@@ -14,7 +14,7 @@ Recall that a cubic polynomial is a function of the form
where <imgsrc="task1_media/0001.png"height="20">, and <imgsrc="task1_media/0002.png"height="20"> are fixed coefficients. However, there are many different ways of specifying a cubic polynomial. In particular, rather than specifying the coefficients directly, we can specify the endpoints and tangents we wish to interpolate. This construction is called the "Hermite form" of the polynomial. In particular, the Hermite form is given by
<imgsrc="task1_media/0003.png height"="30">
<imgsrc="task1_media/0003.png"height="30">
where <imgsrc="task1_media/0004.png"height="20"> are the endpoint positions, <imgsrc="task1_media/0005.png"height="20"> are the endpoint tangents, and <imgsrc="task1_media/0006.png"height="20"> are the Hermite bases