ytQ7Vh5lBNls1pd6p6pAKMQjm5VR2qYWMZG4Uu4DLSdBCpoGsTxn/f85LFnSavkMwTe3fBP3H7kfD17/IFoqWopu11Rguih0M2ULZuAZmUwGu3fvRnV1NTo7Oz0tnnone3Hz3TcjKkWx5ZYtqIvWmf7OatF5IYbTBaz0Q2trK2bPnl002WXRmVbnRGboYSR01BmSkgirKYnbwt4tdI/jgGzWnIzsPB+x79vvZtKkfeewUOddbUpiTp7sQTgcRkuL+8QjCGrBWm9sl5eFAJVXzaDlHYolc1YQwpkWapEIh2xWdVDi7C+M7twb8/fsz1Vs3Tt6zELfoQvfnp5eSJKUy7HyfRpb8LyAqqpqVFRUgRAViUQK4+MTGBgYzBmrxBGNRjX1h+EovxX3hT6Py7J/h+XKOxyOHVwdSvNxiylH4QXBd27Wl639OJVKYWBgAE1NTQiH/ZUGYPAS9mdU71jfNKp32awKQM0pYfSzNJ/Jw3Nrb0PFte/C8vEJKNu34+WdOyH8/vcYqaxCR1sY8n0HQToWQlp+kfYVlpNmaCG83nfzuMBreWbG71vzlgFAgIQ5yhrMxxpcrn4UI6QHB9StOBR7Fs+GfolGdR46lPXoULrQRDpMGxNWMPfGYlHoORdjAGIHFoIpSRIUJaMd0ymnXRQFVFVVoKqqAqpK8tS7WIyqd5JkVu/YRlcQ5Ylo+9j1F18nk407lIjmH8PYt2l5Hv1vzc1VqKrSzTYIIfjCE1/Alte34MHrH0R91Jsp0OmEoihFRVu8kTAxMYHGRuc8x7MN05rQlaqAjY2NYc+ePVi0aBGampoKfwHA8yefx/vufh/ev+L9+PIFX4bA50veQdVlO1swPDyM/fv3Y+nSpairqyv8BRe0t+tEK3/BZ1400L/Rz9P6QN5qwtFcNc6WBFkjHCj5ce6HVCF0VnVY/oadC6YTachms+jt7UVtrXv4FlXd1IKLYl054nK79v7LJPiBqtK6TkGQOSsIATIZptLpRdkZYTaGTrIdaVkufI8YdBe8wJqsQZZl9Pf3Ih6Po6rK2dSmWDCVhON4xOMxxOOxnLFKGolEUjNWYXl3r0Q248nQD3B15vuYo3Y5Htfr4/NPZoJV6MzqfbBgCrERk5OTGBkZRktLM0RRAscpRZ27mFwlACb1jh6DhmgayyIwQwpPqKyAcOklWHHBBeBe3g95z+NoOjQGXgXUAwNIZTIQ117u1Cpf18DA6mOycGrk7O/ZYp3+Xs8FpOGUueaiCauzb8PckU2obazEcX4vuoXtuDf8HWSQQofaiQ6lC/OUNQhDVwGC2KCgG475fY1FDwQdvEM3GelBjXmKbnBS74aHhyHLci4HN4pYLJLb8OO0MPRSwe4BDRv0n6vInjUl9iz/stAx9L93dOjrPZWo+NtH/xZ7+vfgvvfch9pIrd2XzzjMlC04+zCtCV0pOHHiBF577TWsWbPGk6RLCMFPd/0UX3/q6/jx236MqxZd5fjZGUKn4/jx4zhx4gTWrVuHqM8aR3ZYsACIRAhSKQ7GBR+Nxc8Pw2Thk4RwEEUVsuy94LhVpdMLhZt3igs9amtxbTtQ5YcVReVy7mH5n0smkxgYGERTU2POwcz+mDT/SLU9ht1ndRczY3uKdx5zAyEqMhn7RXAwx9dDI3XljuRMVXSCr5va+Ds+vTf+iYHb5zOZNPr6+lFXV5dzsAxa8bLPGaLGKmGEQuGcsYqCRDKBx8gPcIR7FFec+j7qQ8tAYiqM9vqmI3u8D6czh63c0EtDUIyOjiKRmERLS6uhCLT/xbD/Uir5YGULeF40hBESzd5dfw/si5rnQRJBVq1C1fEd4E/0AwB4FeB2vQjhtUmgqwtKa4vpxSql4DZtGyMprMg3ra1Gyws4f48qlBwEEsJ8dR3mq+vwpuxHMcSdwKvCDuwWH8bm0A/Qoi5Eh9KFhaQLdcpsV/XOe5vzlXwvJQpKOV8pZMuq3slyCuPjkxgeHoIkiQiHw4jHYxCE/Lp3fjcdWG4jJelm9dULBEEwhORyIMS+Bh57L60bFyx/TlZlfOLhT+D42HHc8+57UBkKfiOtXJguZQtmQi5n4AhVVfHyyy9DlmV0dXVBFAvfwpScwqf/9Gm8cPIFPHbzY1hUt8j189OV0BlDjth9VhQFXV1dge0kiSKPefNUvPKKuXyBU96UUaWTZU5TwgrNP/m5dASKwtzFiKbUeVukeAvRYyFEokg/a1UIx8bGMD4+gbY2ukik5i/5pMvJydL5vET7npFI0HsabD4djfvXc2X03dVgYSRdzOCE51Wk02pugctcM/XcO6+gzfW7eHJeeLKack1NjQiFwmVRAOluOHHNLwQAiAqeqvsWhvhjuCX1O4jROBKJBIaHhyAIAmKxOGKxqCnUx1v3KKYPBcsA9bzZ8uU3sxpzspxfY+50gxE7ANqinCkdelkEPXS0EMEj8xZAfbmfKnQ8gKZW8IeOQjjwMrjmViidnSBLzgFEUTtecaHK+rtM81v1l4ONx059hY1hVhWojrSjTm5Hp/xOZJHCa/xuHBG24w/i10AkQkMz1fWYq6xGCMVuRJrDCf2UKCgGgkDz25jRSLGbQiy8kufDqK8Pg+d5pNMZJJNJDA4OQ5bTCIcjiMWiCIcjWjijn+ui85eqPR8/MBrW6N3J6Ricqe8AQDQaxpw59cgoGdz64K0YSY/gjmvvQEx6Y9U7mw4K3YwpyjSC34GA5XE1Nzdj7ty5nr7/2uhruPGuGzG/Zj6e+sBTqAgV7lzTkdDp8ewC0uk0du3ahaamJs/32Q8WLABeeYXt8OmLX6fFgpGYsZ1iLwt4o0pHiaCeq6fDPtfOCkKYMUDhE8syIIpq7vN0MhoYGAAhKtraWk3303rJNB/P+6LJbNRh3XW1d+osBnQ3lZ2TPjMaelm8yYgb2CIQYEW/6aKP3Tsa6srZfJ6AkML1+PzeGydDlPFxStJbWlq0zSVawsDTYT2D3XNRdG5zCqO4M/RpRFGNG9M/g8RFgQgQiURRV0dDfROJhGasQsOxmLGK+/mLy8sMNuSSHa88ZI7VmOuHIIhobMyvMef7iMTfu+z9uObSASz02GysYj6/HbmTll+EJADu6BGQeQsgLb8IipKFsnsP+B07IG1+AOoTj0NdsxbqmjXgq2OerkcncERbvLM6kNZbytwqWTHt/PHVGNZtf24JESxQN2ARNkHJKhjijuOIsB07xHtxf+h7aFeXaLl3taTNs3pnnY/8lijwC2PEATMe8Uvq7DYDaY6eCEmqRFVVJQhRkEqlcuGZIxAEAeFwWHtWhfq9MaS1GPM4VgPPbHLidBx6HxRFN9jp6GhEWknjlvtvAQD8/urfIyL6c9s+EzBdFLoZQjeDPLC6Z37yuB47+hg+fN+H8Tcb/gaf3vBpzwPPdCR07JonJiawd+9eLFmyBPX15UksXroUePhhprSZwy7tYHSbpDXivNWBY8YqNPxEXxgYJ2o/i1Rd9Sv8JdY+jlNw6lQvotGYbb0+nVioOXLrbwGYX7jc/H1FISXn0xnJnHVhz8xYggzHYwtCWWa5eqwdbm1kGwN6v2A1AxnBs37fWBajEPKL2FMlhzpZNoPj9J1W5l5YnjHEfmE7wh3HH0IfxwLlYlwqfxYc8hcKkiShuroa1dXVoMYqSc1YJRyWEIlEbY1VpgMURUVPTw9isbhLjTl/BLWY3CI3sFxfSurzF/r2ZRHc1Ttp+UWAwQyFiBLI2rVQV68Bd/RVCDtehPjsFpCtW4Gli6F0dgIt+XbxTGhwqwvnFK5ozBljNfl0JYzlTru/oxzHg9XCqydzUC/PwQb5WqSRwDHhJXQL2/G8eCdEhHLkbj1mqyshIb82n3YviO7uGYSrpRPYvGI0tGL3xIvxDctDNJpCMdjlEwoCnyt9QJVLttEjyzJOnjyZp97lt7fU+0A8kjlGos3rg9kdVbjhnhtQE67BT972E0jCG9NYZKZswdmHGUJXAIQQHD16FH19fZ7rnhFC8P1t38cPX/ghfvHOX+CSuZf4Oud0JXQnT57EqVOnsHbtWsRi5QtfqKjg0dSk4ORJtguqh855ASVq+SYkdqCqnLngtZH0+H3MisLZOMCZwRb/zO68trYW1dVxR6dKOqEXV/DaeM+cQqJKyaezkjnWXiOCCuvUiZwKVn6Bki5V+9kPVNVaHoHlaeoEjy6YCrfdeHmEKOjr6885WTbbLkaCVmb0e5/vxniS2427wp/CudmPYp3yPocjWI/HIx6PIx6P5xbgaYyPT6CvbwwAM1aJQZJCmgFCkDmHxaIcCoksy+jr60F1daEac/4uKOi2+u3/hdQ76gSpkzsTaeE5kI4OyB0dwOAQ+BdfhLhnN0L79kJtawfpWgeccw5UjoO5zqNzW7yEKzJVj+dZSGnhvkc/o9q+h2HEsFg5D4uV80BA0M8dRbfwArZKt+Ne/juYpS5Hh9KFDmU9aki+2zC9N0GQGGeIok66mBpFz80IjfP4SlVX+9p/TuYwVrWTuuTGkEym0NTUhHTarN5Fo1HEYlGIudBbK+jGmzcjmlBIQCZjnggL5Q6ymn0AgSxk8KWXP4l5NfPwo7f8CCL/xl1CT5eyBTOEbpqg0M64LMvYu3cvQqGQ57pn4+lxfHTzR3F87DievuVpzK6a7btdgiBALuQTfxZBVVVMTExAVVXPeYmlYsECDj091KTEqdabuY1mlYSGNRYmdTSfwGwcoLsz6rve/kAnUadQTY4jSCQmMTQ0jKamJoRCIS0njOfz28xxJFcCwb1Ybv55vC/yismnM07Q7FW1I55+lEs72BE5Y7uplbvie0FrhX2Ypp6/41awXO93Mvr6+lBZWYHKyiqXs3HgeQGqGszGkDHnxEhCD/CP4E+hb+BtmW9ioXpJUcfmOCAcDkMUJdTW1kKWFSSTdEGXzWYQiURQURFFOBwuW+6an7YGSRTppku/pxpzxmgCLygXByimvloh9U6WVc3kiL4XOhHkG+rAXfEmKJecD27Xi+C27wR/zz1QK6vArV0LbtUqIOZ879iGlZ+uw9pF+7uQM32y/6zX8g0cODSR+WiS52OTfD1SGMdR4SV0Cy/gWem3iJAKdChdWKCsR7u6HCIkIFcvr5x5c8bnaXcZdmM322RxHl/8K4qM1FvVO5p7NwRCVIRCIUSjZvWO5709A1Hk8sgcuxand1rPsQRSSOCe+PdxWcP5+P6bvg/+DMpvLQbTRaGrrHzjGNWUimlN6NwwOTmJ3bt3Y86cOWhvb/f0nYODB3H9ndfjvFnn4efv+HnRcdWiKE4bhS6TyWDXrl0QRRGLFi2aEjIHAEuWAM8+S9USY9J8Yeikxwupo2QJEEWm1vHaxEhr2fmfqekCxSl3jGBkZBjj40m0tbWCN5TFYIoRM/NQFHPOnF/CVajItqlVPnPG9CLB5t871WJzypFxgxuRsx47FKLlDIIEIYAsc6b7QheeXC5EjYXN0j5ndLL0omAHSTzylFio2C78D56Xfon3pP8LLWRZScc3rsVEUcgR1goQAqRSSaRSkxgYGIQgiFpZBElyHyuCLm4fNJmjNeYG0dzc6KkelJ9z02t33vQpFpLEI5stfW6yqnf0PVQgCEzB4wCw4uA8HWekMISNmyCv7QLXfQTCjh0Qn3oS5NlnoSxbBrWzE2hssG1zsfMpC9/kOB6SxOWu3RwyX6x6FkElligXYolyIQhU9PBH8Cq/HU9Lv8IA/xrmKKuxQO3EfH4NqkjwtbR4ntecShmcyiWwOYeqOnpoqx2oiZRz5IE9aaRzkhWSJEGSJM1BN5VKaps9RvVOKBD26BYh4nQdHKd/J4Ex3B7+Ls5vOA8/eNMPTvvGUhCYDgpdMpksa7TXmYYZQmeD3t5eHD58GCtXrkRVldsuuI57D96Lv3ror/D1i7+OD6/+cEnnFwQBmaBXj2cgWB2/xYsXo6+vL/AFmBva23lEowomJkhu8aAWXLCx+mpGUiLLzoW96XeI9jnm/hVE+IxdKQNCCPr7+yGKBK2trS4Ehf4+FDIXDHdyvXSGv+elKKQgqbMLsTTC7da5GXYYwZQxWnrAmciZzxu0wYYOY26R3o90MieKKiYmEhgYGMoprs55N0aw0LEg+pvxELIq41Hp23iN3473p3+NKtIW2PHzCTwQjUZRURFGTU0tsllZM1ZRVRXRaMSzscqZBFpjbgQtLc0IhyVPqpef4ZG+C8HfkGCGaKKFErINMo4zF2+m6hi9J4x0aCRQ4EAWLYS8aCHQ1w/+xRch7NsHcfcuqHPmQlm/HqSjA+Dpd+j3S2kr/Vd389WdMYPKU+TAo1VdhFZ1Ec6Tb0QCozgm7sRh/nk8Jf0SFaQOHUonOpT1aFPPgVDi0o2SFfswUWPYpf55RtQKK7TMgdIJdn2Ijn/Ox6Tkg9NCsQGzeqeqMqLRMMLhMMLhqLZZQK+H1R60z5VzJrCU3I6TIfw+8h0sVjvxL5f/81lB5oDpQegURZkykeBMwPS5UhvY1UI5dOgQxsfHsWHDBk+7poqq4OtPfx2/3fdb3PnuO9HV5lxA1yumQw7dqVOn8Oqrr2p1/AYHB6f8mjs6OOzfT3KkzNtixc7cgipdKhTFPDiaQzm53AI7qNpp7DgsN0VBT08vKivjqK2tLLiYEwSCTIZOZqJIiQ3dbfaupBVzHW419QqROcCd0BWq12clcn7UC92YoBykjnMko4RwGB4ex9jYOJqbW3Mha0TbHNDbx56HNZy29MWHMRQ3g0ncK30eCjK4Of0rhBFMOAt9NoXJpySJqK6uQnV1FVRVRTKZ0oxVQiEJ0Shd8DFyUIwLnhOKCRu2A60xl0BLS4vPkCe2qXB6FpT02v1vDrDC3YwEsb7KhnsabaDkzsFr3wH0MYEqQjQ0k/aRXGRFUyPUK94K9aKLwO/aBX7nTkh33gG1pgbq2k5gzQpwUqiEqzY629J/jc6Y5cptq+CrsSR7EZZyF4MTZLxODqBb2IHHQj/FCNeDecoadCidmK+sQwVqfR27UPfNTwMguZIJSi5Fwfkd8JqraCVR9N3KJxduURdMvauqqgIhBOl0ApOTk5p6R110ae4dzYn0/qxYTt44P4Tfhr+NlfJFuKr6RjQ1VXs+xhsBZws5tcNUCgRnCqY1oTMik8lg9+7dqK6uxrp16zx19PH0OK7947XgOR5bbtmCpnhTIG05mwkdIQQHDx7E5OQkNmzYoO2eFNrVKwcWLwb27gXo4sBrKKAePmmEonB5pM56TKaYsIEmiJwsnueQTKbQ19eHhoYGRKPRgqTDGGbJwv4YsZNlTrOnd3OmdLLRL/5a9CKvTq+el3PSRbx5EVAKkcsdVTtvUGUYrLBz62ROlqqaRmuruSaZ033geWIyEaGfK01dZCULxtGHO8IfR7O6DG9Tvwbg9OZf8DyPeDyGeDyWC0nNIJFIoLe3FwC0BZ0kSQER29IWCYQQDA0NQVGUXI05/23yGvZZjo0HGpbu1GZddeM4mpvMctDMU1n+JqrbuM9cJ5mFPnsG+rFz4eKRCHDuJqgbNoA7eBDCjh0IP/4I5C1PAytWQF23DqjzR3xo++x/ZuF4jNgxh8ugQHP2cio9EdGuLkG7ugQXZm/CBIbwqvCiRvBq1BZ0qJ3oUDrRqi4C7/JeeiGixiLu1L2SmNQtp40NuhnoLew93+3ZngR6zk/kOEQitAyKqqoG9Y5uFIdC4ZySH7Z1zrRCVVWMcH34feg7WCe/BV3y2zB3bnlct2dQXpzNpNWKaU/oOI7DyMgI9u7di0WLFqGpyTspCwthvDL4CqpCVfjBth/gykVX4tz2cyHwpS10zlZCl81msWvXLtTU1GDt2rWmF42GeUztNS9erNcOY/kaXhb7lBTkf1ZROIiiClnWra/zFzC0Jl3xhihmjI1NYmxsEC0tLZAkqaDBix4yY20XJXaUEHA51dKZvHglwHagoZ36RK1P2M5kzus5qYkJpy1KSiNyFMZ7Ws4uSnfBGdFWc06WIhobmz2roXbPnj1Hoxikkz1v6OcO4o+hj2ONcj02yR+lzw/BbsCUMu9SY5UQwuEQamtrIMsqkskERkZGkMlQYxWq3kVLmuALOeI5QQ+HFtHY2Ghqg7+NLG9tdwqnKxZ6TTmW66n9JdeXrOTN2z2idSS9XT/d0CC5BbkeRseUWC10efE5UJcsgdxzCsL2HRBeegnCiy+CdCyA0rkOZN48z0OBUfVmRIbWS9Vt/um95jUVq9T7bnUxZps9DBWow0rlcqxULocCGSf5A+gWtuNPof/ABDeEecpaTb2LwZwy4oUgGcNhncZ/O1InSd7XLdb3iCrp1ggXfwqosc6hJEkIhyVUVdEIgkQiiWQygeHhoVweLjVeYZs9xvGV53n0k9dxe/i7OE+5GqvlN4HjCM45p/TQ8hlMLaYTmQNmCB2OHz+O48ePF2WVHxJDeO2Tr2Fn707cf+h+fPaRz+LE+AlcseAKXLXoKlw+/3JPhcStOBsJ3fj4OPbs2YMFCxagudmujtDUX3MoxGP2bAXHj5Mc0eI8GV/oBh/5f5NlSuoIsc9hoWSJQBQJstlSBhuC4eFhpFIptLTM0iYzN9JDlRYFbqsZ5rQoCMy+uzxuebTGEacZLHgZd/2QGkZcSyFyDNZ7Wi6VTpYp6cpkrE6Wpb0X1hA3K5zDNyle5bbgnvDf4U3ZL2KZcmXuM3ruU1AIsp+JIo/KygpUV1dAUdRcIeMEhoeHc+FYVNnzm19RXJixgr6+PsRisbwac34VPyPpdwLt+6WQVvN/1LSEGmjQRbhqc/zizudfSWTlDSjBM4ZmAtBIJ8cRKE1NUN7+dvAXXwRh127wL+2E9IfDUOsaoHZ2Ql2xDCiYVmHO7eJ5DhxnRzRILixbAOBsGFIIdvXm3MKRBYiYrS7HbHU5Ls7egjGuH938izggPItHQv+FBnV2LveuE63cwoLhkBynK/yF+pmR1NF5TfaxgLbPZTP+7CV00/x9nVBTlVgPk2dqPWDOvVMUOVfzLoRIhObe9ZCj+EP4X3Bx9nqsIhdDBUEkEsK8efmGOzM4c5HJZDylTZ1NmNaEju7qKdiwYUPR9q0cx2Fdyzqsa1mHr174VRwbPYbNhzfjv3f+N2594FacP/t8XLnwSly58Eq0VXrb4TnbCF1vby+OHDmCVatWOdYECcq8wS8WLuRw9GhuAeDjlrsVtJZlDqGQ/fFYCQNVZWUC/C+EVFXRdvtbW1tBFzluFtKMmHl3vWMLNrreVWGtp1Zq9ySEIJtVPbuL0p3wwp9jRI62tzy7czRnMnhSx3EcMpkMenp6DU6W/kpJ2IGqls5KiNN95Thgj3gHnhC+j+uUf8VsrAfh2TFJ4GTfzRq+WNDFab4VeiKRQH//AFRVyTnlxfLKIuhGDZymAvnNy5NlGb29vaipqUE8HrdpX2nhsH5hR9ZYmDKghyznm0QwkuLNRMgLjLlzfmB3z5i6I4owKGW5/Lt4HOp55wIbuiAcPAhxxw6IjzwM8tSTUFavhrp2LVDtbH5mjSTJZLKO/ZTl/LFyAH5vldN3vB6nijRijfJWrFHeChlZvM7vQ7ewAw+Ef4AUN4H5yjp0KOsxT1mNCPS5mI7DqtYfjGqXG1ifYOTOK6xEnv6/roQCxY8Fosgjm5Vz4bz5fzfm3imKCllOY2JiAsPDwxir6MGjTT/FpambsQLngcsZo8yeXXtWWfxPh/yyiYkJ2zH3bMa0JnQcx2H+/PmBEom51XPx8c6P4+OdH8doahR/evVPuO/Qffjqk1/FgtoFuGrRVbhq4VVY3rjccQAURfGsqENHCMHhw4cxNjaGrq4u190SQRCQzWansHUUS5cCjzyim6J4XajTsBR70sbzBJmMmjsWl/c95qiph6x4n7my2Sx6e3tRXV1lqkNGc/tovbT8thafU0PdOXmIoqoZp/C8WhKhYzkw9Lo5x/wJIwrVyGO7svTZ6QuMIELP7CY/N0JfLBKJBIaGhtHS0gxRpO+K39qATvA7xBEQPCX8G17mN+Om7P+gVpkHJW8RzQFQwIzS6DPIzzvSCYL7czC/E5b2mPJt9M+y564fW88NZf/PSBn7WygkIRSqRnV1dc5YJYnx8TEMDGRyda5iiEajWs00Y9uModJajhNnbJPe5kwmi76+XjQ2NiAajWhk0Ni+4EixrqzQfFho59PPyxmehXew8YNdWxDGMEApbr/OJJiNLdQRU695BxAokKAsWwZl6VJwJ05A3LkTwgsvQHj+eaiLF0Pt7ASZNcvUTc3X6d3wg447eipBoTHIrv8Y4Vaj0gkiJMxT12CeugbIfgQjXA+6hR3YK/4ZD4V+iCZ1PhaSTnQo61CvzAFnuHCvz5c6X/qvd5l/eKKRyGLNZpiLcjot52rTFc7LFwQeoRCtcXlSOIRHpZ/iotEb0TC8ACeUk4jH6VjQ0XF2qXPTweFyuhUVB6Y5oSs3qiPVeM/S9+A9S9+DrJLFM8efwf2H7teMVK5adBWuXHglLph9ASRDHZWzQaGTZRm7d+9GPB73ZDIjCALS6fQUtU5HXR2PhgYFw8N0MpVlkrcodQJ1VcxfkLEFJDUXMdepo3XoWE04I4EsPGGnUkn09w+gsbHBtgixLBNIUn4JBUoKSst5A3gQomhWzsVCJ3NsYegtj8YplJR+n+5sWy9RP3Ypi09nI5agFrYALeExMTGRy4UUtHxOZkhSKuiCkYcXl0IZGTwo/R+M8Mfx/vTvEOdqQGwW0GxX3evai7nMGYmBuX3QwumMi3ZGzq3k1tiXnBb4gsBpC3o7UGOVOOLxOAghyGQymJxMYGxsDBwHzSbdbjPKSs6MbaM15gZyZSZCLrmoOiHVy5qwMYho4cP65xlZ05U1azvszYyKf2mtroZBCHR03As+IsNuLKH9jAOLriWEQJ09G9lZs5EdG4X40ksQdu+GdPAA1KZmKJ2dIEuXAqKgkUNmhmXNZysE48LZbaygOXn+rP69nV9/B2pIC9bJV2Jt9u1QhQyOcbvRze/AndJ3IEtZdKidWKCswxxlFcIkCpZb7gZGmopxADaOn8x0xS7k1Cton6IbTMxExwsIAY5y+3Bf6Ee4Kv2XmB9eBbSwcjJZjI2NY2KiB7t3J1BfX4+6ujpN7X+jYroUFZ8hdDMoCyRBwqXzLsWl8y7F9y7/Hvb278X9h+7HV578Co4MH8FbOt6CqxZdhbfMfwuqwlWnJfwwKExOTmLXrl2YP39+LiSwME6HKQrDwoUctm4lCIUAurDyGn5pVgUYjBObtfg4W7AZTTaoo6T7mcbHxzA6OqaZnzi1h7psstBKFhYXxG4622hQwfMkt7jJL8FgzKnIP4Zq+hyDlxBGuwWNl1wPeuziSZGbguKnxIMTmPOhLCta7UA9ZCvYsBgv5DCJYdwZ+iTiqMd707+EhIit6svg5/qNxdvZ46f3lsCoAOl5UEbVgoDn2Xl0JdD6b377jKQwXz00kkSOAyIRaqwC0ELGyWQKw8PDyGaziMfDiMWiCIVCmlqn92O9/RMTkxgdHUF7e3MuR8/cMLMBgx7O6PRsWPgwXagCugqt5oWpesmx8wdiM36UFiZKN7SKn9+cyA3dkCushpnUu9paqJdcAvm88yDs3w9xx4uQHtwM9YknoK5ZA37hQqjxOESRqf3+N3IY+XZSnlhuc+FNT+8GMgzMfl8/Rk49VEV0YB06lHUgWYIh7iReFV7ETvEh3B/6N7Spi9GhrkGHvA51pN2k3untNhpbFWNiYjbRYX23mA0Do3OzdkSPj6hbeAn3i/+Fq9OfxBx1qaF9HEQxgpUrm3DJJRcgkUhgcHAQBw4cQDabRU1NDerr61FTU/OGU7umi0I3nYqKAzOELrB8AL/nXNm0EiubVuKL538RJ8ZPYPPhzfj1nl/j4w9+HBvbNmKZsAyzRmdhTvWcKW9fKejv78fBgwd9FWUHTq8quXgxsHUrcgtGLleCwBup0w046P/bWesbSR1dCKp5f3cmDgSDg0PIZrNoa2vNJd3bgyaC6xM/bVdwiztKjvhcDiD9HTVP0VUaJ0LnROb0Y3OO5NMuf04QAFn2Fk5J739xpK6Qs2Yp+y6EEPT19UGSQmhqqjNdi25MEuzzc1uMD3Ov4Y+hj2Kh8iZcIn8WHHgPIZ92+UzMJY9CD/3T7ebzjsLpnzV/T/s/FKMyUfLgb6OAQRQFVFbGUVkZByEqslla56q/fwCCICAep+qd0ViF1Zhrbm4Fx/Ee+lzhkFotZDB3LCcFijkTUrUnGKfLcuQ2UxWt+LGebQLAEiLIQnD9gH2Hj0RA1q6FvGYNcPQo+B07IDz3HGq2boW6cAHUjRuBNro5WQxpZmGYAB1Ds1lFCzE0ligocBRf59Tz+Jgbp71rJQcO9aQd9XI71svvQAZJHBP24Kj4Im4P/yN48OhQ1qJDWYc56gpICNuSS0UhrjXqrKChy+aQVr/dlW32MCJIUwK899mDwgv4k/gzvCv9N2hXF5n+Jor0WubOpeGWTK2fPXs2FEXB8PAwBgYGcPjwYUQiEdTX16O+vh6RSMTfRZwGTAeFbmJiYkahm8HUo72yHbeuvRW3rr0VE5kJPPrqo/jZlp/h3F+ci1mVs3DloivxjkXvwJrmNaeFgHoBIQTd3d0YGhpCV1cXQiF/xVxPlykKAMybB0SjTC2jxKtQU4yGJvRfPUTO7ru0DIDzhMd22o1/UlUFvb29CIfDaGlpRqEJne14Kgo1b8tmg1V4aJuIicCy8E6mhFAY853MIZZuIISRQfPvjYqpPoF734xhIVNBkiOGYnP1ZFlBX18vKisrUVmZX5ybhosGVYReh5OidoLfibtCn8L52b/CWuW9BY9jNE5gIV06efJnMGSEVlfsDBvmOI5HNBpHNBpFbS0xGKv0Q1VVRKNRyDI1YvBaY45Z7fu5VuvYwUIzAaKp/HpIK58L42TEgcBraRbDGW3a4OPrNt/1m2+VDy43X+gN8VP+wPGoTA7u6ADp6MDEyZPA89tQeaQbOHQQSmsblHXroCxbDJWYNy38gG62CbnNIjsF1B5+Ii1YxAszifLzzEKIYpGyAUuwAbKiYIA7jm7hRTwv3YN7+R9gtroU8+W16ODWopboETj6pow30yDjR4p533WjL3ZeM3EuFAa6X3gWj4d+jffKX0SDOsvSNi4XjcLjnHPyo4wEQUBDQwMaGhpACNFq3r3yyivIZrOora1FfX09qqurz0glbLoodDOEbganFRWhClxzzjVoGmzChk0bsPXEVtx/6H7cfM/NSMkpXLmQkruL5lyEsBg+3c0FQPPl9u7di3A4jM7OzqIGitOp0PE8j3nzVBw4QHcMmfEBJXeFv0/zK2g5gkLhf8w10g764ozLmZ/0oKam1vOgxNQknqdkrpi8hkKgpJHLUyIZseN5TguN80Pm6OedFmZEy5XzqsrZHZspfaUsoJ2O7SdXL5PJoK+vH/X17rkYrDRAkGDKn/EevMI/hEdC38DbM/+EBerFps+zTQIaMqaHOtK2kVweqb4oLZWI6Xl05k2BYjeygr5/TJGUJAnV1dRYhZFztpDs7+9HLBZDNBpzLWLsR81gcHPFtXt3rBsZhPC50E22WeBOKKjCYz5nKfeU1W8rFdbuEPRm4OTkBEYI0Hb1O5HNZMHt2QN+xw6EHrgfeCKO7NrVkFetBKIxjTj7ASFqLs+LLa69jI/5pkN2oBssKggpzbyKanccGskcNMpzsFG+BhkugW7uJbwqvoStoTsRIlF0KOvQoazFbHUZRBKCKIqe5nL2yGhJDBWhkHfFiBJVcwkePf9Wb7/TJt5u4Qk8I/0R16e+iCZuDlRLaRh2nysrw2hvr3NtC8dxtupdX18fDh06dEaqd9NBoZucnJxxuZxuOFMVLwAQeREXzL4AF8y+AP906T/h4NBB3HfoPnxry7dw8z034/L5l+PKhVfiigVXoC7qPuiUC4lEArt27cKcOXPQ3t5e9HFOp0IH0LDLAweoQQHPU5XOzcnQ2m3sSI4dKPGxn+xYTtbERAIDA4NoampEOOx9AtDbSXfhaV5D0KSOkbV8kwqGbJZAFPVQH0K8r3bs8unoIt+fKmfbcsLlQi+93o/Cz5PBq+slc7Jsamr0pGIXkzfjBiNpJiB4XvwZdgi/wvXpn6CZLNM+w8gbzbmh33XqR0Fb7+crtOUgZsXBSsAURUV/fx/i8Tiqq6tBCEE6nUEikcDo6ClwHJ+rgRXTihgzBGV44wesjxrfAaa2MlJCST+xdellny8+BDaoB6n3uaBLiIyNjWFychKzZrXSaw2HQdavh9LZCfXIEfDbt0N65imIzz0HZekyyOvWQm5opK1iIZwFhjyqoOkhmF7Dq92Mjeh7wjYV/ZdMsML6rHieh6TEsIQ7D0sy54FARR93FN3CTjwr/QH9/GuYrSxHh7IWC/l1qFTdnSHp/MRySL1t2hBCIIrMUMcacuttnnlR/BO2iffjvekvoYFrzwurNxqzzJvX6OmYRljVO5Z7dyapd9OF0M0odDM4I8DCuNgLz3Eczqk/B+fUn4PPbfoceid78eDhB3HXgbvw6T99Gmtb1uKqhVfhqsVXoaOmY0raODAwgAMHDmDFihV5BXP94nQ7e55zDnD//XRgN+a8ec1Do4vgwjlVrA4dJTv5oZ3Dw2OYnBxDW1srBMH/62k1ANEnTd+HsoUx14nuKptJHSu6S4ig7SizcEyvxY4VhRWGZapc0HmA3haA/u8bK8Fgf51GJ0ujJb7j0Th67UETGlUFVMh4VPoWXudfxPszv0MNT2tk0l19o+JWWCVkCl5we2PBEUSWhxdU24yLXLsacxzHIRIJIxIJA6iFLMtIJpOasUokEsmpdxEA/hdUTs+iFKMRZuaGgQUAAQAASURBVMRjHDfYfaNkwxoaymnf8YMgnS3ZuYM9JsHo6ChSqRTa2lrzySfHgSxcCGXhQmCwF2T7dgh790HcuxvqnLmQ162DMr8DhKcmVzSCM1+9s25e6qY8XhRbO3MSRuTU3PMK5n4YuxMjOaYwSfBoJh1oljtwrnwdkhjHq8IudAsv4hnh94iTai33rl09B4LNcpNds9u4aYTT8xYEIe+67d6H58UHsFN8BDemv4xaNEFRVIiikRjq7zghwIIFzQXb5AaO4zQX3Tlz5uSpd9FoVFPvwuGpi7iaDiGXExMTnk35zhbMELozFKwWndMufnO8GR9c/UF8cPUHkcgm8PjRx3Hfofvwva3fQ0OsQcu7W9+6HrzHnSuvIITg6NGj6O/vx/r16wMZiE43oYvFeLS2Epw4wcgHXcA4KS92867VIMUO+gTGdhtpIXJCKEEmREVLS7shJMo7WBhc/u+dDUf8wpzjZ5xg6aQoiiL6+/tzhhFxSJJkyH8jWshmIdBd7vL0B1kmHsm333A4+9BLOydLL2Ckn5owBKfSpTGBe8N/CwIFN2d+jRCpML17xuZ57YPF1o6yA8350XfsvSifbgiKzBmPw8JmGxrcw6hEUdTyJGmuTUpTaUMhAZFINGesUtpueRA5ZEZYbfSpSs4bwsL9P5Ogw7+dCkcXe6yhoSGoqorW1ubCxKqpCepbr4B60cXgdu0G/+IOhO6+C2p1DdS16yCvXAESClnCHjltvLTrk7qhlbPjJWsWC0GnjslMqfRfD84rvDy7KCqxTLkAy5QLoEJBn3AUh/nteEL6FYb5U5irrESHshbz1bWoJHUQBPPGjZvCRm+Havu82drByk+MYwgBwbPiXdgvPov3pb+CSlIPjudBDcqsuZj0HobDIhYubCp43X7gpN7t378fsixPmXo3HRS6RCIxo9DN4MyAH4ITk2K4ctGVuHLRlVCJihdOvoD7Dt2Hj23+GIaTw3j7wrfjqkVX4dK5lyIqlVY/RVEU7Nu3D6IoYv369YENOqc75BIAFizgcPKkHgpFnS7tnf6c1Bun2nT698yTGM3Rk3HqVB9isRhqamq0vxmNVwqD5Jwf7f9qZ7pSDKzfZ86XskwX4bW1taiqqkIymciRGBmRSATxeByRSEQLLWKF3O0K5jJVlON4cFzwCxTdiTP4UD7mWKovvJydLL0iiCLmbO4eVXvwh9DH0EZW4vLMlyHAqQQGw+mJdSxmQ8MJQdYLBGg9yIGBIc9hs8Z20PBLOgZns2kkEkmTsUosFkM4HHYloeXot1bYb1gZ7e95rU+xsgtuCLruHNtMCmaTimBgYAA8z6OhoQG+FOJoFGTTRigbuqAePAR+x3aITzwG4ZlnoK5cCWXdOqC+1rBBaHb7NebOMSdKVh7Grg8wsyRZVkwbh3TTRwncTIjVc/Pb33gIaFEWoI0sxAXZ6zGJEU29eyL0K1SRJnQoa7CIrEOzukAbj+3b4Kw+cxyfK1UBWNVLFv6qEhVPSb/HEWEn3pf6CuKoNq039DmWM6255s6tRyhUaHwsHlb1TpblKVPvpoNCN5NDNw1xpubQFatY8RyPje0bsbF9I/7xkn/EkeEjuP/Q/fjBth/gg/d9EJfMuQRXLroSb1vwNjTF/e0+JZNJ7Nq1C+3t7Zg9e7bvtrnhdCt0ALB0KfDMM6zQr9n10kt+HDM0oSFeTqFq5oUq3envQ10dNT9h52B5TF5viSQRD66WznlvXsBMRcwgORJDNOJB7d6NqkQSk5MTGBwcgCSFtARyQeDB82yhw2mKJVO4jKQo6PdUNxhwXkgUQwLYwoLuzKuuTpb+jus/lMpYqFpRgD7uFfwx9JdYp7wPG7J/AcGDKYfXWxD0XkyQJCyoYxFCa8yNjIygpYXVmCv+WNRYRUJ1dRVUlSCZTGB8fAwDAxmEQqFcaGbU1ViFHSvIzTD6Xrgfj4YD55MTu7ZQJS1YBkqJRunzBSEqenv7EIlEUF1d7VnpzBuXeR5kyTlQlpwD5VQPhB07wO96CcLOHVDnL4CwvhOkYz7U3L1ghlG6q6tuKqUX2daNkSh51r9rBA3dL65+WyHwfOEaqW5gzz2OGqxQLsYK5WIQTsXrOIBXxZ14WPwJxqRBtNafg0VYj0XoRBx6+gbdpHRTLAvkCnIq/iz+D04IB3Fj6suIotKmjzKF8/+z9+dxcl3lmTj+nHtv7V29d3W3ZMlaWvtiyZK8Ymy8rwHM4mBMSAiEMBkSMiGZsCSBAAkwZBgmE/Kd+YUk7JgdLBtswBgMNgZjS7Jsy1LL1mJJvVTvXetdzu+Pc8/d6q5V1a1uqZ/Pxx+ru6vOPXd/n/M+7/Oa55UQgjVrGpNbRoUkSejp6UFPT49r9q6zsxNdXV1obW1tmIypqtrQ82sxYKmGbgkLBs0iOGs71uLPLvkz/Nklf4ax0hh+ePSHuP/I/firn/wVNvdsZnV3627Hhq4NvuOMj4/j+eefx+bNm9HR0dHwvJxYCMS6r09AW5uGiQnzd1624rXxobWNAc8w1FqEs+CSvUyY9GocuVwO8XgczIjAlCSGb4rNiuADP0UbM7CoJYOmdFRV3Q1HrA5glAKyXEWhUMDQ0JDtb4lEDLGYBlkGrMeMkWn3Y9koeKDEzrFz7PrlXCxgUDA0NBLoZOkH6/at/QW9wGRxMHqQWbOfLwqP4v74X+F6+W+wSb0VIFZX1eagmQYu9uv07GQJnZiamsTMDKvLaDSg4r3iOATBXK2nFKhUWPZuamoahJg9sExjFeoYq3nHqB6zFis54bV3fDGhWXJv67b4M7YRMxRN0zA8PIxMJoPW1lZD7hgOPo6T/X1Qb78NeNU1IPv2QXzqKUjfuBdKZzewaxfI1q1APGbsBzcFAextOwRBQDwuoFpVbNeKU7XB21Y0E+Y7rPFxneobQkWswCaskDfhGvVuTNE89pcexYttT+Fn0hfRqS3Dam0HBrQd6FVXu0ox3epinRJ5DRp+JP07RsnLuKv8fiTBsjW1pN0ua2e12wI2bVrW8L7XC6/s3dDQEF544QVkMhmD4NWTvdM0bUlyeQ5iidAtUMxFxqor1YU3b30z3rz1zagoFfzsxM+w98he3Pq1W5GOpQ1yd9nyyyDqDawppTh58iTOnDmDXbt2LRjb3bnCmjXAk0+aGTkWnDDppbXZeO3LxK2+jL84iONzFJOTkygWi7Zm4dyYQBQpNM00Kggy5+DyxTAwX9TRg3n7PlPbGMzsxZ8kEALE43HE43F0dHRAUVQUi0VMTIxBUWSjniiTSYAfM/McCHW3LPCDpnEiav99I0YyxWIJ4+Nj6OvrgSRF68dohfMw8tV66yEwZW/UuF4A+wLJPvHr+EXsM3ht9f/gAm2XZbzg7FWUY9DMLJ2VADR6ypvh9jc+Pg5Kq+jr6/Wt9Qk/J+9jTggsxirtUBQNpVLRMFZJp+NIJlNIpVK68UbD07Ftm91n/p/ze3QwIqcZnxMEXmPpXuMbFTwgb2RxSlFU3dCmFZlMCwghFuleOAQSykwG9MoroV5xOdRnn4Pw5JOQfvQQ6M9/Dm37Nmi7doG0tUEQRMtxYYtzmkYhy2yBKxazSzD5/5k8s3kmKByc0ISR0oYbjxqkzum6rKpAlnRgYPoyXBq7FUKM4GXhEF4Sn8b9sX9FKT6D1epFWKPuwCp1O1Jo0Rc+Rd+stAYVD8T/L2bJBN5Y+WvEkbRs0/49tlBpzikWE9Hb24qWloUT6zizd4VCwcjeqapq1N6Fzd6xmsNzX3J5vhE6EvCAXRhLo3MISimq1erZnkYNDh8+jI6ODvT0RLfNjQpKKZ4efhr3Hb4P9w/ej9Mzp3Hz2ptx28BtWF5ejpSYwpYtW+b8AfDYY4/hiiuumNNtBOGFFxR89atcamn+ntUtmMSNSzE5eANXJ5wumYwgv4hUKovu7m5PgsIbAgfVT7GXkWYjm2HANhtNfimKvMCfOgJuO2Fl44YbmMu7mMSkhGKxiEqljHg8jmw2jlSqRZcbEl1+03xSxzOj1viA7Wv0x9/UFLM8z+V6EYvxYCv6fJ1BBgfr8UeN7IffYabQ8HPp03hBfBCvr/4/dNJVLuMRHyOF6Cv/YeR6YWAlrvWeCw6vezPcPChGRkYRi0no6WlvWgay3jmx7F0Bs7NFlMslSJKETIaRO0lqvN4n7LzYglfw55xZW7vJT32SZua2SPRnXvRjyHp8DqOzs1NXDtC6slFB22cScsv+U4CcPgXhyd+CvHAIoABdtw509y4Iq1cackz2XXvmju+7Kb/k5Ki5ZI4vnvFx2YJPM6St1DOTLAgUp08Pobu7G/G4nahNkVG8KO7Di8I+nBSfR4+2Emu1nVitXIQcvRDE1oeOHTMVCu6L/x/IpIJXl9+DGOIWSWttrb7Z046D4OqrN+Kqq/xVSwsFPHs3NjaGqakpZDIZdHV1obOz0zN7Nzg4iM7OTnR2np12V/OBO++8E5///OexbNnZy7TOETwDiqUM3QLFfNaUEUJwcd/FuLjvYvzdK/8Ox6eO47vPfxef+tmncGjmEF554Stxm3obbhu4Df0t57YN7Lp1ArJZDcWi/ffMPp6Atx1wvvu9ggGrbFJVFQwNDYMQIZCos+yJKcE0ZUv2e5nXrkV9r9cjqeFkzbS0r32u8HHD1HRYi92ZxCSNTCZtLLKUy7MYHz8DQRCQyaTQ0pJBPB5rqKbDfb/M+da7Ik0pkyWrqoL+/j5wW3cW0EYf1Cp748EQa+UQjiwrqOD+2F9jhpzBPZWvIQ33FzdbPXcPtOo5Hs3qrUZI8/uLRYWqqhgZGUE6nUFbWyuYI15z0EgdayaTMgyGVFVBoTCL0dG8xVglg0QiHnnhw2na4YcwzxuW9bJn+7g0kz0nTFlmeHJHjP0Kbxhlgtcsd3d3G2qTeh1Cg85hzbgEoMuXQ12+HJh5FeJPPwk8vQ/0yCFoPTnQXbuALVsASdSvf8GyHUYe+TNTEChkWUU9Tc394HSrZc/F2vdOPeMyuB00Xj/NF5fMbbXRHuxUbsBO3AAFVZySDmGQPI3vJz6DKspYo+3Qs3fbkCYZKKjiu4nPQKAiXlv5b5BIzFAhWDPHxpYdvxMERig3blw8cY5X9u7ZZ5+Fpmno6OhAd3c3WltbjXvnfHC5LBQKDdeuLzYsZegWaIbu2LFjiMViDTXrrheTk5N49tlnsWnTJohpEQ+++CD2Du7FQ0cfwrrOdUZLhM3dm5uaLVkIGToA+NGPFPziF7X9v6zkihBqs99nGTuv24VClisYGmKBxMTEKJYtC28qw7JHpCZY5ivEjdRCha9voSDEzJQEnXczm+YyEoUuc/QPogSB2VRzaWahUICqqmhpSSCTSSMWSwJoXjTDe9+x+hU1NEm2Oll2dHR4yHGjrv6zY83t461fDzpnRYzj2/E/QZb24jb5E5DgX2Ph5SLHsjBnJ0MHmIROkrSGehHWMye3HnNsHs3IPvLFjvr2yZoZsmbAVFVFuVxCoVBEtcqMVTKZNJLJVKjgLXrW0Ju5s8WM8LV93MLej8C7O2UqCEs2yuUy8vm8UbPMxoxSN+cEBTsGtdv3GpfJ4y33layAPPcshCd/CyE/CppKQ9uxA9rOnUDWXS4mikC1WtYJrZnRC9vU3AteTtNeaoGw4Ncom6Nbhg44c+ZldHfnfA2AuMSVP1/HyRndOfNpvCwcRq+2CjLK6KB9uK36LqPvnSn3rN0/9uxT9f1k12t3dxbvetd1de/vQoKiKBgfH8fY2Bimp6eN7F0+n8fq1avPaUni1VdfjV//+tfnovmL5wPvvCd0ACtAX2h4+eWXoaoqLrzwwnnf7ssvv4yLLrqoxsyhqlbxi5O/wP1H7sd9R+6DQATcvo7V3V15wZWIiY1Jfh577DFcfvnlZ90gZWJCw2c/ywJ65ztZFLmLpf1vLNhzH292dhaTkxPo68tBkuI4deokli+/INKcGMngLnIAJ1hmjV+k4WwIJnX8ha4ZgUMYuAWIXDIURirE98/+fSbNrFQKKBbLSCbNoJWQxh/cJhENF9jyWpzW1lZkPQIwRsTDSkWpXnOkoVr1znJ6NbyfIMfxjfgfYb16A65W/htISMLrRurYdRX9FdCIxNE+JxaAzTehM7M4PXodGwMz7Wl8vxolvVZC51UDSSlFpVJFsVhAqVSCIAhIp1NIpazGKtbPI3IGki24uJ+XRgxy2DPWvpjAMnq1ygj2jAi+NrgBVW9vL2KxmP7d2mbZUeF2DLiklI/LFwB9JdIUICeOQ/jtb0GOHAGIALpxI7Tdu0AtkjFBYMdVkihUVTUMUdh9aiV3iJS982sbVM/CDofzOnASXZaJpDh+/CSWLQvfo9OJGUzg68mPoVPrw6ur74Fgee4xR1Q7KeULDkxxouqyW1bLeMkla3DjjdvqmsdCBqUUs7OzGBsbw8mTJ5FIJNDd3W3U3p3tuKvZuOqqq/D000+fc/uFJcnl4oMoivOaOdQ0DYcOHYIsy9izZ4/rim5cjOPaVdfi2lXX4lPXfwoHRw/iviP34QM//QBenHwRN665EXesuwM3rrkRrYnWyHPgMtOzvaLS0SFgxQoNx4/XvsS4pbTTfdL9XUgxMTGBcrmMZcuW6ceUuq5SBoHJq5itP3Pl8u45FxVuDcItWwZ3YwOiuZEyuakpm2OkNHxw4Bb8WKWZ3d0UxWJFD9amIYoELS3MDVAQ6jMjUVUgFgtn1c2bSwc5WXKTAT9yxJquE92hkv3sd6jdCPzLwlP4bvxP8Qr5T7FDfWPwDthnEPHzcw8WYEav42sEpVIJY2PjyOV6a3pQNcMgAqhPyuo9jvtAhBCLsQqgKLJu1sN7Q6b0tghJEEIgSeFbpFi37/GXhmq7rCoALgf2WsAII/EtFGYxOTmNvr5+o4E7y5I2bvXvNGbhZE4UuZwv5POOAPTCC6FeeCEwOQnht09BOHAA0vPPQetfBm33LpDNmw0Cyo1BGDki4K9MToRZXbK9qblX9o6TRK9jUa/5DB/XCuvPfBGJS2f9mqk7paBWlDCL7yT+CSvpJlxffWvNIhZvJ2TdB3a9a0YfQGaywv6+YcPikVtGASHEaKEzNTWFgYEBFAoFnD59GocOHUJLS4vhnBmlv+ZCRDPdmxcTlggdgp3ezgbms4auUqlg//796OnpwaZNm0IF7YQQbMttw7bcNrz/yvfj1MwpPDD4AL74zBfxrh+8C5cuvxS3D9yOWwduxcq2laHmsRCai3Ps2EFw4oTbyjdfbeUvCPdjpWkaRkdHIEkS+vv7Ab3/XKMNkxUFiMVUPWPBX4T1j8fBG4TbSZ0ZjLDV8egbUhTotRHUNl4QwgS9qgqk00k9aO2AoigoFIoYHh6DpiloaUkhlcogFktGIqLcPc4vw8CDYybfCs5MOxuOA2ZtHF9ht/4tzG1gnePz4gP4cewjuK36SazRrgr+sgN+tXRRoap2U5NGwGsRG0HY78/OzmJqahp9fX1G4G+FtQl0I2jWgrFbwOwFSYqhtTWG1tZWsN6QZRSLBYyPj+nGKmndWCV8XY1V8mdFs2of+SIWd5x1ez8EkY3paWZS1N/fZ5h6sfuu+e8a06ykwb577e3QrrsW2lWvAHnmIITf/haJ+74H+eGfguzcCbpjB0hr2qiDsme8iP5MMbNS1mcvuxdMchdE5oD6ahX9DFtiMRGKokSQ43qfqwKm8PXkP+BCdSuu194CzaV9D8/EWsdj2U0Y2TmjX14mjpUru0LNazFD0zRdkp1BLpezZe8OHjwITdNsfe8Wa5Zrsc67XiwRugWK+SJ0U1NTOHjwIDZs2IDu7u66x1meXY537HwH3rHzHZipzODHL/0Yewf34iO/+AhWtK7AbQO34fZ1t2NH7w7Pm2whNBfn2LqV4MEHWbDgzNawDIqmvxjY76xBI3dRa2trRTbbWvNdSfIng0GglOgNuZnTZrPWIliLBPPlaZqf1G92YQZc0eowwjRAZy9qa62VhLa2VrS1tYJSTe/jNYNKZRSpVFw3i8gEurUy4xvNk1RyJ0u24h9O08QueQJAM4Iplo1zq0kM5z6qqhSCCDxG/h+eEr+Cuyr/gRzdGGo+HrOEPThurG6mGQFzs0hUEKamplAslmyB/1yh8fuVHZN6SQPr/5hCOp3Sg1kFMzOzGBkZAaUUqVQa6XQKiUTCN9B3a+3B751mwTRN4YsEgq5OUH3JPqUUU1NTKJfLNa0mJKm57xlRZJOwyh6bgngcdNfFwJ7dKB8+AvG3v4X0i0dBH3sMwpaNUHftgtqb83xvWmvq+LPXzN5RUCpAlhUQIjRtkQEIlm8qiup4F/jVTXqfqxkyjq8n/gHr1UvxCvn1ruXU7Dlk/dlsT8F7QVqzc2vW5M4LEuA0RbFm71atWgVZljExMYFTp04Z2TvunLkYsncsA3/un0cnlgjdAsV8kJvTp0/j+PHj2LlzJ9LpdNPGzSayeO3G1+K1G18LRVPw+MuP4/7B+3HP9+5BWSmzuruB2/HKla9EQjJrVBYSoRMEAdu3Uzz5pPvLhmXbNCOo4LKOcrmE0dE8enq6kUy6y/A0TWiozxkjAqyxbSym2donNAq2Ek50BzXSBEkSD3SsTp3hvhcWjIjas0uECC6NmgsYH59ELCYglcogmcwY9TRWmBIdwBpsUAqMjY1D00wny6hgAYXmu+rNeyAGQYOCB4UP47SwH2+p3IsseiPPxzaeo3l5I8SjeYKHZmXFvGvN2DnV9MB/7oOARtUgZnDenBYekiShvb0N7e1tUFUNpVIJ09PTqFarSCTiujQzXUOua+tb3U0v6oVbUMZcMpkbISMqtTcKP6eUaujttZ9TJols7B3DCBzL+rBnW2M98fy3JTICMrAW6sBaqPkxCL/9LaSD+xB75gC0FSuh7doFceN6qD7XFT8GPHtndTQNkmaGvV69Mp9m+wbTaIq5SfKNul/DLHvofq6myCjuTXwM25VrcJnyGn0fa7+vKJreq6+2tpG7d1rrm9evPzfllk4EEZ5YLIZcLueavaOUGtm7bDa7IIlTpVKpq+H6YscSocP5J7nUNA2HDx9GqVTCnj175rRmTRIkXLXyKly18ir846v+ES+MvYC9g3vxsV9+DPd87x5cv/p63L7udty05qYFJbkEgN27CZ54gjky1mbp2DUTi1EoigBNI5iZmTYkW25EgYPbebOGsdHmZCVFlAKKQvTeZLC5btYLSpkBRdg6Mj84zR+4rDPcOY52PzIi6k6SCbE2au6ELLN6orGxUVCq6Jm7NBKJpJ4R0GdAeQ0PW9EeHh5BPB5HV1cuEuFkBgV6jyTVXBn2+3wQKpjF9+J/BgB4i/IVSMiEn5AP6pFXuYFLOBt9roZpfxEGbs94s8dcDF1dnYGBSTNeEVwG19g+kaY9K7mLqvmzgJaWDFparAshRUxOTunGKkya6SYzrtf+3wuszslrQY0RO2udHf/96OgoRFFEV1dtn8/oZjS8XQ3VJXqa/pzl2yNN328OLg207UJ3F7SbbkT1mqtA9+1j5O6734GWbYW052Io27YBHguJHFx5IAiCYRjCJJkwsnf8vRTWWMWr2Tcj3dFJNH9eumGCDOHexMewW7kVu5VbLHOwblewGd44ZZcAb/9gZvBiMQnr1ze2KLaYEJaIuWXvxsfH8fLLL2NmZsbI3nV1dfnGPfOJ2dlZw534fMISoVugmCtCV61WsX//fnR2dmLDhg3zurpCCMHG7o3Y2L0R773svRguDOOBwQfwree/hT998E+xIbsBd4zfgTdc9AasaV8zb/PyQleXgJUrNddaOoC9rCoVIJnUcPp0HrKsYNmyZaEkW8xBk4TOxpjbtH+eUi47ohBFVudWb5zHX+Zs1dIsHNf/iujZktp6FyaNnJsAiGUtg+WKsVgMbW0xtLW1QtNYRmJmZgbj46NIJOJIpdJIJtPGy55SDadPD/k6WbqBEbladzvem7De8zSNIXwz8Q4s1y7GDfLfQIAUKfvpB2v9YCMEhq/yN1pL1Tj54fOx/+zsMRdujMYnEsXK3wvNzoR5wb4Q0mG0D+HGKul0AslkEqlUCmaz8OYg7HimWZMAgGJ4eAiJRBLt7e3OT4asx7QSOKqbmljPu/lv7pQ4F4vBQTW8WiIFXHoJ1Ev2QDtyhDUrf/gRJF54AZV73uL5PbdLmF3XRK8BFCzGKtTI3nHHYU6grfAyLWGOwarrfaOqqmXBx7nQ4l0bOUZO4d7EP+AK+U7sUJ2tBczP29UatVlG9my234urVnWd873ZmoFYLIbe3l709vaCUoqZmRmMjY3hwIEDALAgsneFQuGcbsnghSVCt0AhSVLTCd3MzAyeeeYZDAwMIJfLNXXsetCb6cUfXPQH+IOL/gBFuYgv/OILeGL8CVzzhWvQk+kx6u529++GQOa2rsULF19McPIkd1mr/TulFCdOnEEyGUdXVy/CkB5CBOMFEzUWcAuQmeTTzN7xvnVRxjYdBU2ZJe+DpqrRSCcLity/w0hdcMBSf4wUjtRxsKblpjRTlouYnS1icnICkiQiHo9jZqaAXC4XWsLBbMrhSYqCDV+8/zhMnsO34n+MXerv4RLlD0H0662ZMaWZoWzOOI2iWWYtHG495sJgoSiL2KJN40TXq/+gFyRJRGtrFq2tWYuxygzGx8eRSMR0cpduWPHhl51x/zyTiI+MDCOTyaCjo103uzA/47dAymuEuTmR/Vrzcl6kRi1eszlA2JYPhAAUBHT9eqjr10MdHgapyp77yolSEAE1jVVgI1y8TQIbmhhE0DS9YuBSWJ5B9doGew/a+/h5ZfoAYIQcxzeSH8c11buxRfU2fnLuI+9f5/yM85myfn2f55hLcAchBK2trWhtbcXq1atrsnfZbNaovZvP7F2hUFjK0J2vWIgaYKadb5IvPYChoSG8+OKL2L59+4JcuUjH0rjugutw55Y70dXdhd+c+Q32HtmLP7r/jzBZnsStA7fijnV34JoLr0Eq5i8paSa2bCF46CFgdrY2EK9UFAwNDaGzsx0tLWk4m417wfrCYbI+HsD4f9e/7o7be/Pmq5yEBs/H2ljVCbP1QPh7JExfPE7qvFZw6yUTPGiJQuo4CIEuJ0sC6NSzduOIxWLI5/PIZpnVeyyWcJUmmuYx4TIL5spxuGN7VPgZHoj/d9xQ/Tts1G6x/Y1nC5rlLugmM65nnGbI2ZtZn+TVYy4MmpGJacarppH622bNxTRWiUMQBJTLZRSLRd1Yhd1H6XQ60FjFiXrcUTVNw9DQENrb25DJZAynXpY1ooYRh7V2imWZuMwweh9Pu7FKc65Pdt9FUS84ttvbCwqWFXMav3hl0QK3YGTviHEvm9k75kAqy4yUCQLRFxPDHQsuJ7XKYL3I3BlhEN9K/A9cX/0DbFQv85qtPkezBti9GX3tsSCEYOPG86N+bi7hlb17+eWXAcxf9m6J0C1hQaFZNRKUUhw5cgSzs7O45JJLznqPNz/wh7koiLhs+WW4bPll+Og1H8Xg+CD2HtmLf3rin/DW+96Ka1Zeg9vX3Y5bBm5BT7pnjuckYMsWDU88QW2ErlQqIp8fQ19fN2KxJFgDZE5mgh5U9iDXNKPwfxF6Z734vIieVWOEiZkHUD1b5EaaTIml37PV7AMVsFtA6M8B0GWdousLt1FDjnpJHQ+QpqamUCgUsHz5ckiSZEgzJyamUakws4iWFtYPjwc9zOwk2jxZwGH/vdvx2yd+Db+I/TNeW/0sLtAudh1PUZoj6WNza87L1m11PCqaQVIB/x5zYdCMAKR5mdR6JNAmCAEUpbGm2gBv2sws0OPxONrb26GqqsVYhZkTsKbmKQiCfzrLLvMOhiwrGB09g46ODqTT9oU+q9mFJJnyZyZ3r/9EsHvWepM257qIKkX3urdYjbad1DXuOkuMsbnM1IxRiP7eU/WsnKAvbvkfFybfFECpYvzbbY4vC4fw3cSncXP1jzCg7nIdi5ueKIp5Xsxec3Z1D8vo2lertm5djlTq/DDRmC+/CLfsHW9qPjs7O6fZu9nZ2QWZuJhrLNzo/jxHM4IHWZZx4MABtLa2YufOnQsyE2mFl6vVQOcA3nPpe/CeS9+DsdIYfjD4A9w/eD/e+5P3YkvPFtyx7g7cPnA71netn5N57d4t4MknVaP2aWJiGjMzM1i2bBkSCQGKQvQAiUCSgjNjfHXYCl6zxvrLuYH6BCHW4I7XqbEAn78fnfV1Yckcmy8nh/6ZAb+aCS84WyUAYSSJwfCrwwj4JvL5MWiahv7+fmNfuDSzpSUDTVNRqVRRLBYwOTkBgJlFZLNpxGKScZzD7ENt83U7CaXQ8DPpn3BY/BHeXPkKOuiFnmPx41ZPlsMNzZA6NiOTxPtoNRI4T0/PYnJy0rPHXBg0IxBqdJGOGXPQhu+RRvthckgSQbVq/50oimhpaUFLS4turFKuMVZhme6Y43vRyBzLto7qvSCtoQzLwDHpn2q47JqkphEyJ9iyfc1APWQO8I8RePsIUWRkptH6RtsziVoWX0XBqAfmx5dn76zGKoA7weNtFLz64R0TnsF9iX/GHZX/ilXads/5OWWm3FDG/bPM/ZIjHpdw/fVbgg7BOQNny4L5QiwWQ19fH/r6+lyzd9xYpaWlpeFYdamG7jzGQic69WB2dhYHDhzA2rVr0du7OJybwhjBdKW6cM+2e3DPNtYC4WfHf4a9g3tx81dvRiaewR3r7sBtA7fhsuWXQQxYDQ6Lnh4BK1aoeOkliuHhPFRVw7Jl/SBEMAJeXnAfjtS5B8qKQj1Jk1/mq/byJXq2xlyJZt+lxu/Ckjk2vjmGJLnPQxCobUU8ClhfP8GQytSXWasFd3ILapxrzkPDyMgwJCmOrq4uTymoJAmQpASSyRiAdsiygmKxiOHhUWia2ccrlUrotTn+BE9RqBEUWfddRhn3x/47CmQEb6ncixQ6Qu2znztgFDBy2Fg/Hy71qj+gZPvByGV9I0xNTaJUKs5Ljzk/NGOhggf+jTZcbxYpsQbGbmDGKkkkk0n98+xeyefHoKoKkskUMpk00ulkpGu2XK4gn88jl+tBPB6HIKhGvzX2fOMN7vmYVJeik7oNXHjLA+dxa4zok8hE1txu8N+ZaVbjtfjs3qMABKNGjr1L7LJFThS4oYrpnMnn68zecROa2vfYUeEp/CDxf/Gayp9jhbbJc248buDfr82gmrDWr3NcccU6ZDLJ0MdisYO7e55NOLN31WoV4+PjOHHiRFOyd0uSyyWcMxgeHsbRo0exbds2ZLPZsz2d0BAEAbIsh/58UkriprU34aa1N+F/3/i/8dTQU9h7ZC/e89B7MFQYws1rb8btA7fj+tXXIxNv7ObeskXDY48NIZ1Oo7e33SA1msacKq1ETFEYwfEidd6ZIwLuYNcMQuPM/gAUssyyHUHW+VaYTnKmQ6P1fclMDBrLoLD9ZqSumesrVtdGv3GZUcYIOjoySKfd7xlmhAB95dscLBYzG5pb+3jl8xUkEkk9I5EysgZOgseOH2xBTRHj+Fb8XWijy3BX9T8hIbwciF1/jdauUUvdzfxIdNzASVA92VbWj4xlW3t7+xq+rhq9J5tB6JoxFzeZbz0QBEFf7Ak/GUmSjECOUg2lUhmFQgHj42OQpJghzfQrDSiXS5iYGMOyZb2GHJq1W2F/N+tT3XvUsWcYl3qHm7ubiYY5Zn0XFpdcz1WrHt5yhWXIGt+GmWlji4J+1xCTvPNegcyB1Fp7x41V2DORSdateEF8Aj+K/zvurPwllmkDntsRBNFYnCCEGplJK/i9wh1zrce7s7MFl1++NsJRWPw4Wxk6P8TjcVv2bnp62pBnCoJg1N6Fzd4tSS6XsOhBKcXRo0cxOTmJPXv2LJieIGEhiiLK5XJd3yWEYFf/Luzq34W/e+Xf4djkMTww+AD+v6f+P7z9/rfjFStegdvX3Y5bB25Ff0u04ufZ2VmUSgfQ378JhLTodQL2gNweYBG9GF/TyYT9AeQfHJiBvXVMXugfFZyAKQrPylFwQsHMAYKNU5zBo6KYmTqvwKkecFJHSPPMgABO6ryPuWmU0Y1kMu76GfNYsePn5dRZ28erjEKhiImJCYiipGcjWMDKzzPv1cTjjHHyEr4Rfwc2qbfiKuU9IIi2msrfd41k18wxGs/SKUozWg9EI3SUanqPOQldXT3G7xrZj0b3oVElCJNbsouk3tpElrlqnM3xa7+RuJAQJr9saWFGJrJc1Y1VRkEpRTqdQjabRiLB7klNY07NU1Mz6O3t06XaXCFhXqth6sX4fWs07vY9NWY2yQ31kOt6TUrCbJe3cDCNt2iDWXK2rURCgCyrka87e1sENh+WJWLntFJhml2eeX4+9ks8Ev8y3lB+H3rpKs9x2fm3njsCs1l5LURRspQasHlce+3mBUdu5hoLIUPnB0II2tra0NbWhjVr1tRk71pbW43sndfCT7FYxAUXXDDPMz/7WCJ0WLiSS94MM8zNpygKnnnmGaTTaezatWvB7pMfvByu6sGq9lX4L7v/C/7L7v+CyfIkHnzxQew9shcf+OkHsK5zHW5fdztuX3c7Nndv9j1Wo6OjOHLkCHbu3IZiMYlf/Yr9nteVeYNYAgw7aXKTfVjBnS8ZUeIumI0G1LQmMOeyJEFg2/HahvOU8EwdG6q5q8vc3MV0gGwOWOPxWlLHyBY3ypBQG7RRnRDXkoGg9gtOuRmTZhYwOmpKMzOZFOLxhCFrPS09iW+Qd+Nq9T3YQd8Irc6sDpNeuhvOhP2+OU6wYY8fuJFCIwFllOcC6zE3rPeYa7PNo5FLqvFMZWPfty9K1DeWl2Q6CqzEstFblMvjRBF6hq4NmtYGWWbGKuPjk6hWqzqpI5BlWZfOOhfJBF0GGI0kcdMML3daJtsOXrSKkn3lBh6NvuvcpfmCq9mNomh1GyYJApuvLMtNclcliMdj0DQNiiIjnx8z7tP90sN4PPYtvKH4PnTTFfBby7L3miPQNK+FQKp/XrNlp9esyZ2XzpYLMUPnB6/s3YkTJ4zsXSaTQVdXlxErF4tFpNPpurY3Pj6Ou+66C8eOHcOqVavw9a9/HR0d7uUOqqpi9+7dWL58Ofbu3Vv3PjYLS4RuAYP3ogsidIVCAfv378fq1avR3794H1BepiiNoj3Zjrs234W7Nt+FqlrFoycfxf1H7sdrvvEaSIKE2wdux23rbsMrVrwCksBuCUopjh07hnw+j927dyMej+NVr1LxzDMaCgW79JBlu2ozCIyY0RpSF0Y+ZhIQBH7WG6bEhVIeVNdmSziRE0UaqX8dC3SaJyMzZk2tQU9zSZ0oEiNjNDU1jUJhFn19/ZAksUbqyiQ8MGpv3BCmpx4Hk2aylUcuzZya4k6ASbzc/gh+kfwkfkf5FC5UroQKe8DCjzcPHoOCKz7veoix9Svc2r2RRaL6A0FSMx8/KIps6TFnl9xY6zTrmkmDi2SNBsP250Y9hj/NaT5vNfCo597nzruECFBVRZ+X/TPOTHc+n0e5XAYhBMPDw4aM2VSh0MgOmRxWGSY39eD7xqTLYcYMdz7YOyHsmCG2qt/fZl88d2l5PYsZXFauaaztAzNYaXzenHTye7WnpwvJZBJPCg/g19Je3FX6INq1PlBQo0aTSTjNpubW5xpzyvSOG0xHTmr5DsGNN25teF8WIxYbobPCLXs3NjaGL37xi/j85z+Pbdu24aabbsLk5GTd5UYf//jHcd111+Gv//qv8fGPfxwf//jH8YlPfML1s5/5zGewadMmTE9PN7JbTQMJeNmfveKJeYSmaZFqt+YLTz31FDZt2oRUyrvv2ujoKA4fPoxt27ahtbV1HmfXfExOTuLUqVPYsmV+HKcopXhm5BnsHdyLvUf24tjkMdy49kbctvY2LC8tR1uyDZs2bbIR6qeeUvD979tlPgBvV+Aui+SkjhFWgunpKRBCkc221XzWCeZWqbiOa35Gg6I4/26SOav5CZcN+sWmVvLJWiXUPgasUksu6WxWVlgQVKPGLEpfo/DjAyMjeWiahp6ebmPePItprZULK3N1GgREgUYpfoH/g2fi9+KaMx9Fp7we2WwayWQ60JGRBcbm+XUSPV4zEvXcEOJszNyY1TuvX4n6SmHXGbde95cZVqsVjIyMoru7C8lk7TOzkXMEAJKk+rjQ+oPtfyPHz1xAYXPRIs+l0f0H4LJAQOEe5HMDEjOjaDcGIsb95gdKgbGxMVCqobu7B4TAMCEqFktQVQWpVArt7SkIQqwp9bfcyTJKfRt7ToZpBt54X0b7eJreMidcNj5MZlAUuSySOoiT+7sgCvjiV7UqY2RkGD09PUilYviV+D08LfwIv1v9INpoDoCp0HCTtbMFT/NcMTLvReqIZUGKjbV792rcfLO3a+a5jLGxMUxOTmLt2nOrdrBareLRRx/FAw88gB/96Efo6OjAXXfdhVtvvRVbt24N/Q7csGEDHnnkEfT39+PMmTO45ppr8MILL9R87uWXX8Zb3/pWfOADH8D//J//cz4zdJ47spShW8Dwc32klOKll17C2NgY9uzZg3jcvfZnMaFZvffCghCC7b3bsb13O95/5fvx8vTL+P6h7+Off/HPeHb6WVy+4nLcUbkDtw7cihWtKwAAF18sYd8+GSdOcDkaqynze1Yw4xRT3sPux3D7qWkUkiREDN74i9dO5th4wYYZTE5J4ZcYtmazmGwzWibFD/wS4NLOZrk2srE1DA2NIpWKo7W1y3ZseGE9k6KyYxcWUTJ1tu9BxkPxv8Ww8Cx+r/IttPb06C0RSsjnh6GqQDrNpJmxWG2TZi7rdcJK9OJxAbLMnebC7ZNzSDNTXG9NHqmLFDL31ODPMXneGPr6coY8z5yvuQDjZddvJcT271nrp4hhvGAGB+4ZM2uWh+1HY9lmp5SQncdo4zWrGbmzXtg8JgBfSGLZEHfzFaZYCD4elLIFS1EU0dXVY5wjqwkRpRSVShlTU7MoFouIxWJIp9NIpdKQpPrqhBSFESS/eiwngmJFfr00uwcYy5qFz0yy2m63Y0+N/nI8s+8kn42QZVO6rRkLL7lcDrF4DD8X78Uh8XHcXf4Qsui0bI9tkC9q8UUh01mVoFqVwWvWvbbLDcC43DKdjuOaazbWvzOLHIs5Q+eHeDyO6667Dtdddx3e+c534m1vextOnTqFj370o3j++edx6aWX4tZbb8V1113nm/wYHh42lG79/f0YGRlx/dx73vMefPKTn8TMzMyc7E89WCJ0WLg1dF6ETlEUHDx4EIlEArt27VrQBa5REKZtwVyiFa24SL4Id73uLsRb4vjxSz/GfUfuw98/+vdY0bqC1d0N3I6bbtqK//gPCkUx61HsEslaaBoxgpgogS17gVkzJEHXqjeZMz5BrRIc7xchIym1TcXd5s+lgEG96oJQK3t0c+usD4qiYnh4CK2tbchmW2r2Q5IoKpX6jTOikroKZvDd+H+FiDjurnwVcWRgbdJMSBtUVdXr/CYhyzKSySTS6QxSqQS465wbrETP7nrJiLqT5PPaRaD2HPDx2L7Vfw7qvS5MqRXVjRWIjTAxo4xp9Pb26jJ1fv0D1uvbj0TUxtn27/Ng0jyutQGxH9j8BWORhMsnubyYZVG9v1/7t/nLznHzHrNRs92ExOkcqH/Lc7wwPdcopRgeHkEymUR7u7eSgUmlU8hkklAUFbIso1gsYGRkCAD0FiJp/X4K3lfzOucNs8OVAfg/M+aGzLH3vhZZvlkrb+XPe1PeCDR3vvyYsnYTo8jlehGLS3hE+iJeEvbjzdUPIQV/iRy7tzVIEnNX5U3NYZFm8nceX2C01v/y6/UVr9jgaX51PmChm6I0A4VCAatWrcL111+Pt771rVAUBU888QR+8IMf4BOf+AQOHz5s6zPL8bGPfSzU+Hv37kUul8OuXbvwyCOPzMEe1IclQreA4UZwisUi9u/fj5UrV2L58uVnaWZzg2aaokTF0NAQXnzxRezYscPoX/Laja/Faze+Foqm4PGXH8feI3tx93fvRlWrYmvuVrQN3YqV2lWIi3GoKkEsRn2DVp5tAoKL7Gu/S4ygvPY9a47JX8JBpIQTMP5vv8/xIJjJH71Xg83at+ZkA6zgpM7NnCQM7E6WSduYbP8031q5sGA95YIzzdPkNL4Zfwcu0HbhevlvIaDWkIUFlxJaWlqQzbaAUopymblmcpv3TIZnI7xXXHlAziVUXlPjWVlCrHVEprkPq7WsP0tnLiS4ZxRN+3JqbNO0OefXvSldpBSYmpqalx5zVllr/bA+H+zHwJr1s+4GP1TuhCl8wO11j/Nrw7pv/Djz+5nLeE0Jd+0YYSEIxNW0wwpV1TA8PIxsNots1tt63GoAwp9n8XgM8Xg72tvboaoaisUipqamdGOVhJ69S7k2uQb4opt5rBWF16b5kzrv4zt3mbmw/TXdIEmsnlTTNNtinXWhwYl6doHNjx3TcrmEfH6MLbzERPwo9m84Iwzi7urfIYUWUB/VCm8zYWaBWQ2mJHHJv2rUP3KFhSgKxvuLvTtV9Pa2Yc+e1dF35BzCuZqhs8LZWFySJFx55ZW48sor8dGPfhT5fB7d3d2u3+3t7cWZM2cMyWUul6v5zC9/+Ut8//vfxwMPPIByuYzp6Wncc889+NKXvjRn+xQGSzV0YA/barV6tqdRg8OHD6OjowM9Pcx2e2xsDIcOHcLWrVtt7m3nCqrVKvbv3489e/bM2zZ5q4epqSls3749sNUDpRSHxg7hu8/fh/94bC+GtcNYrV2L9fRWbBSvh1DpCNxmuTyLSqWErq4uKIp/EMpq88zbkDfPtdc3aZa2BNEDTz9Hydrtc8dM/z529dbVmbWI3uNGzRLxtgG9vbma8yuKLNvCAgAaeWw3cBMcr2zQEDmIbyXeiT3KH2CP8ocgNllf7XfcHCIphZGNKBaLoNRfmsnGCXfsvOqBCDH3iwdqzjnx/9xIH5com/vKxuI9+NzgvB74PvDaKmcdpP9+1e8syAgnrVtB4HePBYE3wjZ7dlEIAkW16me3b8ogGUE0TUz484M/L8LAz6VUFLWI9433Z1kWfQTt7a2+jYFZPbJJaNh14meMAVQqFRSLRZRKJQiCiHQ6ZTFW8XfWZQsR3n3r2CKW6viOvX1As2Alsux+iHZNShLRXS+djcH9TYOi1tBZFwyLxSLGx8fR19cHQSL4Yez/Ypycxhuq70OSJA1C7nas2P5SS50ccfzdvh+8Xo4fF3PxUsOb33w51q7tC70P5yJOnjwJSZIWtYFeEG644Qb85Cc/qau5+F/+5V+iq6vLMEUZHx/HJz/5Sc/PP/LII/jUpz61VEO3ULDQJZeUUhw/fhzDw8PYvXs3EonwTYYXE+Zbcsmlq8lkEhdffHGo64AQgk3dm7Dpqk24IfXn+PoDwzhCfojnxW/hh/hz9MV2YJ12K9Zpt6Ldo4cOpazuhEkpNd1Z0n3bTiMFHo+aWTB385OoCFOsz+SPPENmSvfc+tjxurrosYz/F/i4YQOLqakpFApF9PX12bJYpvEJzz6yFdx6s09WsGDCPVN3VPgp7o//FW6qfgQbtJsd33NfBVdV7tKm2T5rzUYoiopSySrNTOnZiKRxXbPayHDn2Q28JsokdH7jMPLHrhFikRUSW6bQmikONxd2nkZG8kaPuQX6+DZglSbWA55B45lKfVSIIjHuQfacYIG6PbtpXo8uI4fcflBWLVy20CRF7pBlBcPDw+jq6kIqlfT8nJPMAcGKAEKAZDKBZDIBoMMwVsnnx0GpimQygVQqjWTSvF+s4CSBtxKq/btze80nc9Y6ND7FsOsTPAOuqqphoMWk2IzEhXOADb8vVul5oVDE5OQk+vr6QSSKvbF/RpFM4o3VDyCOFAD+zq+9jti5pojFCBTF/fnsnDd77lK96TxbJCMEWLs2h5UruyDLsi7jFs556aEbVFU9Z2NIjkqlYihxouKv//qv8cY3vhGf+9znsHLlSnzjG98AAJw+fRpvf/vb8cADDzRzqk3FUoZOR7VabfpKWqM4duwYRFHUmxKLNY6L5xoopXj88cdxxRVXzPm2SqUS9u3b17B09d/+TcbLL7N/U6mAo/SnOEzux6D4IDK0B+u0WzGg3op+utNoEF0qFVEoFJDLdRluXfDoA8dWv922zAgVW2nVoKqNS8LcMjjWrJWf4yXvlVcb2OizDXlrhV3tD8p4UEotGZweW5DmlUGTJA2y3Iwm2NbtmAHgU+KX8FjsX/DaymexnO6s+bzfCjiTX4Zz/KSUolQqo1gsolwu2YwiYjEx0PUyyLHPrR6Lz48TRr9Ak10r1v3gNvb2a5j9ToPZ85AFI0NDQ2hpaUFra6vLdeWUi5kDNpolY3OJbpRhPW+cePG52udoSkk5+L/Nuj1Tlull2mG1d2ckMKhxtj+CMptBWXX2Gf9aNOZ6yCXR3sGmt3EWhUkMwoO3yikWSyiViiiXy4jF4r7GKux4uG1LNcZk8vfI0/EEuxe89t17v61Ezo0M8XAinENnuH2yZhALhVmjvpWKGu6LfxoKZLym+l7EwM+zanzPeo0wkulf/8nuafNv1uvDSiqTSQnveMc1aGtLQVVNeab1e5zknet48cUX0dra6ik5PBdw1VVX4emnn16wyZoGsZShW4zQNA3Hjx/HmjVrsGLFirM9nTnHfN18ExMTeO6557B582bPhpFhccstIj7/eQXVKgFRMtgg3owB5VZoiorT5EkMig/g/ti7UCFTGFBvxoB2K/qFS4zMBKttYoGeJNEaCabfe1ZRTCfKZhw6P/MRP7keq1kAWNaAglLBmDeX4LGgNswswkVBfvVYmqbphgoJdHV1Oa4rqhOW2jHNrGJzIjGejRJEip+QT2BQfBj3VO5FO11Zx1hRVuOJISdj0swqisUiRkaGAQDZbBqJBJOaud9z/vtvZolZpplnis0aO3+41YCaUk07JMkkQ7LMgv6Ojnak0+mQWVpTxmrW4NnbPDgPgZuclLUe0cBLT8xrxF5zZJUxmr9zZpSd8/beD7vU0boo4fkVWyaPuyCygJXdG1HaWISRqQYNxermvEklM8rII5fLIR73lrx7ZcfqhVmHRpDJpJHJpB33i2msksmkEYvFwWtRRVGs2Sd/0lU/eLbPa1y356CpntB0BYXXSRJAyFwcU2BmZhYzM9Po6+uDKsj4bvxTkBDDa6t/BQm159m5Dzzz7LfAx8iq+XnrfWYd7uKLL0RHR0b/DntpclLHCR4AffHj3M7enes1dAstMTOfWCJ0CxTj4+M4ceIEenp6zgsyN184deoUTpw4gYsvvti3v19YLF8uYOtWgv37GSGIxZhERICIC+iluEC5FNfgwxgnR3FEeAC/kv4XRlqfQX/sMmwjr8Fa3IQUukApXCWY7nUu5sudUoJYjKBSaR6ps0oavU0ZvL7PAlyeteOZQ2YbHVxXF+VZzEmdNaB2Olla4VZ/aBnN+L2fMUBUyKhgr/jfUCLjuKfydaTQ7vnZMOePBTDhs4hMmslcM63SzMnJCVSr3DWTGUWY/fhqx+HZRh5U1xL/8BcfpeFls/yyM3vMdSOTSUV0bHSv9bP+7DJLx88suKsNLp0/RyfIfmjkGmSNu1WDyHEIgmjU4tkdQZ3bDre4EfQRP7lpsVjC+Pg4ent7EYv5hSNBiwXRHn6CILjKSGvvF02/XyZ1Y5WkvliShiCItro6UWTtQZq5LhmmlQ97zvJ/EwcJcp+MVb7ZDN5iHQ8ApqenUSgU0N/fB5lU8K34J9BC23Gb/G4IsJKJWgJGKRCL8XKTwC0DsC7C8J+JQSzb29O4+uraNgWcsHFywwxiVIPk8X+LonhOZe/Y8/vcJXQAV3uck9k5XywROh3NbvhZLyilOHnyJE6fPo2BgQGUSqWzPaVzApRSvPDCCyiVStizZw8kqXmX/vXXi3jhBRmFggBFIUYjcWtdXCddi0vVd+NS9d2Ykk/jYOX7OJL4IX4Ufx966GasU2/GOu02dKoDuvEID2bt2SW3ejnmgFkr16oXzt5vTFIVbQyeteNGGopCLK6S3t+LurjNSR0hTDfvdLLkYBI178Gt9Wss4Ce2Grt6UEAe3068E+3aCryh8p9IiMnAOQRB0xrryydJIrLZLNraWqEoCsrlsmFYwKRmKWSzSXACw9/7qmqXg3IZ5Fw/MgUBKBRKGBsbQy7X65vBCTdeff3gGqmBqz9hYwaltfMJ/rY10Ld/1571IMRsp2AlOWGvf7/j4pfhm50tYGpqGn19/QE940ioay3suY3iEClJArJZ02WWG6tMTExCFEWk02lks2lIkgRKG5O2us0zyBGUgeitB7RQ+8+el6ZMlilEgmvovEx0mALDJHNTU1MoFkvo6+tFlZTwjfg/oJMux83yOx1krnYcSinicQmKEo7Mmftrj9+sjtBXX70+YLGAf0fwzd4pimJ8ZjGTO1VVF/X8g7AQ4vizhSVCt4CgaRqee+45UEqxZ88eTE5OYnZ29mxPa9FDURTs378fra2t2LFjR9NXbtJpAVdfLeKhhzQoCrO+BrxfgGn0YO3sq3FlyzuhkjKOkUcxKN6Pr0h3IE6zWKfdjPXarVgZ2wNV5i9Af/MTbrTSjJYBTKoDPSND9VXn+o4ZzzxCN8lg8zT/5vh03dsoFIqYmuIr/bVOlkHtDtz635nOatHnNUZexDfjb8Nm9dV4hfIemEYpjTWYBupvYm6FplHEYiIEgfXpopRClmWUSgWMjg5BUShSqRTS6Ywuzawdg2cL69sHqmdM/T83PT2LiYkpPejnK+kU3KQiKnj2Nfr3gLBN2Z2oN8Bw9n+MAqvLXxBY4Gp+j8kzg+vizO+7/97PGXNqahrFIm834Xdc/d0nbZ8McW4buW8IIUgmk0gmk+jshMVYZQyKIiOViiOVSiGRSDZM7MKQTkL4ggtzOQ47rhtJtEoXvbfnbnJlJe2Tk5OoVCro6+tFmczi64mPYJm2AdfLf2DUkDtGNf5FqYZEIoZqVQm1L7z+0U0mz39cs6YbF110YajxnGMDtdk7/n9+by3G2rtzXXJZKpWaor5ajFgidAsE5XIZ+/fvR19fH1auXAlCyFlvtH0uoFgsYt++fVizZg36+ubOrnjPHhFPP61hZIQFMtUqtcjS7G9PM0AhiAtJrFVvwFrtBtwiajilPY0j4g/wQ+m9KJBhDMRvxIByCy5Ur0aMpuFG5ji4RKqRQNAKJiFtfBzreNzMhQfIVvJZLxllwWEBvb3LEIsJFrmo6WRZb/BfT/+7k8Kv8d34n+Bq+a+wXX2DbTzeE8mN1EWJ+xVFayhTB5jngz1rCASBuWaKYisqFQWlUgETE+OQZQXJZAqZDHcB5N+vfwGBBUF+dZlU7x9WqOkxxySbwqJYiW1kgeUsteQ0ZHiUssbabHHDL/tU+wcvExRKYcgX+/p6A++pRlpNOLcbpqF5FMRiEjo726GqraBUg6KUMDk5jXw+bzFWSfn2iKwFMdpUeIEtGLIsK5Pph1uk4OO6HXIu4w6qzXSaDPHfUwpMTIxDUVTkcjkUyRTuTfw9Vqs7cY1yj6U1i2NvjW0SJBIiZDkcmWPfpYYBjX2ejIAlkzHccMOW0OP5wZm9s/4HmFmvxUDuzvXG4rOzs3W1KzgXsEToFgAmJyfx7LPPYuPGjejq6jJ+fz4SOl6j04wHznz27SOE4PbbJfz7v8tGoMykkLxQ23yhedn5a6qAC8SL0a9cjFfiA5gRj+EF/AC/Ff9/2Bt7F1ZoVzJjFfUmtKDXayZ6ZqlxUscCOX4umlNTBlhNNSjicYC1gIzu0kmp2Yusr6/PIGD2PkvhJu23bVZXGI5APCt+Fw/HPoY7qp/GKu0VblvyIXXhDzDf13ql4rzGkUlja88tk5plkc1mwV0zC4UCxsbGdNfMDNLpFAhhdUT1EGa23VqyzRxKmZ18b2+fZ1agGT0D5xr1ZgTDERl3BUCQo2QQrNb45jUq6K09aA0pcJ4f9gx3J3NjY2OgVEMulwu83xvNQlvBWx00C2YrEE3/WUAymUZfXxKKotUYEaXTLBPOjVX8xnQ774y0MQdgZ5uYoOPI/x6kDAg+Rs53mNl8np/Xnp4ezJIxfC3xYWxSr8SVyhs9yZx1LEIIqlUl9DvAlMfXzpfJdym2bl2Ovr72cANGgJPcATCydzyDB7D4bSESp3M9Q+dsKn4+YYnQ6ThbBZQvv/wyTp486WrScT4SOl4E3uiD8MSJEzhz5sy89u1bvlzAtm0CDh7UdFLBrPydpM7aj8kZDKkqMWrW2nEhLpbfjovxdlTIFI7FHsYLwg/xSOxD6KQDWKfejAH1VvRiPewrpzyzxFZw6720zVYEVF/hjpapCoKmMTLHTjUFb34c7rvcyTKpO1my33O5KCO0GqKaJXjBzYDF9ndQPC79C/aL9+J3K19CD93gMxojI83JGIQnDOwcchJnWpAHzcPNNbNQKGJoaBqEmK6Z8Xg88tydElRKNYyMjCIWi6GjowesmbdbNnPhkzmg/hrDcPeYez1TIxktLxLF7iu2MyygJbr01Zkdoa7SPEqB0dFRSJKEjo4u32dS/dm02kH5cQzusRYefkYlXA5NiNOIqKT3iOTGKml9QYQYYzpbHZhOlf4mJ17XGFMocDfO4Osp7GVjvUYYmcsDALq7ezAtjOBr8Q9jh3oDLlVeEziWJAlQFLNOjdXz+X+H75equmfzRFFAIhHDtdduCrdDDYDHKc7sHZdlLkRp5rmeoSsUCkin02d7GmcFS4TuLEHTNBw6dAiyLOOSSy5xXTGRJOm8I3ScxNZrWsKPq6Io2L1797yvRN14o4hDhzS9bozPideTsJ95fx32N1Jjo68ovE8a6x1ECJBEOzbKd2KLeCeqsoKTwmM4Iv4A34zfBYFIGBBuxjr1ZlygXQZBv62tGcJ6OJg1CDJJohC40hsV/CUuiuw4ePW041AUBcPDI2htba1xsgSgkwDT7rtZsT8fx5ldUyHjwdgHMCIcwlsq30ILcoFjsWbN9hq9euZJqbeE09yW2fuNb8t6Paiq07XSfyzuAtjRwYJVbqqiKKxBcyaTQTKZ0I9/0Pyt81AxPDxs9Jjzm8tikDFyk4d6EIbMuEnk2P1Z/zsjDBnkWV02B0HP9Gp6oF1LxCilxuJLe3uwUqJZ0kiTzDXveeWXNTSf6XbSx4yIuLEKUKmUUSgUjf6yra0tiMcTRq0qd+Nt9Fo1JZbhHv5s0crfHMVag0cpkM+PQhQFdHR0YUI4g3vjH8YlyquxS70laGtIJLj5idWgJ3ieTMLqfk4JIZBlBTfeuAXJZNQFpsbBs3esqbmmn0cza7cQ2iKwd8a5TeiWMnRLmDdUq1Xs27cPPT092LRpk+cD93zM0DWyz9VqFfv370d3dzdWrVp1VrKu6bSAV71KxIMPKnqmjdudW00O7FkV+zTZ77ls0rkLqgpIRMIaXINV8jW4Hh/HmHQQL+AH+Gns7zBJTmCtej0G1JuxWrsWCZo1LMqjxjVuRJAHGV796uoFyyxY66rMWjsruatUKhgdHXV1smTzojUEKcxcwx8bU9apqhQVTOM78T9BDEncXfkq4giv3eckmZOteuNOtmBgDzS9snFesNbQRJmHJIlobc2io6NVJ3clQ5oZj8eQSjGpmdfCCnPIIyiXqxgZGUF7ewcymXCrq/U6Vs4XeGAe/Xv11Y2xc1cfC2B1idHlu5zcMfdVsWb7qqpheHhYl+8GB1nNklmGsfuPCpYt8x7Tujkv50hCYBirsPOlYna2gImJPGRZ1Y2IUkgkwi2IuMHMntb3Xa/Xr9WohVKKkZERxOMJdHS0Y5ScxNcTH8Er5DfiIvV6323w9ieVCntHmghvasONx+xg9Yf9/R24+OJVvuPMB6zGKrFY7Lxpi3C2sUToljBvwf/U1BQOHjyIDRs2oLu72/ez3MXpfEK9L+LZ2VkcOHAAAwMDyOWCMyRziUsuYQYpExOqvkLH6y1YkK141n3bnSyZJK22ZQAP3BhRIchp29CtbcWVyl9iGqdxVPwhDkhfwQ+EP8Ny7RK9oflNaCPLQr/kGfn0esGaZiHNrmMyTUisK9SM3JVKReTzE+jt7XO1oXavmSO2MZtxm3MHzIJ0CvdKf4iV2mW4Tv4bX0tuP7AVff92DkGwOmj6ZeP8UX/rFrZ9AZlMBplMBpRSVKtVFAoFDA0NgTdvTqXSNdLMSqWK4eFhV5LuN5166tPq3T9+XKNgvp/fLLNV3/YayYpxiSTP3AiCCEKofl5H0d7eFoqkN6vOrdlkjmU9gxdFTELCM4P+Na7MwAlobW1Ba2sWlGooFkuYmZlFPm8uiKRSaV9jFbOeLJrE0g2sZto+Z1MCq+g/axgeHkUqlURbWxuGyYv4RuIf8Cr597BFfaXn2KZSwDyW1vMUZMpivT7czq8gsMzTLbdsjbLL84agtggLIXt3LmCJ0C1hXnD69GkcP34cO3fuDKXxPR8bI9aToRsdHcWRI0ewbds2ZLPZOZpZeBBCcNttEv7jP1RQqkIQRIPUMVcy+1uLm6iwbAMLCNipJ75OgiyIthsjtGIZdqpvw071bahgBi8JP8Wg+AM8GvtHtNEVWK/djLXKzcjRrb7F6mFW+rkph59bYT3gzc15UMEc1JiTZV9fHyRJBOv1B+O4sl533oEMH9OzBi7i9IeFg/hW7B24TP0j7Ky+FUKdq+kMxDAWqZdw8FVze1PhaGABYf1ZL+ayyvaDEIJEImHUryoKs3gfGxuHqqpIpZLIZNLQNGppLB3NUnU+6+jqexTXL7cMsz3r9RKlTYHbOOH6nbmDZXUUi6kHhSwrGBkZRU9PF2KxYOlb+J5r3uBSx7DHLwyizqu2ftDedkEQiEFqFEU1PsO+a18Q4bWqdmOVlG6sUus2aWbQ6t959jw3ryV+L3PSQamGoaFhpNMZtLW14jQ5jG8lPoEbq+/ABu0yj1GpkVGzPptq32veCzTW8+CWweYtMnbsuAD9/R317Pq8IkxTc/65pexdNCy5XC5hTqFpGg4fPjwnTa3PNURZXaWU4tixY8jn89i9e3cdpgxzhxUrBGzdKuHQIcVwirRm6ngjcBPcLc18GfPDYC0UrzVRAQRB019y9hd5Alls1H4HG7XfgSYreFl4AkfEH+C7ibdBpTLWaTdhQL0FK7UrIMI8drwQ36vvkBWUWvu1NduEBAAo8vlxUGo6WTKZF58rb9MQHMiwzCbRs6TWz0eTJw0KP8YD8f+Om6v/gPXaTSB1SuvsIBZDifBjsZe92WePSxjrJWXcrEVR6pH88Rqq2m1LkoTW1la0trYamYjx8QlUKhWk02koigxBECLVvGqa9ToJj3qIcz2nt55zEMWh0m6gEdxHzGsMQurPXPOFF+uzolqtYmSEyaLj8YQRhHu1PhCExskcwIN+uUlZeNPFMsp4TvdVfj8CLA7gz9ag64kQgng8oUsaO3RjlaJurCIjmUzocuaUfs00XnPHwXvasQUwvkjDjahYjWs2m8VJ4Tl8J/4p3Fb9E6zVdrmOZcqOa8+x87h6Zeic14fze9xYJZtN4rrr5t4IZS5wvjQ1nw8sZeiWMGfZsGq1igMHDqCjowMbNmw4L7NuURA2Q6dpGg4ePAhRFLFr164F+ZC76SYRg4Oq/rK1kjpiqRdTjZd+7aVh/sKsB6ttR6BpvKk41bMktdeYAAkrtSuxUrsS18ofwYR4GC+QB/CL2CcwRo5gtXoN1mm3YI16HTJCu+sYXjAt9JtrQqKqFMPDw8hkkshm3Z3xGLlTjcCU989ykltzrqYTHQ+4g6Q+VvxW/Dx+FfssXl/5HJbRHcYc/Bwww8BavxaWcPCsJGvWbjqostpHf3MDPygKrVu2Fi47SCDLMggRsHLlSiiKgkKhgPHxCQiCYLF4D87Y1SMVnK+WB3NNAvk1wzJsfn3ivNGI1JIF+WaGEKAolyvI5/PI5XKIx9n543V2hAiWZuOmqQonOvXClBo2h9E0di+z71rlhaaSQahbDsmMVXgbEQ3lcgXFYhHT05MQRYJEIqVn7xpvHMoMqvjCjClxHBoaQmtrK1paWvCSsB/3xT+D36m+B6u07a7jcAk8e6e7nePgA2w+zyzfsjzXGIlnNvxXXbUBqdT8OFrPJeayqTm7187tGLRYLKKnp+dsT+OsYInQzSFmZmbwzDPPLIi6rsWCMIFkpVLBvn370N/fj5UrV87TzKIjkxFw1VUSfvKTqr6KremBNl/9VX3JhNvvubmKsx0BI4cAQCFJFIrCiKMbCAg61Q24UtiAy5X3YBbDOCo+hOfF7+DB2HvRT3dgADdhQLsJ7TT88eWEpBntDZiT5TDa2trQ0tLi2VOOENVSQ2Jtlu1P7tglRiCK3KHPfz4aVPw09o94UXgEb658E+10he3vPLA2W1REQ+1qtRepMxvW80DRZTT9equf1NWTLeTwq61kPebGQClFX19OD/JFJBIJiGInKhUZxWIR+fwYVFVBJsMyEYlEsqGg3z6H5ozjh3qMTaztTKJuqz4DjOb1ZiMEKBRKGB8fR19fr6cKhV0XrGE5qxdubPvseSMa+9GIbBkwCUI9zy5C+KISdzbkYxBYyXejIESwtRHRtApmZgrI5/PQNNXI3NVjrMLr5WBpI6MoKkZH2bM4k8lgUHgSP4h/FndW/xIXaLUZMaYQUPWFRm8jGefv3Z6B+qxsv+fPV57NFgQRfX1t2L17daR9XSzwa2rOn9Nhyd253rIAWGpbsIQ5wNDQEF588UVs3769ofRvMxttLwYEZeimp6fxzDPP1DRhX6i49FIB+/eLGB1VDXkkJ1qFQhGpVBKiKHqSADcnP07qvBwJGdmjFpLnHkRwKWcWvbhIfQsuUt+CKgo4JjyCQfFBPB77X8jQHAbUG7FOvRl9dDsI/K9De3uDqBJMtrrt5mTJa+Csx8LZ7sGKsOROUSgSCQHVquo5Vxkl7I3/OcqYwlsq30ISbZ7b5NnWRjJA/Jw6g1NO5MNmwaJk+yxbN+ZQj+shAM+6T3uPuY6a4JY5JdqlmeXyLGZmZpDP5xGPJ3RjlZQlwGmcPAeBnVcm7Q2/jeiBu3m/RttOPbVzXEJXD9i1YX/2zM7OYnJyGn19/TohCBqDXVuCUL+rsXmvhTfW8BvLbKge/tzx5zCvgWYmWIy08swhC7755xsn0c7nSywWQ1tbG9ra2qBpGkqlWmMVP6dZDn6/q6qmyy0ZmRseHkZXVweSyQQOCY/hR/HP4fWV96OfDti+zwktc6F0l16b2/JvIcLl9s5zydv/sHeBqj8HKG66aWEaoTQbbtJMK8FTFFbL6tXU/FxvKg6wZ9FC8FI4G1gidDqalYamlOLIkSOYmZnBnj17GpZA8F505wuh83OG4yR5x44di6bolbluSfj85xVDPgJo6OnpxszMLCYmJhGLichk0mhpScF5S3pdlpyM8Rej88XHZU78svGSIDK5nhmAp8QM1qu3YL12CzRZxWnhKQwKP8De+LtRJTNYq96AderNuFC7EhJq2wbY50cs+xwOhUIBk5OTriYZ1lpC1msubK2lSe5Yhsskdywg5s5utcexgFF8K/EOdGpr8Dvy/7bVGnqhmQ6g/ByrKlvxj05G7KYMYbZnOtDRwAUWv+1aV9bde8w5v2M/biwTkUEqlQGlLDNfLLLrQxBEwyQiHo81oYbRG0Q3KIpmchK9Ri/q9eJVVxtmW/WSdd7DyvrdqalplMsz6OvrDfWeYo6zZj2ZKdWONh/3bHjU88SfU2GeJ6znI5eaUmrNwvGxrGOSmjGZnLle0uleo2qvpax1mi0Wi4bTrJuxitmo25yrqlIoiozh4RF0d3chk0lhP36CR2Jfwl2Vv0GOrrIdF06sNY1CkqTAmsjg55i3QoE9ozRdwkqxc+dKXHBBZ9CA5xzcpJlBTc3Ph+TAUg3dEpoCWZZx4MABtLa24uKLL24KSeQBVTO08YsBLFtV25j26NGjmJqaagpJnm9ceKGIbdtEHDyoQZYZqUgmY4jHOwEQVKsySqUChoeHoar8pZvRa1C8AxQmt2GtEFiwX7uiyQ6lf30dIzec6JjHXoCIC7Q9uEDbhWuUD2KcHMUR8SH8SvpnfF94F1ZpV2FAvQlr1euQRm22lG3PGsB53w+UUkxMTKJQKKKvr8+nbxkxDGXqMcQAaskdC+bY36w1inkyiG/G34at6p24UvkzX1dQt22Y2YMw33OTk0KXpSHkGF4goeV8zgwHW22PTupYRouRM1mW9R5z7XUvxBACJJMJJJOsRkaWZRSLJeTzYwBUJBJJpNPhpJlRg+l6sj5RM4emqVB41Juda6RuzkooKKWYnJxEtVpFf39fKFMOay8zDlOqLYaqBfQjslGfB0EuloJg7RNJHefVTcpNLdkp93u6HqkrX3CKQvqtTrNexiotLS1IJJIuxFM2jG2SyQSeIj/EL6Rv4HcrH0I3vcD4HM9Q8uecd72cHX7k3U8qzlv6sLpRikwmvmiNUJqNME3Nq9XqOU/oisXiEqFbQmPgfdDWrFmDvr6+po0riiIU78Zl5xxEUUSlUjF+VhQFBw8eRDKZbBpJPhu48UYRL76oYHYW0DRBzzaxYD0ejyEeb0dHRxtkWUWxWMT4+BgURUFLSwrJJK+HqB3XNPlgP3vFd5zYedXXsUway3x5uVt20rW4VHkXLsW7UEQeR8WHMSg+iB/HPoicthkD2k1Yp96ITrrW9j0mkfE2TOF1VYSohpOlHzjh57KgRrIz5rHj2UyCRAI4ojyO78XejWvk92Gb+rq6xzZNH6Jdt9YG6axxuL9EyQ9cEhZGfuku4a3tTRUGqkpRrVYsgaF3RtfcVrgMBpOZxdDW1gpCKGZni7o0cwyJRBzpNOvfxa+R+QSXaM7lo4rXzkSFNTsW/bsmEWH3LHOfzeVy+nj+5NJPbsjIKdWzCWZPrtrPQd+++zbCXqJ2iaV9fFPVwKSSYe87lgUJfl/zno1hSF2Y3nJh70unsYosy3rt3RhEUUI6ndZbiWgYGRlBX18PJCmG34j34bfSXtxd+TA6aL8xHncX5vsOhJXxUtfPsQU6bzLHsqPmMxEArrpqPTKZ4OfK+Qa3pua8Lj2VSkGWZZyrTc2XMnRLaAgjIyMYHByckz5o9UqeFiuspiilUgn79u3DypUrsXz58rM8s/rAV8niceDWW2P41rdk42XEpE+8DoxJAONxEaJovnRLpSJmZqaRz1eQSCQMB0Dny50Tk6BsAq+vY7Ihtl3LbI1Cdt5bjkmHasdMoxvb1Ddim/pGKCjjuPBLDIoP4quJ1yFOs1in3oQB7UYs03ZBgGhZhbdnrZgV9ghSqSQ6OzsDgydro3UeOLMxG5fccdK7H9/BT2P/gFfL/wurcSUgUl3WGj0KZuc4vPun1RmPg58r0ximHqbAa+qCVsdrzzWXHEYlKcViCZOT0XrMOfsahotVWdPyTCatSzPL+rat0sy00Yw+KjGNWodYT9uIqCSLSeSiLfSxjH59RNNaq0aphtHRPCRJQkdHt/4s8r5xreQpzBxZVl/Us9PWmtng4xqG5PJnGp8Pf25qGsvARX3dWvcv7HXCFnuCr+8wveWiZpDZmEA8nkBXVwJAp57xLmJ4eBjVahUtLS2gFHhM/CYOSj/FPfJH0EK79e/bn1HsvETdvlOFw//vPRBfAOXHrr+/HZdcsib8hs9jEEJw/PhxUEqxZg07ZudqU/MlQreEulY7uRRwcnJyzvqgnW+Eju/vxMQEnnvuOWzevBkdHR1ne1p1wVqwTAjB+vUSNm3ScOiQhmqVfYZnxTi5YoXlvF5MQCrVglQqBcCsIZqYmIQkSbpBRMYwIeC1dG6tDezz4rUwfA7s2ueBAf8vbHZDQhJrteuwVrsON8ofxxA5gCPig3go9tcokBG97u4mXKi9EkRNGzU4smx3suQySC8QQmsCX27Cwh0r6yF2xqo/KB6T/hnPiN/EmypfQZe2DpDMjAarNSTG+aklxO7gkkk3Saz5GWpb8XaD3Rim3vSP/zy8HoN8NZc7swZhZqaA6elp9Pb2Ix4XIgV8rE9X+AwUI6om4Uwmk3o2sAOyrKBY9HIADD+nKIgu+4u2IMGfK1HjrnqllvbMnIahIbYA097ebvmUV/ao1rgkDPizjPdEbNaiDc808/5o9RA4K8xG3FGPK9Wz9+6ZNz7PMAsDznpV77myd4rbXGOxGBKJJGZmZrBs2TLIioyH8Xm8SJ/CLaf/HEIqAy1pPw9sMS24Xs5lxo55CfAz6eHHmFLVVkd9881bF61iZz5BKcXg4CBkWcamTZuMYzYXbREWAgqFwpIpyhKircQqioJnnnkG6XQaF1988Zxd9OcboRMEAVNTUxgbG8PFF19skJnFBt4YlAem/CF6yy0Sjh+vgtnO8yyVSerMFWpzJZKD1xB1dgLVKltRHRkZBgAjC5FISEa2ztnawAlnfZ1zpZfPJRYDZDlcgE0goJ/uQL+yA69U/jsmyQkMCg/it9LnsFd4N1Zol2OdehNWlF+Jcp6iq6snlBQPqHXWc4JLO50r+0GgFFBRxQ9jH0BeOIx7Kt9CC3oAYsqjWE2CnTBy8s0NZYIIHqXupJPXLoa5zbnZDJ93VHBZEyN10QbQNC2QFFAKTE1NolSqoL+/Vz8fUY0qSOQA3qu3XCwmWRwAKUqlIqanZyDLo4jHvTPettmQuTdEiQKWnYvWd67eFgVmQ3BiGNtksy3IZt2NbawwF6fqI2K8Too7RdYLfo+KIoEsq0aWp1E00uIAgG4gIjrOC7XU9YUdN0hGbXXbdD+O5TKrR+3t7YUUk/DLzJdxWnwObyn/A+LZNMrlAs6cGYPVWCWZTIaql3OCz8FK2Fkbi9rPWgm4Vcm6bdsFWLly4btcn214kTkrgpqac1O+xULuKpXKnCRXFgNIwEu98SWxRYRqtRoqyCkUCjhw4AAuvPBCLFu2bE7ndPToUWQymabW5S1UUEpx4MABTE5O4sorr/TsZbTQ4UXmOI4eVXHvvVVQSmyBBQv2zc9yoiCKmm9wqygaSqUCCoUiNK2KZDKtuwMmIgWLnLg5QQivk6i/jgsAypjEi+LDOEQfwHHp5+ii67AeN2GtfCO6sR6CjxyQHYtwUZhd2hkMRZrCN4Q/RgItuL36acTh3sMmTAZQEEggwTPHoca/rf30wsCUxYb/jvP7cHEWDLrWeMbFqwaG95jr7u62BXpRs1B8xZ5fe0GI2v+PEKBUKqNYLKBUKhnSzEwmXfPc4VlRtugSfMCDZK32z0brPccy5zxIp6Gaabs1Zw4Dq+ya1994GdswKbR5bBprzm2du1kDGqa3nyhS3c6e/WxtfN4IKbTCb9GIHYeo59M8TvX00fN7dljl0l4oFksYHx9jZlSSgIdi/w/DwlG8sfq3yAgtujES2y9FUVGplFAoFFGtykgmk3q9ahLhe96ZGSCzp1zt85r3meMLGHwXkskY/uRPrkUms/ibiM8lwpC5IFizd/YWOiy7txAJ3lVXXYWnn376XM7eeu7Y4oyYzyJGR0dx+PBhbN26FW1tbXO+vfMlQ6coCvbv349kkkl5FiuZ4w8/v9WstWuZ6+W+fYpRz8C+ywICgBE9XjcV9H6XJMEodidEw+xsyVZ319KSRjKZCnzhsnhH01+u5jODEzkzc1if5C9B27B8/Fp0FC/H7bl2nIr9GoPiQ/hm8s0QEceAegMG1BtxgbYHgu3RFC0wJMQMRAH/4HqKnMQ3xbfhQu1KXCt/AAK8e/SwbIF/poPV4Zg/c5c8MyvA+yhx4q/vYcTAl1K2Yl2vWQqXKeo/hf4ez7g4A09KKUZGRhCLJdDR0V5DHqLK5UziGO7zUY+BIBBX18zR0VFommb07qpHmhklII9Kytn1p+rbCTMXs2Y2CjiJJYRAlpl9fVdXp6diwjqXZpC52nYsRH8e2u8/vm/8eqRUs91XnAQ2o62Fm71/oyDEJIjcSbMZMM1UNHAjETfwNjF9ff0QJOCB2D9jUhjC3cqHIdGkQbj4/+NxCZKURSaTBaUU5XIZhUIR4+MTEEXWfiedrl0U4WDvM3N/2VxrpeY8c8dNpayH5RWvWLdE5gLQDDIHeDc1tzpnLqTs3Vy2r1kMWJxR8xzBb3WMUopjx44hn89jz54985bS5X3ozmUUi0Xs27cPa9asQTabxZEjR872lCLDWS8X9AC96SYJx45pGB+nelDOPs9IHXuRcRIgilEMKZwGERX9pT0BQiRkMhmkUmlIkhtxofocqN4aoLYRNycl1tX7MKBU07M3QF9fLwgRsFq7Gqu1q3G9/FEM4yBeij+Eh2N/jylyEmvVazGg3ojV2jVIiy113QO8VtAMDux/P0MO4NuJd+By9Z24WP79wPG4E1+UgLWW4FGdqJiNzOt9CTVqlmKtPbOOGXLrxjWpKBpGRrgUz7t2IXpvvmj7E8Y0wwtW10zenHl6ehrVagXpdBKJRBKZTLD8O8o+Uho1q2jPYoQx6amnbs4qk+QupT09PUgkgoPoRhtn8+x6reSQP/8IYjFWe8YIkJnBA+zOt173fT3gpCto36LeyuY+RpX1em/TWtfnt++FQgFTU1Po6+sHRA174/8LJTKNN1T+xugxyu8pJre218sRQpBKpQySz9rvFC2LIqmaViLMxbpqO7dOebW1lQR3ZeXI5bK47LIlIxQ/NIvMORHU1HyhGKuEib/OVSwRuhBQVRXPPPMMEokEdu3aNa8XqyiKkGV53rY33xgbG8OhQ4eMjGe5XF50BDYqmQOAeFzArbfGcO+9VT3TYtbUqSqBKGoAWPZOVRmBCiN55I3CWbBu7d3VCVWVMTtbcNTd8X53dmLB6+tYxrCWLLC6v3C1XMzJktklt7W11RwfAoI+bMMyZSuuoH+OaZzCEeFHOCB9FT8Q/gLLtd1YhxuwVr0erej32Io7TDt0u3nBEeEh/DD+Ptxc/UdsJDdAjRBM8f2NSiD4OZFlfn3zVW9qEDK3JvFBaMQshdfUuckv/b/HAuZyuYrh4WF0dHQGEh5Wjxg+I8Xup/DHo1nvcHtzZkCWK5idncXk5Lj+N/8sRFhE7T1ndf8Egve3PrMOE+VyGfn8GHK5XKgFzHrr9Dh4zR27X3n7AGoQX17DyheV3Nw1zRrk2pYE9cBa5xVmLL9smBN8jvz+bWCW4Pd92Lq+mZlZzMzMsFIOScX3Yv8DKlXxusr7IcF6rgUQokEUpcDjydrv8HpVtijCWonkEY8n9JYISc99tbqPmo3ZFZjPNIqbbtq6IDJBCxVzReaccGtqvhCMVeppEXQuYYnQBaBYLGL//v1YsWIFLrjgguAvNBnnch+6EydO4MyZM9i9e7ex+mttW7AYEFQv54e1a0VcdJGI3/5WgaIQSJJJ6lgQo+mr1cQIlsKYnXjJuEQxhvb2drS3t0OWWZNZ3u8ulUohm00hFrNLzFSVNS5n/ensNX48eJIkJkd023fWVHoY7e0dgU2l+XhZLMMe/D52Vn4PqjSDQfoIBsUf4eexT6GNXoB16o0YUK9Hjm4O3eybB4OEEPxG/ByekP4vXl/5d/TTiwCxnpVxdwmYH1gD+NrPsvUaa9bPdNNkhCaY6DVilmKVX0b5bqlUQT4/iu7uHiST4RQLLOMbvr4sCknwriNi+8b7DPLti2K4ICMWSyGVSkIQulCtVjA7W8DYWB6apun1Q8w1k2eE5wKsjs0ZUPtvK2q20qzPg94LcwJ9fb2hiKsoCnUtPDLJJEEsxvaPzZnq9cVB+1ebgRRFbjTV+DvEmpUL+1gPOv2cIDIiZ86R1zjWe/lw85CgFgcAMD09jUKhgOXL+6CQCr4pfRxxmsRrq38BEfb2IpRq+rmNFoNYF0UIISiVyiiVSrpSxDRWicXiUFWzz6X9tFFbFnrz5uVYvbon0jzOJ8wXmXNDGGOV+cjeFYtFpNPuNfDnA5YInQ949mjLli0Oi+b5w7lYQ6dpGg4dOgRFUbB7925jlQdYXPvbCJnjuPFGJr0cG6NGpk7TmNRRFCkUhdrq6LiDZWNNpoFEQoQkmf3uisUypqenUS7X9rtj5JJ9j1n3m8SOkTzAaufPwVb486GbSpsgOpEkELQMNtLbsFG7Daos45TwJI6IP8J3438MDSoGtOsxoN6AldqlEOFPKjSoeFj6CI4Jj+L35G8hSxtfoDF79TmDERPc+MArQLVKxrhkzxnY8P+zmhtTpmU9NzwDGCULZp1DlOuXGSmMI5fLIZmMhw6gWfuD8LJE1tvLfQGDExDrij+/V/h1bjWvYMfElOaFnTOfL7vPJWSzbchm26Cqqh6kTqNarSIej+tBLKtXZfMyt88Xafg9FdUkpvYYuJ8vnqGKQmqsZG52dhbT09Po6+vzkGZbv8cytbIctC2qqwxMQs3lyJJEUKlYL9hw1yF/9vBFT+bkqDZMqq2kKyr8HFEZafFuTVJPhpPN1b/xuBVTU1Mol0tYtqwXZVrEt2P/iCztwq3yf62pH2bvZdrQgjJ/nyeTCWQySahqKxSFLSZOTExAVVWkUgkkEknDWMVsY2BeE4mEhJtv3lr3PM51nE0y54RX9o7HS/zfc9HUvFAoBC4cn8tYInQWWE0Ujh8/juHhYVv26GxgMRGcMKhWq9i/fz+6u7uxatWqmgfPYsnQWQuDG3kgxWICbrtNwpe+JBvOiMxNjxtCMIkRITwTZgbwXoF7mMNnb23AZGQtLQloGm/MXDT63bW0pJBMpiBJklHXB5i1fzyAZoEkC9RmZ4uYnJyI1FTaLQ7j5hiqSiEihpXa5VipXY5r8TfIkyMYFH+ER2P/hHFyFKvVq7FOuwFr1GuQRJttnCqK2Bv/M1Qxi3sq30YSbQYRq7d2xTpHTSOW2h/zbywQ11z3zfoZk7BTiwSy5pOW4w/LvKmRfeJjsblEk2CyoJ7YiI8bmFzLDPijBtBR6+hEkcuITTMW6zVnr78JR9SakUgTRREtLS16E2aqZ+9mMTExAVGUkMmkkE5nHKRIMGqDuFSO1yh5BWHc7S8sopIRfo9pGsXU1DSKxQL6+voCn2smOefbMq83ltE3s85mLalVMsprcRt73lvt/xuNDRkRjuZUaYXbvcAX+4Kuy6j9F6Nk5QCK6ekpVCpl5HI5lGgB30h8BD3ahbhJficIzAMniqJxDFg7AQ1Rpdx8Pm7XrSSJhomXJAmYnp7V3zcTkKQYUqkUWlpSEARRnw/B61+/Gy0tURYFzx8sJDLnhqDsnaIoxmcaJXfnc1NxYInQ1UBVVTz77LMQBAF79uw563rtc4nQzc7O4sCBAxgYGEAul3P9zEJ7GDlRT71cEFatkrB7t4Zf/9p0r+NSO07ieCbGXmvn3m+OUgKzWbk3nNk+3rSVN2Y2+90VMDo6DEqJkbmLx+M2YsdJjaKwVeBqtYTe3r5IdUZOyRF74Fsbh5s9sQgIeuh69CjrcbnyJ5jFCI6KP8Fz4vfwYOz96Ne2Y0C9Eeu06yHSBL6V+EN0a+vxavlfjEweJwaxWLSA2Wvu1p51AHfqi04ueFAYPpNV6wapaZxwW4Nc87rxCtDY4oG7zT2lvMdcGf39/TaZJnejC3s7eElVOUlgRJide9ajzyQIxt40cOuZdvbBn+V99PxJOTEalgNWg4gRaBpFKpVCJpNGPJ4wiI05HjGCVx6k8+eMda6186r9XdQsj9U8ZHJyEtVq1TAtCgI3J+ECCz5vM2vsfcD4PBs5hzyTxhbXuESyvmxSI1k5P5gGH+FWEMK4aNrnGjyuKAL5/DhkWUFPTw4lMo2vJz6MC7TNuE5+myFbZ8fPTrCt75uw8Lq3nc9C3uMwnU4hnWZZ7Uqlimq1iOHhEWiainQ6jTvv3IM1a5aklm5Y6GTOibmuvZudnV3K0C2BoVQq4amnnsKyZcuwcuXKsz0dAOcOoRsdHcWRI0ewbds2Xye8hYy5IHMc118vYXBQxfg4D5B5/yfo2QleR0X1Wjv2oOMW+Gx+5njc9jsInMR5gRW6t6Orqw2ViqLX3Y0bdXeZDHcxIwBUjI/noWkCenr6dHfO8NkQ6+e4sYsVPKhnxM5OOFqQw0Xqm3CR+iZUUcQx4VEMij/C47F/hgYVPdoG7FTe4miHwI8Bl02aBfn1ghuTRO1H5QZu5lKvcyOXwpqk0EqGuN07J3BWmWKtZI9Ss8ccC/jtx8i0dA/3rOL1oCwjbW7DKjdl/bnMercwx8FPomkF3+8w2cWwGUjr56wGEaqqolgsYXJyCrJc1Zsyp2y9u6wZWn2GIEQ0MnmUBisX2L0W7ZrjZI6f21wup8t6rcfQlIya8mC7+yBQuyDjNUdORhp5fFrvVw5NY7b6zEUx/FimOUlzyByXQbIANdp+Bh0/nkkNM1em4NAwPDwOSjX09PSgQCZwb+LDGFB345XKm0F0cxm+IONElGehdb+dsEqc+bmzfo/f3/F4DIlEK1pastA0Ddu396KzE/jVr36FbDaL7u5udHV1hVZ9nMtYbGTODc1uar5E6JZgYHJyEhs2bEBHR8fZnoqBxd62wNruYffu3fPW7qHZmEsyB7Ag5447YvjCF2Rb4MRffuxnYmRtBIFlr6ySR2a6wecbZd/YtoJqryRJQjbbimy2FazuroSZmVnk82OIx2OoVmVkMhl0d7fbjFlYFjG8lAjw689FDKIiCHCxNwfiSGO9dhPWazdBk1WcEp7EUeFh3B//b6iSWQyo12NAvR4XaldAQtIhGeVNg0NPtXaGhM2Lt5toZCx7493oA5lmKfZ52Im2+QdBMANQSeJkUsPw8Aji8Tg6OjpBKXHdJy7R8gs2uayT9+Fj2Tfz/FnPpdUQIfwxJPp9EPwFO9n1QzjS58W3RFHUWzq0gFKgWi1jZqaA8fFxSFIMmUxKbyVS+zp2Ejxe58aIm31eTvt3r33hzxQmy1UxPj4KSRLR0dFlkFIv8swCc9Rsmx0D/y27kbCo4ITQy3VSValury8HPm9MJ8VmETmqZ7m0ut/ZXDbqnn2tPb+8HtMyC0N2rChsEQYg6O7uxgzJ497Eh7BZfSWuUN4AUAJRzwh6LQSEXSAwM+ru+81PBctAa7raRLSROcDeYHzHjgvxmtfs1OdBMT09jXw+jxMnTkAQBHR3d6Onp8eo9T6fcC6QOSes2TsroXP2vhNF0ZPcFYvFJcnlEhiWLVu24BwlF3OGTtM0HDx4EKIoznu7h2aiGeYnYXDhhRIuuUTFE09YX6LUJqHk8i+zrQAzKDENAthLP/olw3vOUQ8Zp+PTxHQxk2UZQ0NnEIvFUSgUUC6X0dKS0aWZki2I95+XKakLyorwWjK2wudO7ABAgIgV2qVYoV2Ka5T3YYwcxaD4Y/xK+iy+L/wpVmlXYr12A+t3h07jGJvOnaEOnuW4AICmF/VT8Hq2esiYFUzOyYOdaJPihzJM1paRNatVvIYzZ84YNS/2YN5s6sz2mwBgzqxWIsuCN/O6ZQEv+xsjgO7HxprxiWam4m1MYd/XEEOFBA/kgyCKBIkE62tHKW9oXsDIyAgAIJVKI5NhbrPO68ZePymA9TQ0pY48G8TPiWVPjfPB/mPEo1JRMDQ0glQqgfb29sDjUW+2OIiERRmDZ9L8xlFVDZIUA7O8dwdfeGiWKykzwBGgaUpDY1p7yJljCzoJchvX/B2X5/Ms9ejoKCRJQkdHB6aEYXwt/iHsVG/CJfJrdDIVnJV0ZmHdYMpn/fab1tSCMrmuGbxbCeGqVd34nd+5yPgsIQRtbSzjvXbtWlQqFeTzeQwODqJYLKKjowM9PT3o6OhYtHFGWJyLZM4Jfg6dTc25LNNLmrlUQ7eEBQ32sFx8hK5SqWDfvn3o7++vS74apTh8LkGp6fI1Hy+KG2+MY2qqikOHNH371t5GjNxZpWJmby9i/EyIWYsTxV+GrwBzGScniYR4EwHuZNnTkzOcLKvVKopFVgcBsH532SyruzODcu9zG0X66CR2QQF/F12LLmUtLsU7UcQYjooP47D4EB5Kfgg5bSPWaTdgQL0enepqi3NnWMkdN7Sx13lxqah3X7Bw17npqFmPyynRsxf+pMgai8qyjOHhEXR3dyCRSKOWJDkltewf7LSZ2QpGNkzyZ63pI0RDPC7oBi7O/bJvL+x5YEQ0+PkR9vESJj4PXqzg2zTJJiGmpLm9vR2qqujSzEkoioxkMmmrL+IE2n68qU7UuWEMAoNrURRQrcoYHh42iHoQwvY38/puIxLLejJ7LFssuZA6v/uwvrmZ40VfAHIDvxe4K6if1JZJ0Bnx4mvRlAIjIzyj3o5xchpfi38IlymvxW56G2jI2l5ucOUFq8QyeL/tMlE3macgMFfnXK4Nb3zjbt/3bSKRwPLly7F8+XJomoaJiQnk83kcPnwYqVQK3d3ddbgrL3ycD2TODVyaKUmSIc20Zu14W4SZmZklyeUSGBbizbEQ5xSE6elpPPPMM9i4cSO6uroif58TlrO573MtsfQCIQSve52Eb3xDweHDJqkDgFiMQJZrpTcsWKb6y58FdYoCJJNApVLfPHigbjY0rzVaKRRmMTk5WeNkGY/HEY/H0d7eDkVRdHMIVneXTqeQzaaRTKbgZc7BaqeiZ6E4sQO0UIQnjS5sU9+AHXg9KtUyjgu/xBHxx/hK4i4kaCvWqTdgQLseK8QdoGqw459Xnzn+dzshq28Vn2XOuFwuWr0fNxnxk0VywlCpVDA6ynvMJYxrwI8omIYmvI+YaoxZS/4Ak9ho+t+dmT/NYnXPj7E1wLXvO587IexecRJX9jfTyMXaDsT6Gev/XfbS2C7PhnFS5Q3zO5SqjuvbzEiLooBsNoOWlgwAilKpjNnZIvL5McRiMaTTGV2aKRjbZ7C7qAqCaJA8Z9aQG08MD4+gvb0tVPBjErKga82+UGNmluonT1H6PDrBSJ2pcOEOyvXee1aYWUfV8axqRsaPGtlI92wfNeTchFBbFo1SiuHhEaRSSbS1tWGUHMfXEx/BVfLd2IkboDbJQdpsweC/imESTtXyO6GGVLO6aAXZbApvetMloftasrkI6OrqQlcXkwwXi0Xk83k8++yzUFUVnZ2d6OnpQWtr66KMpzjOVzLnhFWaGYvFbMYq3/72t7Fx48azPMOzBxIgD2iiKGXhQ9O0upqjzjUee+wxXHHFFWd7GqEwNDSEF198ERdddFHdKyW//vWvsXPnzrNW+Hy2yJwVqqri3nsVDA7aVzB5QM+C4FqwDBjR/223dw8Cy/S5v6AFgUAUNcgyOz5TU1MolUrI5XK2PoJ+4HV3xWIR1WoZqVQCqVQGyWQapqueBkFoPOjiq8vhsiv2rBqFhjPkAAbFH2NQ/DEKJI+16nXYQK/DCvlKxElt41K/Y+e+TWd9XfQsvJXoRAXPZjovbUHQMDvLjG96e3O2e5ATUbfbgdftWKfCgrRwmRmeibDea27GMn5zsM8nWNkQxhTFmhFj7SfcA2x75sxrTuEyQ04Sw6SZLOtdLJYAAOl0CplMCvG46Lldq9RZUZi5QLVawfDwCLq6OpFKpULMJYpcWDG226jEkpvyRL202TWjOn4HQ+rbDPCaL/cWBWoDUl5imJ7UtnOg4E3T7UTIfO5QSjE0NIx0OoO2tiyGyFF8M/ExXK/+ITZUXxH5XLCeqPb9YYsqkp6tDfq+oGdOrOZGouuxY5n6GO655zIsX948DwNZljE+Po7R0VHMzMwgm82ip6cHnZ2di8pYZYnM+YNSio9+9KM4c+YMPve5z4WOSRYpPE/+EqGzYInQ1Q9KKY4ePYqpqSls3769oYflk08+iW3btp2V/n8LgcxxKIqKr31NwYsvmi9wbvjg16iakzqrU2SYwIwFpd5BsChqupxnFJQSdHd3IYy9uRsopahUyigUilCUAoA40ukM0umELnVsxnGnRoDk95hzEjonJskJDAo/wRHxRxgSnsFK7VLdWOVaZNCjf7++YNE8L/XJqnmNXtRsHWBml6zHplCYxNTULHK5nGtTaTPzQ/VMEfWtNeRysDBzc16jXk6hYYgRI2thPuN/T1jrDtn9VDsmPyZ+4JnDoFeqV8sIKxRFQ6lUQKXC6lWTyRTS6TRSqZTn9wSB6GRuCN3dPYHP1qi1nyxbZEoy660jazSDbSV0VjmklVTUC27r73ddeZN+b3ACbH1OcYdKlqHmtae14/LFL03TMDTEJbQtOCW8gG/HP46b5D/GevWySPMxoViuW769YLdV7m7MWqcQXfZKLJlee70pJ6qve93F2Lixv865BoMbq4yOjmJ8fByiKBrSzIVsrLJE5vxBKcUnP/lJDA4O4vOf/3ykVkmLFEuELgxYc9jq2Z5GDRY6oVMUBQcPHkQymcSGDRsafuA8/fTT2LBhA9Lp2kzIXGK+zE+iQJZVfPnLCk6cMJv38sUnv6CWqRJYwB3UiNwO7w9omorh4WGkUil0drYbEsJmQJarqFYLKJWmUa1CJ3dpxGKxpmzD2sPOiSBCZ0UZUzgqPIKj0o/wovBzdNEBrFOvw4B6LbrogNHTKQpYzaNWFynjqM34hQXPBrAec9VqAT09tW0JrOD97cJui113wR/mEl8+rhdRNrN5/uOxBYqwRMsd1nvGi9CF2T+rbXvwnAM/ZmRENU1FqcSy3uVyyVWaKQgExWIJ+XweuVwvUqmYZ4bJnEe4lg4mqK4giJ5VA+ymJ42AZZU0V2MRVQ12vnQD+07wAgFD+IUZe/0dsfye32NqiOcSk5sNDw+jtbUVLS0ZnBCfxXdj/wO3V/8Ma7SLQ8/HCrZIoVh+5u6/fvMhtsUWdi1rNhLoJqEVRYLrr9+ESy9dU9dc6wWv/87n8yiVSujs7ER3d/eCMlZZInP+oJTiM5/5DJ5++ml85StfWVRZ1wawROjCYKESuscffxyXXnrpgnnIWFEqlbBv3z6sXLkSy5cvb8qYBw4cwJo1a+bVrWi+zU+iQJZVfOlLCk6e5C9FqjtSBst7mPOZPVgAvINGSt2lNLKsYGRkBB0dWaTTLcZYphFJc1408biCcpk1ZWbSTAXJZNrR765eUNcedvWu3mukgpPir/ACfoxB8ScQEcM69XoMaNfiAm2Xa887b6hNqa+rJ1tHKcXExBhUVUMu1+FZv2glclED/rByQ6v00i/zGWa8sNv0Q7MydGHIZdh6MbN1CZPEcTBpJnPN5NLMTIZlHqanp9HX12esXrMaQgJuWmOdp72eMRg8W6uq9albeD1WMxwnEwmCSsV9Huy4RcmE856X4aWjYSSXnMjZ71NWQ8kIGl+Y8d8uIdy4aAjt7e3IZNI4Lu3H96RP49XVv8CF2vZwk3YBv9c1TYUkiYHHwE0i61x45BJgfp4pBeJxETt3rsDNN2+te67NADdWGR0dxcTEBNLptJG9OxtKIWCJzAWBUop//dd/xS9+8Qt8/etfX7QtserAEqELg4VK6H7zm99gx44dC271YWJiAs899xw2b97c1N59Bw8exIoVK9DW1ta0Mb2wkCSWfqhUGKk7dcpK6qghx/ECbyDNLLXZ71jgX9uaADAlPFaUyxXk88wgI5OJ12T5TGLX2D4CQCymQJZ5QA9UqypkuYxisYBSqYp4PIl0Om1x/osOPl8eUEXJ0FnBJYGEAEQATqsHMSg9jEHxJ5gmp7FGvRoD6rVYrV2FBIIWJ1Tw53TYjJYXzGxQ8LVMKesxl0gk0N3dAUoV2/XErxW3jFzU4D98DZmVsPj1tPMnrmGyYkFW/MGELnjfw8wjLEE2JYSkhtDVgmJ0NI9CoQhRFJFKcWmmfWHEbOwefWGDu3ayZ1G0BwC7Dxtv6QFwF04NklRbQ2ffZvA+NlID6LUgxrbtJHLudXHm54Pq/lScOnUaHR0dyGZbcIg+jh/GP4vXVt+HC7TGjCFY/bUG9t7wO57Esqhngh0/u8OodcGCUiAWE7FmTRfuumvPgnrvcmOV0dFR5PN5aJqGrq4udHd3z5uxyhKZ8welFJ/73Ofw4IMP4tvf/vZZI91nCUuELiwq9doCziGeeuopbN68eUFZ8J46dQonTpzAjh07QhXXR8Hzzz+P3t5edHZ2NnVcJxYLmeMol1V84QsKhobMmhC+Cupfx8RbERBYm0K7ZeucdUuFQgGTk1PI5XKIxSRjLDcEZf/CQJJUhyOaGfSxBZcKyuUiZmbKEEUJmUwa6bR7U+YgcGLnLPwP+11NswdvfK6KomFGOINB4WEcEX+M08LTWK7twjr1Wgyo1yGLPpfx7G55JumuzwrdK9CyQlFUjIzYreslSdMJNZc/+gfAUaVyYaWHPHvk99kggsik02Hm471/1ro+N0IXJvMWtM8sWxZcm+Scqx+hE0UB4+OTKBaL6O3NgRCCUqnsIs1MQZJEvW6VBkoxvecTvg60WfJKt3FE0b+3GssAK67PepZpdDftCA9WL+bcppXICQJfAPOXp/plFGVZwejoELq7u5BIJPGc8Ch+EvscXl/5IPro2jrnbkKSWJbQjxy7ZZT5Oam9dxmB5Z8RRQH9/Vm89a2XL/iaJ1mWMTY2hnw+j5mZGbS2tqK7uxtdXV1zMvclMheM//zP/8T3vvc9fO9731tQcfE8YYnQhcVCJHT79+/H2rVrF0TDREopXnjhBZRKJWzbtm1OHmgvvPCCsSI2V1hsZI6jWGSkbmREgyhSKArLqgGmoUItKLiVPGB3wmQ/m9k1TugohcPJklul+9dpcWv5emWYgqB41E2ZASTfvqpWUSgUUSiUQSn0zF30uju+Gh3F14QFju4HwkrsCAEqmMFLwi9wRPwxXhR/hna6AgPqdVinXoceuhEEpIbQWcciJHxfvtp5ukswmVRrGJ2dnbZaVUHQwB1UwwbcUQw0OFENY9DDCIb/HBrN0gXJHIMIXVA2lUtog+Rq4eSo9sUSN0LHz8Xo6DhkuYpcLldzfJg0s4JCoYRSqQhBILqxSgaxWMy3/YY5Z+f5DkfoGjVNMbfv7oIpSdS2IOQGdk2ojt8FG56Eg3UxivfPo4bbKHvvhM1oCy599Ni9Ozo6ilyuE5IUxzPiw/h57Et4Q+VvkaOrGpq9eVw1zwyhl0SWH0N23zqdRgXjvSIIAtrbU3jb265AJrO4Mivc4Tmfz2NsbAySJBnSzGb0P1sic8H48pe/jK997Wu477775t1nYYFgidCFRbVabYqWv5mYTwmiHxRFwf79+9Ha2oqBgYE5e9gMDg4im82it7d3TsZfiOYnUVAoMFKXz5t9vtgLlNd81AaQzsCTkQ7BQuSg9yhjmZt8Pg8A6O7urhkriNQBzgxTlOOrgDnFeX/CzbmSUhXFYgmFQhHVqopUKhm67o4H6mEzjFFcLc3Alw2qQsYp4SkcEX+MI8KPQUGxTrsW67RX4QJ1D0S41wFwYlePNNRZm2f2mLM33qWUIpnUUC6zYxG1Bs3r2nOCrdAH74skUciyfzProDkGEzp/IhpkihJUPxc0v7BSSzezFDdCJwgEIyN5UKqhu7vH91zweiZZZr0iC4WS3tA8hZaWNFKphIfM1u0e8Sd0Zn1n/c23wywcBMtQjdHAFrqIUbfZHKg2wmM6PkYf3y1DV63KGBsbRWdnFxKJGJ4Wf4jHpW/iruqH0EUvqGvG9kwnMQxZ3MmcYLxr7N8XwZurC47G5dzVkh0PEYlEDL//+5eip6e1rvkuJFiNVcrlMjo6Ouo2Vlkic8H4xje+gX//93/H/fffvyASHGcJS4QuLBYioZsvCaIfisUi9u3bhzVr1qCvr1Yy1ky89NJLSCaT6O9vvoXxQjY/iYKZGRWf/7yCqSmWKWKZNZ5JcK9NcTYGZ78DeH0dCxpVnDkzhFQqhba2Ntfgy0926QZGEsMQOxYUsuxX8LhMJuaWIaGoVEqYmSmiXK4ikUj41t05A3Wzb5XLDCl384v2jHAL7Cko8mRQ73f3E4yRl7BGvQoD2rVYo74SSdgDHrOerb4MhygSTE8XMDExXtMMnp0aCkFQa4g/EN49M6zbZhhSJwgssxyUzfOTVvLj5PX3IBt2vwwduxb8DIb8tx1m+9y8xO04WckLy3wAw8MjkCQJHR2dvsfEy+iCUs0izSwjmYwjmUwimUwhkZBqHBkt34QboWuWvDJsX7owGTqAHXdCNE/n23rAMlSK/kwNvm6DYM2QMfmjjKGhEeRyOSSTcfxK+DaeEh/A71Y/jHYa/Z3MrwPnORVFqs9ftfzOvfeemXHln7PLNNk9IujOoyJSqRjuvnsPli1rjzzfhQ5VVTExMYF8Ph/ZWGWJzAXju9/9Lv71X/8Ve/fuPevJjbOMJUIXFguR0B0+fBgdHR3o6ek5K9sfGxvDoUOHsHXr1nm5kY4fPw5RFHHBBfWtOHpBVdVFJ7H0w9SUii98QcbUlKYTMvOFy53nrCviboSOQxQJKhUFw8Oj6OpqQSqV8QyeohI6IJxxCgtgFD0oC38P8roUN2mhIDBTl9nZIorFMkRRrKm7c8u82MmT+fuoDcRrxyQegZGKGTqKQfERDIoP46Twa/Rr2zGgXot12rVoc6y+myQ5/PZnZmYxO8vcDjmxZdeJSYrdpKTmtRS2Sbi5v+E+5/5B1mtRsznjuaGRLF1QhsyP0AXVzwXNK4zU0u8znNDx7CtrKp3yfUazTK9/3SAHy95VUSyWUC7PGrLmVCrt4ihXS+galVfWQwaDaugYkWPPinoWZmrnSBGLiYYsmlIl9OJHODDb/3K5jJGRUeRyOcTjcTweuxfPCA/jd6t/j1YarTSBH1ev/pxMcs1VC+61uLzBuPNYO10+mQpEhShKSKVieNObdp+TZM4JSikKhYKRvfMzVlkic8G4//778elPfxr3339/Uw34FimWCF1YyLLcRPlFc3D06FFkMpk5z4y54cSJEzhz5gx27Ngxb05CL7/8MlRVxYUXXtiU8RZrvVwYTEyo+NKXqpiYoBajDnP/TKke+9mLjDEnyxH09fUikUjojnHumSo/YhgEv2CfBcyqLdsYdWxWu+ZOdBjpUzAzU0ChwGzdeeYuFpM8yQoP6lkWJLqBihM862I1HHHW0FVRxDHhMRwRf4Kj4k/RQnOM3KnXoY9uAYFgIclBGSzWY65crhgGGbyPGfu7+f2g2kDn573glSX2+qx702Rq3LP8/17f96tT8yNWbLPe2WM/l0u/+jmWmfAni24yytp5+2cwKVWhqrypdIthbuM1nlcQ7wY7kSegVMH09AxKpRIURUEqldJlzQl9X+0ZnXqzcvbMUTS4ETqTwMBx/txr1MJAEEwnTEaOw7iORt2GoGdMS8jnx9Dbm4MUk/Bz6YsYFJ/AXZUPoQXhVTtBRA4wF9Uo1XSDGDd3Wy5Ttf/BbbGLfzadTuDuu3ejr+/8zKx4Gat0dnbi2LFjS2TOBw899BD+8R//EQ888AC6urrO9nQWApYIXVgsREJ37NgxxGKxpvV5CwNN03Do0CEoioItW7ZA5HaK84DTp0+jUqlg9erVDY/FyZyqqvrq7Ln3wBwfZ6RucpK6kiFuVKIoZrsD6zOBOVlOIpfrRSwmQRDYKi03TqkNBBtf1XYzTjEzDo2tnJtkwtu6n7tbzs6yujtZrloC1KSP1NSsh2sGzKBfgVf/Nw0qTgv7cET4CQbFh1ElBQyo12JAvRYXapchLiSMmh0nKGUZdkopuru7jOufGzQ4CaFb2wonwvbmCpth8SKK1lrF4Fq3oHq/+s6ZlXRFIXSN1+4JgXJASWL1kENDvA+ZtylDVILlJXHk7oyAimKRSTMrlQri8RjS6QSy2QxYK4vQm3JsNxrpdMIqueTukl6ulZTybFQwuDMlWzhwJ0WsZrg+gmiFVd5YKhUwPj6B3t5eiJKIn8T+DSeFg3iT/GEkNW/yboXdvTNo2zwz7t7UnF1Htb/ncn3nZ1lWN443vWkP+vvPTzLnBDdWGR0dxenTp0EIwYUXXoienp7z1eTDEz/96U/xoQ99CPfffz9yudzZns5CwRKhC4uFSOhefvllaJqGlStXzsv2qtUq9u/fj+7ubqxatWreSdDw8DBmZmYwMDDQ0DiL3fwkCkZGFHzlK1VMT3v3WuLZOlaXZL5YmJNlr+FkCbCVbia74SvbVrlgY1k6K2odNnkwFlwvE2784ACRZzpKpTJmZliAatbdpY3rhs2JGrV7jRg8OCFJmn69Bn92jLyIQfFhDAoPY0R4Aau0KzGgXIv15Gok1Hbjc5RSo8dce3u7RXrLzBb4z1ZpnF+GzoootXVhzFLcsnRO8xn/FgP+E/EjWH7jehG6oPo5PzlmUKsEnlH3d8YkqFYrOHPmNLq6ujxbx7AxwvcKDCOXZZ8x709Wl1xBsTiD2dkSBIHYHGfDIGyNXBCYSyuvOQtedPBqDcAXhaD32NO04OyW9fkVFfbWBux3bKFtAr29fRAlggdj/4oR4SW8sfJ3SCKFMC7C7LiGl72yBT/VtVbOT6rrbHfD9kdAMslq5pbInB1WmeXq1asxNjaG0dFRVCoVo7ymvb19Udf5N4pHH30U73//+3H//fefFXXaAsYSoQsLRVHqfijPFc6cOYNyudyUjFUQZmdnceDAAQwMDJy1FZHR0VGMj49jw4YNdY9xPpE5jtFRBV/9ahVTU7XSSw5W8wFUqxrGxsYBwJa54ajNjpjF75JEIAgaZLlZM+cNdk25VFhjlFCj6xJHFpy5f8YkkIx4VKsVFApFzM6yfnctLSmkUklbmw4ueWwko8AhCKoexDPpVlh30CLGcVR8BEfEn+C48Dh6tc1YT6/FheWrIQ8nkc22Ips13cAYgXY/CKJIdKOIaM6W4Sz3g0mFUzrp5ibqJ1P0mwvLLLhfUPUQOj/CxvbVW+LpRwTDQBSBUolJpLu6Oj2l8EFZQOe8ojbT5o64jOhoRoZGURQUi0UUCkWoqoJ0mjU0TyRStrHZfSnYpMeNQBQFCIIKWQ7/4LC2MGDKhNr7WRTDyT/ZPRx+P/j+A7UumIVCAdPTrP8nEYEHYv8b02QEr6v+DdJi2jdG4W6SXll7JwixZpvNOnMOUXSXXnJwtYN1+7GYiHg8hje/+ZIlMueAX82cm7FKT08Purq6zqvm2Y8//jje+973Yu/evfOqTFskWCJ0YbEQCd3IyAimpqawbt26Od3O6Ogojhw5gm3btvnWYsw1xsfHMTw8jE2bNtX1/XPN/CQKRkZU3HtvBdPT3nVoqqphfPwM4vE0WlvbfGqTNEd9lUnsmAOhtxtkPeBZQU1j/45ijBIWZpG/09nNm0CqqoxKZRYzMwVoGpBKZfS6u7hBVHifqXqd7Tihc84zShZQRhknhF/hBfIjHBEeRpq0YZ12PdZp16Jf245YiMCUZzii7EfYZuFhsz+c1LkROi6ldbtm/Wrp/AiYlxzRrG/kGVqT0NUrtwySPoapqysUisjnx9Dfb/aHdPtcuL6A1JD4RQGvr+NuiG6SO/Y5DcViySLNTCCdThmLDI0+O5ymHZIUfkGCX2NsH5zybF5nGnaxhpGh8Nv1vg5mZmYxMzODZcv6oELGffF/QgVF3Fn9AGJI1BAo6xwEQUQYl1lzHuazkD/TefxjSqaDst/WxT8RokggSeISmXNBFAMUbqwyOjqKsbExw1ilp6cH2Wz2nI1tnnzySfzpn/4pvv/978+bKm2RYYnQhcVCJHQ8Hb9x48Y5GZ9SimPHjiGfz+Oiiy5ycTCbX0xNTeHkyZPYunVrpO+dy+YnUTAyouIrXymhWAScJR2yrGBkZFivuUlZ5HC1x8opowF4mwPeZ8n6O3hmv8KCBwZshZdlORq1/vaCkzAFOWtycqsoKsrlIkqlImRZMRoy8353ZtYumrufk9CZ2/U3enGiUqmyHnM9XRhPHsZR6Sc4IvwEBTKOterVWKdei1Xa5YjBXaJnlVyG7SvH58kJVdDngsxS+DhMClt7UPzIil+WzovUeRM6u+wxDKEzDVxqt8/32+1vYTJ3rO3ErC7D60U8LrpkMFkmOmxAz7cdFpzIcaLDXVKtGTq/7yqKjNnZAorFIgRBiCzN5POVJAFuTbr9XC6dMkq+33bZJe/l6d+wvnZsGrj/vKbMb/FjenoahUIRfX29oKKC70gfBwC8uvpXkPQelc7ncpQaOTZX1CxqcZLIFyOYIUu4mjt27JjEUpIEiCLBPfdcukTmHGjUzVKWZcM1c3Z2Fq2trejp6UFnZ6dNObKYsW/fPrzrXe/Cd77zHaxZs+ZsT2ehYonQhcVCJHSTk5M4deoUtmzZ0vSxVVXFs88+C1EUsWnTpgWh2Z6ZmcFLL72E7du3h/7OEpmzY3hYxVe/WkShQKGq7JwyJ8tRdHf3IJlMGI6XfoEdpapHcAqwwEhw/K5+YmeXtHEZFtVXyuu3Pw8CkxqqNeTXDgXO5yilFMViCaVSAdVqBfF4HOl0FqkU63fHj4dXEG+FF6HjCEOEisWibqCQMwJkloGhmMBJHBEfxhHyUwwJB7FSu0Q3VrkaGZi2584aOpNQhgtww2TruATWvwcdy+64Ebrg7/tl4mqf7V694JzZMn59+vW98yKUjLB5y07DNDifnJzBzMw0crleSJJoy4xEcYaMek75/L2belPdEMRdg20nHOb3FUVBoVBEsViAqqq6NDPjaUoEBNfEOgkd9/JiRMpbIsvaA0QnchyMENU+QHg2Lkx94NTUNIrFEvr6clBIBd9J/APiWhp3yH8BEVapt2bIVNlxDfds5JJSN7MoUaT6vtPQElN2n2m6JJPJLJfInDua3ZrAaqwyPj6OWCxm9LxbrMYqBw8exNvf/nZ885vfxPr168/2dBYylghdWKiq2hSnqmaiHoITBpVKBfv27UN/f/+CSm0Xi0W88MIL2LlzZ6jPn4/1cmEwPKziK18polSimJoq2ZwsGagepLLjZWYdnFJEryCUjQGYUkzAmq2JPmerzNNpjMLHDUOQom+XetbDuWUqnaCUolKpoFhk2btYTNKzDxmIomRx23P/fhChM+fJAkRnrdPMzAxmZmaMYN+cu71mjhCgIkziMP05joo/xUviL9GlrcU67VUYUK9FD1kFt/Ivnn0MK80LU1sXlAmRJApZVjzklcRTXum1ba/aNq/6PufvOaHzyvSZWbbwWUBzvv7kdmJiCsViEb29vXqWydrWAQhjfOJPyrwRRr7J3CLtZhom4QgmM5qmGg3NuTQzk0khlUpBkiQQQkI0AaeQJEYyNI1nwvwkbTzTB7DaMf85+sFpiMKzcWGMWQC2aFupVJDL5VAlJXwz/vfoQC9urr4bAsz7mV+DUcxOzMU377/z7FxYuSYAo3ZS05hrcSwmLpE5F8xHnznW2oJl7yqVCjo7O9Hd3b1ojFWef/55/MEf/AG+9rWvYfPmzWd7OgsdS4QuLBYioYtKcMJgenoazzzzDDZu3LjgenuUy2U8++yz2LVrV+Bnl8icP4aGZPzLv5zG2FgJvb39IMTefsLZl85JxrzrNQCTEMJwfmTEjhhjBTUTd8Iu+XOva+NtD8yAqRnnnAWClBKbmycQzsrfCVmWDWMIQigymbTRs4sFm/bPi6Ia2QSGB9oTEywY7O3tAW8Yzv7ubYDCszQVtYyTwm9wRHwYg8JPIZE4BpRrsE57FZZrOyBAcnwvvKQvTHsDP7JAiGaRhkX7LuAVzLt/nj8/rHCapZjBtLvc0p9IemfmvEgtJ4hjY+OQZRm5XI/tc2xBJZwsmcs5oyS5o0gPuVMsd79sJKtOKVCtllEul1AolMD6mDmlmabbLLseqSHT9btXrXJN67MjrLmPF7g7JMvGhTd5oRSYmJiAoijo6elGhRTw9cSH0Kutxi3af4Hz0RuLsXMSnsgFLcJQfUymhggzLqVALCZCVRVjoSeRkJZq5lxwNpqGq6qK8fFx5PN5TE5OIpPJGNm7s11O44bDhw/j937v9/DlL38Z27ZtO9vTWQxYInRhsRAJXbVaxYEDB7B79+6mjDc0NIQXX3wRF110kW/vorMFWZbx9NNP45JLLvH93PlsfhIGmqbh+eefx8SEgF//ejlKJd6GwBm41q7eWrN1TnOU2s/Z7arZ74iR+TOlPsFztmbDgura2PbCNdcOA++MoHuWKCwURUWpVEKxWIAsK0ilkshm02hpSUFVGSlhpDHauJQC+XweokjQ2dkJ2Hr6+dfqWEYxgm+NashLz+EFPIxB8RFMkzNYq74SA+o1WKVdgQQyxnadpNcLplQ0uhEIz0D5u1e6kzqv7/i5XQL2ujmesTUXKLwJnVcjcT+pZZj2BaOjebAegt02YkwpRSIholoNtpoN2o5zm2Ztafhrnvcui8V41qY+csSvF+u1pSgyymVTmplIcNfMWmmm2+ILzxQyEhctqxsEXlNIiApZDu8Qyr5r7RHZjRKZwr2Jv8VKbSuuld8OyZLVZdeQ6SzqB1H0l5ia8xZBCJO+RnGr5QYqLOunIZVK4M1vXmpN4MTZIHNuc5idnTWydwDQ1dWF7u7uBWGs8tJLL+Huu+/Gf/7nfzY1YXGOY4nQhYWmaZCb58feFKiqiieffBKXXnppQ+NQSnH06FFMTU1h+/btkQrR5xOapuGJJ57A5Zdf7vr3pXq5YMiyjAMHDqC7uxsrV67E6KiGL36xgHLZKpG0SrdqxzADWz/JoZmlc3xbDyyIQSDDZOzMIntrI+8waLw/nFtGkI2jGgFVo3JPXnfHpGVlxONxtLRk0N6eBOsNyOWE/tkU3mMumUygra0dgEmyGKL19GK1dgSiqEGW2bmeJmcwKDyCI+IjOC3sxwXaTgyor8KAejWy6AUQ3k0xKFvnVsdZ2zrDz+ykdn+s22IyRWtGx/w/I2O1dXROmaQo8nYgsDxzzGvfjcR4SS396la5pHNkZASSFENHR4dtX6yum17Zcx6wB8sUzW3WQ+QA9j1GNBSDdEQhR5wUmecC4KGH89rSNE1fHLH2i8wglUrq0jKz1pU9D8IRlbBOrVaY9XwUYR0uORiZywMg6OrqQoGM42uJD2K9ehmuUt4CAmJkVa3937wl8OaCQtB9b21cziXCXkY+1vnythas5pgZRGUyySUy54KFQObcUK1WMTY2ZhirtLW1obu7+6wYq5w4cQJ33XUX/u3f/g179uyZ120vciwRurBYiISOUorHH38cV1xxRd1jKIqCgwcPIplMYsOGDQvmAeMGv/1dInPBKJVKOHDgAFavXm3rJTg8rOLLXy6gUOAmBoKlfs69qTV7kbPrx+tYB2WDWA84oo9PfINHqzEKe/xEfwTx8aP2h3PLCLLg2n5g2P64mwtEgVl3V0KlMgtAQGtrGqlUBoIggpFlYmQ4GTkGZFnFyMgIstmsrcccGxN6HVH4Xnb2fdN06ZqdGFcwgxfFX2JQeAQvio+ina7AgHoN1qmvQg9dr2cTGs+mWgmie2Nxd0mjtXcWPz9ON0OgluiZYwcTOkbk3DJApryN17eZvdVqr0Gz1q52HkzurGFoaBjpdAptbfZAWRTN+kkvOXQUu30+36iSYud22Lky5xImQyyKvNaMtShh933465VSoFIp63WrJQiCgGw2hUwmY9j3h4Vf70ArTGk5tfzO3RDFe94Uo6N5SJKEjo4OzAgj+Fr8g9iqXocrlLssslC3rL3zfFPjGAabKtmvZ36OgrJzzno9bqCSzSbwpjctkTknFiqZc0LTNExNTSGfz8+7scqpU6fwhje8AZ/97GcbimvPUywRurBYiIQOAB577LG6L/xSqYR9+/Zh5cqVi6ZJo9v+LtXLBWNychLPP/88tmzZgtbW1pq/c1I3O0v1GhwBqkostSfux1QUWY2ZosAlIOa1K/5zM3tGmdmSWmLHtmN+J1qmqXab4Y1U3DKCfjWEvFbIGeDVA0miKJUqRt0dQJHNsmbMsVjCmLssyxgeHkZ3dycymbSxgs8kVrWBtF1+FXy/WDMA9vNjfkaFjJeFp3FE/CkGhZ+CgmKddg3WadfiQuwCVUTfezMoW8dIi6pnxKz27GxxwXqsrefAab7Bs461cuLaANYtk+ZG6AShNkPilqW0kzz2fz6Wt8SUkfXh4WFksy2OXqBcyuwkEua1GcW4RhSJvjgW+FHrXunf4/eTU+Jrkho2D9WYEyHU2G/+tWbIpHkfPWaaUsH09AyKxRI0TUUqldalmYnAe5/dG+4Hw9mqwQmnIUrQfEdGRhGPx9HR0Y4Jcgb3xj+IXcoduAx3AuB1wUINwbQvdvFz6E/keGbazZyFnxP/xTjBssDC5PeqqqGlZYnMuWGxkDk3zJexytDQEF7/+tfj05/+NK6++uqmjXseYYnQhQWlFNVq9WxPowb1ErqJiQk899xz2Lx5Mzo6OuZgZnMD5/4ukblgDA0N4fjx49i+fTtSKfc+Y+xzCr78ZdbSAADicQHVKs/EuX+H299rGnXNAESTRxI9WGd1dqYRS23Nnl/D76hg2/Q2ajBbJdi/EyZYMwPL6JlBth27rFVRNJRKvG5IRjKZgihKmJ6eQS7Xg0Qi4TIHVt/FAjWT5LG5kFBBvJuki5vQuB07Coo8GWTkTnwE4+QY1mivwHrtVVilXIkkahcVAE4+vA0s2DVW27aAEyWe4TJt+3kT5Nq+bNbsHf+dc9ywGTrm5Ojcl1qC5l3bB50Q2QNsUSSoVGQMDw/pPSLN2mYu93UeeyuhC9MzMIiYeMGsa9OMjL4TPEPHs8l8TrIs63OHZduNhxVscYjYxrPeQ1yaWSgUUa2a0sx0OuX57nBKx+31n34LFOEIHZdJp1JJtLW1IY+T+Hryb3Glehcukm9xjOm26MD2jzmV+i108Wbx3s86Nr7iubhQm5VjhFdVNWQyCdx99xKZc2Ixkzkn5spYZWRkBK973evwyU9+Etddd10TZ3xeYYnQhcW5ROhOnTqFEydOYMeOHb4B/kKEdX9ZQ1rGNBaDBe98g1LWGH5ychLbtm0LpYUfHlbwpS+ZpI418uaEzivgMWuIrJkR7oQX3djDXmfHM0Js1dkapDX3MeQt/ePZQXP/wxI6922Ed/pzk3Yas6LMyXJ6ehqxmIh4PIF0Oo1UKmW7H7znSo26L+t/zC3Pfq4lSfM0ouEZL8A7CzSLUQyKj2BQfAQnhd9imbYNA+o1GNBehTa6rGY8XpfjbVShWD5rOpuygNON7NUakLiZgjhJnZsTpZOUsXEUx2fcMnvuZM46D/NaZ+emVKpgZGQEXV1dSKWSvuOb47H61aD7g583TqzConYBwHod8YwvJ0GaTi7NE8kXgXgNWKNEjmf4ve4pr/YiVmlmsViCKIpIp9PIZDK2Fh/cUZURz3D3LduudzNzcw5Ul9Gm0dHRjlHhGL4m/Q1eKb8V29TawLaWXFLj/vaalle/PzfwNi21CyBcmmkSOdZonDVfT6eXDFDccC6ROSe8jFV6enrQ0tISel/z+Txe97rX4SMf+QhuvvnmuZzyuY4lQhcW5wKho5TihRdeQKlUCh3gLzQ89thjuPzyy5fq5QLAnSwFQcCGDRsiEd7hYQVf/GIRxaIZZMbjAsplN1klg1vQZJpERLf357C2PeB27GagWNeQIWASFJ7dcEo8w/SgC4KV3DmzReZn7HIqK1iPuVnkcr0QRQGVSgWVCm+JICCTyeiW7kLkoFkQrI6VXFLFg1nv+82eVXVHFUUcEx7HUekRHBF+hizNMXKnvgp9dDOIpb2FW60Zz4h59wd0q/0hrpkW5/44v8s/bz01zqydlWDax3bO2f47vvjhVnsnSQSVSgXDw0Po7u5BIhG3jOXd7kAQmEzaz/EwakaOkQbiyMaZxjF+14R1McFKvLj7Zb0IInH2OYS7V3lLESbN1JBKpdDa2oJEIl4j2w0HFX6hkqqqGBkZRVtbKzKZDE7jCL6Z+DCul/8Im9RX1nzeutjAe30yiav33KxGJ0Fg17Fqu084GTTl1mYGnX8+nY7rZK49cBvnE85lMucGbqwyOjqKQqFgGKt0dXVBFEXX70xMTODOO+/EBz/4Qdxxxx3zPONzDkuELgoqlcrZnkINHn/8cVx66aWBAbuiKNi/fz9aW1sxMDCwaB8ujz32GC655JIliaUPnE6W9RwjJ6kDKGIxQNMEWJuFW+HVl40QluFppASVtz1QFJ4po3r9Xm3T82aCZ0wAez+4ejN0/tvhmQ/n/ti3Q6nZcLi3N+d6fhVF1l3/pqGq1NKvKx6ibsi+LeZySSHLfB7U4g7pnCtv7M2JOPu8FzSoGJIOGC0RqqRomKqs1C6BhLiNZFEKxGKmc6IkufdEc6vHc5dAOjNd1FbPxb7nbCRu/9lJ6JxjcjloGEkm3y6rWxnXZbRxXS5LfY6neX+wekL3jFRtA3GqyyE5iTaJGsBrW8NnpZyIx9lc3E1oqMe+eIE4HCRDfsunvUrtZ4mRdZqZKaJUKkKWy0b2m0kzgxfH2HF0fz4IAquDO3XqDNra2pDJZPCy8By+E/8Ybq6+G+u0y1y/F4+TmmPp9hxyMzoJt+/27Bx/v/JnOr/XzO1qSCbjeMtblvrMOXG+kTknrMYqY2Nj0DQNP/vZz3DnnXdiw4YNAICpqSm87nWvw3vf+17ceeedZ3nG5wSWCF0ULERC95vf/AY7duzwbTVQLBaxb98+rFmzBn19ffM4u+aCUoonnngCvb29yOVySCaTwV86z1AsFvHMM8/UOFnWg6EhJr+0kjpRZKv7lQoL6K2wSi+dYCvyXB4X1XTBPg5bITazBCbpqs9ePQx4nSA3OmE/z02KkJM7gAVN1qbIlFLk82MgBOjq6nY91vaxNKiqqtfdFVGpyEgmk2hpyeimEOGOFa+hE0UBAA3dWJpSinhcNIgq+wo7dwC3UyfgtYbD6lE9c/cIRoUjWKVdjnXqqzCgvRIZoVU/DvaspVv2CzDrnOzZNXtGjG/X+jtnls6ZkbMSOkbWzPk4yaA5nludW+3nFEVDsVjE5OQkent7IUmSkfVk49vJiVuNoJmR4m6otCZT43cPchkm2+fo9xK7RtizwFyEcftc8KIIJ1jmQkc98N6Gac7i7QBKiFl3VyqVIIoSMhm2QOKlcmH7ZjWD4RlOQJYVvSayA5lMGseF/fhe/BO4vfoXWKPtcmzbeq3UZuIIUS3kTjCkx1EfgSwbb0pEmeSZ2haarHVzqqqirS2Nu+7aib6+9mgbO8dxvpM5N+TzeXzuc5/DQw89hPHxcVx66aV4/vnn8ed//ue4++67z/b0zhUsEbooqFarDev9m42nnnoKmzdv9iQ3Y2NjOHToELZu3Vpjdb2YwM1PSqUSRkdHMTo6Ckopenp6kMvl5txOdzEgyMmyHgwNsUxdqWSSOraiTyEIImTZmRnxljdZa+nq7Q3Hsho86GDyL972ADAdD4FwDcvDwmnCIoqaEeTM5SOBECAWY2RYljXdPIH1mAsmc4BTrqlpKqrVCorFAkqlCmKxGDKZTE3dnRPOVgFO0hkm8Gef927izANrHkAWMIZB4VEcER7BcfJr9NINWE+vwVrlarRrF9R83yRixDImJ19OwubMuJnfc7ZBqCWBVoMPQZfjqa5ju9W6+ZmlMBntDPr6chBFUSdrPJvFM9OMCLnJ6Xjmi89fEIRQPeesmamoJI5nhDSN9y2zSli9+qP51YcSiwNoY/0dndvgEkIA+nzDLADZz1+1WkWpxKTNlFKkUqwlQjweN8biCz7OellFUTA8PIyOjg6k02kcFX6D++Ofxmuqf42V2nZjG84m4G6GPaxNgKo3Rw9uB+EP03mUL7CwbdgXN7jxygUXdOANb9iJlpalRVUrlshcMIaGhvDOd74Tqqoin89jy5YtuO2223DzzTeju7v7bE9vMWOJ0EXBQiR0+/fvx9q1a9HS0lLztxMnTuDMmTPYsWOHq/vdYoGX+Um1WsXo6ChGRkZQrVbR1dWFXC6HbDZ73j1Ih4aGcOLECWzfvr3pmcuhIQVf+EJRbz4OcMmdplHEYqwZOW8SDngHcW5GJpwYRDE44cTQzFzxmrdacsfcHXmtVf3XhDVLZu6LvTbIrCmqezOuEEUNlYqKkZFhtLVlkc1mQwW6QY2cWV1wBeUyy94RIhqOf87Mg5PQWeHmLOgHTtz8Mgn8/uXbrdIyjgu/xqD4MwyKP0eKtmKt+kqsU6/GcmwBgaB/3jz3+l7aMjBWIsauOWohJGZ9GLtm2Fw52bISOT4+y2Qo4K9EK/HykmqyX1H9+uTbpZicnEKxWEYu14NYTPK8ljgxdmbrOCSJPzP9iVwUswy3OXCnUL+v+hE6wJRD8kwjW7gLl/0NN0+2qMEdQaMSRFMa6g5VVfV+d0VUqyz7nc1mkE4navabtRYZQXd3F5LJJA4Lj+HB+L/gzuoHsVzbZNTtut2ztbWd/NkbXk7qBUYeTfUB357zumBlUAQbN/bi1a9enDX4c4klMheMUqmEu+66C3fffTfe9ra3gVKKAwcO4P7778cPf/hDUEpxyy234Pbbb8e2bduWjmE0LBG6KFiIhO7gwYNYsWKFLfumaRoOHToERVGwZcsWz4LUhQ4mswlnfqIoCsbGxjAyMoLZ2Vl0dHQgl8s1vVfKQkM9Tpb1wJmp4xb4nFDF4yKqVQqASfK8CvW9HC95fU8YowYrUaltX+BF7qhuGFFv5s6e5fGrkWk2wdO0Ck6fHkZnZyfSadOV1syqeEnaojmByrKMUqmAUqkITaNIJtPIZFjdXViJqUnuwplIeNVE8UyrWzNzEA2n8QyO6OSuRCaxVn0F1qlX40LtEkg0WeOS6bZwYJc92msBrb3drFk3N7MTLjW2B90822FmWNh+mZJHLmsDKCYmJiDLCnp7e4xsl/14UJ3wWA1nqK2/ICdZlCqe8kSzjUb0bJzZbDy8FFMQVE9pJ79PWH1q896r/Bpk//Y3iAkeqzbL7QZOzAuFki5tLkAURSP7zVsTcDL3nPgIHo79G94ofxj9GAisd+O1jXzxge1X+KblPiMb9zYb3+zdaEUsJkLTNLziFWtx9dXrmrDdcwtLZC4Y5XIZd999N17zmtfgne98p+sxyufz+OEPf4i9e/fiTW96E1796lefhZkuWiwRuiiQZXnO6mbqxfPPP4/e3l50dnYCYKRz//796O7uxqpVqxbtgyUKmXNC0zRMTExgZGQEk5OTyGazyOVyvm5LixHcyVIURaxfv37OievQkIKvfKWI2VlrUGzW4ggCC2xkmXhmdMKQDBaYUo9m5Vzyxgmd33jclp03kTYH432xzH5swWD1KnwMCr/aHPv36id45XIF4+PD6Orq9syyszou7vpnHT+6fI5DURSUSqxmSFVlJBJJJJMJpFLJ0Pcil9WGI+lcmmY3XeCoJWTmsZ8gL+NF6ed4gfwMw8IhrNR2YZ16NQa0q5BBp7FtlhGzyyetBK2WuFnlbt7/ZodDNTKAzro8J5njx4YT2bGxMQBAb2+Pp8GL1zFkRI8/LzkBdXecNbOQ7ufACWvm1cuFNXgM1bjueT9GwLwmnE3Q64GfjFKSqGcNXxhYCbN9m7AsHLllmlVUq1UUi0UUCgVUq1Vks1m0trbiUPoRPCp9GXdVP4xu7cLAOXCnYCaf1fRzWb9zMNsvQV+MoEaWz21xhVIgkWA1sHfcsQ1bty7zGfX8xBKZC0a1WsU999yDG2+8Ee9+97uXjtHcYInQRcFCJHSHDx9GR0cHenp6MDs7iwMHDmBgYKBhQ4yziUbInNtY09PTGBkZwdjYGFKpFHp6etDT0+NrJLPQwZ0se3p6sHLlynnb7uysim9/u4SXXjLNT6ykjplgECiKCELcg46wfek4EXKrs7MG/OHGc8/cse2Y2Zpg+Zh1fmpdGXszM+FPdgqFIiYmJtDXl4MkhSfrzBGUSfKaUUdIqYZSqYxicRrVagXxeBypVBqpVNrIhPh/nxNO72yiOXfotvvuckwuzdM0pebYEwJUhBkcpo9iUPw5jom/Qpe2BhvoNVgjX4UurALRnRLtNXRWUmdmcO0EmdoIDvssG4ctDmiWrLFZN+eUXZoGE+xeGR0dRSIRQ2tru+05ZxJY92wY/7tJjMwFFE7oWJAugtUthiNkpqFJPTb91vmZ2TeTqLvvh1emO3j8YBllo+1FrM+ZYBLH52buU7VaxcjICLq7u6FpMn5D9uJA9gHcmv8r9MfXIJXya2jOM432fXBrkxEGpqzVzPIKgqk8cMY2/NpJpWK4666LsXx5e+RtnutYInPBkGUZv//7v48rr7wSf/EXf7F0jOYOS4QuChYioTt69CgymQxEUcSRI0ewbds2ZLPZsz2tusHNT+aqLUGhUMDIyAhGR0chiqJhqrKYHDOLxSIOHDiAtWvXoqenZ963TynFT39axq9+VTWyaMyIwfYpxGICZNmN0EV3rHMLwpmjJnGRXQbuQShy5zRMcGYDwzQODgM3gsfNMXK5Xr2PXLTtWANRvk9AYw6jhLAsVKVSQbFYRLlcgiSJyGTSSCbTobPffk6ZJhmxkwsnKFUNiaEzuObZqLJSxknxtxgUf45B8eeQaAID6iuxTnslVpKLoCmiIZnkrzueUeRtMqz9t3gWo/Z3LKNpJWFO8sclxXyfGZkbRiKRssnlzUWM2mPjJHH240GNdgWxGNWvX2tG2R38WJmkIfrz1irjBEwyGIassed8eCkvGz98lttP8hkGvN8bJ3Fhv6OqKsrlMsbG8ujv74UgSHhC+jaeFh/AXZWPIFlqR6FQRLlcRiwmIZ1mCySJBFtk5PvoJvn0q2d1AyGCLjW3H7R4nC2MODOY7Dyy67+7O4Pf/d3daG1dPO/H+cISmQuGoij4wz/8Q+zcuRPve9/7lo7R3GKJ0EWBoiiBNsvzjZdeeglTU1OQZRkXXXQR4vF48JcWKLzMT+YK5XLZMFVRVRXd3d3I5XLIZDIL9sEzF06W9eLwYRn33VdCocBXyGsDLWaZDlSrsB3TsFk6J0zpopVg8Zq9es5ZMLnjK9pse+Y3rcYozQKlwOTkBBSlqmfZiX5Mo20nyBCFExl2Tmiodg9uwTFvxlwoFEAIRUtLBqlUGqIoRcgIMTLB7dCd4OSO1/a4HQ83x0dOjlSVgoJimLyAo9LPcVh4BDNkGGu1V2BAuRqrtcuQFDI1mTd+PVuJlEnSmOsgIQSxGIHsaLLolGay/TDr54aGzqClJWssvpmtAmqzjl4kznKEjOPIpcD+555YFi3qk1KaZNtbjhleTqnBGVLU50bphij3jbmIyIm9tS9bWIgiRalUxOhoHrlcDlJMwi+lr+F58We4q/JRtII5+bG6XmaqUygUMDMzC0KI0e8uFovrWUir42q4Y8rvGZ4JdiIeFyDLVds1xRYdRL29DLBmTTde//qLlsxPXLBE5oKhqir++I//GAMDA/jQhz60dIzmHkuELgoWGqFTVRW/+c1vQAjBnj17FrX5h6qqTZFY1gtZlpHP5zEyMoJSqYSuri709PSgra1twTyIzpw5g5MnT86Jk2W9mJxU8c1vFjE8rNmyEVYwWY8GURSN5uL1ZOmsIISRFlnW9H9HMwBxB7VkfQDn85E1VueufTyD0wxjAn3rlPeYI+jq6jKyToQQSJIKTYtiNhI9EDUzeQzOhu1B2Q5Wd8dMIWRZRiaT0k1VgvvdseOuWeoMvUw9WKAqCKphKOIcB7ATIyehEgSCSXoGg8LPcUT8GU4LB3GBdhHW02v+/+y9eXgb5bn+f2uxLe+LLMlJnMUkcXY7gYQ97JBCFjmEAAVO03IodKGFw6EsX7qetiwtvx56ymk5LZxSWughtpOQxEmAsoekrImz73tie7RZsnbNzPv7Y/zOSLJsS7Zsbe/nuriI7dHMO6NZ3nue57kf1IUuRxmMctSOpl1SkRf9f+l+pdy7oqN44SmW0hgEnD3bicrKit4+ZmqE29pTqMCLlSpJtyFtL3IZKf0zFHEthNevJRLd6v00VCpab5VYU+94+sxJY1ZE4VDdKPsbe3TLAfkvhJokSS9zYvW5C6/VHQzppZC0Dq/XDbvdDpPJBI1Wgw+0f8FRzee4PfBzFJFKOX061ncRfg2JIo+8vPze6J1OTqUeXKyrYp5TdJxSBDgyZVlqdq6klV588URce+20uPY912BibnAEQcD3v/991NTU4Mknn2THaHRggi4R0knQBQIB7Ny5E0VFRSgpKUFdXV2qhzQkklkvlywEQYDdbgfHcXC5XKioqIDBYEBVVVVKRDMhRI7EjqST5VARRRFvvhnA558H5ShW9O1D6pkkQqOh5gxSof9wM5hpw+/ImrFknEOxxB2R/6MTuGTdD6SoTRcKC3Uxe8yFmyAoKZoDOVwmLuhiES7y1GoRoVB8aXm07s7j8SAQCKCgIB8lJVJLBFFU9dm/6ImqkgoYHqEJH5cop2XHaplAPx8ugKOjeLTWLaBy47h6Gw6rP8QxzTZUklpMFa/AZP5KmFRTQERl2VjCjhABkrkEQXg0TerZpUT9/P4Auros0OurUFJSFDGhpy6WQN/UOGV/VP3+PZy8PBGhEB8W/Uw0vVk57rGi7vGi1SKmwyQVUzQSJgmh4dXsxSI6mqWY9EjbHGx7A11DdF3RQtDv98Bmo2JOhX9o/4Rzmv24nf8FdGJpgpFGEV6vT05vzs/PQ2GhDoWFRX1qahVBFnunpPOUOhMrYk66ftTyOZKfr8GNN05HY2PfPo8MJubiQRRFPPTQQygpKcGzzz6b0YGGDIMJukQQBCFJVsHDw+VyYffu3Zg+fToEQYDT6cTUqZlnJZyOYi4aURTR3d0Ni8UCu92OkpIS2TFzNISVKIrYt28ftFrtqDhZDoc9e4LYuNHXOwFHH7EWPmmnEQg6wRrqZC68xkSrFREKSRM5mipJoyjDQ5mASnVJynegUtFedIojZ6KpbDwv9ZgrLS1DaWnffpLAYA2a+wq8ZAm6WGMIFxfS+AfeV0KUujufzwe1Wo2ysmIUFRVDrdb0iiGhj8iLhjrzSedKX2v+WOKOCiuazkiNIcLPQ0V0AUGBx1nNDhxSf4gjmg8AAkwRFqKeXIlxwjzka/JkwxYakZNq43hoNCrwPJGPDRUuhEgv4CwWDjU1Jmi1eaBGK+Hiqe9LkPhqxug+KsdBQCgUGvT8oyl/4VHNoaZgxkJ6yRIpxGNdG5Ilf3KnFGq1Cnl50rWVeFRSItJ4KfKeEguPxwO3uxsGgwGaPDW2aP4bHE5iZfCn0CH2dR3PtgG63QDcbje8Xh8AoLi4CCUlxVCr+09vpkKOpgtLL9Houa+JODalpflYsWIuJkyoTGisuQITc4MjiiIee+wxAMB//dd/pfV8JQthgi4R0kHQdXZ24tixY2hsbERxcTFsNhssFgumT5+e0nElykibn4wEhBD09PTAYrHAarUiPz9fNlUZidrFVDlZDgebTUBzsxdWKx+zdo5G6qgAkgwlVPLPgoBBJ/bRqHoNUmgT4eg6OPrfcISjMn7a1BwApPYMUtSqz6gioluSoACib5202XB0j7m+243frU8SNkq6GRXWQ69DktBqxd40x0gUYaD8PJCQpnV3UlqZiNLSQhQVFYa1ZSCDTsKlVDhV2CQ72hiFpu8RWYTSiBD9OdyNktaU0dYIWi0giAQcOYJjeR/ikPoDOFRncJ54CaaKV6COvxSF6tLeMYqgLpeSWIxsZu73++Fw2KDXG5Cfnx8WKQqP0KE3jXLgFwLh+6Gkp0YvI0UMo40zwuvSpM8OPyoWLQrD161Wx3fO9tezMr7tR4rZ8GM6fIdLev0MJqgJvF4P3G43TKZqCETEpvzn4FbZsCL4Y+Sj/+s6FrRWNPJ8VgxmNBo1eF6A2+3pTW/modPpolIzo9OzVb1RfjEivZJiNBbj9tvPR0VFUUJjzRWYmBscURTxk5/8BD09PXjhhReYmBt9mKBLhFQKOkIIjh49CqfTiYaGBtlyv7u7G2fPnsWsWbNSMq6hMNrmJyOF1+sFx3GwWq0AILdDKCoa/kMx1U6Ww4HnRbS1+bFrVxC0IW64YUm4qJOiFASAlIYpTWzDBVB80Bq6wRwvqciiE5pEJ5LRDnNSnZUQFuVQ9btOWpNFJ+R+vx9dXRYYDEYUFAz8QiDRyWmsCJ2S6kZFM637kY71YHOUgaKE0UTWKFEx3fezUs2QB16vR56YSq6ZOlmUhY+LmpXE6sMV6YSoTGYj7d+VdMvwhtx96+PCa7qkz/WoLDiu3YrDmg9wWrUTY8RZqBevxDTV5SgOGXon2kR2s9Rq1fB4PLDZHKipMSE/Py9MHJCIiGPfelIaUVFEXn/W/9GoVIKcbkgdLPs7/vES7WSpnDf9R/TiOV+kMcUXFex7Tg1slpLI+apE4emYVIOaj9Doane3E263B+PGmRASg1if/2uE4Mfy4P9DHhKvdQ7POqBIUebY9wBCSG9bES9CIT80mrzetiKFcmqm1I+P9J6jkcd7yhTJ/CQ/P71S+dMFJuYGhxCCX/ziF+jo6MBLL70Ut+MxI6kwQZcIoij2cTMbDXiex549e6DT6TBt2rSIG0pPTw+OHz+OhoaGUR/XUEi1+clIIaVUWWCxWBAMBmXHzJKSkoT3M52cLIfDzp0BbNniQyhE5AgIFXaRkToiRywkZzaVLDAkl7n4tqdSib2RifhvT+ECL14BGS0mos0fqGgD+hd4tMecyWRCfr42IuoifS5arJA+k7yBxxjb7j+ez1GxF562KIqKLf5QiZ6QU2FDJ87SxJTWDPmRn5+P4uJiFBYWRrz4kaJrkWl6Uup2pCgNN9mg0ahokRbeH482Vo40VpEm98r/pTEH4cFJzWc4pP4AR9VbUUIMqCdXYHLocoxRTQeICj09LrjdPTCZakCNRZQ6uEhxRtMrpe3Gk7Ib6cioHGOAEL7330Or76Sur+HHYChaMJ6WAbHEC9C3zm4ojpyDNd+OTKOMbg0QeQ0qNY6RjqNOZze8Xh9qakwQ1UGsyfslNNBiWfBRaJF4n9Nwp1eaHiylUgcxkJinETlRBEKhYG8E3AeAoLy8CDpdce8kW1lHXp4GV145GZdcMimrnsXJhL5IDwaDTMz1AyEEv/rVr3DkyBG88sorTMylDiboEiEVgs7n82Hnzp2YMGECxo0b1+fvXq8XBw8exLx580Z1XImSCfVyyYLnedkx0+PxoKqqCkajERUVFYPudzo6WQ6Hri4Bra0eWK00XYjWLEU6ttFoHb3tSMJCLRus0HJF2vcuFjQqEd1eIF4UwUG3Ffvtf3TqIU357G9cKhUJM/hQwens6U3PMslv+fuOBRFjGYoBi2TWkbzrTKuNNCehEc7h1F3RcyA8lZCu2+8P9EbvfFCpVCgsLEJxcTG0Wm3M6EsswUjrh+j6I3uZRdawSfV3YtQ4CAih3wOtCYvaVzWPU+JOHNZ8hEOqD8Gr/Jjguwg1zrmYV3k98tUFvRFDmoYbOb7oR224mAEiz3eattt/ZEqKeA3U3y12miSNPCfvfFGphEGFoCSm+T6Ok8lwuYy1fTrXHNyEhRruoPcFU9+Fu7u7EQgEYDQaIGiCaNH+FIWkDEtC/w4NEo92Sd+LEg2lwrF/t1BVr/FM/6pZrRbhcrnh8XgjIuCzZ9di8eKZLMVyAJiYGxxCCJ577jns3LkTr732mpw5Nhy2bNmCBx54AIIg4J577pFr8qL57LPPcPHFF+P111/HLbfcMuztZgFM0CXCaAs6h8OBffv2YebMmaisjF2oHAwGsWvXLsyfP3/UxpUodLIgCEJvmlHu3BhFUZQdM51OJ8rKymA0GlFVVRXxJivdnSyHQzAoYsMGH/buDQJQ6oBEEQOKOvo7adKnCvu5/6iddEj5IQm6WERG8CQhGitaFk9KJCHSNc3zQZhMxt5aFlXckUHFgIVO9gdOpUu22cRAUcJoQUZRDEr6S4uLz9o+vO4OICgt1UGnC6+7o9tDhOgMH1+4gKGRJ3osqUAKPwcj16FEK+ky6O0RqNUqYlsUCY737MJR7cfoKN8Bq+o46siFmCIsxHn8JShEeb+Crb+2H4kj9G4j8uUZjVQOt5YykXEASsQ3OrueHkvJaGgkts/360YZPQ5JUNIBigPWzRFCeq9jHgZDNYIqH1oKfoIKcQxuDH0PaiQeoaC1gDStMtI0Rujnnjhw+4K8PDUCgVDY9y9CrRbR0FABo1GN4uJiGAwGVFdXJ2Uink0wMTc4hBD8/ve/x8cff4zVq1cnxUdAEATU19fj7bffRm1tLRYsWIC///3vmDlzZp/lrr/+euh0Otx9991M0En0e5Jmz2wyQzl79ixOnTqF888/H4WFA5klaNKmlUIsws1Pck3MAVKNYHV1Naqrq0EIgdPpBMdxOHr0KAoLC2Vxd/jwYWi1WsydOzfrjlF+vhorVhRj/HgN3n7bB0GgKXwq8LziOkgnVuG1QkR2lRN731qr5KidlDKliojU8Dx1QxQwtEbjkUjbV35WauBUEVG6wbYl9ZizQqVSw2Awhe2X9B/tKyb1mostgCL7gIVvG4hVWxTu4JgMBjaG6F9Y0ghXrPRARcAPLDLy8vJQXl6O8vJyCIKAQECqTQuFQtDpCiPq7uhq+hOZ0t8iU2Ejo1WqMNEW8aneaKuSnktrRClWqxVlqrG4rvTbUPMqeGDHEfU2HNK8h7e0v4aJTMNUfiGmiAtRKdb2bk/Zd8WxdPCaRrrdyMNOxWh02mjkvg+VcBMr+qIjfH3KWIh8jOj3G+sxRdcxfCLrQ6UWJiRCJCspnNHppEROu4z1UiliK4TAZrOBEAKDwQC/yo3mgh+iRpyM60PfhgqD14QrkWSlvlEyhxL6ZK+EZxso6aexawNpCwJRJMjLUyEY5OV1qdUqNDZOwPXXT4VOlw9CCNxuNywWC3bs2CE/pwwGA4qLi+M96FkJE3ODQwjBiy++iA8++ACtra1JM4X79NNPMWXKFJx33nkAgNtvvx1vvPFGH0H3u9/9DitWrMBnn32WlO1mO0zQxWA0LmxCCA4ePAifz4cFCxYMGqmResikp6DLRCfLkUSlUqGiogIVFRUghMDj8aCjowP79+9HQUEBJkyYgEAgkBWplrG48EIdJk7UYvNmL06dEuS0KimtSNU7AVP6h0WKGlWEsKORrfA+X4qLpBpq9cDmKENDiaZJAkyxpadRj1iiZrAec9K+0bETeb10e9IqYwsTgE5gY/cboxNmRbDQCa40funfyn+RtWJ9xznw3wcaX2zBp9FEGrTQ/YyMkEVGstRqLQoLS1FaWgJRFOH3++HxeNHdbUN+fkHMuju6n+FiT9lWpJikokB5qUB6v2NBNuyhglByFJSEQ1cXh7w8Laqq9PK6ilGFRnEJGsUlCBI/jqs+wxH1R/gk72/QkXJMFRZiirAQY8lMqKCOmYKZCGo1Cfsu44O+bFP2PfL7VSJbkX3zlOsr9nk3GFScDAWl1lOJvgmC8mKDptJKx1MRbdEvQ6RxqCLW2999g4o5AKiuroZX5cTrBf8P55F5uDL0Daj6uS7C6++ksdIXRYopT3+tP5SG65BfekWj0Wjke5AgiMjLUyMYpHWUgNFYgq98ZTrq6pTzUqVSobS0FKWlpTjvvPPkGvDDhw/D7/ejqqoK1dXVqKioyGjjskRhYi4+/vKXv2DTpk144403+mRJDIezZ89i/Pjx8s+1tbX45JNP+iyzdu1avPvuu0zQxQkTdCmA53m0t7ejrKws7khNut5wws1PcumBEC/0uNhsNsyZMwclJSWwWCzYu3cvRFGUTVWy7W2pyaTF179ehl27/PjHP/xwu0mvmYWqN/2Oirr+IlUqKE6HSp0dFTPKhFQDgI/x+eRAJ33hIoqKu/A6MEEQ0NHRKU+e4oGQcIEn/V+aqIpyJDAes4nwiWlfsdffjL+vcFQEDgD0FUnh5imJErkfSlQ2cn1916985yoUFBSioKAQtN+dx+OFzeaARiOllRUVFUWklNHvSBF34WI30pwmfBkq5qRllLHyvIiOji4UFRWivLy8j6Ci68hX6TANCzFNXAgiijin2ofD6o+wRfMkfConpoqXY6q4EJPIAtkdsW/qp/I7euyVaCOtA6ROsSrEEmh0HVTohL+IUER9bOJ93sSzmBRdH2wpJfIWHvVTqSLPw3BxJ91DotMUBx+QJJr6izKLsFis0Gq1qKyshFtlx/8VPI7pwuW4Qrwz4ogpkWGV/GJKicZHQkVtrOFJ6eNSamX4cZLSMzWyKKRjpjW3oZAk5vLzNbjooolYuLBu0BfDBQUFqK2tRW1tLQRBgN1uR2dnJw4ePIiSkhIYDAbo9fqsTs1kYi4+Xn31VbS2tmLDhg1Jf/kc66Vf9Pfw4IMP4plnnmHmKwnABN0o4/V6sXPnTpx33nmoqalJ9XCGTC6ZnwwHh8OBAwcOYPbs2fJEf8KECZgwYQKCwSCsVqv8tlSv18NoNKKsrCxrjmdDgw7Tp+fhgw8C+PTTAARB6ken1dJzSCXbx/cnyqTJnSinXvK8KmyiqoJOp5ENA5LRgy4SVW/KqLJSQaBjlmZf4T3mCgsLw9KfpOWVGqLYdV/h25L2VRUW0aCmDVIkj+5b32buSq+1eIk+TpGpiSQOMRkr2hV7O5GNp1URx4Z+PhaSyyUVIlJ0T6VSQafTyZMMWnfHcRaIooiiIqkRs07Xt+6Oml8oYk5arzLBUEGl0oJGUekyokjAcedQUlIa0RSeRv7odxP+Tkv6rBpjxNmo4WfhcvItdKtP44h6K/6peQ1vqH+CieJ8TBEux2TxMhSjqp8jTdenfEGK4Al3Y0zqiZ80oqNzSmSankOk9wWGYkpCd3Wgczo8JTYR+k8ZFsFxFuTn56OyshJOVRf+L/9xNAiLcJl4KyQTE5U8rv4igdH0f25L+y6JUhL2e428DeUFliriM1LaJjB+fCVuumkmjMbEGprT7dAWPOG9V0+dOgWNRiOnZiajPU+6wMRcfKxevRqvvvoqNm7cOCLff21tLU6fPi3/fObMGYwdOzZimc8//xy33347ACnFfdOmTdBqtWhqakr6eLIFZorSD4FAIOnrtNls8uS+vLw84c9v27YNl156adLHlShMzMVHIk6WgiDAZrOB4zj09PSgsrISBoMBlZWVWRP5tNl4vPmmD0eOSG+WpdNGEmoaDRAIxOuiSOQ6OyViIYRNciMFxnBTMvszCVGpRPh8flitVhiNhoTqC5QJrfSzMoElvSmSg81UFaFHIzfUCCMZ0cp4rOgTJV5jlMjPKJNaWpNEo2vhpwqdXIdCAnw+ycqd54MoKipEcXFxb7qQ0sog8jSjaaDKusJr63g+hM7OLhgMlSgoKJAjc7TnHTWsie6lF9twg4C2NvCpnDim3oZD6o9wXPUpqkmdnJpZKU6EeoBrQXENTazNRbKR+p7177Kp1Sr1qDRlkqZMD/fFy1Aaiisvj6LHKqKri5PTpbvV5/B/+Y9jgXAzFghNkAxUEj/OVOTTeVa4IJTudbRUQS1nK/R3XKTPSo3ti4rycOWVU7BgwYSExxQPfr90X7NYLAgEAqiqqoLBYEB5eXnGPo+YmIuPdevW4Q9/+AM2btw4pHlqPPA8j/r6erzzzjsYN24cFixYgNdee63fPstf//rXsWTJEmaKItHvicsidP3QX53MUDl16hQ6Ojowf/78pOYijzasXm5wCCE4duwYXC4Xzj///LicLDUaDYxGI4xGI0RRRHd3NziOw6FDh1BaWiq7lGVy+oFer8Udd5TiwIEg3n7bB4dDBKAGISKCQSAvT6nxkoRN/zVe0XV20oRIlCN00ZeuShUZPRmoLUI0ktlHX0tzn88Pi8WKmhoT8vISu5X258RHa7q0WnVYNE8RDvSzVMSFp3hJp0Z0awBa+0fXEx80cpJMBpsPKzb7yu+UxuBKFCyWGKBmM/n5WuTlSWmvUmqmH263BxaLFfn5+SgpKYFOp+utRyJh36sSGQpPxZSir52orq5GUVEhQqFQr2up4iwamdoZbmgjESn0VLKoKUAZZghfwQx8BTyCOKX+Ekc0H+H/Cr6PPKLDVGEhpopXoBZzoFGFO+VK+6tEh5Q+fED/qZuJEp4SG/3iIWwpoLceNNzNM7yGLBQaGcGZSB9KSiwxJ4oirFYOpaXFKCsrA0dO4P/yn8BloTswV7gJZBiiWbomlSb24ame0jFTyy8EBjI2opE5QgimTTPipptmoLR05GqwdTpdn9TMjo4OHDhwAKWlpaiurs6o1Ewm5uKjra0Nzz//PNra2kZMzAGAVqvF888/j0WLFkEQBNx9992YNWsWXnjhBQDAt771rRHbdjbDInT9EAwGkyLoRFHEgQMHwPM8Zs2aNawJ+fbt23HRRRel7A0ZE3ODI4oi9u3bh7y8PNTX1w/7GBFC4HK5YLFYYLPZUFBQIKfJJMtxKhUIgoiPPw7g44/9CAaVN/1SU2siC7B47f5VKrFXCMTn+Bjdi04SRwOlR0VOxlwuqcfcuHHGJKd40u0NHH2QBIQa1PCEij7a6ysceh+jx4dGCeixjT6+KhXdfuyauYFO6cGWleoDI6NhAxmERB4HJbpFRVfkpJ5GOujfxN51SOLY5/MjEPDB7fZCq9WgqKgQJSUlANS9gjAyqsbzQXAch+pq6VrLz1cjGAxCo5FScLVaxcyG1kFJphe0drb//aPiL/z8k5cFQZfqIA5rPsIRzUfoUVkwWbgUU4SFqBMvRD6KelNRhSGJmuEQblIifQeCHHmLJjwteSTGQRvVx0t4dE4yUyG9dZGdKC0tQWlpKbpUR9Fc8CNcFfpXzBauBYDeHnCJbUulAvLy1AiFhD7nu1YrXbcD9ZULX4/0rCUoLs7HDTdMw8yZpoTGkkzo88hqtcJms8lpm9ILj/RMzWRiLj7eeustPPXUU9i0aRP0ev3gH2Ckiv6LNpigi00yBF0wGER7ezuqq6sxadKkYd9IPv30U8ybNy8lb8VofzkAGZtyMdLQXoEmkynCwSmZeDweWCwWWCwWqFQqGI1GGAyGAVtepDNOJ4+33vJj//5Q7yRNjBATAI2u0cjHYGloAvLyqDMmkFj6IYmYiAN9e9IRAjgc3QiFAjAajb2TLXHY94pohppKN5S0Rnp8e3/qjciMhHso3d7gx4umquXlSeJfEp6xU3KlaFV4fzcpJVcyjBHlSTRt86DVquH3BxAI+OByeaBWAwUFUkuEwsICCAKB3++D3W6DwWBCfn5eWAqmJOzDhRj9NxWDWq00RqlhfeQ4peX635dYQq+bnMNh9VYc0WzFOfUe1IpzMV11OSYFLkYpquM86oOhnPt0HOERyP6FY/8nSbL7I4Yz2HlOXzgqh1iKJIYLdkEQ0dXVhfLyMhQXF+Oc6iBaC36K64PfwXRxYdi64r++pYwBUT73AJp6Ss1NSO9Lq3jEnPSSJj9fg9mzTbj++nrk56dXUpXf74fFYoHVakUgEIBer5dTM9NBODExFx/vvfcefvrTn6KtrQ1GozHVw2EMDBN0iTJcQed2u7Fr1y5MmTIlaRfIl19+iZkzZ46q3T2rl4sPj8eD3bt3Y/LkyTAYDKOyzUAgAI7jYLFYwPO8XMReUlKScd/T0aNBvPWWD1arCECAWh27n5Ui7mKbn2g00ptvyWJe7H0TrxqCuKMoE121WkBHhxUAoNdXR0QqRFEYUlrbQEgppInfg5JRV0UnzErNmpLyGJ7KqUSfEknnBESRjzhHqdgBIpuUR0/cFWv4vjVqkcKf9EbO1LIQD289QXsiqtVqhEI8AgEfenrcEIQQ1Oo88HwANTVjoNXmyeYbeXlAMMhHiK3wHoA0qhz+MoLuV7S4C/+bNNEfvH5UpVIhqHbjmHo7jmg+xBH8E5WkFlPFyzFFuAwGch7Q+51Eryu8rlRJn1RaHwzlWTdQlCxZ0Tn6vUX3GQxvwq20MVHSkcORxGnk9cDzArq6ulBRUYHi4iKcVu/Buvxf4Mbgg5giXhy2H4O/IKEptYoLpSTYaT/W8PM03hcudJ1VVcVYunQ6amsrBv1MqqF14BaLBS6XSy4V0Ov1cZUdJBsm5uLjo48+wv/7f/8PbW1tGW3Ul0MwQZcooVBoyL1zaJ+XOXPmxG1hHg/t7e2YPHlyb5rQyMPEXHw4HA4cPHgQs2bNSur3nQihUEguYvd6vaiqqoLRaEybN6XxIIoiPvkkgK1bAwgGBUgmH/0v31/kjqbpSU6N9BZGIvraJSruRFGA1dqJ/Hxdb88mpc6WRmmSnV4WneYZLzQVbjjEmgQPvDyNZCrHRan/U0R479Kg0a6BTCDoeqX/qINp5MJU4IWnWErbi6xz02jUcjokFWF0si0tL4mHnh4XurtdKCwsgN8fgE5XgMJCKXpHTSl4XpQn3FIrjsgeY4qwA8IfoTTNr7/vNHyd/bmhSqnCktgPCkGcUbfjsGYrDms+hhoqTBUvw1TxMownjVATjfwZoK8oigUV7EpdoXKO9xWksc/5/s4dJZoZmTYbvt7wur3+5iaJnN+xxRyPrq4uVFZWoaioECfUO7A+/2ksDT6KOvH8qH2Mnfoc3n5FGTMJS93t+8IpXjGn0aig0+Xhsssm4qKLJmTM/Tuc6FKBvLw8+YXjaGSTMDEXH9u3b8fDDz+MjRs3Yty4cakeDiM+mKBLlKEIOkIITpw4AavVisbGxqTXOO3Zswfjx48f0WJVChNz8ZGIk+VoQYvYLRYLnE4nysvL5TelmZAu63YL+Mc/fNi3L9ibMjf4bShS3NHJU7Soo5CEInd0AlhWVoqysuIB673oWPszpgif/IX/O9b1JY196GYMwxeYAuiEPlwM9D2FaKQpsuau/6+N9DaFJnL6ohLlk8S50v+tr7tgeJSOijQKrZdT6gaVCB39ma6Pfh9U4DmdTni9XtTUmHrbQBDwfBA9PR74fF5otSrodIUoKyuGSqWR0yvDhRydzCvjiS1Ew9NEw8WwfERVSr8xQYC8D7S5uZQ+qFwbBAQW1TEc0XyMI5ptcKjO4jzhIkwRL8V5woUowPBfAiqCTNW7D8r3F7Uk6NSBRgCRBFdLSiLndnTaZygkXcvV1XrodDocVX+Ktvz/D8uDP8R4cU7UZ/sKR/q9hTuuArSnJk2ljHUtS1Hpge41tO5u5kwTrr12CoqLM9c8LRqfzye/cAyFQhGumcmeWzAxFx+fffYZHnjgAaxfvx4TJoyMWypjRGCCLlESFXSCIGDv3r3QaDSYMWPGiEyc9+/fD5PJhKqqgfsVDRdmfjI41Mmyp6cHc+bMSVv3SUKI7JjpcDhQVFQEo9GI6urqlKTBJMLp00G8/bYXHR2huOu5lPopJe0OGEgUEjk1Kpa4CwYlY4yqqioUFRUNaFYiTfATt1Kn0IhWeCpn37TLSPddOlmmkaJwYk18w2u+os1TwvddShkTY0YakglNkaV1Z9HiR6USIyI50QJJ+ptKdn1URKXUP5C6gCoNqqVjpdGEu5YS2GwO8HwIBoNRjuLxPJ2I0+V4uFw98Hg8UKlE6HRFct0drbWUxGa0MQ+RhWSsFEfp5UJfcdr3WCn/VqlEeX2xonk9sOCoZjsOaz7GGfVujBVnYopwKaaKl6GMJMdUI1ZtWX9tAZJJPKnINJIZW8xVQ6crwAH1R3g7//dYEfgJxpLpfdYhnSNCr4mJ9P3EMrihwr7/yCs1j+n7N9p6RKNRwWAowVe+Uo9x40b+hW0q4XlefuHocrlQVlYGg8GAqqqqYT+TqJgLBAKYOXMmm7v0w44dO/Cd73wH69atQ11dXaqHw0gMJugShef5uN8CBgIB7Ny5E2PGjBnRNx2HDh2S+5ONFIQQ8LzUJywTojmpINlOlqMFIQRutxscx8Fms0Gr1cqmKuncSuOLL3z46CMvXC4pYhQvUsREioDQye/ARIo7vz8Q1mNOOj6DRc2UKEpyJrWJpF2GizUKnfxSIZHIqSo5jybvERCekkahkQ3aKDnGp3ojn32NOehEOjptU3GXlH5Wasak/4fXvWk0QFeXBQBgMhnCfh9ZGxf+vRIiPR9oS4RQKISiIh2KiqR+d0oT6L7N3mlaZSzxJk3u1b0v1MQIYU+Pn7KsIhCUHniqqH2Vjotf9OCE5nMc0XyMo5rtKCVGTBEuw1ThMpjIVKiGUFsaO3qFuM/VoRJPfSg9z8KvQenFjEXuF7lX8y7ey3sRKwM/h4lMloWVJMqpU6nYm1LZ/z4NJuak7yMskkpoaw7pvFWr1SgpycPChXU4//zcS3kjRIqMU9fMvLw82TUz0dRMJubiY/fu3fjmN7+JlpYW1NfXp3o4jMRhgi5R4hV0LpcLu3fvxvTp00fc6vXo0aMoLi4ekcJVlmIZH6PhZDla+Hw+2VSFEAKDwQCj0ZiW9tN+v4j33nNjxw4/eD7+c5OmXBJC+9zRlChqohA7AuX1euF0OmAy1UCtzkP4PXSwCIE0+R+aoUk0Q62jC2eoLpw0bTURqKiMNN8YvAdd+MQ33KVSEj6RQr4/ISeNOXJyTSNxSsqlEpmT+o9ZoNXmobKyUm46Hr0e+m+1mqY6KpNzGpHy+Xzwer0IBgPQavNQXFyMwsJCaDSaPkYpdH+VurtYx4MKjP4ivomn06rVKhAVjzOqvTis3opDqq3gVUFMES7FFOEyTBDnQov4ygSio7+jEZmTtjN4BDz6vKVizmAwQKcrQLt2Cz7S/BVf5Z+CXpjQK6yU4y39PPh2qAvlQKnF9GWSlCKsRGk1GhXy8jSYM6cGV199HnS6zOjnNtL4fD7ZNTMUCsmumWVlZQPOSZiYi499+/bh7rvvxuuvv44ZM2akejiMocEEXaLEI+g6Oztx7NgxNDY2ori4eMTHdOLECeTl5SW9eJWJufigTpZTpkxBdXWy7MLTg2AwCIvFAo7jEAwGodfrYTQaUVpamlbnQ0dHAP/4hxtnzvDgeRUGamNACW+DMJCRA01BdLl64HL1wGQyQa3WgEbuAFVvut7ATYCBZEbqCIDhT5SH4pjZv+18pMU9oETEYrkMxgMVR1K0jo8ah5KqKLUf6BttpU6U4dB+ceGRLqUpuwiLpQsFBUW9NcmxUgdphE7VOz5pkh8pGon8d3ocBCEEl6sHPp8farUaRUVFKCsrhlqt6TNu6bxT9zkn6flI2y6E90xUqQhCoeG7qhIQ2FWncFjzMY6oP4ZVfQJ14gLUk8swWbwYhSiT6/X6CmdF8IyWmAMGP4+l71zoNY6R2lNYLBYYjUZoNFp8oX0Dn2nX4LbgUzCoayG5U0aeT/HU6IV/57EghCA/nzaRp8eP1u4C48eXY9GiephMqTHRygR4npddM3t6euTUTL1eH1HiwMRcfBw6dAhf+9rX8Oqrr2LOnDmDf4CRrjBBlyiCIPSZWFDoDcTpdKKhoWHU+sKdPn0ahJCkpnUyMRcfDocDBw4cwOzZs1PmZDla0Acpx3Fwu92orKyE0WjsdXdMjzTcPXt8eO89FzweQBTVCIUGFhLh6YP91bQQIn3PoVAwrMccotwBpVop6U2+asA0zmSJuuRE6WjdVWLrUaupnT4ZtmiLhET1ZQsXXiq5Rkz6WewVN33HHsuIBOgbqaPLSoJLQGdnJ8rLy1BSUhr2NxLz87SWmIqYcGFIP0uXU7YlTeZ5nofX64HX64UoEpSUFEOn0yE/Pz/iGFKjFxotGkhQ0LTfcFEdKyU1UTyw46hmO45otuGk+kvUiPVSaqZ4OcrFMb3pyLSWkcjRRZqiGJnSS6Pgyfo/Jfy4KOcl3a4koKRj4/f7YbXaYDIZkZeXh0+0q7FTuxlfDT6FMjF2HWE8Dculesi+6d/hjqsqVXiEj8hmPeXlOlxzzWTMns3s4ROBpmZS18yCggJUV1ejuroaZ8+eZWJuEI4fP4477rgDL7/8MubNm5fq4TCGBxN0idKfoON5Hnv27IFOp8O0adNG9QbS0dEBv9+ftCJWZn4SH+fOncOZM2fSyslytBBFEQ6HAxzHobu7G6WlpTAajX3ekqYCnhexdasb//ynF6EQjd7034A8OrIWXg9HCGC1WqFSqaDX6weNfqjVRK5d0mqlSCFtZj5QNGMoDMftMpz+RB2tv6KER8CoMcpwUGq8FPEVTwqolLpJAAgxxVx4+qSyrb41TZKwlrbL86FeY4wqFBQoqcXR9V+xUjdVKqllQay/9yfqJGEnfUYQRHi9Xvh8XvB8CPn5OhQXF0Gn0/UKRlWvGFEEYawG5P2dTzSVL1LcDE18h+DHSfUXUvROsw1FpEIyVREuxxgyHSqIva0ghFF7bvR3HShGNMrfvF4fHA47xoypgUarxkeav2K/+kPcHnhqwGbsA6Un91cvJ7VDgSz2w1M+qVmPRqPBhRfW4sor66DVpqeBVibh9XphsVhw6tQpCIKA2trauFIzc5FTp07h9ttvx5/+9CcsWLAg1cNhDB8m6BIllqDz+XzYuXMnJkyYkJKeHRzHwel0YurUqcNeFzM/GZxMcbIcLWhvIWqqUlhYCIPBAIPBMGpR6li4XDzefrsH+/b55ckwIeFNfen9j/ROCpXPajRAMBgCx1lQWKjrtdGOb7uxUi9pqpwymad/oRNFVcSyQF/zDiUyQX8vRkSwEjU36YsYIWQHIp700miogAs3J0mkho9aw9Nm21qtZIRBJ8nRxy18uzQSEr0+QSCyY2l1tR6FhYUx0uz6F3TSd6qMge5j+Dqio3x0jJGOmspYA4EA3G43gkF/RN1d+P2Ynk/SyzciR8fifUEQna4pienY1vr9rgMizqn244jmYxzWfAy/yoWp4iWYzF+CieL5yMPoGCrFFnQk4rir1Sr4fB7Y7Q4YDCZotGq8r30JxzVf4LbAkyhGZb/rHyjVMvx7pGmy4SJOWYcKgsCHtc8Apk2rxvXXT0FV1ciXZeQK4WmW9fX1sNlssFqt6Onpkdv0VFVV5fwz++zZs1i5ciV+//vf49JLL031cBjJgQm6RBFFEaFQSP7Z4XBg3759mDlzJior+38ojCQ0n3z69L4Wy/HCUizjQxRF7N27F/n5+RnlZDmaeDwe2VRFo9HIpiqpimKePBnAW2/1oKNDum6lSZXkXKdMaCNrgnhegMXSidLSUpSUJD7hGiyCFSnwgGBwaBGNcFfDZKDRDOQsGb5cPPWC0Q2VEx9oeF+22GMQe49lZAQxnFh1dDSKFwjQWioDCgsL+rTBGCjlUllXZHSzv7TOWG0EwqNZ4aYvtCbP7/f39rvz9dbdFaO4uCjCxp1GiKiwHMpxDj8uNE1SeibEF8lTqQCX9jT2k604ot6OLvURTBTn9hqrXIwiVAx5TAMjRWqjX4hIKcE0lZbA4/HA6XRK9a8aFd7O+wM61Adxa+CXKET/qfIDiTkltZW+IIp93KWIstLqQ68vwg03TMHUqSPnSp2LDFQzJ4qinJppt9tRUFAgu2bmWnZNZ2cnbrnlFjz33HO44oorUj0cRvJggi5RwgXd2bNncerUKcydOzdhK91k0t3djbNnz2LWrFlD+jwTc/GRTU6Wo4Xf75dNVQRBkCN3xcXFo3qeEUKwY4cP777bA69XhGJoopZ7tWm10qTb5wuB4zjo9VW9kZGh1JjFalw+0PKAElWgAiReY5fkGk/EUy9Ea6Sifxce8YklYAaDihM6ER/o8xqNJMKVmjZpAi6JJ2VssQxHJDFHa6lM0GrzwhqZ0+UGd8sEgPx8SZAPtlwskxClGboK4Q3BI8criaxAIAiv19tbdyeiqEjqd5eXVyCLGNrQmwrWWKmZiRLurBnLQVRaPZG3DwA+OHFU8ymOaLbhhPoLVIt1mCpeginCZdCT5N07w89VjUb6LxTiI1Kre3p60NPTI7lAqwm25P0WdtVZrAz+BwrQ/8saum66/0oEnB6LgVueSFFTVW/5ApCfr8Fll03EpZdOyPkIUbJJ1ACFpmZarVYIgiC7Zqab2Vey4TgOK1aswK9//Wtcc801qR4OI7kwQZcooigiGAzi4MGD8Pl8mDNnTsobMff09OD48eNoaGhI+LNMzMVHNjtZjhahUAhWqxUcx8Hn88kPUSmdcXTOO79fwAcfePD55x45GiNFJdQQBCAY9KOry4IxY4woKMjvFSaS2Iu3/yRlKPb+VAiqVFRwDizwklVHF42UojrQuqU0VaUua2gROAp1Eh1MxFEk4xSx3+Or0USmoIa3AVCpALfbg+5uhyzmpO+q7zpii7LI3xUUAIFAXzfKWNEtmp6n7K+SqqnVquNoIk5NVcRecSf1u9PpdCgp0aGgQBexTRoJBkiEs+fwUPVGnaj5CI1OCXJkL3wMPII4pd6JI5rtOKzZhnyi621mfinGijOhRuLihr48UKkEiKIk6qVrNPK7cblc8Hi8qKkxQVQJaMt7Fl5VN24O/gR5pDCshpOON9yZlI8h2FRyNLi/cYU3s6cvdWbONOGGGyajrCx1L36zleG6WYZCITnLye12Z21qptVqxc0334xf/OIX+MpXvpLq4TCSDxN0iRIMBvH555+jrKwMU6ZMSQsB5PV6cfDgwYRdipj5SXzY7XYcOnQIs2bNynony9FCEAT5IepyuVBRUSE/REejdtNiCeLNN3tw7FhQ/p3UY643LUutvKSJnBQnZgufaK2ZFKFCDFMJmr6okkWm4vQ3MtbwdCw0wqDVquTfS6JEGLIxCq09AuJ3YaTfAxU9saKg4QYrkdtT0j9dLhdcLhdqakxQqTT91h7GK+gkp9S+7oZKbVVkGiNtOzDQPg70IiDc5ISasfj9Png8PfD7/cjPz49Zd0cjmPTfwxHgNFJFo7TS/imilh5Tupyilwg6VYdxSP0xDqu2oUdlxRTxYkwVL0WdOB95RBcxPkW40dRdWutK5HRIxdwmWsw54fcHYDIZIap5rNM+BZ6EsDz0Q+ShYIDoGon5MmagNgySAQo1RJI+q9VqMHVqFS67bCLGji1P4Ogy4iXZrQlEUUR3dzesVivsdjt0Oh2qq6thMBhQUDA6NaEjgcPhwM0334wf/ehHWLJkSaqHwxgZmKBLFL/fD47jYDLFtjdOBYFAALt378b8+fPj/gwzP4kP6mTZ2NiY0Tf0dIY+RGl9Q0lJieyYOdLR7wMHfPjHP3pw4kQ33G43TCYTNBp178RXBUGIvEdKkTPFkh0ACFEmm9L+RAoE2i8tEQaKAvRutVcQSZGq/hqhDwadeFPBqoybijdaW9i3RmgobRNoZCqRdFRaqxQdvQpP+wy39491HOik3+Hohtfr6xVzqrB9j1ha/j81b6E/S7VuyvYBSdCFp99Fi6XYaZRqSIY4/e1z/5+NXk6yyxdBW24EgwF4PJJr5kB1dzQ1MzySFA9ST7do04/EI9gA4FR14Yh6Gw5rtqFDfQDjxQbUk0sxVbwERWLfmvTwViGK8yS97pTUW4ejG8FgAEajEbwqiLX5P0ce8rE0+NigTdKj90U5ZyOvRxrdEwQip1QCAkRRhfp6Pa68sg5GY0nCx4QRH6PRZ87j8cipmaIoyuKupKQkY16AO51OrFixAj/4wQ+wfPnyVA+HMXIwQZcohEiuaOkEz/P44osvcNFFF8W1vCAILMVyEOjDwuPxYPbs2VmVepHOEELQ09MjO2bm5+fDaDTCYDAgP3/gidhQt3f48GFs3+7DuXNGhPkdQaUi8oRfansQmcqmOFTGRpnwh08GIwVNtPiL/ryU9jjw7TY87ZJO0qXrOrZ9Px3yQNuOJjxaR4lH0Ck1YlSQxX+/oRGugZ9F4cK631FApQJsNjt4nofBYJDH0V8jaPq76OHSSFs4Wq0ou01GQ5uVx4KOof/9I72mKQOnYQKQ01+j67pCofB+d33r7sL3K9o1M/Z4Y4vQodRySi6bktssISJ8ohtHNZ/hiHobjmk+QxWpxRThEkwVLkU1mQRV2HyFGo30rUkEHA47eF6AwVCNkMqP1vyfophUYnHoYWgw8AuicDFHo9Lh25DaSNAaUWkfaJ2cSgXMmGHCFVdMQnV1UX+bYCSBVDQNpyUDFosFHo9HziqprKxM2/lBT08PbrnlFtx///247bbbUj0cxsjCBF2ipKOgI4Rg+/btg9rPsnq5+BAEAfv27UNBQQGmTp3KjlMK8Xq9smOmSqWSHTOTYUIkiiL2798PrVaL+vp6eL0iPvnEgx07fPB4lElceDqXNOlVxF28kYnBUi+V9LRwEaGS085EUUSsQDoVaGp17J5slHBHTSmaN3Dz84H3RUoJ7a85enh6ZqIijoqYwYUcHQsZcBvUsMNisQIA9PrqKCETW9D1l14XS9BFCtu+65JeCPQvdmL1zUt8HYo5CI1oRp8PtN9deN1dcXGx3O8uen2AUhup1faNyoUzUJ82Oh7p2NHasgF3FwJCOK3eLdXdqbdBBRWmiJdiqnApJqnngPCxRLjk+EyIiOpqA4IqD5rzf4QqUouvhB4YtFZPMsGRIn7RLxOo26q0nHJ+SvN4gjlzanDFFXWoqMgtx8RUkAoxF014VonD4YBOp5NdM9Mlk8fj8WDlypW45557cNddd6V6OIyRhwm6oRAIBFI9hD5s27ZtQEFHxZwgCFCr1Uyk9AN1sqypqUFtbW2qh8MIg1rMWywWBINBVFdXw2g0Din9hed57Nq1C1VVVZg4cWKkiQMvYscOLz7/3Au7XZBNSRRRpphCECKlZUp1VANFUvr2uksESfD177YZXcMU/zrpix1pv6jYi+ezGo0Ing9BEp6KiEs0DZMSX0SObl8l7/NAaYuEiOjqsiAvLw+VlZVRaYJ96+Ei/xbfl0UF3cA1Vv3/TTp26kG3J+1z7IhtfxEyjSb2egkh8Pn88Ho9ct1dUVERioqKIsx4qPNreKqjJMqiXUwjxWTvkv2mwCYCAYFFdRyH1R/jqHY7HKpzOE9YgCniJThPuAAFKAYhgNVqgUqlhl6vh1/lwuqCJzBWnI7rQt+GCoOXFUjRQqUGTqNRydF5aX/DX/JI+9nQUIOFCyeirIwJudEgHcRcrDGFu2YSQmTDr1SlZvp8Ptx666248847cffdd4/69hkpgQm6oRAMBodVUD4SDCTomPlJfDAny8yB53nZMdPj8aCqqgpGoxEVFRWDnt+BQADt7e0YP348xowZM+CyBw748MknXpw8GZDTq6QXI5IAAsKd7SRh1J9IkCIAiTVvjobW78W6/1BROVwihZ5ELKGnVkvphqIoDnm7kbVvg99TlTQ4GjGN3e+PRjU7O7tQVFSI8vLyGH/vv8darJYF/UHbWijr7G+5gaNs8aZXSiItuk3CwCmP4fVe0cSquysrK0ZBQWHMGlYaTZZSktVQqwkAQa4lo+Inmc8Zeuw0GqBb6MIRzSc4ovknzqj3Yqw4HTXds1EXmo/xZfXwqhx4veBx1AnzcRX/rxGpmv2vn45XhEajkZ0zo89JtVqFvDw1GhtrcPnlE1FSkvw0cEZs0lHMxSIYDMqGXx6PB5WVlXJq5mj4Ffj9ftxxxx1Yvnw57r333rQ9ToykwwTdUMgkQcfEXHwwJ8vMRRRF2O12cBwHp9OJsrIyGI3GmLbTVLTX19ejqqoq7m10dobw8cc9OHAg0OtgR1P1aFRLWk6tViJNsTIxE3W9jIUkauh6wtdFwtLGkgc1hVBSQpX0M6X59MARxGiUtMD4hWCsmrNYx1OtlmrHurq6UFpahtLSSGMK2sB74GhnIiYhYpjAHNjwZbB195cCGnu7atl1daCUx+j1x0rHVNapQiAQgM8npWYSQlBYKEXu8vO1vaJeFfWZ/mspqUslhTpUxnt4qXikrTyia/j8xIN293s4V7ILpwt3opRUQwCP6cJCXMbfFVPMUSMg6XSSouv0mAz0YqKoKA+NjSZcdtkEFBUxITeaZIqYi0YURTgcDtk1s6ioSE7NHIma8EAggH/5l3/BokWLcP/992fMcWIkBSbohkKmCDpmfhIf586dw9mzZ9HQ0JA2+e+MoUEIgdPpBMdxsNvtKCwshNFoRHV1NTweD/bv34/Zs2cPWbT39Aj45BM3duzwwe8X5YlguFuiZB5LkJ9PmztHRrekCXASdhZ9IzPDaTSumKkoaX2D3eaovTudHEumLDRCQz8f7hapimg9EA/RUbnI7UcKOrUaCAZD6OrqQkVFJYqL+5pTDFazlki6pbR8uKAbOAontZ0YeN+V/m6Db1sx7eHjFHSKyKLPBDoeScxEDkwQBLmZuVJ3V9Rbd6eOqwn9YGOh54lS3ynKaajSmKQXJ9RNNLyFQVdXFwoLC1FRUQERAs6o9iKfFKEGU8JeOgDKOUhAG4VLL18Avz844POxqCgP8+ePxcUXj4dOl9qes7lIpoq5aAghEa6ZAGTXzOLi4mHvVygUwte//nVcfvnleOihhzL2ODGGDBN0QyEUCo1IM9/hsH37dlx00UVQq9XM/CROmJNldkMfoBzHoaOjA4FAAJMmTcLYsWOh0w2v5oXnRXzxhReffeaF08lH1ArRXmO0FQA1gpCEgqp38jr82iKKNEEXo9IQBzdIAZS6oOGNpf/m3pLrIp1EQ44qhkf9aG+9cMMRxeyFNmmOvWUpzZTI2/P5guA4DtXV+n6/41jGJn3/PliULXw/lWNPv/uBPh+vYOyv/i32mJT+iDQdUhqPUvPW18xF1ft7UU4Fi3bJDIcQMazuLoD8/DyUlhahoECXxFQyxZCEjl8aa6T5ECEEnZ1dKC4uQllZWVxrpn0PqespzVzpj6KiPFx8cS0uvHAc8vOZkEsF2SLmYhEMBmXXTK/XO6zUTJ7n8a//+q+YN28eHn/88aw6Toy4YYJuKKSjoPv0008xb948aLVaJubiQBAE7N27FzqdjjlZZjmnT59GV1cXpk2bBofDAYvFIvcUMhqNKC4uHtb6Dxzw4Z//dOPcuVDMKAdAIyKKmJHcGfs6TdJIRawJeLjYkdYVnfpGoy2ibOqgpCmKMdeZDKRG6LEdIaWaP2mjidwzCUGvi6ZigEKjgOHHRxKy0r57PH5YLByMRiPy8vJjXtODRedoNGfgCFr/gk76eXDBRpeJdNxUUi7pNqhtvpLmSuRaTeqCqlYTWewMZPQCKLV0Awk36XtTg0ZqY9UaEkIQCgXhdjvh8/l7+90Vobi4eMi9I2l9aqxxhaeUSrWRnTHTaSP3VTmeokjkfVKpCPpzptVoNJgwoQyzZ5swZ45RbrnBGH2yWcxFQ1MzqWtmcXExqqur40rNFAQB3/rWtzB16lT85Cc/yerjxBgQJuiGQjoKui+++AIzZ85EXl4eq5cbBOZkmRvQCYHX68WsWbMiIrD07SjHcfD7/dDr9TAajSgrKxvyddPREcT27W4cPOhHKNS/MYqSpkmgVksCUIpSUbER3/ap+JPWi97P0fUKcuRqpAlPsQyveYolSDUayOl9/R1m2ucrHvEpGXJILnNWqw0mkxF5eXnhW5XFkCQY6O/o8YsWxTRlUonmAIgQVFQUSutQAeBBjz39PxVldL/Do7KKGI1vH6VG3v2LzFhmOLQ+ke5fIg6i0USa5Ii9Y1FFbDcUCsmpmaIoorCwECUlJcjLyxvweqItEQZywwyPzgmCgK6uLpSXl/d5EaM4bNI0ZyUNtndrACKj15LjM1BVVYSZMw2YN8/EHCvTgFwSc9EQQuB2u2G1WuXUTIPBgPLycpSXl0dE7wRBwPe+9z2MGTMGTz75ZE4dJ0YfmKAbCuko6Hbu3Im6ujoUFRUxMTcA1BRj6tSp0Ov1qR4OY4QQRRH79u1DXl4e6uvrB7weBEGAzWYDx3Ho6ekZtitZT4+A7dt7sGuXD15vf/cJIve3C0+XBJSUSMktEBiKKyZNwwQGb/49VMIFWqLboZ8F+trBJ7IerZbA6XShu9sJk8kErTZ22rTS4HvgYxlPdC06yhcrxXWwWjppTPFHTMPFYd8x9z324WYkQ62p7A8qjlUqSWRFi7FYdXdFRUUoLJTq7qR1DC7kAPqyQBLMPC/01kZWyLWRNI0ylliVUl+pCQ7CWvZIQjw/X4MZM6oxb54JtbXlyTtAjGGRy2IuFsFgEBaLBatXr8bLL7+MCy+8EMuWLcN1112Hxx57DGVlZfj1r389Kg6ajLSGCbqhwPN8XM2ERwtBEHDu3DmcPHkSpaWlMBqN0Ov1rCYsCupkOXv2bJSU9J+qw8hsaI85vV6PiRMnJvRZ2jCW4zg4HA6UlpbKrmSJXk+iKOLIET/27fPjyBE/fL5YUSvS279NBCF9hYFitpK4wKP1ZbSmKhkvoahQEMVI2//hmLFIY1Xs7gdqJxCORgN0d7vQ0yOJOY2m/wlNPEKR9iAb3AhGFSXAhybopOXUfVIv+yO2qCOQesCpesVNZHQqfMyEIO5tDUZ0TRs1GgEiv0Ol7s7b2+8uD2VlJcjPj6/uTurdKILnJddSvV6PkpJCSO7Nfb8oSWxKqZWCQJCXp+5NsZTSLjUaFSZNqkBDgxEzZhhYSmWawcTcwHg8HmzevBkbNmzAP//5T+h0Ovz4xz/G4sWLE3JtZmQlTNANhXQRdNHmJwDgcrnQ1dUFm82G4uJi2eFvqHUN2QJzsswNaI+5CRMmoKamZljrIoTA5XLBYrHAZrOhoKBAvp4StZwWBBGHDwewd68Xx44FEAySPqJIpRKRl0cQCPQ/6aYCjxqJDCzwaBuD8M8mJryU2rXYdX3KcrTHXvwoDo2RQldJ3SRhkZe+9YJ2eze8Xh/Gjq3GQM3Q4zUXGazlgLK+SEHXX8uAwcxVEh0foNTV8bxUIyn9m0+4XQR1kxwqKlX/Dd2lvyu1j7QOT6NRwefz9/a784XV3RXFfD5JEWwBgiCgs7MTVVV66HSx791UyIWnHgOK6DQYijBnjhFz59aw3nFpChNz8SGKIn784x+jp6cH3/nOd9DW1obNmzcjPz8fixcvxtKlSzFt2rRUD5Mx+jBBNxTSQdAN5mRJ87A5joPVakV+fj5MJhMMBkNUjUl2w5wsc4eh9phLZP0WiwUWiwUqlQpGoxEGgwGFhYUJrYfnRRw65MfevT4cOybV20kCTRJ5Go2URifV4Q1+q1VcK6nQUO4Fsfq0SaJAcaCM9Tcg/jo2ZVuDp13SdD0aSYoXyeBCqdWzWm3geb73fkb6rRdMtFYtPvfJaEEXW9wk0v5gIFEX6ZpK03SlOkzJkGbobQMUQR3/Fx0dnesP6VxSomXRhEI8vF4PvF4vpH53hSgtLYFOly8blwSDoV7X0moUFOiiakYVlKgkdRkVUViolevixoxhvUXTGSbm4oMQgp///Ofo6urCiy++GDGf6ezsRFtbGzZs2ICTJ0/immuuwcMPP4wxY8akcMSMUYQJuqEgCAJ4qdlUShhKs3Bq326xWKDRaGA0GmE0GrM6WkWdLAsLCzFlyhT2kMhiuru7h91jLhECgYB8PfE8L/cTKikpSeg843kRBw74sWePF8ePBxAKiXIURaOR/k7bHsSLJJhUIETVKxAlJ8jwSB0doiR2BLmeSzJrGdp1MlCUjoqH4dTzScMi4DgL1GoVjMZqAIr4jbXtRKJfyY7QAYgwRxkMxahFSbMdTGzl5wOBgADapmCoUPfLeI7VYE3MafrlQE6aAK3Dk/aZ53m43ZK4E4Qg8vMLUFBQgO7ubphMpj4R8f5SSPPz1Zg0qRyNjSZMm1bF6ooyACbm4oMQgmeeeQbHjh3DX/7ylwFfTvt8Prz33nu4+OKLWSpm7sAE3VBIpaAbipiLxufzyZNRQHJQMhqNCUca0plgMIj29naMGTOGOVlmORzH4fjx42hsbBx2f7mhEAqFIvoJVVVVwWg0ory8PKHrMxQSceCAD3v3+nD0aACCIMqRKck5UZpsK2ll4cTuNUYdHZU2B6qYTc2VFgO0Hmyook6Z7NP0QFrvNNSJGo0a8rwIjrMgLy8PlZUV8vponVX4fiifpX0AB91KhGvoQPStx+s/WhVdSydFDFVyOmL475XvMJHHq9KuQKqXHN6jWRlf7Hq7/hqJ01YHsQQofUFBxRttIxBrHdJ2ebhcPXA4HNBoNCgoKAhLzdTIvQzDGTOmBLNnV6Ox0YiiIpZSmSkwMRcfhBA899xzaG9vx2uvvZbzJTSMmDBBNxRSJegIIeB5PqkuloFAABaLBRzHySlMyejNlUrcbjf27NnDnCxzgNOnT4PjODQ0NKRFKrEgCLDb7bBYLHA6nSgvL4fRaERVVWLRgmBQxP79Xuzd68OJE4FeUSS5NGo0kvBKRCRJrQwiU9+URst9hZ4UARESFmJS7zgxZm3cUKDpkpJdPYeiokKUl0c7Ekp29OEo9WuqPr+Plban1BoqwjjahVJ5iRZZl0iIEGaND4TXcCmfVYTMwMdTaYswGH2NSaggij8qOBBUkANK5C7a/EaJlNEXB+HijcR9DkhtFaTUVb/fD6vV2huZy+vtd+eGxyPV3RUXF8FgqMDkyVWoq6tAfX0lSkuzN9MkW2FiLj4IIfj973+Pbdu24fXXX0+4fpuRMzBBNxREUUQoFBq17Q1WL5csQqGQLO78fj+qq6thMpkSTiNLJczJMjcghODIkSPw+XyYPXt2WqZWEUJkx0y73T5kk6JAQMTevV4cOODDiRM+0HdJiuNkvM6QJGZNXTTRQo8aW4T3NYu1rxqNCmo1QSgkJOV+IQkWAp4XwHFdKC0t7TedNtxpUqqhSkxMxptuCVCxEi4gB2sijoRbOtCG4oOvN1a0TNVHvA8XlQqyAUu4KKZ/k144AEOZGkgRT6k1gd/vg9Vqw9ixNdBq8+RWA3l5GowZU4wxYwpRURGCRuOFIAhy/8hMekYxmJiLF0IIXnzxRbz99ttobW3N6hIZxrBhgm4ojKagGy0xFw3P83LjZY/HIz84E00jG03Onj2Lc+fOMSfLLCeRHnPpQrRJUV5enmyqksi56vcLOHJEitqdOROAxcKH1V3FJ+6G2mJAo1H19o6TXBZFURW2XUVAxSMa+4dEpDRSu3qp91j/WQN0n2hELxExF68bZeTy8Qu6RNdPkdIoB2rAPvD3SN9xxCtU+4OKOY1GEuv0u6Zpo9Hjo2I6nn2m5ywhBIGAHw6HHTU1kpirqCjAxIllmDy5EpMnlyM/P/IlSHiqs8fjGXb/SMbowMRc/Lz88stYv3491q1bl5JyAkZGwQTdUBgtQZcqMRcNTSPjOA4ulwuVlZUwGo2oqKhIiwcnjdZ4vV7mZJnlDKfHXDoRXsdKCJFTnYuKihJcD49jxwI4dSqA06cD4LiQ7Ow4kKGGVHcWn4smoNRWSTV5KrnervevUJ4l0jJDEXSKGJM+GwwGwXEWVFfrB53M0FTPWGmWg5FoBE1KuQxfPh5nzMS2oXxuIFEXn7ulErHs71yQ/h8ZdVMcNQVBRF6eVMM4FMJbGISPSRQFOT3X4/HC7XZiwYJ61NfrUV9fhcrK+CewoijC4XDAYrHA4XCgpKQEBoMBer0+LVKxGRJMzMXP3/72N6xevRrr169P+LnAyEmYoBsKhBAEg8ER38ZwzU9GAvrg5DgO3d3dKCsrkxuZp0LcMSfL3CGZPebSiWAwKKc6B4NBORpeWlqa8Pns9ws4ftyPkyelCJ7VykMQxN6XQ5HLqtWSoKMRF3r5UuEGQP7MYFE/xYxEEnMajRhRixb+WenRogqL5Ci91ehytLbXaDTGVTMy1KijNJb+U0ljf0Y6bjQ6FU8/N9p6YCiRulgRvnhbB4RH0PLy1L2iTAyz+VfJy9E6wGjhOdym8eEQAuh0avC8VC9nMhWhokJEQYEbixZdmJTMCkIIenp65P6RWq0WBoMBBoOBRTlSCBNz8bN69Wq8/PLLaGtry2g/A8aowgTdUBhpQUfNTwCkRQRvp7qSAABfpklEQVSsPwghcDqd6Orqgt1uR0lJiVwjNBpRMuZkmTuMdI+5dIHnedhsNnAcB7fbPexoeDAo4tgxX6/A88NiCUEQwh0dJUMRno/P4TFeVCoCrZbITaX7e55IzaMV506VCvD5vLDZ7DCZTNBqJTGn1MT1HaQkWsQhpRYONXJGo3LxCjq6LM22SBT6EXocpYgkFZbh6xvc1ZP2x6O1kgMZl8QrHPtDqq1Uy+daaWkeamtLMXWqlEbZ3W3FuXPnMHfu3BFz7vP5fHL/SFZ3lxqYmIuftWvX4n/+53+wYcOGGAZQDEa/MEE3FEZK0KVLiuVQoG9FaY1QYWGhLO5GIuWFOVnmDrTH3Jw5c3LK6CY6Gl5aWipHw4f6wiQYFHHihB8nTvhx5kwAHBdEKESgVgsx2xkMB+n2JYL2Yous6SK9AifyMx6PR+491neCr4gXaV30HkkFiQBClOgiIeGOlH2jYzQqORQnTqk9g1IDNjAEVKxKApb0riPWepXIGXXdpKY0NNom/VuAKMb7fCBQq9Xy9kQRvamOavk7UVpLKJ8aatNyml6p0aig1+tQU1OMceOKMWFCGQwGJXXszJkz4DgOjY2No5YmHwqF5BcmrO5udGBiLn42btyI5557Dm1tbaisrEz1cBiZBRN0QyUQCCR1fZks5mIRbgCh1WrlRubJsNy12Ww4fPgwc7LMAVLdYy5dIITA5XKB4zjYbDYUFhbKaWTDeWHC8yJOnAjgxAk/zp71oaNDam4+lFq0WNB6MylSE9mLTKmrkqJNLlcPenp6YDKZ4prg08/SR5VWSxKq84qMzimph0o0TPq99DtFZEnilMgiS7pnK8JQWkYaV6xU1USajUdDCFBQAASD/QmtaPGWmNun0tRecheNpwUCIUBengpVVQUwGIoxZkwxxo8vwZgxJdBqY4ukkydPwuFwYM6cOSmreWZ1dyMPE3Px8+abb+KZZ55BW1sbe0nNGApM0A2VZAq6bBNz0Xi9XtkAQqVSyeJuKBN05mSZO6Rbj7l0wu12y2lkGo1GNlUZrugVBBGdnVL93blzUgTPbg8hFJJ64MULIUTuYaZWA6HQwH07nU4nvF4fampMESl6NGUz1j0xvB+c9LPUEy5epOha3IvH+KzYKwoTWwlNeRwKNOpJI3m07o2Kx2QQnmZJzXDCI3mEEJSV5cNkKsKYMSUYO7YI48eXQaeLL2Xy2LFjcLvdadVuJLrujl5TBoMBhYWFqR5eRsLEXPy8++67+NnPfoZNmzbBYDAMe31btmzBAw88AEEQcM899+Cxxx6L+Purr76KZ555BgBQUlKCP/zhD2hsbBz2dhkphQm6oRIMBodU4B5NupqfjBR+v182gBBFMW53v/C+Y7NmzWJOlllMJvSYSyfCrylBEOSJaHFxcVLuJ8GgiDNnfDh7NoCuLum/7u4QCFH3ighVhICLVTPXXysDQgCHww6e52EwGPodb6RFfqSZC713ApH96AZCSV0c2vGhQm4ogi5egxRln5UxqtVib8sISVQqDdyTL+akn1UoKyuAwVCImppCOX1yKI286QTf7/dj5syZaX1dx6q7MxgMQzIqykWYmIufDz/8EE888QTa2tqSYvYlCALq6+vx9ttvo7a2FgsWLMDf//53zJw5U15m27ZtmDFjBiorK7F582b89Kc/xSeffDLsbTNSChN0QyUZgi5TzE9Gimh3P9rIPHoiypwscwfaYy4/Px9Tp05l33WC0N5cHMfB5/PJE9Fk94/0eEI4fdqPM2e8sNt52GwhuFw8eJ6mGvb9TLT4IQSwWq1QqQC9vnrQ1D6aDhgtoMIdOrVapUaPtlCI1RctvNfdUKD7ItWZJSbo6H6IohJhk/ZDcf2MhfSZ2BFIKvyk5u8JDUcmLw+oqMhHdbUk3saMKUZtbWnckbeBIITg0KFDEEUR06dPz6jrmtbdWSwW2aiI1d31DxNz8bN9+3Y8/PDD2LhxI8aNG5e0df70pz/Fm2++CQB46qmnAACPP/54zOUdDgdmz56Ns2fPJmX7jJTR74U2MnZTDBlBELI2xTJe8vPzMW7cOIwbN06eiB49elSeiBqNRhQUFGD37t0YO3Zs0m54jPQkW3rMpZK8vDyMGTMGY8aMgSAIsNlsOHv2LPbv34+KigoYjcakTESLi/MwfXoepk8vlX8niiIslhC6ugLgOD9sthDs9hCcTl521qRCihACjrMgLy8PlZWVA4oQxUxFjGncEl6/FgqRsFTMyPo4KvA0GlXYvVf5ffi/Y2wl6veSe6NGEy3ASG/D9ch0UMXJU1peEKSXeIlE16Q6vtgoglXV615JItpA0OgmFX4ajVTzVl2tw5gxRRgzphjjxvVf8zYcCCHYv38/NBpNxok5QLqmampqUFNTE1F3d+jQIRQXF8tGRSwtnIm5RPjss8/w8MMP44033kjq3Obs2bMYP368/HNtbe2A0beXXnoJN954Y9K2z0g/mKAbBJVqaD2Fsr1ebqjEmogeO3YMdrsd1dXVKCoqikitYmQXfr8fu3btwsSJE2EymVI9nKxAo9HI9aqiKKK7u1ueiNIWI3q9Pml28Wq1GiZTAUymAgBl8u8loRdEZ2cAFksQXV0e7N17EmVlRSgpKQN1r6SihBBVb1qiuvd+mch9VgW1eqAaNRUUo5Bo4Rf9b/T7e3r/JyRWimdfI5JYty1qqkLTJgdi4NROKeIXuQ0VtFq17Kyp1xfCZNLJNW81NUWjEl2iEXedTofJkydn/P1brVZDr9dDr9eDECKbf506dSrn6+6YmIufHTt24Pvf/z7WrVuHCRMmJHXdseal/X0X7733Hl566SVs3bo1qWNgpBdM0I0ATMzFh0ajgUajQSAQwIIFCxAMBtHR0YEDBw6gvLwcJpOJpbtkEW63G7t378a0adOyusdcKlGr1aiqqkJVVVVEi5ETJ04gPz8fRqMRBoMhKS60sbZtMulgMul6e0eewDXX1MNoNMFqDfZG9AKwWqX/PB4ewSCBKPJyuwPlXqncM2laZ/T8Rfp9bJfOWE26hwNtmzBUaIplfymgSt2g0jdO+axkVFNcrEVZWR5KS/NRVpaP8vI8lJcXoLIyH5WVBUlJmRwKoihi9+7dKCsrQ11dXUrGMJKoVCqUlpaitLQUkydPlmtZ9+/fD57nc6rujom5+Nm9eze+/e1vo7W1dUSui9raWpw+fVr++cyZMxg7dmyf5Xbt2oV77rkHmzdvZq6aWQ6roRuEUCgUR/8hhVwzPxkOZ86cQUdHBxobGyMmmDTKwHEcHA5HUvpyMVJLrvaYSyeiXWipUVGyowx+vx/t7e2YPHkyqqurB1w2EBDgdIbQ08PD7ebh8fBwuwX09ITg9QrweHh4vQJ8vkhrfcVIRHpESeYhUhqk1AOO3rOpEKOtCBRzF0UIhv8OUf+W/q60L1BSG8P75SktClR9xCTdrpSOqYJaTcDzSo8+tRrIy1OjuFiDsrJ8lJUVoKIiH+Xl0n+VlQUoK8tLyxdbgiBg165dqKqqysn06Vyqu2NiLn727duHu+++G6+//jpmzJgxItvgeR719fV45513MG7cOCxYsACvvfYaZs2aJS9z6tQpXHPNNXjllVdw6aWXjsg4GKMOM0UZKjzPR7iBDUSum5/ESyJOltF9uYqKiuRG5slKIWOMLKzHXPoRCARko6JQKITq6moYjUaUlJQMa6Lm8Xiwe/duTJ8+HRUVFckbMACvl48Qf2433/vvEPx+ER5PEMGgCJ4nch2eKMZ23UwEyRCFR3/PUZVKEmRarRr5+Wrk5amQn69BXl7kv6W/qVFQoEZ+vgalpVpUVKQ2ujYcBEFAe3s7jEYjamtrUz2clBPd7664uBgGgwHV1dUZX3fHxFz8HDx4EKtWrcKrr76KOXPmjOi2Nm3ahAcffBCCIODuu+/GE088gRdeeAEA8K1vfQv33HMPWltb5ZctWq0Wn3/++YiOiTHiMEE3VOIVdMz8JD4EQcCePXtQXFyccK1FeC2D1WpFfn4+TCYTqqurRySFjDF8Tp06BYvFwnrMpTE8z8uOmR6PB1VVVTAajaioqEjo+nS5XNi7dy9mz56N0tLSwT8wioiiJPQksUd6/y1CECJ/J/0stQsQBOnvoij2CjFJmOl0ml5RpoZOpx0Rg5F0h+d57Ny5E2PHjo2Z5pXrhD+rMr3fHRNz8XPs2DHccccdeOWVVzB37txUD4eRnTBBN1QGE3SsXi5+AoEAdu3alTQnS4/HI6eQhRtDsEbkqYdGYf1+P2bNmsUi1hmCKIqw2+3gOA5OpxNlZWUwGo2oqqoaMJJut9tx6NAhNDQ0DNprkpHZhEIh7Ny5ExMmTGDGRnFC6+4sFoscEc+Eujsm5uLn5MmTuP322/HSSy9h/vz5qR4OI3thgm6oDCToqJgTBAFqtZrd7AbA7XZjz549qK+vHxFDDNogluM4EEJkcZdpb0OzAVEUsXfvXhQUFLAecxkMIQROpxMcx8Fut6OwsFBOdw6PtlLTlcbGRvYyJcsJBoPYuXMn6urqYDAYUj2cjCRT6u6YmIufM2fO4NZbb8ULL7yAiy++ONXDYWQ3TNANFUEQ5Lq4cJj5SfzYbDYcPnwYc+bMQXFx8YhvL7w+iOd52fxhNLad6/A8j/b2dhgMhqTbNDNSByFEjohbrVZotVoYDAYIggCr1YrGxkaWUpvlULObKVOmMLe8JJGudXdMzMVPR0cHVq5cieeeew5XXHFFqofDyH6YoBsqsQQdE3Px05+T5WgRCoVkcef3+1FdXQ2TyTRs8wdGX1iPudzB5/Ph4MGD6O7uRlFREXtpkuX4fD60t7dj2rRpqKysTPVwspJ0qbtjYi5+urq6cMstt+DXv/41rrnmmlQPh5EbMEE3VKIFHTM/iQ9CCA4fPizXUKVDuwGe52Gz2dDV1QWPxwO9Xg+j0Yjy8nL2XQ4TmlLLJnzZD62PpBO+cFMVv98vX1dlZWXsusoCvF4v2tvbMXPmTJSXl6d6ODlDKurumJiLH6vViptvvhm//OUvsWjRolQPh5E7MEE3VERRRCgUYuYnCTAcJ8vRQhAE2fzB5XKhsrJSdvZLpzqGTMDhcODAgQOsx1wOQAjB/v37oVarMW3atD7XtiAIsNls4DgOPT09aVsfxIgPt9uN3bt3p6VzaS4xGnV3TMzFj91ux4oVK/CjH/0IS5YsSfVwGLkFE3RDRRRFBINBJubihDpZjhs3LmPsrGkdA8dx6O7ulp399Ho9m4QOQldXl2yIwXrMZTeiKGL37t0oLS1FXV3doPfB6Pqg0tJSuT4oHSL2jIHp6enBnj172IuaNGMk6u6YmIsfp9OJFStW4Ac/+AGWL1+e6uEwcg8m6IaK0+mUHSyZmBuYkXayHA2os19XVxfsdjtKSkpkZz82CY2E9ZjLHXiex65du2AwGDB+/PiEP08IgcvlgsVigdVqhU6nk68r1kMy/XA6ndi/fz9rQ5HmJKPujom5+Onp6cEtt9yC733ve7j11ltTPRxGbsIE3VD54x//iN/97ne4+uqrYTabceGFF7KJfQxG28lyNCCEoKenR3b20+l0ciPzXBYwtD4yEAiwHnM5QDAYRHt7O8aPH4+ampqkrNPj8cj1QSqVCkajMSObLmcjDocDBw8eRGNjI/s+MoxE6+6YmIsfj8eDlStX4p577sFdd92V6uEwchcm6IaDz+fDW2+9hZaWFuzYsQMLFy6E2WzGpZdeCq1Wm+rhpZxUO1mOFvRNKLVtp73usnmfo2E95nILv9+PnTt3YsqUKaiurh6RbQQCAXAcB4vFAp7nUV1dLTtmsvNrdLHZbDhy5Ajmzp3LegpmONF1dxUVFTAajXLdHRNz8eP1enHbbbfhrrvuwje+8Y1UD4eR2zBBlywCgQDeeecdNDc349NPP8Ull1yCpqYmLFy4MOeiNunoZDlaeL1eeRJKIwxGozGr68hCoZCcdsd6zGU/Ho8Hu3btwowZM1BRUTEq2wyFQrBarbBYLPB6vaiqqmJOtKOExWLB8ePHMXfu3Jx6SZULxKq7E0URGo0Gs2fPZtfWAPj9fnz1q1/FzTffjHvvvZcdK0aqYYJuJAiFQnj//ffR0tKCrVu3Yv78+WhqasJVV12V9W83M8HJcrSgaS4cx0EQBFncZVPtCesxl1u4XC7s3bs3pe6G0U605eXlMBqNqKqqYmm+SaazsxOnT5/G3Llzc+7FZK4hiiL279+Pnp4eqNXqlPW7ywQCgQDuuusufOUrX8H999+f0/McRtrABN1Iw/M8tm7dipaWFrz//vtoaGhAU1MTrr322qy7SWaik+VoEQwGZXEXDAbl9LFMbmROrcunT5/OeszlAHa7HYcOHUqrGipCCLq7u8FxHOx2O4qLi2VTFZb2PjzOnTuHc+fOYe7cuexYZjmx0ixT0e8uEwiFQli1ahUWLlyIhx56KKePBSOtYIJuNBEEAdu3b0drayv+8Y9/YPr06WhqasINN9yQ8YYh2eBkOVrwPC+LO5/Pl5ENl1mPudyC4zi5DUW6ZhmEO/tZrVbk5eXJpirpOuZ05cyZM+A4Do2NjTmVMp+LxFMzx/O8nPIcq+4uV+B5HnfffTcuuOACPPbYYxnzvGbkBEzQpQpRFPHFF1+gubkZb775Js477zwsW7YMN954I8rKylI9vISwWq04cuRIVjlZjhbRDZdpbVBFRUXaPiy6urpw8uRJNDQ0ZHVtIEPi7NmzsrlRJqXd+Xw+uZ6VEAKDwZB1Kc8jwcmTJ+FwODBnzhwm5rKcoRigiKIoR8WT1e8uExAEAffddx+mTZuGH//4x2n7fGbkLEzQpQOiKGLXrl1obm7G5s2bMXbsWCxbtgyLFy9O+1S206dPo6urCw0NDaxgfpiIoijXBjmdzrSsDWI95nKLEydOwOFwoKGhIaMn99EpzzQqnuvpY9EcO3YMbrcbs2fPTpt7DmNkSIabJY2K0z6S2Vp3JwgCvve972Hs2LH45S9/ye4ZjHSECbp0gxCCffv2oaWlBRs3bkRVVRXMZjOWLFkyYvbgQyG859jMmTMzerKXjhBC4HA45LegpaWlMBqN0Ov1KTnWrMdcbkEIwZEjR+TrO5u+b57n5ai42+1GZWWlHBXPpv1MBDq59/v9Wfd9M/oyUq0JouvusuHFiSiK+Ld/+zeUlZXh17/+Nbs2GOkKE3TpDJ1Et7S0YP369SgqKoLZbMbSpUthMplSdoOkTpYlJSU477zzMvZGnSkQQuByucBxHGw2G4qKikbV+IH2mNPpdJgyZQr7vrMcQgj2798PjUaD+vr6rP6+qW07x3Ho7u5O+YuTVEAIwaFDhyCKIqZPn57V3zdD+r6PHTsmi/eR+r5j1d0ZDIa0yjgZDFEU8eijj0KtVuO3v/1txoybkZMwQZcpEEJw/PhxtLa2Yt26ddBqtVi6dCmampowZsyYUXsIBwIBtLe3o7a2ljlZpoBo44f8/HzZ+GEkUl5Zj7ncQhRF7N69G6Wlpairq8upyX30i5PCwkI5fSxb04tzSbwzRk/MRZOJdXeiKOJHP/oRfD4ffv/73zMxx0h3mKDLRAghOHPmDFpbW7F27VrwPI+lS5fCbDZjwoQJI3aT7unpwd69e5mTZRrh8Xhk4weNRiP3ukuGq5/f70d7ezsmTZrEeszlADzPo729HUajEePHj0/1cFIOrQ2i1xY1VckWIyBRFLFv3z7odLqc7xmaC6RKzMUaR7rX3RFC8B//8R/gOA4vvvhizkTrGRkNE3SZDiEEnZ2dWLNmDdasWQO3243FixfDbDYnNT2OOVmmP36/HxzHgeM4EEJkcTeUhyTrMZdbBINB7Ny5ExMmTEBNTU2qh5N20NogjuMgCII8AS0uLs5IISSKIvbs2SNHYhnZTbqIuVikW90dIQRPP/00jh8/jr/85S9MzDEyBSbosg2LxYK1a9dizZo1sNlsuPHGG2E2m4dVG8GcLDOPQCAgT0B5no9oZD4YrMdcbuH3+7Fz505MmTIlrYyX0pVQKCRPQGkfSYPBgPLy8rSaKPeHIAjYtWsX9Ho9S6POAdJZzEUTbVg02nV3hBD853/+J3bv3o1XX311VGrUGYwkwQRdNmO327F+/Xq0trbi7NmzuOGGG7B8+fK4XQppsXwwGGTOhhkMnYByHAe/3y+Lu1hvQFmPudzC4/HIkdiKiopUDyfjoH0kLRYLXC5X2jdcFgRBTqutra1N9XAYI0wmibloaN2dxWKB3W4f8bo7Qgj++7//G9u3b8fq1avTtraPwegHJuhyBafTiY0bN6K1tRVHjx7F9ddfj6amJsydOzfmxMPlcuHXv/41vv71rzMnyyxCEARYrVb5DShNbykvL8epU6dgs9nQ0NDA3kzmAE6nE/v27WOR2CQRPQEtKSmRHTPT4XrieR47d+7EuHHjMGbMmFQPhzHCZLKYi2ak6+4IIfjTn/6Ed955By0tLUmpQWcwRhkm6HIRt9uNTZs2oaWlBfv378c111wDs9mMBQsWQKPR4Pjx47jtttvwjW98A9/+9rdTPVzGCCEIAux2O7q6umC1WpGXl4dp06ZllK00Y2jY7XYcOnQIjY2NaWNEkE0QQtDT0yM7Zo60G+1ghEIhuUaSGRxlP9kk5mIRq+7OYDCgrKws4X0lhODll1/Ghg0bsG7dOpaZwshUmKDLdXw+H9588020tLRg586daGxsxPbt2/HMM89g8eLFqR4eY4Sh5gg6nQ56vV7ux1VWViZHF5i4yy44jsOJEyfQ2NjI3kSPEl6vV3ajValUsmPmaIhpanhTV1cHg8Ew4ttjpJZsF3PRDLfu7m9/+xtWr14t9/plMDIUJugYCm+88Qb+/d//HQsWLMDu3btxySWXoKmpCZdffjnLJ89CaI+5aJt6QgicTqccXSguLobJZEqb1DHG0Dl79iw6OjrQ2NjIrukUEW5YFAqFIgyLkj35pq1HpkyZAr1en9R1M9KPXBNz0SRad7d69Wq8/PLLaGtrY+7djEyHCTqGxH//93+jtbUVzc3N0Ov1CIVCeO+999Da2oqtW7diwYIFaGpqwlVXXcWcLrMAOtGrq6uD0Wjsd7nw1DGr1QqdTienjjFBkFmcOHECDocDDQ0NzIo7TeB5Xq5p9Xg8qKqqgtFoREVFxbAn4z6fD+3t7Zg2bRprPZID5LqYiya87m7jxo1obm7GokWLsHLlSkybNg1r167F//zP/6CtrQ2lpaWpHi6DMVyYoMt1BEHAww8/DKvVihdffDFmChbP89i6dSuam5vxwQcfoLGxEU1NTbj22mtZvnkGQnvMzZgxI2FnQ7fbLYs7rVYr97pjIj99IYTgyJEjCAQCmDlzJkuhTVNEUYTdbgfHcXA6nXLac1VVVcIC3OPxYNeuXZg5cybKy8tHaMSMdIGJucE5duwYWltbsXnzZthsNgQCAbz88su4+uqr2fFiZANM0OUybrcbd911F+bNm4cf//jHcd3UBEHA9u3b0dLSgnfeeQczZsxAU1MTrr/+epaykAFQM4xkNIj3+XxyI3OVSiWLOyby0wdRFLF//35otVrU19eziUuGEJ72bLfbUVhYCKPRGJdlO31hM3v2bBZ5yAGYmEuMN998E7/61a9w77334t1330V7ezsuu+wymM1mXH311ayumJGpMEGXy2zevBl2ux133nnnkD4viiI+//xzNDc346233sLkyZOxbNky3HjjjWwikYZ0dnbi1KlTI2KGEQgEZHEnCIJs+sBEfuoQBAF79uxBaWkp6urq2EQvQyGEwOPxRETGqWV79MsTl8uFvXv3slYUOQITc4nx7rvv4mc/+xk2bdokGwSFQiFs3boV69evx3vvvYf6+nosW7YMixcvZqnKjEyCCTpGchBFEe3t7WhubsaWLVswbtw4+abIGhannpMnT45aj7lgMCibPgSDwRE1fWDEhud5uYF0uOENI/Px+XyyZbsoivL1xfM89u/fj4aGBubWlwMwMZcYH374IZ544gm0tbWhpqYm5jKEEOzZswfr16/HggULcMMNN4zyKBmMIcMEHSP5EEKwd+9etLS0YOPGjdDr9WhqasKSJUuY09ooQwjBoUOHEAqFUlI/FW764PV65UbmQ+kXxIgPalM/YcKEficujOwgGAzCarXi7NmzcLlcGDt2LMaOHcuuryyHibnE2LZtGx555BFs2LAB48aNS/VwGIyRgAk6xshCBUVLSws2bNiAkpISLFu2DEuXLoXRaGQPohGE9pgrLCzElClTUn6sBUGQ+wX19PSgsrISRqMRlZWVKR9btkCdDadMmYLq6upUD4cxCthsNhw5cgRz5syRTYvo9WUwGFBZWcmMcLIIJuYS47PPPsMDDzyADRs2sGwFRjbDBB1j9KAPotbWVqxbtw75+flYunQpzGYzxowZwx5MSaS/HnPpgiiKcDgc6OrqgtPpRHl5uezoxyafQ4M6Gw7FvZSRmdAm8XPnzo1wmqXXl8VigcPhQGlpqdyPi7WsyFyYmEuMHTt24Lvf/S7Wrl2Lurq6VA+HwRhJmKBjpAZCCM6cOYOWlhasW7cOPM9j6dKlaGpqwvjx49mDahjE22MuXSCEoLu7W3b0Ky0thdFohF6vZ5PPOHE6ndi3bx8zw8ghOjs7cfr0acydO3dA50tCCFwuFywWS0QvyerqatZuJMM4evQoE3Nxsnv3bnzzm99Ea2srpk6dmurhMBgjDRN0jNRDCEFHRwfWrFmDtWvXwuPxYPHixTCbzZg8eTJ7cCVAT08P9uzZk7FRGjr55DgONptNtms3GAwjbuaSqdhsNhw+fBiNjY0oLCxM9XAYo8C5c+fQ0dGBxsbGhK+LcMdMtVotO2aycye9YWIufvbt24e7774bq1evxvTp01M9HAZjNGCCjpF+cByHtWvXYs2aNbDb7bjppptgNpsxbdo09iAbgGT2mEsHqF17V1cXrFYr8vPzZXHHIgsSXV1dOHny5Ii0omCkJ6dPn4bFYkFjY+OwI9h+v192zOR5XnbMLC4uZvfaNIKJufg5ePAgVq1ahddeew2zZ89O9XAYjNGCCTpGemO32/HGG2+gtbUV586dw6JFi7B8+fKUODamMyPZYy5d8Hq94DgOFosFarVaFne52sj8zJkz6OzsRGNj46DNphnZwcmTJ+FwONDQ0JD0+18oFILVaoXFYoHX60VVVRWMRiPKy8uZiEghTMzFz9GjR3HnnXfilVdewdy5c1M9HAZjNGGCjpE5OJ1ObNiwAa2trTh+/Diuv/56NDU1obGxMafF3Wj2mEsX/H6/3MicEAKDwQCTyZQzaWMnTpxAd3c35syZw+oMc4Rjx47B7XZj9uzZI36/EwQBdrsdHMfB5XIx06IUwcRc/Jw8eRK33347XnrpJcyfPz/Vw2EwRhsm6BiZSU9PDzZt2oSWlhYcPHgQ11xzDcxmMxYsWJAzE45U95hLF4LBoCzuwtPGstEchBCCw4cPIxgM5vR3nksQQnDkyBEEAgHMmjVr1Cf20aZFxcXFsqlKrrxASgVMzMXPmTNncOutt+KFF17AxRdfnOrhMBipgAk6Rubj8/mwZcsWtLa2or29HVdccQXMZjMuueSSrI1eCIKAvXv3oqioiBnHhEHTxjiOg8/nk8VdaWlpxh8jURSxf/9+aLVa1NfXZ/z+MAaHvrQRRRHTp09P+XdOCJF73VmtVuTl5cmpz9ma6p0KmJiLn46ODtxyyy347W9/iyuuuCLVw2EwUgUTdLmA3W7HbbfdhhMnTmDSpElYvXo1KisrYy4rCALmz5+PcePGYePGjaM80uETCATw9ttvo6WlBZ9//jkuueQSLF++HJdddlnW1Bmle4+5dEEQBFncud1uVFVVwWQyZWRNkCAI2LNnD8rKyjBp0qSMGz8jcQgh2L9/PzQaTdoKeJ/PJ9e10tRno9GIoqKiVA8tY2FiLn66urqwYsUKPPvss7jmmmuSss4tW7bggQcegCAIuOeee/DYY49F/J0QggceeACbNm1CUVERXn75ZZx//vlJ2TaDMQyYoMsFHnnkEVRVVeGxxx7D008/DYfDgWeeeSbmsr/5zW/w+eefw+VyZaSgCycYDOK9995Da2srPv74Y1x44YVoamrClVdembEuiZnWYy5dEEURNptNrgmqqKiA0WhEZWVl2qct8jyP9vZ2mEwm1NbWpno4jFFAFEXs27cPOp0uYyLwwWAQFosFHMchGAxCr9dnTXR8tDh69Ch8Pl9KUmszDavViptvvhm//OUvsWjRoqSsUxAE1NfX4+2330ZtbS0WLFiAv//975g5c6a8zKZNm/C73/0OmzZtwieffIIHHngAn3zySVK2z2AMAybocoFp06bh/fffx5gxY9DR0YGrrroKBw8e7LPcmTNnsGrVKjzxxBP4zW9+k/GCLhye5/HRRx+hubkZH3zwAebNm4empiZcc801GeOSmOk95tIFURTlmiCHw4GysjLZ8CHdUnSDwSB27tyJiRMnwmQypXo4jFFAFEXs3r0bZWVlqKurS/VwhgTP8/ILFLfbjcrKShiNRlRUVKT9C5RUwcRc/NjtdqxYsQI//vGPsXjx4qStd/v27fjpT3+KN998EwDw1FNPAQAef/xxeZn77rsPV111Fb761a8CiJxfMRgppN+bBqt0ziK6urrkm82YMWPAcVzM5R588EH86le/Qk9Pz2gOb1TQarW4+uqrcfXVV0MQBGzbtg0tLS342c9+hpkzZ6KpqQnXX3992qYK0R5zDQ0NWdFjLpWo1WpUVVWhqqoKhBA4nU5wHIcjR46guLgYJpMJer0+5YYPPp8P7e3tmDp1KvR6fUrHwhgdBEHArl27oNfrMWHChFQPZ8hotVqYTCaYTCaIogiHw4Guri4cPHgQZWVlMBgM0Ov1afcCJVUwMRc/3d3dWLlyJR5//PGkijkAOHv2bEQZQ21tbZ/oW6xlzp49ywQdI21hgi7DuO6669DZ2dnn97/85S/j+vzGjRthNBpxwQUX4P3330/y6NILjUaDhQsXYuHChRBFEZ999hmam5vx9NNPY8qUKTCbzVi0aBFKS0tTPVQASo+5efPmMeOBJKNSqVBRUYGKigrZ8KGrqwvHjx+HTqeTDR9Gu/7S7XZj9+7dLBqbQwiCgPb2dhiNxqxKrVWr1dDr9dDr9SCEwOVygeM4HDt2DIWFhTAYDCm5xtIFJubix+Vy4dZbb8VDDz2EpqampK8/VmZa9HcSzzIMRjrBBF2G8Y9//KPfv5lMJnR0dMgpl7Fqrz7++GOsX78emzZtgt/vh8vlwl133YW//e1vIznslKNWq3HRRRfhoosugiiK2LlzJ1paWvCf//mfGD9+PJYtW4abbropJZNqQghOnjwJu92O888/P+URo2xHpVKhtLQUpaWlmDJlCjweDziOw44dO6DVakfNzc/pdGLfvn2YM2dOVrZeYPSF53ns3LkT48aNy+o3/SqVCuXl5SgvL8fUqVPhdrthsViwY8cOaDQa+RrLlDT44cLEXPy43W7cfvvt+Pa3v42VK1eOyDZqa2tx+vRp+eczZ85g7NixCS/DYKQTrIYui/jBD34AvV4vm6LY7Xb86le/6nf5999/H88++2xW1dAlCiEEe/bsQUtLC9ra2lBdXY2mpiYsXrx4VNLfWI+59IK6+XEcB5VKJU88k93I3Gaz4fDhw2hsbMyZJum5TigUws6dOzFhwoScrpP0+/2yqYogCHLkrri4OCvFDhNz8eP1enHbbbfhrrvuwje+8Y0R2w7P86ivr8c777yDcePGYcGCBXjttdcwa9YseZm2tjY8//zzsinK97//fXz66acjNiYGI06YKUouYLPZcOutt+LUqVOYMGECmpubUVVVhXPnzuGee+7Bpk2bIpZngi4SQggOHjyIlpYWbNiwAWVlZVi2bBmWLl0Kg8GQ9Icx6zGX3gQCAVnc0Ymn0Wgcdm1jV1cXTp48iblz52asCysjMajpTV1dHQwGQ6qHkzaEQiFYLBZYLBb4fD7o9XoYDIaMbDkSCybm4sfv9+OrX/0qVqxYgW9+85sjfrw2bdqEBx98EIIg4O6778YTTzyBF154AQDwrW99C4QQ3H///diyZQuKiorw5z//GfPnzx/RMTEYccAEHYORCIQQHD16FK2trXjjjTeQn5+PZcuWwWw2o6amZtgPm1AohPb2dtTU1GRVHU22QieeXV1dCAaDciPzkpKShM6FM2fOoKurCw0NDTlbS5Rr+P1+7Ny5k5neDIIgCLDZbLBYLBnXciQWTMzFTyAQwF133YUbb7wR3/3ud9nxYjD6hwk6BmOoEEJw6tQptLa2Yt26dRBFEUuXLkVTUxNqa2sTfvj4fD7s2rWL9ZjLUHielxuZe71euQ9XWVlZv+cCIQQnTpyA0+nEnDlzmOtfjkAdTKdNm4bKyspUDydjiG45UlJSAqPRmBautPHAxFz8BINBfP3rX8cVV1yBf/u3f2PHi8EYGCboGIxkQAhBR0cHWltbsXbtWvh8PixevBhmsxnnnXfeoA8jl8uFvXv3MlfDLIFGFTiOQ09Pj9yHq7KyUj4XCCE4fPgwgsEgq5PMITweD3bt2oWZM2eivLw81cPJWAgh6OnpAcdxsNlsyM/Pl2tb0zFlmYm5+OF5HnfffTfmz5+PRx99lB0vBmNwmKBjMEYCjuOwdu1arFmzBna7HTfddBOamppQX1/f5+G0ceNGvPzyy/jLX/7CesxlIeF9uJxOJ8rLy1FdXQ2O45CXlxfznGBkJ7QdxezZs9OmLUq24PV6wXEcLBYLVCqVXNuaDuZCTMzFjyAIuO+++zBt2jT8+Mc/ZseLwYgPJugYjJHGZrPhjTfeQGtrKzo7O7Fo0SIsX74cM2bMwEsvvYQ//elPaG1tjWhWyshOCCGw2+3Yv38/BEFAVVWV3MicpVtmNzQK39DQwF7cjDCBQEB2zAyFQkOubU0GTMzFjyAI+N73vodx48bhF7/4RcYfrxdeeEE2VHE6nZg0aRLee++9FI+KkaUwQcdgjCbd3d3YsGEDWlpasGfPHhQXF+PZZ5/FpZdeylLucgCe59He3g6TyYRx48bJTZZtNhsKCwvllLFMqAdixI/T6cT+/fvR0NCAoqKiVA8npwivbfV4PKiqqoLRaERFRcWICwYm5uJHFEU8+OCDqKiowK9+9auseh6GQiFcc801eOSRR7B06dJUD4eRnTBBx2CMNoIg4KGHHoLdbseiRYvwxhtv4ODBg7j22mthNpsxf/78rHqYMSSoRf3EiRP79BsjhMDj8aCrqwtWqzXt64EY8WO323Ho0CHWWzANEEURdrsdHMfB6XSirKwMRqMRVVVVSY+QMzEXP6Io4pFHHoFGo8Fvf/vbrHv+fec734HBYMDPfvazVA+Fkb0wQcdgjCZ+vx//8i//ghkzZuBnP/uZ/KD3er3YsmULWltbsWvXLlx55ZUwm824+OKLWSpeFkBdDeO1qA+vB1Kr1bK40+l0ozBaRrKw2Ww4cuQI5s6di4KCglQPhxEGIQROpxMcx8Fut8sR8urq6mG3DmFiLn5EUcSPfvQj+Hw+/P73v886Mffyyy+jubkZGzZsyLp9Y6QVTNAxGKOF3W7HLbfcgttvvx333ntvv8v5/X68/fbbaGlpwRdffIFLL70Uy5cvx2WXXcZS8TIQaoQxVFdDv98viztRFGWzB5a6l95wHIcTJ06wRvEZAI2QcxwHq9UKrVYLg8EwpJcoTMzFDyEE//Ef/wGO4/Diiy9m3cvLL774AqtWrcJHH33E2pMwRhom6BiM0eDUqVNYsWIFfvzjHyeUQx8MBvHee++hpaUF27dvx4UXXoimpiZcccUVbJKYATidTuzbtw9z5sxBSUnJsNcXDAbBcZxs9kDFXXFxMZs8phGdnZ04ffo05s6dyxrFZyA+nw8Wi0V+iUJNVQYzs2FiLn4IIXj66adx4sQJvPzyy1kn5gDgG9/4Bt588025r+z8+fPx4osvpnhUjCyFCToGYzTYs2cPPB4PLrrooiGvg+d5fPjhh2hubsZHH32EefPmoampCVdffTVLxUtDbDYbDh8+PGK1U6FQSDZ78Pl88qSztLSUTSZTyLlz59DR0YHGxkYWUc8CgsGgfJ35/X5UV1fDYDCgrKws4jpjYi5+CCH4zW9+gz179uDVV19l1wmDMXyYoGMwMhFBEPDxxx+jtbUV7777LmbNmgWz2Yzrr7+epeKlAV1dXTh58uSopdsJgiBPOt1u96g6+TEUTp8+DYvFgsbGxqyMOOQ69DqzWCzo6elBZWUlDAYDHA4H/H4/E3NxQAjB888/j08++QSvv/46i2AzGMmBCToGI9MRRRGffvopWlpa8NZbb2Hq1KloamrCokWLkpLmx0iMM2fOoKurK2URGurk19XVBZfLhYqKChiNRlRWVrKi/BHk5MmTcDgcaGhoYMc5BxBFEQ6HA0eOHIHX60V1dTXrKTkIhBD88Y9/xLvvvovW1lZWNsBgJA8m6BiMbEIURezYsQMtLS3YsmULJkyYgGXLluGmm24akiEHI34IIThx4gScTifmzJmTFpM6URTR3d0NjuPgcDhQWloKk8k0IjbtuQohBMePH4fb7cbs2bOZmMshaJrlzJkz0dPTA4vFAqvVCp1OJztmMtEiQQjBn//8Z7S1tWHt2rWsTIDBSC5M0DEY2QohBHv27EFzczM2bdoEg8EAs9mMJUuWoKqqKtXDyyoIITh8+DBCoRBmzJiRlpP6cJt2m82G4uJiedLJaliGBiEER44cQSAQYOl2OcZANXPhjplqtVp2zMzlPoR//etf0dLSgvXr1+f0cWAwRggm6BiMXIAQggMHDqClpQUbN25EeXk5li1bhiVLlsBgMLCJ6DAQRRH79+9HXl4epk6dmhHHkhACt9stNzKnEQWDwcBqWuKEEIKDBw+CEILp06dnxPfOSA6JGKD4/X7ZMZPn+QjHzFw5Z15//XW88sor2Lhx46BOoQwGY0gwQcdg5BqEEBw9elR+W1pQUIClS5fCbDajpqYmZyYZyUAQBOzevRvl5eWYNGlSxh47GlGwWCzQarWyuGPNsGNDCMH+/fuh1WozRsQzksNw3CyjnWmpeVF5eXnWnkNr1qzBH//4R7S1taG0tDTVw2EwshUm6BiMXIYQgpMnT2LNmjVYu3YtAGDJkiVoampCbW1t1k4ykkEoFMKuXbtgMplQW1ub6uEkDZ/PJ4s7QgiMRiOMRiNLk+pFFEXs27cPOp0OkydPZtdIDpHM1gSCIMBut4PjOLhcLpSXl8NoNKKqqiotU7aHwsaNG/Hb3/4WbW1tqKioSPVwGIxshgk6BoMhQQhBR0cHWltbsWbNGvj9fixZsgRmsxl1dXVs4hpGMBjEzp07MXHiRJhMplQPZ8QIBAJyI3NBECIamecioihi9+7dKCsrQ11dXaqHwxhFRrLPHCFENi+y2+1ZUd/65ptv4plnnkFbWxv0en2qh8NgZDtM0DEYjL4QQsBxHNauXYs1a9agu7sbN910E8xmM+rr63Na3Pl8PrS3t2Pq1Kk5NVEJhUKwWCwRDZZNJhNKSkpy4nwQBAG7du2CXq/HhAkTUj0cxigymk3DaX0rNVXJy8vLuBTod955Bz//+c/R1tYGg8GQ6uEwGLkAE3QMBmNwbDYb1q1bh9bWVnAch0WLFmH58uWYMWNGTkzmKW63G7t378bMmTNzug0Ez/NyLZDX6836WiBBELBz586sS69lDM5oirlYeL1e2VSFECJHyYuKikZ9LPHw4Ycf4oc//CE2btyImpqaVA+HwcgVmKBjMBiJ0d3djfXr12PNmjU4efIkrr/+ejQ1NWV9Q2Wn04l9+/Zhzpw5rGF7GLQWqKurCz09PaisrITRaERFRUVWnA88z2Pnzp0YN24cxowZk+rhMEaRVIu5aILBoBwlDwaD0Ov1MBqNKC0tTYvxffzxx3j00UexceNGjB07NtXDYTByCSboGIxkYrfbcdttt+HEiROYNGkSVq9ejcrKyohlTp8+ja997Wvo7OyEWq3GvffeiwceeCBFIx4eLpcLbW1tWLNmDQ4dOoRrrrkGTU1NuOCCC7JiMk+x2Ww4fPgwGhsbmTnIAIiiCIfDAY7j0N3djbKyMrmReSaeD6FQCDt27Mj6WklGX9JNzEXD8zxsNhs4joPb7U75i5RPP/0UDz74IDZs2IDx48eP+vYZjByHCToGI5k88sgjqKqqwmOPPYann34aDocDzzzzTMQyHR0d6OjowPnnn4+enh5ccMEFWLduHWbOnJmiUScHr9eLzZs3o7W1Fbt378aVV16JpqYmXHTRRdBoNKke3pDp6urCyZMnMXfuXOTn56d6OBlDtNFDSUmJbPSQCecDNb6pq6tjdUA5RrqLuWhivUgxGAzQ6/Wjcq19+eWX+O53v4s33ngDkyZNGvHtMRiMPjBBx2Akk2nTpuH999/HmDFj0NHRgauuugoHDx4c8DNmsxn3338/rr/++lEa5cjj9/vx9ttvo7m5GV9++SUuu+wyLF++HJdeemlGubadOXMGXV1daGxszKhxpxuEEPT09KCrqws2mw2FhYWyuEvHRuZ+vx87d+7MOeMbRuaJuWgIIXA6nbBYLPK1ZjAYYDAYRuRa27VrF+699160trZi6tSpSV8/g8GICyboGIxkUlFRge7ubvnnyspKOByOfpc/ceIErrjiCuzZswdlZWWjMMLRJxgM4t1330VLSwv++c9/4qKLLkJTUxMWLlyYthEvQghOnDgBp9OJOXPmZEREKVMghEQ0MqcufkajMS3OB+piOm3atD7p0ozsJtPFXDT0WqOmKhqNRnbM1Ol0w17/vn37cPfdd2P16tWYPn16EkbMYDCGCBN0DEaiXHfddejs7Ozz+1/+8pdYtWpV3ILO7XbjyiuvxBNPPIGbb755pIabVvA8jw8++ADNzc3YunUrzj//fJjNZlxzzTVpY8lNCMGhQ4fA8zxmzJiRkbVfmYTX65XFnVqtll38kjHhTBSPx4Ndu3blvItpLpJtYi4Wfr9fNlWhfSUNBsOQTJ4OHjyIVatW4bXXXsPs2bNHYLQMBiMBmKBjMJJJvCmXoVAIS5YswaJFi/DQQw+lYKSpRxAEbN26Fa2trXjvvfcwe/ZsmM1mXHfddSmz5BZFEfv27UN+fj6mTp2atRO7dMXv98viThTFUbVopy0pZs+ejdLS0hHfHiN9yAUxFw3tK2mxWODz+WTHzLKyskGPwdGjR3HnnXfir3/9KxobG0dpxAwGYwCYoGMwkskPfvAD6PV62RTFbrfjV7/6VcQyhBCsWrUKVVVVeO6551Iz0DRDFEV88sknaGlpwdtvv42pU6di+fLluOGGG0atRYAgCNi9ezcqKipYYX8aEG3RThuZFxcXJ33S7XK5sHfvXjQ0NKC4uDip62akN7ko5qIRBAE2mw0WiwUulwsVFRWyuIuuuzt58iRuv/12vPTSS5g/f36KRsxgMKJggo7BSCY2mw233norTp06hQkTJqC5uRlVVVU4d+4c7rnnHmzatAlbt27FwoULMWfOHDmd78knn8RNN92U4tGnB6IoYseOHWhubsaWLVswceJEmM1m3HjjjSOWBhcKhbBr1y7WODpNCYVCciPzRKMJg9Hd3Y0DBw6goaEhbZs1M0YGJub6Iooiuru7cebMGXzta19DXV0dli1bhuXLl8PtduPWW2/FCy+8gIsvvjjVQ2UwGApM0DEYjPRFFEXs2bMHzc3N2Lx5M4xGI8xmMxYvXoyqqqqkbIPa07NeY5kBjSZ0dXXB7XajqqpK7r+V6KTcbrfj0KFDrL9gDsLE3OCIooht27ahpaUFH3zwATweD+688048/PDDrJUHg5FeMEHHYDAyA0II9u/fj5aWFrS1taG8vBxmsxlLliwZ8uSCOhoye/rMRBRF2O12cBwHp9OJ8vJymEwmVFZWDmpmY7VacfToUcydOzdtDHkYowMTc4nR1dWFFStW4MEHHwTHcVi/fj3UajXMZjOamppQV1eX6iEyGLkOE3QMBiPzIITgyJEjaGlpwYYNG6DT6bB06VKYzWaYTKa4JmnUBIM5GmYHNFWM4zg4HA6UlpbCaDTGbK7McRxOnDjBmsXnIEzMJYbFYsGKFSvw5JNP4oYbbpB/39nZifXr12PdunWw2Wy46aab0NTUhIaGBnZcGYzRhwk6BoOR2RBCcPLkSbS2tmLt2rVQq9VYsmQJmpqaMG7cuJiTi3fffRefffYZvvvd746a6Qpj9CCEwOVyyY3Mi4uL5UbmVqsVp0+fxty5c9OyqTlj5GBiLjHsdjtuvvlm/OQnP8HixYv7Xc7lcmHz5s3Ytm0bnnvuOXZsGYzRhwk6BoORPRBCcO7cOVncBQIBLFmyBGazGZMmTYJKpcLatWvxs5/9DM3NzZg6dWqqh8wYYQghcLvd4DgO586dgyAImDx5MmpqapigyyGYmEuM7u5urFixAo8++iiamppSPRwGgzEwTNAxGIzshBACjuOwZs0arFmzBk6nE9OmTcOXX36JdevWYdy4cakeImMUOX36NCwWC6ZOnQqr1QqLxQKNRgOj0Qij0cjq6LIYJuYSw+VyYeXKlfj+97+PlStXpno4DAZjcJigYzAYucGzzz6L//3f/0VdXR26urpw4403wmw2Y8aMGWySl+WcPHkSDocDDQ0NEWYpPp9P7nVHCJHFHXO8zB6YmEsM2prg3nvvxR133JHq4TAYjPhggo7BYGQ3hBA8+eST+PLLL/Hqq69Cp9PB4XBg/fr1WLNmDU6dOoUbbrgBTU1NEb0BGZkPIQTHjx+H2+3G7NmzB/xuA4GALO54nofBYIDRaGSNxjMYJuYSw+v14tZbb8XXvvY1fP3rX0/1cBgMRvwwQcdgMLIXURTx8MMPw+Vy4YUXXoBWq+2zjMvlwsaNG7FmzRocPnwY1157LZqamnD++eczcZfBUCfUYDCImTNnJjShD4VCsrjz+/2orq6GyWRCSUkJEwYZAhNzieH3+3H77bfjlltuwTe/+U12zBiMzIIJOgaDkZ2EQiHcc889qKmpwdNPPx3XBMXr9WLTpk1oaWnB3r17cdVVV6GpqQkXXnhhH+t7RvpCCMHBgwdBCMH06dOHNTnleV5uZO7xeKDX62E0GlFeXs4mvWkKE3OJEQgEcNddd+HGG2/Ed7/7XXbMGIzMgwk6BoORnfzpT3+Cw+HAI488MqTP+/1+vPXWW2hubsaOHTtw+eWXo6mpCZdeemnMSB8jPaAN6LVaLaZOnZrUyakgCHIjc5fLhcrKShiNRlRUVLBobprAxFxiBINBrFq1CldeeSX+7d/+jR0zBiMzYYKOwWBkJ4SQpE1OgsEg3nnnHTQ3N+PTTz/FxRdfjKamJixcuJBZ36cRoihi7969KCoqwnnnnTeik1NRFOFwOMBxHLq7u1FWViY3MmfiLjUwMZcYoVAI//qv/4r58+fj0UcfZceMwchcmKBjMBiMRAiFQvjggw/Q0tKCrVu34oILLoDZbMbVV1/NrO9TiCiK2L17N8rKylBXVzeq2yaEwOl0oqurC3a7HSUlJXIjc5aqOzowMZcYPM/jvvvuw4wZM/CjH/2IHTMGI7Nhgo7BYDCGiiAI2Lp1K1paWvD+++9jzpw5MJvNuO6665j1/SgiCAJ27doFvV6PCRMmpHQshBD09PSA4zhYrVYUFhbK4o5Fc0cGJuYSQxAE3H///aitrcUvfvELdswYjMyHCToGg8FIBqIo4p///CdaWlrwj3/8A/X19Vi+fDluuOEGZn0/ggiCgJ07d8JkMqG2tjbVw+mD2+2WxZ1Wq5V73eXn56d6aFkBE3OJIYoiHnzwQVRWVuKZZ55Jenqw3W7HbbfdhhMnTmDSpElYvXo1KisrI5Y5ffo0vva1r6GzsxNqtRr33nsvHnjggaSOg8HIMZigYzAYjGQjiiK+/PJLNDc3480338SkSZNgNptx4403oqysLNXDyxpCoRDa29sxbtw4jBkzJtXDGRSv1wuO42CxWKBSqWRxp9PpUj20jISJucQQRRGPPPIItFotnnvuuRGp9XzkkUdQVVWFxx57DE8//TQcDgeeeeaZiGU6OjrQ0dGB888/Hz09Pbjggguwbt06zJw5M+njYTByBCboGAwGYyShtV3Nzc3YvHkzampqYDabsXjx4j5vrhnxEwqFsGPHDkycOBEmkynVw0kYv98v97oTRVFuZF5UVJTqoWUETMwlhiiK+OEPfwi/34/f//73I2bcM23aNLz//vsYM2YMOjo6cNVVV+HgwYMDfsZsNuP+++/H9ddfPyJjYjByACboGAwGY7SglvotLS3YuHEjKisrYTabsWTJElRXV6d6eBlDMBjEjh07cN5558FgMKR6OMMmGAzK4i4YDMqNzIuLi5lYiQETc4lBCMHPfvYzWK1W/OlPfxpRo56Kigp0d3fLP1dWVsLhcPS7/IkTJ3DFFVdgz549LHuBwRg6TNAxGAxGKiCE4MiRI2hpacH69etRWFiIZcuWYdmyZTCZTGyi2g9+vx87d+7E1KlTodfrUz2cpBMKhWC1WsFxHHw+n9zIvKysjJ0TYGIuUQgheOqpp3Dy5Em8/PLLSRFz1113HTo7O/v8/pe//CVWrVoVt6Bzu9248sor8cQTT+Dmm28e9rgYjByGCToGg8FINYQQnDhxAq2trVi3bh00Gg2WLFmCpqYmjB07lk1ce/H5fGhvb8f06dNRUVGR6uGMOIIgwGazgeM49PT0oKqqSm5knovnBBNziUEIwW9+8xvs3bsXf/vb36DVakd8m/GmXIZCISxZsgSLFi3CQw89NOLjYjCyHCboGAwGI50ghODs2bNobW3F2rVrEQwGsXTpUpjNZkycODFnJ7Iejwe7du3CzJkzUV5enurhjDqiKMJut4PjODidTpSXl8NkMqGysjInGpkzMZcYhBA8//zz+OSTT/D666+PWsuMH/zgB9Dr9bIpit1ux69+9as+Y1u1ahWqqqrw3HPPjcq4GIwshwk6BoPBSFcIIejq6sKaNWuwZs0a9PT0YPHixTCbzZgyZUrOTGzdbjd2796N2bNno7S0NNXDSTmEEDgcDnAcB4fDgdLSUhiNRuj1+qxsZM7EXGIQQvDHP/4R7777LlpbW0e1RYbNZsOtt96KU6dOYcKECWhubkZVVRXOnTuHe+65B5s2bcLWrVuxcOFCzJkzR34Z8eSTT+Kmm24atXEyGFkGE3QMBiMz2bJlCx544AEIgoB77rkHjz32WMTfCSF44IEHsGnTJhQVFeHll1/G+eefn6LRJgeLxYJ169ZhzZo1sFgsuOmmm7Bs2TLMmDEjaye6LpcLe/fuRUNDA+vnFwNCCFwuFziOg81mQ1FRkdzIfDRS7EYaJuYSgxCCP//5z2hra8PatWtZSwwGIzdggo7BYGQegiCgvr4eb7/9Nmpra7FgwQL8/e9/j+hjtGnTJvzud7/Dpk2b8Mknn+CBBx7AJ598ksJRJxeHw4H169ejtbUVZ86cwQ033ICmpibMnj07a1Lwuru7ceDAATQ0NDA7/zgghEQ0Ms/Pz4fJZEJ1dXVGNjJnYi5xXnnlFbS2tspGSwwGIydggo7BYGQe27dvx09/+lO8+eabAICnnnoKAPD444/Ly9x333246qqr8NWvfhVAZLF+tuFyubBx40a0trbi6NGjuPbaa9HU1IR58+ZlrLiz2+04dOgQ5s6dy6IMQ8Tj8ciNzDUajdzIvKCgINVDGxQm5hLn//7v//DXv/4VGzduZNFsBiO36Pcmmfl5GgwGI2s5e/Ysxo8fL/9cW1vbJ/oWa5mzZ89mpaArKyvDHXfcgTvuuANutxubN2/G888/j/379+Oqq65CU1MTFixYkDH1VVarFUePHsW8efMyQnykK8XFxairq0NdXR18Ph8sFgt2794NQogs7tIxisPEXOKsWbMGf/nLX5iYYzAYETBBx2Aw0pZYGQTRE794lslGSkpKsHLlSqxcuRJ+vx9vvvkm/vznP+P73/8+Fi5ciKamJlxyySVpW1/FcRxOnDiBefPmZWSaYLpSWFiICRMmYMKECQgEArBYLNi/fz94nofBYIDRaEwLIcDEXOJs2LABf/jDH9DW1sZMgxgMRgTp+aRnMBgMSNG206dPyz+fOXMGY8eOTXiZbEen08FsNsNsNiMQCOCdd97B66+/jn//93/HJZdcgqamJlx++eWjZmk+GJ2dnTh9+jTmzZuXNmPKRgoKClBbW4va2lqEQiFYLBYcPnwYfr8f1dXVMBqNKC0tHXVBxcRc4mzZsgXPPfcc2tracqI3I4PBSAxWQ8dgMNIWnudRX1+Pd955B+PGjcOCBQvw2muvYdasWfIybW1teP7552VTlO9///v49NNPUzjq9CEUCuH9999Ha2srtm7divnz58NsNuOqq65KWYrjuXPn0NHRgcbGxrSNHmY7PM/DZrOhq6sLHo8Her0eRqMR5eXlIy6wmJhLnHfeeQc///nPsWnTJlRXV6d6OAwGI3UwUxQGg5GZbNq0CQ8++CAEQcDdd9+NJ554Ai+88AIA4Fvf+hYIIbj//vuxZcsWFBUV4c9//jPmz5+f4lGnHzzPY+vWrWhpacH777+PxsZGmM1mXHvttaNWX3X69GlYLBY0NjZmTJ1ftiMIgtzI3OVyoaKiAiaTCRUVFUk32mFiLnE+/PBD/PCHP0RbWxtMJlOqh8NgMFILE3QMBoPBkBAEAf/85z/R0tKCd955B9OmTUNTUxNuuOGGEauvOnHiBLq7u9HQ0JCxjpzZjiiKciPz7u5ulJWVyY3Mh/udHTt2DF6vl4m5BPj444/x6KOPYuPGjTmXRs5gMGLCBB2DwWAw+iKKIr744gs0NzfjrbfeQl1dHcxmM77yla+grKxs2OsnhOD48eNwu91Z1Tsv2yGEwOl0oqurC3a7HSUlJXIj80Sjq0zMJc6nn36KBx98EBs2bIhw8WUwGDkNE3QMBoPBGBhRFLFr1y60tLRg06ZNGDt2LMxmMxYvXjwkIwZCCI4cOYJgMIiZM2eyyXyGQghBT0+P3Mhcp9PJjcwHM7VhYi5xvvzyS3z3u9/FG2+8gUmTJqV6OAwGI31ggo7BYDAY8UMIwb59+9DS0oKNGzeiqqoKTU1NWLx4cVzGDIQQHDx4EIQQTJ8+nU3mswi32y2LO61WK/e6i24/wcRc4uzatQv33XcfWltbMWXKlFQPh8FgpBdM0DEYDAZjaBBCcPjwYbS0tGDDhg0oLCyE2WzGsmXLYDQa+0zWeZ7Ht771LaxatQqXX345m8xnMT6fDxzHgeM4qFQqWdydO3cOHo8Hs2fPZt9/nOzbtw933303Vq9ejenTp6d6OAwGI/1ggo7BYDAYw4fWxLW2tmLdunXQarVYunQpmpqaMGbMGIRCIdx+++2YNGkSnn32WVYzl0P4/X5YLBacPHkSPM9j4sSJMJlMKCoqSvXQ0p6DBw9i1apV+Pvf/x7RloXBYDDCYIKOwWAwGMmFEIIzZ86gtbUVa9euRTAYRCgUwoIFC/Dss8+yyEwOcuzYMXg8HtTX18NqtYLjOASDQbmReUlJCTsvojhy5Aj+5V/+Ba+88goaGxtTPRwGg5G+MEHHYDAYjJHD6/XCbDajsrISdrsdbrcbixcvhtlsxuTJk9kkPgegYi46zZLneVitVnR1dcHn88mNzMvKynL+vDh58iRuv/12/O///i8uuOCCVA+HwWCkN0zQMRiM9Oezzz7Dv/7rv+LTTz+FIAi48MIL8frrr2P27NmpHhpjADweD5YvX45bb70V99xzDwDAYrFg3bp1aG1thc1mw0033YRly5Yxg5QspT8xF40gCLDZbOA4Dj09PaisrJQbmefaeXHmzBnceuut+J//+R9cdNFFqR4Og8FIf5igYzAYmcEPf/hD+P1++Hw+1NbW4vHHH0/1kBgD4HQ6YTab8c1vfhN33nlnzGXsdjvWr1+P1tZWnD17FosWLUJTUxNmzZrFauyygHjFXDSiKMJut4PjODidTpSXl8NoNKKqqirrz4uOjg7ccsst+K//+i8sXLgw1cNhMBiZARN0DAYjMwgGg1iwYAF0Oh22bduWcBNjxuhht9uxdOlSPPTQQ1ixYkVcn3E6ndi4cSNaW1tx7NgxXHfddWhqasLcuXOzfhKfjQxVzEVDCEF3dze6urrgcDhQWloKo9EIvV6fdfeAzs5OrFy5Es8++yyuvvrqVA+HwWBkDkzQMRiMzKCzsxOXXXYZCgoK8Nlnn6G4uDjVQ2L0w/e+9z3ceOONuOmmm4b0ebfbjU2bNqGlpQUHDhzA1VdfjaamJixYsICJuwwgWWIuGkIIXC4XOI6DzWZDYWEhjEYjDAYDtFpt0raTCiwWC1asWIEnn3wSN9xwQ6qHw2AwMgsm6BgMRmawbNky3H777Th+/Dg6Ojrw/PPPp3pIjH4ghCRtIu/z+fDmm2+itbUVO3bswBVXXIGmpiZccsklWRehyQZGSsxFQwiJaGSen58vi7voRubpjs1mw4oVK/CTn/wEixcvTvVwGAxG5sEEHYPBSH9eeeUVrFu3DmvWrIEgCLj00kvx1FNP4Zprrkn10BijSCAQwD/+8Q+0tLTgs88+w6WXXgqz2YzLL78ceXl5qR5ezjNaYi4WHo8HHMfBYrFAo9HI4k6n043qOBKlu7sbK1aswKOPPoqmpqZUD4fBYGQmTNAxGAwGI/MIhUJ4//330dLSgo8//hgLFiyA2WzGVVddlXERmmwglWIuGr/fD47jwHEcCCEwGAwwmUwoLCxM6biicblcuOWWW/DAAw9g5cqVqR4Og8HIXJigYzAYDEZmw/M8tm7diubmZnz44YdobGyE2WzGtddem/YRmmwgncRcNMFgUBZ3PM9HNDJPJW63GytXrsR9992HO+64I6VjYTAYGQ8TdAwGg8HIHgRBwPbt29HS0oJ3330X06dPR1NTE2644QYUFRWlenhZRzqLuWhCoZDcyNzv98virrS0dFTH7vV6ceutt2LVqlVYtWrVqG2XwWBkLUzQMRgMBiM7EUURn3/+OZqbm/H222/jvPPOg9lsxle+8hWUlpamengZTyaJuWgEQYDVagXHcXC73aiqqoLJZEJ5efmI7ovP58NXv/pVrFy5Et/85jdHbDsMBiOnYIKOwWAwGNmPKIpob29HS0sLNm/ejHHjxsFsNuOmm25CRUVFqoeXcWSymItGFEXYbDZwHAeXy4WKigoYjUZUVlYmtU1GIBDAnXfeicWLF+M73/lOxh83BoORNjBBx2AwGIzcghCCvXv3oqWlBW1tbdDr9TCbzViyZAn0en2qh5f2ZJOYi0YURXR3d4PjODgcDpSVlcmNzIcj7oLBIFatWoWrrroKDz74YNYdNwaDkVKYoGMwGAxG7kIIwaFDh9DS0oKNGzeiuLgYy5Ytw9KlS2E0GtnEO4psFnPREELgdDrlRubFxcUwmUzQ6/UJNTIPhUK4++67ceGFF+KRRx7J+uPGYDBGHSboGAwGg8EApAn8sWPH0NraijfeeAN5eXlYunQpzGYzxowZk/MT8VwSc9EQQtDT0yM3MtfpdHKvu4F6IPI8j/vuuw8zZszAj370o5w7bgwGY1Rggo7BYDAYjGgIIThz5gxaWlqwbt06CIKAJUuWoKmpCePHj8+5iXkui7lYuN1uWCwWWCwWaLVa8DyPsWPHora2Vl5GEAR897vfxYQJE/Dzn/+cHTcGgzFSMEHHYDAYjMTYsmULHnjgAQiCgHvuuQePPfZYxN9fffVVPPPMMwCAkpIS/OEPf0BjY2MqhpoUCCHo6OjAmjVrsHbtWng8HixZsgRmsxnnnXde1k/UmZgbGJ/Ph3Xr1uF3v/sdVCoVbrzxRtx222343e9+h8rKSjzzzDNJNVdhMBiMKJigYzAYDEb8CIKA+vp6vP3226itrcWCBQvw97//HTNnzpSX2bZtG2bMmIHKykps3rwZP/3p/9/evcdUXcd/HH8RTMUyFG9LDuoawpDuSpaaV6SJAl9ABZctQ9owu5hbS6Itu5h0sXTyh27qSpqa53sgEBAllJGXeemisyVz3lCUNIGp8xbw/f3x+/1chqgonMMXno//jnw8n/c82/E8+XzPOQu0e/duD07dss6ePasff/xRLpdL1dXVioqKUmxsrEJCQtpd8BBzzXPixAmtX79epmmqpqZGb731lhISEjRo0CBPjwag/SLoAAB3b9euXVqwYIE2b94sSVq0aJEkKS0t7Zbra2pq9Nhjj6mystJtM7pTdXW1cnNz5XK5dObMGUVGRiouLk6DBw+2/akMMdd8DQ0NSk9P1/Xr1/Xxxx+roKBALpdLVVVVmjRpkuLj4/X444/z7wmgJTX5hGLv/4UAAK2isrJSgYGBN247HI7bxtqqVas0ceJEd4zmEf7+/nr11VeVn5+vrVu3KiwsTBkZGXrhhRf04Ycf6rffflNDQ4Onx2w2Yq75LMvSRx99pEuXLikzM1O9e/fWzJkztXHjRpWUlCg0NFSffvqpnnnmGb333nvav3+/p0cG0M7d/efxAgA6jFtdvdHUC/5t27Zp1apV2r59e2uP1Sb4+flpxowZmjFjhi5evKjCwkItXbpU5eXlGjt2rAzD0NChQ9v8yR0x13yWZWnRokWqqqrSt99+K29v75t+/vDDDysxMVGJiYm6cuWKtmzZomPHjtn6vaUA2j6CDgDQiMPh0MmTJ2/cPnXqlPr169do3YEDB5SSkqJNmzZ1yC/r7tat200v4Ddv3qyVK1fqzTff1KhRo2QYhp577rlGL/w9jZhrPsuytHjxYh05ckRZWVl3fEx9fX0VGxvrpukAdGS8hw4A0EhdXZ2Cg4NVUlKigIAAhYeHa+3atQoLC7uxpqKiQuPGjdOaNWs0fPhwD07b9ly7dk3FxcUyTVP79u3T8OHDZRiGRowYcdvvM3MHYq75LMvSsmXLtHfvXq1fv97jjyGADokPRQEANE9hYaHmzp2r+vp6JScnKz09XcuXL5ckpaamKiUlRS6XSwMGDJAk+fj4aN++fZ4cuU36559/tG3bNpmmqZ07dyo8PFyGYWj06NHq1KmTW2ch5prPsiytWLFCpaWlMk3T7Y8ZAPwfgg4AAE+rq6vTzz//LKfTqbKyMj311FMyDEPjxo1Tly5dWnVvYq75LMvS6tWrVVhYqJycnFZ/jADgNgg6AADakvr6eu3cuVMul0tbt25VaGioDMPQhAkT1LVr1xbdi5i7N2vWrJHL5VJeXp58fX09PQ6Ajo2gAwCgrWpoaNDevXtlmqa2bNmioKAgGYahyMhIdevW7b7um5i7N+vXr1dWVpby8/P14IMPenocACDoAACwg4aGBu3fv19Op1NFRUVyOByKjY1VVFSU/Pz8mnVfxNy9cblcWrlypfLz8+87qAGghRB0AADYjWVZOnjwoEzTVEFBgXr37q3Y2FhNmjTpjl8TsX37dvn5+RFzzZSXl6fMzEzl5+ere/funh4HAP4fQQcAgJ1ZlqXy8nKZpnnj5CgmJkbR0dHq3bv3TdE2f/58nThxQmvXriXmmqGoqEhffvmlCgoK5O/v7+lxAODfCDoAANoLy7J09OhRmaap3Nxcde7cWdHR0YqNjdWSJUt0+PBhbdiwQT4+Pp4e1TZKSkr0ySefqLCwUL169fL0OADwXwQdAADtkWVZqqioUHZ2tjIzM+Xr66uXXnpJ8fHxcjgcnNDdhbKyMn3wwQcqKChQ3759W/z+q6urlZiYqOPHj2vgwIHasGGDevToccu19fX1Gjp0qAICApSfn9/iswCwrSafzB9w5xQAAKBleXl5acCAAbp8+bKef/55bdq0Sd26ddPs2bMVERGhb775RkePHtUdfoHbYe3YsUPvv/++8vLyWiXmJCkjI0Pjx4/X4cOHNX78eGVkZDS5dunSpQoNDW2VOQC0T5zQAQBgcwsXLtSff/6p7777Tt7e3pL+9+Tu3LlzysnJUXZ2tmpqajRx4kQZhqHg4GBO7iTt3r1b8+bNU15engIDA1ttn5CQEJWWluqRRx7RmTNnNGbMGJWXlzdad+rUKb3yyitKT0/X119/zQkdgH/jkksAANqjW8XcrZw/f165ublyuVz666+/FBkZqbi4OIWGhuqBBzreBTu//vqr5syZo9zcXA0cOLBV9+revbtqa2tv3O7Ro4dqamoarZsyZYrS0tJ08eJFffXVVwQdgH9rMuh4tzQAADZ1tzEnST179lRycrKSk5NVW1urjRs36rPPPtPx48cVERGhuLg4PfHEEx0i7vbv36/XX39d2dnZLRZzERERqqqqavTnCxcuvKu/n5+frz59+mjIkCEqLS1tkZkAdAyc0AEAYEP19fVaunSp3n777TvG3O1cvHhRBQUFcrlcKi8v1/jx42UYhoYMGdIu4+6PP/7QrFmz5HQ6FRIS4pY97+aSy7S0NGVlZcnHx0dXr17VhQsXFB8fr++//94tMwJo87jkEgAA3N6VK1dUVFQk0zR14MABjR49WoZhaNiwYfcVjW3FoUOHNHPmTK1bt05hYWFu2/fdd99Vz549NX/+fGVkZKi6ulpffPFFk+tLS0u55BLAfxF0AADg7l27dk3FxcVyOp365ZdfNGLECBmGoREjRtjy++0OHz6sl19+WVlZWXryySfduvf58+c1bdo0VVRUqH///nI6nfL399fp06eVkpKiwsLCm9YTdABugaADAAD35vr169q2bZtM09SuXbv07LPPyjAMjRo1Sp06dfL0eHd0/PhxTZ8+XatXr9aQIUM8PQ4A3AuCDgAA3L+6ujqVlZXJNE2VlZXp6aeflmEYGjt2rLp06eLp8Ro5efKkEhMTtWLFCg0bNszT4wDAvSLoAABAy6qvr9eOHTvkcrm0detWhYWFyTAMRUREqGvXrp4eT6dPn9bUqVO1bNkyjRw50tPjAMD9IOgAAEDraWho0J49e2SapoqLixUUFKS4uDhFRkbqoYcecvs8VVVVmjp1qhYvXqwxY8a4fX8AaGEEHQAAcI+Ghgb9/vvvcjqdKioqUv/+/RUTE6OoqCj5+fm1+v7nzp1TfHy8Fi1apMjIyFbfDwDcgKADAADuZ1mWDh48KKfTqcLCQvXp00cxMTGaPHmy/P39W3y/8+fPKyEhQQsWLFBUVFSL3z8AeAhBBwAAPMuyLB06dEimaSo/P19+fn6KiYlRdHS0evXqJS+vJl+v3JXa2lrFx8crLS1NsbGxLTQ1ALQJBB0AAGg7LMvSkSNH5HK5lJubq86dOysmJkaxsbHq27dvs+PuwoULSkhI0DvvvKMpU6a00tQA4DEEHQAAaJssy1JFRYVcLpdycnIkSdHR0TIMQwEBAXeMu0uXLmnq1KlKTU3V9OnT3TEyALhbk0+ED7hzCgAAcHeKiooUEhKioKAgZWRkNLlu79698vb2lmmabpyuZXl5eWnAgAGaN2+eysrK9MMPP8jX11epqamaMGGClixZomPHjulWv4S+fPmykpKSlJycTMwB6JA4oQMAoI2pr69XcHCwiouL5XA4FB4ernXr1mnw4MGN1k2YMEFdunRRcnJyu7vU0LIsnT17Vjk5OcrOzlZtba2ioqJkGIYGDRqkq1evKikpSdOmTdNrr73m6XEBoDVxQgcAgF3s2bNHQUFBevTRR9WpUyclJSUpNze30bply5YpISFBffr08cCUrc/Ly0t9+/ZVamqqtmzZok2bNikwMFDp6ekaNWqURo4cqbi4OKWkpHh6VADwGIIOAIA2prKyUoGBgTduOxwOVVZWNlqTk5Oj1NRUd4/nMT179tSsWbNUUFCgn376SXPmzNHs2bPv+9MxAcDOfDw9AAAAuNmt3g7x32iZO3euPv/8c3l7e7trrDalR48eeuONNzw9BgB4HEEHAEAb43A4dPLkyRu3T506pX79+t20Zt++fUpKSpIk/f333yosLJSPj48Mw3DnqAAAD+NDUQAAaGPq6uoUHByskpISBQQEKDw8XGvXrlVYWNgt18+cOVOTJ09udx+KAgC4oclryzmhAwCgjfHx8VFmZqZefPFF1dfXKzk5WWFhYVq+fLkkdaj3zQEAbo8TOgAAAABo2/jaAgAAAABobwg6AAAAALApgg4AAAAAbIqgAwAAAACbIugAAAAAwKYIOgAAAACwKYIOAAAAAGyKoAMAAAAAmyLoAAAAAMCmCDoAAAAAsCmCDgAAAABsiqADAAAAAJsi6AAAAADApgg6AAAAALApgg4AAAAAbIqgAwAAAACbIugAAAAAwKYIOgAAAACwKYIOAAAAAGyKoAMAAAAAmyLoAAAAAMCmCDoAAAAAsCmCDgAAAABsiqADAAAAAJsi6AAAAADApgg6AAAAALApgg4AAAAAbIqgAwAAAACbIugAAAAAwKYIOgAAAACwKYIOAAAAAGyKoAMAAAAAmyLoAAAAAMCmCDoAAAAAsCmCDgAAAABsiqADAAAAAJsi6AAAAADApgg6AAAAALApgg4AAAAAbIqgAwAAAACbIugAAAAAwKYIOgAAAACwKYIOAAAAAGyKoAMAAAAAmyLoAAAAAMCmCDoAAAAAsCmCDgAAAABsiqADAAAAAJsi6AAAAADApnzu8HMvt0wBAAAAAGg2TugAAAAAwKYIOgAAAACwKYIOAAAAAGyKoAMAAAAAmyLoAAAAAMCmCDoAAAAAsKn/Aa1ZvyqhTzPXAAAAAElFTkSuQmCC", - "image/svg+xml": "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"no\"?>\n<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n<!-- Created with matplotlib (https://matplotlib.org/) -->\n<svg height=\"884.16pt\" version=\"1.1\" viewBox=\"0 0 884.16 884.16\" width=\"884.16pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n <metadata>\n <rdf:RDF xmlns:cc=\"http://creativecommons.org/ns#\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\" xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\">\n <cc:Work>\n <dc:type rdf:resource=\"http://purl.org/dc/dcmitype/StillImage\"/>\n <dc:date>2021-08-20T09:24:19.930742</dc:date>\n <dc:format>image/svg+xml</dc:format>\n <dc:creator>\n <cc:Agent>\n <dc:title>Matplotlib v3.3.4, https://matplotlib.org/</dc:title>\n </cc:Agent>\n </dc:creator>\n </cc:Work>\n </rdf:RDF>\n </metadata>\n <defs>\n <style type=\"text/css\">*{stroke-linecap:butt;stroke-linejoin:round;}</style>\n </defs>\n <g id=\"figure_1\">\n <g id=\"patch_1\">\n <path d=\"M 0 884.16 \nL 884.16 884.16 \nL 884.16 0 \nL 0 0 \nz\n\" style=\"fill:none;\"/>\n </g>\n <g id=\"patch_2\">\n <path d=\"M 7.2 876.96 \nL 876.96 876.96 \nL 876.96 7.2 \nL 7.2 7.2 \nz\n\" style=\"fill:#ffffff;\"/>\n </g>\n <g id=\"pane3d_1\">\n <g id=\"patch_3\">\n <path d=\"M 72.872878 662.505058 \nL 360.096035 421.748912 \nL 356.103358 74.535511 \nL 55.135092 294.168444 \n\" style=\"fill:#f2f2f2;opacity:0.5;stroke:#f2f2f2;stroke-linejoin:miter;\"/>\n </g>\n </g>\n <g id=\"pane3d_2\">\n <g id=\"patch_4\">\n <path d=\"M 360.096035 421.748912 \nL 820.98672 555.711638 \nL 837.434284 196.53887 \nL 356.103358 74.535511 \n\" style=\"fill:#e6e6e6;opacity:0.5;stroke:#e6e6e6;stroke-linejoin:miter;\"/>\n </g>\n </g>\n <g id=\"pane3d_3\">\n <g id=\"patch_5\">\n <path d=\"M 72.872878 662.505058 \nL 561.439515 822.07092 \nL 820.98672 555.711638 \nL 360.096035 421.748912 \n\" style=\"fill:#ececec;opacity:0.5;stroke:#ececec;stroke-linejoin:miter;\"/>\n </g>\n </g>\n <g id=\"axis3d_1\">\n <g id=\"line2d_1\">\n <path d=\"M 72.872878 662.505058 \nL 561.439515 822.07092 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_1\">\n <!-- x -->\n <g transform=\"translate(291.558683 778.01394)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 54.890625 54.6875 \nL 35.109375 28.078125 \nL 55.90625 0 \nL 45.3125 0 \nL 29.390625 21.484375 \nL 13.484375 0 \nL 2.875 0 \nL 24.125 28.609375 \nL 4.6875 54.6875 \nL 15.28125 54.6875 \nL 29.78125 35.203125 \nL 44.28125 54.6875 \nz\n\" id=\"DejaVuSans-120\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-120\"/>\n </g>\n </g>\n <g id=\"Line3DCollection_1\">\n <path d=\"M 126.957477 680.169087 \nL 411.317558 436.636986 \nL 409.496232 88.069048 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 217.916003 709.876142 \nL 497.348003 461.64264 \nL 499.229979 110.813938 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 310.716149 740.184669 \nL 584.974529 487.112212 \nL 590.701211 133.999229 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 405.414417 771.113124 \nL 674.241969 513.058733 \nL 683.960884 157.637837 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 502.069644 802.680721 \nL 765.19685 539.495726 \nL 779.061968 181.74319 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n </g>\n <g id=\"xtick_1\">\n <g id=\"line2d_2\">\n <path d=\"M 129.434213 678.047957 \nL 121.993348 684.420474 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_2\">\n <!-- −0.4 -->\n <g transform=\"translate(107.313912 703.489362)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 10.59375 35.5 \nL 73.1875 35.5 \nL 73.1875 27.203125 \nL 10.59375 27.203125 \nz\n\" id=\"DejaVuSans-8722\"/>\n <path d=\"M 31.78125 66.40625 \nQ 24.171875 66.40625 20.328125 58.90625 \nQ 16.5 51.421875 16.5 36.375 \nQ 16.5 21.390625 20.328125 13.890625 \nQ 24.171875 6.390625 31.78125 6.390625 \nQ 39.453125 6.390625 43.28125 13.890625 \nQ 47.125 21.390625 47.125 36.375 \nQ 47.125 51.421875 43.28125 58.90625 \nQ 39.453125 66.40625 31.78125 66.40625 \nz\nM 31.78125 74.21875 \nQ 44.046875 74.21875 50.515625 64.515625 \nQ 56.984375 54.828125 56.984375 36.375 \nQ 56.984375 17.96875 50.515625 8.265625 \nQ 44.046875 -1.421875 31.78125 -1.421875 \nQ 19.53125 -1.421875 13.0625 8.265625 \nQ 6.59375 17.96875 6.59375 36.375 \nQ 6.59375 54.828125 13.0625 64.515625 \nQ 19.53125 74.21875 31.78125 74.21875 \nz\n\" id=\"DejaVuSans-48\"/>\n <path d=\"M 10.6875 12.40625 \nL 21 12.40625 \nL 21 0 \nL 10.6875 0 \nz\n\" id=\"DejaVuSans-46\"/>\n <path d=\"M 37.796875 64.3125 \nL 12.890625 25.390625 \nL 37.796875 25.390625 \nz\nM 35.203125 72.90625 \nL 47.609375 72.90625 \nL 47.609375 25.390625 \nL 58.015625 25.390625 \nL 58.015625 17.1875 \nL 47.609375 17.1875 \nL 47.609375 0 \nL 37.796875 0 \nL 37.796875 17.1875 \nL 4.890625 17.1875 \nL 4.890625 26.703125 \nz\n\" id=\"DejaVuSans-52\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-8722\"/>\n <use x=\"83.789062\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"147.412109\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"179.199219\" xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_2\">\n <g id=\"line2d_3\">\n <path d=\"M 220.351803 707.712299 \nL 213.033818 714.213232 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_3\">\n <!-- −0.2 -->\n <g transform=\"translate(198.301668 733.388291)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 19.1875 8.296875 \nL 53.609375 8.296875 \nL 53.609375 0 \nL 7.328125 0 \nL 7.328125 8.296875 \nQ 12.9375 14.109375 22.625 23.890625 \nQ 32.328125 33.6875 34.8125 36.53125 \nQ 39.546875 41.84375 41.421875 45.53125 \nQ 43.3125 49.21875 43.3125 52.78125 \nQ 43.3125 58.59375 39.234375 62.25 \nQ 35.15625 65.921875 28.609375 65.921875 \nQ 23.96875 65.921875 18.8125 64.3125 \nQ 13.671875 62.703125 7.8125 59.421875 \nL 7.8125 69.390625 \nQ 13.765625 71.78125 18.9375 73 \nQ 24.125 74.21875 28.421875 74.21875 \nQ 39.75 74.21875 46.484375 68.546875 \nQ 53.21875 62.890625 53.21875 53.421875 \nQ 53.21875 48.921875 51.53125 44.890625 \nQ 49.859375 40.875 45.40625 35.40625 \nQ 44.1875 33.984375 37.640625 27.21875 \nQ 31.109375 20.453125 19.1875 8.296875 \nz\n\" id=\"DejaVuSans-50\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-8722\"/>\n <use x=\"83.789062\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"147.412109\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"179.199219\" xlink:href=\"#DejaVuSans-50\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_3\">\n <g id=\"line2d_4\">\n <path d=\"M 313.10884 737.97681 \nL 305.920265 744.610081 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_4\">\n <!-- 0.0 -->\n <g transform=\"translate(295.323616 763.893281)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_4\">\n <g id=\"line2d_5\">\n <path d=\"M 407.761717 768.85989 \nL 400.709406 775.629583 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_5\">\n <!-- 0.2 -->\n <g transform=\"translate(390.056723 795.022947)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_5\">\n <g id=\"line2d_6\">\n <path d=\"M 504.369159 800.380701 \nL 497.460311 807.291066 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_6\">\n <!-- 0.4 -->\n <g transform=\"translate(486.749827 826.796676)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"axis3d_2\">\n <g id=\"line2d_7\">\n <path d=\"M 820.98672 555.711638 \nL 561.439515 822.07092 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_7\">\n <!-- z -->\n <g transform=\"translate(721.348267 713.672495)scale(0.1 -0.1)\">\n <defs>\n <path d=\"M 5.515625 54.6875 \nL 48.1875 54.6875 \nL 48.1875 46.484375 \nL 14.40625 7.171875 \nL 48.1875 7.171875 \nL 48.1875 0 \nL 4.296875 0 \nL 4.296875 8.203125 \nL 38.09375 47.515625 \nL 5.515625 47.515625 \nz\n\" id=\"DejaVuSans-122\"/>\n </defs>\n <use xlink:href=\"#DejaVuSans-122\"/>\n </g>\n </g>\n <g id=\"Line3DCollection_2\">\n <path d=\"M 92.890655 266.616153 \nL 108.784675 632.403077 \nL 594.016529 788.638891 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 153.640239 222.283874 \nL 166.639361 583.908132 \nL 646.423105 734.856852 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 212.314148 179.466327 \nL 222.601483 536.999572 \nL 697.026657 682.925158 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 269.016977 138.087186 \nL 276.762412 491.600807 \nL 745.918662 632.749934 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 323.846408 98.075164 \nL 329.207729 447.640103 \nL 793.184508 584.243548 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n </g>\n <g id=\"xtick_6\">\n <g id=\"line2d_8\">\n <path d=\"M 589.928472 787.322611 \nL 602.203164 791.274838 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_8\">\n <!-- −0.4 -->\n <g transform=\"translate(594.690502 809.587106)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-8722\"/>\n <use x=\"83.789062\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"147.412109\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"179.199219\" xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_7\">\n <g id=\"line2d_9\">\n <path d=\"M 642.384515 733.586238 \nL 654.510496 737.401292 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_9\">\n <!-- −0.2 -->\n <g transform=\"translate(646.882108 755.56173)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-8722\"/>\n <use x=\"83.789062\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"147.412109\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"179.199219\" xlink:href=\"#DejaVuSans-50\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_8\">\n <g id=\"line2d_10\">\n <path d=\"M 693.036579 681.697874 \nL 705.016728 685.382776 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_10\">\n <!-- 0.0 -->\n <g transform=\"translate(701.467615 703.395398)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_9\">\n <g id=\"line2d_11\">\n <path d=\"M 741.976152 631.5638 \nL 753.813313 635.125098 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_11\">\n <!-- 0.2 -->\n <g transform=\"translate(750.158467 652.993777)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_10\">\n <g id=\"line2d_12\">\n <path d=\"M 789.288634 583.09653 \nL 800.985613 586.54034 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_12\">\n <!-- 0.4 -->\n <g transform=\"translate(797.229575 604.26881)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"axis3d_3\">\n <g id=\"line2d_13\">\n <path d=\"M 820.98672 555.711638 \nL 837.434284 196.53887 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"Line3DCollection_3\">\n <path d=\"M 822.82196 515.634686 \nL 359.649691 382.93368 \nL 70.896636 621.467117 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 825.900251 448.412683 \nL 358.9015 317.869066 \nL 67.580171 552.598566 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 829.030335 380.059644 \nL 358.141326 251.762434 \nL 64.205759 482.526708 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 832.213531 310.546781 \nL 357.36888 184.588552 \nL 60.771867 411.219725 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n <path d=\"M 835.451202 239.844321 \nL 356.583862 116.321363 \nL 57.27691 338.644673 \n\" style=\"fill:none;stroke:#b0b0b0;stroke-width:0.8;\"/>\n </g>\n <g id=\"xtick_11\">\n <g id=\"line2d_14\">\n <path d=\"M 818.93376 514.520699 \nL 830.607654 517.865324 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_13\">\n <!-- −0.4 -->\n <g transform=\"translate(829.056873 520.646683)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-8722\"/>\n <use x=\"83.789062\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"147.412109\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"179.199219\" xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_12\">\n <g id=\"line2d_15\">\n <path d=\"M 821.978392 447.316377 \nL 833.753423 450.607938 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_14\">\n <!-- −0.2 -->\n <g transform=\"translate(832.285458 453.465742)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-8722\"/>\n <use x=\"83.789062\" xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"147.412109\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"179.199219\" xlink:href=\"#DejaVuSans-50\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_13\">\n <g id=\"line2d_16\">\n <path d=\"M 825.074229 378.981773 \nL 836.952163 382.218004 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_15\">\n <!-- 0.0 -->\n <g transform=\"translate(839.758158 385.155518)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-48\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_14\">\n <g id=\"line2d_17\">\n <path d=\"M 828.222576 309.488132 \nL 840.205223 312.666673 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_16\">\n <!-- 0.2 -->\n <g transform=\"translate(843.096666 315.687295)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-50\"/>\n </g>\n </g>\n </g>\n <g id=\"xtick_15\">\n <g id=\"line2d_18\">\n <path d=\"M 831.424779 238.805713 \nL 843.514001 241.924105 \n\" style=\"fill:none;stroke:#000000;stroke-linecap:square;stroke-width:0.8;\"/>\n </g>\n <g id=\"text_17\">\n <!-- 0.4 -->\n <g transform=\"translate(846.492251 245.031375)scale(0.1 -0.1)\">\n <use xlink:href=\"#DejaVuSans-48\"/>\n <use x=\"63.623047\" xlink:href=\"#DejaVuSans-46\"/>\n <use x=\"95.410156\" xlink:href=\"#DejaVuSans-52\"/>\n </g>\n </g>\n </g>\n </g>\n <g id=\"axes_1\">\n <g id=\"line2d_19\">\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 430.326486 \nL 627.967781 505.728836 \n\" style=\"fill:none;stroke:#ff0000;stroke-linecap:square;stroke-width:1.5;\"/>\n </g>\n <g id=\"line2d_20\">\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 546.022497 350.488485 \nL 544.686359 469.666923 \n\" style=\"fill:none;stroke:#000000;stroke-dasharray:1.85,0.8;stroke-dashoffset:0;stroke-width:0.5;\"/>\n </g>\n <g id=\"line2d_21\">\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 546.022497 350.488485 \nL 453.833514 430.326486 \n\" style=\"fill:none;stroke:#000000;stroke-dasharray:1.85,0.8;stroke-dashoffset:0;stroke-width:0.5;\"/>\n </g>\n <g id=\"line2d_22\">\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 544.686359 469.666923 \nL 453.833514 430.326486 \n\" style=\"fill:none;stroke:#000000;stroke-dasharray:1.85,0.8;stroke-dashoffset:0;stroke-width:0.5;\"/>\n </g>\n <g id=\"Path3DCollection_1\">\n <defs>\n <path d=\"M 0 1.581139 \nC 0.419323 1.581139 0.821528 1.41454 1.118034 1.118034 \nC 1.41454 0.821528 1.581139 0.419323 1.581139 0 \nC 1.581139 -0.419323 1.41454 -0.821528 1.118034 -1.118034 \nC 0.821528 -1.41454 0.419323 -1.581139 0 -1.581139 \nC -0.419323 -1.581139 -0.821528 -1.41454 -1.118034 -1.118034 \nC -1.41454 -0.821528 -1.581139 -0.419323 -1.581139 0 \nC -1.581139 0.419323 -1.41454 0.821528 -1.118034 1.118034 \nC -0.821528 1.41454 -0.419323 1.581139 0 1.581139 \nz\n\" id=\"mf7b462080d\" style=\"stroke:#bfbf00;\"/>\n </defs>\n <g clip-path=\"url(#pb6d65fe011)\">\n <use style=\"fill:#bfbf00;stroke:#bfbf00;\" x=\"544.686359\" xlink:href=\"#mf7b462080d\" y=\"469.666923\"/>\n </g>\n </g>\n <g id=\"Path3DCollection_2\">\n <defs>\n <path d=\"M 0 1.581139 \nC 0.419323 1.581139 0.821528 1.41454 1.118034 1.118034 \nC 1.41454 0.821528 1.581139 0.419323 1.581139 0 \nC 1.581139 -0.419323 1.41454 -0.821528 1.118034 -1.118034 \nC 0.821528 -1.41454 0.419323 -1.581139 0 -1.581139 \nC -0.419323 -1.581139 -0.821528 -1.41454 -1.118034 -1.118034 \nC -1.41454 -0.821528 -1.581139 -0.419323 -1.581139 0 \nC -1.581139 0.419323 -1.41454 0.821528 -1.118034 1.118034 \nC -0.821528 1.41454 -0.419323 1.581139 0 1.581139 \nz\n\" id=\"m944488707b\" style=\"stroke:#ff0000;\"/>\n </defs>\n <g clip-path=\"url(#pb6d65fe011)\">\n <use style=\"fill:#ff0000;stroke:#ff0000;\" x=\"544.686345\" xlink:href=\"#m944488707b\" y=\"469.666918\"/>\n </g>\n </g>\n <g id=\"Path3DCollection_3\">\n <defs>\n <path d=\"M 0 1.581139 \nC 0.419323 1.581139 0.821528 1.41454 1.118034 1.118034 \nC 1.41454 0.821528 1.581139 0.419323 1.581139 0 \nC 1.581139 -0.419323 1.41454 -0.821528 1.118034 -1.118034 \nC 0.821528 -1.41454 0.419323 -1.581139 0 -1.581139 \nC -0.419323 -1.581139 -0.821528 -1.41454 -1.118034 -1.118034 \nC -1.41454 -0.821528 -1.581139 -0.419323 -1.581139 0 \nC -1.581139 0.419323 -1.41454 0.821528 -1.118034 1.118034 \nC -0.821528 1.41454 -0.419323 1.581139 0 1.581139 \nz\n\" id=\"m9e4088ae82\" style=\"stroke:#008000;\"/>\n </defs>\n <g clip-path=\"url(#pb6d65fe011)\">\n <use style=\"fill:#008000;stroke:#008000;\" x=\"453.833514\" xlink:href=\"#m9e4088ae82\" y=\"430.326486\"/>\n </g>\n </g>\n <g id=\"Poly3DCollection_1\">\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 464.399659 347.472681 \nL 463.808551 380.220387 \nL 433.899312 380.534149 \nL 432.71789 347.800952 \nz\n\" style=\"fill:#000089;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 463.808551 380.220387 \nL 462.959029 414.268353 \nL 435.597186 414.559058 \nL 433.899312 380.534149 \nz\n\" style=\"fill:#000086;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 495.931504 349.111857 \nL 493.575009 381.787065 \nL 463.808551 380.220387 \nL 464.399659 347.472681 \nz\n\" style=\"fill:#00007f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 493.575009 381.787065 \nL 490.188613 415.719849 \nL 462.959029 414.268353 \nL 463.808551 380.220387 \nz\n\" style=\"fill:#00007d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 433.899312 380.534149 \nL 435.597186 414.559058 \nL 408.499736 416.58831 \nL 404.275512 382.724517 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 432.71789 347.800952 \nL 433.899312 380.534149 \nL 404.275512 382.724517 \nL 401.335847 350.092745 \nz\n\" style=\"fill:#000093;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 522.77158 385.215019 \nL 516.890418 418.895272 \nL 490.188613 415.719849 \nL 493.575009 381.787065 \nz\n\" style=\"fill:#000074;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 526.864871 352.698839 \nL 522.77158 385.215019 \nL 493.575009 381.787065 \nL 495.931504 349.111857 \nz\n\" style=\"fill:#000076;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 464.718145 316.786682 \nL 464.399659 347.472681 \nL 432.71789 347.800952 \nL 432.081338 317.120906 \nz\n\" style=\"fill:#00008d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 462.959029 414.268353 \nL 461.870219 448.830218 \nL 437.77326 449.089514 \nL 435.597186 414.559058 \nz\n\" style=\"fill:#000084;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 404.275512 382.724517 \nL 408.499736 416.58831 \nL 382.061062 420.330524 \nL 375.363136 386.764658 \nz\n\" style=\"fill:#000099;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 497.201242 318.455607 \nL 495.931504 349.111857 \nL 464.399659 347.472681 \nL 464.718145 316.786682 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 490.188613 415.719849 \nL 485.848851 450.124819 \nL 461.870219 448.830218 \nL 462.959029 414.268353 \nz\n\" style=\"fill:#00007c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 401.335847 350.092745 \nL 404.275512 382.724517 \nL 375.363136 386.764658 \nL 370.700986 354.320547 \nz\n\" style=\"fill:#00009d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 435.597186 414.559058 \nL 437.77326 449.089514 \nL 413.91283 450.899327 \nL 408.499736 416.58831 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 432.081338 317.120906 \nL 432.71789 347.800952 \nL 401.335847 350.092745 \nL 399.751832 319.454326 \nz\n\" style=\"fill:#000098;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 516.890418 418.895272 \nL 509.355426 452.956426 \nL 485.848851 450.124819 \nL 490.188613 415.719849 \nz\n\" style=\"fill:#000074;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 529.070696 322.107906 \nL 526.864871 352.698839 \nL 495.931504 349.111857 \nL 497.201242 318.455607 \nz\n\" style=\"fill:#000079;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 550.975668 390.462044 \nL 542.673494 423.754413 \nL 516.890418 418.895272 \nL 522.77158 385.215019 \nz\n\" style=\"fill:#00006c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 408.499736 416.58831 \nL 413.91283 450.899327 \nL 390.641529 454.236017 \nL 382.061062 420.330524 \nz\n\" style=\"fill:#000095;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 556.755628 358.19034 \nL 550.975668 390.462044 \nL 522.77158 385.215019 \nL 526.864871 352.698839 \nz\n\" style=\"fill:#00006e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 399.751832 319.454326 \nL 401.335847 350.092745 \nL 370.700986 354.320547 \nL 368.188476 323.759244 \nz\n\" style=\"fill:#0000a2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 375.363136 386.764658 \nL 382.061062 420.330524 \nL 356.669807 425.738174 \nL 347.5825 392.604666 \nz\n\" style=\"fill:#0000a2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 370.700986 354.320547 \nL 375.363136 386.764658 \nL 347.5825 392.604666 \nL 341.255196 360.433163 \nz\n\" style=\"fill:#0000a8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 542.673494 423.754413 \nL 532.04075 457.287909 \nL 509.355426 452.956426 \nL 516.890418 418.895272 \nz\n\" style=\"fill:#00006d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 464.75492 288.890737 \nL 464.718145 316.786682 \nL 432.081338 317.120906 \nL 432.007837 289.222494 \nz\n\" style=\"fill:#000092;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 461.870219 448.830218 \nL 460.566019 483.102648 \nL 440.37973 483.322586 \nL 437.77326 449.089514 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 497.347859 290.547344 \nL 497.201242 318.455607 \nL 464.718145 316.786682 \nL 464.75492 288.890737 \nz\n\" style=\"fill:#000087;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 559.870938 327.699988 \nL 556.755628 358.19034 \nL 526.864871 352.698839 \nL 529.070696 322.107906 \nz\n\" style=\"fill:#000070;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 485.848851 450.124819 \nL 480.651329 484.200677 \nL 460.566019 483.102648 \nL 461.870219 448.830218 \nz\n\" style=\"fill:#00007b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 382.061062 420.330524 \nL 390.641529 454.236017 \nL 368.306269 459.055717 \nL 356.669807 425.738174 \nz\n\" style=\"fill:#00009d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 437.77326 449.089514 \nL 440.37973 483.322586 \nL 420.395281 484.857504 \nL 413.91283 450.899327 \nz\n\" style=\"fill:#000089;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 432.007837 289.222494 \nL 432.081338 317.120906 \nL 399.751832 319.454326 \nL 399.568922 291.538695 \nz\n\" style=\"fill:#00009c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 577.772747 397.462805 \nL 567.155031 430.235108 \nL 542.673494 423.754413 \nL 550.975668 390.462044 \nz\n\" style=\"fill:#000065;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 509.355426 452.956426 \nL 500.333917 486.601745 \nL 480.651329 484.200677 \nL 485.848851 450.124819 \nz\n\" style=\"fill:#000075;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 368.188476 323.759244 \nL 370.700986 354.320547 \nL 341.255196 360.433163 \nL 337.844626 329.984092 \nz\n\" style=\"fill:#0000ad;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 585.167588 365.519288 \nL 577.772747 397.462805 \nL 550.975668 390.462044 \nL 556.755628 358.19034 \nz\n\" style=\"fill:#000066;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 529.325416 294.172709 \nL 529.070696 322.107906 \nL 497.201242 318.455607 \nL 497.347859 290.547344 \nz\n\" style=\"fill:#00007e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 413.91283 450.899327 \nL 420.395281 484.857504 \nL 400.913334 487.686512 \nL 390.641529 454.236017 \nz\n\" style=\"fill:#000091;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 347.5825 392.604666 \nL 356.669807 425.738174 \nL 332.705236 432.741782 \nL 321.344598 400.171475 \nz\n\" style=\"fill:#0000ac;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 567.155031 430.235108 \nL 553.563666 463.061965 \nL 532.04075 457.287909 \nL 542.673494 423.754413 \nz\n\" style=\"fill:#000066;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 399.568922 291.538695 \nL 399.751832 319.454326 \nL 368.188476 323.759244 \nL 367.898335 295.811881 \nz\n\" style=\"fill:#0000a7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 341.255196 360.433163 \nL 347.5825 392.604666 \nL 321.344598 400.171475 \nL 313.431177 368.355549 \nz\n\" style=\"fill:#0000b2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 532.04075 457.287909 \nL 519.316365 490.273075 \nL 500.333917 486.601745 \nL 509.355426 452.956426 \nz\n\" style=\"fill:#00006e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 356.669807 425.738174 \nL 368.306269 459.055717 \nL 347.244721 465.29443 \nL 332.705236 432.741782 \nz\n\" style=\"fill:#0000a5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 390.641529 454.236017 \nL 400.913334 487.686512 \nL 382.229138 491.770912 \nL 368.306269 459.055717 \nz\n\" style=\"fill:#000098;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 589.15425 335.164266 \nL 585.167588 365.519288 \nL 556.755628 358.19034 \nL 559.870938 327.699988 \nz\n\" style=\"fill:#000068;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 560.230706 299.723619 \nL 559.870938 327.699988 \nL 529.070696 322.107906 \nL 529.325416 294.172709 \nz\n\" style=\"fill:#000075;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 602.760212 406.128743 \nL 589.964163 438.253265 \nL 567.155031 430.235108 \nL 577.772747 397.462805 \nz\n\" style=\"fill:#00005e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 337.844626 329.984092 \nL 341.255196 360.433163 \nL 313.431177 368.355549 \nL 309.164545 338.053236 \nz\n\" style=\"fill:#0000b7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 367.898335 295.811881 \nL 368.188476 323.759244 \nL 337.844626 329.984092 \nL 337.450748 301.99093 \nz\n\" style=\"fill:#0000b2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 553.563666 463.061965 \nL 537.308877 495.164184 \nL 519.316365 490.273075 \nL 532.04075 457.287909 \nz\n\" style=\"fill:#000069;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 464.506274 264.470871 \nL 464.75492 288.890737 \nL 432.007837 289.222494 \nL 432.504801 264.791996 \nz\n\" style=\"fill:#000097;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 611.676367 374.594636 \nL 602.760212 406.128743 \nL 577.772747 397.462805 \nL 585.167588 365.519288 \nz\n\" style=\"fill:#00005f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 460.566019 483.102648 \nL 459.074992 516.273848 \nL 443.359483 516.447127 \nL 440.37973 483.322586 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 496.356551 266.074373 \nL 497.347859 290.547344 \nL 464.75492 288.890737 \nL 464.506274 264.470871 \nz\n\" style=\"fill:#00008d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 589.964163 438.253265 \nL 573.594723 470.201267 \nL 553.563666 463.061965 \nL 567.155031 430.235108 \nz\n\" style=\"fill:#000060;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 480.651329 484.200677 \nL 474.710235 517.138872 \nL 459.074992 516.273848 \nL 460.566019 483.102648 \nz\n\" style=\"fill:#00007c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 440.37973 483.322586 \nL 443.359483 516.447127 \nL 427.804399 517.656245 \nL 420.395281 484.857504 \nz\n\" style=\"fill:#000088;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 432.504801 264.791996 \nL 432.007837 289.222494 \nL 399.568922 291.538695 \nL 400.805598 267.033923 \nz\n\" style=\"fill:#0000a1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 368.306269 459.055717 \nL 382.229138 491.770912 \nL 364.629199 497.054371 \nL 347.244721 465.29443 \nz\n\" style=\"fill:#00009f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 321.344598 400.171475 \nL 332.705236 432.741782 \nL 310.533339 441.249958 \nL 297.047144 409.368768 \nz\n\" style=\"fill:#0000b4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 500.333917 486.601745 \nL 490.02548 519.029895 \nL 474.710235 517.138872 \nL 480.651329 484.200677 \nz\n\" style=\"fill:#000077;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 420.395281 484.857504 \nL 427.804399 517.656245 \nL 412.648514 519.883993 \nL 400.913334 487.686512 \nz\n\" style=\"fill:#00008e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 332.705236 432.741782 \nL 347.244721 465.29443 \nL 327.781585 472.8682 \nL 310.533339 441.249958 \nz\n\" style=\"fill:#0000ad;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 527.603256 269.58336 \nL 529.325416 294.172709 \nL 497.347859 290.547344 \nL 496.356551 266.074373 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 313.431177 368.355549 \nL 321.344598 400.171475 \nL 297.047144 409.368768 \nL 287.648451 377.988631 \nz\n\" style=\"fill:#0000bb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 589.614689 307.133067 \nL 589.15425 335.164266 \nL 559.870938 327.699988 \nL 560.230706 299.723619 \nz\n\" style=\"fill:#00006c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 400.805598 267.033923 \nL 399.568922 291.538695 \nL 367.898335 295.811881 \nL 369.859951 271.169838 \nz\n\" style=\"fill:#0000ac;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 519.316365 490.273075 \nL 504.784838 521.919942 \nL 490.02548 519.029895 \nL 500.333917 486.601745 \nz\n\" style=\"fill:#000072;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 616.484619 344.408929 \nL 611.676367 374.594636 \nL 585.167588 365.519288 \nL 589.15425 335.164266 \nz\n\" style=\"fill:#000061;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 573.594723 470.201267 \nL 554.032676 501.207139 \nL 537.308877 495.164184 \nL 553.563666 463.061965 \nz\n\" style=\"fill:#000064;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 400.913334 487.686512 \nL 412.648514 519.883993 \nL 398.125788 523.098542 \nL 382.229138 491.770912 \nz\n\" style=\"fill:#000093;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 337.450748 301.99093 \nL 337.844626 329.984092 \nL 309.164545 338.053236 \nL 308.671754 310.000854 \nz\n\" style=\"fill:#0000bc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 347.244721 465.29443 \nL 364.629199 497.054371 \nL 348.38785 503.463212 \nL 327.781585 472.8682 \nz\n\" style=\"fill:#0000a6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 625.551611 416.348021 \nL 610.746068 447.702949 \nL 589.964163 438.253265 \nL 602.760212 406.128743 \nz\n\" style=\"fill:#000059;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 557.798412 274.955642 \nL 560.230706 299.723619 \nL 529.325416 294.172709 \nL 527.603256 269.58336 \nz\n\" style=\"fill:#00007a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 309.164545 338.053236 \nL 313.431177 368.355549 \nL 287.648451 377.988631 \nL 282.579418 347.866739 \nz\n\" style=\"fill:#0000c1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 537.308877 495.164184 \nL 518.759169 525.767555 \nL 504.784838 521.919942 \nL 519.316365 490.273075 \nz\n\" style=\"fill:#00006d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 610.746068 447.702949 \nL 591.820049 478.608699 \nL 573.594723 470.201267 \nL 589.964163 438.253265 \nz\n\" style=\"fill:#00005b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 369.859951 271.169838 \nL 367.898335 295.811881 \nL 337.450748 301.99093 \nL 340.113599 277.149839 \nz\n\" style=\"fill:#0000b7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 635.873676 385.301209 \nL 625.551611 416.348021 \nL 602.760212 406.128743 \nL 611.676367 374.594636 \nz\n\" style=\"fill:#000059;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 382.229138 491.770912 \nL 398.125788 523.098542 \nL 384.462467 527.253673 \nL 364.629199 497.054371 \nz\n\" style=\"fill:#000099;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 297.047144 409.368768 \nL 310.533339 441.249958 \nL 290.502616 451.149531 \nL 275.070187 420.076959 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 310.533339 441.249958 \nL 327.781585 472.8682 \nL 310.224638 481.673396 \nL 290.502616 451.149531 \nz\n\" style=\"fill:#0000b5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 591.820049 478.608699 \nL 569.223504 508.316926 \nL 554.032676 501.207139 \nL 573.594723 470.201267 \nz\n\" style=\"fill:#000060;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 617.040011 316.310021 \nL 616.484619 344.408929 \nL 589.15425 335.164266 \nL 589.614689 307.133067 \nz\n\" style=\"fill:#000065;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 554.032676 501.207139 \nL 531.729004 530.517118 \nL 518.759169 525.767555 \nL 537.308877 495.164184 \nz\n\" style=\"fill:#000069;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 287.648451 377.988631 \nL 297.047144 409.368768 \nL 275.070187 420.076959 \nL 264.308898 389.20917 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 463.974202 244.159885 \nL 464.506274 264.470871 \nL 432.504801 264.791996 \nL 433.568234 244.462567 \nz\n\" style=\"fill:#00009c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 494.235373 245.671257 \nL 496.356551 266.074373 \nL 464.506274 264.470871 \nL 463.974202 244.159885 \nz\n\" style=\"fill:#000093;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 459.074992 516.273848 \nL 457.430237 547.533506 \nL 446.646331 547.653736 \nL 443.359483 516.447127 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 586.501965 282.125832 \nL 589.614689 307.133067 \nL 560.230706 299.723619 \nL 557.798412 274.955642 \nz\n\" style=\"fill:#000072;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 474.710235 517.138872 \nL 468.157816 548.133657 \nL 457.430237 547.533506 \nL 459.074992 516.273848 \nz\n\" style=\"fill:#00007e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 327.781585 472.8682 \nL 348.38785 503.463212 \nL 333.763704 510.906839 \nL 310.224638 481.673396 \nz\n\" style=\"fill:#0000ad;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 364.629199 497.054371 \nL 384.462467 527.253673 \nL 371.874135 532.289142 \nL 348.38785 503.463212 \nz\n\" style=\"fill:#00009f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 443.359483 516.447127 \nL 446.646331 547.653736 \nL 435.974996 548.492553 \nL 427.804399 517.656245 \nz\n\" style=\"fill:#000087;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 641.442046 355.317724 \nL 635.873676 385.301209 \nL 611.676367 374.594636 \nL 616.484619 344.408929 \nz\n\" style=\"fill:#00005b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 433.568234 244.462567 \nL 432.504801 264.791996 \nL 400.805598 267.033923 \nL 403.451738 246.57563 \nz\n\" style=\"fill:#0000a6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 308.671754 310.000854 \nL 309.164545 338.053236 \nL 282.579418 347.866739 \nL 281.993877 319.742562 \nz\n\" style=\"fill:#0000c7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 490.02548 519.029895 \nL 478.660921 549.445238 \nL 468.157816 548.133657 \nL 474.710235 517.138872 \nz\n\" style=\"fill:#00007a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 427.804399 517.656245 \nL 435.974996 548.492553 \nL 425.583627 550.037444 \nL 412.648514 519.883993 \nz\n\" style=\"fill:#00008b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 523.918586 248.978303 \nL 527.603256 269.58336 \nL 496.356551 266.074373 \nL 494.235373 245.671257 \nz\n\" style=\"fill:#000089;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 340.113599 277.149839 \nL 337.450748 301.99093 \nL 308.671754 310.000854 \nL 312.003123 284.900764 \nz\n\" style=\"fill:#0000c1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 504.784838 521.919942 \nL 488.774413 551.448651 \nL 478.660921 549.445238 \nL 490.02548 519.029895 \nz\n\" style=\"fill:#000077;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 629.166437 458.456615 \nL 607.945469 488.167761 \nL 591.820049 478.608699 \nL 610.746068 447.702949 \nz\n\" style=\"fill:#000057;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 645.781336 427.985599 \nL 629.166437 458.456615 \nL 610.746068 447.702949 \nL 625.551611 416.348021 \nz\n\" style=\"fill:#000054;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 403.451738 246.57563 \nL 400.805598 267.033923 \nL 369.859951 271.169838 \nL 374.056759 250.473331 \nz\n\" style=\"fill:#0000b1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 412.648514 519.883993 \nL 425.583627 550.037444 \nL 415.635857 552.265298 \nL 398.125788 523.098542 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 282.579418 347.866739 \nL 287.648451 377.988631 \nL 264.308898 389.20917 \nL 258.50284 359.300163 \nz\n\" style=\"fill:#0000cb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 569.223504 508.316926 \nL 543.487513 536.099306 \nL 531.729004 530.517118 \nL 554.032676 501.207139 \nz\n\" style=\"fill:#000066;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 607.945469 488.167761 \nL 582.635258 516.391989 \nL 569.223504 508.316926 \nL 591.820049 478.608699 \nz\n\" style=\"fill:#00005c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 518.759169 525.767555 \nL 498.338416 554.113849 \nL 488.774413 551.448651 \nL 504.784838 521.919942 \nz\n\" style=\"fill:#000073;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 348.38785 503.463212 \nL 371.874135 532.289142 \nL 360.562753 538.13118 \nL 333.763704 510.906839 \nz\n\" style=\"fill:#0000a4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 657.372148 397.499646 \nL 645.781336 427.985599 \nL 625.551611 416.348021 \nL 635.873676 385.301209 \nz\n\" style=\"fill:#000054;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 290.502616 451.149531 \nL 310.224638 481.673396 \nL 294.860529 491.587175 \nL 272.939482 462.305837 \nz\n\" style=\"fill:#0000bc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 552.595169 254.040534 \nL 557.798412 274.955642 \nL 527.603256 269.58336 \nL 523.918586 248.978303 \nz\n\" style=\"fill:#000081;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 398.125788 523.098542 \nL 415.635857 552.265298 \nL 406.289316 555.142651 \nL 384.462467 527.253673 \nz\n\" style=\"fill:#000094;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 275.070187 420.076959 \nL 290.502616 451.149531 \nL 272.939482 462.305837 \nL 255.771258 432.153315 \nz\n\" style=\"fill:#0000c5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 642.085327 327.139201 \nL 641.442046 355.317724 \nL 616.484619 344.408929 \nL 617.040011 316.310021 \nz\n\" style=\"fill:#00005f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 613.285627 291.005152 \nL 617.040011 316.310021 \nL 589.614689 307.133067 \nL 586.501965 282.125832 \nz\n\" style=\"fill:#00006b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 310.224638 481.673396 \nL 333.763704 510.906839 \nL 320.995989 519.278336 \nL 294.860529 491.587175 \nz\n\" style=\"fill:#0000b3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 374.056759 250.473331 \nL 369.859951 271.169838 \nL 340.113599 277.149839 \nL 345.809697 256.107791 \nz\n\" style=\"fill:#0000bb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 531.729004 530.517118 \nL 507.200539 557.400652 \nL 498.338416 554.113849 \nL 518.759169 525.767555 \nz\n\" style=\"fill:#000070;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 264.308898 389.20917 \nL 275.070187 420.076959 \nL 255.771258 432.153315 \nL 243.791733 401.869757 \nz\n\" style=\"fill:#0000cd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 384.462467 527.253673 \nL 406.289316 555.142651 \nL 397.693405 558.626037 \nL 371.874135 532.289142 \nz\n\" style=\"fill:#000098;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 582.635258 516.391989 \nL 553.843473 542.431688 \nL 543.487513 536.099306 \nL 569.223504 508.316926 \nz\n\" style=\"fill:#000063;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 312.003123 284.900764 \nL 308.671754 310.000854 \nL 281.993877 319.742562 \nL 285.951955 294.325995 \nz\n\" style=\"fill:#0000cb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 281.993877 319.742562 \nL 282.579418 347.866739 \nL 258.50284 359.300163 \nL 257.832067 331.092652 \nz\n\" style=\"fill:#0000d0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 663.627455 367.749821 \nL 657.372148 397.499646 \nL 635.873676 385.301209 \nL 641.442046 355.317724 \nz\n\" style=\"fill:#000056;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 333.763704 510.906839 \nL 360.562753 538.13118 \nL 350.713673 544.693152 \nL 320.995989 519.278336 \nz\n\" style=\"fill:#0000a9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 579.844494 260.795253 \nL 586.501965 282.125832 \nL 557.798412 274.955642 \nL 552.595169 254.040534 \nz\n\" style=\"fill:#000079;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 543.487513 536.099306 \nL 515.218081 561.259188 \nL 507.200539 557.400652 \nL 531.729004 530.517118 \nz\n\" style=\"fill:#00006e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 644.916313 470.365542 \nL 621.700874 498.743165 \nL 607.945469 488.167761 \nL 629.166437 458.456615 \nz\n\" style=\"fill:#000054;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 621.700874 498.743165 \nL 594.043733 525.314964 \nL 582.635258 516.391989 \nL 607.945469 488.167761 \nz\n\" style=\"fill:#000059;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 371.874135 532.289142 \nL 397.693405 558.626037 \nL 389.987116 562.66247 \nL 360.562753 538.13118 \nz\n\" style=\"fill:#00009c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 663.109818 440.883492 \nL 644.916313 470.365542 \nL 629.166437 458.456615 \nL 645.781336 427.985599 \nz\n\" style=\"fill:#000051;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 345.809697 256.107791 \nL 340.113599 277.149839 \nL 312.003123 284.900764 \nL 319.127661 263.408884 \nz\n\" style=\"fill:#0000c5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 463.166773 228.524316 \nL 463.974202 244.159885 \nL 433.568234 244.462567 \nL 435.181988 228.801173 \nz\n\" style=\"fill:#0000a2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 258.50284 359.300163 \nL 264.308898 389.20917 \nL 243.791733 401.869757 \nL 237.325722 372.204488 \nz\n\" style=\"fill:#0000d4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 491.016699 229.90668 \nL 494.235373 245.671257 \nL 463.974202 244.159885 \nL 463.166773 228.524316 \nz\n\" style=\"fill:#000099;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 457.430237 547.533506 \nL 455.669225 576.084953 \nL 450.165364 576.146933 \nL 446.646331 547.653736 \nz\n\" style=\"fill:#000084;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 468.157816 548.133657 \nL 461.143654 576.394317 \nL 455.669225 576.084953 \nL 457.430237 547.533506 \nz\n\" style=\"fill:#000081;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 446.646331 547.653736 \nL 450.165364 576.146933 \nL 444.720318 576.579289 \nL 435.974996 548.492553 \nz\n\" style=\"fill:#000087;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 435.181988 228.801173 \nL 433.568234 244.462567 \nL 403.451738 246.57563 \nL 407.466798 230.733795 \nz\n\" style=\"fill:#0000ac;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 272.939482 462.305837 \nL 294.860529 491.587175 \nL 281.950338 502.468171 \nL 258.1433 474.563239 \nz\n\" style=\"fill:#0000c2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 478.660921 549.445238 \nL 466.500845 577.070183 \nL 461.143654 576.394317 \nL 468.157816 548.133657 \nz\n\" style=\"fill:#00007f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 294.860529 491.587175 \nL 320.995989 519.278336 \nL 310.300763 528.455269 \nL 281.950338 502.468171 \nz\n\" style=\"fill:#0000b8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 594.043733 525.314964 \nL 562.624261 549.419506 \nL 553.843473 542.431688 \nL 582.635258 516.391989 \nz\n\" style=\"fill:#000061;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 435.974996 548.492553 \nL 444.720318 576.579289 \nL 439.421455 577.37525 \nL 425.583627 550.037444 \nz\n\" style=\"fill:#000089;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 553.843473 542.431688 \nL 522.260184 565.630448 \nL 515.218081 561.259188 \nL 543.487513 536.099306 \nz\n\" style=\"fill:#00006c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 637.737185 301.481256 \nL 642.085327 327.139201 \nL 617.040011 316.310021 \nL 613.285627 291.005152 \nz\n\" style=\"fill:#000064;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 488.774413 551.448651 \nL 471.654736 578.101964 \nL 466.500845 577.070183 \nL 478.660921 549.445238 \nz\n\" style=\"fill:#00007d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 518.328437 232.930984 \nL 523.918586 248.978303 \nL 494.235373 245.671257 \nL 491.016699 229.90668 \nz\n\" style=\"fill:#000091;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 675.810762 411.026524 \nL 663.109818 440.883492 \nL 645.781336 427.985599 \nL 657.372148 397.499646 \nz\n\" style=\"fill:#000050;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 255.771258 432.153315 \nL 272.939482 462.305837 \nL 258.1433 474.563239 \nL 239.480007 445.432315 \nz\n\" style=\"fill:#0000cc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 425.583627 550.037444 \nL 439.421455 577.37525 \nL 434.353967 578.522342 \nL 415.635857 552.265298 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 360.562753 538.13118 \nL 389.987116 562.66247 \nL 383.29689 567.190044 \nL 350.713673 544.693152 \nz\n\" style=\"fill:#00009f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 664.350206 339.480941 \nL 663.627455 367.749821 \nL 641.442046 355.317724 \nL 642.085327 327.139201 \nz\n\" style=\"fill:#000059;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 407.466798 230.733795 \nL 403.451738 246.57563 \nL 374.056759 250.473331 \nL 380.423395 234.297984 \nz\n\" style=\"fill:#0000b5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 498.338416 554.113849 \nL 476.522302 579.473465 \nL 471.654736 578.101964 \nL 488.774413 551.448651 \nz\n\" style=\"fill:#00007b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 320.995989 519.278336 \nL 350.713673 544.693152 \nL 342.492665 551.876396 \nL 310.300763 528.455269 \nz\n\" style=\"fill:#0000ad;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 415.635857 552.265298 \nL 434.353967 578.522342 \nL 429.599586 580.002545 \nL 406.289316 555.142651 \nz\n\" style=\"fill:#00008e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 605.257825 269.157441 \nL 613.285627 291.005152 \nL 586.501965 282.125832 \nL 579.844494 260.795253 \nz\n\" style=\"fill:#000072;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 285.951955 294.325995 \nL 281.993877 319.742562 \nL 257.832067 331.092652 \nL 262.365902 305.305309 \nz\n\" style=\"fill:#0000d5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 507.200539 557.400652 \nL 481.024813 581.163105 \nL 476.522302 579.473465 \nL 498.338416 554.113849 \nz\n\" style=\"fill:#000079;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 544.703224 237.559189 \nL 552.595169 254.040534 \nL 523.918586 248.978303 \nL 518.328437 232.930984 \nz\n\" style=\"fill:#000089;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 406.289316 555.142651 \nL 429.599586 580.002545 \nL 425.235336 581.792545 \nL 397.693405 558.626037 \nz\n\" style=\"fill:#000091;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 243.791733 401.869757 \nL 255.771258 432.153315 \nL 239.480007 445.432315 \nL 226.447892 415.799032 \nz\n\" style=\"fill:#0000d4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 562.624261 549.419506 \nL 528.209916 570.446984 \nL 522.260184 565.630448 \nL 553.843473 542.431688 \nz\n\" style=\"fill:#00006a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 632.844805 510.181715 \nL 603.250446 534.953646 \nL 594.043733 525.314964 \nL 621.700874 498.743165 \nz\n\" style=\"fill:#000058;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 257.832067 331.092652 \nL 258.50284 359.300163 \nL 237.325722 372.204488 \nL 236.578585 343.903328 \nz\n\" style=\"fill:#0000d9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 319.127661 263.408884 \nL 312.003123 284.900764 \nL 285.951955 294.325995 \nL 294.414498 272.284132 \nz\n\" style=\"fill:#0000ce;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 380.423395 234.297984 \nL 374.056759 250.473331 \nL 345.809697 256.107791 \nL 354.448241 239.448779 \nz\n\" style=\"fill:#0000bf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 657.717309 483.260554 \nL 632.844805 510.181715 \nL 621.700874 498.743165 \nL 644.916313 470.365542 \nz\n\" style=\"fill:#000052;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 682.668215 381.539872 \nL 675.810762 411.026524 \nL 657.372148 397.499646 \nL 663.627455 367.749821 \nz\n\" style=\"fill:#000052;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 515.218081 561.259188 \nL 485.089053 583.144208 \nL 481.024813 581.163105 \nL 507.200539 557.400652 \nz\n\" style=\"fill:#000077;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 350.713673 544.693152 \nL 383.29689 567.190044 \nL 377.73457 572.138674 \nL 342.492665 551.876396 \nz\n\" style=\"fill:#0000a2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 603.250446 534.953646 \nL 569.678791 556.956646 \nL 562.624261 549.419506 \nL 594.043733 525.314964 \nz\n\" style=\"fill:#00005f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 397.693405 558.626037 \nL 425.235336 581.792545 \nL 421.332337 583.864047 \nL 389.987116 562.66247 \nz\n\" style=\"fill:#000093;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 281.950338 502.468171 \nL 310.300763 528.455269 \nL 301.867076 538.30075 \nL 271.724921 514.157462 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 677.229209 454.861339 \nL 657.717309 483.260554 \nL 644.916313 470.365542 \nL 663.109818 440.883492 \nz\n\" style=\"fill:#00004f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 522.260184 565.630448 \nL 488.648469 585.385378 \nL 485.089053 583.144208 \nL 515.218081 561.259188 \nz\n\" style=\"fill:#000076;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 310.300763 528.455269 \nL 342.492665 551.876396 \nL 336.042989 559.571265 \nL 301.867076 538.30075 \nz\n\" style=\"fill:#0000b1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 258.1433 474.563239 \nL 281.950338 502.468171 \nL 271.724921 514.157462 \nL 246.381053 487.745966 \nz\n\" style=\"fill:#0000c8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 389.987116 562.66247 \nL 421.332337 583.864047 \nL 417.954675 586.184174 \nL 383.29689 567.190044 \nz\n\" style=\"fill:#000096;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 569.75043 243.732474 \nL 579.844494 260.795253 \nL 552.595169 254.040534 \nL 544.703224 237.559189 \nz\n\" style=\"fill:#000081;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 569.678791 556.956646 \nL 532.966263 575.633737 \nL 528.209916 570.446984 \nL 562.624261 549.419506 \nz\n\" style=\"fill:#000069;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 237.325722 372.204488 \nL 243.791733 401.869757 \nL 226.447892 415.799032 \nL 219.410535 386.406251 \nz\n\" style=\"fill:#0000dc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 659.465353 313.418159 \nL 664.350206 339.480941 \nL 642.085327 327.139201 \nL 637.737185 301.481256 \nz\n\" style=\"fill:#00005f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 528.209916 570.446984 \nL 491.644255 587.850935 \nL 488.648469 585.385378 \nL 522.260184 565.630448 \nz\n\" style=\"fill:#000075;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 628.442577 279.019685 \nL 637.737185 301.481256 \nL 613.285627 291.005152 \nL 605.257825 269.157441 \nz\n\" style=\"fill:#00006c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 342.492665 551.876396 \nL 377.73457 572.138674 \nL 373.395446 577.430974 \nL 336.042989 559.571265 \nz\n\" style=\"fill:#0000a5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 354.448241 239.448779 \nL 345.809697 256.107791 \nL 319.127661 263.408884 \nL 329.928418 246.120425 \nz\n\" style=\"fill:#0000c8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 239.480007 445.432315 \nL 258.1433 474.563239 \nL 246.381053 487.745966 \nL 226.492363 459.726327 \nz\n\" style=\"fill:#0000d2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 383.29689 567.190044 \nL 417.954675 586.184174 \nL 415.158353 588.715932 \nL 377.73457 572.138674 \nz\n\" style=\"fill:#000098;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 690.860847 425.6948 \nL 677.229209 454.861339 \nL 663.109818 440.883492 \nL 675.810762 411.026524 \nz\n\" style=\"fill:#00004e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 683.460676 353.171232 \nL 682.668215 381.539872 \nL 663.627455 367.749821 \nL 664.350206 339.480941 \nz\n\" style=\"fill:#000055;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 610.086494 545.162239 \nL 574.880394 564.92682 \nL 569.678791 556.956646 \nL 603.250446 534.953646 \nz\n\" style=\"fill:#00005f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 262.365902 305.305309 \nL 257.832067 331.092652 \nL 236.578585 343.903328 \nL 241.628093 317.694847 \nz\n\" style=\"fill:#0000dd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 641.169209 522.313506 \nL 610.086494 545.162239 \nL 603.250446 534.953646 \nL 632.844805 510.181715 \nz\n\" style=\"fill:#000057;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 532.966263 575.633737 \nL 494.026334 590.501434 \nL 491.644255 587.850935 \nL 528.209916 570.446984 \nz\n\" style=\"fill:#000075;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 294.414498 272.284132 \nL 285.951955 294.325995 \nL 262.365902 305.305309 \nL 272.056385 282.618656 \nz\n\" style=\"fill:#0000d8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 462.098504 218.049045 \nL 463.166773 228.524316 \nL 435.181988 228.801173 \nL 437.317018 218.293188 \nz\n\" style=\"fill:#0000a8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 574.880394 564.92682 \nL 536.445977 581.109007 \nL 532.966263 575.633737 \nL 569.678791 556.956646 \nz\n\" style=\"fill:#000069;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 486.7587 219.268006 \nL 491.016699 229.90668 \nL 463.166773 228.524316 \nL 462.098504 218.049045 \nz\n\" style=\"fill:#0000a0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 377.73457 572.138674 \nL 415.158353 588.715932 \nL 412.990332 591.418743 \nL 373.395446 577.430974 \nz\n\" style=\"fill:#000099;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 455.669225 576.084953 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 450.165364 576.146933 \nz\n\" style=\"fill:#000086;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 461.143654 576.394317 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 455.669225 576.084953 \nz\n\" style=\"fill:#000086;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 