fast_exponential.inl 6.12 KB
Newer Older
Nianchen Deng's avatar
Nianchen Deng committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
///////////////////////////////////////////////////////////////////////////////////
/// OpenGL Mathematics (glm.g-truc.net)
///
/// Copyright (c) 2005 - 2015 G-Truc Creation (www.g-truc.net)
/// Permission is hereby granted, free of charge, to any person obtaining a copy
/// of this software and associated documentation files (the "Software"), to deal
/// in the Software without restriction, including without limitation the rights
/// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
/// copies of the Software, and to permit persons to whom the Software is
/// furnished to do so, subject to the following conditions:
/// 
/// The above copyright notice and this permission notice shall be included in
/// all copies or substantial portions of the Software.
/// 
/// Restrictions:
///		By making use of the Software for military purposes, you choose to make
///		a Bunny unhappy.
/// 
/// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
/// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
/// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
/// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
/// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
/// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
/// THE SOFTWARE.
///
/// @ref gtx_fast_exponential
/// @file glm/gtx/fast_exponential.inl
/// @date 2006-01-09 / 2011-06-07
/// @author Christophe Riccio
///////////////////////////////////////////////////////////////////////////////////////////////////

namespace glm
{
	// fastPow:
	template <typename genType>
	GLM_FUNC_QUALIFIER genType fastPow(genType x, genType y)
	{
		return exp(y * log(x));
	}

	template <typename T, precision P, template <typename, precision> class vecType>
	GLM_FUNC_QUALIFIER vecType<T, P> fastPow(vecType<T, P> const & x, vecType<T, P> const & y)
	{
		return exp(y * log(x));
	}

	template <typename T>
	GLM_FUNC_QUALIFIER T fastPow(T x, int y)
	{
		T f = static_cast<T>(1);
		for(int i = 0; i < y; ++i)
			f *= x;
		return f;
	}

	template <typename T, precision P, template <typename, precision> class vecType>
	GLM_FUNC_QUALIFIER vecType<T, P> fastPow(vecType<T, P> const & x, vecType<int, P> const & y)
	{
		vecType<T, P> Result(uninitialize);
		for(detail::component_count_t i = 0; i < detail::component_count(x); ++i)
			Result[i] = fastPow(x[i], y[i]);
		return Result;
	}

	// fastExp
	// Note: This function provides accurate results only for value between -1 and 1, else avoid it.
	template <typename T>
	GLM_FUNC_QUALIFIER T fastExp(T x)
	{
		// This has a better looking and same performance in release mode than the following code. However, in debug mode it's slower.
		// return 1.0f + x * (1.0f + x * 0.5f * (1.0f + x * 0.3333333333f * (1.0f + x * 0.25 * (1.0f + x * 0.2f))));
		T x2 = x * x;
		T x3 = x2 * x;
		T x4 = x3 * x;
		T x5 = x4 * x;
		return T(1) + x + (x2 * T(0.5)) + (x3 * T(0.1666666667)) + (x4 * T(0.041666667)) + (x5 * T(0.008333333333));
	}
	/*  // Try to handle all values of float... but often shower than std::exp, glm::floor and the loop kill the performance
	GLM_FUNC_QUALIFIER float fastExp(float x)
	{
		const float e = 2.718281828f;
		const float IntegerPart = floor(x);
		const float FloatPart = x - IntegerPart;
		float z = 1.f;

		for(int i = 0; i < int(IntegerPart); ++i)
			z *= e;

		const float x2 = FloatPart * FloatPart;
		const float x3 = x2 * FloatPart;
		const float x4 = x3 * FloatPart;
		const float x5 = x4 * FloatPart;
		return z * (1.0f + FloatPart + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f));
	}

	// Increase accuracy on number bigger that 1 and smaller than -1 but it's not enough for high and negative numbers
	GLM_FUNC_QUALIFIER float fastExp(float x)
	{
		// This has a better looking and same performance in release mode than the following code. However, in debug mode it's slower.
		// return 1.0f + x * (1.0f + x * 0.5f * (1.0f + x * 0.3333333333f * (1.0f + x * 0.25 * (1.0f + x * 0.2f))));
		float x2 = x * x;
		float x3 = x2 * x;
		float x4 = x3 * x;
		float x5 = x4 * x;
		float x6 = x5 * x;
		float x7 = x6 * x;
		float x8 = x7 * x;
		return 1.0f + x + (x2 * 0.5f) + (x3 * 0.1666666667f) + (x4 * 0.041666667f) + (x5 * 0.008333333333f)+ (x6 * 0.00138888888888f) + (x7 * 0.000198412698f) + (x8 * 0.0000248015873f);;
	}
	*/

	template <typename T, precision P, template <typename, precision> class vecType>
	GLM_FUNC_QUALIFIER vecType<T, P> fastExp(vecType<T, P> const & x)
	{
		return detail::functor1<T, T, P, vecType>::call(fastExp, x);
	}

	// fastLog
	template <typename genType>
	GLM_FUNC_QUALIFIER genType fastLog(genType x)
	{
		return std::log(x);
	}

	/* Slower than the VC7.1 function...
	GLM_FUNC_QUALIFIER float fastLog(float x)
	{
		float y1 = (x - 1.0f) / (x + 1.0f);
		float y2 = y1 * y1;
		return 2.0f * y1 * (1.0f + y2 * (0.3333333333f + y2 * (0.2f + y2 * 0.1428571429f)));
	}
	*/

	template <typename T, precision P, template <typename, precision> class vecType>
	GLM_FUNC_QUALIFIER vecType<T, P> fastLog(vecType<T, P> const & x)
	{
		return detail::functor1<T, T, P, vecType>::call(fastLog, x);
	}

	//fastExp2, ln2 = 0.69314718055994530941723212145818f
	template <typename genType>
	GLM_FUNC_QUALIFIER genType fastExp2(genType x)
	{
		return fastExp(0.69314718055994530941723212145818f * x);
	}

	template <typename T, precision P, template <typename, precision> class vecType>
	GLM_FUNC_QUALIFIER vecType<T, P> fastExp2(vecType<T, P> const & x)
	{
		return detail::functor1<T, T, P, vecType>::call(fastExp2, x);
	}

	// fastLog2, ln2 = 0.69314718055994530941723212145818f
	template <typename genType>
	GLM_FUNC_QUALIFIER genType fastLog2(genType x)
	{
		return fastLog(x) / 0.69314718055994530941723212145818f;
	}

	template <typename T, precision P, template <typename, precision> class vecType>
	GLM_FUNC_QUALIFIER vecType<T, P> fastLog2(vecType<T, P> const & x)
	{
		return detail::functor1<T, T, P, vecType>::call(fastLog2, x);
	}
}//namespace glm