450.165364 576.146933 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 444.720318 576.579289 \nz\n\" style=\"fill:#000087;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 437.317018 218.293188 \nL 435.181988 228.801173 \nL 407.466798 230.733795 \nL 412.777986 219.997277 \nz\n\" style=\"fill:#0000b1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 466.500845 577.070183 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 461.143654 576.394317 \nz\n\" style=\"fill:#000085;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 444.720318 576.579289 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 439.421455 577.37525 \nz\n\" style=\"fill:#000088;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 471.654736 578.101964 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 466.500845 577.070183 \nz\n\" style=\"fill:#000084;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 593.091381 251.371225 \nL 605.257825 269.157441 \nL 579.844494 260.795253 \nL 569.75043 243.732474 \nz\n\" style=\"fill:#00007b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 439.421455 577.37525 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 434.353967 578.522342 \nz\n\" style=\"fill:#000089;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 301.867076 538.30075 \nL 336.042989 559.571265 \nL 331.482562 567.658384 \nL 295.853123 548.664785 \nz\n\" style=\"fill:#0000b5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 667.327129 496.953116 \nL 641.169209 522.313506 \nL 632.844805 510.181715 \nL 657.717309 483.260554 \nz\n\" style=\"fill:#000051;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 226.447892 415.799032 \nL 239.480007 445.432315 \nL 226.492363 459.726327 \nL 212.593825 430.802236 \nz\n\" style=\"fill:#0000db;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 476.522302 579.473465 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 471.654736 578.101964 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 336.042989 559.571265 \nL 373.395446 577.430974 \nL 370.356456 582.983272 \nL 331.482562 567.658384 \nz\n\" style=\"fill:#0000a8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 434.353967 578.522342 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 429.599586 580.002545 \nz\n\" style=\"fill:#00008a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 510.934994 221.934284 \nL 518.328437 232.930984 \nL 491.016699 229.90668 \nL 486.7587 219.268006 \nz\n\" style=\"fill:#000098;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 236.578585 343.903328 \nL 237.325722 372.204488 \nL 219.410535 386.406251 \nL 218.597235 358.002524 \nz\n\" style=\"fill:#0000e1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 481.024813 581.163105 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 476.522302 579.473465 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 271.724921 514.157462 \nL 301.867076 538.30075 \nL 295.853123 548.664785 \nL 264.380125 526.479909 \nz\n\" style=\"fill:#0000c1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 429.599586 580.002545 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 425.235336 581.792545 \nz\n\" style=\"fill:#00008b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 536.445977 581.109007 \nL 495.754242 593.294241 \nL 494.026334 590.501434 \nL 532.966263 575.633737 \nz\n\" style=\"fill:#000074;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 485.089053 583.144208 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 481.024813 581.163105 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 412.777986 219.997277 \nL 407.466798 230.733795 \nL 380.423395 234.297984 \nL 388.842888 223.139214 \nz\n\" style=\"fill:#0000b9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 425.235336 581.792545 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 421.332337 583.864047 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 698.224328 396.49836 \nL 690.860847 425.6948 \nL 675.810762 411.026524 \nL 682.668215 381.539872 \nz\n\" style=\"fill:#00004f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 329.928418 246.120425 \nL 319.127661 263.408884 \nL 294.414498 272.284132 \nL 307.237714 254.226385 \nz\n\" style=\"fill:#0000d1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 373.395446 577.430974 \nL 412.990332 591.418743 \nL 411.487702 594.249052 \nL 370.356456 582.983272 \nz\n\" style=\"fill:#00009b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 488.648469 585.385378 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 485.089053 583.144208 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 421.332337 583.864047 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 417.954675 586.184174 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 491.644255 587.850935 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 488.648469 585.385378 \nz\n\" style=\"fill:#000081;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 246.381053 487.745966 \nL 271.724921 514.157462 \nL 264.380125 526.479909 \nL 237.881741 501.659347 \nz\n\" style=\"fill:#0000cd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 687.869523 469.717361 \nL 667.327129 496.953116 \nL 657.717309 483.260554 \nL 677.229209 454.861339 \nz\n\" style=\"fill:#00004e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 417.954675 586.184174 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 415.158353 588.715932 \nz\n\" style=\"fill:#00008d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 534.269324 226.013167 \nL 544.703224 237.559189 \nL 518.328437 232.930984 \nL 510.934994 221.934284 \nz\n\" style=\"fill:#000091;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 578.129533 573.204985 \nL 538.585268 586.785569 \nL 536.445977 581.109007 \nL 574.880394 564.92682 \nz\n\" style=\"fill:#000069;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 494.026334 590.501434 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 491.644255 587.850935 \nz\n\" style=\"fill:#000081;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 538.585268 586.785569 \nL 496.797871 596.184176 \nL 495.754242 593.294241 \nL 536.445977 581.109007 \nz\n\" style=\"fill:#000074;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 649.027043 290.252207 \nL 659.465353 313.418159 \nL 637.737185 301.481256 \nL 628.442577 279.019685 \nz\n\" style=\"fill:#000067;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 415.158353 588.715932 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 412.990332 591.418743 \nz\n\" style=\"fill:#00008e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 614.416345 555.782925 \nL 578.129533 573.204985 \nL 574.880394 564.92682 \nL 610.086494 545.162239 \nz\n\" style=\"fill:#00005f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 388.842888 223.139214 \nL 380.423395 234.297984 \nL 354.448241 239.448779 \nL 365.867489 227.677988 \nz\n\" style=\"fill:#0000c2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 678.105225 326.656328 \nL 683.460676 353.171232 \nL 664.350206 339.480941 \nL 659.465353 313.418159 \nz\n\" style=\"fill:#00005b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 495.754242 593.294241 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 494.026334 590.501434 \nz\n\" style=\"fill:#000081;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 370.356456 582.983272 \nL 411.487702 594.249052 \nL 410.676975 597.160983 \nL 368.674571 588.70677 \nz\n\" style=\"fill:#00009c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 412.990332 591.418743 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 411.487702 594.249052 \nz\n\" style=\"fill:#00008e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 331.482562 567.658384 \nL 370.356456 582.983272 \nL 368.674571 588.70677 \nL 328.901307 576.010145 \nz\n\" style=\"fill:#0000aa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 219.410535 386.406251 \nL 226.447892 415.799032 \nL 212.593825 430.802236 \nL 205.084918 401.708028 \nz\n\" style=\"fill:#0000e3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 496.797871 596.184176 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 495.754242 593.294241 \nz\n\" style=\"fill:#000081;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 411.487702 594.249052 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 410.676975 597.160983 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 646.504256 534.95352 \nL 614.416345 555.782925 \nL 610.086494 545.162239 \nL 641.169209 522.313506 \nz\n\" style=\"fill:#000057;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 295.853123 548.664785 \nL 331.482562 567.658384 \nL 328.901307 576.010145 \nL 292.382493 559.385953 \nz\n\" style=\"fill:#0000b7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 226.492363 459.726327 \nL 246.381053 487.745966 \nL 237.881741 501.659347 \nL 217.06427 474.826733 \nz\n\" style=\"fill:#0000d8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 614.363493 260.375093 \nL 628.442577 279.019685 \nL 605.257825 269.157441 \nL 593.091381 251.371225 \nz\n\" style=\"fill:#000075;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 497.138082 599.124211 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 496.797871 596.184176 \nz\n\" style=\"fill:#000081;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 539.341262 592.571919 \nL 497.138082 599.124211 \nL 496.797871 596.184176 \nL 538.585268 586.785569 \nz\n\" style=\"fill:#000075;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 410.676975 597.160983 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 410.573528 600.107053 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 272.056385 282.618656 \nL 262.365902 305.305309 \nL 241.628093 317.694847 \nL 252.416926 294.275259 \nz\n\" style=\"fill:#0000e0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 702.232649 441.294646 \nL 687.869523 469.717361 \nL 677.229209 454.861339 \nL 690.860847 425.6948 \nz\n\" style=\"fill:#00004d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 556.411709 231.45107 \nL 569.75043 243.732474 \nL 544.703224 237.559189 \nL 534.269324 226.013167 \nz\n\" style=\"fill:#00008b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 496.767141 602.06621 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 497.138082 599.124211 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 699.075427 368.022062 \nL 698.224328 396.49836 \nL 682.668215 381.539872 \nL 683.460676 353.171232 \nz\n\" style=\"fill:#000053;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 368.674571 588.70677 \nL 410.676975 597.160983 \nL 410.573528 600.107053 \nL 368.385409 594.508839 \nz\n\" style=\"fill:#00009d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 410.573528 600.107053 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 411.181224 603.038931 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 241.628093 317.694847 \nL 236.578585 343.903328 \nL 218.597235 358.002524 \nL 224.09332 331.327301 \nz\n\" style=\"fill:#0000e5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 579.356313 581.658991 \nL 539.341262 592.571919 \nL 538.585268 586.785569 \nL 578.129533 573.204985 \nz\n\" style=\"fill:#000069;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 495.688993 604.961713 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 496.767141 602.06621 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 264.380125 526.479909 \nL 295.853123 548.664785 \nL 292.382493 559.385953 \nL 260.071975 539.245892 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 365.867489 227.677988 \nL 354.448241 239.448779 \nL 329.928418 246.120425 \nL 344.198268 233.55374 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 411.181224 603.038931 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 412.492198 605.908225 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 307.237714 254.226385 \nL 294.414498 272.284132 \nL 272.056385 282.618656 \nL 286.732364 263.659431 \nz\n\" style=\"fill:#0000d9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 673.545296 511.23688 \nL 646.504256 534.95352 \nL 641.169209 522.313506 \nL 667.327129 496.953116 \nz\n\" style=\"fill:#000051;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 493.919333 607.762736 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 495.688993 604.961713 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 538.693205 598.37366 \nL 496.767141 602.06621 \nL 497.138082 599.124211 \nL 539.341262 592.571919 \nz\n\" style=\"fill:#000075;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 412.492198 605.908225 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 414.486857 608.667293 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 328.901307 576.010145 \nL 368.674571 588.70677 \nL 368.385409 594.508839 \nL 328.358733 584.492438 \nz\n\" style=\"fill:#0000ab;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 491.485484 610.422591 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 493.919333 607.762736 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 414.486857 608.667293 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 417.134065 611.270056 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 616.14147 566.647769 \nL 579.356313 581.658991 \nL 578.129533 573.204985 \nL 614.416345 555.782925 \nz\n\" style=\"fill:#000060;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 368.385409 594.508839 \nL 410.573528 600.107053 \nL 411.181224 603.038931 \nL 369.50214 600.294446 \nz\n\" style=\"fill:#00009d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 212.593825 430.802236 \nL 226.492363 459.726327 \nL 217.06427 474.826733 \nL 202.504782 446.662227 \nz\n\" style=\"fill:#0000e1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 488.426064 612.896691 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 491.485484 610.422591 \nz\n\" style=\"fill:#000084;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 218.597235 358.002524 \nL 219.410535 386.406251 \nL 205.084918 401.708028 \nL 204.216954 373.19437 \nz\n\" style=\"fill:#0000e8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 417.134065 611.270056 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 420.39155 613.672809 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 484.79044 615.143349 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 488.426064 612.896691 \nz\n\" style=\"fill:#000084;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 237.881741 501.659347 \nL 264.380125 526.479909 \nL 260.071975 539.245892 \nL 232.830615 516.091536 \nz\n\" style=\"fill:#0000d1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 577.023946 238.175638 \nL 593.091381 251.371225 \nL 569.75043 243.732474 \nL 556.411709 231.45107 \nz\n\" style=\"fill:#000085;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 420.39155 613.672809 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 424.206516 615.834999 \nz\n\" style=\"fill:#00008e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 709.995219 412.412371 \nL 702.232649 441.294646 \nL 690.860847 425.6948 \nL 698.224328 396.49836 \nz\n\" style=\"fill:#00004e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 536.64334 604.094997 \nL 495.688993 604.961713 \nL 496.767141 602.06621 \nL 538.693205 598.37366 \nz\n\" style=\"fill:#000076;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 480.637982 617.124527 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 484.79044 615.143349 \nz\n\" style=\"fill:#000085;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 292.382493 559.385953 \nL 328.901307 576.010145 \nL 328.358733 584.492438 \nL 291.540623 570.293437 \nz\n\" style=\"fill:#0000b9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 424.206516 615.834999 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 428.516465 617.719963 \nz\n\" style=\"fill:#00008e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 578.52267 590.151477 \nL 538.693205 598.37366 \nL 539.341262 592.571919 \nL 579.356313 581.658991 \nz\n\" style=\"fill:#00006b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 666.665653 302.703083 \nL 678.105225 326.656328 \nL 659.465353 313.418159 \nL 649.027043 290.252207 \nz\n\" style=\"fill:#000063;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 694.805092 485.229829 \nL 673.545296 511.23688 \nL 667.327129 496.953116 \nL 687.869523 469.717361 \nz\n\" style=\"fill:#00004e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 476.037105 618.806537 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 480.637982 617.124527 \nz\n\" style=\"fill:#000086;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 428.516465 617.719963 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 433.250206 619.295609 \nz\n\" style=\"fill:#00008d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 369.50214 600.294446 \nL 411.181224 603.038931 \nL 412.492198 605.908225 \nL 372.014717 605.967682 \nz\n\" style=\"fill:#00009e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 471.064141 620.160673 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 476.037105 618.806537 \nz\n\" style=\"fill:#000087;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 460.790691 213.119678 \nL 462.098504 218.049045 \nL 437.317018 218.293188 \nL 439.930725 213.324781 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 433.250206 619.295609 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 438.329056 620.535017 \nz\n\" style=\"fill:#00008d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 633.2248 270.623172 \nL 649.027043 290.252207 \nL 628.442577 279.019685 \nL 614.363493 260.375093 \nz\n\" style=\"fill:#000071;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 344.198268 233.55374 \nL 329.928418 246.120425 \nL 307.237714 254.226385 \nL 324.16864 240.687901 \nz\n\" style=\"fill:#0000d2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 648.723091 547.90368 \nL 616.14147 566.647769 \nL 614.416345 555.782925 \nL 646.504256 534.95352 \nz\n\" style=\"fill:#000058;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 465.802024 621.163755 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 471.064141 620.160673 \nz\n\" style=\"fill:#000088;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 481.546639 214.143655 \nL 486.7587 219.268006 \nL 462.098504 218.049045 \nL 460.790691 213.119678 \nz\n\" style=\"fill:#0000a7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 438.329056 620.535017 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 443.66819 621.416949 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 460.338855 621.798569 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 465.802024 621.163755 \nz\n\" style=\"fill:#000088;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 443.66819 621.416949 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 449.17813 621.926264 \nz\n\" style=\"fill:#00008b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 328.358733 584.492438 \nL 368.385409 594.508839 \nL 369.50214 600.294446 \nL 329.881875 592.966627 \nz\n\" style=\"fill:#0000ac;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 439.930725 213.324781 \nL 437.317018 218.293188 \nL 412.777986 219.997277 \nL 419.278675 214.756198 \nz\n\" style=\"fill:#0000b5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 454.766334 622.054205 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 460.338855 621.798569 \nz\n\" style=\"fill:#000089;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 449.17813 621.926264 \nL 453.833514 601.160187 \nL 453.833514 601.160187 \nL 454.766334 622.054205 \nz\n\" style=\"fill:#00008a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 693.324349 341.013085 \nL 699.075427 368.022062 \nL 683.460676 353.171232 \nL 678.105225 326.656328 \nz\n\" style=\"fill:#000059;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 533.21743 609.640337 \nL 493.919333 607.762736 \nL 495.688993 604.961713 \nL 536.64334 604.094997 \nz\n\" style=\"fill:#000078;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 501.88772 216.38289 \nL 510.934994 221.934284 \nL 486.7587 219.268006 \nL 481.546639 214.143655 \nz\n\" style=\"fill:#0000a0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 252.416926 294.275259 \nL 241.628093 317.694847 \nL 224.09332 331.327301 \nL 235.831721 307.09473 \nz\n\" style=\"fill:#0000e8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 419.278675 214.756198 \nL 412.777986 219.997277 \nL 388.842888 223.139214 \nL 399.1443 217.394585 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 205.084918 401.708028 \nL 212.593825 430.802236 \nL 202.504782 446.662227 \nL 194.634707 417.889366 \nz\n\" style=\"fill:#0000e9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 372.014717 605.967682 \nL 412.492198 605.908225 \nL 414.486857 608.667293 \nL 375.889497 611.433387 \nz\n\" style=\"fill:#00009d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 217.06427 474.826733 \nL 237.881741 501.659347 \nL 232.830615 516.091536 \nL 211.405147 490.50558 \nz\n\" style=\"fill:#0000dc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 286.732364 263.659431 \nL 272.056385 282.618656 \nL 252.416926 294.275259 \nL 268.746385 274.291874 \nz\n\" style=\"fill:#0000e1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 260.071975 539.245892 \nL 292.382493 559.385953 \nL 291.540623 570.293437 \nL 258.911986 552.253511 \nz\n\" style=\"fill:#0000c7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 615.203668 577.580998 \nL 578.52267 590.151477 \nL 579.356313 581.658991 \nL 616.14147 566.647769 \nz\n\" style=\"fill:#000061;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 575.624152 598.541998 \nL 536.64334 604.094997 \nL 538.693205 598.37366 \nL 578.52267 590.151477 \nz\n\" style=\"fill:#00006c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 521.507459 219.80702 \nL 534.269324 226.013167 \nL 510.934994 221.934284 \nL 501.88772 216.38289 \nz\n\" style=\"fill:#00009a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 595.78354 246.095949 \nL 614.363493 260.375093 \nL 593.091381 251.371225 \nL 577.023946 238.175638 \nz\n\" style=\"fill:#000080;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 528.464856 614.915954 \nL 491.485484 610.422591 \nL 493.919333 607.762736 \nL 533.21743 609.640337 \nz\n\" style=\"fill:#000079;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 709.682316 457.594834 \nL 694.805092 485.229829 \nL 687.869523 469.717361 \nL 702.232649 441.294646 \nz\n\" style=\"fill:#00004d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 676.218923 525.889778 \nL 648.723091 547.90368 \nL 646.504256 534.95352 \nL 673.545296 511.23688 \nz\n\" style=\"fill:#000052;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 224.09332 331.327301 \nL 218.597235 358.002524 \nL 204.216954 373.19437 \nL 210.081769 346.01243 \nz\n\" style=\"fill:#0000ec;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 710.892625 383.822172 \nL 709.995219 412.412371 \nL 698.224328 396.49836 \nL 699.075427 368.022062 \nz\n\" style=\"fill:#000052;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 399.1443 217.394585 \nL 388.842888 223.139214 \nL 365.867489 227.677988 \nL 379.831878 221.204091 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 375.889497 611.433387 \nL 414.486857 608.667293 \nL 417.134065 611.270056 \nL 381.069276 616.598837 \nz\n\" style=\"fill:#00009d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 329.881875 592.966627 \nL 369.50214 600.294446 \nL 372.014717 605.967682 \nL 333.46367 601.29175 \nz\n\" style=\"fill:#0000ac;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 291.540623 570.293437 \nL 328.358733 584.492438 \nL 329.881875 592.966627 \nL 293.371605 581.209419 \nz\n\" style=\"fill:#0000ba;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 324.16864 240.687901 \nL 307.237714 254.226385 \nL 286.732364 263.659431 \nL 306.094945 248.983424 \nz\n\" style=\"fill:#0000da;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 522.458278 619.831698 \nL 488.426064 612.896691 \nL 491.485484 610.422591 \nL 528.464856 614.915954 \nz\n\" style=\"fill:#00007b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 540.1071 224.36927 \nL 556.411709 231.45107 \nL 534.269324 226.013167 \nL 521.507459 219.80702 \nz\n\" style=\"fill:#000095;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 381.069276 616.598837 \nL 417.134065 611.270056 \nL 420.39155 613.672809 \nL 387.473794 621.375455 \nz\n\" style=\"fill:#00009c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 232.830615 516.091536 \nL 260.071975 539.245892 \nL 258.911986 552.253511 \nL 231.363436 530.815786 \nz\n\" style=\"fill:#0000d4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 202.504782 446.662227 \nL 217.06427 474.826733 \nL 211.405147 490.50558 \nL 196.407705 463.141057 \nz\n\" style=\"fill:#0000e5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 647.746328 560.955368 \nL 615.203668 577.580998 \nL 616.14147 566.647769 \nL 648.723091 547.90368 \nz\n\" style=\"fill:#00005a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 570.691192 606.689361 \nL 533.21743 609.640337 \nL 536.64334 604.094997 \nL 575.624152 598.541998 \nz\n\" style=\"fill:#00006e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 649.358885 281.974367 \nL 666.665653 302.703083 \nL 649.027043 290.252207 \nL 633.2248 270.623172 \nz\n\" style=\"fill:#00006d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 204.216954 373.19437 \nL 205.084918 401.708028 \nL 194.634707 417.889366 \nL 193.724811 389.260117 \nz\n\" style=\"fill:#0000ee;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 379.831878 221.204091 \nL 365.867489 227.677988 \nL 344.198268 233.55374 \nL 361.636831 226.132511 \nz\n\" style=\"fill:#0000cb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 681.044752 316.198745 \nL 693.324349 341.013085 \nL 678.105225 326.656328 \nL 666.665653 302.703083 \nz\n\" style=\"fill:#000061;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 515.292813 624.302703 \nL 484.79044 615.143349 \nL 488.426064 612.896691 \nL 522.458278 619.831698 \nz\n\" style=\"fill:#00007d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 697.861204 501.159132 \nL 676.218923 525.889778 \nL 673.545296 511.23688 \nL 694.805092 485.229829 \nz\n\" style=\"fill:#00004f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 611.587943 588.401639 \nL 575.624152 598.541998 \nL 578.52267 590.151477 \nL 615.203668 577.580998 \nz\n\" style=\"fill:#000064;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 387.473794 621.375455 \nL 420.39155 613.672809 \nL 424.206516 615.834999 \nL 395.000715 625.680509 \nz\n\" style=\"fill:#00009b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 333.46367 601.29175 \nL 372.014717 605.967682 \nL 375.889497 611.433387 \nL 339.061878 609.326914 \nz\n\" style=\"fill:#0000ac;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 717.727016 429.046913 \nL 709.682316 457.594834 \nL 702.232649 441.294646 \nL 709.995219 412.412371 \nz\n\" style=\"fill:#00004e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 258.911986 552.253511 \nL 291.540623 570.293437 \nL 293.371605 581.209419 \nL 260.962788 565.29129 \nz\n\" style=\"fill:#0000c8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 612.387901 255.102848 \nL 633.2248 270.623172 \nL 614.363493 260.375093 \nL 595.78354 246.095949 \nz\n\" style=\"fill:#00007c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 507.084724 628.251053 \nL 480.637982 617.124527 \nL 484.79044 615.143349 \nL 515.292813 624.302703 \nz\n\" style=\"fill:#000080;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 268.746385 274.291874 \nL 252.416926 294.275259 \nL 235.831721 307.09473 \nL 253.586513 285.976018 \nz\n\" style=\"fill:#0000e8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 557.399055 230.006663 \nL 577.023946 238.175638 \nL 556.411709 231.45107 \nL 540.1071 224.36927 \nz\n\" style=\"fill:#000090;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 395.000715 625.680509 \nL 424.206516 615.834999 \nL 428.516465 617.719963 \nL 403.527105 629.438757 \nz\n\" style=\"fill:#00009a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 293.371605 581.209419 \nL 329.881875 592.966627 \nL 333.46367 601.29175 \nL 297.875497 591.951841 \nz\n\" style=\"fill:#0000bb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 704.829359 356.283401 \nL 710.892625 383.822172 \nL 699.075427 368.022062 \nL 693.324349 341.013085 \nz\n\" style=\"fill:#000058;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 235.831721 307.09473 \nL 224.09332 331.327301 \nL 210.081769 346.01243 \nL 222.602418 320.896461 \nz\n\" style=\"fill:#0000ee;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 563.789762 614.454135 \nL 528.464856 614.915954 \nL 533.21743 609.640337 \nL 570.691192 606.689361 \nz\n\" style=\"fill:#000071;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 497.969621 631.607361 \nL 476.037105 618.806537 \nL 480.637982 617.124527 \nL 507.084724 628.251053 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 211.405147 490.50558 \nL 232.830615 516.091536 \nL 231.363436 530.815786 \nL 209.671259 506.517873 \nz\n\" style=\"fill:#0000df;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 361.636831 226.132511 \nL 344.198268 233.55374 \nL 324.16864 240.687901 \nL 344.842238 232.111534 \nz\n\" style=\"fill:#0000d2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 306.094945 248.983424 \nL 286.732364 263.659431 \nL 268.746385 274.291874 \nL 290.272158 258.32518 \nz\n\" style=\"fill:#0000e1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 403.527105 629.438757 \nL 428.516465 617.719963 \nL 433.250206 619.295609 \nL 412.911384 632.583985 \nz\n\" style=\"fill:#000098;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 194.634707 417.889366 \nL 202.504782 446.662227 \nL 196.407705 463.141057 \nL 188.296529 434.708319 \nz\n\" style=\"fill:#0000ed;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 675.248323 540.676697 \nL 647.746328 560.955368 \nL 648.723091 547.90368 \nL 676.218923 525.889778 \nz\n\" style=\"fill:#000055;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 339.061878 609.326914 \nL 375.889497 611.433387 \nL 381.069276 616.598837 \nL 346.598652 616.933856 \nz\n\" style=\"fill:#0000ab;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 488.100194 634.312218 \nL 471.064141 620.160673 \nL 476.037105 618.806537 \nL 497.969621 631.607361 \nz\n\" style=\"fill:#000085;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 412.911384 632.583985 \nL 433.250206 619.295609 \nL 438.329056 620.535017 \nL 422.99575 635.0604 \nz\n\" style=\"fill:#000096;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 713.019153 474.344762 \nL 697.861204 501.159132 \nL 694.805092 485.229829 \nL 709.682316 457.594834 \nz\n\" style=\"fill:#00004e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 477.643513 636.317459 \nL 465.802024 621.163755 \nL 471.064141 620.160673 \nL 488.100194 634.312218 \nz\n\" style=\"fill:#000087;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 210.081769 346.01243 \nL 204.216954 373.19437 \nL 193.724811 389.260117 \nL 199.872218 361.538019 \nz\n\" style=\"fill:#0000f2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 422.99575 635.0604 \nL 438.329056 620.535017 \nL 443.66819 621.416949 \nL 433.609007 636.823832 \nz\n\" style=\"fill:#000094;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 605.324757 598.926513 \nL 570.691192 606.689361 \nL 575.624152 598.541998 \nL 611.587943 588.401639 \nz\n\" style=\"fill:#000067;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 459.271631 214.003237 \nL 460.790691 213.119678 \nL 439.930725 213.324781 \nL 442.966515 214.163611 \nz\n\" style=\"fill:#0000b4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 643.546106 573.892471 \nL 611.587943 588.401639 \nL 615.203668 577.580998 \nL 647.746328 560.955368 \nz\n\" style=\"fill:#00005d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 718.657231 400.338352 \nL 717.727016 429.046913 \nL 709.995219 412.412371 \nL 710.892625 383.822172 \nz\n\" style=\"fill:#000052;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 466.777953 637.587212 \nL 460.338855 621.798569 \nL 465.802024 621.163755 \nL 477.643513 636.317459 \nz\n\" style=\"fill:#00008a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 475.493696 214.803847 \nL 481.546639 214.143655 \nL 460.790691 213.119678 \nL 459.271631 214.003237 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 433.609007 636.823832 \nL 443.66819 621.416949 \nL 449.17813 621.926264 \nL 444.569749 637.842694 \nz\n\" style=\"fill:#000092;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 442.966515 214.163611 \nL 439.930725 213.324781 \nL 419.278675 214.756198 \nL 426.827393 215.282703 \nz\n\" style=\"fill:#0000b9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 573.110477 236.640342 \nL 595.78354 246.095949 \nL 577.023946 238.175638 \nL 557.399055 230.006663 \nz\n\" style=\"fill:#00008b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 455.689818 638.098689 \nL 454.766334 622.054205 \nL 460.338855 621.798569 \nL 466.777953 637.587212 \nz\n\" style=\"fill:#00008d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 444.569749 637.842694 \nL 449.17813 621.926264 \nL 454.766334 622.054205 \nL 455.689818 638.098689 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 555.021334 621.701289 \nL 522.458278 619.831698 \nL 528.464856 614.915954 \nL 563.789762 614.454135 \nz\n\" style=\"fill:#000074;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 231.363436 530.815786 \nL 258.911986 552.253511 \nL 260.962788 565.29129 \nL 233.560976 545.593342 \nz\n\" style=\"fill:#0000d5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 491.384642 216.55412 \nL 501.88772 216.38289 \nL 481.546639 214.143655 \nL 475.493696 214.803847 \nz\n\" style=\"fill:#0000a9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 662.480208 294.268041 \nL 681.044752 316.198745 \nL 666.665653 302.703083 \nL 649.358885 281.974367 \nz\n\" style=\"fill:#00006b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 297.875497 591.951841 \nL 333.46367 601.29175 \nL 339.061878 609.326914 \nL 305.006316 602.337507 \nz\n\" style=\"fill:#0000bb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 426.827393 215.282703 \nL 419.278675 214.756198 \nL 399.1443 217.394585 \nL 411.101353 217.344676 \nz\n\" style=\"fill:#0000bf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 346.598652 616.933856 \nL 381.069276 616.598837 \nL 387.473794 621.375455 \nL 355.960832 623.979612 \nz\n\" style=\"fill:#0000aa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 344.842238 232.111534 \nL 324.16864 240.687901 \nL 306.094945 248.983424 \nL 329.715211 239.057104 \nz\n\" style=\"fill:#0000d8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 626.558813 265.069468 \nL 649.358885 281.974367 \nL 633.2248 270.623172 \nL 612.387901 255.102848 \nz\n\" style=\"fill:#000079;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 260.962788 565.29129 \nL 293.371605 581.209419 \nL 297.875497 591.951841 \nL 266.234283 578.141378 \nz\n\" style=\"fill:#0000c9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 196.407705 463.141057 \nL 211.405147 490.50558 \nL 209.671259 506.517873 \nL 194.473955 479.982243 \nz\n\" style=\"fill:#0000e9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 506.700324 219.22923 \nL 521.507459 219.80702 \nL 501.88772 216.38289 \nL 491.384642 216.55412 \nz\n\" style=\"fill:#0000a4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 691.888853 330.544868 \nL 704.829359 356.283401 \nL 693.324349 341.013085 \nL 681.044752 316.198745 \nz\n\" style=\"fill:#000060;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 696.920639 517.250529 \nL 675.248323 540.676697 \nL 676.218923 525.889778 \nL 697.861204 501.159132 \nz\n\" style=\"fill:#000052;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 411.101353 217.344676 \nL 399.1443 217.394585 \nL 379.831878 221.204091 \nL 396.030576 220.320235 \nz\n\" style=\"fill:#0000c5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 193.724811 389.260117 \nL 194.634707 417.889366 \nL 188.296529 434.708319 \nL 187.35856 405.959639 \nz\n\" style=\"fill:#0000f3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 544.522049 628.302893 \nL 515.292813 624.302703 \nL 522.458278 619.831698 \nL 555.021334 621.701289 \nz\n\" style=\"fill:#000078;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 253.586513 285.976018 \nL 235.831721 307.09473 \nL 222.602418 320.896461 \nL 241.526749 298.544909 \nz\n\" style=\"fill:#0000ef;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 290.272158 258.32518 \nL 268.746385 274.291874 \nL 253.586513 285.976018 \nL 276.969333 268.580561 \nz\n\" style=\"fill:#0000e7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 721.220138 446.146899 \nL 713.019153 474.344762 \nL 709.682316 457.594834 \nL 717.727016 429.046913 \nz\n\" style=\"fill:#000050;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 355.960832 623.979612 \nL 387.473794 621.375455 \nL 395.000715 625.680509 \nL 367.001045 630.339221 \nz\n\" style=\"fill:#0000a8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 596.491493 608.973529 \nL 563.789762 614.454135 \nL 570.691192 606.689361 \nL 605.324757 598.926513 \nz\n\" style=\"fill:#00006a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 521.203484 222.791012 \nL 540.1071 224.36927 \nL 521.507459 219.80702 \nL 506.700324 219.22923 \nz\n\" style=\"fill:#00009f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 586.986985 244.176038 \nL 612.387901 255.102848 \nL 595.78354 246.095949 \nL 573.110477 236.640342 \nz\n\" style=\"fill:#000088;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 222.602418 320.896461 \nL 210.081769 346.01243 \nL 199.872218 361.538019 \nL 212.990324 335.479487 \nz\n\" style=\"fill:#0000f4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 670.592193 555.352799 \nL 643.546106 573.892471 \nL 647.746328 560.955368 \nL 675.248323 540.676697 \nz\n\" style=\"fill:#000058;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 396.030576 220.320235 \nL 379.831878 221.204091 \nL 361.636831 226.132511 \nL 381.849358 224.166827 \nz\n\" style=\"fill:#0000cb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 712.373069 372.241218 \nL 718.657231 400.338352 \nL 710.892625 383.822172 \nL 704.829359 356.283401 \nz\n\" style=\"fill:#000058;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 209.671259 506.517873 \nL 231.363436 530.815786 \nL 233.560976 545.593342 \nL 211.959259 522.604567 \nz\n\" style=\"fill:#0000e1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 305.006316 602.337507 \nL 339.061878 609.326914 \nL 346.598652 616.933856 \nL 314.670872 612.18547 \nz\n\" style=\"fill:#0000ba;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 636.149442 586.494913 \nL 605.324757 598.926513 \nL 611.587943 588.401639 \nL 643.546106 573.892471 \nz\n\" style=\"fill:#000061;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 532.461067 634.140809 \nL 507.084724 628.251053 \nL 515.292813 624.302703 \nL 544.522049 628.302893 \nz\n\" style=\"fill:#00007b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 329.715211 239.057104 \nL 306.094945 248.983424 \nL 290.272158 258.32518 \nL 316.503127 246.86995 \nz\n\" style=\"fill:#0000de;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 367.001045 630.339221 \nL 395.000715 625.680509 \nL 403.527105 629.438757 \nL 379.539639 635.89839 \nz\n\" style=\"fill:#0000a6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 188.296529 434.708319 \nL 196.407705 463.141057 \nL 194.473955 479.982243 \nL 186.250163 451.903676 \nz\n\" style=\"fill:#0000f1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 534.666751 227.188247 \nL 557.399055 230.006663 \nL 540.1071 224.36927 \nL 521.203484 222.791012 \nz\n\" style=\"fill:#00009b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 233.560976 545.593342 \nL 260.962788 565.29129 \nL 266.234283 578.141378 \nL 239.444045 560.176974 \nz\n\" style=\"fill:#0000d6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 266.234283 578.141378 \nL 297.875497 591.951841 \nL 305.006316 602.337507 \nL 274.680568 590.583243 \nz\n\" style=\"fill:#0000c9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 712.112853 491.277221 \nL 696.920639 517.250529 \nL 697.861204 501.159132 \nL 713.019153 474.344762 \nz\n\" style=\"fill:#000051;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 638.047152 275.852014 \nL 662.480208 294.268041 \nL 649.358885 281.974367 \nL 626.558813 265.069468 \nz\n\" style=\"fill:#000077;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 381.849358 224.166827 \nL 361.636831 226.132511 \nL 344.842238 232.111534 \nL 368.781104 228.828962 \nz\n\" style=\"fill:#0000d1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 519.038061 639.109284 \nL 497.969621 631.607361 \nL 507.084724 628.251053 \nL 532.461067 634.140809 \nz\n\" style=\"fill:#00007f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 199.872218 361.538019 \nL 193.724811 389.260117 \nL 187.35856 405.959639 \nL 193.694833 377.671402 \nz\n\" style=\"fill:#0000f7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 672.339778 307.325 \nL 691.888853 330.544868 \nL 681.044752 316.198745 \nL 662.480208 294.268041 \nz\n\" style=\"fill:#00006a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 585.21297 618.365241 \nL 555.021334 621.701289 \nL 563.789762 614.454135 \nL 596.491493 608.973529 \nz\n\" style=\"fill:#00006e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 379.539639 635.89839 \nL 403.527105 629.438757 \nL 412.911384 632.583985 \nL 393.367473 640.556044 \nz\n\" style=\"fill:#0000a3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 722.168628 417.31741 \nL 721.220138 446.146899 \nL 717.727016 429.046913 \nL 718.657231 400.338352 \nz\n\" style=\"fill:#000053;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 598.796514 252.504718 \nL 626.558813 265.069468 \nL 612.387901 255.102848 \nL 586.986985 244.176038 \nz\n\" style=\"fill:#000085;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 314.670872 612.18547 \nL 346.598652 616.933856 \nL 355.960832 623.979612 \nL 326.728605 621.320648 \nz\n\" style=\"fill:#0000b8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 504.479876 643.117365 \nL 488.100194 634.312218 \nL 497.969621 631.607361 \nL 519.038061 639.109284 \nz\n\" style=\"fill:#000084;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 546.875679 232.357057 \nL 573.110477 236.640342 \nL 557.399055 230.006663 \nL 534.666751 227.188247 \nz\n\" style=\"fill:#000098;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 276.969333 268.580561 \nL 253.586513 285.976018 \nL 241.526749 298.544909 \nL 266.424811 279.600352 \nz\n\" style=\"fill:#0000ed;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 393.367473 640.556044 \nL 412.911384 632.583985 \nL 422.99575 635.0604 \nL 408.249525 644.226655 \nz\n\" style=\"fill:#0000a0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 698.967249 345.527743 \nL 712.373069 372.241218 \nL 704.829359 356.283401 \nL 691.888853 330.544868 \nz\n\" style=\"fill:#000060;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 194.473955 479.982243 \nL 209.671259 506.517873 \nL 211.959259 522.604567 \nL 196.812145 496.913798 \nz\n\" style=\"fill:#0000eb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 691.929846 533.237647 \nL 670.592193 555.352799 \nL 675.248323 540.676697 \nL 696.920639 517.250529 \nz\n\" style=\"fill:#000055;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 241.526749 298.544909 \nL 222.602418 320.896461 \nL 212.990324 335.479487 \nL 232.802594 311.813468 \nz\n\" style=\"fill:#0000f4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 368.781104 228.828962 \nL 344.842238 232.111534 \nL 329.715211 239.057104 \nL 357.035268 234.238655 \nz\n\" style=\"fill:#0000d6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 316.503127 246.86995 \nL 290.272158 258.32518 \nL 276.969333 268.580561 \nL 305.429733 255.436296 \nz\n\" style=\"fill:#0000e4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 625.640658 598.542651 \nL 596.491493 608.973529 \nL 605.324757 598.926513 \nL 636.149442 586.494913 \nz\n\" style=\"fill:#000065;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 489.0364 646.091043 \nL 477.643513 636.317459 \nL 488.100194 634.312218 \nL 504.479876 643.117365 \nz\n\" style=\"fill:#000088;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 408.249525 644.226655 \nL 422.99575 635.0604 \nL 433.609007 636.823832 \nL 423.929267 646.842278 \nz\n\" style=\"fill:#00009d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 187.35856 405.959639 \nL 188.296529 434.708319 \nL 186.250163 451.903676 \nL 185.298966 423.033646 \nz\n\" style=\"fill:#0000f7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 662.27207 569.66748 \nL 636.149442 586.494913 \nL 643.546106 573.892471 \nL 670.592193 555.352799 \nz\n\" style=\"fill:#00005c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 472.975743 647.975036 \nL 466.777953 637.587212 \nL 477.643513 636.317459 \nL 489.0364 646.091043 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 571.660862 626.932547 \nL 544.522049 628.302893 \nL 555.021334 621.701289 \nL 585.21297 618.365241 \nz\n\" style=\"fill:#000073;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 457.576648 220.828181 \nL 459.271631 214.003237 \nL 442.966515 214.163611 \nL 446.353752 220.938868 \nz\n\" style=\"fill:#0000b9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 468.741038 221.380702 \nL 475.493696 214.803847 \nL 459.271631 214.003237 \nL 457.576648 220.828181 \nz\n\" style=\"fill:#0000b5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 423.929267 646.842278 \nL 433.609007 636.823832 \nL 444.569749 637.842694 \nL 440.13369 648.354202 \nz\n\" style=\"fill:#000099;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 446.353752 220.938868 \nL 442.966515 214.163611 \nL 426.827393 215.282703 \nL 435.247781 221.71112 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 720.336926 463.439912 \nL 712.112853 491.277221 \nL 713.019153 474.344762 \nL 721.220138 446.146899 \nz\n\" style=\"fill:#000053;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 456.578846 648.734161 \nL 455.689818 638.098689 \nL 466.777953 637.587212 \nL 472.975743 647.975036 \nz\n\" style=\"fill:#000090;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 440.13369 648.354202 \nL 444.569749 637.842694 \nL 455.689818 638.098689 \nL 456.578846 648.734161 \nz\n\" style=\"fill:#000095;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 274.680568 590.583243 \nL 305.006316 602.337507 \nL 314.670872 612.18547 \nL 286.197876 602.397812 \nz\n\" style=\"fill:#0000c7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 479.672269 222.588227 \nL 491.384642 216.55412 \nL 475.493696 214.803847 \nL 468.741038 221.380702 \nz\n\" style=\"fill:#0000b1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 211.959259 522.604567 \nL 233.560976 545.593342 \nL 239.444045 560.176974 \nL 218.300222 538.496319 \nz\n\" style=\"fill:#0000e2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 212.990324 335.479487 \nL 199.872218 361.538019 \nL 193.694833 377.671402 \nL 207.209712 350.624042 \nz\n\" style=\"fill:#0000f9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 435.247781 221.71112 \nL 426.827393 215.282703 \nL 411.101353 217.344676 \nL 424.432613 223.133464 \nz\n\" style=\"fill:#0000c2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 326.728605 621.320648 \nL 355.960832 623.979612 \nL 367.001045 630.339221 \nL 340.99256 629.57756 \nz\n\" style=\"fill:#0000b5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 557.631816 238.221443 \nL 586.986985 244.176038 \nL 573.110477 236.640342 \nL 546.875679 232.357057 \nz\n\" style=\"fill:#000095;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 715.761828 388.641406 \nL 722.168628 417.31741 \nL 718.657231 400.338352 \nL 712.373069 372.241218 \nz\n\" style=\"fill:#000059;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 239.444045 560.176974 \nL 266.234283 578.141378 \nL 274.680568 590.583243 \nL 248.969332 574.315142 \nz\n\" style=\"fill:#0000d6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 490.198784 224.432783 \nL 506.700324 219.22923 \nL 491.384642 216.55412 \nL 479.672269 222.588227 \nz\n\" style=\"fill:#0000ad;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 646.637804 287.290847 \nL 672.339778 307.325 \nL 662.480208 294.268041 \nL 638.047152 275.852014 \nz\n\" style=\"fill:#000076;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 424.432613 223.133464 \nL 411.101353 217.344676 \nL 396.030576 220.320235 \nL 414.078258 225.184706 \nz\n\" style=\"fill:#0000c6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 357.035268 234.238655 \nL 329.715211 239.057104 \nL 316.503127 246.86995 \nL 346.804286 240.316013 \nz\n\" style=\"fill:#0000db;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 608.333281 261.503452 \nL 638.047152 275.852014 \nL 626.558813 265.069468 \nL 598.796514 252.504718 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 500.154439 226.886814 \nL 521.203484 222.791012 \nL 506.700324 219.22923 \nL 490.198784 224.432783 \nz\n\" style=\"fill:#0000aa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 186.250163 451.903676 \nL 194.473955 479.982243 \nL 196.812145 496.913798 \nL 188.610976 469.198003 \nz\n\" style=\"fill:#0000f3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 556.051913 634.518458 \nL 532.461067 634.140809 \nL 544.522049 628.302893 \nL 571.660862 626.932547 \nz\n\" style=\"fill:#000078;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 678.731063 320.948938 \nL 698.967249 345.527743 \nL 691.888853 330.544868 \nL 672.339778 307.325 \nz\n\" style=\"fill:#00006a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 706.900413 508.111994 \nL 691.929846 533.237647 \nL 696.920639 517.250529 \nL 712.112853 491.277221 \nz\n\" style=\"fill:#000055;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 414.078258 225.184706 \nL 396.030576 220.320235 \nL 381.849358 224.166827 \nL 404.348542 227.834154 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 612.16263 609.820061 \nL 585.21297 618.365241 \nL 596.491493 608.973529 \nL 625.640658 598.542651 \nz\n\" style=\"fill:#00006a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 266.424811 279.600352 \nL 241.526749 298.544909 \nL 232.802594 311.813468 \nL 258.84126 291.219935 \nz\n\" style=\"fill:#0000f1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 305.429733 255.436296 \nL 276.969333 268.580561 \nL 266.424811 279.600352 \nL 296.691166 264.628819 \nz\n\" style=\"fill:#0000e9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 340.99256 629.57756 \nL 367.001045 630.339221 \nL 379.539639 635.89839 \nL 357.231582 636.80408 \nz\n\" style=\"fill:#0000b2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 193.694833 377.671402 \nL 187.35856 405.959639 \nL 185.298966 423.033646 \nL 191.723771 394.16165 \nz\n\" style=\"fill:#0000fb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 566.755791 244.69398 \nL 598.796514 252.504718 \nL 586.986985 244.176038 \nL 557.631816 238.221443 \nz\n\" style=\"fill:#000093;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 509.380806 229.91346 \nL 534.666751 227.188247 \nL 521.203484 222.791012 \nL 500.154439 226.886814 \nz\n\" style=\"fill:#0000a7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 721.288292 434.488897 \nL 720.336926 463.439912 \nL 721.220138 446.146899 \nL 722.168628 417.31741 \nz\n\" style=\"fill:#000056;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 682.904377 548.846738 \nL 662.27207 569.66748 \nL 670.592193 555.352799 \nL 691.929846 533.237647 \nz\n\" style=\"fill:#00005a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 286.197876 602.397812 \nL 314.670872 612.18547 \nL 326.728605 621.320648 \nL 300.623775 613.371962 \nz\n\" style=\"fill:#0000c5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 404.348542 227.834154 \nL 381.849358 224.166827 \nL 368.781104 228.828962 \nL 395.398817 231.041926 \nz\n\" style=\"fill:#0000ce;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 650.375758 583.368938 \nL 625.640658 598.542651 \nL 636.149442 586.494913 \nL 662.27207 569.66748 \nz\n\" style=\"fill:#000062;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 232.802594 311.813468 \nL 212.990324 335.479487 \nL 207.209712 350.624042 \nL 227.6051 325.580085 \nz\n\" style=\"fill:#0000f8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 538.64489 640.981776 \nL 519.038061 639.109284 \nL 532.461067 634.140809 \nL 556.051913 634.518458 \nz\n\" style=\"fill:#00007e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 196.812145 496.913798 \nL 211.959259 522.604567 \nL 218.300222 538.496319 \nL 203.461424 513.652113 \nz\n\" style=\"fill:#0000ec;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 346.804286 240.316013 \nL 316.503127 246.86995 \nL 305.429733 255.436296 \nL 338.260484 246.969987 \nz\n\" style=\"fill:#0000df;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 702.100814 360.91624 \nL 715.761828 388.641406 \nL 712.373069 372.241218 \nL 698.967249 345.527743 \nz\n\" style=\"fill:#000062;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 357.231582 636.80408 \nL 379.539639 635.89839 \nL 393.367473 640.556044 \nL 375.173794 642.865058 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 517.729443 233.466949 \nL 546.875679 232.357057 \nL 534.666751 227.188247 \nL 509.380806 229.91346 \nz\n\" style=\"fill:#0000a4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 615.421782 271.036542 \nL 646.637804 287.290847 \nL 638.047152 275.852014 \nL 608.333281 261.503452 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 248.969332 574.315142 \nL 274.680568 590.583243 \nL 286.197876 602.397812 \nL 262.026417 587.756757 \nz\n\" style=\"fill:#0000d4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 218.300222 538.496319 \nL 239.444045 560.176974 \nL 248.969332 574.315142 \nL 228.654534 553.918001 \nz\n\" style=\"fill:#0000e1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 395.398817 231.041926 \nL 368.781104 228.828962 \nL 357.035268 234.238655 \nL 387.373694 234.759389 \nz\n\" style=\"fill:#0000d2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 185.298966 423.033646 \nL 186.250163 451.903676 \nL 188.610976 469.198003 \nL 187.662191 440.206695 \nz\n\" style=\"fill:#0000f9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 652.154665 299.211946 \nL 678.731063 320.948938 \nL 672.339778 307.325 \nL 646.637804 287.290847 \nz\n\" style=\"fill:#000076;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 519.736271 646.200568 \nL 504.479876 643.117365 \nL 519.038061 639.109284 \nL 538.64489 640.981776 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 595.916631 620.120605 \nL 571.660862 626.932547 \nL 585.21297 618.365241 \nL 612.16263 609.820061 \nz\n\" style=\"fill:#000070;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 715.008958 480.639821 \nL 706.900413 508.111994 \nL 712.112853 491.277221 \nL 720.336926 463.439912 \nz\n\" style=\"fill:#000057;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 207.209712 350.624042 \nL 193.694833 377.671402 \nL 191.723771 394.16165 \nL 205.421008 366.093737 \nz\n\" style=\"fill:#0000fc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 574.090379 251.676691 \nL 608.333281 261.503452 \nL 598.796514 252.504718 \nL 566.755791 244.69398 \nz\n\" style=\"fill:#000091;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 375.173794 642.865058 \nL 393.367473 640.556044 \nL 408.249525 644.226655 \nL 394.511317 647.645699 \nz\n\" style=\"fill:#0000aa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 525.064129 237.493104 \nL 557.631816 238.221443 \nL 546.875679 232.357057 \nL 517.729443 233.466949 \nz\n\" style=\"fill:#0000a2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 296.691166 264.628819 \nL 266.424811 279.600352 \nL 258.84126 291.219935 \nL 290.451946 274.307865 \nz\n\" style=\"fill:#0000ed;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 714.862894 405.222457 \nL 721.288292 434.488897 \nL 722.168628 417.31741 \nL 715.761828 388.641406 \nz\n\" style=\"fill:#00005c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 300.623775 613.371962 \nL 326.728605 621.320648 \nL 340.99256 629.57756 \nL 317.737827 623.303248 \nz\n\" style=\"fill:#0000c2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 499.654721 650.075279 \nL 489.0364 646.091043 \nL 504.479876 643.117365 \nL 519.736271 646.200568 \nz\n\" style=\"fill:#000089;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 338.260484 246.969987 \nL 305.429733 255.436296 \nL 296.691166 264.628819 \nL 331.553037 254.09931 \nz\n\" style=\"fill:#0000e3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 387.373694 234.759389 \nL 357.035268 234.238655 \nL 346.804286 240.316013 \nL 380.404838 238.929695 \nz\n\" style=\"fill:#0000d6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 258.84126 291.219935 \nL 232.802594 311.813468 \nL 227.6051 325.580085 \nL 254.38067 303.260897 \nz\n\" style=\"fill:#0000f5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 681.495963 334.928372 \nL 702.100814 360.91624 \nL 698.967249 345.527743 \nL 678.731063 320.948938 \nz\n\" style=\"fill:#00006b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 394.511317 647.645699 \nL 408.249525 644.226655 \nL 423.929267 646.842278 \nL 414.906177 651.054516 \nz\n\" style=\"fill:#0000a5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 697.392305 524.560293 \nL 682.904377 548.846738 \nL 691.929846 533.237647 \nL 706.900413 508.111994 \nz\n\" style=\"fill:#00005a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 188.610976 469.198003 \nL 196.812145 496.913798 \nL 203.461424 513.652113 \nL 195.422796 486.301555 \nz\n\" style=\"fill:#0000f4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 635.059371 596.20928 \nL 612.16263 609.820061 \nL 625.640658 598.542651 \nL 650.375758 583.368938 \nz\n\" style=\"fill:#000068;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 478.754487 652.531356 \nL 472.975743 647.975036 \nL 489.0364 646.091043 \nL 499.654721 650.075279 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 455.747847 233.565234 \nL 457.576648 220.828181 \nL 446.353752 220.938868 \nL 450.008256 233.622129 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 414.906177 651.054516 \nL 423.929267 646.842278 \nL 440.13369 648.354202 \nL 435.997229 653.025773 \nz\n\" style=\"fill:#0000a0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 461.456778 233.849214 \nL 468.741038 221.380702 \nL 457.576648 220.828181 \nL 455.747847 233.565234 \nz\n\" style=\"fill:#0000bb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 450.008256 233.622129 \nL 446.353752 220.938868 \nL 435.247781 221.71112 \nL 444.329935 234.01901 \nz\n\" style=\"fill:#0000c0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 531.263029 241.929968 \nL 566.755791 244.69398 \nL 557.631816 238.221443 \nL 525.064129 237.493104 \nz\n\" style=\"fill:#0000a1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 457.407899 653.521262 \nL 456.578846 648.734161 \nL 472.975743 647.975036 \nL 478.754487 652.531356 \nz\n\" style=\"fill:#000095;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 467.043574 234.469633 \nL 479.672269 222.588227 \nL 468.741038 221.380702 \nL 461.456778 233.849214 \nz\n\" style=\"fill:#0000b9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 435.997229 653.025773 \nL 440.13369 648.354202 \nL 456.578846 648.734161 \nL 457.407899 653.521262 \nz\n\" style=\"fill:#00009b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 669.93321 563.801682 \nL 650.375758 583.368938 \nL 662.27207 569.66748 \nL 682.904377 548.846738 \nz\n\" style=\"fill:#000060;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 444.329935 234.01901 \nL 435.247781 221.71112 \nL 424.432613 223.133464 \nL 438.803905 234.749677 \nz\n\" style=\"fill:#0000c3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 577.160606 629.251633 \nL 556.051913 634.518458 \nL 571.660862 626.932547 \nL 595.916631 620.120605 \nz\n\" style=\"fill:#000076;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 191.723771 394.16165 \nL 185.298966 423.033646 \nL 187.662191 440.206695 \nL 194.069881 410.742534 \nz\n\" style=\"fill:#0000fd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 472.418569 235.416792 \nL 490.198784 224.432783 \nL 479.672269 222.588227 \nL 467.043574 234.469633 \nz\n\" style=\"fill:#0000b6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 438.803905 234.749677 \nL 424.432613 223.133464 \nL 414.078258 225.184706 \nL 433.518929 235.8027 \nz\n\" style=\"fill:#0000c6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 579.503494 259.062118 \nL 615.421782 271.036542 \nL 608.333281 261.503452 \nL 574.090379 251.676691 \nz\n\" style=\"fill:#000091;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 380.404838 238.929695 \nL 346.804286 240.316013 \nL 338.260484 246.969987 \nL 374.608821 243.488453 \nz\n\" style=\"fill:#0000d9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 619.920765 280.95695 \nL 652.154665 299.211946 \nL 646.637804 287.290847 \nL 615.421782 271.036542 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 227.6051 325.580085 \nL 207.209712 350.624042 \nL 205.421008 366.093737 \nL 226.074912 339.628752 \nz\n\" style=\"fill:#0000fb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 262.026417 587.756757 \nL 286.197876 602.397812 \nL 300.623775 613.371962 \nL 278.436239 600.256436 \nz\n\" style=\"fill:#0000d1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 715.947163 451.568701 \nL 715.008958 480.639821 \nL 720.336926 463.439912 \nL 721.288292 434.488897 \nz\n\" style=\"fill:#00005b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 477.495248 236.675853 \nL 500.154439 226.886814 \nL 490.198784 224.432783 \nL 472.418569 235.416792 \nz\n\" style=\"fill:#0000b4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 203.461424 513.652113 \nL 218.300222 538.496319 \nL 228.654534 553.918001 \nL 214.385643 529.906674 \nz\n\" style=\"fill:#0000eb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 317.737827 623.303248 \nL 340.99256 629.57756 \nL 357.231582 636.80408 \nL 337.263871 632.004717 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 433.518929 235.8027 \nL 414.078258 225.184706 \nL 404.348542 227.834154 \nL 428.56018 237.161572 \nz\n\" style=\"fill:#0000c8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 701.168734 376.464433 \nL 714.862894 405.222457 \nL 715.761828 388.641406 \nL 702.100814 360.91624 \nz\n\" style=\"fill:#000064;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 228.654534 553.918001 \nL 248.969332 574.315142 \nL 262.026417 587.756757 \nL 242.908031 568.59393 \nz\n\" style=\"fill:#0000e0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 331.553037 254.09931 \nL 296.691166 264.628819 \nL 290.451946 274.307865 \nL 326.805005 261.593639 \nz\n\" style=\"fill:#0000e6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 482.191555 238.227042 \nL 509.380806 229.91346 \nL 500.154439 226.886814 \nL 477.495248 236.675853 \nz\n\" style=\"fill:#0000b3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 654.465601 311.428802 \nL 681.495963 334.928372 \nL 678.731063 320.948938 \nL 652.154665 299.211946 \nz\n\" style=\"fill:#000077;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 290.451946 274.307865 \nL 258.84126 291.219935 \nL 254.38067 303.260897 \nL 286.84105 284.322989 \nz\n\" style=\"fill:#0000f0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 536.220766 246.708552 \nL 574.090379 251.676691 \nL 566.755791 244.69398 \nL 531.263029 241.929968 \nz\n\" style=\"fill:#0000a0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 428.56018 237.161572 \nL 404.348542 227.834154 \nL 395.398817 231.041926 \nL 424.007945 238.804926 \nz\n\" style=\"fill:#0000cb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 556.205748 637.039152 \nL 538.64489 640.981776 \nL 556.051913 634.518458 \nL 577.160606 629.251633 \nz\n\" style=\"fill:#00007d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 486.431153 240.045913 \nL 517.729443 233.466949 \nL 509.380806 229.91346 \nL 482.191555 238.227042 \nz\n\" style=\"fill:#0000b1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 374.608821 243.488453 \nL 338.260484 246.969987 \nL 331.553037 254.09931 \nL 370.085094 248.364523 \nz\n\" style=\"fill:#0000dc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 187.662191 440.206695 \nL 188.610976 469.198003 \nL 195.422796 486.301555 \nL 194.492615 457.191066 \nz\n\" style=\"fill:#0000fa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 424.007945 238.804926 \nL 395.398817 231.041926 \nL 387.373694 234.759389 \nL 419.936384 240.706831 \nz\n\" style=\"fill:#0000cd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 705.243654 497.451292 \nL 697.392305 524.560293 \nL 706.900413 508.111994 \nL 715.008958 480.639821 \nz\n\" style=\"fill:#00005c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 616.547717 607.950026 \nL 595.916631 620.120605 \nL 612.16263 609.820061 \nL 635.059371 596.20928 \nz\n\" style=\"fill:#00006e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 205.421008 366.093737 \nL 191.723771 394.16165 \nL 194.069881 410.742534 \nL 207.72414 381.638424 \nz\n\" style=\"fill:#0000fe;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 337.263871 632.004717 \nL 357.231582 636.80408 \nL 375.173794 642.865058 \nL 358.874024 639.309622 \nz\n\" style=\"fill:#0000b9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 254.38067 303.260897 \nL 227.6051 325.580085 \nL 226.074912 339.628752 \nL 253.159452 315.533063 \nz\n\" style=\"fill:#0000f8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 490.144628 242.103683 \nL 525.064129 237.493104 \nL 517.729443 233.466949 \nL 486.431153 240.045913 \nz\n\" style=\"fill:#0000b0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 582.891048 266.73461 \nL 619.920765 280.95695 \nL 615.421782 271.036542 \nL 579.503494 259.062118 \nz\n\" style=\"fill:#000091;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 709.611475 421.709986 \nL 715.947163 451.568701 \nL 721.288292 434.488897 \nL 714.862894 405.222457 \nz\n\" style=\"fill:#000060;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 419.936384 240.706831 \nL 387.373694 234.759389 \nL 380.404838 238.929695 \nL 416.412349 242.837145 \nz\n\" style=\"fill:#0000cf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 680.53064 349.039175 \nL 701.168734 376.464433 \nL 702.100814 360.91624 \nL 681.495963 334.928372 \nz\n\" style=\"fill:#00006e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 539.850365 251.753723 \nL 579.503494 259.062118 \nL 574.090379 251.676691 \nL 536.220766 246.708552 \nz\n\" style=\"fill:#00009f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 278.436239 600.256436 \nL 300.623775 613.371962 \nL 317.737827 623.303248 \nL 297.951336 611.580106 \nz\n\" style=\"fill:#0000ce;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 683.677499 540.330031 \nL 669.93321 563.801682 \nL 682.904377 548.846738 \nL 697.392305 524.560293 \nz\n\" style=\"fill:#000060;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 653.181556 577.829645 \nL 635.059371 596.20928 \nL 650.375758 583.368938 \nL 669.93321 563.801682 \nz\n\" style=\"fill:#000067;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 621.727042 291.108049 \nL 654.465601 311.428802 \nL 652.154665 299.211946 \nL 619.920765 280.95695 \nz\n\" style=\"fill:#000084;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 533.411351 643.33237 \nL 519.736271 646.200568 \nL 538.64489 640.981776 \nL 556.205748 637.039152 \nz\n\" style=\"fill:#000084;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 326.805005 261.593639 \nL 290.451946 274.307865 \nL 286.84105 284.322989 \nL 324.110542 269.334916 \nz\n\" style=\"fill:#0000e9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 493.270612 244.367638 \nL 531.263029 241.929968 \nL 525.064129 237.493104 \nL 490.144628 242.103683 \nz\n\" style=\"fill:#0000af;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 195.422796 486.301555 \nL 203.461424 513.652113 \nL 214.385643 529.906674 \nL 206.651646 502.917087 \nz\n\" style=\"fill:#0000f3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 370.085094 248.364523 \nL 331.553037 254.09931 \nL 326.805005 261.593639 \nL 366.914097 253.480941 \nz\n\" style=\"fill:#0000de;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 358.874024 639.309622 \nL 375.173794 642.865058 \nL 394.511317 647.645699 \nL 382.194397 645.075841 \nz\n\" style=\"fill:#0000b4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 416.412349 242.837145 \nL 380.404838 238.929695 \nL 374.608821 243.488453 \nL 413.494291 245.161946 \nz\n\" style=\"fill:#0000d1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 226.074912 339.628752 \nL 205.421008 366.093737 \nL 207.72414 381.638424 \nL 228.296546 353.731792 \nz\n\" style=\"fill:#0000fd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 194.069881 410.742534 \nL 187.662191 440.206695 \nL 194.492615 457.191066 \nL 200.773853 427.136297 \nz\n\" style=\"fill:#0000fe;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 286.84105 284.322989 \nL 254.38067 303.260897 \nL 253.159452 315.533063 \nL 285.948181 294.514819 \nz\n\" style=\"fill:#0000f3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 242.908031 568.59393 \nL 262.026417 587.756757 \nL 278.436239 600.256436 \nL 260.869786 582.25372 \nz\n\" style=\"fill:#0000dd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 214.385643 529.906674 \nL 228.654534 553.918001 \nL 242.908031 568.59393 \nL 229.468817 545.385605 \nz\n\" style=\"fill:#0000e9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 495.756817 246.801599 \nL 536.220766 246.708552 \nL 531.263029 241.929968 \nL 493.270612 244.367638 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 509.177986 648.007801 \nL 499.654721 650.075279 \nL 519.736271 646.200568 \nL 533.411351 643.33237 \nz\n\" style=\"fill:#00008b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 595.132744 618.367853 \nL 577.160606 629.251633 \nL 595.916631 620.120605 \nL 616.547717 607.950026 \nz\n\" style=\"fill:#000076;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 542.085019 256.985212 \nL 582.891048 266.73461 \nL 579.503494 259.062118 \nL 539.850365 251.753723 \nz\n\" style=\"fill:#00009f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 706.152291 468.263516 \nL 705.243654 497.451292 \nL 715.008958 480.639821 \nL 715.947163 451.568701 \nz\n\" style=\"fill:#000060;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 653.48717 323.744769 \nL 680.53064 349.039175 \nL 681.495963 334.928372 \nL 654.465601 311.428802 \nz\n\" style=\"fill:#000079;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 413.494291 245.161946 \nL 374.608821 243.488453 \nL 370.085094 248.364523 \nL 411.231263 247.644012 \nz\n\" style=\"fill:#0000d3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 382.194397 645.075841 \nL 394.511317 647.645699 \nL 414.906177 651.054516 \nL 406.812439 649.189808 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 696.114888 391.914959 \nL 709.611475 421.709986 \nL 714.862894 405.222457 \nL 701.168734 376.464433 \nz\n\" style=\"fill:#000068;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 584.179598 274.571836 \nL 621.727042 291.108049 \nL 619.920765 280.95695 \nL 582.891048 266.73461 \nz\n\" style=\"fill:#000092;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 366.914097 253.480941 \nL 326.805005 261.593639 \nL 324.110542 269.334916 \nL 365.155555 258.755974 \nz\n\" style=\"fill:#0000e0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 483.939183 650.972764 \nL 478.754487 652.531356 \nL 499.654721 650.075279 \nL 509.177986 648.007801 \nz\n\" style=\"fill:#000093;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 297.951336 611.580106 \nL 317.737827 623.303248 \nL 337.263871 632.004717 \nL 320.258082 621.510786 \nz\n\" style=\"fill:#0000c9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 497.560948 249.366451 \nL 539.850365 251.753723 \nL 536.220766 246.708552 \nL 495.756817 246.801599 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 406.812439 649.189808 \nL 414.906177 651.054516 \nL 435.997229 653.025773 \nL 432.285715 651.569746 \nz\n\" style=\"fill:#0000a8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 455.747847 233.565234 \nL 450.008256 233.622129 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 461.456778 233.849214 \nL 455.747847 233.565234 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 450.008256 233.622129 \nL 444.329935 234.01901 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 467.043574 234.469633 \nL 461.456778 233.849214 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 444.329935 234.01901 \nL 438.803905 234.749677 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 472.418569 235.416792 \nL 467.043574 234.469633 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 411.231263 247.644012 \nL 370.085094 248.364523 \nL 366.914097 253.480941 \nL 409.662044 250.243378 \nz\n\" style=\"fill:#0000d4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 458.151837 652.168064 \nL 457.407899 653.521262 \nL 478.754487 652.531356 \nL 483.939183 650.972764 \nz\n\" style=\"fill:#00009a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 438.803905 234.749677 \nL 433.518929 235.8027 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 324.110542 269.334916 \nL 286.84105 284.322989 \nL 285.948181 294.514819 \nL 323.532343 277.19896 \nz\n\" style=\"fill:#0000eb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 432.285715 651.569746 \nL 435.997229 653.025773 \nL 457.407899 653.521262 \nL 458.151837 652.168064 \nz\n\" style=\"fill:#0000a1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 253.159452 315.533063 \nL 226.074912 339.628752 \nL 228.296546 353.731792 \nL 255.243837 327.837017 \nz\n\" style=\"fill:#0000fa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 477.495248 236.675853 \nL 472.418569 235.416792 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 433.518929 235.8027 \nL 428.56018 237.161572 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 482.191555 238.227042 \nL 477.495248 236.675853 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 194.492615 457.191066 \nL 195.422796 486.301555 \nL 206.651646 502.917087 \nL 205.756529 473.691541 \nz\n\" style=\"fill:#0000f9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 691.129688 513.575183 \nL 683.677499 540.330031 \nL 697.392305 524.560293 \nL 705.243654 497.451292 \nz\n\" style=\"fill:#000063;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 428.56018 237.161572 \nL 424.007945 238.804926 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 620.779001 301.32573 \nL 653.48717 323.744769 \nL 654.465601 311.428802 \nL 621.727042 291.108049 \nz\n\" style=\"fill:#000086;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 632.891765 590.667259 \nL 616.547717 607.950026 \nL 635.059371 596.20928 \nL 653.181556 577.829645 \nz\n\" style=\"fill:#00006e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 207.72414 381.638424 \nL 194.069881 410.742534 \nL 200.773853 427.136297 \nL 214.152368 396.997802 \nz\n\" style=\"fill:#0000ff;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 486.431153 240.045913 \nL 482.191555 238.227042 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 424.007945 238.804926 \nL 419.936384 240.706831 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 542.879643 262.318761 \nL 584.179598 274.571836 \nL 582.891048 266.73461 \nL 542.085019 256.985212 \nz\n\" style=\"fill:#0000a0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 498.651496 252.02073 \nL 542.085019 256.985212 \nL 539.850365 251.753723 \nL 497.560948 249.366451 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 490.144628 242.103683 \nL 486.431153 240.045913 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 419.936384 240.706831 \nL 416.412349 242.837145 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 665.926859 555.131861 \nL 653.181556 577.829645 \nL 669.93321 563.801682 \nL 683.677499 540.330031 \nz\n\" style=\"fill:#000068;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 675.79094 363.047713 \nL 696.114888 391.914959 \nL 701.168734 376.464433 \nL 680.53064 349.039175 \nz\n\" style=\"fill:#000072;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 571.169897 627.260359 \nL 556.205748 637.039152 \nL 577.160606 629.251633 \nL 595.132744 618.367853 \nz\n\" style=\"fill:#00007e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 409.662044 250.243378 \nL 366.914097 253.480941 \nL 365.155555 258.755974 \nL 408.8144 252.917935 \nz\n\" style=\"fill:#0000d6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 493.270612 244.367638 \nL 490.144628 242.103683 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 416.412349 242.837145 \nL 413.494291 245.161946 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 700.017044 437.821069 \nL 706.152291 468.263516 \nL 715.947163 451.568701 \nL 709.611475 421.709986 \nz\n\" style=\"fill:#000066;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 365.155555 258.755974 \nL 324.110542 269.334916 \nL 323.532343 277.19896 \nL 364.847017 264.104309 \nz\n\" style=\"fill:#0000e2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 495.756817 246.801599 \nL 493.270612 244.367638 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 285.948181 294.514819 \nL 253.159452 315.533063 \nL 255.243837 327.837017 \nL 287.820378 304.717277 \nz\n\" style=\"fill:#0000f4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 260.869786 582.25372 \nL 278.436239 600.256436 \nL 297.951336 611.580106 \nL 282.27191 594.638596 \nz\n\" style=\"fill:#0000d9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 413.494291 245.161946 \nL 411.231263 247.644012 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 206.651646 502.917087 \nL 214.385643 529.906674 \nL 229.468817 545.385605 \nL 222.180838 518.745529 \nz\n\" style=\"fill:#0000f1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 583.328668 282.446524 \nL 620.779001 301.32573 \nL 621.727042 291.108049 \nL 584.179598 274.571836 \nz\n\" style=\"fill:#000093;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 320.258082 621.510786 \nL 337.263871 632.004717 \nL 358.874024 639.309622 \nL 344.981057 629.854294 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 497.560948 249.366451 \nL 495.756817 246.801599 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 499.008374 254.721258 \nL 542.879643 262.318761 \nL 542.085019 256.985212 \nL 498.651496 252.02073 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 411.231263 247.644012 \nL 409.662044 250.243378 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 229.468817 545.385605 \nL 242.908031 568.59393 \nL 260.869786 582.25372 \nL 248.512371 559.801919 \nz\n\" style=\"fill:#0000e6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 498.651496 252.02073 \nL 497.560948 249.366451 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 408.8144 252.917935 \nL 365.155555 258.755974 \nL 364.847017 264.104309 \nL 408.704497 255.624087 \nz\n\" style=\"fill:#0000d7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 228.296546 353.731792 \nL 207.72414 381.638424 \nL 214.152368 396.997802 \nL 234.293175 367.653212 \nz\n\" style=\"fill:#0000fe;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 409.662044 250.243378 \nL 408.8144 252.917935 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 649.188899 335.955913 \nL 675.79094 363.047713 \nL 680.53064 349.039175 \nL 653.48717 323.744769 \nz\n\" style=\"fill:#00007d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 542.212144 267.667387 \nL 583.328668 282.446524 \nL 584.179598 274.571836 \nL 542.879643 262.318761 \nz\n\" style=\"fill:#0000a1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 323.532343 277.19896 \nL 285.948181 294.514819 \nL 287.820378 304.717277 \nL 325.099444 285.057278 \nz\n\" style=\"fill:#0000ec;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 499.008374 254.721258 \nL 498.651496 252.02073 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 408.8144 252.917935 \nL 408.704497 255.624087 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 200.773853 427.136297 \nL 194.492615 457.191066 \nL 205.756529 473.691541 \nL 211.800241 443.058279 \nz\n\" style=\"fill:#0000fd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 545.072287 634.451598 \nL 533.411351 643.33237 \nL 556.205748 637.039152 \nL 571.169897 627.260359 \nz\n\" style=\"fill:#000086;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 498.623386 257.423829 \nL 499.008374 254.721258 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 498.623386 257.423829 \nL 542.212144 267.667387 \nL 542.879643 262.318761 \nL 499.008374 254.721258 \nz\n\" style=\"fill:#0000af;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 408.704497 255.624087 \nL 409.336494 258.31744 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 691.992304 484.276207 \nL 691.129688 513.575183 \nL 705.243654 497.451292 \nL 706.152291 468.263516 \nz\n\" style=\"fill:#000067;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 364.847017 264.104309 \nL 323.532343 277.19896 \nL 325.099444 285.057278 \nL 366.002681 269.438358 \nz\n\" style=\"fill:#0000e2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 686.95348 407.00312 \nL 700.017044 437.821069 \nL 709.611475 421.709986 \nL 696.114888 391.914959 \nz\n\" style=\"fill:#00006d;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 497.500518 260.08392 \nL 498.623386 257.423829 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 408.704497 255.624087 \nL 364.847017 264.104309 \nL 366.002681 269.438358 \nL 409.336494 258.31744 \nz\n\" style=\"fill:#0000d7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 609.38202 602.067132 \nL 595.132744 618.367853 \nL 616.547717 607.950026 \nL 632.891765 590.667259 \nz\n\" style=\"fill:#000076;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 344.981057 629.854294 \nL 358.874024 639.309622 \nL 382.194397 645.075841 \nL 371.689593 636.444658 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 409.336494 258.31744 \nL 410.702315 260.953528 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 617.059678 311.440848 \nL 649.188899 335.955913 \nL 653.48717 323.744769 \nL 620.779001 301.32573 \nz\n\" style=\"fill:#000089;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 255.243837 327.837017 \nL 228.296546 353.731792 \nL 234.293175 367.653212 \nL 260.645807 339.967111 \nz\n\" style=\"fill:#0000fa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 495.656021 262.657433 \nL 497.500518 260.08392 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 410.702315 260.953528 \nL 412.781636 263.488563 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 493.118293 265.101442 \nL 495.656021 262.657433 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 497.500518 260.08392 \nL 540.084375 272.942764 \nL 542.212144 267.667387 \nL 498.623386 257.423829 \nz\n\" style=\"fill:#0000b0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 412.781636 263.488563 \nL 415.542077 265.880178 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 580.332663 290.228426 \nL 617.059678 311.440848 \nL 620.779001 301.32573 \nL 583.328668 282.446524 \nz\n\" style=\"fill:#000095;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 282.27191 594.638596 \nL 297.951336 611.580106 \nL 320.258082 621.510786 \nL 306.771652 605.507957 \nz\n\" style=\"fill:#0000d4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 672.840737 528.71474 \nL 665.926859 555.131861 \nL 683.677499 540.330031 \nL 691.129688 513.575183 \nz\n\" style=\"fill:#00006a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 517.302741 639.797132 \nL 509.177986 648.007801 \nL 533.411351 643.33237 \nL 545.072287 634.451598 \nz\n\" style=\"fill:#00008e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 489.927536 267.374947 \nL 493.118293 265.101442 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000bf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 540.084375 272.942764 \nL 580.332663 290.228426 \nL 583.328668 282.446524 \nL 542.212144 267.667387 \nz\n\" style=\"fill:#0000a3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 644.394494 568.685808 \nL 632.891765 590.667259 \nL 653.181556 577.829645 \nL 665.926859 555.131861 \nz\n\" style=\"fill:#000070;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 409.336494 258.31744 \nL 366.002681 269.438358 \nL 368.612566 274.669668 \nL 410.702315 260.953528 \nz\n\" style=\"fill:#0000d7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 415.542077 265.880178 \nL 418.939612 268.088173 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 205.756529 473.691541 \nL 206.651646 502.917087 \nL 222.180838 518.745529 \nL 221.337175 489.411038 \nz\n\" style=\"fill:#0000f7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 287.820378 304.717277 \nL 255.243837 327.837017 \nL 260.645807 339.967111 \nL 292.459153 314.760147 \nz\n\" style=\"fill:#0000f5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 214.152368 396.997802 \nL 200.773853 427.136297 \nL 211.800241 443.058279 \nL 224.666973 411.905769 \nz\n\" style=\"fill:#0000fe;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 486.135198 269.439596 \nL 489.927536 267.374947 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 371.689593 636.444658 \nL 382.194397 645.075841 \nL 406.812439 649.189808 \nL 399.906396 641.148945 \nz\n\" style=\"fill:#0000b7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 418.939612 268.088173 \nL 422.91921 270.075241 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 667.297078 376.714616 \nL 686.95348 407.00312 \nL 696.114888 391.914959 \nL 675.79094 363.047713 \nz\n\" style=\"fill:#000076;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 481.803188 271.260387 \nL 486.135198 269.439596 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 366.002681 269.438358 \nL 325.099444 285.057278 \nL 328.805476 292.779102 \nL 368.612566 274.669668 \nz\n\" style=\"fill:#0000e3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 325.099444 285.057278 \nL 287.820378 304.717277 \nL 292.459153 314.760147 \nL 328.805476 292.779102 \nz\n\" style=\"fill:#0000ed;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 422.91921 270.075241 \nL 427.415682 271.807642 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 495.656021 262.657433 \nL 536.522704 278.056691 \nL 540.084375 272.942764 \nL 497.500518 260.08392 \nz\n\" style=\"fill:#0000b1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 477.002893 272.806315 \nL 481.803188 271.260387 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 427.415682 271.807642 \nL 432.354739 273.255834 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 488.363922 643.188343 \nL 483.939183 650.972764 \nL 509.177986 648.007801 \nL 517.302741 639.797132 \nz\n\" style=\"fill:#000097;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 471.813984 274.050952 \nL 477.002893 272.806315 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 432.354739 273.255834 \nL 437.654241 274.395034 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 686.168497 453.269413 \nL 691.992304 484.276207 \nL 706.152291 468.263516 \nL 700.017044 437.821069 \nz\n\" style=\"fill:#00006c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 248.512371 559.801919 \nL 260.869786 582.25372 \nL 282.27191 594.638596 \nL 271.234561 572.880319 \nz\n\" style=\"fill:#0000e2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 222.180838 518.745529 \nL 229.468817 545.385605 \nL 248.512371 559.801919 \nL 241.807887 533.492421 \nz\n\" style=\"fill:#0000ee;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 410.702315 260.953528 \nL 368.612566 274.669668 \nL 372.64208 279.710421 \nL 412.781636 263.488563 \nz\n\" style=\"fill:#0000d7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 466.323058 274.972954 \nL 471.813984 274.050952 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 399.906396 641.148945 \nL 406.812439 649.189808 \nL 432.285715 651.569746 \nL 429.118018 643.87127 \nz\n\" style=\"fill:#0000af;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 437.654241 274.395034 \nL 443.225615 275.205687 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 460.622121 275.556471 \nL 466.323058 274.972954 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 443.225615 275.205687 \nL 448.975408 275.673849 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 454.806957 275.791452 \nL 460.622121 275.556471 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 453.833514 252.011018 \nL 448.975408 275.673849 \nL 454.806957 275.791452 \nL 453.833514 252.011018 \nz\n\" style=\"fill:#0000c5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 458.786813 644.555767 \nL 458.151837 652.168064 \nL 483.939183 650.972764 \nL 488.363922 643.188343 \nz\n\" style=\"fill:#00009f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 583.04257 611.804429 \nL 571.169897 627.260359 \nL 595.132744 618.367853 \nL 609.38202 602.067132 \nz\n\" style=\"fill:#00007f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 429.118018 643.87127 \nL 432.285715 651.569746 \nL 458.151837 652.168064 \nL 458.786813 644.555767 \nz\n\" style=\"fill:#0000a7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 641.596856 347.854337 \nL 667.297078 376.714616 \nL 675.79094 363.047713 \nL 649.188899 335.955913 \nz\n\" style=\"fill:#000081;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 234.293175 367.653212 \nL 214.152368 396.997802 \nL 224.666973 411.905769 \nL 244.022257 381.15267 \nz\n\" style=\"fill:#0000fd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 536.522704 278.056691 \nL 575.222256 297.786484 \nL 580.332663 290.228426 \nL 540.084375 272.942764 \nz\n\" style=\"fill:#0000a5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 493.118293 265.101442 \nL 531.578151 282.922637 \nL 536.522704 278.056691 \nL 495.656021 262.657433 \nz\n\" style=\"fill:#0000b3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 412.781636 263.488563 \nL 372.64208 279.710421 \nL 378.032033 284.474993 \nL 415.542077 265.880178 \nz\n\" style=\"fill:#0000d7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 610.599175 321.282019 \nL 641.596856 347.854337 \nL 649.188899 335.955913 \nL 617.059678 311.440848 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 306.771652 605.507957 \nL 320.258082 621.510786 \nL 344.981057 629.854294 \nL 333.956023 614.645923 \nz\n\" style=\"fill:#0000ce;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 575.222256 297.786484 \nL 610.599175 321.282019 \nL 617.059678 311.440848 \nL 580.332663 290.228426 \nz\n\" style=\"fill:#000098;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 368.612566 274.669668 \nL 328.805476 292.779102 \nL 334.607481 300.233614 \nL 372.64208 279.710421 \nz\n\" style=\"fill:#0000e3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 211.800241 443.058279 \nL 205.756529 473.691541 \nL 221.337175 489.411038 \nL 227.032803 458.222348 \nz\n\" style=\"fill:#0000fb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 673.641193 499.311965 \nL 672.840737 528.71474 \nL 691.129688 513.575183 \nL 691.992304 484.276207 \nz\n\" style=\"fill:#00006e;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 260.645807 339.967111 \nL 234.293175 367.653212 \nL 244.022257 381.15267 \nL 269.319808 351.714948 \nz\n\" style=\"fill:#0000fa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 489.927536 267.374947 \nL 525.326062 287.45732 \nL 531.578151 282.922637 \nL 493.118293 265.101442 \nz\n\" style=\"fill:#0000b5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 673.773556 421.461722 \nL 686.168497 453.269413 \nL 700.017044 437.821069 \nL 686.95348 407.00312 \nz\n\" style=\"fill:#000074;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 328.805476 292.779102 \nL 292.459153 314.760147 \nL 299.818306 324.471969 \nL 334.607481 300.233614 \nz\n\" style=\"fill:#0000ec;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 415.542077 265.880178 \nL 378.032033 284.474993 \nL 384.699129 288.88154 \nL 418.939612 268.088173 \nz\n\" style=\"fill:#0000d6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 619.416662 580.728309 \nL 609.38202 602.067132 \nL 632.891765 590.667259 \nL 644.394494 568.685808 \nz\n\" style=\"fill:#000078;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 292.459153 314.760147 \nL 260.645807 339.967111 \nL 269.319808 351.714948 \nL 299.818306 324.471969 \nz\n\" style=\"fill:#0000f4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 531.578151 282.922637 \nL 568.065126 304.991164 \nL 575.222256 297.786484 \nL 536.522704 278.056691 \nz\n\" style=\"fill:#0000a8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 650.63708 542.582456 \nL 644.394494 568.685808 \nL 665.926859 555.131861 \nL 672.840737 528.71474 \nz\n\" style=\"fill:#000072;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 554.329392 619.683241 \nL 545.072287 634.451598 \nL 571.169897 627.260359 \nL 583.04257 611.804429 \nz\n\" style=\"fill:#000088;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 486.135198 269.439596 \nL 517.865276 291.582297 \nL 525.326062 287.45732 \nL 489.927536 267.374947 \nz\n\" style=\"fill:#0000b7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 418.939612 268.088173 \nL 384.699129 288.88154 \nL 392.536972 292.853576 \nL 422.91921 270.075241 \nz\n\" style=\"fill:#0000d5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 221.337175 489.411038 \nL 222.180838 518.745529 \nL 241.807887 533.492421 \nL 241.031626 504.057011 \nz\n\" style=\"fill:#0000f4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 372.64208 279.710421 \nL 334.607481 300.233614 \nL 342.425396 307.292332 \nL 378.032033 284.474993 \nz\n\" style=\"fill:#0000e2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 271.234561 572.880319 \nL 282.27191 594.638596 \nL 306.771652 605.507957 \nL 297.272453 584.364305 \nz\n\" style=\"fill:#0000dd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 333.956023 614.645923 \nL 344.981057 629.854294 \nL 371.689593 636.444658 \nL 363.348983 621.867561 \nz\n\" style=\"fill:#0000c7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 224.666973 411.905769 \nL 211.800241 443.058279 \nL 227.032803 458.222348 \nL 239.153217 426.09549 \nz\n\" style=\"fill:#0000fd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 655.137272 389.799144 \nL 673.773556 421.461722 \nL 686.95348 407.00312 \nL 667.297078 376.714616 \nz\n\" style=\"fill:#00007c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 481.803188 271.260387 \nL 509.316779 295.22551 \nL 517.865276 291.582297 \nL 486.135198 269.439596 \nz\n\" style=\"fill:#0000b9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 568.065126 304.991164 \nL 601.476281 330.678709 \nL 610.599175 321.282019 \nL 575.222256 297.786484 \nz\n\" style=\"fill:#00009c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 241.807887 533.492421 \nL 248.512371 559.801919 \nL 271.234561 572.880319 \nL 265.243719 546.874943 \nz\n\" style=\"fill:#0000ea;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 422.91921 270.075241 \nL 392.536972 292.853576 \nL 401.417586 296.321507 \nL 427.415682 271.807642 \nz\n\" style=\"fill:#0000d3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 630.796273 359.231963 \nL 655.137272 389.799144 \nL 667.297078 376.714616 \nL 641.596856 347.854337 \nz\n\" style=\"fill:#000086;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 668.237657 467.771276 \nL 673.641193 499.311965 \nL 691.992304 484.276207 \nL 686.168497 453.269413 \nz\n\" style=\"fill:#000074;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 601.476281 330.678709 \nL 630.796273 359.231963 \nL 641.596856 347.854337 \nL 610.599175 321.282019 \nz\n\" style=\"fill:#000091;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 525.326062 287.45732 \nL 558.965981 311.716915 \nL 568.065126 304.991164 \nL 531.578151 282.922637 \nz\n\" style=\"fill:#0000ab;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 523.755336 625.542429 \nL 517.302741 639.797132 \nL 545.072287 634.451598 \nL 554.329392 619.683241 \nz\n\" style=\"fill:#000092;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 477.002893 272.806315 \nL 499.821833 298.322761 \nL 509.316779 295.22551 \nL 481.803188 271.260387 \nz\n\" style=\"fill:#0000bc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 334.607481 300.233614 \nL 299.818306 324.471969 \nL 309.802631 333.683227 \nL 342.425396 307.292332 \nz\n\" style=\"fill:#0000eb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 427.415682 271.807642 \nL 401.417586 296.321507 \nL 411.19345 299.22406 \nL 432.354739 273.255834 \nz\n\" style=\"fill:#0000d2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 244.022257 381.15267 \nL 224.666973 411.905769 \nL 239.153217 426.09549 \nL 257.372336 393.990034 \nz\n\" style=\"fill:#0000fc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 363.348983 621.867561 \nL 371.689593 636.444658 \nL 399.906396 641.148945 \nL 394.421106 627.024483 \nz\n\" style=\"fill:#0000bf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 378.032033 284.474993 \nL 342.425396 307.292332 \nL 352.142312 313.831592 \nL 384.699129 288.88154 \nz\n\" style=\"fill:#0000e1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 471.813984 274.050952 \nL 489.539617 300.819062 \nL 499.821833 298.322761 \nL 477.002893 272.806315 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 591.407962 591.019374 \nL 583.04257 611.804429 \nL 609.38202 602.067132 \nL 619.416662 580.728309 \nz\n\" style=\"fill:#000082;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 432.354739 273.255834 \nL 411.19345 299.22406 \nL 421.700018 301.50959 \nL 437.654241 274.395034 \nz\n\" style=\"fill:#0000d0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 299.818306 324.471969 \nL 269.319808 351.714948 \nL 281.160511 362.873297 \nL 309.802631 333.683227 \nz\n\" style=\"fill:#0000f3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 269.319808 351.714948 \nL 244.022257 381.15267 \nL 257.372336 393.990034 \nL 281.160511 362.873297 \nz\n\" style=\"fill:#0000f9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 466.323058 274.972954 \nL 478.644404 302.669815 \nL 489.539617 300.819062 \nL 471.813984 274.050952 \nz\n\" style=\"fill:#0000c1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 227.032803 458.222348 \nL 221.337175 489.411038 \nL 241.031626 504.057011 \nL 246.271637 472.347034 \nz\n\" style=\"fill:#0000f8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 491.87894 629.260632 \nL 488.363922 643.188343 \nL 517.302741 639.797132 \nL 523.755336 625.542429 \nz\n\" style=\"fill:#00009b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 437.654241 274.395034 \nL 421.700018 301.50959 \nL 432.758685 303.137192 \nL 443.225615 275.205687 \nz\n\" style=\"fill:#0000ce;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 651.359943 513.08512 \nL 650.63708 542.582456 \nL 672.840737 528.71474 \nL 673.641193 499.311965 \nz\n\" style=\"fill:#000077;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 394.421106 627.024483 \nL 399.906396 641.148945 \nL 429.118018 643.87127 \nL 426.601461 630.009515 \nz\n\" style=\"fill:#0000b7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 460.622121 275.556471 \nL 467.32234 303.841799 \nL 478.644404 302.669815 \nL 466.323058 274.972954 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 517.865276 291.582297 \nL 548.065744 317.844699 \nL 558.965981 311.716915 \nL 525.326062 287.45732 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 443.225615 275.205687 \nL 432.758685 303.137192 \nL 444.18012 304.077614 \nL 448.975408 275.673849 \nz\n\" style=\"fill:#0000cb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 297.272453 584.364305 \nL 306.771652 605.507957 \nL 333.956023 614.645923 \nL 326.186676 594.02331 \nz\n\" style=\"fill:#0000d6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 656.741967 435.026562 \nL 668.237657 467.771276 \nL 686.168497 453.269413 \nL 673.773556 421.461722 \nz\n\" style=\"fill:#00007b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 454.806957 275.791452 \nL 455.767901 304.313905 \nL 467.32234 303.841799 \nL 460.622121 275.556471 \nz\n\" style=\"fill:#0000c6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 624.864652 554.907359 \nL 619.416662 580.728309 \nL 644.394494 568.685808 \nL 650.63708 542.582456 \nz\n\" style=\"fill:#00007c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 448.975408 275.673849 \nL 444.18012 304.077614 \nL 455.767901 304.313905 \nL 454.806957 275.791452 \nz\n\" style=\"fill:#0000c9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 558.965981 311.716915 \nL 589.819087 339.464573 \nL 601.476281 330.678709 \nL 568.065126 304.991164 \nz\n\" style=\"fill:#0000a0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 459.291293 630.760154 \nL 458.786813 644.555767 \nL 488.363922 643.188343 \nL 491.87894 629.260632 \nz\n\" style=\"fill:#0000a5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 426.601461 630.009515 \nL 429.118018 643.87127 \nL 458.786813 644.555767 \nL 459.291293 630.760154 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 384.699129 288.88154 \nL 352.142312 313.831592 \nL 363.605562 319.735092 \nL 392.536972 292.853576 \nz\n\" style=\"fill:#0000df;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 342.425396 307.292332 \nL 309.802631 333.683227 \nL 322.267656 342.229743 \nL 352.142312 313.831592 \nz\n\" style=\"fill:#0000ea;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 241.031626 504.057011 \nL 241.807887 533.492421 \nL 265.243719 546.874943 \nL 264.54997 517.348437 \nz\n\" style=\"fill:#0000f0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 265.243719 546.874943 \nL 271.234561 572.880319 \nL 297.272453 584.364305 \nL 292.114554 558.62929 \nz\n\" style=\"fill:#0000e4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 639.469963 402.064078 \nL 656.741967 435.026562 \nL 673.773556 421.461722 \nL 655.137272 389.799144 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 589.819087 339.464573 \nL 616.932941 369.884694 \nL 630.796273 359.231963 \nL 601.476281 330.678709 \nz\n\" style=\"fill:#000096;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 509.316779 295.22551 \nL 535.539873 323.264512 \nL 548.065744 317.844699 \nL 517.865276 291.582297 \nz\n\" style=\"fill:#0000b2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 239.153217 426.09549 \nL 227.032803 458.222348 \nL 246.271637 472.347034 \nL 257.417978 439.305072 \nz\n\" style=\"fill:#0000fa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 560.854656 599.34954 \nL 554.329392 619.683241 \nL 583.04257 611.804429 \nL 591.407962 591.019374 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 616.932941 369.884694 \nL 639.469963 402.064078 \nL 655.137272 389.799144 \nL 630.796273 359.231963 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 392.536972 292.853576 \nL 363.605562 319.735092 \nL 376.628705 324.896384 \nL 401.417586 296.321507 \nz\n\" style=\"fill:#0000dc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 309.802631 333.683227 \nL 281.160511 362.873297 \nL 296.001869 373.240366 \nL 322.267656 342.229743 \nz\n\" style=\"fill:#0000f1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 646.480713 481.05199 \nL 651.359943 513.08512 \nL 673.641193 499.311965 \nL 668.237657 467.771276 \nz\n\" style=\"fill:#00007c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 326.186676 594.02331 \nL 333.956023 614.645923 \nL 363.348983 621.867561 \nL 357.469056 601.659512 \nz\n\" style=\"fill:#0000cf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 548.065744 317.844699 \nL 575.80447 347.480952 \nL 589.819087 339.464573 \nL 558.965981 311.716915 \nz\n\" style=\"fill:#0000a5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 257.372336 393.990034 \nL 239.153217 426.09549 \nL 257.417978 439.305072 \nL 274.161356 405.930422 \nz\n\" style=\"fill:#0000f9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 499.821833 298.322761 \nL 521.595783 327.877821 \nL 535.539873 323.264512 \nL 509.316779 295.22551 \nz\n\" style=\"fill:#0000b6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 281.160511 362.873297 \nL 257.372336 393.990034 \nL 274.161356 405.930422 \nL 296.001869 373.240366 \nz\n\" style=\"fill:#0000f6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 401.417586 296.321507 \nL 376.628705 324.896384 \nL 390.994404 329.221277 \nL 411.19345 299.22406 \nz\n\" style=\"fill:#0000da;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 352.142312 313.831592 \nL 322.267656 342.229743 \nL 337.020575 349.956211 \nL 363.605562 319.735092 \nz\n\" style=\"fill:#0000e7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 595.951211 565.442455 \nL 591.407962 591.019374 \nL 619.416662 580.728309 \nL 624.864652 554.907359 \nz\n\" style=\"fill:#000085;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 625.495601 525.326398 \nL 624.864652 554.907359 \nL 650.63708 542.582456 \nL 651.359943 513.08512 \nz\n\" style=\"fill:#000080;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 246.271637 472.347034 \nL 241.031626 504.057011 \nL 264.54997 517.348437 \nL 269.232537 485.162223 \nz\n\" style=\"fill:#0000f4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 528.305164 605.546287 \nL 523.755336 625.542429 \nL 554.329392 619.683241 \nL 560.854656 599.34954 \nz\n\" style=\"fill:#000096;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 489.539617 300.819062 \nL 506.469368 331.599838 \nL 521.595783 327.877821 \nL 499.821833 298.322761 \nz\n\" style=\"fill:#0000ba;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 636.104397 447.442433 \nL 646.480713 481.05199 \nL 668.237657 467.771276 \nL 656.741967 435.026562 \nz\n\" style=\"fill:#000083;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 411.19345 299.22406 \nL 390.994404 329.221277 \nL 406.458188 332.630026 \nL 421.700018 301.50959 \nz\n\" style=\"fill:#0000d7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 357.469056 601.659512 \nL 363.348983 621.867561 \nL 394.421106 627.024483 \nL 390.553031 607.113982 \nz\n\" style=\"fill:#0000c6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 575.80447 347.480952 \nL 600.213163 379.616856 \nL 616.932941 369.884694 \nL 589.819087 339.464573 \nz\n\" style=\"fill:#00009c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 292.114554 558.62929 \nL 297.272453 584.364305 \nL 326.186676 594.02331 \nL 321.966726 568.518093 \nz\n\" style=\"fill:#0000dd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 535.539873 323.264512 \nL 559.656302 354.580431 \nL 575.80447 347.480952 \nL 548.065744 317.844699 \nz\n\" style=\"fill:#0000aa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 264.54997 517.348437 \nL 265.243719 546.874943 \nL 292.114554 558.62929 \nL 291.517172 529.023153 \nz\n\" style=\"fill:#0000ea;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 478.644404 302.669815 \nL 490.420701 334.361537 \nL 506.469368 331.599838 \nL 489.539617 300.819062 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 421.700018 301.50959 \nL 406.458188 332.630026 \nL 422.753014 335.059255 \nL 432.758685 303.137192 \nz\n\" style=\"fill:#0000d3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 494.357934 609.479544 \nL 491.87894 629.260632 \nL 523.755336 625.542429 \nL 528.305164 605.546287 \nz\n\" style=\"fill:#0000a0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 620.524317 413.281022 \nL 636.104397 447.442433 \nL 656.741967 435.026562 \nL 639.469963 402.064078 \nz\n\" style=\"fill:#00008b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 600.213163 379.616856 \nL 620.524317 413.281022 \nL 639.469963 402.064078 \nL 616.932941 369.884694 \nz\n\" style=\"fill:#000093;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 322.267656 342.229743 \nL 296.001869 373.240366 \nL 313.617705 382.624304 \nL 337.020575 349.956211 \nz\n\" style=\"fill:#0000ee;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 363.605562 319.735092 \nL 337.020575 349.956211 \nL 353.822477 356.719746 \nL 376.628705 324.896384 \nz\n\" style=\"fill:#0000e4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 467.32234 303.841799 \nL 473.728985 336.111344 \nL 490.420701 334.361537 \nL 478.644404 302.669815 \nz\n\" style=\"fill:#0000c3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 390.553031 607.113982 \nL 394.421106 627.024483 \nL 426.601461 630.009515 \nL 424.826568 610.271821 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 257.417978 439.305072 \nL 246.271637 472.347034 \nL 269.232537 485.162223 \nL 279.189452 451.283706 \nz\n\" style=\"fill:#0000f5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 432.758685 303.137192 \nL 422.753014 335.059255 \nL 439.594533 336.463515 \nL 444.18012 304.077614 \nz\n\" style=\"fill:#0000cf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 455.767901 304.313905 \nL 456.686903 336.816425 \nL 473.728985 336.111344 \nL 467.32234 303.841799 \nz\n\" style=\"fill:#0000c7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 444.18012 304.077614 \nL 439.594533 336.463515 \nL 456.686903 336.816425 \nL 455.767901 304.313905 \nz\n\" style=\"fill:#0000cb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 459.64711 611.065982 \nL 459.291293 630.760154 \nL 491.87894 629.260632 \nL 494.357934 609.479544 \nz\n\" style=\"fill:#0000aa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 424.826568 610.271821 \nL 426.601461 630.009515 \nL 459.291293 630.760154 \nL 459.64711 611.065982 \nz\n\" style=\"fill:#0000b4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 564.399494 573.971978 \nL 560.854656 599.34954 \nL 591.407962 591.019374 \nL 595.951211 565.442455 \nz\n\" style=\"fill:#000090;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 621.237166 492.852886 \nL 625.495601 525.326398 \nL 651.359943 513.08512 \nL 646.480713 481.05199 \nz\n\" style=\"fill:#000085;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 296.001869 373.240366 \nL 274.161356 405.930422 \nL 294.136806 416.7496 \nL 313.617705 382.624304 \nz\n\" style=\"fill:#0000f2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 274.161356 405.930422 \nL 257.417978 439.305072 \nL 279.189452 451.283706 \nL 294.136806 416.7496 \nz\n\" style=\"fill:#0000f5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 521.595783 327.877821 \nL 541.642336 360.630327 \nL 559.656302 354.580431 \nL 535.539873 323.264512 \nz\n\" style=\"fill:#0000af;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 559.656302 354.580431 \nL 580.902046 388.245782 \nL 600.213163 379.616856 \nL 575.80447 347.480952 \nz\n\" style=\"fill:#0000a2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 321.966726 568.518093 \nL 326.186676 594.02331 \nL 357.469056 601.659512 \nL 354.274555 576.337522 \nz\n\" style=\"fill:#0000d6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 596.477449 535.790325 \nL 595.951211 565.442455 \nL 624.864652 554.907359 \nL 625.495601 525.326398 \nz\n\" style=\"fill:#00008a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 376.628705 324.896384 \nL 353.822477 356.719746 \nL 372.391909 362.393325 \nL 390.994404 329.221277 \nz\n\" style=\"fill:#0000e0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 269.232537 485.162223 \nL 264.54997 517.348437 \nL 291.517172 529.023153 \nL 295.548934 496.416148 \nz\n\" style=\"fill:#0000ee;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 337.020575 349.956211 \nL 313.617705 382.624304 \nL 333.723992 390.8478 \nL 353.822477 356.719746 \nz\n\" style=\"fill:#0000ea;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 612.184112 458.469464 \nL 621.237166 492.852886 \nL 646.480713 481.05199 \nL 636.104397 447.442433 \nz\n\" style=\"fill:#00008c;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 291.517172 529.023153 \nL 292.114554 558.62929 \nL 321.966726 568.518093 \nL 321.477916 538.84524 \nz\n\" style=\"fill:#0000e3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 506.469368 331.599838 \nL 522.069742 365.515992 \nL 541.642336 360.630327 \nL 521.595783 327.877821 \nz\n\" style=\"fill:#0000b5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 580.902046 388.245782 \nL 598.598726 423.235931 \nL 620.524317 413.281022 \nL 600.213163 379.616856 \nz\n\" style=\"fill:#00009a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 530.77735 580.318084 \nL 528.305164 605.546287 \nL 560.854656 599.34954 \nL 564.399494 573.971978 \nz\n\" style=\"fill:#00009a;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 390.994404 329.221277 \nL 372.391909 362.393325 \nL 392.409776 366.868986 \nL 406.458188 332.630026 \nz\n\" style=\"fill:#0000dc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 598.598726 423.235931 \nL 612.184112 458.469464 \nL 636.104397 447.442433 \nL 620.524317 413.281022 \nz\n\" style=\"fill:#000093;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 354.274555 576.337522 \nL 357.469056 601.659512 \nL 390.553031 607.113982 \nL 388.451173 581.923709 \nz\n\" style=\"fill:#0000cd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 279.189452 451.283706 \nL 269.232537 485.162223 \nL 295.548934 496.416148 \nL 304.119225 461.798063 \nz\n\" style=\"fill:#0000f0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 313.617705 382.624304 \nL 294.136806 416.7496 \nL 316.977926 426.239551 \nL 333.723992 390.8478 \nz\n\" style=\"fill:#0000ee;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 490.420701 334.361537 \nL 501.27937 369.143771 \nL 522.069742 365.515992 \nL 506.469368 331.599838 \nz\n\" style=\"fill:#0000bb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 541.642336 360.630327 \nL 559.320024 395.606373 \nL 580.902046 388.245782 \nL 559.656302 354.580431 \nz\n\" style=\"fill:#0000a9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 406.458188 332.630026 \nL 392.409776 366.868986 \nL 413.525482 370.060656 \nL 422.753014 335.059255 \nz\n\" style=\"fill:#0000d7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 592.926018 502.938349 \nL 596.477449 535.790325 \nL 625.495601 525.326398 \nL 621.237166 492.852886 \nz\n\" style=\"fill:#00008f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 294.136806 416.7496 \nL 279.189452 451.283706 \nL 304.119225 461.798063 \nL 316.977926 426.239551 \nz\n\" style=\"fill:#0000f0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 564.810132 544.262437 \nL 564.399494 573.971978 \nL 595.951211 565.442455 \nL 596.477449 535.790325 \nz\n\" style=\"fill:#000094;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 495.705088 584.346613 \nL 494.357934 609.479544 \nL 528.305164 605.546287 \nL 530.77735 580.318084 \nz\n\" style=\"fill:#0000a5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 353.822477 356.719746 \nL 333.723992 390.8478 \nL 355.982938 397.752595 \nL 372.391909 362.393325 \nz\n\" style=\"fill:#0000e5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 473.728985 336.111344 \nL 479.638857 371.4435 \nL 501.27937 369.143771 \nL 490.420701 334.361537 \nz\n\" style=\"fill:#0000c1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 388.451173 581.923709 \nL 390.553031 607.113982 \nL 424.826568 610.271821 \nL 423.862016 585.158124 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 422.753014 335.059255 \nL 413.525482 370.060656 \nL 435.364162 371.90646 \nL 439.594533 336.463515 \nz\n\" style=\"fill:#0000d2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 456.686903 336.816425 \nL 457.534788 372.370429 \nL 479.638857 371.4435 \nL 473.728985 336.111344 \nz\n\" style=\"fill:#0000c7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 295.548934 496.416148 \nL 291.517172 529.023153 \nL 321.477916 538.84524 \nL 324.776678 505.882421 \nz\n\" style=\"fill:#0000e7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 439.594533 336.463515 \nL 435.364162 371.90646 \nL 457.534788 372.370429 \nL 456.686903 336.816425 \nz\n\" style=\"fill:#0000cc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 321.477916 538.84524 \nL 321.966726 568.518093 \nL 354.274555 576.337522 \nL 353.90449 546.612092 \nz\n\" style=\"fill:#0000db;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 459.840481 585.971581 \nL 459.64711 611.065982 \nL 494.357934 609.479544 \nL 495.705088 584.346613 \nz\n\" style=\"fill:#0000af;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 423.862016 585.158124 \nL 424.826568 610.271821 \nL 459.64711 611.065982 \nL 459.840481 585.971581 \nz\n\" style=\"fill:#0000ba;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 559.320024 395.606373 \nL 574.05712 431.734684 \nL 598.598726 423.235931 \nL 580.902046 388.245782 \nz\n\" style=\"fill:#0000a2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 585.37817 467.889538 \nL 592.926018 502.938349 \nL 621.237166 492.852886 \nL 612.184112 458.469464 \nz\n\" style=\"fill:#000095;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 522.069742 365.515992 \nL 535.83757 401.555456 \nL 559.320024 395.606373 \nL 541.642336 360.630327 \nz\n\" style=\"fill:#0000b0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 574.05712 431.734684 \nL 585.37817 467.889538 \nL 612.184112 458.469464 \nL 598.598726 423.235931 \nz\n\" style=\"fill:#00009b;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 372.391909 362.393325 \nL 355.982938 397.752595 \nL 380.008878 403.203726 \nL 392.409776 366.868986 \nz\n\" style=\"fill:#0000e0;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 333.723992 390.8478 \nL 316.977926 426.239551 \nL 342.300148 434.214002 \nL 355.982938 397.752595 \nz\n\" style=\"fill:#0000e8;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 531.063753 550.56595 \nL 530.77735 580.318084 \nL 564.399494 573.971978 \nL 564.810132 544.262437 \nz\n\" style=\"fill:#00009f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 304.119225 461.798063 \nL 295.548934 496.416148 \nL 324.776678 505.882421 \nL 331.786936 470.638677 \nz\n\" style=\"fill:#0000e9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 562.039033 511.102672 \nL 564.810132 544.262437 \nL 596.477449 535.790325 \nL 592.926018 502.938349 \nz\n\" style=\"fill:#000099;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 316.977926 426.239551 \nL 304.119225 461.798063 \nL 331.786936 470.638677 \nL 342.300148 434.214002 \nz\n\" style=\"fill:#0000ea;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 353.90449 546.612092 \nL 354.274555 576.337522 \nL 388.451173 581.923709 \nL 388.207668 552.160814 \nz\n\" style=\"fill:#0000d3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 501.27937 369.143771 \nL 510.868141 405.975723 \nL 535.83757 401.555456 \nL 522.069742 365.515992 \nz\n\" style=\"fill:#0000b7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 392.409776 366.868986 \nL 380.008878 403.203726 \nL 405.375875 407.093289 \nL 413.525482 370.060656 \nz\n\" style=\"fill:#0000da;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 324.776678 505.882421 \nL 321.477916 538.84524 \nL 353.90449 546.612092 \nL 356.40175 513.366749 \nz\n\" style=\"fill:#0000df;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 535.83757 401.555456 \nL 547.323024 438.608435 \nL 574.05712 431.734684 \nL 559.320024 395.606373 \nz\n\" style=\"fill:#0000aa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 495.861164 554.567495 \nL 495.705088 584.346613 \nL 530.77735 580.318084 \nL 531.063753 550.56595 \nz\n\" style=\"fill:#0000aa;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 479.638857 371.4435 \nL 484.859532 408.779095 \nL 510.868141 405.975723 \nL 501.27937 369.143771 \nz\n\" style=\"fill:#0000be;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 556.151001 475.512511 \nL 562.039033 511.102672 \nL 592.926018 502.938349 \nL 585.37817 467.889538 \nz\n\" style=\"fill:#00009f;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 355.982938 397.752595 \nL 342.300148 434.214002 \nL 369.661795 440.513651 \nL 380.008878 403.203726 \nz\n\" style=\"fill:#0000e2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 388.207668 552.160814 \nL 388.451173 581.923709 \nL 423.862016 585.158124 \nL 423.750266 555.373575 \nz\n\" style=\"fill:#0000c9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 413.525482 370.060656 \nL 405.375875 407.093289 \nL 431.626847 409.343562 \nL 435.364162 371.90646 \nz\n\" style=\"fill:#0000d4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 547.323024 438.608435 \nL 556.151001 475.512511 \nL 585.37817 467.889538 \nL 574.05712 431.734684 \nz\n\" style=\"fill:#0000a5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 457.534788 372.370429 \nL 458.283906 409.9093 \nL 484.859532 408.779095 \nL 479.638857 371.4435 \nz\n\" style=\"fill:#0000c6;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 435.364162 371.90646 \nL 431.626847 409.343562 \nL 458.283906 409.9093 \nL 457.534788 372.370429 \nz\n\" style=\"fill:#0000cd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 459.862885 556.18159 \nL 459.840481 585.971581 \nL 495.705088 584.346613 \nL 495.861164 554.567495 \nz\n\" style=\"fill:#0000b5;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 423.750266 555.373575 \nL 423.862016 585.158124 \nL 459.840481 585.971581 \nL 459.862885 556.18159 \nz\n\" style=\"fill:#0000bf;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 529.131115 517.176389 \nL 531.063753 550.56595 \nL 564.810132 544.262437 \nL 562.039033 511.102672 \nz\n\" style=\"fill:#0000a4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 331.786936 470.638677 \nL 324.776678 505.882421 \nL 356.40175 513.366749 \nL 361.707586 477.626034 \nz\n\" style=\"fill:#0000e2;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 342.300148 434.214002 \nL 331.786936 470.638677 \nL 361.707586 477.626034 \nL 369.661795 440.513651 \nz\n\" style=\"fill:#0000e3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 510.868141 405.975723 \nL 518.87138 443.718509 \nL 547.323024 438.608435 \nL 535.83757 401.555456 \nz\n\" style=\"fill:#0000b3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 356.40175 513.366749 \nL 353.90449 546.612092 \nL 388.207668 552.160814 \nL 389.850815 518.713005 \nz\n\" style=\"fill:#0000d7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 380.008878 403.203726 \nL 369.661795 440.513651 \nL 398.572958 445.010851 \nL 405.375875 407.093289 \nz\n\" style=\"fill:#0000db;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 525.025358 481.181926 \nL 529.131115 517.176389 \nL 562.039033 511.102672 \nL 556.151001 475.512511 \nz\n\" style=\"fill:#0000a9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 518.87138 443.718509 \nL 525.025358 481.181926 \nL 556.151001 475.512511 \nL 547.323024 438.608435 \nz\n\" style=\"fill:#0000ae;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 494.808001 521.031706 \nL 495.861164 554.567495 \nL 531.063753 550.56595 \nL 529.131115 517.176389 \nz\n\" style=\"fill:#0000af;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 484.859532 408.779095 \nL 489.218354 446.960584 \nL 518.87138 443.718509 \nL 510.868141 405.975723 \nz\n\" style=\"fill:#0000bb;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 389.850815 518.713005 \nL 388.207668 552.160814 \nL 423.750266 555.373575 \nL 424.504325 521.808297 \nz\n\" style=\"fill:#0000cd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 405.375875 407.093289 \nL 398.572958 445.010851 \nL 428.506303 447.6135 \nL 431.626847 409.343562 \nz\n\" style=\"fill:#0000d4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 361.707586 477.626034 \nL 356.40175 513.366749 \nL 389.850815 518.713005 \nL 393.341412 482.616044 \nz\n\" style=\"fill:#0000da;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 369.661795 440.513651 \nL 361.707586 477.626034 \nL 393.341412 482.616044 \nL 398.572958 445.010851 \nz\n\" style=\"fill:#0000db;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 458.283906 409.9093 \nL 458.909438 448.267924 \nL 489.218354 446.960584 \nL 484.859532 408.779095 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 459.711712 522.58674 \nL 459.862885 556.18159 \nL 495.861164 554.567495 \nL 494.808001 521.031706 \nz\n\" style=\"fill:#0000b9;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 431.626847 409.343562 \nL 428.506303 447.6135 \nL 458.909438 448.267924 \nL 458.283906 409.9093 \nz\n\" style=\"fill:#0000cc;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 424.504325 521.808297 \nL 423.750266 555.373575 \nL 459.862885 556.18159 \nL 459.711712 522.58674 \nz\n\" style=\"fill:#0000c4;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 492.570876 484.779916 \nL 494.808001 521.031706 \nL 529.131115 517.176389 \nL 525.025358 481.181926 \nz\n\" style=\"fill:#0000b3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 489.218354 446.960584 \nL 492.570876 484.779916 \nL 525.025358 481.181926 \nL 518.87138 443.718509 \nz\n\" style=\"fill:#0000b7;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 393.341412 482.616044 \nL 389.850815 518.713005 \nL 424.504325 521.808297 \nL 426.10606 485.504607 \nz\n\" style=\"fill:#0000d1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 398.572958 445.010851 \nL 393.341412 482.616044 \nL 426.10606 485.504607 \nL 428.506303 447.6135 \nz\n\" style=\"fill:#0000d3;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 458.909438 448.267924 \nL 459.390606 486.231005 \nL 492.570876 484.779916 \nL 489.218354 446.960584 \nz\n\" style=\"fill:#0000c1;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 459.390606 486.231005 \nL 459.711712 522.58674 \nL 494.808001 521.031706 \nL 492.570876 484.779916 \nz\n\" style=\"fill:#0000bd;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 428.506303 447.6135 \nL 426.10606 485.504607 \nL 459.390606 486.231005 \nL 458.909438 448.267924 \nz\n\" style=\"fill:#0000ca;fill-opacity:0.3;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 426.10606 485.504607 \nL 424.504325 521.808297 \nL 459.711712 522.58674 \nL 459.390606 486.231005 \nz\n\" style=\"fill:#0000c7;fill-opacity:0.3;\"/>\n </g>\n <g id=\"Line3DCollection_4\">\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 80.078378 480.40018 \nL 313.493053 551.86489 \nL 559.296231 627.122596 \n\" style=\"fill:none;stroke:#008000;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 226.792102 364.785276 \nL 453.833514 430.326486 \nL 692.395625 499.193436 \n\" style=\"fill:none;stroke:#008000;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 361.726644 258.452728 \nL 582.639141 318.777541 \nL 814.289472 382.034545 \n\" style=\"fill:none;stroke:#008000;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 80.078378 480.40018 \nL 226.792102 364.785276 \nL 361.726644 258.452728 \n\" style=\"fill:none;stroke:#008000;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 313.493053 551.86489 \nL 453.833514 430.326486 \nL 582.639141 318.777541 \n\" style=\"fill:none;stroke:#008000;\"/>\n <path clip-path=\"url(#pb6d65fe011)\" d=\"M 559.296231 627.122596 \nL 692.395625 499.193436 \nL 814.289472 382.034545 \n\" style=\"fill:none;stroke:#008000;\"/>\n </g>\n </g>\n </g>\n <defs>\n <clipPath id=\"pb6d65fe011\">\n <rect height=\"869.76\" width=\"869.76\" x=\"7.2\" y=\"7.2\"/>\n </clipPath>\n </defs>\n</svg>\n", - "text/plain": [ - "<Figure size 1152x1152 with 1 Axes>" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "import sys\n", - "import os\n", - "import torch\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "\n", - "rootdir = os.path.abspath('../')\n", - "sys.path.append(rootdir)\n", - "\n", - "from utils import sphere\n", - "from utils import math\n", - "\n", - "\n", - "def PlotSphere(ax, r):\n", - " u, v = np.mgrid[0:2 * math.pi:50j, 0:math.pi:20j]\n", - " x = np.cos(u) * np.sin(v) * r\n", - " y = np.sin(u) * np.sin(v) * r\n", - " z = np.cos(v) * r\n", - " ax.plot_surface(x, y, z, rstride=1, cstride=1,\n", - " color='b', linewidth=0.5, alpha=0.3)\n", - "\n", - "\n", - "def PlotPlane(ax, r):\n", - " # 二元函数定义域平é¢\n", - " x = np.linspace(-r, r, 3)\n", - " y = np.linspace(-r, r, 3)\n", - " X, Y = np.meshgrid(x, y)\n", - " ax.plot_wireframe(X, Y, X * 0, color='g', linewidth=1)\n", - "\n", - "\n", - "p = torch.tensor([[0.0, 0.0, 0.0]])\n", - "v = torch.tensor([[0.0, -1.0, 1.0]])\n", - "r = torch.tensor([[0.5]])\n", - "v = v / torch.norm(v) * r * 2\n", - "p_on_sphere_ = sphere.ray_sphere_intersect(p, v, r)[0][0]\n", - "print(p_on_sphere_)\n", - "print(p_on_sphere_.norm())\n", - "spher_coord = sphere.cartesian2spherical(p_on_sphere_)\n", - "print(spher_coord[..., 1:3].rad2deg())\n", - "p_on_sphere = sphere.spherical2cartesian(spher_coord)\n", - "print(p_on_sphere_.size())\n", - "\n", - "fig = plt.figure(figsize=(16, 16))\n", - "ax = fig.gca(projection='3d')\n", - "plt.xlabel('x')\n", - "plt.ylabel('z')\n", - "\n", - "PlotPlane(ax, r.item())\n", - "PlotSphere(ax, r[0, 0].item())\n", - "\n", - "ax.scatter([0], [0], [0], color=\"g\", s=10) # Center\n", - "ax.scatter([p_on_sphere[0, 0].item()],\n", - " [p_on_sphere[0, 2].item()],\n", - " [p_on_sphere[0, 1].item()],\n", - " color=\"r\", s=10) # Ray position\n", - "ax.scatter([p_on_sphere_[0, 0].item()],\n", - " [p_on_sphere_[0, 2].item()],\n", - " [p_on_sphere_[0, 1].item()],\n", - " color=\"y\", s=10) # Ray position\n", - "\n", - "p_ = p + v\n", - "ax.plot([p[0, 0].item(), p_[0, 0].item()],\n", - " [p[0, 2].item(), p_[0, 2].item()],\n", - " [p[0, 1].item(), p_[0, 1].item()],\n", - " color=\"r\")\n", - "\n", - "ax.plot([p_on_sphere_[0, 0].item(), p_on_sphere_[0, 0].item()],\n", - " [p_on_sphere_[0, 2].item(), p_on_sphere_[0, 2].item()],\n", - " [0, p_on_sphere_[0, 1].item()], color=\"k\", linestyle='--', linewidth=0.5)\n", - "\n", - "ax.plot([p_on_sphere_[0, 0].item(), 0],\n", - " [p_on_sphere_[0, 2].item(), 0],\n", - " [0, 0],\n", - " linewidth=0.5, linestyle=\"--\", color=\"k\")\n", - "\n", - "ax.plot([p_on_sphere_[0, 0].item(), 0],\n", - " [p_on_sphere_[0, 2].item(), 0],\n", - " [p_on_sphere_[0, 1], 0],\n", - " linewidth=0.5, linestyle=\"--\", color=\"k\")\n", - "\n", - "ax.set_xlim(-r.item(), r.item())\n", - "ax.set_ylim(-r.item(), r.item())\n", - "ax.set_zlim(-r.item(), r.item())\n", - "\n", - "plt.show()\n" - ] - } - ], - "metadata": { - "interpreter": { - "hash": "82066b63b621a9e3d15e3b7c11ca76da6238eff3834294910d715044bd0561e5" - }, - "kernelspec": { - "display_name": "Python 3.8.5 64-bit ('base': conda)", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/notebook/test_ycbcr.ipynb b/notebook/test_ycbcr.ipynb deleted file mode 100644 index 79ad3d8..0000000 --- a/notebook/test_ycbcr.ipynb +++ /dev/null @@ -1,60 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "import os\n", - "import matplotlib.pyplot as plt\n", - "\n", - "os.chdir('../')\n", - "sys.path.append(os.getcwd())\n", - "\n", - "from utils import img\n", - "from utils import color\n", - "\n", - "input_img = img.load('data/gas_fovea_2020.12.31/upsampling_test/input/out_view_0000.png')\n", - "ycbcr = color.rgb2ycbcr(input_img)\n", - "rgb = color.ycbcr2rgb(ycbcr)\n", - "\n", - "plt.figure()\n", - "img.plot(input_img)\n", - "plt.figure()\n", - "plt.subplot(1, 4, 1)\n", - "img.plot(ycbcr)\n", - "plt.subplot(1, 4, 2)\n", - "img.plot(ycbcr[:, 0])\n", - "plt.subplot(1, 4, 3)\n", - "img.plot(ycbcr[:, 1])\n", - "plt.subplot(1, 4, 4)\n", - "img.plot(ycbcr[:, 2])\n", - "plt.figure()\n", - "img.plot(rgb)\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3.7.9 64-bit ('pytorch': conda)", - "name": "python379jvsc74a57bd0660ca2a75467d3af74a68fcc6f40bc78ab96b99ff17d2f100b5ca821fbb183f2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.9" - }, - "orig_nbformat": 2 - }, - "nbformat": 4, - "nbformat_minor": 2 -} \ No newline at end of file diff --git a/periph_net.png b/periph_net.png new file mode 100644 index 0000000000000000000000000000000000000000..71681577c82297406855026ebcf558358a7d470a GIT binary patch literal 82417 zcmeFYWmH_vwl&<iyL;pAPH+hhjZ1KMclThyg1ZNIcXtmC!3iGRg1zK<&N=to@!dan zjPL$CJw`XXYppeFtyy!|sM=IVfD|N=;PK%B005G-l(;eg0QP<f27rZr|D)qnVg>*J zy}VR4U6c*ofeudgW|lUlKo?I3Q=qAb<-5^iwKBuf$+UG!_stoT82rhMhXVGa2Q+cl zlA!W_xtBghQ-7({(J|LS9Apha9Q<qd>jA=Buz$f%JS&3w>J9R@<1%`C;)#drbDvF> zip~4(*P_kyHxI#Q&(ue)2Q5E6&BuG=scU|P?(XW%jKc1Xw*%2`l)0ZuPfG~iZ-V}> zkI#>t2H9_Zd7C&gzgwLfHc_7SO7=F<7IHQ#-=0scWBldLesv>pzE(}2ziEH`RryWn zQO}vMfSGuj@Weo%8hZ7lTmGz?`t|oqb+g$}VrNC&!v<$x{#&b!A97bp{{2ADryJQ_ zZ~EI$H&VE*0!unVIKKW8@uAO8ZO@De`tz^--EUuMUy4U^Fk#<x?VdGCS%02i@9W1u zwa(a6JUqt6z25p*z1{gdI%hn`q9MIGA3WcqeMy-T`uW@(-sOJa{mS01>uoUg;;!s3 zzwbRj5UYOjq<LU{(S7ORqaRg`=gx6;lHg4ZQcPAKD;-F&YP0;7^892uifc5P4I|{- zq|<dkRjauI>rbbqf3%->vB@@yK&}X{cpzjfz3H3sYj~2%y(_}~=fL1ximd+={M+lm z+sTp;(@i!!V-e3=1=j9ZnQ&O%$kB&$GT_lmmF3eScW4gD8!7eol>4M+%QR|?^~-0S zorat0bvpe_S)0J-#RnC0%k@o!8u9gZ)>PGS;nUKFc@;w5*hI}?X&)}~>7t)vkje;* z`XAG*X|uLKQ0p1f(Knsk&Ck~yBho<aBg|t}U-Sy?PiL5u6rpYwMGK4C_63totG|lM z`@BeWQ9C5@TpMPGah)q_&C^_)Rt{2~t6DXnagVJGm13={8t;A<x7$@UdcOUP_^QZz z+wgsw=enZ)%T2A-WE)aOlg*~jcu`FMnftou(vR#+)vM#lc9fhhA0el+Bn^G<moMC# zUQdeieg(g$OJ2P9UY|;eHcR%IL0+2=8uK1r(cMh(kks<5<VLMjWP+Gr=zR2Mj>X#b zWZzOncqsufX-ZsB2UHT#u<DAfoj25OZ;|W%c+EY>ubV@RZ|3m`@IT&SN1#G~*~dS{ zIzB1p-zlZ~qCJ(0E@Fl-B<g1rt*%tKxo`QcuRd8$XSHw`INYDM-<-u?Za#F(XIxdS zce;`uAy3^5Yk50r^ey2)c$mjDuWGJsBl?|;W|{w5uFzUPaOLPR<o_{dG?P-=Dfq3~ z#}4o4(Lfu;@18Rnr>^<y*x4e^9yd3McWbP<c8yn-0dsl9S!H0YT1M%9=dV&{lxlB< zj3j>Z$8lSR31Z$ans>JR?!A%(OVXi^`kR%L8R{NUWlXljY$rdwBWf(GS{?W2mt>4@ z`%0#kL#o*3I?T9FmdLluCcYTegMLG~vRToa*IgEKDOhI7m>`99C-3S^E4ns2Rk|m~ zHCi5JL-3zz{vKJh1|4^`ou4^t5ZAbjgdCuXAN1{g8hu&~tJ5M7)mXBKaHaepWtiNV z<L3^y66WpIv{Xo?y(3Zv!Ds2c=!0?{)OzeUR%>M{Ztn~-$gu8sSoL#fT^1%?#Vhjk zT(8t`kt+IRR$M`FAD&$*2Lqv5>s9@O1DTyO`yv4v?tbis#hBn|>Ixo$XpM=1OM22N z>7#1oJ|Clfkf(|%pREecQ6`&)iGYs;Xw}}p#%-D@%1MA>ZldBrU=YPYe&_C|!)fZL z-L}_MtMUDtTEh#O<i{_NOkpc0f&y7wPKK_;Ij&S;E-T+8*2-cgt%7~7Yn_tog5bvz zYm=-P(zDjZ2*u$MY2{X98x<0V^67SHTodxCi_%)RB!V?$D>I=<;*<86X)JvUo5DUD z_6&IC&dXIf*aRu3IHdp~I3F|XsbM7txFsZC6Ymy2Ggh$&X53l9N81*)ez=sT$!y25 zc3!i#yhM1|-_Y!iN(KXr?zx10bgCqr%R1dWBmP7R76ZWH?sRT6Q<;fkaHZI_ojJW0 zJar<cL+&vpj(*4*42@Wa9*^582&1VL(=81Cy=`UgaIio{JBMFBIR9BGeH~88`he@x zcNOlLi~(Hz-ib^Ip)6A<SDKu0%HHK?s(r^h!>KJ6+4T(FIb(t4yyRioij{I+#fN<c zRaIOf@ipp%x6)ss3?ckeY`sF{ZJuB)mK!oj;zFv%s~ub<gG(oL-|dPE-3;WR7x1Nb zq8*|Uet@OM<m|7Q9%^f+1n-;%2X#cN-!$=`Z}jS(ill7|`xN>bj|NQa_Vsn(!H`yG zWrm@{%1l`o7}&w|O(GVP=ahE+K#{2JfLtdwg^kk<()e9&eib~&6}>1NUe__;3*yOe zc;Ens80Ua2$HtEs%|e$Lm*ASQyG5F})6+4mFoJw4kAP!!U7q<~rKYYzFUpq)t!*MI z6`5d)t?V9x!@Vs*6CXYgtt>eg#o$oVF)W{s{_p`bOJGaycK#h2ve_MfUNNiJ2m>1k z7yd%ty~SNr3}MKC+G<P9CVa)gYK>Y6x-KJS!@W(J+0y74Vz|d_jVCUu=V8EFAIz`& z{lHKnY#pK;BEjwYJvv$-(FZ5g;pC%^cZdWsaK!`dT2+x-4(mRIC5@Z}Ql{6JWy|Js z@ZGNv#{=UEhrpCXY0NRCgI?DCdiINWbPt^oV!9Crl2rT`%lKA76+s3(F)IuF7MPFU zYUHf)Lnng`$rre!Z5Z+&D_Afykqd_=*VNg0dqXwA#8c(=7UpJ&<$SOyZ3=$F@nOBN zkpzQgsY<^lW4-jjuv;tYecO$WhTA9S>_-<^1TWm!rDeV+2FpV2&5@zq^41g=VNcwU zR?+Vn{zx3ygd9^S895L|>!mSe1nSgEK(EHy3PW^E&>t~n!;1WYY3p3rd)Z2!Ck=kx zWgT>$eH|zfg0Ub?2sQ?mRxP|*{=3jn0!y7ORFhrnv}0<l`K(W_Vs-R8Atjg#4js(O zwgW^zIImvrY1J;&HQ(S?uIl;N13L&^RP+8zDv8G4@xX5zBw}f?(euWw$Sx|A)(Ctv zw0JnT-f_?!x%_!aL^Bv<EPw6MSJ{4)0@A3h=hg8<J&!`xP%mK_l#z*#ka$Eq>a($7 zbc43k9MNLUn4|`^Y@^d;L3;Om4sznig@Bb?6hwxOOd1y%n5k?T%>+VJaoXIvkKNWT zrRohIys*xsC<{cOM_lm-GiUDs!-L=Js8oq0qLqX2Ap_zw-3xh!xX#3`JUXFzVzFdO z(nOR!!?3D!EXgYYPc>4Exkw0Kii62eXHYrk<&GU`*<f!|APpgYY7Iy%aiF8jTyj%+ z2FUS%u{nwT%o}&2QfN-#XH+tVGS*C?-|QhS0#8IVmJm0J8n*K-k?*MKFXh$A6HLv{ zQ_hYr6LCVQ$WJ7cvz`gqZY~iFs0F0PZJnI72zYBgh~FKsh|uRE<s}QLhlQOtDbTHf zO`g^)Dtn#pgiDPuTt+(bJmTelX48c-sZN9)iS(H}d$hphv=7=;4#wE3iGFo2gHrZs z-GL?!`i5#T?x+}zYB;?g$_?Bcn%vC-Qf>1JSjj_<A9k-{$pw?Z*aQwqe7;cuYYcNx zF*%M-l<bit$C~Akzk@iohYqKx#obcVn793Mz~zOuylUUanbG4G*pysE^@XM}+%i1z zy9j{v<y?3ci3bcc<3U&?u{{pgso6{O3q`Rso%zHga~Z51Y*Mr=kS&p?-}PI`4ETj` zAe7SH;c<Q870AZ1444yw6cLG4Xk%nXXBsLniT@mqV*;sS1B2A73SL&Q&ImUkyz#XG zmGxO`RA4K6N8KNN7&gO>Vc;0{GKQE+jMc*j{_;Se5A6b9ZkSB20}WRgA2pyrhr3-l zNPiNkio}5p_3A?a0j*eATxZ9=zzszkpjSSq@+6m7MLbYGO&5_yvzN@@71kqrW|o?0 zbv=Q`0em1(a1`e;<S`nAXjWinP<$Kc4cUj5G0+Ji2I2!I^iE;3Sm)Y)-GD-N{5HbG zCazCI<b<||>#P>*<GKt6A!*mw^65<5Bp~+_4jH4owgp!YrhzeBW`13S|G8vxEBR{b z!&lCNGCnH@@)W%F-({$A>pUYS7kxjw`M}o3Yh^l79U1{cm|n)LF~6tW<47db@e~h2 z@p3<!T94fci|W@vUrzV*a3PZ6%3`Z}LLXNv3!d|<9fURH*$Nk@oJ%w?aU$57!`20( z;_^}GOq=jFHRMx~sjipwwX0|Mc=KZHrHoPetI@iTZ&iE_l}JsHM5wOj%mbw=_nY=} z&LbYJB5_AJppm+<WUd<W?gYc`@O;_C%_t{oYBD6f*yEwSYUWahQ2DGd1_?X<xdV>} zX<$3;nfq4C6YVA9$U_Q2oZBP1ISWjM^utq0>3V>+(^!!NH)c!_TS!_7TBbyfs0b{M z3OPVpo{&|>fyV=OUNq9U9&`Rfh+Y7qa*_!%96KGsr5#ixvBO3Qr+2KYQC@Gk+|8n{ zJvd~bPv>oFWmzAktY#<pTQ8|f2)^+Up1>SY-YNm=7l?<3#ZLSX4cEyiM^e*Uwebsp z#>n_**-$ESWfY1O1mS`UJGrY!*k6=d1|>HBCQ*#Fj_o2LUZm^;SPii?!rPp#QJVT} zqLZ{47IYx&$xtfgDA78YD5#4SQj@4!C2NDwTACntJGRW72uA5SG&W4gmH^jX@Dg4v zOvN*K)W$I{(p`}LL%V@!uiiFECOtfKavt)_?qc1(KklmwtfM;BppJA{)ft=vW4y|7 zb8iaRCtY;X&wETpEb*=(?Oh2_<l=ana6=GW?Y8hSB(Q!y+j|=ZU@eU^Rv&Q3VJR6M z>{#`b#LQQY3pPAA=aEJwN&=ff$$r2S_e$_63+xdah?;LO;rCWW(ktP*WWHPE0N6(- zT`9>9oD~+<C2iFkVnoYjZuu_Xo#HKc@Z%FQ?+DkB`h}f>0H}Ey9}k?M-hg<gYySNB zO?n5E`QYh?mTzvlsGL^^rZ<i+gy=X<;eLEo=NQ5df-WAJnh(&~>%p^g+zlUC7Q+{0 z0=kv-2cCiEJu>HeM5%$@33LJV*r`zfVk|DnbY5cTjThS}#srLlo{moFxe!MdrwJwu z6?3F-JP{Ct{pO>rkbsp(8dd4|DD(rIuz`dL6Oyf)=t&uLufod*{^ts-<@$|*<NS}X zbW^YsKZMBxsXj$(mC-vp!UL#QBB@ZKuO<2k+zl6617JXNCY9K(;EoX4EXYhlJ(FKJ zO=+F{baI8I0WsA|j2B8Rclq!RfENa#g#fAu_K)yPH({!!u;TC(Q%Y=CecQK_d#)IJ z1n`SN);J=4<iRo{Ff<74F;5~Wf!PV@QL?4jR7#qM6s>wS3KOLp(*(zcFqSGb(f&q^ zGX0v*<YG}50dLfN5wWo1pl++&B1P9rUcm$%6sbY{5Iu{f>P?Rn{BYSXSg8_J?)^xf zmb(SoLzv=P{&CtH3gBoail}Uh%oB*z`Cm&BA(nt{BGbVJONnAbu#?kGS2Cn@EeX*L zV0n7}`s&U<=JhW=x0wHE-nMO1m-}Qg0ITX3&aO;QRo+Up&Y7JP)n9ECDn^7eA${<% z6Uq_#;}P78mf;R!p$12`chou2#OM6-pTvYPG?Q?+h7~j*SIKrC916n32aJJ`+A3|6 z7nS3cE$ZWW2O9z`y#?Z)<e#OlSX$5+*O2Jvd3_*lZVDSW<?kh?b&F(l0}CMod&ZwH zJs{zHVFFk;)IkofsL#;2sCSg{#glQwBVS`4T6#nlLB+UaMjv&fkerlD=)Q~W_uZet z1dWze*xjOSL%`XV=SBFhu+3P_)ME<&0JL;_C$J!eh#v451nnyp>|n4o(PP#0As7o= z%@d6X*PL74L#2O(08c;}f~tf3?SQ$O1eCBoD$SvoMN4tXn?XPt{0{X26<>OyPt{fS zSDx~~K_lN_OldKCQwhWi()XVBy?_TfZ&6{m3O%ItPEXeSIhMpL$#vJ3bWKP^MIUi0 zCrT3(I=7KneKAsBq{`DnGP>?EmCi-@0D@+hlb6!3%6laXr}3qf3Yw#fxL7g>TSmh0 z#Q9)f^GzkGP&+>Ogl%`gn{Bbx^d*`<J|l~wN#4W4O-0*?M^&k_usfKV5TV87Og;U+ zooY#2RWB#b(4PM_+;D-*;9*7K*qBzb3e&j&%OR%IoESc~0HU)(ut_JvA=EUA{uMPN z*acrwQHWbA9?y1%v^u^{i2JcK>Uq~<l;(yRYSJrkDM}med-e>rV~~c3t=>MkHfnUQ zjJ3J;2ZC?G#Isxc$GcOjlKfj}oKOY8iiVUgA$Yd{A|2xPdmYF?E2TBUmcnAPAtzSJ zp&9hLL@Q#Ll#wK4jxbp{N9YyLImoS0pLw`on}+&ey#T*lAZ%n?59Hn}JT@Wz8UZJC z@s}qEFd`~ga6MOEu8_fy0p=3Z?`B334E?I)-K)*br<-O2pz5X|Z;D+B=4L82abni3 zaGWwGe=?+Uvndc1M<TuOYzPfvggCGa(s?Op0+6jSRWJ(Gi9x5P{^N9Q$5W${fW}3q zmzl<#EG0iz_Q~v_w5(w1CD`4C#eoS;I>Lv@$+grJNy>OM*5iWjfat5;GTOOA$PF67 z<AtiV$zF)pZz(3!6d+@C4x)v~kU?@Wiap&YAb=>qchVc7mkJQAZ@?E`){E7^I8dH7 zu|8v*(Q8_z9%XRai(~^PNCAc=b5bgd_Y*p5KL27G!o?#0<IiwQ(qyR=AC24*=v_28 zPa7d5;?}FnQOk{a5rf`XrHKxU)#ce@QofcE46@$Ybvm?1-2~LfG$j<YuW?;>#D3PK zlc0?v&TxFnmbijk9TDNdJOO2&V6LW;z6%;3a$k7*wr+LzKC~d6s<d7s3cHS=vtcr0 z^E~Exd6HG_wkv6>py7Lx+X_~^t!dRrM3+hvDg+Gol{vsxItunD##xa;vHoz%<e+1n zIX?$lkgRFRep(|;T>~$L_lQn<DK|LpR`o17i<bPL+?A9A9G|cy&ub|1IAwsWED}sm z<a%HfDc>zd4Uhbpsq1C?ZaMHerkzz;KZBles+zY9x(gb+qsO@nujo~^IVUc+NIik! zDSZxTyi}W-=WD|80ZRXaY^%dWh=Z#&GgJ?L^fAKz(P1474DbNe9#t?pZgWwvgWWi5 zu{5ppOF1&$B7^dS)v<jUkUs=ZE=0u_Z5k0ajtGwQyB5uLv+NN{zL{CyCo32-@Wi?V zI$}6)NiOk6zZ+aK880H~k}fOW!gxZYAOUb&jJ*CDbrt0Nd<V@$=y<5aCajfwEQ2GS zbT{!)_FG^??`$$@)W!!vBEupx;8EWe|4xJ#@5464mi)HmQk4Q+M%;cVi@x|GZemQI zMM^^fSRL%_0QP+ePj2gJkmMP}I4DyDk3G^yA}+%K{R7WebfqL6+MQs^BD?$;O0^P> zOFt{Ir$t49{oAt>aIzwL+P=8$L@MTd)SU%CLSb+(w3WF`iM1QGCpuMF&7fKeKfYl0 zcox?<Ax7v&&CG8+2IXsae5+a?eY)Vt;@F_K89@fLvoJV4DS!eLn7~xBv9D@JhKGbR zODY?<1`jCVw$74ggy7^~OjD4BajjVZ!OEEo**VOs4hN*2_ei<lt!UkBU4W=FZijnd zSU4YdXpZg2!RI{Zj$HBBu-iFe6h0y9VtRhrKw3r6DugMa9Vtd^q?a(M#-{u#x9rd6 zcr7>o(Z%rQu)OFCooja76pa<j+B~yxEV|R^YfHmZWj%>jhGC=BLqWSRC1z&~N5Brl z;DA2k719|5ngB`(NezkzgR-EN(k@{IsV+!=>uK?hc`7`EY^1GH{D<8Jz~>-ZN5sRq z8fOOCVSmrHZxV>&8V|XoiBwZ#o+eqL@wTe6mmFKY)ElmZC?4k;0+JOTf&kT|sT@ju zAkyK8;7cZiGhAM6xSwaPK~zf%w7U*L2PjF~sl?>Rs(Op1wJc;~H*r)!z?dgmUfE%z z3G)OjH8|Iy(r}-sQb|PzktAGQY$C)F3<iJo4nT;=Fi8%?yrGe$d7)7*;TtI2W$R&z z7+m<w?j3}<oQp@tAPUtZK`}ksggKj%5@$dV&EGHDc$8bEAcY&IKR?~l4FMm{K{0il zaBje5k{V5@loR(Y&yyphzaf}b*vOBpm{Jt9j?7t>w7S_e_3>D5PWqEDm@bwOi@ED8 z183>?EgD1@mD#%nj$n9WOqs$?MtYcF#z!!ho}^CER+w0;8FnZi9F^`U(>I0j+=BU~ zIAPk=5J=ePve+b7^!=V)*!Xi65dqrdi!(G7+Z85TVPc@}T2<mNWktEq)K4JA;zQWc zz}Z-?MVvG&ZkF#J0IP-obqxQ&@>L;sORE`ay4VB&vs@O8>peVMQR!t?@s#s6hjCsA zKzhc1Fd!5{6MarR<JTwoiHF;I`%kltx3KOBy}4;R4zeLX$u^L&rO<yqAEyLR0T(~D zGf;4qiw=DwK`Dq%<%zQ3%LzC>IgUWHTe9T#2;BU+q&nOi!c=Un-9|=TORaJk{n3u| zm~g<|0IvJ12ti7+NXfA(%EagE?;DB85vN<<Oc2Qv^N9JlwMII3L@9H05Fthg6o0So z<S5eay55d`3-mo3&fIx&g+^$4@c0f!X;O_aL%iMy|LZGiy&jJw9%s9h1j~&<D-P4X zE)}!tMU8(MDvg89r{6u`hAxOQP|_*kx2yeMN|Jb7PlLpn`GUgWa{vS7MZ$4)<2(>P zih+u8J($j`d`ys*qEPhk%@Q*;<x>;J)LY=U&EW!N8->Y|$R(eYV0}=~f=l@Vda%4^ z9TDbGb)Q{N=M|O$TYeZUF-{q_g}DU7^aSGyejoF_jH!`G+1#KGiqJ9O@VQX;ZZ#X- zD(H_6KYKkpIp&X#8L|yIk`gHj<${?-(JD+3mlWxS;b%Ql-u;^EBS$+`++4&VxhgE3 zDxVCR0>Q)uqh$I-SgK}1l5Uli+zMu-qs#V76u4rYbi}aDFp;$3%uaAa^6j0k!oaE$ zSt;5YHy(=IBz3u^Do`Hx#E@FIFq@WT2P5xQFmJg#b^hjr0lQ5Q!`3U!Q)dr08BjaO z_xM%6yT^0*v?Zy@d<2>>(&J+*Se01HTXw8n{yak{kg>OchMOI4%?;kIVl!$Z<g3bY z*dKtm&kv$QhqB~bFd#mZ3-Lt4N&%xEc7eLkY@EiV%ka9Pmu9E52c;JV3rs(HJG<LO zVvjM@AeaPAWl5u!Qbv`4<`g6fm3B-3dPo@vy~2@7f@<bt!b%CKe!V4}m1U*e`Ps1Z zk$t**O_)d@EvRjsKsn(<LlhT3oKsI=K?{~e3#gK*a6tiL9>!TUIO>_}yZ8&N*BEH9 zhcYjjge0_qCNRjQpqAy&E-BY5bVfMbsBy1UQAq6kqn5WdaRWmm=iYpN56&!zGk|Yb zX&9`5W-QXsSyo4&oOBGNW<Oae9-Y)`a?LX2dx=}}K;o9B6f!CyW;<M!1OB=AkeMT5 z8gg!N9_R=>W@D?iQ2U!FIh`Gs+dh!Wh$c;j%~EaHAV0Kgbi{{fR6bG)n)xV7O7gfA z_5eUysixfn(Jc~rzWxVF3asK?xd?!3!WMCd#7-6sWkO1PZVi`2f$a?1jHdJlFfEQ# z*pnzD^TZ1%wSdNOiO=>fGQ(duuyhLcjlTElojnAhRs2Lyy`6c~Y|xlZOOINeuqKM+ zR92m2DbU(#k8B}nudJf8vMJ|<In6&d85N_d)njWU+?+;>EDYAhTNbEdn|+^DB2Fga z%zZdy5b(uo8OOvcYruc?TF-mf3pSS8)wL<0)-y>148E5O8DE~$;QBxZZE)~4%EqjR z>dYZ?rdWx58$<u)?(f<vG&juNH2!7bXs%YNG2&vVcvnmxsbGl0%5|y+A*g2+s0Gy{ zo6N57a2Nz`S(cRh0Q7=3%cT{h+^D=(T<wDVJ*%^dIiJ4W-JjGzFsIO#^g2&_T+OND zr1L|NE^R)^Hh=x+jCAX<o67_YL?9Vk*7FGYNTr<B=Vt%bu%M(5!%J+~K7d@G2I<|k zg^K8?E5)|Plej{Nu~mt@-`n`Nh2;vP5*|s4ATj}U0qMB8A2k}^BZ>-(dta^<EI%<R zkg0wRTaSi7AFMqBQk}Act@U-IxzCC)o^@=)mPCeC04QZc$2fi_Vs*iZP-wha_`uMg zSxeR>e|wpqe)4qR{^8*|ljL~l5G2tcx4?T+Vuv%5klKKZjCo|1g&3K-o*yC-{&C%z z`b)?f!(=KyQ%G`0&)4A8;}Q`TNOhRO57;|?-{c!C;0KKM_<}G=)e!r^?`vhnf6Gl~ zd>cQY5LSNl!6dXo#KVDxL*%j<3T&wvv>G!)1VKpf`o9{`yb@Nd?GW+9qExqGtdc?o z6^?q%;E}&5X)B??pGB#v21zF<g*o?JugXe5qmYSK80hXn<9ixTC!=W+sci)I8Jfhd z<dZCz^tcXIILp$Pe+h6k=)AqhRjpAtu&`gBFL__lTJ)_VecJv2?m)@M_gYLi6!;|^ zX+kie>CTy#qD<l}yMn%WSMq!7V~&9E&&t7{XBFR`$2v@ejEL%Ut$1N+AqSL?4lR-u z%vl8+Zd6g(5Ns<*sVuE=M2A@x=SdiHJ%B8PO~|Wm@$k1XpK0fC)P7(F@EwU`v%z+X z$q3l$u#H0yo$;nL;cYnvRoh{;8Tiu&?SYBa)E7xD8n%FLkuVErMrtV{Lbj?z;{q(c zM6)LFihVO|pl!o+2SH$;1gR~?3~M{;%}A4dtVOmAe()|4=`sF{7(S{7T9<fo=H#O< z@LK%xV6s#f7otrI@ChzfR&1l@m8-d3BD+1F=1=TUA;SAka&F1|o8~$lj3rc?y2v9r z;k*9K7I##EK?M9sY4DZnp@HJehUeQcbbEM;=Wk=W<lU1X9HQWpW0Q$|6<+`qIjOwz z;H&(x38$^4QUdH9bN0mU+9X3dz}f7}>zIzMnKBc9E!_$AbX#Ge3t_C<EN%WzUWP{V zu-67L7v;V5+|RiEZ_xgI-pI-b)Pe7Z5zPO`QwWw0F2;XOAqYsfq6M%Zo(MpZ<BpP! z^7Q8A78tyVrGOvZWSZPx7uzB@;(h{p$)Q}r)O-t8b47K5OC6)5_U$aapIhXWGFHNb zR*;wfadZcE*NI~~>D71pehMPgQcMgaEhhHQgAeZ=W%|YoNcDp-Llsqu$gp5Ol!QZ8 zC}4|A5EeyB)PPpuEBR78Zcx%WC}^2tf~<Rca|X+Tqw1@WtAc<J5Icu^g@<I68!4FD z10LI#f>Z4W7aP6-AZGT3(^P=!BwIplN$O}-WS|Bl3nIx!79gui>^JQ17Zugs$AxWC z7YyfJLgkX9X^0mQ1I}{X3_D0WY4WlM9g2iT64IoC)WqC}K?AWmDY|~UIu4p!X{6*? znbgQ=QK4MPYpGaBNgnAu6(#ul2zV)2Q=c*yoRT=tNA+<hEa_>hzT=A`%7&AJp|O?G z<RK!Ut#T^MQ5^9fZ<Dw@!#R!a(FMjEgJG4#5ehw!JZD#?<)piO4N}Uz9&8f&7}&!! zQ?hb*Uu(;)0C;0}C~AC8;$wM|_NpujjSbka-P&m@8ujkkN1k~rlnvXH^3xU-MCr(x z<u(oM`jqQEnf2+K@EeM7x>=(S1R)`~G1Qpey@$KT)B5X~<<vP$h=NlUtM``n`w5j> z%lDHgn(}gd#`d;Mh9>q#rc55T4)5Xs0QiMG91M-EO<jOSrskG*0%Ygy-DE&Z69F;} zPI(r22QgC%ODQiWQxz`-Rbww}V_p+7AwhV4559K*TT>T9poguEoim?@0NG!-eDBwP znwiOff4R6=3y^8bgMec8PNqN(CJrVRMhOo~H#Rascp$%%i5Z`=_{V=hynhoQvv6^7 z;A3WXcXwxUXJ@i^GG}Jx<>h5&VPj@vV|@2uboR7!G4x=xb0+@-@i&IJsk5=uyP_@a z?SOwU4UOzwT?EL;-tEAD=4b05FaIxiJLi9}@XiObhoJ*AD-#Q|tu6DvM>xAkxV?k? zBccB>!ddnGKo7IBsk6PSld-9Uo2i`(`M*P$82>BY!PUv;uX0R`nN4j>ZQos;-+N{K zZ(T}C%Y*(E@rMF)OIwG(qTb2=Z=NoeX8%Rjf6MKU<*#!7J(2hDf8qW&?|;_*m-D-q zygZ+{y|L?`^rXcF$o}-tXJT(`X~Or{B@Y)Tw;3-d8zYAauMr~$iy<2$FFPA2qp_)p zF}DdTrzwkx;lDvi+c~=!+8LYvfqDmLvV6xeGBV;aHsxkzH09vrWaQxDF=I61<l$mu zGvs08G%;o|;^5@{HwZ;1%Xd{8+WdP~f1pg>p?FN#xlN5tI2c)3*i0BXOpSOLc??;( z8Q(Ku<u&DHW#ck6`U}d$nD3*#lda+Va9Y|Lnwv5^*qQ%j_(M3K2uNChjGc+)zgj>x zhAw9B0q^&KrJaeryYqjUR4r{yRa^}J@X5->$;-;Y!OO|X&c(~k%K2YT>ZVT4?^+Zf zV`JjwW#anF@Mm23-m7_M*6@!|-{b#ke=mkl%*oWy#okHP-rh!l>`zXANgK%j_kc)Q zI=>q||ET>RdRH-Z{QKMA^0%@4%LD}eC0Ra0<G=Bp4c$yl{_5jB?r)Q^g`u6f>HEF? z4>A3--SU4JC{9CeE@L)c9!5?>V?#y`Rt{E19xgVP_YXreBSRMM_sahs>wlp;+nc$# z8#<Yan7<eKcOk&P835A!gGk!{o{zhQ=^vI@-tTP|Zbo(%RTf@8Hf}z47Bc4l`vO^c zj1Ae?*$f%kIoWv`Ie6bccufAt(a4yEmBWn3jGOcSq(F8~K2FYm7Rb;1XTtjDfbui{ ze}?>Thku*l-ii6U?S1BapNN_NH531Xu|F#LKYaZ|YX65lyhHz|lm8XJ|Do$Ybp5Xw z_+L5yM_vD+>wm?-|H}D4>iYkUF8Kf2%bD7}FY?^qcWR9pzq{Udd2kL=TFw9fis7F( zSc%X#%lAeY7ioD3n4d7jVC39zkJzj4O?WO6nl57YwtqGNfWMZdrY1mlOBV~^pJk~= zATrMT?-~Ho;v%XZt0A4bv6Q2=6lTBB(hgKzr*#tCQ`UVkZuD<UBwuP5;QOk8j6mTy zmr+?g1@|RhYW6-|lwZW#@e3hR9A?GsZGvp%&;9G`(XZd$F8x7A;JhDJXB~*CS7#k% zAh5Pxe2359j>7Jlxi7jzB1mN{bZ6Ry#Yw?S;KfH?I}y74-(ub#g<hB+rr#d@2TvXc zNZwvZE<ac6U!IRe+|Q8~K9CY^Y7fuy#Vkc!^EgK4s{~#_|KLjOG+N_QWokL+?)dSm z<?O><Ti#-%GD0dsDqI;Lx8@D42N3!46(KNH7!gE@${If6M;j<YBSRx9tYLv;aWb<= zYA$AvL<f#4GTH?%60qBI{RH!R-u)Kl|9D5#?dy}9_1PCkd`nwouxnZw_u3yG>h!Tx zR3fizxBc_m)3a~rOTgVGpa(dwU2~3Agc;}GQIhW-80o7+yQkls`&%diFT?{G5fuW+ z!VYVruVTVK<-6w4-M#&K7q-?FEZb|l>A2=TUzyJm?Afo5mjVAPmiqPaazLK0<&>t| zdpPCo_5Q*A?FY%_>n(i`lssG|ZI@8@_S;KJ_s-k1{aaY~%Ok<->jRR|D#rBn!1e8b zBQeO9MgpXzl($7Sqah}QuYJO!2cvy*NQR0PPA3kjdzRJN>EC<)b^+t#>EEvohxjL3 zoIn>591+EH5iC@wHdyWR!`CM{L^`Mmo9U>t&4|-(*~`uQgVu$hr>@<zml)r*o}!># z<M1AF0NV4&ay<pO2pC$)@=BCD{i|MU;-y~N$W$mSCOBEsy>eNnH5uw@j74VihSFQk z+etOZMe5wG^ra}}%Vm?=yu4DBs5GhHgZMMX1G5ER34A!b>YyJFReQACIzTOs4i_F; z__F`2uN<L^Ka^wAOWlxpUrPtzQNPjOs_ktr1uNuI@hSH~=Jout>FiOYT{J^j`*Ty+ z#s~5FE~<LpUv8p;f)`%=7xznnpWQ&F>vjb27-Zt0%YJ2gE5>ltqM1uJafY~|!5E(6 znge>WS987~m}e~vG)#_QJO~PKaNwyBPA`i5XQ}%G4wMA=pJHN!nDX5u{u9LFTsCWA z%;)DG-roIwYqd*}YiBXc=k^b6wk77D>3R%QnU?La)>4R)=rzxP32!`fMky_DF-(WL z2ZpgA=}YA^bNp(ytOz{qTIla+cHa+XZyaA;2SnR^<=>p!6#`-qWZW*Fjab=JaWlce z*_rj5qqc02ZhS=A49baI%LCqsZnubf10q1-XVG(rW;<Xq;*w-WhPe|t(~6v_U{r5| zsbIoCr;Ef({9muTgQP?T>r6_qT+5fwqpQ0yeO|^&xWk;hG!xh~D5%;uULP0$3@gh! zc&eD<Mw_|aC|TzwI<J?<FDSdcaoxgK7IDn}g1|e>pE>#pY^tNoeuR+adQzBke1(ni zj}imjFwhV^p838$TaO-F!;V{G1U(^ZdP=YsMbT0N6EuwmYwk9mzC0K+bJit#U`L)- zz6NoywZR0SwYaFl0ds52!J6EGeW1Hs@aQqAm(L5A(d0eiQ0V?<@v4+e1lu-9=3dyJ zemJymI<)_&IVZTY?O!`XdV59j2fSU;|Iz_l7TK^Gbla@yKBLh&1^)IV)f`+_>|Mc< z)ZmznkGOus6RLmXhxE83wC98x#$z!T&UJBHp8K#OqJ&<4IwI)oH3q6%8vwD?t7R8? z-5t1Gjw24l#~Vh7<?>8nkOeIgST&Eim19Y``XECE!|v+RJ$^wKIroJGK!F-^9RkZ@ z*35APh?BHkaKNR0QeuS4e0C8Lc<LV;(XKfoXzJW?Tf4ZG9c0!=*w}zCL8l=3n3h7E zm|rbv<_)$}DnY6z6G7sG4ut{gz)!{bq0cnP&2%(2$HSKW@V!5KC40W!Pux3y`p8fk zYd7Q}1@mTcX4*_7H!8_@ut3`WFqT?xn%YllxEx)Iexqzho!-m#uKZpL+-`wchDeK^ z?E(?<@*Ee;;Mp&+*fB7V95*&xzru#_Ow0t~jqpb~?A4g~C{tuykx`(jUc@v#-<X29 zY@QJo5o;UA^TX`L?l1}q`<=2wHTS8^Ln!yi3y~`KeBZmapHhgLGt>Zy!PPEO7&pZ{ z5)O1TZ5l>=`d{^7yo;<pTN2-7K7RK<p*$V-G#IZcJdF^o&>?HANQ{C~V_9)FCQIC5 zEN#x_81wi*5+WtVq1}WR4p~Xx=EhM?CxQ71&7t<#s(eAYsm#?>NwP%POY;0qk33Gg zqk!%F<GiC%8iENVG?s8%zO3Xq(e0V+;7ixG+on=8QjzMq9agswZObMe4We38_aThx z0vk>6*)TaX9Ssy9?ei#djX96M3WIP&3NM>7-4}`BoIx>(wo|FB{^xU-l^0X`gX2E2 z2<56m#*GruHqlR#*4dA{SKhH2g%Af38w!MSK)M!*fxGa{PlH+nt1BIt#-~qVYqrDc zQ41#N1evl%vM?)UU_{Ki&%DxhM5-UxFtx~!e=|icLYZg4Fj1>qUL|(WLBM&zc%{s8 zNeqhG?02Xc+K}vSn>UyMt#cFt?ci5o8&yx=mHy89tz8P0Ubs2UZS<!2tm<qc(8-cW zl40qQoJPcaLtn;A-aInjUa_-@2_{^mLWv`W%*lumjho@=JVVXdk;!bI_ic)S&y`}J zWKT7aiRi#{*?%cAU!4=%tUB9MefU)f;pZ!{2#EIR;I>Xk4gAi10E1~Q?aKT|d#<a< z%dY=J<O^4CL#68aebCy_Rv!oxaH^$K=~C=j?zAaTW_wkDRup&7oPaC{W}sG+0-e4Z zu>w9&EsINS!eY?+obC|14<N_Fxsd6F@FNsG3fdshPMP&bUvoA<16f03VnHBr*E07& z#DZMN9DMXp07(dRwfC;H)P;8xey=MhbNn-|s&+?l<hp)ZV@709y)4n!n1mBNe7mR; zu|0=s;b5&qSx|C6x;kjm;d$r~dZq&Poye}5iVALfEGuxBXp*%Sgv)HJmp9z!nYriN zf=eEzPqkQ?pbUVvlr$I(&Q>e5x5I$1+I_|-d?R4Q^**ugXGOnzzJv>0eH*XF&bThB zzZZEW9=$|C04zewU7&=3Wyaizoe@fAKv70dc|cyqFhOF2M`}<t@aMP8S*sOT*Fek% z6ApdAH-}emg&E=u3ZOamfBw!4Y+9B?7DQB?HE<D*@)cw2EyYW>$kZyF%XGG^!d;P( zlB_1dS}FmD{%s}DZ$r)|<@%^7vj8SJ&1D>_VBts%>)%uXiHNDETttTL774*$W^k6w zijX^IU^*U|<0U9eC)N;+ots!^QaxL3)ddUJa<y4p6dEC$K@Ux=rb5W0oS}dU2g3V= zW@Fx4iI5J<2e>>}6VGKh%p#qyxCL<{1_tB{Q&!KLZ9-A@(MD21eFLY4)jjRQSXrT! z3lrUROKc`M_HFJ;8?%_j{4s81EfgN8e0Kgm163~P#qjmOd_WY1Ge|j7k-RTm8&9)r z`24E1G6g6K;S>q=e2icKBr5lWN`_H8oiY@&9KSS%D-Hofnj^I;iE@}{*DOiBe{SS! zd6Ut?&txvM1h?r`^*wK-In4|xlZq#;iNCzO|9@D&JKFKH01hz_uP5M&r|AyDvo*W~ z5`5GcRV!zJuzPvPIkmGQSrw|Jc)UBm86O2K{ro|Z>8;0c&QLQ$sFM&GDv&dfl1*uG zwm8oB98qjRjnVs#b%P$5xDr%&^|dt@^FebYTg=4eX~Wf0hZ81%Mg_Vn0iZaDNGguY zLO*#FLG%-mV&yFjci}ROc$1z0m1;guP##o=D3?!DR&oJAmHdjxC<MlVsu1^5ACdHH zm6Q$}U?tM3G5^k;8%+IuGvsu%x^HIXE+!OfAbr6vC^`bzjjjvcbR<Q!Fn3G>n5wT> zL_j@3mUQ76EX<x&?r#yQ*}{%hz@Z{^n6E_NjS$rH_r8)N`b6<x&Za6HrZz~~qk<QH z(n4YM%VizXU=1{40v%o7vxqpFDRwwg<+mk7z;TX(34`c24H$EZm2?O#@Ow#RGFI$$ z3ci|B{DcLM*2ZhZL|rzoXS+@^C)mqAn<JQp%waol{rNQrz{;3n)#0WKfgpJ&4=@0j z5*-&6C3RJB5gtQwR2%h}7+@C#6rcg|27;8w0iU6{MBJjN<0|1G96H1gQ21Dph;T00 z#x=!s;i>9*nhyF-u`;iTIm{d?K$lu*>^(?_h`)>uZ+Ig2cF7Tf&{W|+c`vu_E<jdx zI%G4mY#=TFR#w`yUv7E=Oonvae9pg*`96CFt6juagTulV#}%&5p@!;Z1!2R1gY|R7 z$+7~oGN5oy2gfAN>}~=KXbcxa0trKrvlPMe5h_oQRhxE`)bjLaiV(}UdGM7IrP;I@ ze6c3*1vb{WmgfNjW!UL^KJ5b5ghH^J$b@ZrWa1_}+;Q5TQuQ-+wWbXU{F!m23}1OW z9cR=@5)#v-tfDn_hc$Yu%h&k%oNDC6Pef-+A>op-cBB$E&j~{Wxsa#Z)cb)cTE>aV z;K-z3dUmc(emAC#Fu!jrsB_DO4N^8`M6w}cXue7Ktdk0Q??a`^F7JYC4o)J8qE<b_ z77v8a#Mdpl0ZAr!ZzBlMlHk8F5F1N4{PqeaoR<V>9+!E1%$@yIPa`!tHhwqY=p+23 zfeLYZ5_9$vrtF5Aq6G#k0_0Kbr)?`XQ0pM6LQICwkJLB`z-Zzb(sOC8am12NK|r<_ zNf}pc;7G#0dZ~*nd|eSLN#s;2^$^DXP(J4yX)s;KA~MMI?ZI;{ko6EB5>hbK@-S=G zTY?$N6q1`_E?HCfD%(FHkPKjuNvTA@+ckw@Zfyb15&A{z#k_>>6eke9p3E*aUXqHe z?XDv6moEj65;Yr(@h1J9@AU>Vc)-iDt|7C4lz4<HN12XL?x{Ztt>qi0=+er)_3PP< zVu=UGlyG$PoZ|%|;j3Dm6df?2v-=hx94dK-8r#5%5>^Hkz?vEk7XgXB>jNi?0_Lq? zB0xHWzd~#NJlcl4+$$yZ%CAC7K#>=qDutnm9m+|Xx6SdfVFZk!&Xy@@1p*N=4x*Dp zfyZcmEv(IUG5IiEr_F_5pJ-YI`hpK2Q%w<pN5C2a`vc}SaO<tY_W7|vgPq(!UE{IF za7Xx>A2+<*QoP`3h0gV081$RcO$#fyz0aftp$M*@LB+UEEX?~RXb~S?E%(7h+N1^* z>Ex<x4Q%9bd^$fCG4^_3*LCZX&jIo?z+`%*+mBN@5W`p*Di`0T=HcE0H8HGE^GQ{x zX3R~*uDy0M9Ips9l~EL)Ow3qtec)HVI1zj<i}2veLFF64<|h*Y-Cj;SXLIIube8<b zZ7(WZ))|!aEce)kcd7`|#IX)v>+O8w*iTm`9vh1Rxn#LarCzAHQS5sz$v1&1kmT|h z&5VumZJB;KP6iT9mX;ANc%ca&7mT)LRD0W?Hy+Z_4UD39d4wa8v8WLjz&E%+v>106 zOB7{1-owMQm;8KF$>Fk>JDSu*>M1-z+A3(B1_C+L&_&WnDqhgR^=z#ey}mQRua;Iq zFy5?XfFKu97^K{|q4#su&dO0}z)c?i0(@XNjdnenQy$mwV!?hLg}C1E$0NlUffAZF z_%;_p^Zs|bhOZ-rPlUf>p1wS>>PQWwD#(&ZXV1p{e60_ooSR1C@hJqaW7s)uICM@W z;%88&6wY)j1%sZ7ntuJF`BplDVYoGSeMIrPtvtWq<&`)TTp;{4(kqL#aNHgzhZ=w4 z^a;u|Af}h1p;QS<vNhFgPbobfh9o@Tc~0eiyc+!M`ZF1X{^{<`oYP>cIUfDodLXRc z!+vgTwx%oO&Y}6P0Oay;HYKeu5!ehwK=k{gmF2*J7AeS?&LAryV>SyGrph<|>9E*> zZAY#Hy2F9colbU2s(|9;FVO`#b+_gZ+)x1IJ-yu3;eGg^^hiG{B-5)EeDIgc-=WmG z?)ZeMj@uD}iepYt1R@^Ms7U<$pTxGmuM!>Li_?>u6quojkcyIuQbO2D5UHLKO<(s6 zUxyB#gf7iK+d#*S3TB(l@49-?jvIe012tfuHYDkWY5}Rj^d>|Z#S>_RPbm_iXCcJ7 zA#7wg8`yuYzRG##`5dwx#~wxv*rgYq<@CJFBE&>@1Hj;V^2R5mmLB={^?K_Ojtq*l zxC)ZIr#3#0bd;o(6tX^|<~T*aWmmL6;9@~Z!)V_-@f&`(!X13j64qejpHXSt&doUN z7)cKjP3Q3T{O}ElA6AM><ZvoO112+^sy3`s916pM9=T*FA}{{d>zrpQW_b33hfnX@ zmQ5E-?ujdMf|3E_o`4-fkSb(>V&XX=VCT+L{TkC4NJP0)0#TekVpcka8Q&}TWseL9 zd&{Z|caZ{zKuW9jVqJu;rXJu{S)e2aR$vnXK7MtlXChYskKqR1B!b1&b~j6qJsh!g z5_)YhvjMXiNN&M%QuBISy-6s?a<f2F4Ham<BF35!2gVc4so_laLy;;Ge)o~@k`Ea* z3rL7+N`o`rRX-+nsifl5WKElaXIKwE!kKp;rT|4;uUBLW-;+@GMf_F=+jdU*3+WvO zdAPG-pux)q2bgUcN7F4$UgOso%Nsf5045KZI9|RhgM1x^sN$$N-WyEg@o}&yKyIZ- z)~E8zp5Xf}FpIn4!Llz6K1ol;YFf!%&_@Hz&+70Xy1N%>IvaBRIW5kZrU@Jqg~4k| z4`QNf6-SObWi>&FE)kU2EGRr#b3UdwMaN^+I>n!Pav>77bY!hVg}fgLH3Jp4c(mb9 zP6pZPYhs62y#2<l(lu+x-xr1hDO<U}_=3NdKE1-_l^Gd-Bn@KOy+}6D2xxayUA4SF zTVMcW4#S=O5LT%^jJ#InqJCL;yV8F{p&7yEvm0_)wG!E9OO*(Xy3DzcRHkpiPP7#( z{g7y*Tp?<l?vRZXdw}8pvbK4-`-H;cTEewUA`3jbs1zp8<l&D450EGuJ&u~}@?@zd zXGv!{sgN7;;YS<9N~xQBgr3M1ElHw=KF;`37WC^O5S!W-b!{6ZEC(i+*Reo+M$>XE z(GRvQ`mRbixmf!1&_^;vMv_2U_HE_C0^cBQ%i?xbARb9-Vq}92RJnKw=N3QFw+kp* zz&aFN$l4lo8I<cLV$V)bB6Gj)rh*TV-y=$|=PK-k)(8ZP3)2tLQnjMd$QyO}xt|9W zr!I!mXzE6Cs*zmaL#bqY&1kmz0p1r@qGYfE0<br57qwr424#P{z5m7^Dn*~lcxJjD z?R+355K}HF?B{YqKvN_>g493@mNu*cUF5Fo&hBnt0e8bjUgrll@h+nY8l8$8=0U#~ z`?n|m;1Yv1x6`Nh4euw!vIQn!fN~^M_>&!iSTn)hnq7JB+Rq7^I#v|cnBAVu*E{p) z@tn7y*jSR1ikU^=L4=z+EQXBE^`Sr>EdZ76nKZ;Pl??W9+Us6cH9UAA5G-7{-S}*x z{>KHZ^l7C4^{>YM8{>hW_F5}LtaqXVLBd|7<n1sQiNCsq%~55S#cx(!w2ZPY1i@7K z3$6}huh+fJ_}>sE76mum8Kg{_P*VT{1)t^3<@idtKtFn7G=#J0f$%>t<p#mMXmdr4 z6@)gFbf~~$>bIW?b}!L0sb}!>q5`etta+mE`mtyEAP0L!f#OBjCMNb3MSJTCN#aFr zuab&qOq25gm_66sl8RF{{IF$Mom$>1nt?mUN@@*@vt9&I{CP^KUqe!LY87Wrqi<Vv zz6pbgq>-X>aE8%=2bhJS7DVk>5KS*39C%i>p`9Y?zxm11?rxr3@4|>fk^J^e9D{W8 z%7<e>MYF0baqahO-+g@zyMIFJe%eQ}zmKfLGw+y>wCygqkLiBipME&ef5mdjrtt=w zLiXg$Y|OI{A=Bhu?Et6g`iewiThhH%`<1AZ*i;yGoC3^pG+a5B@kji<X+J27?_`>N z$Z2mE^Q;SJ%alDp^cY76-EGI7bv3Ug7kpT19>rXadv3LC418eU|4rO-^2HH4gUtA2 z06Y`q8ga0=Ls9FR(A_EA36lu%S<GSyAhbv4?5b1^%(Q|0?pKSeweJ`rNY12kUp-GJ zSND<+-|xx7BP(*lCc0`z$1~kl#YZfk-C28E9)XGTa8qa&0E<ocs7^wI>+v;=5X@l0 zzt%2(=mS^N4;`>%BkSogc<eBBa&THhlc$Y#2$#0gfx=1#8mKOcTx=I}E>;4elOLa` zne&7jm)Y-ytSfi<6$po|Dd^3h?bnuNS#6Bi2u}3mwj~KuYvKtAX2?Pc)~K}XVOAge zc6UE?y{Z3sKwj-%3a1NYMd{<asl+uD8;e3nqIe3l0XnE0&N?oJshoXgH#lZfAY`7; z&qPPbgVsg9(1}5Xb0hJgl1ErbRldWe<365OSw4(}6voNn{IqpM#^bG+Pn0d61{z3o zrZ9x5SG$~*W8H%4J&AGrGR3BI4a?$Ypu$;W(;rn?h3`CFmH`&08_vjgM}#TbbPp^o z9{CLyGQl&SBmv7-(esV8@c4;fmUu|J%n%*_Bs;11{drAdP@S3u?IEzC%7cg~R%}Kg z^d<oAiEYv_T`eSrw==%~2ERu=d5jG)TKD&3fQ^YX-WQU<6sDf@M%!K9XJy$0=-TC? z<KqLavZ&PG4C8jZF(0y|z~Y=$^ZD;X3&u=A-4cur5#SPdNm!w_7|pIKAH6!WJ&0gh zSnTdI<oDWyHG3EoIGe_D(VyxNSn3^EhC&?3bC*{1;pT@(It$!#mGNLcl0H1}%m6)z z71yy!)?%{ok~%Sk@R6xmYpTMp_8KulsCq2GtjxS83s|THd8C;qc`X~T;~hDXgJN|+ zxH6GsKd@pu5TSqrTvrL%6p7D4ZQ8Obj>J5S8D_?+%blw9U#$qzc)Li@p>FLg{NVv! z5-;C**rsK|zi0E$_AP(<e*kbmkH3S-9AS-CgVymB62M4_Y8cEj3EFHBv_L~`CdPph zBg9fr$_6Sn7UfzYr9wq;cER%yybeX{IzZD=NTsnEyPO*b4cDs~A{xxefy)16`6B?w zr~oF(%BA9*u_y5-2~4@RnHt-RoLQNUON?ifmT}ly!J)q7Er?vio&0MvlVfnzw+=Vl zs;wQz)J#-y0yw*(LU5~wwFs#JuS7UbBLV4QQ@GZ|slXjK+)df3Rwn{^Z{{arj(`%A zsYZ!K#-tZV!mB8%3W`5W1zgTauy<hJZeRlTT2RXb*7_-Uk${P8tVDL<>;W3<OB_!i z=QL-k?l>7VKc^oHaFmdgw&TWOhz%|AAR;IvW45dWTXGS#EKV_Yl+mXfYfsR9hHNFS z4n&+;Ey{LUG?|E<-WvPU-iMQj1pu!If;>)Xu?1PkLR?CTy}DopJP2pGvw`}LetoiV zBHxZR_9P@SvcKwrLSPP7M%BS-FW&@NLW!w>>xQlF9t129*iJ~p*$wqSoBBwYO~=k9 z9GwY_>cK^tkMZ)-4p!;M5xP`YWvNKDjD<yMvDye~k=?p4=V;o$|LO8+uCp=;B`^Zt zB2_=Pz56~%x2?deYJ|~tW0d=WEmRjDA<z(oITd&baGo7EFlrY=(Zv!(SHj2Zu&?F8 z_BcBp&lk3B!~Ojo?{DwMBVb0&B`l31(0<ZD;Ynz0<_-BFh4b`*iphW~Og1&(9V!ig zqSj&~BLA2s9j93C7cyc=1Of5v9~A&8&#})ZA%|5eD(2gZB3tatyG&W{rhjNb1`rao zkOC9Ip>V|&Lrj_2cnxV}Xg#P-cH+1c{`JI}i#%u0>OmkrPMqLFP6Xlr9Cb1Q7iGj$ zT@Z_>Msd=AU%)F}b}S|bU{n!F2z0P3BOrKiGU>0+41xGK#!3Ze-wIT?X5O};dH_JF z02QZzoA%%HfXjZ3++%^X5H>Pl&035&rIqbmCH+GTe1)bG(mxPXjsAC8${Ol96+{AJ z0m~fEsRw+?A|HwIx+oBhXX}@jf&@pSW$EaH@=dyK>LJF;sR9qAzLYvZYiY)vcy$Y$ zl}*5fnvU_aD&y>o=y=ctM|<J<dV!d6d%o~-f8w9cUu@bJ9RI7hVviRc<PMn>RMJ^? zG0m|N!~0F&3Ou`WnY~0WuAoZ95MlJ*U=wlMgzC<_hl77p6oc0ODOiUIW!9*Xd}2T} z6=y~U3@|YG-T?qA0WJdCyb56y)Z&2aV7N`O2681N_5i@Kji|=H6Bh;{UwlDP3#6$9 zumI5Q;05y!nU|n*REeZy%wlLd^}&@Khci=Ed-sFZomXJEgpE3iW$qBw@Jk`079bNJ zU|?0W?#XBPW9T@zXy#UTY}*aI?EqEZr!a-xSL=A5wwpdivSee;N{p=()M}z1Dpmp1 zVgW#c)Wf!6I@bFyxCwF~3;cqnc*n@&F7;NxU=j%HAdh9KHYBPzId=eJI}7n{3}h=~ zAB2rljn0CWM0A=o3x1-@Gh}bKiYpJ*T3lmcp7G;oIAwy+>X?9yhSe0kwl{q50@V|W z?p2=&-8OmRI2sBQe)r24)Ip#SE1Nk*w_E~^r50T`fRt7d3k1o+YwzwQHw$5RjzJ-| z87Y}2Tx1qaq76)0nMEf>IaLViI&4gn`Z`}erNdzlb}JQRfG8fV;dQ(wC@9u0fQyfF zX4&oJcw3!K2s3%)9y4<!f=t?)8<{oD{WS}5rs_gGfZ$4QRa1zyjVoh>AyK0V6C+r+ zI2~k+p5I#$6!xmbF$yxKS#N^lY?J2@7tWuBvTYPCy>ZWCB}QMZ+m5<>04N1r84W<| z#{GXBs}fLUTfp8+!B$||p8#ncy%1{Qq01P+qP2E?2*_YzlO}FN+65qDTva2;Z#Pt* zyZ`_o07*naR3A|>oQmd{u#=26-cPb~mpy|a3+^=dTFO`@KDf=6@*1cTufMR1sMd<D zZpOQbxu^)b0<8%)CFcwHIg|z>;I{90yT9Yv1kcm2g!U0-cCOfNH{9Ot*l#yfDg^E8 z5>DpeV{pECmZf7q*-EmW4?{>zX;xVUn!3JuXOz16->>LBdTfupObLxnW4x<|XBrC* z5SuTON)D{VhN4Cp=u*_@aiX;b1=#~H6-pbR>;w-xR~$8OE`>FZ8)eS=0}CJ<ixprl zNd-YDz|K&l^~y=fh#<i>T$p`{;Fy@m%gzDNm){=}?4!Ey&(p&rflY#|TgBB{$H(J^ zQ%o$RxZeVN49vBLoXXN_4XIHN%Eau%u^XsvP%0k01+OM}yaca9T%(Xt*ea>Y1$$Ar zVm6?H2D|)Q_$q`H7;%VOC$RGh0;UyFn&9xNA0ID>2UbL+bF>^(XkDjI1LTWrPi1I7 zP>k9<n=27&C}|fN?Uf}!3owQ4=d8ur<?7x6r52Q0Etxd`d%a=fk_c9I=4)l#?>GGV zD}m~c-yTo=c>ciad;k#a#kMowzI?%#FJFxKN7W9idOt-IGx1i5J*!hfr|mMSBjqvT zV9LuT7z;uw!I?I>q)m9N+A8~1m(}!Q04zye7zr6CtkOr5xDuOAE+nG1qaYc#@o7Li z8;<h;*NR)Yq3$;*Z75Xj<#}Y6Adf5pW0zl|1IQY*%lPFANikg+?9!}PFt+O`mD3oE zzffwL)i*8MjCs2(FaSx<sQ@TqWp(jZiAx77qm${wy_`vQ!YYI?xgcWf`;Mv#Qrmds zAyb0UlN&S6x#pW~0-{t17#+Z=9UrfTk7q|~CT?llY$iQcnXwo40N`t@(jdjZ51wo- zQ(ZFkC7@k+V6<Q-LzHFkOE9J}E6*a{jZY<HwtvuzB8`iea4AWaoyXVWG*JN&N?{an zY(v@9q%h^*LprY3wBPR%WTjTa*J|;$sCny_s)s_rzCpzuH)=(>Z`hw39>*O`8umiC z6~-@L-to(qcie9~D&OwrfYWu(cw_xAqG(B%KO~7gvh@LkP?9=wj9B`h=W6dm0HjMB z#vBq%ztOXI8!&OOaS}-e>LW|B$y!2%=lDoRKSj>$34k5y!k?|9pAGFiAziTFcf7s5 z<L&JoTyD7ScT~0))TJ4}`t>qKmvpa+bS33r0y?>E8rq0n6-=X)JYJe>xw*QCS#6L) zf||WZMW%^D=J<yUcuzJ78-VHoy!g1AY_N=W9C$unIM0UDk@uj1k3KX;#>MJGUf6Lu zFrgvpQ7uVyA~Y2o{lvFN!^fk!%s4r?2W+gUOxT#QyK-390`)+I<OdN%oUK&!+HoAm z;0&x}>M80P%0ZMQ#`Vf2N77$(X|_d*9+?$r6^}9Mss|(w23`em0%nKdhwpcwL~<k7 z9mtx4WjGJT=c&xtiZ2-T4yqMQHj1r<EpRX(a^h%$8wzM+Z1;-$c|+?bHUf4g{QC6` zU*65(sosD6J>)!W<4mGl6qF>^IdsV-Q5b&`X^H2ATHJg<djofy_iHzhZH&BVF8hwG z7p;dx9Uq=8iULJ}j9--OWnyWAXpX0tf+{*!H6dpD(a!_Y8<;D8`T7g~@cTdDm#@EI zzrExB_J&%j?KQL$uj7Ts#|Ivd2hP(+EGp|lM_dSm40``mX2uHc=+%=<bm%57N;L2( zp8$;kCP~!Vbot-_lq#SNsvX=FMH(6bCmBND3D^QaEd-frC1_poINJnYhbMt)0|t`~ zE&*>^k30!bLqW;M!CujH?|V<}c$^2mf1G%{JdirRP)Sh<*qE>t=dH7mjf8CiAYIU! zQLcl{Mq^x7>|<y}vh||pmxr1<CLL+4N8+4>ylQ@>1@oBMGp8(FqAKz4$xT9XyFnum zSb~xSC>NJP8&+RKaK=7nW5&)V38vCVa;c@@wr{AVpo!o(`k=PgYM-NQ3}C|s;BBk; z<^2tBx4Qw2|NPH?8iW*dn@OWLm>7VOQ%uXxGfVG-SP>vsjA)n=iK3evQ9B#Z4#;^z z8XGblWEq~IjEZRlXzxi<+<y>``LLprqBv!8_Po3hTPRltl!OwavGX9HqNw|h-~H~N z@E`y5NBrUUf583z75n{e;};jMXszM(eB$}|!1MXUc^pGzaTsoRRuHk);%ui2L&`XW z#y+%CPgT**1HHFVU3IbQ#Ae4meO_9Eg8DY3WU>$W1ymO<se~#8r61tdZ~~B0AzaW( zv1x$sk~al<fT}U79Myz@tGyfNV=CWp7GHESj0Xl+4elT`0ID6Ye&WaDh3}6O&zH%o zM;Tp6N2^qs9HV522Y^O2h%8eKliU@_E?Xf+%dDnP5@(cj`=_VEx>1%#skDsi?HyX? zF2fOMa_UR8C0+^S&CR@#H0bYx)*S5^FBQNdLh3%0q<%LYb7E&=noK!EkJIowwy8#p zKR2@KU?;-czTy3TvzD$F)ZhK`70yC5B;136A=KTC2xI^*BHgshqz@TmCUQ==P6A78 zJ~@^6?9Ix{qfO=3&xUT37VEQiVcX8zilRC>q{hs6%=fWmql_WsrR5;F4EimAtycX0 z*I)6wUw_5d_b=G*Z-!piGQ>Aj74PrwXy-3Dj|1&A@K9WEV+0xIfiLuC8(F<~(}=5+ z+6e-rcbw;m)=pal5q0y9un3#n@%;PEv5VH5vl=nz*yK|fhJi}d1?UaML8eB)OFCX| zbSl1QaUAB!7fi)0{t^AJOC1hL{V}|sE*eH9uMFA>8Wc^8^dkTs#|wY`?S*eYPMobz z>8uzhv-%>IPXvkyvdSP&MbcqUJQxXxe}W4QigREfJ|<J2vS>1`iD^s{P+MGv=5(W@ z)&i{xqRn?J=AuvpgIM9c>i5go2<(GaZsx64!iRBdaW(BMCl}SLwl?vo2%zCjFt!yL zq|K_0YR*)9VQdWSwPJUrE)b!<-?zzc%0`)jp)exQ^zZ~-jZ9<m#2KxhwqWX;cR}3@ z0f+PK&Sg$um6K}*-LuE~ZAXWKH`A5dHeXdPJfz3-C}n_Zgw*d%GEVRnD3xP{*&?Fr z*2O3eJv7%s<gtJ@8tyPH9pbTMk+}Y0qc$90OL6C=sUP3Pf+D<UZ*D}ISAeGj&@}Qm z&(l5PWSCcEm0AnRa|5!df>qFt1CQ4SzJGkj$Kx^l4_>X~)tiHmF8mRGg$mR~R$J#B z{G!A{1W>gZUW4M*UfBA9u7n@Y7yk9{2R@#st*R=9=7K3m`E+uO{KO112x+BT$2RET z{^b#F){~62V_ij7$0lG{u8j++1IwZ$UJ~Fc!5Drbb#6(J6V-rAo3JW9n+wos0slM) zOOL{9u-KxVO<E>lY}LFB1K*zRqNbnAaW2PSs2h&5Z;bn1aofzdvNDZnimIa4y2@>Z zGb~&-O9I3jm&`4ddz<=pF{<k`!XlY_5XCy9ZAeMi(L;yTk(KRsk<dGOI|pM=eFSCf zD7%1MsxMsxdp3}7`lRNPrITw!=~2cR`b^IIr!Ka+$gU3%vR^%Ia}8kfYCWXGERt&W zM&Kn#6rK#c*1V$X%~wbJ&?eyV_2<T6sMdy#Z7hgnY(`_-FbSIU^ThG-fwzxu*uUMt zfB!dp|M-E{1c!*zpC{$oTz|wl5oJiiO$8`gb_qh$pPW6_Rq;HZ*!zJd1>YYH-+tKk zpTwhMnrqn3%ePUO$;u7kSzqE>Gz^mm<!8m;Oc0&e$}Co<xJg)ocYpTN=$4Wgt|uHR z(=A9RuY#FTlFVA{Uc^~xt>N`LaGWnR=U4<FTx+q!wi*AwFeh+3S&K<>`XQdQcn=g~ z>By<b6wk9V_O0Mn%OcF{OX;YTMIRE^SwpZxX<dv^2C0Clc&cR#_fJf6%Y52?K&riE zi@GvcP`MOhrxELEsI<DUq_AnraV!-j@Jd3<KNFZR!Kjd^lF?%sXk<>Tz7fb){ltVI zrX1OoM`E2g+drl35^BM5*-K&Dx*FE$?usN9)K)zJKcL>zO-Cvn!Epim>gG(dVj2uE z-nqJZ?r5)kw>b{s@qFU-;|ut9LnFe+d7>X5Zd)~d9VPGx@40o%-ebmXbXQ9DYs3U9 z02MPFZEBm8XYV*f@%`h($E#bQVOLFJyXahiS_oTVY?V-om$&Ndfo@n7Wkn_=b)N_h zpP2hT@(sB)(4r+7s!fsrK9N)r$ebit6)D5<C$#_KefLt#?AHAQ)N!2Fnq~jvz<HjK z;Eb@1`?jr`#zw7H`Q*TgDL)=9Z){&`ayb@PrM6`)2NJtYKdS!<cdEfu_4i$u&16cV z625Ml_v{DPo_K06Nh~wiN+R56ZL#|f?zYc1QDy)r%l^C1U5jlIlGV=WWKvU+kxj6} zD6Zsm+^a8?_)<)EeHoU^!MH<O`}B+2d-p9n`K&yi4x3&y{MkJa1H9?p$CV-6kt)<o zCUXZDJ9sjszlVd4_pp>Ih*H2@eGcyGwCZybV$-lUCXGG&Qov=y7F81jZ?7k|zx^9N z<hzSyBmh_D1OT)u?n0-&AClOrB>=H?Wm1P|ZKeA868!ja;y62+_Ql(P*e`!2?3J(= zzi6-#rN$b!%HjsB!_KYGAi5-ii&*5~0{P-maJVVRW0p0eYK=rCp3T@P&Rxp1Yxm#d zQoy}~y+0>!dAs90arsrnE79;6w9Ib;JjKfMksK0ONHorKN%Q}}yu`O^i5Ohe)`YhL z<)q@rx;#HiEQ&hjq2V2z)+H(JPbWI`SP>m=o8;_3a`~oQ75j#mWG^=M1sn0e5=uQm ze5pL_w7{kqs8oFWkDY%lX>2H;t-dLf!RDwA!y(m`YeW7gikM~!s^~m24J{<7G`Dve z@%UP4E<RcsPQ)LbeY7H5oJR>C&(c?HIcEKYPSLs)Xt%xY&TTlr*p@Q^RDrSqTLo=K zxT5f`<BGEFDBBHn+fa$j`irB#?H8w;WPBToG9{IsltY8K7fu;^d#Z%i6vwOM@e0#b zTVP`6m=&k}Zk4fbgpD1M4wYmFqA`}y%uk{(3Qtq)^pi#`T`+#Hq+(|z@0Zkz%aABQ zeIQ_CG9zj76BPhCRhM17Gi>HV4M=@$yw-gAH^;P!Df`mg#2gD<sTmkaLML7kmTn+R zutiPNqI6RbR`rTzuqUlTj-*$o<<Tb{-Z93w_(M!|RaXmi9l8Lz7<9}&6+>{-`ah$n zDoriFu#YybyH5J%5DlAB&O?fvF&%OpD56BHnI<C`mdP;#wyiBYtoC=!B0Q!ZnzZCV z>sTj19+D(Mv5X?=;v2YvpM$89L{(@wfmpCqKdDR#WwjjzHq;!5b<@b$)}kqIplt{3 z)r5R%1@_GY&D=sOYP0v-wxP8XucI%TfYCn9(lJChr;gQP7^d(=BHOZq7W8JoZ)?f5 z#~%>0q87!rF>aex0F`ApADhvLRRFOiIWY=f>{=L*t4YkKmVhV`hO(@^DK?qq`Ot)S zIXd~|NgHRVb+h<pCf_t|)0Nlpt+@EM;8VuF|K_rLwZ!Cr7WLuSD%F_GgxN>yBXLGH z?^(-%j9gyX)|;hwbUJKA>f_1aIuI09rz>c(U(5yTn*AvGTxs-4vX<bh#j*~oZR6sb zr4eXxu5uF#TJ`W$(pbj1-!9(J{lyHnonPRqtZ<AfC&6f{v;r29DR~GOcGiEcGf(tc ze{gY2UU%nZ=+Nt8-6ak{MW1ViqLbMdyXu<Pdr1tC^}idfMkvUR@u3ia6KDtMsG!2w zZW~y-@f3PPKMu%wfJLzp<GyV;&JC~QOy%+v#2kt|c|AFMhQ)ABjIaYGRNlZSkOuVA z0#orriP%Rfz+MUW&9i?o%5qFQp#7rfH$lA)0fz%`Sj}BX+DIFu3rZg?)=>WSr5{@l zOp0r?EX3uxd@%p4XfzWKDH5IAe125Ms4h1AYBjsOpoa5OP^D4z5SL{rI=YyHb1)0x z+7;Xdg?+J3x&;9Ld@^LlPs=NLEgC?TAXg*@*dQ@z+Ws3OhXrl(k)31?zl?3Fp{pl4 zAw~z3cql!~9A^!K1{svrkd+P;Lc*kz=lDpMwN<^S|E3k5!~qbo<%L=|JHErHApwlZ z9FCIn3;ksOe9<FJW*{+EqrvtwIq=AYgXrT5Mx*)i=PS#?&Fsq~IL>*tk5>gyG(b)> z`D6m?j;<%T6mz0|Jt4;dNXPC*A4e&8m4YUH3RR{6fD3k_m^_SF2UE8d=TfolHxO5d zkSR!!fl-FBT87%a_us06f8^32T@t|8A>Fm@MW9lglORi}EQ?9X8m=@OjS!aiXaQFz zE>n{vSt)C9&p<5CiOz7u_T*LqG#oSi`LT8Q_|bw-QKEIv%TK<Tq`uOvo<x0_?QE#W zX=A@aQ(po`tRf{dVD}(EYQnu^5ez`>=ghL1yR3`*W=5{q(dj5lVue+b=B<wYRfjr_ zFB%bnx(|JmndR{5qd-|DX$E>w0oytxDYS;Pc;eGz&cQ#a>ZV1Y0C>PAbDpicvkGi% zfsqSAUiJNFdy-vZu}XnM(>z(y;*Ko4;H$bR7B2*(Nz7CpUIWnlx&fMDY*!L>6c#|M zm4xSkejK1~2B4d&?Fmrqf20-S#Q(7O5e6gOJ{H}@Hho;ojI!;h_dB?5Xr0kqFRvD$ z`iOQbz`hao%D7eb?5~4LJ%G{Hd~4I~wqq^as{#Ss=u#KEv#VqBe79j)4^wj<rV2bh z)^t8;Zcr}nKECA_mpiQk7vDRG3tvmQC<w=-D3-#q??9RgNo?K9R1gXZd12T2P;(G! zCu(QxTtF_=O2Y&fLmE%JZRm0VAZ`-Egxb$OFVWzZ&kQu?qLj!K-g}P29DC<O9}OlT z5>tf*p)s@?QM3iP)RV=N%24o`w$H{~Yc3(CBWu#MivF4EqUODAFQ?RmDGIT<)(*Aa zc}R$JP~c@T<5~^SLegFR00`^Go~V4bs=g@rq*S%YbN<A;$_gruJ$VPp#OSxfzm5sg zi|gOnrRt|Gi?f)lcj<!S+2h)V%@Ta<KzsJe=(>THR0_D>Q1&~BH%L=-rJ?v!-8FeD zz+UX~?;ZeHCE2yxNVXjf$6>m5GK@iE{eLP(OP*p}HvNLOoz;e2(|HKG5QRu=w432) zum=0Fj8qcqFRKNYY13^BI%N{k1|iM=9h8dJ#8tpdjCuACw^t9AY<IqfNH=^<WwLR{ zIn?3TF?Ju^&=g9j@@i|@isbh;%nSTm_4#`u;Z7d7s-eJ9ZZWUKBK2K==}<I?3xG@S zkk&_u7m+=7oelX^D4LCxe5St$hNj*Ob3Z6en_QOLM`#4=RSOEZ)M*VBItRn}Gi{Xd zobfM)kICeNQifhD03Bn*TnPjj$}+Ag{7g%(Y}Ii^Bc{P4T%<EZI@CQ2q)kFf^oEe) z{)7I^(*~jT4um$LKmSF!Hpo7M+(d&|V$TLpDiGd4We4#Np@JT)46<dWSdHF_wE*|R zxRrv<lsJ5v;hc=K;d~xAU(L-!$xK<Cn-GpbqWXF4m;Nc<B3&7Qp$<HYEKO?!F>X#v zKxxl^lDp=zQOU$FXOD(HASVNmL}vWdNh0waGzYP?tD!kTj9$O5Sl3uWq9If>cqKZg z6;)ox;tCv0CM<n@G9vK(c)4n)#>Uv7zw*prQQ@$HicafsQuOn*#T;KkBA@pL*~gY^ zI?ire-&z>78^8p$ODQ}baLgb>GJ7iOhP!Wdr<dTk(-^6QR$c@FBqInayzF~Z;+rph zCDXD9qF61lhMkopfl{>{0_i^e7~b<qax1M|tBUCy@Km=6LJKF^ED<cYM<yL*7hEGb zd9UpP6+`xoqvG*C*7w!9urG7Zv8VNyn`M3!bRjhH8TQ!xV-&U);9eN-rQpT|g+16S zS=Dd~&R4_p`NHu!(VI!N>99qovFRyGqjz;y(u+gT^y1QF)ioTCL(d{A;z0zO?|)=< zniV0Z<T0{+{+LmLCiY~iDrO}}i`HUD<48DMgBK1(EK@;ayr+|Ug9|V(zFJB=JT5EF zmi+#vtBgu0@dRL{X<1}~FIm5C$Y*=GH@x0M%A1@nEHeP;aY6^k6C(~y(Ou9_<Eo$P zN;T5KeH$t@T+9H2+>jAjI5asP&xMWR$f}{VpeZ#q?3Ra!XY3u6LCq!P=$q7P7aqVI zUQX#}xX7txX%zucPpUp{isJft*Hv{~l##M2=(0IR*_K*IA1}R+Ra7`aocZeQ!f+f$ z7;&&mu8!uYY!W7mI~O@QMNB0+3_n9PsT9V}z|B`&3o#htn)iy{1nt%FdYpKCylj6& zeAbXQD<v7sPBPFxatU6AWQP_-NPo%H|C{~^G|q5#2g-)88JrpJz?x*#E;|AXhBTC+ zlDR2mQIl1G6hlDAgA=cI=cDxX>5wK6JIl>yZbYRn6U50vYMK{n#6>+ML4-P<zUD<7 z1o1})Rdo828?Zrc+DWWK6&FGGl=;J`v+KIM3_ry**^6{k=@8j1la&f86{XH~)?8ER z@~$j&vPbcuw39A9CmuehmLOm5tj?3yPuGtLT6L1EB3fos>=|8VjGYd`i|VF+E*Gax zZ_-o9B$$g>sESoVu6C>!+HaHQJ`Gq@gt^RMn141b+21NGWeWhkn^l!@0E`S13s@T| zc6YX|G*x{Atv-*A<Js_f9C$rW)3qOL$Mw0Z;^+U<Pp%%&q!EBrNp#CgNeFbZKzU4q z#7#s)eDva}V2JAq6b~h$Wie%z=u6*-&mWtDJ%NW1ZpiYJ3xxz2Ijb56YLiIMqH0Y# zWaw&kNBQ}KoIfDRMA-S_GauH|>@?623>`lRO>RM~?s6=Agye_Pu*Ftq5%%zs?}|gZ z&A>&_R8XC|D@8#2RLxm=w@7^axxbIZYhU~NRQ59^HQBU>{u3bnrvP2zOymqsxk_=b zytqUPEEZwe#ACWIuTIR@Ge24dx_tkbOHpPv;ag-PF4Zn*E>tmE!2yaoA0Tbi4T-H` zQ&-H_K@?|icpVL|5daPp7F1H~0B*4T^y(RGEaaSm^VRWso_Ia1|L@&^#Ez6DC9@}K z;jCPC6sKs3X2K|qaz8Tv+`OFPZ#{WU#KEU<w;o0<7?t9f1T2^TvY(LJ08KiDnN9k0 z{mWE+k*!VF%WjK^n8qiQlkD_Dib&W30af&JUuc?5CZUumWt|Q_4`&|r3}(nA(<){e zSW6sQCIOc|C9;!Fn^g?mWvvuV6^E!DPPf%Y7Zfior3<jTgK;S+GM##mR)Z0vklxXx zyC6{+Gu!O(M?d>@L2UFV0dxHQ_4fZHQ_&@}U!0K=Rd{GIW|%99p6Vw<(NtQ7iRiFA z=c!6l0#KqcN^2r$WE_6UHhH|ZREo*Dnm7rea={73(M~*H2Wm0?e{ToS4{)_n-%g5M z2^+js6oItUWZI4s$Lql3@x=4-LO;!Vs|g$a!zt4NX(@(ATcUckQ1orjE|{weUiRzf zUwME;KAH}^M<KIZ_bgm|*{1Rw`wa$V_9@73pH>UlY;C>-@k@R#4#w7E5@B1Y4>@On zDDb0chAN(6lxV1Ss|rZS0zmfVTm0tIQ(Wbbvxdj2N5{!XA+;Vu4_6gnmkH+(1|4IL zxm744cKKCt^p4Ym%b<R0ALV@MmchDobS+@zfg_O4{rqSr#3`S#9Y{>Tr-?89>{@-E zGhc{7pZEa_FY@ARC`bkTsyI7$Si&@d5_1ioya2NYHo3%htcTJ7rBa2-)61}vNscwb z@L?1;sEA!%N*kEt5=DUWgI}1@RPcH|@%_gSFl~?qNIOvaVVnat-a%yo^$P6<UY)N4 z=ktlz#}hxkeaFYQA2=RQTagwo(UbaA$hA`fYjLqTTRr{AMrPp`;L6qACr^^hQ$B$R z;xl>7OGM13QdKBTM6hmo`p8t1bv<(^D(euFA)ZN>REL!OQrV29FauIeKhdfH8p+sg z*?83GSS?=D#;*Tvo#hcFSuH2N#N}t5Xm|8rnT$+iBP8aj&7ZXLDcLna$hG}+f?i{V zpDxwPT)c=(7XhU^W6*>ndSZiV>Wot*;>4KNyNh|i<($`5!lepGGT;e``G+u5M0(10 zQ5R||)*YJpb6o>ULZXKu%cZr*nPkS$lKcW>x+x{mmn9G}LrWPd&$@g8cD#gBKbv3s zbZTa{)n{o9ul9j&+i$46o2}gO0JjI2ytXI`xidO;G&OOP<2dmA@xYI7-|^$`-|+G6 zJ6?~M3AlD~p;!|Ttq~8S_stH?x@^*?_DNmEshf4Vuk`9qG@f(zkK9ErZDzAGUzMlT zCQLEGUd=CD=Y}VVnOJ7VX`D?hQ)6;0`CxStBQct90H~E{)$<6GY7&!uOEza5L@Szm zD^)3p_lLEUBcz;Mf|7mU;uAMUF=YPba?!8L2Ri=J436f(({-iqBKi5zkoAiGoJY2k z3zEIef+_7Zcoq<(m0w@Y%s!ew1CFz>1m#}l(guvaEt@`k0t%AgWGd<x+3D-w{fFP! zKd3JPRCC(u3^0@IZMp}35Pfx69TT9d(JAN?1`-%bh-Rvb0!UX#YY=_m@#8ygyy0FL z<#?hWAL!^f(NQW;TLt$G{n&hE_{5Ko2fqLPH++2mj@RRX^E8Fq))iU}FQ|wB;9U3& z%7Xsk3k<sS@P|y>qzh#@S^$}gURE)<M0{*Ra)Fk4P<<QUyfZnx1t_sJt>hDz3zOw7 zCXWZ7N@N^p<ZB<TRG7N&#x$(MU0^tkWvv1rrZJUJWp~Y*)l5CkKGa^E0X=xll#Ul& zX8xIfKftvigO#k8FPo#Hw!+ChYxf(@pfXv5<SMi5>lyY>|LL4BB>(^*07*naR4#bM zEMlB9S&QqTh@sDr91A(6Rn!|lhe7Gm@2?S`unK#OeFDriWW6HNd1QKd$v>+s^fKd4 zmI0SzbO}m}yKr1&b$PZ9<zoK!wVKlo<?Xo1RO1N1%Z_z!@thGLhR;9_oFCut?L47d z#Z4RZ^~6gXq$p@(aIer-aXt&qE_l2Sd_14{@$DNPA0Idl(+)hkqPY@LaS_v+5&dws zP9^wfrgSJ%`9%#jCM1osWqBv)ZUigp;CJX>uu<69?6yU_c{G-itn-pW_Nat;A^Cg? z=7W4Iqrc*4Iee~fcfuB~D`Q@M7pwu(QmE=&+O&0iCYLbd0Y=up|NWb9kWEi^TUIEm z-85lUDM>xfr3D?;Bah7~M>a*!n}WJH6VN2O#x`$K2Z~<2fUv3Ut@i|O$q>z$^khxr zl)=%~yqv>B)_KhDmlfa7tIq>9r96wzPV}_;<6Q~pd0Q~nlrb}mWT~rEM(UE0vR~jd zCK~}dRUb$spZQYQ^c0+#2CisC&{`l6@V=pLW`-hZ95r2lDd{~<+qFQ$Z6z5lOD+&+ z@IB8CdAsA+%0O=>YhDPYGtO3kv*IX>qcuE^13#WmJbrxO_3^~<I&gM#27*(w*`0$U z0CfC>f029=N7C^&a%eWn6d5tf^ppq_@yp)@+I8p+k~3Ke=JnTm2cO1CF2&7n3V|hY zCZfL|+mw?Uo?VKUb#c&eX_m}FbUXHq*o>$BvURwSF0pZZE(D;AgM<i5U`Pr={qw*6 zZITA^s$rV-aw)^<7QW&4la6T$BsfpnL?~<tA{<tvb%-!p-%)4>Z$`>tU4uv*yb{1i z@_$LJ1>Y)+HbD{bZDHr75`8ecoX}%>fY-&Rb*bc90T3zv|NfV8gZNy-ihI!nxQ=N8 zP)$@}Xxft)p4={MLCc@3UPxLYjsWNBZw1&Yq;Ak{H)4+NsQZqsFuJVtS5rDlY(f$< zB`x80R8U~@aD!FZ8eY#A=sfXpexUA~$zQp`FEwjTS~qv-S8I5lX1;QsCyw(lfmFDO zMy=plOdXmH2m~>@bd-~ZKx{}`T&sZaVGLYrij2CTNEg?9oR{7RYdZE}Om>~eq@am$ zS8R-Em#g%t*aR`96I)oL+0*8dm_FB)qh0CURjk|t(OdGpFwV&8<Gs5~xGN^-CA(m! zTJkB`QU(H`{`T#+@xqr9D1<ecQED9qigQdc^A#-)F_Q~Dom^<hG8^5L0sVq6w}RVN zYy(@T)kq$RFvw)B$^Mz!57pTwFzF%>&52+#R(N%)xsJ!+RYcfHj|C`Qmr4ekkMQZu zEex-PD5Hx^zyOv$ml;#yDmDf)_?Z`n60bmlikm^x{CA>{4SO^1r=&7u+dyqIB8WEZ zo9WUWXSd861QXDz^vs4~hbDb>CLbwT^)Hrj<vc*Gp-Drd4lQ?=E;n;g>2AsHUU$9O zenM|;NUBTOprrzJ18;7+Q3$2jT5Ff;)@5mli{x`C4$VoL!QOQ-haZLo0@prI#;r(h zSMVg*-CIJTu3SvRq@((-36r%8q1T=z%0El*Tx?BsP9G>})GiBGeRPd9f*-RaTDiZJ zXIdP~a?{YqT!jkUI*G>;h73-!^P9Z_h>;QoDdaO%buPi!!D(I4o7ohX!p=D-ylor0 zyd~C}4keu7G9=`f1W?2tLX>@+6nc1BvbfkdK`+R6Sd=Gev#c|xi3O>e3jLpeOqt!q znQ(Jmp<dZoSSXtF!pq?7|NQc6mbea0fmn=5W+9qHPgE5w@n<H=*;RnTDBI>4YRA6q zxNQ|5U7V3fNzTka9}C!f=@Mow9KoH?Gz3ZJGl(9Y87^o!7gNT%w`Q%nsq!mqZ3^}Z z+A2y-+WV!TS6O#9=&~3FO=ci2?H=;?LhgkTfgpl2ty3hLJdGh964gWa@{wyldIHou z_0p*s7nhlGo0XCzEmN8`p|EcQhH$956dW!%R$fdS@*9hDFBa>h`s?q01(%xWku-JF z{bI-F5P}mQ;+_||D-~VJcOpV>4Ugvsj`M|5fK$~=r|wFoj$P>dZi(10KiP7SVDQC< z_~Qli;T3_nGIY~J<*|y%?ktlv|8n+RsG3P3c=h&6FDmiB^L#$q52!A*{s?IBZM=N> zk&s}@Ame4qF|52Op~x9S7}c6B86AgZTV|K!Q32|Py6xDu4drOQD(wQ57x}ZS7Z|>N z)lXRSYh(NJ6;K%M*QLHgeh~>v96>Fw#*Q%`K{pEkQ3069rMH<<hR*`Cfx|45x3p#_ z|GqrYvHw5zU&kwE-$v&dIEJ_l&8a%2ZBs>BlTU^!`8`hN6q2)1S|GZd+@T>*rt=W7 zqQtn>$#)q5o#Zbhi@eKnR7`mNzSV#F=YMvoq7AjWaRssS!$Zx-QRA#($DDo`=d(9o za7m-Q-cP)}?RdT(cs_rO-pjn+dYVVm<<MJs8{XrZCanvTmL@M@;vY$%BSbeBb=XPU zEDK|6au0?czb@45Pryo6hslDV<ofdq%W_aLWojp8l7b6iQhE+qkr{~(fyE4yXStUa zSCGa+fi0Y;mDv@FPT{A=Ag-v}4(3<dxzkHkl`PIleMNolxK{#Bzrod|%ijuc-%as0 zFRNVDl#nRB;Wn&RVu0Prrm!FQSW9--VD><yv9W$x*N*YBwWj9Gq{S+Jnv}+2dlcKE zq4fy8f{na#_b=l{6P>Y*yKqoj!AV+H&j&V<WTRsRJ+Gn%;VLu&NsV|HQ<^*mF6=Ay zfhz^^2)qP=`lmnr2e+)MUg}3XFnRdheg1k6KesZ~bQkL)88TtgXCQbTF95)Cyif~3 zn}aw#0d1EF)8hG^k@d`641v+bhb=8AUEF&?Ub4kli!#SPi7#kc$XQ$(uI{ij-Dg8J zh_Y?!R12CJLB?gIRQr-%Y71T6>PA^g>oZa}T?uBK^@Y{fi`{)T5bh?BX67fn@ZW8& zP1`n0{uoU1+#O&}IVDE8G|S-1VG#%OxUUuOTfu!J)G~=ES;uiGP;}>Xr1IBYTTlyQ zuf;6k+{?i(hB)id$HktdGai&%r%7nCwPpr^!&S(^*&KW|>GWl6>C-~g&&IY(1#r=L zVqOv{IX57;@Jz*tYGs(QnB<sA!ZVeTH;Ye5f*DE0jbw+sSYL+LL}et(`n%u%VfO9B z-q%lWv@X-ntUHgG(!xRp?*?!Y{(effm_Urz>j~y+ePju<jdg_+p9EcL6&B6B_mSl2 zs!zGh#B~U5PTO$vZsS#}0D4LDw6F+23xCkmgbU5L*lCyz?Ydz}E8s8QtIy5T6apAy zWHYL)+${SAAugu&S}RI5UjT6wxpfQ1;e@PX)o&iQFx~9p`}U41BY7=SG6jhrF#AbF zNnDwR;0II1+g|ZyuXwLyEWqB31xjXKNseO_0;u=oOSlGEPM;TnYV)KhhmW4R*l4HZ z36a}b#9qH?<`=*LW^2R3lQF>M(V`^d6#7IJ*G05tsR?qnPl+Sb$Ct`t1OXamqlQuO zqH|t&L*a_b6&pM7$l<LP9sr(b(1(2e`qqq0Q{Uddj0`2?vL&@wrzN5=SoG7{X`Z{o zWx3eN6Cx(;u(gJ*ZdQKf9p?)wnWx;j9~aGb%^}V>0S@{!#9u`q6tXa~2D|Ok9ELs% zeqI>QpsXzy9QZPNwmivzn}t%^iX>RZo|0XwMfh+f%3pMp#=1&e7Y2nr^=A4AG+b#E zt(ztL!Hn1IfGRI5s>8kJJn=dX9LH&{z2U16`{$RILW6j<?A9gKAa|pAyYKjN-|$}H z-gc(5Sky>eq&`0vlOtnu2es!mwDdhd<emBAo(bt|$<m|G(tqGN4#0(tH&n6JI)Jn0 z7Ig!FOuPs2$`+SuAWGL|vo{P&LqO!>_KURhPnWI530@Zms>`_inzk0nTQ>H~Un_$P z0jv-<WiFsYwK>A6SBIMsxN6<@^aaEZfcVdA<sH}z2SgLP?8x|{l^38<7iepcqX902 zSWBJLfwXU)lrFtgSrPfMrIp4qnd7&V@rhw4-lGOMMtR4I2%wV2m6z6(fXnD$yr>{| z6psEg%R*hIx)(X{DIB4bQz4=4Hpx{b;R&{E!|UWRm5=d#Z0?;n*^Yp40qu%cv12K{ z+k&fqzSw;~&jZiL1CPhU_9|iuMIq;Y0YS*kNK~gbl)t0!S_rTE+pXfhF+d$EW@=JY zQPj#??h3SyDul8%)a^vs4p5ksXm<z15XzkGPF8H<tO=PNpPXA($f&cMV_c*<$VIgj zoXI3q@-#)=5{{Azv#iwsB~|U>f}w`1{eOJDTaRQ*lAX8A+;>D~R-Mz+ph$px5CQ)G zUnK~TL~+QO=~I;%vE9w|U>7&vk)v*8pG#-uC1U%<%+~r=H-S~~6zc2f>b`nh36|lm zj``x?oicICL`*Cf2xa;YBS8yXl4reoq`Zrxwz2fw*)_V6x*1HgG}U566OBRI3^xTj z;HO4h>8LgIez=Z*o%o_i&pj^j%=xwAdnPooEPSj)V&K~GcI~r2m{en+bs1eM<t4|Q z^wL0nz47q!)*C=n_ZXTD2D<X(;uRH4k4_)S_1EH?;9^q_6!c;hEG}P&qyp$!xrhgM z>%QL(jH!OYpPpP}^LLp8^L%1FpB80aP6|<V$6uL*Fl8+rBq@)K#qfu^9k%$jF(wmm z@3`IWR;Nxe<*YJD8>U;krG4Qs6^}7+f1Y@bfybPX(}_`y6aS@Uam*>04x)Xjy?xZk z<hg^~aB#V8#w|`2?BT4MsmRv*vbLA^S(12Fqvu!uBXj^q@3`G8(Yo~pYIM1N*QRcG z<kZZt;nyI|3E1?*=p0Xcoew<63H=Jv(`kYp%l)ttfQp_a?xe)K#=xJazP+&pRB*BU z`EDY40}$D@)5{1`WVuPIwNvZfIv&IpFP;fPyXr7HrmD1{50_w)$P}neh+PF2EPf~L zh?L}F&5p0W`2Wj@MwbIOMtS5T(H7S_M?7E4276s*vi9Z}5E&%{!4qSj1Lv^%TZ@{q zt8tTKk=I#n^5vp_^-a)1M{6D{<JP;YGJ)P1W3u}IMlODx6FQ6sD041ZbIqs2GJb`e z8YQX?08SA@w)t(ZHwO0xx*zC2-thK*_b9T42DWU30gN&6JSVgtc&e#ArvlG8@cH<S zIqc`tu0TVvZWD&6o!q`~bW8ow^u$Nbz|l;4o>7LrFybcLS(1)qo1urPkR((_;#%RW zqdS%7aOVH*IB?utS?LPM@PkBuL9b3upEHU#IVH!(>k1<(_<Vlh*ViYW=ZUEU!~@h? zdI0F~iGu%*l(FHv%N7|&!suZVPvljxP{sf%PGklkte)CR-V~I*ZC8Xbtyyv~k$}mr zsZpcmpJLu2Bv`Xol&(B!^owgPM(G&DB{(u&cWV8JNJUl3AgjfcFE-%Xn;=~dt2I7s zC7_cR*L@4=5R7qRdLI0FK7A8d4b^iD8_7ulta_+KKMousIC@9xzNvHc1}s>_I_Q3z z(2|Oyp{;0Wba+h|eFz)pj?)%DWP;Q_bWYo(u=DLAdFRzBxICH)m~LOaCO;bP$AO<e z-thC!cl`YG2Y!6KTf>SPSOJ=V47-)^^TZ^^#|#*W)#P6gOr4-P7mTLV(8I69Lf6HQ zjo2*Hz_Jq9b7D^*s;+2rM0OF(#yE#>_|t+@Q~_o6G$P6%+s=%m8H~n~esAdRt!TZw zr^Xd~ekkm2ReHH`M;aj&L70pazaO9Y{q<?391(al(6hTuj?uVVFMxvm9r*B=GA|KU zJUjjR18hW_ny;q|--WVC5EFDRFy?Ado6v*=kY+H-?myI2pojdJ7r#7CU&+*))%lE* zUv_?Sk^bmQ4X(QDqT^Q=S`XUXPB<*%&qdc?Xa2GHBcUhKk0PCCj)C)h;_>x`ug_0B zpHH0U@EUXa)pF)*8`BMT+4V8*rop&P9BRx%G&UJ6k!8hOo5w>jWUE~TCK&17Ef#3H z-=+*q8IB1zWgn}6#Jk0es?xdKzIMY+eP~b5sA~)yz2nEnJO0Dp|G@wD_n-KuKYrlj z{oO<?)3O(JSf~uO4k1Dtg5zEArsiCmP&^<wKmP(p;*G4$e(Ln;g{)iWmID={FZ1v} zpC^9*{*52^8~Sl%Dpd&F$mj9s9T3`|o!Xa*aiPoGqYHoBx&^M@4j-$xJlxb9xS=Vz z3XHZ?>s27zS`q=qiRbeRzdnEA_v1H+1e1aJY#7=ha)9|}kX*4_nXvgfjLd8%yqPIp zlC!g}MX9!-F3K20x6UUm>P&<!wAH1IFoil-ZD)iZvQv4c(@dN+lj9x7kCmQ6NPQ`T zKg(%bARgZ_eC#T|4+ge5GwlGzW!zcTKE|R2n*y>#Wr+nsjxjLCX$F=ttgHTb;McF; z`2Fe5HcyI;22#}V)d<Xu0hwS`44ok9)=cdk(!2Tgi7+!o);6H&OusoNhBs?({lJY6 zbh_JXESkK3BGbOA`pFuIa<`&tByZ%HQkQ{7mozxEOB1o7+VA#uJMi~E|HOa#``_>% z|Nawy{`^3{-7$w?K2MtvJKC$=2yITZV}Oqvjt|CrZx9Ban0S!jd7hTq+y<l(CV7{B zifj3&8+l~sF@ykzfv?X8{^fuDD}KJc;|+vU6wm3muejND%TkPIbdG5yoV$#u2vuVG zL#=_j|CM>`Pe8=8{QMN35lX8IenTsKhC-DZkEJRg1M+;}@%W8@{Q3v}`t=)13T_Sk zIPi8qtWVK8v<Yq`;La)gwqB3Zmc@PsRiqNJtN);t?y`LF_y)95Y>Xij_T&-b>WNqD zN_dc^O#)0=H_wTF@3?oLUAi-mSOY+~#W^vRO!U${MeN?i3$PKgHgnTLL8YXX%v=&u zS}FN#^@OX!4@-qr=&(BeJfC<z9u{A9K0Ocq#Pd1uJWo8%6X!W_PJ5VQG0_Wk)o|Ik ziC1R|)(MP(NsO~KJR@^11xG%)nG@$Y&3EDY`ulOijXF9My_@iZRnbV%nt*6n_t;PV zXz<1cuM|*HpQDS7m=dH>CPLBtw7!Jk{pk1)|MVyR!{7hJ-~Rl-{eB0iVb14Xi;_7M z+tJaE1MLQ@(HXeu8{WqUKE@~bw+DqhPj8aCG~J2PGKRZM!%wj`Ep`m~<N3sY|L^}3 zx8sKQ_je367vf_~fXJ@v-7+J@^9W7*VmGyzv^3_VA(`ZPWdQ_Yj+>|V6kkKs@l-$x z*8KGiCW)iS4W>84j*$$E@x<rj3%{RdDso#p@%h>D>-Piy>tFvu_sL7t{!?txoAsmN ze!rXG&lQm?9(?5^y)eo3n+Nq8ZcsDXvRv>=hD1TlM}@5eK6_@e#uPE<4Pe*Y>gsqG zAGOl1hu_9Pb$U=6lu|Z;jGJ~TYhLAp>k^xQI9t%ENFo+u@{H5rv{U~)aXz0Ik0;LO ziPO9K!%bCF%<`HU^4=f}kx*W-9o0-H<s?8x36;pxVQ)HGx7tTox<XlX3V!w9xHIAX zc3TorQZy2<p3q^TEJMUf30cf|E$YPU1Zc9A45AHF)_dLn+yMNz-|)A;{lw3oA2{we zDARgPW|^sDZ32<+VBb^FW=FqSH+_zY$JYaM*jTy82sdsf?xhgF2_VyrOsd?3F;2z5 z{@Y*Z{eR&8c87rQoPwvL?Al>tJ7U^A8Nq8{Pxo!i&KOud2`Y&~u^9mH({?{V^Dv2L zV@`}&o6|0CYt52`+X@4nPQ%Xi!4u2_{K+LtQ?`r*OIZeb?|6TE$L+XfI1W^O11R}( zTF_v6fq<s)fva*Y!-tZ1lH~(nF<#}GG+`S+1Vpf_*$4`_v@@KCb~E6d16R6gs>EpF zz^_oo+IfwbtQE~QQ&px8h$NZLo>M@)TRdQIkR!_D)E^#bB0j1*&nLz-35L=_ro#<K zq3n}6tt;yrCl#bRMC_`o#;<GF4eo_byf}#h-SPyDv-gG1M+2$i=r*-DNO53-#slKi zof)HDakvQY7Upp2&G2c6W`2QWnWeZ9;o~^)^ZgA!e|-2t1D>Z(JI)h4hLw&Lrb=PU z=6yQjWm4-_Do)RjXak_`ZbT}U<=_^?h|c4>G_UoFfBnZl&^|v6>E#?mYK-QRcV_y= zo-KRGM!|PQy3?BEV>5?+pComqP4A&2p-r(d@!UgC>J3~ic!e_B+<YPGY1`(!w10j) zPCT9?lZv9p*HtBA*b9u)80=^Z?ooBmDp-s3l8=|v(dOK<aGf0;dN2kQ&oOehBv0wF zUm~vKZtF^rr8gU0m_nQJfz##1#GAHXs>-e`NTTSlO5Q9)rcVYu0K&c8BKGqRu`a&F zp<AO*=YV?cKO*~(Y4f(U^q^Y=*bvXN&r`-vasT^4z?l)#)o?^RnfYpWWZr<TAiK4E zJ|C`^xZ&0aHwL;);OhyA#$@p$fg;&?2U2b+JXMZM;VoC(neoT_JO2Fn6K`*K5HlXn z2mbnc;OiXVG4UqAq26#~+U4JL1$ru|ktY(t$CbcjxKokRy!JAV*5z2#X3^y{Zg{cr z7aDZDr^3q_DoG34=}Mf@aWN5;TsIp`Mu16k6Zh=y(Rg2%n65_IRngm;6|J%TCZ8`2 z1@RqR%a}t{vWKR;JSIK6oFWm*YxG>T)4TN!?XJbHVi>)|P;nWdu{})$28qps`RKsy zW(mJ49`#(nomb%<^P=m97QCFAG0kkm>BY_mmUa;Gf(9(K6zRGu#ut=~GPkD5d7gNj z&k}v^o5>WY49w@l7El;+LT4WgcQz47N<5+HF&$AgfQBka2&{yuA+i$pwFkq$y+li4 zdsqyq&aB|JkXZtY{5r?L*%*g3GzfT1$k#~oO?9}%hO1?CB!$7hEUay79ybu)!1(e0 zhL4YT^u~BTp7{Oi7yj|<H$KNiSAg1q){jzpS+Q8<-XflB81BvHw?Y-nX^UEt1;MKf zt@P+9FW9HvejA)>B_IoDu7&z2mPJzFb!{-G9Ghu>-nqb6GxEKl*tr<Ryo}4J`MlXJ zJq2Cx^oep+#dOBMmH^uCptD5!64}>iK?1|-&1(Z#7$g9mKw-ae3-DB6PR4LedGBF( zaTd8^bHt_XHs1(xoS33@LBDmhTX!y*Vob$3WV6U>k;8@^SA8CuGS|>`Yd|U&op#ez z7AkPg@>!R8BwE<lCZ7l%Unf34zwkI8hFju-#1?h&j5YkGhuue@DrE*?D;Vz*&jp|d z-gHJUU;$W`enDJ^uqeE%`O1qu5X2d=pR@S}IhpK6qrlWq>8WM#iQsvLT*&?#Hz@gc zd=Rq5tn)g(0#!wf8+W|FzvF(tLC1-&^9z6d;~)6-*Kd41CmMGg@4$^492c<Z@2h)n zMx-~}1_1WPq+iu1%a*;cC`$D-)P#5t6S%u}!EaX@kxW`x54xbJOB2H-%_*ASl#>Ca zU0s(TjwnyLq0!QfR94{TF4QYtel30>psCZhJvJ{qF%30ZY<IybDsfw1h(sNQfD?-_ zn>{cy$rux-+l7zjth0l1L`KC3V}t)Ctm*!vjB%zenwjx61fNeyP(lD1RrD3Q6CKwA zR#K(vKu!b4HdZY!Y#3FfQGzUF4C^fagh^Kgc#adlf7{G;$hrCy0c#Y2&S4$@DUjBT za4a!>_K^~8Q!`f`FYrS+&IF1ryf6h77gJPylgVxkHL-_?vbJtyb#F*{g&D#GVFFEf z&;~n4PV5%t&NE3x;^MzuvFp*Cr4TMD<4%mXw|Cs%-_d%*IG_0Z^$Wj${e{oJe&g{} zG``_C8s3fr$01N5M|D>gylo0&#Ef58gm>8-hUZj{VbNpL9e+~#Pg;UIxx3}L{B9e1 z?h<^H)Sif%+XP{h<6w0}^(xPHL3=GvTPfv;X!|ospRVy;CEaSOjVr}7{o+t#av2c4 zCK36ZC=;J|{-hs9I%O9+xcVx^Ef@fvIMG4vfE+i2Kd{k*^GXx=EijbVwS)Z?ImUs* zJFVOppHuKT=Jy2NONQC@f~6D93Dlzb=5tAjt%4@naxlms76iyS@c4XWLvjqk`E}y! z@r5bFbJy*42sv((2^t2iJWF`06#A=`M*=&8y{1-5d{x$P>=w4~Qiy0-#zgms@kEeG ziNqtUF)UWPl9I9iO;Xr#4#E(2rJ%ir%oZ5hxMAwp$eMJ`so!8I_GfO?@Wvf)A3xA< zH%wJLz8<~-{Kn(+3*$7v$K!b7dERip`P{s8?4$aZxfGL``;e+fK*n^1tl;bGfzPim z(?R$lptz*=x?*oRv@0ZLug&@T*V-#6<?eRFE1m$VX~{vyqM9;Yr#jfPDJn-Y^EGx3 zMAENHIyGMynBnyf$+NOIn02F$SjLHpywGsBZh0ukz#zF<To;jRpWS>=!!cC1u4g>N z$L+8WH%JUM@d^-4E?Mzz)!?JAw&8Ux)dix|+L=Y>+i(Bj1PGeo1J+rNomge!Ii5~g zr7h`&vUXB4UwM*o9PhfN%udWEn62UHw)2bU$5oKTH4TVj1Ib}<DLZy0)1F1(NGVQk z>k2}hsz#Ez-GJ8cC5$PiU{i65vflt2F<7G$&rAH`7GY9-@xwDU^Q9j*wA&p*!1MWq zb3XC=*I#)2{>1qhfHo*x4lSmLY=qrT91Udu|I?HcLT93M=bdBV;TeMGd799rNXN5D z9CT{(axy5t^;s&hwOVci%^QBWNWQr=Tq`7mONYLO$X?Te^A?c31ufM1m9?>|6E_Mu zBv%WVwlXl`8yAX?gMuA+T?@X>aswd3#`;}&5+9lA0N57Xc@mzj;kYrH^0y&4c~vK$ zp}HfmyKh~DT!Cd0N+rr!_KFN%jQh~K(<L%VYO?~E)W84$AOJ~3K~#zZ<WQidC7d)) z604y?dV6ywV$L>AkQ3Q@vG@aTuIA<M&!=_tP2!#Q*mGEebI`zOjCuIYN1LZ7`{^UP zC0NI`60#F#%mTZ{Qk7B@4=$^^UIMv@;^ty{1Y`u*QwXPcIYREYht;T!I~Zc4u`O`Z zxrMT2#wSG!Oqfh~>cp?FPk;uxJn{AG7oLxYNqzy(*K;1EP9JkFSPQ{~G3l8ILzQTe zsoNp*JO{oWF0mF}r~jrP^(j*{EKOUx-3)83jnZ7>Z^B`zEV69S(T+@`q&Alf#{lSt z1w3G>x#3@q;7hoRUiu4oVM_0a>J5#D!Y%yf&-B^|sjjaI`B=r&uo2;8JWs~kla1P{ zufZVI4<Fk7crjaR8Ffs(q4jPvW^N!B7b(cg%(deCwZwi)QnqxLf?{vVXi@wb1*_SO zB(8H_)^xXs2DLUosMd(Ihe#g}j4|<W$Ds&J2QUWa5DWzdvj<SzpnCXWy)y{vtH#8j zrlqG64IuB$c(}?%?r0~ou8wbT9b&dUWSZCqWHH-{9H$y;$~IyHdCrWiE;E{K#=gup zVFaEyW#ISY3-WIh=Y#Ry6klIoCf)&O52kenw{_qI`HMJ$E6uAgTw-mT#cF!N@$$o! ze-+fa^<02GcKd}kwF}y=R&)*4f&bwId~D$(m$%{t^l^!ZO*^}8#A@9s8Q(4Imvm+n zVs&IcER()|n_j)F!RtlpTEIpjCLvbO6LUp~auQiU0>z0j8RNV`#sTe&?7&e`?bRPd zFAq=zQ@Q{oa8oP)oc()k&C!=IFV%9IULpoJGWQ0xR9APASyqz^V4|Jgn)e`l#@!lP zH`7N8Sjg=QU+2J=H>+l7y~i-Oov5qE_VCZvy8X`iP}1&Wzg!v9t3ejMr8)AF<U0_; zu1afKEM_>GGEIs+W}1#PGZk0-O0edD^P8<{HwSr*l{WDq!-Q5}6VLI5@g&Htx$a+` zQ^#nxj{953?bg7J(pSIKoo<z$Vm4n{fDXISH88v6Jg@jIH)^R(E^lYbOF3CieWKUj zl$Nk6#A7yQUE70D9f{Y59Th%*1lCXq&IyJEB{OpC7bw0Do-HJ*y7&`$N64>9nNqmp z#ZgUfSPaCzlSxXK)APg@$&?G0$=<BtfewAL&py9FdgbnC#+i&^)`B6&LVfEs@wV~@ zYl`o-Ti1n8-$FI(OB->}fv>8eA(8Wr=Cv;=T8|B&o3Mlwa@^4S6BzCQ^y$egl2q$W z$g0_haQI9*ZP77xnKNCGtu_B^{r!1~mQ<i(VXS(wA*-h&$s}m+Suc+<jUY?Kff(VQ z$z$iM8oREGVk2FddLl3!I0O1L?6^!q!wnoU?4C;0-#Xsj4&3f$TQ#&;cAe}lArns# zGqNarV^wG1vuhn1j@!*j985DeO{3yWWf$)(Q;rHYtw8Oe(7$sVdwt55B$|B_NQ?3} z=Qd@G-8HL`lH;u3-N|2wn1FuMBwk|sC?`DDO~v~FdMP2OkeAngx?<0*4md()i+ebS zs1tz^jJ=uaIKr{dAh+l%|1x6kss+KMl>LU;WDmpebDH+9rk1&H{WtpUrnxczwIuCG z7&E*flQUAX#U~#0Xmv6?k)|c~OW4ItVGGvX?X|)gZIh()nWrEeim`=P6eOESjJbw^ zHIBp3<=!<G6|k@)s%V|+Wmq3Kqa5MIcvX;`y3kE%<?v_ur+dmmNq1TaQWK(VAPxvf z$YiTBAOdt&+*?O;3;2y2Zg)HV!vi9rO!J3XRg#r3T$m=xsgfkJ@<Bnk&BNT9&2C&^ z1}3MRJNgGR!b5$`jVcrIbZQiYc(uaUW=B9=iLDpX{2=@;1m?QzNo%-_?hQr7-Z1|z zf;Jfl`cf!Jk&|D8cvt^xW8Ezr9|&FC^r3_c<<*fyTB)L8La=7eloM0t_RX|7pjJoQ zLl~i(X`yPaqtm<yK$pmCX3%&0bcqtbhP+p*cn$4TM~tNqqgY3|=(A0Qw<t8(cOU{> z7txqaK}HOrwW+9bQfEXYDLlP5hjSLVXw+>(veq5~$6aZnrnm-5GJ&P)0N8O|;Yzbj zCUWe=gGUawu6;N-6)VtU!i6_no+4ZgS7pBJipA!v{pm~uoQlsUfo|RM0G(rCi@&Wh zk0V*w#Y&zPah?-%8l~7&f$phyRbM9t?p9jx={k)u%r77=d-Xhta0g~1wU(fv*DsxW zs@?U<J&4<^=t|qI%FNO{r;SyiJK8=U!xHRTggf+Y61={+Tx*_nlm%rfY|6jAy-~f# zd3g3Yr|l5_rgMnGrvQPB5~Q+Ev-yL}TSvJ{1uiUq$k^>v_LLI!hjPvg1xYr(7Q};> z9T~e-YDTW{0kyy>omndT@rtBEskbjp%hFE>)tzpj20u03$FPDy-1h7NjOM1Z+MQE* zwlwOopqg)NbK2(&8V(Gxjr4pzG5uE33bl#qII3&{Au$a~kIKMX8+p_lkgF{*71jcr zkhE8?6q`^{7oiKSDw|2ycvb8Xo+5ZYCpyDPH5S_ws5kKqA>_p-S+-5`940&)Q!&IB zv@FpJ5!=_Lque6xc12@=rcIM}Lzus>Wi*COD1=M&8(rwt8&3<$CdSF$3>8N!RyvP< zmsO>;*k3Dx%FUU!6d&3fVC82ay^^%oZB8@&XZ^MmOvN%Q?Q@*Df^zPt;>HV0`<Vg= zHH%XT1XqKjhjo)e#`Q4UqU5`8;)nvKF(LDWjsbKo!3$+fQqa@P7nXW>0erV(dc`wS zaZOc4Tb^uK4|Z5Qr`O_U6rvmvt#ZP4T5)7{YPy?(wdEVPN&)XH97h60TJPr0BWpM^ z*)5?l<4I4PIDJ!?C7flhT)c=s=YnI8ag($DWvHe20=OTCvmyzY4J6GdF09r#r0GT( z*^+Ck|A04V=(=`M1*t}&j}XQHo~NRN%z3AbIe_zNo&|LB&4L_Q;ivzcwh2t}8-;G3 zr({2P^H{m1T$q@^gD}EQ?eG-6jMq}9U(}AcT;*$Xd}}n(GQ;UL80T_+??JLl(oOiD z9=*zkZ%*%;U!gnyNXrZ%Cm!L`(2GW=AoP@gem?$6HC7`+Z{5TLZl4UOfcWrCneD~K zM1v$!3n&rNsqLneu8Pm<<98Bu5ak%4*;mF{+yK<=m43CU^^Ls`_98TOcm}_cd*d3X zTTZ~52NB2@6z4QyfiX0jD&$-ME~v?c60>QA2~LUxnZ0ghgH0GB`oPgm7jQd{%zR@X zdq#rtb`^|<;utsqoMlAYq6DEJ6R)PA_>HS|vsxSRnZZ**+QIE`*hOCEv#A8SgsfJ^ z9!k`;Q)sCu<-oqM0h~iHNTHoTlOY3mJ_X9t&|uD4I8XnWic=KljAp9%G^P2SMf|3f zJ@lAiWS(Ag;~2RclAPwF`VBuK(us&(Y&fVjzUm4c$VJJeElMc|UQP4;9-*o)S{cpY zTHWe>(o5zpu8Y5D19T}FYf^*M&x^ybM25$WqM!fxH&>bglN)9~K-?B~S)D2ZAIp(D z{G4AZy5`b4Ysh6Ji&B}_OBv~j+i8a_vd!)0Hvz%-L77{R79~2X2${Z1XDOh|HCEy+ zTR!KcH3v^i!f@!#%hV(RD&dqXb7u>0=s0@E(Rw+-4KUGt5y$DYwDD#9<I2OO&NR2? z9COJ^FR8c|eZXL}Oz>s4c&&rFiJzh;!;t~7tfE)9aWx<&yyl8gr{F6Xk8TXXplK+u zp*Wv{M;{n|D-eIS&gaC}r{M7vJkDYEYd1<o=3wUMxo`+nBEp(2es${9=%(9HGQ}sK zfn$>tby3{_u(0bWHur_h-}~_i-7H{FqEHNShR&?e(aR)Y>ksUQ7HT9J7CC9%_ZO&_ zL)*e78&ZorJYlX_7_gA4`#0#1Utf+Z3OM2t=|ohRI7i=n`W>VVjSnzFuIcauAA#wd zdjt{8UMo{qKquCpfr#hY>860i1_4!2t(sIXc&$qZ5IeAhO3uCHghID#B^R%^lo@MP za3NvSRYSf*APAxHM+qTq86&olhpBi3a=L*HS3bQ&u;})clK?09h}M{Fr1m^YhQ@8- zs+e&14QT{^Z3g%hTesPxB#ZTw@J$|OZoAok5aTL{*vYBB89bg7+HD-EG%%-4@1D<r zudj(;55ea-@Hn4l9wR~b81k(IAxCfcN@8A|N^Jz5j>cvN_l|xVvq2)@wrKFvzI##H z?H-iXjLZK!^ebr(G+A`OML8GSchO>{Azg%Ob#8a<0i<4p_7Y(wQrEJf(sJ1?%Ykj% zCvANUlhIATYKuOTsG32coSIKin_#^G?BKy5+zL|0nKuAt-#sazp_*4EKYa=q!w}T6 z$9hNIrt2i$8L)Io^r06?B5jaREgQjHdabhfBjcU0thbbkGRfv<#5ePFAZDH@@p|bC zQ7M&rb7F8I4LfqGU`umT8f*{mWGT7<d8uis`p<(f+z(^fweF5T!5cT+j)n&}yR47Z z{m)ui_l$YEj0GvF(X#5zK$kmF3AC~cClMY~Ax{e@ooXe*c{08p6VEa5bx!<#o_L-Q zU_3qK(i56_jg1w$c4H`%Buhy4Xf0*JjTzJo&n+`##<CgBWSekZfV8v>L7+=VJ~wUN z@)PqJiUk=PKsfRgFR;DZo&RRk72}MHIQSAtUpSE~C7P3XOtdCX^&sphvd^&8idsuZ zXN~RhkySr%cn~2e=OkcG%8`pyN1sS0|EzSJ8Y}J#0uhfT>EYjTCmO(`94-<rn)Gcn zbMbT+$63sTg9u~~4!bRu@=6}aXbz;;1&Yyn$8j9yTi22FSftBsH5fI8LL-~0YaE3X z03FAXHGU=l4Ynp=2#rJ_O}=+adP!sI#g6;!hTHvy!>!mIf;$6m2jjPIST>B-%k!rt zq_YI5@Os$SHB*-do*j<T0HO{$I{0<~N5=qR4uKByD11Exk0;^tDHu92=fLAUG0q2Q zJTbwZf*Tw3lI{v=mMzJA@YkG}(Wu$D(4)Fyp~of=j6Kc7sG?j|+Vl?`F00E(ZDmH3 z=PmvIyw4Kcu||bYiS4Gh7!TXnK7J<2nz(wHOXL{sO~=A**y%$>bS#RlX-U<+>#zw_ zkWQ<v#&Sn%HUiQj^9=%TM2ERYSDmy|=kr_~v3WZv-tbk;S51OuBQ7QuN~<0<zUaa$ z#l|hQgxEWYIXfq16W(xxw7EF}vxu;}tM?ClGmK6@Q+BU&6za8WP8p`ByzoMTT?fBM z>$u<F%rtczo+)se$G{i=bWWU<u~GGJ1W@ug4t%`5;pfK(-rn9Eq$#*T@ZL?8NYlKY zis_=L7!_@DN_*X!*VK`BSIXGBaoB^_(BuH$Zs7YJbUVz~E|y08e4hAv2%b;EIgEBQ z)xt^Ucmnf@#vNcld}Hpqgk5%HVHf7m9tjudE~h@H{{(<c&ITjVgpi4<bc=BR{svIZ zJ-8H{d`Xw$0uiBL9==%KQ3yj^KId{n@DrP4hVyJS44KP@yi<b6H_sX+7aNt`*u-uC zN)fGu9jWwEmsqS6o=;0r;d^1Ky@D9j>-^vZR<9<(bInUltfe+rt%*15>dz$`PSc;T z0E}E11lfq$qQtJvt@VH$$AMcvY>esi@vS579TsH(ozlVAddKblmfCf7Mm;W+n{r-( z$PwKTG)ri~0d`tW2dHBn2gcjm0+9~W2&B|lbpuw$NzxkQc67YmZ}{=?fge9UaJwCr z8Uu?HyEUMTMfA*h+RcR4dz3*f@%uLh9SwAAzWC_^k`y1zF5wop4nA(6;|8?uH$}0l z{|K!EId{TuH(skx*N2EhWt0t@)?$NKvC*ru{?w(zX^L_e>dT_=kD0ef$yDs6V7=OS zYroIiZ-h;O8lVy0hQ`+(!sRtfM`7VQ;u~2j9K^|FrB!ANAn8Tm9XOg(i4dE4b24c} zPJ`;=swPp*xGbreNvPIz`@D0U&}RpKSWGb~Wg{?d0a5QLtr14!H9QH3LF~||7$aQ? z#CVCI*2U3)!w$SQTwd$Fak#33I!#z(N^%1b9R$6<nIw1)%<K{ArsNQ9o7`FDVovgh zsU=ZUy?HlHaO2Ip-fSFrzuob6zvF%nWHTjMI3%rO?0}4D2rhDMwJtZ@4!iz;e7xi1 z;|Gr8@J_mCFIdbDL~R3*IZ~w=1$HFUGc&mJO1Y&qA|a=2XsO3cvfI)420refegm~` zAu2MQNJMKi>>G$o3ssrZvlmzlwIl=*7Z9a>gV7K$m}px{_6D{tKNXvB5uD9!w0s#8 zQyEK_+GsUH{ieZ7RkD=;+pVD98kS*+idko42-N?f(vDSz(oEpa<`j%Ftne{u1IS*i z%|5Q}lL%*}=w=-rGe+K0yu-&dp=fV+aPQs#T+Jy|&9yG;=RziFUYoMMl0rGX+!S)q zrr753>9uAm<HIHG)qF5@J<Rpmnv@kX!w)x$kv_WFQFTqnqf5>{*5UB7uV!n;KxqO* z*t_82(KnIN^l_*m)>fU~z5WksaDHTybV;NoqN`=UzQ&l#HW%wr97ngfZXu`+s1C26 z-Jm727`P<gE3V!5XfA>*>tRDtM=2If)P{E4(AyjMxC8A5<>u3YW*!3Nq)ut{NP+|u z2=WLdnMPdF+@NA4$Y{-viCI#f)D{eRXbpUmAaa<fa~;6gpqt-0dI+zsL85EZj<zz4 zuvm$eBLIZ?O4E|NXu+4MpstgvDio!tW>=d)bJNz%$bA(YVVmbN5&9`6zL;Y2UoAn5 z<U*K*C-N@yap3sz1AqMdKx>Tid9F97Tzj+5j-U-+h;%_qZAJ{N7^*GjwVded_gH2U zt#3?Rw>=)5wuIj$!R6Fp$5ozjG{*hy@ZbhdhAB6g)(E|a=6=;~<aMtWc_>j|SqoBq z4zg5Xr9lH)apr4bFZuE&{M5zeUx$ir#+?wv<ZWk6OnG3^iAjn9#gMr~Bl-SmCJ+Zk zZ8iUvTpPNk2I@9l3)wi(kGpLE{SLIl82qdrCer*i!zl({iaaCONH)(6^ioYtOHpT| zx5nhAB+BONx{X|7-^!^O&AN@xpydW!7k@fi3+-yFx2dov_ScF0FxBcAP`oVF&EG=B zp+%RQ0It9g{e~x8e&!cg&oVgm)7@8d*!-SE79i1u7xBh$YiPGSZh!uXfBKLA34i-| z!yRfd(-JAP*z(O%=IA!c?jx`1Z@YMyLfBGRFS2K^^K0^tUSc3O`A^!L7tkZnL8K-d zwz+uE=|olEQRBjKkERw|!i>|KnaQ)@3Out4L-Lx~*3K`5>Qkm6%THb=KDsuhE2M(1 zo-n;OYU+pG#)1z(&(o$AO)>mEm?ck7bEC9*arOb+Hf`?5wnlTh@(I<!gv1T4#|Cf% zcWW4%dXg~Vr@ycZ!)Vitn2Cz~HK_Lfn)I};w$`^~D`z58!ga36ikKyX!5MPagW~kB zsOYvqT&X;$SLr~6Z4TR_oV<>HqlQ=7bpI${mo~ji`MfK=Xq(ZjO)fGCDx3!|9F40T zLD4PPa%2#qEfP1kIPkMKLciVc{^y@~`{QqT|M3U@{P_cSw(P&D-n2oev{C@*znHPu zRc5l*$mO(8RUE}e%mqNX?gP5*S}|s1l*SFNqmva@i4ye$)ttFgk%YogVN`*Ou~~TL zTH}50x`ax!1&^jUj!H*402B4ZPJQ~?5R}xFX%~utt{w)0maEtnZ&ghu$1i*o3g8?7 z1G6(uChtecW=Nr&o|O2vMxeF?O}xB98M`iiWH+(Gn5ktaTpdX@U_|0Ek;%1Y`Sk_w zo2G#Cp98Y7#9W*dRNBV#OM{_t)mDKFv!RDzO?>fpFIU#6ShG}+>Kfe0Ka>X|g{8YD zWL-mBUi|)h{lDE1E=+(*vLa|sH>f~Mu*rY+TcXl_NM3*#`3?JdmJPsP9A%60Zb!rY z?T+`icf7s7<Nc4n;r-_yc)Pvftyyq~sFPdfu(VmSj;+*FS{3s=G0zh!GylC=Rn>6T zF(Z{&D9h0_b!ic%!#7#?se-;pg#AuY<DLCsH%9yc=DzX_Xk`ONN-lYPc=tx>R4z0Z z*%F7e^e#f9&PCQ$anqV7^HsnsC1R~4y<pEd)QfF8HpM!IjXJRra5To@jZNu<d32oQ z{(aX%@FgsH8+m0a5u<xoK59@Q+P?poiavbd(FDx_6{8>x59SyS{Fr60n*Jfd@e}sN zPlY_~DpeE{kB^5*!ycv?WhO&BtkowdURL$ifPR2_^D=Ptux1VPL_y<iHUWd!UZ)Io z15mA+G<sdR@%gHoI}q1+daBddh1jFZ!5232K%B#y<>Y0Nh#T`6#z2T0!1H<LTr{Ms z)ET$8J3c<%@#E(Qe*E}}`|TaaamUdb4hS$@mg)*CW4X<Oc#aOd{b1+wiRa@B<2>^U zCb~c%EXLeNG=D1JoowL`1Rs5cc~(5wZs@A&y#*H0jCXFk8%!e+cdr2<_Q3L(hCwg2 z-nIcqog)LR6&$&eVklCWd=n6ogkflAATEA_krzCuC9@Ag2}g_FFU9*VCgLImI)L}a zc<+p(0izLS_n2{!qBy*A?Sp%;npCU;7A^S<{(#Zih~^ZG=fFu%O!>lqZ5n6|Lx#=z zG40kE7BeSApJD}JZwFLPGlLb0Hc^xbHWJK6wOrDSrWluToOnJSczk~1@p$4nP7pDU z<G?r$b7V5F<Q-SF&RGIuxTa2Nd48(@qN-7syYK}p8sZ>YBkQa957%r#<>VknSsSC~ zg-csZjYYXCX;?z0b#Q=<ri2;j<2*Czv>zS!_d7m*{=m;4Kk#;c!>u1U+F{`XGJ*4n zF<cnrRNUzevjjClHm$zQfyd(ufBpJ}bDT-|RZ*N{;x3XWdXjqzq+$RV6pbG2wPC@A zYdyZIKAMVnm}t+UEBb`(BrP{Kn*L@?&$Pn|sQ`A+MCMos@=8j?nQjwQAA195%AeJF zc<M88mFXv@)wbeetM$7Uii_ArWp-xQAc%s6a3g~B2HZQeA9%I~De17xYqS@EpQ>v% ztsa(1BH$@tOcR)3C-A1+dkW5T0C<3=O&*$vMa+pp<O$Ieg3~quRZ{`#34vG)_t7Df z*Y&uJ-tx4|zo%$*l#k#uPMnV?zCOS3`Spdz^9d168@0J#O?Sbb8xT_nRqGK%+;+8! zUpWC(WVx}CB(Ea80in)xxJz|%@-|68ssft}x)Sc<YT3w4m}9I|C0%B$%)fBPB^8qr zyC)@XDP2|3JLC5Lh95sZ@Z;kH_xlaK9X`e~(k<r1EK%LnqdX&i%5M_t54Jipd(MI9 z;|ssPK5?FBj;p2ukLSS0UGk<Qe%gyFCc#hsm4>3*;;V|q#RQ~_5oin0WMijg>P%%3 zM&^Brnsjp|C7<sb{uqI__$Z~yB+#u!3nZCnd9AcGsu1c+l=5c<A0~k|6_hc8)s(rC zxC*f~oB*C=_2!68Levv$E@&{-%FNoM!KdN2!t%R{m$fhj_FzI!&@dBFAE%3l6mt&D zd72(TM}kO{6x0MPgx(pmHRzP2^+XKWj)kTK!Kf6aY)MtJ{D6n6DSg9rO!;(jbLIwU z=n7<!g*n)TyZ>SluS+A37o##mJIbUXN2D<>Ew_Lx#X9l@d+&y+=f#kmDj8Cn{QrC| z7w9I&;)%QWTW?Le>K`8#<NWsVhWEEO+;2DMxLF$O(1BT_lXgsEh9bu;AWk6LnWpEq zpLjl>c%G&>Q(e2T_>QgY5lFrPOy3}c+=~27YTX8FsLQopyMpdZD~6gjfyS1`wY49y zL0A@vXva#`#a}WKy|$#Z7i-d3G*0$X!+W<a{ovd*p(rTv*HTdHnt_*8l#<>FZ(h5) zn(h>Zo)hQ!#OLP&&*!;L`RFsKmK&8XabH<F1;X|bfYR;tDW|g~(VoWOKL_OeL~m>` z)mUUQ?fGzSK`JfDqRM*fP^fz|TB6%23A}~FT|54|KqbqJV+)t5Sjcpxenst|8WRIu z!nO<K_Ir{iy~KWRcl+Ynw7=&}9>PUNU0HvM6|xgOs(M?klgNO|By>0ZFD1PwZzC<& za{u$sKhiAH*>>IGwS09=@y1Wv%|q%Nz;LOj6fg+HrVG}D@kXP^W_LCN4$A2-!F40r z39H`$EOF_4m(FeFeN_~4UWdX15c10+`luj`oeZN}Cw8+MUvu9t^Jgu!TF7{1v;I~e z`6Uk_{w#?JcnWio{XG$QXe8^U(PUp|c(3O3%Sy4&-=8@Glr(`=dn_$zRgM&EicaiH zSATHOcPB^%q7PsYW?zzXsSQ)rB5biuwlQ$)M*2A#^2!{iC8u}?MGt}HjqoTifu}jS zJ1<xTg|nGrr|hNBp3zsIKT>*e@ztn$Dx+%pmdKA6mt`rS5-d_pa5J05%c@Nq{(K!k zakI>Hu59l5CL+duFb{&2JpJu{w?BMNJawdQpUUn-0UgLu4Q;yVAmoICE4r<L1{0}x zr`1umZluR6lhyh{Yct5@rfWPS39>}~^YlrA?om6XR!0Il6I&HxklvPuA1Jjjw$#{~ zbs$%U|J9LK@Lb!tPKtC@vFZ00dY!fqi6s1{ct!I;sL4g_Sq`duvx+h!&Q9IO<AKl5 zPkcVUFlGdXSff#@p{PJW+3B??jJ-Y8{fc4_wxn$WBnk{;=_y$gPi4)rNi;(;h!oTa z9VRhn0(#@u8>rG|t_k7}(efim^DtJ=Xwa>JWET#;q|;M@cGP+KUV31g&tDkSo6;2Z zYoNq_eVgu6O3w=zxBAzX7CY94tZ9)JWd*HGYULAh(XIeJYI2ob#mDZh3v-E)X{fNs z_ZhTcp|^1f_>3Jo#4+hrc44SRp1%M9AOJ~3K~zSVdW4(+n?VMYFN931U4zggJ_?y4 zAQiMLNx0y$OSOL?=OF#tQNNMY{e!b+%3F$e@arbPHC!_L1lT79uC`2=$G2*<@&Fap zm~v?5moLK^EuJzA=jI1`ZP%P5IDzxT<N3hzd>VLD)#IkwU2&WMQzWsNHvv}W62z26 z_YOG|&`3R5X_)QC`$6{FH;;8+x4PQwvv3wl*ak%z5aBUJ05yYn?0<fn>x<nSf<1At zc?p(p!%HUj!Dzw6F-lHG;YTLq_S%Pt_y3xspcj<dW!ksfZFK8h6lec-6Qyle$wWg# zz+EyCi9^oqV3_9De_l7u{`h*7Vs6P0(~sU5iiV?R)m?Vdy@6D@V}&2(L|7D?WYle( zk<H>SaCH1vomX9ok%y<3o54;`D^_Lf4a7LzB8)>(P7mi7CX}O@_$8y7q0a7~$qr28 zM<EYox#snAj+kPjjYYrdz;(M4qS%>3H)+{+is~&)dUC02RXuuJ;zl+h<HY0Z6X*Hd zH)d)e?hbmT>~|~&MaXPz(S<D=Wszuc5i-XHFab0Ano3lgpYqi!A3+&qu{i!ao*|~S zxWxrtA?lGbmgC~wR03w{_cScaiEa~&5=y%DKUNCwUh@Q%XD<Q&-HX3oA)&jZPd8Nf zKF+S9qF3h4G5}S%yTnZ>xDdYZd*j5<MHYe~!5)vIcgEIuU?wzS^kC?h5DgVAZy#+P zWV$Mk3v0hhW)%!fHCSct@Ur>;u3G2#9->-;K()-!OEZh`0t=I%xv0&F&-29B*H@+j z#mHxcI#}b2^5<UTN-08`8Q(LSVE&+InWCD0et1Vd7<F<9qug##&@F2rn^h{Ce_g-9 zU{CMAtg+D(kH^FF`ZOiU?3#LIEzV5c)IqidEseeswytx=t@#|3X_X#GNGUd(EF!dn z!l<PM|4o@!k+&);i(h3cfzk=;PnJ+|CdP9WQy5$iFue%692i@U^L!GEW&WbP-+E5; z&Gzu^7NOsUfxXbJwf^%GYNT+C6O|(?M=?ZPIelmw57D5Y=eY|8EBQq%#wz^S-RZbg z<f9zk=u1H8CC2ZPd2Y6#XvkQN>2w+;$W}!Z9CJKSV%N;&UXzsCUf&j7-p+jG#24e^ z>l6R@w|{^D-0z=enPuMX&`K|ap&X6PnHqA5x$KN9X@sD9#-9ssqJE|exHL-<D&W$b z@#+Tr{0?5RXuvBPJd|y77!>n-KJa)vy~h*ib=v?MF_c=m9oI7y$~&*!bv0*2QOc`z z1L&K5nu;D@z2C!|SS(|<-FwnXXs7xtJ+u&c<I9CcJGjF|QfUD5&{cbxW-&6A=AnGE z_$p7bQg>5>@y()j$urTOv_;om0nxvAN!UYeup5gCe)h7^D9wZF9M2R*1v!b;Z*TBe zcKh0Wh+aD65!Z?Y2Z$P~Sz^cbSB%|+LEBaE0y3}BREn&R<E>|9nC;so!E;RzVj(7D zpoSn+8<5LEw;M-XvGe+jyfT`gW8(AoFZ>_>=l^L+$G5wox*L~XLXdoB5q-F`%XQ{5 z=PEm@GE22I0!zQPt&G3$@`r_&U0#jCLS*)7Nh?rMs^*|wj~*LA<OvMl2*xlihRl&k zM7|B95lpS;ya4izh|30$tV7U7n3e4BSTjQ6^koZA2?F!PG7fn*v)vM;+G4SVkA%;f z8v8;Gct^Q@^CiyPDNB;m2&~>gTv#r>sTbo<05m<=B#FdPmX@gbZQW+JW$8E7G^dvw zLfr&FHOP|+7qTXYtx{|MGMAZI_P$802-`vB?rTv+*JO*ejsIN3Ct{Q|r}|Y_(lla_ zkG3u;TdYYrrAuvvH2x4elZjTQDa|MrzZ56mB?v*TB|u^KMVB)hLN3&h0)dQ~@OVD( zFaP{M@b&8#Zuc8*x0{y%Wwz|<HoaUMQ8f3_n4@iRB4wN63v!Dn6Wwk%FA-DO7+b{R zZ7OqtP*4F=BG?Yu{~&LiF5Y6AT0}EkMX}fClzs-<@#<8^o?0+mb}HLA(%%PROn+VG z)D<9`Wu$J3%@_I(6(LSEAZgvRH!OPTj0cHYW$*7V=uz#o>xTECLYduyQ9v&Z=B<vu zFw`rfuNsQ<yY%1sN!e#9fj4yNvu(;31?_2qOQ+!_=_nI1Y9^%?0y;b_audj4(RKD6 zNH<nKt7*3zJ3ylBW?R#)j;3^Z{5Vb?zt-C(5Kgugf2|^m23$u_6`y?3U86K6EA2(x z?%Z3mk=*&fY=lV$rW6;PD5wOMVmn<)t|KG!tg}YccoB1Gt=+?Dw9lCn4P9%?x?x^A z`npem7Yv1W`V6-6qJTUJDar}4Q48(=KHc6<{<;u?N#8O_$6=r`q9mBEgv>)gvjZ}n zl|UPUa%I8=SY%1M%>bt5`d=$LdZFG_mSy%_>eK;R9C(^=m7jn9iGTY0KjD76<2dXf zP*u$5nJPl-rZ=CqTs8}e49L00q@M0%X1lQojACS$y&byT3|uUCcPVfHSMK*ae*EzV z-ap;}f(h&%ChU6pglCF^8|Te$%Cwv0al`Gn;q7*}v?y-qy>;`p7pNe=YyjS6_IWW% zEykIs(Y9tuF7r}r&2mK!J8x&N$)@Sen+SUF@8cni&UwiWL>ZSLL^MT(wYlT8I=mFU zH{9=cjB}uO>yQRBpDKxU^LJ>Di9od$s|BR2(M$=VC%|}oe(Tw=a625T?li06Q}W<+ zyL@O7>xAXJP-duR9<GI!5S4;1>%P6uYpU%Q*0O5^yiM-?D0U}bQCG4(7pxtvn{OnV zsT3AvDOYOU6j|Q%b0~=VqA9=M7VfxV<w``_)C{5t=b)BanhBuZ@Sp$7f5CtKum3wf z-al}^-_cqJR58LWJJ-QM#iCxrM2A=udnPWq6ghZ~k^ZdFkR-a464oPWUiRI3!|irU zOud58kB+zZHypPEs^)eKaO`=Wc%G+=?Tol&|Nm)0E2>~_7E*JV)W7%E;W*vZOi9O5 z_13t{&9myOZheY^T1`HojVK&f_N2UcoEIYHC89P|&}HK8r{oFSG%`K7CbN_)*CueF z6|PYs9O0B>X54N!5D256N%mn{%t001*c$uoUpFBXL5eg`G7q3AKs?wbV#?QbF}^;7 zUM-@v8ZDv%Dc}y(mxRj=n6gbyHhXk2A<qfciNmkhQx)Rs$k-6CBAn(hRHcHAXYzVE zqPbQ`3b%%)-JOiy6xF2|3~)>QWD=i4_1W?6eY)x{NxE9|`Fv6|m)jKjeUq4o@c!|E z|NLM6GydCu`)_#v_`vPBd0ZP7%vP~-AgG44uGlf_yG*+Uh$(7=w=w2Oj^pZI@Xi~A z-I@;WxE&3*<G}4WvJYq6PJ4w;Pn(`4i7V~Q1@bb+z~k}6*TWjXV~qU0-5T944Zuql zoL=<rC60Udz>6o4?C*)>CQva?ixU{BbRoZD2oBP6-8DHR%B<L!>@hHIASczN3am6~ zR-<s)R(k7bcZM7tQ|4AbQFOM;siYUKQYz1)AW{!O4L^F-k5^H#zRrSca%&;%y%LQ5 zRc3GQaEzp0RAjHCCZ%FIFG7@fsJaMP1c%rn8##3;?D^uGU~gEiu@~j&se!Gp!>c@L z+<<OBne|iFY<`NT1k)NjYWgN<WiVcc>3U%oypVKhdF120+QRbI7Ww}1fj|EE1AqMa zC*JONcS@o#E|E>|tCyrkcrmk`WzEWgbdfejn=NJXTR^G5mduvi)T!ZM`)J%i;M9ST zkGtm_5QT^G?AGNLQ>W6XXD47C{lFL_Uz0JW=knIzhp72=&mPa2@1<#yJbwmSB)Ndf z20)f$r%MMuvlA;2Oh}Qp62V%Eo;M#(z}gscRIO_YnyU*rn^St3Mb@!dUSDBp$LBcR zzG>ZRi5o<MIExdnOa{`oAFxnep`3f8XSWJ}XEvg5f?=+WBHaqBdhnOhARop(-eWn| zb|+hGQq%i6q>3ImwK7AFkGw}Tn@Yg{oj8WA5#b<4zaX{Ee%jCu#vl)r6%UQ&=|jc^ zKS^77lyVzCa@|s^F9l@-RgZL^K7J&X*QT4U5$tgsxZSJ?d>l6rQ!acZ-I{%-y4ymO zcPd5f^+A*hHDY7%TsKjzHyB-f!`?e??XcdMQ<II{G%;l0IS0;p;vA<xyK_Bb#RISb zO_*>$IvN3^acV<UY{b7Oz!us|icMr$53|xOsVbuIunSGgBNcqtOq(SZ1qRL#(1`&t z$V6%GbOokUO*lZC$*L}!7Ao(YUqTzU#qTj^%Oz!hed3v_KCPr4y`n~FyGGWAU0}S~ z7o`?Z=eB`tjxt?1E7~>Tm#qRXe#Px3u}Cs{NtWF<9mS^F1MEE<!DH~cwng4TWAmf; zwnSjQ3A63?26Bn(D~uM@DjqvVlzyr<jySnUix!w=#CimV7+2q1=+$x!+GD^rAx_;a zX-j%W)yMlPjl-`Jf0{!=Cdr~LRb<;v>s~YWO7-!iDQ)(=P;1sOZ(59UemhK6D3{1` zhm&}A!k8219C*$X=R7goVsAn($IZu0Ck0U@o6-Y9dSj3_<4TCV*S#|QH-aFooj8(c z@&PJi9Gx!16;sTa*4Ua2h{m62$sSw}^HlK-Kvz;wYu+rgO`&-TafQ9E*yf9?s)ki+ zg>Y&K?bJm+^3!|FkvQyKmLdCkeZeiS&$s$kayMUU>GHbiV(3vB-!N&KkLcwq<5DwR z9U@C>AeW5#)Cny8n==Sj^g48UlMO|TV~d}ALpz#Bj0aN9Msi!uz1T>$c^F6Z0@#IO zMEhtBn4WQAKgWQ(6=M^K2ISRkm%?OZ00&?EbOFaqxJw|z_MN08RFSJX?Zj_hP6C#| zLqLX?XfCkYa9+*f*yuUz^!{^LASdUVkvb8pQf9W!{c~7A${5y9IEN)BpJMtI(9*wX za2>;M;gFQNK?zMSCob`%1a#v78i<lZEKRF{W*+~!QEICzOhocZBqDZdv%*>nw7Rz_ zcFoY52f>7K!6qrh6?l!TDa3PHOw_g1D=03J0DG=~Udk))PjImFX@e)&$<K+XjyhBd zQ;?!2CN3q>5-FLAaMh=|QC?hYbreco7JZipxsUr$___3QLlDruY2=uyXw7Mz{t?%n z<lxkhdrfZ)^pywTWTNOiA5PJMTK@oZ+6|8x=nV|#Ewbk35m^SscbuGrSv(y?To$cf zv<WdE-#3G#DHo$4ifD!|gMy6BPIW4h!ebjicq`ZtV{r?vPD$SVF?HO0l?z|lk(E6V z1fw~oWiI&VjC0`g@wB`|N5t7$u{E|Qm67+Kt(hJNPh?yPO)z(xj)+(Y5CL7(_;DO3 z6D{G7WEiDpgO#d1*VTcWTQZ$|nhlJpyL^?)RW@q53{><H2E(8jJO!*{*>HC{zKd-p zrVLE!`C!BgO_8CNH4;jEm>GiB;+zW`rYJLf<QOJSw2cv0L_TzN$w7B}r|vxfx^(CC zW!C@dKBuZcD{R!NQhTA%UWI6`1QYMdica^RyFGd~Q$RLe*?aLkoWSYV<rGTIX%8GT z`e@KYpkulm+F60qI^xkYK;sOBjpw9ttCvYiywpRU`rGxtdLiQZl!*i*zW8d_qS?58 z7fQc{!a5;aRs(O{0M?wgPKmbn1y`SequU%(8Vi4>uY_E>te%*B;vB;p<<<yqtz=^` zp;ODUBH$;vHeKAs#6H9)3>BQd3G_&X5eYRLCATgxQ+k0NW-?9g>U+yN_3P}6cgJtV zg3NRs0L|ynNl2kGl8h^CG-RZrk4x)CL-#&S=Y08Dx3%DbrI8#o=fFG%&S$U+S4NxU z0&!X~!4ht~KGjU<S%557+8vVdb5`Xac8$R{VJPM*Bvq(NKCv<5lUoqiU)@12R2pa* z;Y~Z@BpyoJASZaxGL}GLXi){m#C%#%DbA;js0bKyCR`-OTM>C)aa&^!cV9Z0>FCf# zr8K-0KUx)ut3=@)KT@;~vVbHq*1hP(^It$Q-p^QR$7|{nvh{S=(cWAY(F>jqTWPd= z`<Eqrj$!(ObGS)s-Ljcin(=cMWSaVjI>x!;o{dPLW`^j@oWoeVaDkY%B~DBJ0~B3k z<PJ4618~tr5S%^ceY_V*LZZnCh=pfKzLsT%sC@!I4S>D5*Px(jzzFjNF^I%H2DEnX zxTd*u)i@%0adG*ERmiJ!Y259KKtIt=%cC3T>3s@EHgQSx6-j9(*i18EH!WQ-R8q%~ z^|Y_Rx{Xp)AP>42`c)HKrK{_cF6k*nP=wME4o!M&s)k<UWgaSXV-7Xqn3)r3wdG-d zZVbr7UMoFM%-#VaoO3#2e4iREMQL*n1D5KP8BHeWU})n^vP~0>mP8|%yD$JDC9wW7 zX<4G59RCqs(sp&DbNjX5$C~=@<nCmt<+g5#uo0BoaT=0#=W22krlc}(oHLb*@eE}I zTtw}KQ%=^%T%8bIQ<+;esipEzToB~1V34mW>P`uLjPp{Tu1^0toj6%+x<K^aV8g`% zS#tTrOds)(cbEQlZwhw>WZ3CL8caQuw3BrrE)6SE)wX_SNdt^luRZ9}ET@b;OOw$Q z=y1qlL}kUIQP>#CrN~jLaNGcjz$k7ARP@?Km$pSe>2`_7mI%8AK3qG3m(M{7<kU^S zPP>+#N*4P>QSKqF!jxqJ<wk%xF`f#NiO!Ccnlo>JkH;ekPz#tz8-6`rBg<d3$a8Mi zSOmdAm6pg9O$gNzOd6Yj`X+E;Qlj3nYP1}!Cub+`&<=O=T0Uxj-OOgIZxsQp&-01r z<7prohnIvlfZ2dHX?Tl8ExMh`b51LV++z}GI+miNWd=2MvmDt-6E;G%Q5tfRq26$v z!y1O;EUr|SQ+JXDswuBw*KuZzUcL0YHb7m&ZMSFgMnkH!QVwapf<O_ASa%mN(@#^z z8wf4f*-Chv!22Zd(NG86`{G}zXk6&M%6m>;?8w#0xI}qcX5pooDYk3soC`Irt1iW` z5gF;;uRxSGvibzCuC1bM-8C%Bm{G6v(HvC$w*JQp8-XsZKq^i`+9IS>%9Md9<)~Sn z(c<3KP)mwi4%Vr@H@ud^Zk0Fw8^`8Y+=){Jy>}?gdD(j`Ao2IC059_<SNkTGLqHdQ z#&r%(1<SL;I*JmrT=Ufzk`y)JR70Gf<HY$qjUVBX-lWP0D>FBNnj=t5S;?_5s_%?G z8JC<&EDW58WU?_cmWM!hgB^LH!{IwP2cGBp8EvdM3!;cq%ts*f`_X+NuboQ$nxnEf zbj_u~*tGoEpdhL5Z;a!(qxS=?b(4oGa7+Q8!%|~(+JZc8P;~G5F9MDhl|5aejk$Dj zcR=Y{xU3h;Bo&1Q7Cl8vBS!K8lthP%2-<2JxUq5-iyMdV3U?^P)_S7rc5O$I{#GCP zcZ7(&Nwt9}h+a30QjFG3C>Eub*E$xKz&2KLMnH`7RIXe`Env=iW)>(%9T$6fCGyPf z`e+k<b`Z;!b655CuRGzAJ61(TMY0paLtIu)L){AY?CF*7sD=AD=EV7Qnzb+fIp)H- zyQ5S%EbZb`peSLh^rP@IQ`YRS;YDkrg#|&G05q3&zz?}V(@|}FdZRVy+)?tCPziJW zmMyXWyx;elCpw5Sb1J~mm5=ZPS8S0>Bg3=JE}~$U=yK~g+JS=_4iF9iI8Qu$v>_^X z6$EXaZ}l<Y#Exj%9ugvpFY^bqjwYwS8LWCK0;(0&<ETBLV~%MvQ(je{mS}GF55k2{ zUt^yNRS79H!k!%S|C8;OUrNgr{&L%=t)RGk?|+9VbNzcQKK{i@)S}NXhq)VxBG&wz z26%N4{@O^R@%vi0Y>vt)0^*shf;q)SKb8T&jd0~&?(~ZVO1-|OQL-|et+2_rx5?nf z*J|FE$iO84V@!Ox%Wk;hZsS3UK#0)dHDh*(wgGNexxAjacs6G$@x&aIVcEu#A1@Nr zfQ$i|BY74I$)5!-szWpwWny~ROg^Vl4gy75|A`3wZ$Ew%owJX?WQj;NE?KCI*r(;} z3*VbOmZIXFMh}5(VBD$UMh%@A^d>lt2in&c&M|f#VIHi6Swnl|HG~5`%Wu3k02Jt^ z>PnBHOD>xhfs;7NIGQdJ6qV8>^Vc`8O&bRMy1Z!Dt+UH&`I}qlcYOJ}5!8%6y6D$+ zTiRL(w%;fU0_zoAhxn+cV&JmGMs|L2bPtxDLXqhwewAdF3!eS*%hd&d%L%9@7(DEa zWb)s@&+8?DqLw^*c`mmud=(z$Go-H+UKed0x4Vri!$l~9=Q(WtK1VLvIQbVsNFmBO zf#66-^2HU;j+Vyrbc^m7?#^@KcED?5>>eBE9H*0}CPe0zEfEuj+NY4B*sYs=7;qXE zC8;sc|Mtfp?)u_%a3$a&K%SdjQB%01jtWE6Ka0p@<3CIGKr3X~)(*VA`6K%Uh>X(1 z*3_)!Ln62&>Y|WiipRaA*9bS`_yyUh5LvbtEt@<ZR61vR*_BXU?0tMsaDBYi(_PaA zSrR9leN!&SrK3-J5v*J`LfVM5UL97=`-KgE{f}&Al>P6B_%YqP+e@$*b$i<$MA5mf z|D-1H@dRMx6}t41sw*=YD7wY6<@l{&-buys@F)ycSg$i<cUsZ~#z{piS#jZ8kSakp z{{`dr_J-bjewoMfiO2KdF23nVwdpBN1=JD?UTyJ51F+sSr3lrgL<4Z9{)8PD7u^2P z=&w@1zJKOzsBAne6wzA^1$hY=EivzQ<FS<I{_%Dzy82q1a=uvV9Y}Jqh+&?ilWqnY zP|a+oWc;NVBF7ig0~&9R=W;7<jvS+2Tv~%I5vSfnh+d?>a|&jg5N*a6U{0_EDAIj& z18CN(S=46Y8-PUSpjJ?+I20sCR^Qa+rRwAgptz8e84HV@o$qZDqs1~x-^zsb;)~a< z?DNKtH*@ERTTRJQrd?;C{ys}E3gM%#cn^G<(%gNP-hHoa>zr+gl>7i-2DgsZyTxAh zBPl_z<|lf|1*Ae>rWYRH(iTdITtny_inUrxS=RgE69D`7V+@?<X@4ET1DFXm&5&20 znX`woP+3P>sKs&ePagxyTuIynPeiVzsYrSD{p1%H<kgWUEtjkA?71z3G;|r<n!n~f zt@EAf8$We+iK%olL+v%!?nXXS_LH_Jdu+w`h&VfrY?OAYCG&y_e7gaYz%q>cqRVZi zm9p!Os2I;R@3sbwmc02`U3U`KD=m<Wl#DJwh?ZEfkp9}k?)<qjnkrPlQ~<6(QNI{^ zXkby1@y2c^m$_19;w9X~C9S$nlpKB4+<00!0ohoKz*DOBXhH#q=k3O%qh89$^cgv} zhFkcoa`CbF)fC<lcf*NKSlCCysj6%ZPth0eL<(18<7ieYw%*Z>zI+BdM8DMalqFx) z34kuCO`Dy?0U}aGQF3un(GKZcf`QBvd_=7HoC*0Lc-fg|rATPv5-6f&;m=(71}K?Z z{mveOLxrp>6^j?QT3s8!8XuLLfKqWMuE~Uz=QegdoG;LO2XXUo&>?#^NjyX@XVnt9 zB&yk<iZBl?3_)_CP7P?ZXH5#!CYpyX2x)C~H4~Lous8l<P2X_|ZAE&~(tfXNC9k-z zk_V9EFXD`(me9d(4Te=3O!qm2lTE*)w3idfZVJ2+d~3u6%5JS%Of9r4-RJ_Zpt7wm zBJMhQ5qW@F=kL=7ld>*<ycWJ9y|mb33`I~D+W^R43+FblRyYXz*jF&g;?DPIGAiI$ zSJb)iCO-1?qg~rjH4fLFpl*|ZJrqW@WK%|DaM1+lCC*D#k~uhK8Y=$zFr7o3*t(#$ z!en3&HL`Wnl{XO^eLO#7I+knLDITGoaq!3{@us30m6dXQ>1}NukJ4l&P`T}TCV=0x zZnqomcl%%_j4Al_`++{sxtb<~4CzeVFs*S6Q@fZr)`Q4t|6Lu=#U+$dr}zNLH3Q7X zd~5zP$d*;-;g?WIV}K7!01B2<D+nsz6q<t-n0I(XHqZ)mLKBebWxG>tC{Ap#@nAUV zv~>Eb12Il1xmtFpI_xS}Q4^_+jlEaGS&B$t>#I|lYzJP8*aAZ?xrPZV&D5ZINygbN z!}VcgvUSt^T9BP(XVW#GUmvYmbUYX*+2lrw@G8f(!GVmx3R=<WOnZV872%gwWq0xq zmS3f6?=win<+kcLDk^C8sSAx3uaR}m?WQ&!4?NDNkN+N<QV&VeF(MYXmbdN(Y?BGo zz$_xr9M(gab7szBY94(3FkRx#ATN0ZRl!J9L8{B&5=i6N0AlffyuabNb%;*<ethDe z|K)$8&x-!S&O%ozGkz@9UF>kRE2nkD;-itRE~~02kaOt-Q|$W-g=k>`IV^LKFgiiG zgOqIp@L4suoG5<H;kH6Xh<4aXT=Te@{8WaGortNJpvv#$H=r@*_JHlU=XFAf?hk)Z zl@%-Gg6eG`wFP?71niL0Z}71`<E4Cm_K4|qRV9ysl9a}3-Z*kql}&>byUrBr1cz_n z=I&!0jdAZCO%zY^V4>3FtFhUnuKJ6ySIu7V-G&t3#%XLWXDwQQN~$7kvwRs7n6lBN z>+hPQ>@*`ucIcna2hQ`EQTEWXP$_KJycTO~$;XWM%OtrIW1Nlyo1U6I3yE0Eds&Rl zl}1ICF%UQOvhXAQr-+fL+>m>3=-sH@kLMSjgYbBs_+S6_7yk8M|A9XJL<tvNg;T_u z(b864weo^{gejqpp|l!K3V|jcikgWA!tmotv#alrk!G~r119bfzly4dNOJG?!419j zECHBb<C^J0KH6~HRObKK$5m4ns(Be}s!p61iLU?|m|!9z(v2a9K&peh*@%}Q2^2c> zel1?z>uq!JXS=tbKl08103ZNKL_t(w91`yLj^0*f-@831w|he)!ugyl&#xJRYO(aD zFIsB^KA!{s_SY}``u!WdcN~7Q+<FJOkAksk+U$!^87I>kcP*)S<>Bv<SXtBRD+8fw z^jDT4(x4@!)M1ox&3LA%^wRzF$F#-&cs%fYK0V5Q*JrB-u|js_9F(&h3*4495>IR3 z6?R`mi?b(WQ!x@{tUVbS*cz<7Hiby<@>^JIe(P;sPI{+b#jM+ZeSYF`o|qEmVBqU< z;`8$pUCOmmX-6F`Dr||`@<l%*zt2y6u03#ibx74OP8Wo?P(*{95GQB-VqzZlBpHqR z&b`rKA0@ftEP^vy%>}riuK%5o*Hs49Ko2Dk+a$2UK#e!6sru2-o9(Xsum#cLBMdKY z)QJ8FHiNL{7?nDsb@tub{(AIoG#+*uPtjLM85>d<t2m;tZNq6yIF5#+H~U$8!`uDH zhi^{77;DOsC(jHjyJlbsl<*vifBBbR_`m+|f5!j&|NJvV6-PgCv<935XK^?XsuR)! zX6q)b%divZFI=#GwP{OND9UAcK}i`7ze0_STjfq}g|tSA)kt;@i-~)Dec?P$KdrS; zfU(KNIUI;-8}<@#M(o^JA|l@aR{p^*AC3%4uKI?!QTH-VtW9BBAQ3z8G>vD^G4T2I z#IN7K@%#60e7S$2HERYcfb;Q0m&O}tljvf%+^8}pg`G7Px`bv@Vcf?~O;n<=)xJ1w zAs6muN+b{xOv;7Y5}NS9i00|xVk9cpes&^FjdXfh`9)71Z?bJPvW=IHqvOv%@A%`# z4S)VT@bPir?S5F0$kA~eH(LnD4gEOK+AV<+ri1YKEh*m<Vz(v+_+a##b;IMdwVl0r zX~SMdScx%2OBZ=rt78M;4Cu5*RX^A^sH5XJY_>nf#5w*y+TLwDk{rht+yKqorHIVx z>h5#a^qT+wqM4`phQ3urMo4luBQXyENr0rgl-280ujsr*NG^9H2yE<2X`M~!*3Cdx zzdjLtFt<8Vr3-%ial_6#e*X6#IF3^ji_B3PLrhsr%z<;jrD)X_3V;O4F9q83oCDB1 zRq7zV!=O5KTf(M8yA+>tp&ie0=&e|9|GFt^_Hn~HvSv((xdls65HROr+JVzX0Jr+9 z;2if$s;%d$HJA~hT30lxOMS;GUDAD8!8z`CyuE+m?|;1E=i57SKJ}a>#(vqA$X5in z`yCs-%m{auxSOtkOEvivw`1(w6`xt=#VDm(rfP-ao>$%p3fxwElKR8a5{jt<3}rAE zftz_WNtR*&CAvXLq^8Os*`;7LrM7g0@87@S|NghX;(!0^H~iD@JAV7V;oG+z*UOH5 z-?48OY}-Y5+vx&M7Z4cv6dbn``8a?hgR{w}B_mNmO2EF8b`+Q0S~kJ)ap1VCKf#%A zTKTDuzEs3obi3*7pELO_LkX+0x)Q7h|0u@tBLdgXBQZ8ok3Y8Wm6&na6Sn<=fBCn6 z#U(LzW*`^r779}B!?MqP7!{cA0K>2Js!o6g=V_*pctae=Qf8me;DbcFQni>;Rb%I+ zt2xyaDs}=eg3h6bM_YdhSrX(7Hfz^gReKdDC{!Am=YAZGMAWFiRh=h2XM?Ozr=%Sv zS0KA3TXnguxKPyE1r`IUkNXX8Z}0f^_KvrY58UnwWEN8``cX3Hg4=Q6{o?~0?c5zw zf`qm+<kVoCnuQOMg@HK+N83+&RaylRtrI9f5b(fRY*Dgb%%D2Un3+K*SCkg`(Hw~@ zuHe&P(Idf{zM)B%`(C-F_qd2JKWV?bzTlt#`8WLK_ZKjLkGBK){lrH)u&0EJ1uX3Q z-rD~yZ6Hc01vrn4^M0V*4#-_aP?ED|-jiTU)W(REj4kODhT?$28nRL<FT(yR&HLWo zA9TJroMA~R1?AK~cUqE>y7Ewa_%>!Fa5wd2#w{iA<qiQOU9K7;nzOa5+zea0^OJYR ziQygMQl_ibSPMg)qOK4#|0vRYDewf~BH3;CZb>|KZZ8xm)U~^nQt<xvhTH9<CHS-s z%egt#3`Zr%bq+;1)V6_W$iL(LcTA!a<e2Kg->~gEPSxjt96OV14g&~mib^uxe?4*c zTyW0?8H$T-B_n5cHtxO4ICIAP`#b*j_rGJSMjteoQ*_rD>MlBkfNTPYX3Om)nU!GD zc|g_8KB(XWSGzKmQUY!ESI4NW^S^nv>K34QX=HKx>$VYWJnv>bX3^4-YeIubql8GV ztIhW3z2N<R;&uwQ0=ySi@Ai~%**9$a)@Jxxy<rmEa%Pm{gd8WzaVR=%=8cI6dot%7 zm*bwejg=j>ZpNQ_(^55BE%n9|Wonw)XR#F$8>>tu&4$L;u`B_UMI+#I!e)nB{UMWv zeX5^3K7PF6<@bc$Kt&qk#=_j+EzyWZBwt2*|K7^dqr5}3b+5-mTNBxgRQj!W=F`C9 zXt>gCxNE>m!Q0QDcz=7tVK-(omvK&3)o>F{1J%dnnmGx_$M;M?!LZ%1c6{4*T=on0 z%Z`2DG<8VDG@;!m?&EE71y87N-#Bf!zPuo98;<k9yA@fDqvwVd<Wlf)d&7?(f8hP? z0~<3(pL*}X-;5J0p<N@xs}*-69ay#>sg!Q`8qpUG*7kJyrjbD^f^QF4V1^;C--MN@ zLPZ+WP#nEBsL7l(mZh%jD9DH#5N5X2C^a%$ACUL=JN7Ktm5tP*zIf9#7&<eMlphZ+ zoft*BwoFCWW<@M|+<Cuk!bqZeiG+kr)LNUxaRcDA7f_(IknZL)Y3rFO+kUzloZ78i z!By#I5MTl&0d4jm5@V-?jZ*)xE0K%zXCf&`RbSqWF|`O3?g+eK6@4wiGf_fljP!^x z87$w&&{OAG-)>V9hww{FuJOj4((L6T>87Rx-`?Nx{`S_=lUu@0$swvOW-i7}7J#sF zY#fkEGD*&+J8hc!V`F5M%)^o88dEc@v!gFWDMo!aS}`YmhE!#{VXqw^dQRcT#|M7= z_yd3Y+uxCM!A8U*$I7ou`@XgQREc6bi#HHq1hhZ6v@`(Bf2c;}v2>r>78Yl-BtrmW zeG@BPxhv6%oAG_jR&Nyxtbn=IUz<al1(s*tS*~Cf^_MKwtkkdxR@8k@`qz|z%|7c! zk%gUBvkS{YO4>o+-&Rshsx)Wc`ns4lpLw9<9Bb)IHtXta+yyeQR(r49*0EHxR6v^` z?NES_5_TjcXtIqIAfM(Npm|lW2pP3V3wn%BxC(qi>M>+RqEi$JyO_AXUTPNuQHcF% z91W@{xL5YOL?wcYH6K(H^}Q6DSddaO?jIj`e|u9+{n;b8{LiWhJE@0#45VWHJPnvV z)dH)zX1VRxwr#jxuee;)6a|%wP<aH68qUtZ#TbUAn)Q~ZS-6{O@icG2Ggs|`5$UpK z3*2uv{P^(){_DU08*lG#NNK~yO^qdC$2w#(v>RxVYvtYqM(`>o3AuJn-&QvPwY91J zF1wU-Z=x}z-8L_McI_9j`S^SHM;Y{V0~6d)c6F@qk<s-ssR_D@dn7xwTO#aC*qHUu zCq2k|R;pg1761lV_2Y%qW{jn8H|l}koI4CH)}`bFKW(r|QjiKE8*(qEyC^8lP_lCw ztw<+;FNDj5ak=c+z(}pF0M4_3Sp`o_1lbd0+mHn~kF$fSQnMX<!5a6gJ|Cf4xsk&- zO0$V4(?obTW$GhERcKZYy~B54K9fbnMXNa@S`(%@zi_8}(7(UEzvI`>Kfv2=y#LbH z*;H4ViIoGf@1xMJyHynxQ6*+1@65{`SJ}25*XzYhRmp*ky=%}Ao2vb<R`kkRYzMy@ zmK=8tA#H%8jzEWT5o&<w+uIxd{`bG*=g*&pj}&Y~W3ci<r%priiWi?d_TS2r&f^P> z7Rpu3(~Cg8A${=)s~;J{K&-W@&R>N}!y25fB48Urj@LkA5s1z<)RcHO-dLxaNXa&v z6#=dI3hE^mEd)vb8=J=-nbU|QLP-QU^_per4`ZVGOI+mD&<-<&E`UsRS>FVa1aQ$2 zi3*qs63pko&)ZDcE{w}nF%BjMvK{_I4^Cp`xN~AX{CmPlXjy${708sWrTWO|J#Kb! zLL*n-yC#Rxd|~s|t+M=oTlt`LFtD_))4jv(pBpt<x{>Dn_JNO&59}`#0XuReCN{7% zq-j_6Ymcv&Qn2L>XDKZzuCH_%`{kmxXi~b<P;&(~1D?7jbQ=_Do17DOJJh%Pf!qD2 z2i*aW<L~?Uc*oB_e&W}!Um6f<)_vP31M%&>z#VkzLJ^E6mIf}#%E=|{YN^jPJVtrR zRCmN%+)Yk5u|;G@krXFzm%z@CWR<=`q%iZ4XTwrtFDAB*ICauZ4QfbggoLya(#D+; zSp5((K{6W<m~Guw6gIH&HIZXh4o|tGSM)=pUhd{mAWA(<04Kf0+y7O61u-xAEn&MT zfJtNwz_UQ;1QX+ef}ItcDd~bcvxenVmgI3-3a<V-T%3ESepewFHD+j|dN(};nwMV; zo-r9Z6?2wG2we@5;c<H)oxj2@u#8bHP{!!>l8+t%j!uEE2arAE&RnnRbDS!OTek}K z+Bs`rN@;;B{jyW@&|(Iox3+nJC0M0U06LD<jY$vvv-iWi3+}i(+45O`SqE^t-|+ta zj$dzY8V+h>^nTrIHXs%%H~-ek6p7U$stW}TvJBx1<X3-I-N2E4>n)>ve69#J<IjdN z(ZCHSa(abP-rl|MXect$#3_z%--I)YFHl`WX5$6eKPP5v$-+<>7KNsVU%^4>ui6Dz z31HD^Bgra$U=na)wK_imWKo|1i9{G0;VXN&+1?jn0%_JMXwzTV1ZflP21La!HRC}; zD3dW7cbjQ7iAJ^pzB69HxTFN69S7|i7;@`CWOd3ZV%BQI{=d88*5uz#Ij`Fc&*gwi zTJqLvRgXauIUr@AtJbiYD&(?VhRMvf4xAyoWNLkV=V`Bl895~rgsDmCW~8i?j7+s{ zI=357q<SW{%uL6Js4ms|^BKhw1UZy<aMWFWK8<<Vw;&@1RMUzN`*XK@ECQhbSfQwV zgxl?gkB@iUk9%8Nrj&4fdC?Hksp$_=R2ob!o2Pa&eh8^Sj(izzX`dO-o(%?90H`^= z)WTDW7=OI831zT{7O(ajMwPL@m@K62>ZO5y*`vL=5k^`#rENf&(QbXRU%V-~hISJg zCGI(PMxN0n{HZOv*r7iP<SzDbKoNZpR-%fZ(6j{7p=J%D+@Rn00`LydF2JS-P?2q0 zrn2%Cm@7kY15v?o+_8NK_|CY9AW?$Qjx(#HGo8HvWV5HL%DXH>SZcFnbCz685Tp<R zUYb(R{W*$bX6*(V*TC3=Y+MFiyGnPg&H^fW`|I~(^Q7nzYOPBFa3VK_>1kjeM37Oy z4D5+jM^V+Ml{|D74eP8aKh^u+JSMZ}{=3dss$%gtIvv`lZ+qk2ruIYwDDO7^R{-$i ze%ISRchb>mhriDM=Xp9HG9m3dt}oY~4%`ljEZFkV@@{s!j~*aB^2&QJIT~efHfaUG zwD>}kosl@;OKj;|i~}FI<HM{#gL7=O)9I-~y@QcvqM-tj9%fp=HqW~Fan^QQfdK(s z2z+7ig^_mFLcm@3pQ`XfSvWTD>y92rLAe#=n|1@GP`9e~vSY46AJwGQcH|oYJM{Zs zwFuOrq-T!%hi|#_HU8>)*+2|j&jh(9(ER`x?e30~Kp#aDZWDE44Z8EtSz?B=c%M2r zMO#op^xwy0IIU0^30n4Esd*H7IHl6Z-DlejWU`nyL)%h!*W>nSvw@{#w|7B4@Ax3r z8(9RYWLzN4d{&v4=4_oiAXk0(>k9Eab&F7C=>Wi6!hX46zh1GYWT0W`;wTY_fqZq_ z!p&dMx&}Mcb;du=1NXz6i>my%hJ%#id;;B}NLB!@S8SbO|G-vub?800g3;1ZBN)@k z0G+MnT7LM@Oa#CORWjPXP6uylp@6g;(_oJ+gBiv2JwjHWIG?pKP8_)3Gu}T6E{Smz z;10sYR&0e8&@0yNV<+GO(3Qd0gml$pUD|q55vL6a=2k45J%aie(y0Z2ZrTNC@#zjf z-VdO<@`QC}A}v5y#`ePC3$-yMrRu+DfUC{a6;0pvq><nzuHyXyl!D`)anC1&6b!^> zMlqHza@N>)?^WP35aofbc?fos0&lfC=$c*LVa#Hb>Q<aMNOMc+VVixOQ(Uf2hk3>9 zxYDLBIU502h^7@o@Nu5_`Tl|9{-IsYc_QEMIBz$U<J4HWQ=__@j~{wyE<tzxX-i;J zPk#IU9j~R}+_%=TG$){(alhX*rOL7v>$qKu&Hd1ff_k_$Jvf_dQE3GzgwhV<EpG|C znS*S2^gkN+0yNlGR}&0O>p)=Kky3DJ9p^oN_{He3@axGc|D*vY2*!|;wavWN7&HOC z^1@SZ?IF5-WV~HY@b_yI_3Q#%n6M{8*$8C^<U*jAgzfc$%gY7V*9-RRj(tx?Z<ZE| zm7v6*I;)Z~_b3bGUQj*?@==WMF99*{Da&vsr)CS52(&Z!%1GCQ?W$eKmMS30jd-PE zA2ds^#B3W00#icT0Ld9gz9Hk(dAqtn8>PEc9s;C~D$%5Ba9WD4$-dwQ3nQ64%)=Vd zG*FG-QR&gukRdqdP%#E*w`h+Iu70DJ*H>Jw7i=lv#R}!gf{VS;xBH1-?@AOp?{}QX zfpQ$k#~IsqC*|fg>e^FHJ!4RyXujVX<m1HscEiW}n{@y-Lb%T2%$oXh9H;ZMEKw=w zMjVQde#;5m_YK#}j?1=VlVxnG1iNJ!k9VCr4gDYOpy^>dF#vucMoU6Iz<8cv%r>SO zlZ@H(of|67F*j^4hA@v7Wg*dI@jMHTLu0QGt4UX4<m(0amXNND{Q_LBjF;CP-@d)z z<>iX&%LV%-Vc)np6F2h`)&juYywGB}1acANErae#ANFoE!6nT`rs^e7(`gEuyx7Dg z`<Ao_Y~A%4Le99w(C$i(F@Uxii!!N8j_530$QW`>U}Px1>qZ(|(b0mN8hp6f1O2*4 zmyz4f-lz5Yd_)>}67`|a=m8|CJ|i|}74&py|FkkQUSGfA<>jRTqs)w52s<ZiAn=)y zjsqXZfpg!H_Z|6Azy9o~zn;06s^gW-{i@8|u{R5}(%5<D{lLfDFZ}%DCyx8AsRyfu zAi&zD1M$!5h~hQeE^rGv3-P+|xbB<sR%WDMVyetI3J^`^6jS0wWNkX7S4f-~{&@_% zbc-G7v|w4K{!Rfh-u+D)wkWiwIfw&kfYN7wN8~sGP)ayoUqFBP4d4Fx1;2kIyj%#^ z3-G!#u3N&sZ$`;f%>;$fsq?zImZj2Nm*v!m=E8s^M`|fP3(g{`F#8rD11a~zL(M+j z{P$|1v+voh$XvLnWd;^zh~4<76zrsYf_u(NEUJK<{h5>)oCToVy8uTCua`!Xk5@ww zHtsvs=y-1gf`Ov}>trO5#M&yiVh&OfQ)=FM6hZ<z2V~nfe0zPx^>Q^GM{0KEY{Hy; ze#iaehTGdaC@Up;OWM|tm<OEBU!&0-0chV9(9YRhuM6(C8{U5X!rRZExZQ5SIHXg8 zC0e(8Pl>@=4o+L)5C6uj!0)!<W#4d32`th_06)R^%zAQSiYbDn-=Gz|1Ll?--7f%+ zD;;7R#o_a^O15xQ!=eT7l~8106*Q^nWR%{?LY2(HgG|-ZSyEyRD%p3WZ{P9q+wb_x zZ&&=&ci?3gY@D$vw$j=<6zQn|j)f%9(V_al8M4%8=xWX))u2(qEOP>xbH|!6#8yy8 zM!pkd=iXhkmYH-LmAk<ugjz=-o^(QlLJEAIxnMI3x8po}#I%K~G!I6~o%9uaJx4bt zdrL}&6mBwJ8e`Vt<1vv;I&Ihh&TWTm#pM)4;BoYXU}k*#_8nW=T2@3e=&)@7o3ium z?E^o5{%U%G=H_DrpWQkK;^@>=ZN@|d_u~jQ_NUGK?{Dw8eS8=dT_!ID1m1&8Cbs>? zM+iNG3C^zO-ALO8zNiLa;{@d5F#wtwI5bdzC&yL<!w)aKp_wfllWK--gE$WVe9Kc$ zC&rKo)hgiR_%TIld7pr(NIAw=+q;Tl-TMY)W^C72ynOqP-@bjr>owuJ7wnut#<eRM zO;4Z|TxV-Vfw_UEQdGY$O_Cb@3EIFSW|mkqe?iRIcS_)KC#6uqnSgWCbzicgRw|-W z2vy_4R!oaa>}lG1FftN~B$QnB7X?Q?o5C&IjawglW&&t{X(&3@`b-Bh6uerm>&8St ztH30RL^TOSE*)JMfY=Q0?x(hHERdLjVn6eFoVb77aJ^oE?`Uj17-RJXgx`Mq4L^VW z!rQMubjMySSE(A&R8Kx;7hh	pg-dr+t{~rIbL!@lo$y%v3i6rNw8*b12eTF*`9{ z660$61>pp2me3`Fd>ktx(1R;@IQ-;&@K*W&!W7Xok?{+n5^;2eabTXTBDBQo4gAaz z6KXiL;1tY4Wq85d%oPh@9qOKd%!KRZg72>{c)jjOTlLHD)KgvQX%K4tFaQ&Wpo>vZ z03pjc&|XkUI?bwF0;9rv0{Hi+2XnfeIT7;x#IY$kiOk-eQ*{5YX|(<DQ{&RB&Yh8E zvjWgTKGoTm{t(x}r1?Kc%QzVA-@K7bsvS@_=^ax+hR2UwT97ygD{9Wjjd7Paqz$!{ z9g$$QRZ79f`v+*-K--4v>!Gyou~<QkVSfMpcl`YE1GkS4<l{sxXAk`F$opzC9$9Lu zRr`ZKOU@d(S%J0Zf}%CLT_{X~OWJVVwpIXgH6JZ{_(5l*NX<KcqM<DGEr0;QpG?M; zfAB5yQ}6)o;?bKyb7Am@exe?F4}L6{nqy9$7axg4^UzAeMAq+mVRcEmCdSJpVc!#k zRf=2RaG1%5Vms15q*^dd-kSs~h`WCsk=Z-Y0jD}DaLd+nSHIpn#^<LS**wn3g^{)z zHC>d7N}AFnpoV!!bq!`z<^o7I$jOHKS&DLF{q#*ub*SO$G98RqxxMer5`3`s@}?f^ zrBs(3hdcmO=O{xsob_0n{EG)19T6xO93St%#^B42m%9>cU><#ylP?9>wuEmlulV-z z9e@1zy94N?33y6B97+vtY}dFglO;}H3;Pfhi_SFkm!W`d9F7_Z6zxXIaEjzib8DQO z90!h~@uAza`CF7C@sUd8gCIwufCS!u*Dw!Oks^4$ejFx};5Ape@wJFEWspInBm;06 zQ)ayGyrI(WjZO*RLy%B#*?_xg0QQZrZPq&1q@>ayb>rsyaLe8?r6v)sPjGjgVdpyQ z#XH5VN2?uM?FNcHSl*07%=xF>1(F0}dVo}_{MabVcI_6j?@_wCudN4Z!^RiT$;wkW zH8NY80<T)I^>pAwx;<z*d~gepskGUudtmAoY!RD@!Jy;?W}a~5Wa4Baz*z+O%zeut zbD<4SWGOh_-th+~$mI&TT=DwyV)STBx-P(RJMi<zFWhg3swAEGP45cBj%+4R-i>&O zZzq@h1kXKjq$zJh53h+K=R81_<!C=zwL!CrvDJ%=S!2whv~zjC;bxuYhCvp)>a=4z zg^OVdw=V{GBBstx_7JX39&c>F)vNmaY3z0XSUkN%M%Ni?bG293O%zAJ9jrAX3HBto zZi08NQ?YvbK{P(hEOc8|T=R=7%F!=E?P00JK?KEe#{fwByxMaE$Y${>=IMxi4Q46Q zS73_r7iAOPitg>HU;~4zR2f>}bhTP-(Z~+IxCfcBr%k28w}Skk6x7C&BbC^|q_eeU z-oO?jN-npMg55X!@gQ(TXjtn~aLQHk&fw@A<lPc-_w;?Y;^_lf{et*7asK>;KSal; zm)CDdm#fb61t`af`};dSe*MDj?HA7b-NrO>Yv{-`Fx9m)zNy!MG;hK=NWJGuEJt$c z92^m6rw3~3S%sqQnQ{rTz7|$Hcon9pYVbJ*Aag_D*ZwjT43g0WXb|CucYX^Y0z<$9 zhM-d5VQ=WdM@2lxzf*^M_MA+>UtgsS(JLfK8*sf4UUt>|Gieb(IRMgxm%7glQC5gw zvy)vUCLuQ`C37UoCfI3(k<~-MbZjM%Y-$EzWwbfZWYO^@A3))Pk^~plwzLqi7Y!sN zg82xD^VBQGcek625;kG*Q6Tpd=b>w=)<hYdy6%~)a~$hC)w4$&Ym;jdPKd;!1;*qt zgnp&_fQ*3h4@5IUw}xYIV;%PYRRfp;+*OtL>+KyMFR$R27l4y8{qA?1A8*L_TceKq zxVFahbgzqzv%=F)W^PXyGc?GtWF!4OkQb=yUxN9qkSe;VUks=|nuVHsG0;63bqzRz zb1Mp+_idl%m~kZqc$0APvDcG9)KrT{;^6=aRU-!))*aDutQH^5e3xmKoJ{2~n^G!s z57>5AZ~Y|L6ObrF^4$>W97c=w*MalUphoIO)zPY)%#K^PeIjPKYFj|H^y)}<b1$Px z#-T`Yt?SKVE5EY<TfxQ!B0a>CMgMv1&T1h+Q2~k$8{A&Ezjd3u)+J2AxvTY#N}6l4 zZ~Ft;XAD0Xx`q*8Zn-~|(P=EZy8dKGFsmNd#a$Tf&aLfuR=V%`@dl)1Sc~x$WQbuO zjtNt=LmQ1kYD)C-GOe2uQEu(D3J+#HF^RebE3w7a*X>MAtg2&x(d0}0?5jHwhAcT* zfpY%dmh}xhN`)&B5io?Q2w+~vg>{{?DjcG(9)T$JMrI?1)U~8Y98+Xs5y}#d(0aj0 zNszdJ%L$zJpe5-}FO3COF|X=RS5y(0#0VYEqo|!Eos)A-3SzUrA_RSW3kGqN-~u0X z&!-On03ZNKL_t(zF5TJ5d2k-)BCCb1$5*A&GMQXq=Y~C;$AO<ef8qW7z;*i#*tZ_< zCAoJoV*xRZfD(nOuD!2U#V>zoRE2hhU_IFCr`MT$9^{K21V)|B>SokA5YC$1Jpm#T zz~kB^Hc}S#v|n#R=2d1*Q&Cl#-fLoVpz0FUT=`wpCEgk!Lne+A7ijAtw~irs0F~T< zC!b+3<YU$jrC0{WHnRSRW@E?k&{l4?2Lfp_^^gUNXFmE8aE8&-Um9R9GI@-|J6oc^ zj0mQ&U@BPT0H~or^|MDR&n1DB1Npq6oaSp*r@7?8C^Us2r<y%jeKy4$VjL}zbT%(s zl=s7W%b!^*`B?;KmTtZwgO~-qa5y?tdpM*5PPstx*|_|f6yQwFqn?~etA6EQ?>GGC zfBg-|ap1R|QFirhOo=t@(phIW7u?b#)q+H<WdJx8pds{Nv>UtFoL+xVa*tAsaif^_ zBRy8$M{UEUFn5!&niyP$XS18z`20a8I2GaWXjf@)iI@fto`J3Rb8g#0eG}dz;|$y` z#rbJcJeT6M7E;2M=s7QK3>e0#`mAQ+Ct@HMl|8R2#^OL>H$6JT_x4GqKj&Y$2ZP8b z4iN=3z(;?RV;S~!nark;uFdZur?ULHTEl2N;9T@D-j6%(#|@<<NZDJ9j$*gAbw6Cg zQ>x@t2xms~`cw8DnvXs*A)i1#is{I+=@10xQIOAWTI!2lDP;S51VvsYhLGV3M+R;O zfj{aztS-OEnp03pqeJRL%8Wz_A3qNK_|G@|_WA<aQgdvsPPbL?(!yk=BhenSYTgXh z1k@)K+iYKpyac-z$1wFBlPmyg@!A7+xu+ieuZO<I!j~XHmauy6u1wvaR+_MA<Y=JU zt-JIi?_3qhXNDKlLAiE#<eaWr;7HKD#dUB~QufQLyLrc0RPSsojp<3x3cwR-oecjd zvN%Njzm37Jo=@O=2=R2$vHuuZh?TNC<`4$9bo@YVR{|;732jOQ5Bo;1C9aAPvJ{-R z8-D(J$F~as*MgUQxB1HEaV}<~t@2rBO)ahoz2xR!b&e@0h8IgNKsmv3nnhK?c^Av? zLm!E#&aJw?&-JeueoRFdbqz?yRJ1*QKC%*7?kDcI6Zf3e;AA75Mc;!9Z=i#ajt$>m zUz?n`GzOe=KAtu!(Hp+ft*iFG6uS?JyCTkgaz#3CgeXdhy)Hl=s6J~-l)#&7xW7j) zrV%)FoE7oh5(PJ_s;`b+G91p1?mHZwq&pG2oJyexirb@U2GU(DHi~*YU82YUe%9@P z6J>=3eC3)@2dlS<SHHOJh2jT0qON_dw*cH|P~FiAIwT(^gqXIA!0L-@LJHo0LY;l* z1uhhPs!9u{EG4^uk>2&yuBCeSGYGky`1!{Pp%eGpJAQw8!MDp5TS^d8{rJ5c_>hdd zsMsUhOkKbrqXlmeT$61T80HUu#bry_6R=T6$p`XTv@0mJWF&`-N|V86D+0N;&88Mp zo_@wD1*c>jIpcOaasN1Q`#5l~Nkv9ns%ECzz6x*(_$2)Gx9=!PY!nhRzo_Gg7p+Jj zfRV#~YGSVjRj7YrDFiYL?I;gMkk<Ne5IBpl6?d&?Lv(c~tk9P+R?c|?)*+jMUEDNe z_N+{zxDL1Pzg1iJPKyjJxMCRGo=v7mhV?E*gvVSNaporK%7kv7O5BQ;1Wc|vl9isc zMTBi6^NyXl=jel0DvkBwAEml9u^?sX9Dp&!w;gV3FE9^LW-jyD#ZhCTm`Fp;Yy_}e zy)hcB-U5;}*+<Td^SI&1k6-xti}9cTZfV46Lo%0~%)m*azud}BlX2O2*$LOg_;yKn z*)@0X<=ZRr3!_{GWz#MKk_|-b8vap%Sxk&`X2Dr{Vo)y7gIY4~MQx%qs!B~F^HCtD zV3QsV);^!&2oXgAPGP}EIdLn3BNz3cFDg|%&J#yIUG&=M3+Qk5K9|=bFg`cr1U6gp z7F^U~zTn$l>S%by7>ZOCq9rp~!fy#_!O{#oF}^-$M&3HY!Alb8Y1lsXr>-`Wa{&?q z@kS_2D*i(l%xDZmMbV(wD%m!$Svax>#JDJReN4^rTp9*YLYH88h>d((yXk{HHV~I3 zGWu&hs7w;pBr*tuu-rD%^6MbjM$<qd>PDZw2&g2~9%%0KcB@<7{G;@cg|=6-E2weB zbH;f;k#7f%w>y6R?F}DU58eHAF1Q5b1klF1iZV2IW5#t;F~)UEc-d8od0aLe*M!%X z3m`j4PVMS<Law)>u-bfMgE<Md)>1F5f^K#1+gvv#F@cL2TW*Z28HeD)jRe}Fx6sWs znjak#{_^{G{Pr*302bU&^`E;Rss}i8!Eq`d;>-o7WjAK`(bl=tBkzO)DasX4<J9W7 zYbnVoIkQ%p`5olFDco34i%^RUkd`M|JU%1~d94p9sUrxjjq<A~iJA_gzK0B=)S~WM zzME+nN-plQak>=d<`bxvW?4Zc6c88fDv~}^VnU?~ATqSm%UQ7^0)wdvqByK6tH~{! zX9VyB1CZ5j9G}*J1$&6%_3sfp4Dwc57ohO(YP;@DK)D7#a9oenWFWsLY#5L<WnFuS zipw1|L51Xud_R>5_v^$Tw*wzX#*s_6V6xY=ZEC`?@8%0|*+6>&T?%N|o3|8g$?sx@ z47a=TwQY}E%yL{a5tHTgu}h~>CP|T`dGFc#=l9i^8ifeN+-OO371&ar*;0Y`q+JZO zgE(`+VIFf3;P>CY;s5%#zhK)4IjgZ`&gx?>HrE&P2#^}=;`qreS-LjXVw?htFlT0@ zt-2K3;ZN)wk7mJG<y24)rflPnTFP}zKy!E+0J{;7CI>bVJ#xkB`+jN>OWdi*_VaMH z58o{DN_FC@qc~6HX23k=lX)-zx~VAwI!{P0jhUGeA?*pAwq`{wY$P#}hVQ7Kf{h?0 z?8K}awMcq4uY(l`C{GB10>tE<3Gu_M3=GRq>K1=AF$@~MKoaLc8FtJeFP@!cZoMG} z=2<n~sBRHadRx_hj3T+&Ip<O|KhM6-b=&Zl@2@D#_(dn~r&?ucs<C?S?R&!Ob;s+= z1+Ui)FV_vP*A15oV>ee>jpJr@47zN%UN3lg)xT=EXbl`OF$&D2f;V-TNh+Habld5k z2HpXn9#x|c5liV=1keXyZv`MZOrhX@sP|kc1+Onx{Pi!d`1r^m5nQ%pmSo%jTdDhI zCM2^8qFmZoA}!7uj$v3+YuR`b+<rcGao`QzAMquj_VbnElAT}~d6y08vg>Lx=T-zN z7s8LRO}NC|Sdg8Vi{|9p(EXG^yf?3ZSWW;$or%>pKJ^@deFHe5n02=Xj}RnT$B1s~ zQZFDFojE1do>X5!s+~m@gh^d3cb94<HCe}D<T0}#G2v7-lx1w8^>=nnpd~7}4oZZq zxitQeFIhd&x~Se16ii}eQcuwoKI&!1+yW!1y31DQRe|dO`iI}+rz;9=I`OP;9$yK+ z|Md!f-SDru;O*nU9ilPJR}I(L_k_!)4!hs38@|2l`1Z2l+e^ablGHfV#6DUCv@PHF z4f|!swqKFb)}z8~(rg8Ql6C}?939lgnCyJviV<Rz3DbZ!W=jZ$I7`KPD;vgOxsNX| zT^Phfx+>JLz-G;s(&lvdsUg?OeG+6=TBD$Q^oaq1dJ9<$e6x$^o}=Irp_><=Yu~G+ zxJm4!>mZ2r=G|U)NO=YCJNU@BABw9GnIMDRh|0;<oErFQT45zSiD28bt(O}3y6xa? zZ^1TojLOFeIWv+#<JM~I`o4pAO#-UE{khq>v5kAw0$hDIWCLewSJ*lmX(MbgF9Egu zvdxSL<kS^!Mh`k|90hxWHwsZxBQ4j@{@%UUSXQ2v_(<XB=hPK{@6kS2#uOL{I_>s< zg28AMQTb<wy^&NbQMHs3rMFT74_g4-kBs|y0=wY%|Mh}@{q};(_pAEGU9Q+)uDD*W zxV~KRdf9bW6VZ0N?%FMxPoSuI5j~hpMGt2pOA@M%LM~^q{d}VS1c0{mV!)u-T9Gvv zqp<;{YXqD^RohHzE-ESmF4E*w6>tpWlRdPz<A6xUmh{F-+t#`OSe{``q9s;egc{jM z;$_@o0j1r_iw*3fAry4w|0WCH$o9JJYo~q3_Wgo%Nsv=;92x02ab(pw@NRZz)kAUL zz&l%{Tg8Di*@q#xY&xznX#y-KwSum$%{68`=Zt)wK+Z@a*eGF7dO>hay(V4%-t%c> zF9IaBBGAN7?2J>mGy5txMSQ5O>!7P`JV`-G+EJ(h`GzW6Ay+gv1VBS(rm~mh%J{EG zo29w!myySf+10B0xy8?07Gqc!*s?QrfXe|Chsb(#xD|n%&CdC32yxD(?Nr5$D!FK| zCT)c8fBlAUfBBBr@2|MNTyeR+V86bo&wJX`=Ux4qfpS8M-k1d$A{l~YIlVmxtoaot zR*9|&bVwY&TuLuchF2=bo`SWRw(q%_Q=GZx^$j8`a-RIwImC<yYW8SK&e8Ym<KvFM z{d&hy^j4{19FogK$8C|+?9Dyh&&t;7+rby=du?{zWv9TB+s)Ht?CCWg%m8m2_LnPg zEy`&qg8eKw&eA%M>b;0P>A0}5xhHk5082rFjy;LGmQRo@>b>JGf`Y9^id*MUy#u$J zd~L6rivT%+PL*k+9)9Px?F%9`lhf{4)mN`6u3}pa)%V$p)wE!Ep<1y5ATk|LKX;81 zN(tkDs{^y`9%8g(?*=?Kpsz`W+`cA?7V|Xkw9dMd^<#mA=w|}?#=vI8^UNq`&9p0R zmt85gb+;-^plyQ?;}n9hi9^6B)hg>GoFXVVahF5so8<&a22nAG8Uv+>Ahbc86s-H) zD`|kJ*bZ5m&bcX$GunzTpT$;w8i0|rx)<Ni!vMUD<1~;`dWfax5%iQDnbM!wBFmX; zkW0b)#|{7S??3RjpKpr%n`O1eP@@4-6+fw?LiOW^&HQPrI7a{Fk)F~%V+3Ev*@%|b z<W*wumcZE6p~==JTd8*H{gM(U@Sc$N%?euWI=jPDA~8@_)mPbm!9rgv<Bq{9^W%gr zQz{b?tVPm+kfgLt6~tX{p0Ya_<q$hh3AcimmTyr>THHF5YOOCUbsBEt;wJv;9O*`W zg(uc^)-`(WB9*Bnqk&!J0!GKG?bCrK6+$Qiy<qqVX>!#+0)L3>y?UV9DrO`rNo&yy z1e6jkX@k&?pKk^H<A!@?yxxHQD%exTmTn5x87G@i^bl8fZIj38KE0;=G;^Iczm@9Z z;tH|YZa1HL$V-N;dWyw9XWVXwro(<5czgfA&tD&Sf4|{=oVNSzhM84#1jnBUE%zV@ zX=I+#8HBgn9dGY<AZzqhIZjIyujVAtm%lpS7E2`NEe${)1?MQ4x<qgO$rExfk8Gcq z)dk1YqZ+!}5&L!#5foenL2}h0)c2-hCjez?U}LU|P4D*Pj8PgBpAn2#n@SU~OK0eZ zxeJM!-l2}91-%>eG;A9Ma?ajwr+tPsm(q{#%zY%zqU5E=s}{djrtVV0-ManZ4!@K2 z5j6s?rx#a1XmAM+!HA<yu@sjc)D?g1_MRBTLFBEY*hfB_?NcR8RPTNx@Dw5Z?Z*xG z419Y(ae28Rr8gx3kwz@*d<dJ>^u{}~;5Y@xS#UqH-O3ra<J8#b7GmM$rqUT=)qbng zkdV?-Z^Vj&`*&>(RyQETF89z{`-Bi$QSBq8zLu;j&0LCOL{{EZ!I@1(wvp!4-47%P z3UMPp)muM{AlKM%rskgOe+6bYhB$bN>BtnuQRBf&PYtTbaic;o_e3cWn6_@?9iNJZ zyz7^A$(CH*jihNWM8qBZelbR>uTI^>)VfcI$1K$_rWD0Z+SZCGfP7vLQ_odZN{YBq z$cjL)5f=fV-is6*v2;C5CPLdr+l`SHJZZ7(q2@>k^f4TZB|wPZUPudD$Vg-Hxztqz zda$jOOfA&`D?&jr5{=vKww6nbXWcEp6Eg~P16)$t6s2#1bHVL);NS0eY=38L`=(Y= z%!)R*U%JYw4{b3C{&50lRuJm2B5=Q-Zhcppm6o#-L49`Xf9qgqTU`V$z8>g=%T6tb zLOt!MN3r{W)*(=%*aMU)E1}0+hB~$?5Mt~s*!SI%k*h6QL176KVHvhJ%{kWvdLRnF z2mXol|I%7sxQMr+MkY<m;SA%t&%0}xRouiWb?+#b|0o4PbksZz>VKms<4LW-tvY_0 z29%QfL6joFZK~8rHOE5<!7Xmou78F>16j|cOimY2*PYdyu@toe>&4W!;rd;+2h99s zZxy)w;@lqyQ31B#1<@ndp@jhiI}^yZ608g_p`hg!aoTGlc!F`yi7(EKLuaJKy7tP2 zY+t)WpeeU?wI*3bGv{#_uw||)H4d2BpnD!1hI{L`mK%2uz)D$e&cWVA#;G7B_$hYa zmR(L@i>t2tbr(`mS9Y<pa%oMZw|m(XUpS>^|Dnr!MGyXUPk2d$3!_VVeIN|HLlnhm zxQRm^x%^VZZYT+#Yvtcp`!a9$9g0KkqEL%pU7e+7*$wYK;ItsRu9iSxss<Vq*3UFK z)~tg}>On8jOsA?MTO8Zm8P!5pT*uMIX6~CX@f$C*1}oNmamhH%sD-UfA&Lce8;|%S ze5F-LK|pl}bEClq%v(DxFdT`DU~&YXrl<Dw0f$I>BgHD}@Yd7SdMOZ!8^EOpR{(I% zMzm3szLcyWo5^GafNWcnnNmtXvVD9tNyU(FFVY{Hy3lJDT7!Am@Nk9q%LA{095oOw zMS?qXk)n<hCMl)rnCk>KER{{ycf)FS$`=1EIPBMHw^b1!CB|h_g42~XLs0IyS+51z zwM$d>x`28BSTIOyy$f<JOcZI~b|6HCoD{@hdVqTvDs>0w+C~>|=N<ecynI=Lhhh85 zG;X!1^D2BEfk;p29adj0O3YoZOiCc4X4%f&Lm}89p%KOE>#jvc<>jYk4wNox;~se8 zeG9fgee`CYe)<xb>9}|n$u$dcDkopUT;DeZ7;bX%C5aYpL_;Rwl7l4fCS?ZFhHWnm z@vlaSU}eIcXSNnnqns;tsV0<c;T6VulksQZrlj-S#CpJ!lZ&!*h#~1kGm5Yf%pWj1 z8wf%K*Z6y~jY-8DaY_fQgrY$NISF)PLQ23^bcJ@5Vp|0T#x^p#a^fb!;!<!ruR{^G zj00zSA^q^vq99Oojtgnc^#C>YTRUW3p9+y46ylSJ1r`^c+ZxPofTBZCCrNowRGh+5 z1|JFWz@2OMswJ96!O2j>yTGZ4`a%)`=ZO~P!ep#N8xJbRqBxOZ1yFnMR@iI}d*+Pu zIFWO<j<<Ih{`_q<fhOj6csZw6N{z{{J<w4Ifmct1>1V5R<O_`i&NU5%V>yz@gXRNp z3P9>Ns&ucqMBJQNKn%G9#HZa5tOO5pyX|Q-2AmN$dnI=J?OEX{!QqZ2nnrTil6Ly) z=>EFM{h1JQ8Kkt`G8(}gr7PQ{c@c;gQNbzB8URLWAua%C?V8TBIPZDAoq6BXe!66^ z0B2F>p<HB+gj={V*H)grDJ=C<Brsn>8vO4at+RFxVYAS<4jRHzjc5I=KZa{|9ERF@ zGPn(!(xRRjk@>=DY0X5I2A$gIQi*8A6Wpxu)vhh)f-@{+c))GCu}ZPnvHSgw+x?Cs zXPj9LWsVvnp7R8zSG=H<;?jW^B%GB8Ai1AbR_j7PPAq7=e%23O0TersrKOl}guLC% z@cOs{WM+k3Z(gvjJq$jyb<P1$0;e6km9{%3Uxi(4nE&1+v-wHaeGe{&6l1Swa7%)* z_{L^R7A}qA@P-EFIoY*TYw$t)E<@6iPZm<3w6DpMAElVFk=d48c;#`|!kM;Y1+mZ2 z(gB#3`PWP`%~FgVF~%Ec()ixEPNx<|Rn2LFZpjw2%>)uny%8~E77um`MK?HCNIcLT zI#5Cb7K?b>Rj*DZ=hjVb17o45k{t`R3&=c;w}*k2;EM=1;$m>FmZHGzd8$?W?Kq70 zQDx$)JCK$xEDrbR$-~=dJwRA8Fx^~Ak#^TiH!=CV`qoOqVW1cmVmI{~gp|-lNaOi? z&nbz8#qDRiT$Gx1i;^?ckw$uOdz+O#r`m6;I)LO>mlLl6;TG};tmE6w{s^OCC3<>q z_hjgzl-^Bs_FmZFkVEjB5sEuVf}W%+eVi-qHe+wrBKp3FFiO#k`pk?Zh8pD4JPM>e zhz;Dd?kACr7ghvPO4v4?dpAzTspvTh?E;Z_5R2%+7pG5X#3L%*hq-<J+}=M7`69ts zv-<Yg6;X8+ITu}N+MFE_bwq>N7O^gXoEbSE$QC0mwKX>)S~eopd7jEn%{dl@w&pGE zuqz;)d$!=IAa%|q2>E2>cMO<PeOxwYtlb@P2EexY1&Djcq*F_Sp(4e$$?FI-LXKK1 z8a&=shN5E_uFUd7@(*c5&RQ6xN`<v;ElwJm+ne0qbU2salxne(U^3aZaf`-@7HFpr z${gLzreY`J65b_b3<@ZknNrlm2Ou^aelz$OR<H~j5J+lKVLgKn!Le5es%*1WSGG31 zoVfuBQW<&NHvyGhxY^-X`R{IrUz2s&v=7~;ts8RGTQS?s?^mM&pqw=~O1<v-Y~P6E zjZj2`PX$d-Hk`?6F*6lApdxdArDM+a&`+JgkNX|R{lJ+|lp@-$-)=ZfZY>x)H7twY zI!>?O%xO#RtPic#c%8a)zA;g70`h1pf~lhfK_FHpADFU(`#zwmFe{75d&o<Cb@Ie` zAS4Y1qu;0~%5_$%fR0G8jj9yae4aWl9e3n>B7rShiJTkl2ypszq`{n|nUYqrjRTTK zcXvXdNyp%HabYPk{Jt31)>c_%X!(oFt+y_K{6S!DNxJQ4Fx2_1F=Nd;vC?@HHj|~& zw(IxLhmxR3Wzkh>CoU?E(}r!oVB2;iJNU_Nem0h$w2;jbix)+tzgQ7aWu1)zMO=0Q z+KpYwQE($%ujevE%S-FFN~z)=o2$*NwYXb3vRDze7meka3yS2nDiv{S!Il9SNj=LG zyCOqVH@|`3o-qPuMT5<sA1^jVC}(}X_wq0PMUw|ws2d{@oSTX_RJ2`jMaP{qO&B30 zL;U`DLS|k1>FCzxIRR5Vnd1c11M6=5GiMy9R%j{N?7uDA3p%F?yJ^0eZ^XR0Y(khG z^kAC;Q`Jr2D2ej_F=R5zXl>eC`MD5Vx^JC(i%cH-ef=hbS&B-9>nKE~G3S=TQv+eS z`Oh&k_;NwIT$EMENxx=J%4@GmzsgBSUN4_)HAgLdSh9kKaC2~JhON03Hn<?#Qc5e> zAGaHB_q!GVH#;{9a+|3EA2~L^Kkj{NgrX9u+O8ngBG9Su@j{r4M!ZFxaWlsMF;QE~ zP6NhZi%#UjXdHEWFeRxvgh<U70n0Qr%jccw<iJzw?Mx=y4;-ou0=<w#oN?pIlGGhp z%Y^S-zX&LLAyPctaRml=gAczOq)9zUPO_X!!I3i#QMF&K^nmWBYn8SixWCcGfzN_S zC=qo2J@?y`sQNw2U_B!NB%ImU!$BTCBk`R5#9-d~swXAYxU)ABrLbxZ(FBXlY6GQ; zd#$xlu(jDm!Wyg*WvnQXxv(_tLyl7HHYG}=dFPTHAXWkpm~+Pce#iZO$H&J9ZpS?^ z4~oo*%99QCWcZ12BagFlfU)aA<&H~{^bi_G2aJhR*J6Mo+U<`>JGlKs5DjLeUJ73& z+n~U&A(w2;M!hCqY-%`+dmpw^7O6hoORctmh{`)S5+^&LtGdjJjBdl-3$4a+N3deJ z!F{eC=36n|l;pVJbIa37+saxyCF772S+XtYjVL1A6o1)x;f2MFRHLCt`&nw8W;k;Q zaxv9|(TaN>d%CXgs1R<WSlrxgVx$gE)kZ5dV2zWy2X!;iAjO>8RdLBf6{&8swsFkc zg<!5W6|ky@uZf?;>lG9mI8Te*I#1khhaTMfN6RBfh6ixsZgAl<?Ai*jSb-=#0MvX1 zVj2<+mUFb+C)3iX5-!!c1IGv}X7{-@`Z_lWIyK9%-dP2mjGN8-&E1`lsKu|jl&5+T zv0FcrHzuu{7Vh+Puc@%H1`=6|n=B5QUq^VBUN=89!V5*wP6hh>+9E`A_z+MB;L*~c zG2Z-mvKRMiKw0c9Da_neAcN+Qwp}-D<;5N<EeKV$hvMHKnhv?wXp<KkrJl(KrVx@r zp<4Hci5GU-qiU=Pd)PZDds7$v9L_8#<+K^JhxEl6HHTGT6_uPeU+0{09tZBn9p|A3 z_&5&S@3-Eb+pWeF$2MtNhOWOTwz?`McfSBYi_N_Z{0E9wku=V~0Fr9^H3B<cV&hmD zGxg&3YUE(>pqprkJxw!`EGL0nqEG4`g{_Msmr(5sK-6S3^AD!LGNwLH_vg$L?0jZt zTR(G;sRIXVwNl1QRj_4y2xj`ekwJ$2wm$&lBDedc>mFJHGhYk<gd=3cNM%1~2_Ac+ z(;!nGi6$PD8}RWawn<FbH^z0}P+nfK@z(t7#H~W8jsaDINgO>1DemJz&S}>;`K=HP zw{ItAxLm{GR-SHZM4+i2R0XL@r?}R+*jb+YROc>6LQtBC_egMGzhx*`;b_mmbU34P zRIi)lI<on*iJ1>;eg`=N8A@uYmNpe)&0(^!a5wd5+Q6)KW|hKS90`fIuYW=QKz3nL zbLMe3OZ(o1f=NvfvPtC0`dmpcMXS4tsX5{c6HT$IzF{7>8Wi#|Flzxs3<DS$byF;Y zgqvHMc_)qHA~z;<`eXZHY)Xz@fdgO06${3=aDOp~D*_Veo567~R7q*EPO*h(001BW zNkl<ZOSC0$*|A-L*R<jKBK-y|^`WRAQgSUsN87t+T?dP@)AxJB$@)6WaG)!qTq&GV zigRG9t+`26Jx{)Vubgq_v!m2@g9ppAI&Mkn=9unlLu80doY$&EKIW=9fnj`pM6H6O zlatf@H_)mv?FOY94VZ}cdGL1Un;NXv!!IU#?jkHS{RX?)xvC|}F(xO55Qd;5uR0y& z%H!Edn0eXNIY=n}Og;(A-TW~cd|;cA!^5JtIl3x37K&)vL*ZxJ{OWI1-pha-HWyvv zm@}2u-jK**CFgG(Od=j1%rK?3&`2<vsTU#xJCVlxS1%z&GptbL->kg>h_TWdsMWmW zHFHa#T~f*ZMl3B=DBQ$(n30EDJC`_9%YZaDOveAY;))z0l7L2eH7(++rQYxz&+*+w z^Qm{mD*io!%vgy$zU@bl`Ff<i-H_ggfjPL|c%XJ9>O^&p2`|lDge;V$^_q;(ChH{> zskFV|NF+-6Cre~fn9Qqgd(UJp6eCxraW0(Y*R-z>e32ntbHN#r$=lqE@$A)&>_?iH z^jj`DtQZF1K9DkiD%T{Zyc=x62Ea-J;8YyG@E}cSLZ;^k>aZjBF;dMW#BCc(Zr*p< zSY5|qv+QxS6;aj1A4hhFSplqi!=CNWDY+w;Jj5W#u)38H4*5uL-PfBE-$$82z-Ztk zQ7|Nn_s~66MBSFk;|b&re`|9G)mTNBli8aG|2*lT6F$i&>^f=zsjfU82y?620gP%2 zphm;B_P?&TD*j(8HM7mi=!m=^x=o1_{48=UF*s8@47pt|QOnZL>N3T;C0&Qb^dy-d z+`n8df-H=59n)eMg~KLi)zw!kGXl1fvoo2XAW4mEJL$GrSprX>-5%m&x%=%u?o#~> zEaCQvr=k@MbYwY~KJ&&sZOkqxqW*uk+a0&t9mjDR8>>cGyS;fci0J=K#5?Weu2q-X zqL;y{Y!XZKcy6csS`~tt(-vZ>sn2yZ7%q<DkVy~~048>x0OTmw4rON#Vp3ZljUaDl zO&e*JI+Lxfh{rC#ZoanvcEqER=i@h|-hEoCI|o?-pq|DfKAzkI(|%r-N41v%p=y)_ z2P(IZxNFYI2%obTUxnf;;<PdFgzF)853X28R-MQK<eVJ1qIO_f@;b+?`sX&0v%gs~ zgm8O{?ixH<gCVo+&$DM-MX&P4V>U*V3|3&R-7b;TQ-LN0vij<$-OP^2(-?4L^+Qd$ z(VJfR*xBu@`{4~cV;@e5nVsclx2W5n0WnXQBJ%U|17Ks&G<cM`w){#_RuPUr=uNi} zXu>oMPP8DEXiM+cQPDxB>fk2&Rig`c=h>OIEq*1|{0S-WOv0Eam@oux#a05A;1zB) zFw?W^R<DOf_1h49yAWnNj|RUL7}|29jEiR(QoMOR&tt`a4|D!l1TdTLgh;sY;Ey3a z#<3uZTHNilHdx#T*7G4t^NY(SVyHXaC}ik`K>yl>4!%H)GR%7G=9b{vzu$S9eRt6V zpDp0B8aTw;j^hFIH08j+<0!&$Ny6=6;z(nzv-47)T#Y4bd+YYEqZnvfC;2vex#L=U z<PlXdO=?_&miy+p;53J>Mw$h+fDPXv*okw6x)>`m%6ofqw6yi^NLGUXER2#bUIXF? zQZn3H{vq!xt?^LNfQiUpZNJE(B$*6FJ)Sc9VR)vUPd*++>m;MMCPng_j1;v6ot-@J z*)tC3nWB#YK`l7^VAR5LMMX|dA5mZL_8<T8w>Be(oJ{XCf2tBmcfj`+Z&bU1e#q^n zmlEb^5t$xxk;vAHpbHJ!c>VWjW98}(m<0yQsUR)pnQl83-QX(hK4_w8z8?|X?#ajI zEJV&nAhwYGrgk?j@v@bd7Nm(~JMPUL0&zrSK+t>OM?YBZy>jh8LXIE$!!W2d2fZ>{ zESnquRv8nTO<x)VG*G$4{}thZw#7|na}Lz$F?w<(ai{4Cqh|jVo&%Zr`5h}6R(>+H zd@`Hqid*#prMV8r4}0tg-QmYv1V#c=po&*M09?_Y7`lDExcxu>@Be4FwchGtxn&Er zjho#)*+SgRFLTtFV7}onyZus756tVRsQS~xM&yGA{h{jzn3E-|5-;2cX(AH&mb=Zu zJim5!*?84IKYAkgmbJg8erTx~jnKdm@b9&EP@-YHU~jbPEjhgdrO9Dij-N!fTeU4J z?z1epM5ht)9Ww>dmN$<Xm608wqF@Z-Rfc7Jew@UjlCY|`KQD09=t(iy(k^r(YZUf@ z`2}VVJ$m-%(XI0+j0Gw&E+x{yCqE0p!j2oC|DLF<5897MAY&!SZvXxt{}q^j%Q-X% z5C)P=APLL-=Fw8q*XJe~P-!<WGjUIlscW6oXVwuE18VZA?TM44<W5X51UH=i^P*|G z1JPylDG?b8*=T^`+DBmN$V>D95q9#|5tzaXUqBV`^xHM|zSKrLa)uqvyu-6Jv)$BX z2yY2&(a3`sfvLdEbe;D?L)#g9V@D`%g-t$Yq9fQ503RyVQczaU-Aa3bCI4g^Wh9zr z$g?^klhekaQ4si8J)v=Bw=M({D8jRcBsDp-TbD0{aw5QX97nHKJOCbz9aYszSkP=c zQKLKddYSA1xWUPR8|vJZOC7l;GmO~OL8dbCJU5)&jOgY}a_*afE?K4~u5Unwg6BW< zXwHFPR~2p}Pd4&9?QygSt3kg@?xvTpm@MxU69A-QesUz9u0C@m+|MYZ=*KT|szS3k zw@ry(Lq_d8hKFp`;jJR!{MvG%{gwgkmNrsTlXM4tlg||rnPjw{5h#zk0Cyp@?ZkNK zWV!{ST;G4M)#W~{&ZA`;rbO<Cw>^A{mOZb$zGLIMU8YuIOZyhUjyfN-mbF<HM{abT zMZ4Kxj587!JJmbm9u!s&ddq}wEj@*HIVE+9i8m-5>RT&hS8_#Sk$cF?+{XG3hX#WU z8g2@|A{AOW0<DE7kup0Mp`M>2o%|IjvD_n`{AfiQC)SH_@$#gg8uTm`@nCO(vj?hk zzYN|CGq_fz&;6zuSV54*IN%E0G^<Cea2Y-y&nuv5q8~yc#~UAyBJF9(f2E11A+w9M z%;L1r6%A=sjm|p?<j}E~P^^kf7W}d-$hsP3iRTQ?X*u#l{4)=1|Mb_tj1A1ROAewH zx9jDKNHg0F-WLqw3@?52?PZPafT!e0DzUw8g@q|lCBywg!zxI;n$V0$u!=yVM|Z)z z{u@NzB$#cMCOQx;W-xgmO<f?%p$3p0))GL}DzvHH6%D+NzK&p3K6(^5-1u=0hw~AX z5yEz3fCv33xV-qTZxI0<_F0kaHLhRPb&96$rCT34{^yf<UflO3JUH!7o&jIHf>+_N zF7IPwRKv7&uB;ubMh}NT_>za9gGPN>CoJSWCkBF<4~w<8X!~FP`(HwpkIF0Rkwu8R zSMe^sUJJhHLB_pyY_~bg(Si9#G0d?mJq0Bae&dHBLk>qpu@`_!)PzgVD|{T0upAm` zLV_vWJb@PL{@c`MKG3d5p-l-7c#&u~7Ci4r`se89>w4RlNP3EMxP<peXueeo2DRk0 zI-}4@ghDFOv}^QO5a(Xn#-(w53(h(tvyv9AxF`J#E8oz;u0QCC;>#eC8|}i$-MaNK zvk8zwd=2?+h8eK9wWv7qf($<eEH@zv>7rwI=%5y3-S*pWFH<nWN{dB-Yar3l8_ol8 z>?S1Y-Fp{+2M}k_OgN`p>9$(pH@?wmOI$!4Ef14CavKX&+h=Efyr(B#{$eFX9^jj( zKYq2dh+3AB4lR=&V!bH#AYMe%yr`(#exZ9mj8fVz^mMmBn(dfBh}D*gIF3mpC3j*f zc!C(BE3SA!Qpm8B`D;qtoh`Q${-D#)8PH;Gmc@HK*ur6;Y>yUjRc=mB{_Xu8`{sa} z=*M?0;vJ$O?s1V}{VBuil4^50)wC^bJQ+{ZO3)*5_bJN<nucbULgLSuJBWb}>~DE2 z?661VHTD3*ygu4(hJz*e^nbF%UKZ}E6x;&8_O%_MB{=*HxWb$__3-PDfHMt?F*222 zXInbsj#9d8Sek`qM8C}|H;Wk35W`*DJX+0PMbn4awZ_dk%H8@sC}m&=1cD4r5B@Sl zrEW9OP2}alr!o@gdVI+&xLNuOkT0w<Kc~`-c73No4sd4218Euw*M(z6>cilbVFhe- za|##$dY}k~%X=%dm^Y`<OeSz^YPV!{Q09=2Sw0-+9HBM(Da#LMaU5iQ2pjQZVr_k; z7C849SpY~hT-@@Y4H$1Cl879bLlO<B`_zKU0%!2Z4o3b&{5+)|ey61%5hPH{R0u3Y z`#IG1j4b(=R7pwmkIQC_m4w30P8I;NE&zxiTyVQVGf-W5s+StZVV`jkA59i}rsB5> zgX@xqIx8=tj4N4Lp@i#VOiq~Vw-w#e3n(l#z<YX*1q)@UNQ)PrR<o`Egf4B64f_jX z^9P9@d8VyT?9Aqxk6hQ|cV_s*L)MBX%~7S(E*E&nKcCrJPL$(t<W;R$zdD-71d1~y zO*q#W@<B^RhKwerZmye|$AlF}O9H<?x)ZVcP0|cPdN2SLAX!fQZow(dVT)uk?GP&h zCutFoR{dNmUj=w8OVQ;hH0EM>-e>|oX|+lWf*guTNbbKopUx?<xIkB@MPdd+fs=tl zqZM<tA{V8|mXW!-9Amvr9yxa&PtT=EecQ{q1e~DV_N5>GC}I<g2Dzi5j6cG`%aeeu znqSiJ24b*0UIJh8c=OW{Q(1D{AGPwbh#6mvV&ULDs0dZ1)#l)#2q66P=Mw>~x&m3? z3Qs!>dH6;9*L>iF<letBj$qDwvd)*OIzBf~0U)7Af1_HWfv}Tk+OOGr_e-NJIzqAo zLS6CaZuL}Mb-X)`^c`(bi+W^zVEWMjBx2mejCu!hdj!vWuq|h?i1@}ntSG&gs6#Ul zv)%rs8NLprq>78U)vAwePc@Zy@w|8c0*zhQEl-&YKl^)5C@9DUVH;8g>%LX0Py_}e zLy?HE_4#EGGp{`QC%tlCi2HVpo*bO{xX^Qujr{F1>+J<I+mP@qj@;8GD<7QjkNvMA z%2@C9zWOCr?+szRYTAc4SrB*=4LcY+7_S=k)dNIZVydEZjEoH#I{_ONB$6O)jStpH zE+G^v06q(`deW1%w)1YD0^3i-$D9qgk&oG;*xJJR5yp;+;@>-6eLc)7U@8tY?&(oQ z4C??i8lB<7S)2n_@ZO@J`=}<l3<*GaeaXcYfkHI_*^FsP(AfgiGbl*(wGg8up9HPN zDp$F@#oCvFJm%TQ?U5Jh@!;ba;L&u6TZIX2YJkyFjyMug7N?sY-^0rhdeLbti$=J) z<lz@4dW`-*JGf!z`sv}9KVMshmLl@royC)Dr5S_^F}|k_S7vaH7HftyYE{mZkw~yZ zkVxl$|F%_`Zio;oi2e!AU%u68GYY8$C2#U7?v3jMgLAG6`HPW4Efe=Zrs;HI*3sx@ zL5|z7y5y_?Fi;9>K`34)fwqYfXOD)#8-PgW$wi`6z4(wR^Hq@Mm@Ul*f(Aa2PHzO^ z9(3CimNjSLUX5%@Zbmq5%Oes7@@*W1<q422^RyQ9@ZA*j87-6^jMx-Cz6g^;(Zf~V zK-dw_)RC_pJo>_EoX9$n@A8<e@yXYh^+NDLN=*FP%}m7p@4}34DdF3`W2a;REcU3d zhJi2_BqD6ksBg9{0Xf&;7P28u?px4q{RlhzxsnF^DvGGPcX5LE#p6H}gD1{ZP!41E za%4tM=sp(vb3tcS4mNZ?^;c4I;9pcZir*R3xn~?tFhq^h@Rm^*4ux$*&0)ltvK9FT zHG@K`D2?^+vn1rQ;oNu4zOW38+{|ty{P}HSc+3p<1?Wvf=;Z*sExT@7p91p0+B(xr z7R;`Qv-Lf(G;zg<KP)gf`bREii4S*}ApYbRTmEb_I4SZBQRqJOJ2Aec4ZrOdyj-qG z!ayz%$rjsHz${?a2=tA}Zhj6<Jl?Q06altPqSp@y&1{jd8g&(Y6r@m0%%P@S^eari z=bonMxE6FdiXpRM$fy(yOfi`^Nfp}&Nlb2^UVIHCS%8AFLX3l5oeznO|DRg4{J8!N zBrU3$m$i6X2bCDIZ8&AaQ3PixHX`(272w?Fr;Q$xfc%F$G0$AT6UGQ&5x_9_;y!zH z^&6j!0qwnz&U}-`9vcq2d}+vd+PY8Dl0Sd$m)(nRk;g6|{5%W4w~Yv|DdGEN$Lr;a z%XR_fPRC{zFzM~D1wi`k59kb9E#0eQFqNKbZ!IQ=7Md2D7kW_mWsM_Y2)dwd2rmTZ zL0y~?rp$f=51YLipoP!36tB!_J+=cX$!!(LftK!l@SQ3>_G`3^T8zeHG;m6Mgj=IK zyBR)8@#DD_*HLXCT$v!O7(>ssRn<t*5x~#lvOfB>mQ74ft^);;S|Gx6%Jq6dHcklM zVTES6UHr;X9P0n%fXbKd=THAD{m;+-&<V&)yQO(psJCb$#+4c0_Z=^nD=zy*+y9(R z0I458qafMeCkPS{!$_#3&LRQ^x5%?nfhK?3(s*IaMSzwevYv28enJl`rlu;PPV4c$ z0t>HrEFV};2$F%*fjEB3$dnumN<7hMIp(@+FDeM#7C{D1*I+C{!|31-NpRC1z`1VX z+xaBk@Kt;mpGB8#6N!c-d~hV|eqeq0=NpwiI~}9S%D)$rIH*4`4-<qZ+2m)3TK*hp zw>b6kg(C3m_sAFjz$E6Zhd*iS|GHoBvR`pYJ5p(|5`;9#iH(Sp#CG+SghRueOi&vz zR-OQ}#>$aS6p@Tf7+i*EIR5b&SucX?GawH?BMQQ=b>*cgcYW=pMI)7P7{r@ByF?DX zV2m9fzB$ENePT6AJj6XlkJe{`)*pOiFvbkSTD;330vc~ZE&K`Fw4#$y!nok`(St&Z z@dSUJawm&9GJssIlZaxD<<sz_oe=zkxBf!A?E%pLX*V$0`-c@DEpY%M#w8^^{M(L~ z{fg_hV*`Wa)LEH&b{~_@{+@o@wN}zwNCAj7)KuExC!iE90-kC2a9nieF3a`oux+9d zL|fgm?)|1Y+b_zoY2XPA?<<DNN8;xH9wqO+3WJ;VwBdRL>qf?w7pk>(ez`g8TZ^a~ zlwj_<B7=%h1TLi-xDM=9D!l-V_GU2}Yt45WS8tO<c2MBWxdDr{)?$+vh;$(hZ!M#J z_|E(ZtZqKgvd*fYPlkc7wg=Cl#&`or_hPuFgm2r9Z<iOm>=*3JAdA;lvWH;+cKEgJ z@4M>JFR``V?z3aobyy;9yt{&K8Z^Y&M8J1Ukq&5f)Nx4jHpKMoiOUd(6zcJrp#ZLh z7F|AROTFzGd4^}-#ZM0@tv~t+*%24NCK^GH8j&~1bRT!G9yMP-sZrw~J%*1K93EIQ z(4(7+hL-J-D25*Gx*h=W52t~}7g|XJzOu>_@sr;dz@cZYwtPOvQ$vFnkET3JI$U(2 zn8{SbzC&++PIyThuG@~6%LRKf%hZz12e#NwSxGre{qQs3T$E*auGV=2;#O4klPM1# z0>94ldIGA6(6ZJ<4!W?Bg#Cc%LF@K(ysU`U#vqGUnnsRjkd({Z_OBNIh&}-#qQ)I2 z28$-B@&x7n!VHah)8GMJj0?6_0G@o=2L?BPuFnm(gM5PYJ^$hqHzH4NWPgy>T*N=q z{(l+dmsJsvC#}F|+Xq^gEaTe0q=eUP!*##lvhCOypqd6;55GvC|6LIXL6o4cl;=)* zX=Ifl5)RQEmBQ92c8c<(v_C%96nZ1U17evYXH0^qA<!oPY{Tr`R?6OeIuh!q7um6^ zL8wz=7)}UK9m7<YK)1{Q>T2yOG`XV5a0~m-W20vyJmKjW@Z}2NsZ3uvP7gZz(IyHW z)uqQppgnGD&&c&*{G_V~9#EbKtbiUK>QT=>%V3GbH{}iVNkrJK0K9A$T=xq$W-v-i zQ>u#|CM^UE1@m|m)Q!QOD;f4s$g8<Xi@+01MytNnoTT7`clV>wZ{1Y7l%+?&)C!Z3 zAu2%@0QMs0ZFF_=@@V2Q=}D%;({6g2)1KR5tvm}XB&99Ozz3&FOvoNEyxA79dt26* zRxg2V(E&|k644iLzpozVN9SRR^Bz%E#7rq!uK@z7Nai)$qr)!`mIPlLU_QU&N7cil z!#|HP@z!GE*7{$!9eZMI<Xe9;=CC`H8wl7<Ub`G`SZYaRbNaWt&jOyvyM8{V=rUSk z!ZMnhxLa5zuocT)!lTiJ9>S9}%hdyjKM2jnPn5=V-|?VOFf6S)mbg}=@Xr+9XP*s6 zQ}Ln@jpAyQr=_kUHYf&=GW&Gkr{`CmEpYx^GcZs!$&&<33OiXy`xIeBlgNkAi^zkA z<QY`+$(Z%!Qt*6~qdzfV%)%eS#*EjL6!G7Zw*Dy1L0H2#?B<ug>g)DuvWDd0c<y1C z9A49)eI_h0j$xG)R)*nA(+V@6-e(#uDFj23&hxuxJfy*#b&zp)Z%QnpipQ9@888PS zFi{$b%OB2yF@+Z`5onZ-4=P%E(v{aO-f9s>&K|P9_U$RU6}-t;Ii;&SA6f!nkHE9$ z6&H#C!a)wc1cLt=^X^NS#WO5Jo;EhiXXXpd(sMMR7dy5Ba7_u<ZNr`zi2y1#``ZcA z!!KQu%JKH6#m6Lrx$f${mT61m4!^`FRHi-36R=elEdtF+KSZB{P~++mL!L#56kBwm zGxAF_SWTl`d6C@Z4zNdt2&T_)Bh`vpy;k4gp?h(!VdR2oXE2vs_qIL1e#AM{d|}D{ zv=OHGpba0kK!z}cITl-F-W}7IPVb{u4u6KK@byvPPbv%L3;(fpN=%HM8GG8Wr-Yqr z`b-C!TH9}}f6EPA9sWR*j)nG9b!JtjQAC<S^mP6kSKljdCkb=6|M&Em<1-$9n#amD zd2I&NNqThH>idn+arAII=CuhjjYTAm2;^3dqZK&eDF-Ty2R>O^9;O{T5K#Wqg6-jg za@kN5Ews6V&)V8XONQ??P0%wJ;mgNgp8VZ{h4NMXfXs+JeTHoQi5E`L-Tx&e>?vVm z0-L{gwf2IPF!OV5{kckku`t-cXv>dBK|ZoV>6WK861sfx4)!lY$jY+)e{`LUhi%G- zoF@PICZ!SR6Q{}>2yKI#&RFNhZNpOAA}+<n)8qw{Jbe{wPM;yv1G9FbW(}2OTRw=i zg5c?kci8N89x_n}gVD;DCK^?5^E?lSTTL%>Qkp&6BmUW@oEC2keW7UnNgCvXM!B1& zs_5s!30vAMAxRu}y)^MiUHR3vUxjvyJVx&*gPEBo58jSt7T^$EIj?CYU;*NP-=nN- zS&-D0k12f#1E6WMMKP*R9QkJm=4kf=t;UQs2pK|O#G&yr_?XvKo<IE+50l4dY!yaI z4*=0A+)LGfEAMj*DCy@7t;mD9#V3<OCJC<}4V;YdYuDnUSbYX)PMb(tKXmJu+0p-) z9wPVw{Q6oC@bK`9OC?I2a7hVUvLs?B+ZDK-KZ(1kq$B^&2J*@M`N@bhu;Rqo$q~`4 z!5=S$Ptjy~i0;GNvC-ETPx0{2^7Y{EPLJQLWnoz|<NQ<OJu1AJ3_YCpo8<Q?HEg(| zgqHKj7<65?6a3}2|Jf;&XJ|auhhIMXI`h%-p$znp68U)>J$f5F{L#OZ3PS&fKuMVv z@s<9&bHc{lX|;~;t%u#myTJif4<1rk0JGz)PR^J9$q!6lnHER#3_X6_#zXrMlzZ}# zO|$c-D+5dt_;Iv&_;Q}u(@nXXZaY(T89bzN)nJ|nK6&BIqcM+iNXqtcW%ZS9@;`k@ zzjQqhX)~XGNtYh%DyXW|WZo=1LEU`dMpsW#|L0a%2B|SUa})Y1Ir+1Og&y|+GDn#c zX-I0~<aGRfvaa0!aQNA;$cE3P_r0-$li9bp&Hpm*Lqjl28|S_<6|HD_SR&W+p`8f= z^Fd!m06sYTG{v`tA9w5+zH(=VE?W8xJrNyzCoJ=(Lk4N!I1|wrOFkkV!<w?eHS%B! zFb!K@QM5c*U_EiRp@*_vS|4H=&ij+0aJ87BptGlbgVOwcCW+Ey+y3WECq04&CPDrH z%u7#@VPZG?Q}?c?f;#56TZCoutm{7?Ew?)IFxY^W9hy8H2kGJFW%)ITBAM>fH}b)Q zOOO5)#Swyr5w{u3(EN<b6N|UujQ9h*OnzFV3lR<eax^j##W^L()6Oe?&u*dCQ<b}G z*0vr)zM!uA!h9}xeE9vBTuNO*%fk^?fe)Bmp9}zDj_t&w$VTgC!4IypFD^~!(II$* zGd@|HHP8KK0UoWN`|a<UY84Cc5mTQ5mlSV)(6}L-2Iq%O*l3veSvu2Vt+!&m(Uj2i z2^>hDUN5r_KU}!<>AH`ed|Mg39%=ZR<5Fd$w9_Z{mLgAnexi;I4D`zFAs|GtBc};4 zdkiK$it-wybIbV?<EldFQ>>owNJ}J-2eSzn9D|kTo%cgXe0d4c^Ft<Ih!d0e^XvSt zV}O5{iluJ&#GM!bAuiOF+-9rWn#&|ep&1ld{VYK*kJ%k+T&phZpXdwadRYX#Gw<{p z=`$qYYs(vY$_aXKU(zB%E*64`0QcG4C~k{Ia~=gf!U&u}N+ny-kmKN{NcqeUV|n=H z2_7hmo6Ns>!L!OnU+XvMv(NQWd8FqZB|euj$l_}gKL1eVEB`Ju4JrV-a6&QwusY>I z`uxu{GS$!mL&mmnWGn{oPv$L#JbQ=!45fjde{S@J_i#z*Axt;xKMrnxp*wkkDbR>5 zV6lM+EJCMGsEI;NfjNeUu1QW0TBtz^9N(Kw7QNd8d)DoY000nxNkl<ZRr|z{oUQBS zOAoZTRfP9AqX%XV)8hEag6ONCp$xs%%x;$vJ$P7GgdVJe9{v2E5RI1jnJEDGR51Xj ziSkkH4#1*^in(rpDNpD&t8Kuu7wWsqIaIZG6eKe9h^BVyaYsNi2Il5(dRlMjA1MWo z8puzy2;<E^cAbPpufGDh7Qg42aB;PN=zNRVb!;Pu-rQEEAPst2-5<pVc2si(Adw4P zbZGbRG0CFUk*{3*SaX^%dHGYwu3w0DpC3>83Uc+l)qHN0qQ37NGdAi4z`Fx$J10GN zueJWGAK%BL^>%WZZ?HJz@`*G<7Jha_)!I$||Jtr?$&p)!5wcU~|Nl2J@?f{b3#gWz zJzKT4$&5YI?iM8y1cCXl{@mDte$hk}H=Tmr8bLVjaz<1Xt$)cSRH^AK=`z3W!lD)- zDb?a=cH7*+@_CdyEFiMp=M*VGoSiN@g<mM>X2Vc+F=NYB7{O{ur<YYufExL=9|Smy z$+xf$vf9NUo2=<SjZLaeVAx{}dkicSQFr}b<O5w>gqu&vzP76XVDf*V8P(3|#`Y*J z8b0z~>`4HAN%-kI$>=+-5PJ?u=R)0O9~uz6!+BRn0L)+rVpqZ4M-nA5kZ_0G?l9G* zeTa=tld$!yy9p|u1ff?!$q7Af_UwY~{19RCg4uBXRU4@TEPo4b-tJJB+2*p&S|ia* zGW(hV*be-dTV&yLu%sk%Z7^*J%-O*i)fzo^K0g2~TW;ld;)me>BK`mJdE(%k*n)+= zY|oNrh%Q_?1B!P=PJ1JWKz^_WISFRE_~Z85hooUT>WWKaf*1V;{PT+<I`YK7RO%WO zFKvQf*%@}DsQ7tRoSy#n0fxr3jhyBcwlx2;KnL6&xziv3*rVyq^Y%7hOdE=yEjSAt z?34AmHV`)fRPPFO+c!_vC}h@jvKw^w7bi<X9eT*(s{JOQ1lhaKIyVT+abQnCV0E9J zSsV^dtkg=I09zbwj5Pt0dW>h1RjCLz(qOP|Of3(ST3WDsTI)OQS|S-;KNkCbR<C1t z&^5U*fSCpO4B+YjIFatw(B<Rqquh+Md6I0`3zZ-zeHl~I9WKJ|79oJCn4`=>s=iR( zk^F5mxOv}Q*j;Kvh$}!kG~QG`FQW?glm^1W<338PycDyzusSo3sie=0waz60Z7&LX z$oxATVcqe(BaoA6tFqZ<)2*GB+<^SmFMpt#QJkxFEb~pe1>WfN|8VM`&J4b%`<4l) zZvl?k25jnopStrD!KuI>Mes{!^hu`LP^O);u;SLk{QP>X`ITH91rJ#A`Q-rFUd|fI zkNqSzJUdX~YH~3w*{n%fcN2=28WXM#&SXz!`41$mOa#-?>pniai{~AveHug1=)f9S zs2KoDnXncO9d_{EA){wNTp(;R0qd1LH$l1!)~yBx>q&PaD&qIR5paNyzWi%NHIfjV zLjUPz@S~(6%6qc`Mht!yb6_@WNNW0Vr?%sSM=f&NOKbD9poz1dKMJCb78{8EkEa3u z!y(!oo5*_qE~7?e>Cv*39s;%oA0t>>#jrp8=X-UXOy0@@oh&u4CoM4vFyBD^{r68U zJS*O+Wkw$UTzqvyaS5P|HxT&tgMS%cZw&yD?cT#A^4Y^=qLO6|{#O(HMNgo)C0*2I zwQT_D-wc#lLx!;ybllZzNTuTcCkXguRK!dfPHH(4ymShR;szAI_B>mjxcv<L_KrZe zb$q_6sVIzH2{vipEpr9G<>H>u(xLy25eR-e4CaFzA3uOGVEp@?0l={Ui+Ns<URx#< zHAs>AdLA1^FtB)87IfL;7}$I+Wvb*;{|Nk|*)TfV+Wn4mM+)kf1i#zBacwHONY&_B zmyZMk(j;r{xkEw0Im84@hWy;;vwaMo55#hl^~L(ms|Dw@Fb^d%%oTXGm7LXcpO^ED zz=IuZ289DFbFuF>nEd5;@IMS=%zFU7-m+jB#-Dofu?bSqyp<Yu_g}RFcoz@(_R@76 znq&=ORy_qi`@%WQsqhYmuL`^09`2Bnr{9zZn=C`hwYeAxOukEUJY!UOm-Y85{_H1t zulwHx`^hj{N#&hU#2AjLWa$Gsh6??AKPzh3SR@U#4Ss(n{YT(V>HYhOxlPv51pSmt z8)nas7|3{x<#TuK=)}e(gSF-9UdMnBAf@(<0Ahz#SOasb)x-X5o-IBhE?T6n;J;%N z_Kk$68=0`<hs_NtR5(wYZoxOd)GwO|K$ivtqUdg05`g6sJlAQ85J=39q{JqB#{Se0 zt78FwShas@o4nEX{_HF?9h^K?!Koy^)B3*y@62yrzD8qPd-7)9^RF@N@pycQKyL}K zB@7`(cd^D!%QWWYPZv&0!A&NjTZd^8Vbuk>_dZb4ae0cd&J)P_24`u%a~b+0;1)7K z81G>q@TqixXGv#)FI|i*A<;Fr9<&GBLdV^&&)ONh6@cFtc~bQjoZ^Rby`_}iqrHB| zf(exnc4Y_>`wT}eMwKw~%V5!|(KsVjmYXdM9RO%c1`Mkvk4ByGM!(ohT3&9nMC>+j ze?k_z3HMN9{;TgDo8Y(N5)2{l4I%l1CeaG`$QL_8c6sC}mRu+0+W$R=hf#!=i^QE* zEXHQ8;&VTri>oc9ymuOXnX2rAU)A&JcqrCUS@S>7<An*b1cszq+}BGxUQjuuiYrkq zKiQQ5)am;gdqVR2>wl2zbIfl($FMO*$bd(OZZQ35UTVs403~Jcdwm7(k{dI<s0F5a z^j?W5oWv=DfS7&eEDk_f@Nt8v!uG4<g+61H<8=M9&#%Z1Jl~}H_!38q$v9F5;rp#t z(iE01R?J$SSBjm<E%`yPoW0_ENPd1<hIi5#>!@$^pi7E$Y<6b$ARqjc6zx`UbUqbf zA-xTJx%)GXM=yIQp2C833+<x@{J1s%zIp%C<ndY<Op~1sY?|f4w7&`si?RvaVIJ6a zEJT*&RhE+9S25eo7(isi2D@>2>=L)-q6P}<)R{izA)x^jQE4~m<i$LijRM<r0HO1- z-rtYC=@KonTAuk@BBPL^t(4I9rWZ!+a$E5jI%N>%WGu=>!y<lAHi_IdI6-E<EgmV_ zlHzwPjEJ^r+B=>9bv=*quz~UZU9Xpo&+$FX4|ybBM8W`6Q`M_Zlivh>mCAwNMIcJ9 zV8hKM@s$n-c;XM->7V8SEb8~O91!A3x6ij?S#;!?T~?UmyWr8`Mdt-)D?uKnP*eAS zf%GmG^}6b@>cHY?F0|a5o=}%UHFD2oWRjEt${S5-Sn4IyN-rFqG;!)}qF{|bFw|pr zC4<0W-l;xf`|qFE)CYtZjqRRLQ1@+~5gWWjp6F=;?K;gjKi*|pwp9iSE;cFk?~W9p zm;L6!p3V-?4WWed_i*P!!><k*sc?okri^5phGq~Np$&M|r(P7|QwuZAE0@I~xSl-k zo9%A^c?-?3qxkya5I2nEnS)RlM>I(N4>&T4cSbuPqfVWrlLC7HHXdVT0DMJFd0Z2H z44KsyqyqGP=E4kE)?1vnxZ1MWx_bK8qX88WaSFM)pa!;Q!`0dT*h1n?YVoH2?ix=! z!ck~;s@5D5{6Eb(Oj{onz_UA@n79K77H4S4%uW()0e2wog@HqwpOC<85a|jfUt(K0 z`O_L?SF`k&QW#})%qibW6jOO9BcC^lwY!&Wg@c;81S;^4(<ycU_SfTSkMa1_(VX{j zSf<S?tIe#&s~ZuRI7R9uyR)-#6t5x~vLzMA;;P{dE91}niH_7BM8%~~#3^wD7l^l> zj7fL8r}0HebTzz?sXD-Blo(+Fqxb-?9q`VJ;z=+6lj@wyA+_>{vQ&|uzY{fJqdKz6 zehFE|Cm;nZtQb?Msy=JI$5RbG+{43@{icRvw+YBmIt!C~1F-)+o^JrqKE^1Q0mu%f zJ-9%xhHTEcHn7gZX)hojWTjq_4Qw^_GJP#x2M}At-rl+rtQhKF$ydl02RCEdIha{C zGnVYYTXZo11O8qyK|x6dA4~S$dtpJYLs(~}rq&0;EI^e5kYHuIC3=ue+*ok>Ri<R2 z>y5JC1In;`usI3f3-3UcJ3lGrL>edE--EvH)k4Z2o^If2{TYV0444;;&nBoiy_$O; zXpid-d-DnAoB`evQZHlaJ(r9?)~=170`4&vq*{NHZbGl)Y$IfI`crm?@_IxBxC!m< z7u395Igqf^RdtHYur6;?O_H#Y5N@5MjX`vJMtgIZWWrnJQPE-JnjE3$j(a^29vq#! z_DHwlVm#d=Drn#lG=S&H(SM+y7z|F*c&!O*=r`q;p`=0)%H-kDV<R1X{WBI*^XfdV zm(agFwx#4kg{<*+IPtwDqX>saQ5ZWgkhVumN@}AK?Na&4!;|~!g#F>CN-$)wwA||? zsn$f%bGuAGI}_-4Uf(iF)j&Fav2g=Z&s6qSI~)LujG}8UmJMP8oTrHXMiFP9Yj04d zRP(K8&*I4Ir@NRlB;@({w9`Y)BWf#adVA{Yxn;>~_cbU1+AB>3+vkUjz0}pT5?*J3 zp@OQab+ML%j0tjYW5#VZa+fWlbAqbyiv`wuss=%ErX9E+U-y_n_KcxcV4es0lv2;$ z`Y*8>RPg&<ErZI1U50JDsRUi9)$Y>;l&k@1dt{j%&w%9liOzkY4Mh}5dEY0JGCMBo z{F7$?@U`T>SbvX_kMHap(eX1j3e*GdG2rVL45Pi;P2j+yeVg>T=wM2jlNo7th~N=j z>!u_+Rd`PZ8@Q2yfMCvc$3)DWAe9=5k0pB+YqpU!SB8Hufb=rP`Qs#2rV`@}XeW@U z@f3i_i5#g08>0y3nf!9vd-RCuW>}$tN<X+Rk?Z<I?Yd*KKBGK+IMsb3Q1fE+lgscQ z(j?-f;btRQPn8xHYVY@oSq$G_|J0TPiMepsHQG2Ym0?b+C!_@MOq7>aO<yGXysIi~ zuQDKKFOT*d<|NQMK5=nDpq}==4wUFY7zyaR4fh#>ZubApsrRl)By=PQBrgC85(4Ti zfIuaLzK_uL<2Db2!4x~@8_ho0u2%cz51Z0T1%F*obV8m!lWJ4xjGQxSCqk(It~mvK zI0j2^?h1q;^y!jtboF)H4?8cI5`bQx%{O*ryEdQo1gN`f|6}|xmh`N0B-CUz>&Vue zK)v(?tpNn#h(MXUKHEUjI+e1HXR+_ncFn3`L77>nlnx#K2bJIIPDZ*UQlypX*H!V$ zh9S;7@liJaDew)qA->EpCE@gc5qaiQK3rY_V>+26b}`wQPEK{u@OuCMFtb+{%M|0c zK7*tHbGf-4UBEGnB-tc)G2}oL1UsIc%&2^v6QQwQgqxCIg_|Nau=!X$GS;at+89(> zc49?|`|u>iC|FC2jiQ7^1pXVB$8>@+1n%{<C^N-&rFg?d2(&gxVgoVhI*<aVHC`h; zIacb7d&U-8&}nP^Oe0@QiI<h-JrR3E8|vKN3rfroN39#qg469H9Tt#1Zm@I+;N;+Y zKGn{Xa1%HJ5cFRso15v{h6LNCjw6{M+|~~}@f2-sSFwEnw$+&r&P;k3jv=TheLemK Xr9R!IB^jbw00000NkvXXu0mjfz#zvG literal 0 HcmV?d00001 diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 0000000..ae0e1d0 --- /dev/null +++ b/requirements.txt @@ -0,0 +1,19 @@ +bpy==2.82.1 +ConfigArgParse==1.4 +dash_core_components==1.3.1 +dash_html_components==1.0.1 +glm==0.4.3 +json5==0.9.6 +matplotlib==3.5.1 +numpy==1.21.5 +opencv_python==4.5.5.64 +Pillow==9.1.1 +plotly==5.6.0 +PyGLM==2.5.7 +setuptools==61.2.0 +tensorboardX==2.5.1 +thop==0.1.0.post2206102148 +torch==1.11.0 +torchvision==0.12.0 +tqdm==4.64.0 +typing_extensions==4.2.0 diff --git a/run_lf_syn.py b/run_lf_syn.py deleted file mode 100644 index 23b3bf1..0000000 --- a/run_lf_syn.py +++ /dev/null @@ -1,143 +0,0 @@ -import sys -import os -import torch -import torch.optim -import torchvision -from tensorboardX import SummaryWriter -from utils.loss import PerceptionReconstructionLoss -from utils import netio -from utils import misc -from utils import device -from utils import img -from utils.perf import Perf -from data.lf_syn import LightFieldSynDataset -from nets.trans_unet import TransUnet - - -torch.cuda.set_device(2) -print("Set CUDA:%d as current device." % torch.cuda.current_device()) - -DATA_DIR = os.path.dirname(__file__) + '/data/lf_syn_2020.12.23' -TRAIN_DATA_DESC_FILE = DATA_DIR + '/train.json' -OUTPUT_DIR = DATA_DIR + '/output_bat2' -RUN_DIR = DATA_DIR + '/run_bat2' -BATCH_SIZE = 8 -TEST_BATCH_SIZE = 10 -NUM_EPOCH = 1000 -MODE = "Silence" # "Perf" -EPOCH_BEGIN = 600 - - -def train(): - # 1. Initialize data loader - print("Load dataset: " + TRAIN_DATA_DESC_FILE) - train_dataset = LightFieldSynDataset(TRAIN_DATA_DESC_FILE) - train_data_loader = torch.utils.data.DataLoader( - dataset=train_dataset, - batch_size=BATCH_SIZE, - pin_memory=True, - shuffle=True, - drop_last=False) - print(len(train_data_loader)) - - # 2. Initialize components - model = TransUnet(cam_params=train_dataset.cam_params, - view_images=train_dataset.sparse_view_images, - view_depths=train_dataset.sparse_view_depths, - view_positions=train_dataset.sparse_view_positions, - diopter_of_layers=train_dataset.diopter_of_layers).to(device.default()) - optimizer = torch.optim.Adam(model.parameters(), lr=1e-3) - loss = PerceptionReconstructionLoss() - - if EPOCH_BEGIN > 0: - netio.load('%s/model-epoch_%d.pth' % (RUN_DIR, EPOCH_BEGIN), model, - solver=optimizer) - - # 3. Train - model.train() - epoch = EPOCH_BEGIN - iters = EPOCH_BEGIN * len(train_data_loader) * BATCH_SIZE - - os.makedirs(RUN_DIR, exist_ok=True) - - perf = Perf(enable=(MODE == "Perf"), start=True) - writer = SummaryWriter(RUN_DIR) - - print("Begin training...") - for epoch in range(EPOCH_BEGIN, NUM_EPOCH): - for _, view_images, _, view_positions in train_data_loader: - - view_images = view_images.to(device.default()) - - perf.checkpoint("Load") - - out_view_images = model(view_positions) - - perf.checkpoint("Forward") - - optimizer.zero_grad() - loss_value = loss(out_view_images, view_images) - - perf.checkpoint("Compute loss") - - loss_value.backward() - - perf.checkpoint("Backward") - - optimizer.step() - - perf.checkpoint("Update") - - print("Epoch: ", epoch, ", Iter: ", iters, - ", Loss: ", loss_value.item()) - - iters = iters + BATCH_SIZE - - # Write tensorboard logs. - writer.add_scalar("loss", loss_value, iters) - if iters % len(train_data_loader) == 0: - output_vs_gt = torch.cat([out_view_images, view_images], dim=0) - writer.add_image("Output_vs_gt", torchvision.utils.make_grid( - output_vs_gt, scale_each=True, normalize=False) - .cpu().detach().numpy(), iters) - - # Save checkpoint - if ((epoch + 1) % 50 == 0): - netio.save('%s/model-epoch_%d.pth' % (RUN_DIR, epoch + 1), model, iters) - - print("Train finished") - - -def test(net_file: str): - # 1. Load train dataset - print("Load dataset: " + TRAIN_DATA_DESC_FILE) - train_dataset = LightFieldSynDataset(TRAIN_DATA_DESC_FILE) - train_data_loader = torch.utils.data.DataLoader( - dataset=train_dataset, - batch_size=TEST_BATCH_SIZE, - pin_memory=True, - shuffle=False, - drop_last=False) - - # 2. Load trained model - model = TransUnet(cam_params=train_dataset.cam_params, - view_images=train_dataset.sparse_view_images, - view_depths=train_dataset.sparse_view_depths, - view_positions=train_dataset.sparse_view_positions, - diopter_of_layers=train_dataset.diopter_of_layers).to(device.default()) - netio.load(net_file, model) - - # 3. Test on train dataset - print("Begin test on train dataset...") - os.makedirs(OUTPUT_DIR, exist_ok=True) - for view_idxs, view_images, _, view_positions in train_data_loader: - out_view_images = model(view_positions) - img.save(view_images, - '%s/gt_view%02d.png' % (OUTPUT_DIR, i) for i in view_idxs) - img.save(out_view_images, - '%s/out_view%02d.png' % (OUTPUT_DIR, i) for i in view_idxs) - - -if __name__ == "__main__": - # train() - test(RUN_DIR + '/model-epoch_1000.pth') diff --git a/run_spherical_view_syn.py b/run_spherical_view_syn.py deleted file mode 100644 index 6a02568..0000000 --- a/run_spherical_view_syn.py +++ /dev/null @@ -1,764 +0,0 @@ -import os -import sys -import argparse -from typing import Mapping -import torch -import torch.optim -import time -from tensorboardX import SummaryWriter -from torch import nn -from numpy.core.numeric import NaN - -parser = argparse.ArgumentParser() -# Arguments for train >>> -parser.add_argument('-c', '--config', type=str, - help='Net config files') -parser.add_argument('-i', '--config-id', type=str, - help='Net config id') -parser.add_argument('-e', '--epochs', type=int, default=200, - help='Max epochs for train') -parser.add_argument('-n', '--prev-net', type=str) -# Arguments for test >>> -parser.add_argument('-r', '--output-res', type=str, - help='Output resolution') -parser.add_argument('-o', '--output', nargs='+', type=str, default=['perf', 'color'], - help='Specify what to output (perf, color, depth, all)') -parser.add_argument('--output-type', type=str, default='image', - help='Specify the output type (image, video, debug)') -# Other arguments >>> -parser.add_argument('-t', '--test', action='store_true', - help='Start in test mode') -parser.add_argument('-m', '--model', type=str, - help='The model file to load for continue train or test') -parser.add_argument('-d', '--device', type=int, default=0, - help='Which CUDA device to use.') -parser.add_argument('-l', '--log-redirect', action='store_true', - help='Is log redirected to file?') -parser.add_argument('-p', '--prompt', action='store_true', - help='Interactive prompt mode') -parser.add_argument('dataset', type=str, - help='Dataset description file') -args = parser.parse_args() - - -torch.cuda.set_device(args.device) -print("Set CUDA:%d as current device." % torch.cuda.current_device()) - - -from utils import netio -from utils import math -from utils import device -from utils import img -from utils import interact -from utils import color -from utils.progress_bar import progress_bar -from utils.perf import Perf -from data.dataset_factory import * -from data.loader import DataLoader -from configs.spherical_view_syn import SphericalViewSynConfig -from loss.ssim import ssim - - -data_desc_path = args.dataset if args.dataset.endswith('.json') \ - else os.path.join(args.dataset, 'train.json') -data_desc_name = os.path.splitext(os.path.basename(data_desc_path))[0] -data_dir = os.path.dirname(data_desc_path) + '/' -config = SphericalViewSynConfig() -BATCH_SIZE = 4096 -MAX_CHUNK_ITEMS = 1e8 -SAVE_INTERVAL = 10 -TEST_BATCH_SIZE = 16484 -TEST_MAX_CHUNK_ITEMS = 3e8 - -# Toggles -EVAL_TIME_PERFORMANCE = False -# ======== -#EVAL_TIME_PERFORMANCE = True - - -def get_model_files(datadir): - model_files = [] - for root, _, files in os.walk(datadir): - model_files += [ - os.path.join(root, file).replace(datadir, '') - for file in files if file.endswith('.pth') - ] - return model_files - - -def set_outputs(args, outputs_str: str): - args.output = [s.strip() for s in outputs_str.split(',')] - - -if not args.test: - print('Start in train mode.') - if args.prompt: # 2.1 Prompt max epochs - args.epochs = interact.input_ex('Max epochs:', interact.input_to_int(min=1), - default=200) - epochRange = range(1, args.epochs + 1) - if args.prompt: # 2.2 Prompt continue train - model_files = get_model_files(data_dir) - args.model = interact.input_enum('Continue train on model:', model_files, - err_msg='No such model file', default='') - if args.model: - cont_model = os.path.join(data_dir, args.model) - model_name = os.path.splitext(os.path.basename(cont_model))[0] - epochRange = range(int(model_name[12:]) + 1, epochRange.stop) - run_dir = os.path.dirname(cont_model) + '/' - run_id = os.path.basename(run_dir[:-1]) - config.from_id(run_id) - else: - if args.prompt: # 2.3 Prompt config file and additional config items - config_files = [ - f[:-3] for f in os.listdir('configs') - if f.endswith('.py') and f != 'spherical_view_syn.py' - ] - args.config = interact.input_enum('Specify config file:', config_files, - err_msg='No such config file', default='') - args.config_id = interact.input_ex('Specify custom config items:', - default='') - if args.config: - config.load(os.path.join('configs', args.config + '.py')) - if args.config_id: - config.from_id(args.config_id) - run_id = config.to_id() - run_dir = data_dir + run_id + '/' - log_dir = run_dir + 'log/' -else: # Test mode - print('Start in test mode.') - if args.prompt: # 3. Prompt test model, output resolution, output mode - model_files = get_model_files(data_dir) - args.model = interact.input_enum('Specify test model:', model_files, - err_msg='No such model file') - args.output_res = interact.input_ex('Specify output resolution:', - default='') - set_outputs(args, interact.input_ex('Specify the outputs | [perf,color,depth,layers]/all:', - default='perf,color')) - args.output_type = interact.input_enum('Specify the output type | image/video:', - ['image', 'video'], - err_msg='Wrong output type', - default='image') - test_model_path = os.path.join(data_dir, args.model) - test_model_name = os.path.splitext(os.path.basename(test_model_path))[0] - run_dir = os.path.dirname(test_model_path) + '/' - run_id = os.path.basename(run_dir[:-1]) - config.from_id(run_id) - config.sa['perturb_sample'] = False - args.output_res = tuple(int(s) for s in args.output_res.split('x')) \ - if args.output_res else None - output_dir = f"{run_dir}output_{int(test_model_name.split('_')[-1])}" - output_dataset_id = '%s%s' % ( - data_desc_name, - '_%dx%d' % (args.output_res[0], args.output_res[1]) if args.output_res else '') - args.output_flags = { - item: item in args.output or 'all' in args.output - for item in ['perf', 'color', 'depth', 'layers'] - } - - -config.print() -print("run dir: ", run_dir) - -# Initialize model -model = config.create_net().to(device.default()) -loss_mse = nn.MSELoss().to(device.default()) - - -if args.prev_net: - prev_net_config_id = os.path.split(args.prev_net)[-2] - prev_net_config = SphericalViewSynConfig() - prev_net_config.from_id(prev_net_config_id) - prev_net = prev_net_config.create_net().to(device.default()) - netio.load(args.prev_net, prev_net) - model.prev_net = prev_net - - -toggle_show_dir = False -last_toggle_time = 0 - -from nets.nerf_depth import NerfDepth -is_dnerf = isinstance(model, NerfDepth) -is_cnerf = False - - -def train_loop(data_loader, optimizer, perf, writer, epoch, iters): - global toggle_show_dir - global last_toggle_time - dataset = data_loader.dataset - sub_iters = 0 - iters_in_epoch = len(data_loader) - loss_min = 1e5 - loss_max = 0 - loss_avg = 0 - perf1 = Perf(args.log_redirect, True) - for idx, rays_o, rays_d, extra in data_loader: - gt = extra['colors'] - if is_dnerf: - rays_depth = extra.get('depths') - rays_bins = extra.get('bins') - perf.checkpoint("Load") - - out = model(rays_o, rays_d, rays_depth, rays_bins) - if isinstance(out, torch.Tensor): - out = {'color': out} - if isinstance(out, Mapping): - out = [out] - perf.checkpoint("Forward") - - optimizer.zero_grad() - loss_value = loss_mse(out[0]['color'], gt) - for i in range(1, len(out)): - loss_value += loss_mse(out[i]['color'], gt) - elif is_cnerf: - rays_weights = model.bin_weights.flatten(0, 2)[idx] - perf.checkpoint("Load") - - out = model(rays_o, rays_d, rays_weights) - if isinstance(out, torch.Tensor): - out = {'color': out} - if isinstance(out, Mapping): - out = [out] - perf.checkpoint("Forward") - - optimizer.zero_grad() - loss_value = loss_mse(out[0]['color'], gt) - for i in range(1, len(out)): - loss_value += loss_mse(out[i]['color'], gt) - else: - gt_disp = torch.reciprocal(dataset.patched_depths[idx]) if config.depth_ref else None - perf.checkpoint("Load") - - out = model(rays_o, rays_d, ret_depth=config.depth_ref) - if isinstance(out, torch.Tensor): - out = {'color': out} - if isinstance(out, Mapping): - out = [out] - perf.checkpoint("Forward") - - optimizer.zero_grad() - loss_value = loss_mse(out[0]['color'], gt) - for i in range(1, len(out)): - loss_value += loss_mse(out[i]['color'], gt) - if config.depth_ref: - disp_loss_value = loss_mse(torch.reciprocal(out[0]['depth'] + math.tiny), gt_disp) - for i in range(1, len(out)): - disp_loss_value += loss_mse(torch.reciprocal( - out[i]['depth'] + math.tiny), gt_disp) - disp_loss_value = disp_loss_value / math.pow( - 1 / dataset.depth_range[0] - 1 / dataset.depth_range[1], 2) - else: - disp_loss_value = 0 - loss_value += disp_loss_value - perf.checkpoint("Compute loss") - - loss_value.backward() - perf.checkpoint("Backward") - - optimizer.step() - perf.checkpoint("Update") - - loss_value = loss_value.item() - loss_min = min(loss_min, loss_value) - loss_max = max(loss_max, loss_value) - loss_avg = (loss_avg * sub_iters + loss_value) / (sub_iters + 1) - if not args.log_redirect: - progress_bar(sub_iters, iters_in_epoch, - f"Loss: {loss_value:.2e} ({loss_min:.2e}/{loss_avg:.2e}/{loss_max:.2e})", - f"Epoch {epoch:<3d}") - current_time = time.time() - if last_toggle_time == 0: - last_toggle_time = current_time - if current_time - last_toggle_time > 3: - toggle_show_dir = not toggle_show_dir - last_toggle_time = current_time - if toggle_show_dir: - sys.stdout.write(f'Epoch {epoch:<3d} [ {run_dir} ]\r') - - # Write tensorboard logs. - writer.add_scalar("loss mse", loss_value, iters) - # if patch and iters % 100 == 0: - # output_vs_gt = torch.cat([out[0:4], gt[0:4]], 0).detach() - # writer.add_image("Output_vs_gt", torchvision.utils.make_grid( - # output_vs_gt, nrow=4).cpu().numpy(), iters) - - iters += 1 - sub_iters += 1 - if args.log_redirect: - perf1.checkpoint('Epoch %d (%.2e/%.2e/%.2e)' % - (epoch, loss_min, loss_avg, loss_max), True) - return iters - - -def save_checkpoint(epoch, iters): - for i in range(1, epoch): - if (i < epoch // 50 * 50 and i % 50 != 0 or i % 10 != 0) and \ - os.path.exists(f'{run_dir}model-epoch_{i}.pth'): - os.remove(f'{run_dir}model-epoch_{i}.pth') - netio.save(f'{run_dir}model-epoch_{epoch}.pth', model, iters, print_log=False) - - -def train(): - # 1. Initialize data loader - print("Load dataset: " + data_desc_path) - dataset = DatasetFactory.load(data_desc_path, c=config.c, load_depths=config.depth_ref, - load_bins=config.depth_ref) - data_loader = DataLoader(dataset, BATCH_SIZE, chunk_max_items=MAX_CHUNK_ITEMS, shuffle=True) - - if is_cnerf: - model.set_depth_maps(dataset.rays_o, dataset.rays_d, dataset.view_depths) - - # 2. Initialize components - optimizer = torch.optim.Adam(model.parameters(), lr=5e-4) - - if epochRange.start > 1: - iters = netio.load(f'{run_dir}model-epoch_{epochRange.start - 1}.pth', model) - else: - os.makedirs(run_dir, exist_ok=True) - os.makedirs(log_dir, exist_ok=True) - iters = 0 - - # 3. Train - model.train() - - perf = Perf(EVAL_TIME_PERFORMANCE, start=True) - writer = SummaryWriter(log_dir) - - print("Begin training...") - for epoch in epochRange: - iters = train_loop(data_loader, optimizer, perf, writer, epoch, iters) - save_checkpoint(epoch, iters) - print("Train finished") - - -def test(): - with torch.no_grad(): - # 1. Load dataset - print("Load dataset: " + data_desc_path) - dataset = DatasetFactory.load(data_desc_path, res=args.output_res, - load_images=args.output_flags['perf']) - data_loader = DataLoader(dataset, TEST_BATCH_SIZE, chunk_max_items=TEST_MAX_CHUNK_ITEMS, - shuffle=False) - - # 2. Load trained model - netio.load(test_model_path, model) - model.eval() - - # 3. Test on dataset - print("Begin test, batch size is %d" % TEST_BATCH_SIZE) - - i = 0 - offset = 0 - chns = color.chns(config.c) - n = dataset.n_views - total_pixels = n * dataset.res[0] * dataset.res[1] - - out = {} - if args.output_flags['layers']: - out['layers'] = torch.empty(total_pixels, config.sa['n_samples'], chns + 1, - device=device.default()) - if args.output_flags['perf'] or args.output_flags['color']: - out['color'] = torch.empty(total_pixels, chns, device=device.default()) - if args.output_flags['depth']: - out['depth'] = torch.empty(total_pixels, device=device.default()) - out['bins'] = torch.zeros(total_pixels, 3, device=device.default()) - - if args.output_flags['perf']: - perf = Perf(True, start=True) - for _, rays_o, rays_d, _ in data_loader: - n_rays = rays_o.size(0) - ret = model(rays_o, rays_d, - ret_depth=args.output_flags['depth'], - debug=args.output_flags['layers']) - if 'bins' in out: - ret['weight'] = ret['weight'].view(-1, ret['weight'].size(-1) // 2, 2).sum(-1) - is_local_max = torch.ones_like(ret['weight'], dtype=torch.bool) - for delta in range(-3, 0): - is_local_max[..., -delta:].logical_and_( - ret['weight'][..., -delta:] > ret['weight'][..., :delta]) - for delta in range(1, 4): - is_local_max[..., :-delta].logical_and_( - ret['weight'][..., :-delta] > ret['weight'][..., delta:]) - ret['weight'][is_local_max.logical_not()] = 0 - vals, idxs = torch.topk(ret['weight'], 3) # (B, 3) - vals = vals / vals.sum(-1, keepdim=True) - ret['bins'] = (idxs.to(torch.float) / (ret['weight'].size(-1) - 1) - * 0.5 + 0.5) * (vals > 0.1) - idx = slice(offset, offset + n_rays) - for key in out: - print("key ", key, ", idx ", idx, ", out is ", - out[key].shape, ", ret is ", ret[key].shape, ", rays is ", n_rays) - out[key][idx] = ret[key] - if not args.log_redirect: - progress_bar(i, math.ceil(total_pixels / n_rays), 'Inferring...') - i += 1 - offset += n_rays - if args.output_flags['perf']: - tot_time = perf.checkpoint() - - # 4. Save results - print('Saving results...') - os.makedirs(output_dir, exist_ok=True) - - for key in out: - shape = [n] + list(dataset.res) + list(out[key].size()[1:]) - out[key] = out[key].view(shape) - if 'color' in out: - out['color'] = out['color'].permute(0, 3, 1, 2) - if 'layers' in out: - # n, y, x, samples, chns -> samples, n, chns, y, x - out['layers'] = out['layers'].permute(3, 0, 4, 1, 2) - if 'bins' in out: - out['bins'] = out['bins'].permute(0, 3, 1, 2) - - if args.output_flags['perf']: - perf_errors = torch.ones(n) * NaN - perf_ssims = torch.ones(n) * NaN - if dataset.images != None: - for i in range(n): - perf_errors[i] = loss_mse(dataset.images[i], out['color'][i]).item() - perf_ssims[i] = ssim(dataset.images[i:i + 1], - out['color'][i:i + 1]).item() * 100 - perf_mean_time = tot_time / n - perf_mean_error = torch.mean(perf_errors).item() - perf_name = 'perf_%s_%.1fms_%.2e.csv' % ( - output_dataset_id, perf_mean_time, perf_mean_error) - - # Remove old performance reports - for file in os.listdir(output_dir): - if file.startswith(f'perf_{output_dataset_id}'): - os.remove(f"{output_dir}/{file}") - - # Save new performance reports - with open(f"{output_dir}/{perf_name}", 'w') as fp: - fp.write('View, PSNR, SSIM\n') - fp.writelines([ - f'{dataset.indices[i]}, ' - f'{img.mse2psnr(perf_errors[i].item()):.2f}, {perf_ssims[i].item():.2f}\n' - for i in range(n) - ]) - - if args.output_flags['color']: - if args.output_type == 'video': - output_file = f"{output_dir}/{output_dataset_id}_color.mp4" - img.save_video(out['color'], output_file, 30) - else: - output_subdir = f"{output_dir}/{output_dataset_id}_color" - os.makedirs(output_subdir, exist_ok=True) - img.save(out['color'], [f'{output_subdir}/{i:0>4d}.png' for i in dataset.indices]) - - if args.output_flags['depth']: - colorized_depths = img.colorize_depthmap( - out['depth'], config.sa['sample_range']) - if args.output_type == 'video': - output_file = f"{output_dir}/{output_dataset_id}_depth.mp4" - img.save_video(colorized_depths, output_file, 30) - else: - output_subdir = f"{output_dir}/{output_dataset_id}_depth" - os.makedirs(output_subdir, exist_ok=True) - img.save(colorized_depths, [ - f'{output_subdir}/{i:0>4d}.png' - for i in dataset.indices - ]) - output_subdir = f"{output_dir}/{output_dataset_id}_bins" - os.makedirs(output_subdir, exist_ok=True) - img.save(out['bins'], [f'{output_subdir}/{i:0>4d}.png' for i in dataset.indices]) - - if args.output_flags['layers']: - if args.output_type == 'video': - for j in range(config.sa['n_samples']): - output_file = f"{output_dir}/{output_dataset_id}_layers[{j:0>3d}].mp4" - img.save_video(out['layers'][j], output_file, 30) - else: - output_subdir = f"{output_dir}/{output_dataset_id}_layers" - os.makedirs(output_subdir, exist_ok=True) - for j in range(config.sa['n_samples']): - img.save(out['layers'][j], [ - f'{output_subdir}/{i:0>4d}[{j:0>3d}].png' - for i in dataset.indices - ]) - - -def test1(): - with torch.no_grad(): - # 1. Load dataset - print("Load dataset: " + data_desc_path) - dataset = DatasetFactory.load(data_desc_path, res=args.output_res, - load_images=args.output_flags['perf'], - load_depths=True, load_bins=True) - data_loader = DataLoader(dataset, 1, chunk_max_items=TEST_MAX_CHUNK_ITEMS, shuffle=False) - - # 2. Load trained model - netio.load(test_model_path, model) - model.eval() - - # 3. Test on dataset - print("Begin test, batch size is %d" % TEST_BATCH_SIZE) - - i = 0 - global_offset = 0 - chns = color.chns(config.c) - n = dataset.n_views - total_pixels = n * dataset.res[0] * dataset.res[1] - - out = {} - if args.output_flags['perf']: - perf_times = torch.empty(n) - perf = Perf(True, start=True) - if args.output_flags['layers']: - out['layers'] = torch.empty(total_pixels, config.sa['n_samples'], chns + 1, - device=device.default()) - if args.output_flags['perf'] or args.output_flags['color']: - out['color'] = torch.empty(total_pixels, chns, device=device.default()) - if args.output_flags['depth']: - out['depth'] = torch.empty(total_pixels, device=device.default()) - - for vi, _, rays_o, rays_d in data_loader: - rays_o = rays_o.view(-1, 3) - rays_d = rays_d.view(-1, 3) - rays_depth = dataset.patched_depths[vi].flatten() if dataset.load_depths else None - rays_bins = dataset.patched_bins[vi].flatten(0, 2) if dataset.load_bins else None - n_rays = rays_o.size(0) - for offset in range(0, n_rays, TEST_MAX_RAYS): - idx = slice(offset, min(offset + TEST_MAX_RAYS, n_rays)) - global_idx = slice(idx.start + global_offset, idx.stop + global_offset) - ret = model(rays_o[idx], rays_d[idx], - rays_depth[idx] if rays_depth is not None else None, - rays_bins[idx] if rays_bins is not None else None, - ret_depth=args.output_flags['depth'], - debug=args.output_flags['layers']) - if isinstance(ret, torch.Tensor): - ret = {'color': ret} - if isinstance(ret, list): - ret = ret[-1] - for key in out: - out[key][global_idx] = ret[key] - if args.output_flags['perf']: - perf_times[i] = perf.checkpoint() - progress_bar(i, n, 'Inferring...') - i += 1 - global_offset += n_rays - - # 4. Save results - print('Saving results...') - os.makedirs(output_dir, exist_ok=True) - - for key in out: - shape = [n] + list(dataset.res) + list(out[key].size()[1:]) - out[key] = out[key].view(shape) - if 'color' in out: - out['color'] = out['color'].permute(0, 3, 1, 2) - if 'layers' in out: - # n, y, x, samples, chns -> samples, n, chns, y, x - out['layers'] = out['layers'].permute(3, 0, 4, 1, 2) - - if args.output_flags['perf']: - perf_errors = torch.ones(n) * NaN - perf_ssims = torch.ones(n) * NaN - if dataset.view_images != None: - for i in range(n): - perf_errors[i] = loss_mse(dataset.view_images[i], out['color'][i]).item() - perf_ssims[i] = ssim(dataset.view_images[i:i + 1], - out['color'][i:i + 1]).item() * 100 - perf_mean_time = torch.mean(perf_times).item() - perf_mean_error = torch.mean(perf_errors).item() - perf_name = 'perf_%s_%.1fms_%.2e.csv' % ( - output_dataset_id, perf_mean_time, perf_mean_error) - - # Remove old performance reports - for file in os.listdir(output_dir): - if file.startswith(f'perf_{output_dataset_id}'): - os.remove(f"{output_dir}/{file}") - - # Save new performance reports - with open(f"{output_dir}/{perf_name}", 'w') as fp: - fp.write('View, Time, PSNR, SSIM\n') - fp.writelines([ - f'{dataset.indices[i]}, {perf_times[i].item():.2f}, ' - f'{img.mse2psnr(perf_errors[i].item()):.2f}, {perf_ssims[i].item():.2f}\n' - for i in range(n) - ]) - - if args.output_flags['color']: - if args.output_type == 'video': - output_file = f"{output_dir}/{output_dataset_id}_color.mp4" - img.save_video(out['color'], output_file, 30) - else: - output_subdir = f"{output_dir}/{output_dataset_id}_color" - os.makedirs(output_subdir, exist_ok=True) - img.save(out['color'], [f'{output_subdir}/{i:0>4d}.png' for i in dataset.indices]) - - if args.output_flags['depth']: - colorized_depths = img.colorize_depthmap( - out['depth'], config.sa['sample_range']) - if args.output_type == 'video': - output_file = f"{output_dir}/{output_dataset_id}_depth.mp4" - img.save_video(colorized_depths, output_file, 30) - else: - output_subdir = f"{output_dir}/{output_dataset_id}_depth" - os.makedirs(output_subdir, exist_ok=True) - img.save(colorized_depths, [ - f'{output_subdir}/{i:0>4d}.png' - for i in dataset.indices - ]) - - if args.output_flags['layers']: - if args.output_type == 'video': - for j in range(config.sa['n_samples']): - output_file = f"{output_dir}/{output_dataset_id}_layers[{j:0>3d}].mp4" - img.save_video(out['layers'][j], output_file, 30) - else: - output_subdir = f"{output_dir}/{output_dataset_id}_layers" - os.makedirs(output_subdir, exist_ok=True) - for j in range(config.sa['n_samples']): - img.save(out['layers'][j], [ - f'{output_subdir}/{i:0>4d}[{j:0>3d}].png' - for i in dataset.indices - ]) - - -def test2(): - with torch.no_grad(): - # 1. Load dataset - print("Load dataset: " + data_desc_path) - dataset = DatasetFactory.load(data_desc_path, res=args.output_res, - load_images=args.output_flags['perf'], - load_depths=True) - data_loader = DataLoader(dataset, 1, chunk_max_items=TEST_MAX_CHUNK_ITEMS, shuffle=False) - - # 2. Load trained model - netio.load(test_model_path, model) - model.set_depth_maps(dataset.rays_o, dataset.rays_d, dataset.view_depths) - model.eval() - - # 3. Test on dataset - print("Begin test, batch size is %d" % TEST_BATCH_SIZE) - - i = 0 - global_offset = 0 - chns = color.chns(config.c) - n = dataset.n_views - total_pixels = n * dataset.res[0] * dataset.res[1] - - out = {} - if args.output_flags['perf']: - perf_times = torch.empty(n) - perf = Perf(True, start=True) - if args.output_flags['layers']: - out['layers'] = torch.empty(total_pixels, config.sa['n_samples'], chns + 1, - device=device.default()) - if args.output_flags['perf'] or args.output_flags['color']: - out['color'] = torch.empty(total_pixels, chns, device=device.default()) - if args.output_flags['depth']: - out['depth'] = torch.empty(total_pixels, device=device.default()) - - for vi, _, rays_o, rays_d in data_loader: - rays_o = rays_o.view(-1, 3) - rays_d = rays_d.view(-1, 3) - rays_weights = model.bin_weights[vi].flatten(0, 2) - n_rays = rays_o.size(0) - for offset in range(0, n_rays, TEST_MAX_RAYS): - idx = slice(offset, min(offset + TEST_MAX_RAYS, n_rays)) - global_idx = slice(idx.start + global_offset, idx.stop + global_offset) - ret = model(rays_o[idx], rays_d[idx], rays_weights[idx], - ret_depth=args.output_flags['depth'], - debug=args.output_flags['layers']) - if isinstance(ret, torch.Tensor): - ret = {'color': ret} - if isinstance(ret, list): - ret = ret[-1] - for key in out: - out[key][global_idx] = ret[key] - if args.output_flags['perf']: - perf_times[i] = perf.checkpoint() - progress_bar(i, n, 'Inferring...') - i += 1 - global_offset += n_rays - - # 4. Save results - print('Saving results...') - os.makedirs(output_dir, exist_ok=True) - - for key in out: - shape = [n] + list(dataset.res) + list(out[key].size()[1:]) - out[key] = out[key].view(shape) - if 'color' in out: - out['color'] = out['color'].permute(0, 3, 1, 2) - if 'layers' in out: - # n, y, x, samples, chns -> samples, n, chns, y, x - out['layers'] = out['layers'].permute(3, 0, 4, 1, 2) - - if args.output_flags['perf']: - perf_errors = torch.ones(n) * NaN - perf_ssims = torch.ones(n) * NaN - if dataset.view_images != None: - for i in range(n): - perf_errors[i] = loss_mse(dataset.view_images[i], out['color'][i]).item() - perf_ssims[i] = ssim(dataset.view_images[i:i + 1], - out['color'][i:i + 1]).item() * 100 - perf_mean_time = torch.mean(perf_times).item() - perf_mean_error = torch.mean(perf_errors).item() - perf_name = 'perf_%s_%.1fms_%.2e.csv' % ( - output_dataset_id, perf_mean_time, perf_mean_error) - - # Remove old performance reports - for file in os.listdir(output_dir): - if file.startswith(f'perf_{output_dataset_id}'): - os.remove(f"{output_dir}/{file}") - - # Save new performance reports - with open(f"{output_dir}/{perf_name}", 'w') as fp: - fp.write('View, Time, PSNR, SSIM\n') - fp.writelines([ - f'{dataset.indices[i]}, {perf_times[i].item():.2f}, ' - f'{img.mse2psnr(perf_errors[i].item()):.2f}, {perf_ssims[i].item():.2f}\n' - for i in range(n) - ]) - - if args.output_flags['color']: - if args.output_type == 'video': - output_file = f"{output_dir}/{output_dataset_id}_color.mp4" - img.save_video(out['color'], output_file, 30) - else: - output_subdir = f"{output_dir}/{output_dataset_id}_color" - os.makedirs(output_subdir, exist_ok=True) - img.save(out['color'], [f'{output_subdir}/{i:0>4d}.png' for i in dataset.indices]) - - if args.output_flags['depth']: - colorized_depths = img.colorize_depthmap( - out['depth'], config.sa['sample_range']) - if args.output_type == 'video': - output_file = f"{output_dir}/{output_dataset_id}_depth.mp4" - img.save_video(colorized_depths, output_file, 30) - else: - output_subdir = f"{output_dir}/{output_dataset_id}_depth" - os.makedirs(output_subdir, exist_ok=True) - img.save(colorized_depths, [ - f'{output_subdir}/{i:0>4d}.png' - for i in dataset.indices - ]) - - if args.output_flags['layers']: - if args.output_type == 'video': - for j in range(config.sa['n_samples']): - output_file = f"{output_dir}/{output_dataset_id}_layers[{j:0>3d}].mp4" - img.save_video(out['layers'][j], output_file, 30) - else: - output_subdir = f"{output_dir}/{output_dataset_id}_layers" - os.makedirs(output_subdir, exist_ok=True) - for j in range(config.sa['n_samples']): - img.save(out['layers'][j], [ - f'{output_subdir}/{i:0>4d}[{j:0>3d}].png' - for i in dataset.indices - ]) - - -if __name__ == "__main__": - if args.test: - if is_dnerf: - test1() - elif is_cnerf: - test2() - else: - test() - else: - train() diff --git a/setup.py b/setup.py index 26d489e..d350b8b 100644 --- a/setup.py +++ b/setup.py @@ -1,7 +1,6 @@ from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension import glob -import os import sys # build clib diff --git a/term_test.py b/term_test.py deleted file mode 100644 index 249bf9a..0000000 --- a/term_test.py +++ /dev/null @@ -1,15 +0,0 @@ -import os -import shutil -from sys import stdout -from time import sleep -from utils.progress_bar import * - -i = 0 -while True: - rows = shutil.get_terminal_size().lines - cols = shutil.get_terminal_size().columns - os.system('cls' if os.name == 'nt' else 'clear') - stdout.write("\n" * (rows - 1)) - progress_bar(i, 10000, "Test", "XXX") - i += 1 - sleep(0.02) diff --git a/test.ipynb b/test.ipynb deleted file mode 100644 index e5390d2..0000000 --- a/test.ipynb +++ /dev/null @@ -1,127 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mixin.__init__\n", - "Base.__init__\n", - "Child.__init__\n", - "Mixin.fn\n", - "Mixin.fn\n", - "(<class '__main__.Child'>, <class '__main__.Base'>, <class '__main__.Mixin'>, <class '__main__.Obj'>, <class 'object'>)\n" - ] - } - ], - "source": [ - "class Obj:\n", - " def fn(self):\n", - " print(\"Obj.fn\")\n", - "class Base(Obj):\n", - " def __init__(self) -> None:\n", - " super().__init__()\n", - " print(\"Base.__init__\")\n", - "\n", - " def fn(self):\n", - " super().fn()\n", - " print(\"Base.fn\")\n", - " \n", - " def fn1(self):\n", - " self.fn()\n", - "\n", - "class Mixin(Obj):\n", - " def __init__(self) -> None:\n", - " print(\"Mixin.__init__\")\n", - " self.fn = self._fn\n", - " \n", - " def _fn(self):\n", - " print(\"Mixin.fn\")\n", - "\n", - "class Child(Base, Mixin):\n", - " def __init__(self) -> None:\n", - " super().__init__()\n", - " print(\"Child.__init__\")\n", - "\n", - " \n", - "\n", - "a = Child()\n", - "a.fn()\n", - "a.fn1()\n", - "print(Child.__mro__)" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Base.__init__\n", - "Child.fn: <__main__.Child object at 0x7f62583e0640>\n" - ] - } - ], - "source": [ - "class Base:\n", - " def __init__(self) -> None:\n", - " print(\"Base.__init__\")\n", - " \n", - " def fn(self):\n", - " print(\"Base.fn\")\n", - "\n", - " def fn1(self):\n", - " self.fn()\n", - "\n", - "def createChildClass(name):\n", - " def __init__(self):\n", - " super(self.__class__, self).__init__()\n", - " \n", - " def fn(self):\n", - " print(f\"{name}.fn: {self}\")\n", - " \n", - " return type(name, (Base, ), {\n", - " \"__init__\": __init__,\n", - " \"fn\": fn\n", - " })\n", - "\n", - "Child = createChildClass(\"Child\")\n", - "\n", - "a = Child()\n", - "a.fn()" - ] - } - ], - "metadata": { - "interpreter": { - "hash": "65406b00395a48e1d89cf658ae895e7869e05878f5469716b06a752a3915211c" - }, - "kernelspec": { - "display_name": "Python 3.8.5 64-bit ('base': conda)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.8.5" - }, - "orig_nbformat": 4 - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/test.py b/test.py index da05da0..3fb949c 100644 --- a/test.py +++ b/test.py @@ -1,242 +1,186 @@ -import os import argparse +import json import torch -import torch.nn.functional as nn_f -import cv2 -import numpy as np -from pathlib import Path +from concurrent.futures import ThreadPoolExecutor +from matplotlib import pyplot as plt +from collections import defaultdict +from tqdm import tqdm, trange + +from model import Model +from utils import device, img, netio, math +from utils.loss import ssim, mse_loss, LpipsLoss +from utils.types import * +from utils.view import Trans +from utils.profile import Profiler, enable_profile +from data import * +from components.render import render + parser = argparse.ArgumentParser() -parser.add_argument('-m', '--model', type=str, - help='The model file to load for testing') -parser.add_argument('-r', '--output-res', type=str, +parser.add_argument('-r', '--output-res', type=Resolution.from_str, help='Output resolution') -parser.add_argument('-o', '--output', nargs='*', type=str, default=['perf', 'color'], +parser.add_argument('-o', '--output', nargs='+', type=str, default=['perf', 'color'], help='Specify what to output (perf, color, depth, all)') -parser.add_argument('--output-type', type=str, default='image', - help='Specify the output type (image, video, debug)') -parser.add_argument('--views', type=str, +parser.add_argument('--media', type=str, default='image', + help='Specify the media of output (image, video)') +parser.add_argument('--views', type=lambda s: range(*[int(val) for val in s.split('-')]), help='Specify the range of views to test') -parser.add_argument('-s', '--samples', type=int) -parser.add_argument('-p', '--prompt', action='store_true', - help='Interactive prompt mode') -parser.add_argument('--time', action='store_true', +parser.add_argument('--batch', type=int, + help="Batch size (to avoid out-of-memory") +parser.add_argument('--profile', action='store_true', help='Enable time measurement') -parser.add_argument('dataset', type=str, - help='Dataset description file') +parser.add_argument("--warm-up", type=int, default=10) +parser.add_argument('--stereo', type=float, default=0, + help='Specify the stereo disparity. If greater than 0, stereo images will be generated') +parser.add_argument('ckpt_path', type=str, + help='Path to the ckpt file') +parser.add_argument('dataset_path', type=str, + help='Path to the dataset') args = parser.parse_args() -import model as mdl -from loss.ssim import ssim -from utils import color -from utils import interact -from utils import device -from utils import img -from utils import netio -from utils import math -from utils.perf import Perf, enable_perf, get_perf_result -from utils.progress_bar import progress_bar -from data import * +torch.set_grad_enabled(False) +lpips_loss = LpipsLoss().to(device.default()) + + +output_types = list({ + "color" if item in ["color", "perf"] else item + for item in args.output +}) + +# Load model +ckpt_path = netio.find_checkpoint(Path(args.ckpt_path)) +ckpt = torch.load(ckpt_path) +print(f"Load checkpoint: {ckpt_path}") +print("Model arguments:", json.dumps(ckpt["args"]["model_args"])) +model = Model.create(ckpt["args"]["model"], ckpt["args"]["model_args"] + # raymarching_early_stop_tolerance=0.01, + # raymarching_chunk_size_or_sections=None, + # perturb_sample=False + ) +model.load_state_dict(ckpt["states"]["model"]) +model.to(device.default()).eval() + +# Debug: print model structure +print(model) + +# Load dataset +dataset = Dataset(args.dataset_path, res=args.output_res, + views_to_load=args.views, color_mode=model.color, + coord_sys=model.args.coord, device=device.default()) +print(f"Load dataset: {dataset.root}/{dataset.name} ({dataset.color_mode}, {dataset.coord_sys})") + +run_dir = ckpt_path.parent +out_dir = run_dir / f"output_{ckpt_path.stem.split('_')[-1]}" +out_id = f'{dataset.name}_{args.output_res.w}x{args.output_res.h}' if args.output_res\ + else dataset.name +batch_size = args.batch or dataset.pixels_per_view +n = len(dataset) +executor = ThreadPoolExecutor(8) + + +if args.media == "video": + video_frames = defaultdict(list) + + +def save_image(out: torch.Tensor, out_type: str, view_idx: int): + out = out.detach().cpu() + if args.media == 'video': + video_frames[out_type].append(out) + else: + output_subdir = out_dir / f"{out_id}_{out_type}{'_stereo' if args.stereo > 0 else ''}" + output_subdir.mkdir(parents=True, exist_ok=True) + executor.submit(img.save, out, f'{output_subdir}/{view_idx:04d}.png') -DATA_LOADER_CHUNK_SIZE = 1e8 -torch.set_grad_enabled(False) +def save_error_image(gt: torch.Tensor, out: torch.Tensor, view_idx: int): + error_image = (mse_loss(out, gt, reduction='none').mean(-3, True) / 1e-2).clamp(0, 1) + error_image = img.torch2np(error_image)[..., 0] + output_subdir = out_dir / f"{out_id}_error" + output_subdir.mkdir(exist_ok=True) + def save_fn(error_image, view_idx): + img.save(plt.get_cmap("jet")(error_image), f'{output_subdir}/{view_idx:04d}.png') + executor.submit(save_fn, error_image, view_idx) + + +if args.profile: + def handle_profile_result(result: Profiler.ProfileResult): + print(result.get_report()) + enable_profile(0, len(dataset), handle_profile_result) + +perf = "perf" in args.output and args.stereo == 0 and defaultdict(list, dummy=[]) +out_dir.mkdir(parents=True, exist_ok=True) + +if perf: # Warm-up first for accurate time measurement + rays_d = Trans(dataset.centers[0], dataset.rots[0]).trans_vector( + dataset.cam.local_rays[:batch_size]) + rays_o = dataset.centers[:1, None, :].expand_as(rays_d) + rays = Rays(rays_o=rays_o, rays_d=rays_d).flatten() + print(rays_o.shape, rays_d.shape) + for i in trange(args.warm_up, desc="Warm up"): + model(rays, *output_types) + +for i in trange(n, desc="Test"): + view_idx = dataset.indices[i].item() + if perf: + test_perf = Profiler.Node("Test") + + view = Trans(dataset.centers[i], dataset.rots[i]) + if args.stereo > 0: + left_view = Trans( + view.trans_point(torch.tensor([-args.stereo / 2, 0, 0], device=view.device)), + view.r) + right_view = Trans( + view.trans_point(torch.tensor([args.stereo / 2, 0, 0], device=view.device)), + view.r) + out_left = render(model, dataset.cam, left_view, *output_types, batch_size=batch_size) + out_right = render(model, dataset.cam, right_view, *output_types, batch_size=batch_size) + out = ReturnData({ + key: torch.cat([out_left[key], out_right[key]], dim=2) + for key in out_left if isinstance(out_left[key], torch.Tensor) + }) + else: + out = render(model, dataset.cam, view, *output_types, batch_size=batch_size) -data_desc_path = get_dataset_desc_path(args.dataset) -os.chdir(data_desc_path.parent) -nets_dir = Path("_nets") -data_desc_path = data_desc_path.name - - -def set_outputs(args, outputs_str: str): - args.output = [s.strip() for s in outputs_str.split(',')] - - -if args.prompt: # Prompt test model, output resolution, output mode - model_files = [str(path.relative_to(nets_dir)) for path in nets_dir.rglob("*.tar")] \ - + [str(path.relative_to(nets_dir)) for path in nets_dir.rglob("*.pth")] - args.model = interact.input_enum('Specify test model:', model_files, - err_msg='No such model file') - args.output_res = interact.input_ex('Specify output resolution:', - default='') - set_outputs(args, interact.input_ex('Specify the outputs | [perf,color,depth,layers,diffuse,specular]/all:', - default='perf,color')) - args.output_type = interact.input_enum('Specify the output type | image/video:', - ['image', 'video'], - err_msg='Wrong output type', - default='image') -args.output_res = tuple(int(s) for s in reversed(args.output_res.split('x'))) if args.output_res \ - else None -args.output_flags = { - item: item in args.output or 'all' in args.output - for item in ['perf', 'color', 'depth', 'layers', 'diffuse', 'specular'] -} -args.views = range(*[int(val) for val in args.views.split('-')]) if args.views else None - -if args.time: - enable_perf() - -dataset = DatasetFactory.load(data_desc_path, res=args.output_res, - load_images=args.output_flags['perf'], - views_to_load=args.views) -print(f"Dataset loaded: {dataset.root}/{dataset.name}") - -RAYS_PER_BATCH = dataset.res[0] * dataset.res[1] // 4 - - -model_path: Path = nets_dir / args.model -model_name = model_path.parent.name -states, _ = netio.load_checkpoint(model_path) -if args.samples: - states['args']['n_samples'] = args.samples -model = mdl.deserialize(states, - raymarching_early_stop_tolerance=0.01, - raymarching_chunk_size_or_sections=None, - perturb_sample=False).to(device.default()).eval() -print(f"model: {model_name} ({model._get_name()})") -print("args:", json.dumps(model.args)) - -run_dir = model_path.parent -output_dir = run_dir / f"output_{int(model_path.stem.split('_')[-1])}" -output_dataset_id = '%s%s' % ( - dataset.name, - f'_{args.output_res[1]}x{args.output_res[0]}' if args.output_res else '' -) - - -# 1. Initialize data loader -data_loader = DataLoader(dataset, RAYS_PER_BATCH, chunk_max_items=DATA_LOADER_CHUNK_SIZE, - shuffle=False, enable_preload=not args.time, - color=color.from_str(model.args['color'])) - -# 3. Test on dataset -print("Begin test, batch size is %d" % RAYS_PER_BATCH) - -i = 0 -offset = 0 -chns = model.chns('color') -n = dataset.n_views -total_pixels = math.prod([n, *dataset.res]) - -out = {} -if args.output_flags['perf'] or args.output_flags['color']: - out['color'] = torch.zeros(total_pixels, chns, device=device.default()) -if args.output_flags['diffuse']: - out['diffuse'] = torch.zeros(total_pixels, chns, device=device.default()) -if args.output_flags['specular']: - out['specular'] = torch.zeros(total_pixels, chns, device=device.default()) -if args.output_flags['depth']: - out['depth'] = torch.full([total_pixels, 1], math.huge, device=device.default()) -gt_images = torch.empty_like(out['color']) if dataset.image_path else None - -tot_time = 0 -tot_iters = len(data_loader) -progress_bar(i, tot_iters, 'Inferring...') -for data in data_loader: - if args.output_flags['perf']: - test_perf = Perf.Node("Test") - n_rays = data['rays_o'].size(0) - idx = slice(offset, offset + n_rays) - ret = model(data, *out.keys()) - - if ret is not None: - for key in out: - if key not in ret: - out[key] = None - else: - if 'rays_filter' in ret: - out[key][idx][ret['rays_filter']] = ret[key] - else: - out[key][idx] = ret[key] - if args.output_flags['perf']: + if perf: test_perf.close() torch.cuda.synchronize() - tot_time += test_perf.duration() - if gt_images is not None: - gt_images[idx] = data['color'] - i += 1 - progress_bar(i, tot_iters, 'Inferring...') - offset += n_rays - -# 4. Save results -print('Saving results...') -output_dir.mkdir(parents=True, exist_ok=True) - -out = {key: value for key, value in out.items() if value is not None} -for key in out: - out[key] = out[key].reshape([n, *dataset.res, *out[key].shape[1:]]) - if key == 'color' or key == 'diffuse' or key == 'specular': - out[key] = out[key].permute(0, 3, 1, 2) - -if args.output_flags['perf']: - perf_errors = torch.full([n], math.nan) - perf_ssims = torch.full([n], math.nan) - if gt_images is not None: - gt_images = gt_images.reshape(n, *dataset.res, chns).permute(0, 3, 1, 2) - for i in range(n): - perf_errors[i] = nn_f.mse_loss(gt_images[i], out['color'][i]).item() - perf_ssims[i] = ssim(gt_images[i:i + 1], out['color'][i:i + 1]).item() * 100 - perf_mean_time = tot_time / n - perf_mean_error = torch.mean(perf_errors).item() - perf_name = f'perf_{output_dataset_id}_{perf_mean_time:.1f}ms_{perf_mean_error:.2e}.csv' + perf["view"].append(view_idx) + perf["time"].append(test_perf.device_duration) + gt_image = dataset.load_images("color", view_idx) + out_image = out.color.movedim(-1, -3) + if gt_image is not None: + perf["mse"].append(mse_loss(out_image, gt_image).item()) + perf["ssim"].append(ssim(out_image, gt_image).item() * 100) + perf["lpips"].append(lpips_loss(out_image, gt_image).item()) + save_error_image(gt_image, out_image, view_idx) + else: + perf["mse"].append(math.nan) + perf["ssim"].append(math.nan) + perf["lpips"].append(math.nan) + + for key, value in out.items(): + save_image(value, key, view_idx) + +if perf: + perf_mean_time = sum(perf['time']) / n + perf_mean_error = sum(perf['mse']) / n + perf_name = f'perf_{out_id}_{perf_mean_time:.1f}ms_{perf_mean_error:.2e}.csv' # Remove old performance reports - for file in output_dir.glob(f'perf_{output_dataset_id}*'): + for file in out_dir.glob(f'perf_{out_id}*'): file.unlink() # Save new performance reports - with (output_dir / perf_name).open('w') as fp: - fp.write('View, PSNR, SSIM\n') + with (out_dir / perf_name).open('w') as fp: + fp.write('PSNR, SSIM, LPIPS\n') fp.writelines([ - f'{dataset.indices[i]}, ' - f'{img.mse2psnr(perf_errors[i].item()):.2f}, {perf_ssims[i].item():.2f}\n' + f'{img.mse2psnr(perf["mse"][i]):.2f}, {perf["ssim"][i]:.2f}, {perf["lpips"][i]:.2e}\n' for i in range(n) ]) - error_images = ((gt_images - out['color'])**2).sum(1, True) / chns - error_images = (error_images / 1e-2).clamp(0, 1) * 255 - error_images = img.torch2np(error_images) - error_images = np.asarray(error_images, dtype=np.uint8) - output_subdir = output_dir / f"{output_dataset_id}_error" - output_subdir.mkdir(exist_ok=True) - for i in range(n): - heat_img = cv2.applyColorMap(error_images[i], cv2.COLORMAP_JET) # 注æ„æ¤å¤„的三通é“çƒåŠ›å›¾æ˜¯cv2专有的GBR排列 - cv2.imwrite(f'{output_subdir}/{dataset.indices[i]:0>4d}.png', heat_img) - -for output_type in ['color', 'diffuse', 'specular']: - if output_type not in out: - continue - if args.output_type == 'video': - output_file = output_dir / f"{output_dataset_id}_{output_type}.mp4" - img.save_video(out[output_type], output_file, 30) - else: - output_subdir = output_dir / f"{output_dataset_id}_{output_type}" - output_subdir.mkdir(exist_ok=True) - img.save(out[output_type], - [f'{output_subdir}/{i:0>4d}.png' for i in dataset.indices]) - -if 'depth' in out: - colored_depths = img.colorize_depthmap(out['depth'][..., 0], model.args['sample_range']) - if args.output_type == 'video': - output_file = output_dir / f"{output_dataset_id}_depth.mp4" - img.save_video(colored_depths, output_file, 30) - else: - output_subdir = output_dir / f"{output_dataset_id}_depth" - output_subdir.mkdir(exist_ok=True) - img.save(colored_depths, [f'{output_subdir}/{i:0>4d}.png' for i in dataset.indices]) - #output_subdir = output_dir / f"{output_dataset_id}_bins" - # output_dir.mkdir(exist_ok=True) - #img.save(out['bins'], [f'{output_subdir}/{i:0>4d}.png' for i in dataset.indices]) - -if args.time: - s = "Performance Report ==>\n" - res = get_perf_result() - if res is None: - s += "No available data.\n" - else: - for key, val in res.items(): - path_segs = key.split("/") - s += " " * (len(path_segs) - 1) + f"{path_segs[-1]}: {val:.1f}ms\n" - print(s) +if args.media == "video": + for key, frames in video_frames.items(): + img.save_video(torch.cat(frames, 0), + out_dir / f"{out_id}_{key}{'_stereo' if args.stereo > 0 else ''}.mp4", 30) diff --git a/test.txt b/test.txt deleted file mode 100644 index c58c664..0000000 --- a/test.txt +++ /dev/null @@ -1,10 +0,0 @@ -data/barbershop/_nets/lr_pano_t0.8/_lr_snerfadv_voxels+ls_128x4+128x4/output_50/perf_lr_view_t0.8_r360x60_25.9ms_1.06e-03.csv -data/barbershop/_nets/lr_pano_t0.8/_lr_snerfadv_voxels+ls/output_50/perf_lr_view_t0.8_r360x60_21.2ms_1.28e-03.csv -data/barbershop/_nets/lr_pano_t0.8/_lr_snerf_voxels+ls_128x8/output_50/perf_lr_view_t0.8_r360x60_34.1ms_1.11e-03.csv -data/barbershop/_nets/lr_pano_t0.8/_lr_snerf_voxels+ls_512x1/output_50/perf_lr_view_t0.8_r360x60_51.2ms_1.31e-03.csv -data/barbershop/_nets/lr_pano_t0.8/_lr_snerf_voxels+ls_512x2/output_50/perf_lr_view_t0.8_r360x60_56.7ms_9.24e-04.csv -data/barbershop/_nets/lr_pano_t0.8/_lr_snerf_voxels+ls_e12/output_50/perf_lr_view_t0.8_r360x60_28.5ms_1.16e-03.csv -data/barbershop/_nets/lr_pano_t0.8/_lr_snerf_voxels+ls_e40/output_50/perf_lr_view_t0.8_r360x60_37.2ms_1.28e-03.csv -data/barbershop/_nets/lr_pano_t0.8/_lr_snerf_voxels+ls_e8/output_50/perf_lr_view_t0.8_r360x60_27.2ms_1.19e-03.csv -data/barbershop/_nets/lr_pano_t0.8/_lr_snerf_voxels+ls/output_50/perf_lr_view_t0.8_r360x60_27.3ms_1.17e-03.csv -data/barbershop/_nets/lr_pano_t0.8/_lr_snerfx_voxels+ls/output_50/perf_lr_view_t0.8_r360x60_29.0ms_1.15e-03.csv diff --git a/test/utils.py b/test/utils.py new file mode 100644 index 0000000..19f3ce2 --- /dev/null +++ b/test/utils.py @@ -0,0 +1 @@ +def prepare_dataset \ No newline at end of file diff --git a/test1.txt b/test1.txt deleted file mode 100644 index 4526b89..0000000 --- a/test1.txt +++ /dev/null @@ -1,3455 +0,0 @@ -AT4G28520 -AT2G39730 -AT5G02500 -AT2G07560 -AT4G33010 -AT5G17920 -AT5G04140 -AT2G36880 -AT2G26080 -AT1G56070 -AT3G08530 -AT3G09440 -AT5G53460 -AT3G11130 -AT3G17390 -AT1G52570 -AT3G03780 -AT2G36530 -AT5G61780 -AT2G18960 -AT5G56000 -AT2G21390 -AT4G37930 -AT5G28540 -AT3G09840 -AT5G50920 -AT2G41740 -AT4G31490 -AT4G30190 -AT4G29060 -AT2G33150 -AT5G08680 -AT4G31480 -AT1G62020 -AT3G13470 -AT5G65690 -AT3G52930 -AT3G02090 -AT1G09780 -AT1G67290 -AT3G12580 -AT3G08590 -AT3G43300 -AT4G34450 -AT1G23190 -AT3G15730 -AT2G16730 -AT5G66760 -AT3G19170 -AT3G23810 -AT3G55410 -AT5G02490 -AT1G70730 -AT2G05710 -AT3G13390 -AT2G04030 -AT1G55490 -AT3G48870 -AT5G15490 -AT1G79930 -AT1G07890 -AT1G02500 -AT2G28000 -AT3G62170 -AT5G57320 -AT5G20890 -AT2G36460 -AT1G06950 -AT1G59610 -AT3G11710 -AT3G09630 -AT1G23310 -AT3G04120 -AT5G49910 -AT4G24280 -AT1G10290 -AT3G28820 -AT5G42270 -AT5G26360 -AT1G53500 -AT1G13440 -AT3G46520 -AT3G45140 -AT5G39320 -AT1G53310 -AT3G12780 -AT1G78900 -AT5G03340 -AT2G47510 -AT3G59970 -AT1G32060 -AT1G03880 -AT4G37910 -AT5G09810 -AT1G07810 -AT4G27500 -AT1G68750 -AT5G13990 -AT1G74470 -AT3G12110 -AT4G14360 -AT5G66570 -AT1G80070 -AT5G58050 -AT4G38970 -AT1G56410 -AT5G07410 -AT3G57290 -AT3G62030 -AT2G18020 -AT4G36130 -AT1G55570 -AT2G36580 -AT4G20360 -AT1G14610 -AT1G57720 -AT5G57350 -AT1G14830 -AT4G35830 -AT3G46750 -AT1G68010 -AT5G13630 -AT3G18190 -AT1G07670 -AT5G20920 -AT5G19580 -AT3G06860 -AT3G17240 -AT5G35630 -AT3G46970 -AT2G27880 -AT3G26650 -AT3G62830 -AT2G21330 -AT2G20580 -AT3G62360 -AT3G51070 -AT3G58610 -AT1G33170 -AT4G35010 -AT3G28790 -AT5G58170 -AT1G69940 -AT5G11560 -AT3G58510 -AT3G13290 -AT4G10440 -AT5G09550 -AT1G78570 -AT3G21180 -AT1G26630 -AT5G21150 -AT3G44310 -AT2G16600 -AT1G06680 -AT2G28190 -AT3G05420 -AT1G54560 -AT2G20420 -AT3G52600 -AT5G43330 -AT1G56190 -AT4G16760 -AT3G18780 -AT3G13460 -AT3G01500 -AT2G27040 -AT3G57410 -AT5G08280 -AT3G23300 -AT1G20950 -AT4G29130 -AT1G04410 -AT1G80410 -AT5G34850 -AT2G39990 -AT3G02230 -AT4G15980 -AT5G48140 -AT1G26850 -AT3G46780 -AT5G58290 -AT5G11170 -AT5G11200 -AT1G03630 -AT4G04910 -AT1G22530 -AT1G70770 -AT1G47260 -AT1G76030 -AT3G27240 -AT1G12270 -AT3G53230 -AT3G03960 -AT2G40660 -AT5G15090 -AT5G19990 -AT1G18070 -AT4G34980 -AT5G62530 -AT2G40840 -AT4G26530 -AT4G09000 -AT5G19510 -AT1G18080 -AT3G55800 -AT1G65930 -AT2G32730 -AT5G37830 -AT1G66410 -AT5G37780 -AT1G29900 -AT1G79550 -AT3G18130 -AT5G38430 -AT1G67090 -AT5G56500 -AT4G24800 -AT5G53620 -AT3G07830 -AT5G35360 -AT1G48630 -AT5G08300 -AT3G02530 -AT5G24940 -AT4G38510 -AT3G11830 -AT1G23800 -AT4G27440 -AT3G17820 -AT1G54870 -AT5G08530 -AT5G19820 -AT5G62690 -AT5G62700 -AT5G06600 -AT1G15690 -AT5G26570 -AT4G38740 -AT2G46280 -AT5G07420 -AT4G14880 -AT2G35690 -AT3G58500 -AT3G02360 -AT3G17940 -AT3G59920 -AT3G60240 -AT3G25860 -AT5G61720 -AT3G14210 -AT2G45290 -AT3G01280 -AT1G25350 -AT5G21274 -AT5G26742 -AT1G78300 -AT1G04170 -AT2G30970 -AT3G09820 -AT1G18500 -AT1G72960 -AT4G21150 -AT1G35720 -AT3G54050 -AT5G20720 -AT4G34870 -AT1G72730 -AT2G13360 -AT2G27860 -AT2G43750 -AT5G50600 -AT5G50700 -AT1G53750 -AT3G04840 -AT5G58420 -AT4G04640 -AT2G35840 -AT4G10260 -AT3G55200 -AT3G55220 -AT5G23060 -AT1G13930 -AT1G69740 -AT2G17980 -AT3G06650 -AT3G47950 -AT3G16000 -AT3G11964 -AT5G22800 -AT1G32470 -AT5G28840 -AT4G19120 -AT2G30490 -AT2G47650 -AT4G14960 -AT5G05010 -AT3G51160 -AT2G42500 -AT5G66020 -AT1G35160 -AT3G51800 -AT1G09640 -AT5G48230 -AT3G15640 -AT2G30050 -AT1G04820 -AT1G50010 -AT1G50480 -AT4G34670 -AT1G35670 -AT3G12290 -AT3G28770 -AT1G48090 -AT1G18210 -AT4G34200 -AT5G23860 -AT3G48560 -AT2G31390 -AT2G41220 -AT1G11660 -AT5G15650 -AT3G05970 -AT5G49460 -AT2G19520 -AT3G56190 -AT3G46440 -AT2G44160 -AT2G29550 -AT3G12915 -AT1G20020 -AT3G11630 -AT5G11110 -AT1G29150 -AT5G15450 -AT1G79340 -AT5G20010 -AT4G18480 -AT5G60980 -AT5G40810 -AT5G57870 -AT4G39330 -AT1G13950 -AT5G36700 -AT5G36790 -AT3G20050 -AT1G62390 -AT2G47030 -AT1G64190 -AT3G55440 -AT1G24510 -AT3G01310 -AT5G65720 -AT4G39800 -AT4G23850 -AT5G52640 -AT4G25630 -AT3G13860 -AT5G24710 -AT5G02240 -AT1G02790 -AT5G20290 -AT5G42740 -AT3G12145 -AT5G61410 -AT5G56680 -AT2G21130 -AT4G23670 -AT2G21170 -AT5G11880 -AT4G18100 -AT1G24620 -AT5G60790 -AT4G29840 -AT1G74050 -AT5G54770 -AT5G06290 -AT1G29880 -AT4G31700 -AT2G41680 -AT3G53110 -AT3G10370 -AT2G22560 -AT5G47210 -AT3G63490 -AT1G69410 -AT3G05530 -AT5G52920 -AT3G22310 -AT2G25110 -AT2G24270 -AT3G52880 -AT4G34860 -AT1G37130 -AT5G50850 -AT5G64690 -AT2G21870 -AT1G30350 -AT1G75990 -AT4G24620 -AT2G14740 -AT5G42790 -AT4G25900 -AT5G35530 -AT1G04810 -AT3G47520 -AT5G38480 -AT3G02520 -AT5G13650 -AT3G19450 -AT1G32780 -AT2G41840 -AT3G01640 -AT5G43940 -AT5G49650 -AT4G02770 -AT5G41670 -AT1G07370 -AT3G62870 -AT3G47930 -AT1G65960 -AT2G28680 -AT1G64790 -AT3G58570 -AT2G38770 -AT4G20890 -AT1G26570 -AT4G24680 -AT5G16050 -AT5G60160 -AT1G17220 -AT1G49670 -AT1G30630 -AT3G18000 -AT3G63410 -AT5G48480 -AT5G66510 -AT1G78820 -AT1G04710 -AT5G43060 -AT1G30580 -AT5G04430 -AT3G28500 -AT1G17100 -AT2G01250 -AT4G02150 -AT5G25880 -AT1G23730 -AT1G68560 -AT3G07100 -AT3G13870 -AT1G65730 -AT2G41790 -AT1G07750 -AT5G63680 -AT5G04420 -AT2G31610 -AT2G05920 -AT4G17520 -AT1G78630 -AT3G07110 -AT1G69830 -AT1G56450 -AT5G19220 -AT1G12000 -AT2G07050 -AT1G11770 -AT3G14310 -AT4G31180 -AT5G20980 -AT3G53870 -AT4G11030 -AT1G78830 -AT1G26480 -AT4G20980 -AT4G12650 -AT3G26060 -AT3G24830 -AT2G33340 -AT3G26450 -AT1G03890 -AT1G08360 -AT1G50370 -AT5G10360 -AT3G17060 -AT3G06580 -AT2G43770 -AT5G65430 -AT3G56940 -AT5G16840 -AT1G49630 -AT1G56110 -AT1G06410 -AT3G08943 -AT2G40490 -AT2G29570 -AT5G35590 -AT4G33070 -AT5G03630 -AT5G48760 -AT4G39080 -AT3G52960 -AT2G45800 -AT1G18540 -AT5G61970 -AT1G15750 -AT1G04430 -AT1G50310 -AT4G26270 -AT2G04842 -AT5G48650 -AT3G19820 -AT4G18920 -AT3G61760 -AT5G47180 -AT4G19410 -AT5G39310 -AT3G61240 -AT4G01310 -AT5G01410 -AT4G11150 -AT1G74000 -AT5G07440 -AT5G44340 -AT3G22200 -AT2G47730 -AT1G43670 -AT4G34110 -AT5G65020 -AT5G63570 -AT2G19730 -AT3G05060 -AT3G06720 -AT5G25100 -AT5G39410 -AT1G77490 -AT3G25800 -AT1G64520 -AT2G27530 -AT3G62250 -AT3G02970 -AT5G04180 -AT3G56090 -AT2G33730 -AT5G06760 -AT3G23940 -AT4G39280 -AT2G40730 -AT4G20460 -AT1G70310 -AT1G13020 -AT3G09200 -AT5G06060 -AT4G35860 -AT5G22060 -AT1G66680 -AT5G45390 -AT4G05530 -AT1G72150 -AT3G08560 -AT1G77940 -AT4G24190 -AT1G22780 -AT1G34030 -AT4G09800 -AT1G13320 -AT1G35580 -AT5G27470 -AT2G42910 -AT5G06460 -AT1G06220 -AT2G38230 -AT1G56500 -AT1G32200 -AT1G15500 -AT4G01660 -AT5G22440 -AT1G16350 -AT1G31330 -AT1G34430 -AT2G44640 -AT3G27190 -AT5G08160 -AT2G36390 -AT1G09100 -AT3G57150 -AT1G14650 -AT4G27585 -AT1G54220 -AT1G31690 -AT2G37270 -AT2G04390 -AT1G67430 -AT4G33650 -AT2G17190 -AT1G16470 -AT4G33030 -AT4G26780 -AT3G58750 -AT2G44120 -AT3G19980 -AT5G43010 -AT1G53850 -AT2G42490 -AT3G63520 -AT5G46290 -AT4G35790 -AT5G30510 -AT3G55610 -AT1G20010 -AT1G63000 -AT3G22890 -AT1G02780 -AT1G43710 -AT1G54450 -AT1G01960 -AT5G49020 -AT1G13060 -AT3G46830 -AT4G39980 -AT3G13330 -AT1G61580 -AT4G17170 -AT3G11940 -AT2G46860 -AT5G12250 -AT5G46430 -AT3G01120 -AT2G18230 -AT2G27710 -AT3G18080 -AT1G10270 -AT1G02080 -AT4G01690 -AT4G09570 -AT3G49910 -AT5G37600 -AT3G25660 -AT1G70410 -AT1G20130 -AT5G16130 -AT2G22475 -AT4G10340 -AT2G30200 -AT5G36260 -AT1G75350 -AT4G02080 -AT3G20000 -AT4G38680 -AT3G48420 -AT2G37770 -AT1G31780 -AT3G13580 -AT2G33040 -AT2G03020 -AT3G62600 -AT5G64460 -AT3G60600 -AT1G56330 -AT4G14570 -AT4G36750 -AT3G12800 -AT1G23740 -AT1G48860 -AT4G17090 -AT5G23900 -AT1G14320 -AT3G15090 -AT5G27850 -AT3G54470 -AT4G33680 -AT2G45810 -AT1G78060 -AT1G45000 -AT5G18230 -AT3G01340 -AT2G05990 -AT4G32260 -AT1G30360 -AT2G21060 -AT5G40040 -AT3G11250 -AT5G40650 -AT5G09660 -AT5G63510 -AT2G47470 -AT2G37040 -AT5G25780 -AT5G16970 -AT3G49720 -AT4G16480 -AT1G19570 -AT3G02560 -AT4G35630 -AT5G64440 -AT5G67030 -AT5G08570 -AT2G37190 -AT2G35210 -AT1G66580 -AT1G78850 -AT1G79040 -AT2G43710 -AT1G32440 -AT1G14850 -AT5G03940 -AT2G20360 -AT3G11950 -AT1G48470 -AT2G38280 -AT5G65010 -AT4G24820 -AT1G48900 -AT3G53430 -AT5G28500 -AT4G11380 -AT3G18060 -AT5G61170 -AT2G19950 -AT1G80480 -AT3G06350 -AT1G22920 -AT1G13890 -AT4G27070 -AT5G40870 -AT3G01480 -AT1G09870 -AT4G09320 -AT4G25080 -AT5G47200 -AT5G66680 -AT2G41560 -AT1G29910 -AT1G29920 -AT1G07770 -AT5G59850 -AT1G29965 -AT1G19580 -AT3G27380 -AT3G53580 -AT1G80670 -AT2G33800 -AT1G75930 -AT2G45790 -AT2G01140 -AT3G55280 -AT5G47110 -AT5G52840 -AT4G30160 -AT1G59900 -AT3G14930 -AT3G14067 -AT1G78940 -AT5G54430 -AT4G09720 -AT5G63860 -AT3G04790 -AT3G23400 -AT1G03475 -AT5G38830 -AT2G22240 -AT4G27700 -AT4G35260 -AT5G26000 -AT2G34430 -AT5G56350 -AT3G55190 -AT1G09750 -AT1G17290 -AT1G20330 -AT2G45030 -AT5G54810 -AT3G16380 -AT3G08940 -AT1G60070 -AT5G19760 -AT5G41950 -AT4G18360 -AT4G16210 -AT2G33845 -AT1G02150 -AT5G64760 -AT4G01480 -AT1G05190 -AT3G60570 -AT4G16720 -AT2G32920 -AT3G54540 -AT3G09810 -AT1G26830 -AT2G47680 -AT3G04870 -AT3G10540 -AT5G20080 -AT3G07660 -AT4G34350 -AT4G37840 -AT5G27980 -AT5G51430 -AT5G20710 -AT5G16300 -AT5G53400 -AT4G14030 -AT4G23650 -AT5G13710 -AT5G23540 -AT2G43030 -AT2G38700 -AT1G29670 -AT1G80560 -AT5G14040 -AT1G78920 -AT5G13120 -AT5G66140 -AT4G16390 -AT3G03060 -AT2G37550 -AT5G27030 -AT3G10380 -AT3G25920 -AT3G26400 -AT2G27600 -AT4G00430 -AT5G46580 -AT2G45300 -AT5G03650 -AT5G12110 -AT1G79500 -AT4G05420 -AT3G28715 -AT5G14780 -AT1G58290 -AT5G50370 -AT4G09670 -AT2G35040 -AT3G15670 -AT5G14030 -AT4G00110 -AT2G36060 -AT5G19600 -AT3G23700 -AT3G20320 -AT1G25490 -AT3G24430 -AT3G55330 -AT1G07140 -AT2G45060 -AT5G17020 -AT5G45620 -AT3G22110 -AT3G15610 -AT2G34420 -AT2G41210 -AT3G08580 -AT3G10410 -AT4G37990 -AT5G27120 -AT2G37760 -AT3G04620 -AT4G12980 -AT5G65110 -AT5G06140 -AT4G11010 -AT5G58140 -AT5G67630 -AT1G01620 -AT5G66280 -AT1G21630 -AT5G17770 -AT4G08870 -AT4G32720 -AT2G24050 -AT1G52280 -AT1G55480 -AT3G06830 -AT1G31730 -AT5G26667 -AT5G47010 -AT1G14670 -AT4G11260 -AT1G31230 -AT4G04040 -AT5G11710 -AT1G16720 -AT5G60670 -AT5G01600 -AT3G27740 -AT5G65950 -AT1G20340 -AT3G26340 -AT2G15430 -AT1G64980 -AT1G30620 -AT1G12840 -AT1G01050 -AT5G20830 -AT1G78380 -AT3G62010 -AT4G05160 -AT4G24640 -AT5G42220 -AT4G21100 -AT4G22890 -AT1G54100 -AT5G20070 -AT5G27600 -AT1G74960 -AT4G29510 -AT2G36500 -AT5G20990 -AT1G16760 -AT2G33100 -AT1G71500 -AT1G79250 -AT1G69960 -AT1G30050 -AT2G43090 -AT2G43040 -AT1G12920 -AT5G13490 -AT1G47200 -AT1G05010 -AT3G17630 -AT4G09730 -AT2G27680 -AT2G21490 -AT4G18810 -AT1G18450 -AT4G30950 -AT1G07410 -AT3G10050 -AT4G26500 -AT1G47980 -AT3G10670 -AT5G38470 -AT2G17870 -AT2G34460 -AT3G61430 -AT3G56460 -AT4G03520 -AT2G21250 -AT4G19210 -AT3G48680 -AT1G10670 -AT4G20260 -AT1G71860 -AT4G28440 -AT1G48420 -AT5G63400 -AT2G01720 -AT1G79750 -AT3G19020 -AT1G14950 -AT3G12490 -AT1G55540 -AT3G05560 -AT5G58230 -AT2G25140 -AT5G59150 -AT3G16640 -AT4G17890 -AT4G11860 -AT1G17720 -AT5G20630 -AT2G43790 -AT2G45070 -AT1G79860 -AT1G15730 -AT1G11250 -AT5G45280 -AT4G08900 -AT3G27925 -AT5G63190 -AT4G23900 -AT5G57020 -AT1G27680 -AT1G74010 -AT5G27770 -AT5G08650 -AT4G35700 -AT1G60770 -AT1G56360 -AT2G19860 -AT3G61200 -AT1G22730 -AT1G71780 -AT2G09990 -AT5G58070 -AT4G13560 -AT5G18380 -AT1G54280 -AT2G38670 -AT2G01470 -AT5G15550 -AT3G61820 -AT3G45030 -AT5G62300 -AT5G22480 -AT1G09270 -AT2G25290 -AT2G37220 -AT5G55230 -AT1G11870 -AT3G53710 -AT5G19360 -AT3G53900 -AT5G41520 -AT4G38230 -AT2G13540 -AT2G44530 -AT5G44070 -AT3G59980 -AT5G20230 -AT4G26510 -AT2G28490 -AT3G16780 -AT1G71820 -AT3G16100 -AT3G48930 -AT5G51970 -AT2G31980 -AT3G27300 -AT5G20280 -AT1G61790 -AT2G45240 -AT4G26410 -AT5G23140 -AT3G63170 -AT4G39260 -AT5G11670 -AT4G23630 -AT3G48170 -AT4G32840 -AT1G63180 -AT1G06530 -AT5G27630 -AT5G10170 -AT5G12180 -AT3G16910 -AT1G65030 -AT3G13065 -AT3G60820 -AT5G60010 -AT4G23460 -AT2G39130 -AT5G01530 -AT3G62310 -AT4G18030 -AT4G18596 -AT4G31340 -AT3G20680 -AT1G76080 -AT4G27090 -AT1G02280 -AT2G17280 -AT3G02720 -AT1G69200 -AT3G63150 -AT2G26890 -AT1G47490 -AT3G47370 -AT3G01540 -AT4G30910 -AT1G59830 -AT2G06850 -AT5G57330 -AT3G51470 -AT2G26230 -AT5G57490 -AT1G26910 -AT2G23070 -AT3G51810 -AT5G06160 -AT1G17470 -AT5G10500 -AT1G60780 -AT5G58440 -AT5G53480 -AT5G38640 -AT3G60770 -AT3G48860 -AT5G65260 -AT5G63890 -AT5G47770 -AT5G64030 -AT1G02560 -AT4G04350 -AT1G31910 -AT1G02000 -AT2G45820 -AT2G13620 -AT3G07960 -AT1G59820 -AT1G67930 -AT3G05500 -AT3G49080 -AT5G40770 -AT5G05780 -AT2G02130 -AT1G55150 -AT4G27320 -AT1G74850 -AT1G01100 -AT1G64770 -AT1G61150 -AT5G19620 -AT2G43945 -AT4G15560 -AT3G53620 -AT5G51660 -AT3G54110 -AT4G03620 -AT3G05090 -AT1G75680 -AT2G17390 -AT5G16290 -AT3G55750 -AT5G14220 -AT5G53560 -AT5G04740 -AT2G33840 -AT4G16830 -AT4G35890 -AT5G53140 -AT3G18740 -AT3G22850 -AT2G31670 -AT3G05590 -AT1G76400 -AT5G05570 -AT2G22450 -AT4G33760 -AT3G63190 -AT1G79570 -AT2G25600 -AT4G08630 -AT1G04690 -AT1G65540 -AT5G11770 -AT2G23120 -AT1G16780 -AT5G46750 -AT5G13150 -AT4G14300 -AT4G36020 -AT2G41530 -AT1G12310 -AT1G20760 -AT2G40300 -AT4G04770 -AT3G44590 -AT4G31750 -AT1G20810 -AT3G53970 -AT5G05000 -AT3G03110 -AT5G10260 -AT5G03740 -AT1G03860 -AT3G61140 -AT1G41880 -AT3G13227 -AT5G24420 -AT2G33870 -AT1G26460 -AT1G24020 -AT5G14660 -AT5G23880 -AT3G56340 -AT3G07630 -AT5G09650 -AT4G35100 -AT4G29120 -AT4G14230 -AT1G15130 -AT2G30720 -AT2G26060 -AT1G71880 -AT3G50000 -AT5G20490 -AT5G64050 -AT1G32990 -AT1G76450 -AT2G02100 -AT4G20780 -AT3G21200 -AT3G16830 -AT1G08980 -AT1G48950 -AT3G61230 -AT5G09500 -AT1G07660 -AT1G07820 -AT2G28740 -AT3G45930 -AT3G46320 -AT3G53730 -AT5G59690 -AT5G59970 -AT2G27510 -AT1G61690 -AT5G20690 -AT4G16160 -AT5G66470 -AT2G02560 -AT4G30440 -AT1G10510 -AT2G44610 -AT5G59880 -AT3G58700 -AT4G18730 -AT5G45775 -AT3G52300 -AT2G43910 -AT1G62780 -AT5G18900 -AT3G07160 -AT5G52340 -AT2G02790 -AT1G23290 -AT1G44970 -AT2G17800 -AT4G33870 -AT5G66420 -AT3G26520 -AT1G15140 -AT1G11840 -AT3G12690 -AT5G19440 -AT2G47400 -AT3G03950 -AT1G21670 -AT3G10460 -AT5G18100 -AT4G15545 -AT5G47930 -AT1G49300 -AT1G75200 -AT3G49540 -AT3G13490 -AT3G46940 -AT1G61770 -AT4G32605 -AT1G20575 -AT5G19370 -AT4G21860 -AT3G58730 -AT3G61260 -AT1G78370 -AT5G52360 -AT2G47970 -AT4G22930 -AT1G48160 -AT3G27820 -AT3G23780 -AT2G19010 -AT4G20410 -AT4G23400 -AT2G21410 -AT1G32220 -AT3G18820 -AT5G56280 -AT4G02230 -AT4G35850 -AT3G55620 -AT5G51030 -AT2G22250 -AT3G53180 -AT1G50940 -AT5G06110 -AT2G39770 -AT1G76510 -AT1G52400 -AT1G24400 -AT3G15280 -AT4G15000 -AT1G16270 -AT1G68200 -AT4G36690 -AT1G61520 -AT1G54780 -AT4G30530 -AT1G48520 -AT3G03080 -AT1G76850 -AT1G53580 -AT5G15980 -AT5G65940 -AT3G56070 -AT3G08970 -AT3G51240 -AT5G66030 -AT3G66654 -AT4G09650 -AT1G21380 -AT5G40370 -AT2G35120 -AT1G67700 -AT1G64440 -AT5G14320 -AT2G33793 -AT3G46040 -AT5G46630 -AT3G13750 -AT4G36390 -AT4G15093 -AT5G18520 -AT3G02830 -AT5G05670 -AT4G10840 -AT2G46470 -AT4G34700 -AT5G57460 -AT5G02770 -AT1G05350 -AT5G15200 -AT1G31817 -AT5G07470 -AT5G47840 -AT5G55280 -AT5G59840 -AT2G16440 -AT3G19930 -AT1G04160 -AT3G49120 -AT5G09840 -AT4G12420 -AT5G62270 -AT3G16520 -AT1G26110 -AT4G25590 -AT4G34640 -AT4G37510 -AT4G25890 -AT4G25780 -AT3G50110 -AT1G58215 -AT5G19290 -AT3G13160 -AT5G37850 -AT5G16590 -AT2G33220 -AT3G06483 -AT2G04700 -AT2G16430 -AT3G18490 -AT3G48690 -AT4G11220 -AT3G07880 -AT5G23740 -AT2G22780 -AT2G13560 -AT3G27280 -AT4G09520 -AT3G53500 -AT1G18280 -AT4G35950 -AT4G33945 -AT3G28940 -AT3G26618 -AT5G27410 -AT1G04760 -AT4G29410 -AT1G73990 -AT5G16780 -AT5G61500 -AT1G07210 -AT3G03920 -AT3G20390 -AT1G44900 -AT4G14800 -AT4G20530 -AT4G20540 -AT4G20550 -AT4G20560 -AT4G20570 -AT4G20645 -AT4G20670 -AT3G15180 -AT1G04190 -AT3G51780 -AT1G74970 -AT3G03980 -AT1G62820 -AT4G26840 -AT3G19230 -AT3G20410 -AT1G60810 -AT1G16340 -AT5G24850 -AT1G63060 -AT3G24090 -AT1G03120 -AT1G15340 -AT1G34220 -AT1G64040 -AT1G35620 -AT3G24350 -AT4G13850 -AT4G37000 -AT2G21280 -AT5G35620 -AT5G54180 -AT4G16180 -AT2G37370 -AT5G07490 -AT2G33470 -AT3G18230 -AT5G57290 -AT1G32380 -AT1G08880 -AT1G34130 -AT3G10060 -AT5G48180 -AT2G32060 -AT3G44750 -AT2G28900 -AT4G30800 -AT3G55360 -AT3G05280 -AT3G16370 -AT1G09830 -AT3G23920 -AT5G42960 -AT1G23900 -AT2G35500 -AT1G09760 -AT1G09580 -AT5G24690 -AT5G66740 -AT4G31500 -AT5G48570 -AT2G07707 -AT5G16440 -AT4G24550 -AT1G04980 -AT1G74640 -AT2G14750 -AT3G13772 -AT5G38840 -AT3G26720 -AT2G32600 -AT4G13840 -AT3G51300 -AT3G53610 -AT4G10790 -AT5G11980 -AT5G52240 -AT5G09390 -AT5G05730 -AT4G34740 -AT2G26490 -AT1G51110 -AT1G12570 -AT3G20790 -AT5G25540 -AT1G16880 -AT2G20610 -AT1G29140 -AT4G37800 -AT5G39500 -AT4G38710 -AT1G12050 -AT1G11750 -AT4G14110 -AT5G56640 -AT1G67730 -AT1G11890 -AT3G46000 -AT2G23080 -AT1G53280 -AT1G15290 -AT1G79560 -AT3G18580 -AT5G22510 -AT5G62350 -AT2G20450 -AT3G10700 -AT4G22670 -AT5G48810 -AT1G16240 -AT1G31850 -AT1G71230 -AT3G54240 -AT3G20330 -AT5G19940 -AT4G04950 -AT1G15415 -AT5G58590 -AT5G05170 -AT4G39520 -AT1G04600 -AT3G05910 -AT5G16450 -AT3G61110 -AT1G30300 -AT4G34830 -AT2G47250 -AT3G47810 -AT1G10590 -AT4G14870 -AT5G05520 -AT4G20020 -AT5G14170 -AT4G04720 -AT2G02740 -AT2G15400 -AT3G13222 -AT1G61870 -AT3G49240 -AT1G48920 -AT3G02750 -AT1G72230 -AT5G53530 -AT5G60960 -AT3G22230 -AT2G38730 -AT4G32150 -AT4G00620 -AT1G17070 -AT1G56050 -AT4G02520 -AT3G14990 -AT2G20270 -AT1G73230 -AT2G44650 -AT1G07040 -AT2G19670 -AT5G58060 -AT1G22450 -AT2G27200 -AT3G09900 -AT1G04450 -AT5G47880 -AT4G23680 -AT5G12860 -AT1G28306 -AT2G30740 -AT4G17040 -AT4G12800 -AT5G51280 -AT1G01610 -AT1G66070 -AT4G00740 -AT3G54700 -AT5G66120 -AT2G37500 -AT5G54270 -AT1G14010 -AT4G12590 -AT2G37010 -AT5G60730 -AT5G23390 -AT1G08130 -AT5G14580 -AT5G51830 -AT2G03480 -AT1G75950 -AT4G36480 -AT1G15440 -AT3G12160 -AT2G32230 -AT5G57300 -AT4G23600 -AT1G20140 -AT2G40620 -AT5G40420 -AT4G15640 -AT5G60860 -AT2G17265 -AT1G44446 -AT5G60640 -AT1G09630 -AT1G49970 -AT5G23940 -AT3G56650 -AT3G10850 -AT1G15950 -AT4G26430 -AT5G59710 -AT4G20720 -AT1G08830 -AT2G45140 -AT5G61840 -AT3G47450 -AT2G38550 -AT1G72810 -AT2G29690 -AT4G16060 -AT5G58710 -AT3G45400 -AT5G54500 -AT5G32470 -AT2G36660 -AT2G15880 -AT5G67320 -AT2G40360 -AT3G01800 -AT3G03100 -AT1G48620 -AT1G77120 -AT4G29830 -AT2G20530 -AT4G13230 -AT3G59890 -AT3G60245 -AT1G01910 -AT3G22360 -AT1G60710 -AT5G59240 -AT5G35700 -AT2G43950 -AT5G19680 -AT4G03080 -AT1G16920 -AT2G32080 -AT5G63220 -AT5G14060 -AT1G49600 -AT2G42220 -AT2G25870 -AT3G12600 -AT5G36890 -AT4G18970 -AT2G30860 -AT2G42790 -AT5G41700 -AT3G19590 -AT3G17900 -AT4G37200 -AT2G37790 -AT5G59160 -AT2G03680 -AT2G40290 -AT5G13280 -AT5G05970 -AT2G37690 -AT3G58840 -AT3G11270 -AT3G52950 -AT2G44760 -AT1G23780 -AT2G29080 -AT5G01750 -AT3G22650 -AT1G01780 -AT2G28080 -AT5G08380 -AT5G55160 -AT1G72710 -AT1G22740 -AT1G21720 -AT3G63095 -AT5G64040 -AT5G66720 -AT1G26690 -AT5G18700 -AT5G10160 -AT2G34560 -AT1G03160 -AT2G22480 -AT2G21620 -AT5G05850 -AT5G67510 -AT5G43470 -AT3G06850 -AT3G45640 -AT4G32410 -AT3G08910 -AT1G48130 -AT5G39870 -AT3G61470 -AT3G23490 -AT1G21660 -AT4G01395 -AT3G04940 -AT5G51570 -AT2G24765 -AT4G09020 -AT4G12400 -AT3G13410 -AT2G46000 -AT4G28450 -AT1G04040 -AT4G03550 -AT5G27560 -AT5G63490 -AT1G21690 -AT3G52610 -AT5G14200 -AT2G19000 -AT3G48890 -AT3G58560 -AT1G79850 -AT5G52820 -AT5G51260 -AT2G29960 -AT4G24510 -AT5G59950 -AT1G12070 -AT3G25770 -AT4G18800 -AT4G03560 -AT2G46170 -AT5G67490 -AT4G28660 -AT2G20060 -AT5G57440 -AT1G51570 -AT1G29940 -AT4G34660 -AT2G02400 -AT5G24490 -AT3G56290 -AT3G09500 -AT5G18400 -AT4G14950 -AT1G53070 -AT4G05400 -AT3G60210 -AT5G46860 -AT3G45770 -AT1G42550 -AT4G20960 -AT3G60740 -AT3G01570 -AT1G75220 -AT1G31800 -AT3G47800 -AT3G16400 -AT4G38130 -AT4G02510 -AT4G08520 -AT3G18600 -AT3G07330 -AT3G21280 -AT2G31170 -AT3G22630 -AT3G62720 -AT3G20290 -AT3G54840 -AT4G39890 -AT1G27390 -AT3G05190 -AT3G56490 -AT2G45440 -AT5G49880 -AT1G76090 -AT4G01150 -AT5G12290 -AT5G62440 -AT1G48020 -AT5G49930 -AT1G63680 -AT1G02130 -AT1G06700 -AT3G26370 -AT2G20890 -AT5G45950 -AT5G04830 -AT2G29450 -AT1G20440 -AT2G01540 -AT1G10390 -AT3G59990 -AT3G08710 -AT1G05510 -AT4G13370 -AT3G25070 -AT4G26570 -AT5G59300 -AT2G39420 -AT4G21710 -AT3G62370 -AT1G21130 -AT4G04020 -AT4G34050 -AT5G09890 -AT2G30870 -AT4G16450 -AT3G02710 -AT1G69840 -AT3G12390 -AT4G39710 -AT4G00400 -AT1G76180 -AT4G18060 -AT3G23820 -AT4G30890 -AT5G24165 -AT4G03110 -AT2G43980 -AT1G73050 -AT1G55090 -AT1G65980 -AT1G02140 -AT3G23620 -AT1G13690 -AT2G20810 -AT1G67360 -AT5G38435 -AT1G25260 -AT4G00170 -AT4G29350 -AT3G10660 -AT4G27160 -AT5G64670 -AT3G50360 -AT5G54310 -AT3G45980 -AT2G38540 -AT3G53020 -AT4G27270 -AT1G09930 -AT1G05270 -AT2G32810 -AT5G46180 -AT5G02890 -AT5G39650 -AT1G07320 -AT4G29520 -AT3G46010 -AT1G30470 -AT1G63780 -AT1G03680 -AT1G70540 -AT2G43420 -AT3G58460 -AT5G40760 -AT5G17620 -AT4G01900 -AT4G24770 -AT1G48480 -AT2G29700 -AT5G62750 -AT5G05620 -AT2G32260 -AT2G39390 -AT1G60000 -AT4G12250 -AT5G41770 -AT5G62550 -AT3G22060 -AT4G39990 -AT3G09580 -AT4G17300 -AT5G47870 -AT5G04290 -AT1G29530 -AT4G39230 -AT5G22100 -AT2G19830 -AT1G72340 -AT5G57810 -AT5G15680 -AT5G22830 -AT1G72610 -AT5G39850 -AT1G32580 -AT5G47760 -AT1G74210 -AT2G35490 -AT3G03570 -AT1G13110 -AT1G44790 -AT1G18850 -AT5G64990 -AT3G01680 -AT1G02305 -AT5G54910 -AT3G18750 -AT5G02610 -AT2G36620 -AT4G36630 -AT1G73720 -AT5G42190 -AT1G18190 -AT5G67385 -AT1G15390 -AT4G39120 -AT2G47640 -AT1G08220 -AT2G15270 -AT2G39840 -AT1G71260 -AT4G30840 -AT1G11930 -AT3G53990 -AT1G22275 -AT5G02960 -AT1G77140 -AT1G36730 -AT1G47290 -AT1G72640 -AT1G19150 -AT2G38740 -AT4G25140 -AT1G30530 -AT1G54530 -AT1G04640 -AT3G12130 -AT3G60540 -AT1G21480 -AT1G52930 -AT4G28780 -AT3G60830 -AT3G10360 -AT3G56240 -AT5G62930 -AT5G58220 -AT4G14080 -AT1G55900 -AT1G11260 -AT5G44780 -AT1G29250 -AT3G13940 -AT2G47240 -AT1G43860 -AT2G46820 -AT1G02090 -AT5G27840 -AT1G54500 -AT4G02840 -AT4G00752 -AT2G34630 -AT2G30620 -AT1G09700 -AT1G76200 -AT4G16360 -AT1G54520 -AT4G27800 -AT3G12170 -AT3G48460 -AT5G02940 -AT4G17510 -AT3G12640 -AT4G17260 -AT1G31440 -AT2G18040 -AT3G26740 -AT4G24490 -AT5G39590 -AT3G23830 -AT1G53900 -AT3G30841 -AT3G56080 -AT4G21110 -AT5G44500 -AT2G46100 -AT3G57050 -AT1G71440 -AT1G80790 -AT2G22360 -AT5G04600 -AT5G04900 -AT2G40190 -AT5G11810 -AT2G17700 -AT5G11440 -AT5G04510 -AT4G13670 -AT4G02530 -AT3G04780 -AT2G45640 -AT2G38270 -AT1G48830 -AT1G49750 -AT4G27170 -AT3G16470 -AT1G69620 -AT5G44610 -AT5G50320 -AT1G43130 -AT3G22500 -AT2G26210 -AT3G02630 -AT5G47600 -AT5G14240 -AT4G30580 -AT3G25220 -AT4G34120 -AT2G25840 -AT1G15910 -AT5G52190 -AT1G06550 -AT3G51130 -AT5G52780 -AT1G22840 -AT1G32160 -AT3G10350 -AT4G30690 -AT1G74070 -AT4G23640 -AT3G55920 -AT4G32130 -AT1G22270 -AT2G24940 -AT1G71680 -AT3G02880 -AT3G03630 -AT1G08490 -AT5G39493 -AT4G34620 -AT3G18220 -AT4G31420 -AT5G62200 -AT3G22320 -AT1G65290 -AT5G45550 -AT4G01990 -AT5G20140 -AT1G11480 -AT3G54640 -AT3G50270 -AT3G05000 -AT3G61650 -AT1G67350 -AT2G01650 -AT2G22230 -AT2G46580 -AT5G52440 -AT1G32080 -AT5G02100 -AT2G35010 -AT1G09590 -AT1G09690 -AT1G69340 -AT1G34000 -AT5G51600 -AT2G30880 -AT2G43130 -AT1G13030 -AT3G15010 -AT3G17465 -AT2G05830 -AT3G02770 -AT5G67270 -AT1G23860 -AT5G58470 -AT4G05090 -AT5G66750 -AT3G04880 -AT5G06830 -AT4G39220 -AT4G23570 -AT1G27190 -AT2G19080 -AT3G06550 -AT4G05390 -AT3G52390 -AT3G57350 -AT1G32550 -AT2G21150 -AT3G26380 -AT1G22150 -AT5G54740 -AT4G00860 -AT4G01610 -AT1G06400 -AT5G67590 -AT3G49250 -AT5G16760 -AT2G43235 -AT2G44540 -AT2G41600 -AT3G43520 -AT5G42980 -AT2G44310 -AT3G59010 -AT4G18465 -AT2G47330 -AT5G51750 -AT1G26880 -AT5G64350 -AT3G58480 -AT1G15710 -AT2G02850 -AT3G06790 -AT2G17972 -AT1G18170 -AT3G09300 -AT3G21400 -AT1G27650 -AT5G15470 -AT5G15870 -AT3G19130 -AT4G11820 -AT5G18110 -AT2G25830 -AT1G23140 -AT3G01250 -AT4G32470 -AT1G70330 -AT5G20250 -AT5G25060 -AT5G22740 -AT4G28200 -AT4G21770 -AT2G33410 -AT4G12770 -AT2G05520 -AT1G24460 -AT1G18480 -AT4G27780 -AT4G27230 -AT3G05100 -AT1G28290 -AT2G42130 -AT5G06910 -AT1G66130 -AT4G35230 -AT1G08700 -AT5G22030 -AT1G70790 -AT5G05270 -AT4G23920 -AT3G51420 -AT1G02410 -AT3G01520 -AT1G31070 -AT5G67530 -AT3G11730 -AT5G16390 -AT5G12410 -AT5G13610 -AT4G39150 -AT5G61760 -AT4G17560 -AT1G80360 -AT2G06530 -AT4G20830 -AT3G58580 -AT5G02160 -AT1G50900 -AT1G77840 -AT1G35220 -AT4G32760 -AT3G45300 -AT4G02140 -AT3G06730 -AT2G39930 -AT1G49820 -AT1G20580 -AT1G08640 -AT4G02340 -AT1G79870 -AT5G42820 -AT1G63160 -AT1G07250 -AT1G71310 -AT1G12910 -AT3G59650 -AT3G28630 -AT1G51100 -AT2G47580 -AT5G23040 -AT5G46940 -AT2G31970 -AT1G27130 -AT2G45740 -AT5G64960 -AT2G42120 -AT5G08330 -AT2G47710 -AT3G48250 -AT3G25585 -AT4G26720 -AT3G02180 -AT1G24610 -AT5G25265 -AT1G24050 -AT1G76680 -AT1G31660 -AT2G39010 -AT1G06820 -AT2G25280 -AT1G64750 -AT2G19330 -AT3G28150 -AT2G24450 -AT3G60810 -AT4G25840 -AT2G16640 -AT5G18200 -AT1G10522 -AT1G04680 -AT5G14530 -AT5G23535 -AT4G31140 -AT2G29340 -AT2G20840 -AT4G28360 -AT4G35610 -AT3G15790 -AT1G09300 -AT2G28120 -AT4G03430 -AT2G34590 -AT4G38690 -AT1G65150 -AT4G39670 -AT2G39140 -AT1G50670 -AT3G03120 -AT5G48030 -AT5G47520 -AT1G80750 -AT3G16170 -AT3G06610 -AT3G48820 -AT1G73980 -AT3G29075 -AT1G10500 -AT1G08520 -AT1G60550 -AT1G02170 -AT4G28700 -AT3G29200 -AT1G18630 -AT4G17870 -AT1G18640 -AT4G39730 -AT2G21960 -AT1G07645 -AT2G18030 -AT1G70670 -AT3G23390 -AT4G14320 -AT1G19880 -AT1G07170 -AT2G30000 -AT2G25800 -AT1G26550 -AT1G07330 -AT2G42680 -AT1G58360 -AT2G33070 -AT5G40580 -AT1G77750 -AT3G44100 -AT2G16370 -AT3G01510 -AT3G11820 -AT4G17650 -AT1G18990 -AT5G18850 -AT5G15770 -AT2G37470 -AT2G40170 -AT3G13120 -AT5G12210 -AT2G06510 -AT5G63380 -AT3G27700 -AT2G45000 -AT1G10310 -AT1G32330 -AT1G13330 -AT5G50960 -AT3G47470 -AT4G31350 -AT4G36810 -AT4G15130 -AT3G06430 -AT5G65650 -AT5G14910 -AT3G55260 -AT4G00300 -AT1G77440 -AT5G66100 -AT2G02120 -AT2G19740 -AT2G41040 -AT1G50240 -AT1G13090 -AT1G26761 -AT1G29810 -AT2G43400 -AT5G03280 -AT3G27020 -AT2G36835 -AT1G08410 -AT1G04110 -AT3G15660 -AT1G63500 -AT2G26930 -AT5G19150 -AT2G35800 -AT1G03900 -AT5G18480 -AT5G64370 -AT3G51010 -AT3G54300 -AT1G05460 -AT2G35100 -AT4G10040 -AT3G08010 -AT2G34840 -AT1G74310 -AT5G64290 -AT5G03050 -AT5G58870 -AT5G55130 -AT3G06540 -AT2G30930 -AT5G27450 -AT2G20930 -AT3G01590 -AT1G11680 -AT1G12640 -AT5G47320 -AT5G56710 -AT2G44230 -AT3G07320 -AT2G31960 -AT1G54320 -AT2G41490 -AT4G38200 -AT1G67440 -AT1G01370 -AT3G22480 -AT4G33350 -AT4G04320 -AT1G28060 -AT5G04870 -AT1G76690 -AT1G07960 -AT4G29810 -AT5G19460 -AT4G23430 -AT5G33320 -AT1G51160 -AT5G09420 -AT1G51590 -AT2G35410 -AT3G10940 -AT1G05850 -AT2G21470 -AT4G08790 -AT3G02900 -AT1G56580 -AT1G54570 -AT1G22620 -AT2G43020 -AT5G58260 -AT3G21220 -AT4G24530 -AT4G13050 -AT5G27670 -AT1G50510 -AT2G15900 -AT4G25340 -AT1G67540 -AT1G79720 -AT4G02290 -AT5G58240 -AT1G27435 -AT3G61560 -AT4G00585 -AT5G38880 -AT2G16460 -AT5G03910 -AT3G18590 -AT4G16700 -AT2G13290 -AT4G31930 -AT1G14380 -AT3G53700 -AT3G25545 -AT1G24095 -AT3G61070 -AT3G54690 -AT2G15790 -AT5G58030 -AT2G24490 -AT2G34700 -AT3G27890 -AT3G02730 -AT3G16310 -AT4G16800 -AT5G50100 -AT5G10780 -AT4G30610 -AT3G54560 -AT1G29700 -AT5G12190 -AT5G52210 -AT1G07440 -AT1G23100 -AT4G35760 -AT1G47380 -AT2G21600 -AT5G42570 -AT5G15530 -AT5G47780 -AT5G27700 -AT3G08950 -AT1G17350 -AT4G26760 -AT2G31305 -AT1G73250 -AT3G18570 -AT1G06130 -AT4G34180 -AT1G65650 -AT5G30495 -AT2G44050 -AT3G09880 -AT3G16410 -AT4G32400 -AT2G32090 -AT1G08750 -AT4G33625 -AT2G43520 -AT3G50520 -AT5G08740 -AT5G09260 -AT5G37590 -AT3G01380 -AT1G17745 -AT1G77090 -AT3G27120 -AT3G53890 -AT2G07725 -AT2G46560 -AT2G24180 -AT3G12380 -AT1G66900 -AT3G22845 -AT4G22000 -AT4G15930 -AT3G26600 -AT3G42790 -AT4G36580 -AT3G51550 -AT2G33620 -AT3G18940 -AT5G24260 -AT5G51010 -AT3G55180 -AT3G15710 -AT5G10090 -AT1G60650 -AT2G36020 -AT5G18430 -AT3G17910 -AT2G29290 -AT4G21445 -AT1G75660 -AT2G31410 -AT5G26030 -AT2G17010 -AT1G13730 -AT2G17410 -AT4G15520 -AT4G31860 -AT1G72460 -AT1G78870 -AT5G12980 -AT2G46900 -AT2G20120 -AT1G20560 -AT2G40100 -AT5G56760 -AT1G77420 -AT3G26860 -AT2G16280 -AT2G30390 -AT3G01290 -AT3G28900 -AT1G50710 -AT5G46250 -AT5G07510 -AT5G59810 -AT5G41600 -AT2G35605 -AT3G52720 -AT3G02920 -AT1G08780 -AT2G48120 -AT4G00380 -AT3G12140 -AT2G03640 -AT3G08600 -AT1G11400 -AT3G60360 -AT1G14900 -AT3G20550 -AT5G40200 -AT1G29590 -AT3G60340 -AT1G78240 -AT3G45280 -AT5G15350 -AT3G25290 -AT2G26460 -AT1G12970 -AT5G47390 -AT4G11240 -AT5G20520 -AT5G17590 -AT4G15940 -AT5G20590 -AT5G22220 -AT3G05030 -AT3G21370 -AT1G08660 -AT3G02220 -AT2G17560 -AT3G28730 -AT5G39800 -AT2G01350 -AT3G12010 -AT5G08180 -AT3G54890 -AT3G05130 -AT1G68310 -AT4G28980 -AT1G51510 -AT1G29060 -AT1G73620 -AT1G26940 -AT3G02320 -AT5G22470 -AT3G09970 -AT4G21940 -AT3G51510 -AT3G12760 -AT4G29470 -AT1G47820 -AT1G73030 -AT5G10560 -AT1G16890 -AT5G58110 -AT3G28700 -AT2G44200 -AT5G54110 -AT2G21160 -AT4G24805 -AT4G34920 -AT3G50960 -AT5G50930 -AT1G35470 -AT4G22310 -AT4G27140 -AT2G39900 -AT5G16010 -AT1G04645 -AT3G25680 -AT3G13640 -AT3G13230 -AT1G74560 -AT1G17050 -AT3G27050 -AT1G74320 -AT2G31750 -AT5G37770 -AT4G26750 -AT4G26470 -AT4G15550 -AT3G12410 -AT3G27660 -AT4G31130 -AT5G06530 -AT5G63830 -AT3G08630 -AT1G20850 -AT1G67830 -AT3G17410 -AT3G62130 -AT3G14920 -AT1G52260 -AT1G17270 -AT1G75460 -AT2G36830 -AT3G09570 -AT2G35830 -AT1G04900 -AT1G68020 -AT3G19770 -AT4G28860 -AT2G44860 -AT3G16060 -AT5G43810 -AT1G65090 -AT3G03590 -AT2G15690 -AT1G60950 -AT5G45010 -AT2G33600 -AT3G12020 -AT3G04290 -AT1G16280 -AT4G01130 -AT3G03600 -AT5G49720 -AT3G12260 -AT3G10330 -AT2G26910 -AT1G01820 -AT1G11475 -AT1G10200 -AT2G38910 -AT5G60620 -AT5G41940 -AT1G03050 -AT1G79090 -AT2G36310 -AT5G08050 -AT2G16930 -AT5G50870 -AT1G17210 -AT5G43500 -AT2G42210 -AT5G35660 -AT1G49430 -AT4G10120 -AT2G02040 -AT2G32900 -AT3G07640 -AT3G15820 -AT3G11740 -AT1G75850 -AT1G50400 -AT4G38350 -AT4G24930 -AT3G47940 -AT1G80500 -AT3G10530 -AT1G14510 -AT5G67560 -AT5G27520 -AT5G56260 -AT5G66410 -AT1G04650 -AT3G57530 -AT5G37810 -AT5G25530 -AT2G38710 -AT1G51660 -AT5G14310 -AT4G34260 -AT5G65900 -AT3G07480 -AT4G30010 -AT1G11765 -AT5G04280 -AT4G32960 -AT2G28355 -AT1G45145 -AT5G49510 -AT4G36800 -AT2G31035 -AT3G25480 -AT2G30710 -AT3G57220 -AT1G29260 -AT1G32250 -AT5G11480 -AT5G24460 -AT5G11680 -AT1G78510 -AT2G18700 -AT5G47630 -AT4G25050 -AT3G11070 -AT4G00560 -AT4G10750 -AT5G61310 -AT5G66090 -AT5G40480 -AT5G63910 -AT4G31200 -AT2G26000 -AT3G60500 -AT4G39910 -AT5G07860 -AT1G17840 -AT2G35340 -AT2G24090 -AT4G21895 -AT2G41950 -AT4G19003 -AT1G49480 -AT5G39950 -AT5G25900 -AT3G18410 -AT1G30890 -AT2G01490 -AT1G29850 -AT4G16444 -AT4G15955 -AT1G35340 -AT3G18500 -AT4G04850 -AT4G17920 -AT4G24860 -AT4G29960 -AT5G56950 -AT2G44690 -AT3G16090 -AT1G17190 -AT5G24130 -AT1G72170 -AT5G16400 -AT5G47435 -AT1G70520 -AT1G21850 -AT4G22140 -AT2G23610 -AT1G74730 -AT2G18600 -AT1G17540 -AT2G18390 -AT1G16740 -AT3G50980 -AT4G32120 -AT4G17760 -AT4G17770 -AT5G52110 -AT1G68590 -AT5G66055 -AT3G02480 -AT1G03870 -AT3G09980 -AT4G27560 -AT2G02160 -AT5G48335 -AT3G47610 -AT4G17420 -AT1G06230 -AT4G27130 -AT5G50580 -AT5G50680 -AT5G56660 -AT4G37270 -AT1G62010 -AT1G77390 -AT3G23580 -AT2G40400 -AT1G13190 -AT4G13510 -AT2G48150 -AT1G80910 -AT4G22570 -AT5G46230 -AT5G59845 -AT5G47890 -AT5G26600 -AT2G33775 -AT3G54490 -AT5G63800 -AT2G26430 -AT3G21820 -AT1G13870 -AT2G40890 -AT5G57950 -AT1G54410 -AT5G22950 -AT5G02280 -AT3G21670 -AT1G52300 -AT4G11980 -AT4G32070 -AT5G42130 -AT3G57280 -AT3G02110 -AT3G10220 -AT1G19360 -AT4G02620 -AT3G28490 -AT1G21190 -AT2G22570 -AT2G24310 -AT4G16990 -AT2G23940 -AT3G11770 -AT3G01440 -AT5G48540 -AT1G24490 -AT1G21600 -AT1G03150 -AT3G28460 -AT2G22900 -AT1G53840 -AT3G61980 -AT3G19810 -AT4G30780 -AT3G01450 -AT5G22370 -AT4G25370 -AT2G26100 -AT1G24120 -AT1G80510 -AT5G55140 -AT1G26170 -AT1G04970 -AT2G33830 -AT1G51610 -AT1G73940 -AT3G46230 -AT4G24130 -AT1G44820 -AT2G41670 -AT3G45010 -AT3G18760 -AT2G22610 -AT2G39850 -AT5G37130 -AT3G56010 -AT4G33670 -AT5G04910 -AT4G29680 -AT1G06670 -AT5G11780 -AT2G44790 -AT4G08230 -AT1G62600 -AT3G01740 -AT1G08860 -AT1G24267 -AT5G24350 -AT3G03490 -AT1G11040 -AT5G63870 -AT4G25440 -AT1G31860 -AT2G07727 -AT1G03400 -AT5G51150 -AT1G48170 -AT3G24320 -AT1G50450 -AT5G13020 -AT2G36130 -AT2G03630 -AT5G03440 -AT5G20040 -AT3G15850 -AT1G08160 -AT2G30530 -AT5G23395 -AT2G19790 -AT5G17250 -AT4G29870 -AT3G27670 -AT4G33640 -AT1G11572 -AT1G52780 -AT1G28340 -AT1G43900 -AT5G54390 -AT3G26030 -AT5G39080 -AT2G19385 -AT1G12140 -AT3G52730 -AT5G59140 -AT2G19750 -AT4G29390 -AT5G56670 -AT1G62850 -AT5G62310 -AT1G48440 -AT1G30480 -AT3G04950 -AT1G65320 -AT4G16440 -AT5G09250 -AT5G12970 -AT1G30460 -AT4G17340 -AT2G16860 -AT2G41475 -AT5G07430 -AT5G45810 -AT1G47830 -AT2G16505 -AT1G80350 -AT4G12640 -AT3G14960 -AT1G13820 -AT5G24314 -AT1G20840 -AT1G68540 -AT4G26455 -AT2G03980 -AT2G34640 -AT2G02760 -AT5G05370 -AT3G61620 -AT5G20090 -AT5G47810 -AT1G25480 -AT5G03080 -AT2G44730 -AT3G16980 -AT3G54630 -AT4G21590 -AT4G34510 -AT4G27180 -AT5G25310 -AT1G78140 -AT5G57550 -AT2G35320 -AT1G27760 -AT5G52960 -AT1G54070 -AT5G16150 -AT3G04020 -AT4G31770 -AT2G10950 -AT1G52530 -AT3G60730 -AT4G25100 -AT3G21055 -AT2G31570 -AT1G02830 -AT5G51720 -AT5G20930 -AT3G21380 -AT3G18140 -AT1G76260 -AT1G16380 -AT5G15880 -AT5G67470 -AT5G15802 -AT1G76405 -AT2G47120 -AT1G72010 -AT5G41880 -AT3G58680 -AT4G08350 -AT4G38500 -AT1G48270 -AT5G49550 -AT2G46090 -AT4G17486 -AT1G65410 -AT5G15860 -AT2G01460 -AT5G47030 -AT3G27080 -AT1G03550 -AT1G15700 -AT3G12280 -AT5G23670 -AT5G07460 -AT5G54010 -AT3G49670 -AT2G27385 -AT3G01660 -AT2G46800 -AT3G49100 -AT4G34940 -AT2G26280 -AT5G40260 -AT5G54580 -AT1G17330 -AT2G38010 -AT5G10300 -AT4G25680 -AT3G25170 -AT5G64090 -AT5G58800 -AT5G38980 -AT5G62410 -AT3G13224 -AT1G20270 -AT5G43970 -AT5G06660 -AT5G55470 -AT1G24100 -AT4G36100 -AT3G15380 -AT5G54800 -AT2G19450 -AT5G49570 -AT5G46020 -AT5G59870 -AT5G09640 -AT2G28600 -AT3G11200 -AT1G76490 -AT3G17780 -AT2G21640 -AT5G64140 -AT1G49140 -AT5G18620 -AT3G05070 -AT5G65520 -AT5G64540 -AT1G26220 -AT2G03820 -AT1G67840 -AT2G17720 -AT4G05450 -AT1G17520 -AT2G26900 -AT3G60960 -AT1G78180 -AT5G48840 -AT3G12930 -AT2G47420 -AT5G62290 -AT1G60170 -AT3G07010 -AT2G14530 -AT5G14050 -AT2G15240 -AT1G28270 -AT1G51540 -AT1G48240 -AT1G70710 -AT3G25165 -AT1G79490 -AT3G62550 -AT2G27260 -AT4G05150 -AT3G18050 -AT3G11750 -AT1G49330 -AT3G25400 -AT3G07070 -AT1G52980 -AT5G51130 -AT1G51770 -AT4G14145 -AT4G09160 -AT3G22930 -AT1G11390 -AT4G36720 -AT1G51400 -AT5G23440 -AT3G55830 -AT2G34810 -AT1G64710 -AT4G31160 -AT5G03470 -AT1G74530 -AT2G41430 -AT4G01560 -AT5G14010 -AT1G50610 -AT4G33400 -AT1G31220 -AT1G11530 -AT3G51600 -AT5G56150 -AT5G21100 -AT3G14090 -AT1G11760 -AT1G30960 -AT5G27720 -AT2G18630 -AT1G73190 -AT5G15050 -AT2G42800 -AT4G24970 -AT5G50030 -AT4G17010 -AT1G15270 -AT1G22460 -AT3G45050 -AT1G33680 -AT4G27450 -AT5G41685 -AT5G57980 -AT4G19040 -AT2G26680 -AT3G28450 -AT1G26670 -AT3G08640 -AT5G13310 -AT4G02610 -AT1G50320 -AT3G55270 -AT1G77930 -AT5G12130 -AT4G26770 -AT5G55980 -AT1G67230 -AT5G11760 -AT5G55920 -AT2G18170 -AT1G63310 -AT2G01060 -AT2G20700 -AT3G56720 -AT5G17790 -AT1G02880 -AT3G18430 -AT1G24110 -AT5G39790 -AT3G15110 -AT1G78670 -AT2G26570 -AT3G01370 -AT1G77860 -AT2G42400 -AT5G58090 -AT1G22170 -AT3G13080 -AT2G36180 -AT2G42070 -AT1G67460 -AT4G20330 -AT1G78340 -AT1G54830 -AT1G70220 -AT5G20650 -AT4G33060 -AT1G43620 -AT1G70890 -AT2G43240 -AT2G39970 -AT4G26020 -AT5G07560 -AT1G16860 -AT5G51640 -AT3G15810 -AT5G19980 -AT5G40740 -AT3G27000 -AT4G34020 -AT5G12390 -AT2G01070 -AT3G05410 -AT4G26190 -AT5G16120 -AT4G04670 -AT5G65770 -AT5G48470 -AT1G15240 -AT3G59140 -AT4G14270 -AT1G27460 -AT5G10050 -AT5G11280 -AT1G47750 -AT5G38110 -AT1G74740 -AT5G12030 -AT3G02950 -AT1G52630 -AT5G59250 -AT1G01470 -AT2G33700 -AT3G60620 -AT5G63140 -AT1G43700 -AT5G47100 -AT4G37760 -AT3G63160 -AT5G67290 -AT1G02335 -AT1G51650 -AT1G07970 -AT1G11780 -AT4G27420 -AT5G64330 -AT2G16920 -AT1G29990 -AT5G05070 -AT2G26300 -AT1G68000 -AT5G01700 -AT3G61600 -AT1G64170 -AT3G16990 -AT1G65700 -AT4G32390 -AT4G31850 -AT5G45490 -AT4G37880 -AT1G10230 -AT3G12620 -AT1G50520 -AT5G03070 -AT1G04010 -AT4G32714 -AT5G36950 -AT1G78020 -AT1G62930 -AT1G54610 -AT5G53370 -AT1G65010 -AT4G04570 -AT1G79820 -AT1G29790 -AT3G29280 -AT5G17160 -AT1G71170 -AT5G39530 -AT3G57420 -AT5G13740 -AT4G37330 -AT5G58430 -AT4G13630 -AT1G76990 -AT1G15720 -AT1G01970 -AT4G04925 -AT4G15010 -AT5G14140 -AT3G12030 -AT5G56360 -AT4G13800 -AT5G02050 -AT1G55360 -AT3G56700 -AT1G17140 -AT5G14210 -AT4G06599 -AT5G46570 -AT3G52210 -AT4G21960 -AT1G69380 -AT5G56090 -AT4G34138 -AT5G50900 -AT3G01650 -AT2G29730 -AT5G14450 -AT1G16010 -AT4G21540 -AT3G15356 -AT5G42670 -AT4G16650 -AT2G18730 -AT5G03860 -AT1G76670 -AT1G65840 -AT2G25880 -AT3G07570 -AT5G12100 -AT3G10260 -AT1G71040 -AT1G64680 -AT4G38380 -AT1G17130 -AT3G47430 -AT4G38400 -AT1G08030 -AT3G05020 -AT2G26660 -AT1G03250 -AT1G18650 -AT3G46510 -AT5G64910 -AT3G54870 -AT5G47640 -AT2G04550 -AT5G13970 -AT5G20130 -AT1G61630 -AT4G26000 -AT1G78280 -AT4G33430 -AT5G05660 -AT4G29380 -AT5G06340 -AT1G79350 -AT5G23820 -AT3G47833 -AT1G45688 -AT5G22050 -AT2G15820 -AT3G54960 -AT1G23440 -AT3G26990 -AT1G67900 -AT3G09250 -AT3G03990 -AT3G07390 -AT4G27640 -AT5G46390 -AT2G35470 -AT3G54080 -AT2G01590 -AT3G55520 -AT3G19800 -AT1G09160 -AT3G16175 -AT5G59730 -AT3G55960 -AT3G51450 -AT2G40980 -AT1G22610 -AT3G11620 -AT2G26380 -AT1G34340 -AT4G31840 -AT2G31800 -AT5G02830 -AT2G26970 -AT5G42870 -AT5G03730 -AT1G58060 -AT1G59760 -AT4G20280 -AT1G27535 -AT3G03040 -AT2G03670 -AT2G20280 -AT1G22690 -AT4G01700 -AT1G57990 -AT3G17030 -AT2G35350 -AT1G48760 -AT2G35960 -AT3G61580 -AT1G68910 -AT5G39990 -AT4G29650 -AT2G38760 -AT4G01920 -AT5G09920 -AT1G48880 -AT5G42340 -AT1G47640 -AT1G03910 -AT5G04540 -AT1G63290 -AT3G08850 -AT3G03160 -AT5G41010 -AT1G01580 -AT5G64620 -AT3G42860 -AT3G60840 -AT5G47020 -AT2G32540 -AT1G01730 -AT2G47600 -AT3G49590 -AT4G24730 -AT1G47240 -AT3G58170 -AT1G54850 -AT4G10280 -AT5G60190 -AT1G55805 -AT2G41160 -AT4G30400 -AT4G15820 -AT5G07770 -AT5G16890 -AT1G10280 -AT1G28670 -AT1G73410 -AT5G32440 -AT3G16565 -AT1G51730 -AT2G23560 -AT3G58180 -AT2G38530 -AT3G23190 -AT2G41900 -AT5G05760 -AT5G40090 -AT2G30150 -AT5G42890 -AT2G36300 -AT5G27395 -AT3G21630 -AT3G12610 -AT5G48870 -AT1G62960 -AT2G22370 -AT2G24390 -AT2G03290 -AT1G13790 -AT3G08490 -AT2G47900 -AT4G08320 -AT1G49740 -AT1G07840 -AT2G01680 -AT1G15540 -AT1G72820 -AT3G04660 -AT2G45520 -AT5G51020 -AT1G69430 -AT4G29240 -AT4G37630 -AT5G38670 -AT2G22600 -AT2G04360 -AT3G53170 -AT1G33900 -AT2G47980 -AT5G23920 -AT3G52290 -AT1G13600 -AT1G20230 -AT3G01550 -AT4G15070 -AT3G14650 -AT3G55080 -AT1G16520 -AT5G22500 -AT3G46260 -AT5G59320 -AT5G08720 -AT5G55640 -AT3G04430 -AT5G40060 -AT1G01940 -AT1G16640 -AT2G25520 -AT1G43640 -AT3G54950 -AT5G47800 -AT5G18690 -AT1G53550 -AT5G25430 -AT4G08691 -AT1G73100 -AT1G19690 -AT1G45063 -AT2G17120 -AT1G72175 -AT1G75710 -AT2G38440 -AT3G18295 -AT4G21260 -AT1G55290 -AT5G27710 -AT1G12280 -AT1G73080 -AT4G31640 -AT3G50100 -AT5G61700 -AT4G27510 -AT1G59600 -AT5G04070 -AT1G76920 -AT4G29720 -AT1G32750 -AT3G27180 -AT4G37100 -AT5G08490 -AT4G23530 -AT1G24290 -AT2G18850 -AT5G20580 -AT2G28890 -AT2G25770 -AT5G57815 -AT5G11960 -AT2G36360 -AT2G33610 diff --git a/test_perf.py b/test_perf.py new file mode 100644 index 0000000..f7b5de1 --- /dev/null +++ b/test_perf.py @@ -0,0 +1,70 @@ +import argparse +import torch +from matplotlib import pyplot as plt +from collections import defaultdict +from tqdm import tqdm +from pathlib import Path + +from utils import img, device +from utils.loss import ssim, mse_loss, LpipsLoss + + +torch.set_grad_enabled(False) +lpips_loss = LpipsLoss().to(device.default()) + + +def save_error_image(gt: torch.Tensor, out: torch.Tensor, filename: str): + error_image = (mse_loss(out, gt, reduction='none').mean(-3, True) / 1e-2).clamp(0, 1) + error_image = img.torch2np(error_image)[..., 0] + output_subdir = test_dir.parent / f"{dataset_name}_error" + output_subdir.mkdir(exist_ok=True) + img.save(plt.get_cmap("jet")(error_image), f'{output_subdir}/{filename}') + + +parser = argparse.ArgumentParser() +parser.add_argument('test_dir', type=str, + help='Path to the test output dir') +args = parser.parse_args() + + +test_dir = Path(args.test_dir) +dataset_name = test_dir.parts[-1].split("_")[0] +gt_dir = Path(*test_dir.parts[:-5]) / dataset_name + +test_image_paths = list(test_dir.iterdir()) +test_image_paths.sort(key=lambda path: path.stem) + +gt_image_paths = list(gt_dir.iterdir()) +gt_image_paths.sort(key=lambda path: path.stem) + + +perf = defaultdict(list, dummy=[]) +n = len(test_image_paths) +for test_image_path, gt_image_path in tqdm(zip(test_image_paths, gt_image_paths), total=n): + out_image = img.load(test_image_path).to(device.default()) + gt_image = img.load(gt_image_path).to(device.default()) + perf["mse"].append(mse_loss(out_image, gt_image).item()) + perf["ssim"].append(ssim(out_image, gt_image).item() * 100) + perf["lpips"].append(lpips_loss(out_image, gt_image).item()) + save_error_image(gt_image, out_image, test_image_path.name) + +perf_mean_error = sum(perf['mse']) / n +perf_time = "" + +# Remove old performance reports +for file in test_dir.parent.glob(f'perf_{dataset_name}*'): + parts = file.name.split("_") + if len(parts) == 4: + perf_time = "_" + parts[2] + file.unlink() + +perf_name = f'perf_{dataset_name}{perf_time}_{perf_mean_error:.2e}.csv' + + +# Save new performance reports +with (test_dir.parent / perf_name).open('w') as fp: + fp.write('PSNR, SSIM, LPIPS\n') + fp.writelines([ + f'{img.mse2psnr(perf["mse"][i]):.2f}, {perf["ssim"][i]:.2f}, {perf["lpips"][i]:.2e}\n' + for i in range(n) + ]) diff --git a/test_todo.sh b/test_todo.sh new file mode 100644 index 0000000..d992a9d --- /dev/null +++ b/test_todo.sh @@ -0,0 +1,24 @@ +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 1 --width 128 --depth 4 --expname eval@fsnerf1_128x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 1 --width 128 --depth 8 --expname eval@fsnerf1_128x8 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 1 --width 256 --depth 4 --expname eval@fsnerf1_256x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 1 --width 256 --depth 8 --expname eval@fsnerf1_256x8 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 1 --width 512 --depth 4 --expname eval@fsnerf1_512x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 1 --width 512 --depth 8 --expname eval@fsnerf1_512x8 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 2 --width 128 --depth 4 --expname eval@fsnerf2_128x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 2 --width 128 --depth 8 --expname eval@fsnerf2_128x8 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 2 --width 256 --depth 4 --expname eval@fsnerf2_256x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 2 --width 256 --depth 8 --expname eval@fsnerf2_256x8 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 2 --width 512 --depth 4 --expname eval@fsnerf2_512x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 2 --width 512 --depth 8 --expname eval@fsnerf2_512x8 > /dev/null 2>&1 & +#0 nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --width 128 --depth 4 --expname eval@fsnerf4_128x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --width 128 --depth 8 --expname eval@fsnerf4_128x8 > /dev/null 2>&1 & +#1 nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --width 256 --depth 4 --expname eval@fsnerf4_256x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --width 256 --depth 8 --expname eval@fsnerf4_256x8 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --width 512 --depth 4 --expname eval@fsnerf4_512x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --width 512 --depth 8 --expname eval@fsnerf4_512x8 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 8 --width 128 --depth 4 --expname eval@fsnerf8_128x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 8 --width 128 --depth 8 --expname eval@fsnerf8_128x8 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 8 --width 256 --depth 4 --expname eval@fsnerf8_256x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 8 --width 256 --depth 8 --expname eval@fsnerf8_256x8 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 8 --width 512 --depth 4 --expname eval@fsnerf8_512x4 > /dev/null 2>&1 & +# nohup python train.py /home/dengnc/Work/fov_nerf/data/__new/classroom_fovea_r360x80_t0.6/r120x80.json -c fsnerf_eval --n_fields 8 --width 512 --depth 8 --expname eval@fsnerf8_512x8 > /dev/null 2>&1 & diff --git a/tools/convert_data_desc.py b/tools/convert_data_desc.py index 8545851..f526ce2 100644 --- a/tools/convert_data_desc.py +++ b/tools/convert_data_desc.py @@ -21,7 +21,7 @@ data_dir = os.path.dirname(data_desc_path) + '/' with open(data_desc_path, 'r') as fp: dataset_desc: Mapping = json.load(fp) -dataset_desc['cam_params'] = view.CameraParam.convert_camera_params( +dataset_desc['cam_params'] = view.Camera.convert_camera_params( dataset_desc['cam_params'], (dataset_desc['view_res']['y'], dataset_desc['view_res']['x'])) diff --git a/tools/convert_nerf_checkpoint.py b/tools/convert_nerf_checkpoint.py new file mode 100644 index 0000000..3025807 --- /dev/null +++ b/tools/convert_nerf_checkpoint.py @@ -0,0 +1,106 @@ +import sys +import os +import configargparse +import argparse +import torch +from pathlib import Path +from typing import Any + + +sys.path.append(os.path.abspath(sys.path[0] + '/../')) + + +parser = argparse.ArgumentParser() +parser.add_argument('input', type=str) +args = parser.parse_args() + + +def get_sampler_mode(nerf_config: dict[str, str]) -> str: + lindisp = nerf_config["lindisp"] == "True" + spherical = nerf_config.get("spherical") == "True" + if lindisp: + return "spherical" if spherical else "xyz_disp" + return "spherical_radius" if spherical else "xyz" + + +def convert_network_state(input_network_state: dict[str, torch.Tensor], output_prefix: str) -> dict[str, torch.Tensor]: + output_model_state: dict[str, torch.Tensor] = {} + for key, value in input_network_state.items(): + key_parts = key.split(".") + module = key_parts[0] + suffix = key_parts[-1] + match module: + case "pts_linears": + output_model_state[f"{output_prefix}core.field.net.layers.{key_parts[1]}.net.0.{suffix}"] = value + case "alpha_linear": + output_model_state[f"{output_prefix}core.density_decoder.net.net.0.{suffix}"] = value + case "feature_linear": + output_model_state[f"{output_prefix}core.color_decoder.feature_layer.net.0.{suffix}"] = value + case "views_linears" if nerf_config["use_viewdirs"] == "True": + output_model_state[f"{output_prefix}core.color_decoder.net.layers.0.net.0.{suffix}"] = value + case "rgb_linear": + output_model_state[f"{output_prefix}core.color_decoder.net.layers.1.net.0.{suffix}"] = value + case "output_linear": + output_model_state[f"{output_prefix}core.density_decoder.net.net.0.{suffix}"] = value[3:] + output_model_state[f"{output_prefix}core.color_decoder.net.net.0.{suffix}"] = value[:3] + + return output_model_state + + +# Load nerf's args file and checkpoint file +# checkpoint file is at [nerf_repo_path]/logs/[expname]/xxxx.tar +ckpt_path = Path(args.input) +expdir = ckpt_path.parent +nerf_repo_path = expdir.parent.parent +args_path = expdir / "args.txt" +expname = expdir.stem +ckpt_iters = int(ckpt_path.stem) + +config_parser = configargparse.DefaultConfigFileParser() +with open(args_path) as fp: + nerf_config: dict[str, str] = config_parser.parse(fp) +input_checkpoint: dict[str, Any] = torch.load(ckpt_path) + +output_model_state = convert_network_state(input_checkpoint["network_fn_state_dict"], "") +if "network_fine_state_dict" in input_checkpoint: + output_model_state.update(convert_network_state( + input_checkpoint["network_fine_state_dict"], "fine_")) + +output_args = { + "model": "NeRF", + "model_args":{ + "color": "rgb", + "n_samples": int(nerf_config["N_samples"]), + "sample_mode": get_sampler_mode(nerf_config), + "perturb_sampling": nerf_config["perturb"] == "1.0", + "depth": int(nerf_config["netdepth"]), + "width": int(nerf_config["netwidth"]), + "skips": [4], + "act": "relu", + "ln": False, + "color_decoder": "NeRF" if nerf_config["use_viewdirs"] == "True" else "Basic", + "n_importance": int(nerf_config["N_importance"]), + "fine_depth": int(nerf_config["netdepth_fine"]), + "fine_width": int(nerf_config["netwidth_fine"]), + "xfreqs": int(nerf_config["multires"]), + "dfreqs": int(nerf_config["multires_views"]), + "raw_noise_std": float(nerf_config["raw_noise_std"]), + "near": float(nerf_config.get("near", "1")), + "far": float(nerf_config.get("far", "10")), + "white_bg": nerf_config["white_bkgd"] == "True", + }, + "trainer": None +} + +output_path = nerf_repo_path.joinpath(nerf_config["datadir"]) / "_nets" / \ + Path(nerf_config.get("train_file", "train.json")).stem / expname / \ + f"checkpoint_{ckpt_iters}.tar" + +output_path.parent.mkdir(parents=True, exist_ok=True) +torch.save({ + "args": output_args, + "states": { + "model": output_model_state + } +}, output_path) +print(f"Checkpoint is saved to {output_path}") diff --git a/tools/convert_old_snerffast_checkpoint.py b/tools/convert_old_snerffast_checkpoint.py new file mode 100644 index 0000000..d7c3517 --- /dev/null +++ b/tools/convert_old_snerffast_checkpoint.py @@ -0,0 +1,198 @@ +import sys +import os +import configargparse +import argparse +import torch +import re +from pathlib import Path +from typing import Any + +sys.path.append(os.path.abspath(sys.path[0] + '/../')) + + +parser = argparse.ArgumentParser() +parser.add_argument('input', type=str) +args = parser.parse_args() + + +class SphericalViewSynConfig(object): + + def __init__(self): + self.name = 'default' + self.COLOR = "rgb" + + # Net parameters + self.NET_TYPE = 'msl' + self.N_ENCODE_DIM = 10 + self.N_DIR_ENCODE = None + self.NORMALIZE = False + self.DEPTH_REF = False + self.FC_PARAMS = { + 'nf': 256, + 'n_layers': 8, + 'skips': [], + 'activation': 'relu' + } + self.SAMPLE_PARAMS = { + 'spherical': True, + 'depth_range': (1, 50), + 'n_samples': 32, + 'perturb_sample': True, + 'lindisp': True, + 'inverse_r': True, + } + self.NERF_FINE_NET_PARAMS = { + 'enable': False, + 'nf': 256, + 'n_layers': 8, + 'additional_samples': 64 + } + + def from_id(self, id: str): + id_splited = id.split('@') + if len(id_splited) == 2: + self.name = id_splited[0] + segs = id_splited[-1].split('_') + for i, seg in enumerate(segs): + if seg.startswith('ffc'): # Full-connected network parameters + self.NERF_FINE_NET_PARAMS['nf'], self.NERF_FINE_NET_PARAMS['n_layers'] = ( + int(str) for str in seg[3:].split('x')) + self.NERF_FINE_NET_PARAMS['enable'] = True + continue + if seg.startswith('fs'): # Number of samples + try: + self.NERF_FINE_NET_PARAMS['additional_samples'] = int(seg[2:]) + self.NERF_FINE_NET_PARAMS['enable'] = True + continue + except ValueError: + pass + if seg.startswith('fc'): # Full-connected network parameters + self.FC_PARAMS['nf'], self.FC_PARAMS['n_layers'] = ( + int(str) for str in seg[2:].split('x')) + continue + if seg.startswith('skip'): # Skip connection + self.FC_PARAMS['skips'] = [int(str) + for str in seg[4:].split(',')] + continue + if seg.startswith('*'): # Activation + self.FC_PARAMS['activation'] = seg[1:] + continue + if seg.startswith('ed'): # Encode direction + self.N_DIR_ENCODE = int(seg[2:]) + if self.N_DIR_ENCODE == 0: + self.N_DIR_ENCODE = None + continue + if seg.startswith('e'): # Encode + self.N_ENCODE_DIM = int(seg[1:]) + continue + if seg.startswith('d'): # Depth range + try: + self.SAMPLE_PARAMS['depth_range'] = tuple( + float(str) for str in seg[1:].split('-')) + continue + except ValueError: + pass + if seg.startswith('s'): # Number of samples + try: + self.SAMPLE_PARAMS['n_samples'] = int(seg[1:]) + continue + except ValueError: + pass + if seg.startswith('~'): # Negative flags + if seg.find('p') >= 0: + self.SAMPLE_PARAMS['perturb_sample'] = False + if seg.find('l') >= 0: + self.SAMPLE_PARAMS['lindisp'] = False + if seg.find('i') >= 0: + self.SAMPLE_PARAMS['inverse_r'] = False + if seg.find('n') >= 0: + self.NORMALIZE = False + if seg.find('d') >= 0: + self.DEPTH_REF = False + continue + if seg.startswith('+'): # Positive flags + if seg.find('p') >= 0: + self.SAMPLE_PARAMS['perturb_sample'] = True + if seg.find('l') >= 0: + self.SAMPLE_PARAMS['lindisp'] = True + if seg.find('i') >= 0: + self.SAMPLE_PARAMS['inverse_r'] = True + if seg.find('n') >= 0: + self.NORMALIZE = True + if seg.find('d') >= 0: + self.DEPTH_REF = True + continue + if i == 0: # NetType + self.NET_TYPE, color_str = seg.split('-') + self.COLOR = color_str + + def print(self): + print('==== Config %s ====' % self.name) + print('Net type: ', self.NET_TYPE) + print('Encode dim: ', self.N_ENCODE_DIM) + print('Normalize: ', self.NORMALIZE) + print('Train with depth: ', self.DEPTH_REF) + print('Support direction: ', False if self.N_DIR_ENCODE is None + else f'encode to {self.N_DIR_ENCODE}') + print('Full-connected network parameters:', self.FC_PARAMS) + print('Sample parameters', self.SAMPLE_PARAMS) + if self.NERF_FINE_NET_PARAMS['enable']: + print('NeRF fine network parameters', self.NERF_FINE_NET_PARAMS) + print('==========================') + + +def convert_snerffast(input_network_state: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]: + output_model_state: dict[str, torch.Tensor] = {} + for key, value in input_network_state.items(): + key = re.sub("mlp_(\d+)\.core\.layer(\d+)\.net\.0\.(\w+)", + "core.subnets.\\1.field.net.layers.\\2.net.0.\\3", key) + key = re.sub("mlp_(\d+)\.density_out\.net\.(\w+)", + "core.subnets.\\1.density_decoder.net.net.0.\\2", key) + key = re.sub("mlp_(\d+)\.color_out\.net\.(\w+)", + "core.subnets.\\1.color_decoder.net.net.0.\\2", key) + output_model_state[key] = value + return output_model_state + + +ckpt_path = Path(args.input) +expdir = ckpt_path.parent +config_id = expdir.name +ckpt_epochs = int(re.match("model-epoch_(\d+)", ckpt_path.stem).group(1)) + +config = SphericalViewSynConfig() +config.from_id(config_id) +input_checkpoint: dict[str, Any] = torch.load(ckpt_path) + +output_model_state = convert_snerffast(input_checkpoint["model"]) +config.print() +print(f"Epochs: {ckpt_epochs}") + +output_args = { + "model": "FsNeRF", + "model_args": { + "color": "rgb", + "n_samples": config.SAMPLE_PARAMS["n_samples"], + "n_fields": int(config.NET_TYPE[9:]), + "depth": config.FC_PARAMS["n_layers"], + "width": config.FC_PARAMS["nf"], + "skips": config.FC_PARAMS["skips"], + "act": config.FC_PARAMS["activation"], + "ln": False, + "xfreqs": config.N_ENCODE_DIM, + "raw_noise_std": 0., + "near": config.SAMPLE_PARAMS["depth_range"][0], + "far": config.SAMPLE_PARAMS["depth_range"][1], + "white_bg": False, + "coord": "dx" + }, + "trainer": None +} + +output_path = expdir / f"checkpoint_{ckpt_epochs}.tar" +torch.save({ + "args": output_args, + "states": { + "model": output_model_state + } +}, output_path) +print(f"Checkpoint is saved to {output_path}") diff --git a/assets/dash_test.css b/tools/dash/assets/dash_test.css similarity index 100% rename from assets/dash_test.css rename to tools/dash/assets/dash_test.css diff --git a/dash_test.py b/tools/dash/dash_test.py similarity index 96% rename from dash_test.py rename to tools/dash/dash_test.py index 9761996..e4aa246 100644 --- a/dash_test.py +++ b/tools/dash/dash_test.py @@ -12,19 +12,18 @@ from dash.dependencies import Input, Output from dash.exceptions import PreventUpdate -torch.autograd.set_grad_enabled(False) +torch.set_grad_enabled(False) from utils import device from utils import view from utils import img from utils import misc -import model as mdl -from modules import AlphaComposition, Sampler +import model -datadir = Path('data/__new/classroom_fovea_r360x80_t0.6') -data_desc_file = 'r120x80.json' +datadir = Path('data/__object/christmas') +data_desc_file = 'test.json' net_config = 'fovea@snerffast4-rgb_e6_fc512x4_d2.00-50.00_s64_~p' model_path = datadir / 'snerf_voxels/checkpoint_50.tar' fov = 40 @@ -50,7 +49,7 @@ def load_data_desc(data_desc_file) -> view.Trans: return view_range, view.Trans(view_centers, view_rots) -cam = view.CameraParam({ +cam = view.Camera({ 'fov': fov, 'cx': 0.5, 'cy': 0.5, @@ -171,7 +170,7 @@ def plot_pixel_image(ray_o, ray_d, r=1): with torch.no_grad(): pixel_point = ray_o + ray_d * r rays_o = torch.cat([ - misc.meshgrid(*pix_img_res, normalize=True) * view_range_size[:2] + view_range[0, :2], + misc.grid2d(*pix_img_res, normalize=True) * view_range_size[:2] + view_range[0, :2], torch.zeros(*pix_img_res, 1) ], dim=-1).to(device.default()) rays_d = pixel_point - rays_o diff --git a/tools/data/blender_gen/gen_fovea.py b/tools/data/blender_gen/gen_fovea.py index fab5f91..4cde5c7 100644 --- a/tools/data/blender_gen/gen_fovea.py +++ b/tools/data/blender_gen/gen_fovea.py @@ -16,7 +16,7 @@ tbox = [0.6, 0.6, 0.6] rbox = [320, 40] dataset_desc = { - 'view_file_pattern': '%s/view_%%04d.png' % dataset_name, + 'color_file': '%s/view_%%04d.png' % dataset_name, "gl_coord": True, 'view_res': { 'x': 512, @@ -61,7 +61,7 @@ cam.dof.use_dof = False def add_sample(i, x, y, z, rx, ry, render_only=False): cam_obj.location = [x, y, z] cam_obj.rotation_euler = [math.radians(ry), math.radians(rx), 0] - scene.render.filepath = 'output/' + dataset_desc['view_file_pattern'] % i + scene.render.filepath = 'output/' + dataset_desc['color_file'] % i bpy.ops.render.render(write_still=True) if not render_only: dataset_desc['view_centers'].append(list(cam_obj.location)) @@ -70,7 +70,7 @@ def add_sample(i, x, y, z, rx, ry, render_only=False): json.dump(dataset_desc, fp, indent=4) for i in range(len(dataset_desc['view_centers'])): - if not os.path.exists('output/' + dataset_desc['view_file_pattern'] % i): + if not os.path.exists('output/' + dataset_desc['color_file'] % i): add_sample(i, *dataset_desc['view_centers'][i], *dataset_desc['view_rots'][i], render_only=True) start_view = len(dataset_desc['view_centers']) diff --git a/tools/data/blender_gen/gen_periph.py b/tools/data/blender_gen/gen_periph.py index 4644ac1..7b6d25f 100644 --- a/tools/data/blender_gen/gen_periph.py +++ b/tools/data/blender_gen/gen_periph.py @@ -16,7 +16,7 @@ tbox = [0.7, 0.7, 0.7] rbox = [300, 120] dataset_desc = { - 'view_file_pattern': '%s/view_%%04d.png' % dataset_name, + 'color_file': '%s/view_%%04d.png' % dataset_name, "gl_coord": True, 'view_res': { 'x': 512, @@ -61,7 +61,7 @@ cam.dof.use_dof = False def add_sample(i, x, y, z, rx, ry, render_only=False): cam_obj.location = [x, y, z] cam_obj.rotation_euler = [math.radians(ry), math.radians(rx), 0] - scene.render.filepath = 'output/' + dataset_desc['view_file_pattern'] % i + scene.render.filepath = 'output/' + dataset_desc['color_file'] % i bpy.ops.render.render(write_still=True) if not render_only: dataset_desc['view_centers'].append(list(cam_obj.location)) @@ -70,7 +70,7 @@ def add_sample(i, x, y, z, rx, ry, render_only=False): json.dump(dataset_desc, fp, indent=4) for i in range(len(dataset_desc['view_centers'])): - if not os.path.exists('output/' + dataset_desc['view_file_pattern'] % i): + if not os.path.exists('output/' + dataset_desc['color_file'] % i): add_sample(i, *dataset_desc['view_centers'][i], *dataset_desc['view_rots'][i], render_only=True) start_view = len(dataset_desc['view_centers']) diff --git a/tools/data/colmap2dataset.py b/tools/data/colmap2dataset.py new file mode 100644 index 0000000..e8156b3 --- /dev/null +++ b/tools/data/colmap2dataset.py @@ -0,0 +1,178 @@ +import shutil +import sys +import os +import argparse +import json +import re +import numpy as np +from typing import Any +from pathlib import Path + +sys.path.append(os.path.abspath(sys.path[0] + '/../../')) + +from utils.colmap_read_model import read_model, Image + + +def check_model_path(path: Path) -> bool: + """ + Check whether the specified path contains colmap model files. + + :param path `Path`: path to check + :return `bool`: whether the specified path contains colmap model files + """ + return all([ + (path / f"{f}.bin").exists() + for f in ['cameras', 'images', 'points3D'] + ]) + + +def get_image_id(im: Image): + """ + Extract image id from image filename like xxxx001.png + + :param im `Image`: colmap's image info + :return `int`: image id + """ + return int(re.match(r"\D+(\d+)\.\w+", os.path.split(im.name)[1]).group(1)) + + +def normalize(x: np.ndarray) -> np.ndarray: return x / np.linalg.norm(x) + + +def view_matrix(z: np.ndarray, up: np.ndarray, pos: np.ndarray) -> np.ndarray: + """ + Construct view matrix from z, up and position. + + :param z `ndarray(3)`: z axis + :param up `ndarray(3): up direction + :param pos `ndarray(3)`: center position + :return `ndarray(3, 4): view matrix + """ + vec2 = normalize(z) + vec0 = normalize(np.cross(up, vec2)) + vec1 = normalize(np.cross(vec2, vec0)) + return np.stack([vec0, vec1, vec2, pos], 1) + + +def poses_avg(poses: np.ndarray) -> np.ndarray: + """ + Calculate the average of the given poses + + :param poses `ndarray(B, 3, 4)`: poses + :return `ndarray(3, 4)`: average pose + """ + center = np.mean(poses[..., 3]) + vec2 = normalize(np.sum(poses[..., 2], 0)) + up = np.sum(poses[..., 1], 0) + return view_matrix(vec2, up, center) + + +def recenter(poses: np.ndarray, pts: np.ndarray): + center = poses[..., 3:].mean(0) # (1, 3, 1) + return np.concatenate([poses[..., :3], poses[..., 3:] - center], -1), pts - center[..., 0] + poses_ = poses + 0 + bottom = np.reshape([0, 0, 0, 1.], [1, 4]) + c2w = poses_avg(poses) + c2w = np.concatenate([c2w[:3, :4], bottom], -2) + bottom = np.tile(np.reshape(bottom, [1, 1, 4]), [poses.shape[0], 1, 1]) + poses = np.concatenate([poses[:, :3, :4], bottom], -2) + + poses = np.linalg.inv(c2w) @ poses + poses_[:, :3, :4] = poses[:, :3, :4] + poses = poses_ + return poses + + +parser = argparse.ArgumentParser() +parser.add_argument('dataset', type=str) +parser.add_argument('--scale-down', type=int, default=1) +args = parser.parse_args() +data_dir = Path(args.dataset) +scale_down = args.scale_down + +if check_model_path(data_dir / "input"): + model_path = data_dir / "input" +else: + raise RuntimeError("No colmap model found.") + +cameras, images, points3D = read_model(model_path, '.bin') +print("Colmap model loaded.") +print("num_cameras:", len(cameras)) +print("num_images:", len(images)) +print("num_points3D:", len(points3D)) + +cam = cameras[1] +images = [im for im in images.values()] + +w2c_mats = np.stack([np.concatenate([np.concatenate([im.qvec2rotmat(), im.tvec.reshape([3, 1])], 1), + np.array([[0, 0, 0, 1.]])], 0) + for im in images], 0) # (B, 4, 4) +c2w_mats = np.linalg.inv(w2c_mats) +poses = c2w_mats[:, :3, :] +poses[..., 1:3] *= -1 # colmap: [x,-y,-z] -> conventional: [x,y,z] +pts = np.array([p.xyz for p in points3D.values()]) +poses, pts = recenter(poses, pts) +norms = np.linalg.norm(pts, axis=1) +near, far = np.percentile(norms, 1), np.percentile(norms, 99) +trans_range = np.max(np.linalg.norm(poses[..., 3], axis=1)) +print(f"Near: {near}, far: {far}, trans range: {trans_range}") + +if scale_down > 1: + print("Scale images...") + from tools import image_scale + image_scale.run(data_dir / "input/images", data_dir / f"input/images{scale_down}", + data_dir / "input/images", 1. / scale_down) + +general_desc = { + 'color_file': f"view%04d{os.path.splitext(images[0].name)[1]}", + 'gl_coord': True, + 'view_res': { + 'x': cam.width // scale_down, + 'y': cam.height // scale_down + }, + 'cam_params': { + 'f': cam.params[0] / scale_down, + 'cx': cam.params[1] / scale_down, + 'cy': cam.params[2] / scale_down + }, + 'depth_range': { + 'min': max(near, trans_range * 1.1), + 'max': far + }, + # 'samples': [poses.shape[0]], + # 'view_centers': poses[..., 3].tolist(), + # 'view_rots': poses[:, :3, :3].reshape([-1, 9]).tolist(), + # 'views': views +} + +with open(data_dir / "input/dataset.json") as fp: + datasets: dict[str, Any] = json.load(fp) + +for dataset, image_dirs in datasets.items(): + if scale_down > 1: + dataset = f"{dataset}{scale_down}" + view_centers = [] + view_rots = [] + im_names = [] + for image_dir in image_dirs: + for i, im in enumerate(images): + if im.name.startswith(image_dir): + view_centers.append(poses[i, :, 3].tolist()) + view_rots.append(poses[i, :3, :3].flatten().tolist()) + im_names.append(im.name) + + # Create symbol links to input images + shutil.rmtree(data_dir / dataset, ignore_errors=True) + (data_dir / dataset).mkdir() + for i, im_name in enumerate(im_names): + (data_dir / dataset / (general_desc["color_file"] % + i)).symlink_to(f"../input/images{scale_down if scale_down > 1 else ''}/{im_name}") + + dataset_desc = { + **general_desc, + "samples": [len(view_centers)], + "view_centers": view_centers, + "view_rots": view_rots + } + with open(data_dir / f"{dataset}.json", 'w') as fp: + json.dump(dataset_desc, fp, indent=4) diff --git a/tools/data/extract.py b/tools/data/extract.py index c66914e..eb16cc3 100644 --- a/tools/data/extract.py +++ b/tools/data/extract.py @@ -37,20 +37,20 @@ for i in range(3): for j in range(2): out_desc_name = f'part{idx:d}' out_desc = dataset_desc.copy() - out_desc['view_file_pattern'] = f'{out_desc_name}/view_%04d.png' + out_desc['color_file'] = f'{out_desc_name}/view_%04d.png' n_x = out_desc['samples'][3] // 3 n_y = out_desc['samples'][4] // 2 views = indices[..., i * n_x:(i + 1) * n_x, j * n_y:(j + 1) * n_y].flatten().tolist() out_desc['samples'] = [len(views)] out_desc['views'] = views - out_desc['view_centers'] = np.array(dataset_desc['view_centers'])[views].tolist() - out_desc['view_rots'] = np.array(dataset_desc['view_rots'])[views].tolist() + out_desc['centers'] = np.array(dataset_desc['centers'])[views].tolist() + out_desc['rots'] = np.array(dataset_desc['rots'])[views].tolist() with open(os.path.join(data_dir, f'{out_desc_name}.json'), 'w') as fp: json.dump(out_desc, fp, indent=4) os.makedirs(os.path.join(data_dir, out_desc_name), exist_ok=True) for k in range(len(views)): - os.symlink(os.path.join('..', dataset_desc['view_file_pattern'] % views[k]), - os.path.join(data_dir, out_desc['view_file_pattern'] % views[k])) + os.symlink(os.path.join('..', dataset_desc['color_file'] % views[k]), + os.path.join(data_dir, out_desc['color_file'] % views[k])) idx += 1 ''' @@ -60,24 +60,24 @@ for xi in range(0, 4, 2): for zi in range(0, 4, 2): out_desc_name = f'part{idx:d}' out_desc = dataset_desc.copy() - out_desc['view_file_pattern'] = f'{out_desc_name}/view_%04d.png' + out_desc['color_file'] = f'{out_desc_name}/view_%04d.png' views = indices[xi:xi + 2, yi:yi + 2, zi:zi + 2].flatten().tolist() out_desc['samples'] = [len(views)] out_desc['views'] = views - out_desc['view_centers'] = np.array(dataset_desc['view_centers'])[views].tolist() - out_desc['view_rots'] = np.array(dataset_desc['view_rots'])[views].tolist() + out_desc['centers'] = np.array(dataset_desc['centers'])[views].tolist() + out_desc['rots'] = np.array(dataset_desc['rots'])[views].tolist() with open(os.path.join(data_dir, f'{out_desc_name}.json'), 'w') as fp: json.dump(out_desc, fp, indent=4) os.makedirs(os.path.join(data_dir, out_desc_name), exist_ok=True) for k in range(len(views)): - os.symlink(os.path.join('..', dataset_desc['view_file_pattern'] % views[k]), - os.path.join(data_dir, out_desc['view_file_pattern'] % views[k])) + os.symlink(os.path.join('..', dataset_desc['color_file'] % views[k]), + os.path.join(data_dir, out_desc['color_file'] % views[k])) idx += 1 ''' def extract_by_grid(*grid_indices): - indices = torch.arange(len(dataset_desc['view_centers'])).view(dataset_desc['samples']) + indices = torch.arange(len(dataset_desc['centers'])).view(dataset_desc['samples']) views = [] for idx in product(*grid_indices): views += indices[idx].flatten().tolist() @@ -86,11 +86,11 @@ def extract_by_grid(*grid_indices): def extract_by_trans(max_trans, max_views): if max_trans is not None: - centers = np.array(dataset_desc['view_centers']) + centers = np.array(dataset_desc['centers']) trans = np.linalg.norm(centers, axis=-1) indices = np.nonzero(trans <= max_trans)[0] else: - indices = np.arange(len(dataset_desc['view_centers'])) + indices = np.arange(len(dataset_desc['centers'])) if max_views is not None: indices = np.sort(indices[np.random.permutation(indices.shape[0])[:max_views]]) return indices.tolist() @@ -101,18 +101,18 @@ if args.grids: else: views = extract_by_trans(args.trans, args.views) -image_path = dataset_desc['view_file_pattern'] +image_path = dataset_desc['color_file'] if "/" not in image_path: image_path = in_name + "/" + image_path # Save new dataset out_desc = dataset_desc.copy() -out_desc['view_file_pattern'] = image_path.split('/')[-1] +out_desc['color_file'] = image_path.split('/')[-1] out_desc['samples'] = [len(views)] out_desc['views'] = views -out_desc['view_centers'] = np.array(dataset_desc['view_centers'])[views].tolist() -if 'view_rots' in dataset_desc: - out_desc['view_rots'] = np.array(dataset_desc['view_rots'])[views].tolist() +out_desc['centers'] = np.array(dataset_desc['centers'])[views].tolist() +if 'rots' in dataset_desc: + out_desc['rots'] = np.array(dataset_desc['rots'])[views].tolist() # Write new data desc with open(out_desc_path, 'w') as fp: @@ -123,7 +123,7 @@ out_dir.mkdir() for k in range(len(views)): if out_dir.parent.absolute() == root_dir.absolute(): os.symlink(Path("..") / (image_path % views[k]), - out_dir / (out_desc['view_file_pattern'] % views[k])) + out_dir / (out_desc['color_file'] % views[k])) else: os.symlink(root_dir.absolute() / (image_path % views[k]), - out_dir / (out_desc['view_file_pattern'] % views[k])) + out_dir / (out_desc['color_file'] % views[k])) diff --git a/tools/data/extract360.py b/tools/data/extract360.py new file mode 100644 index 0000000..b9195ad --- /dev/null +++ b/tools/data/extract360.py @@ -0,0 +1,62 @@ +import sys +import os +import argparse +import numpy as np +import cv2 +from tqdm import tqdm + +sys.path.append(os.path.abspath(sys.path[0] + '/../../')) + +parser = argparse.ArgumentParser() +parser.add_argument('-s', '--start', type=int) +parser.add_argument('-t', '--duration', type=int) +parser.add_argument('--fps', type=str, required=True) +parser.add_argument('datadir', type=str) +args = parser.parse_args() + +os.chdir(args.datadir) + +rawK = np.array([ + [1369.757446, 0., 1838.643555, 0., 1369.757446, 1524.068604, 0., 0., 1.], + [1367.517944, 0., 1840.157837, 0., 1367.517944, 1536.036133, 0., 0., 1.], + [1369.830322, 0., 1827.990723, 0., 1369.830322, 1514.463135, 0., 0., 1.], + [1368.966187, 0., 1829.976196, 0., 1368.966187, 1512.734375, 0., 0., 1.], + [1373.654297, 0., 1838.130859, 0., 1373.654297, 1534.985840, 0., 0., 1.], + [1365.853027, 0., 1835.100830, 0., 1365.853027, 1533.032959, 0., 0., 1.] +]).reshape(-1, 3, 3) +D = np.array([[-0.044752], [-0.006285], [0.000000], [0.000000]]) + +mean_focal = np.mean(rawK[:, 0, 0]) +K = None # 1369.2632038333334, 1500.0, 1900.0 + +for i in range(6): + # Extract frames from video + os.makedirs(f"raw_images/{i + 1}", exist_ok=True) + extra_args = [] + if args.start is not None: + extra_args.append(f"-ss {args.start}") + if args.duration is not None: + extra_args.append(f"-t {args.duration}") + extra_args = ' '.join(extra_args) + os.system(f"ffmpeg -i raw_video/{i + 1:02d}.mov {extra_args} -f image2 -q:v 2 -vf fps={args.fps} " + f"raw_images/{i + 1}/image%03d.png") + + # Undistort frames and collect + os.makedirs(f"images", exist_ok=True) + raw_image_files = os.listdir(f"raw_images/{i + 1}") + map1, map2 = None, None + for raw_file in tqdm(raw_image_files): + raw_im = cv2.imread(f"raw_images/{i + 1}/{raw_file}") + if K is None: + K = np.array([[mean_focal, 0., raw_im.shape[1] / 2], + [0., mean_focal, raw_im.shape[0] / 2], + [0., 0., 1.]]) + tqdm.write( + f"Intrinsic parameters: {mean_focal}, {raw_im.shape[0] / 2}, {raw_im.shape[1] / 2}") + if map1 is None: + map1, map2 = cv2.fisheye.initUndistortRectifyMap( + rawK[i], D, None, K, (raw_im.shape[1], raw_im.shape[0]), cv2.CV_16SC2) + im = cv2.remap(raw_im, map1, map2, interpolation=cv2.INTER_LINEAR, + borderMode=cv2.BORDER_CONSTANT) + im = cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE) + cv2.imwrite(f"images/image{i}{raw_file[5:]}", im) diff --git a/tools/data/gen_colmap.py b/tools/data/gen_colmap.py deleted file mode 100644 index b969c89..0000000 --- a/tools/data/gen_colmap.py +++ /dev/null @@ -1,73 +0,0 @@ -import sys -import os -import argparse -import json -import numpy as np - -sys.path.append(os.path.abspath(sys.path[0] + '/../')) - -from utils import misc -from utils.colmap_read_model import read_model - -parser = argparse.ArgumentParser() -parser.add_argument('dataset', type=str) -args = parser.parse_args() - -data_dir = args.dataset -os.makedirs(data_dir, exist_ok=True) -out_desc_path = os.path.join(data_dir, "train.json") - - -cameras, images, points3D = read_model(os.path.join(data_dir, 'sparse/0'), '.bin') -print("Model loaded.") -print("num_cameras:", len(cameras)) -print("num_images:", len(images)) -print("num_points3D:", len(points3D)) - -cam = cameras[list(cameras.keys())[0]] - -views = np.array([int(images[img_id].name[5:9]) for img_id in images]) -view_centers = np.array([images[img_id].tvec for img_id in images]) -view_rots = [] -for img_id in images: - im = images[img_id] - R = im.qvec2rotmat() - view_rots.append(R.reshape([9]).tolist()) -view_rots = np.array(view_rots) - -indices = np.argsort(views) -views = views[indices] -view_centers = view_centers[indices] -view_rots = view_rots[indices] - -pts = np.array([points3D[pt_id].xyz for pt_id in points3D]) -zvals = np.sqrt(np.sum(pts * pts, 1)) -dataset_desc = { - 'view_file_pattern': f"images/image%04d.jpg", - 'gl_coord': True, - 'view_res': { - 'x': cam.width, - 'y': cam.height - }, - 'cam_params': { - 'fx': cam.params[0], - 'fy': cam.params[0], - 'cx': cam.params[1], - 'cy': cam.params[2] - }, - 'range': { - 'min': np.min(view_centers, 0).tolist() + [0, 0], - 'max': np.max(view_centers, 0).tolist() + [0, 0] - }, - 'depth_range': { - 'min': np.min(zvals), - 'max': np.max(zvals) - }, - 'samples': [len(view_centers)], - 'view_centers': view_centers.tolist(), - 'view_rots': view_rots.tolist(), - 'views': views.tolist() -} - -with open(out_desc_path, 'w') as fp: - json.dump(dataset_desc, fp, indent=4) diff --git a/tools/data/gen_seq.py b/tools/data/gen_seq.py index 6318d70..3250350 100644 --- a/tools/data/gen_seq.py +++ b/tools/data/gen_seq.py @@ -6,8 +6,9 @@ import numpy as np sys.path.append(os.path.abspath(sys.path[0] + '/../../')) -from utils import seqs -from utils import math +from utils import seqs, math +from utils.types import Resolution + parser = argparse.ArgumentParser() parser.add_argument('-r', '--rot-range', nargs='+', type=int) @@ -25,7 +26,7 @@ args = parser.parse_args() data_dir = args.dataset os.makedirs(data_dir, exist_ok=True) -out_desc_path = os.path.join(data_dir, (args.out_desc if args.out_desc else f"{args.seq}.json")) +out_desc_path = os.path.join(data_dir, args.out_desc or f"{args.seq}.json") if args.ref: with open(os.path.join(data_dir, args.ref), 'r') as fp: @@ -37,34 +38,17 @@ else: ref_desc = None if args.trans_range: - trans_range = np.array(list(args.trans_range) * 3 if len(args.trans_range) == 1 - else args.trans_range) + trans_range = np.array(args.trans_range * 3 if len(args.trans_range) == 1 else args.trans_range) else: - trans_range = np.array(ref_desc['range']['max'][0:3]) - \ - np.array(ref_desc['range']['min'][0:3]) + trans_range = np.array(ref_desc["trs_range"]) if args.rot_range: - rot_range = np.array(list(args.rot_range) * 2 if len(args.rot_range) == 1 - else args.rot_range) + rot_range = np.array(args.rot_range * 2 if len(args.rot_range) == 1 else args.rot_range) else: - rot_range = np.array(ref_desc['range']['max'][3:5]) - \ - np.array(ref_desc['range']['min'][3:5]) + rot_range = np.array(ref_desc["rot_range"]) filter_range = np.concatenate([trans_range, rot_range]) -if args.fov: - cam_params = { - 'fov': args.fov, - 'cx': 0.5, - 'cy': 0.5, - 'normalized': True - } -else: - cam_params = ref_desc['cam_params'] - -if args.res: - res = tuple(int(s) for s in args.res.split('x')) - res = {'x': res[0], 'y': res[1]} -else: - res = ref_desc['view_res'] +cam_params = { "fov": args.fov } if args.fov else ref_desc["cam"] +res = Resolution.from_str(args.res or ref_desc["res"]) if args.seq == 'helix': centers, rots = seqs.helix(trans_range, 4, args.views) @@ -73,7 +57,7 @@ elif args.seq == 'scan_around': elif args.seq == 'look_around': centers, rots = seqs.look_around(trans_range, args.views) -rots *= 180 / math.pi +rots = np.degrees(rots) gl = args.gl or ref_desc and ref_desc.get('gl_coord') if gl: centers[:, 2] *= -1 @@ -81,15 +65,13 @@ if gl: dataset_desc = { 'gl_coord': gl, - 'view_res': res, - 'cam_params': cam_params, - 'range': { - 'min': (-0.5 * filter_range).tolist(), - 'max': (0.5 * filter_range).tolist() - }, + 'res': f"{res.w}x{res.h}", + 'cam': cam_params, + "trs_range": trans_range.tolist(), + "rot_range": rot_range.tolist(), 'samples': [args.views], - 'view_centers': centers.tolist(), - 'view_rots': rots.tolist() + 'centers': centers.tolist(), + 'rots': rots.tolist() } with open(out_desc_path, 'w') as fp: diff --git a/tools/data/gen_subset.py b/tools/data/gen_subset.py index cef95a8..a90ef02 100644 --- a/tools/data/gen_subset.py +++ b/tools/data/gen_subset.py @@ -76,8 +76,8 @@ print('Test set views: ', len(test_views)) def create_subset(views, out_desc_name): views = views.tolist() subset_desc = dataset_desc.copy() - subset_desc['view_file_pattern'] = \ - f"{out_desc_name}/{dataset_desc['view_file_pattern'].split('/')[-1]}" + subset_desc['color_file'] = \ + f"{out_desc_name}/{dataset_desc['color_file'].split('/')[-1]}" subset_desc['range'] = { 'min': list(-filter_range / 2), 'max': list(filter_range / 2) @@ -91,8 +91,8 @@ def create_subset(views, out_desc_name): json.dump(subset_desc, fp, indent=4) os.makedirs(os.path.join(out_data_dir, out_desc_name), exist_ok=True) for i in range(len(views)): - os.symlink(os.path.join('../../', dataset_desc['view_file_pattern'] % views[i]), - os.path.join(out_data_dir, subset_desc['view_file_pattern'] % views[i])) + os.symlink(os.path.join('../../', dataset_desc['color_file'] % views[i]), + os.path.join(out_data_dir, subset_desc['color_file'] % views[i])) os.makedirs(out_data_dir, exist_ok=True) diff --git a/tools/data/merge.py b/tools/data/merge.py index 03e25cd..6a394d0 100644 --- a/tools/data/merge.py +++ b/tools/data/merge.py @@ -36,8 +36,8 @@ for i in range(len(input)): input_desc: Mapping = json.load(fp) dataset_desc['view_centers'] += input_desc['view_centers'] dataset_desc['view_rots'] += input_desc['view_rots'] - copy_images(get_data_path(input[i], input_desc['view_file_pattern']), - get_data_path(output, dataset_desc['view_file_pattern']), + copy_images(get_data_path(input[i], input_desc['color_file']), + get_data_path(output, dataset_desc['color_file']), len(input_desc['view_centers']), n_views) n_views += len(input_desc['view_centers']) diff --git a/tools/data/split.py b/tools/data/split.py index 574dbf8..d486bce 100644 --- a/tools/data/split.py +++ b/tools/data/split.py @@ -2,59 +2,95 @@ import json import sys import os import argparse +import torch from pathlib import Path sys.path.append(os.path.abspath(sys.path[0] + '/../../')) -from data import get_dataset_desc_path +from data import DataDesc +from utils.misc import calculate_autosize parser = argparse.ArgumentParser() -parser.add_argument('-o', '--output', type=str, nargs="+", required=True) -parser.add_argument("-v", "--views", type=int, nargs="+", required=True) +parser.add_argument('-o', '--outputs', type=str, nargs="+", required=True, + help="names of output datasets, leading with ~ to prepend the name of input dataset") +parser.add_argument("-v", "--views", type=str, nargs="+", required=True, + help="views of output datasets, could be -1, a positive number or a colon splited slice") +parser.add_argument("--random", action="store_true") parser.add_argument('dataset', type=str) +parser.usage = """ +Split a dataset into one or more datasets. + +Examples: + > python split.py path_to_dataset.json -o train test -v 20 -1 + This will create two datasets "train" and "test" in the folder where input dataset locates, + with the first 20 views in "train" and other views in "test". + + > python split.py path_to_dataset.json -o ~_train ~_test -v -1 ::8 + This will create two datasets "train" and "test" in the folder where input dataset locates, + with every 8 views in "test" and other views in "train". +""" args = parser.parse_args() -input = get_dataset_desc_path(args.dataset) +input = DataDesc.get_json_path(args.dataset) outputs = [ - get_dataset_desc_path(input.with_name(f"{input.stem}_{appendix}")) - for appendix in args.output + DataDesc.get_json_path(input.with_name( + f"{input.stem}{appendix[1:]}" if appendix.startswith("~") else appendix)) + for appendix in args.outputs ] with open(input, 'r') as fp: input_desc: dict = json.load(fp) -n_views = len(input_desc['view_centers']) +n_views = len(input_desc['centers']) assert(len(args.views) == len(outputs)) -sum_views = sum(args.views) -for i in range(len(args.views)): - if args.views[i] == -1: - args.views[i] = n_views - sum_views - 1 - sum_views = n_views - break -assert(sum_views <= n_views) -for i in range(len(args.views)): - assert(args.views[i] > 0) +indices = torch.arange(n_views) +indices_assigned = torch.zeros(n_views, dtype=torch.bool) +output_dataset_indices: list[torch.Tensor] = [None] * len(outputs) +output_dataset_views = {} +for i, output_views in enumerate(args.views): + arr = output_views.split(":") + if len(arr) > 1: + view_slice = slice(*[int(value) if value != "" else None for value in arr]) + output_dataset_indices[i] = indices[view_slice] + indices_assigned[view_slice] = True + else: + output_dataset_views[i] = int(arr[0]) +indices_remain = indices[indices_assigned.logical_not()] +n_views_remain = len(indices_remain) + +output_dataset_views = { + key: value + for key, value in zip(output_dataset_views, + calculate_autosize(n_views_remain, *output_dataset_views.values())[0]) +} + +if args.random: + indices_remain = indices_remain[torch.randperm(n_views_remain)] offset = 0 +for key, value in output_dataset_views.items(): + output_dataset_indices[key] = indices_remain[offset:offset + value] + offset += value + +in_views = torch.tensor(input_desc["views"]) if "views" in input_desc else torch.arange(n_views) +in_centers = torch.tensor(input_desc["centers"]) +in_rots = torch.tensor(input_desc["rots"]) if "rots" in input_desc else None + for i in range(len(outputs)): - n = args.views[i] - end = offset + n + sub_indices = output_dataset_indices[i].sort()[0] output_desc = input_desc.copy() - output_desc['samples'] = args.views[i] - if 'views' in output_desc: - output_desc['views'] = output_desc['views'][offset:end] - else: - output_desc['views'] = list(range(offset, end)) - output_desc['view_centers'] = output_desc['view_centers'][offset:end] - if 'view_rots' in output_desc: - output_desc['view_rots'] = output_desc['view_rots'][offset:end] + output_desc['samples'] = [len(sub_indices)] + output_desc['views'] = in_views[sub_indices].tolist() + output_desc['centers'] = in_centers[sub_indices].tolist() + if in_rots is not None: + output_desc['rots'] = in_rots[sub_indices].tolist() with open(outputs[i], 'w') as fp: json.dump(output_desc, fp, indent=4) # Create symbol links of images out_dir = outputs[i].with_suffix('') + out_dir.mkdir(exist_ok=True) - for k in range(n): - os.symlink(Path("..") / input.stem / (output_desc['view_file_pattern'] % output_desc['views'][k]), - out_dir / (input_desc['view_file_pattern'] % output_desc['views'][k])) - offset += args.views[i] + for k in range(len(sub_indices)): + os.symlink(Path("..") / input.stem / (output_desc['color_file'] % output_desc['views'][k]), + out_dir / (input_desc['color_file'] % output_desc['views'][k])) diff --git a/tools/data/split360.py b/tools/data/split360.py new file mode 100644 index 0000000..bfb87d1 --- /dev/null +++ b/tools/data/split360.py @@ -0,0 +1,73 @@ +import json +import sys +import os +import argparse +import numpy as np +import shutil +from typing import List +from pathlib import Path + +sys.path.append(os.path.abspath(sys.path[0] + '/../../')) + +from data import DataDesc +from utils.misc import calculate_autosize + +def run(dataset: str, outputs: list[str], views: list[int], random: bool = False): + if len(views) != len(outputs): + raise ValueError("") + input = DataDesc.get_json_path(dataset) + outputs = [ + DataDesc.get_json_path(input.with_name(f"{input.stem}_{appendix}")) + for appendix in outputs + ] + + with open(input, 'r') as fp: + input_desc: dict = json.load(fp) + n_views = len(input_desc['view_centers']) // 6 + + assert(len(views) == len(outputs)) + views, sum_views = calculate_autosize(n_views, *views) + + if random: + indices = np.random.permutation(n_views) + else: + indices = np.arange(n_views) + in_views = np.array(input_desc["views"]) if "views" in input_desc else np.arange(n_views) + in_centers = np.array(input_desc["view_centers"]) + in_rots = np.array(input_desc["view_rots"]) if "view_rots" in input_desc else None + + offset = 0 + for i in range(len(outputs)): + n = views[i] + end = offset + n + sub_indices = np.sort(indices[offset:end]) + sub_indices = np.concatenate([sub_indices + j * n_views for j in range(6)], axis=0) + output_desc = input_desc.copy() + output_desc['samples'] = [views[i] * 6] + output_desc['views'] = in_views[sub_indices].tolist() + output_desc['view_centers'] = in_centers[sub_indices].tolist() + if in_rots is not None: + output_desc['view_rots'] = in_rots[sub_indices].tolist() + with open(outputs[i], 'w') as fp: + json.dump(output_desc, fp, indent=4) + + # Create symbol links of images + out_dir: Path = outputs[i].with_suffix('') + + if out_dir.exists(): + shutil.rmtree(out_dir) + out_dir.mkdir() + for view in output_desc['views']: + filename = output_desc['color_file'] % view + os.symlink(Path("..") / input.stem / filename, out_dir / filename) + offset += views[i] + + +if __name__ == '__main__': + parser = argparse.ArgumentParser() + parser.add_argument('-o', '--outputs', type=str, nargs="+", required=True) + parser.add_argument("-v", "--views", type=int, nargs="+", required=True) + parser.add_argument("--random", action="store_true") + parser.add_argument('dataset', type=str) + args = parser.parse_args() + run(args.dataset, args.outputs, args.views, args.random) diff --git a/tools/data/video2images.py b/tools/data/video2images.py new file mode 100644 index 0000000..3645b9e --- /dev/null +++ b/tools/data/video2images.py @@ -0,0 +1,35 @@ +import sys +import os +import argparse +from pathlib import Path + +sys.path.append(os.path.abspath(sys.path[0] + '/../../')) + +parser = argparse.ArgumentParser() +parser.add_argument('-s', '--start', type=int) +parser.add_argument('-t', '--duration', type=int) +parser.add_argument('--fps', type=str) +parser.add_argument('--subset', type=str) +parser.add_argument('datadir', type=str) +args = parser.parse_args() + +os.chdir(args.datadir) + +if args.subset is not None: + video_dir = Path(f"videos/{args.subset}") +else: + video_dir = Path(f"video") +for video_path in video_dir.glob("*.*"): + # Extract frames from video + image_dir = "images" if args.subset is None else f"images/{args.subset}" + os.makedirs(f"{image_dir}/{video_path.stem}", exist_ok=True) + extra_args = [] + if args.start is not None: + extra_args.append(f"-ss {args.start}") + if args.duration is not None: + extra_args.append(f"-t {args.duration}") + if args.fps is not None: + extra_args.append(f"-vf fps={args.fps}") + extra_args = ' '.join(extra_args) + os.system(f"ffmpeg -i {video_path} {extra_args} -f image2 -q:v 2 " + f"{image_dir}/{video_path.stem}/image%03d.png") \ No newline at end of file diff --git a/debug/voxel_sampler_export3d.py b/tools/debug/voxel_sampler_export3d.py similarity index 100% rename from debug/voxel_sampler_export3d.py rename to tools/debug/voxel_sampler_export3d.py diff --git a/tools/dump_checkpoint.py b/tools/dump_checkpoint.py new file mode 100644 index 0000000..d3146db --- /dev/null +++ b/tools/dump_checkpoint.py @@ -0,0 +1,24 @@ +import torch +import argparse +from operator import itemgetter + +parser = argparse.ArgumentParser() +parser.add_argument("ckpt_path", type=str) +cli_args = parser.parse_args() + +args, states = itemgetter("args", "states")(torch.load(cli_args.ckpt_path)) + +print(f"Model: {args['model']} >>>>") +for key, value in args["model_args"].items(): + print(f"{key}: {value}") +print("\n") + +if args["trainer"]: + print(f"Trainer: {args['trainer']} >>>>") + for key, value in args["trainer_args"].items(): + print(f"{key}={value}") + print("\n") + +print("Model states >>>>") +for key, value in states["model"].items(): + print(f"{key}: Tensor{list(value.shape)}") diff --git a/tools/export_msl.py b/tools/export_msl.py index e006e56..14daeb7 100644 --- a/tools/export_msl.py +++ b/tools/export_msl.py @@ -49,7 +49,7 @@ def load_net(path): def export_net(net: torch.nn.Module, name: str, - input: Mapping[str, List[int]], output_names: List[str]): + input: Mapping[str, list[int]], output_names: list[str]): outpath = os.path.join(opt.outdir, config.to_id(), name + ".onnx") input_tensors = tuple([ torch.empty(size, device=device.default()) diff --git a/tools/export_nmsl.py b/tools/export_nmsl.py index 1c72a77..40b1bd6 100644 --- a/tools/export_nmsl.py +++ b/tools/export_nmsl.py @@ -49,7 +49,7 @@ def load_net(path): def export_net(net: torch.nn.Module, name: str, - input: Mapping[str, List[int]], output_names: List[str]): + input: Mapping[str, list[int]], output_names: list[str]): outpath = os.path.join(opt.outdir, config.to_id(), name + ".onnx") input_tensors = tuple([ torch.empty(size, device=device.default()) diff --git a/tools/export_onnx.py b/tools/export_onnx.py index f8a247c..fcc5798 100644 --- a/tools/export_onnx.py +++ b/tools/export_onnx.py @@ -1,72 +1,29 @@ import sys -import os import argparse import torch import torch.optim -from torch import onnx +from pathlib import Path -sys.path.append(os.path.abspath(sys.path[0] + '/../')) +sys.path.append(str(Path(__file__).absolute().parent.parent)) + +from utils import netio +import model parser = argparse.ArgumentParser() -parser.add_argument('--device', type=int, default=0, - help='Which CUDA device to use.') parser.add_argument('--batch-size', type=str, help='Resolution') -parser.add_argument('--outdir', type=str, default='./', +parser.add_argument('--outdir', type=str, default='onnx', help='Output directory') parser.add_argument('model', type=str, help='Path of model to export') opt = parser.parse_args() -# Select device -torch.cuda.set_device(opt.device) -print("Set CUDA:%d as current device." % torch.cuda.current_device()) - -from configs.spherical_view_syn import SphericalViewSynConfig -from utils import device -from utils import netio -from utils import misc - -dir_path, model_file = os.path.split(opt.model) -batch_size = eval(opt.batch_size) -os.chdir(dir_path) - -config = SphericalViewSynConfig() - -def load_net(path): - name = os.path.splitext(os.path.basename(path))[0] - config.from_id(name) - config.sa['spherical'] = True - config.sa['perturb_sample'] = False - config.sa['n_samples'] = 4 - config.print() - net = config.create_net().to(device.default()) - netio.load(path, net) - return net, name - - -if __name__ == "__main__": - with torch.no_grad(): - # Load model - net, name = load_net(model_file) - # Input to the model - rays_o = torch.empty(batch_size, 3, device=device.default()) - rays_d = torch.empty(batch_size, 3, device=device.default()) +with torch.inference_mode(): + states, model_path = netio.load_checkpoint(opt.model) + batch_size = opt.batch_size and eval(opt.batch_size) + out_dir = model_path.parent / opt.outdir - os.makedirs(opt.outdir, exist_ok=True) + model.deserialize(states).eval().export_onnx(out_dir, batch_size) - # Export the model - outpath = os.path.join(opt.outdir, config.to_id() + ".onnx") - onnx.export( - net, # model being run - (rays_o, rays_d), # model input (or a tuple for multiple inputs) - outpath, - export_params=True, # store the trained parameter weights inside the model file - verbose=True, - opset_version=9, # the ONNX version to export the model to - do_constant_folding=True, # whether to execute constant folding - input_names=['Rays_o', 'Rays_d'], # the model's input names - output_names=['Colors'] # the model's output names - ) - print ('Model exported to ' + outpath) + print(f'Model exported to {out_dir}') diff --git a/tools/export_script_model.py b/tools/export_script_model.py new file mode 100644 index 0000000..6ce7c94 --- /dev/null +++ b/tools/export_script_model.py @@ -0,0 +1,39 @@ +from pathlib import Path +import sys +import torch +import torch.optim + +sys.path.append(str(Path(__file__).absolute().parent.parent)) + +import model + +torch.set_grad_enabled(False) + +m = model.load( + "/home/dengnc/dvs/data/classroom/_nets/train_hr_pano_t0.8/_hr_snerf/checkpoint_50.tar").eval().to("cuda") +print(m.cores[0]) +inputs = ( + torch.rand(10, 63, device="cuda"), + torch.rand(10, 24, device="cuda") +) +def fn(*args, **kwargs): + return m.cores[0].infer(*args, **kwargs) +sm = torch.jit.trace(fn, inputs) +torch.nn.Module.__call__ +print(sm.infer(torch.rand(5, 63, device="cuda"), torch.rand(5, 24, device="cuda"))) +sm.save("test.pt") + +torch.onnx.export(sm.infer, # model being run + inputs, # model input (or a tuple for multiple inputs) + "core_0.onnx", # where to save the model + export_params=True, # store the trained parameter weights inside the model file + opset_version=10, # the ONNX version to export the model to + do_constant_folding=True, # whether to execute constant folding for optimization + input_names=["x", "d"], # the model's input names + output_names=["densities", "colors"], # the model's output names + dynamic_axes={ + "x": [0], + "d": [0], + "densities": [0], + "colors": [0] + }) # variable length axes diff --git a/tools/export_snerf_fast.py b/tools/export_snerf_fast.py index a2d036c..72879ab 100644 --- a/tools/export_snerf_fast.py +++ b/tools/export_snerf_fast.py @@ -61,8 +61,8 @@ def load_net(): return net -def export_net(net: torch.nn.Module, path: str, input: Mapping[str, List[int]], - output_names: List[str]): +def export_net(net: torch.nn.Module, path: str, input: Mapping[str, list[int]], + output_names: list[str]): input_tensors = tuple([ torch.empty(size, device=device.default()) for size in input.values() diff --git a/tools/gen_video.py b/tools/gen_video.py index 2c2e73a..ccac8f4 100644 --- a/tools/gen_video.py +++ b/tools/gen_video.py @@ -1,66 +1,54 @@ import json import sys import os +import csv import argparse -import torch import shutil +import torch import torch.nn as nn import torch.nn.functional as nn_f +from tqdm import trange sys.path.append(os.path.abspath(sys.path[0] + '/../')) parser = argparse.ArgumentParser() -parser.add_argument('-s', '--stereo', action='store_true') -parser.add_argument('-R', '--replace', action='store_true') -parser.add_argument('--noCE', action='store_true') +parser.add_argument('-s', '--stereo', action='store_true', + help="Render stereo video") +parser.add_argument('-d', '--disparity', type=float, default=0.06, + help="The stereo disparity") +parser.add_argument('-R', '--replace', action='store_true', + help="Replace the existed frames in the intermediate output directory") +parser.add_argument('--noCE', action='store_true', + help="Disable constrast enhancement") parser.add_argument('-i', '--input', type=str) -parser.add_argument('-r', '--range', type=str) -parser.add_argument('-f', '--fps', type=int) -parser.add_argument('--device', type=int, default=0, - help='Which CUDA device to use.') -parser.add_argument('scene', type=str) -parser.add_argument('view_file', type=str) +parser.add_argument('-r', '--range', type=str, + help="The range of frames to render, specified as format: start,end") +parser.add_argument('-f', '--fps', type=int, + help="The FPS of output video. if not specified, a sequence of images will be saved instead") +parser.add_argument('-m', '--model', type=str, + help="The directory containing fovea* and periph* model file") +parser.add_argument('view_file', type=str, + help="The path to .csv or .json file which contains a sequence of poses and gazes") opt = parser.parse_args() -# Select device -torch.cuda.set_device(opt.device) -print("Set CUDA:%d as current device." % torch.cuda.current_device()) -torch.autograd.set_grad_enabled(False) -from configs.spherical_view_syn import SphericalViewSynConfig -from utils import netio -from utils import misc -from utils import img -from utils import device +from utils import netio, img, device from utils.view import * -from utils import sphere +from utils.types import * from components.fnr import FoveatedNeuralRenderer -from utils.progress_bar import progress_bar - - -def load_net(path): - config = SphericalViewSynConfig() - config.from_id(path[:-4]) - config.sa['perturb_sample'] = False - # config.print() - net = config.create_net().to(device.default()) - netio.load(path, net) - return net +from model import Model -def find_file(prefix): - for path in os.listdir(): - if path.startswith(prefix): - return path - return None +def load_model(path: Path) -> Model: + checkpoint, _ = netio.load_checkpoint(path) + checkpoint["model"][1]["sampler"]["perturb"] = False + model = Model.create(*checkpoint["model"]) + model.load_state_dict(checkpoint["states"]["model"]) + model.to(device.default()).eval() + return model -def clamp_gaze(gaze): - return gaze - scoord = sphere.cartesian2spherical(gaze) - - -def load_csv(data_desc_file) -> Tuple[Trans, torch.Tensor]: +def load_csv(data_desc_file: Path) -> tuple[Trans, torch.Tensor]: def to_tensor(line_content): return torch.tensor([float(str) for str in line_content.split(',')]) @@ -84,9 +72,9 @@ def load_csv(data_desc_file) -> Tuple[Trans, torch.Tensor]: if lines[i + 1].startswith('0,0,0') or lines[i + 2].startswith('0,0,0'): continue j = i + 1 - gaze_dirs[view_idx, 0] = clamp_gaze(to_tensor(lines[j])) + gaze_dirs[view_idx, 0] = to_tensor(lines[j]) j += 1 - gaze_dirs[view_idx, 1] = clamp_gaze(to_tensor(lines[j])) + gaze_dirs[view_idx, 1] = to_tensor(lines[j]) j += 1 if not old_fmt: gazes[view_idx, 0] = to_tensor(lines[j]) @@ -113,11 +101,16 @@ def load_csv(data_desc_file) -> Tuple[Trans, torch.Tensor]: return Trans(view_t, view_mats[:, 0, :3, :3]), gazes -def load_json(data_desc_file) -> Tuple[Trans, torch.Tensor]: + +def load_json(data_desc_file: Path) -> tuple[Trans, torch.Tensor]: with open(data_desc_file, 'r', encoding='utf-8') as file: data = json.load(file) view_t = torch.tensor(data['view_centers']) view_r = torch.tensor(data['view_rots']).view(-1, 3, 3) + if data.get("gl_coord"): + view_t[:, 2] *= -1 + view_r[:, 2] *= -1 + view_r[..., 2] *= -1 if data.get('gazes'): if len(data['gazes'][0]) == 2: gazes = torch.tensor(data['gazes']).view(-1, 1, 2).expand(-1, 2, -1) @@ -127,68 +120,61 @@ def load_json(data_desc_file) -> Tuple[Trans, torch.Tensor]: gazes = torch.zeros(view_t.size(0), 2, 2) return Trans(view_t, view_r), gazes -def load_views(data_desc_file: str) -> Tuple[Trans, torch.Tensor]: - if data_desc_file.endswith('.csv'): - return load_csv(data_desc_file) - return load_json(data_desc_file) - -rot_range = { - 'classroom': [120, 80], - 'barbershop': [360, 80], - 'lobby': [360, 80], - 'stones': [360, 80] -} -trans_range = { - 'classroom': 0.6, - 'barbershop': 0.3, - 'lobby': 1.0, - 'stones': 1.0 -} -fov_list = [20, 45, 110] -res_list = [(256, 256), (256, 256), (400, 360)] + +def load_views_and_gazes(data_desc_file: Path) -> tuple[Trans, torch.Tensor]: + if data_desc_file.suffix == '.csv': + views, gazes = load_csv(data_desc_file) + else: + views, gazes = load_json(data_desc_file) + gazes[:, :, 1] = (gazes[:, :1, 1] + gazes[:, 1:, 1]) * 0.5 + return views, gazes + + +torch.set_grad_enabled(False) +view_file = Path(opt.view_file) +stereo_disparity = opt.disparity res_full = (1600, 1440) -stereo_disparity = 0.06 -cwd = os.getcwd() -os.chdir(f"{sys.path[0]}/../data/__new/{opt.scene}_all") -fovea_net = load_net(find_file('fovea')) -periph_net = load_net(find_file('periph')) -renderer = FoveatedNeuralRenderer(fov_list, res_list, - nn.ModuleList([fovea_net, periph_net, periph_net]), - res_full, device=device.default()) -os.chdir(cwd) +if opt.model: + model_dir = Path(opt.model) + fov_list = [20.0, 45.0, 110.0] + res_list = [(256, 256), (256, 256), (256, 230)] + fovea_net = load_model(next(model_dir.glob("fovea*.tar"))) + periph_net = load_model(next(model_dir.glob("periph*.tar"))) + renderer = FoveatedNeuralRenderer(fov_list, res_list, + nn.ModuleList([fovea_net, periph_net, periph_net]), + res_full, device=device.default()) +else: + renderer = None # Load Dataset -views, gazes = load_views(opt.view_file) +views, gazes = load_views_and_gazes(Path(opt.view_file)) if opt.range: opt.range = [int(val) for val in opt.range.split(",")] if len(opt.range) == 1: opt.range = [0, opt.range[0]] - views = views.get(range(opt.range[0], opt.range[1])) + views = views[opt.range[0]:opt.range[1]] gazes = gazes[opt.range[0]:opt.range[1]] views = views.to(device.default()) -n_views = views.size()[0] +n_views = views.shape[0] print('Dataset loaded. Views:', n_views) - -videodir = os.path.dirname(os.path.abspath(opt.view_file)) -tempdir = '/dev/shm/dvs_tmp/video' -videoname = f"{os.path.splitext(os.path.split(opt.view_file)[-1])[0]}_{'stereo' if opt.stereo else 'mono'}" -gazeout = f"{videodir}/{videoname}_gaze.csv" -if opt.noCE: - videoname += "_noCE" +videodir = view_file.absolute().parent +tempdir = Path('/dev/shm/dvs_tmp/video') +if opt.input: + videoname = Path(opt.input).parent.stem +else: + videoname = f"{view_file.stem}_{('stereo' if opt.stereo else 'mono')}" + if opt.noCE: + videoname += "_noCE" +gazeout = videodir / f"{videoname}_gaze.csv" if opt.fps: - if opt.input: - videoname = os.path.split(opt.input)[0] inferout = f"{videodir}/{opt.input}" if opt.input else f"{tempdir}/{videoname}/%04d.bmp" hintout = f"{tempdir}/{videoname}_hint/%04d.bmp" else: inferout = f"{videodir}/{opt.input}" if opt.input else f"{videodir}/{videoname}/%04d.png" hintout = f"{videodir}/{videoname}_hint/%04d.png" -if opt.input: - scale = img.load(inferout % 0).shape[-1] / res_full[1] -else: - scale = 1 +scale = img.load(inferout % 0).shape[-1] / res_full[1] if opt.input else 1 hint = img.load(f"{sys.path[0]}/fovea_hint.png", with_alpha=True).to(device=device.default()) hint = nn_f.interpolate(hint, mode='bilinear', scale_factor=scale, align_corners=False) @@ -233,66 +219,44 @@ if not opt.replace: hint_offset = max(0, hint_offset - 1) infer_offset = n_views if opt.input else max(0, infer_offset - 1) -if opt.stereo: - gazes_out = torch.empty(n_views, 4) - for view_idx in range(n_views): - shift = gazes[view_idx, 0, 0] - gazes[view_idx, 1, 0] - # print(shift.item()) - gazel = ((gazes[view_idx, 1, 0] + 0.4 * shift).item(), - 0.5 * (gazes[view_idx, 0, 1] + gazes[view_idx, 1, 1]).item()) - gazer = ((gazes[view_idx, 0, 0] - 0.4 * shift).item(), gazel[1]) - # gazel = ((gazes[view_idx, 0, 0]).item(), - # 0.5 * (gazes[view_idx, 0, 1] + gazes[view_idx, 1, 1]).item()) - #gazer = ((gazes[view_idx, 1, 0]).item(), gazel[1]) - gazes_out[view_idx] = torch.tensor([gazel[0], gazel[1], gazer[0], gazer[1]]) - if view_idx < hint_offset: - continue - if view_idx < infer_offset: - frame = img.load(inferout % view_idx).to(device=device.default()) - else: - view_trans = views.get(view_idx) - left_images, right_images = renderer(view_trans, gazel, gazer, - stereo_disparity=stereo_disparity, - mono_periph_mode=3, ret_raw=True) - frame = torch.cat([ - left_images['blended_raw'] if opt.noCE else left_images['blended'], - right_images['blended_raw'] if opt.noCE else right_images['blended']], -1) - frame = img.translate(frame, (0.5, 0.5)) - img.save(frame, inferout % view_idx) - add_hint(frame, gazel, gazer) - img.save(frame, hintout % view_idx) - progress_bar(view_idx, n_views, 'Frame %4d inferred' % view_idx) -else: - gazes_out = torch.empty(n_views, 2) - for view_idx in range(n_views): - gaze = 0.5 * (gazes[view_idx, 0] + gazes[view_idx, 1]) - gaze = (gaze[0].item(), gaze[1].item()) - gazes_out[view_idx] = torch.tensor([gaze[0], gaze[1]]) - if view_idx < hint_offset: - continue - if view_idx < infer_offset: - frame = img.load(inferout % view_idx).to(device=device.default()) +for view_idx in trange(n_views): + if view_idx < hint_offset: + continue + gaze = gazes[view_idx] + if not opt.stereo: + gaze = gaze.sum(0, True) * 0.5 + gaze = gaze.tolist() + if view_idx < infer_offset: + frame = img.load(inferout % view_idx).to(device=device.default()) + else: + if renderer is None: + raise Exception + key = 'blended_raw' if opt.noCE else 'blended' + view_trans = views[view_idx] + if opt.stereo: + left_images, right_images = renderer(view_trans, *gaze, + stereo_disparity=stereo_disparity, + mono_periph_mode=3, ret_raw=True) + frame = torch.cat([left_images[key], right_images[key]], -1) else: - view_trans = views.get(view_idx) - frame = renderer(view_trans, gaze, - ret_raw=True)['blended_raw' if opt.noCE else 'blended'] - frame = img.translate(frame, (0.5, 0.5)) - img.save(frame, inferout % view_idx) - add_hint(frame, gaze) - img.save(frame, hintout % view_idx) - progress_bar(view_idx, n_views, 'Frame %4d inferred' % view_idx) + frame = renderer(view_trans, *gaze, ret_raw=True)[key] + img.save(frame, inferout % view_idx) + add_hint(frame, *gaze) + img.save(frame, hintout % view_idx) +gazes_out = gazes.reshape(-1, 4) if opt.stereo else gazes.sum(1) * 0.5 with open(gazeout, 'w') as fp: - for i in range(n_views): - fp.write(','.join([f'{val.item()}' for val in gazes_out[i]])) - fp.write('\n') + csv_writer = csv.writer(fp) + csv_writer.writerows(gazes_out.tolist()) if opt.fps: # Generate video without hint os.system(f'ffmpeg -y -r {opt.fps:d} -i {inferout} -c:v libx264 {videodir}/{videoname}.mp4') - if not opt.input: - shutil.rmtree(os.path.dirname(inferout)) # Generate video with hint os.system(f'ffmpeg -y -r {opt.fps:d} -i {hintout} -c:v libx264 {videodir}/{videoname}_hint.mp4') + + # Clean temp images + if not opt.input: + shutil.rmtree(os.path.dirname(inferout)) shutil.rmtree(os.path.dirname(hintout)) diff --git a/tools/image_scale.py b/tools/image_scale.py index f3e8812..9f3ba82 100644 --- a/tools/image_scale.py +++ b/tools/image_scale.py @@ -1,20 +1,28 @@ -import sys import os -sys.path.append(os.path.abspath(sys.path[0] + '/../')) - import argparse from PIL import Image -from utils import misc +from tqdm import tqdm +from pathlib import Path -def batch_scale(src, target, size): - os.makedirs(target, exist_ok=True) - for file_name in os.listdir(src): - postfix = os.path.splitext(file_name)[1] - if postfix == '.jpg' or postfix == '.png': - im = Image.open(os.path.join(src, file_name)) - im = im.resize(size) - im.save(os.path.join(target, file_name)) +def run(src: Path, target: Path, root: Path, scale_factor: float = 1., width: int = -1, height: int = -1): + target.mkdir(exist_ok=True) + for file_name in tqdm(os.listdir(src), leave=False, desc=src.relative_to(root).__str__()): + if (src / file_name).is_dir(): + run(src / file_name, target / file_name, root, scale_factor, width, height) + elif not (target / file_name).exists(): + postfix = os.path.splitext(file_name)[1] + if postfix == '.jpg' or postfix == '.png': + im = Image.open(src / file_name) + if width == -1 and height == -1: + width = round(im.width * scale_factor) + height = round(im.height * scale_factor) + elif width == -1: + width = round(im.width / im.height * height) + elif height == -1: + height = round(im.height / im.width * width) + im = im.resize((width, height)) + im.save(target / file_name) if __name__ == '__main__': @@ -23,9 +31,11 @@ if __name__ == '__main__': help='Source directory.') parser.add_argument('target', type=str, help='Target directory.') - parser.add_argument('--width', type=int, + parser.add_argument('-x', '--scale-factor', type=float, default=1, + help='Target directory.') + parser.add_argument('--width', type=int, default=-1, help='Width of output images (pixel)') - parser.add_argument('--height', type=int, + parser.add_argument('--height', type=int, default=-1, help='Height of output images (pixel)') opt = parser.parse_args() - batch_scale(opt.src, opt.target, (opt.width, opt.height)) + run(Path(opt.src), Path(opt.target), Path(opt.src), opt.scale_factor, opt.width, opt.height) diff --git a/tools/process_nerf.py b/tools/process_nerf.py index a445a56..d0421e9 100644 --- a/tools/process_nerf.py +++ b/tools/process_nerf.py @@ -40,7 +40,7 @@ for subdir in ['images', 'images_4', 'images_8']: print(f"Rename {src} to {tgt}") os.rename(src, tgt) out_desc = dataset_desc.copy() - out_desc['view_file_pattern'] = f"{subdir}/view_%04d.jpg" + out_desc['color_file'] = f"{subdir}/view_%04d.jpg" k = res[0] / dataset_desc['view_res']['y'] out_desc['view_res'] = { 'x': res[1], diff --git a/train.py b/train.py index b5a8782..8b75a1e 100644 --- a/train.py +++ b/train.py @@ -1,142 +1,94 @@ -import argparse -import logging -import os -import sys -from pathlib import Path -from typing import List +from operator import itemgetter +from configargparse import ArgumentParser, SUPPRESS -import model as mdl -import train -from utils import device -from utils import netio -from data import * -from utils.misc import print_and_log +from model import Model +from train import Trainer +from utils import device, netio +from utils.types import * +from data import Dataset -RAYS_PER_BATCH = 2 ** 12 -DATA_LOADER_CHUNK_SIZE = 1e8 -root_dir = Path(__file__).absolute().parent - - -parser = argparse.ArgumentParser() -parser.add_argument('-c', '--config', type=str, - help='Net config files') -parser.add_argument('-e', '--epochs', type=int, - help='Max epochs for train') -parser.add_argument('--perf', type=int, - help='Performance measurement frames (0 for disabling performance measurement)') -parser.add_argument('--prune', type=int, nargs='+', - help='Prune voxels on every # epochs') -parser.add_argument('--split', type=int, nargs='+', - help='Split voxels on every # epochs') -parser.add_argument('--freeze', type=int, nargs='+', - help='freeze levels on epochs') -parser.add_argument('--checkpoint-interval', type=int) -parser.add_argument('--views', type=str, - help='Specify the range of views to train') -parser.add_argument('path', type=str, - help='Dataset description file') -args = parser.parse_args() - -views_to_load = range(*[int(val) for val in args.views.split('-')]) if args.views else None -argpath = Path(args.path) -# argpath: May be model path or data path -# 1) model path: continue training on the specified model -# 2) data path: train a new model using specified dataset - - -def load_dataset(data_path: Path): - print(f"Loading dataset {data_path}") - try: - dataset = DatasetFactory.load(data_path, views_to_load=views_to_load) - print(f"Dataset loaded: {dataset.root}/{dataset.name}") - os.chdir(dataset.root) - return dataset, dataset.name - except FileNotFoundError: - return load_multiscale_dataset(data_path) - - -def load_multiscale_dataset(data_path: Path): - if not data_path.is_dir(): - raise ValueError( - f"Path {data_path} is not a directory") - dataset: List[Union[PanoDataset, ViewDataset]] = [] - for sub_data_desc_path in data_path.glob("*.json"): - sub_dataset = DatasetFactory.load(sub_data_desc_path, views_to_load=views_to_load) - print(f"Sub-dataset loaded: {sub_dataset.root}/{sub_dataset.name}") - dataset.append(sub_dataset) - if len(dataset) == 0: - raise ValueError(f"Path {data_path} does not contain sub-datasets") - os.chdir(data_path.parent) - return dataset, data_path.name - - -try: - states, checkpoint_path = netio.load_checkpoint(argpath) - # Infer dataset path from model path - # The model path follows such rule: <dataset_dir>/_nets/<dataset_name>/<model_name>/checkpoint_*.tar - model_name = checkpoint_path.parts[-2] - dataset, dataset_name = load_dataset( - Path(*checkpoint_path.parts[:-4]) / checkpoint_path.parts[-3]) -except Exception: - model_name = args.config - dataset, dataset_name = load_dataset(argpath) - - # Load state 0 from specified configuration - with Path(f'{root_dir}/configs/{args.config}.json').open() as fp: - states = json.load(fp) - states['args']['bbox'] = dataset[0].bbox if isinstance(dataset, list) else dataset.bbox - states['args']['depth_range'] = dataset[0].depth_range if isinstance(dataset, list)\ - else dataset.depth_range +def load_dataset(data_path: Path, color: str, coord: str): + dataset = Dataset(data_path, color_mode=Color[color], coord_sys=coord) + print(f"Load dataset: {dataset.root}/{dataset.name}") + return dataset -if 'train' not in states: - states['train'] = {} -if args.prune is not None: - states['train']['prune_epochs'] = args.prune -if args.split is not None: - states['train']['split_epochs'] = args.split -if args.freeze is not None: - states['train']['freeze_epochs'] = args.freeze -if args.perf is not None: - states['train']['perf_frames'] = args.perf -if args.checkpoint_interval is not None: - states['train']['checkpoint_interval'] = args.checkpoint_interval -if args.epochs is not None: - states['train']['max_epochs'] = args.epochs -model = mdl.deserialize(states).to(device.default()) +initial_parser = ArgumentParser() +initial_parser.add_argument('-c', '--config', type=str, default=SUPPRESS, + help='Config name, ignored if path is a checkpoint path') +initial_parser.add_argument('--expname', type=str, default=SUPPRESS, + help='Experiment name, defaults to config name, ignored if path is a checkpoint path') +initial_parser.add_argument('path', type=str, + help='Path to dataset description file or checkpoint file') +initial_args = vars(initial_parser.parse_known_args()[0]) -# Initialize run directory -run_dir = Path(f"_nets/{dataset_name}/{model_name}") -run_dir.mkdir(parents=True, exist_ok=True) - -# Initialize logging -log_file = run_dir / "train.log" -logging.basicConfig(format='%(asctime)s[%(levelname)s] %(message)s', level=logging.INFO, - filename=log_file, filemode='a' if log_file.exists() else 'w') - - -def log_exception(exc_type, exc_value, exc_traceback): - if not issubclass(exc_type, KeyboardInterrupt): - logging.exception(exc_value, exc_info=(exc_type, exc_value, exc_traceback)) - sys.__excepthook__(exc_type, exc_value, exc_traceback) - - -sys.excepthook = log_exception - -print_and_log(f"model: {model_name} ({model.cls})") -print_and_log(f"args:") -model.print_config() -print(model) - - -if __name__ == "__main__": - # 1. Initialize data loader - data_loader = get_loader(dataset, RAYS_PER_BATCH, chunk_max_items=DATA_LOADER_CHUNK_SIZE, - shuffle=True, enable_preload=False, color=model.color) - - # 2. Initialize model and trainer - trainer = train.get_trainer(model, run_dir, states) - - # 3. Train - trainer.train(data_loader) +root_dir = Path(__file__).absolute().parent +argpath = Path(initial_args["path"]) # May be checkpoint path or dataset path +# 1) checkpoint path: continue training a model +# 2) dataset path: train a new model using specified dataset + +ckpt_path = netio.find_checkpoint(argpath) +if ckpt_path: + # Continue training from a checkpoint + print(f"Load checkpoint {ckpt_path}") + args, states = itemgetter("args", "states")(torch.load(ckpt_path)) + # args: "model", "model_args", "trainer", "trainer_args" + ModelCls = Model.get_class(args["model"]) + TrainerCls = Trainer.get_class(args["trainer"]) + model_args = ModelCls.Args(**args["model_args"]) + trainer_args = TrainerCls.Args(**args["trainer_args"]).parse() + trainset = load_dataset(trainer_args.trainset, model_args.color, model_args.coord) + run_dir = ckpt_path.parent +else: + # Start a new train + expname = initial_args.get("expname", initial_args.get("config", "unnamed")) + if "config" in initial_args: + config_path = root_dir / "configs" / f"{initial_args['config']}.ini" + if not config_path.exists(): + raise ValueError(f"Config {initial_args['config']} is not found in " + f"{root_dir / 'configs'}.") + print(f"Load config {config_path}") + else: + config_path = None + + # First parse model class and trainer class from config file or command-line arguments + parser = ArgumentParser(default_config_files=[f"{config_path}"] if config_path else []) + parser.add_argument('--color', type=str, default="rgb", + help='The color mode') + parser.add_argument('--model', type=str, required=True, + help='The model to train') + parser.add_argument('--trainer', type=str, default="Trainer", + help='The trainer to use for training') + args = parser.parse_known_args()[0] + ModelCls = Model.get_class(args.model) + TrainerCls = Trainer.get_class(args.trainer) + trainset_path = argpath + trainset = load_dataset(trainset_path, args.color, "gl") + + # Then parse model's and trainer's args + + if trainset.depth_range: + model_args = ModelCls.Args( # Some model's args are inferred from training dataset + color=trainset.color_mode.name, + near=trainset.depth_range[0], + far=trainset.depth_range[1], + white_bg=trainset.white_bg, + coord=trainset.coord_sys + ) + else: + model_args = ModelCls.Args(white_bg=trainset.white_bg) + model_args.parse(config_path) + trainer_args = TrainerCls.Args(trainset=f"{trainset_path}").parse(config_path) + states = None + + run_dir = trainset.root / "_nets" / trainset.name / expname + run_dir.mkdir(parents=True, exist_ok=True) + +m = ModelCls(model_args).to(device.default()) +trainer = TrainerCls(m, run_dir, trainer_args) +if states: + trainer.load_state_dict(states) + +# Start train +trainer.train(trainset) diff --git a/train/__init__.py b/train/__init__.py index 560bdd2..2597ecc 100644 --- a/train/__init__.py +++ b/train/__init__.py @@ -1,27 +1,15 @@ -import importlib -import os -from pathlib import Path +import sys +from inspect import isclass -from model.base import BaseModel -from .train import train_classes, Train +from .trainer import Trainer, trainer_classes +from .train_with_space import TrainWithSpace +#from .train_multi_scale import TrainMultiScale +__all__ = ["Trainer", "TrainWithSpace"] -# Automatically import any python files this directory -package_dir = os.path.dirname(__file__) -package = os.path.basename(package_dir) -for file in os.listdir(package_dir): - path = os.path.join(package_dir, file) - if file.startswith('_') or file.startswith('.'): - continue - if file.endswith('.py') or os.path.isdir(path): - model_name = file[:-3] if file.endswith('.py') else file - importlib.import_module(f'{package}.{model_name}') - -def get_class(class_name: str) -> type: - return train_classes[class_name] - - -def get_trainer(model: BaseModel, run_dir: Path, states: dict) -> Train: - train_class = get_class(model.TrainerClass) - return train_class(model, run_dir, states) +# Register all trainer classes +for item in __all__: + var = getattr(sys.modules[__name__], item) + if isclass(var) and issubclass(var, Trainer): + trainer_classes[item] = var \ No newline at end of file diff --git a/train/train.py b/train/train.py deleted file mode 100644 index 6c001f3..0000000 --- a/train/train.py +++ /dev/null @@ -1,271 +0,0 @@ -import csv -import json -import logging -import torch -import torch.nn.functional as nn_f -from typing import Any, Dict, Union -from pathlib import Path - -import loss -from utils import netio, math -from utils.misc import format_time, print_and_log -from utils.progress_bar import progress_bar -from utils.perf import Perf, enable_perf, perf, get_perf_result -from utils.env import set_env -from utils.type import InputData, ReturnData -from data.loader import DataLoader -from model import serialize -from model.base import BaseModel - - -train_classes = {} - - -class BaseTrainMeta(type): - - def __new__(cls, name, bases, attrs): - new_cls = type.__new__(cls, name, bases, attrs) - train_classes[name] = new_cls - return new_cls - - -class Train(object, metaclass=BaseTrainMeta): - - @property - def perf_mode(self): - return self.perf_frames > 0 - - def _arg(self, name: str, default=None): - return self.states.get("train", {}).get(name, default) - - def __init__(self, model: BaseModel, run_dir: Path, states: dict) -> None: - super().__init__() - print_and_log( - f"Create trainer {__class__} with args: {json.dumps(states.get('train', {}))}") - self.model = model - self.run_dir = run_dir - self.states = states - self.epoch = states.get("epoch", 0) - self.iters = states.get("iters", 0) - self.max_epochs = self._arg("max_epochs", 50) - self.checkpoint_interval = self._arg("checkpoint_interval", 10) - self.perf_frames = self._arg("perf_frames", 0) - - self.model.train() - - self.reset_optimizer() - if 'opti' in states: - self.optimizer.load_state_dict(states['opti']) - - # For performance measurement - if self.perf_mode: - enable_perf() - - self.env = { - "trainer": self - } - - def reset_optimizer(self): - self.optimizer = torch.optim.Adam(self.model.parameters(), lr=5e-4) - - def train(self, data_loader: DataLoader): - set_env(self.env) - self.data_loader = data_loader - self.iters_per_epoch = self.perf_frames or len(data_loader) - - print(f"Begin training... Max epochs: {self.max_epochs}") - while self.epoch < self.max_epochs: - self._train_epoch() - self._save_checkpoint() - print("Train finished") - - def _save_checkpoint(self): - (self.run_dir / '_misc').mkdir(exist_ok=True) - # Clean checkpoints - for i in range(1, self.epoch): - if i % self.checkpoint_interval != 0: - checkpoint_path = self.run_dir / f'checkpoint_{i}.tar' - if checkpoint_path.exists(): - checkpoint_path.rename(self.run_dir / f'_misc/checkpoint_{i}.tar') - - # Save checkpoint - self.states.update({ - **serialize(self.model), - "epoch": self.epoch, - "iters": self.iters, - "opti": self.optimizer.state_dict() - }) - netio.save_checkpoint(self.states, self.run_dir, self.epoch) - - def _show_progress(self, iters_in_epoch: int, avg_loss: float = 0, recent_loss: float = 0): - iters_per_epoch = self.perf_frames or len(self.data_loader) - progress_bar(iters_in_epoch, iters_per_epoch, - f"Loss: {recent_loss:.2e} ({avg_loss:.2e})", - f"Epoch {self.epoch + 1:<3d}", - f" {self.run_dir.absolute()}") - - def _show_perf(self): - s = "Performance Report ==>\n" - res = get_perf_result() - if res is None: - s += "No available data.\n" - else: - for key, val in res.items(): - path_segs = key.split("/") - s += " " * (len(path_segs) - 1) + f"{path_segs[-1]}: {val:.1f}ms\n" - print(s) - - def _forward(self, data: InputData) -> ReturnData: - return self.model(data, 'color', 'energies', 'speculars') - - @perf - def _train_iter(self, data: Dict[str, Union[torch.Tensor, Any]]) -> float: - def filtered_data(data, filter): - if filter is not None: - return data[filter] - return data - - with perf("Forward"): - if isinstance(data, list): - out_colors = [] - out_energies = [] - out_speculars = [] - gt_colors = [] - for datum in data: - partial_out = self._forward(datum) - out_colors.append(partial_out['color']) - out_energies.append(partial_out['energies'].flatten()) - if 'speculars' in partial_out: - out_speculars.append(partial_out['speculars'].flatten()) - gt_colors.append(filtered_data(datum["color"], partial_out.get("rays_filter"))) - out_colors = torch.cat(out_colors) - out_energies = torch.cat(out_energies) - out_speculars = torch.cat(out_speculars) if len(out_speculars) > 0 else None - gt_colors = torch.cat(gt_colors) - else: - out = self._forward(data) - out_colors = out['color'] - out_energies = out['energies'] - out_speculars = out.get('speculars') - gt_colors = filtered_data(data['color'], out.get("rays_filter")) - - with perf("Compute loss"): - loss_val = loss.mse_loss(out_colors, gt_colors) - if self._arg("density_regularization_weight"): - loss_val += loss.cauchy_loss(out_energies, s=self._arg("density_regularization_scale"))\ - * self._arg("density_regularization_weight") - if self._arg("specular_regularization_weight") and out_speculars is not None: - loss_val += loss.cauchy_loss(out_speculars, s=self._arg("specular_regularization_scale")) \ - * self._arg("specular_regularization_weight") - - #return loss_val.item() # TODO remove this line - - with perf("Backward"): - self.optimizer.zero_grad(True) - loss_val.backward() - - with perf("Update"): - self.optimizer.step() - - return loss_val.item() - - def _train_epoch(self): - iters_in_epoch = 0 - recent_loss = [] - tot_loss = 0 - - train_epoch_node = Perf.Node("Train Epoch") - - self._show_progress(iters_in_epoch) - for data in self.data_loader: - loss_val = self._train_iter(data) - self.iters += 1 - iters_in_epoch += 1 - - recent_loss = (recent_loss + [loss_val])[-50:] - recent_avg_loss = sum(recent_loss) / len(recent_loss) - tot_loss += loss_val - avg_loss = tot_loss / iters_in_epoch - - #loss_min = min(loss_min, loss_val) - #loss_max = max(loss_max, loss_val) - #loss_avg = (loss_avg * iters_in_epoch + loss_val) / (iters_in_epoch + 1) - - self._show_progress(iters_in_epoch, avg_loss=avg_loss, recent_loss=recent_avg_loss) - - if self.perf_mode and iters_in_epoch >= self.perf_frames: - self._show_perf() - exit() - train_epoch_node.close() - torch.cuda.synchronize() - self.epoch += 1 - epoch_dur = train_epoch_node.duration() / 1000 - logging.info(f"Epoch {self.epoch} spent {format_time(epoch_dur)} " - f"(Avg. {format_time(epoch_dur / self.iters_per_epoch)}/iter). " - f"Loss is {avg_loss:.2e}") - #print(list(self.model.model(0).named_parameters())[2]) - #print(list(self.model.model(1).named_parameters())[2]) - - def _train_epoch_debug(self): # TBR - iters_in_epoch = 0 - loss_min = math.huge - loss_max = 0 - loss_avg = 0 - - self._show_progress(iters_in_epoch, loss={'val': 0, 'min': 0, 'max': 0, 'avg': 0}) - indices = [] - debug_data = [] - for idx, rays_o, rays_d, extra in self.data_loader: - out = self.model(rays_o, rays_d, extra_outputs=['layers', 'weights']) - loss_val = nn_f.mse_loss(out['color'], extra['color']).item() - - loss_min = min(loss_min, loss_val) - loss_max = max(loss_max, loss_val) - loss_avg = (loss_avg * iters_in_epoch + loss_val) / (iters_in_epoch + 1) - - self.iters += 1 - iters_in_epoch += 1 - self._show_progress(iters_in_epoch, loss={ - 'val': loss_val, - 'min': loss_min, - 'max': loss_max, - 'avg': loss_avg - }) - - indices.append(idx) - debug_data.append(torch.cat([ - extra['view_idx'][..., None], - extra['pix_idx'][..., None], - rays_d, - #out['samples'].pts[:, 215:225].reshape(idx.size(0), -1), - #out['samples'].dirs[:, :3].reshape(idx.size(0), -1), - #out['samples'].voxel_indices[:, 215:225], - out['states'].densities[:, 210:230].detach().reshape(idx.size(0), -1), - out['states'].energies[:, 210:230].detach().reshape(idx.size(0), -1) - # out['color'].detach() - ], dim=-1)) - # states: VolumnRenderer.States = out['states'] # TBR - - indices = torch.cat(indices, dim=0) - debug_data = torch.cat(debug_data, dim=0) - indices, sort = indices.sort() - debug_data = debug_data[sort] - name = "rand.csv" if self.data_loader.shuffle else "seq.csv" - with (self.run_dir / name).open("w") as fp: - csv_writer = csv.writer(fp) - csv_writer.writerows(torch.cat([indices[:20, None], debug_data[:20]], dim=-1).tolist()) - return - with (self.run_dir / 'states.csv').open("w") as fp: - csv_writer = csv.writer(fp) - for chunk_info in states.chunk_infos: - csv_writer.writerow( - [*chunk_info['range'], chunk_info['hits'], chunk_info['core_i']]) - if chunk_info['hits'] > 0: - csv_writer.writerows(torch.cat([ - chunk_info['samples'].pts, - chunk_info['samples'].dirs, - chunk_info['samples'].voxel_indices[:, None], - chunk_info['colors'], - chunk_info['energies'] - ], dim=-1).tolist()) - csv_writer.writerow([]) diff --git a/train/train_multi_scale.py b/train/train_multi_scale.py index d14fe5c..b7e78c7 100644 --- a/train/train_multi_scale.py +++ b/train/train_multi_scale.py @@ -1,25 +1,25 @@ -from typing import Union -from .train_with_space import TrainWithSpace import torch from pathlib import Path -from model.cnerf import CNeRF -from data.loader import DataLoader, MultiScaleDataLoader +from .train_with_space import TrainWithSpace +from .trainer import Trainer +from model import CNeRF +from data import RaysLoader, MultiScaleDataLoader from modules import Voxels -from utils.misc import print_and_log +from utils.logging import print_and_log class TrainMultiScale(TrainWithSpace): model: CNeRF - data_loader: Union[DataLoader, MultiScaleDataLoader] + data_loader: RaysLoader | MultiScaleDataLoader def __init__(self, model: CNeRF, run_dir: Path, states: dict) -> None: super().__init__(model, run_dir, states) self.freeze_epochs = self._arg("freeze_epochs", []) self.level_by_level = True#self._arg("level_by_level", False) - def _train_epoch(self): + def _train_epoch(self, profiler: torch.profiler.profile = None): l = self._check_epoch_matches(self.freeze_epochs, self.epoch) if l >= 0: self.model.trigger_stage(l + 1) @@ -35,7 +35,7 @@ class TrainMultiScale(TrainWithSpace): space: Voxels = self.model.model(self.model.stage).space if self._check_epoch_matches(self.prune_epochs, self.epoch + 1) >= 0: self.voxel_access = torch.zeros(space.n_voxels, dtype=torch.long, device=space.device) - super(TrainWithSpace, self)._train_epoch() + super(Trainer, self)._train_epoch(profiler) if self.voxel_access is not None: before, after = space.prune(self.voxel_access > 0) print_and_log(f"Prune by weights: {before} -> {after}") diff --git a/train/train_with_space.py b/train/train_with_space.py index 9da783e..c33b9aa 100644 --- a/train/train_with_space.py +++ b/train/train_with_space.py @@ -1,43 +1,39 @@ -from .train import Train import sys -import torch -from pathlib import Path -from typing import List +from .trainer import Trainer from modules import Voxels -from model.base import BaseModel -from data.loader import DataLoader -from utils.samples import Samples +from model import Model +from data import RaysLoader +from utils.types import * from utils.mem_profiler import MemProfiler -from utils.misc import print_and_log -from utils.type import InputData, ReturnData +from utils.logging import print_and_log -class TrainWithSpace(Train): +class TrainWithSpace(Trainer): - def __init__(self, model: BaseModel, run_dir: Path, states: dict) -> None: + def __init__(self, model: Model, run_dir: Path, states: dict) -> None: super().__init__(model, run_dir, states) self.prune_epochs = [] if self.perf_mode else self._arg("prune_epochs", []) self.split_epochs = [] if self.perf_mode else self._arg("split_epochs", []) self.voxel_access = None #MemProfiler.enable = True - def _train_epoch(self): + def _train_epoch(self, profiler: torch.profiler.profile = None): self._split() space: Voxels = self.model.space if self._check_epoch_matches(self.prune_epochs, self.epoch + 1) >= 0: self.voxel_access = torch.zeros(space.n_voxels, dtype=torch.long, device=space.device) - super()._train_epoch() + super()._train_epoch(profiler) if self.voxel_access is not None: before, after = space.prune(self.voxel_access > 0) print_and_log(f"Prune by weights: {before} -> {after}") self.voxel_access = None # self._prune() - def _forward(self, data: InputData) -> ReturnData: + def _forward(self, rays: Rays) -> ReturnData: if self.voxel_access is None: - return super()._forward(data) - out = self.model(data, 'color', 'energies', 'speculars', 'weights', "samples") + return super()._forward(rays) + out = self.model(rays, 'color', 'energies', 'speculars', 'weights', "samples") with torch.no_grad(): access_voxels = out['samples'].voxel_indices[out['weights'][..., 0] > 0.01] self.voxel_access.index_add_(0, access_voxels, torch.ones_like(access_voxels)) @@ -63,7 +59,7 @@ class TrainWithSpace(Train): except NotImplementedError: print_and_log("The space does not support pruning operation. Just skip it.") - def _check_epoch_matches(self, key_epochs: List[int], epoch: int = None): + def _check_epoch_matches(self, key_epochs: list[int], epoch: int = None): epoch = epoch if epoch is not None else self.epoch if epoch == 0 or len(key_epochs) == 0: return -1 @@ -95,7 +91,7 @@ class TrainWithSpace(Train): ], 0) # (M[, ...]) return space.prune(scores > threshold) - def _prune_voxels_by_weights(self, data_loader: DataLoader = None): + def _prune_voxels_by_weights(self, data_loader: RaysLoader = None): space: Voxels = self.model.space data_loader = data_loader or self.data_loader batch_size = data_loader.batch_size diff --git a/train/trainer.py b/train/trainer.py new file mode 100644 index 0000000..d71d024 --- /dev/null +++ b/train/trainer.py @@ -0,0 +1,294 @@ +from collections import defaultdict +from statistics import mean +from tqdm import tqdm +from tensorboardX import SummaryWriter +from torch.optim import Optimizer, Adam +from torch.optim.lr_scheduler import _LRScheduler, ExponentialLR + +from utils import netio, logging, loss, misc +from utils.args import BaseArgs +from utils.profile import Profiler, enable_profile, profile +from utils.types import * +from data import Dataset, RaysLoader +from model import Model + + +trainer_classes: dict[str, "Trainer"] = {} + + +class Trainer: + class Args(BaseArgs): + max_iters: int | None + max_epochs: int = 20 + checkpoint_interval: int | None + batch_size: int = 4096 + loss: list[str] = ["Color_L2", "CoarseColor_L2"] + lr: float = 5e-4 + lr_decay: float | None + profile_iters: int | None + trainset: str + + args: Args + states: dict[str, Any] + optimizer: Optimizer + scheduler: _LRScheduler | None + loss_defs = { + "Color_L2": { + "fn": lambda out, gt: loss.mse_loss(out["color"], gt["color"]), + "required_outputs": ["color"] + }, + "CoarseColor_L2": { + "fn": lambda out, gt: loss.mse_loss(out["coarse_color"], gt["color"]), + "required_outputs": ["coarse_color"] + }, + "Density_Reg": { + "fn": lambda out, gt: loss.cauchy_loss(out["densities"], 1e4) * 1e-4, + "required_outputs": ["densities"] + } + } + + @property + def profile_mode(self) -> bool: + return self.profile_iters is not None + + @staticmethod + def get_class(typename: str) -> Type["Trainer"] | None: + return trainer_classes.get(typename) + + def __init__(self, model: Model, run_dir: Path, args: Args = None) -> None: + self.model = model.train() + self.run_dir = run_dir + self.args = args or self.__class__.Args() + self.epoch = 0 + self.iters = 0 + + self.profile_warmup_iters = 10 + self.profile_iters = self.args.profile_iters + if self.profile_mode: # profile mode + self.max_iters = self.profile_warmup_iters + self.profile_iters + self.max_epochs = None + self.checkpoint_interval = None + elif self.args.max_iters: # iters mode + self.max_iters = self.args.max_iters + self.max_epochs = None + self.checkpoint_interval = self.args.checkpoint_interval or 10000 + else: # epochs mode + self.max_iters = None + self.max_epochs = self.args.max_epochs + self.checkpoint_interval = self.args.checkpoint_interval or 10 + + self._init_optimizer() + self._init_scheduler() + + self.required_outputs = [] + for key in self.args.loss: + self.required_outputs += self.loss_defs[key]["required_outputs"] + self.required_outputs = list(set(self.required_outputs)) + + if self.profile_mode: # Enable performance measurement in profile mode + def handle_profile_result(result: Profiler.ProfileResult): + print(result.get_report()) + exit() + enable_profile(self.profile_warmup_iters, self.profile_iters, handle_profile_result) + else: # Enable logging (Tensorboard & txt) in normal mode + tb_log_dir = self.run_dir / "_log" + tb_log_dir.mkdir(exist_ok=True) + self.tb_writer = SummaryWriter(tb_log_dir, purge_step=0) + logging.initialize(self.run_dir / "train.log") + + logging.print_and_log(f"Model arguments: {self.model.args}") + logging.print_and_log(f"Trainer arguments: {self.args}") + + # Debug: print model structure + print(model) + + def state_dict(self) -> dict[str, Any]: + return { + "model": self.model.state_dict(), + "epoch": self.epoch, + "iters": self.iters, + "optimizer": self.optimizer.state_dict(), + "scheduler": self.scheduler.state_dict() if self.scheduler else None + } + + def load_state_dict(self, state_dict: dict[str, Any]): + self.epoch = state_dict.get("epoch", self.epoch) + self.iters = state_dict.get("iters", self.iters) + if "model" in state_dict: + self.model.load_state_dict(state_dict["model"]) + if "optimizer" in state_dict: + self.optimizer.load_state_dict(state_dict["optimizer"]) + if self.scheduler and "scheduler" in state_dict: + self.scheduler.load_state_dict(state_dict["scheduler"]) + + def reset_optimizer(self): + self._init_optimizer() + if self.scheduler is not None: + scheduler_state = self.scheduler.state_dict() + self._init_scheduler() + self.scheduler.load_state_dict(scheduler_state) + + def train(self, dataset: Dataset): + self.rays_loader = RaysLoader(dataset, self.args.batch_size, shuffle=True, + device=self.model.device) + self.forward_chunk_size = self.args.batch_size + + if self.max_iters: + print(f"Begin training... Max iters: {self.max_iters}") + self.progress = tqdm(total=self.max_iters, dynamic_ncols=True) + self.rays_iter = self.rays_loader.__iter__() + while self.iters < self.max_iters: + self._train_iters(min(self.checkpoint_interval, self.max_iters - self.iters)) + self._save_checkpoint() + else: + print(f"Begin training... Max epochs: {self.max_epochs}") + while self.epoch < self.max_epochs: + self._train_epoch() + self._save_checkpoint() + + print("Train finished") + + @staticmethod + def create(model: Model, run_dir: PathLike, typename: str, args: dict[str, Any] = None) -> "Trainer": + if typename not in trainer_classes: + raise ValueError(f"Class {typename} is not found") + return trainer_classes.get(typename)(model, run_dir, args) + + def _init_scheduler(self): + self.scheduler = self.args.lr_decay and ExponentialLR(self.optimizer, self.args.lr_decay) + + def _init_optimizer(self): + self.optimizer = Adam(self.model.parameters(), lr=self.args.lr) + + def _save_checkpoint(self): + if self.checkpoint_interval is None: + return + + ckpt = { + "args": { + "model": self.model.__class__.__name__, + "model_args": vars(self.model.args), + "trainer": self.__class__.__name__, + "trainer_args": vars(self.args) + }, + "states": self.state_dict() + } + + if self.max_iters: + # For iters mode, a checkpoint will be saved every `checkpoint_interval` iterations + netio.save_checkpoint(ckpt, self.run_dir, self.iters) + else: + # For epochs mode, a checkpoint will be saved every epoch. + # Checkpoints which don't match `checkpoint_interval` will be cleaned later + netio.clean_checkpoint(self.run_dir, self.checkpoint_interval) + netio.save_checkpoint(ckpt, self.run_dir, self.epoch) + + def _update_progress(self, loss: float = 0): + self.progress.set_postfix_str(f"Loss: {loss:.2e}" if loss > 0 else "") + self.progress.update() + + @profile("Forward") + def _forward(self, rays: Rays) -> ReturnData: + return self.model(rays, *self.required_outputs) + + @profile("Compute Loss") + def _compute_loss(self, rays: Rays, out: ReturnData) -> dict[str, torch.Tensor]: + torch.isnan + gt = rays.select(out["rays_filter"]) if "rays_filter" in out else rays + loss_terms: dict[str, torch.Tensor] = {} + for key in self.args.loss: + try: + loss_terms[key] = self.loss_defs[key]["fn"](out, gt) + except KeyError: + pass + # Debug: print loss terms + #self.progress.write(",".join([f"{key}: {value.item():.2e}" for key, value in loss_terms.items()])) + return loss_terms + + @profile("Train iteration") + def _train_iter(self, rays: Rays) -> float: + try: + self.optimizer.zero_grad(True) + loss_terms = defaultdict(list) + for offset in range(0, rays.shape[0], self.forward_chunk_size): + rays_chunk = rays.select(slice(offset, offset + self.forward_chunk_size)) + out_chunk = self._forward(rays_chunk) + loss_chunk = self._compute_loss(rays_chunk, out_chunk) + loss_value = sum(loss_chunk.values()) + with profile("Backward"): + loss_value.backward() + loss_terms["Overall_Loss"].append(loss_value.item()) + for key, value in loss_chunk.items(): + loss_terms[key].append(value.item()) + loss_terms = {key: mean(value) for key, value in loss_terms.items()} + + with profile("Update"): + self.optimizer.step() + if self.scheduler: + self.scheduler.step() + # Debug: print lr + #self.progress.write(f"Learning rate: {self.optimizer.param_groups[0]['lr']}") + self.iters += 1 + + if hasattr(self, "tb_writer"): + for key, value in loss_terms.items(): + self.tb_writer.add_scalar(f"Loss/{key}", value, self.iters) + + return loss_terms["Overall_Loss"] + except RuntimeError as e: + if not e.__str__().startswith("CUDA out of memory"): + raise e + self.progress.write("CUDA out of memory, half forward batch and retry.") + logging.warning("CUDA out of memory, half forward batch and retry.") + self.forward_chunk_size //= 2 + torch.cuda.empty_cache() + return self._train_iter(rays) + + def _train_iters(self, iters: int): + recent_loss_list = [] + tot_loss = 0 + train_iters_node = Profiler.Node("Train Iterations") + for _ in range(iters): + try: + rays = self.rays_iter.__next__() + except StopIteration: + self.rays_iter = self.rays_loader.__iter__() # A new epoch + rays = self.rays_iter.__next__() + loss_val = self._train_iter(rays) + recent_loss_list = (recent_loss_list + [loss_val])[-50:] # Keep recent 50 iterations + recent_avg_loss = sum(recent_loss_list) / len(recent_loss_list) + tot_loss += loss_val + self._update_progress(recent_avg_loss) + train_iters_node.close() + torch.cuda.synchronize() + avg_time = train_iters_node.device_duration / 1000 / iters + avg_loss = tot_loss / iters + state_str = f"Iter {self.iters}: Avg. {misc.format_time(avg_time)}/iter; Loss: {avg_loss:.2e}" + self.progress.write(state_str) + logging.info(state_str) + + def _train_epoch(self): + iters_per_epoch = len(self.rays_loader) + recent_loss_list = [] + tot_loss = 0 + + self.progress = tqdm(total=iters_per_epoch, desc=f"Epoch {self.epoch + 1:<3d}", leave=False, + dynamic_ncols=True) + train_epoch_node = Profiler.Node("Train Epoch") + for rays in self.rays_loader: + with profile("Train iteration"): + loss_val = self._train_iter(rays) + recent_loss_list = (recent_loss_list + [loss_val])[-50:] + recent_avg_loss = sum(recent_loss_list) / len(recent_loss_list) + tot_loss += loss_val + self._update_progress(recent_avg_loss) + self.progress.close() + train_epoch_node.close() + torch.cuda.synchronize() + self.epoch += 1 + epoch_time = train_epoch_node.device_duration / 1000 + avg_time = epoch_time / iters_per_epoch + avg_loss = tot_loss / iters_per_epoch + state_str = f"Epoch {self.epoch} spent {misc.format_time(epoch_time)} "\ + f"(Avg. {misc.format_time(avg_time)}/iter). Loss is {avg_loss:.2e}." + logging.print_and_log(state_str) diff --git a/train_oracle.py b/train_oracle.py deleted file mode 100644 index 3eebb3c..0000000 --- a/train_oracle.py +++ /dev/null @@ -1,374 +0,0 @@ -import os -import sys -import argparse -import torch -import torch.optim -import time -from tensorboardX import SummaryWriter -from torch import nn - -parser = argparse.ArgumentParser() -# Arguments for train >>> -parser.add_argument('-c', '--config', type=str, - help='Net config files') -parser.add_argument('-i', '--config-id', type=str, - help='Net config id') -parser.add_argument('-e', '--epochs', type=int, default=200, - help='Max epochs for train') -parser.add_argument('-n', '--prev-net', type=str) -# Arguments for test >>> -parser.add_argument('-r', '--output-res', type=str, - help='Output resolution') -parser.add_argument('-o', '--output', nargs='+', type=str, default=['perf', 'color'], - help='Specify what to output (perf, color, depth, all)') -parser.add_argument('--output-type', type=str, default='image', - help='Specify the output type (image, video, debug)') -# Other arguments >>> -parser.add_argument('-t', '--test', action='store_true', - help='Start in test mode') -parser.add_argument('-m', '--model', type=str, - help='The model file to load for continue train or test') -parser.add_argument('-d', '--device', type=int, default=0, - help='Which CUDA device to use.') -parser.add_argument('-l', '--log-redirect', action='store_true', - help='Is log redirected to file?') -parser.add_argument('-p', '--prompt', action='store_true', - help='Interactive prompt mode') -parser.add_argument('dataset', type=str, - help='Dataset description file') -args = parser.parse_args() - - -torch.cuda.set_device(args.device) -print("Set CUDA:%d as current device." % torch.cuda.current_device()) - - -from utils import netio -from utils import math -from utils import device -from utils import img -from utils import interact -from utils import color -from utils.progress_bar import progress_bar -from utils.perf import Perf -from data.spherical_view_syn import * -from data.loader import FastDataLoader -from configs.spherical_view_syn import SphericalViewSynConfig -from loss.ssim import ssim - - -data_desc_path = args.dataset if args.dataset.endswith('.json') \ - else os.path.join(args.dataset, 'train.json') -data_desc_name = os.path.splitext(os.path.basename(data_desc_path))[0] -data_dir = os.path.dirname(data_desc_path) + '/' -config = SphericalViewSynConfig() -BATCH_SIZE = 4096 -SAVE_INTERVAL = 10 -TEST_BATCH_SIZE = 1 -TEST_MAX_RAYS = 32768 // 2 - -# Toggles -ROT_ONLY = False -EVAL_TIME_PERFORMANCE = False -# ======== -#ROT_ONLY = True -#EVAL_TIME_PERFORMANCE = True - - -def get_model_files(datadir): - model_files = [] - for root, _, files in os.walk(datadir): - model_files += [ - os.path.join(root, file).replace(datadir, '') - for file in files if file.endswith('.pth') - ] - return model_files - - -def set_outputs(args, outputs_str: str): - args.output = [s.strip() for s in outputs_str.split(',')] - - -if not args.test: - print('Start in train mode.') - if args.prompt: # 2.1 Prompt max epochs - args.epochs = interact.input_ex('Max epochs:', interact.input_to_int(min=1), - default=200) - epochRange = range(1, args.epochs + 1) - if args.prompt: # 2.2 Prompt continue train - model_files = get_model_files(data_dir) - args.model = interact.input_enum('Continue train on model:', model_files, - err_msg='No such model file', default='') - if args.model: - cont_model = os.path.join(data_dir, args.model) - model_name = os.path.splitext(os.path.basename(cont_model))[0] - epochRange = range(int(model_name[12:]) + 1, epochRange.stop) - run_dir = os.path.dirname(cont_model) + '/' - run_id = os.path.basename(run_dir[:-1]) - config.from_id(run_id) - else: - if args.prompt: # 2.3 Prompt config file and additional config items - config_files = [ - f[:-3] for f in os.listdir('configs') - if f.endswith('.py') and f != 'spherical_view_syn.py' - ] - args.config = interact.input_enum('Specify config file:', config_files, - err_msg='No such config file', default='') - args.config_id = interact.input_ex('Specify custom config items:', - default='') - if args.config: - config.load(os.path.join('configs', args.config + '.py')) - if args.config_id: - config.from_id(args.config_id) - run_id = config.to_id() - run_dir = data_dir + run_id + '/' - log_dir = run_dir + 'log/' -else: # Test mode - print('Start in test mode.') - if args.prompt: # 3. Prompt test model, output resolution, output mode - model_files = get_model_files(data_dir) - args.model = interact.input_enum('Specify test model:', model_files, - err_msg='No such model file') - args.output_res = interact.input_ex('Specify output resolution:', - default='') - set_outputs(args, 'depth') - test_model_path = os.path.join(data_dir, args.model) - test_model_name = os.path.splitext(os.path.basename(test_model_path))[0] - run_dir = os.path.dirname(test_model_path) + '/' - run_id = os.path.basename(run_dir[:-1]) - config.from_id(run_id) - config.sa['perturb_sample'] = False - args.output_res = tuple(int(s) for s in args.output_res.split('x')) \ - if args.output_res else None - output_dir = f"{run_dir}output_{int(test_model_name.split('_')[-1])}" - output_dataset_id = '%s%s' % ( - data_desc_name, - '_%dx%d' % (args.output_res[0], args.output_res[1]) if args.output_res else '') - args.output_flags = { - item: item in args.output or 'all' in args.output - for item in ['perf', 'color', 'depth', 'layers'] - } - - -config.print() -print("run dir: ", run_dir) - -# Initialize model -model = config.create_net().to(device.default()) -loss_func = nn.MSELoss().to(device.default()) - - -if args.prev_net: - prev_net_config_id = os.path.split(args.prev_net)[-2] - prev_net_config = SphericalViewSynConfig() - prev_net_config.from_id(prev_net_config_id) - prev_net = prev_net_config.create_net().to(device.default()) - netio.load(args.prev_net, prev_net) - model.prev_net = prev_net - - -toggle_show_dir = False -last_toggle_time = 0 - - -def train_loop(data_loader, optimizer, perf, writer, epoch, iters): - global toggle_show_dir - global last_toggle_time - dataset: SphericalViewSynDataset = data_loader.dataset - sub_iters = 0 - iters_in_epoch = len(data_loader) - loss_min = 1e5 - loss_max = 0 - loss_avg = 0 - perf1 = Perf(args.log_redirect, True) - for idx, _, rays_o, rays_d in data_loader: - rays_bins = dataset.patched_bins[idx] if dataset.load_bins else None - perf.checkpoint("Load") - - out = model(rays_o, rays_d) - perf.checkpoint("Forward") - - optimizer.zero_grad() - rays_bins = ((rays_bins[..., 0:1] - 0.5) * 2 * (out.size(-1) - 1)).to(torch.long) - gt = torch.zeros_like(out) - gt.scatter_(-1, rays_bins, 1) - loss_value = loss_func(out, gt) - #loss_value = loss_func(out, rays_bins[..., 0]) - perf.checkpoint("Compute loss") - - loss_value.backward() - perf.checkpoint("Backward") - - optimizer.step() - perf.checkpoint("Update") - - loss_value = loss_value.item() - loss_min = min(loss_min, loss_value) - loss_max = max(loss_max, loss_value) - loss_avg = (loss_avg * sub_iters + loss_value) / (sub_iters + 1) - if not args.log_redirect: - progress_bar(sub_iters, iters_in_epoch, - f"Loss: {loss_value:.2e} ({loss_min:.2e}/{loss_avg:.2e}/{loss_max:.2e})", - f"Epoch {epoch:<3d}") - current_time = time.time() - if last_toggle_time == 0: - last_toggle_time = current_time - if current_time - last_toggle_time > 3: - toggle_show_dir = not toggle_show_dir - last_toggle_time = current_time - if toggle_show_dir: - sys.stdout.write(f'Epoch {epoch:<3d} [ {run_dir} ]\r') - - # Write tensorboard logs. - writer.add_scalar("loss mse", loss_value, iters) - # if patch and iters % 100 == 0: - # output_vs_gt = torch.cat([out[0:4], gt[0:4]], 0).detach() - # writer.add_image("Output_vs_gt", torchvision.utils.make_grid( - # output_vs_gt, nrow=4).cpu().numpy(), iters) - - iters += 1 - sub_iters += 1 - if args.log_redirect: - perf1.checkpoint('Epoch %d (%.2e/%.2e/%.2e)' % - (epoch, loss_min, loss_avg, loss_max), True) - return iters - - -def save_checkpoint(epoch, iters): - for i in range(1, epoch): - if (i < epoch // 50 * 50 and i % 50 != 0 or i % 10 != 0) and \ - os.path.exists(f'{run_dir}model-epoch_{i}.pth'): - os.remove(f'{run_dir}model-epoch_{i}.pth') - netio.save(f'{run_dir}model-epoch_{epoch}.pth', model, iters, print_log=False) - - -def train(): - # 1. Initialize data loader - print("Load dataset: " + data_desc_path) - dataset = SphericalViewSynDataset(data_desc_path, c=config.c, load_images=False, - load_bins=True) - dataset.set_patch_size(1) - data_loader = FastDataLoader(dataset, BATCH_SIZE, shuffle=True, pin_memory=True) - - # 2. Initialize components - optimizer = torch.optim.Adam(model.parameters(), lr=5e-4) - - if epochRange.start > 1: - iters = netio.load(f'{run_dir}model-epoch_{epochRange.start - 1}.pth', model) - else: - os.makedirs(run_dir, exist_ok=True) - os.makedirs(log_dir, exist_ok=True) - iters = 0 - - # 3. Train - model.train() - - perf = Perf(EVAL_TIME_PERFORMANCE, start=True) - writer = SummaryWriter(log_dir) - - print("Begin training...") - for epoch in epochRange: - iters = train_loop(data_loader, optimizer, perf, writer, epoch, iters) - save_checkpoint(epoch, iters) - print("Train finished") - - -def test(): - with torch.no_grad(): - # 1. Load dataset - print("Load dataset: " + data_desc_path) - dataset = SphericalViewSynDataset(data_desc_path, res=args.output_res, load_images=False, - load_bins=args.output_flags['perf']) - data_loader = FastDataLoader(dataset, 1, shuffle=False, pin_memory=True) - - # 2. Load trained model - netio.load(test_model_path, model) - model.eval() - - # 3. Test on dataset - print("Begin test, batch size is %d" % TEST_BATCH_SIZE) - - i = 0 - global_offset = 0 - chns = color.chns(config.c) - n = dataset.n_views - total_pixels = n * dataset.view_res[0] * dataset.view_res[1] - - out = {} - if args.output_flags['perf']: - perf_times = torch.empty(n) - perf = Perf(True, start=True) - out['bins'] = torch.zeros(total_pixels, 3, device=device.default()) - - for vi, _, rays_o, rays_d in data_loader: - rays_o = rays_o.view(-1, 3) - rays_d = rays_d.view(-1, 3) - #rays_bins = dataset.patched_bins[vi].view(-1, 3) - n_rays = rays_o.size(0) - for offset in range(0, n_rays, TEST_MAX_RAYS): - idx = slice(offset, min(offset + TEST_MAX_RAYS, n_rays)) - global_idx = slice(idx.start + global_offset, idx.stop + global_offset) - ret = model(rays_o[idx], rays_d[idx]) - is_local_max = torch.ones_like(ret, dtype=torch.bool) - for delta in range(-3, 0): - is_local_max[..., -delta:].logical_and_( - ret[..., -delta:] > ret[..., :delta]) - for delta in range(1, 4): - is_local_max[..., :-delta].logical_and_( - ret[..., :-delta] > ret[..., delta:]) - ret[is_local_max.logical_not()] = 0 - vals, idxs = torch.topk(ret, 3) # (B, 3) - vals = vals / vals.sum(-1, keepdim=True) - out['bins'][global_idx] = (idxs.to(torch.float) / (ret.size(-1) - 1) * 0.5 + 0.5) * \ - (vals > 0.1) - if args.output_flags['perf']: - perf_times[i] = perf.checkpoint() - progress_bar(i, n, 'Inferring...') - i += 1 - global_offset += n_rays - - # 4. Save results - print('Saving results...') - os.makedirs(output_dir, exist_ok=True) - - for key in out: - shape = [n] + list(dataset.view_res) + list(out[key].size()[1:]) - out[key] = out[key].view(shape) - out['bins'] = out['bins'].permute(0, 3, 1, 2) - - if args.output_flags['perf']: - perf_errors = torch.ones(n) * math.nan - perf_ssims = torch.ones(n) * math.nan - if dataset.view_images != None: - for i in range(n): - perf_errors[i] = loss_func(dataset.view_images[i], out['color'][i]).item() - perf_ssims[i] = ssim(dataset.view_images[i:i + 1], - out['color'][i:i + 1]).item() * 100 - perf_mean_time = torch.mean(perf_times).item() - perf_mean_error = torch.mean(perf_errors).item() - perf_name = 'perf_%s_%.1fms_%.2e.csv' % ( - output_dataset_id, perf_mean_time, perf_mean_error) - - # Remove old performance reports - for file in os.listdir(output_dir): - if file.startswith(f'perf_{output_dataset_id}'): - os.remove(f"{output_dir}/{file}") - - # Save new performance reports - with open(f"{output_dir}/{perf_name}", 'w') as fp: - fp.write('View, Time, PSNR, SSIM\n') - fp.writelines([ - f'{dataset.view_idxs[i]}, {perf_times[i].item():.2f}, ' - f'{img.mse2psnr(perf_errors[i].item()):.2f}, {perf_ssims[i].item():.2f}\n' - for i in range(n) - ]) - output_subdir = f"{output_dir}/{output_dataset_id}_bins" - os.makedirs(output_subdir, exist_ok=True) - img.save(out['bins'], [f'{output_subdir}/{i:0>4d}.png' for i in dataset.view_idxs]) - - -if __name__ == "__main__": - if args.test: - test() - else: - train() diff --git a/update_cnerf.py b/update_cnerf.py deleted file mode 100644 index af34074..0000000 --- a/update_cnerf.py +++ /dev/null @@ -1,29 +0,0 @@ -from utils import netio -from pathlib import Path - -dir = "/home/dengnc/dvs/data/classroom/_nets/ms_train_t0.8/_cnerfadv_ioc/" - -for epochs in range(1, 151): - path = f"{dir}checkpoint_{epochs}.tar" - if not Path(path).exists(): - continue - - print(f"Update epoch {epochs}") - s = netio.load_checkpoint(path)[0] - args0 = s["args"] - args0_for_submodel = { - key: value for key, value in args0.items() - if key != "sub_models" and key != "interp_on_coarse" - } - - for i in range(len(args0["sub_models"])): - args0["sub_models"][i] = {**args0_for_submodel, **args0["sub_models"][i]} - if epochs >= 30: - args0["sub_models"][0]["n_samples"] = 64 - elif epochs >= 10: - args0["sub_models"][0]["n_samples"] = 32 - if epochs >= 70: - args0["sub_models"][1]["n_samples"] = 128 - if epochs >= 120: - args0["sub_models"][2]["n_samples"] = 256 - netio.save_checkpoint(s, dir, epochs) \ No newline at end of file diff --git a/upsampling/FSRCNN/README.md b/upsampling/FSRCNN/README.md deleted file mode 100644 index 5444f63..0000000 --- a/upsampling/FSRCNN/README.md +++ /dev/null @@ -1,5 +0,0 @@ -## Fast Super Resolution CNN - - -### note -this model has high possibility to diverge after 20 epochs. \ No newline at end of file diff --git a/upsampling/FSRCNN/model.py b/upsampling/FSRCNN/model.py deleted file mode 100644 index 0f09cd4..0000000 --- a/upsampling/FSRCNN/model.py +++ /dev/null @@ -1,61 +0,0 @@ -import torch -import torch.nn as nn - - -class Net(torch.nn.Module): - def __init__(self, num_channels, upscale_factor, d=64, s=12, m=4): - super(Net, self).__init__() - - self.first_part = nn.Sequential( - nn.Conv2d(in_channels=num_channels, out_channels=d, - kernel_size=5, stride=1, padding=2), - nn.PReLU() - ) - - self.layers = [] - self.layers += [ - nn.Conv2d(in_channels=d, out_channels=s, - kernel_size=1, stride=1, padding=0), - nn.PReLU() - ] - for _ in range(m): - self.layers += [ - nn.Conv2d(in_channels=s, out_channels=s, - kernel_size=3, stride=1, padding=1), - nn.PReLU() - ] - self.layers += [ - nn.Conv2d(in_channels=s, out_channels=d, - kernel_size=1, stride=1, padding=0), - nn.PReLU() - ] - - self.mid_part = nn.Sequential(*self.layers) - - # Deconvolution - if upscale_factor % 2: - self.last_part = nn.ConvTranspose2d( - in_channels=d, out_channels=num_channels, kernel_size=9, - stride=upscale_factor, padding=5 - (upscale_factor + 1) // 2) - else: - self.last_part = nn.ConvTranspose2d( - in_channels=d, out_channels=num_channels, kernel_size=9, - stride=upscale_factor, padding=5 - upscale_factor // 2, - output_padding=1) - - def forward(self, x): - out = self.first_part(x) - out = self.mid_part(out) - out = self.last_part(out) - return out - - def weight_init(self, mean=0.0, std=0.02): - for m in self.modules(): - if isinstance(m, nn.Conv2d): - m.weight.data.normal_(mean, std) - if m.bias is not None: - m.bias.data.zero_() - if isinstance(m, nn.ConvTranspose2d): - m.weight.data.normal_(0.0, 0.0001) - if m.bias is not None: - m.bias.data.zero_() diff --git a/upsampling/FSRCNN/solver.py b/upsampling/FSRCNN/solver.py deleted file mode 100644 index 2b178cc..0000000 --- a/upsampling/FSRCNN/solver.py +++ /dev/null @@ -1,104 +0,0 @@ -from __future__ import print_function -from math import log10 -import sys - -import torch -import torch.backends.cudnn as cudnn -import torchvision -from .model import Net -from utils.progress_bar import progress_bar - - -class FSRCNNTrainer(object): - def __init__(self, config, training_loader, testing_loader, writer=None): - super(FSRCNNTrainer, self).__init__() - self.CUDA = torch.cuda.is_available() - self.device = torch.device('cuda' if self.CUDA else 'cpu') - self.model = None - self.lr = config.lr - self.nEpochs = config.nEpochs - self.criterion = None - self.optimizer = None - self.scheduler = None - self.seed = config.seed - self.upscale_factor = config.upscale_factor - self.training_loader = training_loader - self.testing_loader = testing_loader - self.writer = writer - - def build_model(self): - self.model = Net( - num_channels=1, upscale_factor=self.upscale_factor).to(self.device) - self.model.weight_init(mean=0.0, std=0.2) - self.criterion = torch.nn.MSELoss() - torch.manual_seed(self.seed) - - if self.CUDA: - torch.cuda.manual_seed(self.seed) - cudnn.benchmark = True - self.criterion.cuda() - - self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr) - self.scheduler = torch.optim.lr_scheduler.MultiStepLR( - self.optimizer, milestones=[50, 75, 100], gamma=0.5) # lr decay - - def save_model(self): - model_out_path = "model_path.pth" - torch.save(self.model, model_out_path) - print("Checkpoint saved to {}".format(model_out_path)) - - def train(self, epoch, iters): - self.model.train() - train_loss = 0 - for batch_num, (_, data, target) in enumerate(self.training_loader): - data, target = data.to(self.device), target.to(self.device) - self.optimizer.zero_grad() - out = self.model(data) - loss = self.criterion(out, target) - train_loss += loss.item() - loss.backward() - self.optimizer.step() - sys.stdout.write('Epoch %d: ' % epoch) - progress_bar(batch_num, len(self.training_loader), - 'Loss: %.4f' % (train_loss / (batch_num + 1))) - if self.writer: - self.writer.add_scalar("loss", loss, iters) - if iters % 100 == 0: - output_vs_gt = torch.stack([out, target], 1) \ - .flatten(0, 1).detach() - self.writer.add_image( - "Output_vs_gt", - torchvision.utils.make_grid(output_vs_gt, nrow=2).cpu().numpy(), - iters) - iters += 1 - - print(" Average Loss: {:.4f}".format( - train_loss / len(self.training_loader))) - return iters - - def test(self): - self.model.eval() - avg_psnr = 0 - - with torch.no_grad(): - for batch_num, (data, target) in enumerate(self.testing_loader): - data, target = data.to(self.device), target.to(self.device) - prediction = self.model(data) - mse = self.criterion(prediction, target) - psnr = 10 * log10(1 / mse.item()) - avg_psnr += psnr - progress_bar(batch_num, len(self.testing_loader), - 'PSNR: %.4f' % (avg_psnr / (batch_num + 1))) - - print(" Average PSNR: {:.4f} dB".format( - avg_psnr / len(self.testing_loader))) - - def run(self): - self.build_model() - for epoch in range(1, self.nEpochs + 1): - print("\n===> Epoch {} starts:".format(epoch)) - self.train() - self.test() - self.scheduler.step(epoch) - if epoch == self.nEpochs: - self.save_model() diff --git a/upsampling/SRCNN/README.md b/upsampling/SRCNN/README.md deleted file mode 100644 index 193b135..0000000 --- a/upsampling/SRCNN/README.md +++ /dev/null @@ -1,10 +0,0 @@ -## Super Resolution CNN -The authors of the SRCNN describe their network, pointing out the equivalence of their method to the sparse-coding method, which is a widely used learning method for image SR. This is an important and educational aspect of their work, because it shows how example-based learning methods can be adapted and generalized to CNN models. - -The SRCNN consists of the following operations: -1. **Preprocessing**: Up-scales LR image to desired HR size. -2. **Feature extraction**: Extracts a set of feature maps from the up-scaled LR image. -3. **Non-linear mapping**: Maps the feature maps representing LR to HR patches. -4. **Reconstruction**: Produces the HR image from HR patches. - -Operations 2–4 above can be cast as a convolutional layer in a CNN that accepts as input the preprocessed images from step 1 above, and outputs the HR image diff --git a/upsampling/SRCNN/model.py b/upsampling/SRCNN/model.py deleted file mode 100644 index c836e07..0000000 --- a/upsampling/SRCNN/model.py +++ /dev/null @@ -1,30 +0,0 @@ -import torch -import torch.nn as nn - - -class Net(torch.nn.Module): - def __init__(self, num_channels, base_filter, upscale_factor=2): - super(Net, self).__init__() - - self.layers = torch.nn.Sequential( - nn.Conv2d(in_channels=num_channels, out_channels=base_filter, kernel_size=9, stride=1, padding=4, bias=True), - nn.ReLU(inplace=True), - nn.Conv2d(in_channels=base_filter, out_channels=base_filter // 2, kernel_size=1, bias=True), - nn.ReLU(inplace=True), - nn.Conv2d(in_channels=base_filter // 2, out_channels=num_channels * (upscale_factor ** 2), kernel_size=5, stride=1, padding=2, bias=True), - nn.PixelShuffle(upscale_factor) - ) - - def forward(self, x): - out = self.layers(x) - return out - - def weight_init(self, mean, std): - for m in self._modules: - normal_init(self._modules[m], mean, std) - - -def normal_init(m, mean, std): - if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d): - m.weight.data.normal_(mean, std) - m.bias.data.zero_() diff --git a/upsampling/SRCNN/solver.py b/upsampling/SRCNN/solver.py deleted file mode 100644 index 4985528..0000000 --- a/upsampling/SRCNN/solver.py +++ /dev/null @@ -1,104 +0,0 @@ -from __future__ import print_function - -from math import log10 -import sys - -import torch -import torch.backends.cudnn as cudnn -import torchvision - -from .model import Net -from utils.progress_bar import progress_bar - - -class SRCNNTrainer(object): - def __init__(self, config, training_loader, testing_loader, writer=None): - super(SRCNNTrainer, self).__init__() - self.CUDA = torch.cuda.is_available() - self.device = torch.device('cuda' if self.CUDA else 'cpu') - self.model = None - self.lr = config.lr - self.nEpochs = config.nEpochs - self.criterion = None - self.optimizer = None - self.scheduler = None - self.seed = config.seed - self.upscale_factor = config.upscale_factor - self.training_loader = training_loader - self.testing_loader = testing_loader - self.writer = writer - - def build_model(self, num_channels): - self.model = Net(num_channels=num_channels, base_filter=64, upscale_factor=self.upscale_factor).to(self.device) - self.model.weight_init(mean=0.0, std=0.01) - self.criterion = torch.nn.MSELoss() - torch.manual_seed(self.seed) - - if self.CUDA: - torch.cuda.manual_seed(self.seed) - cudnn.benchmark = True - self.criterion.cuda() - - self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr) - self.scheduler = torch.optim.lr_scheduler.MultiStepLR(self.optimizer, milestones=[50, 75, 100], gamma=0.5) - - def save_model(self): - model_out_path = "model_path.pth" - torch.save(self.model, model_out_path) - print("Checkpoint saved to {}".format(model_out_path)) - - def train(self, epoch, iters, channels = None): - self.model.train() - train_loss = 0 - for batch_num, (_, data, target) in enumerate(self.training_loader): - if channels: - data = data[..., channels, :, :] - target = target[..., channels, :, :] - data =data.to(self.device) - target = target.to(self.device) - self.optimizer.zero_grad() - out = self.model(data) - loss = self.criterion(out, target) - train_loss += loss.item() - loss.backward() - self.optimizer.step() - sys.stdout.write('Epoch %d: ' % epoch) - progress_bar(batch_num, len(self.training_loader), 'Loss: %.4f' % (train_loss / (batch_num + 1))) - if self.writer: - self.writer.add_scalar("loss", loss, iters) - if iters % 100 == 0: - output_vs_gt = torch.stack([out, target], 1) \ - .flatten(0, 1).detach() - self.writer.add_image( - "Output_vs_gt", - torchvision.utils.make_grid(output_vs_gt, nrow=2).cpu().numpy(), - iters) - iters += 1 - - print(" Average Loss: {:.4f}".format(train_loss / len(self.training_loader))) - return iters - - def test(self): - self.model.eval() - avg_psnr = 0 - - with torch.no_grad(): - for batch_num, (data, target) in enumerate(self.testing_loader): - data, target = data.to(self.device), target.to(self.device) - prediction = self.model(data) - mse = self.criterion(prediction, target) - psnr = 10 * log10(1 / mse.item()) - avg_psnr += psnr - progress_bar(batch_num, len(self.testing_loader), 'PSNR: %.4f' % (avg_psnr / (batch_num + 1))) - - print(" Average PSNR: {:.4f} dB".format(avg_psnr / len(self.testing_loader))) - - def run(self): - self.build_model() - for epoch in range(1, self.nEpochs + 1): - print("\n===> Epoch {} starts:".format(epoch)) - self.train() - self.test() - self.scheduler.step(epoch) - if epoch == self.nEpochs: - self.save_model() diff --git a/upsampling/SRGAN/README.md b/upsampling/SRGAN/README.md deleted file mode 100644 index f34ae71..0000000 --- a/upsampling/SRGAN/README.md +++ /dev/null @@ -1,26 +0,0 @@ -# SRGAN: Super-Resolution using GANs -This is a complete Pytorch implementation of [Christian Ledig et al: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"](https://arxiv.org/abs/1609.04802), -reproducing their results. -This paper's main result is that through using an adversarial and a content loss, a convolutional neural network is able to produce sharp, almost photo-realistic upsamplings of images. - -The implementation tries to be as faithful as possible to the original paper. -See [implementation details](#method-and-implementation-details) for a closer look. - - -## Method and Implementation Details -Architecture diagram of the super-resolution and discriminator networks by Ledig et al: - -<p align='center'> -<img src='https://github.com/mseitzer/srgan/blob/master/images/architecture.png' width=580> -</p> - -The implementation tries to stay as close as possible to the details given in the paper. -As such, the pretrained SRGAN is also trained with 1e6 and 1e5 update steps. -The high amount of update steps proved to be essential for performance, which pretty much monotonically increases with training time. - -Some further implementation choices where the paper does not give any details: -- Initialization: orthogonal for the super-resolution network, randomly from a normal distribution with std=0.02 for the discriminator network -- Padding: reflection padding (instead of the more commonly used zero padding) - -## Batch-size -batch size of 2 is recommended if GPU has only 8G RAM. \ No newline at end of file diff --git a/upsampling/SRGAN/model.py b/upsampling/SRGAN/model.py deleted file mode 100644 index 168262b..0000000 --- a/upsampling/SRGAN/model.py +++ /dev/null @@ -1,118 +0,0 @@ -import torch -import torch.nn as nn -import torch.nn.functional as F - - -def swish(x): - return x * torch.sigmoid(x) - - -class ResidualBlock(nn.Module): - def __init__(self, in_channels, kernel, out_channels, stride): - super(ResidualBlock, self).__init__() - - self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=kernel, stride=stride, padding=kernel // 2) - self.bn1 = nn.BatchNorm2d(out_channels) - self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=kernel, stride=stride, padding=kernel // 2) - self.bn2 = nn.BatchNorm2d(out_channels) - - def forward(self, x): - y = swish(self.bn1(self.conv1(x))) - return self.bn2(self.conv2(y)) + x - - -class UpsampleBlock(nn.Module): - # Implements resize-convolution - def __init__(self, in_channels): - super(UpsampleBlock, self).__init__() - self.conv = nn.Conv2d(in_channels, in_channels * 4, kernel_size=3, stride=1, padding=1) - self.shuffler = nn.PixelShuffle(2) - - def forward(self, x): - return swish(self.shuffler(self.conv(x))) - - -class Generator(nn.Module): - def __init__(self, n_residual_blocks, upsample_factor, num_channel=1, base_filter=64): - super(Generator, self).__init__() - self.n_residual_blocks = n_residual_blocks - self.upsample_factor = upsample_factor - - self.conv1 = nn.Conv2d(num_channel, base_filter, kernel_size=9, stride=1, padding=4) - - for i in range(self.n_residual_blocks): - self.add_module('residual_block' + str(i + 1), ResidualBlock(in_channels=base_filter, out_channels=base_filter, kernel=3, stride=1)) - - self.conv2 = nn.Conv2d(base_filter, base_filter, kernel_size=3, stride=1, padding=1) - self.bn2 = nn.BatchNorm2d(base_filter) - - for i in range(self.upsample_factor // 2): - self.add_module('upsample' + str(i + 1), UpsampleBlock(base_filter)) - - self.conv3 = nn.Conv2d(base_filter, num_channel, kernel_size=9, stride=1, padding=4) - - def forward(self, x): - x = swish(self.conv1(x)) - - y = x.clone() - for i in range(self.n_residual_blocks): - y = self.__getattr__('residual_block' + str(i + 1))(y) - - x = self.bn2(self.conv2(y)) + x - - for i in range(self.upsample_factor // 2): - x = self.__getattr__('upsample' + str(i + 1))(x) - - return self.conv3(x) - - def weight_init(self, mean=0.0, std=0.02): - for m in self._modules: - normal_init(self._modules[m], mean, std) - - -class Discriminator(nn.Module): - def __init__(self, num_channel=1, base_filter=64): - super(Discriminator, self).__init__() - self.conv1 = nn.Conv2d(num_channel, base_filter, kernel_size=3, stride=1, padding=1) - - self.conv2 = nn.Conv2d(base_filter, base_filter, kernel_size=3, stride=2, padding=1) - self.bn2 = nn.BatchNorm2d(base_filter) - self.conv3 = nn.Conv2d(base_filter, base_filter * 2, kernel_size=3, stride=1, padding=1) - self.bn3 = nn.BatchNorm2d(base_filter * 2) - self.conv4 = nn.Conv2d(base_filter * 2, base_filter * 2, kernel_size=3, stride=2, padding=1) - self.bn4 = nn.BatchNorm2d(base_filter * 2) - self.conv5 = nn.Conv2d(base_filter * 2, base_filter * 4, kernel_size=3, stride=1, padding=1) - self.bn5 = nn.BatchNorm2d(base_filter * 4) - self.conv6 = nn.Conv2d(base_filter * 4, base_filter * 4, kernel_size=3, stride=2, padding=1) - self.bn6 = nn.BatchNorm2d(base_filter * 4) - self.conv7 = nn.Conv2d(base_filter * 4, base_filter * 8, kernel_size=3, stride=1, padding=1) - self.bn7 = nn.BatchNorm2d(base_filter * 8) - self.conv8 = nn.Conv2d(base_filter * 8, base_filter * 8, kernel_size=3, stride=2, padding=1) - self.bn8 = nn.BatchNorm2d(base_filter * 8) - - # Replaced original paper FC layers with FCN - self.conv9 = nn.Conv2d(base_filter * 8, num_channel, kernel_size=1, stride=1, padding=0) - - def forward(self, x): - x = swish(self.conv1(x)) - - x = swish(self.bn2(self.conv2(x))) - x = swish(self.bn3(self.conv3(x))) - x = swish(self.bn4(self.conv4(x))) - x = swish(self.bn5(self.conv5(x))) - x = swish(self.bn6(self.conv6(x))) - x = swish(self.bn7(self.conv7(x))) - x = swish(self.bn8(self.conv8(x))) - - x = self.conv9(x) - return torch.sigmoid(F.avg_pool2d(x, x.size()[2:])).view(x.size()[0], -1) - - def weight_init(self, mean=0.0, std=0.02): - for m in self._modules: - normal_init(self._modules[m], mean, std) - - -def normal_init(m, mean, std): - if isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Conv2d): - m.weight.data.normal_(mean, std) - m.bias.data.zero_() diff --git a/upsampling/SRGAN/solver.py b/upsampling/SRGAN/solver.py deleted file mode 100644 index 78ffae1..0000000 --- a/upsampling/SRGAN/solver.py +++ /dev/null @@ -1,163 +0,0 @@ -from __future__ import print_function -from math import log10 -import sys - -import torch -import torch.nn as nn -import torch.optim as optim -import torch.backends.cudnn as cudnn -import torchvision -from torchvision.models.vgg import vgg16 -from .model import Generator, Discriminator -from utils.progress_bar import progress_bar - - -class SRGANTrainer(object): - def __init__(self, config, training_loader, testing_loader, writer): - super(SRGANTrainer, self).__init__() - self.GPU_IN_USE = torch.cuda.is_available() - self.device = torch.device('cuda' if self.GPU_IN_USE else 'cpu') - self.netG = None - self.netD = None - self.lr = config.lr - self.nEpochs = config.nEpochs - self.epoch_pretrain = 10 - self.criterionG = None - self.criterionD = None - self.optimizerG = None - self.optimizerD = None - self.feature_extractor = None - self.scheduler = None - self.seed = config.seed - self.upscale_factor = config.upscale_factor - self.num_residuals = 16 - self.training_loader = training_loader - self.testing_loader = testing_loader - self.writer = writer - - def build_model(self): - self.netG = Generator(n_residual_blocks=self.num_residuals, upsample_factor=self.upscale_factor, base_filter=64, num_channel=1).to(self.device) - self.netD = Discriminator(base_filter=64, num_channel=1).to(self.device) - self.feature_extractor = vgg16(pretrained=True) - self.netG.weight_init(mean=0.0, std=0.2) - self.netD.weight_init(mean=0.0, std=0.2) - self.criterionG = nn.MSELoss() - self.criterionD = nn.BCELoss() - torch.manual_seed(self.seed) - - if self.GPU_IN_USE: - torch.cuda.manual_seed(self.seed) - self.feature_extractor.cuda() - cudnn.benchmark = True - self.criterionG.cuda() - self.criterionD.cuda() - - self.optimizerG = optim.Adam(self.netG.parameters(), lr=self.lr, betas=(0.9, 0.999)) - self.optimizerD = optim.SGD(self.netD.parameters(), lr=self.lr / 100, momentum=0.9, nesterov=True) - self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizerG, milestones=[50, 75, 100], gamma=0.5) # lr decay - self.scheduler = optim.lr_scheduler.MultiStepLR(self.optimizerD, milestones=[50, 75, 100], gamma=0.5) # lr decay - - @staticmethod - def to_data(x): - if torch.cuda.is_available(): - x = x.cpu() - return x.data - - def save(self): - g_model_out_path = "SRGAN_Generator_model_path.pth" - d_model_out_path = "SRGAN_Discriminator_model_path.pth" - torch.save(self.netG, g_model_out_path) - torch.save(self.netD, d_model_out_path) - print("Checkpoint saved to {}".format(g_model_out_path)) - print("Checkpoint saved to {}".format(d_model_out_path)) - - def pretrain(self): - self.netG.train() - for batch_num, (_, data, target) in enumerate(self.training_loader): - data, target = data.to(self.device), target.to(self.device) - self.netG.zero_grad() - loss = self.criterionG(self.netG(data), target) - loss.backward() - self.optimizerG.step() - - def train(self, epoch, iters): - # models setup - self.netG.train() - self.netD.train() - g_train_loss = 0 - d_train_loss = 0 - for batch_num, (_, data, target) in enumerate(self.training_loader): - # setup noise - real_label = torch.ones(data.size(0), data.size(1)).to(self.device) - fake_label = torch.zeros(data.size(0), data.size(1)).to(self.device) - data, target = data.to(self.device), target.to(self.device) - - # Train Discriminator - self.optimizerD.zero_grad() - d_real = self.netD(target) - d_real_loss = self.criterionD(d_real, real_label) - - d_fake = self.netD(self.netG(data)) - d_fake_loss = self.criterionD(d_fake, fake_label) - d_total = d_real_loss + d_fake_loss - d_train_loss += d_total.item() - d_total.backward() - self.optimizerD.step() - - # Train generator - self.optimizerG.zero_grad() - g_real = self.netG(data) - g_fake = self.netD(g_real) - gan_loss = self.criterionD(g_fake, real_label) - mse_loss = self.criterionG(g_real, target) - - g_total = mse_loss + 1e-3 * gan_loss - g_train_loss += g_total.item() - g_total.backward() - self.optimizerG.step() - - sys.stdout.write('Epoch %d: ' % epoch) - progress_bar(batch_num, len(self.training_loader), 'G_Loss: %.4f | D_Loss: %.4f' % (g_train_loss / (batch_num + 1), d_train_loss / (batch_num + 1))) - if self.writer: - self.writer.add_scalar("G_Loss", g_train_loss / (batch_num + 1), iters) - self.writer.add_scalar("D_Loss", d_train_loss / (batch_num + 1), iters) - if iters % 100 == 0: - output_vs_gt = torch.stack([g_real, target], 1) \ - .flatten(0, 1).detach() - self.writer.add_image( - "Output_vs_gt", - torchvision.utils.make_grid(output_vs_gt, nrow=2).cpu().numpy(), - iters) - iters += 1 - - print(" Average G_Loss: {:.4f}".format(g_train_loss / len(self.training_loader))) - return iters - - def test(self): - self.netG.eval() - avg_psnr = 0 - - with torch.no_grad(): - for batch_num, (data, target) in enumerate(self.testing_loader): - data, target = data.to(self.device), target.to(self.device) - prediction = self.netG(data) - mse = self.criterionG(prediction, target) - psnr = 10 * log10(1 / mse.item()) - avg_psnr += psnr - progress_bar(batch_num, len(self.testing_loader), 'PSNR: %.4f' % (avg_psnr / (batch_num + 1))) - - print(" Average PSNR: {:.4f} dB".format(avg_psnr / len(self.testing_loader))) - - def run(self): - self.build_model() - for epoch in range(1, self.epoch_pretrain + 1): - self.pretrain() - print("{}/{} pretrained".format(epoch, self.epoch_pretrain)) - - for epoch in range(1, self.nEpochs + 1): - print("\n===> Epoch {} starts:".format(epoch)) - self.train() - self.test() - self.scheduler.step(epoch) - if epoch == self.nEpochs: - self.save() diff --git a/upsampling/SubPixelCNN/model.py b/upsampling/SubPixelCNN/model.py deleted file mode 100644 index 7e6ae61..0000000 --- a/upsampling/SubPixelCNN/model.py +++ /dev/null @@ -1,33 +0,0 @@ -import torch.nn as nn -import torch.nn.init as init - - -class Net(nn.Module): - def __init__(self, upscale_factor): - super(Net, self).__init__() - - self.relu = nn.ReLU() - self.conv1 = nn.Conv2d(1, 64, kernel_size=5, stride=1, padding=2) - self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) - self.conv3 = nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1) - self.conv4 = nn.Conv2d(32, upscale_factor ** 2, kernel_size=3, stride=1, padding=1) - self.pixel_shuffle = nn.PixelShuffle(upscale_factor) - - self._initialize_weights() - - def _initialize_weights(self): - init.orthogonal_(self.conv1.weight, init.calculate_gain('relu')) - init.orthogonal_(self.conv2.weight, init.calculate_gain('relu')) - init.orthogonal_(self.conv3.weight, init.calculate_gain('relu')) - init.orthogonal_(self.conv4.weight) - - def forward(self, x): - x = self.conv1(x) - x = self.relu(x) - x = self.conv2(x) - x = self.relu(x) - x = self.conv3(x) - x = self.relu(x) - x = self.conv4(x) - x = self.pixel_shuffle(x) - return x diff --git a/upsampling/SubPixelCNN/solver.py b/upsampling/SubPixelCNN/solver.py deleted file mode 100644 index 7d28e1c..0000000 --- a/upsampling/SubPixelCNN/solver.py +++ /dev/null @@ -1,110 +0,0 @@ -from __future__ import print_function - -from math import log10 -import sys - -import torch -import torch.backends.cudnn as cudnn -import torchvision - -from .model import Net -from utils.progress_bar import progress_bar - - -class SubPixelTrainer(object): - def __init__(self, config, training_loader, testing_loader, writer=None): - super(SubPixelTrainer, self).__init__() - self.CUDA = torch.cuda.is_available() - self.device = torch.device('cuda' if self.CUDA else 'cpu') - self.model = None - self.lr = config.lr - self.nEpochs = config.nEpochs - self.criterion = None - self.optimizer = None - self.scheduler = None - self.seed = config.seed - self.upscale_factor = config.upscale_factor - self.training_loader = training_loader - self.testing_loader = testing_loader - self.writer = writer - - def build_model(self, num_channels): - if num_channels != 1: - raise ValueError('num_channels must be 1') - self.model = Net(upscale_factor=self.upscale_factor).to(self.device) - self.criterion = torch.nn.MSELoss() - torch.manual_seed(self.seed) - - if self.CUDA: - torch.cuda.manual_seed(self.seed) - cudnn.benchmark = True - self.criterion.cuda() - - self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr) - self.scheduler = torch.optim.lr_scheduler.MultiStepLR( - self.optimizer, milestones=[50, 75, 100], gamma=0.5) # lr decay - - def save(self): - model_out_path = "model_path.pth" - torch.save(self.model, model_out_path) - print("Checkpoint saved to {}".format(model_out_path)) - - def train(self, epoch, iters, channels=None): - self.model.train() - train_loss = 0 - for batch_num, (_, data, target) in enumerate(self.training_loader): - if channels: - data = data[..., channels, :, :] - target = target[..., channels, :, :] - data, target = data.to(self.device), target.to(self.device) - self.optimizer.zero_grad() - out = self.model(data) - loss = self.criterion(out, target) - train_loss += loss.item() - loss.backward() - self.optimizer.step() - sys.stdout.write('Epoch %d: ' % epoch) - progress_bar(batch_num, len(self.training_loader), - 'Loss: %.4f' % (train_loss / (batch_num + 1))) - if self.writer: - self.writer.add_scalar("loss", loss, iters) - if iters % 100 == 0: - output_vs_gt = torch.stack([out, target], 1) \ - .flatten(0, 1).detach() - self.writer.add_image( - "Output_vs_gt", - torchvision.utils.make_grid( - output_vs_gt, nrow=2).cpu().numpy(), - iters) - iters += 1 - - print(" Average Loss: {:.4f}".format( - train_loss / len(self.training_loader))) - return iters - - def test(self): - self.model.eval() - avg_psnr = 0 - - with torch.no_grad(): - for batch_num, (data, target) in enumerate(self.testing_loader): - data, target = data.to(self.device), target.to(self.device) - prediction = self.model(data) - mse = self.criterion(prediction, target) - psnr = 10 * log10(1 / mse.item()) - avg_psnr += psnr - progress_bar(batch_num, len(self.testing_loader), - 'PSNR: %.4f' % (avg_psnr / (batch_num + 1))) - - print(" Average PSNR: {:.4f} dB".format( - avg_psnr / len(self.testing_loader))) - - def run(self): - self.build_model() - for epoch in range(1, self.nEpochs + 1): - print("\n===> Epoch {} starts:".format(epoch)) - self.train() - self.test() - self.scheduler.step(epoch) - if epoch == self.nEpochs: - self.save() diff --git a/upsampling/run_upsampling.py b/upsampling/run_upsampling.py deleted file mode 100644 index 8b90e2f..0000000 --- a/upsampling/run_upsampling.py +++ /dev/null @@ -1,112 +0,0 @@ -from __future__ import print_function - -import argparse -import os -import sys -import torch -import torch.nn.functional as nn_f -from tensorboardX.writer import SummaryWriter - -sys.path.append(os.path.abspath(sys.path[0] + '/../')) - -# =========================================================== -# Training settings -# =========================================================== -parser = argparse.ArgumentParser(description='PyTorch Super Res Example') -# hyper-parameters -parser.add_argument('--device', type=int, default=3, - help='Which CUDA device to use.') -parser.add_argument('--batchSize', type=int, default=1, - help='training batch size') -parser.add_argument('--testBatchSize', type=int, - default=1, help='testing batch size') -parser.add_argument('--nEpochs', type=int, default=20, - help='number of epochs to train for') -parser.add_argument('--lr', type=float, default=0.01, - help='Learning Rate. Default=0.01') -parser.add_argument('--seed', type=int, default=123, - help='random seed to use. Default=123') -parser.add_argument('--dataset', type=str, required=True, - help='dataset directory') -parser.add_argument('--test', type=str, help='path of model to test') -parser.add_argument('--testOutPatt', type=str, help='test output path pattern') -parser.add_argument('--color', type=str, default='rgb', - help='color') - -# model configuration -parser.add_argument('--upscale_factor', '-uf', type=int, - default=2, help="super resolution upscale factor") -#parser.add_argument('--model', '-m', type=str, default='srgan', help='choose which model is going to use') - -args = parser.parse_args() - -# Select device -torch.cuda.set_device(args.device) -print("Set CUDA:%d as current device." % torch.cuda.current_device()) - -from utils import misc -from utils import netio -from utils import img -from utils import color -#from .upsampling.SubPixelCNN.solver import SubPixelTrainer as Solver -from upsampling.SRCNN.solver import SRCNNTrainer as Solver -from upsampling.upsampling_dataset import UpsamplingDataset -from data.loader import FastDataLoader - -os.chdir(args.dataset) -print('Change working directory to ' + os.getcwd()) -run_dir = 'run/' -args.color = color.from_str(args.color) - - -def train(): - os.makedirs(run_dir, exist_ok=True) - train_set = UpsamplingDataset('.', 'input/out_view_%04d.png', - 'gt/view_%04d.png', color=args.color) - training_data_loader = FastDataLoader(dataset=train_set, - batch_size=args.batchSize, - shuffle=True, - drop_last=False) - trainer = Solver(args, training_data_loader, training_data_loader, - SummaryWriter(run_dir)) - trainer.build_model(3 if args.color == color.RGB else 1) - iters = 0 - for epoch in range(1, args.nEpochs + 1): - print("\n===> Epoch {} starts:".format(epoch)) - iters = trainer.train(epoch, iters, - channels=slice(2, 3) if args.color == color.YCbCr - else None) - netio.save(run_dir + 'model-epoch_%d.pth' % args.nEpochs, trainer.model) - - -def test(): - os.makedirs(os.path.dirname(args.testOutPatt), exist_ok=True) - train_set = UpsamplingDataset( - '.', 'input/out_view_%04d.png', None, color=args.color) - training_data_loader = FastDataLoader(dataset=train_set, - batch_size=args.testBatchSize, - shuffle=False, - drop_last=False) - trainer = Solver(args, training_data_loader, training_data_loader, - SummaryWriter(run_dir)) - trainer.build_model(3 if args.color == color.RGB else 1) - netio.load(args.test, trainer.model) - for idx, input, _ in training_data_loader: - if args.color == color.YCbCr: - output_y = trainer.model(input[:, -1:]) - output_cbcr = nn_f.upsample(input[:, 0:2], scale_factor=2) - output = color.ycbcr2rgb(torch.cat([output_cbcr, output_y], -3)) - else: - output = trainer.model(input) - img.save(output, args.testOutPatt % idx) - - -def main(): - if (args.test): - test() - else: - train() - - -if __name__ == '__main__': - main() diff --git a/upsampling/upsampling_dataset.py b/upsampling/upsampling_dataset.py deleted file mode 100644 index f52d643..0000000 --- a/upsampling/upsampling_dataset.py +++ /dev/null @@ -1,68 +0,0 @@ -import os -import torch -import torchvision.transforms.functional as trans_f -from utils import device -from utils import color -from utils import img - - -class UpsamplingDataset(torch.utils.data.dataset.Dataset): - """ - Dataset for upsampling task - - """ - - def __init__(self, data_dir: str, input_patt: str, gt_patt: str, - c: int, load_once: bool = True): - """ - Initialize dataset for upsampling task - - :param data_dir: directory of dataset - :param input_patt: file pattern for input (low resolution) images - :param gt_patt: file pattern for ground truth (high resolution) images - :param load_once: load all samples to current device at once to accelerate - training, suitable for small dataset - :param load_gt: whether to load ground truth images - """ - self.input_patt = os.path.join(data_dir, input_patt) - self.gt_patt = os.path.join(data_dir, gt_patt) if gt_patt != None else None - self.n = len(list(filter( - lambda file_name: os.path.exists(file_name), - [self.input_patt % i for i in range( - len(os.listdir(os.path.dirname(self.input_patt))))] - ))) - self.load_once = load_once - self.load_gt = self.gt_patt != None - self.color = c - self.input = img.load([self.input_patt % i for i in range(self.n)]) \ - .to(device.default()) if self.load_once else None - self.gt = img.load([self.gt_patt % i for i in range(self.n)]) \ - .to(device.default()) if self.load_once and self.load_gt else None - if self.color == color.GRAY: - self.input = trans_f.rgb_to_grayscale(self.input) - self.gt = trans_f.rgb_to_grayscale(self.gt) \ - if self.gt != None else None - elif self.color == color.YCbCr: - self.input = color.rgb2ycbcr(self.input) - self.gt = color.rgb2ycbcr(self.gt) if self.gt != None else None - - def __len__(self): - return self.n - - def __getitem__(self, idx): - if self.load_once: - return idx, self.input[idx], self.gt[idx] if self.load_gt else False - if isinstance(idx, torch.Tensor): - input = img.load([self.input_patt % i for i in idx]) - gt = img.load([self.gt_patt % i for i in idx]) if self.load_gt else False - else: - input = img.load([self.input_patt % idx]) - gt = img.load([self.gt_patt % idx]) if self.load_gt else False - if self.color == color.GRAY: - input = trans_f.rgb_to_grayscale(input) - gt = trans_f.rgb_to_grayscale(gt) if isinstance(gt, torch.Tensor) else False - return idx, input, gt - elif self.color == color.YCbCr: - input = color.rgb2ycbcr(input) - gt = color.rgb2ycbcr(gt) if isinstance(gt, torch.Tensor) else False - return idx, input, gt \ No newline at end of file diff --git a/utils/args.py b/utils/args.py new file mode 100644 index 0000000..86f4e71 --- /dev/null +++ b/utils/args.py @@ -0,0 +1,80 @@ +from operator import countOf +from types import UnionType +from typing_extensions import Self +from configargparse import ArgumentParser, Namespace + +from .types import * + + +class BaseArgs(Namespace): + + @property + def defaults(self) -> dict[str, Any]: + return { + key: getattr(self.__class__, key) + for key in self.__annotations__ if hasattr(self.__class__, key) + } + + def __init__(self, **kwargs) -> None: + super().__init__(**self.defaults | kwargs) + + def merge_with(self, dict: dict[str, Any]) -> Self: + return self.__class__(**vars(self) | dict) + + def parse(self, config_path: PathLike = None, debug: bool = False) -> Self: + parser = ArgumentParser(default_config_files=[f"{config_path}"] if config_path else []) + self.setup_parser(parser, debug) + return parser.parse_known_args(namespace=self)[0] + + def setup_parser(self, parser: ArgumentParser, debug: bool = False): + def build_debug_str(key: str, params_for_parser: dict[str, Any], prefix="parser") -> str: + def to_str(value): return value.__name__ if isinstance(value, Type) else ( + f"\"{value}\"" if isinstance(value, str) else value.__str__()) + params_str = ", ".join([ + f"{name}={to_str(value)}" for name, value in params_for_parser.items() + ]) + return f"{prefix}.add_argument(\"--{key}\", {params_str})" + + def add_argument(parser: ArgumentParser, key: str, type: Type, required: bool, **kwargs): + params = {} + if type == bool: + bool_group = parser.add_mutually_exclusive_group() + bool_group.add_argument(f"--{key}", action="store_true") + bool_group.add_argument(f"--no-{key}", action="store_false", dest=key) + if debug: + print("bool_group = parser.add_mutually_exclusive_group()") + print(build_debug_str(key, {"action": "store_true"}, "bool_group")) + print(build_debug_str(f"no-{key}", {"action": "store_false", "dest": key}, + "bool_group")) + else: + params["type"] = type + if "nargs" in kwargs: + params["nargs"] = kwargs["nargs"] + if "default" in kwargs: + params["default"] = kwargs["default"] + elif required: + params["required"] = True + parser.add_argument(f"--{key}", **params) + if debug: + print(build_debug_str(key, params)) + + for key, arg_type in self.__annotations__.items(): + required = True + kwargs = {} + if isinstance(arg_type, UnionType): + if len(arg_type.__args__) != 2 or countOf(arg_type.__args__, type(None)) != 1: + raise ValueError(f"{key} cannot be union of two or more different types") + arg_type = arg_type.__args__[0] if arg_type.__args__[1] == type(None) \ + else arg_type.__args__[1] + required = False + if getattr(arg_type, "__origin__", None) == list: + arg_type = arg_type.__args__[0] + kwargs["nargs"] = "*" + elif getattr(arg_type, "__origin__", None) == tuple: + arg_type = arg_type.__args__[0] + if any([arg != arg_type for arg in arg_type.__args__]): + raise ValueError(f"{key} cannot be tuple of different types") + kwargs["nargs"] = len(arg_type.__args__) + if hasattr(self, key): + kwargs["default"] = getattr(self, key) + add_argument(parser, key, arg_type, required, **kwargs) diff --git a/utils/colmap_read_model.py b/utils/colmap_read_model.py index 4acaa8c..ad614f5 100644 --- a/utils/colmap_read_model.py +++ b/utils/colmap_read_model.py @@ -257,7 +257,7 @@ def read_points3d_binary(path_to_model_file): return points3D -def read_model(path, ext): +def read_model(path, ext) -> tuple[dict[int, Camera], dict[int, Image], dict[int, Point3D]]: if ext == ".txt": cameras = read_cameras_text(os.path.join(path, "cameras" + ext)) images = read_images_text(os.path.join(path, "images" + ext)) diff --git a/utils/config.py b/utils/config.py new file mode 100644 index 0000000..1e98b19 --- /dev/null +++ b/utils/config.py @@ -0,0 +1,30 @@ +import json5 +from .types import * + +__all__ = ["load_from_json", "get_type_and_args"] + +def load_from_json(json_path: PathLike) -> dict[str, Any]: + try: + with Path(json_path).open() as fp: + config: dict[str, Any] = json5.load(fp) + except Exception: + raise ValueError(f"{json_path} is not a valid json file") + if "parent" in config: + parent_config = load_from_json((json_path.parent / config.pop("parent")).with_suffix(".json")) + config["model"][1] = parent_config["model"][1] | config["model"][1] + config["train"][1] = parent_config["train"][1] | config["train"][1] + return config + + +def get_type_and_args(config_item: dict[str, Any] | list | str, default_type=None, default_args={}) -> tuple[str, dict[str, Any]]: + match config_item: + case None: + return default_type, default_args + case str() as type_name: + return type_name, default_args + case dict() as args: + return default_type, default_args | args + case str() as type_name, dict() as args: + return type_name, default_args | args + case _: + raise ValueError("\"config_item\" is invalid") diff --git a/utils/env.py b/utils/env.py index 05146f0..b2aac50 100644 --- a/utils/env.py +++ b/utils/env.py @@ -1,10 +1,12 @@ -env = None +env = {} -def get_env(): - return env +def get(key: str): + return env.get(key) +def get_all() -> dict: + return env -def set_env(new_env: dict): +def set(**kwargs): global env - env = new_env + env |= kwargs diff --git a/utils/export.py b/utils/export.py new file mode 100644 index 0000000..d15ecf7 --- /dev/null +++ b/utils/export.py @@ -0,0 +1,53 @@ +import torch +import itertools +from os import PathLike +from typing import List, Dict + +from .nn import Module + + +class ModelExporter(object): + inputs: dict[str, list[int]] + output_names: list[str] + module: Module + + @property + def input_names(self) -> list[str]: + return list(self.inputs.keys()) + + @property + def module(self) -> Module: + return self.fn.__self__ + + def __init__(self, fn, *outputs: str, **inputs: list[int]) -> None: + super().__init__() + self.inputs = inputs + self.output_names = list(outputs) + self.fn = fn + + def prepare_inputs(self, batch_size: int = None): + return tuple( + torch.rand(batch_size or 1, *size, device=self.module.device) + for size in self.inputs.values() + ) + + def export_onnx(self, path: PathLike, batch_size: int = None, **kwargs): + dynamic_axes = { + name: {0: "batch_size"} + for name in itertools.chain(self.input_names, self.output_names) + } if not batch_size else None + + # Replace module's forward method with target method and recover later + self.module.forward = self.fn + kwargs = { + "export_params": True, # store the trained parameter weights inside the model file + "opset_version": 10, # the ONNX version to export the model to + "do_constant_folding": True, # whether to execute constant folding for optimization + **kwargs + } + torch.onnx.export(self.module, self.prepare_inputs(batch_size), path, + input_names=self.input_names, # the model's input names + output_names=self.output_names, # the model's output names + dynamic_axes=dynamic_axes, # variable length axes + **kwargs) + self.module.forward = self.module._forward diff --git a/utils/geometry.py b/utils/geometry.py index 527ac4a..f9ce34c 100644 --- a/utils/geometry.py +++ b/utils/geometry.py @@ -3,7 +3,6 @@ # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. -from typing import Union import numpy as np import torch import torch.nn.functional as F @@ -215,7 +214,7 @@ def pruning_points(feats, points, scores, depth=0, th=0.5): return feats, points -def offset_points(point_xyz: torch.Tensor, half_voxel: Union[torch.Tensor, int, float] = 1, +def offset_points(point_xyz: torch.Tensor, half_voxel: torch.Tensor | int | float = 1, offset_only: bool = False, bits: int = 2) -> torch.Tensor: """ [summary] diff --git a/utils/img.py b/utils/img.py index 3a93b12..3786ffd 100644 --- a/utils/img.py +++ b/utils/img.py @@ -1,13 +1,13 @@ import os -from pathlib import Path import shutil import torch +import uuid import matplotlib.pyplot as plt import numpy as np import torch.nn.functional as nn_f -from typing import List, Tuple, Union -from . import misc -from . import math +from . import misc, math +from .types import * + def is_image_file(filename): """ @@ -19,7 +19,7 @@ def is_image_file(filename): return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg"]) -def np2torch(img, permute=True): +def np2torch(img: np.ndarray, permute: bool = True) -> torch.Tensor: """ Convert numpy-images(s) to torch-image(s), permute channels dim if `permute=True` @@ -28,8 +28,7 @@ def np2torch(img, permute=True): """ batch_input = len(img.shape) == 4 if permute: - t = torch.from_numpy(np.transpose( - img, [0, 3, 1, 2] if batch_input else [2, 0, 1])) + t = torch.from_numpy(np.transpose(img, [0, 3, 1, 2] if batch_input else [2, 0, 1])) else: t = torch.from_numpy(img) if not batch_input: @@ -76,49 +75,51 @@ def load_seq(path: str, n: int, permute=True, with_alpha=False) -> torch.Tensor: return load([path % i for i in range(n)], permute=permute, with_alpha=with_alpha) -def save(input: torch.Tensor, *paths: Union[str, Path, List[Union[str, Path]]]): +def save(input: torch.Tensor | np.ndarray, *paths: PathLike | list[PathLike]): """ Save one or multiple torch-image(s) to `paths` - :param input `torch.Tensor`: torch-image(s) to save + :param input `Tensor|ndarray`: torch-image(s) to save :param *paths `str...`: paths to save torch-image(s) to :raises `ValueError`: if number of paths does not match batches of input image(s) """ new_paths = [] for path in paths: new_paths += [path] if isinstance(path, (str, Path)) else list(path) - if len(input.size()) < 4: + if len(input.shape) < 4: input = input[None] - if input.size(0) != len(new_paths): + if input.shape[0] != len(new_paths): raise ValueError - np_img = torch2np(input) + np_img = torch2np(input) if isinstance(input, torch.Tensor) else input if np_img.dtype.kind == 'f': np_img = np.clip(np_img, 0, 1) + if np_img.shape[-1] == 1: + np_img = np.repeat(np_img, 3, axis=-1) if not np_img.flags['C_CONTIGUOUS']: np_img = np.ascontiguousarray(np_img) for i, path in enumerate(new_paths): plt.imsave(path, np_img[i]) -def save_seq(input: torch.Tensor, path: Union[str, Path]): +def save_seq(input: torch.Tensor, path: str | Path): n = 1 if len(input.size()) <= 3 else input.size(0) return save(input, [str(path) % i for i in range(n)]) -def plot(input: torch.Tensor, *, ax: plt.Axes = None): +def plot(input: torch.Tensor | np.ndarray, *, ax: plt.Axes = None): """ Plot a torch-image using matplotlib :param input `Tensor(HW|[B]CHW|[B]HWC)`: 2D, 3D or 4D torch-image(s) :param ax `plt.Axes`: (optional) specify the axes to plot image """ - im = torch2np(input) + im = torch2np(input) if isinstance(input, torch.Tensor) else input if len(im.shape) == 4: im = im[0] return plt.imshow(im) if ax is None else ax.imshow(im) -def save_video(frames: torch.Tensor, path: Union[str, Path], fps: int, +def save_video(frames: torch.Tensor, path: str | Path, fps: int, repeat: int = 1, pingpong: bool = False): """ Encode and save a sequence of frames as video file @@ -136,14 +137,14 @@ def save_video(frames: torch.Tensor, path: Union[str, Path], fps: int, frames = frames.expand(repeat, -1, -1, -1, -1).flatten(0, 1) path = Path(path) - tempdir = Path('/dev/shm/dvs_tmp/video') - inferout = tempdir / path.stem / f"%04d.bmp" - os.makedirs(inferout.parent, exist_ok=True) - os.makedirs(path.parent, exist_ok=True) + tempdir = Path(f'/dev/shm/dvs_tmp/video/{uuid.uuid4().hex}') + temp_frame_files = tempdir / f"%04d.bmp" + path.parent.mkdir(parents=True, exist_ok=True) + tempdir.mkdir(parents=True, exist_ok=True) - save_seq(frames, inferout) - os.system(f'ffmpeg -y -r {fps:d} -i {inferout} -c:v libx264 {path}') - shutil.rmtree(inferout.parent) + save_seq(frames, temp_frame_files) + os.system(f'ffmpeg -y -r {fps:d} -i {temp_frame_files} -c:v libx264 {path}') + shutil.rmtree(tempdir) def horizontal_shift(input: torch.Tensor, offset: int, dim=-1) -> torch.Tensor: @@ -165,7 +166,7 @@ def horizontal_shift(input: torch.Tensor, offset: int, dim=-1) -> torch.Tensor: return shifted -def translate(input: torch.Tensor, offset: Tuple[float, float]) -> torch.Tensor: +def translate(input: torch.Tensor, offset: tuple[float, float]) -> torch.Tensor: theta = torch.tensor([ [1, 0, -offset[0] / input.size(-1) * 2], [0, 1, -offset[1] / input.size(-2) * 2] diff --git a/utils/interact.py b/utils/interact.py index b2a7d3d..7a3b18a 100644 --- a/utils/interact.py +++ b/utils/interact.py @@ -62,7 +62,7 @@ def input_ex(prompt, *actions, default=None): return s -def input_enum(prompt, complete_list: List[str], *, err_msg: str, default=None): +def input_enum(prompt, complete_list: list[str], *, err_msg: str, default=None): readline.set_completer(make_completer(complete_list)) prompt_default = '(Default: %s) ' % default if default != None else '' while True: diff --git a/utils/logging.py b/utils/logging.py new file mode 100644 index 0000000..56c1857 --- /dev/null +++ b/utils/logging.py @@ -0,0 +1,25 @@ +import sys +from logging import * +from pathlib import Path + + +enable_logging = False + +def _log_exception(exc_type, exc_value, exc_traceback): + if not issubclass(exc_type, KeyboardInterrupt): + exception(exc_value, exc_info=(exc_type, exc_value, exc_traceback)) + sys.__excepthook__(exc_type, exc_value, exc_traceback) + + +def initialize(path: Path): + global enable_logging + basicConfig(format='%(asctime)s[%(levelname)s] %(message)s', level=INFO, + filename=path, filemode='a' if path.exists() else 'w') + sys.excepthook = _log_exception + enable_logging = True + + +def print_and_log(msg: str): + print(msg) + if enable_logging: + info(msg) diff --git a/utils/loss.py b/utils/loss.py index 3f6009f..5705ad5 100644 --- a/utils/loss.py +++ b/utils/loss.py @@ -4,7 +4,7 @@ from torch import nn class CombinedLoss(nn.Module): - def __init__(self, loss_modules: List[nn.Module], weights: List[float]): + def __init__(self, loss_modules: list[nn.Module], weights: list[float]): super().__init__() self.loss_modules = nn.ModuleList(loss_modules) self.weights = weights diff --git a/loss/__init__.py b/utils/loss/__init__.py similarity index 53% rename from loss/__init__.py rename to utils/loss/__init__.py index a4eecbc..4424a74 100644 --- a/loss/__init__.py +++ b/utils/loss/__init__.py @@ -1,5 +1,6 @@ from torch.nn import L1Loss, MSELoss from torch.nn.functional import l1_loss, mse_loss -from .ssim import SSIM +from .ssim import ssim, SSIM from .perc_loss import VGGPerceptualLoss -from .cauchy import cauchy_loss, CauchyLoss \ No newline at end of file +from .cauchy import cauchy_loss, CauchyLoss +from .lpips import lpips_loss, LpipsLoss \ No newline at end of file diff --git a/loss/cauchy.py b/utils/loss/cauchy.py similarity index 55% rename from loss/cauchy.py rename to utils/loss/cauchy.py index 5dd213e..44e5a05 100644 --- a/loss/cauchy.py +++ b/utils/loss/cauchy.py @@ -1,16 +1,18 @@ import torch -def cauchy_loss(input: torch.Tensor, target: torch.Tensor = None, *, s = 1.0): +def cauchy_loss(input: torch.Tensor, target: torch.Tensor = None, *, s=1.0, sum=False): x = input - target if target is not None else input - return (s * x * x * 0.5 + 1).log().mean() + y = (s * x * x * 0.5 + 1).log() + return y.sum() if sum else y.mean() class CauchyLoss(torch.nn.Module): - def __init__(self, s = 1.0): + def __init__(self, s=1.0, sum=False): super().__init__() self.s = s + self.sum = sum def forward(self, input: torch.Tensor, target: torch.Tensor = None): - return cauchy_loss(input, target, s=self.s) + return cauchy_loss(input, target, s=self.s, sum=self.sum) diff --git a/utils/loss/lpips.py b/utils/loss/lpips.py new file mode 100644 index 0000000..4f0f242 --- /dev/null +++ b/utils/loss/lpips.py @@ -0,0 +1,22 @@ +import torch +from lpips import LPIPS + + +class LpipsLoss(torch.nn.Module): + + def __init__(self, net: str = "alex") -> None: + super().__init__() + self.fn = LPIPS(net) + + def forward(self, input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + return self.fn(input * 2. - 1., target * 2. - 1.) + + +default_loss_fn = None + + +def lpips_loss(input: torch.Tensor, target: torch.Tensor) -> torch.Tensor: + global default_loss_fn + if default_loss_fn is None: + default_loss_fn = LpipsLoss().to(input.device) + return default_loss_fn(input, target) diff --git a/loss/perc_loss.py b/utils/loss/perc_loss.py similarity index 100% rename from loss/perc_loss.py rename to utils/loss/perc_loss.py diff --git a/loss/ssim.py b/utils/loss/ssim.py similarity index 100% rename from loss/ssim.py rename to utils/loss/ssim.py diff --git a/utils/math.py b/utils/math.py index 9f69a61..d7f0452 100644 --- a/utils/math.py +++ b/utils/math.py @@ -1,8 +1,12 @@ +import numpy as np import torch +from typing import TypeVar from math import * +TensorType = TypeVar('TensorType', torch.Tensor, np.ndarray) + huge = 1e10 -tiny = 1e-6 +tiny = 1e-5 def expected_sin(x: torch.Tensor, x_var: torch.Tensor): @@ -93,3 +97,12 @@ def cylinder_to_gaussian(d: torch.Tensor, t0: float, t1: float, radius: float, d r_var = radius**2 / 4 t_var = (t1 - t0)**2 / 12 return lift_gaussian(d, t_mean, t_var, r_var, diag) + +def lerp(t, range): + return t * (range[1] - range[0]) + range[0] + +def normalize(value: TensorType) -> TensorType: + if isinstance(value, torch.Tensor): + return value / torch.norm(value, dim=-1, keepdim=True) + else: + return value / np.linalg.norm(value, axis=-1, keepdims=True) \ No newline at end of file diff --git a/utils/mem_profiler.py b/utils/mem_profiler.py index 848d4e7..8942f48 100644 --- a/utils/mem_profiler.py +++ b/utils/mem_profiler.py @@ -1,8 +1,13 @@ -from cgitb import enable import torch from .device import * +def simple_memory_state(device: torch.device = None) -> str: + return f"PyTorch allocates {torch.cuda.memory_allocated(device)/1024/1024:.2f}MB "\ + f"(peak is {torch.cuda.max_memory_allocated(device)/1024/1024:.2f}MB) and "\ + f"reserves {torch.cuda.memory_reserved(device)/1024/1024:.2f}MB memory" + + class MemProfiler: enable = False @@ -20,8 +25,7 @@ class MemProfiler: else: delta_str = '' print(f'{prefix}: {delta_str}currently PyTorch allocates {torch.cuda.memory_allocated(device)/1024/1024:.2f}MB and ' - f'reserves {torch.cuda.memory_reserved(device)/1024/1024:.2f}MB memory') - + f'reserves {torch.cuda.memory_reserved(device)/1024/1024:.2f}MB memory') def __init__(self, name, device=None) -> None: self.name = name @@ -33,4 +37,4 @@ class MemProfiler: return self def __exit__(self, exc_type, exc_val, exc_traceback): - MemProfiler.print_memory_stats(self.name, self.alloc0, self.device) \ No newline at end of file + MemProfiler.print_memory_stats(self.name, self.alloc0, self.device) diff --git a/utils/misc.py b/utils/misc.py index b520497..ffbe7de 100644 --- a/utils/misc.py +++ b/utils/misc.py @@ -1,15 +1,12 @@ -from itertools import repeat -import logging -from pathlib import Path import re -import shutil -import torch import glm import csv import numpy as np -from typing import List, Tuple, Union -from torch.types import Number +from typing import SupportsFloat +from itertools import repeat + from . import math +from .types import * from .device import * @@ -46,23 +43,26 @@ def glm2torch(val) -> torch.Tensor: return torch.from_numpy(np.array(val)) -def meshgrid(*size: int, normalize: bool = False, swap_dim: bool = False, device: torch.device = None) -> torch.Tensor: +def grid2d(rows: int, cols: int = None, normalize: bool = False, indexing: str = "xy", + device: torch.device = None) -> torch.Tensor: """ - Generate a mesh grid - - :param *size: grid size (rows, columns) - :param normalize: return coords in normalized space? defaults to False - :param swap_dim: if True, return coords in (y, x) order, defaults to False - :return: rows x columns x 2 tensor + Generate a 2D grid + + :param rows `int`: number of rows + :param cols `int`: number of columns + :param normalize `bool`: whether return coords in normalized space, defaults to False + :param indexing `str`: specify the order of returned coordinates. Optional values are "xy" and "ij", + defaults to "xy" + :return `Tensor(R, C, 2)`: the coordinates of the grid """ - if len(size) == 1: - size = (size[0], size[0]) - y, x = torch.meshgrid(torch.arange(size[0], device=device), - torch.arange(size[1], device=device)) + if cols is None: + cols = rows + i, j = torch.meshgrid(torch.arange(rows, device=device), + torch.arange(cols, device=device), indexing="ij") # (R, C) if normalize: - x.div_(size[1] - 1.) - y.div_(size[0] - 1.) - return torch.stack([y, x], 2) if swap_dim else torch.stack([x, y], 2) + i.div_(rows - 1) + j.div_(cols - 1) + return torch.stack([j, i] if indexing == "xy" else [i, j], 2) # (R, C, 2) def get_angle(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: @@ -70,52 +70,6 @@ def get_angle(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor: return angle -def broadcast_cat(input: torch.Tensor, - s: Union[Number, List[Number], torch.Tensor], - dim=-1, - append: bool = True) -> torch.Tensor: - """ - Concatenate a tensor with a scalar along last dimension - - :param input `Tensor(..., N)`: input tensor - :param s: scalar - :param append: append or prepend the scalar to input tensor - :return: `Tensor(..., N+1)` - """ - if dim != -1: - raise NotImplementedError('currently only support the last dimension') - if isinstance(s, torch.Tensor): - x = s - elif isinstance(s, list): - x = torch.tensor(s, dtype=input.dtype, device=input.device) - else: - x = torch.tensor([s], dtype=input.dtype, device=input.device) - expand_shape = list(input.size()) - expand_shape[dim] = -1 - x = x.expand(expand_shape) - return torch.cat([input, x] if append else [x, input], dim) - - -def save_2d_tensor(path, x): - with open(path, 'w', encoding='utf-8', newline='') as f: - csv_writer = csv.writer(f) - for i in range(x.shape[0]): - csv_writer.writerow(x[i]) - - -def view_like(input: torch.Tensor, ref: torch.Tensor) -> torch.Tensor: - """ - Reshape input to be the same size as ref except the last dimension - - :param input `Tensor(..., C)`: input tensor - :param ref `Tensor(B.., *): reference tensor - :return `Tensor(B.., C)`: reshaped tensor - """ - out_shape = list(ref.size()) - out_shape[-1] = -1 - return input.view(out_shape) - - def format_time(seconds): days = int(seconds / 3600 / 24) seconds = seconds - days * 3600 * 24 @@ -142,24 +96,17 @@ def format_time(seconds): return output -def print_and_log(s): - print(s) - logging.info(s) - - -def masked_scatter(mask: torch.Tensor, value: torch.Tensor, initial: Union[torch.Tensor, Number] = 0): +def masked_scatter(mask: torch.Tensor, value: torch.Tensor, initial: torch.Tensor | SupportsFloat = 0): """ Extend PyTorch's built-in `masked_scatter` function :param mask `Tensor(M...)`: the boolean mask :param value `Tensor(N, D...)`: the value to fill in with, should have at least as many elements - as the number of ones in `mask` - :param destination `Tensor(M..., D...)`: (optional) the destination tensor to fill, - if not specified, a new tensor filled with - `empty_value` will be created and used as destination - :param empty_value `Number`: the initial elements in the newly created destination tensor, - defaults to 0 - :return `Tensor(M..., D...)`: the destination tensor after filled + as the number of ones in `mask` + :param initial `Tensor(M..., D...)|Number`: the initial values. Could be a tensor or a number. + If specified by a number, a new tensor filled with the number will be created as the initial values. + Defaults to 0 + :return `Tensor(M..., D...)`: the result tensor """ M_ = mask.size() D_ = value.size()[1:] @@ -181,28 +128,40 @@ def rename_seqs_with_offset(dir: Path, file_pattern: str, offset: int): (dir / (file_pattern % i)).rename(dir / (file_pattern % (i + offset))) -def merge(*args: dict, **kwargs) -> dict: - ret_args = {} - for arg in args: - ret_args.update(arg) - ret_args.update(kwargs) - return ret_args - -def union(*tensors: torch.Tensor) -> torch.Tensor: - return torch.cat(tensors, dim=-1) - -def split(tensor: torch.Tensor, *sizes: int) -> Tuple[torch.Tensor, ...]: +def calculate_autosize(max_size: int, *sizes: int) -> tuple[list[int], int]: sizes = list(sizes) - tot_size = sum(sizes) + sum_size = sum(sizes) for i in range(len(sizes)): if sizes[i] == -1: - sizes[i] = tensor.shape[-1] - tot_size - 1 - tot_size = tensor.shape[-1] + sizes[i] = max_size - sum_size - 1 + sum_size = max_size break - if tot_size > tensor.shape[-1]: - raise ValueError("The total number of sizes is larger than the last dim of input tensor") + if sum_size > max_size: + raise ValueError("The sum of 'sizes' exceeds 'max_size'") if any([size < 0 for size in sizes]): - raise ValueError("Only one element in sizes could be -1") + raise ValueError( + "Only one of the 'sizes' could be -1 and all others must be positive or zero") + return sizes, sum_size + + +def union(*tensors: torch.Tensor | SupportsFloat) -> torch.Tensor: + try: + first_tensor = next((item for item in tensors if isinstance(item, torch.Tensor))) + except StopIteration: + raise ValueError("Arguments should contain at least one tensor") + tensors = [ + item if isinstance(item, torch.Tensor) else first_tensor.new_tensor([item]) + for item in tensors + ] + if any(item.device != first_tensor.device or item.dtype != first_tensor.dtype + for item in tensors): + raise ValueError("All tensors should have same dtype and locate on same device") + shape = torch.broadcast_shapes(*(item.shape[:-1] for item in tensors)) + return torch.cat([item.expand(*shape, -1) for item in tensors], dim=-1) + + +def split(tensor: torch.Tensor, *sizes: int) -> tuple[torch.Tensor, ...]: + sizes, tot_size = calculate_autosize(tensor.shape[-1], *sizes) if tot_size < tensor.shape[-1]: sizes = [*sizes, tensor.shape[-1] - tot_size] return torch.split(tensor, sizes, -1)[:-1] @@ -210,12 +169,28 @@ def split(tensor: torch.Tensor, *sizes: int) -> Tuple[torch.Tensor, ...]: return torch.split(tensor, sizes, -1) -def dump_tensors_to_csv(path, *tensors: torch.Tensor, open_mode = "w"): - for i in range(len(tensors)): - if len(tensors[i].shape) == 1: - tensors[i] = tensors[i][:, None] - elif len(tensors[i].shape) > 2: - tensors[i] = tensors[i].flatten(1, -1) +def dump_tensors_to_csv(path, *tensors: torch.Tensor, open_mode="w"): + data = [] + for tensor in tensors: + if len(tensor.shape) == 1: + tensor = tensor[:, None] + elif len(tensor.shape) > 2: + tensor = tensor.flatten(1, -1) + tensor_data = tensor.tolist() + if not data: + data = [ + [ + f"{value:.6e}" if isinstance(value, float) else f"{value}" + for value in tensor_data[i] + ] for i in range(len(tensor_data)) + ] + else: + for i, row in enumerate(data): + row += [ + f"{value:.6e}" if isinstance(value, float) else f"{value}" + for value in tensor_data[i] + ] + with open(path, open_mode) as fp: csv_writer = csv.writer(fp) - csv_writer.writerows(torch.cat(tensors, -1).tolist()) \ No newline at end of file + csv_writer.writerows(data) diff --git a/utils/netio.py b/utils/netio.py index c6b830b..3ddbcf7 100644 --- a/utils/netio.py +++ b/utils/netio.py @@ -1,7 +1,6 @@ -from typing import List, Tuple, Union -import torch import numpy as np -from pathlib import Path + +from utils.types import * checkpoint_file_prefix = "checkpoint_" @@ -12,8 +11,7 @@ def get_checkpoint_filename(epoch): return f"{checkpoint_file_prefix}{epoch}{checkpoint_file_suffix}" -def list_epochs(directory: Union[str, Path]) -> List[int]: - directory = Path(directory) +def list_epochs(directory: Path) -> list[int]: epoch_list = [ int(file_path.stem[len(checkpoint_file_prefix):]) for file_path in directory.glob(get_checkpoint_filename("*")) @@ -22,20 +20,32 @@ def list_epochs(directory: Union[str, Path]) -> List[int]: return epoch_list -def load_checkpoint(path: Union[str, Path]) -> Tuple[dict, Path]: - path = Path(path) +def find_checkpoint(path: Path) -> Path | None: if path.suffix != checkpoint_file_suffix: existed_epochs = list_epochs(path) - if len(existed_epochs) == 0: - raise FileNotFoundError(f"{path} does not contain checkpoint files") - path = path / get_checkpoint_filename(existed_epochs[-1]) + return path / get_checkpoint_filename(existed_epochs[-1]) if existed_epochs else None + return path if path.exists() else None + + +def load_checkpoint(path: Path) -> tuple[dict, Path]: + path = find_checkpoint(path) + if path is None: + raise FileNotFoundError(f"{path} does not contain checkpoint files") return torch.load(path), path -def save_checkpoint(states_dict: dict, directory: Union[str, Path], epoch: int): +def save_checkpoint(states_dict: dict, directory: Path, epoch: int): torch.save(states_dict, Path(directory) / get_checkpoint_filename(epoch)) +def clean_checkpoint(directory: Path, keep_interval: int): + (directory / '_misc').mkdir(exist_ok=True) + for file in directory.glob(f"{checkpoint_file_prefix}*{checkpoint_file_suffix}"): + i = int(file.name[len(checkpoint_file_prefix):-len(checkpoint_file_suffix)]) + if i % keep_interval != 0: + file.rename(directory / "_misc" / file.name) + + def log(model): model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) diff --git a/__init__.py b/utils/nn.py similarity index 100% rename from __init__.py rename to utils/nn.py diff --git a/utils/nn/__init__.py b/utils/nn/__init__.py new file mode 100644 index 0000000..c749317 --- /dev/null +++ b/utils/nn/__init__.py @@ -0,0 +1,3 @@ +from .fn import * +from .linear import * +from .module import * \ No newline at end of file diff --git a/modules/generic/fn.py b/utils/nn/fn.py similarity index 92% rename from modules/generic/fn.py rename to utils/nn/fn.py index 2b5be4b..d2cfbc8 100644 --- a/modules/generic/fn.py +++ b/utils/nn/fn.py @@ -1,6 +1,8 @@ import torch import torch.nn.functional as F +__all__ = ["Sine", "Mise"] + class Sine(torch.nn.Module): def __init__(self): diff --git a/utils/nn/linear.py b/utils/nn/linear.py new file mode 100644 index 0000000..021257b --- /dev/null +++ b/utils/nn/linear.py @@ -0,0 +1,118 @@ +from .weight_init import * +from .fn import * +from .module import Module + +__all__ = ["BatchLinear", "FcLayer", "FcBlock"] + + +class BatchLinear(nn.Linear): + ''' + A linear meta-layer that can deal with batched weight matrices and biases, + as for instance output by a hypernetwork. + ''' + __doc__ = nn.Linear.__doc__ + + def forward(self, input, params=None): + bias = params.get('bias', None) + weight = params['weight'] + + output = input.matmul(weight.permute(*[i for i in range(len(weight.shape) - 2)], -1, -2)) + output += bias.unsqueeze(-2) + return output + + +class FcLayer(Module): + + def __init__(self, in_chns: int, out_chns: int, act: str = 'linear', with_ln: bool = False): + """ + Initialize a full-connection layer module. This module is a wrap of torch's Linear module, + adding support for activation function and layer normalization + + :param in_chns `int`: channels of input + :param out_chns `int`: channels of output + :param act `str`: the activation function, defaults to `"linear"` + :param with_ln `bool`: whether to apply layer normalization to the output, defaults to `False` + """ + super().__init__() + nls_and_inits = { + 'sine': (Sine, init_weights_sine), + 'relu': (nn.ReLU, init_weights_relu), + 'leakyrelu': (nn.LeakyReLU, init_weights_leakyrelu), + 'sigmoid': (nn.Sigmoid, init_weights_xavier), + 'tanh': (nn.Tanh, init_weights_xavier), + 'selu': (nn.SELU, init_weights_selu), + 'softplus': (nn.Softplus, init_weights_trunc_normal), + 'elu': (nn.ELU, init_weights_elu), + 'softmax': (nn.Softmax, init_weights_softmax), + 'logsoftmax': (nn.LogSoftmax, init_weights_softmax), + 'mise': (Mise, init_weights_xavier), + 'linear': (nn.Identity, init_weights_xavier) + } + nl_cls, weight_init_fn = nls_and_inits[act] + + self.net = [nn.Linear(in_chns, out_chns)] + if with_ln: + self.net.append(nn.LayerNorm([out_chns])) + self.net.append(nl_cls()) + self.net = nn.Sequential(*self.net) + self.net.apply(weight_init_fn) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + return self.net(x) + + def __repr__(self) -> str: + s = f"{self.net[0].in_features} -> {self.net[0].out_features}, "\ + + ", ".join(module.__class__.__name__ for module in self.net[1:]) + return f"{self._get_name()}({s})" + + +class FcBlock(Module): + + def __init__(self, in_chns: int, out_chns: int, nl: int, nf: int, skips: list[int] = [], + act: str = 'relu', out_act: str = 'linear', with_ln: bool = False): + """ + Initialize a full-connection block module + + :param in_chns `int`: channels of input + :param out_chns `int`: channels of output, if non-zero, an output layer (`nf` -> `out_chns`) + will be appended, so the block will have `n_layers + 1` layers + :param nl `int`: number of hidden layers + :param nf `int`: number of features in each hidden layer + :param skips `[int]`: create skip connections from input to hidden layers in this list + :param act `str`: the activation function for hidden layers, defaults to `"relu"` + :param out_act `str`: the activation function for the output layer defaults to `"linear"` + :param with_ln `bool`: whether to apply the layer normalization to each hidden layer's output, + defaults to `False` + """ + super().__init__() + self.skips = skips + self.layers = nn.ModuleList([ + FcLayer(in_chns, nf, act, with_ln=with_ln)] + [ + FcLayer(nf + (i in skips) * in_chns, nf, act, with_ln=with_ln) + for i in range(nl - 1) + ]) + if out_chns: + self.layers.append(FcLayer(nf, out_chns, out_act, with_ln=False)) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + h = x + for i, layer in enumerate(self.layers): + h = layer(h) + if i in self.skips: + h = torch.cat([x, h], -1) + return h + + def __repr__(self): + lines = [] + for i, layer in enumerate(self.layers): + mod_str = repr(layer) + mod_str = nn.modules.module._addindent(mod_str, 2) + if i - 1 in self.skips: + mod_str += " <-" + lines.append(f"({i}): {mod_str}") + + main_str = self._get_name() + '(' + if lines: + main_str += '\n ' + '\n '.join(lines) + '\n' + main_str += ')' + return main_str diff --git a/utils/module.py b/utils/nn/module.py similarity index 66% rename from utils/module.py rename to utils/nn/module.py index 0065081..92262a8 100644 --- a/utils/module.py +++ b/utils/nn/module.py @@ -1,25 +1,61 @@ import torch from collections import OrderedDict -from typing import Any, Optional, Union +from typing import Any +__all__ = ["Parameter", "Module"] -class Module(torch.nn.Module): + +Parameter = torch.nn.parameter.Parameter + + +class ModuleMeta(type): + + def __new__(cls, name, bases, attrs): + if "__call__" in attrs: + del attrs["__call__"] # remove __call__ stub + return type.__new__(cls, name, bases, attrs) + + +class Module(torch.nn.Module, metaclass=ModuleMeta): @property def cls(self) -> str: return self._get_name() - def __init__(self): + @property + def in_chns(self) -> int | dict[str, int]: + match(len(self._in_chns)): + case 0: + return 0 + case 1: + return next(self._in_chns.values().__iter__()) + return self._in_chns + + @property + def out_chns(self) -> int | dict[str, int]: + match(len(self._out_chns)): + case 0: + return 0 + case 1: + return next(self._out_chns.values().__iter__()) + return self._out_chns + + def __init__(self, in_chns: dict[str, int] = None, out_chns: dict[str, int] = None): super().__init__() self.device = torch.device("cpu") + self._in_chns = in_chns or {} + self._out_chns = out_chns or {} self._temp = OrderedDict() self._register_load_state_dict_pre_hook(self._before_load_state_dict) - @staticmethod - def create_multiple(fn, n: int) -> torch.nn.ModuleList: - return torch.nn.ModuleList([fn() for _ in range(n)]) - - def register_temp(self, name: str, value: Union[torch.Tensor, torch.nn.Module]): + def chns(self, name: str) -> int: + if name.startswith("in"): + return self._in_chns.get(name[2:], 0) + if name.startswith("out"): + return self._out_chns.get(name[3:], 0) + return self._in_chns.get(name, self._out_chns.get(name, 0)) + + def register_temp(self, name: str, value: torch.Tensor | torch.nn.Module): temp = self.__dict__.get('_temp') if temp is None: raise AttributeError("cannot assign temp before Module.__init__() call") @@ -41,17 +77,17 @@ class Module(torch.nn.Module): parameter.requires_grad = False return self - def add_module(self, name: str, module: Optional[torch.nn.Module]) -> None: + def add_module(self, name: str, module: torch.nn.Module | None) -> None: if isinstance(module, torch.nn.Module): module = module.to(self.device) return super().add_module(name, module) - def register_parameter(self, name: str, param: Optional[torch.nn.Parameter]) -> None: + def register_parameter(self, name: str, param: torch.nn.Parameter | None) -> None: if isinstance(param, torch.nn.Parameter): param = param.to(self.device) return super().register_parameter(name, param) - def register_buffer(self, name: str, tensor: Optional[torch.Tensor], persistent: bool = True) -> None: + def register_buffer(self, name: str, tensor: torch.Tensor | None, persistent: bool = True) -> None: if isinstance(tensor, torch.Tensor): tensor = tensor.to(self.device) return super().register_buffer(name, tensor, persistent=persistent) @@ -60,7 +96,7 @@ class Module(torch.nn.Module): super().to(*args, **kwargs) target_device = None try: - target_device = torch.device(kwargs['device'] if 'device' in kwargs else args[0]) + target_device = torch.device(kwargs['device'] if 'd evice' in kwargs else args[0]) except Exception: pass if target_device is not None: @@ -79,13 +115,13 @@ class Module(torch.nn.Module): self.apply(fn) return ret - def __getattr__(self, name: str) -> Union[torch.Tensor, torch.nn.Module, Any]: + def __getattr__(self, name: str) -> torch.Tensor | torch.nn.Module | Any: temp = self.__dict__.get('_temp') if temp is not None and name in temp: return temp[name] return super().__getattr__(name) - def __setattr__(self, name: str, value: Union[torch.Tensor, torch.nn.Module, Any]) -> None: + def __setattr__(self, name: str, value: torch.Tensor | torch.nn.Module | Any) -> None: if isinstance(value, (torch.Tensor, torch.nn.Module)): value = value.to(self.device) temp = self.__dict__.get('_temp') diff --git a/modules/generic/weight_init.py b/utils/nn/weight_init.py similarity index 99% rename from modules/generic/weight_init.py rename to utils/nn/weight_init.py index 919c423..95f21c1 100644 --- a/modules/generic/weight_init.py +++ b/utils/nn/weight_init.py @@ -1,7 +1,6 @@ import torch import torch.nn as nn - -from utils import math +import math def init_weights_trunc_normal(m): diff --git a/utils/perf.py b/utils/perf.py deleted file mode 100644 index 1525e36..0000000 --- a/utils/perf.py +++ /dev/null @@ -1,173 +0,0 @@ -import torch -import torch.cuda -from numpy import average -from typing import Any, Callable, Dict, List, OrderedDict, Union - - -class Perf(object): - frames: List[Dict[str, float]] - - class Node: - def __init__(self, name, parent=None) -> None: - self.name = name - self.parent = parent - self.events = [] - self.event_names = [] - self.child_nodes = [] - self.child_nodes_event_idx = [] - self.add_checkpoint("Start") - - def add_checkpoint(self, name): - event = torch.cuda.Event(enable_timing=True) - event.record() - self.events.append(event) - self.event_names.append(name) - - def add_child(self, name): - child = Perf.Node(name, self) - self.child_nodes.append(child) - self.child_nodes_event_idx.append(len(self.events)) - return child - - def close(self): - self.add_checkpoint("End") - return self.parent - - def duration(self, i0=0, i1=-1) -> float: - return self.events[i0].elapsed_time(self.events[i1]) - - def result(self, prefix: str = '') -> OrderedDict[str, float]: - path = f"{prefix}{self.name}" - res = {path: self.duration()} - j = 0 - for i in range(1, len(self.events) - 1): - event_path = f"{path}/{self.event_names[i]}" - res[event_path] = self.duration(i - 1, i) - while j < len(self.child_nodes): - if self.child_nodes_event_idx[j] > i: - break - res.update(self.child_nodes[j].result(f"{event_path}/")) - j += 1 - while j < len(self.child_nodes): - res.update(self.child_nodes[j].result(f"{path}/")) - j += 1 - return res - - def __init__(self) -> None: - super().__init__() - self.root_node = None - self.current_node = None - self.frames = [] - - def start_node(self, name): - if self.current_node is None: - self.root_node = self.current_node = Perf.Node(name) - else: - self.current_node = self.current_node.add_child(name) - - def checkpoint(self, name): - self.current_node.add_checkpoint(name) - - def end_node(self): - self.current_node = self.current_node.close() - if self.current_node is None: - torch.cuda.synchronize() - self.frames.append(self.root_node.result()) - - def get_result(self, i=None): - if i is not None: - return self.frames[i] - if len(self.frames) == 0: - return {} - res = {key: [val] for key, val in self.frames[0].items()} - for i in range(1, len(self.frames)): - for key, val in self.frames[i].items(): - res[key].append(val) - return {key: average(val) for key, val in res.items()} - - -default_perf_object = None - - -def enable_perf(): - global default_perf_object - default_perf_object = Perf() - - -class _PerfWrap(object): - def __init__(self, fn: Callable = None, name: str = None) -> None: - super().__init__() - self.fn = fn - self.name = name - - def __call__(self, *args: Any, **kwargs: Any) -> Any: - if self.fn == None and len(args) == 1 and isinstance(args[0], Callable): - self.fn = args[0] - return lambda *args, **kwargs: self(*args, **kwargs) - self.__enter__() - ret = self.fn(*args, **kwargs) - self.__exit__() - return ret - - def __enter__(self): - #print(f"Start node \"{self.name or self.fn.__qualname__}\"") - start_node(self.name or self.fn.__qualname__) - return self - - def __exit__(self, *args: Any, **kwargs: Any): - #print(f"End node \"{self.name or self.fn.__qualname__}\"") - end_node() - - -def perf(arg: Union[str, Callable]): - if isinstance(arg, str): - return _PerfWrap(name=arg) - else: - return lambda *args, **kwargs: _PerfWrap(fn=arg)(*args, **kwargs) - - -def debug_perf(fn_or_name): - if isinstance(fn_or_name, str): - name = fn_or_name - - def perf_with_name(fn): - def wrap_perf(*args, **kwargs): - node = Perf.Node(name) - ret = fn(*args, **kwargs) - node.close() - torch.cuda.synchronize() - print(f"Debug Node {name}: {node.duration():.1f}ms") - return ret - return wrap_perf - return perf_with_name - fn = fn_or_name - - def wrap_perf(*args, **kwargs): - node = Perf.Node(fn.__qualname__) - ret = fn(*args, **kwargs) - node.close() - torch.cuda.synchronize() - print(f"Debug Node {fn.__qualname__}: {node.duration():.1f}ms") - return ret - return wrap_perf - - -def start_node(name): - if default_perf_object is not None: - default_perf_object.start_node(name) - - -def end_node(): - if default_perf_object is not None: - default_perf_object.end_node() - - -def checkpoint(name): - if default_perf_object is not None: - default_perf_object.checkpoint(name) - - -def get_perf_result(i=None): - if default_perf_object is not None: - return default_perf_object.get_result(i) - return None diff --git a/utils/profile.py b/utils/profile.py new file mode 100644 index 0000000..62d24ea --- /dev/null +++ b/utils/profile.py @@ -0,0 +1,325 @@ +import os +import time +from itertools import groupby +from typing import TypeVar + +from .types import * + + +class Profiler(object): + frames: list["Profiler.ResultNode"] + + class Node: + @property + def host_duration(self) -> float: + if hasattr(self, "_host_duration"): + return self._host_duration + if not self.closed: + raise RuntimeError("Cannot get host duration of an unclosed node") + self._host_duration = (self.host_end_time - self.host_start_time) * 1000 + return self._host_duration + + @property + def device_duration(self) -> float: + if hasattr(self, "_device_duration"): + return self._device_duration + if not self.closed: + raise RuntimeError("Cannot get device duration of an unclosed node") + self._device_duration = self.device_start_event.elapsed_time( + self.device_end_event) + return self._device_duration + + def __init__(self, name, parent: "Profiler.Node" = None) -> None: + self.name = name + self.parent = parent + self.child_nodes: list[Profiler.Node] = [] + self.device_start_event = torch.cuda.Event(True) + self.device_start_event.record() + self.host_start_time = time.perf_counter() + self.closed = False + + def add_child(self, name): + if self.closed: + raise RuntimeError("Cannot add child to a closed node") + child = Profiler.Node(name, self) + self.child_nodes.append(child) + return child + + def close(self): + if self.closed: + raise RuntimeError("The node has been closed") + self.closed = True + self.host_end_time = time.perf_counter() + self.device_end_event = torch.cuda.Event(True) + self.device_end_event.record() + return self.parent + + def get_result_node(self, parent_path: str = "") -> "Profiler.ResultNode": + if not self.closed: + raise RuntimeError("Cannot get result of an unclosed node") + path = f"{parent_path}/{self.name}" + return Profiler.ResultNode( + path, [child.get_result_node(parent_path=path) for child in self.child_nodes], + host_duration=self.host_duration, device_duration=self.device_duration + ) + + def __repr__(self) -> str: + ret = f"{self.__class__.__name__} \"{self.name}\" " + if self.closed: + ret += f"[host spent {self.host_duration:2f}ms, device spent {self.device_duration:2f}ms]" + else: + ret += "[Not closed]" + + class ResultNode(object): + path: str + data: dict[str, float] + + @property + def name(self) -> str: + return os.path.split(self.path)[1] + + def __init__(self, path: str, child_nodes: list["Profiler.ResultNode"], + **data: float) -> None: + self.path = path + self.child_nodes = child_nodes + self.data = data + + def value(self, key: str) -> float: + if key.startswith("self_"): + key = key[5:] + return self.data[key] - sum([child.value(key) for child in self.child_nodes]) + return self.data[key] + + def flatten(self) -> list["Profiler.ResultNode"]: + result_list = [self] + for child in self.child_nodes: + result_list += child.flatten() + return result_list + + class ResultNodeGroup(object): + + @property + def path(self) -> str: + return self.nodes[0].path + + @property + def name(self) -> str: + return self.nodes[0].name + + def __init__(self, nodes: Iterable["Profiler.ResultNode"]) -> None: + self.nodes = list(nodes) + self.count = len(self.nodes) + + def total(self, key: str): + return sum([node.value(key) for node in self.nodes]) + + def average(self, key: str): + return self.total(key) / self.count + + class ResultNodeGroupList(list["Profiler.ResultNodeGroup"]): + def __init__(self, path: str, __iterable: Iterable["Profiler.ResultNodeGroup"]) -> None: + super().__init__(__iterable) + self.path = path + + def total_in_frame(self, key: str) -> list[float]: + return [node_group and node_group.total(key) for node_group in self] + + def average_in_frame(self, key: str) -> list[float]: + return [node_group and node_group.average(key) for node_group in self] + + def count_in_frame(self) -> list[int]: + return [node_group and node_group.count for node_group in self] + + def total(self, key: str) -> float: + return sum(filter(None, self.total_in_frame(key))) + + def count(self) -> int: + return sum(filter(None, self.count_in_frame())) + + def average_by_frame(self, key: str) -> float: + n_frames = len(list(filter(None, self))) + return self.total(key) / n_frames + + def average_by_node(self, key: str) -> float: + return self.total(key) / self.count() + + class ProfileResult(list["ResultNodeGroupList"]): + def get_index_by_path(self, path: str, start: int = 0, end: int = None) -> int: + if end is None: + end = len(self) + elif end < 0: + end = len(self) + end + for i in range(start, end): + if self[i].path == path: + return i + return -1 + + def get_report(self): + s = "Performance Report:\n" + if len(self) == 0: + s += "No available data.\n" + return s + for node_group_list in self: + parts = node_group_list.path.split("/") + s += f"{' ' * (len(parts) - 2)}{parts[-1]}: "\ + f"{node_group_list.average_by_frame('device_duration'):.2f}ms\n" + return s + + def __init__(self, warmup_frames: int = 0, record_frames: int = 0, + then: Callable[["Profiler.ProfileResult"], Any] = None) -> None: + super().__init__() + self.root_node = None + self.current_node = None + self.frames = [] + self.warmup_frames = warmup_frames + self.record_frames = record_frames + self.frame_counter = 0 + self.enabled = True + self.then_fn = then + + def enter_node(self, name): + if not self.enabled: + return + if self.current_node is None: + self.root_node = self.current_node = Profiler.Node(name) + else: + self.current_node = self.current_node.add_child(name) + + def leave_node(self): + if not self.enabled: + return + self.current_node = self.current_node.close() + if self.current_node is None: + torch.cuda.synchronize() + if self.frame_counter >= self.warmup_frames: + self.frames.append(self.root_node.get_result_node()) + self.frame_counter += 1 + if self.frame_counter >= self.warmup_frames + self.record_frames: + self.enabled = False + self.then_fn(self.get_result()) + + def get_result(self) -> "Profiler.ProfileResult": + if len(self.frames) == 0: + return Profiler.ProfileResult() + + flat_frames = [frame.flatten() for frame in self.frames] + grouped_frames = [ + [ + Profiler.ResultNodeGroup(node_iter) + for _, node_iter in groupby(frame, lambda item: item.path) + ] for frame in flat_frames + ] + profile_result = Profiler.ProfileResult( + Profiler.ResultNodeGroupList(node_group.path, [node_group]) + for node_group in grouped_frames[0] + ) + for i, frame in enumerate(grouped_frames): + if i == 0: + continue + target_head = 0 + for node_group in frame: + matched_index = profile_result.get_index_by_path(node_group.path, target_head) + if matched_index == -1: + profile_result.insert(target_head, + Profiler.ResultNodeGroupList(node_group.path, + [None] * i + [node_group])) + target_head += 1 + else: + for j in range(target_head, matched_index): + profile_result[j].append(None) + profile_result[matched_index].append(node_group) + target_head = matched_index + 1 + return profile_result + + +default_profiler = None + + +def enable_profile(warmup_frames: int = 0, record_frames: int = 0, + then: Callable[["Profiler.ProfileResult"], Any] = None): + global default_profiler + default_profiler = Profiler(warmup_frames, record_frames, then) + + +class _ProfileWrap(object): + def __init__(self, fn: Callable = None, name: str = None) -> None: + super().__init__() + self.fn = fn + self.name = name + + def __call__(self, *args: Any, **kwargs: Any) -> Any: + if self.fn == None and len(args) == 1 and isinstance(args[0], Callable): + self.fn = args[0] + return lambda *args, **kwargs: self(*args, **kwargs) + self.__enter__() + ret = self.fn(*args, **kwargs) + self.__exit__() + return ret + + def __enter__(self): + #print(f"Start node \"{self.name or self.fn.__qualname__}\"") + start_profile_node(self.name or self.fn.__qualname__) + return self + + def __exit__(self, *args: Any, **kwargs: Any): + #print(f"End node \"{self.name or self.fn.__qualname__}\"") + end_profile_node() + + +class _DebugProfileWrap(object): + def __init__(self, fn: Callable = None, name: str = None) -> None: + super().__init__() + self.fn = fn + self.name = name + + def __call__(self, *args: Any, **kwargs: Any) -> Any: + if self.fn == None and len(args) == 1 and isinstance(args[0], Callable): + self.fn = args[0] + return lambda *args, **kwargs: self(*args, **kwargs) + self.__enter__() + ret = self.fn(*args, **kwargs) + self.__exit__() + return ret + + def __enter__(self): + #print(f"Start node \"{self.name or self.fn.__qualname__}\"") + self.node = Profiler.Node(self.name) + return self + + def __exit__(self, *args: Any, **kwargs: Any): + #print(f"End node \"{self.name or self.fn.__qualname__}\"") + self.node.close() + torch.cuda.synchronize() + print(f"Node {self.name}: host duration {self.node.host_duration:.1f}ms, " + f"device duration {self.node.device_duration:.1f}ms") + + +FnRet = TypeVar("FnRet") +def profile(arg: str | Callable[..., FnRet]) -> _ProfileWrap | Callable[..., FnRet]: + if isinstance(arg, str): + return _ProfileWrap(name=arg) + else: + return lambda *args, **kwargs: _ProfileWrap(fn=arg)(*args, **kwargs) + + +def debug_profile(arg: str | Callable): + if isinstance(arg, str): + return _DebugProfileWrap(name=arg) + else: + return lambda *args, **kwargs: _DebugProfileWrap(fn=arg)(*args, **kwargs) + + +def start_profile_node(name): + if default_profiler is not None: + default_profiler.enter_node(name) + + +def end_profile_node(): + if default_profiler is not None: + default_profiler.leave_node() + + +def get_profile_result(): + if default_profiler is not None: + return default_profiler.get_result_report() + return None diff --git a/utils/samples.py b/utils/samples.py deleted file mode 100644 index fb6263f..0000000 --- a/utils/samples.py +++ /dev/null @@ -1,89 +0,0 @@ -import torch -from typing import Optional, Union, Any, List, Tuple -from . import math - - -class Samples(object): - indices: torch.Tensor - """ Tensor(N[, P], 2)` The unique indices of samples, e.g. (i-th ray, j-th sample)""" - - pts: torch.Tensor - """`Tensor(N[, P], 3)`""" - - dirs: torch.Tensor - """`Tensor(N[, P], 3)`""" - - depths: torch.Tensor - """`Tensor(N[, P])`""" - - dists: torch.Tensor - """`Tensor(N[, P])`""" - - voxel_indices: torch.Tensor - """`Tensor(N[, P])`""" - - size: List[int] - """Size of the samples""" - - device: torch.device - """Device where tensors of this object locate""" - - def __init__(self, **_data: Union[torch.Tensor, float, int]) -> None: - super().__init__() - super().__setattr__("_data", _data) - super().__setattr__("size", self.pts.size()[:-1]) - super().__setattr__("device", self.pts.device) - - def __getitem__(self, index: Union[int, slice, list, tuple, torch.Tensor, None]): - if isinstance(index, torch.Tensor) and index.dtype == torch.bool: - index = index.nonzero(as_tuple=True) - return Samples(**{ - key: value[index] if isinstance(value, torch.Tensor) else value - for key, value in self._data.items() - }) - - def __getattr__(self, __name: str) -> Union[torch.Tensor, Any]: - try: - return self._data[__name] - except KeyError: - return None - - def __setattr__(self, __name: str, __value: Any) -> None: - self._data[__name] = __value - - def reshape(self, *shape: int): - return Samples(**{ - key: value.reshape(*shape, *value.shape[len(self.size):]) - if isinstance(value, torch.Tensor) else value - for key, value in self._data.items() - }) - - def filter_rays(self) -> Optional[torch.Tensor]: - if isinstance(self.voxel_indices, torch.Tensor): - valid_rays_mask = self.voxel_indices.ne(-1).any(dim=-1) # (N) - rays_filter = valid_rays_mask.nonzero(as_tuple=True)[0] # (N) -> (N') - super().__setattr__("_data", { - key: value[rays_filter] if isinstance(value, torch.Tensor) else value - for key, value in self._data.items() - }) - super().__setattr__("size", self.pts.size()[:-1]) - return rays_filter - return None - - def interpolate(self, fine_samples, *values: torch.Tensor) -> Union[torch.Tensor, Tuple[torch.Tensor, ...]]: - P1 = self.size[-1] - P2 = fine_samples.size[-1] - K = P2 // P1 - if K > 1: - # Do interpolation - t1 = self.t # ([N, ]P1) - t2 = fine_samples.t # ([N, ]P2) - lo = torch.arange(P1, device=fine_samples.device).repeat_interleave(K)[:P2] - up = (lo + 1).clamp(max=P1 - 1) - t1_lo, t1_up = t1[..., lo], t1[..., up] - k = ((t2 - t1_lo) / (t1_up - t1_lo + math.tiny))[..., None] # ([N, ]P2, 1) - values = [ - value[..., lo, :] * (1 - k) + value[..., up, :] * k # ([N, ]P2, X) - for value in values - ] - return values[0] if len(values) == 1 else tuple(values) diff --git a/utils/seqs.py b/utils/seqs.py index 21142ee..35c8698 100644 --- a/utils/seqs.py +++ b/utils/seqs.py @@ -3,7 +3,7 @@ from . import math def helix(t_range, loops, n): n_per_loop = n // loops - angles = np.linspace(0, 2 * math.math.pi, n_per_loop, endpoint=False)[None, :]. \ + angles = np.linspace(0, 2 * math.pi, n_per_loop, endpoint=False)[None, :]. \ repeat(loops, axis=0).flatten() centers = np.empty([n, 3]) centers[:, 0] = 0.5 * t_range[0] * np.cos(angles) diff --git a/utils/sphere.py b/utils/sphere.py index bb74e7f..b328c24 100644 --- a/utils/sphere.py +++ b/utils/sphere.py @@ -1,17 +1,24 @@ -from typing import Union -import torch -from . import math -from . import misc +from . import math, misc +from .types import * def cartesian2spherical(cart: torch.Tensor, inverse_r: bool = False) -> torch.Tensor: """ Convert coordinates from Cartesian to Spherical - :param cart `Tensor(..., 3)`: coordinates in Cartesian - :param inverse_r: whether to inverse r - :return `Tensor(..., 3)`: coordinates in Spherical (r, theta, phi) + :param cart `Tensor([N...,] 3)`: coordinates in Cartesian + :param inverse_r: whether to convert r to reciprocal form, defaults to `False` + :return `Tensor([N...,] 3)`: coordinates in Spherical ([r | 1/r], theta, phi) """ + #rho = torch.sqrt(torch.sum(cart * cart, dim=-1)) + #theta = -torch.atan(cart[..., 0] / cart[..., 2]) + (cart[..., 2] < 0) * math.pi + 0.5 * math.pi + #if inverse_r: + # rho = rho.reciprocal() + # phi = torch.acos(cart[..., 1] * rho) + #else: + # phi = torch.acos(cart[..., 1] / rho) + #return torch.stack([rho, theta, phi], dim=-1) + rho = torch.sqrt(torch.sum(cart * cart, dim=-1)) theta = misc.get_angle(cart[..., 2], cart[..., 0]) if inverse_r: @@ -26,8 +33,9 @@ def spherical2cartesian(spher: torch.Tensor, inverse_r: bool = False) -> torch.T """ Convert coordinates from Spherical to Cartesian - :param spher: ... x 3, coordinates in Spherical - :return: ... x 3, coordinates in Cartesian (r, theta, phi) + :param spher `Tensor([N...,] 3)`: coordinates in Spherical ([r | 1/r], theta, phi) + :param inverse_r `bool`: whether r is in reciprocal form, defaults to `False` + :return `Tensor([N...,] 3)`:, coordinates in Cartesian """ rho = spher[..., 0] if inverse_r: @@ -40,34 +48,32 @@ def spherical2cartesian(spher: torch.Tensor, inverse_r: bool = False) -> torch.T return torch.stack([x, y, z], dim=-1) -def ray_sphere_intersect(p: torch.Tensor, v: torch.Tensor, r: torch.Tensor) -> torch.Tensor: +def ray_sphere_intersect(rays: Rays, r: torch.Tensor) -> torch.Tensor: """ Calculate intersections of each rays and each spheres - :param p `Tensor(B, 3)`: positions of rays - :param v `Tensor(B, 3)`: directions of rays - :param r `Tensor(N)`: , radius of spheres - :return `Tensor(B, N, 3)`: points of intersection - :return `Tensor(B, N)`: depths of intersection along ray + :param rays `Rays(B)`: rays + :param r `Tensor(P)`: , radius of spheres + :return `Tensor(B, P)`: depths of intersections along rays """ # p, v: Expand to (B, 1, 3) - p = p.unsqueeze(1) - v = v.unsqueeze(1) + p = rays.rays_o.unsqueeze(1) + v = rays.rays_d.unsqueeze(1) # pp, vv, pv: (B, 1) pp = (p * p).sum(dim=2) vv = (v * v).sum(dim=2) pv = (p * v).sum(dim=2) - depths = (((pv * pv - vv * (pp - r * r)).sqrt() - pv) / vv) - return p + depths[..., None] * v, depths + z = (((pv * pv - vv * (pp - r * r)).sqrt() - pv) / vv) # (B, P) + return z -def get_rot_matrix(theta: Union[float, torch.Tensor], phi: Union[float, torch.Tensor]) -> torch.Tensor: +def get_rot_matrix(theta: float | torch.Tensor, phi: float | torch.Tensor) -> torch.Tensor: """ Get rotation matrix from angles in spherical space - :param theta `Tensor(..., 1) | float`: rotation angles around y axis - :param phi `Tensor(..., 1) | float`: rotation angles around x axis - :return: `Tensor(..., 3, 3)` rotation matrices + :param theta `Tensor([N...,] 1) | float`: rotation angles around y axis + :param phi `Tensor([N...,] 1) | float`: rotation angles around x axis + :return: `Tensor([N...,] 3, 3)` rotation matrices """ if not isinstance(theta, torch.Tensor): theta = torch.tensor([theta]) @@ -75,14 +81,14 @@ def get_rot_matrix(theta: Union[float, torch.Tensor], phi: Union[float, torch.Te phi = torch.tensor([phi]) spher = torch.cat([torch.ones_like(theta), theta, phi], dim=-1) print(spher) - forward = spherical2cartesian(spher) # (..., 3) + forward = spherical2cartesian(spher) # ([N...,] 3) up = torch.tensor([0.0, 1.0, 0.0]) forward, up = torch.broadcast_tensors(forward, up) print(forward, up) - right = torch.cross(forward, up, dim=-1) # (..., 3) - up = torch.cross(right, forward, dim=-1) # (..., 3) + right = torch.cross(forward, up, dim=-1) # ([N...,] 3) + up = torch.cross(right, forward, dim=-1) # ([N...,] 3) print(right, up, forward) - return torch.stack([right, up, forward], dim=-2) # (..., 3, 3) + return torch.stack([right, up, forward], dim=-2) # ([N...,] 3, 3) def calc_local_dir(dirs, spherical_coords, pts): @@ -101,4 +107,4 @@ def calc_local_dir(dirs, spherical_coords, pts): local_y = torch.cross(local_x, local_z, -1) local_rot = torch.stack([local_x, local_y, local_z], dim=-2) # (B, N, 3, 3) return cartesian2spherical(torch.matmul(dirs[:, None, None, :], local_rot)) \ - .squeeze(-2)[..., 1:3] \ No newline at end of file + .squeeze(-2)[..., 1:3] diff --git a/utils/type.py b/utils/type.py deleted file mode 100644 index 0819d78..0000000 --- a/utils/type.py +++ /dev/null @@ -1,28 +0,0 @@ -from typing import Any, Dict, Union -import torch - -InputData = Dict[str, Union[torch.Tensor, Any]] -ReturnData = Dict[str, Union[torch.Tensor, Any]] -NetOutput = Dict[str, torch.Tensor] - - -class NetInput: - def __init__(self, x: torch.Tensor = None, d: torch.Tensor = None, f: torch.Tensor = None) -> None: - self.x = x - self.d = d - self.f = f - if x is not None: - self.shape = x.shape[:-1] - elif d is not None: - self.shape = d.shape[:-1] - else: - self.shape = [0] - - def __getitem__(self, index: Union[int, slice, list, tuple, torch.Tensor, None]) -> 'NetInput': - if isinstance(index, torch.Tensor) and index.dtype == torch.bool: - index = index.nonzero(as_tuple=True) - return NetInput( - self.x[index] if self.x is not None else None, - self.d[index] if self.d is not None else None, - self.f[index] if self.f is not None else None - ) diff --git a/utils/types/__common__.py b/utils/types/__common__.py new file mode 100644 index 0000000..f54bc7e --- /dev/null +++ b/utils/types/__common__.py @@ -0,0 +1,6 @@ +import torch +from pathlib import Path +from typing import Any, Type, Callable, NamedTuple, Iterable, Iterator, overload + +PathLike = str | Path +IndexSelector = int | slice | list[int] | torch.Tensor \ No newline at end of file diff --git a/utils/types/__init__.py b/utils/types/__init__.py new file mode 100644 index 0000000..ef87dcb --- /dev/null +++ b/utils/types/__init__.py @@ -0,0 +1,24 @@ +from .__common__ import * +from .data_pack import * +from .rays import Rays +from .samples import Samples +from .color import Color + + +class ReturnData(DataPack): + color: Tensor1D | None + depth: Tensor1D | None + colors: Tensor2D | None + densities: Tensor2D | None + alphas: Tensor2D | None + weights: Tensor2D | None + + +class Resolution(NamedTuple): + h: int + w: int + + @staticmethod + def from_str(res_str: str) -> "Resolution": + arr = res_str.split("x") + return Resolution(int(arr[1]), int(arr[0])) \ No newline at end of file diff --git a/utils/color.py b/utils/types/color.py similarity index 66% rename from utils/color.py rename to utils/types/color.py index 76ba1e1..e6823ad 100644 --- a/utils/color.py +++ b/utils/types/color.py @@ -1,35 +1,40 @@ -from typing import Union -import torch import torchvision.transforms.functional as vtf +from enum import Enum +from .__common__ import * -RGB = 0 -GRAY = 1 -YCbCr = 2 +class Color(Enum): + rgb = 0 + gray = 1 + ybr = 2 -def to_str(color): - return "gray" if color == GRAY \ - else ("ybr" if color == YCbCr - else "rgb") + @property + def chns(self) -> int: + match self: + case Color.gray: + return 1 + case _: + return 3 + + @staticmethod + def cvt(input: torch.Tensor, from_color: "Color", to_color: "Color") -> torch.Tensor: + """ + Convert input tensor from `from_color` to `to_color` - -def from_str(color_str): - return GRAY if color_str == 'gray' \ - else (YCbCr if color_str == 'ybr' - else RGB) - - -def chns(color): - color = from_str(color) if isinstance(color, str) else color - return 1 if color == GRAY else 3 + :param input `Tensor(..., C) | Tensor(..., C, H, W)`: The image to convert + :param from_color `Color`: The color of input image + :param to_color `Color`: The color of output image + :return `Tensor(..., C) | Tensor(..., C, H, W)`: converted image + """ + return cvt_funcs[from_color][to_color](input) def noop(input: torch.Tensor) -> torch.Tensor: return input -def rgb2ycbcr(input: torch.Tensor) -> torch.Tensor: +def rgb2ybr(input: torch.Tensor) -> torch.Tensor: """ Convert input tensor from RGB to YCbCr @@ -52,7 +57,7 @@ def rgb2ycbcr(input: torch.Tensor) -> torch.Tensor: return torch.cat([y, cb, cr], dim_c) -def rgb2ycbcr(input: torch.Tensor) -> torch.Tensor: +def rgb2ybr(input: torch.Tensor) -> torch.Tensor: """ Convert input tensor from RGB to YCbCr @@ -75,7 +80,7 @@ def rgb2ycbcr(input: torch.Tensor) -> torch.Tensor: return torch.cat([y, cb, cr], dim_c) -def ycbcr2rgb(input: torch.Tensor) -> torch.Tensor: +def ybr2rgb(input: torch.Tensor) -> torch.Tensor: """ Convert input tensor from YCbCr to RGB @@ -116,7 +121,7 @@ def gray2rgb(input: torch.Tensor) -> torch.Tensor: return input.expand(out_size) -def gray2ycbcr(input: torch.Tensor) -> torch.Tensor: +def gray2ybr(input: torch.Tensor) -> torch.Tensor: """ Convert input tensor from GRAY to YCbCr @@ -132,34 +137,20 @@ def gray2ycbcr(input: torch.Tensor) -> torch.Tensor: return torch.cat([y, cb, cr], dim_c) -def ycbcr2gray(input: torch.Tensor) -> torch.Tensor: +def ybr2gray(input: torch.Tensor) -> torch.Tensor: """ Convert input tensor from YCbCr to GRAY :param input `Tensor(..., 3) | Tensor(..., 3, H, W)`: :return `Tensor(..., 1) | Tensor(..., 1, H, W)`: """ - return vtf.rgb_to_grayscale(ycbcr2rgb(input)) + return vtf.rgb_to_grayscale(ybr2rgb(input)) cvt_funcs = [ - [noop, vtf.rgb_to_grayscale, rgb2ycbcr], # RGB->RGB,GRAY,YCbCr - [gray2rgb, noop, gray2ycbcr], # GRAY->RGB,GRAY,YCbCr - [ycbcr2rgb, ycbcr2gray, noop] # YCbCr->RGB,GRAY,YCbCr + [noop, vtf.rgb_to_grayscale, rgb2ybr], # RGB->RGB,GRAY,YCbCr + [gray2rgb, noop, gray2ybr], # GRAY->RGB,GRAY,YCbCr + [ybr2rgb, ybr2gray, noop] # YCbCr->RGB,GRAY,YCbCr ] -def cvt(input: torch.Tensor, from_color: Union[int, str], to_color: Union[int, str]) -> torch.Tensor: - """ - Convert input tensor from `from_color` to `to_color` - - :param input `Tensor(..., 1|3) | Tensor(..., 1|3, H, W)`: The image to convert - :param from_color `int | str`: The color of input image - :param to_color `int | str`: The color of output image - :return `Tensor(..., 1|3) | Tensor(..., 1|3, H, W)`: converted image - """ - if isinstance(from_color, str): - from_color = from_str(from_color) - if isinstance(to_color, str): - to_color = from_str(to_color) - return cvt_funcs[from_color][to_color](input) diff --git a/utils/types/data_pack.py b/utils/types/data_pack.py new file mode 100644 index 0000000..619ab46 --- /dev/null +++ b/utils/types/data_pack.py @@ -0,0 +1,178 @@ +from inspect import isclass +from operator import countOf +from types import UnionType +from .__common__ import * + +__all__ = ["DataPack", "Tensor0D", "Tensor1D", "Tensor2D"] + + +class _Tensor(torch.Tensor): + data_dim: int + + +class Tensor0D(_Tensor): + data_dim: int = 0 + + +class Tensor1D(_Tensor): + data_dim: int = 1 + + +class Tensor2D(_Tensor): + data_dim: int = 2 + + +class DataPack(dict[str, torch.Tensor | Any]): + shape: list[int] + """Shape of the data pack""" + + device: torch.device + """Device where tensors in the data pack locate""" + + def __init__(self, map: dict[str, torch.Tensor | Any] = None, shape: list[int] = None, + **_data: torch.Tensor | Any) -> None: + super().__init__((map or {}) | _data) + self.update_shape(shape) + + tensors = {key: val for key, val in self.items() if isinstance(val, torch.Tensor)} + tensor0 = next(tensors.values().__iter__(), None) + device = None if tensor0 is None else tensor0.device + self._validate_device(device, tensors) + super().__setattr__("device", device) + + def update_shape(self, new_shape: list[int] = None): + tensors = {key: val for key, val in self.items() if isinstance(val, torch.Tensor)} + if new_shape is None: + # Infer shape from tensors in the data pack and type annotations + first_key = next((key for key in tensors if self._get_data_dim(key) >= 0), None) + if first_key is None: + self._infer_shape_from_tensors_only(tensors) + return + # Infer batch shape from the first tensor with specified data_dim + new_shape = self._get_batch_shape(tensors[first_key], self._get_data_dim(first_key)) + self._validate_shape(new_shape, tensors) + super().__setattr__("shape", new_shape) + + def transform(self, fn: Callable[[torch.Tensor], torch.Tensor | Any]): + return self.__class__(**{ + key: fn(val) if isinstance(val, torch.Tensor) else val + for key, val in self.items() + }) + + def select(self, index: IndexSelector): + if isinstance(index, torch.Tensor) and index.dtype == torch.bool: + index = index.nonzero(as_tuple=True) + return self.transform(lambda tensor: tensor[index]) + + def reshape(self, *shape: int): + return self.transform(lambda tensor: tensor.reshape(*shape, *tensor.shape[len(self.shape):])) + + def flatten(self, start_dim: int = 0, end_dim: int = -1): + if start_dim < 0: + start_dim += len(self.shape) + if end_dim < 0: + end_dim += len(self.shape) + if start_dim < 0 or start_dim >= len(self.shape) - 1: + raise ValueError("\"start_dim\" is out of range") + if end_dim < 1 or end_dim >= len(self.shape): + raise ValueError("\"end_dim\" is out of range") + return self.transform(lambda tensor: tensor.flatten(start_dim, end_dim)) + + def to(self, device: torch.device): + return self.transform(lambda tensor: tensor.to(device)) + + def __getattr__(self, __name: str) -> torch.Tensor | Any: + try: + return self[__name] + except KeyError: + return None + + def __setattr__(self, __name: str, __value: torch.Tensor | Any) -> None: + self[__name] = __value + + def __setitem__(self, __key: str, __value: torch.Tensor | Any) -> None: + if isinstance(__value, torch.Tensor): + if self.shape is None: + super().__setitem__(__key, __value) + self.update_shape() + super().__setattr__("device", __value.device) + return + self._validate_shape(self.shape, {__key: __value}) + self._validate_device(self.device, {__key: __value}) + super().__setitem__(__key, __value) + + def _get_data_dim(self, key: str = None, t: Any = None) -> int: + if key is not None: # Called from outside with argument `key` + if key not in self.__annotations__: + return -1 # Auto dims if not specified in annotations + t = self.__annotations__[key] + if isinstance(t, UnionType): + return max([self._get_data_dim(t=t1) for t1 in t.__args__]) + if isclass(t): + if issubclass(t, _Tensor): + return t.data_dim + elif issubclass(t, torch.Tensor): + return -1 # Auto dims no data_dim is specified + return -2 # t is not `Tensor` type + + def _get_batch_shape(self, tensor: torch.Tensor, data_dim: int): + return list(tensor.shape) if data_dim == 0 else list(tensor.shape[:-data_dim]) + + def _infer_shape_from_tensors_only(self, tensors: dict[str, torch.Tensor]): + """ + Infer `shape` from input tensors without relying on type annotations. + + Called when no type annotations are available for tensors. + + :param tensors `{str: Tensor}`: tensors + """ + if len(tensors) == 0: # Input contains no tensors + # `shape` is empty + super().__setattr__("shape", None) + elif len(tensors) == 1: # Input contains only one tensor + # `shape` equals to the tensor's shape + super().__setattr__("shape", list(next(tensors.values().__iter__()).shape)) + else: # Input contains more than one tensor + # Get same leading shapes in input tensors + first_tensor = next(tensors.values().__iter__()) + shape = [] + for i, s in enumerate(first_tensor.shape): + if countOf([tensor.shape[i] for tensor in tensors.values() + if len(tensor.shape) > i], s) == len(tensors): + shape.append(s) + else: + break + super().__setattr__("shape", shape) + + def _validate_device(self, device: torch.device, tensors: dict[str, torch.Tensor]): + """ + Validate whether specified tensors match the device. + + :param device `torch.device`: the required device + :param tensors `{str: Tensor}`: tensors to validate + :raises ValueError: if some tensor doesn't match the device + """ + for key, tensor in tensors.items(): + if tensor.device != device: + raise ValueError(f"Require \"{key}\" on {device} but on {tensor.device}") + + def _validate_shape(self, shape: list[int], tensors: dict[str, torch.Tensor]): + """ + Validate whether specified tensors match the batch shape. + + :param shape `[int]`: the required batch shape + :param tensors `{str: Tensor}`: tensors to validate + :raises ValueError: if some tensor doesn't match the shape + """ + # Validate whether all tensors in data match the batch shape and device + for key, val in tensors.items(): + data_dim = self._get_data_dim(key) + match(data_dim): + case -2: + raise ValueError(f"\"{key}\" cannot be a Tensor") + case -1: + if list(val.shape[:len(shape)]) != shape: + raise ValueError(f"\"{key}\" does not match the batch shape {shape}") + case _: + if self._get_batch_shape(val, data_dim) != shape: + raise ValueError(f"\"{key}\" does not match the batch shape {shape}") diff --git a/utils/types/rays.py b/utils/types/rays.py new file mode 100644 index 0000000..3cdea5e --- /dev/null +++ b/utils/types/rays.py @@ -0,0 +1,24 @@ +from .__common__ import * +from .data_pack import * + + +class Rays(DataPack): + rays_o: Tensor1D + """`Tensor(B..., 3)`""" + rays_d: Tensor1D + """`Tensor(B..., 3)`""" + level: Tensor0D | int | None + """`Tensor(B...) | int`""" + idx: Tensor0D | None + """`Tensor(B...)`""" + color: Tensor1D | None + """`Tensor(B..., C)`""" + + def get_points(self, z: torch.Tensor) -> torch.Tensor: + """ + Get points along rays at distance z + + :param z `Tensor(B..., P)`: distances along rays + :return `Tensor(B..., P, 3)`: points along rays + """ + return self.rays_o[..., None, :] + self.rays_d[..., None, :] * z[..., None] diff --git a/utils/types/samples.py b/utils/types/samples.py new file mode 100644 index 0000000..f992a9b --- /dev/null +++ b/utils/types/samples.py @@ -0,0 +1,51 @@ +from .__common__ import * +from .data_pack import * +from .. import math + + +class Samples(DataPack): + indices: Tensor1D + """ Tensor(N[, P], 2)` The unique indices of samples, e.g. (i-th ray, j-th sample)""" + + pts: Tensor1D + """`Tensor(N[, P], 3)`""" + + dirs: Tensor1D + """`Tensor(N[, P], 3)`""" + + depths: Tensor0D + """`Tensor(N[, P])`""" + + dists: Tensor0D + """`Tensor(N[, P])`""" + + t_vals: Tensor0D + """`Tensor(N[, P])`""" + + voxel_indices: Tensor0D | int + """`Tensor(N[, P])`""" + + def filter_rays(self) -> tuple["Samples", torch.Tensor | None]: + if self.voxel_indices is None: + return self, None + valid_rays_mask = self.voxel_indices.ne(-1).any(dim=-1) # (N) + rays_filter = valid_rays_mask.nonzero(as_tuple=True)[0] # (N) -> (N') + return self.select(rays_filter), rays_filter + + def interpolate(self, fine_samples, *values: torch.Tensor) -> torch.Tensor | tuple[torch.Tensor, ...]: + P1 = self.size[-1] + P2 = fine_samples.size[-1] + K = P2 // P1 + if K > 1: + # Do interpolation + t1 = self.t # ([N, ]P1) + t2 = fine_samples.t # ([N, ]P2) + lo = torch.arange(P1, device=fine_samples.device).repeat_interleave(K)[:P2] + up = (lo + 1).clamp(max=P1 - 1) + t1_lo, t1_up = t1[..., lo], t1[..., up] + k = ((t2 - t1_lo) / (t1_up - t1_lo + math.tiny))[..., None] # ([N, ]P2, 1) + values = [ + val[..., lo, :] * (1 - k) + val[..., up, :] * k # ([N, ]P2, X) + for val in values + ] + return values[0] if len(values) == 1 else tuple(values) diff --git a/utils/view.py b/utils/view.py index f6b7271..7baaf2a 100644 --- a/utils/view.py +++ b/utils/view.py @@ -1,142 +1,215 @@ -from typing import List, Mapping, Tuple, Union import torch import glm -from . import misc -from . import math + +from . import misc, math +from .types import * +from .sphere import spherical2cartesian def fov2length(angle): return math.tan(math.radians(angle) / 2) * 2 -class CameraParam(object): +def length2fov(length): + return math.degrees(math.atan(length / 2) * 2) + + +class Camera(object): - def __init__(self, params: Mapping[str, Union[float, bool]], - res: Tuple[int, int], *, device=None) -> None: + _local_rays_cached: torch.Tensor + + @property + def local_rays(self) -> torch.Tensor: + if self._local_rays_cached is None: + self._build_local_rays() + return self._local_rays_cached + + @staticmethod + def create(params: dict[str, float | bool], res: tuple[int, int], + coord_sys: str = "dx", device: torch.device = None, **kwargs): + if params.get("type", "perspective") == "pano": + return PanoCamera(params, res, coord_sys, device, **kwargs) + return PerspectiveCamera(params, res, coord_sys, device, **kwargs) + + def __init__(self, res: tuple[int, int], coord_sys: str = "dx", + device: torch.device = None) -> None: super().__init__() - params = CameraParam.convert_camera_params(params, res) - self.res = res - self.f = torch.tensor([params['fx'], params['fy'], 1], device=device) - self.c = torch.tensor([params['cx'], params['cy']], device=device) + self.res = Resolution(*res) self.device = device + self.coord_sys = coord_sys + self.forward = 1. if coord_sys == "dx" else -1. + self._local_rays_cached = None def to(self, device: torch.device): - self.f = self.f.to(device) - self.c = self.c.to(device) self.device = device + self._local_rays_cached = None if self._local_rays_cached is None else\ + self._local_rays_cached.to(self.device) + + def resize(self, res: Resolution | tuple[int, int]): + old_res = self.res + new_res = Resolution(*res) + self._resize(old_res, new_res) + self.res = Resolution(*res) + self._local_rays_cached = None + + def get_pixels(self, image: torch.Tensor) -> torch.Tensor: + return image.movedim(-3, -1).flatten(-3, -2) + + def _resize(self, old_res: Resolution, new_res: Resolution): + raise NotImplementedError() + + def _build_local_rays(self): + raise NotImplementedError() + + +class PerspectiveCamera(Camera): + + def __init__(self, params: dict[str, float | bool], res: tuple[int, int], + coord_sys: str = "dx", device: torch.device = None, **kwargs) -> None: + super().__init__(res, coord_sys, device) + params = PerspectiveCamera.convert_params(params, self.res) + self.f = torch.tensor(params["f"], device=self.device) + self.c = torch.tensor(params["c"], device=self.device) + + def to(self, device: torch.device): + super().to(device) + self.f = self.f.to(self.device) + self.c = self.c.to(self.device) return self - def resize(self, res: Tuple[int, int]): - self.f[0] = self.f[0] / self.res[1] * res[1] - self.f[1] = self.f[1] / self.res[0] * res[0] - self.c[0] = self.c[0] / self.res[1] * res[1] - self.c[1] = self.c[1] / self.res[0] * res[0] - self.res = res + def _resize(self, old_res: Resolution, new_res: Resolution): + scale = torch.tensor([new_res.w / old_res.w, new_res.h / old_res.h], device=self.device) + self.f.mul_(scale) + self.c.mul_(scale) + + def _build_local_rays(self): + self._local_rays_cached = self.get_local_rays(flatten=True) def proj(self, p: torch.Tensor, normalize=False, center_as_origin=False) -> torch.Tensor: """ - Project positions in local space to image plane + Project positions in camera space to image plane :param p `Tensor(..., 3)`: positions in local space :param normalize: use normalized coord for image plane :param center_as_origin: take center as the origin if image plane instead of top-left corner :return `Tensor(..., 2)`: positions in image plane """ - p = p * self.f - p = p[..., 0:2] / p[..., 2:3] + p = p[..., :2] / p[..., 2:] * self.forward * self.f if not center_as_origin: p = p + self.c if normalize: - p = p / torch.tensor([self.res[1] - 1, self.res[0] - 1], device=self.device) + p = p / torch.tensor([self.res.w - 1, self.res.h - 1], device=self.device) return p - def unproj(self, p: torch.Tensor, z: torch.Tensor = None, normalize=False, center_as_origin=False) -> torch.Tensor: + def unproj(self, p: torch.Tensor) -> torch.Tensor: """ - Unproject positions in image plane to local space + Unproject positions in image plane to camera space :param p `Tensor(..., 2)`: positions in image plane - :param z `Tensor(..., 1)`: depths of positions, None means all depths set to 1 - :param normalize: use normalized coord for image plane - :param center_as_origin: take center as the origin if image plane instead of top-left corner :return: positions in local space """ - if normalize: - p = p * torch.tensor([self.res[1] - 1, self.res[0] - 1], device=self.device) - if not center_as_origin: - p = p - self.c - p = torch.cat([p / self.f[:2], torch.ones_like(p[..., :1])], dim=-1) - if z != None: - p = p * z - return p + return misc.union((p - self.c) / self.f, self.forward) - def get_local_rays(self, flatten=False, norm=True) -> torch.Tensor: + def get_local_rays(self, normalize: bool = False, flatten: bool = False) -> torch.Tensor: """ - Get view rays in local space + Get view rays in camera space - :param flatten: whether flatten the return tensor - :param norm: whether normalize rays to unit length + :param normalize: whether normalize rays to unit length, defaults to False + :param flatten: whether flatten the return tensor, defaults to False :return `Tensor(H, W, 3)|Tensor(HW, 3)`: the shape is determined by parameter 'flatten' """ - coords = misc.meshgrid(*self.res).to(self.device) - rays = self.unproj(coords) - if norm: + pixels = misc.grid2d(*self.res, device=self.device) + rays = self.unproj(pixels) + if normalize: rays /= rays.norm(dim=-1, keepdim=True) if flatten: rays = rays.flatten(0, 1) return rays - def get_global_rays(self, trans, flatten=False, norm=True) -> torch.Tensor: - """ - [summary] - - :param t `Tensor(N.., 3)`: translation vectors - :param r `Tensor(N.., 3, 3)`: rotation matrices - :param flatten: [description], defaults to False - :param norm: [description], defaults to True - :return: [description] - """ - rays = self.get_local_rays(flatten, norm) # (M.., 3) - rays_o, _ = torch.broadcast_tensors(trans.t[..., None, :], rays) if flatten \ - else torch.broadcast_tensors(trans.t[..., None, None, :], rays) # (N.., M.., 3) - rays_d = trans.trans_vector(rays) - return rays_o, rays_d - @staticmethod - def convert_camera_params(input_camera_params: Mapping[str, Union[float, bool]], - view_res: Tuple[int, int]) -> Mapping[str, Union[float, bool]]: + def convert_params(input_params: dict[str, Any], res: Resolution) -> dict[str, Any]: """ Check and convert camera parameters in config file to pixel-space - :param cam_params: { ["fx", "fy" | "fov"], "cx", "cy", ["normalized"] }, - the parameters of camera - :return: camera parameters + :param cam_params `{str: any}`: the parameters of camera, + { [("f": float | [float, float]) | ("fov": float)], "c": float | [float, float], ["normalized": bool] }, + :param res `Resolution`: resolution of view + :return `{str: any}`: converted camera parameters, {"f": [float, float], "c": [float, float]} """ - input_is_normalized = bool(input_camera_params.get('normalized')) - camera_params = {} - if 'fov' in input_camera_params: + input_is_normalized = input_params.get("normalized", False) + params = {} + if "fov" in input_params: + params["f"] = [res.h / fov2length(input_params["fov"])] * 2 + params["f"][1] *= -1 + else: + params["f"] = input_params["f"] if isinstance(input_params["f"], list)\ + else [input_params["f"], -input_params["f"]] if input_is_normalized: - camera_params['fy'] = 1 / fov2length(input_camera_params['fov']) - camera_params['fx'] = camera_params['fy'] / view_res[1] * view_res[0] - else: - camera_params['fx'] = camera_params['fy'] = view_res[0] / \ - fov2length(input_camera_params['fov']) - camera_params['fy'] *= -1 + params["f"][0] *= res.w + params["f"][1] *= res.h + + if "c" not in input_params: + params["c"] = [res.w / 2, res.h / 2] else: - camera_params['fx'] = input_camera_params['fx'] - camera_params['fy'] = input_camera_params['fy'] - camera_params['cx'] = input_camera_params['cx'] - camera_params['cy'] = input_camera_params['cy'] - if input_is_normalized: - camera_params['fx'] *= view_res[1] - camera_params['fy'] *= view_res[0] - camera_params['cx'] *= view_res[1] - 1 - camera_params['cy'] *= view_res[0] - 1 - return camera_params + params["c"] = input_params["c"] if isinstance(input_params["c"], list)\ + else [input_params["c"]] * 2 + if input_is_normalized: + params["c"][0] *= res.w + params["c"][1] *= res.h + return params + + +class PanoCamera(Camera): + def __init__(self, params: dict[str, float | bool], res: tuple[int, int], + coord_sys: str = "dx", device: torch.device = None, **kwargs) -> None: + super().__init__(res, coord_sys, device) + self.pixs = None + + def to(self, device: torch.device): + super().to(device) + self.pixs = None if self.pixs is None else self.pixs.to(self.device) + return self + + def get_pixels(self, image: torch.Tensor) -> torch.Tensor: + if self.pixs is None: + self._build_local_rays() + return super().get_pixels(image)[..., self.pixs] + + def _resize(self, old_res: Resolution, new_res: Resolution): + self.pixs = None + pass + + def _build_local_rays(self): + self.pixs, self._local_rays_cached = self._get_pano_rays() + + def _get_pano_rays(self) -> tuple[torch.Tensor, torch.Tensor]: + """ + Get unprojected rays of pixels on a panorama + + :return `Tensor(N)`: rays' pixel indices in flattened pano image + :return `Tensor(N, 3)`: rays' directions with one unit length + """ + phi = (torch.arange(self.res.h, device=self.device) + 0.5) / self.res.h * math.pi # (H) + length = (phi.sin() * self.res.w * 0.5).ceil() * 2 + cols = torch.arange(self.res.w, device=self.device)[None, :].expand(*self.res) # (H, W) + mask = torch.logical_and(cols >= (self.res.w - length[:, None]) / 2, + cols < (self.res.w + length[:, None]) / 2) # (H, W) + pixs = mask.nonzero(as_tuple=True) # ((N), (N)) + pixs_phi = (0.5 - (pixs[0] + 0.5) / self.res.h) * math.pi + pixs_theta = (pixs[1] * 2 + 1 - self.res.w) / length[pixs[0]] * math.pi + spher_coords = torch.stack([torch.ones_like(pixs_phi), pixs_theta, pixs_phi], dim=-1) + rays = spherical2cartesian(spher_coords) + rays[..., -1] *= self.forward + return pixs[0] * self.res.w + pixs[1], rays class Trans(object): + @property + def shape(self): + return self.t.shape[:-1] + def __init__(self, t: torch.Tensor, r: torch.Tensor): self.t = t self.r = r @@ -145,7 +218,7 @@ class Trans(object): self.r = self.r[None, :, :] self.to(self.t.device) - def to(self, device: torch.device): + def to(self, device: torch.device) -> "Trans": self.t = self.t.to(device) self.r = self.r.to(device) self.device = device @@ -156,8 +229,6 @@ class Trans(object): Transform points by given translation vectors and rotation matrices :param p `Tensor(N.., 3)`: points to transform - :param t `Tensor(M.., 3)`: translation vectors - :param r `Tensor(M.., 3, 3)`: rotation matrices :param inverse: whether perform inverse transform :return `Tensor(M.., N.., 3)`: transformed points """ @@ -182,19 +253,17 @@ class Trans(object): Transform vectors by given translation vectors and rotation matrices :param v `Tensor(N.., 3)`: vectors to transform - :param r `Tensor(M.., 3, 3)`: rotation matrices :param inverse: whether perform inverse transform :return `Tensor(M.., N.., 3)`: transformed vectors """ out_size = list(self.r.size())[:-2] + list(v.size())[:-1] + [3] - r = self.r if inverse else self.r.movedim(-1, -2) # Transpose rotation matrices - out = torch.matmul(v.view(-1, 3), r).view(out_size) - return out + r = self.r.movedim(-1, -2) if inverse else self.r + return (r.unsqueeze(-3) @ v.reshape(-1, 3, 1)).reshape(out_size) - def size(self) -> List[int]: - return list(self.t.size()[:-1]) + def reshape(self, *size) -> "Trans": + return Trans(self.t.reshape(*size, 3), self.r.reshape(*size, 3, 3)) - def get(self, *index): + def __getitem__(self, index: IndexSelector) -> "Trans": return Trans(self.t[index], self.r[index]) @@ -240,7 +309,7 @@ def trans_vector(v: torch.Tensor, r: torch.Tensor, inverse=False) -> torch.Tenso return out -def euler_to_matrix(euler: Union[Tuple[float, float, float], List[float]]) -> List[float]: - q = glm.quat(glm.radians(glm.vec3(euler[0], euler[1], euler[2]))) +def euler_to_matrix(euler_x: float, euler_y: float, euler_z: float) -> list[float]: + q = glm.quat(glm.radians(glm.vec3(euler_x, euler_y, euler_z))) vec_list = glm.transpose(glm.mat3_cast(q)).to_list() return vec_list[0] + vec_list[1] + vec_list[2] diff --git a/utils/voxels.py b/utils/voxels.py index 6ddf6a0..af8b29b 100644 --- a/utils/voxels.py +++ b/utils/voxels.py @@ -1,10 +1,8 @@ -import torch -from typing import Tuple, Union - from . import math +from .types import * -def get_grid_steps(bbox: torch.Tensor, step_size: Union[torch.Tensor, float]) -> torch.Tensor: +def get_grid_steps(bbox: torch.Tensor, step_size: torch.Tensor | float) -> torch.Tensor: """ Get grid steps alone every dim. @@ -30,7 +28,7 @@ def get_out_of_bound_mask(pts: torch.Tensor, bbox: torch.Tensor) -> torch.Tensor def to_flat_indices(grid_coords: torch.Tensor, steps: torch.Tensor) -> torch.Tensor: indices = grid_coords[..., 0] for i in range(1, grid_coords.shape[-1]): - indices = indices * steps[i] + grid_coords[..., i] + indices = indices * steps[..., i] + grid_coords[..., i] return indices @@ -74,7 +72,7 @@ def init_voxels(bbox: torch.Tensor, steps: torch.Tensor): """ Initialize voxels. """ - x, y, z = torch.meshgrid(*[torch.arange(steps[i]) for i in range(3)]) + x, y, z = torch.meshgrid(*[torch.arange(steps[i]) for i in range(3)], indexing="ij") return to_voxel_centers(torch.stack([x, y, z], -1).reshape(-1, 3), bbox, steps) @@ -91,8 +89,11 @@ def to_voxel_centers(grid_coords: torch.Tensor, bbox: torch.Tensor, steps: torch return grid_coords / steps * (bbox[1] - bbox[0]) + bbox[0] -def split_voxels_local(voxel_size: Union[torch.Tensor, float], n: int, align_border: bool = True, - dims=3, *, dtype: torch.dtype = None, device: torch.device = None, +split_voxels_local_device_cache: dict[str, torch.Tensor] = {} + + +def split_voxels_local(voxel_size: torch.Tensor | float, n: int, align_border: bool = True, + dims: int = 3, device: torch.device = torch.device("cpu"), like: torch.Tensor = None): """ [summary] @@ -107,15 +108,20 @@ def split_voxels_local(voxel_size: Union[torch.Tensor, float], n: int, align_bor :return `Tensor(X, D)`: [description] """ if like is not None: - dtype = like.dtype + dims = like.shape[-1] device = like.device - c = torch.arange(1 - n, n, 2, dtype=dtype, device=device) - offset = torch.stack(torch.meshgrid([c] * dims), -1).flatten(0, -2)\ - * voxel_size * .5 / (n - 1 if align_border else n) + cache_key = f"{n}_{dims}_{device}_{align_border}" + offset = split_voxels_local_device_cache.get(cache_key) + if offset is None: + c = torch.arange(1 - n, n, 2, dtype=torch.float, device=device) + offset = torch.stack(torch.meshgrid([c] * dims, indexing="ij"), -1).flatten(0, -2) + offset.mul_(.5 / (n - align_border)) + split_voxels_local_device_cache[cache_key] = offset + offset.mul_(voxel_size) return offset -def split_voxels(voxel_centers: torch.Tensor, voxel_size: Union[torch.Tensor, float], n: int, +def split_voxels(voxel_centers: torch.Tensor, voxel_size: torch.Tensor | float, n: int, align_border: bool = True): """ [summary] @@ -131,7 +137,7 @@ def split_voxels(voxel_centers: torch.Tensor, voxel_size: Union[torch.Tensor, fl voxel_size, n, align_border, voxel_centers.shape[-1], like=voxel_centers) -def get_corners(voxel_centers: torch.Tensor, bbox: torch.Tensor, steps: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: +def get_corners(voxel_centers: torch.Tensor, bbox: torch.Tensor, steps: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: half_voxel_size = (bbox[1] - bbox[0]) / steps * 0.5 expand_bbox = bbox.clone() expand_bbox[0] -= 0.5 * half_voxel_size @@ -148,17 +154,16 @@ def get_corners(voxel_centers: torch.Tensor, bbox: torch.Tensor, steps: torch.Te return corners, corner_indices.reshape(-1, 8) -def trilinear_interp(pts: torch.Tensor, corner_values: torch.Tensor) -> torch.Tensor: +def linear_interp(pts: torch.Tensor, corner_values: torch.Tensor) -> torch.Tensor: """ - Perform trilinear interpolation in unit voxel ([0,0,0] ~ [1,1,1]). + Perform trilinear interpolation in unit voxel ([0,...] ~ [1,...]). - :param pts `Tensor(N, 3)`: uniform coordinates in voxels - :param corner_values `Tensor(N, 8X)|Tensor(N, 8, X)`: values at corners of voxels - :return `Tensor(N, X)`: interpolated values + :param pts `Tensor(N..., D)`: uniform coordinates in voxels + :param corner_values `Tensor(N, CX)|Tensor(N..., C, X)`: values at corners of voxels + :return `Tensor(N..., X)`: interpolated values """ - pts = pts[:, None] # (N, 1, 3) - corners = split_voxels_local(1, 2, like=pts) + 0.5 # (8, 3) - corner_values = corner_values.reshape(corner_values.size(0), 8, -1) # (N, 8, X) - - weights = (pts * corners * 2 - pts - corners + 1).prod(-1, keepdim=True) # (N, 8, 1) - return (weights * corner_values).sum(1) + pts = pts.unsqueeze(-2) # (N..., 1, D) + corners = split_voxels_local(1, 2, like=pts) + 0.5 # (C, D) + corner_values = corner_values.reshape(*pts.shape[:-2], corners.shape[0], -1) # (N..., C, X) + weights = (pts * corners * 2 - pts - corners + 1).prod(-1, keepdim=True) # (N..., C, 1) + return (weights * corner_values).sum(-2) -- GitLab